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Abstract

The present thesis deals with two-dimensional quantum Hall systems in which
the electrons may be endowed with multiple discrete degrees of freedom. Quan-
tum Hall ferromagnetism provides a framework to treat these electronic degrees of
freedom as effective spins and isospins of the electrons. Different orderings of the
electronic spins and isospins then characterise different possible phases of the sys-
tem. Using this analogy, various aspects of the two-dimensional systems in the
quantum Hall regime are explored theoretically by studying the corresponding
spin and isospin structure.

The work consists of three parts in which different two-dimensional materials are
investigated in the quantum Hall regime. In any of the three projects presented
within this thesis, Hartree Fock theory is employed to study the multicomponent
spin and isospin system at the mean field level. All our considerations are stim-
ulated directly by experimental results. We draw our main motivation from the
key idea that purely theoretical investigations of abstract models may us allow to
obtain deeper insights into the physical processes and mechanisms that determine
the properties of the materials. This, in turn, we hope to allow conclusions about
the experiments by providing possible explanations of the phenomena observed,
as well as prospects for future investigations.

The first project deals with a finite piece of monolayer graphene: The electron spin
and isospin properties are studied in the presence of an edge terminating the
atomic graphene lattice and breaking translational invariance in space. In mono-
layer graphene, the electrons carry also an additional isospin degree of freedom
besides the electronic spin. This is called the "valley isospin". By tracing the evo-
lution of the system as a function of space from the bulk to the edge we analyse
how the structure of ground and excited states is influenced by the presence of
a boundary with respect to the properties of the translationally invariant bulk.
We find novel phases in the vicinity of the edge which have not been observed
before in the bulk of the system. The properties of the resulting edge state struc-
ture and their possible relation to conductance measurements are discussed. In
particular, we challenge the commonly applied explanation of experimentally ob-
served transitions between regimes of different conductance properties of mono-
layer graphene in terms of transitions between different bulk phases. We suggest
an alternate explanation based solely on transitions between different edge phases.



In the second part, we turn our interest to bilayer graphene, where for an infinite sys-
tem in the absence of boundaries, the dependence of spin and isospin properties
on external magnetic and electric fields is investigated. For the graphene bilayer,
where an additional "orbital" isospin degree of freedom comes into play due to a
degeneracy between the n = 0 and the n = 1 Landau level, we identify the vari-
ous different ground state spin and isospin phases which may emerge as functions
of the electric and magnetic field strengths and provide the corresponding phase
diagrams. We investigate the properties of phases, especially of those that exhibit
non-trivial coherence properties of the isospin degrees of freedom and compare to
the literature about experimentally observed phase transitions in bilayer graphene.

Finally, in the most recent project, we give an outlook on the possibility of ex-
tending the ideas above to analyse the two-dimensional surface states of three-
dimensional crystals in the quantum Hall regime. The example of the (111) surface
of elemental bismuth is discussed: in this case, we are confronted with a multi-valley
system featuring six degenerate, anisotropic valleys. We make an attempt to model
the dispersion of this system by approximating the valleys as elliptic bands and ac-
counting for the effect of local strain. First, preliminary results on possible valley
ordering of different ground state phases are presented.



Zusammenfassung

Die vorliegende Arbeit beschäftigt sich mit zweidimensionalen Quanten-Hall Sys-
temen, in welchen die Elektronen über mehrere diskrete Freiheitsgrade verfügen
können. Quanten-Hall Ferromagnetismus stellt einen Rahmen dar, um diese elektro-
nischen Freiheitsgrade als effektive Spins und Isospins der Elektronen zu beschrei-
ben. Verschiedene Anordnungen der Spins und Isospins charakterisieren dann
verschiedene mögliche Phasen des Systems. Unter Ausnutzung dieser Analogie
werden unterschiedliche Aspekte der zweidimensionalen Systeme im Quanten-
Hall Regime theoretisch untersucht, indem die jeweilige Spin und Isospin Struktur
analysiert wird.

Die Arbeit besteht aus drei Teilen, in denen jeweils unterschiedliche zweidimen-
sionalen Systeme im Quanten-Hall Regime studiert werden. In jedem der drei Pro-
jekte, welche in dieser Arbeit vorgestellt werden, wird die Hartree-Fock-Theorie ge-
nutzt, um die Spin- und Isospin-Systeme mit mehreren Komponenten auf der Ba-
sis von Molekularfeldnäherung zu untersuchen. Alle unsere Überlegungen wur-
den angeregt durch experimentelle Ergebnisse. Wir beziehen unsere Hauptmotiva-
tion aus der zentralen Idee, dass aus rein theoretischen Untersuchungen abstrak-
ter Modelle tiefgreifende Einsichten bezüglich der physikalischen Prozesse und
Mechanismen gewonnen werden können, welche dem Verhalten des Systems zu
Grunde liegen. Dies wiederum, so unsere Hoffnung, soll Rückschlüsse auf die Ex-
perimente zulassen, sowohl um Erklärungen für die beobachteten Phänomene zu
liefern, als auch um Anregungen für zukünftige Untersuchungen zu geben.

Das erste Projekt beschäftigt sich mit einer endlichen Probe aus einlagigem Gra-
phen: Untersucht werden die Eigenschaften von Spin und Isospin der Elektronen
in der Nähe eines Randes des atomistischen Graphengitters, durch welchen die
Translationsinvarianz des Raumes gebrochen wird. In einlagigem Graphen tragen
die Elektronen nebst dem Elektronenspin einen weiteren Isospin-Freiheitsgrad, ge-
nannt der "Valley Isospin". In einer ortsabhängigen Untersuchung, welche die Ma-
terialeigenschaften als Funktion des Raumes vom Inneren bis zum Rand nachvoll-
zieht, analysieren wir, wie die Struktur des Grundzustands und der angeregten
Zustände beeinflusst wird in der Gegenwart eines Randes des Gitters im Vergleich
zu den Eigenschaften des tranlsationsinvarianten Inneren. Wir finden neuartige
Phasen in der Nähe des Randes, welche nicht im Inneren des Systems auftreten.
Die Eigenschaften der entstehenden Randzustände und ihre mögliche Beziehung
zu Leitfähigkeitsmessungen werden diskutiert. Insbesondere stellen wir die allge-
mein übliche Erklärung für die experimentell beobachteten Übergänge zwischen



Bereichen verschiedener Leitfähigkeitseigenschaften in Frage, welche eine direkte
Verbindung zu Übergängen zwischen verschiedenen Phasen im Inneren annimmt.
Wir stellen eine alternative Erklärungsmöglichkeit vor, der Übergänge zwischen
Phasen lediglich im Randbereich der Probe zu Grunde liegen.

Im zweiten Teil wenden wir uns zweilagigem Graphen zu. In einem unendlichen
System ohne Ränder sind die Abhängigkeiten der Eigenschaften von Spin und Iso-
spin von äußeren magnetischen und elektrischen Feldern Gegenstand unserer Un-
tersuchungen. In zweilagigem Graphen kommt ein weiterer " orbitaler" Isospin-
Freiheitsgrad ins Spiel, aufgrund einer Entartung der Landauniveaus mit Quan-
tenzahlen n = 0 und n = 1. Wir identifizieren die verschiedenen Spin- und
Isospin-Phasen des Grundzustandes, die als Funktion der elektrischen und ma-
gnetischen Feldstärken aufkommen können und legen die dazugehörigen Pha-
sendiagramme vor. Darüber hinaus untersuchen wir die Eigenschaften der Pha-
sen, insbesondere derer, welche nichttriviale Kohärenzeigenschaften der Isospin-
Freiheitsgrade aufweisen und vergleichen mit der Literatur zu experimentell be-
obachteten Phasenübergängen in zweilagigem Graphen.

Im Rahmen des neuesten Projektes schließlich geben wir einen Ausblick auf mög-
liche Erweiterungen der oben vorgestellten Ideen, wie zweidimensionale Oberflä-
chenzustände von dreidimensionalen Kristallen im Quanten-Hall Regime unter-
sucht werden können. Das Beispiel der (111) Fläche von elementarem Wismut wird
vorgestellt: In diesem Fall sehen wir uns einem System gegenüber, welches sechs
entartete, anisotrope Valleys aufweist. Wir machen einen Vorschlag, wie die Di-
spersion durch ein Modell angenähert werden könnte, in dem die Valleys als el-
liptische Energiebänder beschrieben werden und welches den Effekt von lokaler
Spannung beinhaltet. Erste vorläufige Ergebnisse zu möglichen Ordnungszustän-
den des Valley Freiheitsgrades verschiedener Grundzustandsphasen werden vor-
gestellt.



Résumé

Cette thèse traite des systèmes de Hall quantiques en deux dimensions, dans les-
quels les electrons peuvent porter plusieurs degrés de liberté discrets différents. Le
ferromagnétisme de Hall quantique fournit une manière de traiter ces degrés de
liberté électroniques comme des spins et isospins effectifs des électrons. Les diffé-
rentes phases du système correspondent alors à différents ordres de spin ou d’isos-
pin. En exploitant cette analogie, nous explorons différents aspects des systèmes
bi-dimensionnels dans le régime de Hall quantique en étudiant la structure cor-
respondante des spins et isospins. Ce travail consiste en trois parties qui analysent
différents matériaux bi-dimensionnels dans le régime de l’effet Hall quantique.
Dans chaque projet, nous utilisons la théorie de Hartree-Fock pour étudier le sys-
tème à plusieurs composantes de spin et d’isospin dans l’approximation de champ
moyen. Toutes nos considerations sont directement stimulées par des résultats ex-
périmentaux. Notre motivation principale est d’obtenir une comprehension plus
profonde des processus physiques et des mécanismes qui déterminent les proprié-
tés des matériaux à partir d’investigations exclusivement théoriques de modèles
abstraits. Nous espérons que cela permettra par la suite de tirer des conclusions
sur les expériences, de donner des explications aux phénomènes observés ainsi
que de donner des perspectives pour des investigations futures.

Le premier projet est consacré à un morceau fini d’une monocouche de graphène :
nous étudions les propriétés de spin et d’isospin des électrons en présence d’un
bord qui brise la symétrie de translation dans l’espace. Dans les monocouches de
graphène, les électrons portent, en plus du spin réel, un degré de liberté supplé-
mentaire qui s’appelle «l’isospin de vallée». Nous analysons comment la structure
de l’état fondamental ainsi que celle des états excités est influencée par la pré-
sence du bord, en comparaison avec les propriétés de l’intérieur du système qui
conserve la symétrie de translation. Nous observons près du bord des états nou-
veaux qui ne peuvent pas être trouvés dans l’intérieur. Nous discutons les pro-
priétés de la structure des états de bord ainsi que leurs relations éventuelles avec
des mesures de conductivité. En particulier nous remettons en question l’explica-
tion habituelle des transitions entre régimes de conductivités différentes observées
dans des études expérimentales d’une couche simple de graphène, qui est fondée
sur des transitions entre des différentes phases dans l’intérieur du système. Nous
proposons une explication alternative basée uniquement sur des transitions entre
différentes phases près du bord.



Dans la deuxième partie, nous nous intéressons aux bicouches de graphène et nous
analysons, pour des systèmes infinis sans bords, la dépendance des propriétés de
spin et d’isospin sur les champs magnétiques et électriques extérieurs. Dans les bi-
couches de graphène, il existe un degré de liberté «orbital» supplémentaire à cause
d’une dégénérescence entre les niveaux de Landau avec les nombres quantiques
n = 0 et n = 1. Nous identifions les multiples états fondamentaux différents en
fonction des intensités des champs électrique et magnétique et nous présentons les
diagrammes de phases correspondants. Nous analysons les propriétés des phases,
notamment celles pour lesquelles les degrés de liberté d’ isospin présentent une
cohérence non-triviale et nous faisons la comparaison avec la littérature expéri-
mentale sur les transitions de phase dans les bicouches de graphène.

Enfin, dans notre projet le plus récent, nous donnons un aperçu de la possibilité
d’étendre les idées précédentes pour analyser des surfaces bi-dimensionnelles de
cristaux en trois dimensions dans le régime de Hall quantique. Nous discutons
l’exemple d’une surface (111) de bismuth élémentaire : dans ce cas, on est confronté
à un système de plusieurs vallées dégénérées et anisotropes. Nous essayons de
trouver un modèle de dispersion dans ce système en approximant les vallées par
des bandes elliptiques et en considérant l’effet de contraintes locales. On présente
des résultats préliminaires sur l’ordre du degré de liberté de vallée des états fon-
damentaux.
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CHAPTER I

Introduction

I.1 Introduction

The main motivation for the work presented in this dissertation stems from the
complex and involved, yet overwhelmingly rich and fascinating area of condensed
matter physics, where pure theory meets real life experiments. We have decided
to embark on a journey to investigate theoretically the properties of quite a spe-
cial class of materials: two-dimensional electron systems in the quantum Hall regime
where the electrons may carry multiple discrete degrees of freedom. There are several
different key aspects which add richness and complexity to this kind of systems:
understanding the variety of quantum Hall effects has evolved into one of the most
important and most influential areas of condensed matter physics all since the
revolutionary discovery of the integer quantum Hall effect by Klaus von Klitz-
ing on February 5th, 1980 [v. Klitzing et al., 1980; v. Klitzing, 1985]. Hence, the
effects of strong external magnetic fields on the most elementary properties of
electrons in two spatial dimensions must be accounted for carefully in any type
of quantum Hall system. On the other side, the properties of the material itself
which hosts the two-dimensional electron system may very well be of crucial im-
portance: today, the class of possible two-dimensional materials goes far beyond
the conventional two-dimensional electron gas in semiconductor heterostructures
in which the quantum Hall effects were first discovered and this family is still
growing. We may encounter situations in which the electrons are endowed with
more than just the common spin degree of freedom: while the spin is an intrin-
sic feature of the fermionic electron itself, further properties might be dictated by
the material’s characteristics, such as its symmetries, or degeneracies of the band
structure. This gives rise to so-called multi-component systems. It is therefore an

21



CHAPTER I: Introduction

involved, yet utmost intriguing endeavour to study quantum Hall physics in novel
two-dimensional materials: where the many different aspects meet and merge to cre-
ate intricate, exceptionally rich settings. Many aspects of the mutual influence of
quantum Hall effects and the properties, symmetries, and topologies of various
different kinds of materials yet have to be understood. This bears major interest in
several ways. On the one hand, the investigation of novel materials always natu-
rally includes the possibility to be of relevance for new kinds of applications and
technologies. This kind of research carries over the insights of physics into the real,
everyday world. On the other hand, novel systems pose novel, fundamental ques-
tions that stimulate the most basic kind of research. Materials as those investigated
in this work most certainly still hold a huge variety of challenges and surprises for
the world of pure solid state physics.

The main aim of this introductory chapter is to place the work of this thesis in a
larger, general context by summarising some of the main concepts of multicom-
ponent quantum Hall systems. We start by introducing the basic phenomenology
of quantum Hall physics. Second, we discuss different physical examples of two-
dimensional electron systems as they will be studied within the three projects that
constitute this work. Finally, as this research is directly related to experiments car-
ried out on the respective materials, we present some of the most important exper-
imental observations which stimulated the key questions in these three different
projects.

I.2 The General Picture

I.2.1 Diving into the Physics of the Quantum Hall Regime

Naturally, limited by the scope of this thesis, we can only give a very brief intro-
duction to the vast field of quantum Hall physics. We make the attempt to provide
the minimum background information needed to understand the remainder of the
text. For more detailed explanations we refer the reader to appropriate, more ex-
tensive literature, e.g., [Yoshioka, 2010; MacDonald, 1994; Janssen et al., 1994; Jain,
2007].

The Quantum Hall Effect - Phenomenology

What is the quantum Hall effect? The quantum Hall effect occurs in two-
dimensional electron systems in the limit of strong perpendicular magnetic fields.
Let us imagine a conduction measurement on a setup as sketched in figure I.1:
there is a current I running through a two-dimensional sample to which a perpen-
dicular magnetic field has been applied. We are interested in studying the longitu-
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Figure I.1
Sketch of the setup to determine the longi-
tudinal, dissipative resistivity ρxx and the
transversal Hall resistivity ρxy in a quan-
tum Hall measurement.

Figure I.2
The dependence of ρxx and ρxy on the
magnetic field. Figure from reference
[Tsui, 1998] (edited).

dinal, dissipative resistivity ρxx in the direction of the current and the transversal Hall
resistivity ρxy perpendicular to the current. As Edwin Hall described in 1879 [Hall,
1879] there is indeed a non-zero voltage drop in the perpendicular direction across
the sample, due to the action of the Lorentz force which the electrons as charged
particles experience in the presence of a magnetic field. This perpendicular volt-
age is referred to as the Hall-Voltage VH . A description in terms of classical Drude
scattering theory predicts ρxx to be independent of the strength of the magnetic
field B while ρxy should depend linearly on B [MacDonald, 1994]:

ρclassxx = const, ρclassxy ∝ B. (I.1)

The outcome of a careful measurement in high quality samples with sufficiently
high electron mobility, however, shows dramatically different behaviour. Figure
I.2 shows the dependence of ρxx and ρxy on the magnetic field strengths as pre-
sented in reference [Tsui, 1998]. For sufficiently small magnetic fields B . 0.5 T
the predictions of Drude theory seem to work fairly well. For higher values of B,
however, the following behaviour is observed:

• The Hall resistivity ρxy shows a plateau structure, being almost constant over
certain finite intervals of the magnetic field. Within these intervals, the dissi-
pative resistivity ρxx becomes very small. Non-zero values of ρxy can only be
observed in a distinct peak structure with sharp sparks exactly at the values
of B when ρxy changes between plateaus.
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Figure I.3
Classical picture of the motion of charged
particles in a perpendicular magnetic field:
the electrons move in cyclotron orbits of
radius `B.

• The value at which the Hall resistivity stagnates within the plateaus is given
by exactly h

e2
divided by an integer. These are the numbers ν labelling the

features in figure I.2. We will find these numbers to correspond to the filling
factors of the integer quantum Hall effect. Hence, there is quantisation of the
Hall resistivity. Accordingly, the Hall conductivity σxy = − 1

ρxy
is quantised

into integer multiples of e2

h . This quantisation has been established to be
of universal nature, i.e., not to depend on the kind of sample, nor on it’s
geometry or size.

This anomalous behaviour of the resistivity of two-dimensional electron systems,
discovered by Klaus von Klitzing on February 5th, 1980 [v. Klitzing, 1985], is com-
monly referred to as the quantum Hall effect.

Landau Level Quantisation

What is the origin of the quantisation σxy = −j e2h ? To see this, we consider the
quantum mechanical solution of a free electron in two spatial dimensions subject
to a magnetic field. The Hamiltonian for an electron moving in two dimensions in
a perpendicular magnetic field is given by

H =
π2

2m
, (I.2)

where m is its mass. We denote by π = mv = p − eA
c the dynamical momentum

for velocity v and the vector potential A as in B = ez · (∇×A) for a uniform,
perpendicular magnetic field. Hence, H of equation (I.2) is identified to have the
form of a generalised harmonic oscillator, because it is quadratic both in the spatial
coordinates and in the canonical momentum p. It can be solved conveniently us-
ing the algebraic method similar to the conventional harmonic oscillator treatment
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in second quantisation:

The components of the kinetic momentum form a pair of canonically conjugate
variables as they fulfil

[πx, πy] = −i ~
2

`2B
. (I.3)

In the equation above, `B =
√

~c
eB is a quantity with the unit of a spatial length

and denotes the magnetic length. We will see it to represent the characteristic length
scale of quantum Hall systems.

Introducing a set of ladder operators as

a :=
1√
2

`B
~

(πx − iπy), a† :=
1√
2

`B
~

(πx + iπy), (I.4)

which fulfil [a, a†] = 1, allows to rewrite the Hamiltonian of equation (I.2) as

H = ~ωc (a†a +
1

2
), (I.5)

with the characteristic cyclotron frequency ωc = eB
mc .

It follows that the eigenenergies of a free, charged particle in a two-dimensional
configuration with a perpendicular magnetic field are given by the discretised val-
ues En = ~ωc(n + 1

2) like a harmonic oscillator. These discrete energy levels are
referred to as the Landau levels.

In the classical picture, the electrons as charged particles in a magnetic field are
forced into the circular motion of a cyclotron orbit of radius `B , as sketched in figure
I.3. Let this classical intuition guide us when we dissect the position operator r as
r = R + rc into the cyclotron orbit guiding centre operator R for the centre coordinate
for the position of each cyclotron orbit and the cyclotron coordinate rc identifying

the cyclotron motion with rcx =
`2B
~ πy and rcy = − `2B

~ πx. We see that the energies
En are independent of the guiding centre coordinate R. Hence, we expect each of
these quantum energies En to be degenerate in the position of the cyclotron orbit.

This degeneracy can be made explicit by constructing the ladder operators associ-
ated with the guiding centre operators: for [x, y] = 0 to hold for the components
of r = (x, y), the components of R = (X,Y ) necessarily have to fulfil [X,Y ] = i`2B ;
Hence X and Y again form a canonical pair and we may define corresponding
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ladder operators by

b =
1

2`B
(X + iY ), b† =

1

2`B
(X − iY ), (I.6)

which implies [b, b†] = 1 and [a, b] = [a†, b] = [H, b] = 0.

The guiding centre ladder operators b, b† produce a set of degenerate eigenstates
of the one-body kinetic energy operator H. In each Landau level, there hence is a
whole set of states degenerate in the cyclotron orbit guiding centre coordinates.

The full quantum state of an electron in two spatial dimensions in the presence of
a perpendicular magnetic field hence carries two quantum numbers n,m labelling
the Landau level and the guiding centre quantum number, respectively. The full
set of eigenstates generically can be generated successively using the raising oper-
ators on the ground state |0, 0〉:

|n,m〉 =
1√
n!m!

(a†)n(b†)m|0, 0〉. (I.7)

This degeneracy in the guiding centre coordinate implies that we can put several,
energetically degenerate, electrons into the same Landau level n. The number of
possible states per Landau level, NLL, can be estimated by comparing the surface
occupied by each cyclotron orbit to the total surface of the sample A

NLL =
A

2π`2B
. (I.8)

For a total number of electronsNe in the system, to quantify the fraction of Landau
level states occupied by electrons, we define at this point the filling factor ν as

ν =
Ne

NLL
= 2π`2Bne, (I.9)

in terms of the electronic density ne = Ne
A .

The Edge State Picture

Understanding and explaining the full beauty of the quantum Hall effect in all its
details goes far beyond the scope of this introductory text. We can only make an
attempt to sketch some aspects that give an idea about one way of perceiving how
quantisation and transport come about in quantum Hall systems.
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Figure I.4
Effect of a disorder potential Vrand, as in the left and centre plot, on the density
of states (DOS) of the electrons in the quantum Hall system. Disorder leads to
a broadening of the density of states around the discrete Landau level energies,
where the trajectories at energies above and below the Landau levels are localised
by the hills and valleys of the disordered landscape and extended states connecting
two sides of the sample can be found only in the centre of the lobes, at the Landau
level energies (magenta, dashed line in the left sketch).

The key idea is to consider a less idealised, Landau level quantised two-dimensional
electron system, in the presence of the following two amendments:

A weak disorder potential
The presence of imperfections and impurities will be unavoidable in any real
sample. In fact, disorder turns out to be a crucial ingredient of the quan-
tum Hall effect. We consider a disorder potential Vrand as a perturbation to
the system which we require to be weak, i.e., much smaller than the Lan-
dau level spacing ~ωc, smooth as a function of space, and symmetric, i.e.,
〈Vrand〉 = 0. Such a disorder potential turns out to lead to broadening of the
density of sates around the discrete delta peaks of the Landau levels [Janssen
et al., 1994]. Charged particles in the presence of electric and magnetic fields
prefer to move along the equipotential lines of the electrostatic potential.
Therefore, the states above and below the Landau level energies will be lo-
calised around the hills and valleys of the disorder potential. Only trajec-
tories at energies sufficiently close to a Landau level form extended states
which can connect two sides of the sample. This mechanism is illustrated in
figure I.4. As a consequence, the density of states will consist of broad lobes
of mainly localised states with one extended state at the centre of each lobe,
at each Landau level energy.

A confinement potential
Any real sample in experiment will be of finite size and the two-dimensional
electron gas will be confronted with some sort of confinement at its edges.
The effect of a confinement potential Vconf is sketched in figure I.5. The Lan-
dau levels will bend at the sample’s boundaries and follow the confining po-
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Figure I.5
The effect of confinement by a confinement potential Vconf on the quantum
Hall system: the Landau levels bend (magenta, blue, and gray lines in the right
plot) and follow the confinement potential Vconf (black line). While the electron
trajectories in the bulk are localised by disorder, close to the boundaries extended,
current-carrying edge states are formed. The number of edge states is given by the
number of Landau levels fully occupied below the Fermi energy εF .

tential. In the bulk of the sample, the states will continue to be localised due
to the presence of disorder. Sufficiently close to the boundaries, however,
the confinement potential will outweigh the bumps of Vrand — it is here, in
the vicinity of the boundaries, that extended states form which connect two
sides of the sample. These edge states can carry current and lead to trans-
port across the sample. As we require the disorder to be sufficiently weak it
does not induce mixing between Landau levels and the bulk states remain
gapped. Therefore, the number of current-carrying edge states is given by
the number of fully occupied Landau levels below the Fermi energy εF as the
highest energy of a single electron in the system.

Now, due to the interplay between disorder and confinement in a Landau level
quantised two-dimensional quantum Hall system, the emergent picture is the fol-
lowing: while the states in the bulk of the system are localised, extended, current-
carrying states form along the edges of the sample. This gives rise to gapped bulk
states which by definition represent an incompressible state: a finite input of en-
ergy is needed to alter the electron density by an infinitesimal amount. Simulta-
neously, a set of gapless edge states exists: the absence of a gap in the single par-
ticle spectrum, i.e., the compressibility of the system at the edges implies metallic,
i.e., conducting behaviour of the edge states. As explained above, the number of
edge channels is given by the number of occupied Landau levels in the bulk. As
each extended edge state contributes a quantum of σxy,LL = − e2

h to the Hall con-
ductance, the total Hall conductance of the system is given by the quantised value
σxy,tot = −ν e2h . It remains constant while the Fermi energy is varied, but remains
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between two Landau levels in the bulk, while it changes in a discontinuous jump
when the number of occupied Landau levels in the bulk changes.

The edge states hence represent a system of metallic, one-dimensional transport
channels: they carry a current which runs in opposite directions at either of the
sample sides, a property for which they are endowed with the title counter propa-
gating or chiral edge states.

Energy Scales

How do we define the quantum Hall regime? Let us compare the energy scales that
characterise a quantum Hall system. The theory of quantum Hall effects treats as
its subject the physics of two-dimensional electron systems in the limit where the
magnetic field is sufficiently strong such that the mixing of Landau levels can be
considered as a weak perturbation. In other words, we would like to restrict our-
selves to the scenario in which any effect distorting the ideal Landau levels, i.e., the
Landau levels in the absence of disorder or interactions, is small compared to the
gap between adjacent Landau levels. The most prominent effects altering the ideal
Landau levels will be the presence of disorder and mutual interactions between
the electrons.

Hence, a crucial energy scale of a quantum Hall system is given by the Landau
level splitting ∆E:

∆E = ~ωc = ~
eB

mc
. (I.10)

It has to be noted, however, that the ideal Landau levels are flat and of zero width
within the bulk of a quantum Hall system. That is, the energies of disorder and
interactions will be the only energy scales deciding the behaviour of the system,
as there is no other scale, such as a kinetic energy term or a bandwidth, to com-
pete with. As an essential consequence, although disorder and interaction may be
small compared to ∆E, generally in a quantum Hall system, their very presence
itself cannot be treated within a perturbative approach.

Above, we have expounded how the emergence of gapless edge states from
gapped bulk states yields an explanation for the quantised value of conductance
and resistance observed as the quantum Hall effect. Hence, generally, the physics
of a quantum Hall system crucially depends on the existence of a gap in the ideal
energy spectrum. In the case where the interactions are weaker than the dis-
order, we may effectively work in a single particle picture and the gaps to be
considered are these already present in the single particle Landau level spectrum
En = ~ωc(n + 1

2) as follows from equation (I.2). This gives rise to the integer
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Figure I.6
Two-dimensional electron gases
form at the interface between a
doped insulator (AlGaAs) and a
semiconductor (GaAs) in a het-
erostructure.

Figure I.7
Examples of two-dimensional electron systems which will be studied as quantum
Hall materials throughout this thesis: monolayer graphene, bilayer graphene, and
the (111) surface of elemental Bismuth.

quantum Hall effect, which we addressed above starting from the experimental ob-
servations of plateaus of the Hall resistivity at integer values of ν as in figure I.2.
The regime when the disorder potential dominates, therefore, is referred to as the
integer quantum Hall regime. It is the regime considered within this thesis. In the
opposite case of the fractional quantum Hall regime, the physics is dominated by
interactions and many-particle effects. In this case, additional gaps are opened
by the mutual electron-electron interactions and, as a consequence, generally at
higher values of the magnetic field than for the integer case, additional plateaus
appear in the curve of ρxy at fractional values of ν. This is known as the fractional
quantum Hall effect [Tsui et al., 1982]. We shall not discuss further the properties of
fractional quantum Hall systems within this thesis.

I.2.2 Two Dimensions in Physics

Two-Dimensional Materials

The quantum Hall effect has first been discovered in two-dimensional electron
gases in doped semiconductor heterostructures. However, as we saw in the sketch
of an explanation above, its origin is rooted solely in the fact that we are con-
sidering two-dimensional electronic systems in the quantum Hall regime. In par-
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ticular, its occurrence is independent of many details of the sample hosting the
electron gas, such as shape or geometry. As a consequence, we may expect quan-
tum Hall phenomena in basically any two-dimensional electron system under the
right conditions. As a matter of fact, quantum Hall effects have been observed in a
variety of two-dimensional systems to this day. Let us summon some key features
of several of these materials as they will be discussed throughout this work.

The two-dimensional electron gas
Two-dimensional electron gases can be realised, for instance, at the interface
between a doped insulator and a semiconductor due the mechanism illus-
trated in figure I.6: both compounds exhibit a gap between the valence and
the conductance band, which is larger in the insulator than in the semicon-
ductor material. Without any doping, when both materials are charge neu-
tral, the Fermi energy of the heterojunction lies within the gap for both com-
pounds. The level scheme for the undoped case is shown in the left plot of
figure I.6. If now the insulator is n-doped, there will be excess electrons com-
pared to the neutral, undoped case. The Fermi level on the insulator side is
raised above the conduction band of the semiconductor. Therefore, the elec-
trons of the donors will tend to lower their energy by migrating across the
interface into the conduction band of the semiconductor. They leave behind
the positively charged donors, creating charge polarisation and depleting the
energy levels - as a consequence, the electrons are bound to the interface by
this positive charge. The final configuration of the energy bands once this
process has equilibrated is shown in the right plot of figure I.6.

This mechanism creates an electron gas at the interface between the insulator
and the semiconductor. It is effectively two-dimensional as the z-component
perpendicular to the plane is frozen due to the confinement by the deformed
conduction band. Most importantly, this electron gas can be considered to
be a "free" gas of electrons: the electrons that constitute the electron gas are
excess charges due to the n-doping, so they are not bound by the crystal
structure. As a consequence, they can be assumed to be governed by the
free, parabolic dispersion which enters equation (I.2).

Two-dimensional atomic crystals: graphene
Since the isolation of graphene [Novoselov et al., 2004; Geim and Novoselov,
2007], a single layer of carbon atoms forming a two-dimensional hexago-
nal lattice, exploration of quantum Hall effects has become possible in a
different kind of systems: truly two-dimensional crystals of the thickness
of one atomic layer. Graphene is certainly the most prominent example as
the trailblazer in the field, but by now there are many more examples of
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two-dimensional crystals in which quantum Hall phenomena have been ob-
served∗. These atomic crystals offer several technical advantages compared
to bulk materials or conventional two-dimensional electron gases: for exam-
ple, in systems as thin as a few atomic layers, there are pronounced electric-
field effects, as the electric field is not screened like in the bulk. As a con-
sequence, in atomically thin films it is possible to control the carrier density
in the sheet simply by applying gate voltage [Novoselov et al., 2004]. Fur-
thermore, a two-dimensional electron gas generally needs to be confined by
external, artificial potentials. As these confinement potentials naturally can-
not be made arbitrarily steep, this leeds to the effect of edge reconstruction
[Chklovskii et al., 1992; Chamon and Wen, 1994; Yang, 2003]: as a conse-
quence of the interplay of interaction energy and the energy of a sufficiently
shallow confinement potential, the ground state turns out to energetically
prefer to form an inhomogeneous stripe phase around the edge. However,
unlike the two-dimensional energy gas, where this inhomogeneous charge
distributions spoils all possibility of observing pure edge phenomena of the
idealised system [Chang et al., 1996; Grayson et al., 1998], in atomic crystals
the boundaries of the lattices are atomically sharp. This should allow obser-
vation of quantum Hall edge state physics without complications from edge
reconstruction [Hu et al., 2011; Li et al., 2013].

At the most fundamental level, the quantum Hall effect is inherent to any
two-dimensional electron system in the quantum Hall regime. There are,
however, important differences when comparing a crystal system to the free
electron gas of the semiconductor heterostructures [Barlas et al., 2012]. Most
strikingly, the electrons in a crystal are not "free", they are bound by the crys-
tal structure. Therefore, their energetics is determined by the band struc-
ture of the underlying crystal. Landau level quantisation in the quantum
Hall regime will quantise this energy structure instead of the free parabolic
dispersion that enters equation (I.2). Furthermore, possible symmetries of
the crystal lattice may translate to the quantum Hall regime and introduce
additional degeneracies or degrees of freedom.

Generally speaking, the particular properties of the specific crystal, such as,
e.g., the properties and symmetries of the underlying lattice, or the shape and
symmetry properties of the corresponding band structure have to be taken
into account when describing an electron gas on any two-dimensional lattice
in the quantum Hall regime.

∗ We name Silicene, a two-dimensional layer of Silicium atoms or two-dimensional Germanium,
out of curiosity [Ezawa, 2012; Liu et al., 2011].
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Bilayer quantum Hall systems
Already in the case of two-dimensional electron gases, multi-layer systems
have been of interest: in bilayer quantum Hall systems made of two sheets
on top of each other we may introducce an additional "which-layer degree
of freedom" that can assume the two distinct configurations "top" and "bot-
tom" when the electrons reside on the top or the bottom layer, respectively.
Furthermore, in the bilayer geometry the electronic interactions are altered
depending on whether electrons interact within the same or across the two
different sheets. As a consequence, these systems give rise to a plethora
of novel quantum Hall phenomena [Ezawa, 2008; Sarma and Pinczuk, 1996;
Ezawa et al., 2005].

Naturally, graphene is a prime example for forming multilayer systems: as
a descendant of the graphite crystal, it comes with an entire family of mul-
tilayer cousins. Among these, bilayer graphene, built from two layers of
monolayer graphene, is just one example [Barlas et al., 2012].

Two-dimensional surface states
Recently, attention has been raised also by certain three dimensional crys-
tals: their surfaces naturally are two-dimensional systems and hence surface
states confined to these surfaces represent yet another possibility for elec-
trons to live in two spatial dimensions. Examples which have been discussed
include the SnTe material class or elemental bismuth [Li et al., 2016; Feldman
et al., 2016; Sodemann et al., 2017]. Depending on the symmetries of both,
the bulk material as well as the surface, these surface crystal states may have
exotic, novel properties. Again, just as in the case of truly two-dimensional
lattices, the properties of the crystal have to be translated to the quantum
Hall regime when considering the system subject to a magnetic field and
carefully be taken into account in a quantum Hall description.

The specific examples for the two-dimensional materials studied in the quantum
Hall regime within this thesis are monolayer graphene, bilayer graphene, and the
(111) surface of elemental bismuth. These systems are sketched in figure I.7.

Length Scales

In the previous section we saw that the decisive length scale of a quantum

Hall system is given by the magnetic length `B =
√

~c
eB . It defines the size of

the cyclotron orbits as sketched in figure I.3. The stronger the magnetic field, the
smaller the radius of the orbits. The magnetic length is the lattice constant for the
lattice of Landau quantised cyclotron orbits.
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Now, when considering the case of an electron gas in a crystal material, the char-
acteristic length scale of this material is given by the lattice constant a of the host
lattice. The question arises how `B compares to a.

Within this thesis we work within a continuum approximation, assuming the lattice
constant of the underlying atomic lattice to be much smaller than the magnetic
length on the range of magnetic field strengths considered:

a� `B. (I.11)

Physically this amounts to assuming that the electrons in the two-dimensional host
crystal, while being influenced by the lattice structure through the band structure
and possible symmetries, do not feel the lattice at the atomic scale. That is, the
electrons do not get localised or scattered by the atoms of the crystal. They rather
behave like a "pseudo-free" gas with a different dispersion and maybe some other
additional properties specific to the particular crystal geometry, such as energetic
degeneracies due to the symmetries of the lattice band structure.

I.3 Experimental Motivation

There have been numerous experimental investigations of a variety of different
two-dimensional electron systems in the quantum Hall regime. The picture they
draw of the physics that may happen is extraordinarily rich and beautifully man-
ifold: characterising the system in terms of physically observable, but most ele-
mentary properties, such as conductance, they reveal the existence of a plethora
of different possible features and behaviours. These features will depend on the
specific type of host material for the electrons, but also on experimentally tune-
able parameters, such as the filling factor, or external magnetic and electric fields.
Therefore, these systems represent a huge playground for the exploration of novel
quantum Hall phenomena.

Within this thesis, we present three projects on quantum Hall phenomena: in
monolayer graphene, bilayer graphene, and the (111) surface states of elemental
Bismuth, respectively. This section reviews the experimental findings that stim-
ulated our research on either of the materials. At the same time, we give a brief
outlook on what our intent is to help understand these phenomena in each of the
cases.
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Figure I.8
Conductance measurements on mono-
layer graphene in tilted magnetic
fields. Figure from reference [Young
et al., 2014].

I.3.1 Monolayer Graphene -
From the Bulk, can we understand the Edges?

Monolayer graphene samples in strong magnetic fields exhibit integer and frac-
tional quantum Hall effects similar to two-dimensional electron gases as, e.g., in
semiconductor heterostructures [Bolotin et al., 2009; Dean et al., 2011]. We focus
on charge-neutral monolayer graphene. As we will see in the following chapter,
charge neutrality in monolayer graphene corresponds to the case when there are
two electrons per orbital in the νMLG = 0 monolayer graphene Landau level. The
experimental phenomenology of this particular quantum Hall system is the fol-
lowing: while the system proves to be strongly insulating for any value of the
magnetic field as long as this field is applied perpendicularly to the sample, the
following change of the conductance behaviour has been observed for tilted mag-
netic fields. Upon rotation of the sample with respect to the field, the system can be
tuned from a perfect insulator to a good conductor [Young et al., 2014]. This transi-
tion is demonstrated in figure I.8. Here we quote results of reference [Young et al.,
2014], where the Hall conductance of the νMLG = 0 monolayer graphene quantum
Hall state, Gcnp = σxy(νMLG = 0), of charge-neutral monolayer graphene on
hexagonal boron nitride substrates was measured: the total value of the magnetic
field BT is increased while the the component of the field perpendicular to the
graphene sample is held fixed at B⊥ = 1.4 T. While the system is insulating for
perpendicular magnetic fields, upon tilting of the magnetic field the conductance
of the charge neutrality point Gcnp is found to gradually increase, until it saturates
at a value Gcnp ≈ 1.8 e

2

h , at strongly inclined fields. This is close to the quantised
value of 2 e

2

h expected for the Hall conductivity of a quantum Hall system featur-
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ing two electrons per orbital. In the same reference the authors demonstrate that
the bulk of the sample remains in an incompressible, insulating state for all values
and tilting angles of the magnetic field.

As we tried to motivate in the previous section, conductance properties of quan-
tum Hall systems are inherently related to the properties of the current-carrying
edge states. Within this project on monolayer graphene we ask the following ques-
tion: starting from the properties of bulk monolayer graphene as indicated by ex-
periment and supported also by earlier theoretical works, can we understand the
influence of a boundary in a finite piece of monolayer graphene? We make state-
ments about the edge state properties, including the ground state structure and
the conductance properties of monolayer graphene by investigating the changes
on the states of the system when approaching from the bulk an edge that termi-
nates the monolayer graphene lattice. We find novel edge state phases that exhibit
properties which are not observed in the bulk of the system. Furthermore, our
results indicate the possibility to relate tuning between insulating and conducting
behaviour of monolayer graphene to pure edge phenomena, i.e., to transitions that
occur within a regime spatially close to the edge, only, without affecting the bulk
properties.

I.3.2 Bilayer Graphene -
How many Different Phases are there?

The quantum Hall physics of bilayer graphene in external magnetic and electric
fields has proven to be a particularly rich and multi-facetted field. We quote the
experimental results of references [Weitz et al., 2010; Kim et al., 2011; Bao et al.,
2012; Velasco Jr et al., 2012; Maher et al., 2013; Velasco Jr et al., 2014; Lee et al.,
2014; Maher et al., 2014; Shi et al., 2016; Hunt et al., 2016].

Conductance measurements on bilayer graphene in external fields draw the fol-
lowing picture: while the system is insulating over a wide range of values of the
magnetic and electric fields applied, sudden changes of the conductivity can be
observed for certain particular magnitudes of the electric or magnetic fields: ex-
amples of experimental data demonstrating this behaviour are shown in figure
I.9. The upper plot, taken from reference [Weitz et al., 2010], shows conductance
measured in suspended bilayer graphene at charge neutrality (which, for bilayer
graphene, corresponds to the bilayer graphene filling factor νBLG = 0) for different
values of a magnetic and an electric field applied perpendicularly to the sample.
Clear spikes of enhanced conductance separate between broad insulating regimes.
The lower plots, extracted from reference [Hunt et al., 2016], hint at the complexity
of the full picture: the left figure quotes results in bilayer graphene encapsulated
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Figure I.9
Conductance mea-
surements on bilayer
graphene at different
filling factors νBLG in
perpendicular magnetic
and electric fields.
Upper figure from
reference [Weitz et al.,
2010], lower figures
(edited) from reference
[Hunt et al., 2016].

into hexagonal boron nitride, where normalised capacitance has been measured
for different values of the filling factor νBLG, which corresponds to a different
number of electrons in the system. The parameter that has been varied is the
rescaled ideal layer polarisation, p0

c , which is proportional to the electric field ap-
plied. At a magnetic field of B = 31 T, as function of the electric field, a variety
of spikes in capacity is observed: for each value of the filling factor, these spikes
occur differently many times at different values of the field. From this and similar
measurements the authors of reference [Hunt et al., 2016] extract the phase dia-
gram shown in the lower right plot of figure I.9: here, for the system at charge
neutrality νBLG = 0, they distinguish between three different phases in the plane
spanned by the magnetic and electric field.

Measurements akin to the two examples shown in figure I.9 (see references [Weitz
et al., 2010; Kim et al., 2011; Bao et al., 2012; Velasco Jr et al., 2012; Maher et al.,
2013; Velasco Jr et al., 2014; Lee et al., 2014; Maher et al., 2014; Shi et al., 2016; Hunt
et al., 2016]) indicate that in bilayer graphene under strong external fields multi-
ple transitions between different phases can be induced by varying the magnetic
and electric fields applied. Despite the extensive effort invested into experimental
investigations of this system, in some cases the nature of the underlying quantum
Hall state could not yet fully be clarified, neither as to the exact number of phases
for particular values of the filling factor, nor as to the nature of the states in the
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Figure I.10
Spatial conductance maps
of the Bi(111) surface at
B = 12.9 T for different
energies, i.e., for differ-
ent filling factors, reveal-
ing the anisotropic char-
acter of the quantum
Hall states. Figure from
[Feldman et al., 2016].

respective phases. For this project on bilayer graphene presented here, the leading
question therefore is the following: by modelling bilayer graphene theoretically,
what predictions can we make about the properties of the system? Based on earlier
theoretical investigations as well as experimental suggestions, we derive a micro-
scopical model of bilayer graphene in the quantum Hall regime. With this model
we study for different filling factors the behaviour of the system as a function of ex-
ternal electric and magnetic fields. We derive the corresponding phase diagrams
of bilayer graphene at different νBLG in the plane spanned by the magnitude of
the electric and the magnetic field, respectively, by identifying the number and the
nature of the different phases. Novel ground state phases and phase transitions
are observed and, by analysing in detail the physical properties of the respective
phases, predictions are made for comparison with experimental results.

I.3.3 Bismuth(111) -
Does the Ground State break Symmetries?

The quantum Hall effect for the surface states of the (111) surface of bismuth
exhibits a novel feature with respect to the situation in monolayer or bilayer
graphene or conventional semiconductor heterostructures: the geometry of the
Fermi surface gives rise to an energetic structure with an overall rotational sym-
metry in momentum space but locally anisotropic structures [Du et al., 2016; Ast
and Höchst, 2001]. The question arises as to the consequences for the nature and
the symmetry properties of the corresponding quantum Hall states. Figure I.10,
quoting reference [Feldman et al., 2016], gives hints for an anisotropic structure:
for different energies, i.e., for different filling factors, implying different numbers
of electrons in the system, conductance maps in real space at a magnetic field of
B = 12.9 T reveal anisotropic, elliptical regions of reduced conductance, suggest-
ing elliptical shape of the respective corresponding wave functions. the exact na-
ture of the underlying quantum state yet remains elusive. This is the main ques-
tion we would like to address within this our project on the quantum Hall states
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of the Bi(111) surface: starting from a microscopical model of the energetic struc-
ture for the (111) surface of bismuth where we carefully take into account the con-
sequences of its anisotropic structure, what are the symmetry properties of the
ground state that we predict theoretically for different values of the system pa-
rameters? We wish to understand the symmetry structure of the respective states
compared to the global rotational symmetry of the Fermi surface. The aim is to
explain either the preservation of this symmetry, or its breaking, respectively from
its origin in the anisotropies of the dispersion in momentum space, as well as the
relation to the symmetries of the bismuth lattice in real space.
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CHAPTER II

Theoretical Background

II.1 Theoretical Description of the Materials

For a single electron in a solid its energetics is described by its band structure,
indicating the ranges of energies allowed or forbidden by quantum mechanics,
respectively. In this chapter, we introduce the different materials which will be
studied within this thesis. We start by discussing the physical nature and the lattice
structure of either of these materials. Second, we elucidate their band structure as
well as the possible ways to approximate the low-energy bands closest to the Fermi
surface. In a subsequent step, we see how this energetic structure is affected in the
presence of a magnetic field entailing quantisation of the continuous energy bands
into discrete Landau levels.

II.1.1 Mono- and Bilayer Graphene:
Band Structure and Landau Level Quantisation

Lattice and Crystal Structure

We show the crystallographic structure of the mono- and bilayer graphene lattice
in figure II.1. The term graphene refers to single-layered graphite: carbon atoms
form a two-dimensional, planar, hexagonal lattice. With bilayer graphene we de-
note two-layered graphite, i.e., two monolayer graphene sheets grown on top of
each other.∗

∗ Bilayer graphene is to be distinguished from double layer graphene, where two individual
graphene monolayers are artificially held in the vicinity of each other. Typically, the two mono-
layer graphene sheets in a double layer setup are separated by a dielectric such as hexagonal boron
nitride, and the separation distance dd is a variable system parameter.
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Figure II.1
Lattice struc-
ture of monolayer
graphene (left,
seen from different
angles) and bilayer
graphene (right).

Figure II.2
Reciprocal lattice of the hexagonal lattice: the
interior of the rotated hexagon and the part of
the border marked in magenta are counted to
the first Brillouin zone.

The honeycomb lattice is not a Bravais lattice†, therefore it is described as con-
structed from two triangular Bravais sub-lattices, or, equivalently, as a triangular
Bravais lattice with multiple atoms per unit cell. In monolayer graphene we label
the two inequivalent carbon atoms per unit cell by A and B, respectively (figure
II.1). The bilayer graphene lattice is composed of two such monolayers, an upper
layer L1 and a lower layer L2, which are separated by an interlayer distance d.
This yields a total of four inequivalent carbon atoms {A,B, Ã, B̃} per unit cell in
bilayer graphene, where we distinguish between the atoms A and B on the upper
layer and Ã and B̃ on the lower layer (see figure II.1).

Obviously, for multilayer graphene systems with a number of layers n > 1, there
are several possible ways to arrange the layers on top of each other. This is
commonly referred to as the different possible stackings of the layers. In trilayer
graphene, literature discusses at length the different properties for ABA compared
† In three spatial dimensions, a lattice is called a Bravais lattice if it can be generated by an infinite
set of translations of three linear independent primitive vectors ai, i.e., if every point of the lattice
can be written as R =

∑3
i=1 niai with ni integer.
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Figure II.3
Band struc-
ture of mono-
layer (left)
and bilayer
graphene
(right) within
the first Bril-
louin zone.

to ABC stacking [Bao et al., 2011; Lui et al., 2011], where the letters refer to the
layers and indicate whether the sequence of arrangements repeats or not. In this
sense, the configuration of bilayer graphene sketched in II.1 corresponds to an
AB-stacked bilayer configuration. We extensively discuss this case of AB bilayer
graphene, called Bernal-stacked bilayer graphene, in the following introductory sec-
tion. We will not consider other cases such as AA-stacking [Liu et al., 2009] or
twisting between the two layers [Lopes dos Santos et al., 2007; Mele, 2010; Luican
et al., 2011; Lee et al., 2011; Kim et al., 2016].

In figure II.2 we show for the hexagonal structure the reciprocal lattice in mo-
mentum space: it in turn is given by a hexagon rotated by an angle of π

3 with
respect to the original real space lattice. The characteristic crystallographic points
in momentum space are denoted as follows: the Γ-point is located at the centre
of the Brillouin zone, the K-points indicate the corners, and we find an M -point
in the centre of each line connecting the corners. In order to avoid double count-
ing, the interior of the hexagon together with the border highlighted in magenta
in figure II.2 are counted to the first Brillouin zone. The first Brillouin zone of the
hexagonal lattice hence comprises the set of crystallographic inequivalent points
{Γ,M,M ′,M ′′,K,K ′}.

The characteristic length scales of the monolayer graphene and bilayer graphene
lattice in real space are given by the lattice constant a ≈ 0.142 nm of the monolayer
and the interlayer distance d ≈ 0.34 nm of the bilayer lattice. The lattice constant
of the underlying triangular Bravais lattice is given by aL =

√
3a ≈ 0.246 nm.

Band Structure and Energetic Properties

Figure II.3 shows the band structure of monolayer and bilayer graphene in the first
Brillouin zone. We sketch how this electronic dispersion can be obtained within the
tight-binding formalism and discuss some of the most prominent features.
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Band Structure of Monolayer Graphene

We review the electronic properties of monolayer graphene within a tight-binding
approximation. Let us start by understanding which are the electrons relevant for
charge transport in graphene. Carbon, as an element of the fourth main group of
the periodic table, possesses six electrons. The atomic shells to be filled are the 1s,
2s, and the 2p orbitals. Two electrons fill the innermost shell 1s. Three electrons are
involved in the sp2 hybridisation, that is, they are in a superposition between the
|2s〉 and the |2px〉, |2py〉 states. These make the planar σ-bonds between the car-
bon atoms responsible for the formation of a honeycomb structure. Energetically,
these five electrons are far below the Fermi level and do not contribute to elec-
tronic transport. The remaining electrons, however, one electron per carbon atom
occupying the pz-orbital perpendicular to the plane, respectively, form π-bonds.
Hence, each carbon atom has four bonds, one σ bond with each of its three neigh-
bours and one π-bond that sticks out of plane. The π-electrons are the electrons
responsible for the low-energy electronic properties of graphene.

The band structure theory for π-electrons on a honeycomb lattice was calculated
originally within the tight-binding approximation in reference [Wallace, 1947].

Taking into account the onsite energy ε := εA = εB , nearest neighbour hopping
with hopping parameter γ0, as well as an overlap parameter s for orbitals on ad-
jacent sites, the tight binding transfer and overlap matrices T and S, respectively,
can be found to read [Saito et al., 1998; Goerbig, 2011; McCann and Koshino, 2013]

TML =

[
ε −γ0f(k)

−γ0f
∗(k) ε

]
, SML =

[
1 sf(k)

sf∗(k) 1

]
, (II.1)

where the function f(k) is given by

f(kx, ky) =

√
4 cos(

1

2

√
3akx) cos(

aky
2

) + 4 cos2(
aky
2

) + 1 . (II.2)

This directly yields the band structure of monolayer graphene given by the two
bands [Saito et al., 1998]

ελ(k) =
ε+ λγ0|f(k)|
1 + λs|f(k)|

, λ = ±1, (II.3)

where for choosing λ = −1 the lower lying valence band is obtained, while λ = +1
yields the conduction band. The bandwidth is proportional to the hopping param-
eter γ0.
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If figure II.3 we plot the monolayer graphene band structure of equation (II.3), for
the parameters ε = 0.22 eV, γ0 = 2 eV, and s = 0.01.

Band Structure of Bilayer Graphene

For bilayer graphene there are several possibilities how to arrange two hexagonal
lattices upon each other; the most common type is the case of Bernal stacking which
is shown in figure II.1: here, the carbon atoms of sub-layer A on the upper layer
L1 fall on top of the atoms of sub-layer B̃ of the lower layer L2, while the carbon
atoms of sub-layer B in L1 come to lie above the void in the centre of a hexagon
of L2. If two atoms lie on top of each other they are referred to as dimer sites as
opposed to non-dimer sites when this is not the case.

For the case of Bernal stacked bilayer graphene the transfer matrix integral
obtained from the so-called Slonczewski-Weiss-McClure [McClure, 1957; Slon-
czewski and Weiss, 1958] model of bulk graphite reads [McCann and Koshino,
2013]

TBL =


δAB −γ3f(k) −γ4f

∗(k) −γ0f
∗(k)

−γ3f
∗(k) δAB −γ0f(k) −γ4f(k)

−γ4f(k) −γ0f
∗(k) 0 γ1

−γ0f(k) −γ4f
∗(k) γ1 0

 , (II.4)

where we introduced the tight-binding parameters as follows: the hoppings
γ0 = γA↔B describe intra-layer coupling, i.e., for next neighbours in-plane hop-
ping within one graphene layer, and γ1 = γÃ↔B captures interlayer hopping via
vertical coupling between the pairs of orbitals on the dimer sites. Furthermore,
the skew interlayer couplings containing both in-plane and vertical components
are denoted by γ3 = γA↔B̃ for coupling between two non-dimer orbitals, and
γ4 = γA↔Ã for coupling between one dimer and one non-dimer orbital. Due to
different on-site energies in bilayer graphene, there also appears an energetic split-
ting δA,B between the local energies between A and B sites on each layer.

The overlap parameters in bilayer graphene are small compared to the hopping
integrals and the overlap integral matrix of bilayer graphene is generally treated
as a unit matrix: SBL ≡ 1. Therefore, the eigenvalues of the transfer matrix inte-
gral of equation (II.4) directly yield the four bands of the band structure of bilayer
graphene as shown in figure II.3, for parameters γ0 = 3.16 eV, γ1 = 0.381 eV,
γ3 = 0.38 eV, γ4 = 0.14 eV, and δAB = 0.016 eV.
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Discussion of the Band Structure

We discuss the most important features of the band structure of monolayer and bi-
layer graphene as obtained from the above tight-binding treatment. The electronic
dispersions are shown in figure II.3, respectively.

• There are two bands in the band structure of monolayer graphene, one va-
lence and one conductance band, as there are two inequivalent atoms per
unit cell. For bilayer graphene, due to the four-atomic basis, we obtain four
bands, forming two valence bands and two conductance bands, respectively.

• Let us discuss the overall shape of the band structure of monolayer and
bilayer graphene: the valence and conductance bands bend towards each
other in tips, such that the gap between them vanishes at several special
points of the Brillouin zone. These points where the two bands of monolayer
graphene or the two inner-lying bands of bilayer graphene touch we denote
with kD.‡ In perfectly symmetric, undeformed graphene these touching
points kD are located at the corners of the Brillouin zone of the honeycomb
lattice, i.e., at the crystallographic K points in momentum space. As there
are two such inequivalent K corners counted for the first Brillouin zone of
graphene (see figure II.2), there are two inequivalent kD points per graphene
Brillouin zone, located at kD = K+ = +K and kD = K− = −K, respectively.

• As the Hamiltonians of equations (II.1) and (II.4) do not depend on the spin
of the electrons, each of the bands in II.3 are doubly degenerate in the spin
configurations σ =↑, ↓.

• In charge neutral graphene every carbon atom contributes exactly one con-
duction electron as the π-electron in the pz orbital. Therefore, as there are al-
ways two degenerate spin states available in each band, in the case of neutral
monolayer and bilayer graphene the band structure is exactly half filled: the
valence band is completely filled while the conduction band is completely
empty. As a consequence, in the charge neutral case the Fermi surface is lo-
cated exactly at the kD points where the valence and the conduction band
touch. Therefore, the low-energy physics of the system, i.e., the physics of
the ground state or of low-energy excitations around the Fermi surface will
figure predominantly the energetic structure in the vicinity of the kD points.

‡ The index D is reminiscent from the case of monolayer graphene where these points kD are
commonly referred to as "Dirac" points, as the band structure of monolayer graphene disperses
linearly in their vicinity. This will be discussed in detail in the next section.
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Figure II.4
Cone-like structure of the low-energy ap-
proximation to the dispersion of mono-
layer graphene in the vicinity of the K+

and K− points.

Low-Energy Approximation to the Band Structure in the Vicinity of the
Dirac Points

An approximation which captures the energetic dispersion in the vicinity of the
kD points can facilitate the description of low-energy processes. In this context,
the term "low-energy" refers to an energy much smaller than the bandwidth.

In order to obtain such an approximate low-energy description, the wave vector
k is decomposed as k = ±K + p with |p| � |K|. The electronic dispersion of
monolayer and bilayer graphene, equations (II.1) and (II.4), are then expanded in
|p|a around the kD points.

Low-Energy Approximation: Monolayer Graphene

In the case of monolayer graphene an expansion of the Hamiltonian to first order
in the small parameter |p|a around the Dirac points yields the effective low-energy
Hamiltonian [Niemi and Semenoff, 1985; Goerbig, 2011]

Ĥτ
eff (q) = τ~vF (qxσ

x + qyσ
y), (II.5)

which is to act on the two-component spinors

ψτ=+ =

(
ψA,+

ψB,+

)
and ψτ=− =

(
ψB,−

ψA,−

)
, (II.6)

respectively. The above notation comprises the following information:

• The two-component spinor states of equation (II.6) in the space correspond-
ing to the effective Hamiltonian of equation (II.5) consist of the probability
amplitudes ψA,B of the particles on the two sub-lattices A and B.
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• Reflecting spin degeneracy, Ĥτ
eff of equation (II.5) acts equally on spin-up

or spin-down electrons. It can easily be translated to four-dimensional spin-
valley space H = Hspin ⊗ Hvalley by writing Ĥτ

eff,full = σz ⊗ Ĥτ
eff , where

σz denotes the third Pauli matrix. For simplicity, we will, however, suppress
the spin index until it is needed explicitly.

• The index τ = ±1 accounts for the equivalence of the energetic dispersion
of monolayer graphene around either of the Dirac points kD. This energetic
degeneracy in the vicinity of either kD is referred to as the valley degeneracy.

Two such Dirac points are counted for the first Brillouin zone of mono-
layer graphene, located at the inequivalent points kD = ±K in momentum
space. These are captured by the index τ according to τ = +1 =̂ +K and
τ = −1 =̂ −K. As will become clear in the following chapters, valley degen-
eracy in graphene can be in an excellent approximation treated as an SU(2)
isospin with the two different possible configurations τ = ±1. We will ex-
ploit this correspondence at length in our investigations of monolayer and
bilayer graphene. See appendix D for more details.

• We denote by vF = 3|γ0|a
2~ the Fermi velocity of monolayer graphene.

• Diagonalisation of the Hamiltonian in equation (II.5) yields the particle-hole
symmetric eigenenergies

ελ,τML,eff (q) = λ~vF |q|. (II.7)

This reflects the approximately linear dispersion of electrons in monolayer
graphene in the low-energy description in the vicinity of the kD points. The
resulting diabolo shape of this low-energy dispersion is shown in figure II.4.
This low-energy energy structure is referred to as the Dirac cone structure.
The association with Dirac stems from the resemblance of the low-energy
effective Hamiltonian of monolayer graphene, equation (II.5), to the two-
dimensional massless Dirac Hamiltonian HD = vFp · σ, with momentum
p = ~q and the Pauli vector σ = (σx, σy). The role of the real spin of the
electrons is played by the two-valued "which layer" degree of freedom with
configurations A and B.

• Valley degeneracy manifests itself in the independency of the effective low-
energy dispersion of equation (II.7) of the valley index τ .
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Low-Energy Approximation: Bilayer Graphene

A similar line of argument as for monolayer graphene also holds for bilayer
graphene: the energetic structure around the kD points, where the valence and
the conduction band touch, is of particular interest for a description of the low-
energy physics around the Fermi surface.

In the vicinity of the kD point the effective low-energy Hamiltonian reads [Mc-
Cann and Koshino, 2013]

Hτ =

τ


1
2∆B + 1

2 τ(1 + τ) δAB v3p v4p
† v0p

†

v3p
† −1

2∆B + 1
2 τ(1 + τ) δAB v0p v4p

v4p v0p
† −1

2∆B + 1
2 τ (1− τ)δAB γ1

v0p v4p
† γ1

1
2∆B + 1

2 τ(1− τ) δAB

 ,
(II.8)

where we introduced the effective velocities vi = 3a|γi|
2~ and a bias potential

∆B = edE⊥[mVnm ] induced by an electric field of strength E⊥ perpendicular to the
bilayer graphene sample.

The Hamiltonian of equation (II.8) acts, respectively, on the four-component
spinor fields

ψK+ =


ψA
ψB̃
ψÃ
ψB

 and ψK− =


ψB̃
ψA
ψB
ψÃ

 . (II.9)

Where in the case of monolayer graphene we were dealing with two-component
spinors for the probability amplitudes on the two sub-lattices A and B, equa-
tion (II.6), in bilayer graphene the single particle states of equation (A.2) are writ-
ten in four component bases, where the electronic occupation on the four atoms
A, Ã,B, B̃ in the bilayer graphene unit cell is taken into account.

Again, as expounded for monolayer graphene, there is degeneracy in the real spin
degree of freedom and the spin index in the effective bilayer graphene Hamiltonian
of equation (II.8) is understood.

To perceive the implications of the low-energy approximation formulated in equa-
tion (II.8) we note the following: when neglecting the parameters v4 and δAB the
eigenenergies of the low-energy Hamiltonian of equation (II.8) can be found easily
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Figure II.5
Energetic dispersion of bilayer graphene in
the vicinity of the kD points within the
low-energy approximation according to
equation (II.10).

as

(εα,τBL,eff )2(q) =
1

4

[
∆2
B + 2

[
γ2

1 + q2(2v0 + v2
3)
]

+ (−1)αf(q)
]
, (II.10)

where

f(q) = 2
√
γ4

1 + 8γ1 qx(q2
x − 3q2

y)v
2
0v3 + q2

[
2γ2

1(2v2
0 − v2

3) + 4∆2
Bv

2
0

]
+ q4v2

3(4v2
0 + v2

3).

(II.11)
The approximate low-energy dispersion of equation (II.10) is plotted in figure II.5.

From this approximate equation for the dispersion of bilayer graphene we learn
the following:

• Equation (II.10) shows that for v4 = δAB = 0, the Hamiltonian of equation
(II.8) yields two valence and two conduction bands which are symmetric
with respect to the Fermi level. Hence, the model is particle-hole symmetric
at this level of approximation. Terms containing the parameters v4 and δAB
non-equal to zero, however, do break particle-hole symmetry.

• The dispersion relation associated with equation (II.10) contains terms of
higher than linear order in q. In the present case of bilayer graphene the
bands therefore exhibit non-linear behaviour in the vicinity of their point
of coalescence, in contrast to the linear behaviour observed for monolayer
graphene. The band touching is therefore not linear as in the case of mono-
layer graphene. The low lying bands correspond to the index α = 1 in equa-
tion (II.10); It is instructive to consider them in the unbiased case, i.e., ∆B = 0
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in equation (II.10), and neglect all terms proportional to v3, for demonstra-
tion. In this case equation (II.10) further reduces to

ε1,τBL,eff (q) ≈ ±
√
γ2

1

4
+ v2

0q
2 − 1

2
γ1. (II.12)

This simplified expression exhibits the following limiting behaviour:

? Approximately linear for very large momenta, where q � γ1

v0
: ε1,τBL,eff (q) ≈

±v0q.

? Extrapolation to approximately quadratic shape at very small momenta,
i.e., for q � γ1

v0
: ε1,τBL,eff (q) ≈ ±v2

0
γ1
q2.

In bilayer graphene the band touching of the low-lying valence and conduc-
tion band is therefore approximately quadratic.

• Exactly at the touching point, at q = 0, equation (II.10) reduces to

ε1,τBL,eff (0) = ±∆B

2
, ε2,τBL,eff (0) = ±1

2

√
∆2
B + 4γ2

1 . (II.13)

Hence the band gap between the valence and the conduction band pairs in
this approximation involves two parameters:

? In the unbiased system, ∆B ≡ 0, the gap is controlled by the hopping
parameter γ1.

? At non-zero bias, i.e., for ∆B 6= 0, the splitting is further enhanced by
the bias potential ∆B .

Hence, in bilayer graphene the band gap can be tuned by an external electric
field inducing a variable bias ∆B .

• As in the case of monolayer graphene the dispersion relation of equation
(II.10) does not depend on the valley index τ . We hence recover also in the
case of bilayer graphene the same type of valley degeneracy as discussed
already for monolayer graphene (see discussion following equation (II.5)).

Energetic Dispersion in the Presence of a Magnetic Field: Landau Level
Quantisation

We are concerned with the situation in which an external magnetic field is applied
to the monolayer graphene or bilayer graphene system. It is well-known that a
sufficiently strong magnetic field in a two-dimensional electron system leads to
quantisation of the electronic dispersion: in the semiclassical picture, the electrons
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Figure II.6
Quantisation of the low-energy dispersion of monolayer graphene into discrete Lan-
dau levels. For fixed B, the Landau level spacing in monolayer graphene is not
equidistant but the energy of the nth Landau level rather scales with the square
root of n: En ∝ ±

√
n
√
B (cf. equation (II.22)).

Figure II.7
Dispersion of any nth monolayer graphene Landau
level proportional to the square root of the mag-
netic field strength B: En(B) ∝ ±

√
n
√
B

(cf. equation (II.22)).

are forced by the Lorentz force to move in cyclotron orbits; When solving the prob-
lem quantum mechanically, a discrete level spectrum for the electronic energies is
obtained, the so-called Landau levels.

We now consider Landau level quantisation for the case of monolayer and bilayer
graphene.

Landau Level Quantisation: Monolayer Graphene

To treat the system of monolayer graphene subject to a magnetic field generated
by the vector potential A we employ Peierls substitution [Peierls, 1933]

p 7→ π = p +
e

c
A(r), (II.14)
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which amounts to replace the kinetic momentum p = ~q by the canonical momen-
tum π = p + e

cA(r) in the Hamiltonian H in equation (II.5)§.

This leads to the following Hamiltonian describing the low-energy regime of
monolayer graphene in the presence of the magnetic field B = ∇×A:

Hτ
eff,B(π) = τvF (πxσ

x + πyσ
y). (II.15)

As the components of π fulfil the commutation relation [πx, πy] = −i ~2

`2B
, they form

a canonical pair. In analogy to the quantisation of the one dimensional harmonic
oscillator we hence introduce annihilation and creation operators a and a† as

a =
`B√
2~

(πx − iπy), a† =
`B√
2~

(πx + iπy), (II.16)

respectively. In terms of these operators the Hamiltonian of equation (II.15) reads

Hτ
eff,B(π) = τvF

√
2
~
`B

(
0 a
a† 0

)
. (II.17)

Using the representation of the state as in equation (II.6), the eigenvalue equation
to solve reads

Hτ
B(π)ψτn = Enψ

τ
n. (II.18)

On the scout for solutions to equation (II.18) we make the generic spinor ansatz

ψτn =

(
un
vn

)
for the single particle wave function in the nth Landau level. Acting

with the Hamiltonian Hτ
B(π) of equation (II.17) on this state ψτn as

Hτ
B(π)ψτn = τ

√
2
~vF
`B

(
a vn
a† un

)
!

= En

(
un
vn

)
, (II.19)

yields the following coupled equations to be solved:

τ
√

2
~vF
`B

a vn
!

= En un and τ
√

2
~vF
`B

a† un
!

= En vn. (II.20)

§ The Peierls substitution provides an approximate way to implement a magnetic field into a
tight-binding Hamiltonian under the assumption that the vector potential A varies slowly in space
[Peierls, 1933]. In the present context, this is justified as the magnetic field is weak enough for the

lattice spacing to be much smaller than the magnetic length: a � `B =
√

c~
eB

. This is consistent
with the comparison of length scales we discussed in the introductory chapter I, section I.2.2.
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Acting with a from the left on the first of equations (II.20), we find the defining
equation for vn:

τ
√

2
~vF
`B

a† a vn
!

= En a† un︸ ︷︷ ︸
En

1
τ

`B√
2~vF

vn

⇔ a† a vn = E2
n

1

τ2

`2B
2~2v2

F

vn, (II.21)

from which vn is deduced to be an eigenstate of the number operator N = a† a.
Writing |n〉 for the nth eigenstate of N , i.e., the state containing n excitations, vn is
found to be proportional to |n〉, vn ∝ |n〉. Therefore, it follows for the eigenenergies
of the nth excited state:

N vn ∝ N |n〉 = n|n〉

⇒ E2
n

1

τ2

`2B
2~2v2

F

vn ∝ E2
n

1

τ2

`2B
2~2v2

F

|n〉,

⇒ En = ±
√
n

√
2~vF
`B

∝ ±
√
n
√
B, (II.22)

where the last relation follows from the definition of the magnetic length `B =√
~c
eB .

Equation (II.22) represents the quantised Landau level structure of electrons in
monolayer graphene in the low-energy regime near the Dirac points. Due to the
linear dispersion of the low-energy approximate description the Landau levels of
monolayer graphene depend on the square-root of the Landau level index,

√
n,

and they depend on the magnetic field as
√
B. Positive and negative energy so-

lutions are obtained, labelled by λ = ±1, which reflects that the band structure of
graphene consists of two bands, the valence and the conduction band. The disper-
sion of the monolayer graphene Landau levels is shown in figure II.7. The valley
index labelled by τ = ±1 disappears when being squared and therefore does not
influence the value of En; we hence recover the energy degeneracy of the two in-
equivalent Dirac points.

The single particle Landau level wave function ψτn corresponding to the single par-
ticle state of the τ valley in the nth Landau level is obtained by combining the pro-
portionality vn ∝ |n〉with the defining equations of II.20:
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For a non-zero number of excitations, n 6= 0, acting with the annihilation operator
a from the left yields

a vn ∝
√
n|n− 1〉

eqn.(II.20)
= En

1√
2ξ

`B
~vF

un =
√
n un. (II.23)

This relation implies the proportionality un ∝ |n− 1〉.

Hence, the state vector of the nth excited state reads

ψλ,τn6=0 = N
(
α|n− 1〉
β|n〉

)
, (II.24)

with the proportionality factors α and β constrained by |α| = |β| and a normali-
sation factor N . When α and β have the same sign, sgn(α) = sgn(β), we obtain
the positive energy solution +En, whereas sgn(α) = −sgn(β) implies the negative
eigenenergy −En. We choose α = 1 and β = λτ which yields β = ±1, depending
on the band index λ = ±1 and the valley index τ = ±1.

For the special case of the zero energy solution, there is no dependence on the
band index λ and we find only one solution for each valley. For n = 0, due to the
property a|0〉 = 0, the state vector has only one non-zero component and reads:

ψτn=0 =
1√
2

(
0
τ |0〉

)
. (II.25)

This implies the state in each valley to reside solely on one of the triangular sub-
lattices.

Similarly to the case of Landau level quantisation of the free electron gas presented
in chapter I, the cyclotron energy of the nth Landau level in monolayer graphene,
equation (II.22), is independent of the guiding centre coordinate of the cyclotron
orbit. The corresponding quantum number can be incorporated in the description
of the state by following the exact same steps as for the free electron gas in chapter
I: by decomposing the position operator r into the position of the guiding centre
and of the cyclotron coordinate as r = R+rc and introducing the ladder operators
b = 1√

2`B
(X + iY ) and b† = 1√

2`B
(X − iY ), where X and Y are the coordinates of

the guiding centre: R = (X,Y ). These ladder operators b, b† define the algebra of
the guiding centre quantum number with eigenstates |m〉 of the associated num-
ber operator given by b†b|m〉 = m|m〉 for m ∈ N0.
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Hence the electronic state of the nth Landau level acquires the additional quantum
number accounting for the degeneracy in the guiding centre coordinate and the
full quantum states read:

ψλ,τn6=0,m = ψλ,τn6=0 ⊗ |m〉 = N
(
α|n− 1,m〉
β|n,m〉

)
, (II.26)

ψτn=0,m = ψτn=0 ⊗ |m〉 =
1√
2

(
0

τ |0,m〉

)
. (II.27)

For many calculations it is useful to chose a specific gauge for the vector potential.
Within the Landau gauge with A = (0, Bx, 0) the real space representation of the
electronic wave function in the nth Landau level reads

φn,ky(r) = 〈r|n,m〉 =
1

Ly
eikyy

1√
2nn!
√
π`B

e

(x−Xky )2

2`2
B Hn(x−Xky). (II.28)

Let ky be y-component of the Landau gauge momentum with ky = 2π
Ly
|m| for a sys-

tem of extension Ly in y-direction, and Xky = ky`
2
B the guiding centre coordinate.

With Hn we denote the nth Hermite polynomial.

Landau Level Quantisation: Bilayer Graphene

F Description in terms of an approximate two-band model:

To understand the properties of bilayer graphene in an external magnetic field it
is instructive to consider a simplified model in which the highest and the lowest
lying bands are incorporated effectively and the description is reduced to a picture
in terms of only two effective bands [McCann and Fal’ko, 2006].

In the most simplified version, i.e., for B = ∆B = v4 = v3 = δAB = 0 in equation
(II.8), the the effective two-band Hamiltonian describing the low-energy physics
of bilayer graphene in the vicinity of the Dirac points can be written in the form
[McCann and Fal’ko, 2006; McCann and Koshino, 2013]

HBL,eff =
1

2m∗

[
0 (qx − iqy)2

(qx + iqy)
2 0

]
, (II.29)

in terms of the effective mass m∗ = γ1

2v2
0

derived from the approximately quadratic
dispersion equation (II.12). The Hamiltonian in equation (II.29) is written in the
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II.1 Theoretical Description of the Materials

basis (A2, B1) for the K− point or in the basis (B1, A2) for the K+ point, respec-
tively.

In the presence of a magnetic field, the procedure to obtain the Landau levels for
the Hamiltonian HBL,eff is similar to the monolayer graphene case. After the
Peierls substitution, p 7→ π = p + e

cA(r) as in equation (II.14), an equivalent
calculation yields the approximate Landau level structure of bilayer graphene,

En = ±~ωc
√
n(n− 1), (II.30)

with characteristic frequency ωc = eB
m∗ and corresponding eigenfunctions

ψτ,n≥2 = τ
1√
2

(
|n〉

±|n− 2〉

)
and ψτ,n=1 =

(
|1〉
0

)
, ψτ,n=0 =

(
|0〉
0

)
. (II.31)

Like in the case of Landau level quantisation of the free electron gas or of mono-
layer graphene, these states are complemented to fully characterise the electronic
quantum states in the nth Landau level by the guiding centre quantum numberm:

ψτ,n≥2,m = ψτ,n≥2 ⊗ |m〉, ψτ,n=0,m = ψτ,n=0,m ⊗ |m〉. (II.32)

We list some of the main features of this approximate description of bilayer
graphene in the frame of the two-band model:

• We obtain a scaling of the Landau level energies for bilayer graphene of lin-
ear leading order in n for n � 1 as a reminiscence of the approximately
quadratic band structure of bilayer graphene at low energies.

• One of the major peculiarities of bilayer graphene is the approximate two-
fold degeneracy of the zero-energy Landau level state. We see from equation
(II.30) that for both, Landau level quantum number n = 0 and n = 1, the
Landau level energy vanishes: E0 = E1 = 0. Hence, within the description
of the two-band model, there is exact degeneracy of the n = 0 and the n = 1
Landau level. We note, however, that there is no underlying, fundamental
symmetry that protects this degeneracy.

• From equation (II.31) we deduce that for the zero-energy states of the two-
band model there is a correspondence between the Landau level index and
the sub-lattice which is occupied by the electrons: at the K+ valley the wave
functions ψK+,n=1 and ψK+,n=0 fully reside on the layer L2, while ψK−,n=1

and ψK−,n=0 occupy the lattice L1, only.
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F Landau level quantisation within the four-band model:

Landau level quantisation in bilayer graphene in the full four-band model is some-
what more involved [Mucha-Kruczyński, 2013; Mucha-Kruczyński et al., 2008,
2009; Côté and Barrette, 2013]; We present the calculation at the level of approxi-
mation which is adopted throughout this work: we start from an exact, analytical
calculation in which the smallest tight-binding parameters are neglected and re-
include them subsequently as small perturbations.

In a first step, the main features can be demonstrated most conveniently for a
simplified model in which the components proportional to the smallest param-
eters δAB, γ3, and γ4 are neglected. In this case the action of the ladder operators
π = πx + πy and π† = πx − πy in the Hamiltonian of equation (II.8), which act
as lowering and raising operators in the basis of Landau functions, respectively,
enforces the electronic state of the nth Landau Level in the valley K+ to be of the
form (agreeing on |n〉 ≡ 0 for n < 0):

ψK+,n =


b(n),1|n〉

b(n),2|n− 2〉
b(n),3|n− 1〉
b(n),4|n− 1〉

 , (II.33)

where the coefficients b(n),i are determined by the system of linear equations im-

posed by the eigenvalue equation HK+ψ
(n)
K+

= εnψ
(n)
K+

.

Again, above states of equation (II.33) are complemented with the guiding centre
quantum number m; for calculations where a real-space representation of the elec-
tronic state is employed, we refer to the akin monolayer graphene case of equation
(II.28).

Of special interest are the cases n = 0 and n = 1 as in the following we focus on
the physics of the zero-energy multiplet in bilayer graphene. Therefore, we note
for further use the explicit properties of the states with n = 0 and n = 1:

ψK+,0 =


|0〉
0
0
0

 , ψK+,1 =


b(1),1|1〉

0
b(1),3|0〉
b(1),4|0〉

 , (II.34)

58



II.1 Theoretical Description of the Materials

1 2 3 4 5 6 7

-0.6
-0.4
-0.2

0.2
0.4
0.6
0.8

1

∆B [eV]

b(1),i
b(1),1

b(1),3

b(1),4

B=10T

Figure II.8
Evolution of the coefficients b(1),i

functions of ∆B at magnetic field
strength B=10 T.

with coefficients [Shizuya, 2012]

b(1),1 = c1,

b(1),3 = − c1

g1
(1−M2z2),

b(1),4 = −c1zM. (II.35)

In above relations, c1 = 1√
1+ 1

g1
2 (1−M2z2)2+z2M2

denotes the normalisation constant

in terms of the rescaled parameters g1 = γ1

~ωc and 2M = ∆B
~ωc . The parameter z is

determined as the solution to the equation

z =
1

g1
2
(2− z)(1−M2z2) in the range 0 ≤ z ≤ 1, (II.36)

which implies that z is a function of the bias potential: z(∆B).

Figure II.8 shows the evolution of the coefficients b(1),1, b(1),3, and b(1),4 as functions
of the rescaled bias M for a magnetic field B = 10 T.

The associated lowest energy eigenvalues of the n = 0 and the n = 1 mode are
given by

Eτ,n=0 = τ
1

2
∆B,

Eτ,n=1 = τ
1

2
∆B − τ

1

2
z∆B, (II.37)

where τ denotes the valley index.

In a second step, we include the parameters neglected beforehand, δAB, γ3, and γ4,
by estimating their influence when they are treated as small perturbations to the
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system.

To this end we start with the Hamiltonian in the K+ valley in the absence of any
external electric field, i.e., for ∆B = 0, and write it as an expansion in the above
parameters:

H∆B=0
K+

= ~ωc


0 0 0 a†

0 0 a 0
0 a† 0 g1

a 0 g1 0


︸ ︷︷ ︸

M1,K+

+δab


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0


︸ ︷︷ ︸

MδAB,K+

+ ~ωc
γ3

γ0


0 a 0 0
a† 0 0 0
0 0 0 0
0 0 0 0


︸ ︷︷ ︸

Mγ3,K+

+~ωc
γ4

γ0


0 0 a† 0
0 0 0 a
a 0 0 0
0 a† 0 0


︸ ︷︷ ︸

Mγ4,K+

. (II.38)

The starting point is the knowledge of the exact eigenstates and eigenenergies of
the two zero-energy modes for the unbiased system:

n = 0 : E∆B=0
0 = 0, ψ∆B=0

K+,0
=


|0〉
0
0
0

 ,

n = 1 : E∆B=0
1 = 0, ψ∆B=0

K+,1
=


c1|1〉

0
− c1
g1
|0〉

0

 , (II.39)

with coefficient c2
1

∣∣
∆B=0

=
g2
1

g2
1+1

.

Computing the energy corrections due to the sub-leading terms from first order
perturbation theory, E0,1 ≈ E∆B=0

0,1 + λελ0,1, where ελ0,1 = 〈1, 0|Mλ|0, 1〉, we obtain
the following expressions:

εδAB0 = 〈0|MδAB |0〉 = 1, εδAB1 = 〈1|MδAB |1〉 = c2
1.

εγ3
0 = 〈0|Mγ3 |0〉 = 0, εγ3

1 = 〈1|Mγ3 |1〉 = 0,

εγ4
0 = 〈0|Mγ4 |0〉 = 0, εγ4

1 = 〈1|Mγ4 |1〉 = −2
c2

1

g1
. (II.40)
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Figure II.9
Lattice structure of the
Bi(111) surface seen from
the top (left) and from
the side under different
tilt angles (right).

Figure II.10
Band struc-
ture of the
Bi(111) sur-
face state
around the Γ
point.

We thus obtain the corrected single particle energies

E∆B=0
0 = δAB,

E∆B=0
1 = −2~ωc

γ4

γ0

c2
1

g1
+ c2

1δAB. (II.41)

From this analysis we learn that including corrections due to non-vanishing values
of δAB and γ4 alters the single particle energies of the Landau levels n = 0 and
n = 1 and the degeneracy between the n = 0 and n = 1 Landau level is lifted. The
splitting ∆

pert
01 induced by these perturbative effects reads

∆
pert
01 = −δAB(1− c2

1)− 2
γ4

γ0γ1
c2

1(~ωc)2. (II.42)

II.1.2 Bismuth(111): Approximate Description of the Dispersion
and Anisotropic Landau Level Quantisation

Lattice of the Bi(111) Surface, Model to the Dispersion

Elemental bismuth crystallises in a lattice with rhombohedral symmetry [Ohtsubo
and Kimura, 2016; Du et al., 2016]. The surface (111) is of particular interest due to
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Figure II.11
The low-energy part of the Bi(111)
surface state dispersion is modelled by
six elliptical valleys arranged in a star-
like configuration around the Γ point.

its peculiar electronic structure: the bismuth bulk crystal terminates in a buckled
honeycomb lattice in which the Bi atoms arrange in two planes [Jezequel et al.,
1986; Du et al., 2016]. In figure II.9 we show a top view and side views on this
hexagonal surface lattice of the Bi(111) face. The surface electrons hence represent
a two-dimensional electron system. The lattice parameters of the Bi(111) surface
are d11 ≈ 0.4453 nm for the distance between two equivalent Bi atoms within one
plane and d12 ≈ 0.1590 nm for the distance between the two planes of Bi atoms.

The dispersion of the surface states is of complex shape forming multiple electron-
hole pockets. Within the energy region closest to the Fermi surface there are six
anisotropic valleys centred around the Γ-point in the first Brillouin zone [Ast and
Höchst, 2001; Du et al., 2016]. A symbolic sketch of the band structure of the Bi(111)
surface state in the first Brillouin zone is shown in figure II.10.

We model the low-energy part of the electronic dispersion of Bi(111) as six identical
valleys of elliptical shape, rotated with respect to each other by an angle of π

3 and
arranged in a star-like structure around the Γ-point as shown in figure II.11. This
represents a minimal model taking into account the sixfold valley degeneracy and
the anisotropic character of either of the valleys.

Bi(111): Anisotropic Landau Level Quantisation

The presence of a sufficiently strong magnetic field will quantise the low-energy
electronic dispersion of figure II.11 into a discrete Landau level structure. The
specific features of this particular dispersion will translate into the Landau
level scheme: due to the elliptical shape of the valleys in Bi(111), also the result-
ing Landau level orbitals exhibit anisotropic features such as anisotropic masses
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Figure II.12
Projection of the three dimensional bulk Brillouin zone
of bismuth (solid black lines) onto the two-dimensional
(111)-surface Brillouin zone (magenta, dashed lines).
Ellipses represent the projections of the six anisotropic
valley pockets.

[Feldman et al., 2016].

We demonstrate anisotropic Landau level quantisation per single valley. Approx-
imating the τ th valley as an elliptical energy band with parabolic dispersion we
write the corresponding low-energy Hamiltonian as

H = −~ωc,τ a†τaτ , (II.43)

in terms of the anisotropic ladder operators a† = 1√
2~(ατπx − iβτπy), a =

1√
2~(ατπx + iβτπy). These ladder operators define an algebra where the valleys

are connected among themselves by discrete rotations [Feldman et al., 2016; Li
et al., 2016; Sodemann et al., 2017]. The anisotropy is encoded in the anisotropy
parameters ατ = 1√

λ
cos θτ + i

√
λ sin θτ , βτ =

√
λ cos θτ + i 1√

λ
sin θτ , where the

dependence on the respective valleys labelled by τ ∈ [1, . . . , 6] is contained in the
angle θτ = (τ − 1)π3 connecting the different valleys by rotation and the squeezing

parameter λ =
√

m‖
m⊥
≈ 5 which realises the elliptical squeezing.

With these conventions, the anisotropic ladder operators aτ , a†τ act on the state
with n excitations in the τ th valley as

aτψn,τ = −i α
∗
τ

|ατ |
√
nψn−1,τ , a†τψn,τ = −i |ατ |

α∗τ

√
n+ 1ψn+1,τ . (II.44)

Unlike the ladder operators aτ and a†τ for Landau level quantisation of the
anisotropic valleys, the annihilation and creation operators of the quantum num-
ber m, b and b† corresponding to the quantisation of the guiding centre coordi-
nate, remain unchanged as compared to the free electron gas or to the graphene
case. The full quantum state of the electron therefore again is given simply by
ψn,τ,m = ψn,τ ⊗ |m〉.
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We adopt the Landau gauge A = (0,−Bx) for the vector potential to write an ex-
plicit form of the wave functions in real space. As a consequence of the anisotropic
action of the ladder operators aτ , a†τ as defined in equation (II.44) the Landau
gauge wave functions of the nth Landau level are of the form

φn,τ,ky(r) = 〈r|ψn,τ,m〉 = 〈r|n, τ, ky〉 =
1

Ly
eikyy

1√
2nn!
√
π|ατ |`B

eα
∗
τβτ

(ξτ )2

2 Hn(ξτ ),

(II.45)
where ky is the y-component of the Landau gauge momentum with ky = 2π

Ly
|m|

for a system of extension Ly in y-direction, and we write ξτ = 1
|ατ |`B (x−Xky) with

guiding centre coordinate Xky = ky`
2
B . With Hn we denote the nth Hermite poly-

nomial.

II.2 Quantum Hall Ferromagnetism and Hartree Fock
Theory

This chapter elucidates the concept of quantum Hall ferromagnetism [Sarma and
Pinczuk, 1996; Barlas et al., 2012] and discusses how a quantum Hall ferromag-
net can be described within Hartree Fock theory. We demonstrate how different
physical systems can be described within this framework as multicomponent spin
systems. The respective symmetries that play a role when describing a quantum
Hall ferromagnet are discussed as well as how we understand and use the term
symmetry breaking in this context. We then motivate why Hartree Fock theory is an
appropriate tool to theoretically investigate a quantum Hall ferromagnet.

II.2.1 The SU(N) Quantum Hall Ferromagnet

Describing a Multicomponent System

Given a quantum Hall system in which each single particle is characterised by
a discrete internal degree of freedom ξ which exhibits SU(N) symmetry. By this
we mean that for every single particle quantum state there are N different pos-
sible configurations which are energetically degenerate. Examples for such dis-
crete degrees of freedom include the spin of the electron (ξ = σ ∈ {↑, ↓}, hence
N=2), the orbital index of bilayer graphene (ξ = λ ∈ {0, 1}), or the valley index
ξ = τ ∈ {+,−} in mono- and bilayer graphene, and ξ = τ ∈ {1, . . . 6} in Bi(111), as
introduced in the previous section II.1.2. Combining multiple degrees of freedom
yields an even richer picture: for electrons in monolayer graphene for instance we
have ξ ∈ {(↑,+), (↑ −), (↓ +), (↓ −)} and therefore N=4.
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In an interacting quantum Hall system with such a multicomponent structure the
ground state will be generally of fully homogeneous, ferromagnetic order, pro-
vided the interactions are SU(N) invariant giving rise to a fully SU(N) invariant
Hamiltonian. The physical origin of this behaviour lies in the repulsive nature of
the electron-electron Coulomb interaction: this interaction energy is minimised for
a maximally antisymmetric orbital wave function. As in translationally invariant
quantum Hall systems the Landau levels are essentially flat bands, there is no cost
in kinetic energy to compete with the energetic gain for ferromagnetic ordering. As
a consequence, the energetically preferred state of the system will be that of com-
plete antisymmetry of the orbital part of the wave function. Meanwhile, the total
fermionic wave function describing the electronic state must equally be of anti-
symmetric nature; it thus follows that the part of the wave function describing the
multicomponent degrees of freedom must be completely symmetric, representing
a generalised ferromagnetic state.

Symmetries and Symmetry Breaking

In the fully SU(N) symmetric case the Hamiltonian is invariant under any SU(N)
rotation and its ground state, given by the SU(N) quantum Hall ferromagnet, is
an irreducible representation of SU(N). The symmetry, however, is not always
fully exact. There are several different ways in which the symmetry of the system
may be reduced. We distinguish between the following mechanisms of symmetry
breaking:

Spontaneous symmetry breaking
Choosing a direction of polarisation for the ferromagnetic, polarised ground
state spontaneously breaks the SU(N) symmetry of the system. This di-
rection, although somewhat arbitrary in the first place, once fixed reduces
the system’s symmetry from SU(N) to SU(k)×SU(N-k), where k denotes the
number of occupied configurations.

Internal explicit symmetry breaking
If the interactions are not fully SU(N) symmetric, the Hamiltonian of the sys-
tem does not possess SU(N) invariance. A type of interaction not respecting
the symmetry of a certain degree of freedom ξ means that this interaction
couples to ξ and is able to alter the configuration of the state. In the case of the
Coulomb interactions between electrons, for instance, it always respects spin
symmetry. This is, however, not necessarily true for other pseudospin de-
grees of freedom: in graphene, Coulomb interactions can be approximately
described as valley symmetric as valley-breaking processes are negligible.
In other materials, these processes cannot be neglected. See appendix D for
details.
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External explicit symmetry breaking
The SU(N) symmetry of the system can be explicitly broken by any effect that
lifts the degeneracy of the N different configurations. For the example of the
spin of the electron, the most obvious mechanism would be to account for the
presence of an external magnetic field which lifts the degeneracy between the
↑ and ↓ configuration via the Zeeman effect.

Theoretical Description of a Quantum Hall Ferromagnet

In the present work, we will characterise monolayer graphene, bilayer graphene,
and the Bi(111) surface in the quantum Hall regime by different sets of discrete,
internal spin and isospin degrees of freedom, respectively, and describe them as
quantum Hall ferromagnets. We recap the degrees of freedom captured within
this description of these materials, respectively, and discuss the symmetries to be
considered in either case.

Describing the Materials as Quantum Hall Ferromagnets

Monolayer Graphene
To the electrons in monolayer graphene we assign two different discrete de-
grees of freedom. The spin degree of freedom, as the electrons are spin one-
half fermions: σ = +~

2 ≡↑ and σ = −~
2 ≡↓. The valley isospin degree of

freedom, encoding the degeneracy in momentum space due to the equiva-
lence of the low-energy description in the vicinity of either of the two in-
equivalent Dirac points in the first Brillouin zone of graphene: τ = + ≡ K+

and τ = − ≡ K−. Both, the spin and the valley isospin, come in two possi-
ble discrete configurations, respectively. Hence they both give rise to SU(2)
symmetry. We summarise the spin and isospin index for the electrons in
monolayer graphene as ξ ∈ {↑ +, ↑ −, ↓ +, ↓ −}. The total spin and isospin
space of monolayer graphene, HMLG = Hspin ⊗Hvalley, is therefore of SU(4)
symmetry.

Bilayer Graphene
For the electrons in bilayer graphene we identify the following three differ-
ent discrete degrees of freedom. The spin and the valley isospin σ and τ sim-
ilarly to the case of monolayer graphene. Additionally, the orbital isospin
degree of freedom, accounting for the degeneracy between the n = 0 and the
n = 1 Landau level in the bilayer graphene Landau level spectrum: λ = 0
and λ = 1. In bilayer graphene these spins and isospins can be summarised
with the index ξ = (λ, σ, τ).

Bismuth(111)
For the surface state of Bi(111) we assume full spin polarisation of the elec-
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tronic state due to the spin-orbit coupling known to be of sizeable strength
in bismuth [Koroteev et al., 2004; Feldman et al., 2016]. Spin-orbit interac-
tion leads to a splitting of the spin bands and hence occupation of one spin
configuration will be energetically preferred over the other. Therefore, for
the electrons of the Bi(111) surface we consider the valley isospin as the only
discrete degree of freedom of the electrons. In the case of the Bi(111) surface,
it can take six different configurations corresponding to the six degenerate
valleys of the Bi(111) Fermi surface: τ ∈ {1, . . . , 6}.

Investigating a Material as a Quantum Hall Ferromagnet

Starting point for any realistic model of the above materials, including a variety of
different effects that may break the respective corresponding symmetries, is a ba-
sic, unperturbed model within the single particle picture which respects the SU(N)
symmetry of the respective system. Unbroken SU(N) symmetry implies that all the
different spin and isospin configurations are energetically equivalent. Beyond this
idealised picture, we are interested in the situation in which this symmetry is no
longer exact but where it is broken by certain physical processes. Those symme-
try breaking effects, which will be specified separately in detail for each of the
materials under investigation in the respective chapter, can be of very different
physical nature and origin. On the level of the single particle picture, there may
be external effects such as fields or strain, as well as internal effects, such as lattice
asymmetries. Furthermore, when accounting for many particles and their mutual
interactions, one has to resolve whether or to what extent these interactions, such
as electron-electron Coulomb interactions or electron-phonon interactions do or
do not respect the underlying SU(N) spin and isospin symmetry.

Each of these symmetry breaking effects when considered separately might ener-
getically favour a different specific spin and isospin configuration. When several
effects are considered jointly, this will lead to energetic competition among them.
The question arises, given certain symmetry breaking mechanisms as perturba-
tions to a specific SU(N) symmetric model, which is the spin and isospin configu-
ration singled out by this combination of symmetry breaking effects?

We start from the SU(N) invariant configuration. To the perfectly SU(N) invariant
Hamiltonian of an SU(N) quantum Hall ferromagnet at integer filling factor ν =
k ∈ N0 with k ≤ N , the eigenstates are known exactly. They are given by SU(N)
quantum Hall ferromagnet states

ψSU(N) =
∏
m

c†ξ1(m) · · · c†ξk(m)|0〉, (II.46)

67



CHAPTER II: Theoretical Background

where m labels the Landau orbitals, ξi is the index of the discrete flavour degree of
freedom, i.e., the quantum numbers of the spin and isospins, and |0〉 corresponds
to the vacuum state. The quantum state of equation (II.46) simply is the Slater
determinant state consisting of k filled subbranches chosen arbitrarily from the N
flavour states.

The theory of quantum Hall ferromagnetism is based on the idea to use wave func-
tions of the form of equation (II.46) as Ansätze for the ground state wave function
of an N -multicomponent system. As for the perfectly SU(N) symmetric system
these Slater determinant states of equation (II.46) are exact eigenstates to the SU(N)
invariant Hamiltonian, they appear as good candidates for a trial wavefunction
also for a system where the SU(N) symmetry is slightly broken. This will be the
guiding idea at the very heart of this work: to use Slater determinant states akin to
the ones written in equation (II.46) as trial wavefunctions in a variational analysis
of broken symmetry systems.

The fact that within this framework we are using single Slater determinant states
to approximate the true ground state of the system makes these kinds of problems
eligible to be treated within Hartree Fock theory.

II.2.2 Hartree Fock Decoupling of a Two-Particle Interaction

The Hartree Fock Method - General Procedure

We briefly present the theory of the Hartree Fock method which is used to treat in-
teracting many-particle systems [Heenen and Godefroid, 2012].

Consider a two-body operator of the form

HV =
1

2

∑
αβγδ

Vαβγδ c†αc†βcδcγ , (II.47)

where α, β, γ, δ label the single particle states in a chosen single particle basis
{|ψα〉} and Vαβγδ = 〈ψαψβ|V |ψγψδ〉 denotes the matrix elements of some two-body
operator V̂ in that single particle basis.

To tackle a two-body operator as the operator HV of equation (II.47), throughout
this work we employ the Hartree Fock approach for fermionic systems. The ma-
jor ingredient of the Hartree Fock method for fermions consists in approximating
the ground state of an interacting Hamiltonian by one single Slater determinant.
This correctly takes into account the exchange statistics of the fermionic particles,
while yet in most cases remaining an approximation to the true ground state wave
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function.¶ Subsequently, the procedure of Hartree Fock consists in minimising the
energy of the Slater determinant state with respect to the single particle states it is
constructed from.

To characterise the system in the complete single particle basis chosen above in
equation (II.47), we introduce the notion of the single particle states |ψα〉 = c†α|0〉,
where the single particle creation operator acts on the vacuum state |0〉 of the sys-
tem, and the notion of the one-body density matrix ραβ = 〈Ψ|c†αcβ|Ψ〉 in terms of
the many-particle state |Ψ〉.

For a total number of N particles, a single Slater determinant many-particle state
written in this single particle basis reads

|ΨSl〉 =

N∏
α=1

c†α|0〉. (II.48)

For this particular many-particle state the density operator takes the form of a
simple sum

ρSl =
N∑
α=1

|ψα〉〈ψα|. (II.49)

Computing the energy of the Slater determinant state as written in equation (II.49)
yields the Hartree Fock energy functional

EHF [ρSl] =
1

2

∑
ijkl

ρSlki (Vijkl − Vijlk) ρSllj . (II.50)

The anti-symmetrised matrix element (Vijkl − Vijlk) arises due to the fermionic
statistics of the interacting particles. The two terms Vijkl and Vijlk are commonly
referred to as the Hartree term, reflecting direct interaction, and the Fock term, en-
coding exchange interaction between particles.

Finding the Hartree Fock ground state energy consists in minimising EHF [ρSl]
with respect to the single particle states that enter into ρSl.

The energy functional of equation (II.50) can equivalently be cast into matrix form

HHF =
∑
lk

hHFlk c†l ck, (II.51)

¶ This step corresponds to a cut-off approximation: for any basis, the ground state can be written
as an infinite linear combination of Slater determinants formed from the single particle states of
the basis. Approximating the ground state by just one single Slater determinant corresponds to
the simplest possible truncation.
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where the Hartree Fock matrix elements are given by

hHFlk =
∑
ij

(Vlikj − Vlijk) ρSlji . (II.52)

The Hartree Fock Hamiltonian as written in equation (II.51) is a one-body opera-
tor that describes the energetics of an effective one-body problem of a single parti-
cle dressed by a mean field generated by interaction with the other particles.

Diagonalising the Hartree Fock Hamiltonian of equation (II.51) yields a set of ef-
fective single particle energies and single particle states as the eigenvalues and
eigenstates of HHF according to

HHF |i〉 = εi|i〉, (II.53)

which, by constructing the density operator ρSl from these single particle basis,
allows to write the matrix elements of equation (II.52) in this basis where they are
diagonal: hHFij = εi δij .

As a consequence of equations (II.51) and (II.52), both the right and the left hand
side of equation (II.53) depend on the set of single particle states and the corre-
sponding density matrix ρSl: the Hartree Fock Hamilton operator depends itself
on the density matrix which is determined in turn by its solutions. In this sense, the
problem imposed by equation (II.53) must be solved by virtue of a self-consistent
minimisation routine.

The effective single particle energies are connected to the Hartree Fock energy of
equation (II.50) as

EHF =
N∑
i=1

εi −
N∑

i,j=1

(Vijij − Vijji). (II.54)

Hartree Fock and Quantum Hall Ferromagnetism

The connection between quantum Hall ferromagnetism and Hartree Fock theory
lies in the common approach to write the many-particle state of the system by
a single Slater determinant of the single-particle states. As expounded in section
II.2.1, for an SU(N) quantum Hall ferromagnet this idea stems from the fact that the
single Slater determinant is indeed an exact eigenstate of the perfectly SU(N) sym-
metric Hamiltonian. Within Hartree Fock theory, see section II.2.2, the single Slater
determinant approximation allows to deal with the many-particle problem while
treating correctly the statistics of the particles. Therefore, Hartree Fock theory is
exact in the case of a quantum Hall ferromagnet, provided Landau level mixing is
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neglected.

Summoning the above, the idea behind the work in this thesis is the follow-
ing: we treat monolayer graphene, bilayer graphene, and Bi(111) as quantum
Hall ferromagnetic systems exhibiting SU(N) symmetry in the absence of all sym-
metry breaking effects. In the case when there are symmetry breaking perturba-
tions, continuing to use the single Slater determinant states as Ansätze for the
ground state wave functions enables us to employ Hartree Fock theory in order
to investigate the respective systems in the presence of symmetry breaking effects
and interactions.
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CHAPTER III

Edge State Structure of Graphene Monolayers in the ν = 0
Quantum Hall State

III.1 Edge State Structure of Monolayer Graphene
- Introduction

This chapter presents results on the edge state structure in monolayer graphene.
Starting from what is known about the spin and isospin properties for an infinite,
translational invariant sheet of monolayer graphene, our aim is to understand how
these properties might be influenced by the presence on a terminating edge in a fi-
nite sample.

This question has been motivated by the following experimental observation (see
also the discussion about experimental motivation in the introduction chapter I,
section I.3): for a finite piece of graphene placed in an external magnetic field, a
transition can be observed from conducting to insulating behaviour as the angle
of the magnetic field is changed with respect to the graphene sample. This gives
rise to two questions: on the one hand, how is the state of the system affected
by the change of the magnetic field? For the translationally invariant system, i.e.,
for the bulk material, theory has suggested [Kharitonov, 2012c] to characterise dif-
ferent phases of the system by different possible spin and isospin configurations
that may be affected by an external magnetic field: this predicts that transitions
between multiple different ground state phases can be driven by varying the mag-
nitude or the orientation of the external magnetic field. On the other hand, as con-
ductance and charge transport are inherently related to the properties of the edge
states rather than the bulk material, one has to ask furthermore: to what extend the
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Figure III.1
A finite piece of monolayer graphene with differ-
ent edge configurations: zigzag (blue atoms) and
armchair boundaries (magenta atoms).

predictions for the bulk still remain valid in the vicinity of an edge? This question
lies at the very heart of this project. In previous studies of this aspect, typically
strongly simplified models for the terminating edge are employed. For instance,
the influence of the edge on the ground state spin and isospin configuration is
neglected or oversimplified functions are used for mimicking the edge potential.
Therefore, it is to be suspected that these simple models, while in cases tractable
analytically, are not providing realistic descriptions of the edge state structure of
monolayer graphene.

The aim of the project presented in this chapter is to combine the following two as-
pects: on one side we consider the existing knowledge about the ground state spin
and isospin properties of bulk monolayer graphene including electron-electron
interactions and the influence of lattice vibrations, i.e., electron-phonon interac-
tions. The key feature here is the resulting dependence of the ground state phase
on the external magnetic field; On the other hand we include a realistic model of
the atomic edge terminating a finite monolayer graphene sample. We wish to un-
derstand how the bulk ground state structure may be altered in the vicinity of the
edge.

To this end, we derive a realistic model for the effective potential induced by
an edge of the monolayer graphene sample. We start from microscopic consid-
erations of the terminating boundary of the monolayer graphene lattice on the
atomic scale. We investigate how the Landau levels in a finite piece of monolayer
graphene evolve when they approach an edge. The existing theory for the physics
of ground state spin and isospin phases in a translational invariant system is com-
plemented by including the influence of the effective edge potential. This way, we
draw a complete picture of the ground state phases upon evolving from the bulk
configuration towards a terminating edge.
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Figure III.2
Electronic occupation of the Lan-
dau levels for the ν = 0
charge neutral state of monolayer
graphene: the negative energy
states n < 0 are filled, the positive
energy states n > 0 are empty.
Half filling implies two electrons
per orbital in the n = 0 zero en-
ergy state.

The main results of this project are the studies of several different properties of
monolayer graphene, such as the ground state spin and isospin configuration, the
evolution of the ground state wave function, as well as the behaviour of the ex-
cited states’ energy levels and spin and isospin properties, as functions of a spatial
coordinate that runs in real space from the bulk to the vicinity of the edge. Within
a Hartree Fock mean field treatment we study the spin and isospin configurations
of the ground state. Furthermore, we investigate the energies and properties of
the Hartree Fock single particle excited states in order to understand the resulting
edge state structure.

This chapter is based on the work published in reference [Knothe and Jolicoeur,
2015].

III.1.1 Theoretical Framework and Model Hamiltonian

We formulate the model for a finite piece of neutral monolayer graphene in the
quantum Hall regime.

The charge-neutrality point corresponds to the particle-hole symmetric situation
in which the Landau level ladder is exactly half filled with electrons: all the neg-
ative energy Landau levels with n < 0 are completely filled and all the positive
energy Landau levels with n > 0 are empty, while the n = 0 Landau level is half
filled with two electrons per orbital. We show a sketch of this electronic config-
uration of the Landau levels in figure III.2. This state of monolayer graphene is
referred to as the state with filling factor ν = 0.
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In the limit of sufficiently strong magnetic fields where the splitting between adja-
cent Landau levels is large, the lower-lying negative energy levels can be consid-
ered as inert and the higher lying positive levels are split far off: hence, we assume
that under this condition of a strong magnetic field, mixing between Landau lev-
els can be neglected and we focus on the properties of the partially filled n = 0
Landau level.

Description of the Electronic States

Quoting the results of the introductory chapter II, section II.1, and including the
index σ =↑, ↓ for the spin degree of freedom, the single particle state in the n = 0
Landau level reads

ψn=0,σ,m =

(
ψτ=+
n=0,m

ψτ=−
n=0,m

)
=


0
|0,m〉

0
−|0,m〉


HK+,K−⊗HA,B

, (III.1)

where m denotes the intra Landau level index and the subindex HK+,K− ⊗ HA,B

indicates that the state ψσ lives in the Hilbert space formed as the direct product
between Dirac valley space HK+,K− and the A,B sub-lattice space HA,B for which
we used the basis {ψA,K+ , ψB,K+ , ψB,K− , ψA,K−}.

For later use, we note the real space representation of the electronic states quoting
equation (II.28) from the introductory chapter II for the Landau level n = 0:

φ0,ky(r) = 〈r|0,m〉 =
1

Ly
eikyy

1
4
√
π
√
`B

e

(x−Xky )2

2`2
B , (III.2)

where ky denotes the y-component of the Landau gauge momentum with ky =
2π
Ly
|m| for a system of extension Ly in y-direction and Xky = ky`

2
B is the guiding

centre coordinate.

We simplify the notation by collecting only the non-zero entries of the n = 0 spinor
in equation (III.1) as:

ψ0 =


| ↑ +〉
| ↑ −〉
| ↓ +〉
| ↓ −〉


H

, (III.3)

identifying the valley and the sub-lattice indices in a common valley isospin τ as
τ = + =̂ K+ ↔ A and τ = − =̂ K− ↔ B. In the four-dimensional Hilbert space
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Figure III.3
Kinetic energy effective
edge potential Ekin in a
finite piece of monolayer
graphene: the n = 0 Lan-
dau level, being flat deep
within the bulk, bends to
non-zero energies in the
vicinity of edge.

H = Hspin⊗Hvalley we use the indices µ, ν to label the four possible configurations
of spin and isospin in this space: µ, ν ∈ {↑ +, ↑ −, ↓ +, ↓ −}.

Hence in monolayer graphene at neutrality we encounter an example of a quan-
tum Hall ferromagnet with four discrete degrees of freedom given by the spin and
the valley isospin. For any SU(4) symmetric interaction, the ground state is thus
highly degenerate and forms an irreducible representation of SU(4).

Structure of the Model Hamiltonian

The model Hamiltonian we study consists of the four terms

H = Hkin + HCoul + HZ + Haniso, (III.4)

where we include a kinetic energy part Hkin which includes the dependency of the
single particle energy Landau levels on the presence of a boundary, a Coulomb in-
teraction term HCoul describing mutual Coulomb interactions between electrons,
a Zeeman term HZ as we are treating spinful electrons in a magnetic field, and an
anisotropic contribution Haniso which captures short range interaction effects on
the lattice scale.

The last three terms are equivalent to those of a Hamiltonian describing infinite,
translationally invariant monolayer graphene while the first term Hkin explicitly
encodes the edge effects induced by a terminating boundary of the sample.

In detail, the respective terms stand for the following:
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Coulomb interaction HCoul

The Coulomb interaction term we write as

HCoul =
1

2

∑
i 6=j

e2

ε

1

|ri − rj |
, (III.5)

where ε is an effective dielectric constant which depends upon the substrate
[Santos and Kaxiras, 2013]. We consider the mutual Coulomb interaction be-
tween the electrons in the n = 0 state. In graphene, considering Coulomb
interaction between electrons as fully SU(4) symmetric is known to be an ex-
cellent approximation: while the SU(2) spin symmetry is always respected
by the Coulomb interaction, any processes that might violate the SU(2) sym-
metry in valley space can be shown to be suppressed by several orders of
magnitude due to the large separation of the two valleys K+ and K− in mo-
mentum space (see [Nomura and MacDonald, 2006; Goerbig, 2011] and ap-
pendix D).

Zeeman effect HZ

The contribution of the Zeeman effect to the total energy can be written as

HZ = −EZ
∑
i

σiz, (III.6)

where σz = σ2×2
z ⊗ 12×2 denotes the Pauli matrix σ2×2

z translated to the
Hilbertspace Hspin ⊗Hvalley which acts on the spin degree of freedom, only,
and the index i is a spatial index labelling the positions of the electron orbits
in real space. WithEZ = µBB we denote the characteristic Zeeman energy in
terms of the Bohr magneton µB and the strength of the total magnetic fieldB.

The Zeeman effect explicitly breaks the SU(2) symmetry in spin space as it
lifts the degeneracy between the up and down configuration σ =↑ and σ =↓
of the spin.

Anisotropic symmetry breaking Haniso

Assuming an SU(4) symmetric form of the many particle effects is only an
approximation. In fact it is weakly broken by lattice-scale effects that include
short-range Coulomb interactions and electron-phonon couplings. It is diffi-
cult to obtain precise estimates of these effects but their symmetry-breaking
properties can be encoded in a spatially local interaction Hamiltonian:

Haniso =
1

2

∑
i 6=j

[
gxτ

i
xτ

j
x + gyτ

i
yτ
j
y + gzτ

i
zτ
j
z

]
δ2(ri − rj), (III.7)
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with τα = 12×2 ⊗ σ2×2
α the Pauli matrices acting only in valley space and

V aniso(ri, rj) = δ2(ri−rj) the local interaction potential in terms of the Dirac
delta function in two dimensions. The parameters gα represent coupling con-
stants for the three spatial directions.

Earlier theoretical works on symmetry breaking at the lattice scale in
graphene include [Alicea and Fisher, 2007]. The Hamiltonian Haniso of equa-
tion (III.7) has been proposed by Aleiner et al. [Aleiner et al., 2007]. Its effects
for an infinite piece of translationally invariant monolayer graphene have
been analysed at the mean-field level by Kharitonov[Kharitonov, 2012c]. Its
symmetry properties and phase diagram have been studied by exact diago-
nalisation [Wu et al., 2014].

The exact values of the coupling constants gx,y,z are not known with preci-
sion. It is likely that the ratio of the energy scales between Coulomb interac-
tion and these anisotropies is of the order of 102. It is thus best to explore the
complete phase diagram taken these parameters as unknowns.

Kinetic energy effective edge potential Hkin

To describe the behaviour of a finite piece of monolayer graphene we include
a space dependent kinetic energy induced by the presence of the boundary:

Hkin = −
∑
i

Ekin(ri)τ
i
x, (III.8)

with i running over the different electron orbits in real space. The kinetic
energy effective edge potential Ekin(ri) is induced by the boundary of the
system: the hexagonal graphene lattice can be terminated in many differ-
ent ways, yielding several possible edge structures. Every different atomic
configuration leads to different boundary conditions for the wavefunction
[Akhmerov and Beenakker, 2008]. Therefore, the spectrum of a finite piece
of monolayer graphene depends on the nature of the edges. Two extreme
cases are the so-called zigzag and armchair edges [Brey and Fertig, 2006a]. A
finite piece of graphene terminated by a zigzag edge and an armchair edge is
shown in figure III.1. The kinetic energy and the corresponding eigenstates
of the electronic problem on the hexagonal lattice in the presence of hard-wall
boundary conditions on the terminating lattice sites can be obtained analyti-
cally [Abanin et al., 2006; Brey and Fertig, 2006a; Mei and Lee, 1983; Janssen
et al., 1994]. The corresponding eigenfunctions are given by the so-called We-
ber functions and yield the energy levels plotted in figure III.3 (see appendix
A for more details). This approach is equivalent to turning the level index
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into a space dependent quantity n(R) where R relates to the distance to the
edge r as r = R `B√

2
. In figure III.3 we show the spatial shape of the kinetic

energy Ekin obtained by this procedure for the n = 0 Landau level as we
will use it in the subsequent calculations.

We write the kinetic energy as a space-dependent potential proportional to
τx (a comparable treatment can be found in references [Kharitonov, 2012c;
Murthy et al., 2014]). This corresponds to a perturbative treatment as it as-
sumes an expansion of the perturbed edge states in terms of the unperturbed
bulk basis states. It restricts our description to the case of "armchair-like"
boundaries: we assume that one can always infer the number of branches in
the single particle edge spectrum as being equal to the number of degenerate
single particle levels in the bulk. This allows to apply a perturbative expan-
sion as implied by equation (III.8). A derivation of such a Hamiltonian de-
scribing the kinetic potential of a graphene edge using arguments of pertur-
bation theory can be found in reference [Kharitonov, 2012c]. We note, how-
ever, that edges with by a zigzag boundary, as they are terminated by a single
line of atoms of the same sub-lattice type, support additional surface states
[Nakada et al., 1996; Brey and Fertig, 2006a,b; Castro Neto et al., 2009]: un-
like the case of armchair-like boundaries, zigzag edges support states which
are localised on the edge in real space and decay into the bulk. These states
therefore hence are dispersionless and exhibit flat bands. The existence of
such additional surface states break the simple correspondence between the
number of edge states and the number of bulk states. Therefore, they are
beyond our simple treatment. The form of the kinetic energy in equation
(III.8) is valid only in the regime Ekin � ~ωc, i.e., spatially not too close to
the edge. As can be seen from figure III.3 this condition is very well met if we
restrict the subsequent discussion to the regime R > 3. Hence the restriction
R > 3 corresponds to a minimal distance rmin ≈ 2.12`B , which at realistic
experimental values corresponds to rmin ≈ 120a, where a denotes the lattice
constant of graphene.

State of the Art and General Idea

The idealised case of infinitely extended, translationally invariant monolayer
graphene corresponds to situation in which the kinetic energy term is perfectly flat
and can thus be discarded as a redundant constant; this setup has been studied by
Kharitonov in reference [Kharitonov, 2012c]. As a function of the coupling con-
stants gα Kharitonov found the phase diagram of the infinite sample as shown in
figure III.4, where the anisotropy energies uα relate to the couplings as uα = gα

2π`2B
.
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Figure III.4
Left: Ground
state phase
diagram for in-
finite monolayer
graphene from
[Kharitonov,
2012c]; Right:
Electronic con-
figuration on the
lattice.

The anisotropies u⊥, uz , and the Zeeman term EZ select some subset of the man-
ifold of SU(4) ferromagnetic ground states. Each phase is characterised by a dif-
ferent spin and isospin texture, i.e., by a different configuration of the total spin S
and the total valley isospin T.

We review the different spin and isospin phases which Kharitonov in reference
[Kharitonov, 2012c] identified as the four possible ground states of bulk mono-
layer graphene:

F u⊥ > −EZ
2 , uz > −EZ − u⊥ : Ferromagnetic phase (F)

The ground state is given by

|ψF 〉 =
∏
p

c†↑,+(p) c†↑,−(p)|0〉, (III.9)

where p denotes the Landau gauge momentum labelling the orbitals as
p = 2π

Ly
~|m| and the vacuum |0〉 consists of the completely occupied set of

states for all n < 0 and completely empty states for all n > 0.

Both electrons occupying the same spin state but being in opposite valley
isospin configurations entails the total spin to be fully polarised and the total
valley isospin to vanish:

Sz = 1, Tx = Tz = 0. (III.10)

F u⊥ < −EZ
2 , uz >

E2
Z

2u⊥
− u⊥ : Canted antiferromagnetic phase (CAF)
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The ground state is given by

|ψCAF 〉 =
∏
p

(
cos

θ

2
c†↑,+(p) + sin

θ

2
c†↑,−(p)

)(
cos

θ

2
c†↓,+(p)− sin

θ

2
c†↓,−(p)

)
|0〉,

(III.11)
where the optimal canting angle of the spin is determined by cos θ = EZ

2|u⊥| .

For this superposition of different wighted spin states the total spin follows
to be in a canted configuration inclined by the angle θ:

Sz = cos θ =
EZ

2|u⊥|
, Tx = Tz = 0. (III.12)

F u⊥ < uz, uz <
E2
Z

2u⊥
− u⊥ : Kekulé phase (KD)

The ground state of this phase reads

|ψKD〉 =
1

2

∏
p

(
c†↑,+(p) + c†↑,−(p)

)(
c†↓,+(p) + c†↓,−(p)

)
|0〉. (III.13)

Hence, we find an antiferromagnet in spin space but an isospin vector which
lies in the x-y-plane:

Sz = 0, Tx = 1, Tz = 0 (III.14)

F u⊥ > uz, uz < −EZ − u⊥ : Charge density wave phase (CDW)

The ground state of this phase is given by

|ψCDW 〉 =
∏
p

c†↑,+(p) c†↓,+(p)|0〉. (III.15)

Here, the two electrons occupying two opposite spin states cause the total
spin to vanish while the total valley isospin is fully polarised:

Sz = 0, Tx = 0, Tz = 1. (III.16)

Similar phases have also been discussed previously in references [Alicea and
Fisher, 2006; Jung and MacDonald, 2009] We illustrate the electronic configura-
tion on the monolayer graphene lattice on the right hand side of figure III.4.

This mean-field phase diagram is correct beyond mean-field as shown by exact
diagonalisation techniques [Wu et al., 2014]. Notably none of these bulk phases
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involve spin-valley entanglement.

Further earlier theoretical works on monolayer graphene edge properties include
references [Kharitonov, 2012c] and [Murthy et al., 2014] where either the evolution
of the bulk spin and isospin configuration upon approaching the edges has been
neglected or an unrealistic model for the edge potential has been used.

Our aim is to develop further the idea of reference [Kharitonov, 2012c]: by includ-
ing a realistic model of the kinetic energy effective edge potential as in equation
(III.8) we retrace how the phases of figure III.4 evolve upon approaching the sam-
ple boundary. Subsequently, we analyse the possible consequences for the physical
properties of the system.

Hartree Fock Treatment

We perform a Hartree Fock study of the symmetry breaking terms of the total
Hamiltonian of equation (III.4) including the edge potential. We note that in this
approach we neglect all possible spatial dependence of the coupling constants,
which is justified as long as we analyse a spatial domain not too close to the edge.

The neutral ν = 0 state corresponds to the half-filled case where two of the four
available states per orbital are occupied. Following the general ideas about Hartree
Fock treatment of quantum Hall ferromagnetic states expounded in the introduc-
tory sections II.2.1 and II.2.2, we look for the ground state within the family of
Slater determinant states of the form:

|ψGS〉 =
∏
p

(
1

2

∑
µ,ν

gµν c
†
µ(p)c†ν(p)

)
|0〉, (III.17)

where, as above, p denotes the Landau-gauge momentum component along the
edge and |0〉 is vacuum state with all n < 0 completely occupied and n > 0
completely empty. In equation (III.17) g is a 4 by 4 antisymmetric matrix, i.e.,
gµν = −gνµ, in order to describe a valid fermionic state, and Tr[gg†] = 2 to ensure
normalisation of the two-particle state. We minimise the energy of the Slater de-
terminant by varying the entries of g.

To capture the effect of the edge potential we take the g matrix to be momentum
dependent, i.e., g ≡ g(p) in equation (III.17). Due to the duality between the longi-

tudinal momentum p and the transverse coordinate rp =
p`2B
~ this is equivalent to

a space dependent description of the problem.
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In the spirit of chapter II.2, section II.2.2, we perform a Hartree Fock treatment of
the interacting symmetry breaking terms of Haniso of equation (III.7) using the
Slater determinant Ansatz for the ground state of equation (III.17). The Hartree
Fock decoupling is done with respect to the single particle basis labelled by the
Landau momentum p.

For each term of the Hamiltonian Haniso of equation (III.7), decoupling yields

〈ψGS |Hα
aniso|ψGS〉

=
1

2
gα
∑
p1,p2,
p3,p4

∑
µ1,µ2,
µ3,µ4

V aniso
p1,p2,
p3,p4

[τα]µ1µ4 [τα]µ2µ3〈ψGS |c†µ1
(p1) c†µ2

(p2) cµ3(p3) c†µ4
(p4)|ψGS〉

HF
≈ 1

2
gα
∑
p1,p2

[
V aniso
p1,p2,
p2,p1

∑
µ1,µ4

[τα]µ1µ4 Pµ4µ1(p1)︸ ︷︷ ︸∑
µ1

[ταP(p1)]µ1µ1=Tr[ταP(p1)]

∑
µ2,µ3

[τα]µ2µ3 Pµ3µ2(p2)︸ ︷︷ ︸∑
µ2

[ταP(p2)]µ2µ2=Tr[ταP(p2)]

− V aniso
p1,p2,
p1,p2

∑
µ1,µ2

∑
µ3

[τα]µ2µ3 Pµ3µ1(p1)︸ ︷︷ ︸
[ταP(p1)]µ2µ1

∑
µ4

[τα]µ1µ4 Pµ4µ2(p2)︸ ︷︷ ︸
[ταP(p2)]µ1µ2︸ ︷︷ ︸

Tr[ταP(p1)ταP(p2)]

]

=
1

2
gα
∑
p1,p2

[
V aniso
p1,p2,
p2,p1

Tr[ταP(p1)] Tr[ταP(p2)]− V aniso
p1,p2,
p1,p2

Tr[ταP(p1)ταP(p2)]
]

(III.18)

where we introduced the notation of the density matrix

Pµν = gg† = 〈ψGS |c†ν cµ|ψGS〉, (III.19)

and used the property 〈ψGS |c†ν(p) cµ(p′)|ψGS〉 = δpp′Pµν(p). Furthermore, with Vpi
we denote the matrix elements of an interaction V :

Vpi =

∫∫
dr1dr2 φ

∗
0,p1

(r1)φ∗0,p2
(r2)φ0,p3(r2)φ∗0,p4

(r1)V (r1, r2), (III.20)

in terms of the explicit real-space representations of the n = 0 Landau level single
particle wavefunctions φ0,pi as given in equation III.2. In the case of the anisotropic
short-range interactions, due to the locality in real space of the interaction potential
of equation III.7, we find equality of the direct and the exchange matrix element:

V aniso
p1,p2,
p2,p1

= V aniso
p1,p2,
p1,p2

=
1

Ly

1√
2π`B

e
− (Xp1−Xp2 )2

2`2
B . (III.21)

This is a particular property of the delta-like interaction. The sums over the orbitals
can be evaluated by going to the continuum limit (allowing for a y-dependence
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of the spatial integral)
∑

p →
NΦ
Lx

∫
dx 1

Ly

∫
dy = 1

2π`2B

∫
dr. We work in a local

approximation for the density matrix, assuming P to vary sufficiently slowly in
space for spatial gradient terms of higher order than zero in a gradient expansion
to be negligible:

P(r2) = P(r1) + (r2 − r1)∇r1P(r1) +
1

2
(r2 − r1)2∇2

r1
P(r1) + · · · ≈ P(r1). (III.22)

Due to the locality of the anisotropic interaction in real space, the interaction matrix
elements of the this interaction contribution ultimately reduce to a simple, constant
coupling energy:

gα
1

2π`2B

∫∫
dx2dy2 V

aniso(x1, x2) =
gα

2π`2B
=: uα. (III.23)

This allows to combine the terms in equation III.18, such the energy contribution
per orbital from the symmetry breaking interaction Hamiltonian of equation (III.7)
is given by (suppressing the orbital index in the following):

〈ψGS |Haniso|ψGS〉 =
1

2

∑
α

uα

(
Tr[ταP]2 − Tr[ταP ταP]

)
. (III.24)

It is convenient to rewrite the problem in terms of the following simple expectation
values:

Sα =
1

2
〈ψGS |c†(p)σα c(p)|ψGS〉 =

1

2
Tr[σαgg†] =

1

2
Tr[σαP], (III.25a)

Tα =
1

2
〈ψGS |c†(p)ταc(p)|ψGS〉 =

1

2
Tr[ταgg†] =

1

2
Tr[ταP], (III.25b)

Rαβ =
1

2
〈ψGS |c†(p)σατβc(p)|ψGS〉 =

1

2
Tr[σατβgg†] =

1

2
Tr[σατβP]. (III.25c)

The expressions of equations (III.25a) and (III.25b) yield the components of the
total spin Sα and isospin Tα per orbital p.

Using equation (III.25) and equation (III.24), we obtain the following expression
for the Hartree Fock functional of the total energy Etot = 〈ψGS |H|ψGS〉:

Etot = −2Ekin Tx − 2EZ Sz +
∑
α

uα

(
T 2
α −

∑
i

R2
iα − S2

)
. (III.26)

Parametrisation of the Energy Functional and Minimisation Routine

The goal is to determine the Hartree Fock ground state by minimising the ground
state energy with respect to the single particle basis, i.e., with respect to the entries
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of g or the density matrix P = gg†. The most general antisymmetric matrix g has
12 real parameters. By exploiting the symmetry properties of the state |ψGS〉 and
the Hamiltonian, one can reduce the number of free parameters. We use the same
strategy as in reference [Ezawa et al., 2005] where an equivalent problem was stud-
ied in the context of electronic bilayer systems.

In Etot as written in equation (III.26) the 12 − 2 = 10 free parameters of the prob-
lem (dropping the overall phase and normalisation constant) are encoded in the
6 components of the total spin S and the total isospin T, together with 4 out of 9
components of Rαβ which can be chosen independently. The invariance of Etot in
equation (III.26) under rotations of S in spin space and rotations of T around the z-
axis in isospin space allows to choose Sy = Sx = Ty = 0 with no loss of generality,
yielding seven variables to be determined. The dimension of parameter space can
be further reduced by careful consideration of all the symmetries of the problem.
As demonstrated by Ezawa et al. [Ezawa et al., 2005] in a situation of an equivalent
symmetry class, reduction is possible to a total number of three free parameters.
For the present system, this leads us to a minimisation problem for the total energy
Etot with respect to a set of variational parameters −1 ≤ α ≤ 1,−1 ≤ β ≤ 1, and
χ ∈ R, which are related to observables of equation (III.25) by:

Sz =
1√

1 + χ2

√
1− α2, Tx =

χ√
1 + χ2

α
√

1− β2, Tz =
χ√

1 + χ2
αβ,

(III.27)
and ∑

i

R2
ix =

T 2
z

χ2
,
∑
i

R2
iy = χ2S2,

∑
i

R2
iz =

T 2
x

χ2
, (III.28)

where the index i runs over the spatial components {x, y, z}. We demonstrate
the details of the calculation leading to above parametrisation of the observables
in appendix B. The density matrix P = gg† is connected to these quantities as
(summation convention implied):

P =
1

2
1 +

1

2

(
σi Si + τi Ti + σiτj Rij

)
. (III.29)

For the minimisation routine, we proceed as follows: for a discretised set of values
for R, parametrising the distance to the boundary, we numerically minimise the
ground state energy Etot(α, β, χ) of equation (III.26), including the space depen-
dent edge potential of the shape shown in figure III.3 by varying the parameters
α, β, χ. Then from the knowledge of the parameters α(R), β(R), χ(R), we com-
pute the values of the observables Sz(R), Tx(R), Tz(R) of the ground state |ψGS〉
via equation (III.27). Furthermore, it is possible to construct the entire density ma-
trix P characterising the ground state via equation (III.29).
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Figure III.5
Choice of parameters for our investigation:
for fixed EZ and three values of uz we vary
u⊥ in the range −3EZ ≤ u⊥ ≤ 3EZ , cor-
responding to horizontal cuts through the
bulk phase diagram (white dotted lines).
Figure from reference [Knothe and Joli-
coeur, 2015].

This procedure can be summarised in the following simple scheme:

Summary: Minimisation routine

∀ R :

minimise Etot(α, β, χ) [eqn. III.26]

−→ obtain parameters {α(R), β(R), χ(R)}
−→ construct S,T,R [eqn. III.27],

density matrix P [eqn. III.29]

−→ ...

The final magenta arrow indicates that as soon as we have the density matrix for
the Hartree Fock ground state at hand, we have full knowledge about that corre-
sponding quantum state and can extract any information for use in a follow-up
investigation.

III.2 Edge State Structure of Monolayer Graphene
- Results and Discussion

III.2.1 Choice of Parameters

The full phase diagram of monolayer graphene in the plane spanned by the
anisotropy energies uz and u⊥ offers a big set of parameters that can be varied
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in our theoretical model. In order to achieve a broad overview over the system’s
general behaviour, as well as a concise exposure of the most vital features, the re-
sults are presented in the following way: we first present the general behaviour of
the respective quantity under study for a wide range of parameters. The detailed
properties then are discussed for a small exemplary subset of system parameters
which allows to demonstrate the characteristic main features of the system’s be-
haviour. In order to obtain a full picture capturing the edge behaviour of all pos-
sible bulk phases shown in figure III.4, our choice of system parameters is guided
by the following idea: for fixed Zeeman energy EZ , we vary the coupling energies
u⊥ and uz because this can be realised experimentally by tilting the magnetic field:
while the anisotropy energies uz(B⊥) and u⊥(B⊥) depend only on the component
of the magnetic field perpendicular to the monolayer graphene sheet B⊥, the Zee-
man energy depends on the total absolute value B =

√
B2
‖ +B2

⊥ via EZ = µB.

Therefore, tilting the magnetic field with respect to the sample while keeping its
strength fixed alters uz and u⊥ without affecting EZ .

We choose three values of the perpendicular coupling energy uz : uz = 5EZ , uz =
2EZ and uz = −2EZ , and we vary the perpendicular coupling in the range
−3EZ ≤ u⊥ ≤ 3EZ . This leads to horizontal cuts through the ν = 0 ground
state phase diagram in the {u⊥-uz}-plane, marked by white, dotted lines in the
phase diagram of figure III.5. A phase regime characterised by a certain set of
system parameters we refer to by the corresponding bulk phase favoured at these
values according to the respective point in the ground state phase diagram for the
infinite graphene sheet in figure III.4. This procedure allows us to cross all the dif-
ferent bulk phases in a systematic fashion.

For uz = 5EZ and uz = 2EZ by varying u⊥ we meet the Kekulé, canted antiferro-
magnetic, and ferromagnetic phases:

u⊥ = −∞ KD

u⊥ > −1
2

(
uz +

√
2E2

Z + u2
z

)CAF

u⊥ > −EZ
2

F
u⊥

For uz = −2EZ and varying again u⊥ we find the Kekulé, charge density wave,
and ferromagnetic phases:

u⊥ = −∞ KD
u⊥ > uz

CDW
u⊥ > −(EZ + uz)

F
u⊥

The corresponding bulk phase transitions are indicated by white arrows in the
phase diagram in figure III.5.
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Figure III.6
Evolution of the spin and isospin components Sz (solid), Tz (dashed), and Tx
(dotted) as functions of R =

√
2r/`B, with r the distance from the edge for different

system parameters. The three panels correspond to the different bulk phases F
(uz = 5EZ), CAF (uz = 5EZ), and CDW (uz = −2EZ), respectively.

III.2.2 Ground State Properties

We study the evolution of the bulk phases of monolayer graphene upon approach-
ing a spatial boundary, using the model and the Hartree Fock framework formu-
lated in the previous section III.1.

Evolution of the Spin and Isospin Texture close to the Edge

We investigate the influence of the edge potential on the spin and isospin observ-
ables S and T. More precisely, we discuss the spatial evolution of the components
Sz(R), Tx(R), Tz(R) for different choices of the anisotropy energies u⊥ and uz com-
pared to the Zeeman energy EZ . As the ground state energy of equation (III.26)
only depends on the z-component of S and T as well as the projection of T onto
the {x-y}-plane, this fully characterises the ground state spin and isospin texture
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up to those parameters which leave the ground state energy invariant.

In figure III.6 we show the overall behaviour of the spin and isospin components
as functions of R =

√
2 r
`B

, with r the distance from the edge. System parameters
are chosen such that in the upper left panel the bulk of the system is in a ferromag-
netic phase, in the upper right panel the bulk establishes a canted antiferromag-
netic configuration, whereas in the lower plot the bulk’s ground state phase is of
charge density wave order∗.

In all the three panels of figure III.6 we observe a non-trivial evolution of the spin
and isospin configuration as function of space. We discuss the different regimes
for the overall behaviour of the observables as a function of the distance r = `B√

2
R

to the edge. There are three regimes to be distinguished:

• For sufficiently large values ofR, i.e., deep enough in the bulk, we recover the
results of mean field theory for the infinite, translationally invariant mono-
layer graphene sheet [Kharitonov, 2012c].

• Close enough to the edge, the system is driven into a Kekulé phase with
Tx = 1 and Sz = Tz = 0, independently of the bulk phase it adopts. This be-
haviour is due to the edge potential in the kinetic energy Hamiltonian Hkin

in equation (III.8): this term is proportional to τx, hence it acts as a Zeeman
effect in isospin space, polarising the isospin along the x-direction as soon
as Ekin(R) is sufficiently large to dominate the ground state energy func-
tional. This behaviour is consistent with previous works [Fertig and Brey,
2006; Murthy et al., 2014].

• In the cases where the bulk adopts a ferromagnetic, a canted antiferromag-
netic, or in a Kekulé phase, there an intermediate regime in which we find a
finite interval in space in which Sz 6= 1, Tx 6= 1 and Tz 6= 0, Nx 6= 0, i.e., the
spin and the isospin are canted simultaneously with respect to their bulk val-
ues. In these cases, there is thus a domain wall at a small finite distance from
the edge. For the canted antiferromagnetic configuration, this domain wall
connects smoothly to the bulk configuration. For a system in a ferromag-
netic phase in the bulk, however, the change in spin and isospin is abrupt
and the domain wall is narrower with increasing u⊥. Hence, for larger val-
ues of u⊥, the ferromagnetic phase of the bulk proves to be more resistant
against the increasing influence of the edge.

∗ Curves for values of the anisotropy energies favouring a Kekulé phase in the bulk are not shown
since in this case the system’s spatial evolution is trivial in the sense that it does not undergo any
transition whatsoever but remains in the bulk Kekulé phase all the way to the edge.
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Figure III.7
Concurrence C(R) within the domain wall near the edge for different system pa-
rameters, favouring a ferromagnetic phase in the bulk (upper panels), or a canted
antiferromagnetic bulk phase (lower plot). Curves for values of the anisotropy en-
ergies favouring a Kekulé phase or a charge density wave phase in the bulk are not
shown since in these cases the concurrence remains strictly zero all the way from
the bulk to the edge (cf. also figures III.8, III.9).

From the behaviour of the observables S and T shown in figure III.6 we draw the
following conclusions: the ferromagnetic, canted antiferromagnetic, and charge
density wave phase in the bulk of a finite sample of graphene do not remain un-
affected close enough to the edge. Indeed the effective edge potential causes the
bulk state to undergo a transition in which the polarisation of spin and isospin
evolve simultaneously upon approaching the sample boundary. Sufficiently close
to the edge the ground state is always driven into a Kekulé phase independently
of the nature of the bulk phase.

Spin-Valley Entanglement of the Edge States

After minimisation of the Hartree Fock ground state energy of equation (III.26)
we can reconstruct the full density matrix P via equation (III.29) which gives ac-
cess to the full information about the minimising Hartree Fock ground state and
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its properties. A quantity of interest to investigate is the spin-valley entanglement,
i.e., the entanglement between spin and isospin degrees of freedom in the system.
For the infinite bulk case, product states of the form |s〉⊗|n〉, where |s〉 denotes the
single particle spin state and |n〉 the single particle isospin state, have been used
as an Ansatz to minimise the ground state energy [Kharitonov, 2012a,b,c]. Exist-
ing studies of edge states using a variational trial wave function approach have
suggested [Murthy et al., 2014], however, that for a non-zero edge potential, spin
and isospin might not remain independent, separable observables, but become en-
tangled. In order to quantify the amount of entanglement in the bipartite two-level
system H = Hspin ⊗Hvalley, we calculate the concurrence C according to the defini-
tion [Mintert et al., 2005]:

C = max(λ1 − λ2 − λ3 − λ4, 0), (III.30)

where the λi are the eigenvalues of the matrix

R =
√
ρg(σy ⊗ σy)ρ∗g(σy ⊗ σy)

√
ρg, (III.31)

in decreasing order λ2
i ≥ λ2

i+1 ∀i. In equation (III.31), σy denotes the 2 × 2 Pauli
matrix. The quantity C ranges from 0 to 1 with C = 0 meaning no entanglement
and C = 1 for maximally entangled states.

We plot the behaviour for the concurrence C as a function of the spatial coordi-
nate R upon approaching the edge in figure III.7 for a variety of different system
parameters. In the upper panels values are chosen such that the bulk is in a ferro-
magnetic configuration whereas the lower panel depicts the situation for a canted
antiferromagnetic bulk phase.

The curves reveal several characteristics of the behaviour of the concurrence:

• The concurrence goes to zero deep enough in the bulk for all values of the
anisotropies limR→∞C(R) = 0 ∀ uz, u⊥.

• Close enough to the edge, the concurrence is also equal to zero for all possible
bulk phases, as can be seen in figure III.7 for C(R ≈ 3) ≡ 0 ∀ uz, u⊥.

• In an intermediate regime for which the system is in a ferromagnetic or
canted antiferromagnetic phase in the bulk, we find that the concurrence
develops a sharp peak in the vicinity of the boundary. This peak ap-
pears precisely within the domain wall separating the bulk phase from the
Kekulé phase near the edge. The peak is sharper and higher with rising u⊥,
as the domain wall becomes more and more narrow in space.
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Figure III.8
Maximum value of the con-
currence C within the do-
main wall close to the edge,
Cmax, for different system pa-
rameters. This characterises
the behaviour of spin-valley
entanglement in the different
phases. Figure from reference
[Knothe and Jolicoeur, 2015].

• The situation is different when the bulk is in a charge density wave phase.
Here, the concurrence remains zero independently of the distance from the
edge: C(R) ≡ 0 ∀R.

The overall behaviour of non-zero concurrence in our model of monolayer
graphene edges is summarised in figure III.8. We plot the maximum concurrence
Cmax as a function of u⊥. The value of Cmax has been extracted as the maximum
peaks heights of curves akin to those shown in figure III.7.

The resulting curves Cmax(u⊥) characterise the behaviour of the spin-valley entan-
glement of the edge states:

• Non-zero values of the concurrence are found only for anisotropies favour-
ing a canted antiferromagnetic phase (green squares) or a ferromagnetic
phase (blue circles) in the bulk.

• The concurrence is strictly zero whenever the bulk is in a charge density
wave (red diamonds) or Kekulé phase (grey triangles) .

• In the nontrivial regimes, the maximum concurrenceCmax is a monotonously
rising function of the perpendicular coupling u⊥. There is no discontinuity
at the value u⊥ = −EZ

2 which would correspond to the critical coupling
energy, at which the bulk phase undergoes a transition from the canted an-
tiferromagnetic to the ferromagnetic phase. Discontinuous jumps do appear
at values of u⊥ corresponding to the transitions from the Kekulé phase to
the canted antiferromagnetic phase or to the transition from a charge density
wave configuration to a ferromagnetic configuration in the bulk.

Combining the information from figures III.7 and III.8, we draw the following con-
clusions about the nature of the ground state of monolayer graphene close to an
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Figure III.9
Ground state properties
of a finite sample of
monolayer graphene in
the vicinity of a bound-
ary: we summarise the
behaviour of spin and
isospin texture and spin-
valley entanglement as
a function of R upon
approaching the edge.
From reference [Knothe
and Jolicoeur, 2015]
(edited).

edge: unlike the states in an infinite system, the ground state in the presence of a
boundary may exhibit nonzero spin-valley entanglement. The concurrence is ex-
actly zero in all configurations where either the spin or the isospin is strictly zero.
Non-zero values of the concurrence appear only for configurations in which both
spin and isospin are canted simultaneously.

Ground State Properties - Summary

The insights we gained in this section about the ground state properties of a fi-
nite sample of monolayer graphene in the vicinity of a boundary are summarised
in figure III.9: here, we plot at a glance the spatial evolution as a function of the
rescaled distance to the edge, R =

√
2 r
`B

, of the spin and isospin texture, charac-
terised by the spin and isospin components Sz(R), Tx(R), Tz(R), and the concur-
rence C(R), characterising the spin-valley entanglement of the state.
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We summarise our findings about the ground state phase of a finite piece of mono-
layer graphene as follows:

Summary: Ground State Properties

• Compared to the bulk case, the boundary of the monolayer
graphene lattice gives rise to novel ground state phases close to the
edge.

• These novel phases emerge in a domain wall forming between the
bulk and the edge that interpolates between the respective bulk phase
and a Kekulé phase at the edge for all values of the system parameters.

• The phases exhibit simultaneous canting of spin and isospin, 0 < S <
1, 0 < T < 1, and non-zero spin-valley entanglement. They cannot be
described using trial wave functions in the form of separable product
states.

III.2.3 Mean Field Spectrum and Excited States

In the previous section III.2.2 we investigated the ground state properties within a
mean field Hartree Fock picture. In a subsequent step, we now consider the entire
Hartree Fock level spectrum which consists of the effective single particle ground
and excited states. The spectrum of the excited states is of particular interest,
since the conduction properties of real graphene samples are governed by the edge
modes in the quantum Hall regime. As expounded in the introduction chapter I,
recent conductance experiments have shown [Young et al., 2014] that upon tilt-
ing the applied magnetic field there is a transition from an insulating regime to a
conducting phase in which presumably the edge states carry a non-zero current.
Tilting the magnetic field in our model corresponds to varying the parameter u⊥

EZ
in

the system. These experimental observations therefore suggest that the gap to ex-
cited states in the edge spectrum varies as a function of u⊥

EZ
and closes, eventually,

giving rise to a metal-insulator transition.

Mean Field Hartree Fock Hamiltonian

In order to access the full spectrum of effective Hartree Fock energy levels we pro-
ceed by diagonalising the single particle Hartree Fock Hamiltonian following the
general Hartree Fock procedure of section II.2.2. We denote the one-body Hartree
Fock Hamiltonian corresponding to the full Hamiltonian H of equation (III.4) by
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hHF .

Via Hartree Fock decoupling we obtain a Hartree Fock mean field Hamiltonian
which consists of four parts:

hHFµν (p) = −Ekin(p)[τx]µν − EZ [σz]µν + C∆µν + a∆µν , (III.32)

which, as in the previous discussion, encode symmetry breaking terms due to the
effective edge potential Ekin(p), due to the Zeeman effect EZ , as well as the contri-
bution from the SU(4) symmetric Coulomb interaction C∆, and short-range sym-
metry breaking interactions a∆.

For the mean field potential from the Coulomb interaction Hamiltonian of equa-
tion (III.5) we find

C∆µν = −u0[gg†]µν = −u0 Pµν , (III.33)

where u0 describes the exchange term of the Coulomb interaction Hamiltonian of
equation (III.5). This formula is valid provided we neglect the spatial dependence
of g. It means that we do not capture the spin texture effects of the Coulomb ex-
change interaction. For completeness, in the following analytical calculations and
expressions the Coulomb contribution of equation (III.33) will be written explic-
itly.

The mean field potential due to the interactions breaking SU(4)-symmetry is given
by:

a∆µν =
∑
α

uα

(
[τα]µν Tr[gg†τα]− [ταgg

†τα]µν

)
=
∑
α

uα

(
[τα]µν Tr[P τα]− [ταP τα]µν

)
(III.34)

For the single particle eigenenergies εi, which we obtain from the diagonalis-
ing the Hamiltonian as hHF |i〉 = εi|i〉, with |i〉 the ith single particle Hartree
Fock eigenstate, in the following we assume the ordering ε1 ≤ ε2 ≤ ε3 ≤ ε4.

Simplified Treatment: Analytical Results

Mean Field Single Particle Hamiltonians and Spectra in Constant Phases

In earlier work by Kharitonov [Kharitonov, 2012a], the Hartree Fock Hamiltonian
of equation (III.32) has been studied under the assumptions for the order param-
eter to be constant up to the edge and for the ground state wave functions to be
of simple tensor product form. However, the explicit effective valley field due to
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Figure III.10
Single particle energy levels ε±± obtained within the simplified analytical treatment
of section III.2.3. Different signs and the magnitudes of the mean field potential
∆ may induce different behaviour and different numbers of crossings, even for the
same phase. Very left: CAF (green, solid), F (blue, dashed). Middle left: CDW for
|∆| > EZ (red, solid) and |∆| < EZ (black, solid). Middle right: KD for |∆| < EZ
with ∆ > 0 (orange, solid) or ∆ < 0 (black, dashed). Very right: KD for |∆| > EZ
with ∆ > 0 (orange, solid) or ∆ < 0 (black, dashed). Figure from [Knothe and
Jolicoeur, 2015].

the edge certainly invalidates this simple assumption. As we have seen in the
previous section III.2.2, in the intermediate regime between the bulk state and
the edge the Hartree Fock ground state phase does not remain constant. Nor is
the ground state given by a simple tensor product state even within the Hartree
Fock approximation which leads to the appearance of non-trivial spin-valley en-
tanglement.

Nevertheless, this simplified analysis under the above assumptions is not de-
void of a certain interest as it allows a fully analytical treatment of the Hartree
Fock Hamiltonian of equation (III.32). In the following discussion we compare
our more general, numerical results to these analytical considerations, and em-
ploy some of the analytical, approximate arguments in order to understand the
behaviour. Therefore, we briefly review the results of Kharitonov: in reference
[Kharitonov, 2012a] the analytical expressions for the mean field levels were pre-
sented for the ferromagnetic and canted antiferromagnetic case. A calculation
of the same type allows direct extension to the Kekulé and the charge density
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wave configuration.

The single particle ground states |ψGS〉 considered in reference [Kharitonov, 2012a]
are formed as Slater determinants over two-particle states of the form:

|ψGS〉 = |sa〉 ⊗ |ta〉+ |sb〉 ⊗ |tb〉, (III.35)

where sa/b, ta/b describe the spin and isospin polarisation of the two electrons per
orbital, labeled by a and b, respectively. For one such state taken to be fixed, hHF

can be computed and diagonalised straightforwardly by analytical means.

In the following section we discuss what insights can be gained from this sim-
plified, analytical treatment of the ground state structure of monolayer graphene.
The results are structured as follows:

For each phase, from the single particle ground state Ansatz as given in equa-
tion (III.35) and the corresponding density matrix P, we compute the mean
field potential a∆ from equation (III.34), which we then insert into the Hartree
Fock Hamiltonian hHF of equation (III.32). We write the Hartree Fock Hamilto-
nian hHF as a decomposition into four 2× 2 matrices as:

hHF (p) =

[
γ1 γ2

γ3 γ4

]
, (III.36)

where the respective entries γi involve the mean field potentials of the respective
phases. We diagonalise the 4 × 4 matrices analytically to obtain as their eigenval-
ues the four branches of the effective single particle energy spectrum. In a first
step, we discuss the resulting spectra and their most important features. Subse-
quently, we explain and understand these features, and the differences and simi-
larities among the phases, by relating to the symmetries of the underlying Hartree
Fock Hamiltonian of the respective phase. Special attention we pay to either the
gaps between the single particle energy levels or to the nature and number of
crossings between the levels.

Canted antiferromagnetic/ Ferromagnetic

|ψGS〉 = |sa〉 ⊗ |+ tz〉+ |sb〉 ⊗ | − tz〉,

with tz = (0, 0, 1) and sa/b = (± sin θs, 0, cos θs), where θs describes the cant-
ing angle between the two spins: sa · sb = cos 2θs.
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For this ground state configuration, the mean field Hartree Fock Hamiltonian
exhibits the following features:

• Mean field potential of the symmetry breaking terms, dropping the con-
stant term −1

2(u0 + 2u⊥ + uz)1⊗ 1:

a∆CAF/F = a∆
CAF/F
0z 1⊗ σz + a∆CAF/F

zx σz ⊗ σx, (III.37)

with:

a∆
CAF/F
0z = −1

2
(u0 + uz + 2u⊥) cos θs, (III.38a)

a∆CAF/F
zx = −1

2
(u0 + uz − 2u⊥) sin θs. (III.38b)

• Full mean field Hamiltonian:

γ1 = a∆zxσx − (EZ − a∆0z)σz,

γ2 = γ3 = −Ekin(p) 1,

γ4 = − a∆zx σx − (EZ − a∆0z)σz, (III.39)

• Eigenvalues†:

ε
CAF/F
±± = ±

√[
Ekin(p)±

(
EZ − a∆

CAF/F
0z

) ]2
+
(
a∆

CAF/F
zx

)2
. (III.40)

From the analytic expressions for the branches given in equation
(III.40) we can compute the minimal gaps as ∆εCAF/F = 2ε

CAF/F
+− for

∂ε
CAF/F
+−
∂p |p0 = 0 at the edge or Ekin ≡ 0 in the bulk.

• Minimum gaps in the bulk and at the edge:

∆ε
CAF/F
edge = 2 | a∆CAF/F

zx |, (III.41a)

∆εCAFbulk = u0 + uz − 2u⊥, (III.41b)

∆εFbulk = 2|EZ − a∆
CAF/F
0z |. (III.41c)

† We note for this equations as well as for all the following: the notation of equation III.40
understands that there are two indices for the energy eigenvalues ε for which the two different signs,
+ or −, can be chosen, respectively, what makes a total of four different possible combinations
yielding the four different eigenenergies.
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Charge Density Wave / Kekulé Phase

|ψGS〉 = |+ s〉 ⊗ |t〉+ | − s〉 ⊗ |t〉,

with t = tz = (0, 0, 1) in the charge density wave phase and t = t⊥ = (1, 0, 0)
in the Kekulé phase.

• Mean field potential of the symmetry breaking terms (again, dropping
the same constant term as in the CAF/F case):

a∆CDW/KD

= a∆
CDW/KD
x0 σx ⊗ 1 + a∆

CDW/KD
y0 σy ⊗ 1 + a∆

CDW/KD
z0 σz ⊗ 1,

(III.42)

with:

a∆
KD/CDW
x0 = −1

2
(u0tx − uztx − 4u⊥tx), (III.43a)

a∆
KD/CDW
y0 = −1

2
(u0ty − uzty − 4u⊥ty), (III.43b)

a∆
KD/CDW
z0 = −1

2
(u0tz − 3uztz − 2u⊥tz). (III.43c)

When inserting tz or t⊥ for the charge density wave or the Kekulé phase
in equation (III.43), we find for both phases, respectively, only one of
above terms of to be non-zero for each phase:

a∆CDW
z0 = −1

2
(u0 − 3uz − 2u⊥), (III.44a)

a∆KD
x0 = −1

2
(u0 − uz − 4u⊥). (III.44b)

• In these cases we compute the respective entries of the full mean field
Hamiltonian for the charge density wave as

γ1 = −EZ σz + A∆z0 1,

γ2 = γ3 = −Ekin(p) 1,

γ4 = −EZ σz − a∆z0 1, (III.45)

while for the Kekulé phase we find:

γ1 = γ4 = EZ σz,

γ2 = γ3 =
(
a∆KD

x0 − Ekin(p)
)

1. (III.46)
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• Eigenvalues:

εCDW±± = ±EZ ±
√
Ekin(p) 2 +

(
a∆CDW

z0

)2
, (III.47a)

εKD±± = ±EZ ± [Ekin(p)− a∆KD
x0 ]. (III.47b)

• Minimum bulk gap for Ekin ≡ 0:

∆ε
CDW/KD
bulk = 2|EZ − |a∆CDW/KD

z0/x0 ||. (III.48)

We show examples for the Hartree Fock single particle spectra ε±±(R) in the
different phases obtained within this simplified, analytical treatment in fig-
ure III.10. Depending on the choice of sign and magnitude of the mean field
potential ∆ for the respective phase we obtain curves with different func-
tional dependence on the spatial coordinate R. We discuss their behaviour
with special attention to the number of crossings we observe in the different
cases, respectively, as this will be a point of major importance in the subse-
quent line of argumentation.

• In the case of a ferromagnetic phase, the inner pair of single parti-
cle energy levels crosses at exactly one point while the outer pair dis-
perses; this leads to one gapless edge state. For a canted antiferro-
magnetic configuration, however, the inner pair of levels, after bending
slightly towards each other, disperses just as the outer pair. Therefore,
the Hartree Fock single particle spectrum of the canted antiferromag-
netic phase always remains gapped (upper left panel of figure III.10).
This observation led to the conclusion that monolayer graphene in a
ferromagnetic phase should be conducting, while exhibiting insulat-
ing behaviour when it is in a canted antiferromagnetic configuration
[Kharitonov, 2012a; Young et al., 2014].

• The situation is more complex for a charge density wave or a Kekulé
phase (upper right and lower panels of figure III.10): here, the ques-
tion whether the levels cross each other when approaching the edge
or whether they remain gapped depends crucially on the choice of
a∆

CDW/KD
z0/x0 : in the charge density wave phase, ε+− and ε−+ cross if

| a∆CDW
z0 | < EZ , but they disperse for | a∆CDW

z0 | > EZ . In the case
of a Kekulé phase, the single particle levels exhibit multiple crossings
whenever a∆KD

x0 > 0. The scenario of one single crossing of ε+− and
ε−+ is established if a∆KD

x0 < 0 with |a∆KD
x0 | < EZ . The case of gap-

less dispersing energy levels then corresponds to the case a∆KD
x0 <
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0, |a∆KD
x0 | > EZ .

It has to be noted, however, that the conditions on the coupling ener-
gies u⊥ and uz imposed by the relations detailed in section III.1.1 which
define the different phases prevent any crossings of the single parti-
cle levels both in the charge density wave and in the Kekulé regime:
the conditions uz < u⊥ in the case uz, u⊥ < 0 or uz < −EZ − u⊥ for
uz < 0, u⊥ > 0, necessary for the bulk ground state to be a charge den-
sity wave phase, force | a∆CDW

z0 | > EZ ; Equivalently, the relations to be
fulfilled in order to find a Kekulé phase in the bulk, i.e., u⊥ > uz and

uz <
E2
Z

2u⊥
, entail A∆KD

x0 to be positive and, even stronger, a∆KD
x0 > EZ .

Hence, within a framework where the phase of the bulk is assumed to
be constant up to the boundary, no gapless edge states can be observed
for the charge density wave or Kekulé phase. Nevertheless, the remain-
ing cases of a∆CDW

z0 and a∆KD
x0 (all to be seen in figure III.10), which a

priori are forbidden by the properties of the phases themselves, will be
of importance in the following, as they make level crossings and gapless
edge modes in these phases possible in principle. We will come back to
this point in section III.2.3, where we discuss the properties of the level
crossings in the respective phases in our numerical data in detail.

Single Particle Level Crossings in a Constant Phase - Analytical Treatment

The number of crossings is governed by the symmetries of the Hartree Fock Hamil-
tonian and the magnitude of the Hartree Fock self-consistent potentials. This can
be seen from the decomposition of the Hartree Fock Hamiltonians presented above
and the corresponding gaps they yield. We discuss the relation between the be-
haviour of gaps and crossings within one, constant phase to the properties of the
underlying corresponding Hartree Fock Hamiltonian.

Canted antiferromagnetic / Ferromagnetic transition
The size of the gap in the canted antiferromagnetic or ferromagnetic phase,
equation (III.41), is governed by the first off-diagonal coupling matrix ele-
ments a∆

CAF/F
zx . If a∆

CAF/F
zx 6= 0, as is the case for any non-zero canting

angle θ 6= 0, the eigenvalues of the Hamiltonian hHFCAF/F exhibit the charac-
teristic behaviour of avoided crossings. The single particle levels are allowed
to cross only for a∆

CAF/F
zx = 0 at θ = 0, i.e., in the ferromagnetic phase. In

the bulk, i.e., at Ekin ≡ 0, all values of the coupling energies uz and u⊥ al-
lowed for the ferromagnetic phase yield the same ordering of the single par-
ticle energy levels εF,0±± = εF,0±±(Ekin ≡ 0), independently of the sign or the
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modulus of ∆
CAF/F
0z : εF,0+− = εF,0−+ < 0 < εF,0−− = εF,0++. Hence, there is only

one possible scenario of level crossings when approaching the boundary as
the increasing edge potential is driving the single particle levels away from
their bulk values. This leads to exactly one crossing of the levels εF+− and
εF−−, shown by the blue, dashed lines in the upper left panel of figure III.10.

Charge density wave or Kekulé phase
We see from equation (III.45) and equation (III.46) that the Hamiltonians for
the charge density wave phase and the Kekulé phase turn out to have higher
symmetry than in the canted antiferromagnetic phase: in hHFCDW and hHFKD,
all entries of the two first off-diagonals as well as of the anti-diagonal are
zero. Pairwise degeneracy of the corresponding eigenvalues, i.e., crossings
between the single particle energy levels are now allowed. We note that, un-
like the transition from a canted antiferromagnetic to a ferromagnetic phase,
all other transitions do not correspond to smooth transitions. In these cases a
phase transitions go along with an abrupt change of the symmetry properties
of the spin and isospin configuration of the ground state and the correspond-
ing Hamiltonian.

There are different possible scenarios of single particle level crossings in the
charge density wave and Kekulé phases:

The single particle energy levels of the charge density wave phase, εCDW±± in
section III.2.3, are independent of the sign of a∆CDW

z0 . Different orderings
of the bulk levels εCDW,0±± at Ekin ≡ 0 may, however, appear depending on
the modulus of a∆CDW

z0 : for | a∆CDW
z0 | > EZ , the bulk states are ordered as

εCDW,0−− < εCDW,0+− < εCDW,0−+ < εCDW,0++ . In this case, when approaching the
boundary, the kinetic energy potential drives the positive and the negative
energy states further apart from each other such that they do not cross. In
the case where | a∆CDW

z0 | < EZ , however, the bulk states rather follow the
hierarchy εCDW,0−− < εCDW,0−+ < 0 < εCDW,0+− < εCDW,0++ . In this case, turning
on the effective edge potential drives the levels εCDW,0−+ and εCDW,0+− towards
each other and they cross at zero energy. These two different scenarios are
depicted in the upper right panel of figure III.10, where the red, solid lines
show the levels εCDW±± in section III.2.3 at a∆CDW

z0 = 2EZ > EZ and the black,
dashed lines show the spectrum for a∆CDW

z0 = 0.3EZ < EZ . The latter case,
| a∆CDW

z0 | < EZ , however, is prohibited by the conditions imposed on the
couplings uz and u⊥ in order for the system to establish a charge density
wave phase in the bulk. Requiring uz < u⊥ and uz < −EZ − u⊥ will al-
ways force | a∆CDW

z0 | > EZ . Therefore, treating the system as having a stable
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charge density wave phase in the bulk and all the way to the edge will never
lead to any crossings of the single particle edge levels.

For the more important case of the Kekulé phase, the situation becomes even
richer. Here, depending on the sign and the modulus of a∆KD

x0 , four different
single particle level orderings in the bulk and four resulting crossing scenar-
ios may appear. For |a∆KD

x0 | < EZ , if a∆KD
x0 > 0, there is one level crossing at

zero energy and two additional crossings above and below the zero energy
line, respectively, whereas for negative a∆KD

x0 , only one crossing at zero en-
ergy is present. The case |a∆KD

x0 | > EZ can lead to four crossings, two at zero
energy plus one above and one below, respectively, if a∆KD

x0 > 0, whereas for
a∆KD

x0 < 0, the four levels do not cross.

We summarise for the constant Kekulé phase:

a∆KD
x0 > 0, | a∆KD

x0 | < EZ :

for Ekin ≡ 0 : εKD,0−+ < εKD,0−− < 0 < εKD,0++ < εKD,0+−

for Ekin 6= 0 : 3 crossings...

...between εKD+− and εKD++ at energy > 0

...between εKD+− and εKD−+ at energy = 0

...between εKD−− and εKD−+ at energy < 0 (III.49)

a∆KD
x0 > 0, | a∆KD

x0 | > EZ :

for Ekin ≡ 0 : εKD,0−+ < εKD,0++ < 0 < εKD,0−− < εKD,0+−

for Ekin 6= 0 : 4 crossings...

...between εKD+− and εKD++ at energy > 0

...between εKD−− and εKD++ at energy = 0

...between εKD+− and εKD−+ at energy = 0

...between εKD−− and εKD−+ at energy < 0 (III.50)

a∆KD
x0 < 0, | a∆KD

x0 | < EZ :

for Ekin ≡ 0 : εKD,0−− < εKD,0−+ < 0 < εKD,0+− < εKD,0++

for Ekin 6= 0 : 1 crossings...

...between εKD+− and εKD−+ at energy = 0
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Figure III.11
Spatial behaviour of the
single particle Hartree
Fock spectra for dif-
ferent bulk phases.
Thick, colourful lines
show our numerical
results. Different line
shapes distinguish be-
tween different single
particle energy levels
ε1 ≤ ε2 ≤ ε3 ≤ ε4. Thin,
black lines compare to
the analytical formulas
for ε±±(R), in which
no modulation of the
underlying spin/isospin
texture is taken into
account. From [Knothe
and Jolicoeur, 2015].

a∆KD
x0 < 0, | a∆KD

x0 | > EZ :

for Ekin ≡ 0 : εKD,0−− < εKD,0+− < 0 < εKD,0−+ < εKD,0++

for Ekin 6= 0 : no crossings, dispersing levels. (III.51)

In above relations εKD±± denote the energy levels obtained from equation
(III.47b) and εKD,0±± the corresponding bulk levels at Ekin ≡ 0.

Space Dependent Hartree Fock Spectra: Numerical Approach

As we saw in the foregoing section III.2.2, the Ansatz we introduced in sec-
tion III.1.1 is able to describe spatial dependence of the spin and isospin order
and also to capture spin-valley entanglement.

The numerical routine we use to study the Hartree Fock mean field spec-
tra extends the minimisation routine introduced in section III.1.1: for every
point in space R, by minimising the total energy Etot of equation (III.26),
we obtain a set of parameters {α(R), β(R), χ(R)} characterising the matrix g
that makes the ground state |ψGS〉. From these space dependent parameters
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we construct the corresponding density matrix P = gg† via equation (III.29),
which in turn allows to reconstruct and diagonalise hHF of equation (III.32).
This analysis is repeated for every R, thereby yielding the spatial behaviour
of hHF and its eigenvalues and eigenvectors as a function of the distance
from the edge.

We choose the system parameters for our analysis to be the same as intro-
duced in section III.2.1.

In figure III.11 we illustrate the behaviour of the single particle Hartree
Fock energy spectra for different bulk phases. Here, thick, colourful lines
represent the results of our numerical investigation while the thin, black lines
compare to the simplified, analytical spectra ε±±(R) of the previous section.

We first discuss the behaviour of the numerical data:

• In the cases of canted antiferromagnetic or ferromagnetic ordering in
the bulk, the single particle spectra show the following behaviour: two
flat energy levels, separated by the gap ∆εbulk, are present in the bulk,
both two-fold degenerate and they split into four branches when ap-
proaching the edge. The two intermediate levels, being labeled ε2 and
ε3, first bend towards each other, establishing the minimum energy gap
∆εedge < ∆εbulk, before, even closer to the edge, the two lowest and the
two highest levels ε1, ε2 and ε3, ε4 are driven apart in two parallel pairs,
respectively.

• For the charge density wave bulk phase the behaviour is qualitatively
different: there are four non-degenerate levels in the bulk. In contrast
to the levels of the canted antiferromagnetic or ferromagnetic case, they
do not bend towards each other and there is no minimum energy in-
duced by the edge behaviour. Hence, we find that the minimum edge
gap is equal to the bulk gap: ∆εedge = ∆εbulk. Sufficiently close to the
edge, the levels again form two parallel pairs.

• The spectra for the Kekulé phase in the bulk are not shown because, as
mentioned in section III.2.2, this state does not undergo any significant
evolution when approaching the edge. The spectra do not differ from
the analytical prediction for ε±± shown for a∆KD

x0 in figure III.10.

Next we compare the results of our our numerical study to the predictions
from the simplified, analytical treatment:
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• Deep in the bulk we find that all curves coincide as they should. Fur-
thermore, from the discussion in section III.2.2, we know that there is
no spin-valley entanglement in the bulk, i.e., the bulk states indeed are
of separable product form compatible with the Ansätze assumed for the
ground state wave function in the analytical calculations.

• Significant deviations between the numerical results capturing the full
ground state properties and the analytical curves from the simplified
treatment are observed when moving closer to the edge, where the
ground state spin and isospin configuration starts to deviate from the
bulk phase (seefigure III.6). The single particle energies εi have kinks
whenever the underlying spin and isospin texture changes and exhibit
qualitatively different behaviour in the different texture regimes. Thus,
the emergence of different spin and isospin configurations due to the
edge potential when approaching the edges directly translates into the
single particle spectra leading to a complex energy structure as a func-
tion of space.

• Furthermore, in reference [Kharitonov, 2012a] it is claimed that for
a system being in a canted antiferromagnetic phase, the edge spec-
tra always exhibit a gap, which closes when approaching a ferromag-
netic phase, such that a system in the ferromagnetic phase always sup-
ports gapless edge states. Due to the fact, however, that the system does
not remain in its bulk phase when approaching the edge, we see from
figure III.11 that configurations can be found in which the bulk indeed
is in a ferromagnetic phase, but the edge states still exhibit a finite gap
∆εedge 6= 0. In figure III.11, this is the case for the anisotropy energies
u⊥ = −0.2EZ and u⊥ = 0.5EZ at uz = 5EZ (blue lines in the upper
right and middle left panel, respectively). As the value of u⊥ rises, the
gap ∆εedge becomes smaller, until it finally does close, as to be seen in
the middle right panel of figure III.11 for u⊥ = 1.5EZ .

Single Particle Level Crossings in Different Texture Regimes -
Numerical Results

Behaviour of the Gap in Different Texture Regimes:

As we have seen in the previous section III.2.3, the single particle Hartree
Fock spectra show a complex structure as a function of space resulting from
the spatial changes of the spin and isospin texture when approaching the
monolayer graphene edge. In particular, in some configurations, the single
particle spectra exhibit a finite gap, whereas for other system parameters the
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Figure III.12
Edge gap ∆εedge in the
single particle spectra
when the bulk is in dif-
ferent phases. Dotted,
black lines trace linear
behaviour of the data
(shifted by a constant
offset). Grey vertical
lines indicate the critical
values for bulk phase
transitions. Figure from
[Knothe and Jolicoeur,
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single particle levels cross, yielding gapless edge states.

We aim to understand how the gap of the edge states depends on the sys-
tem parameters in the full, space dependent treatment, in order to predict
for which phases gapped or gapless edge states are to be expected. To this
end we discuss the properties of the edge gap and its behaviour when ap-
proaching the critical values where it closes.

The spatial variation of the order parameters has a direct impact on the over-
all shape of the dispersion of edge modes as to be seen from figure III.11,
where we plot the dispersions from our numerical calculation including edge
effects and the direct comparison with analytical results using only bulk val-
ues without spatial variation. In order to investigate the closure of the edge
gap ∆εedge as a function of the ratio u⊥

EZ
, we evaluate the size of the minimum

gap in the single particle spectra for various system parameters. The result-
ing curves ∆εedge(

u⊥
EZ

) are shown in figure III.12. For all values of uz and
for all bulk phases we find that the size of the edge gap ∆εedge is a strictly
monotonous decreasing function of u⊥

EZ
.

In particular, depending on the bulk phase configuration, the curves for
∆εedge(u⊥/EZ) exhibit the following behaviour:

• When the bulk is in a Kekulé or charge density wave phase, the flat
bulk single particle levels split further apart when approaching the
edge so that the minimum gap in the spectrum is equal to the bulk gap
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∆εedge = ∆εbulk. In these two cases we find that the bulk gap is a lin-
ear function of the perpendicular coupling energy: ∆ε

KD/CDW
bulk ∝ u⊥

EZ
.

The numerical results in figure III.12 follow exactly the analytical pre-
diction given in section III.2.3: at uz = −2EZ , we find ∆εKDbulk = −4u⊥
and ∆εCDWbulk = −2u⊥ + 4EZ , whereas the Kekulé edge gap at uz = 2EZ
behaves as ∆εKDbulk = −4u⊥ − 4EZ . These analytical curves are plot-
ted in figure III.12 as dotted lines for comparison (they are shifted by a
constant offset with respect to the numerical results for better visibility).

As a consequence of this linear behaviour as a function of u⊥, for cou-
plings favouring Kekulé or charge density wave order in the bulk, at
the system parameters chosen in figure III.12, there is always a non-zero
gap in the single particle spectrum.

• When the ground state in the bulk is in a canted antiferromagnetic or
in a ferromagnetic phase, the single particle spectra bend towards each
other when approaching the edge and therefore exhibit a minimum en-
ergy gap ∆εedge near the edge, which is smaller than the bulk gap.

? For u⊥ ≤ −EZ
2 where the bulk is in a canted antiferromag-

netic phase (green squares in figure III.12), the spectrum always ex-
hibits an non-zero edge gap which is almost linear as a function of
the perpendicular coupling.

? At values u⊥ ≥ −EZ
2 , hence for a ferromagnetic bulk phase (blue

circles in figure III.12), the shape of the spectrum changes qualita-
tively and the bulk gap closes in a non-linear way, asymptotically
approaching zero at sufficiently large values of u⊥.

For the transverse couplings chosen in figure III.12, uz = 5EZ , uz =
2EZ , and uz = −2EZ , the edge gap ∆εedge closes at u⊥ ≈ EZ ,
u⊥ ≈ 0.3EZ , and u⊥ ≈ 1.6EZ , respectively.

Hence, at all these values, the bulk phase order is ferromagnetic, but
the gap closure point clearly differs from the value u⊥ = −EZ

2 , which
has been predicted as the critical value for closing the gap [Kharitonov,
2012a], as it corresponds to the transition between canted antiferromag-
netic and ferromagnetic order in the bulk (see the bulk phase diagram
in figure III.4).

The reason for this discrepancy with earlier predictions for the be-
haviour of the edge gap lies in the changes of the spin and isospin
configuration of the ground state induced by the effective edge poten-
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tial as we approach the boundary. Indeed, even for values of the cou-
plings favouring ferromagnetic order in the bulk, the system does not
remain in a ferromagnetic phase configuration all the way from the
bulk to the edge. During its transition into a Kekulé phase close to
the boundary, there is an intermediate regime with non-trivial ground
state configurations, involving non-zero spin-valley entanglement and
simultaneous canting of both spin and isospin. Hence, in this transi-
tion regime there is no reason for ∆

CAF/F
edge as predicted by the analytical

treatment of section III.2.3 to yield a correct description of the edge gap.
Nevertheless, if we assume continuous changes of the systems prop-
erties, some intuition at least about the behaviour of the onset of the
transition regime can be gained from extrapolating the analytical pre-
dictions: The gap derived from the properties of the bulk ground state,
∆ε

CAF/F
edge , as given in section III.2.3, does indeed yield non-zero values

for all canting angles θs 6= 0, i.e., as soon as the spin starts tilting away
from the perfect alignment of the ferromagnetic phase, hence describ-
ing a situation without level crossing.

For the gap between the two degenerate single electron levels in the
bulk, ∆ε

CAF/F
bulk , we recover the analytical results of section III.2.3 for all

values of the system parameters.

From this analysis of the gaps of the single particle spectra we can draw the
following conclusion:

Compared to a treatment in which any spatial variation of the underlying
spin and isospin texture when approaching the boundary of the graphene
lattice is neglected [Kharitonov, 2012a], the modification of the single par-
ticle spectra induced by this modulation in space of the underlying phase
is found to influence the way the single particle edge gap closes: instead of
going along with the sharp transition from canted antiferromagnetic to fer-
romagnetic phase in the bulk at u⊥ = −EZ

2 , the gap closing is "smeared out",
becoming a smooth and gradual process, where the convergence asymptoti-
cally extends into the parameter range of the ferromagnetic phase.

When the bulk is charge density wave, Kekulé, or canted antiferromag-
netic phase, the single particle energy levels always have non-zero gaps.
However, for a bulk ferromagnetic phase, both gapped and gapless spectra are possi-
ble, depending on the values of the coupling energies. Hence, taking into account
the spatial variation of the trial Hartree Fock state leads to qualitatively dif-
ferent results than obtained from a treatment in which all spatial dependence
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Figure III.13
Close-up on spectra with
multiple crossings. Blue
lines show the single par-
ticle energy levels εi. Dif-
ferent backgrounds mark re-
gions with different ground
state textures: F (blue), tran-
sition region (white), KD
(yellow). The crossings occur
in regions of different phases.
Figure from [Knothe and Joli-
coeur, 2015].

of the spin and isospin order is ignored.

Number of Level Crossings in the Different Texture Regimes

As we can see from the single particle Hartree Fock spectra in figure III.11 as
well as figure III.13, the single particle energy levels we obtain from our nu-
merical, space dependent analysis can exhibit different numbers of crossings
points. There may be either gapped states, i.e., zero crossings, or gapless
edge modes with either one or two crossings. We wish to understand the
nature of the crossings as well the reasons and predictions for their multi-
tude. The number of crossing points and the resulting number of gapless
edge channels is vital in order to make connection to experimental conduc-
tion measurements.

Previously, we discussed within the simplified analytical description in
which the change of the order parameter as a function of space is neglected.
We saw that the occurrence of level crossings depends on the symmetry
of the corresponding Hartree Fock Hamiltonian of this particular spin and
isospin configuration.

This simple picture drawn for constant order parameters changes when con-
sidering the electronic ground state structure described in section III.2.2.
Here, we discuss the occurrence of multiple crossings and the relation with
the underlying spin and valley texture in the fully space dependent scenario.
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Indeed the ground state spin and isospin texture deviates from the bulk
phase when moving towards the edge as a consequence of the growing
edge potential. The following observation is of major importance for this
discussion: sufficiently close to the edge the system is always driven into a
Kekulé phase. Hence when moving sufficiently close to the edge the ground
state will be of Kekulé order even though the system parameters uz and u⊥
do not allow a Kekulé phase in the bulk.

Two examples are shown in the close-ups in figure III.13. Parameters in
both panels are chosen such that the bulk system at Ekin ≡ 0 is in a ferro-
magnetic phase. When moving towards the edge the energy levels evolve
according to εF±± of section III.2.3. In figure III.13, this corresponds to the
evolution within the blue region. A first crossing between the intermediate
levels occurs as predicted by the analysis of the ferromagnetic phase energy
levels. After the transition region (left white in figure III.13), the ground state
is of Kekulé order, marked by the yellow shading in figure III.13. However,
the system parameters do not force a∆KD

x0 > EZ as it would be the case for a
bulk Kekulé phase: in the left panel of figure III.13, we find a∆KD

x0 = −3.4EZ
and in the right panel we have a∆KD

x0 = −7EZ . Therefore the energy lev-
els now evolve according to εKD±± as given in section III.2.3, but for the case
a∆KD

x0 < 0, | a∆KD
x0 | < EZ . Most importantly, this case is only allowed for

values of uz and u⊥ favouring a bulk ferromagnetic phase, not for a bulk
Kekulé phase. As a consequence, in this regime of Kekulé type evolution of
the edge energy levels under bulk ferromagnetic conditions, one more level
crossing may occur. Hence, the appearance of several crossings of the single
particle energy levels in the numerical spectra as in figure III.11 and figure
III.13 can be explained combining the insight of section III.2.2 that any bulk
phase by the edge potential always is driven into a Kekulé phase close to the
boundary, with the understanding of the possible behaviour of εKD±± depend-
ing on the value of a∆KD

x0 as a function of the coupling energies uz and u⊥
for all possible values of the couplings and not only those actually favouring
Kekulé order in the bulk.

The single particle energy levels describing the numerical results of figure
III.11 and figure III.13 can be summarised in the following scheme:

ε±±(R) =


εbulk±± (R) for R > R2,

unknown for R1 < R < R2,

εKD±± (R) for R < R1,

(III.52)
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where εbulk±± (R) denotes the level spectra for the bulk phase established at a
given choice of system parameters and R2 and R1 label the inner and outer
limits in space of the domain wall, for which there is no simple analytic ex-
pression. The evolution of εKD±± (R) is no longer limited to the non-crossing
behaviour imposed for a bulk Kekulé phase, but it can exhibit any of the
shapes drawn in the corresponding panels of figure III.10. Which of these
curves describes the Kekulé-like evolution of the edge states correctly is de-
termined by the system parameters u⊥ and uz that govern the bulk texture
phase.

From the analysis of the number of single particle level crossings we hence
learn that, in principle, by choosing appropriate values of uz and u⊥, single
particle energy levels can have zero, one, two, or even three crossings at zero
energy. Among these crossings, only one is due to the symmetry proper-
ties of the bulk ferromagnetic phase. The remaining crossings appear in the
Kekulé phase close to the boundary, which in this regime shows novel prop-
erties not present for a spatially invariant Kekulé phase in the bulk.

Furthermore, these crossings occur at different distances from the edge - at
the distance where the corresponding Kekulé phase single particle levels for
a certain a∆KD

x0 cross, it is necessary for the system already to have evolved
from the bulk phase into the Kekulé edge phase in order for the additional
single particle level crossings to occur. This is the reason why we do not
see any crossings in the single particle spectrum shown in the panel of figure
III.11 where the bulk is in a charge density wave phase: at the distanceRcross,
where the Kekulé-like levels near the edge would cross, the system still be-
haves according to its bulk charge density wave configuration. In this case,
the crossing is thus prevented by the fact that the crossing point lies outside
the Kekulé region: Rcross > R2. Nevertheless, a situation in which the bulk is
a charge density wave but the single particle edge states are gapless due to
crossings of the Kekulé-like levels close to the boundary is not forbidden by
the underlying symmetry principles. This can be seen from the fact that the
restrictions for the coupling energies of the charge density wave bulk phase
allow negative values of a∆KD

x0 . The exact distances from the edge R1, R2, or
Rcross, which define the points of crossing, involve the explicit form of the
kinetic energy Ekin(R) as they are determined by the eventual dominance of
the kinetic energy. Numerical values for R1, R2, or Rcross therefore strongly
depend on the model potential chosen forEkin(R). This is not true, however,
for the answer to the question whether crossings are allowed or not, since the
values of a∆ are determined generically by the system parameters u⊥ and uz .
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Figure III.14
Evolution of the single electron spin and isospin components sz(i) and tx(i) of
the single particle eigenstates |i〉 from the bulk to the edge for a canted antiferro-
magnetic bulk phase (green) and a ferromagnetic bulk phase (blue). Different line
shapes distinguish between the four single particle energy levels ε1 ≤ ε2 ≤ ε3 ≤ ε4.
Green/blue lines: the two lowest-lying states which are occupied in the Hartree
Fock ground state. Gray lines: higher-lying single particle states. Arrows show the
behaviour of the spin and isospin polarisation. The second and third levels |2〉 and
|3〉 are oppositely polarised in spin and isospin at the edge. Figure from [Knothe
and Jolicoeur, 2015].

Nature of the Single Particle States in the Different Texture Regimes

As we saw in the previous section, a finite piece of monolayer graphene
exhibits a complex edge state structure of the single particle level spectra
depending on the underlying ground state spin and isospin configuration.
There may be gapless edge states with single or multiple crossings or con-
figurations which exhibit finite gaps to single particle excitations. We wish
to understand the nature of the corresponding single particle excited states.
To this end, we analyse the properties of the effective single electron Hartree
Fock states. More precisely, we compute the single particle spin and isospin
components sz(i) = 1

2〈i|σz|i〉 and tx(i) = 1
2〈i|τx|i〉 as a function of space from

the bulk towards the edge. The results for a canted antiferromagnetic bulk
phase and a ferromagnetic bulk phase are shown in figure III.14.
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The evolution of the single particle observables sz(i) and tx(i) can be sum-
marised by the following scheme:

sz(i) edge intermediate bulk tx(i) edge intermediate bulk
sz(1) : ↑ ↗ ↑ tx(1) : ↑ ↗ ↑
sz(2) : ↓ ↘−→↗ ↑ tx(2) : ↑ ↗−→↘ ↓
sz(3) : ↑ ↗−→↘ ↓ tx(3) : ↓ ↘−→↗ ↑
sz(4) : ↓ ↙ ↓ tx(4) : ↓ ↙ ↓

(III.53)

where arrows schematically represent the spin and isospin vectors.

The Hartree Fock ground state |ψGS〉 is built from Slater determinants of
the two states corresponding the two energetically lowest lying branches ε1

and ε2, i.e., of |1〉 and |2〉 in figure III.11. The lowest energy single parti-
cle excitations hence correspond to exciting one electron from the second to
the third level: ε2 → ε3. As we see from figure III.14, these two states ε2 and
ε3 have oppositely polarised spin and isospin components. The closing of
the gap ∆εedge between the second and the third single particle level which
we observed in figure III.11 hence is a transition from insulating to conduct-
ing behaviour in which a pair of counter propagating edge states exhibit-
ing opposite spin and isospin polarisation will carry the current. We thus
find a pair of gapless helical edge states which is the signature of a quantum
Hall spin state [Hasan and Kane, 2010]. In these states, spinful particles form
edge currents, which may not only carry charge, but also as spin degree of
freedom.

Mean Field Spectrum and Excited States - Summary

In this section we studied the influence of a boundary of a finite piece of
monolayer graphene on the mean field Hartree Fock effective single parti-
cle energy spectra. Our findings about the resulting edge state structure we
summarise as follows:
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Summary: Spectrum and Excited States

• The variation of the ground state spin and isospin structure close
to the edge found in section III.2.2 directly translates into the sin-
gle particle spectra: the energy levels show different behaviour
in different texture regimes giving rise to a complex overall pat-
tern.

• The single particle edge states can exhibit either zero, single, or
multiple crossings of the levels. When taking the spatial vari-
ation of the order parameter into account, there is no one-to-
one correspondence between whether the edge states are gapped
or gapless and the bulk ground state phase. Rather, the cross-
ings must be understood from the symmetries of the respective
Hartree Fock Hamiltonian corresponding underlying phase as
a function of space. This contradicts previous predictions from
analytical studies using the assumption of constant spin and
isospin, which directly relate the conductance properties of the
edge channels to the ground state phase of the bulk.

• When analysing the single particle properties of the effective
Hartree Fock single particle ground and excited states, we find
that the lowest single particle excitations correspond to flipping
both, the spin and the isospin degree of freedom. Gapless,
conducting edge channels hence form the helical edge states of
quantum Hall spin states.

III.2.4 Edge State Structure of Monolayer Graphene
- Conclusions and Remarks

Within this chapter we analysed the edge state structure of monolayer graphene in
the quantum Hall regime. Within a numerical Hartree Fock treatment we took into
account the influence of a terminating boundary in a simple model as a field in the
valley isospin space. This approach is able to trace the spatial evolution of the
system from the bulk to the edge in order to analyse the spin and valley isospin
properties of the system as a function of the distance to the edge.
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Summary: Edge State Structure of Monolayer Graphene

• In a first part, section III.2.2, we studied the ground state properties.
We saw that the ground state spin and isospin configuration deviates
from its bulk phase in the vicinity of en edge. It rotates smoothly from
its bulk configuration to a Kekulé phase near the boundary. Within
the transition region that interpolates between the bulk phase and the
Kekulé edge phase we found evidence for novel ground states, ex-
hibiting simultaneous canting of the spin and the valley isospin, and
non-trivial spin-valley entanglement. This represents a novel type of
phase which is not present in the bulk.

• Subsequently, in section III.2.3, the properties of the Hartree
Fock effective single particle energy spectrum was analysed. We saw
that the evolution of the underlying spin and isospin phase when ap-
proaching the edge directly translates into the behaviour of the energy
spectrum, leading to a complex spatial behaviour of the levels. In par-
ticular, the levels may be either gapped or cross single or multiple
times. The origin of the crossings were traced back to the symmetries
of the underlying spin and isospin phases as that the picture we obtain
in a space dependent treatment is more complex than that obtained
by assuming the order not to change up to the edge. Most impor-
tantly, the direct correspondence between the conductance properties
of the edge states and the bulk phase is lost. The analysis of the single
particle eigenstates shows that the lowest single particle excitation de-
scribes counter propagating helical edge states carrying opposite spin
and isospin polarisations.

We comment on the possible implications of above findings for experiments: In
our model, we found the transport properties to be governed by either zero, one,
or multiple single particle level crossings. We saw that the number of levels cross-
ing the Fermi energy can be varied by changing the parameter u⊥

EZ
. This implies

that there are metal-insulator transitions when tilting the magnetic field. This is
consistent with the experimental findings in monolayer graphene we presented in
the introductory chapter I of Young et al. [Young et al., 2014]. If we adopt the es-
timates for the approximate magnetic field dependencies of EZ and u⊥ stated in
reference [Kharitonov, 2012c] and reference [Kharitonov, 2012a] as EZ(B) ≈ 0.7B
[T]K and u⊥(B⊥) ≈ 1 − 10B⊥[T]K, where B denotes the total magnetic field and
B⊥ its component perpendicular to the device plane, the values for the parameters
stated in reference [Young et al., 2014] suggest that the authors were able to exper-
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imentally tune the ratio u⊥
EZ

roughly in a range from -13 to -0.5. The findings of
our numerical, space dependent study taking into account the spatial evolution of
the order parameter upon approaching the edge suggest that the occurrence of the
metal-insulator transition, while it sets constraints on the microscopic parameters,
does not imply that the bulk is canted antiferromagnetic ordered. The observation
of a conductance G ≈ 2 e

2

h , which corresponds to two conducting channels, i.e., to
one single level crossing, has two possible explanations: either the bulk is in a ferro-
magnetic phase leading to one crossing unaffected by the Kekulé edge regime. Or the bulk
has non-crossing single particle levels, but the crossing occurs in the Kekulé regime close
to the edge. Furthermore, the fact that in our model multiple level crossings may
occur gives a hint that the observation of exactly one crossing only corresponds to
a limited parameter range. Varying the anisotropies parameters may lead to the
observation of conductance values of higher multiples of two, corresponding to
several crossings in the single particle edge spectrum.

Due to the breakdown of the one-to-one correspondence between the appearance
of gapped or gapless edge states and the bulk phase in our numerical results,
our findings suggest that the mere conductance properties of the edge channels in
monolayer graphene may not be a sufficient and unambiguous criterion to make
statements about the bulk spin and isospin configuration in a certain setup. Other
tools must be found which allow to learn about the ground state configuration and
to distinguish in a clear and unequivocal manner between the different phases.
Possible recent suggestions include spin-superfluidity, which is suspected to ap-
pear for the canted antiferromagnetic phase due to the invariance of the spin un-
der rotations around the z-axis in spin-space [Takei et al., 2016] or the collective
spin and isospin modes in the different phases [de Nova and Zapata, 2017].

Of course there are obvious limitations of our theoretical approach: most impor-
tantly, we apply a perturbative treatment of the edge, whose validity is limited to a
certain range. We discuss this point after equation (III.8). Besides, the appearance
of a Kekulé phase in the vicinity of the edge is a direct consequence of treating
the effective edge potential perturbatively. Furthermore, in our calculations we
assume the anisotropy energies u⊥ and uz to remain constant at their bulk values
as explained after equation (III.7). This approximation certainly becomes less jus-
tified as we approach the boundary. Also we have neglected the exchange energy
effects that will create textures in the charge carrying states.
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Phase Diagram of a Graphene Bilayer in the Zero-Energy
Landau Level

IV.1 Bilayer Graphene in the Zero-Energy Landau Level
- Introduction

This chapter reports on a study of the ground state structure of bilayer graphene in
the quantum Hall regime in the presence of external electric and magnetic fields.
This project has been motivated by experimental results: as described in the
introduction, chapter I, section I.3, there is experimental evidence for the oc-
currence of multiple different phase transitions for different numbers of elec-
trons in the zero energy Landau level of bilayer graphene upon variation of the
strength of the applied fields. Despite theoretical treatments of the problem
in several different models and frameworks, a satisfactory explanation of the
phenomena observed in experiment has not yet been provided. One possible
reason lies in the complexity of the problem: in reference [Lambert and Côté,
2013], Lambert and Côté have carried out a study of the spin and isospin ground
state phases of bilayer graphene using a single particle model Hamiltonian of bi-
layer graphene which takes into account a great variety of lattice details. However,
the authors work with the effective two-band model of bilayer graphene. Fur-
thermore, when considering the effect of electron-electron Coulomb interactions,
they take into account exclusively the interactions among the electrons occupying
the zero-energy mode. On the other hand, Shizuya showed in his seminal work
[Shizuya, 2012] that the electronic interactions of the zero-energy electrons with
the lower-lying electrons of the filled Dirac sea leads to noticeable effects when
treated in the frame of the full four-band model already on the level of Hartree
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Figure IV.1
Bilayer graphene lattice under exter-
nal electric and magnetic fields, E
and B, applied perpendicularly to the
sample. Magenta symbols indicate
the relevant tight-binding parameters
in our model.

Fock mean field calculations. Most importantly, the Coulomb interaction with the
Dirac sea lifts the degeneracy between the n = 0 and n = 1 Landau level mode
and hence introduces a splitting between the states of the zero-energy octet.

Our aim in this project is to make an attempt to partially make up for this
shortcoming by providing a more realistic, yet more detailed model of bilayer
graphene in the quantum Hall regime which unifies several of the effects and fea-
tures included in previous models. The setup we are studying is shown in figure
IV.1. We consider the full band structure of bilayer graphene to be quantised by
a strong magnetic field in the quantum Hall regime. The resulting wave func-
tions are used to compute the electron-electron Coulomb interactions on the mean
field level. Therefore, the modifications of the energetic structure pointed out by
Shizuya, including, most importantly, the splitting between the n = 0 and n = 1
orbital, are present in our treatment. Meanwhile, we retain all significant lattice
details and microscopic parameters from the tight binding treatment of bilayer
graphene in our model. On this our model Hamiltonian we conduct a mean field
Hartree Fock analysis of the ground state properties. The parameters that can be
varied are the numbers of electrons present in the system as well as the strength
of external electric and magnetic fields. In this setup, we study the different con-
figurations of the spin and isospin degrees of freedom which emerge and classify
them into different ground state phases.

The main results of this project consist in the ground state phase diagrams for
the seven non-trivial filling factors as functions of the electric and magnetic field
strength: for between one and seven electrons occupying states of zero energy
we identify the different possible ground state phases characterised by different
configurations of the spin, the valley isospin, and the orbital isospin within a pa-
rameter range that allows for comparison to experimental results.

This chapter quotes the results of the work published in reference [Knothe and
Jolicoeur, 2016].
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Figure IV.2
Electronic occupation of the Lan-
dau levels for bilayer graphene:
negative energy states are filled,
positive energy states are empty.
The state of zero energy is par-
tially filled, i.e., there are differ-
ent numbers of electrons in the
zero-energy octet

IV.1.1 Theoretical Framework and Model Hamiltonian

We provide the theoretical background and assemble the model Hamiltonian
which we use to describe the zero-energy state of bilayer graphene in the quan-
tum Hall regime. We focus on the situation laid out in the introductory chapter
II.1: the energy structure of bilayer graphene in a strong magnetic field forms dis-
crete Landau levels, where the zero energy state is of particular interest: electrons
in both, the n = 0 and the n = 1 Landau level turn out to have zero energy. Being
degenerate in the spin and the valley isospin degree of freedom, this gives rise to
a total of eight states of vanishing energy in bilayer graphene. We refer to these
states as the zero-energy octet, see figure IV.2. We assume the higher energy states
with non-zero positive energy to be completely empty and the states of energy
below the octet states ε−n < ε0,1 ≈ 0 to be completely filled. Those lower-lying
electrons we describe them as a manifold of inert levels −n ≤ −2 labeled with
negative indices and refer to them as the Dirac sea.

In the following, we focus on the physics of the octet electrons. This is sensible for
strong magnetic fields and as long as a bias potential due to an electric field is
sufficiently small compared to the Landau level gap. We consider different partial
fillings of the zero-energy state, i.e., different integer numbers 0 ≤ ne ≤ 8 of elec-
trons occupying the eight states of the octet giving rise to partial fillings ν ∈ [−4, 4].
While in this regime we neglect Landau level mixing effects, thus assuming the
spacing between Landau levels to be sufficiently large so that transitions between
Landau levels do not play a role, we nevertheless do not fully forget about the
presence of the electrons in the lower-lying Landau levels: we consider them to be
inert due to suppressed inter-Landau level hopping, but we do take into account
their Coulomb interaction with the electrons in the octet.
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Non-Interacting Picture: The Single Particle Hamiltonian

Quoting the introductory section II.1.1, where we detailed the description of
non-interacting electronic states on the bilayer graphene lattice in the quantum
Hall regime, we condense the single particle effects into an effective single parti-
cle Hamiltonian describing the n = 0, 1 orbitals of the non-interacting system by
writing three terms:

H0 = Hbias + HZ + H01, pert

=
∑
p

∑
n,σ,ξ

[
− ∆B

2
τz + z

∆B

4
(τz + λzτz)−

∆
pert
01

2
λz −

∆Z

2
σz

]
c†n,σ,ξ(p) cn,σ,ξ(p),

(IV.1)

where we work in the tensor spaceH = Horb⊗Hspin⊗Hvalley and use the notation
σα = 1mode⊗σspin

α ⊗1valley , τα = 1mode⊗1spin⊗σvalley
α , and λα = σmode

α ⊗1spin⊗1valley

for the Pauli operators acting in spin, in valley, and in orbital space and λατβ =

σmode
α ⊗ 1spin ⊗ σvalley

β .

The respective terms in equation (IV.1) describe the following:

Effect of a bias ∆B

As to be seen from equation (II.37), a perpendicular electric field of strength
E lifts both, the degeneracy between the n = 0 and the n = 1 Landau level,
as well as the valley degeneracy by introducing a splitting proportional to
the bias ∆B = edE.

Zeeman splitting ∆Z

The Zeeman effects lifts the degeneracy in spin space by opening the Zeeman
gap ∆Z = gµBB with g = 2 between the up and the down configuration of
the spin of the electrons.

Orbital splitting ∆pert
01

We showed in section II.1.1 that in biased bilayer graphene microscopic
asymmetries of the lattice break the degeneracy in orbital space an introduce
the orbital splitting ∆

pert
01 = δAB(1− c2

1) + 2 γ4

γ0γ1
c2

1(~ωc)2 in terms of the lattice
parameters δAB and γi indicated in figure IV.1.
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Interacting Picture: Hartree Fock Treatment

To study the system for interacting electrons, we include Coulomb interactions
between the electrons written as

HC

=
1

2

∑
n,n′

∑
σ,σ′

∑
ξ,ξ′

∫∫
drdr′ ψ†n1,σ,ξ

(r)ψ†n2,σ′,ξ′
(r′)V C(r− r′)ψn3,σ′,ξ′(r

′)ψn4,σ,ξ(r),

(IV.2)

where ψn,σ,ξ(r) =
∑

p〈r|n, σ, ξ; p〉cn,σ,ξ(p) denotes the field operator of the elec-

trons. For the interaction potential V C = e2

ε|r−r′| we make the following choices:

As a first approximation to the electron-electron interaction, the fully symmetric
potential is V C = e2

ε|r−r′| with ε the effective dielectric constant can be chosen. A
more realistic approach to the specific geometry of the bilayer system is given by
a corrected potential which accounts for the finite distance d between the upper
and the lower graphene layer: V C

ξ,ξ′ = e2

ε|r−r′+(1−δξ,ξ′ )dez |
, where ξ, ξ′ is the valley

index. Note that within the four-band model of bilayer graphene, it is not exact
to identify the valley index with the sub-layer index. We discuss the validity of
this approximation below. To keep calculations as simple as possible, we use the
corrected Coulomb potential only when it has notable effects.

We treat the electron interactions in self-consistent Hartree Fock theory as laid out
in section II.2.2. We decouple the interaction operator in the single particle basis la-
belled by the orbital momentum p into a direct Hartree part HC,D and an exchange
Fock part HC,X :

HC −→ HC,D −HC,X ,

via

〈c†n1,σ,K
(p1) c†n2,σ′,K′

(p2) cn3,σ,K(p3) cn4,σ′,K′(p4)〉

−→ 〈c†n1,σ,K
(p1) cn4,σ′,K′(p4)〉 〈c†n2,σ,K

(p2) cn3,σ′,K′(p3)〉

− 〈c†n1,σ,K
(p1) cn3,σ′,K′(p3)〉 〈c†n2,σ,K

(p2) cn4,σ′,K′(p4)〉. (IV.3)

Summarising the different spin and isospin degrees of freedom as ξ = (n, σ, τ),
Hartree Fock decoupling of the general two-body interaction operator written in
equation (IV.2) yields the direct and the exchange interaction terms according to
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HHF = HD −HX which we compute separately as

HD =
1

S

∑
ξi

∑
q

V (q)

∫∫
drdr′ 〈ψ†ξ1(r)ψξ4(r)〉 eiq(r−r′) ψ†ξ2(r′)ψξ3(r′)

(IV.4)

and

HX =
1

S

∑
ξi

∑
q

V (q)

∫∫
drdr′ 〈ψ̂†ξ1(r)ψξ3(r′)〉 eiq(r−r′) ψ†ξ2(r′)ψξ4(r).

(IV.5)

To evaluate the expressions above explicitly in the frame of the four-band model of
bilayer graphene, we exploit the real space representations of the state for instance
in valley K+ as introduced in section II.1.1 as

〈r|n, σ,K+〉 =
1√
Ly


b(n),1 φn(x− xp)

b(n),2 φn−2(x− xp)

b(n),3 φn−1(x− xp)

b(n),4 φn−1(x− xp)

 eiK+x, (IV.6)

where we used the notations of the coefficients b(n),i as in section II.1.1. In equa-
tion (IV.6) we wrote both, the slowly varying envelope function φn in the valley
labelled by K+, as well as the rapidly oscillating part eiK+x of the terms contribut-
ing in the vicinity of the K+valley.

Furthermore, we will use the following relation:

1

Ly

∫
dr eiqrei(Kτ−Kτ ′ )xφ∗n′(x− xp′)φn(x− xp)

= Θn,p,K;n′,p′,K ≈ δp−p′,−qyei
qx(p+p′)`2B

2 Kn,n′(q)δτ,τ ′ , (IV.7)

with

Kn,n′(q) =

{
Fn,n′(q), for n′ ≤ n
F ∗n,n′(−q), for n′ > n,

(IV.8)

where, in terms of the associated Laguerre polynomials Ln−n
′

n′ ,

Fn,n′(q) =

√
n′!

n!

( `B√
2

)n−n′
(iqx + qy)

n−n′e−
`2Bq

2

4 Ln−n
′

n′

[`2Bq2

2

]
. (IV.9)
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Note that equation (IV.7) represents an approximation suggesting conservation of
the total valley isospin: we assume for the electron-electron Coulomb interaction in
bilayer graphene to conserve the valley isospin τ just as it leaves the real spin σ in-
variant. More precisely, we require in equation (IV.2) the spin and the valley index
not to change upon scattering on V C : τ4 = τ1 = τ , σ4 = σ1 = σ, and τ3 = τ2 = τ ′,
σ3 = σ2 = σ′. While for the spin this represents an exact symmetry of the Coulomb
interaction, for the valley isospin it amounts to the following approximation: we
neglect all scattering processes altering the valley isospin. As we show in appendix
D, in the case of graphene, these processes can be shown to be suppressed due to
the large separation of the two valleys K+ and K− in momentum space [Goer-
big, 2011]. The same approximation was also applied for monolayer graphene in
chapter III, equation (III.5), leading to approximate SU(4) in the case of monolayer
graphene.

This allows us to restrict to one single valley and to formulate an electron density
operator in valley K+ as

ρK+ =
∑
n,n′

∑
σ,σ′

∑
p,p′

∫
dr eiqr〈r|n′, σ′,K+; p′〉†〈r|n, σ,K+; p〉 c†n′,σ′,K+

(p′) cn,σ,K+(p)

=
∑
n,n′

∑
σ,σ′

∑
p,p′

[
b∗(n′),1b(n),1Θn,p,K+;n′,p′,K+ + b∗(n′),2b(n),2Θn−2,p,K+;n′−2,p′,K+

+
(
b∗(n′),3b(n),3 + b∗(n′),4b(n),4

)
Θn−1,p,K+;n′−1,p′,K+

]
c†n′,σ′,K+

(p′) cn,σ,K+(p)

= NLL

∑
n,n′

∑
σ,σ′

[
b∗(n′),1b(n),1 Kn,n′(q) + b∗(n′),2b(n),2 Kn−2,n′−2(q)

+
(
b∗(n′),3b(n),3 + b∗(n′),4b(n),4

)
Kn−1,n′−1(q)

]
ρn′,σ′,K+;n,σ,K+(q)

=: NLL

∑
n,n′

∑
σ,σ′

Kn,n′(q) ρn′,σ′,K+;n,σ,K+(−q), (IV.10)

where we introduced notion of the bare guiding centre density

ρξi;ξj (q) =
1

NLL

∑
pi,pj

δpi−pj ,qye
− i

2
qx(pi+pj)`

2
B c†ξi(pi)cξj (pj), (IV.11)

for ξi = {ni, σi,Ki} and NLL the Landau level degeneracy, as well as the effective
form factor

Kn,n′(q) = b∗(n′),1b(n),1 Kn,n′(q) + b∗(n′),2b(n),2 Kn−2,n′−2(q)

+
(
b∗(n′),3b(n),3 + b∗(n′),4b(n),4

)
Kn−1,n′−1(q), (IV.12)
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taking into account the shape of the wave functions in the four-band model of bi-
layer graphene.

In the following investigation, we simplify the above expressions under the as-
sumption of homogeneity in real space and translational invariance: we restrict
ourselves to searching only for Hartree Fock solutions uniform in real space. Phys-
ically, this amounts to not considering any possible solutions exhibiting any non-
trivial spatial modulation of either the spin and isospin texture or the electronic
density. We do not take into account any terms that involve possible correlations
in real space. More precisely, neglecting any sort of real space correlations amounts
to taking into account only the solutions at vanishing q in momentum space. In
the following, we write ρξi;ξj (q = 0) = ρξi;ξj and

〈ρξi;ξj (q = 0)〉 =
1

NLL

∑
p

〈 c†ξi(p)cξj (p) 〉 =:
1

NLL

∑
p

Pξjξi(p), (IV.13)

where we introduced the density matrix

P n′,n
σ′,σ;ξ′,ξ

(p) := 〈c†n,σ,ξ(p) cn′,σ′,ξ′(p)〉, (IV.14)

which will serve as a multicomponent order parameter.

We dissect the electronic Coulomb interactions into different contributions, which
we treat separately before assembling them to the full effective Hartree Fock
Hamiltonian for bilayer graphene of our model.

Interactions of the Electrons within the Octet (n = 0, 1)

Within in 01-octet we consider interaction between the electrons via the corrected
potential

V C
ξ,ξ′ =

e2

ε|r− r′ + (1− δξ,ξ′)dez|
. (IV.15)

When working with the effective two-band model for the electronic states of bi-
layer graphene discussed in the introductory section II.1.1 [McCann and Fal’ko,
2006], within the zero-mode sector there is a direct one-to-one correspondence be-
tween the valley degree of freedom and the electrons occupation in the upper or
the lower layer, respectively [Lambert and Côté, 2013]. This can be seen from the
electronic states written within the two-band model in equation (II.31). Within
the four-band model applied throughout this work, however, this correspondence
valley↔ layer within the pseudo-zero mode sector is no longer exact. Close inves-
tigation of the coefficients of equation (II.35) governing the electronic occupation
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of the different atomic sites reveals the following: the occupation of the different
sublayers which would stay fully unoccupied within the two-band model is gov-
erned by the coefficient b(1),3 in ψ(1)

K+
. Hence, as addressed also in section II.1.1, the

four-band model and the two-band model of bilayer graphene do predict different
behaviour of the layer occupation of bilayer graphene. This will be of importance
in the subsequent discussion. It is thus crucial to take into account the different
behaviour of the n = 0 and the n = 1 modes within the two models. We estimate
the error due to the correspondence valley ↔ layer for each valley index: as can
be seen from figure II.8 in section II.1.1, the coefficient b(1),3 is largest in magnitude

for zero bias - in this case, the relation b2(1),3 =
b2
(1),1

γ2 holds. Hence, b(1),3 � b(1),1

since γ � 1 for the parameters listed in Table IV.1. We therefore use the form of the
corrected Coulomb potential V C

ξ,ξ′ given in equation (IV.15) in order to include the
effect of the anisotropic Coulomb interaction due to the finite separation between
the layers.

We perform the Hartree Fock decoupling of the Coulomb-interaction term in the
four-band model for the electrons in the octet similar to calculations within an
effective two-band model of bilayer graphene presented in [Côté et al., 2010] and
[Lambert and Côté, 2013].

Direct interaction
The contribution from the direct interaction term competes with a positive,
neutralising background. Using the explicit representation of the wave func-
tions of the electronic states as in equation (IV.6), one can see that the estima-
tion of this competition presented in reference [Lambert, 2013] is not altered
when carried out in the four-band model compared to the two-band model
considerations. It yields that the effective, resulting contribution is given by
a capacitive energy of the form [Lambert and Côté, 2013; Lambert, 2013]

HD, Octet =
∑
p

∑
n,σ,ξ

α
d

`B

(
ṽξ −

ṽ

2

)
c†n,σ,ξ(p) cn,σ,ξ(p), (IV.16)

where we denote with ṽξ =
∑

p

∑
nσ〈c

†
n,σ,ξ(p) cn,σ,ξ(p)〉 the total filling in val-

ley ξ, ṽ = ν + 4 counts the total number of filled levels in the octet, and
α = e2

ε`B
.

Exchange interaction
From the exchange part of the interaction we obtain the contribution
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HX, Octet

= −
∑
p1,p2
p3,p4

∑
n1,n3
n2,n4

∑
σ,ξ
σ′,ξ′

Xξ,ξ
′

n1,n3
n2,n4

(0)〈c†n1,σ,ξ
(p1) cn3,σ′,ξ′(p3)〉 c†n2,σ′,ξ′

(p2) cn4,σ,ξ(p4),

(IV.17)

where, following previous definitions, we find the exchange matrix elements

Xξ,ξ
′

n1,n2
n3,n4

(q) = α

∫
dp`2B

2π

1

p`B
e−pd(1−δξ,ξ′ )Kn1,n4(p)Kn3,n2(−p)eip×q`2B , (IV.18)

with

K0,0(p) = e−
`2Bp

2

4

K0,1(p) = e−
`2Bp

2

4
c1`B√

2
(ipx + py)

K1,0(p) = e−
`2Bp

2

4
c1`B√

2
(ipx − py)

K1,1(p) = e−
`2Bp

2

4 (1− c1
`2Bp

2

2
). (IV.19)

For future use we introduce the notation ∆n1n2n3n4 := Xξ,ξn1,n2
n3,n4

for the terms

conserving the valley index and Xn1n2n3n4 := Xξ,ξ
′

n1,n2
n3,n4

in the case ξ 6= ξ′ for the

valley index non-conserving terms. The corresponding matrix elements are
listed explicitly in appendix C.

Coupling with the Electrons filling the Dirac Sea (n ≤ −2)

In reference [Shizuya, 2012], Shizuya has shown that, while the direct interaction
contributions are fully cancelled by a uniform positive background charge, ex-
change interactions with the electrons in the Dirac sea when treated within the
four-band model of bilayer graphene lead to a splitting ∆int

01 between the n = 0 and
n = 1 orbitals. From the Coulomb exchange interaction between all the electrons in
the system Shizuya extracts the contribution that stems from interaction between
the Dirac sea electrons and the electrons in the octet. Further careful dissection of
this interaction term into its different constituents reveals that the Dirac electrons
couple differently to the octet electrons in the n = 0 mode than to those occupying
the n = 1 mode. This effectively lifts the n = 0 state above the n = 1 state in energy
entailing an interaction induced splitting ∆int

01 between the two modes. Using the
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fully symmetric Coulomb potential, this exchange phenomenon analogous to the
Lamb shift of atomic energy levels∗ leads to a term of the form

HX, Dirac = −
∑
p

∑
n,σ,ξ

∆int
01

2
λz c

†
n,σ,ξ(p) cn,σ,ξ(p), (IV.20)

where the Landau level index only runs over n = 0, 1. In above equation λα =
σmode
α ⊗ 1spin ⊗ 1valley denotes the Pauli operators acting in 01-orbital space and

∆int
01 = 1

8∆C c
2
1(4 − 3c2

1) is the splitting induced by the presence of the Dirac sea,
where we defined ∆C =

√
π
2α =

√
π
2
e2

ε`B
.

Furthermore, in the very same reference [Shizuya, 2012], Shizuya demonstrates
in a perturbative treatment up to the first order in d

`B
that the anisotropic inter-

layer Coulomb interaction merely entails a simple rescaling as ∆B → ∆B,eff =
(1− 16 W

~ωc )∆B , where W = d
`B
α.

Full Hartree Fock Hamiltonian and Numerical Hartree Fock Routine

Assembling all terms from the discussion above, we arrive at the Hartree
Fock Hamiltonian

HHF = H0 + HX, Octet + HD, Octet + HX, Dirac . (IV.21)

Hence, in terms of the density matrix P, and assuming P(p) ≈ P(p′) as a lo-
cal approximation justified as we are treating states uniform or varying suffi-
ciently slowly in space (see also the comparable calculation of equation (III.18)
for monolayer graphene leading to equation (III.24) in chapter III), we obtain for
the Hartree Fock energy functional:

EHF = −1

2

∑
n1,n3
n2,n4

∑
σ,ξ
σ′,ξ′

Xξ,ξ
′

n1,n3
n2,n4

(0)Pn3,n1

σ′,σ
ξ′,ξ

Pn4,n2

σ,σ′

ξ,ξ′

+
α

4

d

`B
(ν̃K − ν̃K′)2

− ∆01

2
Tr[λzP] +

∆Z

2
Tr[σzP]−

∆B,eff

2
Tr[τzP] + z

∆B,eff

4
Tr[(τz + λzτz)P],

(IV.22)
∗ The Lamb shift in atomic systems, demonstrated in 1947 by Lamb and Retherford [Lamb and
Retherford, 1947] for atomic hydrogen, denotes the lifting of the degeneracy between atomic en-
ergy levels which have equal main quantum number and equal total angular momentum quantum
number, but differ in the orbital angular momentum quantum number, such as the levels 2s1/2

and 2p1/2 of the hydrogen atom. The origin of this shift in energy leading to a splitting between
the levels can be understood when considering even in the absence of external fields or radiation,
the presence of a quantum vacuum as the ground state of the electromagnetic quantum field. This
vacuum will fluctuate, i.e., it contains virtual particle-antiparticle pairs. These fluctuations effect
the Coulomb interaction between the electron and the nucleus which leads to the shift in energy
mentioned before.
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where summation over p has been suppressed and we summarised ∆01 = ∆
pert
01 +

∆int
01 as the total splitting in orbital space induced by the different effects discussed

above.

In this project, we study the model Hamiltonian HHF given in equation (IV.21)
within Hartree Fock theory. This Hamiltonian HHF depends on P which in turn
itself is determined by the lowest-energy solution to the corresponding eigenvalue
problem. The numerical procedure leading to its solution must thus be carried out
self-consistently. We briefly sketch the algorithm used in our analysis.

We fix different total numbers of electrons in the octet. The filling factor ν of
the octet is defined with respect to the half-filled, charge neutral case: we write
ν = −3 (−2,−1, 0, 1, 2, 3) for 1 (2,3,4,5,6,7) out of the eight available zero-energy
levels being occupied. In sections IV.2 and IV.3, we present investigations and
discussions of all the different non-trivial fillings factors ν ∈ [−3, 3]. The density
matrix is assumed to be independent of the guiding centre coordinate as we are
looking only for spatially uniform solutions.
For a given filling factor ν implying n occupied levels, we start by initialising n
single particle vectors |i〉: the eight entries each are taken from a random uniform
distribution, thereby respecting normalisation. The density matrix Pint =

∑n
i |i〉〈i|

built from these vectors serves as a starting point for the self-consistent Hartree
Fock minimisation procedure. The subsequent protocol proceeds as follows: using
Pint we construct a first Hartree Fock Hamiltonian Hint

HF (Pint) according to equation
(IV.21). Diagonalising Hint

HF (Pint) yields the corresponding eight eigenvectors and
eigenenergies. The n lowest-lying eigenstates are used to construct a new den-
sity matrix P; This new, improved P is then again inserted in equation (IV.21) to
obtain a new, improved HHF and reiterate the procedure. This algorithm is re-
peated until convergence of the density matrix is achieved, i.e., until the difference
between two successive density matrices becomes negligible: ||Pj+1 − Pj || < ε,
where ε is a small positive number, j labels the number of iteration and || · || de-
notes the Hilbert-Schmidt norm for a matrix A defined as ||A|| =

√
AA†. We

require convergence of the algorithm until ε < 10−25. Iteration schemes similar
to the one used here and equally based on the so-called Roothaan algorithm for
self-consistent Hartree Fock iteration [Roothaan, 1951] have been applied earlier
in Hartree Fock studies of quantum Hall systems [Sohrmann and Römer, 2007;
Römer and Sohrmann, 2008].
A check for proper convergence to a true solution of the Hartree Fock equations
is performed by always requiring the single particle energy eigenvalues to repro-
duce the energy yielded by the Hartree Fock energy functional of equation (IV.22)
up to a precision better than 10−5.
We summarise the numerical self-consistent iteration routine used for Hartree
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Fock of bilayer graphene as follows:
Summary: Hartree Fock Iteration Routine

1. Fix ν, i.e., fix the number n of electrons in the octet

2. Generate n single particle vectors
|i〉 = (ai1, a

i
2, a

i
3, a

i
4, a

i
5, a

i
6, a

i
7, a

i
8), 1 ≤ i ≤ n, with aiα ∈ [0, 1] chosen

randomly and
∑

α a
i
α = 1.

3. Initialise the density matrix of the n particle state as Pint =
∑n

i |i〉〈i|

4. Construct initial Hartree Fock Hamiltonian Hint
HF (Pint) [equation

(IV.21)]

5. Diagonalise Hint
HF (Pint)⇒ Eigenvectors |vi〉

6. From the n lowest lying eigenvectors: build Pi =
∑n

i |vi〉〈vi|

7. Compute Hit
HF (Pit)⇒ Diagonalise

8. Repeat steps 6 and 7 until ||Pj+1 − Pj || < 10−25

9. The final density matrix Pfinal corresponds to the converged Hartree
Fock ground state solution.

From the final converged density matrix Pfinal we calculate the components of
the total spin S, the total valley isospin T, and the total orbital isospin degree of
freedom L according to

Sα =
1

2
Tr[σαP], Tα =

1

2
Tr[ταP], Lα =

1

2
Tr[λαP], (IV.23)

for α ∈ {x, y, z}. We identify different phases by different configurations of the
spin and isospin degrees of freedom. By tracing their evolution as functions of
the external parameters, i.e., the bias potential ∆B and the magnetic field B, we
determine the phase diagrams in the {∆B-B}-plane. From this numerical Hartree
Fock procedure we furthermore gain information about the Hartree Fock single
particle eigenstates and eigenvalues for each value of ∆B and B. Hence we can
infer the structure of the occupied and unoccupied single particle states for each
phase within this Hartree Fock mean field picture. This knowledge about the
ground state structure allows us to proceed further by analytical means: using a
particular structure of the ground state eigenvectors to construct the correspond-
ing density matrix P and minimising the Hartree Fock energy functional given in
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equation (IV.22) for this P allows us to compute analytically properties of the var-
ious phases such as canting angles of the energetically favourable spin and isospin
orientation or phase boundaries between different ground state phases.

We have not tried to search for spatially non-uniform Hartree Fock solutions.
There is no clear experimental evidence for such states so far. The Hartree
Fock investigations of Lambert and Côté have found such solutions only at very
large bias.

System Parameters
γ0 3.1 eV γ1 0.39 eV
γ3 0.1 eV γ4 0.13 eV

v0 =
√

3
2
aLγ0

~ 1.1× 106 m/s aL 0.246 nm
~ωc =

√
2~vF
`B

36.3 v0[106m
s ]
√
B[T] meV d 0.34 nm

`B =
√

~c
eB 26nm 1√

B[T]
ε 5

δA,B 0.016 eV
Characteristic energies
∆C =

√
π
2α =

√
π
2
e2

ε`B
14.1

√
B[T] meV ∆01

1
8∆C c

2
1(4− 3c2

1)

∆Z = gµBB 0.11B[T] meV ∆B edE⊥[mV
nm ]

Table IV.1
Numerical values of the system parameters and the energy splittings used through-
out the analysis.

IV.2 Bilayer Graphene in the Zero-Energy Landau Level
- Results (I): Hartree Fock Phase Diagrams

The main result of this project are the seven phase diagrams of bilayer graphene
obtained for different filling factors ν ∈ [−3, 3] using the Hartree Fock procedure
described in the previous section IV.1. For the seven different filling factors as well
as for varying the external magnetic and electric fields, this yields a vast amount
of information. Presentation of the results is structured as follows: in order to
provide an overview, we first present the full collection of phase diagrams and
summarise all the corresponding ground state configurations and their properties.
Subsequently, the seven different cases are discussed separately in detail, where
most attention is paid to the easiest case ν = −3 for exemplary demonstration.
The remaining cases are presented in analogy.
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IV.2.1 Overview over the Phases

In figure IV.3, we plot the phase diagrams for the different ν in the plane spanned
by the bias ∆B and the magnetic field B. From these phase diagrams, we identify
a total of 32 different phases of the bilayer graphene system at different filling fac-
tors.

Phase Diagrams in the {∆B-B}-Plane
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Figure IV.3
Ground state phase diagrams of bilayer graphene at the different filling factors
ν ∈ [−3, 3] obtained from Hamiltonian HHF of equation (IV.21) in a Hartree
Fock picture. Colour code for the phases: bordeaux/magenta: S ∝ ez and T in a
canted state → valley coherence; yellow/orange: S ∝ ez and L in a canted state
→ orbital coherence; grey/blue/green: S,T ∝ ez for L ≡ 0 or L ∝ ±ez→ partial
polarisation. Figures from reference [Knothe and Jolicoeur, 2016] (edited).
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The explicit form of the respective phases is listed in tables IV.2-IV.8. Their spin and
isospin polarisation properties are given in tables IV.9 and IV.10 for negative and
positive filling factors, respectively. In the first section of the text, we successively
discuss the respective cases for each different filling factor. We next summarise
these results and compare our findings for different ν among each other.

Figure IV.3 shows the collection of phase diagrams obtained for the different filling
factors ν ∈ [−3, 3].

IV.2.2 Individual Presentation of the Phases

F Phases of Different Spin and Isospin Properties:
Exemplary Demonstration for one Electron, ν = −3

For the easiest example, at ν = −3, when there is only one electron present in the
octet, we demonstrate the reasoning that leads to the ground state phase of figure
IV.3.

In figure IV.4 we demonstrate how an individual phase diagram from the collec-
tion of figure IV.3 is to be read and what information is contained in it. We plot
the phase diagram of the ν = −3 state in the {∆B-B}-plane together with the evo-
lution of the components of spin, valley isospin, and orbital isospin, Si, Vi, and
Li, for a cut at fixed magnetic field B = 35 T and increasing bias ∆B . This cut is
marked in the adjoining phase diagram by a black line that traverses all the dif-
ferent ground state phases of the ν = −3 phase diagram. We see how different
phases are related to regimes of different properties and different behaviour of
the spin and the isospins. The different values of the total spins and isospins of
the respective ground state phases are yielded from the Hartree Fock algorithm as
well as the explicit form of the corresponding ground states. In many of the cases,
when the ground state wave functions are sufficiently simple, from these the phase
boundaries can be computed analytically.

We describe and analyse the different phases in detail below.

Bias ∆B ≡ 0; Evolution as a Function of B

At zero bias, the ground state is of the form

|GS〉 =
1√
2

sin θ
[
|1, ↑,+〉+ |1, ↑,−〉

]
+

1√
2

cos θ
[
|0, ↑,+〉+ |0, ↑,−〉

]
, (IV.24)

where the optimal angle θ0, plotted in figure IV.15, varies as a function of B be-
tween θ0 → 0 at vanishing magnetic field B → 0 and θ0 = π

2 at sufficiently high
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Figure IV.4
Left: phase diagram of the ν = −3 ground state as yielded by Hartree
Fock analysis. There are five different phases emerging, labelled (I)-(IV). The
black line represents a cut through the different phases at fixed B = 35 T and
for increasing ∆B. On the right, we plot the evolution of the components of spin,
valley isospin, and orbital isospin, Si, Vi, and Li, that correspond to this cut. We
characterise different ground state phases by regimes of different spin and isospin
properties, marked in different colours.
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magnetic field strengths above a certain critical value Bcrit. It fulfils the relation

cos θ0 =

√
−∆0011 − 2∆01 −∆1001 + ∆1111 −X0011 −X1001 +X1111√

∆0000 − 2∆0011 − 2∆1001 + ∆1111 +X0000 − 2X0011 − 2X1001 +X1111
.

(IV.25)
The state exhibits the properties

Sz ≡
1

2
, Sx ≡ Sy ≡ 0,

Tz = 0, Tx ≡
1

2
, Ty ≡ 0,

Lz = − cos 2θ, Lx = sin 2θ, Ly ≡ 0. (IV.26)

Hence, the ground state in this phase is polarised along the z-axis in the spin de-
gree of freedom, but not in the valley degree of freedom, where the corresponding
isospin vector lies in the {x-y}-plane. The isospin corresponding to the orbital
mode is in a canted configuration, thus we find a phase with orbital coherence.

Along the line of zero bias, the ground state hence undergoes a transition from a
canted to a fully polarised state in the orbital isospin as a function of the magnetic
field strength B.

Phase (I): Canting in Valley Isospin and Orbital Isospin

At small but nonzero bias ∆B > 0 and below a critical magnetic field strength
B < Bcrit, the ground state phase is characterised by the non-trivial composition

|GS〉 = a1|1, ↑,+〉+ a2|1, ↑,−〉+ a5|0, ↑,+〉+ a6|0, ↑,−〉, (IV.27)

with coefficients ai varying as functions of ∆B and B. This entails the following
spin and isospin structure:

Sz =
1

2

(
|a1|2 + |a2|2 + |a5|2 + |a6|2

)
≡ 1

2
,

Sx ≡ Sy ≡ 0,

Tz = |a1|2 − |a2|2 + |a5|2 − |a6|2,
Tx = a2a1

∗ + a1a2
∗ + a6a5

∗ + a5a6
∗,

Ty ≡ 0,

Lz = |a1|2 + |a2|2 − |a5|2 − |a6|2,
Lx = a5a1

∗ + a1a5
∗ + a6a2

∗ + a2a6
∗

Ly ≡ 0. (IV.28)
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The ground state is spin polarised, but canted both in valley and orbital degrees of
freedom.

Therefore, in phase (I), cuts along lines of increasing bias ∆B , for any strength of
the magnetic field B, correspond to a rotation of the valley isospin vector from
a configuration in the {x-y}-plane to a state fully aligned along the z-axis. At the
same time, the orbital isospin components take non-trivial values 0 < Lx, Lz < 1.

Phase (II): Canting in Valley Isospin, Orbital Ferromagnet

The ground state of the phase is described by a state vector of the form

|GS〉 = sin θ|1, ↑,+〉+ cos θ|1, ↑,−〉, (IV.29)

where the optimal angle is determined by

cos 2θII =
∆B,eff `B(z − 1)

αd+ `B(∆1111 −X1111)
. (IV.30)

This phase is characterised by the spin and isospin properties

Sz ≡
1

2
, Sx ≡ Sy ≡ 0,

Tz = − cos 2θ, Tx = sin 2θ, Ty ≡ 0,

Lz ≡
1

2
, Lx ≡ Ly ≡ 0. (IV.31)

Hence, in phase (II), along any cut at a fixed B > Bcrit, the state undergoes a
rotation of the valley isospin as a function of the bias ∆B , from T lying in the {x-
y}-plane at ∆B = 0 to a fully valley polarised state at sufficiently large ∆B .

Phase (III): Fully Polarised in all Spins and Isospins

Over a certain range of bias and magnetic field strength, in an intermediate phase
at sufficiently large values of the magnetic field B > Bcrit ≈ 11 T and when the
bias potential is raised beyond the regime of phase (II), the ground state stabilises
a perfect ferromagnet in all spins and isospins. In this phase, all spin and isospin
degrees of freedom are aligned (this is the case of phase II for the limiting value
θII ≡ π

2 ):
|GS〉 = |1, ↑,+〉, (IV.32)
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Sz ≡
1

2
, Sx ≡ Sy ≡ 0,

Tz ≡
1

2
, Tx ≡ Ty ≡ 0,

Lz ≡
1

2
, Lx ≡ Ly ≡ 0. (IV.33)

Phase (IV): Canting of the Orbital Isospin

Phase (IV) dominates the intermediate part of the ν = −3 phase diagram over the
whole parameter range of bias ∆B and magnetic field strength B. It is charac-
terised by full ferromagnetic polarisation of the spin and valley isospin, but cant-
ing of the orbital isospin resulting in an orbital coherent phase.

The ground state of this phase is given by the orbital coherent state

|GS〉 = sin θ|1, ↑,+〉+ cos θ|0, ↑,+〉, (IV.34)

where for the optimal angle holds the expression

cos 2θIV =
−∆0000 − 2∆01 + ∆1111 + z∆B,eff

∆0000 − 2∆0011 − 2∆1001 + ∆1111
. (IV.35)

Its spin and isospin configuration is given by

Sz ≡
1

2
, Sx ≡ Sy ≡ 0,

Tz ≡
1

2
, Tx ≡ Ty ≡ 0,

Lz = − cos 2θ, Lx = sin 2θ, Ly ≡ 0. (IV.36)

In phase (IV), cuts as a function of the bias ∆B at any value of the magnetic field
hence trace the rotation of the orbital isospin vector to the fully antiferromagneti-
cally polarised state in orbital space.

Phase (V): Polarised in Spin and Valley, Anti-Polarised Orbital Spin

For sufficiently large values of the bias, we find the limiting case for the ground
state to be fully polarised in spin and valley isospin, but antiferromagnetically po-
larised in the orbital degree of freedom. The ground state phase turns into

|GS〉 = |0, ↑,+〉, (IV.37)
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with the properties

Sz ≡
1

2
, Sx ≡ Sy ≡ 0,

Tz ≡
1

2
, Tx ≡ Ty ≡ 0,

Lz ≡ −
1

2
, Lx ≡ Ly ≡ 0. (IV.38)

Phase (V) hence stabilised at fully polarised spin and valley isospin, while the
orbital spin is fully anti-polarised.

Analytic Description of the Phase Boundaries

At ν = −3, all phases transform into one another via smooth rotations of the re-
spective isospin degrees of freedom. All phase transitions in the ν = −3 phase
diagram are of second order.

Analytic expressions for the biases where phase transitions occur can be obtained
by considering the respective limits of the optimal canting angles θ that define the
boundaries of the phases. We give the critical biases at which transitions between
the different phases occur:

(II) −→ (III):

∆crit
B,eff =

−αd−∆1111`B + `BX1111

`B(z − 1)
(IV.39)

(III) −→ (IV):

∆crit
B,eff =

2

z
(∆0011 + ∆01 + ∆1001 −∆1111) (IV.40)

(IV) −→ (V):

∆crit
B,eff =

2

z
(∆0000 −∆0011 + ∆01 −∆1001) (IV.41)

F Two Electrons: ν = −2

When there are two electrons per state within the octet, the ground state structure
of the system is the following:

Phase (I): Rotation of the Valley Isospin

For small values of the bias, ∆B < ∆crit
B , the ground state is partially polarised in

the spin, whereas the valley isospin is canted and the orbital isospin is ordered in
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Figure IV.5
Phase diagram of the
ν = −2 ground state as
yielded by the Hartree
Fock analysis. There
are three different phases
emerging, labelled (I),
(II), and (III). Figure
from reference [Knothe
and Jolicoeur, 2016].

0

200

400

600

800

Bi
as

 Δ
B 

[m
eV

]

(III)
(II)

(III)

(I)

(II)
(I)

0 10 20 30 40                                                                                            B[T]                              
0

5

10 (II)
(I)

υ=-2

an antiferromagnetic fashion.

This phase is characterised by the two vectors

|v1〉 = cos θ|1, ↑,+〉+ sin θ|1, ↑,−〉,
|v2〉 = cos θ|0, ↑,+〉+ sin θ|0, ↑,−〉, (IV.42)

where optimal angle is determined by

cos 2θI =
∆B,eff `B(z−2)

−4αd−∆0000`B−2∆0011`B−∆1111`B+`BX0000+2`BX0011+`BX1111
.

(IV.43)
Therefore, we find for the spin and isospin components:

Sz ≡ 1, Sx ≡ Sy ≡ 0,

Tz = − cos 2θ, Tx = sin 2θ, Ty ≡ 0,

Lz ≡
1

2
, Lx ≡ Ly ≡ 0. (IV.44)

Hence, in this phase, cuts along lines of increasing bias ∆B , for any strength of
the magnetic field B, correspond to a rotation of the valley isospin vector from a
configuration in the {x-y}-plane to fully aligned along the z-axis.

Phase (II): Polarised in Spin and Valley Isospin

Within an intermediate range of the bias ∆B , the ground state is a fully polarised
ferromagnet in spin and valley isospin. The orbital isospin degree of freedom,

140



IV.2 Bilayer Graphene in the Zero-Energy Landau Level - Results (I): Hartree . . .

however, is in an antiferromagnetic configuration, yielding zero overall orbital po-
larisation.

The ground state of the phase is described by state vectors of the form

|v1〉 = |1, ↑,+〉
|v2〉 = |0, ↑,+〉. (IV.45)

We hence find for the the spin and isospin properties

Sz ≡ 1, Sx ≡ Sy ≡ 0,

Tz ≡ 1, Tx ≡ Ty ≡ 0,

Lz ≡ Lx ≡ Ly ≡ 0, (IV.46)

which implies, we observe a stable phase in which both, the spin and the valley
isospin are fully aligned along the z-axis.

Phase (III): Polarised Valley, Anti-Polarised Orbital Isospin

In the limit of a sufficiently large bias ∆B , we find the ground state to be an antifer-
romagnet in spin. The valley isospin is fully polarised, whereas the orbital isospin
turns out to be fully antiferromagnetically polarised.

The ground state is given by

|v1〉 = |0, ↑,+〉
|v2〉 = |0, ↓,+〉, (IV.47)

and exhibits the spin and isospin properties

Sz ≡ Sx ≡ Sy ≡ 0,

Tz ≡ 1, Tx ≡ Ty ≡ 0,

Lz ≡ −1, Lx ≡ Ly ≡ 0, (IV.48)

hence describing a state with zero total spin, which is fully polarised in the valley
isospin and fully anti-polarised in the orbital isospin degree of freedom.

Analytic Description of the Phase Boundaries

At filling factor ν = −2, we observe two different types of phase transitions: going
from phase (I) to phase (II) is achieved by a smooth rotation of the valley isospin.
This is a second order transition. From phase (II) to phase (III), however, the sys-
tem undergoes jumps in the spin and the orbital isospin degree of freedom, which
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Figure IV.6
Phase diagram of the
ν = −1 ground state as
yielded by Hartree
Fock analysis. There
are nine different phases
emerging, labelled (I)-
(IV), (Va,b,c), (VI),
and (VII). Figure from
reference [Knothe and
Jolicoeur, 2016]. 0 10 20 30 40                                                              B[T]

0

20

40

60

80

100

120

140

160

180

Bi
as

 Δ
B 

[m
eV

]

Δ
B 

[m
eV

]
(IV)(II)(I) (V)

(VII)

(III)

(VI)

6 8 10 12                                                                    B[T]                              
0

2

4

6

8

(IV)(III)

(VI)

(Va) (Vb)

(Vc)

Δ
B 

[m
eV

]

0 10 20 30                                  B[T]
0

0.1
0.2
0.3
0.4

(II)

(III) (IV)

(I)

υ=-1

characterises a discontinuous first order phase transition.

We give the critical biases at which transitions between the different phases occur.

(I)→ (II) second order transition:

∆crit
B,eff = −4αd−∆0000`B−2∆0011`B−∆1111`B+`BX0000+2`BX0011+`BX1111

`B(z−2) .
(IV.49)

(II)→ (III) first order transition:
The ground state of phase (II) is lower in energy than the phase (III) ground
state up to a critical bias

∆crit
B,eff =

1

z
(∆0000 − 2∆0011 + 2∆01 −∆1111 + 2∆Z). (IV.50)

F Three Electrons: ν = −1

When there are three electrons in the system, we find the following ground
state structure:

Unbiased case ∆B ≡ 0; Evolution as a Function of B

At zero bias, the ground state is a fully polarised spin ferromagnet, while its valley
isospin lies in the {x-y}-plane, and the orbital isospin is canted in an orbital coher-
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ent phase.

The ground state configuration for the three electrons is given by

|v1〉 = − 1√
2

[
|1, ↑,+〉+ |1, ↑,−〉

]
,

|v2〉 =
1√
2

[
|0, ↑,+〉+ |0, ↑,−〉

]
,

|v3〉 = − 1√
2

sin θ0

[
|1, ↑,+〉 − |1, ↑,−〉

]
− 1√

2
cos θ0

[
|0, ↑,+〉 − |0, ↑,−〉

]
, (IV.51)

where the optimal angle in orbital space θ0, as shown in figure IV.15, varies as a
function of B between θ0 → π

4 at vanishing magnetic field B → 0 and θ0 = π
2 at

sufficiently high magnetic field strengths above a certain critical value Bcrit ≈ 11.3
T. This angle fulfils the relation

cos 2θ0 =
−3∆0000 − 4∆01 + 3∆1111 +X0000 −X1111

∆0000 − 2(∆0011 + ∆1001) + ∆1111 +X0000 − 2(X0011 +X1001) +X1111
.

(IV.52)
The state exhibits the properties

Sz ≡
3

2
, Sx ≡ Sy ≡ 0,

Tz = 0, Tx ≡
1

2
, Ty ≡ 0,

Lz = − cos 2θ, Lx = sin 2θ, Ly ≡ 0. (IV.53)

Along the line of zero bias, as a function of the magnetic field strength B, the
ground state hence undergoes a transition from a canted state in the orbital isospin
to a partially polarised state L = 1

2ez .

Phases (I) and (II): Rotation of the Valley Isospin at either Canted or
Partially Aligned Orbital Isospin

In the regime of very small bias ∆B , we find a rotation of the valley isospin at
either canted or partially aligned orbital isospin, respectively. In both, phases (I)
and (II), the ground state is a fully polarised spin ferromagnet. The valley isospin
assumes non-trivial configurations 0 ≤ Tx, Tz ≤ 1, Ty ≡ 0. Phase (I) occurs for suf-
ficiently small values of the magnetic field, B < Bcrit; the corresponding ground
state is given by an involved superposition of different single particle states which
leads to a non-trivial isospin configuration. In phase (II), however, i.e., at field val-
ues above the critical magnetic field, we can describe the valley isospin in simple
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terms with the valley canting angle θ as the only parameter.

These phases are characterised by the non-trivial combinations

Phase (I):

|v1〉 = −a1|1, ↑,+〉 − a2|1, ↑,−〉+ b1|0, ↑,+〉+ b2|0, ↑,−〉,
|v2〉 = b1|1, ↑,+〉+ b2|1, ↑,−〉+ a1|0, ↑,+〉+ a2|0, ↑,−〉,
|v3〉 = c1|1, ↑,+〉 − c2|1, ↑,−〉 − c3|0, ↑,+〉+ c4|0, ↑,−〉, (IV.54)

Phase (II):

|v1〉 = −a1|1, ↑,+〉 − a2|1, ↑,−〉,
|v2〉 = a1|0, ↑,+〉+ a2|0, ↑,−〉,
|v3〉 = a2|1, ↑,+〉 − a1|1, ↑,−〉, (IV.55)

with coefficients ai, bi, ci > 0 varying as functions of ∆B and B.

In phase (II), we can set a1 = cos θ and a2 = sin θ and determine the optimal angle
to be

cos 2θ(II) =
∆B,eff `B

αd+ `B(∆0000 −X0000)
. (IV.56)

For the phases (I) and (II) we find the following spin and isospin structure, respec-
tively:

Phase (I):

Sz =
3

2
, Sx ≡ Sy ≡ 0,

Tz = a2
1 − a2

2 + b21 − b22 +
1

2
(c2

1 − c2
2 + c2

3 − c2
4) ,

Tx = 2a1a2 + 2b1b2 − (c1c2 + c3c4) ,

Ty ≡ 0,

Lz =
1

2
(c2

1 + c2
2 − c2

3 − c2
4) ,

Lx = −(c1c3 + c2c4),

Ly ≡ 0, (IV.57)
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and phase (II):

Sz =
3

2
, Sx ≡ Sy ≡ 0,

Tz = a2
1 − a2

2 = cos 2θ , Tx = a1a2 = sin 2θ , Ty ≡ 0,

Lz =
1

2
, Lx ≡ Ly ≡ 0.

The orbital isospin in phase (I) is in a canted configuration, 0 ≤ Lx, Lz ≤ 1, Ly ≡ 0,
whereas phase (II) is partially polarized in orbital space.

Hence, in phase (I) and (II), cuts along lines of increasing bias ∆B for any strength
of the magnetic field B correspond to a rotation of the valley isospin vector from
a configuration in the {x-y}-plane to a state fully aligned along the z-axis. At the
same time, increasing B at a fixed value of the bias ∆B corresponds to rotating
the orbital isospin from a canted configuration in phase (I) to a partly polarised
configuration, L = 1

2ez , in phase (II).

Phase (III) and (IV): Spin and Valley Ferromagnet, Rotation in the Or-
bital Isospin

At larger values of the bias ∆B we find pendants of phase (I) and (II), now at po-
larised configurations of the valley isospin: in this case, the ground state is a fully
polarised spin ferromagnet and a partially polarised valley isospin, while the or-
bital isospin degree of freedom again varies as function of the bias ∆B and the
magnetic field strength B.

The ground state of phase (III) is given by state vectors of the form

|v1〉 = 1, ↑,+〉,
|v2〉 = |0, ↑,+〉,
|v3〉 = cos θ|1, ↑,−〉+ sin θ|0, ↑,−〉, (IV.58)

with the optimal angle determined by

cos 2θ(III) =
∆0000 + 2∆01 −∆1111 + z∆B,eff

∆0000 − 2(∆0011 + ∆1001) + ∆1111
. (IV.59)

Therefore, the the following spin and isospin properties characterise phase (III):

Sz ≡
3

2
, Sx ≡ Sy ≡ 0,

Tz =
1

2
, Tx ≡ Ty ≡ 0,

Lz =
1

2
cos 2θ, Lx =

1

2
sin 2θ, Ly ≡ 0. (IV.60)
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This optimal canting angle of the orbital isospin varies as function of the bias ∆B

and the magnetic field strengthB; at any value of ∆B , whenB increases, the angle
rotates until it reaches zero; this leads to a phase which is partially polarised in the
orbital isospin.

Phase (IV):

|v1〉 = 1, ↑,+〉,
|v2〉 = |0, ↑,+〉,
|v3〉 = |1, ↑,−〉, (IV.61)

exhibiting the properties

Sz ≡
3

2
, Sx ≡ Sy ≡ 0,

Tz =
1

2
, Tx ≡ Ty ≡ 0,

Lz =
1

2
, Lx ≡ Ly ≡ 0. (IV.62)

Hence, increasing the magnetic field strength B corresponds to rotating the or-
bital isospin from a canted configuration in phase (III) to a partially polarised state
L = 1

2ez in phase (IV). Both the spin and the valley isospin vectors remain constant
in these phases for all values of ∆B and B.

Phase (V): Evolution of all Spins and Isospins

A narrow transition regime is established with complex behaviour of the ground
state configuration. All spin and isospin degrees of freedom take nontrivial values
and evolve as functions of ∆B and B. In general, the ground state within this
parameter regime is described by the vectors

|v1〉 = |1, ↑,+〉
|v2〉 = |0, ↑,+〉,
|v3〉 = c1|1, ↑,−〉+ c2|1, ↓,+〉 − c3|0, ↑,−〉 − c4|0, ↓,+〉, (IV.63)

leading to spin and isospin properties

Sz = 1 +
1

2
(c2

1 − c2
2 + c2

3 − c2
4), Sx ≡ Sy ≡ 0,

Tz = 1− 1

2
(c2

1 − c2
2 + c2

3 − c2
4), , Tx ≡ Ty ≡ 0,

Lz =
1

2
(c2

1 + c2
2 − c2

3 − c2
4), Lx = −(c1c3 + c2c4), Ly ≡ 0. (IV.64)
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Within the parameter range of phase (V) one can distinguish between the follow-
ing regimes:

-Phase (Va):

For B < Bcrit, all four entries ci 6= 0 evolve smoothly as functions of the bias ∆B

and the magnetic field strength B. For increasing ∆B across phase (Va), this leads
to smooth evolutions of the spin and valley isospins from Sz = 3

2 to Sz = 1
2 and

from Tz = 1
2 to Tz = 3

2 , respectively, accompanied by kinks in the orbital isospin
components which are nonzero within this range: 0 < Lz <

1
2 and 0 < Lx <

1
2 .

-Phases (Vb) and (Vc):

For B > Bcrit, two competing transitions occur within the parameter range of
phase (V): there is a smooth evolution of Sz and Tz as in the former case; It is gov-
erned by smoothly evolving entries c1 and c2 while c3 ≡ c4 ≡ 0 (this entails within
this regime Lx ≡ 0 and Lz ≡ 1

2 fixed by normalisation). At a sufficiently high value
of ∆B , eventually, c4 jumps to a nonzero value, thereby inducing nonzero values
of Lz and Lx and nontrivial evolutions of all spin and isospin degrees of freedom.

Phase (VI): Rotation of the Orbital Isospin

This phase occupies a wide parameter range including all magnetic field strengths
and intermediate values of the bias ∆B . While the spin is partially polarised and
the valley isospin is fully polarised, the orbital isospin is in a canted configuration.

The electrons occupy the states

|v1〉 = |1, ↑,+〉
|v2〉 = |0, ↑,+〉,
|v3〉 = cos θ|1, ↓,+〉 − sin θ|0, ↓,+〉, (IV.65)

under the optimal angle

cos 2θ(VI) =
∆0000 + 2∆01 −∆1111 − z∆Beff

∆0000 − 2(∆0011 + ∆1001) + ∆1111
, (IV.66)

resulting in the spin and isospin properties

Sz ≡
1

2
, Sx ≡ Sy ≡ 0,

Tz =
3

2
, Tx ≡ Ty ≡ 0,

Lz = cos 2θ, Lx = sin 2θ, Ly ≡ 0. (IV.67)
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Hence, for any value of the magnetic field B, with rising bias ∆B , the orbital
isospin performs a rotation to a partially antiferromagnetically polarised config-
uration along the z-axis: L→ −1

2ez .

Phase (VII): Polarised in Spin and Valley, Partially Anti-Polarised Or-
bital Isospin

For sufficiently large values of the bias, the ground state phase eventually reaches
a configuration which is partially polarised in spin, fully polarised in the valley
isospin, and partially antiferromagnetically polarised in the orbital isospin degree
of freedom.

The ground state phase is in the configuration

|v1〉 = |1, ↑,+〉
|v2〉 = |0, ↑,+〉,
|v3〉 = |0, ↓,+〉, (IV.68)

hence exhibiting

Sz ≡
1

2
, Sx ≡ Sy ≡ 0,

Tz ≡
3

2
, Tx ≡ Ty ≡ 0,

Lz ≡ −
1

2
, Lx ≡ Ly ≡ 0, (IV.69)

which means phase (VII) eventually stabilised an aligned spin and valley isospin
configuration, while the orbital isospin is anti-aligned along the z-axis.

Analytic Description of the Phase Boundaries

Except for the transition regime of phase (V) described above, all phase transitions
of the ν = −1 phase diagram go along with smooth rotations of the respective
isospin vectors and therefore are of second order. The most prominent transitions
occur at the following critical values of the bias:

(II) −→ (IV):

∆crit
B,eff =

αd+ ∆0000`B − `BX0000

`B
(IV.70)

(III) −→ (IV):

∆crit
B,eff = −2

z
(∆0011 + ∆01 + ∆1001 −∆1111) (IV.71)
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(IV) −→ (Vb):

∆crit
B,eff =

−αd+ ∆1111`B −∆Z`B − `BX1111

`B(z − 1)
(IV.72)

(Vb) −→ (Vc):

∆crit
B,eff =

1

4`B(2z cos 2θV b − 2 cos 2θV b + z cos 2θV c + z − 2)[
− 18αd− 16αd cos 2θV b + 2αd cos 4θV b − 3∆0000`B − 2∆0011`B

−8∆01`B − 2∆1001`B + 3∆1111`B − 8∆Z`B + 2∆1111`B cos 4t

−8∆Z`B cos 2θV b − 2`BX1111 cos 4θV b + 4∆0000`B cos 2θV c

−∆0000`B cos 4θV c + 2∆0011`B cos 4θV c + 8∆01`B cos 2θV c

+2∆1001`B cos 4θV c − 4∆1111`B cos 2θV c −∆1111`B cos 4θV c + 2`BX1111

]
(IV.73)

(VI) −→ (VII):

∆crit
B,eff =

2

z
(∆0000 −∆0011 + ∆01 −∆1001) (IV.74)

F Four Electrons: ν = 0

The bilayer graphene system is charge neutral when there are four electrons per
state occupying exactly half of the states within the octet. For this configuration of
half filling we find the following different ground state phases:

Phase (I): Spin Ferromagnet

For the unbiased scenario as well as for sufficiently small values of the bias ∆B the
ground state is a fully polarised spin ferromagnet, while it is an antiferromagnet
both in valley and in orbital space, leading to vanishing overall valley and orbital
polarisation. The four electrons int the ground state occupy the states

|v1〉 = |1, ↑,+〉,
|v2〉 = |1, ↑,−〉,
|v3〉 = |0, ↑,+〉,
|v4〉 = |0, ↑,−〉. (IV.75)

The total state is then a spin ferromagnet:

Sz ≡ 2, Sx ≡ Sy ≡ 0,

Tz ≡ Tx ≡ Ty ≡ 0,

Lz ≡ Lx ≡ Ly ≡ 0. (IV.76)
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Figure IV.7
Phase diagram of
the ν = 0 ground
state obtained from
Hartree Fock analysis.
There are three different
phases, labelled (I), (II),
and (III). Figure from
reference [Knothe and
Jolicoeur, 2016] (edited). 0 10 20 30 40                                                              B[T]
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Phase (II): Evolution of Spin and Valley Isospin

For all magnetic field strengths and in an intermediate regime of the bias, the spin
and the valley isospin undergo an evolution when varying ∆B andB as a function
of one common angle θ. The ground state of the phase is described by state vectors
of the form

|v1〉 = |1, ↑,+〉,
|v2〉 = cos θ|1, ↑,−〉+ sin θ|1, ↓,+〉,
|v3〉 = |0, ↑,+〉,
|v4〉 = cos θ|0, ↑,−〉+ sin θ|0, ↓,+〉. (IV.77)

The optimal angle is determined by

cos 2θ(II) =
4αd+ 2∆Z`B + ∆Beff `B(z − 2)

4αd+ `B(∆0000 + 2∆0011 + ∆1111 −X0000 − 2X0011 −X1111)
,

(IV.78)
yielding for the total spin and isospin properties

Sz = 2 cos2 θ, Sx ≡ Sy ≡ 0,

Tz = 2 sin2 θ, Tx ≡ Ty ≡ 0,

Lz ≡ Lx ≡ Ly ≡ 0. (IV.79)

Hence, for a given value of the magnetic field B, upon increasing the bias ∆B over
the parameter range of phase (II), the total spin evolves from a fully aligned state
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to a state with zero total spin, while, contrarily, the total valley isospin evolves
from zero to fully polarised valley ferromagnet state: S = 2ez −→ S ≡ 0, T ≡
0 −→ T = 2ez .

Phase (III): Valley Isospin Ferromagnet

For sufficiently large values of the bias ∆B the ground state assumes antiferromag-
netic order in both the spin space and in the space of the orbital isospin, while be-
ing a fully polarised ferromagnet in valley space. The ground state configuration
of the single electrons turns into

|v1〉 = |1, ↑,+〉,
|v2〉 = |1, ↓,+〉,
|v3〉 = |0, ↑,+〉,
|v4〉 = |0, ↓,+〉, (IV.80)

which represents a ferromagnetic state in valley space:

Sz ≡ Sx ≡ Sy ≡ 0,

Tz ≡ 2, Tx ≡ Ty ≡ 0,

Lz ≡ Lx ≡ Ly ≡ 0. (IV.81)

Analytic Description of the Phase Boundaries

The transitions between the different ground state phases of ν = 0 are all charac-
terised by smooth rotations of the isospin degrees of freedom indicating continu-
ous second order transitions.

We give the critical biases at which transitions between the different phases occur:

(I)→ (II):

∆crit
B,eff =

∆0000 + 2∆0011 + ∆1111 − 2∆Z −X0000 − 2X0011 −X1111

z − 2
. (IV.82)

(II)→ (III) :

∆crit
B,eff =

`B(−∆0000 − 2∆0011 −∆1111 − 2∆Z +X0000 + 2X0011 +X1111)− 8αd

`B(z − 2)
.

(IV.83)

F Five Electrons: ν = 1

For the case of five electrons we identify the following ground state structure:

151



CHAPTER IV: Phase Diagram of a Graphene Bilayer

Figure IV.8
Phase diagram of
the ν = 1 ground
state obtained from
Hartree Fock analysis.
There are different
phases emerging, la-
belled (I)-(VII). Figure
from reference [Knothe
and Jolicoeur, 2016]. 0 10 20 30 40                                                              B[T]
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Bias ∆B ≡ 0; Evolution as a Function of B

At zero bias, we find a ground state configuration in which the spin is partially po-
larised, while the valley isospin vector lies in the {x-y}-plane. The orbital isospin
assumes a canted configuration, thus exhibiting non-trivial orbital coherence.
The ground state structure for the five electrons is given by

|v1〉 = |1, ↑,+〉,
|v2〉 = |1, ↑,−〉,
|v3〉 = |0, ↑,+〉,
|v4〉 = |0, ↑,−〉,

|v3〉 =
1√
2

cos θ0

[
|1, ↓,+〉+ |1, ↓,−〉

]
+

1√
2

sin θ0

[
|0, ↓,+〉 − |0, ↓,−〉

]
, (IV.84)

where the optimal angle θ0, as shown in figure IV.15, varies as a function of B
between θ0 → π

4 at vanishing magnetic field B → 0 and θ0 = 0 at sufficiently
high magnetic field strengths above a certain critical value Bcrit ≈ 11 T. This angle
fulfils the relation

cos θ0 =

√
∆0000 −∆0011 + 2∆01 −∆1001 +X0000 −X0011 −X1001√

∆0000 − 2∆0011 − 2∆1001 + ∆1111 +X0000 − 2X0011 − 2X1001 +X1111
.

(IV.85)
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The state exhibits the properties

Sz ≡
3

2
, Sx ≡ Sy ≡ 0,

Tz = 0, Tx ≡
1

2
, Ty ≡ 0,

Lz = cos 2θ, Lx = sin 2θ, Ly ≡ 0. (IV.86)

Along the line of zero bias, as a function of the magnetic field strength B, the
ground state hence undergoes a transition from a canted state in the orbital isospin
to a partially polarised state L = 1

2ez .

Phases (I) and (II): Rotation of the Valley Isospin at either Canted or
Partially Polarised Orbital Isospin

At small values of the bias ∆B , these phases are in a partially polarised spin state,
while the valley isospin takes non-trivial values 0 ≤ Tx, Tz ≤ 1. Meanwhile, the
orbital isospin is either in canted configuration with 0 ≤ Lx, Lz ≤ 1 (phase I, for
sufficiently small values of the magnetic field) or is partially polarised (phase II,
above some critical magnetic field strength). The former case being more involved,
in the latter phase (II) we find a single parameter dependence of the states’ config-
uration with one optimal angle θ. These phases are characterised by the non-trivial
combinations

Phase (I):

|v1〉 = |1, ↑,+〉,
|v2〉 = |1, ↑,−〉,
|v3〉 = |0, ↑,+〉,
|v4〉 = |0, ↑,−〉,
|v5〉 = a1|1, ↓,+〉+ a2|1, ↓,−〉 − a3|0, ↓,+〉 − a4|0, ↓,−〉, (IV.87)

Phase (II):

|v1〉 = |1, ↑,+〉,
|v2〉 = |1, ↑,−〉,
|v3〉 = |0, ↑,+〉,
|v4〉 = |0, ↑,−〉,
|v5〉 = a1|1, ↓,+〉+ a2|1, ↓,−〉, (IV.88)

with coefficients ai > 0 varying as functions of ∆B and B.
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In phase (II), we can set a1 = cos θ and a2 = sin θ and determine the optimal angle
to be

cos 2θ(II) =
∆B,eff `B(z − 1)

`B(X1111 −∆1111)− αd
, (IV.89)

governing the canting in valley space.

For the phases (I) and (II) we find the following spin and isospin structure, respec-
tively:

Phase (I):

Sz =
3

2
, Sx ≡ Sy ≡ 0,

Tz =
1

2
(a2

1 − a2
2 + a2

3 − a2
4) ,

Tx = a1a2 + a3a4 ,

Ty ≡ 0,

Lz =
1

2
(c2

1 + c2
2 − c2

3 − c2
4) ,

Lx = −(c1c3 + c2c4),

Ly ≡ 0, (IV.90)

Phase (II):

Sz =
3

2
, Sx ≡ Sy ≡ 0,

Tz =
1

2
(a2

1 − a2
2) = cos 2θ , Tx = a1a2 = sin 2θ , Ty ≡ 0,

Lz =
1

2
, Lx ≡ Ly ≡ 0.

Hence, in phase (I) and (II), cuts along lines of increasing bias ∆B for any strength
of the magnetic field B correspond to a rotation of the valley isospin vector from a
configuration in the {x-y}-plane to a state aligned along the z-axis: T = 1

2ex −→
T = 1

2ez . At the same time, increasing B at a fixed value of the bias ∆B corre-
sponds to rotating the orbital isospin from a canted configuration in phase (I) to an
partially polarised configuration, L = 1

2ez , in phase (II).

Phase (III) and (IV): Spin and Valley Ferromagnet, Rotation of the Or-
bital Isospin

At larger values of the bias ∆B , similar behaviour as in phases (I) and (II) translates
into valley polarised phases: we find the ground state to be partially polarised
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both in spin space and in the space of the valley isospin, while the orbital isospin
is either canted (below a critical magnetic field in phase III) or partially polarised
(for sufficiently large magnetic field values in phase IV).

The ground state of phase (III) is given by state vectors of the form

|v1〉 = |1, ↑,+〉,
|v2〉 = |1, ↑,−〉,
|v3〉 = |0, ↑,+〉,
|v4〉 = |0, ↑,−〉,
|v5〉 = cos θ|1, ↓,+〉+ sin θ|0, ↓,+〉, (IV.91)

with the optimal angle determined by

cos 2θ(III) =
∆0000 + 2∆01 −∆1111 − z∆B,eff

∆0000 − 2(∆0011 + ∆1001) + ∆1111
. (IV.92)

Therefore, the the following spin and isospin properties characterise phase (III):

Sz ≡
3

2
, Sx ≡ Sy ≡ 0,

Tz =
1

2
, Tx ≡ Ty ≡ 0,

Lz =
1

2
cos 2θ, Lx =

1

2
sin 2θ, Ly ≡ 0. (IV.93)

The optimal canting angle of the orbital isospin varies as a function of the bias ∆B

and the magnetic field strengthB; at any value of ∆B , whenB increases, the angle
rotates until it reaches zero; this leads to a partially polarised phase in the orbital
isospin:

Phase (IV):

|v1〉 = |1, ↑,+〉,
|v2〉 = |1, ↑,−〉,
|v3〉 = |0, ↑,+〉,
|v4〉 = |0, ↑,−〉,
|v5〉 = |1, ↓,+〉, (IV.94)
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exhibiting the properties

Sz ≡
3

2
, Sx ≡ Sy ≡ 0,

Tz =
1

2
, Tx ≡ Ty ≡ 0,

Lz =
1

2
, Lx ≡ Ly ≡ 0. (IV.95)

Hence, increasing the magnetic field strength B corresponds to rotating the orbital
isospin from a canted configuration in phase (III) to a partially polarised state L =
1
2ez in phase (IV). Both the spin and the valley isospin vectors remain constant in
these phases for all values of ∆B and B.

Phase (V): Evolution of all Spins and Isospins

Within a narrow range of the bias ∆B , there is an intermediate transition regime:
we find a complex ground state structure in which all the spin and isospin degrees
of freedom take non-trivial values and evolve as functions of ∆B and the mag-
netic field strength B. In general, the ground state within this parameter regime is
described by the vectors

|v1〉 = |1, ↑,+〉,
|v2〉 = a1|1, ↑,−〉+ a2|1, ↓,+〉,
|v3〉 = |0, ↑,+〉,
|v4〉 = b1|0, ↑,−〉+ b2|0, ↓,+〉,
|v5〉 = c1|1, ↑,−〉+ c2|1, ↓,+〉+ c3|0, ↑,−〉+ c4|0, ↓,+〉, (IV.96)

leading to spin and isospin properties

Sz = 1 +
1

2
(a1

2 − a2
2 + b1

2 − b22 + c1
2 − c2

2 + c3
2 − c4

2), Sx ≡ Sy ≡ 0,

Tz = 1− 1

2
(a1

2 + a2
2 − b12 + b2

2 − c1
2 + c2

2 − c3
2 + c4

2), Tx ≡ Ty ≡ 0,

Lz =
1

2
(a1

2 + a2
2 − b12 − b22 + c1

2 + c2
2 − c3

2 − c4
2),

Lx = c1c3 + c2c4, Ly ≡ 0. (IV.97)

Cuts of increasing bias ∆B at fixed B may exhibit one of three different types of
behaviour, respectively, depending on the value of B:
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- Phase (Va):

For small B, the phase (Va) is located between the phases (III) and (VI): in both
these phases, the orbital isospin is neither zero nor fully polarised, exhibiting non-
zero value Lx 6= 0. Phase (Va) now smoothly connects between these two phases
with all four entries ai 6= 0, bi 6= 0, and ci 6= 0 evolving smoothly as functions of
the bias ∆B and the magnetic field strength B. For increasing ∆B across phase
(Va), this leads to smooth evolutions of the spin and valley isospin from Sz = 3

2
to Sz = 1

2 and from Tz = 1
2 to Tz = 3

2 , respectively, accompanied by kinks in the
orbital isospin components being nonzero 0 < Lz <

1
2 and 0 < Lx <

1
2 .

- Phase (Vb):

For an intermediate value of B, the phase (Vb) emerges between the phases (III)
and (VII). In the former, the orbital isospin is not fully polarised, with Lx 6= 0,
whereas in the latter only the x-component is nonzero: Lz = 1

2 and Lx ≡ Ly ≡ 0.
This transition is accomplished within phase (Vb) by first a sudden jump of the
orbital isospin Lx → 0, Lz → 1

2 , as the coefficients c3 and c4 suddenly jump to
zero; Subsequently, the smooth rotations of the spin and the valley isospin degrees
of freedom are governed by the remaining coefficients ai and bi evolving smoothly.

-Phase (Vc):

For large enough values of the magnetic field, the phase (Vc) is located between
the phases (IV) and (VII) — both these phases exhibit the same configuration of
the orbital isospin degree of freedom: L = 1

2ez . Here, the coefficients ci are zero
throughout the phase (Vc): c1 ≡ c2 ≡ 0. The orbital isospin therefore remains
constant within this regime . The remaining coefficients ai and bi evolve smoothly
as functions of ∆B and B, entailing smooth rotations Sz = 3

2 → Sz = 1
2 Tz = 1

2 →
Tz = 3

2 across phase (Vc).

Phase (VI) and (VII): Rotation of the Orbital Isospin to a Partially Po-
larised State

For sufficiently large values of the bias ∆B , we observe ground state structures
akin to those of phases (III) and (IV), but here at full valley polarisation: at par-
tially polarised spin and fully valley polarised isospin, the orbital isospin rotates
from a canted position we call phase (VI) at sufficiently small magnetic fields to
a partially polarised state, i.e., phase (VII), above a certain critical magnetic field
strength.
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In phase (VI), the electrons occupy the states

|v1〉 = |1, ↑,+〉,
|v2〉 = |1, ↓,+〉,
|v3〉 = |0, ↑,+〉,
|v4〉 = |0, ↓,+〉,
|v3〉 = cos θ|1, ↑,−〉 − sin θ|0, ↑,−〉, (IV.98)

with the optimal angle

cos 2θ(VI) =
∆0000 + 2∆01 −∆1111 + ∆Beffz

∆0000 − 2(∆0011 + ∆1001) + ∆1111
, (IV.99)

resulting in the spin and isospin properties

Sz ≡
1

2
, Sx ≡ Sy ≡ 0,

Tz =
3

2
, Tx ≡ Ty ≡ 0,

Lz = cos 2θ, Lx = sin 2θ, Ly ≡ 0. (IV.100)

Hence, for any value of the magnetic fieldB, with rising bias ∆B the orbital isospin
performs a rotation to a configuration aligned along the z-axis: L→ 1

2ez .

For sufficiently large values of the bias, phase (VII) is then given by the limiting
case of phase (VI):

|v1〉 = |1, ↑,+〉,
|v2〉 = |1, ↓,+〉,
|v3〉 = |0, ↑,+〉,
|v4〉 = |0, ↓,+〉,
|v3〉 = |1, ↑,−〉, (IV.101)

hence exhibiting

Sz ≡
1

2
, Sx ≡ Sy ≡ 0,

Tz ≡
3

2
, Tx ≡ Ty ≡ 0,

Lz ≡
1

2
, Lx ≡ Ly ≡ 0, (IV.102)

which means phase (VII) eventually stabilises a configuration fully polarised along
the z-axis in valley isospin, and partially polarised in spin and orbital isospin de-
gree of freedom.
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Analytic Description of the Phase Boundaries

Except for the more complicated transition regime within phase (V), all phase tran-
sitions observed for the ν = 1 state are of continuous second order nature. We
compute the critical values of the bias for these transitions, respectively:

(II) −→ (IV):

∆crit
B,eff =

−αd−∆1111`B + `BX1111

`B(z − 1)
(IV.103)

(III) −→ (IV):

∆crit
B,eff =

2(∆0011 + ∆01 + ∆1001 −∆1111)

z
(IV.104)

(IV) −→ (Vc):

∆crit
B,eff =

αd−∆0000`B + ∆Z`B + `BX0000

`B
(IV.105)

(Vc) −→ (VII):

∆crit
B,eff =

3αd+ ∆0000`B + ∆Z`B − `BX0000

`B

(VI) −→ (VII):

∆crit
B,eff = −2(∆0011 + ∆01 + ∆1001 −∆1111)

z
(IV.106)

F Six Electrons: ν = 2

If there are six electrons occupying octet states, the structure we find for the ground
state is the one depicted in figure IV.9 with the following three different phases:

Phase (I): Valley Coherent Phase

In the regime of sufficiently small bias, we observe a ground state which is par-
tially polarised in spin and exhibits valley coherence in a valley canted phase.
These phase is characterised by the single electron states

|v1〉 = |1, ↑,+〉,
|v2〉 = |1, ↑,−〉,
|v3〉 = |0, ↑,+〉,
|v4〉 = |0, ↑,−〉,
|v5〉 = sin θ|1, ↓,+〉+ cos θ|1, ↓,−〉,
|v6〉 = sin θ|0, ↓,+〉+ cos θ|0, ↓,−〉, (IV.107)
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Figure IV.9
Phase diagram of the ν =
2 ground state as yielded
by Hartree Fock analysis.
Three different phases
emerge, labelled (I), (II),
(III). Figure from refer-
ence [Knothe and Joli-
coeur, 2016].
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with the optimal canting angle

cos 2θ(I) = −
∆B,eff `B(z − 2)

`B(−∆0000 − 2∆0011 −∆1111 +X0000 + 2X0011 +X1111)− 4αd
.

(IV.108)

For the phase (I) we find the following spin and isospin structure:

Sz =
1

2
, Sx ≡ Sy ≡ 0,

Tz = − cos 2θ , Tx = sin 2θ , Ty ≡ 0,

Lz ≡ Lx ≡ Ly ≡ 0.

The orbital order is antiferromagnetic, which leads to vanishing overall orbital po-
larisation.

Hence, in phase (I), cuts along lines of increasing bias ∆B for any strength of
the magnetic field B correspond to a rotation of the valley-isospin vector from
a configuration in the {x-y}-plane to a state partially polarised along the z-axis:
T = ex −→ T = ez .

Phase (II): Partially Aligned Spin and Valley Ferromagnet

For larger values of the bias ∆B , we observe an intermediate regime, in which the
ground state exhibits partial polarisation both in the spin and the valley isospin
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degree of freedom and antiferromagnetic ordering in the orbital isospin.

The ground state of phase (II) is given by state vectors of the form

|v1〉 = |1, ↑,+〉,
|v2〉 = |1, ↑,−〉,
|v3〉 = |0, ↑,+〉,
|v4〉 = |0, ↑,−〉,
|v5〉 = |1, ↓,+〉,
|v6〉 = |0, ↓,+〉. (IV.109)

Therefore, given the the spin and isospin properties of phase (II),

Sz ≡
1

2
, Sx ≡ Sy ≡ 0,

Tz =
1

2
, Tx ≡ Ty ≡ 0,

Lz ≡ Lx ≡ Ly ≡ 0, (IV.110)

the ground state stabilises a partially aligned spin and valley ferromagnet over a
broad parameter range.

Phase (III): Partially Aligned Valley and Orbital Ferromagnet

When the system is biased sufficiently strongly, we find the ground state to be a
polarised state both for the valley and the orbital isospin. Meanwhile, due to anti-
ferromagnetic ordering of the spin degree of freedom, the overall spin polarisation
vanishes.

In phase (III), the ground state electron states are given by

|v1〉 = |1, ↑,+〉,
|v2〉 = |1, ↑,−〉,
|v3〉 = |0, ↑,+〉,
|v4〉 = |1, ↓,−〉,
|v5〉 = |1, ↓,+〉,
|v6〉 = |0, ↓,+〉, (IV.111)
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which reflects in the spin and isospin properties

Sz ≡ Sx ≡ Sy ≡ 0,

Tz =
1

2
, Tx ≡ Ty ≡ 0,

Lz =
1

2
, Lx ≡ Ly ≡ 0. (IV.112)

The ground state stabilises a partially aligned valley and orbital ferromagnet for
large values of the bias ∆B for all magnetic field strengths.

Analytic Description of the Phase Boundaries

For the system at filling ν = 2 we identify two different types of phase transi-
tions as functions of ∆B and B: the small bias transition (I) to (II) comes with a
smooth rotation of the valley isospin and therefore is of continuous second order.
For larger bias, however, the system jumps from phase (II) to phase (III) in a dis-
continuous fashion characterising a first order transition.

We give the values of the critical bias, at which these phase transitions occur:

Second order transition (I) −→ (II):

∆crit
B,eff =

`B(∆0000 − 2∆0011 −∆1111 +X0000 + 2X0011 +X1111)− 4αd

`B(z − 2)
(IV.113)

First order transition (II) −→ (III):

∆crit
B,eff =

−∆0000 − 2∆0011 − 2∆01 + ∆1111 + 2∆Z

z
(IV.114)

F Seven Electrons: ν = 3

With seven electrons, i.e., only one hole in the octet, the ground state phases exhibit
the structure shown in figure IV.10:

Bias ∆B ≡ 0; Evolution as a Function of B

At zero bias, we find a partially spin polarised ground state, while the valley
isospin lies in the {x-y}-plane. The state exhibits orbital coherence as the orbital
isospin is in a canted configuration.
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Figure IV.10
Phase diagram of
the ν = 3 ground
state extracted from the
Hartree Fock analysis.
There are different
phases emerging, la-
belled (I)-(IV). Figure
from reference [Knothe
and Jolicoeur, 2016].

The ground state configuration for the seven electrons is given by

|v1〉 = |1, ↑,+〉,
|v2〉 = |1, ↑,−〉,
|v3〉 = |0, ↑,+〉,
|v4〉 = |0, ↑,−〉,

|v5〉 =
1√
2

cos θ0

[
|1, ↓,+〉+ |1, ↓,−〉

]
+

1√
2

sin θ0

[
|0, ↓,+〉+ |0, ↓,−〉

]
,

|v6〉 =
1√
2

sin θ0

[
|1, ↓,+〉+ |1, ↓,−〉

]
− 1√

2
cos θ0

[
|0, ↓,+〉+ |0, ↓,−〉

]
,

|v7〉 =
1√
2

sin θ0

[
|1, ↓,+〉 − |1, ↓,−〉

]
+

1√
2

cos θ0

[
|0, ↓,+〉 − |0, ↓,−〉

]
, (IV.115)

where the optimal angle θ0 varies as a function of B between θ0 → π
4 at vanishing

magnetic fieldB → 0 and θ0 = 0 at sufficiently high magnetic field strengths above
a certain critical value Bcrit ≈ 11.3 T. It fulfils the relation

cos 2θ0 =
−3∆0000 − 4∆01 + 3∆1111 +X0000 −X1111

∆0000 − 2∆0011 − 2∆1001 + ∆1111 +X0000 − 2X0011 − 2X1001 +X1111
.

(IV.116)
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The state exhibits the properties

Sz ≡
1

2
, Sx ≡ Sy ≡ 0,

Tz = 0, Tx ≡
1

2
, Ty ≡ 0,

Lz = − cos 2θ, Lx = sin 2θ, Ly ≡ 0. (IV.117)

Along the line of zero bias, as a function of the magnetic field strength B, the
ground state hence undergoes a transition from a canted state in the orbital isospin
to a partially aligned state L = 1

2ez .

Phases (I) and (II): Rotation of the Valley Isospin at either Canted or
Partially Aligned Orbital Isospin

In this regime of sufficiently weak bias ∆B , the ground state exhibits partial polar-
isation in spin space, while the valley isospin undergoes a rotation and therefore
takes non-trivial values 0 ≤ Tx, Tz ≤ 1

2 . Meanwhile, the orbital isospin is either
canted with 0 ≤ Lx, Lz ≤ 1

2 for small magnetic field strengths in phase (I), or
partially polarised in phase (II) at sufficiently large magnetic fields. While the de-
pendencies of the isospins in phase (I) being more involved, we can express the
valley isospin in phase (II) in terms of one valley tilting angle.

These phases are characterised by the non-trivial combinations:

Phase (I):

|v1〉 = |1, ↑,+〉,
|v2〉 = |1, ↑,−〉,
|v3〉 = |0, ↑,+〉,
|v4〉 = |0, ↑,−〉,
|v5〉 = −a1|1, ↓,+〉+ a2|1, ↓,−〉 − a3|0, ↓,+〉+ a4|0, ↓,−〉,
|v6〉 = a3|1, ↓,+〉 − a4|1, ↓,−〉 − a1|0, ↓,+〉+ a2|0, ↓,−〉,
|v7〉 = a4|1, ↓,+〉+ a3|1, ↓,−〉+ a2|0, ↓,+〉+ a1|0, ↓,−〉, (IV.118)

with coefficients ai > 0 varying as functions of ∆B and B.
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In phase (II), where a1 ≡ 0 and a2 ≡ 0, we set a3 = cos θ and a4 = sin θ, and
simplify above expression :

|v1〉 = |1, ↑,+〉,
|v2〉 = |1, ↑,−〉,
|v3〉 = |0, ↑,+〉,
|v4〉 = |0, ↑,−〉,
|v5〉 = − cos θ|0, ↓,+〉+ sin θ|0, ↓,−〉,
|v6〉 = cos θ|1, ↓,+〉 − sin θ|1, ↓,−〉,
|v7〉 = sin θ|1, ↓,+〉+ cos θ|1, ↓,−〉. (IV.119)

The optimal angle of phase (II) is then given by

cos 2θ(II) =
∆B,eff `B

αd+ `B(∆0000 −X0000)
. (IV.120)

For the phases (I) and (II) we find the following spin and isospin structure, respec-
tively:

Phase (I):

Sz =
1

2
, Sx ≡ Sy ≡ 0,

Tz =
1

2
(a2

1 − a2
2 + a2

3 − a2
4) ,

Tx = −(a1a2 + a3a4) ,

Ty ≡ 0,

Lz = −1

2
(a2

1 + a2
2 − a2

3 − a2
4) ,

Lx = a1a3 + a2a4,

Ly ≡ 0, (IV.121)

Phase (II):

Sz =
3

2
, Sx ≡ Sy ≡ 0,

Tz =
1

2
(a2

3 − a2
4) = cos 2θ , Tx = −a3a4 = − sin 2θ , Ty ≡ 0,

Lz =
1

2
, Lx ≡ Ly ≡ 0.

Hence, in phase (I) and (II), cuts along lines of increasing bias ∆B for any strength
of the magnetic field B correspond to a rotation of the valley-isospin vector from a
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configuration in the {x-y}-plane to a state aligned along the z-axis: T = 1
2ex −→

T = 1
2ez . At the same time, increasing B at a fixed value of the bias ∆B corre-

sponds to rotating the orbital isospin from a canted configuration in phase (I) to an
aligned configuration, L = 1

2ez , in phase (II).

Phase (III): Canted Orbital Isospin

At small magnetic fields and large values of the bias, the spin and the valley isospin
degree of freedom are equally partially polarised, while the orbital isospin under-
goes a rotation through a canted state, thereby exhibiting non-trivial orbital coher-
ence.

The ground state of phase (III) is given by state vectors of the form

|v1〉 = |1, ↑,+〉,
|v2〉 = |1, ↑,−〉,
|v3〉 = |0, ↑,+〉,
|v4〉 = |0, ↑,−〉,
|v5〉 = |1, ↓,+〉,
|v6〉 = |0, ↓,+〉,
|v7〉 = cos θ|1, ↓,−〉+ sin θ|0, ↓,−〉, (IV.122)

with the optimal angle determined by

cos 2θ(III) = −2(∆0011 + ∆01 + ∆1001 −∆1111)

z
. (IV.123)

Therefore, the following spin and isospin properties characterise phase (III):

Sz ≡
1

2
, Sx ≡ Sy ≡ 0,

Tz =
1

2
, Tx ≡ Ty ≡ 0,

Lz =
1

2
cos 2θ, Lx =

1

2
sin 2θ, Ly ≡ 0. (IV.124)

The optimal canting angle of the orbital isospin varies as function of the bias ∆B

and the magnetic field strength B.

Phase (IV): Partially Aligned Ferromagnet

When both magnetic field strengthB and bias ∆B are sufficiently large, the ground
state adopts a configuration in which all spin and isospin degrees of freedom are
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equally partially polarised.

The ground state in this regime is described by the vectors

|v1〉 = |1, ↑,+〉,
|v2〉 = |1, ↑,−〉,
|v3〉 = |0, ↑,+〉,
|v4〉 = |0, ↑,−〉,
|v5〉 = |1, ↓,+〉,
|v6〉 = |0, ↓,+〉,
|v7〉 = |1, ↓,−〉,

where all the spins and isospins are partially aligned along the z-axis:

Sz ≡
1

2
, Sx ≡ Sy ≡ 0,

Tz =
1

2
, Tx ≡ Ty ≡ 0,

Lz =
1

2
, Lx ≡ Ly ≡ 0. (IV.125)

Analytic Description of the Phase Boundaries

All the phase transitions for filling factor ν = 3 are continuous second order tran-
sitions, which occur via smooth rotations of the respective isospin degrees of free-
dom.

We give the critical biases at which transitions between the different phases occur:

(I) −→ (III):

∆crit
B,eff =

αd

`B
+ ∆0000 −X0000 (IV.126)

(III) −→ (IV):

∆crit
B,eff = −2(∆0011 + ∆01 + ∆1001 −∆1111)

z
(IV.127)

IV.2.3 Properties of the Phases - Comparative Discussion

General Features

We start by discussing the common features shared by all the phase diagrams of
figure IV.3 for the filling factors ν ∈ [−3, 3]. In general, we observe a variety of dif-
ferent spin and isospin structures: among these, the valley and the orbital isospin
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can be either fully or partially polarised, or in canted configurations, thus exhibit-
ing non-trivial valley or orbital coherence. In figure IV.3, the regions where such
valley or orbital coherent phases occur are drawn in bordeaux, pink, turquoise,
yellow, or orange, respectively. Canting of the spin degree of freedom is observed
for none of the configurations for any filling factor or any value of the system pa-
rameters. Hence, there is no coherence in the real spin and all the phases observed
are either partially or fully spin polarised. The spin and isospin configurations for
all the different possible phases are summarised in tables IV.9 and IV.10.

The unbiased system at ∆B ≡ 0 is spin polarised for all values of the filling fac-
tor. This also remains true for sufficiently small values of the bias in every case.
In figure IV.3, we refer to all phases except the blue or green ones at even filling
factors. In the opposite limit of large bias, valley polarisation emerges for all ν.
These phases are coloured in blue or green in figure IV.3. Qualitatively, this is
in accordance with experimental [Kim et al., 2011] as well as previous theoreti-
cal [Lambert and Côté, 2013] investigations which suggest an evolution towards a
valley polarised state with increasing bias. The values of the critical bias and the
critical magnetic field strength below which the system is spin polarised, while
above these values valley polarisation can be observed, however, differ for differ-
ent values of ν. Furthermore, it depends on the filling factor whether the respective
polarised phase formed in these two limits is partially polarised or fully polarised
in spin or valley space.

Odd versus Even Filling Factors

In the next step, we compare the behaviour of the ground state phase diagrams
obtained at odd filling factors to the situation at even fillings. Special attention
we pay to the properties of the orbital degree of freedom, as here we observe the
following:

Odd fillings ν = −3,−1, 1, 3
For the unbiased system, i.e., along the line of zero bias ∆B ≡ 0, all the sys-
tems with ν odd undergo a similar evolution of the orbital isospin: at small
B, we find a orbitally canted configuration. Then, with rising B, the orbital
isospin rotates smoothly until it reaches a polarised state above some critical
magnetic field strength Bcrit. For non-zero values of the bias this transition
in the orbital configuration is translated into the upper half of each phase
diagram: for every odd filling factor, we find a large phase exhibiting orbital
coherence at any ∆B > 0. These regions of non-trivial orbital coherence are
drawn in yellow or orange in figure IV.3. All the orbitally coherent phases
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then, respectively, evolve into orbitally polarised configurations, marked in
blue or green in figure IV.3, respectively, by smooth rotations of the orbital
isospin when B is increased for any ∆B held fix.

Even fillings ν = −2, 0, 2
For even filling factors, however, we do not observe any phase with orbital
coherence whatsoever. Furthermore, there is no phase transition as a func-
tion ofB along the line of zero bias. In fact the ground state is in a configura-
tion which is spin polarised at vanishing orbital isospin stable for all values
of B. Some of the phases at ν even do exhibit orbital polarisation, i.e., the
total orbital isospin is of the form L ∝ ez : these phases are drawn in blue
at ν = −2, and green at ν = 2 in figure IV.3. The remaining phases at even
fillings show antiferromagnetic orbital order, i.e., the overall orbital polarisa-
tion vanishes such that we find L ≡ 0.

Furthermore, only for the cases ν = −2 and ν = 2 discontinuous phase
transitions of first order are observed when entering the regime of very high
bias. All other phase transitions in the bilayer graphene system correspond
to smooth rotations of the respective isospin and are hence of second order.

IV.2.4 Negative against Positive Filling Factors

Finally let us compare the behaviour of the phases at negative filling factors ν =
−3,−2,−1, 0, table IV.9, to positive filling factors ν = 1, 2, 3, table IV.10. Here, the
most striking feature has to do with the appearance of orbital polarisation. In the
limit of large values of the bias ∆B , the system exhibits orbital polarisation for
all values of the filling factor: in figure IV.3 these phases are drawn in blue or in
green. Differences, however, can be observed with respect to the question in which
direction the system will be polarised in orbital space.

Negative fillings ν = −3,−2,−1, 0
For negative filling factors orbital polarisation is negative, i.e., we find L ∝
−ez . This corresponds to the blue phases in figure IV.3. Physically, this indi-
cates that at negative filling factors it is energetically favourable to populate
predominantly the n = 0 orbitals

Positive fillings ν = 1, 2, 3
The ground state for positive filling factors for sufficiently large bias turns
out to be positively polarised: L ∝ +ez . These phases are indicated in green
in figure IV.3. Hence, at positive filling factors the systems prefer to succes-
sively populate n = 1 orbitals.
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IV.2.5 Phase Diagrams - Summary and Conclusion

In this section we analysed the ground state spin and isospin structure of bilayer
graphene at different octet filling factors ν under the influence of external electric
and magnetic fields. Distinguishing the different phases by their different config-
urations of the spin, the valley isospin and the orbital isospin degree of freedom,
within a Hartree Fock mean field treatment we derived the seven phase diagrams
for ν ∈ [−3, 3] in the plane spanned by the bias potential and the magnetic field.
Concerning the nature of the individual phases me made the following observa-
tions:

Summary: Ground State Phase Diagrams for Different ν

• Altogether, for all filling factors and all values of the external fields,
we have identified a total of 32 different ground state phases. Each
phase is characterised by a different spin and isospin configuration.
Among these phases, there are configurations which are either fully or
partially polarised in the spin, the valley isospin, or the orbital isospin.
Besides, both the valley isospin and the orbital isospin can be in canted
configurations, carrying valley or orbital coherence. No canting is ob-
served for the spin degree of freedom.

• For each individual filling factor, the largest absolute value of the total
spin |S| is assumed for the unbiased system, at ∆B ≡ 0, whereas the
largest absolute value of the total valley isospin |T| of that respective
filling is favoured at large values of the bias ∆B ≡ 0.

• We observe broad phases of non-trivial orbital coherence for all odd
values of the filling factors. These phases appear at intermediate
strengths of the bias potential which might be potentially accessible
in realistic experiments. No orbitally coherent phases are observed at
even filling factors.

• For the unbiased system, i.e., at ∆B ≡ 0, we observe a novel phase
transition as a function of an increasing magnetic field B for all odd
filling factors. It corresponds to a rotation from a phase canted in or-
bital space at small B to an orbitally polarised phase for sufficiently
large B above a critical magnetic field strength Bcrit ≈ 11.3 T. No such
phase transition is observed for even filling factors.
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In the following pages, we tabulate the the ground state configurations as
well as the resulting spin and isospin properties corresponding to the Hartree
Fock ground state phase diagrams of figure IV.3.
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Ground State Configurations for the Different Phases for Filling Factors ν

∆B ≡ 0 |v1〉 = 1√
2

cos θ
[
|1, ↑,+〉+ |1, ↑,−〉

]
+ 1√

2
sin θ

[
|0, ↑,+〉+ |0, ↑,−〉

]
Phase (I) |v1〉 = a1|1, ↑,+〉+ a2|1, ↑,−〉+ a5|0, ↑,+〉+ a6|0, ↑,−〉
Phase (II) |v1〉 = sin θ|1, ↑,+〉+ cos θ|1, ↑,−〉
Phase (III) |v1〉 = |1, ↑,+〉
Phase (IV) |v1〉 = sin θ|1, ↑,+〉+ cos θ|0, ↑,+〉
Phase (V) |v1〉 = |0, ↑,+〉

Table IV.2
Ground state configurations at ν = −3.

∆B ≡ 0 |v1〉 = 1√
2

[
|1, ↑,+〉+ |1, ↑,−〉

]
, |v2〉 = 1√

2

[
|0, ↑,+〉+ |0, ↑,−〉

]
,

Phase (I) |v1〉 = cos θ|1, ↑,+〉+ sin θ|1, ↑,−〉,
|v2〉 = cos θ|0, ↑,+〉+ sin θ|0, ↑,−〉,

Phase (II) |v1〉 = |1, ↑,+〉, |v2〉 = |0, ↑,+〉.
Phase (III) |v1〉 = |0, ↑,+〉, |v2〉 = |0, ↓,+〉,

Table IV.3
Ground state configurations at ν = −2.

∆B = 0 |v1〉 = − 1√
2

[
|1, ↑,+〉+ |1, ↑,−〉

]
, |v2〉 = 1√

2

[
|0, ↑,+〉+ |0, ↑,−〉

]
,

|v3〉 = −1√
2

sin θ
[
|1, ↑,+〉 − |1, ↑,−〉

]
− 1√

2
cos θ

[
|0, ↑,+〉 − |0, ↑,−〉

]
,

Phase (I) |v1〉 = −a1|1, ↑,+〉 − a2|1, ↑,−〉+ b1|0, ↑,+〉+ b2|0, ↑,−〉,
|v2〉 = b1|1, ↑,+〉+ b2|1, ↑,−〉+ a1|0, ↑,+〉+ a2|0, ↑,−〉,
|v3〉 = c1|1, ↑,+〉 − c2|1, ↑,−〉 − c3|0, ↑,+〉+ c4|0, ↑,−〉,

Phase (II) |v1〉 = − cos θ|1, ↑,+〉 − sin θ|1, ↑,−〉,
|v2〉 = cos θ|0, ↑,+〉+ sin θ|0, ↑,−〉,
|v3〉 = sin θ|1, ↑,+〉 − cos θ|1, ↑,−〉,

Phase (III) |v1〉 = |1, ↑,+〉, |v2〉 = |0, ↑,+〉, |v3〉 = cos θ|1, ↑,−〉+ sin θ|0, ↑,−〉
Phase (IV) |v1〉 = 1, ↑,+〉, |v2〉 = |0, ↑,+〉, |v3〉 = |1, ↑,−〉
Phase (V) |v1〉 = |1, ↑,+〉, |v2〉 = |0, ↑,+〉,

|v3〉 = c1|1, ↑,−〉+ c2|1, ↓,+〉 − c3|0, ↑,−〉 − c4|0, ↓,+〉
Phase (VI) |v1〉 = |1, ↑,+〉, |v2〉 = |0, ↑,+〉, |v3〉 = cos θ|1, ↓,+〉+ sin θ|0, ↓,+〉
Phase (VII) |v1〉 = |1, ↑,+〉, |v2〉 = |0, ↑,+〉, |v3〉 = |0, ↓,+〉

Table IV.4
Ground state configurations at ν = −1.
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Phase (I) |v1〉 = |1, ↑,+〉, |v2〉 = |1, ↑,−〉, |v3〉 = |0, ↑,+〉, |v4〉 = |0, ↑,−〉
Phase (II) |v1〉 = |1, ↑,+〉, |v2〉 = cos θ|1, ↑,−〉+ sin θ|1, ↓,+〉,

|v3〉 = |0, ↑,+〉, |v4〉 = cos θ|0, ↑,−〉+ sin θ|0, ↓,+〉
Phase (III) |v1〉 = |1, ↑,+〉, |v2〉 = |1, ↓,+〉, |v3〉 = |0, ↑,+〉, |v4〉 = |0, ↓,+〉

Table IV.5
Ground state configurations at ν = 0.

∆B = 0 |v1〉 = |1, ↑,+〉, |v2〉 = |1, ↑,−〉, |v3〉 = |0, ↑,+〉, |v4〉 = |0, ↑,−〉 ,
|v5〉 = 1√

2
cos θ

[
|1, ↓,+〉+ |1, ↓,−〉

]
− 1√

2
sin θ

[
|0, ↓,+〉+ |0, ↓,−〉

]
Phase (I) |v1〉 = |1, ↑,+〉, |v2〉 = |1, ↑,−〉, |v3〉 = |0, ↑,+〉, |v4〉 = |0, ↑,−〉 ,

|v5〉 = a1|1, ↓,+〉+ a2|1, ↓,−〉 − a3|0, ↓,+〉 − a4|0, ↓,−〉
Phase (II) |v1〉 = |1, ↑,+〉, |v2〉 = |1, ↑,−〉, |v3〉 = |0, ↑,+〉,

|v4〉 = |0, ↑,−〉, |v5〉 = cos θ|1, ↓,+〉+ sin θ|1, ↓,−〉
Phase (III) |v1〉 = |1, ↑,+〉, |v2〉 = |1, ↑,−〉, |v3〉 = |0, ↑,+〉,

|v4〉 = |0, ↑,−〉, |v5〉 = cos θ|1, ↓,+〉+ sin θ|0, ↓,+〉
Phase (IV) |v1〉 = |1, ↑,+〉, |v2〉 = |1, ↑,−〉, |v3〉 = |0, ↑,+〉,

|v4〉 = |0, ↑,−〉, |v5〉 = |1, ↓,+〉
Phase (V) |v1〉 = |1, ↑,+〉, |v2〉 = a1|1, ↑,−〉+ a2|1, ↓,+〉, |v3〉 = |0, ↑,+〉,

|v4〉 = b1|0, ↑,−〉+ b2|0, ↓,+〉 ,
|v5〉 = c1|1, ↑,−〉+ c2|1, ↓,+〉+ c3|0, ↑,−〉+ c4|0, ↓,+〉

Phase (VI) |v1〉 = |1, ↑,+〉, |v2〉 = |1, ↓,+〉, |v3〉 = |0, ↑,+〉,
|v4〉 = |0, ↓,+〉, |v5〉 = cos θ|1, ↑,−〉+ sin θ|0, ↑,−〉

Phase (VII) |v1〉 = |1, ↑,+〉, |v2〉 = |1, ↓,+〉, |v3〉 = |0, ↑,+〉,
|v4〉 = |0, ↓,+〉, |v5〉 = |1, ↑,−〉

Table IV.6
Ground state configurations at ν = 1.

∆B ≡ 0 |v1〉 = |1, ↑,+〉, |v2〉 = |1, ↑,−〉, |v3〉 = |0, ↑,+〉, |v4〉 = |0, ↑,−〉 ,
|v5〉 = 1√

2

[
|1, ↓,+〉+ |1, ↓,−〉

]
, |v6〉 = 1√

2

[
|0, ↓,+〉+ |0, ↓,−〉

]
Phase (I) |v1〉 = |1, ↑,+〉, |v2〉 = |1, ↑,−〉, |v3〉 = |0, ↑,+〉, |v4〉 = |0, ↑,−〉 ,

|v5〉 = sin θ|1, ↓,+〉+ cos θ|1, ↓,−〉,
|v6〉 = sin θ|0, ↓,+〉+ cos θ|0, ↓,−〉

Phase (II) |v1〉 = |1, ↑,+〉, |v2〉 = |1, ↑,−〉, |v3〉 = |0, ↑,+〉,
|v4〉 = |0, ↑,−〉, |v5〉 = |1, ↓,+〉, |v6〉 = |0, ↓,+〉

Phase (III) |v1〉 = |1, ↑,+〉, |v2〉 = |1, ↑,−〉, |v3〉 = |0, ↑,+〉,
|v4〉 = |1, ↓,−〉, |v5〉 = |1, ↓,+〉, |v6〉 = |0, ↓,+〉

Table IV.7
Ground state configurations at ν = 2.
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∆B = 0 |v1〉 = |1, ↑,+〉, |v2〉 = |1, ↑,−〉, |v3〉 = |0, ↑,+〉, |v4〉 = |0, ↑,−〉 ,
|v5〉 = 1√

2
cos θ

[
|1, ↓,+〉+ |1, ↓,−〉

]
+ 1√

2
sin θ

[
|0, ↓,+〉+ |0, ↓,−〉

]
,

|v6〉 = 1√
2

sin θ
[
|1, ↓,+〉+ |1, ↓,−〉

]
− 1√

2
cos θ

[
|0, ↓,+〉+ |0, ↓,−〉

]
,

|v7〉 = 1√
2

sin θ
[
|1, ↓,+〉 − |1, ↓,−〉

]
+ 1√

2
cos θ

[
|0, ↓,+〉 − |0, ↓,−〉

]
Phase (I) |v1〉 = |1, ↑,+〉, |v2〉 = |1, ↑,−〉, |v3〉 = |0, ↑,+〉, |v4〉 = |0, ↑,−〉,

|v5〉 = −a1|1, ↓,+〉+ a2|1, ↓,−〉 − a3|0, ↓,+〉+ a4|0, ↓,−〉,
|v6〉 = a3|1, ↓,+〉 − a4|1, ↓,−〉 − a1|0, ↓,+〉+ a2|0, ↓,−〉,
|v7〉 = a4|1, ↓,+〉+ a3|1, ↓,−〉+ a2|0, ↓,+〉+ a1|0, ↓,−〉

Phase (II) |v1〉 = |1, ↑,+〉, |v2〉 = |1, ↑,−〉, |v3〉 = |0, ↑,+〉, |v4〉 = |0, ↑,−〉 ,
|v5〉 = − cos θ|0, ↓,+〉+ sin θ|0, ↓,−〉,
|v6〉 = cos θ|1, ↓,+〉 − sin θ|1, ↓,−〉,
|v7〉 = sin θ|1, ↓,+〉+ cos θ|1, ↓,−〉

Phase (III) |v1〉 = |1, ↑,+〉, |v2〉 = |1, ↑,−〉, |v3〉 = |0, ↑,+〉, |v4〉 = |0, ↑,−〉,
|v5〉 = |1, ↓,+〉, |v6〉 = |0, ↓,+〉, |v7〉 = cos θ|1, ↓,−〉+ sin θ|0, ↓,−〉

Phase (IV) |v1〉 = |1, ↑,+〉, |v2〉 = |1, ↑,−〉, |v3〉 = |0, ↑,+〉, |v4〉 = |0, ↑,−〉,
|v5〉 = |1, ↓,+〉, |v6〉 = |0, ↓,+〉, |v7〉 = |1, ↓,−〉

Table IV.8
Ground state configurations at ν = 3
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Ground State Spin and Isospin Configurations for Different Filling Factors ν

Phase
ν -3 -2 -1 0

∆B ≡ 0 S = 1
2ez S = ez S = 3

2ez S = 2ez
T = 1

2ex T = ex T = 1
2ez T ≡ 0

L = 1
2 sin 2θex + 1

2 cos 2θez L ≡ 0 L = 1
2 sin 2θex − 1

2 cos 2θez L ≡ 0

I S = 1
2ez S = ez S = 3

2ez S = 2ez
0 ≤ Tz, Tx ≤ 1

2 , Ty ≡ 0 T = sin 2θex 0 ≤ Tz, Tx ≤ 1
2 , Ty ≡ 0 T ≡ 0

+ cos 2θez
0 ≤ Lz, Lx ≤ 1

2 , Ly ≡ 0 L ≡ 0 0 ≤ Lz, Lx ≤ 1
2 , Ly ≡ 0 L ≡ 0

II S = 1
2ez S = ez S = 3

2ez S = 2 cos2 θ ez
T = 1

2 sin 2θex − 1
2 cos 2θez T = ez T = 1

2 sin 2θex + 1
2 cos 2θez T = 2 sin2 θ ez

L = 1
2ez L ≡ 0 L = 1

2ez L ≡ 0

III S = 1
2ez S ≡ 0 S = 3

2ez S ≡ 0
T = 1

2ez T = ez T = 1
2ez T = 2ez

L = 1
2ez L = −ez L = 1

2 sin 2θex + 1
2 cos 2θez L ≡ 0

IV S = 1
2ez S = 3

2ez
T = 1

2ez - T = 1
2ez -

L = 1
2 sin 2θex − 1

2 cos 2θez L = 1
2ez

V S = 1
2ez

1
2 ≤ Sz ≤

3
2 , Sx ≡ Sy ≡ 0

T = 1
2ez - 1

2 ≤ Tz ≤
3
2 , Tx ≡ Ty ≡ 0 -

L = −1
2ez 0 ≤ Lz, Lx ≤ 1

2 , Ly ≡ 0

VI S = 1
2ez

- - T = 3
2ez -

L = 1
2 sin 2θex + 1

2 cos 2θez
VII S = 1

2ez
- - T = 3

2ez -
L = −1

2ez

Table IV.9
Spin and isospin properties of the different phases observed for negative filling
factors.
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Phase
ν 1 2 3

∆B ≡ 0 S = 3
2ez S = ez S = 1

2ez
T = 1

2ex T = ex T = 1
2ex

L = −1
2 sin 2θex + 1

2 cos 2θez L ≡ 0 L = 1
2 sin 2θex − 1

2 cos 2θez
I S = 3

2ez S = ez S = 1
2ez

0 ≤ Tz, Tx ≤ 1
2 , Ty ≡ 0 T = sin 2θex 0 ≤ Tz, Tx ≤ 1

2 , Ty ≡ 0
− cos 2θez

0 ≤ Lz, Lx ≤ 1
2 , Ly ≡ 0 L ≡ 0 0 ≤ Lz, Lx ≤ 1

2 , Ly ≡ 0

II S = 3
2ez S = ez S = 1

2ez
T = 1

2 sin 2θex + 1
2 cos 2θez T = ez T = −1

2 sin 2θex + 1
2 cos 2θez

L = 1
2ez L ≡ 0 L = 1

2ez
III S = 3

2ez S ≡ 0 S = 1
2ez

T = 1
2ez T = ez T = 1

2ez
L = 1

2 sin 2θex + 1
2 cos 2θez L = ez L = 1

2 sin 2θex + 1
2 cos 2θez

IV S = 3
2ez S = 1

2ez
T = 1

2ez - T = 1
2ez

L = 1
2ez L = 1

2ez
V 1

2 ≤ Sz ≤
3
2 ,Sx ≡ Sy ≡ 0

1
2 ≤ Tz ≤

3
2 , Tx ≡ Ty ≡ 0 - -

0 ≤ Lz, Lx ≤ 1
2 , Ly ≡ 0

VI S = 1
2ez

T = 3
2ez - -

L = 1
2 sin 2θex + 1

2 cos 2θez
VII S = 1

2ez
T = 3

2ez - -
L = 1

2ez

Table IV.10
Spin and isospin properties of the different phases for the bilayer system at positive
fillings
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Figure IV.11
Octet polarisation: magni-
tude of the spin vector (pink
solid line, empty squares),
valley isospin vector (gray
dashed line, filled triangles),
and orbital isospin vector
(blue dashed-dotted line,
filled circles) as a function
of the filling factor ν, for
different values of the bias
potential ∆B. Figure from
[Knothe and Jolicoeur, 2016].

IV.3 Bilayer Graphene in the Zero-Energy Landau Level
- Results (II): Physical Properties of the Phases

In this section we proceed by checking the many different ground states of bilayer
graphene obtained in the previous section for their physical properties. The aim is
to understand how different spin and isospin phases ground state configurations
manifest itself and reflect, e.g., in the polarisation properties, the electronic occupa-
tion of the two different layers, or scaling with the strength of the external fields. In
a subsequent step, we discuss possible implications and consequences for experi-
ments and compare our results to existing experimental and theoretical literature.

IV.3.1 Octet Polarisation and Hund’s Rules

We analyse the spin and isospin polarisation properties within the octet. For
the unbiased case ∆B ≡ 0, the dependence of the system’s polarisation on the
filling factor has been studied previously in reference [Barlas et al., 2008] in the
frame of the effective two-band model of bilayer graphene. The authors establish
Hund’s rules for the single particle level occupation: in which order the single par-
ticle levels will be occupied when the states of the octet are gradually filled with
electrons? What does the successive population of certain single particle levels im-
ply for the values of the total spin and the total isospin at a certain electronic filling?
Does the system prefer to balance out or to polarise a certain spin or isospin degree
of freedom? In figure IV.11 we show the spin and isospin polarisation forB = 15 T
and three bias values ∆B = 0 meV, ∆B = 50 meV, and ∆B = 400 meV. These val-
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ues of B and ∆B are chosen as representative examples, similar behaviour occurs
over a broad parameter range throughout the phase diagrams. Here, the magnitude
of an isospin vector is to be understood as magnitude[ez]=magnitude[ex]=1.

Depending on the strength of the bias, we observe the following different be-
haviour:

Unbiased case, ∆B ≡ 0
At zero bias we recover the results of Barlas et al. [Barlas et al., 2008]: First,
the real spin degree of freedom is polarised. Second, under the restrictions
imposed by the spin configuration, the polarisation of the valley isospin and,
third, the polarisation of the orbital isospin is maximised to the greatest pos-
sible extent. This behaviour is shown in the upper plot of figure IV.11.

∆B = 50 meV
In the case of intermediate bias the role of real spin and valley isospin are
reversed. Here, the valley degree of freedom is maximised first before max-
imising the remaining degrees of freedom: first, the real spin and, subse-
quently to the maximal possible extent, the orbital isospin.

∆B = 400 meV
In the case of stronger bias the properties of the orbital isospin polarisation
can be altered: At similar behaviour of the valley isospin, we observe states
which are antiferromagnetically polarised in the orbital degree of freedom.

These examples at non-zero values of the bias, ∆B > 0, which we show in the
central and lower plot of figure IV.11 demonstrate that the simple picture for the
octet polarisation as drawn previously in reference [Barlas et al., 2008] may change
if the system is biased.

A remark about the generality of these statements is in order: the three examples
we show in figure IV.11 represent cuts through the broadest phases of the phase
diagrams to be seen in figure IV.3 for all the different fillings ν. Due to the rich
structure apparent from figure IV.3, exhibiting a variety of different phases, many
cuts through the phase diagrams are possible which may yield octet polarisation
diagrams different from the ones shown as representative examples in figure IV.11.

IV.3.2 Layer Polarisation

We discuss how the electrons distribute on the bilayer graphene lattice, given a cer-
tain filling factor and ground state phase. The electronic distribution between the
two graphene layers has frequently been discussed in previous works, e.g., [Côté
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Figure IV.12
Electronic occupation of the sub-layer LK+

1 (left) and sub-layer LK+

2 (right) in the
K+ valley as predicted by the four-band model as a function of magnetic field B
and bias potential ∆B. Both plots use the same colour scale.

et al., 2010; Zhang and MacDonald, 2012; Min et al., 2008], investigating the forma-
tion of states exhibiting either interlayer coherence or being fully layer polarised.
This is related to exotic properties such as the formation of electronic dipoles [Côté
et al., 2010] or the anomalous condensation of excitons [Barlas et al., 2010]. These
studies, however, have been carried out within the effective two-band model of
bilayer graphene [McCann and Fal’ko, 2006]. As discussed in the introductory
section II.1, as well as when deriving the model Hamiltonian of bilayer graphene,
section IV.1.1, within this approximate description in terms of only two effective
low-energy bands, there is a direct correspondence between the value of the val-
ley index assigned to the electrons and the graphene layer. Therefore, this model
automatically predicts a state which is valley polarised also to be layer polarised.
This is not the case in the four-band model. As pointed out in section II.1 and
again in section IV.1.1, it is clear from the form of the four-spinor states, equation
(II.34), together with the behaviour of the coefficients for the respective entries
given in equation (II.35) that the one-to-one correspondence between valley index
and layer occupation is not exact in the description using all four bands. While for
electrons occupying the n = 0 orbital the identification valley↔ layer can still be
made, for electrons in the n = 1 orbital also for a well-defined single valley index
+ or−, occupation of both layers is enforced as soon as the bias ∆B takes non-zero
values.

We quote the notation of section II.1.1, where the coefficients of the state vectors
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Figure IV.13
Electronic distribution between the two sub-layers, labeled as layer L1 and layer
L2, in the various ground state phases at different filling factors.
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Figure IV.14
Electronic distribution as in figure IV.13 for the examples ν = −3 and ν = −2
in logarithmic scale to enhance the visibility of the low-bias regime. For zero bias
∆B = 0, for all filling factors the electrons are distributed equally between the two
layers.

within the four-band model in the nth Landau level are denoted by b(n),i. If we
define the n = 0 state to fully reside on the lower layer (on the atoms labelled by
"A" in section II.1.1), for the n = 1 Landau level in the K+-valley, the occupation
of the upper and the lower layer, LK+

1 and L
K+

2 , as dictated by the coefficients in
equation (II.35), is then given by LK+

1 = |b(1),1|2 + |b(1),1|2 and L
K+

2 = |b(1),3|2, re-
spectively.

The layer occupations LK+

1 and LK+

2 in the the {∆B-B}-plane are- plotted in figure
IV.12. It becomes evident that although the major weight of the electronic occu-
pation is on sub-layer L1, there is no full layer polarisation for the biased system:
L2 > 0 ∀∆B 6= 0.

This implies important consequences for the properties of the phases we iden-
tified in the phase diagrams of figure IV.3. In general, valley polarised phases
cannot be automatically identified with fully layer polarised states. In fact, as
evident from the form of the state in equation (II.34), full layer polarisation can
only be achieved if two conditions are met simultaneously: the electrons must
form a state polarised in the valley degree of freedom and at the same time all
of them exclusively occupy the n = 0 orbital. We note that our explanations
laid out here about the electronic layer occupation are not related to our Hartree
Fock protocol or the explicit form of our model Hamiltonian. The behaviour of
the electrons in a given Hartree Fock spin and isospin phase is rooted only in the
properties of the four-band model and the form of the state vectors as detailed
above. A solid understanding of the distribution of the electrons on the lattice,
however, is vital for a proper understanding of experimental observations. There-
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fore, we proceed by extracting the information about the electronic layer polari-
sation from our Hartree Fock results for each ground state phase at different fill-
ing factors ν. The line of argumentation is easiest for the case ν = −3, where
there is only one single electron occupying states within the octet: If we consider
the electronic state of an electron in the space H = Horb ⊗ Hspin ⊗ Hvalley writ-
ten in the basis {1 ↑ +, 1 ↑ −, 1 ↓ +, 1 ↓ −, 0 ↑ +, 0 ↑ −, 0 ↓ +, 0 ↓ −} as
ψ = (a1, a2, a3, a4, a5, a6, a7, a8)t, we compute the occupation LK+

1 and L
K+

2 of the
upper and lower layer, respectively, as:

L
K+

1 = |a1|2(|b(n),1|2 + |b(n),4|2) + |a2|2|b(n),3|2 + |a3|2(|b(n),1|2 + |b(n),4|2) (IV.128)

+ |a4|2|b(n),3|2 + |a5|2 + |a7|2,

L
K+

2 = |a1|2|b(n),3|2 + |a2|2(|b(n),1|2 + |b(n),4|2) + |a3|2|b(n),3|2 (IV.129)

+ |a4|2(|b(n),1|2 + |b(n),4|2) + |a6|2 + |a8|2.

We observe phases fulfilling the above two requirements for full layer polarisation
in the large bias regime of the two lowest filling factors: For filling factor ν = −3
in phase (V) and for filling ν = −2 in phase (III). The other states at negative filling
factors ν = −1 and ν = 0, respectively, tend towards partially polarised states in
the limit of large ∆B . Although the overall orbital isospin is partially negatively
polarised along the z-axis, in these cases not only n = 0, but also n = 1 orbitals are
partially occupied. Therefore, the layer occupation does not tend towards exact
layer polarisation. Nevertheless, in this regime we do find states in which the
occupation of one of the two layers largely dominates over the occupation of the
other layer. This, however, is not the case for the positive filling factors ν = 1, 2, 3.
In these cases, the states at large bias exhibit overall positive orbital polarisation,
hence occupation of the n = 1 orbital dominates over occupation of the n = 0
state. As a consequence, no such thing as full layer polarisation can be seen. Even
in the limit of large bias, the electrons will be distributed between both layers.
Furthermore, for the unbiased system at ∆B ≡ 0, we observe the electrons to be
equally distributed between both graphene layers for all values of the filling factor
ν ∈ [−3, 3]. We illustrate these different types of behaviour for the different filling
factors ν in figures IV.13 and IV.14.

IV.3.3 Extrapolation to Zero Magnetic Field

We comment on the behaviour of bilayer graphene in the regime of very small
magnetic field strengths. Experiments have studied in detail the limit of vanishing
magnetic field for this system. It has been argued that in the absence of any mag-
netic field, there nevertheless emerges magnetic ordering of the spin and isospin
degrees of freedom that spontaneously breaks underlying symmetries [Min et al.,
2008; Zhang et al., 2010; Nandkishore and Levitov, 2010a; Jung et al., 2011]. This
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Figure IV.15
Canting angles in orbital space at different fill-
ing factors at low magnetic field: blue lines for
ν = −1 or ν = 3: unbiased case, θ0, equa-
tions (IV.52), (IV.116) (solid) and phase (VI), θV I ,
equation (IV.66) (dashed). pink curves at ν = −3
or ν = 1: phase (IV), θIV , equation (IV.35),
(solid) and unbiased case, θ0, equations (IV.25),
(IV.85) (dashed). gray curve at ν = 3 or ν = 1:
phase (III), θIII , equation (IV.123) and phase (VI),
θV I , equation (IV.99). For the angles at filling fac-
tors ν = 2 and ν = −2 we find θ0 ≡ π

4 ∀ B.

may lead to spontaneous quantum Hall states [Zhang et al., 2011; Zhang and Mac-
Donald, 2012; Zhang et al., 2012]. The question arises how these spontaneous
quantum Hall states might be related to the quantum Hall states at non-zero
magnetic field [Nandkishore and Levitov, 2010b; Kharitonov, 2012a]. Recent ex-
perimental investigation draws the following picture: for charge neutral bilayer
graphene, the existence of a gapped phase at zero magnetic field in sufficiently
clean samples at sufficiently low temperatures is generally established [Freitag
et al., 2012; Bao et al., 2012]. This phase is believed to continuously evolve into
the gapped ν = 0 quantum Hall state as the magnetic field increases [Veligura
et al., 2012; Velasco Jr et al., 2012; Weitz et al., 2010]. For filling factor ν = 2, the ob-
servations of reference [Velasco Jr et al., 2014] suggest that the limiting behaviour
with B → 0 depends on the bias potential applied: while for small bias ∆B the
system extrapolates to a vanishing gap, for sufficiently large bias, when the sys-
tem presumably has entered a phase different from the low bias phase, the gap
remains finite as B goes to zero. Reference [Shi et al., 2016] reports for ν = 1 a
vanishing gap with vanishing magnetic field independently of the bias potential,
e.g., for both of the two different phases observed in this study.

We analyse the limit B → 0 in our Hartree Fock mean field approach. The results
we obtain from our Hartree Fock model Hamiltonian in this regime we present
as follows: For each filling factor, we extract the properties of the unbiased case
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∆B ≡ 0, as well as the phases that extend to the low magnetic field regime of the
phase diagrams in figure IV.3. For the odd filling factors, these phases go along
with canting of the orbital degree of freedom: This corresponds to phase (IV) at
ν = −3, to phase (VI) at ν = −1, and to phase (VI) at ν = 1. In order to obtain a
better understanding of the behaviour at low magnetic fields, we show the evolu-
tion of the different canting angles in these respective phases as well as the orbital
canting angles of the zero bias phases as functions ofB in figure IV.15. The limiting
states which follow from the naive extrapolation B → 0 are then summarised in
Table IV.11.

From these states at vanishing magnetic fields, we read off the following crucial
piece of information:

Even filling factors ν = −2, 0, 2
In the case of even filling of the octet the ground state configurations decom-
pose into simple product states in the orbital degree of freedom. The ground
states can be written in the form vi =

∑
n,σ,τ,τ ′ an,σ,τ,τ ′ |n, σ, τ, τ ′〉 with coeffi-

cients ai.

Odd fillings ν = −3,−1,+1,+3
For odd fillings, we find states with non-trivial orbital coherence in the limit
B → 0: vi =

∑
n,n′,σ,τ,τ ′ an,n′,σ,τ,τ ′ |n, n′, σ, τ, τ ′〉. These orbitally coherent

states explicitly rely on the quantisation of the Landau level modes by the
external magnetic field and thus do not have an obvious counterpart in the
zero-field case.

This means that the states at odd filling factors behave differently from the even
filling factor states when the field is decreased to zero. While at even fillings
the ground state might be connected smoothly to gapped spontaneous quantum
Hall states atB = 0, such extrapolation is not obvious for odd filling factors. Here,
the zero magnetic field ground state might be gapless. Indications for such be-
haviour have been seen experimentally, e.g., in references [Veligura et al., 2012;
Velasco Jr et al., 2012; Weitz et al., 2010], and [Shi et al., 2016]. We note, however,
that the description of bilayer graphene in our model is valid really only in the
limit of high magnetic fields as we rely on Landau level quantisation, on a contin-
uous description and the assumption of sufficiently large Landau level splitting.
Hence, Landau level mixing will be important at low fields. The states we extract
for B → 0 in Table IV.11 can serve only as hints to connect the high magnetic field
region and the case B = 0 where spontaneous quantum Hall states have been pre-
dicted. We cannot exclude the existence of additional phases in the regime of small
but non-zero magnetic field as conjectured, e.g., in references [Weitz et al., 2010] or
[Nandkishore and Levitov, 2010b].
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ν Phase Ground state in the limit B → 0

−3 ∆B ≡ 0 |v1〉 = 1
2

[
|1, ↑,+〉+ |1, ↑,−〉+ |0, ↑,+〉+ |0, ↑,−〉

]
(IV) |v1〉 = 1√

2

[
|0, ↑,+〉+ |1, ↑,+〉

]
−2 ∆B ≡ 0 |v1〉 = 1√

2

[
|1, ↑,+〉+ |1, ↑,−〉

]
, |v2〉 = 1√

2

[
|0, ↑,+〉+ |0, ↑,−〉

]
(II) |v1〉 = |1, ↑,+〉, |v2〉 = |0, ↑,+〉

−1 ∆B ≡ 0 |v1〉 = − 1√
2

[
|1, ↑,+〉+ |1, ↑,−〉

]
, |v2〉 = 1√

2

[
|0, ↑,+〉+ |0, ↑,−〉

]
,

|v3〉 = −1
2

[
|1, ↑,+〉 − |1, ↑,−〉+ |0, ↑,+〉 − |0, ↑,−〉

]
(VI) |v1〉 = |1, ↑,+〉, |v2〉 = |0, ↑,+〉, |v3〉 = 1√

2

[
|1, ↓,+〉+ |0, ↓,+〉

]
0 ∆B ≡ 0 |v1〉 = |1, ↑,+〉, |v2〉 = |1, ↑,−〉, |v3〉 = |0, ↑,+〉, |v4〉 = |0, ↑,−〉

(III) |v1〉 = |1, ↑,+〉, |v2〉 = |1, ↓,+〉, |v3〉 = |0, ↑,+〉, |v4〉 = |0, ↓,+〉
1 ∆B ≡ 0 |v1〉 = |1, ↑,+〉, |v2〉 = |1, ↑,−〉, |v3〉 = |0, ↑,+〉, |v4〉 = |0, ↑,−〉,

|v5〉 = 1
2

[
|1, ↓,+〉+ |1, ↓,−〉 − |0, ↓,+〉 − |0, ↓,−〉

]
(VI) |v1〉 = |1, ↑,+〉, |v2〉 = |1, ↓,+〉, |v3〉 = |0, ↑,+〉,

|v4〉 = |0, ↓,+〉, |v5〉 = 1√
2

[
|1, ↑,−〉+ |0, ↑,−〉

]
2 ∆B ≡ 0 |v1〉 = |1, ↑,+〉, |v2〉 = |1, ↑,−〉, |v3〉 = |0, ↑,+〉, |v4〉 = |0, ↑,−〉 ,

|v5〉 = 1√
2

[
|1, ↓,+〉+ |1, ↓,−〉

]
, |v6〉 = 1√

2

[
|0, ↓,+〉+ |0, ↓,−〉

]
(II) |v1〉 = |1, ↑,+〉, |v2〉 = |1, ↑,−〉, |v3〉 = |0, ↑,+〉,

|v4〉 = |0, ↑,−〉, |v5〉 = |1, ↓,+〉, |v6〉 = |0, ↓,+〉
3 ∆B ≡ 0 |v1〉 = |1, ↑,+〉, |v2〉 = |1, ↑,−〉, |v3〉 = |0, ↑,+〉, |v4〉 = |0, ↑,−〉,

|v5〉 = 1
2

[
|1, ↓,+〉+ |1, ↓,−〉+ |0, ↓,+〉+ |0, ↓,−〉

]
,

|v6〉 = 1
2

[
|1, ↓,+〉+ |1, ↓,−〉 − |0, ↓,+〉 − |0, ↓,−〉

]
,

|v7〉 = 1
2

[
|1, ↓,+〉 − |1, ↓,−〉+ |0, ↓,+〉 − |0, ↓,−〉

]
(III) |v1〉 = |1, ↑,+〉, |v2〉 = |1, ↑,−〉, |v3〉 = |0, ↑,+〉, |v4〉 = |0, ↑,−〉,

|v5〉 = |1, ↓,+〉, |v6〉 = |0, ↓,+〉, |v7〉 = 1√
2

[
|1, ↓,−〉+ |0, ↓,−〉

]
Table IV.11
Ground state configurations in the limit B → 0.

.
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IV.3.4 Properties of the Phases - Summary

In this section we analysed several different aspects related to the physical proper-
ties of the many different possible ground state phases of bilayer graphene under
external electric and magnetic fields identified in the previous section. The major
aim was to understand how the individual phases might manifest itself in exper-
iment and what might be features to distinguish them. We summarise the key
findings of this section as follows:

Summary: Physical Properties of the Phases

• We analysed the octet polarisation properties when the eight single
particle levels are successively populated with electrons. We saw that
a non-zero bias potential can lead to novel Hund’s rules compared to
the unbiased system: depending on the value of the bias, either the
spin or the valley isospin is polarised first or the direction of polarisa-
tion for the orbital isospin is reversed.

• When we studied the electronic distribution on the bilayer
graphene lattice within the different phases within the frame of the
four-band model, we saw that, generally, no full layer polarisa-
tion, with electrons residing on only one of the graphene lattices, is
achieved, not even for the fully valley polarised configurations.

• For the regime of very small magnetic field strengths we observed that
in the limit B −→ 0 the ground state configurations at even values of
the filling factor tend to assume simple product states in the orbital de-
gree of freedom. This suggests smooth extrapolation to the zero field
spontaneous quantum Hall states for ν even. At odd filling factors,
however, this is not the case and the limit states at vanishing magnetic
field exhibit non-trivial orbital coherence for ν odd.

IV.3.5 Relation to Experiment and to Theoretical Studies

In section IV.2 we saw that bilayer graphene in the quantum Hall regime exhibits a
plethora of possible spin and isospin ground state phases for different octet filling
factors and at different values of external electric and magnetic fields. In section
IV.3 we gained insight in the behaviour and physical properties of the individual
different phases. In a subsequent step, we now compare the predictions of our
Hartree Fock mean field model treatment to the observations of experimental in-
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vestigations as well as to earlier theoretical studies.

The effect of external magnetic and electric fields on graphene mono- and multi-
layers has been under intense experimental investigation [Weitz et al., 2010; Kim
et al., 2011; Bao et al., 2012; Velasco Jr et al., 2012; Maher et al., 2013; Velasco Jr
et al., 2014; Lee et al., 2014; Maher et al., 2014; Shi et al., 2016; Hunt et al., 2016]. We
first briefly review the picture drawn by experiments and compare our work with
experimental findings, before discussing similarities and differences compared to
theoretical approaches [Castro et al., 2010; Côté et al., 2010; Lambert and Côté,
2013; Shizuya, 2012].

The fact that external fields influence the ordering of spin, valley, and orbital de-
grees of freedom, and that transitions between states of different spin and isospin
order can be induced by tuning externally applied fields, has been realised several
years ago [Weitz et al., 2010; Kim et al., 2011]. Recently, there has been tremen-
dous improvement in the quality of the samples, and data became available in a
much wider parameter range. This has lead to detailed insights about the nature
of the different phases at different filling factors. By carefully monitoring sudden
changes in the conduction properties, one infers the number of phase transitions
upon varying the bias potential at fixed magnetic field B:

• At ν = ±3, a single phase transition has been seen [Weitz et al., 2010; Maher
et al., 2013, 2014] at zero bias ∆B ≡ 0.

• For ν = ±2, references [Weitz et al., 2010; Velasco Jr et al., 2014; Lee et al.,
2014; Hunt et al., 2016; Maher et al., 2014] report multiple transitions at non-
zero bias while there is no sign of phase transition at zero bias.

• Both types of transitions, at ∆B ≡ 0 as well as at |∆B| 6= 0, have been ob-
served [Weitz et al., 2010; Shi et al., 2016; Hunt et al., 2016; Maher et al., 2014]
at ν = ±1.

• The properties at charge neutrality ν = 0 have been investigated in references
[Weitz et al., 2010; Kim et al., 2011; Bao et al., 2012; Velasco Jr et al., 2012; Lee
et al., 2014; Hunt et al., 2016; Maher et al., 2013]. While early investigations
reported one transition at non-zero bias [Weitz et al., 2010; Kim et al., 2011],
more recent studies report signatures of transitions at two different values of
the bias potential implying at least three different phases.

It is common belief that for large bias potential the system will be in a spin and
isospin configuration that maximises layer polarisation. Accordingly, in the oppo-
site limit of very small or vanishing bias, the spin and isospin ordering is assumed
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to be different from maximally possible layer polarisation.

We compare these experimental observations to the predictions of our calculations.
In parameter ranges comparable to those of the respective experiments, we exam-
ine the different phases and the number of phase transitions at fixed magnetic field
and increasing bias:

Filling factor ν = −3
For filling factor ν = −3, we see in our model two different possible scenar-
ios, depending on the strength of the magnetic fields: for B < 11 T we iden-
tify the sequence of transitions (I)→ (IV)→ (V), whereas for higher magnetic
fields B > 11 T the series of transitions (II)→ (III)→ (IV)→ (V) is observed.

Maher et al. [Maher et al., 2014] as well as Hunt et al. [Hunt et al., 2016] have
studied the bilayer graphene system at ν = ±3 in the range of the bias |∆B| ≈
0− 34 meV for magnetic fields B = 9 T and B = 31 T, respectively. We may
attribute the single transition close to zero bias observed in both references
to the transitions (I)→ (IV) at lower magnetic field or (II)→ (III) at higher
magnetic field value, respectively. The values of the bias potential at which
these transitions occur in our model are both small compared to the energy
scales of the other phases of the phase diagram: ∆B ≈ 0.185 meV and ∆B ≈
2.5 meV, respectively. The fact that no second phase transition is observed
by Hunt et al. [Hunt et al., 2016] may imply that phase (IV) has not yet been
reached at these values of the bias. If the zero-bias phases we find in the
Hartree Fock treatment are destroyed by fluctuations beyond Hartree Fock,
then this may explain a zero-bias transition between oppositely polarised
states.

Filling factor ν = ±2
For ν = ±2, the sequence of transitions in our model is the same for all val-
ues of the magnetic field: (I)→ (II) → (III) as a function of increasing bias.
The second transition (II)→ (III), however, occurs at much higher values of
the bias potential than ever shown in experimental data: ∆B & 300 meV in
figure IV.3.

Our predictions are consistent with the observations at ν = ±2 of Velasco et
al. [Velasco Jr et al., 2014], Maher et al. [Maher et al., 2014], Hunt et al. [Hunt
et al., 2016], Lee et al. [Lee et al., 2014] identifying one phase transition at
non-zero bias ∆B > 0. So the low-bias phase has valley coherence and this
coherence is destroyed beyond a critical bias. The slope of the I/II transition
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line in Velasco et al. is 0.72 mV nm−1 T−1 while the Hartree Fock value is
0.55 mV nm−1 T−1.

Filling factor ν = ±1
At fillings ν = ±1, our model again suggests two different sequences of pos-
sible phase transitions depending on the value of the external magnetic field:
for ν = −1 and magnetic fields B < 11.3 T, we go through the sequence (I)→
(III)→ (VI)→ (VII). In the opposite case B > 11.3 T we find (II)→ (IV)→ (V)
→ (VI)→ (VII) when increasing ∆B . In the case ν = +1, at small magnetic
field B < 11.3 T, the sequence is (I)→ (III)→ (VI) / (VII), whereas for larger
field B > 11.3 T it is (II)→ (IV)→ (V)→ (VI).

This may be compared to the experimental results of Shi et al. [Shi et al.,
2016], Hunt et al. [Hunt et al., 2016], and Maher et al. [Maher et al., 2014],
where the states ν = ±1 are probed for B = 28 T in the range |∆B| ≈ 0 − 17
meV, and in the range |∆B| ≈ 0−34 meV at magnetic fieldsB = 31 T andB =
9 T, respectively. The observed transition near zero bias can be attributed to
the phase transitions (I)→ (III) or (II)→ (IV), respectively, which occur in our
model at relatively small values of ∆B compared to the range of the broadest
phases of the phase diagram and to the overall range of the bias. The phase
(II) carries valley coherence as proposed in Shi et al. A second transition
observed in experiment at non-zero value of the bias might be identified with
the transitions (III) → (VI) or (IV) → (V)/(VI) at ν = −1 and (III) → (VI) /
(VII) or (IV) → (V)/(VII) at ν = 1, respectively. In fact, Maher et al. have
proposed that the finite bias transition they see at ν = +1 is the (IV)/(VII)
transition.

Filling factor ν = 0
In the ν = 0 case, the series of phases suggested by our model does not
depend on the system parameters: for any value of the magnetic field, we
observe two successive phase transitions (I)→ (II) → (III) upon increasing
bias potential. Here, phase (II) is a phase featuring intermediate values of
the spin and the valley isospin, flanked by simpler, fully spin polarised (I)
and fully valley polarised (III) phases.

This is consistent with recent experimental studies of the ν = 0 state by Lee et
al. [Lee et al., 2014] and Hunt et al. [Hunt et al., 2016], where two transitions
at two distinct non-zero values of the bias potential have been observed. The
ν = 0 phase diagram shown in reference [Hunt et al., 2016] figure 2D also
agrees well with the corresponding phase diagram predicted by our calcula-
tions. Furthermore, Maher et al. [Maher et al., 2013] have observed a critical
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bias increasing as a function of the magnetic field, as it features in our model.

From this discussion we learn that our calculation reproduces several features
observed experimentally in bilayer graphene at different filling factors. Notably,
for every ν we are able to identify phase transitions detected in experiment with
transitions predicted by our model. However, the range of the bias in the data
presented for the various different experimental studies only covers part of the
phase diagrams of figure IV.3. We conjecture that in particular the phase of max-
imal orbital polarisation, corresponding to the phase with the highest number in
each case, presumably has not been reached in experiments for the filling factors
ν = −3, ν = −2, ν = −1, and ν = 2. As a consequence, according to the properties
of the four-band model as discussed in sections II.1.1 and IV.3.2, maximal possible
layer polarisation possibly has not been achieved experimentally. Furthermore,
from the phase diagrams of figure IV.3, we conjecture that for example at fillings
ν = −3 or ν = 1 a richer picture of different phases and phase transitions may
emerge when studying the system in an extended parameter range for B and for
∆B .

We make the remark, however, that the individual experiments often differ in tech-
nical details such as gating or the way the sample is prepared: for example, refer-
ences [Weitz et al., 2010; Velasco Jr et al., 2012, 2014; Shi et al., 2016] investigate the
properties of suspended bilayer graphene, reference [Lee et al., 2014] uses double
bilayer graphene heterostructures separated by a hexagonal boron nitride dielec-
tric, while in references [Hunt et al., 2016; Maher et al., 2013, 2014] the bilayer
graphene samples are encapsulated by hexagonal boron nitride. We have not tried
to take into account the additional effects due to these different substrates, gatings,
dielectrics, or encapsulations. These differences are likely to alter the physics of the
phase competition [Hunt et al., 2016].

Let us now compare our results to previous theoretical investigations. Refer-
ence [Lambert and Côté, 2013] presents a detailed Hartree Fock study of bilayer
graphene zero energy octet using the effective two-band model. They obtain the
phase diagram of their model for all different filling factors ν ∈ [−3, 3] forB = 10 T
as a function of the bias. The vast majority of states they deduce from their model is
orbitally incoherent. Phases exhibiting orbital coherence emerge only at very large
values of the bias. The authors do not take into account the presence of the Dirac
sea in reference [Lambert and Côté, 2013]. It has become clear, however, that these
electrons of the Dirac sea do play a non-silent role: as we discuss in section IV.1.1,
Shizuya shows in reference [Shizuya, 2012] in a four-band model the importance
of this effect. The ground state configurations identified in this treatment, e.g., at
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zero bias can be coherent superpositions of the n = 0 and n = 1 states. Moreover,
in this analysis, the n = 1 state lies lower in energy than the n = 0 orbital while
in reference [Lambert and Côté, 2013] generally the n = 0 state is populated first.
These results, however, were obtained from a somewhat simplified model with re-
spect to Lambert and Coté in reference [Lambert and Côté, 2013].

Our treatment contains the ingredient of a realistic band structure, i.e., four bands
with all the γi couplings and we have included the Dirac sea exchange.

We further comment on the discussion of reference [Hunt et al., 2016] contain-
ing a detailed theoretical analysis of their experimental results. Using the four-
band model, the authors take into account both, the splitting ∆01 between n = 0
and n = 1 orbitals due to the presence of the Dirac sea electrons as discussed by
Shizuya [Shizuya, 2012], as well as the γi couplings of the bilayer lattice. Further-
more, they incorporate the effect of screening due to the hexagonal boron nitride
dielectric in their setup by a modified, phenomenological potential to model the
the effective, screened Coulomb interaction. This screening also effects the split-
ting ∆01. Investigating this screened model using Hartree Fock as well as density
matrix renormalisation group techniques, they come to explain the phase transi-
tions observed in their experiment in terms of solely incoherent phases.

We note that in our model we do not account for any screening effects. Let us com-
ment on the possible implications of screening corrections for our analysis. Polar-
isation effects in bilayer graphene have been discussed previously using the effec-
tive two-band model, when the bare Coulomb interaction between the electrons
is replaced by an effective interaction potential Veff [Nandkishore and Levitov,
2010a; Gorbar et al., 2010, 2011, 2012a,b; Papić and Abanin, 2014]. A static approx-
imation, i.e., neglecting the frequency dependence of the polarisation function, has
been shown to overestimate the screening effects Gorbar et al. [2010, 2011, 2012b].
If the full frequency dependence is considered, the values for transport gaps in the
quasiparticle spectrum are comparable to those observed in experiment and the
experimentally observed linear scaling of these gaps with magnetic field is repro-
duced [Gorbar et al., 2012a,b]. Incorporating this time dependent dynamical cor-
rection, however, goes beyond the Hartree-Fock description chosen in our work.
Instead, we renormalise the bare Coulomb potential by an effective dielectric con-
stant ε (cf. the discussion in section IV.1.1). This approximation has been used suc-
cessfully in earlier works (cf. , e.g., references [Shizuya, 2012; Lambert and Côté,
2013; Barlas et al., 2010; Côté et al., 2011, 2010]). In reference [Lambert and Côté,
2013], Lambert and Côté demonstrate within the two-band model that this approx-
imation, while overestimating the transport gaps, qualitatively reproduces the be-
haviour of the ground state phases as compared to a treatment which accounts for
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screening. Further justification comes from reference [Nandkishore and Levitov,
2010a], where the authors evaluate the generalised Haldane pseudopotentials for
the electronic interaction using the effective two-band model and find them to be
of comparable magnitude and behaviour, whether the screened or the unscreened
Coulomb potential is used. It has to be noted additionally that the effect of screen-
ing should become weaker with increasing magnetic field at values where the de-
scriptions within the two-band model are no longer valid. Another effect that may
become important when comparing our results to experimental data is the screen-
ing of the external interlayer potential. It has been observed in density functional
theory [Min et al., 2007] that the effective bias potential felt by the electrons might
be reduced by screening effects. According to the results of reference [Min et al.,
2007], this should lead to a simple linear relation between the external bias ∆B,ext

and the screened potential felt by the electrons: ∆B,screened = a+b∆B,ext, where the
parameters in reference [Min et al., 2007] are approximately a = −0.5 and b = 0.25.

IV.4 Bilayer Graphene in the Zero-Energy Landau Level
- Conclusions and Remarks

In this chapter, we presented our studies on the spin and isospin properties of
bilayer graphene under electric and magnetic external fields. We focused on the
octet of quasi zero-energy levels near charge neutrality for which the filling fac-
tor is in the range [−3,+3] using a Hartree Fock method which is known to
capture the main features of quantum Hall ferromagnetism. We have derived a
microscopical model of bilayer graphene in the quantum Hall regime which re-
tains all the four bands and which includes the tight-binding hopping parame-
ters γ0, γ1, γ3, γ4 that weakly break particle-hole symmetry. Furthermore, in the
Hartree Fock calculation we have included the Coulomb exchange interaction
with the occupied Dirac sea which restores the particle-hole symmetry in the ab-
sence of γ4. The splitting between n = 0 and n = 1 orbitals is thus governed by the
competition between band structure effects and Lamb-shift-like exchange interac-
tions. The spin and isospin configuration then is determined by a careful balance
between all these different symmetry breaking terms.

This is illustrated in figure IV.16, where we show the evolution of the energy split-
tings in spin space, valley isospin space, and orbital isospin space, ∆Z ,∆B,eff , and
∆01, as well as the matrix elements of the Coulomb interaction as computed in sec-
tion IV.1 as functions of the external magnetic and electric fields for different pa-
rameters. The curves for the valley breaking matrix elements, X1111, X0000, X1001,
and X1100 are slightly offset with respect to the valley conserving terms but com-
parable in their overall behaviour and are therefore not shown for the sake of vis-
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Figure IV.16
Dependence on the external fields of the energy splittings in valley space, orbital
space, and spin space, ∆B,eff ,∆01, and ∆Z , respectively, as well of the valley con-
serving exchange matrix elements of the Coulomb interaction, ∆1111,∆0000,∆1001,
and ∆1100, as computed from equation (IV.18). Figure from [Knothe and Jolicoeur,
2016].

ibility. The explicit expressions for all the Coulomb matrix elements can be found
in appendix C.

In the regime of small bias and large magnetic field, ∆01 plays a pivotal role before
being washed out at sufficiently strong bias by ∆B,eff acting as a "Zeeman-like"
splitting in valley space.

In this regime of complex interplay between the various different symmetry break-
ing effects, we have studied the spin and isospin properties of this quantum
Hall ferromagnetic system within Hartree Fock mean field theory:
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Summary: Graphene Bilayer in the Zero-Energy Landau Level

• In a first part, section IV.2, we have derived the Hartree Fockground
state phase diagrams in the plane spanned by the bias potential and
the magnetic field for all the non-trivial filling factors [−3,+3] of the
zero energy octet. We identified a total of 32 different phases, where
each phase is characterised by a unique spin and isospin configura-
tion. Each of these phases was analysed in detail, yielding analytic ex-
pressions for the ground state wave functions, the values of the total
spin and isospin degrees of freedom, as well as the critical parameters
where transitions between the respective phases occur in our model.

• Subsequently, in section IV.3, we dwelled further on the physical prop-
erties of the individual phases: we analysed the Hund’s rules for the
spin and isospin polarisation upon successive population of the octet
states, electronic distribution on the bilayer graphene lattice, and the
possibility of layer polarisation in the different phases, as well as the
extrapolation to very small magnetic fields of our model.

• Finally, we made the attempt to connect our results to existing ex-
perimental studies, by relating our ground state phases to phases
observed in bilayer graphene in previous experimental investiga-
tions. When comparing to the various experimental results on bilayer
graphene in the quantum Hall regime we find that our model can re-
produce several features observed experimentally: most prominently,
we are able to relate to the huge variety of different phases suggested
by experiment by relating to the number of ground state phases and
phase transitions predicted by our model.

We comment on possible implications of our results for future theoretical and ex-
perimental investigations:

For even filling factors ν = 0,±2 our results are the same as the Hartree
Fock treatment of Lambert and Côté [Lambert and Côté, 2013]. However for odd
fillings ν = ±1,±3 we find phases with non-trivial orbital coherence: see figure
IV.3. These phases are thus of fundamentally different nature than those predicted
in reference [Lambert and Côté, 2013]. As these orbital coherent phases appear at
experimentally accessible values of the bias potential, it is plausible that they are
among the phases actually observed in experiment. For fillings ν = −3,−1 they
extend to all values of the magnetic field but require a specific range of bias. For
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ν = +3,+1 the orbital phases are restricted to the small-field regime which may
be out of range of our approach due to Landau level mixing.

For odd filling factors we observe at small bias a transition from an orbital coherent
phase to orbitally incoherent phases as a function of the magnetic field strength:
the vector of orbital isospin rotates from a canted position at small magnetic field
to a partially polarised configuration above a critical field strengthBcrit. Such tran-
sitions withB have not been reported previously in the literature, as, e.g., reference
[Lambert and Côté, 2013] restricts its investigations of the ground state phases to
the phase diagram at a single fixed value of the magnetic field. We conclude that
varying the magnetic field can trigger the emergence of phase transitions for all
odd ν. We thus conjecture the existence of more phases and even richer phase
diagrams when bilayer graphene is studied over a a sufficiently large range of B
values.

It remains to be mentioned that the fact that we observe a ferromagnetic state at
charge neutrality ν = 0 for small values of the bias potential is at odds with the
common belief that the ν = 0 bilayer graphene quantum Hall state is in a canted
antiferromagnetic configuration. In analogy to the argumentation in the case of
monolayer graphene, the canted antiferromagnetic phase is believed to explain the
insulating state observed in this regime. We cannot explain insulating behaviour
for the charge neutral state at low bias within our model. Therefore, it remains an
intriguing question how our mean field Hartree Fock results would be influenced
if analysed on the same footing as our study of monolayer graphene presented
in chapter III [Knothe and Jolicoeur, 2015]: considering a finite piece of bilayer
graphene, in which way the phases might be influences by short range symme-
try breaking effects or the influence of a boundary potential? More precisely, the
question arises whether and for which ground state phases in this scenario gapless,
conducting edge states may be found. In the monolayer graphene case, we found
the possibility for gapless edge states both in the canted antiferromagnetic and in
the ferromagnetic phase due to the properties of the edge phases forming in the
vicinity of the boundary of the sample. Whether the same phenomena might be
observed in the case of bilayer graphene remains subject to future investigations.
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CHAPTER V

Valley Order of the Bi(111) Surface States in the Quantum
Hall Regime

V.1 Quantum Hall States on the (111) Surface of Bis-
muth - Introduction

This chapter presents preliminary results on the ground state structure of the
Bi(111) surface states in the quantum Hall regime. Motivation stems from the re-
cent insight that novel two-dimensional electron systems, as found on the two-
dimensional surfaces of three dimensional materials, may exhibit unusual quan-
tum Hall phenomena. For example, the class of topological crystalline insulators
[Fu, 2011; Ando and Fu, 2015] has been arousing interest in the past years: in these
kind of materials, the discrete point group symmetries of the crystal play a crucial
role by inducing a particular topological nature for the electronic structure. We
are interested in studying quantum Hall physics in similarly crystalline materials
where we focus on the two-dimensional surfaces of three-dimensional crystals. A
sample surface may break the crystalline symmetries. While low-symmetry sur-
faces of a crystal may not support robust surface states, for high-symmetry sur-
faces, i.e., for surfaces where certain non-trivial symmetries are preserved, such
surface states may be found [Fu, 2011; Hsieh et al., 2012]. These surface states
at two-dimensional high-symmetry surfaces of three-dimensional crystals will be
our object of interest in the following.

Studying these two-dimensional electron systems in the quantum Hall regime
may be particularly promising thanks to the additional richness and complexity
induced by the particular form of the electronic band structure in the respective
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crystal under study. As exposed in the introductory chapter I, in the conven-
tional two-dimensional (free) electron gas the dispersion of the electrons is simply
quadratic. For materials of the graphene family we learned about the structure
of two circular, linearly (monolayer graphene) or quadratically (bilayer graphene)
dispersing cones, isolated within a low-energy description, and well separated in
momentum space. The picture may become much richer when considering certain
surfaces of crystalline materials. In these materials, for instance, multiple valleys
may appear which may be of different then spherical shape. Examples include the
three elliptical valleys of SnTe(001) [Hsieh et al., 2012; Ast and Höchst, 2001], the
six approximately elliptical valleys of the (111) surface of elemental Bismuth [Du
et al., 2016; Feldman et al., 2016], or the two valleys of half-moon shape of the (001)
surface of Sn1−xPbxSe mono crystals [Dziawa et al., 2012].

The presence of several valleys of unusual, anisotropic shape poses novel ques-
tions: one may ask for the valley ordering, i.e., how a set of k valleys is populated
when there are N < k electrons present in the system. This leads to the question of
the electronic distribution both in reciprocal and in real space. Special interest has
been devoted to the study of nematic phases that spontaneously lower the symme-
try of the underlying Hamiltonian∗ [Feldman et al., 2016; Li et al., 2016; Sodemann
et al., 2017].

Quantum Hall systems with multiple valleys have been studied in the previous
years in two-dimensional electron gases forming in quantum wells of pure Alu-
minium/Arsenic layers [Maezawa et al., 1992; Shayegan et al., 2007; Abanin et al.,
2010]: in AlAs the band structure of the electronic dispersion forms several min-
ima around the X-points, giving rise to six half-ellipsoid Fermi surfaces in the
first Brillouin zone. Due to biaxial stress subject to the AlAs layer when grown
on GaAs substrate, two of these valleys are generally occupied, giving rise to an
anisotropic effective two-valley system. The similarity of the which-valley isospin
has been realised and exploited to study the response of the system to in-plane
strain [Shkolnikov et al., 2004] or formation of valley skyrmions, i.e., configura-
tions with a non-trivial modulation of the valley isospin in space, both in the in-
teger and fractional quantum Hall regime [Shkolnikov et al., 2005; Padmanabhan
et al., 2010].

The work presented here, however, focusses on a different kind of system: we are
motivated by the recent insights about the quantum Hall physics of the (111) sur-
face states of elemental Bismuth gained from the experimental results presented
in the introductory chapter I: in reference [Feldman et al., 2016] conductance data
∗ We define nematicity in chapter V.3.2, when discussing the physical properties of the phases we
observe in our study.
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Figure V.1
Bi(111) band
structure (left) and
our model in terms
of six elliptical
parabolas (right),
shown with the
projection onto the
{kx-ky}-plane.

directly reveals elliptical features of the underlying quantum Hall wave functions,
reminiscence of the elliptical valleys of the Bi(111) Fermi surface. The orientation
of the ellipses may differ within domains across the sample. These observations
are interpreted as indicators for the formation of a nematic quantum Hall phase
that breaks the underlying crystalline symmetry of the Bi(111) surface.

In this project we investigate the valley ordering of the (111) surface states of ele-
mental bismuth. This represents work in progress.

V.1.1 Theoretical Model of Bi(111) Quantum Hall States

Anisotropic Landau Level States of Bi(111)

The model for the (111) surface states of elemental Bismuth has been detailed in
chapter I: as a model to the low-energy dispersion of these surface states in the
vicinity of the Γ-point we describe six elliptical valleys arranged around Γ in a
starlike order. A symbolic comparison between the band structure and our model
is shown in figure V.1.

The way an external magnetic field induces anisotropic Landau level quantisa-
tion in one elliptical valley we demonstrated in chapter I. We consider a parabolic
Hamiltonian H = −~ωc,τ a†τaτ with a† = 1√

2~(ατπx − iβτπy) and a =
1√
2~(ατπx+iβτπy), featuring the anisotropy parameters ατ = 1√

λ
cos θτ +i

√
λ sin θτ

and βτ =
√
λ cos θτ + i 1√

λ
sin θτ , and the squeezing parameter λ. In the Landau

gauge, the anisotropic wavefunction of the nth Landau level is found to read

φn,τ,ky(r) = 〈r|n, τ, ky〉 =
1

Ly
eikyy

1√
2nn!
√
π|ατ |`

eα
∗
τβτ

(ξτ )2

2 Hn(ξτ ), (V.1)

in terms of ky as the y-component of the Landau gauge momentum which la-
bels the orbitals as ky = 2π

Ly
|m| for a system of extension Ly in y-direction, and
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ξτ = 1
|ατ |`(x − Xky) with guiding centre coordinate Xky = ky`

2. Further, Hn de-
notes the nth Hermite polynomial.

Generally it is assumed that due to strong spin-orbit coupling in Bismuth the
ground state of the system will be fully spin polarised. Hence discarding the spin
degree of freedom for this very reason, the state is consequently characterised by
the valley index τ ∈ {1, . . . , 6} labelling the six pockets.

Interacting Many-Particle Hamiltonian

In this section, using the explicit form of the anisotropic wavefunctions of equation
(V.1), we describe and derive the Hamiltonian we use to study interactions effects
for the Bi(111) surface states.

Our aim is to describe the electrons on the (111) of elemental Bismuth in the pres-
ence of Coulomb interactions and local strain. The model Hamiltonian taking into
account these two effects consists of two terms, correspondingly:

H = HC + Hstrain. (V.2)

Let us describe how we construct these two contributions microscopically.

Coulomb Interaction: Different Scattering Processes

We want to treat the Coulomb interaction between the electrons which we most
generally write in the form

HC =
1

2

∫∫
drdr′ ψ†1(r)ψ†2(r′)V (r, r′)ψ3(r′)ψ4(r) , (V.3)

where ψi(r) =
∑

p

∑
qi
〈r|qi; p〉 cqi(p) denotes the field operator of the electron

with position r and guiding centre coordinate p. In this sum, in principle, all
values of the momentum q are allowed. The spatial representation of the elec-
tronic wave function contains two parts, an slowly varying envelope function and
a rapidly oscillating part: 〈r|qi; p〉 = f envp;q (r)eiqr. In the next step, we decide to
approximate equation (V.3) by keeping only those terms which contribute consid-
erably to the sum. This corresponds to a truncation of the sum by explicit indices
τ = 1, . . . , 6 labelling the six different valleys of Bi(111). We explicitly take into
account inter-, as well as intra-valley interaction by allowing for processes which
involve τ4 6= τ1 and τ3 6= τ2. Note that this is in contrast to the case of monolayer
and bilayer graphene discussed previously in chapter III and chapter IV, where the
inter-valley scattering events transferring momenta between different valleys have
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been omitted. In graphene systems this approximation to consider the Coulomb
interaction as SU(2) valley symmetric is justified by the large distance in reciprocal
space of the two valleys K+ and K− in graphene compared to the inverse lattice
spacing which causes these type of processes to be suppressed. This is further dis-
cussed in appendix D. Consequently, in other types of materials where the valleys
are closer and momentum-transferring processes are thus facilitated, inter-valley
scattering may play a crucial role.

Exploiting the conventions above the interaction Hamiltonian of equation (V.3)
reads

HC =
∑
pi

∑
τi

1

2

∫∫
drdr′ ψ∗p1,τ1(r)ψ∗p2,τ2(r′)ψp3,τ3(r′)ψp4,τ4(r)

V (r, r′) c†τ1(p1) c†τ2(p2) cτ3(p3) cτ4(p4)

=:
∑
pi

∑
τi

V p1,p2,p3,p4
τ1τ2τ3τ4 c†τ1(p1) c†τ2(p2) cτ3(p3) cτ4(p4). (V.4)

We separate the latter sum depending on the different combination of valley in-
dices that may occur (suppressing the guiding centre index pi for enhanced read-
ability):

HC =
∑
τ1=τ4
τ2=τ3

V intra
τ1τ2τ3τ4 c†τ1c†τ2cτ3cτ4 +

∑
τ1 6=τ4
and/or
τ2 6=τ3

V inter
τ1τ2τ3τ4 c†τ1c†τ2cτ3cτ4

=
∑
τ3,τ4

V intra
τ4τ3τ3τ4 c†τ4c†τ3cτ3cτ4 +

∑
τ1=τ3
τ2=τ4,
τ3 6=τ4

V
inter
cons
τ3τ4τ3τ4 c†τ3c†τ4cτ3cτ4

+
∑
τ1 6=τ4
and/or
τ2 6=τ3

V
inter

nc
τ1τ2τ3τ4 c†τ1c†τ2cτ3cτ4

=
[contribution
τ3 = τ4]

∑
τ4

V intra
τ4τ4τ4τ4 c†τ4c†τ4cτ4cτ4 +

∑
τ1=τ2
τ1 6=τ3

V
inter

nc
τ1τ1τ3τ3 c†τ1c†τ1cτ3cτ3

+
∑
τ1 6=τ2

V
inter

nc
τ1τ2τ3τ3 c†τ1c†τ2cτ3cτ3

[contribution
τ3 6= τ4] +

∑
τ3 6=τ4

V intra
τ4τ3τ3τ4 c†τ4c†τ3cτ3cτ4 +

∑
τ3,τ4

V
inter
cons
τ3τ4τ3τ4 c†τ3c†τ4cτ3cτ4

+
∑
τ1=τ2

V
inter

nc
τ1τ1τ3τ4 c†τ1c†τ1cτ3cτ4 .

(V.5)
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Figure V.2
Arrangement of the valleys of Bi(111)
in reciprocal space following reference
[Ast and Höchst, 2001].

We distinguish between intra-valley (τ1 = τ4 and τ2 = τ3) and inter-valley (τ1 6= τ4

and/or τ2 6= τ3) scattering processes. For the inter-valley processes, we further
split up into those cases where the total number of electrons per valley is con-
served (cons: τ3 + τ4 = τ1 + τ2 ) and non-conserving cases (nc: τ3 + τ4 6= τ1 + τ2 ).
In the last step we split up between scattering processes where the two incoming
particles have the same valley index (τ3 = τ4) or a different valley index (τ3 6= τ4).
Those terms which lead to an internal contradiction for the valley indices (such as
inter, cons for τ3 = τ4 or inter, nc for τ1 6= τ2) have been omitted.

As demonstrated in appendix D, different scattering processes show different scal-
ing behaviour with Kτ,τ ′ = |Kτ − Kτ ′ | being the distance between two valleys
τ, τ ′ in momentum space: processes which do not conserve the valley degrees of
freedom, both inter-valley and intra-valley scatterings, are suppressed exponen-
tially. We therefore safely neglect all valley-violating processes in the following
analysis. Inter-valley scattering which conserves the valley isospin, on the other
hand, scales like 1

Kτ,τ ′`B
. Usually, these processes likewise are neglected when

studying graphene due to the large distance of the two valleys K+ and K− in mo-
mentum space: this consequently gives rise to the approximate SU(4) symmetry
of graphene. Processes of this second type, however, can have noticeable effects in
other materials with different geometries of the energy dispersion, where the dif-
ferent valleys are less far separated in reciprocal space. We analyse their influence
in the case of Bi(111).

We describe the intra- and inter-valley scattering processes with the following,
effective interaction potentials:
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Intra-valley scattering: Screened Coulomb potential

V intra(q) =
2πe2

ε(q + κ)
, (V.6)

with dielectric constant ε and screening constant κ = 2π e
2v0
ε in terms of the

surface density of states v0.

Inter-valley scattering: Constant effective potential

V inter
τ,τ ′ (q) =

2πe2

ε(Kτ,τ ′ + κ)
(V.7)

where Kτ,τ ′ denotes the distance between the valleys τ and τ ′ in momentum
space.

We estimate the distances between valleys in momentum space for the geometry of
the valley arrangement forming a star with six rays as sketched in figure V.2: when
nearest neighbour valleys are separated by the distance KNN = Kτ,τ±1 = K, we
find for next nearest neighbours KNNN = Kτ,τ±2 =

√
3K, and for the distance

across the star KNNNN = Kτ,τ±3 = 2K.

The Effect of Local Strain

According to reference [Feldman et al., 2016] the six-fold valley degeneracy of the
Landau levels in Bismuth is broken into two sets of valley degeneracy two and
four, respectively. The authors attribute this to the effect of local strain leading to
an energetic splitting ∆strain ≈ −1.2 meV between the two sets. We follow earlier
considerations of strain effects on two-dimensional electron systems with ellipti-
cal Fermi surfaces in semiconductor systems [Shkolnikov et al., 2004; Maezawa
et al., 1992] when describing strain for example along the (100) direction by the
Hamiltonian

Hstrain = ∆strain (14)

∑
τ

(δτ,1 + δτ,4) c†τcτ , (V.8)

where we use the index (14) to indicate that, without loss of generality, the (100)
direction has been chosen as the axis of local strain, favouring the τ = 1 and the
τ = 4 valleys energetically.

Strain along this axis hence favours occupation of the pair of opposite valleys
aligned with the axis of stain as compared to the other four, rotated valleys. This
mechanism creates a set of two valleys and a set of four valleys split energetically
with respect to each other.
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Figure V.3
Behaviour of the matrix elements Xij , Yij , and Zij , as well as the combinations
Tij = Xij − Yij + Zij with B.

Hartree Fock Decoupling

To study the above Hamiltonian HC of equation (V.5) at the mean field level, we
perform Hartree Fock decoupling according to hHF = hD − hX with

hHF,D = hintraHF,D + hinterHF,D =
∑
τ4=τ1
τ2=τ3

V intra
D 〈c†τ1cτ4〉c†τ2cτ3 +

∑
τ4 6=τ1
τ2 6=τ3

V inter
D 〈c†τ1cτ4〉c†τ2cτ3

=
∑
τ4,τ3

V intra
D 〈c†τ4cτ4〉c†τ3cτ3 +

∑
τ4 6=τ3

V inter
D 〈c†τ3cτ4〉c†τ4cτ3 ,

(V.9)

and

hHF,X = hintraHF,X + hinterHF,X =
∑
τ4,τ3

V intra
X 〈c†τ4cτ3〉c†τ3cτ4 +

∑
τ4 6=τ3

V inter
X 〈c†τ3cτ3〉c†τ4cτ4 .

(V.10)

In the following, we employ the notation V inter
H ≡ Y , V intra

X ≡ X , and V inter
X ≡ Z.

The intra-valley Hartree term will be dropped as we assume it to be cancelled by
a positive background charge.

Anisotropic Matrix Elements

For the anisotropic valley system, we compute the lowest Landau level form fac-
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tors of the Coulomb interaction as (see appendix D)

Fτ,τ
′

00 (q) = 〈τ0|e−iq·rc |0τ ′〉

= Nττ ′ e
`2B

2ατβ
∗
τ ′

+α∗
τ ′
βτ

[ q2
xα
∗
τ ′ατ+q2

yβ
∗
τ ′βτ−iqxqy(α∗

τ ′βτ−β
∗
τ ′ατ ) ]

. (V.11)

where rc = (xc, yc) is the guiding centre coordinate and n and τ label the Lan-
dau level and the valley index, respectively. The anisotropy parameters ατ and
ατ are defined as in the introductory chapter II: ατ = 1√

λ
cos θτ + i

√
λ sin θτ ,

βτ =
√
λ cos θτ + i 1√

λ
sin θτ in terms of the squeezing parameter λ. The normal-

isation constant is given by

Nττ ′ = 〈τ |τ ′〉 =

√
2√

|ατ ||ατ ′ |
(
βτ
ατ

+
β∗
τ ′
α∗
τ ′

) =

√
2√

|ατ ||ατ ′ |
(
γτ + γ∗τ ′

) , (V.12)

where we introduced the notation γτ = βτ
ατ

.

Separating the real and the complex part, the latter equation can be cast into the
convenient form

Fτ,τ
′

00 (q) = F ττ
′

00 (k) e

`2B
2ατβ

∗
τ ′

+α∗
τ ′
βτ

[−iqxqy(α∗
τ ′βτ−β

∗
τ ′ατ ) ]

,

= F ττ
′

00 (k) e−
i qxqy`

2
B

2
[wτ ′τ−wττ ′ ] (V.13)

in terms of wττ ′ =
β∗
τ ′ατ

βτ α∗τ ′+β
∗
τ ′ατ

=
γ∗
τ ′

γτ+γ∗
τ ′

.

In the equation above the reduced form factor reads

F ττ
′

00 (k) = Nτ,τ ′ e
− 1

2

(q2x+γτ γ
∗
τ ′q

2
y)`2B

γτ+γ∗
τ ′ . (V.14)

Using this notation allows to compute the matrix elements according to

Yτ,τ ′ =
1

2π`2
V inter
τ,τ ′ F ττ

′
00 (0) F τ

′τ
00 (0), (V.15)

Xτ,τ ′ =
1

(2π)2

∫
d2k V intra F ττ00 (k) F τ

′τ ′
00 (−k) eikxky`

2W ττ ′
X , (V.16)

Zτ,τ ′ =
1

(2π)2
V inter
τ,τ ′

∫
d2k F ττ

′
00 (k) F τ

′τ
00 (−k) eikxky`

2W ττ ′
Z , (V.17)

with W ττ ′
X = 1− wττ − wτ ′τ ′ , W ττ ′

Z = 1− wττ ′ − wτ ′τ .
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We note the following properties of the matrix elements:

Xτ,τ = Xτ,τ+3 = constant ∀ τ,
Xτ,τ+1 = Xτ,τ+2 = constant ∀ τ, (V.18)

with Xτ,τ > Xτ,τ+1.

For K = constant , all values of Z are equal and for Y we find Yτ,τ+1,2 are equal,
but Yτ,τ+3 > Yτ,τ+1,2 . For KNN = K, KNNN =

√
3K, Kacross = 2K, we find

Zτ,τ+1 = Zτ,τ−1∀ τ,
Zτ,τ+2 = Zτ,τ−2 = constant ∀ τ,
Zτ,τ+3 = constant ∀ τ, (V.19)

with Zτ,τ+1 > Zτ,τ+2 > Zτ,τ+3 and

Yτ,τ+1 = Yτ,τ−1∀ τ,
Yτ,τ+2 = Yτ,τ−2 = constant ∀ τ,
Yτ,τ+3 = constant ∀ τ, (V.20)

with Yτ,τ+1 > Zτ,τ+2 but Zτ,τ+3 > Yτ,τ+1.

We compare the matrix elements Xij , Yij , and Zij , as well as the combinations
Tij = Xij − Yij + Zij in figure V.3.

Full Hartree Fock Hamiltonian and Hartree Fock Energy Functional

Combining the considerations about the Coulomb interactions and the effect of
local strain, the full effective mean field Hamiltonian reads

hHF,tot =
∑
τ4 6=τ3

Yτ3,τ4〈c†τ3cτ4〉c†τ4cτ3 +
∑
τ4,τ3

Xτ3,τ4〈c†τ4cτ3〉c†τ3cτ4

+
∑
τ4 6=τ3

Zτ3,τ4〈c†τ3cτ3〉c†τ4cτ4 −∆strain (14)

∑
τ

(δτ,1 + δτ,4) c†τcτ . (V.21)
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This entails the Hartree Fock energy functional

EHFtot =
1

2

∑
τ4 6=τ3

Yτ3,τ4〈c†τ3cτ4〉〈c†τ4cτ3〉+
1

2

∑
τ4,τ3

Xτ3,τ4〈c†τ4cτ3〉〈c†τ3cτ4〉

+
1

2

∑
τ4 6=τ3

Zτ3,τ4〈c†τ3cτ3〉〈c†τ4cτ4〉 −∆strain (14)

∑
τ

(δτ,1 + δτ,4) 〈c†τcτ 〉

=
1

2

∑
τ4 6=τ3

Yτ3,τ4Pτ4,τ3Pτ3,τ4 +
1

2

∑
τ4,τ3

Xτ3,τ4Pτ3,τ4Pτ4,τ3

+
1

2

∑
τ4 6=τ3

Zτ3,τ4Pτ3,τ3Pτ4,τ4 −∆strain (14)

∑
τ

(δτ,1 + δτ,4) Pτ,τ , (V.22)

written in terms of the density matrix Pτ,τ ′ = 〈c†τ ′cτ 〉.

V.1.2 Theoretical Treatment and Hartree Fock Routine

Our aim is to understand the quantum Hall ground state structure of the Bi(111)
surface states within the theoretical model presented above. We exploit a mean
field Hartree Fock description: the numerical self-consistent iteration scheme used
to determine the Hartree Fock ground state is equivalent to the routine based on
the Roothan algorithm we described in chapter IV for the case of bilayer graphene;
after initialisation of a density matrix built from state vectors with random entries,
an initial Hartree Fock Hamiltonian is computed from equation (V.21), and, sub-
sequently, diagonalised. From its eigenvectors again the density matrix is formed,
yielding an improved Hartree Fock Hamiltonian. The procedure is repeated until
convergence is reached to a final Hartree Fock Hamiltonian hHF,tot corresponding
to equation (V.21). This numerical algorithm yields the Hartree Fock energy lev-
els and eigenstates corresponding to hHF,tot. Full knowledge of the state vectors
and the corresponding density matrix in turn allows us to compute the Hartree
Fock energy functionalEHFtot from equation (V.22) and to understand its behaviour
and the underlying physics by analytical means.

This procedure can be summarised as follows:
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Summary: Theoretical Treatment of Bi(111)

• Self-consistent numerical iteration routine to determine the Hartree
Fock eigenstates and eigenenergies [cf. chapter IV]

• From the Hartree Fock ground state and the corresponding density
matrix, determination of the Hartree Fock energy functional EHFtot [
equation (V.22)]

• Analytical treatment of the energy functional

V.2 Quantum Hall States on the (111) Surface of Bi
- First Results: Ground State Valley Occupation

We study the Bi(111) system for different values of the filling factor ν, i.e., for dif-
ferent numbers of electrons in the system: while ν = 1

6 corresponds to the case
where there is one single electron occupying the six valley states, ν = 3

6 indicates
half-filling with three electrons in the sextet and ν = 5

6 we write when there are
five electrons or one hole present, respectively.

We use the numerical Hartree Fock iteration scheme described in the previ-
ous section section V.2 to determine the mean field ground state properties.
We are interested in the valley occupancy, i.e., the way the electrons distribute
among the six valleys. In order to characterise this quantitatively, for a state
vector v = (a1, a2, a3, a4, a5, a6) we introduce the maximal valley occupancy
M=max[a1, a2, a3, a4, a5, a6]. M = 1 would indicate full valley polarisation into
one single valley whereas M = 1√

6
would correspond to a fully valley coherent

state where the electronic occupation is distributed homogeneously over all six
valleys. To understand the structure of the state vectors in even more detail let us
further consider the second largest occupancy M2 and the third largest occupancy
M3.

V.2.1 Bi(111) at ν = 1
6

Let us discuss the case of filling factor ν = 1
6 , i.e., when there is one electron present

in the system.

The plots shown in V.4 demonstrate the overall behaviour of the maximal occu-
pancy M as well as M2 and M3 over a wide range of (hypothetical) magnetic
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Figure V.4
Behaviour of the valley occupancies M,M2,M3 with B for filling factor ν = 1

6 .

Figure V.5
Different ground state phases
at ν = 1

6 in the strainless case
∆strain = 0 (upper line) and
for ∆strain < 0 (lower line).

fields for the case of zero strain ∆strain ≡ 0, left plot, and in the strained case
at ∆strain = −1.2 meV, right plot. Let us describe the different regimes in both
scenarios:

Strainless Case: ∆strain = 0

1© Opposite coherent
Within a wide range of the magnetic field B . 525 T, the maximal oc-
cupancies M and M2 are scattered randomly between the configurations
M = M2 = 1√

2
and M = 1,M2 = 0; hence, there is condensation into two

valleys, within which the distribution of the electron is degenerate. Close
investigation of the corresponding Hartree Fock single particle state vector
reveals that within this regime the electron may occupy any pair of opposite
valleys {τ, τ ± 3}. The corresponding ground state reads

|GS〉 = aτ |0, τ〉+ aτ±3|0, τ ± 3〉, (V.23)

where we denote with |n, τ〉 a state in the nth Landau level in valley τ . Which
of these opposite pairs will be singled out is not determined energetically.
Also, any occupation of the two valleys of the opposite pair, i.e., any pair
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aτ , aτ+3 with a2
τ + a2

τ+3 = 1 is energetically degenerate.

Let us evaluate the energy functional of equation (V.24) for ν = 1
6 :

The general energy functional for one electron in the state
|v〉 = (a1, a2, a3, a4, a5, a6), hence ν = 1

6 , reads

EHFtot,1/6 =− (a1
4 + a4

4)∆strain (14) −
1

2

∑
i

a4
iX11

− (X12 − Y12 + Z12)Ω12 − (X13 − Y13 + Z13)Ω13

− (X14 − Y14 + Z14)Ω14,

=− (a1
4 + a4

4)∆strain (14) −
1

2

∑
i

a4
iX11 − T12Ω12 − T13Ω13 − T14Ω14,

(V.24)

where

Ω12 = a2
1a

2
2 + a2

2a
2
3 + a2

3a
2
4 + a2

4a
2
5 + a2

1a
2
6 + a2

5a
2
6,

Ω13 = a2
1a

2
3 + a2

2a
2
4 + a2

1a
2
5 + a2

3a
2
5 + a2

2a
2
6 + a2

4a
2
6,

Ω14 = a2
1a

2
4 + a2

2a
2
5 + a2

3a
2
6, (V.25)

and
Tij = Xij − Yij + Zij . (V.26)

We study the general functional for the special case of coherence between
two opposite valleys:

• Condensation to a pair of opposite valleys, i.e., τ = 1, τ ′ = 4 without
loss of generality: a1 = a4 = 1√

2
, a2 = a3 = a5 = a6 = 0. This entails

Ω12 = Ω13 = 0 and Ω14 = a2
1a

2
4 and therefore we have

EHF
tot, 1© = −1

2
(a4

1 + a4
4)X11 − a2

1a
2
4 T14. (V.27)

• We use the properties of the matrix elements:
Xτ,τ = Xτ,τ±3, therefore X11 = X14,
Yτ,τ±3 = constant ∀τ and Zτ,τ±3 = constant ∀τ ,
and, most importantly: Yτ,τ±3 = Zτ,τ±3 ∀τ : direct and exchange inter-
action cancel each other in opposite valleys.
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Therefore:

EHF
tot,1/6, 1© = −[

1√
2

(a2
1 + a2

4︸ ︷︷ ︸
1

)]2X11 = −1

2
X11. (V.28)

Hence, the total energy in this case is independent of the coefficients
a1, a4, i.e., of the distribution between the two occupied valleys.

2© Nearest neighbour coherent
For sufficiently high fields 525 T & B & 1650 T, maximal occupation gets
pinned to M = 1√

2
. Hence, the electron is in a balanced superposition be-

tween two valleys. From the corresponding state vectors it can be seen that
in this regime now pairs of neighbouring valleys {τ, τ ± 1} are occupied:

|GS〉 =
1√
2
|0, τ〉+

1√
2
|0, τ ± 1〉, (V.29)

The energy functional for a state in this configuration with aτ = aτ±1 = 1√
2

reads

EHF
tot,1/6, 2© = −1

2
X11 −

1

4
T12. (V.30)

3© Three-fold coherence
For even higher values of the magnetic field we observe a state in a coherent
superposition between three different valleys: aτ 6= 0, aτ−1 = aτ+1 6= 0:

|GS〉 = a1|0, τ − 1〉+ a2|0, τ〉+ a1|0, τ + 1〉, (V.31)

The three different phases of the ν = 1
6 ground state at zero strain as a function of

the magnetic field are summarised in the upper sketch of figure V.5. We find that
the phase boundaries between the different phases are governed by the following
conditions:

EHF
tot,1/6, 1© > EHF

tot,1/6, 2© ⇔ T12 > X11 (V.32)

and EHF
tot,1/6, 2© > EHF

tot,1/6, 3© ⇔ T13 > X11.

We see hence that the phase boundaries can be related to the crossing between the
matrix elements and the quantities Tij in the right panel of figure V.3.
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Figure V.6
Different ground state phases
at ν = 2

6 in the strainless case
∆strain = 0 (upper line) and
for ∆strain < 0 (lower line).

Strained Case: ∆strain < 0

From the right panel of figure V.4 we see that this behaviour of the ν = 1
6 state

is not changed much qualitatively when including the effect of strain: as in the
low-field regime opposite pairs, such as τ = 1, τ ′ = 4, are favoured already, be-
sides singling out one particular pair, the strain term does not induce novel ground
state configurations. It solely stabilises further this regime to even higher magnetic
fields. In the high field regime, the ground state is influenced by the competition
between the interaction which favours neighbouring or next nearest neighbour
pairs and the strain potential favouring opposite pairs.

V.2.2 Bi(111) at ν = 2
6

We discuss the situation at filling factor ν = 2
6 , i.e., when there are two electrons in

the system.

Strainless Case: ∆strain = 0

Depending on the value of the magnetic field, we find the following two different
ground state configurations:

1© Nearest neighbour polarised
For B . 1650 T both electrons are fully polarised. They condense into two
neighbouring valleys {τ, τ ± 1}. The two electronic states read

|v1〉 = |0, τ〉 and |v2〉 = |0, τ ± 1〉. (V.33)

The energy functional for this case is given by

EHF
tot,2/6, 1© = −X11 − Z12. (V.34)
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2© Next nearest neighbour coherent
For B & 1650 T one electron remains fully polarised while the other electron
is in a balanced coherent superposition between two next nearest neighbour
valleys τ, τ±2}. We write the two state vectors as |v1〉 = (a1, a2, a3, a4, a5, a6)
and |v2〉 = (b1, b2, b3, b4, b5, b6). This case corresponds to two electronic states

|v1〉 = |0, τ〉 and |v2〉 =
1√
2
|0, τ̃ = τ ± 1〉+

1√
2
|0, ˜τ ± 2〉. (V.35)

The Hartree Fock energy functional for this configuration is given by

EHF
tot,2/6, 2© = −3

4
X11 − Z12 −

1

4
T13. (V.36)

From the competition of the energy functionals we compute the transition between
the two above phases to occur at

EHF
tot,2/6, 2© < EHF

tot,2/6, 1© ⇔ T13 > X11, (V.37)

dictated by the crossing between the matrix elements in figure V.3.

Strained Case: ∆strain < 0

Unlike the ν = 1
6 case, at ν = 2

6 the situation is dramatically changed as soon
as non-zero strain is taken into account: the competition with an additional strain
potential favouring two opposite valleys induces novel ground state phases which
are not present in the strainless case.

Most prominently at low magnetic fields there is an additional phase:

0© Opposite coherent
This phase features ai = bi±3 6= 0 and ai±3 = −bi 6= 0 and state vectors

|v1〉 = aτ |0, τ〉+aτ±3|0, τ±3〉 and |v2〉 = −aτ±3|0, τ〉+aτ |0, τ ± 3〉. (V.38)

The corresponding energy functional, similar to the ν = 1
6 low-field phase

without strain, is again independent of the actual values of the coefficients ai
and bi:

EHF
tot,2/6, 0© = −2∆strain (14) −X11 − Z14, (V.39)

which entails that here again the ground state energy is independent of the
actual distribution of the electrons among the valleys occupied.
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Figure V.7
Different ground state phases
at ν = 3

6 in the strainless case
∆strain = 0 (upper line) and
for ∆strain < 0 (lower line).

In the presence of strain, the nearest neighbour polarised phase featuresEHF
tot,2/6, 1© =

−∆strain −X11 − Z12. The phase transition between the novel, opposite coherent
phase at low magnetic fields and the nearest neighbour polarised phase is now
governed by the interplay between the inter-valley exchange matrix elements and
the strain potential:

EHF
tot,2/6, 1© < EHF

tot,2/6, 0© ⇔ ∆strain < −Z14 + Z12. (V.40)

The situation for 2
6 with and without including the effect of strain is summarised

in the sketches of figure V.6.

V.2.3 Bi(111) at ν = 3
6

Next we consider the system at half filling of the sextet, i.e., at ν = 3
6 when there

are three electrons present.

Strainless Case: ∆strain = 0

In the absence of strain we observe one single, stable Hartree Fock ground
state phase for all values of the magnetic field:

1© Nearest neighbour polarised and opposite coherent
While two of the electrons are fully polarised into two neighbouring val-
leys, the third electron assumes a superposition between two opposite val-
leys. Writing the three electronic states as |v1〉 = (a1, a2, a3, a4, a5, a6), |v2〉 =
(b1, b2, b3, b4, b5, b6) and |v3〉 = (c1, c2, c3, c4, c5, c6) this corresponds to states
with ai = bi±1 = 1 and cj , cj±3 6= 0:

|v1〉 = |0, τ〉, |v2〉 = |0, τ ± 1〉, and |v3〉 = cτ̃ |0, τ̃〉+ cτ̃±3|0, τ̃ ± 3〉. (V.41)
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The energy functional for this phase can be computed to read

EHF
tot,3/6, 1© = −3

2
X11 − 2Z12 − Z13. (V.42)

Strained Case: ∆strain < 0

As in the case of ν = 2
6 , also at filling ν = 3

6 a novel ground state phase is induced
at low magnetic fields once a non-zero strain potential is taken into account.

We identify the additional configuration:

0© Opposite polarised and opposite coherent
Driven by the additional strain potential lowering the energy of a pair of
two opposite valleys, the system now prefers to fully occupy these two val-
leys in the low-field regime. Thereby the third electron maintains coherence
between a different pair of opposite valleys: ai = bi±3 = 1 and cj , cj±3 6= 0:

|v1〉 = |0, τ〉, |v2〉 = |0, τ ± 3〉, and |v3〉 = cτ̃ |0, τ̃〉+ cτ̃±3|0, τ̃ ± 3〉. (V.43)

We identify the ground state energy functional for this phase as

EHF
tot,3/6, 0© = −2∆strain (14) −

3

2
X11 − 2Z12 − Z13 − Z14. (V.44)

At higher values of the magnetic field the system goes back to the nearest neigh-
bour polarised / opposite coherent phase observed for the strainless case, which
now in the presence of strain exhibits the energyEHF

tot,3/6, 1© = −∆strain (14)− 3
2X11−

2Z12 − Z13.

Just as for filling ν = 2
6 , we find that the transition between the two phases oc-

cures when the effects of inter-valley exchange matrix elements overcomes the lo-
cal strain potential:

EHF
tot,3/6, 1© < EHF

tot,3/6, 0© ⇔ ∆strain (14) < −Z14 + Z12. (V.45)

The different phases for 3
6 with and without a strain potential are sketched in figure

V.7.

V.2.4 Bi(111) at ν = 4
6

We consider the situation for four electrons occupying the valley sextet states, i.e.,
for filling factor ν = 4

6 .
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Figure V.8
Different ground state phases
at ν = 4

6 in the strainless case
∆strain = 0 (upper line) and
for ∆strain < 0 (lower line).

Strainless Case: ∆strain = 0

We identify three different ground state configurations for the four electronic states
|v1〉 = (a1, a2, a3, a4, a5, a6), |v2〉 = (b1, b2, b3, b4, b5, b6), |v3〉 = (c1, c2, c3, c4, c5, c6)
and |v4〉 = (d1, d2, d3, d4, d5, d6), depending on the value of the magnetic field:

1© Nearest neighbour polarised
For B . 1650 T we observe a fully polarised configuration in which the four
electrons fully occupy four neighbouring valleys: ai = bi±1 = ci±2 = di±3 =
1. The four electron states can hence be written as

|v1〉 = |0, τ〉, |v2〉 = |0, τ ± 1〉,
|v3〉 = |0, τ ± 2〉, |v4〉 = |0, τ ± 3〉. (V.46)

The energy functional for this case is given by

EHF
tot,4/6, 1© = −2X11 − 3Z12 − 2Z13 − Z14. (V.47)

2© Next nearest neighbour coherent
At values of the magnetic field B & 1650 T, while three electrons remain
polarised in neighbouring valleys, the fourth electron assumes a balanced
superposition between two next nearest neighbour valleys {τ, τ ± 2}: ai =
bi±1 = ci±2 = 1 and dj = dj±2 = 1√

2
. The four electron single particle states

hence read:

|v1〉 = |0, τ〉, |v2〉 = |0, τ ± 1〉, |v3〉 = |0, τ ± 2〉,

|v4〉 =
1√
2
|0, τ̃〉+

1√
2
|0, τ̃ ± 2〉. (V.48)

We find an energy functional according to

EHF
tot,4/6, 2© = −7

4
X11 −

1

4
T13 − 3Z12 − 2Z13 − Z14. (V.49)
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3© Opposite coherent
For even higher values of the magnetic field the system assumes a configu-
ration in which three electrons fully condense into single valleys while the
fourth electron is in a balanced superposition between a pair of opposite val-
leys {τ, τ ± 3}: ai = bi±1 = ci±3 = 1 and dj = dj±3 = 1√

2
. We write the

corresponding electron states as

|v1〉 = |0, τ〉, |v2〉 = |0, τ ± 1〉, |v3〉 = |0, τ ± 3〉,

|v4〉 =
1√
2
|0, τ̃〉+

1√
2
|0, τ̃ ± 3〉. (V.50)

The corresponding energy functional for this phase reads

EHF
tot,4/6, 3© = −5

2
X11 − 3Z12 − 2Z13 −

1

2
Z14. (V.51)

We identify the conditions for the phase boundaries between the respective phases
as induced by the crossing between the matrix elements in figure V.3 as

EHF
tot,4/6, 1© > EHF

tot,4/6, 2© ⇔ T13 > X11

and EHF
tot,4/6, 2© > EHF

tot,4/6, 3© ⇔ X11 > T13 +
1

2
Z14. (V.52)

Strained Case: ∆strain < 0

The picture for filling factor ν = 4
6 is not altered much qualitatively by the influ-

ence of a local strain potential. The first phase 1© already features a fully occupied
pair of opposite valleys. The strain potential lowering the energy for one par-
ticular pair simply dictates which pair will be occupied but does not change the
configuration as such. Higher-field phases are influenced by driving the degree of
coherence away from the perfectly balanced case with equal occupation 1√

2
.

We sketch the different phases for 4
6 with and without strain in the two lines of

figure V.8.

V.2.5 Bi(111) at ν = 5
6

Next, let us study the case of filling factor ν = 5
6 , i.e., the scenario when there are

five electrons in the system or one hole in the valley sextet, respectively.
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Figure V.9
Different ground
state phases at ν = 5

6
in the strainless case
∆strain = 0 (upper line)
and for ∆strain < 0 (lower
line).

Strainless Case: ∆strain = 0

Without strain the system assumes the following different ground state phases for
the five electronic states |v1〉 = (a1, a2, a3, a4, a5, a6), |v2〉 = (b1, b2, b3, b4, b5, b6),
|v3〉 = (c1, c2, c3, c4, c5, c6), |v4〉 = (d1, d2, d3, d4, d5, d6) and |v5〉 = (e1, e2, e3, e4, e5, e6)
depending on the value of the magnetic field:

1© Next nearest neighbour and opposite coherent
At fields B . 525 T the ground state assumes a complex structure in which
both, coherence between next nearest neighbour valley pairs {τ, τ ± 2}, and
pairs of opposite valleys {τ, τ ± 3} can be observed: ai, ai±3 6= 0 as well as
bj, bj±2, cj , cj±2, dk, dk±2, , ek, ek±2 6= 0. We write these electronic states as

|v1〉 = aτ |0, τ〉+ aτ±3|0, τ ± 3〉,
|v2〉 = bτ̃ |0, τ̃〉+ bτ̃±2|0, τ̃ ± 2〉, |v3〉 = cτ̃ |0, τ̃〉+ cτ̃±2|0, τ̃ ± 2〉,
|v4〉 = d˜̃τ |0, ˜̃τ〉+ c˜̃τ±2|0, ˜̃τ ± 2〉 |v5〉 = e˜̃τ |0, ˜̃τ〉+ e˜̃τ±2|0, ˜̃τ ± 2〉. (V.53)

The energy functional of this state can be found to be independent of the
actual values of the entries:

EHF
tot,5/6, 1© = −5

2
X11 − 4(Z12 + 2Z13)− 2Z14. (V.54)

Hence, as observed already for the cases ν = 1
6 , ν = 2

6 , and ν = 3
6 , the

electronic distribution in each respective valley pair is left undetermined as
the manifold of all possible configurations is energetically degenerate.

2© Nearest neighbour coherent
For 525 T. B . 1650 T four electrons fully polarise into nearest neighbour-
ing valleys while the fifth electron assumes a balanced coherent state be-
tween two next nearest neighbour valleys {τ, τ ± 2}: ai = bi±1 = ci±2 =
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di±3 = 1, ej = ej±2 = 1√
2
.

The five electrons hence occupy the states

|v1〉 = |0, τ〉, |v2〉 = |0, τ ± 1〉, |v3〉 = |0, τ ± 2〉, |v4〉 = |0, τ ± 3〉,

|v5〉 =
1√
2
|0, τ̃〉+

1√
2
|0, τ̃ ± 2〉. (V.55)

The corresponding Hartree Fock energy functional reads

EHF
tot,5/6, 2© =

9

4
X11 −

1

4
T12 − 4(Z12 + Z12 +

1

2
Z14). (V.56)

3© Three-fold coherence
For higher values of the magnetic field B & 1650 T, a complex ground
state structure with coherence between three valleys is observed: ai = b±1 =
c±2 = 1, dj = dj±2 = 1√

2
, and ej = −ej±2 6= 0, ej±1 6= 0. The corresponding

electronic states are given by

|v1〉 = |0, τ〉, |v2〉 = |0, τ ± 1〉, |v3〉 = |0, τ ± 2〉,

|v4〉 =
1√
2
|0, τ̃〉+

1√
2
|0, τ̃ ± 2〉, |v5〉 = e1|0, ˜̃τ − 1〉+ e2|0, ˜̃τ〉 − e1|0, ˜̃τ + 1〉.

(V.57)

As in the previous cases, the phase boundaries are induced by the crossing of the
matrix elements shown in figure V.3:

EHF
tot,5/6, 2© < EHF

tot,5/6, 1© ⇔ T12 > X11 and EHF
tot,5/6, 3© < EHF

tot,5/6, 2© ⇔ T13 > X11

(V.58)

Strained Case: ∆strain < 0

The picture for the ν = 5
6 ground state is altered as follows when local strain is

taken into account: the strain potential by lowering the energy for a pair of op-
posite valleys favours full polarisation of one electron into each of this valleys,
respectively. At low fields, the resulting nearest neighbour polarised and opposite
coherent configuration with ai = ci±1 = bi±3 = di±4 = 1 and ei±2, ei±5 6= 0 and
states

|v1〉 = |0, τ〉, |v2〉 = |0, τ ± 1〉, |v3〉 = |0, τ ± 3〉, |v4〉 = |0, τ ± 4〉,

|v5〉 =
1√
2
|0, τ̃〉+

1√
2
|0, τ̃ ± 3〉. (V.59)

is still a subclass of phase 1©.

We illustrate the evolution of the different phases for 5
6 with and without strain as

functions of the magnetic field in the sketches of figure V.9.
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V.3 Quantum Hall States on the (111) Surface of Bi
- Discussion and Preliminary Conclusion

Let us summarise our preliminary findings on the ground state properties of the
Bi(111) surface states.

V.3.1 General Behaviour of the Model

In a scenario without strain, ∆strain ≡ 0, at accessible values of the magnetic field
the system for all filling factors except ν = 5

6 tends to polarise involving next near-
est valleys {τ, τ ± 1} for any even number of electrons, while in the case of an odd
electron number it is preferred to establish a coherent superposition between two
opposite valleys {τ, τ ± 3} for the reminiscent single electron. Filling ν = 5

6 repre-
sents a special case that will be discussed separately. The rotational symmetry of
the system is lowered as certain valleys are singled out spontaneously.

The ground state of filling factor ν = 5
6 at zero strain represents an exception as

here coherence is established not only between pairs of opposite valleys {τ, τ ± 3}
but also between next nearest neighbour valleys {τ, τ ± 2}.

We observe for the strainless case that states with different valley combinations are
induced at very high values of the magnetic fields B > 500 T. In this field regime
for all fillings except ν = 3

6 , next nearest neighbour coherent states or even coher-
ent superpositions between three valleys can be found. An interesting exception
is provided by the half-filled case ν = 3

6 , where the ground state at zero strain
with two electrons fully polarised into a pairs of nearest neighbour valleys and
one electron in a coherent superposition between two opposite valleys proves to
be especially stable and unchanged for all values of the magnetic field.

Phenomena akin to the phase transitions we see at such high values of the mag-
netic field, B ≈ 525 T and B ≈ 1650 T, which are driven by the interplay between
intra- and inter-valley scattering processes, have been observed before in other
multivalley systems such as SnTe [Li et al., 2016]. Here we prove the existence of
such phase transitions for an SU(6) ferromagnet and demonstrate the nature of the
possible phases at higher fields. However, in Bi(111), for the parameters chosen,
any effect or phase transition induced by this competition between the inter- and
intra valley interactions happens at such high values of the magnetic field that they
are beyond the reach of experimental investigations.
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Figure V.10
The quantity Z12−Z14 as a func-
tion of the magnetic field for dif-
ferent values of the dielectric con-
stant ε (numerical data is repre-
sented by symbols: magenta open
circles ε = 45, blue filled trian-
gles ε = 25, gray open diamonds
ε = 10).

The picture changes for several of the filling factors, however, once the effects of
local strain are taken into account: now, there is a competition between the inter-
valley exchange interaction and the influence of the strain potential. For filling
factors ν = 2

6 , ν = 3
6 , and ν = 5

6 the predicted Hartree Fock ground state changes;
configurations involving coherences between two opposite valleys {τ, τ ± 3} are
induced. Moreover, for the cases of filling ν = 2

6 or ν = 3
6 the possibility emerges

to drive a transition as a function of the magnetic field strength between the newly
induced low-field phase in the presence of strain and the phase which would be
the ground state phase in the absence of strain. We repeat above results by saying
that this transition should occur once the following relation between the strain po-
tential and the inter-valley exchange elements is fulfilled: ∆strain = Z12 − Z14.

In order to analyse further the possibility of inducing a phase transition in the
Bi(111) system, we plot the behaviour of the quantity Z12−Z14 as a function of the
magnetic field for several different system parameters in figure V.10. Let us start
by describing the case of screening parameter ε = 45 that we have been discussing
so far: we find that Z12 − Z14 behaves linearly and is very well approximated by
a straight line following f(B) = 0.0081 B[T]. This predicts the phase transitions
to occur around B ≈ 148 T, which lies well beyond the experimentally accessible
regime. The slope of the curve, however, can be manipulated, e.g., by changing the
value of the screening parameter, without changing its linear nature: we observe
in figure V.10 much steeper curves, e.g., for ε = 25 or ε = 10. This suggests that
phase transitions within a realistic range of magnetic field values become possible
when effecting the dielectric constant ε, e.g., by substrate engineering.

V.3.2 Discussion of the Physically Relevant Regime

Let us discuss the results for our model of Bi(111) asking to what extend they may
provide a realistic description of Bismuth and what might be possible implications
for experimental investigations of this system.
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Figure V.11
Summary of the phases observed within the physically relevant parameter regime
within our model for all filling factors ν ∈ {1

6 , . . . ,
5
6} of the Bi(111) sextet.

Physically Relevant Parameter Range

Obviously, magnetic field ranges as those discussed for the numerical data are
not realistic values. In this section we therefore limit the discussion to the phases
that appear below B < 50 T. Concerning the influence of local strain, reference
[Feldman et al., 2016] claims a splitting between orbitals of about ∆strain ≈ −1.2
meV. We therefore compare the phases of the strainless case to those which emerge
at ∆strain = −1.2 meV.

Physically Relevant Phases

The different phases which we observe within this physically relevant parameter
range are summarised in figure V.11: we see that all the phase involve either full
polarisation into single valleys or coherence between pairs of opposite valleys.
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Hence, all the phases lower the full C6 symmetry of the Bi(111) Fermi surface to a
lower rotational symmetry class. In this sense†, all the phases in figure V.11 can be
called nematic. While the system is symmetric under a particle-hole transformation
in the strainless case, this particle-hole symmetry is broken by the strain potential
favouring one particular pair of opposite valleys.

Discussion: Relevance of Undetermined Coherence

For several filling factors and system parameters in the Bi(111) system we observe
that minimising the Hartree Fock energy yields as ground state a coherent super-
position between two opposite valleys {τ, τ±3}, where the actual degree of coher-
ence is left undetermined by the Hartree Fock equations. In other words, both, the
fully balanced coherent state with equal weight in both valleys, as well as the in-
coherent state fully polarised into only one of the valleys is contained in this class
of states. Let us elucidate further this kind of states to understand their origin in
our model as well as their physical significance.

We exemplarily discuss the simplest case of one electron in the sextet, ν = 1
6 . As

explained in section V.2.1, we observe the undetermined opposite coherent state
at this filling factor at low fields both with or without strain. We repeat equation
(V.27) when saying the Hartree Fock energy functional of this phase is given by

EHF
tot, 1© = −1

2
(a4

1 + a4
4)X11 − a2

1a
2
4 T14. (V.60)

In the remainder of section V.2.1, we argued that due to the properties of the ma-
trix elements X11 = X14, and Yτ,τ±3 = Zτ,τ±3 ∀τ , the energy functional (here in
the absence of strain) simply reduces to EHF

tot,1/6, 1© = −1
2X11. It hence does not

depend on the coefficients a1, a4 and is therefore independent of the actual degree
of coherence.

The degeneracy of the matrix elements, crucial to above line of argumentation as
it leads to the mutual perfect cancellation of terms, is related to our model of the
valleys in the Bi(111) Fermi surface as perfect ellipses: therefore, due to the mirror
symmetry of the electronic dispersion implied by this geometry, opposite valleys
are exactly equivalent, yielding identical matrix elements. The existence of such de-
generate manifolds of states including all possible degrees of coherence ranging
between full valley polarisation to the balanced case of equal distribution between
the two valleys, has been observed before, e.g., in SU(4) symmetric, cross-like val-
ley arrangements with perfectly elliptic valleys [Sodemann et al., 2017]. For the
† We here employ the following definition of nematicity : a phase is called nematic, if it spon-
taneously breaks a symmetry of the underlying Hamiltonian which interchanges two axes of the
system [Fradkin et al., 2010].
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case of the Bi(111) Fermi surface it has been argued, however, that in a more real-
istic description of the Bi(111) valleys, the ellipses should be slightly deformed
to reflect the valleys real "tadpole"-like shape [Ohtsubo et al., 2012; Sodemann
et al., 2017]. This breaking of the mirror symmetry would alter the matrix ele-
ments Xij , Yij , Zij and lift the degeneracies. From equation (V.60) we see that in
the energy functional there is a competition between the termE1 = −1

2(a4
1+a4

4)X11

favouring polarisation into one single valley and E2 = −a2
1a

2
4 T14 which is min-

imised for the case of equally balanced opposite coherence with a1 = a2 = 1√
2
. The

phase boundary between the polarised and the opposite coherent state would then
be determined by X11 = T14. Recalling that T14 = X14 − Y14 + Z14 we see that the
competition between polarisation or opposite valley coherence will be decided by
what is affected more by a deformation of the orbitals, the intra-valley interaction
Xij , or the inter-valley interaction term Zij − Yij . To determine the exact outcome
for deformed orbitals is beyond the scope of our simple approximation in terms of
identical, perfectly symmetric ellipses. We note, however, that the actual physical
behaviour of the systems is expected to be determined by an interesting interplay
between intra- and inter-valley scattering processes.

V.3.3 Preliminary Summary

We have analysed quantum Hall ferromagnetism of the quantum Hall states on
the Bi(111) surface within a model description in the framework of Hartree
Fock mean field theory. Let us summarise our preliminary results so far:

Summary: Quantum Hall States of Bi(111)

• The occupation of the six anisotropic valleys of the Bi(111) Fermi sur-
face is governed by a subtle interplay between intravalley scattering,
intervalley scattering and the effect of local strain.

• For different numbers of electrons in the system and upon varying the
strength of the external magnetic field, we observe different ground
state phases characterised by different occupation of the six valleys.
All the ground state configurations lower the rotational symmetry of
the system and therefore represent nematic phases.

More work will be needed to obtain more precise insights about the properties of
this system as well as about possible implications for experimental investigations.
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Final Discussion

We have employed mean field Hartree Fock theory on microscopic model Hamil-
tonians to analyse several aspects of quantum Hall ferromagnetism in the different
two-dimensional materials monolayer graphene, bilayer graphene, and the (111) surface
of elemental Bismuth. The main results on either of the three materials are detailed
in itemised summary boxes at the end of the respective chapters, III, IV, V.

This final chapter serves to put these novel insights obtained in each of the projects
into context and to discuss common aspects, implications, and consequences. Fur-
thermore, we want to give an outlook to possible future experimental and theoret-
ical investigations.

VI.1 Conclusion

In the introductory chapter I we presented the results of existing experimental
investigations. Based on these observations made in experiments, we formulated
key questions that piqued our interest in the matter and stimulated the research
presented in these projects: in our opinion, concerning the aspects addressed by
these questions, theoretical work beyond the existing treatises was needed in order
to obtain fully coherent, satisfying theoretical pictures of the respective system.
Let us now see to what extent these initiatory questions have been answered in
the course of this work and at which points maybe novel, exciting questions and
possibilities arose instead.
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VI.1.1 Monolayer Graphene -
From the Bulk, can we understand the Edges?

In chapter III we studied how a terminating edge of a finite piece of monolayer
graphene influences the states and properties of the system when approaching this
boundary from the bulk. We saw that the presence of an edge by no means leaves
the bulk state invariant: on the contrary, novel sates are induced in the vicinity of
the boundary which exhibit different features both in the ground state, as well as
in the spectrum of excited states compared to the bulk. Therefore, when consid-
ering a finite sample of monolayer graphene no unambiguous assignment can be
made which state or which phase the total system is in — rather, the bulk of the sys-
tem is in one particular phase, while undergoing an evolution as a function of the
spatial distance to the edge towards an edge phase close enough to the boundary.
This edge phase may very well be different from the bulk phase. Most impor-
tantly, in the picture drawn by our results there is no clear one-to-one correspon-
dence between the bulk state of the system and the conductance properties seen
in experiments as [Young et al., 2014]. Our results from the detailed model taking
into account the explicit presence of an edge suggest that the transitions between
regimes of insulating and conducting behaviour seen experimentally may not nec-
essarily correspond to transitions of the bulk phase. In fact, they may correspond
to pure edge phenomena where the changes in the system’s conductance properties
are induced by transitions of the edge phases rather than the bulk phases. The
behaviour of these edge regimes is of much more subtle and complex nature than
that of the translationally invariant bulk. Therefore, we conclude that in order
to truly understand the properties of monolayer graphene and the behaviour ob-
served in experiment, one needs to thoroughly understand not only the bulk of the
system, but it is of crucial important to develop a complete picture including the
boundaries and the different kinds of edge phenomena induced by them.

VI.1.2 Bilayer Graphene -
How many Different Phases are there?

In chapter IV we analysed the ground state structure of bilayer graphene in the
presence of external electric and magnetic fields. The set of system parameters
which can be tuned in experiment consists in the field strengths of either the mag-
netic and the electric field applied, as well as the number of electrons that may
occupy the eight states of the zero energy octet of bilayer graphene. As a function
of these parameters we observed a total of 32 different phases, where each phase is
characterised by a different configuration of the discrete spin and isospin degrees
of freedom of bilayer graphene. We studied in depth the dependency of the ground
state configuration on the system parameters which allows predictions for the total
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number of phases, the parameter range for a certain phase, as well as the number
and nature of phase transitions. This information can be compared to the experi-
mental results on transitions between different phases in bilayer graphene we pre-
sented in chapter I. It has to be noted, however, that with our model Hamiltonian
we describe a translational invariant system of infinite bilayer graphene — direct
comparison to data from conductance measurements therefore is hampered by the
fact that we do not have any information about edge regimes or the behaviour of
possible current carrying edge states in the respective phases.

VI.1.3 Bismuth(111) -
Does the Ground State break Symmetries?

In chapter V we presented first, preliminary results on the quantum Hall states on
the (111) surface of elemental Bismuth. We analysed a microscopic model account-
ing for the six anisotropic valleys of the Bi(111) Fermi surface as well as the effect of
local strain to determine the ground state valley occupation for different numbers
of electrons in the system or for different strengths of the external magnetic field.
For all values of the tuneable parameters we observe the ground state to sponta-
neously lower the rotational symmetry of the system. This we take as evidence for
the ground state of Bi(111) to generally represent a nematic phase, in accordance
with recent experiments [Feldman et al., 2016]. This project, however, represents
work in progress. More work will be needed to fully understand the properties of
the Bi(111) quantum Hall states.

VI.1.4 Summary: Understanding a Material -
Bulk versus Edge Phenomena

Let us conclude the picture drawn by our investigations: in the case of monolayer
graphene we saw the material’s properties to be strongly influenced by the pres-
ence of atomic edges in a finite sample. In fact, our results suggest that the changes
of conductance properties with changing magnetic field may be explained by pure
edge phenomena related only to the behaviour of the system induced within a spa-
tially narrow regime close enough to the edges. This idea to take into account
carefully possible edge effects in atomic lattices, however, is of course not limited
to the case of monolayer graphene.

Concerning bilayer graphene we chose to investigate the translationally invariant,
infinite case. While in some aspects we find good agreement between our model
and experimental findings, as elucidated in detail in chapter IV, in other regards
our model suggests behaviour different from that observed experimentally. Maybe
the most prominent point of disagreement is the charge neutral ν = 0 state of bi-
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layer graphene at small values of the bias potential: in this regime, the ground
state of our model assumes a fully polarised, ferromagnetic phase. Leaning on
the correspondence between bulk phases and the number of crossings of the edge
states in monolayer graphene suggested by a simplified, translational invariant
treatment (see chapter III for more details), a ferromagnetic ground state is gen-
erally believed to exhibit gapless edge states and therefore to lead to conducting
behaviour. The ν = 0 state of bilayer graphene, however, is observed to be an
insulator [Maher et al., 2013]. By the same argumentation as above, because the
canted antiferromagnetic phase (in monolayer graphene) is believed to have gap-
less edge states, this insulating phase is thus generally identified as most probably
being a canted phase in the spin degree of freedom. This line of argumentation
may, however, be challenged by our results. We saw in monolayer graphene that
a ferromagnetic ground state phase does not necessarily yield gapless edge states
due to edge effects. It is reasonable to conjecture similar phenomena to occur in
bilayer graphene. In order to properly understand the conductance properties of
bilayer graphene as observed in real world experiments, where forcibly always a
finite sample is investigated, it would be necessary to carefully take into account
the edge effects.

The situation becomes even more rich and complex when moving away from the
graphene family towards other classes of two-dimensional materials. Within this
work, we turned our attention towards the (111) surface of elemental Bismuth
where we investigated the effects of valley-breaking interaction processes and lo-
cal strain. The electronic surface states living on the two-dimensional surfaces of
three-dimensional crystals offer a variety of possibilities for novel quantum Hall
physics. But also here, just as in the case of bilayer graphene explained above, at
the point when one ultimately tries to understand conductance properties, it will
be necessary to understand the edge regimes of the material and to this end take
into account terminating boundaries in the description, eventually. In general,
whenever studying any kind of quantum Hall phenomena in a novel type of two-
dimensional material, a careful consideration has to be made in order to mutually
weigh against each other all the different kinds of effects induced by this particular
material, including possible edge effects.

VI.2 Outlook

Based on the above discussion, especially of the shortcomings and insufficien-
cies of our work we would like to give an outlook on possible directions for fu-
ture research: let us say that there is a lot to be learned in the field of quantum
Hall physics. Studying quantum Hall effects in novel two-dimensional materials
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offers a wide and rich playground as basically any new material holds the pos-
sibility for novel phenomena to be added to the picture. Especially the family of
three-dimensional crystal materials hosting two dimensional surface states seems
a promising class for new, exciting quantum Hall physics. Long after Klaus von
Klitzing made the seminal discovery of the integer quantum Hall effect, the field
still does not fail to offer surprises. We hope that our humble contribution helps
to stimulate research facing the many interesting questions that remain to be an-
swered.
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APPENDIX A

Monolayer Graphene: The Kinetic Energy effective Edge
Potential

A.1 Landau Levels in the Presence of a Boundary

We aim at understanding the energy levels near the edges of a finite piece of
monolayer graphene subject to a magnetic field. To this end we consider Lan-
dau level quantisation of a finite piece of monolayer graphene. We explicitly dis-
cuss the different boundary condition imposed by zigzag and armchair edges. The
ideas sketched here closely follow the derivations in references [Abanin et al., 2006]
and [Brey and Fertig, 2006b].

A.1.1 Low-Energy Dirac Hamiltonian

We work in the low-energy approximation of the tight-binding framework in the
quantum Hall regime laid out in the introductory section II.1.1. In the presence
of a magnetic field, the Hamiltonian of monolayer graphene in the vicinity of the
Dirac points can be represented in terms of the creation and annihilation operators
a = `B√

2~(πx − iπy) and a† = `B√
2~(πx + iπy) as

Heff
B = vF

√
2
~
`B


(

0 a
a† 0

)
0

0

(
0 −a†

−a 0

)
 . (A.1)

In above formulae, we used the notation of the canonical momentum π = p −
e
cA(r), where A(r) denotes the vector potential generating the magnetic field. The
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above representation of the Hamiltonian implies the four-component spinor of the
states on the lattice to be ordered as

ψ =


ψA,+

ψB,+

−ψA,−
−ψB,−

 , (A.2)

where the indices A and B refer to the two triangular sub-lattices and the degen-
erate Dirac points are labeled by K+ and K−, respectively.

For the wave functions φA on the sub-lattice A and φB on sub-lattice B we write
within an expansion around the two Dirac points K+ and K−:

φA(r) = eiK+·rψA,+ − e−iK−·rψA,−, (A.3a)

φB(r) = eiK+·rψB,+ − e−iK−·rψB,−. (A.3b)

The eigenvalue equation Heff
B ψ = Eψ yields the following conditioning equations

for the individual components:

vF
√

2
~
`B

aψB,+ = E ψA,+,

vF
√

2
~
`B

a† ψA,+ = E ψB,+

⇒ a a† ψA,+ = E2 `2B
v2
F 2~2

ψA,+, (A.4a)

vF
√

2
~
`B

a† ψB,− = E ψA,−,

vF
√

2
~
`B

aψA,− = E ψB,−

⇒ a†aψA,− = E2 `2B
v2
F 2~2

ψA,− (A.4b)

Using Landau gauge, i.e., Ax = −B y and Ay = 0, we expand the product of
annihilation and creation operators in equations (A.4a) and (A.4b) in terms of the
components of the kinetic momentum p:

a a† =
`2B
2~2

(
π2
x − i[πy, πx] + π2

y

)
=

1

2

(`2B
~2
p2
y +

`2B
~2

(px +B
e

c
y)2 + 1

)
, (A.5a)

a†a =
`2B
2~2

(
π2
x + i[πy, πx] + π2

y

)
=

1

2

(`2B
~2
p2
y +

`2B
~2

(px +B
e

c
y)2 − 1

)
, (A.5b)
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Figure A.1
Plot of the function
V (y) = 1

2(|y| − y0)2 −
1
2sgn(y) for different
values of y0 yielding
the (rescaled) effective
potential in equation
(A.6).

where we exploited the commutation relation of the components of the canonical
momentum: [πy, πx] = −i ~2

`2B
.

Hence, combining equation (A.4) and (A.5), we can summarise the condition on
the wave function on sub-lattice A as(

p2
y + V (y)

)
ψ̃A = Ẽ ψ̃A, (A.6)

where we require the state ψ̃A to fulfil

ψ̃A(x, y) =

{
ψA,+, if y < 0

ψA,−, if y > 0.
(A.7)

Further, in equation (A.6), we defined the effective potential V (y) = (B e
c |y|−y0)2−

~2

`2B
sgn(y) with y0 = −px, as well as the rescaled effective energy Ẽ = E2

v2
F

. Note that
the quadratic relation for the energy implies that every solution for equation (A.6)
results in a positive and a negative energy solution, respectively.

The shape of the potential at different values of y0 is shown in figure A.1.
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Figure A.2
Semi-infinite monolayer
graphene lattice with an armchair
edge (magenta atoms) along the line
y = 0.

A.1.2 Terminating Edge: Boundary Conditions

We discuss the case of a finite piece of monolayer graphene: different ways to
terminate the lattice require imposing different boundary conditions.

Armchair Edge: Boundary Conditions

The geometry of an armchair edge is shown in figure A.2: The hexagonal graphene
lattice extends infinitely in the x-direction, but in y exhibits infinite extension to
plus infinity in the upper half plane, only. Along the line y = 0 it exhibits an
atomically sharp edge, where the final atoms are of theA andB sub-lattice type, in
an alternating way. Therefore, the proper boundary conditions to impose require
both, the wave functions of the A and of the B sub-lattice, to vanish at y = 0:

φA(x, y = 0) = φB(x, y = 0) = 0. (A.8)

Requiring these boundary conditions to be fulfilled by the wave functions φA(r)
and φB(r) as written in equation (A.3) yields the following conditions on the en-
velope functions:

ψA,+(x, y = 0) = ψA,−(x, y = 0), ψB,+(x, y = 0) = ψB,−(x, y = 0). (A.9)

Note that this requires valley mixing of the states of the two different Dirac points.

Armchair Edge: Discussion of the Energy Levels

Let us translate the conditions of equation (A.9) imposed by the armchair bound-
ary along y = 0 into the context of the description of the problem in terms of the
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effective eigenvalue equation (A.6): The requirements are continuity of ψA,+, eval-
uated on the negative half-axis y < 0, and ψA,−, evaluated on the positive half-axis
y > 0, along the line y = 0. It further implies continuity of the derivative of the
wave function, which, by virtue of the relations in equations A.4, is associated with
the functions ψB,+ and ψB,−.

We are hence confronted with the one-dimensional problem of solving for the
eigenfunctions in the presence of the potential V (y), where the solutions for y < 0
represent ψA,− and for y > 0 in turn we obtain ψA,+. Considering the shape of the
potential for different values of y0 as displayed in figure A.1, we gain the following
qualitative insights about the structure of the energy levels:

Deep in the bulk: y0 → +∞
The potential V(y) takes the shape of two well separated harmonic potentials,
shifted by one unit in energy with respect to each other (upper left panel of
figure A.1). Thus, for the energetic level structure we expect quantisation
similar to the harmonic oscillator separately for each well:

Left well: E∞left,m = (m+ 1
2) + 1

2 = 1, 2, 3, 4, . . .

Right well: E∞right,m = (m+ 1
2)− 1

2 = 0, 1, 2, 3, . . .

The energies are given here in units of the characteristic energy ~ω where the
frequency ω is the same for both wells as it does not change with a mere shift
of the harmonic potential in y.

We hence obtain a two-fold degeneracy between the left and the right well
E∞left,m = E∞right,m+1. Only the zero-energy ground state E∞right,m=0 = 0 ap-
pears as a singlet state.

This implies two-fold degeneracy between the Dirac points K+ and K−
within the bulk for all but the zero-energy ground state.

Close to the edge: y0 → −∞
In this limit, as in the lowest panel of figure A.1, the potential resembles a
triangular potential well, staggered at y = 0 by one unit of energy with re-
spect to each other. The eigenenergies are neither equidistant nor multiples
of integer energy units. Therefore, no degenerate states are found between
the left and the right well. With y0 becoming more and more negative, the
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Figure A.3
Sketch of the energy spectrum of monolayer
graphene near an armchair boundary. The
boundary condition of equation (A.9) lifts the
degeneracy of the K+ and K− valley. Figure
from reference [Abanin et al., 2006] (edited).

Figure A.4
Semi-infinite graphene lattice with a
zigzag edge (blue atoms) along the
line y = 0.

steepness of the triangles effectively grows; therefore, the energy of the lev-
els becomes higher and higher as we approach the edge.

Hence, the degeneracy between the K+ and the K− point which is estab-
lished in the bulk is lifted more and more as we approach the edge of the
system. Furthermore, the levels bend increasingly towards higher energies.

The characteristic behaviour of the energy levels in the bulk and near the edge can
be seen in figure A.3.

Zigzag Edge: Boundary Conditions

As we show in figure A.4, in the case of the zigzag configuration, the edge is
formed by atoms of but one sub-lattice type, A or B, respectively. Therefore, the
boundary condition of vanishing wave function applies to one of the sub-lattice
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states of equation (A.3), only (which we label with A without loss of generality):

φA(x, y = 0) = 0

⇔ ψA,+(x, y = 0) = ψA,−(x, y = 0) = 0. (A.10)

Hence, we obtain two independent conditions decoupling the problems for the
Dirac points K+ and K− on sub-lattice A. Furthermore, the states on the B sub-
lattice remain unaffected by the zigzag boundary edge. The problem thus resem-
bles that of two semi-harmonic oscillators, mirrored with respect to each other, and
bounded by an infinite wall potential at y = 0.

Zigzag Edge: Discussion of the Energy Levels

The problem of a one-dimensional harmonic oscillator with an infinite potential
barrier at one side is solvable by analytical means as has been demonstrated in
reference [Mei and Lee, 1983]. We briefly review the derivation given within this
reference. For a potential which is harmonic with eigenfrequency ω for x > −r
and infinite for x < −r as

VhHO =

{
1
2µω

2x2, if x > −r
+∞, if x < −r,

(A.11)

where µ denotes the mass of the particle. The eigenfunctions are non-zero only in
the region x > −r and we obtain quantisation of the energies as

Em = ~ω(m+
1

2
), (A.12)

where the corresponding eigenfunctions for x > −r are given by the Weber func-
tions Dm(x)

Dm(x) = 2
m
2 e−

z2

4

( √
π

Γ[1
2 −

1
2m]

F [−1

2
;
1

2
;
1

2
z2]−

√
2πz

Γ[−1
2m]

F [
1

2
− 1

2
m;

3

2
;
1

2
z2]
)
. (A.13)

Note that we require m ∈ R, but not necessarily to be integer.

In equation (A.13) we used the notation Γ to denote the Gamma function Γ(z) =∫∞
0 tz−1e−tdt for Re(z) > 0 as well as F for the confluent hypergeometric function

defined by its polynomial expansion as

F (a; b;x) = 1 +
a

b
x+

a(a+ 1)

2!b(b+ 1)
x2 +

a(a+ 1)(a+ 2)

3!b(b+ 1)(b+ 2)
x3 + . . . (A.14)

Exact, analytical solutions exist for the limits r →∞ (unperturbed harmonic oscil-
lator) and r → 0 (half-harmonic oscillator), which lead to quantisation at values of
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Figure A.5
Quantum numbers m defined by equation (A.15) characterising the energy levels
Em = ~ω(m + 1

2) of the harmonic oscillator with an infinite potential barrier
as a function of the barrier distance R. The limit R → ∞ corresponds to the
unperturbed harmonic oscillator (equidistant levels with level spacing ∆m = 1,
existing zero-energy mode), whereas R = 0 gives the half harmonic oscillator,
where only odd values of m are supported (equidistant levels with level spacing
∆m = 2, no zero-energy mode).

m being exactly integer, where in the first case any m ∈ N renders a valid solution,
where in the second case only odd values of m are allowed.

In general, requiring the wave function to vanish at a generic point x = −r entails
the following condition on the values of m

F [−1
2m; 1

2 ; 1
2R

2]

Γ[1
2 −

1
2m]

= −
√

2R
F [1

2 −
1
2m; 3

2 ; 1
2R

2]

Γ[−1
2m]

, (A.15)

where we rescaled the distance of the barrier as R =
√

2µω
~ r.

We show the solutions for the allowed quantum numbers m as a function of the
distance R from the barrier in figure A.5 as obtained numerically as the solutions
to equation A.15. We discuss the qualitative behaviour of the energy levels for K+

and K− below.

The level structure of the problem as shown in equation (A.5) dictated by equation
(A.15) entails the following consequences for the behaviour of the energy levels in
the graphene sample:
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Deep in the bulk: y0 → +∞

We recover the case of the ordinary harmonic oscillators which hardly feel
the influence of the infinite wall at y = 0. As in the case of the armchair edge,
the potential V(y) takes the shape of two well-separated harmonic potentials,
shifted by one unit in energy with respect to each other as shown in the upper
left panel of figure A.1. The boundary condition that forces the wave func-
tions to vanish at y = 0 are compatible with the usual condition ψ → 0 for
y → ±∞ of the ordinary treatment of the harmonic oscillator problem. Thus,
also in the zigzag case, for the energy level structure we approximately ob-
tain quantisation similar to the harmonic oscillator separately for each well:

Left well: E∞left,m = (m+ 1
2) + 1

2 = 1, 2, 3, 4, . . .

Right well: E∞right,m = (m+ 1
2)− 1

2 = 0, 1, 2, 3, . . .

The energies are given again in units of the characteristic energy ~ω where
the frequency ω is the same for both wells as it does not change with a mere
shift of the harmonic potential in y.

Again, we obtain a two-fold degeneracy between the left and the right well
E∞left,m = E∞right,m+1. Only the zero-energy ground state E∞right,m=0 = 0 ap-
pears as a singlet state.

Thus, also in the case of a zigzag boundary, we recover two-fold degeneracy
between the Dirac points K+ and K− within the bulk for all but the zero-
energy ground state.

Special case y0 = 0

Here, the potential V(y) appears as two half-harmonic oscillators, mirrored
along y = 0 with respect to each other as in the centre left panel of figure
A.1, and shifted by one unit in energy. This problem is solvable analytically,
supporting only the eigenfunctions of the harmonic oscillator which vanish
at y = 0 thus leading to quantisation in terms of odd quantum numbers,
only. We therefore obtain the energy level structure:

Left well: E0
left,m = (m+ 1

2) + 1
2

∣∣∣∣∣
m odd

= 2, 4, 6, 8, . . .
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Right well: E0
right,m = (m+ 1

2)− 1
2

∣∣∣∣∣
m odd

= 1, 3, 5, 7, . . .

We observe that there is no degeneracy within the two wells anymore. Be-
sides, as the half-harmonic oscillator does not support a m = 0 mode, there
is no zero-energy state in this case.

Close to the edge: y0 → −∞
In this limit, shown in the lowest panel of figure A.1, the potential resembles
two triangular potential wells, mirrored and shifted by one unit of energy
with respect to each other. The eigenenergies are neither equidistant nor
multiples of integer energy units. Therefore, no degenerate states are found
between the left and the right well. With y0 becoming more and more neg-
ative, the steepness of the triangles effectively grows. We compare the case
of the triangular potential well with steepness F , were the eigenfunctions
are given by the Airy-functions and the eigenenergies are proportional to
(~

2F 2

2µ )
1
3 , hence grow with growing F. We thus expect similar behaviour, i.e.,

the energy to become higher and higher with growing steepness as we ap-
proach the edge.

Hence, the degeneracy between the K+ and the K− point found in the bulk
is lifted more and more as we approach the edge o the system. Furthermore,
the levels bend increasingly towards higher energies.

The structure of the energy levels for K+ and K− resulting from these considera-
tions we show in figure A.6.

In our study of a finite piece of monolayer graphene in the quantum Hall regime
presented in chapter III we use the bulk zero energy level, marked in magenta
in figure A.6, as a model of the kinetic energy effective edge potential describ-
ing the change of the n = 0 Landau level dispersion induced by the presence of
the boundary. We obtain m0(R) by numerically evaluating equation (A.15) from
which we then proceed to calculate the lowest Landau level energy as a function
of the distance to the boundary.
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Figure A.6
Energetic level structure in the zigzag case as a result of the calculations with the
harmonic oscillator plus the infinite barrier. We highlight in magenta the bulk
zero-energy level E0(R).
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APPENDIX B

Monolayer Graphene: Parametrisation of the Ground State
Wave Function

B.1 The Minimal Set of Parameters

We are interested in the analysis of the two-electron state introduced in section
III.1.1

|ψGS〉 =
∏
p

(1

2

∑
µ,ν

gµν c
†
µ(p)c†ν(p)|0〉

)
, (B.1)

where p indicates the Landau gauge momentum, whereas the indices µ, ν label
the different spin and isospin configurations {| ↑ +〉, | ↑ −〉, | ↓ +〉, | ↓ −〉} in the
Hilbert space H = Hspin ⊗ Hvalley. As |ψGS〉 describes an fermionic two particle
state, we require the characterising 4×4 matrix g to be antisymmetric: gµν = −gνµ.
It therefore generally contains six independent complex entries and hence twelve
real parameters.

This appendix is devoted to the problem of finding a suitable parametrisation of
the entries of the matrix g. By fully exploiting the symmetries of the underlying
Hamiltonian as well as making use of all constrains and requirements for the wave
functions of interest and thereby reducing step by step the number of free param-
eters in the problem will lead us to a representation of g in terms of but three
real independent parameters α, β, χ. The calculation presented here is closely re-
lated to the parametrisation of the state of a double layer electron gas quantum
Hall system derived in reference [Ezawa et al., 2005].
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B.1.1 Parametrising a General Antisymmetric Matrix

Any generic antisymmetric 4 × 4 matrix g is characterised by six complex en-
tries, hence by twelve real parameters. The six matrices of the set BM =
{τατyσy, σατyσy} span the space of antisymmetric 4 × 4 matrices, where σj =
σ2×2
j ⊗12×2 denotes the j-th Pauli matrix acting in spin space, and τj = 12×2⊗σ2×2

j

denotes the corresponding Pauli matrix acting in valley space, respectively. The in-
dex α runs over the spacial coordinates x, y, z: α ∈ {x, y, z}. We therefore expand
g in this basis BM in the form

g = − i
2

[(a + ib) · T + (c + id) · S]τyσy, (B.2)

where we understand Tj = τj and Sj = σj while i denotes the imaginary unit.

The twelve parameters are now encoded in the four real three-dimensional vectors
a,b, c,d ∈ R3. We therefore translated the problem of parametrising the entires of
g to the equivalent one to find a suitable parametrisation of these four vectors.

Directly from the definitions of the expectation values of the different observables
we obtain the following conditions for the components (cf. equations III.25 in chap-
ter III):

Sα =
1

2
〈ψGS |c†(p)σα c(p)|ψGS〉 =

1

2
Tr[σαgg†] =

∑
ij

cidjεijα = (c× d)α, (B.3a)

Tα =
1

2
〈ψGS |c†(p)ταc(p)|ψGS〉 =

1

2
Tr[ταgg†] =

∑
ij

aibjεijα = (a× b)α, (B.3b)

Rαβ =
1

2
〈ψGS |c†(p)σατβc(p)|ψGS〉 =

1

2
Tr[σατβgg†] = aβcα + bβdα, (B.3c)

which implies the following interrelations:

RαβSβ = 0, (B.4a)
TαRαβ = 0, (B.4b)
2SαTβ = εabcεbheRchRde. (B.4c)

We now aim at constructing the most general tensor R that fulfils the conditions
imposed by equations (B.4a) - (B.4c).

To this end, we choose the orthonormal basis of R3 given by

BR3 = {uT ,uS ,q}, (B.5)
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where we understand

uT α =
T 2Sα − (T · S)Tα

TQ
, (B.6a)

uSβ =
S2Tβ − (T · S)Sβ

SQ
, (B.6b)

qγ =
Qγ
Q
, (B.6c)

with Q = T× S.

For these basis vectors, the following relations hold:

uT ⊥ T : uT ·T = 0, (B.7a)
uS ⊥ S : uS · S = 0, (B.7b)
uT ⊥ q : uT · q = 0, (B.7c)
uS ⊥ q : uS · q = 0, (B.7d)
uT ⊥ uS : uS · uT = 0, (B.7e)

uS × q = −S

S
, (B.7f)

uT × q = −T

T
. (B.7g)

Furthermore, they allow to expand the tensor R as

Rαβ = uSαuT βRTS + uT βqαRTQ + qβuSαRQS + qαqβ, (B.8)

with the four expansion coefficients RTS , RTQ, RQS , RQQ ∈ R due to equation
(B.4c) as

RTQRQS −RTSRQQ = TS. (B.9)

We now construct the four vectors a,b, c,d in the basis BR3 as defined in equation
(B.5), thereby requiring the relations of equations (B.3a)-(B.3c) to hold.

We write

ai = θauT i + ξaqi, (B.10a)
bi = θbuT i + ξbqi, (B.10b)
ci = θcuSi + ξcqi, (B.10c)
di = θduSi + ξdqi, (B.10d)
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where equations (B.3a), (B.3b) impose the following conditions on the expansion
coefficients

θa ξb − ξa θb = T, (B.11a)
ξc θd − θc ξd = S, (B.11b)

whereas from equation (B.3c) we infer

RTS = θc θa + θd θb, RTQ = ξc θa + ξd θb,

RQS = θc ξa + θd ξb, RQQ = ξc ξa + ξd ξb. (B.12)

Using the condition of equation (B.11a), we solve the system of equations in B.12
for the coefficients θc/d and ξc/d as

θc =
1

T
(RTSξb −RQSθb), ξc =

1

T
(RTQξb −RQQθb),

θd =
1

T
(RQSθa −RTSξa), ξd =

1

T
(RQQθa −RTQξa). (B.13)

These solutions automatically fulfil the condition of equation (B.11b).

The twelve free parameters identified beforehand to parametrise the most general
matrix g as given in equation (B.2) and hence the ground state |ψGS〉 of equation
(B.1), now are encoded in the components of the observables which we count as:

Parametrisation: Step 1

S : Sx, Sy, Sz → 3 parameters,
T : Tx, Ty, Tz → 3 parameters,
R : RTS , RTQ, RQS , RQQ → 4− 1 = 3 parameters,

(with one condition of eqn. (B.9))
Coefficients : θa, θb, ξa, ξb → 4− 1 = 3 parameters.

(with one condition of eqn. (B.11a)) (B.14)

In the next paragraph, we formulate the physical conditions on the ground state
|ψGS〉 in terms of the set of parameters given in equation (B.14). We aim at ex-
ploiting these conditions in order to reduce the number of free parameters as far
as possible.

Normalisation
The condition for the two-particle ground state |ψGS〉 to be properly nor-
malised, i.e., Tr[gg†] = 2, allows to reduced the number of parameters by
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one. We rewrite the normalisation condition to fulfil as

Tr[gg†] = 2 ⇔ a2 + b2 + c2 + d2 = 2

⇔ 1

2
(θ2
a + θ2

b ) (T 2 +R2
QS +R2

QQ) +
1

2
(ξ2
a + ξ2

b ) (T 2 +R2
TS +R2

TQ)

− (θbξb + θaξa) (RTSRQS +RQQRTQ) = T 2 (B.15)

Global phase
We express the vectors Θ = (θa, θb)

T , Ξ = (ξa, ξb)
T in terms of the angle γ

enclosed, i.e., γ = ^(Θ,Ξ) and omit the overall phase:

Θ = θ

(
cos γ2
− sin γ

2

)
, Ξ = ξ

(
cos γ2
sin γ

2

)
. (B.16)

The vector properties of Θ and Ξ imply the following relations:

θ2
a + θ2

b = θ2,

ξ2
a + ξ2

b = ξ2,

θaξa + θbξb = θξ cos γ. (B.17)

We reformulate the conditions of equations (B.11a) and (B.15) in this notation to
read

θξ sin γ = T, (B.18a)
1

2
(T 2 +R2

QS +R2
QQ) +

1

2
(T 2 +R2

TS +R2
TQ)

−θξ cos γ(RTSRQS +RQQRTQ) = T 2. (B.18b)

Furthermore, we introduce the variables x, y as

x = θ2(1 +
R2
QS +R2

QQ

T 2
) + ξ2(1 +

R2
TS +R2

TQ

T 2
)

y = θ2(1 +
R2
QS +R2

QQ

T 2
)− ξ2(1 +

R2
TS +R2

TQ

T 2
), (B.19)

allows to combine the conditions of equations (B.18) using the relation cos2 γ +
sin2 γ = 1 to read

(ax− 2)2 + a(1− a)y2 = 4(1− a)[1− (S2 + T 2 +R2)], (B.20)
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where we defined

a =
T 2(T 2 + S2 +R2)

(T 2 +R2
QS +R2

QQ)(T 2 +R2
TS +R2

TQ)
. (B.21)

The relation of equation (B.20) defines an ellipse equation. In the present case,
where S2 + T 2 + R2 ≡ 1, due to the vanishing of the right hand side, equation
(B.20) only permits one singular solution: x = 2

a , y = 0.

The conditions of equations (B.18) thus translate into conditions on x and y, which
can be solved straightforwardly as

θ2 = T 2 +R2
TS +R2

TQ, ξ2 = T 2 +R2
QS +R2

QQ, (B.22)

and translated back into the angle γ via

sin γ =
T

θξ
, cos γ =

√
θ2ξ2 − T 2

θξ
. (B.23)

This, in turn, allows to obtain θa, θb, ξa, ξb via equation (B.16) as well as θc, θd, ξc, ξd
via equation (B.12).

Thus, dropping the overall normalisation constant as well as the global phase and
exploiting the ground state condition S2 + T 2 + R2 ≡ 1, we have reduced the
number of free variables parametrising the matrix g to a total of nine parameters,
encoded as

Parametrisation: Step 2

S : Sx, Sy, Sz → 3 parameters,
T : Tx, Ty, Tz → 3 parameters,
R : RTS , RTQ, RQS , RQQ → 4− 1 = 3 parameters,

(with one condition of eqn. (B.9)). (B.24)

B.1.2 Parametrising the Energy Functional

We proceed the reduction of the number of free parameters needed by exploiting
the symmetries of the Hamiltonian under consideration.
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The energy functional Etot = 〈Htot〉 computed from the Hamiltonian of equation
(III.4) reads

Etot = −2EkinTx − 2EZSz +
1

2

∑
α

uα

(
Tr[ταgg†]2 − Tr[ταgg†ταgg†]

)
, (B.25)

where the traces in above equation (B.25) can be evaluated as

Tr[ταgg†]2 = 4T 2
α (B.26a)

Tr[ταgg†ταgg†] = 1−
∑
i

(
S2
i + T 2

i +
∑
j

R2
ij

)
+ 2
(∑

i

S2
i + T 2

α +
∑
i

Riα
)
.

(B.26b)

Exploiting the ground state condition S2 + T2 + R2 = 1, we find the energy func-
tional Etot hence to read

Etot =− 2(EkinTx + EZSz) +
∑
α

(
T 2
α − S2

α −
∑
i

R2
iα

)
=− 2(EkinTx + EZSz) + uzT

2
z + u⊥(T 2

x + T 2
y )

− uzS2
z − u⊥(S2

x + S2
y)− uz

∑
i

R2
iz − 2u⊥(

∑
i

R2
ix +

∑
i

R2
iy), (B.27)

where we agreed on ux = uy = u⊥.

We exploit the symmetries of above energy functional of equation (B.27). We note
that S and Rix, Riy, Riz ∀i rotate as vectors in spin space and T and Rix, Riy, Riz ∀i
rotate as vectors in valley isospin space. Hence, in order to minimise Etot of equa-
tion (B.27), we can perform rotations of S (T) in spin (valley isospin) space, with-
out affecting S2 or R2

ix, R
2
iy, or R2

iz (T2 or R2
ix, R

2
iy, or R2

iz):

Orientation of the spin: Etot of equation (B.27) is minimised for the maximal value
of Sz . We therefore chose the total spin S to be alined along the z-axis in spin space:
Sx = Sy = 0.

Orientation of the valley isospin: Etot of equation (B.27) depends on the projection
of the total isospin T on the x-y-plane. Therefore, we chose T to be oriented along
the x-axis in isospin space: Ty = 0.

The aim of the next step is to express in energy functional Etot of equation (B.27)
in terms of the observables T and S. To this end, we start by relating the com-
ponents of the tensor Rαβ to S and T. As only three of the four coefficients
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RTS , RTQ, RQS , RQQ are independent, we parametrise in terms of three free pa-
rameters ω, χ, and λ as

RTS + iRTQ = eiω(
T

χ
− iλ), (B.28a)

RQS + iRQQ = −ieiωχS, (B.28b)

which ensures the condition of equation (B.9) on the coefficients to be fulfilled and
further entails the following relations:

RTSRQS +RTQRQQ = χSλ, (B.29a)

R2
TS +R2

TQ =
T 2

χ2
+ λ2, (B.29b)

R2
QS +R2

QQ = χ2S2. (B.29c)

Using above equations (B.29), the parts of equations (B.27) containing entries of
Rαβ are found to read in terms of ω, λ and χ:

R2 =
∑
ij

R2
ij =R2

TS +R2
TQ +R2

QS +R2
QQ

=
T 2

χ2
+ λ2 + χ2S2, (B.30a)∑

i

R2
iα =u2

Tα(R2
TS +R2

TQ) + q2
α(R2

QS +R2
QQ)

+ 2uTαqα(RTSRQS +RTQRQQ)

=u2
Tα(

T 2

χ2
+ λ2) + q2

αχ
2S2 + 2uTαqαχSλ. (B.30b)

From the form of theRαβ-dependent terms as they are given in equation (B.30) we
draw the following conclusions for the parameters:

Freedom of ω
As the expressions of equation (B.30) do not depend on the parameter ω,
the energy functional Etot of equation (B.27) in turn does not depend on ω,
either. The total energy therefore is independent of the choice of ω which
hence can be chosen freely at any convenient value.
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Minimising λ
From the identity

S2 +R2 + T 2 =1

⇔ S2
z + T 2 +

T 2

χ2
+ χ2S2

z + λ2 =1, (B.31)

we observe that decreasing λ can be compensated by increasing Sz accord-
ingly in order to maintain above equality. As the total energy Etot as in equa-
tion (B.27) is minimised by the maximal value of Sz , we infer reversely that
the minimum value of Etot is obtained for the minimum absolute value of λ,
i.e., for λ ≡ 0.

The coefficients which appear in equation (B.30) we compute directly from their
definitions of equation (B.6) by inserting straightforwardly the explicit expres-
sions for S and T:

uTx =
−Tz√
T 2
x + T 2

z

, qx = 0,

uTy = 0, qy = −1,

uTz =
Tx√

T 2
x + T 2

z

, qz = 0. (B.32)

Applying this parametrisation as developed above, the ground state energy of
equation (B.30) reads in terms of the variables Sz, Tx, Ty and χ:

Etot =− 2(EkinTx + EZSz)− uz(
T 2
x

χ2
− T 2

z + S2
z )

− u⊥(
T 2
z

χ2
− T 2

x + 2S2
z + χ2S2

z ) (B.33)

One further parameter can be eliminated by making use of the condition S2 +R2 +
T 2 = 1 and rewriting with the help of equation (B.30)

S2 +R2 + T 2 = 1

⇔ S2
z (1 + χ2) + T 2(1 +

1

χ2
) = 1

⇔ S2
z =

1

1 + χ2

[
1− T 2(1 +

1

χ2
)
]
, (B.34)

when introducing the parametrisation

S2
z =

1

1 + χ2
(1− α2), (B.35)
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with α2 = (T 2
x + T 2

z )χ
2+1
χ2 . For the isospin components this representation entails

parametrisation as

Tx = α
√

1− β2
χ√
χ2 + 1

, Tz = αβ
χ√
χ2 + 1

. (B.36)

Parametrisation: Final Representation

As a consequence, the functional of the total energy finally can be expressed
in terms of the three variational parameters −1 ≤ α ≤ 1, −1 ≤ β ≤ 1 and
χ ∈ R:

Etot =− 2(Ekinα
√

1− β2
χ√
χ2 + 1

+ EZ

√
1− α2√
1− χ2

)

− uz(
1

χ2 + 1
− α2β2)− u⊥(α2(β2 − 2) +

2 + χ2

1 + χ2
). (B.37)

The representation of Etot in terms of but three parameters as in equation B.37
allows convenient handling such as numerical minimisation. We exploit this fact
in In chapter III when studying a finite piece of monolayer graphene in a space
dependent treatment.
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Bilayer Graphene: Exchange Interaction Matrix Elements

C.1 Explicit Form of the Exchange Integrals

This appendix is devoted to providing the explicit expressions for the matrix
elements of the Coulomb exchange interaction calculated within the four-band
model.

Repeating the formula given in section IV.1, the exchange integrals are given by

Xξ,ξ
′

n1,n2
n3,n4

(q) = α

∫
dp`2B

2π

1

p`B
e−pd(1−δξ,ξ′ )Kn1,n4(p)Kn3,n2(−p)eip×q`2B , (C.1)

in terms of the generalised form factors Kn,n′ of the four-band model of bilayer
graphene as defined in equation (IV.12):

Kn,n′(q) = b∗(n′),1b(n),1 Kn,n′(q) + b∗(n′),2b(n),2 Kn−2,n′−2(q)

+
(
b∗(n′),3b(n),3 + b∗(n′),4b(n),4

)
Kn−1,n′−1(q). (C.2)

We are interested in the properties of the zero-energy states of bilayer graphene carrying
Landau level quantum numbers n = 0 or n = 1. For convenience, we list some of
the properties for the cases n, n′ = 0, 1 which are used in the calculation of the
form factors (cf. the definition of the n, n′ = 0, 1 states of the four-band model as
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given in II.35):

n = 0, n′ = 0 :

F0,0(q) = e−
`2Bq

2

4 ,

b∗(0),1b(0),1 = 1, b∗(0),2b(0),2 = 0, b∗(0),3b(0),3 = 0, b∗(0),4b(0),4 = 0,

n = 1, n′ = 0 :

F1,0(q) = e−
`2Bq

2

4 (
`B√

2
)(iqx + qy),

b∗(1),1b(0),1 = c1, b
∗
(1),2b(0),2 = 0, b∗(1),3b(0),3 = 0, b∗(1),4b(0),4 = 0,

n = 0, n′ = 1 :

F0,1(q) = e−
`2Bq

2

4 (
`B√

2
)(iqx − qy),

b∗(0),1b(1),1 = c1, b
∗
(0),2b(1),2 = 0, b∗(0),3b(1),3 = 0, b∗(0),4b(1),4 = 0,

n = 1, n′ = 1 :

F1,1(q) = e−
`2Bq

2

4 (1−
q2`2B

2
),

b∗(1),1b(1),1 = c2
1, b

∗
(1),2b(1),2 = 0,

b∗(1),3b(1),3 = c2
1

(1−M2z2)2

g2
1

, b∗(1),4b(1),4 = c2
1|zM |2. (C.3)

From these, the corresponding generalised form factors are obtained straightfor-
wardly

K0,0(p) = K0,0(p) = e−
`2Bp

2

4

K0,1(p) = c1K0,1(p) = e−
`2Bp

2

4
c1`B√

2
(ipx + py)

K1,0(p) = c1K1,0(p) = e−
`2Bp

2

4
c1`B√

2
(ipx − py)

K1,1(p) = e−
`2Bp

2

4 (1− c1
`2Bp

2

2
), (C.4)

where we used the definition of c1 as c1 = 1√
1+ 1

g1
2 (1−M2z2)2+z2M2

as introduced in

chapter II.
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C.2 Energetic Scales

For the simplified case of q ≡ 0, the matrix elements of equation (C.1) can be
evaluated analytically, following the definition of the form factors of as in equa-
tion (IV.10) and using the properties listed in equation (C.3). As in the main part,
section IV.1, we use the notation ∆n1n2n3n4 := Xξ,ξn1,n2

n3,n4

for the terms conserving the

valley index and Xn1n2n3n4 := Xξ,ξ
′

n1,n2
n3,n4

in the case ξ 6= ξ′ for the valley index non-

conserving terms.

Valley conserving terms:

∆0000 = α

√
π

2
,

∆1111 =
α

4

√
π

2

[
4 + c1(3c1 − 4)

]
,

∆1001 = α

√
π

2

c2
1

2
,

∆0011 = −α
√
π

2

(c1 − 2)

2
. (C.5)

Valley breaking terms:

X0000 = α

√
π

2
e

1
2
d2

`2
B Erf[

1√
2

d

`B
],

X1111 =
α

8`4B

[
− 2c1d`B(c1d

2 + (5c1 − 4))`2),

+
√

2πe
1
2
d2

`2
B (c2

1d
4 + 2c1(3c1 − 2)d2`2B + (4 + (3c1 − 4))`4) Erf[

1√
2

d

`B
]
]
,

X1001 = c2
1

α

4`2

[
− 2d`B + e

1
2
d2

`2
B (d2 + `2B)

√
2π Erf[

1√
2

d

`B
]
]
,

X0011 =
α

4`2

[
2c1d`B −

√
2πe

1
2
d2

`2
B

(
c1d

2 + (c1 − 2)`2B
)

Erf[
1√
2

d

`B
]
]
. (C.6)

In the above formulae, Erf denotes the error function.

C.2 Energetic Scales

In order to grasp the energetic scales in our calculations we provide numbers for
the energetic splittings and the matrix elements for some system parameters.
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Figure C.1
Matrix elements ∆ and X
as functions of the mag-
netic field B for fixed bias.
The numbers correspond to
the subindices indicating the
Landau level quantum num-
bers.
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(C.7)

Matrix elements for the values M = 0 and B = 10 T, i.e., for c1(B = 10 T, M =
0) = 0.9534:

∆0000 44.5874 meV ∆1111 32.4746 meV
∆1001 20.265 meV ∆0011 23.333 meV
X0000 44.4407 meV X1111 31.191 meV
X1001 18.9782 meV X0011 23.2481 meV

(C.8)

We demonstrate the behaviour the matrix elements as functions of B for fixed bias
∆B = 10 meV in figure C.1.
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APPENDIX D

Bismuth(111): Decomposition of the Coulomb Interaction

D.1 Coulomb Interaction for Anisotropic Quantum Hall
States

We start generally from the Coulomb interaction for electrons in two spatial di-
mensions

HC =
1

2

∑
q

V (q) ρ(−q) ρ(q), (D.1)

in terms of the Fourier transformed electronic density ρ(q) =
∫
d2re−iqr ψ†(r)ψ(r)

and the Coulomb potential V (q) = 2π e2

ε|q| .

We decompose the density operators in the basis of the spinor wave functions of
electrons depending on a set of quantum numbers {ξ}:

ρ(q) =
∑
ξ;ξ′

ψ†ξ ψξ′ e
−iqr c†ξcξ′ . (D.2)

For single particle wave functions ψξ in the latter equation we assume the follow-
ing:

We describe the low-energy situation of Bi(111) as six copies of an anisotropic,
elliptical valley formed by one single parabolic band. The six valleys are iden-
tical among each other modulo rotation. Hence, after Landau level quantisation
of this energetic structure by a magnetic field, the electronic single particle wave
function is characterised by three quantum numbers: n and m denote the Landau
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level quantisation indices and τ = 1 . . . 6 labels the valleys. We write the electronic
single particle states explicitly as

ψnm;τ = |nm; τ〉 eiKτr, (D.3)

where |nm; τ〉 is the slowly varying envelope function in the τ th valley and eiKτr

denotes the rapidly oscillating part. The vector Kτ defines the position of the τ th
valley in momentum space.

Now we express the interaction Hamiltonian in terms of this basis:

HC =
1

2

∑
q

∑
ni;τi

Vni;τi(q) ρ̃τ1,τ3n1,n3
(−q) ρ̃τ2,τ4n2,n4

(q), (D.4)

featuring the reduced density operators

ρ̃τ,τ
′

n,n′(q) =
∑
m,m′

〈τ ;m|e−i[q+(Kτ−Kτ ′ )]R|m′; τ ′〉, (D.5)

and the matrix elements

Vni;τi(q) =
2πe2

ε|q|
Fτ1,τ3n1,n3

(−q) Fτ2,τ4n2,n4
(q), (D.6)

in terms of the form factors

Fτ,τ
′

n,n′(q) = 〈τ ;n|e−i[q+(Kτ−Kτ ′ )]rc |n′; τ ′〉, (D.7)

where we used the decomposition r = R + rc of the spatial coordinate into the
coordinate of the guiding centre and the cyclotron orbit, respectively.

D.1.1 Form Factors for Lowest Landau Level Interaction

We want to compute the form factor of equation (D.7) for electrons in the lowest
Landau level, that is, for the special case n = n′ = 0. The experession of interest
hence reads

Fτ,τ
′

0,0 (Q) = 〈τ ; 0|e−i[Qrc]|0; τ ′〉. (D.8)

We exploit the following armamentarium in order tackle the latter equation (D.8):

• Anisotropy parameters

ατ = η cos θτ + i
1

η
sin θτ , βτ =

1

η
cos θτ + iη sin θτ , (D.9)

which fulfil
ατβ

∗
τ + α∗τβτ = 2. (D.10)
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• Anisotropic ladder operators

a†τ =
`B√
2~

(ατΠx − iβτΠy), aτ =
`B√
2~

(α∗τΠx + iβ∗τΠy), (D.11)

which fulfil the commutation relations: [aτ , a
†
τ ] = 1 and [aτ ′ , a

†
τ ] = 1

2(ατβ
∗
τ ′ +

α∗τ ′βτ ). They act on the number states in the τ th valley as

aτψn,τ = −i α
∗
τ

|ατ |
√
nψn−1,τ , a†τψn,τ = −i |ατ |

α∗τ

√
n+ 1ψn+1,τ , (D.12)

and annihilate the vacuum of the corresponding valley as aτψ0,τ = 0.

• The anisotropic momenta can be expanded in terms of the ladder operators.

For equal indices:

Πx =
~c√
2`B

(β∗τa†τ + βτaτ ), Πy = i
~c√
2`B

(α∗τa†τ − ατaτ ) (D.13)

For mixed indices:

Πx =

√
2

ατβ∗τ ′ + α∗τ ′βτ

~c
`B

(β∗τ ′a
†
τ + βτaτ ′),

Πy = i =

√
2

ατβ∗τ ′ + α∗τ ′βτ

~c
`B

(α∗τ ′a
†
τ − ατaτ ′) (D.14)

• Guiding centre coordinates in terms of the ladder operators:

For equal indices:

xc =
Πy

eB
=

i√
2
`B(α∗τa†τ − ατaτ ), yc = −Πx

eB
= − 1√

2
`B(β∗τa†τ + βτaτ ),

(D.15)
For mixed indices:

xc = i

√
2

ατβ∗τ ′ + α∗τ ′βτ
`B(α∗τ ′a

†
τ − ατaτ ′),

yc = −
√

2

ατβ∗τ ′ + α∗τ ′βτ
`B(β∗τ ′a

†
τ + βτaτ ′), (D.16)
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• with which we can write the expansion in term of the mixed coordinates
expressions:

Q · rτc = Qτ ′a†τ + Q̄τaτ ′ , (D.17)

in terms of the generalised momenta Qτ ′ = i
√

2
ατβ∗τ ′+α

∗
τ ′βτ

`B(α∗τ ′Qx + iβ∗τ ′Qy),

and Q̄τ = −i
√

2
ατβ∗τ ′+α

∗
τ ′βτ

`B(ατQx − iβτQy).

The latter relations allow us to perform the following computation:

Fτ,τ
′

0,0 (Q) = 〈τ ; 0|e−i[Qτ ′a
†
τ+Q̄τaτ ′ ]|0; τ ′〉

BCH
= 〈τ ; 0|e−iQτ ′a

†
τ e−iQ̄τaτ ′e−i

1
2

[−iQτ ′a
†
τ ,−iQ̄τaτ ′ ]|0; τ ′〉

= e
1
2
Qτ ′ Q̄τ [a†τ , aτ ′ ] 〈τ ; 0|e−iQτ ′a

†
τ e−iQ̄τaτ ′ |0; τ ′〉

= e−
1
4
Qτ ′ Q̄τ (ατβ∗τ ′+α

∗
τ ′βτ ) 〈τ ; 0|0; τ ′〉︸ ︷︷ ︸

=:Nττ ′

= Nττ ′ e
`2B

2ατβ
∗
τ ′

+α∗
τ ′
βτ

[Q2
xα
∗
τ ′ατ+Q2

yβ
∗
τ ′βτ−iQxQy(α∗

τ ′βτ−β
∗
τ ′ατ ) ]

. (D.18)

The latter expression for Fτ,τ
′

0,0 can be symmetrised to read

Fτ,τ
′

0,0 = Nττ ′ e
`2B

2ατβ
∗
τ ′

+α∗
τ ′
βτ

[ 1
2

(Aτ,τ ′+Bτ,τ ′ )(Q
2
x+Q2

y)+ 1
2

(A−B)(Q2
x−Q2

y)−iCτ,τ ′QxQy ]
,

(D.19)
where we used the abbreviations Aτ,τ ′ = α∗τ ′ατ , Bτ,τ ′ = β∗τ ′βτ , and Cτ,τ ′ =
α∗τ ′βτ − β∗τ ′ατ .

By means of the triangular inequality∗ we deduce that Fτ,τ
′

0,0 is to be dominated by
the first term in the exponent as |(A + B)(Q2

x + Q2
y)| ≥ |(A − B)(Q2

x − Q2
y)| and

the absolute value of the oscillatory term is bounded by unity. We will therefore

carefully examine the behaviour of the expression e

`2B
2ατβ

∗
τ ′

+α∗
τ ′
βτ

[ 1
2

(A+B)(Q2
x+Q2

y)]
in

order to estimate the contributions of different types of scattering processes to the
from factor Fτ,τ

′

0,0 .

D.1.2 Estimation of Different Scattering Processes

We abbreviate Sτ,τ ′ = ατβ
∗
τ ′ + α∗τ ′βτ and Ωτ,τ ′ = Aτ,τ ′ +Bτ,τ ′ to write the relation

Fτ,τ
′

0,0 ∝ e
− `2B

4Sτ,τ ′
Ωτ,τ ′ |Q|2

. (D.20)
∗ More precisely, we use ||x| − |y|| ≤ |x+ y| for any pair of numbers x, y ∈ C.
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Figure D.1
Different types of valley scattering processes for the Coulomb interaction: 1© Mo-
mentum non-conserving process, 2© Umklapp process, 3© Backscattering process,
4© Valley symmetric process.

We estimate the contributions to the Coulomb interactions from the different pos-
sible valley scattering processes sketched in figure D.1:

1© Momentum non-conserving processes
Valley scattering process: τ −→ τ, τ̃ −→ τ̃ ′ 6= τ̃
Here, the matrix element of equation (D.6) is proportional to

V0;τi(q) ∝ Fτ,τ0,0 [−q] F τ̃ ,τ̃
′

0,0 [q + (Kτ̃ −Kτ̃ ′)]

∝ e−
`2B

4Sτ,τ
Ωτ,τ |q|2

e
− `2B

4Sτ̃,τ̃ ′
Ωτ̃ ,τ̃ ′ |q+(Kτ̃−Kτ̃ ′ )|2

∼ e
− `2B

8Sτ̃,τ̃ ′
Ωτ̃ ,τ̃ ′ |Kτ̃−Kτ̃ ′ |2

. (D.21)

Hence we understand this type of process to be exponentially suppressed in
the distance of the two valleys τ̃ and τ̃ ′ in momentum space.

2© Umklapp processes
Valley scattering process: τ −→ τ ′, τ −→ τ ′

Here, the matrix element of equation (D.6) is proportional to

V0;τi(q) ∝ Fτ,τ
′

0,0 [−q + (Kτ −Kτ ′)] Fτ,τ
′

0,0 [q + (Kτ −Kτ ′)]

∝ e
− `2B

4Sτ,τ ′
Ωτ,τ ′ |q−(Kτ−Kτ ′ )|2

e
− `2B

4Sτ,τ ′
Ωτ,τ ′ |q+(Kτ−Kτ ′ )|2

∼ e
− `2B

4Sτ,τ ′
Ωτ,τ ′ (2|q|2+2|Kτ−Kτ̃ ′ |2)

∼ e
− `2B

2Sτ̃,τ̃ ′
Ωτ̃ ,τ̃ ′ |Kτ−Kτ ′ |2

. (D.22)

Therefore, as this type of process also violates conservation of momentum,
we find it equally to be suppressed exponentially.

3© Backscattering processes
Valley scattering process: τ −→ τ ′, τ ′ −→ τ
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Here, the matrix element of equation (D.6) is proportional to

V0;τi(q) ∝ Fτ,τ
′

0,0 [−q + (Kτ −Kτ ′)] Fτ
′,τ

0,0 [q + (Kτ ′ −Kτ )]

∝ e
− `2B

4Sτ,τ ′
Ωτ,τ ′ |q−(Kτ−Kτ ′ )|2

e
− `2B

4Sτ ′,τ
Ωτ ′,τ |q+(Kτ ′−Kτ )|2

∝ e
− `2B

4Sτ,τ ′
Ωτ,τ ′ |q−(Kτ−Kτ ′ )|2

e
− `2B

4Sτ ′,τ
Ωτ ′,τ |q−(Kτ−Kτ ′ )|2

. (D.23)

Hence, after transformation q′ = q− (Kτ −Kτ ′) we see by virtue of equation
(D.6) that this process gives rise to the following contribution to the interac-
tion

V0;τi(q
′) =

2πe2

ε|q′ + (Kτ −Kτ ′)|
e
− `2B

4Sτ,τ ′
Ωτ,τ ′ |q′|2

e
− `2B

4Sτ ′,τ
Ωτ ′,τ |q′|2

∼ 2πe2

ε|Kτ −Kτ ′ |
e
− `2B

4Sτ,τ ′
Ωτ,τ ′ |q′|2

e
− `2B

4Sτ ′,τ
Ωτ ′,τ |q′|2

. (D.24)

Consequently, we see this scattering process to give rise to a contribution that
scales like one over the distance of the two valleys τ̃ and τ̃ ′ in momentum
space.

4© Valley symmetric processes
Valley scattering process: τ −→ τ, τ̃ −→ τ̃
In this case, the matrix element of equation (D.6) is proportional to

V0;τi(q) ∝ Fτ,τ0,0 [−q] F τ̃ ,τ̃0,0 [q] ∝ e−
`2B

4Sτ,τ
Ωτ,τ |q|2

e
− `2B

4Sτ̃,τ̃
Ωτ̃ ,τ̃ |q|2

.

This type of processes will thus yield the leading contribution to the interac-
tion as all oscillating terms leading to suppression for large absolute values
of K are cancelled.
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Synthèse en Français

Plusieurs ingrédients de cette thèse proviennent des révolutions récentes dans le
monde de la physique moderne. D’une part, la découverte de "l’Effet Hall quan-
tique" par Klaus von Klitzing en 1980 (v. Klitzing [1985], prix Nobel 1985), la quan-
tification de la conductivité dans des gas des électrons en deux dimensions sous
champs magnétique a lieu à des températures suffisamment basses. Cette décou-
verte a été reconnue comme un des tous premiers exemples d’un système "topo-
logique". De l’autre part, la réalisation de graphène, un réseau bi-dimensionnel
d’atomes de carbone, par Novoselov and Geim (Geim and Novoselov [2007], prix
Nobel 2010). Cette découverte des réseaux atomiques vraiment bi-dimensionnels
qui peuvent être réalisés dans le monde réel a constitué la naissance d’un vrai
zoo de systèmes nouveaux et palpitants en deux dimensions. En principe, les ef-
fets Hall quantiques sont attendus pour tout système dans lequel les électrons
sont confiés en deux dimensions spatiales sous champs fort magnétique. Donc, en
réunissant ces deux concepts fondamentaux de la physique de la matière conden-
sée moderne, les effets Hall quantiques dans les réseaux atomiques en deux di-
mensions forment un champs abondant pour explorer des nouveaux phénomènes
fascinants.

Cette thèse traite des systèmes de Hall quantiques en deux dimensions, dans les-
quels les electrons peuvent porter plusieurs degrés de liberté discrets différents.
Le ferromagnétisme de Hall quantique fournit une manière élégante et efficace
de traiter ces degrés de liberté électroniques comme des spins et isospins effectifs
des électrons. Les différentes phases du système correspondent alors à différents
ordres de spin ou d’isospin. En exploitant cette analogie, nous explorons différents
aspects des systèmes bi-dimensionnels dans le régime de Hall quantique en étu-
diant la structure correspondante des spins et isospins.
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Figure D.2
Matériau étudié dans le premier projet : les monocouches de graphène. Des
atomes de carbone sont arrangées dans un réseau hexagonal. Ceci fournit un

système vraiment bi-dimensionnel dans lequel les électrons sont confinés en deux
dimensions spatiales.

Ce travail consiste en trois parties qui analysent chacune des matériauxdifférents
bi-dimensionnels dans le régime de l’effet Hall quantique. Dans chaque projet,
nous utilisons la théorie de Hartree-Fock pour étudier le système à plusieurs com-
posantes de spin et d’isospin dans l’approximation de champ moyen. Toutes nos
considérations sont directement stimulées par des résultats expérimentaux. Notre
motivation principale est d’obtenir une comprehension plus profonde des proces-
sus physiques et des mécanismes qui déterminent les propriétés des matériaux à
partir d’investigations exclusivement théoriques de modèles abstraits. Nous espé-
rons que cela permettra par la suite de tirer des conclusions sur les expériences, de
donner des explications aux phénomènes observés ainsi que de donner des pers-
pectives pour des investigations futures.

Le premier projet est consacré à un échantillon fini d’une monocouche de graphène
comme celle montrée dans la figure D.2 : nous étudions les propriétés de spin et
d’isospin des électrons en présence d’un bord qui brise la symétrie de translation
dans l’espace. Dans les monocouches de graphène, les électrons portent, en plus
du spin réel, un degré de liberté supplémentaire qui s’appelle «l’isospin de val-
lée». Cet isospin tient compte d’une manière élégante de la dégénérescence de la
dispersion des electron dans graphène dans les deux "vallées" situés à deux points
de haute symétrie dans la première zone de Brillouin. Le diagramme de phase
dans un système de graphène infini avait été analysé auparavant par Kharitonov
sous la référence Kharitonov [2012c] : Il identifie quatre phases différents possibles
dont chacune présente un ordre different de spin et d’isospin de vallée. Néan-
moins, pour toute investigation expérimentale dans le monde réel, l’échantillon
de graphène forcément est toujours de taille finie. Donc, les propriétés du système
près du bord de l’échantillon sont essentielles pour comprendre le comportement
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Figure D.3
Matériau étudié dans le deuxième projet : les bicouches de graphène. Deux
monocouches de graphènes (comme ceux de la figure D.2) sont empilées l’un

au-dessus de l’autre avec l’arrangement de Bernal, donc dans l’arrangement des
atomes de carbone montré dans cette image.

du graphène vu dans les expériences. Pour toutes les phases possibles dans le gra-
phène infini nous analysons en utilisant la méthode de Hartree-Fock comment la
structure de l’état fondamental ainsi que celle des états excités est influencée par la
présence du bord, en comparaison avec les propriétés de l’intérieur du système qui
conserve la symétrie de translation. Nous trouvons que les phases dans l’intérieur,
et en conséquence tous les propriétés du système, se transforment en fonction de la
distance au bord. Près du bord nous observons des états nouveaux qui ne peuvent
pas être trouvés dans l’intérieur. En particulier les états fondamentaux peuvent
être d’une structure plus complexes que ceux de l’intérieur en comportant, par
exemple, de l’intrication non-triviale entre les degrées de liberté du spin et de val-
lée. Nous discutons les propriétés de la structure des états de bord ainsi que leurs
relations éventuelles avec des mesures de conductivité. En particulier nous remet-
tons en question l’explication habituelle des transitions entre régimes de conduc-
tivités différentes observées dans des études expérimentales d’une couche simple
de graphène, qui est fondée sur des transitions entre des différentes phases dans
l’intérieur du système. Nous proposons une explication alternative basée unique-
ment sur des transitions entre différentes phases près du bord. Les résultats de ce
projet ont été publiés sous la référence Knothe and Jolicoeur [2015].

Dans la deuxième partie de la thèse, nous nous intéressons aux bicouches de gra-
phène, donc deux couches de graphène empilées l’un au-dessus de l’autre avec
l’arrangement de Bernal comme nous montrons dans la figure D.3. Nous analy-
sons, pour des systèmes infinis sans bords, la dépendance des propriétés de spin et
d’isospin sur les champs magnétiques et électriques extérieurs. Dans les bicouches
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Figure D.4
Matériau étudié dans le troisième projet : la surface (111) de bismuth élémentaire
(orientations différentes). Les electrons dans les états des surfaces d’un cristal

trois-dimensionnel également sont confiés en deux dimensions spatiales.

de graphène, il existe un degré de liberté «orbital» supplémentaire à cause d’une
dégénérescence entre les niveaux de Landau avec les nombres quantiques n = 0 et
n = 1. Dans notre modèle nous incorporons, à part du couplage avec les champs
magnétiques et électriques extérieurs, l’interaction colombienne des electrons dans
les nivaux n = 0 et n = 1 entre eux, ainsi que l’interaction avec les électrons que
constituent la mer de Dirac dans la graphène. Dans une étude champ moyen de
Hartree-Fock nous identifions les multiples états fondamentaux différents en fonc-
tion des intensités des champs électrique et magnétique et nous présentons les dia-
grammes de phases correspondants. Nous analysons les propriétés des phases et
des transition entre elles. Notamment notre modèle prédit pour certains régimes
des paramètres suffisamment larges et accessible dans des experiences des états
fondamentaux pour lesquelles les degrés de liberté d’isospin présentent une cohé-
rence non-triviale. La phase qui porte de la coherence non-triviale entre les niveaux
de Landau n = 0 et n = 1 est particulièrement intéressante car cette propriété
existe que dans les bicouches de graphène. Nous faisons la comparaison avec la
littérature expérimentale ainsi que les traitement théoriques antérieures sur les
transitions de phase dans les bicouches de graphène pour faire des suggestions
pour associer les predictions des phases de notre modèle aux phases observées
aux expériences. Les résultats que nous avons obtenu dans cette partie ont été pu-
bliés sous la référence Knothe and Jolicoeur [2016].

Enfin, dans notre projet le plus récent, nous donnons un aperçu de la possibi-
lité d’étendre les idées précédentes pour analyser des surfaces bi-dimensionnelles
de cristaux en trois dimensions dans le régime de Hall quantique. Sous certaines
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conditions ces surfaces peuvent supporter des états de surface stables. Des élec-
trons qui sont dans ces états de surface se trouvent confiés en deux dimensions
spatiales. Nous discutons l’exemple d’une surface (111) de bismuth élémentaire
qui est montré dans la figure D.4 : dans ce cas, en considérant la dispersion de
basse énergie des états de surface, on est confronté à un système de plusieurs val-
lées dégénérées et anisotropes. Nous essayons de trouver un modèle de dispersion
dans ce système en approximant les vallées par des bandes elliptiques et en consi-
dérant l’effet de contraintes locales. On présente des résultats préliminaires sur
l’ordre du degré de liberté de vallée des états fondamentaux. Le travail présenté
sur ce sujet dans cette thèse est encore en cours.

En résumant nous constatons que nous avons fait des études de certaines proprié-
tés des réseaux atomiques différents dans le régime de l’effet Hall quantique. Nous
espérons que ce travail va contribuer à avancer cette domaine de la physique mo-
derne de la matière condensée. Mais ce n’est que le début ! Déjà aujourd’hui beau-
coup d’autres réseaux atomiques bi-dimensionnels sont connus qui sont stables et
qui ont été réalisé dans les expériences. Comme c’est un champs en pleine evolu-
tion, dans les années à venir, cette famille va croître encore. Ça donne la perspective
palpitante d’explorer les propriétés nouvelles et inconnues d’un pléiade de maté-
riaux originals, ainsi que leur combinaisons comme des empilements des couches
pareilles ou différentes ou des héterostructures. Nous espérons que cette direction
de recherche actuelle va mener à de nouvelles découvertes physiques fondamen-
tales ainsi qu’à des idées originales en vue d’applications.
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Résumé : Cette thèse traite des systèmes de Hall quantiques en deux dimensions, dans lesquels les 
electrons peuvent porter plusieurs degrés de liberté discrets différents. Le ferromagnétisme de Hall 
quantique fournit une manière de traiter ces degrés de liberté électroniques comme des spins et 
isospins effectifs des électrons. Les différentes phases du système correspondent alors à différents 
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provides a framework to treat these electronic degrees of freedom as effective spins and isospins of 
the electrons. Different orderings of the electronic spins and isospins then characterise different 
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