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RESUME iii

Résumeé

Cette these traite avec des équations aux dérivées partielles provenant de la physique mathéma-
tique. En particulier, a partir de modeles 3D ferromagnétisme et ferroélectricité, nous obtenons
des modeles 1D et 2D par I'intermédiaire de processus asymptotiques basés sur des méthodes de
réduction de dimension. Le modele 3D ferromagnétisme a été proposé par W.F. Brown depuis les
années 40 [9]. Il est également possible d’utiliser un modeéle dynamique, décrivant I’aimantation
au cours du temps, en utilisant un systeme introduit par L.D. Landau et E.M. Lifschitz en 1935
[50]. Pour le modéele ferroélectrique, nous nous référons aux papiers de P. Chandra et P.B. Little-
wood [16], W. Zhang et K. Bhattacharya [65] et au livre de T. Mitsui, I. Taksuzaki et E. Nakamura
[52].

Ma thése est constituée de trois parties :

Au début, je considere I’énergie micromagnétique avec des coeflicients dégénératifs dans un fil
mince. Apres avoir montrer I'existence de minimiseurs du probleme, j’'identifie I’énergie limite

lorsque la section du fil tend vers zéro.

Dans la deuxiéme partie, j’étudie le comportement asymptotique des solutions dépendant du
temps des problemes micromagnétique dans une multi-structure constituée de la jonction de deux
fils minces. En supposant que les volumes des deux fils tendent vers zéro avec la méme vitesse.
On obtient un probléeme limite couplé par une condition de jonction. Le probleme limite reste

non-convexe, mais devient completement local.

Dans le dernier chapitre, a partir d'un modéle variationnel 3D non convexe et non-local pour
la polarisation électrique dans un matériau ferroélectrique, et a ’aide d’un processus asympto-
tique basé sur la réduction de dimension, j’analyse des phénomeénes de jonction pour deux films
minces ferroélectriques joints orthogonaux. Selon la fagon dont la réduction se passe, on obtient
trois modeéles différents de dimension 2. On remarque qu'un effet de mémoire du processus de
réduction apparait, ce dernier dépend de la compétition entre les épaisseurs des deux films: Le

parametre de guidage est la limite du rapport des épaisseurs des deux films.

Mots-clé:

Matériaux ferromagnétiques, matériaux ferroélectriques, film mince, fil mince, multi-structures,

jonctions, analyse asymptotique.
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ABSTRACT v

Abstract

This thesis deals with partial differential equations coming from mathematical physics. Partic-
ularly, starting from 3D models for ferromagnetism and ferroelectricity, we derive 1D and 2D
models via asymptotic processes based on dimensional reduction methods. The 3D model for
ferromagnetism was proposed by W.F. Brown in the 40s [9] and it is based on a system intro-
duced by L.D. Landau and E.M. Lifschitz in 1935 [50]. About the ferroelectric model, we refer to
the papers of P. Chandra and P.B. Littlewood [16], W. Zhang and K. Bhattacharya [65] and to the
book of T. Mitsui, I. Taksuzaki, and E. Nakamura [52].

This thesis based on three works:

At the beginning, we consider micromagnetic energy, with some degenerating coefficients, in a
thin wire. After showing the existence of minimizers, we identify the limit energy as the section

of the wire vanishes.

In the second part, we study the asymptotic behavior of the solutions of a time dependent mi-
cromagnetic problem in a multi-structure consisting of two joined thin wires. We assume that
the volumes of the two wires vanish with same rate. We obtain two 1D limit problems coupled
by a junction condition on the magnetization. The limit problem remains non-convex, but now

it becomes completely local.

In the last chapter, starting from a non-convex and nonlocal 3D variational model for the electric
polarization in a ferroelectric material, and using an asymptotic process based on dimensional
reduction, we analyze junction phenomena for two orthogonal joined ferroelectric thin films. We
obtain three different 2 D-variational models for joined thin films, depending on how the reduc-
tion happens. We note that, a memory effect of the reduction process appears, and it depends on
the competition of the relative thickness of the two films: The guide parameter is the limit of the

ratio between these two small thickness.

Keywords:

Ferromagnetic materials, ferroelectric materials, thin film, thin wire, multi-structures, junctions,

asymptotic analysis.
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Introduction

A thin structure is a three-dimensional object with one (two) preponderant dimension(s), such
as a wire, a thin film, a combination of wires, thin films, etc. In these structures, some physical
phenomena take place that are generally described by variational problems. By starting from
3D models and using asymptotic mathematical methods, one tries to obtain 1D or 2D limit
problems describing the physical phenomena in a thin structure. The reduced models are justified
by reasons of simplicity and economy, by a numerical point of view, too. In this thesis we are

interested in ferromagnetic problems and in ferroelectric problems in thin structures.

0.1 Ferromagnetic model

According to the classical theory of Weiss (1907), perfectioned by Landau and Lifshitz in 1935 (see
[50] and, for a modern analysis, see [9]), on a microscopic scale a ferromagnetic body is magnet-
ically saturated and is composed by uniformly magnetized regions separated by thin transition
layers. The phenomena can be described by a magnetization field, defined on the domain in which
the material is confined. The magnetization field on a microscopic scale has a fixed modulus and
variable orientations. Then, the system can be studied through the functional representing its
magnetic energy. It consists in several terms: the so-called exchange energy, which contains the
space derivative of the magnetization field and is peculiar to ferromagnetic behavior, a term cor-
responding to magnetic anisotropy, and another one depending on the magnetic field, which is

related to the magnetization via the magnetostatic equation. More precisely,
m:QCR— R

denotes the magnetization and the body (2 is always locally magnetized to a saturation magneti-
zation |m(z)| = ¢(T") > 0 unless the local temperature T’ is greater or equal to Curie temperature
depending on the body. In the latter case ¢(7") = 0, and the material ceases to behave ferromag-

netically. In the sequel, we suppose constant temperature lower than Curie temperature and,
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without loss of generality, we assume that ¢ = 1, that is m(z) € S?. The magnetic moment m

and the magnetic field H are related by one of Maxwell’s equations (no load, no current)
B = H +7m, in R3

where we consider 7 as a field set in all R3, extending m by 0 on the exterior of §2. The field B
and H (m) are defined in all R3.

0.1.1 Free energy of the classical micromagnetism model

The observed magnetic moments are (local) minimizers of the ferromagnetic energy

E(m) = /Q <04|Vm|2 + ¢(m) + %VCm) de. (0.1.1)

Now, we will try to understand each term.
The exchange energy

The exchange energy is due to the existence of a responsible force to align the spins neighboring
of two atoms. This contribution is local and it depends on the microscopic properties of materials.

This energy is written

E.(m) = a/ |Vm|*dz,
Q

where « is the exchange coefficient.
The anisotropy energy

The magnetocrystalline anisotropy reflects the effects of anisotropy due to the crystal structure

of the material. This is described by an even continuous function
0: 5% — RT.

Mainly, two cases are considered.

+ The uniaxial anisotropy: this anisotropy is in the hexagonal crystals (C'o). The expression
of this energy is
o(m) = —Kim? + Kym?,

where m, is the component along the third axis of the vector m, K; and K5 are the coefli-

cients of anisotropy depending on the temperature.

+ The cubic anisotropy: in the case of cubic crystals (F'e, Ni), the axes z, y and z being chosen
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along the crystal axes, the expression for the energy is
e(m) = K (mimz + mzmi +mim?2) + Kgmimimz

where K and K, are the coefficients of anisotropy, and m,, m, and m_ are the components

of m.

The magnetostatic energy

The third term in (0.1.1) represents the magnetostatic energy. Starting from the Maxwell equa-
tions without charge or current, we find that the magnetic field is determined by the magnetiza-

tion as a solution of the following problem

/

div(H (m) +m) = 0, in R?,

curlH(m) =0 in R?.

\

Consequently, one obtains H () = —V (€ is the magnetic potential) and

1 1
Emag(m) = 3 /Q Vmdz = 3 /RS V(| d.

Note that the magnetostatic energy expresses a non-local interaction.

0.2 Asymptotic analysis for micromagnetics of nanowires
of finite length governed by indefinite material coeffi-

cients

In a nanowire, we consider the micromagnetic free energy with some degenerating weights.

In [41] G. Gioia and R. D. James (see also [13]) found that in the rescaled energy the exchange

(0%
[ §ivmPay
Q

where « is the exchange constant. Thus, as & — 0, the exchange term contributes an unacceptably

term is

large energy unless |Vm| ~ 0. In the limit § — oo, corresponds to phase theory see [28].
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In [42] the authors studied the micromagnetism problem in the case of a thin plate with some
degenerating weights. In this Chapter we will adapt the same argument of [42] to study the same
problem in a nanowire of finite length. We identify the limit problem when the section of the
wire tends to 0. Now, if we take into account the non degenerate case of the material coefficient

a and o, ;= min g o(z) > 0, we can adapt the arguments to [41] and [13].

We consider a ferromagnetic nanowire occupying the 3D domain Q" =] — L, L[x B,(0, h),
where By(z,r) denotes the ball in R? of radius r and center z. Let Q =] — L, L[xB5(0,1).
Moreover, let a :  — [0, 00) be a given continuous function, and set Ay = a~*(0). The aim is
to study the minimization and the asymptotic behavior, as 1 — 0, of the following non-convex

and nonlocal problem:

EMW(mM) = meLzr?ég) - EM (m), (0.2.1)

where the functional £, defined in L? ("), R?), denotes the micromagnetism energy in Q")

previously introduced:

1 1
— ande—i—/ m)dx + = \V4 ~mdm),
2Lmh? (/Q(h>\AO | | Q) om) 2) am ¢

(h) —
(M) =0 it m € HL, (QW\Ag, R?) and /aVm € L? (Q"W\ Ay, R33) | (022)
00, otherwise,
\
subject to the constraints:
div(=V¢ +m) =0, in R?, (0.2.3)
Im| =1, ae. in Q" (0.2.4)

where 1 denotes the zero-extension of m to R3.

The given continuous function o = a(x) (v € Q) is the so-called material coefficient, and here,
we suppose that it may degenerate somewhere on Q. In order to work in a fixed domain, we

introduce the following rescaling

x = (x1, 29, 73) € Q CR® = (1, hao, has) € QW ¢ R3,

0.2.1 The main results

Let us set:
a®(z1) == a(z1,0,0) forany z; € [~L, L], and AS := (a°)~1(0).



0.2 ASYMPTOTIC ANALYSIS FOR MICROMAGNETICS OF NANOWIRES OF
FINITE LENGTH GOVERNED BY INDEFINITE MATERIAL COEFFICIENTS 5

We assume that
() £3(Ay) = 0,

(b) there exists a constant C,, > 1, such that

a’(z1) < a(x) < Cha’(zy), forall x = (21, 29, x3) € L

We prove the following results.

Theorem 0.2.1. Assume (a). Then, for 0 < h < 1 problem (0.2.1) admits at least a minimizer

solution mM.

Theorem 0.2.2. Assume (a)-(b). Then, there exist a sequence {h; | i =1,2,3,---} C (0,1)
and a limiting function m® € L*(] — L, L[, R®), such that

(l) hz N O, m(hl) - mo in LQ(Q’R?))’ é(hz) (m(hz)) — go(mo)’ and

4
\/ a(hi)alm(h")(xl, T, x3) = Vacoym®(xy),

a(hi)
hi

(92m(hi) (.Th X9, 133) — O, (025)

a3771(}”) (33'1, X2, fljg) — 07

forae xy €] — L, L[ and a.e. (v2,23) € B2(0,1), asi — oo,

(ii) the limit m® is a minimizer of £°(m),

The functional £° is defined on L*(] — L, L[, R?) by

L L
° (m) + / o(m)dzy + %/ (Ima|® + [ms|?) day,
_L —
E°(m) := ifm € L2(] — L, L[, S?), (0.2.6)
0, otherwise,

\
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where ®° iz the convex function on L*(] — L, L[, R?), defined as:

/ ao|Vm|2dx1, ifm e Hlloc(] — L,L[\AS,R?’),
(DO (m) = ]—L,L[\AS

«

(0.2.7)

0, otherwise.

0.3 Junction of quasi-stationary ferromagnetic thin multi-

structures

In a joint work with L. Faella and C. Perugia, we study the asymptotic behavior of a system
governed by the Landau-Lifshitz equation consisting of two joined roads with “vanishing” sec-
tions. So we attempt to simulate the behaviour of two joined nanowires. More precisely, let

{hn}nen CJO, 1] be a vanishing sequence. For every n € N, set

Q8 =]—h,, 0> x [0,1[], Q% =]0,1[x |—hn, 0>, Q" =]—h,,0]°,

Q,=QuluQbr. neN.

Let us suppose that the body is homogeneous, isotropic and has uniform temperature. Let us
introduce the magnetization M, the magnetic field H};, determined by M,, and the scalar po-
tential Uy, for this field (i.e.H (M,) = —DUy;,). Let us denote by M, the extension by zero
of M, outside €2,,. Then, as previously described, the magnetic induction B,, and the magnetic
field H(M,,) are connected by the relations B,, = —DU,y, + M,,. Moreover, the static Maxwell

equation and the magnetostatic equation (Faraday law) hold

V x DU]\/[n = 0,
(0.3.1)

div (=DUy, + M,) = div (B) = 0.

Fixed My, € H' (Q,,5?), (U, being the corresponding solution of Problem (0.3.1)), in [12], [24]
and [63] it is proved that there exists at least a weak solution ), of the following problem
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M, € L= (0,T; H' (2, R%) N C ([0, T]; L* (2, R?)),

oM,

M,| =1a.e.in [0,T] x ©,,
| M| a.e.in [0,T] x 5

€ L*(0,T; L*(Q2,,R?),

Vx € D(0,T), and ¢ € H' (Q,,,R?)

T

T
oM, oM,
M, = -2
// ( 5 + My A 5 )de:vdt /
0 Q 0

T
9 / / (M, A DUy, ) ytdadt,
0 Qn

3
N (M, A D, M,) (Dy) xdadt

Q, i=1

M, (0,z) = My, (x), ae.x in €,

U, and M,, linked by (0.3.1) for every ¢ € [0, T7.
(03.2)

Moreover, it satisfies the following energy estimate

2

ds < E(M,(0,-)) = E(M,,), foraete[0,T], (0.3.3)

oM,
ot (2.

con+ [ |

where for every t € [0, 7]

E(Mn(t,.)):/ |DMn(t,x)|2d:c—|—%/ |DUyy, (t,2)| de,

Qn R3

is the magnetic energy. Here, the terms F.* = / |DM,,(t, z)|* dz is the exchange energy and
Qn
1
Er9 = 5 / |DUyy, (t, )| dz: corresponds to the magnetostatic energy.

RS
In what follows let us assume that

E“ (My,) = O (h2), VneN. (0.3.4)

n
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0.3.1 The main result

We set
Q" =] —1,0*x[0,1[, Q" =]0,1[x] —1,0[*, Q" =] —1,0p,

and introduce the following space

W = {(u*, p"') € H" (J0,1[,R®) x H' (J0,1[,R?) : p*(0) = p*'(0)} .

Moreover, we set
M=WnN { H! (Qa’ SQ) w H! (Qb,l752) } ,

which explicitly takes into account the condition |u| = 1.

Let us introduce the following problem
(

p=(up') € L (0, T; M) N C ([0, T]; L2 (Q°,R?) x L? (2, R?)),

o

€ L?(0,T; L (Q*,R?) x L? (2", R?)),

Vx € D(0,T) andv = (¢, %) e W,

T T
alua awa / / a}ub,l a¢b,l
—2 S dxdt — 2 b I — dxdt
/ / a 8x3 8x3X o a al’l 8x1 xGx
0 Qe

0 Qb

T
- / / 1o A (1, ex) Ty + (u, e0)Ts) xib*ddt

0 Qo
T

2 [ A () T () ) xo e,
0

Ob.l

(0.3.7)

T T

ou® o o a O T bl _
// (815 + pt A at)xwdxdt—l—// (8t + >t A 5 XV dxdt =
0 Qo 0 Qb

(0.3.5)

(0.3.6)

10, ) = pl(x), ae. xin Qe pPh(0,2) = pbl(z), ae zin Q¥ g = (ud, ul') € M,

where T1 = (61,62,0), TQ = (—82,51,0), Tll = (0,81,52) and TIQ = (O, —62,81,), with €1, €2
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constant depending on | —1, 0[? (in the thesis we explicitly give the dependance of these constants

on]—1,0[%.

Then, we prove the following result.

Theorem 0.3.1. Suppose that My, € H' (Q,,5?%) and (0.3.4) holds, for everyn € N. Let M,, be
a solution of Problem (0.3.2) . Then, there exist an increasing sequence of positive integer numbers
{ni},ens still denoted by {n}, o = <,LL8, ,ug’l> € M, u= (ps, ub) € L>=(0,T; M), depending on

the selected subsequence such that

(

][ | Mo, (21, 2, 23) — M3($3)|2 dx — 0,
0a

n

2
{ ][ ‘Mon(fl,xmiﬁ?»)—ﬂg’l(xl) dx — 0,

L

][ | My, (21, 29, 23) — p&(0)]* dx — 0,

L Qb7

as n diverges, for everyt € [0,T]

p
][ |Mn(t7 Ty, $2,$3) - Ma(t7x3)|2 dxdt — 07
Qa

][ ‘Mn(tw%l’x% 1'3) - Mb7l(t7 1'1)}2 dxdt — 07

bl

\

asn diverges, where i = (u?, ') is a solution of Problem (0.3.7).

0.4 Ferroelectric model

Ferroelectricity is a property of some materials to have a spontaneous electrical polarization that
can be reversed by the application of an external electric field. Hysteresis phenomena appear, so

the behavior of these materials is very similar to the one of ferromagnetic materials. Analogously,
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a Curie temperature 7 appears, too.

Let B be a 3D ferroelectric body. In B the electric displacement D is given by D = ¢¢E + P,
where 9 > 0 is the vacuum permeability, E is the applied external field, and P is the spontaneous

electric polarization. Assume that E is the gradient of a potential ¢, i.e.
E = Dy, (0.4.1)

and that the electric field generated by P derives from a potential (p satisfying the electrostatic
equation
div(—eoDgp + P) = 0. (0.4.2)

We limit ourselves to the case where no strong electric field has been applied on B, but only a
very weak electric field acts on it (e.g. it is the case of iron in the ferromagnetism, before the
magnetization, by analogy). Then, we can assume that there are not Weis domains (i.e. regions
with different polarization separated by well defined interfaces), but only transition regions. In
this framework we can assume that the polarization does not generate an electric field outside B.

Consequently, equation (0.4.2) holds true in B, and the following boundary conditions on 0B
P-v=0, Dypp-v=00n0dB (0.4.3)

can be added, where v denotes the unit outer normal on 0B.

One assumes that P minimizes the energy functional
/ (BlrotP|? + |divPP + a([P? — 1)?) dz + / Dt + Dyp|2dz, (0.4.4)
B R3

where v and [ are two positive constants independent of the external field and of the temperature.
Here, [, (3|rotP|* + |divP|?) dx reduces to the classical energy [, |DP|*dz when = 1 (see
(0.5.6)), so roughly speaking this term penalizes the spatial variation of P. The term o [, (|P|* —
1)?dx obliges |P| to be near to 1, and it can induce a phase transition of P. So the body is driven
to have regions of uniform polarization separated by thin transition layers. The term [, D) +

Dyp|?dz is the electrostatic energy. As this last term is concerned, we have

/ |D¢+Dgop|2dx=/ |E|2d:c+2/ D¢-Dgppd:c+/ | Dyp|?dz, (0.4.5)
R3 R3 B B
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thanks to (0.4.1). On the other side, using (0.4.2) and (0.4.3) give
1
/ D - Dppdr = —/ D - Pdzx. (0.4.6)
B € J B

Consequently, inserting (0.4.5) and (0.4.6) in (0.4.4), and remarking that [y, [E|*dx is constant

with respect to P, the energy functional minimized by P becomes
2
/ (BlrotP + [divP> + a(|P]? — 1)) da + / |\ Dipp|2d + = / E-Pdr,  (047)
B B € J B

where [, [Dop|?dz is the electrostatic energy induced by P, and the external energy [, E - Pdz

favors the polarization parallel (but in opposite verse) to E.

0.5 Fin junction of ferroelectric thin films

In a joint work with L. Carbone and A. Gaudiello, starting from problem (0.4.7) and using using
an asymptotic process based on dimensional reduction, we obtain a simpler ferroelectric model,
especially from a numerical point of view, for a multidomain composed of two orthogonal joined
thin films.

Precisely, let {h;}, _ and {hg}neN C]|0, 1] be two sequences such that

hb
limh® = 0 = limhA’, lim h—Z = (€ [0, 4] (0.5.1)

For every n € N, set
172 _pb — (o b (0.5.2)
,2[ X} hn,O[, Q, =Q20UQ,.

1
n 297 2 2

Qa:}_ﬂ ﬁ[x]—%,%[x[m[, O =]

The multidomain €2,, models a ferroelectric device consisting of two orthogonal joined thin films
Q2 and Q% with small thicknesses h? and h®, respectively. According to (0.4.7), we consider the

following non-convex and nonlocal energy associated with 2,
E,:PeP, — / (B|rotP|* + |divP|* 4+ a(|P|* — 1)* + | Dyp|* + (F, - P)) dz,  (0.5.3)
Qn

where

P, = {PE (H' (Qn))d :P-l/:()onf)Qn}, (0.5.4)

« and (3 are two positive constants, F,, € (L*(Q,))?, v denotes the unit outer normal on 992,
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and pop € H 1(Qn) is the unique solution, up to an additive constant, of

(

div(—goDyp +P) =01in Q,,,

(0.5.5)

(—eoDypp +P) - v =0o0n 0.

\

Notice that F,, is a normalization of the external field. So to obtain (0.4.7), choose F,, = %E.

Using (for instance compare [18] and Lemma 2.1 in [37])
IDP|[{12(0,y0 = [[T0tP|[ 120, 98 + [|divP]|72q,) VP € Py, VneN, (0.5.6)
and the direct method of Calculus of Variations give that problem
min{&,(P) : P € P,} (0.5.7)

admits a solution. The aim of this chapter is to study the asymptotic behavior, as n diverges, of

problems (0.5.7). As we shall show, its asymptotic behavior depends on ¢ given in (0.5.1).

In order to work on a fixed domain, we use the following maps

)
11 11
x = (21,29, 23) € A = ] ~33 [ X }—5, 5 [ x 10, 1] — (hixy1, 29, x3) € Int(22),

11 11
= (r1,20,23) €L = | ==, = | x | ==, 2| x]=1,0[ — (z1, 29, ho3) € Q°,
\ 22 292

(0.5.8)

where Int(2¢) denotes the interior of 2. Then, for every n € N set
(

o x = (x1,29,23) € Q" — F,(hlxy, 9, x3),

n

(0.5.9)

flra = (x1,12,23) € Q — F,(x1, 72, h223),
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(

Pa={ ) € (11 (@) x (@)
pa . =0 on 8Qa\ (}_%’ %[2 X {O}> ’

p° - ® = 0on 9N\ G -1 %[2 X {O}) , (0.5.10)

. 2
| PO =P a0 in <53,

where * and ©® denote the unit outer normals on 9% and 9°, respectively, and

U =1 (¢%,¢") € H{(Q%) x HY(Q) : ¢%(x1,72,0) = ¢*(hlx1,72,0) in | -1,

DO [
—
N

(0.5.11)
Then, &, defined in (0.5.3) is rescaled by

7

E,: (p",0") € P, —

by [ (Blrotis P+ s+ ol = 17+ D3+ (21 d

Qa

#hl [ (Blrotia! P + 8+ ! = 1+ [ Dhdhy o+ (2 1')) da
\
(0.5.12)
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where (¢‘(1pa7pb) , ¢lzpa7pb)> is the unique solution of

/

<¢((lpa,pb)’ (blzpa,pb)) € Un, /Qa ¢((lp“,pb)dx =0,

hi/ (=D5dya oy +9°) - Dy (0.5.13)
Qa

+hY / B ((~Dhdfyysy +7") - Dho?) dz =0 ¥ (6, ¢") € U,

\

which rescales a weak formulation of (0.5.5), i.e.

@PeHl(Qn)a /Q ©p diL’IO, /Q ((_EODSOP_FP)DSO) dr =0 V(pEHl(Qn)
(0.5.14) " '

The Lax-Milgram Theorem provides that (0.5.14) admits solution and it is unique.

Note that if P,, solves (0.5.7), then (p2, p’) defined by
p(rll(x17 T, .',Ug) = Pn<hZI17 Za, x3) in Qa? p?l(‘rla Za, Jfg) = Pn(‘rh Za, hZI:ﬂ) in Qb?

solves

min { E,((p*,p")) : (»*,1") € P} . (0.5.15)
Assume that
fff - fa = (ffa f§7 f??) Weakly in (LQ(QG))Sv

(0.5.16)

\ fo— fr = (f2, £, f2) weakly in (L2 (Q))°.

0.5.1 The main results

The case ¢ €]0, +o0].
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We state the limit result of problem (0.5.15) when in assumption (0.5.1) £ belongs to ]0, +-00]. Set

p

P={ (¢"d) = (a4, (a}.a8)) €

(5 (=25 <J0.10) x (80 (1-5.81))

(0.5.17)

¢ v =00m0 (-3 <101, ¢-r=00mo(]-4,5),

@h(0,) =0, g8(-,0) =5 (0,) in ] -3, 3[ }.

\

where 1% and 1* denote the unit outer normal on 9 (} —%, % [ x 10, 1[) and 0 G —%, % [2> , respec-

tively,

(0.5.18)
¢?(-,0) = *(0,-) in -1, g[},

and

(ﬁlrotq“lQ T ldivg®? + a(lg*? — 1

E (q“,qb) eP— /
7%7%[X}071[

1
2

DU+ [ (. 0 )

D=

s f
]_

(ﬁ |rotqb‘2 + }divqb‘2 + (‘qbf — 1)2
32

N|=

+ ‘Dz/zl(’

2 0
—I—/ (flb, f§> dxs - qb> dridrs,
-1

a b
\ q%.q%)
(0.5.19)
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where (f$, f$) and (f?, f¢) are defined in (0.5.16), and (1/}‘(1qa ) w?qa qb)) is the unique solution of

(

(w((qa’qb)uw?qagb)) € U7 /}_;’é[X]OJ[w?qa’qb)dede = 07

1/
4.4

e /
]_

We prove the following result.

[x]0,1] <<_D(:B2,$3)1/}((1qa’qb) + qa> : D(xg,m3)wa) dl’gdl'g (0520)
X 7

& <<_D(x1,x2)¢l()qa,qb) + qb> . D(zl,x2)¢b> dridry =0 V (wa,¢b) c U

[N
e

\

Theorem 0.5.1. Assume (0.5.1) with ¢ €]0,+oc[, and (0.5.16). For everyn € N, let (pZ,pZ) be
a solution of (0.5.15), and ( ‘(lp%’p%),qblzp%’p%)) be the unique solution of (0.5.13) with (pavpb) -

(pfl,pfl). Moreover, let P and E be defined by (0.5.17) and (0.5.19)-(0.5.20), respectively. Then, there

exist an increasing sequence of positive integer numbers {n; };cn and (in possible dependence on the

subsequence) (ﬁ“,ﬁb) = ((pg,ﬁg) , (ﬁ?,ﬁg)) € P such that

(

pn, — (0,05,05) strongly in (H’l(Qa))3 and strongly in (L4(Qa))3,

(0.5.21)
ph — (p},95,0) strongly in (Hl(Qb))3 and strongly in (L4(Qb))3,
\
1 ope 1 opt
(E@ZZ’ h_b&L:;:Z) — (0,0) strongly in (L?(Q“))3 X (LQ(QI’))?’, (0.5.22)
(
<¢%P%¢:P’?u>’¢%13%yp%>) — (w((lﬁaﬁb):wl()ﬁa,ﬁb)) strongly in H*(Q%) x H*(Q),
(0.5.23)

he  Oxy T hb  Oxg

a¢a a agbb a
(i (parh) 1 (pn’p%)> — (0,0) strongly in L*(Q*) x L? (Qb) ’

where (ﬁa, ﬁb) solves

E((p",0")) = min{E ((¢",¢")) : (¢",4") € P}, (0.5.24)
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and <w‘(’pa7ﬁb),wl(’pa7ﬁb)> is the unique solution of (0.5.20) with (¢%, ¢°) = (ﬁ“,ﬁb). Moreover,

a b
lim E" ((22717”))

n

=E((p%p")). (0.5.25)

The case / = 0.

We state the limit result of problem (0.5.15) when in (0.5.1) £ = 0. Set

Po={ = g € (8 (=5 3[x10.1D)" s v = 0om 0 (|- 4 x 10,1 }
(0.5.26)

where * denotes the unit outer normal on 0 (] —%,

[ x]0,1]), and
Borgte (i (=g 3y — [ (o
(0.5.27)

1
2

+]divg®|* + a(]g*)* — 1) + | Dy |* + / (fs, f5)day - q“) drodzs,

N

\

where (f3, f5) is defined in (0.5.16), and 9%, is the unique solution of

vl € H' (]—3, 5[ % 10,1[), /} Yaadydrs = 0,

< / ((_D(xz,xg)wga + qa) * D(x27w3)¢a) d,’,UQd{,U3 = 0 (0528)
J=23 (X101

We prove the following result.

Theorem 0.5.2. Assume (0.5.1) with { = 0, and (0.5.16). For everyn € N, let (pfb,pl;) be a solu-
tion of (0.5.15), and <¢‘(lpa -t gzﬁ?pa p,,)) be the unique solution of (0.5.13) with (pa,pb) — (pg,pg).
Moreover, let P, and E, be defined by (0.5.26) and (0.5.27)-(0.5.28), respectively. Then, there ex-

ist an increasing sequence of positive integer numbers {n; };cn and (in possible dependence on the
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subsequence) p* = (p, p3) € P, such that

(

pn, — (0,05,05) strongly in (Hl(Q“))3 and strongly in (L4(Q“))3,

n

b\ 2
(h“) pb — 0 strongly in (Hl(Qb))3 and strongly in (L4(Qb))3 :
\

n

1 pn 1\ o, . . 3
— h b > 8:103) — (0,0) strongly in (L*(Q ))3 x (L% (2%)",

(p2,pb)

) — (0,0) strongly in L*(Q*) x L* (Q")
(91:3

8¢(pn b) 1 3 O¢b
8%1 hahb

3
<¢ (v, 2%, ) ) ¢lfpg,pz)> — (1,0) strongly in H'(Q") x H' ("),
where p* solves
E, (p*) = min{FE, (¢*) : ¢" € P,},
and 5. is the unique solution of (0.5.28) with ¢ = p®. Moreover,

a b
i B (%’p"))

n

= E, ().

The case ¢/ = +o0.

We state the limit behavior of (0.5.15) when (0.5.1) is assumed with ¢ = 400 and h® <<

Here we assume that the function (¢¢

(0.5.29)

(0.5.30)

(0.5.31)

(0.5.32)

(0.5.33)

he.

() ¢Izpa7pb)) involved in (0.5.12) is the unique solution of
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the following problem:

/

a b _
<¢(pa,pb)’ (blzpa’pb)) € UTM b ¢(pa,pb) dl’ - 07

hi/ (=D5dya oy +9") - Dyop)dz (0.5.34)
Qa

+hY / B ((~Dhdfyysy +7") - Dho?) dz =0 ¥ (¢, ¢") € U,

\

i.e. assumption / o ng‘(‘pa’pb)dm = (Oisreplaced with o ¢?pa7pb) dz = 0, or equivalently, in (0.5.14),

assumption wpdr = (isreplaced with

wpdr = 0. Obviously, &, and F),, do not change.
@ 5

Q

n

Set

po={ e (0 (-4AT)) 2 =0 (1-1AT)

(0.5.35)
ql1)(07 ) =0in ]_%a%[}a
\
where 1/* denotes the unit outer normal on 0 (} —%, % [2>, and
(
2
B e (1 (=430 — [ (B’
]_%’%[2
(0.5.36)

0
1

+|divg®|? + a(|¢’)? — 1)* + |D@/J2b|2 + / (f°, Ddas - qb) dxidxs,
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where (f2, f2) is defined in (0.5.16), and ¢2b is the unique solution of

ot e 1t (]-1,1), /] S Vpderdzy =0,

((=Dor eyt + @°) - Digy apyt?) dandry = 0, Wy € H (} . [2) .

(0.5.37)

We prove the following result.

Theorem 0.5.3. Assume (0.5.1) with { = +o00 and h® << \/h_g and (0.5.16). For everyn € N,
let (pfl,pfl) be a solution of (0.5.15), and (QSC(L])%,])Z)’CbIEp%,p%)) be the unique solution of (0.5.34)
with (pa,pb) = (pfl,pfl). Moreover, let P, and E., be defined in (0.5.35) and (0.5.36)-(0.5.37),
respectively. Then, there exist an increasing sequence of positive integer numbers {n;};cn and (in

possible dependence on the subsequence) p° = (ﬁl{,ﬁg) € P, such that

h?L : & i a . a
<h_%> pi — 0 strongly in (H'(Q ))3 and strongly in (L*(Q2 ))3,
(0.5.38)
Pl — (p%,95,0) strongly in (Hl(Qb))3 and strongly in (L4(Qb))3
1
1 Ef)pzlapz . o) a3 R
((h%h2> oz, h_ﬁax;g — 0 strongly in (L (Q )) X (L (Q )) , (0.5.39)
r ha 1
_n a b b . 1/~a 1 b
<(h2> <p%i’p%i),¢<p%¢’p%i>> — (O,wﬁb) strongly in H(Q%) x H ("),
(0.5.40)
1\: agb?p%,p%) 1 3¢prz,pz) o 5 /b
\ ((h%h%) Oz, 7h—% D25 — (0,0) strongly in L*(Q%) x L (9)7
where p° solves
B (p") = min{E. (") : ¢ € P}, (0.5.41)

and ¢gb is the unique solution of (0.5.37) with ¢ = p°. Moreover, the convergence of the energies
holds true, that is

a b
A )

r oy = E. (p"). (0.5.42)



Chapter 1

Asymptotic analysis for micromagnetics
of nanowires of finite length governed by

indefinite material coefficients

K. Chacouche. Asymptotic analysis for micromagnetics of nanowires of finite length governed

by indefinite material coeficients, to submit.

Abstract. The objective of this paper, is dealt with a class of minimization problems, associated
with the micromagnetics nanowires of finite length. Each minimization problem is characterized
by the radius of the wire, denote by 0 < h < 1, and it is considered under spatial indefinite
and degenerative setting of the material coefficients. Based on the fundamental studies of the
governing energy functionals, the existence of the minimizers, for every 0 < h < 1,the 3D —1D
asymptotic analysis for the studying minimization problems, as A — 0, will be proved in Theorem

1.2.1 and Theorem 1.3.1, respectively.

Keywords: micromagnetics of nanowires, indefinite and degenerative material coefficient, 3D —

1D asymptotic analysis.

2010 AMS subject classifications: 78 A25, 49505, 78M35

1.1 Introduction

In general, the theory of micromagnetism is used to model the particles ferromagnetic of small
size (in the order of micrometer and less). This theory is proposed by W.F. Brown in the 40s, and

aims to explain the nonlinear behavior of magnetic materials. The approach micromagnetic it is
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first of all energetic, allowing to identify the main phenomena intervener in the configuration of
the magnetization and associate their energy quantities. The equilibrium is achieved when the

total energy is minimized.

In this paper, we study the energy released by a cylindrical ferromagnetic nanowires. The first
main objective is to show, in the framework studied in [41-43, 63], that the corresponding min-
imization problem to the free total energy functional has at least one solution and we will per-
form it in the Theorem 1.2.1. The second objective by referring to the theories, that are studied
in [13, 14, 33-35, 42, 43, 48, 59], is to rigorously derive a 1D reduced micromagnetic model for
ferromagnetic nanowires and to find a definite association between the minimization problem
in the three-dimensional domain and the limiting profile minimization in the one dimensional

domain, which it will be proved in Theorem 1.3.1.

Let us assume that the finite 3D wire is a cylinder of length 21, and radius 0 < A < 1. Consider
a ferromagnetic nanowires occupying a bounded, possibly multi-connected domain Q" =] —
L, L[x By(0, h) of the Euclidean space R? (see Figure 1.1) , where | — L, L[ is the bounded segment
in R, and By(z, ) is the ball of radius r and center x in R%. Also, let us  :=] — L, L[x B5(0, 1).
Let o : 2 — [0, 00) be a given continuous function, and let Ay := a~1(0) be the set of zero-points

of & on Q.

The aim of this paper is to study the minimization and the asymptotic behavior, as h — 0, of the

following non-convex and nonlocal problem:

find a vectorial function m® = (mgh),méh),mgh)) € L2(Q" R3)

(P)(h) = ¢ of three variables, such that,

§(h)(m(h)) — min g (m),

meL?(Q(M) R3)

where, the functional £ denotes the micromagnetism energy in Q") (see [9]), it is given by

(
1 1
— avm2d£3+/ m)dL? + = Vima ~md£3>,
2Lmh? (/Q(h)\AO ’ ’ Q) gp( ) 2) qm ¢ g
(h) — )
(M) =9 it m € HL, (QW\Ag, R?) and /aVm € L? (QM\ Ay, R3<3) |
0, otherwise,

\

for any m = (my, mo, m3) € L? (Q(h),RS) ,
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PR S S t
1 2L 1
Figure 1.1: Domain Q.
subject to the constraints:
div(—Vmag + ™M) =0, in R?, (1.1.2)
im| =m,, L3-ae in QW (1.1.3)

In (1.1.1), the funcional £ (m) is supposed to be the free energy, per unit volume, in a fer-
romgnetic nanowires (cf. Brown [9]). In the context, the index h and Q") denote the radius of
the ball and the distribution region of the magnetic nanowires , respectively, and the unknown
m QW = RS, m = (my(x), ma(x), ms(x)) (x = (21,29, 23) € QM) is a vectorial function
of three variables, which describes the magnetization in Q®). The given continuous function
a = a(z) (r € Q) is the so-called material coefficient, and here, it is supposed that is coefficient

may degenerate somewhere on ).
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The exchange energy

/ ol Vm|?dL?.
QM Ao

The ferromagnetic behavior is essentially due to a quantistic force which tends to allign the molec-

ular magnetic field. The most important contribution is due to the exchange energy.

The anisotropy energy
[ emac,
Qr)

models the existence of preferred directions of magnetization (easy axes), where ¢ : R? — [0, 00)

is a given continuous, even function, exhibiting, whenever pertinent, crystallographic symmetry.

The scalar function (., : R* — R is supposed to be the potential of magnetic field H = —V (4,
whereby (1.1.2) V x H = 0 is automatically fulfilled, where equation (1.1.2) is a simplified version
of the Maxwell equation, and hence its solution (,,,,. Moreover, m denotes the zero-extension of
m to R3.

The energy due to the magnetic field H = —V (., (magnetostatic energy).

/ Vinag - mdL? = / 1V Cnag|?d L.
Q) R3

Equation (1.1.3) embodies a fundamental constraint of micromagnetics, whereby a ferromagnetic
body is always locally magnetized to a saturation magnetization m¢(T'), where T is the local tem-
perature. Denoting the Curie temperature by 7., m; > O unless 7' > T, in the latter case m; = 0
and the material ceases to behave ferromagnetically (for example the Curie temperature is 1043 K
i.e. 770 °C for the iron ). As a consequence of (1.1.3), a specimen at 7" < T, can achieve a demag-
netized state only in an average sense. Throughout this work we suppose constant temperature

in the ferromagnetic regime.

Reformulating the problem on a fixed domain through appropriate rescalings of the kind proposed
by P. G. and P. Destuynder [17] and using the ideas were used by [42], it is proved the existence of a
minimizers of problem (P)(h) (see Theorem 1.2.1). Also, by using the ideas asin [13, 14, 33-35, 41],

we derive the limit problem (see Theorem 1.3.1). Specifically, we prove that

li}rln(P)(h) =min{€°(m): m= (mi,ma,m3) € L*(] — L, L[,R®)}.
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where

(

1
° (m) + / o(m)dL! + —/ (|ma* + [ms|?) dL",
J-LL| 2 L

€°(m) =3 ifm e 12(] - L, L[, S?),
0, otherwise,
\
for any m = (my,mq,m3) € L*(] — L, L[,R?), and ®° iz the convex

function on L?(] — L, L[,R?), defined as:

/ a®|Vm|2dLt, ifm € H. (] — L, L[\Ag, R?),
@O (m) = ]7L7L[\A8

«

0, otherwise,

for any m = (my, mq, m3) € L*(] — L, L[, R?).
We obtain a infinite 1D reduced micromagnetic model for ferromagnetic nanowires. Moreover,

1
the magnetostatic energy transforms into 5 / (|m2|2 + |m3|2) dL*, so that the limit prob-
L,L

lem is completely local and plays a role of additional anisotropy. In such wires, the additional
anisotropy is uniaxial (directed along the wire). It easy to see that, if ¢ = 0, then the minimum

in the limit problem is zero and it is attained by (—1,0,0) or (41,0, 0) (see Section 1.3).

The paper is organized as follows : In the next Section 1.2, we prove the existence of minimizers
of problem (P)™. The 3D — 1D asymptotic analysis for the observing minimization problem, it

is obtained in Section 1.3.

1.2 The minimization problem

1.2.1 Nanowires scaling

As it is usual (see [17]), problem (P)™ will be reformulated on a fixed domain.

From now on, for simplicity, let us set :

L£3(Q) =2L7 =1, and m, = 1;
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and let us denote by 1)(*) the diffeomorphism, defined as:
YW = (21,29, 73) € R® = (21, hao, has) € R3.
Also, let us put

o = qo ¢(h) € C(Q) and Agh) = (O‘(h))_l (0).

Next, using the area formula in the fundamental calculations, it can be shown that the minimiza-
tion problem (P)), forany 0 < h < 1, has the below equivalent form, denoted by (P')"). (P")()
is for finding a vectorial function m = (mgh)7 mgh), méh)) € L*(Q,R?) of three variables, which

minimizes the following functional:

1 .
o (m) + / p(m) dL* + 5 / ) ( ¢ iy + L85C My + 105C my ) dc,

Q
h -
EM(m) = q it e 120, $2),
00, otherwise,
(1.2.1)

for any m = (my, ms, m3) € L*(Q, R?),

subject to the constraints:

1 1
O (= +my) + 7 (V’ . (—EV’Q +m’)> =0, in R?, (1.2.2)
where
y/ = (g%yi’)) fOI' Y= <y17y27y3> S R37
V= (v, 13) € L*(Q,R?), for v = (v1, 10,v3) € L*(Q, R?)

and the distributional gradient V' = (0,, 03) such that

82V1 33V1

v,V = 82V2 83V2 ) forv = (V17V27V3> € L2(Q7R3)7

Oovz  Osv
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and ® (m) is the convex function on L2(£, R3), defined as:

(

1
/ Lo (|81m|2 + ﬁ|V'm|2) dcs,
Q\AO

(h) —
©7(m) =9 itm e H <Q\A(()h>7R3> ’ (1.2.3)
00, otherwise,

\

for any m = (mq, ma, m3) € L*(Q,R?).
Furthermore, for any 0 < i < 1, the equality:

m® = m® o ™ in [2(Q, R?), (1.2.4)

holds between the minimizers m") and m® of the respective problems (P)™" and (P')(.

In each case, the minimizer, described in (1.2.4), are supposed to represent the most probable
profile of the magnetization in the studying ferromagnetic nanowires. However, when is the
case of the very thin situation of the radius A, the problem (P’) / (P)" is usually reduced to
another one (it will be discussed in Section 1.3).

For the detailed description of this matter, let us first set:
a®(zy) == a(z1,0,0) for any z; € [-L, L], and A] := (a°)~1(0).

Now;, if we take into account the non degenerate case of the material coefficient a, referred to the
case that:

Aéh) =A;=0for0<h <1, and o, := minr(x) > 0,
e

then the convex part " of the energy £ satisfies the coercivity condition below:

O (m) > o |Vml7s i gsxs), forallm € L*(Q,R). (1.2.5)

1.2.2 The main results

The first goal of this study, is to impose the two conditions below for the material coefficient a:
(a) L3(Ap) = 0, and hence E?’(A(()h)) =0,for0 < h < 1.
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(b) There exists a constant C, > 1, such that

a’(z1) < a(z) < Cha’(zy), forall z = (21,29, 23) € €2

Consequently, we will show the following theorem:

Theorem 1.2.1. Let us assume the condition (a). Then for 0 < h < 1 the minimization problem

(P)M admits at least one solution (minimizer) m™), and hence the same holds for the problem

(P

1.2.3 Preliminaries

Notation. For any dimension n € N, the n-dimensional Lebesgue measure is denoted by £", and

for any Borel set £ C R", the characteristic function on £ is denoted by xg.

For any abstract Banach space, the norm of X is denoted by | - |x. However, when X is an Eu-
clidean space, the is simply denoted by | - |. Also, we denote by distx (£, Y") the distance between
any point £ € X and any subset Y C X, that is defined as distx (§,Y) := 51;15 | — 0|x. Addi-
tionally, for any € > 0 and any functional ' : X — [—00, 0], we denote by L(e, F') the sub-level
set of I, more precisely:

Lle, F):={{e X | F(§) <e}.

For any abstract Hilbert space H, the inner product of H is denoted by (-, -) g.
However, when H is an Euclidean space, the inner product between two vectors (,0 € H is

simply denoted by ( - 6. Besides, for arbitrary k, ¢ € N and arbitrary k, (-matrices A = (a;;), B =

koot
(bij) € R**, the scalar product between these two matrices is denoted by A : B := Z Z a;;bij.
i=1 j=1
To sum up the known-results, concerned the mathematical treatment of the coupled Maxwell

equation (1.2.2), we recall what it is studied in [41, 47].

Remark 1.2.2. (Summary of [47, Lemma 3.1]) Let us fix any constant 0 < h < 1, and any m =
(my, ma, m3) € L?(2,R3), taking into account that m vanishes outside ). Then, the solution of the

equation (1.2.2) is defined as a function ( € V which solves the following variational identity:

(C,v) = / (mlalv + %m’ : V%}) dc? = / (81C81v + %V'C : V’v) dL?, foranyv €V,
Q R3
(1.2.6)
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withm’ = (mg, m3) and V' = (02, 03), where V, the phase space for the Maxwell equation (1.2.2)
is fixed as the following functional space, denoted by :

V= {v € H..(R?) Vv € L*(R*,R?) and / vdL? = O} :

BQ

and Bq, the (three-dimensional) open ball, which contains the cylindrical domainQ :=]—L, L[x B5(0,1).

Bg
orem 5.4.3]), this functional space is a Hilbert space, endowed with the inner product:

The condition / vdL? = 0 prevents trivial translationsv — v + c. As easily checked (cf. [5, The-

(z,v) := / (812811) + %V/z . V/v) dL3, forallz, v eV,
R3

which readily leads to the definition of the norm
[oly = (v,0)2, (1.2.7)

where 0 < h < 1 is the same constant as in (1.2.2). Furthermore, the Hilbert space V' is compactly
embedded into the space L*(Bq).

Remark 1.2.3. (See [42, Proposition 1]) Let us fix any 0 < h < 1. Then, foranym € L*(Q),R?), the
Maxwell equation (1.2.2), admits a unique solution (. Hence, the solution operator S™ : [2(Q), R3) —
V, that maps any m € L*(Q2,R?) to the solution { € V of (1.2.2), is well-defined as a single-valued

mapping. Moreover, the solution operator S is a bounded linear operator, such that:
ISPm|y < |m|r2qps), foranym € L*(Q,R?). (1.2.8)

Remark 1.2.4. (Sommary of [41]) For any 0 < h < 1, the functional Eﬁfgg(m) defined as

1

E{),(m) = 5/ ((%C“”ml + %v/g(ﬁ) ,m') dce, (1.2.9)
Q

for any m = (my, my, ms) € L*(Q, R?),
links to the part of the free energy E™, given in (1.2.1), that is involved in the coupled Maxwell

equation (1.2.2). Moreover, in the light of Remark 1.2.2, setting v = ( in (1.2.6) it follows that

EM (m(h)) = % }C(h)’f/ >0 forany(0 < h < 1. (1.2.10)

mag
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Next, let us use the Key-properties of the energy functionals.

We will start with a proposition concerned with a Hilbert space, associated with the effective

domain of convex part of energy functional.

Proposition 1.2.5. (See [42, Theorem 3.1]) Let us set:

Af = A2 x By(0,1),

HY = {m € L2(Q,R?) ‘ m e HL (O\A;,R?), aoVm e L2 (Q\Ag,R3X3)} .
(1.2.11)

Then, H}, is a Hilbert space, endowed with the inner product:
(é,A)H& = / £-ANdLP —1—/ a®VE : VAAL?, forall¢, A e H. (1.2.12)
Q Q\Af

Hence, the functional @, defined as:

/ a°|Vm|*dL?, ifm € HY,
O* (m) = M\AG

«

(1.2.13)

0, otherwise,

for anym = (mq, mg, m3) € L*(Q, R?),

is proper Ls.c and convex on L*(£),R3).

Just as in above proposition, we can prove the below Corollary.

Corollary 1.2.6. Let us fix any 0 < h < 1, and let us denote by H the effective domain of the

convex function o, given in (1.2.3). Then, H is a Hilbert space, endowed with the inner product:

1
= . 3 (h) il /7 v} 3
(&) o0 - /Qé AdL +/Q\Aéh)a (81581A+h2V£ VA) ace,

forallé, A e H.

)

Hence, the convex function ) turns out to be proper and Ls.c on L*(Q, R?).

Lemma 1.2.7. (Approximating open sets) For any 0 < h < 1, there exists a sequence
{Qg\h) | A=1,2,3,--- } C R3 of three-dimensional open sets, having Lipschitz boundaries,
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such that:

A=1
As a consequence, we infer that:
af\h) = min o™ (z) >0, A=1,2,3,---, for any0 < h < 1.
zeﬂg\h)
ag\h) — 0, as A = o0,

Proof. This Lemma is a direct consequence of the line of arguments, discussed in ([42], Lemma
4.1 and Remark 4]). O

Now, we generalize a result of [42, Theorem 3.2 page 7] for the three dimensional case.

Proposition 1.2.8. (Compactness) Let us assume the condition (a), and let us take any2 < p < oc.
Then, for any 0 < h < 1, any bounded sequence in 72 N LP(Q,R3) is relatively compact in
LP(2,R3).

Here is a corollary that is derived from the Proposition 1.2.8.

Corollary 1.2.9. (1) Let us assume the condition (a), and let us take any1 < p < 2. Then, for any
0 < h < 1, the Hilbert space H is compactly embedded into the Banach space LP(2,R?).

(II) Let us assume the condition (a), then for any 0 < h < 1 and any e > 0, the sublevel set:
L (e,g(h)) = {m € L*(Q,R%) | EMW(m) < e},
is compact in L*(Q, R?).

Proof of Proposition 1.2.8. (The proof of the two dimensional case is made in [42, page 11])

Let us assume the condition (a), let us fix any 2 < ¢ < p, with 2 < p < oo, and let us

set € := lim(#). Besides, let us take any sequence {qu’ | i=1,2,3,- } c HPn

p=p P —(
LP(Q,R?), such that:

ul?) R, (1.2.15)

uf)

sup

‘ H < Rgand sup
€N ieEN

Lp(Q,R3) =
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for some constant R, independent of 7 € N. Then, noting that £3(Q) =1, and:

(i))2 _ 0| < % < R
2 143 = 2 e < s oz <
we construct a sequence {n,gh) | 1=1,2,3,--- } C N, and functions u, C Ho(lh) and v, €
L%(1), such that:
O
n;gh) — 00, ui k) — u, weakly in H&h),
as k — oc. (1.2.16)

12
and |u”| = 4, weakly in Lz (Q),

The above convergence implies that:
2
[ o=
E Q
as k — oo, for any Borel subset £/ C (2.
So, applying the assumption (a) and Vitali-Hahn-Saks’s theorem, we infer that

I™ = sup /
jeN J o\l

(n{)

(h)
n
(i) Us

U

2
xedl? — / YexpdLE = / Yo d L3
Q E

(h>)

WA =0, as A — oo, (1.2.17)

O ;
Next, due to Lemma 1.2.7, the subsequence {ui k) | k=1,2,3,--- } C {ug)} turns out to

be bounded in the space H 1 (Qg\h), R3>, for any A € N. Hence, Sobolev’s embedding theorem

enables to construct a decreasing family of subsequences:

.C {n,(f)} C---C {nf)} C {nf)} c {n,(:)} c {n,ﬁh)},
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to fulfill that:

.
)
e the subsequence {uink )} admits a limit

M e HY (Qg\h), ]R3) in the strong topology

for any A € N. (1.2.18)
of L2 (Q§h>,]12<3) Cask — 00,
2
)
o [l <l k=123,
2 (0§ R?)

\

Now, let us set a function 7, € H} (Q\Agl), ]R3> , by putting:
ne(x) =WV (x), ifz € Qg\h), for £? —a.e. x € Q.

Then, by virtue of (1.2.15) and the monotone convergence theorem,

. 2
Jo In?dC? = lim / X | ?dL? < sup / V| de?
Ao ) g A xeNJ o
(1.2.19)
. (nV) ? 3 i) |2 2
=sup | lim Uy © AL’ | < sup u,(k’) w < Ry,
XeN \ F=oo ) ol ieN Ha

therefore 7, € L*(Q, R?).
Afterwards, let us set a subsequence {ugi) | k=1,2,3,--- } C {uf) } by putting:

n(k)
u(k) = ui k )1nL2(Q,R3) fOrk - 1a2737..' :

kK
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Then, considering the assumption (a), and (1.2.17)-(1.2.19), we obtain that:

(k)

*k

u

2
o) gz

1
§E+2[£k)+2/ )|77*|2d[.3—>0, as k — oo.

oo
Thus, the subsequence {uﬁ’f‘)} is a convergent sequence in the topology of L?(2,R?) and the

limit 7, must coincide with the weak limit u, as in (1.2.16). 0

1.2.4 Proof of Theorem 1.2.1

The proof will be a slight modification of the argument, discussed in [42, Section 5.1]. In fact,
under the condition (a), and under the fixed setting of 0 < h < 1. Let us put e* = (1,0,0) € S2.
Then, by virtue of (1.2.1), (1.2.9) and (1.2.10),

0<EW .= inf EW(m) < EW(e).
meL2(Q,R3)

Therefore the infimum E of £® is finite in L*(€2, R3), we can find a minimizing sequence
{mff) | 1=1,2,3,--- } c H, such that:

EW(mDY N, EM as i — oo.

Here, on account of (II) in Corollary 1.2.9, and the constraint onto L*(£2,S?) as in (1.2.1), a

convergence subsequence {mf,f’“) | =1,2,3,-- } C {mf,f)} will be found with the limit

m, € L?(Q,R?), and such that:

m{*) — m, in L*(Q,R?),
as k — oo.

p(m{™) = p(m.), in L}(Q),
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Let Cik) the solution of the coupled Maxwell equation (1.2.2), when m = m{™, for any k € N,
and also, let (, the solution of (1.2.2), when m = m.. Then, by Remark 1.2.3,

(W = (in V, ask — oo. (1.2.20)

Thus by (1.2.10), and (1.2.20) we have,

E® (mff’“)) — EW (m,), ask — occ. (1.2.21)

mag mag

Now, taking (1.2.21), and Proposition 1.2.5, we obtain that:

EM = 1im &M (m)

k—o00

.. i ; i 1
= hmmf(I)gI) (mfk k)) + klggo (’90 (mfk k)) ‘Ll(Q) 5

k—o00 2

1)

1
> ) (m.) + ()l + 5IGL = €0 (m.) > B,

h)

Therefor, the limit m, is the minimizer, that is denoted by m® in Theorem 1.2.1.

1.3 The 3D — 1D asymptotic analysis for the observing min-

imization problem

1.3.1 The main results

Here, regarding the theories [13, 14, 33-35, 42, 43, 48, 59], to find a definite association between

(o]

the limiting profile of (P)®) as h — 0, and the following minimization problem, denoted by (P)°,
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for the magnetization on the one dimensional domain | — L, L.

7

find a vectorial function m® = (m$, m$,m3) € L*(] — L, L[, R?)

(P)° = of three variables, such that,
E°(m°) = min E°(m),
L meL2(]—L,L[,R3)

where, the functional £°, it is given by

&2 (m) + / o(m)dL! + 1 / (Imal? + |maf?) dL",
|-L,L| [

Eo(m) = ifm e LQ(] _ L,L[, 82), (131)

0, otherwise,
\

for any m = (mq, ma, m3) € L*(] — L, L[, R?),

where ®° iz the convex function on L?(] — L, L[, R?), defined as:

/ aQ®|Vm|*dLt, it m € H. (] — L, L[\A;, R?),
d° (m) := J-L,LI\A

[0

(1.3.2)

0, otherwise,

for any m = (my, mq, m3) € L*(] — L, L[, R?).
Up to now, the above fact has been proved previously, by relying on the compactness of the sub

level sets £"), that has been derived from the coercivity condition (1.2.5).
Now, let us consider the conditions (a) and (b) for the material coefficient «.

Consequently, we can conclude the Theorem 1.3.1, that is shown as following:

Theorem 1.3.1. Under the conditions (a)-(b), there exist a sequence {h; | i =1,2,3,---} C
(0,1) and limiting function m® € L*(] — L, L[, R®) of one variable, such that:

(i) hi — 0,m™) — me in L2(Q,R?), £®) (m*)) — £°(m°), and
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vV ahi) §ym e xl,xg,xg) — Vaco,m® (1) (: \/EVmo(xl)> ,
a(hi)
h;

vV a(hi)

\ hz

QoM (21, 4, 25) — 0, (1.3.3)

a3m(h )($1,$27$3) — 0,

for L'-a.e. x1 €] — L, L] and L*-a.e. (x5, 23) € B2(0,1), asi — oo,

(ii) the limit m® solves the problem (P)°,
where {m(h) | 0<h< 1} is the sequence of minimizer m™, 0 < h < 1, obtained in
Theorem 1.2.1.

Additionally, let us look toward the limiting observation for (1.2.2), as h — 0. As a innovative

work for this theme, we can refer to [14, Theorem 2.1], or [59, Sections 3], stated as follows.

Proposition 1.3.2. (Summary of [14, Theorem 2.1]) Let {m<h> | 0<h< 1} C L*(9,R3) be
a fixed sequence, such that m™ — m in L?(,R3) as h — 0, for some m = (17,9, M3) €
L*(Q,R3). For any 0 < h < 1, let ("™ be the solution of the Maxwell equation (1.2.2) when
m = m®. Let Eo. g the functional defined in (1.2.9), and let E°,,  be functionals on L*(€), R3),

mag
which is defined as:

1

By (M) = 5/ (|ma)? 4 |ms|?) dL2, (1.3.4)
Q

foranym = (my, mg,m3) € L*(,R3).

Then,
v 50 in V,
] . ash — 0, (1.3.5)
EaQC(h) — mg, E@g(’(h) — mg m LQ(Q,R3)7
and hence
E,(@g ( (h )) — Efnag( m), ash — 0.
Lemma 1.3.3. There exists a sequence {I, | X = 1,2,3,---} C R of one-dimensional open

interval, such that:

D#I, cCI,cC I3 CC -~ CC Iy CC --- CC] — L, L[\AS = UIA



CHAPTER 1: MICROMAGNETICS WIRES GOVERNED BY INDEFINITE
38 MATERIAL COEFFICIENTS

As a consequence, we infer that:

aj :=mina’(z) >0, A=1,2,3,---,
zel)y

ai — 0, as A = 00;

with I is a closed interval in R.

Proof of Lemma 1.3.3. This Lemma is directly similar of Lemma 1.2.7, made for the one-dimensional

situation. ]

Remark 1.3.4. (See [42, Section 3 and Section 4])

(I) Similarly as in the Corollary 1.2.6, let us denote by H_ the effective domain of the convex
function ®, given in (1.3.2). Then, H_ is a Hilbert space, endowed with the inner product:

(€, M) e :—/ €. AdL! +/ a°VE VALY, forall€, A € HY.
]_LvL[ ]—L,L[\AS

Hence, the convex function ®°, turns out to be proper and Ls.c on L*(] — L, L[, R?).

(I) As it is easily checked, the two convex functions ®* and ®°, as in above assumption (I), Propo-
y o o p P

sition 1.2.5, and Corollary 1.2.6, coincide with as functionals on L*(] — L, L[, R?), namely:

@’;(m) = (I)Z(m)7 ifm e Lz(] - L, L[? R3)

(1) If we assume that L'(A3) = 0 and let us take any 2 < p < oo, we have
(i) Any bounded sequence in HONLP(]—L, L[, R?) is relatively compact in L (]— L, L[, R?).
(ii) For any e > 0, the sublevel set:

L(e, &%) :={m e L*(QR? | &°(m)<e},

is compact in L*(] — L, L[, R?).
Remark 1.3.5. Let us assume the condition (b), then the sequences {Qg\h)} ,0 < h <1, can be
taking independently of h. In fact, since the condition (b) implies that:

(%) A(()h) = A}, forany0 < h < 1,
it easily to checked that for all of open sets, given as:

Q% =1, x By(0,1), A=1,2,3,---,
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have Lipschitz boundaries, and the sequence {Q05 | A =1,2,3,---}.

(xx) Let us take account of assumptions (a)-(b), Proposition 1.2.5, and assertion (x) we can show
that: L3 (Agh>> = L3(AY) = £Y(A) = 0, 8™ > ¥ on L2(Q, R?) and hence HY ¢ H?,
forany 0 < h < 1.

1.3.2 Proof of Theorem 1.3.1

The proof of this theorem will be a modification of the argument, discussed in [42] Section 4 and

Section 5.2.

We will do this proof in several steps. The first two steps will show that we call I'-convergence
when h — 0 of the functional ®%”. In the third step we will show that when the radius of the ball
goes to zero the magnetization function converge to a limit function which has a single variable
and solves the problem (P)°. Finally, in the last step, all we have to do is to show in which

meaning the pointwise convergence has asserted in (1.3.3).

At the beginning, in the Step 1 and Step 2, we deal with the I'-convergence from o to d0 as

h — 0. We will show that under the conditions (a)-(b), the sequence {@,(xh) | 0<h< 1} of

convex function I'-converge to the convex function ®°, on L*(), R?), as h — 0. More precisely,

by referring to [1, 20] this is equivalent to show that:

(v1) hiniglf@gh) (1™) > @M (), if {u™ | 0<h<1} C L*(Q,R?), p € L*(Q,R?), and
—

> o
p™ — pin L2(Q,R%) as h — 0,

72) forany v € H2 (C L*(] — L, L[,R?)), there exists a sequence ,ul(,h) O0<h<l1l; C
y o q
L?(92,R3), such that pd” = vin L*(Q,R3) and o (,u,(,h)) — @2 (v),as h — 0.

Indeed, firstly let us assume the assumption (**) in Remark 1.3.5.
Step 1. Verification of v1. Let us take any sequence {p® | 0<h <1} C L*(Q,R?) and any
p € L*(Q,R3), such that:

™ — 1 weakly in L2(Q, R?), as h — 0. (1.3.6)

Then, it is enough to consider only the case when lizn ié’lf CIDgL) (u(h)) < 00, since another case is
%

~

trivial. In this case we construct a sequence {hi | 1=1,2,3,--- } C (0,1) and a constant Rj,
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independent of the index ¢ € N, such that:

. . 1
2 2
hipa < hi < 5

] ) o o ) ) fori =1,2,3,---,
= o k) ( Ao | 1 |90 ) L < o) <M(hi>> < Ry,
h;J o\ag
and
lim @) (u(hi)> — lim inf &) (,u(h)) < 00. (1.3.7)
1—00 h—0

Here, taking into account (1.3.6)-(1.3.7) and Lemma 1.2.7,

( 2 o <M(i”)) R R
D™ <SR < LR < Tk 5 0, s o,
L2(Q%,R3) @E\ i) &(A i) ay,

Oop = 0in L*(Q5, R?),

(ha) (| (h) forA\=1,2,3,---
hi ? ®a </JJ l>A2 Ry 29 Ry 29 )
‘83/1( i) < - hi < ——h; < (1/2i)hl- — 0, as i — oo,
L2(Q% R3) ag\hi) ag\hi) al

Osp = 0in L*(Q5, R?),
\

Therefore, it is possible to write 1 as a function of one-variable 4V € L?(I,,R?), for any A € N¥,
such that:

p(xy, xo, x3) = ﬂ(’\)(xl), for L'-a.e. 71 € I, and L?-a.e. (12, 73) € By(0,1).

Thereafter, let us set:

XN (zy), if \ € Nand z; € I,
fi(zy) ==
0, otherwise,

for £'-ae. z, €] — L, L].

Then with helps from (a)-(b) Fubini’s theorem and monotone convergence theorem, it is deduced
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that:

00 > Zlpl iz 2 7 lim /Q gt = L tim /32 . /IA |a[dLt dc?

T A—00

— 1 im / / X1, | pPdLtdL? = / / \a|?dLrdc? =
T A=o0 ) By0,1) J J-L,L[\Ag Ba(0,1) J |—L,L[\Ag

/ APdct,
}—L,L[

/ | — p2dC? = l1m/ /] LL[XI>\|M f2dLctdc?
0,1)

= lim / / |\ — p)*dLrdc? = 0.
A=oo ) Byo,1)J Iy

Hence, the limit ;; can be regarded as the functional /i € L*(] — L, L[, R?) of one-variable.

and

Now, taking into account of the assumptions (**) in Remark 1.3.5, Proposition 1.2.5 and (/I) in

Remark 1.3.4, we conclude that:

lim inf &) ( ) > liminf @7 ( ) > O (u) = P2 (1)

h—0 h—0

Step 2. Verification of y2. Let v € H. Then, under (a)-(b), by constructing the required sequence
{,u,(,h) | 0<h< 1},We define:

pM =v e H: (= HM) forany 0 < h < 1. (1.3.8)

Here, noting that:

o™ — a°in C(Q), as h — 0,

‘a(h)‘ (: a(h)) < C,a®on(, forany 0 < h < 1,
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Consequently, by applying dominated convergence theorem we obtain that:

o (") = / a®|VyPdLt — / o° |V PdL?
o4 o\4;

(1.3.9)

= / a®|Vv|2dLt = @2 (v) as h — 0.
J-L,L[\AG

Remark 1.3.6. (See [42, Corollary 3 page 8] and according to [1, Lemma 2.3] ) Under same assump-
tion as in Step 1 and Step 2, the sequence {S(h) | 0<h< 1} of free energy functionals converges

to the limiting one functional £°, on L*(2,R3), in the sense of I'-convergence, as h — 0 if and only

(i) lil}’lniglfg(h) (™) > ED (), if {u™ | 0<h<1} C LHQLR?), u € L*(Q,R?), and
H
p™ — i (strong) in L2(Q,R?), as h — 0,

(ii) for any v € H? (C L*(] — L, L[, R?)), there exists a sequence {,u(yh) | 0<h< 1} -
L2(Q,R3), such that i — v in L*(Q,R3) and E® (,u,(,h)> — E°(v), ash — 0.

Step 3. Let us assume the conditions (a)-(b), and let us take a sequence {m(h) | 0<h< 1}
of minimizes of €M, 0 < h < 1. Means that:

EM (m™M) < €M (m), forallm € L*(Q,R?), andall0 < h < 1. (1.3.10)

Forany 0 < h < 1,let gﬁ" ) be the solution of the coupled Maxwell equation (1.2.2), when m = e*,
L3-a.e in Q. Then, by (1.2.6) and (1.2.10) yields that Ey(,lfgg(e*) < 1, forany 0 < h < 1 (for details
see [42, Section 5.2]). In light of this, it is furthermore considered that:

o (m™) < £0 (m®) < EM(e*) = BP(e") + (e ey + EL (€)

mag

< p(e*)+1, forall0 < h < 1. (1.3.11)

Due to (1.3.11), [42, Theorem 3.4 page 8] and the constraint onto L*(£2, S?) as in (1.2.1), we find a
sequence {h; | k=1,2,3,---} C(0,1) and a limiting function m°® € L?(£2,S?), such that:

h; — 0, m®™) 5 m° in L*(Q,R?),
as 1 — 00. (1.3.12)

@ (™)) = p(me), in L}(Q),
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Equally, considering (1.3.11) and Remark 1.3.6, it will be noted that:

P2 (m°) < E°(m°) < lim inf &%) (m(i”)> < p(e) +1

1—00

and hence m°® € H2 N L?*(] — L, L[,S?). Moreover, by (1.3.8)-(1.3.9), we obtain that:

E°(m°) < limsup ghi) (m(i“)> < lim S(F“)(m) =E&°(m),

1—00 4300
forany m € H2 N L*(] — L, L[, S?),

and
£°(m°) < liminf €M) (m(ﬁi)) < limsup £M) (m) < £°(m°).

1—00 i—00

It implies that m° solves the limiting problem (P)° and it is deduced that:
gM (m(h)) — E°(m°)ash — 0.

Step 4. Now, we will to show that the pointwise convergence, asserted in (1.3.3). For this matter
we will used the argument discussed in the proof of [41, Theorem 4.1] and [42, Section 5.2].
Indeed, by (1.3.11) we have that £ (m(h)) < p(e*) + 1, forall0 < h < 1, where m™ is the
energy minimizer and e* = (1,0,0) € S?, Afterward

‘\/ a(h)ﬁlm(h)‘

1, —
) < Dl, ﬁ| Oé(h)vlm(h)lig(w) < DQ, (1313)

2
L2(R3

where D, and D, are two fixed constants. It follows from (1.3.13) the existence of a subsequence

{hi | 1=1,2,3,--- } C {h;} with a limiting function v/a°0;m° € L?(Q\A), such that:

Vatvm® S aevme. et vim®) 0 (1.3.14)

in L?(Q\A}), asi — oo. Furthermore, by the condition (a) and (1.3.14) we obtain that Jym°® =
0, 93m° = 0 in L2(Q\AE). To show that V adm®) converge strongly to v/a*d;m° in
L2(\A}), we now compare €M) (m()) to £ (m°):

/ o)
O\AZ
< / o)
2\45

aym™)

i + Vi ‘V’m(zi)
h?

2 . . .
> dL® + / ptm®ac + il (m®)

om°|?dL? + / ©(m°)dL? + Eghgg(m‘)).
Q
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By Proposition 1.3.2 (for i = m°) and (1.3.12), simplifies to

/ a(;bi) ’alm(fbi) 2 d£3</ a(;li)
\43 IREVE

From the first part of (1.3.14), we can write V a(’éi)ﬁlm(’;i) =+va°om® + g(’:”) with g(;”) — 0in
L?(€2). Substituting this expression into the left-hand side of (1.3.15), it follows that

om°)?dL? +o(1). (1.3.15)

i + i )V'm(}:”)
h2

2

dcs

;li N
ST
h2

7

/ a°|81m°|2 + 2\/5817710.9@) + |g(7”)
O\Ag

< / o)
2\45

this is equivalent to write (1.3.16) as:

om°|?dL? + o (1), (1.3.16)

2
dc* <o(1).

/ (ozo — oz(i”)) |0m°? + 2V aoalm".g@) + |g(;”)
INAG

(1.3.17)

;Li T
SELITOS
h2

Here, we can easily checked by applying Lebesgue’s dominated convergence theorem that the

first term in (1.3.17) tends to zero, for the situation that:

@(hi)

om°|* — a°|oym°|?,
L3-ae. in O\ A},

) om°)? < Coa®|Vm°?,

since g(hi) — 0, the second term in (1.3.17) tends to zero and, therefore,

2 1 <
/ d£3 —0, — / Oé(hi)
O\A} h?J ao\a;

thus (1.3.18) with (a) and £'(A4g) = 0, implies

¥ 7 1 ¥ 7 1 ¥ 7
V atdom™ — acom®,  —\ atdym") = 0and —\/ a)dsm") — 0, (1.3.19)
hi h;

in L*(Q\A}), asi — oo.

5 S 2
(hi) V'm" | dcd — o, (1.3.18)

On account of (a)-(b) and L!(A5) = 0, the above convergence (1.3.19) implies the existence of a
subsequence {h; | i=1,2,3,---} C {ﬁl} C {h;}, satisfying (1.3.3). O



Chapter 2

Junction of quasi-stationary

ferromagnetic thin multi-structures

K. Chacouche, L. Faella, C. Perugia. Junction of quasi-stationary ferromagnetic thin multi-structures,

to submit.

Abstract. In this Chapter we study the asymptotic behavior of the solutions of time dependent
micromagnetism problem in a multi-structure consisting of two joined nano-wires. We assume
that the volumes of the two parts composing the multi-structure vanish with same rate. We
obtain two 1D limit problems coupled by a junction condition on the magnetization. The limit

problem remains non-convex, but now it becomes completely local.
Keywords: Micromagnetics, variational problem, thin films, Landau-Lifschitz equation.

AMS subject classifications. 78A25, 74K35, 78M35

2.1 Introduction

According to the classical theory of Weiss (1907), perfectioned by Landau and Lifshitz in 1935 (see
[50] and for a modern analysis see [9]), on a microscopic scale a ferromagnetic body is magnet-
ically saturated and is composed by uniformly magnetized regions separated by thin transition
layers. The phenomena can be described by a magnetization field, defined on the domain in which
the material is confined. The magnetization field on a microscopic scale has a fixed modulus and
variable orientations. Then, the system can be studied through the functional representing its
magnetic energy. This energy consists in several terms: the so called exchange energy, which

contains the space derivative of the magnetization field and is peculiar to ferromagnetic behav-
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ior, a term corresponding to magnetic anisotropy, and another one depending on the magnetic

field, which is related to the magnetization via the equations of magnetostatic. Precisely, let
Q2 =1]—h,, 07 x [0,1], Q& =]0,1[x |=h,, 0%, Q% =]—h,, 0 neN,
(2.1.1)
Q, =0 u0tuQbr neN,

be a 3D ferromagnetic multidomain consisting of two orthogonal joined nano-wires (see Fig.2.1),
with {h,}, oy CJO, 1] be a vanishing sequence of positive numbers tending to zero, as n diverges.

Let us suppose that the body is homogeneous, isotropic and has uniform temperature. As usual

A

Figure 2.1: 2,

let us introduce the magnetization M,,, the magnetic field /), determined by M,, and the scalar
potential Uy, for this field (i.e.H(M,) = —DU,y,). Let us denote by M, the extension by zero of
M, outside 2,,. Then the magnetic induction B,, and the magnetic field H (),,) are connected by

the relations B,, = —DU,;, + M,,. Moreover, the static Maxwell equation and the magnetostatic
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equation (Faraday law) hold:

V x DUMn = O,
(2.1.2)

div (—DUy, + M,) = div (B,) = 0.

In the quasi-stationary case, the system is governed by Landau-Lifshitz equation (see [12] and

[63])

M, ()] =1 in €,,,
My g n @M _oni, A (AM, — DUL,) in 0, x]0, T,
ot ot "
(2.1.3)
M, (0,z) = M,, (z) in €,,,

Ui, and M, linked by (2.1.2) for every ¢,

\
where |My, ()| = 1in Q,,.

In this work we study the asymptotic behavior of a system governed by the Landau-Lifshitz
equation consisting of two joined roads when the thicknesse h,, converges to zero. So we attempt
to simulate the behaviour of two joined nanowires. The existence result for this problem is proved,
in a more general case, in [63, Theorem 2] and in [12, Section 3 and Section 5]. We observe
(see [12, 63]) that the corresponding configuration satisfies an energy estimate. After having

reformulated on a fixed domain

Qo =1-1,0% x [0,1], Q" =]0,1[ x]-1,0*, Q" =]-1,0["
(2.1.4)

Q= uuQh,

through appropriate rescalings of the kind proposed by Ciarlet and Destuynder [17], we derive
the limit problem. Precisely, in Theorem 2.3.1, assuming that the initial energy is an O(h?), we

prove that the solutions of (2.1.3) converge in mean square, for every ¢, up to a subsequence, to
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solutions of the following limit problem

;

8Ma . 8Ma B . aZIua " " ]
A (u £ ) — 90 A ( e = (e T+ ) T) ) i 0700, 1

8 b,l a b,l 82 b,l )

gt + (Mb’l A %) = 2,ub’l A < agg - ((MbJ? 62)Tll + (/J“va 63)T/2)> n ]O7T[ X]O, 1[7
1

e (0,23) = pg (), in ]0,1[,

pPh (0, 21) = pdt (z) in 10,17,

(1) (0) = (1) (0),

|l =1 forzin 0,1,

pt =1 forzin ]0,1[,

pe (0) = p (0),

(2.1.5)
where €1 = (1, 0), €9 = (0, 1), Tl(Efl, 9, 0), TQ(—gg, €1, 0), T’l(O, €1, 62) and T’Q(O, —&9, 61), with

€1, €2 constant depending on the geometry of the problem.

We obtain, two 1D limit problems coupled by junction condition on the magnetization ;%(0) =
1>4(0). The paper is organize as follows: in Section 2.2, we recall the definition and some proper-
ties of the Beppo Levi space on R?; in Section 2.3 we give the main result; in Section 2.4 we identify
the limit of the magnetostatic energy; in Section 2.5 we gives the case of single wire. While it is
quite classical in the thin film, where only the component of the magnetization orthogonal to the
film appears (see [24]), it become more complicated in the wire where the following combination
of the two components of the magnetization with coefficient involving solutions of PDE in Beppo
Levi space on R? intervene. These coefficient depend on the geometry of the cross section of the
wire. To this aim we have to use different rescaling and symmetry arguments which take into
account the geometry and that the limit problem will be coupled (see [35]).

As the case wire-wire is concerned, where a singular point appears due to a strong variation of

its derivatives, we remark that its behavior reduces to the behavior of a single wire.

Problems of dimension reduction in magnetostatic were treated by several authors. A pioneering
work is the paper of Stoner and Wohlfarth (1948). A rigorous treatment in this case was given by
De Simone [27]. Carbou treated the case of magnetic wire in ([14], [15]) and the case of thin films
again in [13], see also [42] and [48]. Other regimes are considered in [25] and [26] in the case of the

films. In [34] and [35] Gaudiello and Hadiji studies the behavior of minimizers of free energy in a
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multidomain. In what concerns the study of a ferroelectric materials see also ([36],[37]). See [11],
[33], [38], [39], for junction 3D — 1D, and [32] for junction 1D — 1D. For other recent problems
with thin multistructures, see also [40], [30] and [31]. As Gioia and James [41] in the station-
ary case, Carbou in [13] studies the limit behavior of the isotropic ferromagnetic films when the
thicknesses goes to zero, in the quasy stationary case. Other similar problems are studied by Am-
mari et al. [4]. The homogenization of the Landau-Lifschitz equation in periodically perforated
domain was studied in [57]. In [23] and in [24], the authors study the asymptotic behavior of the
solutions of time dependent micromagnetism problem in a multi-domain consisting of two joined
ferromagnetic thin films, different regimes depending on the limit of the ratio between the small

thickness of the two films were considered.

2.2 Preliminaries

Let
W(R?) = {gb e 12 (R?): D¢ € (L2(R2))2} /R

loc

equipped with the inner product

(61, o) € WHR?) x WHR?) — / Doy Deodydz, (2.2.1)
RQ

where (y, z) denote the coordinates in R?. It is well known that W' (RR?) is a Hilbert space (see
[22], Corol. 1.1) and it is separable. Consequently, if S C R? is a bounded open set , every one of
the following problems

(
p € WHR?),
(2.2.2)
/ Dngbdydz—/ Do dydz, Yo € WH(R?),
\ R2 S
)
q € WHR?),
(2.2.3)
/ Dqubdydz:/ D.¢dydz, Vo € WHR?),
\ R? S
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Dk € wt (R2)7

/ DppDé dydz = / kDo dydz, Yo € WHR?),
\ R2 S

(2.2.4)

with k = (ky, k2) € R? admits a unique solution which obviously depends on S. Then, we set

a(s) = / Dpl2dydz,  B(S) = / Dal2dydz,  A(S) =2 / DpDadyd=.  (2.25)
R2 R2 R2

where (y, z) denotes the coordinates in R?.

We remark that if S is sufficiently smooth, problems (2.2.2), (2.2.3) and definitions (2.2.5) are

equivalent respectively to

;

v

{8})} = ve; on 05,

p € WHR?), q € WHR?),

Ap=0inS, Ap=0inR?\ S, Ag=0inS, Ag=0inR?\ S,

0
{0_5} = vey on 0,

\

(2.2.6)

where v the exterior unit normal to 0.5, [%] the jump of % on dS,and e; = (1,0), e5 = (0, 1),

and

(

\

a(s) = [ erds, 5(5) = [ avesds.

a8 a8
v(S) = 2/ querds = 2/ preads :/ queids +/ presds
S as 0 as

8(5):/ Dpdydz, 6(S) :/ Dqdydz.

S S

(2.2.7)

For instance, if S = {(z1,72) € R? : 23 + 23 < 1}, p and ¢ can be explicitly computed (a formula
can be found in [[56], p. 177], it result that «(S) = B(5) = g and v(S) = 0.
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In the sequel, we shall use the following results.
Lemma 2.2.1. Let p and q be the unique solutions of (2.2.2) and (2.2.3), respectively. Then,
i) for every k = (k1, ko) € R?, the unique solution py, of (2.2.4) is given by:

Pr = kip + kaq;

ii)Dp and Dq are linearly independent;
iii) for every k = (kq, ko) € R?, it holds

/ ks Dp + ko Dq* dydz = / (k1Dp + koDq) (K1, k2)dydz = koo (S)+ko 8 (S)+2k1kay (S) .

S S
(2.2.8)

Proof. Let k1, ko € R be such that
kiDp + koDg = 0, ae. in R?.

Then, comparing (2.2.2) with (2.2.3), one obtains that

/ (k1Dy¢ + koD, @) dydz = 0, Vo € WH(R?),
s

which provides k1 = ko = 0. ]

Lemma 2.2.2. Let be S =| — 1,0[?, then

and

with
01(5) = —€2(5),  02(S) =e1(5) (2.2.9)

Proof. Let us observe that the functions p and g, solutions of the problems (2.2.6) for S =]—1, 0[?,
are obtained by traslation of the solutions of the problems (2.2.6) for S =|— 33 2. Moreover, the

solutions p and q related to this set are a rotated the other (to fix the idea ¢ is the rotated function
Op OJp

L LYy H =

7(S) = 0,e(5) = (e1(5),£2(9)) and (5) = (—&2(5), £1(.5)). O

of p) with respect ¢ = 7. Then, ¢ = p(x2, —21) and Dg = (—
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We recall the Poincaré Lemma (which is well known if the domain is bounded).

Lemma 2.2.3. Let £ € (L2(R2))? such that rot € = 0. Then, there exists a unique w € W'(R?)
such that £ = Dw.

Proof. The fact that rot ¢ = ( provides the existence of T' € D’(R?) such that £ = DT, and T is
unique up to a constant (see [58, Ch. II, Th. VI, page 59]). On the other hand, since £ € (LZ(RQ))Q,
Kryloff Theorem assures that 7' € L2 (R?) (see [58, Ch. VI, Th. XV, page 181]). O

loc

The following result was suggested by F. Murat [53].

Proposition 2.2.1. Let u € L2 _(R?) be such that Du € (L2(R?))>. Then, there exist a sequence

loc

{@n}nen C C°(R2) such that D, — Du strongly in (L*(R2))?.

2.3 Statement of the problem and main results

In the sequel, = (1, T2, 23) denotes the generic point of R3. If 11, 15, 73 € R3, then (1 |n2]n3)
denotes the 3 x 3 real matrix having 7! as first column, 7} as second column, and 7] as third
column. In according to this notation, ifv : A C R3? — R3, then Dv denotes the 3 x 3 real matrix
(D,v|D,,v|D,,v), where D,.v € R?, i=1,2,3, stands for the derivative of v with respect to z;.
More precisely, let {h,}, .y C|0, 1] be sequence. For every n € N, set

Q% =] — hy, 0[2x[0, 1], Q% =]0,1[x] — hy, 0%, Q" =] — h,,,0]* and ©,, = Q2 U QP U QLT

which approximates two joined wires as in Figure 2.1.

Let B =] — 2,2[3, and set

U=AUerl (R :UecI*B), DU e (I* (R®))’, / Ude =0 (23.1)

B

2
loc

It is easy to prove that I/ is contained in L} , (R?) and it is an Hilbert space with the inner product

(U, V) = / DUDVdzx + / UV dx. Moreover, from Poincaré-Wirtinger inequality it follows
R3

B

1
2

that a norm on U equivalent to (U, U)? is given by / |DU|? dx
R3



2.3 STATEMENT OF THE PROBLEM AND MAIN RESULTS 53

Let M € L*(Q,, R?) then the following problem

Uy €U, /DUMDU:/ MDUdx VYU e U, (2.3.2)
RS Qn

admits a unique solution Uy, € U. This solution is characterized as the unique minimizer of the

following problem:

1 —
min 5/ DU -M|'dz:Ucu y, (2.3.3)
R3

where as usual M denotes the zero extension of M in R?\(2,,. Moreover Uy, € H' (R?) up to an

additive constant, see [47].

Fixed My, € H' (Q,,5?), (Uo, € U being the corresponding solution of Problem (2.3.2)), in [12],
[24] and [63] it is proved that there exists at least a weak solution M,, of the following problem

M, € L= (0,T; H' (2, R%) N C ([0, T]; L (2, R?)

oM,

M,| =1a.e.in [0,T] x ©,,
| M, | a.e.in [0,T] 5

€ L*(0,T; L*(2,,R?)),

Vx e D(0,T),and ¥ € H' (Q,,R3)

T

T
oM, OM,, 3
// (8t M N 5 )dedt__Q//Z(Mn/\DmMn) (Dz,¥) xddt
0 Qn 0 Q,

=1

n

T
—2/ / (M, A DUyy,) xhdadt,
0

Qn

M, (0,z) = My, (x), ae.x in €,

U, and M, linked by (2.3.2) for every ¢ € [0, 7.
(2.3.4)

Moreover, it satisfies the following energy estimate:

2

M,
OM, ds < E(M,(0,-)) = E(M,,), foraete[0,T], (2.3.5)
O Nwaany

pon.y [ |
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where for every ¢t € [0, T]

1
E(Mn(t,.)):/ |DMn(t,x)|2dx+§/ \DUy;. (t,2)|° de,
Qo R3

is the magnetic energy. Here, the terms F.™ = / |DM,,(t, z)|* d is the exchange energy and
Qn
B = % / |DUyy, (t, x)|” dz corresponds to the magnetostatic energy.
R3
In what follows let us assume that

E“¢(M,,) =0 (h2), VneN. (2.3.6)

n

Remark 2.3.1. By density argument (for instance, see [46, Lemma 1.9 pag. 39] and also [29]),
Problem (2.3.4) is equivalent to that obtained by choosing as test function ® € D (]O, T % ﬁ)

Namely, setting
Q" =] —1,0°x[0,1[, Q" =]0,1[x] —1,0[*, Q" =] —1,0p,

let us introduce the following space

W= {(,u“,,ub’l) € H* (Q% R3) x H*Y(QY R?) : p?is independent of (1, x5),

pb is independent of (o, 73), p?(0) = ubﬁl(())} ~ (2.3.7)

{(ue, 1) € H' (10,1, B®) x H' (0, 1,R?) : u*(0) = p(0)} |
Moreover, we can pose
M=Wn { H'(Q2,5%) x H' (Q,5?) } : (2.3.8)

which explicitely takes into account the condition || = 1. Then, the equivalent 3D variational

formulation of the Problem (2.1.5) is the following one:
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p=(upt) € L= (0, T; M) N C ([0,T]; L (Q*, R?) x L* (2", R?)),

g—’z € L?(0,T; L* (Q*,R?) x L* (2", R?)) ,

Vx € D(0,T) andv = (¢, %) e W

T T

o’ a a:“a a op”! N b,l _
// <8t + pu* A 825) wdmdt—l—// (81& Sl (AN 5 XVt dxdt =
0 Qo 0

Qbl

T T
alua 81/1“ 8,ub’l a¢b,l
-2 “A dxdt — 2 bEAN —— dxdt
//’“‘ Dy Oy //“ oy O
0 Q@

0 Qb

T

0 Qe 0 Qbl

p(0, ) = pl(x), ae. xin Qe pPh(0,2) = pbl(z), ae zin Q¥ o = (ud, ul') € M,

(2.3.9)
where Ty = (e1,€2,0), T2 = (—€2,€1,0), T} = (0,€1,62) and T = (0, —e2, €1, ), with &y, &3
constant depending on S =] — 1, 0[>. To Problem (2.3.9), for a.e.t € [0, T, the following energy

will be associated,

al|2 bl |2
+/ Ha“ ds +/ Hg“ ds , (2.3.10)
(L2(]o, 1[ (L2(]o, 1[
where
! e 2 ! Oub! 2
E(t) = d d
0= [ |2 s [ ‘&El .
0 0 (2.3.11)

1

a a 1
~a(]-1,00%) /|u1!2+|u2|2d1‘3+§/ o' 2+ |y Pdy |
0

a(]-1, 0[2) is defined by (2.2.5) with S = (]—1, 0[2). Here, the term

1
Eexc / '_‘ T3 +
0

2
dl’l, (2312)

bl

2 [t e et en) ) oot — 2 [ [ A () T+ ()Y

) yyPldadt,
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can be considered an exchange energy and the term

1

1
| |
Emes (t) = Sa (]=1,00%) / S P + |5 P dacs + 5/ ')+ |y Pday |, (2:3.13)
0 0

can be considered the equivalent of a magnetostatic energy.

Theorem 2.3.1. Suppose that My, € H' (Q,,,S?) and (2.3.6) holds, for everyn € N. Let M,, be

a solution of Problem (2.3.4) . Then, there exist an increasing sequence of positive integer numbers

{ni},ens still denoted by {n}, o = <,LL8, ug’l> € M, u= (ps, u) € L>=(0,T; M), depending on
the selected subsequence such that:

(

][ | Mo, (1, T2, 23) — ,ug(:pg)|2 dz — 0,
QF
bl 2
) My, (z1, 9, x3) — py' (z1)| dx — 0, (2.3.14)
bt
F 1Mo, o1,20,20) = (O) o = 0.
L Qb7
as n diverges, for everyt € [0,T]
(
][ | M, (t, &1, 2o, T3) — p(t, x3)|° dadt — 0,
Qs
(2.3.15)
][ }Mn(t,xl,:@, x3) — pui(t, 931)}2 dzxdt — 0,
Qb,l
\ n

asn diverges, where 1 = (u?, ') is a solution of Problem (2.3.9).
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2.4 'The rescaled problem

By setting

R3 = {(z1, x9, 13) € R3 : 23 > 0},

a

Ry, = {(z1, 72, 23) € R® : 15 <0, 2, > 0},

R} = {(z1,72,23) € R®: 23 <0, z; <0},
\ b

foreveryn € N, problem (2.3.4) is reformulated on a fixed domain through the following rescaling

(hnxlu hnx27x3)7 if (I17x27x3) € RZ?

Ty : (21,72, 73) € R® — T, (21, 79, 73) = (@1, hua, hoas), if (1, 29, 73) € RY, (2.4.1)

\ (hnﬂfl, hnﬂfg, hnxg), if (.’131, Ta, 233) c Rgﬂ"

Namely, setting

a 2 2 2 bl 2 ? b,r 2 ’
Bn_:|_h_7h_|: X]O72[7 Bn _]072[X:|__70{ ) By = _h_70 ) TLEN,

n n
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the space U defined in (2.3.1) is rescaled in the following

loc

Uy = { (u, u ub7) € Lio(RE) x Liyo(RY)) % Li,(R,) :

(uf ut b ) € L*(B) x L*(BY) x L*(Bb7),

|Bga’ |BZJ7 \B%r

(Du®, Du®, Dub") € (L*(R3))* x (L*(R3)))* x (L*(R,))°,

/ udx + / ublda + hn/ ubrdr =0, (2.4.2)
By B! By"

u®(w1, T9,0) = u!(hpx1, 22,0), for (z1,75) ae. in ]0, +0o[xR,

u®(w1, T9,0) = ub" (21, 12, 0), for (z1,79) ae. in] — 0o, O[ xR,

ub(0, w9, 23) = ub"(0, 29, 3), for (w9, 23) a.e. in Rx] — oo, O[}
Then, for every (m®, m>, mb") € L*(Q2, R3)x L2(Q%, R?) x L2(Qb" R3), the following equation

1 1 1 1
/ (—Dmu“7 —D,,u’, Dmu“) (—Dzlva, h—Dmva, Dmva’) dr+
R3 n

/ (D““b’l’ iy Dot D “b’l) (levb’ﬁ = Da™, h—Dmv”’l) dr+
R3 n n N -

S h_n/Rg (Dmubﬂ‘,Dmub:r’ ngub,r) (Dxl,ub,r’ Dmvb,r’DxS,Ub,r) dr — (2‘4'3)
b,r

1 1
/Q <h_Dw1Ua7 h—Dmv“, Dmv“) mdx+
b L b L bl bl
D, v, —D,,v"", —D, v | m”dz+
bl hy, hy,

b,r b,r b,r b,r a ,.bl ,br
/ (Dxlv y Dyyv”" Dyyv ) m”"dz, Y(v* 0" 00" € Uy,
\ Qb

which rescales equation (2.3.2), admits a unique solution. We note that (u®, u%!, u>") belongs to
HY(R}) x H'(R};) x H'(R},) up to an additive constant.
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For every n € N, let us consider the following space
Wa={ (me,mbl,mb7) € H'(Q% RY) x H'(QM,R?) x H'(Q"",RY)
m®(z1,T2,0) = m®" (z1,12,0), for (v1,2,) ae. in] — 1,0[?, (2.4.4)
mP(0, 9, 23) = m>"(0, 2o, x3), for (z2,73) ae. in] — 1,0[2},
For simplicity of notation, let us introduce the space
M, =W, N {H'(Q°,5?) x H' (Q!,5%) x H* (@b, 5%)}, (24.5)

which explicitly takes into account the condition |m| = 1. Let mg, = (mgn, mg’i, mé’j) € M,,

then, there exists at least a solution m,, of the following rescaled problem
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my = (m&,mbtmbr) e L= (0,T; M,) N C ([0,T]; L? (Q*,R?) x L? (0", R?) x L? (Q"",R?)) ,

om,, ome Om? u i,
el ( TRY ) € L?(0,T; L? (Q*,R?) x L? (O, R?) x L? (Q*",R?)),

Vx €D(0,T) and ¢ = (¢, " ¢P") € W,

T
oms a mb! omy! bl
// <8t +m; ) wdxdt—l—// ( A BT XV dxdt

Qb.L
b,r b,r
+h// (am N i )W,,ﬂdxdt:
ot
0 Qb.r
1 o 1
0 Qe Li= " n

1
—2/ / me A ( D,, ug, ’h_D“ . ,Dx3um )Xw‘zdxdt

1
—2// lmbl/\Dmm (Dayb) X—i—Zmbl/\ D%mnh (D2 0™) ]d:cdt

Qb
T

1
—2h // [Zmbr/\h—D%m szwl” X] dxdt

QObsr =1

1
—2/ / mbtA (leu?nl ’h_szu%” h—Dmum ) XYt dadt

0 Qbl

1 1
—2h / / mbr A ( Dy, ubr h—Dmufn’“ , h—Dx3u$’n’"> YO dzdt,

Ob,r

m&(0,2) =mf (x),aexin Q mb0,z)= mgi (z), ae. xin QY
b,r _ o : b,r
my"(0,2) =myg (x), ae xin Q"

U, and m,, are linked by (2.4.3) for every t € [0, T.
(2.4.6)




2.4 THE RESCALED PROBLEM 61

Moreover it satisfies the following energy estimate:

(2.4.8)

b,r
ds + ds—i—h/ H@m ds
(L2(29))* (L2(Qb1)) (L2(br))?
< E,(0)=E(my,), forae.t €[0,T],
(2.4.7)
where, for a.e.t € [0, T:
1 2 1 1 o1
lem D ,me. Dy ms da:—|—§ h—anlumn,h—nD s Dyyuy,
R}
1 2
/ ’(Dzlm —Dmm h—Dmgmbl> dz
1 2
/ ‘(Dmlufnl ,—Dmufnl ,h—stuﬁnl ) dx
1 2
+h, / ‘( D,,mb" h—DQO hanSm > dx
Qb,r
11 b,r b,r b\ |2
T |(Dayuly, Dyyult  Dyulr )| da.
R3
Then, we will denote
E,(0) = E,(my,) (2.4.9)
In the sequel we denote, for every n € N and for a.e. t € [0, 7]
EXTC 1 a 1 a a ’
Ec¥ (t) = h—Dxlmn, h—D@mn,Dmmn dx
1 2
/ ‘(D mbt, —D ,m> h_D mbl) dz (2.4.10)
+hy, / D mbr iD ,mbr iD ,mb de
" hy, " hy,

Qb.r

)

dx
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and
1 2
Emag / ‘( :B1 m 7 sz e, ,Dmum ) dx
1 2
L bl bl
/ ’( 361 m ) Dl“zum ’ h DISum ) d.fL' (2.4.11)
11 - - 2
_h_/ |( z U ?n >D€E2u?n 7D:v3ufn )‘ dzx.
So, by virtue of (2.4) , E, (t) can be rewritten as
B (1) = 5 (t) + B (1), (2412)
the sum of the exchange and magnetostatic energies.
Indeed, we can observe that, for every ¢ € [0, T], the function defined by
(
M, (t, hyzy, hyxe, x3) for ae. in Q%
M, (t,z1, hyxo, hyxs) for ae. in Q2 (2.4.13)

M, (t, hya1, by, hyxs) for ae. in QO
\
with M, solution of the Problem (2.3.4), is a solution of Problem (2.4.6) with the following initial
data:

i

m§, (v1, %2, x3) = Mo, (hn@1, hnts, x3), for ae. in Q7

mg’i (w1, 9, 23) = My, (21, hpa, hpxs) for a.e. in QY (2.4.14)

b,r _ : b,
| ™o, (1, 29, x3) = Mo, (hpa1, hya, hyas) for ae. in Q7.

Then, we will denote
E(0) = ES"(my,) (2.4.15)

Also, consider the hypothesis

3C €0, 400[: E“(mg,) <C, VneN. (2.4.16)
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Let us denotes that we can reformulate Theorem 2.3.1 in the rescaled form:

Theorem 2.4.1.  Suppose that mg, = (mgn,mg’i,mg’:> € M, and (2.4.16) holds, for every

n € N, let m, = (mg,mg) be the solution of Problem (2.4.6). Then, there exist an increas-
ing sequence of positive integer numbers {n;}, . still denoted by {n}, 1o = (ug, ug’l) € M,
W= (,u“, ,ub’l) € L>(0,T; M), depending on the selected subsequence such that:

;

mé — pd weakly in H' (Q,R?),
mgi IR ’ug,l weakly in H' (Qb,l7R3) ) (2.4.17)

mg’: — 28(0) = p2'(0) weakly in H' (@, R?),

\

m? — u® weakly *in L> (0,T; H' (2%, R?)),
mbt — ubt weakly * in L™ (O, T; H' (Qb’l, R3)) ,
m? — p® in C (0,T; L* (Q%,R3)), (2.4.18)

m%l — ub’l inC (O, T: L? (Qb’l,R?’)) ,

mb = io(1,0) = P (1,0) weakly *in L (0,73 H' (07, K?)),

\

asn diverges, where i = (u®, ub') is a solution of Problem (2.3.9).

Theorem 2.3.1, is immediate consequence of Theorem 2.4.1. Indeed, we have to observe that
(2.3.6) is equivalent to (2.4.16). So, we can apply Theorem 2.4.1. Then, we can use the ob-
served equivalence between Problem (2.3.4) and Problem (2.4.6). So a change of variables and
convergences (2.4.17) give (2.3.14) and the third and fourth convergences in (2.4.18) give the

convergences (2.3.15).

2.4.1 Compactness like results

Let us obtain a priori estimates for the sequence of the solutions of the Problem (2.4.6). Let us

introduce the following compactness like results
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Proposition 2.4.1. Assume (2.4.16). For everyn € N, let mg, = (mgn, mg’i, me) € M,, and let

bl

i 7m£’l’7“) be the solution of problem (2.4.6). Then, there exist an increasing sequence

m, = (mg,m
of positive integer numbers {n;},_y, still denoted by {n}, o = <u8, ug’l> e M, pu=(pu,pub) e
L>(0,T; M), depending on the subsequence, such that

)
mg — pg weakly in H (Q*,R?),

mgi N #8,1 weakly in H' (Qb,l’Ri’)) ) (2.4.19)

m8: — 18 (0) = p' (0) weakly in H' (Qbr R3),

\
i)me — p® weakly x in L>®(0,T; H' (2%, R3)),

i) mbt — bt weakly = in L= (0,T; H' (Q",R?)),

iid) mbT — p® (¢,0) = pbt (¢,0) weakly = in L> (0,T; H' (Q*",R?)),

ww)me — p®in C (0,T; L* (Q*, R?)) ,
(2.4.20)
v)ymft — pttin C (0,T; L* (2P, R?))
i) Omy  op”
ot ot

8mb’l . alub,l
ot ot

weakly in L* (0,T; L? (Q°,R?)),

weakly in L* (0,T; L* (O R?)),

b,r

viit) hy, ag;” — 0 weakly in L? (0, T: L? (Qb”, R?’)) ,

\

as n diverges. Moreover

p(0,2) = pl(x), ae xinQ*, pP0,z) =pd(z), ae xin QM. (2.4.21)
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Proof. Observe that by (2.4.15) and (2.4.16), we have

( HD;M?”LSn||(L2(Q“))3 < Chy, ”DwzmgnH(m(m))?’ < Chn, HD%mgnH(LQ(Q“))3 =G
De | aganayys < € [ @y = [ Dzl @y =
I L L

§ e

(2.4.22)

for every n € N, where C' is a constant independent on n. Then there exist a subsequence (not

rellebelled) ;¢ € H' (Q%,R?) and ' € H' (2%, R?) such that the following convergences are

verified
(

mg — pg weakly in H (Q*,R?),

mg’i — ug’l weakly in H* (Qb’l, R3) , (2.4.23)

mgf — cweakly in H' (Q"",R?) .

\

Since |m¢ (z)| = 1zae. inQ?, by (2.4.23), |u§(x)| = 1for z a.e. in Q° (respectively ug’l(a:)’ =1
for z a.e. in Q'). Moreover, by (2.4.22) we obtain that ;¢ is independent of (1, x5) and p' is

independent of (9, x3). Actually, since one has that

mg (w1, 22,0) = mg" (21, 2,0), for (x1,1) ae. in] — 1,0[%,
mg (0,29, 23) = mg" (0, 29, x3), for (v2,13) ae. in] — 1,0[2,

for every n € N, by trace convergence properties we obtain p2(0) = ¢ = pu2'(0), that is
po = (u&, 2"y € M, and so (2.4.19).

Moreover, by (2.4.7) and hypotheses (2.4.16), the following estimates are satisfied:
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i) ”Dzlma

n||Loo 0.7:(L2(Qe 3 S ChTM ||D1‘2ma < Chn,
(0.73(L2(20))%)

n ||Loo <O,T;(L2(Qa))3> >

||D1’3mg|| ) < Ca

L (O,T;(LQ(QG))3 =

HDmlmblHLw@T(L?(le)) ) <, HDzsz’l”Lm( < Chy,

0.T3(L2(201))°)

D2y ) < Cha,

blHL"O(OT(LQ(Q“))

iii) || Daymy’ Lo (0,15(L2(20))%) < CVha, || Deymyy (0.7:(22(907))°) < CVhy,

||D$3merLOO(OT(L2(QbT ) < C\/_TM

<C,
22((013(L2(2%) 12 (0,15(12(001))?)
O b,r
0) Vs || =5 <C,
£2(0,13(12(24))?)

(2.4.24)

for every n € N where C' is a constant independent on n. By (2.4.24)i) and (2.4.24)i1) it fol-
lows that there exist a subsequence (not rellebelled) p® € L (0,T; H' (2¢,R?)) and pb! €
L>(0,T; H' (9", R?)) such that

i) me — u® weakly * in L=(0,T; H' (Q%,R3)),
(2.4.25)
i) mbt — pbtweakly  in L> (0, T; H* (0", R%)),

as n diverges.
By equiboundness of {m2},cn, {m'},.en, and by (2.4.24)iv) arguing similar as in [24, Proposi-
tion 4.1], we obtain, up to a subsequence, convergences (2.4.20)iv) and (2.4.20)v).

About initial conditions, we observe that

m$ (0,-) =m3 and my (0,-) =mg.
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Then, by (2.4.20)iv) and (2.4.20)v), it follows

me (0,-) — u®(0,-) in L2 (Q°, R3),

n

mb(0,-) = pb(0,-) in L? (" R3).

n

Then, by the first two convergences in (2.4.19), we get (2.4.21).
Furthermore, let us point out that, by first and second estimates in (2.4.24)i) and second and third
estimate in (2.4.24)ii), the functions p® and p%' do not depend on (1, 75) and (w3, 73) respec-

tively.

Indeed by (2.4.20)i) we get that
m® — p® weakly in L? (O,T; H! (QG,R3)) .

Consequently, by lower semicontinuity theorem for a convex functional, we obtain

T T

/ 1Dz, 12 0yys < liminf, / 1Dz, 115 2 ey -
0 0

Then, by (2.4.24)7), for a.e.t € [0, 7] we obtain
”DxlmgLZH?LQ(Qa))S < Chn

So, by (2.4.24), since m¢ is bounded in L> (0, T; H (%, R?)) and h,, goes to zero as n diverges,
we obtain, for a.e.t € [0, 7], that

HDmlﬂaH(L2(Qa))3 = 0.

Then for a.e. t € [0,7] we get

D, pu* =0, a.e. x in 2",
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Similarly
Do =0, ae. £in Q% Dy, u® = 0and D,,u" =0, ae. xin Q"

Let us observe that |m%(¢,z)] = 1 for every ¢t € [0,7] and z a.e. in Q% So, by (2.4.20) iv),
|u(t,z)] = 1foreveryt € [0,T] and z a.e. in Q° (respectively |u*!(t, )| = 1 forevery ¢ € [0, 7]

and z a.e. in Q).

By (2.4.24)iv) and by definition of distributional derivative (see [64, Chapter 23]),arguing as in

[24, Proposition 4.1], ones prove (2.4.20)vi) and (2.4.20)vii).

Moreover, from (2.4.24)iii) there exist a subsequence (not rellebelled) and (" € L> (0, T; H* (", R?))
such that

mbr — (" weakly x in L (0, T: H' (Qb’r, R3)) , (2.4.26)

as n diverges.

In particular we obtain
mb" — " weakly in L? (O, T;H' (Qb’r, R?’)) )

Now, let us identify ( br,

By lower semicontinuity theorem for a convex functional, we obtain

T T

12 . ,
/ HDCb’ ||(L2(Qb,'r))3 Shmlnfn/ ||Dml7){ H%LQ(Qb,T))?"

0 0

By (2.4.24)iii) we get HDCb”“H?LQ(QM));,, = 0ae. t €[0,7], then (®" = ¢(t) for a.e. t.

Since, |m%"(t,z)| = 1 for every t € [0,7] and z a.e. in Q*" we obtain c(t) € S for every
t€0,7].

In order to verify that y = (u®, u®!) € L (0,T; M) it remains to prove that (¢, 0) = pu>!(t,0)
almost everywhere in |0, T'[. At first let us observe that for a.e. ¢t € [0, 7],

ma(t, 1, 29,0) = mb"(t, 21, 29,0), for (z1,75) ae. in] —1,0[%

mbl(t,0, 29, x3) = mP7(t,0, 29, x3), for (9, 23) ae. in] — 1,0,
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consequently
T T
/ / my (t, 21, 29, 0) pdridredt = / / mff (t,z1,22,0) pdridredt  (2.4.27)
0 ]-1,02x{0} 0 ]-1,002x{0}

for every n and for every ¢ € C3° ((0,7) x Q%), and

T T

/ / ml! (t, x2, v3,0) pdrsdrsdt = / / mb" (t, 9, 13,0) pdrodrsdt  (2.4.28)

0 ]-1,0[2x{0} 0 ]-1,0[2x{0}

for every n and for every p € C5° ((0,T) x Qb1).

Now, by 2.4.207) (respectively 2.4.20ii1)) , fo m&pdt (respectively fo mb7odt) is bounded in
H1(0Q%) (respectively in H1(£2"") ) and converges weakly to fo 1 pdt (respectively to fo t)dt).
Thus their trace converges strongly in L?(] — 1,0[*x0. Then

T
hm/ / o (t, x1,x9,0) pdridradt :/ / u® (t, 1, 29, 0) @dridradt (2.4.29)
0 ]-1,02x{0} 0 ]-1,002x{0}
for every ¢ € C5° ((0,7) x %) and
T
hm/ / " (t, 1, x2,0) pdridradt :/ / c(t)pdrydzadt (2.4.30)
0 ]-1,012x{0} 0 ]-1,02x{0}

for every v € C§° ((0,T) x Q). By combining (2.4.27), (2.4.29) and (2.4.30) and remembering
that ;1 is independent of (1, z3), we get u®(t,0) = ¢(t) almost everywhere in |0, 7'[. In the same
way, by (2.4.28), we prove that u!(¢,0) = c(t) almost everywhere in |0, T'[. So we can conclude
that o € L>(0,7T; M).

The convergence (2.4.20) viii) is easily obtained by (2.4.24)v) and by definition of distributional

derivative.
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2.4.2 A convergence result for the magnetostatic energy

In what follows S =] — 1, 0[%, so we will omit the explicit dependence of coefficients a, 3,7, d, ¢,

defined in (2.2.7), by S. Moreover, let us pose
(

P (1,79, 73) = p(x1,22) forevery (zy,25) €] — 1,02

Q (r1, 79, 13) = q (x1,22) for every (z1,72) €] — 1,0
(2.4.31)

P'(xy,m9,23) = p(x9,23) for every (w3, z3) €] — 1,0

Q' (1,79, 13) = q (12, 73) for every (w3, x3) € — 1,0

\

with p (resp. ¢) the unique solution of (2.2.2) (resp. (2.2.3)).

Proposition 2.4.2. Let {m, = (m%, m%, m5") }neN and let (p*, ') = ((/ff, ug, 1s) (,ul{’l, st ,ug’l>> €
L>(0,T; M) such that,

"

me — p® inC(0,T; L (Q% R3)),

n

mbl — b inC (07 T: 12 (Qb,l’RS)) 7 (2.4.32)

iy = p?(t,0) = pb(t,0) weakly in L (0,T; H* (207, R%))

\

a bl ub”") be the unique solution of

My ? “mpd Ymy,

(2.4.3) corresponding to m,, and let E/"* be defined by (2.4.11).
Then it result that

as n diverges. Moreover, for everyn € N, let u,,, = (u

.

1
—D,u® — &, Dyud —0 weakly * in L®(0,T; L* (R3)),

x
hn 3°'n

1
—D, ul — &7,

x
hn 17'n

1 1
Dy ubt =0, —Dyubt —~ed —D,ubl ~ & weakly * in L™ (0,T; L2 (R3)))

1 Y%n h T2 Yn 2 h 3 %n
n n

\ Du‘;i" — 0  weakly* in L™ (O, T; (L2 (RZ),T))S) ’
(2.4.33)
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asn diverges, where

(0,0,0), a.e inR*x]|1, +oo],
(§1,€3,85) (w1, @2, 23) =
p(x3) DP(xy, 29, x3) + ps(23)DQ(x1, T2, 73), a.e. in R2x]0, 1],
(2.4.34)
(0,0,0), a.e. in]l, +oo[xRx] — 00,0],
(&7',650,63") (w1, w0, w3) =
(5 () DP (24, 9, 23) + ug’l(xl)DQ’(xl,xz,ﬁg), a.e. in]0, 1[xRx] — 00, 0],
(2.4.35)
with P, P', Q and ()’ defined in (2.4.31). Furthermore, one has that

1 1
lim [/ (h—leuZ, h—DmuZ, Dx3UZ) my, dr+
n Qo n n

1 1
/ (Dzlufgl, h—DmuZ’l, h—nguf;l> mf{ldxjt
ot " " (2.4.36)

b,r b,r b,r b,r _
/ (Dxlun , Dgyu,)”, Dyuy, )mn dz] =
Qb

1 1 1 1
a(/ ey + [ luspaes+ [ s Pan + m?;lr?dxl),
0 0 0 0

where ais defined by (2.2.5).

Proof. Choose (u2,ub! ub") as test function in (2.4.3), take into account that for every t {(m2, m&!, m®™)},.en C

n’ - 'n ’ron

L3(Q2, 5?) x L2(Q% S?) x L?(QP" S?) and that by (2.4.32) the norms in these spaces are equi-
bounded, then there exists C' €]0, 400 such that

(

1 1
(_Dxlugp T xzu?w D:cgugl) S Ca
hn hn (L2(R3))?
1 1
H (Dxluf;l, h—D$2u%l, h—Dmqu’l) <C, (2.4.37)

(L2(R} )P

1
\ \/hn

H (leul;irv Dy,uy”, Dmsug’r) “ (L2(R} )

s <0,

for every n € N.

We observe that the last estimate in (2.4.37) gives the last limit in (2.4.33).
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By arguing as in the first part of the proof of [34, Proposition 5.1], from the first two estimates
in (2.4.37) one derives the third and the fourth limit in (2.4.33), up to a subsequence. From the
first estimate in (2.4.37) one obtains the first two limits in (2.4.33) and from the second estimate

in (2.4.37) one obtains the fifth and sixth limits in (2.4.33), up to a subsequence.
Next step is devoted to identify £* = (£7,£5).

Letasfixt € [0, 7], in equation (2.4.3) with (m®, m®", m®") = (m2, mb mb") choose v* = p+c,,

v = ¢, and v*" = ¢, , with p € C3°(R?) and ¢, = — (|BS| + | B! | + |BZ”"|)71 [ 5. ¢dx (such
that (v¢, ™!, v*") € U,,). By multiplying this equation by h,,, for all t € [0, 7] one has

1 1
/ , (h_Dmugw W xzu?chcsugz) (D2, 0, Dy, hy Doyip) d =
Ra A 8 (2.4.38)

/ (Dosp, Dasp, hDayip) midz, Vo € C3°(R),
Qa

Then, passing to the limit, as n diverges, in (2.4.38), for every t € [0, T] convergences (2.4.32) and
(2.4.33) give that

1

[ @ Dup Dugiz= [ (0800 [ (Dug Daghisii) oy, € (R
3 0 -1,0

Then, observe that:

1 1
Da:g <h/_D:E1u$L) = Dm (h_Dmu;lL) in D,(R2)7 Vn € N’

and using the first two limits in (2.4.33) , one obtains that

y 1Dy, pdx = /RS £9D,, pdr, Vo € Hi(R3). (2.4.39)

By taking ¢(z) = ¢(z1,72)x(z3) with ¢ € H'(R?) and x € C5°(]0, +00]) and recalling that
H'(R?) is separable, it follows from (2.4.39) that

for z3 a.e. in |0, +o0], &l (x, ko, x3) Dy (21, 22)dxdag =
R2

gg(xl,x2,x3)le¢<x1,x2)daj1dw27 V(b S Hl(RQ)

R2
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Consequently, by virtue of the Poincaré Lemma (see Section 2.2), it results that

for z3 a.e. in 0, +oo[, Fw(,-,x3) € WHR?):
(2.4.40)

5%(') '>$3) = Dxlw('7 '7333)7 5(21('7 '7333) = Dx2w<'7 '71'3)7 a.e. in R2'

Consequently, arguing as above, taking into account that W' (IR?) is separable, and using Propo-
sition 2.2.1 and (2.4.40), it follows that, for z3 a.e. in |1, +oo[, w(, -, x3) solves the following

problem:
w(-, -, x3) € WHR?),

/ (Dxlw(x17$27x3)7Drgw($17'r27x3>>(D:E1¢(xl7IQ)JDm2¢(x17x2))dxldx2 = 07 v¢ € WI(R2)7
R2

while, for z3 a.e. in |0, 1], w(+, -, z3) solves the following one:

(

w(-, -, x3) € WHR?),

/(Dxlw(xl,:sz,:vs),szw(xl,:vz,xg))(Dmb(xl,xa),Dx2¢(x1,xz))dx1d:Cz= (2.4.41)
R2

(1 (7). 13 (3)) / (D (1, 22), Dayd(icy, 1)) dirdiry, Ve € W(R?).

\ ]7170[2

Then, by virtue of Lemma 2.2.1, it results that, for 23 a.e. in |0, +00|,

0, a.e. inR?, if 3 > 1,
w(-, -, x3) = (2.4.42)

18 (as)p () + 1i(ws)al-, ), ae in B2, if g < 1,

with p (resp. ¢) the unique solution of (2.2.2) (resp. (2.2.3)).
Moreover, since Tonelli theorem assures that £ and u{Dp + pu$Dgq belong to (L*(R3))? C
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(L

loc

+o0 1
E'odx = / ( fagpdxldxg) dxs :/ (/ (u$Dp + psDq) cpdxldxg) drs =
R3 0 R2 0 R2

/ (19 Dp + psDq) pdx, Yo € C°(RY),
R2x]0,1]

(R3))?, using Fubini theorem with (2.4.40) and (2.4.42) one entails that

that is

(0,0), a.e. in R*x]1, 400,
£ (w1, 0, 23) = (2.4.43)

ps(x3) Dp(x1, 1) + ps(x3)Dq(xy, 22), ae. in R?x]0, 1],

with p (resp. ¢) the unique solution of (2.2.2) (resp. (2.2.3)). Consequently, the first two limits in
(2.4.33) and (2.4.34) hold true for the whole sequence.

For every ¢ € [0, T] using the first limit in (2.4.32) and (2.4.34) we obtain that

1 1
li —D, a,_ x aan ?L zd =
I’Iln/m (hn Jul W Lul  Dyu >m x

(2.4.44)
lim / . (i DP + p3DQ) (pf, p3) =
By iii) of Lemma 2.2.1 with k = (u{, u$) we get
. 1 1
hm/ <h—Dxlqu, 7 oy Uy s Dx3uz> medr =
ac AT " (2.4.45)

1 1
o ( [ i+ [ mgﬁdxg) ,
0 0

Using the third limits in (2.4.32) and the third inequality in (2.4.37) we obtain, for every t,
Z2¥n T3 N

lim/ (leuff,D ub", D ub”") mb"dr = 0. (2.4.46)
n Qb,r

Next step is devoted to identify %! = (53’1, fg’l), we introduce other rescalings. Specifically, by
setting

RS, = {(z1,29,23) €ER® : 23 >0, 21 <0}, R} = {(w1,29,23) € R®: 1 > 0},
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for every n € N, problem (2.3.2) will be reformulated on a fixed domain through the following

rescaling:
(
(hnﬂjl, hn$2, 1'3), if (1’1,.%2,.%'3) € Rzﬂ”’
. 3 _ .
To : (21,29, 23) € R® = Tp(21, 20, 73) = (x1, hpa, hpxs), if (x1, 12, 23) € RY,
L (hnl‘l, hnana hn$3)7 if ('rlv x27$3) € RiT
(2.4.47)

(note that Ty, gz = Tars , and T,(27) = T,(Q%) = QF, T,(Q) = T,(Q) = Qb). Namely,
setting

BY" = —302><]02[ B! =]0,2[x —332 Bl = ——03 neN
n hn7 < [ ) hn’hn ) n h7 ) )

space U defined in (2.3.1) is rescaled in the following
Vo= ot o) € LB LD x L E)
i va%,vf’;f) € L*(By") x L*(BL) x L*(Bf"),

(Dv", Dvt, Dv*") € (LX(R],))* x (L*(R}))* x (L*(R,))?,
/ v dx + / vldx + hn/ Wrdr =0, (2.4.48)
By B!, By"
010, 19, 23) = v4"(0, 22, hprs), for (x4, 23) a.e. in Rx]0, +o0],
010, 9, 23) = 0" (0, 9, 23), for (z2,73) a.e. in Rx] — o0, 0],
v (21, 9,0) = vO7 (21, 29, 0), for (w1, 25) ae. in ] — oo,O[xR}.

Then, for every (m?, m% m®") € L?(Q,R?) x L2(Q% R3) x L2(Q"", R?), the following equa-
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tion:

R3 - -

1 1 1 1
/ (Dxlvl, h—Dmvl, h—Dmvl) (Dmlwl, h—mel, h—mel) dz+
R3 n n n n

1 a,r 1 a,r a,r a
/Qa <h—an1w ’ ,h—anw " Dy w® ) mdr+

1 1
/ (mel» h—mel, h_Dx3’LUl) mb’ldgj+
Qb n N
/ (mebﬂ”, DQL‘waar’ Dl,gwb,r) mb,rd$’ v(wa,r’ wl’ wb,r) c Vn
\ Ob,r

(2.4.49)
admits a unique solution. This equation rescales equation (2.3.2) by rescaling (2.4.47),

Foreveryn € N, let (v, v!  v2") be the unique solution of (2.4.49) corresponding to (m?, mb!, m®m).

Arguing as in the first part of this proof, for a symmetric argument, one can easily prove that

1 1
D, vl —0, . ey UL — &b, h—Dmvfl — & weakly in L2(RR?), (2.4.50)

as n diverges, where

(0,0), ae. in |1, +oo[xR?,
(géa fil’;)(xla T2, 333) =
ps (1) Dp(xo, 23) + py(21)Dq(2, 73), ae. in]0, 1[xR?,

with p (resp. ¢) the unique solution of (2.2.2) (resp. (2.2.3)). Furthermore, arguing as before by
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i17) of Lemma 2.2.1 with k = (45", u%") one has that

1

! l b .

hm/ ( - n,—l)mvn,—l?mvn, m, dr =
bl n hn

(2.4.51)
1
o (/ 5] dy +/ |Mg|2df’51) ;
0 0
where « is defined by (2.2.5).
Now, to conclude it is enough to note that
T, (To(x)) =2, Vo eR\ {(z1,29,23) ER*: 2y >0, 13 >0}, VneN,
o (T, (Ta(2))) = un(z), Vz€R® VneN,
where u,, = (ug, ub!, u") and v, = (v%",, v}, ., 00" ). Consequently, it results that
U (7) = up(x), Vo € R\ {(zy,29,23) €R® 2y >0, 23 >0}, VneN. (2.4.52)

Then, for every ¢t € [0, 7] combining (2.4.50) and (2.4.51) with (2.4.52), one obtains the fifth and
the sixth limit in (2.4.33) and consequently (2.4.35) hold. Moreover,

hm/sz ( - n,—Dm2 " ngun> mfldx =

1
o [ wirans | ).
0 0

So, for every ¢ € [0, 7] combining (2.4.45) with (2.4.53), also limit (2.4.36) holds true. O

(2.4.53)

2.4.3 Proof of Theorem 2.4.1

In this subsection, our aim is to study the asymptotic behavior, as n diverges, of Problem (2.4.6).
If v is the limit given in (2.4.20), we want to identify x as solution of Problem (2.3.9).

Let us pose S = {0} x {0} x [0,1] U [0,1] x {0} x {0}. We denote the space of the Lipschitz
continuous functions on S, taking values in R?, by £. In the following with slight abuse of
notation, we will continue to denote with £ the space of functions i) = (wa, 1/1”’1) on ¢ U Q¥
such that ¢ = (w“, wb’l) restricted to S is in £, 1) is constant in (x1, z2) in % and is constant in

(w2, x3) in Q0L

Remark 2.4.1. Let W be the space defined in (2.3.7). Then, L is dense in VV (see [51] and [24,
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Proposition 2.2]).

Now, let us build a suitable couple of test functions. To this aim, for (w“, w’”) € L, let us set

(

¢a7 in Qa?

v =X waa in Qb,l’

¥?(0) = ¢*(0), in QO

\

Obviously, v € W, for every n € N.

Now, let us choose, v as test function in (2.4.6). So, we want to pass to the limit as n diverges in
(2.4.6) term by term.
By (2.4.20)vi), |m%| = 1 and (2.4.20)iv) we have

T T
oms 0 . ome ou® 0 . out u
// ( En +me A ; )dexdt%// (875 T )Xw dxdt,
0 Qo 0 Qo

Vx € D(0,T), ¥ (v, v) € L

By (2.4.20)wit),

bl om bl 3Mb’l
n bl b,l b,l
/ / ( A 5 )dea:dt—>/ / ( A 5 )Xw dxdt,

Ob,l Ob.l

mb%!| =1 and (2.4.20)v) we get

Vx € D(0,T), V(4% ¢™) € L

By (2.4.20)vidi) and |mb"| = 1 we get

o b7‘ o b,r
// ( Do 4 b A ?t" )deasdt—>0, Vx € D(0,T), V (49, ¢%) € L

Qb

By (2.4.20)iv) and |m%| = 1, remembering that |D,,v| = |D,,¢* = 0 on Q® for i = 1,2, we
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obtain

3 : 1 1

2/ / [ng A h—szm . (D, v) x +m% A Dyymé (Dg,v) x| dedt —
0 Qo =1 n
T

2/ / L Vx € D(0,T), ¥V (v, ¢") e L

(91'3

0 (l

By (2.4.20)v) and |m?!| = 1 remembering that | D, v| = |D,,¢*| = 0 on Q" for i = 2,3, one
has

T

1 1
2/ [mbl/\Dmlm (D,,v) X—l—Zmbl/\h—D%mn W (D,,v) x| dzdt —
0 bl 1=2
r a blawbl
p i AN BTV vy e DW0,T), V(07,0 e £
//M oo on X VX E (0,7), V (v, ¢") €
Ob.l

By (2.4.20)i7i) one has

T 3
1 1
2hn/ / [me{’“ A h—Dmm n (Dy,v) ] dxdt =0, Vx e D(0,7T), v(wa’wb,z) cr

0 Qbr i=1

By (2.4.20)iv),

1
/ / m;, /\( Dy ug, h—Dgg2 s Das U, )dexdt—>

0 Q@

m¢| = 1, first three convergences in (2.4.33) and (2.4.34), gives

(2.4.54)

2/ / 1 A (WS DP + psDQ) xydzdt, Vx € D(0,T), ¥V (v, ¢") e £

with p (resp. ¢) the unique solution of (2.2.2) (resp.(2.2.3)). By taking into account (2.4.20)v),
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|m2!| = 1, fourth , fifth and sixth convergences in (2.4.33) and (2.4.35), we get

T
1 1
2/ / ml;il A <D$1ul7)r7zln7 h—DrQUEr’Lln, h_ CESUI;;Lln> X’dedt —
n n
0 Obil

T (2.4.55)
2 / / TN (ug’lDP’ + ,u?;lDQ’> x¢dzdt, Wy € D(0,T), ¥ (v, ") € L,

0 bl

with p (resp. ¢) the unique solution of (2.2.2) (resp.(2.2.3)).

By taking into account (2.4.20)iii), [m>"| = 1 and last convergence in (2.4.33), we get
T

th/ / mbr A (%Dzlum, %Dmu%n, hiangume> xvdzdt — 0, Vx € D(0,T), V (¢a,¢b,l) cr

0 Qbr

Let us observe that (1%, ¢"!) can be any arbitrarily element of £. Being £ dense in V), we obtain
that the above convergences hold true for every ¢ = (¢%, ") € W. By using Lemma 2.2.2, we
get (2.3.9).

2.5 A single wire

Let
Q, =]—h,, 0 x [0,1], Q=] —1,0x[0,1],

let us introduce the following space
W = {(,u € H' (Q,R%) : pis independent of (a:l,xg)} ~{(ne H (J0,1[,R%)}. (25.1)
Moreover, we can pose
M=Wn { H'(Q, 5?) } , (2.5.2)
which explicitely takes into account the condition |u| = 1.

Theorem 2.5.1. Suppose that My, € H' (Q,,S5?) and (2.3.6) holds, for everyn € N. Let M,, be
a solution of Problem (2.3.4) . Then, there exist an increasing sequence of positive integer numbers
{ni},cn, still denoted by {n}, o € M, p € L* (0,T; M), depending on the selected subsequence
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such that:

][ | Mo, (21, %2, 23) — pio(s)|” dz — 0, (2.5.3)

92

as n diverges, for everyt € [0,7]
][ |Mn(t7$17$2ax3) —ﬂ(t,$3)|2dl'dt — 07 (254)

as n diverges, where i is a solution of the following problem

ou

p e L= (0.TsM)NC ([0, 7] L2 (A RY)), -

€ L2(0,T; L? (Q,R3)),

Vx € D(0,T) andy) € W,

// ( +W\8/:) xpdudt = (2.5.5)

—2/ / N — 8x3 8x3Xd xdt — 2/ (i, e1) Y1 + (p, €2) o) xodadt,
Q

1(0, ) = po(x), ae xin,

\

where Y1 = (g1, ,0), Yo = (—¢9,¢1,0), with €1, 5 constant depending on S =] — 1,0[2.

To Problem (2.5.5), for a.e.t € [0, T, the following energy will be associated,

t 8 9
i

— 2.5.6
t —i—/ H 9 ds (2.5.6)

0

where
o | 1 1

E(t) _/ a—“ dzs+=a (]-1,00%) / |1 ]? + |uePdas | (2.5.7)

€T3 2

0 0
o |’
a (]—1,0[2) is defined by (2.2.5) with S = (]—1,0[2). Here, the term £ (t) = / 8/; dzxs,
3
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1
1
can be considered an exchange energy and the term £ (t) = 3¢ (-1, 0[2) / 1§12+ |ps | drs | can
0

be considered the equivalent of a magnetostatic energy.



Chapter 3
Fin junction of ferroelectric thin films

L. Carbone, K. Chacouche, A. Gaudiello. Fin junction ferroelectric thin films, submitted.

Abstract. In this paper, starting from a non-convex and nonlocal 3D variational model for the
electric polarization in a ferroelectric material, and using an asymptotic process based on dimen-
sional reduction, we analyze junction phenomena for two orthogonal joined ferroelectric thin
films. We obtain three different 2D-variational models for joined thin films, depending on how
the reduction happens. Indeed, a memory effect of the reduction process appears, and it depends
on the competition of the relative thickness of the two films. The guide parameter is the limit of

the ratio between these two small thickness.
Keywords: Electric polarization; Nonlocal problems; Thin film; Junctions.
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3.1 Introduction.

Ferroelectricity is a property of some materials to have a spontaneous electrical polarization that
can be reversed by the application of an external electric field. Hysteresis phenomena appear, so
the behavior of these materials is very similar to the one of ferromagnetic materials. Analogously,

a Curie temperature 7 appears, too.

The idea of existence of materials which can have stable electric polarization is as old as the study
of electrical phenomena. The quest was perhaps opened by S. Gray in the middle of eighteenth
century. O. Heaveside is quoted as the creator of term “electret” for this kind of materials in 1885,
borrowing the name from magnet, by analogy. T. Iguchi obtained the first electret at the begin-

ning of Twenties of the last century by mixing and heating some organic natural materials. In
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the Twenties again, ]. Valasek discovered the presence of a hysteresis cycle (and so the first ferro-
electric material) in Rochelle salt, a common salt but chemically and crystallographically complex
enough. Immediately later, another ferroelectric salt was discovered (K Hy PO,). Then the study
of ferroelectric phenomena became easier and some theoretical model were proposed. In the For-
ties, the family of ferroelectric material enlarged, e.g. ferroelectric properties were demonstrated
in barium titanate (BaT'iO3) and lead titanate (PbTiO3). These simple materials opened the
way for industrial use of materials with ferroelectric properties and also the modeling of these
materials was more intensively studied. Properties of ferroelectric materials are now applied in a
wide variety of contests. In particular, due to switching effect of hysteresis cycle, thin ferroelec-
tric materials are used in electronic circuits with miniaturized and integrated forms in memory
and storage devices as, for instance, radio frequency identification cards (RFID). Moreover, also
the ferroelectric tunnel junction (FTJ) seems to offer great opportunities. We refer to [7], [16],
and [19], about the history and applications of ferroelectric material. Recently, the mathematical
modeling (in the static case) of thin structures of ferroelectric materials was studied starting from
a non-convex and nonlocal 3-variational model for the electric polarization. Via an asymptotic
process based on dimensional reduction, 2D-variational models for thin films were obtained in

[37], and 1D-variational models for thin wires were obtained in [37].

Now, we summarize the essential features of the model that we consider (see also [7], [16], [19],
[52], [54], [62], and [65]). We do not take into account any deformation of the ferroelectric
material. The electric displacement D is given by D = ¢¢E + P, where ¢y > 0 is the vacuum
permeability, E is the applied external field, and P is the spontaneous electric polarization in a

ferroelectric body B. Assume that E is the gradient of a potential ¢/, i.e.
E = Dy, (3.1.1)

and that the electric field generated by P derives from a potential (p satisfying the electrostatic
equation

We limit ourselves to the case where no strong electric field has been applied on B, but only a
very weak electric field acts on it (e.g. it is the case of iron in the ferromagnetism, before the
magnetization, by analogy). Then, we can assume that there are not Weis domains (i.e. regions
with different polarization separated by well defined interfaces), but only transition regions. In
this framework we can assume that the polarization does not generate an electric field outside B.

Consequently, equation (3.1.2) holds true in B, and the following boundary conditions on 0B

P-v=0, Dypp-v=00n0dB (3.1.3)
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can be added, where v denotes the unit outer normal on 0B5.

One assumes that P minimizes the energy functional
/ (BlrotP|? + |divPP + a([P]? — 1)?) dx + / D+ Dpl2dz, (3.1.4)
B R3

where avand [ are two positive constants independent of the external field and of the temperature.
Here, [, (3|rotP|* + |divP|?) dx reduces to the classical energy [, |DP|*dz when = 1 (see
(3.1.13)), so roughly speaking this term penalizes the spatial variation of P. The term o [, (|P|* —
1)?dz obliges |P| to be near to 1, and it can induce a phase transition of P. So the body is driven
to have regions of uniform polarization separated by thin transition layers. The term [p, [D1) +

Dyp|*dx is the electrostatic energy. As this last term is concerned, we have

/ ]D¢+Dgpp\2dx:/ \E]de+2/ D¢~Dgppdx—|—/ | Dgp|de, (3.1.5)
R3 R3 B B

thanks to (3.1.1). On the other side, using (3.1.2) and (3.1.3) give

1
/ D - Dppdr = —/ D - Pdx. (3.1.6)
B € J B

Consequently, inserting (3.1.5) and (3.1.6) in (3.1.4), and remarking that [, |[E|*dx is constant

with respect to P, the energy functional minimized by P becomes
2
/ (B|rotP|* + |divP|* + a(|P|* — 1)*) dz + / | Dyp|*dx + —/ E - Pdx, (3.1.7)
B B €oJ B

where [ B |Dpp|?dz is the electrostatic energy induced by P, and the external energy

J» E - Pdx favors the polarization parallel (but in opposite verse) to E.

In this paper, starting from this 3D-variational model and using an asymptotic process based on
dimensional reduction, we analyze junction phenomena in a fin-like shaped structure composed
of two orthogonal joined ferroelectric thin films (see Fig.3.1). Such a structure appears in some
types of non-planar transistor used in the design of modern processors, the so called Fin Field
Effect Transistor (FInFET). We obtain three different 2D-variational models for joined thin films,
depending on how the reduction happens. Indeed, a memory effect of the reduction process
appears, and it depends on the competition of the relative thickness of the two films. The guide
parameter is the limit of the ratio between these two small thickness. The reduced models are

justified by reasons of simplicity and economy, by a numerical point of view, too.
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Figure 3.1: 2,

Let {h;},cy and {hﬁ}nGN C]0, 1] be two sequences such that

hb

limh® = 0 = limh?, limh—Z:€E[0,+oo]. (3.1.8)
For every n € N, set (see Fig.3.1)
a n ha _ 2 — (Oa
0 = -4 5[ x ]340 0L 2h=]-3 AP x]-mhol, 9, -0tua. (19)

The multidomain €2,, models a ferroelectric device consisting of two orthogonal joined thin films
Q2 and Q% with small thicknesses h? and h?, respectively. According to (3.1.7), we consider the

following non-convex and nonlocal energy associated with 2,
E, :PeP, — / (BlrotP|* + |divP|* + a(|P|* — 1)* + | Dgp|* + (F,, - P)) dz, (3.1.10)
9%

where

P, = {pe (H' (Qn))B:P-y:OOnﬁQn}, (3.1.11)

« and (3 are two positive constants, F,, € (L*(Q,))?, v denotes the unit outer normal on 992,
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and pop € H 1(Qn) is the unique solution, up to an additive constant, of

(

div(—goDyp +P) =01in Q,,,

(3.1.12)

(—eoDypp +P) - v =0o0n 0.

\
Notice that F,, is a normalization of the external field. So to obtain (3.1.7), choose F,, = %E.
Using

\|DP||§L2(QR))9 = HrotP||§L2(Qn))3 + ||divP||§2(Qn) VP € P,, VneN, (3.1.13)

(this formula is true due to the special geometry of the domain, for instance compare [18] and

Lemma 2.1 in [37]) and the direct method of Calculus of Variations give that problem
min{&,(P) : P € P,} (3.1.14)

admits a solution. Note that problem (3.1.14) is an optimal control problem.

We rescale F,, in Q% = |—2,2[ x |—1,4[ x]0,1[and Q* = |—3, 5[ x | =4, 5[ x ]—=1,0[ (see
(3.2.2)), and we impose suitable convergence assumptions on these rescaled fields (see (3.2.9)).

The goal of this paper is to study the asymptotic behavior, as n diverges, of (3.1.14).

Now, we describe the three different limit regimes depending on ratio ¢ given in (3.1.8), according
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to0 < ¢ < 400, ¢ =0, or { = 4+00. Precisely, when 0 < ¢ < 400, i.e. hg ~ h?, we prove that

(

lim min {ﬁgn(P) :Pe (H' (Qn))3 :P-v=0o0n 8Qn} —

min —/ (ml‘thaF + [divg®* + a(|¢"]* — 1)
L+4 ) -1 10

1
2

DU+ [ (. s ) o

N|=

£ b2 . b2 b|2 2
+t +€/]_;,;[z (ﬁ!rotq "+ |dive"|” + a <‘q " - 1)

2 0
+ / (f{’, fé’) ds - qb) dydi
1

(3.1.15)

* ‘D¢?q“7qb)

¢ v =000 (-1[x101), b =0ond(]-5,3).

qll’((), ) =0, qg('ao) = ql2) (O:') in ]_%a %[}7

\

where 1% and 1* denote the unit outer normals on 0 (] —%, % [ x 10,1 [) and 0 G —%, % [2> , respec-

tively, f* = (f2, &, f9) and f° = (fP, f2, f£) denote the L?-weak limits of the rescaled fields
of F,, on Q% and Q°, respectively, ¢* and w‘(lqa ) depend on (z2,73) only, ¢° and wl(’qa ) depend

on (x1,z3) only, and (’l/}?qagb)”l/}(()qagb)) e H! (] —%, %[ x 10, 1[) x H! (} —%, % [2> is the unique
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weak solution, up to an additive constant, of

(

div(—eo DY, oy +¢%) = 0in =3, 5[ x]0,1[,

l\')l»i

diV(_gOle()q’l,qb) - qb) =0in ]_l O[ x }_%’ %[7

div(—eole(’qavqb) +¢")=0in ]0,4[ x ]-1, 1],

(=0 DY gy +4%) - v =000 (J=5, 5[ x 10, 1)\ ({0} x |=3.3[) . (3.1.16)

a0y g (0) = 00,00 )]0, ) in | =

o=
N [—=
L

with [0 111/1 4o.%) | denoting the jump of@xllp 4og) O {0} x ]-1,1[.

2

More precisely, in Theorem 3.3.2 we obtain a limit polarization (0, p§, p§) in the vertical thin film
and a limit polarization (151{, 75, 0) in the horizontal thin film, and the couple ((ﬁ%, s), (ﬁlf , ﬁg))
solves problem (3.1.15)-(3.1.16). Roughly speaking, (p§,p%) is independent of x; and solves a
2D-problem in the vertical thin film “similar” to the original problem; while (ﬁl{,ﬁg) is indepen-
dent of z3 and solves a 2D-problem in the horizontal thin film “similar” to the original problem.
Moreover, a memory effect of the original 3D-problem appears. Indeed, (p4, p$) and (ﬁ?, ﬁg) are
subjected to a transmission condition on the intersection of the thin films (see the two last lines
in (3.1.15) and in (3.1.16)). We also study the limit behavior of the rescaled potential of electric

field associated with the polarization.
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In the case ¢/ = 0, i.e. hfL < h%, we prove that

(

limmin{m1 |€n(P) :Pe (H' (Qn))3 :P-v=0o0n 0Qn} =

min {/ <5|rotq“]2 + |divg®* + a(|g** — 1)
}_%1%[X]071[

(3.1.17)
%
+| Dy |? +/ 1 (fs, f3)dxy -q“) dzodxs
a a a 2 a a
0" = (g,08) € (H' (]=5.3[ x]0.1))", ¢~ v =00nd (J=5,3[x]0,1]) }
where t7. is the unique weak solution, up to an additive constant, of
(
div(—eo Dl +¢*) = 0in | -1, 2] x]0,1[,
(3.1.18)

\ (—eoDY% 4 q*) - v* =00nd (] -3, 5[ x10,1[) .
Roughly speaking, in the limit process the energy, renormalized by ﬁ reduces to the energy of a
2D-problem in the vertical thin film. Also in this case a memory effect of the original 3D-problem
appears. Indeed, a solution p* of problem (3.1.17) satisfies the boundary condition p§ = 0 and
Or5Ypa = 0 on } —%, % [ x {0} (see the last lines in (3.1.17) and (3.1.18), respectively). See Theorem
3.3.4 about the limit behavior of the rescaled polarization and of the rescaled potential of electric

field associated with it.

In the case { = 400, i.e. h% < h’, we are able to study the asymptotic behavior of problem
(3.1.14) under the additional assumption h% < /h% (see Remark 3.6.5). In this case we prove
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that

limmin{ig (P):Pe (H' (Qn))3 :P-v=0o0n 8Qn} =

2]

min { /

(B }rotqb|2 + ‘divqb]2 + o (|qb‘2 — 1)2
2

=1

SIS

0

+ |D¢2b‘2 +/ (ff, ff) dxs - qb) dridxy : (3.1.19)

(

div(—soD@/JZb +¢") =0in (]—-

507

N

(3.1.20)

(—50D¢2b +¢) - v"=00nd (} -,

N
N
—
~—
no

\

Roughly speaking, in the limit process the energy, renormalized by IQ_ln\’ reduces to the energy
of a 2D-problem in the horizontal thin film. Also in this case a memory effect of the original
3D-problem appears. Indeed, a solution p’ of problem (3.1.19) satisfies the boundary condition
p° = 0and [39[;11021,] = 00n {0} x | -1, 1] (see the last lines in (3.1.19) and the first line in (3.1.20),
respectively). See Theorem 3.3.7 about the limit behavior of the rescaled polarization and of the

rescaled potential of electric field associated with it.

In what follows, we assume g5 = 1.

In all the three cases, we reformulate the problem on a fixed domain through appropriate rescal-

ings of the kind proposed in [17] and impose suitable convergence assumptions on the rescaled
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fields of F,,. Then, we use accurate a priori estimates which provide a first characterization of the
(H(29))3 x (H'(92"))3-weak limit of the rescaled polarization. For obtaining the transmission
conditions (the memory effect) on the limit polarization in the case 0 < ¢ < +o0, we refer to
[34]; while the proofs of the memory effects in the case / = 0 and ¢ = 400 are completely new
and more intricate, mainly when ¢ = +o00. The properties of the limit polarization drive us in
the study of the asymptotic behavior of the electrostatic energy associated with the polarization.
First, we obtain a priori estimates of the electrostatic potential which provide a limit electro-
static potential. Then, using the main ideas of the I'-convergence method introduced in [21] (see
[8], [10], and [20], too), we identify the limit electrostatic equation and the problem satisfied by
the limit polarization. In this last two steps, the main difficulties arise in the construction of
the “recovery sequence”. For instance, as the polarization is concerned (the same holds for the
electrostatic potential), the main difficulties depend on the fact that the test functions (p?, p°)
(of the rescaled problem of (3.1.14)) are not H" of all the rescaled domain, but p® € (H 1(9“))3,
e (Hl(Qb))S, and they satisfy the junction condition p®(z1,xs,0) = p°(h%xy,z2,0) on the
interface separating (2% and 2°, and also some boundary conditions. We build the recovery se-

quence for enough regular test functions, so some density results are needed to be proved.

The 3D model of ferromagnetic micro devices is close to our model. For the limit behavior of a
ferromagnetic thin structures we refer to [34] for joined ferromagnetic thin films in the stationary
case, and [23] and [24] in the quasi-stationary case. For the study of ferromagnetic thin films, we
refer to [2], [3], [4], [6], [13], [25], [35], [41], [42], [48], and [49]. For problems of junctions, we
refer to [51].

3.2 The rescaled problem

As it is usual (see [17]), (3.1.14) is reformulated on a fixed domain through the maps

(

x = (z1,20,13) € Q* = | -1 1[ x| -3, 1[ x]0,1[ — (hlx1, 22, 23) € Int(Q2),

1
29

! (3.2.1)

xr = (Il,LUQ,.Tg) € Qb = ]_%7 %[ X ]_%7%[ X ]_170[ — (x17x27hl7)z‘r3) S er)w
\

where Int(£2¢) denotes the interior of 2?. Precisely, for every n € N set

Dy pt e (H'Q)" — ( Lo o7 o

T et 2 a\\3k
hwm17axz,a$3) € (L2(Q")*, ke {13},
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op® op® 1 op®

b.,b 1Ob\\*F L 2 (b)) 3F
D) :p’e (H(Q) H(@xl’axg’hﬁ&vg)e([/ (Q")", ke{1,3},

L opt | 9p5 | 9pg
h% 31’1 + (9:52 + (91’3

opt  oph 1 oph
div b = (pP b 0b) € (HY(Qb 3 et 6 N 0 Rt o
v, p (pl,pg,p;;) ( ( )) ? Oy + 0o + h% O3

s a a a .a ,a ay)3
dlvn ‘P = (p17p27p3) € (Hl(Q )) —

dps Opy Opi 1 0p5 1

e L2(09),

e L),

ops

op

a a a ,a ,a ay)3
rOtn:p :(p17p2>p3)6 (Hl (Q )) —>( - -

8x2 8I37 (9:103 h% 8x1 ’ h% 81;1

oph

81’2
oph

b b b b
rot = (phoshat) € (1 ()" — (G20 - o0, Lo - O

81'2 h% al'g’h_gal'g B 8%1’

(

fox = (21,29, 23) € Q* — F(hlxy, 29, 3),

fPix = (x1,12,23) € Q — F, (1,72, Rl x3),

\

;

Po={ ") € (H ()" x (HY(Q")"

pa(xlax%o) = pb(hfrlle’x%O) in ]_%’%[2 }’

8m1

axz

) e @y

) e @@y

(3.2.2)

(3.2.3)
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where * and /* denote the unit outer normals on 9Q¢ and 92, respectively, and

Uﬂ: (¢a,¢b) €H1<Qa) X H1<Qb) : ¢a(x17x270) :gbb(hﬁxl,xg,O) in }_%aéf}'
(3.2.4)
Then, &, defined in (3.1.10) is rescaled by

(

E,: (p".p") € P, —

hZ/ <B|rotgpa|2 + |divflp“|2 + a(|p“|2 . 1)2 i ’quba(tpa’pb) ’2 + (e -p“)) i (3.2.5)
Qa

il [ (Blrotha! P + A+ ! = 1+ DAl P+ (£ 1')) do
\

where (gb‘fpa’pb) , ¢lfpa,pb)> is the unique solution of

p

<¢C(Lpa7pb) ) ¢IEpa,pb)> € Un7 /Qa ¢C(Lpa,pb) dr = O,

hZ/ (=D ey + 1) - Dy )de (3.2.6)
Qa

b b b b b b _ a b
|t [ (Dol ) - Dhe) e =0 (60 € UL
which rescales a weak formulation of (3.1.12), i.e.

gopeHl(Qn), /Q wp dr =0, /Q ((—eoDypp +P) - Dyp) dx =0 VngHl(Qn).
(3.2.7) " '

The Lax-Milgram Theorem provides that (3.2.7) admits solution and it is unique.

Note that if P,, solves (3.1.14), then (p?, p?) defined by

Pi (w1, w2, 3) = Py(Rlxy, o, 23) in Q% pl (21,22, 23) = Pp(x1, 22, hlx3) in Q7
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solves
min { £,((p",p")) - (0".9") € P} (3.2.8)
Conversely, if (p2, p?) solves (3.2.8), then P,, defined by
a T . a b T3 : b
P, (21,22, 73) = pj; Eyl’z,xz in €, Pu(x1,22,73) = p), | 21, T2, i in €2,

n

solves (3.1.14). Therefore, the goal of this paper becomes to study the asymptotic behavior, as n

diverges, of (3.2.8). To this aim, we assume

p

fo = fo=(f, f5. f§) weakly in (L*(Q%))°,

(3.2.9)

fo— o= (fb, f2, f2) weakly in (L*(20))°.

We conclude this section noting that rescalings in (3.2.1) transform (3.1.13) into

;

a aall2 2 a a ,Ha a @ ana
hn Han “(LQ(QG))9 + h?z ||szbH(L2(Qb))9 = hnHrOtnp H?LQ(QG))3 + hananp H%Q(Qa)

| e [0t p? || cyys + B [[divop? 1oy V(0% PY) € oy V€N,
(3.2.10)

3.3 The main results

3.3.1 The case / €]0, +o0]

This subsection is devoted to state Theorem 3.3.2 describing the limit behavior of (3.2.8) when
(3.1.8) is assumed with ¢ €]0, +oc[. Theorem 3.3.2 will be proved in Section 3.4.
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Set

(

= { (¢°.¢") = (5.4, (¢}, b)) €

(1 (=4, 1< J0.D)* x (11 (1-4.47))

(3.3.1)

qll)(07) :Oa C]S(ao) :C]S (07) in }_%7%[}7
\
where * and 1/* denote the unit outer normal on 0 G —

%, %[ x 10, 1[) and O G —%, % [2>, respec-
tively,

(33.2)
¢a('70) = ¢b(07 ) in ]_%7 %[}7

and

E:(¢",¢) e P — / (5|r0tq“|2 + |divg® [ + a(|g* — 1)
-1 1[x]0,1
272

[

1
2

DU+ [ (. 0 )

D=

w [
]_

(6 |rotqb’2 + }divqb‘2 + (‘qbf — 1)2
32

[SIES

+ ‘Dz/}(’

q%,9°)

2 0
+/ (ffﬂ f§) dxs - qb) dzydzs,
-1

(3.3.3)
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where (f¢, f9) and (f}, f2) are defined in (3.2.9), and (w

(Vo o) €U [ .
/ ]=33 [x]0.1]
W, /
AR

Note that (3.3.4) admits a solution and it is unique since the set

(¢a>¢b) eU: / wa dredrs =0
1=3.3[x10.10

is a Hilbert space with the inner product

(q*.a%) w ) is the unique solution of
)

Plgaqry dr2drs = 0,

303 X101

((—D(mg,%)w‘(’q%qb) + qa> . D(xz,m)w“) dydas (3.3.4)

& ((_D(m,xz)wl()q“,qb) + qb> . D(xl,xz)lﬁb) dridry =0 V (wa7wb) cU

M=
M=

< (¢a7¢b) ; (90(17 SOb) >:/} : Dy Dydxodrs + Z/ Dlprgobdxldxg.
—4,3[x]0,1]

_1ap

27 2
Remark 3.3.1. In what follows, any element of U (resp. P) is assumed to be extended to the element
of H'(Q%) x HY(Q®) (resp. (H*(9%))? x (Hl(Qb))Q) with the first (resp. first two) component(s)

independent of x1 and the second (resp. last two) component(s) independent of 3.

Theorem 3.3.2. Assume (3.1.8) with ¢ €]0, +00], and (3.2.9). For everyn € N, let (pmeZ) be a so-
lution of (3.2.8), and (ng‘(lp ,gbb ) be the unique solution of (3.2.6) with (p P ) (pZ,pZ).
Moreover, let P and E be deﬁned by (3.3.1) and (3.3.3)-(3.3.4), respectively. Then, there exist an

increasing sequence of positive integer numbers {n; };cn and (in possible dependence on the subse-

quence) (5°,1") = (53, 75) , (B}, %4)) € P such that
(

Pn, — (0,05,05) strongly in (Hl(Q“))3 and strongly in (L4(Q“))3,

(3.3.5)

pfbi — (ﬁl{,ﬁg,()) strongly in (Hl(Qb))S and strongly in (L4(Qb))3,
\
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<1 op% 1 Op,,

; 2/0ay)3 2/b\ )3
he 91, hb 3263) — (0,0) strongly in (L (Q )) X (L (Q )) , (3.3.6)

(¢ (vs,22,) pnﬁ%)) - <¢C(Lﬁa’ﬁb)a¢l()ﬁa7pb)> strongly in H*(Q%) x H'(Q),

(3.3.7)
19 pp) 18¢bpnpn 9 o b
he 0wy hL Oy — (0,0) strongly in L*(Q%) x L* (Q"),
where p p solves
E((p"0") = min{E ((¢",¢")) : (¢",¢") € P}, (33.9)
and <¢(p ) ,w(p pb)> is the unique solution of (3.3.4) with (¢, ¢°) = (p“, p"). Moreover,
By (05, Py Y
lim W = E((p"7")) (3.3.9)

n

3.3.2 Thecase/ =10

This subsection is devoted to state Theorem 3.3.4 describing the limit behavior of (3.2.8) when
(3.1.8) is assumed with ¢ = (. Theorem 3.3.4 will be proved in Section 3.5.

Set
Po={e = (@) € (H' (=5 3[x0.1D)* s - vt =0om 9 (|43 x 0.1) }
(3.3.10)
where v denotes the unit outer normal onf)(] % %[ 10, 1[) and
(
B e (i (=< o)) — [ (o
1-5.30x10.1]

(3.3.11)

+|divqa|2+a(|q“|2—1)2+|Dw§a|2+/ (fs, f5)day - q)dxzdasg,

,
t\.’)\»—t
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where (f3, f3') is defined in (3.2.9), and ¢y, is the unique solution of

wga € H! G_%’ %[ X ]07 1[) ) / wgadxgd.fllg =0,
}_%7%[X]Ovl[
/ ((=D(ag,25) ¥ + q) * D(ay,25)¥") dvadas = 0 (3.3.12)
]-3.3[x]0.1]
| Yt e H' (]=3.3[ x]0.1]),

Remark 3.3.3. In what follows, any element of H* G —%, %[ x 10, 1[) (resp. P,) is assumed to be

extended to the element of H' (%) (resp. (H'(2*))*) independent of x1.

Theorem 3.3.4. Assume (3.1.8) with{ = 0, and (3.2.9). Foreveryn € N, let (pfl,pf;) be a solution of
(3.2.8), and (qb‘(‘pa pb),qb?pa pb)> be the unique solution of (3.2.6) with (p“,pb) = (pz,pfl). Moreover,
let P, and E, be defined by (3.3.10) and (3.3.11)-(3.3.12), respectively. Then, there exist an increasing

sequence of positive integer numbers {n;};cn and (in possible dependence on the subsequence) p* =
(p5.p4) € P, such that

(

pn, — (0,05,05) strongly in (H’l(Qa))3 and strongly in (L4(Qa))3,

(3.3.13)
hz - ; 1(Oby)? . 4/b\)3
Ta p,, — 0 strongly in (H (Q )) and strongly in (L (Q )) ,
\ n
1ope [ 1 \Zop ,
(ﬁgi"’ () gi“) — (0,0) strongly in (L*(@))" x (1* ()", (33.10
n 1 n'n 3
( AN b 1 1/0b
¢‘Zpa.,pb,)’ (h—Z) Cb(p%’p%) — (@/Jga,()) strongly in H*(Q%) x H"(€°),
(3.3.15)

L %ty LY agb?pm%) 12/ 2 ()
(h_gL or, (hgh;ﬁ) O3 — (0,0) strongly in L*(Q%) x L (Q )

where p® solves
E, (p*) = min{E, (¢") : ¢“ € P}, (3.3.16)
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and 5. is the unique solution of (3.3.12) with ¢" = p®. Moreover,

a b
)

o =B, (p%). (3.3.17)

Remark 3.3.5. Note that (3.3.17) combined with (3.3.13)-(3.3.15) improves the last convergence in

(3.3.13). Precisely, also one obtains

hY N * 3
(h—Z) pl — 0 strongly in (L*(Q2))".

n

3.3.3 The case /! = +o0

This subsection is devoted to state Theorem 3.3.7 describing the limit behavior of (3.2.8) when
(3.1.8) is assumed with £ = +oo and h? << \/h%. Theorem 3.3.7 will be proved in Section 3.6.

Here we assume that the function (gb‘(‘pa ) gblipa pb)) involved in (3.2.5) is the unique solution of

the following problem:

<¢((lpa7pb)7 ¢%pa,pb)> e Un7 /Qb ¢?pa’pb)dx - 0,

hi/ (=Dl ) + 1) - Dy )de (3.3.18)
Qa

#h [ ((~Dhehn gy +9) - D) do =0 ¥ (.)€ U,

\

i.e. assumption / ) gzﬁ‘(lpaypb)dx = (isreplaced with " ¢lzpa7pb)dx = (, or equivalently, in (3.2.7),

assumption wpdxr = 0is replaced with

wpdr = 0. Obviously, &, and F),, do not change.
9] b

Q

n n
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Set

(3.3.19)
4001441}
\
where 1/* denotes the unit outer normal on O (} —%, % [2), and
(
N ) A G
]_%7%[2
(3.3.20)

0
+]divg®|* 4+ a(|¢)? — 1)* + |Dw2b|2 + / (f2, f2Ydxs - qb) drydws,
1

\

where (f?, f2) is defined in (3.2.9), and 1[121, is the unique solution of

) Yhdaydzy = 0,

Remark 3.3.6. In what follows, any element of H'! (] —3.3 [2) (resp. Ps,) is assumed to be extended
to the element of H'(Q") (resp. (H' (Qb))2) independent of 3.

Theorem 3.3.7. Assume (3.1.8) with { = +oo and h’. << +/h¢, and (3.2.9). For everyn €
N, let (p?l,pfl) be a solution of (3.2.8), and (<Z5'Zpa pb),gb(zpa pb)) be the unique solution of (3.3.18)
with (p"“,pb) = (pg,pfl). Moreover, let P, and E,, be defined in (3.3.19) and (3.3.20)-(3.3.21),

respectively. Then, there exist an increasing sequence of positive integer numbers {n;};cn and (in
i J1EN
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possible dependence on the subsequence) p° = (;3’{,;53) € P, such that

he\ ?
( ") p% — 0 strongly in (Hl(Q“))3 and strongly in (L4(Q“))3,

ht,
(3.3.22)
pl,’” — (ﬁl{,ﬁg,O) strongly in (HI(QI’))3 and strongly in (L4(Qb))3
1 %apz 1 apz . 2/va\) S 2/Aby)3
((hghg) 8ml’h_28x3> — 0 strongly in (L*(Q%))" x (L*(Q"))", (3.3.23)
¢ B 4
n a b b . 1/0a 1/0b
((h—%) <p%i’p%i),¢( . ’%Z)) — (O,@/Jﬁb) strongly in H*(Q%) x H(€°),
(3.3.24)
1 a b
I\ 8¢(pz7p2) 1 8¢(p%,p2) . r2/00 2 (Ob
\ ((hghg) Du, Y O — (0,0) strongly in L*(Q%) x L* (Q"),
where PP solves
Ew (") = min{Ex (¢") : " € Px}, (3.3.25)

and ?/ng is the unique solution of (3.3.21) with ¢ = p°. Moreover, the convergence of the energies

holds true, that is \
lim E” ((pmpn))

i oy = E (p). (3.3.26)

Remark 3.3.8. Note (3.3.26) combined with (3.3.22)-(3.3.24) improves the second convergence in

(3.3.22). Precisely, one obtains also

he\ |
(h—Z) P — 0 strongly in (L4(Q“))3.

n

3.4 The proofs in the case ¢ €]0, +o0]

This section is devoted to proving Theorem 3.3.2.
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3.4.1 A priori estimates on the polarization

Proposition 3.4.1. Assume (3.1.8) with { €]0,400|, and (3.2.9). For everyn € N, let (p?l,pfl) be

a solution of (3.2.8). Then, there exists a constant c such that
b
”p(rlL”(L‘l(Qﬂ))3 <c ||an(L4(Qb))3 <c Vn € N, (3-4-1)

and
”ann“ (L2(Q))? S ¢, ||D’ﬂan(L2(Qb)) < c VneN. (342)

Proof. Function 0 belonging to P, gives

"

[ (Brot +laiwisnl® + o (1" = 215P) + Doty ) o

hb

e Q< rottpt |+ |aivhph "+ a ([ph]" = 2 |ph ") + Dl [2) do - (343)
1 a2 ﬁl b|2 b |2
<5 ) WP +imP)dotgis [ (5P 41 de v e N,
\ Qa

Estimate (3.4.3) implies

4 1 2 hb/ b4 1 512
ot (24 — ) |pf? ) do 4+ -2 —(2+ — d
/Qaa<|pn| <+2a) |pn|) vt | e\l 5o ) k] ) de

(

<

1
/ ISk dp + /|f};\2dax Vn €N,
Ob

1
2 h“2

which gives

1\)\? he 1\\?
2 1+ — n — (1
/m <|pn| ( +4a)> d:r+h% N (\pn\ ( +4a)) dx
1\? hb 1 hb 1 5
< 1 ok nQb - a b )
\_O‘( +4Oé> <‘ ‘+h%’ ’>+2/ ‘f‘d+h2/ﬂb|fn| dvvn el

(3.4.4)

;
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Then, estimates in (3.4.1) follow from (3.4.4), (3.1.8) with ¢ €]0, +00[, and (3.2.9). Estimates in
(3.4.2) follow from (3.4.3), (3.1.8) with £ €]0, +-00], (3.2.9), (3.4.1), the continuous embedding of L*
into L2, and (3.2.10). O

Corollary 3.4.2. Assume (3.1.8) with { €]0, +ocl, and (3.2.9). For everyn € N, let (p?,p’,) be a
solution of (3.2.8). Let P be defined in (3.3.1). Then, there exist a subsequence of N, still denoted by
{n}, and (in possible dependence on the subsequence) (p*, p°) = ((f)g,ﬁg) , (13‘{,]53)) € P such that

p

pt — (0,p5,p5) weakly in (Hl(Q“))3 and strongly in (L4(Q“))3,

(3.4.5)

ph — (9%,95,0) weakly in (Hl(Qb))3 and strongly in (L4(Qb))3.

\

Proof. Proposition 3.4.1 ensures that there exist a subsequence of N, still denoted by {n}, and
(in possible dependence on the subsequence) (p9, p%, p3) € (H* (Q“))3 independent of z;, and
(5, 05, 0%) € (H* (Qb))3 independent of x3 such that

(

P — (p{,py,p3) weakly in (Hl(Q“))3 and strongly in (L4(Q“))3 ,

pl — (P, 05, p%) weakly in (Hl(Qb))3 and strongly in (L4(Qb))3 :

\

and

(55,55, 5) - v = 00n 90\ (J=1, 1 [ < {0} ), (3,4, %) - v* = 0on 00\ (]=1,4* x {0}) .

In particular, this implies
P =0inQ° p5=0in Q.

Moreover, as proved in Proposition 5.4 in [34], one has

(ﬁ%)ﬁ&ﬁg) (70) = (ﬁ?vﬁguﬁg) (07 ) in ]_%7 %[
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Consequently, one obtains

P3(-,0) =0=pb(0,-)in | -3, 1], (3.4.6)

D=

which completes the proof. O

3.4.2 A convergence result for problem (3.2.6)

Let

(3.4.7)

Y(,0) = ¢*(0,-) in [—3, 3] }

Proposition 3.4.3. Let U and Uyeg be defined in (3.3.2) and (3.4.7), respectively. Then, Ureg is

dense in U.

Proof. Let (¢*,¢") € U. The goal is to find a sequence { (2, ¢) }neN C Ureg such that

(va, ¢2) — (v, ¢°) stronglyin H' (]—3, 5[ % ]0,1[) x H* (]_%,%[2> . (3.4.8)

To this aim, split ©)* = ¢ + 1/° in the even part and in the odd part with respect to ;. Note that
Ve, Y0 e H <]—%,%[2) and

¥ (0,) = ¢*(0,) = ¢ (-,0), ¥°(0,-)=0in |—3, 1[.

Consequently, a convolution argument allows us to build three sequences (see [51], and also
compare the first part of the proof of Proposition 5.5 in [34])) {¢%},cy € C= ([—3, 3] x [0,1]),

N |+
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;

This implies (3.4.8), setting ¢% = (% and y° = (¢ + (°.

Proposition 3.4.4. Assume (3.1.8) with ( €]0, +ool. Let { (¢2, ¢%) }neN

l

C (L(Q2))* x (L*())?,

and (¢*,¢°) = ((¢5,43), (4}, 45)) € (L*(92))? x (L*(Q"))?* be such that q“ is independent of x1,

q® is independent of x5, and

(¢, b)) — ((0.45,45) . (7, ¢5,0)) strongly in (L*(2%))* x (L*(2"))?.

Moreover, forn € N let <¢“(an ) qzﬁl(’qa qb)> be the unique solution of

(

<¢?q%»QZ)’¢lzqz,q2)) € Un, /Qa ¢((lqg“qg)d37 =0,

< /Q ((_ngb((lQ%,q%) +qy) - Dpo®)dx

[ (Pl ) 28) a0 Vit

\ h% Qb

(3.4.9)

(3.4.10)
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where U, is defined in (3.2.4). Furthermore, let <w?qa ) wbqa qb)> be the unique solution of (3.3.4).

Then, one has
<¢((ZQ%7Q%)’¢IZQ%,Q%)> - (w((lq”,q”)’wl()qa,qb)> strongly in H'(Q%) x H'(Q), (3.4.11)

( 1 8¢‘(Lq%’q%) 1 8¢?q%,qz>

; 2/0a 2(0b
h_% o ’h_g D5 > — (0,0) strongly in L*(Q%) x L*(Q°), (3.4.12)

Proof. In this proof, c denotes any positive constant independent of n € N.

Choosing (¢“, (bb) = <¢‘(qu )’ (b’zqa o )> as test function in (3.4.10), applying the Young inequality,
and using (3.1.8) with ¢ €]0, +o00] and (3.4.9) give

| P26t ey < | D2l gy S€ T EN. (3.4.13)
The first estimate in (3.4.13) implies
‘ Vawat) | ey =€ EN (3.4.14)
since / o ¢‘(1q%7qg) dx = 0.
The next step is devoted to proving
H¢I<’qg,qz) i) <c VneN. (3.4.15)

The junction condition in (3.2.4) gives

2
¢?q%,qg) (Ila Zo, 0)‘ dIld,ﬁCQ

2
& ) (hixl,@,O)‘ dxidxsy (3.4.16)

(92,45

(q2,4%)

2
o, ($1,9€2,0)‘ dridrs Vn € N,

— th/
\ 1-3.30
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Then, (3.4.16) and (3.4.14) provide

gc\/h_g Vn € N,

&
(a0 22 (]2, 14 [x] - (< (0})

which implies
<cy/hi VneN, (3.4.17)

Hgb?q%%)

£2(] =415 [x] =53 [a-1.00)
by virtue of the second estimate in (3.4.13) and (3.1.8) with ¢ €]0, 400[. Combining (3.4.17) with

the second estimate in (3.4.13) ensures

<
({0 - A [x-rp =€ VR EN

196

which combined again with the second estimate in (3.4.13) proves (3.4.15).
Estimates (3.4.13), (3.4.14), and (3.4.15) ensure the existence of a subsequence of N, still denoted
by {n}, and (in possible dependence on the subsequence) (7%, 7°) € U and (£, &%) € L*(Q%) x
L? (Q°) such that

(0 Sy ) — (777 weakly in H'(Q%) x H' (2"), (3.4.18)

a b
1 W) 1 %)
h% 8x1 ’ h[;L 8x3

) — (5“, fb) weakly in L*(Q%) x L? (Qb) , (3.4.19)

/ T dl’gdl’g =0. (3420)
J=3:3 X101

b

Note that junction condition 7%(-,0) = 7°(0,-) in ]—3, £ [ can be obtained arguing as in the proof

of Proposition 5.4 in [34].

The next step is devoted to proving that (T“, Tb) solves (3.3.4). To this aim, for every couple
(2/1“, W’) € Ureg, where Ureg is defined in (3.4.7), consider a sequence {/i, fnen C H' (Q%)
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(depending on (wa, ¢b)) such that

.

(e, 4" €U, Vn€EN,

fin, — 1 strongly in L? (Q%) (3.4.21)

1
(ﬁDmun, Doy tin, D%un) — (0, Dy, tp®, Dyytp®) strongly in (L? (Q“))g.
\ n

For instance, setting

;

wa (513'2,.%'3) if z = (l’l,l'g,ﬁCg) € }_%7%[2 X ]hgu 1[7

T h® — 3

U (2, ) o+ 0 (B, )

\ n n

AP % [0,R%],

ifz = (%1,.1'2,373) S ]—%

the first two proprieties in (3.4.21) can be immediately verified by the properties of Ureg, while

the last one follows from

/]é,é[Qx]O,h%[

2 a2 2 a
/1 Uﬁxmha['D”’“”"' o < 210 e oy + ||1/’b”w1v°°(1—;;f)>hn el
— 3299 st

2

1
dz < ||¢”!!5vlm(]—g,%[2) h: VneN,

ED:vllun
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and

/.

1
[2 10,1 [‘stlunpdx = /J [2 h_a ’wa (.ZCQ, hZ) . wb (hzl'l,.fg)}delde
*10:hi n

11 _11
272 i 2°2

N /] 1 |0° (02, h2) — 4% (22,0) +¢° (0, 22) — ¢ (hSa1,22)| davyda

1112 K9
—531 hr

a 2 a
<2 (H@D ||12/Vlv°°(]—%,%[><]0,1[) + |‘¢b“wl~m(]—§,§[2>) hy Vn eN,

where again the properties of Ureg played a crucial role.

Now, fixing (w“, wb) € Ureg, choosing (,un, wb) as test function in (3.4.10) with {u,} satisfying
(3.4.21) , passing to the limt as n diverges, and using (3.1.8) with ¢ €]0, +-o00[, (3.4.9), (3.4.18),
(3.4.19), and (3.4.21), one obtains

.

/ ((—D(x27x3)7'a + q“) . D(x27x3)¢a) dxodxs
- 3,3 [x]0,1]

(3.4.22)

+/{ /} 1 1[2 ((_D(m,xz)Tb —+ qb) 'D(m,xg)l/)b) dzydzy = 0,
T 202

\

By virtue of Proposition 3.4.3, equation (3.4.22) holds true also with any test function in U. Con-
sequently, thanks to (3.4.20), (T“, Tb) is the unique solution of (3.3.4), i.e.

(Ta7 7-b) = <w?qa,qb)7wl()qa’qb)) a.c. in Qa X Qb- (3423)

Finally, using (3.4.10), (3.1.8) with ¢ €]0, +-00], (3.4.9), (3.4.18), (3.4.23), (3.4.19), (3.3.4), and a Ls.c.
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argument, one has

2
/ D(m2,x3)¢((lqa7qb) dxodxs _|_/ |€a’2dx
]-3,5[x]0,1] 0
2
b b2
+/ /]_é %[2 ‘D(m,m)w(qa,qb) dzidxs +€/Qb |§ ’ dr

)

2 d hIT)L Db b
$+h_g Qb’ nP(gs.a2)

2
< lim < / dx)
n Qa

i @ Ha a hlrjb b b b
- hﬁn (/Qa D"(b(fI%,(ZZ) nd h_% /Qb D”(b(fI%,qg) ' qndﬂi)

Dt at)

= Dy ST (U - q"dxodrs + E/ Dy, T ¢b a 'qbdxldx2
/ dioar ) g e)
/ D Y  dydas + 0 D iy  dyd
= z2,T a TodX3 + / z1,T a r1aT,
IR e Gl e [PEe Vi)

which implies that €% = 0, £ = 0, and that convergences (3.4.18) and (3.4.19) are strong. Note that
previous convergences hold true for the whole sequence, since the limits are uniquely identified.
O
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3.4.3 The proof of Theorem 3.3.2

Let

;

)
N
Il
o
—
=)
—
|
[
|
DO [
+
(o)
| S—
C
—
DO [
|
Sl
[N
—_
~—
X
=
e

d=0in [-43] x (3 -3+ uls-03) |
(3.4.24)

Proposition 3.4.5. Let P and Preg be defined in (3.3.1) and (3.4.24), respectively. Then, Preg is
dense in P.

Proof. Fix (q“, qb) = ((qg, qs), (q’l’, qg)) € P. The goal is to find a sequence {(92, 92) }neN C
Preg such that

2

(02,05) = (¢°,a") stronglyin (H' (]=3,3[x]0.1)" x (H' (]-3.4[)).  G42)

At first, note that there exist two sequences {2} _ C C* ([—3,3] x[0,1]) and {nZ}neN C
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(O ([—%, %]2> such that

n® — ¢ strongly in H' ([—%, %] x [0, 1]) . n° — ¢} strongly in H! ([—%, %}2> )

Now, split ¢4 = ¢°+¢° in the even part and in the odd part with respect to x; (compare the proof of

Proposition 3.4.3). By convolution, one can build three sequences {(;; },, .y € C™ ([—%, %] x [0, 1]),
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(Ghaes © O ([=44]7) and {62} € € ([=541°) such that

;

C% — ¢ strongly in H' G—%, %[ x 10, 1[) :
(5 — ¢° strongly in H' <] 5% [2> . (% — ¢° strongly in H' (] ~11 [2> ,

Cﬁ(‘ao):@(of), 0(07'):Oin:|_%>%[ VHGN,

n

g3
I
=)
e
=
|

|

|

|
o=
_l_
S =
C
—_—
N |#—=

|
S =
N[
1
SN—
X
=)
[S—y
<
3
m
2z

Finally, (3.4.25) is achieved by setting 62 = (2, 1%), 0% = (1%, ¢S + ¢0). O

Proof of Theorem 3.3.2 In what follows, pf; ; (resp. pl,’”) denotes the ith-component, i = 1, 2, 3, of
P, (xesp. py).

Corollary 3.4.2 asserts that there exist a subsequence of N, still denoted by {n}, and (in possible

dependence on the subsequence) (ﬁa,ﬁb) = ((ﬁ%,ﬁg) , (ﬁ?,ﬁg)) € P satisfying (3.4.5).

The next step is devoted to proving the existence of a subsequence of N, still denoted by {n}, and

(in possible dependence on the subsequence) of
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2e (22 (]-5. 80 mL (-1.0D)) % 22 ()4 A B (-1.0)
with 2% (-,-, —1) = 0 in}—%, : [2 such that such that

1 b b

1 opy, 02" 1 9py,
hg aI3 axg

- Kly in (L2(Q%))?
h;’zaxl 8$1 wea Y1n( ( )) ’

Indeed, the boundary condition on p¢ and the Poincaré inequality give

p

1

a ap(rlL,l (',ZEQ,Ig)
Fpn,l ('7 T, 1’3)
n

8171

C

L2(J=3:30)

(3.4.27)

\ (r2,73) ae. in }—%,%[X]O,l[, Vn € N,

D, while, for ¢ = 2,3, the Poincaré-Wirtinger

where c is the Poincaré constant in Hj (]—1, 1

inequality gives
1 a
I e—

ap?m (-, 0, 3)
8:151

;

o=

p?m- (71,2, 73) d$1)

2 3, (-3.1])

(3.4.28)
C/

<
~—h

(r2,73) ae. in ]—%,%[ x10,1[, Vn €N,
D

3

LQ(]_

N
N

\

where the subscript **m" means zero average, and ¢’ is the Poincaré-Wirtinger constant in H (] — %, % D .

Integrating (3.4.27) and (3.4.28) over (x2,23) € ]—%, %[ x 10, 1[ and using the first estimate in

(3.4.2) imply the first convergence in (3.4.26). Similarly, one proves the second convergence in

(3.4.26). More precisely,
2
Aer?(]-5, 1 1 (-1,0D).
since b5 (,-,0) = 0on | -1, 1 [2\ Q—ﬂ ﬂ[ X }—%,%D,foreveryn eN.

T 202 2772

a

The next step is devoted to identifying (p3, p3), (ﬁl{, ﬁg), 2% and 2°. To this aim, for every

(q“, qb) = ((qg, qs) . (qll’, qg)) € Preg, where Preg is defined in (3.4.24), consider a sequence
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{VnInen C (H* (Q))” (depending on (¢, ¢*)) such that

(

(Vn, (%, ¢5,0)) € P, V¥n €N,

vn — (0,48, ¢¢) strongly in (L*(Q%)),

1
\ h—anlvn,Dmvn, D%vn) — (0, (0, D.,q") , (0, D,,q")) strongly in (L2 (Q“))g.

(3.4.29)

For instance, setting

/

. 2 a
(0>QS7Q§) ($2,.T3), lf$:($1,$2,$3) 6}_%7%[ X]hnal[a
h(rll_x a ay L a hgl_x a
Un (:L‘) - (qllj (hz'fl,@) ho 37q2 (l’g, n) h_z + C]g (hnxbaj?) ha 3aQ3 ($2,ﬂf3)> )

\ if £ = (21,9, 25) € | =1, L[* x [0, h2],

the first two proprieties in (3.4.29) can be immediately verified by virtue of the properties of Preg,

while the last one follows from

/]—é,éfx]o,h%[

2 b 2 a 2
/]II[ZX]W[W@W A < ([bllne gy 2 08l g oy
272

1
_Dxlvn

2
e [ (T Re S RS EER

ka4

+2 ||ql2)||124/1,oo(}_%,%[2> + ||Q§||€v1,oo(}_%,%[x]o71[) )hﬁi Vn € N,
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and

‘qll) <h2$1,$2)‘2dx1da;2

n

/ \Dgcgvn|2 dx< /

]-1.1[*x]o,na -

+f
]

@ e

=
Wl

[xjo.p) 7

11
272

1 a a a 2 a
o T |5 (2. 1) — a5 (B, o) | dewndes + (105 [ -

11
2°2

1
= [y ok ) = 0.

_11
272

1 2
g5 (z2,h%) — ¢5 (22,0) + ¢5 (0, 22) — g5 (hyw1, )| dayday

-
-1.412 ha

11
2'2

a 2 a 2 a 2
a5 lwroo =11 <0y Pin < <||qlf||wl,oo@_;,;[2) +2lg5 lwre -2, 1 x0ap)

428l gy * 198m - g )i P €N

where again the properties of Preg played a crucial role.

Now, fixing (q“, qb) = ((qg, q5), (q’l’, qg)) € Preg, and choosing (vn, (q’l’, a, O)) as test function
in (3.2.8) with {v, },en satisfying (3.4.29) give

E, ((vn: (¢7,¢5.0))) VneN. (3.4.30)

Then, passing to the limit in (3.4.30), as n diverges, and using (3.1.8) with ¢ €]0, +oc], (3.2.9),
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(3.4.5), (3.4.26), (3.4.29), Proposition 3.4.4, and a l.s.c. argument imply

4
B / |rot]5“|2 dxodrs
=35 [x10.1[

LT

~a 2 a
]-3.3[x]0,1]

2
a
024

8x1

a
025

8x1

0z
8[E1

div (p) +

2
>dac

2 3
+/ (fgv fél)dxl 'ﬁa> dele‘g

1
2

+/ (ﬁ / ‘rotﬁb|2 dzr1dxy
1-3.30

2
L (T
Qb
+/H,;f <O‘<ﬁb IR

a b a b b b
S hmlnfEn ((pzvpn)) S limsup En ((pnvpn)) S lim En ((Um (QD 4z; O)))

a a
n n n hn n h’n

(3.4.31)

b2
0z,

0z |04
8;1:3

8;1:3

b
0z,

N
div (p ) + T

2
>d$

2 0
- / (f1, f3) das -ﬁb) d:vld:@)
1

=E((¢"d"))-

\
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On the other hand, the properties of p°, 27, p°, and Zg give

( 920 |? 9z |?
/ div (p*) + =—*| dor = / \divp?|* daodas + / Ll du,
Qa Oy ]-3.2[x]01] Qa | 071
(3.4.32)
b (2 b2
/ div (ﬁb) + % dr = / |divg§b‘2 dridry + / % dz.
L Qb 61'3 ],%’%[2 Qb 81'3

(

Hence, inserting (3.4.32) in (3.4.31) and taking into account Proposition 3.4.5, one has
b

2
0z

d
x—l—/Qb B

x3

0z%

min {1, £, ) (/Q .

E, ((v5,20))

T

2d:c> + E ((p*,0"))

a b
< liminf " < Jim sup 2" (v 20))

n n n h?L

<FE((¢".¢") V(¢".¢") € P,

(3.4.33)

from which, thanks to the properties of 2* and 2b
22=0inQ%and 2° =0in Q° (3.4.34)

follow. Consequently, inserting (3.4.34) in (3.4.33), one obtains that (]3“, ﬁb) solves (3.3.8) and
convergence (3.3.9) holds true. Note that convergences in (3.3.9) and in (3.4.26) hold true for the
whole sequence since the limits are uniquely identified. Moreover, (3.3.7) follows from (3.4.5) and
Proposition 3.4.4. Now, it remains to prove that convergences in (3.4.5) and (3.4.26) are strong.
To this aim, (3.3.9), (3.1.8) with ¢ €]0, 00|, (3.2.9), (3.3.7), and (3.4.5) imply

b
i ([ (@lrotts P+ favip ) oot 32 [ (3lrotah 4 vkt ) o)
n Qa n Qb

- /Q (Bfrot 095, 55)[° + Idiv (0, 55, 55)|°) do + é/m (8]rot (5155, 0)|* + [div (3%, . 0)[*) d.
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from which, using (3.1.8) with ¢ €]0, 00|, (3.4.5), (3.4.26), and (3.4.34), one deduces

.

(rotép?, rot’pl) — (rot (0,5, p3) , rot (%, 53, 0)) strongly in (L? (Q“))S x (L? (Qb))g,

(diveps, dlvflpfl) — (div (0,95, p3) , div (p}, 5,0)) strongly in L* (Q*) x L* (Q°).

\

Consequently, recalling (3.2.10) and (3.1.8) with ¢ €]0, co[, one has

(

HannH (L2(Qa)) || H (L2(Qb))?
hb
||r0tnpn|| (L2(Q2))3 + ||dlvnpn||L2(Qa + HI‘Otnan (L2(Qb))3 + ha ||dlvnanL2 (Q2b)
o o 3.4.35
— ”I‘Ot (0 pQ,pg) H?LQ(QG,))& + Hle (O p27p3) H%Q(Qa) ( )

+0 [0t (5, 55, 0) I 2 yys + € [1div (B, 55, 0) |20

| = 1D (0,55, 58) [ zzqmyo + €| (1. 23, 0) 7oy a5 — +09,

where the boundary conditions of (ﬁ“, ﬁb) play a crucial role in the last equality. Finally, com-
bining (3.4.35) with (3.4.5), (3.4.26), (3.4.34) and, (3.1.8) with ¢ €]0, co| again, one obtains that

convergences in (3.4.5) and (3.4.26) are strong,.

3.5 The proofs in the case / = 0

This section is devoted to proving Theorem 3.3.4.
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3.5.1 A priori estimates on the polarization
The same arguments used to proving Proposition 3.4.1 give

Proposition 3.5.1. Assume (3.1.8) with ¢ = 0, and (3.2.9). For everyn € N, let (pﬁb,pfl) be a

solution of (3.2.8). Then, there exists a constant c such that

1
o ho\*
125l 1gays < ¢ <ﬁ> o <c VneN, (3.5.1)
" (L4(20))3
and
hb %
HDZPZH(LQ(QG))Q <g¢ <h_Z> D}ph, <c Vnel (3.5.2)
" (L2(20))°

Corollary 3.5.2. Assume (3.1.8) with{ = 0, and (3.2.9). For everyn € N, let (p?l,pfl) be a solution
of (3.2.8). Let P, be defined in (3.3.10). Then,

b 2
(%) p? — 0 weakly in (Hl(Qb))3 and strongly in (L’ (Qb))g. (3.5.3)

Moreover, there exist an increasing sequence of positive integer numbers, still denoted by {n}, and

(in possible dependence on the subsequence) p* = (p3, p3) € Ps such that
pr — (0,p5,p5) weakly in (Hl(Q“))3 and strongly in (L4(Qa))3. (3.5.4)

Proof. Proposition 3.5.1 implies (3.5.3) and the existence of a subsequence of N, still denoted by
{n}, and (in possible dependence on the subsequence) of (p{, p3,ps) € (H! (Q))” independent
of x1, such that

and
pe — (pt, p3, py) weakly in (Hl(Q“))3 and strongly in (L4(Q“))3. (3.5.5)

In particular, this ensures
pi = 01in Q%

To complete the proof, it remains to verify

P5(-,0)=0in |- (3.5.6)

NI
N
—

Y
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The trace of p’, 5 vanishing on | -1, [2 x {—1} implies

0
</
-1

Integrating this inequality over } —%, % [2 and using the second estimate in (3.5.2) gives

2

dtin |-1 1% vneN

1
1 atpl;z,?; (xla X, t)
(he)>

(ha)?

1
(ha)?

n

p?’a,3('7 K O) —0 strongly in L? <} _%7 % [2> . (357)
Finally, (3.5.6) follows from (3.5.5), the junction condition in (3.2.3), and (3.5.7). Indeed,

- ; ot
[ 132, 0 o = tim [

1
2 “ 2
/ |pn,3<xlax270)| dxlde

N[
N[

2
dl’ldl’g = 0.

e, 5 S
= lim/ / ‘pn3 (thl,xg,O)‘ dx dry= lim/ /
n _ _ ’ n _hi _1
2

1 1
2 2

qum,a(fl, 2, 0)

O

3.5.2 A convergence result for problem (3.2.6)

Proposition 3.5.3. Assume (3.1.8) with { = 0. Let {(¢%, ¢%) Ynen C (L2 (Q9))° x (L2 (Qb))3 and
q“ = (¢5,4%) € (L*(Q"))?* be such that q“ is independent of x1, and

1
2

(QZ> <%) ’ qZ) — ((0,¢%),0) strongly in (L*(2%))* x (L2 (Qb))3. (3.5.8)
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Moreover, forn € N let <¢‘(qu ) ¢lzqa qb)> be the unique solution of

(

a b a —
(st Shnaty) € U / o Yy e =0,

hﬁ/ (=Dl oy + dn) - Dio")dx (3.5.9)
Qa

ot [ ((~Dilggy + ) D) de =0 V(0. € U

where U, is defined in (3.2.4). Furthermore, let 1j. be the unique solution of (3.3.12). Then, one has

A% a o
<¢((lq%,qg)a (h—%) ¢?q%7q2)) — ( qa,O) strongly in H'(Q%) x H' (Qb), (3.5.10)

AP
1 aqsc(bq%,q%) 1 0 ((h%> ¢(q%7q2)
ha axl ’ hb (9:173

n n

> — (0,0) strongly in L*(Q%) x L* (") . (3.5.11)

Proof. Arguing as in the proof of Proposition 3.4.4, one can prove the existence of a subse-
quence of N, still denoted by {n}, and (in possible dependence on the subsequence) of (T“, Tb) €
H'(Q") x H'(Q") with 7* independent of z; and 7 independent of x3, and of (£,£%) €
L2(Q*) x L? (Q2) such that

ho\ 2 . .
(925((1113“(12); (h—g> ¢?qgqu)> - (Ta,Tb) weakly in Hl(Q ) X Hl(Qb), (3.5.12)

/ Tdxodrs = 0, (3.5.13)
J=3.3 X104

o ) — (&%, €") weakly in L*(Q%) x L* (). (3.5.14)
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The next step is devoted to proving

7(0,-) =0in | -4, 1[. (3.5.15)

Indeed, the junction condition in (3.2.4) gives

p

hb 2
[2 (_TL) ¢%q%7qz)($1,fz,O)@(ﬁz)dl’ldl'g

112 \ he
272
(3.5.16)
= AN he 0 dridz, Yo € C° L1
\ - }_%7%[2 h_% ¢(qg,qg)< nL1l, L2, )@(xQ) T1aT2 p e Gy —5, 5 .
Moreover, (3.1.8) with £ = 0 and the convergence of the first term in (3.5.12) imply
h) 2 . 2
<Z—%) ’ (.2 (-,-,0) — 0 strongly in L* (] -4 ) , (3.5.17)

while, using the second convergences in (3.5.12) and (3.5.14), again (3.1.8) with £ = 0, and arguing

as in the proof of Proposition 5.4 in [34], one can prove

N

4 1
hb\ 2
lim ) @b (Wi, me,0)0(x0)dw day = 7 (29, 0)(22)dxo
n }_l 1[2 h% (qn7Qn)

N

(3.5.18)
| Ve e G5 (]-3:50) -
Then, (3.5.15) follows from (3.5.16), (3.5.17), and (3.5.18).
To identity 7% = g 1t1s enough to pass to the limit, as n diverges, in the equation in (3.5.9) with

a test functions (¢¢, ¢°) such that
a 1 a : a b 1 a : b
¢*(z) = ﬁl/f (22, 23) if v = (11,79, 73) € Q", ¢"(2) = h—a¢ (22,0) if v = (21,79, 73) €,

with ¢* € C*° ([—%7 %} x [0, 1]) to use (3.1.8) with ¢ = 0, previous convergences, the density of
C* ([-3,3] x[0,1]) in H* (] -3, 3] x]0,1[), and (3.5.13).

272 272

To identify 7% = 0, it is enough to pass to the limit, as n diverges, in the equation in (3.5.9) with



3.5 THE PROOFS IN THE CASE / = 0 125

test functions (¢?, ¢°) such that

1
hahb

n-n

¢*(x) =0if v = (x1, 29, x3) € QY gbb(x) = ( )2 b (21, 29) if x = (21,29, 23) € v

with
Y e A= {v e C™ ([—%, %]2> cv=0in]| —§,d[x }—%,%[, for some § > 0 (depending on v)},

. . : o 2\ .
to use previous convergences, the density of A in the space of functions in H' (} —%, % [ ) with

zero trace on {0} x |—1, 1/ and to take into account (3.5.15).

To identify £2, £ and to prove that all the previous convergences are strong one can argue as in

the last part of the proof of Proposition 3.4.4. U

3.5.3 Proof of Theorem 3.3.4

Proof. Corollary 3.5.2 asserts that (3.5.3) holds true and that there exist a subsequence of N, still
denoted by {n}, and (in possible dependence on the subsequence) of p* = (p3, p3) € P, satistying
(3.5.4). Moreover, one can prove the existence of a subsequence of N, still denoted by {n}, and

(in possible dependence on the subsequence) of

such that (the proof of Theorem 3.3.2)

Lo 1 a(%)%) E (31

h_%aZEl? h_l;L 8%3 (9x1

,() weakly in (L2(Q“))3 X (LQ(Qb))3. (3.5.19)

The next step is to identify (p§, p%), 2, and (. Let

P8 = ={¢" = (5.43) € (C" ([-3.3] x [0, 1]))2 : for some § > 0 ( depending on ¢*)

¢s=0in ([-1, -2 +6]U[1—-6,3]) x[0,1], ¢ =0in [-3,1] x ([0,6]U[1—6,1]) }.
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Now, for ¢* = (¢5,¢3) € Pr°8 the couple ((0,¢3,4%),(0,¢5(-,0),0)) belongs to P,. Conse-
quently,

1 1
B (00.00)) < 5 Ea (((0.65.05). (0,05(-,0).0)) V(a5.45) € -5, Vn e N. (35.20)

n

Then, passing to the limit in (3.5.20), as n diverges, and using (3.1.8) with ¢ = 0, (3.2.9), (3.5.3),

) + ) iz

%
2y / (f2, fg)dxl-gaa> dzods

(3.5.4), (3.5.19), Proposition 3.5.3, and a l.s.c. argument imply

ﬁ/ ]rotﬁ“|2dx2d:c3+/ <6<
1-33[x]0.1 Qa

+ 2 —1)% + | Dy,
[, (aum "+ |y;

2

02§ N

8$1

a
025

8$1

0z¢
8;1:1

div () +

11
2°2

NI

a b a b
—i—ﬁ/ (|C2|2 + ]§1|2) dz +/ |C3|2 dx< liminf—En ((ZZ’pn)) < lim sup —En ((pn,pn))
Ob Ob n

a
n n hn

S lim En (((O:QZ>QS)}7L(SOaQQ('7O)7O>)) _ Eo (qa> vqa — (qg’qg) c Pgeg

n

This inequalities hold true also for any ¢ € P, since Pr°8 is dense in P;. One can conclude the

proof arguing as in the last part of the proof of Theorem 3.3.2. O

3.6 The proofs in the case / = +o0

This section is devoted to proving Theorem 3.3.7.

3.6.1 A priori estimates on the polarization

The same arguments used to proving Proposition 3.4.1 give

Proposition 3.6.1. Assume (3.1.8) with { = +00, and (3.2.9). For everyn € N, let (pfl,pfl) be a
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solution of (3.2.8). Then, there exists a constant c such that

1
hEN* ,
‘ (h_b) P < ||an(L4(Qb))3 <c VneN, (3.6.1)
" (LA(Q9))3
and
hn ) paa b b
h_b ann S Ca HannH(LQ(Qb))g S C vn G N (3_6_2)
" (L2(Qa))?

Corollary 3.6.2. Assume (3.1.8) with { = 400, and (3.2.9). For everyn € N, let (pz,pfl) be a
solution of (3.2.8). Let P, be defined by (3.3.19). Then

he : “ ) a3 . a3

(h_%) pl — 0 weakly in (H'(Q2"))" and strongly in (L*(Q%))". (3.6.3)

Moreover, there exist an increasing sequence of positive integer numbers, still denoted by {n}, and
2

(in possible dependence on the subsequence) p° = (]31{,]53) S (Hl G —%, %[2>> with p® - 1 =

Oond (} 13 [2> such that

202
Pl — (5, 95,0) weakly in (I—Il(Qb))3 and strongly in (L4(Qb))3. (3.6.4)

Furthermore, if and h® << \/h%, then
p8(0,-)=0in |—1,1][. (3.6.5)

Proof. Proposition 3.6.1 implies (3.6.3) and the existence of a subsequence of N, still denoted by
{n}, and (in possible dependence on the subsequence) (ﬁlf,ﬁg, ﬁg) € (Hl (Qb))3 independent of

x3, such that
(3,95, 85) - v = 0 on 90N (]=1,4[" x {0})
and
b — (3%, 7%, 7}) weakly in (H'(€2))° and strongly in (L*(©2)).
In particular, this ensures

ph = 0ae. in Q.

Let us prove (3.6.5) under assumption h? << \/he.

In what follows ¢ denotes a constant satisfying Proposition 3.6.1. Let ¢ € Cg° (] -3, 1) .
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Convergence (3.6.4) and the independence of p° of 3 is imply

3
lim / g P O ) e = / P20, 29)(5)ders. (3.6.6)
" —5>3[x]-1,0]

N

On the side, the transmission condition in the last line of (3.2.3) allows us to split the left-hand
side of (3.6.6) as follows

;

/ P2 (0, 2, 3 (s dades = / P2 (0, 2, ) (ws)do =
1-3.5 [x]-1,0] Qb

[ ha0a,m) = (B0 0) (et
Q

/ (pz,l(hsz Ty, T3) — pg’l(hgxl, T2, 0)) p(x2)dz+ (3.6.7)
Ob
1 a a
o (pn,l(ﬂﬁhxm 0) — pn,l(‘rl? $27$3)) p(z2)dz+
n Qax
1

— pz,1($17$2a x3)p(xg)dr Vn € N,
Oén Q%*

where{a, }nen CJ0, 1] is a vanishing sequence of positive numbers which will be defined later,
and Q2 = [—1 11 x |—1 11 x]0, .

272 T 202

As far as the second line and the third line in (3.6.7) are concerned, the Holder inequality and the
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second estimate in (3.6.2) get

(
<

/ b (1 (0, 9, 23) — (ph 1 (howy, T2, 23)) p(a2)da
Q

1
2

a 2
||90||L°°(]—%,%[) </Qb |pz,1(07$2,$3) - (p2,1(hn$1,372,$3)| dx) =

[

0
/ 8tpl;1,,1<t’x27'r3)dt

y lellzeq-s1p (/Q ”
||80HL°°(]—%,$[) ha (/Qb (/ ’atpz,1(t7$2,x3>|2dt> dx) =

2 2
dm) < (3.6.8)

[N

D=

| el qs.ap VREIOnDh llz2n < llellieq-zapv/hie Yn€EN,
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)
<

\ [t ) = (0 0) el
Qb

[)/Qb

0
lellimg s [ ([ 10katrgon et ar) do -

1l oo - dr <

T3
/ atpz,l(h’zajlax?at)dt
0

N

1
2

(3.6.9)

1
||¢||L°°(]—%,%[)h_a\/ he |10 ph 1 || 2y <

hlc V¥n € N.

Note that the last line of (3.6.9) vanishes when h? << /h¢.

As far as the fourth line and the fifth line in (3.6.7) are concerned, the Holder inequality, the first
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estimate in (3.6.2) and the boundary condition on pj; ; get

(

1

Qp

<

[ halona,0) = sGor. . m0) ol
Qax

1 0 u
e sl t)dt‘ o <

(3.6.10)
HQO”Loo 11 |8x3pz,1($)|dx < ||Q0||Loo _11 ‘/O‘n”amngHL?(Qa) <
(] 2 2[) Q (] z 2[)
hi,
lollz=q-s3pvaney /35 Yn €N,
\ n
(1
_/ P (71, T2, 13)(w2)dx| <
()fn Q%*
1 1
H<P|’Loo(];,;[)a—n/m* R Oipy 1 (t, w9, w3)dt | dr <
n 2
(3.6.11)
1 a 1 .
||¢|’L00 _lyl - ‘ampn,l(I)’dx S HSOHLOO _l’l — Oén‘|awlpn71||L2(Qa) S
(] 22[)04 Q (] 22[)@ vV
1 ht

Vn € N.

\HSOHL“(]—%v%D\/a_n "\ hg

Note that choosing «,, = h®+/hl provides that the last line in (3.6.10) and the last line in (3.6.11)

vanish as n diverges.

Finally, choosing a,, = h®+/hb, passing to the limit, as n diverges, in (3.6.7) and taking into
account (3.6.8), (3.6.9), (3.6.10), and (3.6.11) gives

lim/ D1 (0, 2, 23) () daradrs = 0, (3.6.12)
" ]_%7%[X}_170[
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which implies (3.6.5) thanks to (3.6.6) and the fact that ¢ is a generic function in C§° G —%, % D
O

3.6.2 A convergence result for problem (3.3.18)

Lemma 3.6.3. Assume (3.1.8) with { = +o0. For everyn € N, let ( e, qbfl) e U, with U,, defined
in (3.2.4), be such that

Hgb?LHLQ(Qb) S ¢ HD?L(ZS?LH(LZ(Qb))?: S ¢, vn € N7 (3.6.13)

where c is a positive constant independent of n. Then,

1
AR

Proof. Estimates (3.6.13) imply the existence of an increasing sequence of positive integer num-

=0. (3.6.14)
£2(]- 1.5 *x{0})

bers {n; };en, and (in possible dependence on the subsequence) ¢ € H' () with ¢ indepen-
dent of x5 such that
qﬁfll — ¢)* weakly in H* (Qb) ) (3.6.15)

By virtue of the transmission condition in (3.2.4), to obtain (3.6.14) it is enough to prove

hzm /}_ e hb,

11
272

gb?ll (hgzixh X2, O>|2d'r1dx2 = 0 (3616)

At first, we prove the existence of 73 € |—1, 0], and of an increasing sequence of positive integer

numbers {ij }ren such that
nik

b (.-, x3) = * weakly in H* (} —%, % [2) . (3.6.17)

Indeed,

Vi€ N3A; C-1,00: Al =0, 6, (- -yms) € B (]33 x {as} ), Vs €]=1,00\ A
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For every ¢ € N let
+oo

Pi X3 6]_1’0[\UAJ'_>

Jj=1

) (\Dmaﬁii(:vl, 1’2@3)\2 + |Dx2¢2i(331, 3327953)|2 + ’¢2i(1’1>$2, xs)P) dxydrs.

/

Fatou’s Lemma and (3.6.13) imply

11
2°2

0 0
/ liminf p;(z3)dxs < limAinf/ pi(x3)drs < +o00.

-1 -1

Consequently,
+00
de G]O,+OO[, dz, G] — 1,0[\ U Aj, El{zk}keN CN: sz(f?)) <c Vke N,
j=1

which gives (3.6.17) thanks to (3.6.15).

Now, for proving (3.6.16), it is enough to show that each term of the right-hand side of the fol-
lowing splitting

(

nik

2
(bb (hzikazl,x%()) ‘ d(lfldl’g

2
b (hzikxl,xg,()> _ (hgikxl,xg,jg,)‘ dxidxy

nik

(3.6.18)

2
b' <hzikI1,J}2,{f’3> — gbfhk (O,Jfg,fg)) dl’ldl'g

2
b.k (O,Zﬁg,fg)‘ dl‘g, Vk € N,

vanishes as £ diverges.
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By virtue of the second estimate in (3.6.13), and (3.1.8) with ¢ = 400, one has

(e 2
hmksup 0 / e dridxo
L ] 202 [

he 0 2
= lim sup bz’“ / ’/ Dy, ¢ <hfL T1, T, x3> dzs| dxidxs
k hnzk ]7 [2 Z3 ‘k ke

11
2'2

b a b a =
Ny <hmkx1’x2’0> - gbnlk <h’nikxlax27x3>

(3.6.19)

hy 2
< lim sup & ‘nggbb_ (h“, T1, T, x3>‘ dxidzodrs
k . J v kAT

1 2
< lim sup / ‘qubz_ (x)‘ dr | =0.
k h%ik Qb k

By virtue of (3.6.17), and (3.1.8) with ¢ = 400, one has

( i (hf’hk /
im sup
e\ S -aar

\

2
b a = b _
ni, (hnikx'l,l?,x?,) — ¢”2k (O,xg,x3)‘ dwldx2>

h%i T 2
/ ' Dtcbf”k (t, o, Z3) dt d$1dx2) (3.6.20)
0

hy. hy 2
< limksup (hb ‘k 2k /]_ Dxlgbf“k (21, T2, T3) daﬁld:I:Q) =0.

2
£l

As far as the last term of the right-hand side in (3.6.18) is concerned, (3.6.17) provides
b

n;, (0, 73) = ¥’ (0,-) strongly in L2 (] -3, 3[)

which implies

he 2
h?Qf/}[ %@@m)mgzm (3.6.21)
AR

thanks to (3.1.8) with ¢ = +oc.



3.6 THE PROOFS IN THE CASE / = +00 135

Finally, (3.6.16) is obtained by passing to the limit in (3.6.18), as k — 400, and by taking into
account (3.6.19), (3.6.20), and (3.6.21). O

Proposition 3.6.4. Assume (3.1.8) with { = +oco. Let {(¢%, ¢})}nen C (L (Q%))* x (L2 (Qb))3
and ¢* = (qi’, qg) € (L2 (Qb))2 be such that ¢° is independent of x5, and

((%) ’ quQfL) — (0,(¢",0)) strongly in (L? (Qa))3 x (L? (Qb))g, (3.6.22)

Moreover, forn € N let <gba oy )> be the unique solution of

(q%.q5) " (q%.q5

.

a b b _
<¢(q%,q2)’¢(4%7q%)> € Un, /Qb ¢(Q%,q%)dx =0,

hi/ (=D (e ) + @) - Dno™)dx (3.6.23)
Qa

ot [ (<Dl + k) D) de =0 ¥ (0. €U

where U, is defined in (3.2.4). Furthermore, let ngb the unique solution of (3.3.21). Then, one has

((%) 2 <b‘(’q%7q%),(b?q%’q%)> — (0,1/125) strongly in H* (Q%) x H'(Q), (3.6.24)

h& % a
1 0 <<E> (b(q%,qﬁ)) 1 a¢?q%7qz)
ﬁ 8x1 ’ h_?l, 8133

n

— (0,0) strongly in L*(Q*) x L* (). (3.6.25)

Proof. In this proof, ¢ denotes any positive constant independent of n € N.

1 1
Choosing (¢°, ¢°) = <h—b¢c(bq%’qz), h—bgblzq%,q%)) as test function in (3.6.23), applying the Young

inequality, and using (3.6.22) and (3.1.8) with ¢ = +o0 give

1
h?L E a a
H (h_fl) D”(b(q%,q%)

<c VnelN. (3.6.26)

b b
<cgc, HDn¢(q%,q2) (L2(Qb))3

(L2(Q2))?
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The second estimate in (3.6.26) implies

b
H%z,qz) oy S¢ T EN, (3.6.27)
. b -
since o ¢(q%7q2)dx = 0.
On the other side, the second estimate in (3.6.26), and (3.6.27) provides (see Lemma 3.6.3)
N Aaw
llql;n (h_b) ¢(qﬁng) , - O, (3.6.28)
" 12(]-4.4[*x{0})
which combined with the first estimate in (3.6.26) implies
AN
(h_b) Qﬁ(q%’qz) S ¢ VneN. (3629)
" H(Q)

Estimates (3.6.26), (3.6.27) and (3.6.29), and convergence (3.6.28) ensure the existence of a subse-
quence of N, still denoted by {n}, and (in possible dependence on the subsequence) of (7’“, Tb) €
H'(Q*) x H'(Q) with 7 independent of 21 and 7° independent of z3, and of (£*,£") €
L2(Q) x L* (2°) such that

1
he 2
((h_g> (b?q%,q%)"blzqg,qg)) - (Ta,Tb) weakly in Hl(Qa) x Hl(Qb)7

7" =0ae. on |—3, 1] x {0}, (3.6.30)
/ TPdzydes = 0, (3.6.31)
=350
ha 2 a
1 0 ((h_%) (%1#12)) 1 8¢?q%7q%)

h% @xl ’ h% 83;3 (5 75 )Wea y in ( ) X ( )

To identity i 1/}21,, it is enough to pass to the limit, as n diverges, in the equation in (3.6.23)
with test functions (¢¢, ¢°) such that

1 ) “
() = m (0, 24) if v = (x1, 19, 13) € QY
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1 he
h—bv,bb (0,25) if x = (21,29, 73) € Qand |2,| < 7",

gbb(ﬂf) — ¢ (3.6.32)

1 h¢ h
—p* <x1 — sign(xl)?",xg) if 2 = (21,29, 23) € Q" and |z,| > 7",

with ¥* € C> ([—%, %}2), to use (3.1.8) with [ = 400, previous convergences, the density of
e ([—%, %]2> in H' (}—%, %[2>, and (3.6.31).

To identity 7* = 0, it is enough to pass to the limit, as n diverges, in the equation in (3.6.23) with
test functions (¢?, ¢°) such that

1
1 \? , . .
¢ (x) = (hahb) U (29, 23) if 2 = (21,29, 23) € Q%,  ¢°(2) = 0if 2 = (21, 29, 23) € Q°,

with

to use previous convergences, and (3.6.30).

To identify £%, £°, and to prove that all the previous convergences are strong one can argue as in

the last part of the proof of Proposition 3.4.4. O

3.6.3 Proof of Theorem 3.3.7

Proof. Corollary 3.6.2 asserts that (3.6.3) holds true and that there exist a subsequence of N,
still denoted by {n}, and (in possible dependence on the subsequence) of p° = (ﬁl{, ﬁg) € Py
satisfying (3.6.4). Moreover, one can prove the existence of a subsequence of N, still denoted by

{n}, and (in possible dependence on the subsequence) of

2
Ce(rr@”, 2re (£ (1-530 1L (=1,00)) x L2 (=33 # (1,00
such that (compare the proof of Theorem 3.3.2)
B\E
1 8(@) p“) 1 oph

02" ; 2/0a))3 2 /by 3
he o2, e (47@_9%) weakly in (L*(Q%))" x (L*(Q%)".  (3.6.33)

n
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The next step is to identify p° = (p%, p3), 2°, and (. To this aim, for every (¢%, ¢5) € P8, where

.

Pt = {¢®=(&,d5) € (C*([-3, %]))2 : for some § > 0 (depending on ¢*)

¢ =0in ([=5,=3+0 U= 8,00 [5-8,3]) x]-3.3[, (3:6.39
g =0in |3, 5[ x ([-3.—3+0]U [ -d.3]) },

\

consider a sequence {v,, }neny C (H'(92%))? (depending on ¢°) such that
(vn, (qlf» q;’, 0)) € Py, ||Un||(L4(Qa)3 <c ”DZUNH(LQ(QE)Q <c VneN, (3.6.35)
where c is a positive constant independent of n. For instance, (3.6.35) is satisfied setting
Un () = (@ (hemy, ), g5 (hlxy, 32),0) if w = (21, 20, 73) € Q. (3.6.36)

Now, fixing (¢%, ¢5) € Py® and choosing (vy, (¢}, ¢5,0)) as test function in (3.2.8) with {v, }nen
satisfying (3.6.35) give

1 1
h_bEn ((pyawp?b)) S h_%En ((Un7 (qzl)a qga O))) Vn € N. (3637)

n

Then, passing to the limit in (3.6.37), as n diverges, and using (3.1.8) (with { = o0), (3.2.9), (3.6.3),
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(3.6.4), (3.6.33), (3.6.35), Proposition 3.6.4, and a l.s.c. argument imply

(

2 2 d d d d
/Qaﬁ(|C3| +|<2’ ) 'T"’/ |C1| l‘"‘ﬁ/ ‘I'Ot | T1AX2

of, (o () )

0
+/ (a < Pk )2 + Dyl |” +/ (f2, f2) dus -]5") dopdey < (3.6.38)
]_%7%[2 —1

m\»—t
m\»—t

b2
0z

Oxs

8x3

b
073

. (b Oz3
div (p°) + s

a b
<lim infw

n

a b
< limsup M

n

En mny b7 b’O
< hﬁ“( v Equl = >)) = Ex (¢"), Vd' = (¢}, d}) € PE.
\ n

This inequalities hold true also for any ¢* € P,,, since P % is dense in Pa. One can conclude

the proof arguing as in the last part of the proof of Theorem 3.3.2. U

Remark 3.6.5. At first we point out that in this section we are treating the case h® << hl. Let
{vn}nen be the sequence defined by (3.6.36). Note that (Um (¢, q2, 0)) € P,, and in particular
(jzl ) =0 m} 23 [ This property is true since (¢°, ¢%) € Px 8, and in particular ¢¢ = 0 in
] — 0, 5[ |-1, —[ The closure ofP is P.,. Consequently any elements (¢}, q5) € P, satisfies
=0in } 33 [ We are able to prove this property for the limit function only when h?, <<

\/hg. flhe case h? = \/ha or \/h® << h’ is an open problem.



140 CHAPTER 3: FIN JUNCTION OF FERROELECTRIC THIN FILMS




Perspectives

1)

2)

Let Q") be defined as in of Chapter 1, we would like to study the asymptotic behavior of
the following problem

min {IQTl")I /QW (gh(x)‘Vm‘Q + o(m) + %ﬁh(x)vgm> dr,m € H'(QW, Sn—l)}
(3.6.39)

and is subjected to the following constraints

div <—1h(x)D£ + ﬁh(m’)m> =0 inR", (3.6.40)

where
a, € L2(QM), g e L2(QM), 4, € L*R"), (3.6.41)
0<8,(z), 0<aqu(z), 0<7,(z) zae in Q" vh. (3.6.42)

There is partial results studied for this problem in [61].

At first we point out that in Section (3.6) of Chapter 3, we are treating the case h? << h®.

Let {v, }nen be the sequence defined by (3.6.36). Note that (vy, (¢}, ¢5,0)) € P,, and in

particular v, (:I:%, ) = 0in ]—%, % [ This property is true since (qll’, q’Q’) € Pgoeg, and in

particular ¢} = 0in ] — 6,6[x |—3, [ The closure of P8 is P Consequently any
elements (¢}, ¢) € P satisfies ¢}(0,-) = 0in | —3, 3 [. We are able to prove this property

for the limit function only when h? << \/h2. The case h’ = \/h% or \/h% << h? is an

open problem.
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