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RÉSUMÉ iii

Résumé
Cette thèse traite avec des équations aux dérivées partielles provenant de la physique mathéma-
tique. En particulier, à partir de modèles 3D ferromagnétisme et ferroélectricité, nous obtenons
des modèles 1D et 2D par l’intermédiaire de processus asymptotiques basés sur des méthodes de
réduction de dimension. Le modèle 3D ferromagnétisme a été proposé par W.F. Brown depuis les
années 40 [9]. Il est également possible d’utiliser un modèle dynamique, décrivant l’aimantation
au cours du temps, en utilisant un système introduit par L.D. Landau et E.M. Lifschitz en 1935

[50]. Pour le modèle ferroélectrique, nous nous référons aux papiers de P. Chandra et P.B. Little-
wood [16], W. Zhang et K. Bhattacharya [65] et au livre de T. Mitsui, I. Taksuzaki et E. Nakamura
[52].

Ma thèse est constituée de trois parties :

Au début, je considère l’énergie micromagnétique avec des coefficients dégénératifs dans un fil
mince. Après avoir montrer l’existence de minimiseurs du problème, j’identifie l’énergie limite
lorsque la section du fil tend vers zéro.

Dans la deuxième partie, j’étudie le comportement asymptotique des solutions dépendant du
temps des problèmesmicromagnétique dans unemulti-structure constituée de la jonction de deux
fils minces. En supposant que les volumes des deux fils tendent vers zéro avec la même vitesse.
On obtient un problème limite couplé par une condition de jonction. Le problème limite reste
non-convexe, mais devient complètement local.

Dans le dernier chapitre, à partir d’un modèle variationnel 3D non convexe et non-local pour
la polarisation électrique dans un matériau ferroélectrique, et à l’aide d’un processus asympto-
tique basé sur la réduction de dimension, j’analyse des phénomènes de jonction pour deux films
minces ferroélectriques joints orthogonaux. Selon la façon dont la réduction se passe, on obtient
trois modèles différents de dimension 2. On remarque qu’un effet de mémoire du processus de
réduction apparaît, ce dernier dépend de la compétition entre les épaisseurs des deux films: Le
paramètre de guidage est la limite du rapport des épaisseurs des deux films.

Mots-clé:

Matériaux ferromagnétiques, matériaux ferroélectriques, film mince, fil mince, multi-structures,
jonctions, analyse asymptotique.
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ABSTRACT v

Abstract
This thesis deals with partial differential equations coming from mathematical physics. Partic-
ularly, starting from 3D models for ferromagnetism and ferroelectricity, we derive 1D and 2D

models via asymptotic processes based on dimensional reduction methods. The 3D model for
ferromagnetism was proposed by W.F. Brown in the 40s [9] and it is based on a system intro-
duced by L.D. Landau and E.M. Lifschitz in 1935 [50]. About the ferroelectric model, we refer to
the papers of P. Chandra and P.B. Littlewood [16], W. Zhang and K. Bhattacharya [65] and to the
book of T. Mitsui, I. Taksuzaki, and E. Nakamura [52].

This thesis based on three works:

At the beginning, we consider micromagnetic energy, with some degenerating coefficients, in a
thin wire. After showing the existence of minimizers, we identify the limit energy as the section
of the wire vanishes.

In the second part, we study the asymptotic behavior of the solutions of a time dependent mi-
cromagnetic problem in a multi-structure consisting of two joined thin wires. We assume that
the volumes of the two wires vanish with same rate. We obtain two 1D limit problems coupled
by a junction condition on the magnetization. The limit problem remains non-convex, but now
it becomes completely local.

In the last chapter, starting from a non-convex and nonlocal 3D variational model for the electric
polarization in a ferroelectric material, and using an asymptotic process based on dimensional
reduction, we analyze junction phenomena for two orthogonal joined ferroelectric thin films. We
obtain three different 2D-variational models for joined thin films, depending on how the reduc-
tion happens. We note that, a memory effect of the reduction process appears, and it depends on
the competition of the relative thickness of the two films: The guide parameter is the limit of the
ratio between these two small thickness.

Keywords:

Ferromagnetic materials, ferroelectric materials, thin film, thin wire, multi-structures, junctions,
asymptotic analysis.
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Introduction

A thin structure is a three-dimensional object with one (two) preponderant dimension(s), such
as a wire, a thin film, a combination of wires, thin films, etc. In these structures, some physical
phenomena take place that are generally described by variational problems. By starting from
3D models and using asymptotic mathematical methods, one tries to obtain 1D or 2D limit
problems describing the physical phenomena in a thin structure. The reduced models are justified
by reasons of simplicity and economy, by a numerical point of view, too. In this thesis we are
interested in ferromagnetic problems and in ferroelectric problems in thin structures.

0.1 Ferromagnetic model

According to the classical theory ofWeiss (1907), perfectioned by Landau and Lifshitz in 1935 (see
[50] and, for a modern analysis, see [9]), on a microscopic scale a ferromagnetic body is magnet-
ically saturated and is composed by uniformly magnetized regions separated by thin transition
layers. The phenomena can be described by amagnetization field, defined on the domain in which
the material is confined. The magnetization field on a microscopic scale has a fixed modulus and
variable orientations. Then, the system can be studied through the functional representing its
magnetic energy. It consists in several terms: the so-called exchange energy, which contains the
space derivative of the magnetization field and is peculiar to ferromagnetic behavior, a term cor-
responding to magnetic anisotropy, and another one depending on the magnetic field, which is
related to the magnetization via the magnetostatic equation. More precisely,

m : Ω ⊂ R3 −→ R3

denotes the magnetization and the body Ω is always locally magnetized to a saturation magneti-
zation |m(x)| = c(T ) > 0 unless the local temperature T is greater or equal to Curie temperature
depending on the body. In the latter case c(T ) = 0, and the material ceases to behave ferromag-
netically. In the sequel, we suppose constant temperature lower than Curie temperature and,
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without loss of generality, we assume that c = 1, that is m(x) ∈ S2. The magnetic moment m
and the magnetic field H are related by one of Maxwell’s equations (no load, no current)

B = H +m, in R3

where we consider m as a field set in all R3, extending m by 0 on the exterior of Ω. The field B
and H(m) are defined in all R3.

0.1.1 Free energy of the classical micromagnetism model

The observed magnetic moments are (local) minimizers of the ferromagnetic energy

E(m) =

ˆ
Ω

(
α|∇m|2 + ϕ(m) +

1

2
∇ζm

)
dx. (0.1.1)

Now, we will try to understand each term.

The exchange energy

The exchange energy is due to the existence of a responsible force to align the spins neighboring
of two atoms. This contribution is local and it depends on the microscopic properties of materials.
This energy is written

Ee(m) = α

ˆ
Ω

|∇m|2dx,

where α is the exchange coefficient.

The anisotropy energy

The magnetocrystalline anisotropy reflects the effects of anisotropy due to the crystal structure
of the material. This is described by an even continuous function

ϕ : S2 −→ R+.

Mainly, two cases are considered.

• The uniaxial anisotropy: this anisotropy is in the hexagonal crystals (Co). The expression
of this energy is

ϕ(m) = −K1m
2
z +K2m

4
z,

wheremz is the component along the third axis of the vectorm,K1 andK2 are the coeffi-
cients of anisotropy depending on the temperature.

• The cubic anisotropy: in the case of cubic crystals (Fe,Ni), the axes x, y and z being chosen
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along the crystal axes, the expression for the energy is

ϕ(m) = K1(m
2
xm

2
y +m2

ym
2
z +m2

zm
2
x) +K2m

2
xm

2
ym

2
z

whereK1 andK2 are the coefficients of anisotropy, andmx,my andmz are the components
ofm.

Themagnetostatic energy

The third term in (0.1.1) represents the magnetostatic energy. Starting from the Maxwell equa-
tions without charge or current, we find that the magnetic field is determined by the magnetiza-
tion as a solution of the following problem

div(H(m) +m) = 0, in R3,

curlH(m) = 0 in R3.

Consequently, one obtains H(m) = −∇ζ (ζ is the magnetic potential) and

Emag(m) =
1

2

ˆ
Ω

∇ζmdx =
1

2

ˆ
R3

|∇ζ|2dx.

Note that the magnetostatic energy expresses a non-local interaction.

0.2 Asymptotic analysis for micromagnetics of nanowires
of finite length governed by indefinite material coeffi-
cients

In a nanowire, we consider the micromagnetic free energy with some degenerating weights.
In [41] G. Gioia and R. D. James (see also [13]) found that in the rescaled energy the exchange
term is ˆ

Ω

α

δ
|∇m|2dy,

whereα is the exchange constant. Thus, as δ → 0, the exchange term contributes an unacceptably
large energy unless |∇m| ∼ 0. In the limit δ → ∞, corresponds to phase theory see [28].
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In [42] the authors studied the micromagnetism problem in the case of a thin plate with some
degenerating weights. In this Chapter we will adapt the same argument of [42] to study the same
problem in a nanowire of finite length. We identify the limit problem when the section of the
wire tends to 0. Now, if we take into account the non degenerate case of the material coefficient
α and α∗ := minx∈Ω α(x) > 0, we can adapt the arguments to [41] and [13].

We consider a ferromagnetic nanowire occupying the 3D domain Ω(h) =] − L,L[×B2(0, h),
where Bd(x, r) denotes the ball in Rd of radius r and center x. Let Ω =] − L,L[×B2(0, 1).
Moreover, let α : Ω → [0,∞) be a given continuous function, and set A0 = α−1(0). The aim is
to study the minimization and the asymptotic behavior, as h → 0, of the following non-convex
and nonlocal problem:

E (h)(m(h)) = min
m∈L2

(
Ω(h),R3

) E (h)(m), (0.2.1)

where the functional E (h), defined in L2
(
Ω(h),R3

)
, denotes the micromagnetism energy in Ω(h)

previously introduced:

E (h)(m) :=



1

2Lπh2

(ˆ
Ω(h)\A0

α|∇m|2dx+
ˆ

Ω(h)

ϕ(m)dx+
1

2

ˆ
Ω(h)

∇ζ ·mdx
)
,

ifm ∈ H1
loc

(
Ω(h)\A0,R3

)
and

√
α∇m ∈ L2

(
Ω(h)\A0,R3×3

)
,

∞, otherwise,

(0.2.2)

subject to the constraints:
div(−∇ζ +m) = 0, in R3, (0.2.3)

|m| = 1, a.e. in Ω(h), (0.2.4)

wherem denotes the zero-extension ofm to R3.

The given continuous function α = α(x) (x ∈ Ω) is the so-called material coefficient, and here,
we suppose that it may degenerate somewhere on Ω. In order to work in a fixed domain, we
introduce the following rescaling

x = (x1, x2, x3) ∈ Ω ⊂ R3 7→ (x1, hx2, hx3) ∈ Ω(h) ⊂ R3.

0.2.1 The main results

Let us set:
α◦(x1) := α(x1, 0, 0) for any x1 ∈ [−L,L], and A◦

0 := (α◦)−1(0).
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We assume that

(a) L3(A0) = 0,

(b) there exists a constant Cα ≥ 1, such that

α◦(x1) ≤ α(x) ≤ Cαα
◦(x1), for all x = (x1, x2, x3) ∈ Ω.

We prove the following results.

Theorem 0.2.1. Assume (a). Then, for 0 < h < 1 problem (0.2.1) admits at least a minimizer
solutionm(h).

Theorem 0.2.2. Assume (a)-(b). Then, there exist a sequence {hi | i = 1, 2, 3, · · · } ⊂ (0, 1)

and a limiting functionm◦ ∈ L2(]− L,L[,R3), such that

(i) hi → 0,m(hi) → m◦ in L2(Ω,R3), E (hi)
(
m(hi)

)
→ E◦(m◦), and

√
α(hi)∂1m

(hi)(x1, x2, x3) →
√
α◦∂1m

◦(x1),

√
α(hi)

hi
∂2m

(hi)(x1, x2, x3) → 0,

√
α(hi)

hi
∂3m

(hi)(x1, x2, x3) → 0,

(0.2.5)

for a.e. x1 ∈]− L,L[ and a.e. (x2, x3) ∈ B2(0, 1), as i→ ∞,

(ii) the limitm◦ is a minimizer of E◦(m),

The functional E◦ is defined on L2(]− L,L[,R3) by

E◦(m) :=



Φ◦
α(m) +

ˆ L

−L

ϕ(m)dx1 +
1
2

ˆ L

−L

(
|m2|2 + |m3|2

)
dx1,

ifm ∈ L2(]− L,L[,S2),

∞, otherwise,

(0.2.6)
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where Φ◦
α iz the convex function on L2(]− L,L[,R3), defined as:

Φ◦
α(m) :=


ˆ

]−L,L[\A◦
0

α◦|∇m|2dx1, ifm ∈ H1
loc(]− L,L[\A◦

0,R3),

∞, otherwise.

(0.2.7)

0.3 Junction of quasi-stationary ferromagnetic thin multi-
structures

In a joint work with L. Faella and C. Perugia, we study the asymptotic behavior of a system
governed by the Landau-Lifshitz equation consisting of two joined roads with “vanishing” sec-
tions. So we attempt to simulate the behaviour of two joined nanowires. More precisely, let
{hn}n∈N ⊂]0, 1[ be a vanishing sequence. For every n ∈ N, set

Ωa
n = ]−hn, 0[2 × [0, 1[, Ωb,l

n =]0, 1[× ]−hn, 0[2 , Ωb,r
n = ]−hn, 0]3 ,

Ωn = Ωa
n ∪ Ωb,l

n ∪ Ωb,r
n , n ∈ N.

Let us suppose that the body is homogeneous, isotropic and has uniform temperature. Let us
introduce the magnetization Mn, the magnetic field HMn determined by Mn and the scalar po-
tential UMn for this field (i.e.H(Mn) ≡ −DUMn). Let us denote by Mn the extension by zero
of Mn outside Ωn. Then, as previously described, the magnetic induction Bn and the magnetic
field H(Mn) are connected by the relations Bn = −DUMn +Mn. Moreover, the static Maxwell
equation and the magnetostatic equation (Faraday law) hold

∇×DUMn = 0,

div
(
−DUMn +Mn

)
= div (B) = 0 .

(0.3.1)

FixedM0n ∈ H1 (Ωn, S
2), (U0n being the corresponding solution of Problem (0.3.1)), in [12], [24]

and [63] it is proved that there exists at least a weak solutionMn of the following problem
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

Mn ∈ L∞ (0, T ;H1 (Ωn,R3)) ∩ C ([0, T ] ;L2 (Ωn,R3)) ,

|Mn| = 1 a.e. in [0, T ]× Ωn,
∂Mn

∂t
∈ L2 (0, T ;L2(Ωn,R3)) ,

∀ χ ∈ D(0, T ), and ψ ∈ H1 (Ωn,R3)

Tˆ

0

ˆ

Ωn

(
∂Mn

∂t
+Mn ∧

∂Mn

∂t

)
χψdxdt = −2

Tˆ

0

ˆ

Ωn

3∑
i=1

(Mn ∧Dxi
Mn) (Dxi

ψ)χdxdt

−2

Tˆ

0

ˆ

Ωn

(Mn ∧DUMn)χψdxdt,

Mn(0, x) =M0n(x), a.e.x in Ωn,

UMn andMn linked by (0.3.1) for every t ∈ [0, T ].

(0.3.2)

Moreover, it satisfies the following energy estimate

E (Mn(t, ·)) +
tˆ

0

∥∥∥∥∂Mn

∂t

∥∥∥∥2
(L2(Ωn))

3

ds ≤ E (Mn(0, ·)) = E (M0n) , for a.e. t ∈ [0, T ] , (0.3.3)

where for every t ∈ [0, T ]

E (Mn(t, ·)) =
ˆ

Ωn

|DMn (t, x)|2 dx+
1

2

ˆ

R3

|DUMn (t, x)|
2 dx,

is the magnetic energy. Here, the terms Eexc
n =

ˆ

Ωn

|DMn(t, x)|2 dx is the exchange energy and

Emag
n =

1

2

ˆ

R3

|DUMn(t, x)|
2 dx corresponds to the magnetostatic energy.

In what follows let us assume that

Eexc (M0n) = O
(
h2n
)
, ∀n ∈ N. (0.3.4)
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0.3.1 The main result

We set
Ωa =]− 1, 0[2×[0, 1[, Ωb,l =]0, 1[×]− 1, 0[2, Ωb,r =]− 1, 0[3,

and introduce the following space

W =
{
(µa, µb,l) ∈ H1 (]0, 1[,R3)×H1 (]0, 1[,R3) : µa(0) = µb,l(0)

}
. (0.3.5)

Moreover, we set

M=W ∩
{
H1 (Ωa, S2)×H1

(
Ωb,l, S2

) }
, (0.3.6)

which explicitly takes into account the condition |µ| = 1.

Let us introduce the following problem

µ = (µa, µb,l) ∈ L∞ (0, T ;M) ∩ C
(
[0, T ] ;L2 (Ωa,R3)× L2

(
Ωb,l,R3

))
,

∂µ

∂t
∈ L2

(
0, T ;L2 (Ωa,R3)× L2

(
Ωb,l,R3

))
,

∀ χ ∈ D(0, T ) andψ = (ψa, ψb,l) ∈ W ,

Tˆ

0

ˆ

Ωa

(
∂µa

∂t
+ µa ∧ ∂µa

∂t

)
χψadxdt+

Tˆ

0

ˆ

Ωb,l

(
∂µb,l

∂t
+ µb,l ∧ ∂µb,l

∂t

)
χψb,ldxdt =

−2

Tˆ

0

ˆ

Ωa

µa ∧ ∂µa

∂x3

∂ψa

∂x3
χdxdt− 2

Tˆ

0

ˆ

Ωb,l

µb,l ∧ ∂µb,l

∂x1

∂ψb,l

∂x1
χdxdt

−2

Tˆ

0

ˆ

Ωa

µa ∧ ((µa, e1)Υ1 + (µa, e2)Υ2)χψ
adxdt

−2

Tˆ

0

ˆ

Ωb,l

µb,l ∧
(
(µb,l, e2)Υ

′
1 + (µb,l, e3)Υ

′
2

)
χψb,ldxdt,

µa(0, x) = µa
0(x), a.e. x in Ωa, µb,l(0, x) = µb,l

0 (x), a.e. x in Ωb,l, µ0 = (µa
0, µ

b,l
0 ) ∈ M,

(0.3.7)
where Υ1 = (ε1, ε2, 0), Υ2 = (−ε2, ε1, 0), Υ′

1 = (0, ε1, ε2) and Υ′
2 = (0,−ε2, ε1, ), with ε1, ε2
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constant depending on ]−1, 0[2 (in the thesis we explicitly give the dependance of these constants
on ]− 1, 0[2).

Then, we prove the following result.

Theorem 0.3.1. Suppose thatM0n ∈ H1 (Ωn, S
2) and (0.3.4) holds, for every n ∈ N. LetMn be

a solution of Problem (0.3.2) .Then, there exist an increasing sequence of positive integer numbers
{ni}i∈N, still denoted by {n}, µ0 =

(
µa
0, µ

b,l
0

)
∈ M, µ = (µa, µb,l) ∈ L∞ (0, T ;M), depending on

the selected subsequence such that

 

Ωa
n

|M0n(x1, x2, x3)− µa
0(x3)|

2 dx→ 0,

 

Ωb,l
n

∣∣∣M0n(x1, x2, x3)− µb,l
0 (x1)

∣∣∣2 dx→ 0,

 

Ωb,r
n

|M0n(x1, x2, x3)− µa
0(0)|

2 dx→ 0,

as n diverges, for every t ∈ [0, T ]

 

Ωa
n

|Mn(t, x1, x2, x3)− µa(t, x3)|2 dxdt→ 0,

 

Ωb,l
n

∣∣Mn(t, x1, x2, x3)− µb,l(t, x1)
∣∣2 dxdt→ 0,

as n diverges, where µ = (µa, µb,l) is a solution of Problem (0.3.7).

0.4 Ferroelectric model

Ferroelectricity is a property of some materials to have a spontaneous electrical polarization that
can be reversed by the application of an external electric field. Hysteresis phenomena appear, so
the behavior of these materials is very similar to the one of ferromagnetic materials. Analogously,
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a Curie temperature TC appears, too.

Let B be a 3D ferroelectric body. In B the electric displacement D is given by D = ε0E+ P,
where ε0 > 0 is the vacuum permeability, E is the applied external field, and P is the spontaneous
electric polarization. Assume that E is the gradient of a potential ψ, i.e.

E = Dψ, (0.4.1)

and that the electric field generated by P derives from a potential ϕP satisfying the electrostatic
equation

div(−ε0DϕP + P) = 0. (0.4.2)

We limit ourselves to the case where no strong electric field has been applied on B, but only a
very weak electric field acts on it (e.g. it is the case of iron in the ferromagnetism, before the
magnetization, by analogy). Then, we can assume that there are not Weis domains (i.e. regions
with different polarization separated by well defined interfaces), but only transition regions. In
this framework we can assume that the polarization does not generate an electric field outsideB.
Consequently, equation (0.4.2) holds true in B, and the following boundary conditions on ∂B

P · ν = 0, DϕP · ν = 0 on ∂B (0.4.3)

can be added, where ν denotes the unit outer normal on ∂B.

One assumes that P minimizes the energy functional
ˆ

B

(
β|rotP|2 + |divP|2 + α(|P|2 − 1)2

)
dx+

ˆ
R3

|Dψ +DϕP|2dx, (0.4.4)

whereα and β are two positive constants independent of the external field and of the temperature.
Here,

´
B
(β|rotP|2 + |divP|2) dx reduces to the classical energy

´
B
|DP|2dx when β = 1 (see

(0.5.6)), so roughly speaking this term penalizes the spatial variation of P. The term α
´
B
(|P|2 −

1)2dx obliges |P| to be near to 1, and it can induce a phase transition of P. So the body is driven
to have regions of uniform polarization separated by thin transition layers. The term

´
R3 |Dψ +

DϕP|2dx is the electrostatic energy. As this last term is concerned, we have

ˆ
R3

|Dψ +DϕP|2dx =

ˆ
R3

|E|2dx+ 2

ˆ
B

Dψ ·DϕPdx+

ˆ
B

|DϕP|2dx, (0.4.5)
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thanks to (0.4.1). On the other side, using (0.4.2) and (0.4.3) give
ˆ

B

Dψ ·DϕPdx =
1

ε0

ˆ
B

Dψ · Pdx. (0.4.6)

Consequently, inserting (0.4.5) and (0.4.6) in (0.4.4), and remarking that
´
R3 |E|2dx is constant

with respect to P, the energy functional minimized by P becomes
ˆ

B

(
β|rotP|2 + |divP|2 + α(|P|2 − 1)2

)
dx+

ˆ
B

|DϕP|2dx+
2

ε0

ˆ
B

E · Pdx, (0.4.7)

where
´
B
|DϕP|2dx is the electrostatic energy induced by P, and the external energy

´
B
E · Pdx

favors the polarization parallel (but in opposite verse) to E.

0.5 Fin junction of ferroelectric thin films

In a joint work with L. Carbone and A. Gaudiello, starting from problem (0.4.7) and using using
an asymptotic process based on dimensional reduction, we obtain a simpler ferroelectric model,
especially from a numerical point of view, for a multidomain composed of two orthogonal joined
thin films.

Precisely, let {han}n∈N and
{
hbn
}
n∈N ⊂]0, 1[ be two sequences such that

lim
n
han = 0 = lim

n
hbn, lim

n

hbn
han

= ` ∈ [0,+∞]. (0.5.1)

For every n ∈ N, set

Ωa
n =

]
−ha

n

2
, h

a
n

2

[
×
]
−1

2
, 1
2

[
× [0, 1[ , Ωb

n =
]
−1

2
, 1
2

[2 × ]−hbn, 0[ , Ωn = Ωa
n ∪ Ωb

n.
(0.5.2)

The multidomain Ωn models a ferroelectric device consisting of two orthogonal joined thin films
Ωa

n and Ωb
n with small thicknesses han and hbn, respectively. According to (0.4.7), we consider the

following non-convex and nonlocal energy associated with Ωn

En : P ∈ Pn −→
ˆ

Ωn

(
β|rotP|2 + |divP|2 + α(|P|2 − 1)2 + |DϕP|2 + (Fn · P)

)
dx, (0.5.3)

where
Pn =

{
P ∈

(
H1 (Ωn)

)3
: P · ν = 0 on ∂Ωn

}
, (0.5.4)

α and β are two positive constants, Fn ∈ (L2(Ωn))
3, ν denotes the unit outer normal on ∂Ωn,
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and ϕP ∈ H1(Ωn) is the unique solution, up to an additive constant, of

div(−ε0DϕP + P) = 0 in Ωn,

(−ε0DϕP + P) · ν = 0 on ∂Ωn.

(0.5.5)

Notice that Fn is a normalization of the external field. So to obtain (0.4.7), choose Fn = 2
ε0
E.

Using (for instance compare [18] and Lemma 2.1 in [37])

‖DP‖2(L2(Ωn))9
= ‖rotP‖2(L2(Ωn))3

+ ‖divP‖2L2(Ωn)
∀P ∈ Pn, ∀n ∈ N, (0.5.6)

and the direct method of Calculus of Variations give that problem

min{En(P) : P ∈ Pn} (0.5.7)

admits a solution. The aim of this chapter is to study the asymptotic behavior, as n diverges, of
problems (0.5.7). As we shall show, its asymptotic behavior depends on ` given in (0.5.1).

In order to work on a fixed domain, we use the following maps

x = (x1, x2, x3) ∈ Ωa =

]
−1

2
,
1

2

[
×
]
−1

2
,
1

2

[
× ]0, 1[ −→ (hanx1, x2, x3) ∈ Int(Ωa

n),

x = (x1, x2, x3) ∈ Ωb =

]
−1

2
,
1

2

[
×
]
−1

2
,
1

2

[
× ]−1, 0[ −→ (x1, x2, h

b
nx3) ∈ Ωb

n,

(0.5.8)
where Int(Ωa

n) denotes the interior of Ωa
n. Then, for every n ∈ N set

fa
n : x = (x1, x2, x3) ∈ Ωa −→ Fn(h

a
nx1, x2, x3),

f b
n : x = (x1, x2, x3) ∈ Ωb −→ Fn(x1, x2, h

b
nx3),

(0.5.9)
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

Pn =
{

(pa, pb) ∈ (H1 (Ωa))
3 ×

(
H1(Ωb)

)3
:

pa · νa = 0 on ∂Ωa\
(]

−1
2
, 1
2

[2 × {0}
)
,

pb · νb = 0 on ∂Ωb\
(]

−1
2
, 1
2

[2 × {0}
)
,

pb3 = 0 on
(]

−1
2
, 1
2

[2 \(]−ha
n

2
, h

a
n

2

[
×
]
−1

2
, 1
2

[))
× {0} ,

pa(x1, x2, 0) = pb(hanx1, x2, 0) in
]
−1

2
, 1
2

[2 }
,

(0.5.10)

where νa and νb denote the unit outer normals on ∂Ωa and ∂Ωb, respectively, and

Un =

{
(φa, φb) ∈ H1(Ωa)×H1(Ωb) : φa(x1, x2, 0) = φb(hanx1, x2, 0) in

]
−1

2
, 1
2

[2}
.

(0.5.11)
Then, En defined in (0.5.3) is rescaled by

En :
(
pa, pb

)
∈ Pn −→

han

ˆ
Ωa

(
β|rotanpa|2 + |divanpa|2 + α(|pa|2 − 1)2 + |Da

nφ
a(
pa,pb

)|2 + (fa
n · pa)

)
dx

+hbn

ˆ
Ωb

(
β|rotbnpb|2 + |divbnpb|2 + α(|pb|2 − 1)2 + |Db

nφ
b(
pa,pb

)|2 + (f b
n · pb)

)
dx,

(0.5.12)
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where
(
φa(

pa,pb
), φb(

pa,pb
)) is the unique solution of



(
φa(

pa,pb
), φb(

pa,pb
)) ∈ Un,

ˆ
Ωa

φa(
pa,pb

)dx = 0,

han

ˆ
Ωa

((−Da
nφ

a(
pa,pb

) + pa) ·Da
nφ

a)dx

+hbn

ˆ
Ωb

((
−Db

nφ
b(
pa,pb

) + pb
)
·Db

nφ
b
)
dx = 0 ∀ (φa, φb) ∈ Un,

(0.5.13)

which rescales a weak formulation of (0.5.5), i.e.

ϕP ∈ H1(Ωn),

ˆ
Ωa

n

ϕP dx = 0,

ˆ
Ωn

((−ε0DϕP + P) ·Dϕ) dx = 0 ∀ϕ ∈ H1(Ωn).

(0.5.14)
The Lax-Milgram Theorem provides that (0.5.14) admits solution and it is unique.

Note that if Pn solves (0.5.7), then (pan, p
b
n) defined by

pan(x1, x2, x3) = Pn(h
a
nx1, x2, x3) in Ωa, pbn(x1, x2, x3) = Pn(x1, x2, h

b
nx3) in Ωb,

solves
min

{
En((p

a, pb)) : (pa, pb) ∈ Pn

}
. (0.5.15)

Assume that 

fa
n ⇀ fa = (fa

1 , f
a
2 , f

a
3 ) weakly in (L2(Ωa))3,

f b
n ⇀ f b =

(
f b
1 , f

b
2 , f

b
3

)
weakly in

(
L2
(
Ωb
))3

.

(0.5.16)

0.5.1 The main results

The case ` ∈]0,+∞[.
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We state the limit result of problem (0.5.15) when in assumption (0.5.1) ` belongs to ]0,+∞[. Set

P =
{ (

qa, qb
)
=
(
(qa2 , q

a
3) ,
(
qb1, q

b
2

))
∈

(
H1
(]
−1

2
, 1
2

[
× ]0, 1[

))2 × (H1
(]

−1
2
, 1
2

[2))2
:

qa · νa = 0 on ∂
(]
−1

2
, 1
2

[
× ]0, 1[

)
, qb · νb = 0 on ∂

(]
−1

2
, 1
2

[2)
,

qb1(0, ·) = 0, qa2(·, 0) = qb2 (0, ·) in
]
−1

2
, 1
2

[ }
,

(0.5.17)

where νa and νb denote the unit outer normal on ∂
(]
−1

2
, 1
2

[
× ]0, 1[

)
and ∂

(]
−1

2
, 1
2

[2), respec-
tively, 

U =

{ (
ψa, ψb

)
∈ H1

(]
−1

2
, 1
2

[
× ]0, 1[

)
×H1

(]
−1

2
, 1
2

[2)
:

ψa(·, 0) = ψb(0, ·) in
]
−1

2
, 1
2

[}
,

(0.5.18)

and

E :
(
qa, qb

)
∈ P −→

ˆ
]− 1

2
, 1
2
[×]0,1[

(
β|rotqa|2 + |divqa|2 + α(|qa|2 − 1)2

+|Dψa(
qa,qb

)|2 +
ˆ 1

2

− 1
2

(fa
2 , f

a
3 )dx1 · qa

)
dx2dx3

+`

ˆ
]− 1

2
, 1
2
[2

(
β
∣∣rotqb∣∣2 + ∣∣divqb∣∣2 + α

(∣∣qb∣∣2 − 1
)2

+
∣∣∣Dψb(

qa,qb
)∣∣∣2 + ˆ 0

−1

(
f b
1 , f

b
2

)
dx3 · qb

)
dx1dx2,

(0.5.19)
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where (fa
2 , f

a
3 ) and (f b

1 , f
b
2) are defined in (0.5.16), and (ψa(

qa,qb
), ψb(

qa,qb
)) is the unique solution of



(
ψa(

qa,qb
), ψb(

qa,qb
)) ∈ U,

ˆ
]
− 1

2
, 1
2

[
×]0,1[

ψa(
qa,qb

)dx2dx3 = 0,

ˆ
]
− 1

2
, 1
2

[
×]0,1[

((
−D(x2,x3)ψ

a(
qa,qb

) + qa
)
·D(x2,x3)ψ

a
)
dx2dx3

+`

ˆ
]
− 1

2
, 1
2

[2
((

−D(x1,x2)ψ
b(
qa,qb

) + qb
)
·D(x1,x2)ψ

b
)
dx1dx2 = 0 ∀

(
ψa, ψb

)
∈ U.

(0.5.20)

We prove the following result.

Theorem 0.5.1. Assume (0.5.1) with ` ∈]0,+∞[, and (0.5.16). For every n ∈ N, let
(
pan, p

b
n

)
be

a solution of (0.5.15), and
(
φa(

pan,p
b
n

), φb(
pan,p

b
n

)) be the unique solution of (0.5.13) with
(
pa, pb

)
=(

pan, p
b
n

)
. Moreover, let P and E be defined by (0.5.17) and (0.5.19)-(0.5.20), respectively. Then, there

exist an increasing sequence of positive integer numbers {ni}i∈N and (in possible dependence on the
subsequence)

(
p̂a, p̂b

)
=
(
(p̂a2, p̂

a
3) ,
(
p̂b1, p̂

b
2

))
∈ P such that

pani
→ (0, p̂a2, p̂

a
3) strongly in

(
H1(Ωa)

)3 and strongly in
(
L4(Ωa)

)3
,

pbni
→
(
p̂b1, p̂

b
2, 0
)
strongly in

(
H1(Ωb)

)3
and strongly in

(
L4(Ωb)

)3
,

(0.5.21)

(
1

han

∂pan
∂x1

,
1

hbn

∂pbn
∂x3

)
→ (0, 0) strongly in

(
L2(Ωa)

)3 × (L2(Ωb)
)3
, (0.5.22)

(
φa(

pani
,pbni

), φb(
pani

,pbni

))→
(
ψa(

p̂a,p̂b
), ψb(

p̂a,p̂b
)) strongly in H1(Ωa)×H1(Ωb),

(
1

han

∂φa(
pan,p

b
n

)
∂x1

,
1

hbn

∂φb(
pan,p

b
n

)
∂x3

)
→ (0, 0) strongly in L2(Ωa)× L2

(
Ωb
)
,

(0.5.23)

where
(
p̂a, p̂b

)
solves

E
((
p̂a, p̂b

))
= min

{
E
((
qa, qb

))
:
(
qa, qb

)
∈ P

}
, (0.5.24)
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and
(
ψa(

p̂a,p̂b
), ψb(

p̂a,p̂b
)) is the unique solution of (0.5.20) with (qa, qb) =

(
p̂a, p̂b

)
. Moreover,

lim
n

En

((
pan, p

b
n

))
han

= E
((
p̂a, p̂b

))
. (0.5.25)

The case ` = 0.

We state the limit result of problem (0.5.15) when in (0.5.1) ` = 0 . Set

P◦ =
{
qa = (qa2 , q

a
3) ∈

(
H1
(]
−1

2
, 1
2

[
× ]0, 1[

))2
: qa · νa = 0 on ∂

(]
−1

2
, 1
2

[
× ]0, 1[

)}
(0.5.26)
where νa denotes the unit outer normal on ∂

(]
−1

2
, 1
2

[
× ]0, 1[

)
, and

E◦ : q
a ∈

(
H1
(]
−1

2
, 1
2

[
× ]0, 1[

))2 −→ ˆ
]− 1

2
, 1
2
[×]0,1[

(
β|rotqa|2

+|divqa|2 + α(|qa|2 − 1)2 + |Dψa
qa|2 +

ˆ 1
2

− 1
2

(fa
2 , f

a
3 )dx1 · qa

)
dx2dx3,

(0.5.27)

where (fa
2 , f

a
3 ) is defined in (0.5.16), and ψa

qa is the unique solution of



ψa
qa ∈ H1

(]
−1

2
, 1
2

[
× ]0, 1[

)
,

ˆ
]
− 1

2
, 1
2

[
×]0,1[

ψa
qadx2dx3 = 0,

ˆ
]
− 1

2
, 1
2

[
×]0,1[

((
−D(x2,x3)ψ

a
qa + qa

)
·D(x2,x3)ψ

a
)
dx2dx3 = 0

∀ψa ∈ H1
(]
−1

2
, 1
2

[
× ]0, 1[

)
,

(0.5.28)

We prove the following result.

Theorem 0.5.2. Assume (0.5.1) with ` = 0, and (0.5.16). For every n ∈ N, let
(
pan, p

b
n

)
be a solu-

tion of (0.5.15), and
(
φa(

pan,p
b
n

), φb(
pan,p

b
n

)) be the unique solution of (0.5.13) with
(
pa, pb

)
=
(
pan, p

b
n

)
.

Moreover, let P◦ and E◦ be defined by (0.5.26) and (0.5.27)-(0.5.28), respectively. Then, there ex-
ist an increasing sequence of positive integer numbers {ni}i∈N and (in possible dependence on the
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subsequence) p̂a = (p̂a2, p̂
a
3) ∈ P◦ such that

pani
→ (0, p̂a2, p̂

a
3) strongly in

(
H1(Ωa)

)3 and strongly in
(
L4(Ωa)

)3
,

(
hbn
han

) 1
2

pbn → 0 strongly in
(
H1(Ωb)

)3
and strongly in

(
L4(Ωb)

)3
,

(0.5.29)

(
1

han

∂pan
∂x1

,

(
1

hanh
b
n

) 1
2 ∂pbn
∂x3

)
→ (0, 0) strongly in

(
L2(Ωa)

)3 × (L2
(
Ωb
))3

, (0.5.30)



(
φa(

pani
,pbni

),
(
hbn
han

) 1
2

φb(
pan,p

b
n

)
)

→
(
ψa
p̂a, 0

)
strongly in H1(Ωa)×H1(Ωb),

(
1

han

∂φa(
pan,p

b
n

)
∂x1

,

(
1

hanh
b
n

) 1
2 ∂φb(

pan,p
b
n

)
∂x3

)
→ (0, 0) strongly in L2(Ωa)× L2

(
Ωb
)

(0.5.31)

where p̂a solves
E◦ (p̂

a) = min {E◦ (q
a) : qa ∈ P◦} , (0.5.32)

and ψa
p̂a is the unique solution of (0.5.28) with qa = p̂a. Moreover,

lim
n

En

((
pan, p

b
n

))
han

= E◦ (p̂
a) . (0.5.33)

The case ` = +∞.

We state the limit behavior of (0.5.15) when (0.5.1) is assumed with ` = +∞ and hbn <<
√
han.

Here we assume that the function (φa(
pa,pb

), φb(
pa,pb

)) involved in (0.5.12) is the unique solution of
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the following problem:

(
φa(

pa,pb
), φb(

pa,pb
)) ∈ Un,

ˆ
Ωb

φb(
pa,pb

)dx = 0,

han

ˆ
Ωa

((−Da
nφ

a(
pa,pb

) + pa) ·Da
nφ

a)dx

+hbn

ˆ
Ωb

((
−Db

nφ
b(
pa,pb

) + pb
)
·Db

nφ
b
)
dx = 0 ∀ (φa, φb) ∈ Un,

(0.5.34)

i.e. assumption
ˆ

Ωa

φa(
pa,pb

)dx = 0 is replacedwith
ˆ

Ωb

φb(
pa,pb

)dx = 0, or equivalently, in (0.5.14),

assumption
ˆ

Ωa
n

ϕPdx = 0 is replaced with
ˆ

Ωb
n

ϕPdx = 0 . Obviously, En andEn do not change.

Set 

P∞ =

{
qb =

(
qb1, q

b
2

)
∈
(
H1
(]

−1
2
, 1
2

[2))2
: qb · νb = 0 on ∂

(]
−1

2
, 1
2

[2)
,

qb1(0, ·) = 0 in
]
−1

2
, 1
2

[}
,

(0.5.35)

where νb denotes the unit outer normal on ∂
(]

−1
2
, 1
2

[2), and


E∞ : qb ∈
(
H1
(]
−1

2
, 1
2

[))2 −→ ˆ
]− 1

2
, 1
2
[2

(
β|rotqb|2

+|divqb|2 + α(|qb|2 − 1)2 + |Dψb
qb|

2 +

ˆ 0

1

(f b
1 , f

b
2)dx3 · qb

)
dx1dx2,

(0.5.36)
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where (f b
1 , f

b
2) is defined in (0.5.16), and ψb

qb
is the unique solution of

ψb
qb
∈ H1

(]
−1

2
, 1
2

[2)
,

ˆ
]
− 1

2
, 1
2

[2 ψb
qbdx1dx2 = 0,

ˆ
]
− 1

2
, 1
2

[2
((
−D(x1,x2)ψ

b
qb + qb

)
·D(x1,x2)ψ

b
)
dx1dx2 = 0, ∀ψb ∈ H1

(]
−1

2
, 1
2

[2)
.

(0.5.37)

We prove the following result.

Theorem 0.5.3. Assume (0.5.1) with ` = +∞ and hbn <<
√
han, and (0.5.16). For every n ∈ N,

let
(
pan, p

b
n

)
be a solution of (0.5.15), and

(
φa(

pan,p
b
n

), φb(
pan,p

b
n

)) be the unique solution of (0.5.34)
with

(
pa, pb

)
=
(
pan, p

b
n

)
. Moreover, let P∞ and E∞ be defined in (0.5.35) and (0.5.36)-(0.5.37),

respectively. Then, there exist an increasing sequence of positive integer numbers {ni}i∈N and (in
possible dependence on the subsequence) p̂b =

(
p̂b1, p̂

b
2

)
∈ P∞ such that

(
han
hbn

) 1
2

pan → 0 strongly in
(
H1(Ωa)

)3 and strongly in
(
L4(Ωa)

)3
,

pbni
→
(
p̂b1, p̂

b
2, 0
)
strongly in

(
H1(Ωb)

)3
and strongly in

(
L4(Ωb)

)3
(0.5.38)

((
1

hanh
b
n

) 1
2 ∂pan
∂x1

,
1

hbn

∂pbn
∂x3

)
→ 0 strongly in

(
L2(Ωa)

)3 × (L2(Ωb)
)3
, (0.5.39)



((
han
hbn

) 1
2

φa(
pani

,pbni

), φb(
pani

,pbni

)
)

→
(
0, ψb

p̂b

)
strongly in H1(Ωa)×H1(Ωb),

((
1

hanh
b
n

) 1
2 ∂φa(

pan,p
b
n

)
∂x1

,
1

hbn

∂φb(
pan,p

b
n

)
∂x3

)
→ (0, 0) strongly in L2(Ωa)× L2

(
Ωb
)
,

(0.5.40)

where p̂b solves
E∞

(
p̂b
)
= min

{
E∞

(
qb
)
: qb ∈ P∞

}
, (0.5.41)

and ψb
p̂b
is the unique solution of (0.5.37) with qb = p̂b. Moreover, the convergence of the energies

holds true, that is

lim
n

En

((
pan, p

b
n

))
hbn

= E∞
(
p̂b
)
. (0.5.42)
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Asymptotic analysis for micromagnetics
of nanowires of finite length governed by
indefinite material coefficients

K. Chacouche. Asymptotic analysis for micromagnetics of nanowires of finite length governed
by indefinite material coeficients, to submit.

Abstract. The objective of this paper, is dealt with a class of minimization problems, associated
with the micromagnetics nanowires of finite length. Each minimization problem is characterized
by the radius of the wire, denote by 0 < h < 1, and it is considered under spatial indefinite
and degenerative setting of the material coefficients. Based on the fundamental studies of the
governing energy functionals, the existence of the minimizers, for every 0 < h < 1, the 3D−1D

asymptotic analysis for the studyingminimization problems, as h→ 0, will be proved inTheorem
1.2.1 and Theorem 1.3.1, respectively.

Keywords: micromagnetics of nanowires, indefinite and degenerative material coefficient, 3D−
1D asymptotic analysis.
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1.1 Introduction

In general, the theory of micromagnetism is used to model the particles ferromagnetic of small
size (in the order of micrometer and less). This theory is proposed by W.F. Brown in the 40s, and
aims to explain the nonlinear behavior of magnetic materials. The approach micromagnetic it is
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first of all energetic, allowing to identify the main phenomena intervener in the configuration of
the magnetization and associate their energy quantities. The equilibrium is achieved when the
total energy is minimized.

In this paper, we study the energy released by a cylindrical ferromagnetic nanowires. The first
main objective is to show, in the framework studied in [41–43, 63], that the corresponding min-
imization problem to the free total energy functional has at least one solution and we will per-
form it in the Theorem 1.2.1. The second objective by referring to the theories, that are studied
in [13, 14, 33–35, 42, 43, 48, 59], is to rigorously derive a 1D reduced micromagnetic model for
ferromagnetic nanowires and to find a definite association between the minimization problem
in the three-dimensional domain and the limiting profile minimization in the one dimensional
domain, which it will be proved in Theorem 1.3.1.

Let us assume that the finite 3D wire is a cylinder of length 2L, and radius 0 < h < 1. Consider
a ferromagnetic nanowires occupying a bounded, possibly multi-connected domain Ω(h) =] −
L,L[×B2(0, h) of the Euclidean spaceR3 (see Figure 1.1) , where ]−L,L[ is the bounded segment
in R, and Bd(x, r) is the ball of radius r and center x in Rd. Also, let us Ω :=]− L,L[×B2(0, 1).
Let α : Ω → [0,∞) be a given continuous function, and letA0 := α−1(0) be the set of zero-points
of α on Ω.

The aim of this paper is to study the minimization and the asymptotic behavior, as h→ 0, of the
following non-convex and nonlocal problem:

(P )(h) =



find a vectorial functionm(h) = (m
(h)
1 ,m

(h)
2 ,m

(h)
3 ) ∈ L2(Ω(h),R3)

of three variables, such that,

E (h)(m(h)) = min
m∈L2

(
Ω(h),R3

) E (h)(m),

where, the functional E (h) denotes the micromagnetism energy in Ω(h) (see [9]), it is given by

E (h)(m) :=



1

2Lπh2

(ˆ
Ω(h)\A0

α|∇m|2dL3 +

ˆ
Ω(h)

ϕ(m)dL3 +
1

2

ˆ
Ω(h)

∇ζmag ·mdL3

)
,

ifm ∈ H1
loc

(
Ω(h)\A0,R3

)
and

√
α∇m ∈ L2

(
Ω(h)\A0,R3×3

)
,

∞, otherwise,
(1.1.1)

for anym = (m1,m2,m3) ∈ L2
(
Ω(h),R3

)
,
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e2

e3

h

O e1

2L

Figure 1.1: Domain Ω(h).

subject to the constraints:
div(−∇ζmag +m) = 0, in R3, (1.1.2)

|m| = ms, L3-a.e. in Ω(h). (1.1.3)

In (1.1.1), the funcional E (h)(m) is supposed to be the free energy, per unit volume, in a fer-
romgnetic nanowires (cf. Brown [9]). In the context, the index h and Ω(h) denote the radius of
the ball and the distribution region of the magnetic nanowires , respectively, and the unknown
m : Ω(h) → R3, m = (m1(x),m2(x),m3(x)) (x = (x1, x2, x3) ∈ Ω(h)) is a vectorial function
of three variables, which describes the magnetization in Ω(h). The given continuous function
α = α(x) (x ∈ Ω) is the so-called material coefficient, and here, it is supposed that is coefficient
may degenerate somewhere on Ω.
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The exchange energy ˆ
Ω(h)\A0

α|∇m|2dL3.

The ferromagnetic behavior is essentially due to a quantistic forcewhich tends to allign themolec-
ular magnetic field. The most important contribution is due to the exchange energy.

The anisotropy energy ˆ
Ω(h)

ϕ(m)dL3,

models the existence of preferred directions of magnetization (easy axes), where ϕ : R3 → [0,∞)

is a given continuous, even function, exhibiting, whenever pertinent, crystallographic symmetry.

The scalar function ζmag : R3 7→ R is supposed to be the potential of magnetic fieldH ≡ −∇ζmag ,
whereby (1.1.2)∇×H = 0 is automatically fulfilled, where equation (1.1.2) is a simplified version
of the Maxwell equation, and hence its solution ζmag . Moreover,m denotes the zero-extension of
m to R3.
The energy due to the magnetic field H ≡ −∇ζmag (magnetostatic energy).

ˆ
Ω(h)

∇ζmag ·mdL3 =

ˆ
R3

|∇ζmag|2dL3.

Equation (1.1.3) embodies a fundamental constraint of micromagnetics, whereby a ferromagnetic
body is always locally magnetized to a saturation magnetizationms(T ), where T is the local tem-
perature. Denoting the Curie temperature by Tc,ms > 0 unless T > Tc, in the latter casems = 0

and the material ceases to behave ferromagnetically (for example the Curie temperature is 1043 K
i.e. 770 ◦C for the iron ). As a consequence of (1.1.3), a specimen at T < Tc can achieve a demag-
netized state only in an average sense. Throughout this work we suppose constant temperature
in the ferromagnetic regime.

Reformulating the problem on a fixed domain through appropriate rescalings of the kind proposed
by P. G. and P. Destuynder [17] and using the ideaswere used by [42], it is proved the existence of a
minimizers of problem (P )(h) (seeTheorem 1.2.1). Also, by using the ideas as in [13, 14, 33–35, 41],
we derive the limit problem (see Theorem 1.3.1). Specifically, we prove that

lim
h
(P )(h) = min

{
E◦(m) : m = (m1,m2,m3) ∈ L2(]− L,L[,R3)

}
.
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where

E◦(m) :=



Φ◦
α(m) +

ˆ
]−L,L[

ϕ(m)dL1 +
1

2

ˆ
]−L,L[

(
|m2|2 + |m3|2

)
dL1,

ifm ∈ L2(]− L,L[,S2),

∞, otherwise,

for any m = (m1,m2,m3) ∈ L2(] − L,L[,R3), and Φ◦
α iz the convex

function on L2(]− L,L[,R3), defined as:

Φ◦
α(m) :=


ˆ

]−L,L[\A◦
0

α◦|∇m|2dL1, ifm ∈ H1
loc(]− L,L[\A◦

0,R3),

∞, otherwise,

for anym = (m1,m2,m3) ∈ L2(]− L,L[,R3).

We obtain a infinite 1D reduced micromagnetic model for ferromagnetic nanowires. Moreover,

the magnetostatic energy transforms into
1

2

ˆ
]−L,L[

(
|m2|2 + |m3|2

)
dL1, so that the limit prob-

lem is completely local and plays a role of additional anisotropy. In such wires, the additional
anisotropy is uniaxial (directed along the wire). It easy to see that, if ϕ = 0, then the minimum
in the limit problem is zero and it is attained by (−1, 0, 0) or (+1, 0, 0) (see Section 1.3).

The paper is organized as follows : In the next Section 1.2, we prove the existence of minimizers
of problem (P )(h). The 3D− 1D asymptotic analysis for the observing minimization problem, it
is obtained in Section 1.3.

1.2 The minimization problem

1.2.1 Nanowires scaling

As it is usual (see [17]), problem (P )(h) will be reformulated on a fixed domain.
From now on, for simplicity, let us set :

L3(Ω) = 2Lπ = 1, and ms = 1;



26
CHAPTER 1: MICROMAGNETICS WIRES GOVERNED BY INDEFINITE

MATERIAL COEFFICIENTS

and let us denote by ψ(h) the diffeomorphism, defined as:

ψ(h) : x = (x1, x2, x3) ∈ R3 7→ (x1, hx2, hx3) ∈ R3.

Also, let us put
α(h) := α ◦ ψ(h) ∈ C(Ω) and A(h)

0 :=
(
α(h)

)−1
(0).

Next, using the area formula in the fundamental calculations, it can be shown that the minimiza-
tion problem (P )(h), for any 0 < h < 1, has the below equivalent form, denoted by (P ′)(h). (P ′)(h)

is for finding a vectorial functionm(h) = (m
(h)
1 ,m

(h)
2 ,m

(h)
3 ) ∈ L2(Ω,R3) of three variables, which

minimizes the following functional:

E (h)(m) :=



Φ
(h)
α (m) +

ˆ
Ω

ϕ(m) dL3 +
1

2

ˆ
Ω

(
∂1ζ m1 +

1
h
∂2ζ m2 +

1
h
∂3ζ m3

)
dL3,

if m ∈ L2(Ω,S2),

∞, otherwise,
(1.2.1)

for anym = (m1,m2,m3) ∈ L2(Ω,R3),

subject to the constraints:

∂1 (−∂1ζ +m1) +
1

h

(
∇′ ·

(
−1

h
∇′ζ +m′

))
= 0, in R3, (1.2.2)

where
y′ = (y2, y3) for y = (y1, y2, y3) ∈ R3,

ν ′ := (ν2, ν3) ∈ L2(Ω,R2), for ν = (ν1, ν2, ν3) ∈ L2(Ω,R3)

and the distributional gradient ∇′ = (∂2, ∂3) such that

∇′ν =


∂2ν1 ∂3ν1

∂2ν2 ∂3ν2

∂2ν3 ∂3ν3


, for ν = (ν1, ν2, ν3) ∈ L2(Ω,R3),
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and Φ
(h)
α (m) is the convex function on L2(Ω,R3), defined as:

Φ(h)
α (m) :=



ˆ
Ω\A(h)

0

α(h)

(
|∂1m|2 + 1

h2
|∇′m|2

)
dL3,

ifm ∈ H1
loc

(
Ω\A(h)

0 ,R3
)
,

∞, otherwise,

(1.2.3)

for anym = (m1,m2,m3) ∈ L2(Ω,R3).

Furthermore, for any 0 < h < 1, the equality:

m(h) = m(h) ◦ ψ(h) in L2(Ω,R3), (1.2.4)

holds between the minimizersm(h) andm(h) of the respective problems (P )(h) and (P ′)(h).

In each case, the minimizer, described in (1.2.4), are supposed to represent the most probable
profile of the magnetization in the studying ferromagnetic nanowires. However, when is the
case of the very thin situation of the radius h, the problem (P ′)(h) / (P )(h) is usually reduced to
another one (it will be discussed in Section 1.3).
For the detailed description of this matter, let us first set:

α◦(x1) := α(x1, 0, 0) for any x1 ∈ [−L,L], and A◦
0 := (α◦)−1(0).

Now, if we take into account the non degenerate case of the material coefficient α, referred to the
case that:

A
(h)
0 = A◦

0 = ∅ for 0 < h < 1, and α∗ := min
x∈Ω

α(x) > 0,

then the convex part Φ(h)
α of the energy E (h) satisfies the coercivity condition below:

Φ(h)
α (m) ≥ α∗|∇m|2L2(Ω,R3×3), for allm ∈ L2(Ω,R3). (1.2.5)

1.2.2 The main results

The first goal of this study, is to impose the two conditions below for the material coefficient α:
(a) L3(A0) = 0, and hence L3(A

(h)
0 ) = 0, for 0 < h < 1.
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(b) There exists a constant Cα ≥ 1, such that

α◦(x1) ≤ α(x) ≤ Cαα
◦(x1), for all x = (x1, x2, x3) ∈ Ω

Consequently, we will show the following theorem:

Theorem 1.2.1. Let us assume the condition (a). Then for 0 < h < 1 the minimization problem
(P )(h) admits at least one solution (minimizer) m(h), and hence the same holds for the problem
(P ′)(h).

1.2.3 Preliminaries

Notation. For any dimension n ∈ N, the n-dimensional Lebesgue measure is denoted by Ln, and
for any Borel set E ⊂ Rn, the characteristic function on E is denoted by χE .

For any abstract Banach space, the norm of X is denoted by | · |X . However, when X is an Eu-
clidean space, the is simply denoted by | · |. Also, we denote by distX(ξ, Y ) the distance between
any point ξ ∈ X and any subset Y ⊂ X , that is defined as distX(ξ, Y ) := inf

δ∈Y
|ξ − δ|X . Addi-

tionally, for any ε > 0 and any functional F : X → [−∞,∞], we denote by L(ε, F ) the sub-level
set of F , more precisely:

L(ε, F ) := {ξ ∈ X | F (ξ) ≤ ε} .

For any abstract Hilbert space H , the inner product of H is denoted by (·, ·)H .
However, when H is an Euclidean space, the inner product between two vectors ζ, δ ∈ H is
simply denoted by ζ ·δ. Besides, for arbitrary k, ` ∈ N and arbitrary k, `-matricesA = (aij),B =

(bij)∈ Rk×`, the scalar product between these twomatrices is denoted byA : B :=
k∑

i=1

∑̀
j=1

aijbij.

To sum up the known-results, concerned the mathematical treatment of the coupled Maxwell
equation (1.2.2), we recall what it is studied in [41, 47].

Remark 1.2.2. (Summary of [47, Lemma 3.1]) Let us fix any constant 0 < h < 1, and any m =

(m1,m2,m3) ∈ L2(Ω,R3), taking into account thatm vanishes outside Ω. Then, the solution of the
equation (1.2.2) is defined as a function ζ ∈ V which solves the following variational identity:

(ζ, v) :=

ˆ
Ω

(
m1∂1v +

1

h
m′ · ∇′v

)
dL3 =

ˆ
R3

(
∂1ζ∂1v +

1

h2
∇′ζ · ∇′v

)
dL3, for any v ∈ V,

(1.2.6)
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with m′ = (m2,m3) and ∇′ = (∂2, ∂3), where V , the phase space for the Maxwell equation (1.2.2)
is fixed as the following functional space, denoted by :

V :=

{
v ∈ H1

loc(R3)
∣∣∣ ∇v ∈ L2(R3,R3) and

ˆ
B̃Ω

vdL3 = 0

}
,

and B̃Ω the (three-dimensional) open ball , which contains the cylindrical domainΩ :=]−L,L[×B2(0, 1).

The condition
ˆ

B̃Ω

vdL3 = 0 prevents trivial translations v → v+ c. As easily checked (cf. [5, The-

orem 5.4.3]), this functional space is a Hilbert space, endowed with the inner product:

(z, v) :=

ˆ
R3

(
∂1z∂1v +

1

h2
∇′z · ∇′v

)
dL3, for all z, v ∈ V,

which readily leads to the definition of the norm

|v|V = (v, v)
1
2 , (1.2.7)

where 0 < h < 1 is the same constant as in (1.2.2). Furthermore, the Hilbert space V is compactly
embedded into the space L2(B̃Ω).

Remark 1.2.3. (See [42, Proposition 1]) Let us fix any 0 < h < 1. Then, for anym ∈ L2(Ω,R3), the
Maxwell equation (1.2.2), admits a unique solution ζ . Hence, the solution operatorS(h) : L2(Ω,R3) →
V, that maps anym ∈ L2(Ω,R3) to the solution ζ ∈ V of (1.2.2), is well-defined as a single-valued
mapping. Moreover, the solution operator S(h) is a bounded linear operator, such that:

|S(h)m|V ≤ |m|L2(Ω,R3), for anym ∈ L2(Ω,R3). (1.2.8)

Remark 1.2.4. (Sommary of [41]) For any 0 < h < 1, the functional E(h)
mag(m) defined as

E(h)
mag(m) :=

1

2

ˆ
Ω

(
∂1ζ

(h)m1 +
1

h
∇′ζ(h) ·m′

)
dL3, (1.2.9)

for anym = (m1,m2,m3) ∈ L2(Ω,R3),

links to the part of the free energy E (h), given in (1.2.1), that is involved in the coupled Maxwell
equation (1.2.2). Moreover, in the light of Remark 1.2.2, setting v = ζ in (1.2.6) it follows that

E(h)
mag

(
m(h)

)
=

1

2

∣∣ζ(h)∣∣2
V
≥ 0 for any 0 < h < 1. (1.2.10)
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Next, let us use the Key-properties of the energy functionals.

We will start with a proposition concerned with a Hilbert space, associated with the effective
domain of convex part of energy functional.

Proposition 1.2.5. (See [42, Theorem 3.1]) Let us set:
A?

0 := A◦
0 ×B2(0, 1),

H?
α :=

{
m ∈ L2(Ω,R3)

∣∣∣ m ∈ H1
loc(Ω\A?

0,R3),
√
α◦∇m ∈ L2 (Ω\A?

0,R3×3)
}
.

(1.2.11)
Then, H?

α is a Hilbert space, endowed with the inner product:

(ξ,Λ)H?
α
:=

ˆ
Ω

ξ · ΛdL3 +

ˆ
Ω\A?

0

α◦∇ξ : ∇ΛdL3, for all ξ, Λ ∈ H?
α. (1.2.12)

Hence, the functional Φ?
α defined as:

Φ?
α(m) :=


ˆ

Ω\A?
0

α◦|∇m|2dL3, ifm ∈ H?
α,

∞, otherwise,

(1.2.13)

for anym = (m1,m2,m3) ∈ L2(Ω,R3),

is proper l.s.c and convex on L2(Ω,R3).

Just as in above proposition, we can prove the below Corollary.

Corollary 1.2.6. Let us fix any 0 < h < 1, and let us denote by H(h)
α the effective domain of the

convex function Φ(h)
α , given in (1.2.3). Then,H(h)

α is a Hilbert space, endowed with the inner product:

(ξ,Λ)
H

(h)
α

:=

ˆ
Ω

ξ · ΛdL3 +

ˆ
Ω\A(h)

0

α(h)

(
∂1ξ∂1Λ +

1

h2
∇′ξ · ∇′Λ

)
dL3,

for all ξ, Λ ∈ H(h)
α .

Hence, the convex function Φ
(h)
α turns out to be proper and l.s.c on L2(Ω,R3).

Lemma 1.2.7. (Approximating open sets) For any 0 < h < 1, there exists a sequence{
Ω

(h)
λ | λ = 1, 2, 3, · · ·

}
⊂ R3 of three-dimensional open sets, having Lipschitz boundaries,
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such that:

∅ 6= Ω
(h)
1 ⊂⊂ Ω

(h)
2 ⊂⊂ Ω

(h)
3 ⊂⊂ · · · ⊂⊂ Ω

(h)
λ ⊂⊂ · · · ⊂⊂ Ω\A(h)

0 =
∞⋃
λ=1

Ω
(h)
λ . (1.2.14)

As a consequence, we infer that:
a
(h)
λ := min

x∈Ω(h)
λ

α(h)(x) > 0, λ = 1, 2, 3, · · · , for any 0 < h < 1.

a
(h)
λ → 0, as λ→ ∞,

Proof. This Lemma is a direct consequence of the line of arguments, discussed in ([42], Lemma
4.1 and Remark 4]). �

Now, we generalize a result of [42, Theorem 3.2 page 7] for the three dimensional case.

Proposition 1.2.8. (Compactness) Let us assume the condition (a), and let us take any 2 < p ≤ ∞.
Then, for any 0 < h < 1, any bounded sequence in H(h)

α ∩ Lp(Ω,R3) is relatively compact in
Lp(Ω,R3).

Here is a corollary that is derived from the Proposition 1.2.8.

Corollary 1.2.9. (I) Let us assume the condition (a), and let us take any 1 ≤ p < 2. Then, for any
0 < h < 1, the Hilbert space H(h)

α is compactly embedded into the Banach space Lp(Ω,R3).

(II) Let us assume the condition (a), then for any 0 < h < 1 and any ε > 0, the sublevel set:

L
(
ε, E (h)

)
:=
{
m ∈ L2(Ω,R3) | E (h)(m) ≤ ε

}
,

is compact in L2(Ω,R3).

Proof of Proposition 1.2.8. (The proof of the two dimensional case is made in [42, page 11])

Let us assume the condition (a), let us fix any 2 < q < p, with 2 < p ≤ ∞, and let us

set ε := lim
p̃→p

(
p̃

p̃− q
). Besides, let us take any sequence

{
u
(i)
∗ | i = 1, 2, 3, · · ·

}
⊂ H

(h)
α ∩

Lp(Ω,R3), such that:

sup
i∈N

∣∣u(i)∗
∣∣
H

(h)
α

≤ R0 and sup
i∈N

∣∣u(i)∗
∣∣
Lp(Ω,R3)

≤ R0, (1.2.15)
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for some constant R0, independent of i ∈ N. Then, noting that L3(Ω) = 1, and:

sup
i∈N

∣∣∣∣∣u(i)∗
∣∣2∣∣∣

L
q
2 (Ω,R3)

= sup
i∈N

∣∣u(i)∗
∣∣2
Lq(Ω,R3)

≤ sup
i∈N

∣∣u(i)∗
∣∣2
Lp(Ω,R3)

≤ R2
0,

we construct a sequence
{
n
(h)
k | i = 1, 2, 3, · · ·

}
⊂ N, and functions u∗ ⊂ H

(h)
α and γ∗ ∈

L
q
2 (Ω), such that: 

n
(h)
k → ∞, u

(n
(h)
k )

∗ → u∗ weakly in H(h)
α ,

and
∣∣∣u(i)∗

∣∣∣2 → γ∗ weakly in L
q
2 (Ω),

as k → ∞. (1.2.16)

The above convergence implies that:

ˆ
E

∣∣∣∣u(n(h)
k )

∗

∣∣∣∣2 dL3 =

ˆ
Ω

∣∣∣∣u(n(h)
k )

∗

∣∣∣∣2 χEdL3 →
ˆ

Ω

γ∗χEdL3 =

ˆ
E

γ∗dL3

as k → ∞, for any Borel subset E ⊂ Ω.

So, applying the assumption (a) and Vitali-Hahn-Saks’s theorem, we infer that

I(λ)∗ := sup
j∈N

ˆ
Ω\Ω(h)

λ

∣∣∣∣u(n(h)
j )

∗

∣∣∣∣2 dL3 → 0, as λ→ ∞. (1.2.17)

Next, due to Lemma 1.2.7, the subsequence
{
u
(n

(h)
k )

∗ | k = 1, 2, 3, · · ·
}

⊂
{
u
(i)
∗

}
turns out to

be bounded in the space H1
(
Ω

(h)
λ ,R3

)
, for any λ ∈ N. Hence, Sobolev’s embedding theorem

enables to construct a decreasing family of subsequences:

· · · ⊂
{
n
(λ)
k

}
⊂ · · · ⊂

{
n
(3)
k

}
⊂
{
n
(2)
k

}
⊂
{
n
(1)
k

}
⊂
{
n
(h)
k

}
,
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to fulfill that:

• the subsequence
{
u
(n

(λ)
k )

∗

}
admits a limit

η
(λ)
∗ ∈ H1

(
Ω

(h)
λ ,R3

)
in the strong topology

of L2
(
Ω

(h)
λ ,R3

)
, as k → ∞,

•
∣∣∣∣u(n(λ)

k )
∗ − η

(λ)
∗

∣∣∣∣2
L2

(
Ω

(h)
λ ,R3

) ≤ 1
λ
, k = 1, 2, 3, · · · ,

for any λ ∈ N. (1.2.18)

Now, let us set a function η∗ ∈ H1
loc

(
Ω\A(h)

0 ,R3
)
, by putting:

η∗(x) := η(λ)∗ (x), if x ∈ Ω
(h)
λ , for L3 − a.e. x ∈ Ω.

Then, by virtue of (1.2.15) and the monotone convergence theorem,

´
Ω
|η∗|2dL3 = lim

λ→∞

ˆ
Ω

χ
Ω

(h)
λ
|η∗|2dL3 ≤ sup

λ∈N

ˆ
Ω

(h)
λ

∣∣η(λ)∗
∣∣2 dL3

= sup
λ∈N

(
lim
k→∞

ˆ
Ω

(h)
λ

∣∣∣∣u(n(λ)
k )

∗

∣∣∣∣2 dL3

)
≤ sup

i∈N

∣∣u(i)∗
∣∣2
H

(h)
α

≤ R2
0,

(1.2.19)

therefore η∗ ∈ L2(Ω,R3).

Afterwards, let us set a subsequence
{
u
(k)
∗∗ | k = 1, 2, 3, · · ·

}
⊂
{
u
(i)
∗

}
, by putting:

u(k)∗∗ = u
(n

(k)
k )

∗ in L2(Ω,R3) for k = 1, 2, 3, · · · .
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Then, considering the assumption (a), and (1.2.17)-(1.2.19), we obtain that:

∣∣∣u(k)∗∗ − η∗

∣∣∣2
L2(Ω,R3)

≤
∣∣∣∣u(n(k)

k )
∗ − η∗

∣∣∣∣2
L2

(
Ω

(h)
k ,R3

) + 2

(∣∣u(k)∗∗
∣∣2
L2

(
Ω\Ω(h)

k ,R3
) + |η∗|2

L2
(
Ω\Ω(h)

k ,R3
))

≤ 1

k
+ 2I(k)∗ + 2

ˆ
Ω\Ω(h)

k

|η∗|2dL3 → 0, as k → ∞.

Thus, the subsequence
{
u
(k)
∗∗

}
is a convergent sequence in the topology of L2(Ω,R3) and the

limit η∗ must coincide with the weak limit u∗ as in (1.2.16). �

1.2.4 Proof of Theorem 1.2.1

The proof will be a slight modification of the argument, discussed in [42, Section 5.1]. In fact,
under the condition (a), and under the fixed setting of 0 < h < 1. Let us put e? = (1, 0, 0) ∈ S2.
Then, by virtue of (1.2.1), (1.2.9) and (1.2.10),

0 ≤ E(h)
∗ := inf

m∈L2(Ω,R3)
E (h)(m) ≤ E (h)(e?).

Therefore the infimum E
(h)
∗ of E (h) is finite in L2(Ω,R3), we can find a minimizing sequence{

m
(i)
∗ | i = 1, 2, 3, · · ·

}
⊂ H

(h)
α , such that:

E (h)(m(i)
∗ ) ↘ E(h)

∗ as i→ ∞.

Here, on account of (II) in Corollary 1.2.9, and the constraint onto L2(Ω,S2) as in (1.2.1), a
convergence subsequence

{
m

(ik)
∗ | k = 1, 2, 3, · · ·

}
⊂
{
m

(i)
∗

}
will be found with the limit

m∗ ∈ L2(Ω,R3), and such that:
m(ik)

∗ → m∗ in L2(Ω,R3),

ϕ(m(ik)
∗ ) → ϕ(m∗), in L1(Ω),

as k → ∞.
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Let ζ(k)∗ the solution of the coupled Maxwell equation (1.2.2), when m = m
(ik)
∗ , for any k ∈ N,

and also, let ζ∗ the solution of (1.2.2), whenm = m∗. Then, by Remark 1.2.3,

ζ(k)∗ → ζ∗ in V, as k → ∞. (1.2.20)

Thus by (1.2.10), and (1.2.20) we have,

E(h)
mag

(
m(ik)

∗
)
→ E(h)

mag(m∗), as k → ∞. (1.2.21)

Now, taking (1.2.21), and Proposition 1.2.5, we obtain that:

E
(h)
∗ = lim

k→∞
E (h)

(
m(ik)

∗
)

= lim inf
k→∞

Φ(h)
α

(
m(ik)

∗
)
+ lim

k→∞

(∣∣ϕ (m(ik)
∗
)∣∣

L1(Ω)
+

1

2

∣∣ζ(k)∗
∣∣2
V

)

≥ Φ(h)
α (m∗) + |ϕ(m∗)|L1(Ω) +

1

2
|ζ∗|2V = E (h)(m∗) ≥ E(h)

∗ .

Therefor, the limitm∗ is the minimizer, that is denoted bym(h) in Theorem 1.2.1.

1.3 The 3D−1D asymptotic analysis for the observingmin-
imization problem

1.3.1 The main results

Here, regarding the theories [13, 14, 33–35, 42, 43, 48, 59], to find a definite association between
the limiting profile of (P )(h) as h→ 0, and the following minimization problem, denoted by (P )◦,
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for the magnetization on the one dimensional domain ]− L,L[.

(P )◦ =



find a vectorial functionm◦ = (m◦
1,m

◦
2,m

◦
3) ∈ L2(]− L,L[,R3)

of three variables, such that,

E◦(m◦) = min
m∈L2(]−L,L[,R3)

E◦(m),

where, the functional E◦, it is given by

E◦(m) :=



Φ◦
α(m) +

ˆ
]−L,L[

ϕ(m)dL1 + 1
2

ˆ
]−L,L[

(
|m2|2 + |m3|2

)
dL1,

ifm ∈ L2(]− L,L[, S2),

∞, otherwise,

(1.3.1)

for anym = (m1,m2,m3) ∈ L2(]− L,L[,R3),

where Φ◦
α iz the convex function on L2(]− L,L[,R3), defined as:

Φ◦
α(m) :=


ˆ

]−L,L[\A◦
0

α◦|∇m|2dL1, ifm ∈ H1
loc(]− L,L[\A◦

0,R3),

∞, otherwise,

(1.3.2)

for anym = (m1,m2,m3) ∈ L2(]− L,L[,R3).
Up to now, the above fact has been proved previously, by relying on the compactness of the sub
level sets E (h), that has been derived from the coercivity condition (1.2.5).

Now, let us consider the conditions (a) and (b) for the material coefficient α.

Consequently, we can conclude the Theorem 1.3.1, that is shown as following:

Theorem 1.3.1. Under the conditions (a)-(b), there exist a sequence {hi | i = 1, 2, 3, · · · } ⊂
(0, 1) and limiting functionm◦ ∈ L2(]− L,L[,R3) of one variable, such that:

(i) hi → 0,m(hi) → m◦ in L2(Ω,R3), E (hi)
(
m(hi)

)
→ E◦(m◦), and
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

√
α(hi)∂1m

(hi)(x1, x2, x3) →
√
α◦∂1m

◦(x1)
(
=

√
α◦∇m◦(x1)

)
,

√
α(hi)

hi
∂2m

(hi)(x1, x2, x3) → 0,
√
α(hi)

hi
∂3m

(hi)(x1, x2, x3) → 0,

(1.3.3)

for L1-a.e. x1 ∈]− L,L[ and L2-a.e. (x2, x3) ∈ B2(0, 1), as i→ ∞,

(ii) the limitm◦ solves the problem (P )◦,
where

{
m(h) | 0 < h < 1

}
is the sequence of minimizer m(h), 0 < h < 1, obtained in

Theorem 1.2.1.

Additionally, let us look toward the limiting observation for (1.2.2), as h → 0. As a innovative
work for this theme, we can refer to [14, Theorem 2.1], or [59, Sections 3], stated as follows.

Proposition 1.3.2. (Summary of [14, Theorem 2.1]) Let
{
m̃(h) | 0 < h < 1

}
⊂ L2(Ω,R3) be

a fixed sequence, such that m̃(h) → m̃ in L2(Ω,R3) as h → 0, for some m̃ = (m̃1, m̃2, m̃3) ∈
L2(Ω,R3). For any 0 < h < 1, let ζ(h) be the solution of the Maxwell equation (1.2.2) when
m = m̃(h). Let E(h)

mag the functional defined in (1.2.9), and let E◦
mag be functionals on L2(Ω,R3),

which is defined as:

E◦
mag(m) :=

1

2

ˆ
Ω

(
|m2|2 + |m3|2

)
dL3, (1.3.4)

for anym = (m1,m2,m3) ∈ L2(Ω,R3).

Then, 
∇ζ(h) → 0 in V,

1

h
∂2ζ

(h) → m̃2,
1

h
∂3ζ

(h) → m̃3 in L2(Ω,R3),

as h→ 0, (1.3.5)

and hence
E(h)

mag

(
m̃(h)

)
→ E◦

mag(m̃), as h→ 0.

Lemma 1.3.3. There exists a sequence {Iλ | λ = 1, 2, 3, · · · } ⊂ R of one-dimensional open
interval, such that:

∅ 6= I1 ⊂⊂ I2 ⊂⊂ I3 ⊂⊂ · · · ⊂⊂ Iλ ⊂⊂ · · · ⊂⊂]− L,L[\A◦
0 =

∞⋃
λ=1

Iλ.
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As a consequence, we infer that:
a◦λ := min

x∈Iλ
α◦(x) > 0, λ = 1, 2, 3, · · · ,

a◦λ → 0, as λ→ ∞;

with Iλ is a closed interval in R.

Proof of Lemma 1.3.3. This Lemma is directly similar of Lemma 1.2.7, made for the one-dimensional
situation. �

Remark 1.3.4. (See [42, Section 3 and Section 4])

(I) Similarly as in the Corollary 1.2.6, let us denote by H◦
α the effective domain of the convex

function Φ◦
α, given in (1.3.2). Then, H◦

α is a Hilbert space, endowed with the inner product:

(ξ,Λ)H◦
α
:=

ˆ
]−L,L[

ξ · ΛdL1 +

ˆ
]−L,L[\A◦

0

α◦∇ξ : ∇ΛdL1, for all ξ, Λ ∈ H◦
α.

Hence, the convex function Φ◦
α turns out to be proper and l.s.c on L2(]− L,L[,R3).

(II) As it is easily checked, the two convex functions Φ?
α and Φ◦

α, as in above assumption (I), Propo-
sition 1.2.5, and Corollary 1.2.6, coincide with as functionals on L2(]− L,L[,R3), namely:

Φ?
α(m) = Φ◦

α(m), ifm ∈ L2(]− L,L[,R3).

(III) If we assume that L1(A◦
0) = 0 and let us take any 2 < p ≤ ∞, we have

(i) Any bounded sequence inH◦
α∩Lp(]−L,L[,R3) is relatively compact inLp(]−L,L[,R3).

(ii) For any ε > 0, the sublevel set:

L(ε, E◦) :=
{
m ∈ L2(Ω,R3) | E◦(m) ≤ ε

}
,

is compact in L2(]− L,L[,R3).

Remark 1.3.5. Let us assume the condition (b), then the sequences
{
Ω

(h)
λ

}
, 0 < h < 1, can be

taking independently of h. In fact, since the condition (b) implies that:

(?) A
(h)
0 = A?

0, for any 0 < h < 1,
it easily to checked that for all of open sets, given as:

Ω?
λ := Iλ ×B2(0, 1), λ = 1, 2, 3, · · · ,



1.3 THE 3D − 1D ASYMPTOTIC ANALYSIS FOR THE OBSERVING
MINIMIZATION PROBLEM 39

have Lipschitz boundaries, and the sequence {Ω?
λ | λ = 1, 2, 3, · · · }.

(??) Let us take account of assumptions (a)-(b), Proposition 1.2.5, and assertion (?) we can show
that: L3

(
A

(h)
0

)
= L3(A?

0) = L1(A◦
0) = 0, Φ(h)

α ≥ Φ?
α on L2(Ω,R3) and hence H(h)

α ⊂ H?
α,

for any 0 < h < 1.

1.3.2 Proof of Theorem 1.3.1

The proof of this theorem will be a modification of the argument, discussed in [42] Section 4 and
Section 5.2.

We will do this proof in several steps. The first two steps will show that we call Γ-convergence
when h→ 0 of the functionalΦ(h)

α . In the third step we will show that when the radius of the ball
goes to zero the magnetization function converge to a limit function which has a single variable
and solves the problem (P )◦. Finally, in the last step, all we have to do is to show in which
meaning the pointwise convergence has asserted in (1.3.3).

At the beginning, in the Step 1 and Step 2, we deal with the Γ-convergence from Φ
(h)
α to Φ◦

α as
h → 0. We will show that under the conditions (a)-(b), the sequence

{
Φ

(h)
α | 0 < h < 1

}
of

convex function Γ-converge to the convex function Φ◦
α, on L2(Ω,R3), as h→ 0. More precisely,

by referring to [1, 20] this is equivalent to show that:

(γ1) lim inf
h→0

Φ(h)
α

(
µ(h)

)
≥ Φ(h)

α (µ), if
{
µ(h) | 0 < h < 1

}
⊂ L2(Ω,R3), µ ∈ L2(Ω,R3), and

µ(h) → µ in L2(Ω,R3) as h→ 0,

(γ2) for any ν ∈ H◦
α (⊂ L2(] − L,L[,R3)), there exists a sequence

{
µ
(h)
ν | 0 < h < 1

}
⊂

L2(Ω,R3), such that µ(h)
ν → ν in L2(Ω,R3) and Φ

(h)
α

(
µ
(h)
ν

)
→ Φ◦

α(ν), as h→ 0.

Indeed, firstly let us assume the assumption (??) in Remark 1.3.5.
Step 1. Verification of γ1. Let us take any sequence

{
µ(h) | 0 < h < 1

}
⊂ L2(Ω,R3) and any

µ ∈ L2(Ω,R3), such that:

µ(h) → µ weakly in L2(Ω,R3), as h→ 0. (1.3.6)

Then, it is enough to consider only the case when lim inf
h→0

Φ(h)
α

(
µ(h)

)
< ∞, since another case is

trivial. In this case we construct a sequence
{
ĥi | i = 1, 2, 3, · · ·

}
⊂ (0, 1) and a constantR1,
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independent of the index i ∈ N, such that:
ĥ2i+1 < ĥ2i <

1

2i
,

1

ĥ2i

ˆ
Ω\A?

0

α(ĥi)

(∣∣∣∂2µ(ĥi)
∣∣∣2 + ∣∣∣∂3µ(ĥi)

∣∣∣2) dL3 ≤ Φ(ĥi)
α

(
µ(ĥi)

)
≤ R1,

for i = 1, 2, 3, · · · ,

and
lim
i→∞

Φ(ĥi)
α

(
µ(ĥi)

)
= lim inf

h→0
Φ(h)

α

(
µ(h)

)
<∞. (1.3.7)

Here, taking into account (1.3.6)-(1.3.7) and Lemma 1.2.7,

∣∣∣∂2µ(ĥi)
∣∣∣2
L2(Ω?

λ,R3)
≤

Φ
(ĥi)
α

(
µ(ĥi)

)
a
(ĥi)
λ

ĥ2i ≤
R1

a
(ĥi)
λ

ĥ2i ≤
R1

a
(1/2i)
λ

ĥ2i → 0, as i→ ∞,

∂2µ = 0 in L2(Ω?
λ,R3),∣∣∣∂3µ(ĥi)

∣∣∣2
L2(Ω?

λ,R3)
≤

Φ
(ĥi)
α

(
µ(ĥi)

)
a
(ĥi)
λ

ĥ2i ≤
R1

a
(ĥi)
λ

ĥ2i ≤
R1

a
(1/2i)
λ

ĥ2i → 0, as i→ ∞,

∂3µ = 0 in L2(Ω?
λ,R3),

for λ = 1, 2, 3, · · · .

Therefore, it is possible to write µ as a function of one-variable µ̂(λ) ∈ L2(Iλ,R3), for any λ ∈ N∗,
such that:

µ(x1, x2, x3) = µ̂(λ)(x1), for L1-a.e. x1 ∈ Iλ and L2-a.e. (x2, x3) ∈ B2(0, 1).

Thereafter, let us set:

µ̂(x1) :=


µ̂(λ)(x1), if λ ∈ N and x1 ∈ Iλ,

0, otherwise,

for L1-a.e. x1 ∈]− L,L[.

Then with helps from (a)-(b) Fubini’s theorem and monotone convergence theorem, it is deduced



1.3 THE 3D − 1D ASYMPTOTIC ANALYSIS FOR THE OBSERVING
MINIMIZATION PROBLEM 41

that:

∞ > 1
π
|µ|2L2(Ω,R3) ≥

1
π
lim
λ→∞

ˆ
Ω?

λ

|µ|2dL3 =
1

π
lim
λ→∞

ˆ
B2(0,1)

ˆ
Iλ

|µ̂|2dL1dL2

=
1

π
lim
λ→∞

ˆ
B2(0,1)

ˆ
]−L,L[\A◦

0

χIλ|µ̂|2dL1dL2 =
1

π

ˆ
B2(0,1)

ˆ
]−L,L[\A◦

0

|µ̂|2dL1dL2 =

ˆ
]−L,L[

|µ̂|2dL1,

and ˆ
Ω

|µ− µ̂|2dL3 = lim
λ→∞

ˆ
B2(0,1)

ˆ
]−L,L[

χIλ|µ− µ̂|2dL1dL2

= lim
λ→∞

ˆ
B2(0,1)

ˆ
Iλ

|µ− µ̂|2dL1dL2 = 0.

Hence, the limit µ can be regarded as the functional µ̂ ∈ L2(]− L,L[,R3) of one-variable.

Now, taking into account of the assumptions (??) in Remark 1.3.5, Proposition 1.2.5 and (II) in
Remark 1.3.4, we conclude that:

lim inf
h→0

Φ(h)
α

(
µ(h)

)
≥ lim inf

h→0
Φ?

α

(
µ(h)

)
≥ Φ?

α(µ) = Φ◦
α(µ)

Step 2. Verification of γ2. Let ν ∈ H◦
α.Then, under (a)-(b), by constructing the required sequence{

µ
(h)
ν | 0 < h < 1

}
, we define:

µ(h)
ν = ν ∈ H?

α (= H(h)
α ) for any 0 < h < 1. (1.3.8)

Here, noting that: 
α(h) → α◦ in C(Ω), as h→ 0,∣∣α(h)

∣∣ (= α(h)
)
≤ Cαα

◦ on Ω, for any 0 < h < 1,
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Consequently, by applying dominated convergence theorem we obtain that:

Φ
(h)
α

(
µ
(h)
ν

)
=

ˆ
Ω\A?

0

α(h)|∇ν|2dL3 →
ˆ

Ω\A?
0

α◦|∇ν|2dL3

=

ˆ
]−L,L[\A◦

0

α◦|∇ν|2dL1 = Φ◦
α(ν) as h→ 0.

(1.3.9)

Remark 1.3.6. (See [42, Corollary 3 page 8] and according to [1, Lemma 2.3] ) Under same assump-
tion as in Step 1 and Step 2, the sequence

{
E (h) | 0 < h < 1

}
of free energy functionals converges

to the limiting one functional E◦, on L2(Ω,R3), in the sense of Γ-convergence, as h→ 0 if and only
if:

(i) lim inf
h→0

E (h)
(
µ(h)

)
≥ E (h)(µ), if

{
µ(h) | 0 < h < 1

}
⊂ L2(Ω,R3), µ ∈ L2(Ω,R3), and

µ(h) → µ (strong) in L2(Ω,R3), as h→ 0,

(ii) for any ν ∈ H◦
α (⊂ L2(]− L,L[,R3)), there exists a sequence

{
µ
(h)
ν | 0 < h < 1

}
⊂

L2(Ω,R3), such that µ(h)
ν → ν in L2(Ω,R3) and E (h)

(
µ
(h)
ν

)
→ E◦(ν), as h→ 0.

Step 3. Let us assume the conditions (a)-(b), and let us take a sequence
{
m(h) | 0 < h < 1

}
of minimizes of E (h), 0 < h < 1. Means that:

E (h)
(
m(h)

)
≤ E (h)(m), for allm ∈ L2(Ω,R3), and all 0 < h < 1. (1.3.10)

For any 0 < h < 1, let ζ(h)e? be the solution of the coupled Maxwell equation (1.2.2), whenm ≡ e?,
L3-a.e in Ω. Then, by (1.2.6) and (1.2.10) yields that E(h)

mag(e?) < 1, for any 0 < h < 1 (for details
see [42, Section 5.2]). In light of this, it is furthermore considered that:

Φ(h)
α

(
m(h)

)
≤ E (h)

(
m(h)

)
≤ E (h)(e?) = Φ(h)

α (e?) + |ϕ(e?)|L1(Ω) + E(h)
mag(e

?)

≤ ϕ(e?) + 1, for all 0 < h < 1. (1.3.11)

Due to (1.3.11), [42, Theorem 3.4 page 8] and the constraint onto L2(Ω,S2) as in (1.2.1), we find a
sequence

{
ȟi | k = 1, 2, 3, · · ·

}
⊂ (0, 1) and a limiting functionm◦ ∈ L2(Ω,S2), such that:

ȟi → 0, m
(
ȟi

)
→ m◦ in L2(Ω,R3),

ϕ
(
m(ȟi)

)
→ ϕ(m◦), in L1(Ω),

as i→ ∞. (1.3.12)
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Equally, considering (1.3.11) and Remark 1.3.6, it will be noted that:

Φ◦
α(m

◦) ≤ E◦(m◦) ≤ lim inf
i→∞

E (ȟi)
(
m(ȟi)

)
≤ ϕ(e?) + 1

and hencem◦ ∈ H◦
α ∩ L2(]− L,L[, S2). Moreover, by (1.3.8)-(1.3.9), we obtain that:

E◦(m◦) ≤ lim sup
i→∞

E (ȟi)
(
m(ȟi)

)
≤ lim

i→∞
E (ȟi)(m) = E◦(m),

for anym ∈ H◦
α ∩ L2(]− L,L[,S2),

and
E◦(m◦) ≤ lim inf

i→∞
E (ȟi)

(
m(ȟi)

)
≤ lim sup

i→∞
E (ȟi)(m) ≤ E◦(m◦).

It implies thatm◦ solves the limiting problem (P )◦ and it is deduced that:

E (h)
(
m(h)

)
→ E◦(m◦) as h→ 0.

Step 4. Now, we will to show that the pointwise convergence, asserted in (1.3.3). For this matter
we will used the argument discussed in the proof of [41, Theorem 4.1] and [42, Section 5.2].
Indeed, by (1.3.11) we have that E (h)

(
m(h)

)
≤ ϕ(e?) + 1, for all 0 < h < 1, where m(h) is the

energy minimizer and e? = (1, 0, 0) ∈ S2, Afterward∣∣∣√α(h)∂1m
(h)
∣∣∣2
L2(R3)

≤ D1,
1

h2
|
√
α(h)∇′m(h)|2L2(R3) ≤ D2, (1.3.13)

whereD1 andD2 are two fixed constants. It follows from (1.3.13) the existence of a subsequence{
ˇ̌hi | i = 1, 2, 3, · · ·

}
⊂ {ȟi} with a limiting function

√
α◦∂1m

◦ ∈ L2(Ω\A?
0), such that:

√
α(ˇ̌hi)∇m(ˇ̌hi) ⇀

√
α◦∇m◦,

√
α(ˇ̌hi)∇′m(ˇ̌hi) → 0, (1.3.14)

in L2(Ω\A?
0), as i → ∞. Furthermore, by the condition (a) and (1.3.14) we obtain that ∂2m◦ =

0, ∂3m◦ = 0 in L2(Ω\A?
0). To show that

√
α(ˇ̌hi)∂1m

(ˇ̌hi) converge strongly to
√
α◦∂1m

◦ in
L2(Ω\A?

0), we now compare E (ˇ̌hi)(m(ˇ̌hi)) to E (ˇ̌hi)(m◦):

ˆ
Ω\A?

0

α(ˇ̌hi)

(∣∣∣∂1m(ˇ̌hi)
∣∣∣2 + 1

ˇ̌h2i

∣∣∣∇′m(ˇ̌hi)
∣∣∣2) dL3 +

ˆ
Ω

ϕ(m(ˇ̌hi))dL3 + E(ˇ̌hi)
mag

(
m(ˇ̌hi)

)
≤
ˆ

Ω\A?
0

α(ˇ̌hi)|∂1m◦|2dL3 +

ˆ
Ω

ϕ(m◦)dL3 + E(ˇ̌hi)
mag(m

◦).
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By Proposition 1.3.2 (for m̃ = m◦) and (1.3.12), simplifies to
ˆ

Ω\A?
0

α(ˇ̌hi)

(∣∣∣∂1m(ˇ̌hi)
∣∣∣2 + 1

ˇ̌h2i

∣∣∣∇′m(ˇ̌hi)
∣∣∣2) dL3 ≤

ˆ
Ω\A?

0

α(ˇ̌hi)|∂1m◦|2dL3 + o (1). (1.3.15)

From the first part of (1.3.14), we can write
√
α(ˇ̌hi)∂1m

(ˇ̌hi) =
√
α◦∂1m

◦ + g(
ˇ̌hi) with g(

ˇ̌hi) ⇀ 0 in
L2(Ω). Substituting this expression into the left-hand side of (1.3.15), it follows that

ˆ
Ω\A?

0

α◦|∂1m◦|2 + 2
√
α◦∂1m

◦.g(
ˇ̌hi) + |g(

ˇ̌hi)|2 + α(ˇ̌hi)

ˇ̌h2i

∣∣∣∇′m(ˇ̌hi)
∣∣∣2 dL3

≤
ˆ

Ω\A?
0

α(ˇ̌hi)|∂1m◦|2dL3 + o (1), (1.3.16)

this is equivalent to write (1.3.16) as:

ˆ
Ω\A?

0

(
α◦ − α(ˇ̌hi)

)
|∂1m◦|2 + 2

√
α◦∂1m

◦.g(
ˇ̌hi) + |g(

ˇ̌hi)|2 + α(ˇ̌hi)

ˇ̌h2i

∣∣∣∇′m(ˇ̌hi)
∣∣∣2 dL3 ≤ o (1) .

(1.3.17)

Here, we can easily checked by applying Lebesgue’s dominated convergence theorem that the
first term in (1.3.17) tends to zero, for the situation that:

α(ˇ̌hi)|∂1m◦|2 → α◦|∂1m◦|2,

α(ˇ̌hi)|∂1m◦|2 ≤ Cαα
◦|∇m◦|2,

L3-a.e. in Ω\A?
0,

since g(
ˇ̌hi) ⇀ 0, the second term in (1.3.17) tends to zero and, therefore,

ˆ
Ω\A?

0

∣∣∣g(ˇ̌hi)
∣∣∣2 dL3 → 0,

1
ˇ̌h2i

ˆ
Ω\A?

0

α(ˇ̌hi)
∣∣∣∇′m(ˇ̌hi)

∣∣∣2 dL3 → 0, (1.3.18)

thus (1.3.18) with (a) and L1(A◦
0) = 0, implies√

α(ˇ̌hi)∂1m
(ˇ̌hi) →

√
α◦∂1m

◦,
1
ˇ̌hi

√
α(ˇ̌hi)∂2m

(ˇ̌hi) → 0 and
1
ˇ̌hi

√
α(ˇ̌hi)∂3m

(ˇ̌hi) → 0, (1.3.19)

in L2(Ω\A?
0), as i→ ∞.

On account of (a)-(b) and L1(A◦
0) = 0, the above convergence (1.3.19) implies the existence of a

subsequence {hi | i = 1, 2, 3, · · · } ⊂
{
ˇ̌hi

}
⊂
{
ȟi
}
, satisfying (1.3.3). �
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Abstract. In this Chapter we study the asymptotic behavior of the solutions of time dependent
micromagnetism problem in a multi-structure consisting of two joined nano-wires. We assume
that the volumes of the two parts composing the multi-structure vanish with same rate. We
obtain two 1D limit problems coupled by a junction condition on the magnetization. The limit
problem remains non-convex, but now it becomes completely local.
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2.1 Introduction

According to the classical theory ofWeiss (1907), perfectioned by Landau and Lifshitz in 1935 (see
[50] and for a modern analysis see [9]), on a microscopic scale a ferromagnetic body is magnet-
ically saturated and is composed by uniformly magnetized regions separated by thin transition
layers. The phenomena can be described by amagnetization field, defined on the domain in which
the material is confined. The magnetization field on a microscopic scale has a fixed modulus and
variable orientations. Then, the system can be studied through the functional representing its
magnetic energy. This energy consists in several terms: the so called exchange energy, which
contains the space derivative of the magnetization field and is peculiar to ferromagnetic behav-
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ior, a term corresponding to magnetic anisotropy, and another one depending on the magnetic
field, which is related to the magnetization via the equations of magnetostatic. Precisely, let

Ωa
n = ]−hn, 0[2 × [0, 1[, Ωb,l

n =]0, 1[× ]−hn, 0[2 , Ωb,r
n = ]−hn, 0]3 n ∈ N,

Ωn = Ωa
n ∪ Ωb,l

n ∪ Ωb,r
n , n ∈ N,

(2.1.1)

be a 3D ferromagnetic multidomain consisting of two orthogonal joined nano-wires (see Fig.2.1),
with {hn}n∈N ⊂]0, 1[ be a vanishing sequence of positive numbers tending to zero, as n diverges.
Let us suppose that the body is homogeneous, isotropic and has uniform temperature. As usual

Figure 2.1: Ωn

let us introduce the magnetizationMn, the magnetic fieldHMn determined byMn and the scalar
potential UMn for this field (i.e.H(Mn) ≡ −DUMn). Let us denote byMn the extension by zero of
Mn outsideΩn. Then the magnetic inductionBn and the magnetic fieldH(Mn) are connected by
the relations Bn = −DUMn +Mn. Moreover, the static Maxwell equation and the magnetostatic
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equation (Faraday law) hold:
∇×DUMn = 0,

div
(
−DUMn +Mn

)
= div (Bn) = 0 .

(2.1.2)

In the quasi-stationary case, the system is governed by Landau-Lifshitz equation (see [12] and
[63]) 

|Mn (x)| = 1 in Ωn,

∂Mn

∂t
+Mn ∧

∂Mn

∂t
= 2Mn ∧ (∆Mn −DUMn) in Ωn×]0, T [,

Mn (0, x) =M0n (x) in Ωn,

UMn andMn linked by (2.1.2) for every t,

(2.1.3)

where |M0n (x)| = 1 in Ωn.
In this work we study the asymptotic behavior of a system governed by the Landau-Lifshitz
equation consisting of two joined roads when the thicknesse hn converges to zero. So we attempt
to simulate the behaviour of two joined nanowires. The existence result for this problem is proved,
in a more general case, in [63, Theorem 2] and in [12, Section 3 and Section 5]. We observe
(see [12, 63]) that the corresponding configuration satisfies an energy estimate. After having
reformulated on a fixed domain

Ωa = ]−1, 0[2 × [0, 1[ , Ωb,l = ]0, 1[× ]−1, 0[2 , Ωb,r = ]−1, 0[3

Ω = Ωa ∪ Ωb,l ∪ Ωb,r,

(2.1.4)

through appropriate rescalings of the kind proposed by Ciarlet and Destuynder [17], we derive
the limit problem. Precisely, in Theorem 2.3.1, assuming that the initial energy is an O(h2n), we
prove that the solutions of (2.1.3) converge in mean square, for every t, up to a subsequence, to
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solutions of the following limit problem

∂µa

∂t
+

(
µa ∧ ∂µa

∂t

)
= 2µa ∧

(
∂2µa

∂x23
− ((µa, e1)Υ1 + (µa, e2)Υ2)

)
in ]0, T [×]0, 1[,

∂µb,l

∂t
+

(
µb,l ∧ ∂µb,l

∂t

)
= 2µb,l ∧

(
∂2µb,l

∂x21
−
(
(µb,l, e2)Υ

′
1 + (µb,l, e3)Υ

′
2

))
in ]0, T [×]0, 1[,

µa (0, x3) = µa
0 (x) , in ]0, 1[ ,

µb,l (0, x1) = µb,l
0 (x) in ]0, 1[ ,

(µa)′ (0) =
(
µb,l
)′
(0) ,

|µa| = 1 for x in ]0, 1[ ,
∣∣µb,l

∣∣ = 1 for x in ]0, 1[ ,

µa (0) = µb,l (0) ,

(2.1.5)
where e1 = (1, 0), e2 = (0, 1), Υ1(ε1, ε2, 0), Υ2(−ε2, ε1, 0), Υ′

1(0, ε1, ε2) and Υ′
2(0,−ε2, ε1), with

ε1, ε2 constant depending on the geometry of the problem.

We obtain, two 1D limit problems coupled by junction condition on the magnetization µa(0) =

µb,l(0). The paper is organize as follows: in Section 2.2, we recall the definition and some proper-
ties of the Beppo Levi space onR2; in Section 2.3 we give themain result; in Section 2.4 we identify
the limit of the magnetostatic energy; in Section 2.5 we gives the case of single wire. While it is
quite classical in the thin film, where only the component of the magnetization orthogonal to the
film appears (see [24]), it become more complicated in the wire where the following combination
of the two components of the magnetization with coefficient involving solutions of PDE in Beppo
Levi space on R2 intervene. These coefficient depend on the geometry of the cross section of the
wire. To this aim we have to use different rescaling and symmetry arguments which take into
account the geometry and that the limit problem will be coupled (see [35]).
As the case wire-wire is concerned, where a singular point appears due to a strong variation of
its derivatives, we remark that its behavior reduces to the behavior of a single wire.

Problems of dimension reduction in magnetostatic were treated by several authors. A pioneering
work is the paper of Stoner and Wohlfarth (1948). A rigorous treatment in this case was given by
De Simone [27]. Carbou treated the case of magnetic wire in ([14], [15]) and the case of thin films
again in [13], see also [42] and [48]. Other regimes are considered in [25] and [26] in the case of the
films. In [34] and [35] Gaudiello and Hadiji studies the behavior of minimizers of free energy in a
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multidomain. In what concerns the study of a ferroelectric materials see also ([36],[37]). See [11],
[33], [38], [39], for junction 3D− 1D, and [32] for junction 1D− 1D. For other recent problems
with thin multistructures, see also [40], [30] and [31]. As Gioia and James [41] in the station-
ary case, Carbou in [13] studies the limit behavior of the isotropic ferromagnetic films when the
thicknesses goes to zero, in the quasy stationary case. Other similar problems are studied by Am-
mari et al. [4]. The homogenization of the Landau-Lifschitz equation in periodically perforated
domain was studied in [57]. In [23] and in [24], the authors study the asymptotic behavior of the
solutions of time dependent micromagnetism problem in a multi-domain consisting of two joined
ferromagnetic thin films, different regimes depending on the limit of the ratio between the small
thickness of the two films were considered.

2.2 Preliminaries

Let
W 1(R2) =

{
φ ∈ L2

loc(R2) : Dφ ∈
(
L2(R2)

)2}
/R

equipped with the inner product

(φ1, φ2) ∈ W 1(R2)×W 1(R2) →
ˆ

R2

Dφ1Dφ2dydz, (2.2.1)

where (y, z) denote the coordinates in R2. It is well known thatW 1(R2) is a Hilbert space (see
[22], Corol. 1.1) and it is separable. Consequently, if S ⊂ R2 is a bounded open set , every one of
the following problems

p ∈ W 1(R2),

ˆ

R2

DpDφdydz =

ˆ

S

Dyφ dydz, ∀φ ∈ W 1(R2),

(2.2.2)


q ∈ W 1(R2),

ˆ

R2

DqDφdydz =

ˆ

S

Dzφ dydz, ∀φ ∈ W 1(R2),

(2.2.3)
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pk ∈ W 1(R2),

ˆ

R2

DpkDφdydz =

ˆ

S

kDφdydz, ∀φ ∈ W 1(R2),

(2.2.4)

with k = (k1, k2) ∈ R2 admits a unique solution which obviously depends on S. Then, we set

α(S) =

ˆ

R2

|Dp|2dydz, β(S) =

ˆ

R2

|Dq|2dydz, γ(S) = 2

ˆ

R2

DpDqdydz, (2.2.5)

where (y, z) denotes the coordinates in R2.

We remark that if S is sufficiently smooth, problems (2.2.2), (2.2.3) and definitions (2.2.5) are
equivalent respectively to

p ∈ W 1(R2),

∆p = 0 in S, ∆p = 0 in R2 \ S,[
∂p

∂ν

]
= νe1 on ∂S,



q ∈ W 1(R2),

∆q = 0 in S, ∆q = 0 in R2 \ S,[
∂q

∂ν

]
= νe2 on ∂S,

(2.2.6)

where ν the exterior unit normal to ∂S,
[
∂·
∂ν

]
the jump of ∂·

∂ν
on ∂S, and e1 = (1, 0), e2 = (0, 1),

and 

α(S) =

ˆ

∂S

pνe1ds, β(S) =

ˆ

∂S

qνe2ds,

γ(S) = 2

ˆ

∂S

qνe1ds = 2

ˆ

∂S

pνe2ds =

ˆ

∂S

qνe1ds+

ˆ

∂S

pνe2ds

ε(S) =

ˆ

S

Dpdydz, δ(S) =

ˆ

S

Dqdydz.

(2.2.7)

For instance, if S = {(x1, x2) ∈ R2 : x21+x
2
2 < 1}, p and q can be explicitly computed (a formula

can be found in [[56], p. 177], it result that α(S) = β(S) =
π

2
and γ(S) = 0.
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In the sequel, we shall use the following results.

Lemma 2.2.1. Let p and q be the unique solutions of (2.2.2) and (2.2.3), respectively. Then,
i) for every k = (k1, k2) ∈ R2, the unique solution pk of (2.2.4) is given by:

pk = k1p+ k2q;

ii)Dp and Dq are linearly independent;
iii) for every k = (k1, k2) ∈ R2, it holds

ˆ

S

|k1Dp+ k2Dq|2 dydz =
ˆ

S

(k1Dp+ k2Dq) (k1, k2)dydz = k1α (S)+k2β (S)+2k1k2γ (S) .

(2.2.8)

Proof. Let k1, k2 ∈ R be such that

k1Dp+ k2Dq = 0, a.e. in R2.

Then, comparing (2.2.2) with (2.2.3), one obtains that
ˆ

S

(k1Dyφ+ k2Dzφ) dydz = 0, ∀φ ∈ W 1(R2),

which provides k1 = k2 = 0. �

Lemma 2.2.2. Let be S =]− 1, 0[2, then

α(S) = β(S), γ(S) = 0,

and
ε(S) = (ε1(S), ε2(S)) , δ(S) = (δ1(S), δ2(S))),

with
δ1(S) = −ε2(S), δ2(S) = ε1(S) (2.2.9)

Proof. Let us observe that the functions p and q, solutions of the problems (2.2.6) for S =]−1, 0[2,

are obtained by traslation of the solutions of the problems (2.2.6) for S =]− 1

2
,
1

2
[2. Moreover, the

solutions p and q related to this set are a rotated the other (to fix the idea q is the rotated function

of p) with respect θ = π
2
. Then, q = p(x2,−x1) and Dq = (− ∂p

∂x2
,
∂p

∂x1
). Hence, α(S) = β(S),

γ(S) = 0, ε(S) = (ε1(S), ε2(S)) and δ(S) = (−ε2(S), ε1(S)). �



52
CHAPTER 2: JUNCTION OF QUASI-STATIONARY FERROMAGNETIC THIN

MULTI-STRUCTURES

We recall the Poincaré Lemma (which is well known if the domain is bounded).

Lemma 2.2.3. Let ξ ∈ (L2(R2))
2 such that rot ξ = 0. Then, there exists a unique w ∈ W 1(R2)

such that ξ = Dw.

Proof. The fact that rot ξ = 0 provides the existence of T ∈ D′(R2) such that ξ = DT , and T is
unique up to a constant (see [58, Ch. II, Th. VI, page 59]). On the other hand, since ξ ∈ (L2(R2))

2,
Kryloff Theorem assures that T ∈ L2

loc(R2) (see [58, Ch. VI, Th. XV, page 181]). �

The following result was suggested by F. Murat [53].

Proposition 2.2.1. Let u ∈ L2
loc(R2) be such that Du ∈ (L2(R2))

2. Then, there exist a sequence
{ϕn}n∈N ⊂ C∞

0 (R2) such that Dϕn → Du strongly in (L2(R2))
2.

2.3 Statement of the problem and main results

In the sequel, x = (x1, x2, x3) denotes the generic point of R3. If η1, η2, η3 ∈ R3, then (η1|η2|η3)
denotes the 3 × 3 real matrix having ηT1 as first column, ηT2 as second column, and ηT3 as third
column. In according to this notation, if v : A ⊂ R3 → R3, thenDv denotes the 3×3 real matrix
(Dx1v|Dx2v|Dx3v), where Dxi

v ∈ R3, i=1,2,3, stands for the derivative of v with respect to xi.
More precisely, let {hn}n∈N ⊂]0, 1[ be sequence. For every n ∈ N, set

Ωa
n =]− hn, 0[

2×[0, 1[, Ωb,l
n =]0, 1[×]− hn, 0[

2, Ωb,r
n =]− hn, 0]

3 and Ωn = Ωa
n ∪ Ωb,l

n ∪ Ωb,r
n ,

which approximates two joined wires as in Figure 2.1.

Let B =]− 2, 2[3, and set

U =

U ∈ L1
loc

(
R3
)
: U ∈ L2 (B) , DU ∈

(
L2
(
R3
))3

,

ˆ

B

Udx = 0

 . (2.3.1)

It is easy to prove that U is contained in L2
loc (R3) and it is an Hilbert space with the inner product

(U, V ) =

ˆ

R3

DUDV dx +

ˆ

B

UV dx. Moreover, from Poincaré-Wirtinger inequality it follows

that a norm on U equivalent to (U,U)
1
2 is given by

ˆ
R3

|DU |2 dx

 1
2

.
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LetM ∈ L2(Ωn,R3) then the following problem

UM ∈ U ,
ˆ

R3

DUMDU =

ˆ

Ωn

MDUdx ∀U ∈ U , (2.3.2)

admits a unique solution UM ∈ U . This solution is characterized as the unique minimizer of the
following problem:

min

1

2

ˆ

R3

∣∣DU −M
∣∣2 dx : U ∈ U

 , (2.3.3)

where as usualM denotes the zero extension ofM in R3\Ωn.Moreover UM ∈ H1 (R3) up to an
additive constant, see [47].

FixedM0n ∈ H1 (Ωn, S
2), (U0n ∈ U being the corresponding solution of Problem (2.3.2)), in [12],

[24] and [63] it is proved that there exists at least a weak solutionMn of the following problem



Mn ∈ L∞ (0, T ;H1 (Ωn,R3)) ∩ C ([0, T ] ;L2 (Ωn,R3)) ,

|Mn| = 1 a.e. in [0, T ]× Ωn,
∂Mn

∂t
∈ L2 (0, T ;L2(Ωn,R3)) ,

∀ χ ∈ D(0, T ), and ψ ∈ H1 (Ωn,R3)

Tˆ

0

ˆ

Ωn

(
∂Mn

∂t
+Mn ∧

∂Mn

∂t

)
χψdxdt = −2

Tˆ

0

ˆ

Ωn

3∑
i=1

(Mn ∧Dxi
Mn) (Dxi

ψ)χdxdt

−2

Tˆ

0

ˆ

Ωn

(Mn ∧DUMn)χψdxdt,

Mn(0, x) =M0n(x), a.e.x in Ωn,

UMn andMn linked by (2.3.2) for every t ∈ [0, T ].

(2.3.4)
Moreover, it satisfies the following energy estimate:

E (Mn(t, ·)) +
tˆ

0

∥∥∥∥∂Mn

∂t

∥∥∥∥2
(L2(Ωn))

3

ds ≤ E (Mn(0, ·)) = E (M0n) , for a.e. t ∈ [0, T ] , (2.3.5)



54
CHAPTER 2: JUNCTION OF QUASI-STATIONARY FERROMAGNETIC THIN

MULTI-STRUCTURES

where for every t ∈ [0, T ]

E (Mn(t, ·)) =
ˆ

Ωn

|DMn (t, x)|2 dx+
1

2

ˆ

R3

|DUMn (t, x)|
2 dx,

is the magnetic energy. Here, the terms Eexc
n =

ˆ

Ωn

|DMn(t, x)|2 dx is the exchange energy and

Emag
n =

1

2

ˆ

R3

|DUMn(t, x)|
2 dx corresponds to the magnetostatic energy.

In what follows let us assume that

Eexc (M0n) = O
(
h2n
)
, ∀n ∈ N. (2.3.6)

Remark 2.3.1. By density argument (for instance, see [46, Lemma 1.9 pag. 39] and also [29]),
Problem (2.3.4) is equivalent to that obtained by choosing as test function Φ ∈ D

(
]0, T [× Ω

)
.

Namely, setting

Ωa =]− 1, 0[2×[0, 1[, Ωb,l =]0, 1[×]− 1, 0[2, Ωb,r =]− 1, 0[3,

let us introduce the following space

W =
{
(µa, µb,l) ∈ H1 (Ωa,R3)×H1(Ωb,l,R3) : µa is independent of (x1, x2),

µb,l is independent of (x2, x3), µa(0) = µb,l(0)
}
'

{
(µa, µb,l) ∈ H1 (]0, 1[,R3)×H1 (]0, 1[,R3) : µa(0) = µb,l(0)

}
.

(2.3.7)

Moreover, we can pose

M=W ∩
{
H1 (Ωa, S2)×H1

(
Ωb,l, S2

) }
, (2.3.8)

which explicitely takes into account the condition |µ| = 1. Then, the equivalent 3D variational
formulation of the Problem (2.1.5) is the following one:
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

µ = (µa, µb,l) ∈ L∞ (0, T ;M) ∩ C
(
[0, T ] ;L2 (Ωa,R3)× L2

(
Ωb,l,R3

))
,

∂µ

∂t
∈ L2

(
0, T ;L2 (Ωa,R3)× L2

(
Ωb,l,R3

))
,

∀ χ ∈ D(0, T ) andψ = (ψa, ψb,l) ∈ W ,

Tˆ

0

ˆ

Ωa

(
∂µa

∂t
+ µa ∧ ∂µa

∂t

)
χψadxdt+

Tˆ

0

ˆ

Ωb,l

(
∂µb,l

∂t
+ µb,l ∧ ∂µb,l

∂t

)
χψb,ldxdt =

−2

Tˆ

0

ˆ

Ωa

µa ∧ ∂µa

∂x3

∂ψa

∂x3
χdxdt− 2

Tˆ

0

ˆ

Ωb,l

µb,l ∧ ∂µb,l

∂x1

∂ψb,l

∂x1
χdxdt

−2

Tˆ

0

ˆ

Ωa

µa ∧ ((µa, e1)Υ1 + (µa, e2)Υ2)χψ
adxdt− 2

Tˆ

0

ˆ

Ωb,l

µb,l ∧
(
(µb,l, e2)Υ

′
1 + (µb,l, e3)Υ

′
2

)
χψb,ldxdt,

µa(0, x) = µa
0(x), a.e. x in Ωa, µb,l(0, x) = µb,l

0 (x), a.e. x in Ωb,l, µ0 = (µa
0, µ

b,l
0 ) ∈ M,

(2.3.9)
where Υ1 = (ε1, ε2, 0), Υ2 = (−ε2, ε1, 0), Υ′

1 = (0, ε1, ε2) and Υ′
2 = (0,−ε2, ε1, ), with ε1, ε2

constant depending on S =]− 1, 0[2. To Problem (2.3.9), for a.e. t ∈ [0, T ], the following energy
will be associated,

E (t) +

tˆ

0

∥∥∥∥∂µa

∂t

∥∥∥∥2
(L2(]0,1[))3

ds+

tˆ

0

∥∥∥∥∂µb,l

∂t

∥∥∥∥2
(L2(]0,1[))3

ds , (2.3.10)

where

E(t) =

1ˆ

0

∣∣∣∣∂µa

∂x3

∣∣∣∣2 dx3 +
1ˆ

0

∣∣∣∣∂µb,l

∂x1

∣∣∣∣2 dx1+
1

2
α
(
]−1, 0[2

) 1ˆ

0

|µa
1|2 + |µa

2|2dx3 +
1

2

1ˆ

0

|µb,l
2 |2 + |µb,l

3 |2dx1

 ,
(2.3.11)

α
(
]−1, 0[2

)
is defined by (2.2.5) with S =

(
]−1, 0[2

)
. Here, the term

Eexc (t) =

1ˆ

0

∣∣∣∣∂µa

∂x3

∣∣∣∣2 dx3 +
1ˆ

0

∣∣∣∣∂µb,l

∂x1

∣∣∣∣2 dx1, (2.3.12)
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can be considered an exchange energy and the term

Emag (t) =
1

2
α
(
]−1, 0[2

) 1ˆ

0

|µa
1|2 + |µa

2|2dx3 +
1

2

1ˆ

0

|µb,l
2 |2 + |µb,l

3 |2dx1

 , (2.3.13)

can be considered the equivalent of a magnetostatic energy.

Theorem 2.3.1. Suppose thatM0n ∈ H1 (Ωn, S
2) and (2.3.6) holds, for every n ∈ N. LetMn be

a solution of Problem (2.3.4) .Then, there exist an increasing sequence of positive integer numbers
{ni}i∈N, still denoted by {n}, µ0 =

(
µa
0, µ

b,l
0

)
∈ M, µ = (µa, µb,l) ∈ L∞ (0, T ;M), depending on

the selected subsequence such that:

 

Ωa
n

|M0n(x1, x2, x3)− µa
0(x3)|

2 dx→ 0,

 

Ωb,l
n

∣∣∣M0n(x1, x2, x3)− µb,l
0 (x1)

∣∣∣2 dx→ 0,

 

Ωb,r
n

|M0n(x1, x2, x3)− µa
0(0)|

2 dx→ 0,

(2.3.14)

as n diverges, for every t ∈ [0, T ]

 

Ωa
n

|Mn(t, x1, x2, x3)− µa(t, x3)|2 dxdt→ 0,

 

Ωb,l
n

∣∣Mn(t, x1, x2, x3)− µb,l(t, x1)
∣∣2 dxdt→ 0,

(2.3.15)

as n diverges, where µ = (µa, µb,l) is a solution of Problem (2.3.9).
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2.4 The rescaled problem

By setting 

R3
a = {(x1, x2, x3) ∈ R3 : x3 > 0},

R3
b,l = {(x1, x2, x3) ∈ R3 : x3 < 0, x1 > 0},

R3
b,r = {(x1, x2, x3) ∈ R3 : x3 < 0, x1 < 0},

for everyn ∈ N, problem (2.3.4) is reformulated on a fixed domain through the following rescaling

Tn : (x1, x2, x3) ∈ R3 → Tn(x1, x2, x3) =



(hnx1, hnx2, x3), if (x1, x2, x3) ∈ R3
a,

(x1, hnx2, hnx3), if (x1, x2, x3) ∈ R3
b,l,

(hnx1, hnx2, hnx3), if (x1, x2, x3) ∈ R3
b,r.

(2.4.1)

Namely, setting

Ba
n =

]
− 2

hn
,
2

hn

[2
×]0, 2[, Bb,l

n =]0, 2[×
]
− 2

hn
, 0

[2
, Bb,r

n =

]
− 2

hn
, 0

[3
, n ∈ N,
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the space U defined in (2.3.1) is rescaled in the following

Un =

{
(ua, ub,l, ub,r) ∈ L1

loc(R3
a)× L1

loc(R3
b,l)× L1

loc(R3
b,r) :

(ua|Ba
n
, ub,l|

B
b,l
n

, ub,r|
B
b,r
n

) ∈ L2(Ba
n)× L2(Bb,l

n )× L2(Bb,r
n ),

(Dua, Dub,l, Dub,r) ∈ (L2(R3
a))

3 × (L2(R3
b,l))

3 × (L2(R3
b,r))

3,

ˆ
Ba

n

uadx+

ˆ
Bb,l

n

ub,ldx+ hn

ˆ
Bb,r

n

ub,rdx = 0,

ua(x1, x2, 0) = ub,l(hnx1, x2, 0), for (x1, x2) a.e. in ]0,+∞[×R,

ua(x1, x2, 0) = ub,r(x1, x2, 0), for (x1, x2) a.e. in ]−∞, 0[×R,

ub,l(0, x2, x3) = ub,r(0, x2, x3), for (x2, x3) a.e. in R×]−∞, 0[

}
.

(2.4.2)

Then, for every (ma,mb,l,mb,r) ∈ L2(Ωa,R3)×L2(Ωb,l,R3)×L2(Ωb,r,R3), the following equation

(ua, ub,l, ub,r) ∈ Un,

ˆ
R3
a

(
1

hn
Dx1u

a,
1

hn
Dx2u

a, Dx3u
a

)(
1

hn
Dx1v

a,
1

hn
Dx2v

a, Dx3v
a

)
dx+

ˆ
R3
b,l

(
Dx1u

b,l,
1

hn
Dx2u

b,l,
1

hn
Dub,l

)(
Dx1v

b,l,
1

hn
Dx2v

b,l,
1

hn
Dx3v

b,l

)
dx+

1

hn

ˆ
R3
b,r

(
Dx1u

b,r, Dx2u
b,r, Dx3u

b,r
) (
Dx1v

b,r, Dx2v
b,r, Dx3v

b,r
)
dx =

ˆ
Ωa

(
1

hn
Dx1v

a,
1

hn
Dx2v

a, Dx3v
a

)
madx+

ˆ
Ωb,l

(
Dx1v

b,l,
1

hn
Dx2v

b,l,
1

hn
Dx3v

b,l

)
mb,ldx+

ˆ
Ωb,r

(
Dx1v

b,r, Dx2v
b,r, Dx3v

b,r
)
mb,rdx, ∀(va, vb,l, vb,r) ∈ Un,

(2.4.3)

which rescales equation (2.3.2), admits a unique solution. We note that (ua, ub,l, ub,r) belongs to
H1(R3

a)×H1(R3
b,l)×H1(R3

b,r) up to an additive constant.
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For every n ∈ N, let us consider the following space

Wn =
{

(ma,mb,l,mb,r) ∈ H1(Ωa,R3)×H1(Ωb,l,R3)×H1(Ωb,r,R3) :

ma(x1, x2, 0) = mb,r(x1, x2, 0), for (x1, x2) a.e. in ]− 1, 0[2,

mb,l(0, x2, x3) = mb,r(0, x2, x3), for (x2, x3) a.e. in ]− 1, 0[2
}
,

(2.4.4)

For simplicity of notation, let us introduce the space

Mn = Wn ∩
{
H1 (Ωa, S2)×H1

(
Ωb,l, S2

)
×H1

(
Ωb,r, S2

)}
, (2.4.5)

which explicitly takes into account the condition |m| = 1. Let m0n =
(
ma

0n,m
b,l
0n,m

b,r
0n

)
∈ Mn,

then, there exists at least a solutionmn of the following rescaled problem
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

mn =
(
ma

n,m
b,l
n ,m

b,r
n

)
∈ L∞ (0, T ;Mn) ∩ C

(
[0, T ] ;L2 (Ωa,R3)× L2

(
Ωb,l,R3

)
× L2

(
Ωb,r,R3

))
,

∂mn

∂t
=

(
∂ma

n

∂t
,
∂mb

n

∂t

)
∈ L2

(
0, T ;L2 (Ωa,R3)× L2

(
Ωb,l,R3

)
× L2

(
Ωb,r,R3

))
,

∀ χ ∈ D (0, T ) and ψ =
(
ψa, ψb,l, ψb,r

)
∈ Wn,

Tˆ

0

ˆ

Ωa

(
∂ma

n

∂t
+ma

n ∧
∂ma

n

∂t

)
χψadxdt+

Tˆ

0

ˆ

Ωb,l

(
∂mb,l

n

∂t
+mb,l

n ∧ ∂mb,l
n

∂t

)
χψb,ldxdt

+hn

Tˆ

0

ˆ

Ωb,r

(
∂mb,r

n

∂t
+mb,r

n ∧ ∂mb,r
n

∂t

)
χψb,rdxdt =

−2

Tˆ

0

ˆ

Ωa

[
2∑

i=1

ma
n ∧

1

hn
Dxi

ma 1

hn
(Dxi

ψa)χ+ma
n ∧Dx3m

a
n (Dx3ψ

a)χ

]
dxdt

−2

Tˆ

0

ˆ

Ωa

ma
n ∧

(
1

hn
Dx1u

a
mn
,
1

hn
Dx2u

a
mn
, Dx3u

a
mn

)
χψadxdt

−2

Tˆ

0

ˆ

Ωb,l

[
mb,l

n ∧Dx1m
b
(
Dx1ψ

b,l
)
χ+

3∑
i=2

mb,l
n ∧ 1

hn
Dxi

mb,l
n

1

hn

(
Dxi

ψb,l
)
χ

]
dxdt

−2hn

Tˆ

0

ˆ

Ωb,r

[
3∑

i=1

mb,r
n ∧ 1

hn
Dxi

mb,r
n

1

hn

(
Dxi

ψb,r
)
χ

]
dxdt

−2

Tˆ

0

ˆ

Ωb,l

mb,l
n ∧

(
Dx1u

b,l
mn
,
1

hn
Dx2u

b,l
mn
,
1

hn
Dx3u

b,l
mn

)
χψb,ldxdt

−2hn

Tˆ

0

ˆ

Ωb,r

mb,r
n ∧

(
1

hn
Dx1u

b,r
mn
,
1

hn
Dx2u

b,r
mn
,
1

hn
Dx3u

b,r
mn

)
χψb,rdxdt,

ma
n(0, x) = ma

0n (x) , a.e.x in Ωa, mb,l
n (0, x) = mb,l

0n (x) , a.e. x in Ωb,l,

mb,r
n (0, x) = mb,r

0n (x) , a.e. x in Ωb,r,

umn andmn are linked by (2.4.3) for every t ∈ [0, T ].

(2.4.6)
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Moreover it satisfies the following energy estimate:

En (t) +

tˆ

0

∥∥∥∥∂ma
n

∂t

∥∥∥∥2
(L2(Ωa))3

ds+

tˆ

0

∥∥∥∥∂mb,l
n

∂t

∥∥∥∥2(
L2

(
Ωb,l

))3 ds+ hn

tˆ

0

∥∥∥∥∂mb,r
n

∂t

∥∥∥∥2(
L2

(
Ωb,r

))3 ds

≤ En (0) = E (m0n) , for a.e. t ∈ [0, T ] ,

(2.4.7)
where, for a.e. t ∈ [0, T ]:

En (t) =

ˆ

Ωa

∣∣∣∣( 1

hn
Dx1m

a
n,

1

hn
Dx2m

a
n, Dx3m

a
n

)∣∣∣∣2 dx+ 1

2

ˆ

R3
a

∣∣∣∣( 1

hn
Dx1u

a
mn
,
1

hn
Dx2u

a
mn
, Dx3u

a
mn

)∣∣∣∣2 dx
+

ˆ

Ωb,l

∣∣∣∣(Dx1m
b,l
n ,

1

hn
Dx2m

b,l
n ,

1

hn
Dx3m

b,l
n

)∣∣∣∣2 dx
+
1

2

ˆ

R3
b,l

∣∣∣∣(Dx1u
b,l
mn
,
1

hn
Dx2u

b,l
mn
,
1

hn
Dx3u

b,l
mn

)∣∣∣∣2 dx
+hn

ˆ

Ωb,r

∣∣∣∣( 1

hn
Dx1m

b,r
n ,

1

hn
Dx2m

b,r
n ,

1

hn
Dx3m

b,r
n

)∣∣∣∣2 dx
+
1

2

1

hn

ˆ

R3
b,r

∣∣(Dx1u
b,r
mn
, Dx2u

b,r
mn
, Dx3u

b,r
mn

)∣∣2 dx.
(2.4.8)

Then, we will denote
En(0) = En(m0n) (2.4.9)

In the sequel we denote, for every n ∈ N and for a.e. t ∈ [0, T ]

Eexc
n (t) =

ˆ

Ωa

∣∣∣∣( 1

hn
Dx1m

a
n,

1

hn
Dx2m

a
n, Dx3m

a
n

)∣∣∣∣2 dx
+

ˆ

Ωb,l

∣∣∣∣(Dx1m
b,l
n ,

1

hn
Dx2m

b,l
n ,

1

hn
Dx3m

b,l
n

)∣∣∣∣2 dx
+hn

ˆ

Ωb,r

∣∣∣∣( 1

hn
Dx1m

b,r
n ,

1

hn
Dx2m

b,r
n ,

1

hn
Dx3m

b,r
n

)∣∣∣∣2 dx
(2.4.10)
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and

Emag
n (t) =

1

2

ˆ

R3
a

∣∣∣∣( 1

hn
Dx1u

a
mn
,
1

hn
Dx2u

a
mn
, Dx3u

a
mn

)∣∣∣∣2 dx
+
1

2

ˆ

R3
b,l

∣∣∣∣(Dx1u
b,l
mn
,
1

hn
Dx2u

b,l
mn
,
1

hn
Dx3u

b,l
mn

)∣∣∣∣2 dx
+
1

2

1

hn

ˆ

R3
b,r

∣∣(Dx1u
b,r
mn
, Dx2u

b,r
mn
, Dx3u

b,r
mn

)∣∣2 dx.
(2.4.11)

So, by virtue of (2.4) , En (t) can be rewritten as

En (t) = Eexc
n (t) + Emag

n (t) , (2.4.12)

the sum of the exchange and magnetostatic energies.
Indeed, we can observe that, for every t ∈ [0, T ], the function defined by

Mn (t, hnx1, hnx2, x3) for a.e. in Ωa,

Mn (t, x1, hnx2, hnx3) for a.e. in Ωb,l,

Mn (t, hnx1, hnx2, hnx3) for a.e. in Ωb,r,

(2.4.13)

withMn solution of the Problem (2.3.4), is a solution of Problem (2.4.6) with the following initial
data: 

ma
0n(x1, x2, x3) =M0n (hnx1, hnx2, x3) , for a.e. in Ωa,

mb,l
0n(x1, x2, x3) =M0n (x1, hnx2, hnx3) for a.e. in Ωb,l,

mb,r
0n (x1, x2, x3) =M0n (hnx1, hnx2, hnx3) for a.e. in Ωb,r.

(2.4.14)

Then, we will denote
Eexc

n (0) = Eexc
n (m0n) (2.4.15)

Also, consider the hypothesis

∃C ∈ ]0,+∞[ : Eexc
n (m0n) ≤ C, ∀n ∈ N. (2.4.16)
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Let us denotes that we can reformulate Theorem 2.3.1 in the rescaled form:

Theorem 2.4.1. Suppose that m0n =
(
ma

0n,m
b,l
0n,m

b,r
0n

)
∈ Mn and (2.4.16) holds, for every

n ∈ N, let mn =
(
ma

n,m
b
n

)
be the solution of Problem (2.4.6) . Then, there exist an increas-

ing sequence of positive integer numbers {ni}i∈N, still denoted by {n}, µ0 =
(
µa
0, µ

b,l
0

)
∈ M,

µ =
(
µa, µb,l

)
∈ L∞ (0, T ;M), depending on the selected subsequence such that:

ma
0n ⇀ µa

0 weakly in H
1 (Ωa,R3) ,

mb,l
0n ⇀ µb,l

0 weakly in H1
(
Ωb,l,R3

)
,

mb,r
0n ⇀ µa

0(0) = µb,l
0 (0) weakly in H1

(
Ωb,r,R3

)
,

(2.4.17)



ma
n ⇀ µa weakly * in L∞ (0, T ;H1 (Ωa,R3)) ,

mb,l
n ⇀ µb,l weakly * in L∞ (0, T ;H1

(
Ωb,l,R3

))
,

ma
n → µa in C (0, T ;L2 (Ωa,R3)) ,

mb,l
n → µb,l in C

(
0, T ;L2

(
Ωb,l,R3

))
,

mb,r
n ⇀ µa(t, 0) = µb,l(t, 0) weakly * in L∞ (0, T ;H1

(
Ωb,r,R3

))
,

(2.4.18)

as n diverges, where µ = (µa, µb,l) is a solution of Problem (2.3.9).

Theorem 2.3.1, is immediate consequence of Theorem 2.4.1. Indeed, we have to observe that
(2.3.6) is equivalent to (2.4.16). So, we can apply Theorem 2.4.1. Then, we can use the ob-
served equivalence between Problem (2.3.4) and Problem (2.4.6). So a change of variables and
convergences (2.4.17) give (2.3.14) and the third and fourth convergences in (2.4.18) give the
convergences (2.3.15).

2.4.1 Compactness like results

Let us obtain a priori estimates for the sequence of the solutions of the Problem (2.4.6). Let us
introduce the following compactness like results
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Proposition 2.4.1. Assume (2.4.16). For every n ∈ N, letm0n =
(
ma

0n,m
b,l
0n,m

b,r
0n

)
∈ Mn and let

mn =
(
ma

n,m
b,l
n ,m

b,r
n

)
be the solution of problem (2.4.6). Then, there exist an increasing sequence

of positive integer numbers {ni}i∈N, still denoted by {n}, µ0 =
(
µa
0, µ

b,l
0

)
∈ M, µ = (µa, µb,l) ∈

L∞ (0, T ;M), depending on the subsequence, such that

ma
0n ⇀ µa

0 weakly in H
1 (Ωa,R3) ,

mb,l
0n ⇀ µb,l

0 weakly in H1
(
Ωb,l,R3

)
,

mb,r
0n ⇀ µa

0 (0) = µb,l
0 (0) weakly in H1

(
Ωb,r,R3

)
,

(2.4.19)



i)ma
n ⇀ µa weakly ∗ in L∞(0, T ;H1 (Ωa,R3)),

ii)mb,l
n ⇀ µb,l weakly ∗ in L∞ (0, T ;H1

(
Ωb,l,R3

))
,

iii)mb,r
n ⇀ µa (t, 0) = µb,l (t, 0) weakly ∗ in L∞ (0, T ;H1

(
Ωb,r,R3

))
,

iv)ma
n → µa in C (0, T ;L2 (Ωa,R3)) ,

v)mb,l
n → µb,l in C

(
0, T ;L2

(
Ωb,l,R3

))
,

vi)
∂ma

n

∂t
⇀

∂µa

∂t
weakly in L2 (0, T ;L2 (Ωa,R3)) ,

vii)
∂mb,l

n

∂t
⇀

∂µb,l

∂t
weakly in L2

(
0, T ;L2

(
Ωb,l,R3

))
,

viii)hn
∂mb,r

n

∂t
⇀ 0 weakly in L2

(
0, T ;L2

(
Ωb,r,R3

))
,

(2.4.20)

as n diverges. Moreover

µa(0, x) = µa
0(x), a.e. x in Ωa, µb,l(0, x) = µb,l

0 (x), a.e. x in Ωb,l. (2.4.21)
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Proof. Observe that by (2.4.15) and (2.4.16), we have

∥∥Dx1m
a
0n

∥∥
(L2(Ωa))3

≤ Chn,
∥∥Dx2m

a
0n

∥∥
(L2(Ωa))3

≤ Chn,
∥∥Dx3m

a
0n

∥∥
(L2(Ωa))3

≤ C,

∥∥∥Dx1m
b,l
0n

∥∥∥(
L2

(
Ωb,l

))3 ≤ C,
∥∥∥Dx2m

b,l
0n

∥∥∥(
L2

(
Ωb,l

))3 ≤ Chn,
∥∥∥Dx3m

b,l
0n

∥∥∥(
L2

(
Ωb,l

))3 ≤ Chn,

∥∥∥Dx1m
b,r
0n

∥∥∥(
L2

(
Ωb,r

))3 ≤ C
√
hn,

∥∥∥Dx2m
b,r
0n

∥∥∥(
L2

(
Ωb,r

))3 ≤ C
√
hn,

∥∥∥Dx3m
b,r
0n

∥∥∥(
L2

(
Ωb,r

))3 ≤ C
√
hn,

(2.4.22)
for every n ∈ N, where C is a constant independent on n. Then there exist a subsequence (not
rellebelled) µa

0 ∈ H1 (Ωa,R3) and µb,l
0 ∈ H1

(
Ωb,l,R3

)
such that the following convergences are

verified 

ma
0n ⇀ µa

0 weakly in H1 (Ωa,R3) ,

mb,l
0n ⇀ µb,l

0 weakly in H1
(
Ωb,l,R3

)
,

mb,r
0n ⇀ c weakly in H1

(
Ωb,r,R3

)
.

(2.4.23)

Since
∣∣ma

0n(x)
∣∣ = 1 x a.e. inΩa, by (2.4.23), |µa

0(x)| = 1 for x a.e. inΩa (respectively
∣∣∣µb,l

0 (x)
∣∣∣ = 1

for x a.e. in Ωb,l). Moreover, by (2.4.22) we obtain that µa
0 is independent of (x1, x2) and µ

b,l
0 is

independent of (x2, x3). Actually, since one has that
ma

0n(x1, x2, 0) = mb,r
0n (x1, x2, 0), for (x1, x2) a.e. in ]− 1, 0[2,

mb,l
0n(0, x2, x3) = mb,r

0n (0, x2, x3), for (x2, x3) a.e. in ]− 1, 0[2,

for every n ∈ N, by trace convergence properties we obtain µa
0(0) = c = µb,l

0 (0), that is
µ0 = (µa

0, µ
b,l
0 ) ∈ M, and so (2.4.19).

Moreover, by (2.4.7) and hypotheses (2.4.16), the following estimates are satisfied:
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

i) ‖Dx1m
a
n‖L∞

(
0,T ;(L2(Ωa))3

) ≤ Chn, ‖Dx2m
a
n‖L∞

(
0,T ;(L2(Ωa))3

) ≤ Chn,

‖Dx3m
a
n‖L∞

(
0,T ;(L2(Ωa))3

) ≤ C,

ii)
∥∥Dx1m

b,l
n

∥∥
L∞

(
0,T ;

(
L2

(
Ωb,l

))3) ≤ C,
∥∥Dx2m

b,l
n

∥∥
L∞

(
0,T ;

(
L2

(
Ωb,l

))3) ≤ Chn,

∥∥Dx3m
b,l
n

∥∥
L∞

(
0,T ;

(
L2

(
Ωb,l

))3) ≤ Chn,

iii)
∥∥Dx1m

b,r
n

∥∥
L∞

(
0,T ;

(
L2

(
Ωb,r

))3) ≤ C
√
hn,

∥∥Dx2m
b,r
n

∥∥
L∞

(
0,T ;

(
L2

(
Ωb,r

))3) ≤ C
√
hn,

∥∥Dx3m
b,r
n

∥∥
L∞

(
0,T ;

(
L2

(
Ωb,r

))3) ≤ C
√
hn,

iv)

∥∥∥∥∂ma
n

∂t

∥∥∥∥
L2

(
(0,T ;(L2(Ωa))3

) ≤ C,

∥∥∥∥∂mb,l
n

∂t

∥∥∥∥
L2

(
0,T ;

(
L2

(
Ωb,l

))3) ≤ C,

v)
√
hn

∥∥∥∥∂mb,r
n

∂t

∥∥∥∥
L2

(
0,T ;

(
L2

(
Ωb,r

))3) ≤ C,

(2.4.24)

for every n ∈ N where C is a constant independent on n. By (2.4.24)i) and (2.4.24)ii) it fol-
lows that there exist a subsequence (not rellebelled) µa ∈ L∞ (0, T ;H1 (Ωa,R3)) and µb,l ∈
L∞ (0, T ;H1

(
Ωb,l,R3

))
such that

i) ma
n ⇀ µa weakly ∗ in L∞(0, T ;H1 (Ωa,R3)),

ii) mb,l
n ⇀ µb,l weakly ∗ in L∞ (0, T ;H1

(
Ωb,l,R3

))
,

(2.4.25)

as n diverges.
By equiboundness of {ma

n}n∈N, {mb,l
n }n∈N, and by (2.4.24)iv) arguing similar as in [24, Proposi-

tion 4.1], we obtain, up to a subsequence, convergences (2.4.20)iv) and (2.4.20)v).
About initial conditions, we observe that

ma
n (0, ·) = ma

0n and mb,l
n (0, ·) = mb,l

0n.
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Then, by (2.4.20)iv) and (2.4.20)v), it follows
ma

n (0, ·) → µa (0, ·) in L2 (Ωa,R3) ,

mb,l
n (0, ·) → µb,l (0, ·) in L2

(
Ωb,l,R3

)
.

Then, by the first two convergences in (2.4.19), we get (2.4.21).
Furthermore, let us point out that, by first and second estimates in (2.4.24)i) and second and third
estimate in (2.4.24)ii), the functions µa and µb,l do not depend on (x1, x2) and (x2, x3) respec-
tively.

Indeed by (2.4.20)i) we get that

ma
n ⇀ µa weakly in L2

(
0, T ;H1

(
Ωa,R3

))
.

Consequently, by lower semicontinuity theorem for a convex functional, we obtain

Tˆ

0

‖Dx1µ
a‖2(L2(Ωa))3 ≤ lim infn

Tˆ

0

‖Dx1m
a
n‖2(L2(Ωa))3.

Then, by (2.4.24)i), for a.e. t ∈ [0, T ] we obtain

‖Dx1m
a
n‖2(L2(Ωa))3 ≤ Chn.

So, by (2.4.24), sincema
n is bounded in L∞ (0, T ;H1 (Ωa,R3)) and hn goes to zero as n diverges,

we obtain, for a.e. t ∈ [0, T ], that

‖Dx1µ
a‖(L2(Ωa))3 = 0.

Then for a.e. t ∈ [0, T ] we get

Dx1µ
a = 0, a.e. x in Ωa.
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Similarly

Dx2µ
a = 0, a.e. x in Ωa, Dx2µ

b,l = 0 and Dx3µ
b,l = 0, a.e. x in Ωb,l.

Let us observe that |ma
n(t, x)| = 1 for every t ∈ [0, T ] and x a.e. in Ωa. So, by (2.4.20) iv),

|µa(t, x)| = 1 for every t ∈ [0, T ] and x a.e. inΩa (respectively
∣∣µb,l(t, x)

∣∣ = 1 for every t ∈ [0, T ]

and x a.e. in Ωb,l).
By (2.4.24)iv) and by definition of distributional derivative (see [64, Chapter 23]),arguing as in
[24, Proposition 4.1], ones prove (2.4.20)vi) and (2.4.20)vii).
Moreover, from (2.4.24)iii) there exist a subsequence (not rellebelled) and ζb,r ∈ L∞ (0, T ;H1

(
Ωb,r,R3

))
such that

mb,r
n ⇀ ζb,r weakly ∗ in L∞ (0, T ;H1

(
Ωb,r,R3

))
, (2.4.26)

as n diverges.
In particular we obtain

mb,r
n ⇀ ζb,r weakly in L2

(
0, T ;H1

(
Ωb,r,R3

))
.

Now, let us identify ζb,r.
By lower semicontinuity theorem for a convex functional, we obtain

Tˆ

0

∥∥Dζb,r∥∥2(
L2

(
Ωb,r

))3 ≤ lim infn

Tˆ

0

‖Dmb,r
n ‖2(

L2
(
Ωb,r

))3.

By (2.4.24)iii) we get
∥∥Dζb,r∥∥2

(L2
(
Ωb,r

)
)3
= 0 a.e. t ∈ [0, T ], then ζb,r = c(t) for a.e. t.

Since,
∣∣mb,r

n (t, x)
∣∣ = 1 for every t ∈ [0, T ] and x a.e. in Ωb,r we obtain c(t) ∈ S2 for every

t ∈ [0, T ].
In order to verify that µ = (µa, µb,l) ∈ L∞ (0, T ;M) it remains to prove that µa(t, 0) = µb,l(t, 0)

almost everywhere in ]0, T [. At first let us observe that for a.e. t ∈ [0, T ],
ma

n(t, x1, x2, 0) = mb,r
n (t, x1, x2, 0), for (x1, x2) a.e. in ]− 1, 0[2,

mb,l
n (t, 0, x2, x3) = mb,r

n (t, 0, x2, x3), for (x2, x3) a.e. in ]− 1, 0[2,
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consequently

Tˆ

0

ˆ

]−1,0[2×{0}

ma
n (t, x1, x2, 0)ϕdx1dx2dt =

Tˆ

0

ˆ

]−1,0[2×{0}

mb,r
n (t, x1, x2, 0)ϕdx1dx2dt (2.4.27)

for every n and for every ϕ ∈ C∞
0 ((0, T )× Ωa), and

Tˆ

0

ˆ

]−1,0[2×{0}

mb,l
n (t, x2, x3, 0)ϕdx2dx3dt =

Tˆ

0

ˆ

]−1,0[2×{0}

mb,r
n (t, x2, x3, 0)ϕdx2dx3dt (2.4.28)

for every n and for every ϕ ∈ C∞
0

(
(0, T )× Ωb,l

)
.

Now, by 2.4.20i) (respectively 2.4.20iii)) ,
´ T

0
ma

nϕdt (respectively
´ T

0
mb,r

n ϕdt) is bounded in
H1(Ωa) (respectively inH1(Ωb,r) ) and convergesweakly to

´ T

0
µaϕdt (respectively to

´ T

0
c(t)ϕdt).

Thus their trace converges strongly in L2(]− 1, 0[2×0. Then

lim
n

Tˆ

0

ˆ

]−1,0[2×{0}

ma
n (t, x1, x2, 0)ϕdx1dx2dt =

Tˆ

0

ˆ

]−1,0[2×{0}

µa (t, x1, x2, 0)ϕdx1dx2dt (2.4.29)

for every ϕ ∈ C∞
0 ((0, T )× Ωa) and

lim
n

Tˆ

0

ˆ

]−1,0[2×{0}

mb,r
n (t, x1, x2, 0)ϕdx1dx2dt =

Tˆ

0

ˆ

]−1,0[2×{0}

c(t)ϕdx1dx2dt (2.4.30)

for every ϕ ∈ C∞
0 ((0, T )× Ωa). By combining (2.4.27), (2.4.29) and (2.4.30) and remembering

that µa is independent of (x1, x2), we get µa(t, 0) = c(t) almost everywhere in ]0, T [. In the same
way, by (2.4.28), we prove that µb,l(t, 0) = c(t) almost everywhere in ]0, T [. So we can conclude
that µ ∈ L∞(0, T ;M).
The convergence (2.4.20) viii) is easily obtained by (2.4.24)v) and by definition of distributional
derivative.

�
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2.4.2 A convergence result for the magnetostatic energy

In what follows S =]− 1, 0[2, so we will omit the explicit dependence of coefficients α, β, γ, δ, ε,
defined in (2.2.7), by S. Moreover, let us pose

P (x1, x2, x3) = p (x1, x2) for every (x1, x2) ∈]− 1, 0[2

Q (x1, x2, x3) = q (x1, x2) for every (x1, x2) ∈]− 1, 0[2

P ′ (x1, x2, x3) = p (x2, x3) for every (x2, x3) ∈]− 1, 0[2

Q′ (x1, x2, x3) = q (x2, x3) for every (x2, x3) ∈]− 1, 0[2

(2.4.31)

with p (resp. q) the unique solution of (2.2.2) (resp. (2.2.3)).

Proposition 2.4.2. Let
{
mn =

(
ma

n,m
b,l
n ,m

b,r
n

)}
n∈N and let

(
µa, µb,l

)
=
(
(µa

1, µ
a
2, µ

a
3) ,
(
µb,l
1 , µ

b,l
2 , µ

b,l
3

))
∈

L∞(0, T ;M) such that,

ma
n → µa in C (0, T ;L2 (Ωa,R3)) ,

mb,l
n → µb,l in C

(
0, T ;L2

(
Ωb,l,R3

))
,

mb,r
n ⇀ µa(t, 0) = µb,l(t, 0) weakly ∗ in L∞ (0, T ;H1

(
Ωb,r,R3

))
,

(2.4.32)

as n diverges. Moreover, for every n ∈ N, let umn =
(
uamn

, ub,lmn
, ub,rmn

)
be the unique solution of

(2.4.3) corresponding tomn and let Emag
n be defined by (2.4.11).

Then it result that

1

hn
Dx1u

a
n ⇀ ξa1 ,

1

hn
Dx2u

a
n ⇀ ξa2 , Dx3u

a
n ⇀ 0 weakly ∗ in L∞ (0, T ;L2 (R3

a)) ,

Dx1u
b,l
n ⇀ 0,

1

hn
Dx2u

b,l
n ⇀ ξb,l2 ,

1

hn
Dx3u

b,l
n ⇀ ξb,l3 weakly ∗ in L∞ (0, T ;L2

(
R3

b,l

))
,

Dub,rn ⇀ 0 weakly ∗ in L∞
(
0, T ;

(
L2
(
R3

b,r

))3)
,

(2.4.33)
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as n diverges, where

(ξa1 , ξ
a
2 , ξ

a
3)(x1, x2, x3) =


(0, 0, 0), a.e. in R2×]1,+∞[,

µa
1(x3)DP (x1, x2, x3) + µa

2(x3)DQ(x1, x2, x3), a.e. in R2×]0, 1[,

(2.4.34)

(ξb,l1 , ξ
b,l
2 , ξ

b,l
3 )(x1, x2, x3) =


(0, 0, 0), a.e. in ]1,+∞[×R×]−∞, 0[,

µb,l
2 (x1)DP

′(x1, x2, x3) + µb,l
3 (x1)DQ

′(x1, x2, x3), a.e. in ]0, 1[×R×]−∞, 0[,

(2.4.35)
with P , P ′, Q and Q′ defined in (2.4.31). Furthermore, one has that

lim
n

[ ˆ
Ωa

(
1

hn
Dx1u

a
n,

1

hn
Dx2u

a
n, Dx3u

a
n

)
ma

ndx+

ˆ
Ωb,l

(
Dx1u

b,l
n ,

1

hn
Dx2u

b,l
n ,

1

hn
Dx3u

b,l
n

)
mb,l

n dx+

ˆ
Ωb,r

(
Dx1u

b,r
n , Dx2u

b,r
n , Dx3u

b,r
n

)
mb,r

n dx

]
=

α

(ˆ 1

0

|µa
1|2dx3 +

ˆ 1

0

|µa
2|2dx3 +

ˆ 1

0

|µb,l
2 |2dx1 +

ˆ 1

0

|µb,l
3 |2dx1

)
,

(2.4.36)

where α,is defined by (2.2.5).

Proof. Choose (uan, ub,ln , ub,rn ) as test function in (2.4.3), take into account that for every t {(ma
n,m

b,l
n ,m

b,r
n )}n∈N ⊂

L2(Ωa, S2)× L2(Ωb,l, S2)× L2(Ωb,r, S2) and that by (2.4.32) the norms in these spaces are equi-
bounded, then there exists C ∈]0,+∞[ such that

∥∥∥∥( 1

hn
Dx1u

a
n,

1

hn
Dx2u

a
n, Dx3u

a
n

)∥∥∥∥
(L2(R3

a))
3

≤ C,

∥∥∥∥(Dx1u
b,l
n ,

1

hn
Dx2u

b,l
n ,

1

hn
Dx3u

b,l
n

)∥∥∥∥
(L2(R3

b,l))
3

≤ C,

1√
hn

∥∥(Dx1u
b,r
n , Dx2u

b,r
n , Dx3u

b,r
n

)∥∥
(L2(R3

b,r))
3 ≤ C,

(2.4.37)

for every n ∈ N.

We observe that the last estimate in (2.4.37) gives the last limit in (2.4.33).
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By arguing as in the first part of the proof of [34, Proposition 5.1], from the first two estimates
in (2.4.37) one derives the third and the fourth limit in (2.4.33), up to a subsequence. From the
first estimate in (2.4.37) one obtains the first two limits in (2.4.33) and from the second estimate
in (2.4.37) one obtains the fifth and sixth limits in (2.4.33), up to a subsequence.

Next step is devoted to identify ξa = (ξa1 , ξ
a
2).

Let as fix t ∈ [0, T ], in equation (2.4.3) with (ma,mb,l,mb,r) = (ma
n,m

b,l
n ,m

b,r
n ) choose va = ϕ+cn,

vb,l = cn and vb,r = cn , with ϕ ∈ C∞
0 (R3

a) and cn = −
(
|Ba

n|+ |Bb,l
n |+ |Bb,r

n |
)−1 ´

Ba
n
ϕdx (such

that (va, vb,l, vb,r) ∈ Un). By multiplying this equation by hn, for all t ∈ [0, T ] one has

ˆ
R3
a

(
1

hn
Dx1u

a
n,

1

hn
Dx2u

a
n, Dx3u

a
n

)
(Dx1ϕ,Dx2ϕ, hnDx3ϕ) dx =

ˆ
Ωa

(Dx1ϕ,Dx2ϕ, hnDx3ϕ)m
a
ndx, ∀ϕ ∈ C∞

0 (R3
a).

(2.4.38)

Then, passing to the limit, as n diverges, in (2.4.38), for every t ∈ [0, T ] convergences (2.4.32) and
(2.4.33) give that

ˆ
R3
a

(ξa1 , ξ
a
2)(Dx1ϕ,Dx2ϕ)dx =

ˆ 1

0

(
(µa

1, µ
a
2)

ˆ
]−1,0[2

(Dx1ϕ,Dx2ϕ)dx1dx2

)
dx3, ∀ϕ ∈ C∞

0 (R3
a).

Then, observe that:

Dx2

(
1

hn
Dx1u

a
n

)
= Dx1

(
1

hn
Dx2u

a
n

)
in D′(R3

a), ∀n ∈ N,

and using the first two limits in (2.4.33) , one obtains that
ˆ

R3
a

ξa1Dx2ϕdx =

ˆ
R3
a

ξa2Dx1ϕdx, ∀ϕ ∈ H1
0 (R3

a). (2.4.39)

By taking ϕ(x) = φ(x1, x2)χ(x3) with φ ∈ H1(R2) and χ ∈ C∞
0 (]0,+∞[) and recalling that

H1(R2) is separable, it follows from (2.4.39) that
for x3 a.e. in ]0,+∞[,

ˆ
R2

ξa1(x1, x2, x3)Dx2φ(x1, x2)dx1dx2 =

ˆ
R2

ξa2(x1, x2, x3)Dx1φ(x1, x2)dx1dx2, ∀φ ∈ H1(R2).
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Consequently, by virtue of the Poincaré Lemma (see Section 2.2), it results that
for x3 a.e. in ]0,+∞[, ∃!w(·, ·, x3) ∈ W 1(R2) :

ξa1(·, ·, x3) = Dx1w(·, ·, x3), ξa2(·, ·, x3) = Dx2w(·, ·, x3), a.e. in R2.

(2.4.40)

Consequently, arguing as above, taking into account thatW 1(R2) is separable, and using Propo-
sition 2.2.1 and (2.4.40), it follows that, for x3 a.e. in ]1,+∞[, w(·, ·, x3) solves the following
problem:

w(·, ·, x3) ∈ W 1(R2),

ˆ
R2

(Dx1w(x1, x2, x3), Dx2w(x1, x2, x3))(Dx1φ(x1, x2), Dx2φ(x1, x2))dx1dx2 = 0, ∀φ ∈ W 1(R2),

while, for x3 a.e. in ]0, 1[, w(·, ·, x3) solves the following one:

w(·, ·, x3) ∈ W 1(R2),

ˆ
R2

(Dx1w(x1, x2, x3), Dx2w(x1, x2, x3))(Dx1φ(x1, x2), Dx2φ(x1, x2))dx1dx2 =

(µa
1(x3), µ

a
2(x3))

ˆ
]−1,0[2

(Dx1φ(x1, x2), Dx2φ(x1, x2))dx1dx2, ∀φ ∈ W 1(R2).

(2.4.41)

Then, by virtue of Lemma 2.2.1, it results that, for x3 a.e. in ]0,+∞[,

w(·, ·, x3) =


0, a.e. in R2, if x3 > 1,

µa
1(x3)p(·, ·) + µa

2(x3)q(·, ·), a.e. in R2, if x3 < 1,

(2.4.42)

with p (resp. q) the unique solution of (2.2.2) (resp. (2.2.3)).

Moreover, since Tonelli theorem assures that ξa and µa
1Dp + µa

2Dq belong to (L2(R3
a))

2 ⊂
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(L1

loc(R
3
a))

2, using Fubini theorem with (2.4.40) and (2.4.42) one entails that

ˆ
R3
a

ξaϕdx =

ˆ +∞

0

(ˆ
R2

ξaϕdx1dx2

)
dx3 =

ˆ 1

0

(ˆ
R2

(µa
1Dp+ µa

2Dq)ϕdx1dx2

)
dx3 =

ˆ
R2×]0,1[

(µa
1Dp+ µa

2Dq)ϕdx, ∀ϕ ∈ C∞
0 (R3

a),

that is

ξa(x1, x2, x3) =


(0, 0), a.e. in R2×]1,+∞[,

µa
1(x3)Dp(x1, x2) + µa

2(x3)Dq(x1, x2), a.e. in R2×]0, 1[,

(2.4.43)

with p (resp. q) the unique solution of (2.2.2) (resp. (2.2.3)). Consequently, the first two limits in
(2.4.33) and (2.4.34) hold true for the whole sequence.

For every t ∈ [0, T ] using the first limit in (2.4.32) and (2.4.34) we obtain that

lim
n

ˆ
Ωa

(
1

hn
Dx1u

a
n,

1

hn
Dx2u

a
n, Dx3u

a
n

)
ma

ndx =

lim
n

ˆ
Ωa

(µa
1DP + µa

2DQ) (µ
a
1, µ

a
2) =

(2.4.44)

By iii) of Lemma 2.2.1 with k = (µa
1, µ

a
2) we get

lim
n

ˆ
Ωa

(
1

hn
Dx1u

a
n,

1

hn
Dx2u

a
n, Dx3u

a
n

)
ma

ndx =

α

(ˆ 1

0

|µa
1|2dx3 +

ˆ 1

0

|µa
2|2dx3

)
,

(2.4.45)

Using the third limits in (2.4.32) and the third inequality in (2.4.37) we obtain, for every t,

lim
n

ˆ
Ωb,r

(
Dx1u

b,r
n , Dx2u

b,r
n , Dx3u

b,r
n

)
mb,r

n dx = 0. (2.4.46)

Next step is devoted to identify ξb,l = (ξb,l2 , ξ
b,l
3 ), we introduce other rescalings. Specifically, by

setting

R3
a,r = {(x1, x2, x3) ∈ R3 : x3 > 0, x1 < 0}, R3

l = {(x1, x2, x3) ∈ R3 : x1 > 0},
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for every n ∈ N, problem (2.3.2) will be reformulated on a fixed domain through the following
rescaling:

Tn : (x1, x2, x3) ∈ R3 → Tn(x1, x2, x3) =



(hnx1, hnx2, x3), if (x1, x2, x3) ∈ R3
a,r,

(x1, hnx2, hnx3), if (x1, x2, x3) ∈ R3
l ,

(hnx1, hnx2, hnx3), if (x1, x2, x3) ∈ R3
b,r

(2.4.47)
(note that Tn|R3

b,r
= Tn|R3

b,r
, and Tn(Ωa) = Tn(Ω

a) = Ωa
n, Tn(Ωb,l) = Tn(Ω

b,l) = Ωb,l
n ). Namely,

setting

Ba,r
n =

]
− 2

hn
, 0

[2
×]0, 2[, Bl

n =]0, 2[×
]
− 2

hn
,
2

hn

[2
, Bb,r

n =

]
− 2

hn
, 0

[3
, n ∈ N,

space U defined in (2.3.1) is rescaled in the following

Vn =

{
(va,r, vl, vb,r) ∈ L1

loc(R3
a,r)× L1

loc(R3
l )× L1

loc(R3
b,r) :

(va,r|
B
a,r
n

, vl|
Bl
n

, vb,r|
B
b,r
n

) ∈ L2(Ba,r
n )× L2(Bl

n)× L2(Bb,r
n ),

(Dva,r, Dvl, Dvb,r) ∈ (L2(R3
a,r))

3 × (L2(R3
l ))

3 × (L2(R3
b,r))

3,

ˆ
Ba,r

n

va,rdx+

ˆ
Bl

n

vldx+ hn

ˆ
Bb,r

n

vb,rdx = 0,

vl(0, x2, x3) = va,r(0, x2, hnx3), for (x2, x3) a.e. in R×]0,+∞[,

vl(0, x2, x3) = vb,r(0, x2, x3), for (x2, x3) a.e. in R×]−∞, 0[,

va,r(x1, x2, 0) = vb,r(x1, x2, 0), for (x1, x2) a.e. in ]−∞, 0[×R
}
.

(2.4.48)

Then, for every (ma,mb,l,mb,r) ∈ L2(Ωa,R3)× L2(Ωb,l,R3)× L2(Ωb,r,R3), the following equa-
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tion:

(va,r, vl, vb,r) ∈ Vn,

ˆ
R3
a,r

(
1

hn
Dx1v

a,r,
1

hn
Dx2v

a,r, Dx3v
a,r

)(
1

hn
Dx1w

a,r,
1

hn
Dx2w

a,r, Dx3w
a,r

)
dx+

ˆ
R3
l

(
Dx1v

l,
1

hn
Dx2v

l,
1

hn
Dx3v

l

)(
Dx1w

l,
1

hn
Dx2w

l,
1

hn
Dx3w

l

)
dx+

1

hn

ˆ
R3
b,r

(
Dx1v

b,r, Dx2v
b,r, Dx3v

b,r
) (
Dx1w

b,r, Dx2w
b,r, Dx3w

b,r
)
dx =

ˆ
Ωa

(
1

hn
Dx1w

a,r,
1

hn
Dx2w

a,r, Dx3w
a,r

)
madx+

ˆ
Ωb,l

(
Dx1w

l,
1

hn
Dx2w

l,
1

hn
Dx3w

l

)
mb,ldx+

ˆ
Ωb,r

(
Dx1w

b,r, Dx2w
b,r, Dx3w

b,r
)
mb,rdx, ∀(wa,r, wl, wb,r) ∈ Vn

(2.4.49)
admits a unique solution. This equation rescales equation (2.3.2) by rescaling (2.4.47),

For everyn ∈ N, let (va,rn , vln, v
b,r
n ) be the unique solution of (2.4.49) corresponding to (ma

n,m
b,l
n ,m

b,r
n ).

Arguing as in the first part of this proof, for a symmetric argument, one can easily prove that

Dx1v
l
n ⇀ 0,

1

hn
Dx2v

l
n ⇀ ξl2,

1

hn
Dx3v

l
n ⇀ ξl3 weakly in L2(R3

l ), (2.4.50)

as n diverges, where

(ξl2, ξ
l
3)(x1, x2, x3) =


(0, 0), a.e. in ]1,+∞[×R2,

µb
2(x1)Dp(x2, x3) + µb

3(x1)Dq(x2, x3), a.e. in ]0, 1[×R2,

with p (resp. q) the unique solution of (2.2.2) (resp. (2.2.3)). Furthermore, arguing as before by
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iii) of Lemma 2.2.1 with k = (µb,l
2 , µ

b,l
3 ) one has that

lim
n

ˆ
Ωb,l

(
Dx1v

l
n,

1

hn
Dx2v

l
n,

1

hn
Dx3v

l
n,

)
mb

ndx =

α

(ˆ 1

0

|µb
2|2dx1 +

ˆ 1

0

|µb
3|2dx1

)
,

(2.4.51)

where α is defined by (2.2.5).

Now, to conclude it is enough to note that

T −1
n (Tn(x)) = x, ∀x ∈ R3 \ {(x1, x2, x3) ∈ R3 : x1 ≥ 0, x3 ≥ 0}, ∀n ∈ N,

vn
(
T −1
n (Tn(x))

)
= un(x), ∀x ∈ R3, ∀n ∈ N,

where un = (uan, u
b,l
n , u

b,r
n ) and vn = (va,rm,n, v

l
m,n, v

b,r
m,n). Consequently, it results that

vn(x) = un(x), ∀x ∈ R3 \ {(x1, x2, x3) ∈ R3 : x1 ≥ 0, x3 ≥ 0}, ∀n ∈ N. (2.4.52)

Then, for every t ∈ [0, T ] combining (2.4.50) and (2.4.51) with (2.4.52), one obtains the fifth and
the sixth limit in (2.4.33) and consequently (2.4.35) hold. Moreover,

lim
n

ˆ
Ωb,l

(
Dx1u

l
n,

1

hn
Dx2u

l
n,

1

hn
Dx3u

l
n

)
mb

ndx =

α

(ˆ 1

0

|µb
2|2dx1 +

ˆ 1

0

|µb
3|2dx1

)
.

(2.4.53)

So, for every t ∈ [0, T ] combining (2.4.45) with (2.4.53), also limit (2.4.36) holds true. �

2.4.3 Proof of Theorem 2.4.1

In this subsection, our aim is to study the asymptotic behavior, as n diverges, of Problem (2.4.6).
If µ is the limit given in (2.4.20), we want to identify µ as solution of Problem (2.3.9).

Let us pose S = {0} × {0} × [0, 1] ∪ [0, 1] × {0} × {0}. We denote the space of the Lipschitz
continuous functions on S, taking values in R3, by L. In the following with slight abuse of
notation, we will continue to denote with L the space of functions ψ =

(
ψa, ψb,l

)
on Ωa ∪ Ωb,l

such that ψ =
(
ψa, ψb,l

)
restricted to S is in L, ψ is constant in (x1, x2) in Ωa and is constant in

(x2, x3) in Ωb,l.

Remark 2.4.1. Let W be the space defined in (2.3.7). Then, L is dense in W (see [51] and [24,
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Proposition 2.2]).

Now, let us build a suitable couple of test functions. To this aim, for
(
ψa, ψb,l

)
∈ L, let us set

v =



ψa, in Ωa,

ψb,l, in Ωb,l,

ψa(0) = ψb,l(0), in Ωb,r.

Obviously, v ∈ Wn, for every n ∈ N .

Now, let us choose, v as test function in (2.4.6). So, we want to pass to the limit as n diverges in
(2.4.6) term by term.
By (2.4.20)vi), |ma

n| = 1 and (2.4.20)iv) we have

Tˆ

0

ˆ

Ωa

(
∂ma

n

∂t
+ma

n ∧
∂ma

n

∂t

)
χvdxdt→

Tˆ

0

ˆ

Ωa

(
∂µa

∂t
+ µa ∧ ∂µa

∂t

)
χψadxdt,

∀χ ∈ D(0, T ), ∀
(
ψa, ψb,l

)
∈ L.

By (2.4.20)vii), |mb,l
n | = 1 and (2.4.20)v) we get

Tˆ

0

ˆ

Ωb,l

(
∂mb,l

n

∂t
+mb,l

n ∧ ∂mb,l
n

∂t

)
χvdxdt→

Tˆ

0

ˆ

Ωb,l

(
∂µb,l

∂t
+ µb,l ∧ ∂µb,l

∂t

)
χψb,ldxdt,

∀χ ∈ D(0, T ), ∀
(
ψa, ψb,l

)
∈ L.

By (2.4.20)viii) and |mb,r
n | = 1 we get

hn

Tˆ

0

ˆ

Ωb,r

(
∂mb,r

n

∂t
+mb,r

n ∧ ∂mb,r
n

∂t

)
χvdxdt→ 0, ∀χ ∈ D(0, T ), ∀

(
ψa, ψb,l

)
∈ L.

By (2.4.20)iv) and |ma
n| = 1, remembering that |Dxi

v| = |Dxi
ψa| = 0 on Ωa for i = 1, 2, we
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obtain

2

Tˆ

0

ˆ

Ωa

[
2∑

i=1

ma
n ∧

1

hn
Dxi

ma
n

1

hn
(Dxi

v)χ+ma
n ∧Dx3m

a
n (Dx3v)χ

]
dxdt→

2

Tˆ

0

ˆ

Ωa

µa ∧ ∂µa

∂x3

∂ψa

∂x3
χ, ∀χ ∈ D(0, T ), ∀

(
ψa, ψb,l

)
∈ L.

By (2.4.20)v) and |mb,l
n | = 1 remembering that |Dxi

v| =
∣∣Dxi

ψb,l
∣∣ = 0 on Ωb,l for i = 2, 3, one

has

2

Tˆ

0

ˆ

Ωb,l

[
mb,l

n ∧Dx1m
b,l
n (Dx1v)χ+

3∑
i=2

mb,l
n ∧ 1

hn
Dxi

mb,l
n

1

hn
(Dxi

v)χ

]
dxdt→

2

Tˆ

0

ˆ

Ωb,l

µb,l ∧ ∂µb,l

∂x1

∂ψb,l

∂x1
χ, ∀χ ∈ D(0, T ), ∀

(
ψa, ψb,l

)
∈ L.

By (2.4.20)iii) one has

2hn

Tˆ

0

ˆ

Ωb,r

[
3∑

i=1

mb,r
n ∧ 1

hn
Dxi

mb,r
n

1

hn
(Dxi

v)χ

]
dxdt = 0, ∀χ ∈ D(0, T ), ∀

(
ψa, ψb,l

)
∈ L.

By (2.4.20)iv), |ma
n| = 1, first three convergences in (2.4.33) and (2.4.34), gives

2

Tˆ

0

ˆ

Ωa

ma
n ∧

(
1

hn
Dx1u

a
mn
,
1

hn
Dx2u

a
mn
, Dx3u

a
mn

)
χvdxdt→

2

Tˆ

0

ˆ

Ωa

µa ∧ (µa
1DP + µa

2DQ)χψ
adxdt, ∀χ ∈ D(0, T ), ∀

(
ψa, ψb,l

)
∈ L,

(2.4.54)

with p (resp. q) the unique solution of (2.2.2) (resp.(2.2.3)). By taking into account (2.4.20)v),
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|mb,l
n | = 1, fourth , fifth and sixth convergences in (2.4.33) and (2.4.35), we get

2

Tˆ

0

ˆ

Ωb,l

mb,l
n ∧

(
Dx1u

b,l
mn
,
1

hn
Dx2u

b,l
mn
,
1

hn
Dx3u

b,l
mn

)
χvdxdt→

2

Tˆ

0

ˆ

Ωb,l

µb,l ∧
(
µb,l
2 DP

′ + µb,l
3 DQ

′
)
χψb,ldxdt, ∀χ ∈ D(0, T ), ∀

(
ψa, ψb,l

)
∈ L,

(2.4.55)

with p (resp. q) the unique solution of (2.2.2) (resp.(2.2.3)).
By taking into account (2.4.20)iii), |mb,r

n | = 1 and last convergence in (2.4.33), we get

2hn

Tˆ

0

ˆ

Ωb,r

mb,r
n ∧

(
1
hn
Dx1u

b,r
mn
, 1
hn
Dx2u

b,l
mn
, 1
hn
Dx3u

b,r
mn

)
χvdxdt→ 0, ∀χ ∈ D(0, T ), ∀

(
ψa, ψb,l

)
∈ L.

Let us observe that (ψa, ψb,l) can be any arbitrarily element of L. Being L dense inW , we obtain
that the above convergences hold true for every ψ = (ψa, ψb,l) ∈ W . By using Lemma 2.2.2, we
get (2.3.9).

2.5 A single wire

Let
Ωn = ]−hn, 0[2 × [0, 1[, Ω =]− 1, 0[2×[0, 1[,

let us introduce the following space

W =
{
(µ ∈ H1 (Ω,R3) : µ is independent of (x1, x2)

}
' {(µ ∈ H1 (]0, 1[,R3)} . (2.5.1)

Moreover, we can pose

M=W ∩
{
H1 (Ω, S2)

}
, (2.5.2)

which explicitely takes into account the condition |µ| = 1.

Theorem 2.5.1. Suppose thatM0n ∈ H1 (Ωn, S
2) and (2.3.6) holds, for every n ∈ N. LetMn be

a solution of Problem (2.3.4) .Then, there exist an increasing sequence of positive integer numbers
{ni}i∈N, still denoted by {n}, µ0 ∈ M, µ ∈ L∞ (0, T ;M), depending on the selected subsequence
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such that: 
 

Ωn

|M0n(x1, x2, x3)− µ0(x3)|2 dx→ 0, (2.5.3)

as n diverges, for every t ∈ [0, T ]
 

Ωn

|Mn(t, x1, x2, x3)− µ(t, x3)|2 dxdt→ 0, (2.5.4)

as n diverges, where µ is a solution of the following problem



µ ∈ L∞ (0, T ;M) ∩ C ([0, T ] ;L2 (Ω,R3)) ,
∂µ

∂t
∈ L2 (0, T ;L2 (Ω,R3)) ,

∀ χ ∈ D(0, T ) andψ ∈ W ,

Tˆ

0

ˆ

Ω

(
∂µ

∂t
+ µ ∧ ∂µ

∂t

)
χψdxdt =

−2

Tˆ

0

ˆ

Ω

µ ∧ ∂µ

∂x3

∂ψ

∂x3
χdxdt− 2

ˆ

Ω

µ ∧ ((µ, e1)Υ1 + (µ, e2)Υ2)χψdxdt,

µ(0, x) = µ0(x), a.e. x in Ω,

(2.5.5)

where Υ1 = (ε1, ε2, 0), Υ2 = (−ε2, ε1, 0), with ε1, ε2 constant depending on S =]− 1, 0[2.

To Problem (2.5.5), for a.e. t ∈ [0, T ], the following energy will be associated,

E (t) +

tˆ

0

∥∥∥∥∂µ∂t
∥∥∥∥2
(L2(]0,1[))3

ds (2.5.6)

where

E(t) =

1ˆ

0

∣∣∣∣ ∂µ∂x3
∣∣∣∣2 dx3+1

2
α
(
]−1, 0[2

) 1ˆ

0

|µ1|2 + |µ2|2dx3

 , (2.5.7)

α
(
]−1, 0[2

)
is defined by (2.2.5) with S =

(
]−1, 0[2

)
. Here, the term Eexc (t) =

1ˆ

0

∣∣∣∣∂µa

∂x3

∣∣∣∣2 dx3,
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can be considered an exchange energy and the termEmag (t) =
1

2
α
(
]−1, 0[2

) 1ˆ

0

|µa
1|2 + |µa

2|2dx3

,can
be considered the equivalent of a magnetostatic energy.
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Fin junction of ferroelectric thin films

L. Carbone, K. Chacouche, A. Gaudiello. Fin junction ferroelectric thin films, submitted.

Abstract. In this paper, starting from a non-convex and nonlocal 3D variational model for the
electric polarization in a ferroelectric material, and using an asymptotic process based on dimen-
sional reduction, we analyze junction phenomena for two orthogonal joined ferroelectric thin
films. We obtain three different 2D-variational models for joined thin films, depending on how
the reduction happens. Indeed, a memory effect of the reduction process appears, and it depends
on the competition of the relative thickness of the two films. The guide parameter is the limit of
the ratio between these two small thickness.

Keywords: Electric polarization; Nonlocal problems; Thin film; Junctions.
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3.1 Introduction.

Ferroelectricity is a property of some materials to have a spontaneous electrical polarization that
can be reversed by the application of an external electric field. Hysteresis phenomena appear, so
the behavior of these materials is very similar to the one of ferromagnetic materials. Analogously,
a Curie temperature TC appears, too.

The idea of existence of materials which can have stable electric polarization is as old as the study
of electrical phenomena. The quest was perhaps opened by S. Gray in the middle of eighteenth
century. O. Heaveside is quoted as the creator of term “electret” for this kind of materials in 1885,
borrowing the name from magnet, by analogy. T. Iguchi obtained the first electret at the begin-
ning of Twenties of the last century by mixing and heating some organic natural materials. In
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the Twenties again, J. Valasek discovered the presence of a hysteresis cycle (and so the first ferro-
electric material) in Rochelle salt, a common salt but chemically and crystallographically complex
enough. Immediately later, another ferroelectric salt was discovered (KH2PO4). Then the study
of ferroelectric phenomena became easier and some theoretical model were proposed. In the For-
ties, the family of ferroelectric material enlarged, e.g. ferroelectric properties were demonstrated
in barium titanate (BaTiO3) and lead titanate (PbT iO3). These simple materials opened the
way for industrial use of materials with ferroelectric properties and also the modeling of these
materials was more intensively studied. Properties of ferroelectric materials are now applied in a
wide variety of contests. In particular, due to switching effect of hysteresis cycle, thin ferroelec-
tric materials are used in electronic circuits with miniaturized and integrated forms in memory
and storage devices as, for instance, radio frequency identification cards (RFID). Moreover, also
the ferroelectric tunnel junction (FTJ) seems to offer great opportunities. We refer to [7], [16],
and [19], about the history and applications of ferroelectric material. Recently, the mathematical
modeling (in the static case) of thin structures of ferroelectric materials was studied starting from
a non-convex and nonlocal 3-variational model for the electric polarization. Via an asymptotic
process based on dimensional reduction, 2D-variational models for thin films were obtained in
[37], and 1D-variational models for thin wires were obtained in [37].

Now, we summarize the essential features of the model that we consider (see also [7], [16], [19],
[52], [54], [62], and [65]). We do not take into account any deformation of the ferroelectric
material. The electric displacement D is given by D = ε0E+ P, where ε0 > 0 is the vacuum
permeability, E is the applied external field, and P is the spontaneous electric polarization in a
ferroelectric body B. Assume that E is the gradient of a potential ψ, i.e.

E = Dψ, (3.1.1)

and that the electric field generated by P derives from a potential ϕP satisfying the electrostatic
equation

div(−ε0DϕP + P) = 0. (3.1.2)

We limit ourselves to the case where no strong electric field has been applied on B, but only a
very weak electric field acts on it (e.g. it is the case of iron in the ferromagnetism, before the
magnetization, by analogy). Then, we can assume that there are not Weis domains (i.e. regions
with different polarization separated by well defined interfaces), but only transition regions. In
this framework we can assume that the polarization does not generate an electric field outsideB.
Consequently, equation (3.1.2) holds true in B, and the following boundary conditions on ∂B

P · ν = 0, DϕP · ν = 0 on ∂B (3.1.3)
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can be added, where ν denotes the unit outer normal on ∂B.

One assumes that P minimizes the energy functional
ˆ

B

(
β|rotP|2 + |divP|2 + α(|P|2 − 1)2

)
dx+

ˆ
R3

|Dψ +DϕP|2dx, (3.1.4)

whereα and β are two positive constants independent of the external field and of the temperature.
Here,

´
B
(β|rotP|2 + |divP|2) dx reduces to the classical energy

´
B
|DP|2dx when β = 1 (see

(3.1.13)), so roughly speaking this term penalizes the spatial variation of P. The term α
´
B
(|P|2−

1)2dx obliges |P| to be near to 1, and it can induce a phase transition of P. So the body is driven
to have regions of uniform polarization separated by thin transition layers. The term

´
R3 |Dψ +

DϕP|2dx is the electrostatic energy. As this last term is concerned, we have

ˆ
R3

|Dψ +DϕP|2dx =

ˆ
R3

|E|2dx+ 2

ˆ
B

Dψ ·DϕPdx+

ˆ
B

|DϕP|2dx, (3.1.5)

thanks to (3.1.1). On the other side, using (3.1.2) and (3.1.3) give
ˆ

B

Dψ ·DϕPdx =
1

ε0

ˆ
B

Dψ · Pdx. (3.1.6)

Consequently, inserting (3.1.5) and (3.1.6) in (3.1.4), and remarking that
´
R3 |E|2dx is constant

with respect to P, the energy functional minimized by P becomes
ˆ

B

(
β|rotP|2 + |divP|2 + α(|P|2 − 1)2

)
dx+

ˆ
B

|DϕP|2dx+
2

ε0

ˆ
B

E · Pdx, (3.1.7)

where
´
B
|DϕP|2dx is the electrostatic energy induced by P, and the external energy´

B
E · Pdx favors the polarization parallel (but in opposite verse) to E.

In this paper, starting from this 3D-variational model and using an asymptotic process based on
dimensional reduction, we analyze junction phenomena in a fin-like shaped structure composed
of two orthogonal joined ferroelectric thin films (see Fig.3.1). Such a structure appears in some
types of non-planar transistor used in the design of modern processors, the so called Fin Field
Effect Transistor (FinFET). We obtain three different 2D-variational models for joined thin films,
depending on how the reduction happens. Indeed, a memory effect of the reduction process
appears, and it depends on the competition of the relative thickness of the two films. The guide
parameter is the limit of the ratio between these two small thickness. The reduced models are
justified by reasons of simplicity and economy, by a numerical point of view, too.
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Figure 3.1: Ωn

Let {han}n∈N and
{
hbn
}
n∈N ⊂]0, 1[ be two sequences such that

lim
n
han = 0 = lim

n
hbn, lim

n

hbn
han

= ` ∈ [0,+∞]. (3.1.8)

For every n ∈ N, set (see Fig.3.1)

Ωa
n =

]
−ha

n

2
, h

a
n

2

[
×
]
−1

2
, 1
2

[
× [0, 1[ , Ωb

n =
]
−1

2
, 1
2

[2 × ]−hbn, 0[ , Ωn = Ωa
n ∪ Ωb

n.
(3.1.9)

The multidomain Ωn models a ferroelectric device consisting of two orthogonal joined thin films
Ωa

n and Ωb
n with small thicknesses han and hbn, respectively. According to (3.1.7), we consider the

following non-convex and nonlocal energy associated with Ωn

En : P ∈ Pn −→
ˆ

Ωn

(
β|rotP|2 + |divP|2 + α(|P|2 − 1)2 + |DϕP|2 + (Fn · P)

)
dx, (3.1.10)

where
Pn =

{
P ∈

(
H1 (Ωn)

)3
: P · ν = 0 on ∂Ωn

}
, (3.1.11)

α and β are two positive constants, Fn ∈ (L2(Ωn))
3, ν denotes the unit outer normal on ∂Ωn,
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and ϕP ∈ H1(Ωn) is the unique solution, up to an additive constant, of

div(−ε0DϕP + P) = 0 in Ωn,

(−ε0DϕP + P) · ν = 0 on ∂Ωn.

(3.1.12)

Notice that Fn is a normalization of the external field. So to obtain (3.1.7), choose Fn = 2
ε0
E.

Using

‖DP‖2(L2(Ωn))9
= ‖rotP‖2(L2(Ωn))3

+ ‖divP‖2L2(Ωn)
∀P ∈ Pn, ∀n ∈ N, (3.1.13)

(this formula is true due to the special geometry of the domain, for instance compare [18] and
Lemma 2.1 in [37]) and the direct method of Calculus of Variations give that problem

min{En(P) : P ∈ Pn} (3.1.14)

admits a solution. Note that problem (3.1.14) is an optimal control problem.

We rescale Fn in Ωa =
]
−1

2
, 1
2

[
×
]
−1

2
, 1
2

[
× ]0, 1[ and Ωb =

]
−1

2
, 1
2

[
×
]
−1

2
, 1
2

[
× ]−1, 0[ (see

(3.2.2)), and we impose suitable convergence assumptions on these rescaled fields (see (3.2.9)).
The goal of this paper is to study the asymptotic behavior, as n diverges, of (3.1.14).

Now, we describe the three different limit regimes depending on ratio ` given in (3.1.8), according
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to 0 < ` < +∞, ` = 0, or ` = +∞. Precisely, when 0 < ` < +∞, i.e. hbn ' han, we prove that

lim
n

min
{

1

|Ωn|
En(P) : P ∈

(
H1 (Ωn)

)3
: P · ν = 0 on ∂Ωn

}
=

min

{
1

1 + `

ˆ
]− 1

2
, 1
2
[×]0,1[

(
β|rotqa|2 + |divqa|2 + α(|qa|2 − 1)2

+|Dψa(
qa,qb

)|2 +
ˆ 1

2

− 1
2

(fa
2 , f

a
3 )dx1 · qa

)
dx2dx3

+
`

1 + `

ˆ
]− 1

2
, 1
2
[2

(
β
∣∣rotqb∣∣2 + ∣∣divqb∣∣2 + α

(∣∣qb∣∣2 − 1
)2

+
∣∣∣Dψb(

qa,qb
)∣∣∣2 + ˆ 0

−1

(
f b
1 , f

b
2

)
dx3 · qb

)
dx1dx2 :

(
qa, qb

)
=
(
(qa2 , q

a
3) ,
(
qb1, q

b
2

))
∈
(
H1
(]
−1

2
, 1
2

[
× ]0, 1[

))2 × (H1
(]

−1
2
, 1
2

[2))2
,

qa · νa = 0 on ∂
(]
−1

2
, 1
2

[
× ]0, 1[

)
, qb · νb = 0 on ∂

(]
−1

2
, 1
2

[2)
,

qb1(0, ·) = 0, qa2(·, 0) = qb2 (0, ·) in
]
−1

2
, 1
2

[}
,

(3.1.15)

where νa and νb denote the unit outer normals on ∂
(]
−1

2
, 1
2

[
× ]0, 1[

)
and ∂

(]
−1

2
, 1
2

[2), respec-
tively, fa = (fa

1 , f
a
2 , f

a
3 ) and f b = (f b

1 , f
b
2 , f

b
3) denote the L2-weak limits of the rescaled fields

of Fn on Ωa and Ωb, respectively, qa and ψa(
qa,qb

) depend on (x2, x3) only, qb and ψb(
qa,qb

) depend
on (x1, x2) only, and

(
ψa(

qa,qb
), ψb(

qa,qb
)) ∈ H1

(]
−1

2
, 1
2

[
× ]0, 1[

)
×H1

(]
−1

2
, 1
2

[2) is the unique
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weak solution, up to an additive constant, of

div(−ε0Dψa(
qa,qb

) + qa) = 0 in
]
−1

2
, 1
2

[
× ]0, 1[ ,

div(−ε0Dψb(
qa,qb

) + qb) = 0 in
]
−1

2
, 0
[
×
]
−1

2
, 1
2

[
,

div(−ε0Dψb(
qa,qb

) + qb) = 0 in
]
0, 1

2

[
×
]
−1

2
, 1
2

[
,

(−ε0Dψa(
qa,qb

) + qa) · νa = 0 on ∂
(]
−1

2
, 1
2

[
× ]0, 1[

)
\
(
{0} ×

]
−1

2
, 1
2

[)
,

(−ε0Dψb(
qa,qb

) + qb) · νb = 0 on ∂
(]

−1
2
, 1
2

[2)
,

ψa(
qa,qb

)(·, 0) = ψb(
qa,qb

)(0, ·) in ]−1
2
, 1
2

[
,

∂x3ψ
a(
qa,qb

)(·, 0) = `[∂x1ψ
b(
qa,qb

)](0, ·) in ]−1
2
, 1
2

[
,

(3.1.16)

with [∂x1ψ
b(
qa,qb

)] denoting the jump of ∂x1ψ
b(
qa,qb

) on {0} ×
]
−1

2
, 1
2

[
.

More precisely, in Theorem 3.3.2 we obtain a limit polarization (0, p̂a2, p̂
a
3) in the vertical thin film

and a limit polarization
(
p̂b1, p̂

b
2, 0
)
in the horizontal thin film, and the couple

(
(p̂a2, p̂

a
3) ,
(
p̂b1, p̂

b
2

))
solves problem (3.1.15)-(3.1.16). Roughly speaking, (p̂a2, p̂a3) is independent of x1 and solves a
2D-problem in the vertical thin film “similar” to the original problem; while

(
p̂b1, p̂

b
2

)
is indepen-

dent of x3 and solves a 2D-problem in the horizontal thin film “similar” to the original problem.
Moreover, a memory effect of the original 3D-problem appears. Indeed, (p̂a2, p̂a3) and

(
p̂b1, p̂

b
2

)
are

subjected to a transmission condition on the intersection of the thin films (see the two last lines
in (3.1.15) and in (3.1.16)). We also study the limit behavior of the rescaled potential of electric
field associated with the polarization.
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In the case ` = 0, i.e. hbn � han, we prove that

lim
n

min
{

1

|Ωn|
En(P) : P ∈

(
H1 (Ωn)

)3
: P · ν = 0 on ∂Ωn

}
=

min

{ˆ
]− 1

2
, 1
2
[×]0,1[

(
β|rotqa|2 + |divqa|2 + α(|qa|2 − 1)2

+|Dψa
qa|2 +

ˆ 1
2

− 1
2

(fa
2 , f

a
3 )dx1 · qa

)
dx2dx3 :

qa = (qa2 , q
a
3) ∈

(
H1
(]
−1

2
, 1
2

[
× ]0, 1[

))2
, qa · νa = 0 on ∂

(]
−1

2
, 1
2

[
× ]0, 1[

)}
,

(3.1.17)

where ψa
qa is the unique weak solution, up to an additive constant, of

div(−ε0Dψa
qa + qa) = 0 in

]
−1

2
, 1
2

[
× ]0, 1[ ,

(−ε0Dψa
qa + qa) · νa = 0 on ∂

(]
−1

2
, 1
2

[
× ]0, 1[

)
.

(3.1.18)

Roughly speaking, in the limit process the energy, renormalized by 1
|Ωn| , reduces to the energy of a

2D-problem in the vertical thin film. Also in this case a memory effect of the original 3D-problem
appears. Indeed, a solution pa of problem (3.1.17) satisfies the boundary condition pa3 = 0 and
∂x3ψ

a
pa = 0 on

]
−1

2
, 1
2

[
×{0} (see the last lines in (3.1.17) and (3.1.18), respectively). SeeTheorem

3.3.4 about the limit behavior of the rescaled polarization and of the rescaled potential of electric
field associated with it.

In the case ` = +∞, i.e. han � hbn, we are able to study the asymptotic behavior of problem
(3.1.14) under the additional assumption hbn �

√
han (see Remark 3.6.5). In this case we prove
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that 

lim
n

min
{

1

|Ωn|
En(P) : P ∈

(
H1 (Ωn)

)3
: P · ν = 0 on ∂Ωn

}
=

min

{ˆ
]− 1

2
, 1
2
[2

(
β
∣∣rotqb∣∣2 + ∣∣divqb∣∣2 + α

(∣∣qb∣∣2 − 1
)2

+
∣∣Dψb

qb

∣∣2 + ˆ 0

−1

(
f b
1 , f

b
2

)
dx3 · qb

)
dx1dx2 :

qb =
(
qb1, q

b
2

)
∈
(
H1
(]

−1
2
, 1
2

[2))2
, qb · νb = 0 on ∂

(]
−1

2
, 1
2

[2)
,

qb1(0, ·) = 0 in
]
−1

2
, 1
2

[}
,

(3.1.19)

where ψb
qb
is the unique weak solution, up to an additive constant, of

div(−ε0Dψb
qb
+ qb) = 0 in

(]
−1

2
, 1
2

[)2
,

(−ε0Dψb
qb
+ qb) · νb = 0 on ∂

(]
−1

2
, 1
2

[)2
.

(3.1.20)

Roughly speaking, in the limit process the energy, renormalized by 1
|Ωn| , reduces to the energy

of a 2D-problem in the horizontal thin film. Also in this case a memory effect of the original
3D-problem appears. Indeed, a solution pb of problem (3.1.19) satisfies the boundary condition
pb1 = 0 and [∂x1ψ

b
qb
] = 0 on {0}×

]
−1

2
, 1
2

[
(see the last lines in (3.1.19) and the first line in (3.1.20),

respectively). See Theorem 3.3.7 about the limit behavior of the rescaled polarization and of the
rescaled potential of electric field associated with it.

In what follows, we assume ε0 = 1.

In all the three cases, we reformulate the problem on a fixed domain through appropriate rescal-
ings of the kind proposed in [17] and impose suitable convergence assumptions on the rescaled
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fields of Fn. Then, we use accurate a priori estimates which provide a first characterization of the
(H1(Ωa))3 × (H1(Ωb))3-weak limit of the rescaled polarization. For obtaining the transmission
conditions (the memory effect) on the limit polarization in the case 0 < ` < +∞, we refer to
[34]; while the proofs of the memory effects in the case ` = 0 and ` = +∞ are completely new
and more intricate, mainly when ` = +∞. The properties of the limit polarization drive us in
the study of the asymptotic behavior of the electrostatic energy associated with the polarization.
First, we obtain a priori estimates of the electrostatic potential which provide a limit electro-
static potential. Then, using the main ideas of the Γ-convergence method introduced in [21] (see
[8], [10], and [20], too), we identify the limit electrostatic equation and the problem satisfied by
the limit polarization. In this last two steps, the main difficulties arise in the construction of
the “recovery sequence”. For instance, as the polarization is concerned (the same holds for the
electrostatic potential), the main difficulties depend on the fact that the test functions (pa, pb)
(of the rescaled problem of (3.1.14)) are not H1 of all the rescaled domain, but pa ∈ (H1(Ωa))

3,
pb ∈

(
H1(Ωb)

)3, and they satisfy the junction condition pa(x1, x2, 0) = pb(hanx1, x2, 0) on the
interface separating Ωa and Ωb, and also some boundary conditions. We build the recovery se-
quence for enough regular test functions, so some density results are needed to be proved.

The 3D model of ferromagnetic micro devices is close to our model. For the limit behavior of a
ferromagnetic thin structures we refer to [34] for joined ferromagnetic thin films in the stationary
case, and [23] and [24] in the quasi-stationary case. For the study of ferromagnetic thin films, we
refer to [2], [3], [4], [6], [13], [25], [35], [41], [42], [48], and [49]. For problems of junctions, we
refer to [51].

3.2 The rescaled problem

As it is usual (see [17]), (3.1.14) is reformulated on a fixed domain through the maps

x = (x1, x2, x3) ∈ Ωa =
]
−1

2
, 1
2

[
×
]
−1

2
, 1
2

[
× ]0, 1[ −→ (hanx1, x2, x3) ∈ Int(Ωa

n),

x = (x1, x2, x3) ∈ Ωb =
]
−1

2
, 1
2

[
×
]
−1

2
, 1
2

[
× ]−1, 0[ −→ (x1, x2, h

b
nx3) ∈ Ωb

n,

(3.2.1)

where Int(Ωa
n) denotes the interior of Ωa

n. Precisely, for every n ∈ N set

Da
n : pa ∈

(
H1(Ωa)

)k −→ (
1

han

∂pa

∂x1
,
∂pa

∂x2
,
∂pa

∂x3

)
∈ (L2(Ωa))3k, k ∈ {1, 3},
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Db
n : pb ∈

(
H1(Ωb)

)k −→ (
∂pb

∂x1
,
∂pb

∂x2
,
1

hbn

∂pb

∂x3

)
∈
(
L2
(
Ωb
))3k

, k ∈ {1, 3},

divan : pa = (pa1, p
a
2, p

a
3) ∈

(
H1(Ωa)

)3 −→ 1

han

∂pa1
∂x1

+
∂pa2
∂x2

+
∂pa3
∂x3

∈ L2(Ωa),

divbn : pb =
(
pb1, p

b
2, p

b
3

)
∈
(
H1(Ωb)

)3 −→ ∂pb1
∂x1

+
∂pb2
∂x2

+
1

hbn

∂pb3
∂x3

∈ L2(Ωb),

rotan : pa = (pa1, p
a
2, p

a
3) ∈

(
H1 (Ωa)

)3 −→ (
∂pa3
∂x2

− ∂pa2
∂x3

,
∂pa1
∂x3

− 1

han

∂pa3
∂x1

,
1

han

∂pa2
∂x1

− ∂pa1
∂x2

)
∈ (L2(Ωa))3,

rotbn : pb =
(
pb1, p

b
2, p

b
3

)
∈
(
H1
(
Ωb
))3 −→ (

∂pb3
∂x2

− 1

hbn

∂pb2
∂x3

,
1

hbn

∂pb1
∂x3

− ∂pb3
∂x1

,
∂pb2
∂x1

− ∂pb1
∂x2

)
∈ (L2(Ωb))3,

fa
n : x = (x1, x2, x3) ∈ Ωa −→ Fn(h

a
nx1, x2, x3),

f b
n : x = (x1, x2, x3) ∈ Ωb −→ Fn(x1, x2, h

b
nx3),

(3.2.2)



Pn =
{

(pa, pb) ∈ (H1 (Ωa))
3 ×

(
H1(Ωb)

)3
:

pa · νa = 0 on ∂Ωa\
(]

−1
2
, 1
2

[2 × {0}
)
,

pb · νb = 0 on ∂Ωb\
(]

−1
2
, 1
2

[2 × {0}
)
,

pb3 = 0 on
(]

−1
2
, 1
2

[2 \(]−ha
n

2
, h

a
n

2

[
×
]
−1

2
, 1
2

[))
× {0} ,

pa(x1, x2, 0) = pb(hanx1, x2, 0) in
]
−1

2
, 1
2

[2 }
,

(3.2.3)



94 CHAPTER 3: FIN JUNCTION OF FERROELECTRIC THIN FILMS

where νa and νb denote the unit outer normals on ∂Ωa and ∂Ωb, respectively, and

Un =

{
(φa, φb) ∈ H1(Ωa)×H1(Ωb) : φa(x1, x2, 0) = φb(hanx1, x2, 0) in

]
−1

2
, 1
2

[2}
.

(3.2.4)
Then, En defined in (3.1.10) is rescaled by

En :
(
pa, pb

)
∈ Pn −→

han

ˆ
Ωa

(
β|rotanpa|2 + |divanpa|2 + α(|pa|2 − 1)2 + |Da

nφ
a(
pa,pb

)|2 + (fa
n · pa)

)
dx

+hbn

ˆ
Ωb

(
β|rotbnpb|2 + |divbnpb|2 + α(|pb|2 − 1)2 + |Db

nφ
b(
pa,pb

)|2 + (f b
n · pb)

)
dx,

(3.2.5)

where
(
φa(

pa,pb
), φb(

pa,pb
)) is the unique solution of



(
φa(

pa,pb
), φb(

pa,pb
)) ∈ Un,

ˆ
Ωa

φa(
pa,pb

)dx = 0,

han

ˆ
Ωa

((−Da
nφ

a(
pa,pb

) + pa) ·Da
nφ

a)dx

+hbn

ˆ
Ωb

((
−Db

nφ
b(
pa,pb

) + pb
)
·Db

nφ
b
)
dx = 0 ∀ (φa, φb) ∈ Un,

(3.2.6)

which rescales a weak formulation of (3.1.12), i.e.

ϕP ∈ H1(Ωn),

ˆ
Ωa

n

ϕP dx = 0,

ˆ
Ωn

((−ε0DϕP + P) ·Dϕ) dx = 0 ∀ϕ ∈ H1(Ωn).

(3.2.7)
The Lax-Milgram Theorem provides that (3.2.7) admits solution and it is unique.

Note that if Pn solves (3.1.14), then (pan, p
b
n) defined by

pan(x1, x2, x3) = Pn(h
a
nx1, x2, x3) in Ωa, pbn(x1, x2, x3) = Pn(x1, x2, h

b
nx3) in Ωb,
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solves
min

{
En((p

a, pb)) : (pa, pb) ∈ Pn

}
. (3.2.8)

Conversely, if (pan, pbn) solves (3.2.8), then Pn defined by

Pn(x1, x2, x3) = pan

(
x1
han
, x2, x3

)
in Ωa

n, Pn(x1, x2, x3) = pbn

(
x1, x2,

x3
hbn

)
in Ωb

n,

solves (3.1.14). Therefore, the goal of this paper becomes to study the asymptotic behavior, as n
diverges, of (3.2.8). To this aim, we assume

fa
n ⇀ fa = (fa

1 , f
a
2 , f

a
3 ) weakly in (L2(Ωa))3,

f b
n ⇀ f b =

(
f b
1 , f

b
2 , f

b
3

)
weakly in

(
L2
(
Ωb
))3

.

(3.2.9)

We conclude this section noting that rescalings in (3.2.1) transform (3.1.13) into

han ‖Da
np

a‖2(L2(Ωa))9 + hbn
∥∥Db

np
b
∥∥2
(L2(Ωb))9

= han‖rotanpa‖2(L2(Ωa))3 + han‖divanpa‖2L2(Ωa)

+hbn
∥∥rotbnpb∥∥2(L2(Ωb))3

+ hbn
∥∥divbnpb∥∥2L2(Ωb)

∀(pa, pb) ∈ Pn, ∀n ∈ N.
(3.2.10)

3.3 The main results

3.3.1 The case ` ∈]0,+∞[

This subsection is devoted to state Theorem 3.3.2 describing the limit behavior of (3.2.8) when
(3.1.8) is assumed with ` ∈]0,+∞[. Theorem 3.3.2 will be proved in Section 3.4.
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Set 

P =
{ (

qa, qb
)
=
(
(qa2 , q

a
3) ,
(
qb1, q

b
2

))
∈

(
H1
(]
−1

2
, 1
2

[
× ]0, 1[

))2 × (H1
(]

−1
2
, 1
2

[2))2
:

qa · νa = 0 on ∂
(]
−1

2
, 1
2

[
× ]0, 1[

)
, qb · νb = 0 on ∂

(]
−1

2
, 1
2

[2)
,

qb1(0, ·) = 0, qa2(·, 0) = qb2 (0, ·) in
]
−1

2
, 1
2

[ }
,

(3.3.1)

where νa and νb denote the unit outer normal on ∂
(]
−1

2
, 1
2

[
× ]0, 1[

)
and ∂

(]
−1

2
, 1
2

[2), respec-
tively, 

U =

{ (
ψa, ψb

)
∈ H1

(]
−1

2
, 1
2

[
× ]0, 1[

)
×H1

(]
−1

2
, 1
2

[2)
:

ψa(·, 0) = ψb(0, ·) in
]
−1

2
, 1
2

[}
,

(3.3.2)

and

E :
(
qa, qb

)
∈ P −→

ˆ
]− 1

2
, 1
2
[×]0,1[

(
β|rotqa|2 + |divqa|2 + α(|qa|2 − 1)2

+|Dψa(
qa,qb

)|2 +
ˆ 1

2

− 1
2

(fa
2 , f

a
3 )dx1 · qa

)
dx2dx3

+`

ˆ
]− 1

2
, 1
2
[2

(
β
∣∣rotqb∣∣2 + ∣∣divqb∣∣2 + α

(∣∣qb∣∣2 − 1
)2

+
∣∣∣Dψb(

qa,qb
)∣∣∣2 + ˆ 0

−1

(
f b
1 , f

b
2

)
dx3 · qb

)
dx1dx2,

(3.3.3)
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where (fa
2 , f

a
3 ) and (f b

1 , f
b
2) are defined in (3.2.9), and (ψa(

qa,qb
), ψb(

qa,qb
)) is the unique solution of



(
ψa(

qa,qb
), ψb(

qa,qb
)) ∈ U,

ˆ
]
− 1

2
, 1
2

[
×]0,1[

ψa(
qa,qb

)dx2dx3 = 0,

ˆ
]
− 1

2
, 1
2

[
×]0,1[

((
−D(x2,x3)ψ

a(
qa,qb

) + qa
)
·D(x2,x3)ψ

a
)
dx2dx3

+`

ˆ
]
− 1

2
, 1
2

[2
((

−D(x1,x2)ψ
b(
qa,qb

) + qb
)
·D(x1,x2)ψ

b
)
dx1dx2 = 0 ∀

(
ψa, ψb

)
∈ U.

(3.3.4)

Note that (3.3.4) admits a solution and it is unique since the set{(
ψa, ψb

)
∈ U :

ˆ
]
− 1

2
, 1
2

[
×]0,1[

ψa dx2dx3 = 0

}

is a Hilbert space with the inner product

<
(
ψa, ψb

)
,
(
ϕa, ϕb

)
>=

ˆ
]
− 1

2
, 1
2

[
×]0,1[

DψaDϕadx2dx3 + `

ˆ
]
− 1

2
, 1
2

[2 DψbDϕbdx1dx2.

Remark 3.3.1. In what follows, any element of U (resp. P) is assumed to be extended to the element
of H1(Ωa) × H1(Ωb) (resp. (H1(Ωa))

2 ×
(
H1(Ωb)

)2) with the first (resp. first two) component(s)
independent of x1 and the second (resp. last two) component(s) independent of x3.

Theorem 3.3.2. Assume (3.1.8) with ` ∈]0,+∞[, and (3.2.9). For every n ∈ N, let
(
pan, p

b
n

)
be a so-

lution of (3.2.8), and
(
φa(

pan,p
b
n

), φb(
pan,p

b
n

)) be the unique solution of (3.2.6) with
(
pa, pb

)
=
(
pan, p

b
n

)
.

Moreover, let P and E be defined by (3.3.1) and (3.3.3)-(3.3.4), respectively. Then, there exist an
increasing sequence of positive integer numbers {ni}i∈N and (in possible dependence on the subse-
quence)

(
p̂a, p̂b

)
=
(
(p̂a2, p̂

a
3) ,
(
p̂b1, p̂

b
2

))
∈ P such that

pani
→ (0, p̂a2, p̂

a
3) strongly in

(
H1(Ωa)

)3 and strongly in
(
L4(Ωa)

)3
,

pbni
→
(
p̂b1, p̂

b
2, 0
)
strongly in

(
H1(Ωb)

)3
and strongly in

(
L4(Ωb)

)3
,

(3.3.5)
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(
1

han

∂pan
∂x1

,
1

hbn

∂pbn
∂x3

)
→ (0, 0) strongly in

(
L2(Ωa)

)3 × (L2(Ωb)
)3
, (3.3.6)

(
φa(

pani
,pbni

), φb(
pani

,pbni

))→
(
ψa(

p̂a,p̂b
), ψb(

p̂a,p̂b
)) strongly in H1(Ωa)×H1(Ωb),

(
1

han

∂φa(
pan,p

b
n

)
∂x1

,
1

hbn

∂φb(
pan,p

b
n

)
∂x3

)
→ (0, 0) strongly in L2(Ωa)× L2

(
Ωb
)
,

(3.3.7)

where
(
p̂a, p̂b

)
solves

E
((
p̂a, p̂b

))
= min

{
E
((
qa, qb

))
:
(
qa, qb

)
∈ P

}
, (3.3.8)

and
(
ψa(

p̂a,p̂b
), ψb(

p̂a,p̂b
)) is the unique solution of (3.3.4) with (qa, qb) =

(
p̂a, p̂b

)
. Moreover,

lim
n

En

((
pan, p

b
n

))
han

= E
((
p̂a, p̂b

))
. (3.3.9)

3.3.2 The case ` = 0

This subsection is devoted to state Theorem 3.3.4 describing the limit behavior of (3.2.8) when
(3.1.8) is assumed with ` = 0. Theorem 3.3.4 will be proved in Section 3.5.

Set

P◦ =
{
qa = (qa2 , q

a
3) ∈

(
H1
(]
−1

2
, 1
2

[
× ]0, 1[

))2
: qa · νa = 0 on ∂

(]
−1

2
, 1
2

[
× ]0, 1[

)}
(3.3.10)
where νa denotes the unit outer normal on ∂

(]
−1

2
, 1
2

[
× ]0, 1[

)
, and

E◦ : q
a ∈

(
H1
(]
−1

2
, 1
2

[
× ]0, 1[

))2 −→ ˆ
]− 1

2
, 1
2
[×]0,1[

(
β|rotqa|2

+|divqa|2 + α(|qa|2 − 1)2 + |Dψa
qa|2 +

ˆ 1
2

− 1
2

(fa
2 , f

a
3 )dx1 · qa

)
dx2dx3,

(3.3.11)
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where (fa
2 , f

a
3 ) is defined in (3.2.9), and ψa

qa is the unique solution of



ψa
qa ∈ H1

(]
−1

2
, 1
2

[
× ]0, 1[

)
,

ˆ
]
− 1

2
, 1
2

[
×]0,1[

ψa
qadx2dx3 = 0,

ˆ
]
− 1

2
, 1
2

[
×]0,1[

((
−D(x2,x3)ψ

a
qa + qa

)
·D(x2,x3)ψ

a
)
dx2dx3 = 0

∀ψa ∈ H1
(]
−1

2
, 1
2

[
× ]0, 1[

)
,

(3.3.12)

Remark 3.3.3. In what follows, any element of H1
(]
−1

2
, 1
2

[
× ]0, 1[

)
(resp. P◦) is assumed to be

extended to the element of H1(Ωa) (resp. (H1(Ωa))
2) independent of x1.

Theorem3.3.4. Assume (3.1.8)with ` = 0, and (3.2.9). For every n ∈ N, let
(
pan, p

b
n

)
be a solution of

(3.2.8), and
(
φa(

pan,p
b
n

), φb(
pan,p

b
n

)) be the unique solution of (3.2.6) with
(
pa, pb

)
=
(
pan, p

b
n

)
. Moreover,

let P◦ andE◦ be defined by (3.3.10) and (3.3.11)-(3.3.12), respectively. Then, there exist an increasing
sequence of positive integer numbers {ni}i∈N and (in possible dependence on the subsequence) p̂a =
(p̂a2, p̂

a
3) ∈ P◦ such that

pani
→ (0, p̂a2, p̂

a
3) strongly in

(
H1(Ωa)

)3 and strongly in
(
L4(Ωa)

)3
,

(
hbn
han

) 1
2

pbn → 0 strongly in
(
H1(Ωb)

)3
and strongly in

(
L4(Ωb)

)3
,

(3.3.13)

(
1

han

∂pan
∂x1

,

(
1

hanh
b
n

) 1
2 ∂pbn
∂x3

)
→ (0, 0) strongly in

(
L2(Ωa)

)3 × (L2
(
Ωb
))3

, (3.3.14)



(
φa(

pani
,pbni

),
(
hbn
han

) 1
2

φb(
pan,p

b
n

)
)

→
(
ψa
p̂a, 0

)
strongly in H1(Ωa)×H1(Ωb),

(
1

han

∂φa(
pan,p

b
n

)
∂x1

,

(
1

hanh
b
n

) 1
2 ∂φb(

pan,p
b
n

)
∂x3

)
→ (0, 0) strongly in L2(Ωa)× L2

(
Ωb
)

(3.3.15)

where p̂a solves
E◦ (p̂

a) = min {E◦ (q
a) : qa ∈ P◦} , (3.3.16)
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and ψa
p̂a is the unique solution of (3.3.12) with qa = p̂a. Moreover,

lim
n

En

((
pan, p

b
n

))
han

= E◦ (p̂
a) . (3.3.17)

Remark 3.3.5. Note that (3.3.17) combined with (3.3.13)-(3.3.15) improves the last convergence in
(3.3.13). Precisely, also one obtains

(
hbn
han

) 1
4

pbn → 0 strongly in
(
L4(Ωb)

)3
.

3.3.3 The case ` = +∞

This subsection is devoted to state Theorem 3.3.7 describing the limit behavior of (3.2.8) when
(3.1.8) is assumed with ` = +∞ and hbn <<

√
han. Theorem 3.3.7 will be proved in Section 3.6.

Here we assume that the function (φa(
pa,pb

), φb(
pa,pb

)) involved in (3.2.5) is the unique solution of
the following problem:

(
φa(

pa,pb
), φb(

pa,pb
)) ∈ Un,

ˆ
Ωb

φb(
pa,pb

)dx = 0,

han

ˆ
Ωa

((−Da
nφ

a(
pa,pb

) + pa) ·Da
nφ

a)dx

+hbn

ˆ
Ωb

((
−Db

nφ
b(
pa,pb

) + pb
)
·Db

nφ
b
)
dx = 0 ∀ (φa, φb) ∈ Un,

(3.3.18)

i.e. assumption
ˆ

Ωa

φa(
pa,pb

)dx = 0 is replacedwith
ˆ

Ωb

φb(
pa,pb

)dx = 0, or equivalently, in (3.2.7),

assumption
ˆ

Ωa
n

ϕPdx = 0 is replaced with
ˆ

Ωb
n

ϕPdx = 0 . Obviously, En andEn do not change.
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Set 

P∞ =

{
qb =

(
qb1, q

b
2

)
∈
(
H1
(]

−1
2
, 1
2

[2))2
: qb · νb = 0 on ∂

(]
−1

2
, 1
2

[2)
,

qb1(0, ·) = 0 in
]
−1

2
, 1
2

[}
,

(3.3.19)

where νb denotes the unit outer normal on ∂
(]

−1
2
, 1
2

[2), and


E∞ : qb ∈
(
H1
(]
−1

2
, 1
2

[))2 −→ ˆ
]− 1

2
, 1
2
[2

(
β|rotqb|2

+|divqb|2 + α(|qb|2 − 1)2 + |Dψb
qb|

2 +

ˆ 0

1

(f b
1 , f

b
2)dx3 · qb

)
dx1dx2,

(3.3.20)

where (f b
1 , f

b
2) is defined in (3.2.9), and ψb

qb
is the unique solution of

ψb
qb
∈ H1

(]
−1

2
, 1
2

[2)
,

ˆ
]
− 1

2
, 1
2

[2 ψb
qbdx1dx2 = 0,

ˆ
]
− 1

2
, 1
2

[2
((
−D(x1,x2)ψ

b
qb + qb

)
·D(x1,x2)ψ

b
)
dx1dx2 = 0, ∀ψb ∈ H1

(]
−1

2
, 1
2

[2)
.

(3.3.21)

Remark 3.3.6. In what follows, any element ofH1
(]

−1
2
, 1
2

[2) (resp. P∞) is assumed to be extended

to the element of H1(Ωb) (resp.
(
H1(Ωb)

)2) independent of x3.

Theorem 3.3.7. Assume (3.1.8) with ` = +∞ and hbn <<
√
han, and (3.2.9). For every n ∈

N, let
(
pan, p

b
n

)
be a solution of (3.2.8), and

(
φa(

pan,p
b
n

), φb(
pan,p

b
n

)) be the unique solution of (3.3.18)
with

(
pa, pb

)
=
(
pan, p

b
n

)
. Moreover, let P∞ and E∞ be defined in (3.3.19) and (3.3.20)-(3.3.21),

respectively. Then, there exist an increasing sequence of positive integer numbers {ni}i∈N and (in
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possible dependence on the subsequence) p̂b =
(
p̂b1, p̂

b
2

)
∈ P∞ such that

(
han
hbn

) 1
2

pan → 0 strongly in
(
H1(Ωa)

)3 and strongly in
(
L4(Ωa)

)3
,

pbni
→
(
p̂b1, p̂

b
2, 0
)
strongly in

(
H1(Ωb)

)3
and strongly in

(
L4(Ωb)

)3
(3.3.22)

((
1

hanh
b
n

) 1
2 ∂pan
∂x1

,
1

hbn

∂pbn
∂x3

)
→ 0 strongly in

(
L2(Ωa)

)3 × (L2(Ωb)
)3
, (3.3.23)



((
han
hbn

) 1
2

φa(
pani

,pbni

), φb(
pani

,pbni

)
)

→
(
0, ψb

p̂b

)
strongly in H1(Ωa)×H1(Ωb),

((
1

hanh
b
n

) 1
2 ∂φa(

pan,p
b
n

)
∂x1

,
1

hbn

∂φb(
pan,p

b
n

)
∂x3

)
→ (0, 0) strongly in L2(Ωa)× L2

(
Ωb
)
,

(3.3.24)

where p̂b solves
E∞

(
p̂b
)
= min

{
E∞

(
qb
)
: qb ∈ P∞

}
, (3.3.25)

and ψb
p̂b
is the unique solution of (3.3.21) with qb = p̂b. Moreover, the convergence of the energies

holds true, that is

lim
n

En

((
pan, p

b
n

))
hbn

= E∞
(
p̂b
)
. (3.3.26)

Remark 3.3.8. Note (3.3.26) combined with (3.3.22)-(3.3.24) improves the second convergence in
(3.3.22). Precisely, one obtains also

(
han
hbn

) 1
4

pan → 0 strongly in
(
L4(Ωa)

)3
.

3.4 The proofs in the case ` ∈]0,+∞[

This section is devoted to proving Theorem 3.3.2.
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3.4.1 A priori estimates on the polarization

Proposition 3.4.1. Assume (3.1.8) with ` ∈]0,+∞[, and (3.2.9). For every n ∈ N, let
(
pan, p

b
n

)
be

a solution of (3.2.8). Then, there exists a constant c such that

‖pan‖(L4(Ωa))3 ≤ c,
∥∥pbn∥∥(L4(Ωb))3

≤ c ∀n ∈ N, (3.4.1)

and
‖Da

np
a
n‖(L2(Ωa))9 ≤ c,

∥∥Db
np

b
n

∥∥
(L2(Ωb))9

≤ c ∀n ∈ N. (3.4.2)

Proof. Function 0 belonging to Pn gives

ˆ
Ωa

(
β |rotanpan|

2 + |divanpan|
2 + α

(
|pan|

4 − 2 |pan|
2)+ |Da

nφ
a(
pan,p

b
n

)|2) dx

+
hbn
han

ˆ
Ωb

(
β
∣∣rotbnpbn∣∣2 + ∣∣divbnpbn∣∣2 + α

(∣∣pbn∣∣4 − 2
∣∣pbn∣∣2)+ |Db

nφ
b(
pan,p

b
n

)|2) dx

≤ 1

2

ˆ
Ωa

(
|fa

n |2 + |pan|2
)
dx+

hbn
han

1

2

ˆ
Ωb

(
|f b

n|2 + |pbn|2
)
dx ∀n ∈ N.

(3.4.3)

Estimate (3.4.3) implies

ˆ
Ωa

α

(
|pan|

4 −
(
2 +

1

2α

)
|pan|

2

)
dx+

hbn
han

ˆ
Ωb

α

(∣∣pbn∣∣4 − (2 + 1

2α

) ∣∣pbn∣∣2) dx

≤ 1

2

ˆ
Ωa

|fa
n |

2 dx+
hbn
han

1

2

ˆ
Ωb

∣∣f b
n

∣∣2 dx ∀n ∈ N,

which gives

ˆ
Ωa

α

(
|pan|2 −

(
1 +

1

4α

))2

dx+
hbn
han

ˆ
Ωb

α

(∣∣pbn∣∣2 − (1 + 1

4α

))2

dx

≤ α

(
1 +

1

4α

)2(
|Ωa|+ hbn

han
|Ωb|

)
+

1

2

ˆ
Ωa

|fa
n |2dx+

hbn
han

1

2

ˆ
Ωb

∣∣f b
n

∣∣2 dx ∀n ∈ N.

(3.4.4)
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Then, estimates in (3.4.1) follow from (3.4.4), (3.1.8) with ` ∈]0,+∞[, and (3.2.9). Estimates in
(3.4.2) follow from (3.4.3), (3.1.8) with ` ∈]0,+∞[, (3.2.9), (3.4.1), the continuous embedding of L4

into L2, and (3.2.10). �

Corollary 3.4.2. Assume (3.1.8) with ` ∈]0,+∞[, and (3.2.9). For every n ∈ N, let
(
pan, p

b
n

)
be a

solution of (3.2.8). Let P be defined in (3.3.1). Then, there exist a subsequence of N, still denoted by
{n}, and (in possible dependence on the subsequence) (p̂a, p̂b) =

(
(p̂a2, p̂

a
3) ,
(
p̂b1, p̂

b
2

))
∈ P such that

pan ⇀ (0, p̂a2, p̂
a
3) weakly in

(
H1(Ωa)

)3 and strongly in
(
L4(Ωa)

)3
,

pbn ⇀
(
p̂b1, p̂

b
2, 0
)
weakly in

(
H1(Ωb)

)3
and strongly in

(
L4(Ωb)

)3
.

(3.4.5)

Proof. Proposition 3.4.1 ensures that there exist a subsequence of N, still denoted by {n}, and
(in possible dependence on the subsequence) (p̂a1, p̂a2, p̂a3) ∈ (H1 (Ωa))

3 independent of x1, and(
p̂b1, p̂

b
2, p̂

b
3

)
∈
(
H1
(
Ωb
))3 independent of x3 such that

pan ⇀ (p̂a1, p̂
a
2, p̂

a
3) weakly in

(
H1(Ωa)

)3 and strongly in
(
L4(Ωa)

)3
,

pbn ⇀
(
p̂b1, p̂

b
2, p̂

b
3

)
weakly in

(
H1(Ωb)

)3 and strongly in
(
L4(Ωb)

)3
,

and

(p̂a1, p̂
a
2, p̂

a
3) · νa = 0 on ∂Ωa\

(]
−1

2
, 1
2

[2 × {0}
)
,
(
p̂b1, p̂

b
2, p̂

b
3

)
· νb = 0 on ∂Ωb\

(]
−1

2
, 1
2

[2 × {0}
)
.

In particular, this implies
p̂a1 = 0 in Ωa, p̂b3 = 0 in Ωb.

Moreover, as proved in Proposition 5.4 in [34], one has

(p̂a1, p̂
a
2, p̂

a
3) (·, 0) =

(
p̂b1, p̂

b
2, p̂

b
3

)
(0, ·) in

]
−1

2
, 1
2

[
.
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Consequently, one obtains

p̂a3(·, 0) = 0 = p̂b1(0, ·) in
]
−1

2
, 1
2

[
, (3.4.6)

which completes the proof. �

3.4.2 A convergence result for problem (3.2.6)

Let

Ureg =

{ (
ψa, ψb

)
∈ C1

([
−1

2
, 1
2

]
× [0, 1]

)
× C

([
−1

2
, 1
2

]2)
:

ψb
|[
− 1

2 ,0
]
×
[
− 1

2 , 12

] ∈ C1
([
−1

2
, 0
]
×
[
−1

2
, 1
2

])
,

ψb
|[
0, 12

]
×
[
− 1

2 , 12

] ∈ C1
([
0, 1

2

]
×
[
−1

2
, 1
2

])
,

ψa(·, 0) = ψb(0, ·) in
[
−1

2
, 1
2

]}
.

(3.4.7)

Proposition 3.4.3. Let U and Ureg be defined in (3.3.2) and (3.4.7), respectively. Then, Ureg is
dense in U .

Proof. Let
(
ψa, ψb

)
∈ U . The goal is to find a sequence

{(
ψa
n, ψ

b
n

)}
n∈N ⊂ Ureg such that

(
ψa
n, ψ

b
n

)
→
(
ψa, ψb

)
strongly in H1

(]
−1

2
, 1
2

[
× ]0, 1[

)
×H1

(]
−1

2
, 1
2

[2)
. (3.4.8)

To this aim, split ψb = ψe + ψo in the even part and in the odd part with respect to x1. Note that
ψe, ψo ∈ H1

(]
−1

2
, 1
2

[2), and
ψe (0, ·) = ψb (0, ·) = ψa (·, 0) , ψo (0, ·) = 0 in

]
−1

2
, 1
2

[
.

Consequently, a convolution argument allows us to build three sequences (see [51], and also
compare the first part of the proof of Proposition 5.5 in [34])) {ζan}n∈N ⊂ C∞ ([−1

2
, 1
2

]
× [0, 1]

)
,
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{ζen}n∈N ⊂ C
([

−1
2
, 1
2

]2), and {ζon}n∈N ⊂ C∞
([

−1
2
, 1
2

]2) such that



{
ζen|[

− 1
2 ,0

]
×
[
− 1

2 , 12

]
}

n∈N
⊂ C∞ ([−1

2
, 0
]
×
[
−1

2
, 1
2

])
,

{
ζen|[

0, 12

]
×
[
− 1

2 , 12

]
}

n∈N
⊂ C∞ ([0, 1

2

]
×
[
−1

2
, 1
2

])
,

ζan → ψa strongly in H1
(]
−1

2
, 1
2

[
× ]0, 1[

)
,

ζen → ψe strongly in H1
(]

−1
2
, 1
2

[2)
, ζon → ψo strongly in H1

(]
−1

2
, 1
2

[2)
,

ζan (·, 0) = ζen (0, ·) , ζon (0, ·) = 0 in
]
−1

2
, 1
2

[
∀n ∈ N.

This implies (3.4.8), setting ψa
n = ζan and ψb

n = ζen + ζon. �

Proposition 3.4.4. Assume (3.1.8) with ` ∈]0,+∞[. Let
{(
qan, q

b
n

)}
n∈N ⊂ (L2(Ωa))3×(L2(Ωb))3,

and
(
qa, qb

)
=
(
(qa2 , q

a
3) ,
(
qb1, q

b
2

))
∈ (L2(Ωa))2 × (L2(Ωb))2 be such that qa is independent of x1,

qb is independent of x3, and

(qan, q
b
n) →

(
(0, qa2 , q

a
3) ,
(
qb1, q

b
2, 0
))

strongly in (L2(Ωa))3 × (L2(Ωb))3. (3.4.9)

Moreover, for n ∈ N let
(
φa(

qan,q
b
n

), φb(
qan,q

b
n

)) be the unique solution of



(
φa(

qan,q
b
n

), φb(
qan,q

b
n

)) ∈ Un,

ˆ
Ωa

φa(
qan,q

b
n

)dx = 0,

ˆ
Ωa

((−Da
nφ

a(
qan,q

b
n

) + qan) ·Da
nφ

a)dx

+
hbn
han

ˆ
Ωb

((
−Db

nφ
b(
qan,q

b
n

) + qbn

)
·Db

nφ
b
)
dx = 0 ∀ (φa, φb) ∈ Un,

(3.4.10)
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where Un is defined in (3.2.4). Furthermore, let
(
ψa(

qa,qb
), ψb(

qa,qb
)) be the unique solution of (3.3.4).

Then, one has(
φa(

qan,q
b
n

), φb(
qan,q

b
n

))→
(
ψa(

qa,qb
), ψb(

qa,qb
)) strongly in H1(Ωa)×H1(Ωb), (3.4.11)

(
1

han

∂φa(
qan,q

b
n

)
∂x1

,
1

hbn

∂φb(
qan,q

b
n

)
∂x3

)
→ (0, 0) strongly in L2(Ωa)× L2(Ωb), (3.4.12)

Proof. In this proof, c denotes any positive constant independent of n ∈ N.

Choosing
(
φa, φb

)
=
(
φa(

qan,q
b
n

), φb(
qan,q

b
n

)) as test function in (3.4.10), applying the Young inequality,
and using (3.1.8) with ` ∈]0,+∞[ and (3.4.9) give∥∥∥Da

nφ
a(
qan,q

b
n

)∥∥∥
(L2(Ωa))3

≤ c,
∥∥∥Db

nφ
b(
qan,q

b
n

)∥∥∥
(L2(Ωb))3

≤ c ∀n ∈ N. (3.4.13)

The first estimate in (3.4.13) implies∥∥∥φa(
qan,q

b
n

)∥∥∥
H1(Ωa)

≤ c ∀n ∈ N, (3.4.14)

since
ˆ

Ωa

φa(
qan,q

b
n

)dx = 0.

The next step is devoted to proving∥∥∥φb(
qan,q

b
n

)∥∥∥
H1(Ωb)

≤ c ∀n ∈ N. (3.4.15)

The junction condition in (3.2.4) gives

ˆ
]
−han

2
,
han
2

[
×
]
− 1

2
, 1
2

[
∣∣∣φb(

qan,q
b
n

) (x1, x2, 0)
∣∣∣2 dx1dx2

= han

ˆ
]
− 1

2
, 1
2

[2
∣∣∣φb(

qan,q
b
n

) (hanx1, x2, 0)
∣∣∣2 dx1dx2

= han

ˆ
]
− 1

2
, 1
2

[2
∣∣∣φa(

qan,q
b
n

) (x1, x2, 0)
∣∣∣2 dx1dx2 ∀n ∈ N,

(3.4.16)
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Then, (3.4.16) and (3.4.14) provide∥∥∥φb(
qan,q

b
n

)∥∥∥
L2

(]
−han

2
,
han
2

[
×
]
− 1

2
, 1
2

[
×{0}

) ≤ c
√
han ∀n ∈ N,

which implies ∥∥∥φb(
qan,q

b
n

)∥∥∥
L2

(]
−han

2
,
han
2

[
×
]
− 1

2
, 1
2

[
×]−1,0[

) ≤ c
√
han ∀n ∈ N, (3.4.17)

by virtue of the second estimate in (3.4.13) and (3.1.8) with ` ∈]0,+∞[. Combining (3.4.17) with
the second estimate in (3.4.13) ensures

∥∥φb
qn

∥∥
L2

(
{0}×

]
− 1

2
, 1
2

[
×]−1,0[

) ≤ c ∀n ∈ N

which combined again with the second estimate in (3.4.13) proves (3.4.15).

Estimates (3.4.13), (3.4.14), and (3.4.15) ensure the existence of a subsequence of N, still denoted
by {n}, and (in possible dependence on the subsequence)

(
τa, τ b

)
∈ U and (ξa, ξb) ∈ L2(Ωa)×

L2
(
Ωb
)
such that(

φa(
qan,q

b
n

), φb(
qan,q

b
n

))⇀ (
τa, τ b

)
weakly in H1(Ωa)×H1

(
Ωb
)
, (3.4.18)

(
1

han

∂φa(
qan,q

b
n

)
∂x1

,
1

hbn

∂φb(
qan,q

b
n

)
∂x3

)
⇀
(
ξa, ξb

)
weakly in L2(Ωa)× L2

(
Ωb
)
, (3.4.19)

ˆ
]
− 1

2
, 1
2

[
×]0,1[

τa dx2dx3 = 0. (3.4.20)

Note that junction condition τa(·, 0) = τ b(0, ·) in
]
−1

2
, 1
2

[
can be obtained arguing as in the proof

of Proposition 5.4 in [34].

The next step is devoted to proving that
(
τa, τ b

)
solves (3.3.4). To this aim, for every couple(

ψa, ψb
)
∈ Ureg, where Ureg is defined in (3.4.7), consider a sequence {µn}n∈N ⊂ H1 (Ωa)
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(depending on
(
ψa, ψb

)
) such that

(µa
n, ψ

b) ∈ Un ∀n ∈ N,

µn → ψa strongly in L2 (Ωa) ,

(
1

han
Dx1µn, Dx2µn, Dx3µn

)
→ (0, Dx2ψ

a, Dx3ψ
a) strongly in

(
L2 (Ωa)

)3
.

(3.4.21)

For instance, setting

µn (x) =



ψa (x2, x3) if x = (x1, x2, x3) ∈
]
−1

2
, 1
2

[2 × ]han, 1[ ,

ψa (x2, h
a
n)
x3
han

+ ψb (hanx1, x2)
han − x3
han

if x = (x1, x2, x3) ∈
]
−1

2
, 1
2

[2 × [0, han] ,

the first two proprieties in (3.4.21) can be immediately verified by the properties of Ureg, while
the last one follows from

ˆ
]
− 1

2
, 1
2

[2×]0,ha
n[

∣∣∣∣ 1hanDx1µn

∣∣∣∣2 dx ≤
∥∥ψb
∥∥2
W 1,∞

(]
− 1

2
, 1
2

[2) han ∀n ∈ N,

ˆ
]
− 1

2
, 1
2

[2×]0,ha
n[

|Dx2µn|2 dx ≤ 2
(
‖ψa‖2W 1,∞

(]
− 1

2
, 1
2

[
×]0,1[

) + ∥∥ψb
∥∥2
W 1,∞

(]
− 1

2
, 1
2

[2) )han ∀n ∈ N,
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and

ˆ
]
− 1

2
, 1
2

[2×]0,ha
n[

|Dx3µn|2 dx =

ˆ
]
− 1

2
, 1
2

[2 1

han

∣∣ψa (x2, h
a
n)− ψb (hanx1, x2)

∣∣2 dx1dx2

=

ˆ
]
− 1

2
, 1
2

[2 1

han

∣∣ψa (x2, h
a
n)− ψa (x2, 0) + ψb (0, x2)− ψb (hanx1, x2)

∣∣2 dx1dx2

≤ 2

(
‖ψa‖2W 1,∞

(]
− 1

2
, 1
2

[
×]0,1[

) + ∥∥ψb
∥∥2
W 1,∞

(]
− 1

2
, 1
2

[2)
)
han ∀n ∈ N,

where again the properties of Ureg played a crucial role.

Now, fixing
(
ψa, ψb

)
∈ Ureg, choosing

(
µn, ψ

b
)
as test function in (3.4.10) with {µn} satisfying

(3.4.21) , passing to the limt as n diverges, and using (3.1.8) with ` ∈]0,+∞[, (3.4.9), (3.4.18),
(3.4.19), and (3.4.21), one obtains

ˆ
]− 1

2
, 1
2
[×]0,1[

(
(−D(x2,x3)τ

a + qa) ·D(x2,x3)ψ
a
)
dx2dx3

+`

ˆ
]
− 1

2
, 1
2

[2
((
−D(x1,x2)τ

b + qb
)
·D(x1,x2)ψ

b
)
dx1dx2 = 0.

(3.4.22)

By virtue of Proposition 3.4.3, equation (3.4.22) holds true also with any test function in U . Con-
sequently, thanks to (3.4.20),

(
τa, τ b

)
is the unique solution of (3.3.4), i.e.

(
τa, τ b

)
=
(
ψa(

qa,qb
), ψb(

qa,qb
)) a.e. in Ωa × Ωb. (3.4.23)

Finally, using (3.4.10), (3.1.8) with ` ∈]0,+∞[, (3.4.9), (3.4.18), (3.4.23), (3.4.19), (3.3.4), and a l.s.c.
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argument, one has

ˆ
]− 1

2
, 1
2
[×]0,1[

∣∣∣D(x2,x3)ψ
a(
qa,qb

)∣∣∣2 dx2dx3 + ˆ
Ωa

|ξa|2dx

+`

ˆ
]− 1

2
, 1
2
[2

∣∣∣D(x1,x2)ψ
b(
qa,qb

)∣∣∣2 dx1dx2 + `

ˆ
Ωb

|ξb|2dx

≤ lim
n

(ˆ
Ωa

∣∣∣Da
nφ

a(
qan,q

b
n

)∣∣∣2 dx+ hbn
han

ˆ
Ωb

∣∣∣Db
nφ

b(
qan,q

b
n

)∣∣∣2 dx)

= lim
n

(ˆ
Ωa

Da
nφ

a(
qan,q

b
n

) · qandx+ hbn
han

ˆ
Ωb

Db
nφ

b(
qan,q

b
n

) · qbndx
)

=

ˆ
]− 1

2
, 1
2
[×]0,1[

D(x2,x3)ψ
a(
qa,qb

) · qadx2dx3 + `

ˆ
]− 1

2
, 1
2
[2
D(x1,x2)ψ

b(
qa,qb

) · qbdx1dx2

=

ˆ
]− 1

2
, 1
2
[×]0,1[

∣∣∣D(x2,x3)ψ
a(
qa,qb

)∣∣∣2 dx2dx3 + `

ˆ
]− 1

2
, 1
2
[2

∣∣∣D(x1,x2)ψ
b(
qa,qb

)∣∣∣2 dx1dx2,
which implies that ξa = 0, ξb = 0, and that convergences (3.4.18) and (3.4.19) are strong. Note that
previous convergences hold true for the whole sequence, since the limits are uniquely identified.
�
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3.4.3 The proof of Theorem 3.3.2

Let

Preg =

{(
qa, qb

)
=
(
(qa2 , q

a
3) ,
(
qb1, q

b
2

))
∈
(
C1
([
−1

2
, 1
2

]
× [0, 1]

))2 × (C ([−1
2
, 1
2

]2))2
:

qb|[
− 1

2 ,0
]
×
[
− 1

2 , 12

] ∈ (C1
([
−1

2
, 0
]
×
[
−1

2
, 1
2

]))2
, qb|[

0, 12

]
×
[
− 1

2 , 12

] ∈ (C1
([
0, 1

2

]
×
[
−1

2
, 1
2

]))2
,

qa2(·, 0) = qb2 (0, ·) in
]
−1

2
, 1
2

[
, and for some δ > 0 (depending on

(
qa, qb

)
)

qa2 = 0 in
([
−1

2
,−1

2
+ δ
]
∪
[
1
2
− δ, 1

2

])
× [0, 1] ,

qa3 = 0 in
[
−1

2
, 1
2

]
× ([0, δ] ∪ [1− δ, 1]) ,

qb1 = 0 in
([
−1

2
,−1

2
+ δ
]
∪ [−δ, δ] ∪

[
1
2
− δ, 1

2

])
×
[
−1

2
, 1
2

]
,

qb2 = 0 in
[
−1

2
, 1
2

]
×
([
−1

2
,−1

2
+ δ
]
∪
[
1
2
− δ, 1

2

])}
.

(3.4.24)

Proposition 3.4.5. Let P and Preg be defined in (3.3.1) and (3.4.24), respectively. Then, Preg is
dense in P .

Proof. Fix
(
qa, qb

)
=
(
(qa2 , q

a
3) ,
(
qb1, q

b
2

))
∈ P . The goal is to find a sequence

{(
θan, θ

b
n

)}
n∈N ⊂

Preg such that

(
θan, θ

b
n

)
→
(
qa, qb

)
strongly in

(
H1
(]
−1

2
, 1
2

[
× ]0, 1[

))2 × (H1
(]

−1
2
, 1
2

[2))2
. (3.4.25)

At first, note that there exist two sequences {ηan}n∈N ⊂ C∞ ([−1
2
, 1
2

]
× [0, 1]

)
and

{
ηbn
}
n∈N ⊂
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C∞
([

−1
2
, 1
2

]2) such that



ηan = 0 in
]
−1

2
, 1
2

[
×
(]
0, 1

n

[
∪
]
1− 1

n
, 1
[)

∀n ∈ N,

ηbn = 0 in
(]
−1

2
,−1

2
+ 1

n

[
∪
]
− 1

n
, 1
n

[
∪
]
1
2
− 1

n
, 1
2

[)
×
]
−1

2
, 1
2

[
∀n ∈ N,

ηan → qa3 strongly in H1
([
−1

2
, 1
2

]
× [0, 1]

)
, ηbn → qb1 strongly in H1

([
−1

2
, 1
2

]2)
.

Now, split qb2 = qe+qo in the even part and in the odd part with respect to x1 (compare the proof of
Proposition 3.4.3). By convolution, one can build three sequences {ζan}n∈N ⊂ C∞ ([−1

2
, 1
2

]
× [0, 1]

)
,
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{ζen}n∈N ⊂ C
([

−1
2
, 1
2

]2) and {ζon}n∈N ⊂ C∞
([

−1
2
, 1
2

]2) such that



{
ζen|[

− 1
2 ,0

]
×
[
− 1

2 , 12

]
}

n∈N
⊂ C∞ ([−1

2
, 0
]
×
[
−1

2
, 1
2

])
,

{
ζen|[

0, 12

]
×
[
− 1

2 , 12

]
}

n∈N
⊂ C∞ ([0, 1

2

]
×
[
−1

2
, 1
2

])
,

ζan → qa2 strongly in H1
(]
−1

2
, 1
2

[
× ]0, 1[

)
,

ζen → qe strongly in H1
(]

−1
2
, 1
2

[2)
, ζon → qo strongly in H1

(]
−1

2
, 1
2

[2)
,

ζan (·, 0) = ζen (0, ·) , ζon (0, ·) = 0 in
]
−1

2
, 1
2

[
∀n ∈ N,

ζan = 0 in
(]
−1

2
,−1

2
+ 1

n

[
∪
]
1
2
− 1

n
, 1
2

[)
× ]0, 1[ ∀n ∈ N,

ζen = 0 = ζon in
]
−1

2
, 1
2

[
×
(]
−1

2
,−1

2
+ 1

n

[
∪
]
1
2
− 1

n
, 1
2

[)
∀n ∈ N.

Finally, (3.4.25) is achieved by setting θan = (ζan, η
a
n), θbn =

(
ηbn, ζ

e
n + ζ0n

)
. �

Proof of Theorem 3.3.2 In what follows, pan,i (resp. pbn,i) denotes the ith-component, i = 1, 2, 3, of
pan, (resp. pbn).

Corollary 3.4.2 asserts that there exist a subsequence of N, still denoted by {n}, and (in possible
dependence on the subsequence)

(
p̂a, p̂b

)
=
(
(p̂a2, p̂

a
3) ,
(
p̂b1, p̂

b
2

))
∈ P satisfying (3.4.5).

The next step is devoted to proving the existence of a subsequence of N, still denoted by {n}, and
(in possible dependence on the subsequence) of

za ∈ L2
(
H1

0

(]
−1

2
, 1
2

[)
,
]
−1

2
, 1
2

[
× ]0, 1[

)
×
(
L2
(
H1

m

(]
−1

2
, 1
2

[)
,
]
−1

2
, 1
2

[
× ]0, 1[

))2
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zb ∈
(
L2
(]

−1
2
, 1
2

[2
, H1

m (]−1, 0[)
))2

× L2
(]

−1
2
, 1
2

[2
, H1 (]−1, 0[)

)
with zb (·, ·,−1) = 0 in

]
−1

2
, 1
2

[2 such that such that

1

han

∂pan
∂x1

⇀
∂za

∂x1
weakly in

(
L2(Ωa)

)3
,

1

hbn

∂pbn
∂x3

⇀
∂zb

∂x3
weakly in

(
L2(Ωb)

)3
. (3.4.26)

Indeed, the boundary condition on pan and the Poincaré inequality give

∥∥∥∥ 1

han
pan,1 (·, x2, x3)

∥∥∥∥
H1

0

(]
− 1

2
, 1
2

[) ≤ c

han

∥∥∥∥∂pan,1 (·, x2, x3)∂x1

∥∥∥∥
L2

(]
− 1

2
, 1
2

[)

(x2, x3) a.e. in
]
−1

2
, 1
2

[
× ]0, 1[ , ∀n ∈ N,

(3.4.27)

where c is the Poincaré constant in H1
0

(]
−1

2
, 1
2

[)
, while, for i = 2, 3, the Poincaré-Wirtinger

inequality gives

∥∥∥∥∥ 1

han

(
pan,i (·, x2, x3)−

ˆ 1
2

− 1
2

pan,i (x1, x2, x3) dx1

)∥∥∥∥∥
H1

m

(]
− 1

2
, 1
2

[)

≤ c′

han

∥∥∥∥∂pan,i (·, x2, x3)∂x1

∥∥∥∥
L2

(]
− 1

2
, 1
2

[) (x2, x3) a.e. in
]
−1

2
, 1
2

[
× ]0, 1[ , ∀n ∈ N,

(3.4.28)

where the subscript ``m"means zero average, and c′ is the Poincaré-Wirtinger constant inH1
m

(]
−1

2
, 1
2

[)
.

Integrating (3.4.27) and (3.4.28) over (x2, x3) ∈
]
−1

2
, 1
2

[
× ]0, 1[ and using the first estimate in

(3.4.2) imply the first convergence in (3.4.26). Similarly, one proves the second convergence in
(3.4.26). More precisely,

zb3 ∈ L2
(]

−1
2
, 1
2

[2
, H1

0 (]−1, 0[)
)
,

since pbn,3 (·, ·, 0) = 0 on
]
−1

2
, 1
2

[2 \(]−ha
n

2
, h

a
n

2

[
×
]
−1

2
, 1
2

[)
, for every n ∈ N.

The next step is devoted to identifying (p̂a2, p̂
a
3),
(
p̂b1, p̂

b
2

)
, za, and zb. To this aim, for every(

qa, qb
)
=
(
(qa2 , q

a
3) ,
(
qb1, q

b
2

))
∈ Preg, where Preg is defined in (3.4.24), consider a sequence
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{vn}n∈N ⊂ (H1 (Ωa))
3 (depending on (qa, qb)) such that

(vn, (q
b
1, q

b
2, 0)) ∈ Pn ∀n ∈ N,

vn → (0, qa2 , q
a
3) strongly in

(
L4 (Ωa)

)3
,

(
1

han
Dx1vn, Dx2vn, Dx3vn

)
→ (0, (0, Dx2q

a) , (0, Dx3q
a)) strongly in

(
L2 (Ωa)

)9
.

(3.4.29)
For instance, setting

vn (x) =



(0, qa2 , q
a
3) (x2, x3) , if x = (x1, x2, x3) ∈

]
−1

2
, 1
2

[2 × ]han, 1[ ,

(
qb1 (h

a
nx1, x2)

han − x3
han

, qa2 (x2, h
a
n)
x3
han

+ qb2 (h
a
nx1, x2)

han − x3
han

, qa3 (x2, x3)

)
,

if x = (x1, x2, x3) ∈
]
−1

2
, 1
2

[2 × [0, han] ,

the first two proprieties in (3.4.29) can be immediately verified by virtue of the properties of Preg,
while the last one follows from

ˆ
]
− 1

2
, 1
2

[2×]0,ha
n[

∣∣∣∣ 1hanDx1vn

∣∣∣∣2 dx ≤
(∥∥qb1∥∥2W 1,∞

(]
− 1

2
, 1
2

[2) + ∥∥qb2∥∥2W 1,∞
(]

− 1
2
, 1
2

[2)
)
han ∀n ∈ N,

ˆ
]
− 1

2
, 1
2

[2×]0,ha
n[

|Dx2vn|
2 dx ≤

(∥∥qb1∥∥2W 1,∞
(]

− 1
2
, 1
2

[2) + 2 ‖qa2‖
2
W 1,∞

(]
− 1

2
, 1
2

[
×]0,1[

)

+2
∥∥qb2∥∥2W 1,∞

(]
− 1

2
, 1
2

[2) + ‖qa3‖
2
W 1,∞

(]
− 1

2
, 1
2

[
×]0,1[

) )han ∀n ∈ N,
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and

ˆ
]
− 1

2
, 1
2

[2×]0,ha
n[

|Dx3vn|
2 dx≤

ˆ
]
− 1

2
, 1
2

[2 1

han

∣∣qb1 (hanx1, x2)∣∣2 dx1dx2

+

ˆ
]
− 1

2
, 1
2

[2 1

han

∣∣qa2 (x2, han)− qb2 (h
a
nx1, x2)

∣∣2 dx1dx2 + ‖qa3‖
2
W 1,∞

(]
− 1

2
, 1
2

[
×]0,1[

) han

=

ˆ
]
− 1

2
, 1
2

[2 1

han

∣∣qb1 (hanx1, x2)− qb1 (0, x2)
∣∣2 dx1dx2

+

ˆ
]
− 1

2
, 1
2

[2 1

han

∣∣qa2 (x2, han)− qa2 (x2, 0) + qb2 (0, x2)− qb2 (h
a
nx1, x2)

∣∣2 dx1dx2

+ ‖qa3‖
2
W 1,∞

(]
− 1

2
, 1
2

[
×]0,1[

) han ≤
(∥∥qb1∥∥2W 1,∞

(]
− 1

2
, 1
2

[2) + 2 ‖qa2‖
2
W 1,∞

(]
− 1

2
, 1
2

[
×]0,1[

)

+2
∥∥qb2∥∥2W 1,∞

(]
− 1

2
, 1
2

[2) + ‖qa3‖
2
W 1,∞

(]
− 1

2
, 1
2

[
×]0,1[

) )han ∀n ∈ N,

where again the properties of Preg played a crucial role.

Now, fixing
(
qa, qb

)
=
(
(qa2 , q

a
3) ,
(
qb1, q

b
2

))
∈ Preg, and choosing

(
vn,
(
qb1, q

b
2, 0
))

as test function
in (3.2.8) with {vn}n∈N satisfying (3.4.29) give

1

han
En

((
pan, p

b
n

))
≤ 1

han
En

((
vn,
(
qb1, q

b
2, 0
)))

∀n ∈ N. (3.4.30)

Then, passing to the limit in (3.4.30), as n diverges, and using (3.1.8) with ` ∈]0,+∞[, (3.2.9),
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(3.4.5), (3.4.26), (3.4.29), Proposition 3.4.4, and a l.s.c. argument imply

β

ˆ
]
− 1

2
, 1
2

[
×]0,1[

|rotp̂a|2 dx2dx3

+

ˆ
Ωa

(
β

(∣∣∣∣∂za3∂x1

∣∣∣∣2 + ∣∣∣∣∂za2∂x1

∣∣∣∣2
)

+

∣∣∣∣div (p̂a) + ∂za1
∂x1

∣∣∣∣2
)
dx

+

ˆ
]
− 1

2
, 1
2

[
×]0,1[

(
α
(
|p̂a|2 − 1

)2
+
∣∣∣Dψa(

p̂a,p̂b
)∣∣∣2 + ˆ 1

2

− 1
2

(fa
2 , f

a
3 )dx1 · p̂a

)
dx2dx3

+`

(
β

ˆ
]
− 1

2
, 1
2

[2
∣∣rotp̂b∣∣2 dx1dx2

+

ˆ
Ωb

(
β

(∣∣∣∣∂zb2∂x3

∣∣∣∣2 + ∣∣∣∣∂zb1∂x3

∣∣∣∣2
)

+

∣∣∣∣div (p̂b)+ ∂zb3
∂x3

∣∣∣∣2
)
dx

+

ˆ
]
− 1

2
, 1
2

[2
(
α
(∣∣p̂b∣∣2 − 1

)2
+
∣∣∣Dψb(

p̂a,p̂b
)∣∣∣2 + ˆ 0

−1

(
f b
1 , f

b
2

)
dx3 · p̂b

)
dx1dx2

)

≤ lim inf
n

En

((
pan, p

b
n

))
han

≤ lim sup
n

En

((
pan, p

b
n

))
han

≤ lim
n

En

((
vn,
(
qb1, q

b
2, 0
)))

han

= E
((
qa, qb

))
.

(3.4.31)
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On the other hand, the properties of p̂a, za1 , p̂b, and zb3 give

ˆ
Ωa

∣∣∣∣div (p̂a) + ∂za1
∂x1

∣∣∣∣2 dx =

ˆ
]
− 1

2
, 1
2

[
×]0,1[

|divp̂a|2 dx2dx3 +
ˆ

Ωa

∣∣∣∣∂za1∂x1

∣∣∣∣2 dx,
ˆ

Ωb

∣∣∣∣div (p̂b)+ ∂zb3
∂x3

∣∣∣∣2 dx =

ˆ
]
− 1

2
, 1
2

[2
∣∣divp̂b∣∣2 dx1dx2 + ˆ

Ωb

∣∣∣∣∂zb3∂x3

∣∣∣∣2 dx.
(3.4.32)

Hence, inserting (3.4.32) in (3.4.31) and taking into account Proposition 3.4.5, one has

min {1, β, `, β`}

(ˆ
Ωa

∣∣∣∣∂za∂x1

∣∣∣∣2 dx+ ˆ
Ωb

∣∣∣∣∂zb∂x3

∣∣∣∣2 dx
)

+ E
((
p̂a, p̂b

))

≤ lim inf
n

En

((
pan, p

b
n

))
han

≤ lim sup
n

En

((
pan, p

b
n

))
han

≤ E
((
qa, qb

))
∀
(
qa, qb

)
∈ P ,

(3.4.33)
from which, thanks to the properties of za and zb,

za = 0 in Ωa and zb = 0 in Ωb (3.4.34)

follow. Consequently, inserting (3.4.34) in (3.4.33), one obtains that
(
p̂a, p̂b

)
solves (3.3.8) and

convergence (3.3.9) holds true. Note that convergences in (3.3.9) and in (3.4.26) hold true for the
whole sequence since the limits are uniquely identified. Moreover, (3.3.7) follows from (3.4.5) and
Proposition 3.4.4. Now, it remains to prove that convergences in (3.4.5) and (3.4.26) are strong.
To this aim, (3.3.9), (3.1.8) with ` ∈]0,∞[, (3.2.9), (3.3.7), and (3.4.5) imply

lim
n

(ˆ
Ωa

(
β |rotanpan|

2 + |divanpan|
2) dx+ hbn

han

ˆ
Ωb

(
β
∣∣rotbnpbn∣∣2 + ∣∣divbnpbn∣∣2) dx)

=

ˆ
Ωa

(
β |rot (0, p̂a2, p̂a3)|

2 + |div (0, p̂a2, p̂a3)|
2) dx+ `

ˆ
Ωb

(
β
∣∣rot (p̂b1, p̂b2, 0)∣∣2 + ∣∣div (p̂b1, p̂b2, 0)∣∣2) dx,
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from which, using (3.1.8) with ` ∈]0,∞[, (3.4.5), (3.4.26), and (3.4.34), one deduces

(
rotanp

a
n, rot

b
np

b
n

)
→
(
rot (0, p̂a2, p̂

a
3) , rot

(
p̂b1, p̂

b
1, 0
))

strongly in
(
L2 (Ωa)

)3 × (L2
(
Ωb
))3

,

(
divanp

a
n, div

b
np

b
n

)
→
(
div (0, p̂a2, p̂

a
3) , div

(
p̂b1, p̂

b
1, 0
))

strongly in L2 (Ωa)× L2
(
Ωb
)
.

Consequently, recalling (3.2.10) and (3.1.8) with ` ∈]0,∞[ , one has

‖Da
np

a
n‖

2
(L2(Ωa))9 +

hbn
han

∥∥Db
np

b
n

∥∥2
(L2(Ωb))9

= ‖rotanpan‖2(L2(Ωa))3 + ‖divanpan‖2L2(Ωa) +
hbn
han

∥∥rotbnpbn∥∥2(L2(Ωb))3
+
hbn
han

∥∥divbnpbn∥∥2L2(Ωb)

−→ ‖rot (0, p̂a2, p̂a3) ‖2(L2(Ωa))3 + ‖div (0, p̂a2, p̂a3) ‖2L2(Ωa)

+`
∥∥rot (p̂b1, p̂b2, 0)∥∥2(L2(Ωb))3

+ `
∥∥div (p̂b1, p̂b2, 0)∥∥2L2(Ωb)

= ‖D (0, p̂a2, p̂
a
3)‖

2
(L2(Ωa))9 + `

∥∥D (p̂b1, p̂b2, 0)∥∥2(L2(Ωb))9
, as n→ +∞,

(3.4.35)

where the boundary conditions of
(
p̂a, p̂b

)
play a crucial role in the last equality. Finally, com-

bining (3.4.35) with (3.4.5), (3.4.26), (3.4.34) and, (3.1.8) with ` ∈]0,∞[ again, one obtains that
convergences in (3.4.5) and (3.4.26) are strong.

3.5 The proofs in the case ` = 0

This section is devoted to proving Theorem 3.3.4.
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3.5.1 A priori estimates on the polarization

The same arguments used to proving Proposition 3.4.1 give

Proposition 3.5.1. Assume (3.1.8) with ` = 0, and (3.2.9). For every n ∈ N, let
(
pan, p

b
n

)
be a

solution of (3.2.8). Then, there exists a constant c such that

‖pan‖(L4(Ωa))3 ≤ c,

∥∥∥∥∥
(
hbn
han

) 1
4

pbn

∥∥∥∥∥
(L4(Ωb))3

≤ c ∀n ∈ N, (3.5.1)

and

‖Da
np

a
n‖(L2(Ωa))9 ≤ c,

∥∥∥∥∥
(
hbn
han

) 1
2

Db
np

b
n

∥∥∥∥∥
(L2(Ωb))9

≤ c ∀n ∈ N. (3.5.2)

Corollary 3.5.2. Assume (3.1.8) with ` = 0, and (3.2.9). For every n ∈ N, let
(
pan, p

b
n

)
be a solution

of (3.2.8). Let P◦ be defined in (3.3.10). Then,

(
hbn
han

) 1
2

pbn ⇀ 0 weakly in
(
H1(Ωb)

)3
and strongly in

(
L4
(
Ωb
))3

. (3.5.3)

Moreover, there exist an increasing sequence of positive integer numbers, still denoted by {n}, and
(in possible dependence on the subsequence) p̂a = (p̂a2, p̂

a
3) ∈ P◦ such that

pan ⇀ (0, p̂a2, p̂
a
3) weakly in

(
H1(Ωa)

)3 and strongly in
(
L4(Ωa)

)3
. (3.5.4)

Proof. Proposition 3.5.1 implies (3.5.3) and the existence of a subsequence of N, still denoted by
{n}, and (in possible dependence on the subsequence) of (p̂a1, p̂a2, p̂a3) ∈ (H1 (Ωa))

3 independent
of x1, such that

(p̂a1, p̂
a
2, p̂

a
3) · νa = 0 on ∂Ωa\

(]
−1

2
, 1
2

[2 × {0}
)

and

pan ⇀ (p̂a1, p̂
a
2, p̂

a
3) weakly in

(
H1(Ωa)

)3 and strongly in
(
L4(Ωa)

)3
. (3.5.5)

In particular, this ensures
p̂a1 = 0 in Ωa.

To complete the proof, it remains to verify

p̂a3 (·, 0) = 0 in
]
−1

2
, 1
2

[
. (3.5.6)
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The trace of pbn,3 vanishing on
]
−1

2
, 1
2

[2 × {−1} implies

∣∣∣∣∣ 1

(han)
1
2

pbn,3 (x1, x2, 0)

∣∣∣∣∣
2

≤
ˆ 0

−1

∣∣∣∣∣ 1

(han)
1
2

∂tp
b
n,3 (x1, x2, t)

∣∣∣∣∣
2

dt in
]
−1

2
, 1
2

[2
, ∀n ∈ N.

Integrating this inequality over
]
−1

2
, 1
2

[2 and using the second estimate in (3.5.2) gives

1

(han)
1
2

pbn,3(·, ·, 0) → 0 strongly in L2
(]

−1
2
, 1
2

[2)
. (3.5.7)

Finally, (3.5.6) follows from (3.5.5), the junction condition in (3.2.3), and (3.5.7). Indeed,

ˆ 1
2

− 1
2

|p̂a3(x2, 0)|
2 dx2 = lim

n

ˆ 1
2

− 1
2

ˆ 1
2

− 1
2

∣∣pan,3(x1, x2, 0)∣∣2 dx1dx2

= lim
n

ˆ 1
2

− 1
2

ˆ 1
2

− 1
2

∣∣pbn,3 (hanx1, x2, 0)∣∣2 dx1dx2= lim
n

ˆ han
2

−han
2

ˆ 1
2

− 1
2

∣∣∣∣∣ 1

(han)
1
2

pbn,3(x1, x2, 0)

∣∣∣∣∣
2

dx1dx2 = 0.

�

3.5.2 A convergence result for problem (3.2.6)

Proposition 3.5.3. Assume (3.1.8) with ` = 0. Let {(qan, qbn)}n∈N ⊂ (L2 (Ωa))
3 ×

(
L2
(
Ωb
))3 and

qa = (qa2 , q
a
3) ∈ (L2(Ωa))2 be such that qa is independent of x1, and(

qan,

(
hbn
han

) 1
2

qbn

)
→ ((0, qa) , 0) strongly in (L2(Ωa))3 ×

(
L2
(
Ωb
))3

. (3.5.8)
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Moreover, for n ∈ N let
(
φa(

qan,q
b
n

), φb(
qan,q

b
n

)) be the unique solution of



(
φa(

qan,q
b
n

), φb(
qan,q

b
n

)) ∈ Un,

ˆ
Ωa

φa(
qan,q

b
n

)dx = 0,

han

ˆ
Ωa

((−Da
nφ

a(
qan,q

b
n

) + qan) ·Da
nφ

a)dx

+hbn

ˆ
Ωb

((
−Db

nφ
b(
qan,q

b
n

) + qbn

)
·Db

nφ
b
)
dx = 0 ∀ (φa, φb) ∈ Un,

(3.5.9)

where Un is defined in (3.2.4). Furthermore, let ψa
qa be the unique solution of (3.3.12). Then, one has(

φa(
qan,q

b
n

),
(
hbn
han

) 1
2

φb(
qan,q

b
n

)
)

→
(
ψa
qa, 0

)
strongly in H1(Ωa)×H1

(
Ωb
)
, (3.5.10)

 1

han

∂φa(
qan,q

b
n

)
∂x1

,
1

hbn

∂

((
hb
n

ha
n

) 1
2
φb(

qan,q
b
n

))
∂x3

→ (0, 0) strongly in L2(Ωa)× L2
(
Ωb
)
. (3.5.11)

Proof. Arguing as in the proof of Proposition 3.4.4, one can prove the existence of a subse-
quence of N, still denoted by {n}, and (in possible dependence on the subsequence) of

(
τa, τ b

)
∈

H1 (Ωa) × H1
(
Ωb
)
with τa independent of x1 and τ b independent of x3, and of (ξa, ξb) ∈

L2(Ωa)× L2
(
Ωb
)
such that(

φa(
qan,q

b
n

),
(
hbn
han

) 1
2

φb(
qan,q

b
n

)
)
⇀ (τa, τ b) weakly in H1(Ωa)×H1(Ωb), (3.5.12)

ˆ
]
− 1

2
, 1
2

[
×]0,1[

τadx2dx3 = 0, (3.5.13)

 1

han

∂φa(
qan,q

b
n

)
∂x1

,
1

hbn

∂

((
hb
n

ha
n

) 1
2
φb(

qan,q
b
n

))
∂x3

⇀ (ξa, ξb) weakly in L2(Ωa)× L2
(
Ωb
)
. (3.5.14)
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The next step is devoted to proving

τ b(0, ·) = 0 in
]
−1

2
, 1
2

[
. (3.5.15)

Indeed, the junction condition in (3.2.4) gives

ˆ
]
− 1

2
, 1
2

[2
(
hbn
han

) 1
2

φa(
qan,q

b
n

)(x1, x2, 0)ϕ(x2)dx1dx2

=

ˆ
]
− 1

2
, 1
2

[2
(
hbn
han

) 1
2

φb(
qan,q

b
n

)(hanx1, x2, 0)ϕ(x2)dx1dx2 ∀ϕ ∈ C∞
0

(]
−1

2
,
1

2

[)
.

(3.5.16)

Moreover, (3.1.8) with ` = 0 and the convergence of the first term in (3.5.12) imply

(
hb
n

ha
n

) 1
2
φa(

qan,q
b
n

)(·, ·, 0) → 0 strongly in L2
(]

−1
2
, 1
2

[2)
, (3.5.17)

while, using the second convergences in (3.5.12) and (3.5.14), again (3.1.8) with ` = 0, and arguing
as in the proof of Proposition 5.4 in [34], one can prove

lim
n

ˆ
]
− 1

2
, 1
2

[2
(
hbn
han

) 1
2

φb(
qan,q

b
n

)(hanx1, x2, 0)ϕ(x2)dx1dx2 =
ˆ 1

2

− 1
2

τ b(x2, 0)ϕ(x2)dx2

∀ϕ ∈ C∞
0

(]
−1

2
, 1
2

[)
.

(3.5.18)

Then, (3.5.15) follows from (3.5.16), (3.5.17), and (3.5.18).

To identity τa = ψa
qa , it is enough to pass to the limit, as n diverges, in the equation in (3.5.9) with

a test functions (φa, φb) such that

φa(x) =
1

han
ψa (x2, x3) if x = (x1, x2, x3) ∈ Ωa, φb(x) =

1

han
ψa (x2, 0) if x = (x1, x2, x3) ∈ Ωb,

with ψa ∈ C∞ ([−1
2
, 1
2

]
× [0, 1]

)
, to use (3.1.8) with ` = 0, previous convergences, the density of

C∞ ([−1
2
, 1
2

]
× [0, 1]

)
in H1

(]
−1

2
, 1
2

[
×]0, 1[

)
, and (3.5.13).

To identify τ b = 0, it is enough to pass to the limit, as n diverges, in the equation in (3.5.9) with
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test functions (φa, φb) such that

φa(x) = 0 if x = (x1, x2, x3) ∈ Ωa, φb(x) =

(
1

hanh
b
n

) 1
2

ψb (x1, x2) if x = (x1, x2, x3) ∈ Ωb

with

ψb ∈ A =
{
v ∈ C∞

([
−1

2
, 1
2

]2)
: v = 0 in ]− δ, δ[×

]
−1

2
, 1
2

[
, for some δ > 0 (depending on v)

}
,

to use previous convergences, the density of A in the space of functions in H1
(]

−1
2
, 1
2

[2) with
zero trace on {0} ×

]
−1

2
, 1
2

[
, and to take into account (3.5.15).

To identify ξa, ξb and to prove that all the previous convergences are strong one can argue as in
the last part of the proof of Proposition 3.4.4. �

3.5.3 Proof of Theorem 3.3.4

Proof. Corollary 3.5.2 asserts that (3.5.3) holds true and that there exist a subsequence of N, still
denoted by {n}, and (in possible dependence on the subsequence) of p̂a = (p̂a2, p̂

a
3) ∈ P◦ satisfying

(3.5.4). Moreover, one can prove the existence of a subsequence of N, still denoted by {n}, and
(in possible dependence on the subsequence) of

za ∈ L2
(
H1

0

(]
−1

2
, 1
2

[)
,
]
−1

2
, 1
2

[
× ]0, 1[

)
×
(
L2
(
H1

m

(]
−1

2
, 1
2

[)
,
]
−1

2
, 1
2

[
× ]0, 1[

))2
such that (the proof of Theorem 3.3.2) 1

han

∂pan
∂x1

,
1

hbn

∂

((
hb
n

ha
n

) 1
2
pbn

)
∂x3

⇀

(
∂za

∂x1
, ζ

)
weakly in

(
L2(Ωa)

)3 × (L2(Ωb)
)3
. (3.5.19)

The next step is to identify (p̂a2, p̂
a
3), za, and ζ . Let

P
reg
◦ =

{
qa = (qa2 , q

a
3) ∈

(
C1
([
−1

2
, 1
2

]
× [0, 1]

))2
: for some δ > 0 ( depending on qa)

qa2 = 0 in
([
−1

2
,−1

2
+ δ
]
∪
[
1
2
− δ, 1

2

])
× [0, 1] , qa3 = 0 in

[
−1

2
, 1
2

]
× ([0, δ] ∪ [1− δ, 1])

}
.
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Now, for qa = (qa2 , q
a
3) ∈ P

reg
◦ , the couple ((0, qa2 , q

a
3), (0, q

a
2(·, 0), 0)) belongs to Pn. Conse-

quently,

1

han
En

((
pan, p

b
n

))
≤ 1

han
En (((0, q

a
2 , q

a
3), (0, q

a
2(·, 0), 0))) ∀ (qa2 , qa3) ∈ P

reg
◦ , ∀n ∈ N. (3.5.20)

Then, passing to the limit in (3.5.20), as n diverges, and using (3.1.8) with ` = 0, (3.2.9), (3.5.3),
(3.5.4), (3.5.19), Proposition 3.5.3, and a l.s.c. argument imply

β

ˆ
]
− 1

2
, 1
2

[
×]0,1[

|rotp̂a|2 dx2dx3+
ˆ

Ωa

(
β

(∣∣∣∣∂za3∂x1

∣∣∣∣2 + ∣∣∣∣∂za2∂x1

∣∣∣∣2
)

+

∣∣∣∣div (p̂a) + ∂za1
∂x1

∣∣∣∣2
)
dx

+

ˆ
]
− 1

2
, 1
2

[
×]0,1[

(
α
(
|p̂a|2 − 1

)2
+
∣∣Dψa

p̂a

∣∣2 + ˆ 1
2

− 1
2

(fa
2 , f

a
3 )dx1 · p̂a

)
dx2dx3

+β

ˆ
Ωb

(
|ζ2|2 + |ζ1|2

)
dx+

ˆ
Ωb

|ζ3|2 dx≤ lim inf
n

En

((
pan, p

b
n

))
han

≤ lim sup
n

En

((
pan, p

b
n

))
han

≤ lim
n

En (((0, q
a
2 , q

a
3), (0, q

a
2(·, 0), 0)))

han
= E◦ (q

a) ∀qa = (qa2 , q
a
3) ∈ P

reg
◦ .

This inequalities hold true also for any qa ∈ P◦, since P
reg
◦ is dense in P◦. One can conclude the

proof arguing as in the last part of the proof of Theorem 3.3.2. �

3.6 The proofs in the case ` = +∞

This section is devoted to proving Theorem 3.3.7.

3.6.1 A priori estimates on the polarization

The same arguments used to proving Proposition 3.4.1 give

Proposition 3.6.1. Assume (3.1.8) with ` = +∞, and (3.2.9). For every n ∈ N, let
(
pan, p

b
n

)
be a
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solution of (3.2.8). Then, there exists a constant c such that∥∥∥∥∥
(
han
hbn

) 1
4

pan

∥∥∥∥∥
(L4(Ωa))3

≤ c,
∥∥pbn∥∥(L4(Ωb))3

≤ c ∀n ∈ N, (3.6.1)

and ∥∥∥∥∥
(
han
hbn

) 1
2

Da
np

a
n

∥∥∥∥∥
(L2(Ωa))9

≤ c,
∥∥Db

np
b
n

∥∥
(L2(Ωb))9

≤ c ∀n ∈ N. (3.6.2)

Corollary 3.6.2. Assume (3.1.8) with ` = +∞, and (3.2.9). For every n ∈ N, let
(
pan, p

b
n

)
be a

solution of (3.2.8). Let P∞ be defined by (3.3.19). Then

(
han
hbn

) 1
2

pan ⇀ 0 weakly in
(
H1(Ωa)

)3 and strongly in
(
L4(Ωa)

)3
. (3.6.3)

Moreover, there exist an increasing sequence of positive integer numbers, still denoted by {n}, and
(in possible dependence on the subsequence) p̂b =

(
p̂b1, p̂

b
2

)
∈
(
H1
(]

−1
2
, 1
2

[2))2 with pb · νb =

0 on ∂
(]

−1
2
, 1
2

[2) such that

pbn ⇀
(
p̂b1, p̂

b
2, 0
)
weakly in

(
H1(Ωb)

)3
and strongly in

(
L4(Ωb)

)3
. (3.6.4)

Furthermore, if and hbn <<
√
han, then

pb1(0, ·) = 0 in
]
−1

2
, 1
2

[
. (3.6.5)

Proof. Proposition 3.6.1 implies (3.6.3) and the existence of a subsequence of N, still denoted by
{n}, and (in possible dependence on the subsequence)

(
p̂b1, p̂

b
2, p̂

b
3

)
∈
(
H1
(
Ωb
))3 independent of

x3, such that (
p̂b1, p̂

b
2, p̂

b
3

)
· νb = 0 on ∂Ωb\

(]
−1

2
, 1
2

[2 × {0}
)

and
pbn ⇀

(
p̂b1, p̂

b
2, p̂

b
3

)
weakly in

(
H1(Ωb)

)3 and strongly in
(
L4
(
Ωb
))3

.

In particular, this ensures
p̂b3 = 0 a.e. in Ωb.

Let us prove (3.6.5) under assumption hbn <<
√
han.

In what follows c denotes a constant satisfying Proposition 3.6.1. Let ϕ ∈ C∞
0

(]
−1

2
, 1
2

[)
.
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Convergence (3.6.4) and the independence of pb of x3 is imply

lim
n

ˆ
]
− 1

2
, 1
2

[
×]−1,0[

pbn,1(0, x2, x3)ϕ(x2)dx2dx3 =

ˆ 1
2

− 1
2

pb1(0, x2)ϕ(x2)dx2. (3.6.6)

On the side, the transmission condition in the last line of (3.2.3) allows us to split the left-hand
side of (3.6.6) as follows

ˆ
]
− 1

2
, 1
2

[
×]−1,0[

pbn,1(0, x2, x3)ϕ(x2)dx2dx3 =

ˆ
Ωb

pbn,1(0, x2, x3)ϕ(x2)dx =

ˆ
Ωb

(
pbn,1(0, x2, x3)− (pbn,1(h

a
nx1, x2, x3)

)
ϕ(x2)dx+

ˆ
Ωb

(
pbn,1(h

a
nx1, x2, x3)− pbn,1(h

a
nx1, x2, 0)

)
ϕ(x2)dx+

1

αn

ˆ
Ωa?

n

(
pan,1(x1, x2, 0)− pan,1(x1, x2, x3)

)
ϕ(x2)dx+

1

αn

ˆ
Ωa?

n

pan,1(x1, x2, x3)ϕ(x2)dx ∀n ∈ N,

(3.6.7)

where{αn}n∈N ⊂]0, 1[ is a vanishing sequence of positive numbers which will be defined later,
and Ωa?

n =
]
−1

2
, 1
2

[
×
]
−1

2
, 1
2

[
×]0, αn[.

As far as the second line and the third line in (3.6.7) are concerned, the Hölder inequality and the
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second estimate in (3.6.2) get

∣∣∣∣ˆ
Ωb

(
pbn,1(0, x2, x3)− (pbn,1(h

a
nx1, x2, x3)

)
ϕ(x2)dx

∣∣∣∣ ≤

‖ϕ‖L∞
(]
− 1

2
, 1
2

[)(ˆ
Ωb

∣∣pbn,1(0, x2, x3)− (pbn,1(h
a
nx1, x2, x3)

∣∣2 dx) 1
2

=

‖ϕ‖L∞
(]
− 1

2
, 1
2

[)
(ˆ

Ωb

∣∣∣∣ˆ 0

ha
nx1

∂tp
b
n,1(t, x2, x3)dt

∣∣∣∣2 dx
) 1

2

≤

‖ϕ‖L∞
(]
− 1

2
, 1
2

[)√han

(ˆ
Ωb

(ˆ 1
2

− 1
2

|∂tpbn,1(t, x2, x3)|2dt

)
dx

) 1
2

=

‖ϕ‖L∞
(]
− 1

2
, 1
2

[)√han‖∂x1p
b
n,1‖L2(Ωb) ≤ ‖ϕ‖L∞

(]
− 1

2
, 1
2

[)√han c ∀n ∈ N,

(3.6.8)
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

∣∣∣∣ˆ
Ωb

(
pbn,1(h

a
nx1, x2, x3)− pbn,1(h

a
nx1, x2, 0)

)
ϕ(x2)dx

∣∣∣∣ ≤

‖ϕ‖L∞
(]
− 1

2
, 1
2

[) ˆ
Ωb

∣∣∣∣ˆ x3

0

∂tp
b
n,1(h

a
nx1, x2, t)dt

∣∣∣∣ dx ≤

‖ϕ‖L∞
(]
− 1

2
, 1
2

[) ˆ
Ωb

(ˆ 0

−1

∣∣∂tpbn,1(hanx1, x2, t)∣∣ dt) dx =

‖ϕ‖L∞
(]
− 1

2
, 1
2

[) 1

han

ˆ
]
−han

2
,
han
2

[
×
]
− 1

2
, 1
2

[
×]−1,0[

|∂x3p
b
n,1(x)|dx ≤

‖ϕ‖L∞
(]
− 1

2
, 1
2

[) 1

han

√
han‖∂x3p

b
n,1‖L2(Ωb) ≤

‖ϕ‖L∞
(]
− 1

2
, 1
2

[) 1√
han
hbnc ∀n ∈ N.

(3.6.9)

Note that the last line of (3.6.9) vanishes when hbn <<
√
han.

As far as the fourth line and the fifth line in (3.6.7) are concerned, the Hölder inequality, the first
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estimate in (3.6.2) and the boundary condition on pan,1 get

1

αn

∣∣∣∣ˆ
Ωa?

n

(
pan,1(x1, x2, 0)− pan,1(x1, x2, x3)

)
ϕ(x2)dx

∣∣∣∣ ≤

‖ϕ‖L∞
(]
− 1

2
, 1
2

[) 1

αn

ˆ
Ωa?

n

∣∣∣∣ˆ 0

x3

∂tp
a
n,1(x1, x2, t)dt

∣∣∣∣ dx ≤

‖ϕ‖L∞
(]
− 1

2
, 1
2

[) ˆ
Ωa?

n

|∂x3p
a
n,1(x)|dx ≤ ‖ϕ‖L∞

(]
− 1

2
, 1
2

[)√αn‖∂x3p
a
n,1‖L2(Ωa) ≤

‖ϕ‖L∞
(]
− 1

2
, 1
2

[)√αnc

√
hbn
han

∀n ∈ N,

(3.6.10)



1

αn

∣∣∣∣ˆ
Ωa?

n

pan,1(x1, x2, x3)ϕ(x2)dx

∣∣∣∣ ≤

‖ϕ‖L∞
(]
− 1

2
, 1
2

[) 1

αn

ˆ
Ωa?

n

∣∣∣∣∣
ˆ x1

− 1
2

∂tp
a
n,1(t, x2, x3)dt

∣∣∣∣∣ dx ≤

‖ϕ‖L∞
(]
− 1

2
, 1
2

[) 1

αn

ˆ
Ωa?

n

|∂x1p
a
n,1(x)|dx ≤ ‖ϕ‖L∞

(]
− 1

2
, 1
2

[) 1

αn

√
αn‖∂x1p

a
n,1‖L2(Ωa) ≤

‖ϕ‖L∞
(]
− 1

2
, 1
2

[) 1
√
αn

chan

√
hbn
han

∀n ∈ N.

(3.6.11)

Note that choosing αn = han
√
hbn provides that the last line in (3.6.10) and the last line in (3.6.11)

vanish as n diverges.

Finally, choosing αn = han
√
hbn, passing to the limit, as n diverges, in (3.6.7) and taking into

account (3.6.8), (3.6.9), (3.6.10), and (3.6.11) gives

lim
n

ˆ
]
− 1

2
, 1
2

[
×]−1,0[

pbn,1(0, x2, x3)ϕ(x2)dx2dx3 = 0, (3.6.12)
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which implies (3.6.5) thanks to (3.6.6) and the fact that ϕ is a generic function in C∞
0

(]
−1

2
, 1
2

[)
.

�

3.6.2 A convergence result for problem (3.3.18)

Lemma 3.6.3. Assume (3.1.8) with ` = +∞. For every n ∈ N, let
(
φa
n, φ

b
n

)
∈ Un, with Un defined

in (3.2.4), be such that

∥∥φb
n

∥∥
L2(Ωb)

≤ c
∥∥Db

nφ
b
n

∥∥
(L2(Ωb))3

≤ c, ∀n ∈ N, (3.6.13)

where c is a positive constant independent of n. Then,

lim
n

∥∥∥∥∥
(
han
hbn

) 1
2

φa
n

∥∥∥∥∥
L2

(]
− 1

2
, 1
2

[2×{0}
) = 0. (3.6.14)

Proof. Estimates (3.6.13) imply the existence of an increasing sequence of positive integer num-
bers {ni}i∈N, and (in possible dependence on the subsequence) ψb ∈ H1

(
Ωb
)
with ψb indepen-

dent of x3 such that
φb
ni
⇀ ψb weakly in H1

(
Ωb
)
. (3.6.15)

By virtue of the transmission condition in (3.2.4), to obtain (3.6.14) it is enough to prove

lim
i

ˆ
]
− 1

2
, 1
2

[2
hani

hbni

|φb
ni
(hani

x1, x2, 0)|2dx1dx2 = 0. (3.6.16)

At first, we prove the existence of x̄3 ∈ ]−1, 0[, and of an increasing sequence of positive integer
numbers {ik}k∈N such that

φb
nik

(·, ·, x̄3)⇀ ψb weakly in H1
(]

−1
2
, 1
2

[2)
. (3.6.17)

Indeed,

∀i ∈ N ∃Ai ⊆ ]−1, 0[ : |Ai| = 0, φb
ni
(·, ·, x3) ∈ H1

(]
−1

2
, 1
2

[2 × {x3}
)
, ∀x3 ∈ ]−1, 0[ \ Ai.
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For every i ∈ N let

ρi : x3 ∈]− 1, 0[\
+∞⋃
j=1

Aj →

ˆ
]
− 1

2
, 1
2

[2
(
|Dx1φ

b
ni
(x1, x2, x3)|2 + |Dx2φ

b
ni
(x1, x2, x3)|2 + |φb

ni
(x1, x2, x3)|2

)
dx1dx2.

Fatou’s Lemma and (3.6.13) imply

ˆ 0

−1

lim inf
i

ρi(x3)dx3 ≤ lim inf
i

ˆ 0

−1

ρi(x3)dx3 < +∞.

Consequently,

∃c ∈]0,+∞[, ∃x̄3 ∈]− 1, 0[\
+∞⋃
j=1

Aj, ∃{ik}k∈N ⊂ N : ρik(x̄3) < c ∀k ∈ N,

which gives (3.6.17) thanks to (3.6.15).

Now, for proving (3.6.16), it is enough to show that each term of the right-hand side of the fol-
lowing splitting

hanik

hbnik

ˆ
]
− 1

2
, 1
2

[2
∣∣∣φb

nik

(
hanik

x1, x2, 0
)∣∣∣2 dx1dx2

≤ 2
hanik

hbnik

ˆ
]
− 1

2
, 1
2

[2
∣∣∣φb

nik

(
hanik

x1, x2, 0
)
− φb

nik

(
hanik

x1, x2, x̄3

)∣∣∣2 dx1dx2

+4
hanik

hbnik

ˆ
]
− 1

2
, 1
2

[2
∣∣∣φb

nik

(
hanik

x1, x2, x̄3

)
− φb

nik
(0, x2, x̄3)

∣∣∣2 dx1dx2

+4
hanik

hbnik

ˆ
]
− 1

2
, 1
2

[
∣∣∣φb

nik
(0, x2, x̄3)

∣∣∣2 dx2, ∀k ∈ N,

(3.6.18)

vanishes as k diverges.
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By virtue of the second estimate in (3.6.13), and (3.1.8) with ` = +∞, one has

lim sup
k

(
hanik

hbnik

ˆ
]
− 1

2
, 1
2

[2
∣∣∣φb

nik

(
hanik

x1, x2, 0
)
− φb

nik

(
hanik

x1, x2, x̄3

)∣∣∣2 dx1dx2)

= lim sup
k

(
hanik

hbnik

ˆ
]
− 1

2
, 1
2

[2
∣∣∣∣ˆ 0

x̄3

Dx3φ
b
nik

(
hanik

x1, x2, x3

)
dx3

∣∣∣∣2 dx1dx2
)

≤ lim sup
k

(
hanik

hbnik

ˆ
Ωb

∣∣∣Dx3φ
b
nik

(
hanik

x1, x2, x3

)∣∣∣2 dx1dx2dx3)

≤ lim sup
k

(
1

hbnik

ˆ
Ωb

∣∣∣Dx3φ
b
nik

(x)
∣∣∣2 dx) = 0.

(3.6.19)

By virtue of (3.6.17), and (3.1.8) with ` = +∞, one has

lim sup
k

(
hanik

hbnik

ˆ
]
− 1

2
, 1
2

[2
∣∣∣φb

nik

(
hanik

x1, x2, x̄3

)
− φb

nik
(0, x2, x̄3)

∣∣∣2 dx1dx2)

= lim sup
k

(
hanik

hbnik

ˆ
]
− 1

2
, 1
2

[2
∣∣∣∣ˆ ha

nik
x1

0

Dtφ
b
nik

(t, x2, x̄3) dt

∣∣∣∣2 dx1dx2
)

≤ lim sup
k

(
hanik

hbnik

hanik

2

ˆ
]
− 1

2
, 1
2

[2
∣∣∣Dx1φ

b
nik

(x1, x2, x̄3)
∣∣∣2 dx1dx2) = 0.

(3.6.20)

As far as the last term of the right-hand side in (3.6.18) is concerned, (3.6.17) provides

φb
nik

(0, ·, x̄3) → ψb (0, ·) strongly in L2
(]
−1

2
, 1
2

[)
,

which implies

lim
k

(
hanik

hbnik

ˆ
]
− 1

2
, 1
2

[
∣∣∣φb

nik
(0, x2, x̄3)

∣∣∣2 dx2) = 0, (3.6.21)

thanks to (3.1.8) with ` = +∞.
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Finally, (3.6.16) is obtained by passing to the limit in (3.6.18), as k → +∞, and by taking into
account (3.6.19), (3.6.20), and (3.6.21). �

Proposition 3.6.4. Assume (3.1.8) with ` = +∞. Let {(qan, qbn)}n∈N ⊂ (L2 (Ωa))
3 ×

(
L2
(
Ωb
))3

and qb =
(
qb1, q

b
2

)
∈
(
L2
(
Ωb
))2 be such that qb is independent of x3, and((

han
hbn

) 1
2

qan, q
b
n

)
→
(
0,
(
qb, 0

))
strongly in

(
L2 (Ωa)

)3 × (L2
(
Ωb
))3

. (3.6.22)

Moreover, for n ∈ N let
(
φa(

qan,q
b
n

), φb(
qan,q

b
n

)) be the unique solution of



(
φa(

qan,q
b
n

), φb(
qan,q

b
n

)) ∈ Un,

ˆ
Ωb

φb(
qan,q

b
n

)dx = 0,

han

ˆ
Ωa

((−Da
nφ

a(
qan,q

b
n

) + qan) ·Da
nφ

a)dx

+hbn

ˆ
Ωb

((
−Db

nφ
b(
qan,q

b
n

) + qbn

)
·Db

nφ
b
)
dx = 0 ∀ (φa, φb) ∈ Un,

(3.6.23)

where Un is defined in (3.2.4). Furthermore, let ψb
qb
the unique solution of (3.3.21). Then, one has((

han
hbn

) 1
2

φa(
qan,q

b
n

), φb(
qan,q

b
n

)
)

→
(
0, ψb

qb

)
strongly in H1 (Ωa)×H1(Ωb), (3.6.24)

 1

han

∂

((
ha
n

hb
n

) 1
2
φa(

qan,q
b
n

))
∂x1

,
1

hbn

∂φb(
qan,q

b
n

)
∂x3

→ (0, 0) strongly in L2(Ωa)× L2
(
Ωb
)
. (3.6.25)

Proof. In this proof, c denotes any positive constant independent of n ∈ N.

Choosing
(
φa, φb

)
=

(
1

hbn
φa(

qan,q
b
n

), 1

hbn
φb(

qan,q
b
n

)) as test function in (3.6.23), applying the Young

inequality, and using (3.6.22) and (3.1.8) with ` = +∞ give∥∥∥∥∥
(
han
hbn

) 1
2

Da
nφ

a(
qan,q

b
n

)
∥∥∥∥∥
(L2(Ωa))3

≤ c,
∥∥∥Db

nφ
b(
qan,q

b
n

)∥∥∥
(L2(Ωb))3

≤ c ∀n ∈ N. (3.6.26)
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The second estimate in (3.6.26) implies∥∥∥φb(
qan,q

b
n

)∥∥∥
H1(Ωb)

≤ c ∀n ∈ N, (3.6.27)

since
ˆ

Ωb

φb(
qan,q

b
n

)dx = 0.

On the other side, the second estimate in (3.6.26), and (3.6.27) provides (see Lemma 3.6.3)

lim
n

∥∥∥∥∥
(
han
hbn

) 1
2

φa(
qan,q

b
n

)
∥∥∥∥∥
L2

(]
− 1

2
, 1
2

[2×{0}
) = 0, (3.6.28)

which combined with the first estimate in (3.6.26) implies∥∥∥∥∥
(
han
hbn

) 1
2

φa(
qan,q

b
n

)
∥∥∥∥∥
H1(Ωa)

≤ c ∀n ∈ N. (3.6.29)

Estimates (3.6.26), (3.6.27) and (3.6.29), and convergence (3.6.28) ensure the existence of a subse-
quence of N, still denoted by {n}, and (in possible dependence on the subsequence) of

(
τa, τ b

)
∈

H1 (Ωa) × H1
(
Ωb
)
with τa independent of x1 and τ b independent of x3, and of (ξa, ξb) ∈

L2(Ωa)× L2
(
Ωb
)
such that((
han
hbn

) 1
2

φa(
qan,q

b
n

), φb(
qan,q

b
n

)
)
⇀ (τa, τ b) weakly in H1(Ωa)×H1(Ωb),

τa = 0 a.e. on
]
−1

2
, 1
2

[
× {0}, (3.6.30)

ˆ
]
− 1

2
, 1
2

[2 τ bdx1dx2 = 0, (3.6.31)

 1

han

∂

((
ha
n

hb
n

) 1
2
φa(

qan,q
b
n

))
∂x1

,
1

hbn

∂φb(
qan,q

b
n

)
∂x3

⇀ (ξa, ξb) weakly in L2(Ωa)× L2
(
Ωb
)
.

To identity τ b = ψb
qb
, it is enough to pass to the limit, as n diverges, in the equation in (3.6.23)

with test functions (φa, φb) such that

φa(x) =
1

hbn
ψb (0, x2) if x = (x1, x2, x3) ∈ Ωa,
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φb(x) =



1

hbn
ψb (0, x2) if x = (x1, x2, x3) ∈ Ωb and |x1| ≤

han
2
,

1

hbn
ψb

(
x1 − sign(x1)

han
2
, x2

)
if x = (x1, x2, x3) ∈ Ωb and |x1| >

han
2
,

(3.6.32)

with ψb ∈ C∞
([

−1
2
, 1
2

]2), to use (3.1.8) with l = +∞, previous convergences, the density of

C∞
([

−1
2
, 1
2

]2) in H1
(]

−1
2
, 1
2

[2), and (3.6.31).

To identity τa = 0, it is enough to pass to the limit, as n diverges, in the equation in (3.6.23) with
test functions (φa, φb) such that

φa(x) =

(
1

hanh
b
n

) 1
2

ψa (x2, x3) if x = (x1, x2, x3) ∈ Ωa, φb(x) = 0 if x = (x1, x2, x3) ∈ Ωb,

with

ψa ∈
{
v ∈ H1

(]
−1

2
, 1
2

[
×]0, 1[

)
: v = 0 on

]
−1

2
, 1
2

[
× {0}

}
,

to use previous convergences, and (3.6.30).

To identify ξa, ξb, and to prove that all the previous convergences are strong one can argue as in
the last part of the proof of Proposition 3.4.4. �

3.6.3 Proof of Theorem 3.3.7

Proof. Corollary 3.6.2 asserts that (3.6.3) holds true and that there exist a subsequence of N,
still denoted by {n}, and (in possible dependence on the subsequence) of p̂b =

(
p̂b1, p̂

b
2

)
∈ P∞

satisfying (3.6.4). Moreover, one can prove the existence of a subsequence of N, still denoted by
{n}, and (in possible dependence on the subsequence) of

ζ ∈ (L2(Ωa))
3
, zb ∈

(
L2
(]

−1
2
, 1
2

[2
, H1

m (]−1, 0[)
))2

× L2
(]

−1
2
, 1
2

[2
, H1

0 (]−1, 0[)
)

such that (compare the proof of Theorem 3.3.2) 1

han

∂

((
ha
n

hb
n

) 1
2
pan

)
∂x1

,
1

hbn

∂pbn
∂x3

⇀

(
ζ,
∂zb

∂x3

)
weakly in

(
L2(Ωa)

)3 × (L2(Ωb)
)3
. (3.6.33)
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The next step is to identify p̂b =
(
p̂b1, p̂

b
2

)
, zb, and ζ . To this aim, for every (qb1, q

b
2) ∈ P

reg
∞ , where

P
reg
∞ =

{
qb =

(
qb1, q

b
2

)
∈
(
C1
([
−1

2
, 1
2

]))2
: for some δ > 0 (depending on qb)

qb1 = 0 in
([
−1

2
,−1

2
+ δ
]
∪]− δ, δ[∪

[
1
2
− δ, 1

2

])
×
]
−1

2
, 1
2

[
,

qb2 = 0 in
]
−1

2
, 1
2

[
×
([
−1

2
,−1

2
+ δ
]
∪
[
1
2
− δ, 1

2

]) }
,

(3.6.34)

consider a sequence {vn}n∈N ⊂ (H1(Ωa)) 3 (depending on qb) such that

(
vn, (q

b
1, q

b
2, 0)

)
∈ Pn, ‖vn‖(L4(Ωa)3 ≤ c, ‖Da

nvn‖(L2(Ωa)9 ≤ c ∀n ∈ N, (3.6.35)

where c is a positive constant independent of n. For instance, (3.6.35) is satisfied setting

vn(x) =
(
qb1(h

a
nx1, x2), q

b
2(h

a
nx1, x2), 0

)
if x = (x1, x2, x3) ∈ Ωa. (3.6.36)

Now, fixing (qb1, qb2) ∈ P
reg
∞ , and choosing

(
vn, (q

b
1, q

b
2, 0)

)
as test function in (3.2.8) with {vn}n∈N

satisfying (3.6.35) give

1

hbn
En

((
pan, p

b
n

))
≤ 1

hbn
En

((
vn,
(
qb1, q

b
2, 0
)))

∀n ∈ N. (3.6.37)

Then, passing to the limit in (3.6.37), as n diverges, and using (3.1.8) (with ` = ∞), (3.2.9), (3.6.3),
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(3.6.4), (3.6.33), (3.6.35), Proposition 3.6.4, and a l.s.c. argument imply

ˆ
Ωa

β
(
|ζ3|2 + |ζ2|2

)
dx+

ˆ
Ωa

|ζ1|2 dx+β
ˆ

]
− 1

2
, 1
2

[2
∣∣rot(p̂b)∣∣2 dx1dx2

+

ˆ
Ωb

(
β

(∣∣∣∣∂zb2∂x3

∣∣∣∣2 + ∣∣∣∣∂zb1∂x3

∣∣∣∣2
)

+

∣∣∣∣div (p̂b)+ ∂zb3
∂x3

∣∣∣∣2
)
dx

+

ˆ
]
− 1

2
, 1
2

[2
(
α
(∣∣p̂b∣∣2 − 1

)2
+
∣∣Dψb

p̂b

∣∣2 + ˆ 0

−1

(
f b
1 , f

b
2

)
dx3 · p̂b

)
dx1dx2 ≤

≤ lim inf
n

En

((
pan, p

b
n

))
hbn

≤ lim sup
n

En

((
pan, p

b
n

))
hbn

≤ lim
n

(
En

(
vn, (q

b
1, q

b
2, 0)

)
hbn

)
= E∞

(
qb
)
, ∀qb =

(
qb1, q

b
2

)
∈ P

reg
∞ .

(3.6.38)

This inequalities hold true also for any qb ∈ P∞, since P reg∞ is dense in P∞. One can conclude
the proof arguing as in the last part of the proof of Theorem 3.3.2. �

Remark 3.6.5. At first we point out that in this section we are treating the case han << hbn. Let
{vn}n∈N be the sequence defined by (3.6.36). Note that

(
vn, (q

b
1, q

b
2, 0)

)
∈ Pn, and in particular

vn
(
±1

2
, ·
)
= 0 in

]
−1

2
, 1
2

[
. This property is true since (qb1, q

b
2) ∈ P

reg
∞ , and in particular qb1 = 0 in

] − δ, δ[×
]
−1

2
, 1
2

[
. The closure of P reg∞ is P∞. Consequently any elements (qb1, q

b
2) ∈ P∞ satisfies

qb1(0, ·) = 0 in
]
−1

2
, 1
2

[
. We are able to prove this property for the limit function only when hbn <<√

han. The case hbn ∼=
√
han or

√
han << hbn is an open problem.
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1) Let Ω(h) be defined as in of Chapter 1, we would like to study the asymptotic behavior of
the following problem

min
{

1

|Ω(h)|

ˆ
Ω(h)

(
αh(x)|∇m|2 + ϕ(m) +

1

2
β
h
(x)∇ζm

)
dx,m ∈ H1(Ω(h), Sn−1)

}
(3.6.39)
and is subjected to the following constraints

div
(
−γ

h
(x)Dζ + β

h
(x)m

)
= 0 in Rn, (3.6.40)

where
αh ∈ L2(Ω(h)), β

h
∈ L2(Ω(h)), γ

h
∈ L2(Rn), (3.6.41)

0 ≤ β
h
(x), 0 ≤ αh(x), 0 ≤ γ

h
(x) x a.e. in Ω(h), ∀h. (3.6.42)

There is partial results studied for this problem in [61].

2) At first we point out that in Section (3.6) of Chapter 3, we are treating the case han << hbn.
Let {vn}n∈N be the sequence defined by (3.6.36). Note that

(
vn, (q

b
1, q

b
2, 0)

)
∈ Pn, and in

particular vn
(
±1

2
, ·
)
= 0 in

]
−1

2
, 1
2

[
. This property is true since (qb1, q

b
2) ∈ P

reg
∞ , and in

particular qb1 = 0 in ] − δ, δ[×
]
−1

2
, 1
2

[
. The closure of P reg∞ is P∞. Consequently any

elements (qb1, qb2) ∈ P∞ satisfies qb1(0, ·) = 0 in
]
−1

2
, 1
2

[
. We are able to prove this property

for the limit function only when hbn <<
√
han. The case hbn ∼=

√
han or

√
han << hbn is an

open problem.
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