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Résumé

Cette thèse traite avec des équations aux dérivées partielles provenant de la physique mathématique. En particulier, à partir de modèles 3D ferromagnétisme et ferroélectricité, nous obtenons des modèles 1D et 2D par l'intermédiaire de processus asymptotiques basés sur des méthodes de réduction de dimension. Le modèle 3D ferromagnétisme a été proposé par W.F. Brown depuis les années 40 [START_REF] Brown | Micromagnetics[END_REF]. Il est également possible d'utiliser un modèle dynamique, décrivant l'aimantation au cours du temps, en utilisant un système introduit par L.D. Landau et E.M. Lifschitz en 1935 [START_REF] Landau | On the theory of the dispersion of magnetic permeability in ferromagnetic bodies[END_REF]. Pour le modèle ferroélectrique, nous nous référons aux papiers de P. Chandra et P.B. Littlewood [START_REF] Chandra | A Landau primer for ferroelectrics, The Physics of ferroelectrics: A modern perspective[END_REF], W. Zhang et K. Bhattacharya [START_REF] Zhang | A computational model of ferroelectric domains. Part I. Model formulation and domain switching[END_REF] et au livre de T. Mitsui, I. Taksuzaki et E. Nakamura [START_REF] Mitsui | An Introduction to the physics of ferroelectrics[END_REF].

Ma thèse est constituée de trois parties :

Au début, je considère l'énergie micromagnétique avec des coefficients dégénératifs dans un fil mince. Après avoir montrer l'existence de minimiseurs du problème, j'identifie l'énergie limite lorsque la section du fil tend vers zéro.

Dans la deuxième partie, j'étudie le comportement asymptotique des solutions dépendant du temps des problèmes micromagnétique dans une multi-structure constituée de la jonction de deux fils minces. En supposant que les volumes des deux fils tendent vers zéro avec la même vitesse. On obtient un problème limite couplé par une condition de jonction. Le problème limite reste non-convexe, mais devient complètement local.

Dans le dernier chapitre, à partir d'un modèle variationnel 3D non convexe et non-local pour la polarisation électrique dans un matériau ferroélectrique, et à l'aide d'un processus asymptotique basé sur la réduction de dimension, j'analyse des phénomènes de jonction pour deux films minces ferroélectriques joints orthogonaux. Selon la façon dont la réduction se passe, on obtient trois modèles différents de dimension 2. On remarque qu'un effet de mémoire du processus de réduction apparaît, ce dernier dépend de la compétition entre les épaisseurs des deux films: Le paramètre de guidage est la limite du rapport des épaisseurs des deux films.

Mots-clé:

Matériaux ferromagnétiques, matériaux ferroélectriques, film mince, fil mince, multi-structures, jonctions, analyse asymptotique.

Introduction

A thin structure is a three-dimensional object with one (two) preponderant dimension(s), such as a wire, a thin film, a combination of wires, thin films, etc. In these structures, some physical phenomena take place that are generally described by variational problems. By starting from 3D models and using asymptotic mathematical methods, one tries to obtain 1D or 2D limit problems describing the physical phenomena in a thin structure. The reduced models are justified by reasons of simplicity and economy, by a numerical point of view, too. In this thesis we are interested in ferromagnetic problems and in ferroelectric problems in thin structures.

Ferromagnetic model

According to the classical theory of Weiss (1907), perfectioned by Landau and Lifshitz in 1935 (see [START_REF] Landau | On the theory of the dispersion of magnetic permeability in ferromagnetic bodies[END_REF] and, for a modern analysis, see [START_REF] Brown | Micromagnetics[END_REF]), on a microscopic scale a ferromagnetic body is magnetically saturated and is composed by uniformly magnetized regions separated by thin transition layers. The phenomena can be described by a magnetization field, defined on the domain in which the material is confined. The magnetization field on a microscopic scale has a fixed modulus and variable orientations. Then, the system can be studied through the functional representing its magnetic energy. It consists in several terms: the so-called exchange energy, which contains the space derivative of the magnetization field and is peculiar to ferromagnetic behavior, a term corresponding to magnetic anisotropy, and another one depending on the magnetic field, which is related to the magnetization via the magnetostatic equation. More precisely,

m : Ω ⊂ R 3 -→ R 3
denotes the magnetization and the body Ω is always locally magnetized to a saturation magnetization |m(x)| = c(T ) > 0 unless the local temperature T is greater or equal to Curie temperature depending on the body. In the latter case c(T ) = 0, and the material ceases to behave ferromagnetically. In the sequel, we suppose constant temperature lower than Curie temperature and,
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without loss of generality, we assume that c = 1, that is m(x) ∈ S 2 . The magnetic moment m and the magnetic field H are related by one of Maxwell's equations (no load, no current)

B = H + m, in R 3
where we consider m as a field set in all R 3 , extending m by 0 on the exterior of Ω. The field B and H(m) are defined in all R 3 .

Free energy of the classical micromagnetism model

The observed magnetic moments are (local) minimizers of the ferromagnetic energy

E(m) = ˆΩ α|∇m| 2 + ϕ(m) + 1 2 ∇ζm dx. (0.1.1)
Now, we will try to understand each term.

The exchange energy

The exchange energy is due to the existence of a responsible force to align the spins neighboring of two atoms. This contribution is local and it depends on the microscopic properties of materials. This energy is written

E e (m) = α ˆΩ |∇m| 2 dx,
where α is the exchange coefficient.

The anisotropy energy

The magnetocrystalline anisotropy reflects the effects of anisotropy due to the crystal structure of the material. This is described by an even continuous function

ϕ : S 2 -→ R + .
Mainly, two cases are considered.

• The uniaxial anisotropy: this anisotropy is in the hexagonal crystals (Co). The expression of this energy is

ϕ(m) = -K 1 m 2 z + K 2 m 4 z ,
where m z is the component along the third axis of the vector m, K 1 and K 2 are the coefficients of anisotropy depending on the temperature.

• The cubic anisotropy: in the case of cubic crystals (F e, N i), the axes x, y and z being chosen along the crystal axes, the expression for the energy is

ϕ(m) = K 1 (m 2 x m 2 y + m 2 y m 2 z + m 2 z m 2 x ) + K 2 m 2 x m 2 y m 2 z
where K 1 and K 2 are the coefficients of anisotropy, and m x , m y and m z are the components of m.

The magnetostatic energy

The third term in (0.1.1) represents the magnetostatic energy. Starting from the Maxwell equations without charge or current, we find that the magnetic field is determined by the magnetization as a solution of the following problem

                 div(H(m) + m) = 0, in R 3 , curlH(m) = 0 in R 3 .
Consequently, one obtains H(m) = -∇ζ (ζ is the magnetic potential) and

E mag (m) = 1 2 ˆΩ ∇ζmdx = 1 2 ˆR3 |∇ζ| 2 dx.
Note that the magnetostatic energy expresses a non-local interaction.

Asymptotic analysis for micromagnetics of nanowires of finite length governed by indefinite material coefficients

In a nanowire, we consider the micromagnetic free energy with some degenerating weights.

In [START_REF] Gioia | Micromagnetism of very thin films[END_REF] G. Gioia and R. D. James (see also [START_REF] Carbou | Thin layers in micromagnetism[END_REF]) found that in the rescaled energy the exchange term is

ˆΩ α δ |∇m| 2 dy,
where α is the exchange constant. Thus, as δ → 0, the exchange term contributes an unacceptably large energy unless |∇m| ∼ 0. In the limit δ → ∞, corresponds to phase theory see [START_REF] Desimone | Energy minimizers for large ferromagnetic bodies[END_REF].
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In [START_REF] Hadiji | Asymptotic analysis for micromagnetics of thin films governed by indefinite material coefficients[END_REF] the authors studied the micromagnetism problem in the case of a thin plate with some degenerating weights. In this Chapter we will adapt the same argument of [START_REF] Hadiji | Asymptotic analysis for micromagnetics of thin films governed by indefinite material coefficients[END_REF] to study the same problem in a nanowire of finite length. We identify the limit problem when the section of the wire tends to 0. Now, if we take into account the non degenerate case of the material coefficient α and α * := min x∈Ω α(x) > 0, we can adapt the arguments to [START_REF] Gioia | Micromagnetism of very thin films[END_REF] and [START_REF] Carbou | Thin layers in micromagnetism[END_REF].

We consider a ferromagnetic nanowire occupying the 3D domain Ω (h) =] -L, L[×B 2 (0, h), where B d (x, r) denotes the ball in R d of radius r and center x. Let Ω =] -L, L[×B 2 (0, 1). Moreover, let α : Ω → [0, ∞) be a given continuous function, and set A 0 = α -1 (0). The aim is to study the minimization and the asymptotic behavior, as h → 0, of the following non-convex and nonlocal problem:

E (h) (m (h) ) = min m∈L 2 Ω (h) ,R 3 
E (h) (m), (0.2.1)
where the functional E (h) , defined in L 2 Ω (h) , R 3 , denotes the micromagnetism energy in Ω (h) previously introduced:

E (h) (m) :=                  1 2Lπh 2 ˆΩ(h) \A 0 α|∇m| 2 dx + ˆΩ(h) ϕ(m)dx + 1 2 ˆΩ(h) ∇ζ • mdx , if m ∈ H 1 loc Ω (h) \A 0 , R 3 and √ α∇m ∈ L 2 Ω (h) \A 0 , R 3×3 , ∞ , otherwise, (0.2.2) 
subject to the constraints: div(-∇ζ + m) = 0, in R 3 , (0.2.3) |m| = 1, a.e. in Ω (h) , (0.2.4)

where m denotes the zero-extension of m to R 3 .

The given continuous function α = α(x) (x ∈ Ω) is the so-called material coefficient, and here, we suppose that it may degenerate somewhere on Ω. In order to work in a fixed domain, we introduce the following rescaling

x = (x 1 , x 2 , x 3 ) ∈ Ω ⊂ R 3 → (x 1 , hx 2 , hx 3 ) ∈ Ω (h) ⊂ R 3 .

The main results

Let us set: α • (x 1 ) := α(x 1 , 0, 0) for any x 1 ∈ [-L, L], and A • 0 := (α • ) -1 (0).
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We assume that (a) L3 (A 0 ) = 0, (b) there exists a constant C α ≥ 1, such that

α • (x 1 ) ≤ α(x) ≤ C α α • (x 1 )
, for all x = (x 1 , x 2 , x 3 ) ∈ Ω.

We prove the following results.

Theorem 0.2.1. Assume (a). Then, for 0 < h < 1 problem (0.2.1) admits at least a minimizer solution m (h) .

Theorem 0.2.2. Assume (a)-(b). Then, there exist a sequence

{h i | i = 1, 2, 3, • • • } ⊂ (0, 1)
and a limiting function

m • ∈ L 2 (] -L, L[, R 3 ), such that (i) h i → 0, m (h i ) → m • in L 2 (Ω, R 3 ), E (h i ) m (h i ) → E • (m • ), and 
                                 α (h i ) ∂ 1 m (h i ) (x 1 , x 2 , x 3 ) → √ α • ∂ 1 m • (x 1 ), √ α (h i ) h i ∂ 2 m (h i ) (x 1 , x 2 , x 3 ) → 0, √ α (h i ) h i ∂ 3 m (h i ) (x 1 , x 2 , x 3 ) → 0, (0.2.5) 
for a.e. x 1 ∈] -L, L[ and a.e. (x 2 , x 3 ) ∈ B 2 (0, 1), as i → ∞,

(ii) the limit m • is a minimizer of E • (m),
The functional E • is defined on L2 (] -L, L[, R 3 ) by

E • (m) :=                  Φ • α (m) + ˆL -L ϕ(m)dx 1 + 1
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where Φ • α iz the convex function on L 2 (] -L, L[, R 3 ), defined as:

Φ • α (m) :=          ˆ]-L,L[\A • 0 α • |∇m| 2 dx 1 , if m ∈ H 1 loc (] -L, L[\A • 0 , R 3 ), ∞ , otherwise. 
(0.2.7)

Junction of quasi-stationary ferromagnetic thin multistructures

In a joint work with L. Faella and C. Perugia, we study the asymptotic behavior of a system governed by the Landau-Lifshitz equation consisting of two joined roads with "vanishing" sections. So we attempt to simulate the behaviour of two joined nanowires. More precisely, let {h n } n∈N ⊂]0, 1[ be a vanishing sequence. For every n ∈ N, set

Ω a n = ]-h n , 0[ 2 × [0, 1[, Ω b,l n =]0, 1[× ]-h n , 0[ 2 , Ω b,r n = ]-h n , 0] 3 , Ω n = Ω a n ∪ Ω b,l n ∪ Ω b,r n , n ∈ N.
Let us suppose that the body is homogeneous, isotropic and has uniform temperature. Let us introduce the magnetization M n , the magnetic field H Mn determined by M n and the scalar potential U Mn for this field (i.e.H(M n ) ≡ -DU Mn ). Let us denote by M n the extension by zero of M n outside Ω n . Then, as previously described, the magnetic induction B n and the magnetic field H(M n ) are connected by the relations B n = -DU Mn + M n . Moreover, the static Maxwell equation and the magnetostatic equation (Faraday law) hold

         ∇ × DU Mn = 0, div -DU Mn + M n = div (B) = 0 . (0.3.1)
Fixed M 0n ∈ H 1 (Ω n , S 2 ), (U 0n being the corresponding solution of Problem (0.3.1)), in [12], [START_REF] De Maio | Junction of quasi-stationary ferromagnetic thin films[END_REF] and [START_REF] Visintin | On Landau-Lifschitz' equations for ferromagnetism[END_REF] it is proved that there exists at least a weak solution M n of the following problem 0.3 JUNCTION OF QUASI-STATIONARY FERROMAGNETIC THIN MULTI-STRUCTURES 7

                                                                     M n ∈ L ∞ (0, T ; H 1 (Ω n , R 3 )) ∩ C ([0, T ] ; L 2 (Ω n , R 3 )) , |M n | = 1 a.e. in [0, T ] × Ω n , ∂M n ∂t ∈ L 2 (0, T ; L 2 (Ω n , R 3 )) ,
∀ χ ∈ D(0, T ), and ψ ∈ H 1 (Ω n , R 3 ) where for every t ∈ [0, T ]

T ˆ0 Ωn ∂M n ∂t + M n ∧ ∂M n ∂t χψdxdt = -2 T ˆ0 Ωn 3 i=1 (M n ∧ D x i M n ) (D x i ψ) χdxdt
E (M n (t, •)) = Ωn |DM n (t, x)| 2 dx + 1 2 R3 |DU Mn (t, x)| 2 dx,
is the magnetic energy. Here, the terms E exc n = Ωn |DM n (t, x)| 2 dx is the exchange energy and

E mag n = 1 2 INTRODUCTION 0.3.

The main result

We set

Ω a =] -1, 0[ 2 ×[0, 1[, Ω b,l =]0, 1[×] -1, 0[ 2 , Ω b,r =] -1, 0[ 3 ,
and introduce the following space W = (µ a , µ b,l ) ∈ H 1 (]0, 1[, R 3 ) × H 1 (]0, 1[, R 3 ) : µ a (0) = µ b,l (0) . (0.3.5)

Moreover, we set

M=W ∩ H 1 (Ω a , S 2 ) × H 1 Ω b,l , S 2 , (0.3.6)
which explicitly takes into account the condition |µ| = 1.

Let us introduce the following problem

                                                                                     µ = (µ a , µ b,l ) ∈ L ∞ (0, T ; M) ∩ C [0, T ] ; L 2 (Ω a , R 3 ) × L 2 Ω b,l , R 3 , ∂µ ∂t ∈ L 2 0, T ; L 2 (Ω a , R 3 ) × L 2 Ω b,l , R 3 ,
∀ χ ∈ D(0, T ) and ψ = (ψ a , ψ b,l ) ∈ W, T ˆ0 Ωa ∂µ a ∂t + µ a ∧ ∂µ a ∂t χψ a dxdt + T ˆ0 Ωb,l ∂µ b,l ∂t + µ b,l ∧ ∂µ b,l ∂t χψ b,l dxdt = -2

T ˆ0 Ωa µ a ∧ ∂µ a ∂x 3 ∂ψ a ∂x 3 χdxdt -2 T ˆ0 Ωb,l µ b,l ∧ ∂µ b,l ∂x 1 ∂ψ b,l ∂x 1 χdxdt -2 T ˆ0 Ωa µ a ∧ ((µ a , e 1 )Υ 1 + (µ a , e 2 )Υ 2 ) χψ a dxdt -2 T ˆ0
Ωb,l µ b,l ∧ (µ b,l , e 2 )Υ 1 + (µ b,l , e 3 )Υ 2 χψ b,l dxdt, µ a (0, x) = µ a 0 (x), a.e. x in Ω a , µ b,l (0, x) = µ b,l 0 (x), a.e. x in Ω b,l , µ 0 = (µ a 0 , µ b,l 0 ) ∈ M, (0.3.7) where Υ 1 = (ε 1 , ε 2 , 0), Υ 2 = (-ε 2 , ε 1 , 0), Υ 1 = (0, ε 1 , ε 2 ) and Υ 2 = (0, -ε 2 , ε 1 , ), with ε 1 , ε 2 0.4 FERROELECTRIC MODEL constant depending on ]-1, 0[ 2 (in the thesis we explicitly give the dependance of these constants on ] -1, 0[ 2 ).

Then, we prove the following result.

Theorem 0.3.1. Suppose that M 0n ∈ H 1 (Ω n , S 2 ) and (0.3.4) holds, for every n ∈ N. Let M n be a solution of Problem (0.3.2) . Then, there exist an increasing sequence of positive integer numbers {n i } i∈N , still denoted by {n}, µ 0 = µ a 0 , µ b,l 0 ∈ M, µ = (µ a , µ b,l ) ∈ L ∞ (0, T ; M), depending on the selected subsequence such that

                                           Ω a n |M 0n (x 1 , x 2 , x 3 ) -µ a 0 (x 3 )| 2 dx → 0, Ω b,l n M 0n (x 1 , x 2 , x 3 ) -µ b,l 0 (x 1 ) 2 dx → 0, Ω b,r n |M 0n (x 1 , x 2 , x 3 ) -µ a 0 (0)| 2 dx → 0, as n diverges, for every t ∈ [0, T ]                  Ω a n |M n (t, x 1 , x 2 , x 3 ) -µ a (t, x 3 )| 2 dxdt → 0, Ω b,l n M n (t, x 1 , x 2 , x 3 ) -µ b,l (t, x 1 ) 2 dxdt → 0,
as n diverges, where µ = (µ a , µ b,l ) is a solution of Problem (0.3.7).

Ferroelectric model

Ferroelectricity is a property of some materials to have a spontaneous electrical polarization that can be reversed by the application of an external electric field. Hysteresis phenomena appear, so the behavior of these materials is very similar to the one of ferromagnetic materials. Analogously,
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a Curie temperature T C appears, too.

Let B be a 3D ferroelectric body. In B the electric displacement D is given by D = ε 0 E + P, where ε 0 > 0 is the vacuum permeability, E is the applied external field, and P is the spontaneous electric polarization. Assume that E is the gradient of a potential ψ, i.e.

E = Dψ, (0.4.1)
and that the electric field generated by P derives from a potential ϕ P satisfying the electrostatic equation div(-ε 0 Dϕ P + P) = 0. (0.4.2)

We limit ourselves to the case where no strong electric field has been applied on B, but only a very weak electric field acts on it (e.g. it is the case of iron in the ferromagnetism, before the magnetization, by analogy). Then, we can assume that there are not Weis domains (i.e. regions with different polarization separated by well defined interfaces), but only transition regions. In this framework we can assume that the polarization does not generate an electric field outside B. Consequently, equation (0.4.2) holds true in B, and the following boundary conditions on ∂B

P • ν = 0, Dϕ P • ν = 0 on ∂B (0.4.3)
can be added, where ν denotes the unit outer normal on ∂B.

One assumes that P minimizes the energy functional

ˆB β|rotP| 2 + |divP| 2 + α(|P| 2 -1) 2 dx + ˆR3 |Dψ + Dϕ P | 2 dx, (0.4.4)
where α and β are two positive constants independent of the external field and of the temperature.

Here, ´B (β|rotP| 2 + |divP| 2 ) dx reduces to the classical energy ´B |DP| 2 dx when β = 1 (see (0.5.6)), so roughly speaking this term penalizes the spatial variation of P. 

Fin junction of ferroelectric thin films

In a joint work with L. Carbone and A. Gaudiello, starting from problem (0.4.7) and using using an asymptotic process based on dimensional reduction, we obtain a simpler ferroelectric model, especially from a numerical point of view, for a multidomain composed of two orthogonal joined thin films.

Precisely, let {h a n } n∈N and h

b n n∈N ⊂]0, 1[ be two sequences such that lim n h a n = 0 = lim n h b n , lim n h b n h a n = ∈ [0, +∞]. (0.5.1)
For every n ∈ N, set

Ω a n = -h a n 2 , h a n 2 × -1 2 , 1 2 × [0, 1[ , Ω b n = -1 2 , 1 2 2 × -h b n , 0 , Ω n = Ω a n ∪ Ω b n . (0.5.2)
The multidomain Ω n models a ferroelectric device consisting of two orthogonal joined thin films Ω a n and Ω b n with small thicknesses h a n and h b n , respectively. According to (0.4.7), we consider the following non-convex and nonlocal energy associated with Ω n

E n : P ∈ P n -→ ˆΩn β|rotP| 2 + |divP| 2 + α(|P| 2 -1) 2 + |Dϕ P | 2 + (F n • P) dx, (0.5.3) 
where

P n = P ∈ H 1 (Ω n ) 3 : P • ν = 0 on ∂Ω n , (0.5.4)
α and β are two positive constants, F n ∈ (L 2 (Ω n )) 3 , ν denotes the unit outer normal on ∂Ω n ,
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and ϕ P ∈ H 1 (Ω n ) is the unique solution, up to an additive constant, of

                 div(-ε 0 Dϕ P + P) = 0 in Ω n , (-ε 0 Dϕ P + P) • ν = 0 on ∂Ω n . (0.5.5)
Notice that F n is a normalization of the external field. So to obtain (0.4.7), choose F n = 2 ε 0 E. Using (for instance compare [START_REF] Costabel | Singularities of Maxwell interface problems[END_REF] and Lemma 2.1 in [START_REF] Gaudiello | The polarization in a ferroelectric thin film: local and nonlocal limit problems[END_REF])

DP 2 (L 2 (Ωn)) 9 = rotP 2 (L 2 (Ωn)) 3 + divP 2 L 2 (Ωn) ∀P ∈ P n , ∀n ∈ N, (0.5.6)
and the direct method of Calculus of Variations give that problem min{E n (P) : P ∈ P n } (0.5.7) admits a solution. The aim of this chapter is to study the asymptotic behavior, as n diverges, of problems (0.5.7). As we shall show, its asymptotic behavior depends on given in (0.5.1).

In order to work on a fixed domain, we use the following maps

                 x = (x 1 , x 2 , x 3 ) ∈ Ω a = - 1 2 , 1 2 × - 1 2 , 1 2 × ]0, 1[ -→ (h a n x 1 , x 2 , x 3 ) ∈ Int(Ω a n ), x = (x 1 , x 2 , x 3 ) ∈ Ω b = - 1 2 , 1 2 × - 1 2 , 1 2 × ]-1, 0[ -→ (x 1 , x 2 , h b n x 3 ) ∈ Ω b n , (0.5.8)
where Int(Ω a n ) denotes the interior of Ω a n . Then, for every n ∈ N set

                 f a n : x = (x 1 , x 2 , x 3 ) ∈ Ω a -→ F n (h a n x 1 , x 2 , x 3 ), f b n : x = (x 1 , x 2 , x 3 ) ∈ Ω b -→ F n (x 1 , x 2 , h b n x 3 ),
(0.5.9)

0.5 FIN JUNCTION OF FERROELECTRIC THIN FILMS 13                                                                    P n = (p a , p b ) ∈ (H 1 (Ω a )) 3 × H 1 (Ω b ) 3 : p a • ν a = 0 on ∂Ω a \ -1 2 , 1 2 2 × {0} , p b • ν b = 0 on ∂Ω b \ -1 2 , 1 2 2 × {0} , p b 3 = 0 on -1 2 , 1 2 2 \ -h a n 2 , h a n 2 × -1 2 , 1 2 × {0} , p a (x 1 , x 2 , 0) = p b (h a n x 1 , x 2 , 0) in -1 2 , 1 2 2 , 
(0.5.10)

where ν a and ν b denote the unit outer normals on ∂Ω a and ∂Ω b , respectively, and

U n = (φ a , φ b ) ∈ H 1 (Ω a ) × H 1 (Ω b ) : φ a (x 1 , x 2 , 0) = φ b (h a n x 1 , x 2 , 0) in -1 2 , 1 2 2 . 
(0.5.11) Then, E n defined in (0.5.3) is rescaled by

                                   E n : p a , p b ∈ P n -→ h a n ˆΩa β|rot a n p a | 2 + |div a n p a | 2 + α(|p a | 2 -1) 2 + |D a n φ a p a ,p b | 2 + (f a n • p a ) dx +h b n ˆΩb β|rot b n p b | 2 + |div b n p b | 2 + α(|p b | 2 -1) 2 + |D b n φ b p a ,p b | 2 + (f b n • p b ) dx, (0.5.12) INTRODUCTION where φ a p a ,p b , φ b p a ,p b is the unique solution of                                    φ a p a ,p b , φ b p a ,p b ∈ U n , ˆΩa φ a p a ,p b dx = 0, h a n ˆΩa ((-D a n φ a p a ,p b + p a ) • D a n φ a )dx +h b n ˆΩb -D b n φ b p a ,p b + p b • D b n φ b dx = 0 ∀ (φ a , φ b ) ∈ U n , (0.5.13)
which rescales a weak formulation of (0.5.5), i.e.

ϕ P ∈ H 1 (Ω n ), ˆΩa n ϕ P dx = 0, ˆΩn ((-ε 0 Dϕ P + P) • Dϕ) dx = 0 ∀ϕ ∈ H 1 (Ω n ). (0.5.14)
The Lax-Milgram Theorem provides that (0.5.14) admits solution and it is unique.

Note that if P n solves (0.5.7), then (p a n , p b n ) defined by

p a n (x 1 , x 2 , x 3 ) = P n (h a n x 1 , x 2 , x 3 ) in Ω a , p b n (x 1 , x 2 , x 3 ) = P n (x 1 , x 2 , h b n x 3 ) in Ω b , solves min E n ((p a , p b )) : (p a , p b ) ∈ P n . (0.5.15) Assume that                  f a n f a = (f a 1 , f a 2 , f a 3 ) weakly in (L 2 (Ω a )) 3 , f b n f b = f b 1 , f b 2 , f b 3 weakly in L 2 Ω b 3 .
(0.5.16)

The main results

The case ∈]0, +∞[.

We state the limit result of problem (0.5.15) when in assumption (0.5.1) belongs to ]0, +∞[. Set

                                                   P = q a , q b = (q a 2 , q a 3 ) , q b 1 , q b 2 ∈ H 1 -1 2 , 1 2 × ]0, 1[ 2 × H 1 -1 2 , 1 2 2 2 
:

q a • ν a = 0 on ∂ -1 2 , 1 2 × ]0, 1[ , q b • ν b = 0 on ∂ -1 2 , 1 2 2 , q b 1 (0, •) = 0, q a 2 (•, 0) = q b 2 (0, •) in -1 2 , 1 2 , (0.5.17)
where ν a and ν b denote the unit outer normal on

∂ -1 2 , 1 2 × ]0, 1[ and ∂ -1 2 , 1 2 2 , respec- tively,          U = ψ a , ψ b ∈ H 1 -1 2 , 1 2 × ]0, 1[ × H 1 -1 2 , 1 2 2 
:

ψ a (•, 0) = ψ b (0, •) in -1 2 , 1 2 , (0.5.18) 
and

                                                       E : q a , q b ∈ P -→ ˆ]-1 2 , 1 2 [×]0,1[ β|rotq a | 2 + |divq a | 2 + α(|q a | 2 -1) 2 +|Dψ a q a ,q b | 2 + ˆ1 2 -1 2 (f a 2 , f a 3 )dx 1 • q a dx 2 dx 3 + ˆ]-1 2 , 1 2 [ 2 β rotq b 2 + divq b 2 + α q b 2 -1 2 + Dψ b q a ,q b 2 + ˆ0 -1 f b 1 , f b 2 dx 3 • q b dx 1 dx 2 , (0.5.19) INTRODUCTION where (f a 2 , f a 3 ) and (f b 1 , f b 2 )
are defined in (0.5.16), and (ψ a q a ,q b , ψ b q a ,q b ) is the unique solution of

                                     ψ a q a ,q b , ψ b q a ,q b ∈ U, ˆ -1 2 , 1 2 ×]0,1[ ψ a q a ,q b dx 2 dx 3 = 0, ˆ -1 2 , 1 2 ×]0,1[ -D (x 2 ,x 3 ) ψ a q a ,q b + q a • D (x 2 ,x 3 ) ψ a dx 2 dx 3 + ˆ -1 2 , 1 2 2 -D (x 1 ,x 2 ) ψ b q a ,q b + q b • D (x 1 ,x 2 ) ψ b dx 1 dx 2 = 0 ∀ ψ a , ψ b ∈ U.
(0.5.20)

We prove the following result. Moreover, let P and E be defined by (0.5.17) and (0.5.19)-(0.5.20), respectively. Then, there exist an increasing sequence of positive integer numbers {n i } i∈N and (in possible dependence on the subsequence) pa , pb = (p a 2 , pa 3 ) , pb 1 , pb

2 ∈ P such that                  p a n i → (0, pa 2 , pa 3 ) strongly in H 1 (Ω a ) 3 and strongly in L 4 (Ω a ) 3 , p b n i → pb 1 , pb 2 , 0 strongly in H 1 (Ω b ) 3 and strongly in L 4 (Ω b ) 3 , (0.5.21) 1 h a n ∂p a n ∂x 1 , 1 h b n ∂p b n ∂x 3 → (0, 0) strongly in L 2 (Ω a ) 3 × L 2 (Ω b ) 3 , (0.5.22)                    φ a p a n i ,p b n i , φ b p a n i ,p b n i → ψ a pa ,p b , ψ b pa ,p b strongly in H 1 (Ω a ) × H 1 (Ω b ), 1 h a n ∂φ a p a n ,p b n ∂x 1 , 1 h b n ∂φ b p a n ,p b n ∂x 3 → (0, 0) strongly in L 2 (Ω a ) × L 2 Ω b , (0.5.23)
where pa , pb solves E pa , pb = min E q a , q b : q a , q b ∈ P , (0.5.24)

and ψ a pa ,p b , ψ b pa ,p b
is the unique solution of (0.5.20) with (q a , q b ) = pa , pb . Moreover,

lim n E n p a n , p b n h a n = E pa , pb . (0.5.25)
The case = 0.

We state the limit result of problem (0.5.15) when in (0.5.1) = 0 . Set

P • = q a = (q a 2 , q a 3 ) ∈ H 1 -1 2 , 1 2 × ]0, 1[ 2 : q a • ν a = 0 on ∂ -1 2 , 1 2 × ]0, 1[ (0.5.26)
where ν a denotes the unit outer normal on ∂ -1 2 , 1 2 × ]0, 1[ , and

                   E • : q a ∈ H 1 -1 2 , 1 2 × ]0, 1[ 2 -→ ˆ]-1 2 , 1 2 [×]0,1[ β|rotq a | 2 +|divq a | 2 + α(|q a | 2 -1) 2 + |Dψ a q a | 2 + ˆ1 2 -1 2 (f a 2 , f a 3 )dx 1 • q a dx 2 dx 3 , (0.5.27)
where (f a 2 , f a 3 ) is defined in (0.5.16), and ψ a q a is the unique solution of

                                   ψ a q a ∈ H 1 -1 2 , 1 2 × ]0, 1[ , ˆ -1 2 , 1 2 ×]0,1[ ψ a q a dx 2 dx 3 = 0, ˆ -1 2 , 1 2 ×]0,1[ -D (x 2 ,x 3 ) ψ a q a + q a • D (x 2 ,x 3 ) ψ a dx 2 dx 3 = 0 ∀ψ a ∈ H 1 -1 2 , 1 2 × ]0, 1[ , (0.5.28) 
We prove the following result.

Theorem 0.5.2. Assume (0.5.1) with = 0, and (0.5.16). For every n ∈ N, let p a n , p b n be a solution of (0.5.15), and φ a p a n ,p b n , φ b p a n ,p b n be the unique solution of (0.5.13) with p a , p b = p a n , p b n . Moreover, let P • and E • be defined by (0.5.26) and (0.5.27)-(0.5.28), respectively. Then, there exist an increasing sequence of positive integer numbers {n i } i∈N and (in possible dependence on the

INTRODUCTION subsequence) pa = (p a 2 , pa 3 ) ∈ P • such that                  p a n i → (0, pa 2 , pa 3 ) strongly in H 1 (Ω a ) 3 and strongly in L 4 (Ω a ) 3 , h b n h a n 1 2 p b n → 0 strongly in H 1 (Ω b ) 3 and strongly in L 4 (Ω b ) 3 , (0.5.29) 1 h a n ∂p a n ∂x 1 , 1 h a n h b n 1 2 ∂p b n ∂x 3 → (0, 0) strongly in L 2 (Ω a ) 3 × L 2 Ω b 3 , (0.5.30)                    φ a p a n i ,p b n i , h b n h a n 1 2 φ b p a n ,p b n → ψ a pa , 0 strongly in H 1 (Ω a ) × H 1 (Ω b ), 1 h a n ∂φ a p a n ,p b n ∂x 1 , 1 h a n h b n 1 2 ∂φ b p a n ,p b n ∂x 3 → (0, 0) strongly in L 2 (Ω a ) × L 2 Ω b (0.5.31)
where pa solves

E • (p a ) = min {E • (q a ) : q a ∈ P • } , (0.5.32) 
and ψ a pa is the unique solution of (0.5.28) with q a = pa . Moreover,

lim n E n p a n , p b n h a n = E • (p a ) . (0.5.33)
The case = +∞.

We state the limit behavior of (0.5.15) when (0.5.1) is assumed with = +∞ and h b n << h a n . Here we assume that the function (φ a p a ,p b , φ b p a ,p b ) involved in (0.5.12) is the unique solution of the following problem: Set

                                   φ a p a ,p b , φ b p a ,p b ∈ U n , ˆΩb φ b p a ,p b dx = 0, h a n ˆΩa ((-D a n φ a p a ,p b + p a ) • D a n φ a )dx +h b n ˆΩb -D b n φ b p a ,p b + p b • D b n φ b dx = 0 ∀ (φ a , φ b ) ∈ U n , ( 
                   P ∞ = q b = q b 1 , q b 2 ∈ H 1 -1 2 , 1 2 2 2 
:

q b • ν b = 0 on ∂ -1 2 , 1 2 2 , q b 1 (0, •) = 0 in -1 2 , 1 2 , (0.5.35) 
where ν b denotes the unit outer normal on ∂ -1 2 , 1 2 2 , and

                   E ∞ : q b ∈ H 1 -1 2 , 1 2 2 -→ ˆ]-1 2 , 1 2 [ 2 β|rotq b | 2 +|divq b | 2 + α(|q b | 2 -1) 2 + |Dψ b q b | 2 + ˆ0 1 (f b 1 , f b 2 )dx 3 • q b dx 1 dx 2 , (0.5.36) INTRODUCTION where (f b 1 , f b 2 )
is defined in (0.5.16), and ψ b q b is the unique solution of

                   ψ b q b ∈ H 1 -1 2 , 1 2 2 , ˆ -1 2 , 1 2 2 ψ b q b dx 1 dx 2 = 0, ˆ -1 2 , 1 2 2 -D (x 1 ,x 2 ) ψ b q b + q b • D (x 1 ,x 2 ) ψ b dx 1 dx 2 = 0, ∀ψ b ∈ H 1 -1 2 , 1 2 2 . 
(0.5.37)

We prove the following result.

Theorem 0.5. 

                 h a n h b n 1 2 p a n → 0 strongly in H 1 (Ω a ) 3 and strongly in L 4 (Ω a ) 3 , p b n i → pb 1 , pb 2 , 0 strongly in H 1 (Ω b ) 3 and strongly in L 4 (Ω b ) 3 (0.5.38) 1 h a n h b n 1 2 ∂p a n ∂x 1 , 1 h b n ∂p b n ∂x 3 → 0 strongly in L 2 (Ω a ) 3 × L 2 (Ω b ) 3 , (0.5.39)                    h a n h b n 1 2 φ a p a n i ,p b n i , φ b p a n i ,p b n i → 0, ψ b pb strongly in H 1 (Ω a ) × H 1 (Ω b ), 1 h a n h b n 1 2 ∂φ a p a n ,p b n ∂x 1 , 1 h b n ∂φ b p a n ,p b n ∂x 3 → (0, 0) strongly in L 2 (Ω a ) × L 2 Ω b , (0.5.40) 
where pb solves

E ∞ pb = min E ∞ q b : q b ∈ P ∞ , (0.5.41)
and ψ b pb is the unique solution of (0.5.37) with q b = pb . Moreover, the convergence of the energies holds true, that is

lim n E n p a n , p b n h b n = E ∞ pb .
(0.5.42)

Introduction

In general, the theory of micromagnetism is used to model the particles ferromagnetic of small size (in the order of micrometer and less). This theory is proposed by W.F. Brown in the 40s, and aims to explain the nonlinear behavior of magnetic materials. The approach micromagnetic it is first of all energetic, allowing to identify the main phenomena intervener in the configuration of the magnetization and associate their energy quantities. The equilibrium is achieved when the total energy is minimized.

In this paper, we study the energy released by a cylindrical ferromagnetic nanowires. The first main objective is to show, in the framework studied in [START_REF] Gioia | Micromagnetism of very thin films[END_REF][START_REF] Hadiji | Asymptotic analysis for micromagnetics of thin films governed by indefinite material coefficients[END_REF][START_REF] Hadiji | 3D-2D Asymptotic observation for minimization problems associated with degenerative energy-coefficients[END_REF][START_REF] Visintin | On Landau-Lifschitz' equations for ferromagnetism[END_REF], that the corresponding minimization problem to the free total energy functional has at least one solution and we will perform it in the Theorem 1.2.1. The second objective by referring to the theories, that are studied in [13, 14, 33-35, 42, 43, 48, 59], is to rigorously derive a 1D reduced micromagnetic model for ferromagnetic nanowires and to find a definite association between the minimization problem in the three-dimensional domain and the limiting profile minimization in the one dimensional domain, which it will be proved in Theorem 1.3.1.

Let us assume that the finite 3D wire is a cylinder of length 2L, and radius 0 < h < 1. Consider a ferromagnetic nanowires occupying a bounded, possibly multi-connected domain Let α : Ω → [0, ∞) be a given continuous function, and let A 0 := α -1 (0) be the set of zero-points of α on Ω.

Ω (h) =] - L, L[×B 2 (0,
The aim of this paper is to study the minimization and the asymptotic behavior, as h → 0, of the following non-convex and nonlocal problem:

(P ) (h) =                  find a vectorial function m (h) = (m (h) 1 , m (h) 2 , m (h) 
3 ) ∈ L 2 (Ω (h) , R 3 ) of three variables, such that,

E (h) (m (h) ) = min m∈L 2 Ω (h) ,R 3 E (h) (m),
where, the functional E (h) denotes the micromagnetism energy in Ω (h) (see [START_REF] Brown | Micromagnetics[END_REF]), it is given by subject to the constraints: div(-

E (h) (m) :=                  1 2Lπh 2 ˆΩ(h) \A 0 α|∇m| 2 dL 3 + ˆΩ(h) ϕ(m)dL 3 + 1 2 ˆΩ(h) ∇ζ mag • mdL 3 , if m ∈ H 1 loc Ω (h) \A 0 , R 3 and √ α∇m ∈ L 2 Ω (h) \A 0 , R 3×3 , ∞, otherwise, (1.1.1) for any m = (m 1 , m 2 , m 3 ) ∈ L 2 Ω (h) , R 3 ,
∇ζ mag + m) = 0, in R 3 , (1.1.2) |m| = m s , L 3 -a.e. in Ω (h) . (1.1.3)
In (1.1.1), the funcional E (h) (m) is supposed to be the free energy, per unit volume, in a ferromgnetic nanowires (cf. Brown [START_REF] Brown | Micromagnetics[END_REF]). In the context, the index h and Ω (h) denote the radius of the ball and the distribution region of the magnetic nanowires , respectively, and the unknown m :

Ω (h) → R 3 , m = (m 1 (x), m 2 (x), m 3 (x)) (x = (x 1 , x 2 , x 3 ) ∈ Ω (h)
) is a vectorial function of three variables, which describes the magnetization in Ω (h) . The given continuous function α = α(x) (x ∈ Ω) is the so-called material coefficient, and here, it is supposed that is coefficient may degenerate somewhere on Ω. MATERIAL COEFFICIENTS

The exchange energy ˆΩ(h) \A 0 α|∇m| 2 dL 3 .

The ferromagnetic behavior is essentially due to a quantistic force which tends to allign the molecular magnetic field. The most important contribution is due to the exchange energy.

The anisotropy energy ˆΩ(h) ϕ(m)dL The energy due to the magnetic field H ≡ -∇ζ mag (magnetostatic energy).

ˆΩ(h)

∇ζ mag • mdL 3 = ˆR3 |∇ζ mag | 2 dL 3 .
Equation (1.1.3) embodies a fundamental constraint of micromagnetics, whereby a ferromagnetic body is always locally magnetized to a saturation magnetization m s (T ), where T is the local temperature. Denoting the Curie temperature by T c , m s > 0 unless T T c , in the latter case m s = 0 and the material ceases to behave ferromagnetically (for example the Curie temperature is 1043 K i.e. 770 • C for the iron ). As a consequence of (1.1.3), a specimen at T < T c can achieve a demagnetized state only in an average sense. Throughout this work we suppose constant temperature in the ferromagnetic regime.

Reformulating the problem on a fixed domain through appropriate rescalings of the kind proposed by P. G. and P. Destuynder [START_REF] Ciarlet | A justification of the two-dimensional linear plate model[END_REF] and using the ideas were used by [START_REF] Hadiji | Asymptotic analysis for micromagnetics of thin films governed by indefinite material coefficients[END_REF], it is proved the existence of a minimizers of problem (P ) (h) (see Theorem 1.2.1). Also, by using the ideas as in [START_REF] Carbou | Thin layers in micromagnetism[END_REF][START_REF] Carbou | Labbè Stabilization of walls for nano-wires of finite length[END_REF][START_REF] Gaudiello | Asymptotic analysis, in a thin multidomain, of minimizing maps with values in S 2[END_REF][START_REF] Gaudiello | Junction of ferromagnetic thin films[END_REF][START_REF] Gaudiello | Ferromagnetic thin multi-structures[END_REF][START_REF] Gioia | Micromagnetism of very thin films[END_REF], we derive the limit problem (see Theorem 1.3.1). Specifically, we prove that lim

h (P ) (h) = min E • (m) : m = (m 1 , m 2 , m 3 ) ∈ L 2 (] -L, L[, R 3 ) . 1.2 THE MINIMIZATION PROBLEM 25 
where andΦ • α iz the convex function on L 2 (] -L, L[, R 3 ), defined as:

E • (m) :=                  Φ • α (m) + ˆ]-L,L[ ϕ(m)dL 1 + 1 2 ˆ]-L,L[ |m 2 | 2 + |m 3 | 2 dL 1 , if m ∈ L 2 (] -L, L[, S 2 ), ∞, otherwise, for any m = (m 1 , m 2 , m 3 ) ∈ L 2 (] -L, L[, R 3 ),
Φ • α (m) :=          ˆ]-L,L[\A • 0 α • |∇m| 2 dL 1 , if m ∈ H 1 loc (] -L, L[\A • 0 , R 3 ), ∞, otherwise, for any m = (m 1 , m 2 , m 3 ) ∈ L 2 (] -L, L[, R 3 ).
We obtain a infinite 1D reduced micromagnetic model for ferromagnetic nanowires. Moreover, the magnetostatic energy transforms into

1 2 ˆ]-L,L[ |m 2 | 2 + |m 3 | 2 dL 1
, so that the limit problem is completely local and plays a role of additional anisotropy. In such wires, the additional anisotropy is uniaxial (directed along the wire). It easy to see that, if ϕ = 0, then the minimum in the limit problem is zero and it is attained by (-1, 0, 0) or (+1, 0, 0) (see Section 1.3).

The paper is organized as follows : In the next Section 1.2, we prove the existence of minimizers of problem (P ) (h) . The 3D -1D asymptotic analysis for the observing minimization problem, it is obtained in Section 1.3.

The minimization problem 1.2.1 Nanowires scaling

As it is usual (see [START_REF] Ciarlet | A justification of the two-dimensional linear plate model[END_REF]), problem (P ) (h) will be reformulated on a fixed domain.

From now on, for simplicity, let us set :

L 3 (Ω) = 2Lπ = 1, and m s = 1; MATERIAL COEFFICIENTS and let us denote by ψ (h) the diffeomorphism, defined as:

ψ (h) : x = (x 1 , x 2 , x 3 ) ∈ R 3 → (x 1 , hx 2 , hx 3 ) ∈ R 3 .
Also, let us put

α (h) := α • ψ (h) ∈ C(Ω) and A (h) 0 := α (h) -1 (0).
Next, using the area formula in the fundamental calculations, it can be shown that the minimization problem (P ) (h) , for any 0 < h < 1, has the below equivalent form, denoted by (P ) (h) . (P ) (h) is for finding a vectorial function m (h) = (m

(h) 1 , m (h) 2 , m (h) 
3 ) ∈ L 2 (Ω, R 3 ) of three variables, which minimizes the following functional:

E (h) (m) :=                  Φ (h) α (m) + ˆΩ ϕ(m) dL 3 + 1 2 ˆΩ ∂ 1 ζ m 1 + 1 h ∂ 2 ζ m 2 + 1 h ∂ 3 ζ m 3 dL 3 , if m ∈ L 2 (Ω, S 2 ), ∞ , otherwise, (1.2.1) 
for any m = (m 1 , m 2 , m 3 ) ∈ L 2 (Ω, R 3 ), subject to the constraints:

∂ 1 (-∂ 1 ζ + m 1 ) + 1 h ∇ • - 1 h ∇ ζ + m = 0, in R 3 , (1.2.2) 
where y = (y 2 , y 3 ) for y = (y 1 , y 2 , y 3

) ∈ R 3 , ν := (ν 2 , ν 3 ) ∈ L 2 (Ω, R 2 ), for ν = (ν 1 , ν 2 , ν 3 ) ∈ L 2 (Ω, R 3 )
and the distributional gradient

∇ = (∂ 2 , ∂ 3 ) such that ∇ ν =          ∂ 2 ν 1 ∂ 3 ν 1 ∂ 2 ν 2 ∂ 3 ν 2 ∂ 2 ν 3 ∂ 3 ν 3          , for ν = (ν 1 , ν 2 , ν 3 ) ∈ L 2 (Ω, R 3 ), and 
Φ (h)
α (m) is the convex function on L 2 (Ω, R 3 ), defined as:

Φ (h) α (m) :=                  ˆΩ\A (h) 0 α (h) |∂ 1 m| 2 + 1 h 2 |∇ m| 2 dL 3 , if m ∈ H 1 loc Ω\A (h) 0 , R 3 , ∞, otherwise, (1.2.3) 
for any m = (m 1 , m 2 , m 3 ) ∈ L 2 (Ω, R 3 ).

Furthermore, for any 0 < h < 1, the equality: 2.4) holds between the minimizers m (h) and m (h) of the respective problems (P ) (h) and (P ) (h) .

m (h) = m (h) • ψ (h) in L 2 (Ω, R 3 ), (1. 
In each case, the minimizer, described in (1.2.4), are supposed to represent the most probable profile of the magnetization in the studying ferromagnetic nanowires. However, when is the case of the very thin situation of the radius h, the problem (P ) (h) / (P ) (h) is usually reduced to another one (it will be discussed in Section 1.3).

For the detailed description of this matter, let us first set:

α • (x 1 ) := α(x 1 , 0, 0) for any x 1 ∈ [-L, L], and 
A • 0 := (α • ) -1 (0).
Now, if we take into account the non degenerate case of the material coefficient α, referred to the case that:

A (h) 0 = A • 0 = ∅ for 0 < h < 1, and α * := min x∈Ω α(x) > 0, then the convex part Φ (h)
α of the energy E (h) satisfies the coercivity condition below:

Φ (h) α (m) ≥ α * |∇m| 2 L 2 (Ω,R 3×3 ) , for all m ∈ L 2 (Ω, R 3 ). (1.2.5)

The main results

The first goal of this study, is to impose the two conditions below for the material coefficient α: (a) L 3 (A 0 ) = 0, and hence L 3 (A (h) 0 ) = 0, for 0 < h < 1.
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(b) There exists a constant C α ≥ 1, such that

α • (x 1 ) ≤ α(x) ≤ C α α • (x 1 ), for all x = (x 1 , x 2 , x 3 ) ∈ Ω
Consequently, we will show the following theorem:

Theorem 1.2.1. Let us assume the condition (a). Then for 0 < h < 1 the minimization problem (P ) (h) admits at least one solution (minimizer) m (h) , and hence the same holds for the problem (P ) (h) .

Preliminaries

Notation. For any dimension n ∈ N, the n-dimensional Lebesgue measure is denoted by L n , and for any Borel set E ⊂ R n , the characteristic function on E is denoted by χ E .

For any abstract Banach space, the norm of X is denoted by | • | X . However, when X is an Euclidean space, the is simply denoted by | • |. Also, we denote by dist X (ξ, Y ) the distance between any point ξ ∈ X and any subset Y ⊂ X, that is defined as dist X (ξ, Y ) := inf δ∈Y |ξ -δ| X . Additionally, for any > 0 and any functional F : X → [-∞, ∞], we denote by L( , F ) the sub-level set of F , more precisely:

L( , F ) := {ξ ∈ X | F (ξ) ≤ } .
For any abstract Hilbert space H, the inner product of H is denoted by 

(ζ, v) := ˆΩ m 1 ∂ 1 v + 1 h m • ∇ v dL 3 = ˆR3 ∂ 1 ζ∂ 1 v + 1 h 2 ∇ ζ • ∇ v dL 3 , for any v ∈ V, (1.2.6) 1.2 THE MINIMIZATION PROBLEM 29
with m = (m 2 , m 3 ) and ∇ = (∂ 2 , ∂ 3 ), where V , the phase space for the Maxwell equation (1.2.2) is fixed as the following functional space, denoted by : The condition ˆB Ω vdL 3 = 0 prevents trivial translations v → v + c. As easily checked (cf. [5, Theorem 5.4.3]), this functional space is a Hilbert space, endowed with the inner product:

V := v ∈ H 1 loc (R 3 ) ∇v ∈ L 2 (R 3 , R 3
(z, v) := ˆR3 ∂ 1 z∂ 1 v + 1 h 2 ∇ z • ∇ v dL 3 , for all z, v ∈ V,
which readily leads to the definition of the norm

|v| V = (v, v) 1 2 , (1.2.7)
where 0 < h < 1 is the same constant as in (1.2.2). Furthermore, the Hilbert space V is compactly embedded into the space L 2 ( BΩ ). 

S (h) : L 2 (Ω, R 3 ) → V, that maps any m ∈ L 2 (Ω, R 3 ) to the solution ζ ∈ V of (1.2.
2), is well-defined as a single-valued mapping. Moreover, the solution operator S (h) is a bounded linear operator, such that:

|S (h) m| V ≤ |m| L 2 (Ω,R 3 ) , for any m ∈ L 2 (Ω, R 3 ). (1.2.8)
Remark 1.2.4. (Sommary of [START_REF] Gioia | Micromagnetism of very thin films[END_REF]) For any 0 < h < 1, the functional E (h) mag (m) defined as

E (h) mag (m) := 1 2 ˆΩ ∂ 1 ζ (h) m 1 + 1 h ∇ ζ (h) • m dL 3 , (1.2.9 
)

for any m = (m 1 , m 2 , m 3 ) ∈ L 2 (Ω, R 3 ),
links to the part of the free energy

E (h) , given in (1.2.1), that is involved in the coupled Maxwell equation (1.2.2). Moreover, in the light of Remark 1.2.2, setting v = ζ in (1.2.6) it follows that E (h) mag m (h) = 1 2 ζ (h) 2 V ≥ 0 for any 0 < h < 1. (1.2.10) CHAPTER 1: MICROMAGNETICS WIRES GOVERNED BY INDEFINITE MATERIAL COEFFICIENTS
Next, let us use the Key-properties of the energy functionals.

We will start with a proposition concerned with a Hilbert space, associated with the effective domain of convex part of energy functional. 

       A 0 := A • 0 × B 2 (0, 1)
,

H α := m ∈ L 2 (Ω, R 3 ) m ∈ H 1 loc (Ω\A 0 , R 3 ), √ α • ∇m ∈ L 2 (Ω\A 0 , R 3×3 ) . (1.2.11)
Then, H α is a Hilbert space, endowed with the inner product:

(ξ, Λ) H α := ˆΩ ξ • ΛdL 3 + ˆΩ\A 0 α • ∇ξ : ∇ΛdL 3 , for all ξ, Λ ∈ H α . (1.2.12)
Hence, the functional Φ α defined as:

Φ α (m) :=          ˆΩ\A 0 α • |∇m| 2 dL 3 , if m ∈ H α , ∞, otherwise, (1.2.13 
)

for any m = (m 1 , m 2 , m 3 ) ∈ L 2 (Ω, R 3 ),
is proper l.s.c and convex on L 2 (Ω, R 3 ).

Just as in above proposition, we can prove the below Corollary.

Corollary 1.2.6. Let us fix any 0 < h < 1, and let us denote by

H (h) α the effective domain of the convex function Φ (h) α , given in (1.2.3). Then, H (h)
α is a Hilbert space, endowed with the inner product:

(ξ, Λ) H (h) α := ˆΩ ξ • ΛdL 3 + ˆΩ\A (h) 0 α (h) ∂ 1 ξ∂ 1 Λ + 1 h 2 ∇ ξ • ∇ Λ dL 3 , for all ξ, Λ ∈ H (h) α .
Hence, the convex function

Φ (h)
α turns out to be proper and l.s.c on L 2 (Ω, R 3 ).

Lemma 1.2.7. (Approximating open sets) For any 0 < h < 1, there exists a sequence

Ω (h) λ | λ = 1, 2, 3, • • • ⊂ R 3 of three-dimensional open sets, having Lipschitz boundaries, 1.2 THE MINIMIZATION PROBLEM such that: ∅ = Ω (h) 1 ⊂⊂ Ω (h) 2 ⊂⊂ Ω (h) 3 ⊂⊂ • • • ⊂⊂ Ω (h) λ ⊂⊂ • • • ⊂⊂ Ω\A (h) 0 = ∞ λ=1 Ω (h) λ . (1.2.

14)

As a consequence, we infer that: Then, for any 0 < h < 1, any bounded sequence in

         a (h) λ := min x∈Ω (h) λ α (h) (x) > 0, λ = 1, 2, 3, • • • , for any 0 < h < 1. a (h) λ → 0, as λ → ∞,
H (h) α ∩ L p (Ω, R 3 ) is relatively compact in L p (Ω, R 3 ).
Here is a corollary that is derived from the Proposition 1.2.8. Corollary 1.2.9. (I) Let us assume the condition (a), and let us take any 1 ≤ p < 2. Then, for any 0 < h < 1, the Hilbert space

H (h)
α is compactly embedded into the Banach space L p (Ω, R 3 ).

(II) Let us assume the condition (a), then for any 0 < h < 1 and any > 0, the sublevel set:

L , E (h) := m ∈ L 2 (Ω, R 3 ) | E (h) (m) ≤ , is compact in L 2 (Ω, R 3 ).
Proof of Proposition 1. ). Besides, let us take any sequence u

(i) * | i = 1, 2, 3, • • • ⊂ H (h) α ∩ L p (Ω, R 3 ), such that: sup i∈N u (i) * H (h) α ≤ R 0 and sup i∈N u (i) * L p (Ω,R 3 ) ≤ R 0 , (1.2.15) CHAPTER 1: MICROMAGNETICS WIRES GOVERNED BY INDEFINITE MATERIAL COEFFICIENTS
for some constant R 0 , independent of i ∈ N. Then, noting that L 3 (Ω) = 1, and:

sup i∈N u (i) * 2 L q 2 (Ω,R 3 ) = sup i∈N u (i) * 2 L q (Ω,R 3 ) ≤ sup i∈N u (i) * 2 L p (Ω,R 3 ) ≤ R 2 0 ,
we construct a sequence n

(h) k | i = 1, 2, 3, • • • ⊂ N, and functions u * ⊂ H (h) α and γ * ∈ L q 2 (Ω), such that:        n (h) k → ∞, u (n (h) k ) * → u * weakly in H (h) α ,
and u

(i) * 2 → γ * weakly in L q 2 (Ω), as k → ∞.
(1.2.16)

The above convergence implies that:

ˆE u (n (h) k ) * 2 dL 3 = ˆΩ u (n (h) k ) * 2 χ E dL 3 → ˆΩ γ * χ E dL 3 = ˆE γ * dL 3 as k → ∞, for any Borel subset E ⊂ Ω.
So, applying the assumption (a) and Vitali-Hahn-Saks's theorem, we infer that

I (λ) * := sup j∈N ˆΩ\Ω (h) λ u (n (h) j ) * 2 dL 3 → 0, as λ → ∞.
(1.2.17)

Next, due to Lemma 1.2.7, the subsequence u

(n (h) k ) * | k = 1, 2, 3, • • • ⊂ u (i) *
turns out to be bounded in the space H 1 Ω (h) λ , R 3 , for any λ ∈ N. Hence, Sobolev's embedding theorem enables to construct a decreasing family of subsequences:

• • • ⊂ n (λ) k ⊂ • • • ⊂ n (3) k ⊂ n (2) k ⊂ n (1) k ⊂ n (h) k , to fulfill that:                            • the subsequence u (n (λ) k ) * admits a limit η (λ) * ∈ H 1 Ω (h) λ , R 3 in the strong topology of L 2 Ω (h) λ , R 3 , as k → ∞, • u (n (λ) k ) * -η (λ) * 2 L 2 Ω (h) λ ,R 3 ≤ 1 λ , k = 1, 2, 3, • • • , for any λ ∈ N. (1.2.18) Now, let us set a function η * ∈ H 1 loc Ω\A (h) 0 , R 3
, by putting:

η * (x) := η (λ) * (x), if x ∈ Ω (h) λ , for L 3 -a.e. x ∈ Ω.
Then, by virtue of (1.2.15) and the monotone convergence theorem,

´Ω |η * | 2 dL 3 = lim λ→∞ ˆΩ χ Ω (h) λ |η * | 2 dL 3 ≤ sup λ∈N ˆΩ(h) λ η (λ) * 2 dL 3 = sup λ∈N lim k→∞ ˆΩ(h) λ u (n (λ) k ) * 2 dL 3 ≤ sup i∈N u (i) * 2 H (h) α ≤ R 2 0 , (1.2.19) 
therefore η * ∈ L 2 (Ω, R 3 ).
Afterwards, let us set a subsequence u

(k) * * | k = 1, 2, 3, • • • ⊂ u (i) *
, by putting:

u (k) * * = u (n (k) k ) * in L 2 (Ω, R 3 ) for k = 1, 2, 3, • • • . MATERIAL COEFFICIENTS
Then, considering the assumption (a), and (1.2.17)-(1.2.19), we obtain that:

u (k) * * -η * 2 L 2 (Ω,R 3 ) ≤ u (n (k) k ) * -η * 2 L 2 Ω (h) k ,R 3 + 2 u (k) * * 2 L 2 Ω\Ω (h) k ,R 3 + |η * | 2 L 2 Ω\Ω (h) k ,R 3 ≤ 1 k + 2I (k) * + 2 ˆΩ\Ω (h) k |η * | 2 dL 3 → 0, as k → ∞.
Thus, the subsequence u

(k) * *
is a convergent sequence in the topology of L 2 (Ω, R 3 ) and the limit η * must coincide with the weak limit u * as in (1.2.16).

Proof of Theorem 1.2.1

The proof will be a slight modification of the argument, discussed in [42, Section 5.1]. In fact, under the condition (a), and under the fixed setting of 0 < h < 1. Let us put e = (1, 0, 0) ∈ S 2 . Then, by virtue of (1.2.1), (1.2.9) and (1.2.10),

0 ≤ E (h) * := inf m∈L 2 (Ω,R 3 ) E (h) (m) ≤ E (h) (e ).
Therefore the infimum

E (h) * of E (h) is finite in L 2 (Ω, R 3 ), we can find a minimizing sequence m (i) * | i = 1, 2, 3, • • • ⊂ H (h)
α , such that:

E (h) (m (i) * ) E (h) * as i → ∞.
Here, on account of (II) in Corollary 1.2.9, and the constraint onto L 2 (Ω, S 2 ) as in (1.2.1), a convergence subsequence m

(i k ) * | k = 1, 2, 3, • • • ⊂ m (i) *
will be found with the limit m * ∈ L 2 (Ω, R 3 ), and such that:

       m (i k ) * → m * in L 2 (Ω, R 3 ), ϕ(m (i k ) * ) → ϕ(m * ), in L 1 (Ω),
as k → ∞. 

ζ (k) * → ζ * in V, as k → ∞. (1.2.20)
Thus by (1.2.10), and (1.2.20) we have,

E (h) mag m (i k ) * → E (h) mag (m * ), as k → ∞. (1.2.21)
Now, taking (1.2.21), and Proposition 1.2.5, we obtain that:

E (h) * = lim k→∞ E (h) m (i k ) * = lim inf k→∞ Φ (h) α m (i k ) * + lim k→∞ ϕ m (i k ) * L 1 (Ω) + 1 2 ζ (k) * 2 V ≥ Φ (h) α (m * ) + |ϕ(m * )| L 1 (Ω) + 1 2 |ζ * | 2 V = E (h) (m * ) ≥ E (h) * .
Therefor, the limit m * is the minimizer, that is denoted by m (h) in Theorem 1.2.1.

1.3 The 3D -1D asymptotic analysis for the observing minimization problem

The main results

Here, regarding the theories [13, 14, 33-35, 42, 43, 48, 59], to find a definite association between the limiting profile of (P ) (h) as h → 0, and the following minimization problem, denoted by (P ) • , for the magnetization on the one dimensional domain ] -L, L[.

(P ) • =                  find a vectorial function m • = (m • 1 , m • 2 , m • 3 ) ∈ L 2 (] -L, L[, R 3 )
of three variables, such that,

E • (m • ) = min m∈L 2 (]-L,L[,R 3 ) E • (m),
where, the functional E • , it is given by

E • (m) :=                  Φ • α (m) + ˆ]-L,L[ ϕ(m)dL 1 + 1 2 ˆ]-L,L[ |m 2 | 2 + |m 3 | 2 dL 1 , if m ∈ L 2 (] -L, L[, S 2 ), ∞, otherwise, (1.3.1) 
for any m = (m 1 , m 2 , m 3 ) ∈ L 2 (] -L, L[, R 3 ),
where

Φ • α iz the convex function on L 2 (] -L, L[, R 3 
), defined as:

Φ • α (m) :=          ˆ]-L,L[\A • 0 α • |∇m| 2 dL 1 , if m ∈ H 1 loc (] -L, L[\A • 0 , R 3 ), ∞, otherwise, (1.3.2) for any m = (m 1 , m 2 , m 3 ) ∈ L 2 (] -L, L[, R 3 
). Up to now, the above fact has been proved previously, by relying on the compactness of the sub level sets E (h) , that has been derived from the coercivity condition (1.2.5). Now, let us consider the conditions (a) and (b) for the material coefficient α.

Consequently, we can conclude the Theorem 1.3.1, that is shown as following:

Theorem 1.3.1. Under the conditions (a)-(b), there exist a sequence {h i | i = 1, 2, 3, • • • } ⊂ (0, 1) and limiting function m • ∈ L 2 (] -L, L[, R 3 ) of one variable, such that: (i) h i → 0, m (h i ) → m • in L 2 (Ω, R 3 ), E (h i ) m (h i ) → E • (m • ), and 
1.3 THE 3D -1D ASYMPTOTIC ANALYSIS FOR THE OBSERVING MINIMIZATION PROBLEM 37                  α (h i ) ∂ 1 m (h i ) (x 1 , x 2 , x 3 ) → √ α • ∂ 1 m • (x 1 ) = √ α • ∇m • (x 1 ) , √ α (h i ) h i ∂ 2 m (h i ) (x 1 , x 2 , x 3 ) → 0, √ α (h i ) h i ∂ 3 m (h i ) (x 1 , x 2 , x 3 ) → 0, (1.3.3) for L 1 -a.e. x 1 ∈] -L, L[ and L 2 -a.e. (x 2 , x 3 ) ∈ B 2 (0, 1), as i → ∞, (ii) the limit m • solves the problem (P ) • , where m (h) | 0 < h < 1 is the sequence of minimizer m (h) , 0 < h < 1, obtained in Theorem 1.2.1.
Additionally, let us look toward the limiting observation for (1.2.2), as h → 0. As a innovative work for this theme, we can refer to [14, Theorem 2.1], or [59, Sections 3], stated as follows.

Proposition 1.3.2. (Summary of [14, Theorem 2.1]) Let m(h) | 0 < h < 1 ⊂ L 2 (Ω, R 3 ) be a fixed sequence, such that m(h) → m in L 2 (Ω, R 3 ) as h → 0, for some m = ( m1 , m2 , m3 ) ∈ L 2 (Ω, R 3 ). For any 0 < h < 1, let ζ (h) be the solution of the Maxwell equation (1.2.2) when m = m(h) . Let E (h)
mag the functional defined in (1.2.9), and let E • mag be functionals on L 2 (Ω, R 3 ), which is defined as:

E • mag (m) := 1 2 ˆΩ |m 2 | 2 + |m 3 | 2 dL 3 , (1.3.4 
)

for any m = (m 1 , m 2 , m 3 ) ∈ L 2 (Ω, R 3 ). Then,        ∇ζ (h) → 0 in V, 1 h ∂ 2 ζ (h) → m2 , 1 h ∂ 3 ζ (h) → m3 in L 2 (Ω, R 3 ), as h → 0, (1.3.5) 
and hence

E (h) mag m(h) → E • mag ( m), as h → 0. Lemma 1.3.3. There exists a sequence {I λ | λ = 1, 2, 3, • • • } ⊂ R of one-dimensional open interval, such that: ∅ = I 1 ⊂⊂ I 2 ⊂⊂ I 3 ⊂⊂ • • • ⊂⊂ I λ ⊂⊂ • • • ⊂⊂] -L, L[\A • 0 = ∞ λ=1 I λ .
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As a consequence, we infer that:

         a • λ := min x∈I λ α • (x) > 0, λ = 1, 2, 3, • • • , a • λ → 0, as λ → ∞; with I λ is a closed interval in R.
Proof of Lemma 1.3.3. This Lemma is directly similar of Lemma 1.2.7, made for the one-dimensional situation.

Remark 

(ξ, Λ) H • α := ˆ]-L,L[ ξ • ΛdL 1 + ˆ]-L,L[\A • 0 α • ∇ξ : ∇ΛdL 1 , for all ξ, Λ ∈ H • α .
Hence, the convex function Φ • α turns out to be proper and l.s.c on

L 2 (] -L, L[, R 3 ).
(II) As it is easily checked, the two convex functions Φ α and Φ • α , as in above assumption (I), Proposition 1.2.5, and Corollary 1.2.6, coincide with as functionals on L 2 (] -L, L[, R 3 ), namely:

Φ α (m) = Φ • α (m), if m ∈ L 2 (] -L, L[, R 3 ).
(III) If we assume that L 1 (A • 0 ) = 0 and let us take any 2 < p ≤ ∞, we have

(i) Any bounded sequence in H • α ∩L p (]-L, L[, R 3 ) is relatively compact in L p (]-L, L[, R 3 
). (ii) For any > 0, the sublevel set:

L( , E • ) := m ∈ L 2 (Ω, R 3 ) | E • (m) ≤ , is compact in L 2 (] -L, L[, R 3 ).
Remark 1.3.5. Let us assume the condition (b), then the sequences Ω (h) λ , 0 < h < 1, can be taking independently of h. In fact, since the condition (b) implies that:

( ) A (h) 0 = A 0 , for any 0 < h < 1,
it easily to checked that for all of open sets, given as:
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have Lipschitz boundaries, and the sequence

{Ω λ | λ = 1, 2, 3, • • • }.
( ) Let us take account of assumptions (a)-(b), Proposition 1.2.5, and assertion ( ) we can show that:

L 3 A (h) 0 = L 3 (A 0 ) = L 1 (A • 0 ) = 0, Φ (h) α ≥ Φ α on L 2 (Ω, R 3 ) and hence H (h) α ⊂ H α , for any 0 < h < 1. 1.3.2 Proof of Theorem 1.3.1
The proof of this theorem will be a modification of the argument, discussed in [START_REF] Hadiji | Asymptotic analysis for micromagnetics of thin films governed by indefinite material coefficients[END_REF] Section 4 and Section 5.2.

We will do this proof in several steps. The first two steps will show that we call Γ-convergence when h → 0 of the functional Φ (h) α . In the third step we will show that when the radius of the ball goes to zero the magnetization function converge to a limit function which has a single variable and solves the problem (P ) • . Finally, in the last step, all we have to do is to show in which meaning the pointwise convergence has asserted in (1.3.3).

At the beginning, in the Step 1 and Step 2, we deal with the Γ-convergence from Φ (h)

α to Φ • α as h → 0. We will show that under the conditions (a)-(b), the sequence Φ (h) α | 0 < h < 1 of convex function Γ-converge to the convex function Φ • α , on L 2 (Ω, R 3 ), as h → 0.
More precisely, by referring to [START_REF] Acanfora | On the variational convergence of noncoercive quadratic integral functionals and semicontinuity problems[END_REF][START_REF] Maso | An introduction to Γ-convergence[END_REF] this is equivalent to show that:

(γ1) lim inf h→0 Φ (h) α µ (h) ≥ Φ (h) α (µ), if µ (h) | 0 < h < 1 ⊂ L 2 (Ω, R 3 ), µ ∈ L 2 (Ω, R 3 ), and µ (h) → µ in L 2 (Ω, R 3 ) as h → 0, (γ2) for any ν ∈ H • α (⊂ L 2 (] -L, L[, R 3 )), there exists a sequence µ (h) ν | 0 < h < 1 ⊂ L 2 (Ω, R 3 ), such that µ (h) ν → ν in L 2 (Ω, R 3 ) and Φ (h) α µ (h) ν → Φ • α (ν), as h → 0.
Indeed, firstly let us assume the assumption ( ) in Remark 1.3.5.

Step 1. Verification of γ1. Let us take any sequence

µ (h) | 0 < h < 1 ⊂ L 2 (Ω, R 3 ) and any µ ∈ L 2 (Ω, R 3 
), such that:

µ (h) → µ weakly in L 2 (Ω, R 3 ), as h → 0. (1.3.6)
Then, it is enough to consider only the case when lim inf h→0

Φ (h) α µ (h) < ∞, since another case is trivial. In this case we construct a sequence ĥi | i = 1, 2, 3, • • • ⊂ (0, 1) and a constant R 1 , CHAPTER 1: MICROMAGNETICS WIRES GOVERNED BY INDEFINITE MATERIAL COEFFICIENTS independent of the index i ∈ N, such that:          ĥ2 i+1 < ĥ2 i < 1 2 i , 1 ĥ2 i ˆΩ\A 0 α ( ĥi ) ∂ 2 µ ( ĥi ) 2 + ∂ 3 µ ( ĥi ) 2 dL 3 ≤ Φ ( ĥi ) α µ ( ĥi ) ≤ R 1 , for i = 1, 2, 3, • • • , and lim i→∞ Φ ( ĥi ) α µ ( ĥi ) = lim inf h→0 Φ (h) α µ (h) < ∞. (1.3.7)
Here, taking into account (1.3.6)-(1.3.7) and Lemma 1.2.7,

                               ∂ 2 µ ( ĥi ) 2 L 2 (Ω λ ,R 3 ) ≤ Φ ( ĥi ) α µ ( ĥi ) a ( ĥi ) λ ĥ2 i ≤ R 1 a ( ĥi ) λ ĥ2 i ≤ R 1 a (1/2 i ) λ ĥ2 i → 0, as i → ∞, ∂ 2 µ = 0 in L 2 (Ω λ , R 3 ), ∂ 3 µ ( ĥi ) 2 L 2 (Ω λ ,R 3 ) ≤ Φ ( ĥi ) α µ ( ĥi ) a ( ĥi ) λ ĥ2 i ≤ R 1 a ( ĥi ) λ ĥ2 i ≤ R 1 a (1/2 i ) λ ĥ2 i → 0, as i → ∞, ∂ 3 µ = 0 in L 2 (Ω λ , R 3 ), for λ = 1, 2, 3, • • • .
Therefore, it is possible to write µ as a function of one-variable μ(λ) ∈ L 2 (I λ , R 3 ), for any λ ∈ N * , such that:

µ(x 1 , x 2 , x 3 ) = μ(λ) (x 1
), for L 1 -a.e. x 1 ∈ I λ and L 2 -a.e. (x 2 , x 3 ) ∈ B 2 (0, 1).

Thereafter, let us set:

μ(x 1 ) :=        μ(λ) (x 1 ), if λ ∈ N and x 1 ∈ I λ , 0, otherwise, for L 1 -a.e. x 1 ∈] -L, L[.
Then with helps from (a)-(b) Fubini's theorem and monotone convergence theorem, it is deduced

1.3 THE 3D -1D ASYMPTOTIC ANALYSIS FOR THE OBSERVING MINIMIZATION PROBLEM 41 that: ∞ > 1 π |µ| 2 L 2 (Ω,R 3 ) ≥ 1 π lim λ→∞ ˆΩ λ |µ| 2 dL 3 = 1 π lim λ→∞ ˆB2 (0,1) ˆIλ |μ| 2 dL 1 dL 2 = 1 π lim λ→∞ ˆB2 (0,1) ˆ]-L,L[\A • 0 χ I λ |μ| 2 dL 1 dL 2 = 1 π ˆB2 (0,1) ˆ]-L,L[\A • 0 |μ| 2 dL 1 dL 2 = ˆ]-L,L[ |μ| 2 dL 1 ,
and

ˆΩ |µ -μ| 2 dL 3 = lim λ→∞ ˆB2 (0,1) ˆ]-L,L[ χ I λ |µ -μ| 2 dL 1 dL 2 = lim λ→∞ ˆB2 (0,1) ˆIλ |µ -μ| 2 dL 1 dL 2 = 0.
Hence, the limit µ can be regarded as the functional μ ∈ L 

lim inf h→0 Φ (h) α µ (h) ≥ lim inf h→0 Φ α µ (h) ≥ Φ α (µ) = Φ • α (µ)
Step 2. Verification of γ2. Let ν ∈ H • α . Then, under (a)-(b), by constructing the required sequence µ (h) ν | 0 < h < 1 , we define:

µ (h) ν = ν ∈ H α (= H (h) α ) for any 0 < h < 1. (1.3.8)
Here, noting that:

       α (h) → α • in C(Ω), as h → 0, α (h) = α (h) ≤ C α α • on Ω, for any 0 < h < 1, CHAPTER 1: MICROMAGNETICS WIRES GOVERNED BY INDEFINITE MATERIAL COEFFICIENTS
Consequently, by applying dominated convergence theorem we obtain that:

Φ (h) α µ (h) ν = ˆΩ\A 0 α (h) |∇ν| 2 dL 3 → ˆΩ\A 0 α • |∇ν| 2 dL 3 = ˆ]-L,L[\A • 0 α • |∇ν| 2 dL 1 = Φ • α (ν) as h → 0.
(1.3.9) 

Remark
(i) lim inf h→0 E (h) µ (h) ≥ E (h) (µ), if µ (h) | 0 < h < 1 ⊂ L 2 (Ω, R 3 ), µ ∈ L 2 (Ω, R 3 ), and 
µ (h) → µ (strong) in L 2 (Ω, R 3 ), as h → 0, (ii) for any ν ∈ H • α (⊂ L 2 (] -L, L[, R 3 )), there exists a sequence µ (h) ν | 0 < h < 1 ⊂ L 2 (Ω, R 3 ), such that µ (h) ν → ν in L 2 (Ω, R 3 ) and E (h) µ (h) ν → E • (ν), as h → 0.
Step 3. Let us assume the conditions (a)-(b), and let us take a sequence m (h) | 0 < h < 1 of minimizes of E (h) , 0 < h < 1. Means that:

E (h) m (h) ≤ E (h) (m), for all m ∈ L 2 (Ω, R 3
), and all 0 < h < 1.

(1.3.10)

For any 0 < h < 1, let ζ (h)
e be the solution of the coupled Maxwell equation (1.2.2), when m ≡ e , L 3 -a.e in Ω. Then, by (1.2.6) and (1.2.10) yields that E (h) mag (e ) < 1, for any 0 < h < 1 (for details see [START_REF] Hadiji | Asymptotic analysis for micromagnetics of thin films governed by indefinite material coefficients[END_REF]Section 5.2]). In light of this, it is furthermore considered that:

Φ (h) α m (h) ≤ E (h) m (h) ≤ E (h) (e ) = Φ (h) α (e ) + |ϕ(e )| L 1 (Ω) + E (h) mag (e )
≤ ϕ(e ) + 1, for all 0 < h < 1.

(1. 

       ȟi → 0, m ȟi → m • in L 2 (Ω, R 3 ), ϕ m ( ȟi ) → ϕ(m • ), in L 1 (Ω),
as i → ∞.

(1.3.12)
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Equally, considering (1.3.11) and Remark 1.3.6, it will be noted that:

Φ • α (m • ) ≤ E • (m • ) ≤ lim inf i→∞ E ( ȟi ) m ( ȟi ) ≤ ϕ(e ) + 1 and hence m • ∈ H • α ∩ L 2 (] -L, L[, S 2
). Moreover, by (1.3.8)-(1.3.9), we obtain that:

E • (m • ) ≤ lim sup i→∞ E ( ȟi ) m ( ȟi ) ≤ lim i→∞ E ( ȟi ) (m) = E • (m), for any m ∈ H • α ∩ L 2 (] -L, L[, S 2 ),
and

E • (m • ) ≤ lim inf i→∞ E ( ȟi ) m ( ȟi ) ≤ lim sup i→∞ E ( ȟi ) (m) ≤ E • (m • ).
It implies that m • solves the limiting problem (P ) • and it is deduced that:

E (h) m (h) → E • (m • ) as h → 0.
Step 4. Now, we will to show that the pointwise convergence, asserted in (1.3.3). For this matter we will used the argument discussed in the proof of [START_REF] Gioia | Micromagnetism of very thin films[END_REF]Theorem 4.1] and [42, Section 5.2]. Indeed, by (1.3.11) we have that E (h) m (h) ≤ ϕ(e ) + 1, for all 0 < h < 1, where m (h) is the energy minimizer and e = (1, 0, 0) ∈ S 2 , Afterward

α (h) ∂ 1 m (h) 2 L 2 (R 3 ) ≤ D 1 , 1 h 2 | α (h) ∇ m (h) | 2 L 2 (R 3 ) ≤ D 2 , (1.3.13)
where D 1 and D 2 are two fixed constants. It follows from (1.3.13) the existence of a subsequence

ȟi | i = 1, 2, 3, • • • ⊂ { ȟi } with a limiting function √ α • ∂ 1 m • ∈ L 2 (Ω\A 0 )
, such that:

α ( ȟi ) ∇m ( ȟi ) √ α • ∇m • , α ( ȟi ) ∇ m ( ȟi ) → 0, (1.3.14) 
in L 2 (Ω\A 0 ), as i → ∞. Furthermore, by the condition (a) and (1.3.14) we obtain that

∂ 2 m • = 0, ∂ 3 m • = 0 in L 2 (Ω\A 0 ). To show that α ( ȟi ) ∂ 1 m ( ȟi ) converge strongly to √ α • ∂ 1 m • in L 2 (Ω\A 0 ), we now compare E ( ȟi ) (m ( ȟi ) ) to E ( ȟi ) (m • ): ˆΩ\A 0 α ( ȟi ) ∂ 1 m ( ȟi ) 2 + 1 ȟ2 i ∇ m ( ȟi ) 2 dL 3 + ˆΩ ϕ(m ( ȟi ) )dL 3 + E ( ȟi ) mag m ( ȟi ) ≤ ˆΩ\A 0 α ( ȟi ) |∂ 1 m • | 2 dL 3 + ˆΩ ϕ(m • )dL 3 + E ( ȟi ) mag (m • ). MATERIAL COEFFICIENTS
By Proposition 1.3.2 (for m = m • ) and (1.3.12), simplifies to

ˆΩ\A 0 α ( ȟi ) ∂ 1 m ( ȟi ) 2 + 1 ȟ2 i ∇ m ( ȟi ) 2 dL 3 ≤ ˆΩ\A 0 α ( ȟi ) |∂ 1 m • | 2 dL 3 + o (1). (1.3.15)
From the first part of (1.3.14), we can write

α ( ȟi ) ∂ 1 m ( ȟi ) = √ α • ∂ 1 m • + g ( ȟi ) with g ( ȟi )
0 in L 2 (Ω). Substituting this expression into the left-hand side of (1.3.15), it follows that

ˆΩ\A 0 α • |∂ 1 m • | 2 + 2 √ α • ∂ 1 m • .g ( ȟi ) + |g ( ȟi ) | 2 + α ( ȟi ) ȟ2 i ∇ m ( ȟi ) 2 dL 3 ≤ ˆΩ\A 0 α ( ȟi ) |∂ 1 m • | 2 dL 3 + o (1), (1.3.16)
this is equivalent to write (1.3.16) as:

ˆΩ\A 0 α • -α ( ȟi ) |∂ 1 m • | 2 + 2 √ α • ∂ 1 m • .g ( ȟi ) + |g ( ȟi ) | 2 + α ( ȟi ) ȟ2 i ∇ m ( ȟi ) 2 dL 3 ≤ o (1)
.

(1.3.17)

Here, we can easily checked by applying Lebesgue's dominated convergence theorem that the first term in (1.3.17) tends to zero, for the situation that:

       α ( ȟi ) |∂ 1 m • | 2 → α • |∂ 1 m • | 2 , α ( ȟi ) |∂ 1 m • | 2 ≤ C α α • |∇m • | 2 ,
L 3 -a.e. in Ω\A 0 , since g ( ȟi ) 0, the second term in (1.3.17) tends to zero and, therefore,

ˆΩ\A 0 g ( ȟi ) 2 dL 3 → 0, 1 ȟ2 i ˆΩ\A 0 α ( ȟi ) ∇ m ( ȟi ) 2 dL 3 → 0, (1.3.18) 
thus (1.3.18) with (a) and

L 1 (A • 0 ) = 0, implies α ( ȟi ) ∂ 1 m ( ȟi ) → √ α • ∂ 1 m • , 1 ȟi α ( ȟi ) ∂ 2 m ( ȟi ) → 0 and 1 ȟi α ( ȟi ) ∂ 3 m ( ȟi ) → 0, (1.3.19) in L 2 (Ω\A 0 ), as i → ∞.
On account of (a)-(b) and L 1 (A • 0 ) = 0, the above convergence (1.3.19) implies the existence of a subsequence

{h i | i = 1, 2, 3, • • • } ⊂ ȟi ⊂ ȟi , satisfying (1.3.3).

Introduction

According to the classical theory of Weiss (1907), perfectioned by Landau and Lifshitz in 1935 (see [START_REF] Landau | On the theory of the dispersion of magnetic permeability in ferromagnetic bodies[END_REF] and for a modern analysis see [START_REF] Brown | Micromagnetics[END_REF]), on a microscopic scale a ferromagnetic body is magnetically saturated and is composed by uniformly magnetized regions separated by thin transition layers. The phenomena can be described by a magnetization field, defined on the domain in which the material is confined. The magnetization field on a microscopic scale has a fixed modulus and variable orientations. Then, the system can be studied through the functional representing its magnetic energy. This energy consists in several terms: the so called exchange energy, which contains the space derivative of the magnetization field and is peculiar to ferromagnetic behav-MULTI-STRUCTURES ior, a term corresponding to magnetic anisotropy, and another one depending on the magnetic field, which is related to the magnetization via the equations of magnetostatic. Precisely, let

Ω a n = ]-h n , 0[ 2 × [0, 1[, Ω b,l n =]0, 1[× ]-h n , 0[ 2 , Ω b,r n = ]-h n , 0] 3 n ∈ N, Ω n = Ω a n ∪ Ω b,l n ∪ Ω b,r n , n ∈ N, (2.1.1)
be a 3D ferromagnetic multidomain consisting of two orthogonal joined nano-wires (see Fig. 

         ∇ × DU Mn = 0, div -DU Mn + M n = div (B n ) = 0 . (2.1.2)
In the quasi-stationary case, the system is governed by Landau-Lifshitz equation (see [12] and [START_REF] Visintin | On Landau-Lifschitz' equations for ferromagnetism[END_REF])

                             |M n (x)| = 1 in Ω n , ∂M n ∂t + M n ∧ ∂M n ∂t = 2M n ∧ (∆M n -DU Mn ) in Ω n ×]0, T [, M n (0, x) = M 0n (x) in Ω n ,
U Mn and M n linked by (2.1.2) for every t,

(2.1.3)
where

|M 0n (x)| = 1 in Ω n .
In this work we study the asymptotic behavior of a system governed by the Landau-Lifshitz equation consisting of two joined roads when the thicknesse h n converges to zero. So we attempt to simulate the behaviour of two joined nanowires. The existence result for this problem is proved, in a more general case, in [63, Theorem 2] and in [12, Section 3 and Section 5]. We observe (see [12,[START_REF] Visintin | On Landau-Lifschitz' equations for ferromagnetism[END_REF]) that the corresponding configuration satisfies an energy estimate. After having reformulated on a fixed domain

Ω a = ]-1, 0[ 2 × [0, 1[ , Ω b,l = ]0, 1[ × ]-1, 0[ 2 , Ω b,r = ]-1, 0[ 3 Ω = Ω a ∪ Ω b,l ∪ Ω b,r , (2.1.4) 
through appropriate rescalings of the kind proposed by Ciarlet and Destuynder [START_REF] Ciarlet | A justification of the two-dimensional linear plate model[END_REF], we derive the limit problem. Precisely, in Theorem 2.3.1, assuming that the initial energy is an O(h 2 n ), we prove that the solutions of (2.1.3) converge in mean square, for every t, up to a subsequence, to MULTI-STRUCTURES solutions of the following limit problem

                                                             ∂µ a ∂t + µ a ∧ ∂µ a ∂t = 2µ a ∧ ∂ 2 µ a ∂x 2 3 -((µ a , e 1 )Υ 1 + (µ a , e 2 )Υ 2 ) in ]0, T [ ×]0, 1[, ∂µ b,l ∂t + µ b,l ∧ ∂µ b,l ∂t = 2µ b,l ∧ ∂ 2 µ b,l ∂x 2 1 -(µ b,l , e 2 )Υ 1 + (µ b,l , e 3 )Υ 2 in ]0, T [ ×]0, 1[, µ a (0, x 3 ) = µ a 0 (x) , in ]0, 1[ , µ b,l (0, x 1 ) = µ b,l 0 (x) in ]0, 1[ , (µ a ) (0) = µ b,l (0) , |µ a | = 1 for x in ]0, 1[ , µ b,l = 1 for x in ]0, 1[ , µ a (0) = µ b,l (0) , (2.1.5) 
where

e 1 = (1, 0), e 2 = (0, 1), Υ 1 (ε 1 , ε 2 , 0), Υ 2 (-ε 2 , ε 1 , 0), Υ 1 (0, ε 1 , ε 2 ) and Υ 2 (0, -ε 2 , ε 1 ), with ε 1 , ε 2 constant
depending on the geometry of the problem.

We obtain, two 1D limit problems coupled by junction condition on the magnetization µ a (0) = µ b,l (0). The paper is organize as follows: in Section 2.2, we recall the definition and some properties of the Beppo Levi space on R 2 ; in Section 2.3 we give the main result; in Section 2.4 we identify the limit of the magnetostatic energy; in Section 2.5 we gives the case of single wire. While it is quite classical in the thin film, where only the component of the magnetization orthogonal to the film appears (see [START_REF] De Maio | Junction of quasi-stationary ferromagnetic thin films[END_REF]), it become more complicated in the wire where the following combination of the two components of the magnetization with coefficient involving solutions of PDE in Beppo Levi space on R 2 intervene. These coefficient depend on the geometry of the cross section of the wire. To this aim we have to use different rescaling and symmetry arguments which take into account the geometry and that the limit problem will be coupled (see [START_REF] Gaudiello | Ferromagnetic thin multi-structures[END_REF]).

As the case wire-wire is concerned, where a singular point appears due to a strong variation of its derivatives, we remark that its behavior reduces to the behavior of a single wire.

Problems of dimension reduction in magnetostatic were treated by several authors. A pioneering work is the paper of Stoner and Wohlfarth (1948). A rigorous treatment in this case was given by De Simone [START_REF] Desimone | Hysteresis and imperfection sensitivity in small ferromagnetic particles. Microstructure and phase transitions in solids[END_REF]. Carbou treated the case of magnetic wire in ( [START_REF] Carbou | Labbè Stabilization of walls for nano-wires of finite length[END_REF], [START_REF] Carbou | Trèlat Control of travelling walls in a ferromagnetic nanowire[END_REF]) and the case of thin films again in [START_REF] Carbou | Thin layers in micromagnetism[END_REF], see also [START_REF] Hadiji | Asymptotic analysis for micromagnetics of thin films governed by indefinite material coefficients[END_REF] and [START_REF] Kohn | Another thin-film limit of micromagnetics[END_REF]. Other regimes are considered in [START_REF] Desimone | A reduced theory for thin-film micromagnetics[END_REF] and [START_REF] Desimone | Convergence of a ferromagnetic film model[END_REF] in the case of the films. In [START_REF] Gaudiello | Junction of ferromagnetic thin films[END_REF] and [START_REF] Gaudiello | Ferromagnetic thin multi-structures[END_REF] Gaudiello and Hadiji studies the behavior of minimizers of free energy in a multidomain. In what concerns the study of a ferroelectric materials see also ([36], [START_REF] Gaudiello | The polarization in a ferroelectric thin film: local and nonlocal limit problems[END_REF]). See [START_REF] Carbone | Fin juction of ferroelectric thin films[END_REF], [START_REF] Gaudiello | Asymptotic analysis, in a thin multidomain, of minimizing maps with values in S 2[END_REF], [START_REF] Gaudiello | Asymptotic analysis and domain decomposition for a biharmonic problem in a thin multi-structure[END_REF], [START_REF] Gaudiello | Asymptotic Analysis of the Eigenvalues of an Elliptic Problem in an Anisotropic Thin Multidomain[END_REF], for junction 3D -1D, and [START_REF] Gaudiello | Junction of one-dimensional minimization problems involving S 2 valued maps[END_REF] for junction 1D -1D. For other recent problems with thin multistructures, see also [START_REF] Gaudiello | Homogenization of highly oscillating boundaries with strongly contrasting diffusivity[END_REF], [START_REF] Faella | Junction problem for elastic and rigid inclusions in elastic bodies[END_REF] and [START_REF] Faella | Junction problem for rigid and Timoshenko elastic inclusions in elastic bodies[END_REF]. As Gioia and James [START_REF] Gioia | Micromagnetism of very thin films[END_REF] in the stationary case, Carbou in [START_REF] Carbou | Thin layers in micromagnetism[END_REF] studies the limit behavior of the isotropic ferromagnetic films when the thicknesses goes to zero, in the quasy stationary case. Other similar problems are studied by Ammari et al. [START_REF] Ammari | Asymptotic behavior of thin ferromagnetic films[END_REF]. The homogenization of the Landau-Lifschitz equation in periodically perforated domain was studied in [START_REF] Santugini-Repiqet | Homogenization of the demagnetization field operator in periodically perforated domains[END_REF]. In [START_REF] De Maio | Quasy-stationary ferromagnetic thin films in degenerated cases[END_REF] and in [START_REF] De Maio | Junction of quasi-stationary ferromagnetic thin films[END_REF], the authors study the asymptotic behavior of the solutions of time dependent micromagnetism problem in a multi-domain consisting of two joined ferromagnetic thin films, different regimes depending on the limit of the ratio between the small thickness of the two films were considered.

Preliminaries

Let W 1 (R 2 ) = φ ∈ L 2 loc (R 2 ) : Dφ ∈ L 2 (R 2 ) 2 /R
equipped with the inner product

(φ 1 , φ 2 ) ∈ W 1 (R 2 ) × W 1 (R 2 ) → R2 Dφ 1 Dφ 2 dydz, (2.2.1) 
where (y, z) denote the coordinates in R 2 . It is well known that W 1 (R 2 ) is a Hilbert space (see [START_REF] Deny | Les espaces du type de Beppo Levi[END_REF], Corol. 1.1) and it is separable. Consequently, if S ⊂ R 2 is a bounded open set , every one of the following problems

             p ∈ W 1 (R 2 ), R2 DpDφ dydz = ˆS D y φ dydz, ∀φ ∈ W 1 (R 2 ), (2.2.2) 
             q ∈ W 1 (R 2 ), R2 DqDφ dydz = ˆS D z φ dydz, ∀φ ∈ W 1 (R 2 ), (2.2.3) 50 CHAPTER 2: JUNCTION OF QUASI-STATIONARY FERROMAGNETIC THIN MULTI-STRUCTURES              p k ∈ W 1 (R 2 ), R2 Dp k Dφ dydz = ˆS kDφ dydz, ∀φ ∈ W 1 (R 2 ), (2.2.4) 
with k = (k 1 , k 2 ) ∈ R 2 admits a unique solution which obviously depends on S. Then, we set

α(S) = R2 |Dp| 2 dydz, β(S) = R2 |Dq| 2 dydz, γ(S) = 2 R2 DpDqdydz, (2.2.5) 
where (y, z) denotes the coordinates in R 2 .

We remark that if S is sufficiently smooth, problems (2.2.2), (2.2.3) and definitions (2.2.5) are equivalent respectively to

                     p ∈ W 1 (R 2 ), ∆p = 0 in S, ∆p = 0 in R 2 \ S, ∂p ∂ν = νe 1 on ∂S,                      q ∈ W 1 (R 2 ), ∆q = 0 in S, ∆q = 0 in R 2 \ S, ∂q ∂ν = νe 2 on ∂S, (2.2.6) 
where ν the exterior unit normal to ∂S, ∂• ∂ν the jump of ∂• ∂ν on ∂S, and e 1 = (1, 0), e 2 = (0, 1), and

                                         α(S) = ∂S pνe 1 ds, β(S) = ∂S qνe 2 ds, γ(S) = 2 ∂S qνe 1 ds = 2 ∂S pνe 2 ds = ∂S qνe 1 ds + ∂S pνe 2 ds ε(S) = ˆS Dpdydz, δ(S) = ˆS Dqdydz. (2.2.7) For instance, if S = {(x 1 , x 2 ) ∈ R 2 : x 2 1 + x 2 2 <
1}, p and q can be explicitly computed (a formula can be found in [ [START_REF] Sanchez | Behaviour of the Landau-Lifschitz equation in a ferromagnetic wire[END_REF], p. 177], it result that α(S) = β(S) = π 2 and γ(S) = 0.

In the sequel, we shall use the following results.

Lemma 2.2.1. Let p and q be the unique solutions of (2.2.2) and (2.2.3), respectively. Then, i) for every k = (k 1 , k 2 ) ∈ R 2 , the unique solution p k of (2.2.4) is given by:

p k = k 1 p + k 2 q;
ii)Dp and Dq are linearly independent; iii) for every k

= (k 1 , k 2 ) ∈ R 2 , it holds ˆS |k 1 Dp + k 2 Dq| 2 dydz = ˆS (k 1 Dp + k 2 Dq) (k 1 , k 2 )dydz = k 1 α (S)+k 2 β (S)+2k 1 k 2 γ (S) .
(2.2.8)

Proof. Let k 1 , k 2 ∈ R be such that k 1 Dp + k 2 Dq = 0, a.e. in R 2 .
Then, comparing (2.2.2) with (2.2.3), one obtains that

ˆS (k 1 D y φ + k 2 D z φ) dydz = 0, ∀φ ∈ W 1 (R 2 ), which provides k 1 = k 2 = 0. Lemma 2.2.2. Let be S =] -1, 0[ 2 , then α(S) = β(S), γ(S) = 0, and 
ε(S) = (ε 1 (S), ε 2 (S)) , δ(S) = (δ 1 (S), δ 2 (S))), with δ 1 (S) = -ε 2 (S), δ 2 (S) = ε 1 (S) (2.2.9)
Proof. Let us observe that the functions p and q, solutions of the problems (2.2.6)

for S =]-1, 0[ 2 ,
are obtained by traslation of the solutions of the problems (2.2.6)

for S =]- 1 2 , 1 2 [ 2 .
Moreover, the solutions p and q related to this set are a rotated the other (to fix the idea q is the rotated function of p) with respect θ = π 2 . Then, q = p(x 2 , -x 1 ) and Dq = (-

∂p ∂x 2 , ∂p ∂x 1 
). Hence, α(S) = β(S), γ(S) = 0, ε(S) = (ε 1 (S), ε 2 (S)) and δ(S) = (-ε 2 (S), ε 1 (S)). MULTI-STRUCTURES

We recall the Poincaré Lemma (which is well known if the domain is bounded).

Lemma 2.2.3. Let ξ ∈ (L 2 (R 2 ))
2 such that rot ξ = 0. Then, there exists a unique w ∈ W 1 (R 2 )

such that ξ = Dw.

Proof. The fact that rot ξ = 0 provides the existence of T ∈ D (R 2 ) such that ξ = DT , and T is unique up to a constant (see [58, Ch. II, Th. VI, page 59]). On the other hand, since ξ

∈ (L 2 (R 2 )) 2 ,
Kryloff Theorem assures that T ∈ L 2 loc (R 2 ) (see [58, Ch. VI, Th. XV, page 181]).

The following result was suggested by F. Murat [START_REF] Murat | Private communication[END_REF].

Proposition 2.2.1. Let u ∈ L 2 loc (R 2 ) be such that Du ∈ (L 2 (R 2 )) 2 .
Then, there exist a sequence

{ϕ n } n∈N ⊂ C ∞ 0 (R 2 ) such that Dϕ n → Du strongly in (L 2 (R 2 )) 2 .

Statement of the problem and main results

In the sequel,

x = (x 1 , x 2 , x 3 ) denotes the generic point of R 3 . If η 1 , η 2 , η 3 ∈ R 3 , then (η 1 |η 2 |η 3 )
denotes the 3 × 3 real matrix having η T 1 as first column, η T 2 as second column, and η T 3 as third column. In according to this notation, if v : A ⊂ R 3 → R 3 , then Dv denotes the 3 × 3 real matrix (D x 1 v|D x 2 v|D x 3 v), where D x i v ∈ R 3 , i=1,2,3, stands for the derivative of v with respect to x i .

More precisely, let {h n } n∈N ⊂]0, 1[ be sequence. For every n ∈ N, set

Ω a n =] -h n , 0[ 2 ×[0, 1[, Ω b,l n =]0, 1[×] -h n , 0[ 2 , Ω b,r n =] -h n , 0] 3 and Ω n = Ω a n ∪ Ω b,l n ∪ Ω b,r n ,
which approximates two joined wires as in Figure 2.1.

Let B =] -2, 2[ 3 , and set

U =    U ∈ L 1 loc R 3 : U ∈ L 2 (B) , DU ∈ L 2 R 3 3 , B U dx = 0    . (2.3.1)
It is easy to prove that U is contained in L 2 loc (R 3 ) and it is an Hilbert space with the inner product (U, V ) =

R3

DU DV dx + B U V dx. Moreover, from Poincaré-Wirtinger inequality it follows that a norm on U equivalent to (U, U )

1 2 is given by   R3 |DU | 2 dx   1 2
.

Let M ∈ L 2 (Ω n , R 3 ) then the following problem

U M ∈ U , R3 DU M DU = Ωn M DU dx ∀U ∈ U , (2.3.2)
admits a unique solution U M ∈ U. This solution is characterized as the unique minimizer of the following problem: min

   1 2 R3 DU -M 2 dx : U ∈ U    , (2.3.3) 
where as usual M denotes the zero extension of M in R 3 \Ω n . Moreover U M ∈ H 1 (R 3 ) up to an additive constant, see [START_REF] James | Frustation in ferromagnetic materials[END_REF].

Fixed M 0n ∈ H 1 (Ω n , S 2 ), (U 0n ∈ U being the corresponding solution of Problem (2.3.2)), in [12],
[24] and [START_REF] Visintin | On Landau-Lifschitz' equations for ferromagnetism[END_REF] it is proved that there exists at least a weak solution M n of the following problem

                                                                     M n ∈ L ∞ (0, T ; H 1 (Ω n , R 3 )) ∩ C ([0, T ] ; L 2 (Ω n , R 3 )) , |M n | = 1 a.e. in [0, T ] × Ω n , ∂M n ∂t ∈ L 2 (0, T ; L 2 (Ω n , R 3 )) , ∀ χ ∈ D(0, T ), and ψ ∈ H 1 (Ω n , R 3 ) T ˆ0 Ωn ∂M n ∂t + M n ∧ ∂M n ∂t χψdxdt = -2 T ˆ0 Ωn 3 i=1 (M n ∧ D x i M n ) (D x i ψ) χdxdt -2 T ˆ0 Ωn (M n ∧ DU Mn ) χψdxdt, M n (0, x) = M 0n (x), a.e. x in Ω n ,
U Mn and M n linked by (2.3.2) for every t ∈ [0, T ].

(2.3.4) Moreover, it satisfies the following energy estimate: 

E (M n (t, •)) + t ˆ0 ∂M n ∂t 2 (L 2 (Ωn)) 3 ds ≤ E (M n (0, •)) = E (M 0n ) ,
E (M n (t, •)) = Ωn |DM n (t, x)| 2 dx + 1 2 R3 |DU Mn (t, x)| 2 dx,
is the magnetic energy. Here, the terms E exc n =

Ωn

|DM n (t, x)| 2 dx is the exchange energy and

E mag n = 1 2

R3

|DU Mn (t, x)| 2 dx corresponds to the magnetostatic energy.

In what follows let us assume that Namely, setting

E exc (M 0n ) = O h 2 n , ∀n ∈ N. ( 2 
Ω a =] -1, 0[ 2 ×[0, 1[, Ω b,l =]0, 1[×] -1, 0[ 2 , Ω b,r =] -1, 0[ 3 ,
let us introduce the following space

W = (µ a , µ b,l ) ∈ H 1 (Ω a , R 3 ) × H 1 (Ω b,l , R 3 ) : µ a is independent of (x 1 , x 2 ), µ b,l is independent of (x 2 , x 3 ), µ a (0) = µ b,l (0) (µ a , µ b,l ) ∈ H 1 (]0, 1[, R 3 ) × H 1 (]0, 1[, R 3 ) : µ a (0) = µ b,l (0) . (2.3.7) 
Moreover, we can pose

M=W ∩ H 1 (Ω a , S 2 ) × H 1 Ω b,l , S 2 , (2.3.8)
which explicitely takes into account the condition |µ| = 1. Then, the equivalent 3D variational formulation of the Problem (2.1.5) is the following one:

                                                                         µ = (µ a , µ b,l ) ∈ L ∞ (0, T ; M) ∩ C [0, T ] ; L 2 (Ω a , R 3 ) × L 2 Ω b,l , R 3 , ∂µ ∂t ∈ L 2 0, T ; L 2 (Ω a , R 3 ) × L 2 Ω b,l , R 3 , ∀ χ ∈ D(0, T ) and ψ = (ψ a , ψ b,l ) ∈ W, T ˆ0 Ωa ∂µ a ∂t + µ a ∧ ∂µ a ∂t χψ a dxdt + T ˆ0 Ωb,l ∂µ b,l ∂t + µ b,l ∧ ∂µ b,l ∂t χψ b,l dxdt = -2 T ˆ0 Ωa µ a ∧ ∂µ a ∂x 3 ∂ψ a ∂x 3 χdxdt -2 T ˆ0 Ωb,l µ b,l ∧ ∂µ b,l ∂x 1 ∂ψ b,l ∂x 1 χdxdt -2 T ˆ0 Ωa µ a ∧ ((µ a , e 1 )Υ 1 + (µ a , e 2 )Υ 2 ) χψ a dxdt -2 T ˆ0 Ωb,l µ b,l ∧ (µ b,l , e 2 )Υ 1 + (µ b,l , e 3 )Υ 2 χψ b,l dxdt, µ a (0, x) = µ a 0 (x), a.e. x in Ω a , µ b,l (0, x) = µ b,l 0 (x), a.e. x in Ω b,l , µ 0 = (µ a 0 , µ b,l 0 ) ∈ M, (2.3.9) 
where

Υ 1 = (ε 1 , ε 2 , 0), Υ 2 = (-ε 2 , ε 1 , 0), Υ 1 = (0, ε 1 , ε 2 ) and Υ 2 = (0, -ε 2 , ε 1 , ), with ε 1 , ε 2 constant depending on S =] -1, 0[ 2 .
To Problem (2.3.9), for a.e. t ∈ [0, T ], the following energy will be associated,

E (t) + t ˆ0 ∂µ a ∂t 2 (L 2 (]0,1[)) 3 ds + t ˆ0 ∂µ b,l ∂t 2 (L 2 (]0,1[)) 3 ds , (2.3.10)
where

E(t) = 1 ˆ0 ∂µ a ∂x 3 2 dx 3 + 1 ˆ0 ∂µ b,l ∂x 1 2 dx 1 + 1 2 α ]-1, 0[ 2   1 ˆ0 |µ a 1 | 2 + |µ a 2 | 2 dx 3 + 1 2 1 ˆ0 |µ b,l 2 | 2 + |µ b,l 3 | 2 dx 1   , (2.3.11) α ]-1, 0[ 2 is defined by (2.2.5) with S = ]-1, 0[ 2 .
Here, the term 

E exc (t) = 1 ˆ0 ∂µ a ∂x 3 2 dx 3 + 1 ˆ0 ∂µ b,l ∂x 1 2 dx 1 , (2.3 
E mag (t) = 1 2 α ]-1, 0[ 2   1 ˆ0 |µ a 1 | 2 + |µ a 2 | 2 dx 3 + 1 2 1 ˆ0 |µ b,l 2 | 2 + |µ b,l 3 | 2 dx 1   , (2.3 
= µ a 0 , µ b,l 0 ∈ M, µ = (µ a , µ b,l ) ∈ L ∞ (0, T ; M), depending on
the selected subsequence such that:

                                           Ω a n |M 0n (x 1 , x 2 , x 3 ) -µ a 0 (x 3 )| 2 dx → 0, Ω b,l n M 0n (x 1 , x 2 , x 3 ) -µ b,l 0 (x 1 ) 2 dx → 0, Ω b,r n |M 0n (x 1 , x 2 , x 3 ) -µ a 0 (0)| 2 dx → 0, (2.3.14) 
as n diverges, for every t ∈ [0, T ]

                 Ω a n |M n (t, x 1 , x 2 , x 3 ) -µ a (t, x 3 )| 2 dxdt → 0, Ω b,l n M n (t, x 1 , x 2 , x 3 ) -µ b,l (t, x 1 ) 2 dxdt → 0, (2.3.15) 
as n diverges, where µ = (µ a , µ b,l ) is a solution of Problem (2.3.9).

2.4 THE RESCALED PROBLEM 57

The rescaled problem

By setting

                   R 3 a = {(x 1 , x 2 , x 3 ) ∈ R 3 : x 3 > 0}, R 3 b,l = {(x 1 , x 2 , x 3 ) ∈ R 3 : x 3 < 0, x 1 > 0}, R 3 b,r = {(x 1 , x 2 , x 3 ) ∈ R 3 : x 3 < 0, x 1 < 0},
for every n ∈ N, problem (2.3.4) is reformulated on a fixed domain through the following rescaling

T n : (x 1 , x 2 , x 3 ) ∈ R 3 → T n (x 1 , x 2 , x 3 ) =                    (h n x 1 , h n x 2 , x 3 ), if (x 1 , x 2 , x 3 ) ∈ R 3 a , (x 1 , h n x 2 , h n x 3 ), if (x 1 , x 2 , x 3 ) ∈ R 3 b,l , (h n x 1 , h n x 2 , h n x 3 ), if (x 1 , x 2 , x 3 ) ∈ R 3 b,r .
(2.4.1)

Namely, setting

B a n = - 2 h n , 2 h n 2 ×]0, 2[, B b,l n =]0, 2[× - 2 h n , 0 2 , B b,r n = - 2 h n , 0 3 
, n ∈ N, MULTI-STRUCTURES the space U defined in (2.3.1) is rescaled in the following

U n = (u a , u b,l , u b,r ) ∈ L 1 loc (R 3 a ) × L 1 loc (R 3 b,l ) × L 1 loc (R 3 b,r ) : (u a | B a n , u b,l | B b,l n , u b,r | B b,r n ) ∈ L 2 (B a n ) × L 2 (B b,l n ) × L 2 (B b,r n ), (Du a , Du b,l , Du b,r ) ∈ (L 2 (R 3 a )) 3 × (L 2 (R 3 b,l )) 3 × (L 2 (R 3 b,r )) 3 , ˆBa n u a dx + ˆBb,l n u b,l dx + h n ˆBb,r n u b,r dx = 0, u a (x 1 , x 2 , 0) = u b,l (h n x 1 , x 2 , 0), for (x 1 , x 2 ) a.e. in ]0, +∞[×R, u a (x 1 , x 2 , 0) = u b,r (x 1 , x 2 , 0), for (x 1 , x 2 ) a.e. in ] -∞, 0[×R, u b,l (0, x 2 , x 3 ) = u b,r (0, x 2 , x 3 ), for (x 2 , x 3 ) a.e. in R×] -∞, 0[ . (2.4.2) Then, for every (m a , m b,l , m b,r ) ∈ L 2 (Ω a , R 3 )×L 2 (Ω b,l , R 3 )×L 2 (Ω b,r , R 3 ), the following equation                                                                  (u a , u b,l , u b,r ) ∈ U n , ˆR3 a 1 h n D x 1 u a , 1 h n D x 2 u a , D x 3 u a 1 h n D x 1 v a , 1 h n D x 2 v a , D x 3 v a dx+ ˆR3 b,l D x 1 u b,l , 1 h n D x 2 u b,l , 1 h n Du b,l D x 1 v b,l , 1 h n D x 2 v b,l , 1 h n D x 3 v b,l dx+ 1 h n ˆR3 b,r D x 1 u b,r , D x 2 u b,r , D x 3 u b,r D x 1 v b,r , D x 2 v b,r , D x 3 v b,r dx = ˆΩa 1 h n D x 1 v a , 1 h n D x 2 v a , D x 3 v a m a dx+ ˆΩb,l D x 1 v b,l , 1 h n D x 2 v b,l , 1 h n D x 3 v b,l m b,l dx+ ˆΩb,r D x 1 v b,r , D x 2 v b,r , D x 3 v b,r m b,r dx, ∀(v a , v b,l , v b,r ) ∈ U n , (2.4.3) 
which rescales equation (2.3.2), admits a unique solution. We note that (u a , u b,l , u b,r ) belongs to

H 1 (R 3 a ) × H 1 (R 3 b,l ) × H 1 (R 3 b,r
) up to an additive constant.

For every n ∈ N, let us consider the following space

W n = (m a , m b,l , m b,r ) ∈ H 1 (Ω a , R 3 ) × H 1 (Ω b,l , R 3 ) × H 1 (Ω b,r , R 3 ) : m a (x 1 , x 2 , 0) = m b,r (x 1 , x 2 , 0), for (x 1 , x 2 ) a.e. in ] -1, 0[ 2 , m b,l (0, x 2 , x 3 ) = m b,r (0, x 2 , x 3 ), for (x 2 , x 3 ) a.e. in ] -1, 0[ 2 , (2.4.4) 
For simplicity of notation, let us introduce the space 

M n = W n ∩ H 1 (Ω a , S 2 ) × H 1 Ω b,l , S 2 × H 1 Ω b,r , S 2 , ( 2 
                                                                                                                                                                     m n = m a n , m b,l n , m b,r n ∈ L ∞ (0, T ; M n ) ∩ C [0, T ] ; L 2 (Ω a , R 3 ) × L 2 Ω b,l , R 3 × L 2 Ω b,r , R 3 , ∂m n ∂t = ∂m a n ∂t , ∂m b n ∂t ∈ L 2 0, T ; L 2 (Ω a , R 3 ) × L 2 Ω b,l , R 3 × L 2 Ω b,r , R 3 , ∀ χ ∈ D (0, T ) and ψ = ψ a , ψ b,l , ψ b,r ∈ W n , T ˆ0 Ωa ∂m a n ∂t + m a n ∧ ∂m a n ∂t χψ a dxdt + T ˆ0 Ωb,l ∂m b,l n ∂t + m b,l n ∧ ∂m b,l n ∂t χψ b,l dxdt +h n T ˆ0 Ωb,r ∂m b,r n ∂t + m b,r n ∧ ∂m b,r n ∂t χψ b,r dxdt = -2 T ˆ0 Ωa 2 i=1 m a n ∧ 1 h n D x i m a 1 h n (D x i ψ a ) χ + m a n ∧ D x 3 m a n (D x 3 ψ a ) χ dxdt -2 T ˆ0 Ωa m a n ∧ 1 h n D x 1 u a mn , 1 h n D x 2 u a mn , D x 3 u a mn χψ a dxdt -2 T ˆ0 Ωb,l m b,l n ∧ D x 1 m b D x 1 ψ b,l χ + 3 i=2 m b,l n ∧ 1 h n D x i m b,l n 1 h n D x i ψ b,l χ dxdt -2h n T ˆ0 Ωb,r 3 i=1 m b,r n ∧ 1 h n D x i m b,r n 1 h n D x i ψ b,r χ dxdt -2 T ˆ0 Ωb,l m b,l n ∧ D x 1 u b,l mn , 1 h n D x 2 u b,l mn , 1 h n D x 3 u b,l mn χψ b,l dxdt -2h n T ˆ0 Ωb,r m b,r n ∧ 1 h n D x 1 u b,r mn , 1 h n D x 2 u b,r mn , 1 h n D x 3 u b,r mn χψ b,r dxdt, m a n (0, x) = m a 0n (x) , a.e. x in Ω a , m b,l n (0, x) = m b,l 0n (x) , a.e. x in Ω b,l , m b,r n (0, x) = m b,r 0n (x) , a.e.
x in Ω b,r , u mn and m n are linked by (2.4.3) for every t ∈ [0, T ].

(2.4.6)
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Moreover it satisfies the following energy estimate:

E n (t) + t ˆ0 ∂m a n ∂t 2 (L 2 (Ω a )) 3 ds + t ˆ0 ∂m b,l n ∂t 2 L 2 Ω b,l 3 ds + h n t ˆ0 ∂m b,r n ∂t 2 L 2 Ω b,r 3 ds ≤ E n (0) = E (m 0n ) , for a.e. t ∈ [0, T ] ,
(2.4.7) where, for a.e. t ∈ [0, T ]:

E n (t) = Ωa 1 h n D x 1 m a n , 1 h n D x 2 m a n , D x 3 m a n 2 dx + 1 2 R3 a 1 h n D x 1 u a mn , 1 h n D x 2 u a mn , D x 3 u a mn 2 dx + Ωb,l D x 1 m b,l n , 1 h n D x 2 m b,l n , 1 h n D x 3 m b,l n 2 dx + 1 2 R3 b,l D x 1 u b,l mn , 1 h n D x 2 u b,l mn , 1 h n D x 3 u b,l mn 2 dx +h n Ωb,r 1 h n D x 1 m b,r n , 1 h n D x 2 m b,r n , 1 h n D x 3 m b,r n 2 dx + 1 2 1 h n R3 b,r
D x 1 u b,r mn , D x 2 u b,r mn , D x 3 u b,r mn 2 dx.

(2.4.8)

Then, we will denote

E n (0) = E n (m 0n ) (2.4.9)
In the sequel we denote, for every n ∈ N and for a.e. t ∈ [0, T ] 

E exc n (t) = Ωa 1 h n D x 1 m a n , 1 h n D x 2 m a n , D x 3 m a n 2 dx + Ωb,l D x 1 m b,l n , 1 h n D x 2 m b,l n , 1 h n D x 3 m b,l n 2 dx +h n Ωb,r 1 h n D x 1 m b,r n , 1 h n D x 2 m b,r n , 1 h n D x 3 m b,
(t) = 1 2 R3 a 1 h n D x 1 u a mn , 1 h n D x 2 u a mn , D x 3 u a mn 2 dx + 1 2 R3 b,l D x 1 u b,l mn , 1 h n D x 2 u b,l mn , 1 h n D x 3 u b,l mn 2 dx + 1 2 1 h n R3 b,r D x 1 u b,r mn , D x 2 u b,r mn , D x 3 u b,r mn 2 dx.
(2.4.11)

So, by virtue of (2.4) , E n (t) can be rewritten as

E n (t) = E exc n (t) + E mag n (t) , (2.4.12)
the sum of the exchange and magnetostatic energies. Indeed, we can observe that, for every t ∈ [0, T ], the function defined by

                   M n (t, h n x 1 , h n x 2 , x 3 ) for a.e. in Ω a , M n (t, x 1 , h n x 2 , h n x 3 ) for a.e. in Ω b,l , M n (t, h n x 1 , h n x 2 , h n x 3 ) for a.e. in Ω b,r , (2.4.13) 
with M n solution of the Problem (2.3.4), is a solution of Problem (2.4.6) with the following initial data:

                   m a 0n (x 1 , x 2 , x 3 ) = M 0n (h n x 1 , h n x 2 , x 3 ) , for a.e. in Ω a , m b,l 0n (x 1 , x 2 , x 3 ) = M 0n (x 1 , h n x 2 , h n x 3 ) for a.e. in Ω b,l , m b,r 0n (x 1 , x 2 , x 3 ) = M 0n (h n x 1 , h n x 2 , h n x 3 ) for a.e.
in Ω b,r .

(2.4.14)

Then, we will denote

E exc n (0) = E exc n (m 0n ) (2.4.15)
Also, consider the hypothesis ) . Then, there exist an increasing sequence of positive integer numbers {n i } i∈N , still denoted by {n}, µ 0 = µ a 0 , µ b,l 0 ∈ M, µ = µ a , µ b,l ∈ L ∞ (0, T ; M), depending on the selected subsequence such that:

∃ C ∈ ]0, +∞[ : E exc n (m 0n ) ≤ C, ∀n ∈ N. ( 2 
                 m a 0n µ a 0 weakly in H 1 (Ω a , R 3 ) , m b,l 0n µ b,l 0 weakly in H 1 Ω b,l , R 3 , m b,r 0n µ a 0 (0) = µ b,l 0 (0) weakly in H 1 Ω b,r , R 3 ,
(2.4.17)

                                       m a n µ a weakly * in L ∞ (0, T ; H 1 (Ω a , R 3 )) , m b,l n µ b,l weakly * in L ∞ 0, T ; H 1 Ω b,l , R 3 , m a n → µ a in C (0, T ; L 2 (Ω a , R 3 )) , m b,l n → µ b,l in C 0, T ; L 2 Ω b,l , R 3 , m b,r n µ a (t, 0) = µ b,l (t, 0) weakly * in L ∞ 0, T ; H 1 Ω b,r , R 3 , (2.4.18) 
as n diverges, where µ = (µ a , µ b,l ) is a solution of Problem (2.3.9).

Theorem 

Compactness like results

Let us obtain a priori estimates for the sequence of the solutions of the Problem Then, there exist an increasing sequence of positive integer numbers {n i } i∈N , still denoted by {n}, µ 0 = µ a 0 , µ b,l 0 ∈ M, µ = (µ a , µ b,l ) ∈ L ∞ (0, T ; M), depending on the subsequence, such that

                   m a 0n µ a 0 weakly in H 1 (Ω a , R 3 ) , m b,l 0n µ b,l 0 weakly in H 1 Ω b,l , R 3 , m b,r 0n µ a 0 (0) = µ b,l 0 (0) weakly in H 1 Ω b,r , R 3 , (2.4.19)                                                                        i) m a n µ a weakly * in L ∞ (0, T ; H 1 (Ω a , R 3 )), ii) m b,l n µ b,l weakly * in L ∞ 0, T ; H 1 Ω b,l , R 3 , iii) m b,r n µ a (t, 0) = µ b,l (t, 0) weakly * in L ∞ 0, T ; H 1 Ω b,r , R 3 , iv) m a n → µ a in C (0, T ; L 2 (Ω a , R 3 )) , v) m b,l n → µ b,l in C 0, T ; L 2 Ω b,l , R 3 , vi) ∂m a n ∂t ∂µ a ∂t weakly in L 2 (0, T ; L 2 (Ω a , R 3 )) , vii) ∂m b,l n ∂t ∂µ b,l ∂t weakly in L 2 0, T ; L 2 Ω b,l , R 3 , viii) h n ∂m b,r n ∂t 0 weakly in L 2 0, T ; L 2 Ω b,r , R 3 , (2.4.20) 
as n diverges. Moreover µ a (0, x) = µ a 0 (x), a.e. x in Ω a , µ b,l (0, x) = µ b,l 0 (x), a.e. x in Ω b,l .

(2.4.21)

Proof. Observe that by (2.4.15) and (2.4.16), we have

                               D x 1 m a 0n (L 2 (Ω a )) 3 ≤ Ch n , D x 2 m a 0n (L 2 (Ω a )) 3 ≤ Ch n , D x 3 m a 0n (L 2 (Ω a )) 3 ≤ C, D x 1 m b,l 0n L 2 Ω b,l 3 ≤ C, D x 2 m b,l 0n L 2 Ω b,l 3 ≤ Ch n , D x 3 m b,l 0n L 2 Ω b,l 3 ≤ Ch n , D x 1 m b,r 0n L 2 Ω b,r 3 ≤ C √ h n , D x 2 m b,r 0n L 2 Ω b,r 3 ≤ C √ h n , D x 3 m b,r 0n L 2 Ω b,r 3 ≤ C √ h n , (2.4 

.22)

for every n ∈ N, where C is a constant independent on n. Then there exist a subsequence (not rellebelled)

µ a 0 ∈ H 1 (Ω a , R 3 ) and µ b,l 0 ∈ H 1 Ω b,l , R 3 such that the following convergences are verified                    m a 0n µ a 0 weakly in H 1 (Ω a , R 3 ) , m b,l 0n µ b,l 0 weakly in H 1 Ω b,l , R 3 , m b,r 0n c weakly in H 1 Ω b,r , R 3 . (2.4.23) 
Since m a 0n (x) = 1 x a.e. in Ω a , by (2.4.23), |µ a 0 (x)| = 1 for x a.e. in Ω a (respectively µ b,l 0 (x) = 1 for x a.e. in Ω b,l ). Moreover, by (2.4.22) we obtain that µ a 0 is independent of (x 1 , x 2 ) and µ b,l 0 is independent of (x 2 , x 3 ). Actually, since one has that

         m a 0n (x 1 , x 2 , 0) = m b,r 0n (x 1 , x 2 , 0), for (x 1 , x 2 ) a.e. in ] -1, 0[ 2 , m b,l 0n (0, x 2 , x 3 ) = m b,r 0n (0, x 2 , x 3 ), for (x 2 , x 3 ) a.e. in ] -1, 0[ 2 ,
for every n ∈ N, by trace convergence properties we obtain µ a 0 (0 

) = c = µ b,l 0 (0), that is µ 0 = (µ a 0 , µ b,l 0 ) ∈ M,
                                                                             i) D x 1 m a n L ∞ 0,T ;(L 2 (Ω a )) 3 ≤ Ch n , D x 2 m a n L ∞ 0,T ;(L 2 (Ω a )) 3 ≤ Ch n , D x 3 m a n L ∞ 0,T ;(L 2 (Ω a )) 3 ≤ C, ii) D x 1 m b,l n L ∞ 0,T ; L 2 Ω b,l 3 ≤ C, D x 2 m b,l n L ∞ 0,T ; L 2 Ω b,l 3 ≤ Ch n , D x 3 m b,l n L ∞ 0,T ; L 2 Ω b,l 3 ≤ Ch n , iii) D x 1 m b,r n L ∞ 0,T ; L 2 Ω b,r 3 ≤ C √ h n , D x 2 m b,r n L ∞ 0,T ; L 2 Ω b,r 3 ≤ C √ h n , D x 3 m b,r n L ∞ 0,T ; L 2 Ω b,r 3 ≤ C √ h n , iv) ∂m a n ∂t L 2 (0,T ;(L 2 (Ω a )) 3 ≤ C, ∂m b,l n ∂t L 2 0,T ; L 2 Ω b,l 3 ≤ C, v) √ h n ∂m b,r n ∂t L 2 0,T ; L 2 Ω b,r 3 ≤ C, (2.4.24) 
for every n ∈ N where C is a constant independent on n. By (2.4.24)i) and (2.4.24)ii) it follows that there exist a subsequence (not rellebelled) µ a ∈ L ∞ (0, T ; H 1 (Ω a , R 3 )) and µ b,l ∈ L ∞ 0, T ;

H 1 Ω b,l , R 3 such that            i) m a n µ a weakly * in L ∞ (0, T ; H 1 (Ω a , R 3 )), ii) m b,l n µ b,l weakly * in L ∞ 0, T ; H 1 Ω b,l , R 3 , (2.4.25) 
as n diverges. By equiboundness of {m a n } n∈N , {m b,l n } n∈N , and by (2.4.24)iv) arguing similar as in [24, Proposition 4.1], we obtain, up to a subsequence, convergences (2.4.20)iv) and (2.4.20)v). About initial conditions, we observe that

m a n (0, •) = m a 0n and m b,l n (0, •) = m b,l 0n .
Then, by (2.4.20)iv) and (2.4.20)v), it follows

           m a n (0, •) → µ a (0, •) in L 2 (Ω a , R 3 ) , m b,l n (0, •) → µ b,l (0, •) in L 2 Ω b,l , R 3 .
Then, by the first two convergences in (2.4.19), we get (2.4.21). Furthermore, let us point out that, by first and second estimates in (2.4.24)i) and second and third estimate in (2.4.24)ii), the functions µ a and µ b,l do not depend on (x 1 , x 2 ) and (x 2 , x 3 ) respectively.

Indeed by (2.4.20)i) we get that

m a n µ a weakly in L 2 0, T ; H 1 Ω a , R 3 .
Consequently, by lower semicontinuity theorem for a convex functional, we obtain

T ˆ0 D x 1 µ a 2 (L 2 (Ω a )) 3 ≤ lim inf n T ˆ0 D x 1 m a n 2 (L 2 (Ω a )) 3 .
Then, by (2.4.24)i), for a.e. t ∈ [0, T ] we obtain

D x 1 m a n 2 (L 2 (Ω a )) 3 ≤ Ch n .
So, by (2.4.24), since m a n is bounded in L ∞ (0, T ; H 1 (Ω a , R 3 )) and h n goes to zero as n diverges, we obtain, for a.e. t ∈ [0, T ], that

D x 1 µ a (L 2 (Ω a )) 3 = 0.
Then for a.e. t ∈ [0, T ] we get

D x 1 µ a = 0, a.e. x in Ω a .
68 CHAPTER 2: JUNCTION OF QUASI-STATIONARY FERROMAGNETIC THIN MULTI-STRUCTURES Similarly D x 2 µ a = 0, a.e. x in Ω a , D x 2 µ b,l = 0 and D x 3 µ b,l = 0, a.e. x in Ω b,l .

Let us observe that |m a n (t, x)| = 1 for every t ∈ [0, T ] and x a.e. in Ω a . So, by (2.4.20) iv), |µ a (t, x)| = 1 for every t ∈ [0, T ] and x a.e. in Ω a (respectively µ b,l (t, x) = 1 for every t ∈ [0, T ] and x a.e. in Ω b,l ). By (2.4.24)iv) and by definition of distributional derivative (see [START_REF] Zeidler | Nonlinear functional analysis and its applications[END_REF]Chapter 23]),arguing as in [24, Proposition 4.1], ones prove (2.4.20)vi) and (2.4.20)vii). Moreover, from (2.4.24)iii) there exist a subsequence (not rellebelled) and In order to verify that µ = (µ a , µ b,l ) ∈ L ∞ (0, T ; M) it remains to prove that µ a (t, 0) = µ b,l (t, 0) almost everywhere in ]0, T [. At first let us observe that for a.e. t ∈ [0, T ],

ζ b,r ∈ L ∞ 0, T ; H 1 Ω b,r , R 3 such that m b,r n ζ b,r weakly * in L ∞ 0, T ; H 1 Ω b,r , R 3 , ( 2 
         m a n (t, x 1 , x 2 , 0) = m b,r n (t, x 1 , x 2 , 0), for (x 1 , x 2 ) a.e. in ] -1, 0[ 2 , m b,l n (t, 0, x 2 , x 3 ) = m b,r n (t, 0, x 2 , x 3 ), for (x 2 , x 3 ) a.e. in ] -1, 0[ 2 , 2.4 THE RESCALED PROBLEM 69 consequently T ˆ0 ]-1,0[ 2 ×{0} m a n (t, x 1 , x 2 , 0) ϕdx 1 dx 2 dt = T ˆ0 ]-1,0[ 2 ×{0} m b,r n (t, x 1 , x 2 , 0) ϕdx 1 dx 2 dt (2.4.27)
for every n and for every ϕ ∈ C ∞ 0 ((0, T ) × Ω a ), and

T ˆ0 ]-1,0[ 2 ×{0} m b,l n (t, x 2 , x 3 , 0) ϕdx 2 dx 3 dt = T ˆ0 ]-1,0[ 2 ×{0} m b,r n (t, x 2 , x 3 , 0) ϕdx 2 dx 3 dt (2.4.28)
for every n and for every ϕ

∈ C ∞ 0 (0, T ) × Ω b,l . Now, by 2.4.20i) (respectively 2.4.20iii)) , ´T 0 m a n ϕdt (respectively ´T 0 m b,r n ϕdt) is bounded in H 1 (Ω a ) (respectively in H 1 (Ω b,r
) ) and converges weakly to ´T 0 µ a ϕdt (respectively to ´T 0 c(t)ϕdt).

Thus their trace converges strongly in L

2 (] -1, 0[ 2 ×0. Then lim n T ˆ0 ]-1,0[ 2 ×{0} m a n (t, x 1 , x 2 , 0) ϕdx 1 dx 2 dt = T ˆ0 ]-1,0[ 2 ×{0} µ a (t, x 1 , x 2 , 0) ϕdx 1 dx 2 dt (2.4.29) for every ϕ ∈ C ∞ 0 ((0, T ) × Ω a ) and lim n T ˆ0 ]-1,0[ 2 ×{0} m b,r n (t, x 1 , x 2 , 0) ϕdx 1 dx 2 dt = T ˆ0 ]-1,0[ 2 ×{0} c(t)ϕdx 1 dx 2 dt (2.4.30)
for every ϕ ∈ C ∞ 0 ((0, T ) × Ω a ). By combining (2.4.27), (2.4.29) and (2.4.30) and remembering that µ a is independent of (x 1 , x 2 ), we get µ a (t, 0) = c(t) almost everywhere in ]0, T [. In the same way, by (2.4.28), we prove that µ b,l (t, 0) = c(t) almost everywhere in ]0, T [. So we can conclude that µ ∈ L ∞ (0, T ; M). The convergence (2.4.20) viii) is easily obtained by (2.4.24)v) and by definition of distributional derivative.

A convergence result for the magnetostatic energy

In what follows S =] -1, 0[ 2 , so we will omit the explicit dependence of coefficients α, β, γ, δ, ε, defined in (2.2.7), by S. Moreover, let us pose

                               P (x 1 , x 2 , x 3 ) = p (x 1 , x 2 ) for every (x 1 , x 2 ) ∈] -1, 0[ 2 Q (x 1 , x 2 , x 3 ) = q (x 1 , x 2 ) for every (x 1 , x 2 ) ∈] -1, 0[ 2 P (x 1 , x 2 , x 3 ) = p (x 2 , x 3 ) for every (x 2 , x 3 ) ∈] -1, 0[ 2 Q (x 1 , x 2 , x 3 ) = q (x 2 , x 3 ) for every (x 2 , x 3 ) ∈] -1, 0[ 2 (2.4.31)
with p (resp. q) the unique solution of (2.2.2)

(resp. (2.2.3)). Proposition 2.4.2. Let m n = m a n , m b,l n , m b,r n n∈N and let µ a , µ b,l = (µ a 1 , µ a 2 , µ a 3 ) , µ b,l 1 , µ b,l 2 , µ b,l 3 ∈ L ∞ (0, T ; M) such that,                    m a n → µ a in C (0, T ; L 2 (Ω a , R 3 )) , m b,l n → µ b,l in C 0, T ; L 2 Ω b,l , R 3 , m b,r n µ a (t, 0) = µ b,l (t, 0) weakly * in L ∞ 0, T ; H 1 Ω b,r , R 3 , (2.4.32)
as n diverges. Moreover, for every n ∈ N, let u mn = u a mn , u b,l mn , u b,r mn be the unique solution of (2.4.3) corresponding to m n and let E mag n be defined by (2.4.11). Then it result that

                   1 h n D x 1 u a n ξ a 1 , 1 h n D x 2 u a n ξ a 2 , D x 3 u a n 0 weakly * in L ∞ (0, T ; L 2 (R 3 a )) , D x 1 u b,l n 0, 1 h n D x 2 u b,l n ξ b,l 2 , 1 h n D x 3 u b,l n ξ b,l 3 weakly * in L ∞ 0, T ; L 2 R 3 b,l , Du b,r n 0 weakly * in L ∞ 0, T ; L 2 R 3 b,r 3 , 
(2.4.33)
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as n diverges, where (2.4.35) with P , P , Q and Q defined in (2.4.31). Furthermore, one has that

(ξ a 1 , ξ a 2 , ξ a 3 )(x 1 , x 2 , x 3 ) =          (0, 0, 0), a.e. in R 2 ×]1, +∞[, µ a 1 (x 3 )DP (x 1 , x 2 , x 3 ) + µ a 2 (x 3 )DQ(x 1 , x 2 , x 3 ), a.e. in R 2 ×]0, 1[, (2.4.34) (ξ b,l 1 , ξ b,l 2 , ξ b,l 3 )(x 1 , x 2 , x 3 ) =          (0, 0, 0), a.e. in ]1, +∞[×R×] -∞, 0[, µ b,l 2 (x 1 )DP (x 1 , x 2 , x 3 ) + µ b,l 3 (x 1 )DQ (x 1 , x 2 , x 3 ), a.e. in ]0, 1[×R×] -∞, 0[,
lim n ˆΩa 1 h n D x 1 u a n , 1 h n D x 2 u a n , D x 3 u a n m a n dx+ ˆΩb,l D x 1 u b,l n , 1 h n D x 2 u b,l n , 1 h n D x 3 u b,l n m b,l n dx+ ˆΩb,r D x 1 u b,r n , D x 2 u b,r n , D x 3 u b,r n m b,r n dx = α ˆ1 0 |µ a 1 | 2 dx 3 + ˆ1 0 |µ a 2 | 2 dx 3 + ˆ1 0 |µ b,l 2 | 2 dx 1 + ˆ1 0 |µ b,l 3 | 2 dx 1 , (2.4.36) 
where α,is defined by (2.2.5).

Proof. Choose (u a n , u b,l n , u b,r n ) as test function in (2.4.3), take into account that for every t {(m a n , m b,l n , m b,r n )} n∈N ⊂ L 2 (Ω a , S 2 ) × L 2 (Ω b,l , S 2 ) × L 2 (Ω b,r , S 2 ) and that by (2.4.32) the norms in these spaces are equibounded, then there exists C ∈]0, +∞[ such that

                       1 h n D x 1 u a n , 1 h n D x 2 u a n , D x 3 u a n (L 2 (R 3 a )) 3 ≤ C, D x 1 u b,l n , 1 h n D x 2 u b,l n , 1 h n D x 3 u b,l n (L 2 (R 3 b,l )) 3 ≤ C, 1 √ h n D x 1 u b,r n , D x 2 u b,r n , D x 3 u b,r n (L 2 (R 3 b,r )) 3 ≤ C, (2.4.37)
for every n ∈ N.

We observe that the last estimate in (2.4.37) gives the last limit in (2.4.33). MULTI-STRUCTURES By arguing as in the first part of the proof of [34, Proposition 5.1], from the first two estimates in (2.4.37) one derives the third and the fourth limit in (2.4.33), up to a subsequence. From the first estimate in (2.4.37) one obtains the first two limits in (2.4.33) and from the second estimate in (2.4.37) one obtains the fifth and sixth limits in (2.4.33), up to a subsequence.

Next step is devoted to identify ξ a = (ξ a 1 , ξ a 2 ).

Let as fix t ∈ [0, T ], in equation (2.4.3) with (m a , m b,l , m b,r ) = (m a n , m b,l n , m b,r n ) choose v a = ϕ+c n , v b,l = c n and v b,r = c n , with ϕ ∈ C ∞ 0 (R 3 a ) and c n = -|B a n | + |B b,l n | + |B b,r n | -1 ´Ba n ϕdx (such that (v a , v b,l , v b,r ) ∈ U n ).
By multiplying this equation by h n , for all t ∈ [0, T ] one has

           ˆR3 a 1 h n D x 1 u a n , 1 h n D x 2 u a n , D x 3 u a n (D x 1 ϕ, D x 2 ϕ, h n D x 3 ϕ) dx = ˆΩa (D x 1 ϕ, D x 2 ϕ, h n D x 3 ϕ) m a n dx, ∀ϕ ∈ C ∞ 0 (R 3 a ).
( 

ˆR3 a (ξ a 1 , ξ a 2 )(D x 1 ϕ, D x 2 ϕ)dx = ˆ1 0 (µ a 1 , µ a 2 ) ˆ]-1,0[ 2 (D x 1 ϕ, D x 2 ϕ)dx 1 dx 2 dx 3 , ∀ϕ ∈ C ∞ 0 (R 3 a ).
Then, observe that:

D x 2 1 h n D x 1 u a n = D x 1 1 h n D x 2 u a n in D (R 3 a ), ∀n ∈ N,
and using the first two limits in (2.4.33) , one obtains that

ˆR3 a ξ a 1 D x 2 ϕdx = ˆR3 a ξ a 2 D x 1 ϕdx, ∀ϕ ∈ H 1 0 (R 3 a ). (2.4.39) By taking ϕ(x) = φ(x 1 , x 2 )χ(x 3 ) with φ ∈ H 1 (R 2 ) and χ ∈ C ∞ 0 (]0, +∞[) and recalling that H 1 (R 2 ) is separable, it follows from (2.4.39) that            for x 3 a.e. in ]0, +∞[, ˆR2 ξ a 1 (x 1 , x 2 , x 3 )D x 2 φ(x 1 , x 2 )dx 1 dx 2 = ˆR2 ξ a 2 (x 1 , x 2 , x 3 )D x 1 φ(x 1 , x 2 )dx 1 dx 2 , ∀φ ∈ H 1 (R 2 ).
Consequently, by virtue of the Poincaré Lemma (see Section 2.2), it results that

         for x 3 a.e. in ]0, +∞[, ∃!w(•, •, x 3 ) ∈ W 1 (R 2 ) : ξ a 1 (•, •, x 3 ) = D x 1 w(•, •, x 3 ), ξ a 2 (•, •, x 3 ) = D x 2 w(•, •, x 3 ), a.e. in R 2 .
(2.4.40)

Consequently, arguing as above, taking into account that W 1 (R 2 ) is separable, and using Proposition 2.2.1 and (2.4.40), it follows that, for x 3 a.e. in ]1, +∞[, w(•, •, x 3 ) solves the following problem:

         w(•, •, x 3 ) ∈ W 1 (R 2 ), ˆR2 (D x 1 w(x 1 , x 2 , x 3 ), D x 2 w(x 1 , x 2 , x 3 ))(D x 1 φ(x 1 , x 2 ), D x 2 φ(x 1 , x 2 ))dx 1 dx 2 = 0, ∀φ ∈ W 1 (R 2 ),
while, for x 3 a.e. in ]0, 1[, w(•, •, x 3 ) solves the following one:

                     w(•, •, x 3 ) ∈ W 1 (R 2 ), ˆR2 (D x 1 w(x 1 , x 2 , x 3 ), D x 2 w(x 1 , x 2 , x 3 ))(D x 1 φ(x 1 , x 2 ), D x 2 φ(x 1 , x 2 ))dx 1 dx 2 = (µ a 1 (x 3 ), µ a 2 (x 3 )) ˆ]-1,0[ 2 (D x 1 φ(x 1 , x 2 ), D x 2 φ(x 1 , x 2 ))dx 1 dx 2 , ∀φ ∈ W 1 (R 2 ).
(2.4.41)

Then, by virtue of Lemma 2.2.1, it results that, for x 3 a.e. in ]0, +∞[,

w(•, •, x 3 ) =          0, a.e. in R 2 , if x 3 > 1, µ a 1 (x 3 )p(•, •) + µ a 2 (x 3 )q(•, •), a.e. in R 2 , if x 3 < 1, (2.4.42) 
with p (resp. q) the unique solution of (2.2.2) (resp. (2.2.3)).

Moreover, since Tonelli theorem assures that ξ a and µ a 

1 Dp + µ a 2 Dq belong to (L 2 (R 3 a )) 2 ⊂ MULTI-STRUCTURES (L 1 loc (R 3 a ))
ˆR3 a ξ a ϕdx = ˆ+∞ 0 ˆR2 ξ a ϕdx 1 dx 2 dx 3 = ˆ1 0 ˆR2 (µ a 1 Dp + µ a 2 Dq) ϕdx 1 dx 2 dx 3 = ˆR2 ×]0,1[ (µ a 1 Dp + µ a 2 Dq) ϕdx, ∀ϕ ∈ C ∞ 0 (R 3 a ),
that is 

ξ a (x 1 , x 2 , x 3 ) =          (0, 0), a.e. in R 2 ×]1, +∞[, µ a 1 (x 3 )Dp(x 1 , x 2 ) + µ a 2 (x 3 )Dq(x 1 , x 2 ), a.e. in R 2 ×]0, 1[, ( 
1 h n D x 1 u a n , 1 h n D x 2 u a n , D x 3 u a n m a n dx = lim n ˆΩa (µ a 1 DP + µ a 2 DQ) (µ a 1 , µ a 2 ) = (2.4.44) By iii) of Lemma 2.2.1 with k = (µ a 1 , µ a 2 ) we get lim n ˆΩa 1 h n D x 1 u a n , 1 h n D x 2 u a n , D x 3 u a n m a n dx = α ˆ1 0 |µ a 1 | 2 dx 3 + ˆ1 0 |µ a 2 | 2 dx 3 , (2.4.45)
Using the third limits in (2.4.32) and the third inequality in (2.4.37) we obtain, for every t,

lim n ˆΩb,r D x 1 u b,r n , D x 2 u b,r n , D x 3 u b,r n m b,r n dx = 0. (2.4.46)
Next step is devoted to identify ξ b,l = (ξ b,l 2 , ξ b,l 3 ), we introduce other rescalings. Specifically, by setting For every n ∈ N, let (v a,r n , v l n , v b,r n ) be the unique solution of (2.4.49) corresponding to (m a n , m b,l n , m b,r n ). Arguing as in the first part of this proof, for a symmetric argument, one can easily prove that

R 3 a,r = {(x 1 , x 2 , x 3 ) ∈ R 3 : x 3 > 0, x 1 < 0}, R 3 l = {(x 1 , x 2 , x 3 ) ∈ R 3 : x 1 > 0}, MULTI-STRUCTURES tion:                                                                  (v a,r , v l , v b,r ) ∈ V n , ˆR3 a,r 1 h n D x 1 v a,r , 1 h n D x 2 v a,r , D x 3 v a,r 1 h n D x 1 w a,r , 1 h n D x 2 w a,r , D x 3 w a,r dx+ ˆR3 l D x 1 v l , 1 h n D x 2 v l , 1 h n D x 3 v l D x 1 w l , 1 h n D x 2 w l , 1 h n D x 3 w l dx+ 1 h n ˆR3 b,r D x 1 v b,r , D x 2 v b,r , D x 3 v b,r D x 1 w b,r , D x 2 w b,r , D x 3 w b,r dx = ˆΩa 1 h n D x 1 w a,r , 1 h n D x 2 w a,r , D x 3 w a,r m a dx+ ˆΩb,l D x 1 w l , 1 h n D x 2 w l , 1 h n D x 3 w l m b,l dx+ ˆΩb,r D x 1 w b,r , D x 2 w b,r , D x 3 w b,r m b,r dx, ∀(w a,r , w l , w b,r ) ∈ V n (2.
D x 1 v l n 0, 1 h n D x 2 v l n ξ l 2 , 1 h n D x 3 v l n ξ l 3 weakly in L 2 (R 3 l ), (2.4.50)
as n diverges, where

(ξ l 2 , ξ l 3 )(x 1 , x 2 , x 3 ) =          (0, 0), a.e. in ]1, +∞[×R 2 , µ b 2 (x 1 )Dp(x 2 , x 3 ) + µ b 3 (x 1 )Dq(x 2 , x 3 ), a.e. in ]0, 1[×R 2 ,
with p (resp. q) the unique solution of (2.2.2) (resp. (2.2.3)). Furthermore, arguing as before by

2.4 THE RESCALED PROBLEM 77 iii) of Lemma 2.2.1 with k = (µ b,l 2 , µ b,l 3 ) one has that lim n ˆΩb,l D x 1 v l n , 1 h n D x 2 v l n , 1 h n D x 3 v l n , m b n dx = α ˆ1 0 |µ b 2 | 2 dx 1 + ˆ1 0 |µ b 3 | 2 dx 1 , (2.4.51)
where α is defined by (2.2.5).

Now, to conclude it is enough to note that

T -1 n (T n (x)) = x, ∀x ∈ R 3 \ {(x 1 , x 2 , x 3 ) ∈ R 3 : x 1 ≥ 0, x 3 ≥ 0}, ∀n ∈ N, v n T -1 n (T n (x)) = u n (x), ∀x ∈ R 3 , ∀n ∈ N,
where 

u n = (u a n , u b,l n , u b,r n ) and v n = (v a,r m,n , v l m,n , v b,r m,n ). Consequently, it results that v n (x) = u n (x), ∀x ∈ R 3 \ {(x 1 , x 2 , x 3 ) ∈ R 3 : x 1 ≥ 0, x 3 ≥ 0}, ∀n ∈ N. ( 2 
lim n ˆΩb,l D x 1 u l n , 1 h n D x 2 u l n , 1 h n D x 3 u l n m b n dx = α ˆ1 0 |µ b 2 | 2 dx 1 + ˆ1 0 |µ b 3 | 2 dx 1 .
(2.4.53)

So, for every t ∈ [0, T ] combining (2.4.45) with (2.4.53), also limit (2.4.36) holds true.

Proof of Theorem 2.4.1

In this subsection, our aim is to study the asymptotic behavior, as n diverges, of Problem (2.4.6).

If µ is the limit given in (2.4.20), we want to identify µ as solution of Problem (2.3.9).

Let us pose

S = {0} × {0} × [0, 1] ∪ [0, 1] × {0} × {0}.
We denote the space of the Lipschitz continuous functions on S, taking values in R 3 , by L. In the following with slight abuse of notation, we will continue to denote with L the space of functions ψ = ψ a , ψ b,l on Ω a ∪ Ω b,l such that ψ = ψ a , ψ b,l restricted to S is in L, ψ is constant in (x 1 , x 2 ) in Ω a and is constant in

(x 2 , x 3 ) in Ω b,l .
Remark 2.4.1. Let W be the space defined in (2.3.7). Then, L is dense in W (see [START_REF] Haar | Problèmes variationnels dans le multi-domaines: modélisation des jonctions et applications[END_REF] and [24, MULTI-STRUCTURES

Proposition 2.2]).

Now, let us build a suitable couple of test functions. To this aim, for ψ a , ψ b,l ∈ L, let us set

v =                    ψ a , in Ω a , ψ b,l , in Ω b,l , ψ a (0) = ψ b,l (0), in Ω b,r .
Obviously, v ∈ W n , for every n ∈ N . Now, let us choose, v as test function in (2.4.6). So, we want to pass to the limit as n diverges in 

|D x i v| = |D x i ψ a | = 0 on Ω a for i = 1, 2, we obtain 2 T ˆ0 Ωa 2 i=1 m a n ∧ 1 h n D x i m a n 1 h n (D x i v) χ + m a n ∧ D x 3 m a n (D x 3 v) χ dxdt → 2 T ˆ0 Ωa µ a ∧ ∂µ a ∂x 3 ∂ψ a ∂x 3 χ, ∀χ ∈ D(0, T ), ∀ ψ a , ψ b,l ∈ L. By (2.4.20)v) and |m b,l n | = 1 remembering that |D x i v| = D x i ψ b,l = 0 on Ω b,l for i = 2, 3, one has 2 T ˆ0 Ωb,l m b,l n ∧ D x 1 m b,l n (D x 1 v) χ + 3 i=2 m b,l n ∧ 1 h n D x i m b,l n 1 h n (D x i v) χ dxdt → 2 T ˆ0 Ωb,l µ b,l ∧ ∂µ b,l ∂x 1 ∂ψ b,l ∂x 1 χ, ∀χ ∈ D(0, T ), ∀ ψ a , ψ b,l ∈ L.
By (2.4.20)iii) one has 

2h n T ˆ0 Ωb,r 3 i=1 m b,r n ∧ 1 h n D x i m b,r n 1 h n (D x i v) χ dxdt = 0, ∀χ ∈ D(0, T ), ∀ ψ a , ψ b,l ∈ L.
2 T ˆ0 Ωa m a n ∧ 1 h n D x 1 u a mn , 1 h n D x 2 u a mn , D x 3 u a mn χvdxdt → 2 T ˆ0 Ωa µ a ∧ (µ a 1 DP + µ a 2 DQ) χψ a dxdt, ∀χ ∈ D(0, T ), ∀ ψ a , ψ b,l ∈ L, (2.4 
2 T ˆ0 Ωb,l m b,l n ∧ D x 1 u b,l mn , 1 h n D x 2 u b,l mn , 1 h n D x 3 u b,l mn χvdxdt → 2 T ˆ0 Ωb,l µ b,l ∧ µ b,l 2 DP + µ b,l 3 DQ χψ b,l dxdt, ∀χ ∈ D(0, T ), ∀ ψ a , ψ b,l ∈ L, ( 2 
2h n T ˆ0 Ωb,r m b,r n ∧ 1 hn D x 1 u b,r mn , 1 hn D x 2 u b,l mn , 1 hn D x 3 u b,r mn χvdxdt → 0, ∀χ ∈ D(0, T ), ∀ ψ a , ψ b,l ∈ L.
Let us observe that (ψ a , ψ b,l ) can be any arbitrarily element of L. Being L dense in W, we obtain that the above convergences hold true for every ψ = (ψ a , ψ b,l ) ∈ W. By using Lemma 2.2.2, we get (2.3.9).

A single wire

Let

Ω n = ]-h n , 0[ 2 × [0, 1[, Ω =] -1, 0[ 2 ×[0, 1[, let us introduce the following space W = (µ ∈ H 1 (Ω, R 3 ) : µ is independent of (x 1 , x 2 ) {(µ ∈ H 1 (]0, 1[, R 3 )} . (2.5.1) 
Moreover, we can pose

M=W ∩ H 1 (Ω, S 2 ) , (2.5.2) 
which explicitely takes into account the condition |µ| = 1.

Theorem 2.5.1. Suppose that M 0n ∈ H 1 (Ω n , S 2 ) and (2.3.6) holds, for every n ∈ N. Let M n be a solution of Problem (2.3.4) . Then, there exist an increasing sequence of positive integer numbers {n i } i∈N , still denoted by {n}, µ 0 ∈ M, µ ∈ L ∞ (0, T ; M), depending on the selected subsequence 2.5 A SINGLE WIRE 81 such that:

   Ωn |M 0n (x 1 , x 2 , x 3 ) -µ 0 (x 3 )| 2 dx → 0, (2.5.3) 
as n diverges, for every t ∈ [0, T ]

   Ωn |M n (t, x 1 , x 2 , x 3 ) -µ(t, x 3 )| 2 dxdt → 0, (2.5.4) 
as n diverges, where µ is a solution of the following problem

                                               µ ∈ L ∞ (0, T ; M) ∩ C ([0, T ] ; L 2 (Ω, R 3 )) , ∂µ ∂t ∈ L 2 (0, T ; L 2 (Ω, R 3 )) , ∀ χ ∈ D(0, T ) and ψ ∈ W, T ˆ0 Ω ∂µ ∂t + µ ∧ ∂µ ∂t χψdxdt = -2 T ˆ0 Ω µ ∧ ∂µ ∂x 3 ∂ψ ∂x 3 χdxdt -2 Ω µ ∧ ((µ, e 1 )Υ 1 + (µ, e 2 )Υ 2 ) χψdxdt, µ(0, x) = µ 0 (x), a.e. x in Ω, (2.5.5) 
where

Υ 1 = (ε 1 , ε 2 , 0), Υ 2 = (-ε 2 , ε 1 , 0), with ε 1 , ε 2 constant depending on S =] -1, 0[ 2 .
To Problem (2.5.5), for a.e. t ∈ [0, T ], the following energy will be associated,

E (t) + t ˆ0 ∂µ ∂t 2 (L 2 (]0,1[)) 3 ds (2.5.6)
where

E(t) = 1 ˆ0 ∂µ ∂x 3 2 dx 3 + 1 2 α ]-1, 0[ 2   1 ˆ0 |µ 1 | 2 + |µ 2 | 2 dx 3   , (2.5.7) α ]-1, 0[ 2 is defined by (2.2.5) with S = ]-1, 0[ 2 .
Here, the term E exc (t) = 

(t) = 1 2 α ]-1, 0[ 2   1 ˆ0 |µ a 1 | 2 + |µ a 2 | 2 dx 3   ,can
be considered the equivalent of a magnetostatic energy.

Chapter 3

Fin junction of ferroelectric thin films L. Carbone, K. Chacouche, A. Gaudiello. Fin junction ferroelectric thin films, submitted.

Abstract. In this paper, starting from a non-convex and nonlocal 3D variational model for the electric polarization in a ferroelectric material, and using an asymptotic process based on dimensional reduction, we analyze junction phenomena for two orthogonal joined ferroelectric thin films. We obtain three different 2D-variational models for joined thin films, depending on how the reduction happens. Indeed, a memory effect of the reduction process appears, and it depends on the competition of the relative thickness of the two films. The guide parameter is the limit of the ratio between these two small thickness.
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3.1 Introduction.

Ferroelectricity is a property of some materials to have a spontaneous electrical polarization that can be reversed by the application of an external electric field. Hysteresis phenomena appear, so the behavior of these materials is very similar to the one of ferromagnetic materials. Analogously, a Curie temperature T C appears, too.

The idea of existence of materials which can have stable electric polarization is as old as the study of electrical phenomena. The quest was perhaps opened by S. Gray in the middle of eighteenth century. O. Heaveside is quoted as the creator of term "electret" for this kind of materials in 1885, borrowing the name from magnet, by analogy. T. Iguchi obtained the first electret at the beginning of Twenties of the last century by mixing and heating some organic natural materials. In the Twenties again, J. Valasek discovered the presence of a hysteresis cycle (and so the first ferroelectric material) in Rochelle salt, a common salt but chemically and crystallographically complex enough. Immediately later, another ferroelectric salt was discovered (KH 2 P O 4 ). Then the study of ferroelectric phenomena became easier and some theoretical model were proposed. In the Forties, the family of ferroelectric material enlarged, e.g. ferroelectric properties were demonstrated in barium titanate (BaT iO 3 ) and lead titanate (P bT iO 3 ). These simple materials opened the way for industrial use of materials with ferroelectric properties and also the modeling of these materials was more intensively studied. Properties of ferroelectric materials are now applied in a wide variety of contests. In particular, due to switching effect of hysteresis cycle, thin ferroelectric materials are used in electronic circuits with miniaturized and integrated forms in memory and storage devices as, for instance, radio frequency identification cards (RFID). Moreover, also the ferroelectric tunnel junction (FTJ) seems to offer great opportunities. We refer to [START_REF]The Handbook of Photonics[END_REF], [START_REF] Chandra | A Landau primer for ferroelectrics, The Physics of ferroelectrics: A modern perspective[END_REF], and [START_REF] Cross | History of Ferroelectrics, Reprinted from the Ceramics and Civilization, Volume II High-Technology Ceramics-Past, Present, and Future[END_REF], about the history and applications of ferroelectric material. Recently, the mathematical modeling (in the static case) of thin structures of ferroelectric materials was studied starting from a non-convex and nonlocal 3-variational model for the electric polarization. Via an asymptotic process based on dimensional reduction, 2D-variational models for thin films were obtained in [START_REF] Gaudiello | The polarization in a ferroelectric thin film: local and nonlocal limit problems[END_REF], and 1D-variational models for thin wires were obtained in [START_REF] Gaudiello | The polarization in a ferroelectric thin film: local and nonlocal limit problems[END_REF]. Now, we summarize the essential features of the model that we consider (see also [START_REF]The Handbook of Photonics[END_REF], [START_REF] Chandra | A Landau primer for ferroelectrics, The Physics of ferroelectrics: A modern perspective[END_REF], [START_REF] Cross | History of Ferroelectrics, Reprinted from the Ceramics and Civilization, Volume II High-Technology Ceramics-Past, Present, and Future[END_REF], [START_REF] Mitsui | An Introduction to the physics of ferroelectrics[END_REF], [START_REF] Romano | Structure of Weis domain in ferroelectric crystals[END_REF], [START_REF] Su | Continuum thermodynamics of ferroelectric domain evolution: theory, finite element implementation, and application to domain wall pinning[END_REF], and [START_REF] Zhang | A computational model of ferroelectric domains. Part I. Model formulation and domain switching[END_REF]). We do not take into account any deformation of the ferroelectric material. The electric displacement D is given by D = ε 0 E + P, where ε 0 > 0 is the vacuum permeability, E is the applied external field, and P is the spontaneous electric polarization in a ferroelectric body B. Assume that E is the gradient of a potential ψ, i.e.

E = Dψ, (3.1.1) 
and that the electric field generated by P derives from a potential ϕ P satisfying the electrostatic equation div(-ε 0 Dϕ P + P) = 0.

(3.1.2)

We limit ourselves to the case where no strong electric field has been applied on B, but only a very weak electric field acts on it (e.g. it is the case of iron in the ferromagnetism, before the magnetization, by analogy). Then, we can assume that there are not Weis domains (i.e. regions with different polarization separated by well defined interfaces), but only transition regions. In this framework we can assume that the polarization does not generate an electric field outside B. Consequently, equation (3.1.2) holds true in B, and the following boundary conditions on ∂B

P • ν = 0, Dϕ P • ν = 0 on ∂B (3.1.3)
can be added, where ν denotes the unit outer normal on ∂B.

One assumes that P minimizes the energy functional

ˆB β|rotP| 2 + |divP| 2 + α(|P| 2 -1) 2 dx + ˆR3 |Dψ + Dϕ P | 2 dx, (3.1.4) 
where α and β are two positive constants independent of the external field and of the temperature.

Here, ´B (β|rotP| 2 + |divP| 2 ) dx reduces to the classical energy ´B |DP| 2 dx when β = 1 (see (3.1.13)), so roughly speaking this term penalizes the spatial variation of P. The term α ´B(|P| 2 -1) 2 dx obliges |P| to be near to 1, and it can induce a phase transition of P. So the body is driven to have regions of uniform polarization separated by thin transition layers. The term ´R3 |Dψ + Dϕ P | 2 dx is the electrostatic energy. As this last term is concerned, we have

ˆR3 |Dψ + Dϕ P | 2 dx = ˆR3 |E| 2 dx + 2 ˆB Dψ • Dϕ P dx + ˆB |Dϕ P | 2 dx, (3.1.5) 
thanks to (3.1.1). On the other side, using (3.1.2) and (3.

1.3) give ˆB Dψ • Dϕ P dx = 1 ε 0 ˆB Dψ • Pdx. (3.1.6) Consequently, inserting (3.1.5) and (3.1.6) in (3.1.4) 
, and remarking that ´R3 |E| 2 dx is constant with respect to P, the energy functional minimized by P becomes ˆB

β|rotP| 2 + |divP| 2 + α(|P| 2 -1) 2 dx + ˆB |Dϕ P | 2 dx + 2 ε 0 ˆB E • Pdx, (3.1.7) 
where ´B |Dϕ P | 2 dx is the electrostatic energy induced by P, and the external energy ´B E • Pdx favors the polarization parallel (but in opposite verse) to E.

In this paper, starting from this 3D-variational model and using an asymptotic process based on dimensional reduction, we analyze junction phenomena in a fin-like shaped structure composed of two orthogonal joined ferroelectric thin films (see Fig. 3.1). Such a structure appears in some types of non-planar transistor used in the design of modern processors, the so called Fin Field Effect Transistor (FinFET). We obtain three different 2D-variational models for joined thin films, depending on how the reduction happens. Indeed, a memory effect of the reduction process appears, and it depends on the competition of the relative thickness of the two films. The guide parameter is the limit of the ratio between these two small thickness. The reduced models are justified by reasons of simplicity and economy, by a numerical point of view, too. For every n ∈ N, set (see Fig. 3.1)

Ω a n = -h a n 2 , h a n 2 × -1 2 , 1 2 × [0, 1[ , Ω b n = -1 2 , 1 2 2 × -h b n , 0 , Ω n = Ω a n ∪ Ω b n . (3.1.9)
The multidomain Ω n models a ferroelectric device consisting of two orthogonal joined thin films Ω a n and Ω b n with small thicknesses h a n and h b n , respectively. According to (3.1.7), we consider the following non-convex and nonlocal energy associated with Ω n

E n : P ∈ P n -→ ˆΩn β|rotP| 2 + |divP| 2 + α(|P| 2 -1) 2 + |Dϕ P | 2 + (F n • P) dx, (3.1.10) 
where

P n = P ∈ H 1 (Ω n ) 3 : P • ν = 0 on ∂Ω n , (3.1.11) 
α and β are two positive constants, F n ∈ (L 2 (Ω n )) 3 , ν denotes the unit outer normal on ∂Ω n ,

and ϕ P ∈ H 1 (Ω n ) is the unique solution, up to an additive constant, of

                 div(-ε 0 Dϕ P + P) = 0 in Ω n , (-ε 0 Dϕ P + P) • ν = 0 on ∂Ω n .
(3.1.12)

Notice that F n is a normalization of the external field. So to obtain (3.1.7), choose

F n = 2 ε 0 E. Using DP 2 (L 2 (Ωn)) 9 = rotP 2 (L 2 (Ωn)) 3 + divP 2 L 2 (Ωn) ∀P ∈ P n , ∀n ∈ N, (3.1.13) 
(this formula is true due to the special geometry of the domain, for instance compare [START_REF] Costabel | Singularities of Maxwell interface problems[END_REF] and Lemma 2.1 in [START_REF] Gaudiello | The polarization in a ferroelectric thin film: local and nonlocal limit problems[END_REF]) and the direct method of Calculus of Variations give that problem min{E n (P) :

P ∈ P n } (3.1.14)
admits a solution. Note that problem (3.1.14) is an optimal control problem.

We rescale

F n in Ω a = -1 2 , 1 2 × -1 2 , 1 2 × ]0, 1[ and Ω b = -1 2 , 1 2 × -1 2 , 1 2 × ]-1, 0[ (see (3.2.2
)), and we impose suitable convergence assumptions on these rescaled fields (see (3.2.9)). The goal of this paper is to study the asymptotic behavior, as n diverges, of (3.1.14). Now, we describe the three different limit regimes depending on ratio given in (3.1.8), according

In the case = 0, i.e. h b n h a n , we prove that

                                                       lim n min 1 |Ω n | E n (P) : P ∈ H 1 (Ω n ) 3 : P • ν = 0 on ∂Ω n = min ˆ]-1 2 , 1 2 [×]0,1[ β|rotq a | 2 + |divq a | 2 + α(|q a | 2 -1) 2 +|Dψ a q a | 2 + ˆ1 2 -1 2 (f a 2 , f a 3 )dx 1 • q a dx 2 dx 3 : q a = (q a 2 , q a 3 ) ∈ H 1 -1 2 , 1 2 × ]0, 1[ 2 , q a • ν a = 0 on ∂ -1 2 , 1 2 × ]0, 1[ , (3.1.17) 
where ψ a q a is the unique weak solution, up to an additive constant, of

                 div(-ε 0 Dψ a q a + q a ) = 0 in -1 2 , 1 2 × ]0, 1[ , (-ε 0 Dψ a q a + q a ) • ν a = 0 on ∂ -1 2 , 1 2 × ]0, 1[ . (3.1.18) 
Roughly speaking, in the limit process the energy, renormalized by 1 |Ωn| , reduces to the energy of a 2D-problem in the vertical thin film. Also in this case a memory effect of the original 3D-problem appears. Indeed, a solution p a of problem (3.1.17) satisfies the boundary condition p a 3 = 0 and ∂ x 3 ψ a p a = 0 on -1 2 , 1 2 × {0} (see the last lines in (3.1.17) and (3.1.18), respectively). See Theorem 3.3.4 about the limit behavior of the rescaled polarization and of the rescaled potential of electric field associated with it.

In the case = +∞, i.e. h a n h b n , we are able to study the asymptotic behavior of problem (3.1.14) under the additional assumption h b n h a n (see Remark 3.6.5). In this case we prove that

                                                                       lim n min 1 |Ω n | E n (P) : P ∈ H 1 (Ω n ) 3 : P • ν = 0 on ∂Ω n = min ˆ]-1 2 , 1 2 [ 2 β rotq b 2 + divq b 2 + α q b 2 -1 2 + Dψ b q b 2 + ˆ0 -1 f b 1 , f b 2 dx 3 • q b dx 1 dx 2 : q b = q b 1 , q b 2 ∈ H 1 -1 2 , 1 2 2 2 , q b • ν b = 0 on ∂ -1 2 , 1 2 2 , q b 1 (0, •) = 0 in - 1 2 , 1 2 , (3.1.19) 
where ψ b q b is the unique weak solution, up to an additive constant, of

                 div(-ε 0 Dψ b q b + q b ) = 0 in -1 2 , 1 2 2 , 
(-ε 0 Dψ b q b + q b ) • ν b = 0 on ∂ -1 2 , 1 2 2 . 
(3.1.20) Roughly speaking, in the limit process the energy, renormalized by 1 |Ωn| , reduces to the energy of a 2D-problem in the horizontal thin film. Also in this case a memory effect of the original 3D-problem appears. Indeed, a solution p b of problem (3.1.19) satisfies the boundary condition

p b 1 = 0 and [∂ x 1 ψ b q b ] = 0 on {0} × -1 2 , 1 2 (see the last lines in (3.1.19
) and the first line in (3.1.20), respectively). See Theorem 3.3.7 about the limit behavior of the rescaled polarization and of the rescaled potential of electric field associated with it.

In what follows, we assume ε 0 = 1.

In all the three cases, we reformulate the problem on a fixed domain through appropriate rescalings of the kind proposed in [START_REF] Ciarlet | A justification of the two-dimensional linear plate model[END_REF] and impose suitable convergence assumptions on the rescaled fields of F n . Then, we use accurate a priori estimates which provide a first characterization of the (H 1 (Ω a )) 3 × (H 1 (Ω b )) 3 -weak limit of the rescaled polarization. For obtaining the transmission conditions (the memory effect) on the limit polarization in the case 0 < < +∞, we refer to [START_REF] Gaudiello | Junction of ferromagnetic thin films[END_REF]; while the proofs of the memory effects in the case = 0 and = +∞ are completely new and more intricate, mainly when = +∞. The properties of the limit polarization drive us in the study of the asymptotic behavior of the electrostatic energy associated with the polarization. First, we obtain a priori estimates of the electrostatic potential which provide a limit electrostatic potential. Then, using the main ideas of the Γ-convergence method introduced in [START_REF] De Giorgi | Su un tipo di convergenza variazionale[END_REF] (see [START_REF] Braides | Γ-convergence for beginners[END_REF], [START_REF] Carbone | Unbounded functionals in the calculus of variations. Representation, relaxation, and homogenization[END_REF], and [START_REF] Maso | An introduction to Γ-convergence[END_REF], too), we identify the limit electrostatic equation and the problem satisfied by the limit polarization. In this last two steps, the main difficulties arise in the construction of the "recovery sequence". For instance, as the polarization is concerned (the same holds for the electrostatic potential), the main difficulties depend on the fact that the test functions (p a , p b ) (of the rescaled problem of (3.1.14)) are not H 1 of all the rescaled domain, but p a ∈ (H 1 (Ω a )) 3 ,

p b ∈ H 1 (Ω b )
3 , and they satisfy the junction condition p a (x 1 , x 2 , 0) = p b (h a n x 1 , x 2 , 0) on the interface separating Ω a and Ω b , and also some boundary conditions. We build the recovery sequence for enough regular test functions, so some density results are needed to be proved.

The 3D model of ferromagnetic micro devices is close to our model. For the limit behavior of a ferromagnetic thin structures we refer to [START_REF] Gaudiello | Junction of ferromagnetic thin films[END_REF] for joined ferromagnetic thin films in the stationary case, and [START_REF] De Maio | Quasy-stationary ferromagnetic thin films in degenerated cases[END_REF] and [START_REF] De Maio | Junction of quasi-stationary ferromagnetic thin films[END_REF] in the quasi-stationary case. For the study of ferromagnetic thin films, we refer to [START_REF] Alicandro | 3D -2D Asymptotic Analysis for Micromagnetic Thin Films[END_REF], [START_REF] Alouges | Convergence of a ferromagnetic film model[END_REF], [START_REF] Ammari | Asymptotic behavior of thin ferromagnetic films[END_REF], [START_REF] Baía | A note on the 3D -2D dimensional reduction of a micromagnetic thin film with nonhomogeneous profile[END_REF], [START_REF] Carbou | Thin layers in micromagnetism[END_REF], [START_REF] Desimone | A reduced theory for thin-film micromagnetics[END_REF], [START_REF] Gaudiello | Ferromagnetic thin multi-structures[END_REF], [START_REF] Gioia | Micromagnetism of very thin films[END_REF], [START_REF] Hadiji | Asymptotic analysis for micromagnetics of thin films governed by indefinite material coefficients[END_REF], [START_REF] Kohn | Another thin-film limit of micromagnetics[END_REF], and [START_REF] Kohn | Effective dynamics for ferromagnetic thin films: a rigorous justification[END_REF]. For problems of junctions, we refer to [START_REF] Haar | Problèmes variationnels dans le multi-domaines: modélisation des jonctions et applications[END_REF].

The rescaled problem

As it is usual (see [START_REF] Ciarlet | A justification of the two-dimensional linear plate model[END_REF]), (3.1.14) is reformulated on a fixed domain through the maps

                 x = (x 1 , x 2 , x 3 ) ∈ Ω a = -1 2 , 1 2 × -1 2 , 1 2 × ]0, 1[ -→ (h a n x 1 , x 2 , x 3 ) ∈ Int(Ω a n ), x = (x 1 , x 2 , x 3 ) ∈ Ω b = -1 2 , 1 2 × -1 2 , 1 2 × ]-1, 0[ -→ (x 1 , x 2 , h b n x 3 ) ∈ Ω b n , (3.2.1) 
where Int(Ω a n ) denotes the interior of Ω a n . Precisely, for every n ∈ N set

D a n : p a ∈ H 1 (Ω a ) k -→ 1 h a n ∂p a ∂x 1 , ∂p a ∂x 2 , ∂p a ∂x 3 ∈ (L 2 (Ω a )) 3k , k ∈ {1, 3}, D b n : p b ∈ H 1 (Ω b ) k -→ ∂p b ∂x 1 , ∂p b ∂x 2 , 1 h b n ∂p b ∂x 3 ∈ L 2 Ω b 3k , k ∈ {1, 3}, div a n : p a = (p a 1 , p a 2 , p a 3 ) ∈ H 1 (Ω a ) 3 -→ 1 h a n ∂p a 1 ∂x 1 + ∂p a 2 ∂x 2 + ∂p a 3 ∂x 3 ∈ L 2 (Ω a ), div b n : p b = p b 1 , p b 2 , p b 3 ∈ H 1 (Ω b ) 3 -→ ∂p b 1 ∂x 1 + ∂p b 2 ∂x 2 + 1 h b n ∂p b 3 ∂x 3 ∈ L 2 (Ω b ), rot a n : p a = (p a 1 , p a 2 , p a 3 ) ∈ H 1 (Ω a ) 3 -→ ∂p a 3 ∂x 2 - ∂p a 2 ∂x 3 , ∂p a 1 ∂x 3 - 1 h a n ∂p a 3 ∂x 1 , 1 h a n ∂p a 2 ∂x 1 - ∂p a 1 ∂x 2 ∈ (L 2 (Ω a )) 3 , rot b n : p b = p b 1 , p b 2 , p b 3 ∈ H 1 Ω b 3 -→ ∂p b 3 ∂x 2 - 1 h b n ∂p b 2 ∂x 3 , 1 h b n ∂p b 1 ∂x 3 - ∂p b 3 ∂x 1 , ∂p b 2 ∂x 1 - ∂p b 1 ∂x 2 ∈ (L 2 (Ω b )) 3 ,                  f a n : x = (x 1 , x 2 , x 3 ) ∈ Ω a -→ F n (h a n x 1 , x 2 , x 3 ), f b n : x = (x 1 , x 2 , x 3 ) ∈ Ω b -→ F n (x 1 , x 2 , h b n x 3 ), (3.2.2)                                                                    P n = (p a , p b ) ∈ (H 1 (Ω a )) 3 × H 1 (Ω b ) 3 : p a • ν a = 0 on ∂Ω a \ -1 2 , 1 2 2 × {0} , p b • ν b = 0 on ∂Ω b \ -1 2 , 1 2 2 × {0} , p b 3 = 0 on -1 2 , 1 2 2 \ -h a n 2 , h a n 2 × -1 2 , 1 2 × {0} , p a (x 1 , x 2 , 0) = p b (h a n x 1 , x 2 , 0) in -1 2 , 1
where ν a and ν b denote the unit outer normals on ∂Ω a and ∂Ω b , respectively, and

U n = (φ a , φ b ) ∈ H 1 (Ω a ) × H 1 (Ω b ) : φ a (x 1 , x 2 , 0) = φ b (h a n x 1 , x 2 , 0) in -1 2 , 1 2 2 . 
(3.2.4) Then, E n defined in (3.1.10) is rescaled by

                                   E n : p a , p b ∈ P n -→ h a n ˆΩa β|rot a n p a | 2 + |div a n p a | 2 + α(|p a | 2 -1) 2 + |D a n φ a p a ,p b | 2 + (f a n • p a ) dx +h b n ˆΩb β|rot b n p b | 2 + |div b n p b | 2 + α(|p b | 2 -1) 2 + |D b n φ b p a ,p b | 2 + (f b n • p b ) dx, (3.2.5) 
where φ a p a ,p b , φ b p a ,p b is the unique solution of

                                   φ a p a ,p b , φ b p a ,p b ∈ U n , ˆΩa φ a p a ,p b dx = 0, h a n ˆΩa ((-D a n φ a p a ,p b + p a ) • D a n φ a )dx +h b n ˆΩb -D b n φ b p a ,p b + p b • D b n φ b dx = 0 ∀ (φ a , φ b ) ∈ U n , (3.2.6) 
which rescales a weak formulation of (3.1.12), i.e. 

ϕ P ∈ H 1 (Ω n ), ˆΩa n ϕ P dx = 0, ˆΩn ((-ε 0 Dϕ P + P) • Dϕ) dx = 0 ∀ϕ ∈ H 1 (Ω n ). ( 3 
P n (x 1 , x 2 , x 3 ) = p a n x 1 h a n , x 2 , x 3 in Ω a n , P n (x 1 , x 2 , x 3 ) = p b n x 1 , x 2 , x 3 h b n in Ω b n ,
solves (3.1.14). Therefore, the goal of this paper becomes to study the asymptotic behavior, as n diverges, of (3.2.8). To this aim, we assume

                 f a n f a = (f a 1 , f a 2 , f a 3 ) weakly in (L 2 (Ω a )) 3 , f b n f b = f b 1 , f b 2 , f b 3 weakly in L 2 Ω b 3 .
(3.2.9)

We conclude this section noting that rescalings in (3.2.1) transform (3.1.13) into

                 h a n D a n p a 2 (L 2 (Ω a )) 9 + h b n D b n p b 2 (L 2 (Ω b )) 9 = h a n rot a n p a 2 (L 2 (Ω a )) 3 + h a n div a n p a 2 L 2 (Ω a ) +h b n rot b n p b 2 (L 2 (Ω b )) 3 + h b n div b n p b 2 L 2 (Ω b )
∀(p a , p b ) ∈ P n , ∀n ∈ N.

(3.2.10)

3.3

The main results

The case ∈]0, +∞[

This subsection is devoted to state Theorem 3.3.2 describing the limit behavior of (3.2.8) when (3.1.8) is assumed with ∈]0, +∞[. Theorem 3.3.2 will be proved in Section 3.4.

tively,

         U = ψ a , ψ b ∈ H 1 -1 2 , 1 2 × ]0, 1[ × H 1 -1 2 , 1 2 2 
:

ψ a (•, 0) = ψ b (0, •) in -1 2 , 1 2 , (3.3.2) 
and

                                                       E : q a , q b ∈ P -→ ˆ]-1 2 , 1 2 [×]0,1[ β|rotq a | 2 + |divq a | 2 + α(|q a | 2 -1) 2 +|Dψ a q a ,q b | 2 + ˆ1 2 -1 2 (f a 2 , f a 3 )dx 1 • q a dx 2 dx 3 + ˆ]-1 2 , 1 2 [ 2 β rotq b 2 + divq b 2 + α q b 2 -1 2 + Dψ b q a ,q b 2 + ˆ0 -1 f b 1 , f b 2 dx 3 • q b dx 1 dx 2 , (3.3.3)

THE MAIN RESULTS

97

where (f a 2 , f a 3 ) and (f b 1 , f b 2 ) are defined in (3.2.9), and (ψ a q a ,q b , ψ b q a ,q b ) is the unique solution of

                                     ψ a q a ,q b , ψ b q a ,q b ∈ U, ˆ -1 2 , 1 2 ×]0,1[ ψ a q a ,q b dx 2 dx 3 = 0, ˆ -1 2 , 1 2 ×]0,1[ -D (x 2 ,x 3 ) ψ a q a ,q b + q a • D (x 2 ,x 3 ) ψ a dx 2 dx 3 + ˆ -1 2 , 1 2 2 -D (x 1 ,x 2 ) ψ b q a ,q b + q b • D (x 1 ,x 2 ) ψ b dx 1 dx 2 = 0 ∀ ψ a , ψ b ∈ U. (3.3.4)
Note that (3.3.4) admits a solution and it is unique since the set

ψ a , ψ b ∈ U : ˆ -1 2 , 1 2 ×]0,1[ ψ a dx 2 dx 3 = 0
is a Hilbert space with the inner product 

< ψ a , ψ b , ϕ a , ϕ b >= ˆ -1 2 , 1 2 ×]0,1[ Dψ a Dϕ a dx 2 dx 3 + ˆ -1 2 , 1
                 p a n i → (0, pa 2 , pa 3 ) strongly in H 1 (Ω a ) 3 and strongly in L 4 (Ω a ) 3 , p b n i → pb 1 , pb 2 , 0 strongly in H 1 (Ω b ) 3 and strongly in L 4 (Ω b ) 3 , (3.3.5) 1 h a n ∂p a n ∂x 1 , 1 h b n ∂p b n ∂x 3 → (0, 0) strongly in L 2 (Ω a ) 3 × L 2 (Ω b ) 3 , (3.3.6)                    φ a p a n i ,p b n i , φ b p a n i ,p b n i → ψ a pa ,p b , ψ b pa ,p b strongly in H 1 (Ω a ) × H 1 (Ω b ), 1 h a n ∂φ a p a n ,p b n ∂x 1 , 1 h b n ∂φ b p a n ,p b n ∂x 3 → (0, 0) strongly in L 2 (Ω a ) × L 2 Ω b , (3.3.7) 
where pa , pb solves E pa , pb = min E q a , q b : q a , q b ∈ P , is the unique solution of (3.3.4) with (q a , q b ) = pa , pb . Moreover,

lim n E n p a n , p b n h a n = E pa , pb .
(3.3.9)

The case = 0

This subsection is devoted to state Theorem 3.3.4 describing the limit behavior of (3.2.8) when (3.1.8) is assumed with = 0. Theorem 3.3.4 will be proved in Section 3.5.

Set

P • = q a = (q a 2 , q a 3 ) ∈ H 1 -1 2 , 1 2 × ]0, 1[ 2 : q a • ν a = 0 on ∂ -1 2 , 1 2 × ]0, 1[ (3.3.10)
where ν a denotes the unit outer normal on ∂ -1 2 , 1 2 × ]0, 1[ , and 3.11) where (f a 2 , f a 3 ) is defined in (3.2.9), and ψ a q a is the unique solution of 

                   E • : q a ∈ H 1 -1 2 , 1 2 × ]0, 1[ 2 -→ ˆ]-1 2 , 1 2 [×]0,1[ β|rotq a | 2 +|divq a | 2 + α(|q a | 2 -1) 2 + |Dψ a q a | 2 + ˆ1 2 -1 2 (f a 2 , f a 3 )dx 1 • q a dx 2 dx 3 , (3. 
                                   ψ a q a ∈ H 1 -1 2 , 1 2 × ]0, 1[ , ˆ -1 2 , 1 2 ×]0,1[ ψ a q a dx 2 dx 3 = 0, ˆ -1 2 , 1 2 ×]0,1[ -D (x 2 ,x 3 ) ψ a q a + q a • D (x 2 ,x 3 ) ψ a dx 2 dx 3 = 0 ∀ψ a ∈ H 1 -1 2 , 1 2 × ]0, 1[ , (3.3 
                 p a n i → (0, pa 2 , pa 3 ) strongly in H 1 (Ω a
1 h a n ∂p a n ∂x 1 , 1 h a n h b n 1 2 ∂p b n ∂x 3 → (0, 0) strongly in L 2 (Ω a ) 3 × L 2 Ω b 3 , (3.3.14)                    φ a p a n i ,p b n i , h b n h a n 1 2 φ b p a n ,p b n → ψ a pa , 0 strongly in H 1 (Ω a ) × H 1 (Ω b ), 1 h a n ∂φ a p a n ,p b n ∂x 1 , 1 h a n h b n 1 2 ∂φ b p a n ,p b n ∂x 3 → (0, 0) strongly in L 2 (Ω a ) × L 2 Ω b (3.3.15)
where pa solves E • (p a ) = min {E • (q a ) : p b n → 0 strongly in L 4 (Ω b ) 3 .

q a ∈ P • } , (3.3 

The case = +∞

This subsection is devoted to state Theorem 3.3.7 describing the limit behavior of (3.2.8) when (3.1.8) is assumed with = +∞ and h b n << h a n . Theorem 3.3.7 will be proved in Section 3.6. Here we assume that the function (φ a p a ,p b , φ b p a ,p b ) involved in (3.2.5) is the unique solution of the following problem: 

                                   φ a p a ,p b , φ b p a ,p b ∈ U n , ˆΩb φ b p a ,p b dx = 0, h a n ˆΩa ((-D a n φ a p a ,p b + p a ) • D a n φ a )dx +h b n ˆΩb -D b n φ b p a ,p b + p b • D b n φ b dx = 0 ∀ (φ a , φ b ) ∈ U n , (3.3 
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Set                    P ∞ = q b = q b 1 , q b 2 ∈ H 1 -1 2 , 1 2 2 2 
:

q b • ν b = 0 on ∂ -1 2 , 1 2 2 , q b 1 (0, •) = 0 in -1 2 , 1 2 , (3.3.19) 
where ν b denotes the unit outer normal on

∂ -1 2 , 1 2 
2 , and

                   E ∞ : q b ∈ H 1 -1 2 , 1 2 2 -→ ˆ]-1 2 , 1 2 [ 2 β|rotq b | 2 +|divq b | 2 + α(|q b | 2 -1) 2 + |Dψ b q b | 2 + ˆ0 1 (f b 1 , f b 2 )dx 3 • q b dx 1 dx 2 , (3.3.20) 
where

(f b 1 , f b 2 )
is defined in (3.2.9), and ψ b q b is the unique solution of

                   ψ b q b ∈ H 1 -1 2 , 1 2 2 , ˆ -1 2 , 1 2 2 ψ b q b dx 1 dx 2 = 0, ˆ -1 2 , 1 2 2 -D (x 1 ,x 2 ) ψ b q b + q b • D (x 1 ,x 2 ) ψ b dx 1 dx 2 = 0, ∀ψ b ∈ H 1 -1 2 , 1 2 2 . 
( 

                 h a n h b n 1 2 p a n → 0 strongly in H 1 (Ω a ) 3 and strongly in L 4 (Ω a ) 3 , p b n i → pb 1 , pb 2 , 0 strongly in H 1 (Ω b ) 3 and strongly in L 4 (Ω b ) 3 (3.3.22) 1 h a n h b n 1 2 ∂p a n ∂x 1 , 1 h b n ∂p b n ∂x 3 → 0 strongly in L 2 (Ω a ) 3 × L 2 (Ω b ) 3 , (3.3.23)                    h a n h b n 1 2 φ a p a n i ,p b n i , φ b p a n i ,p b n i → 0, ψ b pb strongly in H 1 (Ω a ) × H 1 (Ω b ), 1 h a n h b n 1 2 ∂φ a p a n ,p b n ∂x 1 , 1 h b n ∂φ b p a n ,p b n ∂x 3 → (0, 0) strongly in L 2 (Ω a ) × L 2 Ω b , (3.3.24) 
where pb solves

E ∞ pb = min E ∞ q b : q b ∈ P ∞ , (3.3.25) 
and ψ b pb is the unique solution of (3.3.21) with q b = pb . Moreover, the convergence of the energies holds true, that is 

lim n E n p a n , p b n h b n = E ∞ pb . ( 3 
p a n (L 4 (Ω a )) 3 ≤ c, p b n (L 4 (Ω b )) 3 ≤ c ∀n ∈ N, (3.4.1) 
and

D a n p a n (L 2 (Ω a )) 9 ≤ c, D b n p b n (L 2 (Ω b )) 9 ≤ c ∀n ∈ N. (3.4.2)
Proof. Function 0 belonging to P n gives

                                   ˆΩa β |rot a n p a n | 2 + |div a n p a n | 2 + α |p a n | 4 -2 |p a n | 2 + |D a n φ a p a n ,p b n | 2 dx + h b n h a n ˆΩb β rot b n p b n 2 + div b n p b n 2 + α p b n 4 -2 p b n 2 + |D b n φ b p a n ,p b n | 2 dx ≤ 1 2 ˆΩa |f a n | 2 + |p a n | 2 dx + h b n h a n 1 2 ˆΩb |f b n | 2 + |p b n | 2 dx ∀n ∈ N. (3.4.3) Estimate (3.4.3) implies                  ˆΩa α |p a n | 4 -2 + 1 2α |p a n | 2 dx + h b n h a n ˆΩb α p b n 4 -2 + 1 2α p b n 2 dx ≤ 1 2 ˆΩa |f a n | 2 dx + h b n h a n 1 2 ˆΩb f b n 2 dx ∀n ∈ N, which gives                  ˆΩa α |p a n | 2 -1 + 1 4α 2 dx + h b n h a n ˆΩb α p b n 2 -1 + 1 4α 2 dx ≤ α 1 + 1 4α 2 |Ω a | + h b n h a n |Ω b | + 1 2 ˆΩa |f a n | 2 dx + h b n h a n 1 2 ˆΩb f b n 2 dx ∀n ∈ N. (3.4.4)
where U n is defined in (3.2.4). Furthermore, let ψ a q a ,q b , ψ b q a ,q b be the unique solution of (3.3.4). Then, one has

φ a q a n ,q b n , φ b q a n ,q b n → ψ a q a ,q b , ψ b q a ,q b strongly in H 1 (Ω a ) × H 1 (Ω b ), (3.4.11) 1 h a n ∂φ a q a n ,q b n ∂x 1 , 1 h b n ∂φ b q a n ,q b n ∂x 3 → (0, 0) strongly in L 2 (Ω a ) × L 2 (Ω b ), (3.4 
.12)

Proof. In this proof, c denotes any positive constant independent of n ∈ N.

Choosing φ a , φ b = φ a q a n ,q b n , φ b q a n ,q b n as test function in (3.4.10), applying the Young inequality, and using (3.1.8) with ∈]0, +∞[ and (3.4.9) give

D a n φ a q a n ,q b n (L 2 (Ω a )) 3 ≤ c, D b n φ b q a n ,q b n (L 2 (Ω b )) 3 ≤ c ∀n ∈ N. (3.4.13)
The first estimate in (3.4.13) implies

φ a q a n ,q b n H 1 (Ω a ) ≤ c ∀n ∈ N, (3.4.14) 
since ˆΩa φ a q a n ,q b n dx = 0. The next step is devoted to proving

φ b q a n ,q b n H 1 (Ω b ) ≤ c ∀n ∈ N. (3.4.15)
The junction condition in (3.2.4) gives 

                                     ˆ - h a n 2 , h a n 2 × -1 2 , 1 2 φ b q a n ,q b n (x 1 , x 2 , 0) 2 dx 1 dx 2 = h a n ˆ -1 2 , 1 2 2 φ b q a n ,q b n (h a n x 1 , x 2 , 0) 2 dx 1 dx 2 = h a n ˆ -1 2 , 1 2 2 φ a q a n ,q b n (x 1 , x 2 , 0) 2 dx 1 dx 2 ∀n ∈ N, (3. 
b q a n ,q b n L 2 - h a n 2 , h a n 2 × -1 2 , 1 2 ×{0} ≤ c h a n ∀n ∈ N, which implies φ b q a n ,q b n L 2 - h a n 2 , h a n 2 × -1 2 , 1 2 ×]-1,0[ ≤ c h a n ∀n ∈ N, (3.4 
) ∈ L 2 (Ω a ) × L 2 Ω b such that φ a q a n ,q b n , φ b q a n ,q b n τ a , τ b weakly in H 1 (Ω a ) × H 1 Ω b , (3.4.18) 
1 h a n ∂φ a q a n ,q b n ∂x 1 , 1 h b n ∂φ b q a n ,q b n ∂x 3 ξ a , ξ b weakly in L 2 (Ω a ) × L 2 Ω b , (3.4.19) 
ˆ -1 2 , 1 2 ×]0,1[ τ a dx 2 dx 3 = 0. (3.4.20)
Note that junction condition τ a (•, 0) = τ b (0, •) in -1 2 , 1 2 can be obtained arguing as in the proof of Proposition 5.4 in [START_REF] Gaudiello | Junction of ferromagnetic thin films[END_REF]. The next step is devoted to proving that τ a , τ b solves (3.3.4). To this aim, for every couple ψ a , ψ b ∈ U reg , where U reg is defined in (3.4.7), consider a sequence

{µ n } n∈N ⊂ H 1 (Ω a ) (depending on ψ a , ψ b ) such that                                  (µ a n , ψ b ) ∈ U n ∀n ∈ N, µ n → ψ a strongly in L 2 (Ω a ) , 1 h a n D x 1 µ n , D x 2 µ n , D x 3 µ n → (0, D x 2 ψ a , D x 3 ψ a ) strongly in L 2 (Ω a ) 3 .
(3.4.21)

For instance, setting

µ n (x) =                  ψ a (x 2 , x 3 ) if x = (x 1 , x 2 , x 3 ) ∈ -1 2 , 1 2 2 × ]h a n , 1[ , ψ a (x 2 , h a n ) x 3 h a n + ψ b (h a n x 1 , x 2 ) h a n -x 3 h a n if x = (x 1 , x 2 , x 3 ) ∈ -1 2 , 1 2 2 × [0, h a n ] ,
the first two proprieties in (3.4.21) can be immediately verified by the properties of U reg , while the last one follows from ˆ 

-1 2 , 1 2 2 ×]0,h a n [ 1 h a n D x 1 µ n 2 dx ≤ ψ b 2 W 1,∞ -1 2 , 1 2 2 h a n ∀n ∈ N, ˆ -1 2 , 1 2 2 ×]0,h a n [ |D x 2 µ n | 2 dx ≤ 2 ψ a 2 W 1,∞ -1 2 , 1 2 ×]0,1[ + ψ b 2 W 1,∞ -1 2 , 1 2 
-1 2 , 1 2 2 ×]0,h a n [ |D x 3 µ n | 2 dx = ˆ -1 2 , 1 2 2 1 h a n ψ a (x 2 , h a n ) -ψ b (h a n x 1 , x 2 ) 2 dx 1 dx 2 = ˆ -1 2 , 1 2 2 1 h a n ψ a (x 2 , h a n ) -ψ a (x 2 , 0) + ψ b (0, x 2 ) -ψ b (h a n x 1 , x 2 ) 2 dx 1 dx 2 ≤ 2 ψ a 2 W 1,∞ -1 2 , 1 2 ×]0,1[ + ψ b 2 W 1,∞ -1 2 , 1 2 
                   ˆ]-1 2 , 1 2 [×]0,1[ (-D (x 2 ,x 3 ) τ a + q a ) • D (x 2 ,x 3 ) ψ a dx 2 dx 3 + ˆ -1 2 , 1 2 2 -D (x 1 ,x 2 ) τ b + q b • D (x 1 ,x 2 ) ψ b dx 1 dx 2 = 0. ( 3 
ˆ]-1 2 , 1 2 [×]0,1[ D (x 2 ,x 3 ) ψ a q a ,q b 2 dx 2 dx 3 + ˆΩa |ξ a | 2 dx + ˆ]-1 2 , 1 2 [ 2 D (x 1 ,x 2 ) ψ b q a ,q b 2 dx 1 dx 2 + ˆΩb |ξ b | 2 dx ≤ lim n ˆΩa D a n φ a q a n ,q b n 2 dx + h b n h a n ˆΩb D b n φ b q a n ,q b n 2 dx = lim n ˆΩa D a n φ a q a n ,q b n • q a n dx + h b n h a n ˆΩb D b n φ b q a n ,q b n • q b n dx = ˆ]-1 2 , 1 2 [×]0,1[ D (x 2 ,x 3 ) ψ a q a ,q b • q a dx 2 dx 3 + ˆ]-1 2 , 1 2 [ 2 D (x 1 ,x 2 ) ψ b q a ,q b • q b dx 1 dx 2 = ˆ]-1 2 , 1 2 [×]0,1[ D (x 2 ,x 3 ) ψ a q a ,q b 2 dx 2 dx 3 + ˆ]-1 2 , 1 2 [ 2 D (x 1 ,x 2 ) ψ b q a ,q b 2 dx 1 dx 2 ,
which implies that ξ a = 0, ξ b = 0, and that convergences (3.4.18) and (3.4.19) are strong. Note that previous convergences hold true for the whole sequence, since the limits are uniquely identified.

1 h a n ∂p a n ∂x 1 ∂z a ∂x 1 weakly in L 2 (Ω a ) 3 , 1 h b n ∂p b n ∂x 3 ∂z b ∂x 3 weakly in L 2 (Ω b ) 3 . (3.4.26)
Indeed, the boundary condition on p a n and the Poincaré inequality give

                 1 h a n p a n,1 (•, x 2 , x 3 ) H 1 0 -1 2 , 1 2 ≤ c h a n ∂p a n,1 (•, x 2 , x 3 ) ∂x 1 L 2 -1 2 , 1 2 (x 2 , x 3 ) a.e. in -1 2 , 1 2 × ]0, 1[ , ∀n ∈ N, (3.4.27) 
where c is the Poincaré constant in H 1 0 -1 2 , 1 2 , while, for i = 2, 3, the Poincaré-Wirtinger inequality gives

                     1 h a n p a n,i (•, x 2 , x 3 ) - ˆ1 2 -1 2 p a n,i (x 1 , x 2 , x 3 ) dx 1 H 1 m -1 2 , 1 2 ≤ c h a n ∂p a n,i (•, x 2 , x 3 ) ∂x 1 L 2 -1 2 , 1 2 (x 2 , x 3 ) a.e. in -1 2 , 1 2 × ]0, 1[ , ∀n ∈ N, (3.4.28) 
where the subscript ``m" means zero average, and c is the Poincaré-Wirtinger constant in H 1 m -1 2 , 1 2 . Integrating (3.4.27) and (3.4.28) over (x 2 , x 3 ) ∈ -1 2 , 1 2 × ]0, 1[ and using the first estimate in (3.4.2) imply the first convergence in (3.4.26). Similarly, one proves the second convergence in (3.4.26). More precisely,

z b 3 ∈ L 2 -1 2 , 1 2 2 , H 1 0 (]-1, 0[) , since p b n,3 (•, •, 0) = 0 on -1 2 , 1 2 2 \ -h a n 2 , h a n 2 × -1 2 , 1 2 
, for every n ∈ N.

The next step is devoted to identifying (p a 2 , pa 3 ), pb 1 , pb 2 , z a , and z b . To this aim, for every q a , q b = (q a 2 , q a 3 ) , q b 1 , q b 2 ∈ P reg , where P reg is defined in (3.4.24), consider a sequence

1 h a n q b 1 (h a n x 1 , x 2 ) -q b 1 (0, x 2 ) 2 dx 1 dx 2 + ˆ -1 2 , 1 2 2 1 h a n q a 2 (x 2 , h a n ) -q a 2 (x 2 , 0) + q b 2 (0, x 2 ) -q b 2 (h a n x 1 , x 2 ) 2 dx 1 dx 2 + q a 3 2 W 1,∞ -1 2 , 1 2 ×]0,1[ h a n ≤ q b 1 2 W 1,∞ -1 2 , 1 2 2 + 2 q a 2 2 W 1,∞ -1 2 , 1 2 ×]0,1[ +2 q b 2 2 W 1,∞ -1 2 , 1 2 2 + q a 3 2 W 1,∞ -1 2 , 1 2 ×]0,1[ h a n ∀n ∈ N,
where again the properties of P reg played a crucial role. Now, fixing q a , q b = (q a 2 , q a 3 ) , q b 1 , q b 2 ∈ P reg , and choosing v n , q b 1 , q b 2 , 0 as test function in (3.2.8) with {v n } n∈N satisfying (3.4.29) give 

1 h a n E n p a n , p b n ≤ 1 h a n E n v n , q b 1 , q b 2 , 0 ∀n ∈ N. ( 3 
+ div (p a ) + ∂z a 1 ∂x 1 2 dx + ˆ -1 2 , 1 2 ×]0,1[ α |p a | 2 -1 2 + Dψ a pa ,p b 2 + ˆ1 2 -1 2 (f a 2 , f a 3 )dx 1 • pa dx 2 dx 3 + β ˆ -1 2 , 1 2 2 rotp b 2 dx 1 dx 2 + ˆΩb β ∂z b 2 ∂x 3 2 + ∂z b 1 ∂x 3 2 + div pb + ∂z b 3 ∂x 3 2 dx + ˆ -1 2 , 1 2 2 α pb 2 -1 2 + Dψ b pa ,p b 2 + ˆ0 -1 f b 1 , f b 2 dx 3 • pb dx 1 dx 2 ≤ lim inf n E n p a n , p b n h a n ≤ lim sup n E n p a n , p b n h a n ≤ lim n E n v n , q b 1 , q b 2 , 0 h a n = E q a , q b .
                   ˆΩa div (p a ) + ∂z a 1 ∂x 1 2 dx = ˆ -1 2 , 1 2 ×]0,1[ |divp a | 2 dx 2 dx 3 + ˆΩa ∂z a 1 ∂x 1 2 dx, ˆΩb div pb + ∂z b 3 ∂x 3 2 dx = ˆ -1 2 , 1 2 
                   min {1, β, , β } ˆΩa ∂z a ∂x 1 2 dx + ˆΩb ∂z b ∂x 3 2 dx + E pa , pb ≤ lim inf n E n p a n , p b n h a n ≤ lim sup n E n p a n , p b n h a n ≤ E q a , q b ∀ q a , q b ∈ P , (3.4 
n | 2 + |div a n p a n | 2 dx + h b n h a n ˆΩb β rot b n p b n 2 + div b n p b n 2 dx = ˆΩa β |rot (0, pa 2 , pa 3 )| 2 + |div (0, pa 2 , pa 3 )| 2 dx + ˆΩb β rot pb 1 , pb 2 , 0 2 + div pb 1 , pb 2 , 0 2 dx, The trace of p b n,3 vanishing on -1 2 , 1 2 2 × {-1} implies 1 (h a n ) 1 2 p b n,3 (x 1 , x 2 , 0) 2 ≤ ˆ0 -1 1 (h a n ) 1 2 ∂ t p b n,3 (x 1 , x 2 , t) 2 dt in -1 2 , 1 2 
2 , ∀n ∈ N.

Integrating this inequality over -1 2 , 1 2 2 and using the second estimate in (3.5.2) gives

1 (h a n ) 1 2 p b n,3 (•, •, 0) → 0 strongly in L 2 -1 2 , 1 2 2 . 
(3.5.7)

Finally, (3.5.6) follows from (3.5.5), the junction condition in (3.2.3), and (3.5.7). Indeed,

ˆ1 2 -1 2 |p a 3 (x 2 , 0)| 2 dx 2 = lim n ˆ1 2 -1 2 ˆ1 2 -1 2 p a n,3 (x 1 , x 2 , 0) 2 dx 1 dx 2 = lim n ˆ1 2 -1 2 ˆ1 2 -1 2 p b n,3 (h a n x 1 , x 2 , 0) 2 dx 1 dx 2 = lim n ˆha n 2 - h a n 2 ˆ1 2 -1 2 1 (h a n ) 1 2 p b n,3 (x 1 , x 2 , 0) 2 dx 1 dx 2 = 0. 3.5.2 A convergence result for problem (3.2.6) Proposition 3.5.3. Assume (3.1.8) with = 0. Let {(q a n , q b n )} n∈N ⊂ (L 2 (Ω a )) 3 × L 2 Ω b 3 and
q a = (q a 2 , q a 3 ) ∈ (L 2 (Ω a )) 2 be such that q a is independent of x 1 , and 

q a n , h b n h a n 1 2 q b n → ((0, q a ) , 0) strongly in (L 2 (Ω a )) 3 × L 2 Ω b 3 . ( 3 
∈ N let φ a q a n ,q b n , φ b q a n ,q b n be the unique solution of                                    φ a q a n ,q b n , φ b q a n ,q b n ∈ U n , ˆΩa φ a q a n ,q b n dx = 0, h a n ˆΩa ((-D a n φ a q a n ,q b n + q a n ) • D a n φ a )dx +h b n ˆΩb -D b n φ b q a n ,q b n + q b n • D b n φ b dx = 0 ∀ (φ a , φ b ) ∈ U n , (3.5.9) 
where U n is defined in (3.2.4). Furthermore, let ψ a q a be the unique solution of (3.3.12). Then, one has

φ a q a n ,q b n , h b n h a n 1 2
φ b q a n ,q b n → ψ a q a , 0 strongly in H 1 (Ω a ) × H Indeed, the junction condition in (3.2.4) gives

                   ˆ -1 2 , 1 2 2 h b n h a n 1 2
φ a q a n ,q b n (x 1 , x 2 , 0)ϕ(x 2 )dx To identity τ a = ψ a q a , it is enough to pass to the limit, as n diverges, in the equation in (3.5.9) with a test functions (φ a , φ b ) such that

1 dx 2 = ˆ -1 2 , 1 2 2 h b n h a n 1 2 φ b q a n ,q b n (h a n x 1 , x 2 , 0)ϕ(x 2 )dx 1 dx 2 ∀ϕ ∈ C ∞ 0 - 1 2 , 1 2 . 
φ a (x) = 1 h a n ψ a (x 2 , x 3 ) if x = (x 1 , x 2 , x 3 ) ∈ Ω a , φ b (x) = 1 h a n ψ a (x 2 , 0) if x = (x 1 , x 2 , x 3 ) ∈ Ω b ,
with ψ a ∈ C ∞ -1 2 , 1 2 × [0, 1] , to use (3.1.8) with = 0, previous convergences, the density of

C ∞ -1 2 , 1 2 × [0, 1] in H 1 -1 2 , 1 2 
×]0, 1[ , and (3.5.13). To identify τ b = 0, it is enough to pass to the limit, as n diverges, in the equation in (3.5.9) with 

ψ b ∈ A = v ∈ C ∞ -1 2 , 1 2 
2 : v = 0 in ] -δ, δ[× -1 2 , 1 2
, for some δ > 0 (depending on v) , to use previous convergences, the density of A in the space of functions in H 1 -1 2 , 1 2 2 with zero trace on {0} × -1 2 , 1 2 , and to take into account (3.5.15). To identify ξ a , ξ b and to prove that all the previous convergences are strong one can argue as in the last part of the proof of Proposition 3.4.4.

Proof of Theorem 3.3.4

Proof. Corollary 3.5.2 asserts that (3.5.3) holds true and that there exist a subsequence of N, still denoted by {n}, and (in possible dependence on the subsequence) of pa = (p a 2 , pa 3 ) ∈ P • satisfying (3.5.4). Moreover, one can prove the existence of a subsequence of N, still denoted by {n}, and (in possible dependence on the subsequence) of The next step is to identify (p a 2 , pa 3 ), z a , and ζ. Let P reg • = q a = (q a 2 , q a 3 ) ∈ C 1 -1 2 , 1 2 × [0, 1] 2 : for some δ > 0 ( depending on q a )

z a ∈ L 2 H 1 0 -1 2 , 1 2 , -1 2 , 1 2 × ]0, 1[ × L 2 H 1 m -1 2 , 1 2 , - 1 
q a 2 = 0 in -1 2 , -1 2 + δ ∪ 1 2 -δ, 1 2 × [0, 1] , q a 3 = 0 in -1 2 , 1 2 × ([0, δ] ∪ [1 -δ, 1]) .
126 CHAPTER 3: FIN JUNCTION OF FERROELECTRIC THIN FILMS Now, for q a = (q a 2 , q a 3 ) ∈ P reg • , the couple ((0, q a 2 , q a 3 ), (0, q a 2 (•, 0), 0)) belongs to P n . Consequently,

1 h a n E n p a n , p b n ≤ 1 h a n
E n (((0, q a 2 , q a 3 ), (0, q a 2 (•, 0), 0))) ∀ (q a 2 , q a 3 ) ∈ P E n (((0, q a 2 , q a 3 ), (0, q a 2 (•, 0), 0))) h a n = E • (q a ) ∀q a = (q a 2 , q a 3 ) ∈ P reg • .

This inequalities hold true also for any q a ∈ P • , since P reg

• is dense in P • . One can conclude the proof arguing as in the last part of the proof of Theorem 3.3.2.

The proofs in the case = +∞

This section is devoted to proving Theorem 3.3.7. (3.6.17) Indeed, ∀i ∈ N ∃A i ⊆ ]-1, 0[ :

A priori estimates on the polarization

1 2 = ϕ L ∞ -1 2 , 1 2 h a n ∂ x 1 p b n,1 L 2 (Ω b ) ≤ ϕ L ∞ -1 2 , 1
|A i | = 0, φ b n i (•, •, x 3 ) ∈ H 1 -1 2 , 1 2 2 × {x 3 } , ∀x 3 ∈ ]-1, 0[ \ A i .
For every i ∈ N let By virtue of (3.6.17), and (3.1.8) with = +∞, one has To identity τ b = ψ b q b , it is enough to pass to the limit, as n diverges, in the equation in (3.6.23) with test functions (φ a , φ b ) such that 

ρ i : x 3 ∈] -1, 0[\ +∞ j=1 A j → ˆ - 1 
                                                         h a n i k h b n i k ˆ -1 2 , 1 2 2 φ b n i k h a n i k x 1 , x 2 , 0 2 dx 1 dx 2 ≤ 2 h a n i k h b n i k ˆ -1 2 , 1 2 2 φ b n i k h a n i k x 1 , x 2 , 0 -φ b n i k h a n i k x 1 , x 2 , x3 2 dx 1 dx 2 +4 h a n i k h b n i k ˆ -1 2 , 1 2 2 φ b n i k h a n i k x 1 , x 2 , x3 -φ b n i k (0, x 2 , x3 ) 2 dx 1 dx 2 +4 h a n i k h b n i k ˆ -1 2 , 1
                                                         lim sup k h a n i k h b n i k ˆ -1 2 , 1 2 2 φ b n i k h a n i k x 1 , x 2 , 0 -φ b n i k h a n i k x 1 , x 2 , x3 2 dx 1 dx 2 = lim sup k h a n i k h b n i k ˆ -1 2 , 1
                                     lim sup k h a n i k h b n i k ˆ -1 2 , 1
C ∞ -1 2 , 1 2 
2 in H 1 -1 2 , 1 2 
2 , and (3.6.31).

To identity τ a = 0, it is enough to pass to the limit, as n diverges, in the equation in (3.6.23) with test functions (φ a , φ b ) such that

φ a (x) = 1 h a n h b n 1 2
ψ a (x 2 , x 3 ) if x = (x 1 , x 2 , x 3 ) ∈ Ω a , φ b (x) = 0 if x = (x 1 , x 2 , x 3 ) ∈ Ω b , with

ψ a ∈ v ∈ H 1 -1 2 , 1 2 ×]0, 1[ : v = 0 on -1 2 , 1 2 × {0} ,
to use previous convergences, and (3.6.30).

To identify ξ a , ξ b , and to prove that all the previous convergences are strong one can argue as in the last part of the proof of Proposition 3.4.4.

3.6.3 Proof of Theorem 3.3.7

Proof. Corollary 3.6.2 asserts that (3.6.3) holds true and that there exist a subsequence of N, still denoted by {n}, and (in possible dependence on the subsequence) of pb = pb 1 , pb 2 ∈ P ∞ satisfying (3.6.4). Moreover, one can prove the existence of a subsequence of N, still denoted by {n}, and (in possible dependence on the subsequence) of 

ζ ∈ (L 2 (Ω a )) 3 , z b ∈ L 2 -1 2 , 1 2 2 , H 1 m (]-1, 0[) 2 × L 2 -1 2 , 1 2 

0. 2

 2 ASYMPTOTIC ANALYSIS FOR MICROMAGNETICS OF NANOWIRES OF FINITE LENGTH GOVERNED BY INDEFINITE MATERIAL COEFFICIENTS 3

∂M n ∂t 2 (L 2 (

 22 ∧ DU Mn ) χψdxdt, M n (0, x) = M 0n (x), a.e. x in Ω n , U Mn and M n linked by (0.3.1) for every t ∈ [0, T ]. (0.3.2)Moreover, it satisfies the following energy estimateE (M n (t, •)) + t ˆ0 Ωn)) 3 ds ≤ E (M n (0, •)) = E (M 0n ) ,for a.e. t ∈ [0, T ] , (0.3.3)

Theorem 0. 5 . 1 .

 51 Assume (0.5.1) with ∈]0, +∞[, and (0.5.16). For every n ∈ N, let p a n , p b n be a solution of (0.5.15), and φ a p a n ,p b n , φ b p a n ,p b n be the unique solution of (0.5.13) with p a , p b = p a n , p b n .

  0.5.34) i.e. assumption ˆΩa φ a p a ,p b dx = 0 is replaced with ˆΩb φ b p a ,p b dx = 0, or equivalently, in (0.5.14), assumption ˆΩa n ϕ P dx = 0 is replaced with ˆΩb n ϕ P dx = 0 . Obviously, E n and E n do not change.

  h) of the Euclidean space R 3 (see Figure 1.1) , where ]-L, L[ is the bounded segment in R, and B d (x, r) is the ball of radius r and center x in R d . Also, let us Ω :=] -L, L[×B 2 (0, 1).

1 2LFigure 1 . 1 :

 111 Figure 1.1: Domain Ω (h) .

) and ˆB Ω vdL 3

 3 = 0 , and BΩ the (three-dimensional) open ball , which contains the cylindrical domain Ω :=]-L, L[×B 2 (0, 1).

Remark 1 . 2 . 3 .

 123 (See [42, Proposition 1]) Let us fix any 0 < h < 1. Then, for any m ∈ L 2 (Ω, R 3 ), the Maxwell equation (1.2.2), admits a unique solution ζ. Hence, the solution operator

Proposition 1 . 2 . 5 .

 125 (See [42, Theorem 3.1]) Let us set:

Proof.

  This Lemma is a direct consequence of the line of arguments, discussed in ([42], Lemma 4.1 and Remark 4]). Now, we generalize a result of [42, Theorem 3.2 page 7] for the three dimensional case. Proposition 1.2.8. (Compactness) Let us assume the condition (a), and let us take any 2 < p ≤ ∞.

2 . 8 .

 28 (The proof of the two dimensional case is made in [42, page 11]) Let us assume the condition (a), let us fix any 2 < q < p, with 2 < p ≤ ∞, and let us set := lim p→p

1. 3 THE

 3 3D -1D ASYMPTOTIC ANALYSIS FOR THE OBSERVING MINIMIZATION PROBLEM 35 Let ζ (k) * the solution of the coupled Maxwell equation (1.2.2), when m = m (i k ) * , for any k ∈ N, and also, let ζ * the solution of (1.2.2), when m = m * . Then, by Remark 1.2.3,

3 . 11 )

 311 Due to(1.3.11),[START_REF] Hadiji | Asymptotic analysis for micromagnetics of thin films governed by indefinite material coefficients[END_REF] Theorem 3.4 page 8] and the constraint onto L 2 (Ω, S 2 ) as in (1.2.1), we find a sequence ȟi | k = 1, 2, 3, • • • ⊂ (0, 1) and a limiting function m • ∈ L 2 (Ω, S 2 ), such that:

  Figure 2.1: Ω n

.4. 5 )

 5 which explicitly takes into account the condition |m| = 1. Let m 0n = m a 0n , m b,l 0n , m b,r 0n ∈ M n ,then, there exists at least a solution m n of the following rescaled problem MULTI-STRUCTURES

.4. 16 )Theorem 2 . 4 . 1 .

 16241 Let us denotes that we can reformulate Theorem 2.3.1 in the rescaled form: Suppose that m 0n = m a 0n , m b,l 0n , m b,r 0n ∈ M n and (2.4.16) holds, for every n ∈ N, let m n = m a n , m b n be the solution of Problem (2.4.6

( 2 . 4 . 6 )

 246 . Let us introduce the following compactness like results MULTI-STRUCTURES Proposition 2.4.1. Assume (2.4.16). For every n ∈ N, let m 0n = m a 0n , m b,l 0n , m b,r 0n ∈ M n and let m n = m a n , m b,l n , m b,r n be the solution of problem (2.4.6).

ˆ0 Dζ b,r 2 L 2 Ω b,r 3 ≤ˆ0 Dm b,r n 2 L 2 Ω b,r 3 .

 223223 .4.26) as n diverges. In particular we obtain m b,r n ζ b,r weakly in L 2 0, T ; H 1 Ω b,r , R 3 . Now, let us identify ζ b,r . By lower semicontinuity theorem for a convex functional, we obtain T lim inf n T By (2.4.24)iii) we get Dζ b,r 2 (L 2 Ω b,r ) 3 = 0 a.e. t ∈ [0, T ], then ζ b,r = c(t) for a.e. t. Since, m b,r n (t, x) = 1 for every t ∈ [0, T ] and x a.e. in Ω b,r we obtain c(t) ∈ S 2 for every t ∈ [0, T ].

  4.49) admits a unique solution. This equation rescales equation (2.3.2) by rescaling (2.4.47),

( 2 . 4 . 6 )

 246 term by term. By (2.4.20)vi), |m a n | = 1 and (2.4.20)iv) we have ∀χ ∈ D(0, T ), ∀ ψ a , ψ b,l ∈ L. By (2.4.20)vii), |m b,l n | = 1 and (2.4.20)v) we get ∂µ b,l ∂t + µ b,l ∧ ∂µ b,l ∂t χψ b,l dxdt, ∀χ ∈ D(0, T ), ∀ ψ a , ψ b,l ∈ L. By (2.4.20)viii) and |m b,r n | = 1 we get ∀χ ∈ D(0, T ), ∀ ψ a , ψ b,l ∈ L. By (2.4.20)iv) and |m a n | = 1, remembering that

By ( 2 . 4 .

 24 20)iv), |m a n | = 1, first three convergences in (2.4.33) and (2.4.34), gives

1 ˆ0 ∂µ a ∂x 3 2 dx 3 ,

 123 MULTI-STRUCTUREScan be considered an exchange energy and the term E mag

Figure 3 .

 3 Figure 3.1: Ω n

2 2b Dϕ b dx 1 dx 2 . 3 . 3 . 1 ., pb 2 ∈

 223312 DψRemark In what follows, any element of U (resp. P) is assumed to be extended to the element ofH 1 (Ω a ) × H 1 (Ω b ) (resp. (H 1 (Ω a )) 2 × H 1 (Ω b )2 ) with the first (resp. first two) component(s)independent of x 1 and the second (resp. last two) component(s) independent of x 3 .Theorem 3.3.2. Assume (3.1.8) with ∈]0, +∞[, and (3.2.9). For every n ∈ N, let p a n , p b n be a solution of (3.2.8), and φ a p a n ,p b n , φ b p a n ,p b n be the unique solution of (3.2.6) with p a , p b = p a n , p b n . Moreover, let P and E be defined by (3.3.1) and (3.3.3)-(3.3.4), respectively. Then, there exist an increasing sequence of positive integer numbers {n i } i∈N and (in possible dependence on the subsequence) pa , pb = (p a 2 , pa 3 ) , pb 1 P such that

. 8 )

 8 and ψ a pa ,p b , ψ b pa ,p b

) 3 and strongly in L 4 (

 4 → 0 strongly in H 1 (Ω b ) 3 and strongly in L 4 (Ω b )

  a ,p b dx = 0 is replaced with ˆΩb φ b p a ,p b dx = 0, or equivalently, in (3.2.7), assumption ˆΩa n ϕ P dx = 0 is replaced with ˆΩb n ϕ P dx = 0 . Obviously, E n and E n do not change.

4 . 16 ) 108 CHAPTER 3 :

 4161083 FIN JUNCTION OF FERROELECTRIC THIN FILMS Then, (3.4.16) and (3.4.14) provide φ
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 3 FIN JUNCTION OF FERROELECTRIC THIN FILMS and ˆ

.4. 22 )

 22 By virtue of Proposition 3.4.3, equation (3.4.22) holds true also with any test function in U . Consequently, thanks to (3.4.20), τ a , τ b is the unique solution of (3.3.4), i.e. τ a , τ b = ψ a q a ,q b , ψ b q a ,q b a.e. in Ω a × Ω b . (3.4.23) Finally, using (3.4.10), (3.1.8) with ∈]0, +∞[, (3.4.9), (3.4.18), (3.4.23), (3.4.19), (3.3.4), and a l.s.c. 3.4 THE PROOFS IN THE CASE ∈]0, +∞[ 111 argument, one has

( 3 .

 3 4.31) 3.4 THE PROOFS IN THE CASE ∈]0, +∞[ 119 On the other hand, the properties of pa , z a 1 , pb , and z b 3 give

2 divp b 2 dx 1 dx 2

 22 (3.4.32) in(3.4.31) and taking into account Proposition 3.4.5, one has

  .33) from which, thanks to the properties of z a and z b , z a = 0 in Ω a and z b = 0 in Ω b (3.4.34) follow. Consequently, inserting (3.4.34) in (3.4.33), one obtains that pa , pb solves (3.3.8) and convergence (3.3.9) holds true. Note that convergences in (3.3.9) and in (3.4.26) hold true for the whole sequence since the limits are uniquely identified. Moreover, (3.3.7) follows from (3.4.5) and Proposition 3.4.4. Now, it remains to prove that convergences in (3.4.5) and (3.4.26) are strong. To this aim, (3.3.9), (3.1.8) with ∈]0, ∞[, (3.2.9), (3.3.7), and (3.4.5) imply lim n ˆΩa β |rot a n p a

.5. 8 ) 3 . 5

 835 THE PROOFS IN THE CASE = 0 123 Moreover, for n

  0) strongly in L 2 (Ω a ) × L 2 Ω b .(3.5.11) Proof. Arguing as in the proof of Proposition 3.4.4, one can prove the existence of a subsequence of N, still denoted by {n}, and (in possible dependence on the subsequence) of τ a , τ b ∈ H 1 (Ω a ) × H 1 Ω b with τ a independent of x 1 and τ b independent of x 3 , and of (ξa , ξ b ) ∈ L 2 (Ω a ) × L 2 Ω b such that , τ b ) weakly in H 1 (Ω a ) × H 1 (Ω b ), , ξ b ) weakly in L 2 (Ω a ) × L 2 Ω b . (3.5.14)The next step is devoted to proving τ b (0, •) = 0 in -

( 3 . 5 . 16 )a n x 1 2 - 1 2τ 2 ∀ϕ

 35161212 Moreover, (3.1.8) with = 0 and the convergence of the first term in (3.5.12) imply •, 0) → 0 strongly in L 2the second convergences in (3.5.12) and (3.5.14), again (3.1.8) with = 0, and arguing as in the proof of Proposition 5.4 in[START_REF] Gaudiello | Junction of ferromagnetic thin films[END_REF], one can prove , x 2 , 0)ϕ(x 2 )dx 1 dx 2 = ˆ1 b (x 2 , 0)ϕ(x 2 )dx 3.5.15) follows from (3.5.16), (3.5.17), and (3.5.18).

3. 5 h a n h b n 1 2 ψ b (x 1 , x 2 )

 5212 THE PROOFS IN THE CASE = 0 125 test functions (φ a , φ b ) such that φ a (x) = 0 if x = (x 1 , x 2 , x 3 ) ∈ Ω a , φ b (x) = 1 if x = (x 1 , x 2 , x 3 ) ∈ Ω b with

  in L 2 (Ω a ) 3 × L 2 (Ω b ) 3 . (3.5.19)

reg•,

  ∀n ∈ N. (3.5.20) Then, passing to the limit in (3.5.20), as n diverges, and using (3.1.8) with = 0, (3.2.9), (3.5.3), (3.5.4), (3.5.19), Proposition 3.5.3, and a l.s.c. argument imply β ˆ -

2 ) 3 . 6 . 2 .0 2 , 5 )pb 3 weakly in H 1 (Ω b ) 3 and strongly in L 4 Ω b 3 .

 236225143 The same arguments used to proving Proposition 3.4.1 give Proposition 3.6.1. Assume (3.1.8) with = +∞, and (3.2.9). For every n ∈ N, let p a n , p b n be a 3.6 THE PROOFS IN THE CASE = +∞ 127 solution of (3.2.8). Then, there exists a constant c such that 4 (Ω b )) 3 ≤ c ∀n ∈ N, 2 (Ω b )) 9 ≤ c ∀n ∈ N. (3.6.Corollary Assume (3.1.8) with = +∞, and (3.2.9). For every n ∈ N, let p a n , p b n be a solution of (3.2.8). Let P ∞ be defined by (3.3.19). Then weakly in H 1 (Ω a) 3 and strongly in L 4 (Ω a ) 3 . (3.6.3) Moreover, there exist an increasing sequence of positive integer numbers, still denoted by {n}, and (in possible dependence on the subsequence) pb = pb 1 , pb 2 ∈ H 1 -0 weakly in H 1 (Ω b ) 3 and strongly in L 4 (Ω b ) Proof. Proposition 3.6.1 implies (3.6.3) and the existence of a subsequence of N, still denoted by {n}, and (in possible dependence on the subsequence) pb 1 , pb 2 , pb 3 ∈ H 1 Ω b 3 independent of x 3 , such that pb 1 , pb 2 , pb 3 • ν b = 0 on ∂Ω b \ -In particular, this ensures pb 3 = 0 a.e. in Ω b . Let us prove (3.6.5) under assumption h b n << h a n . In what follows c denotes a constant satisfying Proposition 3.6.1. Let ϕ ∈ C ∞ 0 -

5 ) 2 ALemma 3 . 6 . 3 .

 52363 thanks to(3.6.6) and the fact that ϕ is a generic function in C ∞ convergence result for problem(3.3.18) Assume (3.1.8) with = +∞. For every n ∈ N, let φ a n , φ b n ∈ U n , with U n defined in (3.2.4), be such that φ b n L 2 (Ω b ) ≤ c D b n φ b n (L 2 (Ω b )) 3 ≤ c, ∀n ∈ N, (3.6.13)where c is a positive constant independent of n. Then, Proof. Estimates (3.6.13) imply the existence of an increasing sequence of positive integer numbers {n i } i∈N , and (in possible dependence on the subsequence)ψ b ∈ H 1 Ω b with ψ b independent of x 3 such that φ b n i ψ b weakly in H 1 Ω b . (3.6.15) By virtue of the transmission condition in (3.2.4), to obtain (3.6.14) it is enough to prove lim i (h a n i x 1 , x 2 , 0)| 2 dx 1 dx 2 = 0. (3.6.16) At first, we prove the existence of x3 ∈ ]-1, 0[, and of an increasing sequence of positive integer numbers {i k } k∈N such that
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 3 FIN JUNCTION OF FERROELECTRIC THIN FILMS By virtue of the second estimate in (3.6.13), and (3.1.8) with = +∞, one has

2 2 x3 D x 3 φ b n i k h a n i k x 1 , x 2 , x 3 dx 3 2 dx 1 dx 2 ≤ lim sup k h a n i k h b n i k ˆΩb D x 3 φ b n i k h a n i k x 1 , x 2 , x 3 2 dx 1 dx 2 dx 3 ≤

 21222123 ˆ0

2 D x 1 φ b n i k (x 1 , x 2 , x3 ) 2 dx 1

 2121 dx 2 = 0.(3.6.20) As far as the last term of the right-hand side in (3.6.18) is concerned, (3.6.17) providesφ b n i k (0, •, x3 ) → ψ b (0, •) strongly in L 2to (3.1.8) with = +∞.Estimates (3.6.26), (3.6.27) and (3.6.29), and convergence (3.6.28) ensure the existence of a subsequence of N, still denoted by {n}, and (in possible dependence on the subsequence) of τ a , τ b ∈ H 1 (Ω a ) × H 1 Ω b with τ a independent of x 1 and τ b independent of x 3 , and of (ξa , ξ b ) ∈ L 2 (Ω a ) × L 2 Ω b such that , τ b ) weakly in H 1 (Ω a ) × H 1 (Ω b ),τ a = 0 a.e. on -, ξ b ) weakly in L 2 (Ω a ) × L 2 Ω b .

x 2 )x 2 )ψ b x 1 -sign(x 1 ) h a n 2 , x 2 1 2 2 ,

 2212212 if x = (x 1 , x 2 , x 3 ) ∈ Ω a , if x = (x 1 , x 2 , x 3 ) ∈ Ω b and |x 1 | ≤ if x = (x 1 , x 2 , x 3 ) ∈ Ωb and |x 1 to use (3.1.8) with l = +∞, previous convergences, the density of

L 2 (Ω a ) 3 × L 2 (Ω b ) 3 .

 2323 (3.6.33) 

  ´R3 |E| 2 dx is constant with respect to P, the energy functional minimized by P becomes ˆB β|rotP| 2 + |divP| 2 + α(|P| 2 -1) 2 dx + ˆB |Dϕ P | 2 dx + ´B |Dϕ P | 2 dx is the electrostatic energy induced by P, and the external energy ´B E • Pdx favors the polarization parallel (but in opposite verse) to E.

	thanks to (0.4.1). On the other side, using (0.4.2) and (0.4.3) give	
	ˆB Dψ • Dϕ P dx =	1 ε 0	ˆB Dψ • Pdx.	(0.4.6)
	Consequently, inserting (0.4.5) and (0.4.6) in (0.4.4), and remarking that 2 ε 0 ˆB E • Pdx,	(0.4.7)
	where			
				(0.4.5)

The term α ´B(|P| 2 -1) 2 dx obliges |P| to be near to 1, and it can induce a phase transition of P. So the body is driven to have regions of uniform polarization separated by thin transition layers. The term ´R3 |Dψ + Dϕ P | 2 dx is the electrostatic energy. As this last term is concerned, we have

ˆR3 |Dψ + Dϕ P | 2 dx = ˆR3 |E| 2 dx + 2 ˆB Dψ • Dϕ P dx + ˆB |Dϕ P | 2 dx,

  1.3.4. (See [42, Section 3 and Section 4]) (I) Similarly as in the Corollary 1.2.6, let us denote by H • α the effective domain of the convex function Φ •

α , given in (1.3.2). Then, H • α is a Hilbert space, endowed with the inner product:

  1.3.6. (See [42, Corollary 3 page 8] and according to [1, Lemma 2.3] ) Under same assumption as in Step 1 and Step 2, the sequence E (h) | 0 < h < 1 of free energy functionals converges to the limiting one functional E • , on L 2 (Ω, R 3 ), in the sense of Γ-convergence, as h → 0 if and only if:

  for a.e. t ∈ [0, T ] ,(2.3.5) 
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	where for every t ∈ [0, T ]	

  .[START_REF] Carbou | Thin layers in micromagnetism[END_REF] can be considered the equivalent of a magnetostatic energy.Theorem 2.3.1. Suppose that M 0n ∈ H 1 (Ω n , S 2) and (2.3.6) holds, for every n ∈ N. Let M n be a solution of Problem (2.3.4) . Then, there exist an increasing sequence of positive integer numbers {n i } i∈N , still denoted by {n}, µ 0

  and so (2.4.19).

	MULTI-STRUCTURES
	Moreover, by (2.4.7) and hypotheses (2.4.16), the following estimates are satisfied:

  2 , using Fubini theorem with (2.4.40) and (2.4.42) one entails that

  .54) with p (resp. q) the unique solution of (2.2.2) (resp.(2.2.3)). By taking into account (2.4.20)v), MULTI-STRUCTURES |m b,l n | = 1, fourth , fifth and sixth convergences in (2.4.33) and (2.4.35), we get

  , x 2 , x 3 ) = P n (h a n x 1 , x 2 , x 3 ) in Ω a , p b n (x 1 , x 2 , x 3 ) = P n (x 1 , x 2 , h b n x 3 ) in Ω b ,solves min E n ((p a , p b )) : (p a , p b ) ∈ P n .

	.2.7) The Lax-Milgram Theorem provides that (3.2.7) admits solution and it is unique. Note that if P n solves (3.1.14), then (p a n , p b n ) defined by p a n (x 1 (3.2.8) Conversely, if (p a n , p b n ) solves (3.2.8), then P n defined by

  .12) Remark 3.3.[START_REF] Alouges | Convergence of a ferromagnetic film model[END_REF]. In what follows, any element ofH 1 -1 2 , 1 2 × ]0, 1[ (resp. P • ) is assumed to be extended to the element of H 1 (Ω a ) (resp. (H 1 (Ω a ))2 ) independent of x 1 .be the unique solution of (3.2.6) with p a , p b = p a n , p b n . Moreover, let P • and E • be defined by (3.3.10) and (3.3.11)-(3.3.12), respectively. Then, there exist an increasing sequence of positive integer numbers {n i } i∈N and (in possible dependence on the subsequence) pa = (p a 2 , pa 3 ) ∈ P • such that

	Theorem 3.3.4. Assume (3.1.8) with = 0, and (3.2.9). For every n ∈ N, let p a n , p b n be a solution of
	(3.2.8), and φ a p a n ,p b n	, φ b	p a n ,p b n

  P ∞ ) is assumed to be extended to the element of H 1 (Ω b ) (resp. H 1 (Ω b ) 2 ) independent of x 3 . ∞ andE ∞ be defined in (3.3.19) and (3.3.20)-(3.3.21), respectively. Then, there exist an increasing sequence of positive integer numbers {n i } i∈N and (in possible dependence on the subsequence) pb = pb 1 , pb 2 ∈ P ∞ such that

	.3.21)			
	Remark 3.3.6. In what follows, any element of H 1 -1 2 , 1 2 2 (resp. Theorem 3.3.7. Assume (3.1.8) with = +∞ and h b n << h a n , and (3.2.9). For every n ∈
	N, let p a n , p b n be a solution of (3.2.8), and φ a p a n ,p b n	, φ b	p a n ,p b n	be the unique solution of (3.3.18)
	with p a , p b = p a n , p b n . Moreover, let P			

  A priori estimates on the polarization Proposition 3.4.1. Assume (3.1.8) with ∈]0, +∞[, and (3.2.9). For every n ∈ N, let p a n , p b n be a solution of (3.2.8). Then, there exists a constant c such that

	3.4 THE PROOFS IN THE CASE ∈]0, +∞[	103
	3.4.1			
				.3.26)
	Remark 3.3.8. Note (3.3.26) combined with (3.3.22)-(3.3.24) improves the second convergence in
	(3.3.22). Precisely, one obtains also			
	h a n n h b	1 4	p a n → 0 strongly in L 4 (Ω a )	3 .
	3.4 The proofs in the case ∈]0, +∞[	
	This section is devoted to proving Theorem 3.3.2.	

  , and (3.4.15) ensure the existence of a subsequence of N, still denoted by {n}, and (in possible dependence on the subsequence) τ a , τ b ∈ U and (ξ a , ξ b

	.17)
	by virtue of the second estimate in (3.4.13) and (3.1.8) with ∈]0, +∞[. Combining (3.4.17) with
	the second estimate in (3.4.13) ensures
	φ b qn L 2 {0}× -1 2 , 1 2 ×]-1,0[ ≤ c ∀n ∈ N
	which combined again with the second estimate in (3.4.13) proves (3.4.15).
	Estimates (3.4.13), (3.4.14)

  where again the properties of U reg played a crucial role. Now, fixing ψ a , ψ b ∈ U reg , choosing µ n , ψ b as test function in (3.4.10) with {µ n } satisfying (3.4.21) , passing to the limt as n diverges, and using (3.1.8) with ∈]0, +∞[, (3.4.9), (3.4.18), (3.4.19), and (3.4.21), one obtains

	2	h a n	∀n ∈ N,

  .4.30) Then, passing to the limit in (3.4.30), as n diverges, and using (3.1.8) with ∈]0, +∞[, (3.2.9), |rotp a | 2 dx 2 dx 3

	+	ˆΩa	β	∂z a 3 ∂x 1	2	+	∂x 1 2 ∂z a	2

  1 2 ,1 2 ×]0,1[|rotp a | 2 dx 2 dx 3 + )dx 1 • pa dx 2 dx 3 +β ˆΩb |ζ 2 | 2 + |ζ 1 | 2 dx + ˆΩb |ζ 3 | 2 dx≤ lim inf

					ˆΩa	β	∂z a 3 ∂x 1	2	+	∂z a 2 ∂x 1	2	+ div (p a ) +	∂z a 1 ∂x 1	2	dx
	+	ˆ	-1 2 , 1 2 ×]0,1[	α |p a | 2 -1	2 + Dψ a pa	2 +	ˆ1 2 -1 2 3 n (f a 2 , f a E n p a n , p b n h a n	≤ lim sup n	E n p a n , p b n h a n
	≤ lim n								

  (0, x 2 , x 3 ) -(p b n,1 (h a n x 1 , x 2 , x 3 ) |∂ t p b n,1 (t, x 2 , x 3 )| 2 dt dx

		ˆΩb	p b n,1 2 dx	1 2	=
	ϕ L ∞ -1 2 , 1 2	n x 1 ˆΩb ˆ0 h a	∂ t p b n,1 (t, x 2 , x 3 )dt	2	dx	1 2	≤
	ϕ L ∞ -1 2 , 1 2	h a n	ˆΩb	ˆ1 2 -1 2		
								1 2 , 1 2	.

  |D x 1 φ b n i (x 1 , x 2 , x 3 )| 2 + |D x 2 φ b n i (x 1 , x 2 , x 3 )| 2 + |φ b n i (x 1 , x 2 , x 3 )| 2 dx 1 dx 2 . (x 3 )dx 3 ≤ lim inf i ˆ0 -1 ρ i (x 3 )dx 3 < +∞. +∞[, ∃x 3 ∈] -1, 0[\ +∞ j=1 A j , ∃{i k } k∈N ⊂ N : ρ i k (x 3 ) < c ∀k ∈ N,which gives (3.6.17) thanks to (3.6.15). Now, for proving(3.6.16), it is enough to show that each term of the right-hand side of the following splitting

	2 2 , 1	2
	Fatou's Lemma and (3.6.13) imply
		ˆ0 -1	lim inf
	Consequently,	
	∃c ∈]0,

i ρ i

ˆL -L |m 2 | 2 + |m

| 2 dx 1 , if m ∈ L 2 (] -L, L[, S 2 ), ∞,otherwise, (0.2.6)

2 , (3.2.3)

, 1 2
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for every n ∈ N, problem (2.3.2) will be reformulated on a fixed domain through the following rescaling:

(2.4.47) (note that T n|R 3 b,r = T n|R 3 b,r , and T n (Ω a ) = T n (Ω a ) = Ω a n , T n (Ω b,l ) = T n (Ω b,l ) = Ω b,l n ). Namely, setting

space U defined in (2.3.1) is rescaled in the following

(Dv a,r , Dv l , Dv b,r ) ∈ (L 2 (R 3 a,r )) 3 × (L 2 (R 3 l )) 3 × (L 2 (R 3 b,r )) 3 , ˆBa,r n v a,r dx + ˆBl n v l dx + h n ˆBb,r n v b,r dx = 0, v l (0, x 2 , x 3 ) = v a,r (0, x 2 , h n x 3 ), for (x 2 , x 3 ) a.e. in R×]0, +∞[, v l (0, x 2 , x 3 ) = v b,r (0, x 2 , x 3 ), for (x 2 , x 3 ) a.e. in R×] -∞, 0[, v a,r (x 1 , x 2 , 0) = v b,r (x 1 , x 2 , 0), for (x 1 , x 2 ) a.e. in ] -∞, 0[×R . (2.4.48) Then, for every (m a , m b,l , m b,r ) ∈ L 2 (Ω a , R 3 ) × L 2 (Ω b,l , R 3 ) × L 2 (Ω b,r , R 3 ), the following equa-CHAPTER 3: FIN JUNCTION OF FERROELECTRIC THIN FILMS to 0 < < +∞, = 0, or = +∞. Precisely, when 0 < < +∞, i.e. h b n h a n , we prove that

where ν a and ν b denote the unit outer normals on

) denote the L 2 -weak limits of the rescaled fields of F n on Ω a and Ω b , respectively, q a and ψ a q a ,q b depend on (x 2 , x 3 ) only, q b and ψ b q a ,q b depend on (x 1 , x 2 ) only, and ψ a q a ,q b , ψ b

weak solution, up to an additive constant, of ) is independent of x 1 and solves a 2D-problem in the vertical thin film "similar" to the original problem; while pb 1 , pb 2 is independent of x 3 and solves a 2D-problem in the horizontal thin film "similar" to the original problem. Moreover, a memory effect of the original 3D-problem appears. Indeed, (p a 2 , pa 3 ) and pb 1 , pb 2 are subjected to a transmission condition on the intersection of the thin films (see the two last lines in (3.1.15) and in (3.1.16)). We also study the limit behavior of the rescaled potential of electric field associated with the polarization.

Set

:

where ν a and ν b denote the unit outer normal on ∂ - 

(3.4.5)

Proof. Proposition 3.4.1 ensures that there exist a subsequence of N, still denoted by {n}, and (in possible dependence on the subsequence) (p a 1 , pa 2 , pa 3 ) ∈ (H 1 (Ω a )) 3 independent of x 1 , and

and

In particular, this implies

Moreover, as proved in Proposition 5.4 in [START_REF] Gaudiello | Junction of ferromagnetic thin films[END_REF], one has

Consequently, one obtains

which completes the proof.

A convergence result for problem (3.2.6)

Let

: 

To this aim, split ψ b = ψ e + ψ o in the even part and in the odd part with respect to x 1 . Note that

2 , and

Consequently, a convolution argument allows us to build three sequences (see [START_REF] Haar | Problèmes variationnels dans le multi-domaines: modélisation des jonctions et applications[END_REF], and also compare the first part of the proof of Proposition 5.5 in [START_REF] Gaudiello | Junction of ferromagnetic thin films[END_REF])

2 , and

) 2 be such that q a is independent of x 1 , q b is independent of x 3 , and 

:

, and for some δ > 0 (depending on q a , q b )

(3.4.24)

Proposition 3.4.5. Let P and P reg be defined in (3.3.1) and (3.4.24), respectively. Then, P reg is dense in P .

Proof. Fix q a , q b = (q a 2 , q a

.

(3.4.25)

At first, note that there exist two sequences

Now, split q b 2 = q e +q o in the even part and in the odd part with respect to x 1 (compare the proof of Proposition 3.4.3). By convolution, one can build three sequences The next step is devoted to proving the existence of a subsequence of N, still denoted by {n}, and (in possible dependence on the subsequence) of

(3.4.29) For instance, setting 

Consequently, recalling (3.2.10) and (3.1.8) with ∈]0, ∞[ , one has

where the boundary conditions of pa , pb play a crucial role in the last equality. Finally, combining (3. 

The proofs in the case = 0

This section is devoted to proving Theorem 3.3.4. ) with = 0, and (3.2.9). For every n ∈ N, let p a n , p b n be a solution of (3.2.8). Then, there exists a constant c such that

and 

and

3 and strongly in L 4 (Ω a ) 3 .

(3.5.5)

In particular, this ensures pa 1 = 0 in Ω a .

To complete the proof, it remains to verify 

On the side, the transmission condition in the last line of (3.2.3) allows us to split the left-hand side of (3.6.6) as follows

where{α n } n∈N ⊂]0, 1[ is a vanishing sequence of positive numbers which will be defined later, and

×]0, α n [. As far as the second line and the third line in (3.6.7) are concerned, the Hölder inequality and the 

(3.6.9)

Note that the last line of (3.6.9) vanishes when h b n << h a n . As far as the fourth line and the fifth line in (3.6.7) are concerned, the Hölder inequality, the first Finally, choosing α n = h a n h b n , passing to the limit, as n diverges, in (3.6.7) and taking into account (3.6.8), (3.6.9), (3.6.10), and (3.6.11) gives 

and q b = q b 1 , q b 2 ∈ L 2 Ω b 2 be such that q b is independent of x 3 , and

Moreover, for n ∈ N let φ a q a n ,q b n , φ b q a n ,q b n be the unique solution of

where U n is defined in (3.2.4). Furthermore, let ψ b q b the unique solution of (3.3.21). Then, one has

(3.6.25)

Proof. In this proof, c denotes any positive constant independent of n ∈ N. 

2 : for some δ > 0 (depending on q b )

where c is a positive constant independent of n. For instance, (3.6.35) is satisfied setting

Now, fixing (q b 1 , q b 2 ) ∈ P reg ∞ , and choosing v n , (q b 1 , q b 2 , 0) as test function in (3.2.8) with {v n } n∈N satisfying (3.6.35) give 

(3.6.38)

This inequalities hold true also for any q b ∈ P ∞ , since P reg ∞ is dense in P ∞ . One can conclude the proof arguing as in the last part of the proof of Theorem 3.3.2. Remark 3.6.5. At first we point out that in this section we are treating the case h a n << h b n . Let {v n } n∈N be the sequence defined by (3.6.36). Note that v n , (q b 1 , q b 2 , 0) ∈ P n , and in particular v n ± 1 2 , • = 0 in -1 2 , 1 2 . This property is true since (q b 1 , q b 2 ) ∈ P reg ∞ , and in particular q b 1 = 0 in ] -δ, δ[× -1 2 , 1 2 . The closure of P reg ∞ is P ∞ . Consequently any elements (q b 1 , q b 2 ) ∈ P ∞ satisfies q b 1 (0, •) = 0 in - 

where

0 ≤ β h (x), 0 ≤ α h (x), 0 ≤ γ h (x) x a.e. in Ω (h) , ∀h.

(3.6.42)

There is partial results studied for this problem in [START_REF] Soueid | Micromagnétisme des films minces[END_REF].

2) At first we point out that in Section (3.6) of Chapter 3, we are treating the case h a n << h b n . Let {v n } n∈N be the sequence defined by (3.6.36). Note that v n , (q b 1 , q b 2 , 0) ∈ P n , and in particular v n ± 1 2 , • = 0 in -1 2 , 1 2 . This property is true since (q b 1 , q b 2 ) ∈ P reg ∞ , and in particular q b 1 = 0 in ] -δ, δ[× -1 2 , 1 2 . The closure of P reg ∞ is P ∞ . Consequently any elements (q b 1 , q b 2 ) ∈ P ∞ satisfies q b 1 (0, •) = 0 in -