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Monsieur Eddy Ardonne Examinateur
Monsieur Matthias Troyer Examinateur
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Chapter I

Introduction

In condensed matter physics we have a wide variety of interesting models some of
which are well understood and some that remain ambiguous to this date. Strongly
correlated systems form an interesting area of research and provide plenty of sys-
tems that exhibit fascinating properties. Such systems have strong interactions
between the constituent entities that are comparable to the dominant energy scale
in the problem. As a result these interactions cannot be ignored or treated per-
turbatively, and we must treat the many-body interacting physics of the system in
order to draw valid conclusions. The inability to reduce the problem to an effective
one-body problem, leads us to go beyond mean field approaches.

Examples of such strongly correlated effects can be found in a wide variety of
physical systems, such as superconductors, magnetic systems, quantum Hall sys-
tems, one-dimensional electronic systems etc. For instance, a key example is the
case of Mott insulators where band theory fails to predict the correct conducting
nature of the material. Band theory is based on an independent particle approach
and predicts any material with a partially filled band (in particular with an odd
number of electrons) to be a metal. This argument is violated for a couple of
materials which are known to be tough insulators against the prediction of band
theory. Such an effect can be understood when one takes into account the strongly
correlated nature of the electrons in the material, giving rise to Mott insulators.

Fractional quantum Hall systems form another major subject of strongly corre-
lated systems. They are characterised by the Hall conductivity being quantised
at fractional multiples of e2/h [1–3]. Such systems are known to exhibit quasi-
particle excitations with fractional charge and fractional statistics. In particular,
one cannot ignore the inter-particle interactions to obtain the correct physics in
such a scenario. The quasiparticles in fractional quantum Hall systems are neither
bosons nor fermions, rather somewhere in between. They are new entities called
anyons. The simpler ones of this type being Abelian anyons where the statistics
are any arbitrary phase, but more involved type of anyons are non-Abelian anyons
where the exchange of two quasiparticles is associated with a unitary matrix.

Another example of strongly correlated systems is cold atoms in optical lattices.
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2 Chapter I. Introduction

Atomic gases form an interesting subject of study for various reasons [4–14].
Firstly, at low enough temperatures compared to the Fermi temperature they
are able to attack the quantum mechanically degenerate regime with almost no
imperfections. Secondly, the high degree of control and accuracy along with the
variety of degrees of freedom inherently built in is a key feature of such systems.
The interaction strength, confinement and lattice depth can be tuned independent
of each other, making the setup extremely resourceful. Additionally, they allow
us to mimic quantum systems of different quantum statistics and also mixtures
of fermions and bosons. We can also study the effect of disorder and external
perturbations by means of atomic gases. Different dimensions, lattice geometries
can be created by playing with the laser beam intensities, orientation and polar-
isability. Optical lattices are able to realise condensed matter systems with the
right dispersions and correlations. They are, hence, conceived as the quantum
simulators of of many-body physics and allow us to explore hard problems not
studied theoretically or new physics of problems that have been widely studied.

This thesis includes the study of two projects. The first one dealing with non-
Abelian anyons and the second one associated with the study of fermions in one
dimensional optical lattices. Several works have explored combining anyons and
optical lattices [15–17] following the generalisation to Pauli principle [18–20].

Non-Abelian anyons

Symmetries are an indispensable part of physics. A symmetry is defined as a
transformation acting on the system leaving it unchanged. Some symmetries are
evident while some are rather subtle. Mathematically, the symmetry of a system
is described by means of the action of a group on the system. There can be dis-
crete symmetries such as reflection or continuous ones such as rotations, that are
represented by discrete or continuous groups respectively. One important example
is the exchange symmetry, namely what happens when we exchange two indistin-
guishable particles in the system. The exchange symmetry is intimately related to
the statistics obeyed by the particle types in the system.

Quantum statistics is an important aspect of quantum mechanics and it lays down
the rules for identifying different classes of particles. In three dimensions, exchang-
ing two identical particles twice, is equivalent to doing no operation on them. In
other words, the exchange operator must square to the identity. However, in two
dimensions (2D) the scenario is very different where swapping the positions of two
identical particles does not imply we did nothing to them. The wavefunction after
exchanging identical particles twice might differ from the original one.

In three dimensions, the exchange of two particles in a quantum system can re-
sult in a phase change of either 0 or π for the wave function, leading to bosons
and fermions respectively. Swapping particles twice keeps the wavefunction un-
changed, while a single exchange at most picks up a sign. This in turn dictates the
occupation of the single particle energy levels for bosons and fermions. While all
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the bosons in a system could potentially condense into one single particle state,
the fermions are not allowed to do so. The fermionic wavefunction must be anti-
symmetric under the exchange of two identical fermions, thus must vanish when
identical fermions occupy the same state. The fermion and boson wavefunctions
form the one-dimensional representations of the permutation group (SN) for N
indistinguishable particles.

In two dimensions, the wavefunction enjoys much more freedom under an exchange.
It could pick up an arbitrary phase or even a unitary matrix when two identical
particles are swapped with each other. The term ‘anyon’ was coined by F. Wilczek
since the wavefunction can acquire any phase when two particles are exchanged.
Mathematically speaking, the anyonic wavefunctions form the representations of
the Braid group, fermions and bosons being only special cases of anyons in two-
dimensions. These anyons are observed as excitations, localised disturbances of the
ground state in systems with topological order. Rich behaviour emerges especially
for non-Abelian anyons, for which the exchange of two anyons is described by a
unitary matrix [21, 22].

In the mathematical framework, quantum statistics is closely related to the no-
tion of the fundamental group or the first homotopy group which is a topological
invariant. This group forms the equivalence class of all closed paths in space, it
determines whether two paths having the same end points could be continuously
deformed into each other. The fundamental group for SO(d, 1) with d > 2 is the
discrete group Z2, thus allowing for only two possibilities - fermions and bosons.
Whereas, in 2D the fundamental group Π1(SO(2, 1)) = Z, thus allowing an ar-
bitrary phase change for the wavefunction. It is well known that such quantum
systems give rise to anyonic quasiparticle excitations [23–25].

Non-Abelian anyons can be described as so-called quantum deformations of the
usual SU(2) spins. Formally, they are described by SU(2)k Chern-Simons theo-
ries. These SU(2)k theories are obtained by ‘deforming’ the SU(2) algebra so as
to retain only the first k + 1 representations. The most widely studied models
are the k = 2 and k = 3 theories that describe ‘Ising’ and ‘Fibonacci’ anyons
respectively. The two-particle fusion rules for non-Abelian anyonic theories allow
for multiple fusion channels. Thus, systems of many non-Abelian anyons are natu-
rally associated with a degenerate ground state manifold. This is a salient feature
of non-Abelian anyonic systems that can be employed for quantum computing
[26–31].

As computational methods form an important part of the modern-age scientific
research and analysis, one is encouraged to think of efficient ways to speed up
computations. In 1982, it was suggested by Feynman that many-body quantum
Hamiltonians could be solved exponentially faster on a quantum computer as com-
pared to a classical one [32]. It was shown that a computer that uses quantum
states for computation is more powerful than its classical counterpart [33, 34].
This hints towards the development of quantum computers and the whole field of
quantum computing, to run present-day algorithms and possibly more advanced
ones with significant speed up compared to the classical computing schemes.

3



4 Chapter I. Introduction

We can look at quantum computation as a three stage process - creation of quan-
tum bits (also called qubits, the quantum analog of classical bits), manipulating
the bits to perform calculations and eventually measuring the final outcome. We
would, ofcourse, need a reasonably large number of quantum gates to be able to
implement all possible quantum algorithms. Any computer, classical or quantum,
will be prone to errors which must be minimised in order for the computation to
be reliable. In classical computers, the error correction is done by keeping multiple
copies of information to tally them with one another. For a quantum computer,
this method is not going to work, as a measurement leads to wavefunction collapse.
If we intend to check for errors during an intermediate step of the calculation, the
measurement would destroy the actual quantum state and hence the calculation.
Thus, one needs to come up with other ways of building a practical quantum com-
puter that would be fault-tolerant. It was shown that anyons could be used to
implement fault-tolerant quantum computation [30, 35–37]. This would be a huge
step forward as it would eliminate errors very effectively. The plausible applica-
tion of non-Abelian anyons for fault-tolerant quantum computation has led to a
significant amount of research in this field [38].

Quantum computing is a promising field of research that has the potential to
outperform its classical counterpart. The degenerate ground state manifold of
non-Abelian anyon models is separated from the excitation by an energy gap, a
feature of all topological models, which can be considered as the relevant Hilbert
space to implement quantum gates. The quantum gates are constructed such
that exchange of anyons (braiding) are the only operations acting on the qubits.
The action of a gate on any qubit would only be to ‘rotate’ it in the degenerate
subspace. On this ground state manifold braiding of non-Abelian anyons acts in
a non-commutative way, by bringing about a non-trivial transformation in the
degenerate manifold of the many-quasiparticle Hilbert space. Thus, all operations
are performed in a non-local way, rendering zero overlap with local perturbations,
making the system naturally immune to errors. Thus, anyons can be effectively
used for fault-tolerant quantum computation. Not all anyonic theories are known
to be universal. Though Ising anyons (also an example of non-Abelian anyons)
have been detected in the lab, it is however known that they are not suitable
for universal quantum computation. Fibonacci anyons, on the other hand, have
not yet been detected in the lab but do promise to be fit for universal quantum
computation.

Owing to the potentially useful applications of Fibonacci anyons, they continue
to attract the interest of several theoretical and experimental physicists. Mod-
els of interacting non-Abelian anyons draw motivation from quantum spin mod-
els, and in particular the Heisenberg model, which has been studied for a wide
range of lattices including one-dimension (1D) chains and ladders of SU(2) spins.
Non-Abelian anyons are expected to be present in topologically ordered systems
including certain fractional quantum Hall states [39–42], p-wave superconductors
[43], spin models [44–47], solid state heterostructures [48–53] and rotating Bose-
Einstein condensates [54]. In particular, Fibonacci anyons occur as quasi holes
in the Z3 Read-Rezayi state which might be able to describe the ν = 12/5 frac-
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tional quantum Hall state [55]. While several experiments have shown evidence
for emergent Majorana modes [56–60], experimental evidence of Fibonacci anyons
is yet to come. Interactions between non-Abelian anyons can be modelled by gen-
eralisations of the spin-1/2 Heisenberg model. These models have been studied
for chains of Fibonacci anyons [61] including nearest neighbour couplings [62] and
also longer range couplings [63] have been studied. Chains of higher spin quasi-
particles have also been explored [64–68], critical phases have been identified and
the corresponding conformal field theory (CFT) has been obtained from numerical
simulations [69]. The effect of disorder for chains of Fibonacci anyons has been
investigated [70, 71].

As a step towards understanding the collective behaviour of itinerant non-Abelian
anyons, these chains can be doped with mobile holes, inspired by the electronic
t–J model [72–75]. Electrons confined in 1D can exhibit the phenomenon of “spin-
charge separation”, where the spectrum can be interpreted in terms of two inde-
pendent pieces, one arising from electric charge without spin, and the other from a
spinon without any charge [76]. Analogously low-energy effective t–J models have
been analysed for the case of doped chains of Fibonacci (and Ising) anyons. These
models exhibit a fractionalisation of the spectrum into charge and anyonic degrees
of freedom [77, 78], an extension of a phenomenon that exists in Luttinger liquids
[79–81]. As a step towards two dimensions, anyon models have been investigated
on chains coupled to form so-called quantum ladders of non-Abelian anyons, which
provide anyonic generalisations of the 2D quantum magnets [82, 83].

In the first project of this thesis, we have analysed the physics of mobile non-
Abelian anyons beyond one-dimension, which is a general fundamental and timely
issue. Our aim has been to construct the simplest possible model of 2D itinerant
interacting anyons in close analogy to fermionic systems and inspired by the pre-
vious anyonic studies. As discussed later, this model takes the form of an anyonic
2D t− J model very similar to its electronic 2D analog and to its 1D anyonic ver-
sion mentioned above. Also a natural geometry to consider, interpolating between
1D and 2D, is the ladder geometry – e.g. a system of a finite number of coupled
chains – used both for electronic spins and localised anyons. More precisely, we
combine the anyonic models mentioned above, by studying doped quantum ladders
of Fibonacci anyons consisting of two or three chains. In particular, we ask the
question if spin-charge separation survives in the ladder model for non-Abelian
anyons. Furthermore, in the study of this model, we have found a novel physical
effective model that possibly hosts a topological gapped state.

Fermions in optical lattices

Ultracold atoms in optical lattices engage the attention of several physicists, both
from the experimental and theoretical points of view. These systems form an
ideal setup to study strongly correlated systems under the influence of a periodic
potential. This particular regime of strongly correlated systems is attained when
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6 Chapter I. Introduction

the interactions between the components of the system are much more important
energetically than the kinetic energy. In the cold atoms setup a large interaction
can be achieved by Feshbach resonances and the kinetic energy can be lowered by
going to the deep lattice regime. Some aspects of these systems are explained by
mean field theories whereas some remain unexplained. There are experiments that
go beyond the presently available theoretical tools to investigate rather complex
issues.

During the early years the focus of the cold atom experiments was on bosonic
systems. Until the first realisation of the Bose-Einstein condensate (BEC) that
came only in 1995 [84–86], the study of bosons was extremely intriguing, which
continues to be the case even now. But soon after the success of the bosonic
experiments, experimentalists and also theorists became interested in looking at
the complementary system of fermions. The two have quite different statistics but
similar range of temperatures to be in the quantum degenerate regime, where the
wavepackets of individual atoms overlap.

The first success with cold Fermi gases came in 1999 [87] followed by a few others
soon thereafter [88]. In the first realisation, the temperature attained was a fraction
of the Fermi temperature by using a two spin component mixture of 40K atoms
with a negative scattering length. For this gas, Bardeen-Cooper-Schrieffer (BCS)
theory predicts the occurrence of a superfluid phase at low enough temperatures.
Since the gas was extremely dilute the critical temperature for this transition
was too small, much smaller than the temperatures obtained in the experiment.
Thus, this superfluid phase could not be observed. The subsequent works [89, 90]
did attain the quantum degeneracy regime by sympathetic cooling using fermion-
boson mixtures. This cooling approach has also been fruitful in other experiments
[91, 92].

The major breakthrough in the study of ultracold Fermi gases came with the
understanding that Feshbach resonances could prove to be a huge aid in tuning
the interaction strength and nature just by changing the magnetic field. The BEC-
BCS crossover regime has been studied extensively for strongly interacting atomic
Fermi gases [93–99]. The possibility to confirm the theoretical prediction of the
superfluid-Mott insulator transition [100] by loading a BEC into an optical lattice
and varying the depth of the lattice potential was given in 1998 [101] and observed
in a seminal experiment in 2002 [102]. This was followed by experiments involving
fermions [103] and Bose-Fermi mixtures [104, 105]. Several other experiments
inspecting strongly correlated fermi gases in optical lattices have been successfully
performed [106–112].

At the outset, the atomic gases seem to be quite far from electronic gases. Though
dissimilar in certain respects, they are able to mimic the electronic gas quite ef-
ficiently. An electron gas has a Fermi temperature TF ∼ 104K, making them
quantum mechanically degenerate even at room temperature. Typical densities of
electron gas are of the order n ∼ 1023cm−3 and the dominant interaction being the
Coulomb interaction between charged particles. The scenario is somewhat differ-
ent for atomic gases. The dominant interactions in this case of neutral atoms are
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the van der Waals and the Fermi temperature being of the order of nanoKelvin
to microKelvin. Therefore, to be in the quantum mechanically degenerate regime,
the temperature must be lower than a microKelvin, thus making ultracold atomic
gases the interesting system to look at. Dilute gases do lead to some degree of
cooling but not enough to reach the ultracold regime required to be quantum me-
chanically degenerate. Other cooling methods such as evaporative cooling or laser
cooling must be employed to attain that low temperatures. These methods were
first implemented for 87Rb and 23Na atoms in 1995 [84, 86]. The low densities used
in cold atomic gas experiments n ∼ 1013cm−3, however, are important for certain
other reasons. Such densities render the atomic gases dilute in the sense that the
inter-particle distance is much greater than the range of the interaction potential.
These dilute gases suppress significantly the 3-body recombination rate compared
to the 2-body collision rate which is important for re-thermalisation in the process
of sample preparation. The atomic gas which is actually in a metastable state at-
tains an optimal lifetime (seconds to minutes) ideal for experimental procedures,
which would not be the case for densities lower than 1012cm−3. It also turns out
that this range of densities localises one atom per site on average in the optical
lattices that can be created by the available lasers [113].

Modern cold atom experiments are able to perform single-site in situ imaging,
thus behaving as a quantum gas microscope [114]. Noise correlations can be used
to understand the nature of quantum correlations and fluctuations. However,
some quantities of interest are yet to be reached in experiments, namely long
range AFM order, d-wave superfluidity, exotic superfluidity for imbalanced spin
populations etc. The major limitation to such measurements is the relatively high
temperatures present in the fermionic gas experiments [115]. Efficient cooling
methods and protocols must be designed in order to probe these exciting low-
temperature phases [116].

In cold atom experiments, the choice of elements used depends on several factors,
being able to cool them down to the desired limit being the most important con-
straint. Alkali elements are preferred for experiments due to their rather simple
electronic structure. They have only one valence electron, and the completely filled
orbitals along with the nucleus can be effectively treated as one core, making the
system an an interesting candidate to investigate experimentally. Only two stable
naturally occurring fermionic isotopes are known 40K and 6Li. The experimen-
talists choose 40K because they can be used with 87Rb as a bosonic coolant that
has transition frequency similar to that of 40K. Also, deep lattices are easier to
simulate due to the large mass of 40K.

The evaporative cooling of a trapped atomic cloud, i.e. without the optical lattice
potential, has been proven to be a very effective process. Current protocols are able
to achieve temperatures as low as T/TF ≈ 0.08 [108, 109]. Such a low temperature
is lost in the presence of the optical lattice. In principle the process of lattice
loading should be performed adiabatically, but in practice one will always do so in
a finite time, thus deviating from the completely adiabatic regime. The observation
of temperatures higher than preferred are quantified by the amount of excess heat
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8 Chapter I. Introduction

generated in the system.

The breakdown of the adiabatic lattice loading for optical lattices has been inves-
tigated in multiple works [116, 117]. Optimising ramp shapes [118], fast-forward
loading schemes [119] where an auxiliary potential assists in lattice loading, mod-
ulating trap frequency and shape during loading [120–123], starting from a low
entropy interacting state [124], introducing compensating laser beams [125], us-
ing disordered potentials [126], Peltier cooling [127] are some ways to overcome
effects of non-adiabaticities and achieve lower temperatures in optical lattices.
Non-interacting fermions have been studied within superlattice geometries in the
continuum [128] for both homogenous and trapped set ups. Density redistribu-
tion causes population of higher Bloch bands but can be handled by optimising
the initial part of the loading schedule until the gap to higher Bloch bands opens
up. Another way to cool down Fermi gases in a deep optical lattice is to use
a Bose-Einstein condensate gas as a reservoir to transfer the excess entropy per
particle [129].

Numerical studies based on the single-band approach inherently assume a deep
optical lattice. The loading scheme starts from the shallow (or no) lattice regime,
and is thus not captured by the former scheme. Previous studies have analysed
optical lattices using theoretical mean field models in one dimension, but are un-
able to assess the effects of low-lying excitations. Our approach is based on the
continuum model which is valid when the lattice is turned off, thus is able to record
the entire loading schedule.

The study of non-adiabaticities in lattice loading and novel cooling schemes are
important to achieve the desired low temperatures in experiments. In ref. [123]
some of the authors studied a system of bosons in a 1D optical lattice in the
continuum description. For homogenous systems without a confining trap only
minimal heating effects, less than 1% of the effective hopping, were encountered
even for reasonably short ramp times. Moreover the heating was seen to decrease
significantly as longer ramp times were considered. This was in stark contrast to
the finding when the Hamiltonian included a harmonic confinement, where the
heating was maintained at a rather high value, remaining more or less constant
with ramp time. The key point made by the authors was that the harmonic trap
hindered the efficient density redistribution resulting in a final state which is qual-
itatively quite different from the desired target state. Thus, density redistribution
effects were attributed as the major cause of excess heat generated in the system.
This issue was overcome by introducing a protocol to dynamically reshape the
trapping potential during the process of lattice loading in order to facilitate ap-
propriate redistribution of particles in the lattice. In particular, the harmonic trap
was linearly modulated during the optical lattice ramp up, which was observed to
restore the scaling behaviour of the excess heat with ramp time as in the case of
a homogenous system.

The second project in this thesis involves the investigation of the density redis-
tribution effects for a 1D system of fermions. We aim to understand if defects
caused by poor distribution of particles during lattice loading are important for
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the fermionic case, forbidding the atoms to cool down to the desired level. Here we
survey four different states, which would be referred to as target states in the fol-
lowing sections: (i) a metallic target state with a continuous local particle density,
(ii) a Mott insulating state at the edges with a central band insulating bulk, (iii)
a pure Mott insulator at unit filling and (iv) a Mott insulator at the edges with
a central metallic core. The target states are characterised by different density
profiles and depend on the chosen parameters of the model. The model admits
a spatially dependent chemical potential that allows characteristically different
phases, such as metallic and insulating ones to co-exist in the target states. We
initially show that for the metallic state and the central band insulator, the sim-
ple adiabatic ramp already shows negligible defects, whereas the other states the
pure Mott insulator and one with a metallic core suffer from heating effects during
lattice loading. A scan of the time-evolution of the local density profile leads us
to conclude that indeed density defects are the key problem, thus we focus our at-
tention to devise protocols that allow better redistribution of particles during the
ramping. Similar to the bosonic case we device improved ramp up schemes where
we dynamically change one or more parameters of the system in order to reduce
density defects. All these schemes are geared towards broadening the initial peak
of the number density at the trap centre. We show that this can be achieved in a
number of ways, that will be suitable in the experiments. The first approach is to
test the protocol put forward for bosons i.e. to dynamically reshape the trapping
potential. Additionally in this work, we show that tuning the interaction strength,
that comes about as one of the easier parameters to control in experiments, is an-
other way to achieve lower temperatures. We also mention yet another approach
where the interaction strength and trapping potential can be tuned simultaneously
during the lattice loading that indeed brings down the excess heat in the system
significantly. The optical lattices provide a high degree of control, making all the
protocols straight-forward to test experimentally.

Structure of the thesis

This thesis is organised as follows. In Chapter II we describe the numerical meth-
ods used to study the two different problems, namely exact diagonalisation for
non-Abelian anyons and Matrix Product States for fermions in optical lattices.
Chapter III presents our complete study on the subject of Fibonacci anyons com-
mencing with a brief introduction to the subject, describing the model investigated,
discussing the phase diagrams and the effective one-dimensional models obtained
numerically and analytically and finally presenting a novel model obtained in our
study - the heavy and light τ model. In Chapter IV we describe our analysis of
fermions in optical lattices. We discuss the model, explain the lattice loading pro-
tocols and present results of our investigation of various target states. Chapter V
lays out the conclusions and perspectives of the projects explored in this thesis. In
the technical appendix A, we outline the analytical calculations of effective models
for the Fibonacci models.

9
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Chapter II

Numerical methods

Condensed matter physics has a lot of interesting problems to offer, described by
varied geometries, continuous or discrete models with different particle compo-
sitions, interactions between them, those obeying certain conservation laws etc.
However, as the complexity of the problems grow, a huge majority of them be-
come hard to solve exactly (or even with approximations) analytically. When
we consider systems that include strong interactions between the particles (spins,
fermions, bosons or anyons), there are strong correlations between the different
components of the system. It thus becomes impossible to map the problem to a
single particle problem, making it imperative to consider the many body picture
thus making the analytical treatment increasingly harder. We are thus required
to resort to other reliable methods that allow us to study the systems of inter-
est, numerically approaching the problem being of particular interest. Our goal
remains to study the system and its properties such as ground state energy, low
lying excitations, entropy, correlation etc as accurately as possible.

Numerical methods have made tremendous progress in the last decades and pro-
vide us a good way to do so. To our aid we now have a wealth of numerical
methods to treat problems of strongly correlated systems such as tensor network
techniques, exact diagonalisation, monte carlo methods etc, each coming with their
own advantages and drawbacks. Exact diagonalisation provides the spectrum of
the system with high precision but is limited to very small system sizes. The quan-
tum Monte Carlo methods are able to handle large system sizes, but are plagued
with the sign problem thus rendering them inefficient for the study of fermionic
systems in more than one dimension and spin models with frustrated interactions.
Mean field approaches fail to capture the quantum correlations while stochastic
series expansions are based on perturbation theory methods.

Tensor network algorithms have attracted the interest of many scientists in the
recent past and made significant progress. Not that these methods are perfect for
every scenario, but their efficiency is dependent on the amount and structure of
entanglement in the system. There is now a whole sea of such methods, some exam-
ples being Density Matrix Renormalisation Group (DMRG), Projected Entangled
Pair States (PEPS), Tensor Renormalisation Group (TRG), Tensor-Entanglement
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12 Chapter II. Numerical methods

Renormalisation Group (TERG), Monte Carlo Matrix Product States, Tree Tensor
Networks, Continuous Matrix Product States etc. The DMRG method is found to
be very useful for fermionic systems and frustrated spin systems in one-dimension
but less advantageous in higher dimensions due to the growing entanglement. The
method of PEPS is well suited for two dimensions but the computation cost grow-
ing rapidly with the dimensionality of the tensors, hampers the efficiency even-
tually. In this chapter we describe the numerical methods that we have used
to examine the problems in this thesis. The ladder models of Fibonacci anyons
were studied using Lanczos exact diagonalisation techniques. For the analysis of
fermions in optical lattices, we used the Matrix Product States (MPS) that comes
under the tensor network umbrella of numerical methods. We now discuss these
two methods briefly.

1 Exact Diagonalisation

Ideally we would like to diagonalise the Hamiltonian completely in the relevant
many-particle basis to obtain all the information about its energy eigenvalues and
the corresponding eigenstates. In practice, this task is a huge challenge since the
size of the Hilbert space (in which the Hamiltonian lives) is growing exponen-
tially with the number of particles N in the system making the diagonalisation
problem extremely hard with growing system size. Exact diagonalisation methods
encompass several approaches that provide numerically exact results by directly
diagonalising the Hamiltonian matrix for the system. These techniques restrict us
to rather small system sizes such that the Hilbert space is tractable, thus making
extrapolations to the thermodynamic limit (where N → ∞) hard and sometimes
even unreliable.

The most straight-forward approach is to use the complete diagonalisation method,
where the diagonalisation procedure yields all eigenvalues and eigenvectors of the
Hamiltonian matrix. This approach, although the simplest to implement, is rather
demanding in computation time and memory. In condensed matter physics we are
very often interested only in the ground state along with the low-lying excitations.
Thus we can exploit iterative diagonalisation methods that allow us to reach sig-
nificantly larger system sizes than those that could be handled with the complete
diagonalisation approach. These methods are also able to compute dynamical
properties as well as treat finite temperature calculations. The largest system
sizes studied using Exact Diagonalisation, for example, are known to be spin -1/2
models with N ≈ 40 spins in the lattice [130].

Even though exact diagonalisation methods are only able to treat small finite
clusters, it is still advantageous to use these exact methods. Firstly, they provide
benchmarks to test the validity of results obtained from other schemes such as
Monte Carlo methods. Furthermore, this method serves as a good medium to
learn more about the symmetry properties of the system. We can make use of
the symmetries of the system to block-diagonalise the Hamiltonian into smaller

12



1. Exact Diagonalisation 13

pieces. Each of these blocks can be considered as a separate matrix that can
be diagonalised individually, thereby reducing the computational cost severely.
Each block corresponds to a specific symmetry sector labelled by a good quantum
number corresponding to the inherent symmetry of the system. Ofcourse, some
symmetries would be rather simple to implement numerically while some typically
hard. An important example of a widely implemented symmetry is the translation
symmetry that leads to momentum conservation. The Hamiltonian is split into
blocks (the number of blocks being equal to the length of system L) labelled by the
different momenta, which are then diagonalised individually. This symmetry gives
an overall reduction in the size of the Hilbert space by a factor L, thus allowing us
to push the calculations to larger system sizes. The use of these quantum numbers
may eventually turn out to be useful for classifying the different excitations.

1.1 Implementation details

Our numerical simulations of non-Abelian anyons on two- and three-leg ladders
have been performed by exact diagonalisation using the Lanczos algorithm as will
be explained in section 1.2. We exploit periodic boundary conditions along the leg
direction to implement translation symmetry. This allows us to block-diagonalise
the Hamiltonian into L blocks labeled by the total momentum K = 2πm

L
(m

being an integer), which reduces the size of the Hilbert space, which is the major
limiting factor in the simulations, by a factor L. We first explain how we generate
the many-body basis and the Hamiltonian of the system which will eventually be
diagonalised using a Lanczos routine.

1.1.1 Hilbert space

The model of doped Fibonacci ladders is described in terms of two quantum num-
bers : the U(1) charge and the anyonic spin. The most homogenous way to
represent this system would be to keep information about both these quantum
numbers on the bond labels of the fusion tree. However, since the U(1) charge is
Abelian and counts the number of anyons in the system, it is advantageous to label
it separately. Thus, the system is described by a fusion tree with two labels, one for
each of the quantum numbers as shown in Fig. II.1. The U(1) charge is labeled
by the position of the anyons on the sites (orange circles) and the non-Abelian
anyonic spin is labeled by the bond labels (red circles) of the fusion tree.

We first need to store the basis states of the Hilbert space. We can compactly store
the configuration by means of two separate integers, one each for the U(1) charge
(site labels) and non-Abelian charge (bond labels). Each bit of these integers
represents a single site (or bond) label which is set to 1 if an anyon is present on
that particular site (or bond), otherwise is set to 0. The bond labels of the fusion
tree are constrained by the fusion rules that must be satisfied on each trivalent
vertex. For the Fibonacci theory, the fusion rules mean the following. If the site
Yi is labelled by 0, then the adjoining bond labels xi and xi+1 must be identical.

13



14 Chapter II. Numerical methods

Figure II.1: Schematic representation of a fusion tree. The orange circles are the
site labels and the red ones are the bond labels.

If the site Yi is labelled by a 1, then the adjoining bond labels xi and xi+1 can
both not be 0 simultaneously but all other combinations of 0 and 1 are allowed,
i.e. (xi, xi+1) ∈ {(1, 0), (0, 1), (1, 1)}.

Since the model conserves the number of particles in the system, the total number
of 0’s and 1’s in the integers for the U(1) charge must be fixed in the system for
a given particle density. Say, for example, we have a system of L sites with N
particles. The integers for the site labels, hence, carry L bits. The set of site
labels contains all those integers that have exactly N out of L bits set to 1. Let us
call S the set that contains all the possible states for the site labels consistent with
the number of anyons in the system. Further for each element in S, we enumerate
all allowed configurations for the bond labels by imposing the fusion rules at every
trivalent vertex of the fusion tree. The states for the bond labels belong to the set
B
(
|ψsite

〉)
that is defined by the site labels.

We illustrate this method of writing the states in the Hilbert space for a section of
the fusion path with two vacant sites and two anyons (L = 4, N = 2). In figure II.2,
we show two possible configurations for this case. The site labels are represented
by blue (anyons) and white (holes) circles. The bond labels, xi, are shown by red
circles. The holes may be present on any two of the four sites, however we must
record the information about their position since different site labels correspond
to a different set of bond labels.

For example in figure II.2(a) the state for the site charges would read |ψasite
〉

=
|0011

〉
but for figure II.2(b) the corresponding state would be |ψbsite

〉
= |0101

〉
.

Owing to the non-Abelian nature of the theory, for each of these site configurations
we obtain several configurations for the bond labels that are consistent with the
fusion rules.

For example, for the case II.2(a) the bond labels |ψabond

〉
belong to the set

|ψabond

〉
∈ B(|ψasite

〉
) =

{
|00010

〉
, |00011

〉
, |11101

〉
, |11110

〉
, 11111

〉}
(II.1)

whereas for the case II.2(b) the bond labels |ψbbond

〉
belong to the set

|ψbbond

〉
∈ B(|ψbsite

〉
) =

{
|00110

〉
, |00111

〉
, |11001

〉
, |11110

〉
, |11111

〉}
. (II.2)
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1. Exact Diagonalisation 15

Figure II.2: Illustration of the Hilbert space for two possible site configurations
for a section of the fusion path with two particles and two vacant sites. The state
for the site labels is (a) |ψasite

〉
= |0011

〉
and (b) |ψbsite

〉
= |0101

〉
. The state for the

bond labels is |ψbond
〉

= |x1x2x3x4x5
〉
∈ B(|ψsite

〉
).

The full quantum state is described by taking into account both |ψsite
〉

and |ψbond
〉
.

Thus, the Hilbert space H is defined by the set {|ψsite
〉
⊗ |ψbond

〉
} : |ψsite

〉
∈

S, |ψbond
〉
∈ B(|ψsite

〉
). Note that for a golden chain/ladder (ρ = 1) the state

describing the site labels becomes redundant since all the site labels are identically
equal to 1.

We would like to emphasise that the Hilbert space of the Fibonacci model is
growing exponentially fast due to the multiple possibilities for the bond labels
when the site is labelled by an anyon (bit representation 1). Moreover, the presence
of holes adds permutations factors since all possible positions of the holes on the
sites must be taken into account. The fusion rules impose constraints on the bond
labels, which must be satisfied at every trivalent vertex, leading to a finally smaller
subset of the set of all possible binary configurations. Computationally generating
the Hilbert space is rather challenging for the following reasons. One has to first
consider all possible 2L binary configurations for the site labels. Next, we must
retain only those that configurations for the site labels that have exactly N out of L
bits set to 1. As explained above, every |ψsite〉 can generate multiple |ψbond〉 states
that are allowed by fusion rules. However, the number of these allowed |ψbond〉
states is a tiny fraction of the total number of all possible binary configurations. For
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16 Chapter II. Numerical methods

Table II.1: Hilbert space sizes for doped ladders of Fibonacci anyons without
charging energy.

W L Filling Size of Hilbert space
2 8 ρ = 3/4 73322
3 6 ρ = 5/18 15708

every state belonging to the set of allowed site labels, we first consider all possible
binary configurations of the bond labels and then implement the fusion constraint
at every vertex for each of the bond states. After this round of elimination we
obtain a set of valid states that are allowed by the fusion rules. This sequence of
steps leads us to the Hilbert Space which is a heavily constrained subset of the full
set of binary configurations. As the number of sites is growing, the number of states
where the fusion constraint must be checked is growing exponentially fast, thus
the generation of the full Hilbert space becomes more expensive in computation
time.

Further, our system has a translation symmetry, i.e. it remains invariant if the
site and bond labels are shifted by a certain amount. This enables us to write
the wavefunctions as Bloch waves labeled by the momentum. The Hamiltonian
becomes a block-diagonal operator and each of these blocks can be diagonalised
individually. The Hilbert space is reduced by a factor of L, making the numerics
much more tractable.

In Table II.1, we list the sizes of the Hilbert space (in the K = 0 sector) for doped
ladders. The Hilbert space sizes for their corresponding effective models are listed
in Table II.2. Additionally in Table II.3, we mention the Hilbert space sizes of the
largest chains we simulated for the heavy-light model.

Table II.2: Hilbert space sizes for effective models of doped Fibonacci ladders.
L Filling Model Size of Hilbert space
8 ρ̃ = 1/2 t− J 64
6 ρ̃ = 5/6 t− J 11

Table II.3: Hilbert space sizes for effective 1D chains of the heavy-light model.
L Filling Model Size of Hilbert space
8 ρ̃ = 1/2 heavy-light 418
20 ρ̃ = 1/2 heavy-light 139741760
20 ρ̃ = 1/4 heavy-light 11726456
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1.1.2 Generating the Hamiltonian

Local interactions are treated simply by multiplying the wavefunction with the
Hamiltonian for the interaction. For a ladder geometry, we can choose a zig-zag
fusion path so that we are able to minimise the range of interactions. The rung
interactions are nearest neighbour interactions and the leg interactions defined in
Eqs. (III.14) - (III.18) are longer range interactions, thus involving Braid matrices
in addition to the interaction term. Note that since the F-matrix (Eq. III.4) and
the Braid matrix (Eq. III.6) have a 2× 2 sub-block, they can generate up to two
states per bond. A magnetic interaction written as Eq. III.8 also has a similar
structure, thus giving up to two states per bond. The kinetic hop operator, on the
other hand, yields only one state per bond. Thus, we can obtain up to 22W−1 states
for magnetic interactions and 22W−2 states for kinetic terms acting along the leg
direction. The non-zero entries for each row of the Hamiltonian matrix are thus
growing exponentially with the width of the ladder giving rise to a dense matrix for
the Hamiltonian. The action of this dense Hamiltonian on the wavefunction would
turn out to be numerically expensive. So, instead of multiplying a single matrix
with an exponentially large number of non-zero elements with the wavefunction,
we implement the same process by iteratively multiplying the wavefunction by
2W − 1 sparse matrices as follows. We multiply the wavefunction successively
with the Braid matrices, the number of braids depending on W . Thereafter, we
treat the local interaction term. Subsequently we act one by one with all the inverse
braid matrices to obtain the final wavefunction. The Hamiltonian is thus generated
by successive multiplication of W − 1 Braid matrices followed by multiplication
with the interaction term and finally by W − 1 inverse Braid matrices. Since the
matrix is becoming denser with the width of the ladder, the exact diagonalisation
becomes more and more computationally expensive and we can treat only medium
sized systems numerically.

1.2 Lanczos Algorithm

Our interest lies in diagonalising the Hamiltonian matrix H to obtain its low-lying
energy states. This is done by projecting the Hamiltonian to a smaller subspace
of size M << H (where H is the dimension of the actual Hilbert space) that is
chosen correctly so that the low lying states in this subspace converge efficiently
to yield the low-lying states of the system. This can be achieved by a variety of
iterative methods but we here describe the one we have used in our simulations,
the Lanczos method [130–132]. This is a method of iterative diagonalisation that
is based on the simple idea of the power method, i.e. by acting with powers of the
matrix H we eventually converge to the maximal (in magnitude) eigenvalue of the
system. To ensure that we obtain the ground state and not the highest state, we
can always shift the Hamiltonian by a large positive constant c, which makes no
difference to the physics.

The Hamiltonian H is projected on to a subspace of the Hilbert space of the system
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called the Krylov space. This subspace is formed by the various powers of H acting
on a randomly chosen normalised initial state, which we call |f0〉. Thus the Krylov
space of dimension M + 1 is given by the set {|f0〉, H|f0〉, . . . , HM |f0〉}. We use
this set of orthogonal states to construct the Lanczos basis that is orthonormal.
The final goal is to reduce the matrix H to a tridiagonal form that can then
be diagonalised easily using the available library routines. We now outline the
algorithm. The starting state must necessarily have a non-zero overlap with the
ground state, which will be the case for our randomly chosen initial state. Im
principle, one could also use physical arguments to choose a good initial state. At
the next step, the state is given by

|f1〉 = H |f0〉 − a0 |f0〉 , (II.3)

where the orthogonality between the states |f0〉 and |f1〉 determines the value of
the constant a0 given by

〈f0 |f1〉 = 〈f0|H |f0〉 − a0〈f0 |f0〉 = 0 (II.4)

⇒ a0 = 〈f0|H |f0〉
〈f0 |f0〉

(II.5)

The next state is given by the previous two as

|f2〉 = H |f1〉 − a1 |f1〉 − b0 |f0〉 , (II.6)

where the coefficients a1 and b0 are determined by demanding that |f2〉 be orthog-
onal to both |f0〉 and |f1〉. They take the values

a1 = 〈f1|H |f1〉
〈f1 |f1〉

(II.7)

b0 = 〈f0|H |f1〉
〈f0 |f0〉

= 〈f1 |f1〉
〈f0 |f0〉

, (II.8)

where we have once again used the orthonormality between |f0〉 and |f1〉. Further,
we can continue the same steps to obtain the mth state as

|fm+1〉 = H |fm〉 − a1 |fm〉 − bm−1 |fm−1〉 , (II.9)

with the coefficients given as

am = 〈fm|H |fm〉
〈fm |fm〉

(II.10)

bm−1 = 〈fm |fm〉
〈fm−1 |fm−1〉

. (II.11)

This process can be iterated for some reasonable value of m that can be set ac-
cording to a convergence criterion for the energy or other such physical quantities.
Once the (normalised) Lanczos basis vectors have been generated, the Hamilto-
nian can be expressed as a tridiagonal matrix in this basis that can be diagonalised
using standard available routines.
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The Lanczos method converges very efficiently for the ground state of small sys-
tem sizes, requiring typically a few tens to hundreds of Lanczos vectors. One
usually requires some more effort to obtain the excited states. It is also noted
that eigenvalues converge faster than expectation values. Convergence can further
be improved by choosing a better initial state, motivated by analytic calculations.
Convergence to ground states can be escalated by taking linear combinations of
previously obtained ground states as a starting point.

Sometimes it is noticed that the convergence of excited states could be slightly
irregular. More specifically one could notice what looks like a converged state but
with more iterations find a sudden change to another (lower) energy value. Thus,
one must be careful to run several iterative steps to ensure proper convergence
of the algorithm. One also notices that the number of iterations needed becomes
quite large if the higher energy states are targeted. Another technical problem
encountered in this routine is the appearance of ‘ghosts’ that are false eigenvalues
that do not belong to the spectrum of the system. The ghosts are usually mul-
tiple copies of the same eigenvalue, thereby leading to a misinterpretation of the
multiplicity of the eigenstate.

The reason why we encounter such spurious eigenvalues is due to the loss of orthog-
onality of the Lanczos basis. In theory, the Lanczos vectors are orthogonal to each
other however when implemented numerically, this orthogonality might be lost due
to finite machine precision. The way to remedy this issue is to re-orthogonalise the
Lanczos vectors according to a Gram Schmidt Orthogonalisation procedure. This
requires us to store all the Lanczos vectors, thus might lead to memory issues,
in the case where the computation is being pushed to the limit of the computing
resources.

In addition to the low-lying spectrum, the Lanczos method also allows us to calcu-
late dynamical observables and to study non-equilibrium physics of strongly cor-
related systems. One can also perform calculations at finite temperatures. Such
calculations are generally computationally demanding but can nevertheless be per-
formed on small clusters, and used for benchmarking purposes. Exact diagonalisa-
tion results can be extrapolated to understand the thermodynamic limit, by using
a finite size scaling analysis. However, any predictions of the infinite size limit
drawn out of small cluster simulations must be treated with caution.
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2 Matrix Product states

Tensor network methods have become excessively popular in the last few years due
to the versatility they offer - they are able to handle large system sizes and also
systems directly in the thermodynamic limit, systems with different symmetries,
boundary conditions, particle types (fermions and bosons), frustrated spins etc.
Though usually efficient in 1D, quantum entanglement poses the main limitation
to these methods in higher dimensions. This approach is substantially different
from other numerical techniques and as we shall see, is written in the language
of tensor network diagrams which is preferable over complicated equations. It
has allowed for the study of various properties such as real time evolution, finite
temperature calculations[133–138].

We used the Matrix Product States (MPS) code of the ALPS libraries [139–141]
to study the problem of one dimensional optical lattices. Additionally, since we
are dealing with a dilute system we exploit the multigrid DMRG method [142]
to obtain the ground state for initial Hamiltonian without the lattice and for the
target Hamiltonian in the deep lattice limit. We use time evolution of the ALPS
MPS code to study the lattice loading by starting from an initial state and changing
the potential at every time step. This section gives a general description of the
MPS and the multigrid DMRG methods for ground state optimisation and time
evolution. We follow very closely the review articles [143, 144] for the notation
and description provided in this section.

2.1 General introduction to tensor networks

A quantum Hamiltonian is written in a Hilbert space for the system which is
usually growing exponentially with the system size. For example, a d-level system
on a L site chain is described by a dL-dimensional Hilbert space. Any quantum
state on this lattice would be written as:

|ψ〉 =
∑

σ1,...,σL

cσ1,...,σL
|σ1, . . . , σL〉 , (II.12)

where σ1, . . . , σL are the local Hilbert spaces on the L sites and the c’s are ex-
ponentially many coefficients that can be seen as a tensor of rank L with O(dL)
coefficients. Fortunately, not all quantum states in this exponentially large Hilbert
space are equally important. In nature, the Hamiltonians are usually local which
infact is a huge help for us to simulate these Hamiltonians numerically. It is known
that low-energy eigenstates of local, gapped Hamiltonians obey the area law of en-
tanglement entropy, that means the entanglement entropy between two subsystems
of the full system is proportional to the area between these two subsystems rather
than their volume. The low-energy eigenstates, that we are actually interested in,
are special and rather limited. These low-energy states infact follow the area law.

The method of MPS is a tensor network technique where all states/operators
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are expressed as (a product of) tensors of varied ranks, in principle. A tensor
network typically contains contractions of several tensors that serve as building
blocks. As more and more tensors are involved in building the network it tends
to get increasingly cumbersome to write down equations for the contractions that
appear as summations over the relevant indices. These tensor networks are, for
the sake of convenience, effectively represented by means of diagrams that make
some of the properties evident. Before proceeding further we introduce, in Fig.
II.3, the diagrammatic representations for some simple tensors. Any diagram with
no open legs is a rank 0-tensor or a scalar (Fig. II.3(a)), one open leg is a rank-1
tensor or a vector (Fig. II.3(b)), two open legs is a rank-2 tensor or a matrix (Fig.
II.3(c)), three open legs is a rank-3 tensor (Fig. II.3(d)) and so on. The c-tensor
of rank L with dimension dL is shown in Fig. II.3(e) and assuming we know how
to break it down to a network that can be represented by one tensor per site, we
get the diagram shown in Fig. II.3(f). This is precisely what is called a Matrix
Product State.

Each of the tensors is a matrix of some maximal dimension D × D, where D is
called the bond dimension. The total number of parameters for a 1D MPS with L
sites would be ∼ O(LdD2), where the d is the physical dimension of the system,
the number of degrees of freedom. The bond dimension is directly related to the
entanglement in the quantum state |ψ〉. The value of the bond dimension has to
do with the quantum correlations of the wavefunction. As the entanglement in the
system is growing, one has to also increase the bond dimension accordingly. Note
that for bond dimension D →∞, the MPS wavefunction would be exact, however
very good accuracy (depending on the system) could be obtained for D as large as
a few hundreds. Clearly, for D = 1, the matrices are trivial and the MPS is just a
product state, thus there is no entanglement in the system. For any D > 1, there
is a finite amount of entanglement in the system.

The entanglement captured by a tensor network depends on D and the the way the
indices are connected. Same value of D for different geometries can have different
properties. In general, one should try several values of successively increasing D
to check for errors and convergence of physical observables such as energy.

For a translationally invariant system, all the tensors are alike. Infact to implement
periodic boundary conditions is fairly simple in the MPS framework. One only
needs to identify the first and the last site of the tensor network, thus take a
trace of the MPS and the network looks like what is shown in Fig. II.3(g). This
figure also makes properties like the cyclic property of the trace and translational
invariance evident. The MPS shown in Fig. II.3(f) corresponds to open boundary
conditions. From the diagram it is easy to observe that the dimensions of the first
and last tensors on the chain differ from the rest of the tensors. The left most
tensor is a row-vector while the right-most is a column vector.

If we were to represent each state by a tensor of an exponentially large dimension,
it seems that we haven’t gained anything in terms of computation advancement.
We would like to somehow break down this tensor to smaller local pieces that cap-
ture effectively the non-local physics of the system. Then the action of operators,
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Figure II.3: Some simple tensor network diagrams. (a) Scalar, (b) vector, (c)
Matrix, (d) Rank-3 tensor, (e) tensor of rank L, (f) decomposition of tensor in (e)
to an MPS with open boundary conditions and one (local) tensor per site (g) MPS
with periodic boundary conditions.

measurement of correlations, norms etc would be done by contracting the tensor
network in the relevant way. These contractions are similar to matrix multiplica-
tions and as we shall see the order of contractions is important for the efficiency
of the algorithm.

2.2 Canonical form and Schmidt decomposition

The method of singular value decomposition (SVD) helps us decompose the tensor
of a large rank into smaller chunks. Since this is vital to the construction of MPS,
we briefly recall what it tells us. SVD allows us to write any matrix (not necessarily
square) M of dimensions (NA, NB) as the product

M = USV †, (II.13)

where U is a matrix of dimension (NA,min(NA,NB)) whose columns form the left
singular vectors with U †U = I, S is a diagonal matrix of dimension (min(NA,NB),
min(NA,NB)) with non-negative entries. Its entries are called the singular values
and the number of non-zero diagonal entries form the Schmidt rank of the matrix
M , denoted as r. In the MPS method, it is particularly useful to sort the singular
values in descending order, which is what we assume in the following. V † has
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dimension (min(NA,NB),NB) whose rows form the right singular vectors. In the
special case where M is a square matrix, both U and V are unitary.

A very important application of the SVD, which will be often used in the MPS
scheme, is to approximate the matrix M of a rank r with a M ′ carrying rank
r′ < r, i.e. one picks the r′ largest singular values of M setting the rest to zero.
This also reduces the dimensions of U and V † appropriately. This is referred to as
truncation in the MPS scheme and we will come back to it in the following.

SVD also helps us write the Schmidt decomposition of a quantum state. Consider
a pure state |ψ〉 living on a system with two partitions A and B. Then, we can
write the state as :

|ψ〉 =
∑
ij

Ψij |i〉A |j〉B , (II.14)

where {|i〉A} {|j〉B} are orthonormal bases for the subsystems A and B with dimen-
sions NA and NB respectively. Now, we can implement a SVD on the coefficient
matrix Ψij as follows

|ψ〉 =
∑
ij

Ψij |i〉A |j〉B (II.15)

=
∑
ij

min(NA,NB)∑
k

UikSkkV
†
kj |i〉A |j〉B (II.16)

=
min(NA,NB)∑

k

Skk

(∑
i

Uik |i〉A
)(∑

j

V ∗jk |j〉B
)

(II.17)

=
min(NA,NB)∑

k

sk |k〉A |k〉B (II.18)

The sum over k when restricted to the positive non-zero singular values, gives
the Schmidt decomposition. The benefit of the Schmidt decomposition is that
the reduced density matrices take a very simple form and their eigenvalues are
given by the square of the singular values, the eigenvectors being the left or right
singular vectors, as the case maybe. It also makes the approximation of the MPS
state |ψ〉 to one of a reduced bond dimension rather simple, by simply considering
truncating the sum to the desired value.

Having described the SVD, let us see how we can use it to decompose the dL

dimension tensor of Eq II.12 as a product of L individual tensors, one for each
site. As we will see, there are three ways to do so giving rise to what we call
(i) left canonical MPS (i) right canonical MPS and (i) mixed canonical MPS. We
explain first how to generate a left canonical MPS and the sequence of steps is
shown in Fig. II.4. We begin with the dL dimensional vector cσ1,...,σL

(Fig. II.4(a))
and reshape it to write it as a matrix of dimension (d, dL−1) as

cσ1,...,σL
= Ψσ1,(σ2,...,σL) (II.19)
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Figure II.4: (a) The initial tensor of dimension dL, (b) After the first SVD the
tensor for the first site is separated, (c) the final decomposition of the tensor into
local tensors for each site.

Now we perform an SVD on this new matrix to obtain

Ψσ1,(σ2,...,σL) =
r1∑
a1

Uσ1,a1Sa1,a1V
†
a1,(σ2,...,σL) (II.20)

=
r1∑
a1

Uσ1,a1ca1σ2,...,σL
, (II.21)

where r1 is the rank of the singular value matrix such that r1 ≤ d. (Recall that the
singular value matrix has dimension equal to the smaller of the two dimensions of
the matrix undergoing the SVD.) In the last step we have multiplied the S and
V † matrices to write them as a c tensor. The matrix U can be split into d row
vectors Aσ1 with values given by Aσ1

a1 = Uσ1,a1 . By implementing this step, we have
separated the tensor for the first site on the 1D chain to obtain a tensor network
that looks like Fig. II.4(b). As we are considering open boundary conditions, this
tensor is actually a row matrix. We repeat the same step by reshaping the tensor
ca1σ2,...,σL

as

ca1σ2,...,σL
= Ψ(a1,σ2),(σ3,...,σL), (II.22)
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which is now a r1d× dL−2 matrix. After another SVD, we get

cσ1,...,σL
=

r1∑
a1=1

r2∑
a2=1

Aσ1
a1U(a1,σ2),a2Sa2,a2V

†
a2,(σ3,...,σL) (II.23)

=
r1∑

a1=1

r2∑
a2=1

Aσ1
a1U(a1,σ2),a2ca2σ3,...,σL

(II.24)

=
r1∑

a1=1

r2∑
a2=1

Aσ1
a1A

σ2
a1,a2Ψa2σ3,(σ4,...,σL), (II.25)

where in the second step we have again clubbed the S matrix (of rank r2 ≤ r1d ≤
d2) and the V † matrix and in the last step we have decomposed the U matrix
as d matrices given by Aσ2

a1,a2 = U(a1,σ2),a2 . Each of these A matrices are now
of dimension (r1 × r2) while the new tensor to be broken down is of dimension
(r2d × dL−3). We can proceed in a similar way breaking down the tensor into
smaller pieces site by site to finally obtain something that looks like

cσ1,...,σL
=

r1∑
a1=1

r2∑
a2=1
· · ·

rL−1∑
aL−1=1

Aσ1
a1A

σ2
a1,a2 · · ·A

σL−1
aL−2,aL−1

AσL
aL−1

(II.26)

= Aσ1Aσ2 · · ·AσL−1AσL (II.27)

Thus, we have rewritten the tensor cσ1,...,σL
as a product of individual local tensors,

formally known as a Matrix Product State. The final MPS is shown in Fig. II.4(c).

After each SVD, we have U †U = I. Since the A matrices are made out of the
U matrices, this unitarity condition imposes a normalisation on the tensors of the
MPS. More explicitly we have

U †U = I (II.28)
or

∑
al−1σl

U †al ,(al−1σl)U(al−1σl),a′l = δala
′
l

(II.29)

⇒
∑
al−1σl

Aσl†
al,al−1

Aσl

al−1,a
′
l

=
∑
σl

(Aσl†Aσl)al,a
′
l

= δala
′
l

(II.30)

or
∑
σl

Aσl †Aσl = I. (II.31)

Thus, we call the A matrices left normalised. An MPS made out of only left
normalised matrices is called a left-canonical MPS. For DMRG simulations, it is
also good to look at bipartitions of the system at some site l so that we have

|al〉A =
∑

σ1,...σl

(Aσ1Aσ2 . . . Aσl)1×al
|σ1 · · ·σl〉 (II.32)

|al〉B =
∑

σl+1,...σL

(Aσl+1Aσ2 . . . AσL)al×1 |σl+1 · · ·σL〉 (II.33)

|ψ〉 =
∑
al

|al〉A |al〉B , (II.34)

where the subset |al〉A is an orthonormal one due to the left normalisation condition
but |al〉B is not. This bipartition should therefore not be confused with a Schmidt
decomposition even though it looks deceptively similar.
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As an aside, we would like to mention we could have very well starting breaking
down the tensor cσ1,...,σL

starting at the right end, i.e. at the site σL. This would
have given us, in a very similar way, a decomposition of the form

cσ1,...,σL
= Bσ1Bσ2 · · ·BσL−1BσL , (II.35)

where the B matrices now obey BB† = I, meaning to say that they are right nor-
malised. An MPS consisting of only B matrices should be called a right-canonical
MPS. This notation of A and B matrices to denote left and right normalised ma-
trices respectively will be used frequently in this chapter. As a third approach, we
could even merge the first two schemes, namely start a site 1 and proceed right-
wards up to some site l to obtain the matrices Aσ1 · · ·Aσl . Further, sweep from
right to left up to site l + 1 to get the B matrices Aσl+1 · · ·BσL , leaving a matrix
S that contains the singular values at the bond (l, l + 1). This is called the mixed
canonical MPS. An intuitive bi-partition of the state at site l now gives a Schmidt
decomposition since the matrices to the left are left normalised and those to the
right are right normalised.

There are also some gauge degrees of freedom in the MPS framework. Note that
we could consider the following transformation on the MPS tensors (no normali-
sation condition assumed here, thus denoted as M) that leaves the tensor network
unchanged

Mσi → MσiX (II.36)
Mσi+1 → X−1Mσi+1 . (II.37)

Let us study the maximal dimensions of these A matrices. Moving from left to
right we find the dimensions to be 1× d, d× d2, d2 × d3, . . . , dL/2−1 × dL/2, dL/2 ×
dL/2−1, . . . , d × 1. Notice that the dimensions of these matrices are growing ex-
ponentially with the physical dimension. Exact numerical calculations of these
matrices would become increasingly difficult. Thus we will have to approximate
these matrices by some smaller ones of maximal dimension given by the chosen
bond dimension. The smaller matrices should capture all the physics of the original
tensors, minimising the approximation errors. This procedure is called truncation
which is imperative in tensor network studies. Here, we just retain the first D
largest singular values to keep the largest matrix of dimension D × D, dropping
out additional rows and columns of the U and V † accordingly. If D is sufficiently
large then, due to the exponentially decay of singular values, we should be able
to minimise the error at this step. The error encountered due to truncation is the
so called truncation error and can be tracked via the sum of the rejected singular
values. This quantity should tend to zero as closely as possible.

We will also encounter situations when we start with a given MPS with bond
dimension D but after some tensor manipulations end up with an MPS of a much
larger bond dimension. This is the case, for instance, when two MPS are added
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or a Matrix Product Operator (MPO) is applied to the MPS. In such situations
we would need to compress the MPS back to its original (or some maximal) bond
dimension. One of the ways to do so is to use this truncation procedure. Let us
denote the enlarged state by |ψ′〉 with bond dimension D′. The idea is to find a
state

∣∣∣ψ̃〉 that approximates |ψ′〉 efficiently but has bond dimension D. In order
to do so, we must shrink all the matrices of the MPS to dimension D × D. We
do so iteratively by truncating one tensor at a time. More explicitly we start from
one end of the chain (say the right end), apply an SVD on the right-most matrix,
truncate the U, S, V † matrices retaining only the D largest singular values, rescale
the singular values in order to normalise the matrices. This gives us the truncated
normalised matrix for the site L. At the end of this step we have decomposed the
tensor at site L as a product of three truncated tensors Ũ , S̃ and the normalised
MPS tensor BσL . We proceed to the site L−1 where now the tensor to be truncated
is MσL−1 = AσL−1Ũ S̃, that has contributions from the truncated matrices at the
last step. We sweep along the chain truncating one tensor at a time to finally
obtain a compressed MPS

∣∣∣ψ̃〉 that has all right-normalised tensors.

There is another way that is known by the name variational compression of the
MPS. This relies on starting with a compressed state of the desired bond dimension
and reducing its distance to the actual enlarged MPS. This variational procedure
optimises the matrices one by one, sweeping back and forth in order to minimise
the distance between the two MPS. Usually a SVD compressed state forms a good
starting guess for this method and convergence should achieved in a few iterations.
This scheme relies heavily on the state with the reduced dimension, thus a good
starting point is imperative to the fast convergence.

2.3 Ground state calculation

One of the most important questions we need to deal with is what are actually
the coefficients of these tensors. We would like to somehow get the tensors to
compute the ground state of a given Hamiltonian and then, if need be, perform
further calculations on it. One way to look for the ground state is the the so-
called variational optimisation. The variational principle gives us a lower bound
on the expectation value of the Hamiltonian. Namely it states that for a given
Hamiltonian H and a quantum state |Ψ〉, we always have that

〈Ψ|H |Ψ〉
〈Ψ |Ψ 〉 ≥ E0 (II.38)

We would thus like to minimise the expression (〈Ψ|H |Ψ〉−λ〈Ψ |Ψ 〉) as shown in
Fig. II.5, where we have introduced a Lagrange multiplier λ. The value of λ that
minimises this expression is the ground state energy of the Hamiltonian. Thus the
ground state search is reduced to a minimisation problem.

The variables of this minimisation are the MPS tensors whose optimal expressions
would eventually give us the ground state energy and wavefunction. Optimising
all these tensors at the same time is a highly non-linear problem, unsolvable in
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Figure II.5: The MPS network that provides the functional to be minimised to
obtain the ground state. The diagram on the left represents the contracted expres-
sion for 〈Ψ|H |Ψ〉 and on the right is the one for the norm 〈Ψ |Ψ〉. λ is a Lagrange
multiplier.

practice, but it turns out that we have a way around it. We could proceed tensor
by tensor, i.e. optimise one tensor at a time, keeping all others fixed. Hence, we
must consider the following equation for all tensors M∗:

∂

∂M∗ (〈Ψ|H |Ψ〉 − λ〈Ψ |Ψ 〉) = 0 (II.39)

In the diagrammatic language this can be written as∑
σ′

l

∑
a′

l−1,a
′
l

∑
bl−1,bl

L
al−1,a

′
l−1

bl−1
W

σlσ
′
l

bl−1,bl
R
al,a
′
l

bl
M

σ′l
a′

l−1,a
′
l
− λMσl

al−1,al
= 0, (II.40)

where the expressions for L, W and R are shown in Fig. II.6. Note that the

Figure II.6: The MPS contractions for the generalised eigenvalue problem to be
solved. The matrix to be optimised is encircled.

expression for the norm in the second term would in general be the one shown
in Fig. II.6 but since we assume that the matrices to the left of site l are left-
orthogonalised and those to the right are right-orthogonalised, it reduces to the
simple expression of Fig. II.7. This normalisation scheme reduces the generalised
eigenvalue problem to a standard one. In order to solve this eigenvalue problem,
we reshape the matrix Mσl

al−1,al
as a vector vσlal−1al

, as well as reshaping the product
LWR as a matrix H so that

H(σlal−1,al),(σ′la
′
l−1,a

′
l
) =

∑
bl−1bl

L
al−1a

′
l−1

bl−1
W

σlσ
′
l

bl−1,bl
R
al,a
′
l

bl
. (II.41)

Then we have the eigenvalue problem to solve as:

Hv = λv, (II.42)
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where H is a matrix of dimension dD2× dD2. Generally this is a large number to
handle numerically but we require only the ground state eigenenergy and eigen-
state. We can thus use an iterative eigensolver such as Lanczos or Jacobi-Davidson
for this purpose. Solving Eq. II.42, we get the ground state energy λ0 and the
corresponding eigenstate v0. We reshape the optimised tensor v0σlal−1al

as a matrix
and proceed to the next tensor. We now outline the algorithm used in the DMRG
based variational optimisation of the MPS tensor network (see [143] for a detailed
explanation).

• Start with a random state |ψ〉 with right orthonormalised matrices.

• Calculate R values for site positions L− 1 to 1 iteratively.

• Right sweep: Start at site l = 1, proceed up to L−1 by sweeping to the right
as we explain now. Solve the eigenvalue problem by an iterative eigensolver
for Mσl (the reshaped ground state eigenvector) using its current value as
initial value. [This will be important in due course of the algorithm as the
current value will become closer and closer to the actual one, giving huge
computational benefit and accuracy to the eigensolver]. Once the new value
for the tensor Mσl is obtained, left-normalise it by an SVD to get Aσl , the
remaining matrices are absorbed in Mσl+1 to the right. This tensor Mσl+1

will be the starting guess to solve the eigenvalue problem at the next site.
Calculate iteratively the expression for L by adding one site at a time. Move
on by one site l→ l + 1.

• Left sweep: This time start at site l = L and proceed up to l = 2 by sweeping
to the left as follows. Solve the eigenvalue problem for Mσl with its present
value as the starting guess for the eigensolver. Get its updated value, right
normalise it by SVD to get Bσl . Absorb any remaining matrices to the left in
Mσl−1 , which form the initial guess for the eigenvalue solver at the next site.
Get iteratively the expression for R by adding one site at a time. Proceed
to the next site to the left l→ l − 1.

• The right and left sweep together constitute one sweep. Continue sweeping
until convergence, defined by a criterion, is achieved.

• Convergence can be monitored by means of a convergence criterion. For

Figure II.7: The standard eigenvalue problem to solver in order to optimise the
matrix Mσl

al−1,al
.
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example, we could look at the energy variance: 〈Ψ|H2 |Ψ〉 − (〈Ψ|H |Ψ〉)2.
This quantity must tend to zero as closely as possible.

2.4 Multigrid DMRG

For systems with multiple length scales, the DMRG algorithm often does not
converge to the correct ground state. The reason behind the poor convergence is
that the variational optimisation does not manage to capture the large scale effects
in the problem. For instance, dilute systems such as the lattice discretised model
that we consider in this thesis suffer from this issue. The continuum models consist
of a unit cell divided into several grid points, and carry only very few particles
compared to the total number of sites in the system. Similar convergence problems
are known to be solved by multigrid schemes in other fields as well [145, 146].

Such convergence issues can be overcome by using multigrid approaches, where the
actual fine grained model is mapped onto successively coarser grids by merging n
sites. The problem is first solved on the coarsest grid, to obtain its ground state.
This state is already a fair approximation to the actual ground state of the target
problem, and is used as the starting point to solve the model at the next finer grid.
Repeating this prolongation procedure of starting from a coarse grid to successively
optimise the ground state on finer grids is repeated until the actual target model
is obtained. The computational ease and speed up is due to the quick convergence
of large scale features in the coarse grained model. Thereafter, one only requires
to optimise the local features.

A standard DMRG procedure will perform a variational optimisation on the bonds
or site tensors of the continuum space, keeping all others fixed and sweeping back
and forth until a convergence criterion is satisfied. This optimisation, carried out
at a rather local level, is quite prone to being trapped in local minima. However,
a multigrid DMRG (MG DMRG) method is useful to deal with dilute systems to
converge to the correct ground state more efficiently [142].

In the MG DMRG optimisation, we start from the coarsest level that has one grid
point per unit cell of length a. The first step is to optimise the wave function
for the ground state at this level of coarse graining. Once we have obtained the
ground state wavefunction, we use it as the initial state for the next finer grid,
where we split every site into two. Each unit cell now carries two grid points. In
Fig. II.8 we show the prolongation operation that doubles the number of sites.
We run a variational ground state optimisation at this discretisation to obtain the
ground state. The next finer grid again doubles the number of grid points per unit
cell and the uses the optimised wave function of the previous coarse grained model
as the starting point. This process is repeated until we achieve the desired level
of fine graining, which in our simulations corresponds to a spacing ∆x = a/Ndiscr
with Ndiscr = 16 grid points per unit cell.

The first optimisation on the coarse grid is very fast and is able to capture the long
range features of the problem. Using the prolongated solutions of the coarser grid

30



2. Matrix Product states 31

Figure II.8: Figure showing prolongation operation taken from Ref. [142].

as initialisations for ground state wavefunctions on the finer lattices allows fast and
reliable convergence to the right ground state, by fine tuning the local features.
For modest values of the discretisation standard DMRG approaches fare well, but
serious convergence issues arise for smaller values of the spacing ∆x where the
problem acquires vastly differing length scales.

2.5 Time evolution

Time evolutions can be simulated in the MPS framework by applying operators
of the form e−iHt or e−βH that are used for real and imaginary time evolution
respectively. The former quantity is useful in quantum mechanics for instance,
and the latter in statistical mechanics where the inverse temperature can be seen
as an imaginary time.

A local Hamiltonian, that contains only nearest neighbour interactions can be
written as a sum of the form H = ∑

i hi, where hi is the interaction term between
site i and i + 1. The total time can be split into small time steps of the form
T = N∆t, where the number of intervals N →∞ and the infinitesimal time step
∆t→ 0. The unitary operator for each time step ∆t is then given by

e−iH∆t = e−i(h1+h2+···+hL−1)∆t

= e−ih1∆te−ih2∆t . . . e−ihL−1∆t +O((∆t)2) (II.43)

The last step corresponds to a simple first-order Trotter decomposition on the
Hamiltonian. The leading contribution to the error is from the commutator of
the bond terms, [hi, hi+1], that is in general general non-zero. As long as ∆t is
small enough, this is a fair approximation. However, choosing a very small time
step leads to a large number of time steps that could escalate computational cost.
Higher order Trotter decompositions can be used to reduce the error.

It is worthy to note that for a nearest neighbour Hamiltonian all odd and all even
bonds respectively act independent of each other. In other words time evolution
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on all odd (and similarly all even) bonds commute with each other, thus can be
applied at the same time. It is thus useful to split the Hamiltonian as the sum of
odd and even parts as:

H =
∑
i odd

fi +
∑
j even

gj, (II.44)

where fk(gk) are bond operators on odd (even) bonds between sites k and k + 1.
The unitary operator can then be written as

e−iH∆t =
∏
k odd

e−ifk∆t ∏
j even

e−igj∆t +O((∆t)2). (II.45)

This product of two site operators can be implemented using the following proce-
dure:

• Apply the unitary operator e−iHodd∆t to all odd bonds of the state |ψ(t)〉.

• To the MPS obtained after the previous step, apply the operator e−iHeven∆t

to all even bonds.

• The MPS now has a bond dimension d2D which must be truncated to D.
This can be done by SVD retaining only the D largest singular values.

• This completes one Trotter time step and we now have |ψ(t+ ∆t)〉 which
has been compressed back to dimension D.

• Time dependent observables can be evaluated and then repeat the procedure
to obtain the wavefunction at the next time step.

A second order Trotter decomposition at a given time step can be written as

e−iH∆t = e−iHodd∆t/2e−iHeven∆te−iHodd∆t/2 +O((∆t)3), (II.46)

where the error has been reduced by an order of magnitude in the step size. If
the Hamiltonian does not change after every time step, the exponential involving
half time steps can be combined into a full time step, leaving only two half time
step operators at the ends. This reduces the error drastically with no extra com-
putational cost. However, if measurements are to be made at every time step, we
cannot play the same trick. If, on the other hand, the Hamiltonian is changed at
every time step these exponentials cannot be combined trivially. In the ALPS MPS
code, we used the second order Trotter decomposition to run the time evolution
simulations.

2.6 Efficiency and errors in the DMRG algorithm

The method employed for finding the ground state is a variational method, thus
not exact. Only when D → ∞, the method becomes exact. This, however, is
not achievable in practice. Although it is observed that the MPS method and
DMRG optimisation works very well for 1D systems, it does come with its own
set of challenges. One possible source of error could be that the initial guess for
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the tensor Mσ is a bad one. This requires a large number of iterations for the
eigensolvers making the method quite inefficient. Another challenge could be that
the eigensolver is stuck in a local minimum, failing to give the right ground state
eigenvalue and eigenvector for the matrix. We could try to come up with ways to
tackle these issues. One possibility could be to vary the number of iterations for the
eigensolver during the course of the algorithm. In the initial sweeps, assuming the
guess would generally be bad, we could start the with a smaller bond dimension
but more number of iterations for the eigensolver. Further as the accuracy of
the initial states for the eigensolvers gets more refined, we could increase the
bond dimension and reduce the number of iterations needed for the eigensolver.
We could also start with a reasonable guess for the initial state rather than a
randomly generated matrix. This guess could either be based on the physics
behind the problem or could be obtained from an infinite-system DMRG ground
state. Care must be taken so as not to bias the solution towards the initial guess.
An important check for the right convergence of DMRG simulations is to run the
algorithm for different number of sweeps and varying the bond dimension to see
any effects of these parameters on the results.

For time evolution there are two sources of errors. The first one is due to the Trotter
decomposition, that scales as O((∆t)n+1) for nth order Trotter decomposition.
Higher order Trotter decompositions being associated with smaller errors. The
total time T is divided into T/∆t number of steps, the total error O((∆t)nT ) is
linear in time. Slower ramps are also associated with slightly larger errors for
a given step size. The linear increase could be tacked by reducing the step size.
Another important source of error is the truncation carried out after applying each
set of operators. These errors could blow exponentially in time. The reason behind
this growth goes back to a possible up to linear increase in the entanglement with
time. It turns out that for out-of-equilibrium states the entanglement actually
grows linearly with time, demanding a corresponding exponential growth of the
bond dimension. A truncation process that retains only D largest singular values
does not take that into account leading to large errors. However, in most cases,
the bound of linearly increasing entanglement is not reached and we are safe to
implement a truncation procedure.
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Chapter III

Ladders of non-Abelian anyons

In this chapter we describe our study and analysis of interacting, itinerant Fi-
bonacci anyons on ladders composed of two or three coupled chains. We begin
with a basic introduction of Fibonacci anyons that are described by the SU(2)3
theories. Thereafter, we write down models of interacting and itinerant Fibonacci
anyons, starting with one dimensional models and moving on to 2D. We review
all the phases obtained in the two- and three-leg doped ladders and establish the
occurrence of spin-charge separation. Furthermore, we discuss a novel heavy-light
τ model and the phases associated with it.

1 Introduction

SU(2)k Chern-Simons theories [61, 147] are so-called quantum deformations of the
SU(2) algebra. Their degrees of freedom are encoded by ‘topological charges’ j,
which are generalised angular momenta. In contrast to SU(2), in SU(2)k theories
the total ‘spin’ j is limited to be j = 0, 1

2 , · · · ,
k
2 .

Akin to the tensor product of spins, non-Abelian anyons can be ‘fused’ according
to fusion rules given by

j1 × j2 =
min{j1+j2,k−j1−j2}∑

j3=|j1−j2|
j3. (III.1)

For example, for the fusion of two anyons with j1,2 = 1
2 , these rules would mean

1
2⊗

1
2 = 0⊕1 (for k ≥ 2). Similarly, for the case of Fibonacci anyons (k = 3), when

j1,2 = 1 the fusion rule reads as 1⊗1 = 0⊕1. Note that this is different from what
one would obtain under a tensor product of SU(2) spin-1 particles. In the limit
k →∞, however, we recover the SU(2) algebra and the rule simply describes the
tensor product of two ordinary SU(2) spins.

In the rest of this thesis, we focus only to the Fibonacci theory of anyons with
k = 3, unless otherwise stated. There the allowed values for the topological charges
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36 Chapter III. Ladders of non-Abelian anyons

Figure III.1: (a) Illustration of the standard fusion tree with site labels Yi (that
can be either τ or 1) and bond labels xi. (b) The flat version of the fusion tree.
(c) A basis change to a different fusion tree using an F -move.

are j = 0, 1
2 , 1,

3
2 . But if we look closely at the fusion rules, we can make the

identification 0 ↔ 3
2 and 1 ↔ 1

2 . Thus, the Fibonacci theory has two distinct
types of particles which we denote as 1 for the trivial particle with j = 0 and τ
for the Fibonacci anyon with j = 1 respectively. Using these, the fusion rules read

1⊗ 1 = 1
τ ⊗ 1 = 1⊗ τ = τ

τ ⊗ τ = 1⊕ τ.
(III.2)

We represent a system ofN anyons by means of a fusion tree as shown in Fig. III.1(a),
where the anyonic charges of the individual anyons are labelled by Yi. The fusion
outcome of successive fusion of the anyons are encoded by the ‘bond’ labels (links)
in the fusion tree, labelled by xi in Fig. III.1(a). The constraints on the bond labels
due to fusion rules which must be satisfied at each vertex significantly reduce the
size of the internal Hilbert space. For N Fibonacci anyons (τ) the Hilbert space
grows asymptotically as φN where φ = (

√
5 + 1)/2 is the golden ratio. From now

on we draw a flat version of the fusion tree, as shown in Fig. III.1(b).

To perform an operation on nearest neighbour anyons, it is advantageous to change
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Figure III.2: Convention for the right handed braid to exchange two particles.

to a different basis in which the two-particle fusion outcome is explicit. This is
done via the F -move shown schematically in Fig. III.1(c). The F -move depends
on the two site labels Yi and Yi+1 and the bond labels xi−1 and xi+1. If at least one
of these four labels is 1, then there is only one choice of bond labels that satisfies
the fusion algebra and the F -move is trivial. A non-trivial matrix is obtained only
when all the four labels are τ anyons. Specialising to the case where Yi = Yi+1 = τ ,
the labels for the three bonds |xi−1, xi, xi+1〉 allowed by the fusion rules are

{|1, τ,1〉, |1, τ, τ〉, |τ, τ,1〉, |τ,1, τ〉, |τ, τ, τ〉} (III.3)

which transforms to a new basis |xi−1, x
′
i, xi+1〉 after the F -move:

{|1,1,1〉, |1, τ, τ〉, |τ, τ,1〉, |τ,1, τ〉, |τ, τ, τ〉}.

Using these bases the F -matrix is represented as,

F =


1

1
1

φ−1 φ−1/2

φ−1/2 −φ−1

 , (III.4)

where as mentioned above we have a non-trivial 2 × 2 submatrix only when also
xi−1 = xi+1 = τ .

Another operation that we need to perform on nearest neighbour anyons is that of
exchanging (or braiding) them. In Fig. III.2, we show our convention for a right-
handed braid. The left-hand braiding is the inverse of the process shown here.
Under a right-handed braid anyons a and b pick up a phase Rb,a

c depending on the
anyon types, a and b, that are undergoing an exchange and their fusion outcome

Figure III.3: Schematic representation of a braid on the fusion tree.
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38 Chapter III. Ladders of non-Abelian anyons

c. Note that whenever a or b are 1, the phase is trivial. Non-trivial phases are
only obtained are for a = b = τ :

Rττ
1 = e+4πi/5, Rττ

τ = e−3πi/5. (III.5)

In order to implement a braid on the standard fusion tree, we first have to change
basis using an F -move to make the fusion outcome of the two anyons explicit, and
then braid. This process is shown schematically in Fig. III.3. This is represented
by a Braid matrix B acting on the bond labels |xi−1, xi, xi+1〉. The only non-trivial
Braid matrix is obtained when both the sites are occupied by τ anyons. In the
basis of Eq. (III.3) we obtain:

B = FRF =


e4iπ/5 0 0 0 0

0 e−3iπ/5 0 0 0
0 0 e−3iπ/5 0 0
0 0 0 1

φ2 e
4iπ/5 + 1

φ
e−3iπ/5 1

φ3/2 (e4iπ/5 − e−3iπ/5)
0 0 0 1

φ3/2 (e4iπ/5 − e−3iπ/5) 1
φ2 e
−3iπ/5 + 1

φ
e4iπ/5

 .
(III.6)

Note that when the two site labels are a 1 and a τ , the F -moves and the exchange
phases are all trivial. The Braid matrix is effectively the hopping of the anyon
to the adjacent site. When both the site labels are 1, the Braid matrix is simply
given by the identity matrix.

2 Warmup: One dimensional models

2.1 Golden chain model

In this section we review the so-called ‘golden chains’, consisting of 1D arrays of
localised Fibonacci anyons with pairwise interactions between nearest neighbours
[62]. In this model the Hamiltonian for the magnetic interactions between anyons
is defined in analogy to the Heisenberg exchange interaction. We assign an energy
−J if the fusion outcome of two interacting anyons is trivial. For AFM couplings
(J > 0), this favours the fusion outcome of two neighbouring anyons to be trivial,
while for FM couplings (J < 0), the fusion of two anyons is preferred to be τ .
This interaction between nearest neighbour anyons is depicted schematically in
Fig. III.4(a) and is implemented by projecting on the identity fusion channel

Hmag = Jhmag = −J(FP 1F−1). (III.7)

where F is the operator corresponding to the F -move (see Eq. (III.4)) and P 1

is an operator that projects onto the 1 state. In the basis of Eq. (III.3), the
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2. Warmup: One dimensional models 39

Figure III.4: (a) Nearest neighbour magnetic interaction of amplitude J . (b) The
kinetic hopping (of amplitude t) of an anyon to its nearest neighbour vacant site.
The blue circles represent τ anyons while the white circles denote vacant sites or
holes.

matrix representation for the (dimensionless) magnetic interaction can be written
explicitly as:

hmag = −


1

0
0

φ−2 φ−3/2

φ−3/2 φ−1

 . (III.8)

Golden chains with AFM couplings are described by the k = 3 restricted solid on
solid (RSOS) model which is a CFT with central charge c = 7/10. For ferromag-
netic couplings the corresponding CFT is that of the critical 3-state Potts model
with c = 4/5 [62, 148].

2.2 Itinerant Fibonacci anyons in 1D

To model itinerant anyons we introduce holes, i.e. sites with a trivial anyon 1 on
some of the sites. The holes and τ anyons are labelled by different U(1) (electric)
charges and anyonic (non-Abelian) charges. The τ anyons (referred to simply
as ‘anyons’ or ‘τ particles’ hereafter) can move on the chain which results in an
additional kinetic energy contribution. This kinetic process is schematically shown
in Fig. III.4(b). It involves the hopping of a particle, along with its electric and
anyonic charge to a neighbouring site.

Our specific model of itinerant anyons is a generalisation of the electronic t–J
model [72]. Assuming a large on-site charging energy, we eliminate the possibility
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40 Chapter III. Ladders of non-Abelian anyons

of doubly occupied sites and allow anyons to only hop to empty sites. As in the
case of electrons, the low-energy effective t–J model allows hopping of the anyons
to nearest neighbour vacant sites and an exchange interaction between nearest
neighbour anyons analogous to the Heisenberg interactions explained above in
Sec. 2.1. The kinetic term can then be written as Hkin = −thkin, where hkin is the
(dimensionless) operator corresponding to the nearest neighbour hopping process
shown in Fig. III.4(b). A t–J chain of itinerant anyons was studied for Ising and
Fibonacci anyons [77, 78], revealing a separation of excitations into charge and
anyonic excitations, similar to spin-charge separation in its electronic counterpart.

3 Ladders of Fibonacci anyons

3.1 Undoped ladders

Figure III.5: Two-leg ladder: (a) Interactions along the leg and rung directions.
(b) The zig-zag fusion path. The couplings have been indicated.

Ladders of Fibonacci anyons are formed by coupling chains of localised anyons [82].
Anyons interact with their nearest neighbours along the leg and rung directions
via Jleg and Jrung. These interactions are shown schematically in Fig. III.5(a). As
fusion path we choose the zig-zag path shown in Fig. III.5(b), since it minimises the
effective range of interactions on the fusion path. We choose periodic boundary
conditions along the leg direction and open boundary conditions along the rungs.

With this choice of fusion path, nearest neighbour interactions on the rungs are also
nearest neighbour along the fusion path, while those between anyons on the same
leg are longer range along the fusion path. Nearest neighbour rung interactions
can be implemented in exactly the same way as for nearest neighbour on a chain
(see Sec. 2.1). In order to evaluate the interactions between τ particles on the
same leg, we have to implement a change of basis, this time by braiding them in a
clockwise manner until they are neighbours along the fusion path. This braiding
is performed by the unitary braid matrix B (see Eq. (III.6)). Once the τ particles
are nearest neighbours along the path they can interact with the same term as
discussed above in Sec. 2.1. After carrying out the interaction, the anyons have to
be braided back to their original positions.

More specifically, for a two-leg ladder, adjacent anyons along the leg direction are
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3. Ladders of Fibonacci anyons 41

Figure III.6: Evaluation of Hamiltonian terms on a two-leg ladder along the leg
direction that involve the braid operation. The blue circles represent τ particles
and the white circles are for vacant sites. The green ellipses denote the particles
that are interacting along the leg direction. (a) the magnetic term (b) the kinetic
term.

next nearest neighbours along the fusion path (see Fig. III.5(b)). Thus, one needs
to implement one braid operation. The Hamiltonian for the magnetic interactions
between nearest neighbour rungs r and r + 1 on the upper leg is given by

(H1
mag)r = JlegB

†
2r−1(hmag)2rB2r−1, (III.9)

and on the lower leg as

(H2
mag)r = JlegB

†
2r+1(hmag)2rB2r+1, (III.10)

where hmag has been defined in Eq. (III.8) and r labels the rungs (so that i = 2r
labels the diagonal bonds along the path). In Fig. III.6(a), we summarise the
magnetic interactions between nearest neighbour along the leg direction for a two-
leg ladder.

For a three-leg ladder, the leg interactions are longer ranged interactions, since
adjacent anyons on a leg are third neighbours along the fusion path. Thus, nearest
neighbour leg interactions on a three-leg ladder ladder require two braids before
particles are nearest neighbours on the fusion path [82]. One gets for interaction
between rungs r and r + 1 on the upper leg,

(H1
mag)r = JlegB

†
3r−2B

†
3r−1(hmag)3rB3r−1B3r−2, (III.11)

on the middle leg,

(H2
mag)r = JlegB

†
3r+1B

†
3r−1(hmag)3rB3r−1B3r+1, (III.12)

and on the lower leg,

(H3
mag)r = JlegB

†
3r+2B

†
3r+1(hmag)3rB3r+1B3r+2, (III.13)

where i = 3r labels the diagonal bonds along the path.
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42 Chapter III. Ladders of non-Abelian anyons

The full magnetic Hamiltonian on the legs is obtained by adding all contributions,
H leg

mag = ∑W
1 H l

mag, where W is the number of legs. As an implementation detail
we want to mention that the action of the operator H l

mag can generate up to 22W−1

states for each bond interaction. The operator mixes spin labels, thus generates
multiple images for each two-body interaction. This exponential increase in the
number of resulting states leads to denser Hamiltonian matrices as one increases
the width W of the ladder and restricts us from exploring larger system sizes.

For ladders of localised Fibonacci anyons it was shown that similar odd-even effects
as seen for SU(2) spins continue to exist in the limit of strong AFM rungs [82].
AFM coupled ladders of Fibonacci anyons with even number of legs are gapped
while those with odd number of legs are critical and are described by the same CFT
as the golden chain. On the other hand, Fibonacci ladders with FM rung couplings
are quite different from their SU(2) counterparts [82]. Fibonacci ladders with a
width that is a multiple of three are gapped since the rungs form singlets (j = 0).
Other widths are gapless since the isolated rungs effectively form τ ’s, thereby
yielding a gapless chain as the effective low-energy model. This is different from
SU(2) spins, for which an even number form a singlet ground state, and where
thus all even width ladders are gapped.

3.2 Doped ladders

In this thesis we focus on itinerant ladders of Fibonacci anyons. As schemati-
cally represented in Fig. III.5(a) we denote the interaction strengths along the leg
direction by Jleg and tleg for the magnetic and kinetic terms respectively. Along
the perpendicular direction, the couplings Jrung and trung denote respectively the
magnetic and kinetic terms.

The magnetic interactions for the ladder have already been described in the sec-
tion 3.1 and we thus only need to discuss the kinetic terms. Once again, the two
sites on a rung are adjacent on the fusion path and the hopping is thus imple-
mented as for the 1D t–J chain (see section 2.2). For a τ particle and hole lying
on adjacent sites on the same leg of the ladder, we need to, once again, braid the
sites to bring them to adjacent positions on the fusion tree. For a two-leg ladder,
the kinetic term between rungs r and r + 1 on the upper leg is given by

(H1
kin)r = tlegB

†
2r−1(hkin)2rB2r−1, (III.14)

and on the lower leg as

(H2
kin)r = tlegB

†
2r+1(hkin)2rB2r+1, (III.15)

where hkin has been defined above and r labels the rungs. In Fig. III.6(b), we sum-
marise the kinetic process between nearest neighbour sites along the leg direction
for a two-leg ladder.

For a three-leg ladder, a τ particle and hole lying on adjacent sites on a leg are
third neighbours along the fusion path. Thus, nearest neighbour leg interaction
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3. Ladders of Fibonacci anyons 43

Figure III.7: Schematic energy spectra in the presence of a parabolic Coulombic
charging energy. One can tune the chemical potential and the repulsion between
the particles in order to gap out the higher energy sectors. This allows restricting
the calculations to a low energy subspace.

on a three-leg ladder requires two braids before the τ particle and the hole are
nearest neighbours on the fusion path. One gets for kinetic terms between rungs
r and r + 1 on the upper leg,

(H1
kin)r = tlegB

†
3r−2B

†
3r−1(hkin)3rB3r−1B3r−2, (III.16)

on the middle leg,

(H2
kin)r = tlegB

†
3r+1B

†
3r−1(hkin)3rB3r−1B3r+1, (III.17)

and on the lower leg,

(H3
kin)r = tlegB

†
3r+2B

†
3r+1(hkin)3rB3r+1B3r+2, (III.18)

where i = 3r labels the diagonal bonds along the path.

Note that, in the above equations, some of the braids may be trivial, in contrast
to the case of the magnetic interactions. The full kinetic Hamiltonian on the legs
is obtained by adding all contributions, H leg

kin = ∑W
1 H l

kin. Here, the action of the
operator H l

kin can generate up to 22W−2 states for each bond interaction.

We also consider models with an additional rung charging term

VCoul(q) ∼ Vrep(q −Qc)2, (III.19)

where q is the number of anyons on a rung and Qc is determined by the implicit
chemical potential. Fig. III.7 shows the energy profile for a given rung composition
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44 Chapter III. Ladders of non-Abelian anyons

on the ladder. For the three-leg ladder under consideration, this term acts pairwise
between all the three possible pairs of particles that can exist on the three-site
rung. Assuming a charging energy which is much larger compared to the exchange
energy, we can consider the limit Vrep → ∞. In this limit we can restrict our
calculations to just two values of the occupation on the rung, n and n + 1, with
n ranging from 0 to W − 1. This reduces the Hilbert space and thus allows us to
perform simulations of larger ladders.

4 Phase diagrams

4.1 Isolated rung limit

Analogous to standard electronic t–J ladders the physics of anyonic t–J ladders
can be understood starting from the strong rung coupling limit [149, 150]. We
thus begin by identifying the low-lying states of isolated rungs.

In Fig. III.8, we show the five rung configurations on isolated rungs for a two-
leg ladder, and the total U(1) and anyonic charges that are possible for these
rung configurations. When there are two holes on a rung, both of these charges
are trivially zero. When the rung is occupied by two τ particles, the net U(1)
charge is 2, however the topological charge may be either 1 or τ , giving rise to
two different quantum states |2, τ〉 (named “heavy τ”) and |2,1〉 (named “heavy
hole” – an empty rung being a “light hole”). In the case when there is a single
τ on the rung, it can be either on the upper or on the lower leg with charges
denoted as (1U , τ) and (1L, τ) respectively. The corresponding quantum states
are respectively |1U , τ〉 and |1L, τ〉. The bonding and anti-bonding states |1±, τ〉
(named “light τ”) are formed by linear superpositions of the configurations with
charges (1U , τ) and (1L, τ) given by

|1±, τ〉 = 1√
2
(
|1U , τ〉 ± |1L, τ〉

)
. (III.20)

Figure III.8: All possible fusion outcomes for a rung of a two-leg ladder. The
blue circles represent τ ’s while white circles represent vacant sites. The U(1) and
topological charges for the different configurations are denoted in the parenthesis.
The superscript U(L) refers to the τ lying on the upper (lower) leg.
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Figure III.9: The various fusion outcomes possible for a doped three-leg ladder.
The blue circles represent τ ’s while white circles represent vacant sites. The first
labels in the parenthesis signify the U(1) charge, corresponding to the number
of τ ’s present on each rung and the second refers to their fusion outcome. The
superscripts U,M,L refer to the positions of the τ on the different legs (upper,
middle, lower) of the ladder.

For a three-leg ladder, many more states are possible, as shown in Fig. III.9. When
there is a single τ on the rung (Nrung = 1), the “light τ” quantum states formed
by linear superpositions of the three different positions of the τ particle are given
by

|1±, τ〉 = 1
2
(
|1U , τ〉+ |1L, τ〉 ±

√
2|1M , τ〉

)
, (III.21)

|10, τ〉 = 1√
2
(
|1U , τ〉 − |1L, τ〉

)
. (III.22)

Depending on the sign of the hopping, one of the states |1±, τ〉 acquires the lowest
energy. Likewise, when there are two τ anyons on a rung (Nrung = 2) we can
form quantum states as linear superpositions of the states with the same U(1) and
topological charges. For Jrung > 0, one of the “heavy hole” states

|2±,1〉 = 1√
2 + α2

(
|2U,M ,1〉+ |2M,L,1〉 ± α|2U,L,1〉

)
(III.23)

is the ground state, with

α =

√
J2

rung + 8t2rung − Jrung

2trung
. (III.24)

If for simplicity, we consider Jrung = trung, then α = 1. For Jrung < 0 either of the
“heavy τ” states

|2±, τ〉 = 1
2
(
|2U,M , τ〉+ |2M,L, τ〉 ±

√
2|2U,L, τ〉

)
(III.25)
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Figure III.10: Ground state phase diagram for (a) two-leg ladder and (b) three-leg
ladder in the isolated rung limit (with or without charging energy). The lowest
energy sectors for isolated rungs with different anyon numbers (labelled by Nrung)
on a ladders of itinerant Fibonacci anyons are indicated. The notations are the
same as in Figs. III.8 and III.9.

has lowest energy depending on the sign of the hopping trung. When the rung
is occupied by three τ particles, the total U(1) charge on the rung is 3, and the
possible quantum states are |3, τ〉 (named “super-heavy” τ) and |3,1〉 (named
“super-heavy hole”) depending on the net fusion outcome.

In the limit of independent rungs and by parametrising the rung couplings as
trung = cos θ and Jrung = sin θ, we have mapped out the parameter space on a
unit circle. In Fig. III.10 we show the ground state phase diagram for an isolated
rung on a two-leg or a three-leg ladder for different number Nrung of τ anyons on
the rung. Note that these phase diagrams do not depend on the charging energy
which only gives a constant energy shift Vrep(Nrunge

∗ − Qc)2 (depending on the
Nrung sector).

4.2 Phase diagrams of weakly coupled rungs

Our goal is now to understand the phase diagram of anyonic ladders by starting
from the isolated rung coupling limits. We do this by turning on small couplings tleg
and Jleg between the strongly coupled rungs such that |tleg|, |Jleg| << |trung|, |Jrung|,
in order to ensure that there is no transition to excited state of the isolated rungs.
Figures III.11 and III.12 summarise the phase diagrams for two and three-leg
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a) b)

Figure III.11: Phase diagrams of the two-leg ladder in the strong rung coupling
limit. a) is without a rung charging term and b) with a large rung charging
term Vrep. Here the radius denotes the density of anyons. Depending on filling
and couplings several phases can be distinguished: a totally gapped phase (T),
effective golden chain models (G), effective t–J chains (C), paired phases (P), and
a phase with two different types of τ anyons (D). The legend indicates which rung
states are relevant in the various phases. See the text for details.

ladders.

Depending on the low-energy states on each rung we find six different types of
phases:

• Totally gapped phases (T ) appear when there are exactly two (for Jrung > 0)
or three (for Jrung < 0) anyons per rung that fuse into the trivial channel.
These phases will not be discussed further.

• Effective golden chains (G±) when there are exactly n τ anyons on every
rung that fuse into a total τ . An optional ± superscript indicates whether
the particles are in a bonding (+) or antibonding(−) state on a rung. These
phases will be discussed in Sec. 5.2.

• Paired phases (P ) where two anyons on a rung fuse in the trivial channel,
forming hard-core bosons. These phases will be discussed in Sec. 5.1

• Effective t–J chains (C±nm) consisting of an effective hole that arises from n
anyons on a rung fusing in the trivial channel and an effective τ anyon arising
from m anyons fusing in the τ channel. The ± superscript indicates whether
the particles on a rung are in a bonding or antibonding state. These phases
will be discussed in Sec. 5.3 and 5.4.

• Effective models consisting of two flavours of τ anyons (D±mn) that are formed
by fusing m and n anyons on a rung respectively. Again the ± superscript
indicates whether the particles on a rung are in a bonding or antibonding
state.

• A phase separated region PS03 originated from an effective t–J chain with
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a) b)

Figure III.12: Phase diagrams of the three-leg ladder in the strong rung coupling
limit. a) is without a rung charging term and b) with a large rung charging
term Vrep. Here the radius denotes the density of anyons. Depending on filling
and coupling several phases can be distinguished: a totally gapped phase (T),
effective golden chain models (G), effective t–J chains (C), paired phases (P),
phase separated phases (PS) and a phase with two different types of τ anyons (D).
The legend indicates which rung states are relevant in the various phases. See the
text for details.

dominant attraction between the effective super-heavy τ anyons.

The effect of a large rung charging energy Vrep is to suppress pairing and phase
separation in two-leg and three-leg ladders. The other phases are unchanged when
adding this term. We will thus use Vrep =∞ to reduce the Hilbert space dimension
when numerically investigating the latter phases.

5 Discussion of phases and effective models

5.1 Pairing and effective hard-core boson models

We start our detailed discussion with paired phases that arise when two τ anyons
on a rung fuse into an effective trivial particle and are then described by mobile
hard core bosons. In the case of the two-leg ladder this phase appears when
Jrung > 2|trung|. Identifying |0,1〉 with an empty site and |2,1〉 with a hard-core
boson we end up with an effective hard-core boson (HCB) model,

HHCB = t
∑
i

(b†ibi+1 + h.c.) + V
∑
i

ni(1− ni+1), (III.26)

where b†i creates a boson at site i and ni = b†ibi is the boson density. The effective
hopping matrix element of this hard-core boson model is obtained from second-
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order perturbation theory in tleg to be

t = −
2t2leg

Jrung − 2|trung|
. (III.27)

An effective nearest neighbour attraction between different types of holes comes
also in second-order and is given by

V = −
2t2leg

Jrung − 2|trung|
. (III.28)

This is similar to fermionic t–J ladders mapping to a Luther-Emery liquid of
Cooper pairs.

In the three leg ladder, similar paired phases described by the same hard-core
boson model are found when ρ < 2/3 and the rung couplings satisfy

3φ|trung| > Jrung >
3√
2
|trung| . (III.29)

The effective hopping matrix element of this hard-core boson model is

t = −
2t2leg

ED
, (III.30)

where ED = −2
√

2|trung| + Jrung
2 +

√
J2

rung+8t2rung
2 and a proof is provided in Eq.

(A.74). An additional effective attraction between different types of holes is given
by

V = −
2t2leg

ED
, (III.31)

as shown in Eq. (A.73).

5.2 Effective golden chains

If all rungs are at the same integer filling n, the effective model is either in a trivial
gapped phase if the n anyons fuse into the trivial channel, or an effective golden
chain model if they form a total τ . We label the latter phases as Gn or G±n , where
the optional ± index indicates whether the anyons are in a bonding state (+) or
antibonding state (−) on the rung.

The phase G±1 appears in the two-leg ladder at unit filling (outside of the paired
phase). With two τ particles per rung and Jrung < 0 we obtain the phase G2.

Analogously, the three leg ladder has effective golden chain phases for specific
densities ρ = 1/3, 2/3, 1 on the ladder. In the case when all the rungs have exactly
one τ particle, the phase G±1 is obtained. When there are two τ anyons per rung
and Jrung < 0, the phase G±2 appears. Finally, for three τ particles per rung and
Jrung > 0, we obtain the G3 phase.

All coupling constants J of the effective Golden chains are listed in Table III.1.
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50 Chapter III. Ladders of non-Abelian anyons

Table III.1: Effective couplings for the various golden chain phases as a function
of the ladder width W and density ρ.

W ρ Phase J/Jleg Derivation Eq.
2 1

2 G±1
1
2 (A.4)

2 1 G2
2
φ2 (A.12)

3 1
3 G±1

3
8 (A.21)

3 2
3 G±2

11
8φ2 (A.25)

3 1 G3 1 (A.30)

5.3 Effective t–J models: Two-leg ladder

Doping the ρ = 1/2 G±1 golden chain with (light) holes one obtains an effective
anyonic t–J chain (C±01). The magnetic coupling J is the same as for the G±1 golden
chain.

Increasing the U(1) charge density (ρ > 1/2), by effectively doping the G±1 golden
chain with heavy holes, one obtains a similar C±21 t − J chain for AFM rung
couplings Jrung > 0 with a sign change of the hopping term.

Coupling constants are summarised in Table III.2.

5.3.1 Effective model for charge degrees of freedom

From the mapping of a doped ladder to an effective 1D t–J chain we expect its
spectrum to fractionalize into charge and anyon (called also “spin”) degrees of
freedom. To investigate spin-charge separation in the ladder, we first examine the
pure U(1) charge spectrum when Jleg = 0.

In the J = 0 limit of an anyonic t–J chain the itinerant anyons behave like HCBs
which can be mapped onto a system of spinless fermions. Adding an external flux
in the ring, the HCB spectrum is therefore given by charge excitation parabolas,

EHCB(p, φext) = −2t
∑
j(p)

cos
[

2π
L

(
j + 1

2

)
+ φext

L

]
, (III.32)

Table III.2: Effective couplings for the various t–J phases of the two-leg ladder as
a function of the density ρ.

Filling Phase J/Jleg t/tleg Derivation Eq.
ρ < 1

2 C±01
1
2

1
2 (A.37)

ρ > 1
2 C±21

1
2 −1

2 (A.42)
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5. Discussion of phases and effective models 51

Figure III.13: Charge spectrum at Jrung = trung = 1000, tleg = 1, Jleg = 0, Vrep =∞.
The solid lines denote the HCB spectrum (with an external flux) given by
Eq. (III.32), different colours corresponding to the different charge branches (la-
belled by p in Eq. (III.32). The black circles denote the spectrum of a 2×8 ladder
with ρ = 3/4. The blue crosses correspond to the effective chain spectrum for
L = 8, ρ̃ = 1/2 (see Eq. (III.33)).

where {j(p)} is a set of integers (labelled by the branch index p) which determine
the continuous momenta, given by K = 2π

L

∑
j(p)(j+ 1

2)+ ρ̃φext, ρ̃ being the density
of particles in the system. In the J = 0 limit we must be careful since the fusion
tree labels make the anyons distinguishable. Thus, in the absence of magnetic
interactions the energy levels show a high degree of degeneracy that arises due to
the built in non-Abelian nature of the Fibonacci anyons. Moving an anyon across
the boundary cyclically translates the fusion tree labels. All N particles must be
translated over the boundary to be able to have the original labelling. This brings
about a phase shift of φn = 2πn/N , n being an integer. The charge spectrum
of the anyonic chain can then be described as a union of all HCB spectra for all
discrete values of φn, with no external flux:

Ep,n
charge = EHCB(p, φn). (III.33)

The states are labelled by their total momentum Kp,n = Kp + 2π n
N

.

Our numerical results show that, as expected, the charge spectrum of the ladder
corresponds exactly to that of the effective chain. As an example, Fig. III.13 shows
the Jleg = 0 spectrum of a 2×8 ladder with ρ = 3/4, which is in perfect agreement
with the spectrum of an effective J = 0 chain with L = 8 and ρ̃ = 1/2 and with
the HCB spectrum given by the cosine branches according to Eqs. (III.32) and
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52 Chapter III. Ladders of non-Abelian anyons

Figure III.14: Energy splittings of each of the eight E ≤ 0 energy levels at K = 0
of the 2×8 ladder with ρ = 3/4 (symbol/line colours here match the colours of the
parabolic branches of Fig. III.13) as a function of tleg/trung. The values of the leg
couplings are tleg = 1, Jleg = 0, Vrep = ∞ and trung(= Jrung) takes different values
from 100 to 10000. The fits correspond to the expected t−1

rung behaviour.

(III.33). Note that there is a global shift in energy between the ladder and the
chain spectra given by

Eshift = −trungNs − JrungNd, (III.34)

where Ns (Nd) are the number of rungs carrying a single (two) τ (s).

Lastly, we would like to mention that the mapping is exact only in the limit when
the rung couplings tend to infinity. For large, yet finite, rung couplings the energy
levels of the ladder model in each parabola are split into an exponential number
of energy levels over a finite energy range Σ. This is due to second order processes
to higher energy states that give rise to a broadening of order Σ ∼ t2leg/trung and
t2leg/Jrung of the energy levels, as shown in Fig. III.14.

5.3.2 Numerical comparison between microscopic model and 1D t-J
model

We next turn on a small Jleg and adiabatically follow the splitting of the charge
parabolas. Fig. III.15(a) zooms into the low energy spectrum to show how the
highly degenerate energy levels are split by a small Jleg = 0.1. Fig. III.15(b) shows
results for a larger coupling Jleg = 1. We see that magnetic interactions lift the
degeneracy of the states with an energy spread proportional to LJleg. This is
consistent with the behaviour of the effective t–J chain exhibiting “spin-charge
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Figure III.15: Splitting of the degenerate levels on switching on different values of
Jleg on a 2×8 ladder with ρ = 3/4 and Jrung = trung = 1000, tleg = 1, Vrep =∞. The
parabolas show the continuous HCB spectrum relevant for Jleg = 0 (see Fig. III.13)
and the red crosses represent the ladder spectrum at (a) Jleg = 0.1 (b) Jleg = 1.

separation”: in Refs. [77, 78] we showed that the full excitation spectrum of an
itinerant anyon chain is made up of two independent contributions originating from
the charge degrees of freedom (described in section 5.3.1) and the anyon degrees of
freedom which are given by a squeezed (undoped) anyon chain of length La = ρ̃L
where ρ̃ is the anyon density on a L site t–J chain of anyons.

We now perform a quantitative comparison of the spectra of the anyonic ladder and
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54 Chapter III. Ladders of non-Abelian anyons

Figure III.16: Comparison of the energy difference spectra, after subtracting the
charge contribution to the energy of each state, of a 2 × 8 ladder, ρ = 3/4 with
that of the effective t–J chain L = 8, ρ̃ = 1/2. The couplings on the ladder are
Jrung = trung = 1000, tleg = 1, Vrep =∞ and (a) Jleg = 0.1 and (b) Jleg = 1.

its corresponding effective anyonic chain. As the charge spectra match, we focus
on the energy difference spectrum (EDS) obtained by subtracting the (supposed)
charge excitation component to each state. By construction, the EDS then carries
the information about the anyon degrees of freedom. Note that this procedure is
only possible at low energy and for small enough Jleg, i.e. when a well defined
parabolic charge branch can be assigned unambiguously to the levels we consider.
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5. Discussion of phases and effective models 55

However, even when a large splitting of the energy levels is seen as in Fig. III.15(b),
we have been able to identify exactly the charge excitations corresponding to the
various levels in the low energy spectrum up to an excitation energy of order 5tleg
and hence obtain the corresponding EDS. The numerical results for the EDS on a
2× 8 ladder with anyon density ρ = 3/4 for small Jleg = 0.1tleg and intermediate

Figure III.17: Three-leg ladder: The black circles denote the spectrum of a 3× 6
ladder with ρ = 5/18 while the red crosses are for the effective chain with L = 6 and
ρ̃ = 5/6. The couplings on the ladder are Jrung = trung = 1000, tleg = 1, Vrep =∞.
(a) Charge spectrum at Jleg = 0. The solid lines denote the HCB spectrum. (b)
energy difference spectrum for Jleg = 0.1.
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56 Chapter III. Ladders of non-Abelian anyons

Jleg = tleg are shown in Figs. III.16(a) and (b) respectively. We find the EDS
of the ladder and of the effective chain to be in perfect agreement. The perfect
mapping of the two-leg ladder physics to the physics of the chain hence implies
straightforwardly that the concept of spin-charge fractionalisation is not strictly
1D but also applies to the two-leg anyonic ladder, in contrast to the electronic
ladder analog.

Note that the EDS subtracted spectrum must not be confused with the actual
energy spectrum of the corresponding squeezed golden chain. In our prescription,
subtracting the charge excitations from the full spectrum, we get the spectrum
corresponding to the anyon degrees of freedom as a function of the total momentum
of the ladder/t–J chain, rather than that of the squeezed golden chain. Thus the
spectra shown in Figs. III.16(a),(b) are qualitatively different from the golden chain
spectra.

5.4 Effective t–J models: Three-leg ladder

All results about the t–J phases are summarised in Table III.3 and we provide a
short description below.

5.4.1 Density ρ < 1/3

For ρ < 1/3, the effective model upon doping the effective golden chain G±1 is again
a t–J chain (C±01) independent of the sign of the couplings. Our numerical spectra
agree well with the effective model, as shown in Fig. III.17 for a 3×6 ladder with
ρ = 5/18.

Note that, analogously to the case of the two-leg ladder, the mapping to the
effective model is exact only in the limit of infinite rung couplings. In Fig. III.18,
we show the log-log plot for the broadenings Σ for each E ≤ 0 energy levels in the
K = 0 sector as a function of the inverse rung couplings for a three-leg ladder.
The slope of −1 shows again that, for large but finite rung couplings, there are
second order effective processes involving higher energy states of the rungs.

5.4.2 Density 1/3 < ρ < 2/3 and Jrung > 0

In the density regime 1/3 < ρ < 2/3, we find an effective t–J model (C±21) upon
doping the ρ = 1/3 G±1 golden chain with heavy holes (increasing the U(1) charge
density) or, equivalently, doping the totally gapped ρ = 2/3 T±2 phase with effective
light τ particles (reducing the U(1) charge density). Numerical simulations of
three-leg ladders in this density regime gives an effective hopping that agrees very
well with the analytical estimate.
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58 Chapter III. Ladders of non-Abelian anyons

5.4.3 Density ρ > 2/3 and Jrung > 0

In the strong antiferromagnetic Jrung > 0 rung coupling limit, increasing the U(1)
charge density starting from the T±2 gapped chain of heavy holes, introduces super-
heavy τ anyons (i.e. |3, τ〉 states). The system is described by a C±23 (modified) t–J
chain. Unlike in the previous simple t–J chains, the super-heavy τ ’s experience an
effective nearest neighbour attractive potential.

5.4.4 Density ρ > 2/3 and Jrung < 0

For ferromagnetic Jrung < 0 at a density ρ > 2/3, we map to an effective (modified)
t–J chain C±32 phase of heavy τ ’s and super-heavy holes. The heavy τ ’s experience
a nearest neighbour repulsive potential. Our numerical simulations match very
well the analytical estimates.

5.5 Phase separation at large Jrung > 0

In the absence of a rung charging energy Vrep an additional phase PS03, that
exhibits phase separation, appears for large Jrung > 3φ|trung|. The physics of the
interacting light holes and super-heavy τ particles is described by an extended 1D
t–J–V model that contains the usual couplings of the regular t–J model and, in
addition, the nearest neighbour attractive potential V between the super-heavy τ

Figure III.18: Energy splittings of all E ≤ 0 energy levels at K = 0 of the 3 × 6
ladder with ρ = 5/6 as a function of tleg/trung. The values of the couplings are
tleg = 1, Jleg = 0, Vrep = ∞ and trung(= Jrung) takes different values from 100 to
10000.
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6. Effective model of heavy and light Fibonacci anyons 59

particles. The dominant attraction V leads to phase separation between an empty
and a completely filled ladder.

6 Effective model of heavy and light Fibonacci
anyons

6.1 The model

We now discuss a new model which appears for strong FM rung couplings on a two-
leg ladder with ρ > 1/2 and a large Vrep. A similar effective model also describes
the three-leg ladder with FM rung couplings and 1/3 < ρ < 2/3. When the rung
couplings are FM, the fusion of two τ ’s results in a τ charge. The fusion of a τ
and a hole always results in a τ . One thus obtains an effective model with two
different Fibonacci particles, the heavy and light τ ’s distinguished by their U(1)
charge. For two-leg and three leg ladders, the magnetic interactions (similar to
the Golden chain) and the potentials between the different flavours of τ particles
are listed in Table III.4.

Width τ1 τ2 J/Jleg Eq. V/Jleg Eq.
2 heavy heavy 2

φ2 (A.12) 2
φ3 (A.11)

2 heavy light − 1
φ

(A.16) 1
φ

(A.17)
2 light light 1

2 (A.4) — —
3 heavy heavy 11

8φ2 (A.25) 11
8φ3 (A.26)

3 heavy light − 5
8φ (A.33) 5

8φ (A.34)
3 light light 3

8 (A.21) — —

Table III.4: Interactions between heavy and light τ ’s in two-leg and three-leg lad-
ders. The labels τ1 and τ2 indicate the type (heavy or light) of the two interacting
particles.

In addition to the magnetic and potential terms one also gets a kinetic process
exchanging heavy and light τ ’s on nearest neighbour rungs. This process is shown
schematically in Fig. III.19(a),(b) for the microscopic ladder model and the effec-
tive chain respectively. Note that, in the t–J chain, with holes and τ ’s, the hopping
process shown in Fig. III.1(c) moves the entire particle along with its charges and
spin labels. Whereas now, the scenario is very different, the spin labels mix with
each other as the heavy τ ’s hop over to exchange positions with the light τ ’s. The
effective 1D model (in the basis of Eq. (III.3)) for the hopping of heavy τ ’s is
described by the Hamiltonian HHL given below
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60 Chapter III. Ladders of non-Abelian anyons

Figure III.19: Hopping of heavy (or equivalently light) τ ’s. (a) Microscopic ladder
model: the blue circles denote τ particles and the white circles are vacant sites on
the ladder. (b) The effective chain.

HHL = t


1

0
0

φ−2 φ−3/2

φ−3/2 φ−1

 , (III.35)

where t is the rescaled hopping amplitude. We have found that, for a two-leg
ladder, the effective hopping amplitude is

t = cos(3π/5)tleg. (III.36)

A proof of this is provided in Eq. (A.47).

For a three-leg ladder, the same model applies in the density regime 1/3 < ρ < 2/3
(see Fig. III.12(b) showing the two new low energy states on the rungs) and the
hopping amplitude is

t = 1
8
[
1 + 9 cos(3π/5)

]
tleg, (III.37)

as shown in Eq. (A.71). Note that there exists a symmetry between the two
kinds of τ ’s i.e. the number of heavy and light τ ’s in the system can be swapped,
leaving the physics unchanged. We provide a detailed analytical derivation of this
Hamiltonian in Appendix A.

These analytical considerations are found to be in very good agreement with our
numerical results for Jleg = 0. Fig. III.20 shows the comparison between the low
energy spectra of the effective single chain with heavy and light taus and the ladder
model. Note that for Jleg = 0 there is an exact E→ -E symmetry in the spectrum
(not shown here) that emanates from a symmetry of exchanging heavy and light
τ ′s. When there is an odd number of both particle types, the momenta are shifted
by π under this exchange.
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6. Effective model of heavy and light Fibonacci anyons 61

Figure III.20: Low energy spectrum of the two-leg ladder with strong FM rung
couplings compared to the 1D heavy and light τ model. The black circles are
for a 2×8 ladder and anyon density ρ = 3/4, while the red crosses are for the
effective chain that it maps to (L = 8, ρ̃ = 1/2). The values of the couplings are
tleg = 1, Jleg = 0, Vrep =∞ and Jrung = −2trung = −2000.

The 1D model allows us to numerically solve larger systems with smaller finite
size corrections. We, however, restrict ourselves to the case Jleg = 0 when there
are no magnetic interactions between τ particles along the leg direction but only
a small hopping tleg operates between the rungs since already this simple model
raises several open questions.

6.2 Single particle dispersion

We start with the simplest problem of a single light (heavy) τ moving in a back-
ground of L−1 τ ’s of heavy (light) τ . We choose t = −1 in order to avoid even-odd
chain length effects (although for L even the sign of t is irrelevant). In the spectra
shown in Fig. III.21 for several chain lengths we observe that the dispersion mini-
mum is always at K = 0 and a local minimum appears around an incommensurate
momentum. The bandwidth is about 0.015|t|, independent of whether we consider
a single heavy or light τ .

6.3 Critical phase at generic fillings

We next consider a finite density ρ̃ of heavy τ ′s and a corresponding filling of
1 − ρ̃ light τ ′s. Note that due to the symmetry between the heavy and light
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62 Chapter III. Ladders of non-Abelian anyons

Figure III.21: Energy dispersions of a single heavy (or light) τ amidst L− 1 light
(or heavy) τ ’s for even (circles) and odd (crosses) length chains, with couplings
t = −1 and J = 0.

τ ’s, densities ρ̃ and 1 − ρ̃ are equivalent. We expect the same behaviour for all
densities except for the half-filled case ρ̃ = 1/2, which we shall consider separately
in the next section. For simplicity we thus choose ρ̃ = 1/4 since it allows us to
perform a finite size analysis using three different chain lengths L = 12, 16, 20.
The corresponding spectra are shown in Fig. III.22(a).

One-dimensional gapless systems are often described by a CFT and their lowest
energy levels are then given by

E(L) = eTL+ 2πv
L

(− c

12 + hL + hR). (III.38)

where c is the central charge and hL, hR are the scaling dimensions of the ‘primary
fields’ of the CFT. The (thermodynamic) ground state energy per site eT and the
velocity v are non-universal constants. The finite size ground state energy E0(L)
corresponds to hL = hR = 0.

To test the CFT prediction, we performed a finite-size scaling analysis of the
first few energy gaps vs 1/L. As shown in Fig. III.22(b), we observe that the
gaps around K = π show a linear scaling with 1/L, suggesting gapless modes.
This behaviour is, in principle, consistent with the CFT scaling of Eq. (III.38).
However, at this point, we could not identify the CFT that describes our model,
being limited in Lanczos exact diagonalisation to system sizes of less then twenty
sites. Using the density matrix renormalisation group (DMRG) might help to
obtain the central charge, but is left for future studies.

The energy spectrum around K = 0 shows a different behaviour: as shown in
Fig. III.22(b), the finite size gaps of the first excited states at momentum K = 0
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6. Effective model of heavy and light Fibonacci anyons 63

Figure III.22: (a) Spectra for the effective chains for heavy and light τ ′s at ρ̃ = 1/4
with t = 1, J = 0. Note the momenta have been shifted by π for L odd to make all
spectra similar and the ground state energy has been subtracted out. The lowest
energy levels at momenta 0, 2π/L, π − 2π/L and π have been tagged as A, B,
C and D, respectively. The second excitations at momenta π and π − 2π/L are
labeled by E and F, respectively. (b) Finite-size scaling analysis of the A, B, C,
D, E and F energy excitations. Linear (dashed lines) and exponential (full lines)
fits are shown around K = π and K = 0, respectively (see text). The scalings of
the B, C and F gaps are also reported in (a).

63



64 Chapter III. Ladders of non-Abelian anyons

and K = 2π/L could be fitted as ∆(L) = ∆(∞)+C/L exp(−L/ξ), where ∆(∞) '
0.04 is a finite energy gap and ξ > 10 is a correlation length. This suggests that,
at density ρ̃ = 1/4, the energy spectrum shows both a gapless mode with linear
dispersion, described by a CFT, and additional gapped modes.

6.4 Possible topological gapped phase at ρ̃ = 1/2

Next we consider the density ρ̃ = 1/2 where there is an equal number of heavy
and light τ ′s. We simulated chains with lengths L = 14, 16, 18, and 20 and show
these spectra in Fig. III.23(a), revealing low energy excitations at momenta K = 0
and K = π. Performing a finite size scaling analysis on the low lying states using
system sizes L ranging from 14 to 20 sites, as shown in Fig. III.23(b) we find that an
exponential form like ∆(L) = ∆(∞) + C/L exp(−L/ξ) provides reasonably good
fits of the data. These fits suggest that three of the gaps extrapolate to zero and
the next higher energy excitations extrapolate to a finite value ∆(∞) ∼ 0.05. Note
however, that the correlation lengths extracted from the fits are of the order of the
system size so that our extrapolations have to be taken with caution. However,
if correct, our findings would indicate a topological gapped phase with a four-fold
degenerate ground state, although dimerisation is not excluded (since ground state
momenta are both 0 and π). In any case, we believe half-filling is a special case
and very different from the other density regimes we considered. This behaviour
is also notably different from the golden chains which are known to be gapless for
both FM and AFM leg couplings.
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Figure III.23: (a) Spectra of the chains of heavy and light τ ’s of different sizes
at ρ̃ = 1/2 and t = 1, J = 0. The ground state energy has been subtracted out
and the momenta are shifted by π for odd number of particles of each type so
as to get the same zero ground state momentum in all cases. The lowest energy
levels at momenta 0, 2π/L, π − 2π/L and π have been tagged as B, E, G, A,
respectively. The second excitations at momenta 0 and π are labeled by F and C,
respectively. The third excitation at momentum π is labeled by D. (b) Finite-size
scaling analysis of the energy gaps of (a) vs 1/L (see text). The scalings of the E
and G gaps are also reported in (a).
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1 Introduction

An optical lattice is an effective periodic potential created by the induced dipole
interaction between neutral atoms and electromagnetic waves. There are specific
potential minima that are able to localise the particles, thereby corresponding to
a lattice. Such a lattice, for instance, can be realised by the interference between
two counter propagating laser beams. This potential, with periodicity d = λ/2
(where λ is the wavelength of the laser beam), could then have minima at either
the intensity maxima or minima of the laser beam depending on the frequency
of the laser beam. It is these minima of the potential that form the lattice sites
where, in the absence of other interaction terms, the particles eventually tend to
reside. Furthermore, we can allow laser beams to interfere along various directions
to create higher dimensional lattices or even those with different geometries such as
dimers [151], triangular lattices [152], kagome lattices [153] etc. The optical lattice
is created using Gaussian laser beams, thereby leading to a periodic potential with
concomitant harmonic trap that confines the particles in the lattice.

For the case of fermions, s-wave scattering is not allowed due to the Pauli Exclusion
Principle and for low energies the higher partial waves are suppressed. So the
fermions are naturally non-interacting. To include the effect of interactions one
has to use other methods. In the present day experiments, it is possible to tune the
nature of the interaction (attractive or repulsive) and also its strength to almost
any possible value. The study of strongly correlated systems is facilitated by the
advances in modern cold atom experiments. This is done very efficiently by using
the method of Feshbach resonances. The interaction strength is directly related to
the scattering length which can be tuned by varying the applied magnetic field in
the experiments. The scattering length is given by

a = aBG

(
1− ∆B

B −B0

)
, (IV.1)

where aBG is the background scattering length set by the highest vibrationally
excited state in the open channel, B0 is the position of the resonance and ∆B is
its width. At the resonance position the scattering length diverges and the only
length scale in the problem is the inter-particle spacing ∼ k−1

F .

The presence of a harmonic trap is efficient for spatial confinement of the system.
The single particle states are limited to a smaller finite region of the extent of
the lattice, making the system tractable in experiments. The trapping potential
appears in the Hamiltonian as a spatially dependent term. The Hamiltonian is
no longer translational invariant. In such a case, the Bloch function description
of the wavefunctions is not valid in a strict sense. However, if the length scale
associated with the trapping potential is much larger than the lattice spacing then
the system can be considered locally homogenous. This limit where the potential
is only slowly varying is called the Local Density Approximation. When the energy
difference between two neighbouring sites is smaller than any other energy scale in
the problem then we can approximate it to a homogenous system. The chemical
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potential is shifted to include the site dependent piece, treating the problem in
a similar way as before. The locally varying chemical potential, depending on
the interaction strength, can lead to the coexistence of conducting and insulating
phases, for example a Mott insulator at the boundaries along with a metallic state
in the bulk.

Although the optical lattice under study is strictly speaking not a homogenous
lattice due to the presence of the confining potential, it is nevertheless instructive
to study the underlying physical concept of particle in a periodic potential. Though
the single-particle picture is a non-interacting system, it does help us understand
our interacting system better. According to the Bloch theorem the wavefunction of
a particle in a periodic potential can be written as a plane wave times a periodic
function, that has the same periodicity as the potential. The wavefunction is
characterised by quasimomentum q, a good quantum number corresponding to the
translational symmetry of the potential. Periodicity tells us that the momentum
values are repeated after a certain interval, denoted as the Brillouin zone. For
a given value of q, we have multiple solutions of the Schrodinger equation which
belong to different energy bands, denoted by the index n. The wavefunction can
be written as

φ(n)
q (x) = eiqx/~ u(n)

q (x), (IV.2)

where u is a periodic function that obeys the same periodicity as the potential.
The separation between these bands depends on the quasimomentum value and
the lattice depth. In the absence of an optical lattice there are no energy gaps
between the bands and the particles trace out energy-momentum parabolas as if
they were free particles. As soon as the lattice depth becomes finite, an energy
gap opens up and deviations from the quadratic energy-momentum dispersion are
observed. Additionally, a decrease in band width is seen. For the case of very
deep lattices, the energy gap between the lowest and the subsequent energy band
is large enough to approximate the low-energy physics to a single-band Hubbard
model. Such a limit also witnesses the lowest energy band to be more or less flat,
i.e. a degeneracy in q. The Bloch wavefunctions are completely delocalised and
extend over the entire length of the lattice. For the atoms localised on lattice site,
it is more natural to consider an alternate basis, namely the Wannier basis that
is described by localised wavefunctions for each lattice site. They can be obtained
by constructive superpositions of Bloch wavefunctions and for a particle localised
at site i in the nth band are given by:

wn(x− xi) = 1√
N

∑
q

e−iqxφ(n)
q (x), (IV.3)

where N is a normalisation constant.

The process of lattice loading begins in the extreme limit of shallow lattices, where
the lattice potential is turned off. The lattice potential is then ramped up ex-
tremely slowly, ideally adiabatically, to minimise any deviations from the ground
state of the instantaneous Hamiltonian. In experiments, however, deviations from
the true adiabatic regime are bound to arise since the lattice loading can only be
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done in a finite amount of time. The hope remains that the system ends up in
the ground state of the desired final Hamiltonian by means of a time evolution
from the initial state. The non-adiabaticities, quite often, lead to the population
of some low-lying excitations, and eventually a rise in the temperature of the sys-
tem. Deep lattices are legitimate to be approximated by a single-band Hubbard
model and suppress the population of higher bands due to the large energy gap,
thus the target Hamiltonian lies in that regime. However, the initial state has a
vanishing lattice depth, thus does not have a band gap, rendering the Wannier
basis inappropriate for our use. We thus use real space discretisation to obtain a
continuum model which can be used to study the entire lattice loading schedule,
from the early stages right until the end. This allows us to systematically study
the time evolution of the loading process, without the need to change basis during
the process.

2 Model

The Hubbard model is one of the simplest models that captures efficiently the
many-body effects for fermions. The ground state is determined by the competition
between several different energy scales, namely the kinetic energy that delocalises
the particles and the on-site potential that may or may not favour double occupied
lattice sites, depending on whether it is attractive or repulsive.

In this work we consider a continuum model of spin-1/2 fermions that can be
written in continuous space as a function of the field operators ψ̂†σ(x) that creates
a fermion of mass m and spin σ at the position x. The corresponding annihilation
operator is ψ̂σ(x). The Hamiltonian of a 1D system of size L can then be written
as:

H =
∑
σ

∫ L

0
dx ψ̂†σ(x)

[
− ~2

2m
d2

dx2 + V (x)
]
ψ̂σ(x)

+ g

2
∑
σσ′

∫ L

0
dx ψ̂†σ(x)ψ̂†σ′(x)ψ̂σ′(x)ψ̂σ(x), (IV.4)

where the first term is the kinetic energy and the second one is a site dependent
external potential energy. The four-operator term is the contact interaction char-
acterised by the interaction strength g, which is obtained from the single particle
scattering length [154]. The external potential carries the potential created by
the interfering lattice beams along with the harmonic trap used for confining the
system. It is given by

V (x) = V0 cos2(kx) + 1
2mω

2x2, (IV.5)

where V0 is the lattice depth, k = 2π
λ

is the wave vector of the laser beam and ω
is the frequency of the harmonic trap. The natural energy scale in the problem is
the recoil energy defined as Er = ~2k2

2m . Our results will be presented in units of
Er.
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In order to simulate numerically the continuum model described in Eq. (IV.4),
we first map it to a discrete space basis by considering a unit cell of length a,
which is discretised with Ndiscr = 16 grid points. This leads to a grid spacing of
length d = a/Ndiscr. For the optical lattice the natural choice for the unit cell is
to be one minimum of the external optical lattice potential, i.e. a = λ/2 = π/k.
The continuum Hamiltonian is then mapped to a lattice Hubbard model written
in terms of creation and annihilation operators c†i,σ and ci,σ respectively, i being
the grid site index and σ is the spin of the fermion. The Hamiltonian is written as

H =− J(d)
∑
σ

∑
<ij>

c†i,σcj,σ + h.c.

+
∑
σσ′

∑
i

U(d)
2 c†i,σc

†
i,σ′ci,σ′ci,σ +

∑
σ

∑
i

εi(d)niσ, (IV.6)

where the kinetic term becomes the hopping amplitude J(d) = (~2/2m)/d2 be-
tween adjacent grid sites i and j, the contact interaction turns into an on-site in-
teraction U(d) = g/d and the external potential is implemented as a site-dependent
chemical potential εi(d) = V (d/2 + i d) + 2(~2/2m)/d2.

The choice of the real-space discretisation allows to simulate the continuum model
in the very shallow lattice as well deep lattice regimes without the need to change
basis during the time evolution of the loading process.

By changing the number of particles in the system and tuning the model param-
eters, one obtains very different phases in the ground state that could be used
for one or another experiment. Moreover, the presence of a harmonic trapping
potential realises different phases in in different spatial regions. This allows us to
simulate several different target states which we present in sec. 5.

3 Method

Analogous to the previous study of bosonic systems [123] we simulate a fermionic
optical lattice model numerically with the density matrix renormalisation group
method (DMRG) [155, 156]. The DMRG method can be understood in terms of the
matrix product state (MPS), which is a variational ansatz wave function that for
one-dimensional quantum systems reduces the exponentially growing complexity
to just a polynomial scaling by limiting the amount of entanglement which is
captured by the ansatz. The accuracy of the algorithm is systematically improved
with an increase of the MPS bond dimension M . This algorithm is known to
work exceptionally well for obtaining the low-lying spectra of 1D systems in good
agreement with experimental results [157, 158].

The standard DMRG approach has serious convergence problems for large dilute
lattices that arise from the real-space discretisation needed to represent the con-
tinuum system during the lattice loading. To overcome these problems we use the
multigrid DMRG algorithm [142] which leads to fast convergence.
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Time evolution within the MPS framework is performed making use of the time-
dependent variants of DMRG [134, 135, 159], which split non-commuting terms
in the unitary time evolution operator via a second-oder Suzuki-Trotter decompo-
sition on a small time step dt = 0.01 ~/Er. For a nearest-neighbours model this
decomposition allows to sequentially apply two-site gates to the MPS wave func-
tion. In the worst case scenario of a local perturbation propagating though the
system, the MPS bond dimension needs to grow exponentially with the number
of time steps, however, since our goal is to evolve the system being as adiabatic
as possible, the MPS truncation is still controllable even for relative long time
scales. In our simulations this is achieved by reaching a bond dimension between
M = 400 and M = 600. The simulations were performed using the ALPS MPS
code [139–141] on the Mönch cluster of ETH Zurich.

Note that our simulations do not suffer from any boundary effects that may arise
due to the choice of open boundary conditions. The reason is that the presence of
a trapping potential and our choice of particle filling ensures that the extent of the
system with a non-zero local density is effectively reduced compared to L. Thus,
the system remains confined well within the boundaries. This reduced extent of
the actual length serves as an effective system size and is referred to as Leff in the
following section.

4 Lattice loading protocols and observables

To simulate the effects of the optical lattice loading process we use the ground
state optimisation to prepare the initial wave function in the state |ψinit〉, where
the lattice potential is switched off i.e. V0(t = 0) = Vi = 0. This state is then
time-evolved with a time-dependent Hamiltonian such that at any time t during
the evolution the state is given by |ψ(t)〉 with a time dependent lattice potential
V0(t). In our simulations we use a ramp that linearly interpolates between the
initial depth Vi and final depth Vf of the optical lattice as:

V0(t) = Vi + (Vf − Vi)
t

tR
, (IV.7)

where tR is total ramp time. At the end of the lattice loading the model is expected
to have reached the target state with lattice potential V0(tR) = Vf (= 8Er). The
final state |ψfinal〉 ≡ |ψ(t = tR)〉 is compared to the target state |ψtarget〉 to quantify
the defects. We repeat this process for several initial states, different loading
protocols, as well as multiple ramp times.

To quantify and understand the origin of the defects we can address several ob-
servables both during the evolution of the wave function |ψ(t)〉 and at the final
state |ψfinal〉. In our study we examine observables only at the end of ramp time.
Of particular interest are the excess energy per particle

q
∣∣∣
(t=tR)

=
(
E[|ψfinal〉]− E[|ψtarget〉]

)
/N, (IV.8)
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and the fidelity with respect to the ground state of the instantaneous Hamiltonian,
which at the end of loading is given by

f
∣∣∣
(t=tR)

= |〈ψtarget|ψfinal〉|. (IV.9)

We also study the time-evolution of the local density

nσ(x, t) = 〈ψ(t)|n̂σ(x)|ψ(t)〉. (IV.10)

In the following results we will report only the total density per grid point n(x) =
n↑(x)+n↓(x) since no local magnetisation effects have been observed. Additionally,
we compute the local density integrated over one optical lattice unit cell

n(i) =
Ndiscr∑
k=1

n(x)
∣∣∣∣
x=(i+k−1) a

(IV.11)

which simplifies the analysis in terms of the effective lattice model, e.g. one expects
n(i) = 1 in the Mott regime and n(i) = 2 in the band insulating regime.

Note that the above lattice loading schedule linearly modulates the lattice potential
at every time step, keeping all other parameters fixed during the time evolution.
In our simulations, as we will explain in the upcoming sections, we encounter
heating effects for certain target states. In order to reduce these effects with the
eventual goal being to attain desired low temperatures in experiments, we propose
an improved loading schedule that dynamically changes one or more parameters of
the Hamiltonian, in addition to the lattice depth. This effect will be incorporated
in the time dependent Hamiltonian and will be reflected in the state |ψ(t)〉 during
the evolution.

The first protocol follows the approach of [123] to dynamically reshape the trap
potential, by linearly modulating the trap frequency ω. Starting with an initial
value ωin, we increase ω linearly during the lattice loading to reach the desired
target value ωf at the end of ramp time. At time t the trap frequency is given by

ω(t) = ωin + (ωf − ωin) t
tR
. (IV.12)

We perform simulations with different values of win and different ramp times to
study the scaling behaviour. Our results for the improvements observed with this
protocol are shown in sections 5.3 and 5.4.

Alternatively, we could continuously tune the interaction strength during the time
evolution, which is usually an easier parameter to address in experimental setups
via Feshbach resonance [14, 160]. Since the spread of the local density of the initial
state is found to be too narrow compared to the target state, we prepare a new set
of initial states with a larger initial value of gin, which would broaden the system.
The value of the interaction strength during the lattice loading g(t) is then linearly
reduced to its target value gf , according to

g(t) = gin − (gin − gf )
t

tR
. (IV.13)
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This scheme is studied for the target state of section 5.4. Note that if the initial
state is observed to have a rather broad spread of the local density in comparison
to the target state, one should aim to narrow it down by starting from a weaker
interaction strength.

We propose a third scheme that is also seen to be useful in enhancing the fidelity
and reducing the excess heat during lattice loading. In this approach, one combines
both the above approaches in order to tune the trap frequency and the interaction
strength during lattice loading. Although we find that the first protocol is able to
achieve slightly higher fidelity than the other two protocols, it might not be the
easiest one to implement in experiments. The other two schemes are not far behind
in improving the fidelity and more practical from the experimental perspective.

5 Investigation of various target states

5.1 Metallic target state

We begin by studying the metallic states, where the fermions are delocalised over
the lattice. Such a state is observed for a small number of particles N < Leff
and with a weak contact interaction. If the repulsive interaction is not too strong
compared to the tunnelling between unit cells, the fermions are free to hop to
the neighbouring one gaining kinetic energy. This results in a continuous density
distribution throughout the length of the system.
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Figure IV.1: Local density distribution of the initial state (Vi = 0) and the metallic
target state (Vf = V0 = 8Er) integrated over each unit cell.
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We simulated a chain with N = 8 particles i.e. N↑ = N↓ = 4. The interaction
strength was chosen to be g = 0.2Erλ/2 along with a trap frequency of ω =
0.1 (~/Er)−1. The local density of this target state and the corresponding initial
state without lattice potential are depicted in Fig. IV.1.

We allow the initial state to evolve in time by linearly increasing the lattice po-
tential such that at the end of ramp time the system has the full strength of the
lattice potential i.e. V0(t = tR) = Vf . We compute the excess heat and the fidelity
for such a state using different ramp times approaching the limit of adiabatically
loading of the lattice, and we do not observe any pronounced heating effects. Fig.
IV.2 shows the heating and fidelity as a function of ramp time.

Our simulations reveal that it is possible to reach a final state fairly close to the
target state just by being slower in loading the lattice. For tR = 256 ~/Er, we
observe a fidelity of more than 94% and reduce the heating by a factor of 10
compared to shorter ramp times tR = 16 ~/Er.
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Figure IV.2: Dependence of the (a) excess heat and (b) fidelity on ramp time for
the metallic target state.

Intuitively one might think of the metallic state as a gapless state, with continuous
excitations in momentum space. Hence this lattice loading could be extremely
capable of populating low-lying excited states and at the risk of generating a
lot of heat. However, given the finite system size originating from the harmonic
confinement, there is always a finite gap that drastically reduces the excitations.

Additionally, the qualitative correspondence of the density profiles between the
initial and the target states allows the system to evolve without almost any defect.
This is illustrated in the Fig. IV.3 showing snapshots of the density profile that
have been collected at several time steps during the longest lattice loading up to
tR = 256 ~/Er. The final state (orange curve) shows only very minimal deviations
from the target state (red curve).

75



76 Chapter IV. Fermions in optical lattices

0

0.2

0.4

0.6

0.8

1

0 4 8 12 16 20 24

lo
ca

ld
en

sit
y

x [λ/2]

t = 0
t = tR/4
t = tR/2
t = 3tR/4

t = tR
target state

Figure IV.3: Evolution of the density profile during the ramp up for a metallic
target state with ramp time tR = 256 ~/Er.

5.2 Central band insulator

Next we examine a target state that exhibits the co-existence of two phases: a
bulk band insulator flanked by a Mott insulator on both sides. Both these phases
are incompressible and characterised by special values of the average local density
per unit cell. The Mott phase has one particle per lattice site, while the band
insulator has an occupancy of two particles per site.

For simulating such a target state, we consider a chain with a particle number
N close to (but less than) twice the effective system size Leff . In the specific we
consider N = 20 particles (N↑ = N↓ = 10) with interaction strength g = Erλ/2
and trap frequency ω = 0.3 (~/Er)−1.

The integrated local density distributions for the initial and target states are shown
in Fig. IV.4. In the target state the bulk of the system shows a band insulator
phase while the edges are in the Mott insulator phase.

Note that the density distributions of the initial state and the target state resemble
each other in two important ways, namely the spatial spread of the system along
with the peak value and its position in the density profile. This is the main reason
why we notice that such a system does not incur too much heating if the lattice
loading is done with ramp times that are long enough.

The heating and fidelity as a function of the ramp time are shown in Fig. IV.5(a)
and (b) respectively. The fidelity grows rather rapidly initially upon increasing
the loading time but then tends to saturate more or less around 90%. For the
shortest ramp time, the final density distribution is far from that of the target
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Figure IV.4: Local density distribution of the initial state (Vi = 0) and the Mott
insulator with bulk bad insulator target state (Vf = V0 = 8Er) integrated over
each unit cell.
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Figure IV.5: Dependence of the (a) excess heat and (b) fidelity on ramp time for
a central band insulator.

state. The proximity to the target state increases rapidly for the first few ramp
times that we considered due to rapid changes in the density profile during the
loading. Thereafter, the final state matches the target state to a good degree and
further slowing down loading only brings about slight modifications in the density
profile. This is what leads to a saturation in the scaling of the fidelity.

Note that although this target state is inherently incompressible as opposed to the
metallic state studied in Section 5.1, it still does not suffer from adverse heating
effects. This is a manifestation of the fact that the density distribution of the
initial state that is in close qualitative correspondence in terms of Leff and peak
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value, allowing an appropriate redistribution of particles during the ramp to reach
the desired target state, as shown in fig. IV.6.
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Figure IV.6: Evolution of the density profile during the ramp up of a central band
insulator for ramp time tR = 256 ~/Er.

5.3 Mott insulator target state

Our next choice of the target state is a pure Mott insulator state with a unit
average local density per unit cell throughout the effective length of the system.
We simulate this target state by choosing N = 12 particles (N↑ = N↓ = 6) with
interaction strength g = 2Erλ/2 and trap frequency ω = 0.25 (~/Er)−1. The local
density profile of the initial state and the target state are shown in Fig. IV.7.

We repeat the protocol followed in the previous sections, where the optical lattice
potential was linearly ramped up. However, for this target state we observe that
this approach does not scale with the ramp time. We note that even for the longest
ramp time that we considered (tR = 256 ~/Er), the maximum fidelity we are able
to achieve is only about 15%, and the decrease in the excess heat is not significant
either. Though by further increasing the ramp time, we should be able to get a
better fidelity but possibly not an impressive increase. The slow increase of fidelity
with ramp time is a clear indication that simulating the lattice loading with a finite
ramp time is not the main cause of heating in the system.

We begin to investigate the lattice loading for this target state by first switching off
the trap to understand the homogenous system. A fermionic Mott insulator state
in a homogenous system without a trapping potential does not suffer from strong
defects and both the excess heat and the fidelity scale well up to, for instance, a
fidelity of 80% for ramp time tR = 256 ~/Er,which is far from the value observed
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Figure IV.7: Local density distribution of the initial state (Vi = 0) and the Mott
insulator target state (Vf = V0 = 8Er) integrated over each unit cell. The blue
curve shows the density distribution of the optimal state when linearly modulating
the trap frequency ω.

for the trapped Mott insulator. Moreover, we try three different ramp shapes,
namely linear, exponential and sigmoid defined respectively by the equations:

V linear
0 (t) = Vf

t

tR
(IV.14)

V exp
0 (t) = Vf

et/τ − 1
etR/τ − 1 (IV.15)

V sigmoid
0 (t) = Vf

(
t

tR

)2

[−2(t/tR) + 3], (IV.16)

with τ = tR/4.

Fig. IV.9 shows the fidelity as a function of ramp time for the three ramp shapes
considered. We observe from the fidelity curves that for short ramp times the
exponential ramp achieves significantly higher fidelity than the others. This can
be attributed to the shape of the exponential ramp, that grows rather slowly
during the initial time steps of the ramp. This part of the loading is in the shallow
lattice regime, with a small gap to the excitations. The exponential ramp is able
to minimise the excitations to higher bands, thus yielding a good fidelity to the
target state. We also learn from the study of the homogenous system that for
long enough ramp times, the ramp shape is not important. Eventually the fidelity
tends to saturate around the same value for all the three ramp shapes considered.
The rather good fidelity achieved for the homogenous system is far from the value
obtained for the trapped Mott insulator, leading us to believe that the harmonic
trap is one of the major sources that leads to heating during lattice loading.
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Figure IV.8: Dependence of the fidelity on ramp time for a Mott insulator target
state in the trapped case.
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Figure IV.9: Dependence of the fidelity on ramp time for a Mott insulator target
state in the homogenous case for different ramp shapes: linear, exponential and
sigmoid.

We analyse the schedule of lattice loading by tracing the density profile during the
ramp up. In Fig. IV.10(a) we show the density profile during the time evolution
of the state at certain fractions of the total ramp time tR = 256 ~/Er. This
plot unveils that starting from the initial state the loading process is not able to
distribute particles in the desired way, thus deviating significantly from the target
state. As it is evident from the figure, the evolution tends to keep the particles
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close to the trap centre and this peak remains until the end of the ramp time. This
increased local density in the trap centre is a huge deviation from the target Mott
state that is expected to show a unit filling throughout the system.
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Figure IV.10: Evolution of the density profile during the ramp up of a Mott
insulator for ramp time tR = 256 ~/Er (a) without tuning the trap frequency (b)
with linear modulation of the frequency, for the optimal value of initial frequency
(wi = 0.16). The black line corresponds to the target state.

Learning from our previous analyses in sections 5.1 and 5.2, we understand that
a a qualitative match between the density of the initial and target states is im-
perative to avoid strong density defects during lattice loading. Our approach is to
dynamically change one or more experimentally accessible parameters in order to
achieve such a match.
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We implement the first modified lattice loading protocol explained in section 4,
linearly modulating the trap frequency. Fig. IV.11 reports the excess heat and
fidelity scanning different initial trap frequencies ωin. The different colours cor-
respond to different ramp times. We witness a huge improvement in the fidelity
and a sizeable decrease in the excess heat, compared to the case when the trap
frequency is fixed during the lattice loading, which corresponds to the right-most
point in the plots.
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Figure IV.11: Variation of (a) excess heat and (b) fidelity as a function of the initial
frequency for the Mott insulator target state. The different colours correspond to
different ramp times.

From the shape of the curves we can identify three different scaling behaviours. For
frequency values close to the target ωf the observables do not show any appreciable
scaling and the results are always significantly different than the target state, while
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wide initial traps (low ωin) reach the target state, but this process scales slowly. An
optimal and fast scaling is observed for intermediate values of the initial frequency.
We can identify an optimal initial state marked by a maximum in the fidelity curve,
which happens to be at wi = 0.16(~/Er)−1 for our particular simulation.

The local density distribution of the optimal initial state is shown by the blue
curve curve in Fig. IV.7. The maximum fidelity achieved for tR = 256 ~/Er is
almost 98% and the heating is reduced by a factor 50.

In Fig. IV.10(b) we show the evolution of the density profile for this optimal state
during the lattice loading for tR = 256 ~/Er. This is in stark contrast with the
evolution plot of Fig. IV.10(a) where the trap frequency remained constant during
the entire process of loading. From t = 0 to already at time t1 = tR/4, the density
profile is changed drastically when the trap frequency is modulated which was not
the case earlier. Also the time evolved state at time t1 is nearly a Mott state in
the trap centre whereas it had a more metallic nature in the previous case. At the
end of ramp time, the density profile of the final state is almost exactly that of
the target state, corresponding to an overlap of almost 98% (as can be seen in fig.
IV.11(b)).

We can thus conclude that density redistribution is the main cause of heating. By
tuning the trap frequency during the lattice loading we are able to distribute the
particles more efficiently, thus we observe a remarkable jump in the fidelity. An
optimal initial state is the one with a considerable matching to the target density
profiles.

5.4 Mott insulator with a metallic core

The last target state we investigate is the Mott insulator state with a (continu-
ous) metallic density distribution in the bulk, as represented in Fig. IV.12. The
harmonic trap allows for the co-existence of two phases in this target state, the
metallic phase and the Mott phase. A strong interaction strength and filling of at
least one particle per size characterises this state. Our simulations are done with
N = 20 particles (N↑ = N↓ = 10) with interaction strength g = 3Erλ/2 and trap
frequency ω = 0.25 (~/Er)−1.

The ramp up of the lattice potential alone shows severe heating effects and the
overlap with the target state remains less than 2% even for the longest ramp times
simulated (tR = 256 ~/Er). To see why even at significantly large ramp times
the overlap remains exceptionally low, we track the evolution of the local density
during the ramp up, as we show in Fig. IV.13(a). It reveals that the final state has
a core with a substantial number of sites having a local density of two particles per
unit cell. The figure suggests that the state, during the course of evolution in time,
tends towards one with a band insulator core rather than metallic. In addition, the
Mott insulator section of the final state is also severely reduced. Thus, the initial
state is not able to redistribute the particles to follow the density distribution of
the target state.
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Figure IV.12: Local density distribution of the initial state (Vi = 0) and the Mott
insulator with a metallic core target state (Vf = V0 = 8Er) integrated over each
unit cell.

In order to reduce these defects we tune one or more model parameters. One
approach is to vary the trap frequency as described in Section 5.3 for the Mott
insulating target state. This manages to improve the fidelity compared to the
target state to about 96% at ramp time tR = 256 ~/Er for the optimal state that
is observed at ωin = 0.19(~/Er)−1. The excess heat is also reduced significantly.
We present the results for the heating and fidelity under trap modulation for
different ramp times in Fig. IV.14.

This approach reduces the density defects as shown in Fig. IV.13(b). This optimal
state has two characteristic features, first that it mimics the target state in the
extent of the density distribution and secondly it lowers down the peak value of
the density in the initial state. The first characteristic is intuitively clear while
the second one is justified as the metallic core has only a few sites with highest
possible local density for fermions, i.e. very few sites in the core are close to
double occupation. The increased extent of the density distribution in the initial
state aids in improving the evolution towards the desired Mott insulator regime
while lowering the peak around the trap centre drives the initial state towards the
targeted metallic core and not a band insulator one.

Additionally, we simulate a loading schedule where the interaction strength is
modulated during the ramp according to Eq. (IV.13). This approach also provides
a quantitatively similar rise in fidelity. Although the actual value of maximum
fidelity is slightly lower in this case compared to the trap shaping procedure, its
ease in experimental implementation should make this approach extremely useful.
Fig. IV.15 shows the fidelity as a function of interaction strength for different
ramp times. It is evident that this protocol leads to a more extended optimal
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Figure IV.13: Evolution of the density profile during the ramp up for a Mott
insulator with a metallic core with ramp time tR = 256 ~/Er (a) without tuning
the trap frequency (b) with linear modulation of the frequency, for the optimal
value of initial frequency (wi = 0.19). The red line corresponds to the target state.

regime where the fidelity is maximised. A similar pattern for the evolution of local
density with longest ramp time is observed as in Fig. IV.13(b) starting from initial
states with interaction strength lying at the optimal plateau.

Yet another approach could be to combine the above two approaches. In such a
scenario, we tune both the interaction strength and the trap frequency during the
lattice loading. This could be beneficial from some experiments where tuning one
parameter is accompanied by an automatic modulation in another one. In our
simulations, we see that linearly modulating both trap frequency and interaction
strength, starting from a good candidate state, efficiently distributes the particles

85



86 Chapter IV. Fermions in optical lattices

0

0.05

0.1

0.15

0.2

0.1 0.15 0.2 0.25

(a)

q(
t R

)/
E
r

ωin
[
(~/Er)−1

]

tR = 16 ~/Er
tR = 32 ~/Er
tR = 64 ~/Er
tR = 96 ~/Er
tR = 128 ~/Er
tR = 192 ~/Er
tR = 256 ~/Er

0

0.2

0.4

0.6

0.8

1

0.1 0.15 0.2 0.25

(b)

|〈ψ
ta

rg
et
|ψ

fin
al
〉|

ωin
[
(~/Er)−1

]
Figure IV.14: Variation of (a) excess heat and (b) fidelity as a function of the
initial frequency for a Mott insulator with a metallic core. The different colours
correspond to different ramp times.

during the lattice loading.

In order to test this scheme, we choose a value of the trap frequency lying in the
optimal scaling region of Fig. IV.14, and then vary the interaction strength to find
a good candidate state as the initial state. If we keep both ωin and gin at their
optimal values obtained from the two protocols, we will end up in a highly spread
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Figure IV.15: Variation of the fidelity as a function of the interaction strength for
a Mott insulator with a metallic core. The different colours correspond to different
ramp times. Colour scheme remains same as in Fig. IV.14.

out density distribution, once again deviating from that of the target state. It is
evident that one needs to start with a lower (than target) value of the interaction
strength and increase it dynamically during the lattice loading to reach the target
value since we are already in the optimal ω regime which helps to broaden the
initial density distribution. We try several values of (gin, ωin) in order to obtain
a state that fits our two essential qualitative properties and thus turns out to be
a good initial state. In Fig.IV.16(a) we show the density profile of the optimal
state obtained for this protocol which is observed at ωin = 0.16 (~/Er)−1, gin =
1.4Erλ/2. This search for the optimal state is by no means complete, one could
definitely survey a larger set of parameters to arrive at a state that outperforms
the other schemes by a good margin. In order to make a comparison, we plot the
density profiles of the optimal states of all the three protocols in Fig. IV.16(a)
which are fairly similar.

In Fig. IV.16(b) we show the fidelity as a function of ramp for the optimal states
obtained in each protocol in order to compare them. For this target state, all
the three approaches mentioned scale well with ramp time and approach the same
value of fidelity as ramp times are increased. The modified protocols achieve a
significant improvement in the fidelity, and there exists an optimal state where
the maximum value is attained. The simplest lattice loading procedure where
none of the parameters except the lattice depth are modulated during the ramp
(pink curve) shows exceptionally low fidelity, with the value remaining close to
zero and poor scaling with ramp time. Even with a much slower ramp, one would
not expect a remarkable rise in the fidelity. All the other approaches where one
or more parameters are tuned during the lattice loading perform well, which is
demonstrated by a significant increase in fidelity. Although tuning the interaction
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Figure IV.16: Mott insulator with a metallic core: (a) Local density distribution
profiles for the optimal initial states obtained from all lattice loading protocols.
The target state is shown for reference. (b) Comparison of the dependence of
the fidelity on ramp time (starting from the optimal state) for all lattice loading
methods. Pink curve shows the simplest loading procedure where lattice depth
is ramped up without any change in other parameters of the model. The blue,
red and green curves show respectively the scaling of the fidelity for the modified
protocols where respectively the interaction strength, trap frequency or both are
simultaneously modulated during the ramp.
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strength (blue curve) fares slightly below the other two protocols we devised, it
does turn out to be the most easily accessible parameter in experiments, making
this protocol an interesting one. The other two methods scale equally well for the
optimal states shown in this figure. Our comparison is based on the optimal state
that we achieved by trying a few values for initial ω and g.

We conclude that all approaches where the parameters of the model are tuned in
order to redistribute density efficient provide a significant improvement in fidelity
and restore its scaling behaviour. This highlights once more that density defects are
a relevant cause of heating that can be solved by adjusting the model parameters
to achieve efficient particle redistribution.
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Chapter V

Conclusion and perspectives

The possible realisation of Fibonacci anyons in experiments and their potential
application to topological quantum computing continues to fascinate many physi-
cists to work with such systems. In this thesis, we have addressed some questions
on the physics of itinerant interacting Fibonacci anyons in two dimensions. We
have studied two and three-leg ladders of doped Fibonacci anyons and mapped out
their phase diagrams. Motivated by the construction of this model that forms an
anyonic generalisation of the fermionic t−J model, we employed a similar scheme
of analysis by working in the strong rung coupling limit. We start off with the limit
of isolated rungs and then couple them weakly by switching on small interactions
along the leg direction.

In this limit we find several different phases: totally gapped phases, paired phases
described by hard core bosons, golden chain phases, t − J phases that carry τ
anyons and trivial particles and lastly the heavy and light τ phase that carries two
flavours of Fibonacci anyons. The bosonic phases as well as the anyonic phases of
the golden chain/ladder and the t− J phases have been studied before. However,
in addition to the existing known phases, our study of doped Fibonacci ladders has
revealed a new heavy-light τ model that can possibly realise a topological gapped
stated for some special filling, whereas a critical phase otherwise. For each of
the above-mentioned phases we have analytically constructed effective low energy
models and shown that they indeed corroborate our numerical simulations.

The golden chain phases (G) appear for special commensurate fillings, where each
rung of the ladder carries a topological charge in the same quantum state. The
ladder can hence be mapped onto a golden chain with rescaled couplings. Depend-
ing on the sign of the rung couplings, we also obtain totally gapped phases (T ),
where all the rungs carry a trivial topological charge. We obtain additional paired
phases (P ) described by an effective hard-core boson model, similar to fermionic
t−J ladders mapping to a Luther-Emery liquid of Cooper pairs. This phase is ob-
tained in a two-leg ladder whenever anyons on a rung always combine to a totally
trivial charge.

The most common phase is described by effective t− J models (Cnm). In the case
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of a three-leg ladder with Jrung > 3φ|trung| a dominant attraction leads to phase
separation. All other phases show itinerant behaviour. The mapping onto a t− J
chain shows that spin-charge fractionalisation, which was initially found for 1D
chains of non-Abelian anyons, also occurs in ladders.

For FM rung couplings, a new phase occurs in which the low-energy model con-
tains Fibonacci anyons carrying different electric charges but the same topological
charge. The corresponding effective model is hence very different. This phase
(Dmn) is seen when Jrung < 0 and ρ > 1/2 for a two-leg ladder while 1/3 < ρ < 2/3
for a three-leg ladder. This model allows magnetic interactions between the dif-
ferent flavours of anyons in addition to an exchange of the two particle species,
where a heavy and light swap positions. We have analysed this model in the limit
when there are no magnetic interactions between the different flavours of particles,
since it is very rich in itself leading to several open questions, including a potential
topological gapped phase at half- filling. For other densities, we find evidence for
gapless modes described by a CFT. At this stage, it is unclear what is the cen-
tral charge and the CFT that describes our model. These issues deserve further
studies.

An important point established in this study of anyons is that we can map 2D
doped Fibonacci ladders to effective 1D models of Fibonacci anyons, some of which
have been well studied in the past. By introducing the idea of an energy difference
spectrum and building on our mapping to effective 1D models, we have shown
that the phenomenon of spin-charge separation continues to hold even in two-
dimensions on ladders of non-Abelian anyons.

The mapping to effective 1D models would allow these ladder models of interacting
anyons to be easily simulated numerically by efficient 1D algorithms such as DMRG
which pave the way for other potential studies that could be carried out on these
systems. There are still some questions for the heavy-light τ model that remain
unanswered, which would certainly give us more insight into the physics of the
model. In particular, we have identified gapless modes for (certain fillings of)
the heavy-light τ model, but are restricted by means of computational power to
ascertain the CFT that governs this model. Our exact diagonalisation simulations
do not allow us to probe very large system sizes, hence extrapolate the behaviour
of the system to the thermodynamic limit. This open question could perhaps be
tackled by means of efficient 1D computational methods.

For our work on fermions in optical lattices, we have explored different target states
namely metallic states, Mott insulating states and states that admit co-existence
of phases such as a Mott state with the metallic or band insulating core. Although
lattice loading over a finite interval of time is a deviation from the adiabatic limit,
it was observed that for some target states the scaling of the fidelity with ramp time
is extremely slow, hinting at other possible reasons behind excess heat generation.

Our key result is that density redistribution is the most important cause for excess
heat produced in the system, inhibiting the experiments to reach a low temperature
in the lattice as they can already obtain in the initial atomic cloud. This finding
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prompts us to find ways to adapt the density distribution during the lattice loading
in order to maintain it qualitatively and quantitatively similar to that of the desired
target state. The physical problem provides many parameters that could be tuned
in order to minimise the effects of non-adiabaticites.

The frequency of the underlying harmonic trap allows to modulate the density
profile during lattice loading. Additionally, the interaction strength allows us to
even reshape the density profile more easily, since its strength can be tuned in
current experiments by means of Feshbach resonances. Another approach could be
to address more than one parameter simultaneously. This can also be quite relevant
to the experiments as tuning one parameter sometimes implies a concomitant
change in other quantities. Our numerical simulations show that all the three
approaches are equally efficient, thus leaving room to select the one that is best
suited to experimental setup. The fidelity of the final state is significant improved
up to by a factor ×50.

Though we have performed dynamical simulations in one dimensional fermionic
optical lattices, we believe this result can be generalised to higher dimensions as
well. However extending similar dynamical DMRG simulations to two dimensions
is a hard task from the computational perspective. DMRG time evolution simu-
lations are currently constrained to one dimension because of the growing need of
computational resources in higher dimensions. Two- and three-dimensional sys-
tems could be tackled by other numerical techniques, with which one could devise
an optimal ramp up by studying easier static simulations at different stages of the
lattice loading. The lattice loading can then be optimised

This work gives us the confidence that examining the local density distribution
during lattice loading paves the way for exploring many fresh ideas that could
indeed ameliorate the present day cold atom experimental methods to realise lower
temperatures both in bosonic and fermionic systems. A large number of possible
paths could be explored so as to understand the loading process. For instance, one
could try to optimise the loading schedule to evaluate which ramp shape could be
best suited for the system, or whether the ramp up should be monotonic or not.
Another aspect that could be probed is to study different trapping potentials, for
instance an anharmonic trap. Such anharmonic traps could be investigated for
bosons, fermions or mixtures in one-dimensional optical lattices.
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Appendix A

Effective models

In this Appendix we explain the derivation of the effective models. We perturba-
tively derive the nearest neighbour couplings of the effective 1D models assuming
large rung couplings and small leg couplings: |Jrung|, |trung| � |Jleg|, |tleg|.

1 Magnetic and Potential Interactions

Magnetic interactions will only be present in effective models if two neighbouring
sites each have a total anyonic τ charge. A rung state with a total anyonic τ charge
can have one (light τ), two (heavy τ) or three (super heavy τ) τ particles on the
rung, as shown in Table A.1. The possible magnetic interactions are marked by
pink arrows. Below we investigate all possible combinations for two neighbour-
ing rungs in two-leg and three-leg ladders, respectively and compute the effective
interactions from first-order perturbation in Jleg.

1.1 Two-leg ladder

For the two-leg ladder the rungs have to be in the light τ state

|1±, τ〉 = 1√
2
(
|1U , τ〉 ± |1L, τ〉

)
≡ |U〉 ± |L〉√

2
, (A.1)

or in the heavy τ state |2, τ〉, where we introduced short hand notations |U〉 and
|L〉 for an anyon on the upper or lower site of a rung, respectively. We review
three possible cases below.

Light τ – light τ :We enumerate the steps for the calculation diagrammatically
in Fig. reffig:light.
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Table A.1: The various rung states classified according to their U(1) charge
(columns) and topological charge (lines). j = 0 (j = 1) corresponds to holes
(τ particles). The possible magnetic interactions (in the present models) are in-
dicated by pink arrows and the green arrows represent the possible kinetic terms
arising in first-order perturbation in tleg. The leading kinetic and potential inter-
actions can also arise only in second or third-order in tleg, marked by blue and
orange arrows respectively.

We first evaluate the matrix element 〈ψ|H leg
magn|ψ〉 of the state

|ψ〉 = |1±, τ〉 ⊗ |1±, τ〉

= 1
2(|UU〉 ± |LU〉 ± |UL〉+ |LL〉), (A.2)

where H leg
magn is the (part of the) Hamiltonian that describes the magnetic interac-

tion between two anyons once they are nearest neighbours along a leg of the ladder
(see main text).

The only non-vanishing matrix elements for the magnetic interaction in the effec-
tive model arise when the two anyons are on the same leg of the ladder. Thus, we
have

〈ψ|H leg
magn|ψ〉 = 1

4(〈UU |H leg
magn|UU〉+ 〈LL|H leg

magn|LL〉)

= 1
2〈UU |H

leg
magn|UU〉. (A.3)

The second step follows since the contributions from magnetic interactions on the
upper and lower legs of the ladder are equal in magnitude. It follows immediately
that the effective magnetic interaction is half the bare interaction:

J = 1
2Jleg. (A.4)

Heavy τ – heavy τ : Let us now consider the case where both rungs are in the
heavy τ state. The state |ψ〉 is now defined by

|ψ〉 = |2, τ〉 ⊗ |2, τ〉 . (A.5)
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Figure A.1: Sequence of steps for calculation of effective models for a two-leg
ladder with light τ ’s on adjacent rungs. (a) The initial state (b) State obtained
after one braid on the left rung (c) State after F moves on each rung to reduce
the ladder model to an effective chain (d) State after implementing the interaction
(f) (Inverse) F moves applied to go back to the ladder picture (g) Inverse braid to
bring back the particles to their original positions.

We calculate the matrix element 〈ψ|H leg
magn|ψ〉 for this state to obtain

〈ψ|H leg
magn|ψ〉 = (〈UU |H leg

magn|UU〉+ 〈LL|H leg
magn|LL〉)

= 2〈UU |H leg
magn|UU〉 , (A.6)

where the second steps follows since both the terms have the same contribution.

To evaluate the contribution of such a term, we need to calculate explicitly the
matrix elements for all bond labels. The bond labels belong to the set S defined
in Eq. (III.3), which we rewrite here for convenience

S = {|1τ1〉, |1ττ〉, |ττ1〉, |τ1τ〉, |τττ〉}. (A.7)

We denote the initial quantum state (including site and bond labels) as:

|Ψα〉 =
∣∣∣ψ; ξα〉, (A.8)

where |ξα〉 ∈ S. The final states after the magnetic process are given by :

|Ψβ〉 =
∣∣∣ψ; ξβ〉, (A.9)
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where |ξβ〉 ∈ S.

Then, the matrix elements for this process in the basis S are given by:

H leg
magn = −Jleg


φ−1

φ−3

φ−3

φ−2 φ−7/2

φ−7/2 φ−2 + φ−5

 . (A.10)

This effective Hamiltonian is proportional to the golden chain Hamiltonian (up
to an overall shift) and the contribution to the effective coupling on each leg is
φ−2Jleg. Thus, the effective potential between the two heavy τ ’s is given by

V = 2φ−3Jleg, (A.11)

and the effective magnetic interaction for the entire process obtained by combining
contributions from both the legs (see Eq. (A.6)), is thus given by

J = 2φ−2Jleg . (A.12)

Light τ – heavy τ : Finally, we consider the case where we have a heavy τ and
light τ on neighbouring rungs. The state |ψ〉 is now defined as

|ψ〉 = |1±, τ〉 ⊗ |2, τ〉 . (A.13)

We calculate the matrix element 〈ψ|H leg
magn|ψ〉 for this state to obtain

〈ψ|H leg
magn|ψ〉 = 1

2(〈UU |H leg
magn|UU〉+ 〈LL|H leg

magn|LL〉)

= 〈UU |H leg
magn|UU〉 , (A.14)

where the second steps follows since both the terms have the same contribution. As
before we denote the initial and final states as defined in Eq. (A.8) and Eq. (A.9)
respectively. Then, the matrix elements for this process in the basis S are given
by:

H leg
magn = −Jleg


0

φ−1

φ−1

φ−2 −φ−5/2

−φ−5/2 φ−3

 . (A.15)

This Hamiltonian matrix is equivalent to the golden chain Hamiltonian with the
effective coupling

J = −φ−1Jleg (A.16)
and an effective potential

V = φ−1Jleg (A.17)

100



1. Magnetic and Potential Interactions 101

1.2 Three-leg ladder

For three legs, a rung has a total anyonic τ charge if it is in one of the |1±, τ〉
(light), |2±, τ〉 (heavy) or |3, τ〉 (super heavy) state. Below we consider all possible
cases for neighbouring rungs both with a total anyonic τ charge.

Light τ – light τ : We first assume that the two rungs are both in the state

|1±, τ〉 = 1
2
(
|1U , τ〉+ |1L, τ〉 ±

√
2|1M , τ〉

)
= 1

2 |L〉 ±
1√
2
|M〉+ 1

2 |U〉, (A.18)

where the states |L〉, |M〉, |U〉 denote the position of the anyon on the lower, middle
or upper leg respectively, and ± depends on the sign of trung. As above we calculate
the matrix element for the state

|ψ〉 = |1±, τ〉 ⊗ |1±, τ〉 (A.19)

and obtain

〈ψ|H leg
magn|ψ〉 = 1

16
(
〈UU |H leg

magn|UU〉+ 〈LL|H leg
magn|LL〉

+ 1
4〈MM |H leg

magn|MM〉
)

= 3
8〈UU |H

leg
magn|UU〉, (A.20)

resulting in an effective coupling

J = 3
8Jleg. (A.21)

Heavy τ – heavy τ : Let us now assume the effective τ ’s on the rungs are in the
heavy τ state

|2±, τ〉 = 1
2
(
|1U,M , τ〉+ |1M,L, τ〉 ±

√
2|1U,L, τ〉

)
≡ 1

2
(
|UM〉+ |ML〉 ±

√
2|UL〉

)
, (A.22)

where we have used the short hand notation |AB〉 denoting that the τ lies on the
leg A and B and the net fusion channel outcome being a τ is implicit.

As above we calculate the matrix element for the state

|ψ〉 = |2±, τ〉 ⊗ |2±, τ〉 (A.23)

= 1
4
(
|UM,UM

〉
+ |UM,ML

〉
+
√

2|UM,UL
〉

+ |ML,UM
〉

+ |ML,ML
〉

+
√

2|ML,UL
〉

+
√

2|UL,UM
〉

+
√

2|UL,ML
〉

+ 2|UL,UL
〉)
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and obtain

〈ψ|H leg
magn|ψ〉 = 1

16
(
〈UM,UM |H leg

magn|UM,UM〉+ 〈ML,ML|H leg
magn|ML,ML〉

+ 2〈UL,UL|H leg
magn|UL,UL〉+ 〈UM,ML|H leg

magn|UM,ML〉
+
√

2〈UM,UL|H leg
magn|UM,UL〉+ 〈ML,UM |H leg

magn|ML,UM〉
+
√

2〈ML,UL|H leg
magn|ML,UL〉+

√
2〈UL,UM |H leg

magn|UL,UM〉

+
√

2〈UL,ML|H leg
magn|UL,ML〉

)
.

(A.24)

The first three terms have two magnetic interactions each along the leg direction
while all the others have only one. Moreover all these magnetic interactions are
equal in magnitude, the contribution of a single term giving the effective coupling
J = φ−2Jleg (see Eq. (A.12)). Taking into account the contributions from all the
terms, it follows immediately that the effectively magnetic coupling is

J = 11
8 φ
−2Jleg (A.25)

and the effective potential is given by

V = 11
8 φ
−3Jleg . (A.26)

Super-heavy τ – super-heavy τ : Let us now assume the states on the rungs
with total anyonic charge τ are both given by |3, τ〉 (super-heavy τ ’s). Then, we
calculate the matrix element for the state

|ψ〉 = |3, τ〉 ⊗ |3, τ〉 (A.27)

and obtain

〈ψ|H leg
magn|ψ〉 =

(
〈UU |H leg

magn|UU〉+ 〈LL|H leg
magn|LL〉+ 〈MM |H leg

magn|MM〉
)
.

(A.28)

Magnetic interactions on the upper and middle leg contribute to a potential in the
effective Hamiltonian given by

V = −2φ−2Jleg , (A.29)

while the magnetic process on the lower leg results in an effective magnetic coupling
given by

J = Jleg . (A.30)

Light τ – heavy τ : Finally, we consider the case when the two τ ’s on the
neighbouring rungs are in the |1±, τ〉 and the |2±, τ〉 states. The state |ψ〉 is now
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given by

|ψ〉 = |2±, τ〉 ⊗ |1±, τ〉 (A.31)

= 1
2
(
|UM

〉
+ |ML

〉
+
√

2|UL
〉)
⊗ 1

2
(
|U
〉

+ |L
〉

+
√

2|M
〉)

= |UM,U
〉

+ |UM,L
〉

+
√

2|UM,M
〉

+ |ML,U
〉

+ |ML,M
〉

+
√

2|ML,M
〉

+
√

2|UL,U
〉

+
√

2|UL,L
〉

+ 2|UL,M
〉
.

As before we calculate the matrix element

〈ψ|H leg
magn|ψ〉 = 1

16
(
〈UM,U |H leg

magn|UM,U〉+ 2〈UM,M |H leg
magn|UM,M〉

+ 〈ML,L|H leg
magn|ML,L〉+ 2〈ML,M |H leg

magn|ML,M〉

+ 2〈UL,U |H leg
magn|UL,U〉+ 2〈UL,L|H leg

magn|UL,L〉
)
.

(A.32)

The contributions of each of these terms to the effective coupling is (−φ−1)Jleg (see
Eq. (A.16)), thus the net effective coupling for this magnetic process is given by

J = − 5
8φJleg (A.33)

and the effective potential is
V = 5

8φJleg (A.34)
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2 Kinetic terms

Whenever the total U(1) charges of the two neighbouring rung states differ by ±1,
a hopping process occurs in first order in tleg. It is the case for a charge-1 (light) τ
and a charge-0 (light) or charge-2 (heavy) hole, a charge-1 (light) τ and a charge-2
(heavy) τ , a charge-2 (heavy) hole and a charge-3 (super heavy) τ , a charge-2
(heavy) τ and a charge-3 (super heavy) hole. All these are marked schematically
by green arrows in Table. A.1. Below we investigate all these possibilities in two
leg and three leg ladders, respectively.

2.1 Two-leg ladder

Let us first evaluate the effective hopping in a two-leg ladder arising when there is
a τ particle in the state |1±, τ〉 and an effective hole in either the empty |e〉 = |0,1〉
(case 1) or the fully occupied |f〉 = |2,1〉 (case 2) rung state on adjacent rungs.

Light hole – light τ : First, we need to evaluate the matrix element
〈
Ψ1|H leg

kin|Ψ2〉
between the two states

|Ψ1〉 = |1±, τ〉 ⊗ |e〉 ≡ |Ue〉 ± |Le〉√
2

(A.35)

and
|Ψ2〉 = |e〉 ⊗ |1±, τ〉 ≡ |eU〉 ± |eL〉√

2
, (A.36)

where H leg
kin is the kinetic part of the ladder Hamiltonian living on the legs (see

main text). Similar to the case of magnetic interactions one gets a factor 1/2 and
obtains for the effective hopping

t = 1
2tleg. (A.37)

Heavy hole – light τ : We elaborate the steps for the calculation in Fig. A.2.

One evaluates the matrix element between the states

|Ψ1〉 = |1±, τ〉 ⊗ |f〉 ≡ |Uf〉 ± |Lf〉√
2

(A.38)

and
|Ψ2〉 = |f〉 ⊗ |1±, τ〉 ≡ |fU〉 ± |fL〉√

2
. (A.39)

The matrix elements are written explicitly as

〈Ψ2|H leg
kin|Ψ1〉 = 1

2〈fU |H
leg
kin|Uf〉+ 1

2〈fL|H
leg
kin|Lf〉 . (A.40)
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Figure A.2: Sequence of steps for calculation of effective models for kinetic term
on a two-leg ladder with a heavy hole and a light τ on adjacent rungs. (a) The
initial state (b) State obtained after one (trivial) braid on the right rung (c) State
after F moves on each rung to reduce the ladder model to an effective chain (d)
State after implementing the kinetic hopping (f) (Inverse) F moves applied to go
back to the ladder picture (g) Inverse braid to obtain the same labelling of the
fusion path.

The derivation is identical but involves two non-trivial braids. The contributions
from the hopping on the two legs are thus given by

〈fU |H leg
kin|Uf〉 = e4πi/5φ−1tleg

〈
1τ |hkin|τ1〉,

〈fL|H leg
kin|Lf〉 = e−4πi/5φ−1tleg

〈
1τ |hkin|τ1〉.

(A.41)

Adding both the terms we get an overall −1 factor, compared to the previous case:

t = −1
2tleg. (A.42)

Light τ – heavy τ : Finally, let us consider two nearest neighbour rungs, one
carrying a heavy τ and the other with a light τ . Here, the bond labels belong to
the set S defined in Eq. (A.7). We denote the ‘initial’ quantum state (including
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site and bond labels) with a light (heavy) τ on the first (second) rung as:

|Ψi,α〉 =
∣∣∣1l2h; ξα〉, (A.43)

where i stands for initial and |ξα〉 ∈ S. The ‘final’ states after the hopping process
are given by :

|Ψf,β〉 =
∣∣∣1h2l; ξβ〉, (A.44)

where f is for final and |ξβ〉 ∈ S. One needs to compute all matrix elements〈
Ψβ|H leg

kin|Ψα〉. In Fig. A.3 we explain the sequence of steps for bond labels |1ττ〉.
The matrix elements for the hopping of a heavy and a light τ on the lower leg of
the ladder are found to be:〈

1h2l; 1τ1|H leg
kin|1l2h; 1τ1〉 = tlege

−3πi/5〈1τ |hkin|τ1〉,〈
1h2l; 1ττ |H leg

kin|1l2h; 1ττ〉 = −tlege
−3πi/5φ−1〈1τ |hkin|τ1〉,〈

1h2l; ττ1|H leg
kin|1l2h; ττ1〉 = −tlege

−3πi/5φ−1〈1τ |hkin|τ1〉,〈
1h2l; τ1τ |H leg

kin|1l2h; τττ〉 =
〈
1h2l; τττ |H leg

kin|1l2h; τ1τ〉
= tlege

−3πi/5φ−1/2〈1τ |hkin|τ1〉,〈
1h2l; τττ |H leg

kin|1l2h; τττ〉 = tlege
−3πi/5φ−2〈1τ |hkin|τ1〉. (A.45)

The matrix elements for hopping on the other leg remain the same except for the
direction of the braid being reversed, i.e. all phase factors e−3πi/5 → e3πi/5. As we
sum up contributions from both the legs, the phase factors add up and the entire
matrix (in the basis (A.7)) is written as :

Heff = t


1
−φ−1

−φ−1

0 φ−1/2

φ−1/2 φ−2

 , (A.46)

where the effective hopping amplitude is

t =
(

cos(3π/5)
)
tleg. (A.47)

A characteristic feature of this effective hopping Hamiltonian is that it mixes the
spin labels. This is remarkably different from the simple hopping process between
a hole and a τ . In the text, we have quoted the effective Hamiltonian matrix for
this process as HHL described in Eq. (III.35), which is related to Heff by rescaling it
such that the 2×2 block has eigenvalues 0 and 1. More precisely, HHL = aHeff +bI
with a = φ−1 and b = φ−2 (where I is the identity matrix).
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2. Kinetic terms 107

Figure A.3: Sequence of steps for calculation of effective heavy light τ models for
a two-leg ladder. (a) The initial state (b) State obtained after one braid on the
right rung (c) State after F moves on each rung to reduce the ladder model to
an effective chain. Note that two states are obtained due to non-trivial F move.
(d) State after implementing the kinetic hopping (f) (Inverse) F moves applied
to go back to the ladder picture (g) Inverse braid to obtain the same fusion path
labelling.
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2.2 Three-leg ladder

For a three-leg ladder, we can derive the relevant matrix elements in a similar way.

Light hole – light τ : Let us start with the simplest case and compute the
matrix element

〈
Ψ1|H leg

kin|Ψ2〉 where |Ψ1〉 = |s〉 ⊗ |e〉, |Ψ2〉 = |e〉 ⊗ |s〉, |s〉 ≡ |1±, τ〉
is defined in (A.18) and |e〉 is the empty rung. Using obvious notations,

〈
Ψ1|H leg

kin|Ψ2〉 = 1
4
(〈
eU |H leg

kin|Ue〉+ 2
〈
eM |H leg

kin|Me〉+
〈
eL|H leg

kin|Le〉
)

=
〈
eU |H leg

kin|Ue〉, (A.48)

Since all the F -moves are trivial because of the holes on the rungs and there would
be no phase factors due to the braidings either, we get the effective hopping:

t = tleg. (A.49)

Heavy hole – light τ : The calculation is slightly more involved when the
effective effective hole state |d〉 involves two τ anyons on the rung,

|d〉 = 1√
2 + α2

(|L〉+ |U〉+ α|M〉), (A.50)

where X means a vacant site on the rung at position X. The matrix element〈
Ψ1|H leg

kin|Ψ2〉 now involves the initial and final states,

|Ψ1〉 = |s〉 ⊗ |d〉

= 1
2
√

2 + α2

(
|UU〉+

√
2|MU〉+ |LU〉+ α|UM〉+

√
2α|MM〉

+ α|LM〉+ |UL〉+
√

2|ML〉+ |LL〉
)

(A.51)

|Ψ2〉 = |d〉 ⊗ |s〉

= 1
2
√

2 + α2

(
|UU〉+

√
2|UM〉+ |UL〉+ α|MU〉+

√
2α|MM〉

+ α|ML〉+ |LU〉+
√

2|LM〉+ |LL〉
)
. (A.52)

After expanding both sides one gets,

〈Ψ1|H leg
kin|Ψ2〉 = 1

4(2 + α2)

(
〈LL|H leg

kin|UU〉+
√

2α〈MM |H leg
kin|UU〉

+ 〈UL|H leg
kin|LU〉+ α2〈MU |H leg

kin|UM〉+
√

2α〈LL|H leg
kin|MM〉

+
√

2α〈UU |H leg
kin|MM〉+ α2〈ML|H leg

kin|LM〉+ 〈LU |H leg
kin|UL〉

+ 2〈LM |H leg
kin|ML〉+

√
2α〈MM |H leg

kin|LL〉+ 〈UU |H leg
kin|LL〉

+ 2〈UM |H leg
kin|MU〉

)
. (A.53)
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The contributions of the individual terms are as follows:

〈LL|H leg
kin|UU〉 = 〈UU |H leg

kin|LL〉 = φ−1tleg
〈
1τ |hkin|τ1〉,

〈MM |H leg
kin|UU〉 = 〈UM |H leg

kin|MU〉 = 〈LU |H leg
kin|UL〉 = e4πi/5φ−1tleg

〈
1τ |hkin|τ1〉,

〈LL|H leg
kin|MM〉 = 〈UL|H leg

kin|LU〉 = 〈MM |H leg
kin|LL〉 = e−4πi/5φ−1tleg

〈
1τ |hkin|τ1〉,

〈MU |H leg
kin|UM〉 = 〈UU |H leg

kin|MM〉 = e4πi/5φ−1tleg
〈
1τ |hkin|τ1〉,

〈ML|H leg
kin|LM〉 = 〈LM |H leg

kin|ML〉 = e−4πi/5φ−1tleg
〈
1τ |hkin|τ1〉. (A.54)

Replacing (A.54) into (A.53) one gets the effective hopping,

t = 〈Ψ1|H leg
kin|Ψ2〉〈

1τ |hkin|τ1〉

= 1
(2 + α2)2φ

[
(3 + α2 + 2

√
2α)

(
cos 4π

5

)
+ 1

]
tleg

(A.55)

Heavy hole – super-heavy τ : The third case corresponds to the effective hole
state |d〉 defined in (A.50) and the effective τ particle state defined by the fully
occupied rung |f〉 = |3, τ〉. The initial and final states |Ψ1〉 and |Ψ2〉 are now given
by :

|Ψ1〉 = |d〉 ⊗ |f〉

= 1√
2 + α2

(
|Uf〉+ α|Mf〉+ |Lf〉

)
, (A.56)

|Ψ2〉 = |f〉 ⊗ |d〉

= 1√
2 + α2

(
|fU〉+ α|fM〉+ |fL〉

)
. (A.57)

The matrix element for the kinetic Hamiltonian on the legs is now expressed as :

〈Ψ2|H leg
kin|Ψ1〉 = 1

2 + α2

(
〈fU |H leg

kin|Uf〉+ α2〈fM |H leg
kin|Mf〉+ 〈fL|H leg

kin|Lf〉
)
.

(A.58)

The individual contributions of these terms are:

〈fU |H leg
kin|Uf〉 = φ−2tleg

〈
1τ |hkin|τ1〉,

〈fM |H leg
kin|Mf〉 =

(
1

2φ + φ−3
)
tleg
〈
1τ |hkin|τ1〉,

〈fL|H leg
kin|Lf〉 = tleg

〈
1τ |hkin|τ1〉. (A.59)
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Adding the contributions of the three terms we get:

t = 〈Ψ2|H leg
kin|Ψ1〉〈

1τ |hkin|τ1〉

= 1
2 + α2

[
1
φ2 + α2

2φ + α2

φ3 + 1
]
tleg. (A.60)

Super-heavy hole – heavy τ : The fourth case corresponds to a τ in the state
|2±, τ〉 defined in Eq. (A.22). The effective hole on the ladder is defined by the
fully occupied state |f〉 ≡ |3,1〉. We calculate the matrix element of the states

|Ψ1〉 = |2±, τ〉 ⊗ |f〉

≡ 1
2
(
|UM, f〉+ |ML, f〉 ±

√
2|UL, f〉

)
(A.61)

and

|Ψ2〉 = |f〉 ⊗ |2±, τ〉

≡ 1
2
(
|f, UM〉+ |f,ML〉 ±

√
2|f, UL〉

)
. (A.62)

The matrix elements are given by

〈Ψ2|H leg
kin|Ψ1〉 = 1

4
(
〈f, UM |H leg

kin|UM, f〉+ 〈f,ML|H leg
kin|ML, f〉

+ 2〈f, UL|H leg
kin|UL, f〉

)
.

(A.63)

The contributions of the individual hopping terms are

〈f, UM |H leg
kin|UM, f〉 = φ−1e6πi/5

〈
1τ |hkin|τ1〉,

〈f, UL|H leg
kin|UL, f〉 = φ−1e−6πi/5

〈
1τ |hkin|τ1〉,

〈f,ML|H leg
kin|ML, f〉 = φ−1

〈
1τ |hkin|τ1〉 . (A.64)

Using Eqs. A.64 in Eq. (A.63), we get

t = 〈Ψ2|H leg
kin|Ψ1〉〈

1τ |hkin|τ1〉

=
(

1
2φ −

1
4

)
tleg. (A.65)

Light τ – Heavy τ : Finally, we consider two rungs with a light τ defined by the
state |s〉 in (A.18) and a heavy τ defined by the state |h〉 given as :

|h〉 = 1
2(|L〉+

√
2|M〉+ |U〉). (A.66)
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The initial and final states, formed by the tensor product of |s〉 and |h〉 are defined
as:

|Ψ1〉 = |s〉 ⊗ |h〉

= 1
4

(
|UU〉+

√
2|MU〉+ |LU〉+

√
2|UM〉+ 2|MM〉

+
√

2|LM〉+ |UL〉+
√

2|ML〉+ |LL〉
)

(A.67)

and,

|Ψ2〉 = |h〉 ⊗ |s〉

= 1
4

(
|UU〉+

√
2|UM〉+ |UL〉+

√
2|MU〉+

√
2|MM〉

+
√

2|ML〉+ |LU〉+
√

2|LM〉+ |LL〉
)
. (A.68)

The matrix elements corresponding to the hopping along the leg on the ladder can
be expanded using the expression of the states to give :

〈Ψ1|H leg
kin|Ψ2〉 = 1

16

(
〈LL|H leg

kin|UU〉+ 2〈MM |H leg
kin|UU〉+ 2〈UM |H leg

kin|MU〉

+ 〈UL|H leg
kin|LU〉+ 2〈MU |H leg

kin|UM〉+ 2〈LL|H leg
kin|MM〉

+ 2〈UU |H leg
kin|MM〉+ 2〈ML|H leg

kin|LM〉+ 〈LU |H leg
kin|UL〉

+ 2〈LM |H leg
kin|ML〉+ 2〈MM |H leg

kin|LL〉+ 〈UU |H leg
kin|LL〉

)
.

(A.69)

The contributions of the individual terms are as follows:

〈LL|H leg
kin|UU〉 = 〈UU |H leg

kin|LL〉 = tleg
〈
1τ |hkin|τ1〉,

〈MM |H leg
kin|UU〉 = 〈UM |H leg

kin|MU〉 = 〈LU |H leg
kin|UL〉 = tlege

−3πi/5
〈
1τ |hkin|τ1〉,

〈UL|H leg
kin|LU〉 = 〈LL|H leg

kin|MM〉 = 〈ML|H leg
kin|LM〉 = tlege

3πi/5
〈
1τ |hkin|τ1〉,

〈MU |H leg
kin|UM〉 = 〈UU |H leg

kin|MM〉 = tlege
−3πi/5

〈
1τ |hkin|τ1〉,

〈MM |H leg
kin|LL〉 = 〈LM |H leg

kin|ML〉 = tlege
3πi/5

〈
1τ |hkin|τ1〉. (A.70)

Replacing (A.70) into (A.69) one gets the effective hopping,

t = 〈Ψ1|H leg
kin|Ψ2〉〈

1τ |hkin|τ1〉

= 1
8
[
1 + 9 cos(3π/5)

]
tleg. (A.71)
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3 Higher order terms

In addition to the above cases, we can also have a kinetic and potential terms
when the difference in the U(1) charges on neighbouring rungs is larger than 1.
Such process occurs e.g. (i) between a charge-0 (light) hole and a charge-2 (heavy)
hole (marked by blue arrows in Table. A.1) in the P2 paired phase or (ii) between
a charge-0 (light) hole and a charge-3 (super heavy) τ (marked by orange arrows
in Table. A.1) in the PS03 phase.

In case (i), one needs to hop twice to be able to come back to a configuration
|ΨJ〉 that has the same U(1) charges as the initial configuration |ΨI〉, so the
effective Hamiltonian (leaving in the relevant subspace) is obtained in second-order
perturbation, in tleg[161, 162]

〈ΨI |Heff |ΨJ〉 = −
∑
r

〈ΨI |H leg
kin|Ψr〉〈Ψr|H leg

kin|ΨJ〉
Er − EJ

, (A.72)

where the sum is on the intermediate states corresponding to two (light) τ ’s on
neighbouring sites. The energy denominator is given by ED = (−2trung + Jrung)
and matrix elements for all the intermediate states are (−tleg) so that one gets for
I = J a potential energy

V = −
2t2leg

ED
(A.73)

and for I 6= J a hopping term

t = −
2t2leg

ED
. (A.74)

In case (ii), one needs to hop three times to be able to come back to a configura-
tion that has the same U(1) charges as the initial configuration, so the effective
Hamiltonian is now obtained in third-order perturbation in tleg:[161, 162]

〈ΨI |Heff |ΨJ〉 =
∑
r,s

〈ΨI |H leg
kin|Ψr〉〈Ψr|H leg

kin|Ψs〉〈Ψs|H leg
kin|ΨJ〉

(Es − EJ)(Er − EJ) , (A.75)

where the intermediate states |Ψr〉 and |Ψs〉 carry a heavy hole and a light τ on
neighbouring rungs. The energy denominators given by the difference in energy
between the initial (degenerate with the final) state and the intermediate states
thus take the value

ED = (φ− 1
2)Jrung −

√
2trung −

√
J2

rung + 8t2rung

2 . (A.76)

Starting from an initial state |3, τ〉 ⊗ |e〉 a simple hopping yields the intermediate
state |2,1〉⊗ |1, τ〉 with the matrix elements given by for hopping on the upper leg

t1U = φ−1tleg, (A.77)

on the middle leg,
t1M = φ−1e−4iπ/5tleg, (A.78)
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and on the lower leg,
t1L = tleg . (A.79)

Subsequently, a second hopping yields the intermediate state |1, τ〉 ⊗ |2,1〉 with
hopping matrix elements on the upper leg

t2U = φ−1e−4iπ/5tleg, (A.80)

on the middle leg,
t2M = φ−1tleg, (A.81)

and on the lower leg,
t2L = φ−1e4iπ/5tleg . (A.82)

Finally to come back to a state carrying the same U(1) charges on the rungs,
the hopping amplitudes for the three legs are just the complex conjugate of those
described in Eqs. (A.77)-(A.79), thus giving for I = J a potential energy

V =
(2φ−2 + 1)t2leg

ED
(A.83)

and for I 6= J a hopping term

t =
t3leg

E2
D

(3φ−2 + 2φ−3 + φ−2e8πi/5). (A.84)
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Résumé

1 Introduction

En physique de la matière condensée, nous avons une large variété de modèles
intéressants dont certains sont bien compris tandis que d’autres restent ambiguës
à ce jour. Les systèmes fortement corrélés forment un domaine intéressant de
la recherche et offrent beaucoup de systèmes qui présentent des propriétés fasci-
nantes. Des exemples de tels effets fortement corrélés peuvent être trouvés dans
une large variété de systèmes physiques, tels que les superconducteurs, les systèmes
magnétiques, les systèmes quantiques de Hall, les systèmes électroniques unidi-
mensionnels, des atomes ultra froids dans des réseaux optiques, etc. Cette thèse
comprend l’étude des deux projets. La première traitant de anyons non-abéliens et
la seconde s’intéresse à l’étude de fermions dans un réseau optique dimensionnelles.
Plusieurs travaux ont exploré la combinaison d’anyons et de réseaux optiques [15–
17] selon la généralisation de principe de Pauli [18–20].

Constituant une première étape vers un système à deux dimensions, les modèles
d’anyons ont été étudiés sur des châınes couplées pour former ce qu’on appelle
échelles quantique de anyons non-abéliennes, qui fournissent des généralisations
anyonic des quantiques 2D aimants [82, 83]. Dans le premier projet de cette thèse,
nous avons analysé la physique des anyons non-abéliens mobiles au-delà d’une di-
mension, qui est une question fondamentale. Notre objectif a été de construire
le modèle le plus simple possible d’anyons en 2D itinerants et interagissants en
étroite analogie avec systèmes fermionique et inspiré par les études précédentes
sur les anyons. Comme discuté plus tard, ce modèle prend la forme d’une modèle
anyonique t − J 2D très similaire à son analogue 2D électronique et à sa ver-
sion anyonique en 1D mentionnée ci-dessus. Il existe une géométrie naturelle à
considérer, interpolation entre 1D et 2D, qui est la géométrie de l’échelle - par
exemple un système d’un nombre fini de châınes couplées - est utilisé à la fois pour
les spins électroniques et anyons localisés. En particulier, nous posons la ques-
tion si la séparation spin-charge survit dans le modèle d’échelle pour anyons non
abéliens. De plus, dans l’étude de ce modèle, nous avons découvert une nouvelle
phase incompressible pouvant présenter un caractère topologique.

Le deuxième projet dans cette thèse étudie les effets de redistribution de la densité
dans le système 1D de réseaux optiques fermioniques. Nous cherchons à com-
prendre si les défauts causés par une mauvaise répartition des particules pendant
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le chargement de réseau sont importantes pour le cas fermionique, interdisant
aux atomes de se refroidir au niveau souhaité. Ici, nous examinons quatre états
différents, qui seront appelés états cibles dans les sections suivantes. Les états cibles
sont caractérisés par des profils de densité différents et dépendant des paramètres
choisis du modèle. Nous montrons d’abord que, pour certains états cibles, la rampe
adiabatique simple montre déjà des défauts négligeables, alors que les autres etats
souffrent d’effets de chauffage pendant le chargement du réseau. Une analyse de
l’évolution temporelle du profil de densité locale nous amène à conclure qu’en effet
les défauts de densité sont le principal problème, donc nous nous concentrons notre
attention sur la conception de protocoles qui permettent une meilleure redistribu-
tion des particules lors de la montée en puissance. Comme dans le cas de bosons,
notre dispositif améliore les méthodes de rampe des systèmes où nous changeons
dynamiquement un ou plusieurs paramètres du système afin de réduire les défauts
de densité. La première approche consiste à tester le protocole mis en avant pour
les bosons, à savoir pour remodeler dynamiquement le potentiel de piégeage. De
plus, dans ce travail, nous montrons que le réglage de la force d’interaction, qui ap-
parâıt comme un des paramètres les plus faciles à mâıtriser dans les expériences,
est une autre façon d’obtenir des températures plus basses. Nous mentionnons
également une autre approche dans laquelle la force d’interaction et le potentiel
de piégeage peuvent être réglés en même temps pendant le chargement de réseau
qui réduit en effet la chaleur en excès dans le système de manière significative.

2 Échelles d’anyons Fibonacci

Les théories SU(2)k de Chern-Simons [61, 147] sont dites de déformations quan-
tiques de l’algèbre SU(2). Leurs degrés de liberté sont codés par de charges
topologiques j, qui sont des moments angulaires généralisés. Contrairement à
SU(2), dans les théories SU(2)k le spin total j est limité à j = 0, 1

2 , · · · ,
k
2 .

Comme pour le produit de tenseur de spins, anyons non-abéliens peuvent être
fusionnés selon les règles de fusion données par

j1 × j2 =
min{j1+j2,k−j1−j2}∑

j3=|j1−j2|
j3. (1)

La théorie de Fibonacci a deux types de particules distinctes que l’on note que 1
pour la particule triviale avec j = 0 et τ pour l’anyon de Fibonacci avec j = 1,
respectivement, et les règles de fusion non triviales sont τ ⊗ τ = 1⊕ τ .

Nous représentons un système de N anyons au moyen d’un arbre de fusion comme
montré dans la figure 1(a), où les charges anyoniques des anyons individuels sont
repérés par Yi . Le résultat de la fusion successive des anyons sont codées par
les labels de liens dans l’arbre de fusion, marqués par xi dans la figure 1(a). Les
contraintes sur les labels des liens en raison de règles de fusion qui doivent être
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Figure 1: (a) Illustration de l’arbre de fusion standard avec des sites de label Yi
(qui peut être soit τ ou 1) et des liens de label Xi. (b) Un changement de base
aboutissant à un arbre de fusion différent en utilisant un F matrice.

remplies à chaque sommet réduisent de manière significative la taille de l’espace
interne de Hilbert.

Pour effectuer une opération sur la proximité anyons voisin, il est avantageux de
passer à une autre base, dans lequel la fusion issue de deux particules est explicite.
Cela se fait via le F matrice montré schématiquement la figure 1 (b). Une matrice
non-trivial est obtenu uniquement lorsque tous les quatre labels externes sont τ
anyons. Spécialisations au cas où Yi = Yi+1 = τ , les labels pour les trois liaisons
|xi−1, xi, xi+1〉 autorisé par les règles de fusion sont

{|1, τ,1〉, |1, τ, τ〉, |τ, τ,1〉, |τ,1, τ〉, |τ, τ, τ〉} (2)

qui transforme une nouvelle base |xi−1, xi, xi+1〉 après le F matrice. L’utilisation
de ces bases le matrice F est représentée comme,

F =


1

1
1

φ−1 φ−1/2

φ−1/2 −φ−1

 , (3)

Figure 2: Représentation schématique d’une tresse sur l’arbre de fusion.
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où, comme mentionné ci-dessus, nous avons un non-trivial 2 × 2 seulement sous-
matrice quand aussi xi−1 = xi+1 = τ .

Une autre opération que nous avons besoin d’effectuer le plus proche anyons voisin
est celui de l’échange (ou tressage) eux. En vertu d’un droitier anyons tresse a
et b ramasser une phase Rb,a

c selon les types de anyon, a et b, qui sont en cours
d’échange et de leur fusion résultats c. Notez que chaque fois que a ou b sont 1,la
phase est trivial. Phases non triviaux ne sont obtenus sont pour a = b = τ donnée
par Rττ

1 = e+4πi/5, Rττ
τ = e−3πi/5 .

Afin de réaliser une tresse sur l’arbre de fusion standard, nous devons d’abord
changer base en utilisant un F matrice pour que les résultats de la fusion des deux
anyons explicite, puis tresse. Ce processus est représenté schématiquement sur la
figure 2. Ceci est représenté par une matrice Braid B agissant sur la labels de
lien |xi−1, xi, xi+1〉. La seule matrice Braid non-trivial est obtenu lorsque les deux
sites sont occupés par τ anyons. Dans la base de l’équation 2, on obtient:

B = FRF =


e4iπ/5 0 0 0 0

0 e−3iπ/5 0 0 0
0 0 e−3iπ/5 0 0
0 0 0 1

φ2 e
4iπ/5 + 1

φ
e−3iπ/5 1

φ3/2 (e4iπ/5 − e−3iπ/5)
0 0 0 1

φ3/2 (e4iπ/5 − e−3iπ/5) 1
φ2 e
−3iπ/5 + 1

φ
e4iπ/5

 .
(4)

Notez que lorsque les deux labels de site sont un 1 et τ , les matrices F et les phases
de tresse sont trivial. La matrice Braid est effectivement le saut de l’anyon sur le
site adjacent. Lorsque les deux marqueurs de site sont 1, la matrice de tresse est
simplement donnée par la matrice d’identité.

2.1 Modèles dans une dimension

Les soi-disant des châınes d’or sont des tableaux 1D de anyons Fibonacci localisés
avec des interactions par paire entre les plus proches voisins [62]. L’hamiltonien
d’interactions magnétiques entre anyons est défini par analogie avec l’interaction
d’échange de Heisenberg. Nous attribuons une énergie −J si le résultat de la fusion
de deux anyons interagissant est trivial. Pour les accouplements AFM (J > 0), ce
qui favorise le résultat de la fusion de deux anyons voisins d’être trivial, alors que
pour les accouplements FM (J < 0), la fusion de deux anyons est préféré à τ . Cette
interaction entre les plus proches anyons voisins est exécuter par projection sur le
secteur de fusion d’identité: Hmag = Jhmag = −J(FP 1F−1), où F est l’opérateur
correspondant au F matrice (voir l’équation (3)) et P 1 est un opérateur que les
projets sur le 1 état.

Pour modéliser anyons itinérants nous introduisons des trous, à savoir sites avec
un trivial anyon 1 sur certains des sites. Les trous et anyons τ sont marqués par
différents U(1) charges (abéliennes électriques) et charges anyonic (non-abéliennes).
Les anyons τ (appelée plus simplement ‘anyons’ ou ‘τ particules’ ci-après) peuvent
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se déplacer sur la châıne (avec sa charge électrique et anyonic) à un site voisin qui
se traduit par une contribution supplémentaire d’énergie cinétique. Elle implique
le sautillement d’une particule, ainsi que sa charge électrique et anyonic à un site
voisin.

2.2 Échelles dopées

Dans cette thèse, nous nous concentrons sur des échelles itinérants de anyons
Fibonacci. On indique les couplage forts le long de la direction de la jambe par
Jleg et tleg pour les termes magnétiques et cinétiques respectivement comme indiqué
sur la Fig. 3(a). Le long de la direction perpendiculaire que nous appelons “la
direction rung”, les couplages Jrung et trung désignent respectivement les termes
magnétiques et cinétiques. Comme chemin de la fusion, nous choisissons le chemin
en zig-zag représenté sur la figure 3(b), car il minimise la portée effective des
interactions sur le chemin de la fusion. Nous choisissons des conditions aux limites
périodiques le long de la direction de la jambe et les conditions aux limites ouvertes
le long des rungs.

Figure 3: Échelle à deux jambes: (a) Interactions le long de la jambe et directions
sonné, (b) Le chemin de la fusion en zigzag. Les accouplements ont été indiqués.

Avec ce choix du chemin de fusion, les interactions entre premières voisins sur les
rungs sont également premier voisin le long du chemin de fusion, tandis que celles
qui existent entre anyons sur la même jambe sont une portée plus longue le long
du chemin de fusion.

Interactions premières voisins échelon peuvent être réaliser exactement de la même
manière que pour premières voisins sur une châıne (voir Sec. 2.1). Afin d’évaluer
les interactions entre τ particules sur la même jambe, nous devons effectuer un
changement de base, cette fois par les tresser dans le sens horaire manière jusqu’à
ce qu’ils soient premières voisins le long du chemin de fusion. Cette tresse est
réalisée par la matrice unitaire de tresse B (voir l’équation (4.)). Une fois que
les particules sont premières voisins le long du chemin, ils peuvent interagir avec
le même terme tel que discuté ci-dessus dans Sec. 2.1. Après avoir procédé à
l’interaction, les anyons doivent être tressés à leurs positions d’origine.

Plus précisément, pour une échelle à deux jambes, anyons adjacentes de la direction
jambe sont deuxieme voisins du chemin de fusion (voir la figure 3(b)). Ainsi, il
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faut faire une opération de tresse. Pour une échelle à trois jambes, les interactions
de jambe sont plus les interactions ont varié, puisque anyons adjacentes sur une
jambe sont troisièmes voisins le long du chemin de fusion. Ainsi, les plus proches
des interactions de jambe voisin sur une échelle échelle à trois branches ont besoin
de deux tresses avant particules sont plus proches voisins sur la voie de fusion [82].

Nous considérons également des modèles avec un terme supplémentaire sonné la
charge

VCoul(q) ∼ Vrep(q −Qc)2, (5)

où q est le nombre de anyons sur un échelon et Qc est déterminé par le potentiel
chimique implicite. Pour l’échelle de trois jambes à l’étude, ce terme agit par paires
entre tous les trois paires possibles de particules qui peuvent exister sur les trois
site échelon. En supposant une énergie de charge qui est beaucoup plus grande
par rapport à l’énergie d’échange, nous pouvons considérer la limite Vrep → ∞.
Dans cette limite, nous pouvons limiter nos calculs à seulement deux valeurs de
l’occupation sur le barreau, n et n + 1, avec n allant de 0 à W − 1. Cela réduit
l’espace de Hilbert et nous permet d’effectuer des simulations de plus grandes
échelles ainsi.

2.3 Les diagrammes de phase d’échelles dopées

Quand il y a deux trous sur un échelon, à la fois le U(1) et charges topologiques
sont trivialement zéro. Lorsque la ligne est occupée par deux particules τ , le net
U(1) charge est 2, mais la charge topologique peut être soit 1 ou τ , donnant lieu à
deux états quantiques différents |2, τ〉 (nommé “lourds τ”) et |2,1〉 (nommé “trou
lourd” - un échelon vide étant un “léger trou”). Dans le cas où il y a un seul
τ sur l’échelon, il peut être soit sur le haut ou sur le bas de la jambe avec des
charges désignées comme (1U , τ) et (1L, τ) respectivement. Les états quantiques
correspondants sont respectivement |1U , τ〉 et |1L, τ〉. Les liants et anti-collage
états |1±, τ〉 (nommé “légerτ ”) sont formés par des superpositions linéaires des
configurations avec des charges (1U , τ) et (1L, τ).

Figure 4: Les différents résultats possibles fusion pour une échelle à trois jambes
dopé. Les cercles bleus représentent τ ’s tandis que les cercles blancs représentent
des sites vacants. Les premières labels dans la parenthèse signifient le charge U(1),
correspondant au nombre de τ présent sur chaque échelon et le second se réfère à
leur résultat de la fusion. Les exposants U,M,L référer aux positions de la τ sur
les différentes branches (supérieur, moyen, bas) de l’échelle.
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a) b)

Figure 5: Diagrammes de phase pour l’échelle à deux pieds dans la limite forte
de couplage échelon. a) est sans terme échelon de charge et b) avec un grand
degré de charge terme V rmrep. Ici, le rayon désigne la densité de anyons. Selon
le remplissage et les accouplements plusieurs phases peuvent être distinguées: une
phase totalement entaillé (T), des modèles de châıne d’or efficaces (G), à compter
t - J châınes (C), les phases appariées (P), et une phase avec deux types différents
de t anyons (D). La légende indique que les Etats échelons sont pertinents dans
les différentes phases. Voir le texte pour plus de détails.

Pour une échelle à trois jambes, beaucoup plus d’états sont possibles, comme
le montre la figure 4. Plusieurs états quantiques sont obtenus comme des su-
perpositions linéaires des Etats avec le même U(1) et les frais anyonic et sont
étiquetés comme |1±, τ〉, |10, τ〉, |2±, τ〉, |2±,1〉, |3, τ〉 (nommé “ super-lourd ”τ) et
|3,1〉 (nommé “super-lourd ” trou).

Nous passons sur les petits raccords tleg et Jleg entre les barreaux fortement couplés
de telle sorte que |tleg|, |Jleg| << |trung|, |Jrung|, afin d’assurer qu’il n’y a pas de tran-
sition à l’état excité des barreaux isolés. Figures 5 et 6 résument les diagrammes
de phase pour les échelles deux et trois jambes.

Selon les états de faible énergie sur chaque échelon, nous trouvons six différents
types de phases (de dérivation des couplages efficaces pour toutes les phases peu-
vent être trouvées dans l’annexe):

• phases Totally éclateurs (T ) apparaissent quand il y a exactement deux (pour
Jrung > 0) ou trois (pour Jrung < 0) anyons par échelon qui fusionnent dans
le canal trivial.

• des châınes d’or efficaces (G±) quand il y a exactement n τ anyons sur chaque
échelon qui fusionnent en un total τ . Une option ± superscript indique si les
particules sont dans une liaison (+) ou antiliante (-) Etat sur un échelon.

• phases paires (P ) où deux anyons sur un fusible échelon dans le canal trivial,
formant des bosons hard-core.

• Effective t - J châınes (C±nm) consistant en un trou efficace qui découle de
nanyons sur une fusion échelon dans le canal trivial et une τ anyon efficace
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Figure 6: Diagrammes de phase pour l’échelle de trois jambe dans la limite forte
de couplage échelon. a) est sans terme échelon de charge et b) avec un grand
degré de charge terme V rmrep. Ici, le rayon désigne la densité de anyons. Selon le
remplissage et le couplage de plusieurs phases peuvent être distinguées: une phase
totalement entaillé (T), des modèles de châıne d’or efficaces (G), à compter t - J
châınes (C), les phases paires (P), la phase phases séparées (PS) et une phase avec
deux types différents de τ anyons (D). La légende indique que les Etats échelons
sont pertinents dans les différentes phases. Voir le texte pour plus de détails.

découlant à partir de m anyons fusion dans le canal τ . Le ± superscript
indique si les particules sur un échelon sont dans un état de liaison ou an-
tiliante.

• modèles efficaces consistant en deux saveurs de τ anyons (D±mn) qui sont
formées par la fusion de m et n anyons sur un échelon respectivement. Encore
une fois le ± superscript indique si les particules sur un échelon sont dans
un état de liaison ou antiliante.

• Une phase séparée région PS03 provient d’un t effective - J châıne avec
l’attraction dominante entre les super-lourds τ anyons efficaces.

L’effet d’un grand échelon de charge d’énergie Vrep est de supprimer l’appariement
et la séparation de phase dans deux jambes et trois jambes échelles. Les autres
phases sont inchangées lors de l’ajout ce terme. Nous allons donc utiliser Vrep =∞
pour réduire l’espace de Hilbert dimension lors des enquêtes numériquement les
dernières phases.

2.4 Séparation spin-charge dans t-J modèles

De la cartographie d’une échelle dopée à un 1D t effective - J châıne nous nous
attendons à son spectre à fractionalize en charge et anyon (également appelé “ tour
”) degrés de liberté. Dans la limite J = 0 d’un t anyonic - J châıne les anyons
itinérants se comportent comme HCB qui peuvent être mappés sur un système de
fermions sans spin. Ajout d’un flux externe dans l’anneau, le spectre de HCB est
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Figure 7: (a) Spectre de charge à Jrung = trung = 1000, tleg = 1, Jleg = 0, Vrep =∞.
Les lignes pleines représentent le spectre de HCB (avec un flux externe) donnée
par l’équation (6). Différentes couleurs correspondant aux différentes branches de
charge (Marqué par p dans l’équation (6) Les cercles noirs représentent le spectre
d’un échelle 2 × 8 avec ρ = 3/4. Les croix bleues correspondent au spectre de la
châıne efficace pour L = 8, ρ̃ = 1/2 (voir l’équation (7))(b) La comparaison des
spectres de différence d’énergie, après soustraction de la contribution de charge
à l’énergie de chaque Etat, d’un échelle 2 × 8, ρ = 3/4 avec celle de l’efficacité t
- J châıne L = 8, ρ̃ = 1/2. Les accouplements sur l’échelle sont Jrung = trung =
1000, tleg = 1, Vrep =∞, Jleg = 1.

donc donné par paraboles chargé d’excitation,

EHCB(p, φext) = −2t
∑
j(p)

cos
[

2π
L

(
j + 1

2

)
+ φext

L

]
, (6)

où {j(p)} est un ensemble de nombres entiers (marqué par l’indice de branche p)
qui déterminent les moments continu, donnée par K = 2π

L

∑
j(p)(j + 1

2) + ρ̃φext, ρ̃
étant la densité des particules dans le système. Dans le = 0 limit J nous devons
être prudents car les étiquettes d’arbres de fusion font les anyons distinguables.
Ainsi, en l’absence d’interactions magnétiques, les niveaux d’énergie présentent un
degré élevé de dégénérescence qui se pose en raison de la construction dans les
non abélien nature des anyons de Fibonacci. Déplacement d’un anyon à travers la
frontière se traduit de manière cyclique les étiquettes des arbres de fusion. Toutes
les particules N doivent être traduits sur la limite pour être en mesure d’avoir
l’étiquetage d’origine. Cela entrâıne un décalage de phase de φn = 2πn/N , n étant
un nombre entier. Le spectre de la châıne anyonic de charge peut alors être décrit
comme une union de tous les spectres de HCB pour toutes les valeurs discrètes de
φn, sans flux externe:

Ep,n
charge = EHCB(p, φn). (7)

Les états sont marqués par leur mouvement totale Kp,n = KP+2π n
N

. Nos résultats
numériques montrent que, comme prévu, le spectre de l’échelle de charge corre-
spond exactement à celle de la châıne efficace.

Nous passons ensuite sur un petit Jjambe et suivre adiabatique la séparation des
paraboles de charge. Nous voyons que les interactions magnétiques soulèvent la
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dégénérescence des états avec une énergie proportionnelle à répandre LJjambe.
Ceci est cohérent avec le comportement de l’efficacité t - J châıne présentant “
séparation spin-charge ª: dans les références. [77, 78] nous avons montré que le
spectre d’excitation complète d’une châıne anyon itinérante est composée de deux
contributions indépendantes provenant des degrés de charge de la liberté et les
degrés de Anyon de liberté qui sont donnés par un pressé (non dopé) châıne anyon
de longueur La = ρ̃L où ρ̃ est la densité de anyon sur l Site t - J châıne de anyons.

Nous effectuons actuellement une comparaison quantitative des spectres de l’échelle
et de son correspondant anyonic châıne anyonic efficace. Comme le match de spec-
tres de charge, nous nous concentrons sur le spectre de différence d’énergie (EDS)
obtenue en soustrayant la (supposée) composant la charge d’excitation à chaque
état. Par construction, l’EDS effectue ensuite les informations sur les degrés de
liberté de Anyon. Les résultats numériques pour l’EDS sur un échelle 2 × 8 avec
la densité de anyon ρ = 3/4 pour intermédiaire Jleg = tleg sont présentés dans la
figure 7(b). Nous trouvons l’EDS de l’échelle et de la châıne efficace pour être
en parfait accord. La cartographie parfaite des deux-jambe échelle physique à la
physique de la châıne implique donc carrément que le concept de spin-accusation
fractionnalisation est pas strictement 1D mais applique également aux deux-jambe
échelle anyonic, contrairement à l’analogue de l’échelle électronique.

2.5 Modèle de anyons de Fibonacci lourdes et légères

Nous discutons maintenant d’un nouveau modèle qui apparâıt pour couplages rung
ferromagnetique (FM) forts sur une échelle de deux chaines avec ρ > 1/2 et un
grand Vrep. Un modèle efficace similaire décrit également l’échelle de trois chaines
avec accouplements FM et 1/3 < ρ < 2/3. Avec les couplages rung qui sont
FM, la fusion de deux τ ’s résultats dans un τ . La fusion d’un τ et un trou se
traduit toujours par un τ . On obtient ainsi un modèle efficace avec deux différents
particules Fibonacci, le τ lourde et τ lègere de distingués par leur U(1) charge .

Outre les termes magnétiques et potentiels on obtient aussi un processus cinétique
échange entre les premiere voisins τ lourde et τ légère. Notez que, dans le t - J
châıne, avec des trous et de l ’τ , le processus de saut déplace la particule entière
avec ses charges et des marqueurs de spin. Alors que maintenant, le scénario est
très différent, les marqueurs de spin se mélangent les uns aux autres que le lourd
τ ’s hop sur des positions de change avec la lègere τ ’s .

Le modèle 1D nous permet de résoudre numériquement plus grands systèmes avec
de petites corrections de taille finie. Cependant, nous nous limitons au cas Jjambe =
0 quand il n’y a pas d’interactions magnétiques entre τ particules le long de la
direction de la jambe, mais seulement un petit saut tleg opère entre les barreaux
depuis déjà cette simple modèle soulève plusieurs questions ouvertes.

Phase critique à remplissages génériques Nous examinons ensuite un fini
densité ρ̃ de lourds τ de et un remplissage correspondant de 1 − ρ̃ de la lègere τ .
Notez qu’en raison de la symétrie entre l ’lourde et légère τ , densités ρ̃ et 1− ρ̃ sont
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équivalents. Nous prévoyons que le même comportement pour toutes les densités,
sauf pour la demi-remplie cas ρ̃ = 1/2, que nous allons examiner séparément dans
la section suivante. Pour simplifier, nous choisissons donc ρ̃ = 1/4, car il nous
permet d’effectuer une analyse de taille finie en utilisant trois longueurs différentes
de la châıne L = 12, 16, 20. Les spectres correspondants sont présentés sur la Fig.
8 (a).

Figure 8: (a) Spectra pour les châınes efficaces pour lourdes et légères τ à ρ̃ = 1/4
avec t = 1, J = 0. (b) l’analyse Finite-size mise à l’échelle des excitations d’énergie
A, B, C, D, E et F. Linéaire (lignes en pointillés) et exponentielles (traits pleins)
ajustements sont présentés autour de K = π et K = 0, respectivement (voir le
texte). Les normalisations de la B, C et F lacunes sont également signalées dans
(a).

systèmes gapless unidimensionnels sont souvent décrites par un CFT et leurs
niveaux d’énergie les plus bas sont alors données par E(L) = eTL + 2πv

L
(− c

12 +
hL + hR), où c est la charge centrale et hL, hR sont les dimensions de la mise à
l’échelle des champs ‘primaires’ de la CFT. Le (thermodynamique) sol énergie de
l’état par site ET et la vitesse v sont des constantes non universelles. Le fini état
fondamental de la taille de l’énergie E0(L) correspond à hL = hR = 0.

Pour tester la prédiction de CFT, nous avons effectué une analyse de la mise à
l’échelle de taille finie des premières lacunes de l’énergie contre 1/L . Comme
le montre la figure 8(b), nous observons que les lacunes autour de K = π mon-
trent une échelle linéaire avec 1/L, ce qui suggère des modes de gapless. Ce
comportement est, en principe, compatible avec la mise à l’échelle de CFT. Le
spectre d’énergie d’environ K = 0 montre un comportement différent:. Comme le
montre la figure 8(b), les lacunes de taille finie des premiers états excités à l’élan
K = 0 et K = 2π/L pourrait être monté en ∆(L) = ∆(∞) + C/L exp(−L/ξ), où
∆(∞) ' 0, 04 est un écart d’énergie finie et ξ > 10 est une longueur de corrélation.
Cela suggère que, à la densité ρ̃ = 1/4, le spectre d’énergie indique à la fois un
mode sans intervalle avec une dispersion linéaire, décrit par une FT, et les modes
de gaps supplémentaires.

Possible phase gappé topologique à ρ̃ = 1/2

Ensuite, nous considérons la densité ρ̃ = 1/2 où il y a un nombre égal de lourd et
léger τ . Nous avons simulé des châınes avec des longueurs L = 14, 16, 18, et20 et
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de montrer ces spectres dans la figure 9(a), révélant excitations de basse énergie à
impulsions K = 0 et K = π. Exécution d’une analyse finie taille de mise à l’échelle
sur les états de faible altitude en utilisant système tailles L allant de 14 à 20 des
sites, comme le montre la figure 9(b) nous constatons qu’une forme exponentielle
comme ∆(L) = ∆(∞)+C/L exp(−L/ξ) fournit raisonnablement bons ajustements
des données. Ces ajustements suggèrent que trois des gaps extrapoler à zéro et
la prochaine excitations de l’énergie à extrapolent une valeur finie ∆(∞) ∼ 0.05.
Notez toutefois que les longueurs de corrélation extraites des ajustements sont de
l’ordre de la taille du système de sorte que les extrapolations sont à prendre avec
précaution. Cependant, si elle est correcte, nos résultats semblent indiquer une
phase gappé topologique avec un état fondamental dégénéré quatre fois, bien que
dimérisation ne soit pas exclue (puisque l’état fondamental sont les deux moments
0 et π). Dans tous les cas, nous pensons que la moitié de remplissage est un cas
particulier et très différent des autres régimes de densité que nous avons estimées.
Ce comportement est aussi sensiblement différent des châınes d’or qui sont connus
pour être sans gap pour FM et AFM couplages de la jambe.

3 Fermions dans des réseaux optiques

3.1 Modèle et méthode

Le modèle Hubbard est l’un des modèles les plus simples qui capture efficace-
ment les effets à plusieurs corps pour fermions. L’état fondamental est déterminée
par la concurrence entre plusieurs échelles d’énergie différentes, à savoir l’énergie
cinétique qui délocalise les particules et le potentiel sur site qui peuvent ou pas
favoriser doubles sites du réseau occupés, selon qu’elle est attractive ou répulsive.

Dans ce travail, nous considérons un modèle de continuum qui peut être écrit dans
l’espace continu en fonction des opérateurs de champ ψ̂†σ(x) qui crée un fermion de

Figure 9: (a) Spectra des châınes lourdes et légères de τ de tailles différentes à
ρ̃ = 1/2 et t = 1, J = 0. (b) l’analyse Finite-size échelle des lacunes de l’énergie (a)
vs 1/L (voir le texte). Les battitures des écarts E et G sont également présentés
en (a).
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masse m et de spin σ à la position x. L’opérateur d’annihilation correspondant est
ψ̂σ(x). Le hamiltonien d’un système 1D de taille L peut alors être écrite comme:

H =
∑
σ

∫ L

0
dx ψ̂†σ(x)

[
− ~2

2m
d2

dx2 + V (x)
]
ψ̂σ(x)

+ g

2
∑
σσ′

∫ L

0
dx ψ̂†σ(x)ψ̂†σ′(x)ψ̂σ′(x)ψ̂σ(x), (8)

où le premier terme est l’énergie cinétique et la seconde est l’énergie potentielle ex-
terne du site. Le terme de quatre opérateurs est l’interaction de contact caractérisé
par la force d’interaction g, qui est obtenu à partir de la longueur de diffusion de
une seule particule [154]. Le potentiel externe est la somme du potentiel créé par
les poutres en treillis qui interfèrent et le piège harmonique utilisée pour confiner le
système. Elle est donnée par V (x) = V0 cos2(kx)+ 1

2mω
2x2, où V0 est la profondeur

du réseau, k = 2π
λ

est le vecteur d’onde du faisceau laser et ω est la fréquence du
piège harmonique. L’échelle de l’énergie naturelle dans le problème est l’énergie
de recul défini comme Er = ~2k2

2m . Nos résultats seront présentés en unités de Er.

Afin de simuler numériquement le modèle continu est décrit dans l’équation (8) est
representé par une application de l’espace discret en considérant une cellule unité
de longueur a, qui est discrétisée avec Ndiscr = 16 points de la grille. Cela conduit
à un espacement de grille de longueur d = a/Ndiscr. Pour le réseau optique le choix
naturel pour la cellule de l’unité est d’être un minimum de potentiel externe de
réseau optique, à savoir a = λ/2 = π/k. Le hamiltonien de continuum est ensuite
mappé à un modèle de réseau Hubbard écrit en termes d’opérateurs de création
et d’annihilation c†i,σ et ci,σ, respectivement, i étant l’index du site de la grille et
σ est le spin de l’fermion. Le hamiltonien est écrit comme

H =− J(d)
∑
σ

∑
<ij>

c†i,σcj,σ + h.c.

+
∑
σσ′

∑
i

U(d)
2 c†i,σc

†
i,σ′ci,σ′ci,σ +

∑
σ

∑
i

εi(d)niσ, (9)

où le terme cinétique devient le saut d’amplitude J(d) = (~2/2m)/d2 entre les sites
adjacents de la grille i et j, l’interaction de contact se transforme en un sur place
interaction U(j) = g/j et le potentiel externe est realisé en tant que potentiel
chimique site dépendant εi(d) = V (d/2 + i). + 2(~2/2m)/d2.

Le choix de la discrétisation en espace réel permet de simuler le modèle de con-
tinuum dans le réseau très peu profonde et les régimes de treillis profonds sans
la nécessité de changer base au cours de l’évolution temporelle du processus de
chargement.

Analogue à l’étude précédente de systèmes bosoniques [123] nous simulons un
modèle de réseau optique fermionique numériquement avec la méthode de la ma-
trice de densité de groupe de renormalisation (DMRG) [155, 156]. L’approche
DMRG standard a des problèmes de convergence graves pour les grands réseaux
diluées qui découlent de la discrétisation en espace réel nécessaire pour représenter
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le système de continuum pendant le chargement du réseau. Pour surmonter ces
problèmes, nous utilisons l’algorithme de DMRG multigrille [142] qui conduit à
une convergence rapide.

Evolution temporelle dans le cadre MPS est effectuée en utilisant les variantes
dépendant du temps de DMRG [134, 135, 159], qui a divisé non-navettage termes
de l’opérateur d’évolution temporelle unitaire via une décomposition deuxième
oder Suzuki-Trotter sur un temps petite étape dt = 0, 01 ~/Er. Dans nos simula-
tions ceci est réalisé en atteignant une dimension de la liaison entre M = 400 et M
= 600. Les simulations ont été réalisées en utilisant le code ALPS MPS [139–141]
sur le Mönch Cluster de l’ETH Zurich.

Notez que nos simulations ne souffrent pas des effets de bord qui peuvent survenir
en raison du choix des conditions aux limites ouvertes. La raison en est que la
présence d’un potentiel de piégeage et notre choix de remplissage des particules
garantit que l’étendue du système avec une valeur non nulle densité locale est
effectivement réduite par rapport à L. Ainsi, le système reste confiné bien en deçà
des limites. Cette mesure réduit de la longueur réelle sert une taille de système
efficace et est appelé Leff dans la section suivante.

3.2 Protocoles et observables de chargement réseau op-
tique

Pour simuler les effets du processus de réseau de chargement optique, nous utilisons
l’optimisation de l’état fondamental pour préparer la fonction d’onde initiale dans
l’état |ψinit〉, où le potentiel de réseau est éteint ie V0(t = 0) = vi = 0. Cet état
est alors temps évolué avec un hamiltonien dépendant du temps de telle sorte
que, à tout moment t au cours de l’évolution de l’état est donné par |ψ(t)〉 avec un
temps de réseau dépendant de potentiel V0(t). Dans nos simulations, nous utilisons
une rampe qui interpole linéairement entre la profondeur initiale vi et profondeur
finale vF du réseau optique: V0(t) = vi + (vF − vi) t

tR
, où tR est temps total de

rampe. A la fin du chargement du réseau du modèle devrait avoir atteint l’état
cible avec treillis potentiel V0(tR) = vF (= 8Er). L’état final |ψfinal〉 ≡ |ψ(t = tR)〉
est comparé à la cible état |ψcible〉 pour quantifier les défauts. Nous répétons ce
processus pour plusieurs états initiaux, des protocoles de chargement différents,
ainsi que de multiples temps de rampe.

Pour quantifier et comprendre l’origine des défauts, nous pouvons répondre à
plusieurs observables tant au cours de l’évolution de la fonction d’onde |ψ(t)〉
et à l’état final |ψfinal〉. Dans notre étude, nous examinons seulement observables à
la fin du temps de rampe. D’intérêt particulier sont l’excès d’énergie par particule
q
∣∣∣
(t=tR)

=
(
E[|ψfinal〉]− E[|ψtarget〉]

)
/N , et la fidélité à l’égard de l’état fondamental

de le hamiltonien instantanée, qui à la fin du chargement est donnée par f
∣∣∣
(t=tR)

=
|〈ψtarget|ψfinal〉|. Nous étudions également l’évolution temporelle de la densité lo-
cale nσ(x, t) = 〈ψ(t)|n̂σ(x)|ψ(t)〉. Dans les résultats qui suivent, nous allons rendre
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compte que la densité totale par grille de la n(x) = p↑(x)+p↓(x) depuis pas d’effets
de magnétisation locales ont été observées. En outre, on calcule la densité locale
intégrée sur une cellule unité de réseau optique n(i) = ∑Ndiscr

k=1 n(x)
∣∣∣∣
x=(i+k−1) a

ce qui
simplifie l’analyse en termes de modèle de réseau efficace, par exemple on attend
n(i) = 1 dans le régime Mott et n(i) = 2 dans le régime de la bande isolante.

Notez que le calendrier de chargement de réseau ci-dessus modulant linéairement le
potentiel du réseau à chaque pas de temps, en gardant tous les autres paramètres
fixes au cours de l’évolution dans le temps. Dans nos simulations, comme nous al-
lons l’expliquer dans les sections à venir, nous rencontrons des effets de chauffage
pour certains états cibles. Afin de réduire ces effets dans le but ultime étant
d’atteindre les basses températures souhaitées dans des expériences, nous pro-
posons un calendrier de chargement amélioré qui modifie dynamiquement un ou
plusieurs paramètres de le hamiltonien, en plus de la profondeur du réseau. Cet
effet sera incorporé dans le hamiltonien dépendant du temps et sera reflété dans
le d’état |ψ(t)〉 au cours de l’évolution.

Le premier protocole suit l’approche de [123] pour remodeler dynamiquement le
potentiel de piégeage, en modulant linéairement la fréquence de piège ω. A partir
d’une valeur initial ωin, nous augmentons ω linéairement pendant le chargement
du réseau pour atteindre la valeur cible souhaitée ωf à la fin du temps de rampe.
Au moment de t la fréquence de piège est donnée par

ω(t) = ωin + (ωf − ωin) t
tR
. (10)

Nous effectuons des simulations avec des valeurs différentes de ωin et différents
temps de rampe pour étudier le comportement de mise à l’échelle. Nos résultats
pour les améliorations observées avec ce protocole sont présentés dans les sections
3.3.3 et 3.3.4.

Sinon, nous pourrions en permanence ajuster la force d’interaction au cours de
l’évolution dans le temps, ce qui est généralement un paramètre plus facile à traiter
dans des configurations expérimentales par résonance de Feshbach [14, 160].
Depuis la distribution de densité de l’état initial est jugée trop étroite par rapport
à l’état cible, donc nous préparons un nouvel ensemble d’états initiaux avec une
valeur initiale plus importante de gin, qui élargirait le système. La valeur de la
force d’interaction au cours du réseau de chargement g(t) est alors linéairement
réduite à sa valeur cible gf , selon

g(t) = gin − (gin − gf )
t

tR
. (11)

Ce système est étudié pour l’état cible de la section 3.3.4. Notez que si l’état initial
est observé pour avoir une assez large diffusion de la densité locale par rapport à
l’état de la cible, on devrait viser à réduire en partant d’une force d’interaction
plus faible.

Nous proposons un troisième régime qui est également considéré comme utile pour
améliorer la fidélité et la réduction de l’excès de chaleur pendant le chargement
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de réseau. Dans cette approche, on combine les deux approches ci-dessus afin
d’accorder le piège fréquence et la force d’interaction lors réseau loading.Although
nous constatons que le premier protocole est en mesure d’atteindre le maximum
de fidélité, il pourrait ne pas être le plus facile un à mettre en œuvre dans des
expériences. Les deux autres régimes ne sont pas loin derrière dans l’amélioration
de la fidélité et plus pratique du point de vue expérimental.

3.3 Etude des différents états cibles

3.3.1 État cible métallique

Nous commençons par étudier les états métalliques, où les fermions sont délocalisés
sur le réseau. Un tel état est observé pour un petit nombre de particules N < Leff
et avec une faible interaction de contact. Si l’interaction répulsive est pas trop fort
par rapport à l’effet tunnel entre les cellules unitaires, les fermions sont libres de
monter à celui voisin gagner de l’énergie cinétique. Il en résulte une distribution
de densité continue sur toute la longueur du système tel que représenté sur la Fig.
10 pour l’état initial et la cible.

0
0.2
0.4
0.6
0.8

1
1.2

0 4 8 12 16 20 24

(a)

lo
ca

ld
en

sit
y

x [λ/2]

initial state
target state

0.4
0.5
0.6
0.7
0.8
0.9

1

0 50 100 150 200 250 300

(b)

|〈ψ
ta

rg
et
|ψ

fin
al
〉|

tR [~/Er]

Figure 10: (a) Répartition de la densité locale de l’état initial (vi = 0) et de l’état
cible métallique (Vf = V0 = 8Er) intégrées sur chaque cellule de l’unité (b) de mise
à l’échelle de la fidélité avec le temps de la rampe. L = 24, N = 8 particles i.e.
N↑ = N↓ = 4, g = 0.2Erλ/2, ω = 0.1 (~/Er)−1.

Nous permettons à l’état initial d’évoluer dans le temps en augmentant linéairement
le potentiel du réseau de telle sorte que, à la fin du temps de rampe du système
a la pleine puissance du potentiel du réseau i.e. V0(t = tR) = Vf . Nous calcu-
lons l’excès de chaleur et la fidélité pour un tel état en utilisant différents temps
de rampe approchant la limite de chargement adiabatique du réseau, et nous ne
voyons pas d’effets de chauffage graves. Figue. 10 (b) montre la fidélité en fonction
du temps de rampe. Nos simulations montrent qu’il est possible d’atteindre un
état final assez proche de l’état cible juste en étant plus lente dans le chargement
du réseau. Pour tR = 256 ~/Er, nous observons une fidélité de plus de 94% et
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réduire le chauffage par un facteur de 10 par rapport à la réduction des temps de
rampe tR = 16 ~/Er.

3.3.2 Mott isolant avec un isolant de bande de coeur

Nous examinons ensuite un état cible qui présente la co-existence de deux phases:
un isolateur Mott avec une masse qui est la bande isolante. Ces deux phases sont
incompressibles et caractérisés par des valeurs particulières de la densité locale
moyenne par cellule unitaire. La phase Mott a une particule par site du réseau,
tandis que l’isolant de bande a une occupation de deux particules par site, donc
nous considérons une châıne avec un nombre de particules N près (mais moins)
deux fois le taille de système efficace Leff .
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Figure 11: Répartition de la densité locale de l’état initial (Vi = 0) et l’isolateur
Mott avec en vrac mauvaises cibles d’isolant de l’état (Vf = V0 = 8Er) intégré sur
chaque cellule de l’unité. L = 24, N = 20 particles (N↑ = N↓ = 10), g = Erλ/2,
ω = 0.3 (~/Er)−1.

Les distributions de densité locale intégrée pour les états initiaux et de la cible
sont représentées sur la Fig. 11 (a). Dans le but d’indiquer la majeure partie du
système présente une phase bande isolante, tandis que les bords sont dans la phase
d’isolateur Mott.

Notez que les distributions de densité de l’état initial et l’état cible se ressemblent
de deux façons importantes, à savoir la propagation spatiale du système ainsi que
la valeur de crête et sa position dans le profil de densité. Ceci est la principale
raison pour laquelle nous constatons qu’un tel système ne comporte pas trop de
chauffage si le chargement du réseau se fait avec des temps de rampe qui sont assez
longues.

La fidélité en fonction de la durée de la rampe sont présentés sur la Fig. 11 (b).
La fidélité crôıt assez rapidement au départ lors de l’augmentation du temps de
chargement mais a tendance à saturer plus ou moins environ 90%. Pour la plus
courte durée de la rampe, la distribution finale de densité est loin de celle de l’état
cible. La proximité de l’augmentation de l’état cible rapidement pour les premiers
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temps de rampe que nous avons estimé en raison de l’évolution rapide du profil
de densité pendant le chargement. Par la suite, l’état final correspond à l’état
cible à un bon degré et ralentir encore le chargement apporte seulement de légères
modifications dans le profil de densité. Ceci est ce qui conduit à une saturation
dans l’échelle de la fidélité.

Notez que bien que cet état de cible est intrinsèquement incompressible, par op-
position à l’état métallique étudié dans la section 3.3.1, il ne souffre pas encore
des effets de chauffage indésirables. Ceci est une manifestation du fait que la
répartition de la densité de l’état initial qui est en correspondance qualitative
proche en termes de Leff et la valeur de crête, ce qui permet une redistribution
appropriée des particules au cours de la rampe pour atteindre la cible souhaitée
état.

3.3.3 Mott isolant état cible

Notre prochain choix de l’état cible est un état isolant de Mott pur avec une
unité densité locale moyenne par cellule unitaire sur toute la longueur effective du
système. Le profil de densité locale de l’état initial et l’état cible sont présentés
sur la Fig. 12 (a).

Nous répétons le protocole suivi dans les sections précédentes, où le potentiel de
réseau optique a été linéairement intensifié et trouvent que cette approche n’échelle
avec le temps de rampe. Nous notons que, même pour la plus longue durée de
la rampe que nous avons considéré (tR = 256 ~/Er), le maximum de fidélité que
nous sommes en mesure d’atteindre est seulement d’environ 15% et la diminution
de l’excès de chaleur ne sont pas significative soit. Bien en augmentant encore
le temps de rampe, nous devrions être en mesure d’obtenir une meilleure fidélité,
mais peut-être pas une augmentation impressionnante. La lente augmentation de
la fidélité avec le temps de la rampe est une indication claire que la simulation de
la charge du réseau avec un temps de rampe finie est pas la cause principale de
chauffage dans le système.

Montée en puissance de la profondeur de réseau pour un réseau homogène (sans
le piège harmonique) donne une haute fidélité qui monte bien avec le temps de
rampe comme indiqué sur la Fig. 12 (b). Nous analysons le calendrier des treillis
de chargement en traçant le profil de densité lors de la montée en puissance. Fig.
13 (a), nous montrons le profil de densité au cours de l’évolution temporelle de
l’état à certaines fractions du temps total de rampe tR = 256 ~/Er. Cette parcelle
dévoile qu’à partir de l’état initial du processus de chargement ne sont pas en
mesure de distribuer des particules de la manière souhaitée, écartant ainsi de
manière significative de l’état cible. Comme il ressort de la figure, l’évolution tend
à maintenir les particules à proximité du centre du piège et ce pic reste jusqu’à la
fin de la durée de rampe. Cette densité locale accrue dans le centre-piège est un
énorme écart par rapport à l’état Mott cible qui devrait montrer un remplissage
de l’unité dans tout le système.
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Figure 12: (a) Répartition de la densité locale de l’état initial (Vi = 0) et les cibles
d’isolant état Mott (Vf = V0 = 8Er) intégrées sur chaque cellule de l’unité. La
courbe bleue montre la répartition de la densité de l’état optimal lors èodulation
linéaire de la fréquence de piège ω. N = 12 particles (N↑ = N↓ = 6), g = 2Erλ/2,
ωf = 0.25 (~/Er)−1. (b) Mise à l’échelle de la fidélité pour le système homogène
avec les mêmes paramètres, à l’exception ω = 0.
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Figure 13: Evolution du profil de densité lors de la montée en puissance pour le
temps de rampe tR = 256 ~/Er (a) sans accorder la fréquence de piège (b) avec une
modulation linéaire de la fréquence, pour la valeur optimale de fréquence initiale
(wi = 0, 16). Les croix rouges correspondent à l’état de la cible et la légende
commune est divisée entre les deux parcelles.

Nous mettons en œuvre le premier protocole de réseau de chargement modifié
expliqué dans la section 3.2, modulant linéairement la fréquence de piège. Figue.
14 rapporte le balayage de la chaleur et de la fidélité des fréquences différentes
de pièges initiaux excédentaires ωin. Les différentes couleurs correspondent à des
moments différents de la rampe. Nous assistons à une énorme amélioration de la
fidélité et une diminution sensible de l’excès de chaleur, par rapport au cas où
la fréquence de piège est fixé lors du chargement du réseau, ce qui correspond à
l’extrême droite le point dans les parcelles.

De la forme des courbes, nous pouvons identifier trois comportements d’échelle
différents. Pour des valeurs proches de la cible ωf les observables ne montrent pas
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de mise à l’échelle appréciable et les résultats sont toujours sensiblement différente
de celle de l’état cible fréquence, tandis que de larges pièges initiaux (bas ωin)
atteignent la cible état, mais ce processus échelles lentement. Un optimale et mise
à l’échelle rapide est observée pour la valeur intermédiaire de la fréquence initiale.
Nous pouvons identifier un état initial optimal marqué par un maximum dans la
courbe de fidélité, qui se trouve être à ωi = 0, 16(~/Er)−1 pour notre simulation
particulière.

La distribution de la densité locale de l’état initial optimal est représenté par la
courbe de courbe bleue dans la figure. 12 (a). La fidélité maximale obtenue pour
tR = 256 ~/Er est presque 98% et le chauffage est réduit d’un facteur 50.

Fig. 13 (b) nous montrent l’évolution du profil de densité pour cet état optimal
pendant le chargement du réseau pour tR = 256 ~/Er. Ceci est en contraste
frappant avec le tracé de l’évolution de la Fig. 13 (a) où la fréquence de piège
est resté constant pendant tout le processus de chargement. De t = 0 à déjà au
temps t1 = tR/4, le profil de densité est radicalement changé lorsque la fréquence
de piège est modulée qui n’a pas été le cas auparavant. De plus, le temps a évolué
à préciser à t1 est presque un état Mott dans le centre du piège alors qu’il avait
une nature plus métallique dans le cas précédent. A la fin du temps de rampe, le
profil de densité de l’état final est presque exactement celle de l’état de la cible, ce
qui correspond à un chevauchement de près de 98% (comme on peut le voir sur la
figure 14. (b)).

3.3.4 Mott isolateur avec un noyau métallique

Le dernier état de la cible que nous étudions est l’état isolant de Mott avec une
distribution de densité métallique (en continu) dans la masse, comme représenté
sur la Fig. 15. A force d’interaction forte et le remplissage d’au moins une particule
par taille caractérise cet état.
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Figure 15: Répartition de la densité locale de l’état initial (Vi = 0) et l’isolateur
Mott avec un noyau métallique d’état cible (Vf = V0 = 8Er) intégré sur chaque
cellule de l’unité. (L = 24, N = 20 particles (N↑ = N↓ = 10) with interaction
strength g = 3Erλ/2 and trap frequency ω = 0.25 (~/Er)−1)

La montée en puissance du potentiel du réseau seul montre les effets de chauffage
graves et le chevauchement avec l’état cible reste inférieure à 2% même pour les
plus longues durées de rampe simulées (tR = 256 ~/Er) de . Pour voir pourquoi
même à beaucoup de grands temps de rampe le chevauchement reste exception-
nellement faible, nous suivons l’évolution de la densité locale au cours de la montée
en puissance, comme nous le montrons dans la figure. 16 (a). Elle révèle que l’état
final présente un noyau avec un nombre important de sites ayant une densité locale
de deux particules par cellule unitaire. Le chiffre suggère que l’état, au cours de
l’évolution dans le temps, tend vers une avec un noyau bande isolante plutôt que
métallique. En outre, la section de l’isolateur Mott de l’état final est également
fortement réduite. Ainsi, l’état initial est pas en mesure de redistribuer les partic-
ules à suivre la répartition de la densité de l’état cible.

0

0.5

1

1.5

2

0 4 8 12 16 20 24
(a)

lo
ca

ld
en

sit
y

x [λ/2]

t = 0
t = tR/4
t = tR/2

0

0.5

1

1.5

2

0 4 8 12 16 20 24
(b)

lo
ca

ld
en

sit
y

x [λ/2]

t = 3tR/4
t = tRtarget state

Figure 16: Evolution du profil de densité lors de la montée en puissance pour le
temps de rampe tR = 256 ~/Er (a) sans accorder la fréquence de piège (b) avec une
modulation linéaire de la fréquence, pour la valeur optimale de fréquence initiale
(wi = 0, 19 (~/Er)−1). Les croix rouges correspondent à l’état de la cible et la
légende commune est partagée entre les deux parcelles.
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Afin de réduire ces défauts on syntoniser un ou plusieurs paramètres du modèle.
Une approche consiste à faire varier la fréquence de piège comme décrit dans la
section 3.3.3 pour l’état cible Mott isolant, ce qui donne des parcelles qualitative-
ment similaires comme avant. Cette parvient à améliorer la fidélité par rapport
à l’état cible à environ 96% au moment de la rampe tR = 256 ~/Er pour l’état
optimal qui est observé à ωin = 0, 19 (~/Er)−1. L’excès de chaleur est également
réduite de manière significative. l’évolution temporelle de l’état avec ce protocole
de chargement modifié est représenté sur la figure. 16 (b).

Cet état optimal présente deux caractéristiques, tout d’abord qu’il imite l’état cible
dans l’étendue de la distribution de densité et d’autre part, il abaisse la valeur de
crête de la densité à l’état initial. La première caractéristique est intuitivement
évident alors que le second est justifié que le noyau métallique ne dispose que de
quelques sites avec le plus élevé possible densité locale pour les fermions, à savoir
très peu de sites dans le noyau sont proches en occupation double. Le degré accru
de la distribution de densité dans les aides initiales de l’état dans l’amélioration de
l’évolution vers le régime souhaité isolant de Mott tout en réduisant le pic autour
du centre du piège entrâıne l’état initial vers le noyau métallique ciblé et non pas
une bande isolante.

De plus, nous simulons un calendrier de chargement où la force d’interaction est
modulée au cours de la rampe selon l’équation. (11). Cette approche fournit
également une hausse qualitativement semblable dans la fidélité. Bien que la
valeur réelle de la fidélité maximale est légèrement plus faible dans ce cas par
rapport à la procédure de mise en forme de piège, il est facilité dans la mise en
œuvre expérimentale devrait rendre cette approche extrêmement utile. Figue. 17
(a) montre la fidélité en fonction de la force d’interaction pour différents temps de
rampe. Il est évident que ce protocole conduit à un régime optimal plus étendue
lorsque la fidélité est maximisée. Une tendance similaire pour l’évolution de la
densité locale avec la plus longue durée de rampe est observée comme dans la
figure. 16 (b) à partir de l’état initial avec la force d’interaction se trouvant sur le
plateau optimal.

Une autre approche pourrait être de combiner les deux approches ci-dessus. Dans
un tel scénario, nous avons mise au point à la fois la force d’interaction et de
la fréquence d’interruption pendant le chargement du treillis. Cela pourrait être
bénéfique de certaines expériences où le réglage d’un paramètre est accompagné
d’une modulation automatique dans un autre. Dans nos simulations, nous voyons
que la modulation linéaire à la fois la fréquence de piège et de la force d’interaction,
à partir d’un bon état de candidat, distribue efficacement les particules pendant
le chargement du réseau.

Afin de tester ce système, nous choisissons une valeur de la fréquence de piège se
trouvant dans la région optimale de mise à l’échelle, puis varier la force d’interaction
pour trouver un bon état de candidat comme l’état initial. Nous essayons plusieurs
valeurs de (gin, ωin) afin d’obtenir un état qui correspond à nos deux propriétés
qualitatives essentielles et se révèle être un bon état initial ainsi. Un tel état
est obtenu pour ωin = 0, 16 (~/Er)−1, gin = 1.4Erλ/2. Cette recherche de l’état
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Figure 17: (a) Variation de la fidélité en fonction de la force d’interaction. Les
différentes couleurs correspondent à des moments différents de la rampe. schéma
de couleur reste identique à la figure. 14, (b) Comparaison du comportement
de mise à l’échelle de la fidélité pour différents protocoles réseau de chargement.
Courbe rose montre la procédure la plus simple de chargement où la profondeur de
réseau est rampe sans aucun changement dans les autres paramètres du modèle.
Les courbes bleues, rouges et vertes représentent respectivement la mise à l’échelle
de la fidélité des protocoles modifiés, respectivement, où la force d’interaction, la
fréquence de piégeage, ou les deux sont simultanément modulées au cours de la
rampe.

optimal est nullement complète, on pourrait certainement étudier un plus grand
nombre de paramètres pour arriver à un état qui surpasse les autres systèmes par
une bonne marge.

Fig. 17 (b), nous montrons la fidélité en fonction de rampe pour les états optimaux
obtenus dans chaque protocole afin de les comparer. Pour cet état cible, tous les
trois approches mentionnées ci-dessus fonctionnent bien. Une amélioration signi-
ficative de la fidélité est observée, et il existe un état optimal lorsque la valeur
maximale est atteinte. Le plus simple, où aucun des paramètres à l’exception de
la profondeur du réseau sont modulés au cours de la rampe (courbe rose) montre
exceptionnellement basse fidélité, la valeur restant proche de zéro et une mauvaise
mise à l’échelle avec le temps de la rampe. Même avec une rampe beaucoup plus
lente, on ne serait pas attendre à une augmentation remarquable de la fidélité.
Toutes les autres approches où un ou plusieurs paramètres sont des airs lors du
chargement du réseau effectuent bien mis en évidence par une augmentation sig-
nificative de la fidélité. Bien que le réglage de la force d’interaction (courbe bleue)
des tarifs légèrement inférieurs aux deux autres protocoles que nous avons conçu, il
ne se révèlent être le paramètre le plus facilement accessible dans des expériences,
ce qui rend ce protocole intéressant. Les deux autres méthodes échelle aussi bien
pour les états optimaux représentés sur cette figure. Notre comparaison est basée
sur l’état optimal que nous avons atteint en essayant quelques valeurs initiales ω
et g.

Nous concluons que toutes les approches où les paramètres du modèle sont ac-
cordés afin de redistribuer la densité efficacement, fournissent une amélioration
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significative dans la fidélité. Cela met en évidence une fois de plus que les défauts
de densité sont une cause importante de chauffage qui peut être résolu en ajustant
les paramètres du modèle de redistributions de particules inférieures.

4 Conclusions et perspectives

Dans cette thèse, nous avons étudié échelles d’anyons de Fibonacci à deux et trois
châınes dopés et cartographié leurs diagrammes de phase. Dans la limite forte
de couplage des échelons, nous trouvons plusieurs phases différentes: des phases
totalement gappées, des phases appariés décrites par des bosons à noyau dur, les
phases “golden chain”, des phases t-J qui portent des anyons τ et des particules
triviales et enfin la τ phase lourde et légère de que porte deux saveurs d’anyons
de Fibonacci. Cependant, en plus des phases connues existantes (bosoniques,
“golden chain”, t-J), notre étude des échelles de Fibonacci dopées a révélé un
nouveau τ modèle lourd-léger de qui peut éventuellement produire un entrefer
topologique gappé pour certains remplissages spéciaux, ou une phase critique dans
les autres cas. Pour chacune des étapes mentionnées ci-dessus, nous avons construit
des modèles analytiquement efficaces à basse énergie, et ils en effet montré que
corroborent les simulations numériques.

Un point important mis en place dans cette étude des anyons est que nous pouvons
relier les échelles de Fibonacci en 2D dopées à des modèles 1D effectifs d’anyons
Fibonacci, dont certains ont été bien étudiés dans le passé. En introduisant
l’idée d’un spectre de différence d’énergie et en construisant notre relation avec
des modèles 1D effectifs, nous avons montré que le phénomène responsable de la
séparation spin-charge existe encore, même en deux dimensions sur des échelles de
anyons non abéliens.

La projection sur des modèles 1D effectifs permettrait à ces modèles d’échelle
d’interaction d’anyons d’être facilement simulé numériquement par des algorithmes
1D efficaces tels que DMRG qui pourrait éventuellement répondre aux questions
ouvertes pour le τ modèle lourd-léger et nous donner plus de d’indices sur la
physique de ce modèle.

Pour notre travail sur fermions dans les réseaux optiques, nous avons exploré
différents états cibles à savoir les états métalliques,les états de Mott et les états
qui admettent la coexistence des phases isolantes telles qu’un état de Mott avec le
métal ou d’une bande isolante de cœur. Bien que le chargement d’un réseau sur
un intervalle de temps fini est une déviation par rapport à la limite adiabatique,
il a été observé que pour certains états cibles, l’accroissement de la fidélité avec le
temps de rampe est extrêmement lent, suggérant d’autres causes possibles de la
génération de chaleur excessive.

Notre principal résultat est que la redistribution de la densité est la cause la plus
importante pour l’excès de chaleur produite dans le système, rendant impossible
aux expériences de parvenir à une aussi basse température dans le réseau que
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celle obtenue dans le nuage atomique initial. Cette constatation nous incite à
trouver des moyens d’adapter la distribution de densité pendant le chargement du
réseau afin de la maintenir qualitativement et quantitativement similaire à celle de
l’état cible souhaité. Le problème physique fournit de nombreux paramètres qui
pourraient être accordés afin de minimiser les effets de la non-adiabaticité.

La fréquence du piège harmonique sous-jacent permet de moduler le profil de den-
sité lors du chargement du rśeau. En outre, la force d’interaction nous permet
même de remodeler le profil de densité plus facilement, car sa force peut être
réglée dans les expériences en cours au moyen de résonances de Feshbach. Une
autre approche pourrait être de traiter plus d’un paramètre simultanément. Nos
simulations numériques montrent que les trois approches sont toutes aussi effi-
caces, laissant ainsi de la place pour sélectionner celle qui convient le mieux à la
configuration expérimentale.

Ce travail semble nous indiquer que l’examen de la répartition de la densité locale
pendant le chargement du réseau ouvre la voie à de nombreuses nouvelles idées qui
pourraient bien améliorer méthodes expérimentales actuelles dans le domaine des
atomes froids, pour réaliser des températures plus basses à la fois dans les systèmes
de bosons et de fermions. Un grand nombre de chemins possibles pourraient être
explorés afin de comprendre le processus de chargement du réseau. Par exemple,
on pourrait essayer d’optimiser la procédure de chargement pour évaluer quelle
forme de rampe pourrait être la mieux adaptée pour le système, ou si la montée en
puissance devrait être monotone ou non. Un autre aspect qui pourrait être sondé
est d’étudier différents potentiels de piégeage, par exemple un piège anharmonique.
Ces pièges anharmoniques pourraient être étudiés pour des bosons, fermions ou
des mélanges dans les réseaux optiques à une dimension.
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Investigation of exotic correlated states of matter in low dimension

Quantum statistics is an important aspect of quantum mechanics and it lays down the rules
for identifying different classes of particles. In this thesis, we study two projects, one that
surveys models of Fibonacci anyons and another that delves into fermions in optical lattices.
We analyse the physics of mobile non-Abelian anyons beyond one-dimension by constructing
the simplest possible model of 2D itinerant interacting anyons in close analogy to fermionic
systems and inspired by the previous anyonic studies. In particular, we ask the question if
spin-charge separation survives in the ladder model for non-Abelian anyons. Furthermore, in
the study of this model, we have found a novel physical effective model that possibly hosts a
topological gapped state. For fermions in one dimensional optical lattices, we survey the effects
of non-adiabatic lattice loading on four different target states, and propose protocols to minimise
heating of quantum gases. The evaporative cooling of a trapped atomic cloud, i.e. without the
optical lattice potential, has been proven to be a very effective process. Current protocols are
able to achieve temperatures as low as T/TF ≈ 0.08, which are lost in the presence of the
optical lattice. We aim to understand if defects caused by poor distribution of particles during
lattice loading are important for the fermionic case, forbidding the atoms to cool down to the
desired level. We device improved ramp up schemes where we dynamically change one or more
parameters of the system in order to reduce density defects.

Keywords: Topological, correlated, low dimension, anyons, fermions, optical lattices

Étude d’états exotiques corrélés de la matière en basse dimension

La physique statistique quantique formule les règles permettant de classifier les différentes par-
ticules. Dans cette thèse nous avons étudié deux projets, l’un portant sur les anyons dits de
“Fibonacci” et l’autre sur les fermions sur réseau optique. Ici, nous avons naturellement étendu
cette étude aux cas pertinent d’anyons itinérants en interaction sur des échelles. Notre but a
été de construire le modèle 2D le simple possible d’anyons itinérants en interaction, analogue
direct des systèmes fermioniques et inspiré par les études précédentes. En particulier, nous nous
sommes demandé si la séparation spin-charge, bien connu à 1D, pouvait subsister dans le cas
d’anyons sur une échelle. De plus, dans l’étude de ce modèle, nous avons découvert une nou-
velle phase incompressible pouvant présenter un caractère topologique. Dans le cas des fermions
confinés sur un réseau optique unidimensionnel, nous avons étudié les effets d’un chargement
non-adiabatique et proposé des protocoles visant à minimiser le réchauffement du gaz quan-
tique. Les atomes ultra-froids sur réseau optique constituent une réalisation idéale pour étudier
les systèmes fortement corrélés soumis à un potentiel périodique. Le refroidissement évaporatif
d’un nuage d’atomes confiné, c.a.d. sans le potentiel du réseau, s’est avéré être un processus
très efficace. Les protocoles courants permettent d’obtenir (pour des fermions) des températures
aussi basses que T/TF ≈ 0.08, impossible à réaliser en présence du réseau optique. Notre étude
concerne les effets de redistribution de densité pour un système 1D de fermions. Notre but était
de voir si des défauts causés par la mauvaise répartition des particules lors du chargement du
réseau optique pouvaient empêcher les atomes de se refroidir jusqu’à la température voulue. Nous
avons conçu des scenarii améliorés où certains paramètres sont modifiés de façon dynamique afin
de réduire la densité de défauts créés.

Mots-Clés : Topologiques, corrélées, faible dimension, anyons, fermions, réseaux optiques
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