SIDE-CHANNEL ATTACKS

Data and computation are the physical quantities in a physical structure, for example, the charge on a capacitor or a transistor's state. As embedded systems increasingly find applications in communication, medical object, tracking, and other services an adversary can access a device and analyse device's physical quantities. Leaked physical information can be used to extract secret data by side-channel attacks.

 (right)if the heuristic considers first the red, then the blue and finally the green points. . .

INTRODUCTION

Summary

Cryptology continues to co-evolve with state-or-the-art communication and computing technologies. Just as previous technological breakthroughs, such as the telegraph, radio, electro-mechanical devices, and personal computers, compelled cryptography to replace broken or weak ciphers, the advert of widespread embedded devices induces new cryptographic vulnerabilities. Material vulnerabilities appear at circuit-level, where a malicious user can measure or physically stress transistors' states. Physical observations can be correlated to the processed data by side-channel analysis. Malicious data modifications lead to fault attacks. The emergence of these low layer attacks arises an assumption that cryptography is necessary for private communication and secure processing, but it is not sufficient. As such, cryptographic algorithms must be protected from malicious analysis. This chapter describes secure embedded design essentials. Section 1.1 presents a brief introduction to the history of cryptology, which highlights changes in cryptography after several technological breakthroughs. Section 1.2 describes terminology and cryptographic concepts used throughout the thesis. Section 1.3 provides the technical details of SPN and Feistel block ciphers. Section 1.4 briefly explains public key cryptography and Section1.5 describes digital signatures. All the described cryptographic algorithms are referenced in the following chapters.

A Brief Introduction to Secure Communication

Private communications and secure processing relies on cryptography, defined as the study of techniques for securing digital information, transactions, and distributed computations. The first evidence of cryptography can be traced back to the Ancient Times (about 3000-2000 B.C.), in Babylonia and the Old Kingdom of Egypt [START_REF] Coleman | The Enigmatic Netherworld Books of the Solar-Osirian Unity[END_REF]. Cryptanalysis, the study of breaking cryptographic systems and gaining access to the contents of ciphertexts, has co-evolved with cryptography. The history of encryption is the history of "the contest of wits" between cryptography and cryptanalysis -new ciphers being designed to replace old broken designs, and new cryptanalytic techniques being invented to crack the improved schemes.

Encryption, as much as any other algorithm, can be seen as a sequence of instructions. These instructions describe the computations that transform a plaintext (a clear data) to a ciphertext (a scrambled output). Any computation ultimately involves a computing device, for instance, a smart-card, a tablet, a mobile phone, a personal computer, etc. Hence, among other factors, the computing devices' capabilities are correlated to advances in cryptology, defined as the combined study of cryptography and cryptanalysis.

Looking back into the history of technology helps the understanding of cryptologic achievements. Before the invention of the telegraph in 1844, all ciphertexts were handed physically. Telegraph communications could be easily intercepted, so a need for secure communication over unprotected channels has appeared. At first, a Vigenère cipher was widely used [Sin11]. In 1863, Friedrich W. Kasiski [START_REF] Wilhelm | Die Geheimschriften und die Dechiffrir-kunst[END_REF] discovered a solution to all periodic polyalphabetic ciphers, which until that time were considered unbreakable. Therefore, Vigenère ciphers had to be replaced.

Just as telegraph changed cryptography in 1844, radio changed cryptography in 1895. Now transmissions were open for anyone's inspection, and physical security was no longer possible. Until 1917, transmissions were encoded in Baudot code as for the use with teletypes [START_REF] Mogollon | Cryptography and Security Services: Mechanisms and Applications: Mechanisms and Applications[END_REF]. 1 The American Telephone and Telegraph Company was very concerned with the ease of reading the Baudot code, so Gilbert S. Vernam [START_REF] Vernam | Automatic Telegraph Switching System Plan 55-A[END_REF] developed an encryption machine that added the plaintext electronic pulses to a key to produce ciphertext pulses. Vernam's encryption machine was never widely used but the addition modulo-2 together with the use of the same keystream to encipher and decipher are the basis of modern cryptography.

The use of cryptographic machines dramatically changed the nature of cryptology. Cryptography became intimately related to machine design, and security personnel became involved in the protection of these machines. The basic systems remained the same, while encryption methods became reliable and electromechanical.

The next major advancement in electromechanical cryptography came with the invention of the rotor machine by Theo van Hengel and Rudolf Pieter Cornelis Spengler [MPM + 96] 2 . The rotor is a thick disk with two faces, each with 26 brass contacts separated by insulating material. Each contact on the input (plaintext) face is connected by a wire to a randomly chosen contact on the output (ciphertext) face. Each contact is assigned a specific letter. An electrical impulse applied to a contact on the input face will result in a different letter being an output of the ciphertext face. A single rotor thus implements a monoalphabetic substitution cipher. This rotor is set in a device that takes plaintext input from a typewriter keyboard, and sends the corresponding electrical impulse to the plaintext face. The ciphertext is generated by the rotor, and printed and/or transmitted.

German codes during the Second World War were predominantly based on the 'Enigma' machine [Sin11], which is an extension of the electromechanical rotor machine discussed above. Enigma defined a polyalphabetic substitution cipher, with a period before the repetition of the substitution alphabet that was much longer than any message, or set of messages, sent with the same key. Marian Rejewski could build the first brute-search electro-mechanical device that was dubbed the bomba kryptologiczna or cryptologic bomb. Rejewski has written [START_REF] Rejewski | Mathematical Solution of the Enigma Cipher[END_REF] about the device: "The bomb method, invented in the autumn of 1938, consisted largely in the automation and acceleration of the process of reconstructing daily keys. Each cryptologic bomb (six were built in Warsaw for the Biuro Szyfrów Cipher Bureau before September 1939) essentially constituted an electrically powered aggregate of six Enigmas. It took the place of about one hundred workers and shortened the time for obtaining a key to about two hours."

Shannon was one of the first modern cryptographers to apply advanced mathematical techniques to cryptology. Shannon's seminal paper [START_REF] Shannon | Communication Theory of Secrecy Systems[END_REF] introduces the fundamental secure private communication model still in use as we write these lines. This model, illustrated on Fig. 1.1, describes a communication between the two endpoints, sharing the same secret key K. A transmitter encrypts a plaintext P with K, i.e., C = E K (P). A ciphertext C is then sent to a receiver via an unprotected channel. The receiver recovers the initial plaintext P by decrypting the ciphertext P = E -1 K (C). During transmission, C is observed by an eavesdropper. Her3 goal is to learn P . The sender's and the receiver's goal is to secure the communication channel, so that C could not be decrypted. In Shannon's model, the cryptographic algorithms E K and E -1 K are assumed to be executed inside the two Black Boxes. The adjective black means that Eve does not know the secret material used inside the box, i.e., keys, look-up tables, etc. The word box is used to indicate that there is a mechanism inside the box, which is a publicly known algorithm itself. Shannon's model was developed during an era in which cryptography was mostly reserved for military and governmental use. During that epoch, cipher algorithm design was treated with the strictest secrecy by nations. Nevertheless, when PCs became widespread, the need for encryption in commercial applications increased. This created a need for public cryptographic algorithms. In 1973, the National Bureau of Standards (NBS, which later became the National Institute of Standards and Technology or NIST) issued a public call for a block cipher to be adopted as a standard by the U.S. government. NBS approved the Data Encryption Standard in 1976 [oS77]. This was a historically significant trigger for cipher development.

C = E K (P) P = E -1 K (C)
Just as telegraph and radio changed cryptography in the 19th century, embedded systems drastically influenced cryptography and cryptanalysis at the end of the 20th century. As smart objects increasingly find application in communication, medical, tracking, and other daily services, an adversary can gain access to a device during the encryption process. Gaining physical access to those devices implies that they can be examined and manipulated, so the Black Box assumption is being increasingly put in question. This imposed a significant change in the adversarial model, namely, not only the channel but also endpoints can be attacked as illustrated in Fig. 1.2.

In a nutshell, a physical system, processing a cryptographic algorithm, may suffer from different circuitlevel security flaws. Firstly, a device can leak information: physical observations and measurements may be correlated to the processed data. Secondly, physical stress can modify the algorithm's processing. Malicious data modifications lead to fault analysis used for cryptanalysis [START_REF] Biham | Differential Fault Analysis of Secret Key Cryptosystems[END_REF].

Circuit-level vulnerabilities turned out to be serious threats on par with cryptanalytic attacks [START_REF] Courtois | Cryptanalysis of Block Ciphers with Overdefined Systems of Equations[END_REF], middleware vulnerabilities [KDK + 14], and software vulnerabilities [START_REF] Shin | Evaluating Complexity, Code Churn, and Developer Activity Metrics as Indicators of Software Vulnerabilities[END_REF]. Embedded system design became a systematic problem considered at different abstraction levels [HSTV06], as illustrated in Fig 1 .3. These levels are:

• Protocol level, which performs a security-related function and applies cryptographic methods, often as a sequence of cryptographic primitives. A protocol describes how algorithms should be used. The following functions are typical examples of protocol level abstractions:

-Key agreement -Entity authentication -Secure multi-party computation

• Algorithm level, consisting of the design of cryptographic primitives such as hash functions or block ciphers. For example, AES [START_REF]Advanced Encryption Standard. Federal Information Processing Standard[END_REF], SHA [FIP95], DES [oS77], and others.

• Architecture level, consisting of secure hardware/software partitioning and embedded software techniques to prevent software attacks.

• Microarchitecture level, which deals with the hardware design of the required modules (processors and cryptoprocessors) specified at the architecture level.

• Circuit level, which requires implementing transistor-level and package-level techniques to thwart various physical-layer attacks, such as side-channel and fault analysis, which are the subject of this thesis. The two lowermost levels attracted a lot of attention since the middle of the 1990s. First of all, timing attacks, introduced by Kocher in 1996 [START_REF] Kocher | Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and Other Systems[END_REF], showed that the microarchitecture level can be used to unveil secret cryptographic keys. That same year, Boneh et al. [START_REF] Boneh | On the Importance of Checking Cryptographic Protocols for Faults[END_REF] proposed a theoretical attack revealing a private RSA key by a single random fault injection. Then, in 1998 [START_REF] Kocher | Differential Power Analysis[END_REF], Kocher showed that a circuit's power consumption could also compromise system secrecy. These three articles launched the field of hardware attacks. The low level attacks led to a conclusion that cryptography is necessary for private communication and secure processing, but that is not sufficient. As such, cryptographic algorithms must be protected from malicious analysis, specifically side-channel and fault attacks.

TLS, IKE, ZKP

The ultimate goal of this thesis is to analyse several popular protective schemes, as well as to show ways in which they can be broken. Particular attention is paid to:

• Adapt the Hilbert Huang Transform to break hiding side-channel countermeasures.

• Describe key-dependent distributions leading to "blind" key exposure, i.e., without knowledge of plaintexts and ciphertexts.

• Show that the injecting of multiple faults is feasible against complex systems.

Cryptographic Terminology and Concepts

The following list of terms and basic concepts is used throughout this thesis. The definitions are taken from [START_REF] Hoffstein | An Introduction to Mathematical Cryptography[END_REF][START_REF] Menezes | Handbook of Applied Cryptography[END_REF][START_REF] Gary | Handbook of Finite Fields[END_REF].

• A denotes a finite set called alphabet of definitions. A = {0, 1} is the frequently used binary alphabet.

Note that any alphabet can be encoded in terms of the binary alphabet.

• P denotes a set called the plaintext space. According to Shannon's model illustrated on Fig. 1.1, P ∈ P called a plaintext is an initial data encrypted by a transmitter.

• C denotes a set called the ciphertext space. In Shannon's model, an element C ∈ C is called a ciphertext.

• K denotes a set called the key space. An element K ∈ K is called a key.

• Each element K ∈ K uniquely determines a bijection from P to C, denoted by E K . E K is called an encryption function or an encryption transformation. Note that E K must be a bijection if the process is to be reversed for a unique plaintext message to be recovered from each distinct ciphertext.

• An element K D ∈ K determines a bijection from C to P, denoted by D K D . D K D is called a decryption function or decryption transformation.

• The process of applying the transformation E K to a plaintext P ∈ P is referred to as encrypting P or the encryption of P .

• The process of applying the transformation D K D to a ciphertext C ∈ C is referred to as decrypting C or the decryption of C.

• An encryption scheme consists of a set {E K : K ∈ K} of encryption transformations and a corresponding set D K D : K D ∈ K of decryption transformations with the property that ∀K ∈ K there is a key K D ∈ K such that D K D = E -1 K ; that is, D K D (E K (P)) = P for all P ∈ P. An encryption scheme is also referred to as a cipher.

• The keys K and K D are referred to as a key pair and are sometimes denoted by (K, K D). Note that K and K D could be identical.

• M is the set of messages which can be signed. 4 M consists of strings of symbols from A.

• S is a set of elements called signatures, possibly binary strings of a fixed length.

• Sign A is a transformation from K × M to S, called a signing transformation for entity A5 . The transformation Sign A is kept secret by A, and will be used to create signature for messages from M.

• Ver A is a transformation from the set K -1 × M × S to the set {true, false}. Ver A , called a verification algorithm for A's signatures, is publicly known, and is used by other entities to verify signatures created by A. 1. R is a ring with identity if the ring has a multiplicative identity.

2. R is commutative if "•" is commutative.

3. R is an integral domain if it is commutative with identity and a • b = 0 implies a = 0 or b = 0, for any a, b ∈ R.

4. R is a division ring (also called a skew field) if a nonzero element of R form a group under "•".

5. R is a field if it is a commutative division ring.

If p is prime, then the set F p of integers modulo p with its addition, subtraction, multiplication, and division rules is a field. Finite fields are also sometimes called Galois fields, after Évariste Galois [START_REF] Galois | OEuvres Mathématiques d'Évariste Galois[END_REF], who studied them in the 19th century. Yet another notation for F p is GF(p), in honor of Galois. An additional notation for F p is Z p , although in number theory the notation Z p is more commonly reserved for the ring of p-adic integers.

Definition 3 [Symmetric Cipher] An encryption scheme {E K : K ∈ K}, D K D : K D ∈ K is called symmetric cipher (also symmetric-key, single-key, one-key, and conventional [START_REF] Mollin | An Introduction to Cryptography[END_REF]) if for each key pair (K, K D), it is computationally easy to determine K knowing only K D , and to determine K D knowing only K. 6Two types of symmetric ciphers are commonly distinguished: block ciphers and stream ciphers.

Definition 4 [Block Cipher] A block cipher is an encryption scheme that splits the plaintext P into strings, called blocks, of fixed length n, called the block length, over an alphabet A, and enciphers one block at a time.

Stream ciphers are, in one sense, very simple block ciphers having block length equal to one.

Definition 5 [Keystream] Let K be the key space for a set of encryption transformations. A sequence of symbols K 1 , K 2 , K 3 . . . K i ∈ K, is called a keystream.

Definition 6 [Stream cipher] Let A be an alphabet of q symbols and let E K be a simple substitution cipher with block length 1 where K ∈ K. Let P 1 , P 2 , P 3 . . . be a plaintext string and let K 1 , K 2 , K 3 . . . be a keystream from K. A stream cipher takes the plaintext string and produces a ciphertext string C 1 , C 2 , C 3 . . . where C i = E Ki (P i).

Most well-known symmetric encryption techniques are block ciphers. Two important classes of block ciphers are substitution ciphers and transposition ciphers.

Definition 7 [Simple Substitution Cipher] Let A be an alphabet of q symbols and P be the set of q n strings of length n over A. Let K be the set of all permutations over A. Define for each K ∈ K an encryption transformation E K as:

E K (P) = (K(P 1), K(P 2), . . . , K(P n)) = (C 1 , C 2 , . . . , C n) = C

where P = (P 1 , P 2 , . . . , P n) ∈ P. In other words, replace (substitute) each symbol P i ∈ A in an n-tuple by another symbol K(P i) ∈ A according to some fixed permutation K. E K is called a simple substitution cipher or a mono-alphabetic substitution cipher.

Definition 8 [Simple Transposition Cipher] Consider a symmetric block encryption scheme with block length n. Let K be the set of permutations of the set {1, 2, . . . n}. For each K ∈ K define the encryption function E K (P) = (P K(1) , P K(2) , . . . , P K(n))

where P = (P 1 , P 2 , . . . , P n) ∈ P is the message space. The set of all such transformations is called a simple transposition cipher.

The modern design of most block ciphers is based on the concept of iterated product ciphers. Product ciphers were suggested and analysed by Claude Shannon in his seminal publication [START_REF] Shannon | Communication Theory of Secrecy Systems[END_REF]. To describe product ciphers, the concept of composition of functions is introduced.

Definition 9 [Composition of Functions] Let S,T , and U be finite sets and let f : S → T and g : T → U be functions. The composition of g and f , denoted g • f (or simply gf), is a function from S to U defined by (g • f)(x) = g (f (x)) for all x ∈ S. In practical ciphers, confusion is often implemented as a set of look-up tables or S-boxes, denoted as S.

An S-box is a nonlinear transform used to map a b-bit element into q-bit element:

S : F 2 b → F 2 q (1.1)
During the confusion stage the current n-bit string is fed into an array of m S-boxes, where n = b × m.

The same set of S-boxes may be used in each round, or S-boxes may change from round to round.

The diffusion layer, denoted as D, is a linear transform that reshuffles n-bit inputs.

D : (F 2 b) m → (F 2 b) m (1.2)
The main purpose of diffusion is to spread small input variations over a significant amount of output bits. D is designed so that the output bits of any given S-box are spread over different S-boxes in the next round.

A key mixing operation, denoted as A, combines the n-bit input with an n-bit round key K i .

A | K [i] : F 2 n × F 2 n → F 2 n (1.3)
The round keys K [i] are derived from the master key K according to a key schedule algorithm. The key schedule is often made of a simple confusion-diffusion operations set.

Digital signature is another fundamental cryptographic primitive, which is used in authentication and non-repudiation. The process of signing combines a message and some secret information held by the signing entity into a binary string called a signature.

Definition 11 [Digital Signature] A digital signature scheme consists of three probabilistic, polynomial time algorithms (Gen, Sign, Vrfy) along with an associated message space M = {m i } such that:

• The randomized key-generation algorithm Gen takes as input the security parameter r (in unary). It outputs a pair of keys (K pub , K priv) where K pub is called the public key or the verification key, and K priv is called the private key, the secret key, and the signing key.

• For security parameter r, the (possibly randomized) signing algorithm Sign takes as input a secret key K priv and a message m ∈ M and outputs a signature s. We write this as s ← Sign K priv (m).

• For security parameter r, the deterministic verification algorithm Vrfy takes as input a public key K pub , a message m ∈ M, and a (purported) signature s. It outputs a single bit b, with b = 1 signifying "accept" and b = 0 signifying "reject". We write this as b ← Vrfy K pub (m, s).

To describe fault attacks against block ciphers the following definitions are required:

Definition 12 [The Hamming Weight] The Hamming weight of a string x over an alphabet of definitions A is defined as a number of non-zero symbols in the string. More formally, HW(x) = |{i : x i = 0}|.

1.3

Definition 13 [T-Radical Branch Number]

T-radical branch number BT of a linear diffusion layer D is defined as:

BT (D) = min HW(x)=T {HW (D (x))}, x ∈ (F 2 b) m Definition 14 [Entropy] Let X ∈ F 2 b be a discrete random variable.
Then, the entropy of X is defined to be the following quantity expressed in bits

H(X) = - x∈F 2 b Pr[X = x] log 2 (Pr[X = x]) (1.4) Note that if variable X is uniformly distributed (i.e., Pr[X = x] = 2 -b , ∀x ∈ F 2 b) then H(X) = b.
Theorem 1 [Primitive Root Theorem] Let p ∈ N be a prime number. Then there exists an element g ∈ F p whose powers give every element of F p , i.e.:

F p = {1, g, g 2 , . . . , g p-2 }
Elements with this property are called primitive roots of F p or generators of F p .

The number of primitive roots in the finite field F p is given by Euler's phi function φ(p -1).

φ(p) = #F p = #{0 ≤ a ≤ p : GCD(a, p) = 1}
Theorem 2 [Fermat's Little Theorem] Let p ∈ N be a prime number and let a ∈ N. Then

a p-1 = 1 mod p if p a 0 mod p if p | a
where p a denotes that a is not divisible by p and p | a denotes that a is divisible by p.

Block Ciphers

Substitution-Permutation Networks

A Substitution Permutation Network (SPN) is a composition of invertible transforms. A typical SPN-based block cipher, shown on Figure 1.4, consists of N r rounds described by equation (1.5).

E K : A | K [Nr] • m i=1 S [Nr] i • Nr-1 r=1 A | K [r] • D [r] • m i=1 S [r] i • A | K [0] (1.5)
where the notation m i=1 S

[r]

i indicates S-box outputs concatenation.

Note that the very first and last operations performed in this SPN are sub-key mixing operations. This is called whitening and is regarded as a useful way to prevent an attacker from even beginning to carry out an encryption or decryption operation if the key is unknown.

At the last round, D is not applied. Consequently, the encryption algorithm can also be used for decryption, if appropriate modifications are made to the key schedule and if all the transformations D [r] , S

[r] i , and A | K [r] are replaced by their inverses. To ensure invertibility the SPNs' S-boxes must be bijective.

Block

Ciphers 21 Plaintext A | K [0] : K [0] mixing S [1] 1 S [1] j S [1] m Round 1 D [1] : diffusion A | K [1] : K [1] mixing S [r] 1 S [r] j S [r] m Round 1 < r < N r D [r] : diffusion A | K [r] : K [r] mixing S [Nr] 1 S [Nr] j S [Nr] m Round N r A | K [Nr] : K [Nr] mixing Ciphertext Figure 1.4 -A typical SPN-based block cipher.

The Advanced Encryption Standard

The Advanced Encryption Standard (AES) is an SPN-based block-cipher that processes 128-bit blocks and supports keys of 128, 192 or 256 bits [START_REF]Advanced Encryption Standard. Federal Information Processing Standard[END_REF]. Key length is denoted by N K = 4, 6, or 8, and reflects the number of 32-bit words in the key. At start, the 128-bit plaintext P is split into a 4 × 4 matrix S of 16 bytes called . The state goes through a number of rounds to become the ciphertext C.

The number of rounds N r is a function of N K . Possible {N r , N K } combinations are {10, 4}, {12, 6} and {14, 8}. A particular round 1 ≤ r ≤ N r takes as input a 128-bit state S [r] and a 128-bit round key K [r] and outputs a 128-bit state S [r+1] . This is done by successively applying four transformations called SUBBYTES, SHIFTROWS, MIXCOLUMNS and ADDROUNDKEY.

P ADDROUNDKEY K [r] C SUBBYTES SHIFTROWS MIXCOLUMNS (N r times)
Figure 1.5 -AES encryption flowchart.

AES encryption starts with an initial ADDROUNDKEY transformation followed by N r rounds consisting of four transformations, in the following order: SUBBYTES, SHIFTROWS, MIXCOLUMNS and ADDROUNDKEY. MIXCOLUMNS is skipped in the final round (r = N r). If during the last round MIXCOLUMNS is bypassed, we can look upon the AES as the 4-block iterative structure shown in Fig. 1.5. Decryption has a similar structure where the order of transformations is reversed (Fig. 1.6) and where inverse transformations are used (Note that ADDROUNDKEY is idempotent).

Feistel Networks

A Feistel Network illustrated on Fig. 1.7 is an alternative block cipher design [oS77]. The building blocks, such as confusion, diffusion, and key mixing, are the same; the difference is at the high-level design.

R 0 L 0 f (R 0 , K [1]) K [1] R 1 L 1 f (R 1 , K [2]) K [2] R i L i f (R i-1 , K [i]
)

K [i] R Nr-1 L Nr-1 f (R Nr-1 , K [Nr]
)

K [Nr] P C Round 1 Round 2 Round 2 < i < N r Round N r Figure 1.7 -A typical Feistel network.
Similar to SPNs, a Feistel network operates in a series of rounds. Each round applies a round function that needs not be invertible. Round functions typically contain components like S-boxes and mixing permutations, but a Feistel network can deal with any transformation irrespective of their design [START_REF] Katz | Introduction to Modern Cryptography: Principles and Protocols[END_REF].

A Feistel network applies a set of subkeys K [1] , K [2] , ..., K [r] derived from a master key K.

The i-th round of a Feistel network operates as follows. The input to the round is divided into two halves of size n/2 denoted L i-1 , R i-1 (with L and R denoting the "left half" and "right half" of the input, respectively). The i-th round function f i takes an n/2-bit input R i-1 and a round key K [i] to produce an n/2-bit output. The output (L i , R i) of the round is given by

L i = R i-1 R i = L i-1 ⊕ f i (R i-1 , K [i])
Splitting an n-bit plaintext into two n/2 values gives the initial left L 0 and right R 0 halves.

A Feistel network is invertible regardless of the round functions f i . Given the output

(L i , R i) of the i-th round, (L i-1 , R i-1
) can be computed as follows:

R i-1 = L i L i-1 = R i ⊕ f i (R i-1 , K [i])

Data Encryption Standard

DES is the most famous Feistel network cipher. This section provides a high-level overview of the DES main components. The detailed description can be found in the DES specification [oS77].

R i-1 32 bits E E(R i-1)
48 bits

K [i]
48 bits

S 4 S 5 S 3 S 2 S 1 S 6 S 7 S 8 D D(S[E(R i-1) ⊕ K [i]]) 32 bits Figure 1.8 -DES round function f (R i-1 , K [i]).
The DES block cipher is a 16-round Feistel network with a block length of 64 bits and a key length of 56 bits. 7 The DES key schedule derives 48-bit round keys K 1 , ..., K 16 . All rounds apply the same non-invertible round function f (R i-1 , K [i]) illustrated on Fig. 1.8. The round function transforms a 32-bit input R i-1 and a 48-bit round key K [i] into a 32-bit output as follows:

f (R i-1 , K [i]) = D(S[E(R i-1) ⊕ K [i]]) An input R i-1 is expanded to 48-bit value R i-1
. This is done by simply duplicating half the bits of

R i-1 , denoted by R i-1 = E(R i-1
) where E represents the expansion function. 8 Following this step, computation proceeds similary to an SPN: the expanded value R i-1 is xored with the round key K [i] , and the resulting value is divided into 8 blocks, each of which is 6-bit long. Each block is passed through a (different) S-box that yields a 4-bit output. All S-boxes outputs are concatenated into a 32-bit value. As a final step, a mixing permutation D 9 is applied to obtain the round function's output.

An initial permutation (IP) of the 64-bit input block is added to the DES beginning. To maintain the property that the encryption network can be reused for decryption, DES requires the inverse operation IP -1 to be applied to the output of the network.

Public Key Cryptography

If Alice and Bob want to exchange messages using a symmetric cipher, they must first agree on a secret key K. The eavesdropper (Eve) monitors the communication channel between the sender and receiver, so the key K cannot be sent in clear. A solution for secure key exchange was proposed by Whitfield Introduction 1.4

Diffie and Martin Hellman [START_REF] Diffie | New Directions in Cryptography[END_REF]. 10 As usual, there are spaces of keys K, plaintexts M, and ciphertexts C. However, an element K ∈ K is a pair of keys:

K = (K priv , K pub)
composed of the private key and the public key, respectively. For each public key K pub there is a corresponding encryption function:

E K pub : M → C
and for each private key K priv there is a corresponding decryption function:

D K priv : C → M
These have the property that if the pair K = (K priv , K pub) belongs to the key space K, then:

∀m ∈ M : D K priv E K pub (m) = m
For an asymmetric cipher to be secure, it must be difficult for Eve to compute the decryption D K priv (c) function even if she knows the public key K pub . Note that under this assumption, Alice can send K pub to Bob using an insecure communication channel, and Bob can send back the ciphertext E K pub (m), without worrying that Eve will be able to decrypt the message m.

Diffie-Hellman's Key Exchange

Diffie-Hellman's key exchange solves the secure key exchange problem over unprotected channels, where all traffic is observed by Eve. The protocol relies on the Discrete Logarithm Problem (DLP), i.e., the absence of an efficient general method for computing discrete logarithms on conventional computers.

Definition 16 [Discrete Logarithm] Let g be a primitive root of F p and let h > 1 to be an element of F p . The Discrete Logarithm Problem (DLP) in F p is the problem of finding an exponent x such that

g x = h mod p
The number x is called the discrete logarithm of h to the base g and is denoted by log g (h).

The Diffie-Hellman protocol is illustrated on Fig. 1.9. The first step is to agree on a large prime p and a primitive root g mod p. Secret values, that cannot be transmitted over the insecure channel, are shown in red in Fig. 1.9. The prime p and the integer g are publicly known, e.g., they might be posted in a public directory. A mod p, which are identical. This common value is used to derive the shared key K.

Eve knows the values Y A and Y B , so she knows g x A mod p and g x B mod p. She also has the values of g and p. If she can solve the DLP, then she can find x A and x B , which allows her to compute the shared secret value K. Alice and Bob are safe unless Eve is able to solve the DLP. More precisely, they are safe until Eve can solve the Diffie-Hellman Problem (DHP). The DHP is no harder than the DLP.

Definition 17 [Diffie-Hellman Problem] Let p be a prime number and g a generator. The Diffie-Hellman Problem (DHP) is the problem of computing the value of g ab mod p given g a mod p and g b mod p. 10 It turns out that the concept of public key encryption was originally discovered by James Ellis while working at the British Government Communications Headquarters (GCHQ). Ellis's discoveries in 1969 were classified by the British government and were not declassified and released until 1997, after Ellis' death. It is now known that two other GCHQ researchers, Malcolm Williamson and Clifford Cocks, discovered the Diffie-Hellman key exchange algorithm and the RSA encryption scheme, respectively, before their rediscovery and public dissemination by Diffie, Hellman, and Rivest, Shamir, and Adleman. To learn more about the fascinating history of public key cryptography, see for example [Ada97, Ell97, HPSS08, Sin11].

Diffie-Hellman Key Exchange

Alice Bob

xA $ ← -Zp xB $ ← -Zp YA = g x A mod p YB = g x B mod p p, g, YA YB K = Y x A B mod p K = Y x B A mod p
Figure 1.9 -Diffie-Hellman key exchange.

The Rivest-Shamir-Adleman Algorithm

Bob and Alice have the usual problem of exchanging secret information over the insecure channel. Diffie-Hellman key exchange accomplishes the task of secure communication relying on the conjectured hardness of the DHP. The RSA public key algorithm is based on another paradigm, namely, the difficulty of factorizing large numbers.

RSA is the acronym of the initial letters of the surnames of Ron Rivest, Adi Shamir, and Leonard Adleman, who first publicly described the algorithm in 1977 [START_REF] Rivest | A Method for Obtaining Digital Signatures and Public-Key Cryptosystems[END_REF]. RSA key generation, encryption, and decryption are summarized on Fig. 1.10. All the secret algorithm's components are shown in red.

Alice's secret key is a pair of large primes p and q. Her public key is the pair (N, e) consisting of the product N = pq and an encryption exponent e relatively prime to (p-1)(q-1), i.e., GCD (e, (p -1)(q -1)) = 1. Bob takes his plaintext and converts it into an integer m = N . Bob encrypts m using the public key

c = m e mod N
The integer c is the ciphertext, that Bob sends to Alice over the insecure channel. Using Fermat's Little Theorem Alice can recover the plaintext m by computing

c d mod N = m ed mod N = m 1+k(p-1)(q-1) mod N = m mod N
A crypto scheme is said to be malleable if the attacker is capable of transforming the ciphertext into another ciphertext which leads to a known transformation of the plaintext [START_REF] Paar | Understanding Cryptography: A Textbook for Students and Practitioners[END_REF]. The attacker does not decrypt the ciphertext; however, he is capable of manipulating the plaintexts in a predictable manner. In case of RSA this is easily achievable. Let the attacker to replace the ciphertext c by r e c, where r ∈ N. If the receiver decrypts the manipulated ciphertext, he computes:

(r e c) d = r ed m ed = rm mod N
The malleable ciphertext problem can be resolved by padding, which embeds a random structure into the plaintext before encryption. Modern techniques such as Optimal Asymmetric Encryption Padding (OAEP) for padding RSA messages are specified and standardized in Public Key Cryptography Standard #1

(v2.2) [Lab12].
The security of RSA depends on the adversary inability of computing d from the public key (e, N), which is equivalent to the problem of factoring N into its prime factors p and q as is proven by Bach [BMS86]. Therefore the primes p and q must be correctly chosen. Choosing p and q as strong primes has been recommended as a way of maximizing the difficulty of factoring N [START_REF] Rivest | Are Strong Primes Needed for RSA[END_REF].

The definition of a strong prime is given in [START_REF] Rivest | Are Strong Primes Needed for RSA[END_REF]. Let |p| be used to denote the length of p in binary. The following definition is using English words "large prime" that are clarified with specific recommendations on sizes.

1.4

The RSA public key cryptosystem Definition 18 [A Strong Prime] A prime p is considered to be a strong prime if the following conditions are satisfied:

p $ ← -N q $ ← -N e $ ← -N such that GCD(e, (p -1)(q -1)) = 1 d = e -1 mod (p -1)(q -1) N =
• p is a large prime (say, |p| ≥ 256).

• The largest prime factor of p -1, denoted p -, is large (say |p -| ≥ 100). That is

p = a -p -+ 1
for some integer a -and large prime p -.

• The largest prime factor of p --1, denoted p --, is large (say |p -| ≥ 100). That is

p -= a --p --+ 1
for some integer a --and large prime p --.

• The largest prime factor of p + 1, denoted p + , is large (say |p + | ≥ 100). That is

p = a + p + -1
for some integer a + and large prime p + .

Definition 19 [Factorization Problem]

The integer factorization problem (FACT) is the following: given a positive integer N , find its prime factorization, i.e., find pairwise distinct primes p i and positive integers e i such that N = p e1 1 p e2 2 . . . p e k k . The best achieved factoring results against 768-bit RSA was reported by [KAF + 10]. The authors applied number field sieve factoring method [START_REF] Arjen | The Number Field Sieve[END_REF].

RSA algorithm is also based on another problem, namely, the e-th root problem (ERP).

Digital Signatures

Symmetric and asymmetric encryption schemes solve the problem of secure communication over insecure channels. Digital signatures solve a different problem, analogous to the purpose of a pen-and-ink signature on a physical document. The signer (Alice) has a message m and she wants to create an additional piece of information s that can be used to prove the message m belongs to her. The verifier (Bob) wants to ascertain that the pair (m, s) originates from the signer.

RSA Digital Signature

The RSA algorithm can also be used for signing a message m and verifying its signature. The signature algorithm is similar to decryption, except that the message m is "decrypted" with the private key (d, p, q) as shown on Fig. 1.11. The validity of the signature s is verified similarly to the RSA encryption

s e mod N = m ed mod N = m
The RSA digital signature

p $ ← -N q $ ← -N e $
← -N such that GCD(e, (p -1)(q -1)) = 1 d = e -1 mod (p -1)(q -1) The NSA document [NSA15] recommends to use at least 3072-bit modulus when RSA is used for key establishment and authentication. The computation of RSA signatures can be accelerated by a factor four using the Chinese Reminder Theorem (CRT) [START_REF] Quisquater | Fast Decipherment Algorithm for RSA Public-Key Cryptosystem[END_REF] where a private key is given by the components (p, q, d p , d q , i q) with d p = d mod (p -1), d q = d mod (q -1) and i q = q -1 mod p. The CRT-RSA process is the following:

N = pq N,
s p = m dp mod p s q = m dq mod q
Then compute a final signature using, either Garner's recombination method: s = CRT(s p , s q) = s q + q q -1 (s p -s q) mod p (1.6) or Gauss's recombination method: s = CRT(s p , s q) = s p q(q -1 mod p) + s q p(p -1 mod q) (1.7)

Why Circuits Leak?

The physical interpretation of data processing (a discipline named the physics of computational systems [START_REF] Mead | Introduction to VLSI Systems[END_REF]) draws fundamental comparisons between computing technologies and provides physical lower bounds on the area, time, and energy required for computation [Ben73,[START_REF] Keyes | Physical Limits in Digital Electronics[END_REF]. In this framework, a corollary of the second law of thermodynamics states that in order to perform a transition between states, energy must be lost irreversibly. A system that conserves energy cannot make a transition to a definite state and thus cannot make a decision (compute) ([MC80], 9.5).

At any given point in the evolution of a technology, the smallest logic devices must have a definite physical extent, require a certain minimum time to perform their function and dissipate a minimal switching energy when transiting from one state to another. Therefore, side-channel leakage is inherited from the nature of computations and cannot be avoided.

At the current technology evolution step CMOS devices are the most pervasive. The following sections explain power dissipation of a CMOS inverter as a basic logic element. Inverter's power consumption is the cornerstone of all the CMOS side-channel physical leakages.

CMOS Power Dissipation

The CMOS inverter is the atomic element of all CMOS-semiconductor logic cells. An inverter (Fig. 2.1a) consists of an nMOS and a pMOS transistors that switch synchronously. When an input logic level is 1, a pMOS is open while an nMOS drains the output signal to the ground as shown on Figure 2.1b. The opposite happens when an input logic level is 0, an nMOS does not conduct while a pMOS connects the output to the V dd line as shown on Figure 2.1c.

An inverter's physical layout is illustrated on Figure 2.2, where V cc is a ground level, V dd is the power supply, V in is an input signal, V out is the inverter's output, T PNP is a parasitic bipolar transistor (p + /Nwell/p +), T NPN is a parasitic bipolar transistor (n + /P-substrate/n +). The shunting resistors R well and R sub represent the effective resistance from the well tap to the PNP base and the substrate tap to the NPN base respectively. p-type substrate is shown in gray and n-type substrate is shown in red.

As stated at the beginning of this chapter, to perform computations energy must be consumed irreversibly.

A CMOS inverter consumes and transforms electrical energy supplied from V dd and V in . The inverter's power dissipation consists of two components: dynamic and static leakages.

Dynamic Power Dissipation (DPD) occurs when signals change their logic state and transistor energy is drawn from the power supply to charge up internal nodes. A small amount of current also flows from V dd to the ground when the pand nchannel transistors turn on shortly simultaneously during logic transaction.

Static Power Dissipation (SPD) occurs in a stable logic mode when no transactions are performed. When the semiconductor is powered up it continues to leak a small amount of power at almost all n -p and p -n junctions.

Dynamic Power Dissipation

DPD has attracted most of cryptanalysts' attention as the major cause of side-channel leakage. A state, when an inverter's output is changing, is called transiting. When transiting an inverter can be represented as the circuit shown on Figure 2.3 with two switches, load capacitance C L and node's capacitances C P = C N , associated with the gate's fanout and with the routing wires, as well as the parasitic capacitances.

DPD consists of two components: one is the switching power due to charging and discharging of load capacitances, the other is short-circuit power due to the non-zero rise and fall time of input waveforms.

Short-Circuit Power Dissipation

The short-circuit current i sc flows from V dd to the ground when the pand nchannel transistors turn on shortly at the same time during logic transaction. Short circuit power dissipation accounts for more than 20% of total power dissipation [Gan]. Short circuit current

V cc V dd In Out pMOS nMOS (a) V cc V dd 1 V cc pMOS nMOS (b) V cc V dd 0 V dd pMOS nMOS (c) Figure 2.1 -CMOS inverter.
p substrate (black background)

p n p + n + source n + drain n + p + source p + drain T PNP T NPN Metal 1 Metal 2 Gate V in Out V out V cc V dd R well R sub nMOS pMOS Figure 2.2 -CMOS inverter layout.
depends on the input's transition time, capacitive load, and transistor sizes of the logic gate [START_REF] Srinivasa | Short-Circuit Power Dissipation Estimation for CMOS Logic Gates[END_REF]. As clock frequency increases transitions increase and so does short-circuit power dissipation.

Switching Power Dissipation

When the logic level changes from 0 to 1 a pMOS transistor cuts the connection between the Out and the V cc so there is almost no current going through C L . In contrast a switch from 1 to 0 opens the nMOS transistor so an additional current i L flows through C L . When there is no transition, i.e., input logic level remains constant, energy is not wasted on capacitive charge. Consequently, the current flowing through the inverter can be computed as shown in Table 2.1.

Dynamic leakage is very dependent on parasitic capacitances. These parasitic capacitances define an upper limit of the clock frequency of a transistor and form unbalanced power consumption during logic level change [START_REF] Martins | Capacitance and Power Modeling at Logic-Level[END_REF][START_REF] Uyemura | Circuit Design for CMOS VLSI[END_REF].

Static Power Dissipation

Static leakage becomes increasingly important since nand pregions are heavily doped. SPD is usually not taken into account for side-channel attacks due to the ulterior dependency between binary data and measurement. However, static power consumption can be used for side-channel attacks as recently shown by [START_REF] Moradi | Side-Channel Leakage through Static Power[END_REF].

Side-Channel Attacks

2.1

Table 2.1 -Current flowing through the inverter during logic level change. The static power of CMOS inverter P LEAK is determined by the leakage current through each transistor:

Transition Value of i 0 → 0 i ≈ 0 1 → 1 i ≈ 0 0 → 1 i ≈ i sc 1 → 0 i ≈ i sc + i L V cc V dd In Out P N C P C N C L (a) V cc V dd 1 P N C P C N C L i sc (b) V cc V dd 0 P N C P C N C L i sc i L (c)
P LEAK = I LEAK V dd
where V dd is the supply voltage, and I LEAK is the cumulative leakage current due to all the leakage components.

Six channel leakage mechanisms are illustrated on Fig. 2.4.

• I 1 is the reverse bias p -n junction leakage;

• I 2 is the subthreshold leakage;

• I 3 is the oxide tunneling current:

• I 4 is the gate current due to hot carrier injection;

• I 5 is the Gate Induced Drain Leakage (GIDL);

p-n Junction Reverse Bias Current I 1

The diode is reverse-biased when the n-type semiconductor is connected to the positive voltage (V dd) and the p-type terminal is connected to negative voltage or ground ((V cc)). As illustrated on Fig. 2.5 there are several reverse-biased p -n junctions causing leakage in the inverter:

• p-well to n-well

• n + to p-well when the input voltage V in is high

• p + to n-well when V in is low.
When the diode is reverse-biased, there is a very little flow of current due to minority carriers1 . When the bias voltage is increased above a certain voltage called reverse breakdown voltage, current increases very rapidly [START_REF] Preeti Ranjan Panda | Power-Efficient System Design[END_REF].

Subthreshold Leakage I 2

The threshold voltage, commonly abbreviated as V th , of a transistor is the minimum gate-to-source voltage differential required to create a conducting path between the transistor's source and drain. The subthreshold leakage is the current between the source and the drain when the gate-to-source voltage is below the V th , i.e., when a transistor is OFF. Subthreshold current flows because of the diffusion current of the minority carriers in the channel [START_REF] Boray | Analysis of Subthreshold Leakage Reduction in CMOS Digital Circuits[END_REF]. Subthreshold leakage is the most important contributor to static power in CMOS.

Tunneling Into and Through Gate Oxide I 3 Gate oxides are critical for the scaling of transistor dimensions. Drain current sensitivity is defined by gate oxides. Thinner gate oxides provide better sensitivity, and hence the maximal switching frequency. However, the reduction in the oxide thickness to nanometers causes a current flow between the substrate and the gate through the oxide. This current is caused by carriers tunneling through the insulator [START_REF] Chaudhry | Nanoscale Effects: Gate Oxide Leakage Currents[END_REF]. The tunneling of electrons (or holes) from the bulk and source/drain overlap regions through the gate oxide potential barrier into the gate (or vice-versa) is referred to as gate oxide tunneling effect.

Hot Carriers Injection from Substrate to Gate Oxide I 4 In a transistor, due to the high electric field near the Si/SiO 2 , interface electrons or holes can gain sufficient energy from the electric field to cross the interface and enter the oxide layer. This effect is known as hot carrier injection. The injection from Si to 2.1 p substrate (black background)

p n p + n + n + n + p + p + p-well n-well Metal 1 Metal 2 Gate V in Out V out V cc V dd Figure 2.5 -CMOS inverter layout.
SiO 2 is more likely for electrons than holes as electrons have a lower effective mass than that of holes and the barrier height or holes (4.5 eV) is superior than that of electrons (3.1 eV) [START_REF] Taur | Fundamentals of Modern VLSI Devices[END_REF].

Gate Induced Drain Leakage I 5 This leakage current component was observed in DRAM trench transistor cells and in EEPROM memory cells [START_REF] Semenov | Contribution of Gate Induced Drain Leakage to Overall Leakage and Yield Loss in Digital Submicron VLSI Circuits[END_REF]. The gate-induced-drain-leakage (GIDL) current is generally known to originate from the difference between the vertical electric fields at the gate and the drain. This leakage current is known to be very sensitive to gate oxide thickness, the drain concentration, the lateral doping gradient, and the applied drain-to-gate voltage.

Punch through I 6 Punch through in a transistor is an extreme case of channel length modulation where the depletion layers around the drain and source regions merge into a single depletion region. The field underneath the gate then becomes strongly dependent on the drain-source voltage, as is the drain current. Punch through causes a rapidly increasing current with increasing drain-source voltage. This effect is undesirable as it increases the output conductance and limits the device's maximum operating voltage [START_REF] Van Zeghbroeck | Principles of Semiconductor Devices[END_REF].

Additional CMOS Side-Channels and Power Transformations

Modern semiconductor devices include billions of transistors and interconnections in which datadependent current flows [Mor14b]. The data-dependent currents not only dissipate power, but also transform electrical energy:

• Small moving charges produce a variable magnetic field, which itself produces a variable electric field. When data-dependent currents flow through conductive elements, observed electromagnetic activity can be used as a side-channel vector [AARR03,GMO01,QS01]. EM measurements introduce several benefits to the attacker in comparison with power consumption. EM emissions can be measured locally, over a small chipset's area. EM acquisitions can also characterize the direction of register switch from 0-to-1 or from 1-to-0 [PSQ07].

• In 2005 it was observed that not only signal amplitude, but also power spectrum, can leak secret information [START_REF] Gebotys | EM Analysis of Rijndael and ECC on a Wireless Java-Based PDA[END_REF]. Following the introduction of Differential Frequency Analysis [GTC05], power analysis on frequency domain was investigated in a thread of papers [Luo10,MG11,PGQK09, SDB + 10]. Frequency analysis applies Fourier transform to map a time-series into the frequency domain. Since each Fourier point is a linear combination of all other sample points, a spectrum is a direct function of the initial signal amplitude and hence, power spectra can also be used in side-channel attacks. [START_REF] Luo | Enhance Multi-bit Spectral Analysis on Hiding in Temporal Dimension[END_REF] rightly noted that the term Differential Spectral Based Analysis (DSBA) is semantically preferable because DFA does not exploit variations in frequencies, but differences in spectra. As a matter of fact all time-domain power models and distinguishers remain in principle fully applicable in the frequency domain.

• This thesis shows that, in addition to the signal's amplitude and spectrum, traditionally used for side-channel analysis, instantaneous frequency (IF) variations may also leak secret data. To the authors' best knowledge, "pure" frequency leakage has not been considered as a side-channel vector so far. By opposition to the constant frequency used in Fourier Transform IF is understood as local phase differences that express frequency variations. The detailed description of this side-channel vector is given in Chapter 4.

• Another exploitable effect occurs during transistor saturation when the consumed electrical energy is freed during photon emission [START_REF] Boit | Fundamentals of Photon Emission (PEM) in Silicon-Electroluminescence for Analysis of Electronic Circuit and Device Functionality[END_REF]. When a current flows between the source and the drain, electrons gain energy and accelerate due to the electrical field. The radiative de-excitation of the charge carriers in the pinch-off zone generates photons which are visible in the near-infrared spectral range [DBCR + 10]. Photon emission side-channel analysis is not a theoretical attack but a practically applied technique [TDF + 14]. A photon emission signal can be measured with an avalanche diode. Photonic emission analysis has a clear advantage when a small surface or an entire semiconductor activity is observed both in time and space [START_REF] Krämer | Differential Photonic Emission Analysis[END_REF].

• Noise is an additional 'exotic' side-channel vector reported in [START_REF] Daniel Genkin | RSA Key Extraction via Low-Bandwidth Acoustic Cryptanalysis[END_REF]. Inverter transactions changes V dd 's power domain which is filtered by an on-board capacitor. A capacitance tries to maintain a stable V dd level by emitting current to the power line and this activity creates vibrations that can be recorded by a sensitive microphone.

CMOS energy transformations cause various physical phenomena which may be better localized and more precisely measured than the electrical power dissipation.

CMOS Leakage Models

The previous section explained the dependency between logic levels, i.e., binary data, and CMOS physical phenomena. The fact that modern semiconductor devices contain billions of transistors arises reasonable doubts about the feasibility of data extraction; hence this section presents the essentials of side-channel leakage models and the main statistical theorems used in side-channel attacks.

Physical responses, linked to the hardware states, categorize all side-channels models into two groups.

The first group contains all physical phenomena where leakage is defined by the current hardware state. This is called the Hamming weight model. The second category requires the knowledge of the previous and current hardware states since the difference between 0-to-1 and 1-to-0 transactions is negligible. This is the Hamming distance model. Roughly speaking, the Hamming weight model exploits physical differences between transactions 0-to-1 and 1-to-0, while the Hamming distance model exploits differences between transactions and the stable state.

Noise and simultaneous activity contribute a significant part of the final measured current values, which has to be taken into account during side-channel analysis. Side-channel assets, i.e., leakage of a targeted operation, cannot be precisely measured for the following reasons:

1. Parallel hardware activity.

2. Environmental noise.

3. Measurement noise.

4. Device parameters' variations, such as temperature, clock instability, etc.

Noise cannot be completely eliminated, so side-channel attacks are based on statistical methods and one cornerstone of these methods is a law of large numbers [Sen13]. According to the law of large numbers, as the number of identically distributed, randomly generated variables increases, their sample mean (average) approaches their theoretical mean.

The law of large numbers allows to distinguish two values even with a significant amount of noise, as illustrated by the following example. Consider two asset values equal to 0 and 1. Each time the asset value is measured, Gaussian noise f (x, µ, σ), µ = 128, σ = 74 is added to the measurement. Figure 2.6a shows the asset values averaged for 0 to 5,000 trials. Clearly, those values are converging to certain levels

χ S (t) = a 0 + a 1 HW S [t-1] 1 ⊕ S [t] 1 + a 2 HW S [t-1] 2 ⊕ S [t] 2 + ... + a n HW S [t-1] n ⊕ S [t] n (2.2)
where S

[t]

i is the i-th bit of a current value S [t] ;

S [t-1] i
is the i-th bit of the previous state value S [t-1] that was overwritten with a current value S [t] ; a i are the weights.

When the Hamming weight model coefficients a i , i ∈ [1, n] are equal to 1 then the maximum information that can be obtained from the leakage χ S (t) is the Hamming weight of variable S. When those coefficients form a unique sum for any S then the maximum gained information is the value of S. The same observation applies to the Hamming distance model coefficients.

The best way to define model coefficients is to use profiling methods, such as linear regression analysis [START_REF] Schindler | A Stochastic Model for Differential Side Channel Cryptanalysis[END_REF]. Problems and enhancements of leakage models were discussed in several papers [START_REF] Doget | Univariate Side Channel Attacks and Leakage Modeling[END_REF][START_REF] Heuser | Revealing Side-Channel Issues of Complex Circuits by Enhanced Leakage Models[END_REF]. A practical evaluation of an 8-bit microcontroller leakage model function reported in [START_REF] Akkar | Power Analysis, What Is Now Possible[END_REF] concludes that the choice of the model's coefficients is critical for side-channel attacks and may lead to erroneous results in the case of inadequate selection. In some cases an adversary can develop devicespecific or leakage-specific models [TOT + 14]. Bias between a model and a side-channel vector

Bias between two side-channel vectors

Bias between a side-channel vector and algorithmdependent distribution Once an adversary can link side-channel leakage to binary data he can build models for the known information and unknown key part and verify them with available physical experiments. The following subsection provides a taxonomy of side-channel attacks.

A Taxonomy of Side-channel Attacks

Current state-of-the-art side-channel methods can be classified into four groups: simple, model-response, template and algebraic side-channel attacks as given by Fig. 2.7. All these attacks perform operations over a side-channel vector, i.e., side-channel samples of the same operation taken at the same temporal and spatial location.

Simple Attacks

Simple attacks are based on direct leakage observations. Some cryptographic protocols can be broken by observing the presence or the absence of operations in a power trace [START_REF] Novak | SPA-Based Adaptive Chosen-Ciphertext Attack on RSA Implementation[END_REF]. Sometimes cryptographic algorithms can leak Hamming weight information [Man03, SNK + 12].

Model-Response Attacks

Model-response attacks compute a statistical bias (response) for each modelled subkey leakage. Modelresponse attacks belong to the wider category of distinguishing attacks. The general definition of distinguishing attacks is a form of cryptanalysis that allows an attacker to distinguish the ciphertexts from random data. This definition can be adapted to side-channel attacks, when an attacker builds data models and verifies them with statistical likelihood estimators, such as difference of means [START_REF] Kocher | Differential Power Analysis[END_REF], correlation power analysis [START_REF] Brier | Correlation Power Analysis with a Leakage Model[END_REF], or mutual information analysis [START_REF] Gierlichs | Mutual Information Analysis[END_REF]. The efficiency of different distinguishers was compared by several authors, e.g., [START_REF] Heuser | Good Is Not Good Enough[END_REF][START_REF] Whitnall | A Fair Evaluation Framework for Comparing Side-Channel Distinguishers[END_REF]. Correlation-enhanced collision attacks can be also considered as distinguishing attacks, which verify a collision by cross-correlating power traces [START_REF] Luk Bettale | Collision-Correlation Attack Against a First-Order Masking Scheme for MAC Based on SHA-3[END_REF][START_REF] Moradi | Correlation-Enhanced Power Analysis Collision Attack[END_REF]. Bias computation allows to further subdivide model-response attacks into three groups:

1. Bias computed between a leakage model and a side-channel acquisition, for example Differential Power Analysis, Mutual Information Analysis, etc. [BCO04, GBTP08, KJJ99].

Bias computed between two side-channel acquisitions, for example Collision Attacks [BK07,SWP03, SLFP04]

.

Algorithm 1 General first order side-channel attack algorithm

Require:

P i : set of plaintexts i = 1, ..., M ; C i : set of ciphertexts i = 1, ..., M χ i (t) : side-channel measurement during encryption i = 1, ..., M , t = 1, ..

., N ;

Ensure:

A key value K * ;

1: for all K j ∈ F 2 q do 2:

for 1 ≤ i ≤ M do 3: L (Kj ,Si) = f (P i , C i , K j) Build a leakage model 4:
end for 5: end for 6: for all K j ∈ F 2 q do 7:

for 1 ≤ t ≤ N do 8: I (Kj ,t) = ρ(L (Kj ,S [1:M]) , χ [1:M] (t))
Compute the dependency 9:

end for 10: end for 11:

K * = argmax Kj argmax t (I (Kj ,t))
3. Bias computed between a side-channel vector and an algorithm-dependent distribution. This method was introduced approximately at the same time for side-channel attacks [START_REF] Linge | Using the Joint Distributions of a Cryptographic Function in Side Channel Analysis[END_REF] and fault attacks [START_REF] Korkikian | Blind Fault Attack Against SPN Ciphers[END_REF]. A detailed description of this method is given in Chapter 5.

In all cases an attacker has to build a model which includes known information and a secret data. When the model is built correctly the likelihood estimation of the correct secret data shall result in a distinguishable value. The cornerstone advantage of the last method, i.e., of a bias between a sidechannel vector and an algorithm-dependent distribution, is that an attacker does not need plaintexts and ciphertexts to build a model. Instead he exploits built-in distributions which are unique for each subkey. The details of this approach are given in Chapter 5.

All model-response attacks are based on distinguishers, noted as ρ(X, Y) in Algorithm 1. A distinguisher is an informal name designating a dependency measure between two random variables or two data sets. Three popular distinguishers difference of means, Pearson correlation coefficient, and mutual information are presented in the following subsections.

To describe distinguishers the following notations are required. A cryptographic device sequentially encrypts M known plaintexts

P i (i = 1, ..., M) resulting in M known ciphertexts C i (i = 1, ..., M).
Side-channel information, measured during encryption i, is denoted as χ i (t), where t = 1, ..., N indicates the sampling time. A (first order) attack targets a chosen state S i ∈ F 2 b that depends both on known data P i or C i and on a small part of the key K.

In model-response attacks, where a bias is computed between a model and a side-channel vector, the adversary predicts the side-channel leakage of an intermediate value, referred to as leakage function or selection function. The prediction for the known data and key guess K j is denoted by L (Kj ,Si) in accordance with [START_REF] Gierlichs | Empirical Comparison of Side Channel Analysis Distinguishers on DES in Hardware[END_REF]. An adversary computes L (Kj ,Si) for all i = 1, ..., M encryptions and all key candidates K j ∈ F 2 q and then applies distinguishers to detect a dependency between a model and a real side-channel leakage χ i (t). The position of the asset leakage χ i Si (t) in the acquired trace χ i (t) is unknown, so all time samples t = 1, ..., N have to be examined. When all the parameters, such as time, spatial location and the key guess, are correct the distinguisher will output a significantly different value (maximal or minimal) from all other key candidates.

Let µ (Kj ,δ) (t) denote the empirical mean and σ 2 (Kj ,δ) (t) denote the sample variance of all χ i (t) when the leakage function is L (Kj ,Si) = δ. M (Kj ,δ) ≤ M denotes the number of elements in a set for which L (Kj ,Si) = δ.

The general (first order) attack algorithm is described by Algorithm 1.

2.3

Difference of Means

The difference of means is the first reported side-channel distinguisher [START_REF] Kocher | Differential Power Analysis[END_REF]. The principle idea of the attack is to classify all encryptions into two groups. The first group includes encryptions where the target operation leaks a significant amount of side-channel information G (Kj ,δ) = {χ i (t) | L (Kj ,Si) = δ} while the second group includes all the encryptions where the target operation leaks less side-channel information G (Kj ,γ) = {χ i (t) | L (Kj ,Si) = γ = δ}. After selection the difference between means of the two groups is computed. The resulting curve shall have significant spike for the correct key hypothesis at the time of leakage function L (Kj ,Si) , while for the wrong key guess the resulting curve would converge to zero at all sampled points t = 1, ..., N .

The remarkable difference between the correct and the wrong key guesses can be explained by the law of large numbers. When the side-channel samples are selected correctly, i.e., for the correct key and time, then samples in both groups form different distributions as illustrated on Fig. 2.8a. Conversely, when the selection is wrong, i.e., for the wrong time sampling or key, then the distributions of samples are close to each other as illustrated on Fig. 2.8b. Formally the difference of means can be written as given in (2.3).

D Kj (t) = µ G (K j ,δ) (t) -µ G (K j ,γ) (t) (2.3)
and the correct key

K * = argmax Kj |D Kj (t)|.
Difference of means can be replaced by the t-test [START_REF] George | Statistical Methods[END_REF]:

T Kj (t) = D Kj (t) σ 2 G (K j ,δ) (t) M G (K j ,δ) + σ 2 G (K j ,γ) (t) M G (K j ,γ) (2.4)
where σ G (K j ,δ) and σ G (K j ,γ) are groups' standards deviations, M G (K j ,δ) and M G (K j ,γ) are groups' cardinalities.

Pearson Correlation

The difference of means does not take into account all possible leakage function values; hence, a logical development is to group side-channel leakage according to the leakage function L (Kj ,Si) [START_REF] Brier | Correlation Power Analysis with a Leakage Model[END_REF]. For example, if side-channel information grows linearly with Hamming weight, then a Pearson Correlation Coefficient can identify the correct key:

ρ Kj (t) = cov χ i (t), L (Kj ,Si) σ (χ i (t)) σ L (Kj ,Si) , for i = 1, ..., M (2.5)
When a key guess is correct then the average of side-channel measurements χ i (t) grouped according to the leakage function value L (Kj ,Si) has a linear trend. Conversely, when a key guess is wrong or if sample time is incorrect, the averaged curve is flat as illustrated on Fig. 2.9.

Linear correlation techniques can be only applied when the binary model and side-channel leakage are monotonic or linearly dependent. To address an arbitrary dependency between the binary model and the side-channel leakage a Mutual Information Analysis can be applied.

Mutual Information

Mutual information is a measure of variable mutual dependency which can be of any type since this estimator is based on joint distribution p(X, Y):

I Kj (t) = i∈[1,N] ∀L (K j ,S i) p(χ i (t), L (Kj ,Si))log p(χ i (t), L (Kj ,Si)) p(χ i (t))p(L (Kj ,Si)) (2.6)

Template Attacks

Template attacks as an evolution of distinguishing methods, attempt to assign a pattern to each key value. The pattern includes the mean value µ

|N |

Kj and the noise distribution

Ω |N | Kj [CRR03].
To build a template of each possible key value an attacker needs full control over a device [START_REF] Choudary | Template Attacks on Different Devices[END_REF] thus limiting the practical applicability of template attacks.

Constructing the template consists in estimating the set of parameters (µ

|N | Kj , Ω |N | Kj)
as described by Algorithm 2. The subsequent attack phase consists in acquiring the trace χ K * (t) from the target system and identifying the key value K * using Baye's rule:

Algorithm 2 General template algorithm

Require:

K j : set of keys K j ∈ F 2 q ; χ i Kj (t) : set of side-channel queries for K j : t = 1, ..., N, i = 1, ..., M Kj ; Ensure:

A template for each key value (µ

|N | Kj , Ω |N | Kj) 1: for all K j ∈ F 2 q do 2: µ |N | Kj = 1 M K j M K j i=1 χ i Kj (t)
Compute the averaged signal 3:

Θ Kj [i, :] =    χ 1 Kj (t) -µ |N | Kj • • • χ M K j Kj (t) -µ |N | Kj    Compute the matrix of noise Θ Kj 4: Ω |N | Kj = 1 M K j Θ T Kj Θ Kj
Construct the noise covariance matrix 5: end for

K * = argmax Kj   1 (2π) N |Ω |N | Kj | exp - 1 2 (χ K * (t) -µ |N | Kj) T • Ω |N | Kj -1 • (χ K * (t) -µ |N | Kj)   where µ |N | Kj and χ K * (t) contains N samples, Ω |N | Kj -1 is an inverse noise covariance matrix, |Ω |N | Kj | is the determinant of the noise covariance matrix.
The computation complexity of Bayes' rule strongly depends on the number of samples N . To simplify and to speed up the computation the number of samples shall be reduced. Only meaningful samples, called points of interests (POI), shall remain for template construction.

Depending on the reduction algorithm, template attacks can be classified into several groups. The first group of template constructions assumes visual point selection [START_REF] Chari | Template Attacks[END_REF][START_REF] Rechberger | Practical Template Attacks[END_REF]. An adversary sums up pairwise differences between all the averaged signals µ

|N | K1 , ..., µ |N |
K 2 q and then selects N POI ≤ N points among the highest peaks, forming keys' signatures µ

|N POI | K1 , ..., µ |N POI | K 2 q .
Another approach is to use Principal Component Analysis (PCA) [APSQ06]. PCA is a statistical approach allowing to identify patterns in data. PCA computes the eigenvalues of a covariance matrix and then uses only the most significant of them, i.e., the highest eigenvalues.

Yet another pattern recognition method is Fisher's Linear Discriminant Analysis (LDA) [START_REF] Choudary | Efficient Template Attacks[END_REF]. LDA is looking for a projection where samples are projected very close to each other. At the same time, the projected means are as far as possible.

After the reduced template creation, given in Algorithm 3, the same Bayes' rule can be computed with the following equation:

K * = argmax i     exp -1 2 (χ K * (t POI) -µ |N POI | Kj) T • Ω |N POI | Kj -1 • (χ K * (t POI) -µ |N POI | Kj) (2π) N POI |Ω |N POI | Kj |    
where index t POI implies that only samples at POI positions are used for computation, χ K * (t POI) and Template attacks have several drawbacks that restrict their experimental applicability:

• Computational artefacts during noise covariance matrix and inverse noise covariance matrix computation.

Algorithm 3 General template algorithm with reduced number of samples

Require: K j : set of keys K j ∈ F 2 q ; χ i Kj (t) : set of side-channel queries for K j : t = 1, ..., N, i = 1, ..., M Kj ; Ensure:

A template for each key value (µ

|N POI | Kj , Ω |N POI | Kj) 1: for all K j ∈ F 2 q do 2: µ |N | Kj = 1 M K j M K j i=1 χ i Kj (t)
Compute the averaged signal 3:

µ |N POI | Kj = POI µ |N | Kj
Compute the reduced averaged signal 4:

Θ Kj [i, :] =    χ 1 Kj (t POI) -µ |N POI | Kj • • • χ M K j Kj (t POI) -µ |N POI | Kj    Compute the matrix of noise Θ Kj 5: Ω |N POI | Kj = 1 N POI Θ T Kj Θ Kj
Construct the noise covariance matrix 6: end for

• LDA is highly dependent on the condition of equal covariances.

• Template attacks require a full access to an educative device (a sample to experiment with).

• Template attacks can output several candidates when side-channel information reveal only Hamming weight.

Template attacks are usually applied to extract key information, for example Hamming weight. At the same time template attacks can be used to characterize intermediate key-related information which will later reveal the key value itself. One of these methods, called algebraic side-channel attacks, is based on overdefined systems of equations created with Key Expansion procedures [START_REF] Courtois | Cryptanalysis of Block Ciphers with Overdefined Systems of Equations[END_REF].

Algebraic Side-Channel Attacks

Algebraic attacks apply side-channel information to solve a system of overdefined equations [START_REF] Courtois | Cryptanalysis of Block Ciphers with Overdefined Systems of Equations[END_REF]. Algebraic side-channels, however, require a profiling phase, as template attacks. Using side-channels an attacker can recover simple targets, for example key Hamming weight, and then recover the key value [START_REF] Renauld | Algebraic Side-Channel Attacks[END_REF]. Therefore algebraic side-channel attacks inherit all the disadvantages of template attacks, such as the need of an educative device.

Side-Channel Countermeasures

Chip manufacturers have been developing SCA countermeasures since Kocher's first publication [START_REF] Kocher | Differential Power Analysis[END_REF].

Countermeasures for all SCA physical vectors can be classified into several global groups, showed on • Restriction on the use of some instructions [YF13]

2. Noise consists in injecting an unpredictable component to the measured side-channel trace.

(a) Typical amplitude noise countermeasure against power analysis are:

• Randomly pre-charged data lines and registers before use [APRV07, RCN02]

• Randomly varying supply voltage [KGS + 11, YWV + 05] (b) Typical temporal noise countermeasures against power, time and photon analysis include:

• Asynchronous circuits [BSR06, FML + 03]
• The clock presenting instabilities in duty cycle or frequency [BLOW10, GOK + 05] (c) Combination of amplitude and time countermeasures:

• Dummy instructions [AG01]
3. Randomization changes secret data representation so that sensitive data is no longer processed in a plain form. This countermeasure restricts model construction, so it can be applied for all the SCAs. Randomization is typically implemented in the following ways:

• Masking and blinding combine the secret data with a random data that can be removed from the final result [ITT02, TSG03]

• Homomorphism uses the arithmetic properties of public key cryptosystems to compute their result in function in one of many ways [Cha83]

4. Protocol-level solutions consist in using leaky algorithms in a secure way. Protocol-level solutions are typically implemented in the following ways:

• Limit the number of encryptions per key [MPR + 11]

• Update keys continuously [START_REF] Kocher | Design and Validation Strategies for Obtaining Assurance in Countermeasures to Power Analysis and Related attacks[END_REF] 5. Standard-cell-based detectors can recognize close EM probe location [HHM + 14]. Various sensors can detect package opening, close EM probe location or other circuit modifications used to improve SCA.

3.1

Fault Attack Explanation

Any device requires a certain physical parameters to operate within a normal range. Flawless computation can not be guaranteed if those conditions are not met. A properly adjusted perturbation of a system can modify intermediate registers' data, change the program counter, skip instructions or create other exact faults. By inducing specific errors, an attacker can probe the algorithm's internals by comparing of correct and faulty results.

The idea of physical fault injection into hardware is similar to software fuzzing [START_REF] Sutton | Fuzzing: Brute Force Vulnerability Discovery[END_REF], which tries to raise an exception or find a security breach by feeding software with invalid or unexpected inputs.

In the case of fault attacks an opponent applies physical stress (input) which can corrupt normal a computational routine to:

• Modify intermediate data in the algorithm.

• Access an additional hardware/software functionality.

• Skip or switch-off protection mechanisms.

By injecting exact faults an attacker can, for example, break RSA with a single faulty result [START_REF] Boneh | On the Importance of Checking Cryptographic Protocols for Faults[END_REF] or use faults as a side-channel leakage source [LSG + 10]. The following subsections overview fault attacks and explain basic key recovery techniques.

In this thesis only transient faults are considered, i.e., faults that affect only one or several instructions during one execution. Permanent faults, i.e., circuit modifications that persists after reset, can also be used. However, those faults are less applicable since they require expensive equipment, such as focused ion beams [HNT + 13].

Timing Constrains in Digital ICs

In synchronous sequential logic a device's state changes only at discrete times defined by a clock signal. This is necessary to synchronize internal operations. A device embeds many hardware blocks that use the same clock, for example, each CPU operation can be considered as a separate digital circuit with its critical path, i.e., the path between an input and an output defining the maximum signal propagation delay tolerated by the circuit. In some cases, the propagation delay in 45-nm CMOS technology can be reduced by temperature increase [KK06].

Registers latch data at rising clock edges. The computed data travels between registers and gets modified by the intermediate combinatorial logic blocks between two such edges. Fig. 3.1 illustrates main time constraints of a digital system.

1. Propagation delay d p is the time needed to propagate the data through combinatorial logic.

2. d CLK2Q the delay between the clock rising edge and the actual update of a register's output. Therefore, all the timing constrains contribute to the limitation of the circuit's maximal operating frequency (nominal circuit period). Indeed, to ensure proper circuit operation, the clock period T clock must be greater than the following sum [ADN + 10]:

T clock > d CLK2Q + d p + t set-up -t skew (3.1)
Any new data entering a register can be considered as a result of a combinatorial calculation involving several registers outputting previous (input) data as illustrated on Fig. 3.1. The transformation of the previous registers' output into the next register's input bit takes a determined delay. This delay depends on the logic performed as well as on the data transiting through the logic. In addition, propagation time varies with circuit temperature and power supply voltage.

Fault Injection Techniques

The first paper to ever deal with the issue of fault injection was not a paper on the use of electronics in the space environment, but a paper assessing scaling trends in terrestrial microelectronics [START_REF] Torkel Wallmark | Minimum Size and Maximum Packing Density of Nonredundant Semiconductor Devices[END_REF]. In this paper, the authors forecast the eventual occurrence of single event upset (SEU)1 in microelectronics due to cosmic rays and further predicted that the minimal volume of semiconductor devices would be limited to about 10µm per side due to these upsets. In fact, the authors wrote in 1962 that already at the present time the essential part of semiconductor devices, the active region, is close to the minimum size possible [START_REF] Torkel Wallmark | Minimum Size and Maximum Packing Density of Nonredundant Semiconductor Devices[END_REF].

Later on, the first confirmed report of cosmic-ray-induced upsets in space was reported in [START_REF] Binder | Satellite Anomalies from Galactic Cosmic Rays[END_REF] and the occurrence of soft errors in terrestrial microelectronics described shortly after the first observations of SEU in space [START_REF] May | Alpha-Particle-Induced Soft Errors in Dynamic Memories[END_REF].

Subsequent research included studying and simulating the effects of cosmic rays on semiconductors [START_REF] Daniel | Radiation Effects and Soft Errors in Integrated Circuits and Electronic Devices[END_REF][START_REF] Dodd | Basic Mechanisms and Modeling of Single-Event Upset in Digital Microelectronics[END_REF]. Cosmic radiation are very weak at ground level due to the Earth's atmosphere, but their effect becomes more pronounced in the upper atmosphere and outer space. This problem is further compounded by the fact that the more RAM a computer has the higher is the chance of a fault occurring. This provoked extensive research by organizations such as NASA and Boeing. Most work on fault resistance was motivated by this sensitivity to charged particles. Considerable engineering endeavours were devoted to the 'hardening' of electronic devices designed to operate in harsh environments. This has mainly been done using simulators to model circuits and study the effect of randomly induced faults. Various fault induction methods have since been discovered but all have in common similar effects on chips.

A first practical application of fault injection was proposed by [START_REF] Boneh | On the Importance of Checking Cryptographic Protocols for Faults[END_REF]. The authors presented a secret recovery method from a random computational error caused by a fault injection. Since then the field of fault attacks has been widely studied by many institutions and researchers [JT12].

Overclocking

Overclocking consists in decreasing the clock period T clock (or, put differently, increasing clock frequency). A sudden clock frequency increase can create a situation in which the bits on the critical path did not have time to stabilize, so the flip-flops were not updated with a new clock cycle causing faulty data to be latched instead [START_REF] Fukunaga | Practical Fault Attack on a Cryptographic LSI with ISO/IEC 18033-3 Block Ciphers[END_REF]. This led several authors to use overclocking as fault injection means [ADN + 10, SGD08].

3.1

A decreased clock period can potentially affect logical paths whose propagation times exceed the decreased clock period minus the set-up time. From the attacker's perspective the ability to control precisely the clock period is crucial for inducing faults with precision. Note that temperature and power supply changes may also be used to exert such control [KK06].

Although many manufacturers claim to implement high-frequency detectors in their clock signalprocessing logic, these circuits are often only simple filters that do not detect sudden short cycles [START_REF] Kömmerling | Design Principles for Tamper-Resistant Smartcard Processors[END_REF].

Power Glitches

Power supply is another obvious external signal that can be maliciously tampered. Power glitches are often used to induce faults in ICs by a sudden and short negative change on power supply [ABF + 03, BGV11]. The underlying fault injection mechanism was deeply investigated in a recent thesis [START_REF] Zussa | Étude des Techniques d'Injection de Fautes par Violation de Contraintes Temporelles Permettant la Cryptanalyse Physique de Circuits Sécurisés[END_REF]. The main conclusion of the aforementioned thesis is that negative glitches increase the right part of equation (3.1), namely, register setup time t set-up . The assumption that power glitches induce fault by violating the target's timing constraints is also supported by other researchers [BECN + 06, TS09].

Another interesting conclusion is that positive glitches cause errors due to the overshoot effect. This effect creates a power drop immediately after the positive glitch; hence, this drop can cause an error. According to the aforementioned thesis [START_REF] Zussa | Étude des Techniques d'Injection de Fautes par Violation de Contraintes Temporelles Permettant la Cryptanalyse Physique de Circuits Sécurisés[END_REF] positive glitches have the same effect as negative ones.

Successful power glitch injection depends on many parameters that can be controlled by an attacker: nominal power supply; glitch depth, width, falling and rising edges; delay (in respect with the targeted operation), IC temperature, and others. Several publications present optimized techniques to combine and fine-tune glitch fault injection [CPB + 14].

Optical Attacks

Lasers can imitate the effect of charged particles [START_REF] Gossett | Laser Simulation of Single-Particle Effects[END_REF]. Laser radiation can ionize an IC's semiconductor regions if its photon's energy exceeds the semiconductor's band gap [START_REF] Skorobogatov | Optical Fault Induction Attacks[END_REF]. Laser radiation with 1.06 µm wavelength can penetrate a semiconductor layer to a significant depth. With thinned and polished silicon, laser fault injection can achieve outstanding results, including one bit modifications [ADM + 10]. Apart from infrared laser, visible light, green laser and blue lasers can be used to inject faults from the rear side of a chip.

There are two primary methods by which ionizing radiation releases charges in a semiconductor device: direct ionization by the incident particle itself and ionization by secondary particles created by nuclear reactions between the incident particle and the struck device. Both mechanisms can lead to IC malfunction [START_REF] Dodd | Basic Mechanisms and Modeling of Single-Event Upset in Digital Microelectronics[END_REF].

• Direct Ionization: When an energetic charged particle passes through a semiconductor material it frees electron-hole pairs along its path as it loses energy. When all of its energy is lost, the particle comes to rest in the semiconductor, having traveled a total path length referred to as the particle's range. Direct ionization is the primary charge deposition mechanism for upsets caused by heavy ions, where a heavy ion is defined as any ion with atomic number greater than or equal to two (i.e., particles other than protons, electrons, neutrons, or pions) [START_REF] Dodd | Basic Mechanisms and Modeling of Single-Event Upset in Digital Microelectronics[END_REF]. Lighter particles such as protons do not usually produce enough charge by direct ionization to cause upsets in memory cells.

• Indirect Ionization: Although direct ionization by light particles does not usually produce enough charge to cause upsets, this does not mean that we can ignore these particles. Protons and neutrons can both produce significant upset rates due to indirect mechanisms. As a high-energy proton or neutron enters the semiconductor lattice it may undergo an inelastic collision with a target nucleus.

Electromagnetic Fault Injection

The first targeted electromagnetic (EM) fault injection techniques against a semiconductor device dates back to 1995

Basic Fault Properties

A fault attack description must specify a fault model [START_REF] Giraud | A Survey on Fault Attacks[END_REF]. The model clarifies the attacker's capabilities and must include parameters such as a type of error, timing, location, precision of the fault injection, the number of faults, etc. The latter is called an order of the attack, a term suggested in [START_REF] Dottax | On Second-Order Fault Analysis Resistance for CRT-RSA Implementations[END_REF]; a first-order attack assumes that an attacker is capable of inducing only one error during the algorithm's execution, while second-order models assume that injecting more than one error is possible.

An adversary is capable of inducing more than one fault during a single algorithm run. Generic modelling of multi fault attacks becomes much more difficult as theoretically any set of parameter values for the first fault may be combined with any set of parameter values for the second fault. Of course, one can impose limitations, e.g., the same type of error can be induced twice (the hardware settings producing the perturbation are difficult to modify between two faults). Even under these limitations, attacker's capabilities become more powerful. For example, an adversary may now induce faults in both a variable and a procedure testing this variable, thus thwarting many countermeasures designed to withstand single fault attacks.

Fault Location

Fault injection can be performed on different circuit parts, such as general registers, the program counter, instruction decoders, etc. The resulting effect is mostly considered on registers and instructions, without a detailed understanding as of where the actual fault was induced.

Register fault injection assumes two main parameters:

1. The number of modified bits:

• bit: only one bit is affected

• byte: an entire byte is modified

• multiple-bytes: two or more bytes are modified 2. A direction of bits flipping:

• stuck-at or unidirectional faults: bits can be modified only in one direction:

zeros can be set to ones, but ones cannot reset to zeros;

ones can be flipped to zeros, but zeros cannot be changed to 1.

• complement faults: all the bits are complemented to previous value

• pseudo-random: when the number and the value of bits affected by the fault depends on chip's state and physical impact. This fault is typical for clock glitching, when bits are not completely updated and keep the previous value.

3.2

• random: when the number and value of bits depend on the physical impact only. This distribution is typical to laser fault injection.

Fault injection into CPU, i.e., instruction fault injection, has the following effects:

1. Instructions skipping: the number of instructions skipped with one fault injection.

2. Legit random instruction modification: the modified opcode can be correctly processed.

3. Controlled instruction modification: the modified opcode becomes one of the following:

• The contents of the register in the corrupted opcode is modified to another value.

• The jump is done in another location.

Generally, software implementations feature a significantly higher number of vulnerabilities, since not only registers, but also instructions can be modified. This is why hardware implementations are preferable for cryptography.

Fault Timing

The moment of fault injection must be carefully chosen. Most block ciphers can be attacked with faults at their very early or very late rounds. Intermediate rounds cannot be easily attacked.

Attacks succeed with a certain probability. Usually, an attack is not guaranteed to be successful. Therefore fault effects as well as control timing might require a probability or even a distribution to be defined. For example, some physical attacks may have higher probability of resetting bit than of setting bit [START_REF] Paillier | Evaluating Differential Fault Analysis of Unknown Cryptosystems[END_REF].

No control over the location implies that a specific location is expected to be hit with a probability 1/(number of locations) if a uniform distribution is assumed, etc.

Differential Fault Analysis Against SPNs

DFA requires a pair of correct and faulty ciphertexts that are the result of the same plaintext encryption [BS03, Gir05a, DLV03]. Since two encryptions perform identically up to the fault injection point, the two ciphertexts can be considered as the outputs of a reduced-round block cipher where the inputs are unknown but have a small difference [JT12]. Analyzing the propagation of this difference (called differential) over the small number of rounds, an attacker can gain key information involved in these rounds.

When the same plaintext cannot be encrypted twice, a ciphertext-based attack remains practical as shown by [START_REF] Fuhr | Fault Attacks on AES with Faulty Ciphertexts Only[END_REF]. A bias introduced at the input of an S-box can be used to distinguish the correct key from other key candidates. Because the S-box is a pseudorandom permutation an input's entropy computed from all the faulty results with a wrong key guess would be indistinguishable from the entropy of a uniformly distributed variable. The input's entropy computed for the correct key candidate shall be different due to the introduced bias. The multiple bit-reset fault model considered in [START_REF] Fuhr | Fault Attacks on AES with Faulty Ciphertexts Only[END_REF] is a typical fault that can introduce a bias.

While DFA uses a fault injected at the last SPN rounds, CFA exploits errors at the beginning of encryption [START_REF] Hemme | A Differential Fault Attack Against Early Rounds of (Triple-)DES[END_REF][START_REF] Blömer | Fault Based Collision Attacks on AES[END_REF]. CFA looks for a collision between genuine and faulty encryptions of plaintexts P and P respectively. Since the encryptions perform differently up to the point when the fault compensates both state values, the two plaintexts could be considered as the inputs to a reduced-round block cipher that outputs a predictable differential after several rounds.

FAs against SPNs require either full control over the cipher's input and/or the opportunity to inspect the encryption's result. Restricting the attacker's access to the plaintext and the ciphertext is considered as good countermeasure for systems where the secret data can not be easily modified, for example a shared root key used in UMTS [START_REF] Niemi | UMTS Security[END_REF]. However, these countermeasures cannot protect the system against all FAs.

3.2

Differential Fault Analysis Against SPNs 53

Ciphertext-Based Attacks

This section recalls ciphertext-based attacks against SPN ciphers, described in Section 1.3.1.

Attack on Round N r

Consider a fault δ introduced before the S-box transformation in the last round N r . Since all the SPN operations are reversible the correct S [Nr] and faulty δ ⊕ S [Nr] states can be computed as follows:

S [Nr] = m =1 S [Nr] -1 • A -1 | K [Nr] (C) δ K [Nr] ⊕ S [Nr] = m =1 S [Nr] -1 • A -1 | K [Nr] (C) (3.2)
Equations (3.2) can be considered as a round-reduced cipher where two known inputs C = C produce an output with a predictable differential δ K [Nr] . For a given key candidate K j ∈ F 2 n and ciphertext pairs (Ci , C i) we have:

δ (Kj ,i) = m =1 S [Nr] -1 • A -1 | Kj (Ci) ⊕ m =1 S [Nr] -1 • A -1 | Kj (C i) (3.3)
The introduced error δ (K)) computed with the correct key shall be nonuniformly distributed; hence, an error entropy can be used for key selection.

lim i→+∞ H(δ Kj) = b if K j = K [Nr] h if K j = K [Nr] (3.4)
The general entropy approach is described in [LRD + 12], while a special case when HW(δ Kj) = 1 is described in [START_REF] Giraud | DFA on AES[END_REF].

When the same plaintext cannot be encrypted twice, ciphertext-based attacks still apply. In that case the fault has to corrupt the input's uniformity so the entropy would be smaller for the correct key guess as stated by [START_REF] Fuhr | Fault Attacks on AES with Faulty Ciphertexts Only[END_REF]. The fault that can corrupt the input's uniformity is given by AND and OR fault models:

S[Nr] = δ ∧ S [Nr] S[Nr] = δ ∨ S [Nr]
Attack on Round N r -1

Another generally considered ciphertext-based attack exploits computational errors before the last D [Nr-1] permutation at round N r -1. Both correct S [Nr-1] and faulty δ ⊕ S [Nr-1] states can be computed from the known ciphertexts:

S [Nr-1] = D [Nr-1] -1 • A -1 | K [Nr -1] • m =1 S [Nr] -1 • A -1 | K [Nr] (C) δ ⊕ S [Nr-1] = D [Nr-1] -1 • A -1 | K [Nr -1] • m =1 S [Nr] -1 • A -1 | K [Nr] (C) (3.5)
Note that the error space is a subset of (F 2 b) B HW(δ) (D) , where BHW(δ)(D) is a HW(δ)-branch number, introduced in Section 1.2. The differential δ i can be written as a function of K |Nr-1| , K |Nr| , C i , Ci as shown by equation (3.6).

δ i = D [Nr-1] -1 • A -1 | K [Nr -1] • m =1 S [Nr] -1 • A -1 | K [Nr] (Ci)⊕ D [Nr-1] -1 • A -1 | K [Nr -1] • m =1 S [Nr] -1 • A -1 | K [Nr] (C i) (3.6) 3.3
To recover the correct key, the entropy of δ (Kj =K [Nr]) obtained for the correct key has to be at least distinguishable from the entropy of the variable uniformly distributed over (F 2 b) B HW(δ) (D) . Since equation (3.6) exploits both round keys K |Nr-1| , K |Nr| the search key space has to be squared to (F 2 b) 2•B HW(δ) (D) .

The expression (3.6) can be simplified if the key mixing operation is a bit-wise exclusive or (XOR) between a round key and a state A | K (S) : K ⊕ S and permutation D is linear with respect to XOR:

δ i = D [Nr-1] -1 m =1 S [Nr] -1 • A -1 | K Nr (Ci) ⊕ m =1 S [Nr] -1 • A -1 | K Nr (C i) (3.7)
In this case the candidate key space is reduced to

(F 2 b) B HW(δ) (D) .
The attack against AES described by equation (3.7) can be applied if an error has entropy smaller than 32. The fault when up to three out of four bytes of MIXCOLUMNS's input are modified is described in [Gir05a, DLV03, PQ03], 4 bytes modification is presented in [START_REF] Moradi | A Generalized Method of Differential Fault Attack Against AES Cryptosystem[END_REF][START_REF] Mukhopadhyay | An Improved Fault Based Attack of the Advanced Encryption Standard[END_REF].

Plaintext-Based Attacks

Plaintext-based attacks, namely CFA, can be used when a cipher's output cannot be directly accessed while still remaining comparable to previous encryption results.

Attack on the First Round

Similar to the previously described last round attack in Section 3.2.1 we consider a fault δ introduced after S-box transformation at the first SPN round. The correct S [1] and faulty S[1] states can be computed as follows:

S [1] = m =1 S [1] • A | K [0] (P) S[1] = m =1 S [1] • A | K [0] (P) (3.8)
Equation (3.8) can be considered as a round-reduced cipher where two known inputs P = P produce an output with a predictable differential δ K [0] . An injected error δ K [0] modified the state S[1] so that:

S [1] = S[1] ⊕ δ K [0] δ K [0] = S [1] ⊕ S[1] δ K [0] = m =1 S [1] • A | K [0] (P) ⊕ m =1 S [1] • A | K [0] (P) (3.9)
For a given key byte candidate K j and byte pairs (Pi , P i) we have:

δ (Kj ,i) = m =1 S [1] • A | Kj (Pi) ⊕ m =1 S [1] • A | Kj (P i)
The errors δ (K [0] ,i) are assumed to be nonuniformly distributed, i.e., H(δ

(K [0])) = h < b. Given the properties of S-box the corresponding set of errors δ (Kj =K [0] ,∀i) (or δ (Kj =K [0]
)) computed with a wrong key for all the encryptions of (P i , Pi) resulted in ciphertext collision shall be uniformly distributed. The set of errors

δ (Kj =K [0] ,,∀i) (or δ (Kj =K [0]
)) computed with the correct key shall converge to nonuniform distribution. Therefore the error entropy can be used to distinguish the correct key candidate:

lim i→+∞ H(δ (Kj)) = b if K j = K [0] h if K j = K [0]
(3.10)

A special case when HW(δ (K [0])) = 1 is described in [START_REF] Blömer | Fault Based Collision Attacks on AES[END_REF].

3.4

Fault Attack Against CRT-RSA 55

To the author's best knowledge both the general entropy case [LRD + 12] and faulty ciphertexts only attack [START_REF] Fuhr | Fault Attacks on AES with Faulty Ciphertexts Only[END_REF] have not been adapted to the first SPN round yet. A comparison of equations (3.2) and (3.8) shows that this adaptation is indeed possible as suggested by [JT12].

Fault Attack Against CRT-RSA

The pioneering CRT-RSA attack was published in [BL96]. The attack is based on several assumptions:

• The RSA implementation is using Chinese Reminder Theorem.

• The attacker can introduce the error either in s p or s q (exclusive).

• The attacker can record the faulty signature.

• The attacker knows either the correct signature or the initial message m.

Assume that the final signature is computed by Gauss's recombination method (1.7)2 : s = CRT(s p , s q) = s p q(q -1 mod p) + s q p(p -1 mod q) mod N Suppose that the error appeared in computation of s p , and the faulty result is:

s = CRT(s p , s q) = s p q(q -1 mod p) + s q p(p -1 mod q) mod N
The difference between signatures can be computed as follows:

∆ = s -s = s p q(q -1 mod p) + s q p(p -1 mod q) -s p q(q -1 mod p) -s q p(p -1 mod q)

= s p q(q -1 mod p) -s p q(q -1 mod p) = (s p -s p)q(q -1 mod p) mod N Therefore, the greatest common divisor (GCD) between ∆ and N is equal to q: GCD(N, ∆) = GCD(pq, (s p -s p)q(q -1 mod p)) = q

Arjen Lenstra observed that the fault attack against CRT-RSA can be performed with the initial message m [Len96]. If the error is induced during the s p computation then for the correct s and faulty s signatures the following relationships are true:

s e = (s) e mod q s e = (s) e mod p
The difference between (s) e -m can be easily obtained:

(s) e -m = (s p) e q(q -1 mod p) + (s q) e p(p -1 mod q) -m = (s p) e q(q -1 mod p) + (s q) e p(p -1 mod q) -(s p) e q(q -1 mod p) -(s q) e p(p -1 mod q) = (s p) e q(q -1 mod p) -(s p) e q(q -1 mod p) = (s p) e -(s p) e q(q -1 mod p)

Therefore, the GCD between the modulus N and the difference (s) e -m is equal to q: GCD(N, (s) e -m) = GCD(pq, (s p) e -(s p) e q(q -1 mod p)) = q 3.4

Fault attack countermeasures

Fault Attack Countermeasures

Fault attacks are a real industrial security concern: to pass certifications, such as FIPS 140-1 levels 3 and 4 [PUB99], device manufacturers must prove that their products can resists attacks. Various countermeasures are being developed to that end. Since there exist no generic countermeasures which can prevent all attacks, the combination of different techniques is required to achieve a sufficient security level.

Countermeasures deployment come at a price, so they are chosen to provide a good tradeoff between hardware, performance and security level. In practice some deployed countermeasure may facilitate an attack as shown in the Chapter 6.

Fault countermeasures can be subdivided into two groups: fault injection prevention and fault exploration prevention.

1. Fault injection prevention make a device robust to physical stress:

3.4

Fault Attack Countermeasures 57

• One approach is to verify the initial data by applying additional computations (different from the original encryption). After signing a message with an RSA private key, for example, verify the signature value with the corresponding public key. A similar method can be used for (rounds of) block ciphers [KWMK02].

• Another approach is to perform twice the same computation. The double-data-rate mechanism proposed by [MVL07] performs the second computation without affecting throughput.

• Precomputed code signatures protects the integrity of the program flow [START_REF] Medwed | A Generic Fault Countermeasure Providing Data and Program Flow Integrity[END_REF].

(c) Operations hiding includes dummy instructions, execution randomization, code obfuscation, bus and memory encryption, glue logic and other techniques [START_REF] Coron | An Efficient Method for Random Delay Generation in Embedded Software[END_REF][START_REF] Neagu | Protecting Cache Memories Through Data Scrambling Technique[END_REF].

(d) Blinding method consists in "infecting" computations , i.e., redundant computations which get interwoven into output values in case of an error. Infecting countermeasures corrupt the faulty output to a degree when no analysis can be performed [START_REF] Boscher | Blinded Fault Resistant Exponentiation Revisited[END_REF][START_REF] Yen | RSA Speedup With Chinese Remainder Theorem Immune Against Hardware Fault Cryptanalysis[END_REF].

(e) Protocol countermeasures are the protection means preventing an attacker from collecting enough information from the target system, for example, several stages of key derivation [START_REF] Epp | Content Protection Key Management[END_REF], re-keying when a new key is generated for each encryption [START_REF] Medwed | Fresh Re-keying: Security against Side-Channel and Fault Attacks for Low-Cost Devices[END_REF].

CHAPTER 4

INSTANTANEOUS FREQUENCY ANALYSIS

Summary

This chapter describes a signal characteristic, called instantaneous frequency, that supplements power trace parameters, e.g., power amplitude and power spectrum, applied in side-channel analysis. By opposition to the constant frequency used in Fourier Transform instantaneous frequency is understood as local phase differences to express frequency variations.

These variations enable attacks because they depend on the processed binary data. The relationship between binary data and frequency comes from the fact that higher power drops take more time to converge power back to the nominal value. Instantaneous frequency analysis does not present specific benefits when applied to unprotected designs where CPA and CSBA yields better results. However, when instantaneous frequency is used as a side-channel vector, the effect of amplitude modification can be discarded.

4.2

Motivation

As CMOS state transition energy is essentially proportional to the number of switched bits, DPD is the most popular side-channel attack vector. Because transiting also requires time, transition time and processed data might be also related.

Historically, timing attacks were developed to extract secrets from software algorithms [START_REF] Kocher | Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and Other Systems[END_REF] while hardware algorithms were usually assumed to run in constant time and hence be immune to timing attacks. The constant hardware execution time assumption is supported by the fact that usual blockcipher hardware implementations require an identical number of clock cycles to process any data. This chapter shows that this intuition is not always true, i.e., two different inputs may require distinct processing time and can hence be distinguishable.

Energy consumed during each clock cycle creates a waveform in the power domain. A duty cycle, i.e., the time during which the power wave is not equal to its nominal value, can be considered as the execution time of a hardware implemented algorithm. As shown later the duty cycle may depend on the processed data. Fourier transform can not determine local duty cycles since frequency is defined for the sine or cosine function spanning the whole data length with constant period and amplitude. However,recent techniques described in this chapter that can detect local frequencies and hence determine wave duty cycle.

Dynamic Voltage Scrambling (DVS) is a particular side-channel countermeasure that triggers random power supply changes aiming to decorrelate the signal's amplitude from the processed data [BZ07, KGS + 11]. While DVS degrades DPA's and DSBA's performances, nothing prevents the existence of more subtle side-channel attacks exploiting DVS-resistant die-hard information present in the signal. This chapter successfully exhibits and exploits such DVS-resistant information.

Contribution. This chapter shows that, in addition to the signal's amplitude and spectrum, traditionally used for side-channel analysis, instantaneous frequency variations may also leak secret data. To the authors' best knowledge, "pure" frequency leakage has not been considered as a side-channel vector so far. Hence a re-assessment of several countermeasures, especially, these based on amplitude alterations, seems in order. As an example this chapter examines DVS, which makes AES implementation impervious to power and spectrum attacks while leaving it vulnerable to Correlation Instantaneous Frequency Analysis (CIFA), a new attack described in this chapter.

Organization. This chapter is organized as follows. Section 4.2 turns a signal processing algorithm called Hilbert Huang Transform (HHT) into an attack process. Section 4.3 illustrates an HHT performed on a simulated register switch and real power signal. Section 4.3 also motivates the exploration of instantaneous frequency as a side-channel carrier. Section 4.4 compares the cryptanalytic effectiveness of Correlation Instantaneous Frequency Analysis, Correlation Power Analysis and Correlation Spectrum Based Analysis on an unprotected AES FPGA implementation and on AES FPGA power traces with a simulated DVS. Section 4.5 concludes the chapter.

The Hilbert Huang Transform

The HHT represents the analysed signal in the time-frequency domain by combining the Empirical Mode Decomposition (EMD) with the Discrete Hilbert Transform (DHT).

DHT is a classical linear operator that transforms a signal u(1), . . . , u(N) into a time series H u (1), . . . , H u (N)1 as follows:

H u (t) = 2 π k =t mod 2 u(k) t -k (4.1)
DHT can be used to derive an analytical representation u a (1), . . . , u a (N) of the real-valued signal u(t):

u a (t) = u(t) + iH u (t) for 1 ≤ t ≤ N (4.2)
Equation (4.2) can be rewritten in polar coordinates as

u a (t) = a(t)e iφ(t) (4.3)
where

a(t) = (u 2 (t) + H 2 u (t)) and φ(t) = arctan H u (t) u(t) (4.4)
represent the instantaneous amplitude and the instantaneous phase of the analytical signal, respectively.

The phase change rate w (t) defined in equation (4.5) can be interpreted as an instantaneous frequency (IF):

w(t) = φ (t) = d dt φ(t) (4.5)
For a real-valued time-series the definition of w(t) becomes:

w(t) = φ(t) -φ(t -1) (4.6)
The derivative must be well defined since physically there can be only one instantaneous frequency value w(t) at any given time t. This is insured by the narrow band condition: the signal's frequency must be uniform 1. the number of extrema and the number of zero crossings in the considered data set must be either equal or differ by at most one;

2. the mean value of the curve specified as a sum of the envelope defined by the local maxima and the envelope defined by the local minima is zero.

First

Step: Empirical Mode Decomposition.

EMD, the HHT's first step, is a systematic way of extracting IMFs from a signal.

EMD involves approximation with splines. By Definition 23, EMD uses local maxima and minima separately. All the local signal's maxima are connected by a cubic spline to define an upper envelope. The same procedure is repeated for the local minima to yield a lower envelope. The first EMD component h 1,0 (t) is obtained by subtraction from u(t) the envelopes' mean m 1,0 (t) (see Fig. 4.1):

h 1,0 (t) = u(t) -m 1,0 (t) (4.7)
Ideally, h 1,0 (t) should be an IMF. In reality this is not always the case and EMD has to be applied to h 1,0 (t) as well:

h 1,1 (t) = h 1,0 (t) -m 1,1 (t) (4.8) EMD is iterated k times, until an IMF h 1,k (t) is reached, that is h 1,k (t) = h 1,k-1 (t) -m 1,k (t) (4.9) Then, h 1,k (t) is defined as the first IMF component c 1 (t). c 1 (t) def = h 1,k (t) (4.10) Next, the IMF component c 1 (t) is removed from u(t) r 1 (t) = u(t) -c 1 (t) (4.11)
and the procedure is iterated on all the subsequent residues, until the residue r n (t) becomes a monotonic function from which no further IMFs can be extracted.

     r 2 (t) = r 1 (t) -c 2 (t) . . . r n (t) = r n-1 (t) -c n (t) (4.12)
Finally, the initial signal u(t) is re-written as a sum:

u(t) = n j=1 c j (t) + r n (t), for 1 ≤ t ≤ N (4.13)
where, c j (t) are IMFs and r n (t) is a constant or a monotonic residue.

Second

Step: Representation.

The second HHT step is the representation of the initial signal in the time-frequency domain. All components c j (t), j∈[1, n] obtained during the first step are transformed into analytical functions c j (t) + iH cj (t), allowing the computation of instantaneous frequencies by formula (4.6). The final transform U (t, w) of u(t) is:

U (t, w) = n j=1 a j (t) exp i t =1 w j () (4.14)
where j∈[1, n] is indexing components, t∈[1, N] represents time and:

a j (t) = c 2 j (t) + H 2 cj (t)
is the instantaneous amplitude;

w j (t) = arctan Hc j (t+1) cj (t+1)
arctan

Hc j (t) cj (t)
is the instantaneous frequency;

Equation (4.14) represents the amplitude and the instantaneous frequency as a function of time in a three-dimensional plot, in which amplitude can be contoured on the frequency-time plane. This frequency-time amplitude distribution is called the Hilbert amplitude spectrum U (t, w), or simply the Hilbert spectrum [HSL + 98]. In addition to the Hilbert spectrum, we define the marginal spectrum or HTT power spectral density h(w), as

h(w j) = T t=1 U (t, w j) (4.15)
The marginal spectrum measures the total amplitude (or energy) contributed by each frequency value. To illustrate HHT decomposition consider the function u(t) = cos (t (a + bt)). In Fig. 4.2a parameters a and b were arbitrarily set to a = 1 and b = 0.02. Fig. 4.2a shows that the cosine's frequency increases progressively. Fig. 4.2b presents the Hilbert marginal spectrum of the signal u(t) = cos((1 + 0.02t)t). Fig. 4.3a shows the contour of Hilbert's amplitude spectrum, i.e., frequency evolution in time, and this evolution is indeed nearly linear. The 3D Hilbert amplitude spectrum is illustrated in Fig. 4.3b.

AES Hardware Implementation

The AES-128 implementation used for our experiments runs on an Altera Cyclone II FPGA development board clocked by an external 50MHz oscillator. The AES architecture uses a 128-bit datapath. Each AES round is completed in one clock cycle and key schedule is performed during encryption. The S-box is described as a VHDL table mapped into combinational logic after FPGA synthesis. Encryption is triggered by a high start signal. After completing the rounds the device halts and drives a done signal high.

The implementation has no side-channel countermeasures. To simulate DVS, 200,000 physically acquired power consumption traces were processed by Algorithm 4. Algorithm 4 splits a time-series into segments and adds a uniformly distributed random voltage offset to each segment.

The rationale for simulating a DVS by processing a real signal (rather than adding a simple DVS module to the FPGA) is the desire to work with a rigorously modelled signal, free of the power consumption artefacts created by the DVS module itself.

Hilbert Huang Transform and Frequency Leakage

Why Should Instantaneous Frequency Variations Leak Information?

Most of the power consumed by a digital circuit is dissipated during rising or falling clock edges when registers are rewritten with new values. This activity is typically reflected in the power consumption trace as spikes occurring exactly during clock rising edges. Spike frequency, computed by the Fourier transform, is usually assumed to be constant because clock frequency is stable. In reality, this assumption is incorrect since each spike has its own duty cycle and consequently its own assortment of frequencies.

Differences in duty cycle come from the fact that the circuit's power supply must be restored to its nominal value after switching. Bigger amplitude spikes take more time to resorb than smaller amplitude ones.

To illustrate these spike differences, consider the simple circuit in Fig. 4.4. Each parallel branch has a resistor r, a switch S i and a capacitor C that simulate a single inverter when switched from low to high. Resistor R s and the current i s represent the circuit's static current and R a is the resistor used for acquisition. Initially all the switches S 1 . . . S k are open, so the current flowing through R a is simply i s .

Assume that at t 0 = 0 all the switches S 1 . . . S k are suddenly closed. All capacitors start charging and current flowing through R a rises according to the following equation:

i o (t) = i s + k V dd r e -t
i o (T k) = i s -k V dd r e -T k rC = Γ 100 i s (4.17)
This is equivalent to:

T k = rC ln 100 100 -Γ V dd i s r + rC ln (k) = α + β ln(k) (4.18)
Equation (4.18) shows that convergence time has a constant part α and a variable part β ln(k) that depends on the number of closed switches k. Equation (4.18) shows that both spike period and spike frequency depend on the processed data and could hence in principle be used as side-channel carriers. Nevertheless, power consumption is a non-stationary signal, which justifies the use of HHT.

The dependency between the number of switches and spike period in equation (4.18) is non-linear and hard to formalize as a simple formula for a real circuit. Section 4.3.2 shows that the standard Hamming distance model can be used in conjunction with instantaneous frequency.

Register Simulation

The relationship between processed binary values and power amplitude is a well understood phenomenon [AARR03, BCO04, GBTP08, KJJ99]. However, to the best of our knowledge the dependency of instantaneous frequency on processed data has not been explored so far. This may be partially explained by the fact that the Fourier Transform, previously examined in some papers, is not inherently adapted to non-stationary and non-linear signals. Fourier analysis cannot extract frequency variations from a signal because frequency is defined as a constant parameter of the underlying sine function spanning the whole data-set u(t). By opposition, HHT allows extracting instantaneous frequencies and exploiting them for subsequent cryptanalytic purposes.

To illustrate information leakage through frequency variations, the power consumption of a 4-bit register was simulated using the Virtuoso toolkit. Power supply was set to 1.5V and the circuit was clocked by a 50 MHz oscillator (Fig. 4.5).

4.3

In classic side-channel models [START_REF] Brier | Correlation Power Analysis with a Leakage Model[END_REF], the energies consumed for flipping 1 bit and 3 bits differ. Fig. 4.6 shows that such is indeed the case. As per our assumption, the frequency signatures of these two operations are also different. Fig. 4.6 shows that the recovery time following a 3 bits change is longer than the compensation time of 1 bit. This recovery time difference results in a frequency variation. Fig. 4.6 shows that the 3 bits' current spike has a longer pulse period than the 1 bit spike, therefore the 3 bits signal alteration presents a lower frequency. Intuition suggests (and experiments confirm) that this difference will be detected by the HHT.

To show that HHT can detect frequency differences consider the power spectral density (PSD) of both signals during 1 bit and 3 bits switch (Fig. 4.7a). The maximal spectral amplitude of the 1 bit change is located at 4.99 GHz (point f 1) while the maximal spectral amplitude of the 3 bits change (point f 3) is at 4.55 GHz which is supportive of the hypothesis that HHT can distinguish frequency variations even in non-stationary signals. As expected, Fig. 4.7b shows that two sine functions (4.55 GHz and 4.99 GHz) correspond well to the side-channels' shapes. This shows that not only amplitude but also frequency varies during register switch. Logically, power consumption increases as more bits are flipped. However, simulation cannot prove that this variation is detectable in practice because frequency changes heavily depend on the Hamming weight of the data stored in the register. That is why the next section carefully examines the effect of register alteration on IF in a real AES FPGA implementation.

Power Consumption of One AES Round

To illustrate information leakage through frequency variation, the AES last rounds' power consumption was measured using a Picoscope 3207A with 250MHz bandwidth at 10G/s equivalent time sampling rate. Every signal had 1,000 samples and 100,000 traces were acquired for various input plaintexts. A power consumption example of the 4 last rounds is shown on the Fig. 4.8. The AES last round was extracted from each power trace as shown on Fig. 4.9a. The number of bits switches in the AES last round was computed with the known key. Afterwards the traces with the same number of bits switches were averaged.

In classic side-channel models [START_REF] Brier | Correlation Power Analysis with a Leakage Model[END_REF], flipping more bits would consume more energy. Fig. 4.9 shows that such is indeed the case for power consumption of 55, 65 and 75 bit flips where v 75 > v 65 > v 55 . As per our assumption, the frequency signatures of these three operations are also different.

To show that HHT can detect frequency differences consider the power spectral density (PSD) of signals during 55, 65 and 75 bits switchings (Fig. This shows that not only amplitude but also frequency varies during register switch. Logically, power consumption increases as more bits are flipped. However, HHT was previously applied only for one AES round and HHT's applicability for the entire AES power traces must be verified. That is why the next section carefully examines the effect of register alteration on IF when AES FPGA implementation is sampled at a smaller rate.

Hilbert Huang Transform of an AES Power Consumption Signal

We start by performing a Hilbert Huang decomposition of a real signal. The analysis was performed on the power trace of the previously described AES-128 implementation. The acquisition was performed 1 G/s real time rate with 1 GHz differential probe. Signals were averaged 10 times and had 1,000 samples (Fig. Amplitude combination over frequency gave the power spectral density plot shown in blue on Fig. 4. 13. An important observation in Fig. 4.13 is that HHT spectrum shows the distribution of a periodic variable over the main peak frequencies. Notably, the peak near 50 MHz that corresponds to the board's oscillator is not represented by a single point, but by a set of points. This data scatter can be explained by the fact that the IF of AES rounds varies, and HHT distinguishes this variation.

The main difference between HHT and FFT spectra (see plot shown in red on Fig. 4.13) is that HHT defines frequency as the speed of phase change and can hence detect intra-time-series deviations from the carrier's oscillation, whereas FFT frequency stems from the sine function, which is independent of the signals' shape.

So far, it was shown that IF varies for different rounds even within a given trace. However, an attack is only possible when IF depends on the data's Hamming weight.

The dependency is apparent in IF adoption for side-channel attacks presents some particularities. The disadvantage of the method is that data scatter is higher than in usual DPA and hence the attack requires more power traces. Another issue is that each time-series will be decomposed into a set of IMFs, hence every sample will be wrapped-up with a set of IFs virtually multiplying the amount of data to be processed. However, the advantage is that because frequency-based analysis is independent of local amplitude, CIFA can still be attempted in the presence of certain countermeasures.

Correlation Instantaneous Frequency Analysis

This section introduces Correlation Instantaneous Frequency Analysis (CIFA) and compares its performance with Correlation Power Analysis (CPA) and to Correlation Spectral Based Analysis (CSBA).

Correlation Instantaneous Frequency Analysis on Unprotected Hardware

During the acquisition step 200,000 power traces were acquired at a sampling rate of 2.5 GS/s. Each power signal was averaged 10 times to reduce noise. All traces were HHT-processed using the Matlab HHT code of [START_REF] Battista | Application of the Empirical Mode Decomposition and Hilbert-Huang Transform to Seismic Reflection Data[END_REF]BKMG12]. Most traces were decomposed into 6 components, but 5 and 7 IMFs occurred as well. To reduce the amount of processed information only the first four IMFs were used.

Generally, each higher rank IMF carries information present in smaller instantaneous frequencies (Fig. 4.12b), this is why IMFs from different power traces were aligned index-wise, i.e., all first IMFs from every encryption were analyzed first, then all second IMFs and so on.

We chose the Hamming distance model and Pearson's correlation coefficient to investigate CIFA's properties and compare CIFA with other attacks. Applied SCA algorithm is given in Algorithm 1.

CPA.CPA applied to power traces produces Fig. 4.15(a). Clearly, CPA outperforms CIFA. CIFA's poorer performance can be partially attributed to the power model, because IF is not linearly dependent on the Hamming distance.

CSBA.Fig. 4.15(b) presents CSBA applied against Fourier power trace spectra with the same power power model and distinguisher. The correct key byte can be distinguished from 2000 power traces and on.

CIFA.The application of the selected power model and of the distinguisher to IFs yields Fig. 4.15(c) where the correct key byte emerges from 16,000 power traces and on.

The three experiments seem to suggest that CSBA is superior to CIFA but inferior to CPA. That is CIFA < CSBA < CPA. While it appears that CPA and CSBA outperform CIFA in the absence of countermeasures, we will now see that CIFA survives countermeasures that derail CPA and CSBA.

Correlation Instantaneous Frequency Analysis in the Presence of DVS

As mentioned previously DVS alters power supply to reduce dependency between data and consumed power. According to [BZ07, KGS + 11] DVS is cheap in terms of area overhead since only a voltage controller and a random number generator must be added to the protected design.

Algorithm 4 Dynamic Voltage Scrambling (DVS) Simulator

Require:

A power trace u(1), . . . , u(N); γ : the number of segments; m : mean value of segment length m def = N/γ; σ : standard deviation of segment length; D : maximum offset for segment lifting; Ensure: a DVS-protected power trace u (1), . . . , u (N);

Split a trace to a set of segments of normally distributed random length chunks

τ 0 ← 1 τ γ ← N for i = 1 to γ -1 do τ i ← τ i-1 + N (m, σ) end for
Lift each segment by a uniformly distributed random offset for s = 1 to γ do

s ∈ R [0, D] for t = τ s-1 to τ s do u (t) ← u(

t) + s end for end for

To simulate DVS all the traces of the unprotected AES were modified by Algorithm 4. Each power trace was partitioned into γ segments of normally distributed lengths covering the whole dataset. 1 . Each segment was lifted by a uniformly distributed random offset that did not exceed a predetermined value D set to D = 12 mV.

A trace modification example is presented in Fig. 4.16, in which the trace of Fig. 4.11 was processed by Algorithm 4.

Logically, DVS decreases power analysis performance by reducing the attacker's SNR. We disposed of 200,000 DVS-modified power traces. All of which were used to mount power analysis attacks under the same conditions as before, i.e., using Pearson's correlation coefficient and the Hamming distance model.

The same final round key byte used for attacks against the unprotected implementation was targeted. CPA and CSBA failed to detect the correct key byte even with 150,000 traces (Fig. 4.17(a),4.17(b). This confirms the intuition that DVS has a beneficial effect on the required number of power traces.

However CIFA was able to recover the byte from 60,000 traces and on (Fig. 4.17(c)). This illustrates that whilst CIFA is usually outperformed by CPA and CSBA, CIFA is much more resilient to DVS, to which CPA and CSBA are very sensitive.

Conclusions

This chapter investigated the use of instantaneous frequency instead of power amplitude and power spectrum in side-channel analysis. By opposition to the constant frequency used in Fourier Transform, instantaneous frequency reflects local phase differences and allows to detect frequency variations. These variations depend on the processed binary data and are hence cryptanalitically useful. The relationship stems from the fact that after higher power drops more time is required to restore power back to its nominal value. IF analysis does not bring specific benefits when applied to unprotected designs on which CPA and CSBA yield better results. However, CIFA allows to discard the effect of amplitude modification countermeasures, e.g., DVS, because CIFA extracts from signal features not exploited so far.

Statistical Indistinguishability

Statistical indistinguishability is a cornerstone of modern cryptography, underlying fundamental applications such as pseudorandom generators, secure encryptions, commitment schemes and much more [START_REF] Goldwasser | The Knowledge Complexity of Interactive Proof Systems[END_REF]Gol98].

Statistical indistinguishability captures a situation in which the statistical distance between two distributions X and Y tends to 0 faster that any inverse polynomial, that is, it is so-called negligible function.

Definition 24 [Statistical Distance ∆] Given two random variables X, Y taking values in a set V , the statistical distance is defined as:

∆(X, Y) = 1 2 ∀v∈V |Pr[X = v] -Pr[Y = v]| Definition 25 [Negligible Function] A function f : N → [0, 1] is called negligible, denoted as negl(n), if for all c ∈ N there exists n c ∈ N such that f (n) ≤ n -c for all n ≥ n c .
Statistical distance can be defined in several manners, for example from the Kolmogorov-Smirnov test [START_REF] Hazewinkel | Encyclopedia of Mathematics[END_REF], Hellinger distance [START_REF] Nikulin | Hellinger Distance[END_REF], etc.

In this thesis statistical distance between two distributions X and Y over a domain Θ is defined as Euclidean distance:

∆(X, Y) = θ∈Θ (Pr[X = θ] -Pr[Y = θ]) 2 Definition 26 [Statistical Indistinguishability] Let |X n : x i , x i ∈ V X , 1 ≤ i ≤ n| and |Y n : y i , y i ∈ V Y , 1 ≤ i ≤ n|
∆(X n , Y n) = negl(n)
Statistical indistinguishability allows defining leakage-immune functions F as in [START_REF] Coron | Statistics and Secret Leakage[END_REF].

Definition 27 [Leakage immune operation F] The operation F (K, X) is leakage immune if F (K, X) s ≈ F (K , X) for all distributions (K, X) and (K , X).

In the rest of this chapter F () will denote leakage-immune operations whereas F () will denote nonleakage immune operations.

Leakage immunity is a fundamental principle used in many attacks including differential [START_REF] Biham | Differential Cryptanalysis of DES-like Cryptosystems[END_REF] and linear [START_REF] Matsui | Linear Cryptanalysis Method for DES Cipher[END_REF] cryptanalysis. SCA also applies this principle. First-order methods collect leakage statistics of a single point per side channel measurement [START_REF] Kocher | Differential Power Analysis[END_REF][START_REF] Brier | Correlation Power Analysis with a Leakage Model[END_REF]. This leakage usually stems from the non-leakage immunity of an S-box related operation. High-order methods combine several leakage points and build combined statistics to defeat countermeasures [Mes00, OMHT06].

Previous SCA operate with one-dimensional statistics, i.e., either a single leakage point or a function of leakage points. This work shows that a subkey value can cause a unique distribution between several side-channel points. This distribution is built without plaintext data, i.e., just with side-channel queries, thus an attack can be applied when both x in and x out values are unknown. The following section introduces unique subkey-dependent distributions which can be recovered with side-channel queries only.

Hamming Weight Probability Distributions

As explained in Section 2.2 Hamming weight is the maximal information which can be inferred from side-channel data, collected on modern CMOS devices. When the data itself is unknown the key might be found from the recovered Hamming weights.

Consider a set of functions F1 (k, x in), F2 (k, x in), ..., FM (k, x in) defined for a given key k ∈ F 2 m and an input vector X in = {x i in } 0≤i≤2 m -1 . Subkey recovery can be performed when each subkey k corresponds to a unique Hamming weight distribution, introduced as follows:

Definition 28 [Hamming Weight Probability Distribution (HWPD)] Hamming Weight Probability Distribution is a discrete probability distribution used to observe a set of Hamming weights:

Pr k [h 0 , h 1 , h 2 , ..., h M] = #x i in 2 m :          HW(x i in) = h 0 HW(F1 (k, x i in)) = h 1 ... HW(FM (k, x i in)) = h M k, x i in ∈ F 2 m
An HWPD can be computed for any set of operations F1 , F2 , ..., FM , however, only non leakage-immune operations would provide key uniqueness. Note, that

m h0,h1,h2,...,h M =0 Pr k [h 0 , h 1 , h 2 , ..., h M] = 1
To illustrate unique key distributions consider a typical block cipher operation F1 = S(k ⊕ x in). HWPD can be computed by equation (5.1):

Pr k [HW(x in), HW(S(k ⊕ x in))]

(5.1) Fig. 5.1 illustrates HWPDs (5.1) computed for AES using the two keys 0xBC and 0xC8. Clearly, the two HWPDs can be visually distinguished and can thus serve for key recovery. To verify the uniqueness of the HWPD a statistical distance between all subkeys k i , k j ∈ F 2 m can be computed as follows: A statistical distance between distributions (5.1) computed for all the subkeys k i , k j ∈ F 2 8 using AES Sbox is illustrated on Fig. 5.2a. Figure 5.2a shows that statistical distances computed for (k i , k j), i = j are never equal to zero, thus all HWPDs are different. Therefore, a HWPD uniquely defines an AES subkey value. Similar statistical distances can be computed for other block ciphers as shown in Appendix A.

HWPD can be extended for several operations, for example k ⊕ x in and S(k ⊕ x in) as defined by equation (5.3). In that case the statistical distance is given by the equation (5.4). The statistical distance computed for all the AES subkey values is shown in Fig. 5.2b. Fig. 5.2a shows the statistical distance computed 5.3

for HWPDs with two components, i.e., Pr k HW(x in), HW(S(k ⊕ x in)) , Fig. 5.2b shows the statistical distance computed for HWPDs with three components Pr k HW(x in), HW(k ⊕ x in), HW(S(k ⊕ x in)) . The colour of each square indicate the statistical distance value.

Again, there is no key pair which has identical HWPDs. Comparison between Fig. 5.2a and Fig. 5.2b shows that the absolute statistical distance between key values became smaller when two F functions were applied.

Pr k HW(x in), HW(k ⊕ x in), HW(S(k ⊕ x in)) (5.3) ∆ 2 ki,kj = m h0=0 m h1=0 n h2=0 Pr ki h 0 , h 1 , h 2] -Pr kj h 0 , h 1 , h 2 2
(5.4)

In the rest of the thesis a real HWPD will designate an HWPD constructed with side-channel measurements, while a pattern HWPD will mean a HWPD constructed by simulation for each key guess. An adversary may find a correct subkey by computing a statistical distance between a real HWPD and a pattern HWPD. The smallest statistical distance shall correspond to the correct subkey.

Side-channel measurements are imprecise thus a real HWPD might be recovered with errors. Key recovery rate depends on the percentage of erroneous Hamming weights used for HWPD computation.

Error tolerance can be verified by simulation when a certain percentage of Hamming weights is replaced by wrong values. Key recovery success rates using HWPD (5.1) are illustrated in Fig. 5.3a and using HWPD (5.3) in Fig. 5.3b.

As illustrated by Fig. 5.3 key recovery can tolerate errors in Hamming weight detection. The threshold shown on the graphs indicates that up to 5 Hamming weight pairs for HWPD (5.1) and up to 33 Hamming weight triples for HWPD (5.3) can be wrongly detected before key recovery rate drops below 1. This tolerance allows applying HWPD key recovery in practice and the following section discusses the practical aspects of this attack.

Blind Fault Attacks Against SPNs

The new attack targets an SPN operation between two rounds, r and r + 1, shown in Figure 5.4 in blue. This operation can be described by equation (5.5).

S [r+1] j

= S

[r+1] j

• A | k [r] j S [r] j , j ∈ [1, m] (5.5)
where

S [r+1] j ∈ F 2 b is an output of one S-box operation S [r+1] j , A | k [r] j mixes a key part k [r] j ∈ F 2 b with a state part S [r] j ∈ F 2 b .
For simplicity this cryptographic operation is denoted as:

F (k [r] j , S [r] j) = S [r+1] j • A | k [r] j S [r] j (5.6)
The input S

Round r

Round r + 1 , S

S [r]D 1 A | k [r] 1 S [r+1] 1 S [r+1] S 1 S [r]D j A | k [r] j S [r+1] j S [r+1] S j S [r]D m A | k [r] m S [r+1] m S [r+1] S m D [r+1]
[r+1] S j

(S [r]D is state at round r after diffusion layer and S [r+1] S is state at round r + 1 after substitution layer) is found, the attacker can search the correct key value using key sifting and key likelihood information, as will be discussed in subsection 5.3.2.

Hamming Weight Computation

The attack assumes that a multiple bit-reset error1 e can be invoked in a middle cipher round:

S[r] j = S [r] j ∧ e for S [r] j , e ∈ F 2 b (5.9)
The error e is assumed to be uniformly distributed over the finite field F 2 b , hence all ciphertexts have equal appearance probabilities. The value S[r] j cannot be directly accessed, so the attack's principal idea is to determine the Hamming weight of this variable by injecting N random multiple bit-reset faults and observing the number of different outcoming ciphertexts.

Assume that N c different ciphertexts are observed after N fault injections. It is possible to compute the probability that faults injected into a variable with the Hamming weight 2 h [r] j could produce N c different ciphertexts. This can be considered as an occupancy problem [START_REF] Feller | An Introduction to Probability Theory and Its Applications[END_REF] where N c out of λ bins are occupied after throwing N balls.

In the classical occupancy problem, the probability Pr(N c = n κ) can be computed using equation (5.10) given in [START_REF] Harris | Statistical Inference in the Classical Occupancy Problem Unbiased Estimation of the Number of Classes[END_REF].

Pr(N c = n κ) = λ! (λ-nκ)! α(nκ,N) λ N
for n κ ∈ {1, 2, ..., min(λ, N)} 0 else (5.10)

where α(n κ , N) is the Stirling number of the second kind i.e.:

α(n κ , N) = 1 n κ ! nκ i=1 (-1) nκ-i n κ i i N
In the attack's case the values N c and N are known but λ must be determined. To estimate λ a maximum likelihood estimator λ is built as a function of n κ and N , i.e., equation (5.10) is computed for all the values λ i ≥ 2 log 2 (nκ) and amongst them the λ i with the maximum probability is assumed to be correct:

λ = arg max λi Pr(N c = n κ |λ i) (5.11)
The above Hamming weight detection method was simulated for nibbles and bytes. A given number N of randomly generated multiple bit-reset faults were injected into a randomly generated variable x and the number of different faulty values N c were used to determine the Hamming weight of the variable using formula (5.11). The total number of successfully determined Hamming weights was recorded for 10 5 trials and the success rate was computed for each number of faults N as shown on The occupancy problem and various estimators were previously discussed in [BF93], however the maximum likelihood estimator was chosen due to the limited number of possible bins and computational simplicity.

Key Search

An attacker has M pairs of Hamming weights HW(S

) , i ∈ [1, M] are inter- changeable.
The key search process is performed in two steps. The first step, called key sifting, is a typical equationbased approach when the key has to satisfy a set of finite field equations. The present attack uses M pairs h

[r]

i , h

[r+1] i to find the key candidates that satisfy the following constraint:

L = k ∈ F 2 b |∀i ∈ [1, M] ∃x ∈ F 2 b : HW(x) = h [r] i , HW(S [r+1] j • A | k (x)) = h [r+1] i (5.12)
Reducing |L| requires a significantly higher number of pairs than ciphertext-or plaintext-based attacks.

To perform second step, called key likelihood estimation, the HWPD

Pr k HW(x), HW S [r+1] j • A | k (x)
∆(Pr r , Pr k) = ∀hi,hj (Pr r [h i , h j] -Pr k [h i , h j]) 2 (5.13)
and the key candidate with the minimum distance is betted as correct:

k = arg min k ∆(Pr r , Pr k)
(5.14)

5.4

Substitution Layer Leakage 85 Table 5.1 -Specification of the operation S

[r+1] j

• A | k [r] j S [r] j
for different ciphers.

Cipher Exact operation Size of S

[r]D j , S

[r+1] S j , and k

[r] j

Number of elements in the S-box

LED S [r+1] S j = S k [r] j ⊕ S [r]D j) 4-bit 16 AES S [r+1] S j = S k [r] j ⊕ S [r]D j) 8-bit 256 SAFER++ S [r+1] S j = S k [r] j + S [r]D j) 8-bit

Simulations

The key search algorithm was simulated for LED, AES and SAFER++. Operation (5.5) of each cipher is described in the) that could have been recovered at an earlier step by fault injection. The successful key recovery was recorded after key sifting and key likelihood estimation and shown in the Figure 5.6 for the various ciphers considered.

As illustrated on Figure 5.6, key likelihood estimation significantly improves key recovery success rate. Moreover, key sifting does not converge to 1, which justifies the usage of the key likelihood estimation step. The average number of Hamming weight pairs needed to recover the correct key with 99% confidence is 50 for LED, 250 for AES and 200 for SAFER++.

Simulations reveal that our attack can be used to recover round keys. The total number of required faults, given in Table 5.2, depends on the cipher's S-box input size, key mixing operation and the number of elements in S-box.

Substitution Layer Leakage

This section discusses practical aspects of the proposed fault attack, namely multiple bit-set or bit-reset fault models, precise fault injection time and the required number of faulty ciphertexts.

Multiple Bit-Set or Bit-Reset Fault Model.

One of the attack's main assumptions is that a multiple bit-reset (or multiple bit-set) can be caused by fault injection. Previously, these fault models have been applied in various papers [START_REF] Blömer | Fault Based Cryptanalysis of the Advanced Encryption Standard (AES)[END_REF][START_REF] Fuhr | Fault Attacks on AES with Faulty Ciphertexts Only[END_REF]. The practical feasibility of bit-reset (or bit-set) fault injection was shown in a set of experiments. The multiple bit-set fault model was observed during EM-glitch fault injection as described in [MDH + 13]. [RSDT13] reports that during laser fault injection to SRAM, bit-flip fault model is irrelevant, only bit-set (or bit-reset) errors are feasible.

Precise Fault Injection Time and Space.

A second attack requirement is precise fault injection, i.e., the time and the location of a fault must be well specified. This is a single fault attack since only one fault has to be injected during an encryption. The identification of fault injection time and place can be done during the characterization phase when the adversary has the full control over the device. To identify the processing time of the state value S Once the time is identified the adversary can search a location for EM or laser fault injection. To speed up the identification phase the number of cipher rounds can be reduced. Note that during the characterization phase an adversary may have access to the cipher's input and output but during the attack this information is not accessible; hence, standard fault injection or side-channel attacks cannot be applied.

The Number of Faults.

Simulation shows that approximately 120 fault injections are needed before the Hamming weights of the 8-bit input and output state values can be identified. This number of faults has to be multiplied by the number of plaintexts required to recover the key value, i.e., the number of Hamming weight pairs needed for key byte recovery. In total approximately 30,000 faults have to be injected before the correct key byte value can be found for the AES and 24,000 faults for SAFER++. This number of faults is significantly higher than for other FAs. However, our attack targets scenarios where other FA methods cannot be applied. The increased number of faults seems a reasonable price to pay. Once the time and location of fault injections are identified, it is just a matter of time to create this number of errors. In addition, our attack targets individual nibbles or bytes depending the S-box sizes. After recovering several bytes with our method, the rest of the key can be brute-forced.

Countermeasures.

Our attack is feasible against implementations where the number of different ciphertexts can be counted while their actual values remain inaccessible. The most straightforward countermeasures against the presented method are based on randomization. Infective countermeasures that replace the ciphertext by a random number after a fault detection is one of them [START_REF] Victor Lomne | On the Need of Randomness in Fault Attack Countermeasures -Application to AES[END_REF]. This countermeasure outputs the correct ciphertext C if no fault happens and when a fault is injected the output is masked with random data C = C ⊕ ((C ⊕ C) • η) where η is a random number. With this countermeasure, for the same fault injected, there are multiple different faulty ciphertexts and thus Hamming weight computation cannot be applied. Another type of countermeasures, which is often used to defeat side channel analysis, is masking [START_REF] Kim | A Fast and Provably Secure Higher-Order Masking of AES S-Box[END_REF]. In this case, the operation

F = S [r+1] j • A | k [r] j is changed to F η = A | f (η) S' [r+1] j • A | k [r]

Conclusions

In this chapter a new fault attack on SPN ciphers was described. This attack has conservative preliminary assumptions. Namely, the adversary:

• does not know plaintext and ciphertext values.

• can encrypt several times a set of unknown plaintexts.

• knows the number of tampered encryptions performed for the same plaintext.

• can induce a multiple bit-reset (or bit-set) fault in a middle SPN round.

5.5

It is shown that under these assumptions the adversary can derive the Hamming weight of an internal round state. When a Hamming weight of the state before key mixing operation and a Hamming weight of the state after confusion operation are known the round key can be recovered. To the authors' best knowledge this is the first fault attack that can be used to derive any round key. Also this is the first attack based on Hamming weight of the internal state values.

Simulations confirm that our attack works in practice against AES, LED and SAFER++. CHAPTER 6

MULTI FAULT ATTACKS ON PROTECTED CRT-RSA

Summary

Since the first publication of a successful and practical two-fault attack on protected CRT-RSA surprisingly little attention was devoted by the research community to an ensuing new challenge of multiple fault injection. The reason for it seems to be two-fold. One is that generic higher order fault attacks are very difficult to model and thus finding robust countermeasures is also difficult. Another reason may be that the published experiment was carried out on an outdated 8-bit microcontroller and was thus not perceived as a threat serious enough to create a sense of urgency in addressing this new menace. This chapter presents two-fault attacks on protected CRT-RSA implementations running on an advanced 32-bit ARM Cortex M3 core. To the author's best knowledge, at the time of publication this was the first practical result of two fault laser attacks on a protected cryptographic application. Considering that laser attacks are much more accurate in targeting a particular variable, our result suggest that for protecting security-crucial applications software-only countermeasures may need to be complemented by some hardware-based protection techniques such as shields, sensors, error correction methods, etc.

The State-of-The-Art

Most papers develop theoretical attacks: typically they start by specifying a fault model and go on describing how it can be used to break a cryptographic primitive. Sometimes simulations are used to verify the success of the attack model, but practical experiments are rarely reported. Papers that describe breaking real-life cryptosystem implementations exist, and they often play the role of a catalyst -for both, attacks and countermeasures. We hope that this thesis falls into this category. We describe practical multi-fault laser attacks on protected against single fault cryptographic implementations, which are running on a powerful general purpose ARM-based microcontroller.

The only practically implemented second-order fault attack published in the open literature [START_REF] Hee | Fault Attacks for CRT Based RSA: New Attacks, New Results, and New Countermeasures[END_REF] was carried out on a simple 8-bit microcontroller. Faults were generated by means of power glitches. Considering that laser attacks are much more accurate in targeting a particular variable, the significance of our result in attacking general-purpose 32-bit microprocessors cannot be overlooked. We describe attack techniques to provide a reader with useful insights for understanding of threats of multi-fault attacks and their impact on the implementation of cryptographic algorithms.

Until now the publication of Kim and Quisquater [START_REF] Hee | Fault Attacks for CRT Based RSA: New Attacks, New Results, and New Countermeasures[END_REF] is the only work describing a practical implementation of a multi-fault attack on CRT-RSA in which they were able to break first order countermeasures [START_REF] Ciet | Practical Fault Countermeasures for Chinese Remaindering Based RSA[END_REF]. The attack was implemented on Atmel's 8-bit AVR microcontroller ATMega. The first countermeasure is based on the Montgomery powering ladder which works on a pair of intermediate results of the form (m [k-1] , m [k]) and uses a relationship between them to perform a coherence check on the computed value. The second countermeasure is an "infective" generalization of Shamir's trick initially presented in [START_REF] Shamir | How to Check Modular Exponentiation[END_REF]. In the generalized countermeasure CRT computations are carried out modulo p × r 1 and q × r 2 (r i being a small random value), which allows to verify the result modulo r 1 or r 2 afterwards, and, if an error is detected, to infect it using a specially computed random value [START_REF] Joye | Secure Evaluation of Modular Functions[END_REF].

S * p = m dp mod (r 1 • p)S 1 = m dp mod φ(r1) mod r 1 S * q = m dq mod (r 2 • q)S 2 = m dq mod φ(r2) mod r 2
Both half exponentiations are check separately before the CRT recombination:

If S 1 = S * p mod r 1 and S 2 = S * q mod r 2 return S = CRT (S * p , S * q)
After the feasibility and the danger of the new class of attacks was demonstrated, there were very few papers dedicated to their theoretical models and countermeasures. Notably, the two new second-order countermeasures for CRT-RSA proposed in the original paper [START_REF] Hee | Fault Attacks for CRT Based RSA: New Attacks, New Results, and New Countermeasures[END_REF] were found to be weak and were subsequently improved in [START_REF] Hee | How Can We Overcome Both Side Channel Analysis and Fault Attacks on RSA-CRT?[END_REF]. In [START_REF] Boneh | On the Importance of Checking Cryptographic Protocols for Faults[END_REF] a second-order resistant infective method for CRT-RSA was suggested, but as shown later, it can be broken with a single fault. The most serious analysis of a second-order fault attack resistance for CRT-RSA was published recently in [START_REF] Dottax | On Second-Order Fault Analysis Resistance for CRT-RSA Implementations[END_REF] where the countermeasures of [START_REF] Hee | How Can We Overcome Both Side Channel Analysis and Fault Attacks on RSA-CRT?[END_REF] were analyzed from an implementation standpoint, revealing their potential vulnerability and, more importantly, a claim was made on a general second-order countermeasure. This will be addressed at the end of this chapter.

The question that begs to be asked is -are second-order fault attacks relevant in real life? Can they be implemented in practice on modern high performance devices? Our work allows us to answer this question with full confidence -yes, they can.

The rest of this chapter is organized as follows. Section 6.1 recalls the notion of fault models. Section 6.2 and 6.3 detail the setting of a multi-fault attack: the device architecture and a laser bench, respectively. Section 6.4 briefly describes a preparation process for a front side laser attack. Section 6.5 recalls two new countermeasures for CRT-RSA from [BHT10]: a very efficient signature verification method for protection against single-fault attacks and its extension to a second-order countermeasure by combining it with infective computations. Implementations of these algorithms on a 32-bit ARM Cortex M3 microcontroller were used as a test bench for our practical multi-fault laser attacks described in details in Section 6.6. In conclusion we summarize an impact of this experiment on security engineering.

Device Architecture

Feasibility of multi-fault attacks on cryptographic algorithms running on modern high performance architecture is a challenging problem with a serious practical impact. For our experiments we had chosen a general purpose microcontroller based on a 32-bit ARM Cortex M3 core -a CPU specially developed for embedded applications [ARM] and widely used in medical equipment, PC peripherals, industrial applications, alarm systems, etc.

The microcontroller is implemented as a System on Chip (SoC) and includes 512 KB of embedded flash and 64 KB of embedded SRAM, both memories being accessed in one clock cycle. Many peripherals, analog and digital, are present on the chip including I2C and USB interfaces, DMA, ADC, PLL, an internal RC oscillator, independent watchdogs and timers. The SoC is manufactured using 130nm feature size and six metal layers. All digital components are implemented in glue logic.

The device has a number of features intended for robustness in adversarial environmental conditions, e.g., temperature sensors, embedded voltage regulator, etc. A Programmable Voltage Detector generates an interrupt if the voltage drops below a predetermined threshold. In this case, it is up to the firmware to implement a safe shutdown before the reset. The clock safety system generates an interrupt if the main external clock is disconnected or broken and the microcontroller is automatically clocked with an internal safe clock so the system can perform shutdown or a reset operation. Thus some low cost attacks such as setup time violation [START_REF] Barenghi | Low Voltage Fault Attacks on the RSA Cryptosystem[END_REF] or clock glitches [ADN + 10] were not possible.

The ARM architecture is based on a (modified) Harvard model [ARM] which separates code and data and thus can simultaneously read them both from (distinct) memory address spaces. It uses different buses for instruction and data signals. The Cortex M3 is characterized by a three stage pipeline unit (instruction fetch, decode, execute/address compute) and normally does not include caches. In the User mode, Cortex M3, which is a load-store machine and does not support operations directly from the main memory, can access 16 general purpose 32-bit registers. Three of them have specific roles, namely: r 13 is dedicated to a stack pointer, r 14 is a link register, and r 15 is a program counter (PC). There is also a set of registers representing a program status. These registers, called xPSR, store all the flags which are used for conditional statements and exception checking. The relevant flags stored in these registers, as far as control flow management goes, are: Z (zero result from ALU flag), N (negative result from ALU flag), C (ALU operation carried out), and V (ALU operation overflowed). Fig. 6.1 is an excerpt from the ARM reference manual [ARM, Yiu] and depicts two most common instructions: a general purpose data processing instruction and a branch. The instruction encoding in ARM architecture uses different fields to distinguish among possible instructions. The first field (bits 27 to 25) is used in order to split an instruction set into macro groups (data processing, load/store, branches and co-processor dedicated instructions). Data processing instructions are further characterized by a 4-bit opcode (bits 24-21) which specifies the actual instruction to be performed.

Most of instructions can be executed conditionally, i.e., the instruction is committed only if a particular condition is met, for example if the result of the previous instruction is zero or negative. As one can see in Fig. 6.1 instructions have a 4-bit wide condition field which is checked at the time of execution. If the condition is unmatched, the instruction has the same effect as NOP without any rollback penalty. Conditional branches are thus implemented as simple conditional instructions distinguished by the 3-bit instruction class code 101 (bits 27-25) and nothing more. A special condition code (1110) is the one 6.3 matching the "Always" condition and allows the normal execution of instructions. Thus, due to the nature of the ARM architecture by injecting faults in registers we may:

• Modify the condition field of the instruction which may result in an instruction skip or a mistaken branch;

• Modify the instruction itself, e.g., ADD instead of SUB;

• Alter a value on which the condition is checked: this will result in a wrong branch evaluation;

• Modify the program counter register r 15 ;

• Change a destination address or a link register of a branch thus altering program flow.

The Cortex M3 processor supports several exception fault handlers. These handlers can detect faults resulting from an error condition in instruction execution such as:

• Memory management fault, generated when program jumps to memory area where there is no executable code;

• Accessing privileged operating system functions;

• An attempt by the processor to execute an undefined instruction;

• An important exception type is a hard fault which occurs because of an error in exception processing or because an exception cannot be managed by any other exception mechanism. Hard faults were regularly observed during our experiments.

The Laser Equipment

A laser platform which we used in our experiments was equipped with the YAG laser shown on Fig. 6.2, a driving board on which a chip is mounted, a synchronization board which controls timing of the laser shots, two cameras with separate monitors, a cooling/heating system, a LeCroy oscilloscope with 10 GHz bandwidth, and a personal computer. Two wavelengths, 532 nm green and 1064 nm infrared, can be generated by the laser.

For the green laser 5× and 20× magnification lenses are available, and for the infrared 50× and 100× magnification lenses can be installed. The laser aperture is about 35 × 35 µm, and it can be reduced by shutters to 1% of this area. The duration of the laser shot is fixed at 5ns. The laser's aperture, energy, displacement step and other parameters can be set up either manually or using the LabView interface available on the computer.

The target chip is mounted on a driving board used to relocate its position for shooting. The step of the driving table for both Y and X axes is equal 1µm. To target different timings of a program execution, a synchroboard delays a trigger signal from the chip. The delay ranging from 10ns to hundreds of ms, can be set via the LabView interface which also allows handling the start and end points of the driving board and a displacement step as well as the number of shots in each position.

A driving table, a synchroboard and a chip are connected to a computer. It is also possible to connect the laser terminal and an oscilloscope to the computer, but during our experiments these connections were not established. The bench is controlled via a custom-designed LabView project. This software runs under Windows XP.

To establish proper communication with a chip, one needs a special DLL library which opens the connection on a serial port, an initialization file which specifies all parameters of the connection, such as a port number and time before closing, and a scenario file, which determines the commands sent to a chip. All projects for the chip (including crypto-libraries) were developed using KEIL tool-chain. We also used special firmware containing handlers, exceptions and other functions.

To reduce the communication time between the computer and a chip, initially all data for attacked algorithms (input parameters, cipher keys, plaintexts, etc.) were hard-coded. A program installed on a chip was running in an infinite loop, and when the specific command from a computer arrived, a cryptographic algorithm was launched. After finishing the algorithm, the program returned to the initial infinite loop waiting for the next command. An algorithm according to which the bench is typically run is as follows:

1. The synchroboard is ready, the laser is charged, the chip is running and waiting for a command from the PC.

2. The PC sends a command (e.g., start the execution of cryptographic algorithm) to the chip.

3. The chip starts execution and at some moment of time it raises up a trigger.

4. The trigger is recognized by the synchroboard.

5. The synchroboard generates another trigger for the laser with a predefined delay.

6. The laser receives the trigger and after the delay it shoots.

7. The chip outputs the result to a serial port.

8. This result is recorded by the computer. 9. The computer maintains the current state of the experiment, i.e., it moves the driving board, changes the delay of the synchroboard if necessary and does other routines specified in the attack scenario.

10. While the driving board did not reach the end point, go to step 1.

This algorithm provides a good flexibility and allows the user to master a shot location and its time. The user can easily change an attack scenario or bench parameters via a LabView interface. The bench records all erroneous results together with exact bench settings when the error occurred; thus the attacker can 6.5 infer for example timing information, type of errors, etc. which in turn allows her to repeat or fine-tune an experiment.

Preparatory Steps

For modern SoC front side laser attacks face severe limitations with the growing complexity and use of multi-level metals. In recent publications dedicated to front side laser attacks authors attacked experimental ASIC containing simple IP, often just one crypto core [LPM + 06, LAM + 07, MRL + 06]. To the best of the author's knowledge, practical laser attacks against modern multi-layered SoC with embedded memories and powerful processors had not been presented in the open literature before this result was published in 2010 [START_REF] Trichina | Multi Fault Laser Attacks on Protected CRT-RSA[END_REF].

The front side laser attack is usually performed with a green laser, and the back side with an infrared laser. Given a particular wavelength, selecting an energy level and a size of the aperture depend on the chip and attack scenario. An important parameter is focus. When the laser is focused, all its energy is concentrated at a very small spot, typically covering few gates [START_REF] Godlewski | Electrical Modeling of the Effect of Beam Profile for Pulsed Laser Fault Injection[END_REF]. Depending on the goal, an attacker can use either focused or defocused laser. With the focused laser the fault injection can be done very precisely, while an advantage of the defocused laser is that it covers a larger area, so it can be used for a preliminary scan of a SoC to identify vulnerable spots.

We describe an attack on a front side of the chip because some of the devices come in a BGA package which make back side attacks impossible without device modifications. To perform a laser attack an attacker needs to de-package the chip which can be done using, e.g., JetEtch II decapsulation system.

After having done it, we discovered the first obstacle: the SRAM and flash areas were completely covered by metal tiles (see Fig. 6.3), thus no direct access to memory cells was possible. To investigate a possibility to induce any fault at all, the overall chip area was scanned many times with a minimal displacement step, and at every position several shoots were made. The microscope lens, its focus and energy levels varied from one scan to the next because these parameters have an influence on the laser's effect on the IC.

Initially a digital logic area of the SoC was selected for an attack. The assumption was that it could be possible to create a fault in the CPU logic or in registers. The scan has proven to be unprofitable. Higher energy levels burned the chip, so we had to use the minimum energy. We run experiments with both, focused and defocused laser. The aperture varied from 2% to 25%. But the result was the samewhenever the laser shot, the chip either crashed or did not return any error. Five chips were destroyed while shooting logic. The conclusion from this experiment was that inducing useful faults by shooting this area is unfeasible.

SRAM and Flash were selected as the next targets. As discussed earlier, these areas are covered by metal tiles. Although the opacity of these zones is very low, we hoped that it would be possible to penetrate the gap between the tiles. However no experiments with shooting memory cells caused errors for all tried energy levels and aperture sizes, so the conclusion was similar: inducing errors by targeting SRAM and Flash areas is unfeasible.

The only remaining part was an area between the SRAM and Flash. This zone was not covered with metal tiles; instead it was densely populated with connections highlighted by the red rectangle on Fig. 6.3. As previously, we scanned the whole zone with an defocused laser and discovered that different exceptions were raised during shooting. Hence we concluded that the laser can cause perturbations in the microcontroller's functionality. The next step was to find laser parameters causing computational errors that remain undetected by the microcontroller.

After few days of experiments such parameters were found. We do not know the exact functionality of the attacked area; one of the hypotheses is that these are buses and power tracks on the top layer, registers, buffers, and decoders beneath. In any case the attack proved effective: once we mastered the location and the timing, it became possible to achieve exploitable faults with very high repetition rate.

Two Fault Attacks Against CRT-RSA

The first fault attack on CRT-RSA was presented in the seminal paper [BL96] where it was pointed out that by injecting a single random fault into the computation of either s p or s q , a secret exponent can be calculated by subtracting faulty and correct signatures and then computing the GCD of the result and the modulus N . Some RSA implementations do not allow signing the same message twice; nevertheless, as shown by [Len96] an enhancement of the attack described in [BL96], these implementation can be still broken as an attacker needs only an incorrect signature and an initial message.

Due to performance advantages of CRT-RSA and its high vulnerability to fault attacks, securing its implementation is an important and challenging task, attracting a lot of attention. We can distinguish three main approaches. The first is an introduction of some redundant computations to perform internal coherence checks aiming at verifying the result before returning it. The most known countermeasure of thus type is proposed by Shamir and adapted for a CRT-RSA in many papers, e.g., [ABF + 03, KQ07a].

The second approach consists in performing a consistency check directly at the exponentiation algorithm itself, using Montgomery powering ladder; this method was suggested by Giraud [START_REF] Giraud | Fault Resistant RSA Implementation[END_REF] and enhanced in [BHT10].

A general feature of these countermeasures is checking if some relation exists between two values. To avoid the if-branching inherent to comparisons, Yen et al [START_REF] Sung-Ming | RSA Speedup with Residue Number System Immune against Hardware Fault Cryptanalysis[END_REF] introduced a concept of infective 6.5

Algorithm 5 Protected CRT-RSA signature generation

Require:

p : first secret prime number;

q : second secret prime number;

e : public key component, such that GCD (e, (p -1)(q -1)) = 1; d : private key component d = e -1 mod (p -1)(q -1); i q : modular inverse of q, i.e., i q = q -1 mod p; m ∈ M : a padded message to be signed; Ensure:

A signature s ∈ S;

1: d p = d mod p -1 2: d q = d mod q -1
3: s p = m dp mod p 4: s q = m dq mod q 5: s = s q + q q -1 (s p -s q) mod p Signature s of the message m 6: e p = d -1 p mod p -1 7: e q = d -1 q mod q -1 8: m p = s eq mod p 9: m q = s ep mod q 10: m = q (i q (m p -m q) mod p) + m q Re-computation of the message m for verification return error 15: end if computations, which can be applied for both aforementioned methods.

The third, and simplest, countermeasure against fault attacks for any signature scheme is signature verification following the signature generation. To implement this countermeasure For CRT-RSA, a public exponent e must be accessible during computations, which may not be the case in some implementations. Therefore, more sophisticated methods were developed which do not require the knowledge of e; instead its value can be obtained from the available parameters d p and d q . For our attacks we had chosen a new algorithm published in [BHT10] and presented below as Algorithm 5.

Algorithm 5 is much more efficient than other verification methods where a public exponent e is assumed to be known or embedded as in [START_REF] Mark | Protecting RSA against Fault Attacks: The Embedding Method[END_REF] or computed as in [ABF + 03] because it is carried out on half-sized data. For a short public key, the values e p and e q are usually equal to e hence the countermeasure does not significantly increase the overall time of a normal signature operation. But as other first order countermeasures broken in [START_REF] Hee | Fault Attacks for CRT Based RSA: New Attacks, New Results, and New Countermeasures[END_REF], it is based on a comparison of two values and thus does not protect the system against second order fault attacks. Algorithm 6, given in [BHT10], combines the conditional check and the infective method. The authors claim that with this algorithm if the conditional check at Step 9 is bypassed, the output value will be random and useless for recovering private exponent. This countermeasure, however, can be broken with a single fault. Indeed, consider a situation when an attacker can skip just the computations of the sum s + s p at the step 12. All other operations have been performed correctly, so the resulted signature is s = s -(s mod p) + s q -(s mod q). In this case the difference between the correct and the faulty answers will be the following: ∆ = s -s = s -s + (s mod p) -s q + (s mod q) = s p Algorithm 6 Second order resistant CRT-RSA signature generation with infective method

Require:

p : first secret prime number; q : second secret prime number; e : public key component, such that GCD (e, (p -1)(q -1)) = 1; d : private key component d = e -1 mod (p -1)(q -1); i q : modular inverse of q, i.e., i q = q -1 mod p; m ∈ M : a padded message to be signed; Ensure:

A signature s ∈ S;

1: d p = d mod p -1 2: d q = d mod q -1
3: s p = m dp mod p 4: s q = m dq mod q 5: s = s q + q q -1 (s p -s q) mod p Signature s of the message m 6: e p = d -1 p mod p -1 7: e q = d -1 q mod q -1 8: m p = s eq mod p 9: m q = s ep mod q 10: m = q (i q (m p -m q) mod p) + m q Re-computation of the message m for verification return s + s p -(s mod p) + s q -(s mod q) 13: else 14: return error 15: end if Now the value of p can be found:

∆ = s p mod p s p = ∆ + kp s p -∆ = kp GCD (s p -∆, N) = GCD (kp, pq) = p
An attack on Algorithm 6 requires skipping an operation. As we discovered, this is not difficult to achieve on Cortex M3 architecture. RSA deals with 512, 1024, and 2048 bit numbers. There is no processor capable of working with such scalability, thus different data structures, such as arrays of integers, are used to handle large numbers, and subroutines are developed to perform operations such as add, compare, etc. on these structures. Hence operations in lines 11-15 of Algorithm 6 are implemented as function calls. In ARM architecture a single assembler instruction corresponding to a function call can be bypassed by a laser shot as described in Section 6.6.

Practical Issues of Multi Fault Attacks

At first, the attack described in [START_REF] Boneh | On the Importance of Checking Cryptographic Protocols for Faults[END_REF] was performed in a "grey box" setting: we augmented the initial cryptographic code with instructions that made an attack easier. For example, to find a time for a fault injection, a trigger was raised at the beginning of the s p computations and dropped at its end. Using an oscilloscope we observed that the overall computation took about 200 ms when run with an internal clock (for this we simply removed a crystal oscillator from the device board). With an external clock the device runs approximately 9 times faster. Once we knew the timing, we calculated the delay between raising a trigger and the laser shot. It was even possible to use an external trigger (and thus conduct a real black box attack). At one position we fired 20 shots. It took one day to produce about 40 incorrect 6.6 results, all of which allowed recovering the prime p hence the attack against an unprotected CRT-RSA was easy. The next step was to test the ability to induce multiple faults into the protected CRT-RSA (described by Algorithm 5), but the attack was not trivial.

An attack against Algorithm 5 assumes that one fault is induced while computing s p or s q and another fault either skips the conditional check in line 11 or flips its outcome. The example below is the snapshot of the assembler code corresponding to lines 11-15 of Algorithm 5.

Register r0 keeps the result of the comparison between two large numbers. If these two numbers are equal a zero is returned. The syntax of the Compare and Branch on Non Zero (CBNZ) instruction is:

CBNZ Rn, label

This means that whenever Rn = 0, the program jumps to label. This instruction does not change the conditional flags, and is, in other words, equivalent to:

CMP Rn, #0 BNE label
This observation is important because previous attacks assumed that it is possible to flip the conditional flag bit; however in the ARM architecture this flag bit is not often used as comparisons can be done without it. There are several ways to skip the test in line 11 of Algorithm 5:

• Skip the execution of CompareBig; in that case register r0 may not keep any useful value;

• Force register r0 to 0 or induce a fault in such a way that the conditional check returns zero in all cases;

• Skip the execution of CBNZ; in which case the microcontroller will just increase the program counter thus going to the if-yes branch.

Among the three options, the last one is the most promising. To evaluate the feasibility of condition skipping, CompareBig was modified to never return 0 as the result of comparison. Due to this modification, the program's normal behaviour was to print only zeros if m = m and the only way to get the correct result was to skip the CBNZ.

Let us describe in detail how this has been achieved. The laser's advantage is its ability to target a spatial location, as small as a few gates, very precisely. This turns into a disadvantage when an attacker does not know exactly where a targeted cell or a register is located. We started by scanning the whole vulnerable area by the laser with a time step of 10 ns and the minimal displacement step of 100 nm while the chip was running our specially designed assembly code that used the CBNZ instruction with the same registers; the objective was to skip at least one CBNZ. To pinpoint the exact location where and when CBNZ was executed we used a trigger signal. The laser needs a trigger commanding it to shoot at a certain delay. A shooting must occur when the targeted instruction is executed, thus we need to find this time precisely. By raising a trigger up somewhere in the program and dropping it down just before the if-statement, so that the targeted CBNZ is executed in a clock cycle right after dropping the trigger, we approximated a required delay for a laser shot. If the laser shot skipped the CBNZ instruction, the program printed out the correct result, thus we had a means to know if instruction skipping was successful. The laser shot can be seen on the oscilloscope by means of the differential probe which acts as an antenna as illustrated on Fig. 6.4. Hence by correlating program outputs with oscilloscope traces we were able to find the exact spatial positions of the laser shot which resulted in the required fault. It took about one day to find this position.

The next step was to find a precise shot time for the non-customized code. The synchronization was done again by correlating the oscilloscopes traces with the results of computations recorded by the computer. By repeatedly adjusting the trigger delay with a 10ns step, we eventually found the exact shot time targeting the CBNZ execution in the non-customized code. The time window for a shot was 190 ns; it is slightly more than one clock cycle, which is equal to 125 ns. During this time window, 9 shots were fired. Three out of the nine shots resulted in instruction skipping. Fig. 6.4 presents an oscilloscope snapshot taken during a successful instruction skipping.

Thus the first objective was achieved: the location and the proper time window allowing the skipping of the CBNZ consistently and with high probability was found. The next step was to synchronize a shot with s p computations.

Unexpectedly a new problem appeared. The laser bench does not provide a possibility to set up different delays for different triggers, i.e., if two triggers are raised up during one program execution then the delays between the time of raising the triggers and the time of shots are exactly identical. Another problem is the need to recharge the YAG laser between two shots. According to the laser's documentation, the minimal delay between shots is 200 ms for the laser to fully recharge. Actually the laser can shoot earlier, but with a lesser energy. Fortunately, shooting with a minimal energy level was sufficient and the interval between shots could be shortened.

Initially we checked that the delay used to skip the CBNZ instruction could also cause an error during s p computations. To do that the chip was programmed with the CRT-RSA without countermeasures, so if this delay allowed inducing such an error the erroneous output would lead to the seminal attack described in [START_REF] Boneh | On the Importance of Checking Cryptographic Protocols for Faults[END_REF]. The result was successful; hence it had been proven that with the same delay it was possible to skip the if-condition and to corrupt an exponentiation separately and independently from the other exponentiation.

The final preparation step was to assemble code with all the triggers to attack a protected CRT-RSA. It 6.6

Figure 6.5 -Snapshot taken during two fault attacks.

was done, but unexpectedly this setup did not produce the desired result: it was possible to observe that an error occurred during the computation of s p because the comparison result was different (sometimes it returned -1, sometimes 1,2 or -2), but it was impossible to skip the CBNZ instruction. Several days were spent unsuccessfully searching for other delays and checking all parameters. Finally, we discovered the reason: the time of the shot had been found when there were no errors in the s p computation. When an error was injected, the computation time of functions such as CompareBig changed. This meant that the time of raising the second trigger also changed and thus the shot did not coincide with the time of execution of the CBNZ instruction.

To overcome this difficulty, the laser needs a "fixed point" for a trigger. First we changed CompareBig's code so that it runs in constant time, but that did not help. Apparently the execution time of functions, such as long number multiplication, addition, etc., also slightly depends on the processed values. Hence we used a workaround: just before checking the if-condition we inserted some useless but constant-time computations. The trigger was raised at the beginning and dropped at the end of these computations used as a fixed point for the trigger for the second shot.

The new timing was found much faster because the exact location of shooting had been already known. Finally, for this setup it was possible to corrupt the value of s p and skip the CBNZ instruction. We obtained several faulty results needed to recover private exponents. Fig. 6.5 presents a snapshot of the oscilloscope during one of the successful attacks.

Yet another interesting observation: it is assumed that it is difficult to induce exactly the same fault during two experiments. In our case the reality is opposite: because the time window for a two fault attack (which is determined by the delay required for skipping the CBNZ instruction) is very small, it is difficult to get different faulty results from the same input. Usually we got the same faulty outputs if we run experiments sequentially.

During the previous experiments one significant power trace was found several times, see Fig. 6.6. On that power trace one can clearly see that the trigger was dropped and immediately raised up again, which should not have happened. Despite a strange trigger behaviour the program terminated without any error. Initially we thought that it was one of unpredictable chip's reactions, but after several such patterns we decided to look at it closely and discovered that the occurrence of this pattern was strongly dependent on the clock cycle, hence strongly dependent on the instruction.

The program's logic is as follows. After the trigger is dropped, the if-condition has to be executed. Resetting a trigger is implemented as a separate function GPIO_ResetBit and the last instruction in its code is bx lr which returns the program to the main flow. This "branch indirect" instruction uses an lr register as an indicator where to branch to. What happens if this instruction is skipped? Logically, the To check this assumption, some additional functionality was added to GPIO_WriteBit so that just before the end it printed a small message. We checked that this function was not called from anywhere in the program, thus the only possibility for printing a message was to skip the return statement in GPIO_ResetBits. This experiment was repeated several times and the message was often observed confirming that the bx lr instruction was consistently skipped.

It is a particularly nice error because it can be used for interesting attacks. Suppose there is a print instruction in a function located next to a key handling procedure. In that case if this procedure's return address is skipped, it is possible to get registers values. By changing a program flow one may skip some critical part or activate other functionalities. This error has been successfully applied to break Algorithm 6 in practice. Indeed, the attack model described in section 6 assumes that an attacker can skip a function call. The following C code is a straightforward implementation of lines 11-15 of Algorithm 6: W32_to_W8(m.w,P_pOutput,P_pPrivCRTKey->modulus_size); }else { printf("Fault %d\n",i); } Using techniques discussed previously it was not difficult to locate and then skip AddBig(&m, &mp,&m) function, because it is called by a simple instruction BL.W and instruction skipping was mastered in a previous example. The program then returned a faulty result which was sufficient for recovering the value of the RSA prime p.

if (i == 0) { / *
Note that the countermeasure infects only half of the result-s bytes. In the example above comparing the correct and faulty outputs shows that the first 32 bytes are identical, while the last 32 bytes are different which makes it pretty easy to understand that a required error was injected during the infective recombination.

Conclusions

We made the following conclusions from our experiment. The first is that even with a multi-layer metal technology, front side laser attacks on complex SoCs are possible although we do believe that they are approaching their limit. The second conclusion is that even for very big and complex chips a black box approach to finding vulnerable locations works. By scanning the chip with the laser we found a potentially vulnerable area of approximately 80×270 µm. The spot where instruction skipping was possible is about 80×40 µm. The size of the chip is 4000×4000 µm, so a vulnerable spot constitutes only 0,135% of the SoC. We described only a front side experiment, but with a modification of the board, a back side attack was also conducted.

After the vulnerability is found, one can run a number of experiments to understand the effects of the injected errors on executed code. In our case it was proven that the laser shot's main effect was skipping an instruction: it seems that it was possible to corrupt values of the program registers.

The ability to skip an instruction provides an attacker with a very powerful tool: program flow can be altered giving an opportunity to execute functions which do not have to be executed at this time or skip functions that must be executed. This opens a possibility to attack countermeasures based on conditional checks. It also allows an attacker to bypass some of the infective countermeasures, such as those suggested in [START_REF] Hee | Fault Attacks for CRT Based RSA: New Attacks, New Results, and New Countermeasures[END_REF] modified (Ciet-Joye scheme), [START_REF] Hee | How Can We Overcome Both Side Channel Analysis and Fault Attacks on RSA-CRT?[END_REF] (modified Giraud scheme), etc. In other words, all theoretical attacks described in [START_REF] Dottax | On Second-Order Fault Analysis Resistance for CRT-RSA Implementations[END_REF] can be successfully carried out in practice.

The complexity of specifying a formal attack model prevents developing generic countermeasures with formal security proofs. Typically, countermeasures are dealt with on a case-by-case basis and apart from the attack model they depend on the algorithm and its implementation. The experiment's most important outcome is that it proved in practice that multi-fault attacks on cryptographic algorithms running on a powerful 32-bit ARM Cortex M3 processor are feasible. Considering that many applications require device or user authentication, signature generation and public-key-based credentials exchange, this may have an important impact on security engineering practices. The significance of this result is that it forces the cryptographic community to re-consider what constitutes a feasible attack model and also to critically analyze existing countermeasures with respect to this new practical attack.

Introduction

A number of authors, e.g., [START_REF] Brier | Optimal Statistical Power Analysis[END_REF], rely on the isotropic switching-model in which all bits dissipate identical switching energies. This thesis does not assume any a priori side-channel model and totally relies on the analysis of actually measured1 emissions.

While most previous works analyzed leakage from complex cryptographic computations, we focus on one of the simplest forms of leakage: the emanations of a bus through which bits are being sent. We make only two physical assumptions:

• Emanations can be measured with equal (in)accuracy by both the attacker and the defender.

• Leakage is a global function of data plus noise. The proposed methods are thus unadapted to settings in which individual channel bits are probed with precision.

The proposed methodology is hence applicable to a wide range of circuits having leaky buses.

The proposed countermeasure pairs each useful data element k with a camouflage value v and simultaneously transmits k and v through the channel. This releases a physical side-channel emanation e(k, v) that can be measured by both the attacker and the defender.

We address the following question:

How can a defender pair each value of k with a corresponding value v(k) that makes the e(k, v(k)) as indistinguishable as possible from each other?

The crux of this chapter is the definition of indistinguishability given the measured emissions.

Section 7.2 introduces algorithms for computing optimal camouflage values from actual power traces. These algorithms are efficient when each trace contains a few samples (typically ≤ 6). Section 7.3 presents a statistical analysis justifying the intuition that the best v values are those concentrating the e(k, v) into the smallest possible sphere containing representatives of all k values. Section 7.4 provides experimental results.

In a way, this work achieves some sort of cryptographic key exchange based on the existence of ambient noise and on a gap in measurement accuracy between the legitimate receiver and the attacker.

Models and Algorithms

Let e(d) represent the side-channel (e.g., power consumption) resulting from the transfer of an n-bit data element d over an n-bit channel (e.g., a bus). e(d) can be measured with equal precision by both the attacker and the defender.

The defender builds a set of 2 n side-channel measurements E. Each e(d) ∈ E is generated by transmitting an n-bit data element d. The defender assigns s channel bits to the useful information k, and devotes the remaining n -s bits to the transmission of (n -s)-bit camouflage values v(k). We denote d = k|v and call the k's "keys" or "colors". Note that key bits and camouflage bits are not necessarily adjacent and might be interleaved.

Let e(k, v) = e(d) be the emanation released by transmitting d = k|v.

The vector V = [v(0), . . . , v(2 s -1)] of all camouflage values must be chosen to make all emanations e(k, v(k)) look "as similar as possible". Our goal is to infer V from E.

We assign a unique color k = color(e(k|v)) to each e(i) ∈ E. E is hence analogous to a multidimensional cloud of 2 n colored points (i.e., 2 s sets of colored points; each of these 2 s sets contains 2 n-s identically colored points).

A color-spanning sphere is a subset B ⊂ E containing at least one emission of each color.

The defender will use the 2 n elements of E to select 2 s transmittable k|v(k) values forming a colorspanning sphere A(V) ⊂ E. The attacker will only get to see traces belonging to A(V):

A(V) = k=1,...,2 s -1 {e ∈ E : color(e) = k}
The defender's goal is to minimize the size of the color-spanning sphere A(V) exposed to the attacker, i.e., infer from E a smallest color-spanning sphere A optimal such that

A optimal = min V A(V)
A optimal has thus the least size for all choices of V .

The next section considers the simplest setting where emanations are scalars 2 . In that case the difference |e -e | between two scalars e, e ∈ E can be used as a similarity measure for constructing A optimal efficiently.

One Dimension

Assume that the e(d) are scalars (e.g., execution times or a unique power measurement per trace). Acquire the 2 n reference traces:

E = {e(0), . . . , e(2 n -1)} A given choice of V = [v(0), . . . , v(2 s -1)]
restricts the attacker's information to

A(V) = {e(0, v(0)), . . . , e(2 s-1 , v(2 s-1))}
The defender's goal is to minimize:

A(V) = max A(V) -min A(V) = max k (e(k, v(k))) -min k (e(k, v(k))) Let P = [p 0 ≤ p 1 ≤ • • • ≤ p 2 n -1]
be the e(i) ∈ E sorted (with repetitions) by increasing scalar values. A color-spanning segment is an interval of P containing at least one p i of each color.

A straightforward algorithm for finding A optimal consists in working with two pointers start and end representing the beginning and the end of the segment under evaluation. When execution begins, start and end point at p 0 . While [start,end] is not a color-spanning segment end is moved to the right. When end reaches p 2 n -1 start is moved by one position to the right (i.e., from p i to p i+1) and end is moved back to start. Throughout this process, whenever a shorter color-spanning segment is found, it is recorded. The complexity of this algorithm is quadratic in the cardinality of E, i.e., O(2 2n).

More clever approaches allow to solve the problem in Õ(2 n). To do so build the 2 s sorted sequences (with repetitions) of emissions for each color:

P k = [p k 0 ≤ . . . ≤ p k 2 n-s -1] for k = 1, . . . , 2 s -1
Represent the color-spanning segments by a binary search tree T of size 2 s .

At step 0, initialize the tree to T 0 = {p 0 0 , . . . , p 2 s -1 0 } and proceed by 2 s -way merging.

At stage t, the color-spanning tree is

T t = p 0 λ 0 t , . . . , p 2 s -1 λ 2 s -1
t 2 e.g., execution times or a unique power measurement per trace.

7.2

where the λ k t denote the merge pointers. Let m and m denote (respectively) the minimal and maximal scalars in T t . We denote by φ t the minimal (i.e., best) segment length found at step t. The algorithm terminates (at some step τ < 2 n) when it fails to find a successor m to m. The length of the minimal color-spanning segment is then φ τ .

If t = 0 or m -m < φ t-1 , then update φ t = m -m else φ t = φ t-1 . Let m = p c

Complexity:

Partitioning E to 2 s color subsets and sorting these subsets to get the P k costs O(n2 n).

Binary search trees [START_REF] Knuth | The Art of Computer Programming[END_REF] support the operations (insert, find-min, extract-min and find-max) required by the structure T , each of these operations requires O(s) time. It follows that the 2 s -way merge runs in O(s2 n) and hence the above algorithm has an overall complexity of Õ(2 n).

Higher Dimensions

We now consider the general case where e is a T -dimensional vector, e.g., a power consumption sampled at T different instants. E is now a T -dimensional cloud of colored points (Fig. 7.1) and the color spanning interval is a T -dimensional sphere. We need to determine the smallest sphere containing at least one point of each color, i.e., the smallest color-spanning sphere A optimal (Fig. 7.2, right).

The cloud of points is contained in some minimal enclosing T -dimensional rectangle R, whose sides are parallel to the hyperspace's T axes (Fig. 7.3, right).

Divide and Conquer

This problem lends itself to divide and conquer resolution.

Let B be some3 initial color spanning sphere of radius r. Let denote the length of the rectangle R along some dimension x. Split R along the x axis into two overlapping sub-rectangles of lengths 2 + r as By construction, A optimal is fully contained in either R right or R left . So, we recursively apply the process to R right and R left until splitting diminishes the rectangles' sizes only negligibly 4 . At that point we solve each of the smaller instances (by any chosen method) and output the smallest solution of all, which is 7.2 indeed the smallest color-spanning sphere in R, i.e., the smallest color-spanning sphere A optimal of the original problem.

Note that splitting can take place along several orthogonal axes simultaneously.

While practically very useful, this algorithm fails in a number of pathological cases (e.g., when B is too large to split R). Luckily this is a well-studied problem: [DBVKOS00] describes a simple linear-time algorithm in two dimensions and Welzl [START_REF] Welzl | Smallest Enclosing Disks (Balls and Ellipsoids)[END_REF] shows how to solve the problem in linear time for all dimensions, considering that the number of dimensions is a fixed problem parameter. Complexity is however exponential in the number of dimensions.

A key choice is the initial sphere B: we want B to be small enough to significantly reduce the divide and conquer's search space. Yet, we want B to remain easy to compute.

Heuristics:

In our implementation we used the following method to construct B: let p 0 be a point (for example the closest point to the center of R) of color 0. After computing p 1 , . . . , p k , we select as p k+1 the point of color k + 1 at minimal distance from the barycenter of the cloud p 1 • • • p k . The resulting B is not necessarily optimal, (cf. Figure 7.7) but turns out to be much better than selecting any random color-spanning sphere. Figure 7.7 -The optimal sphere (left) is different from the sphere found by the barycenter heuristic (right) if the heuristic considers first the red, then the blue and finally the green points.

Implementations

Algorithms were implemented in C++5 in a straightforward manner. A function bool smallest_ball(points, space, output) splits space and points as explained above (using a sphere found by find_ball_barycenter) and calls recursively smallest_ball on the smaller spaces, until this process stops to significantly decrease the problem size. We then use Miniball6 , a C++ software for computing smallest enclosing spheres of points in arbitrary dimensions (without requiring spheres to be color spanning) using brute force. The description of Miniball can be found in [START_REF] Gartner | Fast and Robust Smallest Enclosing Balls[END_REF][START_REF] Welzl | Smallest Enclosing Disks (Balls and Ellipsoids)[END_REF].

Timings were measured on a Dell Inspiron 15207 . Code was compiled using Visual C++ 2008 with all optimization flags set for maximal speed.

Experimental running times seem to confirm that the algorithm is linear in the number of points and exponential in the number of colors.

Why Euclidean Distances?

Let {m 0,t , . . . , m n-1,t } be a database of n reference power consumption traces measured over some discrete time interval t ∈ [0; T -1]. Sample m i,t corresponds to the power consumption caused by the manipulation of data element i at instant t. Let µ t be the average power consumption at time t and σ t the standard deviation at time t:

µ t = 1 n i<n m i,t σ t = 1 n i<n (m i,t -µ t) 2 .
Let a t be an unidentified power measurement made by an attacker. The attacker's problem consists in finding the m k,t that best reassembles a t . This section justifies why for doing so, an attacker would naturally compute for i < n the quantities: This formula is justified in the next section for t-wise independent m i,t 's.

score(i) = t<T (a t -m i,t) 2 σ 2 t , (7
In general, samples may be correlated, for instance when the same secret bit is manipulated at two different instants. We analyze this general case later and propose an explicit score minimization formula (7.2) taking into account intra-sample correlations.

Multivariate Normal Distributions

Equation (7.1) stems from the assumption that, for any fixed i, successive measurements of m i,t follow an independent normal distribution with mean µ t and standard deviation σ t , and hence abide by the probability density function:

f mt (x) = 1 σ t √ 2π exp - (x -µ t) 2 2σ 2 t
When the m i,t 's are independent, the probability density of all measurements t < T can be expressed, for

x = [x 0 • • • x T -1] as a T -dimensional multivariate distribution: f m (x) = t<T f mt (x t) = 1 (2π) T /2 t<T σ t exp - t<T (x t -µ t) 2 2σ 2 t .
Note that in the previous equation µ t and σ t are the expected value and standard deviation of m i,t over all data elements i. For a measurement m i,t corresponding to a specific data element i, in addition, we also assume that m i,t follows a normal distribution with mean μt = m i,t and standard deviation σt ; we also assume that the standard deviation σt around m i,t is the same for all data elements. In this case, the measurement m t corresponding to data element i has the following distribution:

f m (x) = 1 (2π) T /2 t<T σt exp - t<T (x t -m i,t) 2 2σ 2 t
Additionally, we assume that the standard deviation σt of m t around m i,t is proportional to the standard deviation σ t of m t when all data values are considered, i.e., we assume σt = α • σ t for all 0 ≤ t ≤ T -1 for some α ∈ R. In this case, the probability density function of the m t 's for data i can be written as:

f i (m) = 1 (2π) T /2 α T t<T σ t exp - t<T (m t -m i,t) 2 2α 2 σ 2 t ∝ exp - score(i) 2α 2
where score(i) is given by equation (7.1). The probability to obtain measurements m t from data i is thus a decreasing function of score(i). Given measurement m, the most probable candidate is therefore the one with the lowest score.

Multivariate Normal Distribution: Taking Correlation into Account

We denote by Σ the covariance matrix of the measurements, defined as follows:

Σ = var(m) = var     m 1 . . . m T     =        var(m 1) cov(m 1 m 2) • • • cov(m 1 m T) cov(m 1 m 2) . . . • • • cov(m 1 m T) • • • • • • var(m T)        where cov(X, Y) = E(XY) -E(X)E(Y) and var(X) = cov(X, X) = E(X 2) -E(X) 2 .
We assume that the measurements follow a T -dimensional multivariate distribution with mean µ and covariance matrix Σ. The probability density function can then be expressed as:

f m (x) = 1 (2π) T /2 |Σ| 1/2 exp -1 2 (x -µ) tr Σ -1 (x -µ) .
where |Σ| is the determinant of Σ and M tr is the transposed of matrix M . The mean µ is a T -vector and Σ is a T × T -matrix.

Note that in the previous equation µ and Σ are the expected value and covariance matrix of measurements for all data elements i. As previously for measurements corresponding to a specific data element i, we assume that these measurements follow a T -multivariate normal distribution with mean μt = m i,t and covariance matrix Σ.

7.4

If we further assume that matrix Σ is identical for all data elements, the measurement m for data i then obeys the multivariate distribution:

f m (x) = 1 (2π) T /2 | Σ| 1/2 exp -1 2 (x -m i,•) tr Σ-1 (x -m i,•) .
As previously, let us additionally assume that the covariance matrix satisfies Σ = α • Σ for some α ∈ R.

In this case, the probability density function is expressed by:

f m (x) = 1 (2πα) T /2 |Σ| 1/2 exp -1 2α (x -m i,•) tr Σ -1 (x -m i,•) .
This can finally be written as

f m (x) = 1 (2πα) T /2 |Σ| 1/2 exp - score(i) 2α where score(i) = (m -m i,•) tr Σ -1 (m -m i,•) (7.2)
It follows that equation (7.2) is a generalization of equation (7.1) where correlations are taken into account.

In other words, to take correlations into account acquire a t and compute for every i the score as per equation (7.2), sort the scores by increasing values and bet on the smallest.

Examples

To illustrate the procedure, we consider the bivariate case where the covariance matrix between variables X and Y is:

Σ = σ 2 x ρσ x σ y ρσ x σ y σ 2 y
where var(X) = σ 2 x , var(Y) = σ 2 y , cov(X, Y) = ρσ x σ y and ρ is the correlation between X and Y . In this case, we find:

Σ -1 = 1 1 -ρ 2      1 σ 2 x -ρ σ x σ y -ρ σ x σ y 1 σ 2 y     
and the probability density function can be written as

f (x, y) = 1 2πσ x σ y 1 -ρ 2 exp - 1 2(1 -ρ 2) x 2 σ 2 x + y 2 σ 2 y - 2ρxy σ x σ y .
In this case, equation (7.2) gets simplified as follows:

s i = (a 1 -m i,1) 2 σ 2 1 + (a 2 -m i,2) 2 σ 2 2 - 2ρ(a 1 -m i,1)(a 2 -m i,2) σ 1 σ 2
where σ 1 = var(m 1), σ 2 = var(m 2) and ρ is the correlation between m 1 and m 2 .

Experiments

Measurements

This section describes our experimental results using the Altera EP2C20F484C7N FPGA present on the Cyclone II Starter Development Kit (SDK). Fig. 7.8 shows the circuit used to measure the power consumption of a memory read + register store operation. The circuit consisted of a RAM, a multiplexer, eight registers, slide switches (DIP) and buttons. Identical data was simultaneously written into eight identical registers to increase power signature. Power was measured using a 1GHz oscilloscope (TDS 684B) and a Tektronix P6247 differential probe (1GHz bandwidth). The SDK's two GPIO pins (power and ground) were connected via the differential probe. Apart from DC signal rejection no filtering or power trace post processing was done.

The experimental protocol was defined as follows:

• The DIP's eight slide switches were manually set to 0x00.

• Address 0x00 was latched on address bus A=[A0,...,A4] using the multiplexer's control bit S.

This caused the value 0x00 to be written into RAM address 0x00.

• For d = 0 to 255:

-The DIP's eight slide switches were manually set to d.

-Pressing the board's KEY0 button triggered the following sequence of events 1000 times (averaged to remove noise):

1. RAM write (W) was activated and bit S was used to latch address 0x08 on bus A. This caused d to be written to RAM address 0x08 (1 cycle).

2. RAM read was activated (R) and bit S was used to latch address 0x00 on bus A. This caused 0x00 to be read-out of RAM and clear all data previously present on the bus and in the registers (3 cycles).

3. The RAM's CLK signal was disabled.

4. Bit S was used to latch address 0x08 on bus A.

5. The oscilloscope was triggered. -A 2500-sample averaged power measurement e (d) was recorded.

-Three samples corresponding to instants t 0 , t 1 , t 2 were extracted from e (d) to form e(d). e(d) was recorded8 as a file trace_d.d used for camouflage calculations.

The described state-flow could only be interrupted by power-off or by pressing KEY0. A finite statemachine (FSM) diagram will appear in the final version of this paper. A characteristic power trace is shown in Figure 7.9.

7.5

Figure 7.9 -Power trace of the circuit of Fig. 7.8.

The obtained results confirm very wall both our analysis and intuition. However, for various technical reasons, we are not entirely satisfied with this first measurement campaign. We thus plan to refine our setting and provide new experimental results in the final paper. Our goal is to consider this data as 2 i colors × 2 8-i points for i = 1, . . . , 7, select the optimal bus bits on which k should be encoded, compute the v(k) in all cases and check if the results indicate, as we conjecture, that similar Hamming weight words yield the best encoding.

Analysis

Conclusions and Further Research

This works raises a number of interesting questions. A first natural generalization is the translation of our analysis to an infinite number of dimensions (in terms of metrics on function spaces and distances between functions).

A second line of research consists in introducing more complex information encoding schemes. Here the defender detects the 2 s most similar traces in E = {e(0), . . . , e(2 n -1)}, e.g., using clustering. Let L be the subset (cluster) of these most similar traces:

L = {e((1)), . . . , e((2 s -1))} ⊂ E
The communicating parties assign9 to the transmitted information the encoding: and increase bandwidth at the cost of a carefully controlled security risk.

(k) = encode(k) k = decode((

8.2

P ADDROUNDKEY A | K [r] K [r] C SUBBYTES S [r] SHIFTROWS D [r] 1 MIXCOLUMNS D [r] 2 (N r times) Figure 8.1 -AES encryption flowchart. C ADDROUNDKEY (A | K [r]) -1 K [r] P INVMIXCOLUMNS D [r] 2 -1 INVSUBBYTES S [r] -1 INVSHIFTROWS D [r] 1 -1 (N r times)
Figure 8.2 -AES decryption flowchart.

The Proposed AES Design

AES algorithm structure is explained in Section 1.3.1. The proposed design places a register barrier after each transformation (and their inverse), namely, ADDROUNDKEY, SUBBYTES, SHIFTROWS, and MIXCOLUMNS.

The register barrier is used to save intermediate results. Therefore the intermediate information that eventually yields S [r] is saved four times during each AES round. It takes 4N r + 1 clock cycles to encrypt (or decrypt) a data block using this design.

Fig. 8.1 and Fig. 8.2 show that, during each clock cycle, only one block of the chain actually computes the state, while the other three blocks are processing useless data. This is potentially risky, as the three concerned blocks "chew" computationally useless data related to P (or C) and K [r] and thereby expose the design to unnecessary side-channel attacks.1 This computation is shown in Fig. 8.3 where red arrows represent the path of usefully active combinatorial logic.

Energy and Security

Power Analysis

SCA and FA are explained in Section 2 and Section 3 respectively. To benchmark our design the AES was implemented on FPGA. Power was measured at 1GS/s sampling rate with 250MHz bandwidth using PicoScope 3407A oscilloscope. To guarantee the identical conditions every new plaintext was given to the FPGA at the same clock after the reset.

We performed a Correlation Power Attack (CPA) on the first AES S-box output since S-box operation is generally considered as the most power gluttonous. Our power model was based on the number of flipped register's bits in the S-box module when the initial register's barrier R 0 is rewritten with the S-box output as follows:

HD (S (P ⊕ K 0) , R 0) = HW (S (P ⊕ K 0) ⊕ R 0) (8.1)
where R 0 is the previous register's state; P is a given plaintext; K 0 is the AES master key.

The value R 0 was assumed to be constant since all the encryptions were performed at the same clock after the reset. When R 0 could not be computed then all possible 256 values were tried. coefficient was used to link the model and the genuine consumed power.

The following section presents a reference evaluation of the unprotected AES implementation showing its vulnerability compared to two (LFSR and tri-state buffers) side-channel countermeasures introduced later.

Power Scrambling

It is a natural idea to shut down unnecessarily active blocks. To do so, each block receives a new 1-bit input named ready activating the block when ready = 1. If ready = 0, the block's pull-up resistors are disconnected using a tri-state buffer connected to the power source. This saves power and also prevents the circuit from leaking "unnecessary" side-channel information.

Logically the pipeline architecture that we have just described has to be less vulnerable against First Order DPA attacks. Its four register barriers introduce additional noise, so we expect that the correlation shall be at least smaller that for the AES design with one round per clock computation.

To asses the security of each proposed design, we will compare an incorrect key byte correlation to a correct key byte correlation. Fig. 8.4 shows these two coefficients. As expected, the correct key is correlated to the power traces, however even for 500,000 traces Pearson correlation coefficient is smaller than 0.015. Anyway, this implementation is vulnerable.

To exploit the unused blocks to hide the device's power signature even better we propose two modifications. The first consists in injecting (pseudo) random data into the unused blocks, making them process that random data. Subsequently, three of the four blocks will consume power in an unpredictable manner. Note that because we use the exact same gates to compute and to generate noise, the expected spectral and amplitude characteristics of the generated noise should mask leakage quite well. Although any random generator may be used as a noise source, we performed our experiments using a 128-bit LFSR. An LFSR is purely coded in digital HDL, making tests easier to implement. For the other blocks, the pseudo-random data replaces the state when ready = 0.

Attacks performed on this implementation revealed that this countermeasure increases key lifetime. Fig. 8.6 is the equivalent of Fig. 8.4 for the protected implementation using an LFSR. The correct key correlation can not be distinguished from the incorrect key correlation even with 1,200,000 traces. However, we assume that this implementation still might be vulnerable if more traces are acquired or if Second Order DPA is applied.

Real-life implementations must use true random generators. Indeed, if a deterministic PRNG seed is used the noise component in all encryptions becomes constant and cancels-out when computing differential power curves.

A second design option interleaves tri-state buffers between blocks to hide power consumption. By shutting down the three useless blocks, we create a scrambled power trace where one block computes meaningful data while the other three "process" high impedance inputs, which means that these blocks "compute" leakage current coming from their inputs.

As illustrated in Fig. 8.7, the input signal ready i determines which blocks are tri-stated and which block is computing the AES state. In other words, the ready i signal "jumps" from one block to the next, so that only one block is computing while the other three are scrambling the power consumption. Although this solution has a smaller overhead in terms of area (as it does not require random number generation) tri-state buffers tend to be slow. Furthermore, the target environment (FPGA or IC digital library) must offer tri-state cells.

The experimental results we obtained on FPGA were surprising, we couldn't attack the design with 800,000 power traces. The correlations shown in Fig. 8.8 do not allow to visually distinguish the correct key from a wrong guess. As before we assume that this implementation can be still attackable if more power traces are acquired or if Second Order DPA is applied.

A full study of this solution would require an ASIC implementation with real tri-state buffers, as an FPGA emulates these buffers and may turn out to be resistant because of an undesired CLB mapping side effects.

Runtime Configurability

The proposed AES architecture is a 4-stage pipeline where each stage can be used independently of the others. As already noted, blocks can perform five different tasks:

• Compute a meaningful state;

• Be in idle state to save energy;

• Scramble power consumption;

• Check for transient faults by recomputing previous calculation;

• Check for permanent faults by computing a known input.

To explore all possible combinations, we proceed as follows: first, we generate all 5 4 = 625 combinations (5 operations for 4 transformation blocks). We can consider a subset of these combinations if we work with 4 operations only, and remember that each E entry represents two actual options (tri-state or idle). This reduces the number of combinations to 4 4 = 256. We eliminate all configurations that are circular permutations of others, i.e., already counted configurations shifted in time. We also eliminate the meaningless configurations in which there isn't at least one block computing. All configurations having more than one permanent fault protection block at a time are removed as they don't add any extra protection. Finally, we eliminate the cases where a transient fault checking is not preceded by a computing block or by a permanent fault verification.

Table 8.1 shows that the design can perform 29 different task combinations, where C stands for computing, E stands for energy (power scrambling, idleness or any combination of these two if there are more than two Es in the considered configuration), T stands for transient fault checking and P stands for permanent fault checking. These options can be activated during runtime according to the system's constraints such as power consumption or speed. If there are no specific requirements, we recommend any of the four best configurations protecting against all attacks at once. These are singled-out in Table 8.1 by a .

Table 8.2 shows the number of configurations per protection goal. Note that for a given protection goal, different configurations can be alternated between executions without any performance loss.

Implementation Results

A 128-bit datapath AES encryption core was coded and tested in Verilog and compiled using Cadence irun tool. Cadence RTL Compiler was used to map the design into a 45nm FreePDK open cell digital library. implementation showed almost no increase in terms of power consumption. Since tri-state buffers shut down three out of four blocks per clock, we expect a reduction in the power consumption. The tri-state design saves roughly 20% of power compared to the unprotected AES. As tri-state buffers tend to be slower, this design lost 20% in terms of clock frequency and throughput, while the LFSR version showed no speed loss, as expected.

Table 8.4 shows the three designs benchmarks in FPGA. They were coded in Verilog and synthesized to the Spartan3E-500 board using the Xilinx ISE 14.7 tool. LFSR and tri-state designs showed an area overhead of ∼ 15% compared to the unprotected AES implementation. In terms of performance, LFSR design showed no loss, while the tri-state core lost ∼ 7%.

Conclusion

We described an unprotected AES implementation sliced in four clock cycles per round. Making use of this approach, we built on top of the unprotected core two power scrambling ideas to thwart sidechannel attacks, such as CPA. We also demonstrated how the design can also prevent fault injection by recomputing its internal state values or by compromising one out of four blocks at each clock to compute the encryption of a known plaintext. We then exhibited simulation results and showed the comparison of the unprotected against the protected cores. The results confirm that the overhead in terms of area, power and performance are small, making this countermeasure attractive.

Moreover, the proposed AES architecture provides different options to tune the design into the user's need. Among 29 different configurations, examples include: to make the proposed AES a 4-stage pipeline 8.5

Further Research: Ghost Data Attacks?

The footnote in Section 8.1 raises an interesting question: is it possible to exploit leakage from uselessly active circuit blocks to infer information about P, C or K? In this model the attacker is not allowed to access the side-channel information resulting from the actual computation of the active block (that we can assume to be ideally protected or not leaking) but only the side-channel information leaked by the three uselessly active blocks. To the best of our knowledge such attacks, that we call ghost data attacks, were never considered in the literature.

CHAPTER 9

CONCLUSION

This thesis explores vulnerabilities of cryptographic algorithms implemented with countermeasures.

The thesis explored a signal derivative applicable against hiding side-channel countermeasures, keydependent distributions imposing cryptosystems where plaintexts and ciphertexts are inaccessible, and security breaches introduced by CRT-RSA countermeasures. As an extension, the thesis also designed an algorithm calculating hardware-dependent constant to mask power consumption, and an AES implementation taking advantage of the unused blocks to thwart side-channel and fault attacks.

Our main empirical finding is that protected cryptographic algorithms remain susceptible to novel offensive techniques and to attacks with additional requirements.

One of the main thesis findings are subkey dependent Hamming weight distributions present in block ciphers. Coupled together with side-channel and fault information those distributions are used to mount blind attacks, i.e., attacks that don't require the knowledge of plaintexts and ciphertexts. These blind attacks can be potentially applied against protocol-level countermeasures, such as key-derivation ladders.

Another significant result is an application of instantaneous frequency in side-channel attacks. This signal derivative supplements power trace parameters, namely, power amplitude and spectrum that are usually applied in power analysis attacks. Instantaneous frequency is a local characteristic assigned to all power trace samples which is tolerant to amplitude shifts and time shuffling countermeasures. Therefore, instantaneous frequency can be used as a side-channel vector or as a grouping factor to combine points with the same characteristic. This thesis shows that instantaneous frequency analysis presents specific benefits when applied against protected hardware implementations.

The thesis also presents practical attacks against the modern 32-bit ARM Cortex M3 general purpose microcontroller. Particularly, the work shows that implementing secure software running on vulnerable hardware is not an easy task. The chosen device could be tampered by laser from both the front and the back sides. Once the fault injection point was localized and the resulting error characterized an attack against protected CRT-RSA could be performed within seconds. We performed single and two fault attacks, which were successful against a conditional check and an infective countermeasure.

As an extension this thesis also present two collaborative defensive results. The first result is used to securely transfer digital data over leaky and noisy communication channels. The defensive strategy is to combine the transferred data with a certain camouflage value selected specifically for this channel. One of the important results is an algorithm finding this value. This algorithm can be used in other applications, for example, finding the least leaking S-box permutation.

The second result presents a hardware AES implementation unrolled in a set of four operations: AD- camouflage value v and simultaneously transmits both k and v over the channel. This releases an emission e(k, v). We wish to select the camouflage values v(k) as a function of k in a way that makes the quantities e(k, v(k)) as indistinguishable as possible from each other. We model the problem and show that optimal camouflage values can be computed from side-channels under very weak physical assumptions. The proposed technique is hence applicable to a wide range of readily available technologies. We propose algorithms for computing optimal camouflage values when the number of samples per trace is moderate (typically ≤ 6) and justify our models by a statistical analysis. We also provide experimental results obtained using FPGAs.

Note. This article is presented in detail in Chapter 7.

Practical Instantaneous Frequency Analysis Experiments [KNdAdC14]

With David Naccache, Guilherme Ozari de Almeida, and Rodrigo Portella do Canto

Abstract. This paper investigated the use of instantaneous frequency (IF) instead of power amplitude and power spectrum in side-channel analysis. By opposition to the constant frequency used in Fourier Transform, instantaneous frequency reflects local phase differences and allows detecting frequency variations. These variations reflect the processed binary data and are hence cryptanalytically useful. IF exploits the fact that after higher power drops more time is required to restore power back to its nominal value. Whilst our experiments reveal IF does not bring specific benefits over usual power attacks when applied to unprotected designs, IF allows to obtain much better results in the presence of amplitude modification countermeasures.

Note. This article is presented in detail in Chapter 4.

Blind Fault Attack against SPN Ciphers [KPN14]

With Sylvain Pelissier, and David Naccache Abstract. This paper presents a novel fault attack against Substitution Permutation Networks. The main advantage of the method is an absence of necessity to know the exact cipher's input and output values. The attack relies only on the number of faulty cipher texts originated from the same unknown plaintext. The underlying model is a multiple bit-set or bit-reset faults injected several times at the same intermediate round state. This method can be applied against any round thus any round key can be extracted. The attack was shown to be efficient by simulation against several SPN block ciphers.

Note. This article is presented in detail in Chapter 5.

Résumé

Dans cette thèse nous développons et améliorons des attaques de systèmes cryptographiques. Un nouvel algorithme de décomposition de signal appelé transformation de Hilbert-Huang a été adapté pour améliorer l'efficacité des attaques par canaux auxiliaires. Cette technique permet de contrecarrer certaines contre-mesures telles que la permutation d'opérations ou l'ajout de bruit à la consommation de courant.

La seconde contribution de ce travail est l'application de certaines distributions statistiques de poids de Hamming à l'attaque d'algorithmes de chiffrement par bloc tels que AES, DES ou LED. Ces distributions sont distinctes pour chaque valeur de sous-clef permettent donc de les utiliser comme modèles intrinsèques. Les poids de Hamming peuvent être découverts par des analyses de canaux auxiliaires sans que les clairs ni les chiffrés ne soient accessibles.

Cette thèse montre que certaines contremesures peuvent parfois faciliter des attaques. Les contre-mesures contagieuses proposées pour RSA protègent contre les attaques par faute mais ce faisant et moyennant des calculs additionnels facilitent la découverte de la clef.

Finalement, des contre-mesures à faible complexité calculatoire sont proposées. Elles sont basées sur le masquage antagoniste, c'est-à-dire, l'exécution d'une opération d'équilibrage sur des données sensibles pour masquer la consommation de courant.

Mots Clés

Attaques par canaux auxiliaires, attaques par fautes, cryptographie, systèmes embarqués, contremesures, transformation de Hilbert-Huang, loi de probabilité pour poids de Hamming, statistiques.

Abstract

The goal of the thesis is to develop and improve methods for defeating protected cryptosystems. A new signal decomposition algorithm, called Hilbert Huang Transform, was adapted to increase the efficiency of side-channel attacks. This technique attempts to overcome hiding countermeasures, such as operation shuffling or the adding of noise to the power consumption.

7. 8

 8 The experimental circuit used for power consumption measurements. 7.9 Power trace of the circuit of Fig.7.8. 7.10 Experimental results for n = 8. 3D and projected representations of the 256 experimental measurements (represented as 8 color families of 32 points). 7.11 Display of the rescaled solution. 7.12 Experimental results for n = 8. Position of the optimal solutions. 8.1 AES encryption flowchart. 8.2 AES decryption flowchart. 8.3 Flow of computation in time. 8.4 Unprotected implementation: Pearson correlation value of a correct (red) and an incorrect (green) key byte guess. 500,000 power traces. 8.5 Power scrambling with a PRNG. 8.6 LFSR implementation: Pearson correlation value of a correct (red) and an incorrect (green) key byte guess. 1,200,000 power traces. 8.7 Power scrambling with tri-state buffers. 8.8 Tri-state buffers implementation: Pearson correlation value of the correct key byte (green) and a wrong key byte guess (red). 800,000 power traces. 8.9 Transient fault detection scheme for AES. 8.10 Permanent fault detection scheme for AES. 8.11 AES design's inputs and outputs. A.1 Statistical distance for 4-to-4 LED and TWINE S-boxes. A.2 Statistical distance for 6-to-4 DES S-boxes. A.3 Statistical distance for 8-to-8 AES and Safer++ S-boxes. A.4 Statistical distance for 8-to-32 CAST S-boxes. LIST OF TABLES 2.1 Current flowing through the inverter during logic level change. 2.2 Information that can be obtained with side-channel leakage.5.1 Specification of the operation S[r+1] j • A | k [r] j S [r] jfor different ciphers.5.2 Number of faults used to recover a key from the operation S[r+1] j • A | k [r] j S [r] j for different ciphers. 7.1 Running time for points randomly chosen in the 3-dimensional unit cube, averaged over 10 runs. 7.2 Running time for points randomly chosen in the 4-dimensional unit cube, averaged over 10 runs. 8.1 29 possible AES-block configurations. 8.2 Number of configurations. 8.3 Unprotected AES, LFSR and tri-state buffer designs synthesized to the 45nm FreePDK Open Cell Library. 8.4 Spartan3E-500 utilization summary report. .

Figure 1

 1 Figure 1.1 -Shannon's model of a secrecy system.

Figure 1

 1 Figure 1.2 -A model of an embedded secrecy system.

Figure 1

 1 Figure 1.3 -Embedded security pyramid.

 Definition 1 [Ring] A ring is a nonempty set R together with two operations, "+" and "•" such that:1. (R, +) is an abelian group; 2. • is associative, that is for all a, b, c ∈ R, a • (b • c) = (a • b) • c;3. left and right distributive laws hold: for all a, b, c ∈ R a • (b + c) = a • b + a • c and (b + c) • a = b • a + c • a Definition 2 [Field] Let R be a ring.

Figure 1

 1 Figure 1.6 -AES decryption flowchart.

 Figure 1.10 -RSA key generation, encryption and decryption.

 Definition 20 [e-th Root Problem] Let G be a group and e < |G| be an integer. An element b ∈ G is called e th root of an element a ∈ G if we have: b e = a e, |G|) holds, then an e th root always exists and is unique. Definition 21 [e-th Root Problem] Given a group G of unknown order, a positive integer e < |G| and an element a ∈ G, find an element b ∈ G such that b e = a.

Figure 2 . 3 -

 23 Figure 2.3 -Inverter electrical model during a transition.

Figure 2

 2 Figure 2.7 -A taxonomy of block cipher side-channel attacks.

 Samples from the group with Hamming weight 1 Samples from the group with Hamming weight 0 Mean value for samples from the group with Hamming weight Mean value for samples from the group with Hamming weight Samples from the group with Hamming weight 1 Samples from the group with Hamming weight 0 Mean value for samples from the group with Hamming weight Mean value for samples from the group with Hamming weight (b) Wrong guess

Figure

 Figure 2.8 -Difference of means.

 N POI × N POI matrices. Storing and processing the reduced template µ |N POI | Kj , Ω |N POI | Kj is more efficient that storing and processing the entire measurement template µ |N | Kj , Ω |N | Kj .

Fig. 2. 11 . 1 .•Figure 2 . 11 -

 111211 Figure 2.11 -SCA countermeasures mind-map.

3. t

 skew the skew or slight phase difference that may exist between the clock signals at the clock inputs of two different registers 4. t set-up a duration for which a D flip-flop input must be stable before the clock's edge to ensure reliable operation.

 Figure 3.1 -Synchronous representation of digital ICs.

Figure 3

 3 Figure 3.2 -Fault attack countermeasures mind-map.

(a)•

 a Active and passive shields are the layers covering sensitive semiconductor parts that make blocks inaccessible to fault injection [ABCS06, TMA + 02, MRL + 06, CDG + 14]. Active shields have data passing through them. If the active shield connections are disconnected or modified the chip will not operate anymore. Passive shields are opaque materials that cover a part of or an entire device thus preventing optical fault injection or probing attacks. (b) Detectors aim at preventing a specific fault injection method, such as an abrupt laser radiation or a voltage glitch [ISYT13, ZDT + 14, VSK13, BTL13]. 2. Fault exploration prevention (a) Hardware redundancy • Error detection and correction techniques [MSY06] are efficient tools to check data integrity. Duplicating computation in space (hardware redundancy) is in general more secure that duplicating computation in time (time redundancy) [MSY06]. One fault injection device can break time redundancy protection if two identical faults are injected with different delays. Hardware redundancy requires synchronous work of two independent fault injection devices. (b) Time redundancy

Figure 4

 4 Figure 4.1 -Illustration of the EMD: (a) is the original signal u(t); (b) u(t) in thin solid black line, upper and lower envelopes are dot-dashed with their mean m i,j in thick solid red line; (c) shows the difference between u(t) and the envelope's mean.

 Figure 4.2 -Marginal Hilbert spectrum of the function cos((a + bt)t).

 Figure 4.3 -Hilbert amplitude spectrum of the function cos((a + bt)t).

Figure 4

 4 Figure 4.4 -Inverters switch simulation.

Figure 4 . 5 -

 45 Figure 4.5 -Netlist of a 4-bit register.

Figure 4 . 6 -

 46 Figure 4.6 -Power consumption of register switch of 1 and 3 bits.

 (b) Power consumption and sines with the frequency of the maximum spectral amplitude

Figure 4

 4 Figure 4.7 -Register switch of 1 and 3 bits.

Figure 4 . 8 -

 48 Figure 4.8 -Four AES last rounds.

Figure 4

 4 Figure 4.9 -AES last round power consumption for 55 (red), 65 (blue) and 75 (black) register's flip-flops.

 4.11).EMD decomposed the power trace to five IMFs and a residue, shown in Fig.4.12a. After decomposition, each IMF was Hilbert Transformed to derive the power signal's time-frequency representation. Fig.4

Figure 4 . 10 -

 410 Figure 4.10 -Power spectra density for the signals shown on Fig.4.9a.

Figure 4 . 11 -

 411 Figure 4.11 -Initial signal u(t).

 Fig. 4.14 showing the relationship between Hamming distance of the 9-th and 10-th AES round states and IF, taken from the first IMF component at the beginning of the 10-th round. Fig. 4.14 was drawn using 200,000 HHT-processed power traces. The thin solid line in Fig. 4.14 represents the mean IF value, obtained from the first IMF component, as a function of Hamming distance. IF distribution over time for the different IMFs of Fig. 4.12a.

Figure 4 . 12 -Figure 4 . 13 -Figure 4 . 14 -

 412413414 Figure 4.12 -Power consumption of our experimental AES-128 implementation.

Figure 4 . 15 -

 415 Figure 4.15 -Maximum correlation coefficients for a byte of the last round AES key in an unprotected implementation. Although the three attacks eventually succeed CPA>CSBA>CIFA. (a) CPA (b) CSBA (c) CIFA.

 Figure 4.16 -Power traces of the FPGA AES implementation. The unprotected signal is shown in red. The DVS-protected signal is shown in black.

Figure 4 .

 4 Figure 4.17 -Maximum correlation coefficient for a byte of the last round AES key with simulated DVS. (a) CPA (b) CSBA (c) CIFA.

 x in) = h 0 , HW(S(k i ⊕ x in)) = h 1 --Pr HW(x in) = h 0 , HW(S[k j ⊕ x in]) = h 1 2 (5.2)(a) HWPD for the key 0xBC (b) HWPD for the key 0xC8

Figure 5 . 1 -

 51 Figure 5.1 -Hamming weight probability distribution Pr k HW(x in), HW(S(k ⊕ x in)) for AES.

j

 Figure 5.2 -Statistical distance for AES HWPDs.

Figure 5 . 4 -

 54 Figure 5.4 -Confusion operation at round r + 1.

Figure

 Figure 5.5 -Results of Hamming weight computation by fault injection.

)

 , i ∈ [1, M] (i indicates an encryption index) received for the same operation S

 is pre-computed for each key value k ∈ F 2 b and uniformly distributed x ∈ F 2 b . During this step the probability distribution function is computed for the list of obtained Hamming weight pairs Pr r h distance between the Pr r and Pr k is computed for each key from the list k ∈ L:

 may use side-channel based reverse engineering techniques as shown in [JT12, Nov03, GP08].

 j⊕η where η is the randomly generated mask, S' is the new layer computed as a function of the mask and A | f (η) is the unmasking operation. However, the states S [r]D j and S [r+1] S j change masks for each encryption, thus the Hamming weight can not be determined.

 Figure 6.1 -Instruction encoding in ARM architecture.

Figure 6 . 2 -

 62 Figure 6.2 -Laser platform.

Figure 6 . 3 -

 63 Figure 6.3 -Top layer of the chipset.

Figure 6

 6 Figure 6.4 -Oscilloscope snapshot taken during instruction skipping.

Figure 6

 6 Figure 6.6 -GPIO corruption during laser shots.

 temp -is an initial plaintext mp and mq -parts of the RSA recombination for the plaintext * / GPIO_ResetBits(GPIO_SMART, GPIO_Pin_11); / * s = s + sp * / AddBig(&s,&sp,&s); / * s = s + sq = s + sp + sq * / AddBig(&s,&sq,&s); / * result = c mod p * / ModularReduction(&c,&result,&p); / * temp = m -result = m + mp + mq -cp * / 6.7 SubBig(&m,&result,&temp); / * result = c mod q * / ModularReduction(&c,&result,&q); / * m = temp -result = m + mp + mq -cp -cq * / SubBig(&temp,&result,&m);

t

 +1 be the next emission of the same color. The next tree T t+1 is obtained by replacing m by m in T t , i.e., we increase λ c t+1 = λ c t + 1 and stall all other merge pointers λ k t+1 = λ k t for k = c.

Figure 7

 7 Figure 7.1 -3D power trace representation.

 Figure 7.2 -Determining the smallest sphere containing at least one point of each color.

RFigure 7 . 5 -

 75 Figure 7.5 -Recursive problem size reduction.

Figure 7

 7 Figure 7.6 -Program output example in 2 dimensions.

 .1) and output the guess k corresponding to the m k,t whose score is the lowest i.e.: score(k) = min i<n (score(i)).

Figure 7

 7 Figure 7.8 -The experimental circuit used for power consumption measurements.

Figure 7 .

 7 Figure 7.10 represents the 256 values (n = 8) obtained experimentally as 8 color families (i.e., 32 points per family). The experimental data is available upon request.

For∼Figure 7 . 10 -

 710 Figure 7.10 -Experimental results for n = 8. 3D and projected representations of the 256 experimental measurements (represented as 8 color families of 32 points).

 k)) Along the same line of ideas, a further refinement consists in buying an easier computation of camouflage values at the cost of extra assumptions on the power consumption model. Assume for instance an isotropic consumption model where emanations are proportional to the Hamming weight of the transmitted data. Here all n w emissions of weight w cause identical emanations. The largest binomial has weight w = n/2, and it is bounded by log n

Fig. 8 .

 8 Fig.8.5 shows that a multiplexer controlled by the ready signal selects either the useful intermediate state information or the pseudo-random LFSR output. For the ADDROUNDKEY block, LFSR data replaces the key. Therefore when ADDROUNDKEY's ready = 0, pseudo-random data (unrelated to the key) are xored with the state coming from the previous block (MIXCOLUMNS if encrypting, INVSHIFTROWS if decrypting). For the other blocks, the pseudo-random data replaces the state when ready = 0.

Figure 8 . 5 -

 85 Figure 8.4 -Unprotected implementation: Pearson correlation value of a correct (red) and an incorrect (green) key byte guess. 500,000 power traces.

Figure 8 . 7 -

 87 Figure 8.6 -LFSR implementation: Pearson correlation value of a correct (red) and an incorrect (green) key byte guess. 1,200,000 power traces.

Fig. 8 .

 8 11 represents the inputs and outputs of the AES core. The module contains a general clock signal called CLOCK_IN, an asynchronous low-edge reset called RESET_IN and a READY_IN signal that flags the beginning of a new encryption. Plaintext is fed into the device via the 128-bit bus TEXT_IN, while the 128-bit key is fed to the system through the input called KEY_IN. The module outputs two signals: TEXT_OUT, which contains the resulting plaintext and READY_OUT, that represents a valid output.

Figure 8 . 11 -

 811 Figure 8.11 -AES design's inputs and outputs.

 Definition 10 [Product Cipher] A product cipher is a composition of t ≥ 2 transformations E K1 E K2 . . . E Kt where each E Ki , 1 ≤ i ≤ t, is either a substitution or a transposition cipher.The composition of substitutions and transpositions repetitively applied by a block cipher is called a round. A substitution is said to add confusion to the encryption process whereas transposition is said to add diffusion. Product ciphers carry out encryption in multiple rounds, each of which uses a different subkey derived from the original key. One widespread implementation of such ciphers is called a Feistel network [Fei73], named after Horst Feistel, and notably implemented in the DES cipher. Many other realizations of block ciphers, such as the AES, are classified as Substitution-Permutation Networks.

 . Key generation .

	Alice (sender)	Bob (receiver)

 Key creation .

Alice (signer) Bob (verifier) .

 e . Signature .

	m ∈ N, m < N
	s = m d mod N
	s
	. Verification .
	Check that m = s e mod N
	Figure 1.11 -RSA digital signature.

 , I 5 , I 6 are off-state leakage mechanisms so SPD is data-dependent. I 1 and I 3 occur in both ON and OFF states. I 4 can occur in the off-state, but more typically occurs during the transistor bias states in transition.

		Gate V in	
	Source		Drain
		I 3 , I 4	
	n + source	I 2	n + drain
	I 6	
	p-well	I 5	I 1
	Figure 2.4 -Summary of static leakage currents.
	Currents I 2		
	• I 6 is the channel punch trough current.		

Table 2

 2

	.2 presents information that can be obtained from side-channel leakage. Apart from the binary
	information, i.e., Hamming weight or Hamming distance, side-channel leakage can characterize time
	and die spatial location of a targeted hardware. Thus side-channels can be used for reverse engineering
	[Nov03, TQL + 12].
	2 SPD -Static Power Dissipation
	3 DPD -Dynamic Power Dissipation
	4 EM -Electromagnetic Analysis
	5 PSD -Power Spectrum Density
	6 IF -Instantaneous Frequency
	7 PEA -Photonic Emission Analysis
	8 TSA -Temperature Side-Channel

 Back at that time EM perturbation was secondary with respect to laser and heavy-ion fault injection techniques. EM perturbations can locally tamper the circuit's power consumption which makes EM attacks more powerful than power or clock glitches. EM fault injection hardware is less expensive than laser setups [PTL + 11]. There are two main EM fault injection techniques: 1. EM harmonic, i.e., a stable sinusoidal signal generated at a given frequency, can introduce a parasitic signal biasing or inject additional power into a block [AOP + 09,MM09]. This fault injection techniques is commonly applied against analogue blocks, such as ring oscillators [BBA + 12]. 2. EM pulse [OGSM16, OGST + 15, PTL + 11] that takes advantage of multiple metal loops presented in modern semiconductor devices. The sudden EM variation yields a current in a metal loop thus affecting signal propagation. This effect is similar to that of a power glitch; however, EM effect is localized. Digital circuits are clocked; hence, to disturb their behaviour, EM pulses are preferable to the injection of faults during a specific clock cycle in a controllable way.

[KFA

+ 95]

. The authors used a special probe in order to direct the faults to specific parts of the computer board, such the CPU buses.

 [KM10]. Further, the physical meaningfulness of DHT's output is closely related to the input's fitness into a narrow frequency band [Boa92]. However, we wish to work with non-stationary signals having more than one frequency. This is achieved by de-composing these signals into several components, called Intrinsic Mode Functions, such that each component has nearly the same frequency.

	Definition 23 [Intrinsic Mode Function] An Intrinsic Mode Function (IMF) is a function satisfying the
	following conditions:

 needs some time to "practically" reach an asymptotic nominal value i s and this time depends on the number of closed switches k. Consider the time T k required by i o (t) to reach Γ% of its asymptotic value, i.e. Γ 100 i s :

	Instantaneous Frequency Analysis	4.3
	current i o	

rC

(4.16) Equation (4.16) shows that current amplitude depends on the number of closed switches. However, there is one more parameter in the equation, namely the time t that characterizes the switching spike. The

 256 Table 5.2 -Number of faults used to recover a key from the operation S

			[r+1] j	• A | k [r] j	S j [r]	for different
	ciphers.			
	Cipher	Average number of plaintexts	Average number of faults per plaintext	Total number of faults
	LED	50	40		2,000
	AES	250	120		30,000
	SAFER++	200	120		24,000

Table 5

 5

	Key search was performed with known Hamming weights HW(S j,i), HW(S [r]D j,i [r+1] S

.1. Note that LED and AES use bit-wise exclusive or as key mixing operation, while SAFER++ applies byte addition. SAFER++ uses two kinds of S-boxes based on discrete logarithms and exponentiation. In the present research work the logarithm-based S-box with 256 elements was tested.

 6. The RAM's CLK signal was enabled for one cycle only causing d to appear on bus [R0,...,R7]. The RAM's CLK signal was immediately re-disabled to avoid a doublereads and freeze d on bus [R0,...,R7]. 7. At the next clock cycle, d appeared at the Q output pins of the eight registers. 8. The clock was left running for one more cycle to acquire any signal tails due to capacitive discharges.

Table 8 .

 8 3 compares an unprotected AES core to the countermeasures described in this paper. The increase in terms of area is ∼ 6% for the LFSR implementation and ∼ 4% for the tri-state design. The LFSR 8.3 Table8.1 -29 possible AES-block configurations.

Table 8 .

 8 3 -Unprotected AES, LFSR and tri-state buffer designs synthesized to the 45nm FreePDK Open Cell Library.

		Unprotected LFSR Tri-state
	Area (µm 2)	61,581	65,194	64,243
	Number of cells	10,643	11,035	11,162
	sequential	783	911	787
	inverters	1,483	1,614	1,493
	logic	8,375	8,506	8,368
	buffers	2	4	2
	tri-state buffers	0	0	512
	Total power (mW)	2.10	2.16	1.68
	leakage power	1.20	1.28	1.26
	dynamic power	0.89	0.87	0.41
	Timing (ps)	645	645	806
	Frequency (GHz)	1.55	1.55	1.24
	Throughput (Gbit/s)	4.84	4.84	3.87

Table 8 .

 8 4 -Spartan3E-500 utilization summary report.(i.e., compute four different plaintexts per execution), or to use three blocks to generate noise against power attacks, or to use one inactive block in the chain to recompute for encryption correctness.

		Unprotected LFSR Tri-state
	Number of Occupied Slices	1,994	2,290	2,296
	Number of Flip Flops	1,142	1,270	1,146
	Number of LUTs	3,521	4,106	4,031
	Timing (ns)	10.789	10.714	11.580
	Frequency (MHz)	92.68	93.33	86.35
	Throughput (Mbit/s)	289.3	291.3	269.6

 DROUNDKEY, SUBBYTES, SHIFTROWS, and MIXCOLUMNS. While one block performs intermediate computations the other three blocks can be used to generate noise, and/or to recompute previous values. These blocks can also perform meaningful computations to increase algorithm's throughput or they can be switched off to reduce power consumption.

			APPENDIX B
	uniform distribution, 20, 65 DMA Direct Memory Access MOS Metal-Oxide-Semiconductor unprotected channel, 14, 24 DNA Deoxyribonucleic Acid NASA National Aeronautics and Space Administration
	Vernam's encryption machine, 14 Vigen[Pleaseinsertintopreamble]re cipher, 14 DPA Differential Power Analysis NSA National Security Agency
	vulnerability, 15 DPD OAEP	Dynamic Power Dissipation Optimal Asymmetric Encryption Padding
	DRAM OS INDEX DSBA PC LIST OF MAIN ABBREVIATIONS Dynamic Random Access Memory Operating System Personal Computer Differential Spectral Based Analysis DVS Dynamic Voltage Scrambling PCA Principal Component Analysis
	S-box, 19, 20, 53, 65 EEPROM PEA	Hilbert Huang Transform, 17, 60, 64 Electrically Erasable Programmable Read-Only Memory Photon Emission Analysis
	3D, 64 AES, 19, 54, 60, 64 EM PLL EMD POI	Electromagnetism Phase-Locked Loop Empirical Mode Decomposition infecting computation, 57 instantaneous frequency, 35, 60 Points Of Interests
	Baudot code, 14 ERP PRNG	intrinsic mode function, 61, 62 inverter, 65 Pseudo Random Number Generator e-th Root Problem
	black box, 15 block cipher, 18, 52, 60 2D FA PSD 3D FIPS PUF Chinese Reminder Theorem, 27 2 Dimensions Power Spectral Density Fault Attack Federal Information Processing Standard key, 17, 39, 52, 54 key pair, 17 Physical Unclonable Function 3 Dimensions cipher, 17 key schedule, 19, 65 key-dependent distributions, 17 AC Alternating Current FPGA Field-Programmable Gate Array RAM Random Access Memory
	ciphertext, 14, 17, 21 CMOS, 30, 60 communication channel, 23, 24 ACPU Application Central Processing Unit FSM RC Resistor-Capacitor Finite State Machine laser, 50 leakage function, 40 ADC Analogue to Digital Converter GCD Greatest Common Divisor RISC Reduced Instruction Set Computing
	confusion, 19 AES GCHQ RNG countermeasure, 45, 52, 56, 60 Advanced Encryption Standard leakage models, 35 Random Number Generator Government Communications Headquarters cryptanalysis, 14 cryptographic algorithm, 15, 17 marginal spectrum, 63 ALU GIDL Gate-Induced Drain Leakage RSA Rivest Shamir Adleman Arithmetic Logic Unit multiple faults, 17 ARM Acorn RISC Machine HDL Hardware Language SCA Side-Channel Analysis cryptography, 14, 17 cryptology, 14 decryption, 17 plaintext, 14, 17 ASCII American Standard Code for Information Interchange HHT SCA Side-Channel Analysis Hilbert Huang Transform power analysis, 17 private key, 24, 27 ASIC Application-Specific Integrated Circuit HWPD Hamming Weight Probability Distribution SDK Starter Development Kit
	DES, 15, 19 DFA, 52 BGA I2C SHA	Ball Grid Array Inter-Integrated Circuit Secure Hash Algorithm	product cipher, 19 public key, 24
	diffusion, 19 distinguisher, 39 dynamic voltage scrambling, 46, 60, 65 CFA Collision Fault Analysis IC SNR Signal to Noise Ratio Integrated Circuit CIFA Correlation Instantaneous Frequency Analysis receiver, 15 rotor machine, 14 IEEE Institute of Electrical and Electronics Engineers SoC System on Chip
	eavesdropper, 15, 23 embedded systems, 15 empirical mode decomposition, 60 encryption, 14, 17, 24, 36, 40, 65 CMOS Complementary Metal-Oxide-Semiconductor round, 19 IF SPD Static Power Dissipation Instantaneous Frequency RSA, 25, 48, 57 CPA IKE Internet Key Exchange SPN Substitution Permutation Networks Correlation Power Analysis side-channel, 17 side-channel leakage, 30, 36, 48 CPU Central Processing Unit IMF Intrinsic Mode Function SRAM Static Random-Access Memory
	energy, 30 Enigma, 14 entropy, 20, 52, 54 CRP IP TLS CRT LDA TSA	signature, 17, 27 Challenge-Response Protocols Transport Layer Security Intellectual Property spectrum, 60 SPN, 19, 20, 52, 54 Chinese Reminder Theorem Linear Discriminant Analysis Temperature Side Channel
	Euler's phi function, 20 fault attack, 16, 48 fault model, 51 Fiestel network, 19 CSBA Correlation Spectral-Based Analysis state, 21 LED Light Encryption Device UMTS Universal Mobile Telecommunications System stream cipher, 18 subkey, 19 DC LFSR Linear Feedback Shift Register USB Universal Serial Bus Direct Current substitution, 18 substitution cipher, 14 DES Data Encryption Standard MIA Mutual Information Analysis YAG Yttrium Aluminum Garnet
	finite field, 18 Fourier transform, 60 DFA MIPS ZKP	symmetric cipher, 18 Microprocessor without Interlocked Pipeline Stages Differential Fault Analysis Zero-Knowledge Proofs
	FPGA, 60, 64 DHP	Diffie-Hellman Problem	T-radical branch number, 20, 53
	frequency, 60, 63 DHT	Discrete Hilbert Transform	timing attack, 16, 60 transistor, 30
	Hamming distance, 35, 37 Hamming weight, 19, 35, 37, 40 DIP Dual In-line Package	transition, 30 transmitter, 15
	hardware attacks, 17 DLP	Discrete Logarithm Problem	transposition, 18

 The second contribution of this work is the application of specific Hamming weight distributions of block cipher algorithms, including AES, DES, and LED. These distributions are distinct for each subkey value, thus they serve as intrinsic templates. Hamming weight data can be revealed by side-channel and fault attacks without plaintext and ciphertext.

					Therefore these
	distributions	can	be	applied	against
	implementations	where	plaintext	and
	ciphertext are inaccessible.	
	This	thesis	shows	that	some
	countermeasures serve for attacks. Certain
	infective RSA countermeasures should
	protect against single fault injection.
	However, additional computations facilitate
	key discovery.			
	Finally, several lightweight countermeasures
	are	proposed.	The	proposed
	countermeasures are based on the antagonist
	masking, which is an operation occurring
	when	targeting	data	processing,	to
	intelligently	mask	the	overall	power
	consumption.			
	Keywords		
	Side-channel	attacks,	fault	attacks,
	cryptography,		embedded	systems,
	countermeasures, Hilbert-Huang transform,
	Hamming weight probability distribution,
	statistics.			

The symbol rate measurement unit, known as the baud, is derived from Baudot's name.

Previously, the invention had been ascribed to four inventors working independently and at much the same time: Edward Hebern, Arvid Damm, Hugo Koch and Arthur Scherbius.

As is customary in cryptography, we often refer to the sender as "Alice", to the receiver as "Bob", and to the eavesdropper as "Eve".

To prevent ambiguity between a plaintext P ∈ P and an RSA's prime number p the messages space notation M for asymmetric ciphers is different from the plaintexts space notation P used in symmetric ciphers.

The names of Alice and Bob are usually abbreviated to A and B respectively

In most practical symmetric ciphers K = K D .

Every

8-th bit of 64-bit key is used for parity.8 Be aware that the expansion function notation E is different from the encryption notation E K .9 To avoid confusion with a plaintext notation P , the standard DES mixing permutation notation P is replaced by D.

Of the order of nano-Ampere to micro-Ampere

SEU is a change of state caused by one single ionizing particle (ions, electrons, photons...) striking a sensitive node in a microelectronic device, such as in a microprocessor, semiconductor memory, or power transistors.

Fault attack against Garner's recombination method is similar.

Fault Attacks3.4

Time series notation Hu(t) should not be confused with the entropy notation H(X).

The Hilbert Huang Transform

The mean m and the standard deviation σ were arbitrary set to m = 40 ns and σ = 5 ns in our experiment.

Instantaneous Frequency Analysis 4.5

Distinct Key Distribution and Statistical Indistinguishability 5.3

The attack is also working with the multiple bit-set fault model.

potentially anisotropic

not necessarily optimal, cf. Fig.7.3, left.

After the w-th splitting the rectangles' sides are of size w = (-2r)2 -w + 2r. Hence splitting can last forever. We suggest to stop splitting when w < 3r, i.e., after log 2 (/r -2) iterations.

the code is available at http://perso.ens-lyon.fr/quentin.fortier/color_ball.html

http://www.inf.ethz.ch/personal/gaertner/miniball.html

Intel Core 2 Duo T7300 processor, 2.0GHz, 4MB L2 cache, 2Go memory.

3 big-endian values stored in ASCII in decimal format. Each sample is represented by two bytes (oscilloscope's precision).

e.g., using a lookup table.

Conclusions and Further Research

Defensive Leakage Camouflage 7.5

In that respect see our open question in Section 8.5.

Energy and Security

Summary

The hardware processing can be transiently or permanently modified if the device is forced to operate out of normal physical conditions. Device tampering can corrupt memory contents, change instruction flow, or cause other precise modifications unveiling algorithm's data. Computational errors are used by fault attack to reveal cryptographic keys and other secret algorithm data.

A successful attack on a device requires two steps explained in this chapter: faults injection and faults exploration. Section 3.1 describes fault injection techniques and explains fault models. Fault attacks against SPN ciphers are explained in Section 3.2. Fault attack countermeasures are given in Section 3.4. CHAPTER 5

DISTINCT KEY DISTRIBUTION AND STATISTICAL INDISTINGUISHABILITY

Summary

This chapter introduces a novel attack approach based on distinct key distributions presented in block ciphers. Coupled with side-channel and fault information those unique key distributions prove to be a significant threat to block ciphers since the side-channel and fault attacks can be performed blindly, i.e., without knowledge of ciphertext and plaintext. This chapter presents a novel fault attack against SPN ciphers. The main advantage of the method is an absence of necessity to know the exact cipher's input and output values. The attack relies only on the number of faulty ciphertexts originating from the same unknown plaintext. The underlying model is a multiple bit-set or bit-reset faults injected several times at the same intermediate round state. This method can be applied against any round thus any round key can be extracted. The attack was shown to be efficient by simulation against several SPN block ciphers.

The new attack does not require a direct access to cipher's input and output. The attack assumes the following: (1) an attacker can encrypt several unknown plaintexts multiple times under the same key;

(2) encryption results can be compared between themselves without disclosing their values (this is somewhat similar to the "generic model" often used in public-key cryptography [START_REF] Maurer | Abstract Models of Computation in Cryptography[END_REF]); (3) a multiple random bit-reset or bit-set fault can be injected during the encryption rounds.

The method infers information from the relationship between the number of faulty ciphertexts originated from the same unknown plaintext and an intermediate state's Hamming weight. The attack is based on the fact that each SPN round comprises a key-involved operation that can reveal the round key if input and output Hamming weights of this operation are known. Simulations show that this attack is practical against LED, [START_REF] Guo | The LED Block Cipher[END_REF], AES [START_REF]Announcing the Advanced Encryption Standard (AES)[END_REF] and SAFER++ [START_REF] Massey | Nomination of SAFER++ as Candidate Algorithm for the New European Schemes for Signatures, Integrity, and Encryption[END_REF] algorithms.

The attack is performed in two phases: fault injection and key search. The fault injection phase is used to determine the Hamming weights of intermediate states. When a number of fault injections is limited, we determine an occurrence probability for each possible Hamming weight value. The key search phase is done in two steps. The first step applies a finite field equation to filter-out key candidates. The second step assigns likelihood information to each key candidate which, in turn, reveals the correct key with high probability.

DEFENSIVE LEAKAGE CAMOUFLAGE

Summary

Similar to the Shannon's model described in the Section 1.1 this chapter considers the transfer of digital data over leaky and noisy communication channels. The new defensive strategies proposed in this chapter are based on the fact that noise prevents the attacker from accurately measuring leakage.

The defence strategy described in this chapter pairs each useful data element k with a camouflage value v and simultaneously transmits both k and v over the channel. This releases an emission e(k, v). The camouflage values v(k) are selected as a function of k in a way that makes the quantities e(k, v(k)) as indistinguishable as possible from each other.

This chapter presents a model, which shows that optimal camouflage values can be computed from side-channels under very weak physical assumptions. The proposed technique is hence applicable to a wide range of readily available technologies.

We propose algorithms for computing optimal camouflage values when the number of samples per trace is moderate (typically ≤ 6) and justify our models by a statistical analysis.

We also provide experimental results obtained using FPGAs.

We can thus choose a distinct configuration of weight n/2 to encode each secret key k. It follows that c n = (3 + log 2 n)/2 bits are sufficient to perfectly hide the emanations from s = n -c n keys over the n bits of an isotropic bus.

If the noise level is high enough then the implementer may use the fact that CHAPTER 8

BUYING AES DESIGN RESISTANCE WITH SPEED AND ENERGY

Summary

Despite the fact that AES is mathematically safer than the DES, straightforward AES implementations are not necessarily secure and several authors [Koc96, KJJ99, MOP07] have exhibited ways of exploring information that leaks from AES implementations. Such leakage is typically power consumption, electromagnetic emanations or the time required to process data. Additional constraints such as faultresistance, chip technology, performance, area, power consumption, and even patent compliance further complicate the design of real-life AES coprocessors. This chapter addresses resistance against two physical threats: power and fault attacks. The proposed AES architecture leverages the algorithm's structure to create low-cost protections against these attacks. The proposed design allows very flexible runtime configurability without significantly affecting performance.

This chapter is organized as follows: Section 8.1 proposes an architecture for implementing AES. Section 8.2 explains how to add power scrambling and fault detection to the proposed implementation. The result is a chip design allowing 29 different software-controlled runtime configurations. Section 8.3 compares simulation and synthesis results between an unprotected AES and our protected implementations. 8.2

Transient Fault Detection

We will now use idle blocks to check for transient faults. Each block in the chain can "stutter" during two consecutive clock cycles to recompute and check its own calculation. For instance, as shown in Fig. 8.9, at clock t, a given block B i receives a ready i signal, computes the state and saves it in the register barrier R i . At clock t + 1, the result enters the next block B i+1 mod 4 which is now working, while B i reverts to checking, i.e., B i recomputes the same output as at clock t and compares it to the saved B i value. This process is repeated for the other blocks in the chain. If any transient fault happens to cause a wrong result at the output of any block, the error will be detected within one clock cycle.

.9 -Transient fault detection scheme for AES.

Permanent Fault Detection

The AES structure of Section 1.3.1 also allows us to use one block of the chain to compute a predetermined plaintext or ciphertext. The encryption (or decryption) of a chosen input (e.g., the all-zero input Z) is pre-computed once for all and hardwired (let W = AES(Z) denote this value). While the system processes the actual input through one block (out of four) during any given clock cycle, another block is dedicated to recompute W . One clock after the actual C emerges, AES(Z) can be compared to the hardwired reference value W . If W = AES(Z), a transient or a permanent fault occurred.

In this scenario, the system starts by computing AES(Z) in the first clock cycle, followed by the actual computation of C. This allows the implementation to check up all the blocks during the execution and make sure that no permanent fault occurred. In the last clock cycle, while C is being processed in the last block, the correctness of AES(Z) is compared with the hardwired value before outputting C.

In Fig. 8.10, the red arrows represent data flow through the transformation blocks. After the initial clock cycle, the first block starts computing C. The WORKING blocks represent the calculation of C. The CHECKING blocks represent the calculation of AES(Z).

While AES(Z) will be calculated in 4N r + 1 clock cycles, C will be calculated in 4N r + 2 cycles. If the fault needs to be caught earlier, the solution described in [START_REF] Bertoni | Fault Detection in the Advanced Encryption Standard[END_REF]

STATISTICAL DISTANCES FOR VARIOUS S-BOXES

This appendix presents statistical distances computed using S-boxes of various cryptographic algorithms according to the formula:

Pr kj [HW(x in), HW(S(k j ⊕ x in))]

LIST OF PUBLICATIONS

This thesis is primarily based on the peer-reviewed publications described in this section. Among the developed work are published papers, e-prints, journal and blog articles, a book article, a patent, three workshops and various program.

Multi Fault Laser Attacks on Protected CRT-RSA [TK10]

With Elena Trichina

Abstract. Since the first publication of a successful practical two-fault attack on protected CRT-RSA surprisingly little attention was given by the research community to an ensuing new challenge. The reason for it seems to be two-fold. One is that generic higher order fault attacks are very difficult to model and thus finding robust countermeasures is also difficult. Another reason may be that the published experiment was carried out on an outdated 8 bit microcontroller and thus was not perceived as a serious threat to create a sense of urgency in addressing this new menace. In this paper we describe two-fault attacks on protected CRT-RSA implementations running on an advanced 32 bit ARM Cortex M3 core. To our knowledge, this is the first practical result of two fault laser attacks on a protected cryptographic application. Considering that laser attacks are much more accurate in targeting a particular variable, the significance of our result cannot be overlooked.

Note. This work is presented in detail in Chapter 6.

Buying AES Design Resistance with Speed and Energy [PDCK14, PdCKN16]

With Rodrigo Portella do Canto, and David Naccache Abstract. Fault and power attacks are two common ways of extracting secrets from tamper-resistant chips. Although several protections have been proposed to thwart these attacks, resistant designs usually claim significant area or speed overheads. Furthermore, circuit-level countermeasures are usually not reconfigurable at runtime. This paper exploits the AES' algorithmic features to propose low-cost and lowlatency protections. We provide Verilog and FPGA implementation details. Using our design, real-life applications can be configured during runtime to meet the user's needs and the system's constraints.

Note. This article is presented in detail in Chapter 8. This work has served as basis of a patent [START_REF] Portella | Hardware Encryption and Decryption Apparatus Using a N Round AES Algorithm[END_REF] and a book chapter, volume 9100 of the series Lecture Notes in Computer Science [START_REF] Canto | Buying AES Design Resistance with Speed and Energy[END_REF]. This work was also presented during 10 th AES Anniversary.

Defensive Leakage Camouflage [BQK + 13]

With Eric Brier, Fortier Quentin, K. W. Magld, David Naccache, Guilherme Ozari de Almeida, Adrien Pommellet, A. H. Ragab, and Jean Vuillemin Abstract. This paper considers the transfer of digital data over leaky and noisy communication channels. We develop defensive strategies exploiting the fact that noise prevents the attacker from accurately measuring leakage. The defense strategy described in this paper pairs each useful data element k with a