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General Abstract

Forming of multiphase materials involves complex mechanisms linked with the rheology,
morphology and topology of the phases. From a numerical point of view, modeling such
phenomena by solving the partial differential equation (PDE) system accounting for the
continuous behavior of the phases can be challenging. The description of the motion and
the interaction of numerous discontinuities, associated with the phases, can be conceptu-
ally delicate and computationally costly. In this PhD, the discrete element method (DEM)
is used to phenomenologically model finite inelastic strain in multi-materials. This frame-
work, natively suited for discrete phenomena, allows a flexible handling of morphological
and topological changes.

Ad hoc attractive-repulsive interaction laws are designed between fictitious particles,
collectively rearranging to model irreversible strain in continuous media. The numerical
behavior of a packing of particles can be tuned to mimic key features of isochoric per-
fect viscoplasticity: flow stress, strain rate sensitivity, volume conservation. The results
for compression tests of simple bi-material configurations, simulated with the DEM, are
compared to the finite element method (FEM) and show good agreement. The model
is extended to cope with tensile loads. A method for the detection of contact and self-
contact events of physical objects is proposed, based on a local approximation of the free
surfaces.

The potential of the methodology is tested on complex mesostructures obtained by
X-ray tomography. The high temperature compression of a dense metallic composite is
modeled. The co-deformation can be observed at the length scale of the phases. Two
cases of “porous” materials are considered. Firstly, the simulation of the compression
and the tension of aluminum alloys with pores is investigated. These pores stem from the
casting of the material, their closure and re-opening is modeled, including the potential
coalescence occurring at large strain. Secondly, the compression of a metallic foam, with
low relative density, is modeled. The compression up to densification involves numerous
interactions between the arms.
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Résumé global

La mise en forme de matériaux multiphasés comprend des mécanismes complexes en lien
avec la rhéologie, la morphologie et la topologie des phases. Du point de vue numérique, la
modélisation de ces phénomènes en résolvant les équations aux dérivées partielles (EDP)
décrivant le comportement continu des phases n’est pas trivial. En effet, de nombreuses
discontinuités associées aux phases se déplacent et peuvent interagir. Ces phénomènes
peuvent être conceptuellement déclicats à intégrer au modèle continu et coûteux en ter-
mes de calcul. Dans cette thèse, la méthode des éléments discrets (DEM) est utilisée
pour modéliser phénoménologiquement les déformations finies inélastiques dans les multi-
matériaux.

Des lois d’interactions attractive-répulsive sont imposées à des particules fictives, dont
les ré-arrangements collectifs modélisent les déformations irréversibles de milieux continus.
Le comportement numérique des empilements de particules est choisi pour reproduire des
traits caractéristiques de la viscoplasticité parfaite et isochore: contrainte d’écoulement,
sensibilité à la vitesse de déformation, conservation du volume. Les résultats d’essais de
compression de bi-matériaux simples, simulés avec la DEM, sont comparés à la méthode
des éléments finis (FEM) et sont en bon accord. Le modèle est entendu pour pouvoir
supporter des sollicitations de traction. Une méthode de détection de contacts et d’auto-
contacts d’objets physiques est proposée, basée sur l’approximation locale des surfaces
libres.

Les capacités de la méthodologie sont testées sur des mésostructures complexes, obtenues
par tomographie aux rayons X. La compression à chaud d’un composite métallique dense
est modélisée. La co-déformation peut être observée à l’échelle spatiale des phases. Deux
cas de matériaux “poreux” sont considérés. Premièrement la simulation de la compression
puis traction d’alliages d’aluminium présentant des pores de solidifications: leur fermeture
et ré-ouverture mécanique est modélisée, y compris leur coalescence à grande déformation.
Deuxièmement la simulation de la compression de mousse métallique de faible densité: la
compression jusqu’à densification provoque de nombreuses interactions entre les bras de
matière.
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Chapter 1

General Introduction

1.1 Introduction

This PhD is focused on the exploratory development of a numerical method to model the
mechanical behavior of metallic alloys under large strain. Most of the efforts were dedi-
cated to numerical issues arising in the design of the model. However, the inspiration of
the work stems from practical and experimental issues. The study is aimed at the under-
standing of the deformation at the scale of the mesostructure of architectured materials.

Historically, the development of materials for structural applications allowed the ful-
fillment of increasingly demanding requirements. The limits for both service and manu-
facturing requirements have been pushed further by the introduction of novel materials
and the improvement of existing ones. Since the 1960s, and the rise of composite mate-
rials [84, p.321], an active axis of development is the association of distinct phases. The
design of composites typically allows compromises between mechanical properties, and
up to some extent contrives contradictory behaviors.

In the architectured materials, the development is focused on the control of the mor-
phology, the distribution and the topology of the phases. Indeed, such materials assemble
several monolithic materials, or materials and empty space, to meet challenging functional
requirements. More specifically, metallic architectured materials display promising prop-
erties for structural applications. Complex and controlled architectures can be elaborated
using for example casting, powder technology or additive manufacturing.

The study of large plastic and viscoplastic strains in architectured materials are of
major interest, both from an engineering and scientific point of view. Indeed, such fi-
nite inelastic strains can be observed at different stages of the life cycle of a product:
during the forming processes (e.g. hot forming) or during service (e.g. shock absorption).
The prediction of the mechanical behavior is thus useful in engineering contexts. In ad-
dition, the macroscopic behavior is driven by phenomena occurring at the scale of the
mesostructure of the constitutive phases, under active scientific investigation:

• The motion and the interaction of the interfaces between phases;

• Topological changes like pore closure or phase fragmentation.

In the objective of describing and understanding these physical phenomena, simulation
and experiment are complementary and intimately interlaced tools. Grassroots reference
in most scientific queries, the experimental approach is a decisive tool to identify dominant
processes and choose a conceptual description of a phenomenon. In the case of finite strain
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12 CHAPTER 1. GENERAL INTRODUCTION

of multi-materials, the deformation mechanisms of the phases can be temporally tracked
in three dimensions by techniques as X-ray tomography.

However, the observation of physical systems implies a high level of complexity and
heavy limitations on the control of the experimental configuration. The careful design of
experimental setups can partially decouple phenomena and isolate the effects of distinct
parameters. Thus, a judicious choice of materials can help to decorrelate the effects of
morphology or rheology in the deformation mechanisms of multi-materials.

Built and developed in parallel to the experimental route, numerical modeling is a
valuable tool to arbitrarily and independently study distinct mechanisms, allowing a fine
control on parameter and configuration repeatability. Nevertheless, phenomena involving
numerous and massively interacting interfaces are still challenging for simulation tools.

This PhD, starting from a concrete material science example, is thus focused on the
development of a modeling method tailored to the description of finite strains in metal-
lic multi-materials. Taking a step aside from more mainstream strategies, first of which
the FEM, the proposed model is phenomenological: continuous media are numerically
discretized using sets of interacting particles. The re-arrangement of these particles are
expected to mimic typical traits of the deformation of the continuum. The developed
framework, based on the DEM, is trusted to allow flexible handling of interface interac-
tions and topological events. Its application to the simulation of continuous media is less
straightforward, thus concentrating the development efforts.

Although the DEM is now a well established tool for the simulation of elastic and
brittle behaviors of continuous media, the design of the proposed model was exploratory.
To our knowledge, no anterior DEM algorithm was applicable to inelastic strain in in-
compressible material. The unconventional and phenomenological characteristics of the
approach triggered a specific emphasis on the delimitation of the modeling scope.

1.2 Outline

The manuscript is organized in five main parts, each of which is opened by an illustrated
page of selected highlights:

• Part I presents on overview of the general context of the PhD, both from an exper-
imental and a modeling point of view.

The chosen reference experiment is described along with a brief review of the mate-
rial properties and the experimental techniques. The developed simulation method
being rather unconventional, the limits of the modeling approach are discussed. The
phenomena of interest and their conceptual description are presented.

• Part II reviews some potential numerical modeling strategies.

A specific effort to propose a comparative lecture grid of numerical methods aims
to better locate the developed approach. Selected methods are compared, from the
algorithmic and conceptual point of view, with a focus on Lagrangian kinematics.

• Part III focuses on the research question.

Based on the idealization of the studied phenomena (Part I) and the potential reso-
lution strategies (Part II), the principle of the developed methodology is presented,
along with the generic framework of the discrete element method (DEM) and the
chosen numerical tools.

• Part IV details the effective development of the method for the simulation of the
compression of dense multi-materials with viscoplastic behavior.
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The calibration and setup of the model is first presented for a single material. Bi-
phased test cases are compared to finite element method (FEM) simulation and the
mesostructure from a full 3D sample is modeled.

• Part V extends the method to compressive and tensile loading on “porous” materials
with low strain rate sensitivity. The self-contact events, i.e. when the pores close,
are taken into account.

The behavior of a dense sample is first investigated. The self-contact detection
algorithm is then tuned and tested on a simple geometry. Complex mesostructures
of close and open cell materials are used to illustrate potential uses of the model.

Along with the highlights proposed at the beginning of each part, the reader may get
a picture of the global approach with the three series of “PhD Objective”:

• Section 2.5 presents the observed physical phenomena of interest, triggering the
investigation.

• Section 3.3 lists requirements for a potential numerical tool to study such phenom-
ena.

• Chapter 7 states the research question, in close link with the chosen method.

The application of the model to complex mesostructures, obtained by X-ray tomography,
is discussed:

• Chapter 13 for the compression of a dense composite with spheroidal inclusions.

• Section 16.1 for the mechanical closure and re-opening of casting pores.

• Section 16.2 for the compression of a foam with low relative density.

The proposed appendices include:

• Appendix A is a first approach to the estimation of the local stress field.

• Appendix B briefly discusses some practical implementation issues and provides the
key source codes for the DEM simulations.

• Appendix C provides an example of the FEM scripts used as numerical reference.

• Appendix D is the manuscript of an article, presenting the main results of Part IV.
The article was submitted to the International Journal of Mechanical Sciences,
minor revisions were requested and we currently wait for the final decision on this
amended version.
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The general introduction of the manuscript briefly stated the engineering and scientific
interest of the forming of composite metallic materials.

Part I aims to illustrate the general context of the PhD, and introduce the focus of
interest. The part is divided into two chapters:

• Chapter 2 presents the experimental background, progressively focusing on a de-
signed model material and the physical phenomena of interest. The numerous and
complex material science issues are not thoroughly detailed.

• Chapter 3 puts specific emphasis on the choices intrinsic to the design of a model.
Some guidelines regarding the conceptual idealization of the studied phenomena are
proposed with a “scope statement” for a model.



Highlights - Part I
Mechanical and Numerical Context

• The physical phenomena of interest are mechanisms driving
finite inelastic strain in architectured metallic materials, at
the scale of the constitutive phases.

The effects of morphology and rheology can be partially
decorrelated by judicious choice of the tested materials. Ex-
perimental observations and predictive simulations are seen
as complementary tools, built in close collaboration.

• A metallic composite was previously designed to focus on rhe-
ological effects, with an interesting dependency of the rheo-
logical contrast on the temperature and the strain rate.

The composite (spheroidal amorphous Zr57Cu20Al10Ni8Ti5
inclusions in a crystalline copper matrix) is elaborated by
co-extrusion of powders. In situ X-ray tomography hot com-
pression, with co-deformation of the phases, are used as ex-
perimental reference.

• A numerical tool to study the deformation mechanisms is
sought for.

The handling of numerous interface interactions and topolog-
ical events (e.g. pore closure, neck creation and phase deco-
hesion and fragmentation) is necessary.

• The chosen modeling strategy is phenomenological. In addi-
tion, its elementary variables are mathematically chaotic.

Sensible metrics of interest must be defined, along with a
delimited credible modeling scope. The available computing
power, a quantitative limiting factor on the accessible metrics,
thus influences the qualitative modeling choices.

Figure 2.15a
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Chapter 2

Experimental Background

This chapter presents some experimental context to the mainly numerical work of this
PhD. Starting from general consideration regarding composites, the chapter progressively
focuses on a specific experimental setup. This brief overview will not dive into the complex
details of the underlying material science issues. It is divided into five sections:

• Section 2.1 introduces general concepts about metallic composites.

• Section 2.2 concerns the specific case of amorphous/crystalline composites, along
with some general consideration regarding amorphous alloys.

• Section 2.3 describes the design process of a model material aimed at the study of
rheological effects.

• Section 2.4 introduces the uses of X-ray tomography.

• Section 2.5 sums up the physical phenomena of interest, to be studied experimentally
and numerically.

2.1 Metallic Composites

Among existing materials, metallic alloys are providing interesting compromises for me-
chanical structural products. To fulfill new requirements, material development rely on
the design of altogether new monolithic materials, or the association of distinct phases in
composites. The description of the mechanical behavior of metallic composites involves
many parameters. To better understand finite transformations in such materials, these
parameters may be separately studied.

In an industrial context, engineers rely on material science to design products and
processes, diagnosis symptoms and justify and optimize their choices [32, p.6]. Predictions
and anticipations of the behavior can apply to any step of the life cycle, from elaboration to
service and finally end of life. Materials must be designed and chosen to fulfill mechanical,
economic or reglementary scope statements. Such scope of statements typically involve
compromises between contradictory requirements.

In order to visually compare potential choices, maps of the properties of the materials
can be drawn. For example on Figure 2.1 classes of materials are compared in the space
(density,elastic modulus). In this example, to compare the performance of very diverse
materials, isocontours of a comparison criterion can illustrate the compromise between
stiffness and weight requirements. “Holes” are defined as regions of the map that are not

19



20 CHAPTER 2. EXPERIMENTAL BACKGROUND

covered by existing materials. The “holes” lying in regions with interesting comparison
criteria are potential axes of development for the design of new materials.

Figure 2.1: Comparison of classes of materials in the space (density,elastic modulus).
Definition of “holes” as domains not covered by existing materials in this space. Definition

of comparison criteria as isocontours of elastic modulus1/3

density . Illustration from [12, p.5].

Among existing materials, our study will focus on metallic alloys, massively used
in structural products for their interesting mechanical properties, among which their
strength to density ratio, their toughness and their behavior at high temperature.

A first option to further explore property charts, and find better compromises, is the
tuning of existing monolithic materials and the development of new ones. The composi-
tion, elaboration process and microstructure of materials have been heavily studied and
improved in history. An example of development of a new monolithic material in the last
decades is the elaboration of amorphous metallic alloys (see Section 2.2.1).

In parallel to the developments of new monolithic materials, composite materials –
multiphase materials – can be designed. The association of distinct phases allow comple-
mentary or even contradictory properties in a single material. In composites, the overall
behavior does not necessarily follow a rule of mixture but can follow a trajectory in mate-
rial space extending current possibilities [12, p.6]. In addition, composites can also fulfill
multi-functional requirements.

The distinction, based on length scale, between composite materials and new mono-
lithic materials can be somewhat blurry. The development of nanoscale hybrid materials
involves atomic or molecular effects and potentially generates properties that are quali-
tatively unseen in the initial materials. We focus here on mesoscale composites, where
phases are associated at the scale of the micrometer. Among the numerous potential
classes of materials, we focus exclusively on composites associating metallic phases (see
Figure 2.2).

The challenge of composite design is the tuning – often constrained by practical issues –
for each phase of numerous design variables:
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(a) (b) (c) (d)

Figure 2.2: Examples of mesostructures of composites associating two metallic phases.
(a) Al 18% Cu matrix with size controllable Al2Cu inclusions [229]. (b) TA6V equiaxial
morphology [139, p.762]. (c) TA6V lamellar morphology [56, p.106]. (d) Crystalline
dendrites in an amorphous matrix, Mg71Zn28Ca1 [129, p.303].

• Morphology;

• Topology;

• Volume fraction;

• Relative and absolute size;

• Relative and absolute mechanical behavior.

In composite design, the potentially coupled effects of these parameters on the mechanical
properties must be understood [12, p.5]. The prediction of the behavior of the compos-
ite is necessary for all the steps of the life cycle of the products, first of which service
requirements of the final product and elaboration process from raw composites.

Numerous parameters and phenomena drive the deformation mechanisms of metallic
composites. As a step toward an independent study of distinct phenomena, an appro-
priate selection of model materials may allow a partial decorrelation. For example, the
comparison of composites with identical compositions but distinct mesostructures allows
an emphasis on morphological effect. On Figure 2.2a, the size of the spherical inclusions
is controllable at fixed composition. In addition to the size, distinct morphologies of the
mesostructure can be compared for an identical composition. For example, an equiaxial
morphology (Figure 2.2b) and a lamellar morphology (Figure 2.2c).

The effect of rheological effects can be more independently studied using a composite
whose phases have a differential sensitivity to testing configuration. The example of
crystalline/amorphous metallic composites is typical (Figure 2.2d): the flow stress of the
amorphous phases is strongly dependent on both the strain rate and the temperature,
while the crystalline phase is less influenced.

Our work is oriented toward the understanding of the role of the rheological contrast,
i.e. the ratio of flow stress between the phases. We focus on the finite transformation
context of hot forming, coping with potentially large strains, rotations and displacements.
At the laboratory level, the global approach is to couple experimental and numerical
approaches. A model material, with tunable rheological contrast, was designed associating
amorphous and crystalline metallic phases.
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2.2 Amorphous/Crystalline Composites

2.2.1 Amorphous Metallic Alloys

Amorphous metallic alloys are an example of development of a new class of monolithic
materials. In amorphous metals, the atoms are not arranged on a regular periodic lattice,
as it is the case in classical crystallized alloys. This atomic structure leads to radically
distinct macroscopic properties, typically a high yield strength and a large elastic domain
at room temperature; a large homogeneous plastic domain at high temperature.

At the atomic scale, amorphous alloys do no display long-range order, as it is the case
in classical crystalline alloys, where atoms are regularly arranged on a lattice. Although
local cluster arrangements can be found (Figure 2.3b), no long-range periodic pattern can
be identified.

A historical route – elaboration processes will not be described here – to obtain such
atomic structure in a metallic alloy, is fast quenching from liquid state. Below a critical
cooling rate (Figure 2.3a), the crystallization kinetic is too slow, the disordered liquid is
“frozen”: from the large time scale of atomic mobility, stems a solid-like state.

(a) (b)

Figure 2.3: Liquid state synthesization of amorphous metallic alloys and typical atomic
structure. (a) Schematic time-temperature-transformation diagram for solidification.
Two routes from liquid to solid state. Route 1 leads to a crystallized structure. Route 2:
critical cooling rate, leading to an amorphous solidification. Illustration from [226, p.52].
(b) Amorphous solids are characterized by the absence of long-range order. The atoms
are locally organized – icosahedral clusters are circled in red in this example – displaying
only short range order. Illustration from [207, p.422].

The amorphous solid state is only metastable. Two canonical temperatures are used
in the literature to roughly quantify the major transitions in the behavior:

• The crystallization temperature (Tx), above which the amorphous structure crys-
tallizes;

• The glass-transition temperature (Tg), above which notable macroscopic viscous
flow can be observed.

These transitions are dynamic processes, thermally activated, and the definition of the
threshold temperatures is thus not univocal. The temperature window Tx−Tg, referred to
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as the supercooled liquid region [226, p.20], is an indicator of the ability of the amorphous
alloy to be hot formed. The higher the temperature, the lower the flow stress and the
shorter the crystallization time: a compromise must be found for forming application.

At macroscopic scale, the transition from amorphous to crystalline state – even only
partial – leads to a drastic change in mechanical properties. The sought for properties,
e.g. the plastic forming ability at high temperature and the large elastic region at room
temperature, are lost. An estimation of the crystallization time may be measured by
mechanical testing (Figure 2.4a). The kinetics and thermal activation – atomic motion
being a thermally activated phenomenon – of crystallization does not lead to a unique
crystallization temperature (Tx) but to a set of crystallizing conditions. For the amor-
phous alloy used in this work, the crystallization time roughly drops from 104 to 103 s
with an increase of the temperature of 40 ◦C (Figure 2.4b).
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Figure 2.4: Macroscopic effects of crystallization on amorphous Zr57Cu20Al10Ni8Ti5.
(a) Stress-strain plot, uniaxial compression: temperature 405 ◦C, strain rate 4.42·10−4 s−1.
Drastic increase of the flow stress at a strain of 0.3. Crystallization time around 700 s.
From [85, p.4]. (b) Estimation of the crystallization time with respect to temperature.

The absence of atomic long-range ordering implies that typical lattice faults – for
example the dislocations in crystals, whose motion are one of the mechanisms of inelastic
strain (Figure 2.5a) – do no exist in amorphous alloys. Deformation mechanisms are thus
drastically distinct for an identical chemical composition, justifying the sudden behavior
shift in Figure 2.4a. Under shear stress, the atoms collectively reorganize within shear
transformation zone (STZ). STZ are ephemeral transition events between equilibrium
states (Figure 2.5b).

Whereas clearly distinct mechanisms are complementary to describe deformation regimes
in crystalline metals – see for example copper in Figure 2.6a – similar STZ mechanisms
lead to different flow regimes in amorphous alloys (Figure 2.6b).

At room temperature, amorphous alloys typically display high yield stress and a large
elastic domain, but often little plasticity and a brittle behavior [104]. In this regime
– elastic and inhomogeneous deformation regions in Figure 2.6b – no lattice faults ac-
commodate stress via inelastic strain and the atomic mobility is low.

At higher temperature, closer to or above the so-called glass transition (Tg) the atoms
are mobile enough for a macroscopic homogeneous strain of the material. The glass
transition temperature is not intrinsic to the chemical composition and is influenced by
the thermomechanical history of the material [226, p.19]. In addition, as for crystallization
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(a) (b)

Figure 2.5: Two-dimensional schematics of atomic scale deformation mechanisms in
solid metallic alloys. Macroscopic permanent strain stem from irreversible relative motion
of atoms. (a) Crystalline idealized long-range order. A typical deformation mechanism:
dislocation motion (physical lattice fault) in a crystal. Illustration from [228, p.369].
(b) Amorphous atomic structure. Mechanisms of shear transformation zone (STZ), first
proposed by Argon [11]. Collective rearrangement (dynamic event, not a structural de-
fect) of local clusters of dozens of atoms, from a low energy configuration to another.
Illustration from [204, p.4068].

temperature, the definition of glass transition temperature is not univocal1 and depends
on the studied time scales.

In the homogeneous deformation region (Figure 2.6b), the behavior is typically vis-
coplastic with a strong sensitivity of the flow stress to both temperature and strain rate
(Figure 2.7). At high temperature and moderated stresses, the behavior tends toward
a Newtonian flow, where flow stress is proportional to strain rate. The specific atomic
structure of the material and the lack of grains and crystalline order allow an almost
arbitrary large plastic domain: no defects and discontinuities limit the deformation.

The viscoplastic behavior of amorphous alloys is classically approximated using the
Norton law, whose tensorial form is [53, p.4]:

ε̇ =
3

2
·
(σeq

K

)(1/M )

· dev(σ)
σeq

(2.1)

with σ the flow stress tensor, ε̇ the strain rate tensor, K the stress level and M the
strain rate sensitivity. The equivalent Mises stress σeq is a scalar defined from the second
invariant of the stress tensor σ:

σeq =

√

3

2
dev(σ) : dev(σ) (2.2)

In the two previous equations, dev(σ) denotes the deviatoric part of the stress tensor:

dev(σ) = σ − 1

3
· trace(σ) · I (2.3)

Where I is the identity tensor. In the uniaxial case, the tensorial Norton law (Equa-
tion 2.1) can be simplified to the following scalar relation [126, p.106]:

σ = K|ε̇|M · sign(ε̇) (2.4)

1 It can be arbitrarily defined as the temperature at which the viscosity of the material is smaller
than 106 MPa · s [226, p.17].
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(a) (b)

Figure 2.6: Deformation maps and macroscopic behavior: influence of the tem-
perature and stress configuration. (a) Dominant deformation mechanisms in pure
copper (normalized axis for isomechanical group of f.c.c. metals). Map from [80,
Fig. 4.7]. (b) Generic amorphous metallic alloy behavior (absolute stress values given
for Zr41.2Ti13.8Cu12.5Ni10Be22.5). Dominant flow mechanism for the whole map: shear
transformation zone (STZ). Map from [204, p.488].

Taking the example of Zr57Cu20Al10Ni8Ti5 to illustrate typical hot temperature form-
ing of amorphous alloys, the flow stress varies by a factor 10 when the temperature rises
from 380 to 410 ◦C (Figure 2.7b). As a comparison, in the same temperature range, the
flow stress of crystalline copper only varies by a few percent. In the studied temper-
ature and strain rate ranges, the strain rate sensitivity ranges from 0.3 to 1, which is
notably higher than the typical creep value for crystalline alloys [117]. The behavior is
roughly Newtonian2 above 405 ◦C and below 5·10−4 s−1. These strain rate sensitivities
are comparatively high, with respect to typical values observed for the creep behavior of
crystalline alloys (M ≈ 0.2) [117].

2 The flow stress is proportional to the strain rate, thus M = 1 in Equation 11.1.
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Figure 2.7: Macroscopic viscoplastic behavior of Zr based amorphous alloys, high tem-
perature uniaxial compression tests. (a) Typical stress-strain plot of a strain rate jump:
Zr52.5Cu27Al10Ni8Ti2.5, between 400 – 430 ◦C and 2.5·10−4 – 2.5·10−3 s−1. Plot from [182,
p.64]. (b) Flow stress map of amorphous Zr57Cu20Al10Ni8Ti5 between 380 – 410 ◦C and
2·10−4 – 4·10−3 s−1. Norton law approximation at 400 ◦C: M ≈ 0.75.

2.2.2 Amorphous/Crystalline Elaboration

The use of amorphous alloys as structural materials is hindered by their brittle behavior at
room temperature. Hence the development of metallic composites, associating amorphous
and crystalline phases. Elaboration techniques include liquid and solid state processing.
In liquid state, or in situ, processing, little freedom remains on the choice of composition
of the phases. Ex situ elaboration, from solid state, allows more flexibility for mechanical
and experimental requirements, a major constraint being the crystallization behavior of
the amorphous phase.

At room temperature, the typically brittle behavior of amorphous alloys – the shear
localization region in the map shown Figure 2.6b – can be a major drawback to their
use as structural materials. A work-around in material design is the composite strategy
(Figure 2.8): the propagation of cracks in a brittle amorphous alloy may be hindered by
an association with a ductile phase (Figure 2.8c), increasing the material toughness [104]
(Figure 2.8a). The choice of a crystalline alloy as the ductile phase potentially allows a
correct elastic modulus compatibility and chemical compatibility at the interfaces.

In addition to their potential structural use, amorphous/crystalline composites are
promising as model materials to study the effect of rheological contrast between the
phases in a composite. Indeed, the temperature and strain rate sensitivity of the flow
stress in the amorphous alloy allows to selectively tune the flow stress in the phases. A
wide range of rheological configurations can thus be tested with a single material. To
study equivalently diverse configurations, numerous crystalline composites would need
to be elaborated and compared. The interpretation of the results is delicate when the
data from distinct composites are compared, as no straightforward method allows the
direct control of all the parameters of influence. Using a single composite minimizes the
uncertainties.
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(a) (b) (c)

Figure 2.8: Ductility in amorphous crystalline composite. Illustrations from [104,
p.1086,1088]. (a) Comparison of materials in the space (elastic modulus,mode I fracture
toughness). Isocontours of critical energy for crack propagation. Tensile test at room
temperature: (b) Ductile rupture of Zr39.6Ti33.9Nb7.6Cu6.4Be12.5 amorphous/crystalline
composite. (c) Typical brittle rupture of an amorphous alloy.

Amorphous/crystalline metallic composites can be elaborated in situ, from an ho-
mogeneous liquid state [180], taking advantage of the kinetics of dendrite growth, to
selectively grow crystalline dendrites and freeze an amorphous structure (Figure 2.9a).
The process can be delicate to control due to the diffusion during the solidification. If an
excessive migration occurs, the local chemical composition modification might hinder the
amorphous solidification.

(a) (b)

Figure 2.9: Examples of amorphous / crystalline metallic composites. (a) In situ elab-
oration from liquid state. Bridgman solidification of Zr37.5Ti32.2Nb7.2Cu6.1Be17.0. Den-
dritic crystalline inclusions in an amorphous matrix. SEM image from [179, p.2]. (b) Ex
situ elaboration by powder technology from solid state, using spark plasma sintering
(SPS). Amorphous spherical inclusion of Zr57Cu20Al10Ni8Ti5 in an aluminum (80 vol ·%)
matrix. SEM image from [169, p.113].

Our objective is to design a model material to study the effect of rheological contrast
in metallic composites, taking advantage of the tunable rheological contrast in amor-
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phous/crystalline composites. In situ elaborated composites are not well suited:

• Their dendritic mesostructure (Figure 2.9a) is too complex to focus the study on
rheological issues.

• Their elaboration process is delicate to control and thus constrains the size of the
phases and the overall samples.

• Little control is left on the relative properties of the phases.

• A similar chemical composition in the phases make X-ray three-dimensional imaging
more challenging.

• Typical suitable alloys contain beryllium, whose toxicity is a supplementary exper-
imental constraint.

In contrast, the ex situ elaboration displays interesting features for our purposes. As
the phases are associated at solid state by thermomechanical processes, their choice is
less strictly constrained. The mechanical and physical properties of the phases can thus
be chosen a little more independently, to fulfill experimental requirements.

In the laboratory context of the PhD, a strong background of metallic alloy co-
deformation and amorphous alloy elaboration led to the design of stratified composites
since 2008 [182]. Plates of zirconium-based amorphous alloy and light crystalline alloy
(magnesium and aluminum based) were co-pressed at high temperature (Figure 2.10).
This simple geometry allowed a first approach to the study of the adhesion of the inter-
faces and the effects of temperature and strain rate on the co-deformation regime. The
choice of the forming window is driven by compromises, taking into account crystalliza-
tion of the amorphous phase at higher temperature and phase fragmentation at lower
temperature.

(a) (b)

Figure 2.10: Stratified composites elaborated ex situ by hot co-pressing of amorphous
Zr52.5Cu27Al10Ni8Ti2.5 and crystalline light alloys. SEM images from [182, p.96,162].
(a) Three-layer with magnesium alloy (AZ31): {amorphous,crystalline,amorphous}. Ef-
fect of the co-pressing temperature on the relative thickness of the layers. (b) Multi-layer
with aluminum alloy (Al-5056): {11× crystalline, 10× amorphous}.

Such stratified materials already exhibit numerous key properties, for example crossing
stress-strain curves (Figure 2.14 on page 31), but are too anisotropic to study generic
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mechanisms in composites. In order to find an intermediary complexity between in situ
composites and the elementary stratified geometry, ex situ elaboration process can rely
on powder technology. Traditional sintering time and temperature scales are unsuited for
amorphous alloys, as they crystallize rapidly at high temperatures, triggering the use of
less conventional procedures.

An example of powder thermomechanical processing is the spark plasma sintering
(SPS). The SPS process is a field assisted sintering technology, where the sample is heated
by Joule effect, allowing shorter sintering times. It has successfully been applied to
the elaboration of both massive amorphous alloys [160, 161] and amorphous/aluminum
composites [169, 73]. For these materials, investigation efforts were focused on the room
temperature mechanical behavior, in the objective of studying service requirements in
structural materials. Figure 2.11 displays typical stress-strain behavior at various volume
fraction of such composites. Intermediary volume fractions provide a range of compromise
between strength and ductility of the two phases.

Figure 2.11: Stress-strain room temperature behavior of crystalline / amorphous metal-
lic composite (see Figure 2.9b). Effect of the volume fraction, from pure amorphous
Zr57Cu20Al10Ni8Ti5 to pure crystalline aluminum [169, p.114].

Qualitatively, the volume fraction does influence the fracture surfaces [73, p.96].
At 10%vol of inclusions (Figure 2.12), the overall failure is driven by coalescence of
multiple matrix/inclusions decohesion events (Figure 2.12a). Locally (Figure 2.12b), the
dimpled surface of the crystalline matrix accounts for large plastic strain and the inclu-
sions seems to display a relatively strong cohesion to the matrix.
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(a) (b)

Figure 2.12: Rupture at room temperature of a metallic composite. Crystalline alu-
minum 1070 matrix and 10%vol of base Zr alloy amorphous spheroidal inclusions. (a) Fi-
nal coalescence of multiple events of decohesion between matrix and inclusions. Slice of
a reconstructed tomography image [73, p.96]. (b) Postmortem SEM image [73, p.97].

2.3 Design of a Model Material

An amorphous/crystalline metallic composite is designed as a model material to study
the effect of rheological contrast in high temperature forming of metallic composites. Ex-
perimental and mechanical concerns drive the selection of the phases and the elaboration
process. Within a defined window of strain rate and temperature, the phases of the com-
posite can be co-deformed with tuned relative rheology.

The global objective for the designed material is to exhibit a temperature and strain
rate window in which co-deformation of the phases can be observed. The research environ-
ment of the laboratory – with strong emphasis on powder technology and co-deformation
of materials – leads to the choice of high temperature co-extrusion of powders as elabora-
tion process. The generic chosen geometry is a random dispersion of spheroidal inclusions
of amorphous alloy in a crystalline matrix. This simple geometry aims to focus the study
on the effects of rheological contrast, without excluding topological events. Two master
internships [144, 85] focused on the elaboration of such model materials.

The choice of the amorphous phase was driven by practical considerations:
Zr57Cu20Al10Ni8Ti5 amorphous alloy is readily available as atomized powder (Figure 2.13a)
and its bulk mechanical properties have been extensively studied: its supercooled liquid
region is relatively large3, allowing a comfortable enough high temperature forming win-
dow before crystallization. In addition, it does not contain toxic components as beryllium.
The crystalline phase was chosen with respect to the amorphous phase.

Aluminum alloys were the first chosen candidate as crystalline phase. Their moderate
flow stress eases-off the extrusion process and their low X-ray absorption guarantee a good
phase contrast with zirconium based alloys (see also Section 2.4). However, no satisfactory
co-deformation conditions could be found with Al-6061 [144, p.22] nor Al-7075 [85, p.17].
The high temperature, or the low strain rate, needed to reach matching flow stresses
between the phases (Figure 2.14) lead to the crystallization of the amorphous phase,
before significant strain can be applied. Although aluminum is probably a good candidate
for structural composites – due to its low density and comparable elastic modulus with
zirconium based amorphous alloys – it is not well suited to build a model material for
high temperature forming.

3 Tx ≈ 440 ◦C and Tg ≈ 380 ◦C, the forming window is thus Tx − Tg ≈ 60 ◦C [169, p.113]. See also
Figure 2.4b and Figure 2.7b for a qualitative illustration of the kinetics of thermal activation of both
transitions.
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(a) (b)

Figure 2.13: SEM views of the initial state of the powders at identical scales. (a) At-
omized amorphous Zr57Cu20Al10Ni8Ti5: spheroidal powder. SEM view from [73, p.41].
(b) Electrolytic crystalline copper: dendritic powder.
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Figure 2.14: Flow stress at 400 ◦C of amorphous Zr57Cu20Al10Ni8Ti5 and crystalline
pure copper and Al-7075. Norton law approximations and strain rate sensitivities.

Further developments led to the choice of pure copper as crystalline phase. In-
deed, from the flow stress of the phases (Figure 2.14), co-deformation configurations
may be reached for reasonable temperature and strain rate, for example around 400 ◦C
and 2.5·10−4 s−1. Postmortem observations were made of significant inelastic co-deformation
of composites (Figure 2.15), in the window 390 – 405 ◦C and 2·10−4 – 2·10−3 s−1 [85].
For lower temperature, or higher strain rate, the flow stress of the amorphous phase is
too high and its deformation is thus negligible. On the contrary, for higher tempera-
ture or lower strain rate, the amorphous phase is soft but crystallizes before undergoing
significant strain.

In the identified co-deformation configurations, the ratio of single phase flow stresses
is in the range 0.25 – 4. The relative rheology of the phases of the composite can be tuned
within this window, allowing the study of distinct contrast with a unique composite.

The elaboration procedure of the composite – starting from atomized
Zr57Cu20Al10Ni8Ti5 amorphous powder and electrolytic copper powders (Figure 2.13) –
involves the following steps:

1. Powder mixing;

2. Room temperature compaction at 700MPa;
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(a) (b)

Figure 2.15: Model material composite: crystalline copper matrix, amorphous
Zr57Cu20Al10Ni8Ti5 spheroidal inclusions (15% volume fraction). Cross-sections from
3D tomography reconstructions (refer to Section 2.4. Images from [85, p.18]. (a) As elab-
orated state. View of a full millimetric sample prepared for compression tests. (b) Post-
mortem co-deformed state of the same sample. Compression at 400 ◦C and 2.5·10−4 s−1

(compression direction: vertical).

3. Insertion of the green body into a protective capsule (Figure 2.16a);

4. Co-extrusion at 380 ◦C (Figure 2.16b).

(a) (b)

Figure 2.16: Encapsulated co-extrusion of compacted powders. (a) Schematic of the
copper capsule containing the compacted powder (cross-hatched) during the extrusion.
The capsule is closed by a steel lid. (b) Hot extruded and initial states. The composite
is protected by the capsule and is not visible.

Extrusion is trusted to be a reliable process to limit the presence of residual poros-
ity [73, p.36]. In the process, the total diameter is reduced from 7 to 3.1mm (Fig-
ure 2.16b), the extrusion ratio [18, volume 2 p.118] is thus approximately 5. For low
volume fractions of amorphous phase (< 50%), the extrusion force is typically in the
range 2·103 – 3·103 daN. The material stays approximately 10min at 380 ◦C, which
roughly corresponds to one fourth of the crystallization time at this temperature (Fig-
ure 2.4a).

The procedure allows the elaboration of composites with up to 70% of volume frac-
tion of amorphous phase. The composites with higher volume fraction were not cohe-
sive enough to withstand the compression tests. In addition, a high volume fraction of
amorphous phase increases the required extrusion force, sometimes reaching the maximal
capacity (5·103 daN) of the setup [85, p.12].
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2.4 X-Ray Tomography

Two-dimensional and destructive experimental techniques cannot track the temporal evo-
lution of the investigated phenomena. The time and size scale and the studied phenomena
justify the use of X-ray tomography for in situ experimental study.

From the experimental point of view, both two-dimensional and destructive tech-
niques are unsuitable to track the temporal evolution of the morphology of a compos-
ite. Among existing three-dimensional and nondestructive imaging techniques, X-ray
tomography matches well (Figure 2.17a) with the length scales of our designed model
material: millimetric for a representative volume, micrometric for the phase morphology
(Section 2.3).

(a) (b)

Figure 2.17: Overview of tomography principles and scope. (a) Size scales of three-
dimensional imaging tools. Chart from [234, p.409]. (b) Main step of X-ray attenuation
tomography, from 2D images to 3D volume reconstruction. Schematic from [38, p.291].

The global principle of tomography is to reconstruct a 3D representation of an object
from various 2D observations, taken from distinct orientations (Figure 2.17b). A classical
X-ray imaging technique is based on attenuation contrast4: the intensity of an X-ray beam
is measured after crossing the sample. The relative attenuation of the beam in the distinct
phases can induce a contrast on the 2D image, the projections. A series of projections
are taken from distinct orientations to build a scan. Algorithmic procedures [115] allow
to infer the 3D field of absorption from a scan: the reconstruction. This 3D image can
be filtered and segmented to obtain a spatial distribution of distinct phases of multi-
materials.

The non-destructive character of the method allows measurements on the same sam-
ple, before and after deformation. Several steps can thus be sequentially studied with
interrupted tests [15]. If the scans can be made rapidly enough, a phenomenon can be
observed without interruption: in situ [38, 128] experiments.

4Phase contrast, where the phase variation of the beam is measured instead of its intensity, will not
be examined.
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The choice of copper as constituent of the matrix leads to restrictions on the size of
observable samples by X-ray tomography and to a more delicate solid-state elaboration
of the model material, with issues regarding cohesiveness. Both copper and zirconium,
the respective dominant components of the matrix and the inclusions, have a high level of
absorption of X-rays (Figure 2.18), hence a high energy beam must go through the sample
to image it. Postmortem measurements can be made on regular laboratory tomographs,
providing a limited flux, but in situ imaging requires shorter scanning times. The in situ
measurements were thus performed [35] at the European synchrotron radiation facility
(ESRF). Using the chosen configuration (Table 2.1), for samples of diameter 0.5mm, a
full scan5 is performed in 7 s.

In counterpart, the set-up for in situ experiments at the ESRF imposes heavier security
procedures, which are time consuming. With the current set-up, at least several minutes
are elapsed between the introduction of the sample in the furnace and the actual beginning
of the mechanical test, typically from 5 to 10min. Such a constraint proves critical for
our purpose.
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Figure 2.18: Energy absorption for distinct elemental media, depending on the energy
of the photons. The energy range at beamline ID19 is 10−2 – 2.5·10−1 MeV. In situ
measurements were made at 6.8·10−2 MeV. Data from [106].

5 This short imaging times minimizes the deformation during the scan. At a typical strain rate
of 2.5·10−4 s−1, in 7 s, the variation of strain is lower than 2·10−3. The geometrical variation is thus
limited during the time between the beginning and the end of the scan.

Beam energy 6.8·10−2 MeV
Projections per scan 800
Field of view 800×960 pixel2

Pixel size 1.3 ➭m
Sample size 0.5×0.5×0.5mm3

Time per scan 7 s
Data sampling 1 scan per minute
Compression velocity 2·10−1 – 5·10−1

➭m · s−1

Temperature 400 ◦C

Table 2.1: X-ray tomography setup key parameters for in situ experiments at the ESRF,
beamline ID19. Data from [35, p.6].
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2.5 PhD Objective: Observed Physical Phenom-
ena

The study focuses on the rheological parameter effects on quasistatic co-deformation
of viscoplastic composites. The length scale of interest is the characteristic length of the
phases. The phases are idealized as continuous media, following Norton law, but allowing
potential topological changes.

The chosen model material is a composite with a pure crystalline copper matrix with
15%vol of spheroidal amorphous Zr57Cu20Al10Ni8Ti5 inclusions (see Section 2.3). The
co-deformation at high temperature is experimentally studied in situ by X-ray tomog-
raphy. Sub-millimetric samples are uniaxially compressed at 380 – 410 ◦C and 2·10−4 –
4·10−3 s−1 typically above strains of 0.3.

The main phenomenon of interest in the frame of our study is the morphological
evolution – at the micrometric mesoscale – of the phases in the composite (Figure 2.19).
Phases are assumed to be continuous media, governed by perfect viscoplastic constitutive
behavior – the Norton law – averaging in space all phenomena occurring at smaller length
scales. In a finite transformation context, targeted strains are in the range 0.1 – 1. Only
inelastic strains are considered, the deformations are assumed to be isochoric in both
phases. Dynamic effects are neglected, compression in the range 10−4 – 10−2 s−1 are
considered quasistatic.

Figure 2.19: Main phenomenon of interest in the model material: co-deformation of
the phases under compressive strain; interface interactions at the mesoscale (potential
topological event). Tomography views from [35].

Topology can evolve (Section 3.2) during the deformation (Figures 2.19 and 2.20).
Such changes can stem from the interaction of the interfaces between the phases, the
decohesion of the phases or pore closure and opening.

The crystallization is a major limiting factor of the experiments. At 400 ◦C, the
amorphous phases start to crystallize in a little more than 10min (Figure 2.4b). This
crystallization induces a sudden increase of the flow stress. In the range 2.5·10−4 –
5·10−4 s−1, strains of 0.3 – 0.6 are thus upper bounds.

The crystallization time is cumulative on the whole life cycle of the amorphous alloy,
including elaboration and installation in the experimental setup. The hot co-extrusion
of the powders at 380 ◦C last approximately 10min (Section 2.3). Launching a test in
the in situ apparatus at the ESRF lasts from 5 to 10min, during which the sample is
heated. Overall, it has been observed that the effective compression time available is a
little above 500 s, thus limiting the macroscopic strain before the behavior change. In
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(a) (b)

Figure 2.20: Typical defects appearing under compressive load in the model material.
Additional topological events. (a) Decohesion at the interfaces of the phases. (b) Crys-
talline matrix decohesion. Tomography views from [85, p.18].

the tested configurations, the deformation of the inclusions were very limited after a
macroscopic prescribed strain of 0.15 – 0.2.



Chapter 3

Simulation Background

“Le chimiste invente des atomes, et puis les décompose en
atomes plus petits qui gravitent comme des planètes autour
de quelque soleil; belle machine pour penser plus avant;
belle construction; idée. Mais s’il croit que c’est une chose,
que c’est vrai, que l’objet est ainsi, il n’y a plus de
penseur.”

Alain [6, §138]

In Chapter 2, the experimental background was presented, along with a specific exper-
imental setup and the physical phenomena of interest. The global objective of this PhD
is to propose a suitable numerical model and a phenomenological strategy was chosen.

The fact that the proposed model is loosely physically grounded triggers a specific
interest to the process of model design in general. This chapter is thus an attempt to
define the modelization needs and some general safeguards regarding the potential scope
of use. It is divided into three sections:

• Section 3.1 attempts to locate our approach in a broader context, describing mod-
eling issues in general and more specifically for computerized and discrete methods.

• Section 3.2 deals with some concepts to describe the observed phenomena of interest.

• Section 3.3 states the practical modelization objectives and some evaluation metrics.

3.1 Limits and Contributions of Modeling Approaches

Experimental and modeling tools can help to understand and predict physical phenomena.
In both cases, the unknowns to be dealt with imply numerous choices that will deeply shape
our description of the phenomena. In the objective of proposing a predictive model, the
choice of the modeling strategy is also constrained by the foreseen resolution method, which
is in turn influenced by the available computing power.

Two complementary and intimately intertwined approaches can be adopted to study
a physical phenomenon: the observation through experimentation and the prediction
through modeling. In most cases, models and experiments are closely built upon one an-
other and have little independence. At least since Johannes Kepler [212, p.333], a physical
phenomenon is considered rationally understood when it is described by a sequence of

37
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causal processes, with somewhat coherent logical rules and an acceptable agreement with
observations made.

In this context, modeling is an approach where a phenomenon key features are ide-
alized and represented either with a conceptual construction or an analogous system.
Observation, far from being a purely passive and objective act, is necessarily an active
interpretation of signs – a struggle to use what we know to describe what we see –
conditioned by a priori concepts: we are literally blind to phenomena too alien to our
preexisting thought structures. This assessment is common to linguistics1, computing
science2, poetry3, mathematics4 and solid mechanics.

Experiments and simulations can be designed to be efficient tools to study a phe-
nomenon, but models and observations must not be identified to the reality. Many deci-
sive choices of what is most relevant, in a given objective, restrain our understanding to
a necessarily partial and rough sketch. To illustrate the potential and limit of a model, a
phone book can be considered as a typical example. Indeed, a phone book can be used to
approximate the number of residents of an area or even interact with them (Figure 3.1a).
However, the printed letters and digits cannot be identified to these residents. In a discrete
element method (DEM) simulation of a granular material, the description of individual
physical particles might be even cruder. In place of a phone book, a topographic map
of the same area can provide common data, the name of the villages for example. This
complementary model will be adapted to distinct modelization objectives.

(a) (b)

Figure 3.1: Two examples of models of the department of Savoie. (a) A phone book.
(b) A topographic map.

1“We dissect nature along lines laid down by our native languages. The categories and types that we
isolate from the world of phenomena we do not find there because they stare every observer in the face;
on the contrary, the world is presented in a kaleidoscopic flux of impressions which has to be organized
by our minds–and this means largely by the linguistic systems in our minds. We cut nature up, organize
it into concepts, and ascribe significances as we do, largely because we are parties to an agreement to
organize it in this way–an agreement that holds throughout our speech community and is codified in the
patterns of our language. The agreement is, of course, an implicit and unstated one, but its terms are
absolutely obligatory; we cannot talk at all except by subscribing to the organization and classification
of data which the agreement decrees. [...] it means that no individual is free to describe nature with
absolute impartiality but is constrained to certain modes of interpretation even while he thinks himself
most free.” [241, p.212–214].

2“There will always be things we wish to say in our programs that in all known languages can only
be said poorly.” [168, §26].

3“We live an epoch in which our inner lives are dominated by the discursive mind. This fraction of
the mind divides, sections off, labels – it packages the world and wraps it up as ‘understood’. It is the
machine in us that reduces the mysterious object which sways and undulates into simply ‘a tree’. Since
this part of the mind has the upper hand in our inner formation, as we age, [...] we experience more
and more generally, no longer perceiving ‘things’ directly, [...] but rather as signs in a catalogue already
familiar to us. The ‘unknown’, thus narrowed and petrified, is turned into the ‘known’. A filter stands
between the individual and life.” [186, p.5].

4“Une chose m’avait déjà frappé [...]: c’est la grossièreté [...] du mode de raisonnement mathématique
quand on le confronte avec les phénomènes de la vie, les phénomènes naturels.” [93].
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3.1.1 Limits in Model Design

Model design must cope with inevitable unknowns: a model is intrinsically limited to be
a partial and rough sketch. In addition, the ill-posed essence – their chaotic nature –
of many physical phenomena sets a bound on what is possibly modeled, regardless of the
simulation strategy used.

The prediction of physical phenomena, based on its prior understanding or aimed
towards it, requires the choice and design of a model, its application and the interpre-
tation of the obtained results. Regardless of the computing power available [22, p.17],
all decisions in these tasks must accommodate with numerous unknowns. Even elemen-
tary metrics as the strain do not seem to be intrinsic, being described by multiple and
sometimes contradictory theories [192, p.5].

In this rather blurry general framework, a dominant criterion in modern science [14]
is to evaluate and quantify the reliability of the modeling tools and to assess measurable
effects on reality as well as their agreement with our understanding. The delimitation of
scopes of study allows the design of credible [203] and efficient models and experiments.
The degree of confidence granted to a model must be evaluated for the foreseen appli-
cation5 and allows their practical use, despite the uncertainties. Specific methodologies
have been developed for numerical models, due to their complexity and their power, in
order to assess their credibility [203] and to better delimitate scopes of validity [162].

When designing a model, the aim is thus to reproduce a physical phenomenon at a
given scale, at least in a descriptive way and if possible in a predictive way. A model
will be called phenomenological if it doesn’t describe, explain or take into account the
phenomena at scales coming immediately lower the studied scale. Stronger based models
may be rough, but display more coherence with subscale phenomena.

Before any resolution is attempted, the nature and the physical phenomena must be
evaluated. Chaotic and non-deterministic phenomena cannot be conceptually modeled in
a well-posed fashion. A well-posed problem poses a unique solution which is stable, in
the sense that infinitesimal changes to the initial conditions do not generate discontinuity
jumps in the solution [97].

Ill-posed problems are frequent even in simple systems [171, p.9]. In classical mechan-
ics, such an elementary system as collisions of balls moving on a straight line (Figure 3.2)
proves to be ill-posed by essence, i.e. regardless of the modeling approach [82]. Indeed,
the final velocities of the balls discontinuously depend on the initial distances.

v -v

Figure 3.2: Example of an indeterminate problem in classical mechanics. At initial state,
the central ball is stationary, the two others move toward it with equal velocity from an
equal distance. The final velocities discontinuously depend on the initial distances [82,
p.292].

Another canonical example of chaotic behavior is the three-body problem, the compu-
tation of the dynamics of a system of three punctual masses driven by gravitational force6,

5 “The behavior of a given material can be represented by a schematic model only in relation to the
envisaged usage and the desired precision of the predictions.” [126, p.71].
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which is ill-posed even in the hypothesis of absence of collisions [57]. As an interesting
side note, preliminary hints to bound the error on the dynamics of a discrete system
representing a continuum have been published [154, p.1533–1536], but the assumptions
are far too restrictive to be used for our purpose.

Although it is illusory to attempt to compute exactly the chaotic variables of a phe-
nomenon, the impossibility to study and model it is not implied. From a mathematical
point of view, the problem needs to be regularized [171], formulated in a way that met-
rics of interest – for example statistical data on the chaotic variables – can be expressed
in a well-posed fashion. From the engineer’s point of view, the progressive transition
from ill- to well-posed problem is influenced by the smoothness, the stability and the
uncertainties [22]: such criteria can be used to evaluate the difficulty of the modeling
task.

3.1.2 Resolution Strategies

The existence of a model does not imply that it can practically be solved. The search
for an analytical resolution is often illusory and work-around strategies have been heavily
used, first of which analogous models, relying on the assumed similarity of two physical
phenomena. Phenomenological models focus on key features of the studied phenomenon,
without regards for incoherences with phenomena occurring at lower scales. Numerical
discretization allows the subdivision of a global unsolvable problem, approximating the
solution with local contributions.

A deep understanding of a phenomenon and the design of adequate models does not
imply the ability to predict it: the designed model must also be solved.

Historically, the description of many mechanical problems by partial differential equa-
tion (PDE) and dynamic laws did not immediately allow the prediction of such phenomena
with analytical resolution. Indeed, not only the efforts required for the resolution can be
prohibiting, but every however slight modification of the studied system may require an
altogether new strategy 7. In fact, even without regards to mathematically unsolvable
cases, the analytical solutions are often limited to canonical study cases [231, p.312], the
general cases of arbitrarily complex geometries requiring crude global approximations.

The rise of numerical and discretized approaches opened the route to the efficient
resolution – which does not necessarily lead to a deeper understanding8 – of large complex
systems. They rely on the subdivision of a system in many easily solvable elementary
problems [46, p.2]. This approach is described in Section 3.1.3.

A widely used work-around to solve complex problems is to rely on physical analogies
between phenomena, potentially of distinct nature [18, vol.1, p.300]. The behavior of an
easy to study, e.g. easy to measure, phenomenon is used as a model of another one.

To some extent, graphical calculus is an analogous resolution strategy: measurements
on well chosen scaled drawing are the model results. Graphical calculus is based on the
use of traditional drawing instruments and used to be a widespread tool for industrial ap-
plications, providing means to compute static9 or dynamic efforts [147, 81] in mechanical

6Poincarré proved the impossibility of solving the problem by first integrals. A purely mathematical
solution up to n bodies, based on convergent series, exists but is without any practical interest to study
the phenomenon [57, p.68–70]. The mathematical description of chaos changes nothing to its physical
nature.

7“without proper regard for the individuality of the problem the task of computation will become
hopeless” [46, p.12].

8The human intellectual capacities being limited, an adequate reduction of the number of manipulated
variable is always necessary for the practical use of a model [238, p.251].

9 The most canonical example arguably being the Cremona diagram for statics of trusses [81, p.37].
This method was widely used to solve lattice-like problems, discussed in Section 5.3.1, before the rise of
computerized methods.
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systems and to study complex three dimensional problems10. These methods also pro-
vide generic tools to derive or integrate functions, by geometrically estimating surfaces,
weighing cut out surfaces or using measuring devices as the planimeter [19, p.374].

Leaving aside drawing methods for less abstract analogous models, analogy has his-
torically been used by Antoni Gaud́ı to design arches with evenly distributed load, with
reverse scale model made of chain assemblies and weight sand bags [175, p.46]. A more
generic example is the once widespread use of electric circuits to solve ordinary differen-
tial equation, tuning resistors, capacitors and inductors to adapt to the problem parame-
ters [19, p.374]. A similar electric analogy was even used to model the partial differential
equations of fluid dynamics in two dimensions [143]. For similar problems but with a
distinct approach, Atanasoff designed a carving tool to iteratively solve the Laplace’s
equation with a cube of wax [39, p.876]. An example from more fundamental physics
is the study of the atomic structure of liquids by scale models11, first with assemblies
of balls and rods [29] and then by direct measurements on heaps of ball-bearings [30]
(Figure 3.3).

Figure 3.3: Example of analogous scale model. Scale model of a heap of 103 ball-
bearings, used to investigate the structure of molecules in liquids. Illustration from [30,
plate 15].

More focused on solid mechanics, examples include the determination of elastic stress
fields by photoelasticimetry [231, p.312–320] and the simulation of metal hot forming by
room temperature forming of lead or plasticine, tracking local strain field by engravings
of colored layers: the visioplasticity technique [51, p.227].

In the absence of powerful numerical solving capacities, those models were based on
experimental techniques on a physical setup. An analogous model can also be purely
conceptual: a conceptual model designed to simulate another one, and were dominant
phenomena are expected to be analogous [105, 72, 166].

3.1.3 Numerical Resolution

Numerical approximated and discretized approaches rely on the subdivision of a complex
system – often in time and space – into many easily solvable elementary problems. From a
conceptual point of view, key features of numerical methods appeared very early in history.
However, the quantitative computing power available deeply shapes the qualitative design
of the model.

10 For example the descriptive geometry [142, p.20–25] and its application to the drawing and the
development of surfaces in boilermaking [125].

11Similar goals have been investigated with numerical models, including at a contemporary period [7].
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3.1.3.1 Halley’s Comet

The idea that complex models can be solved by numerical discretization is not recent in
history. Many typical characteristics of modern numerical methods appeared long before
massive computing power was available.

Limiting ourselves to models somewhat similar to the method used in this PhD, a
pioneer attempt to discretize an otherwise unsolvable physical model can be traced back
to 1757, when Clairaut, de Lalande and Lepaute attempted to study the dynamics of the
system {Sun, Jupiter, Saturn, Halley’s Comet} by numerical approximation [92, p.20].

Sun

AphelionPerihelion

Halley’s Comet

Saturn

Jupiter

Figure 3.4: Sketch of the 1757 attempt to compute the orbit of Halley’s Comet, with
considered gravitational forces. The modeling objective was to predict the next perihelion
of the Comet. The Sun is considered fixed, the actions of the Comet on Saturn and Jupiter
are neglected. The trajectories of Jupiter and Saturn are computed in parallel with the
trajectory of the Comet.

A remarkable characteristic is that key features of modern numerical methods were
displayed:

• They chose a dominant physical phenomenon (gravitational attraction between mas-
sive points) and simplification assumptions (the Sun is fixed, Halley’s Comet actions
on other bodies are negligible).

• They discretized time, updating the state of the system every 1 or 2◦ on the orbits
of Jupiter or Saturn.

• They designed a calibration procedure for their approximated method, based on
experimental data from 1531, 1607 and 1682 previous perihelia of Halley’s Comet.

• They estimated the error on the result, which proved to be of the correct order of
magnitude12.

• They parallelized the computing effort: de Lalande and Lepaute computed the state
of the system {Sun, Jupiter, Saturn} and passed their results to Clairaut, at the
other side of the table, for him to compute Halley’s Comet position.

12 The prediction was 1758/04/15 ± 1 month, the actual perihelion occurred on the 1758/03/13, after
76 years of revolution. Even though, Jean le Rond d’Alembert considered that their numerical method
was not of any help in understanding Halley’s Comet, they respected the predicted order of magnitude
of the time precision of 0.1%, while periods range from 74 to 79 years, more than 6% of variation.
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Although all the calculations were done by hand – it took them five months of efforts
to calibrate their method and predict the Comet’s next perihelion – their approach is in
essence very close to modern numerical model resolution.

3.1.3.2 Model design and Computing Power

The computing power available deeply influences the modeling choices. Since the 40s, the
computing speed of sequential machines increased by more than ten orders of magnitude.
Such a quantitative leap made possible otherwise unreasonable approaches. In the last
decade, the sequential speed tends to stagnate but parallel computing leads to a massive
increase in computing power. To take advantage of this technological shift, specific care
is required in the design of a model.

Initially purely manual, calculations were progressively machinized and standard-
ized [70, p.6], to improve speed and accuracy, while limiting errors13. Among classical
tools for human calculators we find tables and abacus – regrouping precomputed values
of functions14 – slide rules [19, p.374], counting frames and diverse computing machines.
In parallel to technical improvements, a strong emphasis on labor division and orga-

nization allowed to distribute large computing tasks in teams of calculators [91]. Such
techniques remained competitive in the infancy of numerical computers, before being
rendered obsolete by this much faster challenger.

The chaotic history [101] of numerical computers developing speed, available mem-
ory, versatility, standardization and ease of programming will not be detailed here. It
must however be underlined that the order of magnitude of the computing speed (Fig-
ure 3.5) possible with digital electronic computers are altogether impractical with other
techniques, human computation or mechanical devices [39, p.877].

For decades up to the beginning of this millennium, around 2004 [74], the progresses
of the computing hardware were mostly driven by frequency scaling: the increase of the
processor frequency increased the number of operations executable by a machine in a given
time (Figure 3.5). Arising issues, among which power consumption of machines, led to
a shift from frequency to parallel scaling (Figure 3.6). Without a radical technological
breakthrough, the number of operations per cycle and the frequency of the processors may
not dramatically increase, leaving unchanged the current order of magnitude of executable
operations per second on a single processing unit.

To increase the computing power, industrial companies shifted from building faster
processing units to design machines with more units: a shift from frequency scaling to
parallel scaling. Faster machines are built associating multiple processing units, from a
pair to 107 for Sunway TaihuLight15, the current fastest machine of the TOP500 list [219].
In consequence, gains in computing power do not imply any gain in the running time of
a sequential implementation. An additional development effort is required to parallelize
the codes and take advantage of the machine resources: portions of the algorithm have
to run simultaneously on various processors. Actual computing time gains can be rather
limited [16] and the nature of the algorithm sets an asymptotic limit [101, p.41], to
possible time gains with parallel scaling. The irreducible critical path is intrinsically

13The approximation of π to 707 decimals – manually computed between 1853 and 1873 – was only
found is 1946 to be erroneous after the 527th decimal place [71]. The automation of the computations and
the use of machines considerably reduce such errors, although flaws directly stemming from the hardware
can still be found on modern computers. See for example the Pentium FDIV bug discovered in 1994,
leading to incorrect results in floating-point division at the 5th decimal place [159], and the Intel Skylake
processor bug, recently found, where hyper-threading activation leads to segmentation faults [127].

14Including printed tables of random numbers [205, p.625–629], strange-looking collections in a modern
context.

15Sunway TaihuLight uses SW26010 chips, shown on Figure 3.5, operating at moderate frequency by
modern standards.
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Figure 3.5: Rough orders of magnitudes of computing speed for single processing units.
The performance of modern machines can no longer be measured on this scale, they are
designed to use multiple units in parallel. Mixed data for multiplication and addition of
10-digit and 16-digit numbers, from [88, p.137], [39, p.887], [148, p.33], [63, p.14], [67]
and [219].

sequential16. Whatever the strategy used to save time by massive parallelization, the
required resources in terms of energy is rather intrinsic to a resolution tool: modern
computers require roughly 10−9 J to execute a floating point operation [3].

From handmade calculation to massively parallel architectures of modern clusters,
many key principles are shared by the numerical methods, independently of the tool used
for the resolution. The main invariant issue remains the compromise17 between accuracy
and computation time, which is sometimes closely related to cost. Regardless of the
available machines, computing times approaching 104 h are impractical, computing times
of 106 h are ridiculous [238, p.249].

Thus, conceptual numerical methods can only become of any practical interest when
an adequate computing power is available. Very small test cases used during this PhD, for
example running within minutes on a Xeon X5660, would take about 107 years to compute
by hand and would have taken months to compute on Maniac, the fastest machine of the
1950s18. A quantitative order of magnitude change in the available computing power
implies a qualitative change in modeling approaches that are possible [19, p.376] [33].

16As a quick example applied to DEM simulations: the particles can be distributed on several processing
units, but the explicit time integration is sequential. See also Section 8.5 for a discussion regarding
potential algorithmic work-around.

17The fact that technical progress does not change the nature of key compromises seems rather
generic [43, p.95].

18Maniac was the machine used to implement and test for the first time DEM-like algorithms (refer to
Section 5.3.2.2 and [166]).
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Figure 3.6: Frequency and consumption of Intel x86 processors: the Prescott consumed
much more for little performance improvement. Thermal issues led to the abandonment
of the Pentium 4 line, replaced by chips with lower frequency and multiple processors.
Illustration from [63, p.14].

3.1.3.3 Computerized Numerical Approach

The massive computing power available is not a guarantee of the quality of a model.
For complex models and modern computer architectures, a comprehensive and systematic
“error-proof” model is technically unreasonable and contradictory with computing perfor-
mances. Specific safeguards are required to assess the quality and the potential domain of
application of a model.

Modern computing techniques open the route toward the modeling of complex sys-
tems. The model life cycle is a long route starting with a physical observation of a
dominant physical phenomenon, turned into an idealized conceptual model, translated in
a mathematical formalism, algorithmically discretized to be solvable by numerical means
and finally implemented in a given programming language.

Although a clear distinction cannot always be respected, the issue of evaluating the
credibility of a computed result can be divided into three sub-problems [203]:

• The evaluation of the accordance of the studied physical phenomena with the pro-
posed conceptual model, the qualification of the model19.

• The fidelity of the final computed results to the conceptual model, the verification
of the model.

• The validation, which studies the accordance of predict behavior and measurements
of the physical phenomena.

Validation and verification are common practice in model design. Qualification is
rarer when a strongly based literature is available for the studied phenomena. On the
generic sketch for credibility assessment in Figure 3.7, an alternative route is proposed to
solve a conceptual model: an analogous model can be designed, typically in the objective
of an easier resolution. Such an approach introduces a supplementary “layer” between
the model and the physical phenomena. In this specific case, the exact status (validation
or verification?) of the benchmark of the results of the analogous model with reference
results can be somewhat ambiguous. More generally, the strict respect of this terminology

19 The qualification terminology, introduced in [203], seems little used in the literature.



46 CHAPTER 3. SIMULATION BACKGROUND

is not always practical. Its main merit lies in the attempt to systematically shed light on
various potential pitfalls.

Qualification

Validation Verification

Credibility
Assessment
Procedures

Physical
phenomena

Observation
Reference
Result

Conceptual
Model

Analogous
Conceptual

Model

Approximate
and Discrete

Resolution Algorithm

Executable
Program

Numerical
Result

Figure 3.7: Possible credibility assessment methodology in the modeling process. An
alternative route is proposed for the resolution of the conceptual model: an intermediary
analogous conceptual model. All the steps to move from one block to the other are
potential error sources. Inspired from [203].

The use of computerized numerical approaches introduces specific issues in the veri-
fication phase, where the accordance of the results to the conceptual model is checked.
Errors can be classified as stemming from distinct sources [162, p.9]:

• Discretization (spatial and temporal);

• Iterative procedure convergence [211, Chap. 6 and 8];

• Computer round-off [87];

• Computer programming20.

For many numerical model implementations, a rigorous mathematical approach –
proving existence and uniqueness of the solution, computing convergence rates and ac-
cumulated round-off errors – is impractical. Similarly, robust programming methodology
are time and memory consuming, both at implementation and at run time [189, p.15].
Not only the accuracy of a computerized model can be questioned, but – even with im-
proved accuracy and stability – the reproducibility of the results is not guaranteed21 and
is contradictory with the quest of fast computations [185].

Somewhat like in the design of models of chaotic physical behavior, a nonspecialist in
computing science is bound to evaluate the reasonable metrics of interest of an executable
program and delimitate ranges of sensible use, confronting it with test cases and physical
measurements.

20 “There are two ways to write error-free programs; only the third one works.” [168, §40]. In the
context of numerical modeling of physical phenomena, the likeliness of bugs in elementary processing
units (see footnote 13 on page 43) can be considered negligible with respect to programming errors: “the
chips are one of the least likely sources of error; user input, application software, system software, and
other system hardware are much more likely to cause errors.” [159, Q11].

21 A standard library as Intel’s MKL is only reproducible under drastic conditions [185, p.7].
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3.2 Description of the Studied Phenomena

The observed physical phenomena can be described and idealized, which is a preliminary
step in a modeling approach. Some overall effects of the motion and interactions of
interfaces of solids are briefly looked into. Classifications are proposed for interface types
and topological events. Such taxonomies are not always of practical interest, but can serve
as a guide in the design of a model.

As a rough conceptual model, based on the observations of the physical phenomena
of interest (Section 2.5), we consider a collection of finite solid continuous media, seen as
distinct objects. The objects can undergo finite geometrical transformations, i.e. transla-
tion, rotation and strain [192, p.59] that are not considered infinite, as the intimate mixing
of two fluids, nor infinitesimal22. In addition, the strains are considered irreversible and
isochoric and the elastic effect are considered negligible.

The objects can also mechanically interact with one another – or with themselves –
through contacts of their material boundaries, the interfaces. The interfaces are spatial
discontinuities. A canonical dichotomy of discontinuities in solids, is to describe them as
weak or strong (Figure 3.8).

(a) (b) (c)

Figure 3.8: Weak/strong typology of discontinuities, example of a bi-material. (a) Ref-
erence configuration of a bi-material. (b) Weak discontinuity: the displacement field is
continuous across the interface. The derivatives of the displacement field, e.g. the strain
field, may be discontinuous across the interface. (c) Strong discontinuity: the displace-
ment field may be discontinuous across the interfaces. A strong discontinuity does not
necessarily imply decohesion.

A weak discontinuity is a model where no relative motion is possible across the in-
terface. Although it is often an oversimplification, a weak discontinuity is a convenient
way to idealize cohesive interfaces between objects. Material properties, strain and stress
fields can be discontinuous across the interface; but the displacement field is described
as continuous. Conceptually, a single object is modeled, with changing properties at the
interface. A strong discontinuity model allows arbitrary relative motion between objects,
conceptually modeled as distinct. The displacement field can be discontinuous across the
interface, allowing interacting interfaces to model contact phenomena.

A weak discontinuity description can often be a first modeling step, allowing the use
of a continuous topological framework, by changing only material properties from one
side of the interface to the other. A model describing strong discontinuity must include
a discrete formalism to compute the mechanical reaction to the interaction phenomena,
typically to prevent inter-penetration of the objects [54]. Such algorithms must cope with

22 Infinitesimal transformation theories consider that the geometrical variations between the deformed
and reference configurations are negligible with respect to the studied length scale.
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displacements and changes in shapes of the objects: motion and potential interaction of
the interfaces must be handled.

From the point of view of their detection in a modeling framework, two categories of
interface interaction can be distinguished (Figure 3.9). A first category is the interaction
between distinct objects, hereafter referred to as contact. Objects involved in a contact
are enclosed within their own boundaries. The distinct objects can be described by non
intersecting sets of material points. At a finite precision, it is theoretically possible to
explicitly list all members of the objects, and to test membership to detect contact. In
contrast, in the self-contact category, the boundaries of a unique object are interacting,
the listing of material points membership is not sufficient anymore to detect contact.

(a) (b)

Figure 3.9: Contact/self-contact typology of discontinuity interactions. (a) Contact
between two distinct inclusions in a matrix. (b) Self-contact of the boundary of a hole in
a matrix.

In the case of limited strain of the materials, the tracking of material points located at
the interfaces could be a sufficient strategy to detect contacts and self-contacts. In finite
transformation context, the potential migration of material points makes it challenging
to design fully automated contact and self-contact detection algorithm. Indeed, the de-
formation of an object can constrain material points to migrate toward or away from a
boundary (Figure 3.10), making the contact detection task non-trivial for modeling tools
working at a finite precision.

Figure 3.10: Contact detection in finite transformation context, example of a hole in a
matrix. Material points initially far from interfaces might migrate toward them. Thus,
using a finite precision, tracking material points initially on the interfaces is not sufficient
to detect self-contacts.

The potential creation, motion and interaction of interfaces can lead to topological
changes of the objects. A topological event does not necessarily stem from radical changes
in the shape of an object. From a mathematical point of view and illustrated with a
mechanician’s words, topological events occur when successive configurations are not:

• Homotopy equivalent [235, p.163], when the number of objects or of holes changes
(e.g. Figures 3.11b and 3.12).
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• Homeomorphic [235, p.57], when the configurations are homotopy equivalent, but
the number of endpoint changes (e.g. Figure 3.11a).

(a) (b)

Figure 3.11: Examples of topological events with negligible strain of the solids. (a) The
initiation and the branching of the crack are not homeomorphic configurations. The
sole propagation of the crack is mathematically not a topological event. Regardless, the
phenomenon may be delicate to model. (b) The inclusion fragmentation or healing of the
inclusion are not homotopy equivalent. No topological change for the matrix.

For example, Figure 3.11b, an inclusion is split into two parts: the number of “objects”
changes, the configurations are not homotopy equivalent. In Figure 3.12a, as the pore
opens, the configurations are not homotopy equivalent: the object remains unique, but
now presents a “hole”.

In contrast, the configurations before and after the branching of a crack (Figure 3.11)
are not homeomorphic: only the number of “ end points” varies. In the final configura-
tion, the theoretical removal of the bifurcation point would separate the crack into three
“parts”. Before the branching, two “parts” at most can be obtained by the removal of a
single point on the path of the crack.

In the context of solid mechanics and working at finite precision, rigorous distinctions
are probably too abstract to be practical, both with respect to the observation of the
physical phenomena and the numerical models. Typical configurations of interest are:

• The creation of the removal of holes (Figure 3.12a) or endpoints (Figure 3.11a) in
objects.

• The merging and splitting processes of objects or holes (Figure 3.12b).

(a) (b)

Figure 3.12: Examples of topological events. (a) Pore opening or closure. (b) Neck
creation and breakage: merge and split of the inclusions, merge of the two holes in the
matrix.

More than the mathematical typology of topological events, our conceptual model
must handle operations on boundaries of the objects, including their creation, destruction,
merge and split.
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3.3 PhD Objective: Requirements for a Modeling
Tool

Based on the description (Section 3.2) of the observed phenomena (Section 2.5), prac-
tical guidelines can be drawn for the modelization objective.

A model and its resolution strategy shall be designed to:

1. Describe the quasistatic deformation of cohesive and continuous media.

2. Describe irreversible finite transformations in continuous media. The possibility
of tracking transformations from a reference configuration may be of interest23.
However, the assumption of small displacements will not be considered reasonable:
reference and deformed geometries will be distinguished. Elastic reversible processes
will be neglected.

3. Describe cohesive materials, coping with tensile and compressive loads, displaying a
resistance to shape modification. Mechanical transformations shall conserve volume.
The volume conservation will be a metric of quality of the model.

4. Describe inelastic strains, with typical plastic or viscoplastic behaviors. The accu-
racy of the representation of a targeted stress/strain behavior will be a metric of the
quality of the model. Norton law and perfect plasticity will be typically represented
behaviors, with little focus on more complex constitutive laws.

5. Describe multi-material flows, with an arbitrary finite number of distinct continuous
phases.

6. Provide a detection method for contact events, the interaction between distinct
phases, and for self-contact events, the interaction of a phase boundary with itself.
The reliability of the interaction detection algorithms will be a metric of quality of
the model.

7. Handle an arbitrary finite number of distinct interactions occurring simultaneously.
The model shall handle simple interaction behaviors as impenetrability or cohesion.
The ease of extension toward more complex interaction behavior, both for weak and
strong discontinuities, will be a subjective indicator of quality of the model.

8. Handle topological modification of the continuous phases: merging and splitting.
Topological events also concern holes in the phases: opening, closure, merging and
splitting. The ease of handling of such events will be a subjective indicator of quality
of the model.

23For example to model history dependent phenomena, which is not a major focus of our study.
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In Part I, the general context of the PhD has been introduced. Initiated from an
experimental perspective, the study of composite forming led to specific modeling needs.
Toward the understanding of the deformation mechanisms, a numerical method able to
handle interface interactions and topological events is complementary to the designed
experimental setup.

Part II reviews potential numerical methods in computational solid mechanics to de-
scribe finite transformation in multi-phase materials. The part is organized in three
chapters:

• Chapter 4 briefly presents two key modeling choices: the kinematical standpoint and
the topology of the description. Only Lagrangian methods are further considered.

• Chapter 5 is a lecture grid of diverse Lagrangian numerical methods, based as much
as possible on algorithmic features. A graphical outline of the chapter is proposed
on page 63.

• Chapter 6 focuses on the comparative description of selected methods and their
potentiality.



Highlights - Part II
Review of Modeling Strategies

• Simulation strategies are shaped by two key modeling choices:
the kinematical description of the flow and the topology of the
constitutive law of the material.

Eulerian kinematics are considered as too costly to accurately
track numerous interfaces. Among Lagrangian kinematics,
two topological approaches are studied: approaches based on
a continuous constitutive behavior (solving a partial differen-
tial equation) and approaches based on a discrete law (mim-
icking continua with a set of interacting objects).

• A partial lecture grid, focusing on algorithmic features, can
help to highlight distinctions and similarities for a selection
of numerical methods.

Methods based on a continuous topology display a variety
of strategies to include the description of discontinuities in
their framework. Methods based on a discrete topology can
in turn propose an analogical route to mimic the behavior of
continuous media.

• Among potential modeling tools, the discrete element method
(DEM) is innately suited to handle numerous contacts and
topological events.

Its versatility and the ease of implementing arbitrary behav-
iors makes it an appealing tool. To our knowledge, no existing
DEM algorithm can describe the inelastic finite strain of in-
compressible continuous media.

L(x) = f

f i =
∑

j f j→i(xi, xj , . . . )

Figure 4.1
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Chapter 4

Key Modeling Choices

In this short chapter, the conceptual distinction between Lagrangian/Eulerian and Dis-
crete/Continuous modeling approaches is examined. Examples of numerical methods are
given and the DEM, used in this PhD, is located.

Two key modeling choices will deeply shape the strategy to model deforming materials.
We focus here on potential techniques to model the continuous ideal phases described in
Section 3.3.

The first key modeling choice is the topology of the material constitutive law (see
Figure 4.1): an idealized material phase can either be considered as a set of discrete
interacting objects, or as a continuum1.

L(x) = f

(a)

f i =
∑

j f j→i(xi, xj , . . . )

(b)

Figure 4.1: Key modeling choice: the conceptual topology of the idealized material.
In both cases, the unknown field of the system is x. (a) Continuous material: within a
domain a continuous constitutive law is valid, typically described by a partial differential
equation (PDE), with a differential operator L and a second member f . (b) Discrete
material: distinct elementary entities interact with each other. The action f on a given
entity i is the summed effects of all its interactions with surrounding entities j.

The second key modeling choice is the kinematical standpoint used to describe the
flowing material [156, p.45] (see Figure 4.2): a Lagrangian (or material) approach, where
the position of specific material points is tracked over time; or an Eulerian (or spatial)
approach, where the flow, seen from fixed points, is measured.

To fix ideas giving concrete examples of numerical methods (see also Table 4.1), La-
grangian finite element method (FEM) is a dominant modeling tool in solid mechanics
simulations, using the motion of a mesh to track the continuous material deformation.

1In a numerical context, the effective resolution of a continuous description of a material necessarily
relies on a discrete re-formulation. The distinction is drawn here at the level of the conceptual model.
Algorithmically similar methods may stem from discrete and continuous topologies of the constitutive
law (see also Section 6.1).
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(a) (b) (c)

Figure 4.2: Key modeling choice: the kinematical standpoint. (a) Reference configura-
tion, initial computation point position. (b) Lagrangian (or material) standpoint. The
position of the material points is explicitly tracked in the deformed state by the motion
of the computing points. (c) Eulerian (or spatial) standpoint. The flow of the material is
measured at fixed computing points.

Eulerian finite volume method (FVM) is widely applied to fluid simulations, the flow of
the continuous fluid is observed from a fixed mesh2. The lattice Boltzmann method
(LBM) [41] and cellular automata (CA) [174, Chap. 6] [2] are Eulerian descriptions of the
flow of discrete objects. The discrete element method (DEM) is a Lagrangian method
tracking explicitly the position of sets of discrete objects.

Kinematical
Standpoint

Lagrangian Eulerian

Constitutive Topology
Continuous FEM FVM

Discrete DEM LBM

Table 4.1: Key modeling choices: kinematical standpoint and topology of the constitu-
tive law. Examples of typical (refer to footnote 2) numerical method for each strategy.
Positioning of the DEM, the main numerical tool used in this work.

In the context of solid mechanics, typically to model metallic materials at the struc-
tural product scale, a framework based on a Lagrangian standpoint and continuous con-
stitutive law – as the classical Lagrangian FEM implementations – often appears more
natural [20, p.315]. A priori, Eulerian kinematics seem better suited to fluid dynamics,
as fluids do not possess a preferential reference configuration [75, p.131]. A discrete con-
stitutive law finds more straightforward applications in the simulation of finite sets of
objects, typically granular materials or atomic interactions.

Eulerian kinematical standpoints can be successfully applied to solid mechanics prob-
lems. Their intrinsic ability to handle arbitrary strain without mesh distortion are ap-
pealing to model flowing-like phenomena, and such frameworks are also popular to model

2It must be emphasized that FVM and FEM are not intrinsically bound to Eulerian and Lagrangian
kinematical standpoint, respectively. Both methods are generic variational formulations to solve PDE by
weighted residual, closely related and that can be written with common mathematical formalism [108,
p.3323]. They differ mostly by the basis function choice: polynomial for the FEM and constant for the
FVM [69, p.443]. Both numerical methods can be formalized from both kinematical standpoints and
the four possible combinations have been applied to both fluid and solid simulation. Intrinsic ease of
application to partial differential equation (PDE) types [108, p.3325] and strong traditions in distinct
communities lead to the predominance of Lagrangian FEM for solid simulation and Eulerian FVM for
fluid simulation.
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fluid-solid interactions. Specific numerical techniques have been developed to allow the
tracking of materials and interface positions. Examples in finite transformation context
include volume of solid method [5], pseudo-concentration technique [25], reference map
technique [116]... Mixed strategies, trying to take advantage of both Eulerian and La-
grangian standpoints were developed, as the arbitrary Lagrangian Eulerian (ALE) [58]
and the deforming spatial domain/stabilized space time (DSD/SST) [230] formalisms.

However, the handling of complex three-dimensional interfaces of arbitrary shape are
still challenging using Eulerian or mixed Eulerian-Lagrangian standpoints. A heavier
computing effort is required to match the accuracy of the interface description reachable
with Lagrangian standpoints. Eulerian kinematical modeling option will not be inves-
tigated further in this work3. Our analysis will thus focus on Lagrangian strategies
for solid mechanics, which natively and explicitly track the phase motion in space with
respect to a reference configuration4. Both discrete and continuous topological descrip-
tions of the materials will be considered. In the context of modeling continuous media,
topologically discrete simulation tools necessarily rely on an analogous approach to build
phenomenological models.

3However, Eulerian descriptions of interface motion, within Lagrangian frameworks, are now classical
and efficient extensions of Lagrangian methods. They are briefly described in Section 5.2.1.

4An updated Lagrangian formulation takes the current – or at least a recently computed – state as
reference; a total Lagrangian formulation is always written with respect to the initial state [20, p.335].
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Chapter 5

Lecture Grid: Lagrangian
Methods

In Chapter 4, two key modeling choices (topology and kinematics) were examined. To
meet our modelization objective, we choose an approach associated in the literature to
the prolific “meshless” and “particle” methods.

This chapter is an attempt to build a lecture grid of a subset of the literature land-
scape of the Lagrangian methods. The objective is to better locate the specificity of our
approach. Far from being a strict classification attempt, the lecture grid aims to provide
potential comparison features between methods. The chapter is split into three sections:

• Section 5.1 is a short overview of the chapter.

• Section 5.2 describes methods using a topologically continuous constitutive law.

• Section 5.3 describes discrete approaches.

A reader without specific interest in taxonomy issues arising in the vast realm of mesh-
less and particle methods might skip to Chapter 6, where selected methods are briefly
compared.
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5.1 Overview

Some Lagrangian methods are generic means to solve PDE, accounting for a continuous
constitutive law. Specific strategies must be designed to deal with discontinuities. Other
Lagrangian methods solve the behavior of systems of discrete interacting bodies. Modeling
a continuum is possible, but not straightforward. Up to some point, the two strategies can
be converging, especially in the context of a numerical resolution.

As a very general description of the variety of strategies developed in the vast La-
grangian family of numerical methods for solid mechanics, two complementary, and up
to some point converging, routes can be drawn. From one side, extensions within con-
tinuous constitutive law frameworks were developed to handle discrete phenomena as
discontinuities and their motion and their interaction. From the other side, discrete
constitutive behavior frameworks were used and modified to phenomenologically mimic
continuous behaviors. The naive continuous/discrete distinction is challenged in the con-
text of numerical resolution, by essence discrete at the lowest computing level. As it will
be discussed, some borderline strategies may display ambiguous features.

Following the first route – developing discrete phenomena management within a con-
tinuous framework – extensions are built on top of a PDE solver. Prolific developments
tried to stick as closely as possible to the FEM framework, adding supplementary numeri-
cal ingredients for discontinuity management. These strategies, described in Section 5.2.1,
take advantage of a strong physical, mathematical and numerical background. Taking one
step aside, as discussed in Section 5.2.1.2, the methodology dependency on the mesh can
be alleviated building the basis function of the Galerkin method on a cloud of nodes, with-
out prior definition of their connectivity, as in the element-free Galerkin method (EFG).
More radically, the FEM variational formulation and matrix formalism can be abandoned,
in methods related to the smooth particle hydrodynamics (SPH), by solving directly and
locally the partial differential equation, in methods presented in Section 5.2.2.

The second route, more confidential but yet historically early, is described in Sec-
tion 5.3. Interactions between large sets of independent objects are designed to mimic
macroscopic continuous behaviors, thus phenomenologically reproducing continuous be-
havior with a discrete framework, for example the DEM. Although not as straightforward
to describe the continuous phenomena, this approach is innately suited to handle an
arbitrary large number of discrete interactions.

The classical sets of methods named in the literature – first of which meshless methods1

and particle methods2 – are broad and provide little help to classify resolution strategy
from the algorithmic and conceptual point of view. Indeed, many historical bridges be-
tween rather distinct methodologies, and concurrent formalization of essentially similar
approaches tend to create a somewhat fuzzy literature landscape. From a practical point
of view, the numerical side tools and algorithms used for secondary tasks have a major
contribution on the overall exploitability of a conceptual method. The denomination of
the method is often heavily influenced by minor algorithmic choices, or even implemen-
tation details.

In order to better locate the methodology developed in our work, the lecture grid
proposed hereafter attempts to rely as much as possible on algorithmic features rather
than final applications3. The objective is not to propose a strict and comprehensive

1 Meshless methods, or meshfree methods, regroup numerical approaches as global resolution on cloud
of nodes (Sections 5.2.1.2), direct and local resolution on independent points 5.2.2, over-impression of
Lagrangian markers in a continuous framework 5.2.1.1.2 and topologically discrete constitutive law 5.3.

2 Particle methods can include practically any modeling approach handling data at nodes or material
points.

3 In the literature, the claimed filiation of the introduced methods sometimes focus on the modeled
phenomena. For example, the work on elasticity in continuous media of Hrennikoff [105] is frequently
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Figure 5.1: Reading grid for the comparison of some numerical strategies based on a
Lagrangian kinematical standpoint. The outline of Chapter 5 is based on this graph,
from which the corresponding sections to the modelization choices are cross-referenced.
Positioning of the meshless methods set and the discrete element method (DEM), the
main numerical tool used in this work. See also Figure 6.1 for a pairwise comparison of
a selection of methods.
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classification, nor a historical review4, but to contribute to the identification of similarities
and specificities of numerical approaches.

5.2 Continuous Constitutive Law

A solidly grounded approach to model the deformation of solids is to solve the PDE
describing their continuous behavior. To handle discrete and topological events, numerous
extensions within these continuous constitutive law frameworks were developed. Two main
resolution strategies of the PDE are considered: variational approaches (Section 5.2.1)
and direct resolutions (Section 5.2.2). It must be kept in mind that in the context of a
numerical resolution, such continuous models will be discretized at some stage.

5.2.1 Variational/Global Resolution

The variational resolution of a PDE is based on energy minimization. Assumptions
are made on the local “shape” of the fields of interest, typically the displacement for
solid mechanics. The solution is found by minimizing the energy, within the a priori
chosen “shape”. Powerful mathematical frameworks are designed, based on linear algebra,
to aggregate local contribution and solve the system globally. Two potential geometrical
supports for the shape functions, used for spatial discretization, are dealt with: a mesh
(Section 5.2.1.1) and a cloud of nodes (Section 5.2.1.2).

5.2.1.1 Basis Function Built on a Mesh

The de facto dominant tool to solve PDE in solid mechanics is the FEM. The method is a
variational resolution based on a mesh as geometrical support. After a short introduction,
three potential strategies to cope with discontinuities will be investigated: a conforming
mesh (Section 5.2.1.1.1), the use of Lagrangian markers (Section 5.2.1.1.2) and the use
of extra basis functions (Section 5.2.1.1.3).

Since decades, the FEM [55] is a strongly established tool for solid mechanics, and
more generally to solve partial differential equation systems. The method is based on
a finite set of degrees of freedom, used to describe the motion of a continuous medium
by a judiciously guessed interpolating function. The solution is found by minimizing the
energy of the system, using a matrix formalism.

In the first related attempts by Rayleigh and Ritz the deforming shapes of linear vibra-
tions were guessed globally, for the whole system [184, Chap. 4][188]. The methodology
proved to be impractical for arbitrary geometries5. To deal with arbitrary geometries,
Courant thus chose to subdivide the system into small domains and used polynomial shape
functions in each subdomain [46]. The rise of computing power triggered the development
of such methodologies, and led to the success of the FEM [233].

The continuous unknown fields are discretized on a mesh, with a polynomial approxi-
mation on its elements. The resolution is based on variational formulation – energy min-
imization principles – integrating and summing-up local contributions from the elements
into global grand matrices and vectors, solving the overall problem by linear algebra.
Versatile and generic, the FEM relies on strongly grounded physical and mathematical
tools, built or adapted to meet the mechanicians’ needs in a wide range of applications.

cited as an early precursor of the FEM, although it conceptually is much closer to the DEM [98, p.149].
4 One could refer to [244, p.3] or [70] for the FEM and to [98, p.149] for the DEM.
5See footnote 7 on page 40.
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Historical challenges – regarding finite transformation, interface and contact handling –
triggered intense research and development of work-around and extension for the method.

In the proposed reading grid, the FEM extensions are organized based on the numerical
approach chosen to track mobile interfaces. This key issue can for example be addressed
by building a conforming mesh (Section 5.2.1.1.1) or6 by adding additional data to the
continuous description with:

• Lagrangian markers (Section 5.2.1.1.2);

• Extra basis functions7 (Section 5.2.1.1.3).

Contact detection and handling are not examined here, as they do not seem to be as
closely bound to a specific method than the interface tracking.

5.2.1.1.1 [FEM] Conforming Mesh The most straightforward strategy to track
interfaces is to explicitly build their geometrical description, directly using the nodes of the
mesh: a conforming mesh. Given a meshed geometry, any standard FEM implementation
can handle the description of limited strain. Typically, one can model composites –
considering ideal weak discontinuities, perfectly cohesive – and cellular materials. In a
conforming mesh context, the description of strong discontinuities can be enriched, for
example by the use of a cohesive zone model (CZM) [65]8.

In this standard configuration, describing larger strains involves a periodical remeshing
procedure of the geometry (Figure 5.2). Indeed, an excessive distortion of the elements
leads to numerical errors and ultimately computation failure. The remeshing involves the
transfer of the state parameters, which is not trivial and needs specific numerical care to
maintain a controlled accuracy [45, 167].

(a) (b) (c) (d) (e)

Figure 5.2: Large strain in forging process simulation, remeshing procedures. (a) Initial
state and first mesh. The geometry is axisymmetric, only one sector is modeled. (b) De-
formed state of the first mesh. (c) Remesh: a second mesh is built and replaces the first
one. The axisymmetry will be lost, the full part has to be modeled. (b) Intermediary
state with the second mesh. (e) Deformed state and a third mesh is built. Illustration
from [45, p.127–128].

An alternative, used in the particle finite element method with moving mesh (PFEM)9 [107],
is to store all the state parameters at the nodes, and to conserve all nodes at each remesh-

6Our lecture grid is by no means comprehensive, the immersed boundary method [170] is another
example, among many, of introduction of a dual Lagrangian / Eulerian description.

7 Extra basis functions are often collaboratively used with conforming meshes or Lagrangian markers.
8This strategy was used to study the room temperature behavior of a composite [73, p.146] similar to

our model material (Section 2.3).
9 Our reading grid distinguishes the particle finite element method with moving mesh (PFEM) and

the particle finite element method with fixed mesh (PFEM2). The PFEM, described in this section, uses
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ing iteration. Arbitrary numerous remeshings can be performed without transfer-related
accuracy loss, but the cost of the remeshing operations is not lessened.

5.2.1.1.2 [MPM] Lagrangian Markers A somewhat exotic strategy to extend the
FEM is to use a set of Lagrangian markers to represent the position and motion of the
materials. This supplementary description of discontinuities is overprinted on top of the
continuous mesh (Figure 5.3).

Two coordinate systems are simultaneously used:

• A mobile set of Lagrangian points accounting for the material displacements;

• A fixed Eulerian or pseudo-Eulerian grid to perform computations.

Lagrangian material points move from grid cell to grid cell over time and at each step
computations are based on the material points present in the cells.

This particle in cell method (PIC) – or material point method (MPM) – strategy has
been originally designed for fluid dynamics and was applied very early to two-dimensional
multiphase flow, with interface tracking [66]. The method was later transposed to two-
dimensional solid mechanics [224, 225]. In this solid mechanics applications, the “fixed”
mesh is not always strictly Eulerian anymore. At each step, the mesh is deformed with
the material in a Lagrangian way, as in the standard FEM. However, the same initial
undeformed mesh is used again at the beginning of the following step, the overall material
deformation being represented by the material point motions. A cheap regular mesh can
thus be used, without remeshing procedure during simulation.

Figure 5.3: Illustration of the PIC from [225, p.247] on a 2D axisymmetric model.
Impact of an elastoplastic rod, initially cylindrical, on a rigid surface. Superimposition
of the Lagrangian markers and the computing grid for a deformed state.

An alternative formulation aimed at fluid-structure interaction simulations – the par-
ticle finite element method with fixed mesh (PFEM2)10 – was also initially designed for
fluid [190] and extended to solid [21]. In contrast to MPM, the computing mesh is purely
Eulerian and fixed.

To our knowledge, the use of Lagrangian markers to track the interfaces themselves
instead of the material phases has not been transposed from fluid to solid simulations.
See for example the moving Lagrangian interface remeshing technique (MLIRT) [37].

a conforming mesh strategy to track interfaces. The PFEM2, described in Section 5.2.1.1.2, uses a set of
Lagrangian markers over an Eulerian computing grid. As a side note, both methods also use extra basis
function to improve the accuracy of interface definition [107, p.1763].

10 Refer to footnote 9 for disambiguation between particle finite element method with moving mesh
(PFEM) and particle finite element method with fixed mesh (PFEM2).



5.2. CONTINUOUS CONSTITUTIVE LAW 67

5.2.1.1.3 [XFEM] Extra Basis Function A more mainstream approach to over-
print discontinuities on top of the continuous mesh is to enrich the elements by extra
basis functions. Now widely used in both fluid and solid mechanics, this strategy typi-
cally uses singular functions to describe interface positions within the elements. Often
based on the level set methodology [163], this approach gives an Eulerian description of
interfaces within a Lagrangian mesh of the material [157]. In FEM context, a current
denomination in the literature is the extended finite element method (XFEM). This strat-
egy allows the study, without remeshing procedures, of problems where interfaces move
without perturbing too much the global geometry (Figure 5.4).

Figure 5.4: Illustration of the principle of the XFEM from [157, p.138]. Arbitrary crack
over a mesh. At the circled nodes, enriched shape functions are used.

It must be emphasized that from a mathematical point of view, the level set method-
ology offers efficient tools to deal with topological events [163, p.26], whose handling is
much easier to implement and automate than with Lagrangian descriptions, especially
those involving a connectivity table. The drawback, lessened by numerous numerical
techniques, is a tendency to lose track of mass or volume [163, p.82].

In the context of finite strains, frequent global remeshing cannot be avoided if a con-
forming mesh or an Eulerian description of interfaces are used. In addition to potentially
prohibiting computing cost, the reliable automation of remeshing and the proper handling
of topological events are algorithmic challenges. More generally, the overall quality and
efficiency of the methods are often bottle necked by these side tools. Developing tech-
niques rely on parallelization paradigms, and the simultaneous use of conforming mesh
and Eulerian interfaces, as an auxiliary tool for remeshing [45, 28].

5.2.1.2 [EFG] Basis Function Built on a Cloud of Nodes

To alleviate the FEM dependency on a mesh, while conserving the framework and the
main methodology, the building rules of the basis function can be modified to rely on a
cloud of nodes, instead of a mesh.

As in classical FEM, the partial differential equation system is solved in a weak form,
using a Galerkin method, via a matrix formulation of the discretized problem. Local
contributions are integrated and assembled to build global grand matrices, numerically
executed using a background cell structure, with a matrix formalism numerical resolution.
However, instead of building polynomial basis function over elements of a mesh, which
requires an a priori specification of the connectivity of the nodes in the FEM, they rely
on a neighborhood of nodes.

To minimize the importance of implementation details, these methods can all be con-
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sidered as instances of the partition of unity method (PUM) [150]. The pioneer attempt,
the diffuse element method (difEM)11 [158], used moving least-square approximation
as partition of unity and was applied to heat conduction. Very close refactoring, the
EFG [23] and the reproducing particle kernel method (RPKM)12 [136], were applied to
solid mechanics.

In the natural element method (NEM), the partition of unity is based on the Sibson
(or natural neighbor) interpolation [208]. Initiated for geophysical problem of large scale
mass transports and geometry changes [232, 199], the NEM was then applied to solid
mechanics [223].

Generalized finite difference method (GFDM) approaches [134, 135], working on un-
structured grids, are closely related methods [24, p.4].

Although this cloud of nodes approach has been quite popular among FEM-background
mechanicians, a major drawback is the numerical cost [24, p.45], intrinsically higher than
the FEM, with which it shares a common methodology, and fortuitously higher than
SPH, its main challenger. Firstly, to integrate the stiffness matrix [150, p.29]. Secondly,
for the matrix system resolution. Indeed, the grand stiffness matrix built in the FEM
has a banded structure, stemming from the connectivity table; leading to lower resolu-
tion cost. The grand matrices built with cloud of nodes are generally not banded, or at
best with larger band width – as nodes being bound to interact with a greater number
of neighbors, to ensure numerical stability — inducing higher computational cost of the
numerical resolution of the system.

5.2.2 [SPH] Direct/Local Resolution

A historically early attempt to handle drastic changes in size and shape consists in solving
directly the partial differential equation without rewriting it in a variational formulation.
A cloud of points discretizes the material, but it is not used as a support to build basis
function of a Galerkin method. The material behavior, the continuous medium consti-
tutive law, is directly solved locally for each computing point. Although the methods
developed are algorithmically discrete, this is a numerical work-around to compute the
behavior of a continuum.

A now classical approach uses probabilistic approximation of the local field derivatives,
based on a kernel function (Figure 5.5). From this computation, the “efforts” acting on
the material points is used to integrate explicitly13 their positions and velocity over time.
This approach is conceptually and mathematically close to the EFG – they use a sim-
ilar approximation of field derivatives to solve continuous PDE – and algorithmically
close to the molecular dynamics (MD), allowing implementations of the formalism in MD
solvers [165, 4]. Initially developed for astrophysics and more generally for compress-
ible fluids [141, 86], the SPH was later on transposed to solid mechanics [131, 130] and
successfully applied to finite transformation in three-dimensional context [79].

As a side note, the algorithmic proximity with the MD can prove challenging to
our naive distinction: discrete versus continuous constitutive law. The classical SPH
requires the use of a kernel to approximate the derivatives, the “efforts” are conceptually
not computed pairwise as interaction forces. Some methods are more ambiguous, as the
particle and force method (PAF) [52], where pairwise interactions are directly derived from
the conservation of energy in a fluid [52, p.15]. More recently, the Mka3D formalism [154]

11 In this work, to avoid confusions, the acronym difEM is used for the diffuse element method. The
acronym DEM is reserved to the discrete element method.

12 It is not always clear in the literature whether RPKM is to be considered closer to SPH (a method
described in Section 5.2.2) or to EFG. The former is the claimed filiation in the original paper [137,
p.1082] and the latter can for example be read in Sukumar [222, p.3]. The fact that matrices are built
within a Galerkin method [136, p.1667] [31, p.1262] oriented our choice.

13 Variants using fully [138] or partially [122] implicit integration schemes have also been proposed.
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solves the elastic behavior of a continuum in a DEM framework using only geometrical
assumptions. Both examples illustrate the limits of our lecture grid.

Figure 5.5: Illustration of the kernel function of the SPH [79, p.33]. Fields are locally
approximated for each computing point, using the kernel.

Numerous variants of the SPH were developed, using diverse kernel function type,
mathematical formalism, stabilization technique and side tool. As an example among
many from the literature, the state-based peridynamics (statePD)14 [210, 77] is an in-
stance of SPH based on a total Lagrangian formulation [83]. Recent developments of the
statePD propose an updated Lagrangian formulation [26], as in the original SPH.

A typical numerical issue of the method is the so-called tensile instability. This poten-
tial inconvenient arises when material points move too far or too close to each other [130,
p.73], potentially causing a purely numerical fragmentation [153, p.290]. For example, in
solids, when an initially homogeneous spatial distribution is anisotropically deformed, the
number of neighbors, within a constant smoothing distance, can become too small in the
direction of the preferential strain. The integration of the constitutive behavior becomes
unreliable, and the continuity of the media might be numerically interrupted.

As a side-note, this problem – well documented in SPH because of its common use
in finite transformation context – can arise very similarly in EFG-like methods15 and
PIC-like methods [66, p.17]. Tensile instability can also be considered as closely related
to mesh distortion issues in FEM.

14In our perspective, state-based peridynamics (statePD) is distinct from bond-based peridynamics
(bondPD). The statePD, described in this section, locally integrates a continuous constitutive law to
solve a PDE. The bondPD, presented in Section 5.3, relies on a discrete constitutive law, computing
interactions between sets of objects.

15The natural element method (NEM) was designed partially to overcome such problems: nodes are
not interacting within a fixed radius as in EFG, but with neighbors defined by Voronoi tessellation. This
approach could be considered as a meshing procedure.
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5.3 Discrete Constitutive Law

Instead of solving a PDE, a discrete topology of the constitutive law can be chosen. The
material is conceptually described as a set of interacting objects. After a general introduc-
tion, two resolution strategies are examined: global for the whole system (Section 5.3.1)
or particle-wise, like in the DEM (Section 5.3.2).

Radically rooting the description of the material in a distinct formalism, numerical
methods can be built on a discrete constitutive law. The common denominator of these
approaches is to consider a finite set of interacting discrete elementary objects. Unlike
methods relying on a continuous constitutive law (see Section 5.2), discrete approaches
are not designed to solve partial differential equation systems.

The mathematical and physical consequences of such approaches must be underlined
(see also Section 3.1.1). The built models are often indeterminate when applied to static
problems and, in addition, become chaotic for dynamic problems. Numerical methods
are thus intrinsically16 ill-conditioned, regardless17 of the chosen modeling approach: the
error on the final state cannot be bounded for an arbitrary small error of the initial state.
Such limitations imply that dynamic discrete models may, at best, model statistical

collective behavior of sets of objects. The exact tracking of the state of individual material
points is illusory and is not within the modeling scope.

As a historical note, the numerical resolution of a discrete model may seem more
straightforward than the numerical discretization of a continuous model. Early attempts
thus used discrete topology to analogically model elasticity in continuous media [242, 187,
105].

Topologically discrete methodologies share three common conceptual ancestors, all of
them struggling with necessary computing power necessary to solve such systems:

• Gravitational laws (Section 3.1.3.1), Clairaut modeled only 6 bodies [92, p.20];

• Molecular systems for gases [146] or solids [119], Maxwell computed only average
global effects [146, p.62] and Kirsch drew qualitative conclusions, unable to deal
with the too numerous unknowns [98, p.149].

• Truss-type systems, for which the first effective computing techniques were designed
for discrete systems: graphical [147] (see also Section 3.1.2) or numerical [48]. These
methods remained dominant until the rise of numerical computers.

From an algorithmic point of view, drawing a clear distinction between numerical
methods inspired by truss or molecular phenomena proves delicate. We thus favored
the resolution methodology to build our lecture grid: either a global resolution for the
whole system like in the lattice models (Section 5.3.1) or a local approach, particle-wise
or interaction-wise, like in the DEM (Section 5.3.2).

5.3.1 [Lattice Model] Global Matrix Resolution

Lattice models are conceptually discrete models: a set of interacting objects is considered.
Their resolution is based on linear algebra tools, the local contributions are aggregated in
global matrices.

16Even without taking into account numerical round-off errors, stemming from floating-point arith-
metic [87].

17 As an interesting side note, preliminary hints to bound the error on the dynamics of a discrete
system representing a continuum have been published [154, p.1533–1536], under restrictive assumptions
like infinitesimal strain.
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Lattice models [206, 164], or spring networks, use topologically discrete constitutive
behavior of the material: linear elastic springs connecting material points for example.

Potential non-linearities (contact, material properties...) are linearized around the
studied state to build a global stiffness matrix, for the whole system. The response of the
system is solved using this global linearized force/displacement law between the degrees
of freedom of the discrete material points.

The methods are often focused on static or quasistatic phenomena [195, 196], efficiently
solved in their framework, but can be extended to dynamic phenomena somewhat like
the FEM18, writing a system including mass and damping matrices. To account for
geometrical evolution of the system, the stiffness matrix can be rebuilt, or the parameters
can be adapted to simulate the breakage of a bond [164, p.42].

5.3.2 Particle-Wise Local Resolution

To take full advantage of the discrete methods, it may be profitable to design algorithm
to locally solve such models. For each object within the considered set, the temporal
evolution is computed from the surrounding environment. After a short introduction,
two temporal integration schemes are dealt with: backward schemes (Section 5.3.2.1) and
forward schemes (Section 5.3.2.2).

Many numerical methods use a particle-wise resolution to solve topologically discrete
material behavior: The temporal evolution of the system is solved independently for each
elementary object (or particle), based on their interactions with others. This methodology
allows a very free handling of local non-linearities of the behavior and the effective reso-
lution of complex interactions between numerous objects. Conceptually, this approach is
closely related to the 1757 attempt described in Section 3.1.3.1.

The evolution of the discrete system can be numerically handled using two overall
time integration schemes19:

• Backward (or implicit), see Section 5.3.2.1;

• Forward (or explicit), see Section 5.3.2.2.

Although the choice of scheme can be of little influence on the final modelization
metrics [112, p.2], it must be underlined that the two schemes are not only algorith-
mic strategies to solve identical systems: backward schemes allow the formulation of
interaction laws as strict inequalities, typically for the impenetrability of the particles.
In contrast, in forward schemes, such inequalities are regularized, typically with a stiff
penalization of interpenetration.

From the computational point of view, the choice of scheme also implies distinct
numerical behavior. Backward schemes are unconditionally stable, allowing a user-chosen
compromise between computation time and accuracy, while forward schemes are strictly
limited (see also Section 8.3).

18Lattice models share their matrix formalism with the FEM [70]. Even after the apparition of the
FEM, at more recent periods than the pioneer papers referred to in the beginning of Section 5.3, lattice
models were often proposed as alternative methods, for example to reduce computing cost [118].

19Backward and forward based methods are sometimes respectively referred to as non-smooth and
smooth methods [111]. However, the degree of smoothness of the interaction laws between particles is not
algorithmically constrained by the choice methodology. Although backward schemes are mathematically
more satisfying to integrate arbitrarily non-smooth behaviors, forward schemes are almost always used
to integrate behaviors of limited smoothness, among which the contact creations and losses.
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5.3.2.1 [NSCD] Backward Time Scheme

In a backward time scheme integration, the solver tries to find a solution satisfying
constraints in the previously elapsed time step. This strategy allows to properly take into
account arbitrarily non-smooth behaviors. In addition, the compromise between computing
time and accuracy can be chosen.

Backward (or implicit) time schemes handle, by design, inequalities and arbitrarily
non-smooth interaction laws between elementary objects. The instantaneous values taken
by the interactions are not computed and thus do not need to be expressly defined. At
each step, for each interacting pair [112, p.11], the solvers attempt to find a final solution,
satisfying the system constraints and Newton’s second law in the time elapsed since the
last known state.

In a first variant, referred to as the event-driven method (EDM), the time stepping
is defined by the physical events [174, Chap. 3]. The system state is updated only at
anticipated interactions, computed from the current state. Such approaches, that can be
traced back early in the study of molecular systems [7], are of interest only for systems
like sparse gases, with rare, independent, non simultaneous interactions, whose time scale
is considered negligible with respect to the simulation time (instantaneous interactions).
They are thus little suited to dense material modelization.

A second variant of backward scheme use an arbitrary time stepping, independent
from physical events [174, Chap. 5]. Specific implicit integration schemes were developed
for solid mechanics and applied to granular materials, as the contact dynamics (CD) and
the nonsmooth contact dynamics (NSCD) [110, 112]. For each elapsed step, potential
interactions are listed and expressed as a set of equations and inequations, numerically
solved to find a satisfactory state of the system.

In the spirit of the NSCD, the local configurations of each interaction are considered
of secondary order and not known enough for a detailed description [111]. Only key phe-
nomenological aspects are modeled, via non-smooth mappings and inequalities, typically
the impenetrability of the objects and Coulomb friction. The solver only operates on in-
tegrals of the interactions, without computing instantaneous evaluations, and can handle
both smooth and non-smooth behaviors.

The intrinsic numerical stability of such schemes allows an interesting latitude in the
compromise between accuracy and the cost of the computation. However, numerically
efficient implicit solvers can prove more delicate to implement and parallelize than explicit
solvers. It must however be noted that, to our knowledge, the largest particle simulations
are run using implicit integration [197] and that specific algorithms for general-purpose
computing on graphics processing units (GPGPU) have been developed [132].

5.3.2.2 [DEM] Forward Time Scheme

A forward time scheme integration extrapolates future states of the system from the cur-
rent configuration. In consequence, it is conditionally stable, leading to strong constraints
on the chosen time steps. The overall conceptual simplicity of the discrete method using
forward integration allows an easy adaptation of the method for distinct purposes.

Forward (or explicit) time integration schemes rely on the computation, at each time
step, of the interactions between the elementary objects [174, Chap. 2]. The next state
of the system is then computed from the current state – positions, velocities and forces –
using Newton’s second law. This lean approach is straightforward to implement, in-
cluding to model arbitrary complex interaction behaviors, as long as an explicit – but
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not necessarily smooth20 – mapping defines them. The choice of the time step, and
thus the computing time, is strongly constrained by numerical stability requirements, the
smoothness of the interaction laws and acceptable computing cost. However, the relative
simplicity to distribute the computing load allows the simulation of large systems. This
methodology, used in our work, is detailed in Chapter 8.

Historically, the computerized model of elastically connected material points from
1955 [72] lack the essential ability to arbitrarily change neighbors over time. An algorith-
mically more comprehensive precursor can be found in 1959 [166] (Figure 5.6). Although
the implementation is somewhat rough21, all the key algorithmic features are already
present in the main22 code: interaction forces, arbitrary changes in neighbors, explicit in-
tegration. Interestingly, those attempts from the 1950s were using a discrete constitutive
law as a numerical work-around to study macroscopic continuum.

(a) (b) (c)

Figure 5.6: Early MD-like code illustration, with 256 particles in 2D. Discrete consti-
tutive law analogically applied to the study of instabilities in bi-phased liquid (denser
phase initially on the top) under the influence of gravity. Typical temporal evolution
from initial state. Illustrations from [166, p.7–9].

Nowadays, mainstream usage of such methods focus on the simulation of phenomena
that are conceptually described by a discrete topology. Slight variations of the formal-
ism used to compute the interactions between neighboring objects stem from distinct
applications. In the MD formalism [183], typically applied to study atomic interactions,
interactions are defined through potentials around points, within a cutoff distance. In the
DEM formalism [49, 50, 149], widely used in granular flow simulation, interaction forces
are computed between interpenetrated particles.

These two classical formalisms do not differ from the algorithmic point of view, and
rely on identical numerical tools. To sum up, in the MD, typically punctual bodies
interact through a potential, often written as functions of the distance, within a cutoff
range chosen for computational convenience. In standard DEM applications, bodies are
considered to have a “physical” dimension and shape, they interact through force and
torque laws, often written as functions of the indentation.

20The conditional stability of forward scheme implies that the smoothness of the laws influences the
overall numerical quality.

21All parameters were powers of two, in order to replace multiplications by binary shifts, faster op-
erations [166, p.8]. Refer to Figure 3.5 on page 44 for orders of magnitude of the computing power of
Maniac, the historical machine used for this work.

22The authors do not describe in detail their aborted attempt to treat incompressibility more accurately
than with binary repulsion [166, p.11]. Although unsuccessful, this second code was probably an ancestor
of the SPH [86, p.376].
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Implemented codes can practically be used for both, with minor adaptations23. Built
upon a historically distinct mathematical formalism, but essentially relying on the same
principles, the bond-based peridynamics (bondPD) [209]24 comes to similar results and
limitations. Other variants found in the literature are the so-called movable cellular
automata (MCA) [177, 176], using CA algorithms to define the interaction laws between
the elementary particles in a MD framework.

In the perspective of modeling continuous phenomena, choosing a discrete constitu-
tive law, from the start, can be seen as an alternative to numerically discretizing and
solving continuous equations. In a more modern context than the pioneer attempts
cited above, such methodology has been applied to elastic and brittle macroscopic behav-
iors [60, 59, 124, 209, 202, 109, 10, 98, 114, 217]. The general trend is to build ad hoc
interaction laws between imaginary particles, used to discretize a continuous medium, in
the objective of phenomenologically reproduce a targeted macroscopic behavior. Most
examples in the literature focus on the objective of modeling dynamics brittle fracture
and fragmentation of elastic solids (Figure 5.7). More unusual applications can be found,
for example volumetric plastic strain [113] or quasistatic buckling [123].

(a) (b)

Figure 5.7: Examples of (a) Disk fragmentation under impact [202, p.5]. (b) Crack
propagation in composite [217, p.9], with typical path depending on the relative properties
of the phases.

23For example, the DEM solver liggghts is a fork from the MD solver lammps, mainly adding new
features and reusing the main structure and algorithms.

24Refer to footnote 14 on page 69 for disambiguation between bond-based peridynamics (bondPD) and
state-based peridynamics (statePD).



Chapter 6

Comparison of Selected
Methods

In Chapter 5, a partial lecture grid of Lagrangian numerical method was proposed to
locate the DEM in a somewhat comprehensive context.

This chapter proposes elements to illustrate the specificity of our approach. The
chapter focuses on a few selected methods to underline similarities and differences with
the DEM. The chapter is split into two short sections:

• Section 6.1 proposes a pair-wise comparison of the conceptual and algorithmic fea-
tures of FEM, EFG, SPH, DEM and lattice model.

• Section 6.2 reviews some potentialities and issues linked to the different methods,
with specific emphasis on the DEM.

6.1 FEM, EFG, SPH, DEM and lattice model

This section is an attempt to sum up the key similarities and distinguishable features,
from an algorithmic and conceptual point of view, identified in the lecture grid proposed in
Chapter 5. The section is limited to widespread methodologies: FEM, EFG, SPH, DEM
and lattice model. A graphical synthesis of the section is proposed in Figure 6.1.

Lattice models share their core mathematical tool with the FEM. Both methodologies
build-up global grand matrices from local contributions, to globally solve the response of
the system via linear algebra [70, p.3]. Unlike the FEM, lattice models are not designed
to solve PDE representing the behavior of continuous media.

The FEM is a variational formulation1 of partial differential equation (PDE). The
domain is subdivided into elements, formed by explicitly interconnected nodes, on which
fields are approximated by polynomial shape functions. The local contributions to the
energy are integrated and the problem solved in a global matrix formalism by minimizing
the energy.

The EFG shares a common main methodology with the FEM: the variational formu-
lation and global matrix formalism are identical. However, a distinct strategy is used to
build the shape functions. Fields are statistically approximated in the neighborhood of
the nodes, without a prior table of connectivity.

The SPH shares a mathematical tool with the EFG: the statistical approximation of
fields in a neighborhood. However, the SPH does not rely on a variational formulation,

1 The system is solved by minimizing its energy rather than by direct resolution.
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Figure 6.1: Graphical view of the comparison, proposed in Section 6.1, between discrete
element method (DEM), smooth particle hydrodynamics (SPH), element-free Galerkin
method (EFG), finite element method (FEM) and lattice model. Emphasize on pairwise
and circular relationship. For each pair of methods, a key common feature (in the center)
and a key distinct feature (in the periphery) are highlighted. Refer to Figure 5.1 for a
more comprehensive and systematic lecture grid.
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the resolution of the partial differential equation is direct. No global matrix is built,
the resolution of the continuous behavior is executed locally and independently for each
material point by computing “efforts” exerted by the medium and explicitly integrating
position and velocity.

The DEM is algorithmically related to the SPH. They both use a forward (explicit)
time scheme to integrate the position and velocity of the material points, based on New-
ton’s second law and both use neighbor detection algorithms. The salient distinction is
the determination of the “efforts” exerted on material points [86, p.376]. In the DEM,
the forces on material points stem from interactions with its neighbors. In the SPH,
efforts on the material points are computed as the solution of a PDE, with a continuous
constitutive law. Conceptually, many-body (or non local) interaction laws implemented
in DEM-like frameworks to account for the local volume free for the particle [178] are
steps toward the SPH methodology to solve a continuous constitutive law.

Lattice models are conceptually related to the DEM. They share a topologically dis-
crete constitutive behavior: interactions between members of a set of objects. However,
they are algorithmically distinct: while the DEM locally computes and integrates the
behavior of the objects, independently from one another, lattice models rely on a matrix
formalism and a global resolution.

6.2 Ongoing Challenges

As-is, numerous powerful methods could be used for our modelization objective. We re-
mark that the strategy of using the DEM, well suited to model contacts and topological
events, is hindered by the lack of models describing isochoric inelastic strains.

Within the Lagrangian family, the accumulated efforts of the past decades opened
wide fields to modeling tools. While methods related to the EFG still suffer from com-
paratively higher numerical cost, the FEM and the SPH now allow the modeling of finite
transformation of complex multiphase three dimensional geometries, including topological
changes. Successful developments of the FEM are based on the massive use of automated
remeshing techniques and tracking and reconstruction algorithms of the interfaces. Even
though parallel implementations are developed, these approaches are limited by comput-
ing power to configurations where the discrete events do not become predominant with
respect to the continuous behavior. The SPH is now a promising challenger, for exam-
ple with hybrid SPH/DEM models, implemented to handle both discrete and continuous
behaviors in a common framework [227, 121]. Advanced developments remain specialist
tools, and are not widely available in mainstream commercial or free/libre codes.

Strategies using from the beginning a discrete constitutive law, like the DEM, are
now widespread and well established. The design of interaction laws and the calibration
procedures of the numerical parameters allow the modeling of targeted continuous elastic
macroscopic behaviors. The handling of fracture and contact mechanics has very little
additional computational cost, including in case of generalized fragmentation, one only
needs to define ad hoc interaction cases.

However, to our knowledge, two closely related drawbacks hinder the modeling of finite
strain in metallic alloys with the DEM. Firstly, the developed models for the continuous
medium rely on initially pairwise bonded neighbors, as in a fixed grid. Most implemen-
tations can handle the breakage of such bonds, and arbitrary contacts afterwards, but do
not accept neighbor changes within a continuous behavior. This is understood here as
a total Lagrangian formulation of the constitutive behavior of the continuous medium,
as the initial state – the initially bonded neighbors – is taken as reference. Secondly,
the introduced plasticity model intrinsically induces volumetric strain. Indeed, plasticity
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and viscoplasticity are computed as a pair interaction between particles, allowing them
to inelastically interpenetrate [113] [210, p.153]. Summing-up, the discrete constitutive
law models lack isochoric plasticity mechanisms and are limited to total Lagrangian de-
scriptions of the continuous behavior.
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In Part I, the global objective of modeling inelastic strain in multi-material was stated.
In Part II, various candidate numerical methods to describe interface interactions and
topological events were reviewed and compared.

Part III describes the chosen algorithmic strategy and the effective numerical tools
used or developed. It is divided into four chapters:

• Chapter 7 states the research question, closely built upon the specific numerical
approach, developed in the DEM framework.

• Chapter 8 reviews the basic algorithms and principles of the classical DEM.

• Chapter 9 presents the algorithmic principles of the developed numerical methods.
The chapter can be considered as a “cookbook”, presenting as briefly as possible
the introduced methods. The discussion of the choices will not be found in this
chapter, but in the corresponding applicative sections, in Parts IV and V.

• Chapter 10 sums-up the choices of numerical solvers for DEM and FEM simulation,
as well as pre- and post-processing tools.



Highlights - Part III
Modeling Approach

• The PhD focuses on the development of a discrete element
method (DEM) algorithm for finite inelastic transformation
of incompressible multi-material.

The framework is trusted to natively handle discrete interac-
tion and topological events. Efforts are concentrated on the
assessment of the description of the deformation of continuous
media.

• The principles of the model is a set of attractive-repulsive
spherical particles, discretizing a continuum.

Under external loads, the packing of particles collectively cope
with strain. The rearrangements, with arbitrary neighbor
changes, account for irreversible strain. Ad hoc interaction
law can be designed to cope with compressive and tensile
load.

• Algorithms to detect physical events like contact and self-
contact are proposed.

The self-contact detection, based on an approximation of the
free surfaces, is to our knowledge a novel approach.

• The chosen DEM simulation engine is liggghts. Custom fea-
tures are implemented within this open-source code.

The compromise between modularity and performance leads
to the choice of the solver, able to massively parallelize large
geometries. The studied problem can thus be scaled up to
the study of full real samples.

rseed rcrown

h ≤ 2rseed

fB→A fA→B

A B

Figure 9.3a

h

f(h, ḣ)
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Chapter 7

PhD Objective: Research
Question and Strategy

This short chapter proposes a research question in relation with our modelization ob-
jective (Section 3.3) and the current limitations (Section 6.2) of the discrete element
method (DEM).

The global purpose of this PhD is to propose a numerical tool handling the mod-
elization objective defined in Section 3.3. In short, a model able to describe quasistatic
finite inelastic and isochoric strains in solids, handling interface motion, interaction and
self-interaction.

Among existing modeling strategies, a topologically discrete constitutive behavior is
chosen. It will not be attempted to solve locally a continuous constitutive behavior. The
formalism and numerical framework are taken from the DEM. As an innate drawback of
the modeling choices, the powerful tools from the continuum mechanics formalisms cannot
be exploited. The model will thus be phenomenological. The macroscopic continuous
behavior of the material will be approximated via the collective interaction of sets of
particles, without a priori qualitative alikeness between elementary interaction laws and
macroscopic behavior.

Nevertheless, foreseen applications include strongly tortuous mesostructures and gen-
eralized interactions of interfaces. In such circumstances, the actual local continuous
behavior is often uncertain, a rough phenomenological approximation can capture well
enough its deformation. The predominance of physical contacts also advocates for a
discrete numerical method, designed to handle an arbitrary large number of complex
contacts.

Similar approaches have successfully been applied to elastic and brittle behavior (refer
to Section 5.3.2.2). However, to our knowledge, no inelastic finite strain model has been
proposed (Section 6.2).

The research question is thus exploratory: can a phenomenological DEM model be
developed for inelastic and incompressible finite strain of continuous media?

The nature of the question implies a twofold proposition:

• An operational algorithmic proof of concept.

It shall be illustrated that the chosen strategy can effectively be applied. Compu-
tational issues will not be considered as secondary, as they may drastically restrain
the potential of the method.

• A critical scope of validity assessment.

The quality of the description of the captured continuous phenomena shall be clearly
delimited, based on numerical or experimental references. The ill-posed nature of
the model will not be eluded.
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Chapter 8

The Discrete Element Method

The research question (Chapter 7) is closely built upon a specific numerical method,
the DEM. This chapter describes the classical framework of the DEM. After a short in-
troductory overview, each section is dedicated to an algorithmic feature.

The DEM is a dynamic Lagrangian method, conceptually closely related to molecular
dynamics (MD)1, aiming to model the collective motion of sets of interacting objects,
interpenetrating one another, governed by the conservation of momentum [149] [174,
p.13–134]. At each time step (Figure 8.1), overlaps between objects are detected and
used to compute interaction forces. Forces, positions and velocities are integrated using
an explicit scheme, independently for each object, to define the next state of the system.

Neighbor
Detection

(Section 8.1)

Interaction
Force

(Section 8.2)

Time
Integration
(Section 8.3)

Metrics of
Interest

(Section 8.6)
Output

Time
Loop

Spatial Parallelization (Section 8.5)

Figure 8.1: Schematic DEM time loop. Cross-references to the corresponding sections.
The boundary conditions of the system are examined in Section 8.4. A more comprehen-
sive graph can be found Figure 9.1 on page 100.

From the conceptual point of view, the elementary objects could be of arbitrary shape.
This option, aiming to refine the geometrical description of the objects, has been im-
plemented following various routes, among which2 polyhedral objects [62], triangulated
bodies [213], sums of primitives [64] or superquadric particles [173]. However, neighbor
search and overlap computation are algorithmically much heavier than with the exclusive
use of spheres as elementary objects. In each modeling context, the compromise between

1A major distinction between MD and DEM is cultural: the DEM community cites the reference
paper of Cundall [50]. See also Section 5.3.2.2.

2 For more possibilities, refer for example to [64, p.143].
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computing efficiency and accurate description can be debated, It must not be forgotten
that the method is a priori ill-posed, which sets an asymptotic limit on the accessible
local details. In our work, particles have no proper physical sense: they are an arbitrary
discretization of a continuous medium. Our description will thus be limited to meth-
ods using spheres as elementary objects, favoring the computing efficiency and modeling
complex shapes with larger collections of spheres.

The elementary objects could be designed to be able to deform or change size during
the simulation. This can be used for example to account for chemical reactions [76] or to
describe a finer mechanical behavior of the objects [64]. In the objective of focusing on
the collective behavior of numerous elementary objects, the shape and size of the objects
will be considered fixed.

Along with an elementary geometry, we will not describe nor use algorithms that
explicitly track the angular position of the particles. The algorithms used here can, with
little effort, be extended to implicitly take into account rotational effects, but our models
will rely on non oriented and non rotating particles, and will thus not describe torques
between objects.

We thus limit ourselves to methodologies where a particle is defined by its mass and
diameter, constant in time, and its position and velocity at a given instant. Additional
state parameters, including history variables, can be Lagrangianly defined and stored at
the particle level. In the following sections, we describe the ground features and algorithms
of the classical DEM framework, and associated numerical issues. The three generic steps
of the DEM time loop, (neighbor detection, computation of the interaction forces and
temporal integration) are described respectively in Sections 8.1, 8.2 and 8.3. Ways of
constraining the studied system, through boundary conditions, is described in Section 8.4.
In our perspective, the parallel implementation of a code, described in Section 8.5, is not
a mere computing add-on and must be thought and designed along with the model itself.

8.1 Neighbor Detection

To define which pairs of particles are interacting, it is unreasonably costly to check every
potential pair between all particles. The number of potential pairs is reduced by using
geometrical criteria.

The systematic check of all possible pairs in a whole system, to detect interacting par-
ticles, is costly: O(N2) for N particles. Among various algorithms, a simple and efficient
method for large systems is to build cell lists [7, p.465]. The simulation domain is divided
into cubic subdomains, the cells. All the particles are geometrically sorted and attributed
to the cells. For each particle, a list of potential neighbors can periodically be built, using
only the particles attributed to the surrounding cells (Figure 8.2). Implementations can
execute the effective interaction check at this stage, using the particles sizes and positions,
or leave it up to the interactions computation algorithm (see Section 8.2).

This approach can efficiently handle large systems – O(N · Nn) for Nn particles in
a neighborhood of 27 cells – as long as the dispersion of the diameters of the particles
is limited. Specific variants are designed for systems with an excessive dispersion, using
multiple grids.

The performance of the detection can be tuned and adapted to the context, with
sensible choices of the cell sizes – typically 10% larger than the largest particle diameter –
and of the update frequency of the neighbor lists. Systems with slow motions of the
particles and rare neighbor changes, quasistatic packing of dense aggregates for example,
accept a lower update frequency than rapid flows.

The neighbor detection is, from the functional point of view, related to the meshing
procedures used in the finite element method (FEM). It is much cheaper and easier to
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Figure 8.2: Neighbor detection algorithm. Potential neighbors for the dark particle are
only searched for in its own cell and in the neighboring cells (shaded in red).

implement for arbitrary configuration, as no elements – with quality requirements – are
built.

8.2 Interaction Forces

Algorithmically, a vast flexibility is possible on the design of interaction laws. The im-
plementation of complex behavior is often straightforward. For the model to simulate the
collective effect of local phenomena, the interaction laws should be computed from local
metrics.

The possibility of implementing arbitrary interaction laws is a major strength of the
methodology. They only have to be explicitly computable, based on the current or past
state of the system. Depending on the physical principles that inspired them, they thus
take a variety of shapes.

In the most classical case, the relative kinematics – relative position and velocity –
of the particles are used to compute pairwise interactions, all pair interactions being
considered as independent (Figure 8.3). A major strength of the DEM is that little
implementation efforts are required to design arbitrary interaction laws, based on the
current relative positions and velocities of two interacting particles3.

A useful algorithmic add-on is the introduction of state parameters, for example vari-
ables linked to the solicitation history, at two distinct levels:

• The particles, storing a numerically Lagrangian data;

• The pairs, limited in time to the lifespan of the interaction, for example to model a
bonding behavior between particles.

More complex behaviors can involve dependencies between the interactions. Comput-
ing interactions from neighborhoods, for example for compaction of powders [99, p.48], is
referred to as many-body potentials in a MD context, and can be understood as non local

3Classifications are often used in the DEM to subdivide the interaction law in independent contri-
butions, considered to represent distinct physical phenomena: normal and tangential forces; rolling and
twisting torques; repulsive and cohesive effects; elastic and damping effects.
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xA xBxA xB

vA

vB

(a)

fB→A

fA→B
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Figure 8.3: From kinematics to forces. (a) Position and velocity of a pair of interact-
ing particles (A,B). (b) Reciprocal forces: fB→A = −fA→B , typically computed from
relative position and velocity of the particles.

behaviors in solid mechanics. To some extent, from the algorithmic point of view, such
interactions [178] can be considered as a step toward continuous methods as the smooth
particle hydrodynamics (SPH), presented in Section 5.2.2.

Regardless of the design of the interaction laws – instantaneous or history aware,
pairwise or many-body – all external forces, applied by the neighbors, are summed for
each particle. Using Newton’s second law, the acceleration a of each particle can be
computed from its mass m and the sum of external forces f :

f = m · a (8.1)

although, in the effective implementations, the acceleration is not explicitly stored (see
Section 8.3).

In the design of complex interaction laws, it must be remembered that the collective
behavior may be qualitatively distinct from what is intuitively expected from the ele-
mentary behavior. In addition, for the model to effectively simulate the collective effect
of local phenomena, artifacts involving metrics that are not locally computed must be
considered with care.

8.3 Time Integration

The state of the system is explicitly integrated in time. The conditional stability of the
schemes imposes a conceptual upper bound on the choice of the time step. Computa-
tionally, the theoretical time step is often unreasonably costly to be respected. Numerical
parameters are sometimes adapted to allow a faster resolution. The change of the behavior
of the system must be considered.

8.3.1 Velocity Verlet Algorithm

A classical explicit integration method is the velocity Verlet scheme. More complex algo-
rithms can be designed to minimize the numerical errors, but will not be considered here.

At each time step, the state is updated particle-wise, from Newton’s second law, using
an explicit scheme. The current position, velocity, mass and external forces acting on
a particle are used to define the next position and velocity, independently from other
particles. Arbitrary integration schemes can be built by discretizing Taylor expansion of
Newton’s second law.

An elementary time integrator is the velocity Verlet scheme. At the beginning of a
given step i, the position is updated from the previous velocity and acceleration. The
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current acceleration is then computed from the sum of the external forces. The current
velocity is computed from the previous position and the average of previous and current
acceleration.

xi = xi−1 + vi−1 ·∆t+
1

2
ai−1 ·∆t2 (8.2a)

ai =
f i(xi, vi, ...)

m
(8.2b)

vi = vi−1 +
1

2
(ai−1 + ai) ·∆t (8.2c)

A similar scheme can be applied for the rotational behavior, if needed, using the angular
positions and velocities and the moment of inertia of the particles.

In the classical form presented in Equation 8.2, the velocity Verlet algorithm would
require the storage of two accelerations: current and previous. A leaner variation may be
implemented, avoiding the explicit handling of the accelerations:

v = v +
1

2
· ∆t

m
· f (8.3a)

x = x+∆t · v (8.3b)

f = Interaction law(x, v, ...) (8.3c)

v = v +
1

2
· ∆t

m
· f (8.3d)

The velocity Verlet’s local truncation error – caused at each step by the scheme only,
typically excluding numerical round-off errors – is O(∆t2) for the velocity and O(∆t4) for
the position. As the DEM relies on a large number of steps, the global truncation error
– accumulated over time, ideally the effective difference between the retrieved result and
the exact solution – is a more relevant metric to compare schemes. Both velocity and
position have a O(∆t2) global truncation error.

More sophisticated algorithms could be chosen to enhance the time integration accu-
racy, but their computational efficiency is debatable [191, p.878]. In addition, the intrinsic
ill-posed and chaotic nature of the motion of an assembly of objects must be remembered.
A lower truncation error of the integration scheme will not help to overcome this limi-
tation and may not significantly affect the metrics of interest, measured at larger scale
than the individual position of the particles.

8.3.2 Time Step Choice

The conditional stability of the explicit schemes imposes a conceptual upper bound on the
choice of the time step. A practical estimation of this critical time step is based on the
evaluation of the natural period of an imaginary spring-mass system.

A canonical numerical choice, for explicit integration schemes, is the size of the time
step [47]. As an image, the data must be able to travel through the domain faster than
the objects. A concrete example in the DEM context: given a sufficient velocity, a particle
can jump through another one within a time step. Thus, the detection of the interactions
– and the computing of its effects – was slower than the motion of the particles. This
configuration – the instability of the explicit integration – must be avoided as it leads
to unpredictable behavior, the numerical scheme failing to capture the key modeling
features.

A standard DEM criterion, to choose an appropriate time scale, is the spring-mass
analogy. This idealized case refers to a system of particles, with a minimal mass m,
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interacting elastically with a maximal stiffness k. The natural oscillation period t0 of an
imaginary spring-mass system (Figure 8.4), of stiffness k and mass m can be computed
as follows:

t0 = 2π

√

m

k
(8.4)

k

m

Figure 8.4: Elementary ideal spring-mass system of stiffness k and mass m (see also
Equation 8.4).

Although interactions between particles can be simultaneous and unilateral, changing
quite radically the vibratory behavior, setting the time step ∆t to a fraction – typically
a hundredth – of the natural period t0

4 is often a first reasonable choice.
As a short justification that collective effects will not dramatically increase the typical

oscillation time of the particles, one can consider a periodic one-dimensional column
of N masses m, connected by springs of stiffness k. The N natural periods t0

i of such a
system are given by the relation [13, p.432]:

t0
i = π

√

m

k

1

| sin πn

N | ; with n ∈ Z
∗ (8.5)

The case n = 0 is the rigid body motion of the whole system, allowed by the periodic
boundary conditions. The system is not oscillating, the natural period is infinite. The
shortest natural period5 of the system is thus half of natural period of the one degree of
freedom system:

t0
min = π

√

m

k
=

t0
2

(8.6)

Not only the natural periods do not dramatically drop for large systems, but the
propagation of external solicitations is limited by high-frequency cutoff. Indeed, waves
with lower period than t0

min are evanescent [155, p.5], no power will be transmitted to
the system and no significant motion will be observed away from the application point.
This can be seen as a numerical advantage for the stability of the method, but is also a
limitation on the observable time scales.

The final choice of the time step needs to be further tuned to match specific require-
ments, empirical procedures often being necessary for complex interactions.

8.3.3 Parameter Adaptation

Computationally, the critical time step is often unreasonably costly to simulate the state
of the system on large time scales. Numerical parameters can be adapted to allow a faster
resolution, but this necessarily modifies the behavior of the system.

4 Sometimes called the critical time step.
5 In the corresponding normal mode, adjacent masses move in opposite directions.



8.3. TIME INTEGRATION 91

The order of magnitudes of the stiffnesses and masses of physical objects sets an-
other strict limitation for discrete numerical methods as the DEM. To illustrate this, we
will consider spherical elastic homogeneous physical objects, interacting with Hertzian
forces [102]:

fHertz =
4

3
i3/2r1/2E∗ (8.7)

With i the indentation between two objects, r the radius and E∗ = E
1−ν2 , computed from

the Young’s E and the Poisson’s ratio ν of the material.
An average stiffness k for a given indentation can be computed as:

k =
fHertz

i
=

4
3 i

3/2r1/2E∗

i
=

4

3
i1/2r1/2E∗ (8.8)

Introducing the relative indentation ir = i/r, the stiffness k becomes:

k =
4

3
ir

1/2rE∗ (8.9)

The mass m of an spherical object of density ρ can be computed:

m =
4

3
πr3 · ρ (8.10)

The natural period spring-mass system can be estimated using Equation 8.4:

t0 = 2π
(m

k

)1/2

=
2π3/2

ir
1/4

( ρ

E∗

)1/2

· r (8.11)

For a given relative indentation ir, the natural period is thus proportional to the radius
r of the object and to the square root of the ρ/E∗ ratio of the material. Starting from
a map of the existing materials in the space (ρ,E) (see Figure 2.1 on page 20), orders of
magnitudes of typical natural period can be computed (Figure 8.5).

The time step required to model realistic masses and stiffnesses are often unreasonably
small6 to compute phenomena on the relevant time scales, as the system is governed
by stiff differential equations. From molecular dynamics to granular flows, physical
parameters are sometimes modified numerically to maintain the computing time within
realistic bounds7.

In the objective of a faster execution of each time step, the spatial characteristics of
the system can be altered, typically the number of objects or the distance of interaction.
To reduce the number of time steps, two main options can be considered, with similar
macroscopic results:

• Acting on the solicitations of the system:

– Decrease the total simulation time, for example by increasing the velocity at
which the domain is deformed. This is a common strategy in MD.

• Acting on the response of the system, allow the use of larger time steps by:

6 The computing effort required to simulate a time step depends on the number of interacting neigh-
bors. As very rough order of magnitude, with a processor frequency of 2.3GHz on an Intel Xeon E5520,
the DEM code liggghts very roughly requires 10−6 cpu second per particle and per time step, for less
than a dozen of effective neighbors per particle.

7 Such tuning of physical parameters are used in other numerical contexts, as FEM dynamic simula-
tions of quasistatic processes. The increase of the prescribed velocity and the density of the material are
common in deep drawing models [43, p.469].
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Figure 8.5: Rough orders of magnitude of oscillation time scale of hypothetical spherical
objects with Hertzian contacts, for a relative indentation ir = 1% (Equation 8.11). The
values for “elastomer” and “ceramic” are not representative of real materials. They are
made-up using extreme ρ and E values for the class of material [12, p.5], to illustrate
theoretical critical cases reachable with dense materials. Materials as aluminum and
silica display very similar tendency and they cannot be distinguished from steel at the
chosen scale of the graph.

– Decreasing the forces, typically via artificially low stiffnesses. Commonly used
in granular flows [95, p.535], where the mass flow is a metric of interest.

– Increasing the masses. This approach is specifically relevant to study qua-
sistatic phenomena, as the forces tend to be realistic when the accelerations
become reasonably small.

The various strategies are often combined. It must be emphasized that these numerical
work-around can influence, not only quantitatively but also qualitatively, the response of
the system. When the forces or masses are modified, the similarity between the considered
system and the one that is effectively solved is a priori lost. In addition, the modification
of the length scales (natural period or time step) can altogether prohibit bifurcation
phenomena occurring at smaller time scales than the chosen time step [90, p.7]. In this
sense, it is misleading to name “normalization” the parameter modification procedures
often used in DEM: they modify the nature of the solved problem.

8.4 Boundary Conditions

As for the interaction laws, a lot of flexibility is granted to design of boundary conditions.
New objects, in addition to the elementary particles, can for example be introduced.

The most trivial constraint on the system is to let particles fly through the domain
boundaries. Particles can either be altogether lost, and be removed from the system, or
the boundary positions can be adapted to follow the motion of all particles.

Coming from the MD, where systems are often considered infinite, periodic boundary
conditions are a common feature in DEM codes. Particles are made to interact through
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the opposed boundaries of the domain. This implies simple modifications of the neighbor
detection and the interaction computation. Distances have to be taken into account
modulo the dimension of the domain. The state of the system can be controlled by
modifying the boundary positions, leading the particles to interact and rearrange.

A classical work-around to impose more diverse constraints is to describe boundaries
with particles. The ”boundary” particles are typically excluded from the standard integra-
tion scheme, to control their position. Requiring little developing efforts, the description
of even trivial geometries requires a large number of particles, which is potentially costly.
The intrinsic “roughness” of the modeled boundary can be a desired feature but is often
a handicap.

Arbitrary geometries can also be modeled by the introduction of undeformable objects,
either geometrical primitives – as infinite planes – or meshed surfaces. An additional
implementation effort is required to include these objects in the neighbor detection and
interaction computation algorithms. In addition to static interacting objects, various
levels of complexity can be implemented:

• Geometries can follow prescribed motion;

• They can be used as ”sensors”, to measure the forces acting on them;

• Their motion can be controlled via the particle actions.

Going further, though this strategy was not used in our work, coupling strategies of
the DEM with solvers designed for other physical models can be used. In some cases and
up to some extent, such couplings can be seen as complex boundary conditions. Classical
strategies rely on the communication of data between distinct codes, with a distinct time
stepping, adapted to the physical models. The most widespread and fast developing area
is the coupling with fluid dynamic solver based on the finite volume method (FVM) [89].
The coupling with solid dynamic models was also successfully implemented, whether for
undeformable bodies with solid dynamic solver [103] or deformable bodies with FEM
solvers [151, 61]. Endless combinations can be imagined, for example solid/fluid/particle
models [34].

(a) (b) (c)

Figure 8.6: Examples of DEM coupling. (a) Solid dynamics: excavation of rocks [94,
p.3]. (b) FEM: interaction between a tire and a snow layer [151, p.167]. (c) FVM: effect
of the motion of an impeller in a fluid on a bed of particles [34, p.35].
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8.5 Parallel Computing

Parallel computing is only a technical work-around to distribute the computing load on
several processing units, operating simultaneously, in the objective of minimizing the to-
tal computation time. Although the modeled phenomena should theoretically remain un-
changed, the technical limitations are decisive in the algorithmic and modeling strategies.

The most straightforward way to implement a DEM code – and the most understand-
able for both developers and end users – is to follow as closely as possible the governing
physical model, sequentially programming all operations, looping over time step, particles
and neighbors. Algorithmic optimization and performance issues are thus considered as
secondary. As mentioned in Section 3.1.3.2, progresses of computing hardware shifted
from frequency scaling – over time a code would tend to run faster without modifica-
tions – to parallel scaling. To take advantage of improvements, portions of the algorithms
have to be modified to run simultaneously on various processors.

The nature of the algorithm sets an asymptotic limit, Amdahl’s Law [101, p.41], to
potential gains using parallel programming. The limiting, purely sequential part of the
algorithm is known as the critical path and cannot be parallelized. In the DEM, the
explicit time integration of the state of a particle, is such a critical path: the knowledge
of the current state at each step is necessary to compute the following.

Counter intuitively, somewhat exotic parallel-in-time algorithms can be designed for
such initial value problems [133] and have been applied to particle simulations [218]. These
methods are iterative and based on the resolution on various temporal girds. Although all
steps need to be computed, and are in fact all computed various times, such algorithms
provide a work-around to distribute the computing load. This strategy is still confidential
and will not be further considered here, we will only look into the spatial division of a
system into mostly independent subdomains. If the boundaries between these subdomains
are appropriately dealt with, the simultaneous computation of the state of the subdomains
allows to deal with a larger number of particles within a given time.

These purely technical limitations have a major impact on the modeling choices. From
one side, the algorithm critical path – strictly constrained by the time integration – cannot
be made to run notably faster. From the other side, the size of the system can theoretically
be arbitrarily large, only being limited by machine capacity. In the limits of what the
physical model accepts, efficient codes can be written by designing rough interaction
law and time integration, and expanding the system number of objects. Anyhow, the
mechanicians must adapt their modeling strategy, only being able to choose at which
level they accept to deal with computing issues, software and hardware.

A first approach to parallel computing is open multi-processing (OpenMP). This in-
terface allows to distribute computing load between various elementary processors, using
a shared memory for all of them. Starting from a purely sequential implementation,
OpenMP can allow a progressive parallelization of the code, as an add-on, without re-
quiring in depth rewriting work. The main sequential algorithm is run as a unique master
process. For critically time consuming operations, for example the loops on the particles
in a DEM code, the master process calls subprocesses to split the computing load. Once
all subtasks are over, the master process gathers all data and carries on. The scalability of
OpenMP codes is strictly limited by the hardware memory architecture capacities, thus
making impossible massive parallelization on classical machines. However, more sophisti-
cated hybrid parallelization techniques [27] and hardware can take profit of the OpenMP
interface.

To take full advantage of parallel and massively parallel computing, implementations
must be designed from the root to fit the chosen parallel paradigm requirements8. The
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task used to be quite delicate when parallel programming started to spread, implementa-
tions being hardware dependent, and hardware changes being frequent, diverse and often
experimental. Heavy programming effort used to be required, with little guarantee on
the lifespan of the code. With time, de facto standards progressively emerged. For ap-
plications similar to the DEM, potentially massively parallel computing is mostly shared
between the message passing interface (MPI) and general-purpose computing on graphics
processing units (GPGPU).

The MPI relies on a distributed main memory and runs on multiple central processing
units (CPUs), the most common generic elementary computing devices. Each CPU works
on and accesses to its own storage space, and exchanges data with others when needed.
The same code is executed on all CPUs, in the case of the DEM each CPU affecting itself
to a specific geometrical subdomain. The CPUs exchange data during the execution of the
code, for example to properly handle particles lying close to the subdomain boundaries.
It is often necessary to entirely rewrite a specific MPI implementation of an algorithm. A
key advantage of this parallelization strategy is that distinct operations can be performed
simultaneously on distinct sets of data. As a very practical example applied to the DEM,
complex interaction laws with numerous conditional statements. The widespread MPI
standard is adaptable to diverse hardware architectures, and is used on classical machines
and clusters.

The GPGPU attempts to take advantage of elementary graphics processing unit
(GPU), originally designed for image processing purpose. As a rough description, with
respect to CPUs, the GPUs can only handle less complex operations, work at lower
frequency, but can be massively assembled. The memory is shared between the GPU, al-
lowing a fast access to data. The GPGPU programming consists in allowing bidirectional
communication between CPU and GPU, in contrast with the classical unidirectional flow,
from the CPU, to the GPU and finally to the display. This parallel approach is somewhat
akin to the OpenMP interface, with a master process running on CPU calling subroutines
on GPUs, the kernels. Being distinct physical devices managing their own memory, the
CPUs must send the data along with the instructions to the GPUs. In comparison to a
pure CPU parallelization strategy, GPGPU cannot handle distinct tasks simultaneously:
the benefits are restricted to identical operations on large sets of data. For scientific
computation as the DEM, specific hardware is required and devices are far less common
than classical machines.

The domain of parallel computing still undergoes heavy developments, both from
hardware and software standpoints, and may well take new radical shifts. Cutting edge
techniques require heavy development effort and the resulting code may only have a short
lifespan.

8.6 Control Metrics

The choice of relevant metrics is often a sensitive issue in modeling. Spatial and temporal
averages are almost always necessary in the cases of the DEM. Adimensional metrics can
be defined and may help to identify the system key characteristics.

The ill-posed nature of the DEM (Section 3.1.1) implies that specific care must be
taken to define relevant metrics. In general, all local metrics defined at the level of the
particles can only be interpreted after suitable time and space averaging.

For computational mechanics, fundamental metrics of interest are the stress field σ
and the strain field ε. Macroscopic uniaxial stresses can be evaluated by the measure of

8“Adapting old programs to fit new machines usually means adapting new machines to behave like
old ones.” [168, §120]
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the total force acting on a boundary (Section 8.4) and the cross-section of the packing.
Likewise, macroscopic strain can be estimated by comparing, in a given direction a, the

evolution of the typical length A: εaa = log
(

A
A(ref)

)

.

The local fields, at the level of the elementary particles can be approximated and
reconstructed in local neighborhoods. The components of the local stress tensor are
classically computed as follows [44, p.162] [140, Chap. 2]:

σab =
1

V

∑

i=0...n

fa
i · lbi (8.12)

With V the typical volume occupied by the particle, n the number of contacts, fa
i the

components of the force vector due to the interaction with particle i, lai the components
of the branch vector9 and a and b the coordinate system indices.

The algorithm choice for the strain field estimation heavily depends on the expected
strain type, many metrics being targeted to describe the perturbation of a regular lattice.
For inelastic strain, with respect to a reference configuration, the components εab of the
local strain field ε can be approximated in a neighborhood as follow [68, p.7197]:

εab =
∑

k

XakY
−1
bk − δab (8.13)

with Xab =
∑

i=0...n

lai × lbi (ref)

and Yab =
∑

i=0...n

lai (ref)× lbi (ref)

More generally, to try to characterize the overall behavior of a discrete system, nu-
merous adimensional metrics have been defined and used. Among them:

• A relative density of particles D:

D =
N · πd3
6 · Vtot

(8.14)

With Vtot the total volume of the system and N the number of particles. This metric
is typical of the DEM, where the dimension of the numerical particle is supposed
to be linked to a physical dimension of the elementary objects.

• A stiffness level K [194, p.215]:

K =
k

P · d (8.15)

With k the elastic stiffness of the contacts, d the diameter of the particles and P
the confinement stress.

The confinement stress can be approximated with a typical force acting on a particle
and its diameter. Considering linear elastic contacts we can write:

P ∝ d2

k · i (8.16)

With i the indentation between two particles. The stiffness level is thus interpreted
as a simple geometrical parameter, accounting for the relative penetration of the
particles:

K ∝ d

i
(8.17)

This dimensionless quantity is thus closely related to he density D.

9The branch vector li is the geometrical vector from the center of the particle to the center of its
neighbor i.
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• An inertial number I [194, p.207]:

I = ε̇

√

m

Pd
(8.18)

With ε̇ the prescribed strain rate and m the mass of the particles.

Using the same approximation as previously for the confinement stress P , and
remembering the definition of the natural period (Equation 8.4), the order of mag-
nitude of the inertial number can be written:

I ∝ ε̇ · t0
√

d

i
= ε̇ · t0 ·

√
K (8.19)

The salient criterion is the comparison of the characteristic times of the external
load and the packing, respectively the inverse of the strain rate and the natural
period.

• A global equilibrium criteria Q [44, p.155], intended for quasistatic configurations:

Q =
Ek

P · d3
(8.20)

With Ek = 1
2m · v2 the average kinetic energy. In this adimensional parameter,

the P · d3 factor represents the product of a typical force and a typical length,
respectively P · d2 and d. To allow a more direct mechanical interpretation, the
criteria can be re-written as the ratio of the kinetic and elastic potential energies:

Q ∝ Ek

Ep
(8.21)

With Ep = 1
2k · i2. The criteria could be re-written to highlight the role of the

natural period t0 (Equation 8.4):

Q =
1
2m · v2
1
2k · i2

=

(

t0
2π

· v
i

)2

(8.22)

This layout has less direct physical sense but gives a hint about the role of t0
2 in

the comparison of distinct configurations.

More generally, the use of such a criterion implies that the absolute value of the
velocity can be interpreted, which may be doubtful in a system where only the rel-
ative velocities between interacting particles are of interest. Correction procedures
to take into account the average velocity have been designed.

To sum up, numerous generic or specialized metrics have been designed to study
granular flows, at a macroscopic or local scale, this short proposed list being by no
means exhaustive. The characterization of granular flow is still to some extent an open
question [152, p.15]. More than a specific metric, the general methodology of identifying
driving time and length scales proves efficient, including for systems alien from traditional
models.
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Chapter 9

Principle of the Developed
Method

Chapter 7 introduced the grounding choice of using the DEM framework to meet our
modelization objective. Chapter 8 introduced the classical algorithms of the method. The
present chapter is dedicated to the synthetic description of the principle of the developed
method. The introduction of the chapter sums up the effective algorithmic “ingredients”
used for the different phenomena, with an indication of the specific contribution of this
PhD. Each section is then dedicated to a specific physical phenomenon. The discussion,
justification and test of the algorithmic choices are to be found in Parts IV and V.

Although it is somewhat artificial to strictly distinguish between conceptual model,
algorithm and implementation, this section focuses on the principles of the method. Im-
plementation issues with the chosen tools are briefly dealt with in Appendix B.1.

A brief overview of the algorithmic “ingredients” used in the developed models can
be found in Table 9.1. These introduced features are contextualized in a generic DEM
framework in Figure 9.1. Our method relies on custom interaction laws, particle and pair
state variables and non-local behaviors.

Physical model Algorithmic feature and choice Principle Application
Inelastic strain Purely geometric and instantaneous

interaction law
9.1 IV, V

Prescribed strain Mobile rigid mesh/particle interaction law 9.2 IV, V
Material discretization Set particle state variable from 3D image 9.3 IV, V

Contact (distinct objects) Particle state variable 9.4 /
Self-contact Non-local interaction law, pair and particle

state variable
9.5 V

Table 9.1: Algorithmic ingredients used in the developed models. Cross-reference to the
sections describing the choices (Principle) and to the applicative parts (Application).

Algorithmically, the designed interaction laws (particle/particle in Section 9.1 and
particle/mesh in Section 9.2) introduce little novel features. Only the conditional attrac-
tive force may be an introduced feature. However, the adaptation and tuning of our laws
to phenomenologically model large inelastic strains is to our knowledge not found in the
literature.

The detection of contact between distinct objects (Section 9.4) is taking advantage of
the intrinsic properties of the DEM and has already been investigated. This aspect has
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Figure 9.1: General DEM framework of the introduced features (circled), with cross-
reference to the corresponding sections. The chosen numerical tools are presented in
Section 10.1, see also Table 10.1.
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not been a major focus of the PhD and was added for the sake of completeness.
The material discretization (Section 9.3) is now rather standard in the context of our

laboratory [193]. Personal contributions concern the handling of periodic packings and
the definition of arbitrary state variables.

To our knowledge, the self-contact detection algorithm (Section 9.5) is a novel contri-
bution to the field.

9.1 Finite Inelastic Transformation

The basic assumption of our modeling approach is the analogy between the motion of
a collection of spheres, with attractive/repulsive behavior, and incompressible inelastic
strain in a continuum. The ad hoc interaction laws are chosen and tuned for the col-
lective rearrangements of the particles to mimic key features of inelastic incompressible
transformation of a continuous medium. The choice and behavior of the two interaction
laws introduced here are examined respectively in Chapters 11 and 14. A more in depth
investigation of the calibration of the numerical parameters can be found in Section 11.2.

Conceptually, a continuous object is discretized using a dense collection of particles,
interacting with pairwise attractive/repulsive reciprocal forces. Repulsive forces prevent
excessive indentation and attractive forces provide some cohesiveness. This behavior aims
at controlling the overall volume variations.

When an external load is applied to this collection, the particles move with respect to
one another, the packing rearranges. The particles are freely allowed to change neighbors,
thus modeling arbitrary deformation of the object.

Figure 9.2: Principle of finite inelastic transformation modeling. The particles collec-
tively rearrange to cope with the strain. Particles may arbitrarily change neighbors and
the overall volume is meant to be conserved.

An early modeling choice was to consider particles subdivided into two concentric and
spherical interaction zones with distinct behaviors (Figure 9.3):

• A repulsive seed, mimicking incompressibility, of radius rseed;

• An attractive crown, adding cohesiveness, of radius rcrown > rseed.
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Reciprocal interaction forces fA→B = −fB→A are computed for each pair of overlapping
particles (A,B), based on the distance between their center h and relative normal velocity
ḣ.

This geometric strategy1 is closely akin to MD methodology, where punctual bodies
interact through potentials, with an equilibrium state. The algorithm allows an interac-
tion management without the use of history parameters and lists of neighbors, that would
need to be stored between time steps.

rseed rcrown

h ≤ 2rseed

fB→A fA→B

A B

(a)

rseed rcrown

h > 2rseed

fB→A fA→B

A B

(b)

Figure 9.3: Geometry of the interaction of a pair of particles (A,B) and normal forces
f . (a) Seed interaction, repulsive normal forces. (b) Crown interaction, attractive normal
forces.

In this PhD, interaction laws are governed by normal forces f , piecewise linear with
the pair distance h and linear with the introduced parameters (Figure 9.4). The signed
norm f of the force will be used, following a classical DEM convention: repulsive forces
are positive and attractive forces are negative. Two distinct laws, but similar in many
aspects, are used:

• “BILIN ”
This interaction law is suitable only for compressive loads (Figure 9.4a, Equation 9.1,
Part IV). The repulsive forces are strongly dominant and a calibration procedure
of the strain rate sensitivity is proposed.

• “TRILIN ”
This interaction law can mimic tension and compression (Figure 9.4b, Equation 9.2,
Part V). Repulsive and attractive forces are more balanced, no control over the
strain rate sensitivity if proposed.

The interaction law BILIN relies on two stiffness parameters krep and katt, accounting
respectively for repulsion and attraction:

f(h, ḣ)
BILIN

=



















krep(2rseed − h) if h ≤ 2rseed (9.1a)

if 2rseed < h ≤ 2rcrown

katt(2rseed − h) and ḣ > 0 (9.1b)

0 and ḣ ≤ 0 (9.1c)

The attractive force is dependent to the relative normal velocity2 ḣ: the attractive
force is only activated if a pair has a tensile motion, and is canceled in case of compressive
motion. This behavior helps to smooth the creation of new contacts between particles
and introduces a dissipative effect of the total energy, numerically sufficient within the

1In DEM, the algorithms for cohesive behavior are often based on explicit lists of pairs that have
cohesive interactions even if they are not overlapping. Although identical numerical results could be
obtained using such algorithms, they conceptually define preferential neighbors, which will be avoided in
our work.
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h

f(h, ḣ)
BILIN

Repulsive

Attractive

2rseed 2rcrown

(a)

(b)
ḣ > 0

(c)
ḣ ≤ 0

(a)

h

f(h, ḣ)
TRILIN

Repulsive

Attractive

2rseed 2rcrown

(a)

(b)
ḣ > 0

(c)
ḣ ≤ 0

(b)

Figure 9.4: Interaction laws: signed force f versus distance h. Classical DEM conven-
tions are applied: repulsive forces are positive. For each graph, attractive to repulsive force
ratio and radii to scale. Refer to Table 9.2 for the constant used. (a) BILIN : compression
dominated loads, tunable strain rate sensitivity (Part IV, Equation 9.1). (b) TRILIN :
tension-compression loads, fixed strain rate sensitivity (Part V, Equation 9.2).

strain rate validity range of the model, linked to the frequency of oscillation of the pairs.

At the pair level, no damping, shear or torque interaction laws are implemented. In
the tested configurations, such interactions only introduce second-order effects on the
macroscopic behavior of packings.

The behavior of the interaction law TRILIN is very similar to BILIN , with the in-
troduction of an additional parameterfatt, a bound on the magnitude of the attractive
force:

f(h, ḣ)
TRILIN

=



















krep(2rseed − h) if h ≤ 2rseed (9.2a)

if 2rseed < h ≤ 2rcrown

max(katt(2rseed − h), fatt) and ḣ > 0 (9.2b)

0 and ḣ ≤ 0 (9.2c)

A second additional parameter Xwall, will be described in Section 8.4 as it concerns only
particle/mesh interactions.

Most numerical parameters are set to a fixed value (Table 9.2) for all simulation and
considered as constants of the models BILIN and TRILIN :

• All simulations are run using identical radii, for all particles. The dimensions are to-
tally arbitrary and do not represent a physical metric, they are chosen for numerical
convenience.

• The relative magnitude between attractive and repulsive forces is fixed.

It will be discussed (Section 11.2) that the linearity of the interaction laws with the
introduced parameter allows an independent tuning of the kinematics of the packing and

2Computed for a pair {i, j} as the projection of the difference of the velocities vi − vj on the unit
vector en pointing from a particle to the other.



104 CHAPTER 9. PRINCIPLE OF THE DEVELOPED METHOD

Model Driving Numerical constant
variable rseed rcrown t0 ∆t m katt fatt Xwall

mm mm s s g ➭N ·mm−1
➭N /

BILIN t0, krep 0.5 1.5 · rseed 5·10−4 krep

(

t0
2π

)2 krep
10 / /

TRILIN krep 0.5 1.4 · rseed 1 10−1 krep

(

t0
2π

)2 krep
1.8

3
4katt(rcrown− 3

rseed)

Table 9.2: Constants defining the models. The force levels are driven by krep for both
models. For BILIN , the kinematics are driven by t0 ∈ [10−2, 1] s. For TRILIN , two
additional constants are introduced: fatt and Xwall. Arbitrary unit system: (mm, g, s),
forces thus expressed in ➭N and stresses in Pa.

the forces acting upon it. The effective driving parameter of the kinematics is the natural
period t0 = 2π

√

krep/m. The value of t0 must be chosen with respect to the targeted
arbitrary windows, of limited sizes, of macroscopic strain rate. This behavior was only
investigated for BILIN , t0 is considered as a constant in TRILIN . At a given natural
period, the time step ∆t is fixed (Section 11.3.2).

The driving parameter of the forces level is krep, allowing arbitrary stress levels to be
modeled. The mass m of the particles is thus computed from krep and t0.

9.2 Boundary Conditions

The boundary conditions are rather classical in DEM simulations: free surfaces and
mesh-constrained surfaces driven by prescribed displacement. These boundary conditions
are used throughout Parts IV and V.

Two types of boundary conditions are applied to the packings:

• Free boundary, where particles are not constrained by any means;

• Kinematically constrained boundary, using rigid meshes interacting with the parti-
cles.

Interaction forces between the mesh elements and the particles are computed with a
very similar contact law as particle/particle interactions. In the interaction laws (Sec-
tion 9.1) h is defined as the shortest distance between an element and a particle (Fig-
ure 9.5a), and r are to be used instead of 2r.

For uniaxial loads, the following boundary conditions are applied (Figure 9.5b): top
and bottom planar meshes and free lateral sides. Meshes are used to apply prescribed
macroscopic true strain rate. The total forces acting on the meshes are measured to
evaluate the macroscopic flow stress. To smooth the force signal, the total force is averaged
over a temporal sliding window. The width of the sliding window is defined in strain, in
the range 5·10−3 – 10−2 for all applications.

Only planar meshes were used, although any arbitrary surfaces meshed with triangular
elements are accepted.

A potential conceptual limitation is that each particle has only one interaction with a
mesh element3 and multiple interactions with other particles. Under compressive loads,
the model behaves correctly without further modifications: the particle/mesh interaction
tends to indent more to balance with the numerous particle/particle interactions. Under
tensile loads, two modifications are applied to the particle/mesh law:

3Each particle interacts only once with a planar mesh.
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rseed

rcrown

h

(a) (b)

Figure 9.5: Boundary conditions. (a) Geometry of the mesh/particle interaction. Crown
interaction example. (b) Typical boundary conditions for uniaxial loads. Top and bottom
planar meshes with prescribed motion, free lateral sides.

• The normal relative velocity dependency is removed: crown interactions are always
attractive.

• A multiplicative factor Xwall is applied to the attractive forces.

These numerical recipes are ad hoc means to apply a macroscopic load. Their influence
is limited “far”, i.e. a few diameters away, from the application points of the load4.

9.3 Discretization of Continua

The generic spatial discretization of continua is based on large random packings of
particles. The procedure is used throughout Parts IV and V. The modeling of complex
mesostructures, starting from 3D images from X-ray tomography, is more specifically ap-
plied in Chapters 13 and 16.

The basic components used to discretize continuous media are cuboids of randomly
packed particles. The packings are built using classical interaction laws, with elastic
repulsion only, in periodic domains. The procedure is classical in the DEM [236]:

1. Random granular gas generation;

2. Triaxial5 compaction;

3. Relaxation.

The compaction is performed at prescribed strain rate, up to a fixed density D (Equa-
tion 8.14), approximately corresponding to the equilibrium density of the foreseen inter-
action law6. The initial state of the random packing and the elaboration route, in the
context of the large strains studied here, seemed to have little influence on the compression
results, and are not detailed here.

Distinct geometric configurations are built starting from random packings:

1. The desired configurations are built using geometrical criteria (setting the material
type of the particles, removing particles to create voids...);

4Although it would be bold to pretend to apply Saint-Venant’s principle [237].
5Isotropic in the case of cubic domains.
6 The effective density for a given interaction law varies by a few percent with the strain rate, see for

example Figure 11.8 on page 128.



106 CHAPTER 9. PRINCIPLE OF THE DEVELOPED METHOD

2. The attractive-repulsive model and the boundary conditions are applied;

3. A short relaxation is run (typically 500 steps).

The actual tests are run after this last relaxation procedure.
Complex material mesostructures are modeled using 3D segmented images (Figure 9.6).

The image is reconstructed using a simple box filter [216, p.5] which is used as a mask
on the random packing of particles. For each particle, the color at its center is used
to set its type or remove it. This has a low algorithmic cost and for very large sets of
data, a smaller periodic packing can be replicated in all direction, minimizing the cost of
generation of this initial packing.

Figure 9.6: Principle of the discretization from a segmented image. A segmented image
is used as a mask on a dense random packing to individually set the properties of the
particles.

Arbitrary particle state variables (in addition to the particle type) can be set using
this procedure, typically to define distinct objects made of the same material [36].

9.4 Contact Event Detection

The detection of the contact of distinct objects is implemented by testing the membership
of the numerical particles to predefined clusters. The membership can be defined from a
3D tomography image. This algorithm is presented for the sake of completeness but does
not introduce key novelties and thus will not be further examined.

The detection of contact events between distinct physical objects (Figure 3.9a) is
straightforward: a particle state variable represents the membership to a specific physical
object (Figure 9.7).

This state variable is initialized at the beginning of the simulation, typically using
the procedure described in Section 9.3. When two particles interact, their respective
memberships are compared, the attractive forces are canceled for particles from distinct
objects. Arbitrary behavior can be readily implemented.
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Figure 9.7: Principle of the detection of contact between distinct objects. Each particle
is assigned to an object at the initial state object, here 0, 1 or 2. In the deformed state,
four pair interactions (circled) are considered as events between objects 1 and 2. The
neighbor changes in object 2 are simply accounting for inelastic strain in this solid, they
are not considered as physical contacts.

9.5 Self-Contact Event Detection

The detection of the self-contact of the interface of a single object is based on a local
approximation of the free surfaces. The metrics are computed for each particle from the
position of its neighbors. This algorithm is only used in Part V. More specifically, its
tuning, discussion and extension are to be found in Chapter 15. For applications to
complex mesostructures, refer to Chapter 16.

In the context of our method, neighbor changes between elementary particles are
accounted on to describe inelastic strain in continuous media. A dedicated discrimination
algorithm must detect the new pairs that must mimic the physical interaction of interfaces.

The detection of self-contact events (Figure 3.9b on page 48) cannot rely on the initial
state of the system (Section 3.2):

• By definition, physical self-contacts involve particles that are members of the same
object;

• In a finite transformation context, particles may migrate away or toward the free
boundaries: the self-contact detection cannot rely on the particle initial position.

The conceptual work-around is to compute a local metric accounting for the existence,
and the orientation, of a free boundary in a neighborhood: a metric somewhat analogous
to the classical outward pointing normal.

The outward vector n is computed for each particle i, and is the opposite of the sum
of the branch vectors7 l of its neighbors j (Figure 9.8):

ni = −
∑

j

lj (9.3)

The outward vector is not normalized to unity, as its magnitude roughly quantifies the
existence of a free boundary.

7The branch vector l is the geometrical vector from the center of a particle to the center of a neighbor.
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∑

l

n

(a)

∑

l

n

(b)

Figure 9.8: Computation of the outward vector n of a particle, from the positions of
its neighbors. (a) A particle surrounded by neighbors. The centroid of the neighbors
is very close to the center of particle. The magnitude n is small and its orientation is
meaningless. (b) A particle at a free surface. The magnitude n is large and n points
“outwards”.

In our method, the interaction force in a pair depends not only on the state of the
pairs, but also on the state of their neighbors. This methodology is referred to as a
many-body law in a MD context.

A pair state variable is initialized at the beginning of the simulation: all initially inter-
acting pairs are considered to represent an “internal” interaction (Figure 9.9a). When the
packing deforms, new pairs are created: the outward vectors (magnitude and orientation)
of the two particles are compared and the pair state variable is set to:

• “Internal” if the neighbor change is considered to be a normal effect of inelastic
strain (Section 9.1), “internal” pairs follow the standard interaction law;

• “Interface” if the new pair interaction is considered to be the result of a self-contact
event. The attractive forces are canceled for “interface” pairs.

Qualitatively a self-contact event is detected if the outward vectors have a large magnitude
and point toward the new neighbors. In subsequent time steps, if the pair state variable
shared with a neighbor is set as “interface”, this neighbor is excluded from the centroid
computation for the evaluation of the outward vector.

Algorithmically, for a new pair of particles {i, j}, the following variables are considered
(Figure 9.10): the respective outward vectors {ni, nj} and a unit vector en pointing from
the center of i to the center of j.

Three parameters are introduced: two angle threshold αij and αen and a magnitude
threshold Nmag. The numerical values used can be found in Table 9.3. A new pair is
classified as “interface” only if:

(

cos(ni, nj) ≤ cosαij

)

(9.4a)

and
(

(

cos(ni, en) ≥ cosαen and ni ≥ Nmag

)

or
(

cos(nj ,−en) ≥ cosαen and nj ≥ Nmag

)

)

(9.4b)

In short, an interface pair is detected if the outward vectors are not too parallel and at
least one outward vector is large and points toward the other particle.
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Figure 9.9: Principle of the detection of self-contact events. Example of a hole in an
infinite packing. (a) Initial state. All pairs are considered as “internal” interactions. The
outward vectors n of each particle are computed. (b) Deformed state. The newly created
pairs {i, j} are classified as “interface” or “internal”, based on the respective orientation
and magnitude of ni and nj . The circled pairs, e.g. {7,21} and {13,24}, are classified as
“interfaces”. In contrast, the new pair {7,16} is detected as “internal”. Particle 11 moved
away from the free surface, the magnitude n11 has reduced.

ni

nj

en
i j

Figure 9.10: A newly created pair of particles {i, j}, with the respective outward vec-
tors {ni, nj}.

Nmag αen αij

mm ◦ ◦

2.3 80 65

Table 9.3: Self-contact detection parameters used with TRILIN .
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Chapter 10

Chosen Numerical Tools

Chapter 9 exposed the conceptual principle of the developed method to meet our modeliza-
tion objectives. This chapter presents the choice of effective numerical tools to implement
it. The introduction gives a few guidelines followed in the choices of the tools and two
short sections focus respectively on DEM and FEM tools.

The main objective in the choice of the numerical tools was to limit as much as possible
the programming effort to the implementation of new features. It was also hoped to reach
reasonable computing efficiency of the codes without requiring too specialized skills in
computing science and too much programming effort. Both objectives imply to rely as
much as possible on preexisting tools – software solutions and libraries – adaptable to
the need with at most minor modifications. In a more global perspective, the limitation
of the number of manipulated programming languages was also considered. In order to
favor reproducibility1, distributed and collaborative development and task automation,
command-line interfaces were often preferred.

Tools were thus chosen on the criteria of being scriptable, expendable, reproducible,
tested, documented and supported by a reactive community of developers and users. Key
time consuming operations, first of which DEM resolution, needed to be scalable, both
from the computational and the license point of view. A technically efficient choice2 can be
the orientation toward open-source and free/libre tools. The basic choice of GNU/Linux
operating systems was also favored by platform coherence considerations, to smoothly
move from different types of machines, including computing clusters.

The choice of the software, language, version control system and parallelization paradigm
was iterative, based on trial and error and progressive coherence construction with the
adopted simulation software solutions. A specific effort was also devoted to pool tools and
portions of code, although it proved delicate. Octave, scilab and cuda were abandoned
in favor of python, git, C++ and MPI. The python language not only imposed itself as
the tool for the development of numerical methods and pre/post processing procedures
– both for DEM and FEM simulations – but it was also the scripting language of a vast
majority of the used software solutions.

The main software solutions used are summed-up in Table 10.1, a short description
and argumentation of their choice is given in Section 10.1 for DEM related tools and in
Section 10.2 for FEM related tools.

1Reproducibility in time and between machines and users. Although, in a strict sense, numerical
repeatability seems illusory [185].

2May Richard Stallman have mercy for such a blasphemy.
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Software Assigned Task Implementation
language

License Personal Work

liggghts DEM solver C,C++ (MPI) GPL develop, document,
use, bug report

ovito DEM postprocess C++, python GPL use, bug report
code aster FEM solver fortran, python GPL use, bug report
salome FEM preprocess C++, python LGPL use
paraview FEM postprocess C++, python BSD-3 use
python Swiss army knife PSFL use

Table 10.1: Main software solutions.

10.1 DEM Tools

The chosen DEM solver is liggghts, selected for its interesting compromise between per-
formance and ease of development. The specialized postprocessing and visualization tool
ovito proved well suited to our needs.

Although the conceptual model used should theoretically not depend on the chosen
implementation, the performance and the internal structure of a code largely drive its
possible uses and developments.

Existing DEM and MD code include: dp3d [145], edem3, esys-particle [240], granoo [9],
gromacs [1], lammps [172], liggghts [120], pfc4, rocky DEM5, woo [214], yade [215].

In this work, it was from the start assumed that massively parallel paradigms had
to be used, in order to scale-up to larger problems without further development effort.
The choice of liggghts [120], parallelized in MPI, as the DEM solver led to leave aside
an attempt to develop and adapt an embryonary in-house GPGPU parallelized code.
Although no in-depth systematic comparison of the existing codes was carried out, the
liggghts code was chosen for its interesting compromise between performance, ease of
development and modularity.

The code is a fork from lammps, a popular MD code, from which it inherits its
modularity, its sequential and parallel performance [200], and an active community of
users and developers. Developed by a private company stemming from – and still closely
related to – the academic world, the public version of the code is open-source and freely
available.

Liggghts is currently a reference in terms of available features for the DEM6. A vast
user community, both industrial and academic, can be relied on to test and share issues.
From the user point of view, the documentation is overall comprehensive and sufficient
for autonomous use.

Documentation regarding the development of new features is somewhat scarce outside
the most standard procedures. By design, the code is in large parts modular, allowing
the development of features as simple add-ons. For example, a new interaction law can
simply be introduced by adding an autonomous file in the sources. Some features, as
the management of pair history, happen to be written in old-fashioned C language7, with
syntaxes that can be hard to grasp for the neophyte and restrain the flexibility of their
implementation. Regular improvements, extensions and bug fixes are published and the

3Proprietary code commercialized by DEM Solutions Ltd.
4Proprietary code commercialized by Itasca.
5Proprietary code commercialized by ESSS (engineering simulation and scientific software).
6 Multi-physics coupling, first of which with fluid dynamics, is also a strong emphasis, but is outside

the scope of our work.
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developers are accessible and reactive regarding requests.
The use of liggghts imposed the implementation of the developed features in C++

in a MPI framework. It also promoted the use of git as version control system, in first
place to easily take profit of the periodical evolution of the code. The software was
extensively used on numerous machines, using from 1 to 24 CPUs. In addition to this use
and developments of interaction laws, metric evaluation routines and generic procedures8,
our work also involved bug detection in both sequential and parallel issues – and their
reporting with eventual resolution – and documentation [96], more specifically regarding
development procedures. Liggghts was the most deeply used tool within our work.

Ovito [220] rapidly imposed itself as the visualization tool for particle data. More
tailored to discrete simulation needs than a generic visualization software, as paraview
for example, it is developing at a rapid pace, regularly introducing useful features, is fully
scriptable in python and is thoroughly documented, both for scripted and graphical use.
The developer is extremely reactive9 and has a clear view of the needs of its community.
Our work mainly focused on both graphical and command-line use of the software, with
periodic bug reports and feature requests.

10.2 FEM Tools

The code aster FEM solver is chosen for its comprehensive documentation and its “out-
of-the-box” handling of viscoplasticity and finite strain. Contact, and remeshing are not
considered. Side tools salome and paraview are designed and adapted to the needs of
code aster.

The FEM solver was chosen with less emphasis on performance and modularity. The
code needed to readily handle finite transformations and viscoplastic behavior in quasi-
incompressible cases10. The objective was to provide a reliable reference for the designed
DEM models more than to easily implement new concepts.

The choice of code aster [245] as the FEM solver was strongly triggered by the out-
standing quality of its documentation. Not only it comprehensively covers and illustrates
the use of the code itself, but it can also be considered as a standalone and didactic review
over many mechanical and numerical issues arising in the FEM, including for advanced
features11. Similarly, code aster provides a huge collection of test cases, illustrating
numerous configurations and potential syntaxes and uses.

In addition, code aster can handle a large variety of mechanical behaviors12, is fully
scriptable in python and almost systematically provides explicit and insightful error mes-
sages, directly pointing to recommended readings in the documentation. The vast and
active community is helpful and the developers can provide fast add-ons or patches13.

Our work in code aster focused on its use for finite transformation simulations and
contributions to the community via bug reports.

7This was a choice of the developers: “the C++ routines that do the serious computations in LAMMPS
are written in a simple C-like style, using data structures that are nearly equivalent to Fortran arrays.
This was done to try and avoid any performance hits.” [201, FAQ 2.6].

8 In files respectively named normal model *.h, compute *.cpp and fix *.cpp in the code conventions.
9Bug fixes have been provided within hours.

10In comparison, appealing libraries like for example deal.II [17] require much more development effort
to set-up a specific case.

11The quality of the documentation being only moderated in case of the use of the automatic translation,
from French to English, often altering the readability of the document. The same remark applies to error
messages. Along the same line, command and variable names are only meaningful in French and the
release notes don’t seem to be translated.

12 The mechanical behavior described by the MFront tool can be used.
13A feature request was treated within days.
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FEM pre-processing was based on salome14 which readily produces formats compatible
with code aster, is well documented and is used by an active community. The visualiza-
tion of the FEM results were based on a fork15 of paraview, provided by salome. Although
documentation of paraview is chaotic, it is somewhat compensated by its huge user com-
munity. Work with salome and paraview was limited to mere usage, taking advantage of
both tools being fully scriptable in python.

14 The salome-meca platform includes code aster as the solving engine and salome for numerous pre-
and post-processing tool.

15 Implementing the MED format used in code aster.



Part IV

Compression of Dense
Bi-Material

11 Single Material 119

11.1 Interaction Law Choice . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

11.2 Calibration Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

11.2.1 Strain Rate Sensitivity Calibration . . . . . . . . . . . . . . . . . . 121

11.2.2 Stress Level Calibration . . . . . . . . . . . . . . . . . . . . . . . . 123

11.2.3 Scope of Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

11.3 Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

11.3.1 Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

11.3.2 Temporal Convergence . . . . . . . . . . . . . . . . . . . . . . . . . 125

11.3.3 Spatial Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . 126

11.4 Macroscopic Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

12 Bi-Material Test Cases 131

12.1 FEM Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

12.2 Parallel Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

12.3 Series Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

12.4 Spherical Inclusion Configuration . . . . . . . . . . . . . . . . . . . . . . . 134

12.4.1 Spatial Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . 136

13 Complex Multi-Material Mesostructure 139

13.1 Computation on a Full Sample . . . . . . . . . . . . . . . . . . . . . . . . 139

13.2 In Situ Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141



116

In Part III, the conceptual and algorithmic principles of the developed method were
described. To apply the DEM to the simulation on inelastic incompressible strain, a
phenomenological model is designed. Numerous spherical particles discretize continuous
media and their collective re-arrangements mimic inelastic strains. Innate and powerful
handling of discontinuities and topological events are expected.

Part IV effectively illustrates the methodology on uniaxial compression of single and
multi-materials. It is structured in three chapters:

• Chapter 11 presents the simulation of single phase materials, including the calibra-
tion procedure of the numerical parameters and the quantification of the expectable
accuracy.

• Chapter 12 is dedicated to test cases on simple geometries for bi-materials. DEM
results are compared to reference data from FEM simulations.

• Chapter 13 applies the methodology to a real composite mesostructure. The mor-
phology of a 3D full sample, starting from X-ray tomography image, is discretized
and compressed. In situ data and simulations are compared for local configurations.

The main results of this part were submitted as an article to the International Journal
of Mechanical Sciences. Minor revisions were requested for publication and the amended
version is proposed in Appendix D.



Highlights - Part IV
Compression of Dense Bi-Material

• A calibration procedure allows the tuning of the numerical
parameters to mimic targeted macroscopic behaviors: plas-
ticity and viscoplasticity.

The strain rate sensitivities are limited to a maximal value
and are valid only for a given strain rate range. Plastic be-
haviors are valid for various decades of strain rate.

• Single material can be compressed up to large strain (ε = 1)
with limited relative error on the volume and the flow stress
(typically around 10%).

• Simple bi-material configurations are compared to results ob-
tained by the finite element method (FEM).

On macroscopic metrics (flow stress and morphology), the
error of the developed model is of the same order of magnitude
as the error on a single material. No dramatic errors seem to
be introduced when simulating multi-material configurations.

• The model is applied to a 3D mesostructure of a full sample,
obtained by X-ray tomography.

The discretization procedure from a binarized 3D image is
algorithmically cheap. The proposed methods can be scaled
up to large and complex geometries.

• The comparison procedure between the numerical results and
in situ measurements is possible, but the amorphous phase
crystallization in the experiments hinders further analysis.
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Chapter 11

Single Material

In this chapter, our developed method is applied to the simulation of single materials
under compressive loads. It is organized in four sections:

• Section 11.1 gives some elements of discussion regarding the interaction law BILIN ,
defined in Section 9.1.

• Section 11.2 describes the calibration procedure, to choose the correct numerical
parameters to mimic a target viscoplastic behavior.

• Section 11.3 provides some guidelines for the verification of the model.

• Section 11.4 concerns the application of the model to two qualitatively distinct
behaviors, with high and low strain rate sensitivities.

A first approach to the study of the local stress fields is proposed in Appendix A.

11.1 Interaction Law Choice

The model BILIN is attractive-repulsive. The forces are elastic linear and the attractive
force is only activated for tensile motions of the pair.

In Part IV, limited to compressive loads, the BILIN interaction law (Figure 11.1) is
applied and tested.

The choice of the elementary interaction law is somewhat arbitrary. Indeed, the
local interactions are not individually meant to have physical sense. In counterpart, their
collective effects must fulfill the modelization objective. A priori, no direct qualitative link
can be established between the individual or pairwise behavior and the collective result.
Very practically, the tested configurations often proved to display counter intuitive trends
and the macroscopic behavior seems to be dominated by steric effect, with secondary
regard for the details of its prescription1. Interaction laws are thus chosen conceptually
as simple as possible and of reasonable cost from a computational point of view.

A useful restriction to creativity in the design of interaction laws is to respect the
linearity of the forces with the introduced parameters. This linearity allows a straight-
forward calibration of the modeled stress level. In the discrete element method (DEM),

1To some extent, although they are poorly integrated by explicit schemes, constant attractive and
repulsive forces behave well enough to be effective.
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h

f(h, ḣ)
BILIN

Repulsive

Attractive

2rseed 2rcrown

(a)

(b)
ḣ > 0

(c)
ḣ ≤ 0

Figure 11.1: Pairwise interaction law BILIN used in this part. Force f versus distance
h. Attractive to repulsive force ratio and radii to scale. Classical DEM conventions are
applied: repulsive forces are positive. Refer to Section 9.1 for the full description of the
law.

for each particle, the time integration is based on the ratio of force and mass f/m (Sec-
tion 8.3). The overall kinematic behavior will thus be kept statistically2 unchanged if
both masses and forces are scaled by a common factor. (Section 11.2).

The relative size of the crown rcrown/rseed = 1.5 is chosen to avoid the interaction of
two particles “across” another one. The choice of using identical radii for all particles is
not an algorithmic limitation, the proposed implementation can readily accept a limited
dispersion. The effect of such a dispersion has not been investigated, but may be a good
strategy to limit excessive numerical crystallization. It was not necessary in this model,
as attractive forces are much weaker than the repulsive forces, the distance between two
particles is sufficiently free.

11.2 Calibration Procedure

This section describes the calibration procedure of the numerical parameters of the in-
teraction law to mimic perfect viscoplastic behavior. It is divided into two steps, tuning
respectively the strain rate sensitivity and the stress level. Two sections each examines
one step and a third short section draws some limitations.

The objective of our calibration procedure is to model a perfect viscoplastic behavior,
described as a relation between the scalar macroscopical strain rate ε̇ and the flow stress σ,
by the unidimensional3 Norton law [126, p.106]:

σ = K|ε̇|M · sign(ε̇) (11.1)

. Where M is the strain rate sensitivity and K is the stress level. All cases presented in
this chapter being in compressive state, strain, strain rate and stress are given in absolute
value.

As the DEM does not rely on a continuous framework, the numerical parameters
cannot be derived a priori from the targeted macroscopic behavior. We work here at
fixed ratio rcrown/rseed = 1.5, to allow a large overlap zone without catching second
neighbors. The seed radius is arbitrarily set to a size of rseed = 1mm. The ratio between
attractive and repulsive stiffnesses is set to krep/katt = 10, to guarantee a numerically
predominant repulsion.

2The numerical errors are not negligible: the position of individual particles does notably change with
the f/m ratio.

3Refer to Equation 2.1 on page 24 for the full tensorial form.
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During this PhD, the study of the behavior of our system promoted the idea of an
intimate relationship between numerical time step, natural period of the packing and
prescribed strain rate. The overall behavior of the system seems to be driven by these
three parameters. However, no clear trend could be established regarding the role of the
time step. We thus work at fixed time step, set for the model BILIN to ∆t = 5·10−4 s (see
also Section 11.3.2). Our calibration procedure thus takes advantage of the relationship
between strain rate and natural period, it probably could be improved by taking into
account the role of the time step.

The remaining parameters to be chosen are the repulsive stiffness of the interactions
krep and the mass of the particles m. We propose a two-step calibration procedure, based
on uniaxial compression test simulations, on cubes of single materials:

1. Calibrate the strain rate sensitivity M , tuning the ratio between mass and repulsive
stiffness m/krep.

2. Calibrate the stress level K, applying a common multiplicative factor to both mass
m and repulsive stiffness krep.

The numerical parameters, obtained independently for each phase, are used in multi-
material simulations without further fitting procedure.

11.2.1 Strain Rate Sensitivity Calibration

The strain rate sensitivity is calibrated by adjusting the natural period with respect to the
prescribed strain rate. The ratio mass/stiffness of the model is thus chosen.

The strain rate sensitivity M of a packing depends on its ability to quickly rearrange
itself, with regards to the prescribed strain rate. To quantify an image of the reaction
time, we use the natural period t0 of an ideal spring-mass system of stiffness krep and
mass m:

t0 = 2π

√

m

krep
(11.2)

This value is not meant to match the actual oscillation period of particles, but to quan-
titatively compare sets of parameters.

Packings of 5·103 particles with natural periods ranging from 1·10−2 to 1 s are com-
pressed at strain rates from 3·10−6 to 1 s−1. For each natural period, the flow stress σ
is normalized by the flow stress at the lowest strain rate σlow. The results (Figure 11.2)
exhibit a clear influence of the natural period. All packings follow a similar trend: the
influence is first limited, then the flow stress increases with the strain rate up to a limit
value. Above the limit, the strain rate is too high for the packing to collectively cope,
the deformation is localized to the particles near the moving mesh. The overall behavior
is shifted to various ranges of strain rate by the value of the natural period.

To sum up, the strain rate sensitivity M , i.e. the slope in the space (ε̇, σ/σlow), is
driven by the relation between the natural period and the strain. The common trend for
all configurations (Figure 11.3a) is clearly exhibited in the space (t0

√
ε̇, σ/σlow).

To quantify the observed trend, the data are approximated by least-square fitting,
using a sigmoid of generic expression:

σ/σlow = a+ b/(1 + exp(c− d · t0
√
ε̇)) (11.3)

The fitting parameters used here are (a, b, c, d) ≈ (0.9048, 4.116, 3.651, 210.0). Using this
fitted common trend, a master curve is built in the space (ε̇ · t02,M), thus describing an
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Figure 11.2: Normalized flow stress at a strain of 0.3 for 5·103 particles versus prescribed
strain rate. Influence of the natural period on strain rate sensitivity.
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Figure 11.3: Calibration of the strain rate sensitivity. Successive steps toward the mas-
ter curve. (a) Normalization in the (t0

√
ε̇, σ/σlow) space. Common trend for all natural

periods. Sigmoidal fit, see Equation 11.3. (b) Master curve of strain rate sensitivity.
Three flow regimes.

overall behavior of the model BILIN for all tested configurations4 (Figure 11.3b).
Three flow regimes, in terms of strain rate sensitivity, can be identified in Figures 11.3b

and 11.3a:

• Plastic: for ε̇ · t02 < 1·10−7 s the strain rate sensitivity is negligible (M < 4·10−3).
A plastic behavior can thus be represented, with stress variation of the order of
magnitude of the expected precision of the model, valid over various orders of mag-
nitude of strain rates. The packing rearranges quickly enough when deformed, so

4 As a side note, although the analysis was not pushed further, our proposal exhibits the role of t02

to compare the behavior of distinct sets of parameters. This parameter seems to have a driving role in
the global equilibrium criteria Q described in Section 8.6.
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that variations of strain rate does not affect the flow structure.

• Collapse: at higher values than ε̇ · t02 > 3·10−3 s, the packing is not reactive enough
for the particles to collectively cope with the strain. The strain localizes next to the
moving planes, the flow stress drops and the macroscopic equilibrium is lost. Such
configurations are not suitable for our purpose.

• Viscoplastic: in the intermediate window, the ε̇ · t02 value governs the sensitivity of
the packing, up to a maximum of 0.6. In this configuration, when the strain rate
increases, the particles are forced to indent more to rearrange, leading to higher
flow stress. However, the sensitivity is strongly strain rate dependent, An actual
viscoplastic behavior can only be modeled via an averaged strain rate sensitivity,
with a scope of validity limited to a narrow range of strain rates.

The master curve (Figure 11.3b) allows to directly choose the natural period approxi-
mating the desired sensitivity at the targeted strain rate. The m/krep ratio is thus fixed.
If the strain rate range is known a priori, the master curve also gives an approximation
of the variation of the strain rate sensitivity within the strain rate range. For example,
in order to model a high strain rate sensitivity M ≈ 0.5, the value ε̇ ·∆t2 must be chosen
close to 2·10−4 s−1. If the targeted strain rate is 2·10−4 s−1, the chosen natural period
would be chosen as t0 ≈

√

2·10−4/2·10−4 = 1 s.

11.2.2 Stress Level Calibration

The mass and stiffness are adjusted to meet the required stress level. Their ratio remains
unchanged to respect the expected strain rate sensitivity.

For a given kinematical behavior of a packing, the stress level can arbitrarily be set.
The integration of motion, for each particle, relies on the acceleration computed from
Newton’s second law. Hence, a multiplicative factor applied to both forces and masses
leaves the kinematics of a packing, and its strain rate sensitivity, unchanged. Since
our interaction laws are linear with the introduced parameters, we can use a common
multiplicative factor on stiffnesses and masses.

The stiffnesses krep and katt are scaled up to match the desired flow stress at the
targeted strain rate. The mass m is proportionally adjusted, in order to maintain the
correct strain rate sensitivity.

11.2.3 Scope of Validity

Arbitrarily high strain rate sensitivities cannot be modeled. Low strain rate sensitivities
are valid over several decades of strain rate. High strain rate sensitivities are only valid
on narrow ranges.

This two-step calibration allows us to reach arbitrary stress level, but displays limita-
tions regarding the reachable strain rate sensitivity and strain rate.

We cannot model arbitrary strain rates with a given set of parameters. The numerical
strain rate sensitivity depends on the strain rate. This effect can be controlled for very
low sensitivities: a negligible sensitivity can be respected over various orders of magnitude
of strain rate. However, a large tolerance must be accepted on higher sensitivities, which
can only be reasonably approximated on narrow ranges of strain rate. The model also
has intrinsic limits regarding the reachable strain rate sensitivities. Reaching higher
sensitivity would require lower natural periods, for which the packings collapse and are
unable to cope with the strain.
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As a general conclusion for this section, our calibration procedure allows to choose
independently the stress level and the strain rate sensitivity, tuning the mass of the par-
ticles and the stiffness of the interactions. The scope of validity, for controlled sensitivity,
is limited to narrow strain rate ranges.

11.3 Verification

Three effects are investigated in dedicated sections: the mechanical equilibrium of the
packings, the dependency to the time step of the model and the effects of the size of the
packings.

11.3.1 Equilibrium

The DEM is a dynamic method. To model quasistatic phenomena, the mechanical equi-
librium must be verified within a sufficient accuracy. Excessive dynamic effects are not
suitable for our purpose.

In order to simulate quasistatic phenomena, the behavior of the packing must be
independent from the way the strain is applied. The total forces5 acting on the boundary
conditions, the top and bottom meshes, respectively mobile and fixed, must balance. If
a mesh moves too fast, the macroscopic equilibrium is lost and the strain localizes next
to the moving plane.

At a given strain rate, the equilibrium relative error depends on the natural period, but
is of the same order of magnitude for all strains. The equilibrium errors (Figure 11.4) are
always inferior to 0.1% for both phases in the studied strain rate range. The macroscopic
behavior is indeed kept unchanged by inverting the mesh motions.
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Figure 11.4: Macroscopic equilibrium for single material. Relative error versus strain
rate for 5·103 particles, strain 0.3. Effect of the natural period.

5The torque balance is of little interest in this test case, as resulting torques on the meshes are only
numerical noise.
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11.3.2 Temporal Convergence

The choice of the time step can induce quantitative and qualitative changes in the response
of the system. A proper temporal convergence seemed excessively costly and is not strictly
necessary for our purpose. The time step is chosen to provide a correct integration of the
motion, but does not meet convergence requirements.

Although our modeling objective is to capture quasistatic phenomena, the used nu-
merical relies on an explicit dynamic framework. A fundamental algorithmic issue is thus
the choice of the time step (refer to Section 8.3.2). The chosen metric to study the effect
of the time step on a packing behavior is the time step normalized by the natural period
∆t/t0.

An upper bound to the value of the time step is set by the proper integration of the
motion of the particles. Using the BILIN interaction law, if ∆t/t0 > 2·10−1, the coarse
time discretization leads to totally unpredictable behavior, particles get massively lost
during the simulation. This configuration must thus be avoided.

Below this threshold, the influence of the time step on the stress/strain response
of packings of 500 particles6 was tested (Figure 11.5). The time step being a purely
numerical parameter, it should not influence the metrics of interest of the studied physical
phenomena. From a traditional perspective, a model would be expected to meet time
convergence requirements, understood as independence of the macroscopic flow stress
with respect to the time step.
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Figure 11.5: Temporal convergence for 5·102 particles. (a) Normalized flow stress versus
strain for a natural period t0 = 1 s. (b) Relative error on the flow stress at a strain of 0.2
versus the ratio of the time step and the natural period ∆t/t0. The reference for t0 = 1 s
is ∆t/t0 = 10−6. The reference for t0 = 10−2 s is ∆t/t0 = 10−4. The ∆t/t0 values are
highlighted for the phases A and B, used later on.

It must be emphasized that the time step influences the stress/strain behavior both
quantitatively and qualitatively (Figure 11.5a). For the studied systems, the macroscopic
strain/strain time convergence is only reached for time steps smaller than ∆t/t0 < 10−5,

6Although the behavior is not considered geometrically converged for packings of 500 particles (refer
to Section 11.3.3), the relative error due to the rough discretization is limited. A partial repetition of the
test with bigger packings led to similar results. The use of little packings allows a wider range of time
steps to be studied.
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with a relative error below 1% (see t0 = 1 in Figure 11.5b). This constraint would be
unreasonably time consuming for our purpose, especially for packing with low natural
periods: simulation times would be longer than the PhD duration.

It must be here remembered that we use an analogous model. Requiring the time
convergence would be legitimate if a physical system of attractive/repulsive spheres were
to mimic the inelastic deformation of continuous media. In such a context, the DEM
would be a numerical means to simulate the behavior of the physical analogous model. It
would thus be necessary for the numerical model to effectively represent the behavior of
the physical model: the time step would be required to meet convergence requirements.

In our case, nothing prohibits to check whether the temporally non-converged numer-
ical model itself7 displays sufficient analogy to the physical phenomena of interest, the
inelastic strain of a continuum. The time step is merely a numerical parameter, whose
choice is driven by the respect of a reasonable numerical behavior (typically in our case
∆t/t0 < 2·10−1) and the macroscopic overall behavior of the system. For computational
convenience, some freedom can be allowed on the time step choice. In counterpart, the
time step must be set to a fixed value from calibration to simulation.

Summing-up, the time step is considered as a numerical parameter, fixed at an ar-
bitrary value, compatible with a reasonable numerical behavior but free from physical
constraints at the scale of the elementary particles.

11.3.3 Spatial Convergence

The behavior of our model must be independent enough from the chosen spatial dis-
cretization. Packings of a few hundred of particles can roughly provide the correct order
of magnitude of flow stress. The error on the flow stress is quantified with respect to a
spatially converged state to provide guidelines on the choice of the number of particles.

As our model relies on a collective motion of particles, too small a packing will not
display the expected behavior. The kinematical behavior of a single material cube in
uniaxial compression is roughly observed with a few dozen of particles (Figure 11.6).
With a few hundred of particles, the stress fails to represent the expected plastic trend,
but already exhibits a correct order of magnitude (Figure 11.7a). A few thousand of
particles allow a controlled relative error, around 10%. Single material configurations are
typically run with 5·104 particles. (Figure 11.7b). The relative error is computed with
respect to a packing of 1·106 particles, for which spatial convergence is considered to be
reached.

5·101 1·102 5·102 5·103 5·104 1·106
Particles

Figure 11.6: Spatial convergence. Cross-section. Strain rate 10−3 s−1, true strain of 0.3.

7“It must be considered that a numerical method is in itself a model.” [111, p.65]



11.4. MACROSCOPIC BEHAVIOR 127

0 0.05 0.1 0.15 0.2 0.25 0.3

0

50

100

150

200

Strain (/)

T
ru
e
st
re
ss

(M
P
a
)

Number
of particles

1.00·106
1.00·105
1.00·104
1.00·103
1.00·102
3.00·101

(a)

102 103 104 105

100

101

102

Number of particles

R
el
a
ti
ve

er
ro
r
o
n
tr
u
e
fl
ow

st
re
ss

(%
)

(b)

Figure 11.7: Spatial convergence for single material, from 30 to 1·106 particles. (a) Flow
stress versus strain, using five distinct initial random packings for each packing size.
(b) Relative error versus packing size, in regard to the converged simulation (1·106 par-
ticles packing).

11.4 Macroscopic Behavior

Under compressive strain the model BILIN allows the packing to rearrange collectively.
Large strain can be modeled with controlled volume variation. After a transient regime,
the flow strain-stress behavior is precise enough for our purpose. Very distinct behavior
can be modeled depending of the strain rate sensitivity, from a plastic-like behavior to a
highly strain rate sensitive viscoplasticity.

The two phases behavior are inspired from the experimental model material (Sec-
tion 2.3). In the identified forming window, around 400 ◦C, The phases both have a flow
stress close to 100MPa in the strain rate window 1·10−4 – 1·10−3 s−1, but with drastically
distinct strain rate sensitivities. The negligible strain rate sensitivity phase is referred to
as A, with a low natural period, the high sensitivity phase is referred to as B, with a high
natural period. The corresponding numerical parameters are given in Table 11.1.

A key feature expected for a set of parameters is the conservation of the packing
volume. The volume of the packings is estimated reconstructing a polyhedral mesh,
using an algorithm implemented by Stukowski [221], based on the alpha-shape method.
As a side note, the definition of the boundaries of the modeled objects are somewhat
blurry. They are here defined as the envelope of the centers of the particles, for practical

Phase Discrete parameters Continuous parameters
Phase Scale of the pairs Macroscopic behavior

krep m t0 M K
➭N ·mm−1 g s / MPa · sM

A 6.23·109 1.58·104 1·10−2 2.45·10−3 9.59·101
B 2.65·109 4.29·107 8·10−1 4.90·10−1 5.02·103

Table 11.1: Numerical parameters for the two phases. Time step ∆t = 5·10−4 s−1.
Radii rcrown = 0.75mm, rseed = 0.5mm. Stiffness ratio krep/katt = 10.
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convenience8.
For both phases, the volume variation depends little on the strain rate, The prescribed

compression decreases the volume, typically about 5% for A and 10% for B (Figure 11.8).
Before reaching a somewhat stable flow regime, the packing volume decreases in first 0.2
of strain. Most of the volume variation occurs within this initial stage, the volume then
stabilizes on a plateau before a final increase of the error at larger strains, above 0.6.
This trend, and its initial transient regime, will also be observed for the flow stress
(Figure 11.10a).
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Figure 11.8: Volume conservation for single material. Relative error on volume versus
strain for 5·104 particles.

Regarding the kinematical behavior of a packing (Figure 11.9), the overall cuboidal
shape is conserved, but the sharp edges tend to be blurred along with the strain. This is
understood as an effect of the surface tension induced by the attractive component of the
interaction law. As the discretization by particles creates local defects in the geometry,
the initially flat faces becomes slightly wavy.

Front view

Top view
Strain (/) 0 0 0.32 0.66 1
State Initial Relaxed Compressed

Figure 11.9: Single material packing. Natural period 0.8 s, strain rate 3.16·10−4 s−1,
5·104 particles.

Typical profiles of stress-strain curves are presented Figure 11.10a. In this section,
the true stress is computed using an estimation of the cross-section, based on the current

8The envelope of the radius of the particle implies an explicit choice of this radius. Two are defined
in our model, none of which has intrinsic physical sense.
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macroscopic strain and the initial volume, assuming its variations (Figure 11.8) are ac-
ceptable. As for the volume evolution, a transitory stage can be observed at the beginning
of the deformation, where the stress rises to reach the plastic plateau. The flow stress
then oscillates around a fairly constant value. An overshoot effect of the stress can be
observed at higher strain rates for the B phase.
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Figure 11.10: Single materials. Phases A and B. Flow stress and strain rate sensitivity.
(a) Flow stress versus strain. Effect of the strain rate. (b) Norton law approximation,
based on flow stress values at a strain of 0.3. Strain rate sensitivity of both phases in the
range 1·10−4 – 1·10−3 s−1.

For each phase, the value at a strain of 0.3 is used to compute the Norton approxima-
tion, by least-square fitting (Figure 11.10b and Table 11.1). As discussed in Section 11.2.3,
the high sensitivity phase, B, is only valid within one order of magnitude of strain rate,
the approximation is not reasonable when the strain rate is out of the studied range.
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Chapter 12

Bi-Material Test Cases

In Chapter 11, the numerical parameters of the DEM model have been calibrated, inde-
pendently, to mimic two qualitatively distinct behaviors.

Keeping in mind the limitations of the single material model, we evaluate in this
chapter the reliability of the model for bi-material configurations. The shape of the phases
and the engineering macroscopic stress are metrics compared with results from analytical
and finite element method (FEM) references, briefly presented in Section 12.1. Three
simple geometrical bi-material configurations are studied, each examined in a specific
section:

• Parallel (Section 12.2);

• Series (Section 12.3);

• Unique spherical inclusion (Section 12.4). This test case has been further investi-
gated, in terms of spatial convergence and of local fields.

The three geometries are discretized with 5·104 particles and uniaxially compressed up
to a strain of 0.3, at prescribed strain rates. In the studied configurations, interaction
parameters at the interfaces had little influence on the macroscopic results, they have
been set to the average of the phase parameters.

12.1 FEM Reference

FEM simulations are used as numerical reference of our bi-material tests. Some key
discrepancy sources are looked into: the handling of interfaces, the use of symmetry and
the constitutive behavior parameters.

Total Lagrangian FEM simulations, well suited for our elementary geometrical con-
figurations and limited strains, are run using Code Aster [245]. The visualization of the
FEM results are rendered using paraview [100]. The elastic strain is numerically negligi-
ble with respect to the inelastic strain. This incompressibility is handled with a mixed
formulation displacement-pressure-swelling. A finite transformation formulation is used,
taking into account potentially large strains, rotations and displacements. A logarithmic
metric of the strain is chosen and the geometries are meshed using quadratic tetrahedral
elements. Refer to Appendix C for the exact syntax details and choices.

Top and bottom nodes follow prescribed vertical motion, lateral sides deform freely.
The geometrical models are reduced using the symmetries of the problems, while the
DEM simulates the full geometries. In FEM, at the interface between two phases, the

131
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nodes are shared, prohibiting any relative motion, which is the most severe difference
with our DEM simulations. In the experimental background of this study, the phases
have very little adhesion at the interface. Both materials follow a Norton law (refer to
Equation 2.1 on page 24), semi-implicitly integrated using a theta-method. The B phase
uses the continuous parameters identified in Section 11.4 (Table 11.1). To allow an easier
numerical convergence of the model, the numerical strain rate sensibility of the A phase
is slightly increased for the FEM simulations (M = 3.05·10−2 and K = 120MPa · sM ).
In the range 1·10−4 – 1·10−3 s−1, the induced relative error on the flow stress is ±3%.

12.2 Parallel Configuration

In parallel configuration, the phases are mostly independent. The DEM captures the
linear mixture law accounting for the macroscopic flow stress.

A cube is vertically divided into two cuboidal phases, for various volume fractions,
and vertically compressed at constant strain rates. The engineering stress is compared to
a mixture law, linear with the volume fraction.

In this simple configuration, little interaction should take place between the phases,
and in ideal conditions, an homogeneous strain for both phases is expected. In the
DEM simulations, the global geometry of each phase remains close to a cuboid along the
deformation (Figure 12.1).

0

0.3

0 0.25 0.5 0.75 1
Strain (/) Volume fraction phase B (/)

Figure 12.1: Bi-material parallel configuration. Front view, transverse cross-section.
Strain rate 4.64·10−4 s−1.

At given strain rate ε̇, the true stress in the phases being independently defined by
the Norton law, the global true stress σtrue can be computed with an elementary mixture
law [78, p.99], linear with the volume fraction f of the phase B:

σtrue(f, ε̇) = f ·KBε̇
MB + (1− f) ·KAε̇

MA (12.1)

To provide a consistent metric for all configurations, the engineering stress σengineer is
used as reference. It is computed at a given strain ε (Equation 12.2), based on the true
stress and the volume conservation:

σengineer(f, ε̇, ε) = exp (−ε) · σtrue(f, ε̇) (12.2)

The engineering stress-true strain profile, as in single material configuration, displays a
transitory regime, typically in the first 0.15 of strain, with a progressive rise towards the
flow stress (Figure 12.2a).

The DEM model is able to capture, after a transient regime and at the precision of the
single phases, the linear pattern of flow stress with the volume fraction (Figure 12.2b).
With a rougher discretization, for example only a thousand particles per phase, the result
remains qualitatively close, degrading the accuracy by a few percent.
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Figure 12.2: Bi-material parallel configuration. Effect of the strain rate on the flow
stress. Theoretical reference: mixture law from Equation 12.2. (a) Engineering flow
stress versus strain. Fixed volume fraction: 0.5. (b) Linear trend of the engineering flow
stress, at a strain of 0.3, with the volume fraction.

12.3 Series Configuration

In series configurations, the deformation is not homogeneous. Depending on the strain
rate, a phase will preferentially deform. The macroscopic flow stress modeled with the
DEM model comes in good agreement with the FEM reference.

A cube is horizontally divided into two cuboidal phases, for various volume fractions,
and vertically compressed at constant strain rate. Using the symmetries, one fourth of
the geometry is modeled with the FEM, using approximately 1.3·103 nodes. For the full
geometry, the ratio DEM particles to FEM nodes would be a little under 10.

In this geometrical configuration, the strain is not a priori homogeneous anymore.
Due to distinct strain rate sensitivities, one phase preferentially deforms depending on
the strain rate, which is qualitatively observed both in FEM and DEM simulations.
Qualitatively (Figure 12.3), the B phase (bottom phase) deforms more at lower strain
rate. The A phase, at high strain rates, deforms more homogeneously in DEM than in
FEM. The “mushroom” shape is slightly blurred in this strain rate range.

FEM and DEM are in good agreement, after the transient regime observed in DEM,
within a few percent of relative error (Figure 12.4a). In the strain rate validity range,
the DEM model is thus able to capture the final flow stress evolution with respect to
the volume fraction (Figure 12.4b). As a side note, the heterogeneity of the strain in the
series configuration is responsible for a nonlinear variation of the flow stress with respect
to the volume fraction. This effect of the geometry of the bi-material, clearly displayed
at 1·10−3 s−1 (Figure 12.4b), is correctly reproduced.
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Figure 12.3: Bi-material series configuration. Volume fraction 0.5. Bottom phase: B
(high sensitivity). Front view, transverse cross-section.
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Figure 12.4: Bi-material series configuration. Effect of the strain rate on the flow stress.
Numerical reference: FEM simulations. (a) Engineering flow stress versus strain. Fixed
volume fraction: 0.5. (b) Non-linear trend of the engineering flow stress, at a strain of
0.3, with the volume fraction.

12.4 Spherical Inclusion Configuration

The deformation of a spherical inclusion in a matrix is qualitatively close to the exper-
imental configuration of interest. Overall, the evolution of the flow stress and the shape
factor are correctly captured. A specific section is dedicated to the study of the influence
of the discretization on the results. A first approach to the study of the local stress fields
is proposed in Appendix A.

A single spherical inclusion of phase B is placed in the center of a phase A cube, with
a fixed volume fraction of 20% of phase B inclusion. Using symmetries, one eighth of the
geometry is modeled with the FEM, using 2.1·103 nodes. For the full geometry, the ratio
DEM particles to FEM nodes would be a little under 3.

Qualitatively, two typical kinematical tendencies of the matrix are displayed in FEM
(Figure 12.5), with an intermediary state of homogeneous co-deformation:

• A barrel shape of the sample, when the flow stress of the inclusion is low, at lower
strain rates;
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• An hourglass shape, when the flow stress of the inclusion is high, at higher strain
rates.

In the FEM simulations, the hourglass shape of the matrix is strongly emphasized
by the non-sliding interface between phases. While the barrel shape is easily displayed
at low strain rates in DEM, the hourglass shape is only clear at higher strain rates,
outside of the validity domain studied range. Potential sources are the more permissive
contact conditions between phases, the rough discretization (see for example the finer
discretization on Figure 12.8) and the lower local stress field seen in the inclusion (refer
to Appendix A).

Strain rate (s−1) 1·10−4 2.15·10−4 4.64·10−4 1·10−3

DEM

D

H

FEM

Strain (/) 0 0.3

Figure 12.5: Bi-material spherical inclusion (phase B) configuration. Front view, trans-
verse cross-section.

Although we would expect lower stresses with a less constrained system, the flow stress
is overestimated (Figure 12.6b), by about 10% on the studied strain rate range, even if
the tendency is acceptable after the rise strain (Figure 12.6a).

0 0.05 0.1 0.15 0.2 0.25 0.3
0

50

100

150

Strain (/)

E
n
gi
n
ee
ri
n
g
st
re
ss

(M
P
a)

Strain rate (s−1)

1·10−3

4.64·10−4

2.15·10−4

1·10−4

FEM

(a)

10−4 10−3
0

50

100

150

Strain rate (s−1)

E
n
gi
n
ee
ri
n
g
st
re
ss

(M
P
a)

DEM
FEM

(b)

Figure 12.6: Bi-material spherical inclusion configuration. Effect of the strain rate
on the flow stress. Numerical reference: FEM simulations. Unique volume fraction of
inclusion (phase B): 0.2. (a) Engineering flow stress versus strain. (b) Engineering flow
stress versus strain strain rate, at a strain of 0.3.

To quantitatively compare the models from a kinematical perspective, we study the
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macroscopical shape factor Sf of the B inclusion, which is less sensitive than the matrix
shape to the interface definition. This factor (Equation 12.3) is the ratio of the inclusion
height H, in the compression direction, and diameter D, averaged in all perpendicular
directions:

Sf = H/D (12.3)

For the DEM simulations, this value is approximated computing the shape factor of an
equivalent ellipsoid, having the same inertia matrix as the cloud of particles modeling the
inclusion. At all strain rates, at the very beginning of the applied strain (Figure 12.7a),
the inclusion remains roughly spherical for a few percent of strain, and follow a similar
trend as in FEM after a rise strain. In the validity range of the B phase, the final shape
factor (Figure 12.7) is underestimated with a relative error of about 5%, the inclusion
deforms more in DEM than in FEM.
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Figure 12.7: Bi-material spherical inclusion configuration. Effect of the strain rate on
the shape factor of the inclusion. Numerical reference: FEM simulations. Unique volume
fraction of inclusion (phase B): 0.2. (a) Shape factor versus strain. (b) Shape factor
versus strain strain rate, at a strain of 0.3.

12.4.1 Spatial Convergence

The effect of the discretization is studied for the case of the unique spherical inclusion.
The quantification of the error on the modeled shape factor gives direct guidelines for the
discretization of geometries from experimental data.

To evaluate the error on the shape factor depending on the roughness of the discretiza-
tion, an identical geometry is modeled with packings of various sizes (Figure 12.8). The
relative error for the final shape factor is computed using the 1·106 particles configura-
tion as reference, where 1·105 particles discretize the inclusion. For each size, five random
initial packings are tested. The chosen test case is harsh for our model: for the smaller
packings, the meshes may interact directly with the particles of the inclusion at the end
of the deformation.

A very rough description of the inclusion, with 20 particles for example, remains
too inaccurate to catch more than an order of magnitude of the deforming trend (Fig-
ure 12.9a), and the initial shape factor is already far from a perfect sphere, with little
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Figure 12.8: Bi-material spherical inclusion configuration. Spatial convergence. Cross-
section of three out of the five random configurations tested.
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Figure 12.9: Bi-material spherical inclusion configuration. Spatial convergence: effect
of the number of particles discretizing the inclusion on the shape factor. (a) Shape
factor versus strain. Typical results for three (out of a total five computed) random
packings. (b) Error on the shape factor versus the number of particles used to discretize
the inclusion. Reference for relative error: 1·105 particles used to discretize the inclusion.
Minimum, maximum and average error for five random packings.

repeatability. In a realistic context, such a rough discretization can only reasonably be
used to capture the position of an inclusion in a composite. With a finer discretization,
starting with a few hundred particles, the qualitative trend can be captured and the re-
peatability improves: it becomes possible to estimate the necessary discretization for an
arbitrary precision (Figure 12.9b). The purely geometrical error, on the initial state, is
about an order of magnitude smaller than the final error, after compression. For a final
error under 10%, more than 200 particles must discretize the inclusion.
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Chapter 13

Complex Multi-Material
Mesostructure

In Chapter 12, the behavior of our DEM model is compared to numerical reference on
very simple geometries. However, our objective is to model complex morphologies of
metallic composites.

This chapter applies the model to experimental setups, starting from the discretization
of a tomography 3D images (Section 9.3). The chapter is split into two sections:

• Section 13.1 is an illustration of the potentiality of the method on a large data
set. The agreement between modeled and observed behaviors is not considered. An
initial state is discretized and arbitrarily compressed.

• Section 13.2 applies the methodology to compare the numerical results to in situ
observations, globally and for local configurations of interest. Numerical and exper-
imental issues are briefly examined.

13.1 Computation on a Full Sample

To test the method on large geometry, a full sample of our composite model material
is discretized and compressed. The objective is to assess the numerical scaling to larger
models than the previous test cases.

As an illustrative example, the methodology is applied to the 3D mesostructure of a
full sample, obtained by X-ray microtomography at the European synchrotron radiation
facility (ESRF) (beamline ID19). The studied material is a metallic composite, with a
crystalline copper matrix and spheroidal inclusions of amorphous zirconium alloy. The
total volume of the sample is approximately 0.5mm3, containing a volume fraction of
inclusion of 15%, with diameters up to a few dozens of micrometers. The voxelized image
has a size of 594×591×669 voxels, with a voxel size of 1.3 ➭m. The purpose of this section
is not to compare quantitatively numerical and experimental results, but to underline the
potential of the method for large arbitrary data sets.

Starting from a three dimensional voxelized image, the discretization of the geometry
has a low algorithmic cost (Section 9.3). The segmented image is used as a mask on
a random packing of particles. For each particle, the color of the voxel geometrically
corresponding to the center defines the material type: matrix A or inclusion B.

The image is here binarized in two phases and used as a mask on a packing of about
3.36·106 particles, with a number of voxels to number of particles ratio of 70. As shown in
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Figure 13.1, about 170 physical inclusions are discretized, using between 500 and 5 discrete
element particles each. The rough discretization of the smallest inclusions, for example
the further left inclusion in Figure 13.2, is not precise enough to allow a strain evaluation,
only the inclusion position can be tracked. For the biggest inclusions, estimated numerical
error on the shape factor after 0.3 of strain is around 10% (Figure 12.9b).

The sample is uniaxially compressed up to 0.3 at 1·10−3 s−1. Local and global illus-
trations are given in Figures 13.1 and 13.2, with relative displacement and deformation
of the inclusions. The computation was run on an Intel Xeon E5520, using 8 proces-
sors. The 6·105 steps for 3.36·106 particles were executed in 8·105 s, less than 10 days.
The computation time is linear with the number of steps and of particles. As long as
the load is properly balanced between processors and provided that the geometry of the
sub-domains keeps the volume of the communications between processors reasonable, the
DEM solver scales properly with the number of processors. On the studied geometries,
the roughly cuboidal overall shape of the samples allows simple dynamic balance of the
load between processors. The computing time can thus be reliably estimated on a given
machine, roughly 3·10−6 cpu second per particle and per time step, for a single processor
in the given example.

Tomography DEM simulation

200 ➭m

Strain 0 0.15 0.3

Figure 13.1: Discretization and compression of the full sample. 3D view of the inclusions
only, the matrix is hidden. Vertical compression axis.

Tomography DEM simulation

50 ➭m

Strain 0 0.15 0.3

Figure 13.2: Zoom on a local configuration. Discretization and compression. Cross-
section of the matrix and the inclusions. Vertical compression axis.

This section illustrated that the proposed methodology can be applied to large ar-
bitrary realistic mesostructure data. The discretization has low algorithmic cost, but
the model does not allow yet a simple way to locally adapt the discretization roughness.
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The cost of the computation can be reliably estimated as the model does not depend on
non-linear resolutions.

13.2 In Situ Configurations

The results from the DEM simulations are compared to the temporal evolution of the
morphology obtained by in situ X-ray tomography. The discrepancy is stemming from
limitations of the model, first of which in terms of strain rate sensitivity, and from the
crystallization of the amorphous alloy, delicate to control in this experimental environ-
ment.

The maximal strain rate sensitivity that can be modeled with BILIN is limited to
M ≈ 0.5, on a limited strain rate range. Classical sensitivities for metal creep, typi-
cally 0.2 [117], can thus readily be modeled. However, the amorphous phase of our model
material (Section 2.3) exhibits unusually high strain rate sensitivities, up to Newtonian
behavior M = 1 (Figure 2.7b on page 26).

Experimentally, in the temperature and strain rate range of interest M exp ≈ 0.73
(Figure 13.3a). Numerically, the amorphous phase is modeled in DEM with an underes-
timated Mnum ≈ 0.49. FEM simulations were run on the single inclusion test case, to
quantify the effect of this underestimation (Figure 13.3b). The variation of the shape
factor Sf of the inclusion with the strain rate is indeed influenced by M . By design, at
the center of the range, the difference is very limited. A typical relative difference of a
few percent can be observed at the extrema of the considered strain rate range. However,
the order of magnitude of this introduced error is reasonable: from a strictly numerical
point of view, the typical FEM to DEM error is similar or higher; experimentally, it is
acceptable with respect to the numerous uncertainties. Qualitatively, the behavior of the
model is governed by the association of two phases with respectively high and low strain
rate sensitivities. Within a restricted strain rate range, the exact values of strain rate
sensitivities are of secondary order1.

To limit the uncertainty on the prescribed strain rate, the nominal strain rate exper-
imentally applied to the samples is not directly used. Several pairs of particles, above
and below the region of interest, are tracked (Figure 13.4). The overall estimated strain
rate is polynomially fitted (second order typically suited well this series of data) and used
as input in the DEM simulations. The error introduced by using rigid planar meshes,
over-constraining the system, proved to be of secondary order.

A preliminary series of simulation is run applying the overall macroscopic strain rate,
polynomially fitted for full experimental samples, to a single numerical inclusion. The
configuration is very similar to the test case studied in Section 12.4, using 1·104 parti-
cles and a volume fraction for the inclusion of 0.2. The expected relative error of the
shape factor with respect to a spatially converged packing is around 1% (Figure 12.9b).
The numerical shape factor was compared to the average measured shape factors for all
inclusions (Figure 13.5).

It must be emphasized that the modeled boundary condition may be quite alien to
the studied system. Our test case leaves free lateral boundaries. In the sample, in the
neighborhood of a physical inclusion, the lateral flow of the matrix is more constrained.
As it will be discussed, the introduced discrepancy is of secondary order with respect to
the encountered issues.

Two nominal strain rates, 5·10−4 and 2.5·10−4 s−1, are tested and experimentally have
very similar overall behavior. A large discrepancy can be observed between experiments
and simulations after a strain of 0.2 – 0.3. At both nominal strain rates, the deformation

1 See also Section 12.1 for a discussion regarding the low strain rate sensitivity phase.
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Figure 13.3: Quantification of the error introduced by the underestimation of the strain
rate sensitivity. (a) Norton law fit for numerical and experimental data. (b) Shape factor
of an initially spherical inclusion after a strain of 0.3 at various strain rates. Effect of the
strain rate sensitivity for the FEM simulation.

of the inclusion is largely overestimated by the simulations. The discrepancy potentially
introduced by the free lateral boundary conditions would on the contrary let the matrix
flow freely around the inclusion. We should overestimate the shape factor. In addition,
the experimental deformation seems to slow down after a strain of 0.2 – 0.3.

A probably dominant effect in this discrepancy stems from the crystallization of the
amorphous alloys of the inclusion. Uniaxial compression test, carried-out on a sample
of the amorphous alloy up to the beginning of the crystallization (Figure 13.6), can
provide a first set of indications. On Figure 13.6, the macroscopic mechanical effect of
the crystallization (see also Figure 2.4a on page 23) can be detected 1·103 s after the
introduction of the sample in the furnace, with the increase of the flow stress.

Despite these preliminary data, the effective kinetics of the crystallization is not well
understood2 and the effects of the thermomechanical elaboration process (Section 2.3) are

0 0.09 0.27
Strain (/)

Figure 13.4: Estimation of the strain rate from the distance between tracked inclusions.
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Figure 13.5: Comparison of the experimental average shape factor for all inclusions in a
full sample to DEM simulation of a single inclusion. The crystallization of the amorphous
phase increases the flow stress of the inclusion during the experiments.
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Figure 13.6: Mechanical effect of the crystallization of the amorphous phase, at 400 ◦C
and 4.24·10−4 s−1. The effective compression starts at 90 s after the sample is introduced
in the furnace. Exponential fit of the temporal evolution of the stress, normalized by the
reference flow stress (Equation 13.1).
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not known. The data from Figure 13.6 are obtained on a millimetric sample, obtained
by casting. The alloy in our composite is obtained by atomization and is then hot co-
extruded with the copper powder. In addition, the set-up for in situ measurements at
the ESRF imposes at least several minutes between the introduction of the sample in the
furnace and the beginning of the test, typically from 5 to 10min (Section 2.4).

A naive attempt to account for these numerous unknowns is implemented by expo-
nentially fitting the experimental crystallization (Figure 13.6) and using the function
(Equation 13.1) to implement an explicit time dependence of the numerical parameters
of the amorphous phase.

σ/σref = a · exp(b · t+ c) + d (13.1)

The fitting parameters used here are (a, b, c, d) ≈ (2.91·10−4, 1.82·10−3, 4.24, 9.51·10−1).
A somewhat arbitrary initial offset of 600 s is used in the simulation, to account for
the effects of the set-up time and the elaboration process. The flexibility of the DEM
frameworks allows to implement such models with relative ease.

As-is, the effect of this correction attempt is not sufficient to capture the tendency
observed on the experimental results (Figure 13.7). The temporal evolution of the numer-
ical parameters limits the modeled deformation with respect to the “plain” simulation.
However the deformation is still too high for a satisfactory description of the experimental
observation. At this stage, too little is known to propose a more detailed approximation.
More in-depth comparison between the in situ data and the simulations are thus hindered.
The end of this section will thus be limited to a qualitative test of the methodology on
typical geometrical configurations of interest, without using the temporal correction. For
three chosen configurations, a locally estimated polynomial evolution of the strain rate is
applied to the discretized geometry.
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Figure 13.7: Attempt to apply the temporal evolution measured on Figure 13.6 to the
evolution of the shape factor of a single inclusion. In the simulation taking into account
a crystallization effect, the initial time offset of 10min is considered. Nominal strain
rate 5·10−4 s−1.

A first example (Figure 13.8a) of local configuration is the deformation of a large
inclusion surrounded by smaller inclusions, to allow an estimation of a local flow of the

2 The reproducibility of the test can be questioned, and the fully crystallized mechanical behavior has
not been tested. For some samples, the increase of the flow stress is more progressive and starts earlier.
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matrix. Mainly due to the crystallization, the evolution of the shape factor of the main
inclusion is largely overestimated in the simulation with respect to the experimental mea-
surements (Figure 13.8b), the quantitative analysis is thus not of interest. Quantitatively,
it can be observed that the deformation trend is also quite distinct. In the simulation,
the roughly homogeneous deformation leads to a limited relative motion of the particles.
Experimentally, the small inclusions tend to flow around the central inclusion, with a
large displacement perpendicularly to the compression axis.
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Figure 13.8: Simulation of a local configuration at a nominal strain rate of 5·10−4 s−1.
Initial diameter of the central inclusion 55➭m. (a) Cross-section of the segmented tomog-
raphy volume. Hidden matrix for the DEM simulation. (b) Evolution of the shape factor
Sf of the central inclusion with the strain.

A second configuration is the behavior of two inclusions of similar size, initially close
to one another (Figure 13.9). An interesting feature of this test case is the numerical
behavior at this rough discretization. This initial matrix between the inclusion is only
modeled by a pair of particles. As isolated particles cannot display the expected, the
effect of the thinnest layer of matrix numerically vanishes. Depending on the dominant
physical phenomenon driving the experiment, for example if thin film with high mechan-
ical properties is formed, such a numerical behavior can be quite misleading. In addition,
as contact phenomena are not included, this example is a limit case of the model.

A last example, typically observed in experimental context, is the presence of defects in
the structure of the inclusion. The presence of a large hole in the inclusion (Figure 13.10) is
a consequence of the atomization process and influences their overall behavior. Although
the behavior seems qualitatively satisfactory, the model reaches two major limitations.
Firstly, a further deformation would lead to the self-contact of the interface of the hole, not
used in this simulation. Secondly, the model BILIN is only suitable for compressive loads
and the stress state is probably more complex on a “porous” mesostructure, potentially
with local tensile loads.

The handling of contact events of tensile loads will both be examined in the next part.
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Figure 13.9: Example of a pair of close inclusions [35, p.19]. Cross-sections of the re-
constructed and segmented tomography volume. Hidden matrix for the DEM simulation.
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Figure 13.10: Example of a hollow inclusion [35, p.19]. Cross-sections of the recon-
structed tomography volume. Slice of the inclusion, with hidden matrix, for the DEM
simulation.
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In Part III, the conceptual and algorithmic principles of the developed method were
described. In Part IV, focused on loads dominated by compression, the methods were
applied and tested on dense bi-materials. The interaction law used was the model BILIN ,
whose application is limited to compression only.

Part V extends the model to less restrictive loads, using the model TRILIN . Poten-
tial uses for the detection of self-contact events are illustrated on “porous” geometries,
as opposed to the dense configurations studied previously. The part is split into three
chapters:

• Chapter 14 is about the behavior of the interaction law TRILIN under tensile and
compressive loads.

• Chapter 15 describes the self-contact detection procedure and its effect on simple
geometries.

• Chapter 16 illustrates the methodology with “porous” mesostructures, obtained by
X-ray tomography.



Highlights - Part V
Tension-Compression of “Porous” Material

• The TRILIN interaction law can cope with compressive and
tensile loads.

The overall behavior of the packing is satisfactory regard-
ing the flow stress and the volume conservation. The sym-
metry error between compressive and tensile behaviors is
around 20%. The necking and the rupture under tensile load
are displayed but not controlled.

• The self-contact detection algorithm allows the tracking of
interface interactions.

The closure and re-opening of pore is natively displayed in
uniaxial compression-tension tests. The parameters of the
self-contact detection are tuned to choose an acceptable com-
promise between contradictory objectives.

• The proposed framework allows a flexible and controlled han-
dling of topological events.

The implementation of a healing time of the interfaces illus-
trates the potential of the method to control the evolution
of the topology of the sample. Given a locally computable
metric, arbitrary behavior can be developed with ease.

• The behavior of the model is illustrated using complex
mesostructures, obtained by X-ray tomography: casting pores
and a low relative density foam.

Qualitatively, the self-contact algorithm allows the tracking
and the re-opening of numerous interface interactions. Some
macroscopic metrics are derived for the tested geometries.
Good agreement is obtained for the flow stress of the foam.
Local deformation mechanisms can be observed and studied.
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Chapter 14

Dense Material

In Part IV, the interaction law BILIN was only suitable for compressive loads. This
model is thus not suitable for porous mesostructures.

In this chapter the behavior of the interaction law TRILIN (introduced in Section 9.1)
is described. This interaction law is able to cope with compressive and tensile loads and
is used throughout Part V. The chapter is divided into three sections:

• Section 14.1 briefly presents the modeling choices for the interaction law TRILIN .

• Section 14.2 describes the behavior of a dense packing, without any self-contact
detection algorithm.

• Section 14.3 studies the numerical effect of the number of particles on the behavior
of a packing.

14.1 Interaction Law Choice

The model TRILIN is attractive-repulsive. The repulsive forces are elastic linear. The
attractive forces are linear up to a threshold and are only activated for tensile motions of
the pair. In the objective of modeling a constant strain rate sensitivity over large ranges
of strain rate, a limited strain rate sensitivity is chosen.

The model BILIN was chosen in Part IV for its simplicity. The fixed ratio of stiffnesses
krep/katt = 10 could only reasonably cope with compressive loads. The model TRILIN
is designed to be more generic, coping with tension and compression. For the two config-
urations, a similar absolute macroscopic flow stress is sought for. Keeping an elementary
bi-linear interaction law, as the BILIN model, no satisfactory modification of the radii
or the stiffness ratio was found. Indeed, the attractive stiffness katt must increase to pro-
vide a more cohesive behavior and the crown radius rcrown must provide a wide enough
geometrical range of interaction: the attractive forces become excessive.

Among potential force profile, a threshold on the attractive force was chosen for the
model TRILIN (Figure 14.1). We have no claim whatsoever that this choice is optimal
in any respect, this configuration was only the first to provide a sufficiently satisfactory
behavior to be used as proof of concept.

In Part IV, it proved impractical to use time-converged model. The required sim-
ulation time being excessive, the time step was treated as a mere numerical parameter
(Section 8.3.2). Accepting fully this assumption, the time step for TRILIN was chosen
quite large with respect to the natural period: ∆t/t0 = 10−1.

151
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h

f(h, ḣ)
TRILIN

Repulsive

Attractive

2rseed 2rcrown

(a)

(b)
ḣ > 0

(c)
ḣ ≤ 0

Figure 14.1: Pairwise interaction law TRILIN used in this part. Force f versus distance
h. Attractive to repulsive force ratio and radii to scale. Classical DEM conventions are
applied: repulsive forces are positive. Classical mechanical convention will be applied in
the discussion: tensile stress will be positive. Refer to Section 9.1 for the full description
of the law.

The linearity of the interaction force with respect to the introduced parameters is
respected. The flow stress, for a given kinematic behavior can thus be arbitrarily chosen
at fixed krep/m ratio. Although it has not been investigated, the increase of the strain
rate sensitivity at higher strain rate seems to be displayed1. It is thus probably possible
to apply the calibration procedure applied in Part IV to tune the strain rate sensitivity.
A new calibration chart (Figure 11.3 on page 122) would have to be computed, the shapes
of the interaction laws and the ratio t0/∆t being distinct. A similar behavior is to be
expected: a large plastic-like domain and a narrow tunable viscoplastic domain.

However, the co-deformation configurations studied in Part IV had, by design, a lim-
ited strain rate dispersion in a given sample. Although the limited validity range of strain
rate was a handicap, the model could be used to study configurations of interest, where
both phases deform notably. By contrast, in the objective of modeling porous material,
the strain rate field is necessarily very heterogeneous. In the cases of a truss-like system
for example, strains may be concentrated at the joints.

The natural period of the model is thus fixed (t0 = 1 s) in the objective of mimicking
a low strain rate sensitivity, valid over a wide range of strain rates. With the chosen time
step (∆t = 10−1 s), the average strain rate sensitivity over the strain rate range 10−5 –
10−2 s−1 is M = 7.14·10−2. The validity range of the domain in strain rate can be
arbitrarily shifted by modifying the natural period and the time step at fixed t0/∆t ratio.
The mimicked stress level used is loosely inspired from typical flow stresses of Al-7075
at 400 ◦C, typically 30MPa at 10−3 s−1 (Figure 2.14 on page 31). The chosen repulsive
stiffness in the pair interaction of the particles krep = 1.42·109 ➭N ·mm−1 leads to a
macroscopic stress level K = 49.1MPa · sM in the Norton approximation.

14.2 Macroscopic Behavior

With the interaction law TRILIN, the particles of the packing can collectively cope with
tensile and compressive load. Overall, the stress-strain behavior and volume conservation
is satisfactory. At large strain, tensile loads induce the necking and the rupture of the
sample. Some parasitic numerical crystallization is observed and is promoted by the planar
meshes.

Under compressive load, pushed by the moving meshes, the particles using the model TRILIN

1This point will be discussed in Section 14.2. Refer also to Figure 14.5b.
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rearrange collectively to cope with strain (Figure 14.2). Compared to the behavior of the
model BILIN (Figure 11.9 on page 128), the deformation is less homogeneous: the lat-
eral free surfaces are not as regular and smooth2. The overall reorganization is however
effective.

0 −0.2 −0.4 −0.6 −0.8 −1.0
Strain (/)

Figure 14.2: Cross-section for uniaxial compression. Packing of 5·104 particles
at −3.16·10−4 s−1. See also Figure 14.6.

Under tensile load (Figure 14.3), the deformation of the sample is at first roughly
homogeneous. On the presented configuration, qualitatively, a necking behavior then
appears (ε ≈ 0.4) and develops until the final rupture (ε ≈ 0.9). Incidentally, this
behavior somewhat mimics the ductile necking of metallic polycrystals [78, p.121].
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Figure 14.3: Cross-section for uniaxial tension. Packing of 5·104 particles
at 3.16·10−4 s−1. See also Figure 14.6.

The strain-stress behavior (Figure 14.4) is coherent with the observed tendencies:

• Under compressive load (negative stress), the stress is stable up to large strain.

• Under tensile load (positive stress), the stress3 is stable up to strains of 0.4 – 0.5,
where it drops under the influence of the necking. Once the sample is broken in two
parts, the stress is zero.

For both compression and tension, a transient regime is observed at the beginning of the
test. The observed width in strain is roughly 0.1 – 0.15, which is about twice shorter than

2This effect will be examined in the end of the section.
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for the model BILIN (Figure 11.10a on page 129). At larger strain rate, the oscillations
of the stress are of greater magnitude. As expected, the absolute flow stress increases
with the absolute strain rate.
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Figure 14.4: Stress-strain behavior for TRILIN , using 5·104 particles. Under tensile
load: stress drop at necking and null stress after rupture.

To compute the approximation by a Norton law of the macroscopic behavior (Fig-
ure 14.5a), the flow stress at a given strain rate is computed as the average stress between
strains of 0.21 and 0.35. Both for tension and compression, the variation of the flow
stress is limited over a wide range of strain rate. The flow stress varies approximately by
a factor 1.7 for three decades of strain rate. The compressive behavior is smoother and
the Norton approximation is rougher for the tensile loads. The order of magnitude of the
flow stress is similar, the tension stress being at most 20% larger than compression stress.

Qualitatively, the sensitivity-strain rate behavior of TRILIN seems comparable to BILIN
(Figure 14.5b). The strain rate sensitivity is stable at lower strain rates and increases
rapidly at higher strain rates. A calibration procedure, finding a link between strain rate,
natural period and strain rate sensitivity, seems possible. The behavior was however not
quantitatively investigated. Firstly because the foreseen application – porous mesostruc-
tures – implies large heterogeneities of the strain rate field. Therefore, a viscoplastic
behavior valid only on a limited strain rate range is not appropriate. Secondly, the choice
of a large time step would induce an excessive motion of the meshes at each step for
higher strain rates, where the model should exhibit higher strain rate sensitivity. The
model TRILIN is thus focused at a limited strain rate sensitivity over a wide strain rate
range.

The minor variation of the strain rate sensitivity is sufficient to influence the necking
behavior4. At higher strain rates, the increase in the strain rate sensitivity tends to
stabilize the necking. Qualitatively comparing the sample deformed at distinct strain
rates (Figure 14.6), this effect is seen at 3.16·10−3 s−1. At a strain of 0.8, the necking
is less pronounced and at 1.0, the sample is not separated into two parts yet5. On the
stress-strain curves (Figure 14.4) the total rupture (σ = 0) of the sample occurs before a
strain of 0.9 for ε̇ ≤ 3.16·10−4 s−1.

3As in Part IV, the macroscopic stress is computed using an estimation of the cross-section based on
the current height of the sample and its initial volume.

4Refer to Section 14.3 regarding the size effects.
5At a strain rate of 10−2 s−1, the stabilizing effect is extremely efficient and the necking is very limited
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Figure 14.5: Norton law approximation for TRILIN . (a) Stress flow versus strain rate.
Norton law parameters for the average behavior: M = 7.14·10−2, K = 49.1MPa · sM .
(b) Sensitivity versus strain rate.

As a side note, the influence of the parameter Xwall on the necking behavior is not
negligible. This parameter (refer to Section 9.2) is a multiplicative factor used to increase
the mesh/particles interaction forces. It is an arbitrary work-around to effectively apply
tensile loads. Practically, it drives the ease with which a particle interacting with the
mesh will be able to leave it. The chosen value (Xwall = 3) tends to promote a rupture
in the middle of the sample: the forces necessary to develop a necking are lower than the
force to pull particles apart from the meshes.

The overall macroscopic equilibrium of the packings (Figure 14.7) is computed from
the difference of the total forces acting on a fixed and on a mobile mesh. Under compres-
sive load, at comparable natural period and strain rate, the relative error is a factor three
larger than for the model BILIN (Figure 11.4 on page 124). This seems to be a direct
effect of the larger time step chosen. To respect an equilibrium error under 10−1 %, as in
Part IV, the absolute strain rate would need to be limited to roughly 2·10−4 s−1.

Qualitatively, on dense samples, well balanced collective rearrangements seem cor-
rect up to 10−2 s−1. However, parasitic dynamic effects can be observed on very porous
geometries at 3.16·10−3 s−1. In practice, the simulations were run up to 10−3 s−1, cor-
responding roughly to an error of 1%. This choice, slightly less conservative than in
Part IV, is merely a computational convenience.

A potential issue arising with the model TRILIN is a tendency to numerical crys-
tallization. Indeed, as the repulsive and attractive stiffnesses are more balanced than
in BILIN , the distance between the particles is more strictly constrained. Although the
overall behavior is satisfactory, the deformation of the lateral free surfaces are not as
regular and smooth as for BILIN (Figure 11.9 on page 128), This overall behavior mainly
stems from the numerical partial and local crystallization. Some groups of particles (typi-
cally 63) arrange locally on a lattice and tend to follow block-wise motion with the strain.
On Figure 14.8, this effect can clearly be seen on the right side of the sample.

This phenomenon is stronger at lower strain rates, as particles have more time to
organize in an energy minimizing configuration. On Figure 14.6, no crystallization is

at a strain of 1.0. Such a configuration was not actually used in the simulations due to a poor equilibrium
respect.
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Figure 14.6: Cross-section for uniaxial test, tensile and compressive load. Packing
of 5·104 particles.
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observed at −3.16·10−3 s−1. The phenomenon is also stronger for compressive loads,
where particles are closer to the meshes, as the planar meshes strongly favor this behavior.
On Figure 14.6, crystallization effects under tensile load are mostly limited to the close
neighborhood of the meshes.

Although the numerical crystallization seems sufficiently limited to mimic the overall
rearrangement, it is a limitation for the quality of the model. Preferential strain zone
form between the crystallized block and the study of local fields is thus severely lim-
ited. Numerous work-around can be imagined to improve the model, first of which the
introduction of a little dispersion in the radii of the particles.

14.3 Influence of the Number of Particles

The flow stress can be captured with a limited number of particles in the packing. The
error with respect to a spatially converged state is evaluated. The number of particles also
influences the rupture qualitatively. This effect has not been investigated.

The choice of the spatial discretization introduces a purely numerical length scale.
The number of particles in the packing thus influences the strain at which the necking
is initiated and the final rupture profile (Figure 14.9). This can be understood as the
influence of the ratio between the size of the sample and the size of the typical defect,
corresponding roughly to the dimension of the particles.

3·102 3·103 1·104 3·104 1·105 3·105 1·106
Number of particles (/)

Figure 14.9: Cross-section for uniaxial tension test. Influence of number of particles on
the rupture profile under tensile load at 10−3 s−1. A size effect can be observed, with an
approximate qualitative threshold between 3·104 and 1·105 particles.

For packings of limited size, typically under 5·104 particles (Figure 14.9), the necking
is more or less axisymmetric and the effective resisting cross-section progressively loses
its thickness and vanishes. For larger packing, multiple defects seem to nucleate in the
necking zone and coalescing until the final rupture, somewhat like in the canonical dimple
rupture of some ductile alloys.

This dependency of the rupture behavior on the size of the packing6 is not designed
nor controlled to have physical sense. Although the proposed modeling approach may
well be of interest to model ductile rupture, we focus here on the homogeneous response
of the material. Further developments would be necessary to specifically study rupture
or necking.

6Refer also to the effect of the parameter Xwall used with the planar meshes (Section 14.2).
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A common stress-strain tendency is displayed for packings larger than a few thousand
particles (Figure 14.10a): the transient regime is similar and the flow stress value is
roughly captured even with a limited number of particles (e.g. 5·102).
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Figure 14.10: Effect of the geometrical discretization on the flow stress of the packing
at a strain rate of 3.16·10−4 s−1. (a) Comparative tendencies of the stress-strain curves.
(b) Relative error on the flow stress with respect to a packing of 3·106 particles.

However, with a very small packing of 5·102 particles, the crystallization under com-
pressive load becomes excessive. This effect is caused by the harsh boundary condition
imposed by the two close meshes. A small sample thus fully crystallizes and jumps from
a stable crystallized configuration to another. This parasitic numerical crystallization of
the packing is clearly displayed under compressive load by the flow stress oscillation at
larger strain. Under tensile load, the effect is not seen on the strain-stress curve or on a
cross-section of the sample (see for example the even smaller packing of 3·102 particles on
Figure 14.9). With 5·103 particles, the oscillation of the flow stress due to crystallization
starts at larger strain (≈ 0.7).

The size dependency of the necking and the rupture influences the strain-stress be-
havior under tensile load. On Figure 14.10a the strain at which the necking starts (i.e.
the drop of the flow stress) increases with the size of the packing. The final rupture of
the sample respectively occurs at a strain of 0.6, 0.8 and 1.0 for packings of 5·102, 5·103
and 5·105 particles.

In spite of the numerical artifacts of crystallization (mostly under compression) and
size effect (mostly under tension), the spatial convergence of the flow stress (Figure 14.10b)
is similar to the model BILIN (Figure 11.7b on page 127). The error on the flow stress
relative to a considered converged packing of 3·106 particles is around 10 and 3% respec-
tively for packings of 5·103 and 5·104 particles.

Along with the strain-stress behavior, the volume conservation is a key objective for
our model. The volume variation after relaxation (Figure 14.11) is typically around
a few percent, which is comparable to the low strain rate sensitivity phase A in the
model BILIN (Figure 11.8 on page 128). From the relaxed initial state, after the typical
transient regime, the volume decreases by a few percent with compression. The larger
discrepancy for compression of the samples of 5·102 and 5·103 particles stems from the
crystallization, notably reducing the volume.

The tension increases the volume only by ≈ 1%. At the initiation of the necking,
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Figure 14.11: Evolution of the relative error on the volume versus strain. Influence of
the packing size at 3.16·10−4 s−1.

the volume starts to drop toward lower value than the initial state at rupture. After the
rupture, the volume varies insignificantly as the sample is separated into two parts.



Chapter 15

Self-Contact Detection

In the proposed model, inelastic strains are mimicked by neighbor changes in a packing.
A dedicated algorithm (introduced in Section 9.5) must identify the interaction of the
modeled interfaces and more specifically the self-contact events.

This chapter investigates the behavior of this self-contact detection algorithm for
simple geometries. The chapter is split into two sections:

• Section 15.1 concerns the methodology to choose the threshold parameters of the
algorithm.

• Section 15.2 applies the algorithm to a single spherical pore in a cubic domain. An
example of controlled topological change is illustrated.

15.1 Threshold Choice

The detection of self-contact events is based on a local metric. A test case, using two
blocks of material, is designed to tune the algorithm parameters. A compromise has to be
chosen between contradictory types of errors. The chosen set of parameters only slightly
modifies the behavior of a dense sample and misses few self-contacts.

To detect self-contact events (Figure 15.1), an “outward vector” n is computed for
each particle from the position of its neighbors. When two particles meet for the first
time, the relative orientations and the magnitudes of the vectors are compared to classify
the pair as “internal” or “interface”. Three thresholds are used: two on the angles (αij ,
αen) and one on the magnitudes (Nmag).

ni

nj

en
i j

Figure 15.1: Self-contact detection algorithm. Refer to Section 9.5 for the full descrip-
tion of the algorithm.

Based on the chosen self-contact detection algorithm, a test case is designed to choose
the threshold parameters. The principle of the test case is to perform a compression-

161
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tension test starting with two distinct aggregates of particles (Figure 15.2). Each aggre-
gate, chosen initially cuboidal, is explicitly labeled and tracked. Thus, when a new pair is
created, the “internal” or “interface” status can be verified checking if the particles come
from identical of distinct initial aggregates. The two aggregates are successively crushed
onto one another and pulled apart, while all pair creations are checked.

Inital Compression Tension
Figure 15.2: Test case to quantify the errors of the self-contact detection algorithm,
used to choose the self-contact threshold parameters. Two cuboids are crushed and pulled
apart. Cross-section for an arbitrary set of parameters.

Two metrics are chosen to quantify the quality of a set of parameters:

• The rate of error at the interface between the two blocks. The “interface error” is the
ratio between pairs with particles from distinct aggregates mistakenly considered as
“internal” and the total number of new pairs considered as “interface”.

• The rate of error inside each block. The “internal error” is the ratio between pairs
with particles from identical aggregates mistakenly considered as “interface” and
the total number of new pairs considered as “internal”.

It must also be considered that the denomination of these errors may be somewhat mis-
leading and only refers to events at the particle level. For example, an “internal” error
can occur at the interface and numerous “internal” errors can lead to lose the modeled
interface by opening numerical ones.

The two error rates are not of equal weight. The creation of new “internal” pairs are
much more frequent, thus causing a high number of errors if the two rates are balanced.
However, the detection of “interface” pairs is more critical: a few percent of “interface”
error is already too poor a description for our purpose, while 10% of “internal” error can
be acceptable. Indeed, particles typically have numerous “internal” neighbors and few
“interface” neighbors, an error on an “internal” neighbor is more easily counterbalanced
by the others: the general cohesion is sufficient.

As a guide to find a sensible threshold parameter Nmag, the distribution of the mag-
nitudes n of the outward vectors is bimodal (Figure 15.3), with a transition between 2
and 3mm. The first guess on the angle thresholds αen and αij was found by simple
trial-and-error.

A full factorial design of experiment is then executed, sweeping the domain
(Nmag, αen , αij) = ([1.5, 2.6], [50, 105], [35, 85]). One compression-tension test is run for
each set of parameters. The explored domain favors configurations with low interface
error, more critical for our purpose. As the two chosen error metrics are contradictory,
the results sketch a Pareto front (Figure 15.4).

The contradictory behavior of the two error types leads to a necessary compromise
in the choice of the interaction parameters. As a rough guide for the choice of a specific
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Figure 15.3: Typical distribution of the magnitude n of the outward vector. Initial
state of a cuboid with a spherical hole, corresponding to Figure 15.8.

configuration on the front, the following maximal errors provide a “visually” acceptable
overall behavior:

• “Interface” error < 1%.

• “Internal” error < 10%.

Within the range, decreasing the “interface” error to ≈ 10−1 % notably improves the
tracking of the interface. This implies an increase of the “internal” error from 2 to 3%,
only very marginally modifying the overall dense behavior. The used set of parameters
is thus chosen on the identified Pareto front at (Nmag, αen , αij) = (2.3mm, 80◦, 65◦)
(crossed-out on Figure 15.4).

The chosen set of parameters leads to an “interface” error of ≈ 10−1 %. To illus-
trate the effects of this metric, the test case is repeated on various initial geometries
(Figure 15.5): cuboids, portions of spheres, cones, cylinders with perpendicular axis and
cuboids with a portion of spherical hole. Typically, a few particles are carried by the
wrong aggregate after the compression-tension test. An attentive reader may spot some
on the cuboid, the cylinder or the spherical hole configurations. Note that this naive
metric was not used to choose the parameters and is dependent, among other factors, on
the number of particles modeling the interfaces.

The chosen set of parameters leads to an “internal” error of ≈ 3%. The stress-strain
profile for a dense sample, with and without using the self-contact detection, is shown
on Figure 15.6. On this Figure, the introduced error is represented by the discrepancy
between the lines (without self-contact) and the round markers (with self-contact). The
stress is little affected by the chosen self-contact thresholds, including the necking behavior
under tensile motion. The average flow stress computed between strains of 0.21 and 0.35
varies by less than 1%.

As a side note regarding the Pareto front, the dominant parameters to quantitatively
tune the metrics of interest seem to be Nmag and αen . This purely quantitative approach
hides many qualitative tendencies that were not studied in depth. To improve the behav-
ior of the algorithm, it seems equivocated to attempt a heavy quantitative optimization
procedure, based on the two chosen quantitative metrics. The understanding of distinct
typical configurations may be of interest to design a more comprehensive detection algo-
rithm.
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Figure 15.4: Pareto front of the two error types in the classification of new interac-
tions between particles. The chosen configuration is crossed-out. (a) Magnitude thresh-
old Nmag. (b) Angle threshold cosαen . (c) Angle threshold cosαij .
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Figure 15.5: Test on various geometries of the chosen thresholds for self-contact de-
tection. Indication of the final total number of particles carried by the wrong aggregate.
Note that this metric was not used to choose the parameters. Cross-section.

0 0.2 0.4 0.6 0.8 1

−40

−20

0

20

40

Absolute strain (/)

S
tr
es
s
(M

P
a) |ε̇| (s−1)

3.16·10−3

3.16·10−4

Self-contact

Figure 15.6: Effect of the self-contact detection on the strain-stress behavior of a dense
packing.



166 CHAPTER 15. SELF-CONTACT DETECTION

15.2 Compression-Tension of a Spherical Pore

A cube with a single spherical pore is compressed up to the mechanical closure of the
void. The interface is properly tracked. A tensile load is then applied and the pore re-
opens on the cohesionless interface. A “healing” behavior is added, the interface thus
becomes cohesive after a given time of contact. The pore can be partially or fully closed
depending on the chosen healing time.

A simple test case for the self-contact detection algorithm is based on a cube of side
2a with a centered spherical hole of radius r. On a uniaxial compression-tension test, the
pore is expected to be closed, while keeping track of the interface and to re-open under
the tensile load.

To visualize this behavior, a handy representation is a slice of width 2rcrown across
the pore displaying the outward vectors only (Figure 15.7). On the chosen example, a
relative pore radius r/a = 0.15.

0 0.35 0.7 0.35 0

Absolute strain (/)

Compression Tension

Figure 15.7: Compression-tension of a spherical pore r/a = 0.15. Slice of the sample
and visualization of the outward vectors.

The behavior under tensile load and more specifically the strain localization around the
pore is influenced by the numerical parameter Xwall. This arbitrary parameter, used to
apply tensile loads with meshes, can emphasize or minimize the phenomenon by allowing
the particles to leave the mesh more or less easily. This behavior is not intended to
represent a physical phenomenon.

It must be remembered at this stage that as we work in the discrete element method
(DEM) framework, arbitrary topological events can be implemented with ease. To illus-
trate such behaviors, a healing time is implemented in the interaction law (Figure 15.8).
For each “interface” pair, a counter sums the time elapsed from the creation of the pair.
After a threshold, the healing time, the status of the pair is switched back to a normal
“internal” interaction. The pore is fully closed if the healing time is negligible. For in-
termediary healing time (like 100 s Figure 15.8), the pore re-opens but is significantly
smaller.

The engineering stress for a compression-tension test is compared with and without
instantaneous healing for two sizes of pore (Figure 15.9). The expected tendency of a
larger peak tension stress with instantaneous healing is observed. For relatively small
pores, the difference is not large as the effective variation of resisting tensile section due
to the pore is limited after a large compressive strain.

The ability to track or “weld” interfaces is a strength of the method. Our model
used with a simple healing time model is a first approach to mimic the pore mechanical
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closure and healing. Qualitatively, the closure and the welding starting at the edges
and progressing toward the center of the inclusion [239, p.101] is observed. Arbitrary
behavior can be implemented as long as a driving metric can be locally computed during
the simulation run.



Chapter 16

Complex “Porous”
Mesostructures

Reminding the overall objective of this PhD, we are attempting to design a method to
describe finite inelastic strain in continuous media. The method must also handle the
detection, the displacement and the interaction of numerous self-contacts.

This last chapter illustrates the potential of the method on complex geometries ob-
tained by X-ray tomography (refer to Section 9.3). “Porous” is understood here in a loose
sense, merely as materials presenting holes, in opposition to dense materials. The chapter
is divided into two distinct applications:

• Section 16.1 briefly deals with the mechanical closure and re-opening of casting
pores, under compressive and tensile loads.

• Section 16.2 investigates the compression of low relative density foam. The com-
pression is performed up to large strain and the local deformation mechanisms are
looked into. Quantitative macroscopic metrics are computed.

16.1 Casting Pores in Aluminum Alloy

The morphology of casting pores in aluminum, obtained by X-ray tomography, is dis-
cretized. A compression-tension test is applied: the pores are mechanically closed and
re-opened. In spite of the large applied strain and the tortuous geometry, the interfaces
are tracked. At large tensile strain, a coalescence phenomenon is observed.

The pores shown on Figure 16.1a are formed during the casting of an aluminum alloy.
These pores are considered as defects and limit the mechanical properties of the mate-
rial [239, p.95], for example leading to fatigue rupture under cyclic load. In subsequent
steps of elaboration, the pores can be closed and “welded” by thermomechanical pro-
cesses as hot rolling, improving the mechanical properties. The phenomenon is classically
divided into two steps: the purely mechanical closure of the pores [198] and the growth
of a cohesive interface. We will in this section focus on mechanical effects.

The initial image has a resolution of 2.4 ➭m/pixel and a random packing of roughly
5·105 particles is used. The chosen ratio pixel/rseed = 2 is coherent with the discretization
algorithm, For a finer discretization, a less crude reconstruction than an elementary box
filter (Section 9.3) could be used. The pertinence of using the center of the particles can
also be discussed.

169
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(a) (b)

Figure 16.1: Discretization of a set of porosities. (a) 3D reconstruction of the tomogra-
phy. The largest pore is roughly 100 ➭m wide. (b) Mesh reconstruction on the particles
with large outward vector magnitude n inside the sample.

The reconstructed meshed pores on the DEM model are slightly smaller than the pores
on the 3D image. During the relaxation procedure, after particles are removed using
the image as a mask, the tensile forces in the packing retrieve the global equilibrium
resulting in a contraction of the pore. This test case is specifically sensitive to that
effect as a few particles are removed in a large packing. To improve the geometrical
description, an iterative procedure may be of interest, repeatedly removing particles after
a relaxation procedure. During the iterations, it may be useful to start with smaller pores
and progressively increase the size toward the final targeted shape.

The objective of the simulation is to compress the sample containing pores up to their
mechanical closure. The model must not lose track of the interface. In a second stage, a
tensile load is applied on the compressed sample to pull it back to its initial height. The
pores must re-open on the tracked interfaces.

A visualization method of the pores must be proposed as our method is fully im-
plicit: no explicit “interface” object that could be shown is defined. The visualization
proposed here relies on a mesh reconstruction on the particles with an outward vector
magnitude n > 2.3mm (Figure 16.2). The particles from the exterior of the domain are
manually removed. All particles are overprinted with a strong transparency to repre-
sent the packing. Some noise resulting from this visualization procedure can be seen on
Figure 16.2, for example the small and sharp mesh in the lower part of the initial state.

Little holes are appearing on the reconstructed mesh under tensile load. This “sieve”
aspect is a reconstruction artifact, stemming from the increase of the total surface of the
interfaces: particles are migrating toward the free surface. As an arbitrary threshold on n
selects the particles for the mesh reconstruction, some migrating particles are missed.

Under compressive load (Figure 16.2), the volume of the porosity effectively reduces,
until all interfaces are in contact. The interface and their interaction are effectively
tracked, in spite of the large prescribed compressive strain. The interfaces that come in
contact early actually undergo a large strain while being closed.

The pores re-open during the tensile phase and are not lost during the whole
compression-tension process. The pores also coalesce, from a strain of 0.3 to finally
form a single big pore in the final state. This complex topological change seems to be
described with ease by the method. It must however be remembered that the necking
and rupture phenomena are influenced by size effects. At this stage, the behavior is thus
illustrative of the potential of the model but not necessarily representative of a physical
event.

On the shown example, the discretization is too rough to describe properly the defor-
mation of the smallest pore (nicely rounded and near the center on the initial state). The
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Figure 16.2: Mesh reconstruction of the pores during a uniaxial compression-tension
test.
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thickness of the mesh, when the pores are totally closed (for example at a strain of 1.0)
stems from the mesh reconstruction: the mesh goes through the center of the particles,
located at one side or the other of the interface.

To verify that the pores do indeed re-open on the tracked interfaces, it is possible to
visualize thin slices of the sample (Figure 16.3). As the sample deforms, the interfaces
move through the fixed slice position. It is however possible to see the re-opening of the
pores, knowing from the 3D views that the interfaces are not altogether lost.
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Figure 16.3: Re-opening of the pores during the tension phase of a uniaxial compression-
tension test.

A typical experimental metric of interest is the evolution of the pore volume. An
estimation of this metric (Figure 16.4) can be computed using mesh reconstructions. The
numerical parameter driving the mesh reconstructing in ovito is a probing radius [221].
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Figure 16.4: Evolution of the relative volume of the pores from the initial state.

Two reconstructions, using all particles, are executed: one with a very large probing
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radius (5mm) and a second one with a small probing radius (0.9mm). The difference
between the volumes of the meshes is influenced by the greater roughness of the surface
with low probing radius. The evolution of the volume of the pores is thus corrected using
a reference configuration, were the pores are considered closed (here a strain of 1.0). This
first approximation is rough: at the beginning of the tensile load, the estimated volume
is slightly under zero at a strain of 0.8, which is within the measurement noise.

Regarding the general trend, the pore does not seem to instantly re-open. This may
not be unrealistic but may also stem from the harshness of the test case for the model.
Indeed, the change of velocity of the plane is instantaneous, from a time step to the
other. As shown for example on Figure 14.4 on page 154, the initiation of the flow from
an equilibrium state starts with a transient regime, roughly for the first 0.1 of strain. A
similar effect, but of greater magnitude is to be expected here. The potential effect of
the “interface” errors (Section 15.1), i.e. pairs erroneously considered as cohesive, has not
been investigated.

16.2 Aluminum Open Cell Foam

The geometry of a metallic foam with low relative density is discretized. The foam is
compressed up to large strain, for various relative densities and strain rates. After a
short description of the discretization procedure, three sections respectively deal with the
qualitative deformation mechanisms, the quantification of the macroscopic flow stress and
a first approach to the estimation of the local stress field.

To some extent, an open cell foam could be considered as a material where pores are
fully percolated. From the point of view of our model, it makes no conceptual difference
to consider an arbitrary low density. The limit is the choice of the discretization, only
packings display the expected behavior, not isolated particles. A slender beam or a thin
shell must be discretized with at least a few particles in their smallest thickness.

We study here the case of a low relative density structure. Figure 16.5a shows a to-
mography reconstruction [243] of an ERG aluminum foam1 of relative density 6.6%. The
dimension of the sample is 4×10×15mm3, and the original image resolution is approxi-
mately 13 ➭m/pixel.

(a) (b)

Figure 16.5: Discretization of an open cell foam. Perspective view. (a) 3D reconstruc-
tion of the tomography. (b) Packing after removal of particles and relaxation.

1ERG materials & aerospace is a manufacturer of open cell metallic foam: www.ergaerospace.com.

www.ergaerospace.com
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At the chosen discretization (Figure 16.5b), pixel/rseed = 1.5, the typical width of an
arm of the foam is discretized with less than a dozen of particles. The total number of
particles in the simulation is slightly under 5·105.

16.2.1 Qualitative Behavior

Bending mechanisms dominate the deformation of the foam. Weak zones are preferen-
tially deformed until a self-contact event hinders their deformation. Large strain, dis-
placement and rotation are modeled.

When such a geometry is crushed, the deformation ultimately leads to interactions of
the arms on the foam: self-contacts. Our method readily allows the deformation up to
large strains (Figure 16.14a).

0.0

0.5

1.0
1.5

3.0

Absolute strain (/)

Figure 16.6: Compression up to a strain of 3.0 of the foam at 1·10−3 s−1. Left view,
relative density 6.6%.

The chosen geometry is very thin and delicate on the boundary of the domain: isolated
arms must distribute the load to all the sample. Practically, during the first percent of
strain (Figure 16.16), the arms directly in contact with the meshes locally deform and
cope with most of the strain. Local details are thus crushed until a sufficient surface of
interaction to distribute the load is created. This is not a numerical artifact, but rather
the consequence of the geometry choice.

0 0.05
Strain (/)

Figure 16.7: First percent of strain. Crushing of isolated arms by the plane until the
effort is distributed enough to be transmitted to the structure.

Within the accuracy of the self-contact detection algorithm, the numerous interactions
of the arms are captured and tracked as interfaces (Figure 16.8. The arms are well
segmented in the model and their interactions are effectively non-cohesive.
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1.5

2.0

2.5

Absolute strain (/)

Figure 16.8: Slice through the middle of the sample (width=2rseed), with representation
of the outward vectors.

Regarding deformation mechanisms, the crushing of the foam is dominated by bending
and instabilities. Illustrative examples are taken from the beginning of the deformation
(strain range 0 – 1) at −1·10−3 s−1.

A first example is an isolated arm (dashed on Figure 16.9). Very early in the defor-
mation (before a strain of 0.2), the off axis compressive load (arrows at a strain of 0.05),
imposed by the surrounding, induces a severe bending. Being of small section and iso-
lated, the arm cannot withstand the load. At a strain of 0.3, two arms above and below
come into contact (circled at 0.30). The deformation of the arm is thus temporarily hin-
dered. This flexion mechanism of local weakness, until the deformation is halted by a
contact event, is widespread in the structure.

0.05
Isolated arm and load

0.10 0.15 0.20 0.25 0.30
ContactAbsolute strain (/)

Figure 16.9: Bending of an isolated arm. Detail from Figure 16.12, on the right side of
the sample.

The second example is the collapse of a cell (Figure 16.10). Initially roughly hexago-
nal2 (sketched at a strain of 0.05), the cell at first partially withstands the load imposed
by the lower and upper vertical pillars (arrows at 0.05). The superior part of the hexagon
copes with most of the deformation and progressively deforms, up to a strain of 0.2. The
summits of the hexagon behave like hinges and the arms bend to comply with the varying

2Qualitatively, the configuration is similar to the honeycomb loading shown Figure 1c in [8, p.2854].
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angles. The deformation then accelerates, the shape degenerates to a rectangle (sketched
at 0.35), with the pillar pushing in the middle of the horizontal sides. The cell collapses
rapidly, while the vertical pillars coped with very little deformation from the beginning.
Several typical traits are displayed: the rotation of the arms around hinge-like joints of
the foam, the preferential deformation of horizontal arms by “three point” bending.

0.05

Hexagonal cell and load

0.20 0.35

Top and bottom vertices pushed inward

0.45 0.50

Absolute strain (/)

Figure 16.10: Collapse of a cell, by bending of the horizontal arms. Detail from Fig-
ure 16.12, a little above the center of the sample.

A third example is the illustration of the large rotation occurring in the sample (Fig-
ure 16.11). The lower dashed circle (at a strain of 0.5) represents a “hole” in the foam,
which is not propped by arms of material. During the compression, this volume is thus
drastically reduced. In contrast, the upper dashed circle is a strongly sustained cell. It is
slightly deformed during the compression, but it keeps its original shape in this first stage
of compression. The overall effect is the relative rotation of blocks of material (dashed
lines). Successive events of this type occur simultaneously and sequentially, until the
motion of weaknesses of this type are all blocked by contacts, and the “strong” cells have
to deform.

0.5 1.0
Absolute strain (/)

Figure 16.11: Large rotation, by deformation up to self contact of an “empty” zone.
Front view.

Overall (Figure 16.12), the deformation is dominated by the bending and buckling of
the arms, successively deformed in the weaker zones of the foam. These zones are defined
by the geometry and orientation of the arms and the cells, as well as the geometrical
surrounding configuration, which will transmit or sustain the load. The deformation
involves localized large strains and large rotations. The self-contact events ultimately
hinder the deformation of the weaker zones, transmitting the load elsewhere.
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0.05 0.15 0.25

0.35 0.45 0.55

0.65 0.75 0.85

Absolute strain (/)

Figure 16.12: Right view, relative density 6.6%, absolute strain rate 10−3 s−1. Com-
pression from a strain of 0.05 to 0.85. At a strain of 0.05, the two circled details are
zoomed on Figures 16.9 and 16.10.
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16.2.2 Macroscopic Stress

The macroscopic flow stress to deform the foam compares well with the literature. Initially
very limited compared to the flow stress of the dense material, the stress increases as the
structure collapses and the mutual support of the arms generalizes. The effect of the
relative density and the strain rate are investigated in two dedicated sections.

To quantify the efforts that the foam can support, the apparent engineering flow stress
can be computed, using the initial cross-section of the sample and the sum of the forces
acting on the meshes.

The typical stress-strain profile of a compression up to large strain is shown on Fig-
ure 16.13. Very qualitatively, on a linear scale, the deformation of the foam requires a
limited stress with respect to the flow stress of the dense material (30MPa at 10−3 s−1).
Starting at a strain of 1, the flow stress progressively increases, rapidly increasing in the
final range of strain 2 – 3.
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Figure 16.13: Apparent engineering stress versus strain. Linear scale. Refer to Fig-
ure 16.14a for a logarithmic scale.

Using a semi logarithmic scale (Figure 16.14a), several traits can be identified. The
sharp overshoot observed in the first percent of strain will be examined in Section 16.2.2.2.
Up to a strain of 0.5, the created contacts seem isolated enough for other zones to cope
with the deformation without notable increase of the macroscopic flow stress. In the
strain range 0.1 – 1, the flow stress is within the range 0.1 – 0.2MPa.

To further quantify the credibility of the modeled stress, the apparent flow stress of
this open cell foam is evaluated as follows [8, Eq. 9a]:

σfoam = σdense · ρ





3Nn + 1

2Nn





rel ·







(

Nn + 2

0.6

)

1

Nn · Nn

1.7(2Nn + 1)






(16.1)

With ρrel ≈ 0.066, Nn = 1/M ≈ 14 and σdense ≈ 30MPa, the estimated flow stress for
the foam is thus σfoam ≈ 0.17MPa. The order of magnitude of this apparent flow stress
is thus correctly captured.

From a strain of 0.5 to 2.5, the flow stress increases with a somewhat similar tendency
to the strain-density behavior (Figure 16.14b). The flow stress reaches 1% of the dense
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Figure 16.14: Macroscopic behavior of the foam under large compressive strain. Rela-
tive density 6.6%, strain rate 10−3 s−1. (a) Apparent engineering stress versus strain. In
dashed lines: asymptotic true flow stress and estimated flow stress for the foam (Equa-
tion 16.1). The averaging window is identical for the two proposed sampling intervals.
(b) Rough approximations of the relative density versus strain.

flow stress at a strain of 2. Self-contacts progressively generalize to the whole sample,
following a somewhat stable trend in the strain range 1 – 2.5.

Note that at hypothetical full geometrical densification, the expected behavior is not
one of the dense samples: the numerous discontinuities are still tracked and are not
cohesive. Although our discretization with spheres introduces a surface roughness, leading
to a numerical friction, the asymptotic flow stress of the “dense” foam is expected to be
lower than the flow stress of a genuinely dense sample.

The instantaneous cross-section and volume of the sample are delicate to estimate,
more specifically at large strains. To estimate the relative density, i.e. the compaction of
the foam, mesh reconstructions are used on the particles. The overall volume occupied
by the foam and its solid volume are estimated using respectively a large probing sphere
and a small probing sphere. As the algorithm of mesh reconstruction of ovito has not
been modified to take our interfaces into account, the results are somewhat rough and
arbitrary3, hence subtle variations at large strain cannot be measured. The general
compaction tendency can be captured (Figure 16.14b) and is compared to a hypothesis
of constant cross-section. In the strain range 0 – 1, the slope is similar: the change of the
cross-section indeed seems negligible. If some discrepancy can be found at higher strain,
and is coherent with qualitative observation (Figure 16.6), the metric is a little rough for
further analysis.

At large strain, close to the full compaction, using metrics based on the local fields
may be more appropriate. For example the density could be estimated based on the
number of neighbors of each particle. To compute the true stress close to the compaction,
an averaging of the local stress field may be possible.

3 Chosen small probing radius: 0.9mm. Chosen large probing radius: 50mm for the initial state and
30mm in the strain range 0.5 – 2.5. At a strain of 3, this metric measures a density of 100%.
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16.2.2.1 Effect of the Relative Density

The flow stress variation induced by the relative density is in good agreement with our
reference. In the studied range of relative densities, no major change of the deformation
mechanisms is observed.

Starting from the initial 3D images, with a relative density of 6.6%, the foam is dilated
to densities of 12 and 18%. The two new images are then discretized using an identical
procedure and resolution (Figure 16.15). The number of particles thus increases with the
density. The behavior of the three geometries is compared in the strain range 0 – 1. With
the exception of a few details, some thin links are removed at lower density due to the
numerical discretization, the connectivity and overall geometry of the three structures are
similar.

6.6 12 18Relative density (%)

4.8·105 8.3·105 1.1·106Number of particles (/)

Figure 16.15: Discretization of three relative densities. Right view.

This similarity of the geometries is illustrated by the qualitative mechanical behavior
(Figure 16.16). Although the bending resistance increases with the section of the arms,
similar deformation is observed. On local configurations, the changes of relative resistance
of the geometrical feature does influence the response. Overall, no major modification is
observed within this relative density range.

The effect of the density clearly has an impact on the strain-stress behavior (Fig-
ure 16.17a). The overshoot effect, in the first percent of strain, will be examined in
Section 16.2.2.2. Before numerous self-contacts occur, for example around a strain of 0.2
at the beginning of the compression, the flow stress increases with the density. Indeed,
the thicker arms require more efforts to be deformed. For all three configurations (Fig-
ure 16.17a), the order of magnitude of the flow stress (computed using Equation 16.1) is
correctly captured.

As the arms of the foam get thicker, they may also start to meet each other earlier in
the deformation. Comparing the stresses at strains of 0.2 and 1, the overall mechanical
effect seems to be secondary for the studied density and strain ranges. For all three
densities, the general trend of evolution of the stress with the strain also seems similar
and multiplicative factor of the stress between strains of 0.2 and 1 is comparable.

The Equation 16.1 also exhibits a power law of the flow stress with respect to the
density, with an exponent depending solely on the strain rate sensitivity Nn = 1/M ≈
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Figure 16.16: Limited effect of the relative density on the qualitative deformation.
Right view.
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Figure 16.17: Influence of the density on the stress. Reference from Equation 16.1.
(a) Apparent engineering stress versus strain. (b) Estimated flow stress versus density.
Stress averaged over a window of strain of 0.1.

14.0:
3Nn + 1

2Nn
≈ 1.54 (16.2)

The order of magnitude of this trend is also correctly captured by the model (Fig-
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ure 16.17b). The choice of a strain and of an averaging window to compute the flow
stress is somewhat arbitrary. An exact match of the stress level of the law would thus be
fortuitous. However, the measured exponent of the power law seems to be little influenced
by these choices: slopes obtained with an average over the strain range 0.2 – 0.3, 0.45 –
0.55 or 0.7 – 0.8 give similar results. This illustrates the similarity of the strain-stress
trends for the distinct relative densities studied. The slope tends to be overestimated,
numerically slightly between relative densities of 12 and 18%, more frankly between 6.6
and 12%.

The general study of the effect of the discretization on the flow stress was only car-
ried out on unidirectional tension and compression tests (Section 14.3). In contrast, the
deformation of the structure is dominated by bending and instabilities. To check that we
indeed observe an effect of the relative density of the foam (Figure 16.17a), two distinct
discretization sizes are compared. The geometry at a relative density 6.6%, initially dis-
cretized with pixel/rseed = 1.5, is discretized again with pixel/rseed = 1.2. The number
of particles to model the geometry thus rises from 4.8·105 to 9.2·105. Qualitatively, the
rough discretization misses some fine geometrical details that are correctly captured with
more particles. It is thus possible to find local configurations with some discrepancy of
the exact deformation mode. Overall, the mechanisms are not affected and the final states
are comparable. The order of magnitude of the flow stress at a strain rate of 10−3 s−1

(Figure 16.18) shows good agreement.
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Figure 16.18: Minor effect of the chosen discretization. Strain-stress profile for a relative
density of 6.6% at a strain rate of 10−3 s−1.

The overshoot effect, in the strain range 0 – 0.1, is slightly more pronounced for the
finer discretization, for reasons that will be examined in Section 16.2.2.2. The larger
number of particles tends to smooth the oscillations of the stress. The general tendency
and the stress level are similar: the observed effect of the relative density is thus not a
numerical artifact stemming from the change of the number of particles.

16.2.2.2 Effect of the Strain Rate

At low strain rate, an overall buckling of the full sample is observed. Although the time
dependence of creep buckling is a physical phenomenon, it will not be investigated here.
The limitations of the current model in terms of strain rate are investigated.

The effect of strain rate is investigated, comparing the results at 10−3 s−1 to a lower
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strain rate of 3.16·10−4 s−1, for the three relative densities tested previously (Figure 16.19).
In the first few percent of strain, no overshoot effect is observed at 3.16·10−4 s−1. This
effect will be examined in the end of this section.

In the range 0.2 – 0.3, the macroscopic flow stress is very similar at both strain
rates. This is coherent with the fact that the foam strain rate sensitivity should be equal
to the dense material strain rate sensitivity [8, Eq.9a]. With a strain rate sensitivity
M = 7.14·10−2, the relative variation of flow stress for a factor 3 on the strain rate
should be around 8%. Our model is not able to capture this subtle variation on the
chosen geometry. A slight reduction of the stress at a strain of 0.2 can be observed on
a supplementary strain rate of 10−4 s−1, run for the density 6.6%. However, this direct
effect of the strain rate is masked by another phenomenon and cannot be more precisely
investigated.

Starting at strains between 0.3 and 0.4, the stress at 3.16·10−4 s−1 drops by a factor 1.5
(Figure 16.19). This drop is far too large to be the result of the strain rate, it is induced
by a mechanical instability (Figure 16.20).

The chosen geometry4 of the foam is rather slender in the loading direction: the
height/thickness ratio is 3.75. The chosen boundary conditions also promote such a
phenomenon: the particles are free to translate on the meshes. This freedom allows
an easy propagation of the instability. It is thus not physically incoherent to observe
buckling behavior5 under compressive load. In addition, the creep buckling behavior of
the materials proves to be time dependent [40]. It is thus plausible that a critical time
threshold is reached at lower strain rate.

At a density of 6.6% (Figure 16.19), this hypothesis can be tested by comparing
the stress profile at 3.16·10−4 and at 10−4 · The stress drop characterizing the instability
respectively seems to occur in the strain range 0.4 – 0.6 and near a strain of 0.2. Converted
in time, this would lead to respective buckling times of 1.3·103 – 1.9·103 s and 2·103 s, at
the considered stress.

The quantitative analysis was not pushed further and a throughout verification that we
do not merely observe an unwanted numerical artifact was not carried out. For example,
although we did not spot such an event, the numerical crystallization depends on the strain
rate and could favor preferential modes of deformation. A general conclusion regarding
creep buckling cannot be drawn from these very preliminary observations, based on a
single geometry, where all buckling events occur on the same defect of the geometry.
However, although we do not purposely model buckling, and we do not control it here,
the method may be promising to study instability phenomena occurring in foams at large
inelastic strain.

We will now examine the sharp overshoot effect, observed in the first few percent of
strain at a strain rate or 10−3 s−1. This overshoot is a numerical artifact stemming from
the numerical method of prescription of the strain rate. Indeed, an interesting feature
of this test case for the robustness of the model is the large dimension of the sample in
the loading direction. As we work at prescribed strain rate, the absolute velocities of the
meshes thus increase with the size of the sample. As we work with a fixed time step,
a critical regime is met when the mesh can escape from, or go across, the geometrical
zone of interaction of a particle in few time steps. The configuration shown at 10−3 s−1

is actually close to this critical numerical regime.
Overall, the global rearrangement behavior is still observed at a strain rate

of 3.16·10−3 s−1. Local qualitative deformation configurations are correct. However,
the packing does not manage to fully collectively cope with the deformation: the cells of

4The experimental sample from which the geometry is taken was indeed designed for tensile loads.
5We investigate here the overall buckling of the whole structure, not the local buckling of the arms of

the foam [42, p.3399].
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Figure 16.19: Effect of the strain rate on the mechanical behavior. Mechanical insta-
bility at low strain rate. Stress versus strain at various relative densities.
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Figure 16.20: Buckling of the sample at low strain rate. Front view, relative den-
sity 12%.
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the foam deform more near the meshes. This “dynamic-like” effect is not suitable for our
purpose.

The initial numerical “height” H of the sample is 264mm. At −3.16·10−3 s−1, the
initial absolute velocity of variation of height Ḣ can be computed as:

Ḣ = ε̇ ·H = 3.16·10−3 · 264 = 8.34·10−1 mm · s−1 (16.3)

The variation of height ∆H at each time step ∆t is thus:

∆H = Ḣ ·∆t = 8.34·10−1 · 10−1 = 8.34·10−2 mm (16.4)

This is numerically large compared to the dimensions of the particles (rseed = 0.5mm
and rcrown = 0.7mm), more than one tenth of the crown radius. If the packing is initially
at rest, the meshes6 are able to cross or leave the particles in very few time steps. Our
model relies altogether on a collective motion: reasonable local relative velocities are
reached after the transient regime where the flow is initiated. For large packings, a
numerical work-around must be provided to initiate the flow. In the spirit of our
method, it would be desirable to limit such procedures to the transient regimes7, at each
non-smooth change in the loading of the samples.

A tested procedure was the prescription of the initial velocity (in three directions,
based on the expected overall flow) of the particles, depending on their position in the
sample. This naive attempt did not significantly improve the behavior, it seems necessary
to at least introduce a random component to obtain suitable relative velocities between
the objects.

16.2.3 Local Field

A rough estimation of the local stress field is proposed. On the studied configurations,
the observed tendencies are in agreement with the qualitative behavior of the deformation.
Further statistical analyses are required to provide quantitative data.

The estimation of local field is not trivial from a statistical point of view. Temporal and
spatial averages are necessary, and their effect must be understood (refer to Appendix A).
In addition, the presence of interfaces may lead to cumbersome procedures, although this
is not a conceptual limitation.

However, the macroscopic behavior of the model is solely driven by the local phenom-
ena. This behavior seems correct with regard to some tested metrics. It should thus be
possible to define sensible intermediary scale metrics, between macroscopic and particle-
wise scales. On dense samples, the behavior of packings of a few hundreds of particles
could already be considered as a good approximation of the model (Section 14.3), even
with the strong boundary effects of the meshes.

As a mere illustration of the interest of a local field approximation, some examples
are given regarding an approximation of the stress field. For each particle, the stress
is approximated with Equation 8.12 on page 96. The components of the stress tensor
are average particle-wise, over a sliding window of strain of 10−2. The signed equivalent
Mises stress8 is then computed. Finally, a spatial average within a radius of 2.5mm is
performed at each particle.

6To balance the computing load evenly between the processors, both meshes move. Their absolute
velocity is thus half Ḣ. The result of the computation must be independent of such numerical tricks.

7A classical DEM procedure is to linearly remap the position of the particles when the domain is
deformed. This procedure has been avoided in our work to let the system freely rearrange, to capture
localization stemming from the local behavior of the material.

8The sign of the trace of the stress tensor is applied to the equivalent Mises stress, previously defined
in Equation 2.2 on page 24.
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Going back to the example of the collapsing cell (Figure 16.10 on page 176), an
estimation of the stress field is given on Figure 16.21.

0.35 0.45

Absolute strain (/)

15

0

−15

Signed Mises stress
estimation (MPa)

Figure 16.21: Collapse of a cell, by bending of the horizontal arms. The arrows mark
the two pillars crushing the cell. The dashed ellipse highlights a bending zone of interest.
Estimation of the local stress field. Same geometrical zone as Figure 16.10 on page 176.
General view on Figure 16.22.

Looking at the arm bent by the bottom pillar (circled on Figure 16.21), the zones
under tensile and compressive loads are qualitatively coherent with the observed bending
of the structure. Opposite to the crushing pillar for example, the arm is under tensile
load.

Looking at a broader view of the sample (Figure 16.22, the zones currently undergoing
deformation could be identified using the map of the estimation of the stress field. At this
stage, it is delicate to draw conclusions as most of the structure is bearing very limited
local stress. The numerical noise is thus large compared to the observed signal.
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Figure 16.22: Overall view of the local stress field estimation. Strain 0.45, strain
rate 10−3 s−1 and relative density 6.6%.
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Chapter 17

General Conclusion

In a nutshell, this PhD questioned the potential of the DEM framework for the descrip-
tion of finite, inelastic and incompressible transformations of continuous media. This
exploratory attempt was triggered by the intrinsic numerical properties of the method,
as the flexible handling of contact events and a straightforward massive parallelization.
This concluding chapter is divided into five short sections respectively dealing with the
objectives of the PhD, the adopted strategy, the main results, some limits and finally
potential developments.

17.1 General Objective

The general starting point of the work is to study the forming of multiphase materials.
The physical phenomena of interest are the mechanisms driving finite inelastic strain in
architectured metallic materials, at the scale of the constitutive phases.

In order to partially decorrelate the numerous effects (e.g. morphological and rheo-
logical) a metallic composite is designed as a model material to focus on the influence of
the rheology. The behavior of the composite (spheroidal amorphous Zr57Cu20Al10Ni8Ti5
inclusions in a crystalline copper matrix) is experimentally studied with in situ X-ray
tomography hot compression tests (Figure 17.1). The co-deformation of the phases is
observed, with an interesting dependency of the rheological contrast on the temperature
and the strain rate (Section 2.5).

Figure 17.1: Co-deformation of the model composite material, observed by in situ X-ray
tomography. From Figure 2.19 on page 35.

Modeling tools are seen as complementary to the experimental analysis. The modeling
objective is thus to describe inelastic finite strains and interaction of interfaces, observed
experimentally. The model must handle numerous interface interactions and topological
events like for example pore closure and phase decohesion or fragmentation (Section 3.3).
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A lecture grid, focusing on algorithmic features, can help to highlight distinctions and
similarities for the selection of numerical methods. In our objective, methods designed
to solve partial differential equation (PDE) display a variety of strategies to include the
description of discontinuities in their framework. Methods fundamentally based on a
discrete topology can in turn propose phenomenological routes to mimic the behavior of
continuous media.

Among potential modeling tools, the DEM is innately suited to handle numerous
contacts and topological events. The chosen modeling strategy is thus phenomenological.
The research question focuses on the assessment of the pertinence of this choice to meet
our modeling objectives (Chapter 7). The objective of the PhD is to develop a DEM
algorithm for finite inelastic transformation of incompressible multi-material.

17.2 Modeling Strategy

More than a precise road map, it must be emphasized that the experience of this PhD
advocates for a specific development strategy. In short, a too strict attempt to stick to
expected elementary mechanisms or physical parameters can be misleading in the design
of models. In the context of the DEM, two design strategies were considered:

• Adding-up elementary physical behaviors.

A tempting route in the design strategy is to build a numerical model as closely as
possible to the physical model of the elementary observed phenomena: a bottom-
up approach. The underlying hope is that intrinsic physical parameters may be
directly fed into the numerical model. Computational and physical issues are con-
sidered separately, with thus no guarantee of their respective requirements to match.
In many configurations1, such a literal transcription may result in impractical nu-
merical models. In such cases, the models are then marginally modified toward a
more computationally suitable state. To remain coherent with its grounding as-
sumptions, this approach can only be reasonably applied to a restricted range of
phenomena. In many cases, the marginal modifications are barely sufficient for
a reasonable numerical behavior, while denaturing the sought-for physics of the
elementary mechanisms. This strategy was not followed in this PhD.

• Tuning an overall collective behavior.

The design process can start in a radically opposed direction, explored in this work:
an ad hoc computationally reasonable model is built, without requirements on simi-
larity with the physical elementary mechanisms. The design is altogether focused on
the modelization objective, i.e. mimicking a physical phenomenon with a collective
behavior. The constructed model, potentially highly counter-intuitive, is meant to
be as simple as possible at the elementary level and to have an acceptable numerical
behavior.

The two strategies may be benchmarked to compare benefits and drawbacks of the
approaches for the understanding of a given phenomenon: complementary data may be
accessible. The intrinsic properties and limits of the numerical tools may also promote a
strategy more than the other. A common configuration in the DEM is that little faith of
a “realistic” description of the elementary interaction is to be expected (Section 3.1.1).

An approach focused on collective behavior is thus a practical work-around to math-
ematical (does a unique solution exist?) and numerical or computational (how do errors
accumulate?) unknowns. On a very practical note, the proposed model is thus an attempt

1Refer for example to the discussion of the choice of the time step in the DEM in Section 8.3.3.
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to tune the behavior of numerous and simple interacting objects to meet our modelization
objectives.

17.3 Results and Applications

To our knowledge, the existing “meshless” approaches to model inelastic phenomena im-
plement them at the level of the computing points. Our proposal relies on the neighbor
changes of “undeformable” fictitious particles. Ad hoc interaction laws are implemented
and the collective behavior of large packings are meant to mimic key features of macro-
scopic metallic viscoplasticity: macroscopic overall shape, volume conservation, stress-
strain behavior and strain rate sensitivity.

The model is solely based on local and relative metrics, at the level of the elemen-
tary particles, with no macroscopic artifact promoting an expected solution. Oftentimes,
discrete methods use global numerical artifacts to converge faster toward a presumptive
solution: global viscous damping, affine transformation... In contrast, all forces acting on
our particles are deduced from the relative kinematics of their neighbors of the boundaries.
The potential of the model is closely linked to this grounding principle.

A somewhat contentious achievement of this PhD is the conceptual simplicity of the
proposed model. Although numerous and complex configurations were investigated during
these three years, the final proposal and its implementation are lean. This points out:

• The potentially complex and varied applications of simple modeling principles. If
the behavior of the model had constrained us to treat each test case separately with
adequate tuning and artifacts, little faith on the predictive ability of the model
would be granted.

• The respect of the attempt to limit the implementation to new features, reusing
existing and efficient libraries and software solutions.

Three applications of interest are summed-up in the following sections: finite inelastic
strain, self-contact and complex mesostructures.

17.3.1 Inelastic Strain

The principles of the model is a set of attractive-repulsive spherical particles, discretiz-
ing a continuum. Under external loads, the packing of particles collectively cope with
strain. The rearrangements (Figure 17.2), with arbitrary neighbor changes, account for
irreversible strain.

Figure 17.2: Principle of the finite strain modeling. The packing of particles rearranges
to mimic inelastic transformation. From Figure 9.2 on page 101.

Two ad hoc interaction laws are designed and implemented in the open-source DEM
solver liggghts:
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• The model BILIN , dealing with compressive load only.

• The model TRILIN , able to cope with both compressive and tensile loads.

A calibration procedure allows the tuning of the stress level and the strain rate sensi-
tivity to mimic a perfect viscoplastic Norton law. Strain rate sensitivities up to M ≈ 0.5
can be modeled on one decade of strain rate. Small strain rate sensitivities can be cor-
rectly approximated over various decades of strain rate.

Single materials can be compressed up to large strains (ε = 1) with controlled relative
error on the volume and the flow stress. After a numerical transient regime, the typical
precision for both metrics is around 5 or 10%. In the case of tensile load, the necking
and the rupture are displayed but not controlled.

Simple bi-material configurations are compared to results obtained by the finite ele-
ment method (FEM) (Figure 17.3). On macroscopic metrics (flow stress and morphology),
the error of the developed model is of the same order of magnitude as the error on a sin-
gle material. No excessive errors seem to be introduced when simulating multi-material
configurations.

Figure 17.3: Viscoplastic bi-material. Comparison of the deformed morphology ob-
tained by FEM and DEM. From Figure 12.5 on page 135.

17.3.2 Self-Contact

An algorithm to detect physical self-contact events, i.e. the interaction of an interface
with itself, is proposed. The self-contact detection is based on an approximation of the
free surfaces, for each particle, from the position of its neighbors (Figure 17.4). This is
to our knowledge a novel approach.

11
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Figure 17.4: Principle of the self-contact detection algorithm. A local “outward vector”
is built for each particle. New pairs are classified as “interface” or “internal”. From
Figure 9.9b on page 109.

Pairs of particles modeling opposite sides of the interface are only repulsive (Fig-
ure 17.5). The mechanical closure and re-opening of holes is natively displayed in uniaxial
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compression-tension tests. The tracked interfaces can be further deformed after closure
without being lost.

Figure 17.5: Test case for the self-contact detection algorithm. The interface is tracked
under compressive load and separates under tensile load. From Figure 15.5 on page 165.

The proposed framework allows a flexible and controlled handling of topological events.
As an example, a healing time of the interfaces is implemented: two particles modeling
opposite sides of a mechanically closed interface will display attractive behavior after a
threshold time. Given a locally computable metric, arbitrary behavior can be developed
with ease.

17.3.3 Complex Mesostructure

Complex mesostructures are directly discretized for 3D images obtained by X-ray tomog-
raphy. The procedure is algorithmically cheap: a segmented 3D image is used as a mask
on a random packing of particles to set their properties or remove them.

A first application was the forming of the amorphous/crystalline metallic composite,
that originally triggered the study. The 170 physical inclusions of a full tomography sam-
ple are discretized and the compression is simulated (Figure 17.6). The model describes
the co-deformation of the phases in the material. Specific configurations of interest are
compared to in situ measurements, applying local measured strain rates. However, the
experimental crystallization of the amorphous phase hinders more in-depth analysis.

DEM simulation

➭

0 0.15 0.3

Figure 17.6: Discretization and compression of the full sample. 3D view of the inclusions
only, the matrix is hidden. Vertical compression axis. From Figure 13.1 on page 140.

A second application is the simulation of casting pores (Figure 17.7). The compression-
tension test performed shows the mechanical closure and re-opening of the pores. The
model is able to track the self-contact of the interfaces of the pores at large compressive
strain. Under tensile load, the pores re-open and eventually coalesce.

A third application is the simulation of the crushing of a foam with low relative
density (Figure 17.8). The local bending and buckling deformation mechanisms of the
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Compression Tension

Figure 17.7: Compression-tension of a sample with casting pores. Visualization of the
mesh reconstruction of the pores. Mechanical closure, re-opening and coalescence of the
pores. From Figure 16.2 on page 171

arms can be observed. At large strain, numerous self-contacts hinder the deformation.
The macroscopic flow stress displays a correct behavior with respect to references from
the literature.

0.0

0.5

1.0

Figure 17.8: Compression of a low relative density foam. Local bending mechanisms of
the arms and generalized self-contact at large strain. From Figure 16.6 on page 174.

The choice of an efficient solver leads to a low random-access memory load and rela-
tively cheap computation. As rough orders of magnitude: 1 – 2KiB per particle and
2·10−6 – 6·10−6 cpu second per particle and per time step on an Intel Xeon E5520
(2.3GHz). As an example, the compression of the ERG foam at 1·10−3 s−1 up to a
strain of 1 (Part V) last 5 h on a single processing unit and use 0.8GiB of random-access
memory.

17.4 Limits and Specificities

During this PhD, the efforts were focused on producing a “proof of concept” and most
of the work was exploratory. This emphasis implies that the verification, the validation
and the understanding of the model is still scarce. As a very practical consequence,
the proposed models probably have little robustness, and the proposed algorithms are
not optimal solutions. They must be cross-checked and debugged in a necessary trial
phase of development. In depth statistical analysis of the results of the model would be
necessary. As-is, the estimation of the metrics and their associated errors are only orders
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of magnitude. The thankless task of assessing and improving the robustness is necessary
before the precision and the performance of the model can be further investigated. In
this perspective, a specific care was taken to exhibit numerical artifact and work-around.

A major strength of the model is the purely local contribution of all particles to com-
pute the material overall behavior. A shortcoming is that boundary condition cannot be
enforced this way on arbitrarily large domains. For example, when enforcing a prescribed
strain rate with a mesh starting from settled state, the absolute velocity of the mesh may
become sufficient to go through or leave a particle within a single time step. The per-
manent flow must be established for the relative velocities to become acceptable. In the
spirit of the method, developed numerical work-around should be limited to a transient
regime, keeping the effective computation purely local.

A clear practical limit concerns the control of the strain rate sensitivity. So far, the
reachable strain rate sensitivities are limited and are only valid on narrow ranges of strain
rate. Although the attempt of modeling complex continuous constitutive laws is illusory,
this limit is a hindrance to model generic viscoplastic configurations. The phenomenon
of the numerical flow of attractive-repulsive particles, including features as the initial
transient regime and the strain rate sensitivities, might be rather fundamental issues.
The improvement of the model requires a more in depth understanding of these issues.

A major drawback of the model is the absence of size adaptivity. All zones of a
geometry must be discretized with identical particles. The computing cost is thus set
by the smallest required details to be captured. The extension of the model to handle
distinct sizes of particles may be possible but is not a trivial task. As-is, the model is not
suited to describe phenomena driven by the mechanics of thin films for example.

From the peculiar grounding principle of describing inelastic strain by constrained
rearrangement of particles, stems a key property: the computing points are always evenly
spread in the material, by design and without regard for the applied transformations
(Figure 17.9b). By contrast, all Lagrangian methods based on continuous constitutive
laws track the position of effective material points. The distribution of initially evenly
spread computing points will thus be geometrically imbalanced after arbitrary finite strain
(Figure 17.9a).

(a) (b)

Figure 17.9: Conceptual distinction between a genuine Lagrangian tracking of material
points in continuous media and the proposed DEM method. (a) Motion of material points
in a continuous medium. (b) Rearrangement of particles in the proposed model.

This potential distortion of the computing “grid” applies to all methods implementing
somehow a continuous inelastic behavior at the scale of the computing points, including
“meshless” and “particle” methods. To control the distribution of the computing point,
remeshing-like techniques or partially Eulerian models can be used.

Our fictitious particles track the materials in a looser fashion. Although our method is
algorithmically Lagrangian, as the particles are tracked explicitly with time, the material
points are not conceptually tracked by the particles. At a given instant, a particle does
mimic some effects of an elementary portion of the material, but the material “flows”
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through the particles with time. Inelasticity is implemented at a collective level and the
location of a given material point may only be tracked by a group of particles, consistently
with the chaotic nature of the model.

The implicit computing point rearrangement does not imply that arbitrary large strain
can be modeled: if the strain is excessive the number of particles in the “thickness” of
the material may become too small. From an experimental point of view, this behavior
can be valuable to model processes where the mechanical influence of a phase becomes
negligible under a threshold size. The initial discretization must be chosen in accordance
with such an objective.

17.5 Potential of the Model

17.5.1 Direct Applications

Starting from a clear modelization objective, it is possible to choose a modeling tool
displaying adequate numerical behavior with respect to the dominant physical phenomena
of interest. Methods based on distinct principles are thus complementary to study a
variety of configurations.

As a rough sketch of potential methods (Figure 17.10), the FEM remains a reference
tool for solid mechanics, with a potentially fine description of the material constitutive
behavior. It should be the favored method if the continuous behavior is the dominant
physical phenomenon of interest. In pathological configurations, e.g. perfect plasticity and
large strains, the convergence of the resolution may be long and unsure. It is sometimes
necessary to use numerical work-around to actually find a solution, for example using a
dynamic formalism for quasistatic problems.

Well-known
continous

constitutive law
FEM SPH DEM

Interactions
of interfaces

Figure 17.10: Dominant physical phenomenon and potential numerical tools.

In such cases, methods like the smooth particle hydrodynamics (SPH), may be a
valuable alternative. In SPH-like methods – conceptually dynamic approaches – the
continuous constitutive law is modeled at the computing points, but without relying
on a connectivity table. The periodic timely and heavy remeshing procedures are thus
avoided. In addition, the method allows efficient and arbitrary handling of discrete events:
the behavior of the particles can be mixed between SPH-like and DEM-like interactions.

The predominance of physical interface interactions may advocate for a rougher de-
scription of the continuous material. Our DEM model conserves by design an even dis-
tribution of the computing points. This property is helpful for the detection of physical
contacts. In return, less flexibility and control are possible on the continuous behavior.

In short, the proposed DEM model seems suitable for the description of numerous and
simultaneous contacts and topological events in solids. However, the adaptation to fine
and precise continuous constitutive behaviors would probably be delicate, or progressively
evolve toward an SPH-like method.

Very practically, the proposed model seems appropriate to push further the study of
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the finite strain of architectured, porous or composite materials. As the focus was set in
this PhD on the proposal of a functional tool, the time dedicated to more in-depth analysis
of the applications was limited. The results were mostly qualitative and macroscopic, with
little direct comparison to experimental results.

A systematic comparison of our model with the available in situ X-ray tomography
measurements can readily be carried out. As an example in the laboratory context, the
mechanical closure and re-opening of casting pores is an experimental study from the on-
going PhD of Pauline Gravier. The compression-tension high temperature tests have been
performed in situ at the European synchrotron radiation facility (ESRF). In addition to
the purely mechanical closure, the effective welding of the interfaces can be modeled with
ease for complex geometries within our model. Based on local metrics, arbitrary healing
behavior may be implemented in a straightforward way. This ability to model topological
events is an innate and powerful feature of the DEM framework.

In the context of architectured materials and metallic foam, the study of the defor-
mation mechanisms and instabilities seems promising. The potential shift of mechanisms
from the initial phase of the deformation to the full compaction of the sample can be
studied qualitatively and quantitatively. The bending, buckling and consolidation by
self-contacts can be investigated for complex mesostructures, with both local and macro-
scopic effects. As a more specific focus of interest, the model may also be used to study
the effect of structural defects of the constitutive material of a foam. The link between
failure mode, local structural defects and loading conditions is particularly appealing.

Going back to the composite that originally triggered the study, some numerical and
experimental limitations were drawn. However, this does not invalidate the potential of
the method for this type of study. The effect of the morphology and rheology of the
phase can be modeled for the forming of metallic composites. Tortuous mesostructures
can be handled, along with the potential contact or self-contact of the phases at large
strain. The study of the forming of more classical multiphase material, with available in
situ data, could help to further validate the model, in parallel to the resolution of the
raised issues for our amorphous/crystalline composite.

17.5.2 Algorithmic Development

The implementation of arbitrary healing behavior is already a first hint for further algo-
rithmic development of the model. In the short term, various extensions could help to
improve the model or extend its scope.

The design of appropriate statistical procedures to study the local fields, could open
interesting application. As the global behavior of the model is not macroscopically im-
posed, but driven by local events, collecting and interpreting data at a more local scale
should thus be possible. First approaches for both strain and stress fields have been
attempted, but time lacked to propose well grounded metrics.

The discretization algorithm could be improved to allow a finer description of the
geometries. Currently, an image is used as a mask on a random packing to set the
properties of the particles or to modify them. The relaxation that follows induces a
variation of shape. An iterative procedure, with several mask/relaxation procedures,
would be helpful and a limited number of iterations is probably sufficient.

The behavior of the model TRILIN , able to cope with tensile and compressive load,
may also be studied for arbitrary load and geometries, benchmarking the results with FEM
simulations. The load applied in the simulation of the foam crushing are for example far
from being uniaxial. More specifically, the analysis of the effect of the discretization would
allow a quantification of the local geometrical errors.

The marginal modification of the model TRILIN to avoid numerical crystallization
should not be too cumbersome and could greatly improve its behavior. A straightforward



200 CHAPTER 17. GENERAL CONCLUSION

approach to limit the crystallization is the use of a slight dispersion on the dimension of
the particles. The impact on the macroscopic and local behavior must be investigated, to
check whether the interaction law has to be adapted or can be used as-is. More generally,
the extension of the model to handle elementary particles of distinct size could allow an
adaptation of the discretization to local geometrical details. It is algorithmically possible,
but the tuning of the modification of the model may not be a trivial task. Moreover, in
a finite strain context, a dynamic size adaptivity would be required, where particles split
or merge. This challenge sounds unreasonably complex at this preliminary stage.

Without entering into the details of the understanding of the transient regime, nu-
merical work-around to initiate the flow would be useful. Two practical tools could be
used: a judicious initial velocity of the particles (probably including some randomness)
and the progressive rise of the mesh velocities. It seems important to stick to transient
procedure, to avoid supplementary numerical artifact on the solution.

Along with these short-term and practical developments, more in-depth extension and
studies can be imagined.

As a first example, a tempting extension of our phenomenological description of in-
elastic flow is the association with a model describing elastic behaviors. Indeed, numerous
functional DEM models can describe elasticity in continuous media. Such elastic-plastic
models would be of interest for example to study spring-back effects in cold forming, or
foam crushing at room temperature. In both examples, contacts and large strains are
involved, but the elastic contribution cannot be neglected. Conceptually and algorithmi-
cally, nothing prohibits the hybridization of such elastic models and our inelastic model.
However, the hard point is the practical design of a local threshold between the two
behaviors. The perturbations introduced by the inelastic model are probably too large
with respect to the limited magnitude of elastic phenomena. As the displacement length
scales are very distinct, a hybrid model might be illusory. Such a fine description of the
continuous behavior may be better handled with other numerical tools as the FEM or
the SPH. It may be possible to tackle this difficulty within our DEM by investigating
the stress threshold for our numerical packings to flow. It has not been quantified in our
work, but tuning this purely numerical artifact may allow to mimic partially the sought
for behavior.

An interesting issue from the conceptual point of view is the modeling of the contacting
surfaces. Our model allows the detection and the tracking of contact and self-contact
in complex configurations. However, our discretization with spheres introduces a surface
roughness, leading to a potential numerical friction, which is not controlled yet. Increasing
the surface friction seems possible but implementing non frictional interfaces would be a
challenge.

More fundamentally, investigating toward the understanding of the flow may help in
three directions to improve the models:

• Better control the strain rate sensitivity.

• Design time converged models.

The time step has been considered as a numerical parameter, which is fundamen-
tally not physical. Although this is not necessarily a conceptual obstacle, it limits
the applicability of a given set of numerical parameters: too low strain rates are
excessively time consuming. Limited hope must be granted to the possibility of
reducing the global computing time, as the convergence in time seems to require
much smaller steps.

• Design simpler models.
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The proposed interaction law may be further simplified, once the key properties are
clearly identified.

The last point is a prerequisite before algorithmic or computational optimizations of
the code are attempted. Although a specific care to computational issue was maintained
throughout this work, the “draft ” nature of the implementation also implies limited com-
puting efficiency. Implementation choices favored the conceptual simplicity and the ease
of test of various behaviors: numerous conditional statements may be simplified, although
the potential speedup should be limited. To model larger geometries, the framework of the
DEM solver allows a potentially massive parallelization. For effective speedups, the com-
puting load must be correctly balanced between the processors and further developments
would be necessary. In this PhD, the needs in computing power and the architectures of
the available machines did not advocate for this development.

A conceptual drawback of the followed strategy is the delicate and time-consuming
design of interaction laws. The design of an improved version of the model TRILIN
could limit the numerical crystallization and limit the force jump when a pair of particles
is separated, ideally with a simpler interaction law. However, the automation of the
task is not trivial: the use of optimization tools is straightforward to quantitatively tune
parameters in a well defined domain. However, how to define the metrics of interest, the
objective function and the parameters when the general objective is qualitative?

The rough attempts during this PhD to use optimization tools often did not lead to
satisfactory results. Automated screenings of parameters were impractical, as the domains
to be explored are vast and the correct configurations narrow. Promising configurations
tended to be missed and numerous useless computations were run. A very manual trial-
and-error approach remained the most effective strategy, specifically in the objective of
finding one solution and not necessarily an optimum. The underlying assumption was an
intrinsic doubt regarding the very definition of potential optima.

The choice of the numerical parameter is de facto an ongoing challenge for the DEM
community, including for conventional applications of this numerical method. The propo-
sition of tuning the interaction law itself instead of the parameters may be of interest.
The key issue of choosing appropriate objective functions for optimization procedures
remains open.

Overall, it seems that a shift from parametric optimization based on an a priori
chosen algorithm is only efficient for a well understood model: a model where the link
between the macroscopic flow and the elementary interactions can be described. This
deeper understanding of the flow process allows to effectively restrict and define the to-
be-explored domain of parameters and limits the algorithmic sensitivity.

In a situation with little understanding of the link between the scales, an a priori al-
gorithmic choice may be misleading. Useful tools might be found in computing science or
statistics to design ad hoc algorithms instead of tuning parameters. In the design of inter-
action laws to mimic a continuous behavior, the principal component analysis may help
to discriminate the most sensitive and decisive elementary features. For classifications
of pairs as in our self-contact detection algorithm, tools from data mining techniques, as
supervised learning, may provide automated and reliable approaches.
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Appendix A

Local Field

The first qualitative comparison of the discrete element method (DEM) and the finite
element method (FEM) local stress fields are promising. Further statistical analysis is
required to draw quantitative conclusions.

The local stress field, reconstructed at the level of the particles from Equation 8.12 on
page 96, is not meaningful if taken instantaneous and particle-wise. As for the macroscopic
stress, the stress is temporally averaged over a sliding window, here using a width of 5·10−3

in strain. This procedure has to be executed component- and particle-wise, at run time.
The storage of the particle-wise data at all time steps is too impractical for this procedure
to be post-treated.

Even temporally averaged, the particle-wise stress is still too noisy and rough to be
interpreted as representing a stress field in a continuous medium. It is then spatially
averaged in post-treatment, by two means:

Implicitly: The estimation of the volume occupied by a particle (necessary in Equation 8.12)
is here executed in a global fashion1. The global relaxed volume of the packing is
divided by the number of particles.

Explicitly: The stress at a particle is component-wise averaged with the values at the neigh-
boring particles within a cutoff radius, using ovito.

The local stress field component σzz is illustrated independently for both phases: B
(Figure A.1) and A (Figure A.2).

Without applying any neighbor averaging, a common displayed trend, is the presence
of a thin tension zone in the periphery of the sample. The presence of the mesh also is
a source of perturbation of the field. As expected in a DEM approach, the forces are
carried by preferential chains and the stress is not evenly distributed. While the packing
deforms, the force chains change and reorganize.

The neighbor average operates with shorter cutoff for the phase with slowest reactivity,
B. For both phases, the averaged local stresses tend to be overestimated compared to
the macroscopic stress. Depending on the required precision, a averaging length can be
chosen. A length of 1.5rseed, corresponding to the average over the neighbor detected in
the computation, is still very rough. A length between 2 and 3rseed, thus allowing the
use of second neighbors, is still numerically cheap, while smoothing most of the roughest
gradients. As an order of magnitude, using an averaging radius of 3rseed and exception

1This method is much cheaper than estimating a local volume around the particle from the position
of its neighbor. In addition, the actual instantaneous distance between two particles is meaningless in
our objective to model continuous media: we are only interested in the forces carried by a particle.
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Figure A.1: Cross-section of a single material for a strain of 0.3, phase B. Map of the
local stress component σzz, the measured macroscopic stress at 10−3 s−1 is 175MPa.
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Figure A.2: Cross-section of a single material for a strain of 0.3, phase A. Map of the
local stress component σzz, the measured macroscopic stress at 10−3 s−1 is 94MPa.

made of the boundaries of the domain, the typical variation of local stress is ±25MPa.
The relative error is thus higher for the phase A. Guidelines can thus be deduced regarding
the necessary discretization of morphological features in multi-materials.

The local stress estimation is applied to the unique inclusion test case (Section 12.4).
At the chosen discretization of 5·104 particles, chosen to capture the macroscopic shape
of the inclusion, the smaller thickness of the matrix is only discretized by a few particle.
The averaging length thus corresponds to the typical observed length. Moreover, the
proximity of the planar mesh is a source of perturbation for the local fields. The stress
field presented here are thus bound to be rough.

Quantitatively (Figure A.3), at 10−3 s−1 a high stress zone is captured at the north and
south poles of the inclusion. At this rough discretization, a “radial” averaging procedure
would greatly help to reproduce better the axisymmetric pattern, but this would mean
favoring an a priori known solution. At 10−4 s−1, the stress is more evenly spread, with
slightly higher values in the periphery of the matrix. Although the distribution is as
expected rough, the quantitative trends can be correctly modeled.

Using the interaction BILIN , dominated by a repulsive behavior with katt = krep/10
(Table11.1), the other components of the stress tensor σ are in principle not properly
captured. However, the qualitative distribution of the von Mises equivalent stress σeq is
correct (Figure A.4), as the deformation is dominated by compression. As a side note,
the equivalent stress can only be captured using the spatially averaged components of the
stress tensor. Computing the equivalent stress particle-wise and then spatially averaging
it does not lead to any sensible result.

The distinct response of the two phases can clearly be identified (Figure A.4), even
though the equivalent stress is underestimated by a factor three. An interesting critic of
the model can be drawn from the comparison of the relative stresses between matrix and
inclusion. In the FEM, the flow stress is higher in the matrix at 10−4 s−1 and higher in the
inclusion at 10−3 s−1. In the BILIN model, the stress in the inclusion does increase with
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Figure A.3: Spherical inclusion test case. Local stress component σzz (in the compres-
sion direction).

the strain rate, but at 10−3 s−1 the stress in the inclusion is still lower than in the matrix.
The macroscopic “hourglass” shape, clearly displayed in FEM, will only be captured are
higher strain rate.
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Figure A.4: Spherical inclusion test case. Local Mises equivalent stress σeq.
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Appendix B

DEM Implementation

A very brief discussion of some implementation issues is proposed in Section B.1. The
key source codes corresponding to Parts IV and V are given respectively in Sections B.2
and B.3. A typical template of input script, along with all the numerical parameters
introduced, is proposed in Section B.4. The files were written for liggghts 3.5. No changes
should be necessary for compling and running the examples with liggghts 3.7, although
it was not tested.

B.1 Implementation Choices and Issues

Along with a short discussion of some implementation issues, a brief overview of the
implemented features is proposed in Table B.1.

The implementation of custom interaction laws (BILIN and TRILIN ), with arbitrary
parameters, is rather straightforward in liggghts: an independent file (conventionally
named normal *.h) is simply added to the sources.

From the implementation point of view, the mesh/particle interaction are out-of-the-
box proposed in liggghts. The efforts should have been limited to the definition of the
appropriate interaction behavior in the input scripts. Additional work was necessary to
by-pass various errors, including segmentation faults, arising in parallel computation of
geometrically large packings. The two operational work-around were:

• The definition of a domain substantially larger than the packing itself.

• The use of fixed boundaries (with the command boundary f ) and not adaptive
boundaries (boundary s or m).

The handling of pair-wise state variables (for example the time since the interaction
started for the healing behavior in self-contact) is handled directly within the interaction
laws. Particle-wise state variables (for example rseed or n) are introduced in interaction
laws using fix routines, defined in separate fix files. This is necessary for the proper
communication of the variables between processors when the message passing interface
(MPI) parallelization is used.

Even though this procedure seemed correct for most cases, a MPI bug was spotted for
the self-contact detection in the interaction law TRILIN and has not been corrected yet.
All goes as if the n vectors are not properly exchanged between processors (Figure B.1).
The serial implementation works as expected, without detected bugs. The self-contact
simulations shown in Part V are thus run on a single processor.

209
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(a) (b)

Figure B.1: Illustration of a MPI bug. Compression of a dense sample, using the self-
contact detection. Top view, no transparency for the particles with a least one “interface”
detected. (a) MPI grid 1×1×1. Correct behavior: no interface detected. (b) MPI
grid 2×2×1. Erroneous behavior: interfaces detected at the boundaries of the processors.
The self-contact variables are not correctly passed between processors.

Conceptually, the proposed self-contact modeling implies that the force in a pair of
particle depends on the state of the system in a neighborhood: a non-local behavior. The
outward vector n is computed for each particle from the position of its neighbors, only
taking into account the “internal” neighbors. At each step, n must be computed, taking
into account the “internal” or “interface” status of the pairs. This coupling between a
particle-wise variable (n) and a pair-wise variable (the status of the pair) is not trivial.
In the proposed implementation, most of the computation is executed in the interaction
law.

Physical model Algorithmic feature Tool Source code in
section

Implementation
effort

liggghts
Inelastic strain Interaction law BILIN B.2 1
Inelastic strain Interaction law TRILIN B.3 1
Prescribed strain Mesh/particle interaction B.2, B.3 0.1
Contact (distinct

objects)
Particle state variable, interaction

law
B.3 1

Self-contact Interaction law, non-local
behavior, coupling between pair

and particle state variable

B.3 10

python,numpy
Material

discretization
Image/packing mask Not provided 1

Table B.1: Overview of the implemented features. Cross-reference to the source codes,
when provided. Indication of the relative implementation effort.

B.2 Sources: Interaction Law BILIN

The simulations of Part IV are run using the interaction law BILIN , defined by the file
normal model zcherry faistenau.h.
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1 /∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 f i l e : no rma l mode l z che r ry fa i s t enau . h
3 type : l i g g gh t s 3 . 5 . 0 contact model
4 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ∗/
5
6 #ifde f NORMALMODEL
7 NORMALMODEL(ZCHERRY FAISTENAU, zcherry / fa i s t enau , 5 )
8 #else

9 #ifndef NORMAL MODEL ZCHERRY FAISTENAU H
10 #define NORMAL MODEL ZCHERRY FAISTENAU H
11 #include ” contact mode ls . h”
12 #include ” f i x proper ty atom . h”
13 #include <iostream>
14
15 namespace LIGGGHTS {
16 namespace ContactModels
17 {
18 // Functions to c r ea t e custom pa i r parameters
19 MatrixProperty∗ createKrep ( PropertyRegis t ry & r eg i s t r y , const char ∗ c a l l e r , bool

s an i t y che ck s ) ;
20 stat ic const char ∗ KREP = ”krep” ;
21 MatrixProperty∗ createKrep ( PropertyRegis t ry & r eg i s t r y , const char ∗ c a l l e r , bool

s an i t y che ck s )
22 {
23 return MODEL PARAMS: : createPerTypePairProperty ( r e g i s t r y , KREP, c a l l e r ) ;
24 }
25 MatrixProperty∗ createKatt ( PropertyRegi s t ry & r eg i s t r y , const char ∗ c a l l e r , bool

s an i t y che ck s ) ;
26 stat ic const char ∗ KATT = ”katt ” ;
27 MatrixProperty∗ createKatt ( PropertyRegi s t ry & r eg i s t r y , const char ∗ c a l l e r , bool

s an i t y che ck s )
28 {
29 return MODEL PARAMS: : createPerTypePairProperty ( r e g i s t r y , KATT, c a l l e r ) ;
30 }
31
32 template<>
33 c lass NormalModel<ZCHERRY FAISTENAU> : protected Pointe r s
34 {
35 public :
36 stat ic const int MASK = CM REGISTER SETTINGS | CM CONNECT TO PROPERTIES |

CM SURFACES INTERSECT;
37 NormalModel (LAMMPS ∗ lmp , IContactHistorySetup ∗ , c lass ContactModelBase ∗) :

Po inte r s ( lmp) ,
38 // Custom pa i r parameter
39 k rep (NULL) ,
40 k a t t (NULL) ,
41 // Custom pa r t i c l e parameter
42 f i x s e e d (0) ,
43 // Cases
44 v e l o c i t y ( f a l s e )
45
46 {} // Necesarry to compile
47
48 void r e g i s t e r S e t t i n g s ( Se t t i ng s & s e t t i n g s ) {
49 s e t t i n g s . r eg i s t e rOnOf f ( ” v e l o c i t y ” , v e l o c i t y , true ) ;
50 }
51
52 in l ine void pos tSe t t i ng s ( ) {} // Necesarry to compile
53
54 void connectToPropert ies ( PropertyRegi s t ry & r e g i s t r y ) {
55 // Pair parameters
56 // Create parameters
57 r e g i s t r y . r e g i s t e rP rope r t y ( ” k rep ” , &createKrep ) ;
58 r e g i s t r y . r e g i s t e rP rope r t y ( ” k a t t ” , &createKatt ) ;
59 // Retr i eve value from s c r i p t
60 r e g i s t r y . connect ( ” k rep ” , k rep , ”model zcherry / f a i s t enau ” ) ;
61 r e g i s t r y . connect ( ” k a t t ” , k att , ”model zcherry / f a i s t enau ” ) ;
62
63 // Pa r t i c l e parameter , c r ea t e and r e t r i e v e
64 f i x s e e d = stat ic cast<FixPropertyAtom∗>(modify−>f i n d f i x p r o p e r t y ( ” seed ” , ”

property /atom” , ” s c a l a r ” ,0 ,0 , ”normal model zcherry / f a i s t enau ” ) ) ;
65 }
66
67 // Necessary to compile
68 in l ine double s t r e s sSt ra inExponent ( ) {return 1 . ;}
69
70 in l ine void s u r f a c e s I n t e r s e c t ( Sur f a c e s In t e r s e c tData & sidata , ForceData & i f o r c e s

, ForceData & j f o r c e s )
71 {
72 // Used va r i a b l e s
73 const double ∗ seed = f i x s e ed −>vector atom ;
74 const int i = s ida ta . i ;
75 const int j = s ida ta . j ;
76 const int i type = s ida ta . i type ;
77 const int j type = s ida ta . j type ;
78 double krep = k rep [ i type ] [ j type ] ; /// Modif ied i f wa l l / p a r t i c l e
79 double katt = k at t [ i type ] [ j type ] ;
80
81 const double seedradsum = 0.5∗ ( seed [ i ]+ seed [ j ] ) ;
82
83 // Compute and apply normal f o r c e
84 const double Fn damping = 0 ; // No damping implemented
85 double Fn contact ;
86
87 i f ( s i da ta . i s w a l l ) { // Wall/ p a r t i c l e i n t e r a c t i o n
88 double krep = k rep [ i type ] [ i type ] ; // Set to p a r t i c l e p r op e r t i e s
89 double katt = k at t [ i type ] [ i type ] ;
90 i f ( s i da ta . r <0.5∗ seedradsum ) { // Seed i n t e r s e c t i o n
91 Fn contact = krep ∗(0 .5∗ seedradsum−s i da ta . r ) ;
92 }
93 else { // Crown i n t e r s e c t i o n
94 i f ( s i da ta . vn>0 or ! v e l o c i t y ) { // Tens i l e r e l a t i v e v e l o c i t y
95 Fn contact = katt ∗(0 .5∗ seedradsum−s i da ta . r ) ;
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96 }
97 else { // Compressive r e l a t i v e v e l o c i t y
98 Fn contact = 0 ;
99 }

100 }
101 double Fn = Fn damping + Fn contact ;
102 // Store normal f o r c e
103 s ida ta . Fn = Fn ;
104 i f o r c e s . de l ta F [ 0 ] = Fn ∗ s i da ta . en [ 0 ] ;
105 i f o r c e s . de l ta F [ 1 ] = Fn ∗ s i da ta . en [ 1 ] ;
106 i f o r c e s . de l ta F [ 2 ] = Fn ∗ s i da ta . en [ 2 ] ;
107 }
108 else { // Pa r t i c l e / p a r t i c l e i n t e r a c t i o n
109 i f ( s i da ta . r<seedradsum ) { // Seed i n t e r s e c t i o n
110 Fn contact = krep ∗( seedradsum−s i da ta . r ) ;
111 }
112 else { // Crown i n t e r s e c t i o n
113 i f ( s i da ta . vn>0 or ! v e l o c i t y ) { // Tens i l e r e l a t i v e v e l o c i t y
114 Fn contact = katt ∗( seedradsum−s i da ta . r ) ;
115 }
116 else { // Compressive r e l a t i v e v e l o c i t y
117 Fn contact = 0 ;
118 }
119 }
120 double Fn = Fn damping + Fn contact ;
121 // Store normal f o r c e
122 s ida ta . Fn = Fn ;
123 i f o r c e s . de l ta F [ 0 ] = s ida ta . Fn ∗ s i da ta . en [ 0 ] ;
124 i f o r c e s . de l ta F [ 1 ] = s ida ta . Fn ∗ s i da ta . en [ 1 ] ;
125 i f o r c e s . de l ta F [ 2 ] = s ida ta . Fn ∗ s i da ta . en [ 2 ] ;
126 j f o r c e s . de l ta F [ 0 ] = − i f o r c e s . de l ta F [ 0 ] ;
127 j f o r c e s . de l ta F [ 1 ] = − i f o r c e s . de l ta F [ 1 ] ;
128 j f o r c e s . de l ta F [ 2 ] = − i f o r c e s . de l ta F [ 2 ] ;
129 }
130 }
131
132 void su r f a c e sC l o s e ( SurfacesCloseData&, ForceData&, ForceData&){}
133 void beginPass ( Sur f a c e s In t e r s e c tData&, ForceData&, ForceData&){}
134 void endPass ( Sur f a c e s In t e r s e c tData&, ForceData&, ForceData&){}
135
136 protected :
137 double ∗∗ k rep ;
138 double ∗∗ k a t t ;
139 FixPropertyAtom ∗ f i x s e e d ;
140 bool v e l o c i t y ;
141 } ;
142 }
143 }
144 #endif // NORMAL MODEL ZCHERRY FAISTENAU H
145 #endif

B.3 Sources: Interaction Law TRILIN , Contact and
Self-Contact

The simulations of Part V are run using the interaction law TRILIN and the self-contact
algorithm, defined by the file normal model zcherry outward.h, fix outward.h and fix -
outward.cpp.

B.3.1 normal model zcherry outward.h

1 /∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 f i l e : normal model zcherry outward . h
3 type : l i g g gh t s 3 . 5 . 0 contact model
4 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
5 Contact de t e c t i on between f r e e i n t e r f a c e s
6 Based on outward normal vector , computed from − Sum ( branch vector o f ne ighbors )
7
8 f ix outward . h
9 f ix outward . cpp

10 management o f pa r t i c l e −wise va r i ab l e s , with proper
11 mpi communication
12 memory management
13 normal model zcherry outward . h
14 use a l ready computed s i . data contact−wise v a r i a b l e s
15 avoids loop on ne ighbors twice
16 make neces sary to double va r i ab l e ( current and next ) s to red ( cheap , so i t s ok )
17 avoids re−code manually contact de t e c t i on in f i x
18 easy contact−wise v a r i a b l e s
19 easy po t en t i a l p a r t i c l e −wal l behavior
20
21 Par t i c l e−wise va r i ab l e
22 f i x s e e d seed ( r e pu l s i v e ) diameter o f the p a r t i c l e
23 f i x c l u s t e r membership to a aggregate f o r contact de t e c t i on
24 f ix outward normal outward po int ing vector , from prev ious time step
25 f ix outward mag magnitude o f f ix outward , from prev ious time step
26 f ix outward next normal outward po int ing vector , contr ibuted to during the current time

step
27 fix outward numberNeigh number o f contact s not ac ro s s an i n t e r f a c e , from prev ious time step
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28 f ix outward number next number o f contact s not ac ro s s an i n t e r f a c e , contr ibuted to during
the current time step

29 f i x outward indent sum of the seed indentat i on on each p a r t i c l e : ( seed1+seed2 )−d i s tance (
always whole , p a r t i c l e / p a r t i c l e or p a r t i c l e /wal l )

30 f i x ou twa rd inden t sq r sum of the po t en t i a l energy ( square o f the seed indentat i on times
the r i g i d i t y ) : 0 .5∗ krep ∗(( seed1+seed2 )−d i s tance ) ˆ2 ( ha l f i f p a r t i c l e / pa r t i c l e , whole in
p a r t i c l e /wal l )

31 Contact−wise va r i ab l e
32 p a s t i n t e r f a c e h i s t o ry parameter s t o r i n g s ta tu s o f the contact :
33 f i r s t s tep o f i n t e r a c t i o n
34 unknown 0
35 n s t eps o f i n t e r a c t i o n
36 i n t e r f a c e n∗dt
37 i n s i d e −n∗dt
38 In t e r a c t i on parameter
39 mag out ther sho ld on magnitude o f outward vector
40 c o s i j the r sho ld on angle between ouwtard vec to r s
41 cos en the r sho ld on angle between outward vector and po s i t i on d i f f e r e n c e
42 non l o ca l switch f o r non−l o c a l behavior
43 wal l mu l t i p i c a t i v e f a c t o r f o r wal l / p a r t i c l e a t t r a c t i o n
44 hea l time a f t e r which an ” i n t e r f a c e ” i n t e r a c t i o n i s turned in to a ”bulk ” i n t e r a c t i o n
45 verb output t e s t i n g data
46
47 Warning
48 a l s o a ( cu r r en t l y ) hard−coded parameter exc lud ing the new contact from the f i r s t 500 s t eps

to be i n t e r f a c e s : corresponding to the r e l a xa t i on time used in the s imu la t i ons .
49 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ∗/
50
51 #ifde f NORMALMODEL
52 NORMALMODEL(ZCHERRYOUTWARD, zcherry /outward , 6 )
53 #else

54 #ifndef NORMAL MODEL ZCHERRY OUTWARD H
55 #define NORMAL MODEL ZCHERRY OUTWARD H
56 #include ” contact mode ls . h”
57 #include ” f i x proper ty atom . h”
58 #include <iostream>
59 #include <math . h>
60
61 namespace LIGGGHTS {
62 namespace ContactModels
63 {
64 // Functions to c r ea t e custom pa i r parameters
65 // Piece−wise l i n e a r elementary cherry
66 MatrixProperty∗ createKrep6 ( PropertyRegi s t ry & r eg i s t r y , const char ∗ c a l l e r , bool

s an i t y che ck s ) ; // createKrep6 has to be unique
67 stat ic const char ∗ KREP6 = ”krep” ; // KREP has to be unique
68 MatrixProperty∗ createKrep6 ( PropertyRegi s t ry & r eg i s t r y , const char ∗ c a l l e r , bool

s an i t y che ck s )
69 {
70 return MODEL PARAMS: : createPerTypePairProperty ( r e g i s t r y , KREP6, c a l l e r ) ;
71 }
72 MatrixProperty∗ createKatt6 ( PropertyRegis t ry & r eg i s t r y , const char ∗ c a l l e r , bool

s an i t y che ck s ) ;
73 stat ic const char ∗ KATT6 = ”katt ” ;
74 MatrixProperty∗ createKatt6 ( PropertyRegis t ry & r eg i s t r y , const char ∗ c a l l e r , bool

s an i t y che ck s )
75 {
76 return MODEL PARAMS: : createPerTypePairProperty ( r e g i s t r y , KATT6, c a l l e r ) ;
77 }
78 // C r i t e r i a f o r i n t e r f a c e
79 Sca larProperty∗ createMagOut ( PropertyRegis t ry & r eg i s t r y , const char ∗ c a l l e r , bool

s an i t y che ck s ) ;
80 stat ic const char ∗ MAGOUT = ”magOut” ;
81 Sca larProperty∗ createMagOut ( PropertyRegis t ry & r eg i s t r y , const char ∗ c a l l e r , bool

s an i t y che ck s )
82 {
83 return MODEL PARAMS: : c r ea t eSca l a rPrope r ty ( r e g i s t r y , MAGOUT, c a l l e r ) ;
84 }
85 Sca larProperty∗ createCosIJ ( PropertyReg is t ry & r eg i s t r y , const char ∗ c a l l e r , bool

s an i t y che ck s ) ;
86 stat ic const char ∗ COSIJ = ” cos IJ ” ;
87 Sca larProperty∗ createCosIJ ( PropertyReg is t ry & r eg i s t r y , const char ∗ c a l l e r , bool

s an i t y che ck s )
88 {
89 return MODEL PARAMS: : c r ea t eSca l a rPrope r ty ( r e g i s t r y , COSIJ , c a l l e r ) ;
90 }
91 Sca larProperty∗ createCosEN ( PropertyRegis t ry & r eg i s t r y , const char ∗ c a l l e r , bool

s an i t y che ck s ) ;
92 stat ic const char ∗ COSEN = ”cosEN” ;
93 Sca larProperty∗ createCosEN ( PropertyRegis t ry & r eg i s t r y , const char ∗ c a l l e r , bool

s an i t y che ck s )
94 {
95 return MODEL PARAMS: : c r ea t eSca l a rPrope r ty ( r e g i s t r y , COSEN, c a l l e r ) ;
96 }
97 // Tract ion behavior parameter
98 MatrixProperty∗ c reateFatt6 ( PropertyRegis t ry & r eg i s t r y , const char ∗ c a l l e r , bool

s an i t y che ck s ) ;
99 stat ic const char ∗ FATT6 = ” f a t t ” ;

100 MatrixProperty∗ c reateFatt6 ( PropertyRegis t ry & r eg i s t r y , const char ∗ c a l l e r , bool

s an i t y che ck s )
101 {
102 return MODEL PARAMS: : createPerTypePairProperty ( r e g i s t r y , FATT6, c a l l e r ) ;
103 }
104 stat ic const char ∗ WALL6 = ”wal l ” ;
105 Sca larProperty∗ createWal l6 ( PropertyRegis t ry & r eg i s t r y , const char ∗ c a l l e r , bool

s an i t y che ck s )
106 {
107 return MODEL PARAMS: : c r ea t eSca l a rPrope r ty ( r e g i s t r y , WALL6, c a l l e r ) ;
108 }
109 stat ic const char ∗ HEAL6 = ” hea l ” ;
110 Sca larProperty∗ createHea l6 ( PropertyRegis t ry & r eg i s t r y , const char ∗ c a l l e r , bool

s an i t y che ck s )
111 {
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112 return MODEL PARAMS: : c r ea t eSca l a rPrope r ty ( r e g i s t r y , HEAL6, c a l l e r ) ;
113 }
114
115
116 template<>
117 c lass NormalModel<ZCHERRYOUTWARD> : protected Pointe r s
118 {
119 int h i s t o r y o f f s e t ;
120 public :
121 stat ic const int MASK = CM REGISTER SETTINGS | CM CONNECT TO PROPERTIES |

CM SURFACES INTERSECT;
122 NormalModel (LAMMPS ∗ lmp , IContactHistorySetup∗ hsetup , c lass ContactModelBase ∗c )

: Po inte r s ( lmp) ,
123 cmb( c ) , // not sure i t ’ s u s e f u l l , copied from tangen t i a l mode l h i s t o r y . h
124 // Custom pa i r parameter
125 k rep (NULL) ,
126 k a t t (NULL) ,
127 mag out (0) ,
128 c o s i j (0 ) ,
129 cos en (0) ,
130 f a t t (NULL) ,
131 // Custom s c a l a r parameter
132 w a l l ( 0 . 0 ) ,
133 h ea l ( 0 . 0 ) ,
134 // Custom pa r t i c l e parameter
135 f i x s e e d (0) ,
136 f i x c l u s t e r (0) ,
137 f ix outward (0) ,
138 f ix outward mag (0) ,
139 f ix outward next (0) ,
140 f ix outward numberNeigh (0) ,
141 f ix outward number next (0) ,
142 f i x outward indent (0) ,
143 f i x ou twa rd inden t sq r (0) ,
144 f i x o u twa r d e r r o r i n t e (0) ,
145 f i x ou twa rd e r r o r bu l k (0) ,
146 f i x ou tward good in t e (0) ,
147 f ix outward good bu lk (0) ,
148 // Cases
149 v e l o c i t y ( f a l s e ) ,
150 non l o ca l ( f a l s e ) ,
151 verb ( f a l s e )
152
153 {
154 h i s t o r y o f f s e t = hsetup−>add h i s t o ry va lue ( ” p a s t i n t e r f a c e ” , ”0” ) ; // f l a g ”0” ,

parameter i s symetr ic
155 }
156
157 void r e g i s t e r S e t t i n g s ( Se t t i ng s & s e t t i n g s ) {
158 s e t t i n g s . r eg i s t e rOnOf f ( ” v e l o c i t y ” , v e l o c i t y , true ) ;
159 s e t t i n g s . r eg i s t e rOnOf f ( ” non l o ca l ” , non loca l , true ) ; // de f au l t : t rue
160 s e t t i n g s . r eg i s t e rOnOf f ( ”verb” , verb ) ; // de f au l t : f a l s e
161 }
162
163 in l ine void pos tSe t t i ng s ( ) {} // Necesarry to compile
164
165 void connectToPropert ies ( PropertyRegi s t ry & r e g i s t r y ) {
166 // Pair parameters
167 // Create parameters
168 r e g i s t r y . r e g i s t e rP rope r t y ( ” k rep ” , &createKrep6 ) ;
169 r e g i s t r y . r e g i s t e rP rope r t y ( ” k a t t ” , &createKatt6 ) ;
170 r e g i s t r y . r e g i s t e rP rope r t y ( ”mag out” , &createMagOut ) ;
171 r e g i s t r y . r e g i s t e rP rope r t y ( ” c o s i j ” , &createCosIJ ) ;
172 r e g i s t r y . r e g i s t e rP rope r t y ( ” cos en ” , &createCosEN ) ;
173 r e g i s t r y . r e g i s t e rP rope r t y ( ” f a t t ” , &createFatt6 ) ;
174 r e g i s t r y . r e g i s t e rP rope r t y ( ” w a l l ” , &createWal l6 ) ;
175 r e g i s t r y . r e g i s t e rP rope r t y ( ” h ea l ” , &createHea l6 ) ;
176 // Retr i eve value from s c r i p t
177 r e g i s t r y . connect ( ” k rep ” , k rep , ”model zcherry /outward” ) ;
178 r e g i s t r y . connect ( ” k a t t ” , k att , ”model zcherry /outward” ) ;
179 r e g i s t r y . connect ( ”mag out” , mag out , ”model zcherry /outward” ) ;
180 r e g i s t r y . connect ( ” c o s i j ” , c o s i j , ”model zcherry /outward” ) ;
181 r e g i s t r y . connect ( ” cos en ” , cos en , ”model zcherry /outward” ) ;
182 r e g i s t r y . connect ( ” f a t t ” , f a t t , ”model cherry /outward” ) ;
183 r e g i s t r y . connect ( ” w a l l ” , w al l , ”model cherry /outward” ) ;
184 r e g i s t r y . connect ( ” h ea l ” , h ea l , ”model cherry /outward” ) ;
185
186 // Pa r t i c l e parameter , c r ea t e and r e t r i e v e
187 f i x s e e d = stat ic cast<FixPropertyAtom∗>(modify−>f i n d f i x p r o p e r t y ( ” seed ” , ”

property /atom” , ” s c a l a r ” ,0 ,0 , ”normal model cherry /outward” ) ) ;
188 f i x c l u s t e r = stat ic cast<FixPropertyAtom∗>(modify−>f i n d f i x p r o p e r t y ( ” c l u s t e r ” ,

” property /atom” , ” s c a l a r ” ,0 ,0 , ”normal model cherry /outward” ) ) ;
189 f ix outward = stat ic cast<FixPropertyAtom∗>(modify−>f i n d f i x p r o p e r t y ( ”outward” ,

” property /atom” , ” vector ” ,3 ,0 , ”normal model zcherry /outward” ) ) ;
190 f ix outward mag = stat ic cast<FixPropertyAtom∗>(modify−>f i n d f i x p r o p e r t y ( ”

outward mag” , ” property /atom” , ” s c a l a r ” ,0 ,0 , ”normal model zcherry /outward” ) ) ;
191 f ix outward next = stat ic cast<FixPropertyAtom∗>(modify−>f i n d f i x p r o p e r t y ( ”

outward next ” , ” property /atom” , ” vector ” ,3 ,0 , ”normal model zcherry /outward” ) )
;

192 f ix outward numberNeigh = stat ic cast<FixPropertyAtom∗>(modify−>
f i n d f i x p r o p e r t y ( ”outward numberNeigh” , ” property /atom” , ” s c a l a r ” ,0 ,0 , ”
normal model zcherry /outward” ) ) ;

193 f ix outward number next = stat ic cast<FixPropertyAtom∗>(modify−>
f i n d f i x p r o p e r t y ( ”outward number next ” , ” property /atom” , ” s c a l a r ” ,0 ,0 , ”
normal model zcherry /outward” ) ) ;

194 f i x outward indent = stat ic cast<FixPropertyAtom∗>(modify−>f i n d f i x p r o p e r t y ( ”
outward indent ” , ” property /atom” , ” s c a l a r ” ,0 ,0 , ”normal model zcherry /outward”
) ) ;

195 f i x ou twa rd inden t sq r = stat ic cast<FixPropertyAtom∗>(modify−>f i n d f i x p r o p e r t y
( ” outward indent sqr ” , ” property /atom” , ” s c a l a r ” ,0 ,0 , ”normal model zcherry /
outward” ) ) ;

196 f i x o u twa r d e r r o r i n t e = stat ic cast<FixPropertyAtom∗>(modify−>f i n d f i x p r o p e r t y
( ” ou tward e r r o r i n t e ” , ” property /atom” , ” s c a l a r ” ,0 ,0 , ”normal model zcherry /
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outward” ) ) ;
197 f i x ou twa rd e r r o r bu l k = stat ic cast<FixPropertyAtom∗>(modify−>f i n d f i x p r o p e r t y

( ” outward er ror bu lk ” , ” property /atom” , ” s c a l a r ” ,0 ,0 , ”normal model zcherry /
outward” ) ) ;

198 f i x ou tward good in t e = stat ic cast<FixPropertyAtom∗>(modify−>f i n d f i x p r o p e r t y (
” outward good inte ” , ” property /atom” , ” s c a l a r ” ,0 ,0 , ”normal model zcherry /
outward” ) ) ;

199 f ix outward good bu lk = stat ic cast<FixPropertyAtom∗>(modify−>f i n d f i x p r o p e r t y (
” outward good bulk ” , ” property /atom” , ” s c a l a r ” ,0 ,0 , ”normal model zcherry /
outward” ) ) ;

200 }
201
202 // Necessary to compile
203 in l ine double s t r e s sSt ra inExponent ( ) {return 1 . ;}
204
205 in l ine void s u r f a c e s I n t e r s e c t ( Sur f a c e s In t e r s e c tData & sidata , ForceData & i f o r c e s

, ForceData & j f o r c e s )
206 {
207 // ///////////////////////////////////////////////////////////////////////
208 // Retr i eve parameters
209 const double dt = update−>dt ;
210 const double dt z e ro = dt /10 ; // time cons idered n e g l i g i b l e
211 b i g i n t step = update−>ntimestep ;
212 // I n t e r f a c e h i s t o ry
213 i f ( s i da ta . c o n t a c t f l a g s ) ∗ s i da ta . c o n t a c t f l a g s |= CONTACT NORMAL MODEL;
214 double ∗ const p a s t i n t e r f a c e = &s ida ta . c on t a c t h i s t o r y [ h i s t o r y o f f s e t ] ;
215 bool new contact = fabs ( p a s t i n t e r f a c e [ 0 ] )<dt z e ro ; // the contact has j u s t

been created
216 double hea l = h ea l ;
217 bool hea l con tac t = fabs ( p a s t i n t e r f a c e [ 0 ] )>hea l ; // the contact ex i t ed

f o r l onger than the hea l ing time
218 // std : : cout << std : : boola lpha << new contact << ”\ t ” << p a s t i n t e r f a c e [ 0 ] << ”\

t ” << f abs ( p a s t i n t e r f a c e [ 0 ] ) << ”\n ” ;
219 bool i n t e r f a c e = pa s t i n t e r f a c e [0]> dt z e ro ; // p a r t i c l e s i n t e r a c t i n g

through an i n t e r f a c e ( or p a r t i c l e /wal l i n t e r f a c e )
220 // Outward data from prev ious time step
221 double ∗∗ outward = fix outward−>array atom ;
222 double ∗outward mag = fix outward mag−>vector atom ;
223 // double ∗outward numberNeigh = fix outward numberNeigh−>vector atom ;
224 // Outward data contr ibuted to during the time step
225 double ∗∗ outward next = f ix outward next−>array atom ;
226 double ∗outward number next = fix outward number next−>vector atom ;
227 double ∗outward indent = f ix outward indent−>vector atom ;
228 double ∗ outward indent sqr = f i x outward indent sq r−>vector atom ;
229 // Outward v e r f i c a t i o n data
230 double ∗ ou tward e r r o r i n t e = f i x ou twa rd e r r o r i n t e −>vector atom ; // e r r o r s on

i n t e r f a c e i n t e r a c t i o n
231 double ∗ outward er ror bu lk = f i x ou tward e r r o r bu lk−>vector atom ; // e r r o r s on

bulk i n t e r a c t i o n
232 double ∗outward good inte = f ix outward good in te−>vector atom ; // goods on

i n t e r f a c e i n t e r a c t i o n
233 double ∗outward good bulk = f ix outward good bulk−>vector atom ; // goods on bulk

i n t e r a c t i o n
234 // Sufrace i n t e r s e c t data
235 const int i = s ida ta . i ;
236 const int j = s ida ta . j ;
237 const int i type = s ida ta . i type ;
238 const int j type = s ida ta . j type ;
239 double ∗ de l ta = s ida ta . de l t a ; // po s i t i on Xi−Xj pa i r g r an ba s e :257 ,265
240 const double enx = s ida ta . en [ 0 ] ; // unit normal vector from j cente r to i

c ente r
241 const double eny = s ida ta . en [ 1 ] ;
242 const double enz = s ida ta . en [ 2 ] ;
243 // In t e r a c t i on parameters
244 double krep = k rep [ i type ] [ j type ] ; /// Modif ied i f wa l l / pa r t i c l e , not

s e t as constant
245 double katt = k at t [ i type ] [ j type ] ;
246 const double magnitude = mag out ; // magnitude thre sho ld o f the normal

vec to r s
247 const double co s ou t I ou tJ = c o s i j ; // angle thre sho ld
248 const double co s out en = cos en ; // angle thre sho ld
249 double f a t t = f a t t [ i type ] [ j type ] ;
250 double wal l = w a l l ;
251 // In t e r a c t i on computed
252 int c l u i , c l u j ;
253 double mag i , mag j ;
254 double c o s i j ;
255 double co s i , c o s j ;
256
257 // Double rad ius cherry model parameter
258 double ∗ seed = f i x s e ed −>vector atom ;
259 double ∗ c l u s t e r = f i x c l u s t e r −>vector atom ;
260 // const double seedradsum = 1 . 0 ; // Hard−coded f o r mpi debugging

purpose
261 const double seedradsum = 0.5∗ ( seed [ i ]+ seed [ j ] ) ;
262
263
264 // ///////////////////////////////////////////////////////////////////////
265 // Type o f the new i n t e r a c t i o n s
266 // The de f ined s ta tu s i s s to red
267 i f ( new contact ) {
268 // Only r e l a xa t i on time and f o r p a r t i c l e / p a r t i c l e i n t e r a c t i o n s ( exc lude

meaningless p a r t i c l e /wal l )
269 i f ( ( step >500) and (not s i da ta . i s w a l l ) ) {
270 // Contact between d i s t i n c t ob j e c t s ( with c l u s t e r membership )
271 c l u i = ( int ) round ( c l u s t e r [ i ] ) ; // ( i n t ) cas t not neces sary . p r e f e r r ed to

s t a t e i t e x p l i c i t e l y
272 c l u j = ( int ) round ( c l u s t e r [ j ] ) ;
273 i f ( c l u i==c l u j ) {
274 // Pa r t i c l e s are in the same c l u s t e r
275 // Se l f−contact de t e c t i on
276 // Magnitude o f outward normal
277 mag i = outward mag [ i ] ; // = mag i ;



216 APPENDIX B. DEM IMPLEMENTATION

278 mag j = outward mag [ j ] ; // = mag j ;
279 // Angle ( outward [ i ] , outward [ j ] )
280 c o s i j = ( outward [ i ] [ 0 ] ∗ outward [ j ] [ 0 ] + outward [ i ] [ 1 ] ∗ outward [ j ] [ 1 ] +

outward [ i ] [ 2 ] ∗ outward [ j ] [ 2 ] ) /( mag i∗mag j ) ;
281 // Angles ( outward [ i ] , IJ ) and ( outward [ j ] , JI )
282 c o s i = −1∗(outward [ i ] [ 0 ] ∗ enx + outward [ i ] [ 1 ] ∗ eny + outward [ i ] [ 2 ] ∗ enz ) /

mag i ;
283 c o s j = +1∗(outward [ j ] [ 0 ] ∗ enx + outward [ j ] [ 1 ] ∗ eny + outward [ j ] [ 2 ] ∗ enz ) /

mag j ;
284 i f ( c o s i j <=cos ou t I ou tJ ) {
285 i f ( ( mag i>=magnitude and co s i>=cos out en ) or (mag j>=magnitude and

co s j>=cos out en ) ) {
286 i n t e r f a c e = true ;
287 }
288 }
289 } else {
290 // Pa r t i c l e s are in d i s t i n c t c l u s t e r
291 // Contact between ob j e c t s
292 i n t e r f a c e = true ;
293 }
294 }
295 }
296
297 // ///////////////////////////////////////////////////////////////////////
298 // Contr ibute to next outward vector value and h i s t o ry va lues
299 // The normal i zat ion by the number o f ne ighbors could be done at the end o f the

time step in f ix outward . cpp
300 // I t seems to the normal i zat ion l eads to too smal l vector f o r concave (many

ne ighbors ) zones
301 i f ( i n t e r f a c e ) {
302 i f ( hea l c on tac t ){
303 // Healed contact
304 // Not cons idered as an i n t e r f a c e anymore
305 p a s t i n t e r f a c e [ 0 ] = −1∗dt ;
306 i n t e r f a c e = f a l s e ;
307 } else {
308 // I n t e r f a c e contact
309 // Increment the contact time
310 p a s t i n t e r f a c e [ 0 ] += dt ;
311 }
312 } else {
313 p a s t i n t e r f a c e [ 0 ] −= dt ;
314 outward next [ i ] [ 0 ] += de l ta [ 0 ] ;
315 outward next [ i ] [ 1 ] += de l ta [ 1 ] ;
316 outward next [ i ] [ 2 ] += de l ta [ 2 ] ;
317 outward number next [ i ] += 1 ;
318 i f ( fo rce−>newton pair or j<atom−>n l o c a l ) {
319 outward next [ j ] [ 0 ] −= de l ta [ 0 ] ;
320 outward next [ j ] [ 1 ] −= de l ta [ 1 ] ;
321 outward next [ j ] [ 2 ] −= de l ta [ 2 ] ;
322 outward number next [ j ] += 1 ;
323 }
324 }
325
326 // ///////////////////////////////////////////////////////////////////////
327 // Test ing output
328 i f ( ( step >500) and verb and new contact ) {
329 std : : s t r i n g preamble ;
330 i f ( i n t e r f a c e ) { // Detected as i n t e r f a c e
331 i f ( i type==jtype ) { // In co r r e c t
332 preamble = ” [ Drawtuo ] i i :\ t0\ t0\ t ” ;
333 ou tward e r r o r i n t e [ i ] += 1 ;
334 i f ( fo rce−>newton pair or j<atom−>n l o c a l ) {
335 ou tward e r r o r i n t e [ j ] += 1 ;
336 }
337 } else { // Correct
338 preamble = ” [ Outward ] i j :\ t1\ t1\ t ” ;
339 outward good inte [ i ] += 1 ;
340 i f ( fo rce−>newton pair or j<atom−>n l o c a l ) {
341 outward good inte [ j ] += 1 ;
342 }
343 }
344 } else { // Detected as bulk
345 i f ( i type==jtype ) { // Correct
346 preamble = ” [ Outward ] i i :\ t1\ t0\ t ” ;
347 outward good bulk [ i ] += 1 ;
348 i f ( fo rce−>newton pair or j<atom−>n l o c a l ) {
349 outward good bulk [ j ] += 1 ;
350 }
351 } else { // In co r r e c t
352 preamble = ” [ Drawtuo ] i j :\ t0\ t1\ t ” ;
353 outward er ror bu lk [ i ] += 1 ;
354 i f ( fo rce−>newton pair or j<atom−>n l o c a l ) {
355 outward er ror bu lk [ j ] += 1 ;
356 }
357 }
358 }
359 }
360
361 // ///////////////////////////////////////////////////////////////////////
362 // Compute and apply normal f o r c e s
363 // I n t e r f a c e behavior only implemented f o r pa r t i c l e −p a r t i c l e contact
364 const double Fn damping = 0 ; // No damping implemented
365 double Fn contact ;
366 double Fn e las ;
367 double Fn cons ;
368
369 // Wall/ p a r t i c l e i n t e r a c t i on , i n t e r f a c e not implemented
370 i f ( s i da ta . i s w a l l ) {
371 double krep = k rep [ i type ] [ i type ] ; // Set to p a r t i c l e p r op e r t i e s
372 double katt = k at t [ i type ] [ i type ] ;
373 i f ( s i da ta . r <0.5∗ seedradsum ) { // Seed i n t e r s e c t i o n
374 Fn contact = krep ∗(0 .5∗ seedradsum−s i da ta . r ) ;
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375 outward indent [ i ] += 0.5∗ seedradsum−s i da ta . r ; // Cumulate the indentat i on
376 outward indent sqr [ i ] += 0.5∗ krep ∗(0 .5∗ seedradsum−s i da ta . r ) ∗(0 .5∗ seedradsum−

s i da ta . r ) ; // Cumulate the seed po t en t i a l e l a s t i c energy
377 }
378 else { // Crown i n t e r s e c t i o n
379 Fn e las = katt ∗(0 .5∗ seedradsum−s i da ta . r ) ;
380 Fn cons = −1.0∗ f a t t ;
381 Fn contact = max( Fn elas , Fn cons ) ; // take the c l o s e s t to zero
382 Fn contact ∗= wal l ;
383 }
384 double Fn = Fn damping + Fn contact ;
385 // Store normal f o r c e
386 s ida ta . Fn = Fn ;
387 i f o r c e s . de l ta F [ 0 ] = Fn ∗ s i da ta . en [ 0 ] ;
388 i f o r c e s . de l ta F [ 1 ] = Fn ∗ s i da ta . en [ 1 ] ;
389 i f o r c e s . de l ta F [ 2 ] = Fn ∗ s i da ta . en [ 2 ] ;
390 }
391
392 // Pa r t i c l e / p a r t i c l e i n t e r a c t i o n
393 else {
394 i f ( s i da ta . r<seedradsum ) { // Seed i n t e r s e c t i o n
395 Fn contact = krep ∗( seedradsum−s i da ta . r ) ;
396 outward indent [ i ] += seedradsum−s i da ta . r ; // Cumulate the indentat i on
397 outward indent sqr [ i ] += 0.25∗ krep ∗( seedradsum−s i da ta . r ) ∗( seedradsum−s i da ta .

r ) ; // Cumulate ha l f the seed po t en t i a l e l a s t i c energy
398 i f ( fo rce−>newton pair or j<atom−>n l o c a l ) {
399 outward indent [ j ] += seedradsum−s i da ta . r ;
400 outward indent sqr [ j ] += 0.25∗ krep ∗( seedradsum−s i da ta . r ) ∗( seedradsum−

s i da ta . r ) ;
401 }
402 }
403 else { // Crown i n t e r s e c t i o n
404 i f ( i n t e r f a c e ) { // rough t e s t
405 Fn contact = 0 ;
406 }
407 else {
408 i f ( s i da ta . vn>0 or (not v e l o c i t y ) ) { // Tens i l e r e l a t i v e v e l o c i t y
409 Fn e las = katt ∗( seedradsum−s i da ta . r ) ;
410 Fn cons = −1.0∗ f a t t ;
411 Fn contact = max( Fn elas , Fn cons ) ; // take the c l o s e s t to zero
412 }
413 else { // Compressive r e l a t i v e v e l o c i t y
414 Fn contact = 0 ;
415 }
416 }
417 }
418 double Fn = Fn damping + Fn contact ;
419 // Store normal f o r c e
420 s ida ta . Fn = Fn ;
421 i f o r c e s . de l ta F [ 0 ] = s ida ta . Fn ∗ s i da ta . en [ 0 ] ;
422 i f o r c e s . de l ta F [ 1 ] = s ida ta . Fn ∗ s i da ta . en [ 1 ] ;
423 i f o r c e s . de l ta F [ 2 ] = s ida ta . Fn ∗ s i da ta . en [ 2 ] ;
424 j f o r c e s . de l ta F [ 0 ] = − i f o r c e s . de l ta F [ 0 ] ;
425 j f o r c e s . de l ta F [ 1 ] = − i f o r c e s . de l ta F [ 1 ] ;
426 j f o r c e s . de l ta F [ 2 ] = − i f o r c e s . de l ta F [ 2 ] ;
427 }
428 }
429
430 void su r f a c e sC l o s e ( SurfacesCloseData & scdata , ForceData&, ForceData&){}
431 void beginPass ( Sur f a c e s In t e r s e c tData&, ForceData&, ForceData&){}
432 void endPass ( Sur f a c e s In t e r s e c tData&, ForceData&, ForceData&){}
433
434 protected :
435 c lass ContactModelBase ∗cmb ;
436 double ∗∗ k rep ;
437 double ∗∗ k a t t ;
438 double mag out ;
439 double c o s i j ;
440 double cos en ;
441 double ∗∗ f a t t ;
442 double w a l l ;
443 double h ea l ;
444 FixPropertyAtom ∗ f i x s e e d ;
445 FixPropertyAtom ∗ f i x c l u s t e r ;
446 FixPropertyAtom ∗ f ix outward ;
447 FixPropertyAtom ∗ f ix outward mag ;
448 FixPropertyAtom ∗ f i x outward next ;
449 FixPropertyAtom ∗ f ix outward numberNeigh ;
450 FixPropertyAtom ∗ f ix outward number next ;
451 FixPropertyAtom ∗ f i x outward indent ;
452 FixPropertyAtom ∗ f i x ou twa rd inden t sq r ;
453 FixPropertyAtom ∗ f i x o u twa r d e r r o r i n t e ;
454 FixPropertyAtom ∗ f i x ou twa rd e r r o r bu l k ;
455 FixPropertyAtom ∗ f i x ou tward good in t e ;
456 FixPropertyAtom ∗ f i x outward good bu lk ;
457 bool v e l o c i t y ;
458 bool non l o ca l ;
459 bool verb ;
460 } ;
461 }
462 }
463 #endif // NORMAL MODEL ZCHERRY OUTWARD H
464 #endif

B.3.2 fix outward.h

1 /∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 f i l e : f ix outward . h
3 type : l i g g gh t s 3 . 5 . 0 f i x
4 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ∗/
5
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6
7 #ifde f FIX CLASS
8
9 FixSty le ( outward , FixOutward )

10
11 #else

12
13 #ifndef LMP FIX OUTWARD H
14 #define LMP FIX OUTWARD H
15
16 #include ” f i x . h”
17
18 namespace LAMMPS NS {
19
20 c lass FixOutward : public Fix {
21 public :
22 FixOutward ( c lass LAMMPS ∗ , int , char ∗∗) ;
23 ˜FixOutward ( ) ;
24 void i n i t ( ) ;
25 int setmask ( ) ;
26 void i n i t i a l i n t e g r a t e ( int ) ; // from doc : c a l l e d at very beginning o f each t imestep (

opt i ona l )
27 // void p r e f o r c e ( i n t ) ; //
28 void po s t f o r c e ( int ) ; // c a l l e d a f t e r pa i r & molecular f o r c e s are computed and

communicated ( opt i ona l )
29 void po s t c r e a t e ( ) ;
30
31 private :
32 FixPropertyAtom ∗ f ix outward ;
33 FixPropertyAtom ∗ f ix outward mag ;
34 FixPropertyAtom ∗ f i x outward next ;
35 FixPropertyAtom ∗ f ix numberNeigh ;
36 FixPropertyAtom ∗ f ix number next ;
37 FixPropertyAtom ∗ f i x i n d e n t ;
38 FixPropertyAtom ∗ f i x i n d e n t s q r ;
39 FixPropertyAtom ∗ f i x e r r o r i n t e ;
40 FixPropertyAtom ∗ f i x e r r o r b u l k ;
41 FixPropertyAtom ∗ f i x g o o d i n t e ;
42 FixPropertyAtom ∗ f i x good bu lk ;
43 void updatePtrs ( ) ;
44 void f o rwa rd a l l ( ) ;
45 void r e v e r s e a l l ( ) ;
46 double ∗∗ outward ;
47 double ∗ outward mag ;
48 double ∗∗ outward next ;
49 double ∗ numberNeigh ;
50 double ∗ number next ;
51 double ∗ indent ;
52 double ∗ i nden t sq r ;
53 double ∗ e r r o r i n t e ;
54 double ∗ e r r o r bu l k ;
55 double ∗ good inte ;
56 double ∗ good bulk ;
57 c lass Pair ∗ pa i r g r an ;
58 char type [ 2 5 6 ] ;
59 char type mag [ 2 5 6 ] ;
60 char type next [ 2 5 6 ] ;
61 char type numb [ 2 5 6 ] ;
62 char type nuxt [ 2 5 6 ] ;
63 char type inde [ 2 5 6 ] ;
64 char type in sq [ 2 5 6 ] ;
65 char t ype e r i n [ 2 5 6 ] ;
66 char type erbu [ 2 5 6 ] ;
67 char type go in [ 2 5 6 ] ;
68 char type gobu [ 2 5 6 ] ;
69 char model [ 2 5 6 ] ;
70 } ;
71
72 }
73
74 #endif

75 #endif

B.3.3 fix outward.cpp

1 /∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 f i l e : f ix outward . cpp
3 type : l i g g gh t s 3 . 5 . 0 f i x
4 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ∗/
5
6 #include <cmath>
7
8 #include ”atom . h”
9 #include ” e r r o r . h”

10 #include ” neighbor . h”
11 #include ” n e i g h l i s t . h”
12 #include ” f i x proper ty atom . h”
13 #include ” f o r c e . h”
14 #include ” pa i r g ran . h”
15
16 #include ” f ix outward . h”
17
18 using namespace LAMMPS NS;
19 using namespace FixConst ;
20
21 FixOutward : : FixOutward (LAMMPS ∗lmp , int narg , char ∗∗arg ) : Fix ( lmp , narg , arg ) {
22 i f ( narg != 6) error−>a l l (FLERR, ” I l l e g a l f i x outward command” ) ;
23 s t rcpy ( type , arg [ 3 ] ) ; // r e t r i e v e f i x outward from input
24 st rcpy (model , arg [ 4 ] ) ;
25 s t r c a t (model , ” ” ) ;
26 s t r c a t (model , arg [ 5 ] ) ;
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27 st rcpy ( type mag , type ) ;
28 s t r c a t ( type mag , ” mag” ) ;
29 s t rcpy ( type next , type ) ;
30 s t r c a t ( type next , ” next ” ) ;
31 s t rcpy ( type numb , type ) ;
32 s t r c a t ( type numb , ” numberNeigh” ) ;
33 s t rcpy ( type nuxt , type ) ;
34 s t r c a t ( type nuxt , ” number next ” ) ;
35 s t rcpy ( type inde , type ) ;
36 s t r c a t ( type inde , ” indent ” ) ;
37 s t rcpy ( type insq , type ) ;
38 s t r c a t ( type insq , ” i nd en t s q r ” ) ;
39 s t rcpy ( type er in , type ) ;
40 s t r c a t ( type e r in , ” e r r o r i n t e ” ) ;
41 s t rcpy ( type erbu , type ) ;
42 s t r c a t ( type erbu , ” e r r o r bu l k ” ) ;
43 s t rcpy ( type goin , type ) ;
44 s t r c a t ( type goin , ” good in t e ” ) ;
45 s t rcpy ( type gobu , type ) ;
46 s t r c a t ( type gobu , ” good bulk ” ) ;
47
48 outward = NULL;
49 outward mag = NULL;
50 outward next = NULL;
51 numberNeigh = NULL;
52 number next = NULL;
53 indent = NULL;
54 inden t sq r = NULL;
55 e r r o r i n t e = NULL;
56 e r r o r bu l k = NULL;
57 good inte = NULL;
58 good bulk = NULL;
59 }
60
61 void FixOutward : : p o s t c r e a t e ( ) { // c r ea t e f i x outward and outward next i f they are miss ing

in input s c r i p t
62 f ix outward = stat ic cast<FixPropertyAtom∗>(modify−>f i n d f i x p r o p e r t y ( ”outward” , ” property /

atom” , ” vector ” ,0 ,0 , this−>s ty l e , f a l s e ) ) ;
63 i f ( ! f ix outward ) {
64 const char∗ f i x a r g [ 1 1 ] ;
65 f i x a r g [0 ]= ”outward” ;
66 f i x a r g [1 ]= ” a l l ” ;
67 f i x a r g [2 ]= ” property /atom” ;
68 f i x a r g [3 ]= ”outward” ;
69 f i x a r g [4 ]= ” vector ” ;
70 f i x a r g [5 ]= ”no” ;
71 f i x a r g [6 ]= ”yes ” ;
72 f i x a r g [7 ]= ”yes ” ;
73 f i x a r g [8 ]= ” 0 . ” ;
74 f i x a r g [9 ]= ” 0 . ” ;
75 f i x a r g [10]=” 0 . ” ;
76 f ix outward = modify−>add f ix proper ty atom (11 , const cast<char∗∗>( f i x a r g ) , s t y l e ) ;
77 }
78
79 f ix outward mag = stat ic cast<FixPropertyAtom∗>(modify−>f i n d f i x p r o p e r t y ( ”outward mag” , ”

property /atom” , ” s c a l a r ” ,0 ,0 , this−>s ty l e , f a l s e ) ) ;
80 i f ( ! f ix outward mag ) {
81 const char∗ f i x a r g [ 9 ] ;
82 f i x a r g [0 ]= ”outward mag” ;
83 f i x a r g [1 ]= ” a l l ” ;
84 f i x a r g [2 ]= ” property /atom” ;
85 f i x a r g [3 ]= ”outward mag” ;
86 f i x a r g [4 ]= ” s c a l a r ” ;
87 f i x a r g [5 ]= ”no” ;
88 f i x a r g [6 ]= ”yes ” ;
89 f i x a r g [7 ]= ”yes ” ;
90 f i x a r g [8 ]= ” 0 . ” ;
91 f ix outward mag = modify−>add f ix proper ty atom (9 , const cast<char∗∗>( f i x a r g ) , s t y l e ) ;
92 }
93
94
95 f ix outward next = stat ic cast<FixPropertyAtom∗>(modify−>f i n d f i x p r o p e r t y ( ” outward next ” , ”

property /atom” , ” vector ” ,0 ,0 , this−>s ty l e , f a l s e ) ) ;
96 i f ( ! f i x outward next ) {
97 const char∗ f i x a r g [ 1 1 ] ;
98 f i x a r g [0 ]= ”outward next ” ;
99 f i x a r g [1 ]= ” a l l ” ;

100 f i x a r g [2 ]= ” property /atom” ;
101 f i x a r g [3 ]= ”outward next ” ;
102 f i x a r g [4 ]= ” vector ” ;
103 f i x a r g [5 ]= ”no” ;
104 f i x a r g [6 ]= ”yes ” ;
105 f i x a r g [7 ]= ”yes ” ;
106 f i x a r g [8 ]= ” 0 . ” ;
107 f i x a r g [9 ]= ” 0 . ” ;
108 f i x a r g [10]=” 0 . ” ;
109 f ix outward next = modify−>add f ix proper ty atom (11 , const cast<char∗∗>( f i x a r g ) , s t y l e ) ;
110 }
111
112 fix numberNeigh = stat ic cast<FixPropertyAtom∗>(modify−>f i n d f i x p r o p e r t y ( ”numberNeigh” , ”

property /atom” , ” s c a l a r ” ,0 ,0 , this−>s ty l e , f a l s e ) ) ;
113 i f ( ! f ix numberNeigh ) {
114 const char∗ f i x a r g [ 9 ] ;
115 f i x a r g [0 ]= ”numberNeigh” ;
116 f i x a r g [1 ]= ” a l l ” ;
117 f i x a r g [2 ]= ” property /atom” ;
118 f i x a r g [3 ]= ”numberNeigh” ;
119 f i x a r g [4 ]= ” s c a l a r ” ;
120 f i x a r g [5 ]= ”no” ;
121 f i x a r g [6 ]= ”yes ” ;
122 f i x a r g [7 ]= ”yes ” ;
123 f i x a r g [8 ]= ” 0 . ” ;
124 f ix numberNeigh = modify−>add f ix proper ty atom (9 , const cast<char∗∗>( f i x a r g ) , s t y l e ) ;
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125 }
126
127 f ix number next = stat ic cast<FixPropertyAtom∗>(modify−>f i n d f i x p r o p e r t y ( ”number next” , ”

property /atom” , ” s c a l a r ” ,0 ,0 , this−>s ty l e , f a l s e ) ) ;
128 i f ( ! f ix number next ) {
129 const char∗ f i x a r g [ 9 ] ;
130 f i x a r g [0 ]= ”number next” ;
131 f i x a r g [1 ]= ” a l l ” ;
132 f i x a r g [2 ]= ” property /atom” ;
133 f i x a r g [3 ]= ”number next” ;
134 f i x a r g [4 ]= ” s c a l a r ” ;
135 f i x a r g [5 ]= ”no” ;
136 f i x a r g [6 ]= ”yes ” ;
137 f i x a r g [7 ]= ”yes ” ;
138 f i x a r g [8 ]= ” 0 . ” ;
139 f ix number next = modify−>add f ix proper ty atom (9 , const cast<char∗∗>( f i x a r g ) , s t y l e ) ;
140 }
141
142 f i x i n d e n t = stat ic cast<FixPropertyAtom∗>(modify−>f i n d f i x p r o p e r t y ( ” indent ” , ” property /atom

” , ” s c a l a r ” ,0 ,0 , this−>s ty l e , f a l s e ) ) ;
143 i f ( ! f ix outward mag ) {
144 const char∗ f i x a r g [ 9 ] ;
145 f i x a r g [0 ]= ” indent ” ;
146 f i x a r g [1 ]= ” a l l ” ;
147 f i x a r g [2 ]= ” property /atom” ;
148 f i x a r g [3 ]= ” indent ” ;
149 f i x a r g [4 ]= ” s c a l a r ” ;
150 f i x a r g [5 ]= ”no” ;
151 f i x a r g [6 ]= ”yes ” ;
152 f i x a r g [7 ]= ”yes ” ;
153 f i x a r g [8 ]= ” 0 . ” ;
154 f i x i n d e n t = modify−>add f ix proper ty atom (9 , const cast<char∗∗>( f i x a r g ) , s t y l e ) ;
155 }
156
157 f i x i n d e n t s q r = stat ic cast<FixPropertyAtom∗>(modify−>f i n d f i x p r o p e r t y ( ” inden t sq r ” , ”

property /atom” , ” s c a l a r ” ,0 ,0 , this−>s ty l e , f a l s e ) ) ;
158 i f ( ! f ix outward mag ) {
159 const char∗ f i x a r g [ 9 ] ;
160 f i x a r g [0 ]= ” inden t sq r ” ;
161 f i x a r g [1 ]= ” a l l ” ;
162 f i x a r g [2 ]= ” property /atom” ;
163 f i x a r g [3 ]= ” inden t sq r ” ;
164 f i x a r g [4 ]= ” s c a l a r ” ;
165 f i x a r g [5 ]= ”no” ;
166 f i x a r g [6 ]= ”yes ” ;
167 f i x a r g [7 ]= ”yes ” ;
168 f i x a r g [8 ]= ” 0 . ” ;
169 f i x i n d e n t s q r = modify−>add f ix proper ty atom (9 , const cast<char∗∗>( f i x a r g ) , s t y l e ) ;
170 }
171
172 f i x e r r o r i n t e = stat ic cast<FixPropertyAtom∗>(modify−>f i n d f i x p r o p e r t y ( ” e r r o r i n t e ” , ”

property /atom” , ” s c a l a r ” ,0 ,0 , this−>s ty l e , f a l s e ) ) ;
173 i f ( ! f ix outward mag ) {
174 const char∗ f i x a r g [ 9 ] ;
175 f i x a r g [0 ]= ” e r r o r i n t e ” ;
176 f i x a r g [1 ]= ” a l l ” ;
177 f i x a r g [2 ]= ” property /atom” ;
178 f i x a r g [3 ]= ” e r r o r i n t e ” ;
179 f i x a r g [4 ]= ” s c a l a r ” ;
180 f i x a r g [5 ]= ”no” ;
181 f i x a r g [6 ]= ”yes ” ;
182 f i x a r g [7 ]= ”yes ” ;
183 f i x a r g [8 ]= ” 0 . ” ;
184 f i x e r r o r i n t e = modify−>add f ix proper ty atom (9 , const cast<char∗∗>( f i x a r g ) , s t y l e ) ;
185 }
186
187 f i x e r r o r b u l k = stat ic cast<FixPropertyAtom∗>(modify−>f i n d f i x p r o p e r t y ( ” e r r o r bu l k ” , ”

property /atom” , ” s c a l a r ” ,0 ,0 , this−>s ty l e , f a l s e ) ) ;
188 i f ( ! f ix outward mag ) {
189 const char∗ f i x a r g [ 9 ] ;
190 f i x a r g [0 ]= ” e r r o r bu l k ” ;
191 f i x a r g [1 ]= ” a l l ” ;
192 f i x a r g [2 ]= ” property /atom” ;
193 f i x a r g [3 ]= ” e r r o r bu l k ” ;
194 f i x a r g [4 ]= ” s c a l a r ” ;
195 f i x a r g [5 ]= ”no” ;
196 f i x a r g [6 ]= ”yes ” ;
197 f i x a r g [7 ]= ”yes ” ;
198 f i x a r g [8 ]= ” 0 . ” ;
199 f i x e r r o r b u l k = modify−>add f ix proper ty atom (9 , const cast<char∗∗>( f i x a r g ) , s t y l e ) ;
200 }
201
202 f i x g o o d i n t e = stat ic cast<FixPropertyAtom∗>(modify−>f i n d f i x p r o p e r t y ( ” good inte ” , ”

property /atom” , ” s c a l a r ” ,0 ,0 , this−>s ty l e , f a l s e ) ) ;
203 i f ( ! f ix outward mag ) {
204 const char∗ f i x a r g [ 9 ] ;
205 f i x a r g [0 ]= ” good inte ” ;
206 f i x a r g [1 ]= ” a l l ” ;
207 f i x a r g [2 ]= ” property /atom” ;
208 f i x a r g [3 ]= ” good inte ” ;
209 f i x a r g [4 ]= ” s c a l a r ” ;
210 f i x a r g [5 ]= ”no” ;
211 f i x a r g [6 ]= ”yes ” ;
212 f i x a r g [7 ]= ”yes ” ;
213 f i x a r g [8 ]= ” 0 . ” ;
214 f i x g o o d i n t e = modify−>add f ix proper ty atom (9 , const cast<char∗∗>( f i x a r g ) , s t y l e ) ;
215 }
216
217 f i x good bu lk = stat ic cast<FixPropertyAtom∗>(modify−>f i n d f i x p r o p e r t y ( ” good bulk ” , ”

property /atom” , ” s c a l a r ” ,0 ,0 , this−>s ty l e , f a l s e ) ) ;
218 i f ( ! f ix outward mag ) {
219 const char∗ f i x a r g [ 9 ] ;
220 f i x a r g [0 ]= ” good bulk ” ;
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221 f i x a r g [1 ]= ” a l l ” ;
222 f i x a r g [2 ]= ” property /atom” ;
223 f i x a r g [3 ]= ” good bulk ” ;
224 f i x a r g [4 ]= ” s c a l a r ” ;
225 f i x a r g [5 ]= ”no” ;
226 f i x a r g [6 ]= ”yes ” ;
227 f i x a r g [7 ]= ”yes ” ;
228 f i x a r g [8 ]= ” 0 . ” ;
229 f i x good bu lk = modify−>add f ix proper ty atom (9 , const cast<char∗∗>( f i x a r g ) , s t y l e ) ;
230 }
231
232 }
233
234 void FixOutward : : f o rwa rd a l l ( ) {
235 f ix outward−>do forward comm () ;
236 fix outward mag−>do forward comm () ;
237 f ix outward next−>do forward comm () ;
238 fix numberNeigh−>do forward comm () ;
239 f ix number next−>do forward comm () ;
240 f i x i nden t −>do forward comm () ;
241 f i x i nd en t s q r −>do forward comm () ;
242 f i x e r r o r i n t e −>do forward comm () ;
243 f i x e r r o r bu l k −>do forward comm () ;
244 f i x g ood i n t e −>do forward comm () ;
245 f i x good bu lk−>do forward comm () ;
246 }
247
248 void FixOutward : : r e v e r s e a l l ( ) {
249 f ix outward−>do reverse comm () ;
250 fix outward mag−>do reverse comm () ;
251 f ix outward next−>do reverse comm () ;
252 fix numberNeigh−>do reverse comm () ;
253 f ix number next−>do reverse comm () ;
254 f i x i nden t −>do reverse comm () ;
255 f i x i nd en t s q r −>do forward comm () ;
256 f i x e r r o r i n t e −>do reverse comm () ;
257 f i x e r r o r bu l k −>do reverse comm () ;
258 f i x g ood i n t e −>do reverse comm () ;
259 f i x good bu lk−>do reverse comm () ;
260 }
261
262 void FixOutward : : updatePtrs ( ) {
263 outward = fix outward−>array atom ;
264 outward mag = fix outward mag−>vector atom ;
265 outward next = f ix outward next−>array atom ;
266 numberNeigh = fix numberNeigh−>vector atom ;
267 number next = fix number next−>vector atom ;
268 indent = f i x i nden t −>vector atom ;
269 inden t sq r = f i x i nd en t s q r −>vector atom ;
270 e r r o r i n t e = f i x e r r o r i n t e −>vector atom ;
271 e r r o r bu l k = f i x e r r o r bu l k −>vector atom ;
272 good inte = f i x g ood i n t e −>vector atom ;
273 good bulk = f ix good bu lk−>vector atom ;
274 // custom vector created by the f i x
275 // hypothes i s : has to be used on every proce s so r . I f only in i n i t ( ) , only master node w i l l

know the vector and other s w i l l cause segmentation f a u l t s . To be used a l s o in
p o s t f o r c e ( ) .

276 }
277
278 void FixOutward : : i n i t ( ) {
279 pa i r g r an = stat ic cast<PairGran∗>( fo rce−>pair match ( ”gran” , 0) ) ;
280 f ix outward = stat ic cast<FixPropertyAtom ∗ >(modify−>f i n d f i x p r o p e r t y ( type , ” property /atom”

, ” vector ” ,0 ,0 , model ) ) ;
281 f ix outward mag = stat ic cast<FixPropertyAtom ∗ >(modify−>f i n d f i x p r o p e r t y ( type mag , ”

property /atom” , ” s c a l a r ” ,0 ,0 , model ) ) ;
282 f i x outward next = stat ic cast<FixPropertyAtom ∗ >(modify−>f i n d f i x p r o p e r t y ( type next , ”

property /atom” , ” vector ” ,0 ,0 , model ) ) ;
283 f ix numberNeigh = stat ic cast<FixPropertyAtom ∗ >(modify−>f i n d f i x p r o p e r t y ( type numb , ”

property /atom” , ” s c a l a r ” ,0 ,0 , model ) ) ;
284 f ix number next = stat ic cast<FixPropertyAtom ∗ >(modify−>f i n d f i x p r o p e r t y ( type nuxt , ”

property /atom” , ” s c a l a r ” ,0 ,0 , model ) ) ;
285 f i x i n d e n t = stat ic cast<FixPropertyAtom ∗ >(modify−>f i n d f i x p r o p e r t y ( type inde , ” property /

atom” , ” s c a l a r ” ,0 ,0 , model ) ) ;
286 f i x i n d e n t s q r = stat ic cast<FixPropertyAtom ∗ >(modify−>f i n d f i x p r o p e r t y ( type insq , ”

property /atom” , ” s c a l a r ” ,0 ,0 , model ) ) ;
287 f i x e r r o r i n t e = stat ic cast<FixPropertyAtom ∗ >(modify−>f i n d f i x p r o p e r t y ( type e r in , ”

property /atom” , ” s c a l a r ” ,0 ,0 , model ) ) ;
288 f i x e r r o r b u l k = stat ic cast<FixPropertyAtom ∗ >(modify−>f i n d f i x p r o p e r t y ( type erbu , ”

property /atom” , ” s c a l a r ” ,0 ,0 , model ) ) ;
289 f i x g o o d i n t e = stat ic cast<FixPropertyAtom ∗ >(modify−>f i n d f i x p r o p e r t y ( type goin , ”

property /atom” , ” s c a l a r ” ,0 ,0 , model ) ) ;
290 f i x good bu lk = stat ic cast<FixPropertyAtom ∗ >(modify−>f i n d f i x p r o p e r t y ( type gobu , ”

property /atom” , ” s c a l a r ” ,0 ,0 , model ) ) ;
291 // ” vector ” ,3 r e t r i e v e only i f 3 va lues in vector . Error i f l e s s . S i l e n c e i f more .
292 updatePtrs ( ) ; // i n i t i a l i z e custom array
293 f o rwa rd a l l ( ) ;
294 }
295
296 FixOutward : : ˜ FixOutward ( ) {}
297
298 int FixOutward : : setmask ( ) {
299 int mask = 0 ;
300 mask |= INITIAL INTEGRATE ;
301 mask |= POST FORCE;
302 return mask ;
303 }
304
305 void FixOutward : : i n i t i a l i n t e g r a t e ( int v f l a g ) {
306 updatePtrs ( ) ;
307 int n l o c a l = atom−>n l o c a l ;
308 for ( int i=0 ; i<n l o c a l ; i++) {
309 // I n i t i a l i z e next data
310 outward next [ i ] [ 0 ] = 0 ;
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311 outward next [ i ] [ 1 ] = 0 ;
312 outward next [ i ] [ 2 ] = 0 ;
313 number next [ i ] = 0 ;
314 indent [ i ] = 0 ;
315 inden t sq r [ i ] = 0 ;
316 }
317 f o rwa rd a l l ( ) ;
318 }
319
320 void FixOutward : : p o s t f o r c e ( int v f l a g ) {
321
322 updatePtrs ( ) ;
323
324 int n l o c a l = atom−>n l o c a l ; // atom id f o r the l o c a l proc
325 int newton pair = force−>newton pair ;
326
327 f o rwa rd a l l ( ) ;
328 i f ( newton pair ) r e v e r s e a l l ( ) ;
329
330 updatePtrs ( ) ;
331 for ( int i=0 ; i<n l o c a l ; i++) {
332 // Store prev ious step data
333 outward [ i ] [ 0 ] = outward next [ i ] [ 0 ] ;
334 outward [ i ] [ 1 ] = outward next [ i ] [ 1 ] ;
335 outward [ i ] [ 2 ] = outward next [ i ] [ 2 ] ;
336 outward mag [ i ] = sq r t ( outward [ i ] [ 0 ] ∗ outward [ i ] [ 0 ] + outward [ i ] [ 1 ] ∗ outward [ i ] [ 1 ] +

outward [ i ] [ 2 ] ∗ outward [ i ] [ 2 ] ) ;
337 numberNeigh [ i ] = number next [ i ] ;
338 // I n i t i a l i z e next data
339 outward next [ i ] [ 0 ] = 0 ;
340 outward next [ i ] [ 1 ] = 0 ;
341 outward next [ i ] [ 2 ] = 0 ;
342 number next [ i ] = 0 ;
343 }
344 }

B.4 Typical Input Script

A typical template input script (Appendix B.4.1) is proposed, using the interaction
law TRILIN and the self-contact algorithm, defined in Section B.3. The parameters
to be replaced in the template all start with the symbol @, typical values are given in Ta-
ble B.2. The paths of the output directory, the initial packing and the boundary condition
mesh must be defined respectively in @directory, @file coord and @mesh.

Script parameter Variable Example value

@deps ε̇ ±10−3

@strain ε ±1.0
@timeStep ∆t 0.1
@nRelax Number of initial

relaxation steps
500

@epsWin Width of the averaging
window (strain)

5·10−3

@epsOut Output period (strain) 5·10−2

@diam rcrown 1.4
@seed rseed 1
@mass m 3.606·107

@krep krep 1.424·109

@katt katt 7.909·108

@fatt fatt 1.186·108

@wall Xwall 3
@magOut Nmag 2.3
@cosIJ cosαij 0.4226
@cosEN cosαen 0.1736
@heal Healing time 1012

Table B.2: Typical parameters used in Part V. The healing behavior is here deactivated
by a numerically infinite healing time. Warning: a hard-coded parameter in the interac-
tion hinders prohibits self-contact detection before the 500th step. Proceed with caution
to modify the number of initial relaxation steps.

Examples of the formats of the packing and the mesh files are given respectively in
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Appendices B.4.2 and B.4.3. A template for the generation of the packings is given in
Appendix B.4.4.

B.4.1 Input Script Template

1 #### Sing l e mater ia l , moving wall , p r e s c r i b ed s t r a i n ra te
2 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
3 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
4 ### f i l e : s i n g l e . template
5 ### date : 2017/09/13
6 ### type : l i g g gh t s 3.5.0− robin input s c r i p t
7 ### auth : robin . gibaud@simap . grenoble−inp . f r
8 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
9

10 ################################################################################
11 ### Parameters
12
13 # Geometry , k inemat ics
14 va r i ab l e deps equal @deps # Stra in ra te
15 va r i ab l e s t r a i n equal @strain # Fina l s t r a i n
16
17 # Numerical
18 va r i ab l e timeStep equal @timeStep # Time step
19 va r i ab l e nRelax equal @nRelax # Number o f r e l a xa t i on s t eps
20 va r i ab l e epsWin equal @epsWin # Averaging window in s t r a i n
21 va r i ab l e epsOut equal @epsOut # Frequency o f outputs in s t r a i n
22 va r i ab l e relTime equal v nRelax∗v timeStep
23
24 # Mater ia l : d i r e c t l y rep laced in s c r i p t
25 va r i ab l e diam equal @diam # Crown diameter o f the p a r t i c l e s
26 va r i ab l e seed equal @seed # Seed diameter o f the p a r t i c l e s
27 va r i ab l e mass equal @mass # Mass o f the p a r t i c l e s
28
29 ################################################################################
30 ### Set t i ng s
31
32 # General s e t t i n g
33 atom sty le granular
34 atom modify m a p array
35 boundary f f f # See ”Compute box dimension ”
36 newton o f f
37 communicate s i n g l e ve l yes
38 un i t s s i
39 neighbor $ ( v diam /10) b i n

40 neigh modi fy delay 0
41
42 # Import ASCII coo rd ina t e s f i l e
43 read data @ f i l e c oo rd # I n i t i a l packing
44 v e l o c i t y a l l s e t 0 0 0
45
46 # Mater ia l
47 s e t group a l l t y p e 1
48 s e t group a l l diameter ${diam} mass ${mass}
49 f i x mySeed a l l p r o p e r t y /atom seed s c a l a r no yes yes ${ seed}
50 f i x seedOp a l l seed seed normal model zcherry /outward
51 f i x out a l l p r o p e r t y /atom outward vector no yes yes 0 0 0
52 f i x outMag a l l p r o p e r t y /atom outward mag s c a l a r no yes yes 0
53 f i x outNei a l l p r o p e r t y /atom outward numberNeigh s c a l a r no yes yes 0 .0
54 f i x outNxt a l l p r o p e r t y /atom outward number next s c a l a r no yes yes 0 .0
55 f i x outInd a l l p r o p e r t y /atom outward indent s c a l a r no yes yes 0 .0
56 f i x outPee a l l p r o p e r t y /atom outward indent sqr s c a l a r no yes yes 0 .0
57 f i x e r r I n t a l l p r o p e r t y /atom outward e r r o r i n t e s c a l a r no yes yes 0 .0
58 f i x errBul a l l p r o p e r t y /atom outward er ror bu lk s c a l a r no yes yes 0 .0
59 f i x gooInt a l l p r o p e r t y /atom outward good inte s c a l a r no yes yes 0 .0
60 f i x gooBul a l l p r o p e r t y /atom outward good bulk s c a l a r no yes yes 0 .0
61 f i x outClu a l l p r o p e r t y /atom c l u s t e r s c a l a r no yes yes 1 .0
62 f i x outOpe a l l outward outward normal model zcherry /outward
63 f i x myKrep a l l p r o p e r t y / g l o b a l krep peratomtypepair 1 @krep # Repuls ive s t i f f n e s s
64 f i x myKatt a l l p r o p e r t y / g l o b a l katt peratomtypepair 1 @katt # Att rac t i ve s t i f f n e s s
65 f i x myFatt a l l p r o p e r t y / g l o b a l f a t t peratomtypepair 1 @fatt # Att rac t i ve f o r c e

thre sho ld
66 f i x myWall a l l p r o p e r t y / g l o b a l wal l s c a l a r @wall # Mu l t i p l i c a t i v e f a c t o r f o r

p a r t i c l e /wal l i n t e r a c t i o n
67 f i x myHeal a l l p r o p e r t y / g l o b a l hea l s c a l a r @heal # Heal ing time o f the ‘ ‘

i n t e r f a c e ’ ’ i n t e r a c t i o n
68 f i x myMagO a l l p r o p e r t y / g l o b a l magOut s c a l a r @magOu # Magnitude thre sho ld
69 f i x myCosI a l l p r o p e r t y / g l o b a l cos IJ s c a l a r @cosIJ # Angle thre sho ld
70 f i x myCosE a l l p r o p e r t y / g l o b a l cosEN s c a l a r @cosEN # Angle thre sho ld
71 p a i r s t y l e gran model zcherry /outward v e l o c i t y on non l o ca l o f f verb o f f
72 p a i r c o e f f ∗ ∗
73
74 ################################################################################
75 ### Control parameters
76
77 ### Atom (dump output )
78 # St r e s s image
79 compute sV a l l s t r e s s /atom pa i r #pre s su re ∗vol un i t s
80 # Others
81 compute con a l l contact /atom # seed and crown contact s
82 compute cu t o f f a l l coord /atom ${ seed} # seed contact s
83 va r i ab l e nInt atom c con−f ou tNe i # number o f i n t e r f a c e contact s
84 va r i ab l e pe atom f outPee # cumulated po t en t i a l e l a s t i c energy
85 compute ke a l l ke/atom # k i n e t i c energy
86 va r i ab l e peke atom v pe / c ke
87 va r i ab l e cumdelta atom f out Ind # cumulated indentat i on f o r the p a r t i c l e
88
89 ### Macro ( thermo output )
90 va r i ab l e tt ime equal time−v relTime



224 APPENDIX B. DEM IMPLEMENTATION

91 compute CON a l l r e d u c e ave c con
92 compute SVXX a l l r e d u c e s u m c sV [ 1 ]
93 compute SVYY a l l r e d u c e s u m c sV [ 2 ]
94 compute SVZZ a l l r e d u c e s u m c sV [ 3 ]
95 compute SVYZ a l l r e d u c e s u m c sV [ 6 ]
96 compute SVXZ a l l r e d u c e s u m c sV [ 5 ]
97 compute SVXY a l l r e d u c e s u m c sV [ 4 ]
98 va r i ab l e myVol equal count ( a l l )∗PI∗v seed ˆ3/6
99 va r i ab l e P equal (c SVXX+c SVYY+c SVYY) /(3∗v myVol )

100 compute KE a l l r e d u c e s u m c ke
101 compute PE a l l r e d u c e s u m v pe
102 va r i ab l e KEPE equal c KE/c PE
103 compute CUTOFF a l l r e d u c e s u m c c u t o f f
104 compute CUMDELTA a l l r e d u c e s u m v cumdelta
105 va r i ab l e RELIND equal c CUMDELTA/c CUTOFF
106 va r i ab l e adimK equal @krep/ a b s ( v P∗v seed )
107 va r i ab l e adimI equal v deps∗ sq r t ( v mass/ a b s ( v P∗v seed ) )
108 va r i ab l e adimE equal ( c KE/count ( a l l ) ) / a b s ( v P∗v seed ˆ3)
109
110 # Stra in
111 va r i ab l e E equal 0
112 compute maxG a l l r e d u c e m a x x y z
113 compute minG a l l r e d u c e m i n x y z
114 va r i ab l e lxG equal c maxG[1]− c minG [ 1 ]
115 va r i ab l e lyG equal c maxG[2]− c minG [ 2 ]
116 va r i ab l e lzG equal c maxG[3]− c minG [ 3 ]
117
118 ################################################################################
119 ### Simulat ion
120
121 ### Int eg r a t i on
122 f i x in t eg a l l nve
123
124 # Compute box dimensions
125 va r i ab l e tmp equal lx
126 va r i ab l e X0 equal ${tmp}
127 va r i ab l e tmp equal ly
128 va r i ab l e Y0 equal ${tmp}
129 va r i ab l e tmp equal l z
130 va r i ab l e Z0 equal ${tmp}
131 p r i n t ” I n i t i a l dimension : ( ${X0} , ${Y0} , ${Z0}) ”
132
133 va r i ab l e s e cu r i t y equal 0 .6 #0.6 shouldo . . .
134 # Depend on t e n s i l e or compress ive load
135 i f ”${ s t r a i n } > 0” then &
136 ” va r i ab l e xS ize equal v s e c u r i t y ∗v X0” &
137 ” va r i ab l e yS ize equal v s e c u r i t y ∗v Y0” &
138 ” va r i ab l e zS i z e equal v s e c u r i t y ∗v Z0∗exp ( v s t r a i n ) ” &
139 e l s e &
140 ” va r i ab l e xS ize equal v s e c u r i t y ∗v X0∗exp (−0.5∗ v s t r a i n ) ” &
141 ” va r i ab l e yS ize equal v s e c u r i t y ∗v Y0∗exp (−0.5∗ v s t r a i n ) ” &
142 ” va r i ab l e zS i z e equal v s e c u r i t y ∗v Z0”
143 p r i n t ”${xSize } , ${ySize } , ${ zS i z e }”
144 #pr in t ”${ l x } , ${ l y } , ${ l z }”
145 change box a l l x f i n a l $(−1∗ v xS i ze ) $ ( v xS i ze ) y f i n a l $(−1∗ v yS i ze ) $ ( v yS i ze ) z f i n a l

$(−1∗ v zS i z e ) $ ( v zS i z e ) boundary f f f
146 # i f mmm, segFault with 8 proc . I f s c a l e 1 .01 , meshes l o s t .
147
148 ### Boundaries
149 # Import
150 f i x top a l l mesh/ su r f a c e / s t r e s s f i l e @mesh t y p e 1 move 0 0 $ (0 .5∗ v Z0+0.5∗ v seed )

r e f e r e n c e p o i n t 0 0 $ (0 .5∗ v Z0+0.5∗ v seed ) # Import and t r an s l a t e the planar mesh
de f i n i ng the boundary cond i t ions , t r a n s l a t e r e f e r e n c e point

151 f i x bot a l l mesh/ su r f a c e / s t r e s s f i l e @mesh t y p e 1 move 0 0 $(−0.5∗v Z0 −0.5∗ v seed )
r e f e r e n c e p o i n t 0 0 $(−0.5∗v Z0 −0.5∗ v seed )

152 f i x meshwalls a l l wal l / gran model zcherry /outward mesh n meshes 2 meshes top bot
# Def ine i n t e r a c t i o n p r op e r t i e s

153 # The mesh needs to de f i n e a c o r r e c t box s i z e in x and y d i r e c t i o n
154 # A manually computed z box s i z e i s computed from s t r a i n and Z0
155 # Descr ibe motion o f supe r i o r boundary
156 va r i ab l e veloXY equal 0
157 va r i ab l e veloZ equal v deps∗v Z0∗exp ( v deps∗v tt ime )
158 va r i ab l e veloZtop equal v ve loZ /2
159 va r i ab l e veloZbot equal −1∗v ve loZ /2
160
161 ### Compute s t eps
162 va r i ab l e Dt equal v t imeStep #abs ( v epsStep / v deps )
163 t imestep ${ timeStep}
164
165 va r i ab l e nForming equal c e i l ( v s t r a i n /( v deps∗v Dt ) ) # Forming s t eps
166 va r i ab l e nOutRel equal c e i l ( v nRelax /5) # Output frequency f o r

r e l a xa t i on ( s t eps )
167 va r i ab l e stepWin equal c e i l ( a b s ( v epsWin /( v deps∗v Dt ) ) ) # Averaging window (

s t eps )
168 va r i ab l e nOut equal c e i l ( a b s ( v epsOut /( v deps∗v Dt ) ) ) # Output frequency (

s t eps )
169
170 ### Output s e t t i n g s
171 # Global
172 #f i x ave a l l ave/ time 1 ${stepWin} ${nOut} f t op [ 3 ] mode s c a l a r ave one
173 # fzT fzB mxT mxB myT

myB
174 f i x ave a l l ave/ time 1 ${stepWin} ${nOut} f t op [ 3 ] f b o t [ 3 ] f t op [ 4 ] f b o t [ 4 ]

f t op [ 5 ] f b o t [ 5 ] mode s c a l a r ave one
175 f i x avat a l l ave/atom 1 ${stepWin} ${nOut} c sV [ 1 ] c sV [ 2 ] c sV [ 3 ] c sV [ 4 ] c sV [ 5 ]

c sV [ 6 ]
176
177 #the t imesteps cont r ibu t ing to the average value cannot overlap , i . e . Nfreq > ( Nrepeat −1)∗

Nevery i s r equ i r ed
178 # work−around : keyword ave window M
179 thermo ${nOut}
180 thermo sty l e custom step c PE c KE v KEPE v RELIND v P v adimK v adimI v adimE &
181 zh i z l o f t op [ 9 ] f b o t [ 9 ] v E v tt ime v lxG v lyG v lzG c maxG [ 3 ] c minG [ 3 ] &
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182 f av e [ 1 ] f av e [ 2 ] f av e [ 3 ] f av e [ 4 ] f av e [ 5 ] f av e [ 6 ] # fzT fzB mxT mxB
myT myB

183 #v adimE v adimK v P& c PE c DELTA c KEPE
184 thermo modify f o r m a t f l o a t %.15e
185
186 ### I n i t i a l r e l a xa t i on
187 write dump a l l custom @directoryatom 0 i d t y p e x y z rad ius # pr in t the i n i t i a l s t a t e in

the de f ined output d i r e c t o r y
188 run ${nRelax}
189 write dump a l l custom @directoryatom re lax i d t y p e x y z rad ius
190
191 ### Precr ibed deformation
192 f i x moveTop a l l move/mesh mesh top l i n e a r / va r i ab l e v veloXY v veloXY v veloZtop
193 f i x moveBot a l l move/mesh mesh bot l i n e a r / va r i ab l e v veloXY v veloXY v veloZbot
194 va r i ab l e E equal v deps∗v tt ime
195 dump dmpAtom a l l custom ${nOut} @directoryatom ∗ i d t y p e x y z rad ius c con f ava t

[ 1 ] f a va t [ 2 ] f a va t [ 3 ] f a va t [ 6 ] f a va t [ 5 ] f a va t [ 4 ] v cumdelta c c u t o f f f outMag f ou t
[ 1 ] f ou t [ 2 ] f ou t [ 3 ] f ou tNe i v nInt f e r r I n t f e r rBu l

196 run ${nForming}

B.4.2 Test Packing

1 LAMMPS data f i l e v ia wr i te data , ve r s i on Vers ion LIGGGHTS−PUBLIC 3 . 5 . 0
2
3 8 atoms
4 1 atom types
5
6 −1.0079490209146593 e+00 1.0079490209146593 e+00 xlo xhi
7 −1.0079490209146593 e+00 1.0079490209146593 e+00 ylo yhi
8 −1.0079490209146593 e+00 1.0079490209146593 e+00 z l o zh i
9

10 Atoms
11
12 8 1 1 .0 e+00 1 .0 e+14 −2.580785474845e−01 −7.156083105123e−01 −6.171464385032e−01 0 0 0
13 5 1 1 .0 e+00 1 .0 e+14 7.368249072898 e−01 −6.510293341930e−01 −5.370172428427e−01 0 0 0
14 7 1 1 .0 e+00 1 .0 e+14 3.983590840727 e−01 4.237290992574 e−01 −5.528105627266e−01 0 0 0
15 2 1 1 .0 e+00 1 .0 e+14 −5.747668099991e−01 1.714657239578 e−01 −2.780545755943e−01 0 0 0
16 6 1 1 .0 e+00 1 .0 e+14 −4.859489111352e−01 −5.129999113277e−01 4.463109577725 e−01 0 0 0
17 4 1 1 .0 e+00 1 .0 e+14 5.003062957558 e−01 −3.574610018912e−01 3.897200373051 e−01 0 0 0
18 3 1 1 .0 e+00 1 .0 e+14 −8.239274048957e−01 5.746822726730 e−01 6.026156857010 e−01 0 0 0
19 1 1 1 .0 e+00 1 .0 e+14 1.617639656358 e−01 5.826412040774 e−01 4.340756647920 e−01 0 0 0

B.4.3 Typical Planar Mesh

1 s o l i d
2 f a c e t normal 0 0 −1
3 outer loop
4 vertex −3.32365398113 −3.32365398113 00.00
5 vertex −3.32365398113 3.32365398113 00.00
6 vertex 3.32365398113 −3.32365398113 00.00
7 endloop
8 endfacet
9 f a c e t normal 0 0 −1

10 outer loop
11 vertex −3.32365398113 3.32365398113 00.00
12 vertex 3.32365398113 −3.32365398113 00.00
13 vertex 3.32365398113 3.32365398113 00.00
14 endloop
15 endfacet
16 end s o l i d

B.4.4 Packing Script Template

1 #### Par t i c l e packing by random i n s e r t i o n and i s o t r o p i c sh r ink ing o f the box
2 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
3 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
4 ### f i l e : packing . template
5 ### date : 2016/07/01
6 ### type : l i g g gh t s 3.4.1− robin input s c r i p t
7 ### auth : robin . gibaud@simap . grenoble−inp . f r
8 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
9

10 # Target parameters
11 va r i ab l e diam equal 1
12 va r i ab l e part equal @nb # number o f p a r t i c l e s
13 va r i ab l e fraF equal 0 .639 # f i n a l r e l a t i v e dens i ty
14 # Numerical parameters
15 va r i ab l e seed0 equal @seed0 # random seeds
16 va r i ab l e seed1 equal @seed1
17 va r i ab l e seed2 equal @seed2
18 va r i ab l e deps equal −1e−5
19 va r i ab l e dens equal 1 e14 #1e20
20 va r i ab l e k s i equal 0 .98
21 va r i ab l e f r a I equal 0 .25
22 va r i ab l e r i g i equal 1e8 #1e10 #1e6
23
24 va r i ab l e mass equal v dens∗PI∗v diamˆ3/6
25 va r i ab l e w0 equal ( v r i g i /v mass ) ˆ0 .5
26 va r i ab l e Dt equal 0 .01/ v w0 # arb i t r a r y f a c t o r
27 va r i ab l e v i s c equal 2∗v mass∗ v k s i ∗v w0 #5e11 #1e8
28
29 va r i ab l e volS equal v part∗PI∗v diamˆ3/6
30 va r i ab l e aFin equal ( v vo lS / v f raF ) ˆ(1/3)
31 va r i ab l e a In i equal ( v vo lS / v f r a I ) ˆ(1/3)
32 va r i ab l e eps equal ln ( v aFin / v a In i )
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33 va r i ab l e nStep equal v eps /( v deps∗v Dt )
34 #
35 va r i ab l e stepOut equal f l o o r ( v nStep /10)
36
37 ###########################
38 ### Set t i ng s
39 # Simulat ion s e t t i n g
40 atom sty le granular
41 atom modify m a p array
42 boundary p p p
43 newton o f f
44 communicate s i n g l e ve l yes
45 un i t s s i
46 neighbor $ ( v diam /10) b i n

47 p ro c e s s o r s @procX @procY @procZ
48 neigh modi fy delay 0
49 reg ion reg block $ ( v a In i /−2) $ ( v a In i /2) $ ( v a In i /−2) $ ( v a In i /2) $ ( v a In i /−2) $ (

v a In i /2) un i t s box
50 create box 1 reg
51 t imestep ${Dt}
52 f i x i n t e g r a l l nve
53 f i x comp a l l deform 1 x t r a t e ${deps} y t r a t e ${deps} z t r a t e ${deps}
54 # Mater ia l
55 f i x m4 a l l p r o p e r t y / g l o b a l c o e f f i c i e n t F r i c t i o n peratomtypepair 1 0
56 f i x m6 a l l p r o p e r t y / g l o b a l kn peratomtypepair 1 ${ r i g i }
57 f i x m7 a l l p r o p e r t y / g l o b a l kt peratomtypepair 1 0
58 f i x m8 a l l p r o p e r t y / g l o b a l gamman abs peratomtypepair 1 ${ v i s c }
59 f i x m9 a l l p r o p e r t y / g l o b a l gammat abs peratomtypepair 1 0
60 p a i r s t y l e gran model hooke/ s t i f f n e s s absolute damping on l im i tForce o f f tangent ia l damping on
61 p a i r c o e f f ∗ ∗
62
63 ###########################
64 ### Pa r t i c l e i n s e r t i o n
65 # Random gas generat ion
66 f i x pts1 a l l pa r t i c l e t emp l a t e / sphere ${ seed0} atom type 1 dens i ty constant ${dens}

rad ius constant $ ( v diam /2)
67 f i x pdd1 a l l p a r t i c l e d i s t r i b u t i o n / d i s c r e t e ${ seed1} 1 pts1 1 .0
68 f i x i n s a l l i n s e r t /pack seed ${ seed2} d i s t r i bu t i on t emp l a t e pdd1 &
69 maxattempt 250 &
70 i n s e r t e v e r y once reg ion reg p a r t i c l e s i n r e g i o n ${part}
71 run 1 # In s e r t the p a r t i c l e s , be f o r e f i r s t dump, otherwi se empty
72
73
74 ###########################
75 ### Control parameters
76 va r i ab l e Tosc equal 2∗PI∗( v mass/ v r i g i ) ˆ0 .5
77 va r i ab l e Tamo equal 2∗v mass/ v v i s c
78 p r i n t ”Tosc = ${Tosc} ; Tamo = ${Tamo} ; dt = ${Dt} ( s ) ”
79
80 compute con a l l contact /atom #l o c a l coo rd inat i on number
81 compute Con a l l r e d u c e ave c con #average coord inat i on number
82 #f i x HCon a l l ave/ h i s t o 1 1 $ ( v stepOut ) 1 11 11 c con mode vector f i l e @directory /

contact @key
83
84 compute P a l l pre s su r e thermo temp pa i r #−1∗pre s su r e un i t s
85 compute ke a l l ke/atom
86 compute MeKe a l l r e d u c e ave c ke
87 va r i ab l e f r a c equal atoms∗PI∗${diam}ˆ3/(6∗ vol )
88
89 va r i ab l e E equal c MeKe/( c P∗v diam ˆ2)
90 va r i ab l e I equal a b s ( v deps∗v diam ∗( v dens /c P ) ˆ0 . 5 )
91 va r i ab l e K equal a b s ( v r i g i /( c P/${diam}) )
92
93
94 ###########################
95 ### Simulat ion
96 thermo sty l e custom step c Con c P v f r a c
97 thermo $ ( v stepOut )
98 run $ ( v nStep )
99 #thermo sty l e custom c P ke c Con v f r a c

100 #thermo $ ( c e i l ( v nStep /10) )
101 #run $ ( v nStep /2)
102 unf ix comp
103 #thermo $ ( c e i l ( v nStep ∗40/10) )
104 run $ ( v nStep /1 . 5 )
105 dump dmp a l l custom 1 @directory /atom @key i d t y p e t y p e x y z ix iy i z vx vy vz fx

fy f z omegax omegay omegaz rad ius
106 thermo sty l e custom step c P ke c Con v E v I v K v f r a c
107 run 0
108 # Write f i n a l s t a t e
109 wr i t e data @f i l e pack
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FEM Script

1 ””” Template f o r e ighth o f s ph e r i c a l i n c l u s i o n t e s t case
2 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
3 f i l e : sphere134 .comm
4 type : c ode a s t e r 13 .4 input , python 2 .7
5 auth : robin . gibaud@simap . grenoble−inp . f r
6 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
7 ”””
8
9 f r o m f u t u r e i m p o r t d iv i s i on , abso lute import , p r i n t f unc t i on , u n i c o d e l i t e r a l s

10 i m p o r t numpy as np
11 i m p o r t matp lot l ib . pyplot as p l t
12 f r o m U t i l i t a i . Table i m p o r t Table
13
14 ################################################################################
15 ### Python va r i ab l e s
16 #Parameters
17 H0 = @H0 # I n i t i a l he igth [mm]
18 DEPS = [ @deps ] # Stra in ra te [ s −1]
19 de = @De # Stra in increment btween output times [ / ]
20 mini de = 1e−10
21 ESTEP = [0 , @eps ] # Global s t r a i n [ / ]
22 young = @young # Young ’ s modulus [MPa]
23 po i s son = @poisson # Poisson ’ s r a t i o [ / ]
24
25 maxi dt = np . abso lute (1 e−3/@deps ) # Maximum time step [ s ] #1e−3 f o r 0 and 2
26
27 mini dt = np . abso lute ( mini de /@deps )
28 #Time and displacement vec to r s generat ion
29 T = [ 0 ] # Time [ s ]
30 E = [ 0 ] # Global s t r a i n [ / ]
31 ENDIND = [ ]
32 f o r i , deps i n e n u m e r a t e (DEPS) :
33 n = np . abso lute ( (ESTEP[ i+1]−ESTEP[ i ] ) / de )
34 dt = np . abso lute ( de / deps )
35 e = np . l i n s pa c e (ESTEP[ i ] ,ESTEP[ i +1] ,n)
36 t = np . l i n spa c e (T[−1]+dt ,T[−1]+n∗dt , n)
37 e = e [ 1 : ]
38 t = t [ 1 : ]
39 E = np . append (E, e )
40 T = np . append (T, t )
41 i f i ==0:
42 ENDIND = np . append (ENDIND, n)
43 e l s e :
44 ENDIND = np . append (ENDIND, ENDIND[−1]+n)
45 DISP = H0 ∗ ( np . exp (E) − 1 ) # Displacement o f f a c e : mm
46
47 ################################################################################
48 ### Aster s c r i p t
49 DEBUT(PAR LOT=’OUI ’ ) ; #Default s a f e behavior , b locks python manipulat ion o f

tab l e [U1 . 0 3 . 0 2 : 3 ] , r e s u l t s are c e r t i f i e d
50
51 mesh = LIRE MAILLAGE( FORMAT = ’MED’ ) ;
52
53 matA = DEFI MATERIAU(
54 ELAS= F (
55 E = young ,
56 NU = pois son ) ,
57 LEMAITRE= F ( #[U4 . 4 3 . 0 1 : 3 7 ] sec . 4 . 1 2 Operateur DEFI MATERIAU
58 N = @n a ,
59 UN SUR K = @un sur k a ,
60 UN SUR M = 0 .0 ) #degenerate Lemaitre behavior to Norton law
61 ) ;
62
63 matB = DEFI MATERIAU(
64 ELAS= F (
65 E = young ,
66 NU = pois son ) ,
67 LEMAITRE= F (
68 N = @n b ,
69 UN SUR K = @un sur k b ,
70 UN SUR M = 0 .0 )
71 ) ;
72
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73 mater ia l = AFFE MATERIAU(
74 MAILLAGE = mesh ,
75 AFFE = (
76 F (GROUP MA = ’V A ’ , MATER = matA) ,
77 F (GROUP MA = ’V B ’ , MATER = matB) ,
78 )
79 ) ;
80
81 model = AFFE MODELE(
82 MAILLAGE = mesh ,
83 AFFE= F ( TOUT = ’OUI ’ ,
84 #3D INCO UP , 3D INCO UPO [R3 . 0 6 . 0 8 : 1 3 ] sec . 4 . 3 Elements f i n i s t r a i t a n t l a quasi−

i n c ompr e s s i b i l i t e , only ELAS or VMIS ISOT XXX
85 MODELISATION = ’ 3D INCO UPG ’ , #[U2 . 0 1 . 1 0 : 4 ] Notice d ’ u t i l i s a t i o n sur l e

choix des e lements
86 #[U2 . 0 4 . 0 1 : 6 ] s ec . 4 . 2 Gestion de l ’ i n c omp r e s s i b i l i t e p l a s t i qu e

;
87 #[R3 . 0 6 . 0 8 : 1 4 ] sec . 4 . 2 Elements f i n i s t r a i t a n t l a quasi−

i n c omp r e s s i b i l i t e
88 PHENOMENE = ’MECANIQUE’ ) ,
89 ) ;
90
91 boundary = AFFE CHAR MECA(
92 MODELE = model ,
93 FACE IMPO = (
94 F ( GROUP MA = ’S X0 ’ , DX = 0 . ) ,
95 F ( GROUP MA = ’S Y0 ’ , DY = 0 . ) ,
96 F ( GROUP MA = ’ S Z0 ’ , DZ = 0 . ) ,
97 F ( GROUP MA = ’ S Z ’ , DZ = 1 . ) ,
98 )
99 ) ;

100
101 f d i s p = DEFI FONCTION(
102 NOM PARA = ’INST ’ ,
103 PROL DROITE = ’EXCLU’ ,
104 PROL GAUCHE = ’EXCLU’ ,
105 INTERPOL = ( ’LIN ’ , ’LIN ’ ) ,
106 ABSCISSE = T,
107 ORDONNEE = DISP ,
108 ) ;
109
110 l i n s t = DEFI LIST INST( #[U2 . 0 4 . 0 1 : 3 ] s ec . 2 . 1 Conse i l s d ’ u t i l i s a t i o n de STAT NON LINE,

always a c t i v a t e DEFI LINST INST with STAT NON LINE
111 DEFI LIST = F (
112 #METHODE = ’MANUEL ’ , # de f au l t .
113 #METHODE = ’AUTO’ , # bug in 13 .4
114 VALE = T,
115 #PAS MAXI = maxi dt , #[U4 . 3 4 . 0 3 : 7 ] does ’ nt apply to the f i r s t time step
116 #PAS MINI = mini dt , #[U4 . 3 4 . 0 3 : 7 ] sec . 3 . 1 . 3 DEFI LIST INST . Only

app l i ed to new time step , may be sma l l e r in subd iv i s i on
117 ) ,
118 ECHEC = (
119 F ( # nb max i t e r a t i o n reach , or i n t e g r a t i o n o f c o n s t i t u t i v e law f a i l s
120 EVENEMENT = ’ERREUR’ ,
121 ACTION = ’DECOUPE’ ,
122 SUBD METHODE = ’MANUEL’ ,
123 SUBD PAS = subd pas ,
124 SUBD NIVEAU = subd niv ,
125 ) ,
126 F ( # ”big ” equ i l i b r ium re s idua l , meant to prevent Float ing Point Exceptions
127 # not very convinc ing in our case , as FPE can occur even at RESI MAX = 0.1
128 # http :// code−a s t e r . org / forum2/ viewtop ic . php? id=19811
129 EVENEMENT =’RESI MAXI ’ ,
130 RESI GLOB MAXI = 1e−1,
131 ACTION = ’DECOUPE’ ,
132 SUBD METHODE = ’MANUEL’ ,
133 SUBD PAS = subd pas ,
134 SUBD NIVEAU = subd niv ,
135 ) ,
136 )
137 ) ;
138
139 r e s u l t = STAT NON LINE(
140 MODELE = model ,
141 CHAMMATER = mater ia l ,
142 EXCIT = (
143 F (
144 CHARGE = boundary , #de f i n e the mechanical charge
145 FONC MULT = f d i sp , #mult ip ly t h i s charge by f l o a t
146 ) ,
147 ) ,
148 COMPORTEMENT = F ( #[R5 . 0 3 . 0 8 ] I n t e g r a t i on des r e l a t i o n s de comportement

v i s c o e l a ; i n t e g r a t i o n schemes
149 RELATION = ’NORTON’ , #[U4 . 5 1 . 1 1 : 1 7 ] sec . 4 . 3 . 3 . 4 Comportements non

l i n e a i r e s . More e a s i l y f a i l s to i n t e g r a t e
150 ALGO INTE = ’NEWTON PERT’ , #Norton : theta−methode i n t e g r a t i on
151 ITER INTE MAXI = 50 , #50
152 DEFORMATION = ’GDEF LOG’ , #[U4 . 5 1 . 1 1 : 5 5 ] ; [U2 . 0 4 . 0 1 : 8 ]
153 PARM THETA = 0.5 , #Lemaitre or Norton : semi−imp l i c i t [U4 . 5 1 . 1 1 : 5 1 ] sec

. 4 . 8
154 ) ,
155 NEWTON = F ( #[U2 . 0 4 . 0 1 : 3 ] Conse i l s d ’ u t i l i s a t i o n de STAT NON LINE
156 PREDICTION = ’TANGENTE’ , #[U3 . 1 4 . 0 6 : 3 ] s ec . 3 . 3 Mode l i sat ion 3D INCO UPG,

neces sary because ELASTIQUE not ava i l a b l e
157 MATRICE = ’TANGENTE’ , #de f au l t
158 REAC ITER = 1 ,
159 REAC INCR = 1 , #de f au l t
160 ) ,
161 INCREMENT = F ( LIST INST = l i n s t ) ,
162 CONVERGENCE = F (
163 RESI GLOB RELA = @resi , #[U2 . 0 8 . 0 3 : 1 7 ] Notice d ’ u t i l i s a t i o n des s o l v eu r s

l i n e a i r e s , might be s e t to be i gge r va luer
164 ITER GLOB MAXI = 20 ,
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165 ) ,
166 SOLVEUR = F (
167 METHODE = ’MUMPS’ , #[U2 . 0 8 . 0 3 : 6 ] Notice d ’ u t i l i s a t i o n des s o l v eu r s l i n e a i r e s ,

recommanded f o r i n c omp r e s s i b i l i t y problems
168 NPREC = −1, #[ ssnv112f . comm: 9 2 ]
169 ) ,
170 ARCHIVAGE = F (
171 PAS ARCH = @PAS ARCH, #[U4 . 5 1 . 0 3 : 3 5 ] sec . 3 . 1 7 Operateur STAT NON LINE, save

only N step
172 ) ,
173 ) ;
174
175 FIN(RETASSAGE = ’OUI ’ ) ; #reduce s i z e o f saved base [U4 . 1 1 . 0 2 : 3 ]

Script parameter Variable Example value

@deps Strain rate ±10−3

@eps Final strain ±0.3
@H0 Height sample 0.5mm
@De Mandatory strain step 5·10−4

@young Young’s modulus 1·105 MPa
@poisson Poisson’s ratio 0.33
@n a Inverse inclusion strain

rate sensitivity
1.38

@un sur k a Inverse inclusion stress
level

3.08·10−5 s−M ·MPa−1

@n b Inverse matrix strain rate
sensitivity

32.8

@un sur k b Inverse matrix stress level 8.32·10−3 s−M ·MPa−18
@resi Numerical tolerance 1·10−5

@PAS ARCH Output stepping 5

Table C.1: Typical parameters used in Part IV for the FEM simulations.
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Appendix D

IJMS Article

The article “Modeling Large Viscoplastic Strain in Multi-Material with the Discrete Ele-
ment Method” was submitted to the International Journal of Mechanical Sciences. Minor
revisions were requested for publication and the amended version is proposed here. We
are currently waiting for the final decision. The article presents the main results from
Part IV.
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Modeling Large Viscoplastic Strain in Multi-Material

with the Discrete Element Method

Robin Gibaud, Étienne Guesnet, Pierre Lhuissier∗, Luc Salvo

Univ. Grenoble Alpes, CNRS, SIMAP, F-38000 Grenoble, France

Abstract

In this paper, the Discrete Element Method (DEM) is used as a tool to phe-
nomenologically model large compressive viscoplastic strain in metallic compos-
ites. The model uses pairwise attractive and repulsive forces between spherical
particles. Large packings of particles collectively cope with the prescribed strain,
the changes of neighbors model the irreversible strain in the material. Using
the proposed calibration method of the model parameters, the macroscopic be-
havior mimics perfect plasticity in compression, with a strain rate sensitivity
approximating a viscoplastic Norton law.

The error on flow stress and volume conservation is estimated for single
material. Three bi-material geometrical configurations are built: parallel, series
and spherical inclusion. Macroscopic metrics (flow stress and shape factor of
inclusion) are confronted to Finite Element Method (FEM) simulations.

The potential of the model, from a computing power point of view, is tested
on a complex geometry, using a real microstructure of a crystalline/amorphous
metallic composite, obtained by X-ray tomography.

Keywords: Discrete Element Method, Large Strain, Viscoplasticity,
Multi-Material

1. Introduction

Architectured materials display promising properties, allowing fine-tuning
of their physical behavior and contriving contradictory functionalities. Typical
examples are composite materials, associating complementary phases, whose
distribution and topology are controlled towards functional requirements. Such
architectures can be elaborated with metallic materials, for example using cast-
ing, powder technology or additive manufacturing.

Structural parts often need to be processed from raw architectured mate-
rials. Many manufacturing processes, like hot forming, rely on deformation
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mechanisms that can involve the motion and interaction of complex 3D inter-
face, large change in shape or topological modification. The typical involved dy-
namic phenomena – like pore closure, neck creation and phase fragmentation –
can be challenging to observe with conventional, or destructive, experimental
techniques. Tomography is a non-destructive tool, with active developments
toward finer spatial and temporal resolution, allowing in situ observations. It is
often used in close combination with digital volume correlation and simulation
tools. Tomography data serve both as geometrical initial state and as temporal
evolution reference for models, for example in calibration and validation proce-
dures. Examples include the study of crack propagation [1] and the study of
creep mechanisms in metallic foams [2].

At a macroscopic scale, the physical description of metallic materials as con-
tinuous media is often legitimate. However, from a numerical point of view,
modeling the typical architectural discontinuities, and more specifically their
interactions and topological changes, can be challenging within a continuous
framework. Many strategies have been developed to extend the scope of con-
tinuous descriptions, among which:

• Dissociating material and mesh motions, with an Eulerian [3, 4, 5] or
an Arbitrary Lagrangian-Eulerian [6, 7, 8] kinematical description of the
materials.

• Sequentializing a large distortion in smaller steps, periodically re-generating
a Lagrangian mesh [9].

• Super-imposing discontinuities description on top of a continuous frame-
work, using additional discontinuous arbitrary shape functions [10, 11] or a
set of punctual Lagrangian markers, representing material phases [12, 13]
or interfaces [14].

• Discretizing the materials using a cloud of nodes instead of a mesh. The
continuum constitutive law can be integrated globally for the whole sys-
tem [15, 16, 17], or locally in the neighborhood of each node, for example
in smooth particle hydrodynamics [18, 19] or non-ordinary state based
peridynamics [20, 21] formulations.

A common denominator of these strategies is to derive the local behavior
from the macroscopic continuous constitutive law. A distinct route is to de-
scribe the material as a set of discrete objects, using ad hoc interaction laws
between neighboring objects. Such models are innately suited to describe ma-
terials where interfaces motions and interactions are predominant with respect
to the continuous behavior.

This approach has historically been used in early attempts to numerically
solve solid mechanics problems on arbitrary shapes [22]. In the last decade, vari-
ants of the Molecular Dynamics methodology, as the Discrete Element Method
(DEM) and bond based peridynamics, have successfully been applied to model
elastic continuous media. Three-dimensional work in solid mechanics include
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the modeling of dynamic brittle failure [23, 24], crack propagation [25] and
quasi-static buckling [26]. They all demonstrate the possibility to design and
calibrate local interaction DEM laws to display a targeted continuous macro-
scopic behavior. To our knowledge, these work rely on initially pairwise bonded
neighbors, and only allow volumetric strain plasticity [27] [28, p.153], plasticity
and viscoplasticity being implemented at the pairs levels. Hence, modeling high
strain in metallic alloys is hindered by the total Lagrangian description and
the lack of isochoric plasticity mechanisms. Other potential extensions of the
Molecular Dynamics, like the Movable Cellular Automaton method [29], rely on
many-body interactions for such purposes.

In this paper, we focus on the development of a DEM model describing
incompressible bi-materials for large quasi-static compressive strain. In both
phases, we assume a perfect viscoplastic behavior, described by the Norton law.
One peculiarity of our phenomenological approach is that the local laws have no
alikeness with the macroscopic behavior. Instead of implementing a continuous
behavior at the scale of the numerical discretization, we use the analogy between
the motion of a packing of elastic cohesive spheres, collectively sliding on one
another, with the plastic shear in continuous media.

The implemented DEM contact law is described in Section 2 and its cali-
bration procedure in Section 3. The macroscopic behavior of a single material
is discussed in Section 4. The bi-material behavior of the model is tested, and
confronted to continuous models, on elementary geometrical configurations in
Section 5. A potential application of the methodology to an experimental mi-
crostructure is illustrated in Section 6.

2. Attractive-repulsive model

In this paper, continuous media are discretized by packings of interpen-
etrated spherical particles. This section describes the contact laws, used to
compute interaction forces, between the particles. As in classical DEM imple-
mentations, interaction forces FA→B = −FB→A are computed for each pair of
indented particles (A,B) from their distance h and relative velocity VB − VA

(Figure 1). Time is discretized in constant steps ∆t and the motion of the par-
ticles are integrated from Newton’s second law using a Velocity Verlet explicit
scheme. While the interaction forces are computed at the level of each pair, as
described in this section, it must be understood that our model can only display
the expected behavior for a packing of particles collectively interacting.

The main objective of the contact model is to maintain a cohesive packing,
able to re-arrange itself with controlled overall volume change. Thus, at the pair
level, interaction must alternatively be attractive and repulsive. Among the pos-
sible algorithmic strategies, we chose to use a purely geometrical management
of the contacts, with no history parameter stored between the time steps. Each
particle is subdivided into two concentric and spherical zones (Figure 1a) with
distinct behaviors:

• A repulsive seed, mimicking incompressibility, of radius Rseed (Figure 1b);
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• An attractive crown, adding cohesiveness, of radius Rcrown > Rseed.

Rseed Rcrown

h

VA
VB

A B

(a)

FB→A FA→BA B

(b)

Figure 1: Pairwise interactions. (a) Geometry and kinematics of a pair: relative position
and velocities. Seed contact example. (b) Interaction reciprocal forces: FA→B = −FB→A.
Pairwise forces, computed from the kinematics of the pair (Equation 1).

In both zones, seed and crown, the model is governed by normal elastic forces
FN (Equation 1 and Figure 2). The interaction force is piecewise linear with h,
the distance between the centers of the two particles. Two normal stiffnesses
are used: krep for repulsive seed contact and katt for attractive crown contact.
Each particle has a numerical mass m, used in the integration of the motion.

The attractive behavior, in the crown zone, depends on the relative normal
velocity ḣ (time derivative of h). The attractive force is only activated if a pair
has a tensile motion (ḣ > 0), and is canceled in case of compressive motion
(ḣ ≤ 0). This behavior helps to smooth the creation of new contacts between
particles and introduces a dissipative effect of the total energy, numerically suf-
ficient within the strain rate validity range of the model, linked to the frequency
of oscillation of the pairs. At the pair level, no damping, shear or torque interac-
tion laws are implemented. In the tested configurations, such interactions only
introduce second-order effects on the macroscopic behavior of packings. Thus,
in this paper, interactions between particles are only normal pairwise forces and
piecewise linear with the distance between the centers.

FN =











krep(2Rseed − h) if h ≤ 2Rseed (1a)

katt(2Rseed − h) if 2Rseed < h ≤ 2Rcrown and ḣ > 0 (1b)

0 if 2Rseed < h ≤ 2Rcrown and ḣ ≤ 0 (1c)

The possibility for the particles to arbitrarily change neighbors introduces, at
a macroscopic scale, a plastic effect. The interaction laws at the pair level differ
qualitatively from the targeted physical phenomena. To represent a continuum,
a large packing of such particles is generated. Various phases can be repre-
sented, assigning in the initial configuration the properties of distinct materials
to clusters of particles.

Two types of boundary conditions (Figure 3) are applied to the packings:

• Free boundary, where particles are not constrained by any means;
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h

FN

2Rseed 2Rcrown

(a)

(b)
ḣ > 0

(c)
ḣ ≤ 0

Figure 2: Definition of the piecewise linear normal interaction force. Dependency on the
normal relative velocity ḣ. Slopes and distances to scale. Cases a, b and c from Equation 1.

• Kinetically constrained boundary, using a rigid mesh following prescribed
motion.

For a uniaxial compression, the following boundary conditions are applied: a top
and bottom planar meshes and free lateral sides (Figure 3b). In this paper, the
meshes are used to apply prescribed macroscopic true strain rate. The forces
acting onto the planes are summed to evaluate the macroscopic flow stress,
computed using updated or initial cross-section.

Interaction forces between the mesh elements and the particles are computed
with a very similar contact law as particle-particle contacts. h is defined as the
shortest distance between an element and the center of a particle (Figure 3a),
and R is to be used instead of 2R in Equation 1. In a mesh/particle contact, the
interaction parameters of the particle are used. Any arbitrary geometry meshed
with triangular planar elements can be used with the implemented model, in
this paper only planar meshes where used.

From their generation to compression tests, the packings go through three
main steps:

1. Random packing generation and relaxation [30];

2. Material properties attribution and relaxation;

3. Uniaxial compression.

The initial state and the elaboration route, in the context of the large strains
studied here, seemed to have little influence on the compression results, and are
not detailed here.

The model was implemented as an independent contact law in the open-
source DEM code LIGGGHTS [31]. In this article, all DEM computations were
run using LIGGGHTS, and all packing visualizations were rendered using the
open-source software OVITO [32].
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Rseed

Rcrown

h

(a) (b)

Figure 3: Boundary conditions. (a) Elementary mesh / particle interaction. Crown contact
example. (b) Compression test: top and bottom meshes with prescribed motion; free lateral
sides.

Summing-up our model, piecewise linear forces, both attractive and repul-
sive, are computed between particles and with meshes. No history is stored,
and the contact management is geometrical.

3. Calibration procedure

This section describes the calibration procedure of the numerical parameters
of the contact model, and the fixed parameters in the scope of this paper. Our
objective is to model a perfect viscoplastic behavior, described as a relation
between the strain rate ε̇ and the flow stress σ, by the Norton law [33, p.106]:

σ = Kε̇M (2)

Where M is the strain rate sensitivity and K is the stress level. All cases
presented in this paper being in compressive state, strain, strain rate and stress
will always be given in absolute value.

As the DEM does not rely on a continuous framework, the numerical pa-
rameters cannot be derived a priori from the targeted macroscopic behavior.
We work here at fixed ratio Rcrown/Rseed = 1.5, to allow a large overlap zone
without catching second neighbors. The seed radius is arbitrarily set to a size
of Rseed = 1mm. The ratio between attractive and repulsive stiffnesses is set
to krep/katt = 10, to guarantee a numerically predominant repulsion. The time
step ∆t is fixed to 5×10−4 s−1, which is from 20 to 2000 times smaller than the
studied natural periods (Equation 3). The force signal, measured on the meshes,
is averaged over a sliding window, of typical width 1×10−2 in strain. The re-
maining parameters to be calibrated are the repulsive stiffness of the contacts
krep and the mass of the particles m.

We propose a two-step calibration procedure, based on uniaxial compression
test simulations, on cubes of single materials:

Step 1. Calibrate the strain rate sensitivity M , tuning the ratio between mass
and repulsive stiffness m/krep.
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Step 2. Calibrate the stress level K, applying a common multiplicative factor
to both mass m and repulsive stiffness krep.

The numerical parameters, obtained independently for each phase, are used in
multi-material simulations without further fitting procedure.

3.1. Strain Rate Sensitivity Calibration

The strain rate sensitivity M of a packing depends on its ability to quickly
rearrange itself, with regard to the prescribed strain rate.

To quantify an image of the reaction time, we use the natural period t0 of
an ideal spring-mass system of stiffness krep and mass m:

t0 = 2π

√

m

krep
(3)

This value is not meant to match the actual oscillation period of particles, but
to quantitatively compare sets of parameters. Packing of 5×103 particles with
natural periods ranging from 1×10−2 to 1 s are compressed at strain rates from
3×10−6 to 1 s−1. The flow stress σ is normalized by the flow stress at the lowest
strain rate σlow. The results (Figure 4), are used to build a master curve of the
strain rate sensitivity behavior.

As shown in Figure 4a, the strain rate sensitivity, i.e. the slope in the space
(ε̇, σ/σlow), is driven by the relation between the natural period and the strain.
A common trend for all configurations (Figure 4b) is clearly exhibited in the
space (t0

√
ε̇, σ/σlow), and approximated by least-square fitting, using a sigmoid

of generic expression:

σ/σlow = a+ b/(1 + exp(c− d · t0
√
ε̇)) (4)

The fitting parameters used here are (a, b, c, d) ≈ (0.9048, 4.116, 3.651, 210.0).
Using this fitted common trend, a master curve is built in the space (ε̇ · t02,M),
summing-up this behavior for all sets of tested parameters (Figure 4c).

Three flow regimes, in terms of strain rate sensitivity, can be identified in
Figures 4c and 4b:

• Plastic: for ε̇ · t02 < 1×10−7 s the strain rate sensitivity is negligible
(M < 4×10−3). A plastic behavior can thus be represented, with stress
variation of the order of magnitude of the expected precision of the model,
valid over various orders of magnitude of strain rates. The packing rear-
ranges quickly enough when deformed, so that variations of strain rate
does not affect the flow structure.

• Collapse: at higher values than ε̇ · t02 > 3×10−3 s, the packing is not
reactive enough for the particles to collectively cope with the strain. The
strain localizes next to the moving planes, the flow stress drops and the
macroscopic equilibrium is lost. Such configurations are not suitable for
our purpose.
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Figure 4: Calibration of the strain rate sensitivity. Successive steps toward the master curve.
(a) Influence of the natural period on strain rate sensitivity. Normalized flow stress at a
strain of 0.3 for 5×103 particles versus the prescribed strain rate. (b) Normalization in the
(t0

√
ε̇, σ/σlow) space. Common trend for all natural periods. Sigmoidal fit, see Equation 4.

(c) Master curve of strain rate sensitivity. Three flow regimes.
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• Viscoplastic: in the intermediate window, the ε̇ · t02 value governs the
sensitivity of the packing, up to a maximum of 0.6. In this configuration,
when the strain rate increases, the particles are forced to indent more
to rearrange, leading to higher flow stress. However, the sensitivity is
strongly strain rate dependent, An actual viscoplastic behavior can only
be modeled via an averaged strain rate sensitivity, with a scope of validity
limited to a narrow range of strain rates.

The master curve (Figure 4c) allows to directly choose the natural period
approximating the desired sensitivity at the targeted strain rate. The m/krep
ratio is thus fixed. If the strain rate range is known a priori, the master curve
also gives an approximation of the variation of the strain rate sensitivity within
the strain rate range.

3.2. Stress Level Calibration

For a given kinematical behavior of a packing, the stress level can arbitrarily
be set. The integration of motion, for each particle, relies on the acceleration
computed from Newton’s second law. Hence, a multiplicative factor applied to
both forces and masses leaves the kinematics of a packing, and its strain rate
sensitivity, unchanged. Since our contact laws are linear elastic, we can use a
common multiplicative factor on stiffnesses and masses.

The stiffnesses krep and katt are scaled up to match the desired flow stress
at the targeted strain rate. The mass m is proportionally adjusted, in order to
maintain the correct strain rate sensitivity.

3.3. Scope of Validity

This two-step calibration allows us to reach arbitrary stress level, but dis-
plays limitations regarding the reachable strain rate sensitivity and strain rate.

We cannot model arbitrary strain rates with a given set of parameters. The
numerical strain rate sensitivity depends on the strain rate. This effect can be
controlled for very low sensitivities: a negligible sensitivity can be respected
over various order of magnitudes of strain rate. However, a large tolerance must
be accepted on higher sensitivities, which can only be reasonably approximated
on narrow ranges of strain rate. The model also has intrinsic limits regarding
the reachable strain rate sensitivities. Reaching higher sensitivity would require
lower natural periods, for which the packings collapse and are unable to cope
with the strain.

As a general conclusion for this section, our calibration procedure allows to
choose independently the stress level and the strain rate sensitivity, tuning the
mass of the particles and the stiffness of the contacts. The scope of validity, for
controlled sensitivity, is limited to narrow strain rate ranges.

4. Application to a Single Material

In this section, we apply our methodology to represent arbitrary homoge-
neous single materials. Uniaxial compression is performed on initially cubic
domains.
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As our model relies on a collective motion of particles, a too small packing
will not display the expected behavior (Figure 5). The kinematical behav-
ior of single material cube in uniaxial compression is roughly observed with
a few dozen of particles. With a few hundred of particles, the stress fails to
represent the expected plastic trend, but already exhibits a correct order of
magnitude (Figure 5a). A few thousand of particles allow a controlled relative
error, around 10%. Single material configurations are run in this section with
5×104 particles, with a typical relative error around 2% (Figure 5b). The rel-
ative error is computed with respect to a packing of 1×106 particles, for which
spatial convergence is considered to be reached.
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Figure 5: Spatial convergence for single material, from 30 to 1×106 particles. (a) Flow stress
versus strain, using five distinct initial random packings for each packing size. (b) Relative
error versus packing size, in regards to the converged simulation (1×106 particles packing).

In this paper, the behavior of the phases are inspired from an experimental
setup: the hot forming at 400 ◦C of a metallic composite, composed of a pure
copper matrix and spherical inclusions of zirconium based bulk metallic glass.
The numerical phases both have a flow stress close to 100MPa in the strain
rate window 1×10−4 – 1×10−3 s−1, but with drastically distinct strain rate
sensitivities. The negligible strain rate sensitivity phase is referred to as A,
with a low natural period, the high sensitivity phase is referred to as B, with
a high natural period. The corresponding numerical parameters are given in
Table 1.

A key feature expected for a set of parameters is the conservation of the
packing volume. The volume of the packings is estimated reconstructing a
polyhedral mesh, using an algorithm implemented by Stukowski [34], based on
the alpha-shape method. For both phases, the volume variation depends little
on the strain rate. The prescribed compression decreases the volume, typically
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Phase Discrete parameters Continuous parameters
Scale of the pairs Macroscopic behavior

krep m t0 M K
➭N ·mm−1 g s / MPa · sM

A 6.23×109 1.58×104 1×10−2 2.45×10−3 9.59×101

B 2.65×109 4.29×107 8×10−1 4.90×10−1 5.02×103

Table 1: Numerical parameters for the two phases. Time step ∆t = 5×10−4 s−1. Radii
Rcrown = 0.75mm, Rseed = 0.5mm. Stiffness ratio krep/katt = 10.

about 5% for A and 10% for B (Figure 6). Before reaching a somewhat stable
flow regime, the packing volume decreases in first 0.2 of strain. Most of the
volume variation occurs within this initial stage, the volume then stabilizes on
a plateau before a final increase of the error at larger strains, above 0.6. This
trend, and its initial transitory regime, will also be observed for the flow stress
(Figure 9a).
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Figure 6: Volume conservation for single material. Relative error on volume versus strain for
5×104 particles.

Regarding the kinematical behavior of a packing (Figure 7), the overall
cuboidal shape is conserved, but the sharp edges tend to be blurred along with
the strain. This is understood as an effect of the surface tension induced by
the attractive component of the contact law. As the discretization by parti-
cles creates local defects in the geometry, the initially flat faces become slightly
wavy.

In order to simulate quasi-static phenomena, the behavior of the packing
must be independent from the way the strain is applied. The total forces acting
on the boundary conditions, the top and bottom meshes, respectively mobile
and fixed, must balance. If a mesh moves too fast, the macroscopic equilibrium
is lost and the strain localizes next to the moving plane. At a given strain rate,
the equilibrium relative error depends on the natural period, but is of the same
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Front view

Top view
Strain (/) 0 0 0.32 0.66 1
State Initial Relaxed Compressed

Figure 7: Single material packing. Natural period 0.8 s, strain rate 3.16×10−4 s−1, 5×104 par-
ticles.

order of magnitude for all strains. The equilibrium error (Figure 8) is always
inferior to 0.1% for both phases in the studied strain rate range.
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Figure 8: Macroscopic equilibrium for single material. Relative error versus strain rate for
5×103 particles, strain 0.3. Effect of the natural period.

Typical profiles of stress-strain curves are presented Figure 9a. In this sec-
tion, the true stress is computed using an estimation of the cross-section, based
on the current macroscopic strain and the initial volume, assuming its variations
(Figure 6) are acceptable. As for the volume evolution, a transitory stage can be
observed at the beginning of the deformation, where the stress rises to reach the
plastic plateau. The flow stress then oscillates around a fairly constant value.
An overshoot effect of the stress can be observed at higher strain rates for the
phase B.

For each phase, the values at a strain of 0.3 is used to compute the Norton
approximation, by least-square fitting (Figure 9b and Table 1). As discussed
in Section 3.3, the high sensitivity phase, B, is only valid within one order of
magnitude of strain rate, the approximation is not reasonable when the strain
rate is out of the studied range.
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Figure 9: Single materials. Flow stress and strain rate sensitivity. (a) Flow stress vesrus
strain. Effect of the strain rate. Phase B. (b) Norton law approximation for phases A and
B, based on flow stress values at a strain of 0.3. Strain rate sensitivity of both phases in the
range 1×10−4 – 1×10−3 s−1.

To sum-up, two phases, with distinct strain rate sensitivities, are indepen-
dently defined in this section, with a Norton law approximation of their contin-
uous properties. Numerical properties and precision are evaluated.

5. Application to Bi-Materials

The DEM parameters have been calibrated separately for each phase. Keep-
ing in mind the limitations of the single material model, we here evaluate the
reliability of the model for bi-material composites. Three elementary geomet-
rical bi-material configurations are studied: parallel, series and spherical inclu-
sion. The three geometries are discretized with 5×104 particles and uniaxially
compressed up to a strain of 0.3, at prescribed strain rates. In the studied
configurations, interaction parameters at the interfaces had little influence on
the macroscopic results. they have been set to the average of the parameters of
phase A and B. The shape of the phase and the engineering macroscopic stress
are used to compare the results with analytical and FEM references, for various
volume fractions. The choice of engineering over true stress allows to use a
simple and consistent comparison metric: no unique true stress can be defined
for non homogeneous strain configurations.

Total Lagrangian FEM simulations, well suited for our elementary geomet-
rical configurations and limited strains, are run using Code Aster [35]. The
visualization of the FEM results are rendered using PARAVIEW [36]. The
quadratic tetrahedral elements used rely on an incompressible finite transfor-
mation formulation. Top and bottom nodes follow prescribed vertical motion
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and lateral sides deform freely. The geometrical models are reduced using the
symmetries of the problems, while the DEM simulate the full geometries. In
FEM, at the interface between two phases, the nodes are shared, prohibiting
any relative motion, which is the most severe difference with our DEM simula-
tions. In the experimental background of this study, the phases have very little
adhesion at the interface. Both materials follow a Norton law. The phase B uses
the continuous parameters identified in Section 4 (Table 1). To allow an easier
numerical convergence of the model, the numerical strain rate sensibility of the
phase A is slightly increased for the FEM simulations (M = 3.05×10−2 and
K = 120MPa · sM ). In the range 1×10−4 – 1×10−3 s−1, the induced relative
error on the flow stress is ±3%.

5.1. Parallel Configuration

A cube is vertically divided into two cuboidal phases, for various volume
fractions, and vertically compressed at constant strain rates. The engineering
stress is compared to a mixture law, linear with the volume fraction.

In this simple configuration, little interaction should take place between
the phases, and in ideal conditions, a homogeneous strain for both phases is
expected. In the DEM simulations, the global geometry of each phase remains
close to a cuboid along the deformation (Figure 10).

0

0.3

0 0.25 0.5 0.75 1
Strain (/) Volume fraction phase B (/)

Figure 10: Bi-material parallel configuration. Front view, transverse section. Strain rate
4.64×10−4 s−1.

At given strain rate ε̇, the true stress in the phases being independently
defined by the Norton law, the global true stress σtrue can be computed with
an elementary mixture law [37, p.99], linear with the volume fraction f of the
phase B:

σtrue(f, ε̇) = f ·KBε̇
MB + (1− f) ·KAε̇

MA (5)

To provide a consistent metric for all configurations, the engineering stress
σengineer is used as reference. It is computed at a given strain ε (Equation 6),
based on the true stress and the volume conservation:

σengineer(f, ε̇, ε) = exp (−ε) · σtrue(f, ε̇) (6)

The engineering stress-true strain profile, as in single material configuration, dis-
plays a transitory regime, typically in the first 0.15 of strain, with a progressive
rise towards the flow stress (Figure 11a).
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The DEM model is able to capture, at the precision of the single phases,
the linear pattern of flow stress with the volume fraction (Figure 11b). With
a rougher discretization, for example only a thousand particles per phase, the
result remains qualitatively close, degrading the accuracy by a few percent.
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Figure 11: Bi-material parallel configuration. Effect of the strain rate on the flow stress.
Theoretical reference: mixture law from Equation 6. (a) Engineering flow stress versus
strain. Fixed volume fraction: 0.5. (b) Linear trend of the engineering flow stress, at a strain
of 0.3, with the volume fraction.

5.2. Series Configuration

A cube is horizontally divided into two cuboidal phases, for various volume
fractions, and vertically compressed at constant strain rate. Using symmetry,
one fourth of the geometry is modeled with the FEM, using approximately
1.3×103 nodes. For the full geometry, the ratio DEM particles to FEM nodes
would be a little under 10.

In this geometrical configuration, the strain is not a priori homogeneous
anymore. Due to distinct strain rate sensitivities, one phase preferentially de-
forms depending on the strain rate, which is qualitatively observed both in FEM
and DEM simulations. Qualitatively (Figure 12), phase B (bottom phase) de-
forms more at lower strain rate. Phase A, at high strain rates, deforms more
homogeneously in DEM than in FEM, possibly due to more permissive contact
conditions between phases. Thus, the ”mushroom” shape is slightly blurred in
this strain rate range.

FEM and DEM are in good agreement, after the transient regime observed
in DEM, within a few percents of relative error (Figure 13a). In the strain
rate validity range, the DEM model is thus able to capture the final flow stress
evolution with respect to the volume fraction (Figure 13b). As a side note, the
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Strain rate (s−1) 1×10−4 2.15×10−4 4.64×10−4 1×10−3

DEM

FEM

Strain (/) 0 0.3

Figure 12: Bi-material series configuration. Volume fraction 0.5. Bottom phase: B (high
sensitivity). Front view, transverse section.

heterogeneity of the strain in the series configuration is responsible for a nonlin-
ear variation of the flow stress with respect to the volume fraction. This effect of
the geometry of the bi-material, clearly displayed at 1×10−3 s−1 (Figure 13b),
is correctly reproduced.
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Figure 13: Bi-material series configuration. Effect of the strain rate on the flow stress. Nu-
merical reference: FEM simulations. (a) Engineering flow stress versus strain. Fixed volume
fraction: 0.5. (b) Non-linear trend of the engineering flow stress, at a strain of 0.3, with the
volume fraction.

5.3. Spherical Inclusion Configuration

A single spherical inclusion of phase B is placed in the center of a phase A
cube, with a fixed volume fraction of 20% of phase B inclusion. Using symmetry,
one eighth of the geometry is modeled with the FEM, using 2.1×103 nodes. For
the full geometry, the ratio DEM particles to FEM nodes would be a little
under 3.
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Qualitatively, two typical kinematical tendencies of the matrix are displayed
in FEM (Figure 14), with an intermediary state of homogeneous co-deformation:

• A barrel shape of the sample, when the flow stress of the inclusion is low,
at lower strain rates;

• An hourglass shape, when the flow stress of the inclusion is high, at higher
strain rates.

In the FEM simulations, the hourglass shape of the matrix is strongly em-
phasized by the non-sliding interface between phases. While the barrel shape is
easily displayed at low strain rates in DEM, the hourglass shape is only clear at
higher strain rates, outside the validity domain studied range.

Strain rate (s−1) 1×10−4 2.15×10−4 4.64×10−4 1×10−3

DEM

D

H

FEM

Strain (/) 0 0.3

Figure 14: Bi-material spherical inclusion (phase B) configuration. Front view, transverse
section. Illustration of the height H and diameter D used to compute the shape factor Sf

(Equation 7).

Although we would expect lower stresses with a less constrained system,
the flow stress is overestimated (Figure 15b), by about 10% on the studied
strain rate range, even if the tendency is acceptable after the transient regime
(Figure 15a).

To quantitatively compare the models from a kinematical perspective, we
study the macroscopical shape factor Sf of the inclusion, which is less sensitive
than the matrix shape to the interface definition. This factor (Equation 7) is
the ratio of the inclusion height H, in the compression direction, and diameter
D (Figure 14), averaged in all perpendicular directions:

Sf = H/D (7)

For the DEM simulations, this value is approximated computing the shape factor
of an equivalent ellipsoid, having the same inertia matrix as the cloud of particles
modeling the inclusion. At all strain rates, at the very beginning of the applied
strain (Figure 16a), the inclusion remains roughly spherical for a few percent
of strain, and follow a similar trend as in FEM after the transient regime.
In the validity range of the phase B, the final shape factor (Figure 16b) is
underestimated with a relative error of about 5%. The inclusion deforms more
in DEM than in FEM.
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Figure 15: Bi-material spherical inclusion configuration. Effect of the strain rate on the flow
stress. Numerical reference: FEM simulations. Unique volume fraction of inclusion (phase B):
0.2. (a) Engineering flow stress versus strain. (b) Engineering flow stress versus strain rate,
at a strain of 0.3.
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Figure 16: Bi-material spherical inclusion configuration. Effect of the strain rate on the shape
factor of the inclusion. Numerical reference: FEM simulations. Unique volume fraction of
inclusion (phase B): 0.2. (a) Shape factor versus strain. (b) Shape factor versus strain rate,
at a strain of 0.3.
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To evaluate the error on the shape factor depending on the roughness of
the discretization, an identical geometry is modeled with smaller packings of
particles. The relative error for the final shape factor is computed using the
1×106 particles configuration as reference, where 1×105 particles discretize the
inclusion. For each size, five random initial packings are tested. The chosen test
case is harsh for our model: for the smaller packings, the meshes may interact
directly with the particles of the inclusion at the end of the deformation.

0 0.05 0.1 0.15 0.2 0.25 0.3

0.6

0.8

1

1.2

Strain (/)

S
h
ap

e
fa
ct
or

H
/D

Particles in

inclusion (/)

2×101

2×102

2×103

2×105

(a)

101 102 103 104 105

10−2

10−1

100

101

Number of particles in the inclusion (/)

R
el
at
iv
e
er
ro
r
on

sh
ap

e
fa
ct
or

(%
)

Strain (/)
0.3
0

(b)

Figure 17: Bi-material spherical inclusion configuration. Spatial convergence: effect of the
number of particles discretizing the inclusion on the shape factor. (a) Shape factor versus
strain. Typical results for three (out of a total five computed) random packings. (b) Error
on the shape factor versus the number of particles used to discretize the inclusion. Reference
for relative error: 1×105 particles used to discretize the inclusion. Minimum, maximum and
average error for five random packings.

A very rough description of the inclusion, with 20 particles for example,
remains too inaccurate to catch more than an order of magnitude of the de-
forming trend (Figure 17a), and the initial shape factor is already far from a
perfect sphere, with little repeatability. In a realistic context, such a rough dis-
cretization can only reasonably be used to capture the position of an inclusion
in a composite. With a finer discretization, starting with a few hundred parti-
cles, the qualitative trend can be captured and the repeatability improves: it
becomes possible to estimate the necessary discretization for an arbitrary preci-
sion (Figure 17b). The purely geometrical error, on the initial state, is about an
order of magnitude smaller than the final error, after compression. For a final
error under 10%, more than 200 particles must discretize the inclusion.

To sum up, in this section, three elementary geometrical bi-material configu-
rations where tested. The flow stress and the macroscopic geometrical evolution
are compared to FEM simulations. Using a discretization of a few DEM par-
ticles per FEM nodes, the error is of the order of magnitude of the expected
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precision for a single material. The bi-material simulation does not seem to
introduce major error sources. The comparison of the computing time between
the numerical methods must be taken with caution and is not detailed here.
Indeed, in the FEM approach, a non-linear set of equations must be solved at
each time step, the computing time may vary by several orders of magnitude
for different strain rates or material parameters. The DEM model computing
time is much more calculable, which is discussed at the end of Section 6.

6. Computation on a Real 3D Full Sample

As an illustrative example, the methodology is applied to the real 3D mi-
crostructure of a full sample, obtained by X-ray microtomography at the ESRF
(beamline ID19). The studied material is a metallic composite, with a crys-
talline copper matrix and spheroidal inclusions of amorphous zirconium alloy.
The total volume of the sample is approximately 0.5mm3, containing a volume
fraction of inclusion of 15%, with diameters up to a few dozens of micrometers.
The voxelized image has a size of 594×591×669 voxels, with a voxel size of
1.3 ➭m. The purpose of this section is not to compare quantitatively numerical
results and experimental in situ results [38], but to underline the potential of
the method for large arbitrary data sets.

Starting from the three-dimensional voxelized image, used as a mask on
a random packing of particles, the discretization of the geometry has a low
algorithmic cost:

1. An 3D image is binarized in two colors: matrix and inclusions;

2. A cuboidal random packing is built, with the same aspect ratio as the
image;

3. The image is fitted to the size of the packing, using an affine transforma-
tion;

4. For each particle, the color at its center is used to set the material type.

For very large data sets, a smaller periodic packing can be replicated in all
directions, minimizing the cost of generation of this initial packing.

The used packing contains about 3.36×106 particles, with a number of voxels
to number of particles ratio of 70. As shown in Figure 18, about 170 physical
inclusions are discretized, using between 500 and 5 discrete element particles
each. The rough discretization of the smallest inclusions, for example the further
left inclusion in Figure 19, is not precise enough to allow a strain evaluation, only
the inclusion position can be tracked. For the bigger inclusions, the expected
error on the shape factor after 0.3 of strain is around 10% (Figure 17b).

The sample is uniaxially compressed up to 0.3 at 1×10−3 s−1. Local and
global illustrations are given in Figures 18 and 19, with relative displacement and
deformation of the inclusions. The computation was run on an Intel Xeon E5520,
using 8 processors. The 6×105 steps for 3.36×106 particles where executed
in 8×105 s, less than 10 days. The computation time is linear with the number
of steps and of particles. As long as the load is properly balanced between
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processors and that the geometry of the sub-domains keeps the volume of the
communications between processors reasonable, the DEM solver scales properly
with the number of processors. On the studied geometries, the roughly cuboidal
overall shape of the samples allows simple dynamic balance of the load between
processors. The computing time can thus be reliably estimated on a given
machine, roughly 3×10−6 cpu second per particle and per time step, for a single
processor in the given example.

Tomography DEM simulation

200 ➭m

Strain 0 0.15 0.3

Figure 18: Discretization and compression of the full sample. 3D view of the inclusions only,
the matrix is hidden. Vertical compression axis.

Tomography DEM simulation

50 ➭m

Strain 0 0.15 0.3

Figure 19: Zoom on a local configuration. Discretization and compression. Cross-section of
the matrix and the inclusions. Vertical compression axis.

This section illustrated that the proposed methodology can be applied to
large arbitrary real microstructure data. The discretization has low algorithmic
cost, but the model does not allow yet a simple way to locally adapt the dis-
cretization roughness. The cost of the computation can be reliably estimated
as the model does not depend on non-linear resolutions.
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7. Conclusion

In this paper, we propose a DEM model for large compressive strains in plas-
tic and viscoplastic continuous media. The continuous materials are discretized
with packings of spheres, with attractive and repulsive interaction forces. A
double-radius model is implemented, to geometrically manage the history of
the contacts. The interaction laws are kept as elementary as possible, with no
damping or tangential forces, which provides only second order improvements
of the behavior.

A calibration of the numerical parameters is proposed to target continuous
parameters, approximating a macroscopic viscoplastic Norton law. This model
can represent large strains and shape changes of dense materials under uniaxial
compression, with a controlled macroscopic volume variation. After a transitory
regime at the beginning of the strain, the flow stress and volume stabilize to a
plateau value. Despite limitations, in terms of reachable strain rate sensitivities
and strain rate validity range, the viscoplastic approximation is valid over several
orders of magnitude of strain rate at low sensitivities.

Elementary bi-material geometries are compared to analytical and FEM ref-
erences. At the first order, the inaccuracies in bi-material configurations seem
to derive directly from the limitations on the single phase materials. The order
of magnitude of the error on macroscopic flow stresses is in both cases 10%
in tested configurations. Developing better single material model should lead
to better composite description. Ongoing work focus on widening the validity
range in strain rate, and on other solicitation types, like tension or torsion.

The discretization of a real full sample geometry, from a voxelized three-
dimensional image, has a low algorithmic cost. For the time being, no size
adaptivity mechanism has been implemented, as large data sets can be handled
through the parallelization of the computing effort. Further developments could
allow a local refinement of the discretization of the geometry.

The methodology cannot be as accurate as the FEM to model a continuous
medium. However, to describe phenomena where the motions of the disconti-
nuities and their interactions are predominant, the DEM is innately suited and
provides a numerically robust alternative. No complex non-linear system has to
be solved at each time step, thus the computation time can be predicted and
kept under control. An intended extension of the model is the description of
self-contact, for example in metallic foam deformation. Other extensions are the
description of topological changes, naturally handled in the DEM framework,
for example pore closure or phase fragmentation in composites.
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[10] Marc Bernacki, Stéphane Andrietti, Jean-Loup Chenot, Pierre-Olivier
Bouchard, Lionel Fourment, Elie Hachem, and Etienne Perchat. Recent
and future developments in finite element metal forming simulation. Com-
puter Methods in Materials Science, 15:265–293, 2015.

[11] Yixiu Shu, Yazhi Li, Minge Duan, and Fan Yang. An X-FEM approach for
simulation of 3-D multiple fatigue cracks and application to double surface
crack problems. International Journal of Mechanical Sciences, 2017.

[12] Deborah Sulsky, Shi-Jian Zhou, and Howard L. Schreyer. Application of a
particle-in-cell method to solid mechanics. Computer Physics Communica-
tions, 87, 1995.

23
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Notation

General convention

Z scalar

Z vector

Z tensor of order two

Main Introduced Notation

a particle acceleration

αen angle threshold between n and en in self-contact detection; Section 9.5

αij angle threshold between both n in self-contact detection; Section 9.5

d particle diameter

D density of particle; Section 8.6

∆t time step

E continuous medium Young’s modulus

en unit vector from a particle to its neighbor

Ek kinetic energy; Section 8.6

Ep potential elastic energy; Section 8.6

ε uniaxial macroscopic strain

ε strain

ε̇ uniaxial macroscopic strain rate

f signed norm of the interaction force

f interaction force

fatt attractive pair force threshold; Section 9.1

h distance between two particles

i indentation of a pair

I inertial numer; Section 8.6

ir relative indentation of a pair (indentation/radius)
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k generic interaction stiffness

K stress level in the Norton law; Equation 11.1 on page 120

K stiffness level; Section 8.6

katt attractive pair stiffness; Section 9.1

krep repulsive stiffness; Section 9.1

l branch vector, pointing from the center of the particle to the center of its neighbor

m particle mass

M strain rate sensitivity in the Norton law; Equation 11.1 on page 120

N number of particles in the system

n particle outward vector; Section 9.5

Nmag magnitude threshold on n in self-contact detection; Section 9.5

Nn inverse of the strain rate sensitivity in the Norton law; Equation 11.1 on page 120

ν continuous medium Poisson’s ratio

P confinement pressure; Section 8.6

Q energy ratio; Section 8.6

r generic particle radius

rcrown particle crown radius; Section 9.1

rseed particle seed radius; Section 9.1

ρ continuous medium density

σ uniaxial macroscopic stress

σ macroscopic stress

t time

t0 image of natural period; Equation 8.4 on page 90

Tg amorphous metallic alloy glass transition temperature

Tx amorphous metallic alloy crystallization temperature

v particle velocity

Vtot volume of the system

x particle position

Xwall multiplicative factor for mesh/particle interactions; Section 9.1



Glossary

BILIN custom interaction law; defined in Section 9.1 and Equation 9.1; applied in
Part IV.

TRILIN custom interaction law; defined in Section 9.1 and Equation 9.2; applied in
Part V.

ALE arbitrary Lagrangian Eulerian; Chapter 4 [58].

bondPD bond-based peridynamics; Section 5.3.2.2 [209].

BSD-3 3-clause Berkeley Software Distribution (BSD) license.

C complied programming language.

C++ complied programming language; isocpp.org.

CA cellular automata; Chapter 4 [174, Chap. 6].

CD contact dynamics; Section 5.3.2.1.

code aster code d’analyse des structures et thermomécanique pour des études et des
recherches; FEM solver; released under GPL [245].

contact mechanical interaction by contact of interfaces of distinct physical objects.

CPU central processing unit.

CZM cohesive zone model; Section 5.2.1.1.1 [65].

DEM discrete element method; Section 8 [50]; not to be mistaken for the difEM, sharing
the acronym DEM in the literature.

difEM diffuse element method; Section 5.2.1.2 [158]; refered to as the DEM in the liter-
ature.

DSD/SST deforming spatial domain/stabilized space time; Chapter 4 [230].

EDM event-driven method; Section 5.3.2.1 [174, Chap. 3].

EFG element-free Galerkin method; Section 5.2.1.2 [23].

ESRF European synchrotron radiation facility; Section 2.4.

FEM finite element method; Section 5.2.1.1.1 [55].
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finite transformation mechanical transformations involving large (but not infinite)
strain, displacement or rotation; for which the difference between reference and
deformed configurations is not considered negligible [192, p.59]; in contrast with
infinitesimal transformations.

fortran complied programming language; www.nag.co.uk/sc22wg5.

FVM finite volume method; Chapter 4.

GFDM generalized finite difference method; Section 5.2.1.2 [135].

GPGPU general-purpose computing on graphics processing units.

GPL GNU’s Not Unix (GNU) general public license.

GPU graphics processing unit.

lammps large-scale atomic/molecular massively parallel simulator; MD solver software [172];
released under GPL.

LBM lattice Boltzmann method; Chapter 4.

LGPL GNU’s Not Unix (GNU) lesser general public license.

liggghts lammps improved for general granular and granular heat transfer simulations;
DEM solver software forked from [120]; we refer in our work to the public version,
released under GPL.

MCA movable cellular automata; Section 5.3.2.2 [177].

MD molecular dynamics; Section 5.3.2.2 [183].

Mka3D discrete formalism for continuous media; Section 5.2.2 [154].

MLIRT moving Lagrangian interface remeshing technique; Section 5.2.1.1.2 [37].

MPI message passing interface.

MPM material point method; Section 5.2.1.1.2 [225].

NEM natural element method; Section 5.2.1.2 [223].

NSCD nonsmooth contact dynamics; Section 5.3.2.1 [110].

OpenMP open multi-processing.

ovito open visualization tool; particle data analysis and visualization software [220];
released under GPL.

PAF particle and force method; Section 5.2.2 [52].

paraview data analysis and visualization sofware [100]; released under 3-Clause BSD
License.

PDE partial differential equation.

PFEM particle finite element method with moving mesh; refered to in the literature as
the PFEM; Section 5.2.1.1.1 [107].

www.nag.co.uk/sc22wg5
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PFEM2 particle finite element method with fixed mesh; referred to in the literature as
the PFEM-2; Section 5.2.1.1.2 [190].

PIC particle in cell method; Section 5.2.1.1.2 [225].

PSFL python software foundation license.

PUM partition of unity method; Section 5.2.1.2 [150].

python interpreted programming language; released under PSFL; www.python.org.

RPKM reproducing particle kernel method; Section 5.2.2 [136].

salome computer aided design and pre/post processing sofwares for FEM; including a
fork of paraview; released under LGPL; http://www.salome-platform.org/.

salome-meca generic FEM framework, including and salome; released under LGPL.

self-contact mechanical interaction by contact of the interfaces of a single physical ob-
ject.

SEM scanning electron microscopy.

SPH smooth particle hydrodynamics; Section 5.2.2 [130].

SPS spark plasma sintering.

statePD state-based peridynamics; Section 5.2.2 [210].

STZ shear transformation zone; proposed mechanism for inelastic strain in amorphous
metallic alloys; [11].

XFEM extended finite element method; Section 5.2.1.1.3 [157].

www.python.org
http://www.salome-platform.org/
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[73] Antoine Ferré. Élaboration et caractérisation 3D de l’endommagement dans les
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[114] Mohamed Jebahi, Damien André, Inigo Terreros, and Ivan Iordanoff. Discrete
element method to model 3D continuous materials. Wiley, 2015.

[115] Avinash C. Kak and Malcolm Slaney. Principles of computerized tomographic imag-
ing. Classics in Applied Mathematics. Society of Industrial and Applied Mathemat-
ics, 2001.

[116] Ken Kamrin, Chris H. Rycroft, and Jean-Christophe Nave. Reference map technique
for finite-strain elasticity and fluid–solid interaction. Journal of the Mechanics and
Physics of Solids, 60(11):1952–1969, 2012.
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[169] Löıc Perrière and Yannick Champion. Phases distribution dependent strength in
metallic glass–aluminium composites prepared by spark plasma sintering. Materials
Science and Engineering: A, 548:112–117, 2012.

[170] Charles S. Peskin. Flow patterns around heart valves: a numerical method. Journal
of computational physics, 10(2):252–271, 1972.

[171] Yuri P. Petrov and Valery S. Sizikov. Well-posed, ill-posed, and intermediate prob-
lems with applications, volume 49 of Inverse and ill-posed problems. Walter de
Gruyter, 2005.

http://www.trnicely.net/pentbug/pentbug.html
http://www.trnicely.net/pentbug/pentbug.html


276 BIBLIOGRAPHY

[172] Steve Plimpton. Fast parallel algorithms for short-range molecular dynamics. Jour-
nal of computational physics, 117(1):1–19, 1995.

[173] Alexander Podlozhnyuk, Stefan Pirker, and Christoph Kloss. Efficient implemen-
tation of superquadric particles in discrete element method within an open-source
framework. Computational Particle Mechanics, 4(1):101–118, 2017.
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[197] Ulrich Rüde. Algorithmic efficiency and the energy wall. 2nd workshop on power-
aware computing, July 2017.

[198] Michel Saby, P.-O. Bouchard, and Marc Bernacki. Void closure criteria for hot
metal forming: a review. Journal of Manufacturing Processes, 19:239–250, 2015.

[199] Malcolm Sambridge, Jean Braun, and Herbert McQueen. Geophysical parametriza-
tion and interpolation of irregular data using natural neighbours. Geophysical Jour-
nal International, 122(3):837–857, 1995.

[200] Sandia National Laboratories. LAMMPS benchmarks. lammps.sandia.gov/

bench.html, June 2017.

[201] Sandia National Laboratories. LAMMPS FAQ (frequently asked questions).
lammps.sandia.gov/FAQ.html, June 2017.

[202] N. Sator, S. Mechkov, and F. Sausset. Generic behaviours in impact fragmentation.
Europhysics Letters, 81(4):44002, 2008.

[203] Stewart Schlesinger. Terminology for model credibility. Simulation: Transactions
of the Society for Modeling and Simulation, 32, March 1979.

[204] Christopher A. Schuh, Todd C. Hufnagel, and Upadrasta Ramamurty. Mechanical
behavior of amorphous alloys. Acta Materialia, 55(12):4067–4109, 2007.

[205] Samuel M. Selby, editor. Standard mathematical tables. The Chemical Rubber Co.,
17 edition, 1969.

lammps.sandia.gov/bench.html
lammps.sandia.gov/bench.html
lammps.sandia.gov/FAQ.html


278 BIBLIOGRAPHY

[206] Brigitte Servatius and Herman Servatius. Generic and abstract rigidity. In
Michael F. Thorpe and Phillip M. Duxbury, editors, Rigidity theory and appli-
cations, Fundamental Materials Research, pages 1–20. Springer, 1999.

[207] H. W. Sheng, W. K. Luo, F. M. Alamgir, J. M. Bai, and E. Ma. Atomic packing
and short-to-medium-range order in metallic glasses. Nature, 439(7075):419–425,
2006.

[208] Robin Sibson. A brief description of natural neighbor interpolation. Interpreting
multivariate data, pages 21–36, 1981.

[209] Stewart A. Silling and Ebrahim Askari. A meshfree method based on the peridy-
namic model of solid mechanics. Computers & structures, 83(17):1526–1535, 2005.

[210] Stewart A. Silling, M. Epton, O. Weckner, J. Xu, and E. Askari. Peridynamic states
and constitutive modeling. Journal of Elasticity, 88(2):151–184, 2007.

[211] J. C. Simo and T. J. R. Hughes. Computational Inelasticity, volume 7 of Interdis-
ciplinary Applied Mathematics. Springer, 1998.

[212] Gérard Simon. L’astrologie de Kepler: le sens d’une réforme. L’astronomie, 86:325,
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