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Abstract

Forest stands the basic units for forest statistical inventory and mapping. Stands are defined as

(large) forested areas (e.g., 2 ha) of homogeneous tree species composition and age. Their accurate

delineation is usually performed by human operators through visual analysis of very high resolu-

tion (VHR) infra-red colored images. This task is tedious, highly time consuming, and should be

automated for scalability, efficient updating purposes and deeper analysis.

Therefore, a framework based on the fusion of airborne lidar data and VHR multispectral im-

ages is proposed for the automatic delineation of forest stands containing one dominant species

(i.e., which are more pure than to 75%). Indeed, this is a key preliminary task for forest land-cover

database update. The framework is very adaptable and composed of four steps that are deeply

analyzed draw the best from the remote sensing data sources (fusion of VHR optical images and air-

borne 3D lidar point cloud at different levels) as well as and the French Forest land-cover database.

Multi-modal features are firstly extracted and their relevance is assessed. An over-segmentation is

performed in order derive object-based features. They can be trees (obtained from the point cloud)

or any other objects of similar size and/or shape. Because of the high number of features involved,

a feature selection is carried out in order to reduce the computation times and to increase the dis-

crimination as well as to assess the relevance of the extracted features and the complementarity of

the remote sensing data. An object-based supervised classification is performed employing the su-

pervised Random Forest classifier. A special design of the training set is proposed in order to cope

with the potential errors of the Forest land-cover database. Finally, the classification result is further

post processed in order to retrieve the forest stands, that is to say to obtain homogeneous areas with

smooth borders. This smoothing is performed in an energy minimization framework where addi-

tional constraints are proposed to form the energy function. This problem is then formulated as a

graphical one and solved by graph cut optimization algorithm.

The experimental results show that the proposed framework provides very satisfactory results

both in terms of stand labeling and delineation, even for spatially distant regions exhibiting different

landscapes. Multiple fusion schemes are proposed depending on the level of detail desired and

operational constraints (computing times, data).

Keywords: Lidar, multispectral imagery, fusion, feature selection, supervised classification, energy mini-

mization, regularization, forest stand delineation, tree species.



Résumé

Les peuplements forestiers constituent une entité de base pour l’inventaire forestier statistique

et la cartographie. Ils sont définis comme de (grandes) zones forestières (par exemple, de plus de

2 ha) et de composition homogène en terme d’essence d’arbres et d’âge. Leur délimitation précise

est généralement effectuée par des opérateurs humains par une analyse visuelle d’images contenant

un canal infrarouges à très haute résolution (THR). Cette tâche est fastidieuse, nécessite beaucoup de

temps et doit donc être automatisée pour un suivi de l’évolution et une mise à jour plus efficace des

bases de données. Une méthode fondée sur la fusion de données lidar aéroportées et d’images mul-

tispectrales THR est proposée pour la délimitation automatique de peuplements forestiers contenant

une essence dominante (c’est à dire, pure à plus de 75%). Il s’agit en effet d’une tâche préliminaire

importante pour la mise à jour de la base de données de la couverture forestière.

Le méthode est adaptable à la donnée et au paysage étudié. Elle est composée de quatre étapes

qui sont analisée en profondeur qui tirent le meilleur parti des différents sources de données de

télédétection, à l’aide de processus de fusion à plusieurs niveaux des images optiques VHR et du

nuage de points lidar 3D aéroporté mais aussi de l’analyse de la base de données géographique (BD

Forêt) décrivant la forêt Française. Des attributs multimodaux sont d’abord extraits et leur pertience

est évaluée. Ces attributs sont ensuite croisée avec une sursegmentation afin d’obtenir des attributs

au niveau de l’objet. Il peut s’agir d’arbres (obtenus à partir du nuage de points) ou de tout autre objet

de taille et/ou de forme similaire. En raison du nombre élevé d’attributs, une sélection d’attributs

est ensuite effectuée. Elle permet de réduire les temps de calcul, d’améliorer la discrimination ainsi

que d’évaluer la pertinence des attributs extraits et la complémentarité des données de télédétection.

Une classification supervisée fondée objet est ensuite effectuée avec l’algorithme supervisé des Forêts

Aléatoires. Une attention spéciale est apportée à la création du jeu d’apprentissage afin de faire

face aux erreurs potentielles de la base de données Forêt. Enfin, le resultat de la classification est

ensuite traité afin d’obtenir des zones homogènes avec des frontières lisses. Ce lissage est effectué de

manière globale sur l’image en minimisant une énergie, dans laquelle contraintes supplémentaires

sont proposées en plus des formulation classiques pour former la fonction d’énergie. Ce problème

est reformulé de manière graphique et résolu par une approche de type coupe de graphe.

Une étude détaillée des différents parties de la chaîne de traitement proposée à été réalisée. Les

résultats expérimentaux montrent que la méthode proposée fournit des résultats très satisfaisants

en termes d’étiquetage et de délimitation des peuplements, même pour des régions spatialement

éloignées et présentant des paysages différents. La méthode proposée permet également d’évaluer

la complémentarité des sources de données de télédétection (à savoir le lidar et les images optiques

THR). Plusieurs schémas de fusion sont par ailleur proposés en fonction du niveau de détail souhaité

et des éventuelles contraintes opérationelles (temps de calculs, données).

Mots clés: Lidar, imagerie multispectrale, fusion, sélection d’attributs, classification supervisée, minimi-

sation d’énergie, régularisation, délimitation de peuplment forestiers, essence d’arbre.



ix

Résumé étendu en français

1.1 Introduction

L’extraction de l’information dans les zones forestières, en particulier au niveau du peuplement,

est motivée par deux objectifs principaux: l’inventaire statistique et la cartographie. Les peuplements

forestiers sont les unités de base et peuvent être définis en termes d’espèces d’arbres ou de maturité

des arbres. Du point de vue de la télédétection, la délimitation des peuplements est un problème

de segmentation. Pour l’inventaire forestier statistique, la segmentation est utile pour extraire des

points d’échantillonnage significatifs sur le plan statistique et des attributs fiables (surface terrière,

hauteur dominante, etc.) (Means et al., 2000; Kangas et al., 2006). Pour la cartographie du couvert

végétal, la segmentation est très utile pour la mise à jour des bases de données forestières (Kim et al.,

2009). La plupart du temps, pour des raisons de fiabilité, chaque zone est interprétée manuellement

par des opérateurs humains avec des images géospatiales de très haute résolution spatiale. Ce

travail prend beaucoup de temps, de plus, dans de nombreux pays, la grande variété d’essences

forestières (environ 20) rend le problème plus difficile.

L’utilisation de données de télédétection pour l’analyse automatique des forêts est de plus en plus

répandue, en particulier avec l’utilisation combinée du lidar aéroporté et de l’imagerie optique

(imagerie multispectrale à très haute résolution ou imagerie hyperspectrale) (Torabzadeh et al., 2014).

Quelques travaux proposant une délimitation automatique des peuplements forestiers avec

des données de télédétection existent. Tout d’abord, la délimitation peut être effectuée avec une

seule source de télédétection. Une technique de délimitation des peuplements utilisant des images

hyperspectrales est proposée dans (Leckie et al., 2003). Les arbres sont extraits et classés selon 7

espèces d’arbres (5 conifères, 1 caduque et 1 non spécifié) à l’aide un classificateur à maximum de

vraisemblance.

Une méthode de cartographie des peuplements utilisant des données lidar aéroportées à basse

densité est proposée dans (Koch et al., 2009). Elle comporte plusieurs étapes; extraction d’attributs,

rastérisation des attributs et classification à partir du raster. Les peuplements forestiers sont créés en

regroupant les cellules voisines par classe. Ensuite, seuls les peuplements ayant une taille minimale

prédéfinie sont acceptés. Les petites zones voisines d’espèce différentes qui n’atteignent pas la taille

minimale sont fusionnées à un peuplement forestier proche.

La délimitation des peuplements forestiers proposée dans (Sullivan et al., 2009) utilise aussi du

lidar aéroporté à basse densité pour une segmentation suivie d’une classification supervisée.

Trois attributs (couverture de la canopée, densité de la tige et hauteur moyenne) sont calculés et

rasterisés. La segmentation est réalisée par croissance de région. Les pixels spatialement adjacents

sont regroupés en objets ou régions homogènes. Ensuite, une classification supervisée de l’image

segmentée est réalisée à l’aide d’un classificateur de Bhattacharya, afin de définir la maturité des

peuplements (les étiquettes correspondent à la maturité des peuplements).
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Une délimitation de peuplements forestiers utilisant des données lidar aéroportées à haute densité

est également proposée dans (Wu et al., 2014). Trois attributs sont d’abord extraits du nuage de

points; l’indicateur de la taille de l’arbre, l’indice de densité forestière et l’indicateur d’espèces

d’arbres. Une délimitation grossière du peuplement forestier est ensuite effectuée sur l’image des

attributs en utilisant l’algorithme Mean-Shift, avec une valeur élevée des paramètres afin d’obtenir

des peuplements forestiers grossiers sous-segmentés. Un masque forestier est ensuite appliqué à

l’image segmentée afin de récupérer des peuplements forestiers et non-forestiers grossiers. Cette

étape peut créer quelques petites zones isolées qui seront fusionnées à leur voisine la plus proche

jusqu’à ce que leur taille soit supérieure à un seuil défini par l’utilisateur. Les peuplements forestiers

sont ensuite raffinés, mais en utilisant des superpixels générés à partir des trois attributs au lieu

d’utiliser les pixels d’origine de l’image 3 bandes. Le raffinement des peuplements forestiers est

obtenu grâce à une croissance de région. Cette méthode fournit des peuplements relativement

grands.

D’autres méthodes utilisant la fusion de différents types de données de télédétection ont également

été développées. Deux méthodes de segmentation sont proposées dans (Leppänen et al., 2008)

pour une forêt composée de pin sylvestre, d’Épicéa de Norvège et de feuillus. La première est une

segmentation sur la hauteur de couronne suivi d’une croissance de région itérative sur une image

composite de lidar et d’image IRC. La deuxième méthode propose une segmentation hiérarchique

sur la hauteur de couronne. Chaque objet de l’image est connecté à la fois aux objets de l’image de

niveaux supérieur et inférieur. Cela permet de considérer les segments finaux à partir des niveaux

de segmentation les plus fins, comme les arbres individuels dans la zone.

L’analyse des données lidar et multispectrales est effectuée à trois niveaux dans (Tiede et al.,

2004). Le premier niveau représente des petits objets (arbres individuels ou petit groupe d’arbres)

qui peuvent être différenciés suivant des caractéristiques spectrales et structurelles en utilisant une

classification fondée sur des règles. Le deuxième niveau correspond au peuplement. Il est construit

en utilisant le même processus de classification que le niveau précédent, en se référant aux objets

à petite échelle du niveau 1. Le troisième niveau est généré en fusionnant des objets du même

développement forestier en unités spatiales plus grandes. Cette méthode produit une cartographie

permettant d’évaluer la phase de développement forestier (les étiquettes ne correspondent pas aux

espèces d’arbres).

Puisque les peuplements sont l’unité de base pour l’inventaire statistique, certaines méthodes de

segmentation ont été développées à cette fins dans (Diedershagen et al., 2004) et (Hernando et al.,

2012).

Au regard des méthodes existantes, il semble qu’il n’y ait pas de méthode de segmentation

des peuplements forestiers, en termes d’espèce, capables de traiter de façon satisfaisante un

grand nombre de classes (> 5). Il apparaît également que le fait de travailler au niveau de l’objet

(habituellement le niveau de l’arbre), afin de discriminer les espèces d’arbres, produit de meilleurs

résultats de segmentation des peuplements. Plusieurs méthodes de classification des espèces au

niveau des arbres ont été étudiées dans (Heinzel et al., 2012), (Leckie et al., 2003) et (Dalponte et al.,

2015). Toutefois, il est probable qu’elles soient imprécises, ce qui entraîne une classification inexacte

des arbres. Cependant, le classement des essences forestières au niveau des arbres peut être utilisé

pour la délimitation des peuplements forestiers.
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Une méthode pour la segmentation des peuplements en termes d’espèce est proposée dans ce

document. La méthode comprend trois étapes principales. Des attributs sont extraits au niveau

du pixel et de l’objet. Les objets sont déterminés par une sur-segmentation. Une classification est

effectuée au niveau de l’objet car elle améliore significativement les résultats de discrimination

(environ 20% de mieux que la classification sur les pixels). Cette classification est ensuite régularisée

par une minimisation d’énergie. La solution de cette régularisation, obtenue à l’aide d’une méthode

de coupe de graphe, produit des zones homogènes d’espèces d’arbres avec des frontières lisses.

1.2 Méthode proposée

1.2.1 Extraction des attributs

L’extraction des attributs comporte trois étapes;

• Calcul et rastérisation des attributs lidar.

• Calcul des attributs spectraux.

• Extraction des objets (sur-segmentation) et création des image à l’objet.

Attributs lidar

Les attributs lidar nécessitent de prendre en compte un voisinage pour être cohérent. Pour chaque

point lidar, 3 voisinages cylindrique, avec le même axe vertical, sont utilisés (rayons de 1 m , 3 m et

5m, hauteur infinie). Le cylindre est la forme la plus pertinente car elle permet de prendre en compte

toute la variabilité de hauteur des points. Trois rayons sont utilisés afin de gérer les différentes tailles

des arbres. Tout d’abord, deux indices de végétation, D1 et D2, sont calculés: le premier est fondé

sur le nombre de maxima locaux dans les voisinages et le second est lié au nombre de points hors-sol

dans le voisinage (les points au sol ayant été déterminés précédemment par filtrage). D1 et D2 sont

calculés comme suit:

D1 =
∑

r1∈{1,3,5}

∑

r2∈{1,3,5}

Ntr1,r2 , (1.1)

D2 =
1

3

∑

r∈{1,3,5}

Nsr

Ntotr
, (1.2)

où Ntr1,r2 est le nombre de maxima locaux extraits d’un filtre maximal de rayon r1 dans le voisinage

cylindrique de rayon r2. Nsr est le nombre de points classés comme "sol" dans le voisinage de rayon

r et Ntotr est le nombre total de points dans le voisinage de rayon r.

La dispersion S et la planarité P sont aussi calculés en suivant la formulation de (Weinmann et al.,

2015):

S =
1

3

∑

r∈{1,3,5}

λ3,r

λ1,r
, (1.3)

P =
1

3

∑

r∈{1,3,5}

2× (λ2,r − λ3,r), (1.4)
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où λ1,r ≥ λ2,r ≥ λ3,r sont les valeurs propres de la matrice de covariance des points dans le voisinage

cylindrique de rayon r. Elles sont obtenues par une simple analyse en composante principale.

Des attributs statistiques, reconnus pour être pertinents pour la classification des espèces (Dalponte

et al., 2014; Torabzadeh et al., 2015), sont aussi calculés. Pour chaque point lidar, les 3 mêmes

voisinages cylindriques sont utilisés. Deux informations du lidar, la hauteur et l’intensité, sont

utilisées afin de dériver des attributs statistiques. Un attribut statistique fd, dérivé d’une information

fo, (hauteur ou intensité) est obtenu comme suit:

fd =
1

3

∑

r∈{1,3,5}

fs(pr,fo), (1.5)

où fs est une fonction statistique (minimum; maximum; moyenne; médiane; écart-type; dévia-

tion absolue médiane d’une médiane (medADmed); déviation absolue moyenne d’une médiane

(meanADmed); skewness; kurtosis; 10ème, 20ème, 30ème, 40ème, 50ème, 60ème, 70ème, 80ème, 90ème et

95ème centile), et pr,fo un vecteur contenant les valeurs des points de l’information fo dans le cylin-

dre de rayon r. Toutes ces fonction statistiques sont utilisées pour la hauteur. Seule la moyenne est

utilisée pour l’intensité: il est difficile de savoir si le capteur a été correctement calibré et une correc-

tion des valeurs d’intensité dans la canopée n’a pas encore été proposée.

24 attributs sont calculés au cours de cette étape; 2 liés à la densité de végétation, 2 liés à la distribu-

tion 3D locale du nuage de points et 20 attributs statistiques.

Les 24 attributs sont rastérisés à la même résolution spatiale que l’image multispectrale, en utilisant

la méthode proposée dans (Khosravipour et al., 2014). Cette méthode est intéressante car elle pro-

duit des images lisses, qui permettent d’obtenir de meilleurs résultats pour la classification et la

régularisation (Li et al., 2013a). Le modèle numérique de surface (MNS) est aussi obtenu en utilisant

cette méthode, à la même résolution spatiale, en utilisant un modèle numérique de terrain (MNT)

précédemment obtenu en filtrant le nuage de points. Le MNS est très important car il permet de

déterminer la hauteur par rapport au sol et est un attribut très discriminant pour la classification

(Mallet et al., 2011; Weinmann, 2016). Au total, 25 attributs lidar sont calculés.

Attributs spectraux

Les 4 bandes spectrales sont conservées et considérées comme des attributs spectraux. 3 in-

dices de végétation pertinents; le NDVI, le DVI et le RVI sont calculés car ils peuvent fournir plus

d’information que les bandes originales seules (Zargar et al., 2011). Comme pour les attributs lidar,

des attributs statistiques sont calculés pour chaque bande et chaque indice de végétation en utilisant

l’équation 1.5 (3 voisinages circulaires de rayon de 1m, 3m et 5m). D’autres fonctions statistiques sont

utilisées (minimum; maximum; moyenne; médiane; écart-type; déviation absolue moyenne d’une

médiane (meanADmed); déviation absolue moyenne d’une moyenne (meanADmean); déviation ab-

solue médiane d’une médiane (medADmed); déviation absolue médiane d’une moyenne (medAD-

mean). Au total, 70 attributs spectraux sont calculés.

Extraction d’objets

L’extraction d’objets est une étape importante permettant d’améliorer les résultats de la classifi-

cation. Cependant, les objets peuvent être extraits de différentes manières; il est possible d’effectuer

une simple sur-segmentation sur l’un des 95 attributs disponibles (Whatershed) ou bien d’utiliser des

algorithmes plus avancés (SLIC, Quickshift, etc.) ou bien d’extraire les arbres directement du nuage
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de points. Il apparaît que le choix de la méthode de sur-segmentation n’impacte que très peu les ré-

sultats finaux. La sur-segmentation est effectuée sur le MNS. Une fois la sur-segmentation effectuée,

les attributs sont moyennés sur les objets: la valeur vt d’un pixel appartenant à l’objet t est:

vt =
1

Nt

∑

p∈t

vp, (1.6)

où Nt est le nombre de pixels dans l’objet t, et vp est la valeur du pixel p.

1.2.2 Classification

La classification est composée de deux étapes; tout d’abord, le nombre d’attributs est réduit,

en sélectionnant uniquement les plus pertinents, puis la classification est effectuée sur les attributs

sélectionnés.

Sélection d’attributs

À cause du grand nombre d’attributs disponibles, une étape de sélection d’attributs doit être mise

en place. La sélection d’attributs comporte deux étapes; l’une qui permet de déterminer le nombre

d’attributs à sélectionner et l’autre de sélectionner les attributs.

L’algorithme SFFS (Sequential Forward Floating Search) (SFFS) (Pudil et al., 1994) est utilisé pour les

deux étapes. Cet algorithme présente deux avantages: (i) il peut être utilisé avec plusieurs scores de

classification (dans cette étude, le coefficient Kappa), (ii) il permet d’accéder à l’évolution du score

de classification en fonction du nombre d’attributs sélectionnés. L’algorithme SFFS sélectionne p

attributs qui maximisent le score de sélection d’attributs (le coefficient Kappa).

Classification

Un classificateur supervisé est utilisé afin de discriminer les essences forestières fournies par

une base de données (BD) de couverture forestière existante. La classification est obtenue à l’aide

de l’algorithme des forêts aléatoires. Cette méthode de classification a démontré être pertinente

dans la littérature (Belgiu et al., 2016) et dans une étude précédente comparée aux Séparateurs à

Vaste Marge (SVM) (Dechesne et al., 2016), car elle fournit des résultats similaires tout en étant plus

rapide. Les résultats de la classification sont (i) une carte de label et (ii) une carte de probabilité

(probabilités de chaque classe pour chaque pixel). Cette carte de probabilité est nécessaire pour

l’étape de régularisation suivante.

1.2.3 Régularisation

La classification peut ne pas être suffisante pour obtenir des zones homogènes avec des frontières

lisses. Par conséquent, afin de s’adapter au modèle de peuplement, la régularisation de la classifi-

cation au niveau des pixels est nécessaire. Elle peut être effectuée de manière locale (par utilisation

de filtre ou par relaxation probabiliste). Cependant, une régularisation globale par minimisation

d’énergie reste la solution la plus optimale. De plus, une telle formulation permet d’insérer des

contraintes supplémentaires pour une délimitation plus spécifique des peuplements forestiers.
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Formulation de l’énergie

Le modèle énergétique proposé repose sur un modèle graphique, c’est-à-dire que le problème

est modélisé par un graphe probabiliste prenant en compte les probabilités de classe P et la carte

d’attributs normalisés (moyenne nulle et écart-type unitaire) A. Il se compose d’un terme d’attache

à la donnée et d’un terme de régularisation. Pour une image I et une carte de classification C,

l’énergie E est formulée comme suit:

E(I, C) =
∑

u∈I

Edata(C(u)) + γ
∑

u,v∈N

Epairwise(C(u), C(v)), (1.7)

avec:

γ ∈ [0,∞[;

Edata(C(u)) = f(P (C(u)));

Epairwise(C(u) = C(v)) = 0;

Epairwise(C(u) 6= C(v)) = V (u, v).

N désigne la 8-connexité, et P (C(u)) est la probabilité qu’un pixel u appartienne à la classe C(u).

γ est le paramètre de régularisation permettant de contrôler l’influence des deux termes et donc le

niveau d’homogénéité des segments.

Edata est le terme d’attache aux données. Epairwise est le terme de régularisation, permettant de

mesurer la différence entre les attributs du pixel u et les attributs de ses 8 voisins. L’énergie ex-

prime à quel point les pixels sont bien classés et à quel point les attributs sont similaires. D’autres

modèles de champs aléatoires conditionnels pourraient être envisagés pour l’expression de l’énergie

(Schindler, 2012; Volpi et al., 2015; Tuia et al., 2016). Epairwise pourrait être exprimée relativement à

plus de pixels.

La fonction f liée à Edata la plus efficace (voir Équation 1.7) est:

f(x) = 1− x, avec x ∈ [0, 1]. (1.8)

Cette fonction permet de contrôler l’importance à donner au résultat de la classification. Une simple

fonction linéaire permet de contrôler l’énergie: quand la probabilité est proche de zéro, l’énergie

est maximale. Inversement, quand la probabilité est forte, l’énergie est minimale. Cette fonction

permet de conserver ce terme dans [0, 1] et ainsi simplifier le paramétrage de γ. D’autres formulations

peuvent être envisagée mais il est apparu que cette formulation produit les meilleurs résultats pour

notre problème.

Le terme de régularisation est une mesure qui contrôle la valeur de l’énergie en fonction de la

valeur des attributs des 8 voisins. Deux pixels de classe différentes, mais avec des valeurs d’attributs

proches sont plus susceptibles d’appartenir à la même classe que deux pixels de classes différentes

avec des valeurs d’attributs différents. La valeur de l’énergie doit être proche de 1 lorsque les valeurs

des attributs sont assez similaires et décroit à mesure de leur différence. Le terme de régularisation
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V le plus efficace est exprimée comme suit:

V (u, v) =
1

nopt

nopt∑

i=1

(
− exp(−λi|Ai(u)−Ai(v)|)

)
. (1.9)

∀ i ∈ [1, nopt], λi ∈ [0,∞[, où i est l’indice correspondant à l’attribut. Ai(u) est la valeur du ième

attribut du pixel u.

λ = [λ1, λ2, ..., λopt] est un vecteur de longueur égale au nombre d’attributs (nopt). Ce vecteur assigne

des poids différents aux attributs. Si λi = 0 l’attribut i ne sera pas pris en compte dans le processus de

régularisation. Quand λi est important, une petite différence entre les attributs impactera beaucoup

l’énergie. Ainsi, l’attribut i aura un fort impact dans la régularisation. Les attributs étant de différents

types (hauteur, réflectance, densité de végétation, etc.), il est donc important de garder les termes

dans [0, 1] pour chaque attribut, même si ils ne sont pas initialement dans la même gamme de valeurs.

Dans notre étude, tous les poids λi sont fixés à 1 ∀i. D’autre formulations pour cette énergie peuvent

être envisagées (un simple modèle de Potts par exemple).

Minimisation d’énergie

La minimisation de l’énergie est réalisée en utilisant des méthodes de coupe de graphe.

L’algorithme de coupe de graphe utilisé est l’optimisation pseudo-booléenne quadratique (QPBO)

avec α-expansion. Il s’agit d’une méthode de coupe de graphe très rependue qui résout efficacement

les problèmes graphiques de minimisation d’énergie (Kolmogorov et al., 2007). L’α-expansion est

une technique permettant de traiter les problèmes multi-classes (Kolmogorov et al., 2004).

Lorsque γ = 0, le terme de régularisation n’a aucun effet dans la formulation énergétique; la classe

la plus probable est attribuée au pixel, conduisant au même résultat que la sortie de classification.

Lorsque γ 6= 0, la carte d’étiquette résultante devient plus homogène, et les bords des segments sont

plus lisses. Cependant, si γ est trop élevé, les petites zones sont liées pour être fusionnées dans des

zones plus grandes, en supprimant une partie des informations utiles fournies par la classification.

1.3 Données

Les zones d’étude se situent sur des forêts de différentes régions de France présentant des

paysages différents. Elles offrent une importante diversité des espèces d’arbres en présence. Chaque

zone comprend un grand nombre d’espèces (4-5 espèces par zone), permettant de tester la robustesse

de la méthode.

Les images multispectrales aéroportées ont été acquises par les caméras numériques IGN (Souchon

et al., 2012). Elles sont composées de 4 bandes: 430-550 nm (bleu), 490-610 nm (vert), 600-720 nm

(rouge) et 750-950 nm (proche infrarouge) avec une résolution spatiale de 0,5 m.

Les données lidar aéroportées ont été recueillies en utilisant un dispositif Optech 3100EA.

L’empreinte était de 0,8 m afin d’augmenter la probabilité d’atteindre le sol. La densité de points

pour tous les échos varie de 2 à 4 points/m2. Nos données multispectrales et lidar sont en adéqua-

tion avec les normes utilisées dans de nombreux pays pour des fins de cartographie forestière à

grande échelle (White et al., 2016). Les données ont été acquises en conditions foliaires, en mai et

juin 2011 pour les images multispectrales et les données lidar, respectivement. Le recalage entre le

nuage de points lidar et les images multispectrales VHR a été réalisé par l’IGN à partir de points de
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contrôle au sol. Il s’agit d’une procédure standard de l’agence de cartographie française qui présente

des résultats comparables aux solutions professionnelles standard.

La BD Forêt est composée de polygones 2D délimités par photo-interprétation. C’est une base de

donnée géographique nationale française pour les forêts, librement accessible 1. Elle est utilisée à la

fois pour entraîner le classificateur et pour évaluer les résultats. Seuls les polygones contenant au

moins 75% d’une espèce donnée sont utilisés pour la classification (c’est le seuil qui définit quand

un peuplement peut être attribué à un type de végétation unique et considéré comme "pur"). Les

polygones de végétation (lande ligneuse et formation herbacée) sont également pris en compte pour la

classification. Comme cette étude ne s’intéresse qu’aux espèces, la vérité terrain utilisée ne couvrira

donc pas l’ensemble de la zone (les zones contenant du mélange ne seront pas prise en compte).

1.4 Résultats

1.4.1 Sélection d’attributs

L’algorithme SFFS permet de déterminer le nombre optimal de d’attributs à sélectionner, et de les

sélectionner. Le nombre optimal d’attributs à sélectionner est ici de 20. Ce nombre a été conservé

pour les autres zones et les résultats montrent que le transfert n’a aucun impact sur la précision

finale. Une fois le nombre optimal d’attributs déterminé, la sélection a été effectuée 40 fois sur toutes

les zones de test afin de récupérer les attributs les plus pertinents. En moyenne, 61% des attributs

sélectionnés proviennent de l’information spectrale et 39% de l’information lidar. Ceci montre la

complémentarité des deux données de télédétection.

Pour les informations spectrales, les attributs dérivés des bandes originales sont plus pertinents que

les indices de végétation. L’attribut statistique le plus pertinent pour l’information spectrale est le

minimum (17% de la sélection spectrale). Le maximum (12%), la médiane (11%), la moyenne (11%)

et l’écart-type (10%) sont également pertinents.

Pour l’information lidar, l’attribut le plus pertinent est étonnamment l’intensité, sélectionnée dans

chacune des 40 sélections (12% de la sélection lidar, 5% de la sélection totale). L’écart-type de la

hauteur(8% de la sélection lidar), le maximum de la hauteur(7%) et les densités (5% et 6% de la

sélection lidar) sont également pertinents.

1.4.2 Classification

Les résultats de la classification et leur impact sur la segmentation finale sont illustrés par les

Figures 1.1 et 1.2 pour une seule zone. La précision est calculée en comparant chaque pixel de la

BD Forêt aux résultats de classification. Il apparaît clairement que l’approche de classification au

pixels conduit à des cartes d’étiquettes bruitées, même si l’on obtient des résultats corrects (70.5%

de précision globale). D’un autre coté, la classification sur les objet produit des étiquettes plus co-

hérentes sur le plan spatial (93.14% de précision globale). Cette différence est directement reflétée

sur la segmentation finale. En effet, la régularisation basée sur la classification au pixel obtient 91.9%

de correspondance correcte avec la BD Forêt, tandis que la régularisation basée sur la classification

1http://inventaire-forestier.ign.fr/spip/?rubrique67
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par objets 97.4%. Ces résultats confirment la pertinence du niveau objet pour la classification. Ces

résultats ont également été observés pour les autres zones.

(A) Image optique IRC THR. (B) MNS.

(C) Classification fondée pixel (précision globale:
70.48%, κ: 0.50).

(D) Classification fondée objet (PFF) (précision
globale: 93.14%, κ: 0.86).

FIGURE 1.1: Résultats de classification; comparaison entre la méthode fondée pixel et la méthode fondée
objet.

1.4.3 Régularisation

Les résultats finaux sont présentés par la figure 1.3. La précision globale montre que la méthode

donne des résultats satisfaisants en termes de discrimination des espèces d’arbres, dans la gamme

des documents existants de la littérature pour le même nombre d’espèces (Leckie et al., 2003; Lep-

pänen et al., 2008). Deuxièmement, les résultats sont améliorés jusqu’à 15% grâce au lissage des

résultats. Malgré des précisions très élevées, les résultats doivent être considérés avec précaution. Ils

sont comparés à une BD qui comporte des défauts et ne couvre pas l’intégralité des zones d’étude.

L’analyse visuelle des les scores de segmentation peuvent en fait être pris avec une marge de ±5%.

Le réglage de γ est également une étape importante; quand il est trop bas (par exemple < 5), certains

petits segments non pertinents peuvent rester dans la segmentation finale, ce qui entraîne un score

de segmentation faible. Cependant, cette sur-segmentation peut être utile pour l’inventaire forestier
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(A) Regularisation avec une classification fondée
pixel (précision globale: 91.94%, κ: 0.85).

(B) Regularisation avec une classification fondée objet
(précision globale: 97.44%, κ: 0.95).

FIGURE 1.2: Résultats de régularisation; comparaison entre la méthode utilisant une classification
fondée pixel et la méthode utilisant une classification fondée objet.

statistique et la cartographie, car elle fournit de petites zones homogènes au sein de grands peuple-

ments. Lorsque γ se trouve dans [10, 15], la précision de segmentation est élevée: chaque classe est

correctement étiquetée à plus de 95%. Cependant, avoir un γ élevé (> 20) diminue légèrement la

précision de la segmentation, mais réduit également considérablement la précision des classes sous-

représentées (une classe ayant une petite superficie sera fusionnée à une classe ayant une plus grande

superficie).

1.5 Conclusion

Une méthode en trois étapes pour la délimitation des peuplements forestiers, en termes d’espèce,

a été proposée. La fusion des données lidar aéroporté et des images multispectrales produit des

résultats très satisfaisants puisque les deux modalités de télédétection fournissent des observations

complémentaires. Les segments finaux obtiennent un bon score de correspondance avec les peu-

plements délimités par les opérateurs humains. La méthode repose sur le calcul d’attributs lidar et

spectraux à différents niveaux (pixel et objet) pour une classification supervisée des espèces d’arbres.

De bon scores de classification sont obtenus, produisant une base solide pour une délimitation des

peuplements. Cette délimitation est alors effectuée grâce à une régularisation globale de la classi-

fication. Elle repose sur un modèle énergétique formulé en fonction des résultats des probabilités

de classification et des valeurs des attributs. Elle permet d’obtenir des zones homogènes en termes

d’espèces avec des frontières lisses. De plus, il est possible de contrôler le niveau des détails requis

pour la délimitation du peuplement, qui dépend de l’inventaire forestier ou des spécifications de la

BD.

L’objectif étant de délimiter les peuplements forestiers en fonction du type de végétation (princi-

palement des espèces d’arbres), l’utilisation d’images superspectrale ou hyperspectrales pourrait

être intéressante pour obtenir plus d’informations sur les espèces et surtout surmonter le problème
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de la variabilité des espèces. D’autres indices de végétation peuvent également être dérivés à partir

des données hyperspectrales. De plus, l’utilisation de données lidar à haute densité ( ∼ 10 pts/m2)

pourrait également améliorer les résultats de la méthode.

(A) Image optique IRC
THR.

(B) MNS. (C) BD Forêt. (D) Classification. (E) Régularisation.

(F) Image optique IRC
THR.

(G) MNS. (H) BD Forêt. (I) Classification. (J) Régularisation.

(K) Image optique IRC
THR.

(L) MNS. (M) BD Forêt. (N) Classification. (O) Régularisation.

FIGURE 1.3: Résultats sur différentes zones.
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2 Chapter 1. Introduction

1.1 Analysis of forested areas

Forests are a core component of planet’s life. They are defined as large areas dominated by trees.

Hundreds of other definitions of forest may be used all over the world, incorporating factors such as

tree density, tree height, land use, legal standing and ecological function (Schuck et al., 2002; Achard,

2009).

Forest are commonly defined "Land spanning more than 0.5 hectares (ha) with trees higher than

5 meters and a canopy cover of more than 10 percent, or trees able to reach these thresholds in situ.

It does not include land that is predominantly under agricultural or urban land use" according to

Food and Agriculture Organization (FAO) 1 (Keenan et al., 2015). They may consist either of closed

forest formations where trees of various storeys and undergrowth cover a high proportion of the

ground; or open forest formations with a continuous vegetation cover in which tree crown cover

exceeds 10 %. Young natural stands and all plantations established for forestry purposes which have

not yet reach a crown density of 10 percent or tree height of 5 m are included under forest, since they

are normally forming part of the forest areas which are temporarily unstocked as a result of human

intervention or natural causes, but which are expected to revert to forest.

FIGURE 1.1: Forest repartition and categorization in the world. The three categories of forest are dis-
tributed according to their distance to the equator 2.

Forests are the dominant terrestrial ecosystem of Earth, and are distributed across the globe (Pan

et al., 2013). They cover about four billion hectares, or approximately 30% of the World’s land area

(see Figure 1.1). Forests at different latitudes and elevations form distinct ecozones: boreal forests

near the poles, tropical forests near the Equator and temperate forests at mid-latitudes (see Fig-

ure 1.1). Higher elevation areas tend to support forests similar to those at higher latitudes, and

the amount of precipitation also affects forest composition. Since these ecozones are very different,

1http://www.fao.org/docrep/017/ap862e/ap862e00.pdf
2http://dyntatrishana.blogspot.fr/2015/11/about-value-of-forests.html
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the study at a fine level (e.g. species composition) of forested areas must be restricted to a single

ecozone at a time.

Human society and forests influence each other in both positive and negative ways (Vogt et al.,

2006). On one hand, human activities, including harvesting forest resources, can affect forest ecosys-

tems. On the other hand, forests have three main contributions to human: ecosystem services, tourist

attraction and harvesting.

Ecosystem services.

Forests provide ecosystem services. They are involved in the provisioning of clean drinking water

and the decomposition of wastes. Forests account for 75% of the gross primary productivity of the

Earth’s biosphere, and contain 80% of the Earth’s plant biomass (Pan et al., 2013). They also hold

about 90% of terrestrial biodiversity (Brooks et al., 2006; Wasiq et al., 2004). Forests are also beneficial

for the environment; they capt and store the CO2 (Fahey et al., 2010) (see Figure 1.2). About 45%

of the total global carbon is held by forests. They also filter dust and microbial pollution of the

air (Smith, 2012). Finally, they also play an important role in hydrological regulation and water

purification (Lemprière et al., 2008) (see Figure 1.2).

FIGURE 1.2: Carbon cycle: a process of CO2 storage, water and air purification 3.

Harvesting/wood resources.

Wood from trees displays many uses. It is still widely used for fuel (Sterrett, 1994). In this case,

hardwood is preferred over softwood because it creates less smoke and burns longer. Wood is still

an important construction material (Ramage et al., 2017): Elm was used for the construction of wood

boats. In Europe, oak is still the preferred variety for all wood constructions, including beams, walls,

doors, and floors (Thelandersson et al., 2003). A wider variety of woods is also used such as poplar,

small-knotted pine, and Douglas fir. Wood is also needed in the paper industry since wood fibers

3http://www.atmosedu.com/Geol390/Life/CarbonCycleShort.html
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are an important component of most papers. Eventually, wood is also extensively used for furniture

or for making tools or music instruments.

Tourist attraction and recreative activities.

Forests serve as recreative attractions. In France, there are hundred of long distance footpaths (∼
60000km) through forests. Other activities such as rock climbing, mountain bike or adventure parks

are mostly practiced in forests.

The evolution of forests need to be monitored in order to efficiently exploit the forest resources

in a sustainable way (Paris Agreement 2015). For example, France is a significant wood importer (∼
25 millions of m3 per year), while the French forest is the third in Europe in term of volume 4. It is

therefore needed to better manage and exploit the French wood stocks.

The assessments of these stocks are all the more difficult because a large part (about 75%) of the

French forest is private, leading to a a more complex management and exploitation. Furthermore,

they can be assessed at different (i.e. forest, stand/plantation, tree) levels with more or less accuracy.

In order to evaluate the forest resources, a precise mapping combined with accurate statistics

of forests therefore is needed. Such statistics are already operational at a national level and

widely employed for the evaluation of forest resources. However, a precise mapping would

allow to refine the evaluation of forest resources. Forests are complex structures (Pommerening,

2002), for which information is needed for management, exploitation and more generally for

public and private policies. Such information can be the tree species or the tree maturity of the

forest. There are two ways to extract such information from forest; field inventory or remote

sensing. The field inventories are very expensive to set up and are adapted for statistics (consid-

ering a limited set of inventory sites) but only at a regional or national scale. Remote sensing is

a more relevant way in order to obtain such information since it allows to extract them at larges scale.

In order to meet these needs, two synergistic products could be produced: statistical inventory

or forest mapping.

1.2 Remote sensing for forested areas

Remote sensing through automatic Earth Observation image analysis has been widely recognized

as the most economic and feasible approach to derive land-cover information over large areas and

for a large range of needs. The obvious advantage is that remote sensing techniques can provide LC

information on different levels of details in a homogeneous and reliable way over large scales. They

can also provide bio-geophysical variables and change information (Hansen et al., 2013), in addition

to the current cover of the Earth surface.

The analysis of forested areas from a remote sensing point of view can be performed at three

different levels: pixel (straightforward analysis), object (mainly trees), plots or stands. In statistical

national forest inventory (NFI), an automated and accurate tree segmentation would simplify the

extraction of tree level features (basal area, dominant tree height, etc., (Means et al., 2000; Kangas

et al., 2006)), since there is no straightforward way to obtain them. Two kinds of features can be

4http://ec.europa.eu/eurostat/documents/3217494/5733109/KS-31-11-137-EN.PDF
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extracted, the ones estimated directly from remote sensing data and the ones interpolated using

allometric equations.

The tree level is not the most suitable level of analysis for forest studies at a national scale

but should be preferred for local studies. The plots correspond to the level of analysis in fields

inventories; statistics are derived at this level and interpolated at a larger scale. When a joint

mapping and statistical reasoning is required (e.g., land-cover (LC) mapping and forest inventory

(Tomppo et al., 2008)), forest stands remain the prevailing scale of analysis (Means et al., 2000; White

et al., 2016). A stand can be defined in many different ways in terms of homogeneity: tree specie,

age, height, maturity. Its definition varies according to the countries and agencies.

From a remote sensing point of view, the delineation of the stands is a segmentation problem.

Forest stands are preferred, since they allow to extract reliable and statistically meaningful features

and to provide an input for multi-source statistical inventory. For land-cover mapping, this is highly

helpful for forest database updating (Kim et al., 2009), whether the labels of interest are vegetated areas

(e.g., deciduous/evergreen/mixed/non-forested), or, even more precisely, the tree species.

• Manual delineation.

To obtain such information, most of the time in national forestry inventory institutes, for reliability

purposes, each area is manually interpreted by human operators with very high spatial resolution

(VHR) geospatial images focusing on the infra-red channel (Kangas et al., 2006). This work is ex-

tremely time consuming and subjective (Wulder et al., 2008b). Furthermore, in many countries, the

wide variety of tree species (e.g., >20) significantly complicates the problem. This is all the more true

than photo-interpretation may not always be sufficient (consensus may even not be reached between

experts) and even in case of few species (3-5).

• Automatic delineation.

The design of an automatic procedure based on remote sensing data would fasten and ease such

process. Additionally, the standard manual delineation procedure only takes into account the

species, and few physical characteristics (alternatively height, age, stem density or crown closure).

Instead, an automatic method could offer more flexibility not being limited to a visual analysis and

using characteristics extracted from complementary data sources and not only Colored Infra-Red

(CIR) ortho-images.

The use of remote sensing data for the automatic analysis of forests has been growing in the

last 15 years, especially with the synergistic use of airborne laser scanning (ALS) and optical

VHR imagery (multispectral imagery and hyperspectral imagery) (Torabzadeh et al., 2014; White

et al., 2016). Several countries have already integrated such remote sensing data sources in their

operational pipeline for forest management (Tokola, 2015; Wulder et al., 2008a; Patenaude et al.,

2005) and characterization. Furthermore, they can be employed for forest management. ALS

provides a joint direct access to the vertical distribution of the trees and to the ground underneath

(Holmgren, 2004). Hyperspectral and multispectral optical images are particularly relevant for

tree species classification: spectral and textural information from VHR images can allow a fine

discrimination of many species (Clark et al., 2005; Franklin et al., 2000). Multispectral images are

often preferred due to their higher availability, and higher spatial resolution (Belward et al., 2015).

Multispectral and hyperspectral images can be acquired from airplanes or satellites. Spaceborne

sensors allow to capture large areas with a higher temporal rate but generally suffer from a lower

spatial resolution, even if the gap decreases every year (see Table 1.1). For a better spatial resolution,
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airborne multispectral images are preferred since they also allow to extract more relevant texture

features for tree species classification (Franklin et al., 2000). The airborne linear Lidar technology has

been widely used for remote sensing tasks (Lim et al., 2003; Shan et al., 2008; Vosselman et al., 2010).

Lidar has been successfully employed for many forest applications (Ferraz et al., 2016b). The new

Geiger mode lidar (Ullrich et al., 2016) and single photon lidar (Viterbini et al., 1987) are also very

promising, allowing a significantly higher point density with different angles at a higher altitude,

enabling the coverage of larger areas at a better cost than classic Lidar systems. Employing such

3D data could have an important impact, especially on the studies of forested areas (Jakubowski

et al., 2013; Strunk et al., 2012). Similarly to hyperspectral Lidar (Kaasalainen et al., 2007), additional

research is required to accurately assess that relevance on our scope.

Synthetic Aperture Radar (SAR) is widely employed for the evaluation of biomass, especially in

forested environment (Le Toan et al., 1992; Beaudoin et al., 1994). With its ability to penetrate the

vegetation, SAR in P-band (0.3-1GHz) allows to estimate efficiently the aboveground biomass. Thus,

SAR can be employed in order to extract relevant information of forests but is not well adapted for

the discrimination of the species.
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1.3 Context of the thesis

In France, the study of forests mainly consist in mapping and inventory. It can also be envisaged

for the assessment of biodiversity, the impact of forests on human behaviors or on climate etc.

The forest inventory of IGN allows to obtain an estimation of the wood stock and the forestation

rate at different scales (national, regional, departmental, see Figures 1.3 & 1.4). Statistics such as

volume per hectare, deciduous volume or conifer volume can then be derived. The inventory is

performed through extrapolation of field inventories.

12%

European

oak

11%

Sessile oak
10%

Beech

5%

Chestnut

4%

Hornbeam

4%
Pubescent oak

4%Ash

14%
Other

hardwood

8%

Pectinated fir
8%

Spruce

6%

Scots pine

5%

Maritime pine

4%
Douglas fir

5% Other

conifersConifers:

920 millions m2

Hardwood:

1647 millions m2

FIGURE 1.3: Distribution wood volume per species at the national scale5.

Forest mapping as also interesting for the understanding of forested areas. It is traditionally

provided through a national forest land-cover (LC) database (DB) (see Figure 1.5). In France, it is

manually interpreted by human operators using VHR CIR ortho-images. It assigns a vegetation type

to each mapped beach of more than 5000 m2. The nomenclature is composed of 32 classes based on

hierarchical criteria such as pure stands of the main tree species of the French forest. The forest LC

should be updated in a 10 years cycle.

5http://inventaire-forestier.ign.fr/spip/IMG/pdf/Int_memento_2013_BD.pdf
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FIGURE 1.4: Forestation rate in France 6.

6http://inventaire-forestier.ign.fr/spip/IMG/pdf/Int_memento_2013_BD.pdf
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FIGURE 1.5: The French forest LC. Each color is associated to a single specie (∼20 species in total) avail-
able on 76 department over 96, black corresponds to non-labeled zones (not operated or non forested).

1.4 Objectives

Currently, the forest LC DB is obtained through remote sensing (namely photo-interpretation),

but it is a time consuming activity. A framework should be developed to update it automatically

using remote sensing data processing. Since the forest LC is available, it can be used as an input

for training a supervised classification (Gressin et al., 2013a). However, the learning process should

be carefully addressed (Gressin et al., 2014). Indeed, some areas might have changed (e.g., forest

cuts). Furthermore, the database is designed generalized (Smith et al., 1977). Indeed, forests are not

perfectly homogeneous in term of species and there can be many gaps in the canopy, leading also to a

noisy classification. Such classification would then not be sufficient in order to retrieve homogeneous

patches similar to the forest LC. In order to retrieve homogeneous patches, the classification should

be regularized using smoothing methods (Schindler, 2012). Furthermore, an automatic framework
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considering more data sources than only CIR ortho-images would allow to enrich the LC, i.e. retrieve

homogeneous tree species stands also homogeneous in terms of height.

1.5 Strategy

Two remote sensing modalities are available for the mapping of forested areas at IGN; VHR opti-

cal images and lidar points cloud. VHR optical images are acquired at the national level for various

needs of IGN, while lidar is mostly employed order to derive an accurate Digital Surface Model

especially in forested areas since it is the better solution to obtain it in such environment

VHR optical images

In this thesis, the VHR ortho-images employed have a spatial resolution of 50 cm. The ortho-

images employed have 4 bands (red, green, blue near infra-red) captured by the IGN digital cameras

(Souchon et al., 2012) that exhibit very high radiometric and geometric quality. Such VHR optical

multispectral images are available over whole France. They are captured every 3 years and are one

of the component of RGE (a public service mission of the IGN, that aims at describing the national

land cover in a precise, complete and homogeneous way).

Airborne Laser Scanning

IGN also acquires 3D point clouds with laser scanning devices (Leica ALS 60 or Optech ALTM

3100). The point density for all echoes ranges from 2 to 4 points/m2. Forested areas and areas subject

to flooding are mainly flown. About 40000 km2 are acquired each year for Digital Terrain Model

generation as main purpose.

The registration between airborne lidar point clouds and VHR multispectral images was per-

formed by IGN itself using ground control points, following a standard procedure production in

the French mapping agency since IGN operates both sensors and has also a strong expertise in data

georeferencing.

The combination of these two data sources is very relevant for the study of forests. Indeed,

optical imagery provides the major information about the tree species (spectral and texture), while

Lidar gives information about the vertical structure of the forests. Furthermore, Lidar allows to

extract consistent objects such as trees, that could be used in the stand segmentation process, even if

delineated coarsely.

The fusion of these two modalities is a way to extract the most information in order to retrieve

forest stands. The fusion can be performed at different levels. 3 levels are frequently considered :

• Low level (or observation level): It corresponds to the fusion of the observations, in this case,

the reflectance from the optical images and the coordinates of the lidar points. It is a straight-

forward fusion method that does not really extract information from the data. It is also simple

way to validate the complementarity of the data.

• Medium level (or attribute level): It corresponds to the fusion of features, derived from both

sources, and merged together. It also corresponds to the cooperative understanding of the
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data; a feature is derived on a modality and applied to the other (e.g. segmentation of the point

cloud applied to images). In this process, all the information from both data sources is directly

exploited. However, attention should be paid to the choice of the employed features since it

can lead to poor classification results.

• High level (or decision level or late fusion): It corresponds to decision fusion. Each data source

has been processed independently (e.g. classified) and the final decision is an optimal combi-

nation of the classifications and the input data. This level of fusion is very important since it

allows to refine the results and only keep the best from the intermediate results.

In this work, the fusion is mainly performed at the medium and high levels.

1.6 Structure of the thesis

This work is divided in 6 chapters.

• Chapter 2 presents and discusses the different existing methods for stand segmentation. Since

stand segmentation is at the interplay between different kinds of image processing methods,

they are also analyzed since they are also employed in this work for stand segmentation.

• Chapter 3 describes the proposed framework. It is composed of three steps. The first one is

related to the extraction of features, it is composed of two core elements. Firstly an object ex-

traction is carried out in order to derive features at the object level (medium level fusion for

the cooperative understanding of the data). The desired objects aim to have a size similar to

trees. Secondly, features (∼ 100) are extracted from the two remote sensing modalities. The

second part deals with the object-based classification. Here, a special attention is paid to the

design of a training set. A feature selection is also carried out since it allows to validate the

complementarity of data sources (medium level fusion) while reducing computation times. Fi-

nally, Random Forest classification is performed on the selected features (medium level fusion,

since the features are spectral-based and lidar-based). This classification is then refined with

regularization methods.

• Chapter 4 presents the results of the different experiments that have been carried out. Since

many options can be envisaged for obtaining a relevant result (e.g. features, training set de-

sign, regularization), a large variety of experiments have been proposed for the contribution

assessment of the different steps of the proposed framework.

• Chapter 5 emphases on the last step of the proposed framework. It aims at regularization

of the classification. This step corresponds to the high level fusion. Indeed, the supervised

classification does not allow to retrieve consistent forest stands (according to the forest LC

DB). Thus, a regularization process allows to refine the results in order to obtain homogeneous

segments with smooth borders and consistent with the forest LC DB. Such regularization can

be performed using local or global methods both having their advantages and drawbacks.

• Chapter 6 summarizes and analyzes the different levels of fusion proposed in the framework.

From the different fusion schemes possible, experiments are proposed in order to define what

can be the optimal fusion schemes.
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• Conclusions are drawn in Chapter 7. Eventually, perspectives are also proposed so as to allevi-

ate remaining issues.
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Forest are complex areas, thus, the mapping of such environment needs the use of different im-

age processing methods. Indeed, the extraction of "homogeneous" forest stands is at the interplay

between different kinds of image processing methods (see Figure 2.1).

Several methods have already been proposed for forest stand segmentation depending on the def-

inition of forest stand (Section 2.1). They involve different image processing algorithms which will be

considered with details. Segmentation (Section 2.2) algorithms can be employed for a fine or coarse

delineation of the principal components of the forests. Classification is also very useful to discrimi-

nate the different elements of the forest and especially detect tree species (Section 2.3). Furthermore,

with the important number of features that can be derived from original data, feature selection algo-

rithms are mandatory in order to improve the results while decreasing the computational load and

times (section 2.4). Eventually, smoothing methods could be employed as a post processing in order

to obtain a better labeling configuration. Especially global smoothing methods aims at the configu-

ration corresponding to a minimum of an energy. Such energy minimization processes are used for

a refinement of raw results (Section 2.5).

2.1 Stand segmentation

A forest stand is defined as a contiguous group of trees that is uniform in specie composition,

structure, age and/or height, spatial arrangement, site quality or condition to distinguish it from

adjacent groups of trees.

One should note that the literature remains heavily focused on individual tree extraction and

tree species classification (Dalponte et al., 2014; Kandare et al., 2014; Véga et al., 2014; Dalponte et al.,

2015), developing site-specific workflows with similar advantages, drawbacks, and classification

performance. Some authors have focused on forest delineation (Eysn et al., 2012; Wang et al., 2012;

Radoux et al., 2007), that most of the time do not convey information about the tree species and

their spatial distribution. Forest stand delineation methods have been proposed but they generally

remain very specific to the study area and commonly uniquely provide a binary mask as final

output. Consequently, no operational framework embedding the automatic analysis of remote

sensing data has been yet proposed in the literature for forest stand segmentation at large scale

(Dechesne et al., 2017).

Hence, in the large amount of literature in the field, only few papers focus on the issue of stand

segmentation or delineation. They can be categorized with regard to the type of data processed as

presented in the following sections.
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FIGURE 2.1: Processes involved in the analysis of forested areas.



18 Chapter 2. State of the art

2.1.1 Stand segmentation using VHR optical images

A stand delineation technique using VHR airborne superspectral imagery (0.6 m spatial resolu-

tion, 8 spectral bands ranging from 438.5 nm to 860.7 nm with an approximate bandwidth of 26 nm)

is proposed in (Leckie et al., 2003). The trees are extracted using a valley following approach and

classified into 7 tree species (5 coniferous, 1 deciduous, and 1 non-specified) with a maximum likeli-

hood classifier. The classification is performed at the object (i.e. tree) level using statistical features

(mean, maximum, standard deviation) and textural features. A semi-automatic iterative clustering

procedure is then introduced to generate the forest polygons. The method produces relevant forests

stands and consider many tree species. It shows the usefulness of an object-based classification

using statistical and textural features. However, since experiments have been conducted on a small

area (330 m × 800 m), no strong conclusion can be drawn.

A hierarchical and multi-scale approach for the identification of stands is adopted in (Hernando

et al., 2012). The data inputs were the 4 bands of an airborne 0.5m orthoimage (Red, Green, Blue, and

Near Infra-Red) allowing to derive the Normalized Difference Vegetation Index (NDVI). The stand

mapping solution is based on the Object-Based Image Analysis (OBIA) concept. It is composed of

two main phases in a cyclic process: first, segmentation, then classification. The first level consists

in over-segmenting (using the multi-resolution segmentation algorithm from eCognition) the area of

interest and performing fine-grained land cover classification. The second level aims to transfer the

vegetation type provided by a land cover geodatabase in the stand polygons, already retrieved from

another segmentation procedure. The multi-scale analysis appears to have a significant benefit on

the stand labeling but the process remains highly heuristic and requires a correct definition of the

stand while we consider it is an interleaved problem.

Following the work of (Wulder et al., 2008b) with IKONOS images, Quickbird-2 panchromatic

images are used in (Mora et al., 2010) to automatically delineate forest stands. A standard image

segmentation technique from eCognition is used and the novelty mainly lies on the fact that its initial

parameters are optimized with respect to NFI protocols. They show that meaningful stand heights

can be derived, which are a critical input for various modeled inventory attributes.

The use of VHR optical images is very interesting since it is meaningful for tree species discrimi-

nation. Furthermore, statistical and textural features, that can be computed thanks to the high spatial

resolution allows a better discrimination of tree species. Eventually, the Object-Based Image Analysis

(OBIA) is also possible and preferred in order to obtain better results.

2.1.2 Stand segmentation using lidar data

A seminal stand mapping method using low density (1-5 point/m2) airborne lidar data is

proposed in (Koch et al., 2009). It is composed of several steps of feature extraction, creation and

raster-based classification of 15 forest types. Forest stands are created by grouping neighboring

cells within each class. Then, only the stands with a pre-defined minimum size are accepted.

Neighboring small areas of different forest types that do not reach the minimum size are merged

together to an existing forest stand. The approach offers the advantage of detecting 15 forest types
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(deciduous/coniferous and maturity) that match very well with the ground truth but to the detri-

ment of simplicity: the flowchart has to be highly reconsidered to fit to other stand specifications.

Additionally, the tree species discrimination is not addressed.

The forest stand delineation proposed in (Sullivan et al., 2009) also uses low density (3-5

point/m2) airborne lidar still coupling an object-oriented image segmentation and a supervised clas-

sification procedure implemented in FUSION. Three features are computed and rasterized also with

the FUSION software. The segmentation is performed using a region growing approach. Spatially

adjacent pixels are grouped into homogeneous objects or regions of the image. Then, a supervised

discrimination of the segmented image is performed using a Battacharya classifier, in order to deter-

mine the maturity of the stands.

The method proposed in (Eysn et al., 2012) aims at generating a forest mask (forested area label

only) using low density airborne lidar. A Canopy Height Model (CHM) with a spatial resolution of

1 m is derived. The positions and heights of single trees are determined from the CHM using a local

maximum filter, based on a moving window approach. Only detected positions with a CHM height

superior to 3 m are considered. The crown radii are estimated using an empirical function. The three

neighboring trees are connected using a Delaunay triangulation applied to the previously-detected

tree position. The crown cover is then calculated using the crown areas of three neighboring trees

and the area of their convex hull for each tree triple. The forest mask is derived from the canopy

cover values. While this is not a genuine stand delineation method, this approach could be easily

extended to a multi-class problem and enlightens the necessity of individual tree extraction even

with limited point densities as a basis for the stand-level analysis.

A forest stand delineation also based on airborne lidar data is proposed in (Wu et al., 2014). Three

features are first directly extracted from the point cloud (related to tree height, density and shape).

A coarse forest stand delineation is then performed on the feature image using the unsupervised

Mean-Shift algorithm, in order to obtain under-segmented raw forest stands. A forest mask is then

applied to the segmented image in order to distinguish forest and non-forest raw stands. It may

create some small isolated areas, iteratively merged to their most similar neighbor until their size

is larger than a user-defined threshold in order to generate larger and coarse forest stands. They

are then refined into finer level using a seeded region growing based on superpixels. The idea is to

select several different superpixels in a raw forest stand and merge them. This method provides a

coarse-to-fine segmentation with relatively large stands. The process was only applied on a small

area of a forest in Finland, thus, general conclusions can not be drawn.

2.1.3 Stand segmentation using VHR optical images and lidar

The analysis of the lidar and multispectral data is performed at three levels in (Tiede et al., 2004),

following a given hierarchical nomenclature of classes standard for forested environments. The

first level represents small objects (single tree scale, individual trees or small groups of trees) that

can be differentiated by spectral and structural characteristics using here a rule-based classification.

The second level corresponds to the stand level. It is built using the same classification process

which summarizes forest development phases by referencing to small scale sub-objects at level 1.

The third level is generated by merging objects of the same classified forest-development stage into
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larger spatial units. The multi-scale analysis offers the advantage of alleviating the standard issue of

individual tree crown detection and proposing development stage labels. Nevertheless, the pipeline

is highly heuristic, under-exploits lidar data and significant confusions between classes are reported.

The automatic segmentation process of forests in (Diedershagen et al., 2004) is also supplied

with Lidar and VHR multispectral images. The idea is to divide the forests into higher and lower

strata with lidar. An unsupervised classification (with an algorithm similar to the ISODATA) process

is applied to the two images (optical and rasterized lidar). The final stand delineation is achieved

by segmenting the classification results with pre-defined thresholds. The segmentation results are

improved using morphological operators such as opening and closing, which fill the gaps and holes

at a specified extent. This method is efficient if the canopy structure is homogeneous and requires

a strong knowledge on the area of interest. Since it is based on height information only, it cannot

differentiate two stands of similar height but different species.

In (Leppänen et al., 2008) a stand segmentation technique for a forest composed of Scots Pine,

Norway Spruce and Hardwood is defined. A hierarchical segmentation on the Crown Height Model

followed by a restricted iterative region growing approach is performed on images composed of

rasterized lidar data and Colored Infra-Red images. The process was only applied on a limited area

of Finland (∼ 70 ha) and prevents from drawing strong conclusions. However, the quantitative

analysis carried out by the authors shows that lidar data can help to define statistically meaningful

stands (here the criterion was the timber volume) and that multispectral images are inevitable inputs

for tree species discrimination.

2.1.4 Challenges of stand segmentation

Table 2.1 summarizes the presented methods of forest stands segmentation. Firstly, it appears

that the fusion of the two remote sensing modalities (optical images and lidar) improve the results

for the problematic of forest stand delineation. However, the stands are not defined the same way in

the different proposed methods, preventing from drawing general conclusion.

Regarding the existing state of the art on the forest stand segmentation, it appears that such task

remains very complex to implement especially in an automatic way. Indeed, a simple segmentation

of VRH optical image or lidar point cloud is not sufficient since it does not allows to retrieve consis-

tent stands (in terms of species). However, segmentation algorithms are relevant for the extraction

of small objects (ideally trees, or similar to trees). A classification is mandatory in order to obtain the

tree species (i.e. semantic information). However, it is very difficult to discriminate species, since

some have a very close looking (e.g. deciduous oak and beech), and the intra-class variability might

be important (depending on age, maturity and other external features such as shape). Other issues

related to the input data such as shadows in VHR optical images can also be reported. Eventually,

the desired stands are not totally pure, a certain level of generalization is desired in order to have a

consistent mapping at large scale. Thus, a regularization process can be employed for such purpose.

It also appears that the type of data employed has an impact on the results.

• The VHR optical images permits to obtain information about the tree species, furthermore,

textural features are very relevant (Franklin et al., 2000) if no hyperspectral data are available.
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• The lidar data provides information about the vertical structure of the forest that can also be

useful for the discrimination of tree species (Brandtberg, 2007; Hovi et al., 2016; Li et al., 2013b).

It also brings information about the height that allows to separate forest stands of different ages.

Most of the time, lidar is deeply under-exploited since it is used only as a simple DSM/CHM.

The segmentation of forest stands must be envisaged as a region-based segmentation problem.

Indeed, contour-based methods would be very difficult to employ since forested areas exhibit high

variability and finding relevant borders is almost impossible especially in environment where no

prior can be envisaged. Thus, for an optimal segmentation of forest stands, the strategies that are

employed in this work are the following:

• Extraction of small objects (similar to trees), in order to derive features at the object level,

since it is very relevant for subsequent classification.

• Extraction of multiple features from the two data sources.

• Object-based classification, since it produces better results than a simple pixel-based classifi-

cation.

• Regularization of the classification that leads to homogeneous forest stands with smooth bor-

ders.

Therefore, the fusion between VHR optical images and lidar is performed at the four levels since

they allow to obtain relevant forest stands.

Main processing families adopted in this work are now presented and discussed with respect to

our field of research.

2.2 Segmentation

The direct segmentation of optical image and/or lidar point clouds is not sufficient in order to

retrieve forest stands. Indeed, such segmentation methods can not take into account the information

needed to define the stand. However, with adapted parameters, segmentations algorithms might be

useful to obtain objects that have and adapted size and shape for the desired study (Dechesne et al.,

2017). They can be divided in two categories:

• The "traditional" segmentation methods; in these methods, a specific attention must be paid

to the choice of the parameters in order to obtain relevant results. Such segmentation can be

applied on an image or a point cloud. Specific methods have also been developed for the

segmentation of lidar point cloud (Nguyen et al., 2013).

• The superpixels segmentation methods: they natively produce an over-segmentation of the

image. The parameters control the size and the shape of the resulting segments (Stutz et al.,

2017).

2.2.1 "Traditional" segmentation methods

The segmentation of an image can be performed using a large variety of techniques (Wilson

et al., 1988; Nitzberg et al., 1993; Pal et al., 1993; Zhang, 2006).
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The easiest way to segment an image is the thresholding of a gray level histogram of the image

(Taxt et al., 1989). When the image is noisy or the background is uneven and illumination is poor,

such thresholding is not sufficient. Thus, adaptive thresholding methods have been developed

(Yanowitz et al., 1989).

The watershed transformation (Vincent et al., 1991) is also a simple segmentation method

that considers the gradient magnitude of an image as a topographic surface. Pixels having the

highest gradient magnitude intensities correspond to watershed lines, which represent the region

boundaries. Water placed on any pixel enclosed by a common watershed line flows downhill to a

common local intensity minimum. Pixels draining to a common minimum form a catch basin, which

represents a segment.

The segmentation can also be considered as an unsupervised classification problem. Algorithms

considering such classification problems adopt iterative process. The most popular algorithm is

the k-means algorithm, or the ISODATA which is a variant of the k-means. Segmentation methods

using the spatial interaction models like Markov Random Field (MRF) (Hansen et al., 1982) or

Gibbs Random Field (GRF) (Derin et al., 1987) have also been proposed. Neural networks are also

interesting for image segmentation (Ghosh et al., 1991) as they take into account the contextual

information.

Conversely, the segmentation of an image can also be obtained from the detection of the edges

of the image (Peli et al., 1982). The idea is to extract points of significant changes in depth values.

Edges are local features and are determined based on local information and thus non suitable in our

case.

Eventually, hierarchical or multi-scale segmentation algorithms can be employed. They analyze

the image at several different scales. Their output is not a single partition, but a hierarchy of regions

or a data structure that captures different partitions for different scales of analysis (Baatz et al., 2004;

Guigues et al., 2006; Trias-Sanz, 2006). These methods allow to control the complexity of the segmen-

tation, which was not the case for the above-mentioned methods. The algorithm of (Guigues et al.,

2006) is a bottom-up approach that starts with an initial over-segmentation (e.g. segmenting almost

each pixel on a different own region) and uses this level as an initialization for the construction of

subsequent significant levels. The segmentation process is guided by an energy E of the form:

E = D + µC (2.1)

where, D is a fit-to-data measure (how well the segmentation fits to the original image, better fits

give lower values of D); C is a measure of segmentation complexity (less complex solutions give

lower values of C); and µ is a dimensional parameter, the scale parameter. The parameter µ balances

between a perfect fit to the original data (µ = 0), consisting of one segmentation region for each

pixel in the original image, and the simplest segmentation, consisting of a single region containing

the whole image (Guigues et al., 2006) (see Figure 2.2). The segmentation level can be adjusted

gradually from the finest to the coarsest depending of the image complexity. The choice of a value of

µ define a specific energy, leading to a unique segmentation.
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FIGURE 2.2: Graphical depiction of concepts related to hierarchical segmentation. The diagram on the
left shows partitions of an image at four different scales µ. The partition at the top has the highest µ and

is therefore the coarsest, the partition at the bottom is the finest.

Top-down approaches can also be employed for image segmentation. In (Landrieu et al., 2016)

working-set/greedy algorithms to efficiently solve problems penalized respectively by the total

variation on a general weighted graph are proposed. The algorithms exploit this structure by

recursively splitting the level-sets of a piecewise-constant candidate solution using graph cuts.

Segmentation algorithms based on optical data have been also developed especially for forest

analysis such as the approach proposed in (Tochon et al., 2015). It proposes a method for hyperspec-

tral image segmentation, based on the binary partition tree algorithm, applied to tropical rainforests.

Superpixel generation methods are applied to decrease spatial dimensionality and provide an initial

segmentation map. Principal component analysis is performed to reduce the spectral dimensionality.

A non-parametric region model based on histograms, combined with the diffusion distance to merge

regions, is used to build the binary partition tree (Salembier et al., 2000). An adapted pruning strat-

egy based on the size discontinuity of the merging regions is proposed. The resulting segmentation

is coherent with the trees delineated manually, however, such method has been proposed for tropical

rainforest and might not be adapted for temperate forests.

2.2.2 Superpixels methods

Dozen of superpixels algorithms have been developed (Achanta et al., 2012). They group pixels

into perceptually meaningful atomic regions. Many traditional segmentation algorithms have been

employed with more or less success to generate superpixels (Shi et al., 2000; Felzenszwalb et al.,

2004; Comaniciu et al., 2002; Vedaldi et al., 2008; Vincent et al., 1991). These algorithms produce

satisfactory results, however, they may be relatively slow and the number, size and shape of the
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superpixels might not be specified, leading to a potential tedious parameter tuning step.

(A) VHR RGB optical image. (B) SLIC superpixels.

FIGURE 2.3: Comparison of the pixel (2.3a) and the superpixel (2.3b) approaches (125 m×125 m).

Superpixels algorithms have then been developed. One can control the number of superpixels,

their size and their shape. Moore et al. (2008) create superpixels based on a grid. Optimal path are

found using graph cut methods. Veksler et al. (2010) propose a generation of superpixels based on

a global optimization. They are obtained by stitching together overlapping image patches such that

each pixel belongs to only one of the overlapping regions. Levinshtein et al. (2009) generate super-

pixels by a dilatation of a set of seed locations using level-set geometric flow. Resulting superpixels

are constrained to have uniform size, compactness, and boundary adherence. Finally, Achanta et al.

(2012) propose a generation of superpixels based on the k-means algorithms. A weighted distance

that combines color and spatial proximity is introduced in order to control the size and the compact-

ness of the superpixels.

2.2.3 Segmentation of point cloud

Segmentation methods dedicated to 3D point cloud have been proposed (Nguyen et al., 2013).

The aim is mainly to extract meaningful objects. Such extraction has two principal objectives:

• Objects are detected so as to ease or strengthen subsequent classification task. A precise extrac-

tion is not mandatory since the labels would be refined after.

• Objects are precisely delineated in order to derive features from these objects (e.g. surface,

volume, etc.). A high spatial accuracy is therefore expected.

Several methods presented in previous sections can also be applied to 3D lidar point cloud.

In forested areas, the most reliable objects to extract are trees. The tree detection and extraction

has been widely investigated (Wang et al., 2016; Kaartinen et al., 2012). The tree extraction from lidar

point cloud can be envisaged in two ways:

• Rasterize the point cloud and use image-based segmentation techniques to obtain trees.

• Direct segmentation of the 3D point cloud.
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A lot of methods have been developed for single tree delineation (Dalponte et al., 2014; Véga et al.,

2014; Kandare et al., 2014; Reitberger et al., 2009). They all have their advantages and drawbacks,

most of the time it is hard to assess the quality of the segmentation. None of them exhibit the ability

to handle different kinds of forest.

2.3 Classification

A classification is a process that aims to categorize observations. The idea is to assign an ob-

servation to one or more classes. The classification can be unsupervised, in such cases the classes

(i.e., the targeted labels) need to be discovered and the observation assigned. Such classification is

similar to segmentation (see section 2.2) and is no further investigated here. The classification can

be supervised, the target classes are known and observations with labels (employed for training and

validation) are available. In our case, labels and training sets are given with the forest LC DB of

interest.

2.3.1 Supervised classification: common algorithms

A great number of supervised classification algorithms have been developed and used for re-

mote sensing issues (Landgrebe, 2005; Lu et al., 2007; Mather et al., 2016). There are two kinds of

algorithms: the generative, often parametric, and the discriminative, often non-parametric.

The parametric methods assume that each class follows a specific distribution (mainly Gaussian).

The parameters of the distribution are estimated using the learning set. This is the case for the

maximum likelihood (Strahler, 1980) or maximum a posteriori (Fauvel et al., 2015).

The non parametric methods do not make any assumption on the classes distribution. In this

category of algorithms, very popular ones are the Support Vector Machines (SVM) (Boser et al., 1992;

Scholkopf et al., 2001) and the Random Forest (RF) (Breiman, 2001). The deep based-methods are

also efficient algorithms (Hepner et al., 1990; Atkinson et al., 1997). However, despite their great

performance in terms of accuracy, they have several drawbacks: firstly, the training process is time

consuming and good GPU cards or specific architectures are required in order to reach decent train-

ing times (Dean et al., 2012; Moritz et al., 2015). Secondly, it requires an important amount of training

data in order to correctly optimize the large number of parameters (e.g., hundred of millions). Sim-

pler methods exist, such as the k-nearest neighbors (Indyk et al., 1998) or the decision trees (Breiman

et al., 1984) but they produces quite low accuracy results. The non parametric methods are more

efficient for the discrimination of complex classes (Paola et al., 1995; Foody, 2002), and are now con-

sidered as a basis for land cover classification (Camps-Valls et al., 2009).

We chose to use the RF, because of their widespread use, also offer the possibility of obtaining

the probability of belonging of a pixel to a class. These posterior probabilities can be then integrated

into a smoothing process. They also report good results, similar to SVM (see Chapter 4). The RF are

described in section 2.3.2.

2.3.2 Random Forest

The RF have been introduced by (Breiman, 2001) and are defined by the aggregation of weak

predictors (decision trees). Here, we refer to the RF with random inputs proposed in (Breiman,

2001).
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The idea is to create an ensemble of sample sets SΘ1

n , ..., SΘk
n randomly selected from an initial

training set. A Classification and Regression Tree (CART) (Breiman et al., 1984) is built on each

sample set SΘi
n . Each tree is built using a a random pool of m features among the M available

features. The final classification is obtained by majority vote; each tree votes for a class and the class

reaching the most votes wins (see Figure 2.4). This algorithm has two parameters: the number of

trees k and the number of features m used to build a tree. The first parameter is arbitrary fixed to a

high value. The second is generally fixed to the square root of the total number of feature (Gislason

et al., 2006). Other parameters can be defined such as the maximal depth of the trees (or the purity

of the leaves). In this thesis, the parameters of the Random Forest have not been fine tuned, since a

standard tuning allows to obtain very good results. Other ameliorations to the Random Forest have

been proposed such as the Rotation Forest (Rodriguez et al., 2006), the Random Ferns (Bosch et al.,

2007) or the Extremely Randomized Trees (Geurts et al., 2006).

Dataset

SΘ1

n
. . . SΘk

n

CART 1 CART K

Majority vote

FIGURE 2.4: General flowchart of the Random Forest.

RF have shown classification performances comparable or better than traditional Boosting meth-

ods (Breiman, 2001) or SVM (Pal, 2005). They are also able to handle large datasets with high number

of features. Furthermore, a measure of feature importance has been introduced in (Breiman, 2001). It

allows to qualify the relevance of the features in the classification process (Strobl et al., 2007). Several

other feature importance metrics have been proposed.

The importance of a feature Xj , j ∈ {1, ..., q} (with q the number of feature) is defined as follow.

Let SΘi
n be a set of sample and OOBi all the observations that do not belong to SΘi

n . errOOBi, the

error on OOBi using SΘi
n , is then computed. A random permutation on the value of the jth feature

of OOBi is performed in order to obtain ÕOBi

j

. err ˜OOB
j
i is then computed. The importance of the

feature j, FI(Xj) is the mean of the difference of the errors (see Equation 2.2).

FI(Xj) =
1

k

k∑

i=1

(err ˜OOB
j
i − errOOBi) (2.2)

where k is the number of CART.
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2.4 Dimension reduction and feature selection

Discriminative features are basis for classification without assuming which ones are the more

salient, the standard strategy consists in computing a large set of features, especially in the multi-

modal case (Tokarczyk et al., 2015). The feature selection methods try to overcome the curse of

dimensionality (Bellman, 2015; Hughes, 1968). Indeed, the increasing number of features available

tends to decrease the accuracy of the classifiers. Furthermore, the computation times increase with

the number of features. Thus, reducing the feature dimension is beneficial for the classification task.

Furthermore, in case of multi-modal features, feature selection allows to assess the contribution of

the remote sensing modalities.

Two kinds of approaches exist: first the ones based on the extraction of new features summarizing

the information by the transformation of the data, generally using a projection to an other space of

lower dimensionality. Secondly, feature selection approaches that aim at identifying for an optimal

subset of the features.

2.4.1 Dimension reduction: feature extraction

The most popular dimension reduction method is the Principal Component Analysis (PCA). It is

an unsupervised method that aim to maximize the variance between data (Jolliffe, 2011). However,

it has been demonstrated that PCA is not optimal for the purpose of classification (Cheriyadat et al.,

2003). Other methods have been developed related to the PCA: the Independent Component Analy-

sis (ICA) (Jutten et al., 1991) maximizes the statistical independence between data, and the Maximum

Autocorrelation Factor (MAF) (Larsen, 2002) maximizes the spatial auto-correlation. When training

samples are available, supervised methods exist, such as the linear discriminant analysis (LDA) that

tries to maximize both the intra-class homogeneity and the inter-class variance (Fisher, 1936; Lebart

et al., 1997).

2.4.2 Feature selection

Feature selection (FS) aims z defining an optimal subset of features without modifying them.

Automatic methods have been proposed in order to obtain such subset. One can explore the subsets

of features and need to define a criteria to evaluate the subsets. Furthermore, the selection can be

supervised or unsupervised. The first aims at discriminating the better the classes while the second is

looking for an optimal subset that contains the most informative and less redundant features. Many

exploration methods for feature selection have been proposed in the literature. The naive exhaustive

exploration of all the subsets can be envisaged only when the number of features is not important.

Existing methods

The feature selection methods can be separated into 3 categories: filters, wrapper and embedded.

• Filters

The filter methods are independent from any classifier. Within the filter methods, one can distin-

guish the supervised and unsupervised case depending on whether the notion of classes is taken

into account or not. When supervised, they consider the features according to their capacity to bring

together elements of the same class and separate the different elements (John, 1997). Separability
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measures (e.g., Fisher (Fisher, 1936), Bhattacharrya or Jeffries-Matusia) allow to determine whether a

feature or a subset of feature is well adapted to discriminate the classes (Bruzzone et al., 2000; Herold

et al., 2003; De Backer et al., 2005; Serpico et al., 2007). Among filters, ranking methods compute an

individual importance score for each feature, classify the features according to this score and keep

only the best. Such scores can be computed using training samples or not. Such methods are in-

dependent from a classifier and are used as preliminary step to classification. Statistical measures

derived from information theory such as the divergence, the entropy or the mutual information have

been proposed in the unsupervised case (MartÍnez-UsÓ et al., 2007; Le Moan et al., 2011) or super-

vised case (Battiti, 1994; Guo et al., 2008; Estévez et al., 2009; Sotoca et al., 2010; Cang et al., 2012).

To summarize, criteria and methods for filter selection methods are numerous and cover different

approaches. The ranking filter methods, which sort features according to an individual importance

score and retain only the n best remain limited since they do not take into account the dependencies

between the selected features. Approaches that directly associate relevance scores with feature sets

are more interesting. A distinction is made between supervised and unsupervised approaches. The

unsupervised criteria are interesting, but present a risk of selecting attributes that would not all also

be useful for classification. An optimization method must be then employed in order to select the

best subset.

• Wrapper

The wrapper methods weight the feature subsets according to their pertinence for the prediction

(Kohavi et al., 1997). This weighting is related to the performance of a classifier. Estévez et al. (2009),

Li et al. (2011), Yang et al. (2007), and Zhuo et al. (2008) propose approaches with SVM classifiers.

Zhang et al. (2007) and Fauvel et al. (2015) use maximum likelihood classifiers. The RF is also em-

ployed in (Díaz-Uriarte et al., 2006). Data are separated into two subsets. The first is used for the

training, while the second for the evaluation. The use of a classifier is a big advantage as it fits more

to the envisaged problem and produces better results with less features than the filters methods.

However, the use of a classifier significantly increases the computation times. Furthermore, worse

results could be obtained when using a feature subset with an other classifier.

• Embedded

Eventually, the embedded methods also involve a classifier but select the features during the train-

ing process (Tang et al., 2014) or using intermediate results from the training process. They have two

advantages: since they take in consideration the data as training, they have the same advantages

as wrappers (selecting features related to the classification problem). Furthermore, they are faster

than the wrapper methods since they do not test feature sets on a test dataset. Many methods have

been proposed. The RF allow to assess the feature importance (Breiman, 2001) an is also natively

embedded since the irrelevant features are discarded while building the tress and will not be used in

the classification process. Other methods are based on the SVM classifiers, the SVM-RFE (Recursive

Feature Elimination) (Tuia et al., 2009) recursively removes the less pertinent features according to a

weight estimated from a SVM model.

Selection optimization

Some methods involve a specific optimization method but when considering a generic feature

relevance score, the set of possible solutions is generally too large to be visited entirely. Thus, using
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heuristic rules allows to find a solution close enough to the optimal solution while visiting only a

reasonable number of configurations. These optimization methods can generally be distinguished in

sequential or incremental methods and stochastic methods.

• Sequential approaches

The first idea is to add features step by step (forward approaches), also called Sequential Forward

Selection (SFS) (Marill et al., 1963). It could also be methods that start from the entire feature set and

remove feature step by step (backward approaches), also called Sequential Backward Selection (SBS)

(Whitney, 1971). A generalization of these methods have been proposed in (Kittler, 1978). Finally, the

forward and backward methods could be combined in order to improve the process. The Sequential

Floating Forward Selection (SFFS) and the Sequential Floating Backward Selection (SFBS) (Pudil

et al., 1994) propose such improvement.

• Stochastic approaches

Stochastic algorithms will involve randomness in their exploration of the solution space. The ran-

dom initialization and search for a solution can therefore propose different solutions of equivalent

quality from a single dataset. The generation of the subset can be totally random (Liu et al., 1997).

Genetic algorithms is a possible solution. They propose to weight the subsets according to their

importance (Goldberg, 1989). They allow a faster convergence to a more stable solution. The Particle

Swarm Optimization (PSO) algorithm (Yang et al., 2007) is faster and select relevant features. For

finding an approximate optimal subset of features, simulated annealing (De Backer et al., 2005;

Chang et al., 2011) is also possible.

2.5 Smoothing methods

Pixel-wise classification is not sufficient for both accurate and smooth land-cover mapping with

VHR remote sensing data. This is particularly true in forested areas: the large intra-class and low

inter-class variabilities of classes result in noisy label maps at pixel or tree levels. This is why various

regularization solutions can be adopted from the literature (from simple smoothing to probabilistic

graphical models).

According to (Schindler, 2012), both local and global methods can provide a regularization frame-

work, with their own advantages and drawbacks.

2.5.1 Local methods

In local methods, the neighborhood of each element is analyzed by a filtering technique. The

labels of the neighboring pixels (or the posterior class probabilities) are combined so as to derive a

new label for the central pixel. Majority voting, Gaussian and bilateral filtering (Perona et al., 1990)

can be employed if it is not targeted to smooth class edges. The majority vote can also be used

especially when a segmentation is available: the majority class is assigned to the segment. The vote

can be weighted by class probabilities of the different pixels.

The probabilistic relaxation is an other local smoothing method that aims at homogenizing prob-

abilities of a pixel according to its neighboring pixels. The relaxation is an iterative algorithm in
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which the class probability at each pixel is updated at each iteration in order to have it closer to the

probabilities of its neighbors (Gong et al., 1989; Smeeckaert et al., 2013). It reports good accuracies

with decent computing time and offers an alternative to edge aware/gradient-based techniques that

may not be adapted in semantically unstructured environments.

2.5.2 Global methods

Global regularization methods consider the whole image by connecting each pixels to its

neighbors. They traditionally adopt the Markov Random Fields (MRF, see Figure 2.5), the labels at

different locations are not considered to be independent and the global solution can be retrieved

with the simple knowledge of the close neighborhood for each pixel. The optimal configuration of

labels is retrieved when finding the Maximum A Posteriori over the entire field (Moser et al., 2013).

The problem is therefore considered as the minimization procedure of an energy E over the whole

image I . Despite a simple neighborhood encoding (pairwise relations are often preferred), the opti-

mization procedure propagates over large distances. Depending on the formulation of the energy,

the global minimum may be reachable. However, a large range of optimization techniques allow

to reach local minima close to the real solution, in particular for random fields with pairwise terms

(Kolmogorov et al., 2004). For genuine structured predictions, in the family of graphical probabilistic

models, Conditional Random Fields (CRF, see Figure 2.5) have been massively adopted during the

last decade. Interactions between neighboring objects, and subsequently the local context can be

modeled and learned using an energy formulation. In particular, Discriminative Random Fields

(DRF, (Kumar et al., 2006)) are CRF defined over 2D regular grids, and both unary/association and

binary/interaction potentials are based on labeling procedure outputs. Many techniques extending

this concept or focusing on the learning or inference steps have been proposed in the literature

(Kohli et al., 2009; Ladický et al., 2012). A very recent trend even consists in jointly considering CRF

and deep-learning techniques for the labeling task (Kirillov et al., 2015).

In standard land-cover classification tasks, global methods are known to provide significantly

more accurate results (Schindler, 2012) since contextual knowledge is integrated. This is all the more

true for VHR remote sensing data, especially in case of a large number of classes (e.g., 10, (Albert

et al., 2016)), but presents two disadvantages. For large datasets, their learning and inference steps

are computationally expensive. Furthermore, parameters should often be carefully chosen for opti-

mal performance, and authors that managed to alleviate the latter problem still report a significant

computation cost (Lucchi et al., 2011).
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FIGURE 2.5: 8-connected MRF and CRF. The MRF only takes into account the posterior probabilities to
compute the graph, while CRF also includes contextual information (e.g. the features).

2.6 Conclusion

In this chapter, several existing stand segmentation methods have been identified, leading to

some important conclusions. Firstly, it appears that the fusion of optical images and lidar has

already been investigated and identified as useful for forest stand segmentation. However, the

stands are not defined the same way in the different proposed methods, preventing from drawing

general conclusion for our problematic. Thus, proposed methods vary a lot depending on the defi-

nition of stands (species, age, height, etc.). Besides, several existing methods are very dedicated to

human/operator interaction.

The segmentation of forest stands is often envisaged as a region-based segmentation problem,

and specific strategies are employed in this work in order to retrieve forest stands. First , it appears

that the extraction of features is relevant for the tree species discrimination. Such features can be

derived from both data sources. From the literature, it came out that working at the object-level

improves the tree species discrimination results. The small objects are then desired to have a size

and shape similar to trees. Many algorithms can be envisaged for the extraction of such objects. A

supervised classification is then mandatory in order to discriminate the tree species. However, since

many features have been derived, it is also interesting to select a limited number of features to train
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the classifier. Such selection is also interesting in order to validate the complementarity of the data

sources. Eventually, the classification might be noisy and can be smoothed through regularization

methods. Such smoothing allows to obtain homogeneous segments with regular borders that fit with

the specifications of the forest stands desired.

All these problems are addressed in the following chapters.
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3.1 General flowchart

With respect to the methods mentioned in Chapter 2, it appears that there is no operational auto-

matic forest stand segmentation method, where the target labels are the tree species, that can satis-

factorily handle a large number of classes (>5). This problem has been barely investigated and only

ad hoc methods have been developed. The proposed framework is fully automatic, modular and ver-

satile for species-based forest stand segmentation. It strongly relies on the exploitation of an existing

Forest LC DB (in order to update and improve it), taking into account potential errors that it may

contain, subsequently providing an adapted model for the studied area. The proposed framework

propose the following characteristics:

• No heavy and sensitive parameter tuning;

• Several steps can be substituted with almost equivalent solution, depending on the require-

ments: accuracy, speed, memory usage, etc.

• Depending on the input and the prior knowledge, one can select the shape and the level of

details of the output maps.

The framework is composed of four main steps. Features are then computed at the pixel level for

the optical images and at the point level for the lidar data. An over-segmentation is then performed

in order to retrieve small object that will be employed for subsequent classification. The object ex-

tracted from the over-segmentation and the computed features allow to derive features at the object

level. Such features are then used by the classification of the vegetation types (mainly tree species).

Indeed, performing classification at the object level significantly improves the discrimination results

compared to a pixel-based classification. Here, the training set is automatically derived from an ex-

isting forest LC database. Specific attention is paid to the extraction of the most relevant training

pixels, which is highly challenging with partly outdated and generalized vector databases. Because

of the high number of features, a feature selection is also carried out in order to have a more efficient

classification and reduce the computational load and time, but also in order to assess the complemen-

tarity of the multi-source features (namely multispectral optical images/lidar point cloud). Finally,

a regularization of the label map is performed in order to remove the noise and to retrieve homoge-

neous forest stands according to a given criteria (here tree species). Each step is presented in the next

sections. A particular focus is made on the regularization methods in Chapter 5 and the discussion

of the most relevant fusion scheme in Chapter 6. The flowchart of the framework is presented in

Figure 3.1.

3.2 Feature extraction

The extraction of discriminative features is an important preliminary step in order to obtain an ac-

curate classification. The features can be handcrafted. Such strategy has been extensively employed

for remote sensing applications. The features could also be learned for a specific classification task

using convolutional neural networks (Demuth et al., 2014). Here, the proposed features have been

derived manually, since they are physically interpretable. Most are standards in the literature. The

lidar features are derived at the 3D level and the spectral features at the 2D (image) level. Two

strategies can be envisaged:
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FIGURE 3.1: Flowchart of the proposed framework, see text for more details.
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• The rasterization of the 3D lidar features at the same spatial resolution as the spectral features.

• The projection of the 2D spectral features in the 3D point cloud.

The projection of the 2D spectral features raises three main issues:

• In the 3D space, it is impossible to attribute a relevant spectral value to a point below the canopy

(i.e. not visible in the optical image).

• A single pixel can be attributed to many 3D points, the information will be then duplicated. As

an example for and image of 1 km2 at a spatial resolution of 0.5 m there are 4 millions of pixels,

while the number of 3D points is about 16 millions.

• The processing of 3D points is tedious (especially for classification and regularization) while

pixels are more easy to handle.

On the opposite, the rasterization of the 3D lidar features has been widely employed, many effi-

cient rasterization algorithms have been proposed. Thus this strategy was adopted.

3.2.1 Point-based lidar features.

24 features are extracted during this step; 2 related to vegetation density, 2 related to the 3D local

distribution of the point cloud (planarity and scatter), and 20 statistical features.

Lidar-derived features require a consistent neighborhood for their computation (Demantké et al.,

2011; Filin et al., 2005). For each lidar point, 3 cylindrical neighborhoods, aligned with the vertical

axis, are used (1 m, 3 m and 5 m radii, infinite height). A cylinder appears to be the most relevant

environment in forested areas so as to take into account the variance in altitude of the lidar points.

Three radius values are considered so as to handle the various sizes of the trees, assuming a feature

selection step will prune the initial set of attributes.

Density features.

Two vegetation density features, D1 and D2, are computed: the first one based on the number of

local height maxima within the neighborhoods, and the second one related to the number of non-

ground points within the neighborhoods (ground points were previously determined by a filtering

step). D1 and D2 are calculated as follows:

D1 =
∑

r1∈{1,3,5}

∑

r2∈{1,3,5}

Ntr1,r2 , (3.1)

D2 =
1

3

∑

r∈{1,3,5}

Nsr

Ntotr
, (3.2)

where Ntr1,r2 is the number of local maxima retrieved from a r1 maximum filter within the cylindri-

cal neighborhood of radius r2. Nsr is the number of points classified as ground points within the

cylindrical neighborhood of radius r and Ntotr is the total number of points within the cylindrical

neighborhood of radius r. D1 describes how trees are close to each other and gives information

about the tree crown width. Such information is very discriminative for tree species classification

(Korpela et al., 2010). D2 provides information on the penetration rate of the lidar beam. It has been

proven to be relevant for tree species classification (Vauhkonen et al., 2013).
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Shape features.

Additionally, the scatter S and the planarity P features are computed following (Weinmann et al.,

2015):

S =
1

3

∑

r∈{1,3,5}

λ3,r

λ1,r
, (3.3)

P =
1

3

∑

r∈{1,3,5}

2× (λ2,r − λ3,r), (3.4)

where λ1,r ≥ λ2,r ≥ λ3,r are the eigenvalues of the covariance matrix within the cylindrical neigh-

borhood of radius r. They are retrieved with a standard Principal Component Analysis. They have

been shown to be relevant for classification tasks (Weinmann et al., 2015).

Statistical features.

Statistical features, known to be relevant for vegetation type (mainly tree species) classification

(Dalponte et al., 2014; Torabzadeh et al., 2015), are also derived. For each lidar point, the same 3

cylindrical neighborhoods are used. Two basic information from the lidar data, namely height and

intensity (Kim et al., 2011), are used to derive statistical features. A statistical feature fd, derived

from an original feature fo, (normalized height or intensity) is computed as follows:

fd =
1

3

∑

r∈{1,3,5}

fs(pr,fo), (3.5)

where fs is a statistical function, and pr,fo a vector containing the sorted values of the original fea-

ture fo within the cylindrical neighborhoods of radius r. The statistical functions fs employed are

standard ones (minimum; maximum; mean; median; standard deviation; median absolute deviation

from median (medADmed); mean absolute deviation from median (meanADmed); skewness; kurtosis;

10th, 20th, 30th, 40th, 50th, 60th, 70th, 80th, 90th and 95th percentiles).

All the statistical functions are used for the height. Only the mean is used for the intensity:

indeed it is hard to know how well the sensor is calibrated and a suitable correction of intensity

values within tree canopies has not yet been proposed.

3.2.2 Pixel-based lidar features.

The lidar features are rasterized at the resolution of the multispectral image using a pit-free

method proposed in (Khosravipour et al., 2014). Indeed, the main problem for the rasterization of

lidar features is that the point density is not homogeneous, thus applying a regular grid can lead to

a pixel-based feature map with pits. Therefore, a special pit-free rasterization methods need to be

employed. The idea is to retain points within a cylindrical neighborhood. The axis of the cylindrical

neighborhood is the center of the pixels, the radius is chosen in order to have enough retained

points (at least 10). The features values of the points are weighted according to their distance to the

center of the pixel. The value of the pixel is the mean of the weighted feature values of the points.

The rasterization method used here is interesting because it produces smooth images, compared

to rough rasterization and will lead to better results for classification and regularization (Li et al.,

2013a). This rasterization process at the feature level is valid since both datasets have approximately
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(A) Density D1. (B) Standard deviation
of the height.

(C) Planarity.

(D) RGB minimum. (E) RGB median. (F) RGB standard
deviation.

FIGURE 3.2: Some features at the pixel level (1 km2).

the same initial spatial resolution.

A nDSM is also computed using this method, at the same spatial resolution using an existing 1 m

Digital Terrain Model computed from the initial point cloud (Ferraz et al., 2016a). The nDSM is very

important as it allows to derive the height above the ground and is known as a very discriminative

feature for classification (Mallet et al., 2011; Weinmann, 2016). Some lidar features are presented in

Figure 3.2.

3.2.3 Pixel-based multispectral images features.

The original 4 spectral bands of the VHR airborne optical image are kept and considered as

multispectral features. The Normalized Difference Vegetation Index (NDVI), (Tucker, 1979), the

Difference Vegetation Index (DVI), (Bacour et al., 2006) and the Ratio Vegetation Index (RVI) (Jordan,

1969) are also computed as they are standard relevant vegetation indices (Anderson et al., 1992;

Lee et al., 1997). Many other vegetation indices have been proposed (Bannari et al., 1995) that have

shown relevance for vegetation classification tasks. Indeed, they mainly provide information about

the chlorophyll contents and are therefore more relevant for vegetation discrimination more than

the original bands alone (Zargar et al., 2011) (emphasizing specific spectral behaviors).
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As for the point-based lidar features, statistical features are also derived from each band and each

vegetation index according to Equation 3.5 (3 circular neighborhoods of 1m, 3m and 5m radii). Other

statistical functions are used (minimum; maximum; mean; median; standard deviation; mean abso-

lute deviation from median (meanADmed); mean absolute deviation from mean (meanADmean); me-

dian absolute deviation from median (medADmed); median absolute deviation from mean (medAD-

mean). Such features are related to texture features that are relevant for classification tasks (Haralick

et al., 1973).

Finally, the pixel-based multispectral feature set is composed of 70 attributes. Some of these

spectral features are presented in Figure 3.2.

The pixel-based features (lidar and spectral) that have been derived are summarized in Figure 3.3.

3.2.4 Object-based feature map.

The pixel-based multispectral and lidar maps are merged so as to obtain a pixel-based feature

map. Then, an object-based feature map is created using the over-segmentation and the pixel-based

feature map. The value vt associated to an object t in the object-based feature map is computed as

follows:

vt =
1

Nt

∑

p∈t

vp, (3.6)

where Nt is the number of pixels in object t ,and vp is the value of the pixel p. If a pixel does not

belong to an object (e.g. when the extracted objects are trees), it keeps the value of the pixel-based

feature map. Here, only the mean value of the pixels within the object is envisaged but one can

also consider other statistical values (minimum, maximum, percentiles etc.). It has not been consid-

ered here since it would drastically increase the total number of features and there is no warranty

that such statistical values are relevant or are not redundant with the features already produced here.

Other morphological features could also be directly derived from the lidar points cloud at the

object-level. For instance, an alpha-shape could be performed on the individual trees (Vauhkonen et

al., 2010) and penetration features could be derived as it can help to classify vegetation type (mainly

tree species) (Ko et al., 2013). However, low point densities (1-5 points/m2) compatible with large-

scale lidar surveys are not sufficient in order to derive such discriminative features, they are therefore

not considered here.

An illustration of the pixel-based and object-based feature map is presented in Figure 3.4.

3.3 Over-segmentation

Over-segmentation proposes a full coarse partition of the area of interest. "Objects" are detected

so as to ease and strengthen subsequent classification task. An accurate object extraction is not

mandatory since the labels are refined after. Both 3D and 2D mono-modal solutions are investigated,

depending on the input data and the desired level of detail for the objects. Indeed, multi-modal

segmentation has also been proposed (Tochon, 2015) and can be adopted for over-segmentation.

However, they are not employed here since they mostly aim at producing very accurate segmenta-

tion results which are not needed in this framework. In this section, the over-segmentation aims at
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Multimodal data

Lidar

nDSM

Density features

D1

D2

Shape features

Planarity: P

Scatter: S

Statistical features

Height

Minimum

Maximum

...

90thpercentile

Intensity

Mean

Spectral

Original bands

Minimum

Maximum

...

medADmean

Vegetation indices
NDVI, DVI, RVI

Minimum

Maximum

...

medADmean

FIGURE 3.3: Features derived at the pixel level, yellow corresponds to the categories of the features,
blue corresponds to the computed features.
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(A) nDSM. (B) Object-based nDSM (PFF ob-
jects).

FIGURE 3.4: Illustration of the pixel-based and object-based features (250 m×250 m).

extracting objects at the tree scale (i.e. extract trees or objects of size that are similar to trees). Indi-

vidual Tree Crown (ITC) delineation is a complex task and no universal automatic solution has been

proposed so far. Thus different methods have been tested in order to extract consistent objects (i.e.,

object similar to trees). Five existing image-based segmentation methods have been tested either on

VHR optical images or rasterized lidar features. In addition a coarse 3D tree extraction method has

been developed.

3.3.1 Segmentation of lidar data

Two approaches can be envisaged: the direct segmentation in 3D of the point cloud or the seg-

mentation of a given rasterized lidar feature using standard image-based segmentation algorithms.

The tree extraction directly from the 3D point cloud is a complex task that has been widely tackled

and discussed (Dalponte et al., 2014; Véga et al., 2014; Morsdorf et al., 2003; Kandare et al., 2014;

Wang et al., 2016). Variations exist according to the tree species, the number of vegetation strata,

forest complexity, location and data specification. However, a precise tree extraction is not needed

here, since the extracted objects are only needed to improve the classification task. A coarse and

standard method is therefore adopted: the tree tops are first extracted from the lidar points cloud

using a local maximum filter (Figure 3.5b). A point is considered as a tree top when it has the highest

height value within a 5 meter radius neighborhood. Only the points above 3 meters are retained as

it is a common threshold of the literature (Eysn et al., 2012), and appears to be highly discriminative

in non-urban areas. Points belonging to a tree are obtained through a two step procedure.

1. If the height of a point within a 5 m radius is greater or equal than 80% the height of the closest

tree top, it is aggregated to the tree top (Figure 3.5c).

2. If the distance in the (x, y) plane between an unlabeled point and the closest tree point is smaller

than 3 m they are also aggregated (Figure 3.5d).

This delineation method allows to discard low vegetation, but buildings might be extracted and

considered as trees. However, it is not a big issue since the purpose of this segmentation is not to

precisely extract trees but only provide relevant object for the subsequent object-based classification.
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(A) Point cloud. (B) Tree top extraction.

(C) Step 1: aggregation of the points
according to their height relatively to the height of the

tree top.

(D) Step 2: aggregation of the points in the (x, y) space.

FIGURE 3.5: The proposed tree extraction procedure. Red and blue points are the points assigned to
different trees, black points correspond to unlabeled points.

The segmentation of lidar data can be performed using image-based segmentation algorithm on a

given rasterized lidar feature. They are mainly applied on the normalized Digital Surface Model (i.e.

true height of topographic objects on the ground). Thus a method using a single feature must/can be

employed. The watershed algorithm (Vincent et al., 1991) with specific parameters allows to obtain

quickly a consistent over-segmentation of the image. A hierarchical segmentation (Guigues et al.,

2006) is also relevant with the advantages that only one parameter that controls the segmentation

level needs to be provided and different suitable segmentations can be obtained. These two algo-

rithms are detailed below.

Watershed.

Watershed has been proposed after the natural observation of water raining onto a landscape

topology and flowing with gravity to collect in low basins (Beucher et al., 1979). The size of those

basins will grow with increasing amounts of precipitation until they spill into one another, caus-

ing small basins to merge together into larger basins. Regions (catchment basins) are formed by

using local geometric structure to associate points in the image domain with local extrema in some
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feature measurement such as curvature or gradient magnitude. This technique is less sensitive to

user-defined thresholds than classic region-growing methods, and may be better suited for fusing

different types of features from different data sets. The watersheds technique is also more flexible in

that it does not produce a single image segmentation, but rather a hierarchy of segmentations from

which a single region or set of regions can be extracted a-priori (Vincent et al., 1991).

Hierarchical segmentation.

This segmentation method (Guigues et al., 2006) introduces a multi-scale theory of piecewise im-

age modeling, called the scale-sets theory, and which can be regarded as a region-oriented scale-space

theory. A general formulation of the partitioning problem which involves minimizing a two-term-

based energy, of the form D + µC, where D is a goodness-of-fit term and C is a regularization term.

Such energies arise from basic principles of approximate modeling and relate them to operational

rate/distortion problems involved in lossy compression problems. An important subset of these en-

ergies constitutes a class of multi-scale energies in that the minimal cut of a hierarchy gets coarser

and coarser as parameter µ increases. This allows to define a procedure to find the complete scale-

sets representation of this family of minimal cuts. Considering then the construction of the hierarchy

from which the minimal cuts are extracted, ending up with an exact and parameter-free algorithm to

build scale-sets image descriptions whose sections constitute a monotone sequence of upward global

minima of a multi-scale energy, which is called the "scale climbing" algorithm. This algorithm can be

viewed as a continuation method along the scale dimension or as a minimum pursuit along the op-

erational rate/distortion curve. Furthermore, the solution verifies a linear scale invariance property

which allows to completely postpone the tuning of the scale parameter to a subsequent stage.

3.3.2 Segmentation of optical images

Many algorithms have been developed for the over-segmentation of optical RGB (Red-Green-

Blue) images. Superpixels methods (Achanta et al., 2012) are specific over-segmentation methods

that put a special effort on the size and shape of the extracted objects. Pseudo-superpixels can be

generated using segmentation algorithms (Shi et al., 2000; Felzenszwalb et al., 2004; Comaniciu

et al., 2002; Vedaldi et al., 2008; Vincent et al., 1991). A special attention must be paid to the choice of

the parameters. These methods produce superpixels that might not be homogeneous in terms of size

and shape but with a good visual delineation. Superpixels algorithms have then been developed.

They allow to control one or many parameters of the superpixels; their number, their size and their

shape (Moore et al., 2008; Veksler et al., 2010; Levinshtein et al., 2009; Achanta et al., 2012).

For the over-segmentation of the optical images, we will use both "traditional" (i.e. non superpix-

els methods) and superpixels methods.

The three methods have been employed for the segmentation of RGB VHR optical images are

detailed below:

• "PFF": A segmentation algorithm based on graph-cut (Felzenszwalb et al., 2004),

• Quickshift: A segmentation algorithm based on the mean shift algorithm (Vedaldi et al., 2008),

• SLIC: A genuine superpixel algorithm working in the CIELab space (Achanta et al., 2012).
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PFF.

This algorithm defines a predicate for measuring the evidence for a boundary between two regions

using a graph-based representation of the image (Felzenszwalb et al., 2004). An efficient segmenta-

tion algorithm based on this predicate is employed, and shows that although this algorithm makes

greedy decisions, it produces a segmentation that satisfies global properties. The algorithm runs in

near linear time with the number of graph edges. An important characteristic of the method is its

ability to preserve details in low-variability image regions while ignoring details in high-variability

regions.

Quickshift

Quickshift (Vedaldi et al., 2008) is a kernelized version of a mode seeking algorithm similar in

concept to mean shift (Comaniciu et al., 2002; Fukunaga et al., 1975) or metroid shift (Sheikh et al.,

2007). Quickshift is faster and reports better results than traditional mean shift or metroid shift for

standard segmentation tasks. Given N data points x1, . . . , xN , it computes a Parzen density estimate

around each point using, for example, an isotropic Gaussian window of standard deviation σ:

P (x) =
1

2πσ2N

N∑

i=1

e
−||x−xi||

2

2σ2 (3.7)

Once the density estimate P (x) has been computed, Quickshift connects each point to the nearest

point in the feature space which has a higher density estimate. Each connection has a distance dx

associated with it, and the set of connections for all pixels forms a tree, where the root of the tree is

the point with the highest density estimate. To obtain a segmentation from a tree of links formed by

quick shift, a threshold τ is chosen and break all links in the tree with dx > τ . The pixels which are

a member of each resulting disconnected tree form each segment.

SLIC superpixels.

The SLIC superpixel algorithm (Achanta et al., 2012) clusters pixels in the combined five-

dimensional color (CIELab color space) and image plane (x,y) space to efficiently generate compact,

nearly uniform superpixels. It is basically based on the k-means algorithm. The number of desired

clusters corresponds to the number of desired superpixels. The employed distance is based on a

weighted sum of a color based distance and a plane space distance. This method produces super-

pixels achieving a good segmentation quality measured by boundary recall and under-segmentation

error. The benefits of superpixels approaches have already been shown, as they increase classifica-

tion performance over pixel-based methods. A major advantage of this superpixels method is that

the produced segments are compact and regularly distributed.

3.4 Feature selection

Due to the high number of possible features involved (95), an automatic Feature Selection (FS)

step has been also integrated. This selection is composed of two steps: the choice of the number

of features to select and the selection of the feature subset itself. Indeed, the choice of the number

of features is very important because it enables to greatly decrease the classification complexity and

computation times without limiting the classification quality.
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An incremental optimization heuristic called the Sequential Forward Floating Search (SFFS)

(Pudil et al., 1994) algorithm is used for both steps. The SFFS algorithm has two main advantages:

• it can be used with many FS scores (in this study, the Kappa coefficient of the classification),

• it enables to access to the evolution of the classification score/accuracy according to the number

of selected features.

Here, the classification accuracy is assessed through the Kappa coefficient of the RF classifier and

the SFFS algorithm selects p features by maximizing this FS score criterion. In order to retrieve the

optimal number of features, the SFFS algorithm was performed n times on different sample sets (i.e.,

training pixels from different areas of France that exhibit different tree species) with p equal to the

total number of features (95, but in order to reduce the computation times of this step, one can choose

a lower value). The classification accuracy as is conserved for each selection of s features (s ∈ J1, pK)

and averaged over the n iterations. The number of optimal features nopt is obtained as follow:

nopt = argmax
s∈J1,pK

(
1

n

n∑

i=1

as

)
. (3.8)

It corresponds to the size of the selection of s features having the maximal mean accuracy.

The feature selection was carried out for different areas of interest (one selection for each area)

with p = nopt. The selected features then are used for both the classification (at the object level) and

the energy minimization (at the pixel level) steps.

The feature selection has been carried out only once on different training sets (i.e., training pixels

from 3 different regions of France that exhibit different tree species, cf Chapter 4, Section 4.1). The

selected features are then retained as the single relevant features. It is therefore not necessary to

compute the others features. Such process greatly decreases the computation times but also might

reduce the performance of the classification since the selected features are relevant for many regions

but not necessarily for a given area of interest.

3.5 Classification

The classification is performed using a supervised classifier, in order to discriminate the vege-

tation types (mainly tree species) provided by the existing forest LC DB. Only the "pure" polygons

(i.e., polygons containing at least 75% of a single tree specie) are employed. The classifier used in

this study is the Random Forest (RF), implemented in OpenCV (Bradski et al., 2008), as it has been

extensively shown relevant in the remote sensing literature (Belgiu et al., 2016; Fernández-Delgado

et al., 2014). It was compared to Support Vector Machine (SVM) (Dechesne et al., 2016), and provided

similar results while being faster. The RF has many advantages:

• It can handle a large number of classes. In our problem more than 20 classes can be envisaged

but in most cases the studied areas exhibit between 4 and 7 different classes.

• It is an ensemble learning method, which brings a high level of generalization.

• It can handle a large number of features, even if they are derived from different remote sensing

modalities (which is the case in this study).

• The feature importance can be easily assessed.



48 Chapter 3. Proposed framework

• The posterior probabilities/uncertainties are natively obtained.

• Only few parameters are needed, the tuning of the parameters is not investigated in this study

since a standard parametrization produces satisfactory results.

• It is robust to noise and mislabels (Mellor et al., 2013; Mellor et al., 2014; Mellor et al., 2015)

The SVM classifier is very efficient (Vapnik, 2013), however, the training of such classifier is time

consuming, especially when the number of training samples increases (which is the case when the

learning is based on a database). Furthermore, when using different types of features (here spectral

and lidar features) a special attention should be paid to the employed kernel. The RF classifier is

therefore preferred because it natively handles features of different types and works better when the

number of samples increases.

The outputs of the classification are:

• a label map that allow to evaluate the accuracy of the classification,

• a probability map (posterior class probabilities for each pixel/object). This probability map is

the main input for the subsequent regularization step.

In order to overcome the issues of the generalized and partly outdated forest LC DB, a strategy is

proposed in order to automatically select the most suitable training set out of an existing land-cover

forest maps, subsequently improving the classification accuracy. Additionally, in order to reduce the

classification complexity and computation times, a feature selection has previously carried out in

order to identify an "optimal" feature subset.

3.5.1 Training set design

Using an existing LC DB to train a model is not straightforward (Pelletier et al., 2016; Gressin et

al., 2013b; Radoux et al., 2014; Maas et al., 2016). First, locally it can suffer from a lack of semantic in-

formation (not all the classes of interest are present). Secondly, this database may also be semantically

mislabeled and, more frequently, geometrically incorrect: changes may have happened (forest cut or

grow, see Figure 3.6a) and the geodatabase may have been generalized (see Figure 3.6b), resulting in

sharp polygon vertices that do not exactly correspond to the class borders. Thirdly, in many forest LC

databases, polygons of a given vegetation type (mainly tree species) may contain other vegetation

types in a small proportion. This is the case in the French forest LC DB where a vegetation type is

assigned to a polygon if the latter is composed at least of 75% of this type. Such errors might highly

penalize the classification (Carlotto, 2009), especially if random sampling is performed for constitut-

ing the training set. Deep neural networks can handle noisy labels without specific approach but it

requires larger amount of training samples.

In order to correct the potential errors of the LC database or discard pixels that do not correspond

to the class of interest, a k-means clustering has been therefore performed for each label in the train-

ing area (which is the area covered by the polygons of this label). It is assumed that erroneous pixels

are present but in a small proportion and that therefore the main clusters corresponds to the class

of interest. Let pi−c,t be the ith pixel of the vegetation type (mainly tree species) t in the cluster c of

the k-means. The pixels Pt used to train the model for the vegetation type (mainly tree species) t
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(A) Stand of pure maritime pine, green corresponds to the
borders of the stand. Blue circle corresponds to hard-

woods labeled as maritime pine.

(B) Stand of pure maritime pine, green corresponds to the
borders of the stand. Blue circles correspond to bare soils

labeled as maritime pine.

FIGURE 3.6: Two main errors in the forest LC DB;
generalization ( 3.6a) and miss-labeling/change ( 3.6b).

correspond to the set:

Pt = {pi−c,t | c = argmax
c∈[1,k]

Card(∪ipi−c,t)}. (3.9)

That is to say, only samples belonging to the main k-means cluster among training pixels for one

class are kept in the training dataset.

Such selection is a bit exclusive and does not allow a lot of variability of the selected training

pixels. Thus, a more reasonable way to select training pixels is to keep the pixels such as:

Pt = {pi−c,t |
Card

(
∪
∀i
pi−c,t

)

Card
(

∪
∀i,∀ck

pi−ck,t

) ≥ up}, (3.10)

where up is a proportion defined by the user. Such selection is equivalent to select the pixels that

are in a cluster which size represents a significant proportion of the total pixels labeled as t in the

Forest LC. in this case, the number of clusters for the k-means can be increased. In the experiments,

up was set to 0.25 (i.e. 25%) an k to 4. The second formulation is preferred since it allows to keep

some inter-class variability.

3.5.2 Training and prediction

For the prediction, the RF classifier is employed. It is performed at the object level. On each area,

the RF model is trained using 1000 samples per class. The samples are randomly drawn from the

pixels selected by the training set design. The selected features are employed for the construction of

the model and for the prediction.
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Four main parameters are needed for the construction of the RF model. Firstly, the maximum

number of trees in the forest needs to be set. Typically the more trees are employed, the better the

accuracy is. However, the improvement in accuracy generally diminishes and asymptotes pass a

certain number of trees. The number of trees increases the prediction time linearly. Here, 100 trees

are computed in order to reach sufficient accuracy without huge computation times. The maximal

depth of the tree needs then to be set . A low value will likely underfit and conversely a high value

will likely overfit. The optimal value can be obtained using cross validation or other suitable meth-

ods but a depth of 25 is commonly accepted. The number of features employed at each tree node and

that are used to find the best split(s) is an other parameter. It is commonly set to the square root of the

total number of features. Since 20 features are employed for the classification, this number is here set

to 4. Besides, the tree computation can be stopped when each leaf of the tree has reached a sufficient

purity or maximum population. Here, when the OOB error is below 0.01, the tree computation stops.

To summarize, the parameters of the RF employed in this study are the following:

• Number of trees: 100.

• Maximum depth of the trees: 25.

• Sufficient accuracy (OOB error): 0.01.

• Number of features at each tree node: 4

3.6 Regularization

The obtained classification might remain very noisy due to the complexity of the tree species

discrimination task. The forest stand could not be clearly defined and a refinement should be em-

ployed in order to smooth the classification results. Many smoothing methods have been proposed

and are evaluated in Chapter 5. They can be based on the classification label map results or on a

class membership probability map. More advanced framework can include object contours (Ron-

fard, 1994; Chan et al., 2001) or output of object detection for higher level regularization. Here for

such unstructured environments, it does not appear to be relevant.

The smoothing is here performed at the pixel level. Both local and global methods have been

investigated. The local methods only consider a limited number of pixels while the global methods

consider all the pixels of the image.

The global smoothing method uses only a small number of relation between neighboring pix-

els (8-connexity) to describe the smoothness. An energy is computed and its minimum leads to a

smoothed result. The energy E(I, C,A) for an image I is expressed as follows:

E(I, C,A) =
∑

u∈I

Edata(u, P (C(u)))+

γ
∑

u∈I,v∈Nu

Epairwise(u,v, C(u), C(v), A(u), A(v)),
(3.11)

where A(u) is a vector of the values of the features at pixel u to be selected so as to constrain the

problem according to a given criterion (height for instance) and Nu is the 8-connexity neighborhood

of the pixel u. When γ = 0, the pairwise prior term has no effect in the energy formulation; the most
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probable class is attributed to the pixel, leading to the same result as the classification output. When

γ > 0, the resulting label map becomes more homogeneous.

In spite of having only connections between local neighbors, the optimization propagates in-

formation over large distances (Schindler, 2012). The problem is NP-hard to solve but an efficient

algorithm called Quadratic Pseudo-Boolean Optimization (QPBO) allows to efficiently solve it.

The principal difficulty lies in the formulation of Edata and Epairwise, several formulation are in-

vestigated in Chapter 5. The ones that produce the best results and were finally retained are defined

as follows:

Edata = 1− P (C(u)). (3.12)

Epairwise(C(u) = C(v)) = 0,

Epairwise(C(u) 6= C(v)) =
1

n

n∑

i=1

exp(−λi|Ai(u)−Ai(v)|),
(3.13)

where Ai(u) is the value of the ith feature of the pixel u and λi ∈ R+∗ the importance given to feature

i in the regularization (λi are set to 1 ∀i). To compute such energy, the features need to be first

normalized (i.e., zero mean, unit standard deviation) in order to ensure that they all have the same

range.

3.7 Conclusion and discussions

In this chapter, an automatic framework for the extraction of forest stand has been proposed. It

is composed of four main steps. An over-segmentation is firstly performed in order to retrieve small

object that will be employed for subsequent classification. Multi-modal features are computed at

the pixel level and object level. Because of the high number of features, a feature selection is also

carried out in order to have a more efficient classification and reduce the computational load and

time, but also in order to assess the complementarity of the multi-modal features. Classification is

then performed at the object level since it improves the discrimination of tree species. When training

this classifier, a specific attention is paid to the design of the training set, in order to cope with the

errors of the Forest LC DB. Finally, a regularization of the label map is performed in order to remove

the noise and to retrieve homogeneous forest stands according to a given criteria (here tree species).

Next chapters will come into details about the different steps of the proposed framework, and will

investigate several variants, so as to justify the choices and to define at the end the best joint use of

VHR optical images and lidar point cloud for forest stand delineation.

The contribution of our framework is multiple:

• The extraction of features from VHR optical images and lidar 3D point cloud. From the VHR

optical images, vegetation indices are derived. From the original bands and the vegetation

indices, statistical features are derived. From the lidar point cloud, 3 types of features are

extracted. The first ones are related to vegetation density. The seconds are related to the local

shape of the lidar point cloud. Finally, statistical features (related to height or intensity of the

3D points) are extracted.

• The feature selection that allow to reduce computation times. It also allow to assess the rele-

vance of the extracted feature and the complementarity of data sources. It is perform using an



52 Chapter 3. Proposed framework

incremental optimization heuristic called the Sequential Forward Floating Search based on the

κ of the Random Forest.

• The classification is performed using the Random Forest classifier. A special attention is paid to

to the selection of training pixel using unsupervised classification algorithm (namely k-means).

The training of the classifier is performed with standard parameters.

• The regularization can be performed using local or global methods (see Chapter 5). It is possible

to integrate informations from the derived features. The regularization allows to smooth the

classification that might be noisy. It is a necessary step in order to obtain relevant forest stands.

The use of deep-based features could be interesting since they produce good discrimination re-

sults for remote sensing application (Kontschieder et al., 2015). Furthermore, such methods can also

be employed for classification, reporting good results (Paisitkriangkrai et al., 2016; Workman et al.,

2017). However, since we wanted to draw the best from the data sources (especially lidar), hand-

crafted features have been preferred. Indeed, the integration of lidar is generally limited to a simple

nDSM (Audebert et al., 2016).







55

4

Flowchart assessment

4.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.1.1 Remote sensing data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.1.2 National Forest LC DB: "BD Forêt R©" . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.1.3 Areas of interest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2 Framework experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2.1 Over-segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2.2 Feature selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.2.3 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.2.4 Regularization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.2.5 Computation times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.3 Final results on multiple areas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.3.1 Gironde . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.3.2 Ventoux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.3.3 Vosges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.3.4 Validity of the framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.4 Can forest stands be simply retrieved? . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.4.1 Segmentation of remote sensing data . . . . . . . . . . . . . . . . . . . . . . . . 95

4.4.2 Classification of the segments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.5 Derivation of other outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.5.1 Semi-automatic update process . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.5.2 Data enrichment for inventory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

Additional information extraction . . . . . . . . . . . . . . . . . . . . . . . . . . 102

Segmentation using complementary criteria . . . . . . . . . . . . . . . . . . . . 103

4.6 Conclusion and perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105



56 Chapter 4. Flowchart assessment

In this chapter, the reliability of the proposed framework for the segmentation of forest stands is

assessed.

First the data employed in this framework are introduced. The specifications the the remote

sensing modalities (VHR optical images and airborne lidar point cloud) are presented, then, the

nomenclature of the French Forest land cover (LC) database (DB) is detailed. The test areas where

the framework has been employed are also presented.

Experiments are then conducted in order to optimize the first steps of the method (i.e., features

reliability, over-segmentation, feature selection and classification). The last step (regularization) will

be experimented with detail in Chapter 5.

After validation of the framework, it is also applied several areas from different regions of France,

in order to validate its adaptability.

A simple and naive segmentation method is then proposed. It aims at justifying the relevance of

our framework, showing that the problem of stand segmentation can not be envisaged as a simple

segmentation problem.

Eventually, examples other interesting outputs of the framework, such as a semi-automatic up-

date process and additional features for the enrichment of the Forest LC DB are proposed.

4.1 Data

In this section, the specifications of the different input data are presented. Firstly, the two remote

sensing modalities are presented. The forest LC DB is then detailed. Finally, the areas where the

framework has been tested are presented.

4.1.1 Remote sensing data

VHR optical images.

IGN actually acquires airborne images over the whole territory within a 3 years update rate.

Such images are part of the French official state requirement. In this thesis, the images have

been ortho-rectified at the spatial resolution of 50 cm. Such resolution allows to derive consistent

statistical features from optical images (see Chapter 3). The ortho-images are composed of 4 bands

(red: 600-720 nm, green: 490-610 nm, blue: 430-550 nm and near infra-red: 750-950 nm) captured by

the IGN digital cameras (Souchon et al., 2012) and with its own aircraft granting high radiometric

and geometric quality.

Airborne Laser Scanning.

IGN also acquires 3D lidar point clouds over various areas of interest (forest, shorelines, rivers).

Here, forested areas have been acquired by an Optech 3100EA device. Such data are employed in

order to derive an accurate Digital Surface Model since it is the better solution to obtain it in such

environment. The footprint was 0.8 m in order to increase the probability of the laser beam to reach

the ground and subsequently acquire ground points, below tree canopy. The point density for all

echoes ranges from 2 to 4 points/m2. The points are given with an intensity value that correspond

to the quantity of energy that came back to the sensor. Such information is hard to interpret since

the beam might have been reflected multiple times and it is therefore difficult to calibrate the

sensor. Data are usually acquired under leaf-on conditions and fit with the standards used in many
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countries for large-scale operational forest mapping purposes (Kangas et al., 2006; Næsset, 2002).

One may have note that superior densities are now recommended to boost metric extraction.

Data registration.

A prerequisite for data fusion is the most accurate alignment of the two remote sensing data

sources (Torabzadeh et al., 2014). A frequently used technique is to geo-rectify images using ground

controls points (GCPs). A geometric transformation is established between the coordinates of GCPs

and their corresponding pixels in the image or 3D point in the point cloud. It is then applied to each

pixel/point, so that coordinate differences on those points are reduced to the lowest possible level.

This method can be easily applied and is relatively fast in terms of computation time.

The registration between airborne lidar point clouds and VHR multispectral images was per-

formed by IGN itself using GCPs. This is a standard procedure, since IGN operates both sensors

and has also a strong expertise in data georeferencing. IGN is the national institute responsible for

geo-referencing in France for both airborne and spaceborne sensors. No spatial discrepancies are

notice in the processed areas.

4.1.2 National Forest LC DB: "BD Forêt R©"

The IGN forest geodatabase is a reference tool for professionals in the wood industry and for

environmental and spatial planning stakeholders.

The forest LC database is a reference vector database for forest and semi-natural environments.

Produced by photo-interpretation of VHR CIR optical images completed with extensive field sur-

veys, the forest LC database is realized following the departmental division in the metropolitan ter-

ritory.

• Forest LC DB, version 1

The version 1 of the forest LC DB, was developed by photo-interpretation of aerial images in in-

frared colors. Its minimum mapped surface area is 2.25 ha. It describes the soil cover (by description

of the structure and the dominant composition of wooded or natural formations), based on a de-

partmental nomenclature ranging from 15 to 60 classes according to vegetation’s diversity of the

mapped department.Constituted, until 2006, at the departmental level, it is available throughout the

metropolitan territory.For more than half of the departments, several versions of the version 1 of the

forest LC database are available.

This version of the forest LC DB is not employed in this work since it highly depends on the area

investigated.

• Forest LC DB, version 2

The forest LC DB version 2 has been produced since 2007 by photo-interpretation of VHR CIR

optical images. It describes the forest at the national level. Indeed, the classes are the same for the

whole metropolitan part of the country which was not the case for the version 1 of the Forest LC

DB. It assigns to each mapped range of more than 5000 m2 a vegetation formation type. Its main

characteristics are the following:
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• A national nomenclature of 32 items based on a hierarchical breakdown of the criteria, dis-

tinguishing, for example, pure stands from the main forest tree species in the French forest

(see Figure 4.1). Within the 32 classes, there are mixed forest (not specific information on tree

species) that are not employed in our analysis and 2 classes of low vegetation formation that

do not corresponds to forest but that are employed during the classification.

• A type of vegetation formation assigned to each mapped range greater than or equal to 50 ares

(5000 m2).

• A layer geometrically compatible with the other geodatabases layers produced by the IGN and

remote sensing data sources.

Produced by department in metropolitan France, the version 2 of the forest LC database covers

now 75 (out of 95) departments.

The quality of this version of the Forest LC DB has not been assessed for all departments. Evalua-

tions have been conducted by IGN on two departments (namely Corrèze (19) and Haute-Saône (70)),

enlightening that the quality of the Forest LC DB is unequal. The quality on the departments 70 was

good while many confusions are reported on the departments 19 (up to 20%, showing the limits of

photo-interpretation).

≥ 50 ares

Out of
speci cation

N

Forest
F

Moor
L

Orchards
NV

Occulted
NX

Out of spéci cations
ND

(Not determined)

Closed forest
FF

canopy cover ≥ 40%

Open forest
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10% ≤canopy 

cover≤ 40%

Poplar plantation
FP

poplar canopy cover ≥ 75%
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Young stand
or clear cut
or incident

FF0

of less than 5 years

Pure hardwoods
FF1

canopy cover of hardwoods ≥ 75%

Pure conifers
FF2

canopy cover of conifers ≥ 75%

Mixture of hardwoods
and conifers

FF3

Clear cut or incident
FO0

of less than 5 years

Pure hardwoods
FO1

canopy cover of hardwoods ≥ 75%

Pure conifers
FO2

canopy cover of conifers ≥ 75%

Mixture of hardwoods
and conifers

FO3

Woodland
LA4

absolute cover of low woody ≥ 25%

Herbaceous formation
LA6

absolute cover of low woody ≤ 25%

Adult
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Visible
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Adult
stands
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50 ares
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Pure deciduous oaks FF1G01-01
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Pure evergreen oaks FF1G06-06
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ash, eucalyptus, hop-hornbeam, etc.

Mixture of hardwoods FF1-00-00

mixture of hardwoods,  without any of

them having canopy cover of more than 75%
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no specie(s) identi cation

Pure Maritime Pine FF2-51-51

Pure Scots pine FF2-52-52

Pure black pine FF2G53-53

Pure Alep Pine FF2-57-57

Pure mountain pine or Swiss pine FF2G58-58

pure or in mixture

Other pure pine FF2-81-81
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Mixture of pine FF2-80-80
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other 
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Level 1 Level 2 Level 3 Level 4

FIGURE 4.1: Organizational chart of the version 2 of the forest LC database 1.

1http://inventaire-forestier.ign.fr/spip/IMG/pdf/IF_25_proche_infrarouge_2.pdf
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FIGURE 4.2: The 3 geographical areas of interest. 8 areas being processed in total.

4.1.3 Areas of interest

In order to assess to relevance of the proposed framework, we have selected 3 different regions

of France (see Figure 4.2) which exhibit specific characteristics. The color code of the Forest LC DB is

presented in Table A.1.

Gironde.

In the Gironde department, and more generally in the Landes forests (South-Western Atlantic

coast in France), the dominant tree specie is the maritime pine. A second specie, oaks, cohabits with

maritime pines. In the XIXth century, maritime pines were planted in the Landes (called Landes

de Gascogne). The goal was multiple: clean up the marshland, retain the dunes, and provide an

interesting tree exploitation to a population having at the time few sources of income.

In the studied area, two main species (namely maritime pine (7, ) and deciduous oaks (1, )) are

reported, but also a less common specie : elm (labeled as other pure hardwood (6, )). A low vegetation

class (namely woody heathland (17, )) is also represented. After a visual inspection of the Forest LC

DB and remote sensing data, it appears that stands of maritime pine (7, ) exhibit two interesting

aspects:
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(A) VHR CIR opti-
cal image.

(B) nDSM. (C) Forest LC
database.

FIGURE 4.3: VHR CIR optical image, rasterized nDSM and forest LC on the selected area from the
Gironde (9 km2).

• clear cuts, corresponding to areas labeled as maritime pine but that are not planted (or re-

planted yet),

• variation in height of trees, that is to say, a single polygon can contain stands of different height.

Ventoux.

The Ventoux is a mountainous area in South Eastern of France. The vegetation is diverse because

of its location and weather. Indeed, it is a mountainous formation in a Mediterranean environment.

Thus many tree species are represented, making it an interesting area for forest stand segmenta-

tion. Two areas were selected, since they exhibit various species. The first area (called Ventoux1) is

large (2.4×2.5 km) and exhibits a large number of vegetation types (5 tree species and 2 herbaceous

formation) and is therefore interesting in order to validate the framework. The second area (called

Ventoux2) also exhibits a large number of vegetation types (4 tree species an 1 herbaceous formation)

and is interesting in order to validate that under-represented classes can be well retrieved with the

proposed framework. In the two proposed areas, the represented vegetation types are: Deciduous

oaks (1, ), Evergreen oaks (2, ), Beech (3, ), Black pine (9, ), Mountain pine or Swiss pine (11, ),

Larch (14, ), Woody heathland (17, ) and Herbaceous formation (18, ) (6 species, 2 low vegetation

formations).
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(A) VHR CIR opti-
cal image.

(B) nDSM. (C) Forest LC
database.

FIGURE 4.4: VHR CIR optical image, rasterized nDSM and forest LC on the selected area from the
Ventoux (Ventoux1, 2.4×2.5 km).

(A) VHR CIR opti-
cal image.

(B) nDSM. (C) Forest LC
database.

FIGURE 4.5: VHR CIR optical image, rasterized nDSM and forest LC on the selected area from the
Ventoux (Ventoux2, 1 km2).

Vosges.

The Vosges are a mountainous area in Eastern France (up to 1,500 m). The vegetation is very

varied because of the environmental conditions (altitude, climate, topography, soils type, etc.). Such

forested areas are therefore very interesting for forest stand extraction since many species cohabit

there. Five areas have been processed.

Vosges1 is the main area of interest of 1 km2. Most of the framework has been validated on this

area. Indeed, it is a very interesting area for 3 reasons:

• It contains four tree species, which is quite important for a 1 km2.

• The stands are adjacent to each other, thus, it is possible to assess if the borders are well

retrieved by the proposed framework.

• The stands exhibit height variation. Thus, stands of same specie but with different height might

be extracted.
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The second area (Vosges2) is a large area ( km2) that exhibit a large number of species (6 species, 1

low vegetation formation) and is therefore interesting in order to validate the framework. In the

other areas (Vosges3, Vosges4 and Vosges5) a relevant number of species are represented (4 or 5) but

the stands are most of the time not adjacent. However, such areas allow to assess how the proposed

framework operates in the mixed stands (i.e., the unlabeled areas). In the five proposed areas, the

vegetation types represented are: Deciduous oaks (1, ), Beech (3, ), Chestnut (4, ), Robinia (5, ),

Scots pine (8, ), Fir or Spruce (13, ), Larch (14, ), Douglas fir (15, ), Woody heathland (17, ) (8

species, 1 low vegetation formation).

(A) VHR CIR
optical image.

(B) nDSM. (C) Forest LC.

FIGURE 4.6: VHR CIR optical image, rasterized nDSM and forest LC of the selected area from the Vosges
(Vosges1, 1 km2).

(A) VHR CIR opti-
cal image.

(B) nDSM. (C) Forest LC
database.

FIGURE 4.7: VHR CIR optical image, rasterized nDSM and forest LC of the selected area from the Vosges
(Vosges2, 9 km2).
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(A) VHR CIR opti-
cal image.

(B) nDSM. (C) Forest LC
database.

FIGURE 4.8: VHR CIR optical image, rasterized nDSM and forest LC of the selected area from the Vosges
(Vosges3, 1 km2).

(A) VHR CIR opti-
cal image.

(B) nDSM. (C) Forest LC
database.

FIGURE 4.9: VHR CIR optical image, rasterized nDSM and forest LC of the selected area from the Vosges
(Vosges4, 1 km2).

(A) VHR CIR opti-
cal image.

(B) nDSM. (C) Forest LC
database.

FIGURE 4.10: VHR CIR optical image, rasterized nDSM and forest LC of the selected area from the
Vosges (Vosges5, 1 km2).
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4.2 Framework experiments

The proposed framework is composed of different steps (defined above) they have been evalu-

ated on a single area (Vosges1). Indeed, this area is very interesting since it exhibit forest stands of

pure species that are adjacent to each other. Thus, the retrieval of the borders can be assessed. In this

section, each step is evaluated at 2 levels; the direct output will be first considered and the impact on

the final segmentation will also be investigated. In order to simplify the reading of captions, when no

specific information is provided the framework is employed using the following parameters, defin-

ing a standard pipeline:

• Feature selection:

– Selection of training samples, to cope with the Forest LC DB errors,

– Selection of 20 features,

– Object-based features (lidar and spectral) obtained from the PFF over-segmentation,

– Pixel-based features (lidar and spectral) for the regularization.

• Classification performed with:

– Selection of 500 per class training samples (k = 4 and clusters that amount for more than

25% of the total labeled pixel of the processed class are kept), to cope with the Forest LC

DB errors,

– Object-based features (lidar and spectral) obtained from the feature selection.

• Regularization using global method with:

– γ = 10,

– Linear data formulation for the unary term,

– Exponential-feature model with pixel-based features obtained from the feature selection.

The validity of the framework is assessed by a visual analysis and 4 standard accuracy metrics

that are derived from the confusion matrices. The employed metrics are the Intersection over Union

(IoU), the mean F-score, the overall accuracy and the κ coefficient. Since they are standard metrics

for the evaluation of a classification/object detection, they are not detailed here but in Section C.1 of

Appendix C.

4.2.1 Over-segmentation

The over-segmentation aims at extracting "objects" so as to ease and strengthen subsequent clas-

sification task. An accurate object extraction is not mandatory since the labels are refined after. Both

3D and 2D mono-modal solutions are investigated, depending on the input data and the desired

level of detail for the objects.

At the beginning, the idea was to extract trees from the lidar point cloud. It seemed meaningful

since trees are the basic units of forest stands. Thus, a simple bottom-up method for tree extraction

has firstly been proposed. However, a precise extraction is hard to obtain whatever the adopted tech-

nique for a large range of forested environment (Kaartinen et al., 2012; Wang et al., 2016). That is why

a comparison with other segmentation algorithms has then been investigated to identify whether a
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tree detection was necessary or whether only homogeneous objects were sufficient. The idea here is

to compare different over-segmentation methods. The advantage of using an object-based analysis

instead of a pixel-based analysis is discussed in Section 4.2.3. The results of the over-segmentation

provided by the several segmentation algorithms are presented in Figure 4.11.

In all the tested methods, the resulting segments are relevant since they all represent small ho-

mogeneous objects. In a given over-segmentation, objects are mostly not of the same size and shape,

except for the SLIC superpixels (indeed, the aim of the methods being to obtain such uniform seg-

ments). The PFF algorithm produces objects with rough borders that follow the more precisely the

borders observed in the image.

From a qualitative analysis, as expected, it appears that no segmentation method performs bet-

ter than the others. Furthermore, it is impossible to evaluate the segmentation quantitatively since

no over-segmentation ground truth is available. Thus, the different segmentation methods are com-

pared through the results they produce after the object-based classification (which indicates how the

objects are relevant for classification) and after the regularization (how the objects impacts the final

results). These results are presented in Figure 4.12, 4.13 and 4.14.

From the results, it appears that the choice of the over-segmentation methods does not signifi-

cantly impact the final results (after regularization). The watershed applied to the nDDSM tends to

under-perform the other algorithms (94% of overall accuracy after regularization compared to 97%

for other methods, with similar results observed using other metrics). The most visible contribution

of the choice of the over-segmentation method stands in the classification results (before smoothing).

The hierarchical segmentation and the watershed have poorer classification results compared to the

other methods (respectively 88% and 83% in terms of overall accuracy compared to values ≥ 91% for

the 4 other methods, with similar results observed using other metrics). From the experiments of the

over-segmentation algorithms several conclusions can be drawn:

• The watershed algorithm applied to the nDSM is not relevant for this framework.

• A precise tree delineation is not mandatory, a coarse extraction is sufficient in order to obtain

relevant objects for a subsequent classification that will be regularized

• There is no preferential data type to operate the segmentation on, since both lidar (especially

nDSM) and VHR optical image produce relevant over-segmentation that can be employed for

classification.

It leads to the conclusion that the choice of the over-segmentation algorithm should not be guided

by performance but on how complicated the tuning step is and how long it takes to operate it.

4.2.2 Feature selection

In the previous step, a high number of features has been derived (95). Thus, an automatic feature

selection step is carried out for 4 main reasons.

• It allows to determine how many features are needed for an optimal classification.

• It shows the complementarity of the data sources (optical images and lidar).

• It permits to understand which features are interesting for tree species classification.

• It reduces the computational loads and times.
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(A) RGB VHR optical image
(250 m×250 m).

(B) nDSM.

(C) Tree extraction. (D) Watershed. (E) Hierarchical segmentation.

(F) PFF. (G) Quickshift. (H) SLIC.

FIGURE 4.11: Illustration of over segmentation results superposed to the input remote sensing source.
red corresponds to the borders found by the segmentation algorithm.
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(A) VHR CIR
optical image.

(B) nDSM. (C) Forest LC.

(D) Tree extraction. (E) Watershed. (F) Hierarchical
segmentation.

(G) PFF. (H) Quickshift. (I) SLIC.

FIGURE 4.12: Final regularization results for different over-segmentation methods.
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FIGURE 4.13: Quantitative evaluation of classification accuracy (according to the Forest LC DB) using
different over-segmentation methods.
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FIGURE 4.14: Quantitative evaluation of regularization accuracy (according to the Forest LC DB) using
different over-segmentation methods.
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FIGURE 4.15: κ accuracy as a function of the number of selected features. The red bar corresponds to
the minimal number of features needed in order to obtain sufficient classification accuracy (99% of the
maximum accuracy). The green bar corresponds to the number of features needed in order to obtain

the best classification accuracy

How many features for the classification?

It is aimed here at obtaining a number of features for an optimal classification. The idea is to run

the feature selection N times using all features. Let an,k be an accuracy metric for the classification

of the nth iteration using the k (k ∈ J1,KK, where K is the total number of available features) best

features. The optimal number of feature kopt is defined as follow:

∀k ∈ J1,KK,

N∑

n=1

an,k ≤
N∑

n=1

an,kopt
(4.1)

Here, K = 95 and N = 50. This experiment has been carried out on different areas (i.e. using train-

ing and validation samples from different geographical areas), and the optimal number of features

found is kopt = 20 (see Figure 4.15). When k is too low, poor classification results are obtained. When

the number of features selected increases, the classification performs better, but when employing too

much feature (here, more than 20), the accuracy decreases. It is a well know phenomena (Bellman,

2015; Hughes, 1968) Thus, in all the following experiments, the classification is performed using only

20 features.

Complementarity of data sources.

Once the optimal number of features was determined, the feature selection was performed 40 times

over all the test areas in order to retrieve the most relevant features, in order to obtain statistically

relevant results. The retained attributes are presented in Figures 4.16, 4.17 and 4.18. On average, 61%

of the selected features are derived from the spectral information and 39% from the lidar information

for a single selection (i.e., in a random selection of 20 features, 12 are derived from VHR optical

images and 8 from lidar). This shows the complementarity of both remote sensing data.

Features for tree species classification.

For the spectral information, over the 40 selections, the features derived from the original band
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set are more relevant than the ones generated from the vegetation indices: the near-infrared derived

features represent 18% of the spectral selected features, 16% for the red and the green, 15% for the

blue and the DVI, only 11% for the NDVI and 10% for the RVI.

The most relevant statistical features for the spectral information is surprisingly the minimum

(17% of the spectral selection). The maximum (12%), the median (11%), the mean (11%) and the

standard deviation (10%) are also particularly relevant. The other statistics are selected less than 9%

each. For more details see Figures 4.17 and 4.18.

For the Lidar information, the most relevant feature is surprisingly the intensity, selected in each

of the 40 selections (12% of the lidar selection, 5% of the total selection). This feature highly depends

on the calibration of the sensor. Thus when using an other sensor, the intensity might return different

results and would be not adapted for an accurate classification. The standard deviation (8% of the

lidar selection), the maximum (7%) and the densities (5% and 6%) are also relevant. The other lidar

derived features count for less than 4% each. For more details, see Figure 4.16.

Reduce computational loads and times.

It is obvious that processing a reduced number of features (20 instead of 95) reduces the compu-

tational loads and times. Furthermore, if an optimal feature subset is found, only the concerned

features need to be computed. Thus, the feature computation step would be reduced to a minimum

step by computing only the relevant features.
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FIGURE 4.16: Result of the feature selection for the Lidar features over 40 trials of 20 optimal features.
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FIGURE 4.17: Result of the feature selection for the spectral features over 40 trials of 20 optimal features.
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4.2.3 Classification

In order to discriminate the vegetation types (mainly tree species) provided by the existing for-

est LC DB, a supervised classification is carried out, since such information about tree species is not

straightforward to extract. Here, the classification is composed of two steps, the selection of training

samples to cope with database errors and generalization and the classification using the Random

Forest classifier (i.e., model training). The classification is mainly performed using standard RF clas-

sifier (Bradski et al., 2008). Tests have also been conducted using a SVM classifier with RBF kernel

(Vapnik, 2013), leading to similar results (Dechesne et al., 2016). The classification can be impacted

by two factors:

• The use of object-based or pixel-based features.

• The selection or non-selection of training pixels to take into account the potential errors of the

Forest LC DB.

Pixel-based classification versus object-based classification.

The results of pixel-based and object-based classifications are shown by Figure 4.19. The corre-

sponding confusion matrices and accuracy metrics are presented in Tables C.15 and C.16.

The pixel-based classification (Figure 4.19c) appears more noisy than the object-based classifica-

tion (Figure 4.19d), as expected. However, the pixel-based classification already provides bad dis-

crimination results (overall accuracy: 70.48%, κ: 0.5, mean F-score: 50%, IoU: 38.1%) since many

confusions are reported. Conversely, even if the objects are roughly extracted (no specific attention is

paid to the relevance of the extracted objects), the object-based classification produces more spatially

consistent labels (overall accuracy: 93.14%, κ: 0.86, mean F-score: 88.19%, IoU: 79.79%). Such results

impacts the final output (see Figures 4.19e and 4.19f and Tables C.17 and C.18). The regularization al-

lows to greatly improve the bad results of the pixel-based classification (overall accuracy: 91.94%, κ:

0.84, mean F-score: 84.74%, IoU: 71.13%). However, when regularizing an object-based classification,

the results are still better (overall accuracy: 97.44%, κ: 0.95, mean F-score: 94.04%, IoU: 88.97%).

Training set design.

The selection of the training pixels is an important step for the classification. It is a two sided

problem:

• If the selected pixels are randomly taken from the polygons of the forest LC, some might not

correspond to the target class, leading to confusions in the final classification.

• If the pixels are selected using a too discriminative criteria, the variability of the target class will

not be taken into account, also leading to confusions in the final classification (over-fitting).

The Figure 4.20 shows the training pixels that have been selected by the k-means algorithm. Here,

k was set to 4, in order to conserve some variability in the selected set of pixels, the cluster that

account for more than 25% size of the processed class are kept. Most pixels from the forest LC

are retained. However, the pixels that are excluded from the training set are visually relevant as

erroneous pixels. Indeed, they mostly correspond to:

• shadows in the optical images,

• gaps in the canopy (retrieved thanks to the lidar data),
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(A) VHR CIR optical image. (B) Forest LC.

(C) Pixel-based classification (overall accuracy:
70.48%, κ: 0.50).

(D) Object-based classification (PFF) (overall accu-
racy: 93.14%, κ: 0.86).

(E) Regularization using pixel-based classification
(overall accuracy: 91.94%, κ: 0.85).

(F) Regularization using object-based classification
(PFF) (overall accuracy: 97.44%, κ: 0.95).

FIGURE 4.19: Results of the regularization; pixel-based versus object-based (Vosges1 1 km2.
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• pixels that are visually different from the other pixels of the considered class (i.e. other minor

species).

The selection of training pixels is beneficial since it allows to remove the obviously irrelevant

pixels from the training set while maintaining a certain variability within classes.

(A) RGB VHR optical image. (B) nDSM.

(C) Forest LC. (D) Retained pixels for training colored with
respect to the tree species.

FIGURE 4.20: Selection of the training pixels.

The results of the classification and regularization using different training sets is presented in

Figure 4.21. The confusion matrices and accuracy metrics when the training pixels are not selected

are presented in Tables C.19 and C.20.

The selection of training pixels greatly increases the classification results. Indeed, without any

selection, the classification is very noisy (even when working at the object level, overall accuracy:

78.98%, κ: 0.62, mean F-score: 60.44% and IoU: 47.14%) and many confusion are reported (especially

for Chestnut (4, ) and Robinia (5, )). The regularization attenuates the errors, but the result remains

worse than the one obtained with the selection of training pixels (overall accuracy: 94.67%, κ: 0.89,

mean F-score: 90.17% and IoU: 82.61%), confusions are still reported for Robinia (5, ).
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4.2.4 Regularization

The obtained classification might remain very noisy due to the complexity of the tree species dis-

crimination task. The forest stand could not be clearly defined and a refinement should be employed

in order to smooth the classification results. Regularization is the final step: it smooths the former

classification. Further discussions an analysis are proposed in Chapter 5 to justify the used regular-

ization framework and its parametrization. The smoothing of the classification is performed using

local or global methods. Here, we only aim to validate the relevance of this step showing examples

of results and illustrating the influence of the smoothing parameter γ. Thus, only the best results are

presented and discussed.

It appears that the global method produces the best results (+4% and +2% in terms of overall

(A) Classification with selection of training pixels (over-
all accuracy: 93.14%, κ: 0.86).

(B) Regularization with selection of training pixels (over-
all accuracy: 97.44%, κ: 0.95).

(C) Classification without selection of training pixels
(overall accuracy: 78.98%, κ: 0.62).

(D) Regularization without selection of training pixels
(overall accuracy: 94.67%, κ: 0.89).

FIGURE 4.21: Selection of the training pixels.
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accuracy compared to filtering and probabilistic relaxation respectively). At this step, only the choice

of the parameter γ is needed. It influences the final results and more precisely how smooth the

borders of the resulting segments are.

Influence of γ

The effect of the parameter γ is presented in Figures 4.23 and 4.22. When γ is low, the borders

are rough and small regions might appear (Figure 4.23c). The match with the forest LC DB is very

good (overall accuracy: 97.4%, κ: 0.95, mean F-score: 94.1% and IoU: 89.16%) Increasing γ smooths

the borders with, again, very good results (overall accuracy: 97.44%, κ: 0.95, mean F-score: 94.04%

and IoU: 88.97%). However, a too high value has a negative impact on the results, reducing the size

of meaningful segments (Figure 4.23e) or even removing them (Figure 4.23f), drastically reducing

the match with the forest LC DB (overall accuracy: 96.06%, κ: 0.92, mean F-score: 89.02% and IoU:

81.32%). The tuning of the parameter γ is an important issue, since different values of γ might be

acceptable depending on the level of detail expected for the segmentation. In forest inventory, having

small regions of pure species is interesting for the understanding of the behavior of the forest. For

generalization purposes (such as forest LC), the segments must have a decent size and may exhibit

variability.
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FIGURE 4.22: Regularization accuracy metrics using different values of γ.
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(A) VHR CIR optical image. (B) Forest LC.

(C) Regularization (γ = 5, overall accuracy: 97.4, κ:
0.95).

(D) Regularization (γ = 10, overall accuracy: 97.44, κ:
0.95).

(E) Regularization (γ = 15, overall accuracy: 97.06, κ:
0.94).

(F) Regularization (γ = 20, overall accuracy: 96.06, κ:
0.92).

FIGURE 4.23: Regularization results, effect of the parameter γ.
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4.2.5 Computation times

In the proposed framework, the object-extraction step is the only step that exhibits different com-

putation times depending on the over-segmentation method employed. All these methods are fast

(less than 5 minutes for a 1 km2 area), except for the tree extraction from the Lidar point cloud. In-

deed, the tree extraction needs to iterate several times on all the points from the lidar cloud, leading

to high computation times (about 1h30 for a 1km2 area). These computation times, with regard to re-

sults of the over-segmentation methods confirm that the tree extraction is not necessary. It produces

similar results compared to other methods, but with higher computation times.

For the other steps of the framework, the computation times are presented in Table 4.1. The com-

putation of the features is the most time consuming step (2h). The feature selection (1h) here appears

also quite long but can easily be reduced if necessary (e.g., by employing an other method). The im-

plementation of the different steps of the framework can be improved). This times are provided for

the retrieval of the best features within the whole feature set.However, once they are identified, only

a limited number of optimal features needs to be computed. It results in a decrease of the computa-

tion times (less features are computed and no feature selection is carried out). Initial, the proposed

framework takes 4 h for 1 km2, with optimal features identified, if takes 1 h 30.

Computation time

Lidar features (all) ∼ 1 h

Optical features (all) ∼ 1 h

Object-based feature map ∼ 10 min

Feature selection ∼ 1 h

Classification ∼ 10 min

Regularization ∼ 30 min

Full algorithm ∼ 4 h

TABLE 4.1: Average computation times of the different steps of the framework for a 1 km2 area.

4.3 Final results on multiple areas

In the previous section, results have been presented on a single zone in order to evaluate the

different possibilities of the framework and find out optimal schemes for forest stands extraction. In

this section, results are presented over different regions of France using only the best configuration

(see Section 4.2).

4.3.1 Gironde

The area and the results of the framework are presented in Figure 4.24. The confusion matri-

ces and accuracy metrics for the classification and regularization are presented in Table 4.2 and 4.3

respectively.
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(A) VHR CIR opti-
cal image.

(B) nDSM. (C) Forest LC
database.

(D) Classification result. (E) Regularization result.

FIGURE 4.24: VHR CIR optical image, rasterized nDSM and forest LC of the selected area from the
Gironde (9 km2).

Confusion matrix

Label 1 6 7 17 Precision

1 175555 714 5360 2817 95.18

6 93503 340999 70548 4865 66.87

7 1525795 978053 15704988 3466084 72.46

17 11467 1489 20525 114102 77.31

Recall 9.719 25.81 99.39 3.18

Accuracy metrics

Label 1 6 7 17 Overall

IU 9.671 22.88 72.14 3.151 26.96

F-score 17.64 37.24 83.81 6.109 36.2

Accuracy 92.72 94.9 73.06 84.42 92.72

P0 0.93 0.95 0.73 0.84 0.73

Pe 0.91 0.92 0.69 0.84 0.68

κ 0.1639 0.3512 0.1402 0.04912 0.146

TABLE 4.2: Confusion Matrix and accuracy metrics of the classification.
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Confusion matrix

Label 1 6 7 17 Precision

1 179476 2 4968 0 97.31

6 3417 419132 87366 0 82.2

7 615727 534859 16777216 1943289 84.43

17 0 0 36207 111376 75.47

Recall 22.47 43.93 99.24 5.421

Accuracy metrics

Label 1 6 7 17 Overall

IoU 22.33 40.12 83.89 5.327 37.92

F-score 36.51 57.26 91.24 10.11 48.78

Accuracy 96.99 96.98 84.44 90.44 99.25

P0 0.97 0.97 0.84 0.9 0.84

Pe 0.95 0.93 0.79 0.9 0.79

κ 0.3558 0.5585 0.2575 0.08904 0.275

TABLE 4.3: Confusion Matrix and accuracy metrics of the regularization.

In this area, a lot of confusions are reported. The main class (namely maritime pine (7, )) is

well retrieved. The confusions are due to the over-representation of the maritime pines (7, ) which

exhibits high variability (different heights). Furthermore, some areas are labeled as maritime pine

(7, ) in the forest LC have probably been harvested. They clearly appear as bare soils that can be

easily confused with Woody heathland (17, ). However, from a visual point of view the results are

coherent. Such errors are easily automatically detected and can be employed for the update of the

Forest LC DB or the detection of clearcut areas. Furthermore, it is interesting to note that the stand

of elm labeled as other hardwood (6, ), is well retrieved.

The poor results observed can be explained:

• The intense harvesting in this area, leading to many clearcut that can be confused with bare soil

by the classifier.

• The major forest damage caused by Cyclone Klaus in January 2009.

4.3.2 Ventoux

The results of the framework over two areas presented in Figures 4.25 and 4.26. The confusion

matrices and accuracy metrics of the classification and regularization are respectively presented in

Tables 4.4 and 4.5 for Ventoux1and Tables 4.6 and 4.7 for Ventoux2.
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(A) VHR CIR opti-
cal image.

(B) nDSM. (C) Forest LC
database.

(D) Classification result. (E) Regularization result.

FIGURE 4.25: VHR CIR optical image, rasterized nDSM and forest LC of the selected area from the
Ventoux (Ventoux1, 2.4×2.5 km).

On this area, very good results are reported. In the classification process, some confusions are

reported (between Evergreen oaks (2, ) and Beech (3, ) and also between Beech (3, ) and Herbaceous

formation (18, )), even if the results are already good. The classification precisions for all classes are

greater than 80%, and most of the recall rates are also satisfactory (> 70%, except for Evergreen oaks

(2, ), Woody heathland (17, ) and Herbaceous formation (18, )). After regularization, the results are

improved a lot (precisions greater then 90% for all classes). Regarding the recalls, only the Woody

heathland (18, ) class suffers from limited confusion with Deciduous oaks (1, ) and Mountain pine or

Swiss pine (11, ). The global results are very satisfactory with an IoU of 89.45%, showing that stands

borders are well retrieved. The κ of 0.94 shows an agreement nearly perfect. Finally, the mean F-score

and overall accuracy confirm the relevance of the results. Furthermore, in the mixed areas (i.e., areas

not labeled in the Forest LC DB), we retrieve small stands that are visually coherent, showing that

the proposed framework allows to obtain finest results.
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Confusion matrix

Label 1 2 3 9 11 17 18 Precision

1 58218 0 3247 2759 331 0 0 90.18

2 0 154297 772 79 186 439 2404 97.55

3 21038 85103 3827279 66812 188176 41743 32783 89.78

9 0 11572 175368 3043399 292148 4760 4766 86.17

11 139 45061 384619 294910 3083873 43374 9964 79.85

17 0 0 1045 0 5905 104020 13 93.73

18 0 0 31 829 154 126 29367 96.26
Recall 73.33 52.12 87.13 89.28 86.36 53.49 37.03

Accuracy metrics

Label 1 2 3 9 11 17 18 Overall
IoU 67.91 51.45 79.27 78.09 70.91 51.64 36.51 62.25
F-score 80.89 67.94 88.44 87.7 82.98 68.11 53.49 75.65
Accuracy 99.77 98.79 91.68 92.9 89.48 99.19 99.58 85.69
P0 1 0.99 0.92 0.93 0.89 0.99 1 0.86
Pe 0.99 0.96 0.54 0.59 0.57 0.97 0.99 0.31
κ 0.8077 0.6738 0.8194 0.827 0.7538 0.6773 0.5332 0.7929

TABLE 4.4: Confusion Matrix and accuracy metrics of the classification (Ventoux1).

Confusion matrix

Label 1 2 3 9 11 17 18 Precision

1 62834 0 6 1715 0 0 0 97.33

2 0 150450 5533 0 2194 0 0 95.11

3 6556 0 4185074 24676 30802 15531 295 98.17

9 0 0 28668 3463198 40147 0 0 98.05

11 0 5123 145885 193255 3500313 17364 0 90.64

17 0 0 236 0 5770 104977 0 94.59

18 0 0 0 517 0 0 29990 98.31
Recall 90.55 96.71 95.87 94.02 97.8 76.14 99.03

Accuracy metrics

Label 1 2 3 9 11 17 18 Overall
IoU 88.36 92.13 94.19 92.3 88.82 72.96 97.36 89.45
F-score 93.82 95.9 97.01 95.99 94.08 84.37 98.66 94.26
Accuracy 99.93 99.89 97.85 97.6 96.34 99.68 99.99 95.64
P0 1 1 0.98 0.98 0.96 1 1 0.96
Pe 0.99 0.97 0.54 0.58 0.57 0.98 0.99 0.31
κ 0.9379 0.9585 0.9533 0.9428 0.9143 0.8421 0.9866 0.9364

TABLE 4.5: Confusion Matrix and accuracy metrics of the regularization (Ventoux1).

Similar results are observed on the small area. The classification reports great precisions (overall

accuracy: 92.06%, κ: 0.64, mean F-score: 71.06%, IoU: 58.08%), however, recall rates are not sufficient

for Larch (14, ), non-pectinated fir (labeled as Other conifer other than pine (16, )) and Herbaceous

formation (18, ). The global metrics also report good results. After regularization, most of the

precision and recall rates are improved, except for the Herbaceous formation (18, ). Indeed, this class

is represented as a thin strip that is totally merged with Black pine (9, ). This is a quite specific

situation in the Forest LC DB (usually, object are less elongated/thin). The global metrics confirm the

good results (overall accuracy: 98.09%, κ: 0.87, mean F-score: 84.58%, IoU: 77.91%), the mean F-score

reflects the discussed confusion in the final result.
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Confusion matrix

Label 3 9 14 16 18 Precision

3 55299 316 0 0 0 99.43

9 19303 2148084 89687 49739 38944 91.57

14 0 3770 92067 260 0 95.81

16 0 8 0 20508 0 99.96

18 35 398 2 165 34587 98.29

Recall 74.09 99.79 50.65 29.02 47.04

Accuracy metrics

Label 3 9 14 16 18 Overall

IoU 73.78 91.4 49.56 29.02 46.66 58.08

F-score 84.91 95.51 66.27 44.98 63.63 71.06

Accuracy 99.23 92.08 96.33 98.03 98.45 92.06

P0 0.99 0.92 0.96 0.98 0.98 0.92

Pe 0.95 0.79 0.9 0.96 0.96 0.78

κ 0.8452 0.6276 0.6452 0.4429 0.6294 0.6416

TABLE 4.6: Confusion Matrix and accuracy metrics of the classification (Ventoux2).

(A) VHR CIR opti-
cal image.

(B) nDSM. (C) Forest LC
database.

(D) Classification result. (E) Regularization result.

FIGURE 4.26: VHR CIR optical image, rasterized nDSM and forest LC of the selected area from the
Ventoux (Ventoux2, 1 km2).
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Confusion matrix

Label 3 9 14 16 18 Precision

3 55365 250 0 0 0 99.55

9 2055 2325662 8149 5015 4876 99.14

14 0 4198 91899 0 0 95.63

16 0 208 0 20308 0 98.99

18 0 24004 0 0 11183 31.78

Recall 96.42 98.78 91.85 80.2 69.64

Accuracy metrics

Label 3 9 14 16 18 Overall

IoU 96 97.95 88.16 79.54 27.91 77.91

F-score 97.96 98.96 93.71 88.61 43.64 84.58

Accuracy 99.91 98.09 99.52 99.8 98.87 98.09

P0 1 0.98 1 1 0.99 0.98

Pe 0.96 0.85 0.93 0.98 0.98 0.85

κ 0.9791 0.8696 0.9345 0.885 0.4315 0.8733

TABLE 4.7: Confusion Matrix and accuracy metrics of the regularization (Ventoux2).

4.3.3 Vosges

Similar results are also observed in this area (see Figures 4.27, 4.28, 4.29 and 4.30, and Ta-

bles 4.8, 4.9, 4.10, 4.11, 4.12, 4.13, 4.14 and 4.15).

The results on the large area Vosges2 allow to validate the proposed framework. The classification

is noisy, leading to many confusions (mean F-score: 76.92%, IoU: 63.03%). After regularization, the

results are greatly improved with a nearly perfect match with the forest LC DB (overall accuracy:

96.26%, κ: 0.95, mean F-score: 94.62%, IoU: 90.12%). Precision and recall rates are also improved for

each class. Furthermore, small segments that do not exist in the Forest LC DB are obtained and a

visually coherent. The proposed framework is therefore relevant for the retrieval of forest stands

but also allows to obtain further information about small isolated stands within a larger one.
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(A) VHR CIR opti-
cal image.

(B) nDSM. (C) Forest LC
database.

(D) Classification result. (E) Regularization result.

FIGURE 4.27: VHR CIR optical image, rasterized nDSM and forest LC of the selected area from the
Vosges (Vosges2, 9 km2).

Confusion matrix

Label 1 3 8 13 14 15 17 Precision

1 1984718 134687 98420 267719 8668 37730 50570 76.85

3 39022 765057 14290 70204 14742 5076 18861 82.51

8 110055 42759 1783163 81597 5141 13510 3845 87.41

13 345941 194221 276821 4914574 41583 373732 121745 78.4

14 78 1718 128 190 178704 282 270 98.53

15 4739 2582 7455 25017 1940 434978 1175 91.02

17 586 1700 514 804 15 439 230820 98.27
Recall 79.86 66.95 81.77 91.69 71.26 50.24 54.02

Accuracy metrics

Label 1 3 8 13 14 15 17 Overall
IoU 64.38 58.63 73.15 73.2 70.51 47.87 53.51 63.03
F-score 78.33 73.92 84.49 84.52 82.7 64.75 69.72 76.92
Accuracy 91.36 95.75 94.85 85.84 99.41 96.27 98.42 80.96
P0 0.91 0.96 0.95 0.86 0.99 0.96 0.98 0.81
Pe 0.68 0.85 0.72 0.5 0.97 0.9 0.95 0.29
κ 0.7294 0.7164 0.8141 0.7163 0.8241 0.6295 0.6898 0.7336

TABLE 4.8: Confusion Matrix and accuracy metrics of the classification (Vosges2).
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Confusion matrix

Label 1 3 8 13 14 15 17 Precision

1 2428277 0 16432 102640 0 66 35097 94.03

3 2 898716 239 15216 7345 0 5734 96.92

8 26741 36035 1937428 37313 0 2553 0 94.97

13 60069 27193 32422 6088861 5109 4358 50605 97.13

14 0 370 0 0 181000 0 0 99.8

15 1066 0 1237 7285 0 468298 0 97.99

17 281 0 0 0 0 0 234597 99.88
Recall 96.5 93.39 97.47 97.4 93.56 98.53 71.95

Accuracy metrics

Label 1 3 8 13 14 15 17 Overall
IoU 90.92 90.7 92.68 94.68 93.38 96.58 71.89 90.12
F-score 95.25 95.12 96.2 97.27 96.58 98.26 83.65 94.62
Accuracy 98.09 99.28 98.8 97.31 99.9 99.87 99.28 96.26
P0 0.98 0.99 0.99 0.97 1 1 0.99 0.96
Pe 0.68 0.86 0.73 0.5 0.97 0.93 0.96 0.32
κ 0.9405 0.9473 0.9549 0.9461 0.9653 0.9819 0.8329 0.9454

TABLE 4.9: Confusion Matrix and accuracy metrics of the regularization (Vosges2).

On Vosges3, similar results are observed, the classification is not relevant (mean F-score: 80.59%,

IoU: 68.14%). Indeed, confusions are reported for Douglas fir (15, ) (precision:81.01%). Indeed,

young stands of Douglas fir (15, ) generally contains a significant amount of broadleaved (such

as Deciduous oaks (1, )) and have similar aspect with other coniferous (such as Fir or Spruce (13,

)), explaining the observed confusions. After regularization, the results are again greatly improved

(overall accuracy: 98.76%, κ: 0.98, mean F-score: 97.29%, IoU: 94.89%). The precisions and recall rates

have globally been improved. Only the precision for Deciduous oaks (1, ) has decreased because

the regularization process has eroded the border of this class. In order to retrieve this class more

precisely, the parameter γ should be decreased. As it as been explained in Section 4.2.4, the borders

will be less smooth in this case and some new small segments can appear.

Confusion matrix

Label 1 3 8 13 15 Precision

1 25221 0 0 248 66 98.77

3 806 195007 330 1691 3547 96.83

8 0 231 38520 382 0 98.43

13 8148 1844 3356 266015 13680 90.78

15 11065 35230 19069 136006 859279 81.01

Recall 55.75 83.94 62.86 65.79 98.03

Accuracy metrics

Label 1 3 8 13 15 Overall

IoU 55.37 81.7 62.24 61.67 79.71 68.14

F-score 71.27 89.93 76.73 76.29 88.71 80.59

Accuracy 98.74 97.3 98.56 89.79 86.5 85.45

P0 0.99 0.97 0.99 0.9 0.87 0.85

Pe 0.96 0.77 0.94 0.66 0.51 0.42

κ 0.7068 0.8838 0.7602 0.6999 0.7229 0.7497

TABLE 4.10: Confusion Matrix and accuracy metrics of the classification (Vosges3).
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(A) VHR CIR opti-
cal image.

(B) nDSM. (C) Forest LC
database.

(D) Classification result. (E) Regularization result.

FIGURE 4.28: VHR CIR optical image, rasterized nDSM and forest LC of the selected area from the
Vosges (Vosges3, 1 km2).

Confusion matrix

Label 1 3 8 13 15 Precision

1 24016 0 0 1519 0 94.05

3 0 201037 0 0 344 99.83

8 0 0 39133 0 0 100

13 2881 0 0 290162 0 99.02

15 0 14349 0 922 1045378 98.56

Recall 89.29 93.34 100 99.17 99.97

Accuracy metrics

Label 1 3 8 13 15 Overall

IoU 84.52 93.19 100 98.2 98.53 94.89

F-score 91.61 96.47 100 99.09 99.26 97.29

Accuracy 99.73 99.09 100 99.67 99.04 98.76

P0 1 0.99 1 1 0.99 0.99

Pe 0.97 0.78 0.95 0.7 0.55 0.47

κ 0.9147 0.9595 1 0.9889 0.9788 0.9766

TABLE 4.11: Confusion Matrix and accuracy metrics of the regularization (Vosges3).
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(A) VHR CIR opti-
cal image.

(B) nDSM. (C) Forest LC
database.

(D) Classification result. (E) Regularization result.

FIGURE 4.29: VHR CIR optical image, rasterized nDSM and forest LC of the selected area from the
Vosges (Vosges4, 1 km2).

On Vosges4, the classification results are very good (overall accuracy: 88.31%, κ: 0.82, mean F-

score: 87%, IoU: 77.68%. It is still noisy (the recall rate for the Beech (3, ) is 62.83%). The precision

rates are also good (> 80%). After regularization, all scores are improved (overall accuracy: 97.27%,

κ: 0.96, mean F-score: 96.45%, IoU: 93.21%) showing a nearly perfect fit with the Forest LC DB. The

recall is > 85% and the precision is > 95% for each class.
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Confusion matrix

Label 3 8 13 15 Precision

3 89744 0 1135 1189 97.48

8 79 234733 376 3432 98.37

13 16287 3192 533305 47949 88.78

15 36733 12171 95749 791577 84.55

Recall 62.83 93.86 84.58 93.77

Accuracy metrics

Label 3 8 13 15 Overall

IoU 61.82 92.42 76.41 80.05 77.68

F-score 76.41 96.06 86.62 88.92 87

Accuracy 97.03 98.97 91.18 89.44 88.31

P0 0.97 0.99 0.91 0.89 0.88

Pe 0.88 0.77 0.56 0.5 0.36

κ 0.749 0.9547 0.8005 0.7889 0.8185

TABLE 4.12: Confusion Matrix and accuracy metrics of the classification (Vosges4).

Confusion matrix

Label 3 8 13 15 Precision

3 90435 0 578 1055 98.23

8 0 237335 1075 210 99.46

13 2140 966 587349 10278 97.77

15 11513 2137 21032 901548 96.3

Recall 86.88 98.71 96.28 98.74

Accuracy metrics

Label 3 8 13 15 Overall

IoU 85.54 98.18 94.21 95.12 93.27

F-score 92.21 99.08 97.02 97.5 96.45

Accuracy 99.18 99.77 98.07 97.52 97.27

P0 0.99 1 0.98 0.98 0.97

Pe 0.9 0.78 0.56 0.5 0.37

κ 0.9178 0.9895 0.9559 0.9505 0.9567

TABLE 4.13: Confusion Matrix and accuracy metrics of the regularization (Vosges4).

On the last areas (Vosges5), the classification results are poor (overall accuracy: 74.7%, κ: 0.58,

mean F-score: 66.57%, IoU: 50.52%) probably because of the difference in illumination and height of

a stand of the same specie. Furthermore, the Scots pine (8, ) is composed of a thin strip, leading

to the same problems discussed for Ventoux2. After regularization, the results are improved (overall

accuracy: 89.76%, κ: 0.83, mean F-score: 85.33%, IoU: 75.84%) but are similar to results we can obtain

after classification. Here, two annoying effects are combined:

• a class (namely Scots pine (8, )) has a significant part represented as a thin strip, that is totally

merged into an other class (namely Beech (3, )),

• the regularization process has eroded the border of a class (namely Chestnut (4, ))
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(A) VHR CIR opti-
cal image.

(B) nDSM. (C) Forest LC
database.

(D) Classification result. (E) Regularization result.

FIGURE 4.30: VHR CIR optical image, rasterized nDSM and forest LC of the selected area from the
Vosges (Vosges5, 1 km2).

Confusion matrix

Label 3 4 8 13 15 Precision

3 698791 945 3118 70685 343 90.3

4 7874 23049 0 5575 0 63.15

8 56145 0 65952 14528 0 48.27

13 224194 23458 5184 515485 37883 63.94

15 954 0 752 1999 36299 90.74

Recall 70.73 48.57 87.93 84.75 48.71

Accuracy metrics

Label 3 4 8 13 15 Overall

IU 65.73 37.85 45.27 57.34 46.4 50.52

F-score 79.33 54.91 62.33 72.89 63.39 66.57

Accuracy 79.69 97.89 95.55 78.61 97.66 74.7

P0 0.8 0.98 0.96 0.79 0.98 0.75

Pe 0.49 0.95 0.89 0.52 0.94 0.39

κ 0.5993 0.5385 0.6018 0.5579 0.6229 0.5819

TABLE 4.14: Confusion Matrix and accuracy metrics of the classification (Vosges5).
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Confusion matrix

Label 3 4 8 13 15 Precision

3 771298 0 0 2584 0 99.67

4 13611 22887 0 0 0 62.71

8 54417 0 74760 7448 0 54.72

13 103070 1021 0 702113 0 87.09

15 0 224 0 1234 38546 96.36

Recall 81.84 94.84 100 98.42 100

Accuracy metrics

Label 3 4 8 13 15 Overall

IU 81.62 60.64 54.72 85.89 96.36 75.84

F-score 89.88 75.5 70.73 92.41 98.14 85.33

Accuracy 90.31 99.17 96.55 93.57 99.92 89.76

P0 0.9 0.99 0.97 0.94 1 0.9

Pe 0.5 0.97 0.89 0.51 0.96 0.41

κ 0.8076 0.7509 0.6907 0.8686 0.981 0.8266

TABLE 4.15: Confusion Matrix and accuracy metrics of the regularization (Vosges5).

4.3.4 Validity of the framework

The experiments on multiple areas allow to draw general conclusions on the proposed frame-

work. The most important point is that the framework can be applied to any forested area. It will

generally produce relevant results from a visual point of view. Three aspects have to be taken into

account when quantitatively evaluating the results.

• The employed Forest LC DB is generalized and may contain errors (e.g., clear cuts). The pro-

posed framework proposes the creation of an optimal training set to cope with such errors.

However, such errors remain in the forest LC DB, which is employed for evaluation. Thus, the

obtained results are biased by the employment of a potentially incorrect Forest LC DB for

evaluation.

• Some stands might be or contain parts represented as a thin strip. The proposed regularization

method is likely to merge such strip with the adjacent class, leading to poor results. In order

to overcome this problem, the value of γ could be decreased. The strip will be kept but some

small segment may also appear, giving a precise information of small forest stands within larger

stands, but also probably decreasing the global results.

• Sometimes, the proposed regularization method erodes classes edges, leading to poorer re-

sults. Again, decreasing the γ parameter would allow to retrieve the borders more precisely

while have the same effects mentioned above.

4.4 Can forest stands be simply retrieved?

A framework involving classification and global regularization was proposed and successfully

employed to retrieve forest stands. This section aims at demonstrating this complex framework was

necessary compared to simpler traditional segmentation tools.
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A straightforward method to retrieve forest stands could be to simply segment one of the 2 input

remote sensing data source. Such segmentation algorithms do not take into account information

about species. However, they could allow to retrieve stand borders easily. Furthermore, once the

segmentation is performed, one can add semantic information using imperfect classification results.

Two algorithms were employed in order to obtain relevant stands only through the segmentation of

the data. It helps performing a baseline comparison with the framework presented in Chapter 3.

The first segmentation algorithm is the one proposed in (Guigues et al., 2006). It is a multi-scale

hierarchical segmentation algorithm that allows to control the segmentation level through a unique

scale parameter µ.

The second segmentation algorithm (called here PFF) employed (Felzenszwalb et al., 2004) is a

method for image segmentation based on pairwise region comparison considering the minimum

weight edge between two regions in measuring the intensity difference between each pixel of them.

3 parameters need to be tuned in order to obtain relevant segmentation.

• σ is the standard deviation of the Gaussian filter employed to smooth the image as a pre-

processing (we followed the authors’ recommendation employing σ = 0.8).

• k is a second parameter that sets an observation scale (the larger k, the larger segments).

• m permits to define the minimum size of a segment.

These experiments have been performed only on area Vosges1 (presented in Figure 4.31). Since

it did not produce relevant results, no further experiment have been carried out on other areas. It

is a 1 km2 area, the spatial resolution of the VHR optical image is 0.5 m, and the nDSM has been

rasterized at the same resolution. From these data, it can be seen that a stand is composed of areas

that are not homogeneous in term of reflectance and/or height. Furthermore, one can also note that

the difference between two stands in terms of reflectance and/or height might not be so important

(two distinct stands can be similar).

(A) VHR CIR opti-
cal image.

(B) nDSM. (C) Forest LC
database.

FIGURE 4.31: VHR CIR optical image, rasterized nDSM and forest LC of the proposed area for the direct
segmentation tests (1 km2).
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4.4.1 Segmentation of remote sensing data

Two segmentation strategies are employed to segment to retrieve the forest stands borders of the

forest LC DB:

• The segmentation is applied to the VHR optical images. Thus, the resulting segments will

correspond to "stands" that are homogeneous in terms of spectral reflectance. Since the optical

images are employed by photo-interpreters in order to derive the forest LC, such segmentation

is supposed to produce results similar to the forest LC.

• The segmentation is also applied to the rasterized normalized digital surface model (nDSM)

(canopy height without ground relief). Such segmentation would produce "stands" that are

homogeneous in term of height.

The results of the segmentation of the VHR optical image using the two segmentation algorithms

is presented in Figure 4.32. In both cases, most borders found are not consistent with the forest LC

DB, and no metrics can be computed. Visually, the hierarchical segmentation seems to be more rel-

evant than the PFF segmentation. However, the hierarchical segmentation produces small segments

due to high variation of illumination in the image, while the PFF segments are all relatively large

(thanks to the m parameter). The high spectral variability due to the very high spatial resolution of

optical is an hindering factor, that is not correctly handled with a direct segmentation technique

(A) Hierarchical segmentation with µ = 15. (B) PFF segmentation with σ = 0.8, k = 500 and
m = 40000.

FIGURE 4.32: Result of the segmentation of the VHR optical image for the two segmentation algorithms.
Blue lines correspond to the borders of the segments, red lines correspond to the borders of the forest

LC.

The results of the segmentation of rasterized nDSM using the two segmentation algorithms is

presented in Figure 4.33. Just like the segmentation of the VHR optical image, most of the found

borders are not consistent with the forest LC database. Here, the PFF segmentation seems visually to

perform better than the hierarchical segmentation since the retrieved borders are close to the borders

of the Forest LC BD.
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(A) Hierarchical segmentation with µ = 15. (B) PFF segmentation with σ = 0.8, k = 500 and
m = 40000.

FIGURE 4.33: Result of the segmentation of the nDSM for the two segmentation algorithms. Blue lines
correspond to the borders of the segments, red lines correspond to the borders of the forest LC.

Since the segmentation on the VHR optical image and the nDSM does not allow to retrieve di-

rectly the borders from the forest LC database, different values of the parameter µ have been tested

for the hierarchical segmentation on the VHR optical images (see Figure 4.34) in order to determinate

if the choice of the parameters could be an issue for direct stand segmentation. It appears that de-

creasing µ does not allow to obtain the borders of the forest LC. It only leads to an over-segmentation

of the image. It can be reminded that such over-segmentation is employed in the proposed frame-

work but not as a relevant segmentation for stand delineation but as an input for object-based classifi-

cation. IT can be concluded that retrieving stands borders is not straightforward. The generalization

of the Forest LC DB and the level of detail it offers are not the cause of the wrong delineation obtained

by the direct segmentation of input data. The stands are not defined by their borders but by the tree

species they are composed of, and segmentation algorithms do not grant access to such information.

The two proposed segmentation (Guigues et al., 2006; Felzenszwalb et al., 2004) algorithms are

very efficient for image segmentation tasks but are not adapted to retrieve forest stands. However,

they have shown their relevance at producing an interesting over-segmentation (see before).

4.4.2 Classification of the segments

The classification proposed in the framework gives information about the species at the object

level. Since the segments extracted above are larger than the small classified objects/superpixels, a

majority vote of pixel labels can be applied within each segment. The obtained label map could then

be compared with the forest LC. The result of the classification for the area of interest is presented

in Figure 4.35, the confusion matrix and other accuracy metrics for this classification are provided in

Table C.34.

The results of the majority vote for the segmentation of the VHR optical images are presented in

Figure 4.35, the confusion matrices and other metrics are presented in Tables C.35 and C.36.



4.4. Can forest stands be simply retrieved? 97

(A) Hierarchical segmentation with µ = 3. (B) Hierarchical segmentation with µ = 6.

(C) Hierarchical segmentation with µ = 8. (D) Hierarchical segmentation with µ = 10.

(E) Hierarchical segmentation with µ = 12. (F) Hierarchical segmentation with µ = 15.

FIGURE 4.34: Results of the segmentation of the VHR optical image using different values of µ for the
hierarchical segmentation. Blue lines correspond to the borders of the segments, red lines correspond

to the borders of the forest LC.
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(A) Forest LC. (B) Classification results (overall accuracy:
81.75%, κ: 0.67).

(C) Semantic information for the hierarchical
segmentation of the VHR optical image with

µ = 15.

(D) Semantic information for the PFF segmen-
tation of the VHR optical image with σ = 0.8,

k = 500 and m = 40000.

(E) Semantic information for the hierarchical
segmentation of the nDSM with µ = 15.

(F) Semantic information for the PFF segmen-
tation of the nDSM with σ = 0.8, k = 500 and

m = 40000.

FIGURE 4.35: Forest LC and classification results.
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From a visual inspection, it appears that adding semantic information to the obtained segments

does not allow to retrieve a relevant stands since the obtained segments are too generalized. Indeed,

some classes are not represented. When they are under-represented in a segment, they are not taken

into account. Thus, they are removed from the final results. For the hierarchical segmentation, the

overall accuracy increases when adding semantic information through majority vote (81.94%, ver-

sus 81.75% for the classification). The κ (0.64) is also revealing a good agreement. This shows the

limitation of the two global metrics: the result appears to be good when inspecting them, while it is

not. The IoU is more relevant in order to underline the irrelevance of the majority vote on a segmen-

tation (41.1%, versus 56.4% for the classification). The mean F-score (50.68%, versus 70.6% for the

classification) also concurs to this conclusion.

The results of the majority vote for the segmentation of the nDSM is presented in Figure 4.35, the

confusion matrices and other metrics are provided in Tables C.37 and C.38.

The same results are observed, a majority vote applied to a segmentation equivalent to stands (in

term of size) does not allow to retrieve a relevant mapping of forested areas.

From this section, a conclusions can be drawn: the direct segmentation of the data does not allow

to directly retrieve relevant forest stands in terms of species. Even with an addition of semantic

information from a classification, the results are not sufficient for a good mapping of the forest.

Thus, the proposed regularization framework is completely justified.

Besides, some metrics are not relevant in order to evaluate the results. Indeed, the overall accu-

racy or the κ are not sufficient, other metrics, such as intersection over union and F-score, are needed

for the correct evaluation of the results.

4.5 Derivation of other outputs

The outputs of the framework can be employed for further investigation in order to extract rel-

evant information about forest. Firstly, the forest stands obtained can be employed for the semi-

automatic update or geometric enrichment of the forest LC. Furthermore, the parameter γ allows to

refine the Forest LB DB by providing small homogeneous forest stands (see Section 4.2.4). Secondly,

the information extracted from the original data can be employed to enrich forest inventory, in case

of multi-source inventory.

4.5.1 Semi-automatic update process

The semi-automatic update of the forest LC DB can be performed by the joint analysis of the final

stand segmentation and the existing forest LC DB.

A change map can be derived from the stand segmentation results and changes can be prioritized

according to their size and shape. Here 3 criteria are employed to characterize a change area:

• The number of pixels,

• The size of the rectangular bounding box (see Figure 4.36b),

• The size of the circular bounding box (see Figure 4.36c).
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(A) Detected change (B) Rectangular bounding box of the
change.

(C) Circular bounding box of the
change.

FIGURE 4.36: Bounding boxes of the change detection.

The changes are classified using only thresholds based on the size (in pixels) of the change s, the

ratio between the size of the change and the size of the rectangular bounding box r1 and the ratio

between the size of the change and the size of the circular bounding box r2. A change is defined as

major when one of the arbitrary conditions (4.2) or (4.3) is verified.

s ≥ 100 and r1 ≥ 0.3, (4.2)

s ≥ 100 and r2 ≥ 0.2. (4.3)

These thresholds have been empirically defined since they produce visually consistent results. Fur-

ther investigations are needed for a better description of change areas.

An "updated" forest LC can then be created, the major change areas being labeled as no data (see

Figure 4.37). A difference map is also produced with two kinds of changes:

• The minor changes; they correspond to areas where the borders of the Forest LC DB do not

exactly fit the borders obtained by the framework. This type of error is common because of the

generalization level of the DB, since the border from the Forest LC DB are mostly straight lines

while the proposed framework tends to follow the natural borders of the forest because of the

regularization.

• The major changes; they correspond to large patches that differ from the Forest LC DB. Two

cases can be differentiated:

– The obtained results can be wrong.

– The forest has changed or has been exploited (cut or plantation).
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(A) Forest LC. (B) "Updated" Forest LC.

FIGURE 4.37: Automatic update of the Forest LC.

In case of major change, the decision can be taken to keep the original forest LC or to employ

the obtained results. A human operator can also focus on the change and correct it manually (see

Figure 4.38)

FIGURE 4.38: Detected changes of the Forest LC, green corresponds to major changes, blue corresponds
to minor changes.
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4.5.2 Data enrichment for inventory

Features derived from Lidar and the final stand segmentation can be jointly used in order to

extract additional information. The features can be also used to define a "new" probability map.

Additional information extraction

The extraction of information from the lidar features is performed for each stand obtained from

the framework. On each stand, the number of trees can be counted and statistics on the height

of the stand can be derived. Such information are easy to extract and might be useful for forest

understanding (see Figure 4.39).

(A) nDSM. (B) Final
segmentation.

(C) Mean height of the
obtained stands.

FIGURE 4.39: Extraction of mean stand height combining nDSM obtained from lidar final stand seg-
mentation.

The extracted trees can also be used in order to extract the tree density for each segment (see

Figure 4.40).

(A) Extracted
trees.

(B) Final
segmentation.

(C) Tree density
per stand

(trees.km−2).

FIGURE 4.40: Extraction of tree stand density trees extracted from lidar data and final stand segmenta-
tion.
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Segmentation using complementary criteria

It consists in an unsupervised segmentation of the nDSM according to the height distribution. The

histogram of height distribution is computed and the different modes are extracted. Each original

specie class is then splitted into m subclasses. At the end, n × m classes are generated from the

original n classes. The probabilities of the classification are then redistributed according to the n

classes and the m modes at the pixel level. The previous probability map has n components. The

new probability map has n ×m components. In the new probability map, the component k has the

probability pk such as:

k = mk × n+ nk, (4.4)

pk = pnk
. (4.5)

Where nk is the target class of the pixel in the original probability map, mk is the mode of the pixel,

and pnk
is the probability of the of the class nk in the original probability map.

Such probability map can then be regularized in order to obtain a map of homogeneous stands

both in terms of height and species (see Figure 4.41).

The redistribution of the probabilities according to the modes of the height distribution has two

advantages. Firstly, it produces results similar to the regularization without the redistribution (i.e.,

when considering original classes). Thus, such process does not drastically affect the final segmen-

tation results. Secondly, the obtained results are coherent with the nDSM. It therefore is possible to

obtain stands of different maturity, and such information is very interesting for statistical inventory.

The main drawback is that "new" classes are created, thus the computation times are increased.
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(A) nDSM. (B) VHR CIR Orthoimage.

(C) Forest LC. (D) Regularization with
redistributed probabilities.

FIGURE 4.41: Redistribution of the probabilities.
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4.6 Conclusion and perspectives

Multiple experiments have been conducted in order to validate the choices operated in the frame-

work:

• The extraction of small objects is necessary for efficient classification. The method employed

for such extraction has a significant impact on the classification but is less pronounced on the

final results (after regularization).

• The feature selection allows to validate the complementarity of both data sources. It also im-

proves the classification results. Furthermore an optimal feature set can be obtain with the

feature selection.

• The design of the training set from the forest LC DB is interesting since it improves the classifi-

cations results.

• The global regularization allows to obtain relevant segments (with respect to the Forest LC

DB). Furthermore, tuning the parameter γ gives different segmentation that exhibit levels of

details that are interesting for a finest forest analysis. The regularization is further discussed in

Chapter 5.

In order to validate the operated choices, the framework has been applied on areas from different

regions of France. It comes out that our proposal is relevant, being not specific to a single area.

The framework has been compared to a naive segmentation of the input data, enlightening that

the extraction of forest stand is not a straightforward problem.

Finally, other contributions of the proposed framework are proposed. It consists in extracting

quantitative informations (such as stands tree density, of stands mean height) from the obtained

stands. It fully benefits from the integration of lidar data in the framework.

The proposed framework has been employed using VHR optical images and low density lidar

point cloud. It could be interesting to investigate the use of hyperspectral or multispectral imagery

since it might provide more spectral information that has shown to be relevant for tree species classi-

fication (Dalponte et al., 2013; Dalponte et al., 2012; Clark et al., 2005). Finally, the use of high density

lidar could also be interesting. Firstly, with more points, trees could be delineated more precisely

and structural shape features at the tree level could be derived. For instance, a convex envelope can

be extracted for each tree and the volume of the envelope can be obtained as a new feature (Lin et al.,

2016; Li et al., 2013a; Ko et al., 2013).
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In this chapter, several methods for classification smoothing are proposed and compared. The

classification process has been previously presented, and it provides a label map for the areas of

interest, accompanied with a class membership probability map, which provides, for each pixel of

the image, the posterior class membership for all classes of interest. These are the necessary inputs

for the methods that are described below.

However, whereas the classification has been performed at the object level, this label map remains

quite noisy. Forest stands often do not clearly appear on this map as it can be seen in Figures 4.19c

and 4.19d. Thus, an additional smoothing step is necessary to obtain relevant forest stands. As shown

in Section 4.4.2 the simple method consisting in a majority vote within regions from a segmentation

do not lead to desired results. Thus, soft labeling smoothing methods (Schindler, 2012) have been

considered. This chapter aims at exploring several possible solutions, and at validating the retained

ones.

Here, both local and global methods are investigated. For local techniques, majority voting and

probabilistic relaxation are selected. For global methods, various energy formulations based on a

feature-sensitive Potts model are proposed.

5.1 Local methods

5.1.1 Filtering

An easy way to smooth a classification label map or probability map is to filter it. All the pixels

in a r × r pixels moving window W are combined in order to generate an output label for the

central pixel. The most popular of which is the majority vote filter. First of all, the class probabil-

ities are converted into labels, assuming that the label of pixel x is the label of the most probable class.

L: a set of labels,

C(x) = argmax
c∈L

P (x, c).
(5.1)

From this label image, the final smoothed result is obtained by selection the majority vote in local

neighborhood W :

Csmooth(x) = arg max
ci∈L

[
∑

u∈W

[C(u) = ci]

]
. (5.2)

The majority filter does not take into account the original class posterior likelihoods (it works directly

on labels). This explains the poor observed results, since uncertainty and heterogeneity are not taken

into account. However, it is a straightforward method that can give a baseline for the analysis of

further results. The main issue is for example, if in a 5×5 neighborhood, 13 pixels have a probability

of 51% for class Douglas fir, and the 12 other pixels have a 99% probability for class beech, the voting

will, however, prefer Douglas fir. There are variants which give pixels closer to the center more voting

power, but typically yield similar results. Other filters have been developed such as the Gaussian

Filter, the Bilateral Filter (Paris et al., 2009b; Paris et al., 2009a) and the Edge-Aware Filter (Chen et al.,

2007) but they are taking into account object contours, which are not fully relevant for unstructured

environment like forests. In addition, filters applied to class probability maps can be an alternative.
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5.1.2 Probabilistic relaxation

The probabilistic relaxation aims at homogenizing probabilities of a pixel according to its neigh-

boring pixels. The relaxation is an iterative algorithm in which the probability at each pixel is up-

dated at each iteration in order to make it closer to the probabilities of its neighbors (Gong et al.,

1989). It was adopted for simplicity reasons. First, good accuracies have been reported with decent

computing time, which is beneficial over large scale (Smeeckaert et al., 2013). Secondly, it offers an

alternative to edge-aware/gradient-based techniques that may not be adapted in semantically un-

structured environments like forests. The probability P t
k(x) of class k at a pixel x at the iteration t is

updated by δP t
k(x) which depends on:

• The distance dx,u between the pixel x and its neighbor u. Neighbors are defined as the pixels

that are distant of less than r pixels from x.

• A co-occurrence matrix Tk,l defining a priori correlation between the probabilities of neighbor-

ing pixels. The local co-occurrence matrix has been tuned arbitrarily. It can also be estimated

using training pixels (Volpi et al., 2015) if dense training is available. The matrix is expressed

as follows:

Tk,l =




0.8 p · · · p

p
. . .

. . .
...

...
. . .

. . . p

p · · · p 0.8




, with p = 0.2
nc−1 .

The update factor is then defined as:

δP t
k(u) =

∑

u∈Wx

dx,u

nc∑

l=1

Tk,l(x,u)× P t
l (u). (5.3)

In order to keep the probabilities normalized, the update is performed in two steps using the unnor-

malized probability Qt+1
k (x) of class k at a pixel x at the iteration t+ 1:

Qt+1
k (x) = P t

k(x)×
(
1 + δP t

k(x)
)
, (5.4)

P t+1
k (xu) =

Qt+1
k (x)∑nc

l=1 Q
t+1
l (x)

. (5.5)

5.2 Global smoothing

Before moving on to the formulation of the global smoothing method, some notations and

terminology need to be introduced first. As usual, the pixel values of an image with k features are

viewed as samples of a non-parametric function I : R2 → Rk . The number of pixels is denoted by

n, and individual pixel locations are referred to by two-dimensional vectors, denoted with x. The

aim of classification is to assign each image pixel one of l possible class labels ci , to obtain a the final

thematic label map C : R2 → {c1 . . . cl}.
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Finding the thematic map Ĉ with the highest probability consist in searching the labeling which

maximizes the likelihood P (C|I) ∼ P (I|C)P (C). Thas is to say,

Ĉ =arg max
C

P (C|I)

with,

P (C|I) =
∏

x

P (C(x)|I(x))

∼
∏

x

P (I(x)|C(x))
∏

x

P (C(x)).

(5.6)

It respectively corresponds to the minimization of its negative log-likelihood,

Ĉ =arg min
C

− logP (C|I)

with,

−logP (C|I) =− logP (I|C)− logP (C) + const.

=
∑

x

−logP (I(x)|C(x)) +
∑

x

−logP (C(x)) + const.

(5.7)

Thus, minimizing the log-likelihood amounts at finding the minimum of an energy E(I, C) defined

as:
Ĉ =arg min

C

E(I, C)

with,

E(I, C) =Edata(I, C) + Esmooth(I, C).

(5.8)

The energy consists of two parts:

• a "data term" which describes how likely a certain label is at each pixel given the observed data

(this is actually the output of the classification), and decreases as the labeling fits the observed

data better.

• a "prior term", which introduces a prior concerning the label configuration, and decreases as

the labeling gets smoother.

Without a smoothness prior the second term vanishes and classification decomposes into per-

pixel decisions which can be taken individually (P (C|I) ∼ P (I|C) P (C)). That is to say, maximizing

the probability P (C|I) amounts to simply assign each pixel the most probable class.

If smoothness is included, the labels at different locations x are no longer independent, but form a

random field. The energy of a given pixel depends not only on its data I(x), but also on the labels of

other pixels in its neighborhood (4-connexity or 8-connexity) or composed of cliques. Since different

cliques interact through common pixels, they can no longer be treated independently. The smooth-

ness can be integrated with values chosen arbitrary or that depends on the features corresponding

to the pixel. Thus, it is possible to add contextual information from the features. For Markovian
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Random Fields, it is assumed that the label of each pixel only depends of its neighborhood, i.e.,

P (C(x)) =
∏

u∈N (x)

P (C(x)|C(u))

=
∏

u∈I

P (C(x)|C(u))
, (5.9)

where N (x) is a neighborhood of x (not especially the 4-connexity or 8-connexity).

In general, finding the labeling that globally minimizes E(I, C) is intractable since there is no

factorization into smaller problems one would, at least conceptually, have to check all ln possible

labelings.

For random fields with only pairwise cliques (called first-order random fields), efficient approxi-

mation methods can find good minima. Such random fields are often represented as graphs: every

pixel corresponds to a node with an associated unary potential (corresponding to the data term), and

each neighbor pair corresponds to an edge linking the corresponding node pair, with an associated

pairwise potential (corresponding to the prior term).

Over the entire resulting first order random field, the maximization of the posterior prob-

ability leads to a smoother result. This can be done by finding the minimum of the energy

(arg min
C

(E(I, C,A))) defined for an image I as follows:

E(I, C,A) =
∑

u∈I

Edata(u, P (C(u)))+

γ
∑

u∈I,v∈Nu

Epairwise(u,v, C(u), C(v), A(u), A(v)),
(5.10)

where A(u) is a vector of values of the features at pixel u to be selected so as to constrain the problem

according to a given criterion (height for instance). Nu is the 8-connexity neighborhood of the pixel

u (only the 8-connected neighborhood has been investigated). When γ = 0, the pairwise prior term

has no effect in the energy formulation; the most probable class is attributed to the pixel, leading

to the same result as the classification output. When γ > 0, the resulting label map becomes more

homogeneous, and, according to A(u) and A(v), the borders of the segments/stands are smoother.

However, if γ is too high, the small areas are bound to be merged into larger ones, removing part of

the useful information provided by the classification step. The automatic tuning of the parameter γ

has been addressed for instance in (Moser et al., 2013) but is not adopted here. There is a range of

γ values that produce relevant results. This parameter permits to control the level of detail and its

value should be chosen regarding the expected results. Discussions about the choice of γ are detailed

in Section 5.5.2.

Despite connections limited to local neighbors, the optimization propagates information over

large distances (Schindler, 2012). The problem is NP-hard, but efficient approximate optimization

algorithms exist (Boykov et al., 2001; Kolmogorov, 2006; Felzenszwalb et al., 2006).

Here, two formulations of Edata (unary term) and four formulations of Epariwise (pairwise prior

term) are investigated.
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5.2.1 Unary/data term

The data term Edata expresses how the integration of the classification results is performed in

the energy formulation. It is expressed according to the posterior class probabilities estimated by

the classifier. This term decreases according to P (u) (i.e., the higher the posterior probability, the

smaller the energy).

• A widely used formulation for the unary term is the log-inverse formulation using the natural

logarithm. It corresponds to the information content in Information Theory. It is derived directly

from the log-likelihood (i.e., −logP (C|I)). It is formulated as follows:

Edata = −log(P (u)). (5.11)

It highly penalizes the low-probability classes but can increase the complexity with potential infinite

values.

• An other simple formulation for the unary term is the linear formulation,

Edata = 1− P (u). (5.12)

It penalizes low probabilities less than the log-inverse formulation, but has the advantage of having

values lying in [0, 1].

5.2.2 Pairwise/prior term

The pairwise prior term integrates some a priori constraints on the neighborhood, weighting the

relationship between two neighboring pixels. This weight is expressed according to contextual infor-

mation from the concerned pixels such as the class assignment of two neighboring pixels. Further-

more, other information, such as features values, can also be taken into account.

In this work, the prior energy term has a value depending on the class of neighboring pixels. In

the four proposed formulations, two neighboring pixels pay no penalty if they are assigned to the

same class. First, two basic and popular priors, the Potts model and the contrast-sensitive Potts model

(called here z-Potts model), are investigated.

• In the Potts model, two neighboring pixels pay the same penalty if they are assigned to different

labels. Thus, the prior for the Potts model is:

Epairwise(C(u) = C(v)) = 0,

Epairwise(C(u) 6= C(v)) = 1.
(5.13)

• In the z-Potts model, the penalty for a label change depends on the height gradient between two

neighboring pixels. The z-Potts model is a standard contrast-sensitive Potts model applied to the height

estimated from the lidar point cloud. Here, since we are dealing with forest stands that are likely to

exhibit distinct heights, the gradient of the height map is computed for each of the four directions

separately. The maximum Mg over the whole image in the four directions is used to compute the
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final pairwise energy. A linear function has been used: the penalty is highest when the gradient is

0, and decreases until the gradient reaches its maximum value. The prior term of the z-Potts model is

defined as:
Epairwise(C(u) = C(v)) = 0,

Epairwise(C(u) 6= C(v)) = 1− |z(u)− z(v)|
Mg

,
(5.14)

where z(u) is the height of pixel u and z(v) the height of pixel v.

• An other investigated pairwise energy is formulated according to the values of the features of

the neighboring pixels. It is called here Exponential-feature model. The pairwise energy is computed

with respect to a pool of n features. When the features have close values, the penalty is high and

decreases when the features tends to be very different. The pairwise energy in this case is expressed

as follows:
Epairwise(C(u) = C(v)) = 0,

Epairwise(C(u) 6= C(v)) =
1

n

n∑

i=1

exp(−λi|Ai(u)−Ai(v)|),
(5.15)

where Ai(u) is the value of the ith feature at the pixel u and λi ∈ R+∗ the importance given to feature

i in the regularization. To compute such energy, the features need to be first normalized (i.e., zero

mean, unit standard deviation) in order to ensure that they all have the same range.

• The last formulation investigated is also formulated according to the values of the features of

the neighboring pixels. It is called here Distance-feature model. The pairwise energy is still computed

with respect to a pool of n features. In this case, the energy is computed according to the Euclidean

distance between the two neighboring pixels in the feature space, the penalty is high when the pixels

are close in the feature space and decrease when they get distant. The pairwise energy in this case is

expressed as follows:
Epairwise(C(u) = C(v)) = 0,

Epairwise(C(u) 6= C(v)) = 1− ||A(u);A(v)||n,2,
(5.16)

with:

||A(u);A(v)||n,2 =
1√
n

√√√√
n∑

i=1

λi

(
Ai(u)−Ai(v)

)2
. (5.17)

λi ∈]0; 1] the importance given to feature i in the regularization.

To compute such energy, the features need to be first normalized (i.e., zero mean, unit standard

deviation) in order to ensure that they all have the same range. They are then rescaled between 0

and 1 to ensure that ||A(u);A(v)||n,2 lies in [0; 1] ∀(u,v).

A high number of features was extracted from available lidar and optical images, the number n of

features employed in the last two formulations can then be very important. Since a feature selection

has been previously carried out, it is interesting to only use these selected features. Furthermore,

they can also be weighted according to their importance (through λi). The Random Forest classifi-

cation process is here very interesting since it natively gives the feature importance. Since the most
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important features (20) are almost all equally weighted, it does not bring additional discriminative

information for theses two models. The λi in the Exponential-feature model and Distance-feature model

were therefore set to 1 ∀i.

5.3 Energy minimization

The random field can be expressed as a graphical model. Thus, the energy minimization can be

performed using graph-cut methods. These methods are based on the observation that the binary

labeling problem with only two labels (i.e., C(x) ∈ {0, 1}) can be solved to global optimality. To

that end the graph of the random field is augmented with a source and a sink node, which represent

the two labels and are connected to all pixels by edges representing the unary potentials. A large

additive constant on those terms guarantees that the minimum cut of the augmented graph into two

unconnected parts leaves each node connected to only the source or the sink. Computing the mini-

mum cut is equivalent to finding the maximum flow from source to sink, for which fast algorithms

exist.

The graph-cut algorithm employed here is the Quadratic Pseudo-Boolean Optimization (QPBO).

The QPBO is a popular and efficient graph-cut method that efficiently solves energy minimization

problems (such as the proposed ones). Thus, the problem is expressed as a graph and the optimal cut

is computed over it (Kolmogorov et al., 2007). Furthermore, standard graph-cut methods can only

handle simple cases of pairwise/prior term expressed as follows:

Epairwise(C(u) = C(v)) = 0,

Epairwise(C(u) 6= C(v)) = f(A(u), A(v)),
(5.18)

were f is a function expressed according to the features values at pixels u and v. The QPBO can

integrate more constraints since it can solve problems with pairwise/prior term expressed as follows:

Epairwise(0 = C(u) = C(v) = 0) = f1(A(u), A(v)),

Epairwise(1 = C(u) = C(v) = 1) = f2(A(u), A(v)),

Epairwise(0 = C(u) 6= C(v) = 1) = f3(A(u), A(v)),

Epairwise(1 = C(u) 6= C(v) = 0) = f4(A(u), A(v)),

(5.19)

were f1, f2, f3 and f4 are functions expressed according to the features values at pixels u and v.

With the binary graph cut algorithm as a building block, multi-label problems can be solved

approximately using α-expansion moves (Kolmogorov et al., 2004) and can be adopted for QPBO.

In this method, each label α is visited in turn and a binary labeling is solved between that label

and all others, thus flipping the labels of some pixels to α; these expansion steps are iterated until

convergence. The algorithm directly returns a labeling C of the entire image which corresponds to a

minimum of the energy E(I, C,A).

Such method gives a hard assignment (a single label for each pixel) while other methods assign

probabilities to pixels (soft assignment) which is also interesting (Landrieu et al., 2016).
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5.4 Constraints integration

The proposed energy minimization algorithm (namely QPBO) can solve the problem when the

energy is modified in order to add more constraint to the problem. Such investigation have been

envisaged and two additional constraints have been tested.

5.4.1 Size constraint

Firstly, the size of a segment can be taken into account in the energy formulation. This is done

by setting the pairwise term to an a very big value vs (ideally vs = ∞) when a pixel belongs to a

segment defined as too small by the user (in forested areas, a minimum stand size is usually 0.5 ha,

further discussions are proposed in Section 5.5.3). Thus the Equation 5.13 becomes:

Epairwise(C(u) = C(v)) = f(u,v),

Epairwise(C(u) 6= C(v)) = 1 + f(u,v),
(5.20)

with
f(u,v) = 0 if u and v are not in a small segment,

f(u,v) = vs if u or v are in a small segment.
(5.21)

Such constraint can be applied in addition to the other proposed priors.

5.4.2 Border constraint

The second constraint is related to the borders. Indeed, it is possible the set the energy to a specific

value in order to ensure that a border will be created. An a priori border needs to be defined. Let

b(u,v) be a binary function that defines if a border between pixel u an v is to be set. If b(u,v) = 0, no

borders want to be set and b(u,v) = 1 means that a border wants to be set. Equation 5.13 becomes:

Epairwise(C(u) = C(v)) = b(u,v)× vb,

Epairwise(C(u) 6= C(v)) = 0,
(5.22)

with vb an important value (ideally vb = ∞).

Adding constraints increases the computational load and time but might be interesting in order

to refine even more the results. However, adding such constraints also leads to some issues. Firstly,

even if the minimum size of a forest stand is clearly defined in the specifications of the forest LC

database, forcing segment to have a minimum size could suppress some information (e.g. small

pure segments) that are relevant in many thematical and ecological application. In practice, such

generalization could also be obtained by increasing the γ parameter. Secondly, adding borders means

that predetermined relevant borders could be retrieved. However, in practice, such borders can

not be straightforward extracted for this stand segmentation problem (as it has been presented in

Section 4.4.1 of Chapter 4). Thus, adding these constraint have been considered in a limited way

(validations have been performed on synthetic images).



116 Chapter 5. Regularization: How to obtain smooth relevant stands?

5.5 How to efficiently smooth a classification?

After having presented several soft labeling smoothing methods, let us test them and define the

optimal smoothing procedure. The classification result has already been presented in Chapter 4. The

classification results are illustrated as a reminder in Figure 5.1.

(A) VHR CIR optical image. (B) Forest LC. (C) Object-based
classification (overall

accuracy: 93.14%,
κ: 0.86).

FIGURE 5.1: Result of the classification.

5.5.1 Local methods

Two methods have been investigated for the local smoothing of the classification. They are very

easy to implement and have low computation times. Firstly, the use of a majority filter on labels has

been employed. Since it does not take into account the probabilities, a probabilistic relaxation has

also been tested. For both method, the main problem is to define a relevant neighborhood size. If if is

too small, the results will remain noisy, and if it is too important, the results will be over generalized

and the computation times will explode.

Majority filter.

The results for the majority filter are presented in Figure 5.2. The filtering method performs the

worse with a gain of less than 1% compared to the classification, even with large filters. Furthermore,

the larger the filter, the longer the computation times.
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(A) Forest LC database. (B) Majority filter (r = 5,
overall accuracy: 93.64%, κ: 0.88).

(C) Majority filter (r = 25,
overall accuracy: 93.65%, κ: 0.88).

FIGURE 5.2: Smoothing with the majority filters.

Probabilistic relaxation.

The results for the probabilistic relaxation are presented in Figure 5.3. The probabilistic relaxation

has also poor results (+5% than the classification) and has also important computation times, since

the iterative process has to converge.

(A) Forest LC database. (B) Probabilistic relaxation (r = 5,
overall accuracy: 95.35%, κ: 0.9).

FIGURE 5.3: Smoothing with probabilistic relaxation.

5.5.2 Global methods

In the formulation of the energy, three aspects are taken into account. The two most important

are the integration of the information from the classification (unary term) and how the features are

integrated into the smoothing process (prior). The last aspect is the integration of other constraints,

allowed by the use of the QPBO algorithm.
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The global methods produce significantly better results than the local methods with an average

gain of 2% in terms of overall accuracy.

Which unary/data term?

The choice of the unary/data term (fit-to-data term) has a major impact on the regularization re-

sults (see Figure 5.4). Indeed, the log-inverse formulation highly penalizes pixels with low probability,

thus, small areas with high probabilities will be kept, even for an important γ. In contrast, the linear

formulation has a stronger smoothing effect.

(A) Forest LC database. (B) Regularization results using the
log-inverse data formulation (overall

accuracy: 97.43%, κ: 0.95).

(C) Regularization results using the
linear data formulation (overall accu-

racy: 97.44%, κ: 0.95).

FIGURE 5.4: Impact of the formulation of the unary/data term.

Both are interesting for forest analysis. The log-inverse allows to obtain small areas that keep an

important class confidence. Such areas are useful for forest inventory or DB enrichment since they

give information about large forested areas with small segments of pure species. Conversely, the

linear formulation produces smooth segments that are more compliant to the present specifications

of the forest LC DB.

In terms of accuracy, the two formulation lead to similar results. The log-inverse formulation and

the linear formulation have similar overall accuracy (97.43% and 97.44% respectively) and κ (0.95).

The other scores (mean F-score and IoU) show that the log-inverse formulation is slightly better than

the linear formulation (94.18% vs 94.04% for the mean F-score and 89.21% vs 88.97% for the IoU). Since

the results are very similar, the linear formulation is preferred since it produces smoother segments.

Which prior energy term?

The choice of a prior has a weaker impact on the regularization results (see Figures 5.5 and 5.6).

All proposed models lead to similar results with an overall accuracy greater than 97.3%, a very

strong agreement (κ > 0.94). The mean F-score (∼ 93%) and the IoU (∼ 88%) confirm that few

confusions are reported.

After a more thorough inspection of the results, it appears that the Exponential-feature model leads

to slightly better results (gain of 0.1% in term of overall accuracy, 0.002 for the κ, 0.3% for the mean

F-score and 0.5% for the IoU). This improvement is not impressive, showing that a simple Potts model

is sufficient. However, it also shows that adding feature information can improve the final results.
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(A) Forest LC database. (B) Regularization results using the
Potts model.

(C) Regularization results using the z-
Potts model.

(D) Regularization
results using the

Exponential-feature model.

(E) Regularization
results using the

Distance-feature model.

FIGURE 5.5: Impact of the formulation of the pairwise/prior term.
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FIGURE 5.6: Regularization accuracy metrics using different formulations for the pairwise/prior term.
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5.5.3 Constraints integration

The addition of constraints could be easily carried out with the QPBO algorithm. Constraints

about strong borders can be added in order to retrieve them in the final segmentation. Unfortunately,

such borders can not be easily extracted (see Section 4.4.1). Thus, in practice, it is not very relevant to

add such constraints for this stand segmentation problem since they will not lead to accurate results.

A second constraint can be employed in order to ensure a minimal size of the final segments.

However, the minimal size of a segment should be defined. Even if such minimal size is defined by

specification of forest stands (0.5 ha), a segment with a size of 0.5 ha+1 pixels will not be considered

as a small segment.

In order to validate the formulation of the constraints, experiments have been tried on synthetic

data. An object-based probability map has been generated as it is the needed input for the regular-

ization. Here the unary term employed is the linear one and the prior is the Potts model (thus, no

features are needed in order to compute the energy). Only a qualitative evaluation of the formula-

tion is proposed here. The results using the standard energy formulation (with γ = 1) is proposed in

Figure 5.7.

(A) Synthetic
classification.

(B) Regularization of
the synthetic

classification (γ = 1).

FIGURE 5.7: Results of the method on synthetic data: each color corresponds to a class.

We assume that strong borders (i.e., borders that we want to retrieve in the final result) are pro-

vided. Small segments are retrieved from the classification (it the proposed example, there is only

one small segment). The constraints that will be applied are presented in Figure 5.8
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FIGURE 5.8: Constraints desired for the synthetic data set superposed with the classification: the black
lines corresponds to borders that we want to retrieve in the final segmentation. The purple area corre-

sponds to the small segment we want to remove.

The results obtained when adding constraints are illustrated in Figure 5.9. Three cases have been

tested depending on whether we want to retrieve borders, remove small segments, or both. The

value of the constraints (vs and vb) are set to 100.

(A) Regularization of the synthetic
classification (γ = 1) without constraints.

(B) Regularization of the synthetic
classification (γ = 1) with size constraint.

(C) Regularization of the synthetic
classification (γ = 1) with border constraint.

(D) Regularization of the synthetic
classification (γ = 1) with both constraint.

FIGURE 5.9: Results of the method on synthetic data when integrating constraint, each color correspond
to a class.

The results show that the proposed model for the integration of constraint works well. The size

constraint allows to remove the small blue segment, as expected. When adding the border constraint,
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they are also more or less retrieved. Indeed, sometimes, it does not work. However, when adding

such constraint, new small segments are created, thus, the constraint map must be updated and the

regularization should be processed again.

5.6 Conclusion

In this chapter, different methods for the spatial regularization of a classification have been pro-

posed and evaluated.

• Local methods, such as filtering or probabilistic relaxation, are easy to implement but lead to

poor results. The resulting segmentation is often not smooth enough.

• Global methods are more adapted to the problematic of forest stand segmentation. The control

of the level of smoothing can be performed using the parameter γ. The integration of external

data (such as features derived from both data sources) allows to constraint the problem. Other

constraints can be added to the model.

Furthermore, in global methods, constraints can be added thanks to the QPBO algorithm. How-

ever, such constraints are not straightforward to integrate since they require a priori knowledges on

the studied area.

• Defining a minimal size for stand segments is possible, but if a segment is slightly more impor-

tant than the defined threshold, it will no be taken into account.

• Obtaining persistent borders from the remote sensing data is not relevant, mainly because of

the shadowing effect and canopy holes. They can also be obtained from other DB such as the

roads but they are not relevant borders for forest stand. Indeed, a road can pass through a

forest stand. The forest cadastre could also be used, but it appears to be highly fragmented and

most of the forest owners do not exploit the forest, leading to very heterogeneous stands.
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In the previous chapters, a framework has been proposed for the extraction of forest stands by

joint use of airborne lidar and VHR imagery. The standard tuning brings relevant results. Its mod-

ularity allows to investigate where the fusion is mandatory. This chapter focuses on the cooperative

use of lidar and VHR optical image. Indeed, both data can be employed at different levels within

the framework. So several fusion scenarii are possible. Further experiments are proposed for the

evaluation of the fusion process in the proposed framework. The possible levels of fusion are firstly

analyzed. It permits the design of a limited number of experiment in order to assess the contribution

of the two remote sensing data at each step of the framework. Once such experiments have been

processed, it is possible to define several fusion schemes producing results with different quality

according to the desired level of detail/computation times.

6.1 Levels of fusion

In this framework, the fusion between lidar and optical images informations can be performed at

multiple levels (see Figure 6.1;

• Data employed for the over-segmentation (called here object-level fusion),

• Features employed for the classification (called here classification-level fusion),

• Features employed for the regularization (called here regularization-level fusion).

Since 95 features are available and 6 over-segmentation methods have been proposed, the com-

binatory is important and thousands of scenarii can be envisaged only at the object-level fusion. The

classification-level fusion and the regularization-level fusion can be both performed involving:

• only spectral features,

• only Lidar features,

• both spectral and Lidar features.

6.1.1 Object-level fusion

The over-segmentation can be performed on the lidar data, on the optical data or on a combina-

tion of both of them. It is difficult to define an accurate data that combines both lidar and optical

image and that is relevant for an over-segmentation. Thus, the over-segmentation is only performed

on the VHR RGB optical image or on the nDSM. Besides, as it is shown in Section 4.2.1, the solution

for this segmentation step has a little influence on the final results (after regularization).

The Quickshift and the SLIC segmentation algorithms have been developed specifically for RGB

images, thus these two methods have been employed here only for the over-segmentation of VHR

RGB optical images. The PFF algorithm have also shown good results on the segmentation of RGB

images (Felzenszwalb et al., 2004). It is therefore the last segmentation algorithm employed for the

over-segmentation of VHR RGB optical image in these experiments.

The tree extraction can be performed either on the VHR optical images or using the 3D informa-

tion of the point cloud. The tree extraction out of the VHR optical images is quite complex since it

needs to take into account enlighted and shadowed tree parts. The tree extraction from 3D point

cloud can be easily performed. Thus, only tree extraction out of lidar points cloud was employed.
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FIGURE 6.1: General flowchart of the proposed method with all the possible fusion schemes.

The watershed and the hierarchical segmentation are employed for the over-segmentation of the

nDSM. Since, both are relevant for the segmentation of grayscale images (such as the nDSM).

To sum it up, among the many possible scenarii for the over-segmentation, only 6 are retained:

• Over-segmentation of VHR RGB optical image:

– PFF

– Quickshift

– SLIC

• Over-segmentation of lidar point cloud:

– Tree extraction

– Over-segmentation of the nDSM:

∗ Watershed

∗ Hierarchical segmentation

6.1.2 Classification-level fusion

The classification can be performed in three different ways using different features:

• only lidar features,
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• only spectral features,

• both lidar and spectral features.

In the classification process, a feature selection is supposed to have been is carried out. However,

in the case of the classification using only lidar features, no feature selection has been performed

since only 25 lidar features are available (furthermore, Lidar features are less significant than spectral

features for tree species classification, as it will be presented later in Section 6.2). In the other cases,

20 features are selected.

6.1.3 Regularization-level fusion

In the proposed method, the energy models that take into account the values of the features offer

an other level of fusion. Two prior models integrate the features, namely the Exponential-features

model and the Distance-features model. Here, only the Exponential-features model has been envisaged,

since it has been shown to produce slightly better results.

In this model, one can choose to integrate:

• only Lidar features,

• only spectral features,

• both Lidar and spectral features.

6.2 Designing the best fusion scheme

Regarding the different fusion schemes that can be envisaged, only a limited number of scenarii

are investigated. The idea is to define the fusion scheme giving the best results with respect to the

Forest LC DB.

The impact of the choice of the data for the over-segmentation has already been investigated in

Section 4.2.1. Employing an over-segmentation from VHR optical images (e.g. using PFF, Quickshift

or SLIC) or from lidar data (e.g. using hierarchical segmentation on nDSM or tree extraction)

produces similar results after final regularization.

In order to evaluate the impact of the data modality choice on the classification and regularization,

5 scenarii have been investigated:

• A lidar scenario: here, all lidar features (25) are employed, the feature selection is not carried

out:

– Hierarchical segmentation on the nDSm,

– Object-based classification (with selection of training samples to cope with Forest LC DB

errors) using the 25 lidar features,

– Regularization using the 25 lidar features.

• A spectral scenario:

– PFF segmentation of the RGB VHR optical image,
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– Object-based classification (with selection of training samples to cope with Forest LC DB

errors) using a selection of 20 spectral features,

– Regularization using a selection of 20 spectral features.

• 3 interleaved scenarii at regularization level the same over-segmentation and classification sce-

nario is kept:

– PFF segmentation of the VHR optical image,

– Object-based classification (with selection of training samples to cope with Forest LC DB

errors) using a selection of 20 features (lidar and spectral),

– Regularization using

1. the 25 lidar features,

2. a selection of 20 spectral features,

3. a selection of 20 features (lidar and spectral).

Many other scenarii can be proposed. However, the 5 investigated allow to define a critical fusion

path that produces the best results in term of retrieval of the forest stands.

The overall accuracies reached for these 5 scenarii are presented in Table 6.1 for the area Vosges1

but similar results have been observed other areas.

Scenario
Overall accuracy (%)

Classification Regularization Gain
Full lidar 74.8 92.2 17.4
Full spectral 79.1 95.2 16.1
Regularization lidar

87.6
96.0 8.4

Regularization spectral 96.1 8.5
Regularization lidar + spectral 96.2 8.6

TABLE 6.1: Classification and stand segmentation accuracies for the 5 scenarii investigated (Vosges1).

The impact of the choice of the data on the classification step is obvious; the classification using

a single data source performs worse than when using both. Furthermore, the spectral information

tends to be more relevant than the lidar information. Such results are coherent with the results of

the feature selection since the spectral feature are selected for 61% and for 39% for the lidar. Indeed,

these two data sources are complementary since the spectral information can efficiently discriminate

the tree species while lidar gives additional information about the vertical structure of the forest, that

is also helpful for a better discrimination of tree species.

The impact of the choice of the data on the regularization is less significant. We can first note

that even in the case of the use of a single modality, the regularization can greatly improve the re-

sults starting from a poor classification (+17.4% for lidar and +16.1% for spectral). However, when

the classification is already of high quality, the improvement is more or less the same whatever the

scenario. The spectral information is a bit more beneficial (gain of 8.5% in terms of overall accuracy)

than the lidar information (gain of 8.4% in terms of overall accuracy) at the regularization step. Fus-

ing the two data sources or using only the spectral information in the regularization step does not

significantly change the final results.

However, it is important to notice that the energy models that take into account the features

values are only slightly more efficient than the Potts model. Thus it is not absolutely necessary to

integrate features in this step to obtain consistent results.
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6.3 Optimal fusion scheme

Regarding the different results, an optimal fusion scheme can be defined. Such scheme is obvi-

ously not unique:

• The over-segmentation can be performed on the Lidar data or on the VHR optical images. At

this step, the choice of the modality does not impact the final result.

• The classification step is the most crucial. The classification employing only Lidar features

leads to poor results, while using VHR optical images produces better results. Here, both Lidar

and VHR optical features are needed to obtain the best classification scores.

• When employing a feature sensitive regularization method (i.e., that can take into account fea-

tures), it appears that using both lidar and VRH optical features leads to the best results. How-

ever, using a single data source still produces good results.

Thus, three schemes are proposed for different levels of details and computation times:

• A low cost scheme in terms of data required and computational load, no fusion is operated,

the idea is to only use VHR optical images. This scheme allows to extract forest stands with

a relatively good accuracy. The forest stands can be retrieved when no Lidar information is

available:

– 75 spectral features can derived,

– small objects are extracted using the PFF algorithm on the VHR RGB optical images,

– a selection of 20 spectral features is operated,

– the classification is performed with the selected features and a optimized training set (to

cope with the Forest LC DB errors),

– the regularization is performed for a linear unary term and the Potts model for prior.

• A time cost effective fusion scheme, the idea is to compute the minimum amount of features in

order to reduce the feature computation times and to suppress the feature selection:

– 20 pre-defined features (spectral-based and lidar-based) are computed 1,

– small objects are extracted using the PFF algorithm on the VHR RGB optical images,

– the classification is performed using the 20 features and a optimized training set (to cope

with the Forest LC DB errors),

– the regularization is performed for a linear unary term and the Potts model for prior.

• An efficient fusion scheme, the best results are reported with high computation times and load:

– all the 95 features (spectral-based and Lidar-based) are computed.

– small object are extracted using the PFF algorithm on the VHR RGB optical images,

1The selected features are: minimum of the green band, minimum of the blue band, maximum of the green band, maxi-
mum of the NIR band, median of the green band, standard deviation the the red band, standard deviation of the blue band,
meanADmed of the red band, medADmean of the blue band, standard deviation of the NDVI, minimum of the DVI, mean
of the RVI, density D2, planarity, standard deviation of the height, medADmed of the height, 30thpercentile, 50thpercentile,
90thpercentile and mean of the Lidar intensity.
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– a selection of 20 features (among the 95) is operated (the features are adapted to the current

area),

– the classification is performed using the selected feature and a optimized training set (to

cope with the Forest LC DB errors),

– the regularization is performed for a linear unary and the Exponential-feature model for

prior.

The results of the different schemes are presented in Figures 6.2, 6.3 and 6.4 and in Tables 6.2, 6.3

and 6.4. They have been conducted on a single area (Vosges1).

The low cost scheme produces the worse results, especially for the classification (overall accuracy:

79.1%, κ: 0.63, mean F-score: 65.77%, IoU: 51.97%). However, the regularization allows to greatly

smooth the classification, leading to final results that are satisfactory (overall accuracy: 95.66%, κ:

0.91, mean F-score: 86.55%, IoU: 77.65%). This scheme has also the advantage of being faster than

the standard scheme presented before since fewer feature are derived and processed. This scheme

runs in about 2 h 30 for a 1 km2 compared to 4 h (1.6 times faster). Here, since the features are only

obtained from VHR optical images, several confusions are observed for Chestnut and Robinia, leading

to relatively poor results. However, this scheme is very interesting since it shows that it is possible to

obtain a relevant segmentation, according to the forest LC DB, when only using VHR optical images.

(A) Forest LC DB. (B) Classification. (C) Final segmentation.

FIGURE 6.2: Result of the low cost scheme (scheme using only VHR optical images) (1 km2).
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Accuracy metrics of the classification

Label 1 4 5 13 Overall

IoU 71.71 38.21 24.81 73.17 51.97

F-score 83.52 55.29 39.76 84.51 65.77

Accuracy 81 98.64 88.17 90.39 79.1

P0 0.81 0.99 0.88 0.9 0.79

Pe 0.51 0.97 0.82 0.57 0.43

κ 0.6162 0.5473 0.3519 0.7754 0.6319

Accuracy metrics of the regularization

Label 1 4 5 13 Overall

IoU 95.16 56.93 68.97 89.53 77.65

F-score 97.52 72.55 81.63 94.48 86.55

Accuracy 96.9 99.62 98.36 96.43 95.66

P0 0.97 1 0.98 0.96 0.96

Pe 0.53 0.99 0.91 0.56 0.5

κ 0.9338 0.7238 0.8078 0.9184 0.9136

TABLE 6.2: Accuracy metrics of the low cost scheme (scheme using only VHR optical images).

The time cost effective fusion scheme has better results than the low cost scheme. The classifica-

tion shows relevant results (overall accuracy: 92.04%, κ: 0.84, mean F-score: 86.17%, IoU: 76.92%)

and the regularization result are very close to the Forest LC DB (overall accuracy: 96.24%, κ: 0.92,

mean F-score: 90.93%, IoU: 83.93%). It has an other major advantage; only a limited number of fea-

tures are computed (it takes about 30 minutes to extract them for a 1 km2), and no feature selection

is carried out. Thus, only "generic features" (i.e. features that are relevant for different geographical

regions) are employed leading to small confusions for Robinia. The results are under-optimal but still

very good regarding the computation times. Indeed, the whole algorithm runs in about 1 h 30 for a

1 km2 area (2.6 times faster than the standard proposed procedure).

(A) Forest LC DB. (B) Classification. (C) Final segmentation.

FIGURE 6.3: Result of the time cost effective fusion scheme (1 km2).
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Accuracy metrics of the classification

Label 1 4 5 13 Overall

IoU 90.09 81.11 53.24 83.24 76.92

F-score 94.78 89.57 69.49 90.85 86.17

Accuracy 93.46 99.81 96.39 94.43 92.04

P0 0.93 1 0.96 0.94 0.92

Pe 0.53 0.98 0.89 0.58 0.49

κ 0.8602 0.8947 0.6767 0.8685 0.8442

Accuracy metrics of the regularization

Label 1 4 5 13 Overall

IoU 95.64 78.97 69.84 91.28 83.93

F-score 97.77 88.25 82.25 95.44 90.93

Accuracy 97.17 99.79 98.34 97.17 96.24

P0 0.97 1 0.98 0.97 0.96

Pe 0.54 0.98 0.91 0.57 0.5

κ 0.9391 0.8814 0.8138 0.9339 0.9247

TABLE 6.3: Accuracy metrics of the time cost effective fusion scheme.

The efficient fusion scheme produces the best results, close to a perfect fit with the Forest LC

DB (overall accuracy: 97.44%, κ: 0.95, mean F-score: 94.04%, IoU: 88.97%). This scheme should

be preferred when Lidar and VHR optical images are available and if no time constraint for the

production of the results are required. Indeed, relevant features regarding the area of interest are

employed in the classification and regularization process leading to optimal results. Running such

schle takes 4 h instead of 1 h 30 for the time cost effective fusion scheme (2.6 times slower).

(A) Forest LC DB. (B) Classification. (C) Final segmentation.

FIGURE 6.4: Result of the efficient fusion scheme (1 km2).
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Accuracy metrics of the classification

Label 1 4 5 13 Overall

IoU 90.63 83.03 58.98 86.52 79.79

F-score 95.08 90.73 74.2 92.77 88.19

Accuracy 93.89 99.83 97.09 95.48 93.14

P0 0.94 1 0.97 0.95 0.93

Pe 0.53 0.98 0.89 0.57 0.49

κ 0.8701 0.9064 0.7271 0.8948 0.8662

Accuracy metrics of the regularization

Label 1 4 5 13 Overall

IoU 96.67 81.36 83.89 93.94 88.97

F-score 98.31 89.72 91.24 96.88 94.04

Accuracy 97.87 99.82 99.13 98.06 97.44

P0 0.98 1 0.99 0.98 0.97

Pe 0.53 0.98 0.91 0.57 0.5

κ 0.9542 0.8963 0.9079 0.9547 0.949

TABLE 6.4: Accuracy metrics of the efficient fusion scheme.

6.4 Conclusion

In this chapter, the different levels of fusion have been more precisely presented and analyzed.

From the different conducted experiments, three schemes appear to be relevant for forest stand de-

lineation.

• When no lidar is available, the single use of VHR optical image is possible in order to obtain

quite relevant forest stands.

• For large scale results (and when lidar is available), only a limited number of features need

to be computed, leading to generalized results. However, such scheme produces good results

with very decent computation times.

• When precise mapping is needed, the employment of all the steps of the proposed framework

allows to obtain a very relevant stand segmentation (according to the Forest LC DB).
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7.1 Conclusion

The framework proposed in this thesis allows to draw strong conclusions on forest stand seg-

mentation and fusion of optical spectral images and Lidar point clouds for such a task. Furthermore,

Lidar might not be limited to a labeling data source since it can also provide quantitative information

and biophysical features about the vertical structure of forest.

An automatic framework, composed of several steps that can be optimized independently has

been proposed. It integrates operational constraints, such as errors in the Forest LC DB and draws the

best of all the data (namely VHR optical images, lidar and Forest LC DB). The proposed framework

has been validated on different areas with various landscapes. Several variants were also tested so

as to identify the best "frameworks". The contribution of the thesis are the following:

• the development of a modular and versatile framework with few parameters,

• each step have been justified through multiple experiments,

• special attention is paid to the regularization of the classification, standard formulation for

global method have been proposed and additional constraints have been investigated,

• a study of the best cooperative use of lidar and VHR optical images and of their relevance for

forest stand retrieval, leading to three possible variant of the pipeline.

7.1.1 Extraction of forest stands

The proposed framework is composed of four main steps that can be divided in sub-steps:

• The feature computation step that aims at the extraction of:

– Spectral image based features: it mainly corresponds to the computation of statistical fea-

tures (minimum, maximum, mean ...) using different neighborhood sizes, but also vege-

tation indices that have shown their relevance in vegetation discrimination.

– Lidar features at the point level, these features are mainly related to the height and the

spatial distribution of the points. They have also shown relevance for classification tasks

in forested areas. The features derived at the point level are, like the spectral image based

features, extracted according to statistical functions. The point features are then rasterized

at the spatial resolution of the optical images.

– Small objects that have a size and shape similar to trees (trees are the main components

of forest). They are needed in order to obtain features at the object level. Such objects are

coarsely delineated, since they are only employed for an object based classification that

will be refined after. The extraction of objects can be performed directly on the Lidar point

cloud (e.g., extraction of trees) or using over-segmentation methods (e.g., segmentation al-

gorithms with adapted parameters or superpixels algorithms) on rasterized Lidar features

(mainly the nDSM) or the optical images.

– Features at the object level. It is a simple averaging of the pixel-based features for all

extracted objects but it has proven to increase classification performances.

• A supervised forward feature selection step using the κ of the Random Forest as feature set

relevance score. The feature selection is driven by three main objectives. Firstly, it greatly
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decreases the computation times (instead of processing the entire feature set, only an optimal

subset is needed). Secondly, it allows to avoid the curse of high dimensionality, that decreases

the classification performance when the number of features increases. Lastly, since our features

are derived from different remote sensing modalities, the feature selection is a way to assess

the relevance of each modalities in the classification process.

• The supervised classification step:

– The training is based on the forest LC DB, which is natively generalized. Such generaliza-

tion results in borders that do not follow the natural borders of the forest. Furthermore,

forest stands that are not 100% pure. A k-means is employed in order to retrieve only the

main component of the forest stands that is bound to correspond to the genuine tree specie

while keeping a certain level of variability to avoid over-fitting.

– The classification itself is performed using the Random Forest. This state of the art algo-

rithm has shown good discrimination performances. It can handle important amount of

features from different data sources. Furthermore, it generates the posterior probabilities

for each target class and a feature importance score is also natively obtained. The posterior

probabilities can be employed for subsequent smoothing.

• The regularization step that can be envisaged at 2 different levels:

– The local level; in this case only, a local neighborhood is considered to smooth the final

results. It can run from a simple majority vote to the iterative probability relaxation tech-

nique. Such local methods are straightforward to implement but do not lead to relevant

results for forest stands. The results remain noisy.

– The global level; in this case, all the pixels of the image are taken into account. The aim is to

minimize an energy composed of two terms, on related to the classification (unary or data

term) and one related to the context (prior or pairwise term). Furthermore, information

and strong thematical constrains can be added in such model. The choice of the unary

term exhibits the strongest influence while the prior term has a weak impact on the final

results. The regularization level (i.e., how smooth the results are) is controlled through the

parameter γ (the only impacting parameter of the framework). This parameter could be

tuned automatically. However, it appears that γ = 10 produces the most accurate results

compared to the forest LC DB regardless of the concerned area. Besides, this parameter

can be tuned differently depending on the expected outputs. When γ < 10, the resulting

segmentation will be less smooth and small pure segments will be conserved (the accuracy

will decrease but small pure segments will be detected). If γ > 10, the results will be over-

generalized. Such generalization can be interesting for a national mapping, since only the

dominant species will be highlighted.

The proposed framework allows to extract homogeneous forest stands that are relevant according

to the French Forest LC DB. It has only few parameters; the most impacting being the γ of the

regularization. The modularity of the framework is also a great advantage since it can be fed with

different inputs for comparison or improvements. Thus when trying different configurations (i.e.,

testing different inputs for each step), one can seek for the best fusion scheme.
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7.1.2 Fusion schemes

The fusion is operated at different levels in each step of the framework.

• In the feature computation step, the data and algorithm employed for the object extraction

correspond to a medium level of fusion and more precisely to a cooperative understanding of

the data.

• In the classification step, the fusion is operated at both low and medium level. The feature

selection has selected a relevant amount of features among the 95 available (70 spectral-based

+ 25 Lidar-based). The selected features are employed for the supervised classification and

show the complementarity of both data sources.

• In the regularization step, the fusion can be performed at the high and medium level (since the

output of the classification and features are jointly employed) when a global model that takes

into account features is employed. In such model, the classification output (posterior probabil-

ities) and the features values are both employed in order to obtain a final smooth decision.

Here, the modularity of the framework allows to efficiently assess where the fusion is crucial. We

can conclude that there is not a single best fusion scheme;

• In the feature computation step, the object extraction has not an important impact on the final

results. It only slightly impacts the classification results. Thus any over-segmentation method

can be employed. For better classification results, an over-segmentation based on VRH optical

image is recommended.

• In the classification step, both spectral and Lidar features are required. Indeed, even with an

unbalanced proportion of spectral features (70 over 95) and Lidar features (25 over 95), 60% of

the selected features are spectral-based features and 40% are Lidar-based features. When em-

ploying only a single data source source in the classification, the accuracy of the results greatly

decreases. The fusion is crucial in the classification step. The two remote sensing modalities

are here complementary.

• In the regularization step, when not taking into account the features through global methods,

the obtained results already report very good accuracies. Slightly better results can be obtained

when employing feature values in the energy formulation. Here again, employing both data

sources leads to the best results (but is not mandatory).

The proposed framework allows to determine how the fusion should be carried out in order to

obtain the best results. It is also possible to define what kind of results can be expected at different

levels or when employing only one data source.

• Employing only Lidar-based features is not consistent for forest stand segmentation in this

context.

• Employing only image-based features allows to obtain relevant forest stands, however, confu-

sion might be reported.

At the end, three schemes are proposed:
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S1: A low cost fusion scheme that permits to obtain exploitable results with limited computing

times but limited accuracy. This scheme only use the spectral features of the VHR optical im-

ages. Thus no fusion is operated but the results are exploitable. It is straightforward to imple-

ment. It can not be employed for a precise delineation but would give satisfactory results if no

lidar is available.

S2: A time cost effective fusion scheme, very satisfactory results are reported for decent computa-

tion times:

– Only a subset of relevant features (spectral and Lidar) are computed (they have been pre-

viously defined through a global feature selection).

– The objects are extracted employing an efficient segmentation algorithm (PFF) on the VHR

optical images.

– The classification is performed using the object-based features.

– The regularization is performed using a global model with linear unary term and Potts

model prior, which is a standard formulation in many remote sensing application cases.

S3: An efficient fusion scheme. The best results are reported coupled with high computation times

and load:

– All the 95 features are computed.

– The object are extracted employing an efficient segmentation algorithm (PFF) on the VHR

optical images.

– The classification is performed using a selection of the object-based features.

– The regularization is performed using a global model with linear unary term and

Exponential-feature model prior.

S3 is recommended for higher accuracies, S2 may be more suitable for scalability purposes and

S1 in case of absence of lidar data.

7.1.3 Quantitative features

In the previous workflow, it appears that Lidar is only useful in the classification process. This is

probably due to the low point cloud density. If the spectral information allows to discriminate effi-

ciently the tree species, lidar provides information about the vertical structure of the forest. Thus, it is

possible to extract other relevant forest indicators employing Lidar. Once the stands are delineated,

one can count the tree density per stand. Such information can then be employed for forest exploita-

tion or to derive statistics and to help/improve inventory tasks. Furthermore, once the height and the

tree species are determined, allometric equations can be employed in order to derive other relevant

information from the stands (Muukkonen, 2007). Here, Lidar appears as an meaningful measure-

ment tools for tree height that can be employed for other purposes than mapping (Hyyppa et al.,

2001).

7.2 Perspectives

The proposed framework allows to efficiently extract forest stands. However, some improve-

ments can be envisaged. Firstly, other remote sensing data sources can be employed. The second
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idea would be to improve the different steps of the framework. Finally, experiments could been

conducted employing the proposed framework to different target classes.

7.2.1 Relevance of other remote sensing data sources

In this work, only standard VHR spectral optical images and low density (1-5 point/m2) Lidar

point cloud were used.

Employing hyperspectral images could be interesting, since the high spectral resolution would

allow to discriminate more precisely tree species (Dalponte et al., 2014; Liu et al., 2011; Torabzadeh

et al., 2015; Clark et al., 2005). Such data mostly has lower spatial resolution or have sufficient spatial

resolution but on very limited area. Thus statistical features that have here proven to be efficient for

tree specie classification could not be derived. Feature selection would allow to estimate the impact

of higher spectral resolution despite inferior spatial one.

A higher density lidar acquisition would also be interesting. Firstly, with more points, trees could

be delineated more precisely and structural shape features at the tree level could be derived. For

instance, a convex envelope can be extracted for each tree and the volume of the envelope or pene-

tration indices can be derived (Lin et al., 2016; Li et al., 2013a; Ko et al., 2013). Again, feature selection

would allow to conduct a precise and objective assessment of the relevance of such high density li-

dar. Multiple wavelength lidar also appears to be very promising for forest analysis (Budei et al.,

2017), since it provides "spectral" and spatial information.

7.2.2 Improvement

As explained before, new features could be derived when employing other data sources. How-

ever, even with VHR optical images and low density lidar, other meaningful features that have not

been tested in this work could be envisaged. The most interesting and obvious possibility would be

to derive deep-based features. Indeed, deep-learning algorithms allow to directly learn features. It

may appear interesting in such an unstructured environment. Deep-based features are optimal for

specific classification tasks and can be employed as an input of traditional classification algorithms

(such as RF or SVM) (Kontschieder et al., 2015).

The classification could also be performed directly using deep neural networks (Paisitkriangkrai

et al., 2016; Paisitkriangkrai et al., 2015; Wegner et al., 2016; Workman et al., 2017). They have shown

to deliver better results than traditional classification algorithms. The main advantage of the deep

methods is that once a model is learned, it can be applied to other areas without being retrained.

Postadjian et al. (2017) have shown that it is possible to automatically derive training samples from

noisy LC DB for large scale classification. No preprocessing is required and the training procedure

is validated at very large scales (> 10000 km2. Indeed, the model can be refined for small costs,

leading to better results. The main drawback of these methods is their training times and system

requirement; even if the transfer is important, the training of such model needs specific architecture

and graphic cards.

Finally, efforts could be envisaged on the smoothing methods. One can consider fusion of dif-

ferent complementary classification outputs (Ouerghemmi et al., 2017). Thus, the integration of a

classification from different data sources at different spatial resolutions could be assessed.
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7.2.3 Application to other land-cover problems

The proposed framework has been developed specifically for forest stand segmentation and es-

pecially to retrieve smooth quite important stands segments, but could be applied to other semantic

segmentation problems. Indeed, at the end, no a priori knowledge on forested areas has been inserted

and all labels are considered equally and in an agnostic way. Thus, our pipeline exhibits rather gen-

eral applicability. Experiments have been conducted on an small urban area (see Figure C.1) with

exactly the same pipeline, data sources and data specifications.

The results are presented in Figure C.2 and Table C.39. Here the framework has been applied

using the same standard parameters as the ones employed in forested areas. Only the parameter γ

has been tuned in order to have consistent segments regarding the urban LC DB. Indeed, the use of

a too important γ leads to over-smoothed results. Consequently, smaller elements such as roads are

removed.

It appears that the framework also seems to be adapted to urban semantization. Indeed, all the

global quality metrics indicate that the framework performs well in the discrimination of the urban

classes, even with an important γ. However, some classes are poorly retrieved (e.g. road). Since such

classes are under-represented, a loss of accuracy then does not decrease the global results. A visual

inspection shows that the results do not give relevant description of the scene (e.g. the roads are not

continuous).

The results could be improved with two procedures:

• Extracting features that are more related to urban environments,

• Propose a new formulation of the energy that can take into account the variation in the gradient

of height (i.e. integrate borders constraints) and/or continuity in classes (e.g. roads are con-

nected to each other) (Wegner et al., 2015; Wegner et al., 2013), and/or meaningful transition

between classes (Volpi et al., 2015).

7.3 Final outlook

A fully automatic modular workflow has been proposed for the extraction of tree species forest

stands using airborne VHR optical images and airborne lidar point cloud. It involves different image

processing algorithms, such as segmentation, classification and smoothing. An attention was also

paid to feature extraction; meaningful features that shown their efficiency for tree specie classification

were extracted. The proposed framework produces excellent results for forest stand segmentation

while highlighting the complementarity of both remote sensing data sources. The framework fulfills

most of the operational constraints for a national mapping agency: no critical parameters, decent

computing times, automation, selection of the level of detail and quantitative metrics for more in

depth forest analysis.
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C.1 Accuracy metrics

In this section, the different accuracy metrics presented in the following tables are detailed. Most

are standard metrics for classification evaluation.

All are based on the confusion matrix. The metrics can be computed at the global level, or for

each class. In this section, the metrics are defined using the confusion matrix presented in Table C.1

(problem with r classes). In order to compute the metrics for a single class, an other confusion matrix

can be derived. In this section such confusion matrix is presented in Table C.2.

Confusion matrix

Classes 1 2 . . . r Total

1 n11 n12 . . . n1r n1.

2 n21 n22 . . . n2r n2.

...
...

...
. . .

...
...

r nr1 nr2 . . . nrr nr.

Total n.1 n.2 . . . n.r n

TABLE C.1: Confusion Matrix.

Confusion matrix

i i Total

i TP FP Pp

i FN TN Np

Total P N n

TABLE C.2: Confusion Matrix for the class i detection.

The relation between the elements of Table C.1 and Table C.2 are the following:

TP = nii FP = ni. − nii Pp = ni.

FN = n.i − nii TN = n− n.i − ni. + nii Np = n− ni.

P = n.i N = n− n.i

(C.1)

C.1.1 Metrics at the class level

Precision or producer’s accuracy

For the class i ∈ [|1, r|], the precision (or producer’s accuracy) pi is defined as follows:

pi =
nii

ni.

=
TP
Pp

. (C.2)

It is the accuracy from the point of view of the map maker (the producer). This is how often real

samples on the ground are correctly shown on the classified map or the probability that a certain

land cover of an area on the ground is classified as such.
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The Producer’s Accuracy is complement of the Omission Error, Producer’s Accuracy = 100%-

Omission Error. It is also the number of reference sites classified accurately divided by the total

number of reference sites for that class

Recall or user’s accuracy

For the class i ∈ [1, r], the recall (or user’s accuracy) ri is defined as follow:

ri =
nii

n.i

=
TP
P

. (C.3)

It is the accuracy from the point of view of a map user, not the map maker. The User’s accuracy

essentially tells use how often the class on the map will actually be present on the ground, that is to

say how exhaustive the map is. This is referred to as reliability. The User’s Accuracy is complement

of the Commission Error, User’s Accuracy = 100%-Commission Error. When a class is not represented

in the classification map, the recall can not be computed.

Intersection over Union

The Intersection over Union (or Jaccard index) (Jaccard, 1912) measures similarity between finite

sample sets, and is defined as the size of the intersection divided by the size of the union of the

sample sets. It has been designed for the evaluation of object detection. For a class i, the Intersection

over Union (IoUi) is defined as follow:

IoUi =
nii

ni. + n.i − nii

=
TP

Pp + P − TP
. (C.4)

F-score

It is the harmonic mean of precision and recall. It considers both the precision p and the recall r to

compute the score. The F-score can be interpreted as a weighted average of the precision and recall,

where an F-score reaches its best value at 1 and worst at 0. The F-score (F1) of the class i is defined

as follow

F1,i = 2
piri

pi + ri
(C.5)

Accuracy

The accuracy (Ai) (or relative observed agreement among raters) of the class i is computed as

follow:

Ai =
TP + TN

n
. (C.6)

Kappa coefficient

The Kappa coefficient (Cohen, 1960) (κi) is generated from a statistical test to evaluate the accuracy

of a classification. Kappa essentially evaluates how well the classification performs as compared to

just randomly assigning values (i.e. did the classification do better than randomness.) The Kappa

Coefficient can range from -1 to 1. A value of 0 indicates that the classification is no better than

a random classification. A negative number indicates the classification is significantly worse than

random. A value close to 1 indicates that the classification is significantly better than random. The
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Kappa coefficient is computed as follow:

κi =
P0,i − Pe,i

1− Pe,i

, (C.7)

where P0 is the relative observed agreement among raters, and Pe is the hypothetical probability of

chance agreement. They are defined as follow:

P0,i =
TP + TN

n
, (C.8)

Pe,i =
P × Pp + N × Np

n2
. (C.9)

C.1.2 Metrics at the global level

Intersection over Union

The overall Intersection over Union score (IoU ) is defined as the mean of the local Intersection

over Union scores:

IoU =
1

r

r∑

i=1

IoUi. (C.10)

F-score

The overall F-score (F1) is defined as the mean of the local F-scores. If a F1,i can not be computed,

it is considered as zero.

F1 =
1

r

r∑

i=1

F1,i. (C.11)

Overall Accuracy

The overall accuracy (OA) is defined as follows:

OA =
1

n

r∑

i=1

nii. (C.12)

Kappa coefficient

The Kappa coefficient is computed as follows:

κ =
P0 − Pe

1− Pe

, (C.13)

where P0 is the relative observed agreement among raters, and Pe is the hypothetical probability of

chance agreement. They are defined as follow:

P0 =
1

n

r∑

i=1

nii, (C.14)

Pe =
1

n2

r∑

i=1

ni.n.i. (C.15)
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C.2 Flowchart assessment

In this section, the confusion matrices of the different conducted experiments are presented. They

allow to estimate precisely where confusions are reported. Even if they are relevant for such analysis,

the metrics at the class level and global level are sufficient to evaluate the reliability of the method.

The confusion matrices are related to the area Vosges1.

C.2.1 Over-segmentation

The confusion matrices resulting from the different proposed over-segmentation methods are

presented here.

Trees.

Confusion matrix

Label 1 4 5 13 Precision

1 2020114 2556 113280 86058 90.91

4 335 28093 354 1173 93.78

5 2569 0 143267 15875 88.59

13 36915 2886 11342 1041207 95.32

Recall 98.07 83.77 53.41 90.99

Accuracy metrics

Label 1 4 5 13 Overall

IoU 89.31 79.37 49.97 87.1 76.44

F-score 94.36 88.5 66.64 93.1 85.65

Accuracy 93.11 99.79 95.91 95.6 92.2

P0 0.93 1 0.96 0.96 0.92

Pe 0.52 0.98 0.88 0.57 0.48

κ 0.8553 0.8839 0.6461 0.8988 0.8507

TABLE C.3: Confusion Matrix and accuracy metrics of the classification.

Confusion matrix

Label 1 4 5 13 Precision

1 2168270 2468 22793 28477 97.58

4 684 29235 0 36 97.6

5 86 0 151836 9789 93.89

13 13407 2457 5586 1070900 98.04

Recall 99.35 85.58 84.25 96.55

Accuracy metrics

Label 1 4 5 13 Overall

IoU 96.96 83.82 79.88 94.72 88.84

F-score 98.46 91.2 88.81 97.29 93.94

Accuracy 98.06 99.84 98.91 98.3 97.55

P0 0.98 1 0.99 0.98 0.98

Pe 0.53 0.98 0.91 0.57 0.5

κ 0.9585 0.9111 0.8824 0.9604 0.9515

TABLE C.4: Confusion Matrix and accuracy metrics of the regularization.
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Watershed.

Confusion matrix

Label 1 4 5 13 Precision

1 1803817 11010 197844 209337 81.18

4 41 27438 175 2301 91.6

5 8018 1115 140922 11656 87.14

13 72314 15007 39069 965960 88.43

Recall 95.73 50.28 37.28 81.22

Accuracy metrics

Label 1 4 5 13 Overall

IoU 78.35 48.06 35.34 73.42 58.79

F-score 87.86 64.92 52.22 84.67 72.42

Accuracy 85.78 99.15 92.64 90.03 83.8

P0 0.86 0.99 0.93 0.9 0.84

Pe 0.51 0.98 0.86 0.56 0.45

κ 0.7098 0.6453 0.4892 0.773 0.7048

TABLE C.5: Confusion Matrix and accuracy metrics of the classification.

Confusion matrix

Label 1 4 5 13 Precision

1 2078028 977 110274 32729 93.52

4 317 26414 0 3224 88.18

5 443 0 153631 7637 95

13 42882 1009 3336 1045123 95.68

Recall 97.94 93.01 57.49 96

Accuracy metrics

Label 1 4 5 13 Overall

IoU 91.72 82.7 55.8 92.01 80.56

F-score 95.68 90.53 71.63 95.84 88.42

Accuracy 94.65 99.84 96.53 97.41 94.21

P0 0.95 1 0.97 0.97 0.94

Pe 0.53 0.98 0.88 0.57 0.48

κ 0.8866 0.9045 0.699 0.9396 0.8879

TABLE C.6: Confusion Matrix and accuracy metrics of the regularization.
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Hierarchical segmentation.

Confusion matrix

Label 1 4 5 13 Precision

1 1906809 2069 136358 176772 85.81

4 317 26775 141 2722 89.38

5 2540 0 154347 4824 95.45

13 57939 4404 31601 998406 91.4

Recall 96.91 80.53 47.87 84.42

Accuracy metrics

Label 1 4 5 13 Overall

IoU 83.53 73.5 46.8 78.2 70.51

F-score 91.03 84.73 63.76 87.77 81.82

Accuracy 89.28 99.72 95 92.06 88.03

P0 0.89 1 0.95 0.92 0.88

Pe 0.52 0.98 0.87 0.56 0.47

κ 0.7783 0.8459 0.6139 0.8191 0.7762

TABLE C.7: Confusion Matrix and accuracy metrics of the classification.

Confusion matrix

Label 1 4 5 13 Precision

1 2164661 1350 27069 28928 97.42

4 1019 27568 0 1368 92.03

5 373 0 159813 1525 98.83

13 35484 612 5944 1050310 96.15

Recall 98.32 93.36 82.88 97.06

Accuracy metrics

Label 1 4 5 13 Overall

IoU 95.83 86.37 82.07 93.43 89.43

F-score 97.87 92.69 90.15 96.6 94.33

Accuracy 97.31 99.88 99 97.89 97.04

P0 0.97 1 0.99 0.98 0.97

Pe 0.53 0.98 0.9 0.57 0.5

κ 0.9423 0.9263 0.8963 0.9508 0.9412

TABLE C.8: Confusion Matrix and accuracy metrics of the regularization.
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PFF.

Confusion matrix

Label 1 4 5 13 Precision

1 2072223 2635 66560 80590 93.26

4 200 29345 119 291 97.96

5 12398 0 146668 2645 90.7

13 51976 2751 20296 1017327 93.13

Recall 96.98 84.49 62.77 92.41

Accuracy metrics

Label 1 4 5 13 Overall

IoU 90.63 83.03 58.98 86.52 79.79

F-score 95.08 90.73 74.2 92.77 88.19

Accuracy 93.89 99.83 97.09 95.48 93.14

P0 0.94 1 0.97 0.95 0.93

Pe 0.53 0.98 0.89 0.57 0.49

κ 0.8701 0.9064 0.7271 0.8948 0.8662

TABLE C.9: Confusion Matrix and accuracy metrics of the classification.

Confusion matrix

Label 1 4 5 13 Precision

1 2174574 3039 14711 29684 97.87

4 1643 28105 0 207 93.82

5 2407 0 158293 1011 97.89

13 23327 1550 12265 1055208 96.6

Recall 98.76 85.96 85.44 97.15

Accuracy metrics

Label 1 4 5 13 Overall

IoU 96.67 81.36 83.89 93.94 88.97

F-score 98.31 89.72 91.24 96.88 94.04

Accuracy 97.87 99.82 99.13 98.06 97.44

P0 0.98 1 0.99 0.98 0.97

Pe 0.53 0.98 0.91 0.57 0.5

κ 0.9542 0.8963 0.9079 0.9547 0.949

TABLE C.10: Confusion Matrix and accuracy metrics of the regularization.
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Quickshift.

Confusion matrix

Label 1 4 5 13 Precision

1 2010751 1970 85980 123307 90.49

4 441 28932 420 162 96.58

5 8280 0 137651 15780 85.12

13 57765 4237 16873 1013475 92.78

Recall 96.8 82.34 57.13 87.92

Accuracy metrics

Label 1 4 5 13 Overall

IoU 87.86 80.01 51.95 82.29 75.53

F-score 93.54 88.89 68.38 90.28 85.27

Accuracy 92.08 99.79 96.37 93.78 91.01

P0 0.92 1 0.96 0.94 0.91

Pe 0.52 0.98 0.89 0.56 0.48

κ 0.8333 0.8879 0.6653 0.8571 0.8267

TABLE C.11: Confusion Matrix and accuracy metrics of the classification.

Confusion matrix

Label 1 4 5 13 Precision

1 2172018 1463 19015 29512 97.75

4 536 28364 0 1055 94.69

5 427 0 147858 13426 91.43

13 23755 1499 4103 1062993 97.31

Recall 98.87 90.54 86.48 96.03

Accuracy metrics

Label 1 4 5 13 Overall

IoU 96.67 86.17 80 93.55 89.1

F-score 98.31 92.57 88.89 96.66 94.11

Accuracy 97.87 99.87 98.95 97.91 97.3

P0 0.98 1 0.99 0.98 0.97

Pe 0.53 0.98 0.91 0.57 0.5

κ 0.9543 0.925 0.8833 0.9514 0.9462

TABLE C.12: Confusion Matrix and accuracy metrics of the regularization.
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SLIC.

Confusion matrix

Label 1 4 5 13 Precision

1 1999280 2337 61150 159241 89.98

4 398 26354 653 2550 87.98

5 4645 0 152316 4750 94.19

13 44996 2776 18514 1026064 93.93

Recall 97.56 83.75 65.47 86.04

Accuracy metrics

Label 1 4 5 13 Overall

IoU 87.99 75.15 62.93 81.51 76.9

F-score 93.61 85.81 77.25 89.81 86.62

Accuracy 92.22 99.75 97.44 93.36 91.39

P0 0.92 1 0.97 0.93 0.91

Pe 0.52 0.98 0.89 0.56 0.48

κ 0.837 0.8569 0.7594 0.849 0.8345

TABLE C.13: Confusion Matrix and accuracy metrics of the classification.

Confusion matrix

Label 1 4 5 13 Precision

1 2179198 2066 15072 25672 98.07

4 33 28139 0 1783 93.94

5 911 0 158212 2588 97.84

13 16802 1696 6974 1066878 97.67

Recall 99.19 88.21 87.77 97.26

Accuracy metrics

Label 1 4 5 13 Overall

IoU 97.3 83.46 86.1 95.05 90.48

F-score 98.63 90.98 92.53 97.46 94.9

Accuracy 98.27 99.84 99.27 98.42 97.9

P0 0.98 1 0.99 0.98 0.98

Pe 0.53 0.98 0.91 0.57 0.5

κ 0.9629 0.909 0.9215 0.9631 0.9583

TABLE C.14: Confusion Matrix and accuracy metrics of the regularization.
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C.2.2 Classification

The confusion matrices resulting from the different experiments of the classification are presented

here.

Pixel-based classification versus object-based classification.

Confusion matrix

Label 1 4 5 13 Precision

1 1573764 74079 323206 250959 70.83

4 568 23026 1642 4719 76.87

5 18420 7765 119886 15640 74.14

13 124530 134448 79061 754311 69.05

Recall 91.64 9.622 22.89 73.55

Accuracy metrics

Label 1 4 5 13 Overall

IoU 66.53 9.351 21.2 55.31 38.1

F-score 79.9 17.1 34.98 71.23 50.8

Accuracy 77.42 93.63 87.29 82.62 70.48

P0 0.77 0.94 0.87 0.83 0.7

Pe 0.5 0.92 0.82 0.58 0.41

κ 0.5508 0.1582 0.3005 0.588 0.5004

TABLE C.15: Confusion Matrix and accuracy metrics of the pixel-based classification.

Confusion matrix

Label 1 4 5 13 Precision

1 2072223 2635 66560 80590 93.26

4 200 29345 119 291 97.96

5 12398 0 146668 2645 90.7

13 51976 2751 20296 1017327 93.13

Recall 96.98 84.49 62.77 92.41

Accuracy metrics

Label 1 4 5 13 Overall

IoU 90.63 83.03 58.98 86.52 79.79

F-score 95.08 90.73 74.2 92.77 88.19

Accuracy 93.89 99.83 97.09 95.48 93.14

P0 0.94 1 0.97 0.95 0.93

Pe 0.53 0.98 0.89 0.57 0.49

κ 0.8701 0.9064 0.7271 0.8948 0.8662

TABLE C.16: Confusion Matrix and accuracy metrics of the object-based classification (PFF).
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Confusion matrix

Label 1 4 5 13 Precision

1 2032550 112 144846 44500 91.47

4 469 18581 0 10905 62.03

5 839 0 130259 30613 80.55

13 47199 689 2430 1042032 95.39

Recall 97.67 95.87 46.93 92.37

Accuracy metrics

Label 1 4 5 13 Overall

IoU 89.52 60.41 42.16 88.43 70.13

F-score 94.47 75.32 59.31 93.86 80.74

Accuracy 93.21 99.65 94.9 96.11 91.94

P0 0.93 1 0.95 0.96 0.92

Pe 0.53 0.99 0.88 0.57 0.48

κ 0.8571 0.7516 0.5679 0.9102 0.845

TABLE C.17: Confusion Matrix and accuracy metrics of the regularization after a pixel-based classifica-
tion.

Confusion matrix

Label 1 4 5 13 Precision

1 2174574 3039 14711 29684 97.87

4 1643 28105 0 207 93.82

4 2407 0 158293 1011 97.89

13 23327 1550 12265 1055208 96.6

Recall 98.76 85.96 85.44 97.15

Accuracy metrics

Label 1 4 5 13 Overall

IoU 96.67 81.36 83.89 93.94 88.97

F-score 98.31 89.72 91.24 96.88 94.04

Accuracy 97.87 99.82 99.13 98.06 97.44

P0 0.98 1 0.99 0.98 0.97

Pe 0.53 0.98 0.91 0.57 0.5

κ 0.9542 0.8963 0.9079 0.9547 0.949

TABLE C.18: Confusion Matrix and accuracy metrics of the regularization after an object-based classifi-
cation (PFF).
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Training set design.

Confusion matrix

Label 1 4 5 13 Precision

1 1776715 14410 268660 162223 79.96

4 167 26119 1203 2466 87.19

5 10505 2383 135761 13062 83.95

13 119353 84627 57826 830544 76.03

Recall 93.18 20.48 29.29 82.37

Accuracy metrics

Label 1 4 5 13 Overall

IoU 75.54 19.88 27.74 65.39 47.14

F-score 86.07 33.17 43.43 79.08 60.44

Accuracy 83.59 97 89.91 87.46 78.98

P0 0.84 0.97 0.9 0.87 0.79

Pe 0.51 0.96 0.83 0.58 0.44

κ 0.6639 0.3223 0.3928 0.7015 0.6242

TABLE C.19: Confusion Matrix and accuracy metrics of the classification without training set design
(training pixels are randomly selected).

Confusion matrix

Label 1 4 5 13 Precision

1 2118007 1016 57835 45150 95.32

4 1913 25818 0 2224 86.19

5 517 0 152774 8420 94.47

13 63771 1016 4869 1022694 93.62

Recall 96.97 92.7 70.9 94.83

Accuracy metrics

Label 1 4 5 13 Overall

IoU 92.56 80.71 68.08 89.07 82.61

F-score 96.14 89.33 81.01 94.22 90.17

Accuracy 95.15 99.82 97.96 96.42 94.67

P0 0.95 1 0.98 0.96 0.95

Pe 0.53 0.98 0.9 0.57 0.49

κ 0.8961 0.8924 0.7995 0.9163 0.8948

TABLE C.20: Confusion Matrix and accuracy metrics of the regularization without training set design
(training pixels are randomly selected).
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C.2.3 Feature selection
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C.2.4 Regularization

The confusion matrices resulting from the different experiments of the regularization are pre-

sented here. Both local and global methods are presented here.

Local methods

Majority filter.

Confusion matrix

Label 1 4 5 13 Precision

1 2083695 2660 61515 74138 93.78

4 129 29478 86 262 98.41

5 12020 0 147361 2330 91.13

13 47586 2529 19812 1022423 93.6

Recall 97.21 85.03 64.41 93.02

Accuracy metrics

Label 1 4 5 13 Overall

IoU 91.32 83.88 60.61 87.46 80.82

F-score 95.46 91.23 75.48 93.31 88.87

Accuracy 94.35 99.84 97.27 95.82 93.64

P0 0.94 1 0.97 0.96 0.94

Pe 0.53 0.98 0.89 0.57 0.49

κ 0.8799 0.9115 0.7407 0.9027 0.8757

TABLE C.21: Confusion Matrix and accuracy metrics of the regularization (r = 5).

Confusion matrix

Label 1 4 5 13 Precision

1 2083643 2660 61569 74136 93.77

4 129 29478 86 262 98.41

5 12003 0 147401 2307 91.15

13 47040 2526 19802 1022982 93.65

Recall 97.24 85.04 64.41 93.02

Accuracy metrics

Label 1 4 5 13 Overall

IoU 91.34 83.88 60.62 87.51 80.84

F-score 95.47 91.24 75.48 93.34 88.88

Accuracy 94.37 99.84 97.27 95.83 93.65

P0 0.94 1 0.97 0.96 0.94

Pe 0.53 0.98 0.89 0.57 0.49

κ 0.8802 0.9116 0.7408 0.9031 0.876

TABLE C.22: Confusion Matrix and accuracy metrics of the regularization (r = 25).
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Probabilistic relaxation.

Confusion matrix

Label 1 4 5 13 Precision

1 2122380 2802 43233 53593 95.52

4 11 29880 0 64 99.75

5 9862 0 150745 1104 93.22

13 32943 2299 17229 1039879 95.2

Recall 98.02 85.42 71.37 95

Accuracy metrics

Label 1 4 5 13 Overall

IoU 93.71 85.24 67.85 90.65 84.36

F-score 96.75 92.03 80.85 95.1 91.18

Accuracy 95.94 99.85 97.96 96.94 95.35

P0 0.96 1 0.98 0.97 0.95

Pe 0.53 0.98 0.9 0.57 0.49

κ 0.9133 0.9196 0.7979 0.9287 0.9085

TABLE C.23: Confusion Matrix and accuracy metrics of the regularization (r = 5).

Global methods

Impact of the parameter γ.

Confusion matrix

Labels 1 4 5 13 Precision

1 2170873 3034 16065 32036 97.7

4 153 29715 0 87 99.2

5 6914 0 154199 598 95.35

13 17452 2019 12837 1060042 97.04

Recall 98.88 85.47 84.22 97.01

Accuracy metrics

Labels 1 4 5 13 Overall

IoU 96.63 84.88 80.9 94.22 89.16

F-score 98.29 91.82 89.44 97.02 94.14

Accuracy 97.84 99.85 98.96 98.15 97.4

P0 0.98 1 0.99 0.98 0.97

Pe 0.53 0.98 0.91 0.57 0.5

κ 0.9537 0.9175 0.889 0.9568 0.9483

TABLE C.24: Confusion Matrix and accuracy metrics of the regularization (γ = 5).
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Confusion matrix

Labels 1 4 5 13 Precision

1 2174574 3039 14711 29684 97.87

4 1643 28105 0 207 93.82

5 2407 0 158293 1011 97.89

13 23327 1550 12265 1055208 96.6

Recall 98.76 85.96 85.44 97.15

Accuracy metrics

Labels 1 4 5 13 Overall

IoU 96.67 81.36 83.89 93.94 88.97

F-score 98.31 89.72 91.24 96.88 94.04

Accuracy 97.87 99.82 99.13 98.06 97.44

P0 0.98 1 0.99 0.98 0.97

Pe 0.53 0.98 0.91 0.57 0.5

κ 0.9542 0.8963 0.9079 0.9547 0.949

TABLE C.25: Confusion Matrix and accuracy metrics of the regularization (γ = 10).

Confusion matrix

Labels 1 4 5 13 Precision

1 2184507 2975 5458 29068 98.31

4 2514 27213 0 228 90.85

5 22584 0 137459 1668 85

13 25778 1754 10980 1053838 96.47

Recall 97.72 85.2 89.32 97.15

Accuracy metrics

Labels 1 4 5 13 Overall

IoU 96.11 78.46 77.16 93.82 86.39

F-score 98.02 87.93 87.11 96.81 92.47

Accuracy 97.48 99.79 98.84 98.02 97.06

P0 0.97 1 0.99 0.98 0.97

Pe 0.54 0.98 0.91 0.57 0.5

κ 0.9456 0.8782 0.865 0.9537 0.9409

TABLE C.26: Confusion Matrix and accuracy metrics of the regularization (γ = 15).
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Confusion matrix

Labels 1 4 5 13 Precision

1 2181685 2552 3839 33932 98.19

4 4080 25647 0 228 85.62

5 51623 0 106115 3973 65.62

13 27573 899 9543 1054335 96.52

Recall 96.32 88.14 88.8 96.51

Accuracy metrics

Labels 1 4 5 13 Overall

IoU 94.64 76.77 60.6 93.26 81.32

F-score 97.25 86.86 75.47 96.51 89.02

Accuracy 96.47 99.78 98.03 97.83 96.06

P0 0.96 1 0.98 0.98 0.96

Pe 0.54 0.98 0.92 0.57 0.51

κ 0.9235 0.8675 0.7447 0.9494 0.9198

TABLE C.27: Confusion Matrix and accuracy metrics of the regularization (γ = 20).

Unary term.

Confusion matrix

Labels 1 4 5 13 Precision

1 2168246 2951 15896 34915 97.58

4 26 29861 0 68 99.69

5 6376 0 154601 734 95.6

13 14023 2380 12605 1063342 97.34

Recall 99.07 84.85 84.43 96.75

Accuracy metrics

Labels 1 4 5 13 Overall

IoU 96.69 84.63 81.28 94.26 89.21

F-score 98.32 91.67 89.67 97.05 94.18

Accuracy 97.88 99.85 98.98 98.15 97.43

P0 0.98 1 0.99 0.98 0.97

Pe 0.53 0.98 0.91 0.57 0.5

κ 0.9547 0.916 0.8914 0.957 0.9491

TABLE C.28: Confusion Matrix and accuracy metrics of the regularization using the log-inverse
unary/data formulation.
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Confusion matrix

Labels 1 4 5 13 Precision

1 2174574 3039 14711 29684 97.87

4 1643 28105 0 207 93.82

5 2407 0 158293 1011 97.89

13 23327 1550 12265 1055208 96.6

Recall 98.76 85.96 85.44 97.15

Accuracy metrics

Labels 1 4 5 13 Overall

IoU 96.67 81.36 83.89 93.94 88.97

F-score 98.31 89.72 91.24 96.88 94.04

Accuracy 97.87 99.82 99.13 98.06 97.44

P0 0.98 1 0.99 0.98 0.97

Pe 0.53 0.98 0.91 0.57 0.5

κ 0.9542 0.8963 0.9079 0.9547 0.949

TABLE C.29: Confusion Matrix and accuracy metrics of the regularization using the linear unary/data
formulation.

Prior.

Confusion matrix

Labels 1 4 5 13 Precision

1 2172746 3032 14419 31811 97.78

4 1700 27558 0 697 92

5 2673 0 157955 1083 97.68

13 24348 1737 11912 1054353 96.52

Recall 98.7 85.25 85.71 96.91

Accuracy metrics

Labels 1 4 5 13 Overall

IoU 96.54 79.36 84 93.64 88.38

F-score 98.24 88.49 91.3 96.72 93.69

Accuracy 97.78 99.8 99.14 97.96 97.34

P0 0.98 1 0.99 0.98 0.97

Pe 0.53 0.98 0.91 0.57 0.5

κ 0.9522 0.8839 0.9085 0.9523 0.947

TABLE C.30: Confusion Matrix and accuracy metrics of the regularization the Potts model.
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Confusion matrix

Labels 1 4 5 13 Precision

1 2174110 3124 13860 30914 97.84

4 2033 27472 0 450 91.71

5 2416 0 158306 989 97.89

13 25814 1653 11583 1053300 96.43

Recall 98.63 85.19 86.15 97.02

Accuracy metrics

Labels 1 4 5 13 Overall

IoU 96.53 79.1 84.59 93.65 88.47

F-score 98.23 88.33 91.65 96.72 93.73

Accuracy 97.77 99.79 99.18 97.96 97.35

P0 0.98 1 0.99 0.98 0.97

Pe 0.53 0.98 0.91 0.57 0.5

κ 0.9521 0.8822 0.9122 0.9524 0.9473

TABLE C.31: Confusion Matrix and accuracy metrics of the regularization the z-Potts model.

Confusion matrix

Labels 1 4 5 13 Precision

1 2174574 3039 14711 29684 97.87

4 1643 28105 0 207 93.82

5 2407 0 158293 1011 97.89

13 23327 1550 12265 1055208 96.6

Recall 98.76 85.96 85.44 97.15

Accuracy metrics

Labels 1 4 5 13 Overall

IoU 96.67 81.36 83.89 93.94 88.97

F-score 98.31 89.72 91.24 96.88 94.04

Accuracy 97.87 99.82 99.13 98.06 97.44

P0 0.98 1 0.99 0.98 0.97

Pe 0.53 0.98 0.91 0.57 0.5

κ 0.9542 0.8963 0.9079 0.9547 0.949

TABLE C.32: Confusion Matrix and accuracy metrics of the regularization the Exponential-feature model.
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Confusion matrix

Labels 1 4 5 13 Precision

1 2171863 2951 14706 32488 97.74

4 2144 27578 0 233 92.06

5 2633 0 157920 1158 97.66

13 23487 1544 11976 1055343 96.61

Recall 98.72 85.99 85.55 96.89

Accuracy metrics

Labels 1 4 5 13 Overall

IoU 96.52 80.05 83.82 93.71 88.52

F-score 98.23 88.92 91.2 96.75 93.77

Accuracy 97.76 99.8 99.13 97.98 97.34

P0 0.98 1 0.99 0.98 0.97

Pe 0.53 0.98 0.91 0.57 0.5

κ 0.952 0.8882 0.9075 0.9528 0.9471

TABLE C.33: Confusion Matrix and accuracy metrics of the regularization the Distance-features model.

C.3 Can forest stands be simply retrieved?

A segmentation of the input data (i.e., VHR optical image or nDSM) is operated, and a majority

vote is performed. The resulting confusion matrices are presented here.

Confusion matrix

Label 1 4 5 13 Precision

1 1783941 13837 204918 219306 80.29

63 29545 62 285 98.63

5 6482 726 145449 9054 89.94

13 113114 19865 52105 907266 83.06

Recall 93.71 46.18 36.13 79.87

Accuracy metrics

Label 1 4 5 13 Overall

IoU 76.18 45.89 34.73 68.68 56.37

F-score 86.48 62.91 51.56 81.43 70.59

Accuracy 84.09 99.01 92.2 88.2 81.75

P0 0.84 0.99 0.92 0.88 0.82

Pe 0.51 0.97 0.85 0.57 0.45

κ 0.6744 0.6247 0.4814 0.7279 0.6679

TABLE C.34: Confusion Matrix and accuracy metrics of the classification (object-based hierarchical).
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C.3.1 VHR optical images

Confusion matrix

Label 1 4 5 13 Precision

1 1869715 0 6022 346265 84.15

8142 0 0 21813 0

5 82695 0 44484 34532 27.51

13 108307 0 25382 958661 87.76

Recall 90.37 - 58.62 70.42

Accuracy metrics

Label 1 4 5 13 Overall

IoU 77.22 0 23.03 64.13 41.1

F-score 87.15 - 37.44 78.14 50.68

Accuracy 84.27 99.15 95.76 84.7 81.94

P0 0.84 0.99 0.96 0.85 0.82

Pe 0.52 0.99 0.93 0.54 0.5

κ 0.6695 0 0.3555 0.6659 0.6417

TABLE C.35: Confusion Matrix and accuracy metrics when adding semantic information to a direct
hierarchical segmentation (µ = 15).

Confusion matrix

Label 1 4 5 13 Precision

1 2021033 0 0 200969 90.96

4 0 0 0 29955 0

5 83682 0 0 78029 0

13 589638 0 0 502712 46.02

Recall 75.01 - - 61.94

Accuracy metrics

Label 1 4 5 13 Overall

IoU 69.8 0 0 35.87 26.42

F-score 82.22 - - 52.81 33.76

Accuracy 75.06 99.15 95.39 74.37 71.98

P0 0.75 0.99 0.95 0.74 0.72

Pe 0.57 0.99 0.95 0.6 0.56

κ 0.4176 0 0 0.3573 0.3644

TABLE C.36: Confusion Matrix and accuracy metrics when adding semantic information to a direct PFF
segmentation (σ = 0.8, k = 500 and m = 40000).
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C.3.2 nDSM

Confusion matrix

Label 1 4 5 13 Precision

1 1526001 0 0 696001 68.68

4 0 0 0 29955 0

5 109 0 0 161602 0

13 105832 0 0 986518 90.31

Recall 93.51 - - 52.64

Accuracy metrics

Label 1 4 5 13 Overall

IoU 65.55 0 0 49.83 28.84

F-score 79.19 - - 66.51 36.43

Accuracy 77.13 99.15 95.39 71.67 71.66

P0 0.77 0.99 0.95 0.72 0.72

Pe 0.49 0.99 0.95 0.49 0.46

κ 0.5508 0 0 0.4477 0.4737

TABLE C.37: Confusion Matrix and accuracy metrics when adding semantic information to a direct
hierarchical segmentation (µ = 15).

Confusion matrix

Label 1 4 5 13 Precision

1 1788281 0 59707 374014 80.48

4 5687 0 0 24268 0

5 2510 0 44950 114251 27.8

13 244694 0 2 847654 77.6

Recall 87.61 - 42.95 62.32

Accuracy metrics

Label 1 4 5 13 Overall

IoU 72.26 0 20.3 52.82 36.34

F-score 83.89 - 33.75 69.12 46.69

Accuracy 80.42 99.15 94.97 78.4 76.47

P0 0.8 0.99 0.95 0.78 0.76

Pe 0.52 0.99 0.93 0.54 0.49

κ 0.5903 0 0.3126 0.5282 0.5374

TABLE C.38: Confusion Matrix and accuracy metrics when adding semantic information to a direct PFF
segmentation (σ = 0.8, k = 500 and m = 40000).

C.4 Test on urban area

In this section, results are presented for a small urban area. The main problem of the ground

truth of urban area is that road and railway are represented as line instead of polygons. Thus only few

pixels are available for training/validation (a dilatation can be envisaged but has not been carried

out in our tests).
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(A) VHR IRC opti-
cal image.

(B) VHR RGB opti-
cal image.

(C) nDSM. (D) Urban LC DB.

FIGURE C.1: VHR optical images, rasterized nDSM and urban LC of the urban area (600 m×900 m).
Color code: building, road, water, railways, vegetation.

(A) Classification results. (B) Regularization (γ = 2). (C) Regularization (γ = 10).

FIGURE C.2: Results of the proposed method on the urban area (600m×900m). Color code: building,
road, water, railways, vegetation.
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Metric Classification Regularization (γ = 2) Regularization (γ = 10)

OA 86.48 88 90.16

κ 0.6887 0.7172 0.7551

F-score 74.57 77 78.66

IoU 64.33 67.6 70.25

TABLE C.39: Accuracy metrics of the different results of the method on the urban area.
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