
HAL Id: tel-01760446
https://pastel.hal.science/tel-01760446

Submitted on 6 Apr 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimization techniques for image registration applied
to remote sensing

Bruno Conejo

To cite this version:
Bruno Conejo. Optimization techniques for image registration applied to remote sensing. Signal and
Image Processing. Université Paris-Est, 2017. English. �NNT : 2017PESC1231�. �tel-01760446�

https://pastel.hal.science/tel-01760446
https://hal.archives-ouvertes.fr


Université Paris-Est
Laboratoire d’Informatique Gaspard-Monge

UMR 8049

A thesis submitted for the degree of
Doctor of Philosophy

Optimization techniques for image
registration applied to remote

sensing

Bruno Conejo

supervised by
Prof. Pascal Monasse

February 3, 2018



Abstract

This thesis studies the computer vision problem of image registration in the
context of geological remote sensing surveys. More precisely we dispose in this
work of two images picturing the same geographical scene but acquired from two
different view points and possibly at a different time. The task of registration is
to associate to each pixel of the first image its counterpart in the second image.

While this problem is relatively easy for human-beings, it remains an open
problem to solve it with a computer. Numerous approaches to address this
task have been proposed. The most promising techniques formulate the task
as a numerical optimization problem. Unfortunately, the number of unknowns
along with the nature of the objective function make the optimization problem
extremely difficult to solve. This thesis investigates two approaches along with a
coarsening scheme to solve the underlying numerical problem.

Each approach makes use of a different assumption to simplify the original
problem. The convex approach is computationally faster while the non-convex ap-
proach delivers more precise solutions. On top of both approaches, we investigate
coarsening frameworks to speed-up the computations.

In our context, we study the First order Primal-Dual techniques for convex
optimization. After a progressive introduction of underlying mathematics, we
study the dual optimal solution space of the TV-regularized problems. We
prove a new theorem that greatly facilitates the demonstration of previously
established theorems. We also provide a new algorithm to optimize the famous
ROF-model.

As a second approach, we survey the graph-cuts techniques. We also in-
vestigate different mincut-maxflow solvers since they are an essential building
block of the graph-cuts techniques. We propose a new implementation of the
celebrated Fast-PD solver that drastically outperform the initial implementation
provided by original authors.

We also study coarsening methods for both optimization approaches. We
experiment with image and energy pyramid coarsening scheme for graph-cut
techniques. In this context we propose a novel framework that drastically
speeds-up the inference run-time while maintaining remarkable accuracy.

Finally, we experiment with different remote sensing problems to demonstrate
the versatility and efficiency of our approaches. Especially, we investigate the
computation of depth maps from stereo-images acquired from aerial and space
surveys. Using LiDAR acquisitions we also propose an algorithm to automatically
infer the damages due to earthquakes and soil liquefaction. Finally, we also
monitor the ground deformation induced by earthquake using realistic simulated
model.



Résumé

Dans le contexte de la vision par ordinateur cette thèse étudie le problème
d’appariement d’images dans le cadre de la télédétection pour la géologie. Plus
précisément, nous disposons dans ce travail de deux images de la même scène
géographique, mais acquises à partir de deux points de vue différents et éven-
tuellement à un autre moment. La tâche d’appariement est d’associer à chaque
pixel de la première image un pixel de la seconde image.

Bien que ce problème soit relativement facile pour les êtres humains, il reste
difficile à résoudre par un ordinateur. De nombreuses approches pour traiter
cette tâche ont été proposées. Les techniques les plus prometteuses formulent
la tâche comme un problème d’optimisation numérique. Malheureusement, le
nombre d’inconnues ainsi que la nature de la fonction à optimiser rendent ce
problème extrêmement difficile à résoudre. Cette thèse étudie deux approches
avec un schéma multi-échelle pour résoudre le problème numérique sous-jacent.

Chaque approche utilise une hypothèse différente pour simplifier le problème
initial. L’approche convexe est plus rapide, tandis que l’approche non convexe
offre des solutions plus précises. En plus des deux approches, nous étudions les
schéma multi-échelle pour accélérer les calculs.

Dans notre contexte, nous étudions les techniques Primal-Dual de première
ordre pour l’optimisation convexe. Après une introduction progressive des ma-
thématiques sous-jacentes, nous étudions l’espace dual de solution optimale des
problèmes régularisés par a priori tv. Nous prouvons un nouveau théorème qui
facilite grandement la démonstration d’autres théorèmes précédemment établis.
Nous proposons également un nouvel algorithme pour optimiser le célèbre modèle
ROF.

Pour la seconde seconde approche nous examinons les techniques de graph-
cut. Nous étudions également différents algorithmes de mincut-maxflow car ils
constituent un élément essentiel des techniques de graph-cut. Nous proposons
une nouvelle implémentation du célèbre algorithme Fast-PD qui améliore
drastiquement les performances.

Nous étudions également les méthodes multi-échelles pour les deux approches
d’optimisation. Nous expérimentons les schémas de pyramide d’image et d’énergie
pour les techniques graph-cut. Dans ce contexte, nous proposons une nouvelle
approche qui accélère considérablement le temps d’exécution de l’inférence tout
en conservant remarquablement la précision des solutions.

Enfin, nous étudions différents problèmes de télédétection pour démontrer
la polyvalence et l’efficacité de nos approches. En particulier, nous étudions le
calcul des cartes de profondeur à partir d’images stéréo aériennes et spatiales. En
utilisant les acquisitions de LiDAR, nous proposons également un algorithme pour
déduire automatiquement les dommages causés par les séismes et la liquéfaction



des sols. Enfin, nous étudions également la déformation du sol induite par
tremblement de terre en utilisant une simulation sismique réaliste.
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Chapitre 1

Introduction partielle (en
français)

Nous débutons ce chapitre en introduisant le contexte de nos travaux 2.1. Nous
expliquons comment la télédétection est utilisée dans les études géologiques. En
particulier, nous expliquons le lien avec la vision par ordinateur et plus particu-
lièrement l’appariement d’images. Les travaux précédents sont présentés dans la
section 2.2. Nous introduisons dans la section 2.3 le model mathématique utilisé
dans ce document. Finalement, dans la section 2.4 nous présentons un résumé
du contenu technique de cette thèse ainsi que nos contributions scientifiques.

1.1 Contexte

1.1.1 Vue du ciel
Le siècle dernier a connu un nombre croissant de techniques et de dispositifs
pour observer la Terre. Un développement majeur est l’utilisation de satellites et
d’avions équipés de capteur d’imagerie pour observer la Terre vue du ciel. Avec
le développement des technologie spatiales, les satellites ont largement contribué
à l’étude de la Terre et d’autres planètes telles que Mars. Nous disposons
maintenant de nombreuses images haute résolution de multiple planètes et de
leurs satellites naturels.

On peut classer les capteurs d’observation en deux familles principales. Les
capteurs actifs tels que le LiDAR et le Radar enregistrent le reflet du signal qu’ils
ont émis. Au contraire, les capteurs passifs tels que les caméras panchromatiques,
couleurs ou hyper-spectrales enregistrent directement le signal émis par la scène
observée.

Observing sensors Dans ce travail, nous étudions des acquisitions à partir
de caméras panchromatiques et de capteurs LiDAR.
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Photogrammetry La photogrammétrie est l’ensemble des techniques qui
utilisent la photographie pour mesurer les distances entre les objets. De 1850 à
1900, le goniographe était l’outil de référence pour dessiner des cartes comme
illustré par la figure 1.1. La photogrammétrie analogique utilisée de 1900 à
1960 s’appuie sur le concept de vision stéréo-métrique. Cependant, un opérateur
exécutait toujours la tâche essentielle d’appariement comme illustré dans la figure
1.2. À partir de 1960, la disponibilité des ordinateurs a progressivement diminué
la nécessité d’une implication humaine. À partir de 2000, la photogrammétrie
moderne repose entièrement sur des données numérisées et requiert très peu
d’intervention humaine. Pour plus de détails, nous proposons au lecteur curieux
les travaux de [73], [66], [115] et [80] pour une analyse historique, et [76] pour
les fondements mathématiques.

Figure 1.1 – Operateur manipulant un
goniographe. Propriété NOAA.

Figure 1.2 – Opera-
teur dessinant une carte
en utilisant les tech-
niques de photogram-
métrie analogique. Pro-
priété WSP group.

LiDAR La NASA a investi pendant les années 1970 dans le développement
de techniques modernes de télédétection à base de laser. Cette étude initiale
visait principalement à mesurer les propriétés de l’atmosphère et de l’océan, la
canopée forestière ou les couches de glace. Dans les années 1990, l’accessibilité
aux dispositifs de positionnement tels que GPS, Global Positioning System et
les centrales inertielles, permet d’utiliser le LiDAR à des fins de cartographie.
Enfin, dans les années 2000, les logiciels de traitement et la diminution du coût
des infrastructures informatiques a fait du LiDAR un outil de cartographie
précis et efficace, comme illustré dans les figures 1.3 and 1.4. Pour plus de
details, nous conseillons la lecture de [144], [5], [11] et [31] pour une revue des
technologies LiDAR et ses applications, mais également [6] pour une introduction
des fondations mathématiques.
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Figure 1.3 – Acquisition Li-
DAR de Mars, Propriété NASA.

Figure 1.4 – Nuage de points
3d de New-York City, Propriété
NYC.

Plateformes d’observation Les techniques d’observation de la Terre sont
un sujet de recherche et de développement critique pour les forces militaires.
Des données historiques [52] indiquent l’utilisation de photos aériennes par
British Royal Air Force à des fins de reconnaissance pendant la Première Guerre
mondiale. Ces approches se sont généralisées lors de la seconde guerre mondiale
[104] et [123]. En conséquence, la photographie aérienne et la photogrammétrie
ont bénéficié d’énormes progrès.

Le 7 mars 1947, une caméra montée sur une fusée allemande V-2 modifiée
a capturé la première image de la Terre à partir de l’espace. Cependant, étant
donné que la fusée ne pouvait atteindre qu’une altitude légèrement supérieure
à 150 kilomètres, elle n’a pas pu mettre en orbite sa charge utile. Néanmoins,
un panorama jusque-là inédit 1.5 a pu être créé en raccordant plusieurs images.
Nous conseillons l’ouvrage [39] pour une perspective historique de l’imagerie
spatiale.

Débutant en 1960, le programme TIROS [154], Television InfraRed Observa-
tion Satellite, dirigé par la NASA, a prouvé l’efficacité des satellites d’observation
pour étudier la Terre. L’objectif principal de ce programme était de développer
un système d’information météorologique par satellite. Lancé le 1er avril 1960,
TIROS-1 embarquait deux caméras de télévision 1.6 qui ont capturé des milliers
d’images lors des 78 jours de mission 1.7. Une revue technique du satellite
TIROS-1 est disponible dans [159].

Le succès du programme TIROS a été suivi de nombreuses autres missions
importantes. Par exemple, le populaire programme Landsat [107] qui a débuté
au début des années 1970 est toujours en activité. Il offre à ce jour l’enregistre-
ment global continu le plus long de la surface terrestre [106]. Des programmes
commerciaux ou publics plus récents tels que Worldview, Pleiades ou DubaiSat
offrent une qualité et une résolution d’imagerie sans précédent. De plus, l’agilité
de petits satellites tels que la constellation RapidEye ou les satellites SkySat
permet une réponse rapide à des demandes d’acquisitions.

Nous avons également observé au cours de cette dernière décennie une démo-
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Figure 1.5 – Premiere image de la Terre vu de l’espace, Propriété NASA.

Figure 1.6 – Equipments du
satellite TIROS-1, Propriété
NOAA.

Figure 1.7 – Image de la Terre aquise
par le satellite TIROS-1, Propriété
NASA.

cratisation progressive des drones, créant une troisième option pour l’imagerie
vue du ciel. Cependant, à ce jour, les drones restent plus adaptés à une image-
rie locale et très précise. Par conséquent, ils semblent moins adaptés à notre
tâche où de vastes zones doivent être cartographiées. En conséquence, nous nous
concentrons uniquement sur l’imagerie aérienne et satellitaire.
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Comparaison entre l’imagerie aerienne et satellitaire L’imagerie aé-
rienne et satellitaire présente différent avantages et inconvéniants comme expliqué
dans [61] and [164] :

Couverture : les images aériennes sont acquises grâce à des avions survolant
une zone d’intérêt. Cela signifie que les endroits reclus peuvent être po-
tentiellement difficiles à observer avec l’imagerie aérienne. En revanche,
l’imagerie satellitaire offre généralement une couverture plus globale. De
plus, la télédétection satellitaire permet d’observer des paysages de plus
grande taille que l’enquête aérienne.

Réponse à un demande d’observation : Les orbites satellitaires définissent
quand une zone géographique peut être observée. En fonction des positions
et du cycle de l’orbite de la constellation satellitaire, la réponse à une
requête d’observation peut prendre des heures, des jours ou même des
semaines. Avec une planification appropriée, un avion peut se trouver à
un endroit au moment désiré. En outre, si différents endroits doivent être
imagés en même temps il est possible utiliser plus d’avions.

Météorologie : Un manteau nuageux important ou une forte pluie limite l’ap-
plicabilité des deux types d’acquisition. Les observations satellitaires sont
plus sensible à la météorologie du fait que la lumière traverse l’intégralité de
l’atmosphère terrestre. En revanche, les acquisitions aériennes sont moins
susceptibles d’être affectées par des nuages haute altitude.

Données historiques : L’imagerie satellitaire bénéficie d’importantes archives
historiques qui permettent parfois aux scientifiques de surveiller l’évolution
temporelle d’un emplacement souhaité. Malheureusement de telles bases
de données n’existent pas pour l’imagerie aérienne.

Precision d’acquisition : L’imagerie aérienne fournit généralement des images
avec une résolution jusqu’à 6,50 cm. En revanche, l’imagerie satellitaire
procure des images avec une résolution de 50 cm pour les applications
non-militaire.

Le choix entre l’utilisation de l’imagerie satellitaire ou aérienne repose très
largement sur l’application finale.

Comparaison entre la photogrammétrie et les acquisitions LiDAR
Les techniques de cartographie par photogrammétrie et acquisition LiDAR
présentent différents avantages et inconvénients comme détaillé dans [7] et [9] :

Observer à travers la cannopée : Les acquisitions LiDAR ont la possibilité
de pénétrer les forêts denses [10]. Cela permet au LiDAR de cartographier
avec une précision élevée la topographie du relief terrestre. Les techniques de
photogrammétrie doivent utiliser des algorithmes pour estimer et soustraire
la hauteur de la canopée [158].
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Précision : La cartographie générée par acquisition LiDAR est généralement
plus précise et plus dense. Cela est dû au fait que le LiDAR mesure direc-
tement les distances alors que la photogrammétrie mesure indirectement
les distances.

Photographie : Les techniques de photogrammétrie peuvent produire en plus
de la cartographie une image de la scène. Nous notons que certains capteurs
LiDAR sont associés avec la caméra pour produire également une image
de la scène.

Couverture : Bien que des bases de données d’acquisition LiDAR existent, elles
demeurent limitées par rapport aux bases de données de photogrammétrie.

Comme pour la comparaison entre la l’imagerie aérienne et satellitaire,
l’application finale définit quel type d’acquisition est le plus approprié.

1.1.2 Applications à la géologie
Les géologues ont rapidement adopté l’utilisation de la photogrammétrie et des
acquisitions de LiDAR comme illustré dans [43], [69] et [167]. Nous examinons
dans ces sections certaines de ces applications.

Cartographie de la topographie L’obtention d’une cartographie précise du
paysage est extrêmement importante pour les géologues. Le modèle d’élévation
numérique, DEM, peut être produit soit par des techniques de photogrammétrie,
soit par traitement d’acquisitions de LiDAR [120]. Les DEM sont généralement
des données d’entrée requises pour beaucoup de tâches différentes. Par exemple,
les géologues peuvent surveiller l’évolution du paysage en profitant des bases de
données d’images satellites. Le DEM aide également les géologues à préparer leur
sondage sur le sol où seules des mesures éparses et locales peuvent être réalisées.

Catastrophes naturelles Les catastrophes naturelles se produisent de ma-
nière imprévisible et peuvent entraîner des dégâts et des pertes de vie. Ils
perturbent généralement la surface terrestre et les environnements urbains
comme expliqué dans [86]. Une mesure précise de cette perturbation ne permet
pas seulement d’améliorer notre compréhension scientifique, mais également de
mieux organiser les secours. En utilisant une série temporelle de DEMs acquises
avant et après l’événement catastrophique, il est possible d’obtenir de précieuses
informations.

Tremblement de terre Les caractéristiques du paysage et la déformation
de la surface le long des failles actives fournissent des informations sur la tecto-
nique [59]. Il existe différents types de failles comme illustré dans la figure 1.8.
Les séismes sont généralement mesurés à l’aide de sysmomètres. Cependant, les
stations GPS peuvent fournir une mesure précise mais locale de la déformation
du sol [84]. Les progrès de la télédétection permettent également d’estimer cette
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déformation à plus grande échelle mais au détriment de la précision [112]. L’uti-
lisation d’un DEM pré et post-événement permet aux scientifiques de créer des
cartes de la déformation. Ces cartes peuvent ensuite être combinées avec des
mesures GPS ou des relevés au sol. L’ensemble de ces mesures fournissent des
données importantes pour modéliser la physique du système de plaques.

Figure 1.8 – Differents types de
failles, Propriété USGS.

Figure 1.9 – Diagramme de glisse-
ment de terrain, Propriété USGS.

Liquéfaction du sol La liquéfaction du sol est la déformation du relief
induite par un stress extérieur tel qu’un tremblement de terre [139]. Pendant la
liquéfaction, le sol perd de sa rigidité conduisant à des dommages massifs. Par
exemple, des bâtiments se sont inclinés lors du séisme de Niigata de 1964. La
liquéfaction du sol est principalement un phénomène local. Par conséquent, des
DEM de haute résolution sont nécessaires pour capturer cette déformation du
relief.

Glissement de terrain Les glissements de terrain surviennent dans une
masse de terre ou de roche d’une montagne ou d’une falaise, comme l’illustre la
figure 1.9. Les géologues surveillent les glissements de terrain à trois niveaux
[103] :

• En identifiant quelles pentes risquent d’être instables [77]. Cela fournit les
informations nécessaires pour la prévention et le renforcement strucuturel
de la pente.

• En surveillant les pentes instables pour déclencher des avertissements
quelques minutes ou secondes avant un glissement de terrain [89]. C’est
une préoccupation majeure pour l’exploitation minière à ciel ouvert.

• En mesurant la déformation de la pente due à un glissement de terrain
[121]. Cela permet d’étalonner et d’améliorer les modèles numériques de
glissement de terrain.

Dans ce contexte, autant les acquistions LiDAR que la photogrammétrie
haute résolution sont pertinents pour extraire les informations.
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Phénomène naturel Bien que les désastres naturels provoquent une dé-
formation soudaine du paysage, de nombreux phénomènes naturels modifient
progressivement la topographie des planètes.

Déplacement des dunes Une dune est une colline de sable construite
par le vent ou un flux d’eau. Les dunes se déplacent, évoluent, fusionnent ou se
divisent en raison des forces éoliennes et de la forme du bassin rocheux [157].
Les dunes existent non-seulement sur Terre, mais aussi sur Venus, Mars et
Titan. À l’aide de séries temporelles de DEM de champs de dunes obtenus par
photogrammétrie, des chercheurs ont récemment pu démontrer que Mars est
une planète géologiquement active [155]. Des études suivantes ont même été en
mesure d’estimer les cycles climatiques à partir du mouvement des champs de
dunes [4].

Figure 1.10 – Dune de sable Na-
mib sur Mars (Curiosity rover ; 17
December 2015), Propriété JPL.

Figure 1.11 – Diagramme repré-
sentant le déplacement d’un glacier,
Propriété USGS.

Mouvement des glaciers Les glaciers sont d’une importance cruciale car
ils fournissent une grande quantité d’eau potable dans certaines régions. La
compréhension de l’évolution de la masse des glaciers et des paquets de neige
est cruciale pour atténuer les impacts sur l’approvisionnement en eau, le niveau
de la mer et les dangers liés aux inondations et aux avalanches. En outre, une
prédiction précise de cette évolution nécessite une compréhension de la nature et
de la réponse des glaciers à diverses forces. Les changements de précipitations,
de température, d’ensoleillement et des contaminants superficiels contribuent
à l’avancée et à la retraite des glaciers. Par nature, les glaciers sont difficiles
à accéder. Par conséquent, la télédétection offre une technique d’observation
pratique. En utilisant des séries chronologiques de DEM, il est possible de suivre
le mouvement des glaciers [151].

1.1.3 Un problème d’appariement d’images.
Du point de vue de la modélisation, nous pouvons formuler l’onservation des
désastres et phénomènes naturels comme un problème d’appariement d’images
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dense. Un problème d’appariement d’image dense est la tâche de trouver pour
chaque pixel d’une image donnée son homologue dans une autre image. Selon
l’application finale, le problème d’appariement aura un degré de liberté dif-
férent. Si les homologues doivent être sur une certaine ligne, nous obtenons
un problème d’appariement mono-dimmensionnel. Si les homologues sont dans
un plan donné, nous obtenons un problème d’appariement bi-dimmensionnel.
Si aucune hypothèse n’est possible, nous avons un problème d’appariement
tri-dimmensionnel.

Hypothèse sur les DEM

Comme nos observations proviennent d’un avion ou d’un satellite, nous proposons
de transformer avec très peu de perte d’information le DEM acquis en une
carte d’élévation d’image [105]. La position des pixels définit les coordonnées
géographiques locales tandis que leurs intensités encodent l’élévation au-dessus
d’une référence. Nous détaillons cela dans le chapitre 6.2.3 de cette thèse.

Appariement 1D

Pour la photogrammétrie aérienne, nous recevons deux images acquises par une
caméra de type frame. Après avoir prise en compte la géométrie d’acquisition,
le calcul de la carte d’élévation repose principalement sur la résolution d’un
problème d’appariement dense 1D appelé appariement stéréo. Nous présentons
dans la section 6.3 le concept d’appariement stéréo.

Appariement 2D

Pour la photogrammétrie satellitaire, nous recevons deux images acquises par
un capteur de type push-broom. Cela complexifie la géométrie de l’acquisition.
Par conséquent, le calcul de la carte d’élévation repose sur la résolution d’un
problème d’appariement dense 2D. Nous en discutons dans la section 6.3.1.

Appariement 3D

Etant donné une série chronologique de cartes d’élévations du même paysage,
nous pouvons effectuer un appariement 3D pour estimer la déformation induite
par un phénomène d’intérêt. Dans ce contexte, les cartes d’élévations peuvent
être produites par photogrammétrie ou par maillage d’une acquisition LiDAR.
Nous en discutons dans la section 6.4.
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Chapter 2

Introduction (English
language)

We begin this first chapter by introducing in section 2.1 the context of our work.
In particular, we explain how remote sensing techniques are used for geological
studies and how this relates to the computer vision task of image registration.
We review in section 2.2 some of the past work. The section 2.3 describes the
mathematical modeling we use through this document. Finally, in section 2.4 we
present a summary of the technical content of this thesis and our contributions.

2.1 Context

2.1.1 Monitoring from above
The last century has seen an increasing number of techniques and devices to
monitor Earth. One major development is the use of satellites and airplanes
equipped with imaging sensors to monitor the Earth from above. With the
development of space technology satellites have extensively surveyed Earth and
other planets such as Mars with an increasing accuracy. We now dispose of many
high resolution pictures of many planets and their natural satellites.

One can classify monitoring sensors in two main families. The active sensors
such as LiDAR and Radar that record the reflection of the signal they emitted.
On the contrary, the passive sensors such as panchromatic, color or hyper-spectral
cameras directly record the signal emitted by the observed scene.

Observing sensors In this work we consider acquisitions from panchromatic
cameras and LiDAR sensors.

Photogrammetry Photogrammetry refers to the set of techniques that
use photography to measure the distances between objects. From 1850 to 1900,
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people relied on techniques such as those of the plane tables to draw maps.
This is illustrated by figure 2.1. The analog photogrammetry which spanned
the period from 1900 to 1960 relied on the concept of stereo-metric vision.
However, an operator was still performing the essential registration task as
depicted in figure 2.2. From 1960 the availability of computers progressively has
decreased the need for human involvement. Starting from 2000’s the modern
photogrammetry completely relies on fully digitalized data and requires very
little human intervention. For more detail, we refer the curious reader to [73],
[66], [115] and [80] for an historical review, and to [76] for an introduction to
the mathematical foundations.

Figure 2.1 – Operator manipulating a
plane table. Courtesy NOAA.

Figure 2.2 – Operator
drawing maps during
the analog photogram-
metry era. Courtesy
WSP group.

LiDAR The NASA invested in the 1970s in the development of modern
laser-based remote sensing acquisition techniques. This initial study was mainly
aimed at measuring the properties of the atmosphere and the ocean water, the
forest canopy or the ice sheets. In the 1990s the accessibility to positioning
devices such as GPS, Global Positioning Systeme, and IMU, Inertial Measurement
Unit, allowed to use LiDAR for mapping purposes. Finally, in the 2000s the
availability of processing software coupled with the decreased cost of computing
infrastructures made the LiDAR a precise and efficient mapping tool as illustrated
in figures 2.3 and 2.4. For more detail, we refer the curious reader to [144], [5],
[11] and [31] for a review of the technology and its application, and to [6] for an
introduction to the mathematical foundations.

Observing platforms Earth observation techniques have been a major re-
search and development study for military forces. Records indicate that aerial
photos used by British R.A.F. for reconnaissance helped to review military
tactics during World War I [52]. Such practice was generalized during World
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Figure 2.3 – Rendered LiDAR
acquisitions of Mars.

Figure 2.4 – 3d points cloud of
New-York City acquired by a Li-
DAR device augmented with a
color camera.

War II [104] and [123]. As a result aerial photography and photogrammetry
made tremendous strides.

On March 7, 1947, a camera mounted on a modified German V-2 rocket
captured the first picture of Earth from space. However, since the rocket could
only reach an altitude slightly above 100 miles, it was unable to place into orbit
its payload. Nevertheless, stitching several pictures together as illustrated in 2.5
created unseen before panoramas. We advise the reader to [39] for an historical
perspective of imaging from space .

Figure 2.5 – The first picture of Earth from space, Courtesy NASA.

Starting in 1960, the TIROS Program [154], Television InfraRed Observation
Satellite, directed by NASA proved the efficiency of observation satellites to
study Earth. The main focus of this program was to develop a meteorological
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satellite information system. Launched on April 1, 1960, TIROS-1 embarked two
television cameras 2.6 that captured thousands of pictures during its 78 days
mission 2.7. A technical review of the TIROS-1 satellite is given in [159].

Figure 2.6 – Equipments of
the TIROS-1 satellite, Courtesy
NOAA.

Figure 2.7 – Picture of Earth from the
TIROS-1 satellite, Courtesy NASA.

The success of the TIROS program was followed by many other important
missions. For instance, the popular Landsat program [107] that started in the
early 1970s is still operating. It offers to this day the longest continuous global
record of the Earth surface [106]. More recent commercial or public programs
such as Worldview, Pleiades or DubaiSat offer unprecedented imaging quality
and resolution. Moreover, the agility of small satellites such as the RapidEye
constellation or the SkySat satellites allow for quick response to on demand
acquisitions.

We also observed over the last decade a progressive democratization of drones,
creating a third option for imaging from above. However, to this day drones
remain more suited to very precise and local imaging. Hence, they appear less
suited to our task where large areas need to be mapped. As a result we only
focus on aerial and satellite imaging.

Aerial vs Satellite imaging Aerial and satellite imaging present different
strong points and weaknesses as explained in [61] and [164]:

Coverage : aerial images are mainly gathered through the use of airplanes
flying over the landscape of interest. This means that remote places can
be difficult to survey with aerial imaging while satellite imaging generally
offer a global coverage. Moreover, remote sensing satellite allows imaging
of way larger landscapes than aerial survey.
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Timing : the satellite orbits defines a time frame when a defined location can
be imaged. Depending on the positions and the orbit cycle of the satellite
constellation, the response to survey at a given location can take hours,
days or even weeks. With proper planning an airplane can be at a certain
location at the desired time. Moreover, if different locations need to be
imaged at the same time one can always use more planes.

Weather : severe cloud coverage or rain nullify both types of acquisition. Since
the light reaching the satellite is affected by the entire atmosphere, space
survey tends to be more sensitive to the weather. For instance, aerial
acquisitions are less likely to be affected by high altitude clouds.

Historical data : satellite imaging benefits from massive historical archives
that sometimes allows observers to monitor the evolution of a desired
location through time. Such large databases do not exist for aerial survey.

Image resolution : an aerial survey generally provides images with a resolution
down to 6.50cm. Satellite survey captures images with resolution down to
50cm for the public viewing.

As it should always be, the final task is the one driving the choice between
aerial and satellite imaging.

Photogrammetry vs Lidar Photogrammetry and Lidar mapping techniques
present different benefits and drawbacks as detailed in [7] and [9]:

Canopy penetration : LiDAR has the ability to penetrate even dense forest
canopies [10]. This allows the LiDAR to map with high accuracy the
bare earth topography. The photogrammetry techniques have to rely on
algorithms to remove the estimated canopy height [158].

Precision : As a rule of thumb, the mapping generated from LiDAR is generally
more precise and dense. This is because the LiDAR directly measures
distances while photogrammetry uses a proxy measurement (image regis-
tration) to estimate those distances.

Photography : The photogrammetry techniques can produce along with the
mapping a picture of the scene. We note that some LiDAR are augmented
with camera to also produce a picture of the scene.

Coverage : While LiDAR databases exist they do not compare in extent with
photogrammetry databases.

As for the previous discussion comparing the aerial and satellite imaging, the
final task will drive which type of acquisition is the most relevant.
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2.1.2 Application to geology
Geologists and Earth scientists were among the early users of photogrammetry
and LiDAR acquisitions as illustrated in [43], [69] and [167]. We review in this
sections some of their applications.

Mapping topography Obtaining precise mapping of the landscape is ex-
tremely important to geologists. Digital Elevation Model, DEM, can be produced
using either by photogrammetry techniques or by processing LiDAR acquisitions
[120]. DEMs are generally required inputs for a lot of different tasks. For in-
stance, geologists can monitor the evolution of the landscape by taking advantage
of the satellite images databases. DEM also helps geologists to prepare their
ground survey where only sparse and local measurements can be made.

Natural hazards Natural hazards occur unpredictably and can cause widespread
damage and loss of life. They usually disrupt the Earth surface or built environ-
ment as explain in depth in [86]. Accurate measurement of this disruption non
only helps to improve our scientific understanding but allows to better organize
the emergency response. Using a time series of DEMs spanning before and after
the catastrophic event one can automatically derive precious information.

Earthquake Landscape features and surface deformation along active
faults provide insights into faulting and tectonics [59]. There exists different
type of faults as illustrated in figure 2.8. Earthquakes are generally measured
using seismometers. However, GPS stations can provide accurate but local
measurement of the ground deformation [84]. The progress of remote sensing
imagery also allows to estimate this deformation at a larger scale at the expense
of precision [112]. The use of a pre and post-event DEMs allows researcher
to create maps of the deformation. Those maps can then be used to augment
GPS point measurements or ground surveys. All those measurements provide
important data to estimate the physical modeling of fault systems.

Figure 2.8 – Different types of
faults. Figure 2.9 – Landslide diagram.

Soil liquefaction Soil liquefaction is the deformation of the landscape
induced by an external stress such as an earthquake [139]. During liquefaction,
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The soil loses strength and stiffness creating massive damages. For instance
buildings were tilted during the 1964 Niigata earthquake. Soil liquefaction is
mainly a local phenomenon. Hence, high resolution DEMs are necessary to
capture landscape deformation induced by soil liquefaction

Landslides Landslides are sliding down of a mass of earth or rock from a
mountain or cliff as illustrated by figure 2.9. Geologists monitor landslides at
three levels [103]:

• Identifying which slopes are likely to be unstable [77]. This provides the
necessary information for prevention and potential structural reinforcement
of the slope.

• Monitoring at high-frequency unstable slopes to trigger early landslide
warnings [89]. This is a main concern for open-pit mining.

• Measuring the slope deformation due to a landslide [121]. This help to
calibrate and improve numerical landslide models.

In this context, one can rely on LiDAR processing or high resolution pho-
togrammetry to extract the pertinent information.

Natural processes While natural hazards trigger sudden deformation of the
landscape, many slow natural processes progressively alter planets topography.

Motion of dunes A dune is a hill of loose sand built by wind or the flow of
water. Dunes move, evolve, merge or divide due to eolian forces and the shape of
the bed rock [157]. Dunes non-only exist on Earth but also on Venus, Mars and
Titan. Using time series of DEMs of dune fields obtained with photogrammetry,
researchers have recently been able to demonstrate that Mars is geologically
active [155]. Furthermore, follow-up studies were even able to estimate climate
cycles from the motion of dune fields [4].

Figure 2.10 – Namib sand dune
(downwind side) on Mars (Curiosity
rover; 17 December 2015). Figure 2.11 – Glacier diagram.
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Motion of glaciers and ice Glaciers are of critical importance since
they provide large quantity of drinking water in some areas. Understanding
the changing mass balances of mountain glaciers and snow packs is crucial
for mitigating impacts to water supplies, sea level, and hazards from outburst
floods and avalanches. Moreover, accurate prediction of future mass balance
changes requires an understanding of the nature and rate of glacier response to
various forces. Changes in precipitation, temperature, solar input and surface
contaminants contribute to glaciers advance and retreat. By nature, glaciers are
difficult to access. Hence, remote sensing provides a handy observation technique.
Using time series of DEMs, one can track the motion of glaciers or the change
in ice coverage [151].

2.1.3 An image registration problem
From a modeling standpoint, we can formulate the monitoring of natural hazards
and processes as a dense image registration problem. A dense image registration
problem is the task of finding for each pixel of a given image its counterpart in an
other image. Depending on the task the registration problem will have different
degrees of freedom. If we know that the counterparts have to be on a certain
line we get a 1D registration problem. If the know that the counterparts are on
a given plane, we end-up with a 2D registration problem. If no assumption can
be made, then we have a 3D registration problem.

Assumption for DEM

Since our observations originate from a plane or a satellite, we propose to trans-
form with very little loss of information the acquired DEM to an image elevation
map [105]. The position of the pixels refers to local geographic coordinates while
their intensities encode the elevation above a reference. We detail this in the
chapter 6.2.3 of this thesis.

1D Registration

For aerial photogrammetry we are given two images acquired by a frame camera.
After accounting for the geometry of acquisition, the computation of the elevation
map mainly relies on solving a 1D dense registration problem called stereo-
matching. We will in the last chapter 6.3 present the stereo-matching concept.

2D Registration

For satellite photogrammetry we are given two images acquired by a push-broom
sensor. This complexifies the geometry of acquisition. Hence, the computation
of the elevation map relies on solving a 2D dense registration problem apparent
to optical-flow. We will discuss this in the last chapter 6.3.1.
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3D Registration

Given a time series of elevation maps of the same landscape, we can perform a
3D registration to estimate the deformation induced by a phenomenon of interest.
In this context the elevation maps could have been produced by photogrammetry
or by griding a LiDAR. We will discuss this in the last chapter 6.4.

2.2 Reviewing previous work
Dense image registration has been extensively studied since the inception of
computer vision. We can find dense image registration problems in many fields
such as medical and biology imagery, planetary sciences, industrial verification
or video surveillance. We point the curious reader toward [23], [178], [45] and
[138] for an extensive review on image registration.

2.2.1 Priors
Independently on their approach, all registration methods try to enforce a
matching prior and a regularization prior.

Matching priors

The goal of the matching prior is to measure the similarity between parts of two
images. There exist many different approaches as illustrated in [67], [29], [163],
[149], [150] and [176]. The simplest technique is to directly compare the value
of pixels, eventually on a patch centered around the points of interest. More
advanced technique computes descriptors that encode non only the information
contained by the pixel of interest but also its neighborhood. These descriptors
or features are then compared to estimate a similarity score. Unfortunately,
relying only on matching priors is insufficient to register images. For instance,
noisy regions or geometric deformations deteriorate the quality of the similarity
estimation. Moreover, texture-less areas or repetitive patterns create ambiguities.
Finally, in some context some pixels have no corresponding counterparts due to
occlusion.

Regularization priors

The role of the regularization prior is to enforce some a-priori information on
how the pixels should register. In most tasks, one can assume that the geometric
transformation that registers the images should follow some structure. The
regularization priors simply define the properties that geometric transformations
should follow. This helps to correct some of the errors or uncertainty of the
matching prior. The most popular regularization favors geometric transformation
that have a smooth gradient. The choice of the regularization priors mainly
depends on the task and the ability to enforce it to a desired accuracy. One
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can refer to [30] and [156] for examples of different regularization priors in the
context of image registration.

2.2.2 Framework
We distinguish two main frameworks to enforce both the matching and regular-
ization priors. While both frameworks have the same intent, their theoretical
foundations differ.

Heuristic framework

The heuristic based framework relies on alternate application of heuristics to
enforce the priors. Generally, the matching prior is enforced first giving a noisy
and possibly sparse estimation of the registration. Then, the regularization prior
is applied to obtain a dense and denoized registration. For instance, the median
filter has been extensively used as a regularization prior. Eventually, one can
proceed with multiple rounds of alternating between the priors. The decoupling
of the prior’s enforcement in successive steps leads to simple algorithm. However,
in this setting it is unclear what is globally enforced. Indeed, alternating between
priors is different than directly enforcing both priors at the same time.

Optimization framework

The optimization based framework formulates the registration task as an energy
minimization problem. This framework makes use of a global energy obtained
by modeling both priors with their respective energies. The main challenge
remains to find a registration that minimizes this energy. We remind that
one can link an energy to a probability through the use of Gibb’s free energy
function. Hence, the energy minimization problem is in fact equivalent to
finding the most probable registration given the inputs. This connection gives
strong theoretical foundation to this framework. Moreover, in some cases, the
optimization problem can generalize a heuristic. For instance, it is well known
that the median filter is equivalent to solving a certain `1-norm problem. This
framework gives more precise results than its heuristic base counterpart (see an
example in the context of 2D image registration [8]). However, this comes with
an added computational complexity. In this work, we will investigate different
approaches for the optimization framework.

2.3 An approximate modeling

2.3.1 Mathematical modeling
We now assume that we are given two images: a reference image and a target
image. The goal of the dense image registration task is to find for each pixel of
the reference image its counterpart in the target image. Without loss of generality
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we can model this problem as finding the apparent pixel motion between the
reference image and the target image.

Notations We introduce the following notations:

• Ω is the finite set t1, . . . , nu with n P N˚ that represents the pixels of the
reference image.

• Xi with i P Ω is a convex subset of Rd with d P N˚ that defines the
admissible range of motions for a given pixel.

• X is a convex subset formed by X0ˆ . . .ˆXn: that represent the admissible
registrations.

• x is an element of X and represents a potential registration.

• xi is the ith element of x and represents the motion of a given pixel.

• Mi : xi P Xi Ñ R encodes the matching prior as an energy.

• L is a continuous linear operator mapping space X to a vector space Y
that encodes the dependency between the pixel motions. This is the first
part of the regularization prior.

• R : y P Y Ñ R encodes as an energy the second part of the regularization
prior.

Optimization model We now need to optimize the following model:

arg min
xPX

ÿ

iPΩ

Mipxiq `RpLxq (2.1)

This mathematical problem is extremely difficult to solve. Indeed, the
objective function exhibits the following properties:

• Non convexity: there is no convexity assumption on the functions pMiqi

and R, hence the objective function can be non-convex.

• Non smoothness: there is no smoothness assumption on the functions
pMiqi and R, hence the objective function can be non-smooth.

• Continuous variables: we assume that each variable xi lives in a continuous
convex space.

• High order terms: the operator L can create dependencies between variables
in sub-sets of x.

• Large number of variables: since we work in the image registration context,
the size of x is in the order of millions of elements.

For all these reasons, the problem (2.1) is generally NP-hard and only approx-
imate solution may be sought. Notice however that in practice an approximate
solution is good enough because there is no guarantee that the mathematical
model is entirely faithful to the reality.
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2.3.2 Approximations
Directly attempting to solve (2.1) is extremely challenging. We need to make
further assumptions on the objective function to decrease its optimization com-
plexity. By using various simplification strategies we obtain different classes
of optimization problems that become tractable. However, this simplification
makes the modeling of the registration task less accurate.

Discarding non convexity

We propose to use convex functions to approximate the matching and regular-
ization functions pMiqi and R around the current solution. The quality of the
approximation generally quickly deteriorates with an increased distance to the
current solution. However, this approximation gives us a convex function that
represents locally the original objective function. In this settings we can use
various optimization schemes.

Majorization minimization The majorization minimization scheme relies
on using a convex surrogate function [82]. The surrogate function needs to
coincide with the objective function at the current solution and should majorize
the objective function everywhere else. Since we have some freedom to define
the surrogate function, we have interest to choose one that is easy to minimize.
The most appealing surrogate functions are those that can be minimized with
a close-form formula. The minimization of the surrogate function gives a new
solution. We iterate between these two steps until no further progress can be
made.

The majorization minimization scheme is easy to apply and implement.
However, it suffers of two main drawbacks. If the function is not smooth, then
this scheme can terminate in a sub-optimal solution. Moreover, the convergence
rate generally slows drastically when it approaches a minimum solution.

Splitting techniques The splitting techniques rely on auxiliary variables
that are introduced to decouple the matching and regularization parts of the
energy (see [33] and [32] for a detailed introduction). In our context, this
means to add a set of variables y in place of the term Lx. Then, an additional
constraint is added to the objective function to enforce that y “ Lx. We can use
penalty terms, Lagrangian multipliers or ADDM, Alternating Direction Multiplier
Method, schemes to enforce this new constraint. This creates different splitting
techniques. In most cases the splitting scheme alternates between 3 optimizing
steps: optimizing the matching variables x, optimizing the regularization variables
y, and enforcing the constraint y “ Lx.

The splitting techniques scheme is generally more difficult to apply and
implement than the majorization minimization scheme. However, this scheme
has the ability to minimize non smooth functions. Unfortunately, enforcing the
constraint slows down the convergence of the splitting techniques.
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Primal-dual techniques The primal dual scheme of [27] relies on the concept
of duality to add auxiliary variables that dynamically approximate the regular-
ization function R by a set of linear terms. In our context, this means to add a
set of variables y that model RpLxq by the scalar product ă y, Lx ą. We notice
that the auxiliary variables make the optimization over each xi independent.
Hence, the optimization over x is easy as long as the functions pMiqi are reason-
ably complex. This creates a very appealing scheme where we iterate between
minimizing for each xi and update the variable y to get a better approximation.

The primal dual scheme can handle non-smooth objective functions and has
superior convergence properties than the splitting techniques. For these reasons
we elect to choose the primal-dual scheme.

Discretization of the solution space and first order regularization

Another approach to simplify the problem (2.1) is to discretize the solution space
X and to limit the linear operator L to a first order operator like a gradient.
These two assumptions make the problem (2.1) belong to the class of first order
pairwise MRF, Markov Random Field if the regularization function R does not
rely on input images, or CRF, Conditional Random Field if it does. In this
context, we can use different optimization schemes. Unfortunately, even with
this simplification the problem remains generally NP-Hard. Hence, we are only
guaranteed to obtain an approximate solution.

Message passing The message passing method builds on dynamic program-
ming schemes (see [129] and [171] for a detailed introduction). It relies on
propagating information through the variables to update their respective proba-
bilities of being assigned to a given discrete value. There exist many approaches
to propagate the information. However in the context of image based problems,
the belief propagation with the checkerboard update rule of [49] and the tree-
reweighted message passing scheme of [93] obtain the best results. Moreover, if
the problem takes the form of a chain we can use the famous Viterbi algorithm
[56] to compute an optimal solution.

The message passing unfortunately does not always obtain good approxi-
mations as demonstrated in [161] and [90]. Moreover, the procedure of these
algorithms is quadratic with respect to the average number of discrete possible
values for variables pxiqi. We note that for some regularization functions R, this
complexity can be reduced to a linear one as explained in [48].

Dual decomposition The dual decomposition scheme relies on duplicating
some variables of the original problem to obtain a set of sub-problems that can
be optimally solved. The duplicated variables are constrained through the use of
auxiliary variables to converge to the same discrete value. This scheme alternates
between solving each sub-problem and updating the auxiliary variables to enforce
the constraints. Two main variations exist. The original dual decomposition
algorithm of [99] used Lagrangian multipliers to enforce the constraints while
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the alternative direction dual decomposition algorithm of [119] makes use of the
ADMM scheme. In our context the most natural and efficient decomposition is
to create a chain per line and column.

The dual decomposition scheme obtains excellent approximations as demon-
strated in [98]. However, it is slow to converge since it has the same complexity
as the underlying algorithm used to solve the sub problems. Moreover, many
iterations are needed to enforce the constraint on the auxiliary variables.

Graph-Cuts The Graph-Cuts approach of [18] also known as the making move
approach, relies on iteratively updating a current solution by solving a binary
problem. During an iteration, each variable can choose between maintaining its
current solution or choosing a proposed one. By cycling the proposed solution
through the list of admissible discrete solutions, the making move approach
progressively obtains a better solution. Interestingly, the associated binary
problem is in fact a maxflow-mincut problem which can be solved very efficiently.
Different approaches exist and result in different making move algorithms such
as [19], [20] or [152].

The making move proposes a good balance between speed and the quality
of approximations. Moreover, the complexity of algorithm such as the alpha
expansion of [17] and Fast-PD [102] is linear with respect to the average number
of discrete possible values for variable pxiqi. For these reasons we elect to
investigate the alpha expansion and Fast-PD .

2.4 Thesis overview

2.4.1 Document organization
Besides the current introduction and conclusion, this manuscript articulates
around three technical chapters 3, 4, 5 and one applications chapter 6.

First order Primal-Dual techniques for convex optimization In this
first technical chapter 3 we start with the basis of convex optimization. We follow
with a didactic review of first order primal dual scheme for convex optimization.
Then, we study the dual optimal space of TV regularized problems. Finally, we
perform experiments to illustrate the techniques presented in this chapter.

Maxflow and Graph cuts techniques The second technical chapter 4 in-
troduces the basis of discrete optimization. We then review the maxflow-mincut
problem in the context of graph cuts techniques. Then, we provide an extensive
discussion around the implementation of the Fast-PD algorithm. Finally, we
justify the superiority of our implementation in numerous experiments.
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Coarsening schemes for optimization techniques The last technical chap-
ter 5 compares various coarsening schemes for the first order Primal-Dual tech-
niques and graph cuts schemes. We also introduce a new pyramidal scheme for
graph cuts that drastically speeds-up the computation without compromising on
the quality of the obtained solutions.

Applications The last chapter of this manuscript 6 revolves around the appli-
cations of techniques presented in chapters 3, 4 and 5. We perform experiments
with tasks such as stereo-matching, monitoring Earth crust deformation and
damage detection due to an earthquake.

2.4.2 Contributions
We present here a summary of our contributions that we further detail in each
technical chapter.

First order Primal-Dual techniques for convex optimization We derive
theorems that explain how dual optimal solution spaces relate to one another
for TV regularized problems. This understanding helps to derive a new proof to
a variety of theorems.

Maxflow and Graph cuts techniques We completely re-implemented the
Fast-PD algorithm to obtain a drastic reduction of the memory footprint while
providing faster run-time. This allows us to use Fast-PD on large scale problems
on a modern laptop computer.

Coarsening scheme for optimization techniques We propose a coarsening
scheme that speeds up the optimization of Graph-Cuts techniques. We extend
this coarsening scheme with a novel framework that drastically speeds-up the
inference run-time while maintaining remarkable accuracy.

2.4.3 List of publications
• Inference by learning: Speeding-up graphical model optimization via a
coarse-to-fine cascade of pruning classifiers, B. Conejo, N. Komodakis,
S. Leprince, J.P. Avouac in Advances in Neural Information Processing
Systems, 2014

• Fast global stereo matching via energy pyramid minimization, B. Conejo, S.
Leprince, F. Ayoub, J.P. Avouac in ISPRS Annals of the Photogrammetry,
Remote Sensing, 2014

• A 2D and 3D registration framework for remote-sensing data, B. Conejo,
S. Leprince, F. Ayoub, J. Avouac in AGU Fall Meeting 2013
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• Emerging techniques to quantify 3D ground deformation using high resolu-
tion optical imagery and multi-temporal LiDAR, S. Leprince, F. Ayoub, B.
Conejo, J. Avouac in AGU Fall Meeting 2012
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Chapter 3

First order Primal-Dual
techniques for convex
optimization

3.1 Introduction and contributions

3.1.1 Introduction
This chapter introduces an extremely powerful and versatile framework: the
First Order Primal Dual convex optimization technique. Sometimes referred as
the Primal Dual Hybrid Gradient method or the Primal Dual Proximal Point
method, this technique is well suited for a large class of convex optimization
problems with smooth and non-smooth objective function. This framework has
been successfully applied to problems such as image denoising (ROF, TV-L1, ...),
inpainting, debluring, image segmentation, dense registration, mincut/maxflow,
and linear programming.

The underlying mathematical mechanism can appear quite frightening at first
glance, with terms such as “Moreau envelope”, “Proximity operator” or “Flenchel
transform”. However, the framework is in fact fairly easy to understand. A
large quantity of published materials or technical reports extensively cover the
subject. As a personal preference, I would recommend the seminal paper of
Chambolle and Pock [27] for its clarity and exhaustive list of experiments related
to computer vision. Another great source of information is the technical report
of Parikh and Boyd [141] that covers in more depth the proximal operators.

Finally, implementing a first order primal dual algorithm is relatively straight-
forward on both CPU and GPU based architectures. For instance, the core of
the Mincut/Maxflow algorithm is only 10 lines of Matlab code and barely more
in C++. Furthermore, many components can be reused from one algorithm
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to the next, which makes this technique well suited for quick prototyping or
modular framework.

3.1.2 Chapter organization
In section 3.2 we introduce the basics of convex optimization and we describe
the problems of interest. We progressively explain and detail in section 3.3 the
different components of the first order primal dual algorithms. The section 3.4
presents frequently used proximal operators and Fenchel transformations. In
section 3.5 we introduce various TV-regularized problems and we study the
relationship between the optimal dual solution spaces of the TV-regularized
problems. The section 3.6 illustrates the application of the first order primal
dual techniques with different examples.

3.1.3 Contributions
In this chapter we demonstrate some TV regularized problems share a particular
connexion through their optimal dual solution space. We prove that there exists
a hierarchy of optimal dual solution spaces connecting the ROF model to a linear
TV model. Furthermore, we establish that the intersection of the optimal dual
solution space of a set of ROF models defines the optimal dual space of some
linear TV model. To the best of our knowledge these are new results.

Building on these theorems, we state and prove a generalization of the
Friedmann’s theorems for Fused Lasso approximation. We also propose a new
proof for quickly finding the solution of a ROF model with various global
regularization terms. Finally, we introduce a new primal-dual formulation to
solve the ROF model that experimentally outperform the traditional primal-dual
scheme.

3.2 Problem formulation

3.2.1 Basics of convex optimization in a tiny nutshell
As a preamble, we remind some mathematical definitions useful in the context
of this chapter. For an extended introduction on convex optimization, we
refer the curious reader to Fundamentals of Convex Analysis by Hiriart-Urruty
and Lemaréchal [78], Convex Optimization by Boyd and Vandenberghe [15] or
Optimization. Applications in image processing. by Nikolova [133] from which
we borrow the following definitions and theorems.

Existence of minimums

Before even thinking of searching for the minimums of a function, we need to
establish the conditions of their existence. To this end, we need the following
definitions:
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Definition 1. A function f on a normed real vector space V is proper if f :
V Ñ s´8,`8s and if it is not identically equal to `8.

Definition 2. A function f on a normed real vector space V is coercive if
lim}u}Ñ`8 fpuq “ `8.

Definition 3. A function f on a real topological space X , say f : V Ñ s´8,8s
is lower semi-continuous (l.s.c.) if @λ P R the set tu P V : fpuq ď λu is closed in
V .

Now, we can state the following theorem:

Theorem 1. Let U Ă Rn be non-empty and closed, and f : Rn Ñ R be l.s.c.
and proper. In the case that U is not bounded, we also suppose that f is coercive.
Then, Dû P U such that fpûq “ infuPU fpuq.

Gradient and subgradient

For the following definitions we assume that V is normed real vector space.

Definition 4. A function f : U Ă V Ñ R is said differentiable at v P U if the
following limit exists:

lim
hÑ0

fpv ` hq ´ fpvq

h
(3.1)

Definition 5. A function f : U Ă V Ñ R is smooth if it is differentiable @u P U .

Definition 6. A function f : U Ă V Ñ R is not smooth if Du P U where f is
not differentiable.

When f is not smooth we can extend the notion of derivative with subderiva-
tive (also refereed to as subgradient):

Definition 7. The subderivative of function f : U Ă V Ñ R at u P U is the set
of p P R verifying @v P U :

fpuq ´ fpvq ě 〈p, u´ v〉 (3.2)

We note Bfpuq the subderivative of f at u P U .

Convexity

Let us properly introduce the notion of convexity for spaces and functions.

Definition 8. Let V be any real vector space. U Ă V is convex if @pu, vq P UˆU
and @θ P s0, 1r, we have:

θu` p1´ θqv P U. (3.3)
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Definition 9. A proper function f : U Ă V Ñ R is convex if @pu, vq P U ˆ U
and @θ P p0, 1q, we have:

fpθu` p1´ θqvq ď fpuq ` p1´ θqfpvq (3.4)

f is strictly convex when the inequality is strict whenever u ‰ v.

The space of strong convex functions is a subset of convex functions.

Definition 10. A proper function f : U Ă V Ñ R is strongly convex with
convexity parameter α P R` if @pu, vq P U ˆ U and @p P Bfpvq we have:

fpuq ě fpvq` ă p, u´ v ą `
α

2
}u´ v}22 (3.5)

The uniform convexity generalizes the concept of strongly convex function:

Definition 11. A proper function f : U Ă V Ñ R is uniformly convex with
modulus φ if @pu, vq P U ˆ U and @t P r0, 1s we have:

fptx` p1´ tqyq ď tfpxq ` p1´ tqfpyq ´ tp1´ tqφp}x´ y}q (3.6)

where φ is a function that is increasing and vanishes only at 0.

Characterization of minimums in convex optimization

Supposing that the condition stated in theorem 1 are met, we can define the
properties that characterize minimums for convex functions defined on a convex
set. We now state a central theorem in convex optimization:

Theorem 2. For U Ă V a convex space and f : U Ă V Ñ R a proper l.s.c.
convex function.

1. If f has a local minimum at û P U , then it is a global minimum w.r.t U .

2. The set of minimizers of f w.r.t U is convex and closed.

3. If f is strictly convex, then f admits at most one minimum.

4. If f is also coercive or U bounded then he set of minimizers of f w.r.t U
is non empty.

We note that the theorem 2 makes use of all hypotheses of theorem 1 and
adds the key hypothesis of convexity.

3.2.2 Problem of interest
As stated in the introduction chapter our goal is to optimize functions of the
following prototype:

arg min
xPX

ÿ

iPΩ

Mipxiq `RpLxq (3.7)

with:
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• Ω the finite set t1, . . . , nu with n P N˚.

• X is a convex subset of Rn.

• x is a vector of X .

• xi is the ith element of x.

In this chapter, we assume the following hypotheses:

• All functions Mi : xi P Rd Ñ R are (not necessarily smooth) proper l.s.c.
convex functions over Rd with d P N`.

• L is a continuous linear operator mapping space X to Y.

• R : y P Y Ñ R is a (not necessarily smooth) proper l.s.c. convex function
over Y.

As a sum of proper l.s.c. convex functions, the function
ř

iPΩMipxiq`RpLxq
is a proper l.s.c. convex function over X . Hence, it admits at least one minimizer
w.r.t. X 2, which is unique in the case of strict convexity. We call (3.7) the
primal formulation of our problem.

3.2.3 From a primal to a primal dual form
Solving (3.7) presents two main challenges. First, if any of the tMiu and R
functions is not smooth, the problem (3.7) is not a smooth optimization problem.
Consequently, we need a technique that is not solely based on pure gradient
descent. Secondly, the linear operator L and the function R generally couple the
variables of x, i.e., elements of x interact one with another. This, again, makes
the optimization harder.

However, by exploiting two brilliant yet simple ideas, primal dual optimization
techniques overcome the stated challenges. For the lack of smoothness, we
optimize a slightly different problem than (3.7) by operating on the Moreau
envelope of

ř

iPΩMipxiq `RpLxq. It turns out that the Moreau envelope of any
convex function is always smooth and shares the exact same set of minimizers.
For the coupling of variables, we proceed by computing the Fenchel Conjugate
of R. This removes the coupling at the cost of adding a new set of variables
named dual variables.

These two ideas, using the Moreau envelope and applying the Fenchel trans-
formation, are instrumental in establishing a fast iterative optimization algorithm.
They transform (3.7) into a saddle point smooth problem where each variable xi
can be optimized independently.
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3.3 First order Primal Dual techniques

3.3.1 Smoothing: Moreau envelope and the proximal op-
erator

Definition Given a proper lsc convex function F : X Ă V Ñ R, the Moreau
envelope [126, 127] constructs a smoothed version of function F where the degree
of smoothing is controlled by a parameter τ P R`. The Moreau envelope is
defined as the unique solution of the optimization problem:

MF,τ px̃q “ min
xPX

F pxq `
1

2τ
}x´ x̃}22. (3.8)

We note that this problem is smooth and it admits a unique minimizer due
to the added smoothing `2 norm term. Moreover, the domain of functionMF,τ

is V independently of the initial domain X of function F .

At this stage, it is important to remind that a strictly convex optimization
problem can still be very hard to solve. As a rule of thumb, if F is a difficult
function to optimize, its Moreau envelope might still be challenging to compute.
However, for a lot of interesting functions such as the `1 or Huber norm, one can
derive close form formulas for the Moreau envelope. Figure 3.1 illustrates the
Moreau envelope of a non smooth function, and Figure 3.2 the inner optimization
problem solved during the Moreau envelope computation.

Associated to the Moreau envelope is the proximal operator that returns its
unique minimizer:

proxτF px̃q “ arg min
xPX

F pxq `
1

2τ
}x´ x̃}22. (3.9)

We also make use of the proximal function:

PτF px̃, xq “ F pxq `
1

2τ
}x´ x̃}22. (3.10)

Some properties of the Moreau envelope From figure 3.1 we see that
optimizing F or its Moreau envelope leads to the same minimizer. This is a
critical property of the Moreau envelope. One can easily prove the following
properties [110] for any proper lsc convex function F , for any smoothing factors
τ P R` and for any point x̃ P X :

min
xPX

F pxq ďMf,τ px̃q (3.11)

Mf,τ px̃q ď F px̃q (3.12)
Mf,τ px̃q “ F px̃q ðñ x̃ “ arg min

xPX
F pxq (3.13)

Hence, minimizing the Moreau envelope of the function F provides an enticing
alternative to the direct optimization of F .

36



Figure 3.1 – Function F and its associ-
ated Moreau envelopeMτF for τ “ 1

Figure 3.2 – Function F and F pxq `
1{p2τq}x´ x̃}22 with x̃ “ 0.5 and differ-
ent τ .

Fixed point of the proximal operator One can demonstrate that by iter-
atively composing [141, 145] the proximal operator, we converge to a fixed point
that is a minimizer of the function F . The reasoning follows these lines:

• Equation (3.12) states that iteratively applying the proximal operator leads
to a sequence of points of decreasing value.

• Equation (3.11) provides a lower bound for the sequence. This guarantees
the convergence of the sequence to a fixed point.

• Finally, (3.13) states that if a stationary point of X is found, it is a
minimizer of F .

Hence, the proximal operator provides a very powerful method to optimize F .
Computing the proximal operator associated to F remains the only difficulty.

Some properties of the proximal operator In the subsequent paragraphs,
we introduce some other important properties of proximal operators. The curious
reader can find proofs in [141]. We make use of the following notations:

• G : RÑ R is a mono-dimensional proper convex function.

• a a vector of Rd.

• α and β are real scalars,

• λ is a strictly positive scalar.

• x is a multi-dimensional variable of Rd.

• y is a mono-dimensional variable of R.

Postcomposition If x P R and F pxq “ αGpxq ` β, then:

proxτF px̃q “ proxατGpx̃q (3.14)

37



Figure 3.3 – Level set of a non smooth
function. Alternating optimization
methods ala Gauss Seidel can get stuck
in acute corners.

Figure 3.4 – Smoothing of previous
level sets. The corners have been re-
moved but the level sets are impacted.

Affine addition If x P R and F pxq “ Gpxq ` αx` β, then:

proxτF px̃q “ proxτGpx̃´ ταq (3.15)

This property is very handy for the primal dual algorithm.

Affine reduction If F pxq “ GpaTx` βq, then:

proxτF px̃q “ proxτ̃Gpa
T x̃` βqa (3.16)

with τ̃ “ τ{aTa.
This property is instrumental in computing the proximal operator for 2D

and 3D registration problems.

Sum of functions The proximal operator is not a linear operator. Conse-
quently, calculating the proximal operator of the sum of functions is generally
computationally expensive even if the proximal operator of each function com-
posing the sum is simple. However, in the latter case, one can take advantage
of the ADMM technique to compute the proximal operator by formulating the
optimization as a consensus problem [14]

3.3.2 Decoupling: Fenchel transform
The coupling issue Another difficulty of our optimization problem (3.7) is
the coupling of variables pxiq due to the linear operator L and the function R.
Combined to the eventual non smoothness of R, this imposes to optimize all
variables xi jointly. The figure (3.3) illustrates the problem.

One solution is to smooth the objective function R to make corners disappear.
However, this changes the objective function as seen in figure 3.4 which might
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not be desirable. Using the Moreau envelope is generally computationally very
intensive in general because, as seen in Section 3.3.1, the proximal operator is
not an additive function. The first order primal dual technique relies on the
Fenchel transformation of [51] to decouple the variables. This transformation
comes with the cost of adding new variables, named dual variables, to the
optimization problem (3.7). The Fenchel transform augments (3.7) to a saddle
point optimization problem, i.e., a convex minimization problem for the primal
and a concave maximization problem for the dual variables.

Definition The Fenchel transform [50] also named convex conjugate of a
function R computes:

R˚pyq “ sup
x
〈x, y〉´Rpxq (3.17)

This transformation encodes the convex hull of the function R epigraph as a
set of hyperplanes. It is worth noting that the Fenchel transform always yields a
convex function. The figure 3.5 illustrate the Fenchel transform.

Figure 3.5 – Illustration of the Fenchel
transform. The function Rp.q is given
by the red curve. The blue line is the
tangent of function Rp.q for the point
represented by the blue dot. The in-
tersection of tangent with the vetical
axis reprensented by the pink dot gives
the opposite value of the Fenchel trans-
form.

Applying twice the Fenchel transform, i.e., the Fenchel transform of the
Fenchel transform, computes the bi-convex conjugate:

R˚˚pxq “ sup
y
〈x, y〉´R˚pyq (3.18)

If R is a convex function, one can prove that R˚˚ “ R. This simplifies (3.18)
to:

Rpxq “ sup
y
〈x, y〉´R˚pyq (3.19)

If R˚ is simple enough to compute, i.e., a close form exists, then the trans-
formation gives an efficient approach to decouple the variable x in our context.

Some properties of the Fenchel transform We use the same notation as
in paragraph 3.3.1, i.e.:
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• G : RÑ R is a proper convex function.

• α and β are real scalars.

• x and y are mono-dimensional variables of R.

Affine reduction If F pxq “ Gpαx` βq, then:

F˚pyq “ ´
β

α
y `G˚

´ y

α

¯

(3.20)

Affine addition If F pxq “ Gpxq ` αx` β, then:

F˚pyq “ ´β `G˚py ´ αq (3.21)

This property is very handy for the primal dual algorithm.

Postcomposition If F pxq “ αGpxq ` β, then:

F˚pyq “ ´β ` αG˚
´ y

α

¯

(3.22)

3.3.3 Primal Dual algorithm
To a primal dual solver

Now that we are equipped with the proximal operator and the Fenchel transform
we can gradually modify our original optimization problem (3.7) to a more
pleasant problem [25, 27, 177]. First, we make use of the Moreau envelope and
we substitute to the functions Mipxiq their smoothed version:

arg inf
xPX

ÿ

iPΩ

Mipxiq `
1

2τ
}xi ´ x̃i}

2
2 `RpLxq. (3.23)

Then, we apply the Fenchel transform to R:

arg inf
xPX

sup
yPZ

ÿ

iPΩ

Mipxiq `
1

2τ
}xi ´ x̃i}

2
2 ` 〈y, Lx〉´R˚pyq. (3.24)

At this stage the xi are totally decoupled and their optimization is achieved
by computing a proximal operator. However, the function R˚ might not be
smooth. Hence, we use the Moreau envelope again, but this time on R˚. We
get:

arg inf
xPX

sup
yPZ

ÿ

iPΩ

Mipxiq `
1

2τ
}xi ´ x̃i}

2
2 ` 〈y, Lx〉´R˚pyq ´

1

2σ
}y ´ ỹ}22. (3.25)
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Writing x and y as time series pxnqn and pynqn, we obtain for each time step
n:

arg inf
xnPX

sup
ynPY

ÿ

iPΩ

Mipx
n
i q`

1

2τ
}xni ´x

n´1
i }22`〈yn, Lxn〉´R˚pynq´

1

2σ
}yn´yn´1}22.

(3.26)
For all time steps, the problem (3.24) is convex with respect to xn and

concave with respect to yn. The two series converge to a fixed saddle point.
Moreover, we can carry the optimization by alternating on xn and yn since the
functional is now smooth.

One last trick, that we do not develop in this document is the smoothing
of the sequence xn. When optimizing with respect to yn, we substitute xn
by x̃n “ xn ` θpxn ´ xn´1q with θ P r0, 1s. This trick greatly improves the
convergence rate in general.

Hypothesis for convergence and convergence rate

As the first order primal dual optimization algorithm is iterative, we need to
pay a particular attention to the values of τ and σ to ensure its convergence
[27]. As illustrated by figure 3.1, τ and σ control the step size of primal and
dual variables updates. While smaller steps slow down the convergence, too
large steps make the algorithm unstable, leading to a possible divergence of the
sequences pxnq and pynq. We notice that at each iteration xn and yn exchange
information through an interface expressed as the linear operator L. Hence, the
nature of L plays a critical role on the range of τ and σ.

In our context, the linear operator L is generally the weighted gradient
(possibly oriented and non local) or the laplacian operator. Hence, the value of
}L} can easily be precomputed or closely upper-bounded.

The Algorithm 1 can be slightly modified to make use of strong convexity to
achieve Op1{N2q and even Op1{eN q convergence rate. We refer the reader to
Algorithms 2 and 3 in [27] for more details.

Algorithm description for non smooth problems

When neither the sum of pMiqi nor R is smooth, we make use of the general
first order primal dual algorithm:

It was proved in [27] that to guarantee convergence τ and σ have to satisfy
the following inequality:

τσ}L} ă 1 (3.30)

with:
}L} “ maxt}Lx} : x P X with }x} ď 1u (3.31)

It has been demonstrated in [27] that the Algorithm 1 converges to an optimal
primal-dual saddle point in Op1{Nq. This convergence rate is optimal for first
order algorithm and non smooth function [131].
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Algorithm 1: First order primal dual algorithm
Data: Inputs: pMiqi, R, L
Result: x
Compute the Fenchel transform: Ñ R˚.
Initialize primal and dual variable Ñ x0 “ 0, y0 “ 0.
Set x̃ “ x0

while Stopping criterion is not verified do
Optimize the dual variables:

yn`1 “ proxσp〈y,Lx̃〉´R˚pynqqpy
nq (3.27)

Optimize the primal variables:

xn`1 “ proxτpřiPΩ Mipxiq`〈LT yn,x〉qpx
nq (3.28)

Smooth variable:
x̃ “ xn`1 ` θ

`

xn`1 ´ xn
˘

(3.29)

Algorithm description for half-uniformly convex problems

If the sum of pMiqi or R˚ is uniformly convex, we can make use of an accelerated
algorithm. For simplicity we assume that the sum of pMiqi is γ-uniformly convex
function.

It was proved in [27] that to guarantee convergence τ0 and σ0 have to satisfy
the following inequality:

τ0σ0}L} ă 1 (3.36)

It has been demonstrated in [27] that Algorithm 2 converges to an optimal
primal-dual saddle point in Op1{N2q. This convergence rate is optimal for first
order algorithm and uniformly convex problem with respect to either the primal
or dual variables [131].

Algorithm description for uniformly convex problems

It was proved in [27] that Algorithm 3 converges if µ satisfies the following
inequality:

µ ď 2

?
γδ

}L}
(3.41)

It has been demonstrated in [27] that Algorithm 3 converges to an optimal
primal-dual saddle point in Op1{eN q. This convergence rate is optimal for first
order algorithm and uniformly convex problem [131].
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Algorithm 2: First order primal dual algorithm for half smooth problem
Data: Inputs: pMiqi, R, L, τ , σ
Result: x
Compute the Fenchel transform: Ñ R˚.
Initialize primal and dual variable Ñ x0 “ 0, y0 “ 0.
Set x̃ “ x0

while Stopping criterion is not verified do
Optimize the dual variables:

yn`1 “ proxσnp〈y,Lx̃〉´R˚pynqqpy
nq (3.32)

Optimize the primal variables:

xn`1 “ proxτnpřiPΩ Mipxiq`〈LT yn,x〉qpx
nq (3.33)

Update the smoothing and steps size parameters:

θn “
1

?
1` 2γτn

, τn`1 “ θnτn, σn`1 “
σn
θn

(3.34)

Smooth variable:

x̃ “ xn`1 ` θn
`

xn`1 ´ xn
˘

(3.35)
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Algorithm 3: First order primal dual algorithm for half smooth problem
Data: Inputs: pMiqi, R, L, µ
Result: x
Compute the Fenchel transform: Ñ R˚.
Initialize primal and dual variable Ñ x0 “ 0, y0 “ 0.
Set x̃ “ x0

Set step sizes and smoothing value:

θn P

„

1

1` µ
, 1



, τ “
µ

2γ
, σ “

µ

2δ
(3.37)

while Stopping criterion is not verified do
Optimize the dual variables:

yn`1 “ proxσnp〈y,Lx̃〉´R˚pynqqpy
nq (3.38)

Optimize the primal variables:

xn`1 “ proxτnpřiPΩ Mipxiq`〈LT yn,x〉qpx
nq (3.39)

Smooth variable:

x̃ “ xn`1 ` θn
`

xn`1 ´ xn
˘

(3.40)
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3.3.4 Conditioning and Auto tuning of step sizes
Improving conditioning

The convergence speed of Algorithm 1 is tightly linked to the conditioning of the
linear operator L since its norm impacts the step size parameters τ and σ. We
can always make one of τ or σ larger, but this comes at the expense of reducing
the other. Hence, improving the conditioning of L is critical.

Fortunately, conditioning improvement has been studied for a long time and
successfully applied to primal dual problems [143, 162]. In our context, we only
investigate the simple case where the operator L can be written as a diagonal
matrix D with strictly positive elements and a well conditioned linear operator G:

L “ DG (3.42)

Here, the diagonal matrix D deteriorates the condition number of G, leading
to the badly conditioned operator L. However, by applying a simple change of
variable in the functional to optimize we can recover a well conditioned problem.
By defining, y “ D´1z, we transform (3.26) to:

arg min
xnPX

max
znPDY

ÿ

iPΩ

Mipx
n
i q `

1

2τ
}xni ´ x

n´1
i }22 ` 〈zn, Gxn〉

´R˚pD´1znq ´
1

2σ
}D´1pzn ´ zn´1q}22.

(3.43)

Hence, we can now have larger step sizes τ and σ. Moreover, the overall problem
retains the same complexity since the computation of proximal operators are
not made more complicated by linear scaling.

If necessary, the same transformation can be applied to primal variables x.
We refer the curious reader to [143].

Auto tuning of step sizes and stopping criterion

At this stage, defining correctly the step sizes τ and σ remains of critical
importance to obtain a fast convergence. As a rule of thumb, we want the
algorithm to make as much progress in the primal space as it does in the dual
space. We can measure such progress by tracking the primal and dual residuals.
If the primal residual is large compared to the dual residual, then we want to
make more progress in the primal space at the next iteration. To this end, we
need to increase τ . An analogue reasoning stands if the dual residual is larger
than the primal residual. If both residuals are roughly equally large, then we
are on course and no update of τ or σ is necessary.

Hence, we now make use of sequences pτnqn and pσnqn to describe the
evolution of τ and σ through time. Moreover, it has been demonstrated in [65]
that the convergence of algorithm 1 is achieved only if the sequences pτnqn and
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pσnqn also converge. To this end, we introduce another sequence pαnqn that
strictly decreases over time and controls how much pτnqn and pσnqn are updated.

The primal residual of (3.26) is defined as:

pn`1 “
1

τn
pxn ´ xn`1q ´ LT pyn ´ yn`1q (3.44)

Similarly, the dual residual of (3.26) is defined as:

dn`1 “
1

σn
pyn ´ yn`1q ´ Lpxn ´ xn`1q (3.45)

Algorithm 4 describes the update rules for pτnqn and pσnqn.

Algorithm 4: Auto tuning of step sizes
Data: Inputs: pn`1, dn`1, τn, σn, αn, η
Result: τn`1, σn`1, αn`1

if ρ}pn`1} ă }dn`1} then
We need to increase dual variables convergence speed:

τn`1 “ τnp1´ αnq, σn`1 “
σn

1´ αn
, αn`1 “ ηαn (3.46)

else if ρ}dn`1} ă }pn`1} then
We need to increase primal variables convergence speed:

τn`1 “
τn

1´ αn
, σn`1 “ σnp1´ αnq, αn`1 “ ηαn (3.47)

else

τn`1 “ τn, σn`1 “ σn, αn`1 “ αn (3.48)

With:

• ρ is a parameter in r1,`8q controlling when a correction needs to be
applied.

• η is a parameter in r0, 1q enforcing the convergence of the sequences pαnqn,
pτnqn and pσnqn.

3.4 Reformulating `1 based functions, Proximal
operators, and Fenchel transformations

Before diving in the computations of proximal operators and Fenchel transforms,
we introduce an important reformulation of `1 based functions.
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3.4.1 On reformulating `1 based functions
Reformulation formula

We assume we are given an `1 based function f : R Ñ R parametrized by
pw´, w`q P Rˆ R of the following prototype:

fpxq “ w´maxp´x, 0q ` w`maxpx, 0q. (3.49)

We show that for any a P R we can reformulate the equation as

fpxq “
`

w´ ´ a
˘

maxp´x, 0q `
`

w` ` a
˘

maxpx, 0q ´ ax (3.50)

The proof follows from:

ax “ a pminpx, 0q `maxpx, 0qq , (3.51)
ax “ ´amaxp´x, 0q ` amaxpx, 0q, (3.52)

0 “ ´amaxp´x, 0q ` amaxpx, 0q ´ ax. (3.53)

By adding (3.53) to (3.49) and rearranging terms, we obtain (3.50), thus,
completing the proof.

Some examples of reformulations

Using (3.50) we can transform fp.q to a symmetric function plus a linear term
by choosing:

a “
w´ ´ w`

2
(3.54)

fpxq “
w` ` w´

2
maxp´x, 0q `

w` ` w´

2
maxpx, 0q `

w` ´ w´

2
x (3.55)

“
w` ` w´

2
|x| `

w` ´ w´

2
x (3.56)

We can also transform fp.q to half linear term and a linear term by choosing
either:

a “ w´ (3.57)

fpxq “
`

w´ ´ w´
˘

maxp´x, 0q `
`

w` ` w´
˘

maxpx, 0q ´ w´x (3.58)

“
`

w` ` w´
˘

maxpx, 0q ´ w´x (3.59)

or:

a “ ´w` (3.60)

fpxq “
`

w´ ` w`
˘

maxp´x, 0q `
`

w` ´ w`
˘

maxpx, 0q ` w`x (3.61)

“
`

w` ` w´
˘

maxp´x, 0q ` w`x (3.62)

We illustrate these three reformulations in figure 3.6.
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Figure 3.6 – Example of a reformulations of the same function: left is a symmetric
reformulation, center is a half negative reformulation, and right is a half positive
reformulation.

3.4.2 Proximal operators
We present here some useful proximal operators.

Asymmetric `1

The asymmetric `1 function illustrated in figure 3.7 has the following prototype:

F pxq “

#

´w´x if x ă 0

w`x if x ě 0
(3.63)

“ w´maxp´x, 0q ` w`maxpx, 0q (3.64)

with pw´, w`q P Rˆ R and w´ ` w` ě 0 to ensure convexity.

Figure 3.7 – Various instances of asym-
metric `1 functions

The proximal operator associated to the asymmetric `1 function is:

proxF,τ px̃q “

$

&

%

x̃` τw´ if x̃ ă ´τw´

0 if x̃ P r´τw´, τw`s
x̃´ τw` if x̃ ą `τw`

(3.65)

One can recognize in (3.65) a generalization of the soft-thresholding operator.
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Sum of asymmetric `1

We now examine a function F , illustrated in figure 3.8, of the following prototype:

F pxq “
N
ÿ

i“1

w´i maxp´x` bi, 0q ` w`i maxpx´ bi, 0q (3.66)

where each pair of pw´i , w
`
i q P Rˆ R verifies w´i ` w

`
i ě 0 and each bi P R.

Figure 3.8 – The function F , a sum
of asymmetric `1 functions. Each seg-
ments composing F is plotted in a dif-
ferent color.

Figure 3.9 – The function P that needs
to be minimized to obtain the proximal
operator of function F with x̃ “ 0.7
and τ “ 0.1

Without any loss of generality we reformulate F as a sum of half linear terms
using example from (3.59):

F pxq “ c` ax`
N
ÿ

i“1

wi maxpx´ bi, 0q (3.67)

with: c “
řN
i“1 w

´
i bi, a “

řN
i“1 w

´
i and, each wi “ w`i ` w

´
i

To compute the proximal operator we need to minimize the following function
illustrated in figure 3.9:

P pxq “ F pxq `
1

2τ
px´ x̃q2 (3.68)

“

N
ÿ

i“1

wi maxpx´ bi, 0q `
1

2τ
px´ px̃´ τaqq

2
` constant (3.69)

“

N
ÿ

i“1

wi maxpx´ bi, 0q `Gpxq (3.70)

with τ P R` and x̃ P R.
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The function F is a piecewise linear function composed of N ` 1 segments
as illustrated in figure 3.8. Since P is a convex function, its derivative is a
monotonic increasing function. Hence, by identifying a segment that has a
negative gradient at one hand and a positive derivative at the other hand we
have found that an interval that contains the minimizer of P . Finally, over this
interval the function P is purely quadratic. Hence, computing the minimum
is then trivial. We describe this procedure in algorithm 5. One can obtain a
simpler algorithm if the tbiuiPt1,...,Nu are given sorted.

Asymmetric Huber

The asymmetric Huber illustrated in figure 3.10 naturally extends both Huber
and `1 norms, and it remains a convex function:

F pxq “

$

’

’

’

&

’

’

’

%

´apx` α{2q if x ă ´α
ax2{p2αq if x P r´α, 0s
bx2{p2βq if x P p0, βs
bpx´ β{2q if x ą β

(3.72)

with α, β, a and b all positive real scalars.
The proximal operator associated to the asymmetric Huber function is:

proxF,τ px̃q “

$

’

’

&

’

’

%

x̃` τa if x̃ ă ´α´ τa
´αx̃{pα` τaq if x̃ P r´α´ τa, 0s
´βx̃{pβ ` τbq if x̃ P p0, β ` τbs

x̃´ τb if x̃ ą β ` τb

(3.73)

Figure 3.10 – Various instances of
asymmetric Huber functions

Convex second order form

Another very interesting class of functions with simple proximal operator are
the convex quadratic functions:

F pxq “ xTHx` aTx` c, (3.74)
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Algorithm 5: Computation of proximal operator for piecewise linear
functions
Data: Inputs: tbiuiPt1,...,Nu, twiuiPt1,...,Nu, G, and x̃
Result: x˚

Initialize variables:
x “ x̃,
l “ minpdompF qq, u “ minpdompF qq,
wcur “ 0, Σw “ 0.
B “ tbiui, W “ twiui,

for i P t1, ..., Nu do

if Σw ` wcur `
dG

dx
puq ą 0 then

Exit for loop
else

Get bounds of next segment:
lÐ u
j Ð indice of minimun element of B
uÐ Brjs

Update gradient:
Σw Ð Σw ` wcur
wcur “W rjs

Update B and W:
B Ð B ´Brjs
W ÐW ´W rjs

if i ““ N then
Get bounds of last segment:
lÐ u
uÐ `8

Σw Ð Σw ` wcur

Find minimizer on found segment:

x˚ “ arg min
rl,us

Σw `Gpxq (3.71)

return x˚
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with H a semi-definite positive matrix to ensure convexity.
Their proximal operator is given by:

proxτF px̃q “ pI ` τHq
´1
px̃´ τaq (3.75)

Note that evaluating the proximal operator relies on computing the inverse
of I` τH. If H is diagonal, then evaluating this proximal operator is trivial. For
others cases, we can rely on computing once and caching the inverse of operator
pI ` τHq.

Localization technique for complicated mono-dimensional variable

When F is a complicated function of a mono-dimensional variable, one can
apply the localization technique [16] that iteratively reduces the search space of
the minimum. This technique shares similarity with the bisection method but
yields faster convergence by integrating topological information provided by the
sub-gradients of the proximal function.

At each iteration, the localization technique defines a search direction by
computing g, an element of the sub-derivative of the proximal function at current
point x. Hence, any point situated in the opposite direction can be removed from
the search space since the function to optimize is convex. Using the monotonicity
of the sub-derivative of the proximal operator we can demonstrate that the
minimum cannot be further to the current point x than |τg|. Hence, this gives
us another bound to truncate the search space. Finally, we move x to the middle
of the search space and iterate as illustrated in figure 3.11.

The range of the search space gives us an upper bound on the precision of x
with respect to optimality. We can stop the algorithm iterations when a desired
precision of ε has been reached. The algorithm 6 describes the localization
procedure illustrated by figure 3.11.

This technique is a special case of the cutting plane algorithm. One can
easily apply cutting plane to a multi-dimensional variable but the computational
complexity becomes greatly increased.

Figure 3.11 – The doted segments show
the trajectory followed by x to compute
the minimizer of F pxq`1{p2τq}x´x̃}22s
plotted as a red curve.
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Algorithm 6: Localization technique
Data: Inputs: F , x̃, τ and ε
Result: x
Initialize variables:

x “ x̃, l “ minpdompF qq, u “ maxpdompF qq (3.76)

while u´ l ě ε do
Compute an element of the sub-gradient of F at point x:

h P
BF

Bx
(3.77)

Compute an element of the sub-gradient of the proximal function:

g “ h`
1

τ
px´ x̃q (3.78)

if g ą 0 then

l “ maxpl, x´ τgq, u “ minpu, xq (3.79)

else if g ă 0 then

l “ maxpl, xq, u “ minpu, x´ τgq (3.80)

Update position of x:

x “
l ` u

2
(3.81)
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3.4.3 Fenchel transform
We present here some useful Fenchel transform.

Asymmetric Huber

We remind the definition of the asymmetric Huber function:

F pxq “

$

’

’

&

’

’

%

´apx` α{2q if x ă ´α
ax2{p2αq if x P r´α, 0s
bx2{p2βq if x P p0, βs
bpx´ β{2q if x ą β

(3.82)

Its Fenchel transform has a closed form solution:

F˚py˚q “

$

’

’

&

’

’

%

8 if y˚ ă ´a
α}y˚}22 if y˚ P ra, 0s
β}y˚}22 if y˚ P r0, bs
8 if y˚ ą b

(3.83)

It is interesting to note that the Fenchel transform of the asymmetric Huber
function is strongly convex.

Convex second order form

F pxq “
1

2
xTHx` aTx` c, (3.84)

with H a semi-definite positive matrix.

F˚pyq “ ´
1

2
pa` yqTH´1pa` yq ` c (3.85)

3.5 TV regularized problems

3.5.1 Notations
We now restrict the operator L to be pairwise weighted operator. Hence, we
make use of a directed graph G and a set of weights twijuij to make notations
more explicit. The graph G “ rV, Es is composed of a finite set of vertices V and
a finite set of directed edges E . The edge pi, jq of E creates a connexion from a
vertex i P V to a vertex j P V. Moreover, each edge pi, jq of E is associated to a
weight wij P R`.

With these notations the problems of interest become:

min
xPX

ÿ

iPV
Mipxiq `

ÿ

pi,jqPE
wijR pxi ´ xjq . (3.86)
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3.5.2 Some classic TV regularized problems
We now present some classic TV regularized problems in their primal and dual
forms.

TV-linear

The simplest non degenerate problem uses a linear function for each vertex term
and an `1-norm as regularizer:

xi P r´1, 1s

Mipxiq “ cixi, ci P R, @i P V
Rpxq “ |x|

The primal forms of the TV-linear problem is:

min
pxiPr´1,1sqi

ÿ

iPV
cixi `

ÿ

pi,jqPE
wij |xi ´ xj | . (3.87)

Its dual form is:

max
pyijPr´wij ,wijsqij

´
ÿ

iPV
|ci `

ÿ

jPEpi,.q

yij ´
ÿ

jPEp.,iq

yji| (3.88)

TV-`2: The general ROF model

The TV-`2 problem was introduced by Rudin,Osher,and Fatemi in [148] for
image denoising. Hence, it is also known as the ROF model. We present a
slightly more general form here with:

xi P R

Mipxiq “
ai
2
x2
i ` cixi, ai P R`,˚, ci P R, @i P V

Rpxq “ |x|

The primal forms of the TV-`2 problem is:

min
pxiPRqi

ÿ

iPV

ai
2
x2
i ` cixi `

ÿ

pi,jqPE
wij |xi ´ xj | . (3.89)

Its dual form is:

max
pyijPr´wij ,wijsqij

´
ÿ

iPV

1

2ai

¨

˝ci `
ÿ

jPEpi,.q

yij ´
ÿ

jPEp.,iq

yji

˛

‚

2

(3.90)
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TV-`1

The famous TV-`1 improves the ROF model by making the vertices terms less
sensitive to outliers:

xi P R
Mipxiq “ ai|x` ci|, ai P R`,˚, ci P R, @i P V
Rpxq “ |x|

The primal form of the TV-`1 problem is:

min
pxiPRqi

ÿ

iPV
ai|xi ` ci| `

ÿ

pi,jqPE
wij |xi ´ xj | . (3.91)

Its dual form is (up to a constant term):

max
pyijPr´wij ,wijsqij

´
ÿ

iPV
ci

¨

˝

ÿ

jPEpi,.q

yij ´
ÿ

jPEp.,iq

yji

˛

‚

subject to.

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

jPEpi,.q

yij ´
ÿ

jPEp.,iq

yji

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď ai @i P V

(3.92)

TV-Huber

The TV-Huber model smoothes the TV-`1 vertices and edges terms:

xi P R
Mipxiq “ ai|x` ci|α, ai P R`,˚, ci P R, α P R`, @i P V
Rpxq “ |x|β β P R`

where |.|β is the symmetric Huber norm defined by (3.72) with smoothing
parameter β.

The primal forms of the TV-Huber problem is:

min
pxiPRqi

ÿ

iPV
ai|xi ` ci|α `

ÿ

pi,jqPE
wij |xi ´ xj |β . (3.93)

Its dual form is (up to a constant term):

max
pyijPr´wij ,wijsqij

´
α

2

ÿ

iPV

¨

˝

ci
α
`

ÿ

jPEpi,.q

yij ´
ÿ

jPEp.,iq

yji

˛

‚

2

´
β

2

ÿ

pi,jqPE

y2
ij

subject to.

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

jPEpi,.q

yij ´
ÿ

jPEp.,iq

yji

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď ai @i P V

(3.94)
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3.5.3 Truncation theorem for convex TV regularized prob-
lems

Theorem 3. Truncation theorem for TV regularized problems
We suppose we have solved the following problem:

pz˚i qi “ arg min
pziPrα,βsqi

ÿ

iPV
fipziq `

ÿ

pi,jqPE
wij max pzi ´ zj , 0q . (3.95)

where:

• α P ´8Y R, β P RY`8, and α ď β,

• The function fi : RÑ R is a proper, l.s.c convex function @i P V.

For all ra, bs Ď rα, βs, the following problem shares a special relationship with
(3.95):

zti “ arg min
pziPra,bsqi

ÿ

iPV
fipziq `

ÿ

pi,jqPE
wij max pzi ´ zj , 0q . (3.96)

Indeed, a solution of (3.96) is simply the truncation of a solution of (3.95):

zti “
`

rz˚i sra,bs
˘

i
, @i P V (3.97)

where r.sra,bs is the truncation operator:

rxsra,bs “

$

&

%

a if x ď a
x if x P ra, bs
b if x ě b

(3.98)

Lemma 1. Let py˚ijqij the optimal dual variables of the dual problem associated
to (3.95). Then, py˚ijqij are also optimal for the dual problem associated to
(3.96).

Proof

The demonstration relies on the proof that a primal dual fixed point of equation
(3.96) is obtained from a primal-dual fixed point of equation (3.95).

We first express the primal dual problems of equation (3.95):

pz˚i qi, py
˚
ijqij “ arg min

pziPrα,βsqi
max

pyijPr0,wijsqij

ÿ

iPV
fipziq `

ÿ

pi,jqPE
yij pzi ´ zjq .

(3.99)
and equation (3.96):

pztiqi, py
t
ijqij “ arg min

pziPra,bsqi
max

pyijPr0,wijsqij

ÿ

iPV
fipziq `

ÿ

pi,jqPE
yij pzi ´ zjq .

(3.100)
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We initialize the variables of problem (3.100) to:

zi “ rz˚i sra,bs, @i P V
yij “ y˚ij @ pi, jq P E

(3.101)

We show that the optimal dual variables of (3.99) are also optimal dual
variables for (3.100). Using the dual update rule of the primal-dual algorithm 1
we have @ pi, jq P E :

ynij “
“

y˚ij ` σ
`

rz˚i sra,bs ´ rz
˚
j sra,bs

˘‰

r0,wijs
(3.102)

Supposing that z˚i ´ z
˚
j ą 0 we have:

rz˚i sra,bs ´ rz
˚
j sra,bs ě 0

y˚ij “ wij
(3.103)

Hence, we obtain:
ynij “ wij

“ y˚ij
(3.104)

The same reasoning holds for z˚i ´ z
˚
j ă 0:

ynij “ 0

“ y˚ij
(3.105)

Finally, if z˚i ´ z
˚
j “ 0, we trivially obtain:

ynij “ y˚ij (3.106)

Hence, the dual variables py˚ijqij are fixed points of the equation (3.100).

We now look at the primal variables. Using the primal update rules of
algorithm 1 we have:

zni “ arg min
xiPra,bs

fipxiq ` xi

˜

ÿ

j

y˚ij ´ y
˚
ji

¸

`
1

2τ
}rz˚i sra,bs ´ xi}

2
2

“

«

arg min
xiPR

fipxiq ` xi

˜

ÿ

j

y˚ij ´ y
˚
ji

¸

`
1

2τ
}rz˚i sra,bs ´ xi}

2
2

ff

ra,bs

“ rz˚i sra,bs

(3.107)

The second equality holds since we are optimizing a mono dimensional convex
function. Hence, the primal variables prz˚i sra,bsqi are fixed points of the equation
(3.100).

This completes the proof.
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3.5.4 A hierarchy of optimal dual spaces for TV-`2
Theorem 4. Let Y˚`2 be the space of optimal solutions for equation:

max
yijPrw

´
ij ,w

`
ijs

´
ÿ

iPV

1

2ai
}ci `

ÿ

jPEpi,.q

fij ´
ÿ

jPEp.,iq

fji}
2
2, (3.108)

and let Y˚α be the space of optimal solutions for equation:

max
yijPrw

´
ij ,w

`
ijs

´
ÿ

iPV

1

2ai

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ci `
ÿ

jPEpi,.q

fij ´
ÿ

jPEp.,iq

fji

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

α

(3.109)

Then, for any pα, βq P R` ˆ R` and α ě β we have:

Y˚`2 Ď Y
˚
α Ď Y˚β Ď Y˚0 “ Y˚`1 (3.110)

Proof

We recognize that (3.108) solves the dual of the general ROF model. The
problem solved by (3.109) is simply the general ROF model with additional box
constraints of the form xi P r´α, αs:

min
pxiPr´α,αsqi

ÿ

iPV

ai
2
x2
i ` cixi `

ÿ

pi,jqPE
wij |xi ´ xj | .

min
pxiPr´α,αsqi

max
pyijPr´wij ,wijsqij

ÿ

iPV

ai
2
x2
i ` xi

¨

˝ci `
ÿ

jPEpi,.q

yij ´
ÿ

jPEp.,iq

yji

˛

‚

max
pyijPr´wij ,wijsqij

´
ÿ

iPV

1

2ai

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ci `
ÿ

jPEpi,.q

yij ´
ÿ

jPEp.,iq

yji

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

α

To obtain the last equation, we simply recognize the equation of the Fenchel
transform for a Huber function with smoothness α .

The proof is a simple application of the lemma of the truncation theorem.
Indeed the lemma states that the optimal dual variables of the less constrained
problem are also optimal for the more constrained problem. This concludes the
proof.

3.5.5 Intersection of optimal dual space
Theorem 5. Let Y˚`2 be the space of optimal solutions for:

max
yijPrw

´
ij ,w

`
ijs

´
ÿ

iPV

1

2ai
}ci `

ÿ

jPEpi,.q

yij ´
ÿ

jPEp.,iq

yji}
2
2 (3.111)
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and λ be a real valued scalar and Y˚`1,λ be the space of optimal solution for:

max
yij“rw

´
ij ,w

`
ijs

´
ÿ

iPV

1

2ai

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ci ` λai `
ÿ

jPEpi,.q

yij ´
ÿ

jPEp.,iq

yji

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

(3.112)

Then
Y˚`2 “

č

λPR
Y˚`1,λ (3.113)

First lemma

We demonstrate a first intermediate result:

Lemma 2. Let α be a real valued scalar and Y˚`2,α be the space of optimal
solution for:

arg max
yij“rw

´
ij ,w

`
ijs

´
ÿ

iPV

1

2ai
}ci ` αai `

ÿ

jPEpi,.q

fij ´
ÿ

jPEp.,iq

fji}
2
2 (3.114)

and β be a real valued scalar and Y˚`2,β be the space of optimal solution for:

arg max
yij“rw

´
ij ,w

`
ijs

´
ÿ

iPV

1

2ai
}ci ` βai `

ÿ

jPEpi,.q

fij ´
ÿ

jPEp.,iq

fji}
2
2 (3.115)

Then,
Y˚`2,α “ Y

˚
`2,β

(3.116)

Proof of first Lemma

The proof of the previous lemma is straightforward:

y˚ “ arg max
yij“rw

´
ij ,w

`
ijs

´
ÿ

iPV

1

2ai
}ci ` βai `

ÿ

jPEpi,.q

fij ´
ÿ

jPEp.,iq

fji}
2
2

“ arg max
yij“rw

´
ij ,w

`
ijs

´
ÿ

iPV

1

2ai
}ci `

ÿ

jPEpi,.q

fij ´
ÿ

jPEp.,iq

fji}
2
2 ´

ÿ

iPV
β

¨

˝

ÿ

jPEpi,.q

fij ´
ÿ

jPEp.,iq

fji

˛

‚

“ arg max
yij“rw

´
ij ,w

`
ijs

´
ÿ

iPV

1

2ai
}ci `

ÿ

jPEpi,.q

fij ´
ÿ

jPEp.,iq

fji}
2
2

Hence, for all couple of real scalars pα, βq we have: Y˚`2,α “ Y˚`2,0 and
Y˚`2,β “ Y

˚
`2,0

. Therefore, we have Y˚`2,α “ Y
˚
`2,β

. This concludes the proof of the
lemma.
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Second lemma

We demonstrate another intermediate result:

Lemma 3. There exist a positive real scalar α such that:
č

λPR
Y˚`1,λ “

č

λPr´α,αs

Y˚`1,λ (3.117)

Proof of Lemma

Since, a is positive vector, ci is fixed and y is bounded, we can find α P R` such
that for a y:

ci ` αai `
ÿ

jPEpi,.q

yij ´
ÿ

jPEp.,iq

yji ě 0, @i P V (3.118)

and
ci ´ αai `

ÿ

jPEpi,.q

yij ´
ÿ

jPEp.,iq

yji ď 0, @i P V (3.119)

Hence, for any λ ď ´α or λ ě α the solution space Y˚`1,λ is the space
“

pyijqij | @pi, jq P E , yij P
“

w´ij , w
`
ij

‰‰

. Therefore, we have:
č

λď´α

Y˚`1,λ “ Y
˚
`1,´α

and
č

λěα

Y˚`1,λ “ Y
˚
`1,α

, (3.120)

from which we easily derive the lemma.

Proof of Theorem

We start by proving Y˚`2 Ď
Ş

λPR Y˚`1,λ.
Thanks to theorem (4) and lemma (2) we have for all λ P R:

Y˚`2,λ Ď Y
˚
`1,λ

ô Y˚`2 Ď Y
˚
`1,λ

(3.121)

Hence, we have Y˚`2 Ď
Ş

λPR Y˚`1,λ.

Let us now prove
Ş

λPR Y˚`1,λ Ď Y
˚
`2

From the lemma (3) we get

Y˚`2 “
č

λPr´α,αs

Y˚`1,λ (3.122)

Let y˚ P
Ş

λPr´α,αs Y˚`1,λ. We have:

y˚ “ arg max
yij“rw

´
ij ,w

`
ijs

´

ż α

´α

ÿ

iPV

1

2ai
|ci ` λai `

ÿ

jPEpi,.q

fij ´
ÿ

jPEp.,iq

fji|dλ (3.123)

“ arg max
yij“rw

´
ij ,w

`
ijs

´
ÿ

iPV

1

2ai

ż α

´α

|ci ` λai `
ÿ

jPEpi,.q

fij ´
ÿ

jPEp.,iq

fji|dλ (3.124)
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We remind the anti-derivative formula for the absolute value:
ż α

β

|λ|dλ “
1

2
pα|α| ´ β|β|q (3.125)

Hence, we get:

y˚ “ arg max
yij“rw

´
ij ,w

`
ijs

´
ÿ

iPV

1

2ai

¨

˝ci ` αai `
ÿ

jPEpi,.q

fij ´
ÿ

jPEp.,iq

fji

˛

‚

ˆ|ci ` αai `
ÿ

jPEpi,.q

fij ´
ÿ

jPEp.,iq

fji|

´

¨

˝ci ´ αai `
ÿ

jPEpi,.q

fij ´
ÿ

jPEp.,iq

fji

˛

‚

ˆ|ci ´ αai `
ÿ

jPEpi,.q

fij ´
ÿ

jPEp.,iq

fji|

But since we have chosen α large enough the last equation simplifies to:

y˚ “ arg max
yij“rw

´
ij ,w

`
ijs

´
ÿ

iPV

1

2ai

¨

˝ci ` αai `
ÿ

jPEpi,.q

fij ´
ÿ

jPEp.,iq

fji

˛

‚

2

`

¨

˝ci ´ αai `
ÿ

jPEpi,.q

fij ´
ÿ

jPEp.,iq

fji

˛

‚

2

Hence, we recognize that:

y˚ P Y˚`2,´α X Y
˚
`2,α

y˚ P Y˚`2
The last equation stands thanks to lemma (2). Therefore we have

Ş

λPR Y˚`1,λ Ď
Y˚`2 which completes the proof.

3.5.6 A new primal-dual formulation of the ROF model
We now consider optimizing the ROF model. We propose a new primal dual
formulation of the ROF model that we label L-ROF for short of linear ROF:

min
pxiPRqi

ÿ

iPV
cixi `

ÿ

pi,jqPE
wij |xi ´ xj | . (3.126)

The primal dual form of the L-ROF model is:

min
xiPR

max
pyijPrw

´
ij ,w

`
ijsqij

´
ÿ

iPV
xi

¨

˝ci `
ÿ

jPEpi,.q

yij ´
ÿ

jPEp.,iq

yji

˛

‚ (3.127)

The following theorem achieves the connexion with the ROF model:
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Theorem 6. Let Y˚`2 be the space of optimal solution for the ROF model:

max
pyijPrw

´
ij ,w

`
ijsqij

´
ÿ

iPV

1

2

¨

˝ci `
ÿ

jPEpi,.q

yij ´
ÿ

jPEp.,iq

yji

˛

‚

2

Let Y˚L´ROF be the space of optimal solution for the L-ROF given by:

min
xiPR

max
pyijPrw

´
ij ,w

`
ijsqij

´
ÿ

iPV
xi

¨

˝ci `
ÿ

jPEpi,.q

yij ´
ÿ

jPEp.,iq

yji

˛

‚ (3.128)

Then:
Y˚`2 “ Y

˚
L´ROF (3.129)

Proof: preliminary

First, we observe that both models share the same dual update rule:

yn`1
ij “

“

ynij ` σ
`

xni ´ x
n
j

˘‰

rw´ij ,w
`
ijs

(3.130)

Furthermore, at optimality the primal and dual variables of the ROF model
verify:

$

’

&

’

%

y˚,ROF “ w´ij if x˚,ROFi ď x˚,ROFj

y˚,ROF P
‰

w´ij , w
`
ij

“

if x˚,ROFi “ x˚,ROFj

y˚,ROF “ w`ij if x˚,ROFi ě x˚,ROFj

(3.131)

Proof: Y˚`2 Ď Y
˚
L´ROF

Let’s now assume that we have solved the ROF model. We use these variables
as initialization for a primal and dual update of the L-ROF model:

x1,L´ROF
i “ x˚,ROFi ´ τ

¨

˝ci `
ÿ

jPEpi,.q

y˚,ROFij ´
ÿ

jPEp.,iq

y˚,ROFji

˛

‚

“ p1` τqx˚,ROFi

and

y1,L´ROF
ij “

”

y˚,ROFij ` σ
´

x1,L´ROF
i ´ x1,L´ROF

j

¯ı

rw´ij ,w
`
ijs

“

”

y˚,ROFij ` σp1` τq
´

x˚,ROFi ´ x˚,ROFj

¯ı

rw´ij ,w
`
ijs

“ y˚,ROFij
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We obtain the last equation thanks to (3.131).
By induction we obtain:

xn,L´ROFi “ p1` τqnx˚,ROFi

and

yn,L´ROFij “ y˚,ROFij

Hence, the dual optimal variables of the ROF model are also optimal for the
L-ROF model.

Proof: Y˚L´ROF Ď Y˚`2
Let us assume we have optimized the L´ROF up to a point (k updates) where
the dual variables are optimal (un-changed by any further updates). We use
these dual variables as initialization for a primal and dual update of the ROF
model:

x1,ROF
i “

xk,L´ROFi ´ τ
´

ci `
ř

jPEpi,.q y
˚,L´ROF
ij ´

ř

jPEp.,iq y
˚,L´ROF
ji

¯

1` τ

“
xk`1,L´ROF
i

1` τ

and

y1,ROF
ij “

”

y˚,L´ROFij ` σ
´

x1,ROF
i ´ x1,ROF

j

¯ı

rw´ij ,w
`
ijs

“

„

y˚,L´ROFij `
σ

p1` τq

´

xk`1,L´ROF
i ´ xk`1,L´ROF

j

¯



rw´ij ,w
`
ijs

“ y˚,L´ROFij

The last equation stands from the assumption that optimizing further the
L´ROF model does not modify its dual variables and from (3.131).

By induction we obtain:

xn,L´ROFi “
xk`n,L´ROFi

p1` τqn

and

yn,L´ROFij “ y˚,L´ROFij

Hence, the dual optimal variables of the L-ROF model are also optimal for
the ROF model. This concludes the proof.
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Properties of the L-ROF model

Property 1. Let us consider the global affine transforms of the following form:
zi “ axi`b for any i P V and pa, bq P R`,˚ˆR. Then, the global affine transform
lets the optimal dual space of the L-ROF model unchanged.

The proof follows from simple calculus using equation (3.127).

Property 2. Once the optimal dual variables of the L-ROF model have been
computed then, the optimal primal variable of the ROF model can be obtained
in linear time:

x˚,ROFi “ ´

¨

˝ci `
ÿ

jPEpi,.q

y˚,L´ROFij ´
ÿ

jPEp.,iq

y˚,L´ROFji

˛

‚

The proof follows from the equality of optimal dual spaces given by Theorem 6
and from the optimal primal-dual relationship of the ROF model.

Primal scaling

To optimize the L-ROF model we propose to modify Algorithm 1 by introducing
a linear scaling of the primal variables every k iterations. Thanks to Property 1
this has no impact on the dual variables.

The scaling guarantees the primal variables remain bounded. It also allows
to give more weight to the current updates by progressively forgetting the past.
One can think of it as a more gentle way to restart the smoothing of primal
variables.

The L-ROF optimization is described in Algorithm 7.

3.5.7 Fused Lasso approximation on pairwise graph for
various sparsifying strength

The fused lasso approximation problem

We now consider a direct application of the hierarchy of optimal dual spaces
with the following problem:

xi P R

Mipxiq “
1

2
x2
i ` cixi ` λ|xi|, ci P R, λ P R`, @i P V

Rpxq “ |x|

(3.132)

The primal form of the fused lasso is:

min
pxiPRqi

ÿ

iPV

1

2
x2
i ` cixi ` λ|xi| `

ÿ

pi,jqPE
wij |xi ´ xj | . (3.133)
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Algorithm 7: L-ROF primal dual optimization
Data: Inputs: pciqi, pwijqij , τ , σ, δ
Result: x
Initialize primal and dual variable Ñ x0 “ 0, y0 “ 0.
Set x̃ “ x0 and n “ 0
while n ď max iteration do

Optimize the dual variables:

yn`1
ij “

“

ynij ` σ
`

x̃ni ´ x̃
n
j

˘‰

r´wij ,wijs
, @ pi, jq P E

Optimize the primal variables:

xn`1
i “ xni ´ τ

¨

˝ci `
ÿ

jPEpi,.q

yn`1
ij ´

ÿ

jPEp.,iq

yn`1
ji

˛

‚, @i P V

Smooth variable:

x̃n`1
i “ xn`1

i ` θ
`

xn`1
i ´ xni

˘

, @i P V

Primal scaling:
if modpn, kq is 0 then

xn`1
i “ δxn`1

i

x̃n`1
i “ δx̃n`1

i

Increment iteration counter: n “ n` 1

An extended dual form is:

max
pyijPr´wij ,wijsqij

max
pziPr´λ,λsqi

´
1

2

ÿ

iPV

¨

˝ci ` zi `
ÿ

jPEpi,.q

yij ´
ÿ

jPEp.,iq

yji

˛

‚

2

(3.134)

and

x˚i “ ´

¨

˝ci ` z
˚
i `

ÿ

jPEpi,.q

y˚ij ´
ÿ

jPEp.,iq

y˚ji

˛

‚ (3.135)
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Which simplifies to:

max
pyijPr´wij ,wijsqij

´
1

2

ÿ

iPV

¨

˝ci `
ÿ

jPEpi,.q

yij ´
ÿ

jPEp.,iq

yji

˛

‚

2

`

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ci `
ÿ

jPEpi,.q

yij ´
ÿ

jPEp.,iq

yji

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

λ

(3.136)

Generalization of Friedmann Theorem

We generalize the theorem of Friedmann [57] to any pairwise graph:

Theorem 7. Once the ROF model (3.133), with λ “ 0, has been solved, one
can compute in linear time the solution of (3.133) for any λ P R`.

Proof

We notice that the dual problem of the fused lasso (3.136) is composed of `2
and huber terms. Hence, thanks to theorem (4), we know that the optimal dual
variables of the ROF model are also optimal for the fused lasso (and for any λ).

Let suppose we dispose of y˚,ROF by having solved the dual problem associ-
ated to the ROF model. We have to solve the remaining problem:

min
pxiPRqi

ÿ

iPV

1

2
x2
i ` xi

¨

˝ci `
ÿ

jPEpi,.q

y˚,ROFij ´
ÿ

jPEp.,iq

y˚,ROFji

˛

‚` λ|xi|. (3.137)

The problem (3.137) entirely decouples with respect to pxiqi. We obtain the
solution of each subproblem by applying the soft-thresholding operator.

On the other hand, let us suppose we dispose of x˚,ROF by having solved
the primal problem associated to the ROF model. We will have a bit more work
to do.

First, we obtain in linear time:

x˚,ROFi “ ´

¨

˝ci `
ÿ

jPEpi,.q

y˚,ROFij ´
ÿ

jPEp.,iq

y˚,ROFji

˛

‚ (3.138)

We then introduce the Fenchel transform for the huber terms in (3.136):

max
pziPr´λ,λsqi

´
1

2

ÿ

iPV

¨

˝ci ` zi `
ÿ

jPEpi,.q

y˚,ROFij ´
ÿ

jPEp.,iq

y˚,ROFji

˛

‚

2

. (3.139)
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We obtain in linear time:

z˚i “

»

–´

¨

˝ci `
ÿ

jPEpi,.q

y˚,ROFij ´
ÿ

jPEp.,iq

y˚,ROFji

˛

‚

fi

fl

r´λ,λs

(3.140)

Hence, using equation (3.135) we obtain in linear time the optimal primal
variables of (3.133). This concludes the proof.

3.5.8 ROF model with a Global regularization term
We now consider optimizing an ROF model with an additional global regulariza-
tion term: The primal forms of the TV-`2 problem is:

min
pxiPRqi

ÿ

iPV

1

2
x2
i ` cixi `

ÿ

pi,jqPE
wij |xi ´ xj | `G

˜

ÿ

iPV
xi

¸

. (3.141)

where Gp.q : RÑ R is a convex function possibly not smooth acting as a global
regularizer.

Theorem 8. A solution of problem (3.141) can be obtained in linear time from
a solution of the associated ROF model if the global regularizer dual function
G˚p.q has a proximal operator which can be computed in linear time.

Proof

The dual form of problem (3.141) is:

max
pyijPr´wij ,wijsqij

max
zPR

´
1

2

ÿ

iPV

¨

˝ci ` z `
ÿ

jPEpi,.q

yij ´
ÿ

jPEp.,iq

yji

˛

‚

2

´G˚pzq

(3.142)

and the optimal primal variables verify:

x˚i “ ´

¨

˝ci ` z
˚ `

ÿ

jPEpi,.q

y˚ij ´
ÿ

jPEp.,iq

y˚ji

˛

‚ (3.143)

We develop the dual form to:

max
pyijPr´wij ,wijsqij

max
zPR

´
1

2

ÿ

iPV

¨

˝ci `
ÿ

jPEpi,.q

yij ´
ÿ

jPEp.,iq

yji

˛

‚

2

(3.144)

`
ÿ

iPV
´

1

2
z2 ` z

¨

˝ci `
ÿ

jPEpi,.q

yij ´
ÿ

jPEp.,iq

yji

˛

‚´G˚pzq

(3.145)
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Since we have:

ÿ

iPV

¨

˝

ÿ

jPEpi,.q

yij ´
ÿ

jPEp.,iq

yji

˛

‚“ 0, (3.146)

we can simplifies the dual to:

max
pyijPr´wij ,wijsqij

max
zPR

´
1

2

ÿ

iPV

¨

˝ci `
ÿ

jPEpi,.q

yij ´
ÿ

jPEp.,iq

yji

˛

‚

2

(3.147)

´
N

2
z2 ´ z

˜

ÿ

iPV

ci
N

¸

´G˚pzq (3.148)

where N is the number of elements in V.
The optimization over pyijqij and z is decoupled. Solving with respect to

pyijqij is the same than solving a ROF model. The optimization with respect to
z is nothing more than computing the proximal operator of G˚.

Assuming the proximal operator of G˚ is simple to compute, we obtain in
linear time the primal solution of (3.141):

x˚i “ x˚,ROFi ´ z˚ (3.149)

This concludes the proof.

3.6 Examples of application
We illustrate features of algorithms 1 and 4 with two classic computer vision
tasks: maxflow/mincut and image denoising. We could also have experimented
with formulating image ressampling as an optimization problem as in [68].

3.6.1 Mincut/Maxflow
Mincut/Maxflow is ubiquitous in computer science [55, 74]. Indeed tasks such
as edge-disjoint paths, vertex-disjoint paths, maximum matchings in bipartite
graphs and some assignment problems can be formulated as either a maxflow
or a mincut problem [47]. In our registration context, it is a key component of
graph-cut for multi-label optimization.

Mincut as a non smooth continuous optimization problem

We are given a directed graph, G “ rV, Es, where V is the set of vertices and
E Ă V ˆ V is a set of directed edges. A binary variable xi P t0, 1u defines the
configuration of each vertex i P V. The potential of the configuration of each
vertex i is φi P R. The potential of the configuration of each edge pi, jq P E is
ψi,j P R`. We will present in more detail the mincut and maxflow problem in
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the next chapter 4.3. To solve the mincut problem [173] proved that we can
compute:

arg min
xiPt0,1u

ÿ

iPV
φixi `

ÿ

pi,jqPE
ψi,j maxpxi ´ xj , 0q (3.150)

The authors of [173] show that one can relax the support of all xi from t0, 1u
to r0, 1s and still recover the optimal binary solution of (3.150). This leads to
compute:

arg min
xiPr0,1s

ÿ

iPV
φixi `

ÿ

pi,jqPE
ψi,j maxpxi ´ xj , 0q (3.151)

To recover previously introduced notation we identify:

• Mipxq “ φixi for @i P V

• Rpxq “ maxpx, 0q which is a special case of the point wise asymmetric
Huber function.

• L “WG the weighted adjacency matrix representing the directed edges of
E with potential ψ. Hence, we have Lij “ ψij .

Hence, we can use algorithm 1 to solve problem (3.151).

Experiments

Settings We generate random mincut problems where the vertices are arranged
on a grid of size r100, 100s and the edges follow the 4-connectivity of the grid.
We draw pφiq from a normal distribution N p0, 1q and we draw pψi,jq uniformly
in rρ, λs with pρ, λq P R` ˆR` and ρ ď λ.

For all experiments, we initialize all primal variables randomly in r0, 1s and
all dual variables to 0. We monitor the primal dual gap throughout the iterations
of algorithm 1.

Conditioning In this first set of experiments, we investigate how conditioning
affects the convergence rate. We generate 6 problems with rρ, λs P tp0.99, 1.01q,
p0.9, 1.1q, p0.75, 1.25q, p0.5, 1.5q, p0.25, 1.75q, p0, 2qu. This progressively deterio-
rates the conditioning number of operator L. For each problem we run the
algorithm with and without conditioning improvement as defined in Section 3.3.4.
We hand pick step sizes τ and σ to ensure a fast convergence.

Figure 3.12 exemplifies the importance of conditioning for ensuring a fast
convergence of algorithm 1. The simple diagonal preconditioning technique
described in Section 3.3.4 helps to maintain a good conditioning. This results
in a faster convergence illustrated by a smaller primal-dual gap (red curves)
when compared with the initial problem (blue curves). In all circumstances, the
preconditioning yields a lower primal-dual gap.
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}L} “ 2.8153 }L} “ 2.8650

}L} “ 3.0755 }L} “ 3.5190

}L} “ 3.9347 }L} “ 4.5107

Figure 3.12 – Primal dual gap for various conditioned operator L: red curves
with conditioning improvement, blue curves without.

Auto tuning of step sizes We now investigate the tuning of step sizes.
To this end, we set ρ “ 1 and λ “ 1 and we run the algorithm with and
without auto-tuning as defined in Section 3.3.4 for a collection of initial τ P
t0.001, 0.01, 0.1, 1, 10, 100u. The other step size σ is set to the highest possible
that guarantees convergence as defined by (3.30). We run the algorithm for 200
iterations.

Figure 3.13 pictures the sensitivity of algorithm 1 with respect to step size
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τinit “ 0.001 τinit “ 0.01

τinit “ 0.1 τinit “ 1

τinit “ 10 τinit “ 100

Figure 3.13 – Primal dual gap for various initial values of τ : red curves with
auto tuning, blue curves without auto-tuning.

parameters τ and σ. In our experiments the sweet spot seems to be around τ “
0.5. We notice that as soon as we move away from τ “ 0.5, the convergence rate
greatly slows down as illustrated by the blue curves for τ “ t0.001, 0.01, 10, 100u.
This underlines the importance of auto-tuning algorithm 4. Indeed, for any
tested initial value of τ , the auto-tuning algorithm properly adjusts the values
of τ and σ to ensure a fast convergence since all red curves end-up at a similar
primal dual gap.
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3.6.2 Image denoising
Image denoising is generally one of the first components of many vision system.
It has been studied for decades by the computer vision community [70, 128, 24].
In our context, we sometimes have to process images contaminated by various
degrees of additive or multiplicative noise. We can use denoising techniques
either as a pre-processing step to improve the quality of image to process. But,
we can also use denoising as a post-processing step to improve the quality of
a disparity map for instance. Hence, in this chapter we present a very general
formulation of denoising.

Image denoising as an optimization problem

In this task we are given an image r : Ω Ñ r0, 1s contaminated by Gaussian
noise and we attempt to estimate the uncontaminated image x. To this end, we
optimize the following equation:

arg min
xiPr0,1s

ÿ

iPΩ

H1,αpxi ´ riq `
ÿ

iPΩ

ÿ

jPNipρq

Hwij ,βpxi ´ xjq (3.152)

Where:

• Ha,α is a symmetric Huber function with a a-slope and α-curvature:

Ha,α “

#

ax2{p2αq if x P r´α, αs
ap|x| ´ α{2q otherwise

(3.153)

• Ni is the set of neighbor pixels of i within a ρ-radius.

• wij are positive real scalars.

The equation (3.152) enforces two fundamental properties. First, the value
of each pixel of the denoised image needs to be somehow close to the value of
the pixel of the contaminated image. This is achieved by penalizing the distance
of xi to ri under the Huber norm H1,α. Second, natural images exhibit some
notion of smoothness. Therefore, for each pixel i P Ω we penalize a weighted
disagreement with its neighbors Ni through another Huber norm Hwij ,β .

The neighborhood Ni of a pixel i is the set of pixels of Ω within a given
radius ρ:

Nipρq “ rj P Ω | }i´ j}2 ď ρs . (3.154)

The weights wij are defined as:

wij “ λ exp p´β|ri ´ rj |q , (3.155)

where λ and β are real positive scalar used to tune the regularization strength.
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Experiments

As a toy example, we proceed to denoise an image contaminated with a moderate
white Gaussian noise. We perform a first denoising with the neighborhood radius
ρ set to 1 and another denoising with ρ “ 3. All other parameters are adjusted
to produce pleasant looking results.

Noise free image Image contaminated with noise

1-radius denoised image 3-radius denoised image

Figure 3.14 – Denoising of an image contaminated with white Gaussian noise.

We observe in figure 3.14 that both denoised images look smooth but exhibit
the noise-free image structure. However, most of the fine details are lost. We
notice that increasing the neighborhood radius creates a smoother result while
preserving strong edges.

We could easily improve this simple yet effective denoising formulation.
We point the curious reader to recent work that solely focus on denoising
[22, 81, 136, 3, 116, 118, 117].
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3.6.3 L-ROF model vs ROF model for denoising
We investigate the convergence rate of the L-ROF model through several nu-
merical experiments. To this end, we consider the denoising task of an image
c : Ω Ñ r0, 1s contaminated with white Gaussian noise, and we solve the following
L-ROF optimization problem:

min
xiPR

max
yijPr´w,ws

ÿ

iPΩ

´cixi `
ÿ

iPΩ

ÿ

jPNipρq

yij |xi ´ xj | (3.156)

As a baseline we use the ROF model optimized with Algorithm 2 that yields a
1

N2
convergence rate:

min
xiPR

ÿ

iPΩ

1

2
x2
i ´ cixi `

ÿ

iPΩ

ÿ

jPNipρq

w |xi ´ xj | (3.157)

Settings

For all experiments, we always set the regularization parameter w to be equal to
the standard deviation σn of the Gaussian noise. We consider three noise levels,
low with σn “ 0.02, medium with σn “ 0.1 and high σn “ 0.25 as illustrated
in figure 3.15. We set the smoothing parameter θ to 1 for both primal-dual
optimization algorithms. The primal and dual variables are initialized to 0 for
both algorithms.

Experiments with no scaling

In this first set of experiments we compare the L-ROF model without any scaling,
δ “ 0, to the ROF model. We sweep space of the initial primal update step size
τ from 1000 to 1 and set the dual step size accordingly to ensure convergence.
We remind that internally the algorithm optimizing the ROF model adjusts both
the primal-dual step sizes along with the smoothing parameter θ. The L-ROF
model maintains the initial values throughout the optimization.

For each noise level, we run each algorithm for 500 iterations and we display
the primal dual gap at iterations 100, 250 and 500 in figures 3.16, 3.17 and 3.18.

For the L-ROF model, due to Property 1 and the constant initialization
of the primal variable, the algorithm is insensitive to the primal update step
size. We observe this behavior for the three noise regimes as all red curves of
figures 3.16, 3.17 and 3.18 are constant. Since primal dual algorithms convergence
are sensitive to rightly tuning the update step sizes, this is a nice property of
the L-ROF model.

In terms of convergence, we see that without scaling the L-ROF model slightly
outperforms the ROF model. This is somehow unexpected since the ROF model
benefits of a 1{N2 convergence rate while the L-ROF model converges with 1{N
rate. However, it has been observed in [27] that algorithm (1) from which the
L-ROF optimization algorithm is derived obtains 1{N2 convergence rate if the
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Noise free image Image contaminated with low noise

Image contaminated with medium noise Image contaminated with high noise

Figure 3.15 – Reference image and different levels of noise contamination.

primal-dual update step-sizes are properly tuned. Since the L-ROF model is
insensitive to update step-size tuning, the optimization algorithm might always
perform in its optimal regime. This could explain the observed exponential
convergence rate.

Experiments with scaling

We now proceed with a second set of experiments where we compare the L-ROF
model with scaling to the ROF model. We set the initial primal update step
size τ to 5 since it seems optimal in the last set of experiments, and we set the
dual step size accordingly to ensure convergence. We sweep space of the scaling
factor δ from 0.5 to 1 by 0.1 increments and the space of scaling period from 2
to 12 by 1 increments.

For each noise level, we run each algorithm for 500 iterations and we display
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Figure 3.16 – Primal dual gap for low noise experiment without scaling at
iteration 100, 200 and 500

the difference of log in base 10 of the primal dual gap at iterations 100, 250 and
500 in figures 3.20, 3.21 and3.22 between the L-ROF and ROF model. Negative
values mean that the L-ROF model converges faster than the ROF model.

We see that the scaling greatly im-
proves the convergence of the L-ROF
model to up to two orders of magnitude.
A typical primal dual gap evolution of
the L-ROF model is shown in figure
3.19. Initially the convergence follows
the one of the ROF model. Then, it sta-
bilizes to an exponential convergence
(linear trend in the log domain) while
the ROF model keeps its quadratic con-
vergence.

Figure 3.19 – Primal dual gap for the
L-ROF model with scaling (δ “ 0.7
and scaling period of 10) and the ROF
model

The optimal scaling factor varies with the scaling period. The more we scale
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Figure 3.17 – Primal dual gap for medium noise experiment without scaling at
iteration 100, 200 and 500

the less frequent we should do it. This is in line with the role of scaling. Indeed,
the scaling decreases the influence of the past updates. A possible interpretation
is that since the early updates are far from being optimal they can and should
be progressively discarded. However, discarding too much of the past is counter
productive. We let to future work the study of an optimal or heuristic criterion
to dynamically tune the scaling factor parameter δ and the scaling period.

To conclude, the L-ROF model provides an interesting alternative to the
classic ROF model when highly accurate solutions are required.
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Figure 3.18 – Primal dual gap for high noise experiment without scaling at
iteration 100, 200 and 500
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Figure 3.20 – Primal dual gap for low noise experiment without scaling at
iteration 100, 200 and 500 (left to right)

Figure 3.21 – Primal dual gap for medium noise experiment without scaling at
iteration 100, 200 and 500 (left to right)

Figure 3.22 – Primal dual gap for high noise experiment without scaling at
iteration 100, 200 and 500 (left to right)
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3.7 Conclusion
This first technical chapter introduced the basic of convex optimization. We
progressively yet precisely introduce the fundamentals of the First order Primal-
Dual techniques for convex optimization. We thoroughly studied the dual solution
space of TV regularized problems and we propose through some theorems a
better understanding of how different TV models relate one to another.

However, not all tasks can be formulated as a convex optimization problem
without scarifying to much modeling accuracy. To this end, we present in the
next chapter techniques for non-convex optimization.
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Chapter 4

Maxflow and Graph cuts
techniques

4.1 Introduction and contributions

4.1.1 Introduction
In this chapter we consider the optimization of a non convex discrete energy.
To this end we quickly introduce some basic background related to discrete
optimization. Then, we introduce a key algorithm in computer science: mincut
/ maxflow. We study four different algorithms to solve the mincut / maxflow
problem.

Finally, we study graph-cuts techniques for their known efficiency to optimize
pairwise non convex discrete energies. We introduce two algorithms: Alpha
Expansion and Fast PD. Fast PD is known to be significantly faster than the
Alpha Expansion. However, its current implementation requires a large amount
of memory which makes it unsuitable to our context. Hence, we investigate in
details the implementation of the Fast-PD algorithm.

4.1.2 Chapter organization
The section 4.2 introduces the basics of discrete optimization and we describe the
problem of interest. We discuss in section 4.3 the mincut and maxflow problems
as the primal and dual form of the same task. The section 4.4 presents dedicated
solver for the mincut and maxflow problems. The section 4.5 introduces the
alpha-expansion and the Fast-PD algorithms for solving multi-label pairwise
problems. In the section 4.6 we perform numerous experiments to compare
different mincut / maxflow solvers and we evaluate our own implementation of
Fast-PD.
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4.1.3 Contributions
The main contribution of this chapter is the complete re-implementation of the
famous Fast-PD algorithm. Our implementation non only drastically reduces
the amount of memory required but it also runs faster than the implementation
proposed by the original authors of Fast-PD. We also propose an even faster
implementation dedicated to grid-like problems.

This allows us for instance to perform discrete optimization in the context of
stereo-matching with large images while only using a recent laptop.

4.2 Discrete optimization in a tiny nutshell
We start by presenting the necessary knowledge to further study both mincut
/ maxflow algorithms and graph-cuts techniques. We refer the reader to [142],
[130] and [140] for more details.

4.2.1 Sub-modularity
Sub-modularity plays a central role for discrete optimization in the same way
that convexity is crucial for convex optimization [153].

In this work we make extensive use of binary functions. In this settings, the
sub-modularity simplifies to:

Definition 12. Let φ : t0, 1u ˆ t0, 1u Ñ R be a 2-binary function. We say that
φ is sub-modular if and only if:

φp0, 0q ` φp1, 1q ď φp0, 1q ` φp1, 0q (4.1)

We introduce some useful properties about sub-modular functions.

Property 3. If φ is a sub-modular function, then @α P R` and @β P R the
following function:

αφp.q ` β (4.2)

is also sub-modular.

Property 4. If φ and ψ are sub-modular functions, then φ`ψ is a sub-modular
function.

Property 5. Any finite positive weighted sum of sub-modular functions is a
sub-modular function.

Theorem 9. If φ is a sum of binary sub-modular functions, then one can
compute its minimum in polynomial time by solving a min-cut problem.

Hence, if we can formulate our discrete optimization problems as a sum of
binary sub-modular functions to optimize, or as a sequence of sums of binary
sub-modular functions to optimize, we can derive a polynomial time optimization
scheme.
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4.2.2 Problems of interest
We remind the problems studied in this chapter.

Notations

We make use of the following notations:

• The graph G is a directed graph G “ rV, Es composed of a finite set of
vertices V and a finite set of directed edges E . The edge pi, jq of E creates
a connexion from the vertex i to another vertex j.

• The discrete variable xi defines the configuration of each vertex i P V . The
domain of xi is L “ t0, . . . , L´ 1u with L P N.

• A discrete unary potential function φi defines the configuration cost of
each vertex i P V: φi : LÑ R.

• A discrete potential function φij defines the configuration cost of each
directed edge pi, jq of E : φij : L ˆ L Ñ R`. We assume that φijpl, lq “
0, @l P L.

Canonical problems

We are interested in solving the following problem:

px˚i qi “ arg min
pxiPLqi

ÿ

iPV
φipxiq `

ÿ

pi,jqPE
φijpxi, xjq. (4.3)

4.2.3 Representation of pairwise binary sub-modular func-
tions

We suppose we are given a pairwise binary sub-modular function ψij : t0, 1u ˆ
t0, 1u Ñ R:

ψij “

„

A B
C D



(4.4)

where pA,B,C,Dq P Rˆ Rˆ Rˆ R

Theorem 10. Any pairwise binary sub-modular function ψij : t0, 1uˆt0, 1u Ñ R
can be represented as:

ψijpxi, xjq “ cixi ` cjxj ` wij maxpxi ´ xj , 0q ` d (4.5)

with: ci “ C ´A, cj “ D ´ C, wij “ B ` C ´A´D, and d “ A.
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Proof

The proof, given in [95], derives from basic calculus:

cixi ` cjxj ”

ˇ

ˇ

ˇ

ˇ

0 D ´ C
C ´A D ´A

ˇ

ˇ

ˇ

ˇ

cixi ` cjxj ` wij maxpxi ´ xj , 0q ”

ˇ

ˇ

ˇ

ˇ

0 B ´A
C ´A D ´A

ˇ

ˇ

ˇ

ˇ

cixi ` cjxj ` wij maxpxi ´ xj , 0q ` d ”

ˇ

ˇ

ˇ

ˇ

A B
C D

ˇ

ˇ

ˇ

ˇ

cixi ` cjxj ` wij maxpxi ´ xj , 0q ` d ” ψijpxi, xjq

(4.6)

4.2.4 A link between discrete and convex optimization
through TV regularization

Theorem 11. Let pz˚i qi be the solution of the following problem:

pz˚i qi “ arg min
pziPr0,1sqi

ÿ

iPV
cizi `

ÿ

pi,jqPE
wij max pzi ´ zj , 0q . (4.7)

Then, @t P r0, 1r:

x˚i “

"

0 if z˚i ď t
1 if z˚i ą t

(4.8)

The set of variables px˚i qi are a solution of the associated binary problem:

px˚i qi “ arg min
pxiPt0,1uqi

ÿ

iPV
cixi `

ÿ

pi,jqPE
wij max pxi ´ xj , 0q . (4.9)

Proof

We introduce the following change of variables for a P R˚,` and t P r0, 1r:

zai “
1

a
pzi ´ tq, @i P V (4.10)

We apply this change of variable to (4.7):
ˆ

1

a
pz˚i ´ tq

˙

i

“ arg min
˜

ziP

«

´t

a
,
1´ t

a

ff¸

i

ÿ

iPV
cizi `

ÿ

pi,jqPE
wij max pzi ´ zj , 0q .

(4.11)
We notice that Da ą 0 such that:

$

’

&

’

%

1

a
pz˚i ´ tq ě 1 and

1´ t

a
ě 1 if z˚i ą t

1

a
pz˚i ´ tq ď 0 and

´t

a
ď 0 if z˚i ď t

(4.12)
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We apply the truncation theorem of TV regularized problems 3 with the
r0, 1s interval to equation (4.11):
˜

„

1

a
pz˚i ´ tq



r0,1s

¸

i

“ arg min
pxiPr0,1sqi

ÿ

iPV
cixi `

ÿ

pi,jqPE
wij max pxi ´ xj , 0q .

px˚i qi “ arg min
pxiPt0,1uqi

ÿ

iPV
cixi `

ÿ

pi,jqPE
wij max pxi ´ xj , 0q .

(4.13)

This completes the proof.

4.2.5 Primal dual scheme for integer Linear programming
To study Fast-PD, we need to introduce the fundamental of linear programming
and the approximate primal-dual scheme of [64] and [125] for integer Linear
programming optimization. We refer the curious reader to [40] for more details.

Primal and dual forms of a linear programming problem

Definition 13. A Linear Programming, LP, problem consists of minimizing a
linear combination of variables under inequality constraints that can be expressed
in canonical primal form as:

min
pxiqi

I
ÿ

i“1

cixi

s.t.
I
ÿ

i“1

ajixi ď bj , @j P r1, Js

xi ě 0, @i P r1, Is

with: pI, Jq P Nˆ N, pciqi P R, pajiqij P R, and pbjqj P R.

Definition 14. The dual canonical form of LP is:

max
pyjqj

J
ÿ

j“1

bjyj

s.t.
J
ÿ

j“0

ajiyj ď ci, @i P r1, Is

yj ě 0, @j P r1, Js

We note that any LP can be easily transformed into either a canonical primal
or dual form.
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Complementary slackness conditions

The complementary slackness plays a central role to certify the optimality of a
primal-dual solution.

Property 6. The primal complementary slackness condition is:

@i P r1, Is , xi ą 0 ñ

J
ÿ

j“0

ajiyj “ ci

Property 7. The dual complementary slackness condition is:

@j P r1, Js , yj ą 0 ñ

I
ÿ

i“1

ajixi “ bj

Theorem 12. If a pair px, yq of primal-dual pair verifies the primal and dual
complementary slackness conditions, then x and y are solutions of the primal
and dual LP problem.

Hence, the primal and dual complementary slackness conditions can be used
as an optimality certificate.

Relaxed complementary slackness conditions

Interestingly, we can also derive a more general definition for the complementary
slackness conditions by relaxing the equality in the second term of each conditions.

Property 8. For a given α P r1,`8s the primal relaxed complementary slack-
ness condition is:

@i P r1, Is , xi ą 0 ñ
ci
α
ď

J
ÿ

j“0

ajiyj ď ci

Property 9. For a given β P r1,`8s the dual relaxed complementary slackness
condition is:

@j P r1, Js , yj ą 0 ñ bj ď
I
ÿ

i“1

ajixi ď βbj

Theorem 13. If a pair px, yq of primal-dual solution verifies the primal and
dual relaxed complementary slackness conditions with factor α and β:

I
ÿ

i“1

cixi ď αβ
J
ÿ

j“1

bjyj

then x and y are αβ optimal solutions of the primal and dual LP problem
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Primal dual scheme for binary LP

We now give a general framework to optimize approximately a given Binary LP,
BLP, B. The key idea is to relax this BLP to an LP, and to compute the dual
problem. The framework makes use of both the primal and dual problems by
iteratively improving the dual solution while generating integer primal solutions
until no dual improvement can be made. The quality of the approximation of
the integer primal solution is controlled by factors α and β. The algorithm 8
sums up the primal dual scheme for binary LP.

Algorithm 8: Approximate primal dual scheme for Binary Linear Pro-
gramming problems
Data: Inputs: B, α and β
Result: pxiqi, pyjqj
Relax the ILP to an LP: Ñ P.
Compute the dual of P : Ñ D.
Initialize the primal variables to be binary.
Initialize the dual variables to be feasible.
while Relaxed complementary slackness conditions are not all statisfied do

Select a subset of dual variables that does not satisfy the relaxed
complementary slackness conditions.

Update this subset of dual variables with a method of choice.

Use the primal relaxed complementrary slackness conditions to update
the primal variables by an integer quantity.

4.3 Max-flow and min-cut problems
In 1956, two research teams composed of P. Elias, A. Feinstein, and C.E. Shannon
for the first one [46], and L.R. Ford, Jr. and D.R. Fulkerson [54] for the second
demonstrated the celebrated max-flow / min-cut theorem. This theorem derives
from the strong duality in linear programming problems [108].

In this section, we start by proving the max-flow / min-cut theorem, then we
introduce simply equations for both the primal (min-cut), the primal-dual, and
the dual (max-flow) problems. Those simplified equations ease the creation of
max-flow / min-cut solvers dedicated to image processing tasks.

88



4.3.1 The max-flow / min-cut

4.3.2 From a min-cut problem to a max-flow problem
Using the representation defined by theorem (10), we can formulate, up to a
constant term, any sum of binary pairwise sub-modular functions as :

ÿ

iPV
φip0q p1´ xiq ` φip1qxi `

ÿ

pi,jqPE
wij max pxi ´ xj , 0q (4.14)

The min-cut problem

The binary min-cut problem is simply the configuration of minimum cost of the
previous equation 4.14:

px˚i qi “ arg min
pxiPt0,1uqi

ÿ

iPV
φip0q p1´ xiq ` φip1qxi `

ÿ

pi,jqPE
wij max pxi ´ xj , 0q

(4.15)

Relaxing primal variables

Thanks to theorem 11 we can solve the relaxed problem while still being able to
retrieve by a simple truncation an optimal solution of (4.15).

min
pliPr0,1sqi

ÿ

iPV
φip0q p1´ liq ` φip1qli `

ÿ

pi,jqPE
wij max pli ´ lj , 0q . (4.16)

where s-indexed variables are connected to the source and t indexed variables
are linked to the sink.

We observe that we now deal with a non smooth convex optimization problem.
This transformation was observed by [28] and then [174].

Dualizing the potentials

We transform the previous problem by dualizing the potentials. We formulate
both unary and pairwise potentials using the techniques of previous chapter:

φip0q “ max
ρsiPr0,φip0qs

ρsi

φip1q “ max
ρitPr0,φip1qs

ρit

wij max pxi ´ xj , 0q “ max
fijPr0,wijs

fij pxi ´ xjq

(4.17)
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We obtain the following primal dual problem:

min
pxiq

max
pρsiq,pρitq,pfijq

ÿ

iPV
ρsi p1´ xiq ` ρitxi `

ÿ

pi,jqPE
fij pxi ´ xjq .

subject to xi P r0, 1s, @i P V
fij P r0, wijs , @ pi, jq P E
ρsi P r0, φip0qs , @i P V
ρit P r0, φip1qs , @i P V

(4.18)

We introduce the following notations to minimize clutter in equations:

Epi, .q “ tj P V | pi, jq P Eu. (4.19)
Ep., iq “ tj P V | pj, iq P Eu (4.20)

After factorization with respect to each xi we obtain:

min
pxiq

max
pρsiq,pρitq,pfijq

ÿ

iPV
ρsi

`
ÿ

iPV
xi

»

–ρit ´ ρsi `
ÿ

jPEpi,.q

fij ´
ÿ

jPEp.,iq

fji

fi

fl

subject to xi P r0, 1s, @i P V
fij P r0, wijs , @ pi, jq P E
ρsi P r0, φip0qs , @i P V
ρit P r0, φip1qs , @i P V

(4.21)

Dualizing the constraints on primal variables

For each vertex i P V, we introduce two variables pki, siq P R` ˆ R` to enforce
xi P r0, 1s. Hence, we can drop the domain constraint for all pxiqi

min
pxiq

max
pρsiq,pρitq,pfijq,pkiq,psiq

ÿ

iPV
ρsi

`
ÿ

iPV
xi

»

–ρit ´ si ´ ρsi ` ki `
ÿ

jPEpi,.q

fij ´
ÿ

jPEp.,iq

fji

fi

fl

`
ÿ

iPV
pxi ´ 1q ki ´ xisi

subject to fij P r0, wijs , @ pi, jq P E
ρsi P r0, φip0qs , @i P V
ρit P r0, φip1qs , @i P V
ki ě 0, @i P V
si ě 0, @i P V

(4.22)
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We factorize again with respect to xi to obtain:

min
pxiq

max
pρsiq,pρitq,pfijq,pkiq,psiq

ÿ

iPV
ρsi ´ ki

`
ÿ

iPV
xi

»

–ρit ´ si ´ ρsi ` ki `
ÿ

jPEpi,.q

fij ´
ÿ

jPEp.,iq

fji

fi

fl

subject to fij P r0, wijs , @ pi, jq P E
ρsi P r0, φip0qs , @i P V
ρit P r0, φip1qs , @i P V
ki ě 0, @i P V
si ě 0, @i P V

(4.23)

Introducing the source and sink flows

We introduce the flow variables from the source and the sink:

fsi “ ρsi ´ ki, @i P V.
fit “ ρit ´ si, @i P V.

(4.24)

We observe that:
fsi ď φip0q, @i P V.
fit ď φip1q, @i P V.

(4.25)

Hence, we obtain:

min
pxiq

max
pfsiq,pfitq,pfijq

ÿ

iPV
fsi

`
ÿ

iPV
xi

»

–fit ´ fsi `
ÿ

jPEpi,.q

fij ´
ÿ

jPEp.,iq

fji

fi

fl

subject to fij P r0, wijs , @ pi, jq P E
fsi ď φip0q, @i P V
fit ď φip1q, @i P V

(4.26)

Solving for primal variables and refactoring

We recognize that each variables xi acts as a Lagrangian multiplier to enforce
the following equality constraint:

fit ´ fsi `
ÿ

jPEpi,.q

fij ´
ÿ

jPEp.,iq

fji “ 0 (4.27)
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The maxflow equations

Finally we get the Maxflow equations:

max
pfsiq,pfitq,pfijq

ÿ

iPV
fsi

subject to fij P r0, wijs , @ pi, jq P E
fsi ď φip0q, @i P V
fit ď φip1q, @i P V

fit ´ fsi `
ÿ

jPEpi,.q

fij ´
ÿ

jPEp.,iq

fji “ 0, @i P V

(4.28)

The last constraint enforces the conservation of the flow.

4.3.3 Simplified equations
We now introduce simplified equations for primal, primal-dual and dual problems
modeling the maxflow-mincut.

The primal problem

We start from the relaxed mincut equations. We introduce the following simple
factorizations:

ci “ φip1q ´ φip0q, @i P V. (4.29)

φΣp0q “
ÿ

iPV
φip0q (4.30)

E˚ “ min
pxiPr0,1sqi

ÿ

iPV
φip0q p1´ xiq ` φip1qxi `

ÿ

pi,jqPE
wij max pxi ´ xj , 0q .

(4.31)

“ min
pxiPr0,1sqi

ÿ

iPV
pφip1q ´ φip0qqxi ` φip0q `

ÿ

pi,jqPE
wij max pxi ´ xj , 0q .

(4.32)

“ min
pxiPr0,1sqi

ÿ

iPV
cixi `

ÿ

pi,jqPE
wij max pxi ´ xj , 0q ` φΣp0q. (4.33)

During optimization we can discard the constant φΣp0q. The primal variables
are the same as in (4.16). Hence, we can use the truncating technique 11 we
recover an optimal solution for (4.15).

The primal-dual problem

We get the simplified primal dual problem by simply dualizing the pairwise
terms:

E˚ “ min
xiPr0,1s

max
fijPr0,wijs

ÿ

iPV
cixi `

ÿ

pi,jqPE
fij pxi ´ xjq ` φΣp0q. (4.34)
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The dual variable fij represents the flow from vertex i to vertex j.

The dual problem

For the simplified Maxflow problem we start by factorizing (4.34) with respect
to each primal variable i and then we solve for the primal variables.

E˚ “ min
xiPr0,1s

max
fijPr0,wijs

ÿ

iPV

¨

˝ci `
ÿ

jPEpi,.q

fij ´
ÿ

jPEp.,iq

fji

˛

‚xi ` φΣp0q. (4.35)

“ max
fijPr0,wijs

ÿ

iPV
min

xiPr0,1s

¨

˝ci `
ÿ

jPEpi,.q

fij ´
ÿ

jPEp.,iq

fji

˛

‚xi ` φΣp0q. (4.36)

“ max
fijPr0,wijs

ÿ

iPV
min

¨

˝ci `
ÿ

jPEpi,.q

fij ´
ÿ

jPEp.,iq

fji, 0

˛

‚` φΣp0q. (4.37)

“ max
fijPr0,wijs

´
1

2

»

–

ÿ

iPV

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ci `
ÿ

jPEpi,.q

fij ´
ÿ

jPEp.,iq

fji

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

´ ci

fi

fl` φΣp0q. (4.38)

The last equation is obtained by applying the `1 reformulation presented in 3.4.1
and noting that the terms out of the absolute values cancel out. We also note
that the simplified equation of the Maxflow does not contain the flow from the
source and the flow to the sink.

Max-flow / min-cut as a reparametrization

Suppose that we obtain dual variables pfijqij by solving, for instance, the problem
(4.37). We can apply the following re-parametrization:

c1i “ ci `
ÿ

jPEpi,.q

fij ´
ÿ

jPEp.,iq

fji (4.39)

This gives use the following primal dual problem:

E˚ “ min
pxiPr0,1sqi

max
f 1ijPr´fij ,wij´fijs

ÿ

iPV
c1ixi `

ÿ

pi,jqPE
f 1ij pxi ´ xjq ` φΣp0q.

(4.40)
And the following primal problem:

E˚ “ min
pxiPr0,1sqi

ÿ

iPV
c1ixi `

ÿ

pi,jqPE
pwij ´ fijqmaxpxi ´ xj , 0q

`fij maxpxj ´ xi, 0q ` φΣp0q.

(4.41)

Hence, solving the max-flow problem is equivalent to finding a re-parametrization
of the min-cut problem where its sum of unary potentials has a minimum `1
norm. It is also equivalent to find a re-parametrization of the dual problem
where the new optimal dual variables are equal to 0.
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Recovering primal variables from dual variables

To obtain optimal primal variables from optimal dual variables we can solve the
following problem:

min
pxiq

ÿ

iPV
Rpxiq

subject to xi P r0, 1s , @i P V

xi “ 0, if ci `
ÿ

jPEpi,.q

f˚ij ´
ÿ

jPEp.,iq

f˚ji ą 0

xi “ 1, if ci `
ÿ

jPEpi,.q

f˚ij ´
ÿ

jPEp.,iq

f˚ji ă 0

xi “ xj if f˚ij P s0, wijr

xi ď xj if f˚ji “ 0

xi ě xj if f˚ji “ wij

(4.42)

where Rp.q : RÑ R is a convex function acting as a regularizer.
We note that if Rp.q “ 0, then the problem (4.42) can be solved very easily

by applying a depth first search scheme as described in the Ford-Fulkerson
max-flow algorithm as explain in section 26.2 of [36]. For other regularization
functions one can use the primal dual techniques of the previous chapter for
instance.

Proof: The primal update rule states that @i P V:

x˚i “

»

–x˚i ´ τ

¨

˝ci `
ÿ

jPEpi,.q

f˚ij ´
ÿ

jPEp.,iq

f˚ji

˛

‚

fi

fl

r0,1s

(4.43)

Hence, we can recover a partial set of optimal primal variables pxiq˚:

x˚i “

$

&

%

0 if ci `
ř

jPEpi,.q f
˚
ij ´

ř

jPEp.,iq f
˚
ji ą 0

1 if ci `
ř

jPEpi,.q f
˚
ij ´

ř

jPEp.,iq f
˚
ji ă 0

P r0, 1s if ci `
ř

jPEpi,.q f
˚
ij ´

ř

jPEp.,iq f
˚
ji “ 0

(4.44)

The dual update rule states that @ pi, jq P E :

f˚ij “
“

f˚ij ` σpx
˚
i ´ x

˚
j q
‰

r0,wijs
(4.45)

Hence, we gather the following additional constraints:
$

&

%

x˚i “ x˚j if f˚ij P s0, wijr

x˚i ď x˚j if f˚ji “ 0

x˚i ě x˚j if f˚ji “ wij

(4.46)

Therefore, the optimal primal variable belongs to the space verifying con-
straints (4.44) and (4.46). Since, this space is not necessarily a singleton, we
can enforce a particular solution by adding a regularization cost. This concludes
the proof.
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Recovering dual variables from primal variables

To obtain optimal dual variables from optimal primal variables we can solve the
following problem:

min
pfijq

ÿ

pi,jqPE

Rpfijq

subject to fij P r0, wijs , @ pi, jq P E
fij “ wij , if x˚i ´ x

˚
j ą 0

fij “ 0, if x˚i ´ x
˚
j ă 0

ci `
ÿ

jPEpi,.q

fij ´
ÿ

jPEp.,iq

fji ă 0, if x˚i ą 0

ci `
ÿ

jPEpi,.q

fij ´
ÿ

jPEp.,iq

fji ą 0, if x˚i “ 0

(4.47)

where Rp.q : RÑ R is a convex function acting as a regularizer.

The problem (4.47) can be solved with primal dual techniques presented in
the previous chapter.

Proof: The dual update rule states that @ pi, jq P E :

f˚ij “
“

f˚ij ` σpx
˚
i ´ x

˚
j q
‰

r0,wijs
(4.48)

Hence, we can easily derive a partial set of dual variables:

f˚ij P

$

&

%

twiju if x˚i ´ x
˚
j ą 0,

t0u if x˚i ´ x
˚
j ă 0,

r0, wijs if x˚i ´ x
˚
j “ 0.

(4.49)

However, for any couple pi, jq P E where x˚i “ x˚j we have to find another set of
constraints.

The primal update rule states that @i P V:

x˚i “

»

–x˚i ´ τ

¨

˝ci `
ÿ

jPEpi,.q

f˚ij ´
ÿ

jPEp.,iq

f˚ji

˛

‚

fi

fl

r0,1s

(4.50)

Therefore, we deduce additional constraints for pfijqij :

ci `
ÿ

jPEpi,.q

f˚ij ´
ÿ

jPEp.,iq

f˚ji ă 0, if x˚i ą 0

ci `
ÿ

jPEpi,.q

f˚ij ´
ÿ

jPEp.,iq

f˚ji ą 0, if x˚i “ 0
(4.51)

Hence, the optimal dual variable belongs to the space verifying constraints
(4.49) and (4.51). Since, this space is not necessarily a singleton, we can enforce
a particular solution by adding a regularization cost. This concludes the proof.
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Recovering the flow from the source and to the sink

The optimal flow from the source and to the sink is given by:

f˚it “ minpφip0q ´
ÿ

jPEpi,.q

f˚ij `
ÿ

jPEp.,iq

f˚ji, φip1qq (4.52)

f˚si “ minpφip1q `
ÿ

jPEpi,.q

f˚ij ´
ÿ

jPEp.,iq

f˚ji, φip0qq (4.53)

Proof: For each vertex i P V we know from equation (4.28) that:

f˚it ´ f
˚
si `

ÿ

jPEpi,.q

f˚ij ´
ÿ

jPEp.,iq

f˚ji “ 0 (4.54)

f˚si ´ f
˚
it “

ÿ

jPEpi,.q

f˚ij ´
ÿ

jPEp.,iq

f˚ji (4.55)

f˚si ´ f
˚
it “ f˚sit (4.56)

Since we already know the optimal flow between vertices, the canonical
maxflow problem simplifies to:

max
pfsiq,pfitq

ÿ

iPV
fsi

subject to fsi ď φip0q, @i P V
fit ď φip1q, @i P V
fsi “ f˚sit ` fit, @i P V

(4.57)

We can easily solve for all pfsiq:

max
pfitq

ÿ

iPV
f˚sit ` fit

subject to f˚sit ` fit ď φip0q, @i P V
fit ď φip1q, @i P V

(4.58)

We can reformulate to:

max
pfitq

ÿ

iPV
f˚sit ` fit

subject to fit ď φip0q ´ f
˚
sit, @i P V

fit ď φip1q, @i P V

(4.59)

Finally, we obtain:

f˚it “ minpφip0q ´ f
˚
sit, φip1qq (4.60)

f˚si “ minpφip1q ` f
˚
sit, φip0qq (4.61)

This completes the proof.
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4.3.4 Characterization of obvious partial primal solutions
We study some sufficient conditions for a primal variable xk to be equal to either
0 or 1. One can show that for a given vertex k P V, there exists an optimal
solution that verifies:

x˚k “

"

0 if ck ě
ř

jPEp.,kq wjk
1 if ck ď ´

ř

jPEpk,.q wkj
(4.62)

Figure 4.1 – Example of function fpxkq
for ck ě

ř

jPEp.,kq wjk.
Figure 4.2 – Example of function fpxkq
for ck ď ´

ř

jPEpk,.q wkj .

Proof for x˚k “ 0

Let us assume that ck ě
ř

jPEp.,kq wjk. We can write for a certain δ` P R`:

ck “ δ` `
ÿ

jPEp.,kq

wjk (4.63)

We apply the reformulation trick of (3.59) introduced in previous chapter,
we have:

fpxkq “ ckxk `
ÿ

jPEp.,kq

wjk max pxj ´ xk, 0q `
ÿ

jPEpk,.q

wkj max pxk ´ xj , 0q

(4.64)

“ ckxk `
ÿ

jPEp.,kq

wjk pxj ´ xkq `
ÿ

jPEpk,.q

pwkj ` wjkqmax pxk ´ xj , 0q

(4.65)

“ δ`xk `
ÿ

jPEpk,.q

pwkj ` wjkqmax pxk ´ xj , 0q `
ÿ

jPEp.,kq

wjkxj (4.66)

Hence, fpxkq is an increasing function and we have x˚k “ 0 an optimal solution.
This is illustrated by figure 4.1.
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Proof for x˚k “ 1

Let us assume that ck ď ´
ř

jPEpk,.q wkj . We can write for a certain δ´ P R´:

ck “ δ´ ´
ÿ

jPEpk,.q

wkj (4.67)

We apply the reformulation trick of (3.59) introduced in previous chapter:

fplkq “ ckxk `
ÿ

jPEp.,kq

wjk max pxj ´ xk, 0q `
ÿ

jPEpk,.q

wkj max pxk ´ xj , 0q

(4.68)

“ ckxk `
ÿ

jPEp.,kq

pwjk ` wkjqmax pxj ´ xk, 0q `
ÿ

jPEpk,.q

wkj pxk ´ xjq

(4.69)

“ δ´xk `
ÿ

jPEp.,kq

pwjk ` wkjqmax pxj ´ xk, 0q ´
ÿ

jPEpk,.q

wkjxj (4.70)

Hence, fpxkq is an decreasing function and we have x˚k “ 1 an optimal solution.
This is illustrated by figure 4.2.

4.3.5 ROF and Maxflow
The previous chapter gives us a surrogate set of problems that give an optimal
solution for the max-flow. Indeed, we see that the optimal solution space of
the simplified max-flow problem (4.38) corresponds to Y˚`1 of theorem (4). The
theorem (4) guaranties any optimal dual solution of ROF model also gives a
solution of the associated max-flow problem. This was previously observed in
[26].

Hence, we can directly solve the following ROF in its dual form:

max
pfijPr0,wijsqij

´
1

2

ÿ

iPV

¨

˝ci `
ÿ

jPEpi,.q

fij ´
ÿ

jPEp.,iq

fji

˛

‚

2

(4.71)

However, if we solve the primal form of the ROF model:

min
pxiPRqi

ÿ

iPV

1

2
x2
i ` cixi `

ÿ

pi,jqPE
wij max pxi ´ xj , 0q , (4.72)

we can then recover the optimal dual variable by slightly adjusting problem (4.47)
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to:

min
pfijq

ÿ

pi,jqPE

Rpfijq

subject to fij P r0, wijs , @ pi, jq P E
fij “ wij , if x˚i ´ x

˚
j ą 0

fij “ 0, if x˚i ´ x
˚
j ă 0

ci `
ÿ

jPEpi,.q

fij ´
ÿ

jPEp.,iq

fji “ ´x
ROF,˚
i , @i P V

(4.73)

where Rp.q : RÑ R is a convex function acting as a regularizer.

4.4 Solvers for min-cut / max-flow problems
We now present solvers that optimally solve the min-cut / max-flow problem.

4.4.1 Solver for chain graphs
We devise a first solver when the graph G is a chain of C vertices. We describe
algorithms that solve in OpCq the primal and dual forms.

Primal algorithm

In its primal form, we need to optimize the following problem:

E˚ “ min
pxiPt0,1uqi

ÿ

iPt1,..,Nu

cixi `
ÿ

iPt2,..,Cu

wi max pxi`1 ´ xi, 0q ` φΣp0q. (4.74)

The problem (4.74) can be solved by the Viterbi algorithm [72], a dynamic
programing algorithm [44]. We present in algorithm 9 a simplified version where
the inner loops are unrolled since we work with binary variables.

Dual algorithm

For the dual form, we have to solve:

E˚ “ max
fiPr0,wis

´
1

2

»

–

ÿ

iPt1,..,Cu

|ci ` fi ´ fi´1| ´ ci

fi

fl` φΣp0q. (4.75)

where we introduce f0 “ 0 and w0 “ 0 to ease the notations.
The problem (4.75) can also be solved by dynamic programing as in algo-

rithm 10.
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Algorithm 9: Primal algorithm for min-cut on chain graph
Data: Inputs: pciqi, pwiqi
Result: pxiqi
Initialization: cn0 “ t0, c1u
Message passing on chain:
for i P t2, . . . , Cu do

Compute minimum cost for transition to next node:
if cn0p1q ă cn0p2q ` wi´1q then

cn1p1q Ð cn0p1q
labelspi´ 1, 1q Ð 0

else
cn1p1q Ð cn0p2q ` wi´1

labelspi´ 1, 1q Ð 1

if cn0p1q ă cn0p2q then
cn1p2q Ð cn0p1q
labelspi´ 1, 2q Ð 0

else
cn1p2q Ð cn0p2q
labelspi´ 1, 2q Ð 1

Add unary term: cn1p2q Ð cn1p2q ` ci
Copy temporary buffer: cn0 Ð cn1

Decoding:
if cn0p1q ă cn0p2q then

xC “ 0

else
xC “ 1

for i P tC ´ 1, . . . , 1u do
xi “ labelspi, xi`1 ` 1q

Algorithm 10: Algorithm for max-flow on chain graph
Data: Inputs: pciqi, pwiqi
Result: pfiqi
for i “ 1, C ´ 1 do

Compute excess of flow:
eÐ ci ´ fi´1

if e ď 0 then
fi Ð minpwi,´eq

else
fi Ð 0q
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Dual algorithm with backtracking

We can even improve the dual algorithm to also return the optimal primal
variables. To this end, we run the depth-first-search algorithm while computing
the dual variables. As soon as we saturate a dual variable, we can backtrack to
label the primal variables accordingly. This leads to algorithm 11.

Algorithm 11: Algorithm for max-flow on chain graph with backtracking
Data: Inputs: pciqi, pwiqi
Result: pfiqi
Initialization for backtracking sÐ 1
backtrackÐ 0
for i “ 1, C ´ 1 do

Compute excess of flow:
eÐ ci ´ fi´1

if e ď 0 then
if wpiq ă ´e then

fi Ð wi
xi Ð 1
backtrackÐ 1

else
fi Ð ´e

else
fi Ð 0
xi Ð 0
backtrackÐ 1

Backtrack to set optimal primal variables:
if backtrack then

for j P ti´ 1, . . . , su do
xj Ð xj`1

sÐ i` 1
backtrackÐ 0

4.4.2 Iterative solvers
TV-linear

We know focus on general graph. The primal dual formulation of the min-cut /
max-flow problem is given by:

E˚ “ min
xiPr0,1s

max
fijPr0,wijs

ÿ

iPV
cixi `

ÿ

pi,jqPE
fij pxi ´ xjq ` φΣp0q. (4.76)

We can apply the primal dual techniques of the last chapter to solve the
problem (4.76) using algorithm (12). This techniques returns both the (relaxed)
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primal and dual variables. It can also be warm-started when we dispose of an
initial guess of the primal and dual variables.

The convergence rate to an optimal solution in guaranteed in O
ˆ

1

N

˙

, where

N is the number of iterations. However, the algorithm (12) does neither guaranty
to decrease the primal energy nor increase the dual energy at each iteration. The
algorithm 12 describes the TV-linear method for solving the maxflow / mincut
problem.

Algorithm 12: Primal dual algorithm for min-cut / max-flow as TV-linear
problem
Data: Inputs: pciqi, pwijqij , G, τ , σ
Result: pxiqi, pfijqij
Initialize primal and dual variable Ñ x0 “ 0, f0 “ 0.
Set x̃ “ x0

while Stopping criterion is not verified do
Optimize the dual variables, @pi, jq P E :

fn`1
ij “

“

fnij ` σpx̃i ´ x̃jq
‰

r0,wijs
(4.77)

Optimize the primal variables, @i P V:

xn`1
i “

»

–xni ´ τ

¨

˝ci `
ÿ

jPEpi,.q

fij ´
ÿ

jPEp.,iq

fji

˛

‚

fi

fl

r0,1s

(4.78)

Smooth variable, @i P V:

x̃i “ xn`1
i ` θ

`

xn`1
i ´ xni

˘

(4.79)

TV-l2: ROF

We have demonstrated that the ROF model gives an alternative approach to
solve the min-cut / max-flow problem. Hence, we make use of the primal-dual
form of the ROF model:

min
pxiPRqi

max
fijPr0,wijs

ÿ

iPV

1

2
x2
i ` cixi `

ÿ

pi,jqPE
fij pxi ´ xjq (4.80)

As for the TV-linear problem, we apply the primal dual technique of the
last chapter. Therefore, we directly recover optimal dual variables that solve
the max-flow problem (from which we can easily obtain optimal binary primal
variables). The algorithm 13 describes the TV-`2 method for solving maxflow /
mincut problems.
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Algorithm 13: Primal dual algorithm for min-cut / max-flow as TV-`2
problem
Data: Inputs: pciqi, pwijqij , G, τ , σ
Result: pxiqi, pfijqij
Initialize primal and dual variable Ñ x0 “ 0, f0 “ 0.
Set x̃ “ x0

while Stopping criterion is not verified do
Optimize the dual variables, @pi, jq P E :

fn`1
ij “

“

fnij ` σnpx̃i ´ x̃jq
‰

r0,wijs
(4.81)

Optimize the primal variables, @i P V:

xn`1
i “

xn`1
i ` τn

´

ci `
ř

jPEpi,.q fij ´
ř

jPEp.,iq fji

¯

1` τn
(4.82)

Update the smoothing and steps size parameters:

θn “
1

?
1` 2γτn

, τn`1 “ θnτn, σn`1 “
σn
θn

(4.83)

Smooth variable, @i P V:

x̃i “ xn`1
i ` θn

`

xn`1
i ´ xni

˘

(4.84)
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For algorithm (13) the convergence rate to an optimal solution in guaranteed

in O
ˆ

1

N2

˙

, where N is the number of iterations.

4.4.3 Augmenting path solvers
Augmenting path solvers [147] are algorithms designed to solve the dual form of
the max-flow / min-cut, i.e., problem (4.28). Here, we describe the augmenting
path method of [17] that experimentally outperforms other variant for computer
vision problems [166]. It sequentially alternates three stages:

1. Find an augmenting path: a chain subgraph A of the main graph G whose
dual variables can be further optimized. For computer vision problems,
this is generally done by growing two binary trees simultaneously from
the source and sink by following edges that have positive capacities. An
augmenting path is found when the two trees meet. If no augmenting path
can be found, then the algorithm terminates.

2. The augmenting phase: optimize the dual variables of the chain subgraph A.
Apply a re-parametrization of the problem as describe in paragraph 4.3.3.

3. Adopt orphan: An optional step that greatly speeds up augmenting path
is to update dynamically the growing trees after the augmentation phase.
During the augmentation the re-parametrization might have set the ca-
pacities of some edge to 0, potentially invalidating parts of the source and
sink trees. The adoption phase corrects this phenomenon.

The efficiency of augmenting path algorithms resides in their ability to quickly
find augmenting paths. The celebrated BK algorithm uses a heuristic that deliver
great performance for computer vision related maxflow problems. We refer the
reader to its original publication [17] for more details.

4.5 Graph-cuts for non convex problems
We now look at graph-cuts techniques to optimize a sub class of non convex
problems given by equation (4.3):

px˚i qi “ arg min
pxiPLqi

ÿ

iPV
φipxiq `

ÿ

pi,jqPE
φijpxi, xjq.

Unfortunately, such problems are known to be NP-hard [101]. Hence, theo-
retically the best we can get is an approximate solution with some mathematical
guaranties on the goodness of the approximation.
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4.5.1 Alpha-expansion
Overview of the method

A first technique to optimize equation (4.3) is to use the alpha expansion
algorithm [20]. Instead of optimizing for all possible labels at the same time, the
alpha expansion selects at a given time a unique label, that we refer to as alpha.
Then, it tries to substitute (expand) the alpha label to some variables xi of the
current solution. Since the goal remains to decrease the energy represented by
equation (4.3), the expansion is obtained by solving a binary problem where the
zero values represent the choice to keep the current labeling and the one values
indicate substitution by the alpha label.

The Alpha-expansion method requires that the functions pφijp., .qqij are
metric:

φijpa, aq “ 0, @a P L
φijpa, bq ě 0, @pa, bq P Lˆ L

φijpa, cq ď φijpa, bq ` φijpb, cq @pa, b, cq P Lˆ Lˆ L

Expansion as a maxflow problem

Let us assume we are given a current solution pxiqi and a label to expand α P L.
We make use of the following binary functions: for each i P V:

ψip0q “ φipxiq

ψip1q “ φipαq

for each pi, jq P E :

ψij “

ˇ

ˇ

ˇ

ˇ

φi,jpxi, xjq φi,jpxi, αq
φi,jpα, xjq φi,jpα, αq

ˇ

ˇ

ˇ

ˇ

The functions pψiqi are obviously submodular and since the functions pφijqij
are metric, they make the functions pψijqij submodular:

φi,jpxi, xjq ` φi,jpα, αq ď φi,jpxi, αq ` φi,jpα, xjq

Finally the binary function

ψpzq “
ÿ

iPV
ψipziq `

ÿ

pi,jqPE
ψijpzi, zjq

is submodular thanks to property (4).
The theorem (10) informs us that optimizing ψp.q is equivalent to solving

a mincut-maxflow problem. Hence, we can solve the expansion in polynomial
time.

Alpha expansion algorithm

We now have a sub-routine to perform the expansion. The alpha expansion
algorithm simply cycles through each possible label of L until no expansion
changes the current solution. We summarize this method in algorithm 14.
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Algorithm 14: Alpha expansion
Data: Inputs: pφiqi, pφijqij , G, pxiqi
Result: pxiqi
while Until no expansion improves the solution do

for α P L do
Create binary function for expansion:

ψi “

ˇ

ˇ

ˇ

ˇ

φipxiq
φipαq

ˇ

ˇ

ˇ

ˇ

and ψij “

ˇ

ˇ

ˇ

ˇ

φi,jpxi, xjq φi,jpxi, αq
φi,jpα, xjq φi,jpα, αq

ˇ

ˇ

ˇ

ˇ

Solve mincut - maxflow problem using the representation
forumula (4.5) of theorem (10):

z˚ “ arg min
zit0,1u

ÿ

iPV
ψipziq `

ÿ

pi,jqPE
ψijpzi, zjq

Update current solution:

xi “ p1´ z
˚
i qxi ` z

˚
i α, @i P V.

4.5.2 Fast-PD
Overview of the method

We now move on to a different graph-cut technique: Fast-PD [102]. Fast-PD
relies on first transforming the original multi-labels problem (4.3) to a binary
linear programming problem as in [63] or [100]. Then, it makes use of the
approximate primal dual scheme presented at the beginning of this chapter
to derive a sub-optimal solution. Fast-PD shares similarity with the alpha
expansion, since it also relies on solving a series of maxflow problems in a cycling
fashion. However, Fast-PD can handle a larger set of pairwise functions since it
only requires the following assumptions on the functions pφijp., .qqij :

φijpa, bq “ 0 ô a “ b @pa, bq P Lˆ L
φijpa, bq ě 0, @pa, bq P Lˆ L

A binary LP formulation

As preliminary work, we formulate problem (4.3):

px˚i qi “ arg min
pxiPLqi

ÿ

iPV
φipxiq `

ÿ

pi,jqPE
φijpxi, xjq.

as a binary linear programing problem.
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Potentials: We make use of vectors pθiqi to represent the value of each discrete
function φip.q and vectors pθijqi to represent the φijp., .q:

θi “ rφip0q, φip1q, . . . , φipL´ 2q, φipL´ 1qs

θij “ rφijp0, 0q, . . . , φijp0, L´ 1q, . . . , φijpL´ 1, 0q, . . . φijpL´ 1, L´ 1qs

θ “ rθ0, . . . , θi, . . . , θN , . . . , θij , . . .s

Each vector θi has length of L and each vector θij has L2 elements. This makes
the length of vector θ equal to NL` EL2.

Variables: We also make use of binary indicator variables pziqi and pzijqij to
represent a solution x:

zi “ rzi,0, zi,1, . . . , zi,L´1, zi,Ls

zij “ rzij,0,0, . . . , zij,0,L, zij,1,0, . . . , zij,L´1,L, zij,L,0, . . . zij,L,Ls

z “ rz0, . . . , zi, . . . , zN , . . . , zij , . . .s

We need to add constraint to the solution space of z. The uniqueness of label
assignment constraint forces that an unique element of each zi is equal to 1:

ÿ

lPL
zi,l “ 1, @i P V

We make use of a sparse matrix U of size N ˆ pNL` EL2q to enforce the
uniqueness constraints.

The consistency constraints enforce for any edge pi, jq and any label pa, bq P
LˆL that if zi,a “ 1 and zj,b “ 1 then, we need to have zij,a,b “ 1 and all other
elements of zij must be equal to 0:

ÿ

lPL
zij,a,l ´ zi,a “ 0 and

ÿ

lPL
zij,l,b ´ zj,b “ 0

We make use of sparse matrix C of size 2ELˆ pNL`EL2q to enforce the
consistency constraint.

Binary problem: Putting everything together we get the following binary
Linear Programming problem:

pz˚i qi “ arg min
zPt0,1uˆ...ˆt0,1u

θTz

s.t. Uz “ 1, (uniqueness constraints)
Cz “ 0, (consistency constraints)
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A primal LP formulation

Solving the previous binary LP problem is very challenging. Hence, Fast-PD
proceeds with the primal dual approximation framework by relaxing the domain
of variables z to the real positive half space. Since, we also have the uniqueness
constraints the feasible domain of each element of z is in fact r0, 1s. We get the
following LP that we refer as the primal form of our problem:

min
z

θTz

s.t. Uz “ 1, (uniqueness constraints)
Cz “ 0, (consistency constraints)
z ě 0

A dual LP formulation

We proceed to a second transformation by computing the dual of the primal LP.
To this end, we introduce a set of NL variables, s, for the uniqueness constraints.
We use a set of 2EL variables y for the consistency constraints. The dual form
of the LP problem is given by:

max
s,y

„

1
0

T „

s
y



s.t.

„

U
C

T „

s
y



ď θ

that we can simplify to:

max
s,y

ÿ

iPV
si

s.t. si ď θi,a `
ÿ

jPEpiq

yij,a, @pi, aq P V ˆ L

yij,a ` yji,b ď θij,a,b @pij, a, bq P E ˆ Lˆ L

where Epiq “ Epi, .q Y Ep., iq is the set of all nodes of V linked to i by an edges
in E .

Using the relaxed complementary slackness conditions

Since we work in an approximate primal dual scheme, we only make use of binary
primal solution. Assuming we start from a feasible binary primal solution, it is
trivial during any primal update to maintain primal feasibility.

Hence, we can simplify the primal relaxed complementary slackness conditions
associated to variables pziqi to:

zi,l “ 1 ñ
θi,l
α1
`

ÿ

jPEpiq

yij,l ď si ď θi,l `
ÿ

jPEpiq

yij,l, @a P L
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We can simplify the primal relaxed complementary slackness conditions
associated to variables pzijqij to:

zi,a “ 1 or zj,b “ 1 ñ
θij,a,b
α2

ď yij,a ` yji,b ď θij,a,b, @pa, bq P Lˆ L

Due to the assumption on the regularization functions we have θij,l,l “
φijpl, lq “ 0 for any l P L. Hence, we get:

zi,l “ 1 and zj,l “ 1 ñ yij,l ` yji,l “ 0, @l P L

In the approximate primal dual framework, we seek to find a pair of binary
primal and dual feasible solutions that satisfy these slackness conditions for some
values of α1 and α2.

By setting yij,a “ ´yji,a for any pair pa, bq P Lˆ L and any edge pi, jq P E ,
we simplify the optimization problem and the dual variables are now always
guaranteed to verify the last complementary slackness condition.

Loosen up the dual constraints

A key observation is to note that we can always easily obtain dual feasible vari-
ables from in-feasible dual variables, i.e. variables not verifying their associated
constraints, as long as the in-feasibility is bounded. Obtaining dual feasible
variables from in-feasible dual variables is often refereed as dual-fitting by the
LP community. The dual-fitting operation simply divides the dual variables by
a certain amount to make them feasible.

The authors of Fast-PD make use of this scheme. They seek a solution that
enforces the primal complementary slackness conditions with α1 “ 1 and α2 “ 1
while only imposing the dual constraints on variables s and simply controlling
the in-feasibility of dual variables y. Hence, they look for primal dual solution
verifying:

px˚i qi “ arg min
xiPL

ÿ

iPV
θi,xi `

ÿ

jPEpiq

yij,xi

yij,x˚i
` yji,x˚j

“ θij,x˚i ,x
˚
j

yij,a ` yji,b ď 2 max
pc,dqPLˆL

θij,c,d @pij, a, bq P E ˆ Lˆ L

Once such a solution is found, one can simply apply dual fitting by scaling

each yij with factor
1

δij
with:

δij “ max
pa,bqPLˆL,a‰b

yij,a ` yji,b
θij,a,b

It turns out that the fitted dual solution verifies the relaxed complementary
slackness conditions with α1 “ δ and α2 “ δ for δ “ maxpi,jqPE δij . Hence, the
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primal solution is a δ-approximation of the optimal primal solution. In the
original publication the authors derive different approximation bounds of Fast-
PD for regularization functions such as weighted Potts or weighted `1. While
those bounds are quite large, they show that in practice the approximation is
less than 1 percent.

A primal dual problem

We now have to optimize the following problem:

px˚i qi “ arg min
pxiPLqi

max
y

ÿ

iPV
θi,xi `

ÿ

jPEpiq

yij,xi

s.t. yij,x˚i
` yji,x˚j

“ θij,x˚i ,x
˚
j
, @pi, jq P E

yij,a ` yji,b ď 2 max
pc,dqPLˆL

θij,c,d @pij, a, bq P E ˆ Lˆ L

To do so, we proceed by iteratively picking a label α P L, and optimize
simultaneously the dual variables belonging to this label and the primal variables.
This scheme shares a lot of similarity with the Alpha-Expansion algorithm
previously presented. Hence, we refer to this step as expansion.

Expansion

It turns out that by properly setting the capacities of a maxflow problem, one
can jointly optimize the primal and dual variables for a given label l. The curious
reader can find proof of correctness in the original publication [102].

Pre-editing dual variables: We need to ensure that after the maxflow the
following constraints are verified whether xi or xj are updated or not:

yij,x˚i
` yji,x˚j

“ θij,x˚i ,x
˚
j
, @pi, jq P E

yij,a ` yji,b ď 2 max
pc,dqPLˆL

θij,c,d, @pij, a, bq P E ˆ xi, xj , l ˆ xi, xj , l

To this end, and before maxflow, we always force the dual variables pyij,lqij
to verify:

´θij,xj ,l ` yij,xi ď yij,l ď θij,l,xj ` yji,xj

Setting-up the maxflow problem: We set the capacities between nodes
pi, jq P E to:

capij “ rθij,l,xj ´ pyij,l ` yji,xj qsR`

capji “ rθij,xj ,l ´ pyij,xi ` yji,lqsR`

To simplify notations we introduce the height variable for each vertex i P V
and each label l P L:

hi,l “ θi,l `
ÿ

jPEpiq

yij,l
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The capacities from the source to each vertex i P V are given by:

capsi “ rhi,xi ´ hi,lsR`

while the capacities from each vertex i P V to the sink are given by:

capit “ rhi,xi ´ hi,lsR`

Post-updating primal and dual variables: Once the maxflow has been
computed the outer flow variables pfsiqi and the inner flow variables pfijqij
indicate the update for the primal and dual variables.

The primal variables are updated to label l only if there is an unsaturated
path from the source to the node:

xi Ð l if capsi ą 0 & capsi ´ fsi ą 0, @piq P V.

We update the dual variables using the inner flow pfijqij as follow:

yij,l Ð yij,l ` capij ´ fij , @pi, jq P E .
yij,l Ð ´yij,l, @pi, jq P E .

The Fast PD algorithm

Finally, we put everything together to get the method Fast-PD that we summarize
in algorithm 15.

4.5.3 A note on Fast-PD implementation
We decided to implement Fast-PD from scratch in C++ for two main reasons:
(1) the current implementation [96] is using way too much memory to run on
our remote sensing tasks, and (2) both the architecture and readability need to
be improved to allow others to easily tailor to their needs a custom version of
Fast-PD.

We have to make several design choices when implementing Fast-PD. We want
to make the implementation as fast as possible while maintaining a reasonable
memory footprint since we are going to process large problems. Hence, we
are making different choices than the implementation provided by the original
authors.

Conjugate dual variables

The algorithm always enforces and maintains conjugacy between yij,l and yji,l:

yij,l “ ´yji,l, @pi, jq P E and l P L

Hence, in the implementation of Fast-PD we only maintain in memory half
of the dual variables: pyij,lqpij,lq. When we need the other half we simply return
minus its conjugate. This reduces the memory footprint of the dual variables
by half at the price of a minor computation. The original implementation also
made use of this.
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Algorithm 15: Fast-PD
Data: Inputs: pφiqi, pφijqij , G, pxiqi
Result: pxiqi
Initialize dual variables to verify:

yij,xi ` yji,xj “ φijpxi, xjq, @pi, jq P E

while Until no expansion improves the solution do
for l P L do

Pre-edit dual variables such that:

´θij,xj ,l ` yij,xi ď yij,l ď θij,l,xj ` yji,xj @pi, jq P E

Setup and solve maxflow problem.
Post-updating primal variables:

xi Ð l if capsi ą 0 & capsi ´ fsi ą 0, @piq P V.

Post-updating dual variables:

yij,l Ð yij,l ` capij ´ fij , @pi, jq P E .
yij,l Ð ´yij,l, @pi, jq P E .

Maintaining the height variables

During the expansion sub-routine of Fast PD, we make use of the height variables:

hi,l “ θi,l `
ÿ

jPEpiq

yij,l

“ φiplq `
ÿ

jPEpi,.q

yij,l ´
ÿ

jPEp.,iq

yij,l

Since, we need to have access to the pθiqi we are going to store in memory all
the phi,lqi,l. However, contrary to the original implementation that uses the space
allocated to the pθiqi to store the phi,lqi,l, we are going to allocate the phi,lqi,l in
their own space. This is much better in terms of software architecture. If the pθiqi
are not needed by another process, the class that owns them can deallocate their
space. In case they are needed after Fast-PD, we provide a method to retrieve
the pθiqi from the phi,lqi,l. This way, we keep a clean architecture, maintain the
same memory footprint, and only add the cost of copying the pθiqi (which is
negligible).
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Updating the source and sink trees for each maxflow

As previously explained the maxflow algorithm finds an augmenting path by
simultaneously growing two trees, one from the source and one from the sink.
This is efficient if we expect the amounts of nodes connected to the source and
the sink to be balanced. However, as Fast-PD progresses, fewer nodes are going
to be connected to the source. Hence, the original implementation makes use of
a modified maxflow that only grows the source tree to find augmenting paths.
This potentially avoids to grow a very large sink tree which could slow down the
maxflow computation.

Unfortunately, to the best of our knowledge, no experiment quantifies the
improvement gained by only growing the source tree. Hence, we investigate this
during our experiments.

Maintaining the trees and capacities of each maxflow

As Fast-PD progresses fewer modifications are made to primal and dual variables.
Hence, the original implementation proposed to keep in memory the capacities of
each maxflow problem along with the tree structures for finding the augmenting
path. This allows to only recompute the capacities that might have changed
during a full cycle of expansion. Furthermore, the trees can also be used to
warm start the computation of the maxflow since only a small part is likely to
be obsolete.

However, the down side is that a large amount of extra memory is required for
storing the capacities and the trees. Hence, we elect to recompute from scratch
the capacities for each expansion. We maintain in memory only one maxflow
that we reinitialize before each expansion. This allows us to avoid allocating and
de-allocating at each iteration.

Cache friendly indexation

During each expansion phase of Fast-PD, the algorithm goes through all edges
to pre-edit dual variables, computes the capacities, and then post-updates the
dual variables. Hence, we need to pay attention that the pattern used to access
the variables maximizes cache friendliness. Hence, we perform experiments to
investigate and quantify the benefit of different memory layouts.

4.6 Experiments
In our context we mainly deal with neighborhood structures defined on a grid.
Moreover, due to the nature of our applications, our problem tends to be quite
large. For instance, a satellite image is generally of the order of ten thousand
pixel per dimension. Hence, we limit our experiments to 4-connected grid.
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We make use of the stereo matching task to illustrate the differences between
maxflow solvers on the one hand, and between the Alpha Expansion and the
different implementations of Fast PD on the other hand.

4.6.1 The stereo-Matching Problem
In the stereo-matching task [111] we are given a stereo-pair in epipolar geometry
composed of a reference image Ir and a target image It, and a finite set of potential
disparitiesD “ rd0, d1, ...dDs, i.e., a one-dimensional apparent displacement along
the epipolar line. The goal is to retrieve the most likely disparity map, i.e., the
apparent motion of the pixel from the reference image to the target image. For
each stereo-pair, the support graph G “ rV, Es is inherited from the 4-connectivity
of the reference image. The node i directly corresponds to pixels pi “ pri, ciq
of row ri and column ci. The label set L simply indexes the set of potential
disparities D.

Defining the potentials: For the unary potential we rely on the ZNCC, Zero
Normalized Cross Correlation, coefficient [113]. For each label l P L and each
node i P V, we compute:

φiplq “ 1´ ZNCCW pIr, It, i,Dplqq

where ZNCC computes the ZNCC coefficient between the square patch of width
W extracted from image Ir around pixel pri, ciq and the patch of width W
extracted from image It around pixel rri, ci`Dplqs. We setW “ 5 to get patches
of size 5ˆ 5.

For the pairwise potential, we used the popular weighted l1-distance to favor
a piecewise constant disparity maps. For each edge pi, jq P E and each pair of
labels pa, bq P Lˆ L we define:

φijpa, bq “ pw0 ` w1 expp´w2||Irpiq ´ Irpjq||
2
2qq ˆ |Dpaq ´Dpbq|

where w0, w1 and w3 are positive real scalars.

Remote sensing stereo-pairs: We use a large stereo pair acquired with the
Ultracam camera during an aerial survey above an urban environment to extract
4 subsets of size 1500ˆ 1500. The figure 4.3 displays the reference image of each
subset. The stereo pair has been beforehand calibrated and globally registered.
Hence, the remaining registration only consists of an horizontal offset ranging
from ´50 to 50 pixels. We remind that the goal of this experiments is to study
the optimization algorithms with realistic problems and not to get the best
disparity maps. The figure 4.4 displays the obtained disparity maps.

We create 3 different sizes of stereo matching problems by sampling if needed
the stereo pair subsets:

• Small: the graph is 500ˆ 500 nodes and 21 labels are to be optimized.
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Factory subset Church subset

Buildings subset Industry subset

Figure 4.3 – Reference images of stereo pair subsets for the stereo-matching
experiments.

• Medium: the graph is 1000ˆ 1000 nodes and 51 labels are to be optimized.

• Large: the graph is 1500ˆ 1500 nodes and 101 labels are to be optimized.

Implementations: We consider only CPU C++ implementations compiled
with Clang (Apple LLVM version 8.0.0) on the same device: Mac-book Pro mid
2015 with 2.2 GHz Intel Core i7, 16GB of RAM, and a 64bits operating system.
All programs are compiled in 64bits.
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Factory subset Church subset

Buildings subset Industry subset

Figure 4.4 – Disparity maps: Brighter grays represent higher elevation.

4.6.2 Maxflow experiments for 4 connected graph
We start by investigating the maxflow algorithm since it is a building block for
the expansion phase of Fast PD.

Solvers

We evaluate 4 different maxflow-mincut algorithms: BK maxflow, GridCut (GC),
TV-linear and the TV-L2 (ROF).

Augmenting path solvers: The first two belong to the class of Augmenting
Path techniques. The famous BK maxflow [94], a standard in the computer
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vision, makes use of a heuristic to find an augmenting path that is well suited for
image derived problems. The original implementation assumes any connectivity
and therefore, it requires extensive additional data structure.

The GridCut maxflow based on [88] and [114] is a re-implementation of BK
maxflow that supports only grid graph. This additional assumption coupled with
an efficient data structure favoring cache locality allows to reduce the quantity
of additional data structure. We use the code provided by the authors [87].

Iterative solvers: The last two algorithms are iterative solvers based on pri-
mal dual optimization techniques. They are suited for both CPU and GPU
implementation and they require minimal additional data structure. We do not
expect these two algorithms to compete with the augmenting path technique.
Indeed, the augmenting path technique is extremely well tuned for serial compu-
tation (single thread CPU implementation). We implement our own version of
the TV-linear and the TV-L2 algorithms that favors cache friendliness. We stop
the algorithm when the average update of the primal variables is less than 0.1%
or if the number of iteration exceed 500.

Experiments settings

We create maxflow problems that correspond to the expansion phase of the
Alpha expansion. We consider the expansion of each label against the labeling
that minimizes the cost of unary terms. This helps us to create realistic problems
to compare our different maxflow algorithms.

We monitor for each algorithm the runtime. To estimate the accuracy of the
TV-linear and TV-L2 algorithm we compute the normalized PD-gap:

1000
primal´ dual

primal˚
(4.85)

Results

We present the results of all experiments in tables 4.1, 4.2 and 4.3.
In all our experiments the grid-cut maxflow performs more than twice as fast

as the BK-maxflow. This is consistent with the results announced by the grid-cut
authors for stereo-matching based problems. Both iterative solvers TV-linear and
TV-L2 perform significantly worse despite only returning an approximate solution.
This was to be somehow expected since the iterative solver does not exploit the
structure of dual solution space. The TV-L2 algorithm largely outperforms its
TV-linear counterpart which is conform to the theoretical convergence rates of
both methods. We note that the TV-L2 is only 4 times slower than the baseline.
Hence, it remains a great candidate for GPU implementation.

Given the results, we will only keep the augmenting path based maxflow
solver when implementing Fast-PD. While the grid-cut maxflow is faster, it lacks
the generality of the BK maxflow.
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Small size problems
Church Factory Buildings Industry Average

BK (baseline)
Runtime (ms) 45.16 44.68 45.40 43.38 44.66
Speed-up vs baseline 1 1 1 1 1
GC
Runtime (ms) 20.37 20.34 19.97 18.90 19.90
Speed-up vs baseline 2.22 2.20 2.27 2.29 2.24
TV-linear
Runtime (ms) 271.42 248.34 242.41 259.11 255.32
Speed-up vs baseline 0.17 0.18 0.19 0.17 0.17
Normalized PD-gap 4.79 2.10 5.80 3.76 4.11
TV-L2
Runtime (ms) 175.60 177.34 173.82 169.81 174.14
Speed-up vs baseline 0.26 0.25 0.26 0.26 0.26
Normalized PD-gap 0.91 1.21 1.10 0.99 1.05

Table 4.1 – Comparing maxflow algorithm on small scale problems.

Medium size problems
Church Factory Buildings Industry Average

BK (baseline)
Runtime (ms) 187.31 188.95 187.03 190.22 188.38
Speed-up vs baseline 1 1 1 1 1
GC
Runtime (ms) 187.31 188.95 187.03 190.22 188.38
Speed-up vs baseline 2.26 2.29 2.32 2.14 2.25
TV-linear
Runtime (ms) 2430.40 2221.84 2270.64 2413.98 2334.21
Speed-up vs baseline 0.08 0.09 0.08 0.08 0.08
Normalized PD-gap 5.41 4.90 5.95 4.22 5.12
TV-L2
Runtime (ms) 667.76 680.63 659.60 658.90 666.73
Speed-up vs baseline 0.28 0.28 0.28 0.29 0.28
Normalized PD-gap 0.74 0.78 0.78 0.81 0.78

Table 4.2 – Comparing maxflow algorithm on medium scale problems.

4.6.3 Fast PD implementation experiments
We propose to compare three different implementations of Fast-PD. As a baseline,
we use the C++ implementation provided by the original authors based on a
modified BK maxflow, we refer to it as Fast PD (NK). We propose two alternative
implementations: one also based on the BK maxflow, named Fast PD (BK),
and one based on the Grid-Cut maxflow, called Fast PD (GC). We note that
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Large size problems
Church Factory Buildings Industry Average

BK (baseline)
Runtime (ms) 462.92 454.19 451.51 490.31 464.74
Speed-up vs baseline 1 1 1 1 1
GC
Runtime (ms) 204.19 199.41 199.14 227.83 207.64
Speed-up vs baseline 2.27 2.28 2.27 2.15 2.24
TV-linear
Runtime (ms) 10282.85 9234.86 9718.06 10679.88 9978.91
Speed-up vs baseline 0.05 0.05 0.05 0.05 0.05
Normalized PD-gap 5.82 6.52 6.69 4.08 5.78
TV-L2
Runtime (ms) 1494.28 1506.16 1486.56 1501.95 1497.24
Speed-up vs baseline 0.31 0.30 0.30 0.33 0.31
Normalized PD-gap 0.76 0.76 0.79 0.80 0.78

Table 4.3 – Comparing maxflow algorithm on large scale problems.

an implementation using the BK maxflow can handle any graph architecture
while the implementation based on the Grid-Cut maxflow can only handle 4-
connectivity grid. However, we note that it is relatively easy to extend the
Grid-Cut version to 8-connectivity for instance.

Implementation memory footprint limitations

Since we work with large images in our context, we need to pay a close attention
to the memory footprint of our algorithms. Hence, our first experiment quantifies
the memory footprint of the different implementations. The table 4.4 gives the
memory required by each algorithm.

The memory footprint required by the original implementation of Fast-PD
makes it unsuitable in our context. Our implementations only needs on average
less than 10% of the original implementation memory requirement. The Fast PD
(GC) requires less memory than the Fast PD (BK) since the grid-cut maxflow
can take advantage of the implicit grid structure to avoid storing the neighbors
connectivity in memory. While our implementations still require a significant
amount of memory, they can easily run even on modern laptops.

Cache friendly indexation

We now proceed to exhibit the importance of cache friendliness when implement-
ing algorithm such as Fast-PD. To this end, we propose two experiments.

Fast PD (BK) experiment: The first one makes use of Fast PD (BK). We
compare the runtime when the edges are randomly ordered and when they are
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Fast PD (NK) Fast PD (BK) Fast PD (GC)
(baseline)

Small size problems:
Memory footprint 981 MB 115 MB 92 MB
Ratio vs baseline 1 0.1172 0.0938

Medium size problems:
Memory footprint 9066 MB 774 MB 648 MB
Ratio vs baseline 1 0.0854 0.0715

Large size problems:
Memory footprint 40.02 GB 2.91 GB 2.61 GB
Ratio vs baseline 1 0.0727 0.0652

Table 4.4 – Memory footprint for different Fast PD implementations.

ordered to maximize cache friendliness. For both cases the memory layout of
all edge related variables (weights and dual variables) matches the order of the
edges. All node related variables (the primal and height variables) are stored as
a continuous vector that follows the vertical lines of the graph.

The main cases for cache misses happen during the pre-edit phase of the
expansion. In this phase the algorithm computes the inner capacities of the
maxflow problem by scanning the dual variables following the order of the edges.
It also needs to fetch the two primal variables associated to the edge, and it might
also update the two height variables associated to the edge. If from one edge to
the next, those two primal and two height variables are far away in memory (not
in the same cache line), then a cache miss occurs, forcing to load a new cache
line. Sometime this loading time can be hidden by some others computations.
However, we illustrate that ordering the edges such that they follow the node
memory layout favors cache hits, and as a result boosts performance. The results
are presented in table 4.5.

Hence, just by properly ordering the memory layout we obtain up to 1.7
speed-up. Hence, from now on we only use the proper memory layout for our
experiments.

Fast PD (GC) experiment: For our second experiment we propose two
memory layouts for the node and edge related variables. The first layout is
exactly the one we used for the Fast PD (BK) with proper ordering. However,
the grid-cut maxflow algorithm uses a particular memory layout to favor cache
locality during the growing and augmenting phases. Hence, we derive a second
version of Fast PD (GC) that matches the grid-cut memory layout. The results
are reported in the table 4.6.

As for the Fast PD (BK) experiment, the proper memory layout leads to
improved performances up to 1.3. We note that for the pre-edit dual phase of
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Random ordering Proper ordering
(baseline)

Small size problems:
Average runtime (sec) 1.7 1.1
Average speed-up vs baseline 1 1.52

Medium size problems:
Average runtime (sec) 49.0 28.2
Average speed-up vs baseline 1 1.73

Large size problems:
Average runtime (sec) 330.2 189.6
Average speed-up vs baseline 1 1.74

Table 4.5 – Cache friendliness experiments for Fast PD (BK)

BK layout Grid-cut layout
(baseline)

Small size problems:
Average execution time (sec) 1.2 1.0
Average speed-up vs baseline 1 1.24

Medium size problems:
Average execution time (sec) 24.2 18.2
Average speed-up vs baseline 1 1.33

Large size problems:
Average execution time (sec) 144.6 116.4
Average speed-up vs baseline 1 1.24

Table 4.6 – Cache friendliness experiments for Fast PD (GC)

Fast-PD the grid-cut memory layout is a bit less efficient than the BK layout.
However, this is largely compensated by the gain obtained when filling the
maxflow capacities. Therefore, for Fast PD (GC) we elect to use the same
memory layout than grid-cut.

Growing source and sink trees

We now verify the claim of the original authors of Fast PD about growing only
the source tree. To this end, we perform a simple experiment. We solve each of
our stereo matching problem twice, once growing only the source tree and once
growing both source and sink trees. We carry-out this experiment for both Fast
PD (BK) and Fast PD (GC). The results are reported in table 4.7 and 4.8.

For Fast PD (BK) the results illustrates that as the problems grow larger
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Source and sink Source only
(baseline)

Small size problems:
Average runtime (sec) 1.2 1.1
Average speed-up vs baseline 1 1.04

Medium size problems:
Average runtime (sec) 32.2 28.5
Average speed-up vs baseline 1 1.13

Large size problems:
Average runtime (sec) 267.5 191.6
Average speed-up vs baseline 1 1.40

Table 4.7 – Growing tree experiments for Fast PD (BK)

Source and sink Source only
(baseline)

Small size problems:
Average runtime (sec) 1.0 0.9
Average speed-up vs baseline 1 1.05

Medium size problems:
Average runtime (sec) 21.2 18.5
Average speed-up vs baseline 1 1.15

Large size problems:
Average runtime (sec) 136.4 117.9
Average speed-up vs baseline 1 1.16

Table 4.8 – Growing tree experiments for Fast PD (GC)

the speed-up increases up to 1.4. For Fast PD (GC) the results follow the same
trend but the speed up stalls around 1.15. Both experiments support the claim
of the original authors of Fast-PD. Hence, we elect to only grow the source tree.

Comparing Fast PD implementations

We now compare the run time between the different implementations of Fast
PD. For Fast PD (NK) we did not run the experiments for large problems due
to the memory footprint. For the medium size problem, it is possible that the
OS decided to compress the memory allocated to Fast PD (NK). This would
have an impact on the runtime but we decided not to discard this experiment
since it is a normal behavior and we can expect our users to run in the same
situation. We remind that compressing the memory penalizes the runtime far
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less than swapping to hardrive even for SSD. We report the results in table 4.9.

Small size problems
Church Factory Buildings Industry Average

Fast PD (NK) (baseline)
Runtime (sec) 1.65 1.41 1.24 1.40 1.42
Speed-up vs baseline 1 1 1 1 1
Fast PD (BK)
Runtime (sec) 1.48 1.10 1.08 1.29 1.24
Speed-up vs baseline 1.11 1.28 1.14 1.08 1.15
Fast PD (GC)
Runtime (sec) 1.26 0.89 0.96 1.04 1.04
Speed-up vs baseline 1.30 1.57 1.29 1.35 1.37

Medium size problems
Church Factory Buildings Industry Average

Fast PD (NK) (baseline)
Runtime (sec) 28.35 25.96 18.73 23.24 24.07
Speed-up vs baseline 1 1 1 1 1
Fast PD (BK)
Runtime (sec) 24.01 35.11 23.09 28.69 27.73
Speed-up vs baseline 1.18 0.74 0.81 0.81 0.87
Fast PD (GC)
Runtime (sec) 15.80 22.05 15.86 18.37 18.02
Speed-up vs baseline 1.79 1.18 1.18 1.26 1.34

Large size problems
Church Factory Buildings Industry Average

Fast PD (NK)
Runtime (sec) - - - - -
Fast PD (BK)
Runtime (sec) 171.37 212.90 139.71 218.52 185.63
Fast PD (GC)
Runtime (sec) 108.88 118.24 96.60 137.57 115.32
Speed-up vs Fast PD (BK) 1.57 1.80 1.45 1.59 1.61

Table 4.9 – Comparison of Fast PD different implementations

For all experiments, Fast PD (GC) outperforms the other two implementa-
tions. This is an ideal situation since it is also the implementation that requires
the less memory. Hence, for 4-connected problems and in our context, Fast PD
(GC) should always be the algorithm of choice.

It was a bit surprising to us that for small size problems Fast PD (NK), the
original implementation, is the slowest version. In fact, the extra allocation time
needed by Fast PD (NK) cannot be compensated by the speed-up obtained in
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the last expansion phases. For medium size problem, we witness no evidence
that the OS decided to compress memory. In these settings, Fast PD (NK)
outperforms Fast PD (BK) by 10%. Given the amount of memory saved by Fast
PD (BK), this is good trade-off since we reduce the memory consumption by
90% to only increase the computation by 10%. For large problems, Fast PD
(GC) is on average 1.6 time faster than Fast PD (BK). This is mainly thanks to
a faster maxflow algorithm. However, it is important to keep in mind that Fast
PD (BK) can handle any graph connectivity.

To conclude, our two implementations are suitable for large size problems. In
term of running time both are very competitive since they outperform the original
problem except for the medium size problems for Fast PD (BK). For 4-connected
problems, we elect to use Fast PD (GC). For any other graph connectivity, we
use Fast PD (BK).

4.6.4 Fast PD vs Alpha-expansion
We now need to compare our implementation against the Alpha-expansion
algorithm. To this end, for the Alpha-expansion we use the C++ implementation
provided by [165] that we compile with the same optimization flags as our
implementations. As stated in [102], both Alpha-expansion and Fast-PD obtain
similar results in term of energy and solution. Hence, we only provide the results
of our experiments on running time in table 4.10.

Both Fast PD (BK) and Fast PD (GC) outperform Alpha Expansion sig-
nificantly. This is conform with the experiments of [102]. Fast PD (BK) is on
average twice as fast as the Alpha Expansion and Fast PD (GC) runs between 3
and 4 times faster than Alpha Expansion. Moreover, Fast-PD is also capable of
solving a larger class of problems than the Alpha Expansion. Hence, since the
memory footprint of both Fast PD (BK) and Fast PD (GC) is suitable to our
context, we elect to use Fast PD (BK) and Fast PD (GC) over Alpha Expansion.
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Small size problems
Church Factory Buildings Industry Average

Alpha Expansion (baseline)
Runtime (sec) 3.49 2.55 3.22 3.39 3.16
Speed-up vs baseline 1 1 1 1 1
Fast PD (BK)
Runtime (sec) 1.56 1.03 1.11 1.30 1.25
Speed-up vs baseline 2.24 2.47 2.90 2.60 2.53
Fast PD (GC)
Runtime (sec) 1.28 0.90 0.96 1.14 1.07
Speed-up vs baseline 2.73 2.84 3.36 2.98 2.96

Medium size problems
Church Factory Buildings Industry Average

Alpha Expansion (baseline)
Runtime (sec) 77.74 86.83 71.37 69.14 76.27
Speed-up vs baseline 1 1 1 1 1
Fast PD (BK)
Runtime (sec) 23.84 35.11 23.71 32.75 28.85
Speed-up vs baseline 3.26 2.47 3.01 2.11 2.64
Fast PD (GC)
Runtime (sec) 16.13 22.10 16.49 19.57 18.57
Speed-up vs baseline 4.82 3.93 4.33 3.53 4.11

Large size problems
Church Factory Buildings Industry Average

Alpha Expansion (baseline)
Runtime (sec) 409.76 399.50 354.75 557.20 430.30
Speed-up vs baseline 1 1 1 1 1
Fast PD (BK)
Runtime (sec) 171.78 213.84 140.24 227.14 188.25
Speed-up vs baseline 2.39 1.87 2.53 2.45 2.29
Fast PD (GC)
Runtime (sec) 108.47 118.44 97.02 143.02 116.74
Speed-up vs baseline 3.78 3.37 3.66 3.90 3.69

Table 4.10 – Comparing Fast PD and graph cuts.

4.7 Conclusion
This second technical chapter introduced the basic of non-convex optimization.
We presented and demonstrated the link between the maxflow and mincut
problems. We surveyed different algorithm to solve either a maxflow or mincut
problem. Then, we presented the α expansion algorithm along with Fast-PD. We
extensively experiment with our own implementation of Fast-PD in the context
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of stereo-matching where it drastically outperforms the original implementation.

Despite these improvement non convex optimization techniques remains
computationally intensive. Hence, we investigate in the next chapter coarsening
scheme for non convex optimization. We also provide a comparison in the context
of remote sensing between the non convex optimization techniques of this chapter
and the First order Primal-Dual methods of the previous chapter.
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Chapter 5

Coarsening schemes for
optimization techniques

5.1 Introduction and contributions

5.1.1 Introduction
In this chapter we consider coarsening scheme for the optimization techniques
presented in the two previous chapters 3 and 4.

Hence, we study coarsening schemes suited for the First order Primal-Dual
techniques for convex optimization. In this context, we review how to transform
our initial non convex problem to a series of convex surrogate problems. We
use the stereo-matching task of last chapter 4 to evaluate the performances and
trade-offs of different schemes.

We also investigate coarsening schemes for Graph-Cuts techniques. In this
context, the goal is to reduce the overall computational complexity. To this end,
we present a new coarsening scheme that uses machine learning techniques to
deliver impressive trade-off between speeding-up and precise optimization. As
for the First order Primal-Dual techniques, we perform experiments with the
stereo-matching task.

5.1.2 Chapter organization
The section 5.2 introduces and compares the smoothing and coarsening scheme
for first order primal-dual techniques. We discuss in section 5.3 the image
and energy pyramid schemes for graph-cuts optimization techniques. We also
introduce a powerful optimization framework named Inference by learning.
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5.1.3 Contributions
The main contribution of this chapters related to the coarsening scheme for
Graph-Cuts techniques where we present different approaches to coarsen an
MRF model. None only our coarsening scheme speeds up the optimization but
it also delivers more accurate solution. Finally, we present a novel framework
built on top of the coarsening scheme that drastically speeds-up the inference
while maintaining impressive accuracy.

5.2 Smoothing and Coarsening scheme for first
order primal dual optimization techniques

The first order primal dual scheme assumes that the function to optimize is
convex. However, we can not guaranty the convexity of the functions of interest.
Hence, we detail a scheme to approximate any given function with a convex
surrogate function.

To this end, we first survey the causes of non convexity. Then, we show that
we can easily create a convex surrogate function that locally approximates the
given function. Finally, we analyze two schemes, smoothing and coarsening, to
extend the approximation to larger support.

5.2.1 Preliminary work
Approximation measure

We propose to make use of the approximation measure to evaluate the quality
of the approximation of the surrogate function. We use the following definition
to measure how close a function f approximates a reference function fref :

100

ş

|fpxq ´ fref pxq|dx
ş

|fref pxq|dx
(5.1)

We note that many other approximation measures exist.

Origin of the non convexity

The non convexity can arise in both the matching and the regularization terms
of the given function.

Non convex matching term The matching term is the main culprit of non-
convexity for registration problems. The non convexity comes from the spatial
ressampling and is amplified by the matching criterion. We also note that the
matching criteria such as census, ZNCC or truncated norms are also non convex
functions.
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Image ressampling The spatial ressampling of an image I at point pi “
pri, ciq P Ω, the spatial support of image, of row ri and column ci with a
displacement vector di “ pdri , dciq defines the following function:

fI,pipdiq “ Ipri ` dri , ci ` dciq

The spatial ressampling of any natural digital image is almost statistically
guaranteed to yield a non convex function. We exemplify this phenomenon
by ressampling along the horizontal axis images of aerial survey acquired with
the UltraCam camera. We use the same images than in the stereo matching
application of the previous chapter. The figure 5.1 illustrates typical ressam-
pling functions pfI,piqi at four different points with the following ressampling
techniques: nearest, linear and cubic. We point the interested reader to [2] for a
detailed definition of these ressampling techniques.

Point 1 Point 2

Point 3 Point 4

Figure 5.1 – Non convexity and image ressampling.

The curves highlights the non convexity of the ressampling function indepen-
dently of the method. The non convexity is directly linked to image content.
Hence, it generally drastically varies within the same image. The main difference
between ressampling techniques is the smoothness. The cubic method always
generates smooth curves while the nearest and linear methods generate non
smooth curves with the nearest methods being the least smooth. We also note
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that the algorithmic complexity increases between methods, with the nearest
method being the fastest and the cubic method being the slowest. Yet, in
our context this only accounts for a negligible part of the total computational
complexity.

Matching criterion We survey how much the matching criterion amplifies
the non convexity. To this end, in the context of stereo matching introduced
in the last chapter we make use of the `1 and ZNCC matching criteria. We
display with figures 5.2 and 5.3 for the same points that figure 5.1 the curves
associated to each matching criterion with the different ressampling methods.

Point 1 Point 2

Point 3 Point 4

Figure 5.2 – Non convexity and ZNCC matching criterion.

We observe that the matching criterion amplifies the non convexity. Moreover,
the ZNCC being a non-convex function accentuates the non-convexity more than
the `1 matching criterion. For both criteria, we observe the function maintains
the smoothness property of the ressampling method. The matching criterion
also increases the difference between ressampling methods. We quantify this
phenomenon by taking the cubic ressampling as reference and computing the
approximation measure for the nearest and linear ressampling methods.

The table 5.1 details the approximation measure for all 4 subsets of the
stereo matching application of the previous chapter. The figure 5.4 displays the
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Point 1 Point 2

Point 3 Point 4

Figure 5.3 – Non convexity and `1 matching criterion.

histogram of the approximate measure for all 4 subsets.

Church Factory Buildings Industry Average
Ressampling
Nearest 2.27 1.60 2.48 2.02 2.09
Linear 0.62 0.42 0.72 0.55 0.58
ZNCC
Nearest 5.58 6.23 5.35 5.42 5.64
Linear 1.72 1.60 1.63 1.46 1.60
`1
Nearest 8.57 9.48 9.82 9.40 9.31
Linear 2.51 2.67 3.01 2.74 2.73

Table 5.1 – Approximation measure for the ressampling and computation of
unary terms using the ZNCC matching criterion.

The table 5.1 confirms that the matching criteria are amplifying the differences
between the ressampling methods. The difference between nearest and linear
ressampling is as expected significant. Surprisingly, the `1 matching criterion is
twice as more sensitive to the ressampling method than the ZNCC matching
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Ressampling

ZNCC `1

Figure 5.4 – Histogram of approximation measures for ressampling methods and
matching criteria.

criterion.

Non convex regularization terms In our context the regularization term
φij : RdˆRd Ñ R is generally a multi-dimensional bi-variate function composed
of a weighting term wij P R` and a non linear function ψ : RÑ R`:

φijpa, bq “ wij ψp||a´ b||εq, @pa, bq P Rd ˆ Rd

Hence, the non-convexity actually entirely comes from the function ψp.q when
it takes for instance one of the following forms:

Truncated: ψpxq “ minpx, γq, @px, γq P Rˆ R`

Cauchy: ψpxq “
1

1`

ˆ

x

γ

˙α , @px, γ, αq P Rˆ R` ˆ R`

Welsch: ψpxq “ exp

ˆ

´

ˆ

x

γ

˙α˙

, @px, γ, αq P Rˆ R` ˆ R`

We display the regularization functions in figure 5.5.
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Figure 5.5 – Non convex regularization
terms

• Truncated with γ “ 3,

• Cauchy with γ “ 7 and α “ 2,

• Welsch with γ “ 8 and α “ 1.5.

Taylor approximation for unary terms

When we are only interested to get a convex surrogate function on a small
interval we can rely on Taylor series.

Taylor series An infinite differentiable function f can be represented as an
infinite sum of terms, a Taylor series, computed from its derivatives:

fpxq “
8
ÿ

n“0

f pnqpaq

n!
px´ aqn

We note that the high order terms progressively vanish as x gets closer to the
neighborhood of a. This property allows us to build a polynomial of small order
that approximately represents a function around a certain point of interest.

For the unary term, we can exploit this idea in two different ways depending
on the convexity of the matching criterion.

1st order approximation Here, we assume that the matching criterion ρ is
a convex non decreasing function. Moreover, we limit ourself to the first order
polynomial functions to approximate the image ressampling. We obtain for a
given point of interest a P Rd:

Ipa` xq « Ipaq ` p∇Ipaqqt x

This approximation is also sometimes referred to as linearization.

Hence, we obtain for a convex function ρ the resulting approximation:

ρpIpa` xqq « ρpIpaq ` p∇Ipaqqt xq

The resulting function is a convex function since it is composed of a convex
function, the linear term, with a convex non decreasing function, the matching
criterion.
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2nd order approximation If we can’t make the previous assumption on
the matching criterion, then we proceed with a second order approximation.
We define as fp.q the composition of the image ressampling and the matching
criterion. By limiting the Taylor series of f to the second order we get:

fpxq « fpaq ` p∇fpaqqt x` xt∇2fpaqx

We note that this approximation is guaranteed to yield a convex function
only if the Hessian matrix ∇2fpaq is semi definite positive for any point a.
Hence, we not only set to zero all non diagonal elements but also the negative
diagonal elements of the Hessian matrix as in[170]. We refer to this modified
Hessian matrix as ∇2

`fpaq. Finally, we obtain the following 2nd order convex
approximation:

fpxq « fpaq ` p∇fpaqqt x` xt∇2
`fpaqx

Discretization of derivative operators The computation of a Taylor series
heavily relies on calculating derivatives of different orders. Considering we work
with discretized images we need to define the discretized counterparts of the
continuous derivative operators. Different discretization schemes exist. We limit
the definition to the case of a mono-dimensional function defined on a rectangular
uniform grid. The extension of each scheme to multi-dimensional variables is
straight forward. Since we always assume that our data are uniform gridded,
we will not discuss the extension of these definitions to non uniform grid or un
gridded space. However, we point the curious reader to the following works [124]
for more details on discretization.

For the following definitions we make use of the discrete function fp., .q :
Rˆ C Ñ R where R Ă N and C Ă N index respectively the row and columns of
the grid.

First order derivatives The forward, backward and central schemes are
the most used approximations to calculate the first order derivatives.

The forward method computes:

∇fpi, jq “
„

fpi` 1, jq ´ fpi, jq
fpi, j ` 1q ´ fpi, jq



The backward method computes:

∇ifpi, jq “
„

fpi, jq ´ fpi´ 1, jq
fpi, jq ´ fpi, j ´ 1q



The central method computes:

∇fpi, jq “
„

fpi` 0.5, jq ´ fpi´ 0.5, jq
fpi, j ` 0.5q ´ fpi, j ´ 0.5q



“

»

—

–

fpi` 1, jq ´ fpi´ 1, jq

2
fpi, j ` 1q ´ fpi, j ´ 1q

2

fi

ffi

fl

(with linear interpolation)
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We display in figure 5.6 and 5.7 examples of each discretization scheme.

Discretization scheme

Backward Central Forward

Figure 5.6 – Examples of discretization of the first order derivative: the red line
plots the derivative of the blue curve at the point marked by the red diamond
shape.

Discretization scheme

Backward Central Forward

Figure 5.7 – Analytic derivatives vs discretized derivatives for xÑ 1´ cosp0.2xq:
the red line plots the derivative estimated by the discretization scheme while the
blue curve displays the analytic derived derivative.

In agreement with their respective equations, the forward and backward
schemes are slightly out of phase. The central discretization scheme seems to
perform better. During our experiments, we will pursue this investigation in
more depth with functions derived from realistic unary terms.

Second order derivatives The forward, backward and central scheme
also extend to second order derivatives. We only gives the diagonals elements
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since we always discard the others in our Hessian approximation scheme:
The forward method computes:

∇2
iifpi, jq “ fpi` 2, jq ´ 2fpi` 1, jq ` fpi, jq

∇2
jjfpi, jq “ fpi, j ` 2q ´ 2fpi, j ` 1q ` fpi, jq

The backward method computes:

∇2
iifpi, jq “ fpi, jq ´ 2fpi´ 1, jq ` fpi´ 2, jq

∇2
jjfpi, jq “ fpi, jq ´ 2fpi, j ´ 1q ` fpi, j ´ 2q

The central method computes:

∇2
iifpi, jq “ fpi` 1, jq ´ 2fpi, jq ` fpi´ 1, jq

∇2
jjfpi, jq “ fpi, j ` 1q ´ 2fpi, jq ` fpi, j ` 1q

Comparison Once more we make use of the stereo matching task of last
chapter with the four UltraCam subsets. We focus on the unary terms created
by matching criteria derived from the Huber norm and the ZNCC criterion. We
propose a series of experiments to examine the various discretization schemes
and the different orders of approximation. We use bicubic image ressampling as
a baseline to compute the approximation measurement for disparities ranging
from ´1 to 1 along the horizontal axis.

Huber: 1st order vs 2nd order discretization schemes First, we de-
fine the matching criterion as the Huber norm with smoothing threshold in
t0, 5, 10u (images are quantized on 255 gray levels). We investigate the first order
approximation scheme with different discretization methods of the differential
operator, forward, backward and central schemes. We also study the second
order approximation scheme but only for the central differentiation scheme.

The table 5.2 details the approximation measure for all 4 subsets of the stereo
matching application of the previous chapter.

As expected, the 1st order central scheme and 2nd order central scheme
outperform the backward and forward schemes. Interestingly, the 2nd order
central scheme outperforms its 1st order counterparts for the `1. When the
smoothing increases, the 1nd order central scheme slightly outperforms its 2nd

order equivalent. Hence, we would only use either the 1st or 2nd order central
schemes.

ZNCC: 2nd order discretization scheme For the ZNCC criterion we
investigate how the approximation measure evolves with the size of patch from
3ˆ 3 to 7ˆ 7. We report our results in table 5.3.

The approximation improves with a growing size of the patch. In fact, the
ZNCC is made smoother when the patch grows larger. As a result the 2nd order
approximation becomes more accurate.
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Smoothing threshold of 0: `1 norm
Church Factory Buildings Industry Average

Discretization
1st order backward 20.14 28.42 19.06 19.30 21.73
1st order central 17.99 24.95 16.89 17.12 19.24
1st order forward 20.02 28.36 18.88 19.21 21.62
2nd order central 16.97 24.96 15.96 16.28 18.54

Smoothing threshold of 10
Church Factory Buildings Industry Average

Discretization
1st order backward 37.15 55.40 34.49 36.07 40.78
1st order central 28.96 40.46 26.87 28.08 31.09
1st order forward 36.78 53.48 34.25 36.05 40.14
2nd order central 29.90 44.98 27.87 29.28 33.01

Smoothing threshold of 20
Church Factory Buildings Industry Average

Discretization
1st order backward 39.13 57.44 36.82 37.74 42.78
1st order central 30.10 41.38 28.17 29.18 32.21
1st order forward 38.86 54.92 36.59 37.84 42.05
2nd order central 31.33 46.43 29.42 30.57 34.44

Table 5.2 – Approximation measurement for different discretization schemes with
Huber based matching criterion.

Church Factory Buildings Industry Average
Patch size
3ˆ 3 14.13 20.97 11.91 10.86 14.47
5ˆ 5 8.12 15.05 5.98 4.97 8.53
7ˆ 7 6.34 13.81 4.18 3.20 6.88

Table 5.3 – Approximation measurement for different patch sizes with ZNCC
based matching criterion.

Taylor approximation for pairwise terms

For the pairwise terms and the regularization criterion that we investigate, the
1st and 2nd order approximation lead to exactly the same results. Indeed, since
the functions of interest are non convex the 2nd order term is always set to 0.
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5.2.2 Approach
Ideally, we want to represent with as much accuracy as possible the energy
manifold with a convex function around a current solution. This clearly looks
like a chicken and egg problem. On the one hand we need a current solution to
define the locality where to represent the energy manifold. On the other hand,
we need to get a current solution that is as close as possible to the unknown
minimum of the energy manifold. Hence, we rely on an iterative scheme that:

1. Creates a surrogate function that approximate the energy manifold within
a certain range around the current solution.

2. Computes the minimum of this surrogate functions to get an updated
solution.

3. Defines a new range for the next approximation.

Moreover, we also need to quickly compute the convex surrogate function
otherwise any computational speed-up gained by using a primal-dual scheme
over the graph-cut scheme will be negated. To this end, we propose to work
directly on the images used to compute the energy manifold with two classic
approaches: Filtering and Coarsening.

5.2.3 Surrogate function via Filtering scheme
The first approach, that we refer to as the Filtering scheme, only modifies the
unary terms.

Filtering

We suppose we are given a function f : RÑ R to smooth and a continuous filter
k : RÑ R. The convolution of f by k gives the filtered function fs : RÑ R:

fspxq “

ż

kpyqfpx´ yqdy, @x P R

Since we mainly work with discretized functions we remind the definition
of the discrete convolution operator. The convolution of a discrete function
f : ZÑ R by a filter k : KÑ R with limited support K Ď Z computes:

fspiq “
ÿ

jPK
kpjqfpi´ jq, @i P Z

To simplify notations, we use the operator ‹ to indicate convolution in-
differently of the continuous and discrete domain. For instance the convolu-
tion of the function fp.q by filter kp.q is noted k ‹ f and we also write for all
i P Z, fspiq “ pk ‹ fqpiq.

If we assume that kp.q is a low pass filter, it reduces the average curvature
of the function it is convoluted to. Indeed, the second order derivatives gives
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the curvature along each directions. Since the second order derivative is a linear
operator we have:

pk ‹ fq2 “ k ‹ pf2q

Gaussian filtering

We choose to use a Gaussian filter as low pass filter. The Gaussian filter
minimizes group delay making it an ideal time domain filter as explained in
[13]. We remind the impulse response function of a Gaussian filter for a real d
dimensional variables x:

gpxq “
1

a

det p2πΣq
exp

ˆ

´
1

2
xtΣ´1x

˙

(5.2)

The matrix Σ is a SDP d ˆ d matrix controlling the filtering in each of
the d direction. For our filtering scheme, we only use some diagonal matrix
Σ “ diagpσ2

1 , σ
2
2 , . . . , σ

2
dq. Hence, the Gaussian filter simplifies to:

gpxq “
1

a

p2πqd
śd
j“1 σd

exp

˜

´

d
ÿ

j“1

x2
j

2σ2
j

¸

(5.3)

By nature the Gaussian filter has an infinite support. However, we notice
that when x grows large the value of gpxq tends to 0. Hence, in our context
we only use a limited support for the Gaussian filter. However, we properly
renormalize the output of filtering such that a constant signal is unmodified.

Figure 5.8 – 1-dimensional
Gaussian filters for different
values of σ.

We display in figure 5.8
the impulse response of 1-
dimensional Gaussian filters
for different values of σ. We no-
tice that as sigma grows larger,
the Gaussian filter has a larger
spread, and hence, a lower low
pass frequency cut-off.

Reducing curvature and non convexity

Filtering with a low pass filter helps to reduce the curvature. If we now assume
that the function fp.q is close to be convex, we can find a low pass filter kp.q that
after convolution creates a convex function. And, then we can use this created
convex function as a surrogate function in the first order primal dual scheme.
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We note that if the function fp.q is far from being convex we then need the
filter kp.q to be low pass filter with a potentially very low frequency cut-off to
get a convex function. The worst case scenario is when fp.q is strongly concave.
The only convex function we can obtain with filtering is the constant function
with value corresponding to the average of fp.q over its entire domain.

However, in our context, we are going to filter the images instead of filtering
the energy to maintain a low computational complexity. Hence, after filtering we
do not seek to obtain a fully convex function but only attempt to reduce the initial
non convexity. Moreover, even if the images are smooth, the matching criterion
can potentially create matching potentials with high curvature. The figure 5.9
displays the matching term obtained with the ZNCC matching criterion in the
context of stereo matching.

Figure 5.9 – ZNCC matching cost. From blue to red the images used to compute
the ZNCC are more and more smoothed. While the smoothing can reduce the
non convexity it also creates poor approximation of the original curve (bluest
curve).

The filtering scheme

To simplify notations in the algorithm 16 description we use the function
φi,Ir,It,di : r´1, 1s ˆ r´1, 1s Ñ R to represent the combination of the Taylor
approximation of image It around di and the matching criterion φ.

5.2.4 Surrogate function via coarsening
The second approach, referred as the coarsening scheme, is well established in
the computer vision community. Hence, we only give a brief description of it.
We refer the curious reader to [1] for more details.

Coarsening

The coarsening scheme simply downsamples the images used to compute the
energy manifold by a given factor, and then computes a coarsen energy manifold
from the downsampled images. We remind that image downsampling simply
consists of a low pass filtering followed by a decimation. Hence, the coarsening
scheme can be seen as an extension of the Filtering scheme. To simplify the
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Algorithm 16: Image filtering scheme
Data: Inputs: Ir, It, pφiqi, ψ, Σlist
Result: pdiqi

Initialize displacement field Ñ d “ 0

Compute weights of regularization pwijqij from Ir.
for σ P Σlist do

Compute the Gaussian filter Ñ gσ

Apply filtering on both image:

Ir,σ “ gσ ‹ Ir and It,σ “ gσ ‹ It

while pdiqi is updated do
Compute the Taylor approximation of unary term Ñ φi,Ir,σ,It,σ,di

Solve optimization problem:

min
xiPr´1,1s2

ÿ

iPV
φi,Ir,σ,It,σ,dipxiq `

ÿ

pi,jqPE

wijψp||di ` xi ´ dj ´ xj ||εq

Update displacement:

di Ð di ` xi, @i P V

notations we denote the upsampling by the Ò symbol and the downsampling
with the Ó symbol.

We describe the Coarsening scheme in algorithm 17.

5.2.5 Experiments
We proceed to evaluate the Filtering and the Coarsening schemes. We make use
of the stereo matching application of last chapter. Since we optimize non-convex
energy we use a baseline reference the solution obtained with the graph-cuts
optimization technique of chapter 4. For both schemes, we monitor the energy
ratio with respect to the energy obtained with Fast-PD. We also compute the
mean error in pixel using `1 norm with respect to the solution of Fast-PD.

Filtering vs coarsening

Our first experiment directly compares the filtering scheme to the coarsening
scheme.
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Algorithm 17: Coarsening scheme
Data: Inputs: Ir, It, pφiqi, ψ, Σlist
Result: pdiqi

Initialize displacement field at coarsest scale Ñ d “ 0
for σ P Σlist do

Compute the Gaussian filter Ñ gσ

Downsample both image:

Ir,σ “Ó pgσ ‹ Irq and It,σ “Ó pgσ ‹ Itq

Compute weights of regularization pwij,σqij from Ir,σ.
while pdiqi is updated do

Solve optimization problem:

min
xiPr´1,1s2

ÿ

iPVσ

φi,Ir,σ,It,σ,dipxiq`
ÿ

pi,jqPEσ

wij,σψp||di`xi´dj´xj ||εq

Update displacement field:

di Ð di ` xi, @i P Vσ

Upsample displacement field for next scale:

dÐÒ d

For both schemes, we compute 3 successive Taylor approximations per scale
and we perform 30 iterations of the Primal-Dual solver for each Taylor approxi-
mation. We found that increasing the number of iterations of the Primal-Dual
solver is only slightly modifying the results. For the filtering scheme we use a 2D
Gaussian filter with standard deviation ranging from 7 to 0.5 with a decrement of
0.5. A last iteration is performed with the unfiltered image. For the coarsening
scheme we use a 0.66 downsampling factor with 8 scales. We use the bicubic
filter to interpolate the images.

Table 5.4 summarizes the results.
From table 5.4 we see that for both schemes the energy ratio is mostly under

1.10 and the mean error is under 0.6. Both schemes are always out-performed by
the Fast-PD baseline. Hence, the non-convexity of the energy manifold clearly
needs to be taken into account by the optimization scheme. The figure 5.10
highlights the difference between the two schemes and the baseline.

For most experiments the Filtering scheme yields a lower energy than the
Coarsening scheme. However, we see that Mean Error criterion is often sig-
nificantly better for the Coarsening scheme. This indicates that the Filtering
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Small size problems
Church Factory Buildings Industry Average

Filtering
Energy (ratio) 1.02 1.03 1.04 1.02 1.03
Mean Error 0.30 0.28 0.27 0.27 0.28
Coarsening
Energy (ratio) 1.13 1.12 1.15 1.11 1.13
Mean Error 0.33 0.30 0.30 0.30 0.31

Medium size problems
Church Factory Buildings Industry Average

Filtering
Energy (ratio) 1.03 1.06 1.04 1.03 1.04
Mean Error 0.40 0.45 0.40 0.40 0.41
Coarsening
Energy (ratio) 1.09 1.08 1.12 1.08 1.09
Mean Error 0.44 0.34 0.42 0.42 0.40

Large size problems
Church Factory Buildings Industry Average

Filtering
Energy (ratio) 1.05 1.11 1.07 1.03 1.06
Mean Error 0.62 0.93 0.65 0.59 0.70
Coarsening
Energy (ratio) 1.08 1.07 1.10 1.06 1.08
Mean Error 0.53 0.42 0.57 0.57 0.52

Table 5.4 – Comparing the filtering and coarsening scheme.

scheme has found a solution of relative low energy, but higher than Fast-PD,
that significantly differs from the Fast-PD solution.

A visual inspection of the disparity maps confirms this phenomenon. For
instance, we see in figure 5.10 that the roof of the church is poorly estimated by
the filtering scheme.

The filtering scheme creates artifacts for the church and factory subsets.
Hence, for the following experiments we discard the filtering scheme to only
retain the coarsening scheme.
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Graph-Cuts Filtering scheme Coarsening scheme

Figure 5.10 – Comparing the filtering and coarsening schemes for the subsets
at full resolution. We notice that neither the Filtering and Coarsening scheme
resolve fine details such as the church’s bell tower or the factory chimney.
Moreover, the Filtering scheme produces unacceptable artifacts.

Coarsening 1D vs 2D

We now investigate the differences between the 1D and 2D coarsening. In the
context of the stereo-matching, we deal with a 1D problem. Hence, instead of 2D
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filtering and decimation we can only filter and decimate in the axis confounded
with the epipolar lines.

Small size problems
Church Factory Buildings Industry Average

Coarsening 1D
Energy (ratio) 1.12 1.13 1.17 1.12 1.13
Mean Error 0.33 0.31 0.30 0.30 0.31
Coarsening 2D
Energy (ratio) 1.13 1.12 1.15 1.11 1.13
Mean Error 0.33 0.30 0.30 0.30 0.31

Medium size problems
Church Factory Buildings Industry Average

Coarsening 1D
Energy (ratio) 1.09 1.08 1.13 1.08 1.09
Mean Error 0.44 0.35 0.44 0.41 0.41
Coarsening 2D
Energy (ratio) 1.09 1.08 1.12 1.08 1.09
Mean Error 0.44 0.34 0.42 0.42 0.40

Large size problems
Church Factory Buildings Industry Average

Coarsening 1D
Energy (ratio) 1.08 1.07 1.12 1.06 1.08
Mean Error 0.57 0.43 0.65 0.55 0.55
Coarsening 2D
Energy (ratio) 1.08 1.07 1.10 1.06 1.08
Mean Error 0.53 0.42 0.57 0.57 0.52

Table 5.5 – Comparing 1D and 2D coarsening schemes.

For both coarsening scheme the results are very similar. Both the visual
inspection of figure 5.11 and the review of table 5.5 show no significant improve-
ment of the 1D coarsening scheme over the 2D coarsening scheme. From now
on, we only retain the latter because of its better computational cost.
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Graph-Cuts 1D coarsening 2D coarsening

Figure 5.11 – Comparing 1D and 2D coarsening scheme. Both schemes give
essentially the same results.

Downsampling

We perform a last experiment that investigates the impact of the downsampling
factor. We vary the downsampling ratio from 0.5 to 0.8 with 0.1 increment. For
each ratio we adequately tune the number of scales such that the coarsest scale
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represents approximately the same downsampling factor with respect to the full
resolution images.

Small size problems
Church Factory Buildings Industry Average

Coarsening 0.5
Energy (ratio) 1.13 1.13 1.17 1.12 1.14
Mean Error 0.33 0.31 0.30 0.30 0.31
Coarsening 0.6
Energy (ratio) 1.13 1.12 1.16 1.12 1.13
Mean Error 0.33 0.30 0.30 0.30 0.31
Coarsening 0.7
Energy (ratio) 1.13 1.12 1.16 1.11 1.13
Mean Error 0.33 0.30 0.30 0.30 0.31
Coarsening 0.8
Energy (ratio) 1.12 1.12 1.15 1.11 1.12
Mean Error 0.33 0.30 0.30 0.30 0.31

Table 5.6 – Comparing downsampling factor of the coarsening scheme for small
size problems.

Medium size problems
Church Factory Buildings Industry Average

Coarsening 0.5
Energy (ratio) 1.10 1.09 1.13 1.09 1.10
Mean Error 0.45 0.36 0.43 0.44 0.42
Coarsening 0.6
Energy (ratio) 1.10 1.09 1.12 1.08 1.09
Mean Error 0.44 0.35 0.42 0.42 0.41
Coarsening 0.7
Energy (ratio) 1.09 1.08 1.11 1.07 1.09
Mean Error 0.43 0.33 0.41 0.41 0.40
Coarsening 0.8
Energy (ratio) 1.09 1.07 1.11 1.07 1.08
Mean Error 0.43 0.33 0.41 0.40 0.39

Table 5.7 – Comparing downsampling factor of the coarsening scheme for medium
size problems.

The tables 5.6, 5.7 and 5.8 all indicate that a progressive downsampling
yields better results. However, the improvement is relatively small as we can see
in figure 5.12. Moreover, high value downsampling factors require more scales
which lead to larger computational complexity. For those reasons we advocate
to choose a downsampling factor between 0.5 and 0.6.
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Large size problems
Church Factory Buildings Industry Average

Coarsening 0.5
Energy (ratio) 1.09 1.08 1.11 1.07 1.09
Mean Error 0.57 0.46 0.60 0.60 0.56
Coarsening 0.6
Energy (ratio) 1.09 1.07 1.10 1.07 1.08
Mean Error 0.54 0.44 0.57 0.58 0.53
Coarsening 0.7
Energy (ratio) 1.08 1.07 1.09 1.06 1.07
Mean Error 0.53 0.41 0.56 0.58 0.52
Coarsening 0.8
Energy (ratio) 1.07 1.06 1.08 1.06 1.07
Mean Error 0.52 0.40 0.56 0.58 0.51

Table 5.8 – Comparing downsampling factor of the coarsening scheme for large
size problems.
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Graph-Cuts coarsening 0.5 coarsening 0.8

Figure 5.12 – Impact of downsampling factor for the coarsening scheme.
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5.3 Coarsening scheme for Graph-Cuts solvers
We now introduce coarsening schemes for Graph-Cuts solvers.

5.3.1 Pairwise undirected discrete MRF
Let us recall the notations. We represent a pairwise undirected discrete MRF
modelM as follow:

M “
`

V, E ,L, tφiuiPV , tφijupi,jqPE
˘

. (5.4)

The support graph G “ pV, Eq is composed of a set of nodes V and a set
of undirected edges E . The random variable x “ pxiqiPV defines the state of
each node of V, and takes values in the discrete label space L Ă N: we assume
without loss of generality the same state space for all random variables with each
label of L representing one of these possible states. For each node i P V, the
potential function φi : LÑ R encodes the unary cost of variables xi. For each
edge pi, jq P E , the potential function φij : L2 Ñ R encodes the pairwise cost of
variable xi and xj . The collection of functions tφiuiPV and tφijupi,jqPE form the
unary potentials and, respectively, the pairwise potential. We also assume that
the unary and pairwise potentials are computed from the reference and target
images as for the stereo-matching application.

The energy of the MRF, given a solution x, computes the sum of the potentials:

Epx|Mq “
ÿ

iPV

φipxiq `
ÿ

pi,jqPE

φijpxi, xjq (5.5)

The MAP inference computes a configuration of minimum energy over the
entire solution space L|V|:

xMAP “ arg min
xPL|V|

Epx|Mq (5.6)

5.3.2 Image pyramid
This first coarsening scheme mimics the image pyramid scheme for first order
primal dual method. The key idea is to create a coarse MRF model by computing
the potentials from downsampled reference and target images as in [146] or [62].

5.3.3 Energy pyramid
Another coarsening method introduced in [35], [34], [49] or [97] relies on first
computing the potential of the MRF model at the finest scale, and then directly
apply the coarsening on the MRF model.

Coarsening

To coarsen an MRF model, we need to define how to coarsen the nodes (spatial
component) but also how to coarsen the labels (domain component).

150



Algorithm 18: Image coarsening scheme for Graph-Cuts optimization
Data: Inputs: Ir, It, Σlist
Result: pdiqi

Initialize displacement field at coarsest scale Ñ d “ 0
for σ P Σlist do

Compute the Gaussian filter Ñ gσ

Downsample both image:

Ir,σ “Ó pgσ ‹ Irq and It,σ “Ó pgσ ‹ Itq

Compute coarsen MRF modelMσ from Ir,σ and It,σ.

Convert the displacement field d to label xσ

Optimize MRF model to obtain updated labeling xσ

Update displacement field d from labeling xσ

Upsample displacement field for next scale:

dÐÒ d

Node coarsening The nodes coarsening reduces the solution space by group-
ing together nodes of the input MRF’s support graph. From the support graph
G of an input modelM, the node grouping function gn : V Ñ V 1 constructs the
coarsen support graph G1 “ pV 1, E 1q:

V 1 “tgnpiq : i P Vu (5.7)
E 1 “tpgnpiq, gnpjq : pi, jq P E , gnpiq ‰ gnpjqu (5.8)

An example of grouping function and its associated coarsening is shown in
Fig. 5.13.

The coarse model M1 “
`

V 1, E 1,L, tφ1iuiPV 1 , tφ1ijupi,jqPE 1
˘

naturally inherits
the original support graph and its potentials are computed from the potentials
of the input model M and the node coarsening function. The coarse unary
potentials are computed as:

p@i1 P V 1q, φ1i1plq “
ÿ

iPV|i1“gnpiq

φiplq `
ÿ

pi,jqPE|i1“gnpiq,i1“gnpjq

φijpl, lq (5.9)

The coarse pairwise potentials are defined as:

p@pi1, j1q P E 1q, φ1i1j1pl0, l1q “
ÿ

pi,jqPE|i1“gnpiq,j1“gnpjq

φijpl0, l1q (5.10)
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Figure 5.13 – The blue circles and the green square represent the unary poten-
tials attached to nodes of V and the pairwise potentials associated to edges E
respectively. The blue squares represent the coarse unary potentials of nodes in
V 1 and the green rectangle are the coarse pairwise potentials of edges belonging
to E 1.

Slightly abusing mathematical notation, we denote the coarse model gnpMq “
M1. We also make use of g´1

n px
1q “ x, where xi “ x1gnpiq for each i P V, to

“upsample” a solution x1 ofM1 to a solution of x ofM.
The node coarsening implies that the nodes of V grouped together are assigned

the same state.

Label coarsening The label space coarsening reduces the solution space by
coarsening the label space of each random variables. From the input label space
L we make use of a label grouping function gl : LÑ N to compute the coarse
label space L1:

L1 “tglplq : l P Lu . (5.11)

The coarse model M1 “
`

V, E ,L1, tφ1iuiPV , tφ1ijupi,jqPE
˘

inherits the coarse
label space L1 and its potentials are computed from the potentials of the input
modelM and the label coarsening function gl. The coarse unary potentials are
computed as:

p@l1 P L1q, φ1ipl
1q “

ÿ

l1PL|l1“glplq

φiplq (5.12)

The coarse pairwise potentials computation follows:

p@pl0, l1q P Lˆ Lq, φ1ijpl
1
0, l
1
1q “

ÿ

pl0,l1qPLˆL|l10“glpl0q,l11“glpl1q

φijpl0, l1q (5.13)

Composing node and label coarsenings One interesting property of the
node and label coarsening operators is that they are commutative with respect
to the composition operator. This means that applying the node coarsening
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before the label coarsening gives exactly the same coarse model as applying
the label coarsening before the node coarsening. In the following paragraph,
we will simply use the term of coarsening and the coarsening function g where
g “ gn ˝ gl.

Energy pyramid scheme

Label pruning In this coarsening framework we keep track of the status of
each label of each node with the pruning matrix A : V ˆLÑ t0, 1u. This matrix
indicates whether a label of a node is active or pruned. Only active label can be
part of the optimization solution.

Api, lq “

"

1 if label l is active at vertex i
0 if label l is pruned at vertex i (5.14)

During the coarse-to-fine scheme, we also make use of a pruned solution
space that restricts the initial solution space to solutions formed with only active
labels:

SpM, Aq “
!

x P L|V| | p@iq, Api, xiq “ 1
)

.

Pruning function To define whether a label is active or pruned we make
use of the heuristically defined pruning function p. For instance, in the stereo-
matching context, for a given node, labels that represent a potential displacement
that are far from the current solution is good pruning candidates.

Coarse-to-fine optimization Given an input modelM and a sequence of N
grouping functions pgpsqq0ďsăN , our framework first computes a series of N ` 1
progressively coarser models pMpsqq0ďsďN :

Mp0q “M and p@sq, Mps`1q “ gpsqpMpsqq . (5.15)

This builds a coarse-to-fine representation of the input model, where each
scale s P 0 ď s ă N is populated by a modelMpsq and a pruning matrix Apsq.
Each coarse model is defined as:

Mpsq “

´

Vpsq, Epsq,L, tφpsqi uiPVpsq , tφ
psq
ij upi,jqPEpsq

¯

(5.16)

Our progressive MAP estimation framework starts with the coarsest scale N ,
and initializes all elements of its pruning matrix ApNq to 1, i.e., all labels are
active. From this point, we repeat an iterative procedure at each scale from the
coarsest to the finest scale. At scale s, our framework applies the following steps:

i. Compute the MAP-solution or its approximation (via any existing MRF
optimization method) of the modelMpsq over the reduced solution space
SpMpsq, Apsqq:

xpsq « arg minxPSpMpsq,ApsqqEpx|Mpsqq .
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ii. Given the estimated MAP-solution xpsq, compute the feature map, defined
in 5.3.4, f psq : Vpsq ˆ LÑ RK

iii. Label pruning: Update the pruning matrix Apsq with the pruning function.

iv. Upsample the pruning matrix Apsq to the next scale:

p@i P Vps´1q, @l P Lq, Aps´1qpi, lq “ Apsqpgps´1q
n piq, g

ps´1q
l plqq .

v. Upsample solution xpsq to the next scale to warm start next MAP-inference
@i P Vps´1q: xps´1q

i Ð x
psq

gps´1qpiq

The Energy pyramid scheme algorithm

The pseudocode of the resulting algorithm appears in Algo. 19.

Algorithm 19: Energy pyramid scheme
Data: ModelM, grouping functions pgpsqq0ďsăN , classifiers pzpsqq0ăsďN
Result: xp0q
Compute the coarse to fine sequence of MRFs:
Mp0q ÐM
for s “ r0 . . . N ´ 1s do
Mps`1q Ð gpsqpMpsqq

Optimize the coarse to fine sequence of MRFs over pruned solution spaces:
Initialize xpNq and ApNq ” 1
for s “ rN...0s do

Update xpsq by MAP inference: xpsq « arg minxPSpMpsq,ApsqqEpx|Mpsqq

if s ‰ 0 then
Label pruning: update current pruning matrix Apsq
Upsample to next finest pruning matrix: Aps´1q Ð rgps´1qs´1pApsqq
Upsample xpsq to initialize solution xps´1q of next scale:
xps´1q Ð rgps´1qs´1pxpsqq

5.3.4 Inference by Learning
We propose the enhance the energy pyramid scheme by revisiting how the labels
are pruned. Instead of relying on pruning heuristics we make use of learning
techniques to define the pruning function as in [35].

Pruning: features and classifiers

Rightly deciding on which label to prune at each scale is essential for the energy
pyramid scheme. Wrongly pruning labels belonging to the MAP solution leads to
decreasing the accuracy of the estimated solution at the finest scale. Maintaining
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too many labels active means to explore at each scale a large solution space
during inference, resulting in a poor speed-up for the overall MAP estimation.
The efficiency of our pruning approach relies on both the feature map f psq and
the off-line trained classifiers zpsq. We need the feature map to be discriminative
but efficient to compute and the classifiers to be precise but fast to apply.

Features We form the feature map f psq : Vpsq ˆ L Ñ RK by stacking K
individual real-valued features defined on Vpsq ˆ L. As in [35], we focus on
generality rather than any dedicated computer vision task. Hence, we only
compute features that depend on the energy function and its current solution
xpsq, letting to future research the definition of task specific features. At each
scale we compute the following features:

Strength of discontinuity We compute the SODpsq feature to account
where the solution xpsq is going against the regularization prior enforcing smooth-
ness. For each node in Vpsq we compute the sum of the potential of its related
pairwise terms:

SODpsqpi, lq “
ÿ

j|ijPEpsq
φijpx

psq
i , x

psq
j q (5.17)

Local energy variation This feature computes the normalized discretized
gradient of the energy manifold around the current solution xpsq. The local
energy variation feature, LEVpsq, is defined for any i P Vpsq and l P L as follows:

LEVpsqpi, lq “
φ
psq
i plq ´ φ

psq
i px

psq
i q

N
psq
V piq

`
ÿ

j:pi,jqPEpsq

φ
psq
ij pl, x

psq
j q ´ φ

psq
ij px

psq
i , x

psq
j q

N
psq
E piq

(5.18)
with N

psq
V piq “ cardti1 P Vps´1q : gps´1qpi1q “ iu and N

psq
E piq “ cardtpi1, j1q P

Eps´1q : gps´1qpi1q “ i, gps´1qpj1q “ ju.

Unary “coarsening” This feature UCpsq aims at estimating the amount
of information lost during the coarsening. It is defined for any i P Vpsq and l P L:

UCpsqpi, lq “
ÿ

i1PVps´1q|gps´1qpi1q“i

|φ
ps´1q
i1 plq ´

φ
psq
i plq

N
psq
V piq

|

N
psq
V piq

(5.19)

Distance to the current label This feature DLpsq is defined for pairwise
terms pφijq that can be expressed as a combination of a so-called distance
function d : Lˆ LÑ R` and a scalar weight wij :

φijpl0, l1q “ wijdpl0, l1q (5.20)
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It computes for each node i and each label the minimum “distance” given by
d to the active label over all nodes of the k-ring of node i 1. We denote Rpsqk piq
all the nodes belonging to the k-ring of node i P Vpsq . For each node i P Vpsq
and label l P L, we compute:

DLpsqpi, lq “ min
jPRpsqk piq

dpxpsqpjq, lq (5.21)

Feature normalization For a given computer vision task, parameters
might change from one input to the other leading to scaling factors independently
applied on the unary and pairwise terms. Hence, we normalize the SODpsq,
LEVpsq, UCpsq and DLpsq features to make them insensitive to such scaling. To
this en, we divide each of these feature by the average of the minimum values
over all labels for each node.

Learning the cascade of classifiers

Defining the pruning ground truth We train the classifiers from a given
training set of MRFs all formulating the same class of computer vision tasks,
e.g., stereo-matching. For each MRF of the training set, we apply the algorithm
21 without any pruning (i.e., Apsq ” 1). At the finest scale, we obtain an
(approximate) MAP solution. To compute the pruning ground truth, we make
use at each scale of the binary function XpsqMAP : Vpsq ˆLÑ t0, 1u. For the finest
scale, we can simply convert the approximate MAP solution found:

p@i P V,@l P Lq, X
p0q
MAPpi, lq “

#

1, if l is the MAP label of node i
0, otherwise

(5.22)

To obtain the pruning ground truth at each scale s ą 0, we simply iteratively
apply the grouping functions:

p@i P Vpsq,@l P Lq, X
psq
MAPpi, lq “

ł

i1PVps´1q:gpsqpi1q“i

X
ps´1q
MAP pi

1, lq (5.23)

where
Ž

denotes the binary OR operator.

Cascade training Since for each scale the feature map heavily depends on
current solution, we need to anticipate the impact of the pruning of previous
coarse scales. This is a major difference from the training method proposed in
[35]. To this end we propose the following learning framework:

Classifier training At each scale we need to train a classifier zpsq from a
feature map f psq and a pruning ground truth XpsqMAP. The pruning ground truth
X
psq
MAP defines the class c0 from c1, where c0 corresponds to the 0 values in XpsqMAP,
1The set of nodes that are reachable by a path starting from i and traversing at most k

edges
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Algorithm 20: Cascade learning of pruning classifier framework
Data: Set of training models pMmq0ďmăM , grouping functions

pg
psq
m q0ďsăN , pruning ground truth pXpsqMAP,mq0ăsďN

Result: pzsq0ďsăN
for s “ rN...0s do

for m “ r0...M s do
Update xpsqm by MAP inference:
x
psq
m « arg min

xmPSpMpsq
m ,A

psq
m q

Epxm|Mpsq
m q

if s ‰ 0 then
Compute the feature MAP f

psq
m from current solution xpsqm

if s ‰ 0 then
Train pruning classifier zs from pf

psq
m qm and pXpsqMAP,mqm

for m “ r0...M s do
Update pruning matrix Apsqm pi, lq “ z

psq
postpf

psq
post,mpi, lqq

Upsample to next finest pruning matrix:
A
ps´1q
m Ð rg

ps´1q
m s´1pA

psq
m q

Upsample xpsqm to initialize solution xps´1q
m of next scale:

x
ps´1q
m Ð rg

ps´1q
m s´1px

psq
m q

i.e., the label can be pruned, while c1 corresponds to the 1 values in XpsqMAP, i.e.,
the labels that should remain active since they are part of the ground truth
estimated MAP at the finest scale.

We normalize all features of f psq to the r0, 1s interval to avoid numerical
instability. We treat nodes sitting on the border of a strong discontinuity
separately from the nodes laying in smooth regions. Indeed, a discontinuity at
coarse scale is very likely to be refined during the next finest scales. Hence,
there is more uncertainty on the solution in the vicinity of discontinuities than
on smooth areas. Using the SOD feature, we split the feature map f psq into
a first group f

psq
0 containing only features where SODpsq ď ρs (smooth area),

and a second group f
psq
1 containing only features where SODpsq ą ρ (strong

discontinuity). We also split the ground truth XpsqMAP the same way.

Since we need to compromise between good enough accuracy during training
and fast evaluation at test time, we rely on linear classifiers for each group.
To that matter, we train a standard linear C-SVM, Support Vector Machine,
classifier with l2-norm regularization. We refer the reader to [37] for details about
SVM. As we have many more samples in class c0, we randomly trim c0 such
that its cardinal, cardpc0q, reaches a 10 to 1 ratio with respect to cardpc1q, the
cardinal of c1 (cardp¨q counts the number of samples in each class). This greatly
speeds-up the training without compromising its quality. Nevertheless, we still
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need to balance the classes c0 and c1 so that a misclassification in each class
accounts for the same energy in the SVM object function. We also want to limit
misclassification in c1 since this kind of error prunes labels that are part of the
MAP. Hence, we weigh c0 to 1 and weigh c1 to λ cardpc0q

cardpc1q
with λ P R`. We name

the parameter λ the pruning aggressiveness factor as it relates to proportion of
labels that get pruned.

To determine the best value for the Cs parameter common to both SVM
objective functions and the best value for the threshold ρs, we equally split the
samples into a training set and a validation set. We introduce a quality factor
that accounts for the percentage of samples properly classified:

QF pCs, ρsq “ λ
cardpc0q

cardpc1q

ÿ

pi,lqPc1

zpsqpf psqpi, lqq`
ÿ

pi,lqPc0

p1´zpsqpf psqpi, lqqq (5.24)

We perform a simple grid search over Cs P r0.01, 0.1, 1, 10, 100, 1000s and
ρs P r0.0001, 0.001, 0.01, 0.1, 0.25, 0.5s and we retain the couple rCs, ρss that
maximizes the QF factor on the validation set.

During on-line testing, the classifier zpsq applies the linear classifier learned
for group f psq0 if SODpsq ď ρ or group f psq1 if SODpsq ą ρs as summarized in 20.

Inference by Learning algorithm

Finally, Inference by Learning algorithm built on the multi-scale approach to
speed-up the MAP inference where we iteratively reduce the solution space by
progressively estimating the MAP solution. We proceed by:

(i) Building a coarse to fine representation of the input model.

(ii) At each scale, we alternate between:

- Refining the MAP solution with the current scale model.

- Pruning the solution space by cleverly leveraging information of the
current scale MAP estimation.

The pseudocode of the resulting algorithm appears in Algorithm 21.

5.3.5 Experiments
For this set of experiments we first evaluate and compare the Image and Energy
pyramid schemes. Then, we evaluate the Inference by Learning method. Again,
we make use of the stereo matching application of last chapter. As a baseline,
we use the solution obtained with the α-expansion optimization technique. For
both scheme, we monitor the energy ratio with respect to the energy obtained
with α-expansion. We also compute the mean error using `1 norm with respect
to the solution of the Graph-Cuts method.
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Algorithm 21: Inference by learning framework
Data: ModelM, grouping functions pgpsqq0ďsăN , classifiers pzpsqq0ăsďN
Result: xp0q
Compute the coarse to fine sequence of MRFs:
Mp0q ÐM
for s “ r0 . . . N ´ 1s do
Mps`1q Ð gpsqpMpsqq

Optimize the coarse to fine sequence of MRFs over pruned solution spaces:
Initialize xpNq and ApNq ” 1
for s “ rN...0s do

Update xpsq by MAP inference: xpsq « arg minxPSpMpsq,ApsqqEpx|Mpsqq

if s ‰ 0 then
Compute feature map f psq
Label pruning: update current pruning matrix
Apsqpi, lq “ zpsqpf psqpi, lqq

Upsample to next finest pruning matrix: Aps´1q Ð rgps´1qs´1pApsqq
Upsample xpsq to initialize solution xps´1q of next scale:
xps´1q Ð rgps´1qs´1pxpsqq

Image and Energy pyramids

Image pyramid For the Image pyramid, we vary the downsampling factor
from 0.5 to 0.8. Furthermore, at each scale, we set the label range to be within
5 pixels of the current solution.

We present the obtained results in tables 5.9, 5.10 and 5.11. For all exper-
iments the Image pyramid scheme for Graph-Cuts delivers performances very
close to the baseline and significantly outperforms the Image pyramid scheme for
Primal dual techniques. This indicates that the non-convexity of the function to
optimize plays a central role.
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Small size problems
Church Factory Buildings Industry Average

Coarsening 0.5
Energy (ratio) 1.00 1.01 1.00 1.00 1.00
Mean Error 0.02 0.02 0.01 0.01 0.02
Coarsening 0.6
Energy (ratio) 1.00 1.00 1.00 1.00 1.00
Mean Error 0.02 0.01 0.01 0.01 0.02
Coarsening 0.7
Energy (ratio) 1.00 1.00 1.00 1.00 1.00
Mean Error 0.02 0.01 0.01 0.02 0.02
Coarsening 0.8
Energy (ratio) 1.00 1.00 1.00 1.00 1.00
Mean Error 0.02 0.01 0.02 0.01 0.02

Table 5.9 – Image pyramid scheme for small size problems.

Medium size problems
Church Factory Buildings Industry Average

Coarsening 0.5
Energy (ratio) 1.02 1.01 1.01 1.01 1.01
Mean Error 0.09 0.06 0.10 0.08 0.08
Coarsening 0.6
Energy (ratio) 1.01 1.01 1.01 1.00 1.01
Mean Error 0.10 0.06 0.08 0.08 0.08
Coarsening 0.7
Energy (ratio) 1.01 1.01 1.01 1.00 1.01
Mean Error 0.06 0.06 0.10 0.08 0.07
Coarsening 0.8
Energy (ratio) 1.01 1.01 1.01 1.00 1.01
Mean Error 0.06 0.05 0.08 0.09 0.07

Table 5.10 – Image pyramid scheme for medium size problems.
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Large size problems
Church Factory Buildings Industry Average

Coarsening 0.5
Energy (ratio) 1.02 1.01 1.02 1.01 1.01
Mean Error 0.21 0.12 0.19 0.25 0.19
Coarsening 0.6
Energy (ratio) 1.02 1.01 1.01 1.01 1.01
Mean Error 0.25 0.11 0.16 0.20 0.18
Coarsening 0.7
Energy (ratio) 1.01 1.01 1.01 1.01 1.01
Mean Error 0.18 0.10 0.16 0.22 0.17
Coarsening 0.8
Energy (ratio) 1.01 1.01 1.01 1.00 1.01
Mean Error 0.17 0.10 0.16 0.19 0.16

Table 5.11 – Image pyramid scheme for large size problems.

161



Energy pyramid For the Energy pyramid, we evaluate both the node and
label coarsening. For node coarsening, we investigate different geometric grouping
functions gn that groups the nodes in a rk ˆ ks fashion, with k being a positive
integer in t1, 2, 3, 4u. For the label coarsening, we set the grouping function
gl to group the labels of L by set of m labels with m being a positive integer
among t1, 2, 3, 4u. We select one every m labels to form the set of coarse labels
L1. Unselected labels are grouped with the closest selected label. If a tie appears
for an unselected label, we arbitrarily associate it to the closest selected label
of smaller index. As for the image pyramid, at each scale, we only activate the
labels that are within a 5 label range of the current labeling solution.

Due to the number of experiments we only report the average results over
the four subset Church, Factory, Buildings and Industry.

Small size problems
Label coarsening

Node coarsening 1 2 3 4
1

Energy (ratio) NA 1.01 1.00 1.00
Mean Error NA 0.01 0.01 0.01

2
Energy (ratio) 1.01 1.01 1.00 1.00
Mean Error 0.03 0.01 0.01 0.01

3
Energy (ratio) 1.01 1.01 1.00 1.00
Mean Error 0.05 0.01 0.01 0.01

4
Energy (ratio) 1.01 1.01 1.00 1.00
Mean Error 0.05 0.01 0.01 0.01

Table 5.12 – Energy pyramid scheme for small size problems.

The 5.12, 5.13 and 5.14 summarize all the experiments. In our setting,
without any label coarsening the energy scheme is only exploring the immediate
neighborhood of the current solution. Hence, if the initialization is good, we get
acceptable results as demonstrated by small size experiments or for experiments
with label coarsening set to 1 and node coarsening set to 2. However as we
increasing the node coarsening to 3 or 4, we deteriorate the initialization during
the node coarsening. As a result we get poor performance since the method
might not explore the relevant label range.

When we combine both node and label coarsening, we obtain results close to
be on par with the baseline and that significantly outperform the image pyramid
scheme for both alpha-expansion and Primal-Dual optimization as pictured by
figure 5.15. We explain this improvement due to the fact that the energy pyramid
scheme represents the initial energy with better precision than the image pyramid
approaches. This is illustrated by figure 5.14 where at coarse scales the solutions
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Medium size problems
Label coarsening

Node coarsening 1 2 3 4
1

Energy (ratio) NA 1.00 1.00 1.00
Mean Error NA 0.04 0.04 0.03

2
Energy (ratio) 1.01 1.00 1.00 1.00
Mean Error 0.08 0.04 0.03 0.03

3
Energy (ratio) 1.05 1.00 1.00 1.00
Mean Error 0.23 0.05 0.04 0.04

4
Energy (ratio) 1.13 1.00 1.00 1.00
Mean Error 0.48 0.05 0.04 0.04

Table 5.13 – Energy pyramid scheme for medium size problems.

Large size problems
Label coarsening

Node coarsening 1 2 3 4
1

Energy (ratio) NA 1.00 1.00 1.00
Mean Error NA 0.06 0.06 0.06

2
Energy (ratio) 1.02 1.00 1.00 1.00
Mean Error 0.19 0.08 0.06 0.06

3
Energy (ratio) 1.08 1.00 1.00 1.00
Mean Error 0.51 0.10 0.06 0.06

4
Energy (ratio) 1.26 1.01 1.00 1.00
Mean Error 1.78 0.10 0.07 0.06

Table 5.14 – Energy pyramid scheme for large size problems.

obtained by the Energy pyramid scheme blatantly outperform the solution of
the Image pyramid scheme.
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Finest scale Scale 1 Scale 2

Figure 5.14 – Image coarsening results for odd rows and Energy coarsening
for even rows. The energy coarsening scheme clearly outperforms the image
coarsening scheme for coarse scales.
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Fast-PD optimization Image pyramid Energy pyramid

Figure 5.15 – Disparity maps for the baseline, the image and energy pyramid
schemes. We see that the Image pyramid scheme has difficulty to retrieve small
details like the bell tower of the church or the chimney of the factory. On the
other hand, the Energy pyramid produces fine detailed disparity maps.
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Inference by learning

For the evaluation of the inference by learning framework we make use of exactly
the same coarsening functions as for the energy coarsening scheme. Hence,
we group the nodes in a rk ˆ ks fashion, with k being a positive integer in
t1, 2, 3, 4u. We also group m labels together with m being an positive integer
among t1, 2, 3, 4u.

During our experiments, we compare the baseline inference (optimizing
the input MRF with Graph-Cuts), the multi-scale inference (λ “ 0, i.e., this
framework without any pruning), and our Inference by Learning method with
different pruning aggressiveness factors λ that range between 0.001 and 1. We
use 5 scales and we decrease at each scale the λ factor by an order of magnitude.

As for other experiments we use the energy ratio and the mean error to assess
the performance of this framework. We also compute the speed-up factor that
measure the ratio of computation time between the baseline optimization and
the current optimization strategy. To verify the expected correlation between
the speed-up and the number of active labels, we keep track of the Active label
ratio that computes the percentage of active labels at the finest scale.

We report all results in figures 5.20, 5.21, 5.22 and 5.23. An analysis of these
results reveals that by setting the node and label coarsening to 2 we achieve a
best comprise between high quality solution and speed-up. Hence, we now focus
only on this particular set of experiments.

For all experiments illustrated in figure 5.19, λ “ 0.1 seems to be the sweet
spot. This is also consistent for most of the other node and label coarsening
values. For aggressiveness factors lower than λ “ 0.1, the inference by learning
scheme computes a lower energy solution than the baseline. Hence, we get a
better solution for less computation. This happens because the approximation
bounds of Fast-PD are reduced due the labels being pruned. In terms of speed,
for λ “ 0.1 we get consistent and large speed-up ranging from 6 to 12. For
higher λ, the accelerations are even better. However, the quality of the solution
deteriorates as pictured in figure 5.18.

As for the energy pyramid scheme, the inference by learning framework
properly represents the energy even at coarse scales. The figure 5.17 illustrates
the behavior. We see that the disparity maps estimated at coarse scales already
contained the global structure. The details are then progressively resolved
throughout the next fine scales.

As expected, the percentage of active labels strongly correlates with the
speed-up factor. In fact, the speed-up is mainly caused by having a large number
of labels being pruned. In figure 5.16, we see that a lot of labels are pruned
early on and as predicted, less pruning happens near label discontinuities. This
justifies the use of a dedicated linear classifier. Moreover, large homogeneously
labeled regions are pruned earlier in the coarse to fine scale.
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Disparity map Finest scale Scale 1 Scale 2

Figure 5.16 – Percentage of active labels per vertex (black 0%, white 100%) for
Inference by Learning framework for λ “ 0.1 with node and label coarsening
both set to 2. Each row is a different subset. The framework maintains more
active labels near discontinuities than in smooth ares. Many labels are pruned
at coarse scale. At the finest scale, only a few active labels remain per node.
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Finest scale Scale 1 Scale 2 Scale 3

Figure 5.17 – Disparity maps produced at different scales by the Inference by
Learning framework for λ “ 0.1 with node and label coarsening both set to 2.
The global structure of the disparity maps is estimated at coarse scales. The
details of the disparity maps are then progressively resolved.
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λ “ 0.001 λ “ 0.01 λ “ 0.1 λ “ 1

Figure 5.18 – Disparity maps produced by the Inference by Learning framework
for different pruning factors λ with node and label coarsening both set to 2.
Only the most aggressive pruning factor, λ “ 1, is unable to resolve some fine
details like the chimney of the factory subset.
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(a) Speed-up (b) Active label ratio

(c) Energy ratio (d) Label agreement

Figure 5.19 – Performance of the Inference by Learning framework for node and
label corsening set to 2.
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Label coarsening
1 2 3 4

Figure 5.20 – Energy ratio results for the Inference by Learning experiments.
From top row to bottom row node coarsening is set to 1, 2, 3 and 4.
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Label coarsening
1 2 3 4

Figure 5.21 – Speed-up results for the Inference by Learning experiments. From
top row to bottom row node coarsening is set to 1, 2, 3 and 4.
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Label coarsening
1 2 3 4

Figure 5.22 – Mean Error results for the Inference by Learning experiments.
From top row to bottom row node coarsening is set to 1, 2, 3 and 4.
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Label coarsening
1 2 3 4

Figure 5.23 – Active Ratio results for the Inference by Learning experiments.
From top row to bottom row node coarsening is set to 1, 2, 3 and 4.
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5.4 Conclusion
This last technical chapter introduced smoothing and coarsening schemes for
both First order Primal-Dual methods and non convex optimization techniques
such as Fast-PD. For the latter one, we detailed a new framework, Inference by
Learning, to drastically speed-up the optimization.

We now propose to apply some of the techniques presented to practical
problems encountered in remote sensing tasks for Earth Sciences.
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Chapter 6

Applications

6.1 Introduction and chapter organization

6.1.1 Introduction
For this final chapter, we display some applications of the techniques presented
in chapters 3, 4 and 5. Our experiments mainly focus on remote sensing tasks
performed in geological studies.

For each task, we introduce the context and the necessary background.
We model the problem as an energy optimization task and then we perform
experiments to illustrate the model’s features. In any circumstances, we do not
claim to get better results than other techniques. Indeed, we keep our models
fairly generic and we leave for future work the derivation of a finely tuned version
of our models.

6.1.2 Chapter organization
The section 6.2 introduces the notation and terminology used throughout the
chapter. We present in section 6.3 the stereo-matching task with Earth and Mars
bound acquisitions. The section 6.4 proposes a study of earth crust deformation
from LiDAR acquisition with a simulated earthquake model. In the section 6.5
we apply our techniques to damage detection due to an earthquake from LiDAR
acquisitions of Christchurch, New-Zealand.

6.2 Notations and Preliminaries

6.2.1 Images
We remind some useful notation for this final chapter. An image I is a collection
of pixels taking value in R for gray images and R3 for color images. The pixels
of I are organized on a rectangular grid Ω. A row and column pri, ciq identifies
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a unique pixel pi “ pri, ciq P Ω. To ease the notations, we access the value of a
pixel pi “ pri, ciq of an image I by either Ippiq or Ipri, ciq.

6.2.2 Graph
A neighborhood graph G “ pV, Eq is associated to the image I. The set of
vertices V of G simply denotes the pixels of Ω. The set of edges E defines the
canonical 4-neighborhood connectivity.

6.2.3 LiDAR as elevation maps
Light Detection and Ranging, LiDAR, is a class of instrument used in remote
sensing to measure distances. A LiDAR is generally composed of a laser, a
scanner, and a GPS receiver. Using light pulses in a form of a laser, the LiDAR
measures the time to receive a reflection of the pulse in order to estimate a range
of distance to an object of interest. This is illustrated by figure 6.1.

Figure 6.1 – Principle of LiDAR.

In our context LiDAR instruments are mainly used for topographic purposes
[71]. They can be mounted on small aircraft during aerial surveys to estimate
the topography. However, it is also common to mount LiDAR instruments on
boat to estimate the bathymetry of the seafloor or a riverbed elevation [38] and
[75]. In both settings, LiDAR are precious equipments that allow scientists and
mapping professionals to build precise 3D model of their environment.

The LiDAR acquisitions create a 3D point cloud such as illustrated in figure
6.2. Since our acquisitions are mainly from zenith incidence with respect to the
ground, we can transform the 3D point cloud into an elevation image. We set
the elevation image grid to align with some portion of the ellipsoid of reference
used to represent the Earth. Each pixel represents a square surface, for instance
a square meter. The intensity of each pixel defines the elevation. Popular GIS,
Geographic Information System, softwares like GRASS [132] have routines to
convert a 3D point cloud to an elevation image. We note that the elevation
image representation makes it very easy to apply the techniques presented in
previous chapters.
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Figure 6.2 – LiDAR acquisition over New Orleans, LA, USA (Courtesy of USGS).

6.2.4 Matching criterion
We also remind two useful matching criteria based respectively on the ZNCC
and the census coefficient. Both criteria compute a matching likeliness score
between two patches P1 and P2 of the same size with spatial support P.

Zero Normalized Cross Correlation: ZNCC

The ZNNCmatching criterion derives from the Zero Normalized Cross Correlation
coefficient that computes the angles between the normalized patches P1 and P2.

ZNCCpP1, P2q “
1

cardpPq
ÿ

iPP

pP1piq ´m1q pP2piq ´m2q

σ1σ2
(6.1)

where:

• m1 and m2 are the mean values of patches P1 and P2,

• σ1 and σ2 are the standard deviations of patches P1 and P2.

The ZNCC matching criterion ρ simply computes:

ρpP1, P2q “ 1´ ZNCCpP1, P2q (6.2)

To simplify the notations, we define by

ZNCCW pIr, It, i, dq (6.3)

the ZNCC coefficient computed on patches of sizeW ˆW from image Ir centered
at pixel i and from image It centered at pixel i` d.

By construction the ZNCC coefficient and the ZNCC matching criterion
are unaffected by global illumination and contrast changes. These invariance
properties come extremely handy for image matching. We note that [172]
describes an efficient implementation to compute the ZNCC coefficient in the
context of overlapping patches.
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Ternary Census

The Ternary Census matching criterion of [175] and relies on the Ternary Census
code. The Ternary Census code of a patch P is defined by:

TCpP, δq “ biPP tpP picq, P piq, δq (6.4)

Where:

• b is the concatenation operator,

• ic is the central pixel of the patch P ,

• t : RˆRˆR` Ñ t´1, 0, 1u is the ternary function parametrized by δ P R`:

tpx, y, δq “

$

&

%

´1 if x ă y ´ δ
1 if x ą y ` δ
0 otherwise

(6.5)

The Ternary Census matching criterion ρ simply computes:

ρpP1, P2q “ ||TCpP1, δq ´ TCpP2, δq||1 (6.6)

To simply the notations, we define by

TCW,δpIr, It, i, dq (6.7)

the Ternary Census coefficient computed on patches of size W ˆW from image
Ir centered at pixel i and from image It centered at pixel i` d.

As for the ZNCC matching criterion, the Census matching criterion is un-
affected by global illumination change. The Census matching criterion is also
robust to mild contrast variation.

6.3 Stereo-matching
We briefly introduce the background of the stereo matching task. The figure
6.3 illustrates the key principle of stereo-matching: the apparent motions of
an object between the two images is proportional to the object’s depth. With
additional information about the two cameras and their positions in space, one
can recover the 3D position of each object imaged.

We explain in more detail how the problem is formulated. To this end, we
first present the classic camera model and the epipolar geometry. Then, we
formulate the stereo matching task as an optimization model which we evaluate
with a series of experiments.
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Figure 6.3 – Stereo-matching principle, courtesy of Wikipedia.

6.3.1 Camera models and Epipolar geometry
Pinhole camera model

We first need to present a camera model that describes the mathematical
relationship between 2D coordinates Q “ py1, y2q on the image plane and the 3D
coordinates P “ px1, x2, x3q in the world. As for many modeling, we start with
the pinhole camera model [160] which assumes that the camera aperture is a
simple point with no optic as illustrated by figure 6.4. Hence, this model does not
integrate neither geometrics distortions nor the discrete sampling done by the
CCD sensor. However, since we process image from high quality camera we can
compensate the geometrics distortions with simple coordinate transformations
of the image coordinates. Using the notations of figure 6.4, one can easily
demonstrate:

ˆ

y1

y2

˙

“ ´
f

x3

ˆ

x1

x2

˙

(6.8)

Figure 6.4 – Pinhole camera diagram

Camera parameters

To enhance the pinhole camera model, we need to introduce the intrinsic and
extrinsic camera parameters.
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Intrinsic parameters The intrinsic parameters describe features that are
internal to the camera. These features are fixed for a given camera and digital-
ization setup. These parameters model:

• the focal length,

• the position of the optical center,

• the distortion introduced by the lenses,

• the size and shape of pixels.

Extrinsic parameters The extrinsic parameters define the location and ori-
entation of the camera in the 3D world frame. Hence, these parameters include:

• a 3D translation to define the position,

• a 3D rotation to define the orientation.

Frame and Push-broom sensors

In our context we work with images acquired with frame and push-broom sensors.
The frame sensors are the most common for aerial surveys while push-broom
sensors are ubiquitous in satellite based acquisitions.

All pixels composing an image of a frame sensor are acquired at the same time
by individual CCD (charge-coupled device) or CMOS (complementary metal-
oxide semiconductor) sensors. In contrast, push-broom sensors only contain a
single array of CCD or CMOS sensors. Using the motion of the satellite, one
can construct an image by stacking the series of acquisition made by the array.
The figure 6.5 illustrates the two technologies.

Epipolar geometry

Epipolar geometry refers to the particular geometry of the stereo-vision task.
It describes the geometric relationship between a 3D point of the world frame
and its projection onto 2D images acquired by two cameras in distinct positions.
Both camera are assumed to be modeled by the pinhole camera model previously
presented. While we do not present the detailed formulation of the epipolar
geometry, we illustrate with figure 6.6 its concept. We refer to the seminal book
of [76] for an extensive discussion around the epipolar geometry.

Interestingly for frame camera, in the epipolar geometry we know that a given
object image at point XL in the left camera lies on a line in the right camera
named the epipolar line. The position on this epipolar line is proportional to the
depth. However, for push-broom sensors the epipolar line is not straight, but
hyperbola-like curve as explained in [135].
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Figure 6.5 – Frame camera for a 4 band sensor and Push-broom camera for a
panchromatic camera, courtesy NASA.

Image rectification

Finally, the rectification projects an image onto a reference image plane as
illustrated by figure 6.7. With a judicious choice of the reference plane the
rectification makes the epipolar lines horizontal for frame camera. This comes
particularly handy for the stereo-matching task since one obtains a 1D registration
problem. For push-broom, since the epipolar lines are curved one can make
use of rectification but only to obtain locally horizontal line. We encourage the
curious reader to study the work of [41] and [42] on this particular topic.

6.3.2 The stereo matching problem
We assume that we are given two rectified images, Ir and It. Let Ir be a reference
image, Ω its spatial support and G “ pV, Eq its associated graph. The set of
nodes V consists of the pixels of Ir and the set of edges E is defined by the 4
connectivity as illustrated in Fig. 6.8. Let It be the target image.

182



Figure 6.6 – Epipolar geometry for a frame sensor courtesy of Wikipedia.

Figure 6.7 – Illustration of the image rectification transformation to obtain
horizontal epipolar lines, courtesy of Wikipedia.

Probability formulation

Given Ir and It, we need to find the most probable 1D deformation d, that
associates each pixel of Ir to a pixel of It with d being a function of p P V Ñ
dppq P R. Thus, d lives in D “ RΩ. We measure how a given d fits the data Ir
and It by defining:

P pd|Ir, Itq. (6.9)

The definition of P is context dependent, but most approaches enforce: (1) a
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Figure 6.8 – Graph G “ pV, Eq of a 4 by 4 pixels image with a 4 connectivity.

notion of the similarity between Ir and It˝pid`dq (where id refers to the identity
operator) by expressing PM pd|Ir, Itq and; (2) a notion of regularity for d by
expressing PRpd|Irq. If we suppose that these two probabilities are independent,
we can write:

P pd|Ir, Itq “ PM pd|Ir, ItqPRpd|Irq. (6.10)

Instead of directly working with probabilities, we prefer using the energy
domain as in [83] since it is easier to define measure on images. One can simply
relate probability density function to energy through the Gibbs measure:

P pX “ xq “
1

Z
expp´Epxqq, (6.11)

with Z being a normalization factor so that the integral of the probability
function equal to 1.

Energy formulation

Through Eq. 6.11, we relate E, EM , and ER to P , PM , and PR respectively,
which gives the following energy:

Epdq “
ÿ

pPV
EM pd, pq `

ÿ

pqPE
ERpd, p, qq. (6.12)

We define a pixel-wise similarity measure based on the similarity function ρ.
Commonly used similarity functions are L1 or L2 norms [12], Census, Normalized
Cross Correlation (NCC) or Zero Normalized Cross Correlation (ZNCC) [23],
and the different versions of the Mutual Information [168, 91, 79]. In any case,
the matching energy of a pixel p is defined as:

EM pd, pq “ ρpIr, It ˝ pid` dqqppq. (6.13)
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If the similarity measure is defined on a patch, we apply a rigid translation
to the patch. Here, we use the ZNCC coefficient as it is robust to changes of
illumination and contrast between Ir and It that appear due to specular objects
or different acquisition times.

To enforce the regularity of d we choose to penalize the L1-norm of its
discretized gradient, modulated by a weight function w. For each edge pq P E :

ERpd, p, qqq “ wpp, qq}dppq ´ dpqq}1, (6.14)

ith :

wpp, qq “ λ1 ` λ2 exp

ˆ

´
}Irppq ´ Irpqq}

2

σ2

˙

. (6.15)

λ1, λ2, and σ are real positive scalar parameters. The L1-norm of the gradient
naturally enforces piece-wise constant disparities. The weight function wpp, qq
relaxes the regularization on radiometric discontinuities of the reference image
as in [58, 34]. This is an effective heuristic as most of the edges of the disparity
maps are also edges of the image Ir.

6.3.3 Experiments
We perform experiments with images acquired by the Ultra-cam and the Hirise
cameras to illustrate the different components of our model. We start by
displaying the images of the stereo-pairs. Then, we illustrate the unary terms
issued from two different the matching criteria: the ZNCC and the Census
measure. Finally, we study the influence of the regularization strength.

Images

Ultra-cam acquisitions The Ultra-cam cameras belong to the class of a
frame sensor [109]. Hence, we can perform the calibration and rectification steps
previously presented to end-up with a horizontal apparent motion to estimate.

From a large calibrated and rectified Ultra-cam stereo-pair we extract four
subsets: Factory, Church, Buildings and Industry. The subsets, illustrated in
figure 6.9, portray urban and industrial environments. Man-made structures
present numerous challenges for the stereo-matching task. For instance, the
tall chimney of the Factory subset creates a large occlusion zone. Some areas
in the Factory and Industry subsets are texture-less or repetitive, making the
matching very challenging. Finally, the Church and Buildings subsets have many
fine-details due to their urban or suburban locations. This creates fine and sharp
discontinuities in the disparity maps that are challenging to recover.
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Factory subset Church subset

Buildings subset Industry subset

Figure 6.9 – Reference images of stereo pair subsets for the Ultra-cam experi-
ments.

Hirise acquisitions The Hirise camera belongs to the class of a push-broom
sensor [122]. Hence, we perform the calibration on the full image but the
rectification step is applied onto each of the subsets. As for the Ultra-cam
acquisitions we end-up with a near horizontal apparent motion to estimate.

Using two stereo-pairs from the Hirise website [134], we extract the four sub-
sets pictured in figure 6.10: Valley, Dunes, Crater and Channel. Since the Hirise
camera is mounted on a satellite orbiting the planet Mars, the subsets illustrate
natural scenes of dunes, channels, valleys and carters. These natural scenes
present different challenges compared to the urban environment of the UltraCam
experiments. Indeed, most areas are heavily textured and non repetitive, which
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greatly helps the matching. However, change in disparity is less likely to follow
the radiometric variation of the reference image. This hinders the a-priori prior
enforced by the regularization costs. Moreover, large change of elevation can be
observed at the edges of craters, cliff, canyons and channels.

Nili Patera Ripples

Valley subset Dunes subset

Channel and in Northern Mid-Latitudes

Crater subset Channel subset

Figure 6.10 – Reference images of stereo pair subsets for the Hirise experiments.

Unary terms

In our context of stereo-matching, one can advocate that the unary terms are
the most important part of the model. Indeed, their purpose is to measure the
likelihood of one patch to match another. In a perfect world, we would like
to rely only on the matching terms to estimate the disparity. Unfortunately,
texture-less patches, noise, occlusions or change in illumination all hinder the
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reliability of the matching terms. Hence, as an illustration we display in figure
6.11 and 6.12 the disparity maps obtained solely from the matching terms, i.e.
we set all regularization terms to 0.

Census Zncc

Figure 6.11 – Disparity maps obtained for the Ultra-cam stereo-pairs using
exclusively the matching terms.
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Census ZNCC

Figure 6.12 – Disparities maps obtained for the Hirise stereo-pairs using exclu-
sively the matching terms.

Independently of the matching criterion, the disparity maps obtained for
the Ultra-cam images are extremely noisy and entire areas are completely miss-
estimated. The ZNCC criterion seems to perform a bit better than the Census.
This can be attributed to the fact that the Census is more robust than the
ZNCC. In our context, this extra-robustness seems to slightly deteriorate the
matching performance. Interestingly, the disparity maps computed for the Hirise
stereo-pairs are quite good. This is likely due to the heavily textured patches
of natural scenes. However, we still observe numerous artifacts. As for the
Ultra-cam results, the ZNCC outperforms the Census criterion.

Regularization weights

The regularization weights are an important part of the imposed prior on
the disparity estimation. In our model they modulate the strength of the
regularization according to the radiometric discontinuity of the reference image.
We illustrate in figure 6.13 the horizontal and vertical gradients of the Church
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subset’s reference image and its derived regularization weights.

Horizontal gradients Vertical gradients

Horizontal weights Vertical weights

Figure 6.13 – Gradients and weights of the Church subset (brighter grays means
higher values).

Impact of regularization

To study the regularization we modulate the strength of the pairwise terms by a
global factor varying in t0.1, 0.5, 1, 2, 5u where a factor of 1 sets the regularization
of optimal hand-picked regularization parameters. This allows us to create
models that are barely regularized (factor set to 0.1) to models that are heavily
regularized (factor set to 5). We illustrate the results in figures 6.14, 6.15, 6.16
and 6.17.
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Church Factory
Census Zncc Census Zncc
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Figure 6.14 – Impact of the regularization for the Church and Factory subsets
for the Ultra-Cam acquisition.

At low regularization strengths (factor set to 0.1 or 0.5), we still observe
artifacts for the Ultra-cam images. The Census based experiments present
more erroneous disparity estimations than their ZNCC counterparts. For larger
regularization strengths (factor set to 2 or 5), and independently of the matching
criterion, details such as the bell tower in the Church subset, the chimney in the
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Industry Buildings
Census Zncc Census Zncc
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Figure 6.15 – Impact of the regularization for the Industry and Buildings subsets
for the Ultra-Cam acquisition.

Factory subset and small structures of the Buildings subset start to disappear.
The Census based experiment appears to be even more sensitive to the tuning of
regularization since for a factor of 2 the church of the Church subset completely
vanishes.
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Valley Dunes
Census Zncc Census Zncc
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Figure 6.16 – Impact of the regularization for the Valley and Dunes subsets of
the Hirise acquisition.

The results for the Hirise acquisitions exhibit the same tendency but to a
lesser extent. We note that a regularization with a factor between 0.5 and 2
already gives good results for all subsets. This is because the matching terms
become more discriminatory for images with lots of texture.
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Subset 3 Subset 4
Census Zncc Census Zncc
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Figure 6.17 – Impact of the regularization for the Cater and Chanel subsets of
the Hirise acquisition.

6.4 Simulated Earth crust deformation
We now move on to 3D registration of elevation maps. In this particular example
we assume that an earthquake has occurred between the time of the acquisition
of two elevation maps.
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6.4.1 Context
Earthquakes are one of the most dangerous natural hazard on Earth. Contrary
to volcano, hurricanes or tornado, it is as of today quite impossible to precisely
predict when and where an earthquake will happen [60]. Earthquakes occur at a
fault, i.e., a boundary between two or more tectonic plates, producing seismic
waves that result from a sudden release of energy in the Earth’s lithosphere.
The figure 6.18 displays the epicenter of referenced earthquakes between 1963
to 1998. Earthquake are classified on a scale by their moment magnitude. The
USGS maintains an active mapping of earthquakes thanks to an international
network of seismometer [169].

Figure 6.18 – Epicenter of earthquakes from 1963 to 1998.

The destruction and subsequent events caused by earthquakes are staggering:
ground rupture and soil liquefaction, landslides and avalanches, fires, tsunami
and flood. At multiple times in the past, a single quake and its aftermath have
claimed more than ten of thousands lives as illustrated by figure 6.19.

Geologists have historically relied on seismometers to measure the motion of
the ground. However, in the last decades they have started to heavily rely on
GPS stations. The instantaneous position of civilian GPS is fairly inaccurate,
within 10 meters. Nonetheless, using temporal aggregation of a GPS signal,
one can retrieve precision up to a few millimeters. Some locations like the San
Andreas fault in California, the Himalaya mountains or Japan are surveyed by
networks of GPS stations. Unfortunately, many remote places do not benefit
from this level of monitoring. Hence, for a large number of earthquake the
scientific community does not have access to data acquired close to the epicenter.
Another downside of the GPS monitoring is that even with large networks one
can only obtain local and sparse measurements.

Hence, thanks to the progress of space imaging and aerial monitoring devices,

195



Figure 6.19 – Earthquakes of magnitude 8.0 and greater since 1900. The apparent
3D volumes of the bubbles are linearly proportional to their respective fatalities
(Courtesy of Wikipedia).

geologists have started to take advantage of remote sensing acquisitions. In this
context, they seek to obtain a more global view of the ground motion induced
by an earthquake. Nevertheless, remote sensing techniques can not bring the
level of accuracy obtained with GPS stations. Hence, it remains important to
properly fuse the different modalities of information.

In this work, we only propose to retrieve the ground motion induced by a
quake using two elevation maps: one acquired before and after the quake. To
keep this experiment simple, we make use of a crop of an elevation map of the San
Andreas fault in California, USA illustrated in figures 6.20 and 6.21. The crop
serves as the pre-event elevation map. We simulate using an Okada model [137]
the ground motion induced by a large earthquake. From this simulated ground
motion we transform the pre-event elevation map to a post-event elevation map.
We do not claim that the position of the simulated fault nor the generated
earthquake are realistic. However, this experiment shows how to make use of
our mathematical techniques in such context.

6.4.2 Model
We make use of notations Ipre and Ipost for the pre and post geo-registered
elevation images. Instead of directly looking for a full 3D deformation, we limit
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Figure 6.20 – The San Andreas fault. Figure 6.21 – Simulated fault.

our model to estimate a 2D motion and we automatically infer the change of
elevation. This modeling reduces the number of unknowns and it performed
better than others of our unreported attempts with full 3D motions. We elect to
use the ZNCC matching criterion ρpq. The matching cost for pixel pri, ciq P Ω
with displacement pui, viq is defined by:

ρpri, ci, vi, uiq (6.16)

We formulate the registration problem as:

arg min
ppui,viqPRˆRqi

ÿ

pri,ciqPΩ

ρpri, ci, vi, uiq

`
ÿ

pi,jqPE
λu|ui ´ uj | ` λ

v|vi ´ vj |
(6.17)

with λu and λv being real valued scalars.

We solve model 6.17 using the α-expansion technique embedded in a Image
Pyramid. We elect for 4 scales with 49 labels per scale, i.e, 7 potential values for
each ui and vi.

To recover the change of elevation w, we simply compute the change of
elevation between the pre-event elevation map and the transformed post-event
elevation map with the recovered deformation pu, vq. We note that a further
post processing smoothing step could also be performed if necessary.

6.4.3 Experiments
We display in figure 6.22 the results of our method. In figure 6.23, we show a
profile for each motion direction across the fault as illustrated in figure 6.21.
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u-component v-component w-component

Figure 6.22 – Retrieved motion.

u-component v-component w-component

Figure 6.23 – Profile of the deformation in pixel across the simulated fault.

From the three profiles, we see that our method correctly recovers the
ground motion for this toy example. We observe that the change of elevation
w-component, is noisier. For real experiments, we would advocate to proceed
with a smoothing post-processing step. One can for instance adapt the TV-L1
denoising framework to tailor an adequate smoothing algorithm.

6.5 Damage detection in New-Zealand

6.5.1 Context
For this final experiment, we study the application of damage detection induced
by natural hazards from aerial LiDAR time series with one acquisition before
and after the damaging event.

Natural disasters

In the context of natural disaster such as landslides, a tornadoes, hurricanes or
earthquakes, a detailed cartography of the impacted area is of crucial importance.

In many cases, usual communication medium such as telephone or Internet are
sometimes unavailable in some remote or less developed area or non-operational
due damages induced by the natural disaster. Hence, gathering and centralizing
information can be very challenging. First emergency responses face the challenge
to adequately organize search and rescue operation while lacking a global view of
the situation. Simple images from satellite and areal survey can provide crucial
information of impacted areas.
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Once the humanitarian situation has been resolved comes the time of re-
construction. In most modern countries, habitation and buildings are insured
through various private or governmental based policies. Hence, one needs to
provide a detail map of which building was affected by the natural hazard. This
inspection is generally conducted on the ground. Depending on the size of the
area impacted, this investigation can last quite a lot of time delaying families
and business owners to obtain compensation from their insurance. Again, a
detailed map of damages could fasten the economic recovery process.

Christchurch, New Zealand

Christchurch is located in the Canterbury Region in New Zealand’s South Island
as illustrated by figures 6.24 and 6.25. With a population of 389000 in 2016,
Christchurch is one of the largest populated cities in New Zealand see 6.27 and
6.26.

Figure 6.24 – New Zealand on
the planisphere.

Figure 6.25 – New Zealand map.

Figure 6.26 – Sattelite image of
Christchurch.

Figure 6.27 – Christchurch skyline with
Southern Alps in background.
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On February 22, 2011 at 2:51 p.m. local time, Christchurch was struck by
a 6.3 earthquake on the Richter scale [21]. This natural disaster claimed 185
lives while injuring a thousand individuals. The infrastructure and building
were seriously damaged as illustrated by figures 6.28, 6.29, 6.30 and 6.31. For
instance, the Canterbury Television (CTV) building nearly entirely collapsed
leaving only its lift shaft standing. A series of thirty subsequent earthquakes of
smaller magnitude, referred to as aftershocks, happened for approximatively a
year.

Figure 6.28 – Collapsed bell tower. Figure 6.29 – CTV building.

Figure 6.30 – Soil liquefaction caused
by the earthquake.

Figure 6.31 – Lanslide triggered by the
earthquake.

6.5.2 Model
We propose to establish a damage map from LiDAR aerial surveys pre and
post event by using our registration technique. We first transform both LiDAR
acquisitions to elevation images. We geo-register both elevation images such
that corresponding pixels of both images represent the same portion of the land.
Such registration can be handled within GIS softwares for instance.

We were provided directly with elevation images of the downtown of Christchurch
gridded at 1 meter. The figures 6.32 and 6.33 display these elevation images.
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Figure 6.32 – LiDAR pre earthquake. Figure 6.33 – LiDAR post earthquake.

Brighter grays represent higher elevation (Images have been enhanced for
display).

To detect the damaged building, we propose to create a map that monitors
the change of elevation between the pre and post event. If we were to dispose of
perfect elevation images then a simple difference between the pre and the post
event elevation image should create a perfect map. Unfortunately, the LiDAR
acquisitions, and hence the derived elevation images, suffer from noise and
artifacts. For instance, LiDAR might have difficulties to resolve with accuracy
the edges of tall buildings. Therefore, we propose to use a registration framework
with regularization to obtain the damage map.

We make use of notations Ipre and Ipost for the pre and post geo-registered
elevation images. Our goal is to find a transformation that registers Ipre to Ipost.
The dominant part of the transformation belongs to the change of elevation
caused by building collapsing. The horizontal and vertical component of the
transformation attempt to account for acquisition artifacts created near building
edges. Hence, we formulate the following optimization problem:

arg min
puiPr´1,1sqi,pviPr´1,1sqi,pwiPRqi

ÿ

pri,ciqPΩ

|Iprepri, ciq ´ pIpostpri ´ vi, ci ´ uiq ´ wiq|

`
ÿ

pi,jqPE
λu|ui ´ uj | ` λ

v|vi ´ vj |

`
ÿ

pi,jqPE
λwij |wi ´ wj |

(6.18)
We set λu and λv to a small positive real value and we define for pi, jq P E :

λwij “ λw0 ` expp´λw1 ||Iprepri, ciq ´ Ipreprj , cjq||
2
2qq (6.19)
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with pλw0 , λw1 q P R` ˆ R`.

We make use of first order primal dual techniques embedded in image pyramid
scheme to optimize equation (6.18).

6.5.3 Experiments
As a baseline, we propose to simply subtract the post event image to the pre
event image. We display the results of the both the baseline and our approach
in figures 6.34 and 6.35.

Figure 6.34 – Results from the base-
line method.

Figure 6.35 – Results from our frame-
work (elevation component only).

Blue color represents a negative change of elevation while the red color marks a
positive change of elevation.

The result of the baseline technique in figure 6.34 highlights contour of each
building, creating ghost contours. This is caused by the difficulties to resolve the
edges of tall objects with aerial LiDAR acquisitions. However, our regularized
framework produces a clearer damage map free of ghost contours while preserving
fine details. We note since the LiDAR acquisitions are a few months apart, both
methods capture vegetation changes. The disappearance of tree foliage in the
post event acquisition creates a negative change of elevation. To enhance the
quality of the damage map, one could classify building from vegetation by using
an additional hyper-spectral information for instance.

6.6 Chapter conclusion
This final chapter illustrated the techniques presented in chapters 3, 4 and 5
with concrete applications ranging from stereo-matching to damage detection.
We leave for future work the detailed study of each of these problems.
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We strongly believe in the relevance of the presented techniques. Nevertheless,
we are conscious that much work still remains to be done for achieving significant
scientific contributions in tasks such as studying Earth crust deformation. How-
ever, we hope to have made accessible to other communities the mathematical
concepts and methods to tackle those challenges.
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Chapter 7

Conclusions, limits and future
work

We conclude this thesis by summarizing each chapter and mentioning potential
future research avenues.

First order Primal-Dual techniques for convex optimization This chap-
ters introduced the basics of convex optimization and presented in detail the
First order Primal-Dual techniques for convex optimization. A study of the dual
solution space of TV regularized problems leads to the demonstration of various
theorems. Using those theorems we were able to connect through their dual
space several TV regularized models.

In future work one could attempt to extend the demonstrated theorems to
other classes of regularized problems. Furthermore, one could investigate to
decrease the computational cost of the first order Primal-Dual techniques by
restricting the space of functions on which the convergence is ensured. Moreover,
a detailed study of the implementation of such technique on GPU remains to be
done.

Maxflow and graph cuts This chapter introduced the basics of non-convex
optimization, the famous link between the maxflow and mincut problems, and
presented two graph cuts techniques, namely the α expansion and Fast-PD. We
proposed our own implementation of Fast-PD that drastically outperformed the
original implementation.

In future work, one could investigate to extend graph-cut techniques to higher
order terms as in [53], [85] or [92]. Furthermore, one could research on how
to implement a CPU multi-threated code of Fast-PD. Moreover, efficient GPU
based implementation of maxflow-minuct and graph cuts would also be greatly
welcome by the computer vision community.
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Coarsening schemes for optimization techniques In this chapter we stud-
ied coarsening frameworks for First order Primal-Dual techniques and for the
graph cuts methods. We also introduced a new approach, the inference by
learning framework, that drastically speeds-up the optimization of graph cuts
methods.

In future work, one could research on novel ways to coarsen both nodes and
labels. One could also investigate different coarsening approaches depending on
how coarse the current scale is. Finally, a multi-grid approach could be used
instead of the current pyramidal coarsening scheme.

Applications The final chapter of this thesis illustrated the technical methods
presented in the previous chapters. In particular, we studied the stereo-matching
problem to estimate depth from aerial and space surveys. We also illustrated how
to retrieve from LiDAR acquisitions damages induced by earthquake. Finally,
we showed with a simulated earthquake the potential of our approaches to track
the ground deformation due to geological activities.

In future work, we hope that the geologists and remote sensing practitioners
will build from our methods algorithms to extract pertinent information from
aerial and space surveys. For instance, one could attempt to monitor the
motion of glaciers and dunes, to estimate the ground deformation induced by
real earthquakes, or monitor the change of volume created by landslides. All
those measurements could help to design better physical model of those natural
phenomena.
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Résumé

Dans le context de la vision par ordinateur cette thèse étudie le problème d’ap-
pariement d’images dans le cadre de la télédétection pour la géologie. Plus
précisément, nous disposons dans ce travail de deux images de la même scène
géographique, mais acquises à partir de deux points de vue différents et éven-
tuellement à un autre moment. La tâche d’appariement est d’associer à chaque
pixel de la première image un pixel de la seconde image.

Bien que ce problème soit relativement facile pour les êtres humains, il reste
difficile à résoudre par un ordinateur. De nombreuses approches pour traiter
cette tâche ont été proposées. Les techniques les plus prometteuses formulent
la tâche comme un problème d’optimisation numérique. Malheureusement, le
nombre d’inconnues ainsi que la nature de la fonction à optimiser rendent ce
problème extrêmement difficile à résoudre. Cette thèse étudie deux approches
avec un schéma multi-échelle pour résoudre le problème numérique sous-jacent.

Abstract

This thesis studies the computer vision problem of image registration in the
context of geological remote sensing surveys. More precisely we dispose in this
work of two images picturing the same geographical scene but acquired from two
different view points and possibly at a different time. The task of registration is
to associate to each pixel of the first image its counterpart in the second image.

While this problem is relatively easy for human-beings, it remains an open
problem to solve it with a computer. Numerous approaches to address this
task have been proposed. The most promising techniques formulate the task
as a numerical optimization problem. Unfortunately, the number of unknowns
along with the nature of the objective function make the optimization problem
extremely difficult to solve. This thesis investigates two approaches along with a
coarsening scheme to solve the underlying numerical problem.
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