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1. Les flavonoïdes : la quercétine et la peau 

Les flavonoïdes sont des pigments d’origine naturelle conférant leurs couleurs aux fleurs et aux 

fruits, ils sont identifiés dans plus de quatre milles espèces [1-3]. Les flavonoïdes sont classés selon 

leur structure chimique de base formée par deux cycles aromatiques reliés par trois carbones : C6-

C3-C6, chaîne souvent fermée en un hétérocycle oxygéné hexa- ou pentagonal [4]. Les flavonoïdes 

présentent des propriétés qui leurs permettent d’être utilisés en tant que médicaments [5-7] telle 

que la capacité à piéger les radicaux libres [8, 9]. A ce jour, les études sur les flavonoïdes ont fait 

l’objet de nombreux articles de revue [10-12] démontrant l'intérêt de ces molécules.  

Parmi les flavonoïdes, la quercétine est la molécule la plus présente dans la nature avec une activité 

très importante dans la lutte contre les radicaux libres et aussi une bonne activité antiinflammatoire 

comparativement à d’autres molécules de la même famille [6, 13]. En général, les flavonoïdes 

présentent une solubilité très limitée dans l’eau et cette limitation bloque leur 

absorption/pénétration et donc leur efficacité [14]. En tant que membre de cette famille de 

composés, la quercétine est ainsi  également limitée par sa faible solubilité dans l’eau [6, 15].  

Sachant que la peau est entre les organes les plus importants du corps humain (2 m²) et le plus 

exposé au stress oxydant lié aux radiations UV et aux produits corrosifs et irritants [16], la 

quercétine est donc une molécule antioxydante de choix pour application topique.  

Le premier objectif de thèse a été de développer plusieurs formulations nanométriques de 

quercétine afin d’augmenter sa solubilité dans l’eau et d’améliorer ses propriétés 

physicochimiques. Nous avons choisi de développer la quercétine sous forme nanocristalline, mais 

également dans des formulations de type nanocapsules lipidiques et liposomes de plus en plus 

utilisées dans le développement des PA peu solubles dans l'eau. Ces formulations seront comparées 

à la quercétine non formulée que nous appellerons "quercétine initiale".  

Le deuxième objectif a été de comparer ces formulations en terme de capacité de chargement de 

quercétine, de toxicité vis à vis des cellules HaCaT (kératinocytes) THP-1 (monocytes) et Vero 

(épithéliales), et enfin au niveau du maintien de l’activité anti-oxyd ante de la quercétine sur les 

cellules in vitro, pour mettre in fine en évidence une augmentation de la pénétration cutanée la 

quercétine in vivo. 
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2. Les formulations de quercétine et leurs caractérisations 

physicochimiques  

2.1. Nanocristaux de quercétine (smartCrystals®) 

La première approche de formulation de la quercétine a été faite sous forme de nanocristaux 

(smartCrystals®). Dans cette approche, la molécule active est mise en suspension avec un 

stabilisant puis   des équipements avec un fort apport énergétique (homogénéisateur haute pression, 

broyeur à billes en milieu humide,...) sont utilisés pour diminuer la taille des particules à l’échelle 

nanométrique. La production de nanocristaux de quercetine de première génération était basée sur 

une étape de 60 minutes avec un broyeur à billes ou de 15 à 20 cycles avec l’homogénéisation à 

haute pression (1500 bars) [17]. Dans le procédé de seconde génération utilisé dans notre étude, 

nous avons combiné les deux techniques avec un temps plus court de broyage à billes et pas plus 

de 2 cycles d’homogénéisation à haute pression (300 bars) [18] (Fig.1 et 4 a). Les particules 

formées sont homogènes en taille et présentent une stabilité physique prolongée.  

 

 

Fig. 1 : représentation schématique de la stratégie utilisée pour former des nanocristaux de 

quercetine 
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Dans cette étude, cinq stabilisants sont comparés entre eux en termes de taille des cristaux et du 

procédé de production le plus court possible avec le broyeur à billes puis l’homogénéisation à 

haute pression. Tween®80 et D-α-Tocopherol polyethylene glycol 1000 succinate (TPGS) se sont 

révélés être les meilleurs stabilisants des suspensions avec des distributions de taille centrées à 295 

nm (PDI 0.25) avec le Tween® 80 et 203 nm (PDI 0.24) avec le TPGS. Dans cette approche, la 

solubilité de la quercétine a été augmentée par 5 et la vitesse de dissolution par 7. La cinétique de 

solubilisation de la quercétine sous forme smartCrystals® est rapide avec un plateau atteint en 60 

minutes alors que dans le même temps, seulement 15% est solubilisé avec la quercétine initiale. 

La toxicité cellulaire des smartCrystals® a été testée sur les cellules épithéliales (Vero) jusqu’à 50 

µg/ml de quercétine et comparée avec la quercétine initiale. Le choix de cellules Vero est basé sur 

leurs utilisation fréquente dans les études toxicologiques des produits de santé afin de permettre 

une comparaison avec d'autres principes actifs étudiés dans la littérature comme par exemple le 

quinocetone, le carbadox et l’olaquindox [19] ou des mises en formes particulières comme par 

exemple les Quantum Dots [20]. Les cellules traitées avec les smartCrystals® de quercétine 

formulés avec du TPGS présentent des viabilités cellulaires proches du contrôle pour des 

concentrations entre 5 à 50 µg/ml.  

L’activité de la quercétine sous forme smartCrystals® (que-SC) et de la quercétine initiale sur la 

capacité de protection des cellules VERO suite à stress oxydant provoqué par un traitement à l’eau 

oxygénée a ensuite été évalué. Dans le cas de la quercétine initiale, nous observons une activité 

protectrice des cellules contre l’oxydation et les résultats de viabilité sont proches de ceux obtenus 

avec les cellules non traitées (contrôle négatif) (P<0.05). Avec la quercétine smartCrystals®, nous 

avons aussi démontré une activité protectrice sur les cellules Vero. La viabilité cellulaire est passée 

de 45 % en contrôle positif avec l’eau oxygénée à 68 % pour les cellules qui ont été prétraitées 

avec la quercétine smartCrystals®. 

Finalement, l’incorporation de la quercétine smartCrystals® dans des gels non ioniques a été 

réalisée et la stabilité des cristaux dans les gels a été observée durant 3 mois à 3 températures (4, 

25 et 40 degrés Celsius). La quercétine smartCrystals® stabilisée avec du TPGS a montré un 

meilleur résultat en taille et PDI comparé à celle formulée avec de Tween® 80. Le TPGS sera donc 

utilisé comme stabilisant pour les formulations de smartCrystals® d'autant plus que la présence de 

vitamine E dans sa composition représente une autre avantage pour la pénétration cutanée. 
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2.1. Nanocapsules lipidiques chargées en quercétine 

Les nanocapsules lipidiques sont des nanoparticules sphériques formées d’un cœur lipidique 

(triglycérides), d’une coque phosphatidylcholine (et d’une couronne de chaines d’hydroxystéarates 

de poly (éthylène glycol) (PEG) et de PEG libre (Fig. 2) [21].  

 

 

Fig. 2 : Représentation schématique de la structure des nanocapsules lipidiques (LNC). Les LNC, dispersées 

dans un solvant aqueux, sont composées d’un cœur de triglycérides entouré d’une coque de surfactants 

(hydroxystéarates de PEG) et de co-surfactants (lécithine de soja, 37% de phosphatidyl choline).  

 

Elles sont de taille variable en fonction de la proportion d’excipients utilisés dans la préparation 

mais de distribution homogène avec un PDI inferieur à 0.2 [22]. Le processus de préparation est 

basé sur l’inversion de phase d’une émulsion eau dans huile vers une émulsion huile dans eau, 

grâce à l’utilisation d’un surfactant à base d’unité éthylène glycol (HS-PEG) dont la balance 

hydrophile/lipophile (HLB) va évoluer en fonction de la température. En effet, à faible 

température, ce surfactant sera plutôt hydrophile (HLB est supérieur à 10), alors qu’au-dessus 

d’une température nommé température d’inversion de phase (TIP), les chaines de PEG seront 

déshydratées (de manière réversible), induisant un profil plutôt lipophile, et aboutissant donc à un 

changement de sens de l’émulsion. Après  trois cycles de chauffage et de refroidissement, et donc 

plusieurs passage au niveau de la zone d’inversion de phase (ZIP), un choc thermique/volumique 

(ajout d’un fort volume d’eau à 4°C) va  stabiliser la microémulsion formée au niveau de la ZIP et 
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aboutir à la formation des nanoparticules (Fig. 3 et 4 b). Le choix de formuler la quercétine dans 

les nanocapsules lipidiques est basé sur leur nature lipidique qui pourrait leur conférer une affinité 

importante vis-à-vis des lipides de la peau, sur leur capacité de protéger les PA [23] contrairement 

à la stratégie de formulation smartCrystals®. 

 

 

Fig. 3 : Représentation schématique de la préparation de nanocapsules lipidiques de quercétine par 

la méthode de l’inversion de phase. 

Deux formulations de nanocapsules lipidiques avec des distributions de taille autour de 20 et 50 

nm ont été préparées après avoir mis au point des modifications au niveau (i) de la composition 

initiale des nanocapsules lipidiques avec l’ajout de Cremophor® EL pour optimiser la  

solubilisation de quercétine comparativement au Solutol HS® 15 et (ii) du procédé par l’ajout 

d’éthanol dans le  mélange avant les cycles de chauffage/refroidissement [21]. Ces deux 

modifications ont été réalisées pour optimiser le chargement de la quercétine dans les capsules 

lipidiques. Les nanoparticules ainsi obtenues exposent une taille de 26 ± 3 nm et 54 ± 3 nm avec 

des PDI inférieur à 0.2 indiquant leur homogénéité (DLS et microscope électronique). Les 
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diffractogrammes DRX mettent en évidence l’imperfection de la structure cristalline à cause de la 

complexité des lipides et la présence de quercétine [24]. L’état cristallin de la quercétine n’a pas 

pu être défini à cause de sa faible concentration dans le mélange de lipides (< 3%). La cinétique 

de libération de la quercétine a été étudiée in vitro dans PBS pH 7.4 avec Tween® 20 (2%).  Elle a 

mis en évidence la libération prolongée de quercétine encapsulée par rapport au contrôle positif 

(solution de quercétine dans le propylène glycol). 

Les études de toxicité cellulaire et de l’activité de la quercétine dans les nanocapsules lipidiques 

ont été  réalisées sur les cellules THP-1. Les monocytes (THP-1) peuvent être pris comme un 

exemple de cellules dendritiques de la peau qui sont dérivées de monocytes circulants dans le sang 

et recrutés dans des conditions inflammatoires. Les cellules ont été traitées avec de concentration 

de quercetine variant de 0.5 µg/ml et 5 µg/ml durant 72 heures. La viabilité cellulaire des THP-1 

avec les nanocapsules lipidiques 20 et 50 est comparée avec celle obtenue après traitement avec la 

quercétine initiale. Entre 0.5 et 2.5 µg/ml de quercetine, les nanocapsules ont donné des 

pourcentages de viabilité proches de ceux obtenus avec quercétine initiale et du contrôle négatif 

(96.2 % et 86.6 % avec les 20 et les 50). La viabilité cellulaire à 5 µg/ml de quercétine était plus 

grande avec les nanocapsules lipidiques 20 par rapport à celles de 50. Cette observation peut être 

due à la concentration de Solutol HS® 15 plus importante dans les 50, car il présente une toxicité 

un plus élevée que le Cremophor® EL sur des kératinocytes [25].  

L’activité antioxydante de la quercétine a ensuite été comparée entre la quercétine initiale et les 

nanocapsules lipidiques avec le test 2’,7’ –dichlorofluorescin diacetate (DCFDA). Le DCFDA 

présente une perméabilité cellulaire importante qui lui permet alors d’interagir avec les radicaux 

libres présents dans les cellules en formant le DCF (molécule fluorescente). Lorsque les cellules 

sont mises en présence d’eau oxygénée, l’intensité de fluorescence augmente d'un facteur 1.4 suite 

à l'augmentation des radicaux libres. Le prétraitement des cellules avec la quercétine initiale ou 

formulée dans les nanocapsules lipidiques permet alors de diminuer l’intensité de fluorescence 

d'un facteur 2.9 par rapport au contrôle positif (P<0.05) démontrant ainsi que la quercétine est 

capable de neutraliser les radicaux libres.  

2.2. Liposomes chargés en quercétine 

La troisième approche est la formulation de la quercétine dans des liposomes. Les liposomes sont 

utilisés pour encapsuler des actifs depuis les années 70 avec le travail de Gregoriadis et al[26]. 
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Jusqu’en 2014, 13 médicaments à base de liposomes ont été approuvés par la FDA. Le domaine 

de la cosmétique s’est aussi beaucoup intéressé à ces formulations, la première et plus connue est 

Capture de Dior et ensuite Niosomes (L’Oréal) mis sur le marché en 1987. La formulation de 

quercétine dans des liposomes que nous avons développée est simple, elle contient du 

dipalmitoylphosphatidylcholine (DPPC) et du Cremophor® EL (Fig. 4 c). Les liposomes 

présentent une distribution de taille centrée autour de 179 nm avec un PDI 0.06. Le taux de 

chargement de quercétine dans les liposomes reste faible par rapport à celui obtenu avec les 

nanocapsules lipidiques (0.56 µg/ml vs. 10.80 mg/ml). La libération de quercétine formulée dans 

les liposomes a été étudiée comme précédemment dans les boudins de dialyse et elles sont 

montrées une libération retardée par rapport au contrôle positif (solution de quercétine dans le 

propylène glycol) (P< 0.05). La quercétine a été détectée dans le récepteur après 5 minutes et les 

liposomes ont continué à la libérer pendant 2 heures. À la fin de l'étude à 24h, les liposomes avaient 

libéré la même quantité de quercétine que celui du contrôle positif (35 %). 

 

Fig. 4 : Représentation schématique des formulations de quercétine a) quercétine smartCrystals®, b) 

quercétine nanocapsules lipidiques et c) quercétine liposomes. La couleur jaune représente la 

quercétine. 
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Pour résumer la première partie de projet, les résultats de distribution de taille, PDI et de 

concentration de quercétine et d’efficacité antioxydante dans les trois approches (cinq 

formulations) ont été regroupés dans le tableau 1. 

 

Tableau 1 : Caractérisation des formulations en termes de taille, PDI et concentration de quercétine 

dans les formulations que-SC avec le Tween® 80 et TPGS, les formulations LNC 20 et 50 (que-LNC) 

et dans les liposomes (que-lipo). 

Les formulations étant correctement caractérisées, nous les avons ensuite comparées en termes de 

toxicité et d'efficacité au niveau cellulaire et ensuite cutané. 

3.   Etude comparative entre quercétine smartCrystals®, 

nanocapsules lipidiques de quercétine et liposomes de quercétine 

sur les cellules in vitro   

Dans la deuxième partie de projet de thèse, les cinq nanoformulations (quercétine SmartCrystals® 

stabilisés avec Tween® 80, quercétine SmartCrystals® stabilisés avec TPGS, LNC quercétine 20 

nm, LNC quercétine 50 nm, et liposomes de quercétine) sont comparées in vitro au niveau de leur 

toxicité et activité cellulaire. Pour cela, deux lignées cellulaires ont été utilisées : les cellules 

HaCaT et les cellules THP-1. La sélection des cellules HaCaT permet d’évaluer les conditions 

d’application cutanée car les HaCaT sont une lignée cellulaire de kératinocytes [27]. La toxicité 

cellulaire ainsi que l’activité protectrice de la quercétine initiale et formulée ont été évaluées avec 
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le MTT : test de viabilité cellulaire et le DCFDA : test pour la quantification des radicaux libres 

intracellulaires.  

Afin d’évaluer l’activité de la quercétine sur les cellules immunitaires qui se trouvent dans 

l’épiderme (spécialement les cellules dendritiques d’origine de monocytes circulant dans le sang), 

les THP-1 ont été repris comme modèle cellulaire. De la même façon que pour les tests sur les 

HaCaT, la viabilité cellulaire et l’activité protectrice de la quercétine soit en quercétine initiale soit 

formulée dans les nanoformulations ont été évaluées (MTT et DCFA).   

3.1. Influence des nanoformulations sur la viabilité des cellules HaCaT  

La Fig. 5 représente les résultats de viabilité entre 5 et 100 µg/ml de quercétine sur les cellules 

HaCaT. La quercétine initiale montre une viabilité cellulaire proche de celle obtenue avec le 

contrôle négatif (cellules sans traitement) avec 97,9 % et 101,7 % respectivement à 5 µg/ml et 25 

µg/ml (P> 0.05). Ces résultats montrent l’absence de toxicité à ces concentrations. Pour les 

concentrations plus élevées, entre 50 et 100 µg/ml, les viabilités cellulaires augmentent à 108,5 % 

et 113,0 %. Ceci peut être expliqué par la solubilité limitée de la quercétine initiale dans le milieu 

de culture (DMEM) ce qui empêche son internalisation à ces concentrations. Lorsque la quercétine 

est formulée, l’augmentation de concentration des SmartCrystals® stabilisés avec Tween® 80 a 

bien entrainé dans ce cas une diminution de la viabilité cellulaire de 78,3 % à 54,6 % entre 5 µg/ml 

et 25 µg/ml. Ces résultats peuvent être dus à une interaction supérieure des nanocristaux avec les 

cellules, contrairement à la quercetine initiale, peu soluble qui forme de gros agrégats et n’interagit 

que très peu.  Ces résultats peuvent être liés à la bonne solubilité de la que-SC dans le milieu de 

culture permettant ainsi une internalisation à forte concentration et donc une toxicité plus 

importante.  

Dans le cas des que-SC stabilisés avec TPGS, nous avons montré le même comportement avec des 

viabilités qui diminuent en augmentant la concentration de quercétine sur les cellules. Les 

contrôles de Tween® 80 et TPGS montrent des viabilités cellulaires proches des cellules non 

traitées (P < 0.05).  Les que-LNC 20 et 50 sont les formulations les moins toxiques avec des 

viabilités de 77,6 % et 93,8 % à 50 µg/ml respectivement. Par contre, la viabilité cellulaire à 100 

µg/ml était plus faible pour les que-LNC 50 que les que-LNC 20 (60,5 % et 77,4 %), .Cette légère 

différence peut s’expliquer par une quantité plus importante de surfactants présente dans la 

formulation des LNC 20 (33,5 % vs. 20,0 % pour les LNC 50)[25].  
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Enfin, les liposomes de quercétine ont  provoqué une diminution de viabilité cellulaire plus 

importante entre 5 et 25 µg/ml (67,5 % et 77,3 %) qu’à 50 µg/ml et 100 µg/ml (117,8 % et 126,3), 

cette observation a été aussi faite avec les liposomes non chargés. La toxicité semble donc plus 

liée aux excipients des liposomes qu’à la quercétine encapsulée.  

Pour résumé l’influence de ces différents nanovecteur sur la viabilité des cellules HaCaT, la 

concentration de 5 µg/ml est la plus adaptée avec des viabilités cellulaires proches de 100 % avec 

la quercétine initiale et les LNC 50 et 20, et elle sera donc retenue pour la suite des études.  

 

 

Fig. 5 : Etude de viabilité cellulaire sur HaCaT après traitement avec quercétine initiale, quercétine 

smartCrystals® formulée avec le Tween® 80 ou TPGS (que-SC), les nanocapsules lipidiques 20 et 50 

(que-LNC) et les liposomes (que-lipo). Temps de traitement de 24 heures avec des doses appliquées 

de 5, 25, 50 et 100 µg/ml. Les études statistiques sont faites entre les formulations de quercétine et 

leurs blancs respectivement. Le P représente la valeur de signification où le * = P < 0.05, ** = P < 

0.01 et *** = P < 0.005 respectivement. 

3.2. Activité anti-radicalaire des différentes formulations sur les cellules 

HaCaT 

La seconde partie de l’étude d’interaction avec les cellules HaCaT a permis d’évaluer l’efficacité 

antiradicalaire de la quercétine. Pour cela, les cellules HaCaT ont été traitées avec du DCFDA, 

puis  traitées avec la quercétine initiale ou ses formulations avant d’être exposées à de l’eau 

oxygénée pour initier le stress oxydatif. Les résultats de l'intensité relative des ROS générée par 
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rapport au contrôle positif sont présentés dans la Fig. 6. Le traitement des cellules avec l’eau 

oxygénée (contrôle positif) augmente l’intensité relative des ROS intracellulaires par 2. Le 

traitement avec la quercétine formulée ou non limite l’augmentation des ROS grâce à son activité 

antioxydante. La quercétine initiale a donné des résultats proches du contrôle négatif, ce qui prouve 

son activité neutralisante sur les ROS. Les formulations que-LNC et que-lipo ont montré une 

meilleure efficacité avec des intensités relatives de ROS plus faibles que les que-SC. La 

concentration de 5 µg/ml de quercétine est donc une concentration active sur les cellules HaCaT. 

 

 

Fig. 6 : Evolution de l’intensité relative des ROS générés dans les cellules HaCaT après le traitement 

avec quercétine initiale, quercétine smartCrystals® avec le Tween® 80 ou TPGS (que-SC), les 

nanocapsules lipidiques 20 et 50 (que-LNC) et les liposomes (que-lipo) suivi par contact avec H2O2. 

Temps de traitement de 24 heures et dose appliquée de 5 µg/ml. Les études statistiques sont faites 

entre les formulations de quercétine et le contrôle positif. Le P représente la valeur de signification 

où le * = P < 0.05, ** = P < 0.01 et *** = P < 0.005 respectivement. 

3.3. Influence des nanoformulations sur la viabilité des cellules THP1 

Pour compléter l’étude sur l’interaction de  la quercétine et de ses formulations avec les autres 

types cellulaires de la peau, les cellules THP-1 ont été utilisées comme modèle cellulaire pour 

savoir si la quercétine pourrait être un bon candidat pour le traitement des maladies inflammatoires 

de la peau comme par exemple le psoriasis [28]. Sur la base des résultats de toxicité cellulaire sur 

les HaCaT et l’activité protectrice montrée en Fig. 6, la concentration de 5 µg/ml est à nouveau 
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appliquée sur les cellules THP-1 pendant 24h. La Fig. 7 représente les pourcentages de viabilité 

de THP-1 après le traitement avec la quercétine initiale et ses formulations. Le traitement avec la 

quercétine ou ses formulations à 5 µg/ml n’avait pas présenté de toxicité cellulaire. La viabilité 

cellulaire obtenue avec  quercétine initiale,  que-LNC 20, que-LNC 50 ainsi que que-lipo est de 

plus de 100 % (122,5 %, 110,5 %, 116,9 et 135,9 %). Ceci peut montrer un effet positif de la 

quercétine sur la prolifération des cellules de THP-1 comme cela avait été observé sur un autre 

type cellulaire(cellules A549) avec de faibles concentrations de quercétine (5 µM) [29].  

 

Fig. 7 : Suivi de la viabilité cellulaire de cellules THP-1 après le traitement avec quercétine initiale, 

quercétine smartCrystals® avec le Tween® 80 et TPGS (que-SC), les nanocapsules lipidiques 20 et 50 

(que-LNC) et les liposomes (que-lipo). Temps de traitement est de 24 heures et la dose appliquée est 

de 5 µg/ml. Les études statistiques sont faites entre les formulations de quercétine et le contrôle 

négatif. Le P représente la valeur de signification où le * = P < 0.05, ** = P < 0.01 et *** = P < 0.005 

respectivement. 

3.4. Activité anti-radicalaire des différentes formulations sur les cellules 

THP1 

Suite aux tests de toxicité cellulaire sur les THP-1, l’activité de la quercétine contre les radicaux 

libres a été testée de la même façon qu’avec les HaCaT. La Fig. 8 présente les résultats des 

intensités relatives de ROS intracellulaire par rapport au contrôle positif. Le traitement des cellules 

avec l’eau oxygénée augmente les ROS générés dans les cellules par 1.4 (contrôle positif) par 
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rapport au contrôle négatif (cellules sans traitement). Le traitement des cellules avec la quercétine 

initiale ou dans les formulations a neutralisé les radicaux libres dans les THP-1 et réduit l’intensité 

des ROS de 2.9 par rapport au contrôle positif. Les intensités des ROS sont même plus faibles dans 

les cellules traitées avec la quercétine que dans le groupe des cellules de contrôle négatif ce qui 

démontre l’activité puissante de la quercétine.  

 

Fig. 8 : Suivi de l’intensité relative des ROS générés dans les cellules THP-1 après le traitement avec 

quercétine initiale, quercétine smartCrystals® avec le Tween® 80 et TPGS (que-SC), les nanocapsules 

lipidiques 20 et 50 (que-LNC) et les liposomes (que-lipo) suivi par H2O2. Contrôle positif : traitement 

avec H2O2. Contrôle négatif : cellules sans traitement. Temps de traitement est 24 heures et la dose 

appliquée est 5 µg/ml. Les études statistiques sont faites entre les formulations de quercétine et le 

contrôle positive. Le P représente la valeur de signification où le * = P < 0.05, ** = P < 0.01 et *** = P 

< 0.005 respectivement. 

En conclusion de cette étude cellulaire, la quercétine formulée a montré une activité protectrice 

sur deux lignées cellulaires, les HaCaT, représentative des cellules constitutives de l’épiderme, les 

kératinocytes et les THP1, représentatives des cellules sentinelles immunitaires.     

4.   Etude in vivo de la pénétration cutanée de la quercétine sous 

forme smartCrystals® et formulée dans les nanocapsules lipidiques  

La dernière partie du projet de thèse a concerné l'étude de la pénétration cutanée après application 

des deux meilleures formulations de quercétine. La pénétration cutanée est l’étape la plus 

importante et la plus significative de la réussite des stratégies des formulations utilisées dans ce 
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projet de thèse. Pour avoir la meilleure corrélation avec la réalité, nous avons fait les tests de 

pénétration cutanée in vivo chez l’homme.  

Nous avons sélectionné les meilleures formulations en se basant sur 3 critères : (i) la taille, (ii) la 

concentration en quercétine et (iii) l’activité au niveau cellulaire. Pour la taille, il nous faut avoir 

la distribution de taille la plus petite et la plus étroite (PDI le plus petit), car les tailles les plus 

petites permettent de former un film homogène léger favorisant l’hydratation, ce qui, par effet de 

concentration, peut améliorer la pénétration cutanée de la quercétine vers l’épiderme [23]. Dans le 

cas des smartCrystals®, la que-SC formulée avec le TPGS a montré la taille la plus petite à 203 nm 

(PDI 0,24) par rapport à celle obtenue avec Tween® 80 à 293 nm (PDI 0,25) (Tableau 1). Ensuite, 

que-SC TPGS a permis d’obtenir la concentration la plus élevée de quercétine par ml de 

formulation (14,4 mg/ml) par rapport au Tween® 80 (14,1 mg/ml), tout en étant  moins toxique sur 

les HaCaT (86,4 % vs. 78,4 %) avec une activité protectrice identique (P > 0,05). Au vue de ces 

résultats, la formulation de que-SC avec le TPGS a été sélectionnée pour l’étude de pénétration in 

vivo.   

Dans le cas des formulations de nanocapsules lipidiques, la que-LNC 20 (26 nm PDI 0,06) a permis 

d'obtenir la concentration la plus élevée de quercétine par ml de formulation (10,8 mg/ml) en 

comparaison avec que-LNC 50 (54 nm PDI 0,17 et 6,0 mg/ml) (Tableau 1). Les résultats de toxicité 

et d’activité protectrice sur les HaCaT entre les LNC 20 et 50 étaient proches avec respectivement 

91,6 % vs. 99,3 % en viabilité et 45,5 % vs. 46,0 % en intensité des ROS (P > 0,05). Sur les THP-

1, les résultats de toxicité et d’activité protectrice étaient aussi proches entre les LNC 20 et 50 : 

110,5 % vs. 116,9 % en viabilité respectivement et 34,6 % vs. 35,0 % en intensité des ROS (P > 

0,05). Pour cette raison, la formulation que-LNC 20 a été sélectionnée pour l’étude de pénétration 

in vivo.   

La formulation liposomale n’a pas été retenue compte tenue de la faible concentration de 

quercétine (0.56 mg/ml) et des résultats peu convaincants obtenus avec les cellules HaCaT et THP-

1. 

La Fig. 9 représente les résultats de pénétration cutanée in vivo de que-SC avec de TPGS et que-

LNC 20 sir 8 volontaires. La procédure de cette étude est basée sur la publication de Scalia et al 

[30]. Dans le cas de que-SC, 94,6 % de la dose appliquée de quercétine a été détectée dans les 

strips. Les strips sont des bandes collantes normalisées appliquées sur la peau et ensuite arrachées 

conduisant à l'arrachement du stratum cornéum. La quercétine a été dosée dans chaque bande par 
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HPLC. Les résultats ont montré que moins de 6 % de la quercétine appliquée avait pénétré dans 

les couches inférieures de l'épiderme. Ce résultat nous conduit à proposer la formulation 

smartCrystals® de quercétine pour une action protectrice contre les UV en cosmétique soit dans 

des crèmes de jour soit dans des produits solaires.  

Avec les formulations de que-LNC, 27,1 % de la dose appliquée de quercétine a été détectée dans 

les strips, ce qui indique cette fois que plus de 70 % à pénétrer profondément dans les couches de 

l'épiderme de la peau. Ce résultat nous permet de proposer les formulations de nanocapsules 

lipidiques de quercétine pour l’application antiinflammatoire dans les maladies comme psoriasis.  

 

 

Fig. 9 : Etude de la pénétration cutanée in vivo après le traitement avec quercétine smartCrystals® 

avec le TPGS (que-SC), les nanocapsules lipidiques 20 (que-LNC). Temps de traitement est 1 heure.  

5. Conclusion  

Dans ce projet, trois approches de formulations nanométriques (smartCrystals, nanocapsules 

lipidiques et liposomes) ont été testées pour améliorer la solubilité de quercétine. Les formulations 

ont été optimisées en termes de procédé de préparation (transposition industrielle) et de 

composition des excipients pour augmenter la quantité de quercétine formulée. Les formulations 

ont été caractérisées en termes de taille, PDI, taux de chargement en quercétine, état cristallin et 
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cinétique de libération de quercétine in vitro.  Ensuite, les formulations ont été comparées entre 

elles sur les cellules HaCaT et THP-1 avec détermination de leur toxicité et activité protectrice. 

Enfin, deux formulations (quercétine smartCrystals® avec le TPHS et quercétine LNC 20) ont été 

sélectionnées et comparées in vivo pour évaluer l’amélioration de la pénétration cutanée de 

quercétine.  

Ce projet propose une solution pour formuler la quercétine d’une façon pertinente et efficace qui 

pourra être extrapolée au niveau industriel pour des applications cutanées de molécules peu 

solubles dont l'efficacité est limitée par leur faible pénétration cutanée.  
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1. What are flavonoids? 

Flavonoids are plants pigments derived from benzo-g-pyrone (Fig. 1). Flavonoids can be observed 

by the naked eye as they form the amazing colors of flower petals. They can be found in apples 

[1], pears [2], onions [3], red wine [4] and others [5, 6]. An increasing interest in flavonoids is 

rising in the last few decades in several domains. Botanists started to identify flavonoids and used 

them in the taxonomical studies. Pharmaceutical industry benefits from the natural pool of 

medically effective compounds, and searches for new drug candidates from flavonoids and their 

synthesized derivatives. Considering that flavonoids are present mostly in plants, their 

consumption by human in diet is between 20 mg and 1 g according to nutritional attitude [7]. Since 

flavonoids are phenolic compounds, they possess oxidation-reduction potential. They are prone 

to oxidation to quinones occuring upon ring opening [8]. However, this phenomenon is more 

susceptible under UV light especially if metals are present such as Cu2+[9].  

 

Fig. 1: Chemical structure of flavonoids, flavonols (orange) and quercetin (green). 

 

At the same time, flavonoids presenting hydroxyl groups on their structure show antioxidant 

activity by their ability to donate hydrogen. Consequently a dual functional behavior is observed 

as flavonoids can be either prooxidant or antioxidant molecules [9]. A lot of doubt and confusing 

results were found about flavonoids relation to oxidation. Some studies showed that flavonoids 

consumption within human diet induced lower incidence of coronary heart disease [10] and other 

studies showed that this correlation is insignificant [11]. Also flavonoids have acid base properties 

with pKa from 8 to 10.5 and this enables the tautomerism especially in flavonols like quercetin 

[12].  
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2. Why flavonoids? 

Flavonoids are very promising drug candidates; mainly due to their radicals scavenging ability. 

We will first define reactive oxygen species and their roles in cells, and then discus in brief about 

flavonoids free radical scavenging potentials. 

 

Equation 1:  !° + "#$%&$'()* , **! - ./ 

 

Highly reactive species such as molecular oxygen are generated in the course of many cellular 

processes like respiratory chain and are catalyzed by oxygenases. Despite to the full reduction of 

oxygen generating two molecules of water, a partial reduction can occur and thus leads to the 

formation of the highly toxic superoxide anion ·O2‾. Formed ·O2‾ could be generated for example 

by macrophages during the immune response against foreign pathogens, but excess amounts must 

be neutralized before attacking unsaturated lipids and sulfhydryl groups of non-infected cells. 

Consequently, specific enzymes such as cytochrome oxidase containing metal ions (Fe2+ and Cu + 

ions) entrap reactive molecules in the metal cage region. In case of reactive oxygen species escape 

from the denaturized enzymes, they start a chain reaction attacking lipid, nucleic acids which 

causes damage to vital cellular processes. Hydrogen peroxide radicals and peroxynitrite are other 

forms of reactive species generated by UV radiation [12].  

Another cross-linked response to oxidative injury is inflammation [13]. Reactive oxygen species 

are inducer of proinflammatory cytokines such as the example of macrophages during the immune 

response, and sometimes the oxidant by itself can activate proinflammatory cytokines such as UV 

radiation on skin [14]. The continuous exposure to ROS over prolonged periods increases the 

incidence of DNA mutations and causes the aging phenomenon in weakened tissue and organs 

[15]. Consequently, chronic inflammation and uncontrolled inflammatory disorders are 

subsequent to sustained oxidative attack. 

Flavonoids are known to scavenge these free radicals [16], to induce the expression of antioxidant 

enzymes [17, 18] and to protect low density lipoprotein unsaturated moieties from oxidative 

damages [19]. Flavonoids antiinflammatory actions lay side to side with the antioxidant one. Some 

explanation for the antiinflammatory mechanism of flavonoids is that they are free radical 

scavengers, other theories are based on evidences of modulation of the activities of arachidonic 
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acid metabolism enzymes [20-22], modulation of the production of other proinflammatory 

molecules [23, 24] and modulation of proinflammatory gene expression [25-27]. This double 

sword (antioxidant and antiinflammatory activities) can give raise to several therapeutic 

applications in regards to oxidative damage and inflammation for example in cardiovascular 

diseases like diabetes [28], hypercholesterolemia [29], hypertension [30], atherosclerosis [19], 

myocardial ischemia–reperfusion injury [31] and antithrombotic activities in hemorrhage [32]. 

Also flavonoids proved effectiveness in the protection of different cellular cell lines for example 

neuronal cells [33], colonocytes [34], pancreatic β-cells [35], hepatic HepG2 cells [36], 

keratinocytes [37]. Moreover, they are used in different inflammatory disorders like contact 

dermatitis [26], inflammatory joint disease [38] rheumatoid arthritis [38, 39] and recently psoriasis 

[40]. All these promising applications and targets make flavonoids as the new trend in drug 

research. It is worth to note that 4 278 publications dealt with flavonoids in 2016 on ScienceDirect. 

This reflects the great interest in this family and their possible future indications in the prevention, 

treatment or co-treatment of oxidative damage related disorders.   

3. Why quercetin? 

Quercetin is an important member of the flavonoid family, which belongs to a subfamily called 

flavonols (Fig. 1). Quercetin is present in several fruits and vegetables like red onions, broccolis, 

sweet potatoes and at least eight berry variants [41]. It is a yellow powder found linked to 

glycosides in nature for example rutin, which is quercetin-3-O-rutinoside. Quercetin’s IUPAC 

name is 3, 3’, 4’, 5, 7-pentahydroxy-2-phenylchromen-4-one (figure 1), which indicates the 

presence of five hydroxyl groups in its structure. This high number of hydroxyl groups makes 

quercetin as one of the strongest antioxidants among flavonoids [9, 42]. 

4. Quercetin problematic in brief 

Quercetin is a good model drug representing flavonoids with the main structural backbone of 

flavonoids. This enables quercetin to behave, in the same way as flavonoids, in oxidation-reduction 

reactions, acid base reactions (pKa =  6.74) [43], optical activity [44], Concerning  

physicochemical point of view, quercetine exposes polymorphism [45], and unfortunately very 

low water solubility (0.441 ± 0.0487 μg/mL in PBS buffer at pH 3) [46, 47]. When quercetin is 

suspended in water, intermolecular hydrogen bonding between quercetin crystals appears and 



Quercetin and Flavonoids  
 

41 
 

enables planar configuration [48]. This initiates a starting point of nucleation, agglomeration and 

precipitation.  

From a pharmacologic point of view, quercetin holds many of flavonoids properties, especially    

antiinflammatory potentials due to its antioxidant power efficiency [49, 50]. While being a good 

representative of flavonoids family, with low water solubility due to lipophilic cyclic structure 

with a partition coefficient (log P = 1.82 ± 0.32) [51], Quercetine exposes at the same time several 

polar head groups. These previously mentioned amphiphilic properties hinder quercetin 

therapeutic applicability. In parallel, discussion is made about whether quercetin glycoside or 

aglycone present the higher bioavailability and this is an important point. In fact, quercetin 

glycosides are mainly taken in human diets, and their absorption is complex and influenced by the 

presence of other natural compounds. In 1997, Hollman et al monitored quercetin plasma 

concentration after the administration of a large dose of quercetin glycoside from onions and 

apples. Surprisingly, onions yielded three fold higher plasma concentration of quercetin compared 

to apples [52]. Scientists believe that quercetin embedded within fruits and vegetables will be more 

bioavailable than its pure form (pure glycoside or aglycone), furthermore, conjugation of quercetin 

with glucose enhances its absorption for small gut [52]. Nonetheless, the ingested quantity of fruits 

and vegetables containing quercetin will confer plasma concentration in the nanomolar range and 

this cannot be used for therapeutics application [53]. Besides, it was already shown that glycoside 

forms of quercetin are metabolized by intestinal microflora [54], and even in topical application 

skin partially metabolizes quercetin glycosides to the free aglycone form [55]. 

All these remarks should be considered in developing quercetin for therapeutic applications. For 

this, the enhancement of quercetin bioavailability may be focused on its aglycone form, hence it 

has stronger antioxidant activity than glycoside counterparts [56] and is the main form of molecule 

that can be absorbed by passive diffusion.  

5. Our approach with quercetin and its problematic 

Quercetin as a promising drug candidate is a matter of research with more than 22 000 articles 

between 1988 and 2016. Quercetin presents antioxidant and antiinflammatory properties useful in 

different disorders. Most of disorders requires systemic administration such as breast [57], prostate 

[58], colon [59] and liver [60] cancers or neurodegenerative disorders like Parkinson [61] and 

Alzheimer [62]. It was also administered to induce the reduction of inflammation related to 
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rheumatoid arthritis [63], the protection of bronchial epithelial cells from matter-induced damage 

[64] and cardiac muscle from ischemic injuries [65]. Quercetin can also be of great value in 

localized disorders such as wounds [66], skin protection against UV radiation [67] and glaucoma 

[68] (Fig. 2).  

 

Fig. 2: Quercetin applications under research.  

Despite this promising applicabilities of quercetin, still much of this research is on in vitro cellular 

and molecular bases, with quercetine dissolved in organic solvents such as DMSO. Few transferred 

these successful results to the in vivo, probably because quercetin solubility issues [69, 70]. Indeed, 

when diluted in DMSO, quercetin presents very low bioavailability in vivo [71]. Others increased 

quercetin dose in order to get a sufficient drug concentration in blood or at the active site, 

consequently, the ingested dose was toxic to other vital organs, probably because quercetin starts 

to show pro-oxidant rather than antioxidant actions [72].  

Nanotechnology is a novel and successful approach to deliver drug to human body and to 

overcome drug solubility problems, to improve drug physicochemical properties and to enhance 

its in vivo bioavailability. Morever and under some situations, drugs produced at the nanometric 

scale are more powerful than their macro counterpart is, thus a rational drug use can be concluded. 

This is very useful even on drugs found already in market, especially, antibiotics that are 

susceptible to bacterial resistance if used frequently or in high doses. Nanotechnology is a general 

terms where several practical approaches can be followed to obtain drugs in the nanometric range. 
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Drugs can be obtained at the nanometric range (nanonization) alone or can be encapsulated in 

nanovectors (nanoformulation) (Fig. 3).  

Drug nanocrystals are suspension of the drug with a stabilizer (particle size is less than 1 µm), 

produced by two methods: top down and bottom up. Top down when particles size starts to 

decrease in the course of the process such as in the high-pressure homogenization or bead mill. On 

the other hand, bottom up techniques involve the transfer of drug molecules for solvent to non-

solvent phase with subsequent precipitation and increase in size to not more than 1000 nm like in 

evaporative precipitation [74]. In the second generation of drug nanocrystals, methods increase 

drug physical stability, as well as an optimization of process times and yields mainly by combining 

first generation process [75, 76]. Several drugs formulated using the nanocrystals technology are 

introduced to the market mention here Rapamune® sirolimus (Wyeth Pharmaceuticals, Madison, 

NJ), Emend® aprepitant  (Merck, Winehouse Station, NJ), Tricor® fenofibrate (Abbott 

Laboratories) and Megace ES® megestrol acetate (Pharmaceutical Companies, Inc. Spring Valley, 

NY)  

Nanovectors are drug carriers at the nanometric scale, where drug is formulated with other 

excipients, this technique can be used to improve the drug targeted [77] or to increase the systemic 

circulation of drugs suffering from short half-lives [78]. By contrast to the formation of 

nanocrystals, the drug is there associated to other excipients to form a nanoparticles, it is “a part” 

of the system. The use of nanovectors can be of benefit in protecting sensitive drugs from oxidation 

by oxygen in air and light and in reducing drug side effects by targeted delivery systems. 

Nanovectors can be liposomes [79], lipid nanocapsules [80], polymeric nanocapsules [81], solid 

lipid nanoparticles (SLN) or nanostructured lipid carriers (NLC) [82]...    
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Fig. 3: Schematic two main strategies used to form nanodrugs 

 

From the previous; we can summarize our objectives in the thesis into three points:  

1. The use of a “paradigmatic drug” for water insoluble, lipophilic and polar molecule such 

as quercetin in order to attend an acceptable water solubility for pharmaceutical topic 

administration. By applying nanotechnology on quercetin, we facilitate drug formulation 

afterwards and this can be useful considering that 40% of the drugs in the pipelines have 

solubility problems [83]. Moreover, literature states that about 60% of all drugs coming 

directly from synthesis are nowadays poorly soluble [84]. 

2. Testing nanometric quercetin for one of its applications and compare its activity to the 

crude form. We are focusing on topical protective potentials of quercetin against free 

radicals generation and inflammation of skin upon UV exposure. 

3. The comparative study between the three nano-approaches selected to formulate quercetin 

(nanocrystals, liposomes and lipid nanocapsules). The comparison is based on the aspects 

of quercetin loading within each formulation, the formulation process, the possibility to 

industrialize, the physical stability upon storage, the functional stability of quercetin, the 

cellular activity, the lowest effective dose and the skin penetration capacity. 
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In the following chapters, an introduction to quercetin activity on skin will be presented in details 

under the form of a review article entitled “Quercetin topical application, from conventional 

dosage forms to nanodosage forms”. Then quercetin formulations developed and fully 

characterized will be presented as research articles: quercetin second generation nanocrystals and 

quercetin lipid nanocapsules development “Dermal quercetin smartCrystals®: Formulation 

development, antioxidant activity and cellular safety” and “Dermal quercetin lipid 

nanocapsules: influence of the formulation on antioxidant activity and cellular protection 

against hydrogen peroxide” (published in European journal of pharmaceutics and 

biopharmaceutics, doi:10.1016/j.ejpb.2016.03.004 and under review at journal of controlled 

release respectively). Then, a third article will present quercetin formulations into liposomes and 

will put the three formulations in comparison on cellular level and in terms of skin penetration 

capacity “Liposomes, lipid nanocapsules and smartCrystals®: a comparative study for an 

effective quercetin delivery to skin”. Afterwards, a general discussion of the thesis project will 

cover the possibility to industrialization and will give general remarks about the performed studies. 

Finally, a general conclusion will be presented. 
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Literature review of quercetin topical application 

Preface  

In the following chapter, quercetin topical applications will be discussed in two parts. It was 

submitted as review in European Journal of Pharmaceutics and Biopharmaceutics in May, 2016 

(under review). 

The first part will present a detailed revision of literature about quercetin potential activities on 

skin. This section will discuss quercetin antioxidant activity and the experimental determination 

of this activity in vitro, on cellular level and in vivo on animals. Then, quercetin antiinflammatory 

activity with proven mechanism of action on skin. Afterwards, quercetin in wound healing and its 

beneficial impact for a successful healing of injuries and wounds. Finally, we will discuss on 

quercetin effects on skin ageing and its potential in rejuvenation of skin tissue.  

The second part of this chapter will present quercetin formulations intended for the topical route 

of administration and gives special emphasis on the skin penetration tests performed on these 

formulations. The section will cover conventional dosage forms such as emulsions with the results 

related to quercetin penetration enhancement. Afterwards, a detailed literature revision will present 

quercetin novel nanoformulations with a discussion of their main physicochemical features along 

with their skin penetration results. The skin penetration results are grouped in order to facilitate 

the comparison between nanoformulations. The groups are: skin penetration tests performed on 

pig skin, on rodent skin and finally on human skin.  
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Abstract  

Skin is a multifunctional organ with activities in protection, metabolism and regulation. Skin is in 

a continuous exposure to oxidizing agents and inflammogens from the sun and from the contact 

with the environment. These agents may overload the skin auto-defense capacity. To strengthen 

skin defense mechanisms against oxidation and inflammation, supplementation of exogenous 

antioxidants is a promising strategy. Quercetin is a flavonoid with both very pronounced effective 

antioxidant and antiinflammatory activities, and thus a candidate of first choice for such skin 

supplementation. Quercetin showed interesting actions in cellular and animal based models, 

ranging from protecting cells from UV irradiation to support skin regeneration in wound healing. 

However, due to its poor solubility, quercetin has limited skin penetration ability, and various 

formulations approaches were taken to increase its dermal penetration. In this article, the quercetin 

antioxidant and antiinflammatory activities in wound healing and supporting skin against ageing 

are discussed in detail. In addition, quercetin topical formulations from conventional emulsions to 

novel nanoformulations in terms of skin penetration enhancement are also presented. This article 

gives a comprehensive review of quercetin for topical application from biological effects to 

pharmaceutical formulation design for the last 25 years of research.  

 

Key words  

Quercetin, antioxidant activity, antiinflammatory activity, wound healing, skin antiaging, in vitro 

skin penetration, in vivo skin penetration, Franz cells.  
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1. Introduction  

Skin is the largest organ of the human body, which secures the internal homeostasis and regulates 

the temperature of the body. Besides that, skin has barrier function, it prevents germs from passing 

into internal organs, protects human body from exogenous pollutants and oxidizing agents like 

radiation and corrosive materials. As a result, skin is continuously exposed to oxidants and 

inflammogens. Even if skin possesses several antioxidative systems to withstand external 

oxidation sources. However, in case that oxidative stress is superior to the defense mechanism of 

skin, skin damage can occur [1, 2].  

Supporting skin defense mechanisms by exogenous antioxidants is a promising strategy. 

Antioxidants like Coenzyme Q10 [3, 4], vitamin C [5], ß-carotene [6, 7] and polyphenols [8, 9] 

were tested to evaluate their benefits on skin. Among them, flavonoids, which are strong 

polyphenolic antioxidants, are potential good candidates. They are plant pigments found in several 

fruits and vegetables like apples [10], onions [11] and peas [12]. With the presence of several 

hydroxyl groups on their structures, quercetin is the strongest antioxidant among flavonoids and 

the most common in nature [13]. At the same time, quercetin has the broadest antiinflammatory 

activity compared to apigenin, morin, (-)-epicatechin and biochanin A [14]. In spite of these 

promising activities, quercetin suffers from poor water solubility and inability to penetrate skin 

(Table 1) [15]. Quercetin shows water solubility less than 0.5 µg/ml and higher solubility in polar 

organic solvents (2 mg/ml in ethanol) [16-18]. Quercetin also has a partition coefficient of 1.82 ± 

0.32 due to the presence of nonpolar groups in its structure [19]. But despite of this log P, quercetin 

polar hydroxyl groups hinder its skin penetration capacity [13]. Focusing on topical delivery from 

formulation approach, the use of nanoformulations with therapeutic agents such as linoleic acid 

within ethosomes and transfersomes [20], paclitaxel-loaded within ethosomes [21] and 

asiaticoside in ultradeformable vesicles [22] showed to enhance their topical delivery. This is 

linked to nanoformulation characteristics such as their lipid nature and their small particle size 

along with their elasticity that facilitate their deep penetration. The presence of ethanol conferred 

higher skin penetration for encapsulated molecules compared to liposomes, the rigid nature of 

liposomal bilayer is fluidized by the ethanol presence that facilities ethosomes penetration. 
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Consequently, quercetin is also formulated within several nanoformulations in order to enhance 

topical drug delivery [23, 24]. 

 

Quercetin 

physicochemical 

properties 

Values 

Chemical structure 

 

Molecular Formula C15H10O7 

Molecular weight 302.2 g/mol 

Chemical name (IUPAC) 2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxychromen-4-one 

Solubility in MilliQ water 0.48 ± 0.1 µg/ml [16]/ 

Solubility in PBS pH 3 0.44 ± 0.1 μg/ml [18] 

Solubility in DMSO 30 mg/ml [17] 

Solubility in ethanol 2 mg/ml [17] 

Partition coefficient (log P) 1.82 ± 0.3 [19] 

Polymorphism  Three polymorphic forms [25]  

 

Table 1: Quercetin main physicochemical parameters  

Quercetin partition coefficient is determined experimentally.  
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In this paper, recent studies on quercetin skin activities from in vitro models to in vivo animal 

studies will be presented. Then, formulation strategies followed to overcome quercetin limited 

water solubility and to increase its stability in formulation will be discussed. The effect of 

formulating quercetin in conventional dosage forms to enhance its skin penetration capacity will 

be explored. Finally, recent nanoformulations of quercetin and their potential as novel strategy for 

quercetin skin delivery will be discussed.  

 

2. Quercetin physiological activities on skin  

2.1. Quercetin antioxidant activity 

Skin is the largest organ in the human body exposed to oxidizing agents from environment such 

as solar radiation (visible/UV) and chemicals (xenobiotic). These environmental pollutants can 

induce oxidative stress to skin tissue either directly or indirectly by the generation of reactive 

oxygen species (ROS). Skin tissue contains several defense mechanisms for the prevention or 

inception of oxidative stress and for the initiation of cellular repair afterwards. Skin has many 

mechanisms to prevent the formation of free radicals. For example (i) metallothionein, present in 

cutaneous tissue, chelates metal ions, has a great importance in controlling free radical generating 

reactions; (ii) the increase of melanin production upon exposure to UV radiation. For the oxidative 

damage control, skin also has endogenous mechanisms based on two categories: nonenzymatic 

and enzymatic. Among nonenzymatic mechanisms, small molecular size antioxidants such as 

glutathione (GSH), ɑ-tocopherol, carotenoids and oxycarotenoids found in skin cells, are 

molecules able of both neutralizing free radicals as well as relocalizing radical damaging functions 

from sensitive targets (as an example from lipid membrane to cytosol). Enzymatic activities 

depend on molecules such as superoxide dismutase, catalase and glutathione peroxidase. These 

enzymes serve as a backup for the regeneration of consumed antioxidants, like in the replenishment 

of GSH by glutathione disulfide (GSSG) reductase, as well as for the elimination of reactive 

compounds, such as the transfer system for glutathione S-conjugates [26]. 

Quercetin antioxidant activity will be explored in three parts. The first part will take into 

consideration all the chemical assays used to determine quercetin activity in vitro. Then, a second 

part will deal with quercetin activities tested at the cellular level, and the molecular mechanism 

underlining quercetin potentials. Finally, animal-based studies regarding quercetin protection to 
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cutaneous tissue after its exposure to oxidative stress stimulators such as UV irradiation will be 

reviewed. 

  

2.1.1. In vitro antioxidant activity (chemical tests) 

In vitro tests for antioxidant activity provide information about the antioxidant activity of quercetin 

without the need for complex cellular based assays. They can ensure quercetin activity from batch 

to batch and can be set as routine analysis. Three aspects can be investigated in vitro. (i) Hydrogen 

donating activity can be measured with 2,2-diphenyl-1-picrylhydrazyl (DPPH assay) [27]. (ii) 

Superoxide anion formation inhibition and scavenging activity can both be quantified by means of 

xanthine oxidase and cytochrome C assays [28]. (iii) Metal chelating activity can be determined 

using metal specific methods [29]. Finally antioxidants can inhibit the peroxidation of unsaturated 

lipids, thus antilipoperoxidative activity can be analyzed using the colorimetric detection of 

thiobarbituric acid reactive species (TBARS) by a reaction mediated by Fe2+/Citrate [30]. In 2006 

Casagrande et al. [31] evaluated iron-chelating activity of 4 µg/ml quercetin solution. Quercetin 

chelated 65% of total iron within 15 minutes contact time. This is in agreement with the fact that 

quercetin presents two sites for chelating bivalents metals: 5-OH and 4-oxo group or between the 

3′- and 4′-OH groups (Table 1) [32]. On the other hand, Casagrande et al. determined the functional 

stability of crude quercetin and formulated quercetin in emulsions for topical application. 

Antilipoperoxidative activity was tested during six months at four storage temperatures 4°C, room 

temperature, 37°C and 45°C. Rat liver mitochondria were used as unsaturated lipid source for the 

lipid peroxidation assay. Initially crude quercetin presented 65.6% antilipoperoxidative activity, 

while 0.05 % quercetin loaded within nonionic cream (high lipid content) and anionic gel cream 

(low lipid content) had 78%, and 70%, respectively. Upon storage, a higher loss of activity was 

observed in formulation with low lipid content especially at low temperatures. This may be 

attributed to precipitation of quercetin out from lipidic environment where lipids are in more 

packed conformation. Keeping in mind the lipophilic nature of quercetin rings, the more lipophilic 

the environment is for quercetin the better it is stabilized (Table 2). In 2007, the same group studied 

the antilipoperoxidative activity of quercetin in more detail [33]. The same nonionic cream and 

anionic gel cream formulations were compared to crude quercetin in terms of antioxidative 

stability during 6 months storage using DPPH test. Initial activity was 41.6 %, 37.8 %, and 38.5 

% for crude quercetin, nonionic cream and anionic gel cream, respectively. The activity was 
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preserved during the whole storage period. Afterwards skin retention of the formulated quercetin 

was monitored in terms of antilipoperoxidative activity on pig’s skin mounted on Franz cell for 12 

hours. Anionic gel cream with lower lipid content showed higher drug release and consequently 

higher skin retention and antilipoperoxidative activity (25.0 %) at 3 hours interval. While nonionic 

cream with higher lipid content, showed a gradual release and with slight accumulation in skin and 

presented highest antilipoperoxidative activity (54.0 %) after 12 hours. This is in agreement with 

their previous report, that higher lipid content confers higher protection for quercetin activity, this 

time proven in vitro on pig’s skin.  

Wu et al. in 2008 [34] prepared quercetin in polymeric nanoparticles (Table 4). Quercetin was 

added to polyvinyl alcohol (PVA) and Eudragit® E at a ratio of 1:10:10 respectively. The 

nanoparticles, prepared by nanoprecipitation, presented a mean diameter of 82 nm with a 

polydispersity index (PDI) of 0.22; PDI shows how broad the particles size distribution is. 

Quercetin encapsulation efficiency was 99.9 %. Quercetin nanoparticles were compared to 

quercetin-DMSO and quercetin-water in terms of DPPH activity, anti-superoxide formation, 

superoxide anion-scavenging activity and antilipoperoxidative activity. In all tests, quercetin 

nanoparticles showed scavenging concentration (SC50) and inhibitory concentration (IC50) (the 

concentration to cause 50 % effect in respect to each test) close to quercetin-DMSO proving the 

preservation of quercetin activity after formulation (Table 2). Quercetin-water was hundred times 

less effective than quercetin nanoparticles and quercetin-DMSO. This may be explained by the 

fact that all the tests request the antioxidant molecules to be soluble in the reaction medium, as a 

result suspended quercetin in water will be very weak compared to solubilized quercetin in DMSO 

or to nanoparticles. The second potential explanation may be due to the influence of the surface 

area of reacting quercetin, which is greater in the nanoparticles than in the larger suspended crude 

format. This confers higher reactivity for the nanoparticles compared to quercetin-water. Finally, 

the small size of formulated nanoparticles below 100 nm (82 nm) enabled to retain the activity of 

quercetin to values close to the solubilized form in DMSO. 

 

2.1.2. In vitro antioxidant activity of quercetin (cellular evaluation)  

Antioxidant actions are not limited to ROS scavenging abilities but also include the modulation of 

endogenous (antioxidant, detoxifying) enzymes. The evaluation of antioxidants at cellular level 

can be done by two different approaches. The first approach is a cellular antioxidant activity assay 
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(CAA) used to evaluate the antioxidant activity of plant extracts and food supplements. It is based 

on the detection of ROS (such as hydrogen peroxide) inside the cell by reaction of these reactive 

species with the redox sensor dihydrodichlorofluorescein (DCFH2). In this reaction, DCFH2 

oxidizes to fluorescent dichlorofluorescein (DCF). However, this method lacks the specificity to 

ROS generated in response to oxidative attacks [35]. The second approach is the evaluation of 

endogenous enzymes, like the upregulation of the expression of antioxidants enzymes, or the 

inhibition of prooxidant enzymes. As our main scope is quercetin and its skin penetration in 

formulation, we keep the more detailed review articles to give further information about 

antioxidants cellular tests for example in the publication of López-Alarcón et al. [36].   

All biological investigations on formulated quercetin started from the concept that to test an 

antioxidative activity, a source of oxidation is required. As quercetin activity is of high interest in 

skin diseases related to phototoxicity, researchers tested quercetin activity to compensate UV 

irradiation damage.  

Quercetin cellular actions were evaluated as crude material on human fibroblasts and kératinocytes 

(NHEK) [37] and in formulations on normal human keratinocytes (HaCaT) [23, 38]. The treatment 

with 50 µM of crude quercetin protected human keratinocytes and human fibroblast from 

intoxication by 500 µM buthionine sulfoximine. Keratinocytes viability increased by 2.3 fold 

(Table 2). However, this cytoprotective activity was not related to an increase in the intracellular 

glutathione (GSH), as quercetin was not able to reestablish the depleted GSH due to cellular 

intoxication [37]. Quercetin was formulated into liposomes by Liu et al. [23] and Manca et al..[38] 

with different excipients. Liu et al. [23] suggested formulation of quercetin deformable liposomes 

with Tween® 80 as edge activator (Table 4). Cells were irradiated with a UVB dose of 0.02 J/cm2 

and treated with 25 µg/ml quercetin liposomes 16 hours before irradiation and 24 hours or 48 hours 

post irradiation. Then, cell viability was determined by MTT assay. UVB exposed cells without 

quercetin treatment decreased in viability from 65.7 ± 7.8 % at 24 h to 42.5 ± 6.5 % at 48 h. While 

quercetin in both control solution and liposomal formulation was capable of cells protection. Cell 

viability was 76.2 ± 4.3 % at 24 h and 59.5 ± 3.8 % at 48 h for quercetin in solution and 89.9 ± 4.5 

% at 24 h and 78.8 ± 3.2 % at 48 h for liposomal quercetin (Table 2). Furthermore, Liu et al. proved 

that quercetin was able to attenuate ROS generation in cells exposed to UVB and showed the 

antilipoperoxidative activity of quercetin on cells. Quercetin also decreased the concentration of 

malondialdehyde from 10.98 nmol/mg protein in non-treated UVB exposed cells to 3.14 nmol/mg 



Quercetin topical application   

64 
 

for treated UVB exposed cells (Table 2) [23]. Manca et al. [38] tested another quercetin liposomal 

formulation and compared it to glycerosomes (glycerol containing liposomes) (Table 4) on HaCaT 

cells with hydrogen peroxide. Quercetin liposomes and glycerosomes were also able to protect 

keratinocytes in culture from the damaging effect of hydrogen peroxide. Consequently, viable cells 

increased from 26.0 ± 9.0 % in non-treated H2O2 exposed cells to 68.0 ± 4.0 % and 67.0 ± 6.0 % 

in the liposomes and glycerosomes group, (Table 2). This result was explained by a better cellular 

uptake with both nanoformulations compared to crude quercetin. The enhanced cellular 

internalization with liposome may be due to the fusion with plasma membrane or pinocytosis [39]. 

The pinocytosis of liposomal formulation with the cell membrane enables the release of liposomes 

contents directly into the cytoplasm avoiding the potential passage by the lysosomal apparatus. In 

case of liposomal destabilization during the cell membrane fusion [40], the released drug can pass 

by micropinocytosis. 

 

2.1.3. In vivo antioxidant activity assays of quercetin in animals  

Referring back to cellular assays (section 2.1.2), the concept of having a source of oxidation is 

presumed. Hairless mice were exposed to UV irradiation, and then skin health parameters such as 

Transepidermal water loss (TEWL) and erythema were assessed upon exposure to UV. For further 

details, Hung et al. defined the damaging effect of UV irradiation on mice stratum corneum [41].  

Skin histological analysis were then performed and quercetin protective effect on skin was 

determined. Quercetin activity was demonstrated by quantification of endogenous antioxidant 

enzymes before and after exposure and without or with quercetin treatment. Two publications 

investigated the protective effect of quercetin in vivo on mice’s skin [42, 43]. Both applied UVB 

to dorsal skin of hairless mice from 20 cm above the table where mice were placed. Quercetin was 

formulated in emulsions in both publications and applied three times: 60 min and 5 min before 

irradiation and directly after irradiation.  

In 2006, Casagrande et al.[42] compared quercetin nonionic emulsion (formulation 1 = high lipid 

content) and quercetin anionic emulsion (formulation 2 = low lipid content). In this study, reduced 

glutathione GSH (nmol) per mg of skin homogenate was detected after a dose of 2.46 J/cm2 by 

fluorescence assay using o-phthalaldehyde. Quercetin containing formulations were applied 

topically at a dose of 5 mg. Quercetin showed higher activity in emulsion containing higher lipid 

content (formulation 1) than in anionic emulsion (formulation 2). Both formulations inhibited the 
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UVB irradiation-induced depletion of GSH (50 nmol/mg skin in the UV group vs 140 nmol/mg 

formulation 1 and 60 nmol/mg formulation 2). However, only in the formulation 1 treated group 

the GSH activity returned to non-irradiated control levels (125 nmol/mg). Myeloperoxidase 

(MPO) activity in irradiated skin can be related to the presence of immune cells (neutrophils) and 

hence can be a good marker for skin inflammation. Hairless mice were exposed to a dose of 1.23 

J/cm2 then the number of total leukocytes per mg of skin was determined. Again, both formulations 

inhibited the MPO activity increase and hence the neutrophil migration. However, only 

formulation 1 was able to reestablish control levels (Table 3). Lastly, qualitative analyses of skin 

proteinases by substrate-embedded enzymography showed that formulations containing quercetin 

were capable of inhibition of secretion / activity of proteinase in skin tissue. The results observed 

by Casagrande et al. were further supported by the work of Vicentini et al. in 2008 [43]. 3 mg of 

quercetin were applied topically on the dorsal skin from a water in oil (w/o) microemulsion and 

2.87 J/cm2 UVB dose was used for GSH depletion. Quercetin-loaded w/o microemulsion 

maintained GSH levels near to the ones in untreated–unexposed controls (90 nmol/mg vs. 100 

nmol/mg control) (Table 2). Determination of skin proteinases by SDS–PAGE enzymography 

showed that quercetin-loaded w/o microemulsion regenerated the inhibition of proteinase 

secretion/activity increase induced by UVB irradiation. However, quercetin-loaded w/o 

microemulsion failed to confer protection against UV-induced skin reddening in vivo. These in 

vivo studies proved that is promising to apply quercetin topically to skin for antioxidative 

protective effects. Nonetheless, skin penetration and permeation should be carefully controlled to 

gain sufficient quercetin protective actions on skin tissue and to avoid its side effects in the 

systemic circulation.  
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Test type 
In vitro chemical assay In vitro cellular assay In vivo animal assay 

Method Result Method Result Method Result 

Antilipoperoxidative 

activity 

Thiobarbituric acid 

reactive species 

(TBARS) 

65.6% antilipoperoxidative 

activity [31] 

IC50 for quercetin 77.17 ± 

9.98 g/ml [34] 

N-methyl-2-phenylindole 

(HaCaT cells) 

3 fold decrease in MDA 

concentration [23] 
TBARS (mice) 

1.6 fold decrease in 

MDA concentration [44] 

Anti-superoxide formation Xanthine oxidase 
IC50 = 5.31 ± 0.12 g/ml 

[34] 
N/A N/A N/A N/A 

Superoxide anion-

scavenging activity 

Cytochrome c 

 
SC50 = 1.59 ± 0.6 g/ml [34] 

superoxide dismutase 

(SOD)-inhibitable reduction of 

ferricytochrome c (neutrophils 

IC50 = 3.82 ± 0.45 µM 

[45] 

O-phthalaldehyde 

fluorescent assay 

 

 

 

 

Superoxide dismutase 

 

 

Reduced glutathione 

3 fold increase in 

glutathione (mice) [42] 

 

2.5 fold increase in 

glutathione (mice) [43] 

 

6 fold decrease in its 

concentration (rats) [46] 

 

1.5 fold increase in 

concentration (mice) 

[44] 

Hydrogen donating ability DPPH 
SC50 = 4.2 4 ± 0.48 g/ml 

[34] 

Hydrogen peroxide (HaCaT) 

 

buthionine sulfoximine 

(NHEK) 

 

UVB irradiation (HaCaT) 

2.5 fold increase in cell 

viability [38] 

 

2.3 fold increase in cell 

viability [37] 

 

1.2 – 1.4 fold increase 

in cell viability [23] 

Catalase content  

1,3 fold increase in 

catalase content (rats) 

[46] 

 

Table 2: Tests related to quercetin antioxidant activity.   
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Three levels of assay can be performed to validate quercetin antioxidant activity:  

(i) The in vitro chemical assays include thiobarbituric acid reactive species (TBARS) for antilipoperoxidative activity, xanthine oxidase for anti-superoxide formation activity, 

cytochrome C for superoxide anion-scavenging activity and di(phenyl)-(2,4,6-trinitrophenyl)iminoazanium (DPPH) for hydrogen donating activity. 

(ii) The in vitro cellular assays include the detection of malondialdehyde (MDA) using n-methyl-2-phenylindole on HaCaT cells. The inhabitable reduction of reduction of 

ferricytochrome C by superoxide dismutase on neutrophils. Finally, the increase in cellular viability after the intoxication of keratinocytes by hydrogen peroxide.  

(iii) The in vivo animal assays include the detection of TBARS, superoxide dismutase, glutathione, reduced glutathione and catalase content on mice or rats. 
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2.2. Quercetin antiinflammatory activity 

Inflammation is a protective response to localized injury. It can be due to physical causes such 

as trauma, chemical by a corrosive substance, and / or biological like stress. Inflammatory 

response may be also an effect of an autoimmune diseases like psoriasis [47]. As evocated in 

the last section, inflammation is closely linked to oxidation and hence to UV irradiation. UV 

exposure causes the initiation and propagation of reactive oxygen species and hence induces 

oxidative stress damage. Oxidative stress activates several inflammatory associated signal 

transduction pathways in cells [48]. Among these pathways is nuclear factor-kappa B (NF-κB) 

[49], known for its ambiguous role in cytokine production and modulation of immune response 

[50]. Here comes the advantage of using quercetin as inhibitor on this pathway. Quercetin 

proved to inhibit (i) the recruitment of NF-κB transcription factor to proinflammatory gene 

promoters by tumor necrosis factor (TNF), (ii) hydrogen peroxide (H2O2)-induced NF-κB DNA 

binding activity and consequently DNA damage [51, 52]. Quercetin inhibitory activity of NF-

κB was detected on human hepatoma cells [53] and more recently on primary human 

keratinocytes [54].  

Quercetin antiinflammatory activity was compared to several flavonoids, such as apigenin, 

morin, (-)-epicatechin and biochanin A and to a non-steroidal antiinflammatory drug 

(indomethacin). Indeed quercetin was the strongest antiinflammatory flavonoid against mice 

ear edema [14]. Quercetin was administered orally at a dose of 2 mg/mouse dissolved in 0.5 % 

Tween® 80 one hour before the topical application of the inflammogens (2 % cotton oil or 2% 

arachidonic acid) on the ear. For testing a possible activity via topical route 25 µl of 2 mg 

quercetin dissolved in acetone were applied to ear’s skin and 30 minutes later, the same 

inflammogens were applied. After five hours, ear thickness was measured (inhibition percent 

of ear’s edema was calculated) and compared to the control group treated with vehicle and 

inflammogens only. For the oral route, control groups ear thicknesses were 0.22 and 0.27 mm 

with cotton oil and arachidonic acid, respectively, and 0.14 and 0.13 mm with indomethacin 

treatment. Quercetin was the flavonoid with highest ear edema inhibition capacity with 0.16 

and 0.21mm. The same was observed with topical administration of flavonoids. Quercetin 

diminished edema thickness from 0.25 mm with both inflammogens to 0.19 and 0.12 mm 

compared to indomethacin 0.14 and 0.05 mm with cotton oil and arachidonic acid, respectively. 

The skin penetration of crude quercetin here may be attributed to the destruction of barrier 

function with solvent (acetone). Quercetin proved to possess broad antiinflammatory activities 
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[14]. Knowing that quercetin presents the lowest skin permeability compared to its 

polymethoxylated compounds and glycosides, it is the most powerful inhibitor of O-2 

generation (by neutrophils) in vitro with an IC50 of 3.82 ± 0.45 µM compared to 5.34 ± 0.28 

µM for rutin and 5.80 ± 0.67 µM for quercetin 3,5,7,30,40-pentamethylether (QM) (Table 2). 

This high antiinflammatory capacity was further confirmed by testing elastase release due to 

degranulation of azurophilic granules form neutrophils. Quercetin was five times more 

powerful than its glycoside (rutin) (Table 3). Even though rutin presented 2.5 fold increase in 

flux through nude mouse skin mounted on Franz cell, rutin showed a degree of skin irritation 

with higher erythema values over the control group [55].   

Vicentini et al. investigated the mechanism underling quercetin antiinflammatory actions in 

2011 [54]. Quercetin showed 80 % inhibition of interleukin 1β mRNA (IL-1β mRNA) at a dose 

of 20 µg/ml in methanol when primary human keratinocytes were exposed to UVB (0.05 J/cm2). 

Quercetin pretreatment also suppressed induction of IL-6, IL-8, and TNF-α in exposed cells 

measured by real-time quantitative RT-PCR. Furthermore, quercetin pretreatment inhibited UV 

irradiation-induced NF-kB DNA binding activity by approximately 80 % (Table 3). This result 

presents the applicability of quercetin in protection against solar irradiation and the benefit 

effects of introducing it in novel sunscreens. However, quercetin also inhibited IL-1β activation 

of NF-kB and induction of cytokine expression. This indicates that quercetin inhibition of 

cytokine induction is not UV irradiation specific. Therefore, these results highlight other 

applicability of quercetin in other skin disease like psoriasis [54, 56, 57]. It is worth to note that 

quercetin activity on the inhibition of NF-kB is cell and stimulation specific for example 

quercetin did not inhibit TNF-α-induced NF-kB transcriptional activity on murine small 

intestinal epithelial cell (IEC) line Mode-K [51]. 

In 2014, Caddeo et al. formulated quercetin in liposomes and PEVs (Penetration Enhancer-

containing Vesicles) (Table 4). Then, they tested quercetin antiinflammatory activity in vivo on 

the back skin of female mice. The inhibitory effect of vesicular quercetin on 12-ortho 

tetradecanoylphorbol 13-acetate (TPA)-induced inflammation was evaluated by two 

biomarkers: edema formation and myeloperoxidase (MPO) activity. Liposomes and PEVs were 

prepared by thin film hydration method and size homogenization was performed by sonication. 

In both formulations, soybean lecithin with 70 % phosphatidylcholine (Lipoid® S75) was used 

as lipid phase. PEVs used either 5 or 10 % PEG 400 in the aqueous phase (PEVs are liposomal 

formulation where PEG is added to PBS to boost skin penetration capacity of the formulation).  

Liposomes size was 116 ± 5.3 nm and PEVs 5 % and 10 % presented a size of 152 ± 2.4 nm 

and 148 ± 3.5 nm respectively. PDI results were ≤  0.35 with surface charge (−10 mV), due to 
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the low charge carried by S75. Higher entrapment efficiency was achieved by PEVs than 

liposomes (52 ± 4.4 % for liposomes vs. 75 ± 3.0 % and 60±0.8 % for 5 % PEG-PEVs and 10 

% PEG-PEVs respectively) (Table 4). Quercetin loaded liposomes reduced edema formation 

from 11.5 mg/g (biopsy/bodyweight) in TPA control group to 7 mg/g. Both quercetin loaded 

PEVs reduced biopsy weight to 6.2 mg/g (Table 3). MPO reduction was also validated for both 

liposomal formulation and PEVs. TPA positive control group increased MPO in the skin from 

50 ng/ml supernatant in the negative control to 620 ng/ml. Quercetin liposomes reduced MPO 

concentration to 210 ng/ml and quercetin loaded PEVs to 110 ng/ml and 250 ng/ml for 5 % and 

10 % PEG-PEVs, respectively (Table 3). Interestingly, in 2013, the same author tested 

diclofenac loaded 5 % PEG-PEVs under the same conditions. This study provided evidence 

that topically applied quercetin, when delivered by 5 % PEG-PEVs, was more effective than 

diclofenac at the same dose (10 mg/ml). Indeed, a 4.7 fold decrease was achieved by quercetin 

versus 2.7 fold with diclofenac [58, 59]. 
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 Method Result 

Edema 

Ear thickness (mice) topical route 

Cotton oil 

Arachidonic acid 

 

Back skin weight (mice) 

12-otetradecanoylphorbol 13-

acetate 

Control 0.25 mm, quercetin 0.19 

mm 

Control 0.25 mm, quercetin 0.12 

mm [14] 

 

1.7 fold decrease in edema 

weight [58] 

Elastase release 
Degranulation of azurophilic 

granules in (neutrophils 
IC50= 6.25 ± 2.58 µM [45] 

Myeloperoxidase 

release 

Degranulation of azurophilic 

granules in (neutrophils) 

TPA-induced inflammation on 

mice back skin 

3 fold decrease concentration 

[42]  

4.7 fold decrease concentration 

[58] 

Proinflammatory 

cytokines 

Primary human keratinocytes were 

exposed to UV (0.05 j/cm2) 

Il-1β mRNA 

IL-6 mRNA 

IL-8 mRNA 

TNF-α mRNA 

NF-κB activation 

 

 

2.5 fold decrease in release 

5 fold decrease in release 

3 fold decrease in release 

2 fold decrease in release 

80% inhibition of binding with 

DNA [54] 

 

Table 3: test performed for the determination of quercetin antiinflammatory activity. 

Edema was tested by either the thickness of mice ear or the weight of mice back skin. Elastase and myeloperoxidase 

release was determined by the degranulation of azurophilic granules in neutrophils. Western blot was used for the 

determination of proinflammatory cytokines and quantified using a chemifluorescent substrate.  

 

2.3. Quercetin in wound healing  

Potent antioxidant and free radical scavenger activities of quercetin along with its strong 

antiinflammatory activity highlighted the possible application of this flavonoid for wound 

healing. Wound healing is a complex physiological compensating mechanism [60]. The 

applicability of quercetin during wound healing is beneficial for suppressing the uncontrolled 
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inflammation. Inflammation hinders the successful skin regeneration process and may 

transform an acute wound to a chronic one. 

Quercetin ability to support the healing process was investigated in 2003 by Gomathi et al..in 

vivo on male albino Wistar rats. Quercetin was introduced to collagen films at a concentration 

of 1 mM. Wounds were generated by a mean of a scalp at day 0. Rats were separated in three 

groups: (i) control group, (ii) application of collagen films or (iii) application of quercetin 

incorporated collagen films in the rat skin at the wound place. Wound contraction, 

hydroxyproline, uronic acid, total protein, superoxide dismutase and catalase were tested on the 

granulation tissue. Quercetin incorporated collagen films showed a significant wound 

contraction (80 % reduction in wound surface) compared to collagen alone treated group (60 

%) and control group (57 %). Quercetin incorporated with collagen increased hydroxproline 

concentration in the granulation tissue from 0.78 in the control group to 1.84 mg/mg tissue, 

which indicates that there was an enhanced production of collagen in the granulation tissue. 

Subsequent to collagen production, a decrease in hyaluronic acid is observed explaining the 

reduction of uronic acid content in quercetin treated groups. Considering superoxide dismutase, 

a 6 fold decrease in its concentration was observed with quercetin treated group, which might 

be related to quercetin antioxidant activity rather its antiinflammatory one. As free radicals are 

inducers of gene expression of superoxide dismutase, a more efficient free radical scavenging 

ability with the presence of quercetin resulted in the reduction of superoxide dismutase 

concentration in the granulation tissue. Quercetin converts the superoxide radical to hydrogen 

peroxide and hydrogen peroxide stimulates catalase release. This could be linked to an increase 

of catalase content from 1.91 in the control group to 2.55 unit/g tissue in quercetin treated rats 

[46]. In summary, quercetin activity in wound healing is a matter of both its antioxidant and 

antiinflammatory actions. In contrast to skin protection against UV, fibroblasts are the main 

target for quercetin wound dressings to support the healing process.  

 

2.4. Quercetin and skin ageing 

Retardation of skin ageing and wrinkling is of major interest in cosmeceuticals. Skin ageing is 

a complex process that involves both intrinsic (physiological changes on time) and extrinsic 

factors (photoageing, lifestyle, pollution). However the target of all antiaging products scope 

on the extrinsic controllable ones. Skin ageing is manifested by several physiological changes, 

for example defective barrier function, collagen atrophy, loss of skin elasticity, especially in 

the face. In addition, a generalized reduction in the vasculature of the dermis is observed, a 
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factor more pronounced factor in smokers. Vitamin D production is also reduced in elderly 

people [61-63]. All these changes cooperate to induce skin ageing and wrinkling.  

Quercetin is useful in reducing photoageing because of its antioxidant activity. Quercetin 

protection against UV light and its application in sunscreen are discussed in detail in the 

quercetin antioxidant activity section (section 2.1). It is also worth to note that quercetin 

antiinflammatory activity may also contribute to fighting skin ageing. Skin elasticity is directly 

related to skin hydration state [64], which is linked to proper lipid biosynthesis and 

configuration. Quercetin as a lipid peroxidation inhibitor can protect skin from dehydration 

[65]. Quercetin inhibition of matrix metalloproteinase activity may also show a role in 

protection of skin collagen from destruction during inflammatory response to extrinsic ageing 

factors [66, 67]. In an in vivo study, Joshan et al..[44] tested quercetin protective activity against 

photoageing on female albino mice. Mice dorsal skin were exposed to a UV dose of 0.036-

0.216 J/cm2 over 12 weeks period, then skin ageing markers like skin moisture, collagen 

content, thiobarbituric acid reacting substances (TBARS) and reduced glutathione were 

evaluated. Skin wrinkles and blood vessels were visually scaled and epidermal thickness were 

determined after the 12 weeks. 1 % Quercetin was applied topically in mixture of ethanol, 

propylene glycol and water (0.5:1:1 (v/v/v). This application increased skin moisture content 

(43.0 ± 1.2 %) compared to the UV exposed group (28.2 ± 0.9 %) and reduced TBARS from 

20 nM/mg (animal tissue) in the UV exposed group to 12.5 nM/mg in the quercetin group. 

Moreover, the concentration of reduced glutathione increased by 1.5 fold in quercetin treated 

group compared to UV exposed group (Table 2). The higher concentration of the reduced form 

indicates that quercetin was able to neutralize free radicals and to protect cellular antioxidants 

like glutathione from depletion. As a last consequence after progressive UV exposure, skin 

wrinkles and superficial blood vessels appear, epidermal thickness is also increased in 

photosensitivity [68]. Quercetin reduced wrinkles number and depth from several deep wrinkles 

overall the dorsal region of the UV exposed group to few shallow wrinkles along the back. 

Regarding to epidermal thickness, the quercetin treated group was more similar to negative 

control group. 

In another study, quercetin was studied on HFL-1 human embryonic fibroblasts and mouse 

melanocytes (B16F10 cell line) for its antiaging and rejuvenating actions. Chondrogianni et al. 

[69] treated young HFL-1 with 2 µg/ml quercetin in DMSO daily until senescence. β-

galactosidase activity was regarded as a marker for senescence [70]. Cells treated with quercetin 

exhibited a lower percentage of β-galactosidase positive staining (13.7 % for quercetin treated 

vs. 77 % for DMSO group). On the other hand, quercetin-rejuvenating activity was tested on 



Quercetin topical application   

74 
 

middle aged and terminally senescent HFL-1 cells. Quercetin (2 µg/ml) was added to middle 

aged cells for 5 days after senescence and 2 weeks for terminally senescent cells, then 

proliferating cells were counted. Interestingly, quercetin increased the number of proliferating 

cells by 1.3 fold compared to DMSO group for both middle-aged cells and terminally senescent 

counterparts. After that, quercetin ability to protects HFL-1 from reactive oxygen species ROS 

was investigated. Cells were treated with 2 µg/ml quercetin and subjected to 300 µM H2O2 

intoxication for 2.5 hours then a recovery period of 5 days was set. Viable cells were counted 

at the end of the experiment and the ROS was determined by 2′, 7′-dichlorodihydrofluorescein 

diacetate H2DCF-DA. Quercetin had no significant effect on cell survival number while showed 

a 40 % decrease in ROS compared to the DMSO group. The mechanism underlying quercetin 

protective activity on HFL-1 was investigated. For this, proteasome that is the main secondary 

antioxidant system of the cell was studied. Young HFL-1 cells were treated with 2 µg/ml 

quercetin for 24 h and the CT-L proteasome (chymotrypsin-like proteasome) activity was 

measured. Quercetin increased both proteasome activity by 2.4 fold and enhanced protein 

expression levels of representative proteasome subunits. 

 Finally photoageing and exposure to UV light can induce skin pigmentation by anticipating 

several cellular pathways. For example, thymine dinucleotides enhance pigmentation of 

melanocytic cells and stimulate tyrosinase mRNA levels [71]. Tyrosinase is a copper-

containing glycoprotein that catalyzes several steps in the melanin pigment biosynthesis and is 

mainly responsible for the age spots. Tyrosinase is regulated by proteasome activity as it is 

shown that tyrosinase is a proteasome substrate, proteasome is responsible of the degradation 

of mutant or structurally aberrant tyrosinase [72]. Mouse melanocytes (B16F10 cell line) were 

treated with 5 µg/ml quercetin for 3 days, afterwards tyrosinase was extracted from cells and 

quantified along with proteasome activity. Quercetin was able to increase the proteasome 

activity by 1.5 fold and reduce tyrosinase by 30 % compared to control cells [69]. These 

findings propose quercetin as a perfect candidate for a novel rejuvenating product. Quercetin is 

not only an antioxidant and skin cells protectant, but also presents interesting antiaging 

properties with whitening activities.      

Quercetin presented potent antioxidant activity on three levels: in vitro chemical assays proved 

the increase of quercetin activity after its efficient formulation, on cellular level as quercetin 

showed cell protective actions on keratinocytes and in vivo on animal’s skin. These 

antioxidative effects are also supported by the ability of quercetin to exert antiinflammatory 

actions such as inhibition of NF-κB and IL-6 induction by UV irradiation. The mixture between 

both antioxidant and antiinflammatory actions and their crosslinking mechanisms highlighted 
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quercetin as a novel sunscreen. Furthermore, as quercetin possesses both antioxidant and 

antiinflammatory activities, it could be beneficial on wound healing, here; fibroblasts are the 

main targets in contrast to keratinocytes in sunscreen. In addition, quercetin showed promising 

rejuvenating actions on keratinocytes with supportive whitening effect. This makes quercetin 

highly suitable as a novel natural molecule for such actions.  

Quercetin activities on cellular level that were proven for skin related disorders are presented 

in Figure 1.  

 
Figure 1: Quercetin activities on cellular level. 

Quercetin decreased the release of myeloperoxidase and elastase, also decreased the activity of superoxide 

dismutase on neutrophils. Quercetin decreased the lipid peroxidation on HaCaT cell line. Quercetin decreased the 

activation of NF-κB and inhibited the mRNA of IL-1β, IL-6, IL-8 amd TNF-α on primary human keratinocytes.  

 

However, all these desired benefits necessitate quercetin topical application, and this 

application should be thoroughly studied according to the desired activity (Figure 2). Ideally, 

quercetin should penetrate skin without reaching systemic circulation in case of cosmetic 

application for a possible sunscreen or anti-aging cream. At the same time, a satisfactory skin 

penetration to both stratum spinosum and stratum basale should be planned for quercetin to 

protect viable keratinocytes from UVA light, or to support in inflammatory skin disorders such 

as psoriasis. However, if the goal is to prolong fibroblasts survival and proliferation in burned 

skin and enhance the process of wound healing, a deeper penetration is required, and this point 

is critical. The targeted fibroblasts are beyond the basement membrane, and then it is 

challenging to deliver the finite dose of quercetin to these cells without reaching systemic 

circulation i.e. avoiding the adverse effects by minimizing systemic uptake.  
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Figure 2: Quercetin properties in function of site of action in different skin layers. 

Quercetin possesses a physical protection against UVB over stratum corneum. Within epidermis, quercetin shows 

a protective effect against UVA irradiation and in several inflammatory disorders like psoriasis. By targeting 

melanocytes, quercetin shows whitening and anti-aging effects by targeting fibroblasts. Finally, quercetin can 

support wound healing process in case of sufficient penetration into dermis.  

 

In order to transport quercetin, that is naturally of limited via topical route, to the desired site 

of action, a suitable delivery system is essential. Conventional dosage forms such as creams, 

emulsions and gels are the first way to formulate quercetin and to modulate its skin penetration 

profile. On the other hand, nanodosage forms are promising second way to formulate quercetin 

at the nanoscale range in order to enhance its dermal activity. 

 

3. Conventional dosage to increase quercetin skin penetration 

Conventional dosage forms for dermal application are either aqueous like gels, or oily 

hydrophobic ointments, or a mixture of both like creams and emulsions. The choice of the 

external phase of the formulation has a major effect on the drug release. Indeed aqueous gels 

are known to boost fast release, in contrast to oily formulation that provide a reservoir for a 

prolonged release kinetics. Quercetin by itself has very limited skin penetration capacity. It is 

limited by both water insolubility and the lipophilic partition coefficient (log P= 1.82 ± 0.32) 
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due to the nonpolar groups in its structure [73]. For this end, quercetin dermal delivery is very 

much dependent on the dosage form. The poor water solubility requires the presence of a lipid 

phase in order to enhance quercetin solubility in the formulation, On the other hand, quercetin 

polar heads favor water presence, so quercetin can localize at the interface. Furthermore, water-

containing formulations are easier to apply, more friendly to the skin and preferred by patients 

over viscous lipid formulations and fluid watery ones. For these reasons, quercetin was 

formulated in emulsions.  

Casagrande et al. in 2007 [33] formulated quercetin in two emulsions differing in their lipid 

content. The emulsion with high lipid content (formulation 1) contained 10 % of self-

emulsifying wax (Polawax® :cetostearyl alcohol and polyoxyethylene derived of a fatty acid 

ester of sorbitan 20E) and the emulsion with low lipid content contained 2 % of Polawax® 

(formulation 2). Both emulsions contained the anionic hydrophilic colloid 0.18 % 

(carboxypolymethylene, Carbopol® 940) as a stabilizer and triethanolamine 0.20 % as 

neutralized. Macadamia nut oil 2.50 % and squalene 1.00 % were used emollients, and 

propylene glycol 6.00 % as moisturizer and solubilizer. A mixture of phenoxyethanol and 

parabens 0.40 % (Phenova®) were used as preservatives. High lipid content emulsion was 

superior in delivering quercetin to the skin, proven by higher quercetin antilipoperoxidative 

activity over the emulsion with low lipid content. However, the exact quantity of penetrated 

quercetin and its exact deposition within the skin was not determined.  

In 2008, Vicentini et al..[43] prepared quercetin in w/o microemulsion. 0.3 % of quercetin were 

dissolved in 38.25 % of canola oil, 47.75 % of Span® 80 / Tween® 80 (3:1) and 15 % 

water/propylene glycol mixture (3:1). The microemulsion formed spontaneously after 

vortexing. In vitro skin penetration study was performed on pig ear skin using Franz diffusion 

cell. In parallel, an in vivo penetration study was conducted using HRS/J mice. 100 mg of 

microemulsion (300 µg quercetin) were applied to 1.77 cm2 Franz cell mounted with pig ear 

skin. 150 mM phosphate buffer (pH 7.2) containing Tween® 20 (0.5 %) was selected as receptor 

medium. At the end of the study, the skin was stripped 15 times. The first strip was discarded 

and the rest was collected and considered as stratum corneum (SC), while the remaining skin 

portion was epidermis (E) and dermis (D). Quercetin microemulsion was compared to quercetin 

propylene glycol solution of same concentration. About 11 % of the applied dose were detected 

in the SC and 5 % in the E+D after 12 hours of application. On contrary, quercetin from the 

control formulation was ~2 and 20 times lower than the microemulsion in the SC and E+D, 

respectively. No transdermal penetration was detected in the tested time. The in vivo study on 

mice was run for 6 hours applying the same amount of formulation to about 2 cm2 dorsal skin. 
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Similarly, the microemulsion delivered about ~14 % of the applied dose to the SC and ~8 % to 

E+D, which was 1.5 and 2 fold greater than the delivered quercetin by the control formulation.  

Conventional emulsions are a good strategy to improve the delivery of drugs to skin. Further 

studies are needed to explore more formulations with other lipids that possess better affinity to 

quercetin. However, quercetin may require a more advanced delivery system that ensures a high 

loading capacity of this drug and confers greater skin adhesiveness in order to prolong drug / 

skin contact time.  

 

4. Nanodosage forms to increase quercetin skin penetration  

The main objective of formulating quercetin in nanodosage forms is to overcome its topical 

limit penetration ability related to its poor water solubility and to increase its stability. Quercetin 

was formulated in several nanodosage forms for example nanoemulsions [74], liposomes [75], 

lipid nanoparticles [76] nanostructured lipid carriers NLC, solid lipid nanoparticles SLN [77, 

78] and mesoporous silica [79]. Quercetin showed no transdermal delivery with novel dosage 

forms like lipid nanoparticles [76], nanostructured lipid carriers [78], aminopropyl 

functionalized mesoporous silica nanoparticles [79] and glycerosomes [38]. This phenomenon 

may be explained by quercetin poor water solubility [13, 80] and selective lipophilicity to 

certain lipids [81] despite of the barrier function of the stratum corneum (Table 4). 

Extrapolation and comparison of skin penetration results is very difficult especially when skin 

from different sources is used for the tests. Besides this, the use of different methods of 

quantification of drug, different receptor mediums and variant durations of test make 

comparison difficult [82]. For this, skin penetration experiments will be divided into three 

groups. The first group will discuss about studies performed on mice [24] and SD rats [23] ex 

vivo on Franz diffusion cell. The second group will involve experiments performed on pig’s 

skin [38, 74, 75, 79] and the last group will explore tests on full thickness human skin in vivo 

[76] and ex vivo on Franz diffusion cell [78].  
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Formulations Preparation technique Excipients 
Particles size 

(nm) 
PDI 

Surface charge 

(mV) 

Quercetin 

encapsulation 

efficiency % 

Quercetin 

practical 

concentration 

(mg) per ml of 

formulation 

Quercetin deformable 

liposomes [23] 

Ethanol 

Injection method 

Lecithin 

Cholesterol 

Tween 80 

132 ± 14 N/A 21.1 ± 0.8 80.4 ± 4.22 N/A 

Quercetin polymeric 

nanoparticles [34]  
Nanoprecipitation technique 

Polyvinyl alcohol (PVA) 

Eudragit® E 
82 ± 0 0.22 ± 0.01 N/A 99.9 ± 0.59 

4.995 ± 0.003 

mg/mg powder 

Quercetin loaded 

Liposomes liposomes and 

glycerosomes [38] 

Thin film hydration method 
Lecithin 

Glycerol 

102 ± 3 

80 ± 3 

0,32 

0,26 

-78.0 ± 2.0 

-67.0 ± 3.0 

88.0 ± 3.00 

81.0 ± 1.00 

4,4 ± 0,15  

4,1 ± 0,05  

Quercetin in liposomes 

and PEVs  (Penetration 

Enhancer-containing 

Vesicles) [58] 

Thin film hydration method 

Soybean lecithin with 

70% phosphatidylcholine 

PEG 5 % or 10 % 

116 ± 5 

152 ± 3 

148 ± 4 

0,35 

0,34 

0,31 

−9.0 ± 0.4 

−10.0 ± 0.8 

−10.0 ± 0.7 

52.0 ± 4.40 

75.0 ± 3.00 

60.0 ± 0.80 

5,2 ±  0,44  

7,5 ± 0,30  

6,0 ± 0,08  

Quercetin nanoemulsion 

[74] 
Spontaneous emulsification 

Lecithin 

Octyldodecanol 

and 

cetyltrimethylammonium 

bromide 

307 ± 19 

188 ± 2 
N/A 

−27.4 ± 6.0 

76.3 ± 2.1 

99,5 ± 0,30 

99,1 ± 0,60 

1.00 ± 0.00  

0.99 ± 0.01  

Quercetin loaded 

penetration enhancer 

vesicles PEV [75] 

Thin film hydration method 

Lecithin and 

Transcutol® P or 

Labrasol® or 

Propylene glycol or 

PEG  400 

226 ± 5 

86 ± 5 

83 ± 10 

190 ± 4 

0.28 

0.29 

0.35 

0.31 

–49.0 ± 5.0 

–32.0 ± 3.0 

–63.0 ± 4.0 

–58.0 ± 2.0 

59.0 ± 8.00 

75.0 ± 9.00 

57.0 ± 8.00 

48.0 ± 7.00 

1,18 ± 0,16  

1,50 ± 0,18  

1,14 ± 0,16  

0,96 ± 0,14  
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Quercetin lipid 

nanoparticles [76] 

Hot and cold high pressure 

homogenization 

Tristearin 

Lecithin 
527 0,58 N/A 46,5 N/A 

Quercetin nanostructured 

lipid carrier (NLC) [77] 
Probe ultrasonication 

Compritol 888 

Oleic acid 
282 ± 3 0,31 -37.0 ± 3.0 

0,025 % drug 

loading 
0,25 mg/ml 

Quercetin aminopropyl 

functionalized mesoporous 

silica nanoparticles (NH2-

MSN) [79] 

Sol-gel method 

N-cetyl-

trimethylammonium 

bromide 

Tetraethyl orthosilicate 

250 ± 50 N/A +13.6 ± 0.2 
8 % mentioned as 

drug loading % 
N/A 

Quercetin-loaded 

lecithin-chitosan 

nanoparticles [24] 

Ethanol 

Injection method 

Lecithin 

Chitosan 

TPGS 

95 0,44 10.9 ± 0.1 48,5 0,63 mg/ml 

 

 

Table 4: Formulated quercetin nanodosage forms for topical application. 
Comparative table of different nanoformulation with quercetin prepared for topical delivery. The comparison includes the type of nanoformulation, the preparation method, the used excipients 
and the physicochemical properties of each nanoformulation including the particle size, surface charge, quercetin encapsulation efficiency and quercetin concentration in mg per ml of formulation. 
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4.1. Rodents skin based penetration tests  

Rodents skin is thinner and more permeable than human and pig skins [83]. However, they are less 

expensive and easier to handle in laboratory practice. Rodents skin showed similar stratum corneum lipids 

composition [84].Absorption profile of antiinflammatory (ammonium glycyrrhizinate in niosomes) [85] 

and short chain alcohols [86] were closed to human skin confirming the successful use of murine model 

for in vitro / in vivo correlation with human volunteers. Still hairy rodents have the disadvantage of 

extremely high density of hair follicles with higher appendage number [87, 88]. For this, mice and rats are 

shaved prior to skin excision. The last studies with quercetin nanodosage forms were performed on skin 

of SD rats and kumming mice by Liu [23] and Tan [24], respectively. 

Liu et al. [23] suggested deformable liposomes for effective skin delivery of quercetin. Tween® 80 was 

selected as edge activator, while cholesterol and phosphatidylcholine were chosen as lipid phase. 

Quercetin loaded deformable liposomes were prepared by ethanol injection technique and they presented 

a particle size of 132 nm and surface charge of -21.1 mV. Quercetin encapsulation efficiency was 80.4 ± 

4.2 % (Table 4). Skin penetration was analyzed with shaved skin excised from rats’ abdomen using Franz 

diffusion cells. Experiments were run at 32°C with physiological saline buffer as receptor fluid and a total 

time of 7 hours before quercetin extraction from skin. About 3.5 % of the applied dose was permeated 

through skin in case of deformable liposomes compared to less than 1 % in case of quercetin suspension 

in water. Likewise, a higher quercetin settling in skin with nanodosage form was proven over the control. 

It is worth to note that the ability of quercetin to permeate the skin especially from the suspension (with 

keeping in mind the low affinity of quercetin to the receptor fluid is questionable. Indeed, as it was 

previously proved using vasopressin that shaving of the skin before application increased flux 5 times 

over the control [89]. This result explains the presence of permeated portion.  

In 2011, Tan et al. [24] studied lecithin-chitosan nanoparticles for the topical delivery of quercetin. These 

nanoparticles were also prepared by ethanol injection technique. Particles size was 95 nm (PDI 0.44); zeta 

potential was +10.9 mV (because of the presence of the polycationic polymer chitosan). Quercetin 

achieved 48.5 % encapsulation efficiency and 2.5 % drug loading within formulated nanoparticles (Table 

4). Skin penetration tests were made both in vitro on mice excised skin and in vivo on viable animals. In 

both cases, no skin permeation was detected after 12 hours, whereas quercetin deposition results were 

comparable between in vitro and in vivo experiments. Quercetin loaded lecithin-chitosan nanoparticles 
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showed 2.3 and 1.2 fold increase in drug settling within epidermis and dermis respectively compared to 

quercetin control solution in propylene glycol. 

 

4.2. Pig skin based penetration tests  

The second group of research work covers studies with pig ear skin. Pig ear skin is a very close surrogate 

for human skin. It shares several anatomical and physiological similarities with human skin [90]. 

Moreover, pig ear skin is more available and less expensive [91].  

In 2009, Fasolo et al. [74] developed quercetin containing nanoemulsions. Two types of nanoemulsions 

were prepared: one with negatively charged droplets composed of octyldodecanol and egg lecithin 

(surface charge −27.4 mV) and the second with positively charged droplets (surface charge +76.3 mV) by 

the addition of the cationic surfactant: cetyl trimethylammonium bromide (CTAB). Nanoemulsions were 

formulated by spontaneous emulsification that corresponds to the injection of organic solvent containing 

the oily materials into aqueous phase. Then, the evaporation of the organic phase is done under reduced 

pressure conditions. Nanoemulsions without CTAB possessed a larger particle size compared to 

nanoemulsions with CTAB (307 ± 19 nm vs. 188 ± 2 nm). Quercetin encapsulation efficacy was over 99 

% for both nanoemulsions (Table 4). Penetration assay on Franz cell was performed over 8 hours using 

50 % v/v hydroethanol solution as receptor medium. To note, Fasolo et al. determined only quercetin 

permeated and did not provide data about quercetin skin deposition. Quercetin nanoemulsions were 

applied to skin at a dose of 1000 µg quercetin, only 1.524 µg quercetin were permeated through pig ear 

skin in case of nanoemulsions without CTAB. In contrast, 4.064 µg quercetin permeated from quercetin 

nanoemulsions with CTAB. In terms of permeated drug percentage, both formulation showed less than 1 

% drug permeation. The higher drug permeation observed with positively charged nanoemulsions of 

quercetin is in agreement with other publications, where a higher drug permeation is observed with 

positively charged nanoemulsions having a higher affinity for negatively charged skin [92-94]. At the 

same time, cationic surfactants are known to be more skin destructive than anionic surfactants and cause 

higher drugs flux (drug diffusion through a surface unit of membrane per unit of time) [95]. The percentage 

of permeated quercetin could be potentially attributed to the fact that porcine skin is more permeable than 

human skin [96, 97]. In addition, the use of a receptor medium that contains alcohol may also cause 

damage to the barrier function of the utilized skin [98]. 
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In 2011 Chessa  et al. [75] incorporated quercetin to liposomes using five different penetration enhancers: 

Transcutol® P (Trc), propylene glycol (PG), polyethylene glycol 400 (PEG) and Labrasol® (Lab). These 

penetration enhancer containing vesicles were prepared by thin the film hydration method followed by 

sonication. Particles size, PDI and zeta potential for Trc, PG, PEG and Lab were 226 nm (0.28 PDI, -49.0 

mV), 83 nm (0.35 PDI, -63.0  mV), 190 nm (0.31 PDI, -58.0  mV) and 86 nm (0.29 PDI, -32.0 mV) 

respectively. Quercetin encapsulation efficiency ranged from 48 % with PEG to 75 % with Lab (Table 4). 

Following vesicles preparation, newborn pig’s skin was mounted on Franz diffusion cells and skin 

penetration was assessed. After 8 hours, the skin was subjected to 10 strips to separate the stratum 

corneum. Dermis was separated from epidermis using surgical sterile scalpel. PEG containing vesicles 

yielded the highest skin permeation with 30 % of the applied dose detected in the receptor fluid, as well 

as the highest deposition in epidermis (55 % of the applied dose). It is worth to note that PEG 400 was 

tested for its penetration enhancement with several drugs such as naloxone [99], estradiol [100], 

levonorgestrel [101] and zidovudine [102]. Nonetheless PEG 400 causes skin damage by alteration of skin 

structure and modulation of the mass flow of water [103].  

Manca et al.  [38] also developed quercetin loaded liposomes and glycerosomes. Similar to Chessa et al., 

they prepared quercetin nanovesicles using the thin film hydration method followed by sonication. 

However, instead of using a mixture of penetration enhancer/water to prepare PEVs, they prepared 

glycerosomes using a 50 % mixture glycerol / water. They used lecithin as a lipid. Liposomes were 102 

nm (PDI 0.32) with a surface charge -78.0 mV. The glycerosomes were 80 nm (PDI 0.26) with a surface 

charge -67.0 mV. Both formulations showed encapsulation efficiency over 80 % (Table 4). Skin 

penetration tests were performed over 24 hours at 37°C using Franz cells with newborn pig’s skin. At the 

end of the test, skin layers were separated in the same way as in the publication of Chessa et al. However, 

both liposomes and glycerosomes did not promote quercetin permeation, but glycerosomes were more 

efficient in delivering quercetin to the skin compared to liposomes (over 20 % of the applied dose vs. 10 

to 20 % for liposomes). Quercetin deposition order was stratum corneum, epidermis and dermis 

respectively in both formulations. This seems to be in accordance to the fact that without the use of a 

strong penetration enhancer as in the example of Chessa et al., no skin permeation would be observed 

unless skin barrier function is damaged due to a wound or injury.  

In 2015, Sapino et al. [79] investigated the formulation of quercetin within aminopropyl functionalized 

mesoporous silica nanoparticles (NH2-MSN). CTAB was used as structure directing agent and tetraethyl 
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orthosilicate as silica source. Quercetin was then loaded in NH2-MSN at a concentration of 8 % and 

incorporated into a w/o emulsion. At the end of the skin penetration studies no transdermal delivery of 

quercetin was detected (24 hours), this confirms other reports where quercetin showed no skin permeation 

in nanodosage forms [76, 78]. However, association of quercetin to silica nanoparticles leads to 2 fold 

increase in skin deposition compared to free quercetin (10.98 µg/cm2 vs. 4.77 µg/cm2),  

Respecting the fact that porcine skin is more permeable than human skin, quercetin loaded nanodosage 

forms showed no evidence for skin permeation except in case of the use of penetration enhancers like 

CTAB or PEG 400. 

 

4.3. Human skin based penetration tests  

Ending by the third group, Scalia et al. in 2013 [76] reported in vivo skin penetration of quercetin from 

solid lipid nanoparticles (SLN). Quercetin was encapsulated in tristearin/phosphatidylcholine 

nanoparticles. For this, quercetin was dissolved in melted tristearin in the pre-emulsion step and then 

subjected to cold or hot high pressure homogenization. Quercetin encapsulation efficiency within lipid 

nanoparticles was 46.5 %. Particles size was 527 nm with a PDI of 0.58 for nanoparticles prepared by hot 

high-pressure homogenization (Table 4). Afterwards lipid nanoparticles were incorporated into an oil-in-

water emulsion (0.3 % w/w quercetin). Then the final emulsion was applied on the forearm of a group of 

10 healthy volunteers (22-27 years old). Quercetin final emulsion was applied at a dose of 4 mg/cm2 for 

60 minutes, quercetin non-encapsulated in lipid nanoparticles was incorporated in the same emulsion and 

regarded as control formulation. After the end of the application period, in vivo skin penetration assay was 

performed using 15 stripping tapes of scotch transparent adhesive tape. The first strip tape along with the 

cotton swab used to remove the remaining formulation was analyzed for unabsorbed quercetin. Then strips 

were separated into in four groups (group 1: strips 2–4; group 2: strips 5–7; group 3: strips 8–11; group 4: 

strips 12–15). 66.9 ±11.1 % of quercetin applied dose in the control formulation were recorded on the 

cotton swab and strip 1 while quercetin loaded lipid nanoparticles was 57.8 ±11.0 %. This very limited 

improvement by SLN may be attributed to the short duration of drug application, besides the intact barrier 

function of the stratum corneum (the volunteers were healthy and presented a healthy skin). 21.2 ± 2.9 % 

of the applied dose was penetrated into the skin for quercetin lipid nanoparticles compared to only 18.1 ± 

0.3 % of the dose in the control. Penetration of quercetin from SLN in the strips was as follows: the highest 

drug portion was in strips 2-4 (approximately 14 %) followed by 5-7 (3.5 %) then 8-11 (3 %) and finally 
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strips 12-5 (1.5 %). Quercetin in SLN showed higher drug deposition in the upper layers of the stratum 

corneum and lower percentage in the deeper layers. This observation is in accordance that lipid 

nanoparticles generate an occlusive effect on the skin, thus increase skin hydration and promote drug 

delivery to upper skin layers [104]. Meanwhile their relatively large size above 500 nm favors deeper skin 

penetration via follicular route [105] rather than transepidermal penetration [106]. 

In 2013, Bose et al. [78] developed quercetin in both solid lipid nanoparticles (SLN) and nanostructured 

lipid carriers (NLC). Compritol® 888 was used as solid lipid for both nanosystems, whereas oleic acid was 

incorporated into nanostructured lipid carriers as liquid lipid. Both quercetin nanosystems were prepared 

by the probe ultrasonication method. Quercetin NLC were 282 nm, PDI of 0.31 and zeta potential of -37.0 

mV (Table 4). Quercetin exhibited a better physical stability results for 14 weeks at 2-8°C when loaded at 

0.0125 % than 0.025 %. Skin penetration studies were performed on full thickness human skin ex vivo 

using 0.64 cm2 Franz diffusion cell over 24 hours. Bose et al. [78] reported the absence of transdermal 

delivery for quercetin from both nanosystems. This result is in accordance with Scalia et al. [76] who 

confirm that the majority of applied quercetin from nanoparticles was found in the top layers of the skin. 

This is very important for such antioxidant molecule, considering the main site of action is the skin cells 

in the upper layers. At the end of the penetration test, Bose et al. determined skin quercetin retention 

without detailing its distribution among skin layers. The percentage of drug skin retention was 19.2 % 

with NLC according to Bose et al. and it falls in the same range that is in the in vivo work of Scalia et al. 

who detected 21.2 ± 2.9 %.  

In summary, quercetin even when formulated in a lipid nanoparticle vector shows no evidence for 

transdermal delivery on human skin. Keeping in mind that quercetin as a molecule is a paradigmatic model 

for a lipophilic drug (octanol−water partition coefficient log P = 1.82) [73] with 5 polar hydroxyl heads 

and very low water solubility [81], thus quercetin is not the perfect drug candidate for a transdermal 

delivery system. Quercetin local skin deposition is more valuable than performing a transdermal delivery 

through skin. Quercetin envisaged dermal applications described above (section 2) are all of local interest 

and the absence of a systemic absorption is desirable. Nanodosage forms were able to increase quercetin 

skin retention via their occlusive effect and higher surface area. Transdermal delivery for quercetin 

nanodosage forms was not achieved without the help of penetration enhancers. The use of penetration 

enhancers should be taken with caution as these molecules affect skin barrier function and may cause skin 

damage. However, nanodosage forms are very promising drug delivery systems for targeting skin and 
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upper layers of epidermis. This is desirable for quercetin to exert its activity in protecting skin tissue from 

oxidative stress, photoageing and uncontrolled skin inflammation. 

Finally, one can compare in vivo skin permeation / penetration for quercetin between microemulsion [43] 

and lecithin-chitosan nanoparticles [24] as in both studies formulations were applied on dorsal skin of 

mice, quercetin applied quantity was the same (300 µg) and both studies detected quercetin levels in the 

skin after 6 hours of application. Results are relatively close between nanoparticles and microemulsion. 

The larger portion of quercetin was detected in the upper skin layers at the SC level, lower concentrations 

were detected in the dermis. Quercetin showed no transdermal delivery in both studies.  

 

5. Conclusion  

Quercetin proves to possess several interesting physiological actions on skin. It has a strong antioxidative 

activity. It protects keratinocytes for exogenous oxidizing agents and scavenges free radicals, prevents 

endogenous antioxidant depletion and inhibits lipid peroxidation upon exposure to UV. Quercetin also 

presents broad antiinflammatory actions. It is stronger than other flavonoids in inhibiting edema after 

contact with inflammogens. It presents inhibiting actions on NF-κB and on the release of several 

proinflammatory cytokines. These combined antioxidative/antiinflammatory actions highlight quercetin 

as a promising molecule for the treatment of chronic wounds. Additionally quercetin shows anti-aging 

actions on middle-aged keratinocytes and rejuvenating actions on terminally senescent cells. In parallel, 

quercetin inhibits tyrosinase in melanocytes thus enables a whitening effect on skin. All these possible 

targets and applications for quercetin require a successful local delivery to skin. Due to quercetin poor 

water solubility and inability to penetrate skin, researches are conducted on the formulation of a potent 

delivery system. In this article, the last advances in delivery of quercetin to skin via conventional dosage 

forms and nanodosage forms were presented and discussed. The variation of formulations in terms of 

excipients used and the physicochemical characteristics, along with effect of particle size on skin 

penetration are discussed. Quercetin in both types of formulations presented no transdermal delivery 

except in case of the use of penetration enhancers. Conventional and nanodosage forms showed higher 

quercetin deposition in the upper skin layers of the epidermis. Despite of achieving extremely small 

particle size with nanodosage forms, still the lipid content and the lipid type seem to be the main 

determinant of the extent of quercetin depth in skin layers. More studies should be performed to get more 
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insight about the exact depth that a formulation containing quercetin can achieve. At the same time, more 

research should be made to investigate other possible applications for quercetin in other skin disorders 

like psoriasis or atopic dermatitis. 
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Part II: 

Experimental work 

Chapter one: Quercetin smartCrystals® 

Preface 

In this chapter, the first approach of quercetin nanocrystals development using the second-

generation technology (smartCrystals®) is presented. SmartCrystals® are produced by combing 

both bead milling with subsequent high pressure homogenization at relatively low pressure (300 

bar). This technology enables the use of bead milling with reduced time compared to first 

generation nanocrystals and the implementation of the high pressure homogenization for only two 

cycles compared to more than 15 in the one step process. Herein, the superiority of smartCrystals® 

technology over first generation nanocrystals is discussed in details.  

Drug nanocrystals are considered as new chemical entities as drug physicochemical properties and 

behavior on cells (cellular toxicity) may vary after nanonization [1]. Some drugs such as taxol® 

and paclitaxel® showed an increase of cellular toxicity when they are produced using nanocrystal 

technologies. Higher toxicity on MCF-7 human breast cancer cell line is then favored [2]. Others 

drugs presented the same safe profile or sometimes had lower toxicity allowing them to be 

produced for pharmaceutical market such as Emend® (Merck) and Tricor® (Abbott). Therefore and 

for the first time, we evaluated quercetin nanocrystals cellular toxicity and antioxidant activity on 

cells. 

In this study, quercetin smartCrystals® formulations were developed by screening different 

surfactants for the optimal stabilization of the nanocrystals in suspension: TPGS, Poloxamer® 188, 

Tween® 80, Plantacare® 810 and Plantacare® 1200. The selection of the surfactants is based on 

previous studies. Derivatives of vitamin E were previously used for preparation of quercetin 

nanostructured lipid carriers [3]. The results obtained with quercetin nanostructured lipid carriers 

using TPGS (a novel stabilizer composed of vitamin E) are interesting to be tested for stabilization 

of quercetin nanosuspensions. Poloxamer® 188 is a copolymer surfactant known to be used in 

nanocrystals formulation with good physical stability for 3 months [4, 5]. Plantacare® series are 

natural, nonionic, polyhydroxy stabilizers, with steric stabilization properties. Plantacare® 810 was 
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used to stabilize drugs such as lutein [6] and fenofenamic acid [7] loaded within solid lipid 

nanoparticles (SLN) and nanostructured lipid carriers formulation, allowing steric stabilization 

next to electrostatic stabilization. Plantacare® 1200 presents a microemulsion stabilization effect 

with lower temperature dependency [8]. It was also used for dermal application of linoleic acid in 

microemulsion for the treatment of xerosis [9]. Furthermore, Plantacare® series are considered skin 

friendly [10]. They showed a slight skin irritating capacity in epicutaneous patch test when 

compared to other surfactants [11]. 
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Abstract:  

Flavonoids are natural plant pigments, which possess high antioxidative and antiradical activities. 

However, their poor water solubility led to a limited bioavailability. To overcome this major hurdle, 

quercetin nanocrystals were produced implementing smartCrystals® technology. This process 

combines bead milling and subsequent high-pressure homogenization at relatively low pressure 

(300 bar). To test the possibility to develop a dermal formulation from quercetin smartCrystals®, 

quercetin nanosuspensions were admixed to Lutrol® F127 and hydroxythylcellulose nonionic gels. 

The physicochemical properties (morphology, size and charge), kinetic solubility, dissolution 

velocity and the antioxidant properties (DPPH assay) as well as the cellular interaction of the 

produced quercetin smartCrystals® were studied and compared to crude quercetin powder. 

Quercetin smartCrystals® showed a strong increase in the kinetic solubility and the dissolution 

velocity (7.6 fold). SmartCrystals® loaded or not into gels proved to be physically stable over a 

period of three months at 25°C. Interestingly, in vitro DPPH assay confirmed the preservation of 

quercetin antioxidative properties after nanonization. In parallel, the nanocrystalline form did not 

display cellular toxicity, even at high concentration (50 µg/ml), as assayed on an epithelial cell line 

(VERO cells). In addition, the nanocrystalline form confirmed a protective activity for VERO cells 

against hydrogen peroxide induced toxicity in vitro. This new formulation presents a promising 

approach to deliver quercetin efficiently to skin in well-tolerated formulations.  
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1. Introduction 

Antioxidants are of high interest in the prevention of oxidative stress not only for oral 

administration but also for topical administration. In this context, antioxidants are used to support 

treatment for diseases that require a higher activity of the immune system (mosquito borne diseases 

or viral infections) [1-3]. In dermal preparations, products containing antioxidants are useful for 

protection against UV radiation damage [4, 5] or for prevention of skin cancer [6-8]. Flavonoids 

are plant pigments found in a wide variety of fruits and vegetables such as apples [9], pears [10], 

onions [11], and red wine [12]. Many flavonoids like quercetin, rutin, hesperidin and naringenin 

are potent antioxidants [13]. Quercetin was chosen as an active principle because it is considered 

as the most powerful antioxidant, and the most distributed in nature [14]. Moreover, it has already 

been used for its antiinflammatory [15, 16] and anti-tumor activities [17, 18], also for cellular 

protective properties in brain [19], liver [20], kidney [21] and colon diseases [22]. In order to mimic 

the topical application, UV irradiation was used to introduce lipid peroxidation on 

phosphatidylcholine liposomes. Interestingly, in this model, quercetin showed the highest 

protective activity among various tested flavonoids [14, 23]. This UV protective effect is of high 

relevance in skin ageing and wrinkling [24] and indicates quercetin as potential active drug for skin 

protection against photoageing.  

Nevertheless, its poor water solubility limits dermal bioavailability leading to a decrease in its 

potential for topical administration. In this context, nanocrystals proved to be a successful 

formulation strategy for the increase of dermal bioavailability of poorly soluble actives [25]. 

Nanocrystals have a simple but effective mechanism of bioavailability enhancement by increasing 

the kinetic solubility (Cs) and thus increasing the concentration gradient between the application 

site (e.g. dermal formulation) and the acceptor medium (e.g. skin). In addition, a higher dissolution 

velocity due to the large surface area occurs. Finally, nanocrystals show high adhesion and 

prolonged retention times, by adhering firmly to the skin [26].  Nanocrystals can be obtained by 

different industrial processes. The first-generation of nanocrystals used to be produced by different 

processes, but generally in a one-step procedure: bottom up such as “Nanomorph®”, or top down 

processes such as wet bead milling developed by Alkermes®  [27] and high-pressure 

homogenization (HPH) developed by R.H. Müller et al. from the company DDS Germany [28]. 

The second-generation of nanocrystals are generally produced thanks to combinative process, such 
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as association of microprecipitation followed by HPH (Nanoedge or H69 technologies), spray 

drying and HPH (H42 technology), freeze drying and HPH (H96) and wet bead milling associated 

to HPH (CT technology) [29]. SmartCrystals® were developed as second-generation technology 

[30] using combination processes as a “toolbox” for tailor-made nanocrystals specific for different 

demands. In this study, the combination technology of bead milling and subsequent HPH was 

performed (known as CT process®) [31]. This yields monodispersed nanocrystals, homogenous in 

size with increased physical stability [32].  

Research groups mainly focused on the preparation of quercetin nanocrystals either by bead milling 

or by high-pressure homogenization [33, 34] . Others focused on the application of nanotechnology 

(nanocrystals, solid lipid nanoparticles, etc.…) for expected oral delivery [35, 36]. Up until now, 

the advantages of formulating quercetin nanocrystals using the second-generation of 

smartCrystals® for dermal application have not been investigated. 

To stabilize these smartCrystals®, five different stabilizers were tested. Two standard nonionic 

stabilizers: (i) polysorbate 80 (Tween® 80) and (ii) poloxamer 188 (Lutrol® F68), two alkyl 

polyglucoside “green” stabilizers (iii) caprylyl / capryl glucoside (Plantacare® 810) and (iv) lauryl 

glucoside (Plantacare® 1200) which were previously used in drug nanocrystals stabilizations [37-

39]. Finally, (v) a vitamin E derived surfactant, α-tocopheryl polyethylene glycol 1000 succinate 

(TPGS) is used as a novel stabilizer for drug nanocrystals. The obtained quercetin smartCrystals® 

were characterized and compared to crude quercetin regarding physicochemical characteristics 

(size, charge, shape, kinetic solubility and dissolution velocity) as well as antioxidative properties 

and cytotoxicity against an epithelial cell line (VERO cells). As a last step, quercetin 

nanosuspensions were admixed to two different nonionic gels Lutrol® F127 (poloxamer 407) and 

hydroxythylcellulose (HEC) and the stability of the smartCrystals® in suspension and in dermal 

non-ionic gels was assessed over a period of three months at three different temperatures (4°C, 

25°C and 40°C).  

 

2. Materials and Methods 

2.1 Materials 



Chapter One: Quercetin smartCrystals® 
 

 

107 
 

 

Quercetin aglycone (3, 3’, 4’, 5, 7-pentahydroxy-2-phenylchromen-4-one), 3-(4, 5-

dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) and hydroxythylcellulose (HEC) 

were purchased from Sigma (Sigma Aldrich, France). Tween® 80 (polysorbate 80), TPGS (α 

tocopheryl polyethylene glycol 1000 succinate), Plantacare® 810 (caprylyl/capryl glucoside), and 

Plantacare® 1200 (lauryl glycoside) were purchased from Cognis (Ludwigshafen, Germany). 

Lutrol® F68 (poloxamer188, 1800 g/mol) and Lutrol® F127 (poloxamer407) were kindly provided 

by BASF (Ludwigshafen, Germany).  

2.2 Preparation of quercetin nanosuspensions  

Crude quercetin (5%) was suspended in a 0.5% stabilizer solution (Tween® 80, TPGS, Lutrol® F68, 

Plantacare® 810 or Plantacare® 1200) in milliQ water. Quercetin nanosuspensions were then 

produced using the smartCrystals® technology [30]. Briefly, 120 ml of primary quercetin 

suspension were subjected to 30 min milling time using a pearl mill Bùhler PML 2 (Bùhler AG, 

Uzwil, Switzerland) with 0.2 mm zirconium oxide beads as milling medium. Samples were 

withdrawn every 5 minutes from the wet bead-milling machine to perform in-process size 

measurements (section 2.5 and 2.6). Optimal milling time was determined after analyzing the sizes. 

After milling, the suspension was separated from the beads using a sieve (mesh size 80). The beads 

were then washed with 120 ml of original 0.5% stabilizer solution to collect any quercetin crystals 

adhered to the beads. The resulted suspensions were then homogenized using a high-pressure 

homogenizer (HPH), Micron LAB 40 (APV Gaulin GmbH, Germany) for two cycles at 300 bar 

[40]. Finally, the selected stabilizers were used to prepare new batches using the concluded optimal 

milling time. 

2.3 Nanosuspensions - Gel formulation 

Quercetin nanosuspensions were admixed to two different gel formulations: Lutrol® F127, which 

is a temperature dependent gelling agent or hydroxythylcellulose (HEC). First, 5% quercetin 

nanosuspensions were diluted with milliQ water by a mass ratio factor of 1:1.6 then Lutrol® F127 

or HEC was added to allow a final concentration of 16.7% and 1.7% respectively [41, 42]. The 

resulted gels were tested for stability at 4°C, 25°C and 40°C. Size, polydispersity index (PDI) and 

zeta potential of smartCrystals® were measured at day 0, day 30 and day 90, after a dilution step, 
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to break the gel and allow measurement by photon correlation spectroscopy (see thereafter, section 

2.5 for precise sample preparation).     

2.4 Lyophilisation 

Quercetin nanosuspensions were frozen to -80°C using Cryonext freezer (Cryonext laboratories, 

France), then freeze-dried by Heto lyophilizer (PowerDry Laboservices, France) for 24 hours to 

obtain dry quercetin smartCrystals®. 

2.5 Photon correlation spectroscopy and electrophoretic mobility 

measurements 

10 µl of the quercetin nanosuspension was added to 10 ml of MilliQ water, vortexed for 10 seconds 

and then measured at 25°C to obtain the average size (Z-average) and polydispersity index (PDI) 

by photon correlation spectroscopy using a Zetasizer Nano ZS (Malvern Instruments, UK). 10 µl 

of the quercetin nanosuspension was diluted with either 10 ml of 50 µS/cm water (calculated by 

the addition of NaCl solution to MilliQ water) or 10 ml of original stabilizer solution [43]. 1 ml of 

this mixture was transferred into a Disposable Capillary Cell (Malvern Instruments, UK) allowing 

the measurement of the electrophoretic velocity of particles in an electrical field and the 

determination of zeta potential thanks to Helmholtz–Smoluchowski equation. 

For size measurements after gel formulation, 10 µl of the gel formulation was diluted with 10 ml 

MilliQ water and vortexed for 30 sec, and then 2 ml was transferred to PCS analysis. For zeta 

potential measurements, 10 µl of the gel formulation was diluted with 10 ml of either 50 µS/cm 

water or original stabilizer solution, vortexed for 1 min, then 1 ml was transferred to PCS for 

measurement. 

2.6 Laser diffraction (LD) 

Size distribution was measured by laser diffraction (Mastersizer 2000 Malvern Instruments, UK) 

with an agitation speed of 1750 rpm. Sample volume was adjusted according to the concentration 

indicated by the manufacturer using deionized water. All sizes were analyzed using the 
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characterization mode of the Mie equation with optical parameters 0.01 for the imaginary refractive 

index (IRI) and 1.59 for the real refractive index (RI). 

2.7 X ray analysis  

X-ray diffraction patterns of dry quercetin smartCrystals® were analyzed using a D8 Advance LA 

Cu 1.5406 Å Bruker axs (Burker, Karlsruhe, Germany) equipped with a generator (40kv 40mA) 

and a parafocusing geometry circle of Bragg Brentano. The test was performed between angles of 

2 to 70 θ at a fixed detection velocity, a solid detector lynx eyes 1D was used for the sample 

detection.  

2.8 Transmission electron microscopy 

Transmission electron microscope (TEM) analysis was performed with a TEM Jeol 1200EXII (Jeol 

Ltd, Japan) with an accelerating voltage of 100 kV and equipped with a 4k/3 kelopixels quemesa 

Camera (Olympus, Japan). 5 µl of the nanosuspension was left to dry for 30 min at 25°C after being 

deposited on uncoated carbon TEM grids Type CU formar carbon 3 MMM (Agar Scientific, UK). 

Images were taken using measure IT software at appropriate magnification. 

2.9 HPLC analysis 

HPLC was used for the determination of quercetin concentration in the nanosuspensions and 

the kinetic solubility. The chromatographic analysis of the quercetin nanosuspensions was 

performed on a LC62010HT (Shimadzu, Kyoto, Japan) using a C18 column Prontosil (120-5-C18 

H5.0 µm), NC-04 (250 ×4.0 mm) as stationary phase and a mobile phase solution composed of 

10% methanol 80% acetonitrile and 10% of phosphoric acid 0.2% at a pH=1.9. The detection was 

carried by a UV lamp (UV-VIS detector, Shimadzu, Kyoto, Japan) at 368 nm, which is specific for 

quercetin [44]. 

Two experiments were developed for the determination of (i) quercetin concentration in the 

nanosuspension (experiment 1: quercetin is extracted by methanol and then quantified) and (ii) 

kinetic solubility (experiment 2: quercetin concentration is determined in solution without 

extraction). 
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 For experiment 1, a fixed flow rate of 1 ml/min during a run time of 15 minutes was set and applied 

to calculate the quercetin concentration in the final nanosuspension. Standard quercetin solutions 

prepared in methanol within a range 62.5-500 µg/ml were used as a calibration curve (calibration 

curve 1 r2= 0.999 and %RSD is 2.5). The quercetin retention time was 2.3 min. 10 µl of the 

quercetin nanosuspension was diluted to 1 ml with methanol and then injected (n=3).  

Secondly, for experiment 2 (quercetin kinetic solubility measurements), a gradient flow rate was 

used in a 20 min run time by increasing the acetonitrile concentration from 40% to 80% while the 

acidified water concentration decreased from 50% to 10%. The gradient flow was performed in 

order to delay the elution of quercetin from that of Tween® 20. The quercetin retention time was 

4.10 min. Serial dilutions of known concentrations of quercetin in 0.5% Tween® 20 PBS buffer 

pH=7.4 were used to prepare a calibration curve from 0.2 to 4 µg/ml (calibration curve 2 r2= 0.996 

and %RSD is 7.7). Quercetin quantification limit was 0.1 µg/ml. This was performed in order to 

mimic the situation in an aqueous medium. Then 1 ml of the quercetin nanosuspension, and the 

quercetin physical dispersion (crude quercetin suspended in milliQ water) were centrifuged at 

21,000 gravitational force for 1 h using a Sigma 2k 25 ultracentrifuge (sigma Zentrifugen, GmbH, 

Germany), to separate the non-solubilized quercetin (bottom of the tube) to the solubilized one (in 

the supernatant). Centrifugation time is adjusted according to the Stoke equation for particles 

sedimentation. Supernatants were collected and 50 µl of each were injected into HPLC and the 

water kinetic solubility was calculated according to the method mentioned.  

2.10 Dissolution velocity (flow through cells) 

Flow through cell USP apparatus 4 equipped with a piston pump Sotax (Sotax AG, Aesch, 

Switzerland) was used for testing the dissolution velocity. 5 mg of dry quercetin smartCrystals® or 

crude quercetin were accurately weighed using an OHAUS Discovery balance (OHAUS 

Corporation, New Jersey, USA) and were placed in the sample chamber. 100 ml of degassed MilliQ 

water were used as release medium to maintain sink conditions. The flow rate was maintained at 8 

ml/min at 32°C (n=3) and 1 ml of the release medium was withdrawn at 5, 10, 15, 30, 60 and 120 

minutes, then replaced by 1 ml of fresh medium. Afterwards, the quercetin concentration was 

determined: 50 µl of withdrawn samples were diluted with 950 µl milliQ water and analyzed using 

HPLC (section 2.9, experiment 2). 
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2.11 Hydrogen donating ability in vitro by 2, 2-diphenyl-1-picrylhydrazyl 

(DPPH) 

Quercetin showed linear DPPH inhibition in concentrations between 1 and 6 µg/ml. Quercetin 

nanosuspensions with selected stabilizers were diluted with methanol to fit into linearity 

concentrations of quercetin. DPPH concentration was adjusted to 400 µM. The volume of DPPH 

solution to quercetin solution was 1:3 (volume factor). DPPH with methanol was used as a positive 

control with methanol as a reference. The activity reaction was performed in the dark for 30 min, 

afterwards the DPPH absorbance was measured at 517 nm using a UV/Vis spectrophotometer 

(Lambda 35, PerkinElmer, USA). Then the DPPH percentage activity was calculated as efficient 

concentration 50 (EC50) (the concentration of crude quercetin or quercetin smartCrystals® able to 

reduce 50 % of the initial DPPH concentration). 

2.12 Cell culture and cellular cytotoxicity on Vero cells 

Vero cells (CCL81™) were purchased from American Type Culture Collection ATCC (Manassas, 

Virginia, USA). Cells were cultured using Dulbecco’s Modified Eagle's medium (DMEM) 

(Gibco®) with 10% fetal bovine serum (FBS) purchased from Life technologies™ (Carlsbad, 

California, USA). To assess the potential cytotoxicity of the formulation, cells were cultured at a 

concentration of 1×105 cells/well in 24 well plates (Corning, New York, USA). Cells were then 

exposed to 5, 15, 25, 50 µg/ml of crude quercetin, or quercetin smartCrystals® (diluted 

nanosuspensions) suspended in classic cell culture medium (DMEM + 10% FBS).  After 24 hours 

exposure, cell viability was assessed by the 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium 

bromide (MTT) assay. The MTT assay evaluates cellular mitochondrial activity by following the 

cleavage of tetrazolium salts to a soluble formazan dye by succinate-tetrazolium reductase, a 

mitochondrial enzyme only active in viable cells. MTT (5 mg/ml) was added to each well for 4 

hours. Culture media was then aspirated and replaced by 200 µl of acidified isopropanol (0,06N 

HCl) to dissolve formazan crystals. Finally, 100 µl was transferred to 96 well plates and read at 

570 nm and 750 nm using a Multiskan™ GO microplate spectrophotometer (Thermo Scientific™, 

Waltham, Massachusetts, USA). Non-treated cells were recognized as the positive control and 

represent the 100% viability. 
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2.13 Protection against hydrogen peroxide induced cellular toxicity 

Cells were cultured at a concentration of 1×105 cells/well in 24 well plates and incubated at 37°C, 

5% CO2 for 24 hours. Cells were then exposed to 50 µg/ml of crude quercetin, or quercetin 

smartCrystals® (diluted nanosuspensions) suspended in classic cell culture medium (DMEM + 10% 

FBS) for 4 hours. After that, 40 µl of 10 mM of hydrogen peroxide (H2O2) were added to each well 

and incubated for 2 hours. Cells were then washed two times with PBS. Then, 360 µl of DMEM + 

10% FBS and 40 µl of MTT were added and let incubated for another 4 hours. Culture media were 

then aspirated and 200 µl of acidified isopropanol (0,06N HCl) were added. Finally, 100 µl were 

transferred into 96 well plate and absorbance at 570 nm and 750 nm was determined using a 

Multiskan™ GO microplate spectrophotometer (Thermo Scientific™, Waltham, Massachusetts, 

USA) [45].   

2.14 Statistical analysis 

Statistical analysis of the dissolution velocity and cellular cytotoxicity was run using Stata software 

(StataCorp, College Station, Texas, USA). A Two-sample t-test with unequal variances was used 

for the analysis of cellular toxicity results and a two-sample t-test with unequal variances supported 

with a two-sample Kolmogorov-Smirnov test for equality of distribution functions were used to 

verify the significant difference of the dissolution profiles. P expresses the significant value where 

* = P < 0.05, ** = P < 0.01 and *** = P < 0.005 respectively. 

 

3. Results & Discussion 

3.1 Optimization of smartCrystals® production process 

Optimization of the preparation was performed in two steps: (i) assessing the optimal milling time 

and (ii) producing the smallest homogenous crystals with each stabilizer (Tween® 80, TPGS, 

Lutrol® F68, Plantacare® 810 or Plantacare® 1200).  

In the first step, the milling time was set for 30 minutes and quercetin size profile was measured 

every 5 minutes using PCS (Fig. 3.1) and LD (Fig. 3.2). PCS allow the size measurement of 
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particles from about 3 nm to 3 µm, and LD was therefore used to detect particles larger than 3 µm. 

LD size results are expressed in terms of the percentage distribution of sizes within the population. 

Volumes equivalent to the hydrodynamic sphere diameter LD50, LD90, and LD99 diameters are 

used throughout this article.  

By observing the hydrodynamic diameters measured by PCS in Fig. 1, particle size reduction in 

the nanometer range can be noticed within the first 10 minutes for all the stabilizers. Within 5 min 

of milling, the sizes were reduced to 329 nm (PDI 0.21), and to 303 nm (PDI 0.24) for quercetin 

nanosuspensions stabilized with Tween® 80 and TPGS respectively and to 526 nm (PDI 0.3) for 

quercetin nanosuspensions stabilized with Plantacare® 810. After 10 minutes of milling, the size 

decreased to reach 502 nm (PDI 0.22) with Lutrol® F68 and 574 nm (PDI 0.22) with Plantacare® 

1200 respectively. Nevertheless, after either 5 min (Tween® 80, TPGS and Plantacare® 810 

stabilized nanosuspensions) or 10 min milling (Lutrol® F68 and Plantacare® 1200 stabilized 

nanosuspensions), particles began to agglomerate. Upon this prolonged milling time, the energy 

used for particles fragmentation is converted into kinetic energy increasing particle adhesion and 

agglomeration, which could explain this size increase [46].  
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Fig. 1: Quercetin suspensions size and PDI evaluation using PCS 

PCS size and polydispersity index (PDI) as a function of milling time in the bead mill of suspensions 
stabilized with a) Tween® 80, b) TPGS, c) Lutrol® F68, d) Plantacare® 810 and e) Plantacare® 1200.  

 

Fig. 2 shows the LD complementary results for the milling process providing information on larger 

particles in the suspension. The difference between the value of LD50 and LD99 (which is a 

diameter sensitive to measure very large particles) gives an indication about particles’ aggregation 

state that cannot be monitored by PCS. Results at time 0 represents the size distribution of quercetin 
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in the coarse suspension with each stabilizer. Aggregates larger than 3 µm were not observed at 5 

minutes milling time with Tween® 80 and Plantacare® 810, but still present with TPGS as LD50 

and LD99 5 µm and 32 µm respectively. Looking at Lutrol® F68 and Plantacare® 1200 stabilized 

nanosuspensions, only Lutrol® F68 at 10 minutes showed aggregation with LD99 equals to 35 µm. 

Again, by LD upon prolonged milling, particles agglomeration was confirmed with all stabilizers 

except Tween® 80 and Lutrol® F68. Thus, the best milling time for Tween® 80, TPGS and 

Plantacare® 810 stabilized nanosuspensions seems to be of 5 minutes whereas for Lutrol® F68 and 

Plantacare® 1200 stabilized nanosuspensions 10 minutes seems better adapted. 
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Fig. 2: Quercetin suspensions size distribution evaluation using LD 

LD size distribution as a function of milling time in the bead mill of suspensions stabilized with a) Tween® 

80, b) TPGS, c) Lutrol® F68, d) Plantacare® 810 and e) Plantacare® 1200.  

After the milling step (30 minutes), quercetin nanosuspensions stabilized with the five stabilizers 

were subjected to the same HPH condition (300 bar, 2 cycles). Fig. 3 presents the PCS and LD 
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sizes results of the final nanosuspensions. The use of HPH yielded smaller and more homogeneous 

quercetin nanosuspensions with an average size of 220 nm (PDI 0.19) with Tween® 80, 397 nm 

(PDI 0.16) with TPGS, 381 nm (PDI 0.24) with Lutrol® F68, 426 nm (PDI 0.38) with Plantacare® 

810  and 243 nm (PDI 0.37) with Plantacare® 1200 (Fig. 3, a). LD99 results were all less than 450 

nm for all stabilizers confirming the successful disaggregation with HPH (Fig. 3, b). This decrease 

in particle size and the disappearance of aggregation confirm the advantage of the combinative 

techniques over one-process techniques. Taking the example of quercetin nanocrystals with 

Tween® 80 prepared using only bead milling by Kakran’s et al, quercetin nanocrystals were 

approximately 340 nm (PDI 0.21)) and the milling time was 60 minutes [34]. By applying the 

smartCrystals® combinative technique, quercetin smartCrystals® were 220 nm (PDI 019) using 

only 5 minutes milling followed by HPH.  
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Fig. 3: Final quercetin nanosuspensions size results (PCS/LD). 

Size results of the suspensions with 30 min bead milling with the subsequent HPH step (2 cycles at 300 
bar). a) PCS size and PDI. b) LD50, LD90 and LD99 of suspensions stabilized with the five different 
stabilizers. 

Taking into account the final suspension size, the smallest average size was obtained with Tween® 80 (220 
nm), Plantacare® 1200 (243 nm) and Lutrol® F68 (381 nm) (Fig. 3.3, a). By analyzing PDI data, TPGS was 
the stabilizer which leads to the lowest polydispersity index of 0.16, followed by Tween® 80 with 0.19 and 
Lutrol® F68 with 0.24 (Fig. 3.3, a). 
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From the size, PDI and milling time, it can be concluded that the best two stabilizers for 5% 

quercetin nanosuspensions prepared by smartCrystals® technology were Tween® 80 and TPGS. 

SmartCrystals® stabilized with these two stabilizers showed the smallest particles size with 

homogenous profile in the shortest milling time. As a result, optimized milling conditions with 

HPH were used to produce new batches of quercetin smartCrystals® stabilized with Tween® 80 and 

TPGS. The reproduced quercetin nanosuspension was 295 nm (PDI 0.25) with Tween® 80 and 203 

nm (PDI 0.24) with TPGS.   

Tween® 80 concentration for stabilization of quercetin nanocrystals varied in the literature, from 1 

to 2% when 5% quercetin nanosuspensions were prepared by HPH or bead milling. Quercetin 

nanocrystals prepared only by HPH (20 cycles at 1500 bar) were around 700 nm (PDI 0.17) [47] 

and quercetin nanocrystals prepared by bead milling alone using 0.2 mm beads were 340 nm (PDI 

0.21). By applying the smartCrystals® combination process, a nanometric size of 220 nm (PDI 

0.19) was achieved, with two fold lower stabilizers concentration [34]. 

To resume, small and monodisperse quercetin smartCrystals® were formulated using 2 fold less 

stabilizer than previously formulated nanocrystals with a shorter production time. This confirms 

the interest in the use of smartCrystals® combinative technology that allows a reduced milling time, 

which is very important considering large scale production as long preparation time increases costs 

and decreases the number of produced batches per day.  

3.2 Physicochemical characterizations of quercetin smartCrystals®  

3.2.1 Surface charge 

To predict the physical stability of quercetin smartCrystals®, zeta potential was measured. The 

higher the absolute values of the zeta potential, the more stable the particles are expected to be. 

Results are presented in Fig. 4. The difference between the measurements in the original stabilizer 

medium (0.5% Tween® 80 or TPGS) and the salted water (50 µS/cm water) provides an indication 

about the thickness of the diffuse layer, as the diffuse layer is eliminated in the salted water [48]. 

All zeta potentials of quercetin nanosuspensions were negative, as PEG chains present in the 

structure of Tween® 80 and TPGS can form negative dipoles that are able to decrease the surface 

charge proportionally to their concentration [49]. Nanosuspensions stabilized with Tween® 80 

compared to TPGS stabilized ones expressed more negative zeta potential in both 50 µS/cm water 
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(-25.7 compared to -16.1 mV) and in original stabilizer solution (-26.8 mV compared to -22.7 mV) 

for nanosuspensions with Tween® 80 and TPGS respectively. Both stabilizers sterically stabilize 

the particles in addition to the electrical repulsive forces they could generate [50]. Indeed, it should 

be noted that the adsorbed steric stabilizer layer reduces the measured zeta potential, as it shifts the 

plan of shear to greater distance from the particle surface. Therefore, values around 25 mV 

observed with Tween® 80 seem sufficient to stabilize the system along with steric stabilization 

[51]. Regarding TPGS, the difference between values at 50 µS/cm water and original stabilizer 

solution (-16.1 vs. -22.7 mV) may indicate a thicker adsorbed layer compared to Tween® 80 and 

hence an increased stability [38].  

 

 

Fig. 4: Zeta potential of quercetin nanosuspensions 

Zeta potential of quercetin nanosuspensions with Tween® 80 and TPGS produced by bead milling for 5 
minutes followed by 2 cycles of high pressure homogenization at 300 bar. Reacting media 50 µS/cm water 
and original stabilizer solution. 
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For all pharmaceutical and cosmetical products, a satisfactory stability profile is desired. Therefore, 

three months stability tests were performed on quercetin nanosuspensions. Stability tests were 

conducted at three different temperatures 4°C, 25°C and 40°C. The average PCS size and PDI at 

day 0, day 30 and day 90 (Fig. 5, a) were used to assess the stability. 

The increase in quercetin nanosuspension size from day 0 to day 90 at 25°C was 50 nm (from 295 

to 343 nm) with Tween® 80, and 150 nm (from 203 to 340 nm) with TPGS. Interestingly, PDI 

remained under 0.30 for both formulations (Fig. 5, a). This increase in size has already been 

observed with lutein nanocrystals when prepared by HPH [52]. In this study, after 90 days of 

storage at 40°C, quercetin nanosuspension stabilized with Tween® 80 was 381 nm (PDI 0.19), and 

quercetin nanosuspensions stabilized with TPGS were 389 nm (PDI 0.16).  

 

3.2.3 Lyophilisation and crystallinity determination  

To allow X-ray studies, the quercetin nanosuspensions were lyophilized [53]. Therefore, the effect 

of lyophilisation on particles size was first evaluated. For this, dry quercetin smartCrystals® were 

rehydrated with the original stabilizer solution after lyophilisation and the sizes and PDI of these 

nanosuspensions were measured (Fig. 5, b). Before lyophilisation, quercetin nanosuspensions 

stabilized with Tween® 80 were 366 ± 8 nm, after reconstitution of the suspension the size increased 

to 403 ± 8 nm. The same increase by about 40 nm in particle size was observed with quercetin 

nanosuspensions stabilized with TPGS, where particle size increased from 239 ± 8 nm to 290 ± 3 

nm. An increase in particles size upon lyophilisation by 200 nm was reported with ascorbyl 

palmitate nanocrystals in the absence of cryoprotectant [54]. Cryoprotectant was not used in our 

case and the size increase was 5 times less. At the same time, in the case of the ascorbyl palmitate 

nanocrystals, the PDI increased from ~0.3 to ~0.4 while the PDI stayed the same (0.25 ± 0.03) 

before and after lyophilisation for quercetin nanosuspensions stabilized with Tween® 80 and TPGS. 

Thus, smartCrystals® were lyophilized without cryoprotectant avoiding strong size increase while 

keeping a good dispersity.  
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Fig. 5: a) Quercetin nanosuspensions stability at 4°C, 25°C and 40°C b) Effect of lyophilisation on the 

PCS size and PDI of quercetin nanosuspensions  

Results recorded before and after lyophilisation ±SD (n=3) 
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The X-ray diffraction pattern of coarse quercetin, lyophilized quercetin smartCrystals® stabilized 

with Tween® 80 and TPGS are given in Fig. 6 (a). Peaks at 2, 10.8, 12.5, 15.8, 27.4 θ observed on 

crude quercetin diffractogram were still present in both lyophilized smartCrystals® formulations, 

indicating that quercetin after nanonization process had kept its crystalline nature. However, the 

absence of some peaks on quercetin smartCrystals® stabilized with Tween® 80 and TPGS like the 

peaks at 9.5, 10.3, 11.4, 11.9 and the reduced extent of the peak at 10.8 and 12.5 compared to crude 

quercetin, clearly indicates a change in the polymorphic form of quercetin after the nanonization 

process. This comes in accordance with previous reports showing the presence of three 

polymorphic forms for quercetin. Crude quercetin powder was pharmaceutical grade (QGPb), then 

quercetin in its smartCrystals® form had the pharmaceutical grade (QGPa) [55]. This change in the 

polymorphic form could have its reflection on the behavior of quercetin in viable system and its 

interaction with cells. 
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Fig. 6: X ray diffraction pattern and TEM images of crude quercetin and quercetin nanosuspensions 

a) The X ray diffraction pattern crude quercetin (upper), lyophilized quercetin smartCrystals® stabilized 
with Tween® 80 (middle) and TPGS (lower). 

b) Images of transmission electron microscopy of quercetin smartCrystals® original stabilizer solution. 

1 and 2) with Tween® 80, 3 and 4) with TPGS original stabilizer solution.    
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5 µl of quercetin nanosuspensions were deposited and dried on TEM grids. Fig. 6 (b) shows 

transmission electron microscopy images of quercetin smartCrystals® stabilized with Tween® 80 

(Fig. 6, b 1 and 2) and TPGS (Fig. 6, b 3 and 4) diluted with original stabilizer solution (0.5% 

stabilizer). Images showed the absence of nanocrystals aggregates and liquid droplets around the 

crystals were hypothesized to be an excess of Tween® 80 (Fig. 6, b 1). SmartCrystals® in presence 

of Tween® 80 were in a needle-like shape with particle size of about 700 nm to about 2 µm. (Fig. 

6, b 2). By contrast, nanocrystals in presence of TPGS behaved differently as a square shape (500 

nm) was prevalent in the samples tested (Fig. 6, b 3). In addition, with this last stabilizer, a cubic 

shape, was observed in smaller numbers (Fig. 6, b 4), which could be linked to the fusion of several 

nanocrystals together. Particles size in presence of TPGS was in the same range of PCS results 

observed between 200 and 500 nm. Square nanocrystals shape was already observed on particles 

stabilized by Lutrol® F68 (and lecithin) prepared by HPH [32] and also with others nanocrystals 

(Amoitone B, Nur77 receptor agonist) stabilized by Lutrol® F68 prepared by microfluidization 

[56]. This confirms that crystals shape is mainly determined by the stabilizers and not only by the 

process used to obtain nanocrystals.  

3.3 Kinetic solubility determination 

A certain loss of quercetin during milling and in the course of the homogenization step cannot be 

avoided, thus, quercetin concentration was determined (Table 1). The kinetic solubility was 

determined using HPLC (Section 2.9) for both crude quercetin and quercetin nanosuspensions. 

Nanosuspensions were centrifuged to separate nanocrystals from dissolved quercetin. Crude 

quercetin possessed a kinetic solubility of 0.48 ± 0.12 µg/ml in MilliQ water, while quercetin 

smartCrystals® had a kinetic solubility of 3.63 ± 0.67 µg/ml and 2.62 ± 0.26 µg/ml when stabilized 

with Tween® 80 and TPGS, respectively (Table 1). This allowed respectively a 7.56 fold and 5.46 

fold increase in kinetic solubility. This is in accordance with the fact that particle size in the 

nanometer range below 1000 nm leads to increase kinetic solubility [26].  
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Table 1: Quercetin concentration in the nanosuspensions, their kinetic solubilities and DPPH 

activities ±SD (n=3) upon formulation. 

3.4 Dissolution rate study 

Topical application is also influenced by the dissolution profile of the applied drug. Indeed, with 

faster dissolution and higher kinetic solubility, a higher concentration gradient is generated 

between dermal formulation and skin, hence more dissolved drug will be absorbed (Fick law) [57]. 

The velocity of dissolution of such water insoluble molecule like quercetin is a limiting step for its 

absorption. Decreasing particles size to the nanometer range proved to increase water solubility for 

quercetin nanosuspensions over crude quercetin, favoring an effect on their dissolution kinetics 

[32]. A faster dissolution profile is required in order to allow a rapid skin penetration of dissolved 

molecules. Quercetin molecules penetrating into skin should be immediately replaced in the dermal 

formulation by molecules fast dissolving from the nanocrystals (= depot) [58].   

The quercetin smartCrystals® dissolution profile was determined using the flow cell USP apparatus 

4 using MilliQ water as dissolution medium. To ensure a temperature near to the skin, dissolution 

kinetic was performed at 32°C for 120 minutes. 

Quercetin in its crude form required 30 min to get its highest dissolved amount of 13 ± 4.7 % (Fig. 

7). The quercetin nanosuspension stabilized with Tween® 80 showed approximately a 6 fold 

increase in the total dissolved amount compared to crude quercetin with faster dissolution profile 

theoretical
concentration 

measured 
concentration

kinetic 
solubility

saturation 
solubility 
increasing 

factor

DPPH 
activity

w/v% w/v% µg/ml
EC50 
µg/ml 

crude quercetin in milliQ 
water ---- 0.48±0.12 1 3.98

quercetin smartCrystals®

stabilized with Tween®

80 
5.00 1.41±0.34 3.63±0.67 7.56 3.72±0.08

quercetin smartCrystals®

stabilized with TPGS 5.00 1.44±0.027 2.62±0.26 5.46 3.41±0.07
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with 56.4±3.1 % in 5 min and 79.1 ± 13.7 % in 30 min (P < 0.005). Quercetin nanosuspension 

stabilized with TPGS showed a dissolution profile with 33.3 ± 2.3 % in 5 min and provided its 

highest dissolved amount in 2 hours with 94.6 ± 12.6 % (about 7.5 fold increase in dissolution 

compared to crude quercetin, P < 0.005). No significant difference was observed between quercetin 

nanosuspensions stabilized with Tween® 80 and quercetin nanosuspensions stabilized with TPGS 

dissolution profiles. 

 

Fig. 7: Dissolution profiles of crude quercetin/quercetin smartCrystals® nanosuspensions stabilized 

with Tween® 80 and TPGS.  

Quercetin dissolved percentage normalized to total quercetin quantity ±SD (n=3), t-test and Kolmogorov-
Smirnov test showed significant difference between crude quercetin and quercetin smartCrystals®, * = P < 
0.05, ** = P < 0.01 and *** = P < 0.005. 
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3.7 Hydrogen donating ability in vitro by 2, 2-diphenyl-1-picrylhydrazyl 

(DPPH) 

To evaluate the antioxidant activity of quercetin, the in vitro antioxidant assay with DPPH was 

used. This molecule, carrying a free radical on its hydrazine position, allows compounds exposing 

antioxidative effect to react with [59]. DPPH in its radical form has a strong absorption band at 517 

nm. The absorbance at this wavelength will be diminished if the molecule reacts with an 

antioxidant. When quercetin in methanol was added to DPPH methanolic solution, a linear 

absorbance decrease was observed from 1 µg/ml to 6 µg/ml and then reached its plateau activity 

(data not shown). The DPPH test was performed on quercetin nanosuspensions in order to 

determine its activity and whether the formulation affected quercetin free radical activity. 400 µM 

DPPH solution was used as positive control representing 100% free radical activity or 0% 

inhibition. EC50 was compared between crude quercetin and quercetin smartCrystals® stabilized 

with Tween® 80 and TPGS. 

Results of antioxidative activity of quercetin smartCrystals® stabilized with Tween® 80 and TPGS 

were 3.72 ± 0.08 and 3.41 ± 0.07 µg/ml respectively (Table 1). The EC50 values lower than 3.98 

µg/ml (crude quercetin) may be attributed to the larger reacting surface of quercetin smartCrystals® 

compared to crude quercetin, hence providing a greater quantity of quercetin in the DPPH reaction. 

This can be also explained by a potentiating effect of quercetin with stabilizers, as controls with 

just stabilizers were not active [60]. 

 3.8 Cellular cytotoxicity  

To assess the safety of quercetin smartCrystals®, a cytotoxicity study on VERO cells was 

performed. Cells were incubated with quercetin smartCrystals® with increasing concentrations of 

quercetin (5, 15, 25 and 50 µg/ml). This concentration range was tested before on crude quercetin 

and proved to protect HaCaT cells from a UVB dose of 10 mJ/cm2 [5]. 

After 24 h, a MTT assay was performed to determine the cell viability thanks to the evaluation of 

the mitochondrial succinate dehydrogenase activity. Interestingly, crude quercetin and quercetin 

smartCrystals® showed the same cell survival rates as the control of non-treated cells (representing 

the 100 % of cell viability) (Fig. 8, a). T-test was performed to compare the different formulations 
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and no statistical difference was observed (P > 0.05), except in case of quercetin smartCrystals® 

stabilized with Tween® 80, where the lowest viability was observed (83 ± 15.5 % viable cells at 50 

µg/ml) (P < 0.05). To note, the influence of the stabilizers alone was evaluated and revealed no 

implication of such molecules on cellular viability. In the range of concentrations tested, no 

apparent toxicity for quercetin smartCrystals® stabilized with TPGS was observed (statistically 

indifferent from crude quercetin at the same concentration). Based on these results, quercetin 

smartCrystals® stabilized with TPGS were regarded safe up to 50 µg/ml concentration on Vero 

cells. 

3.9 Protection against hydrogen peroxide induced cellular toxicity 

After the determination of the safety of quercetin smartCrystals® stabilized with Tween® 80 and 

TPGS (Fig. 8 a), the protective effect of quercetin against the cellular viability due to H2O2 

intoxication was evaluated using MTT (Fig. 8, b). 50 µg/ml of crude quercetin or quercetin 

smartCrystals® were added to cells 4 hours before the exposure to H2O2. The increase of cellular 

viability with quercetin pretreatment reflects the antioxidant activity of quercetin. Interestingly, 

H2O2 exposure decreased the percentage of viable cells to 45 ± 9.5 %, whereas, the pretreatment 

with crude quercetin significantly protected the cells form H2O2 intoxication (96 ± 11 %) (Fig. 8, 

b) (P < 0.005). At the same level, quercetin smartCrystals® stabilized with Tween® 80 and TPGS 

were able to show cellular protective actions against H2O2 with viable cells percentage of 68 ± 6.8 

% and 65 ± 6.3 % respectively (Fig. 8, b). Both results were significantly different from H2O2 

control cells (P < 0.05). The weaker protective ability observed with quercetin smartCrystals® in 

comparison to crude quercetin may be explained by the change in the polymorphic form of 

quercetin [55]. Nevertheless, it is important to note that the solubility improvement afforded by 

quercetin smartCrystals® stabilized allows to overcome this weaker activity.  
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Fig. 8: Cellular toxicity (a) and cellular protective effect on H2O2 exposure (b) of quercetin and 

quercetin smartCrystals®  

a) Effect of crude quercetin and quercetin smartCrystals® stabilized with Tween® 80 and TPGS on viability 
of Vero cells. ±SD (n=3) after 24 hours treatment. b) Protective effect of crude quercetin and quercetin 
smartCrystals® stabilized with Tween® 80 and TPGS on viability of Vero cells after the exposure to 10 mM 
of H2O2 (T-test P values ˃ 0.05, no statistical difference between the data).   

3.10 Quercetin smartCrystals® incorporation into nonionic gels and their 

stability in gel formulation  

With the final goal of a topical application, Quercetin smartCrystals® stabilized with Tween® 80 

and TPGS were formulated within two type of gels: Lutrol® F127 and HEC. These two gelling 

agents are widely used in dermal and cosmetic applications as permeability enhancers. The main 

scope was therefore to reach a certain permeation level, where quercetin can exert its antioxidative 

effect on viable keratinocytes and at the same time can be associated to a formulation with suitable 
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viscosity for the topical application. As an example, Lutrol® F127 (reversible thermogel) showed 

6.4, 7.5, and 19.5 fold higher permeation coefficients for 5-aminolevulinic acid (treatment of 

actinic keratosis in photodynamic therapy) on human stratum corneum compared to the German 

Pharmacopeia Dolgit®, Basisscreme DAC, and to water containing hydrophilic ointment [61]. It 

was also proved to give superior percutaneous absorption in rats for indomethacin (in 20% (w/w) 

Lutrol® F127 hydrogel) [42] as well as with other drug as the anti-cancer doxorubicin [62]. 

Advantageous topical application was also observed using HEC (nonionic water-soluble polymer 

that possesses thickening abilities) with the antibiotic vancomycin for wound treatment [41]. The 

introduction of propylene glycol to the HEC based formulation of cidofovir (anti-viral drug) 

increased its transdermal delivery form 0.2% to 2.1% [63]. 

In this study after their formulations, gels including smartCrystals® were diluted with milliQ water 

in order to control the size, polydispersity index and zeta potential of the formulated smartCrystals® 

using PCS (Fig. 9). PCS is not the most adapted method for the visualization of smartCrystals® 

behavior upon their association to gel, however, this should provide information to which extent 

incorporation into gels can cause smartCrystals® aggregation and affect the stabilizing charge. 

Here, smartCrystals® incorporated to HEC gels showed larger sizes with both stabilizers Tween® 

80 (651 nm, PDI 0.33) and TPGS (666 nm, PDI 0.42) (Fig. 9, a) compared to Lutrol® F127 based 

gels: (378 nm, PDI 0.20) and (399 nm, PDI 0.30) for quercetin nanosuspensions stabilized with 

Tween® 80 and TPGS, respectively (Fig. 9, a). The increase in smartCrystals® particles size upon 

their association to gels compared to smartCrystals® alone can be linked to the presence of Lutrol® 

F127 and HEC molecules at the surface of stabilized smartCrystals®. Mun et al., described a 

retardation in the diffusion of PEGylated nanoparticles because of the presence of HEC polymers 

using NanoSight nanoparticle tracking analysis, and evidenced an interaction between PEG chains 

and HEC polymers [64].  This could be the case for quercetin smartCrystals® stabilized by Tween® 

80 and TPGS (PEG containing stabilizers). The presence of HEC molecules interacting with PEG 

chains at the surface of smartCrystals® could led to the observed size increase. In the same way, 

hydrophilic interactions between PEG moieties (from the surfactant stabilized smartCrystals® and 

the Lutrol® F127 molecules) could happen and could be correlated to the previously evocated size 

and zeta measurement modifications with smartCrystals® after their association to Lutrol® F127 

gel [65]. Indeed, we observed a decrease in the zeta potential values for smartCrystals® associated 

to gels compared to smartCrystals® alone (zeta potential: -27 mV vs. -4 mV for smartCrystals® 
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stabilized by Tween® 80 and -23 mV vs. -4 mV for smartCrystals® stabilized by TPGS). This 

decrease can be explained both by (i) the presence of gels molecules at smartCrystals® surface 

(leading to a shift of the plan of shear to a greater distance thus causing a reduction in the measured 

value). (ii) To a change in the dynamic electrophoretic mobility of the smartCrystals®. In contrast 

to smartCrystals® alone, zeta potential values in the gels were higher in 50 µS/cm water compared 

to original stabilizer solution. This can be due to the readsorption of the stabilizer molecules found 

in the original stabilizer solution on the diffuse layer of the polymers (HEC, Lutrol® F127), thus 

decreasing the measured zeta potential.  
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Fig. 9: Quercetin smartCrystals® associated to nonionic gels results PCS 

Quercetin smartCrystals® formulated into HEC 1.7 w/w% gel and Lutrol® F127  16.7 w/w% gel, a) average 
particles size and polydispersity index (PDI)  b) Zeta potential (absolute value). 

Regarding the stability of quercetin nanosuspensions associated to gels (Fig. 10, a and b), at day 0, 

nanosuspensions associated to HEC gels showed higher size and PDI results compared to 

nanosuspensions associated to Lutrol® F127 gels. At day 90 at 40°C, nanosuspensions associated 

to both gels showed particle sizes above 400 nm and PDI above 0.31. Sizes were 568 nm and 469 
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nm for nanosuspension stabilized with Tween® 80 (Fig. 10, a) and 419 nm and 598 nm for 

nanosuspension stabilized with TPGS ((Fig. 9, b) with HEC and Lutrol® F127 respectively. Values 

were about 200 nm higher than that of nanosuspensions alone at the same temperature (Fig 5, a: 

381 and 389 nm with Tween® 80 and TPGS), which indicates that 40°C is not a suitable storage 

temperature for both gels. 

At day 90 at 25°C, quercetin nanosuspension stabilized with Tween® 80 presented higher size 

values than that of nanosuspension stabilized with TPGS (481 nm, PDI = 0.37 vs. 342 nm, PDI = 

0.33) for both HEC gel and (474 nm, PDI = 0.34 vs. 352 nm, PDI = 0.33) Lutrol® F127 gel. By 

referring back to nanosuspension alone at the same temperature, the size increase with 

nanosuspension stabilized with Tween® 80 after the gel association is more pronounced (from 343 

nm to 481 nm and 474 nm) compared to nanosuspension stabilized with TPGS (340 nm to 342 and 

352 nm). This result indicates that nanosuspension stabilized with TPGS presented an increased 

stability in gels compared to nanosuspension stabilized with Tween® 80.  

Lastly excluding values at 40°C, all gel formulations after 90 days, smartCrystals® size exposed 

after dilution were less than 500 nm and PDI values  0.4, which indicates acceptable homogeneity 

of the formulated gels (for dermal application). However, the preferred storage condition seems to 

be 25°C for gel formulations, and this seems adequate to a cosmetic use. To conclude, TPGS seems 

to allow an increased stabilization of quercetin nanosuspensions in the gel formulations compared 

to Tween® 80. 
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Fig. 10: Stability results of (a) quercetin smartCrystals® stabilized with Tween® 80 incorporated into 

nonionic gels, (b) quercetin smartCrystals® stabilized with TPGS incorporated into nonionic gels 

PCS diameter and PDI of a) quercetin smartCrystals® stabilized with Tween® 80 incorporated into HEC and 
Lutrol® F127 nonionic gels. b) quercetin smartCrystals® stabilized with TPGS incorporated into HEC and 
Lutrol® F127 nonionic gels (storage at 4°C, 25°C, and 40°C.) 

4. Conclusion 

Quercetin second-generation nanocrystals (smartCrystals®) were successfully formulated allowing 

a decrease in both the stabilizer amount required (0.5%) as well as in  time of preparation process 

compared to previous studies [34]. Among the five tested stabilizers, quercetin smartCrystals® 
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stabilized with Tween® 80 and TPGS had the smallest particle size with a short milling time (5 

min). Produced quercetin smartCrystals® possessed higher kinetic solubility and dissolution 

velocity compared to crude drug (7 fold) and retained antioxidative activity. Moreover quercetin 

smartCrystals® proved physical stability over three months in nanosuspensions at 4°C, 25°C and 

40°C. Interestingly, a higher antioxidative ability was observed with TPGS stabilized 

smartCrystals® on DPPH assay (3.14 µg/ml instead of 3.98 µg/ml with crude quercetin), in addition 

to a safe profile and protective activity on Vero cells at a concentration up to 50 µg/ml with retained 

activity against hydrogen peroxide toxicity. TPGS therefore proved to be superior stabilizer for 

quercetin smartCrystals®. These results are promising and propose TPGS as a novel stabilizer for 

nanocrystals, which, as a derivative of vitamin E, is well adapted for a topical application. With 

this objective in mind, quercetin nanosuspensions were incorporated into Lutrol® F127 and HEC 

gels. Quercetin dermal gels were stable at 25°C for 90 days which is coherent to a daily topical 

application and evidence the interest of our new formulation as a new antioxidant cosmetic product  
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Supplementary data 

 

Supplementary Table 1: Summary of quercetin smartCrystals® with Tween® 80 and TPGS average 

particle size and PDI in the steps of preparation, lyophilisation and association to nonionic gel
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Supplementary Table 2: Chemical structure of quercetin and the stabilizers used for the preparation of 

quercetin smartCrystals® 
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Chapter two: Quercetin lipid nanocapsules 

Preface  

In this chapter, the second quercetin formulation approach is presented. Lipid nanocapsules is an 

interesting formulation with various particle size depending on excipient composition [1]. 

Moreover, adaptations of this formulation can be established to improve the encapsulated drug 

loading [2, 3]. The choice of this formulation is based on the fact that the drug is encapsulated 

within the nanocapsules, which is good for quercetin sensitivity to light. Even more, their lipidic 

nature and small size could confer good affinity to skin lipophilic character and enable an occlusive 

effect when applied that in turns can increase quercetin skin penetration [4, 5].  

In this chapter, quercetin lipid nanocapsules were developed applying several medications in the 

preparation process and excipient composition for higher quercetin loading capacity. Then, 

physiochemical characterization in terms of particle size, PDI, particles morphology, physical 

stability of lipid nanocapsules were investigated. Also the quercetin loading, encapsulation 

efficiency, antioxidant activity in vitro using DPPH assay and in vitro release studies were 

performed. X ray analysis were also performed.  

Finally, the cellular safety and protective activity of quercetin lipid nanocapsules were tested in 

THP-1 cells as a model for monocytes derived dendritic cells in inflammation conditions.  
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Abstract:  

Quercetin is a plant flavonoid with strong antioxidant and antiinflammatory properties interesting for skin 

protection. However, its poor water solubility limits its penetration and so its efficiency on skin. For this 

purpose, quercetin lipid nanocapsules were formulated implementing phase inversion technique wherein 

several modifications were introduced to enhance quercetin loading. Quercetin lipid nanocapsules were 

formulated with two particle size range, (50 nm and 20 nm) allowing a drug loading of 18.6 and 32 mM 

respectively. The successful encapsulation of quercetin within lipid nanocapsules increased its apparent 

water solubility by more than 5,000 fold (from 0.5 µg/ml to about 5 mg/ml). The physicochemical properties 

of these formulations such as surface charge, stability and morphology were characterized. Lipid 

nanocapsules had spherical shape and were stable for 28 days at 25°C. Quercetin release from lipid 

nanocapsules was studied and revealed a prolonged release kinetics during 24 hours. Using DPPH assay, 

we demonstrated that the formulation process of lipid nanocapsules did not modify the antioxidant activity 

of quercetin in vitro (92.3 %). With the goal of a future dermal application, quercetin lipid nanocapsules 

were applied to THP-1 monocytes and proved the cellular safety of the formulation up to 2 µg/ml of 

quercetin. Finally, formulated quercetin was as efficient as the crude form in the protection of THP-1 cells 

from oxidative stress by exogenous hydrogen peroxide.With its lipophilic nature and occlusive effect on 

skin, lipid nanocapsules present a promising strategy to deliver quercetin to skin tissue and can be of value 

for other poorly water soluble drug candidates.    

 

 

Key words: 

Quercetin, flavonoid, lipid nanocapsules, DPPH assay, prolonged release, cellular protection, hydrogen 

peroxide. 
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• Que-LNC stability: 28 days at 25°C
• LNC= sustained release for quercetin (during 24 hours)
• Retained antioxidant activity in vitro using DPPH
• Quercetin antioxidant properties not hindered by the 

process on THP-1 cells against H2O2

Que-LNC 20
• Size 26 nm and PDI 0.06
• Drug loading 32.0 mM

Que-LNC 50
• Size 54 nm and PDI 0.17
• Drug loading 18.6 mM

Quercetin

Labrafac ® and Cremophor ® EL

PEG ( Solutol® HS15 )

Lecithin (Lipoid ® )
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1. Introduction 

Flavonoids are plant pigments which possess physiological activities. They are found in fruits and 

vegetables such as apples [1], onions [2], strawberries [3], spinach [4] and wine [5]. Their 2-phenyl-1, 4-

benzopyrone C6-C3-C6 skeleton allows the classification of flavonoids into several groups of molecules 

regarding the presence of the C4 ketone, C3-C4 double bond, and the hydroxyl at C3. Because of an 

exceptional free radical scavenging [6], antiinflammatory [7] and immunomodulatory activities [8] 

flavonoid are believed to be very promising drug candidates. As a result, flavonoids were tested for various 

inflammatory disorders like osteoporosis [9], psoriasis [10], arthritis [7], and other cardiovascular diseases 

[5]. Their immunomodulatory functions were highlighted while investigating anti-cancer activity [11, 12]. 

The main reason for the diversity of flavonoids physiological actions is their very strong antioxidative 

properties and the capability to scavenge free radical species and inhibit lipid peroxidation in vitro [13].  

Quercetin (3,3′,4′,5,7-pentahydroxyflavone) is one of the strongest antioxidants among flavonoids [14, 15]. 

In regards to systemic drug delivery, quercetin presented the highest inhibition of free radical-induced 

membrane lipid peroxidation, when compared to other flavonoids such as hesperetin, rutin, and naringenin 

[15]. Quercetin was also extensively tested in cancer therapy especially in trastuzumab-insensitive breast 

cancer [16, 17], prostate cancer [18], colon cancer [19], gastric carcinoma [20], squamous-cell carcinoma 

of head and neck origin [21] and chemosensitizing activity in multidrug resistance [22] with interesting 

results. This flavonol demonstrated metal chelating abilities [23] and protected mice hepatic tissue from 

sodium fluoride induced hepatotoxicity [24, 25], Quercetine also had positive effects on myocardial 

infracted rats by inhibiting mitochondrial lipid peroxidation and increasing mitochondrial marker enzymes 

and antioxidants [26].   

Quercetin also holds great promise for topical application, as it shows strong protective effect against UV-

induced lipid peroxidation [27] and proved to be effective on human keratinocytes with anti-ageing activity 

and skin rejuvenation capability [28]. Quercetin, dissolved in a mixture of ethanol, propylene glycol and 

water, was applied topically on hairless mice before the exposure to UV irradiation and showed wrinkle 

diminishing ability and an increase in collagen content with an increase in glutathione and a decrease in 

thiobarbituric acid reactive substances [29]. However, because quercetin possesses a poor water solubility, 

instability and very low skin permeability in its crude form [30], the development of adapted formulations 

should be investigated in order to deliver the effective dose of quercetin to skin tissue (epidermis). In this 

context, nanoformulations, such as nanostructured lipid carriers, nanoemulsions and liposomes have the 

potential to deliver poorly water-soluble drugs to skin tissue [31-34]. Among nanoformulations developed, 

lipid nanocapsules (LNC), prepared by a phase inversion dependent process, are spherical vesicles that can 

be formulated with selected size depending on excipients percentage with a high monodispersity [35, 36]. 
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Many hydrophobic drugs (taxane, etoposide, docetaxel, paclitaxel, tamoxifen), but also hydrophilic (nucleic 

acids, insulin, peptides ...) and even amphiphilic compounds (amiodarone) were successfully incorporated 

into LNC [37-46]. The lipophilic composition of these particles along with their higher skin occlusive effect 

[47] highlight their applications for the improvement of topical delivery of drugs. In this way, quercetin 

lipid nanocapsules were previously prepared by Barras et al in 2009, but quercetin drug loading was limited, 

which is not sufficient for pharmacological application [48].  

In this study, 20 nm and 50 nm LNC formulations were modified to improve quercetin drug loading by 

using novel excipient and a pre-solubilization step of quercetin in ethanol [44]. Physicochemical 

characterizations such as size, polydispersity index (PDI), surface charge, drug loading (DL), and 

encapsulation efficacy (EE) of quercetin were performed. This evidenced that 20 nm LNC efficiently 

encapsulated quercetin with a drug loading of 32.0 mM.  X-ray diffractograms of crude quercetin and 

quercetin nanocapsules were recorded and compared to determine the influence of formulation on quercetin 

crystalline nature. Quercetin nanocapsules were then characterized to verify their size and spherical shape 

(TEM). Quercetin in vitro antioxidant activity was determined by DPPH assay to validate the preservation 

of quercetin activity after formulation. Finally, regarding a dermal application, the excessive immune 

response is a dominant feature of chronic inflammatory skin disorder such as psoriasis and in response to 

UV irradiation [49, 50]. As a consequence to chronic inflammation an additional group of dermal dendritic 

cells coming from monocytes and called monocytes-derived dendritic cells is activated [51, 52].  Therefore, 

quercetin interest against oxidative stress was tested on monocytic cell line (THP-1). First, the cellular 

toxicity of quercetin LNC formulations on THP-1 was determined via XTT assay. Second, the protective 

effect of these formulations against H2O2 induced oxidative stress was established on the same cellular 

model.  

Lipid nanocapsules hold great promise for the topical delivery of quercetin as a UV sunscreen or even in 

the supportive treatment of inflammatory skin disorders such as psoriasis. 

2. Materials and methods  

Quercetin aglycone was purchased for Sigma-Aldrich (Sigma-Aldrich Chimie, France). Cremophor® EL 

(polyoxyl 35 castor oil) and Solutol® HS 15 (a mixture of free polyethylene glycol 660 and polyethylene 

glycol 660 hydroxystearate) were gift from BASF (Ludwigshafen, Germany). Lipophillic Labrafac® WL 

1349 (caprylic acid triglycerides) and Lipoid® S75-3 (soybean lecithin at 69% of phosphatidylcholine) were 

kindly provided by Gattefosse® (Saint-Priest, France) and Lipoid® (Ludwigshafen, Germany) respectively. 

Because of the complex chemical composition of the mixtures, brand name will be used throughout the 

article and any amount indicated in the formulation model represents the whole mixture regardless of its 
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constituents. NaCl was provided from Prolabo® (Fontenay-sous-Bois, France), MilliQ water was obtained 

by the Milli® RO System (Millipore, Paris, France). 2,3-Bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-

tetrazolium-5-carboxanilide salt (XTT) and 2’,7’ –dichlorofluorescin diacetate (DCFDA) were purchased 

for Sigma-Aldrich (Sigma-Aldrich Chimie, France). All HPLC chemicals and buffer components were 

purchased from Sigma-Aldrich (France). 

2.1 Preparation of quercetin loaded lipid nanocapsules (que-LNC) 

The phase inversion method reported by Heurtault et al in 2002 was improved for the preparation of 

quercetin lipid nanocapsules with the addition of Cremophor® EL to increase the solubility of quercetin 

within formulation [36] (Table 1). In brief, all the LNC excipients were mixed together along with 

quercetin. Magnetic agitation was kept at 300 rpm during the whole process. Temperature was recorded 

during the whole preparation process with HI98501 Checktemp® digital thermometer (Hanna Instruments, 

USA). A first homogenization step of the mixture was established by heating up to 85°C. At the end of this 

homogenization step, 500 µl of absolute ethanol was added to the mixture. After three heating and cooling 

cycles (65°C – 85°C), 5.5 ml of milliQ water at 4°C was added to the mixture at the transition phase. Lastly, 

quercetin lipid nanocapsules (que-LNC) were left to cool down to room temperature under agitation. Blank 

lipid nanocapsules (blank-LNC) were prepared by the same procedure without quercetin. 

  

 

Table 1: Chemical composition of original lipid nanocapsules (Heurtault et al) and quercetin modified lipid 

nanocapsules (w/w %).  

Composition (w/w%)

Solutol® Cremophor® Labrafac® NaCl Lipoïd® Quercetin MilliQ

HS 15 EL WL 1349 S75-3 water

Original formula for 50 

nm LNC
16.92 20.56 1.78 1.50 59.24

Modified formula for 

50 nm LNC
5.00 15.00 20.56 1.78 1.50 2.85 56.16

Original formula for 20 

nm LNC
38.68 17.36 1.78 1.50 40.68

Modified formula for 

20 nm LNC
14.50 29.00 16.60 1.70 1.40 3.23 36.80
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2.2 Photon correlation spectroscopy and electrophoretic mobility 

measurements 

20 µl of que-LNC were diluted to 1000 µl by milliQ water and characterized for hydrodynamic diameter 

and polydispersity index (PDI) using Zetasizer NanoZS (Malvern Instruments, UK). Zeta potential was 

measured by transferring 800 µl of diluted lipid nanocapsules suspension to Disposable Capillary Cell 

(Malvern Instruments, UK). All measurements were performed in triplicate. 

Que-LNC and blank-LNC were divided into three groups immediately after preparation and stored at 4, 25, 

37 °C respectively, samples are taken at day 0, 7, 14 and 28 and tested for average particle size, PDI, and 

zeta potential as described above. 

2.3 Transmission electron microscopy  

Transmission electron microscope (TEM) analysis was performed with TEM Jeol 1200EXII, (Jeol.Ltd, 

Tokyo, Japan) provided with a 4k/3 kelopixels quemesa Camera (Olympus, Japan) and uncoated carbon 

TEM grids Type CU formar carbon 3 MMM (Agar Scientific, UK). 5 µl of que-LNC were incubated 30 

minutes at room temperature then images were taken using a measure IT software.  

2.4 X ray analysis 

X-ray diffractograms of crude quercetin and que-LNC were recorded using D8 Advance LA Cu 1.5406 Å 

Bruker axs (Burker, Karlsruhe, Germany) equipped with a parafocusing geometry circle of Bragg Brentano 

and generator (40kv 40mA). A solid detector lynx eyes 1D is used for the sample detection, the test was set 

from 2 to 70 θ angle at a fixed detection velocity,  

2.5 HPLC analysis 

The chromatographic analysis of quercetin was performed on LC6-2010HT (Shimadzu, Kyoto, Japan) 

using a C18 column Prontosil (120-5-C18 H5.0 µm, 250 ×4.0 mm) as stationary phase. The detection was 

carried out using a UV lamp (UV-VIS detector, Shimadzu, Kyoto, Japan) at 368 nm [53]. For the 

determination of quercetin encapsulation efficiency and drug loading within LNC (section 2.6), a mobile 

phase consisting of 10% methanol, 80% acetonitrile and 10% of phosphoric acid solution 0.2% at pH=1.9 

was used. The flow rate was kept at 1 ml/min during the 15 min run time analysis. Serial dilutions of known 

concentrations of quercetin in methanol were used to make the calibration curve. The method showed 

linearity over a concentration range from 62.5 to 500 µg/ml (r2 = 0.9998 and %RSD = 2.48). For the 

detection of quercetin in vitro release from que-LNC (section 2.8), another calibration curve of quercetin 
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was used from 0.2 to 4 µg/ml in PBS buffer pH 7.4 with Tween® 20 (2%) and a gradient flow rate according 

to Hatahet et al [54].  

2.6 Encapsulation efficacy (EE) and drug loading capacity (DL) 

Quercetin encapsulation efficacy (EE) was determined by filtering formulated que-LNC through 0.2 µm 

pore size filters (Sartorius Stedim Minisart®, Sartorius AG, Germany). Then, 50 µl of the filtered que-LNC 

were diluted with methanol and quercetin concentration was quantified by HPLC (section 2.5). 

Encapsulation efficiency and drug loading were calculated with the equations below: 

Equation 1:              0%#1*2345()1*678 = 9 :;<>?<@AB*:;CB@A@D*
EAFAG*FHCI<*<J?AFA<B@I*:;CB@A@DK LMM 

For the comparison with previous reports [48], Quercetin loading within the lipid nanocapsules is expressed 

in mM and was calculated based on HPLC (section 2.5). 

Equation 2:              N)&4OP#24'(3)*$QQ(&4&R*678 = 9* CST;B@*TU*<B?CFI;EC@<G*:;<>?<@ABCST;B@*TU*:;<>?<@AB*ABA@CAEED*CGG<G*K LMM 

2.7 Hydrogen donating ability in vitro by 2, 2-diphenyl-1-picrylhydrazyl (DPPH) 

2, 2-diphenyl-1-picrylhydrazyl (DPPH) is a molecule with free radical at the hydrazine position where 

compounds possessing antioxidative activity can react with. DPPH in its radical form is known to have a 

strong absorption band at 517 nm. The absorbance at 517 nm diminishes when it reacts with an antioxidant 

[55]. The reaction ratio between quercetin and DPPH is 3.1 (V/ V). 400 µM DPPH solution was regarded 

as positive control and donated 100% free radical or 0% inhibition. Blank was methanol without neither 

DPPH nor quercetin. DPPH test was performed on que-LNC in order to determine the activity of 

encapsulated quercetin after formulation. DPPH percentage activity is then calculated according to the 

equation 3:  

Equation 3:                  0VV.*7*4&'(W('R = :;CB@A@D*TU*C?@AX<*:;<>?<@AB**
F>C?@A?CEED*<B?CFI;EC@<G*:;<>?<@AB × LMM 

2.8 In vitro release study  

The concept of in vitro release study is attending a concentration gradient between que-LNC and a receptor 

medium when diffusion from quercetin formulation toward the receptor medium occurs. This diffusion is 

determined in function of quercetin concentration and the effect of formulation on quercetin movement 

through a nitrocellulose dialysis membrane. For this, a 12-14 MWCF Spectra/Pore® Dialysis Membrane 

(Spectrum laboratories INC, USA) was selected along with a receptor medium composed of 100 ml PBS 

at pH 7.4 with Tween® 20 (2%) that maintain sink conditions [56]. The experiment temperature was 37°C. 

In order to evaluate the effect of LNC particle size on the release of quercetin, que-LNC 20 and que-LNC 

50 volumes were adjusted in order to contain the same concentration of quercetin. A solution of quercetin 
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containing the same quantity in propylene glycol was used as the positive release control. Samples were 

withdrawn at 5, 15, 30 minutes and then 1, 2, 3, 4, 5, 6 and 24 hours. Quercetin concentration was calculated 

by HPLC method (section 2.5).  

2.9 Cell culture  

Acute monocytic leukemia cell line (THP-1) was a kind gift from Professor Francisco Veas (IRD, 

Montpellier). Cells were cultured with Roswell Park Memorial Institute medium (RPMI) supplemented 

with 10% fetal bovine serum and 1% (v/v) penicillin/streptomycin by life technologies™ (Carlsbad, 

California, USA). Cells were seeded in Corning® 150 cm2 at a density of 106 cell/mL in Canted Neck Flask 

with Vent Cap and incubated in humidified Heraeus® BB6220 incubator (Thermo Scientific™, Waltham, 

Massachusetts, USA) with at 5% CO2 at 37°C. Cell replication was twice a week when cells attend 

confluence.  

2.10 Cellular toxicity  

For cellular toxicity study, THP-1 cells were seeded at cellular density of 300,000 cells/ml in flat bottom 

24 well plate from Corning® Costar® cell culture plates (Corning incorporated, New York, USA).  

Following this, cells were directly treated with crude quercetin and que-LNC at a concentration of 0.5, 2 

and 5 µg/ml for 72 hours. Crude quercetin and que-LNC were diluted with Dulbecco's phosphate-buffered 

saline (DPBS) from life technologies™ (Carlsbad, California, USA). Blank-LNC were used as a control to 

brighten up the cellular activity of quercetin. Control cells were treated with buffer and considered 100% 

viable cells. Afterwards, cellular viability was tested using 2,3-Bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-

tetrazolium-5-carboxanilide  salt  (XTT) assay [57]. XTT assay differs from MTT assay that, it does not 

require a dissolving step for formazan crystals. 50 µl of XTT reagent were added to each well for 3 hours, 

and then absorbance was measured at 450 and 750 nm using Multiskan™ GO Microplate 

Spectrophotometer (Thermo Scientific™, Waltham, Massachusetts, USA). Cellular viability percentages 

were presented restively to control non-treated cells.  

2.11 Quercetin protective effect on THP-1 cells against oxidative stress  

THP-1 cells were seeded at 300,000 cells/ml in 24 well/plate and treated with crude quercetin or que-LNC 

for 24 hours. Then, cells were loaded with 2’,7’ –dichlorofluorescein diacetate (DCFDA reagent) (1 µM in 

RPMI without phenol red) for 60 minutes. DCFDA is a fluorogenic dye that is cell permeant. By 

internalization into cells, is DCFDA is deacetylated by cellular esterases to a non-fluorescent compound, 

which is later oxidized by ROS into 2’, 7’ –dichlorofluorescein (DCF), a highly fluorescent compound [58].  

Next, oxidative stress was initiated using H2O2 (1 mM) for 120 minutes. After cellular exposure, cells were 
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collected with centrifugation and supernatant is discarded. Cells were then lysed with Tris cell lysis buffer 

(200 µl) for each well. After that, cell lysates were transferred to 96 wells black plate with clear bottom 

(Corning®, Massachusetts, USA). Finally, DCF is detected at maximum excitation and emission spectra of 

485 nm and 525 nm using TriStar LB 941 from Berthold Technologies (Chollerstr, Switzerland).  

2.12 Statistical analysis 

Statistical analysis of the in vitro release study, cellular cytotoxicity and cellular protective activity was run 

using with Microsoft Excel 2013 tool Pack (Microsoft Corporation, USA). A Two-sample t-test with 

unequal variances was used to verify the significant difference between data. P expresses the significant 

value where * = P < 0.05, ** = P < 0.01 and *** = P < 0.005 respectively. 

 

3. Results  

3.1 Physicochemical characterizations of quercetin lipid nanocapsules 

3.1.1 Average particle size and surface charge 

Table 12 shows the average particle size and the zeta potential values for quercetin lipid nanocapsules 50 

nm (que-LNC 50) and quercetin lipid nanocapsules 20 nm (que-LNC 20). The average particle size of que-

LNC 50 was 54 ± 3 nm and 26 ± 3 nm for que-LNC 20. The particle size was similar in blank-LNC and 

que-LNC in both formulations: 46 nm vs. 54 nm for LNC 50 and 24 nm vs. 26 nm for LNC 20. Zeta 

potential values were -7.4 ± 4 mV for que-LNC 50 and -2.3 ± 0.8 mV for que-LNC 20. The introduction of 

Cremophor® EL and the use of ethanol in the preparation did not affect neither the particle size nor the zeta 

potential of the resulted formulations (data not shown) [36, 48].  



Chapter Tow: Quercetin lipid nanocapsules 
 

157 
 

 

Table 2: Physicochemical properties of formulated quercetin lipid nanocapsules.  

PDI is the polydispersity index, DL is the drug loading within LNC formulations relative to lipid excipients, EE is the 

encapsulation efficacy and DPPH is antioxidant activity of encapsulated quercetin in reaction with DPPH (n=3). * 

Particle size and PDI was measured with photon correlation spectroscopy. 

 

3.1.2 Formulations stability  

Que-LNC stability was monitored over 28 days at three temperatures (4°C, 25°C and 37°C). Fig. 1 

represents the average particle size and the PDI for que-LNC formulations at day 0, day 14 and day 28. 

Que-LNC 50 was stable over the three temperatures for the tested period as particle size was 58 ± 14 nm at 

day 28 (37°C) compared to 54 ± 3 nm at day 0. PDI stayed inferior to 0.2 during the whole period, whatever 

was the temperature. Que-LNC 20 was stable only at 4°C and 25°C, while at 37°C a dramatic increase in 

particle size to 75 ± 2 nm and PDI to 0.24 ± 0.02 that occurred at day 28 compared to 26 ± 3 nm and PDI 

0.06 ± 0.001 at day 0.  

Formulations 

Crude 
quercetin

Blank
LNC

Quercetin 
LNC 

Blank 
LNC

Quercetin 
LNC

50 nm 50 nm 20 nm 20 nm

Size* (nm) 3976 ± 434 46 ± 2 54 ± 3 24 ± 2 26 ± 3

PDI 0.796 ± 0.186 0.09 ± 0.015 0.17 ± 0.002 0.06 ± 0.015 0.06 ± 0.001

Zeta potential  (mV) - 6.7 ± 3 -7.4 ± 4 - 1.9 ± 1.2 -2.3 ± 0.8

DL (%) 2.62 ± 0.1 2.79 ± 0.2

EE (%) 96.4 ± 1.2 90.9 ± 3.5

Total DL (mM) 18.6 ± 0.6 32.0 ± 2.4

DPPH activity (%) 92.3 ± 4.4 65.1 ± 5.7
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Fig. 1: Stability results for a) que-LNC 50 and b) que-LNC 20 for one month at 4°C, 25°C and 37°C (n=3).  

Stability is monitored with average particle size (columns) and PDI (x, r and �) changes upon storage. 

 

3.1.3 Electron microscopic examination  

TEM images were taken for both LNC formulations (Fig. 2). Particles were in spherical shape with no 

difference in morphology for que-LNC compared to blank-LNC. Particle size was in the same range of the 
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one recorded by photon correlation spectroscopy (Fig. 1). Particle size and shape are consistent with original 

LNC formulation [36]. 

 

Fig. 2: TEM images for a) blank-LNC 50, b) que-LNC 50, c) blank-LNC 20 and d) que-LNC 20. 

 

3.1.4 Crystallinity examination  

X-ray diffractograms are presented in Fig. 3 for crude quercetin, que-LNC 50 and que-LNC 20 respectively. 

The X-ray diffractogram of crude quercetin revealed its crystalline nature (Fig. 3 left). The X-ray 

diffractogram of quercetin after ethanol evaporation reveals the interaction of quercetin with the ethanol 

and indicates changes in the diffractogram, which could highlight a possible polymorphic change. Both 

que-LNC formulations showed a broad peak centered at 20 θ, which indicates the disorder lattice of the 

capsules and the amorphous state of its composites (Fig. 3 middle and right). Blank-LNC had the same 

diffractogram as their quercetin loaded counterparts (data not shown).  

3.2 Encapsulation efficacy (EE) and drug loading capacity (DL) 

Table 2 presents the encapsulation efficiency and the drug loading for que-LNC 50 and que-LNC 20 

respectively. DL and EE were calculated using equations 1 and 2 (section 2.6). DL is the amount of 

quercetin relative to total lipid excipients and was respectively 2.62 ± 0.1 % and 2.79 ± 0.2 % with que-

a) b)

LNC 50

d)c)

LNC 20 

100 nm 100 nm

50 nm 50 nm

Blank-LNC Que-LNC
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LNC 50 and que-LNC 20. EE is the measure of the experimentally encapsulated amount of quercetin 

relative to the added amount of quercetin. It was about 96.4 ± 1.2 % for que-LNC 50 and 90.9 ± 3.5 % for 

que-LNC 20. However, the DL of quercetin in que-LNC 20 was higher than the one obtained in que-LNC 

50 (32.0 ± 2.4 vs. 18.6 ± 0.6 mM).  

 

 

Fig. 3: X-ray diffractograms for crude quercetin (left), quercetin LNC 50 nm (middle) and quercetin LNC 20 

nm (right). 

3.3 Hydrogen donating ability in vitro by 2, 2-diphenyl-1-picrylhydrazyl (DPPH) 

The retained activity of encapsulated quercetin within LNC formulations was assessed in vitro using the 

reaction with DPPH radical. Table 2 shows the DPPH percentage activity of quercetin calculated with 

equation 3 (section 2.7). Active quercetin percentage of total encapsulated quercetin was 92.3 ± 4.4 % for 

que-LNC 50 and 65.1 ± 5.7 % for que-LNC 20.  

3.4 In vitro release study 

The release study of que-LNC formulations was done in dialysis bag for 24 hours in PBS 7.4 with Tween® 

20 (2%). Fig. 4 presents the release profile of quercetin from lipid nanocapsules compared to quercetin 

solubized in propylene glycol. Both lipid nanocapsules formulation enabled a prolonged release profile of 

quercetin in comparison to the control. In contrast to the insignificant differences between que-LNC 50 and 

que-LNC 20 (P ˃ 0.05), the released amount was significantly different from control (P < 0.005).After 24 

hours, the released amount was 8.6 ± 2.3 % and 14.9 ± 4.4 % for que-LNC 50 and que-LNC 20 respectively, 

whereas 37.3 ± 1.8 % of quercetin was diffused form control solution.  
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Fig. 4: In vitro quercetin release study with que-LNC 50, que-LNC 20 and quercetin in propylene glycol (n=3).  

*** indicates a P < 0.005 according to t-Test: two-sample assuming unequal variances relative to control.  

3.5 Que-LNC toxicity on THP-1 cells  

The study of quercetin toxicity profile from 0.5 to 5 µg/ml was examined on THP-1 cells for 72 hours. Fig. 

5 shows the cellular viability results normalized to control (non-treated) cells for crude quercetin, blank-

LNC 50 and 20 and que-LNC 20 and 50. Looking at blank-LNC formulations, no difference in cellular 

viability was observed between quercetin loaded and blank formulations, which indicates that encapsulated 

quercetin did not affect THP-1 cellular viability. Crude quercetin and que-LNC 20 were similar to control 

cells at the tested concentrations (P ˃ 0.5). Que-LNC 50 was similar to control cells at 0.5 and 2 µg/ml of 

quercetin (P ˃ 0.5).  
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Fig.  5: In vitro toxicity on THP-1 cells of crude quercetin, blank-LNC formulations and que-LNC formulations 

for 72 hours (n=3).  

a) Cellular toxicity comparison between crude quercetin and que-LNC formulations * indicates a P < 0.05 according 

to t-Test: two-sample assuming unequal variances relative to control (non-treated) cells.  

b and c) Cellular toxicity for que-LNC formulations in comparison to blank-LNC, no statistical differences were 

observed between quercetin loaded LNC and blank ones. 
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3.6 Quercetin protective effect on THP-1 cells against oxidative stress 

The ability of quercetin to support immune cells under oxidative stress conditions was studied via THP-1 

cellular model in vitro. Cells were treated with either crude quercetin or que-LNC formulations at a 

concentration of 5 µg/ml then, labeled with DCFDA before the oxidative stress induction by H2O2. ROS 

were then quantified both in control (non-treated) cells (control negative) and in quercetin treated group 

(crude, LNC 50 and LNC 20). Results were compared to the ROS generated in H2O2 treated cells (control 

positive). H2O2 increased the ROS generated inside the cells (control positive) in comparison to non-treated 

cells (control negative) by 30 % (P < 0.005). Crude quercetin was able to reduce by 66 % the generated 

ROS in response to H2O2 oxidative attack (P < 0.05). Que-LNC 20 and que-LNC 50 also showed significant 

reduction in the generated ROS (P < 0.005), with a reduction of 65 % with both formulations. No significant 

difference in the ability to protect against oxidative stress between crude quercetin and the formulated one 

in the LNC was evidenced. It is worth to note that no cellular death was observed with crude quercetin and 

que-LNC under the tested experimental conditions (24 hours – data not shown).  

 

Fig. 6: In vitro antioxidant activity on THP-1 cells of crude quercetin and que-LNC formulations (n=3).  

Control negative are cells without quercetin and H2O2 treatment. Control positive are cells treated with H2O2 without 

quercetin treatment.  Fluorescent intensity was normalized to H2O2 treated group (control positive). The statistical 

analysis was comparing other conditions to the control positive (* = P < 0.05, ** = P < 0.01 and *** = P < 0.005 

respectively).  
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4. Discussion   

Quercetin is a promising drug candidate for topical applications as it possesses strong antioxidant [59-61] 

and broad antiinflammatory activities [62, 63]. These properties can be implemented in the treatment of 

skin inflammatory diseases like psoriasis [64] and in the support of skin in response to oxidative stress 

induced by UV irradiation [65]. However, crude (non-formulated) quercetin presents an essential drawback, 

which is its poor water solubility that hinders  topical penetrating capacity and hence topical efficiency [30]. 

In this regard, formulation of suitable carrier systems increasing quercetin solubility is an important strategy 

to enhance its topical effectiveness. Among them, LNC presents the triple benefit of increasing the apparent 

water solubility of quercetin, protecting it from degradation [66] and enabling a higher occlusive effect on 

the skin [31]. In addition, the small size of LNC along with their lipid nature could facilitate the delivery of 

quercetin to skin epidermis. 

Quercetin was previously formulated within LNC with limited drug loading [48]. In order to improve 

quercetin drug loading, several modifications were introduced to the LNC formulation process in order to 

attend higher affinity with LNC components and to increase quercetin slow dissolution observed with the 

original LNC excipients during the process [67]. Modifications were first the addition of Cremophor® EL 

to the formulation which allow an increase ability to encapsulate quercetin. It is worth to note also that 

Cremophor® EL has lower cellular toxicity to keratinocytes than Solutol® HS 15 conferring another 

advantage to the new formulation [68]. Then, to accelerate quercetin dissolution in the excipients matrix, 

ethanol was added at the end of homogenization step at 85°C. However, with the repetition of heating at 

85°C in the next cycles, ethanol evaporates leading to quercetin precipitation into the matrix excipients. 

Nevertheless, the precipitated quercetin has very small particles size [69, 70], which enables its fast 

dissolution into the excipient matrix.  

The particle size of que-LNC formulations and the subsequent TEM images are coherent and indicate that 

the applied modifications of the formulation and the preparation process did not alter the formation of LNC. 

Que-LNC 20 size distribution was 26 ± 3 nm, and que-LNC 50 one was 54 ± 3 nm (Table 2), and they both 

presented a spherical shape (TEM). The formulations were homogenous with a PDI inferior to 0.2 (Fig. 2). 

Quercetin loading within que-LNC 20 increased from 5.6 mM in the original formulation (Barras et al 

2009) to 32 mM and from 3.72 to 18.6 mM in que-LNC 50 (Table 2) [48]. Consequently, quercetin water 

solubility apparently increased from 0.48 µg/ml to about 8 mg/ml in que-LNC 20 and to about 5 mg/ml in 

que-LNC 50 [54]. These results present LNC as an efficient system to overcome quercetin poor water 

solubility. In accordance with the study of Barras et al [48], the higher encapsulation within the LNC 20 

(presenting higher lipid interface surface compared to LNC 50) highlights the quercetin deposition at the 

lipid/ water interface and not only inside the oily core of the capsule.  
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The stability of pharmaceutical dosage forms is an essential part of their successful design [71]. The stability 

of que-LNC 20 and que-LNC 50 was monitored for 28 days at 4°C, 25°C and 37°C. Both formulations 

were stable at 4°C and 25°C with insignificant increase in particles size and PDI less than 0.2 (Fig. 1). Only 

que-LNC 50 showed stability at 37°C. The instability of que-LNC 20 at 37°C may be attributed to the 

melting of the lipid excipients (Fig.1) and to the higher ratio of encapsulated quercetin (Table 2) compared 

to que-LNC 50 [72]. Nevertheless, this can be an advantage for topical application, as this formulation 

could start to melt and to release the encapsulated drug in contact to skin temperature (approximately 34°C) 

[73]. 

The X-ray diffractogram of crude quercetin reveals its crystalline organization (Fig. 3 lower) [74]. On the 

other hand, the X-ray diffractograms for que-LNC 20 and 50 are similar to each other and show one broad 

peak indicating the perturbed lattice of the lipid mixture forming the nanocapsules. This could come to the 

complex nature of these lipids and the presence of imperfections in the lattice linked to encapsulated 

quercetin [75]. Because of the small percentage of quercetin compared to other lipid excipients less than 

3.5 %, for this reason the exact form of quercetin within lipid nanocapsules could not be identified (Table 

1), quercetin specific peaks were not detected in LNC diffractograms [76]. 

Quercetin antioxidant activity was evaluated in vitro using DPPH assay, in order to ensure the retained 

antioxidant activity of quercetin after formulation. Quercetin retained its activity in vitro as percentage of 

active quercetin to total quercetin loaded into LNC was 92.3 % for LNC 50 and 65.1 % for LNC 20 (Table 

2). This comes in accordance to previous reports where quercetin-loaded glycerosomes showed  Y95 ± 1 

% DPPH activity in contrast to quercetin-loaded liposomes with Y87 ± 2 % DPPH activity [77].LNC as a 

carrier system enabled a sustained release kinetic for encapsulated drugs such as ibuprofen in PBS (pH 7.4) 

at 37 °C for 24 hours [41] and amiodarone during 4 days study [42]. The sustained kinetic at 37°C was also 

observed with quercetin encapsulated in que-LNC 50 and 20, with less than 15 % released for both 

formulations after 24 hours at 37°C compared to more than 30 % for control (quercetin solubilized in 

propylene glycol) (Fig. 4). Indeed, LNC 20 showed a higher percentage release than LNC 50 after 24 hours 

(14.3 % vs. 8.6 %). This could be linked first, to the presence of greater amounts of quercetin at the interface 

of que-LNC 20 compared to que-LNC 50 (due to higher drug loading 32.0 mM vs. 18.6 mM). This could 

also be explained by the melting of LNC 20 lipids at 37°C (as already highlighted in stability results) and 

the subsequent release of encapsulated drug (Fig. 1). Finally, whatever the formulation, the sustained 

release of quercetin seems favorable for topical delivery. Penetrated LNC can be a reservoir for quercetin, 

allowing it slow diffusion to skin tissue. As a result, quercetin slow release at low concentrations could 

avoid side effects related to high concentrations of quercetin such as prooxidation effects [78, 79].  

The main objective of these formulations is the enhancement of quercetin efficiency on skin benefiting 

from its antioxidant and antiinflammatory activates. These activates encourage the use of que-LNC in UV 
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sunscreen or in inflammatory skin diseases. UV exposure initiates inflammation cascade with an increase 

in the reactive oxygen species among them H2O2 in the skin tissue [80, 81]. Also, psoriasis is a chronic 

inflammatory pathology of the skin with an increase in inflammatory dendritic cells (monocytes derived 

dendritic cells) [82]. Excessive amounts of H2O2 are present during inflammation and are a major cause of 

T-cell impaired functions [83, 84], which is also observed in tumor heterogeneity and invasion [85, 86]  For 

this, the protection of skin tissue and immune cells located in the skin from excessive oxidative stress is of 

high relevance. Quercetin, which is a strong antioxidant with antiinflammatory actions, is a potential 

candidate for skin supplementation. Therefore, THP-1 cells were used as a cellular model for immune cells 

to evaluate the ability of quercetin to counteract oxidative stress induced by H2O2. 

The cellular viability after 72 hours treatment of crude quercetin and que-LNC 20 and 50 nm was 

determined (Fig. 5 a). The cellular viability were similar to control (non-treated) cells with crude quercetin 

and que-LNC 20 up to 5 µg/ml of quercetin, which indicates the safety of quercetin in the tested 

concentration (Fig. 5 a and c). Only the validity percentage with que-LNC 50 at 5 µg/ml of quercetin was 

significantly different from control group (P < 0.05) which a decrease to 70.3 % viability. However, by 

referring to blank-LNC 50 compared to quercetin loaded counterparts at the same excipients concentrations, 

no differences were observed in the viability percentage between blank-LNC 50 and que-LNC 50  (Fig. 5 

b). This indicates that the main cause of toxicity is not quercetin by itself but rather the excipients, especially 

the surfactants used in LNC preparation, as an increase amounts of Solutol® HS 15 was used in LNC 50, 

such excipient known to be more toxic than Cremophor® EL [68].  

Finally, the preserved activity of quercetin after its formulation within LNC was confirmed in comparison 

to crude form using H2O2. Exogenous H2O2 increased the endogenous ROS level in THP-1 cells by 1.4 fold 

(P < 0.005). Nevertheless, the pre-treatment with either crude quercetin or que-LNC 20 or que-LNC 50 

reduced the endogenous ROS generated by H2O2 by 2.9 fold (P < 0.05 for crude quercetin and P < 0.005 

for que-LNCs). Quercetin proved its free radical scavenging ability and protected THP-1 cells from the 

excessive amounts of ROS. This comes in accordance with previous reports about quercetin protective 

action against H2O2 on human peripheral blood lymphocytes [87] and human keratinocytes [77].  

 

5. Conclusion  

Quercetin, a natural antioxidant with poor water solubility and topical inactivity, was successfully 

formulated in optimized LNC 20 and 50. The modified formulations enabled six-fold increase in quercetin-

loaded amount and more than 5,000 times increase in its apparent water solubility. Que-LNC 20 enabled a 

higher drug loading than que-LNC 50 indicating the presence of quercetin at the interface of the capsules 
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in accordance to previous reports. Both LNC formulations were homogenous with PDI values less than 0.2 

and were stable for 28 days at 25°C. Furthermore, LNC formulations showed a prolonged release for 

encapsulated quercetin inducing no side effects. Encapsulated quercetin proved its antioxidant activity in 

vitro using DPPH assay. Interestingly, LNC formulations were shown to protect THP1 monocytes from 

oxidative stress induced by exogenous H2O2. The preserved antioxidant activity on cells holds great promise 

for skin supplementation with this natural molecule. With extremely small size distribution (26 and 54 nm), 

a lipophilic character for a better affinity to skin lipids and a strong occlusive effect to skin tissue, LNC as 

a carrier system could also hold a great interest for the dermal application of other poorly soluble molecules. 
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Chapter three: Quercetin liposomes and comparative study 

Preface  

In this chapter, the development of quercetin liposomes is presented. The use of liposomal 

formulation for quercetin is previously reported using different methods and compositions [1-4]. 

For this, we selected liposomal formulation because of its known usefulness in quercetin 

development and in order to be the reference for our comparative study with quercetin 

smartCrystals® and quercetin lipid nanocapsules.  

In the first part of this chapter, the liposomal formulation process is optimized and liposomes are 

characterized in terms of particle size, PDI, physical stability, and quercetin loading, encapsulation 

efficiency in vitro DPPH activity and in vitro release kinetics.  

In the second part, a comparative analysis of quercetin smartCrystals®, quercetin lipid 

nanocapsules and quercetin liposomes was established on two cell lines HaCaT (kératinocytes) 

and THP-1 (monocytes). The cellular safety of these formulations is evaluated and then the 

quercetin protective activity against hydrogen peroxide induced oxidative stress is done on both 

cellular models.  

Finally on the basis of the in vitro cellular experiments, two formulations were selected and 

evaluated for quercetin in vivo skin penetration capacity: quercetin smartCrystals® stabilized with 

TPGS and quercetin lipid nanocapsules 20. 
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Abstract  

Quercetin is a flavonoid with strong antioxidant and antiinflammatory activities considered as a potential 

drag candidate for skin exogenous supplementation. Nevertheless, crude quercetin suffers from poor water 

solubility and consequently topical inactivity. Therefore, quercetin formulation within a suitable system 

that overcomes its solubility limitation is a matter of investigation. Three approaches were tested to improve 

quercetin delivery to skin: liposomes, lipid nanocapsules and smartCrystals®. These nanoformulations were 

compared in terms of average particle size, homogeneity (PDI), quercetin loading and cellular interactions 

with HaCaT (keratinocytes) and TPH-1 (monocytes) cell lines. Finally, two formulations were selected for 

testing quercetin delivery to human skin in vivo using stripping test. 

Quercetin nanoformulations presented different size distribution starting from 26 nm with quercetin lipid 

nanocapsules (que-LNC 20), 179 nm with liposomes to 295 nm with quercetin smartCrystals®. The drug 

loading also varied from 0.56 mg/ml with liposomes to10.8 mg/ml with nanocapsules and 14.4 mg/ml with 

smartCrystals®. No toxicity was observed on HaCaT cells with quercetin and free radical scavenging ability 

was established at 5 µg/ml. The safety of quercetin at 5 µg/ml was further confirmed on THP-1 cells with 

efficient free radical scavenging ability. 

Finally, skin penetration with selected formulations: que-LNC 20 and quercetin smartCrystals® stabilized 

with TPGS was performed in vivo. Different behavior observed between the two formulations could led to 

different promising strategies for skin protection. On one side, quercetin smartCrystals® seems to enable 

the superficial deposition of quercetin on top of the skin, which presents a good strategy for a quercetin-

based sunscreen product. On the other side, lipid nanocapsules seem to permit quercetin delivery to viable 

epidermis that holds the promise for skin inflammatory disorders such as psoriasis.  
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1. Introduction 

Quercetin is a plant pigment that belongs to the flavonoids family and is considered as the most distributed 

flavonoid in nature [1]. Quercetin presents both antioxidant and antiinflammatory proprieties [2, 3]. 

Quercetin also presents interesting physiological activities starting from simple free radical scavenging 

abilities [4] to more complex modulation of proinflammatory cytokines release [5] and up-regulation and 

down-regulation of several pathways within the cellular system such as upregulation of hemeoxygenase-1 

pathway [6] and down-regulation of the nuclear factor kappa B pathway [7]. Unfortunately, quercetin has 

limited bioavailability due to poor water solubility, which hinders its efficient delivery to its targets within 

the human body and this can explain the inactivity of quercetin in respect to the topical application [2]. To 

circumvent this issue, quercetin formulations were explored as very interesting delivery systems for the 

protection of the skin from oxidation, inflammation, photoageing and the support of immune system and 

during wound healing process [8-10]. Among the most promising approaches, liposomes appear as an 

attractive one. 

Liposomes were first described by Bangham et al, 50 years ago as a simplified model for biological 

membranes [11]. In the beginnings of  70’s, Gregoriadis and co-workers were the firsts to encapsulate drugs 

within liposomes [12]. Regarding topical application, liposomes are promising delivery system [13] as 

observed in different researches : liposomes increased the deposition of benzocaine by 2.5 fold on artificial 

membrane [14], vitamin E by seven fold on rat skin [15]. Capture® (Dior) was the first cosmetic formulation 

based on liposomes commercialized in 1986 and then Niosomes® (L’Oréal) were introduced in 1987. 

Interestingly, quercetin was already formulated in liposomes and proved promising protective actions 

against UV oxidative damage of skin [16]. In this study, quercetin liposomes (que-Lipo) were prepared 

with dipalmitoylphosphatidylcholine and Cremophor® EL.  

We chose in this work to compare liposomes, with two others previously established nanoformulations. 

First, quercetin smartCrystals® (que-SC) were previously developed by implementing the second-

generation smartCrystals® technology then stabilized with either Tween® 80 or TPGS. [17, 18]. Concerning 

the second formulation, quercetin lipid nanocapsules (que-LNC) were formulated using phase inversion 

method to obtain a distribution size of either 20 nm or 50 nm [19] (LNC article under review). These 

formulations enhanced quercetin water solubility.  

In the first part of this article, particle size, charge, physical stability were studied and quercetin 

encapsulation efficiency, drug loading, in vitro antioxidant activity and in vitro quercetin release were 

determined for the liposomal formulation.  

Afterwards in the second part, we compared quercetin smartCrystals® and quercetin lipid nanocapsules to 

quercetin liposomes in terms of particle size observed quercetin drug loading and quercetin safety / 
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efficiency on cells. Two cellular models were selected (i) keratinocytes cell lines HaCaT cells to evaluate 

the interaction between quercetin and its formulations with skin tissue [20] and (ii) monocytes THP-1 cell 

line to evaluate the impact of quercetin on monocytes derived dendritic cells found in inflamed skin [21, 

22]. On each cellular model, the cellular viability upon the administration of crude quercetin or its 

formulations was determined. In parallel, quercetin free radical scavenging ability was assessed after the 

cellular exposure to hydrogen peroxide by the detection of reactive oxygen species (ROS) within cells. 

Finally, que-SC stabilized with TPGS and que-LNC 20 were selected to test quercetin in vivo skin 

penetration using stripping test. Indeed, que-SC seems to enable a superficial deposition for quercetin over 

skin highlighting its applicability in UV sunscreens. On the other side, que-LNC 20 could favor a deeper 

skin penetration highlighting their emphasizing its applicability in inflammatory skin disorders such as 

psoriasis, atopic dermatitis etc...  

2. Materials and methods  

Tween® 80 (polysorbate 80), TPGS (α tocopheryl polyethylene glycol 1000 succinate), Cremophor® EL 

(polyoxyl 35 castor oil) and Solutol® HS 15 (a mixture of free polyethylene glycol 660 and polyethylene 

glycol 660 hydroxystearate) were bought from BASF (Ludwigshafen, Germany). Lipophilic Labrafac® WL 

1349 (caprylic acid triglycerides) and Lipoid® S75-3 (soybean lecithin at 69% of phosphatidylcholine) were 

kindly provided by Gattefosse® (Saint-Priest, France) and Lipoid® (Ludwigshafen, Germany) respectively. 

Because of the complex chemical composition of the mixtures, brand name will be used throughout the 

article, and any amount indicated in the formulation model represents the whole mixture regardless of its 

constituents. NaCl was provided from Prolabo® (Fontenay-sous-Bois, France), MilliQ water was obtained 

by the Milli® RO System (Millipore, Paris, France). Dipalmitoylphosphatidylcholine (DPPC) was 

purchased from Avanti® (Avanti Polar Lipids, Inc., USA). Quercetin aglycone (3, 3’, 4’, 5, 7-pentahydroxy-

2-phenylchromen-4-one), 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT), 2,3-Bis-

(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide  salt  (XTT), 2’,7’ –

dichlorofluorescein diacetate (DCFDA) and all HPLC organic solvents were purchased from Sigma (Sigma 

Aldrich, France). Hydrogen peroxide 3% (Eau oxygenée Gifrer 10 volumes) was purchased from Gifrer 

(Décines-Charpieu, France) 
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2.1  Preparation of quercetin nanoformulations  

2.1.1 Preparation of quercetin liposomes (que-Lipo)  

Quercetin liposomes (Que-Lipo) were prepared using the ethanol injection technique with several 

modifications [16]. Crude quercetin powder, DPPC and Cremophor® EL were accurately weighted in the 

following ratio 0.5:9:5 (w/w). The mixture was then dissolved in 2 ml of absolute ethanol and heated to 

about 40°C. Afterwards, ethanol solution was injected into 10 ml PBS buffer at 50°C using 2 ml borosilicate 

glass syringe (Fortuna® Optima, Poulten & Graf Ltd, UK) which was connected to needle with 0.5 mm 

diameter (gauge number 25). Ethanol was injected at a rate of 1 drop per second under stirring at 650 rpm 

using Eurostar power control-visc stirrer (IKA® Werke GmbH, Germany). At the end of injection, liposomal 

suspension is kept under stirring for 30 min at 50°C then left to cool down for 30 min without stirring. 

Blank liposomes (blank-Lipo) were prepared using the same process without quercetin. Que-Lipo were 

stored at 4°C for stability testing. Size and PDI were measured each month for three months (Section 2.2) 

2.1.2 Preparation of quercetin lipid nanocapsules (que-LNC) 

Que-LNC were prepared as described in (ref article LNC). Briefly, crude quercetin powder, lipophilic 

Labrafac®, Solutol® HS 15, Cremophor® EL, Lipoid® S75-3, NaCl and MilliQ water were homogenized 

under agitation and warmed to 85°C. At 85°C, a specified quantity of absolute ethanol was added to boost 

up the dissolution of quercetin within lipid excipients. Three cycles of cooling-heating were maintained 

under magnetic stirring and 5.5 ml of MilliQ water were then added to the mixture at the transition phase 

temperature to form lipid nanocapsules. Free quercetin was separated from encapsulated quercetin by 

filtering que-LNC through Sartorius Stedim Minisart® filters (0.2 µm pore size) [19]. Blank lipid 

nanocapsules blank-LNC were prepared using the same process without quercetin. 

2.1.3 Preparation of quercetin smartCrystals® (que-SC) 

Que-SC were prepared as described in Hatahet et al [18]. A primary suspension containing 0.5% of either 

Tween® 80 or TPGS and 5% of crude quercetin were subjected to five minutes of bead milling using pearl 

mill Bùhler PML 2 (Bùhler AG, Uzwil, Switzerland) with 0.2 mm zirconium oxide beads as milling 

medium. The resulted suspensions were then homogenized using a high-pressure homogenizer (HPH), 

Micron LAB 40 (APV Gaulin GmbH, Germany) for two cycles at 300 bar [18]. Blank formulations were 

0.5% stabilizer solution.  
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2.2  Particle size measurement  

The five nanoformulations were diluted according to quercetin final concentration (0.1 mg/ml) with MilliQ 

water for que-SC and que-LNC and with PBS 7.4 for que-Lipo. Size measurements were performed in 

triplicate using a Zetasizer NanoZS (Malvern Instruments, UK) at 25°C [18].  

2.3  HPLC analysis 

The chromatographic analysis of quercetin was performed on LC6-2010HT (Shimadzu, Kyoto, Japan) 

using a C-18 column Prontosil (120-5-C18 H5.0 µm, 250 ×4.0 mm) as stationary phase. The detection was 

carried out by a UV lamp (UV-VIS detector, Shimadzu, Kyoto, Japan) at 368 nm, which is a specific 

wavelength for quercetin detection [23]. For the purpose of determining quercetin encapsulation efficiency 

and drug loading within liposomes (section 2.4), a mobile phase consisting of 10% methanol 80% 

acetonitrile and 10% of phosphoric acid solution 0.2% at a pH=1.9 was used. The flow rate was kept at 1 

ml/min during the 15 min run time analysis. Serial dilutions of known concentrations of quercetin in 

methanol were used to make the calibration curve. The method showed linearity over a concentration range 

from 3.9 to 62.5 µg/ml (r2 = 0.999 and %RSD = 3.19). For the detection of quercetin in vitro release form 

que-Lipo (section 2.6), another calibration curve of quercetin from 0.2 to 4 µg/ml in a solution of  PBS 

buffer pH 7.4 with Tween® 20 (2%) and a gradient flow rate were used according to previous studies [18]. 

Finally for the quantification of quercetin in the strips extract (section 2.10), an isocratic medium composed 

of 50/50 acetonitrile and buffer KH2PO4 (pH 2.3) at a flow rate of 0.5 ml/min at 37°C was selected as 

mobile phase. The stationary phase was a Eurospher 100-5 C18 column (250 × 4 mm, 5 μm) mounted on 

KromaSystem 2000 (Kontron Instruments GmbH, Germany) equipped with a solvent delivery with 20 µl 

loop and a rheodyne sample injector. Quercetin retention time was 6.3 min in a total of 13 min sample run. 

The injection volume was 20 µl and the detection wavelength was 370 nm using a diode array detector 

(DAD-Kontron Instrument HPLC 540). Method showed linearity for quercetin concentration range from 

0.8 to 50 µg/ml of quercetin in ethanol (r2 = 0.9988) [24]. 

2.4  Encapsulation efficiency (EE) and drug loading capacity (DL) 

For que-Lipo, quercetin  EE was determined directly by centrifuging formulated liposomes for 15 minutes 

at 21,000 gravitational force using a Sigma 2k 25 ultracentrifuge (sigma Zentrifugen, GmbH, Germany) to 

allow the aggregated quercetin to sediment. After that, 50 µl of the supernatant was collected and diluted 

to 1000 µl with methanol to dissolve liposomes membranes and quercetin. Then, quercetin concentration 

within liposomes were determined with HPLC, (section 2.3). DL and EE were calculated according to the 

equations below : 
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Equation 1:              0%#1*2345()1 = 9 :;<>?<@AB*:;CB@A@D*
EAFAG*FHCI<*<J?AFA<B@I*:;CB@A@DK LMM 

 

Equation 2:              N)&4OP#24'(3)*$QQ(&4&R = 9*CST;B@*TU*<B?CFI;EC@<G*:;<>?<@ABCST;B@*TU*:;<>?<@AB*CGG<G* K LMM 

2.5  Hydrogen donating ability in vitro by 2, 2-diphenyl-1-picrylhydrazyl 

(DPPH) 

2,2-diphenyl-1-picrylhydrazyl (DPPH) is a molecule with a free radical at the hydrazine position where 

compounds possessing antioxidative effect can react with [25]. DPPH in its radical form is known to have 

a strong absorption band at 517 nm. However, DPPH absorption at 517 nm diminishes when reacting with 

an antioxidant. Quercetin showed linear inhibition from 1 µg/ml to 6 µg/ml where it reaches its plateau 

activity when reacted with a 400 µM DPPH methanolic solution (1.5 ml to 0.5 ml). The 400 µM DPPH 

solution was considered as positive control and showed 100% free radical or 0% inhibition. Blank was the 

methanol without neither DPPH nor quercetin. DPPH test was performed on que-Lipo in order to determine 

the activity of encapsulated quercetin. DPPH percentage activity is then calculated by the following 

equation:  

 

Equation 3:                  0VV.*7*4&'(W('R = Z;CB@A@D*TU*C?@AX<*Z;<>?<@AB**
[>C?@A?CEED*<B?CFI;EC@<G*Z;<>?<@AB × LMM 

 

2.6  In vitro release study 

A 12-14 molecular weight cut-off (MWCF) Spectra/Por® Dialysis Membrane (Spectrum laboratories INC, 

USA) was selected for the experiment. A receptor medium composed of 80 ml PBS at pH 7.4 at 37°C with 

Tween® 20 (2%) was used to maintain sink conditions [26]. 1 ml of Que-Lipo was placed at the inner side 

of the membrane. A propylene glycol solution of quercetin containing the same quantity was used as 

control. Samples (1 ml) were withdrawn at 5different times during 24 hours and replaced by fresh release 

medium. Quercetin concentration was calculated using HPLC method mentioned (section 2.3).  
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2.7  Cell culture 

Human keratinocyte cell line (HaCaT) was purchased from CLS Cell Lines Service (GmbH, Germany). 

Cells were cultured with Dulbecco's Modified Eagle Medium (Gibco® DMEM) supplemented with 4.5 g/L 

glucose, 2 mM L-glutamine, 1% (v/v) penicillin/streptomycin (10,000 U/ml penicillin, 10,000 µg/ml 

streptomycin) and 10% fetal bovine serum provided by (Life technologies™ Carlsbad, California, USA). 

Cells were seeded at 106 cell/mL in Corning® 150 cm2 Canted Neck Flask with Vent Cap from Corning 

incorporated (Corning®, Massachusetts, USA) and incubated in humidified Heraeus® BB6220 incubator 

(Thermo Scientific™, Massachusetts, USA) with 5% CO2. Medium was changed twice a week and 

replication was set when cells attend sufficient confluence.  

Acute monocytic leukemia cell line (THP-1) (kind gift from Professor Francisco Veas (IRD, Montpellier)  

were cultured with Roswell Park Memorial Institute medium (RPMI) supplemented with 10% fetal bovine 

serum and 1% (v/v) penicillin/streptomycin by life technologies™ (Carlsbad, California, USA). Cells were 

seeded at a density of 106 cell/mL in Corning® 150 cm2 Canted Neck Flask with Vent Cap and incubated at 

37°C and 5%CO2. Cell replication was twice a week when cells attend confluence.  

2.8  Cell viability  

HaCaT cells were seeded at cellular density 200,000 cells/cm2 in flat bottom 24 well plate (Corning 

incorporated, New York, USA) and kept overnight to adhere. Afterwards, cells were treated for another 24 

hours with crude quercetin and quercetin formulations at a concentration range from 5 to 100 µg/ml. Crude 

quercetin and quercetin formulations were diluted with Dulbecco's phosphate-buffered saline (DPBS) (Life 

technologies™, Carlsbad, California, USA). Blank formulations were used as a control to highlight the 

cellular activity of the quercetin and allow the comparison between the formulations. Free cells were treated 

with DPBS buffer and considered as 100% viable cells. Cellular viability was performed using 3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. 20 µl of 5 mg/ml MTT were added 

to cells and incubated for 4 hours. Then, medium was withdrawn and 200 µl of 0.06N HCl isopropanol was 

added to each well to dissolve formazan crystals. Finally, absorbance was recorded at 570 nm and 750 nm 

using Multiskan™ GO Microplate Spectrophotometer (Thermo Scientific™, Waltham, Massachusetts, 

USA). 

THP-1 cells were seeded at cellular density of 150,000 cells/ml in flat bottom well plate and directly treated 

with crude quercetin or formulations for 24 hours at a concentration of 5 µg/ml. Afterwards, cellular 

viability was tested using 2,3-Bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide  salt  

(XTT) assay. XTT assay differs from MTT assay as it does not require a dissolving step for formazan 

crystals. Consequently, it avoids to centrifuge cells before reading the absorbance. 50 µl of XTT reagent 
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were added to each well for 3 hours, and then absorbance was measured at 450 and 750 nm. 100 % viable 

cells were cells that were treated with DPBS buffer. Cellular viability percentage were presented relatively 

to control non-treated cells.  

 

2.9  Crude quercetin and quercetin nanoformulations antioxidant activity 

HaCaT cells were seeded at 200,000 cells/cm2 in 24 well/plate and left overnight to adhere. Then, crude 

quercetin and quercetin formulations at 5 µg/ml were added for 24 hours. Cells were washed with PBS 200 

µl and DCFDA reagent (1 µM in RPMI without phenol red) were added in each well for 60 minutes. 

Medium containing DCFA was discarded and cells were washed twice with PBS. Then, H2O2 (1 mM in 

PBS) was added for 120 minutes. After cellular exposure, cells were washed with PBS and 200 µl of Tris 

cell lysis buffer were added to each well. Cell lysates were transferred to 96 wells black plate with clear 

bottom (Corning®, Massachusetts, USA). Dichlorofluorescein (DCF) a highly fluorescent compound 

generated from the reaction with ROS was detected at maximum excitation and emission spectra of 485 nm 

and 525 nm using TriStar LB 941 from Berthold Technologies (Chollerstr, Switzerland).  

THP-1 cells were seeded at 300,000 cells/ml in 24 well/plate and treated with crude quercetin or its 

formulations for 24 hours. Then, cells were loaded with DCFDA reagent (1 µM in RPMI without phenol 

red) for 60 minutes. Next, oxidative stress was initiated using H2O2 (1 mM) for 120 minutes. After cellular 

exposure, cells were collected by centrifugation and supernatant was discarded. Cells were then lysed with 

Tris cell lysis buffer (200 µl) for each well. After that, cell lysates were transferred to 96 wells black plate 

with clear bottom (Corning®, Massachusetts, USA). Finally, DCF is detected at maximum excitation and 

emission spectra of 485 nm and 525 nm using TriStar LB 941 from Berthold Technologies (Chollerstr, 

Switzerland).  

2.10 In vivo skin penetration  

Two formulations were selected for testing quercetin penetration enhancement in vivo. 8 healthy men with 

Caucasian skin aged between 25 and 29 participated in the study and signed consent for this investigation. 

The experiment was conducted according to declaration of Helsenki. In a controlled stripping room at 20 °C 

and 62% relative humidity, after wiping the skin with ethanol 96% and drying it, 50 µl of the formulations 

were applied to the forearm on an area of 2 × 3 cm2. The formulations were applied with a pipette and were 

spread over skin with spatula for 1 hour. The loss in formulations by spatula was determined with 3 ml 

ethanol after spreading. After that,  successive strips were applied to the skin with controlled pressure (1 kg 

rubber weight was rolled over it 10 times) [27]. Total stripped tapes were grouped in 7 groups as follows 



Chapter Three: Quercetin Liposomes and comparative study 
 

188 
 

(i) strip 1 (ii) strip 2 (iii) strip 3 (iv) strip 4 and 5 (v) strip 6 to 8 (vi) strip 9 to 11 and (vii) strip 12 to 15. 

Quercetin was extracted from the strips with 3 ml of ethanol on a shaker at 25°C at 125 rpm for 3 hours and 

then injected into HPLC (section 2.3). 

2.11 Statistical analysis  

Statistical analysis of the cellular cytotoxicity, cellular protective activity and the in vivo skin penetration 

study were made using Microsoft Excel 2013 tool Pack (Microsoft Corporation, USA). A two-sample t-test 

with unequal variances was used to verify the significant difference between the data in the release study. 

A two-sample t-test with equal variances was used for cellular data analysis. P expresses the significant 

value where * = P < 0.05, ** = P < 0.01 and *** = P < 0.005 respectively. 

 

3 Results  

3.1  Particle size measurement, encapsulation efficiency, drug loading and 

DPPH activity of que-Lipo 

Table 1 presents the physicochemical characteristics of blank-Lipo and que-Lipo. Que-Lipo were 179 ± 15 

nm with no statistical differences compared to blank-Lipo (188 ± 18 nm). Que-Lipo exhibited a PDI inferior 

to 0.1 indicating the homogenous dispersion of formulated liposomes. The DL was 2.58 ± 0.13 % (of total 

lipid excipients in the formulation) with an EE of quercetin of 68.2 ± 2.7 %. Quercetin retained the 

antioxidant activity in vitro with 55.1 ± 10.9 % of active quercetin using DPPH assay.  
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Table 1: Physicochemical characteristics of blank and quercetin liposomes (n=3).  

Liposomes particle size, polydispersity index (PDI) were determined for both blank-que and que-Lipo. 

Encapsulation efficiency (EE), drug loading (DL) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) activity were 

determined for que-Lipo using equations 1, 2 and 3 respectively.  

3.2  Que-Lipo stability  

Que-Lipo stability was monitored over three months at 4°C. Fig.1 shows the average particle size and the 

PDI during the stability study. Particle size was not increased significantly during the study, at day 0 

particles were 179 nm and 181 nm at day 90. PDI remained under 0.2 during the whole period of storage. 

At day 90, PDI was 0.19.  

Blank liposomes 
Physicochemical 

characterization
Quercetin liposomes

188 ± 16 Size (nm) 179 ± 15 

0.10 ± 0.02 PDI 0.06 ± 0.02

-- DL (%) 2.58 ± 0.13

-- EE (%) 68.2 ± 2.7

-- DPPH activity (%) 55.1 ± 10.9 
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Fig. 1: Que-Lipo stability study at 4°C for 3 months (n=3). 

Particle size (columns) and polydispersity index (PDI) (points) were recorded at day 0, day 30, day 60 and day 90.  

3.3  In vitro quercetin release from que-Lipo  

Quercetin release from liposomes was evaluated using dialysis bag method [26]. Fig. 2 presents the release 

profile of quercetin from liposomes compared to quercetin release for solution in propylene glycol. 

Liposomal formulation enabled a delayed release for quercetin as quercetin was detected after 2 hours and 

quercetin release from the control at 5 min. At 8 hours, 16.7 % of quercetin was released from liposomes, 

this was a significant difference compared to control (with 34.3 %) (P < 0.005). Finally, at 24 hours, 

quercetin from both liposomal formulation and propylene glycol solution achieved the similar released 

amounts (36.6 % vs. 37.4 %),  
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Fig. 2: In vitro quercetin release from que-Lipo during 24 hours (n=3). 

Samples are withdrwon at 5, 30 min and 1, 2, 3, 4, 5, 5, 8 and 24 hours. P expresses the significant value where * = P 

< 0.05, ** = P < 0.01 and *** = P < 0.005 respectively.  

3.4  Quercetin smartCrystals® and quercetin lipid nanocapsules  

Que-SC and Que-LNC were formulated according to previous report [18]. Table 2 shows average particle 

size, PDI and the quercetin concentration per milliliter of formulation. The smallest particle size was 

observed with que-LNC 20 (26 nm) with a drug concentration up to 10 mg/ml but higher quercetin 

concentration was observed with que-SC stabilized with TPGS at 14.4 mg/ml (203 nm). Que-Lipo showed 

the lowest quercetin concentration with 0.56 mg/ml with higher particle size (179 nm).  
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Table 2: Particle size, PDI and quercetin concentration per milliliter of smartCrystals® (SC stabilized 

with Tween® and TPGS), lipid nanocapsules (LNC 20 and LNC 50) and liposomes (n=3).  

3.5  Cellular toxicity of crude quercetin and quercetin formulations on 

HaCaT cells. 

In the scope of a topical application, the safety of quercetin formulations compared to crude quercetin was 

evaluated on HaCaT cells. Fig. 3 shows the cellular viability results of HaCaT cells after 24 hours exposure 

to either crude quercetin or quercetin nanoformulations. It is important to note that all these formulation 

were added to cells in the same amount of quercetin regardless of the amounts of carriers (excipient), as we 

chosen to fix the quercetine concentration (0, 5, 25, 50 and 100 µg/ml). Consequently, the number of 

nanocarriers in contact with the cells depends on the DL and EE of each nanoformulation. Starting by crude 

quercetin, no cellular toxicity was observed up to 100 µg/ml. Moreover, cellular proliferation increased 

with increasing quercetin dose from 25 µg/ml to 100 µg/ml. Que-SC with both stabilizers showed a 

significant difference in toxicity compared to control (stabilizers alone)  from 5 µg/ml which was more 

pronounced with Tween® 80 than in TPGS (P< 0.005 vs. P< 0.05). Que-LNC 20 were similar to blank-

LNC up to 50 µg/ml. Then at 100 µg/ml, que-LNC 20 showed a significant decrease in cellular viability to 

60.5 ± 4.8 %, whereas que-LNC 50 was safe at this concentration.  Finally, the viability results were 67.5 

± 7.2 % at 5 µg/ml and 77.3 ± 13.8 % at 25 µg/ml, which were not statistically different from blank-Lipo 

that showed a viability percentage of 84.8 ± 8.8 %. At 50 µg/ml and 100 µg/ml of quercetin, the cellular 

viability increased with que-Lipo similarly to crude quercetin (P< 0.01 at 100 µg/ml).  

 

Quercetin 
nanoformulation

Que-SC 
Tween® 80 

Que-SC 
TPGS

Que-LNC 20 Que-LNC 50 Que-lipo

Size (nm) 295 ± 9 203 ± 3 27±3 54±3 179 ± 15 

PDI 0.25 ± 0.03 0.24 ± 0.01 0.059±0.00 0.17±0.02 0.06 ± 0.02

Quercetin 
concentration 

(mg/ml)
14.10 ± 3.4 14.40 ± 0.027 10.80 ± 0.78 6.00 ± 0.70 0.56 ± 0.05



Chapter Three: Quercetin Liposomes and comparative study 
 

193 
 

 

Fig. 3: HaCaT cellular viability using MTT assay after 24 hours of treatment with either crude 

quercetin or quercetin nanoformulations (n=3). 

Cells were incubated with phosphate buffer as control (non-treated) cells and with crude quercetin as a control for the 

quercetin specific toxicity, with smartCrystals® stabilizers (Tween® 80 and TPGS), blank lipid nanocapsules and blank 

liposomes as a control for formulation specific toxicity and with quercetin smartCrystals®, quercetin lipid 

nanocapsules and quercetin liposomes for the safety of formulated quercetin. Letters indicates a significance difference 

relative to control formulation. P expresses the significant value where * = P < 0.05, ** = P < 0.01 and *** = P < 

0.005 respectively. 

3.6  Crude quercetin and quercetin nanoformulations free radical 

scavenging ability on HaCaT cells. 

Based on toxicity study presented in Fig. 3, the concentration of 5 µg/ml of quercetin was selected to 

compare the quercetin free radical scavenging ability in crude form and nanoformulations. Fig. 4 presents 

the relative intensity of intracellular ROS generated upon the exposure to H2O2. H2O2 was used at a 

concentration of 1 mM. Control negative group is composed by the cells without treatment with quercetin 

and H2O2, while the control positive group is the cells treated only with H2O2. ROS were detected using the 

fluorescent DCFDA assay and results were expressed as relative intensity to control positive group the 

treatment of cells with H2O2 increased the intracellular ROS from 53.9 ± 15.1 % to 100 %.  

The treatment of cells with crude quercetin reduced the intracellular ROS to control levels (56.8 ± 0.7 %) 

Quercetin loaded within LNC and liposomes enabled lower ROS intensities compared to que-SC. ROS 

relative intensities were 70.7 ± 14.7 % and 86.8 ± 6.5 % with que-SC stabilized with Tween® 80 and TPGS 
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respectively and 45.5 ± 17.2 %, 49.0 ± 19.6 % and 35.1 ± 16.3 % with que-LNC 20, 50 and que-Lipo 

respectively.  

 

 

Fig. 4: HaCaT intracellular ROS generation using H2O2 after 24 hours of treatment with either crude 

quercetin or quercetin nanoformulations (n=3). 

Cells were incubated with phosphate buffer as control negative (non-treated) cells and with H2O2 for control positive 

group. Cells treated with crude quercetin, quercetin smartCrystals®, quercetin lipid nanocapsules and quercetin 

liposomes were compared to control positive group (* = P < 0.05, ** = P < 0.01 and *** = P < 0.005 respectively). 

3.7  Cellular toxicity of crude quercetin and quercetin nanoformulations on 

THP-1 cells. 

To earn a wider understanding of quercetin potentials in topical application, crude quercetin and quercetin 

nanoformulations behavior on immune cells was tested using THP-1 cells as cellular model. Quercetin 

cellular toxicity at the concentration of 5 µg/ml selected from toxicity results on HaCaT cells was chosen 

for this assays. Fig. 5 shows the cellular viability percentage after the 24 hours treatment with crude 

quercetin and quercetin nanoformulations, where cellular viabilities were measured using XTT assay. No 

cellular toxicity was observed with crude quercetin and quercetin nanoformulations. In the case of que-SC 

stabilized with Tween® 80 and TPGS, the viability results were 102.0 ± 1.6 % and 102.2 ± 8.9 % 

respectively (P> 0.05). On the other hand, crude quercetin, que-LNC 20, que-LNC 50 and que-Lipo showed 

an increase of cellular viability compared to control non treated cells. The increase in viability was more 
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pronounced with que-LNC 50 and que-Lipo compared to crude quercetin and que-LNC 20 (P< 0.005 vs. 

P< 0.01).  

 

 

Fig. 5: THO-1 cellular viability using XTT assay after 24 hours of treatment with either crude 

quercetin or quercetin nanoformulations (5 µg/ml) (n=3). 

Cells were incubated with phosphate buffer as control (non-treated) cells and with crude quercetin, quercetin 

smartCrystals®, quercetin lipid nanocapsules and quercetin liposomes for the safety of formulated quercetin. P 

expresses the significant value where * = P < 0.05, ** = P < 0.01 and *** = P < 0.005 respectively. 

3.8  Crude quercetin and quercetin nanoformulations free radical 

scavenging ability on THP-1 cells. 

Following the protocol used for HaCaT cells, 1 mM of H2O2 was used to induce oxidative stress within 

THP-1 cells and the subsequent increase in ROS generation. 5 µg/ml of quercetin, which previously showed 

to be a suitable concentration for comparison between formulations, was applied to cells prior to H2O2 

exposure. ROS were detected using the fluorescent DCFDA assay and results were expressed as relative 

intensity to control positive group (Fig. 6).  

The treatment of cells with H2O2 increased ROS generation within cells from 70.3 ± 7.3 % to 100 %. Crude 

quercetin and quercetin nanoformulations were significantly able to reduce ROS generation, relative ROS 

intensities was 34.0 ± 11.6 % with crude quercetin. ROS in que-SC treated group was 30.4 ± 11.4 % and 
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30.4 ± 6.2 % with Tween® 80 and TPGS (P< 0.005). Finally, ROS relative intensities were 34.6 ± 8.6 %, 

35.5 ± 11.3 % and 34.2 ± 8.1 % with que-LNC 20, que-LNC 50 and que-lipo respectively (P< 0.005). 

 

Fig. 6: THP-1 intracellular ROS generation using H2O2 after 24 hours of treatment with either crude quercetin 

or quercetin nanoformulations (n=3). 

Cells were incubated with phosphate buffer as control negative (non-treated) cells and with H2O2 for control positive 

group. Cells treated with crude quercetin, quercetin smartCrystals®, quercetin lipid nanocapsules and quercetin 

liposomes were compared to control positive group (* = P < 0.05, ** = P < 0.01 and *** = P < 0.005 respectively). 

3.9  In vivo skin penetration of quercetin smartCrystals® stabilized with 

TPGS and quercetin lipid nanocapsules 20 

Based on physicochemical properties of nanoformulations and the cellular safety and free radical 

scavenging ability of formulated quercetin, que-SC stabilized with TPGS and que-LNC 20 formulations 

were selected for in vivo skin penetration test (stripping test). Fig. 7 presents penetrated amount of quercetin 

as percentage of applied dose. The amount of detect quercetin was decreasing with increasing strips number. 

94.6 % of the applied dose of que-SC TPGS were detected in the 15 strips, which indicates that quercetin 

deposition was the upper region of the stratum corneum (around 75 µm) [28]. Whereas, 27.1 % of the 

applied dose were detected in case of que-LNC 20 indicating the penetration of quercetin beneath the 

stripped region of skin. In strip 3, the percentage of applied quercetin were 13.4 % and 3.4 % with que-SC 

and que-LNC respectively.   
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Fig. 7: In vivo skin penetration of quercetin smartCrystals® stabilized with TPGS (que-SC TPGS) 

and quercetin lipid nanocapsules 20 (Que-LNC 20) (n=8). 

50 µl of que-SC TPGS and que-LNC 20 were applied to the forearm of 8 volunteers for 1 hour then, 15 strips were 

performed and collected in seven groups. Quercetin detected in each strip was normalized to total applied dose and 

presented as percentage of applied dose (%).  

4 Discussion 

Exogenous skin supplementation with antioxidants is a novel strategy to strengthen skin resistance to 

oxidative stress [29, 30]. Among interesting candidates, quercetin is a natural molecule with strong 

antioxidant and antiinflammatory properties [10, 31]. However, quercetin in its aglycone form (crude form) 

has very low water solubility (less than 0.5 µg/ml) [18] hindering its topical effectiveness [2]. In this 

context, nanotechnology provides an interesting tool for the formulation of poorly water-soluble drugs [32]. 

Therefore, three approaches in nanoformulations were investigated to overcome quercetin limited water 

solubility.  

In this work, quercetin formulated within liposomes with the subsequent physicochemical characterization 

was compared to quercetin smartCrystals® and lipid nanocapsules formulation according to our previous 

publications [18] (LNC article under review). Indeed, the first approach was to prepare quercetin within 

liposomes used as reference of nanoformulations known from 70s [12]. The second approach was to 

increase quercetin water solubility with a formulation enabling a burst release implementing smartCrystals® 
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technology as described in our previous work [18]. The third approach was to increase quercetin apparent 

water solubility by encapsulation within a nanocarrier system enabling prolonged release kinetics for 

encapsulated drug (LNC article).  

Que-Lipo prepared using ethanol injection method were 179 ± 15 nm (blank-Lipo 188 ± 16 nm) without 

any statistical differences (P > 0.05). The PDI less than 0.15 in blank-Lipo and que-Lipo indicates a 

homogenous size distribution without homogenization step like sonication or extrusion (Table 1) [33]. 

Liposomes size was shown to be dependent on the excipients as it increased from 127 nm (supplementary 

data) to 179 nm in the presence of Cremophor® EL. In parallel, Cremophor® EL increased the drug loading 

of quercetin from 1.55 % (data not shown) to 2.58 % (of the excipients).This can be explained by both the 

affinity of Cremophor® EL to quercetin and the size increase of liposomes that allows larger surface for 

quercetin entrapment within the phospholipid bilayer (Table 1).  

Quercetin antioxidant activity was calculated as a percentage of the encapsulated quantity of quercetin. 55 

± 11 % of the encapsulated quercetin were able to reduce DPPH to DPPH-H in 30 minutes (Table 1). 

Despite that the percentage activity was lower compared to previous reports for que-Lipo [4], DPPH is a 

primary assay to confirm the preservation of the activity. As a result, the quantitative determination of the 

activity should be further explored with cellular assay for oxidation reducing capacity.  

Que-Lipo stability was assessed at 4°C for three months with 181 ± 22 nm and PDI of 0.18 ± 0.10 (Fig. 2). 

The introduction of Cremophor® EL to the formulation conferred an enhanced stability for que-Lipo  

usually linked to the presence of cholesterol in the formulation but higher cholesterol concentration induces 

lower encapsulation of quercetin [16]. It is worth to note that the use of Cremophor® EL is approved in 

cosmetics and topically applied formulations [34].  

Then, quercetin release from liposomal formulation was investigated using dialysis bag. Que-Lipo was 

compared to crude quercetin solution in propylene glycol. As expected quercetin control solution showed 

a burst release as the plateau had been reached after four hours (~33%). A delayed release profile with 

liposomes was established, as quercetin was not detected in the release medium until two hours. Finally, at 

24 hours both quercetin control solution and que-Lipo released similar amounts (~36%) (Fig 3). The gradual 

release profile of quercetin from liposomes comes in accordance with previous reports [4, 16]. 

For the goal of topical application, HaCaT cells (human keratinocytes) were selected as a cellular model 

[20, 35]. The tested concentrations of quercetin were from 5 to 100 µg/ml. Crude quercetin did not show 

cellular toxicity even at 100 µg/ml. In contrast, it increased HaCaT cellular proliferation and this can be 

related to Que insolubility at these high concentrations in the culture medium (DMEM) that leads to lower 

cellular internalization (Fig. 3). This can be further supported with the que-SC toxicity values that were 

more pronounced with increased quercetin concentration as que-SC showed an increase quercetin solubility 

and dissolution velocity, which can lead to higher cellular internalization [18]. Que formulations efficiency 
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was compared on HaCaT cells. Que-SC and que-LNC were formulated according to our previous works 

[18] (LNC article). Que-LNC 20 and que-LNC 50 showed no significant differences in cellular viability 

compared to blank-LNC treated cells up to 50 µg/ml. While at 100 µg/ml, the cellular viability decreased 

by 40 % with que-LNC 20 (P < 0.05) and 23 % with que-LNC 50 (P > 0.05). The higher viability percentage 

observed with LNC 50 compared to LNC 20 (1.3 fold) can be linked to lower surfactant concentration used 

in the preparation of que-LNC 50 [36]. Cells treated with que-Lipo presented higher viability percentage 

with increasing quercetin concentration. As a possible explanation, it is worth to state that differences in 

cellular internalization of nanoparticles depending on cell cycle is already proven (ranking in the order 

G2/M > S > G0/G1) which could affect the cellular viability [37]. The same behavior of que-Lipo treated 

cells was observed with blank-Lipo when treating cells with increase liposomes concentration. This result 

gives a further support for the hypothesis that que-Lipo toxicity is linked to liposomes and not to 

encapsulated quercetin (supplementary data). Finally, 5 µg/ml of quercetin was the concentration of choice 

for HaCaT cells with cellular viability of 97.9 %, 91.6 % and 99.3 % with crude quercetin, que-LNC 20 

and que-LNC 50 respectively (P > 0.05). In addition to be the concentration with the lowest toxicity with 

que-SC stabilized with Tween® 80 and TPGS (78.4 % and 86.4 %).  

Based on the cellular safety results, 5 µg/ml of quercetin either in crude form or in nanoformulations was 

selected to test quercetin free radical scavenging ability (Fig. 4). Oxidative stress was induced in HaCaT 

cells using H2O2 (1mM) as H2O2 is to known to be responsible for UV induced damage [38]. H2O2 

significantly increased ROS generation within cells compared to control (non-treated) cells (P < 0.05). 

Crude quercetin pretreatment was able to scavenge ROS and to return cells to control levels (P < 0.05). In 

the same way, quercetin in nanoformulations induced the same protective action with superior efficiency 

in que-LNC and que-Lipo compared to que-SC (Fig. 4). As a result, the concentration of 5 µg/ml of 

quercetin presented both safety and protective action on HaCaT cells, with a more pronounced effect with 

LNC and liposomes compared to smartCrystals®. This comes to support previous evidence about quercetin 

ability to scavenge ROS generated on HaCaT cells in response to UVA irradiation [39]. 

In order to explore quercetin activity on other cell types, THP-1 cells were selected as an example of 

dendritic cells derived from circulating monocytes in case of skin inflammation [22, 40, 41]. Referring back 

to primary results obtained from HaCaT keratinocytes cells, 5 µg/ml of quercetin was selected again on 

THP-1 cells. The cellular safety of crude quercetin and quercetin nanoformulations were determined (Fig. 

5). The cellular viability results were similar to control group in case of que-SC (P > 0.05) and with higher 

viability results than control in case of crude quercetin, que-LNC 20, que-LNC 50 and que-Lipo. This higher 

viability percentage was previously observed with crude quercetin on A549 cells especially at low dose of 

quercetin [42]. Thus, quercetin was not toxic to THP-1 cells at 5 µg/ml in crude and formulated forms. 

Likewise, 5 µg/ml was tested for the protective action of quercetin against oxidative stress induced by H2O2 
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(1 mM) on THP-1 cells (Fig. 6). Similar to the case of HaCaT cells, H2O2 significantly increased the ROS 

generation in THP-1 cells (P < 0.05) (Fig. 6). Again, quercetin treated cells exhibited ROS intensities 

significantly lower than H2O2 treated cells and even lower than control (non-treated) cells, which indicates 

the efficient ROS scavenging ability of quercetin in THP-1 cells (P < 0.05). 

Upon the successful reformulation of quercetin as SC and in LNC and the establishment of que-Lipo (Table 

2), the comparison in order to select the best one in each case is evaluated taking into account three main 

parameters. First, the smallest particle size and PDI that can be achieved with each approach as the smaller 

particle size enables a prolonged retention and higher occlusion on skin [43]. Second, the total quercetin 

loading capacity expressed as mg of quercetin per ml of formulation can be further developed to other forms 

such as emulsions or gels. Third, the cellular safety of the formulation is observed along with preserved 

quercetin antioxidant activity, which is the essential target of these nanoformulations. Starting by the size 

and PDI, que-SC stabilized with TPGS and que-LNC 20 had the lowest particle size relative to que-SC 

stabilized with Tween® 80 and que-LNC 50. Particle size was 26 nm compared to 54 nm in LNC and 203 

nm compared to 293 nm in case of SC. Likewise, que-SC stabilized with TPGS and que-LNC 20 had the 

highest quercetin concentration per ml of formulation (14.4 mg/ml with que-SC TPGS and 10.8 with que-

LNC20). Lastly, the safety profile of que-SC TPGS vs. que-SC Tween® 80 and que-LNC 20 vs. que-LNC 

50 were similar at 5 µg/ml of quercetin (78.3 % vs. 86.4 % for SC and 91.6 % vs. 99.3 % for LNC) and 

there was not a statistical differences in cellular viability between que-SC Tween® 80 and que-SC TPGS at 

the 5 µg/ml of quercetin. The safety and the activity of quercetin in nanoformulations were established at 5 

µg/ml using both cellular models HaCaT and THP-1. Therefore, thanks to these results, the in vivo skin 

penetration (stripping test) was performed on que-SC TPGS and que-LNC 20 enabling to compare between 

the burst release approach for drug delivery and the sustained release profile. Que-Lipo presented a very 

low loading capacity (0.56 mg/ml) compared to other formulations and exhibited large particle size (179 

nm), so que-Lipo was omitted form the in vivo skin penetration study.  

Skin penetration tests involving quercetin formulations were mostly performed in vitro on pig [44] and rats 

[16] skin mounted on Franz diffusion cell, or in vivo on animals such as mice [8]. However, results from 

animals skin suffer from poor correlation with human skin results, as they are thinner and more permeable 

than human skin [45]. Only one study tested formulated quercetin in solid lipid nanoparticles in vivo on 

healthy volunteers [46], however, the tested formulation was not optimized and presented high particle size 

(527 nm) and high PDI (0.575) with missing information about quercetin loading with limited skin 

penetration capacity for formulated nanoparticles. For these reasons, the study of skin penetration of que-

SC stabilized with TPGS and que-LNC 20 was done on human skin in vivo under the same procedure used 

by Scalia et al in 2013 [46]. 94.6% of the applied dose of que-SC were detected in the strips, which indicates 

the deposition of this formulation in the upper regions of the stratum corneum. As a result, less than 6% of 
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the applied dose were capable of penetrating into lower stratum corneum (around 75 µm) [28]. On the other 

side, only 27.1% of the applied dose of que-LNC 20 were detected in the strips, which could indicate that 

the deposition of this formulation is in the lower regions of the stratum corneum as more than 70% of 

quercetin was able to penetrate below strip 15. Both formulations (que-SC and que-LNC) enabled higher 

skin deposition of quercetin compared to Scalia et al formulation, as they stated that more than 50% of the 

applied dose were not absorbed and were detected in strip one compared to 29.6 % with que-SC and 8.0 % 

with que-LNC 20. About 10% of que-SC were detected in strip 15, this proves the enhancement of deeper 

skin penetration compared to about 5 % for quercetin nanoparticles prepared by Scalia et al. The higher 

skin penetration ability observed with que-LNC compared to que-SC may be attributed to the lipophilic 

character of LNC and the lower particle size (26 nm vs. 203 nm). The superficial deposition of quercetin 

from the smartCrystals® formulation favors its application in sunscreen and cosmetics [46]. The size of the 

lipid nanocapsules and their lipidic nature favors quercetin penetration into viable epidermis. This is very 

promising for quercetin applicability in pathologies such as inflammatory skin disorders (psoriasis) and the 

support of aged skin [27, 47, 48].  

5 Conclusion 

Quercetin is a strong antioxidant and free radical scavenger from natural origin regarded as a potential 

candidate for skin exogenous supplementation. The poor water solubility limits quercetin topical 

penetration and so efficiency. For this, quercetin was formulated in nanoformulations such as liposomes, 

LNC and smartCrystals®. The three approaches were compared in terms of particle size, quercetin loading 

per milliliter of formulation and the interaction with HaCaT and THP-1 cells. The highest cellular viability 

was observed at a concentration of 5 µg/ml of quercetin on HaCaT cells. Afterwards, this concentration 

was tested and proved efficient free radical scavenging ability against hydrogen peroxide induced oxidative 

stress on HaCaT cells. 5 µg/ml quercetin was also safe on THP-1 cells with strong free radical scavenging 

abilities. All quercetin nanoformulations showed similar activity results compared to crude quercetin 

indicating the preservation of quercetin antioxidant ability upon formulation. Finally, quercetin 

smartCrystals® stabilized with TPGS and quercetin LNC 20 were selected for in vivo skin penetration test 

(striping test).Quercetin smartCrystals® showed high skin deposition in the upper stratum corneum and 

gave a promise for a sunscreen product. Whereas quercetin LNC enabled deeper skin penetration for 

quercetin, thus presents an encouraging approach for the skin support in inflammatory disorders and 

psoriasis.  

 



Chapter Three: Quercetin Liposomes and comparative study 
 

202 
 

Acknowledgments  

The authors acknowledge the financial support of ERASUMUS MUNDUS AVEMPACE 2 and the support 

of MACS research team. The authors have no conflict of interest to declare.



  

 
 

References  

[1] M.G.L. Hertog, P.C.H. Hollman, M.B. Katan, Content of potentially anticarcinogenic 
flavonoids of 28 vegetables and 9 fruits commonly consumed in the Netherlands, Journal of 
Agricultural and Food Chemistry, 40 (1992) 2379-2383. 

[2] F. Bonina, M. Lanza, L. Montenegro, C. Puglisi, A. Tomaino, D. Trombetta, F. Castelli, A. 
Saija, Flavonoids as potential protective agents against photo-oxidative skin damage, 
International Journal of Pharmaceutics, 145 (1996) 87-94. 

[3] H. Kim, S. Namgoong, H. Kim, Antiinflammatory activity of flavonoids: Mouse ear edema 
inhibition, Archives of Pharmacal Research, 16 (1993) 18-24. 

[4] M.L. Manca, I. Castangia, C. Caddeo, D. Pando, E. Escribano, D. Valenti, S. Lampis, M. 
Zaru, A.M. Fadda, M. Manconi, Improvement of quercetin protective effect against oxidative 
stress skin damages by incorporation in nanovesicles, Colloids and Surfaces B: Biointerfaces, 
123 (2014) 566-574. 

[5] T.L. Wadsworth, D.R. Koop, Effects of the wine polyphenolics quercetin and resveratrol on 
pro-inflammatory cytokine expression in RAW 264.7 macrophages, Biochemical Pharmacology, 
57 (1999) 941-949. 

[6] P. Yao, A. Nussler, L. Liu, L. Hao, F. Song, A. Schirmeier, N. Nussler, Quercetin protects 
human hepatocytes from ethanol-derived oxidative stress by inducing heme oxygenase-1 via the 
MAPK/Nrf2 pathways, Journal of Hepatology, 47 (2007) 253-261. 

[7] V. García-Mediavilla, I. Crespo, P.S. Collado, A. Esteller, S. Sánchez-Campos, M.J. Tuñón, 
J. González-Gallego, The anti-inflammatory flavones quercetin and kaempferol cause inhibition 
of inducible nitric oxide synthase, cyclooxygenase-2 and reactive C-protein, and down-
regulation of the nuclear factor kappaB pathway in Chang Liver cells, European Journal of 
Pharmacology, 557 (2007) 221-229. 

[8] F.T.M.C. Vicentini, T.R.M. Simi, J.O. Del Ciampo, N.O. Wolga, D.L. Pitol, M.M. Iyomasa, 
M.V.L.B. Bentley, M.J.V. Fonseca, Quercetin in w/o microemulsion: In vitro and in vivo skin 
penetration and efficacy against UVB-induced skin damages evaluated in vivo, European Journal 
of Pharmaceutics and Biopharmaceutics, 69 (2008) 948-957. 

[9] K. Gomathi, D. Gopinath, M. Rafiuddin Ahmed, R. Jayakumar, Quercetin incorporated 
collagen matrices for dermal wound healing processes in rat, Biomaterials, 24 (2003) 2767-2772. 

[10] F.T. Vicentini, T. He, Y. Shao, M.J. Fonseca, W.A. Verri, Jr., G.J. Fisher, Y. Xu, Quercetin 
inhibits UV irradiation-induced inflammatory cytokine production in primary human 
keratinocytes by suppressing NF-kappaB pathway, in:  J Dermatol Sci, 2011 Japanese Society 
for Investigative Dermatology. Published by Elsevier Ireland Ltd, Netherlands, 2011, pp. 162-
168. 

[11] A.D. Bangham, R.W. Horne, Negative staining of phospholipids and their structural 
modification by surface-active agents as observed in the electron microscope, Journal of 
Molecular Biology, 8 (1964) 660-IN610. 



Chapter Three: Quercetin Liposomes and comparative study 
 

204 
 

[12] G. Gregoriadis, P.D. Leathwood, B.E. Ryman, Enzyme entrapment in liposomes, FEBS 
Letters, 14 (1971) 95-99. 

[13] G.M. El Maghraby, B.W. Barry, A.C. Williams, Liposomes and skin: From drug delivery to 
model membranes, European Journal of Pharmaceutical Sciences, 34 (2008) 203-222. 

[14] P. Mura, F. Maestrelli, M.L. González-Rodríguez, I. Michelacci, C. Ghelardini, A.M. 
Rabasco, Development, characterization and in vivo evaluation of benzocaine-loaded liposomes, 
European Journal of Pharmaceutics and Biopharmaceutics, 67 (2007) 86-95. 

[15] M.N. Padamwar, V.B. Pokharkar, Development of vitamin loaded topical liposomal 
formulation using factorial design approach: Drug deposition and stability, International Journal 
of Pharmaceutics, 320 (2006) 37-44. 

[16] D. Liu, H. Hu, Z. Lin, D. Chen, Y. Zhu, S. Hou, X. Shi, Quercetin deformable liposome: 
Preparation and efficacy against ultraviolet B induced skin damages in vitro and in vivo, Journal 
of Photochemistry and Photobiology B: Biology, 127 (2013) 8-17. 

[17] R.H. Müller, C.M. Keck, Second generation of drug nanocrystals for delivery of poorly 
soluble drugs: smartCrystal technology, European Journal of Pharmaceutical Sciences, 34 (2008) 
S20-S21. 

[18] T. Hatahet, M. Morille, A. Hommoss, C. Dorandeu, R.H. Muller, S. Begu, Dermal quercetin 
smartCrystals(R): Formulation development, antioxidant activity and cellular safety, Eur J Pharm 
Biopharm, 102 (2016) 51-63. 

[19] B.a. Heurtault, P. Saulnier, B. Pech, J.-E. Proust, J.-P. Benoit, A Novel Phase Inversion-
Based Process for the Preparation of Lipid Nanocarriers, Pharmaceutical Research, 19 (2002) 
875-880. 

[20] P. Boukamp, R.T. Petrussevska, D. Breitkreutz, J. Hornung, A. Markham, N.E. Fusenig, 
Normal keratinization in a spontaneously immortalized aneuploid human keratinocyte cell line, J 
Cell Biol, 106 (1988) 761-771. 

[21] S. Tsuchiya, M. Yamabe, Y. Yamaguchi, Y. Kobayashi, T. Konno, K. Tada, Establishment 
and characterization of a human acute monocytic leukemia cell line (THP-1), International 
Journal of Cancer, 26 (1980) 171-176. 

[22] C. Auffray, M.H. Sieweke, F. Geissmann, Blood Monocytes: Development, Heterogeneity, 
and Relationship with Dendritic Cells, Annual Review of Immunology, 27 (2009) 669-692. 

[23] L.J. Yang, P. Li, Y.J. Gao, H.F. Li, D.C. Wu, R.X. Li, [Time resolved UV-Vis absorption 
spectra of quercetin reacting with various concentrations of sodium hydroxide], Guang Pu Xue 
Yu Guang Pu Fen Xi, 29 (2009) 1632-1635. 

[24] R. Chen, Tailor-made antioxidative nanocrystals: production and in vitro efficacy, (2013). 

[25] M.S. Blois, Antioxidant Determinations by the Use of a Stable Free Radical, Nature, 181 
(1958) 1199-1200. 

[26] S. Scalia, M. Mezzena, Incorporation of quercetin in lipid microparticles: Effect on photo- 
and chemical-stability, Journal of Pharmaceutical and Biomedical Analysis, 49 (2009) 90-94. 

[27] S.A. Wissing, R.H. Müller, Solid lipid nanoparticles as carrier for sunscreens: in vitro 
release and in vivo skin penetration, Journal of Controlled Release, 81 (2002) 225-233. 



Chapter Three: Quercetin Liposomes and comparative study 
 

205 
 

[28] D.A. Schwindt, K.P. Wilhelm, H.I. Maibach, Water diffusion characteristics of human 
stratum corneum at different anatomical sites in vivo, J Invest Dermatol, 111 (1998) 385-389. 

[29] M. Podda, M. Grundmann-Kollmann, Low molecular weight antioxidants and their role in 
skin ageing, Clin Exp Dermatol, 26 (2001) 578-582. 

[30] A. Godic, B. Poljšak, M. Adamic, R. Dahmane, The Role of Antioxidants in Skin Cancer 
Prevention and Treatment, Oxidative Medicine and Cellular Longevity, 2014 (2014) 860479. 

[31] R. Casagrande, S.R. Georgetti, W.A. Verri Jr, M.F. Borin, R.F.V. Lopez, M.J.V. Fonseca, 
In vitro evaluation of quercetin cutaneous absorption from topical formulations and its functional 
stability by antioxidant activity, International Journal of Pharmaceutics, 328 (2007) 183-190. 

[32] E. Merisko-Liversidge, G.G. Liversidge, E.R. Cooper, Nanosizing: a formulation approach 
for poorly-water-soluble compounds, European Journal of Pharmaceutical Sciences, 18 (2003) 
113-120. 

[33] C. Caddeo, O. Diez-Sales, R. Pons, X. Fernandez-Busquets, A.M. Fadda, M. Manconi, 
Topical anti-inflammatory potential of quercetin in lipid-based nanosystems: in vivo and in vitro 
evaluation, Pharm Res, 31 (2014) 959-968. 

[34] C.L. Burnett, B. Heldreth, W.F. Bergfeld, D.V. Belsito, R.A. Hill, C.D. Klaassen, D.C. 
Liebler, J.G. Marks, Jr., R.C. Shank, T.J. Slaga, P.W. Snyder, F.A. Andersen, Safety Assessment 
of PEGylated oils as used in cosmetics, Int J Toxicol, 33 (2014) 13s-39s. 

[35] B. Lehmann, HaCaT Cell Line as a Model System for Vitamin D3 Metabolism in Human 
Skin, Journal of Investigative Dermatology, 108 (1997) 78-82. 

[36] C. Maupas, B. Moulari, A. BÃ©duneau, A. Lamprecht, Y. Pellequer, Surfactant dependent 
toxicity of lipid nanocapsules in HaCaT cells, International Journal of Pharmaceutics, 411 (2011) 
136-141. 

[37] J.A. Kim, C. Aberg, A. Salvati, K.A. Dawson, Role of cell cycle on the cellular uptake and 
dilution of nanoparticles in a cell population, Nat Nano, 7 (2012) 62-68. 

[38] A.B. Petersen, R. Gniadecki, J. Vicanova, T. Thorn, H.C. Wulf, Hydrogen peroxide is 
responsible for UVA-induced DNA damage measured by alkaline comet assay in HaCaT 
keratinocytes, Journal of Photochemistry and Photobiology B: Biology, 59 (2000) 123-131. 

[39] Kimura.S , Wqrqbi.E , Yanagawa.T , Ma.D , Ltch.K , Lshii.YKawachi.Y , Lshii.T, Essential 
role of Nrf2 in keratinocyte protection from UVA by quercetin, 387 (2009) 109–114. 

[40] J. Auwerx, The human leukemia cell line, THP-1: a multifacetted model for the study of 
monocyte-macrophage differentiation, Experientia, 47 (1991) 22-31. 

[41] F.O. Nestle, P. Di Meglio, J.-Z. Qin, B.J. Nickoloff, Skin immune sentinels in health and 
disease, Nature reviews. Immunology, 9 (2009) 679-691. 

[42] A. Robaszkiewicz, A. Balcerczyk, G. Bartosz, Antioxidative and prooxidative effects of 
quercetin on A549 cells, Cell Biology International, 31 (2007) 1245-1250. 

[43] J. Pardeike, A. Hommoss, R.H. Müller, Lipid nanoparticles (SLN, NLC) in cosmetic and 
pharmaceutical dermal products, International Journal of Pharmaceutics, 366 (2009) 170-184. 



Chapter Three: Quercetin Liposomes and comparative study 
 

206 
 

[44] M. Chessa, C. Caddeo, D. Valenti, M. Manconi, C. Sinico, A.M. Fadda, Effect of 
Penetration Enhancer Containing Vesicles on the Percutaneous Delivery of Quercetin through 
New Born Pig Skin, Pharmaceutics, 3 (2011) 497-509. 

[45] Y. Liu, J.-y. Chen, H.-t. Shang, C.-e. Liu, Y. Wang, R. Niu, J. Wu, H. Wei, Light 
Microscopic, Electron Microscopic, and Immunohistochemical Comparison of Bama Minipig 
(Sus scrofa domestica) and Human Skin, Comparative Medicine, 60 (2010) 142-148. 

[46] S. Scalia, E. Franceschinis, D. Bertelli, V. Iannuccelli, Comparative evaluation of the effect 
of permeation enhancers, lipid nanoparticles and colloidal silica on in vivo human skin 
penetration of quercetin, in:  Skin Pharmacol Physiol, Basel., Switzerland, 2013, pp. 57-67. 

[47] N. Chondrogianni, S. Kapeta, I. Chinou, K. Vassilatou, I. Papassideri, E.S. Gonos, Anti-
ageing and rejuvenating effects of quercetin, Exp Gerontol, 45 (2010) 763-771. 

[48] E.A. Hamminga, A.J. van der Lely, H.A.M. Neumann, H.B. Thio, Chronic inflammation in 
psoriasis and obesity: Implications for therapy, Medical Hypotheses, 67 (2006) 768-773. 

 

 

  



Chapter Three: Quercetin Liposomes and comparative study 
 

207 
 

 
Supplementary Table 1: effect of Cremophor® EL on the physicochemical characterization of 

quercetin liposmoes. 

  

Quercetin liposomes 
without Cremophor® EL 

Physicochemical 
characterization

Quercetin liposomes with 
Cremophor® EL 

127 ± 7 Size (nm) 179 ± 15 

0.10 ± 0.01 PDI 0.06 ± 0.02

1.55 ± 0.36 DL (%) 2.58 ± 0.13

12.0 ± 1.0 EE (%) 68.2 ± 2.7
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Supplementary Fig 1. HaCaT cellular viability upon the treatment with different concentrations of 

que-lipo and blank-lipo. The blank-lipo excipients are equal to que-lipo in for each concentration of 

quercetin.   
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Complementary results  

The development of experimental protocol used to establish the HaCaT cells culture methods, the 

condition of oxidative stress induction will be presented here to fully apprehend the model. In the 

scope of strengthen up our investigation on the activity of quercetin and its formulation for skin 

protection, we were exploring the use of SunTest CPS+ as a source of irradiation close to the solar 

spectrum.. At the same level, and in order to investigate quercetin protective action in relation to 

wound healing and skin cancer, quercetin inhibitory activity of MMP-9 is tested in collaboration 

with Comparative Molecular Immuno-Physiopathology, IRD Laboratory (Pr. Francisco Veas), 

UMR-MD3, Faculty of Pharmacy, Montpellier University. Finally, confocal imaging in 2 photon 

microscope, allowing fluorescence visualization in living tissues was performed in mice thanks to 

Dr. Muriel Golzio (Institut de Pharmacologie et de Biologie Struscturale UMR 5089). These are 

preliminary results and more investigation should be performed.  

1. The selection of HaCaT cellular density  

The determination of optimum cellular density is a critical point in cellular assays using 

keratinocytes, as the differentiation occurs only when cells attend confluence [1]. This process is 

the natural passage of keratinocytes from basal to superficial layers. For this, HaCaT cells were 

seeded at different cellular densities (i) 40,000 cells/cm2, (ii) 80,000 cells/cm2, (iii) 160,000 

cells/cm2 and  (iv) 200,000 cells/cm2 in 96 well plates. Then, cellular viability after the treatment 

with quercetin formulations was determined using MTT assay. Cellular toxicity due to both crude 

quercetin and quercetin formulations was decreased with the increase in cellular density (for 

example crude quercetin at 5 µg/ml, viability increased from 61.5% 40,000 cells/cm2 at to 97.4 % 

at 200,000 cells/cm2) (Fig. 1). This is in accordance with the well known fact that higher cellular 

density enables a cell to cell contact that in turns, strengthen the cellular resistance mechanisms 

[2]. Based on these findings, the cellular density of 200,000 cells/cm2 was selected for our studies.  
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Fig. 1: HaCaT cellular viability percentage after 24 hours treatment with crude quercetin, quercetin 

smartCrystals® stabilized with Tween® 80 and TPGS, quercetin lipid nanocapsules 20 and 50 nm and 

quercetin liposomes at several cellular densities. 

  

2. The selection of H2O2 molar concentration  

The optimization of the oxidative stress induced by H2O2 was established by exposing HaCaT cells 

to several concentration of H2O2 from 25 µM to 1 mM. Fig. 2 presents the viability results of 

HaCaT cells upon 120 minutes exposure to H2O2. The cellular viability decreased with increasing 

H2O2 applied dose and this is related to the apoptotic activity of H2O2 on keratinocytes [3]. The 

cellular viability decreased to 20.5 % with 1 mM H2O2 compared to 61.0 % with the 0.5 mM.  As 

a result, 1 mM H2O2 was selected for oxidative stress induction.  
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Fig. 2: HaCaT cellular viability percentage after 2 hours treatment with several concentration of 

H2O2 at 200,000 cells/cm2 cellular density.  

 

3. SunTest CPS+ for testing UV irradiation on cells  

The SunTest CPS+ Atlas Material Testing Solutions (Linsengericht, Germany) (Fig. 3) is a light 

source used in pharmaceutical and cosmetics industry for the accelerated testing of cosmetics [4, 

5]. The xenon lamp provides a spectrum of radiation as the solar spectrum. It is easy to use and 

the applied dose of irradiation can be adjusted. 

 

Fig. 3: The Atlas SunTest CPS+ 
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The use of SunTest CPS+ apparatus to mimic the solar radiation on cellular assays was not reported 

previously. As a result, the possibility of using SunTest CPS+ apparatus as a source of oxidation 

close to what happens under sunlight was investigated. Fig. 5 presents the procedure of cells 

treatment. The determination of the post-exposure period before MTT essay is based on the 

modulation of keratin 1, 10 and involucrin expression reported after the 6th hours post-exposure to 

UV irradiation by a xenon solar UV-simulator equipped with a dichroic mirror and a 300±5 nm 

interference filter (Oriel Instruments, Stratford, CT, USA) [6].  

The results for the optimization parameters of the experiment are showed in Fig. 4. Two main 

parameters were shown to have a crucial influence on cell viability: exposure time and presence 

of serum. 

 (a) The effect of exposure time to SunTest CPS+ irradiation on the cellular viability of HaCaT 

cells is evaluated. Cellular viability was reduced with increasing exposure time from 15 minutes 

to 30 minutes at 750 J/m2. 56.6 ± 14.6 % of cells were viable after 15 minutes exposure to SunTest 

CPS+ when MTT assay was performed at 6 hours and 33.2 ± 13.7 % after 24 hours of exposure 

compared to 14.6 % after 6 hours and 3.7 % after 24 hours in 30 minutes exposure time (Fig. 5 a). 

This can be related to the higher energy input upon prolonged exposure time.  

(b) The effect of presence of serum in the medium during the cells exposure to SunTest CPS+ test 

was also investigated. Surprisingly, we observed that cellular viability was higher when cells were 

covered with PBS instead of DMEM + serum (Fig. 5 b). We therefore hypothesized that serum 

proteins could be denatured during the exposure to SunTest CPS+ with subsequent cellular 

toxicity. As result, the 15 minutes exposure time in PBS was selected for the test of quercetin and 

its formulations protective action.  
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Fig. 4: Optimization parameters for SunTest CPS+ indication of oxidative stress on HaCaT cells. a) 

The effect of exposure time on cellular viability, b) The effect of medium composition on cellular 

viability.  
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Fig. 5: Chronological presentation of SunTest CPS+ induction of cellular toxicity.  

 

Based on these conditions, we tested the protective effect of 5 µg/ml concentration of crude 

quercetin and its formulations against SunTest CPS+. Vitamin C was used as a control of 

antioxidant molecules [7]. To determine the effect of the presence of serum during cells incubation 

pre-exposure and post-exposure on the results, cells were incubated with DMEM +/- serum (Fig. 

6). We can notice that the control negative cells (cells non-treated with SunTest CPS+) were able 

to proliferate in serum positive conditions whereas the control positive cells (treated with SunTest 

CPS+) were not. This indicates that the SunTest CPS+ irradiation has potential to influence cell 

viability [8].  

On the other side, in the serum free conditions the viability percentage of the control negative cells 

was similar to control positive one, thus supporting that the treatment of cells with SunTest CPS+ 

did not influence the viability but had rather  a static effect on cell division. Consequently, we state 

that the use of MTT assay is an indicator of quercetin effect on cells in response to SunTest CPS+ 

exposure is not suitable.   
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Fig. 6: HaCaT cellular viability percentage after 24 hours treatment with 5 µg/ml crude quercetin or 

its formulations followed by 15 minutes of SunTest CPS+ at 200,000 cells/cm2 cellular density. 
MTT was performed 6 hours post exposure. Cells were incubated during quercetin treatment and 6 hours 
post exposure with either DMEM+ serum or DMEM only.  

 

For this reason, we decided to look for ROS generation within SunTest CPS+ exposed cells using 

DCFDA assay. Cells were loaded with DCFDA after the treatment with quercetin or its 

formulations and before the exposure to SunTest CPS+. Fig. 7 presents the ROS generated 

expressed in terms of relative intensity compared to control negative cells (non-treated cells). 

Starting by the control positive cells, the cellular exposure to SunTest CPS+ initiated a strong 

oxidative stress inside cells (2.4 fold increase in ROS). However, neither Vitamin C nor crude 

quercetin was able to scavenge the ROS generated in response to SunTest CPS+ exposure (114.4 

% with Vitamin C and 125.0 % with crude quercetin). This observation could indicate that the 

oxidative stress initiated by the exposure to SunTest CPS+ involves complex events and may 

involve the activation of heat shock proteins such as the expression of MMP-1 via calcium-

0

20

40

60

80

100

120

140

160

V
ia

b
ili

ty
 %

Quercetin concentration (5 µg/ml)

15 min SunTest CPS+



Complementary results 
 

217 
 

dependent protein kinase C α signaling as already observed in HaCaT cells [9].  This is supported 

by the fact that the SunTest CPS+ does not provide a consistent temperature in the exposure 

chamber. The results of quercetin and Vitamin C were both negative concerning cellular protection 

ability in response to SunTest CPS+. More investigations are required to certify the possibility to 

apply SunTest CPS+ in the UV irradiation involving the cells in vitro or not. 

 

 

Fig. 7: ROS generation in HaCaT cells percentage after 24 hours treatment with 5 µg/ml crude 

quercetin or its formulations followed by 15 minutes of SunTest CPS+ at 200,000 cells/cm2 cellular 

density. DCF quantification was performed directly post exposure.  

 

4. Crude quercetin and its formulations effect on the MMP-9 release on 

THP-1 cells 

The involvement of MMP-9 in the progression of tumors is well documented in literature such as 

in primary human breast cancer [10] and non-small cell lung cancer [11] and more importantly, it 

is known to be upregulated in aged skin and in progressive skin cancer [12]. Quercetin had 

previously been shown to inhibit MMP-9 directly by interaction with MMP-9 active sites [13] or 

its TNFαinduced expression [14].  
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For this, we wanted to evaluate crude quercetin and its formulations for potential inhibitory activity 

on MMP-9, which in turns could highlight the application of this polyphenol in the wound healing 

or even in protection against skin cancer. 

THP-1 cells were induced with TNFα, which causes the induction of MMP-9 through intracellular 

signal-regulated kinase pathway 1/2 (ERK1/2). To explore quercetin activity against the 

release/activity of MMP-9, THP-1 cells were seeded at 300,000 cells/ml using RPMI medium 

without serum and stimulated with TNFα (12.5 ng/ml). Cells were treated with either crude 

quercetin or quercetin nanoformulations concurrently with TNFα stimulation. After 24 hours, cells 

were collected and centrifuged for 5 min at 1,500 RPM. Supernatants were collected and MMP-9 

gelatinase activity was determined using 10% acrylamide separation gel and 4% acrylamide gel 

for stacking. 10 % glycerol solution was used for gel fixation. Gel preparation was according to 

Toth et al [15]. 

Fig. 8 presents the gelatin zymography of MMP-9 expressed in THP-1 cells in response to TNFα 

(12.5 ng/ml). The MMP-9 degradation of gelatin activity is presented by a denser band on the gel, 

as a result, the lighter the band, the higher the MMP-9 inhibition by quercetin. The control negative 

express the cells without stimulation by TNFα, whereas the control positive cells is the stimulation 

with TNFα without quercetin treatment. By a qualitative analysis, a weak inhibitory effect was 

observed for crude quercetin, que-SC and que-LNC formulations at 5 µg/ml. This may suggests 

the need for higher doses of quercetin in order to attend the inhibitory activity of MMP-9, as higher 

inhibitory activity was observed with crude quercetin at 10 µg/ml. Indeed in the other studies 

involving quercetin inhibition of MMP-9, quercetin applied dose was higher than what we tested, 

for example it was around 30 µg/ml on prostate cancer cells (PC-3) [16]. For this, further studies 

are requested applying higher doses of quercetin in order to explore quercetin efficient MMP-9 

inhibitory activity  
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Fig. 8: MMP-9 expression in THP-1 cells percentage after 24 hours treatment with 12.5 ng/ml of 

TNFα and several concentrations of crude quercetin or its formulations at 300,000 cells/ml  cellular 

density.  

 

5. In vivo animal skin penetration of quercetin lipid nanocapsules and 

quercetin liposomes  

With the objective to compare the skin penetration capacity of lipid nanocapsules to liposomes, in 

vivo animal skin penetration studies were conducted by Dr. Muriel Golzio from the “Institut de 
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wavelength = 565 nm). Dil purchased from (Invitrogen, Cergy  Pontoise,  France)  was  dissolved  

in  acetone  at 6 % (w/w)  and  the  resulting  stock solution was incorporated in Labrafac® (1:10 

(w/w)) for LNC and in Cremophor® EL (1:10 (w/w)) for liposomes.  

Fig. 9 presents the images of Dil loaded que-LNC 20, que-LNC 50 and que-Lipo. Due to different 

loading capacity of Dil within each formulation, the formulation were diluted in order to have the 

same Dil content prior to application to skin (6 µg/ml). The use of Dil for the labelling of LNC 

and Lipo was due to the interference between quercetin fluorescence and the skin auto-

fluorescence, Consequently, Dil was selected as a marker for LNC and Lipo skin penetration.  

Images reveals that the Dil intensity was the highest with que-LNC 20 (Fig. 9, a) followed by que-

LNC 50 (Fig. 9, b) and the lowest deposition was with que-Lipo (Fig. 9, c). This can be related to 

the differences in size between formulations and shows the superiority of LNC over liposomes for 

delivery to skin.  

 

Fig. 9: Confocal images for Dil loaded que-LNC 20, que-LNC 50 and que-Lipo on the mice ear after 

application time of 24 hours. The images were captured with 500 ms exposure time.  

 

 

 

c) Que-Lipob) Que-LNC 50a) Que-LNC 20
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General discussion 

Quercetin is a natural polyphenol with antioxidant and antiinflammatory properties and is the 

predominant among flavonoids in nature compared to apigenin, hesperetin etc… (More than 4 000 

molecules). More than 20 000 articles related to quercetin or its activities were published between 

1988 and 2015 making quercetin as one of the most investigated flavonoids and evidencing the 

growing interest of this molecule. Despite quercetin’s promising activities in a long list of diseases 

such as  Parkinson [1], Alzheimer [2], hypertension [3], diabetes [4], asthma [5] skin ageing [6] 

and UV skin sunscreen [7] etc.., its poor water solubility (less than 0.05 µg/ml) hinders its 

efficiency in vivo.  

Quercetin physiological properties were a subject of research for more than 30 years. Nowadays, 

44 studies involving quercetin are registered at the USA national institute of health (information 

retrieved in June 2016). Quercetin entered a phase one clinical trial in 1996 for its lymphocyte 

protein tyrosine phosphorylation inhibition via i.v. bolus (1400 mg/m2), where this dose proved 

efficiency and safety [8] but quercetin has to be dissolved in DMSO prior to the formulation of i.v. 

bolus. Oral administration is not effective for treatment as the absolute oral bioavailability of crude 

quercetin is only 4 %  [9] and topical application never led to topical activity for quercetin in its 

crude format [10]. As a result, to our knowledge, no product containing quercetin is neither in 

pharmaceutical dosage forms nor in cosmetics, is currently on the market. Quercetin containing 

products are mainly capsules intended for the food supplementation such as quercetin plus Vitamin 

C (250 mg / 700 mg) from Puritan's Pride, Inc (Oakdale, NY, USA).  

Some recent research papers described the chemical modification of the crude form to allow a 

better quercetin absorption [6, 11].  However, the resulted molecules were less effective than the 

crude format. Consequently, the main solution to improve quercetin relies on the use of a suitable 

carrier system which could overcome its poor water solubility. It is towards this aspect, relying on 

quercetin formulation, to allow its use through topical administration, that was orientate this PhD 

work 

In this project, we focused on the skin, as it represents the largest organ of the human body which 

is exposed to oxidative stress. In parallel, the already discussed powerful antioxidant and anti-

inflammatory properties of quercetin, make it a choice molecule for skin supplementation. Three 

approaches, relying on quercetin nanoformulation, were developed for quercetin topical delivery 

and compared to each other’s (smartCrystals®, lipid nanocapsules and liposomes). The selection 
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of smartCrystals® (drug nanocrystals) is based on their successfulness in overcoming the solubility 

limitation of several drugs such as: lutein [12], apigenin [13], fenofibrate [14], rutin [15] etc… and 

even more. By year 2008, 4 marketed drugs, which are Rapamune® sirolimus (Wyeth 

Pharmaceuticals, Madison, NJ) as oral suspensions and tablet, Emend® aprepitant  Merck 

(Winehouse Station, NJ)  as tablet, Tricor® fenofibrate (Abbott Laboratories) as tablet and Megace 

ES® megestrol acetate (Spring Valley, NY) as oral suspension.  

In parallel, with the goal to both protect quercetin and increase its apparent water solubility and its 

bioavailability, we chose to focus on lipid based nanoparticles, as well as liposomes as a gold 

standard. We chose to develop quercetin within lipid nanocapsules benefiting from the ability to 

protect encapsulated drugs oxidation. In addition, lipid nanocapsules will confer better ability to 

bypass skin physical barriers [16]. 

Liposomal formulation was selected as a reference for nanometric delivery systems because it is 

recognized since the 70s as a successful approach for increasing the solubility and delivery of 

several drugs such as gemcitabine [17] sodium stibogluconate [18], fenofibrate [19], doxorubicin 

[20] etc... And these systems remain the first nanoparticles based product which was marketed in 

1987 in cosmetics with Capture (Dior).  

The description of the preparation process and the influence of the formulation excipients on (i) 

quercetin loading and (ii) particle size are discussed. Then, the effect of formulation on quercetin 

(i) crystallinity, (ii) release profile, (iii) interaction with cells and (iv) skin penetration are also 

presented. Finally, in the scope of large scale production of quercetin nanoformulations, the scale 

up process of these formulations is also discussed.  

Description of the preparation processes 

The simplicity and the ability to reproduce formulations within different settings and laboratories 

is one of the main objectives for industrially feasible methods. For this, the process of 

smartCrystals®, lipid nanocapsules and liposomes will be discussed at several levels (i) the 

principle of the utilized method, (ii) the instrumentation requested to perform the method, (iii) the 

production time and (iv) the yield of quercetin upon formulation.  

SmartCrystals® technology is a top down process, where larger crystals are defragmented and 

disaggregated to smaller crystals eventually at the nanometric scale. This process, relying on the 

use of high energy level to obtain defragmentation and disaggregation, requires the use of one or 
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a mixture surfactant to thereafter stabilize the newly formed nanocrystals [21, 22]. Focusing on 

the laboratory scale production and keeping the industrial scale for later section, this method 

requires the use of special instrumentation such as wet bead miller, high pressure homogenizer 

(piston gap or microfluidizer) for processing larger crystals and transforming them to smaller ones. 

Thus, this limits their preparation in non-equipped laboratories. By contrast, lipid based 

nanoparticles do not need special instrumentation for their preparation. The lipid nanocapsules is 

made with the phase inversion method that produces nanocapsules by the aid of the thermic shock 

at the transition phase. This method requires only a heating-cooling system and this can be found 

in each laboratory. The only limit could be an issue is to control the temperature homogeneity in 

large volumes preparation.  Liposome could be formulated with simple laboratory equipment, as 

the liposomes prepared by ethanol injection method are formed upon the natural evaporation of 

injected ethanol into the preheated aqueous phase. This method requires only a simple heating 

system and a syringe for the ethanol injection, but is maybe the more difficult to transpose at the 

industrial scale.  

Looking at the preparation time, the second generation SmartCrystals® enables a vast decrease in 

the preparation time compared to quercetin nanocrystals prepared by first generation techniques 

from 60 minutes in bead milling to only 5 minutes and form 20 cycles in high pressure 

homogenizer to 2 cycles [23]. The total preparation time takes around 45 minutes starting from the 

weighing of quercetin to the collection of the SmartCrystals®. 

Concerning the yield of quercetin due to the use of sieving and dilution after the bead milling for 

the separation of the SmartCrystals® from the beads, the yield of the process is around 30 % if we 

started with 5 % quercetin coarse suspension. Maybe by starting with a smaller percentage of 

quercetin like 2.5 % the yield of the process can be increased (Table 1).  On the other side, the 

yield with lipid nanocapsules is more than 90 % and the total preparation time is between 45 

minutes and 60 minutes depending on the heating-cooling speed used during the three cycles 

(Table 1). Finally, liposomes enabled a lower yield compared to lipid nanocapsules and higher 

than that of smartCrystals® with 68 %. The total preparation time for liposomes takes around 90 

minutes (Table 1).  



General discussion 
 

227 
 

 

 

Table 1: Summary table of the physicochemical characteristics of quercetin smartCrystals, quercetin 

lipid nanocapsules and quercetin liposomes 

Influence of excipients on quercetin loading  

We first focused on the selection of excipients to improve the solubility of quercetin. Primary 

solubility studies (data not shown) evidenced that Cremophor® EL (polyethoxylated castor oil) 

exposes good affinity to quercetin compared to other oils tested such as jojoba oil and olive oil and 

was therefore chosen to be introduced into lipid nanocapsules, leading to drug loading increase 

from 5.16 mM to 32.0 mM [24]. This excipient was also used in the liposomes preparation 

increasing the drug loading from 1.55 % to 2.58 %. The question that comes following the use of 

Cremophor® EL is, whether it is safe or not as previous articles report the discarding of 

Cremophor® EL from Taxol containing preparation leading to hypersensitivity reactions in oral 

route of administration [25-28]. Nevertheless, in another pathway, such as for topical 

Formulations Size (nm) PDI

Drug

loading 

(%)

Encapsulatio

n efficiency 

(%)

Quercetin

crystallinity

Solubility 

increase 

(apparent)

Dissolution / 

release profile

Preparation 

time

Crude quercetin
3976 ± 434 0.80 ± 0.186

--- ---

Crystals 
format 

pharmaceutica
l grade 
(QGPb)

0.48 ± 0.12 
µg/ml

--- ---

Quercetin 
smartCrystals®

a) With Tween® 80
b) With TPGS 295 ± 9

203 ± 3
0.25 ± 0.03
0.24 ± 0.01

---
---

28.2 ± 6.8 
28.8 ± 0.54

Crystals 
format 

pharmaceutica
l grade 
(QGPa)

14.1 ± 3.4 
mg/ml

14.4 ± 0.027 
mg/ml

Burst 
dissolution

45 minutes

Quercetin lipid 
nanocapsules 

a) 20 nm 
b) 50 nm 

26 ± 3
54 ± 3

0.06 ± 0.001
0.17 ± 0.002

2.79 ± 0.2
2.62 ± 0.1

90.9 ± 3.5
96.4 ± 1.2

---
---

10.80 ± 0.78 
mg/ml

6.00 ± 0.70 
mg/ml

Sustained 
release profile 

45-60 minutes

Quercetin liposomes 

179 ± 15 0.06 ± 0.02 2.58 ± 0.13 68.2 ± 2.7
----

0.56 ± 0.05 
mg/ml

Delayed 
release profile

90 minutes
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administration and use in cosmetics, Cremophor® EL is approved up to 22 % in hair products and 

it is safe in cosmetic products up to 50 % [29]. 

Influence of excipients on particle size  

The choice of excipient may also improve the formulation process in the case of nanocrystals 

formulation. According to previous reports and based on our findings, the particle size of 

formulated nanoparticles is dependent on the preparation process and on the excipients used. 

Looking to smartCrystals®, the choice of the stabilizer was one of the most important parameter.  

In the preparations of smartCrystals®, two standard nonionic stabilizers: (i) Tween® 80) and (ii) 

Lutrol® F68 were selected for their known usefulness in the stabilization of drug nanocrystals [30-

32]. In addition, two alkyl polyglucoside “green” stabilizers (iii) Plantacare® 810 and (iv) 

Plantacare® 1200, described as “skin friendly” stabilizers, were evaluated [33, 34]. Among tested 

stabilizers, TGPS (D-α-Tocopherol polyethylene glycol 1000 succinate) which is a derivative of 

Vitamin E with antioxidant capabilities [35], enabled lower particle size compared to Tween® 80, 

Lutrol® F68, Plantacare® 810 and Plantacare® 1200. Particle size was 203 nm with TPGS and 426 

nm with Plantacare® 810 (Table 1). Concerning liposomes formulation by solvent injection, the 

introduction of Cremophor® EL to the formulation increased the particle size from 127 nm to 179 

nm (Table 1) 

Obviously, the process of preparation has also a strong influence on the particle size. Concerning 

smartCrystals® formulation, the pre-determination of the desired particle size is not possible as it 

is a top down technique [36]. On the other hand, the reproducibility of the same particle size for a 

drug applying the same preparation conditions is possible. The same is observed with liposomes 

using ethanol injection method, the particle size cannot be predicated exactly in the step of 

determining the formulation, and however, particle size is reproducible by standardization of 

protocol. By contrast, in the case of lipid nanocapsules, the size can be determined (thanks to the 

use of  a tertiary diagram) by varying the percentage of the oily core relatively to the surfactant 

shell [37]. This confers the advantage for topical application by adapting the particle size for the 

desired targets within the skin. As an example, if targeting hair follicles, 120 nm particles the 

infundibutum section and the sebaceous glands could be targeted efficiently, whereas, the bulge 

can be targeted with particle with size around 300 nm [38].  
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Influence of the formulation on quercetin crystallinity   

Quercetin crystalline nature was revealed by X ray studies on the crude quercetin borough from 

Sigma (Sigma Aldrich, France). However, with the nanonization process applied in the 

smartCrystals® production, quercetin changed its polymorphic form (Table 1), and this can affect 

quercetin physicochemical properties and its interaction with cells [39, 40]. On the other side, the 

detection of quercetin within lipid nanocapsules by X ray analysis was not possible due to its low 

percentage compared to other lipid excipients less than 3.5 %, (Table 1) [41]. Other suitable 

method should be selected for this purpose. We did not determine the crystalline nature of 

quercetin within liposomes due their inherent instability upon lyophilisation [42]. The use of 

cryoprotectant remains a solution for such issue. However, the low percentage of quercetin relative 

to other excipients in liposomes stays the major limitation for X ray studies (2.58 %) (Table 1). 

Influence of the formulation on quercetin release profile    

The selected formulations enabled different release profiles for quercetin in vitro. Quercetin first 

developed in the second-generation drug nanocrystals (smartCrystals® technology) showed a burst 

release profile (7.6 fold increase) in quercetin dissolution velocity with a total dissolution in 2 

hours (Table 1). Quercetin within lipid nanocapsules showed then a sustained release profile with 

around 14 % released in 24 hours (Table 1). Finally, quercetin within liposomes showed a delayed 

release profile with no quercetin liberated in the first 2 hours compared to control solution (Table 

1). It is worth to note that, we were obliged to stop in vitro release studies after 24 hours due to 

quercetin degradation in the PBS. Previous studies noted this degradation at pH 9, nonetheless we 

observed such degradation at pH 7.4 [43]. 

Scaling up of the process of preparation  

The usefulness of these formulations should be extrapolated to industrial scale keeping in mind 

that quercetin was not marketed till the moment as an active ingredient. Consequently, the scaling 

up of the preparation process from lab scale to pilot scale and then to the industrial scale is 

discussed, the three approaches each owns advantages and disadvantages. The main characteristic 

of a good scale up design is by controlling the particle size, PDI and zeta potential of nanoparticles 

produced at the lab scale and at the pilot scale or industrial one [44, 45]. The drug loading can also 
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be monitored for formulations that encapsulate drug such as lipid nanocapsules and liposomes.  

The scale up of smartCrystals® is feasible and depends only on the size of the bead milling machine 

and high-pressure homogenizer [44]. The pearl mill Bùhler PML 2 used in the lab scale can be 

replaced with K-Serie in pilot scale then to SuperFlow™ for industrial scale (Bùhler AG, Uzwil, 

Switzerland). Similarly the Micron LAB 40 (APV Gaulin GmbH, Germany) with 40 ml batch 

volume to 600 ml batch volume in continuous mode with the Micron LAB 60 and then 60 000 

litres/hour with High-pressure homogenizer Rannie 110T/125T (APV Gaulin GmbH, Germany). 

The major inconvenient for such process is that if quercetin nanosuspensions need to be further 

lyophilized,  this could causes an increase in the preparation costs and adds more complexity to 

the process at the industrial scale. But this issues were already apprehended with the already 

marketed nanocrystals based products. 

The scale up of lipid nanocapsules could also be feasible with previous reports about Ibuprofen 

[45]. The use of 20 ml flasks and plate heaters in the lab scale can be replaced by automatic reactor 

ARLA1, marketed by Algochem Company (Paris, France). These two double-jacketed reactors 

can hold the three cycles within the first reactor and the MilliQ water used for the dilution in the 

second reactor. Then, the reception of lipid nanocapsules can be within beaker. The volume of the 

reactors and the reception beaker determine the size of produced batches. Looking into quercetin 

liposomal formulation, the scale up of liposomes prepared by ethanol injection method seems to 

be the simplest [46]. The use of large reactors that are double-jacketed for the PBS buffer and the 

injection of phospholipid ethanolic solution can be performed through a syringe pump (model ST-

670T, Samtronic) coupled to a stainless-steel needle (0.4 mm about 27 guage). 

The expensive excipients used in liposomes preparation and the need to pass into an evaporation 

step may limit the scale up process. As liposomes do not offer advantages over smartCrystals® and 

lipid nanocapsules for quercetin topical delivery in terms of limited drug loading (0.56 mg/ml) and 

the preferred storage condition is 4°C.  

Influence of the formulation on cellular behavior and antioxidant activity of 

quercetin 

Quercetin smartCrystals® toxicity and protective activity were first tested on Vero cell line, 

because this was the first published work regarding drug nanocrystals interaction with cells [39]. 

As a result, the selection of Vero cells was done on the basis of their universal use in toxicological 
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studies and their presence in most of cell culture laboratories thus enabling the comparison of 

quercetin smartCrystals® to other formulations in the future.  

In a second time, the cellular safety and quercetin protective activity with these formulations were 

tested mainly on two cell lines: HaCaT cells as immortalized keratinocytes [47] and THP-1 cells 

as  monocytes in order to  give insights of the quercetin and its formulations behavior in respect to 

immune cells and monocytes derived dendritic cells [48-50].Going back to HaCaT cells, the 

selection of the optimal cellular density was a critical point of the study, as the resistance of these 

cells to external stimuli is very dependent on cell to cell interactions in 2D culture [51]. Moreover, 

the 3D culture  could also improve the cellular ability to survive against toxic agents [52]. On the 

basis of our studies, 200 000 cells /cm2 were the optimal cellular density. The concentration of 5 

µg/ml was safe and effective for crude quercetin and its formulations. This concentration comes 

in accordance with previous reports regarding quercetin protective activity against UVB radiation 

(20 mJ/cm2) [53]. Interestingly, this concentration was twenty times lower than that of Manca et 

al for the efficiency against hydrogen peroxide induced oxidative stress [54]. Finally, quercetin 

showed anti-ageing and rejuvenating activities at 2 µg/ml HFL-1 human embryonic fibroblasts 

and whitening activity on mouse melanocytes (B16F10 cell line at 5 µg/ml [6]. The promising 

results on HaCaT encouraged us to test the 5 µg/ml of quercetin and its formulations on THP-1 

cells, where this concentration was safe and proved protective activity against hydrogen peroxide 

induced oxidative stress. This comes to support that quercetin had previously showed an inhibition 

of superoxide anion and elastase release in neutrophils [55]. This study highlights the double 

benefit from quercetin topical administration for strong antioxidant and antiinflammatory 

activities.   

The effective dose of 5 µg/ml is 2 880 fold and 2 160 fold lower than the prepared concentration 

of quercetin smartCrystals® (TPGS) and LNC 20 per one ml which indicates that the formulation 

gave a sufficient loading capacity for further formulation into gels or emulsions and kept quercetin 

concentration high enough for efficient delivery. On the other hand, liposomes that enabled a 

limited quercetin loading of 0.56 mg/ml meaning only 112 fold the effective concentration may 

struggle its incorporation into final products that require further dilution.   
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Influence of the formulation on quercetin in vivo skin penetration    

Skin is an active organ that consists of the three main layers dermis (1-2 mm), epidermis (50-100 

µm) and stratum corneum (5-8 µm) [56]. Dermis contains the blood vessels and sebaceous glands. 

The differentiation of keratinocytes starts from the basement membrane below the epidermis 

towards the terminal differentiation in the uppermost stratum lucidum where cells losses their 

nucleus to form the corneocytes [57].  

Skin is a compact physiological barrier. This barrier function is mainly due to the superficial 

stratum corneum, where the bypass of stratum corneum is a great importance for transdermal 

delivery. The stratum corneum is composed of dead corneocytes that are filled with water and 

keratin. However, these dead cells are embedded in the continuous lipid environment, which 

consists of ceramides, cholesterol and free fatty acid. The lipid environment is responsible for the 

barrier function of the stratum corneum. These lipid environment is organized in the form of what 

is called lamellae [58]. In 1994, Forslind suggested the domain mosaic model of the skin barrier, 

which recognized the lipid bulks as segregated into crystalline / gel domain. These domains are 

surrounded by grain borders, where the lipids are in the fluid crystalline state [59]. The major flux 

of across skin can occur at the boundaries, where lipid chains can present packing defects due to 

the lyophobic / hydrophilic bilayer that composes the grain borders [60]. The electron microscopy 

examination of the skin shows that at the junction between neighbor corneocytes, there is a band 

of 13 nm width, this lamellar arrangement is due to the interaction of the lipid environment with 

the outer surface of nearby corneocytes [61]. 

After the discussion of the barrier function of the skin, the penetration of nanoparticles through the 

skin and the potential pathways that nanoparticles can follow is discussed. One potential pathway 

for skin penetration of nanoparticles is the follicular openings. Alvarez-Roman et al investigated 

polystyrene nanoparticles from 20 to 200 nm and observed that with longer exposure times the 

nanoparticles accumulate in the follicular openings more preferably with smaller nanoparticles 

[62]. The localization of nanoparticles within the hair follicles was further confirmed on titanium 

dioxide nanoparticles [63, 64]. Other studies revealed that gold nanoparticles below 10 nm where 

capable of penetrating the skin the lower layers of the stratum corneum via the lipidic matrix and 

the hair follicles [65]. This suggests that for the 13 nm lamellar bands present between neighboring 

corneocytes. Looking into lipid based nanoparticles such as liposomes, intact liposomes were not 
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able to pass the horny layer of the stratum corneum, and however, the penetration of encapsulated 

lipophilic drugs can be the fluidization of intercellular lipid domains [66].   

The in vivo skin penetration test performed on quercetin smartCrystals® and quercetin lipid 

nanocapsules revealed higher skin penetration with lipid based nanoparticles. More than 90 % of 

quercetin applied dose with the smartCrystals® was detected in the 15 strips compared to less than 

30 % with lipid nanocapsules. This observation can be linked to several differences in the 

formulation. Starting by the higher occlusive effect conferred by the lipid nanocapsules compared 

to the smartCrystals® besides to the lower particle size by about 8 fold (203 nm with smartCrystals® 

vs. 26 nm the lipid nanocapsules) (Table 1) [67]. The smaller size and the lipid nature generate 

higher occlusive effect in the skin reducing the packing of corneocytes and widening the 

intercellular gaps [56]. Furthermore, the lipid nanocapsules contains chains of triglycerides in the 

Labrafac® and castor oil in the Cremophor® EL that gather higher affinity for skin lipids (fatty 

acids and cholesterol) compared to the hydrophilic nature of smartCrystals®. Finally, the in vivo 

skin penetration performed cannot offer information on whether lipid nanocapsules were intact or 

destroyed, however, from the stability tests at 37 °C with the lipid nanocapsules, the disintegration 

of the capsules is more pronounced.   
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General conclusion 

Quercetin is a natural plant pigment belonging to the flavonoids family. Despite of its interesting 

antioxidant and antiinflammatory activity, quercetin is poorly water soluble. Thus, the usefulness 

of this molecule is hindered by very low bioavailability and weak skin penetration capacity. In this 

project, three approaches were developed, optimized, tested and compared for the successful 

delivery of quercetin to skin tissue. The three approaches were smartCrystals®, lipid nanocapsules 

and liposomes, which are the top trend nanometric pharmaceutical formulations. These 

formulations showed their ability to enhance the physicochemical properties of several poorly 

water soluble molecules such apigenin with smartCrystals®, amiodarone with lipid nanocapsules 

and paclitaxel with liposomes.  

The threes approaches were characterized in terms of size, PDI, quercetin loading capacity, in vitro 

antioxidant activity of quercetin using DPPH assay and in vitro release profile of quercetin. 

Particles size were 26 nm and 54 nm with lipid nanocapsules, 203 and 298 nm with quercetin 

smartCrystals® and 179 nm with the liposomal formulation. All formulations presented PDI values 

inferior to 0.3 that indicates the homogenous profile of formulated nanoparticles. Quercetin drug 

loading varied among formulation with less than 1 mg/ml in liposomes to around 10 mg/ml in lipid 

nanocapsules and to more than 13 mg/ml with smartCrystals®. DPPH assay proved the chemical 

stability of formulated quercetin and the retained antioxidant activity. Finally, each formulation 

exhibited a distinct effect on quercetin release profile in vitro, where the smartCrystals® enabled a 

burst release kinetics compared to sustained release with lipid nanocapsules and delayed release 

with liposomes.  

Our main scope is addressing quercetin for topical application, starting from the fact that the skin 

is the largest organ of the human body and the organ the most exposed to oxidative stress. 

Consequently, the three approaches were compared on cellular level for their safety and quercetin 

protective activity on HaCaT cells (keratinocytes) and THP-1 cells (monocytes). On the basis of 

our findings, the concentration of 5 µg/ml quercetin was selected by showing the highest safety 

profile with all formulations and by proving the subsequent protective effect against hydrogen 

peroxide induced oxidative stress. This observation was confirmed on both cell lines, thus 

indicating the potentials of quercetin for supporting skin in both oxidation and inflammation. 

Finally, two formulations were selected (quercetin smartCrystals® stabilized with TPGS and 

quercetin lipid nanocapsules 20) for in vivo skin penetration, our findings suggest the higher 
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superficial deposition of quercetin in smartCrystals® highlighting its potential use in UV sunscreen. 

On the other hand, the penetration results of quercetin lipid nanocapsules suggest that lipid 

nanocapsules enabled quercetin penetration to deeper skin layers. As a result, quercetin lipid 

nanocapsules can be q promising approach for quercetin application in inflammatory skin 

disorders such psoriasis.  

The preparation methods of both quercetin smartCrystals® and quercetin lipid nanocapsules are 

designed at a lab scale that can be transformed to a pilot scale and the subsequent industrial scale. 

Therefore, the extrapolation of this project to industrial preparation of such formulations is 

feasible. Moreover, the high quercetin loading enabled by these formulations facilitates their 

further processing to a final derma product such as gels and emulsions. This project is a starting 

point for market quercetin containing product and a model for the formulation of other poorly 

water soluble drugs.  
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Perspective 

This project opens the doors for several applications at three levels. The first level is the continuity 

of the main findings of this project, where quercetin formulations can go further in respect to 

topical application. Quercetin smartCrystals®, which proved the protective activity of quercetin on 

HaCaT cells and THP-1 in vitro and enabled a superficial deposition of quercetin on skin in vivo, 

goes further with UV sunscreen investigation such as sun protection factor (SPF) for sunburn 

protection and the persistent pigment darkening (PPD) for protection against UVA irradiation at 

370 nm according to European Union (Commission Recommendation 22 September 2006).  

Quercetin lipid nanocapsules, which proved the protective activity of quercetin on HaCaT cells 

and THP-1 in vitro and enabled a deeper deposition of quercetin on skin in vivo, can be further 

investigated for inflammatory skin disorders such as psoriasis using models of inflamed skin and 

the in vitro detection of proinflammatory cytokines (IL-6, IL-8, IL-10 etc..), cyclooxygenase 2 and 

tumor necrosis factor alpha. This formulation could also be assayed for the possibility of 

supportive quercetin formulation in skin cancer building on their primary results of inhibition of 

MMP-9 in vitro.  

The second level is the use of formulations evidenced in this project to other route of administration 

for quercetin. Quercetin smartCrystals® holds great promise for oral drug delivery and may 

increase quercetin oral bioavailability. This opens the scope for wider applications for quercetin 

mainly in diabetes, hypertension and other cardiovascular disease. Likewise, quercetin lipid 

nanocapsules due to their possible targeting and small particle size, which enable the passage 

through blood brain barrier, can providing a promising approach for quercetin delivery in 

neurodegenerative disease such as Parkinson and Alzheimer.  

This project dealt with a flavonoid that share most of solubility problems similar to other 

flavonoids. Consequently, the third level of this project findings is the extrapolation that can be 

applicable for other flavonoids such as apigenin, hesperidin, Epigallocatechin… Even other   

poorly water soluble drugs could be investigated, keeping in mind that more that 40 % of drug 

molecules in the pipeline are poorly water soluble actives.  
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a b s t r a c t

Skin is a multifunctional organ with activities in protection, metabolism and regulation. Skin is in a con-
tinuous exposure to oxidizing agents and inflammogens from the sun and from the contact with the envi-
ronment. These agents may overload the skin auto-defense capacity. To strengthen skin defense
mechanisms against oxidation and inflammation, supplementation of exogenous antioxidants is a
promising strategy. Quercetin is a flavonoid with very pronounced effective antioxidant and antiinflam-
matory activities, and thus a candidate of first choice for such skin supplementation. Quercetin showed
interesting actions in cellular and animal based models, ranging from protecting cells from UV irradiation
to support skin regeneration in wound healing. However, due to its poor solubility, quercetin has limited
skin penetration ability, and various formulation approaches were taken to increase its dermal penetra-
tion. In this article, the quercetin antioxidant and antiinflammatory activities in wound healing and sup-
porting skin against aging are discussed in detail. In addition, quercetin topical formulations from
conventional emulsions to novel nanoformulations in terms of skin penetration enhancement are also
presented. This article gives a comprehensive review of quercetin for topical application from biological
effects to pharmaceutical formulation design for the last 25 years of research.

! 2016 Elsevier B.V. All rights reserved.
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1. Introduction

Skin is the largest organ of the human body, which secures the
internal homeostasis and regulates the temperature of the body.
Besides that, skin has barrier function, and it prevents germs from
passing into internal organs, and protects human body from exoge-
nous pollutants and oxidizing agents such as radiation and corro-
sive materials. As a result, skin is continuously exposed to
oxidants and inflammogens, even if skin possesses several antiox-
idative systems to withstand external oxidation sources. However,
in case that oxidative stress is superior to the defense mechanism
of skin, skin damage can occur [1,2].

Supporting skin defense mechanisms by exogenous antioxi-
dants is a promising strategy. Antioxidants such as Coenzyme
Q10 [3,4], vitamin C [5], b-carotene [6,7] and polyphenols [8,9]
were tested to evaluate their benefits on skin. Among them, flavo-
noids, which are strong polyphenolic antioxidants, are potential
good candidates. They are plant pigments found in several fruits
and vegetables such as apples [10], onions [11] and peas [12]. With
the presence of several hydroxyl groups on their structures, quer-
cetin is the strongest antioxidant among flavonoids and the most
common in nature [13]. At the same time, quercetin has the
broadest antiinflammatory activity compared to apigenin, morin,
(-)-epicatechin and biochanin A [14]. In spite of these promising
activities, quercetin suffers from poor water solubility and inability
to penetrate skin (Table 1) [15]. Quercetin shows water solubility
less than 0.5 lg/ml and higher solubility in polar organic solvents
(2 mg/ml in ethanol) [16–18]. Quercetin also has a partition
coefficient of 1.82 ± 0.32 due to the presence of nonpolar groups
in its structure [19]. But despite this logP, quercetin polar hydroxyl
groups hinder its skin penetration capacity [13]. Focusing on topi-
cal delivery from formulation approach, the use of nanoformula-
tions with therapeutic agents such as linoleic acid within
ethosomes and transfersomes [20], paclitaxel-loaded within etho-
somes [21] and asiaticoside in ultradeformable vesicles [22]
showed to enhance their topical delivery. This is linked to nanofor-
mulation characteristics such as their lipid nature and their small
particle size along with their elasticity that facilitate their deep
penetration. The presence of ethanol conferred higher skin pene-
tration for encapsulated molecules compared to liposomes, and
the rigid nature of liposomal bilayer is fluidized by the ethanol
presence that facilities ethosomes penetration. Consequently,
quercetin is also formulated within several nanoformulations in
order to enhance topical drug delivery [23,24].

In this paper, recent studies on quercetin skin activities from
in vitro models to in vivo animal studies will be presented. Then,
formulation strategies followed to overcome quercetin limited
water solubility and to increase its stability in formulation will
be discussed. The effect of formulating quercetin in conventional
dosage forms to enhance its skin penetration capacity will be
explored. Finally, recent nanoformulations of quercetin and their
potential as novel strategy for quercetin skin delivery will be
discussed.

2. Quercetin physiological activities on skin

2.1. Quercetin antioxidant activity

Skin is the largest organ in the human body exposed to oxidiz-
ing agents from environment such as solar radiation (visible/UV)
and chemicals (xenobiotic). These environmental pollutants can
induce oxidative stress to skin tissue either directly or indirectly
by the generation of reactive oxygen species (ROS). Skin tissue con-
tains several defense mechanisms for the prevention or inception
of oxidative stress and for the initiation of cellular repair afterward.
Skin has many mechanisms to prevent the formation of free radi-
cals. For example (i) metallothionein, present in cutaneous tissue,
chelates metal ions, has a great importance in controlling free rad-
ical generating reactions; (ii) there was an increase in melanin pro-
duction upon exposure to UV radiation. For the oxidative damage
control, skin also has endogenous mechanisms based on two cate-
gories: nonenzymatic and enzymatic. Among nonenzymatic mech-
anisms, small molecular size antioxidants such as glutathione
(GSH), ɑ-tocopherol, carotenoids and oxycarotenoids found in skin
cells, are molecules able of both neutralizing free radicals and relo-
calizing radical damaging functions from sensitive targets (as an
example from lipid membrane to cytosol). Enzymatic activities
depend on molecules such as superoxide dismutase, catalase and
glutathione peroxidase. These enzymes serve as a backup for the
regeneration of consumed antioxidants, like in the replenishment
of GSH by glutathione disulfide (GSSG) reductase, as well as for
the elimination of reactive compounds, such as the transfer system
for glutathione S-conjugates [26].

Quercetin antioxidant activity will be explored in three parts.
The first part will take into consideration all the chemical assays
used to determine quercetin activity in vitro. Then, a second part
will deal with quercetin activities tested at the cellular level, and
the molecular mechanism underlining quercetin potentials.
Finally, animal-based studies regarding quercetin protection to
cutaneous tissue after its exposure to oxidative stress stimulators
such as UV irradiation will be reviewed.

2.1.1. In vitro antioxidant activity (chemical tests)

In vitro tests for antioxidant activity provide information about
the antioxidant activity of quercetin without the need for complex
cellular based assays. They can ensure quercetin activity from
batch to batch and can be set as routine analysis. Three aspects
can be investigated in vitro. (i) Hydrogen donating activity can be
measured with 2,2-diphenyl-1-picrylhydrazyl (DPPH assay) [27].
(ii) Superoxide anion formation inhibition and scavenging activity
can both be quantified by means of xanthine oxidase and cyto-
chrome C assays [28]. (iii) Metal chelating activity can be deter-
mined using metal specific methods [29]. Finally antioxidants
can inhibit the peroxidation of unsaturated lipids, and thus
antilipoperoxidative activity can be analyzed using the colorimet-
ric detection of thiobarbituric acid reactive species (TBARS) by a
reaction mediated by Fe2+/Citrate [30]. In 2006 Casagrande et al.
[31] evaluated iron-chelating activity of 4 lg/ml quercetin solu-
tion. Quercetin chelated 65% of total iron within 15 min contact

Table 1

Quercetin main physicochemical parameters.

Quercetin physicochemical
properties

Values

Chemical structure

Molecular formula C15H10O7

Molecular weight 302.2 g/mol
Chemical name (IUPAC) 2-(3,4-dihydroxyphenyl)-3,5,7-

trihydroxychromen-4-one
Solubility in MilliQ water 0.48 ± 0.1 lg/ml [16]
Solubility in PBS pH 3 0.44 ± 0.1 lg/ml [18]
Solubility in DMSO 30 mg/ml [17]
Solubility in ethanol 2 mg/ml [17]
Partition coefficient (logP) 1.82 ± 0.3 [19]
Polymorphism Three polymorphic forms [25]

Quercetin partition coefficient is determined experimentally.
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time. This is in agreement with the fact that quercetin presents two
sites for chelating bivalents metals: 5-OH and 4-oxo group or
between the 30- and 40-OH groups (Table 1) [32]. On the other
hand, Casagrande et al. determined the functional stability of crude
quercetin and formulated quercetin in emulsions for topical appli-
cation. Antilipoperoxidative activity was tested during six months
at four storage temperatures 4 "C, room temperature, 37 "C and
45 "C. Rat liver mitochondria were used as unsaturated lipid source
for the lipid peroxidation assay. Initially crude quercetin presented
65.6% antilipoperoxidative activity, while 0.05% quercetin loaded
within nonionic cream (high lipid content) and anionic gel cream
(low lipid content) had 78%, and 70%, respectively. Upon storage,
a higher loss of activity was observed in formulation with low lipid
content especially at low temperatures. This may be attributed to
precipitation of quercetin out from lipidic environment where
lipids are in more packed conformation. Keeping in mind the lipo-
philic nature of quercetin rings, the more lipophilic the environ-
ment is for quercetin the better it is stabilized (Table 2). In 2007,
the same group studied the antilipoperoxidative activity of querce-
tin in more detail [33]. The same nonionic cream and anionic gel
cream formulations were compared to crude quercetin in terms
of antioxidative stability during 6 months storage using DPPH test.
Initial activity was 41.6%, 37.8%, and 38.5% for crude quercetin,
nonionic cream and anionic gel cream, respectively. The activity
was preserved during the whole storage period. Afterward skin
retention of the formulated quercetin was monitored in terms of
antilipoperoxidative activity on pig’s skin mounted on Franz cell
for 12 h. Anionic gel cream with lower lipid content showed higher
drug release and consequently higher skin retention and
antilipoperoxidative activity (25.0%) at 3 h interval. On the other

hand nonionic cream with higher lipid content, showed a gradual
release and with slight accumulation in skin and presented highest
antilipoperoxidative activity (54.0%) after 12 h. This is in agree-
ment with their previous report, that higher lipid content confers
higher protection for quercetin activity, this time proven in vitro

on pig’s skin.
Wu et al. in 2008 [34] prepared quercetin in polymeric

nanoparticles (Table 4). Quercetin was added to polyvinyl alcohol
(PVA) and Eudragit# E at a ratio of 1:10:10 respectively. The
nanoparticles, prepared by nanoprecipitation, presented a mean
diameter of 82 nm with a polydispersity index (PDI) of 0.22; PDI
shows how broad the particles size distribution is. Quercetin
encapsulation efficiency was 99.9%. Quercetin nanoparticles were
compared to quercetin-DMSO and quercetin-water in terms of
DPPH activity, anti-superoxide formation, superoxide anion-
scavenging activity and antilipoperoxidative activity. In all tests,
quercetin nanoparticles showed scavenging concentration (SC50)
and inhibitory concentration (IC50) (the concentration to cause
50% effect with respect to each test) close to quercetin-DMSO prov-
ing the preservation of quercetin activity after formulation
(Table 2). Quercetin-water was hundred times less effective than
quercetin nanoparticles and quercetin-DMSO. This may be
explained by the fact that all the tests request the antioxidant
molecules to be soluble in the reaction medium, and as a result
suspended quercetin in water will be very weak compared to sol-
ubilized quercetin in DMSO or to nanoparticles. The second poten-
tial explanation may be due to the influence of the surface area of
reacting quercetin, which is greater in the nanoparticles than in the
larger suspended crude format. This confers higher reactivity for
the nanoparticles compared to quercetin-water. Finally, the small

Table 2

Tests related to quercetin antioxidant activity.

Test type In vitro chemical assay In vitro cellular assay In vivo animal assay

Method Result Method Result Method Result

Antilipoperoxidative
activity

Thiobarbituric
acid reactive
species (TBARS)

65.6%
antilipoperoxidative
activity [31]

N-methyl-2-phenylindole
(HaCaT cells)

3-fold decrease in
MDA concentration
[23]

TBARS (mice) 1.6-fold decrease
in MDA
concentration [44]

IC50 for quercetin
77.17 ± 9.98 g/ml
[34]

Anti-superoxide
formation

Xanthine
oxidase

IC50 = 5.31 ± 0.12
g/ml [34]

N/A N/A N/A N/A

Superoxide anion-
scavenging
activity

Cytochrome c SC50 = 1.59 ± 0.6
g/ml [34]

Superoxide dismutase (SOD)-
inhibitable reduction of
ferricytochrome c (neutrophils

IC50 = 3.82 ± 0.45 lM
[45]

O-phthalaldehyde
fluorescent assay

3-fold increase in
glutathione (mice)
[42]
2.5-fold increase
in glutathione
(mice) [43]

Superoxide
dismutase

6-fold decrease in
its concentration
(rats) [46]

Reduced
glutathione

1.5-fold increase
in concentration
(mice) [44]

Hydrogen donating
ability

DPPH SC50 = 4.2
4 ± 0.48 g/ml [34]

Hydrogen peroxide (HaCaT) 2.5-fold increase in
cell viability [38]

Catalase content 1,3-fold increase
in catalase content
(rats) [46]Buthionine sulfoximine (NHEK) 2.3-fold increase in

cell viability [37]
UVB irradiation (HaCaT) 1.2–1.4-fold increase

in cell viability [23]

Three levels of assay can be performed to validate quercetin antioxidant activity:
(i) The in vitro chemical assays include thiobarbituric acid reactive species (TBARS) for antilipoperoxidative activity, xanthine oxidase for anti-superoxide formation activity,
cytochrome C for superoxide anion-scavenging activity and di(phenyl)-(2,4,6-trinitrophenyl)iminoazanium (DPPH) for hydrogen donating activity.
(ii) The in vitro cellular assays include the detection of malondialdehyde (MDA) using n-methyl-2-phenylindole on HaCaT cells. The inhabitable reduction of ferricytochrome
C by superoxide dismutase on neutrophils. Finally, the increase in cellular viability after the intoxication of keratinocytes by hydrogen peroxide.
(iii) The in vivo animal assays include the detection of TBARS, superoxide dismutase, glutathione, reduced glutathione and catalase content on mice or rats.
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size of formulated nanoparticles below 100 nm (82 nm) enabled to
retain the activity of quercetin to values close to the solubilized
form in DMSO.

2.1.2. In vitro antioxidant activity of quercetin (cellular evaluation)

Antioxidant actions are not limited to ROS scavenging abilities
but also include the modulation of endogenous (antioxidant,
detoxifying) enzymes. The evaluation of antioxidants at cellular
level can be done by two different approaches. The first approach
is a cellular antioxidant activity assay (CAA) used to evaluate the
antioxidant activity of plant extracts and food supplements. It is
based on the detection of ROS (such as hydrogen peroxide) inside
the cell by reaction of these reactive species with the redox sensor
dihydrodichlorofluorescein (DCFH2). In this reaction, DCFH2 oxi-
dizes to fluorescent dichlorofluorescein (DCF). However, this
method lacks the specificity to ROS generated in response to oxida-
tive attacks [35]. The second approach is the evaluation of endoge-
nous enzymes, like the upregulation of the expression of
antioxidants enzymes, or the inhibition of prooxidant enzymes.
As our main scope is quercetin and its skin penetration in formula-
tion, we keep the more detailed review articles to give further
information about antioxidants cellular tests for example in the
publication by López-Alarcón et al. [36].

All biological investigations on formulated quercetin started
from the concept that to test an antioxidative activity, a source
of oxidation is required. As quercetin activity is of high interest
in skin diseases related to phototoxicity, researchers tested querce-
tin activity to compensate for UV irradiation damage.

Quercetin cellular actions were evaluated as crude material on
human fibroblasts and kératinocytes (NHEK) [37] and in formula-
tions on normal human keratinocytes (HaCaT) [23,38]. The treat-
ment with 50 lM of crude quercetin protected human

keratinocytes and human fibroblast from intoxication by 500 lM
buthionine sulfoximine. Keratinocytes viability increased by 2.3-
fold (Table 2). However, this cytoprotective activity was not related
to an increase in the intracellular glutathione (GSH), as quercetin
was not able to reestablish the depleted GSH due to cellular intox-
ication [37]. Quercetin was formulated into liposomes by Liu et al.
[23] and Manca et al. [38] with different excipients. Liu et al. [23]
suggested formulation of quercetin deformable liposomes with
Tween# 80 as edge activator (Table 4). Cells were irradiated with
a UVB dose of 0.02 J/cm2 and treated with 25 lg/ml quercetin lipo-
somes 16 h before irradiation and 24 h or 48 h post irradiation.
Then, cell viability was determined by MTT assay. UVB exposed
cells without quercetin treatment decreased in viability from
65.7 ± 7.8% at 24 h to 42.5 ± 6.5% at 48 h. On the other hand quer-
cetin in both control solution and liposomal formulation was cap-
able of cells protection. Cell viability was 76.2 ± 4.3% at 24 h and
59.5 ± 3.8% at 48 h for quercetin in solution and 89.9 ± 4.5% at
24 h and 78.8 ± 3.2% at 48 h for liposomal quercetin (Table 2). Fur-
thermore, Liu et al. proved that quercetin was able to attenuate
ROS generation in cells exposed to UVB and showed the
antilipoperoxidative activity of quercetin on cells. Quercetin also
decreased the concentration of malondialdehyde from
10.98 nmol/mg protein in non-treated UVB exposed cells to
3.14 nmol/mg for treated UVB exposed cells (Table 2) [23]. Manca
et al. [38] tested another quercetin liposomal formulation and
compared it to glycerosomes (glycerol containing liposomes)
(Table 4) on HaCaT cells with hydrogen peroxide. Quercetin lipo-
somes and glycerosomes were also able to protect keratinocytes
in culture from the damaging effect of hydrogen peroxide. Conse-
quently, viable cells increased from 26.0 ± 9.0% in non-treated
H2O2 exposed cells to 68.0 ± 4.0% and 67.0 ± 6.0% in the liposomes
and glycerosomes group (Table 2). This result was explained by a
better cellular uptake with both nanoformulations compared to
crude quercetin. The enhanced cellular internalization with lipo-
some may be due to the fusion with plasma membrane or pinocy-
tosis [39]. The pinocytosis of liposomal formulation with the cell
membrane enables the release of liposomes contents directly into
the cytoplasm avoiding the potential passage by the lysosomal
apparatus. In case of liposomal destabilization during the cell
membrane fusion [40], the released drug can pass by
micropinocytosis.

2.1.3. In vivo antioxidant activity assays of quercetin in animals

Referring back to cellular assays (Section 2.1.2), the concept of
having a source of oxidation is presumed. Hairless mice were
exposed to UV irradiation, and then skin health parameters such
as Transepidermal water loss (TEWL) and erythema were assessed
upon exposure to UV. For further details, Hung et al. defined the
damaging effect of UV irradiation on mice stratum corneum [41].

Skin histological analysis was then performed and quercetin
protective effect on skin was determined. Quercetin activity was
demonstrated by quantification of endogenous antioxidant
enzymes before and after exposure and without or with quercetin
treatment. Two publications investigated the protective effect of
quercetin in vivo on mice’s skin [42,43]. Both applied UVB to dorsal
skin of hairless mice from 20 cm above the table where mice were
placed. Quercetin was formulated in emulsions in both publica-
tions and applied three times: 60 min and 5 min before irradiation
and directly after irradiation.

In 2006, Casagrande et al. [42] compared quercetin nonionic
emulsion (formulation 1 = high lipid content) and quercetin anio-
nic emulsion (formulation 2 = low lipid content). In this study,
reduced glutathione GSH (nmol) per mg of skin homogenate was
detected after a dose of 2.46 J/cm2 by fluorescence assay using o-
phthalaldehyde. Quercetin containing formulations were applied
topically at a dose of 5 mg. Quercetin showed higher activity in

Table 3

Test performed for the determination of quercetin antiinflammatory activity.

Method Result

Edema Ear thickness (mice) topical
route

Control 0.25 mm,
quercetin 0.19 mm

Cotton oil
Arachidonic acid Control 0.25 mm,

quercetin 0.12 mm
[14]

Back skin weight (mice)
12-otetradecanoylphorbol 13-
acetate

1.7-fold decrease in
edema weight [58]

Elastase release Degranulation of azurophilic
granules in (neutrophils

IC50 = 6.25 ± 2.58 lM
[45]

Myeloperoxidase
release

Degranulation of azurophilic
granules in (neutrophils)

3-fold decrease
concentration [42]

TPA-induced inflammation on
mice back skin

4.7-fold decrease
concentration [58]

Proinflammatory
cytokines

Primary human keratinocytes
were exposed to UV (0.05 J/
cm2)
Il-1b mRNA 2.5-fold decrease in

release
IL-6 mRNA 5-fold decrease in

release
IL-8 mRNA 3-fold decrease in

release
TNF-a mRNA 2-fold decrease in

release
NF-jB activation 80% inhibition of

binding with DNA
[54]

Edema was tested by either the thickness of mice ear or the weight of mice back
skin. Elastase and myeloperoxidase release was determined by the degranulation of
azurophilic granules in neutrophils. Western blot was used for the determination of
proinflammatory cytokines and quantified using a chemifluorescent substrate.
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emulsion containing higher lipid content (formulation 1) than in
anionic emulsion (formulation 2). Both formulations inhibited
the UVB irradiation-induced depletion of GSH (50 nmol/mg skin
in the UV group vs 140 nmol/mg formulation 1 and 60 nmol/mg
formulation 2). However, only in the formulation 1 treated group
the GSH activity returned to non-irradiated control levels
(125 nmol/mg). Myeloperoxidase (MPO) activity in irradiated skin
can be related to the presence of immune cells (neutrophils) and
hence can be a good marker for skin inflammation. Hairless mice
were exposed to a dose of 1.23 J/cm2 and then the number of total
leukocytes per mg of skin was determined. Again, both formula-
tions inhibited the MPO activity increase and hence the neutrophil
migration. However, only formulation 1 was able to reestablish
control levels (Table 3). Lastly, qualitative analyses of skin pro-
teinases by substrate-embedded enzymography showed that for-
mulations containing quercetin were capable of inhibition of
secretion/activity of proteinase in skin tissue. The results observed
by Casagrande et al. were further supported by the work of Vicen-
tini et al. in 2008 [43]. 3 mg of quercetin was applied topically on
the dorsal skin from a water in oil (w/o) microemulsion and 2.87 J/
cm2 UVB dose was used for GSH depletion. Quercetin-loaded w/o
microemulsion maintained GSH levels near to the ones in
untreated–unexposed controls (90 nmol/mg vs. 100 nmol/mg con-
trol) (Table 2). Determination of skin proteinases by SDS–PAGE
enzymography showed that quercetin-loaded w/o microemulsion
regenerated the inhibition of proteinase secretion/activity increase
induced by UVB irradiation. However, quercetin-loaded w/o

microemulsion failed to confer protection against UV-induced skin
reddening in vivo. These in vivo studies proved that is promising to
apply quercetin topically to skin for antioxidative protective
effects. Nonetheless, skin penetration and permeation should be
carefully controlled to gain sufficient quercetin protective actions
on skin tissue and to avoid its side effects in the systemic
circulation.

2.2. Quercetin antiinflammatory activity

Inflammation is a protective response to localized injury. It can
be due to physical causes such as trauma, chemical by a corrosive
substance, and/or biological like stress. Inflammatory response
may be also an effect of an autoimmune diseases such as psoriasis
[47]. As evocated in the last section, inflammation is closely linked
to oxidation and hence to UV irradiation. UV exposure causes the
initiation and propagation of reactive oxygen species and hence
induces oxidative stress damage. Oxidative stress activates several
inflammatory associated signal transduction pathways in cells
[48]. Among these pathways is nuclear factor-kappa B (NF-jB)
[49], known for its ambiguous role in cytokine production and
modulation of immune response [50]. Here comes the advantage
of using quercetin as inhibitor on this pathway. Quercetin proved
to inhibit (i) the recruitment of NF-jB transcription factor to proin-
flammatory gene promoters by tumor necrosis factor (TNF), and
(ii) hydrogen peroxide (H2O2)-induced NF-jB DNA binding activity
and consequently DNA damage [51,52]. Quercetin inhibitory

Table 4

Formulated quercetin nanodosage forms for topical application.

Formulations Preparation
technique

Excipients Particles
size
(nm)

PDI Surface
charge
(mV)

Quercetin
encapsulation
efficiency %

Quercetin practical
concentration (mg)
per ml of formulation

Quercetin deformable liposomes
[23]

Ethanol
Injection method

Lecithin
Cholesterol
Tween 80

132 ± 14 N/A 21.1 ± 0.8 80.4 ± 4.22 N/A

Quercetin polymeric
nanoparticles [34]

Nanoprecipitation
technique

Polyvinyl alcohol (PVA)
Eudragit# E

82 ± 0 0.22 ± 0.01 N/A 99.9 ± 0.59 4.995 ± 0.003 mg/mg
powder

Quercetin loaded
Liposomes and glycerosomes
[38]

Thin film
hydration method

Lecithin 102 ± 3 0.32 "78.0 ± 2.0 88.0 ± 3.00 4.4 ± 0.15
Glycerol 80 ± 3 0.26 "67.0 ± 3.0 81.0 ± 1.00 4.1 ± 0.05

Quercetin in liposomes and PEVs
(Penetration Enhancer-
containing Vesicles) [58]

Thin film
hydration method

Soybean lecithin with 70%
phosphatidylcholine
PEG 5% or 10%

116 ± 5 0.35 "9.0 ± 0.4 52.0 ± 4.40 5.2 ± 0.44
152 ± 3 0.34 "10.0 ± 0.8 75.0 ± 3.00 7.5 ± 0.30
148 ± 4 0.31 "10.0 ± 0.7 60.0 ± 0.80 6.0 ± 0.08

Quercetin nanoemulsion [74] Spontaneous
emulsification

Lecithin
Octyldodecanol and
cetyltrimethylammonium
bromide

307 ± 19 N/A "27.4 ± 6.0 99.5 ± 0,30 1.00 ± 0.00
188 ± 2 76.3 ± 2.1 99.1 ± 0,60 0.99 ± 0.01

Quercetin loaded penetration
enhancer vesicles PEV [75]

Thin film
hydration method

Lecithin and
Transcutol# P or
Labrasol# or
Propylene glycol or
PEG 400

226 ± 5 0.28 –49.0 ± 5.0 59.0 ± 8.00 1.18 ± 0.16
86 ± 5 0.29 –32.0 ± 3.0 75.0 ± 9.00 1.50 ± 0.18
83 ± 10 0.35 –63.0 ± 4.0 57.0 ± 8.00 1.14 ± 0.16
190 ± 4 0.31 –58.0 ± 2.0 48.0 ± 7.00 0.96 ± 0.14

Quercetin lipid nanoparticles
[76]

Hot and cold high
pressure
homogenization

Tristearin
Lecithin

527 0.58 N/A 46.5 N/A

Quercetin nanostructured lipid
carrier (NLC) [77]

Probe
ultrasonication

Compritol 888
Oleic acid

282 ± 3 0.31 "37.0 ± 3.0 0.025% drug
loading

0.25 mg/ml

Quercetin aminopropyl
functionalized mesoporous
silica nanoparticles (NH2-
MSN) [79]

Sol-gel method N-cetyl-
trimethylammonium
bromide
Tetraethyl orthosilicate

250 ± 50 N/A +13.6 ± 0.2 8% mentioned
as drug
loading %

N/A

Quercetin-loaded lecithin-
chitosan nanoparticles [24]

Ethanol
Injection method

Lecithin
Chitosan
TPGS

95 0.44 10.9 ± 0.1 48.5 0.63 mg/ml

Comparative table of different nanoformulations with quercetin prepared for topical delivery. The comparison includes the type of nanoformulation, the preparation method,
the used excipients and the physicochemical properties of each nanoformulation including the particle size, surface charge, quercetin encapsulation efficiency and quercetin
concentration in mg per ml of formulation.
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activity of NF-jB was detected on human hepatoma cells [53] and
more recently on primary human keratinocytes [54].

Quercetin antiinflammatory activity was compared to several
flavonoids, such as apigenin, morin, (-)-epicatechin and biochanin
A and to a non-steroidal antiinflammatory drug (indomethacin).
Indeed quercetin was the strongest antiinflammatory flavonoid
against mice ear edema [14]. Quercetin was administered orally
at a dose of 2 mg/mouse dissolved in 0.5% Tween# 80 one hour
before the topical application of the inflammogens (2% cotton oil
or 2% arachidonic acid) on the ear. For testing a possible activity
via topical route 25 ll of 2 mg quercetin dissolved in acetone
was applied to ear’s skin and 30 min later, and the same inflammo-
gens were applied. After five hours, ear thickness was measured
(inhibition percent of ear’s edema was calculated) and compared
to the control group treated with vehicle and inflammogens only.
For the oral route, control groups ear thicknesses were 0.22 and
0.27 mm with cotton oil and arachidonic acid, respectively, and
0.14 and 0.13 mm with indomethacin treatment. Quercetin was
the flavonoid with highest ear edema inhibition capacity with
0.16 and 0.21 mm. The same was observed with topical adminis-
tration of flavonoids. Quercetin diminished edema thickness from
0.25 mm with both inflammogens to 0.19 and 0.12 mm compared
to indomethacin 0.14 and 0.05 mm with cotton oil and arachidonic
acid, respectively. The skin penetration of crude quercetin here
may be attributed to the destruction of barrier function with sol-
vent (acetone). Quercetin proved to possess broad antiinflamma-
tory activities [14]. Knowing that quercetin presents the lowest
skin permeability compared to its polymethoxylated compounds
and glycosides, it is the most powerful inhibitor of O2 generation
(by neutrophils) in vitro with an IC50 of 3.82 ± 0.45 lM compared
to 5.34 ± 0.28 lM for rutin and 5.80 ± 0.67 lM for quercetin
3,5,7,30,40-pentamethylether (QM) (Table 2). This high antiinflam-
matory capacity was further confirmed by testing elastase release
due to degranulation of azurophilic granules from neutrophils.
Quercetin was five times more powerful than its glycoside (rutin)
(Table 3). Even though rutin presented 2.5-fold increase in flux
through nude mouse skin mounted on Franz cell, rutin showed a
degree of skin irritation with higher erythema values over the con-
trol group [55].

Vicentini et al. investigated the mechanism underling quercetin
antiinflammatory actions in 2011 [54]. Quercetin showed 80% inhi-
bition of interleukin 1b mRNA (IL-1b mRNA) at a dose of 20 lg/ml
in methanol when primary human keratinocytes were exposed to
UVB (0.05 J/cm2). Quercetin pretreatment also suppressed induc-
tion of IL-6, IL-8, and TNF-a in exposed cells measured by real-
time quantitative RT-PCR. Furthermore, quercetin pretreatment
inhibited UV irradiation-induced NF-kB DNA binding activity by
approximately 80% (Table 3). This result presents the applicability
of quercetin in protection against solar irradiation and the benefit
effects of introducing it in novel sunscreens. However, quercetin
also inhibited IL-1b activation of NF-kB and induction of cytokine
expression. This indicates that quercetin inhibition of cytokine
induction is not UV irradiation specific. Therefore, these results
highlight other applicability of quercetin in other skin disease like
psoriasis [54,56,57]. It is worth to note that quercetin activity on
the inhibition of NF-kB is cell and stimulation specific for example
quercetin did not inhibit TNF-a-induced NF-kB transcriptional
activity on murine small intestinal epithelial cell (IEC) line Mode-
K [51].

In 2014, Caddeo et al. formulated quercetin in liposomes and
Penetration Enhancer-containing Vesicles (PEVs) (Table 4). Then,
they tested quercetin antiinflammatory activity in vivo on the back
skin of female mice. The inhibitory effect of vesicular quercetin on
12-ortho tetradecanoylphorbol 13-acetate (TPA)-induced
inflammation was evaluated by two biomarkers: edema formation
and myeloperoxidase (MPO) activity. Liposomes and PEVs were

prepared by thin film hydration method and size homogenization
was performed by sonication. In both formulations, soybean
lecithin with 70% phosphatidylcholine (Lipoid# S75) was used as
lipid phase. PEVs used either 5 or 10% PEG 400 in the aqueous
phase (PEVs are liposomal formulation where PEG is added to
PBS to boost skin penetration capacity of the formulation). Lipo-
somes size was 116 ± 5.3 nm and PEVs 5% and 10% presented a size
of 152 ± 2.4 nm and 148 ± 3.5 nm respectively. PDI results were
60.35 with surface charge ("10 mV), due to the low charge carried
by S75. Higher entrapment efficiency was achieved by PEVs than
liposomes (52 ± 4.4% for liposomes vs. 75 ± 3.0% and 60 ± 0.8% for
5% PEG-PEVs and 10% PEG-PEVs respectively) (Table 4). Quercetin
loaded liposomes reduced edema formation from 11.5 mg/g
(biopsy/bodyweight) in TPA control group to 7 mg/g. Both querce-
tin loaded PEVs reduced biopsy weight to 6.2 mg/g (Table 3). MPO
reduction was also validated for both liposomal formulation and
PEVs. TPA positive control group increased MPO in the skin from
50 ng/ml supernatant in the negative control to 620 ng/ml. Querce-
tin liposomes reduced MPO concentration to 210 ng/ml and quer-
cetin loaded PEVs to 110 ng/ml and 250 ng/ml for 5% and 10% PEG-
PEVs, respectively (Table 3). Interestingly, in 2013, the same author
tested diclofenac loaded 5% PEG-PEVs under the same conditions.
This study provided evidence that topically applied quercetin,
when delivered by 5% PEG-PEVs, was more effective than diclofe-
nac at the same dose (10 mg/ml). Indeed, a 4.7-fold decrease was
achieved by quercetin versus 2.7-fold with diclofenac [58,59].

2.3. Quercetin in wound healing

Potent antioxidant and free radical scavenger activities of quer-
cetin along with its strong antiinflammatory activity highlighted
the possible application of this flavonoid for wound healing.
Wound healing is a complex physiological compensating mecha-
nism [60]. The applicability of quercetin during wound healing is
beneficial for suppressing the uncontrolled inflammation. Inflam-
mation hinders the successful skin regeneration process and may
transform an acute wound to a chronic one.

Quercetin ability to support the healing process was investi-
gated in 2003 by Gomathi et al. in vivo on male albino Wistar rats.
Quercetin was introduced to collagen films at a concentration of
1 mM. Wounds were generated by a mean of a scalp at day 0. Rats
were separated in three groups: (i) control group, (ii) application of
collagen films or and (iii) application of quercetin incorporated col-
lagen films in the rat skin at the wound place. Wound contraction,
hydroxyproline, uronic acid, total protein, superoxide dismutase
and catalase were tested on the granulation tissue. Quercetin
incorporated collagen films showed a significant wound contrac-
tion (80% reduction in wound surface) compared to collagen alone
treated group (60%) and control group (57%). Quercetin incorpo-
rated with collagen increased hydroxproline concentration in the
granulation tissue from 0.78 in the control group to 1.84 mg/mg
tissue, which indicates that there was an enhanced production of
collagen in the granulation tissue. Subsequent to collagen produc-
tion, a decrease in hyaluronic acid is observed explaining the
reduction of uronic acid content in quercetin treated groups. Con-
sidering superoxide dismutase, a 6-fold decrease in its concentra-
tion was observed with quercetin treated group, which might be
related to quercetin antioxidant activity rather its antiinflamma-
tory one. As free radicals are inducers of gene expression of super-
oxide dismutase, a more efficient free radical scavenging ability
with the presence of quercetin resulted in the reduction of super-
oxide dismutase concentration in the granulation tissue. Quercetin
converts the superoxide radical to hydrogen peroxide and hydro-
gen peroxide stimulates catalase release. This could be linked to
an increase in catalase content from 1.91 in the control group to
2.55 unit/g tissue in quercetin treated rats [46]. In summary,

46 T. Hatahet et al. / European Journal of Pharmaceutics and Biopharmaceutics 108 (2016) 41–53



quercetin activity in wound healing is a matter of both its antiox-
idant and antiinflammatory actions. In contrast to skin protection
against UV, fibroblasts are the main target for quercetin wound
dressings to support the healing process.

2.4. Quercetin and skin aging

Retardation of skin aging and wrinkling is of major interest in
cosmeceuticals. Skin aging is a complex process that involves both
intrinsic (physiological changes on time) and extrinsic factors
(photoaging, lifestyle, pollution). However the target of all antiag-
ing products scopes on the extrinsic controllable ones. Skin aging is
manifested by several physiological changes, for example defective
barrier function, collagen atrophy, loss of skin elasticity, especially
in the face. In addition, a generalized reduction in the vasculature
of the dermis is observed, a factor more pronounced factor in
smokers. Vitamin D production is also reduced in elderly people
[61–63]. All these changes cooperate to induce skin aging and
wrinkling.

Quercetin is useful in reducing photoaging because of its
antioxidant activity. Quercetin protection against UV light and its
application in sunscreen are discussed in detail in the quercetin
antioxidant activity section (Section 2.1). It is also worth to note
that quercetin antiinflammatory activity may also contribute to
fighting skin aging. Skin elasticity is directly related to skin hydra-
tion state [64], which is linked to proper lipid biosynthesis and
configuration. Quercetin as a lipid peroxidation inhibitor can pro-
tect skin from dehydration [65]. Quercetin inhibition of matrix
metalloproteinase activity may also show a role in protection of
skin collagen from destruction during inflammatory response to
extrinsic aging factors [66,67]. In an in vivo study, Joshan et al.
[44] tested quercetin protective activity against photoaging on
female albino mice. Mice dorsal skin was exposed to an UV dose
of 0.036–0.216 J/cm2 over 12 weeks period, and then skin aging
markers such as skin moisture, collagen content, thiobarbituric
acid reacting substances (TBARS) and reduced glutathione were
evaluated. Skin wrinkles and blood vessels were visually scaled
and epidermal thickness was determined after the 12 weeks. 1%
Quercetin was applied topically in mixture of ethanol, propylene
glycol and water (0.5:1:1 (v/v/v). This application increased skin
moisture content (43.0 ± 1.2%) compared to the UV exposed group
(28.2 ± 0.9%) and reduced TBARS from 20 nM/mg (animal tissue) in
the UV exposed group to 12.5 nM/mg in the quercetin group.
Moreover, the concentration of reduced glutathione increased by
1.5-fold in quercetin treated group compared to UV exposed group
(Table 2). The higher concentration of the reduced form indicates
that quercetin was able to neutralize free radicals and to protect
cellular antioxidants such as glutathione from depletion. As a last
consequence after progressive UV exposure, skin wrinkles and
superficial blood vessels appear, and epidermal thickness is also
increased in photosensitivity [68]. Quercetin reduced wrinkles
number and depth from several deep wrinkles overall the dorsal
region of the UV exposed group to few shallow wrinkles along
the back. Regarding epidermal thickness, the quercetin treated
group was more similar to negative control group.

In another study, quercetin was studied on HFL-1 human
embryonic fibroblasts and mouse melanocytes (B16F10 cell line)
for its antiaging and rejuvenating actions. Chondrogianni et al.
[69] treated young HFL-1 with 2 lg/ml quercetin in DMSO daily
until senescence. b-galactosidase activity was regarded as a marker
for senescence [70]. Cells treated with quercetin exhibited a lower
percentage of b-galactosidase positive staining (13.7% for quercetin
treated vs. 77% for DMSO group). On the other hand, quercetin-
rejuvenating activity was tested on middle aged and terminally
senescent HFL-1 cells. Quercetin (2 lg/ml) was added to middle
aged cells for 5 days after senescence and 2 weeks for terminally

senescent cells, and then proliferating cells were counted. Interest-
ingly, quercetin increased the number of proliferating cells by 1.3-
fold compared to DMSO group for both middle-aged cells and ter-
minally senescent counterparts. After that, quercetin ability to pro-
tect HFL-1 from reactive oxygen species ROS was investigated.
Cells were treated with 2 lg/ml quercetin and subjected to
300 lM H2O2 intoxication for 2.5 h and then a recovery period of
5 days was set. Viable cells were counted at the end of the exper-
iment and the ROS was determined by 20,70-dichlorodihydrofluores
cein diacetate H2DCF-DA. Quercetin had no significant effect on
cell survival number while showed a 40% decrease in ROS com-
pared to the DMSO group. The mechanism underlying quercetin
protective activity on HFL-1 was investigated. For this, proteasome
that is the main secondary antioxidant system of the cell was stud-
ied. Young HFL-1 cells were treated with 2 lg/ml quercetin for 24 h
and the CT-L proteasome (chymotrypsin-like proteasome) activity
was measured. Quercetin increased both proteasome activity by
2.4-fold and enhanced protein expression levels of representative
proteasome subunits.

Finally photoaging and exposure to UV light can induce skin
pigmentation by anticipating several cellular pathways. For exam-
ple, thymine dinucleotides enhance pigmentation of melanocytic
cells and stimulate tyrosinase mRNA levels [71]. Tyrosinase is a
copper-containing glycoprotein that catalyzes several steps in the
melanin pigment biosynthesis and is mainly responsible for the
age spots. Tyrosinase is regulated by proteasome activity as it is
shown that tyrosinase is a proteasome substrate, and proteasome
is responsible of the degradation of mutant or structurally aberrant
tyrosinase [72]. Mouse melanocytes (B16F10 cell line) were treated
with 5 lg/ml quercetin for 3 days, and afterward tyrosinase was
extracted from cells and quantified along with proteasome activity.
Quercetin was able to increase the proteasome activity by 1.5-fold
and reduce tyrosinase by 30% compared to control cells [69]. These
findings propose quercetin as a perfect candidate for a novel reju-
venating product. Quercetin is not only an antioxidant and skin
cells protectant, but also presents interesting antiaging properties
with whitening activities.

Quercetin presented potent antioxidant activity on three levels:
in vitro chemical assays proved the increase in quercetin activity
after its efficient formulation, on cellular level as quercetin showed
cell protective actions on keratinocytes and in vivo on animal’s
skin. These antioxidative effects are also supported by the ability
of quercetin to exert antiinflammatory actions such as inhibition
of NF-jB and IL-6 induction by UV irradiation. The mixture
between both antioxidant and antiinflammatory actions and their
crosslinking mechanisms highlighted quercetin as a novel sun-
screen. Furthermore, as quercetin possesses both antioxidant and
antiinflammatory activities, it could be beneficial on wound heal-
ing, here; fibroblasts are the main targets in contrast to ker-
atinocytes in sunscreen. In addition, quercetin showed promising
rejuvenating actions on keratinocytes with supportive whitening
effect. This makes quercetin highly suitable as a novel natural
molecule for such actions.

Quercetin activities on cellular level that were proven for skin
related disorders are presented in Fig. 1.

However, all these desired benefits necessitate quercetin topical
application, and this application should be thoroughly studied
according to the desired activity (Fig. 2). Ideally, quercetin should
penetrate skin without reaching systemic circulation in case of cos-
metic application for a possible sunscreen or anti-aging cream. At
the same time, a satisfactory skin penetration to both stratum spi-
nosum and stratum basale should be planned for quercetin to pro-
tect viable keratinocytes from UVA light, or to support in
inflammatory skin disorders such as psoriasis. However, if the goal
is to prolong fibroblasts survival and proliferation in burned skin
and enhance the process of wound healing, a deeper penetration
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Fig. 2. Quercetin properties in function of site of action in different skin layers. Quercetin possesses a physical protection against UVB over stratum corneum. Within
epidermis, quercetin shows a protective effect against UVA irradiation and in several inflammatory disorders like psoriasis. By targeting melanocytes, quercetin shows
whitening and anti-aging effects by targeting fibroblasts. Finally, quercetin can support wound healing process in case of sufficient penetration into dermis.

Fig. 1. Quercetin activities on cellular level. Quercetin decreased the release of myeloperoxidase and elastase, and also decreased the activity of superoxide dismutase on
neutrophils. Quercetin decreased the lipid peroxidation on HaCaT cell line. Quercetin decreased the activation of NF-jB and inhibited the mRNA of IL-1b, IL-6, IL-8 and TNF-a
on primary human keratinocytes.
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is required, and this point is critical. The targeted fibroblasts are
beyond the basement membrane, and then it is challenging to deli-
ver the finite dose of quercetin to these cells without reaching sys-
temic circulation i.e. avoiding the adverse effects by minimizing
systemic uptake.

In order to transport quercetin, that is naturally of limited via
topical route, to the desired site of action, a suitable delivery sys-
tem is essential. Conventional dosage forms such as creams, emul-
sions and gels are the first way to formulate quercetin and to
modulate its skin penetration profile. On the other hand, nan-
odosage forms are promising second way to formulate quercetin
at the nanoscale range in order to enhance its dermal activity.

3. Conventional dosage to increase quercetin skin penetration

Conventional dosage forms for dermal application are either
aqueous like gels, or oleic like hydrophobic ointments, or a mixture
of both like creams and emulsions. The choice of the external phase
of the formulation has a major effect on the drug release. Indeed
aqueous gels are known to boost fast release, in contrast to oleic
formulation that provides a reservoir for a prolonged release kinet-
ics. Quercetin by itself has very limited skin penetration capacity. It
is limited by both water insolubility and the lipophilic partition
coefficient (logP = 1.82 ± 0.32) due to the nonpolar groups in its
structure [73]. For this end, quercetin dermal delivery is very much
dependent on the dosage form. The poor water solubility requires
the presence of a lipid phase in order to enhance quercetin solubil-
ity in the formulation, On the other hand, quercetin polar heads
favor water presence, so quercetin can localize at the interface.
Furthermore, water-containing formulations are easier to apply,
more friendly to the skin and preferred by patients over viscous
lipid formulations and fluid watery ones. For these reasons, querce-
tin was formulated in emulsions.

Casagrande et al. in 2007 [33] formulated quercetin in two
emulsions differing in their lipid content. The emulsion with high
lipid content (formulation 1) contained 10% of self-emulsifying
wax (Polawax#:cetostearyl alcohol and polyoxyethylene derived
from a fatty acid ester of sorbitan 20E) and the emulsion with
low lipid content contained 2% of Polawax# (formulation 2). Both
emulsions contained the anionic hydrophilic colloid 0.18% (car-
boxypolymethylene, Carbopol# 940) as a stabilizer and tri-
ethanolamine 0.20% as neutralized. Macadamia nut oil 2.50% and
squalene 1.00% were used emollients, and propylene glycol 6.00%
as moisturizer and solubilizer. A mixture of phenoxyethanol and
parabens 0.40% (Phenova#) was used as preservatives. High lipid
content emulsion was superior in delivering quercetin to the skin,
proven by higher quercetin antilipoperoxidative activity over the
emulsion with low lipid content. However, the exact quantity of
penetrated quercetin and its exact deposition within the skin were
not determined.

In 2008, Vicentini et al. [43] prepared quercetin in w/o
microemulsion. 0.3% of quercetin was dissolved in 38.25% of canola
oil, 47.75% of Span# 80/Tween# 80 (3:1) and 15% water/propylene
glycol mixture (3:1). The microemulsion formed spontaneously
after vortexing. In vitro skin penetration study was performed on
pig ear skin using Franz diffusion cell. In parallel, an in vivo pene-
tration study was conducted using HRS/J mice. 100 mg of
microemulsion (300 lg quercetin) was applied to 1.77 cm2 Franz
cell mounted with pig ear skin. 150 mM phosphate buffer (pH
7.2) containing Tween# 20 (0.5%) was selected as receptor
medium. At the end of the study, the skin was stripped 15 times.
The first strip was discarded and the rest was collected and
considered as stratum corneum (SC), while the remaining skin
portion was epidermis (E) and dermis (D). Quercetin microemul-
sion was compared to quercetin propylene glycol solution of same

concentration. About 11% of the applied dose was detected in the
SC and 5% in the E + D after 12 h of application. On contrary, quer-
cetin from the control formulation was#2 and 20 times lower than
the microemulsion in the SC and E + D, respectively. No transder-
mal penetration was detected in the tested time. The in vivo study
on mice was run for 6 h applying the same amount of formulation
to about 2 cm2 dorsal skin. Similarly, the microemulsion delivered
about #14% of the applied dose to the SC and #8% to E + D, which
was 1.5 and 2-fold greater than the delivered quercetin by the con-
trol formulation.

Conventional emulsions are a good strategy to improve the
delivery of drugs to skin. Further studies are needed to explore
more formulations with other lipids that possess better affinity
to quercetin. However, quercetin may require a more advanced
delivery system that ensures a high loading capacity of this drug
and confers greater skin adhesiveness in order to prolong drug/skin
contact time.

4. Nanodosage forms to increase quercetin skin penetration

The main objective of formulating quercetin in nanodosage
forms was to overcome its topical limit penetration ability related
to its poor water solubility and to increase its stability. Quercetin
was formulated in several nanodosage forms for example
nanoemulsions [74], liposomes [75], lipid nanoparticles [76]
nanostructured lipid carriers NLC, solid lipid nanoparticles SLN
[77,78] and mesoporous silica [79]. Quercetin showed no transder-
mal delivery with novel dosage forms such as lipid nanoparticles
[76], nanostructured lipid carriers [78], aminopropyl functional-
ized mesoporous silica nanoparticles [79] and glycerosomes [38].
This phenomenon may be explained by quercetin poor water solu-
bility [13,80] and selective lipophilicity to certain lipids [81]
despite the barrier function of the stratum corneum (Table 4).

Extrapolation and comparison of skin penetration results are
very difficult especially when skin from different sources is used
for the tests. Besides this, the use of different methods of quantifi-
cation of drug, different receptor mediums and variant durations of
test make comparison difficult [82]. For this, skin penetration
experiments will be divided into three groups. The first group will
discuss about studies performed on mice [24] and SD rats [23]
ex vivo on Franz diffusion cell. The second group will involve exper-
iments performed on pig’s skin [38,74,75,79] and the last group
will explore tests on full thickness human skin in vivo [76] and
ex vivo on Franz diffusion cell [78].

4.1. Rodent’s skin based penetration tests

Rodent’s skin is thinner and more permeable than human and
pig skins [83]. However, they are less expensive and easier to han-
dle in laboratory practice. Rodent’s skin showed similar stratum
corneum lipids composition [84]. Absorption profile of antiinflam-
matory (ammonium glycyrrhizinate in niosomes) [85] and short
chain alcohols [86] was closed to human skin confirming the suc-
cessful use of murine model for in vitro/in vivo correlation with
human volunteers. Still hairy rodents have the disadvantage of
extremely high density of hair follicles with higher appendage
number [87,88]. For this, mice and rats are shaved prior to skin
excision. The last studies with quercetin nanodosage forms were
performed on skin of SD rats and kunming mice by Liu [23] and
Tan [24], respectively.

Liu et al. [23] suggested deformable liposomes for effective skin
delivery of quercetin. Tween# 80 was selected as edge activator,
while cholesterol and phosphatidylcholine were chosen as lipid
phase. Quercetin loaded deformable liposomes were prepared by
ethanol injection technique and they presented a particle size of
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132 nm and surface charge of "21.1 mV. Quercetin encapsulation
efficiency was 80.4 ± 4.2% (Table 4). Skin penetration was analyzed
with shaved skin excised from rats’ abdomen using Franz diffusion
cells. Experiments were run at 32 "C with physiological saline buf-
fer as receptor fluid and a total time of 7 h before quercetin extrac-
tion from skin. About 3.5% of the applied dose was permeated
through skin in case of deformable liposomes compared to less
than 1% in case of quercetin suspension in water. Likewise, a higher
quercetin settling in skin with nanodosage form was proven over
the control. It is worth to note that the ability of quercetin to per-
meate the skin especially from the suspension (with keeping in
mind the low affinity of quercetin to the receptor fluid is question-
able). Indeed, it was previously proved using vasopressin that
shaving of the skin before application increased flux 5 times over
the control [89]. This result explains the presence of permeated
portion.

In 2011, Tan et al. [24] studied lecithin-chitosan nanoparticles
for the topical delivery of quercetin. These nanoparticles were also
prepared by ethanol injection technique. Particles size was 95 nm
(PDI 0.44); zeta potential was +10.9 mV (because of the presence
of the polycationic polymer chitosan). Quercetin achieved 48.5%
encapsulation efficiency and 2.5% drug loading within formulated
nanoparticles (Table 4). Skin penetration tests were made both
in vitro on mice excised skin and in vivo on viable animals. In both
cases, no skin permeation was detected after 12 h, whereas querce-
tin deposition results were comparable between in vitro and in vivo

experiments. Quercetin loaded lecithin-chitosan nanoparticles
showed 2.3 and 1.2-fold increase in drug settling within epidermis
and dermis respectively compared to quercetin control solution in
propylene glycol.

4.2. Pig skin based penetration tests

The second group of research work covers studies with pig ear
skin. Pig ear skin is a very close surrogate for human skin. It shares
several anatomical and physiological similarities with human skin
[90]. Moreover, pig ear skin is more available and less expensive
[91].

In 2009, Fasolo et al. [74] developed quercetin containing
nanoemulsions. Two types of nanoemulsions were prepared: one
with negatively charged droplets composed of octyldodecanol
and egg lecithin (surface charge "27.4 mV) and the second with
positively charged droplets (surface charge +76.3 mV) by the addi-
tion of the cationic surfactant: cetyl trimethylammonium bromide
(CTAB). Nanoemulsions were formulated by spontaneous emulsifi-
cation that corresponds to the injection of organic solvent contain-
ing the oily materials into aqueous phase. Then, the evaporation of
the organic phase is done under reduced pressure conditions.
Nanoemulsions without CTAB possessed a larger particle size com-
pared to nanoemulsions with CTAB (307 ± 19 nm vs. 188 ± 2 nm).
Quercetin encapsulation efficacy was over 99% for both nanoemul-
sions (Table 4). Penetration assay on Franz cell was performed over
8 h using 50% v/v hydroethanol solution as receptor medium. To
note, Fasolo et al. determined only quercetin permeated and did
not provide data about quercetin skin deposition. Quercetin
nanoemulsions were applied to skin at a dose of 1000 lg quercetin,
and only 1.524 lg quercetin was permeated through pig ear skin in
case of nanoemulsions without CTAB. In contrast, 4.064 lg querce-
tin permeated from quercetin nanoemulsions with CTAB. In terms
of permeated drug percentage, both formulations showed less than
1% drug permeation. The higher drug permeation observed with
positively charged nanoemulsions of quercetin is in agreement
with other publications, where a higher drug permeation is
observed with positively charged nanoemulsions having a higher
affinity for negatively charged skin [92–94]. At the same time,
cationic surfactants are known to be more skin destructive than

anionic surfactants and cause higher drugs flux (drug diffusion
through a surface unit of membrane per unit of time) [95]. The per-
centage of permeated quercetin could be potentially attributed to
the fact that porcine skin is more permeable than human skin
[96,97]. In addition, the use of a receptor medium that contains
alcohol may also cause damage to the barrier function of the uti-
lized skin [98].

In 2011 Chessa et al. [75] incorporated quercetin to liposomes
using four different penetration enhancers: Transcutol# P (Trc),
propylene glycol (PG), polyethylene glycol 400 (PEG) and Labrasol#

(Lab). These penetration enhancer containing vesicles were pre-
pared by thin the film hydration method followed by sonication.
Particles size, PDI and zeta potential for Trc, PG, PEG and Lab were
226 nm (0.28 PDI, "49.0 mV), 83 nm (0.35 PDI, "63.0 mV), 190 nm
(0.31 PDI, "58.0 mV) and 86 nm (0.29 PDI, "32.0 mV) respectively.
Quercetin encapsulation efficiency ranged from 48% with PEG to
75% with Lab (Table 4). Following vesicles preparation, newborn
pig’s skin was mounted on Franz diffusion cells and skin penetra-
tion was assessed. After 8 h, the skin was subjected to 10 strips
to separate the stratum corneum. Dermis was separated from epi-
dermis using surgical sterile scalpel. PEG containing vesicles
yielded the highest skin permeation with 30% of the applied dose
detected in the receptor fluid, as well as the highest deposition
in epidermis (55% of the applied dose). It is worth to note that
PEG 400 was tested for its penetration enhancement with several
drugs such as naloxone [99], estradiol [100], levonorgestrel [101]
and zidovudine [102]. Nonetheless PEG 400 causes skin damage
by alteration of skin structure and modulation of the mass flow
of water [103].

Manca et al. [38] also developed quercetin loaded liposomes
and glycerosomes. Similar to Chessa et al., they prepared quercetin
nanovesicles using the thin film hydration method followed by
sonication. However, instead of using a mixture of penetration
enhancer/water to prepare PEVs, they prepared glycerosomes
using a 50% mixture glycerol/water. They used lecithin as a lipid.
Liposomes were 102 nm (PDI 0.32) with a surface charge
"78.0 mV. The glycerosomes were 80 nm (PDI 0.26) with a surface
charge "67.0 mV. Both formulations showed encapsulation effi-
ciency over 80% (Table 4). Skin penetration tests were performed
over 24 h at 37 "C using Franz cells with newborn pig’s skin. At
the end of the test, skin layers were separated in the same way
as in the publication by Chessa et al. However, both liposomes
and glycerosomes did not promote quercetin permeation, but glyc-
erosomes were more efficient in delivering quercetin to the skin
compared to liposomes (over 20% of the applied dose vs. 10–20%
for liposomes). Quercetin deposition order was stratum corneum,
epidermis and dermis respectively in both formulations. This
seems to be in accordance with the fact that without the use of a
strong penetration enhancer as in the example by Chessa et al.,
no skin permeation would be observed unless skin barrier function
is damaged due to a wound or injury.

In 2015, Sapino et al. [79] investigated the formulation of quer-
cetin within aminopropyl functionalized mesoporous silica
nanoparticles (NH2-MSN). CTAB was used as structure directing
agent and tetraethyl orthosilicate as silica source. Quercetin was
then loaded in NH2-MSN at a concentration of 8% and incorporated
into a w/o emulsion. At the end of the skin penetration studies no
transdermal delivery of quercetin was detected (24 h), and this
confirms other reports where quercetin showed no skin perme-
ation in nanodosage forms [76,78]. However, association of querce-
tin to silica nanoparticles leads to 2-fold increase in skin deposition
compared to free quercetin (10.98 lg/cm2 vs. 4.77 lg/cm2).

Respecting the fact that porcine skin is more permeable than
human skin, quercetin loaded nanodosage forms showed no evi-
dence for skin permeation except in case of the use of penetration
enhancers such as CTAB or PEG 400.
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4.3. Human skin based penetration tests

Ending by the third group, Scalia et al. in 2013 [76] reported
in vivo skin penetration of quercetin from solid lipid nanoparticles
(SLN). Quercetin was encapsulated in tristearin/phosphatidylcho
line nanoparticles. For this, quercetin was dissolved in melted tris-
tearin in the pre-emulsion step and then subjected to cold or hot
high pressure homogenization. Quercetin encapsulation efficiency
within lipid nanoparticles was 46.5%. Particles size was 527 nm
with a PDI of 0.58 for nanoparticles prepared by hot high-
pressure homogenization (Table 4). Afterward lipid nanoparticles
were incorporated into an oil-in-water emulsion (0.3% w/w quer-
cetin). Then the final emulsion was applied on the forearm of a
group of 10 healthy volunteers (22–27 years old). Quercetin final
emulsion was applied at a dose of 4 mg/cm2 for 60 min, and quer-
cetin non-encapsulated in lipid nanoparticles was incorporated in
the same emulsion and regarded as control formulation. After the
end of the application period, in vivo skin penetration assay was
performed using 15 stripping tapes of scotch transparent adhesive
tape. The first strip tape along with the cotton swab used to
remove the remaining formulation was analyzed for unabsorbed
quercetin. Then strips were separated into four groups (group 1:
strips 2–4; group 2: strips 5–7; group 3: strips 8–11; and group
4: strips 12–15). 66.9 ± 11.1% of quercetin applied dose in the con-
trol formulation was recorded on the cotton swab and strip 1 while
quercetin loaded lipid nanoparticles were 57.8 ± 11.0%. This very
limited improvement by SLN may be attributed to the short dura-
tion of drug application, besides the intact barrier function of the
stratum corneum (the volunteers were healthy and presented a
healthy skin). 21.2 ± 2.9% of the applied dose was penetrated into
the skin for quercetin lipid nanoparticles compared to only
18.1 ± 0.3% of the dose in the control. Penetration of quercetin from
SLN in the strips was as follows: the highest drug portion was in
strips 2–4 (approximately 14%) followed by 5–7 (3.5%), then 8–
11 (3%) and finally strips 12–5 (1.5%). Quercetin in SLN showed
higher drug deposition in the upper layers of the stratum corneum
and lower percentage in the deeper layers. This observation is in
accordance with that lipid nanoparticles generate an occlusive
effect on the skin, thus increase skin hydration and promote drug
delivery to upper skin layers [104]. Meanwhile their relatively
large size above 500 nm favors deeper skin penetration via follicu-
lar route [105] rather than transepidermal penetration [106].

In 2013, Bose et al. [78] developed quercetin in both solid lipid
nanoparticles (SLN) and nanostructured lipid carriers (NLC). Com-
pritol# 888 was used as solid lipid for both nanosystems, whereas
oleic acid was incorporated into nanostructured lipid carriers as liq-
uid lipid. Both quercetin nanosystems were prepared by the probe
ultrasonication method. Quercetin NLC were 282 nm, PDI of 0.31
and zeta potential of"37.0 mV (Table 4). Quercetin exhibited a bet-
ter physical stability results for 14 weeks at 2–8 "C when loaded at
0.0125% than 0.025%. Skin penetration studies were performed on
full thickness human skin ex vivo using 0.64 cm2 Franz diffusion cell
over 24 h. Bose et al. [78] reported the absence of transdermal
delivery for quercetin from both nanosystems. This result is in
accordance with Scalia et al. [76] who confirm that the majority
of applied quercetin from nanoparticles was found in the top layers
of the skin. This is very important for such antioxidant molecule,
considering the main site of action is the skin cells in the upper lay-
ers. At the end of the penetration test, Bose et al. determined skin
quercetin retention without detailing its distribution among skin
layers. The percentage of drug skin retention was 19.2% with NLC
according to Bose et al. and it falls in the same range that is in the
in vivo work of Scalia et al. who detected 21.2 ± 2.9%.

In summary, quercetin even when formulated in a lipid
nanoparticle vector shows no evidence for transdermal delivery
on human skin. Keeping in mind that quercetin as a molecule is

a paradigmatic model for a lipophilic drug (octanol–water partition
coefficient log P = 1.82) [73] with 5 polar hydroxyl heads and very
low water solubility [81], thus quercetin is not the perfect drug
candidate for a transdermal delivery system. Quercetin local skin
deposition is more valuable than performing a transdermal deliv-
ery through skin. Quercetin envisaged dermal applications
described above (Section 2) are all of local interest and the absence
of a systemic absorption is desirable. Nanodosage forms were able
to increase quercetin skin retention via their occlusive effect and
higher surface area. Transdermal delivery for quercetin nan-
odosage forms was not achieved without the help of penetration
enhancers. The use of penetration enhancers should be taken with
caution as these molecules affect skin barrier function and may
cause skin damage. However, nanodosage forms are very promis-
ing drug delivery systems for targeting skin and upper layers of
epidermis. This is desirable for quercetin to exert its activity in pro-
tecting skin tissue from oxidative stress, photoaging and uncon-
trolled skin inflammation.

Finally, one can compare in vivo skin permeation/penetration
for quercetin between microemulsion [43] and lecithin-chitosan
nanoparticles [24] as in both studies formulations were applied
on dorsal skin of mice, quercetin applied quantity was the same
(300 lg) and both studies detected quercetin levels in the skin
after 6 h of application. Results are relatively close between
nanoparticles and microemulsion. The larger portion of quercetin
was detected in the upper skin layers at the SC level, and lower
concentrations were detected in the dermis. Quercetin showed
no transdermal delivery in both studies.

5. Conclusion

Quercetin proves to possess several interesting physiological
actions on skin. It has a strong antioxidative activity. It protects
keratinocytes for exogenous oxidizing agents and scavenges free
radicals, prevents endogenous antioxidant depletion and inhibits
lipid peroxidation upon exposure to UV. Quercetin also presents
broad antiinflammatory actions. It is stronger than other flavo-
noids in inhibiting edema after contact with inflammogens. It pre-
sents inhibiting actions on NF-jB and on the release of several
proinflammatory cytokines. These combined antioxidative/antiin
flammatory actions highlight quercetin as a promising molecule
for the treatment of chronic wounds. Additionally quercetin shows
anti-aging actions on middle-aged keratinocytes and rejuvenating
actions on terminally senescent cells. In parallel, quercetin inhibits
tyrosinase in melanocytes and thus enables a whitening effect on
skin. All these possible targets and applications for quercetin
require a successful local delivery to skin. Due to quercetin poor
water solubility and inability to penetrate skin, researches are con-
ducted on the formulation of a potent delivery system. In this arti-
cle, the last advances in delivery of quercetin to skin via
conventional dosage forms and nanodosage forms were presented
and discussed. The variation of formulations in terms of excipients
used and the physicochemical characteristics, along with effect of
particle size on skin penetration are discussed. Quercetin in both
types of formulations presented no transdermal delivery except
in case of the use of penetration enhancers. Conventional and nan-
odosage forms showed higher quercetin deposition in the upper
skin layers of the epidermis. Despite achieving extremely small
particle size with nanodosage forms, still the lipid content and
the lipid type seem to be the main determinant of the extent of
quercetin depth in skin layers. More studies should be performed
to get more insight about the exact depth that a formulation con-
taining quercetin can achieve. At the same time, more research
should be made to investigate other possible applications for quer-
cetin in other skin disorders such as psoriasis or atopic dermatitis.
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a b s t r a c t

Flavonoids are natural plant pigments, which possess high antioxidative and antiradical activities.
However, their poor water solubility led to a limited bioavailability. To overcome this major hurdle, quer-
cetin nanocrystals were produced implementing smartCrystals! technology. This process combines bead
milling and subsequent high-pressure homogenization at relatively low pressure (300 bar). To test the
possibility to develop a dermal formulation from quercetin smartCrystals!, quercetin nanosuspensions
were admixed to Lutrol! F127 and hydroxythylcellulose nonionic gels.
The physicochemical properties (morphology, size and charge), saturation solubility, dissolution veloc-

ity and the antioxidant properties (DPPH assay) as well as the cellular interaction of the produced quer-
cetin smartCrystals! were studied and compared to crude quercetin powder. Quercetin smartCrystals!

showed a strong increase in the saturation solubility and the dissolution velocity (7.6 fold).
SmartCrystals! loaded or not into gels proved to be physically stable over a period of three months at
25 "C. Interestingly, in vitro DPPH assay confirmed the preservation of quercetin antioxidative properties
after nanonization. In parallel, the nanocrystalline form did not display cellular toxicity, even at high con-
centration (50 lg/ml), as assayed on an epithelial cell line (VERO cells). In addition, the nanocrystalline
form confirmed a protective activity for VERO cells against hydrogen peroxide induced toxicity in vitro.
This new formulation presents a promising approach to deliver quercetin efficiently to skin in well-
tolerated formulations.

# 2016 Published by Elsevier B.V.

1. Introduction

Antioxidants are of high interest in the prevention of oxidative
stress not only for oral administration but also for topical adminis-
tration. In this context, antioxidants are used to support treatment
for diseases that require a higher activity of the immune system
(mosquito borne diseases or viral infections) [6,35,57]. In dermal
preparations, products containing antioxidants are useful for pro-
tection against UV radiation damage [4,32] or for prevention of
skin cancer [18,49,61]. Flavonoids are plant pigments found in a
wide variety of fruits and vegetables such as apples [53], pears
[56], onions [27], and red wine [28]. Many flavonoids such as quer-
cetin, rutin, hesperidin and naringenin are potent antioxidants
[51]. Quercetin was chosen as an active principle because it is con-
sidered as the most powerful antioxidant, and the most distributed
in nature [2]. Moreover, it has already been used for its antiinflam-

matory [8,30] and anti-tumor activities [24,65], and also for cellu-
lar protective properties in brain [48], liver [16], kidney [31] and
colon diseases [10]. In order to mimic the topical application, UV
irradiation was used to introduce lipid peroxidation on phos-
phatidylcholine liposomes. Interestingly, in this model, quercetin
showed the highest protective activity among various tested flavo-
noids [2,20]. This UV protective effect is of high relevance in skin
aging and wrinkling [7] and indicates quercetin as potential active
drug for skin protection against photoaging.

Nevertheless, its poor water solubility limits dermal bioavail-
ability leading to a decrease in its potential for topical administra-
tion. In this context, nanocrystals proved to be a successful
formulation strategy for the increase in dermal bioavailability of
poorly soluble actives [55]. Nanocrystals have a simple but effec-
tive mechanism of bioavailability enhancement by increasing the
kinetic saturation solubility (Cs) and thus increasing the concentra-
tion gradient between the application site (e.g. dermal formula-
tion) and the acceptor medium (e.g. skin). In addition, a higher
dissolution velocity due to the large surface area occurs. Finally,

http://dx.doi.org/10.1016/j.ejpb.2016.03.004
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nanocrystals show high adhesion and prolonged retention times,
by adhering firmly to the skin [21]. Nanocrystals can be obtained
by different industrial processes. The first-generation of nanocrys-
tals is used to be produced by different processes, but generally in a
one-step procedure: bottom-up such as ‘‘Nanomorph!”, or top-
down processes such as wet bead milling developed by Alkermes!

[34] and high-pressure homogenization (HPH) developed by
Müller et al. from the company DDS Germany [41]. The second-
generation of nanocrystals is generally produced thanks to combi-
native process, such as association of microprecipitation followed
by HPH (Nanoedge or H69 technologies), spray drying and HPH
(H42 technology), freeze drying and HPH (H96) and wet bead
milling associated with HPH (CT technology) [52]. SmartCrystals!

were developed as second-generation technology [43] using com-
bination processes as a ‘‘toolbox” for tailor-made nanocrystals
specific for different demands. In this study, the combination tech-
nology of bead milling and subsequent HPH was performed
(known as CT process!) [47]. This yields monodispersed nanocrys-
tals, homogenous in size with increased physical stability [12].

Research groups mainly focused on the preparation of quercetin
nanocrystals either by bead milling or by high-pressure homoge-
nization [22,23]. Others focused on the application of nanotechnol-
ogy (nanocrystals, solid lipid nanoparticles, etc.) for expected oral
delivery [29,33]. Up until now, the advantages of formulating quer-
cetin nanocrystals using the second-generation of smartCrystals!

for dermal application have not been investigated.
To stabilize these smartCrystals!, five different stabilizers were

tested. Two standard nonionic stabilizers: (i) polysorbate 80
(Tween! 80) and (ii) poloxamer 188 (Lutrol! F68), and two alkyl
polyglucoside ‘‘green” stabilizers (iii) caprylyl/capryl glucoside
(Plantacare! 810) and (iv) lauryl glucoside (Plantacare! 1200)
were previously used in drug nanocrystal stabilizations
[14,36,54]. Finally, (v) a vitamin E derived surfactant, a-
tocopheryl polyethylene glycol 1000 succinate (TPGS) is used as
a novel stabilizer for drug nanocrystals. The obtained quercetin
smartCrystals! were characterized and compared to crude querce-
tin regarding physicochemical characteristics (size, charge, shape,
saturation solubility and dissolution velocity) as well as antioxida-
tive properties and cytotoxicity against an epithelial cell line
(VERO cells). As a last step, quercetin nanosuspensions were
admixed to two different nonionic gels Lutrol! F127 (poloxamer
407) and hydroxythylcellulose (HEC) and the stability of the
smartCrystals! in suspension and in dermal non-ionic gels was
assessed over a period of three months at three different tempera-
tures (4 "C, 25 "C and 40 "C).

2. Materials and methods

2.1. Materials

Quercetin aglycone (3,30,40,5,7-pentahydroxy-2-phenylchromen-
4-one), 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bro-
mide (MTT) and hydroxythylcellulose (HEC) were purchased from
Sigma (Sigma Aldrich, France). Tween! 80 (polysorbate 80), TPGS
(a tocopheryl polyethylene glycol 1000 succinate), Plantacare!

810 (caprylyl/capryl glucoside), and Plantacare! 1200 (lauryl gly-
coside) were purchased from Cognis (Ludwigshafen, Germany).
Lutrol! F68 (poloxamer188, 1800 g/mol) and Lutrol! F127 (polox-
amer407) were kindly provided by BASF (Ludwigshafen, Germany).

2.2. Preparation of quercetin nanosuspensions

Crude quercetin (5%) was suspended in a 0.5% stabilizer solu-
tion (Tween! 80, TPGS, Lutrol! F68, Plantacare! 810 or Plantacare!

1200) in milliQ water. Quercetin nanosuspensions were then pro-

duced using the smartCrystals! technology [43]. Briefly, 120 ml
of primary quercetin suspension was subjected to 30 min milling
time using a pearl mill Bùhler PML 2 (Bùhler AG, Uzwil, Switzer-
land) with 0.2 mm zirconium oxide beads as milling medium. Sam-
ples were withdrawn every 5 min from the wet bead-milling
machine to perform in-process size measurements (Sections 2.5
and 2.6). Optimal milling time was determined after analyzing
the sizes. After milling, the suspension was separated from the
beads using a sieve (mesh size 80). The beads were then washed
with 120 ml of original 0.5% stabilizer solution to collect any quer-
cetin crystals adhered to the beads. The resulted suspensions were
then homogenized using a high-pressure homogenizer (HPH),
Micron LAB 40 (APV Gaulin GmbH, Germany) for two cycles at
300 bar [25]. Finally, the selected stabilizers were used to prepare
new batches using the concluded optimal milling time.

2.3. Nanosuspensions – gel formulation

Quercetin nanosuspensions were admixed to two different gel
formulations: Lutrol! F127, which is a temperature dependent gel-
ling agent or hydroxythylcellulose (HEC). First, 5% quercetin
nanosuspensions were diluted with milliQ water by a mass ratio
factor of 1:1.6 and then Lutrol! F127 or HEC was added to allow
a final concentration of 16.7% and 1.7% respectively [13,38]. The
resulted gels were tested for stability at 4 "C, 25 "C and 40 "C. Size,
polydispersity index (PDI) and zeta potential of smartCrystals!

were measured at day 0, day 30 and day 90, after a dilution step,
to break the gel and allow measurement by photon correlation
spectroscopy (see thereafter, Section 2.5 for precise sample
preparation).

2.4. Lyophilization

Quercetin nanosuspensions were frozen to -80 "C using Cry-
onext freezer (Cryonext laboratories, France), and then freeze-
dried by Heto lyophilizer (PowerDry Laboservices, France) for
24 h to obtain dry quercetin smartCrystals!.

2.5. Photon correlation spectroscopy and electrophoretic mobility

measurements

10 ll of the quercetin nanosuspension was added to 10 ml of
MilliQ water, vortexed for 10 s and then measured at 25 "C to
obtain the average size (Z-average) and polydispersity index
(PDI) by photon correlation spectroscopy using a Zetasizer Nano
ZS (Malvern Instruments, UK). 10 ll of the quercetin nanosuspen-
sion was diluted with either 10 ml of 50 lS/cm water (calculated
by the addition of NaCl solution to MilliQ water) or 10 ml of orig-
inal stabilizer solution [42]. 1 ml of this mixture was transferred
into a Disposable Capillary Cell (Malvern Instruments, UK) allow-
ing the measurement of the electrophoretic velocity of particles
in an electrical field and the determination of zeta potential thanks
to Helmholtz–Smoluchowski equation.

For size measurements after gel formulation, 10 ll of the gel
formulation was diluted with 10 ml MilliQ water and vortexed
for 30 s, and then 2 ml was transferred to PCS analysis. For zeta
potential measurements, 10 ll of the gel formulation was diluted
with 10 ml of either 50 lS/cm water or original stabilizer solution,
and vortexed for 1 min; then, 1 ml was transferred to PCS for
measurement.

2.6. Laser diffraction (LD)

Size distribution was measured by laser diffraction (Mastersizer
2000 Malvern Instruments, UK) with an agitation speed
of 1750 rpm. Sample volume was adjusted according to the
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concentration indicated by the manufacturer using deionized
water. All sizes were analyzed using the characterization mode of
the Mie equation with optical parameters 0.01 for the imaginary
refractive index (IRI) and 1.59 for the real refractive index (RI).

2.7. X-ray analysis

X-ray diffraction patterns of dry quercetin smartCrystals! were
analyzed using a D8 Advance LA Cu 1.5406 Å Bruker axs (Bruker,
Karlsruhe, Germany) equipped with a generator (40 kv 40 mA)
and a parafocusing geometry circle of Bragg Brentano. The test
was performed between angles of 2 and 70 h at a fixed detection
velocity, and a solid detector lynx eyes 1D was used for the sample
detection.

2.8. Transmission electron microscopy

Transmission electron microscope (TEM) analysis was per-
formed with a TEM Jeol 1200EXII (Jeol Ltd, Japan) with an acceler-
ating voltage of 100 kV and equipped with a 4 k/3 kelopixels
quemesa Camera (Olympus, Japan). 5 ll of the nanosuspension
was left to dry for 30 min at 25 "C after being deposited on
uncoated carbon TEM grids Type CU formar carbon 3 MMM (Agar
Scientific, UK). Images were taken using MEASURE IT software at
appropriate magnification.

2.9. HPLC analysis

HPLC was used for the determination of quercetin concentra-
tion in the nanosuspensions and the saturation solubility. The
chromatographic analysis of the quercetin nanosuspensions was
performed on a LC62010HT (Shimadzu, Kyoto, Japan) using a C18
column Prontosil (120-5-C18 H5.0 lm), NC-04 (250 " 4.0 mm) as
stationary phase and a mobile phase solution composed of 10%
methanol 80%, acetonitrile and 10% of phosphoric acid 0.2% at a
pH = 1.9. The detection was carried by a UV lamp (UV–VIS detector,
Shimadzu, Kyoto, Japan) at 368 nm, which is specific for quercetin
[64].

Two experiments were developed for the determination of (i)
quercetin concentration in the nanosuspension (experiment 1:
quercetin is extracted by methanol and then quantified) and (ii)
saturation solubility (experiment 2: quercetin concentration is
determined in solution without extraction).

For experiment 1, a fixed flow rate of 1 ml/min during a run
time of 15 min was set and applied to calculate the quercetin con-
centration in the final nanosuspension. Standard quercetin solu-
tions prepared in methanol within a range 62.5–500 lg/ml were
used as a calibration curve (calibration curve 1 r2 = 0.999 and %
RSD is 2.5). The quercetin retention time was 2.3 min. 10 ll of
the quercetin nanosuspension was diluted to 1 ml with methanol
and then injected (n = 3).

Secondly, for experiment 2 (quercetin saturation solubility
measurements), a gradient flow rate was used in a 20 min run time
by increasing the acetonitrile concentration from 40% to 80% while
the acidified water concentration decreased from 50% to 10%. The
gradient flow was performed in order to delay the elution of quer-
cetin from that of Tween! 20. The quercetin retention time was
4.10 min. Serial dilutions of known concentrations of quercetin in
0.5% Tween! 20 PBS buffer pH = 7.4 were used to prepare a calibra-
tion curve from 0.2 to 4 lg/ml (calibration curve 2 r2 = 0.996 and %
RSD is 7.7). Quercetin quantification limit was 0.1 lg/ml. This was
performed in order to mimic the situation in an aqueous medium.
Then 1 ml of the quercetin nanosuspension, and the quercetin
physical dispersion (crude quercetin suspended in milliQ water)
were centrifuged at 21,000 gravitational force for 1 h using a Sigma
2k 25 ultracentrifuge (sigma Zentrifugen, GmbH, Germany), to sep-

arate the non-solubilized quercetin (bottom of the tube) to the sol-
ubilized one (in the supernatant). Centrifugation time is adjusted
according to the Stoke equation for particle sedimentation. Super-
natants were collected and 50 ll of each was injected into HPLC
and the water saturation solubility was calculated according to
the method mentioned.

2.10. Dissolution velocity (flow through cells)

Flow through cell USP apparatus 4 equipped with a piston
pump Sotax (Sotax AG, Aesch, Switzerland) was used for testing
the dissolution velocity. 5 mg of dry quercetin smartCrystals! or
crude quercetin was accurately weighed using an OHAUS Discov-
ery balance (OHAUS Corporation, New Jersey, USA) and was placed
in the sample chamber. 100 ml of degassed MilliQ water was used
as release medium to maintain sink conditions. The flow rate was
maintained at 8 ml/min at 32 "C (n = 3) and 1 ml of the release
medium was withdrawn at 5, 10, 15, 30, 60 and 120 min, and then
replaced by 1 ml of fresh medium. Afterward, the quercetin con-
centration was determined: 50 ll of withdrawn samples was
diluted with 950 ll milliQ water and analyzed using HPLC (Sec-
tion 2.9, experiment 2).

2.11. Hydrogen donating ability in vitro by 2, 2-diphenyl-1-

picrylhydrazyl (DPPH)

Quercetin showed linear DPPH inhibition in concentrations
between 1 and 6 lg/ml. Quercetin nanosuspensions with selected
stabilizers were diluted with methanol to fit into linearity concen-
trations of quercetin. DPPH concentration was adjusted to 400 lM.
The volume of DPPH solution to quercetin solution was 1:3 (vol-
ume factor). DPPH with methanol was used as a positive control
with methanol as a reference. The activity reaction was performed
in the dark for 30 min; afterward the DPPH absorbance was mea-
sured at 517 nm using a UV/VIS spectrophotometer (Lambda 35,
PerkinElmer, USA). Then the DPPH percentage activity was calcu-
lated as efficient concentration 50 (EC50) (the concentration of
crude quercetin or quercetin smartCrystals! able to reduce 50%
of the initial DPPH concentration).

2.12. Cell culture and cellular cytotoxicity on Vero cells

Vero cells (CCL81TM) were purchased from American Type Cul-
ture Collection ATCC (Manassas, Virginia, USA). Cells were cultured
using Dulbecco’s Modified Eagle’s medium (DMEM) (Gibco!) with
10% fetal bovine serum (FBS) purchased from Life technologiesTM

(Carlsbad, California, USA). To assess the potential cytotoxicity of
the formulation, cells were cultured at a concentration of 1 " 105

cells/well in 24 well plates (Corning, New York, USA), and incu-
bated for 24 h at 37 "C, 5% CO2. Cells were then exposed to 5, 15,
25, 50 lg/ml of crude quercetin, or quercetin smartCrystals!

(diluted nanosuspensions) suspended in classic cell culture
medium (DMEM + 10% FBS). After 24 h exposure, cell viability
was assessed by the 3-(4,5-dimethylthiazol-2-yl)-2,
5-diphenyltetrazolium bromide (MTT) assay. The MTT assay
evaluates cellular mitochondrial activity by following the cleavage
of tetrazolium salts to a soluble formazan dye by succinate–tetra-
zolium reductase, a mitochondrial enzyme active only in viable
cells. MTT (5 mg/ml) was added to each well for 4 h. Culture media
were then aspirated and replaced by 200 ll of acidified iso-
propanol (0.06 N HCl) to dissolve formazan crystals. Finally,
100 ll was transferred to 96 well plates and read at 570 nm and
750 nm using a MultiskanTM GO microplate spectrophotometer
(Thermo ScientificTM, Waltham, Massachusetts, USA). Non-treated
cells were recognized as the positive control and represent the
100% viability.
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2.13. Protection against hydrogen peroxide induced cellular toxicity

Cells were cultured at a concentration of 1 " 105 cells/well in 24
well plates and incubated at 37 "C, 5% CO2 for 24 h. Cells were then
exposed to 50 lg/ml of crude quercetin, or quercetin smartCrys-
tals! (diluted nanosuspensions) suspended in classic cell culture
medium (DMEM + 10% FBS) for 4 h. After that, 40 ll of 10 mM of
hydrogen peroxide (H2O2) was added to each well and incubated
for 2 h. Cells were then washed two times with PBS. Then, 360 ll
of DMEM + 10% FBS and 40 ll of MTT were added and let incubated
for another 4 h. Culture media were then aspirated and 200 ll of
acidified isopropanol (0.06 N HCl) was added. Finally, 100 ll was
transferred into 96 well plate and absorbance at 570 nm and
750 nm was determined using a MultiskanTM GO microplate spec-
trophotometer (Thermo ScientificTM, Waltham, Massachusetts,
USA) [19].

2.14. Statistical analysis

Statistical analysis of the dissolution velocity and cellular cyto-
toxicity was run using Stata software (StataCorp, College Station,
Texas, USA). A two-sample t-test with unequal variances was used
for the analysis of cellular toxicity results and a two-sample t-test
with unequal variances supported with a two-sample Kol-
mogorov–Smirnov test for equality of distribution functions was
used to verify the significant difference of the dissolution profiles.
P expresses the significant value where ⁄ = P < 0.05, ⁄⁄ = P < 0.01
and ⁄⁄⁄ = P < 0.005 respectively.

3. Results & discussion

3.1. Optimization of smartCrystals! production process

Optimization of the preparation was performed in two steps: (i)
assessing the optimal milling time and (ii) producing the smallest
homogenous crystals with each stabilizer (Tween! 80, TPGS,
Lutrol! F68, Plantacare! 810 or Plantacare! 1200).

In the first step, the milling time was set for 30 min and querce-
tin size profile was measured every 5 min using PCS (Fig. 1) and LD
(Fig. 2). PCS allow the size measurement of particles from about
3 nm to 3 lm, and LD was therefore used to detect particles larger
than 3 lm. LD size results are expressed in terms of the percentage
distribution of sizes within the population. Volumes equivalent to
the hydrodynamic sphere diameter LD50, LD90, and LD99 diame-
ters are used throughout this article.

By observing the hydrodynamic diameters measured by PCS in
Fig. 1, particle size reduction in the nanometer range can be
noticed within the first 10 min for all the stabilizers. Within
5 min of milling, the sizes were reduced to 329 nm (PDI 0.21),
and to 303 nm (PDI 0.24) for quercetin nanosuspensions stabilized
with Tween! 80 and TPGS respectively and to 526 nm (PDI 0.3) for
quercetin nanosuspensions stabilized with Plantacare! 810. After
10 min of milling, the size decreased to reach 502 nm (PDI 0.22)
with Lutrol! F68 and 574 nm (PDI 0.22) with Plantacare! 1200
respectively. Nevertheless, after either 5 min (Tween! 80, TPGS
and Plantacare! 810 stabilized nanosuspensions) or 10 min milling
(Lutrol! F68 and Plantacare! 1200 stabilized nanosuspensions),
particles began to agglomerate. Upon this prolonged milling time,
the energy used for particle fragmentation is converted into kinetic
energy increasing particle adhesion and agglomeration, which
could explain this size increase [44].

Fig. 2 shows the LD complementary results for the milling pro-
cess providing information on larger particles in the suspension.
The difference between the value of LD50 and LD99 (which is a
diameter sensitive to measure very large particles) gives an indica-

tion about particles’ aggregation state that cannot be monitored by
PCS. Results at time 0 represent the size distribution of quercetin in
the coarse suspension with each stabilizer. Aggregates larger than
3 lmwere not observed at 5 min milling time with Tween! 80 and
Plantacare! 810, but still present with TPGS as LD50 and LD99
5 lm and 32 lm respectively. Looking at Lutrol! F68 and Plan-
tacare! 1200 stabilized nanosuspensions, only Lutrol! F68 at
10 min showed aggregation with LD99 equals to 35 lm. Again,
by LD upon prolonged milling, particle agglomeration was con-
firmed with all stabilizers except Tween! 80 and Lutrol! F68. Thus,
the best milling time for Tween! 80, TPGS and Plantacare! 810 sta-
bilized nanosuspensions seems to be of 5 min whereas for Lutrol!

F68 and Plantacare! 1200 stabilized nanosuspensions 10 min
seems better adapted.

After the milling step (30 min), quercetin nanosuspensions sta-
bilized with the five stabilizers were subjected to the same HPH
condition (300 bar, 2 cycles). Fig. 3 presents the PCS and LD size
results of the final nanosuspensions. The use of HPH yielded smal-
ler and more homogeneous quercetin nanosuspensions with an
average size of 220 nm (PDI 0.19) with Tween! 80, 397 nm (PDI
0.16) with TPGS, 381 nm (PDI 0.24) with Lutrol! F68, 426 nm
(PDI 0.38) with Plantacare! 810 and 243 nm (PDI 0.37) with Plan-
tacare! 1200 (Fig. 3a). LD99 results were all less than 450 nm for
all stabilizers confirming the successful disaggregation with HPH
(Fig. 3b). This decrease in particle size and the disappearance of
aggregation confirm the advantage of the combinative techniques
over one-process techniques. Taking the example of quercetin
nanocrystals with Tween! 80 prepared using only bead milling
by Kakran’s et al., quercetin nanocrystals were approximately
340 nm (PDI 0.21)) and the milling time was 60 min [23]. By apply-
ing the smartCrystals! combinative technique, quercetin
smartCrystals! were 220 nm (PDI 019) using only 5 min milling
followed by HPH.

Taking into account the final suspension size, the smallest aver-
age size was obtained with Tween! 80 (220 nm), Plantacare! 1200
(243 nm) and Lutrol! F68 (381 nm) (Fig. 3a). By analyzing PDI data,
TPGS was the stabilizer which leads to the lowest polydispersity
index of 0.16, followed by Tween! 80 with 0.19 and Lutrol! F68
with 0.24 (Fig. 3a).

From the size, PDI and milling time, it can be concluded that the
best two stabilizers for 5% quercetin nanosuspensions prepared by
smartCrystals! technology were Tween! 80 and TPGS. SmartCrys-
tals! stabilized with these two stabilizers showed the smallest par-
ticles size with homogenous profile in the shortest milling time. As
a result, optimized milling conditions with HPH were used to pro-
duce new batches of quercetin smartCrystals! stabilized with
Tween! 80 and TPGS. The reproduced quercetin nanosuspension
was 295 nm (PDI 0.25) with Tween! 80 and 203 nm (PDI 0.24)
with TPGS.

Tween! 80 concentration for stabilization of quercetin
nanocrystals varied in the literature, from 1 to 2% when 5% querce-
tin nanosuspensions were prepared by HPH or bead milling. Quer-
cetin nanocrystals prepared only by HPH (20 cycles at 1500 bar)
were around 700 nm (PDI 0.17) [50] and quercetin nanocrystals
prepared by bead milling alone using 0.2 mm beads were 340 nm
(PDI 0.21). By applying the smartCrystals! combination process,
a nanometric size of 220 nm (PDI 0.19) was achieved, with twofold
lower stabilizer concentration [23].

To resume, small and monodisperse quercetin smartCrystals!

were formulated using 2 fold less stabilizer than previously for-
mulated nanocrystals with a shorter production time. This con-
firms the interest in the use of smartCrystals! combinative
technology that allows a reduced milling time, which is very
important considering large scale production as long preparation
time increases costs and decreases the number of produced
batches per day.
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3.2. Physicochemical characterizations of quercetin smartCrystals!

3.2.1. Surface charge

To predict the physical stability of quercetin smartCrystals!,
zeta potential was measured. The higher the absolute values of
the zeta potential, the more stable the particles are expected to
be. Results are presented in Fig. 4. The difference between the mea-
surements in the original stabilizer medium (0.5% Tween! 80 or
TPGS) and the salted water (50 lS/cm water) provides an indica-
tion about the thickness of the diffuse layer, as the diffuse layer
is eliminated in the salted water [26]. All zeta potentials of querce-
tin nanosuspensions were negative, as PEG chains present in the
structure of Tween! 80 and TPGS can form negative dipoles that
are able to decrease the surface charge proportionally to their con-
centration [62]. Nanosuspensions stabilized with Tween! 80 com-
pared to TPGS stabilized ones expressed more negative zeta
potential in both 50 lS/cm water (#25.7 compared to #16.1 mV)
and original stabilizer solution (#26.8 mV compared to
#22.7 mV) for nanosuspensions with Tween! 80 and TPGS respec-
tively. Both stabilizers sterically stabilize the particles in addition
to the electrical repulsive forces they could generate [63]. Indeed,

it should be noted that the adsorbed steric stabilizer layer reduces
the measured zeta potential, as it shifts the plan of shear to greater
distance from the particle surface. Therefore, values around 25 mV
observed with Tween! 80 seem sufficient to stabilize the system
along with stearic stabilization [40]. Regarding TPGS, the difference
between values at 50 lS/cm water and original stabilizer solution
(#16.1 vs. #22.7 mV) may indicate a thicker adsorbed layer com-
pared to Tween! 80 and hence an increased stability [36].

3.2.2. Quercetin nanosuspension stability

For all pharmaceutical and cosmetical products, a satisfactory
stability profile is desired. Therefore, three month stability tests
were performed on quercetin nanosuspensions. Stability tests were
conducted at three different temperatures 4 "C, 25 "C and 40 "C.
The average PCS size and PDI at day 0, day 30 and day 90
(Fig. 5a) were used to assess the stability.

The increase in quercetin nanosuspension size from day 0 to
day 90 at 25 "C was 50 nm (from 295 to 343 nm) with Tween!

80, and 150 nm (from 203 to 340 nm) with TPGS. Interestingly,
PDI remained under 0.30 for both formulations (Fig. 5a). This
increase in size has already been observed with lutein nanocrystals
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Fig. 1. Quercetin suspension size and PDI evaluation using PCS. PCS size and polydispersity index (PDI) as a function of milling time in the bead mill of suspensions stabilized
with (a) Tween! 80, (b) TPGS, (c) Lutrol! F68, (d) Plantacare! 810 and (e) Plantacare! 1200.
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when prepared by HPH [37]. In this study, after 90 days of storage
at 40 "C, quercetin nanosuspension stabilized with Tween! 80 was
381 nm (PDI 0.19), and quercetin nanosuspensions stabilized with
TPGS were 389 nm (PDI 0.16).

3.2.3. Lyophilization and crystallinity determination

To allow X-ray studies, the quercetin nanosuspensions were
lyophilized [46]. Therefore, the effect of lyophilization on particles
size was first evaluated. For this, dry quercetin smartCrystals!

were rehydrated with the original stabilizer solution after
lyophilization and the sizes and PDI of these nanosuspensions were
measured (Fig. 5b). Before lyophilization, quercetin nanosuspen-
sions stabilized with Tween! 80 were 366 ± 8 nm, and after recon-
stitution of the suspension the size increased to 403 ± 8 nm. The
same increase by about 40 nm in particle size was observed with
quercetin nanosuspensions stabilized with TPGS, where particle
size increased from 239 ± 8 nm to 290 ± 3 nm. An increase in par-
ticles size upon lyophilization by 200 nm was reported with ascor-
byl palmitate nanocrystals in the absence of cryoprotectant [59].
Cryoprotectant was not used in our case and the size increase

was 5 times less. At the same time, in the case of the ascorbyl
palmitate nanocrystals, the PDI increased from $0.3 to $0.4 while
the PDI stayed the same (0.25 ± 0.03) before and after lyophiliza-
tion for quercetin nanosuspensions stabilized with Tween! 80
and TPGS. Thus, smartCrystals! were lyophilized without cryopro-
tectant avoiding strong size increase while keeping a good
dispersity.

The X-ray diffraction pattern of coarse quercetin, lyophilized
quercetin smartCrystals! stabilized with Tween! 80 and TPGS
are given in Fig. 6(a). Peaks at 2, 10.8, 12.5, 15.8, 27.4 h observed
on crude quercetin diffractogram were still present in both lyophi-
lized smartCrystals! formulations, indicating that quercetin after
nanonization process had kept its crystalline nature. However,
the absence of some peaks on quercetin smartCrystals! stabilized
with Tween! 80 and TPGS like the peaks at 9.5, 10.3, 11.4, 11.9
and the reduced extent of the peak at 10.8 and 12.5 compared to
crude quercetin, clearly indicate a change in the polymorphic form
of quercetin after the nanonization process. This comes in accor-
dance with previous reports showing the presence of three poly-
morphic forms for quercetin. Crude quercetin powder was
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pharmaceutical grade (QGPb), and then quercetin in its smartCrys-
tals! form had the pharmaceutical grade (QGPa) [3]. This change in
the polymorphic form could have its reflection on the behavior of
quercetin in viable system and its interaction with cells.

3.2.4. Electron microscopic examination

5 ll of quercetin nanosuspensions was deposited and dried on
TEM grids. Fig. 6(b) shows transmission electron microscopy

images of quercetin smartCrystals! stabilized with Tween! 80
(Fig. 6b1 and b2) and TPGS (Fig. 6b3 and b4) diluted with original
stabilizer solution (0.5% stabilizer). Images showed the absence of
nanocrystals aggregates and liquid droplets around the crystals
were hypothesized to be an excess of Tween! 80 (Fig. 6b1).
SmartCrystals! in the presence of Tween! 80 were in a needle-
like shape with a particle size of about 700 nm to about 2 lm
(Fig. 6b2). By contrast, nanocrystals in the presence of TPGS
behaved differently as a square shape (500 nm) was prevalent in
the samples tested (Fig. 6b3). In addition, with this last stabilizer,
a cubic shape, was observed in smaller numbers (Fig. 6b4), which
could be linked to the fusion of several nanocrystals together. Par-
ticles size in the presence of TPGS was in the same range of PCS
results observed between 200 and 500 nm. Square nanocrystal
shape was already observed on particles stabilized by Lutrol! F68
(and lecithin) prepared by HPH [12] and also with other nanocrys-
tals (Amoitone B, Nur77 receptor agonist) stabilized by Lutrol! F68
prepared by microfluidization [17]. This confirms that crystal
shape is mainly determined by the stabilizers and not only by
the process used to obtain nanocrystals.

3.3. Saturation solubility determination

A certain loss of quercetin during milling and in the course of
the homogenization step cannot be avoided; thus, quercetin con-
centration was determined (Table 1). The saturation solubility
was determined using HPLC (Section 2.9) for both crude quercetin
and quercetin nanosuspensions. Nanosuspensions were cen-
trifuged to separate nanocrystals from dissolved quercetin. Crude
quercetin possessed a saturation solubility of 0.48 ± 0.12 lg/ml in
MilliQ water, while quercetin smartCrystals! had a saturation sol-
ubility of 3.63 ± 0.67 lg/ml and 2.62 ± 0.26 lg/ml when stabilized
with Tween! 80 and TPGS, respectively (Table 1). This allowed
respectively a 7.56 fold and 5.46 fold increase in saturation solubil-
ity. This is in accordance with the fact that particle size in the
nanometer range below 1000 nm leads to increase kinetic solubil-
ity [21].

3.4. Dissolution rate study

Topical application is also influenced by the dissolution profile
of the applied drug. Indeed, with faster dissolution and higher sat-
uration solubility, a higher concentration gradient is generated
between dermal formulation and skin; hence, more dissolved drug
will be absorbed (Fick law) [5]. The velocity of dissolution of such
water insoluble molecule such as quercetin is a limiting step for its
absorption. Decreasing particle size to the nanometer range proved
to increase water solubility for quercetin nanosuspensions over
crude quercetin, favoring an effect on their dissolution kinetics
[12]. A faster dissolution profile is required in order to allow a
rapid skin penetration of dissolved molecules. Quercetin molecules
penetrating into skin should be immediately replaced in the der-
mal formulation by molecules fast dissolving from the nanocrys-
tals (=depot) [39].

The quercetin smartCrystals! dissolution profile was deter-
mined using the flow cell USP apparatus 4 using MilliQ water as
dissolution medium. To ensure a temperature near to the skin, dis-
solution kinetic was performed at 32 "C for 120 min.

Quercetin in its crude form required 30 min to get its highest
dissolved amount of 13 ± 4.7% (Fig. 7). The quercetin nanosuspen-
sion stabilized with Tween! 80 showed approximately a 6 fold
increase in the total dissolved amount compared to crude querce-
tin with faster dissolution profile with 56.4 ± 3.1% in 5 min and
79.1 ± 13.7% in 30 min (P < 0.005). Quercetin nanosuspension sta-
bilized with TPGS showed a dissolution profile with 33.3 ± 2.3%
in 5 min and provided its highest dissolved amount in 2 h with
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94.6 ± 12.6% (about 7.5 fold increase in dissolution compared to
crude quercetin, P < 0.005). No significant difference was observed
between quercetin nanosuspensions stabilized with Tween! 80
and quercetin nanosuspensions stabilized with TPGS dissolution
profiles.

3.5. Hydrogen donating ability in vitro by 2,2-diphenyl-1-

picrylhydrazyl (DPPH)

To evaluate the antioxidant activity of quercetin, the in vitro

antioxidant assay with DPPH was used. This molecule, carrying a
free radical on its hydrazine position, allows compounds exposing
antioxidative effect to react with [1]. DPPH in its radical form has a
strong absorption band at 517 nm. The absorbance at this wave-
length will be diminished if the molecule reacts with an antioxi-
dant. When quercetin in methanol was added to DPPH
methanolic solution, a linear absorbance decrease was observed
from 1 lg/ml to 6 lg/ml and then reached its plateau activity (data
not shown). The DPPH test was performed on quercetin nanosus-
pensions in order to determine its activity and whether the formu-
lation affected quercetin free radical activity. 400 lM DPPH
solution was used as positive control representing 100% free radi-
cal activity or 0% inhibition. EC50 was compared between crude
quercetin and quercetin smartCrystals! stabilized with Tween!

80 and TPGS.
Results of antioxidative activity of quercetin smartCrystals! sta-

bilized with Tween! 80 and TPGS were 3.72 ± 0.08 and

3.41 ± 0.07 lg/ml respectively (Table 1). The EC50 values lower
than 3.98 lg/ml (crude quercetin) may be attributed to the larger
reacting surface of quercetin smartCrystals! compared to crude
quercetin, hence providing a greater quantity of quercetin in the
DPPH reaction. This can be also explained by a potentiating effect
of quercetin with stabilizers, as controls with just stabilizers were
not active [60].

3.6. Cellular cytotoxicity

To assess the safety of quercetin smartCrystals!, a cytotoxicity
study on VERO cells was performed. Cells were incubated with
quercetin smartCrystals! with increasing concentrations of quer-
cetin (5, 15, 25 and 50 lg/ml). This concentration range was tested
before on crude quercetin and proved to protect HaCaT cells from a
UVB dose of 10 mJ/cm2 [32].

After 24 h, a MTT assay was performed to determine the cell
viability thanks to the evaluation of the mitochondrial succinate
dehydrogenase activity. Interestingly, crude quercetin and querce-
tin smartCrystals! showed the same cell survival rates as the con-
trol of non-treated cells (representing the 100% of cell viability)
(Fig. 8a). T-test was performed to compare the different formula-
tions and no statistical difference was observed (P > 0.05), except
in case of quercetin smartCrystals! stabilized with Tween! 80,
where the lowest viability was observed (83 ± 15.5% viable cells
at 50 lg/ml) (P < 0.05). To note, the influence of the stabilizers
alone was evaluated and revealed no implication of such molecules
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on cellular viability. In the range of concentrations tested, no
apparent toxicity for quercetin smartCrystals! stabilized with
TPGS was observed (statistically indifferent from crude quercetin
at the same concentration). Based on these results, quercetin
smartCrystals! stabilized with TPGS were regarded safe up to
50 lg/ml concentration on Vero cells.

3.7. Protection against hydrogen peroxide induced cellular toxicity

After the determination of the safety of quercetin smartCrys-
tals! stabilized with Tween! 80 and TPGS (Fig. 8a), the protective
effect of quercetin against the cellular viability due to H2O2 intox-
ication was evaluated using MTT (Fig. 8b). 50 lg/ml of crude quer-
cetin or quercetin smartCrystals! was added to cells 4 h before the
exposure to H2O2. The increase in cellular viability with quercetin

pretreatment reflects the antioxidant activity of quercetin. Inter-
estingly, H2O2 exposure decreased the percentage of viable cells
to 45 ± 9.5%, whereas the pretreatment with crude quercetin sig-
nificantly protected the cells from H2O2 intoxication (96 ± 11%)
(Fig. 8b) (P < 0.005). At the same level, quercetin smartCrystals!

stabilized with Tween! 80 and TPGS were able to show cellular
protective actions against H2O2 with viable cell percentage of
68 ± 6.8% and 65 ± 6.3% respectively (Fig. 8b). Both results were
significantly different from H2O2 control cells (P < 0.05). The
weaker protective ability observed with quercetin smartCrystals!

in comparison with crude quercetin may be explained by the
change in the polymorphic form of quercetin [3]. Nevertheless, it
is important to note that the solubility improvement afforded by
quercetin smartCrystals! stabilized allows to overcome this
weaker activity.
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solution. (1 and 2) With Tween! 80, (3 and 4) with TPGS original stabilizer solution.

Table 1

Quercetin concentration in the nanosuspensions, their saturation solubilities and DPPH activities ±SD (n = 3) upon formulation.

Theoretical
concentration

Measured
concentration

Saturation
solubility

Saturation solubility
increasing factor

DPPH
activity

w/v% w/v% lg/ml EC50 lg/ml

Crude quercetin in milliQ water – 0.48 ± 0.12 1 3.98
Quercetin smartCrystals! stabilized with Tween! 80 5.00 1.41 ± 0.34 3.63 ± 0.67 7.56 3.72 ± 0.08
Quercetin smartCrystals! stabilized with TPGS 5.00 1.44 ± 0.027 2.62 ± 0.26 5.46 3.41 ± 0.07
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3.8. Quercetin smartCrystals! incorporation into nonionic gels and

their stability in gel formulation

With the final goal of a topical application, Quercetin
smartCrystals! stabilized with Tween! 80 and TPGS were formu-
lated within two type of gels: Lutrol! F127 and HEC. These two gel-
ling agents are widely used in dermal and cosmetic applications as

permeability enhancers. The main scope was therefore to reach a
certain permeation level, where quercetin can exert its antioxida-
tive effect on viable keratinocytes and at the same time can be
associated with a formulation with suitable viscosity for the topical
application. As an example, Lutrol! F127 (reversible thermogel)
showed 6.4, 7.5, and 19.5 fold higher permeation coefficients for
5-aminolevulinic acid (treatment of actinic keratosis in photody-
namic therapy) on human stratum corneum compared to the Ger-
man Pharmacopeia Dolgit!, Basiscreme DAC, and to water
containing hydrophilic ointment [15]. It was also proved to give
superior percutaneous absorption in rats for indomethacin (in
20% (w/w) Lutrol! F127 hydrogel) [38] as well as with other drug
as the anticancer doxorubicin [11]. Advantageous topical applica-
tion was also observed using HEC (nonionic water-soluble polymer
that possesses thickening abilities) with the antibiotic vancomycin
for wound treatment [13]. The introduction of propylene glycol to
the HEC based formulation of cidofovir (anti-viral drug) increased
its transdermal delivery form 0.2% to 2.1% [9].

In this study after their formulations, gels including smartCrys-
tals! were diluted with milliQ water in order to control the size,
polydispersity index and zeta potential of the formulated
smartCrystals! using PCS (Fig. 9). PCS is not the most adapted
method for the visualization of smartCrystals! behavior upon their
association to gel; however, this should provide information to
which extent incorporation into gels can cause smartCrystals!

aggregation and affect the stabilizing charge. Here, smartCrystals!

incorporated to HEC gels showed larger sizes with both stabilizers
Tween! 80 (651 nm, PDI 0.33) and TPGS (666 nm, PDI 0.42)
(Fig. 9a) compared to Lutrol! F127 based gels: (378 nm, PDI 0.20)
and (399 nm, PDI 0.30) for quercetin nanosuspensions stabilized
with Tween! 80 and TPGS, respectively (Fig. 9a). The increase in
smartCrystals! particle size upon their association with gels com-
pared to smartCrystals! alone can be linked to the presence of
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Lutrol! F127 and HEC molecules at the surface of stabilized
smartCrystals!. Mun et al., described a retardation in the diffusion
of PEGylated nanoparticles because of the presence of HEC poly-
mers using NanoSight nanoparticle tracking analysis, and evi-
denced an interaction between PEG chains and HEC polymers
[45]. This could be the case for quercetin smartCrystals! stabilized
by Tween! 80 and TPGS (PEG containing stabilizers). The presence
of HEC molecules interacting with PEG chains at the surface of
smartCrystals! could led to the observed size increase. In the same
way, hydrophilic interactions between PEG moieties (from the sur-
factant stabilized smartCrystals! and the Lutrol! F127 molecules)
could happen and could be correlated with the previously evocated
size and zeta measurement modifications with smartCrystals!

after their association with Lutrol! F127 gel. [58]. Indeed, we
observed a decrease in the zeta potential values for smartCrystals!

associated with gels compared to smartCrystals! alone (zeta
potential: #27 mV vs. #4 mV for smartCrystals! stabilized by
Tween! 80 and #23 mV vs. #4 mV for smartCrystals! stabilized
by TPGS). This decrease can be explained both by (i) the presence
of gels molecules at smartCrystals! surface (leading to a shift of
the plan of shear to a greater distance thus causing a reduction
in the measured value) and (ii) to a change in the dynamic elec-
trophoretic mobility of the smartCrystals!. In contrast to
smartCrystals! alone, zeta potential values in the gels were higher
in 50 lS/cm water compared to original stabilizer solution. This
can be due to the readsorption of the stabilizer molecules found
in the original stabilizer solution on the diffuse layer of the poly-
mers (HEC, Lutrol! F127), thus decreasing the measured zeta
potential.

Regarding the stability of quercetin nanosuspensions associated
with gels (Fig. 10a and b), at day 0, nanosuspensions associated

with HEC gels showed higher size and PDI results compared to
nanosuspensions associated with Lutrol! F127 gels. At day 90 at
40 "C, nanosuspensions associated with both gels showed particle
sizes above 400 nm and PDI above 0.31. Sizes were 568 nm and
469 nm for nanosuspension stabilized with Tween! 80 (Fig. 10a)
and 419 nm and 598 nm for nanosuspension stabilized with TPGS
((Fig. 9b) with HEC and Lutrol! F127 respectively. Values were
about 200 nm higher than those of nanosuspensions alone at the
same temperature (Fig. 5a: 381 and 389 nm with Tween! 80 and
TPGS), which indicates that 40 "C is not a suitable storage temper-
ature for both gels.

At day 90 at 25 "C, quercetin nanosuspension stabilized with
Tween! 80 presented higher size values than that of nanosuspen-
sion stabilized with TPGS (481 nm, PDI = 0.37 vs. 342 nm,
PDI = 0.33) for both HEC gel and (474 nm, PDI = 0.34 vs. 352 nm,
PDI = 0.33) Lutrol! F127 gel. By referring back to nanosuspension
alone at the same temperature, the size increase with nanosuspen-
sion stabilized with Tween! 80 after the gel association is more
pronounced (from 343 nm to 481 nm and 474 nm) compared to
nanosuspension stabilized with TPGS (340 nm to 342 and
352 nm). This result indicates that nanosuspension stabilized with
TPGS presented an increased stability in gels compared to nanosus-
pension stabilized with Tween! 80.

Lastly excluding values at 40 "C, all gel formulations after
90 days, smartCrystals! size exposed after dilution was less than
500 nm and PDI values 0.4, which indicates acceptable homogene-
ity of the formulated gels (for dermal application). However, the
preferred storage condition seems to be 25 "C for gel formulations,
and this seems adequate to a cosmetic use. To conclude, TPGS
seems to allow an increased stabilization of quercetin nanosuspen-
sions in the gel formulations compared to Tween! 80.
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4. Conclusion

Quercetin second-generation nanocrystals (smartCrystals!)
were successfully formulated allowing a decrease in both the sta-
bilizer amount required (0.5%) and time of preparation process
compared to previous studies [22]. Among the five tested stabiliz-
ers, quercetin smartCrystals! stabilized with Tween! 80 and TPGS
had the smallest particle size with a short milling time (5 min).
Produced quercetin smartCrystals! possessed higher saturation
solubility and dissolution velocity compared to crude drug (7 fold)
and retained antioxidative activity. Moreover quercetin smartCrys-
tals! proved physical stability over three months in nanosuspen-
sions at 4 "C, 25 "C and 40 "C. Interestingly, a higher antioxidative
ability was observed with TPGS stabilized smartCrystals! on DPPH
assay (3.14 lg/ml instead of 3.98 lg/ml with crude quercetin), in
addition to a safe profile and protective activity on Vero cells at a
concentration up to 50 lg/ml with retained activity against hydro-
gen peroxide toxicity. TPGS therefore proved to be superior stabi-
lizer for quercetin smartCrystals!. These results are promising
and propose TPGS as a novel stabilizer for nanocrystals, which, as
a derivative of vitamin E, is well adapted for a topical application.
With this objective in mind, quercetin nanosuspensions were
incorporated into Lutrol! F127 and HEC gels. Quercetin dermal gels
were stable at 25 "C for 90 days which is coherent to a daily topical
application and evidence the interest of our new formulation as a
new antioxidant cosmetic product.
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Résumé de thèse : 

 
Les flavonoïdes sont des pigments d’origine naturelle conférant leurs couleurs aux fleurs 

et aux fruits, identifiés dans plus de quatre milles espèces. Les flavonoïdes sont classés selon 
leur structure chimique de base formée par deux cycles aromatiques reliés par trois carbones : 
C6-C3-C6, chaîne souvent fermée en un hétérocycle oxygéné hexa- ou pentagonal. Les 
flavonoïdes présentent des activités physiologiques qui leurs permettent d’être utilisés comme 

médicaments notamment pour leur pouvoir à piéger les radicaux libres. Les activités de 
flavonoïdes ont fait l’objet de nombreux articles de revue.  

Parmi les flavonoïdes, la quercétine est la molécule la plus distribuée dans la nature qui 
présente la meilleure activité anti radicalaire et aussi antiinflammatoire comparativement aux 
autres molécules de la même famille. En général, les flavonoïdes et la quercétine en particulier 
présentent une solubilité très limitée dans l’eau, cette limitation réduit leur 

absorption/pénétration et donc leur efficacité.  
En partant de l’idée que la peau est le l’organe le plus grand du corps humain et aussi  

l’organe le plus exposé au stress oxydant lié aux radiations UV et aux produits corrosifs et 

irritants,  la quercétine est donc une molécule antioxydante de choix pour être appliquée sur la 
peau.  

Le premier objectif de thèse a été de développer plusieurs formulations nanométriques 
de quercétine afin d'augmenter sa solubilité dans l’eau et améliorer ses propriétés physico 

chimiques. Le deuxième objectif sera de comparer ces formulations en termes de capacité de 
chargement de quercétine, de toxicité vis à vis des cellules HaCaT (kératinocytes) THP-1 
(monocytes) et Vero (épithéliale), et enfin le maintien de l’activité de la quercétine sur les 

cellules in vitro, pour mettre in fine en évidence une augmentation de la pénétration cutanée la 
quercétine in vivo. 

Dans ce projet, trois approches de formulations nanométriques (smartCrystals®, 
nanocapsules lipidiques et liposomes) ont été testées pour améliorer la solubilité de la 
quercétine. Les formulations sont optimisées en termes de procédé de préparation (transposition 
industrielle) et de composition des excipients pour augmenter la quantité de quercétine formulée. 
Les formulations ont été caractérisées sur plusieurs paramètres : taille, PDI, taux de chargement 
en quercétine, état cristallin et cinétique de libération de quercétine in vitro.  Ensuite, les 
formulations ont été comparées entre elles sur les cellules HaCaT et THP-1 avec détermination 
de leur toxicité et activité protectrice. Enfin, deux formulations (quercétine smartCrystals® avec 
le TPGS et quercétine LNC 20) ont été sélectionnées et comparées in vivo pour évaluer 
l’amélioration de la pénétration cutanée de quercétine.  

Ce projet propose une solution pour formuler la quercétine d’une façon pertinente et 

efficace qui pourra être extrapolée au niveau industriel pour des applications cutanées de 
molécules peu solubles dont l'efficacité est limitée par leur faible pénétration cutanée.  

 
Mots-clés : flavonoïdes, quercétine, liposomes, nanocapsules lipidiques, smartCrystals®, la 
peau, antioxydant, HaCaT.  

 
 


