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Résumé étendu en français

Pour améliorer la caractérisation et le dimensionnement des disques de turbines pour les

moteurs d’avion, le motoriste Safran Aircraft Engines (SAE) développe des modèles de

comportement, des lois d’endommagement et des critères de fatigue plus adaptés aux

chargements réels. L’Inco718DA est un super alliage à base nickel largement déployé

dans la fabrication des turbines haute pression. Dans la littérature il a été montré que

pour l’Inco718, un matériau qui s’adoucit cycliquement [Alexandre, 2004], l’analyse

inélastique ne peut pas être basée seulement sur le cycle stabilisé du matériau [Chaboche

and Cailletaud, 1986; Burlet and Cailletaud, 1986; Benallal and Marquis, 1987; Calloch

and Marquis, 1997; Portier et al., 2000]. Pour obtenir une caractérisation précise, à la fois

le comportement monotone (initial) et le cyclique (adouci) doit être introduit [Chaboche

et al., 1991]. Ceci est un vrai défi, étant donné la transition lente entre ces deux états, plus

particulièrement à des niveau de déformation faibles dans un chargement dissymétrique.

Le but principal de la thèse a été donc de développer un modèle de plasticité adapté

à l’Inco718DA et capable de représenter différents chargements (monotone, cyclique

symétrique et non-symétrique). La proposition puis l’identification du modèle a été pos-

sible grâce à une campagne expérimentale favorisant des tests complexes et innovants aux

essais de fatigue nombreux et coûteux. Les essais ont été réalisés à la fois au LMT Ca-

chan et dans les laboratoires d’essai de SAE. Les essais faits incluent un essai monotone

avec décharges élastiques, un essai multi-niveau à Rε=-1 et deux essais multi-niveau à

Rε=0 pour mieux caractériser la relaxation de la contrainte moyenne. Le comportement

cyclique du matériau a été identifié en utilisant un écrouissage cinématique non saturant

dérivé de celui développé par Desmorat [2010b] avec des éléments s’inspirant de la sur-

face mémoire de Chaboche et al. [1979] et Delobelle et al. [1995]. Un des défis a été

d’obtenir des boucles stabilisées ”pointues” dans un régime de plasticité cyclique satu-

rante, en utilisant une évolution du paramètre Γ en fonction de la déformation plastique

équivalente maximale (prefacteur du terme de rappel de la loi d’écrouissage cinématique).

La campagne uniaxiale, ainsi que le développement et l’identification du modèle, ont étés

décrit dans le chapitre 2.

Une deuxième difficulté apparaı̂t dans la description de la relaxation de la contrainte

moyenne, phénomène complexe avec un impact considérable sur la durée de vie en fa-

tigue. Étant donné qu’une partie des critères de rupture ne sont pas liés directement à la fa-

tigue mais à la déformation plastique cumulée, une description précise de ces phénomènes

devient cruciale pour une bonne estimation de la durée de vie des composantes.

Modeling of partial mean stress relaxation and biaxial mechanical testing of Inco718DA



vi Résumé étendu en français

Dans le chapitre 3, un modèle est proposé pour la caractérisation de la relaxation par-

tielle de la contrainte moyenne. Une originalité du modèle est l’idée que la relaxation

incomplète est une conséquence directe de la différence entre la charge et la décharge de

la boucle d’hystérésis. En analysant les paramètres pouvant être responsables pour cette

différence dans le modèle, on a trouvé des patterns indiquant qu’il y a une différence im-

portante entre ce qui se passe entre la partie ascendante et descendante de la boucle. Pour

des raisons expliquées dans le chapitre 3, section 3, Le paramètre choisi pour décrire cette

différence a été le préfacteur du terme de rappel Γ, pour lequel la thermodynamique donne

de la liberté. On a montré dans la section 4.1 que Γ ≥ 0 est une condition suffisante pour

que la dissipation intrinsèque reste positive, indépendamment du type de chargement.

L’évolution du paramètre Γ a été directement calculée pour tous les cycles des essais à

notre disposition et injectée directement dans le modèle.

Par rapport à d’autres lois d’écrouissage utilisées pour représenter la relaxation par-

tielle de la contrainte moyenne [Chaboche, 1991; Chaboche et al., 2012; Gustafsson et al.,

2011], notre modèle présente l’avantage d’utiliser un seul terme de rappel, mais avec une

formulation plus complexe. En plus, le modèle est incrémental (écrit en taux/en vitesse

dans le chapitre 3, section 5) ; il peut donc prendre en compte des chargements com-

plexes tels qu’aléatoires ou plus simplement tels que dans les essais multi-niveaux pi-

lotés en déformation. Un autre aspect important du modèle quand on le compare à la loi

d’écrouissage multi-cinématique à seuils développée par Chaboche et al. [1991] est que la

description de la contrainte moyenne σ̄ en fonction de l’amplitude des déformations plas-

tiques totales ∆ε
2

pour un même rapport de charge Rε est continue. Il n’y a pas de sauts

successifs dans la réponse, comme ce qu’il arrive après chaque désactivation des termes

de rappel dans le multi-cinématique à seuils.

Même si ce n’était pas le focus de l’étude, la dissymétrie traction-compression peut

également être représentée par cette approche utilisant un paramètre Γ différent à la

montée et à la descente. On a montré dans la section 3.3 qu’avec un réglage minimal

des paramètres, cette dissymétrie peut être très précisément représentée.

Dans le dernier chapitre de la thèse, une campagne biaxiale vaste est présentée, avec

les développements pour réaliser des essais biaxiaux pilotés en déformation. La campagne

biaxiale a été réalisée sur des éprouvettes cruciformes en utilisant des capteurs LASER et

des mesures de champs mono et stéréo analysées en utilisant la Corrélation d’Images Nu-

meriques (CIN). Pour analyser la relaxation de la contrainte moyenne en biaxial un moyen

de mesure et de contrôle fiable a dû être développé, adapté aux déformations plastiques

élevées qui apparaissent dans la région d’intérêt de l’éprouvette. En utilisant la corrélation

d’images intégrée (I-CIN) avec des fonctions de forme adaptées sur un seul élément et

des calculs sur GPU, on a obtenu des fréquences de mesure de 100 Hz. En plus, avec sa

précision et vitesse, I-CIN a été une technique adapté pour contrôler une machine d’es-

sais multiaxiale hydraulique. Un résultat important obtenu quand on a réalisé des essais

equi-biaxiaux pilotés en déformation a été l’observation d’une relaxation de la contrainte

moyenne très faible par rapport au cas uniaxial. Ce résultat doit être pris en compte dans

les études futures avec des calculs éléments finis sur l’éprouvette complète.
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Introduction

Due to the increasing complexity of systems used in aeronautics, spatial, automotive in-

dustries, etc., the need for more sophisticated models to describe their behavior has grown

in the past years. This implies that experiments manage to get as close as possible to the

multiaxial loading states encountered in service. To improve the characterization and the

design of their metallic parts, the propulsion systems manufacturer Safran Aircraft En-

gines (SAE) develops constitutive equations, damage laws and fatigue criteria that are

more adapted to real loading.

Metallic alloys are present in a variety of engine components and depending on the

temperature range in certain areas, different families are used. To list just a few, in the

following some alloy families are presented for temperature ranges going from low to high

[Alexandre, 2004]. Titanium alloys are used for the fan area and a part of the compressors,

where the temperature is lower than 550° C (TA6V, Ti6242 or Ti17). Poly-crystalline

nickel-based alloys (Waspaloy, Inco718, N18) are used for temperatures between 450° C

and 700° C, such as the high-pressure compressor (disks, blades and casing) and the

turbine (disks and some of the blades). The cobalt-based super-alloys are used for the

combustion chamber. Mono-cristaline nickel-based super-alloys are used for blades that

reach up to 1000° C towards the tip. Fig. 1 shows some of these components for the SAE

CFM56 engine, along with the high-pressure turbine disk, which is the engine part this

study addresses.

The nickel-based superalloy Inco718DA is used for the manufacturing of the high-

pressure turbine disks. If the fracture of a blade can be contained by the casing, the same

rule doesn’t apply for disks, where no fracture is allowed. This criterion makes the disks

one of the most critical designed parts. A disk is subjected to temperatures ranging from

450° C to 650° C and stress levels going up to 800 MPa. In this temperature range,

damage accumulation by fatigue is the main failure mechanism.

Several fatigue lifetime prediction models exist in the literature, but many of them are

based on the notion of a stabilized stress-strain cycle at every point of the structure. It

has been shown though for Inco718, a material which softens cyclically, that the inelastic

analysis cannot be based solely on the stabilized cyclic behavior of the material [Chaboche

and Cailletaud, 1986; Burlet and Cailletaud, 1986; Benallal and Marquis, 1987; Calloch

and Marquis, 1997; Portier et al., 2000]. In order to have a precise characterization,

both the monotonic (initial) behavior and the cyclic (softened) one should be introduced

[Chaboche et al., 1991]. This is an important difficulty, given the slow transition between
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Figure 1: The SAE CFM56 engine with its high-pressure turbine disk

these two states especially at low strain levels in a non-symmetrical loading.

A second difficulty appears in the description of complex phenomena such as mean-

stress relaxation [Jhansale and Topper, 1971; Chaboche et al., 2012] and ratcheting

[Chaboche and Cailletaud, 1986; Burlet and Cailletaud, 1986; Chaboche, 1991], which

have a considerable impact on fatigue lifetime [Lukáš and Kunz, 1989; Wehner and

Fatemi, 1991; Arcari et al., 2009]. Moreover, given that some failure criteria are not

related to fatigue but to the maximum accumulated plastic strain, a precise description of

these phenomena becomes crucial to a good estimation of component lifetime expectancy.

The main goal of this thesis is to develop a plasticity model adapted to Inco718DA

and capable of representing several loading conditions (monotonic, symmetrical and non-

symmetrical cyclic loading). The identification of the model was possible thanks to a

”rich” uniaxial campaign, favoring complex, innovative tests to numerous costly fatigue

tests. Such tests include a monotonic test with elastic unloads, several multi-level tests

with symmetric (Rε =−1) and non-symmetric (Rε = 0) strain ratios (the latter being used

to better quantify mean stress relaxation) and a test to analyze ratcheting. The uniaxial

campaign, as well as the development and identification of the model are described in

chapter 2 and chapter 3, the latter focusing on the modeling of the partial mean stress

relaxation.

One also aims at the model validation under multiaxial conditions close to normal

engine functioning. Therefore, a biaxial testing campaign was performed using LASER

sensors, mono and stereo full-field measurements using Digital Image Correlation (DIC).

The latter was optimized into performing biaxial strain controlled tests using Integrated

DIC on Graphical Processing Units (GPUs). The design and the results of the biaxial

campaign are described in chapter 4.
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Bibliography

In this chapter, a literature survey is presented. The first section focuses

on the material properties of Inco718DA, the alloy studied during this

thesis. The understanding of its behavior is important for an accurate

modeling. Second, a review of plasticity models used for metals is pre-

sented, with an accent on kinematic hardening laws. Moreover, since

an important phase in model development is the validation, several ex-

perimental tests that are frequently used as identification databases are

presented. Last, due to a significant evolution of experimental tech-

niques, such as Digital Image Correlation and multiaxial machines, the

experimental data recorded during a test can reach a new level of com-

plexity. These techniques are thus presented in the last section.
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1 Introduction

In view of more efficient designs of structural components, the material capability in

withstanding various loading regimes is exploited further and further. Thus, in order

to allow for lighter designs at ever increasing temperature and/or load levels, material

scientists eagerly develop high-end superalloys with improved capabilities. However, in

order to safely profit from these capabilities during the design phase, as well as to allow

for an exploitation of the entire potential of already existing alloys, it is at least of the

same importance to enable a precise and efficient description of the material response

within the relevant loading regime [Becker and Hackenberg, 2011].

In order to be able to accurately represent the behavior of a component, several steps

need to be taken. Firstly, it is necessary to understand the material, its composition, its

manufacturing along with its main failure mechanisms in the different mechanical and

thermal regimes, that it will have to perform. Secondly, it is important to understand the

phenomena that influence the fatigue lifetime to be able to choose an adequate model.

Lastly, model parameters need to be identified using the right experimental data which

is not necessarily at our disposal. Following these principles, the material description is

presented in the following.

2 Material properties

Inconel 718 is the most-used nickel-based alloy in the manufacturing of aeronautics tur-

bine disks. The composition of one version of this material is given in Fig. 1.1. It can be

noticed that there is a high percentage of chromium, which enhances its oxidation resis-

tance, important in the temperature range it performs. Iron (Fe) and niobium (Nb) are the

main components responsible for the hardening of the material. The hardening is obtained

by precipitation of phases γ0 and γ00 [Alexandre, 2004; Cozar and Pineau, 1973; Gao et al.,

1996; Xiao et al., 2005]. Other phases are also present in inconel: the δ phase [Sun et al.,

1997], NbC carbides [Fayman, 1987] and TiN nitrides. These phases play important roles

at different levels. The δ phase limits high-temperature grain growth and contributes to

their reinforcement [Singh et al., 2003]. The carbides and nitrides are used as germination

sites for the grains during the solidification of the alloy. The carbides are also common

initiation points for fatigue cracks [Connolley et al., 2003], so their presence should be

limited and controlled.

4.75

5.50

Figure 1.1: Element composition and weight percentage of Inconel 718 PQ [Alexandre,

2004]
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Figure 1.2: Temperature maps during the forging process for Inco718DA high-pressure

turbine disks. The manufacturing steps, from left to right, are: upset forging, cooling,

stamping and slow air cooling [Schwartz, 2012]

2.1 Turbine disk manufacturing

The turbine disk is obtained from a forged circular block, as shown in Fig. 1.2 with

the symmetry axis on the left hand side. Before it reaches its final shape, the block

has to pass through a process of high-temperature upset forging, followed by cooling,

then stamping and finally slow air cooling. Temperature gradients inside the material

during such a process are important, which generates considerable heterogeneous residual

stresses. Grain size, residual hardening and fiber creation are some of the main parameters

contributing to the mechanical resistance of components. To ensure good properties, a

disk should have a micro-structure as homogeneous and as fine as possible. Therefore,

manufacturing has been studied and improved in order to obtained an acceptable behavior

[Fournier and Pineau, 1977; Zhou and Baker, 1995; Alexandre, 2004; Revaud, 2013].

Another important aspect of the forging process is that it generates different grain pop-

ulations in the block (Fig. 1.3). These populations are varied and non-uniform especially

close to the edges and a little more uniform in the zone where the disk will be extracted

(contour marked in red). For the current study, one such forged block was available for

extracting different sized samples that we used to perform both uniaxial and biaxial exper-

iments. By taking into account the distribution of the grain populations inside the block

and the extraction zone of the disk, we performed a 3D sampling plan in order to opti-

mize the type and number of extracted samples. The details about this plan can be found

in Appendix A.

One of the more recent varieties of inconel is Inco718DA. The denomination DA

or Direct Aged is an indication of the manufacturing process used for the forged block,

particularly the longer air cooling time. The usage of the 718 alloy of the DA type en-

sures a considerable gain in terms of yield stress (⇡20%) with respect to its predecessor

Modeling of partial mean stress relaxation and biaxial mechanical testing of Inco718DA
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Figure 1.3: Micrographic cut of the forged block, with the extraction zone of the turbine

disk marked in red

(Inco718TR), by reducing the grain size from 30 µm to 10 µm (Fig. 1.4a). In Fig. 1.4b

the evolution of the yield stress (Re0.2), the maximum stress (Rm) and elongation in %

(10⇥A) may be seen with respect to temperature for Inco718TR. The material exhibits

elongations at fracture of ⇡ 20% for yield limits superior to 1000 MPa. Moreover, it is

important to notice that Inco718DA performs very well in the temperature range of 0°

- 650°C, which explains its wide use in the high-pressure turbine disks, which operate

within these limits.

2.2 Cyclic behavior of Inco718DA

During fatigue tests, Inco718DA is a material that exhibits cyclic softening [Fournier and

Pineau, 1977]. If the test is stress-controlled than there will be an increase of the ampli-

tude of plastic strains with the number of cycles. For a strain-controlled test the effect

is complementary, in the sense that the stress amplitude will decline with passing cycles.

In Fig. 1.5a, cyclic softening is shown for Inco718 for different temperatures in strain-

controlled tests. In the case of Inco718, this phenomenon is due to the shear of hardening

precipitates [Alexandre, 2004]. The resistance against dislocation passage through the

precipitates is the source of hardening of this alloy. Once this threshold is surpassed, a

lot less resistance is exerted, thus the material softens. This can also be seen in Fig. 1.5b

where some cyclic plasticity curves are shown along with monotonic data for Inco718.

Modeling of partial mean stress relaxation and biaxial mechanical testing of Inco718DA
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ABSTRACT is strengthened primarily by a coherent body- 

centred-tetragonal (b.c.t.) Ni3Nb disc-shaped 

A range o f  techniques including chemical precipitate, "T". Face-centred-cubic ~,' (Ni3(A1 , 

extraction and analysis, differential thermal Ti, Nb)) provides a minor contribution to 

analysis, backscattered electron imaging and strength and various carbides (MC, M6C; M is 

energy dispersive X-ray analysis in an analyti- a metal), nitrides (MN), borides (M3B2), ox- 

cal electron microscope have been used to ides and intermetallic phases (or thorhombic 

characterize the microstructure o f  an as-re- 6-Ni3Nb, hexagonal-close-packed ~?, Laves, o 

ceived DA 718 forging. Phase transformation and p) have also been found in the alloy. 

temperatures, weight fractions, composit ions The high temperature mechanical properties 

and partitioning behaviours were determined of IN 718 have been extensively researched. 

for several second phases. The 5 phase was However, new processing techniques have 

found  to have a higher niobium content  than been developed with a view to increasing the 

the finer ~"-'y' precipitates. However, the temperatures and stresses at which IN 718 can 

"y"-~[' particles con tained more o f  the other be used in service. The effects on ultimate 

alloying elements than did the 6 phase. Anal- tensile strength (UTS) of  including one of 

yses are also given for a titanium-rich MC-type these processes, direct aging, in the heat-treat- 

carbide (where M is a metal), a niobium and ment  schedule is shown in Fig. 1 [1], together 

molybdenum-rich MsB2-type boride and a with results for powder-processed Ren6 95, 

calcium-rich oxide, used in comparable applications. 

Figure 1 shows that, although DA 718 

exhibits a significantly higher UTS than does 
1. INTRODUCTION 

The work presented here is part of  a con- 

tinuing project  to investigate phase stability in 1800 

the direct-aged form of IN 718 (DA 718) and Renb 95 

the effects of heat t reatment  and low-cycle 1600 8 ~ 
fatigue at room and elevated temperatures on A 

the microstructure.  The purpose of  this paper c~ a_ 
is to report  on the initial microstructural ~ 1~00 

characterization of  DA 718 in the as-received ~n ~ ,M ~ 1 ~  

condition. Microanalytical techniques and e-- 

complementary use of  analytical electron 1200 

microscopy (AEM) thin foils and extraction 

replicas are used to provide definitive quanti- 1000 , , 

tative information about  the actual micro- 0 200 ~00 500 800 
structure of  DA 718. 

IN 718 is a precipitation-hardened, Fe-Ni TEMPERATURE (°[) 

base superalloy which has been used for de- Fig. 1. Ultimate tensile strength (MPa) variation with 
cades in high temperature applications. IN 718 temperature (°C) for IN 718, DA 718 and Ren~ 95. 
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Figure 1.4: Monotonic tension evolution of nickel-based alloys with respect to tem-

perature a) Ultimate tensile strength (UTS) variation with temperature (°C) for IN 718

(Inco718TR), DA 718 (Inco718DA) and René 95 [Fayman, 1987] b) Evolution of the

yield stress(Re0.2), the maximum stress (Rm) and elongation in % (10⇥A) with respect

to temperature for Inco718TR [AMS, 2001]

The differences in the behaviors found in the graph are due to the temperature change, but

also to the variability in the microstructure, given that they come from different testing

campaigns performed between 1980 and 2001. Moreover, there is an important differ-

ence in the way some of the data were obtained. For the results by Clavel [1980] and

Fournier [1977] the values are obtained at half-lifetime. The results of Ponnelle [2001]

are obtained from incremental fatigue tests for a relatively small number of cycles (⇡50)

when compared to the whole lifetime span. Performing successive strain loading levels

on the same sample can overrate the stress levels and, in this case, reach a hysteresis loop

that is not necessarily stabilized [Alexandre, 2004]. This explains some of the scatter in

the graph. Nevertheless, the main effect is visible, that there is more and more important

cyclic softening as temperature grows. Moreover, if at high temperatures this behavior is

expected, it can be seen that even at room temperature there is a considerable softening,

which is an important aspect to model.

2.3 Mean stress relaxation and ratcheting

A phenomenon that began receiving a lot of attention these recent years due to its in-

fluence over the lifetime of aircraft engine parts is mean stress relaxation. It may oc-

cur for materials that soften cyclically, during strain-controlled tests with strain ratios

Rε =
εmin
εmax

> −1. As it may be seen in Fig. 1.6, for a loading between fixed strain limits

εmax and εmin, the mean stress σ̄ = σmax+σmin

2
will diminish with each cycle. Thus, de-

pending on the plastic strain amplitude and the number of performed cycles, the sample

may exhibit a partial or even total mean stress relaxation, when σ̄ = 0 for the stabilized

cycle. This phenomenon has been studied experimentally [Jhansale and Topper, 1971;

Modeling of partial mean stress relaxation and biaxial mechanical testing of Inco718DA
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Figure 1.5: Cyclic properties of Inco718DA a) Evolution of the stress amplitude (∆σ/2)

with respect to the percentage of life for different temperatures [Fournier and Pineau,

1977] b) Cyclic plasticity curves (∆σ/2 = f (∆εp/2)) at different temperatures from dif-

ferent studies[Alexandre, 2004]
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Figure 1.6: Mean stress relaxation principle

Chaboche et al., 2012] and its effect on fatigue lifetime has been analyzed [Lukáš and

Kunz, 1989; Wehner and Fatemi, 1991; Arcari et al., 2009]. The phenomenon of incom-

plete mean stress relaxation, where even after a very large number of cycles σ̄ 6= 0 is an

important aspect that very few models manage to represent [Chaboche, 1989b; Chaboche

et al., 2012], and will be detailed in the following.

The complementary phenomenon, ratcheting, may occur in stress-controlled tests. As

may be seen in Fig. 1.7, for a cyclic test with fixed control limits σmax and σmin a ma-

terial can exhibit the accumulation of plastic strain at each cycle, which can diminish

dramatically the fatigue lifetime. Many studies have been done on ratcheting with some

interesting conclusions. Ratcheting implies the accumulations of small increments of

plastic strain at each loading/unloading cycle. If the unloading is purely elastic, creep

effects have been determined as being the contributors [Ruggles and Krempl, 1990]. The

constitutive equations usually used to model ratcheting are those of the kinematic hard-

ening rule. Some transient effects may occur due to cyclic hardening or softening [Kang

et al., 2010], but pure ratcheting situations are considered to occur under steady conditions
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Figure 1.7: Ratcheting principle

(when cyclic isotropic hardening or softening has been saturated). In some experimental

campaigns, an initial cycling is performed in order to saturate this effect [Chaboche and

Cailletaud, 1986; Chaboche et al., 1991]. Multiaxial ratcheting conditions often lead to

lower ratcheting than the corresponding von Mises equivalent uniaxial loading [Chaboche

et al., 2012]. Many uniaxial and multiaxial experimental studies have been published

[Hassan and Kyriakides, 1992; Delobelle et al., 1995; Portier et al., 2000; Aubin et al.,

2003; Vincent et al., 2004; Taleb and Hauet, 2009], most of them using engineering stress

control. Recent works show the importance of using true stress control [Paul et al., 2010],

although the correction can be added later on for simulation purposes.

Ratcheting and mean stress relaxation have been studied for Inco 718 in France

[Chaboche and Cailletaud, 1986; Burlet and Cailletaud, 1986; Chaboche, 1991; Soulé de

Lafont et al., 2015] and abroad [Gustafsson et al., 2011; Becker and Hackenberg, 2011]

and the solutions in terms of modeling, as well as testing decisions, will be presented in

the following sections.

3 Elasto-plastic behavior of metals

3.1 General constitutive laws

According to the principles of continuum mechanics [Lemaitre and Chaboche, 1985;

Lemaitre et al., 2009; Besson et al., 2010], the thermodynamics state of the continuum

at a given point requires the existence of a certain number of state variables (observable)

which are the temperature T and the total strain ε (when assuming small strains). These

two state variables are the only ones which evolve in thermo-elasticity, plasticity, damage

and fracture phenomena. In order to describe dissipative phenomena, the state at a given

time also depends on the past history, thus it is important to also dispose of the values

of the internal variables. Plasticity and viscoplasticity require the usage of the plastic or

permanent strain ε
p, obtained using the classic strain decomposition:

ε= ε
e +ε

p (1.1)
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with ε
e being the elastic strain. In order to describe hardening, damage, fracture, other

variables that describe the internal state of matter are required, such as the density of

dislocations, the crystalline microstructure, micro-cracks distribution, etc. In Lemaitre

and Chaboche [1985] they are denoted as V1,V2, ...,VK; VK being either a scalar or a

tensorial variable. The Helmholtz specific free energy, taken as the state potential of the

material, is a function of the state and internal variables and can thus be expressed as:

ρψ = ρψ(εεε,T,εe
ε

e
ε

e
ε

p
ε

p
ε

p, p,ααα) (1.2)

Given that in this study the main focus will be on hardening, the main internal vari-

ables used to describe this behavior will be presented. For the isotropic hardening, the

scalar internal variable known as the accumulated plastic strain is used to describe the

size of the elastic domain: p =
R t

0

q

2
3
ε̇εε

ppp(τ) : ε̇εεppp(τ)dτ. For the kinematic hardening, a

tensorial variable ααα is used to describe the position of the elasticity domain. Thus, in the

isothermal case, the state potential becomes:

ρψ = ρψ(εεε,T,εp
ε

p
ε

p, p,ααα)

=
1

2
(εεε−ε

p
ε

p
ε

p) :EEE : (εεε−ε
p

ε
p

ε
p)+G(p)+

1

3
C(ααα : ααα)

(1.3)

withEEE being the Hooke’s tensor, G(p)+ 1
3
C(ααα :ααα) the stored energy density by hardening.

Using the Clausius-Duhem inequality, the thermodynamics forces associated with the

internal variables can be obtained:

σσσ = ρ
∂ψ

∂εεε
=EEE : (εεε−ε

p
ε

p
ε

p)

R = ρ
∂ψ

∂p
=

dG

d p
= R(p)

X = ρ
∂ψ

∂ααα
=

2

3
Cααα

(1.4)

with R = R(p) being the isotropic hardening rule. The loading or flow surface for a large

variety of models is expressed with the following inequality:

f = (σσσ−X)eq −σy −R(p) 0 (1.5)

where σy is the yield stress and (σσσ−X)eq is the equivalent stress, a scalar value that

allows the usage of the inequality in the tensorial space. Given that it was experimen-

tally observed that plastic flow does not depend on hydrostatic pressure, the deviatoric

stress σσσ0 and its invariants being chosen instead of the stress tensor itself. One of the

most commonly used equivalent stress criterions is the Von Mises criterion [Mises, 1913]
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which uses the J2 invariant J2(σσσ) = σeq =
q

3
2
σσσ0 : σσσ0, but several criteria exist in the lit-

erature depending on the application [Hill, 1948; Yu, 1961; Tresca, 1864; Barlat et al.,

1991; François, 2001]. Three scenarios may occur during loading-unloading conditions,

depending on the value of the criterion function f and of its time derivative ḟ :

• f <0: elastic behavior

• f =0 and ḟ =0: plastic flow

• f <0 or ḟ <0: elastic unloading

During plastic flow, the plastic strain rate in any point can be expressed using the

flow direction, which is the unit normal vector n = ∂ f
∂σσσ

, thus ε̇εε
ppp = λ̇n. This equality,

also known as the normality rule, uses a plastic multiplier rate λ̇ to quantify plastic flow,

which is shown to be, in many simple cases, equal to the accumulated plastic strain rate

ṗ =
q

2
3
ε̇εε

ppp : ε̇εεppp [Lemaitre et al., 2009]. Thus, the plastic strain rate can be expressed as

ε̇εε
ppp = ṗn.

With the increment of plastic strain defined, the evolution of the isotropic and kine-

matic hardening variables R and X can also be expressed using an incremental (rate)

approach. Some more common hardening laws found in the literature will be presented

in the following, insisting on the kinematic hardening, given that it is the main focus of

this study.

3.2 Isotropic hardening

Isotropic hardening is expressed as the uniform expansion of the loading surface. In

isotropic hardening rules, this evolution of the loading surface is governed by only one

scalar variable, such as the dissipated plastic work or, most commonly, the accumulated

plastic strain p. The evolution of the isotropic hardening R may be seen in Fig. 1.8

[Lemaitre and Chaboche, 1985] in the stress space, as well the stress-plastic strain curve

in tension-compression.

The Prandtl-Reuss equation is a flow law used in an elasto-platic regime with isotropic

hardening:

f = σeq −σy −R(p) 0 (1.6)

Several laws are used to express the evolution of the isotropic hardening, the simplest

one being a linear evolution R = K p, with K being the hardening slope. Given that for

a considerable number of metals the monotonic macroscopic response is non-linear, a

power law formulation R = K p
1
m is more adapted for modeling such a behavior. The

exponential isotropic hardening rule is a popular choice and probably the most commonly

used for fatigue applications, its expression being given by the evolution shown below:
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Figure 1.8: Representation of isotropic hardening in the stress space (left) and in tension-

compression (right) [Lemaitre and Chaboche, 1985]

R = R∞(1− e−bR p) (1.7)

The evolution of the isotropic hardening variable R in this case tends towards a satu-

ration value R∞ when p ! ∞. This value can be easily identified on a monotonic curve

after choosing a suitable yield stress σy. In order to have the description of the whole

monotonic curve, the material parameter bR is used to represent the saturation speed. In

the cyclic case, the size of the elastic surface evolves during a limited number of cycles to

finally reach a stabilized value. If an even more accurate description of the cyclic evolu-

tion is wanted, several isotropic hardenings can be used with different saturation speeds,

in order to capture both faster and slower phenomena.

3.3 Kinematic hardening

Kinematic hardening corresponds to the translation of the loading surface. The governing

hardening variable indicates the position of the loading surface, thus it is of a tensorial

nature. This may be seen in Fig. 1.9, where the movement of the loading surface is

represented in the stress space (left) and in the corresponding tension-compression mod-

eling (right). Kinematic hardening plays an important role during un-loadings, even for

large strains, and it is predominant for small strains and cyclic loadings. This is a way to

successfully represent the Bauschinger effect: the yield limit under a compressive (resp.

tensile) loading applied after a tensile (resp. compressive) prehardening is smaller than the

reference yield limit for a compression (resp. tension) loading [Lemaitre and Chaboche,

1985; Besson et al., 2010].

There have been many different formulations of kinematic hardening models, some

of which are indicated in the following. The simplest model is Prager’s linear kinematic
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Figure 1.9: Representation of linear kinematic hardening in the stress space (left) and in

tension-compression (right) [Lemaitre and Chaboche, 1985]

hardening [Prager, 1949], where the evolution of the kinematic variable X evolves lin-

early with respect to the evolution of the plastic strain ε
p

ε
p

ε
p:

(

X = 2
3
Cααα

α̇αα = ε̇εε
ppp

and in the isothermal case Ẋ =
2

3
Cε̇εεp (1.8)

with C being a material parameter also known as the plastic modulus, when the isotropic

hardening does not evolve. Given that a linear stress-strain response, as shown in Fig. 1.9,

is rarely observed in experiments, a better description is proposed by Frederick and Arm-

strong [1966], by the introduction of the back-stress term in the evolution of X = 2
3
Cααα,

which becomes in the isothermal case:

(

X = 2
3
Cααα

α̇αα = ε̇εε
ppp − 3γ

2C
X ṗ

and in the isothermal case Ẋ =
2

3
Cε̇εεp − γX ṗ (1.9)

γ being a material parameter also used in the Burlet-Cailletaud law [Burlet and Cailletaud,

1987], the Chaboche law [Chaboche et al., 1991] and the Ohno-Wang law [Ohno and

Wang, 1993a]. The back-stress term γX ṗ, also known as the dynamic recovery term, is

colinear with X and proportional to the total plastic strain rate ṗ. Thus, the evolution

of X , instead of being linear, is exponential for a monotonic uniaxial loading, with a

saturation value of C/γ.

For a strain-controlled cyclic loading, the stabilization will occur when

Xmax + Xmin = 0 [Chaboche, 2008], in terms of amplitude being:

∆X

2
= |X0|=

C

γ
tanh

✓

γ
∆εp

2

◆

(1.10)
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In order to obtain a more accurate modeling, several kinematic hardening of the type

shown in Eq. 1.9 can be added [Chaboche et al., 1979; Chaboche and Rousselier, 1983],

with significantly different constants γi (factors from 5 to 20 between them):

X =
n

∑
i=1

Xi and in the isothermal case Ẋi =
2

3
Ciε̇

p − γiXi ṗ (1.11)

thus allowing for a better description of the soft transition between elasticity and the onset

of plastic flow. Even if the number of parameters used for the model seems important,

Chaboche [2008] explains that the set {γi,Ci} of superposed back-stresses should actually

be seen as a series of decompositions of a simpler expression of the tensile (or cyclic)

curve, such as a power law. This has been proven later by Watanabe and Atluri [1986]

based on the endochronic theory of Valanis [1978].

This is actually a way to avoid, or rather to postpone, the intrinsic saturation contained

in this type of model. The reason is that all of these models will eventually saturate at a

value X = X∞ =Const. Different possibilities to avoid such a saturation of the kinematic

hardening exist: make γ = γ(p) a decreasing (to zero) function of the accumulated plastic

strain as in Marquis [1989], make C dependent of the plastic strain amplitude, through an

index function written in the strain space, as in Delobelle et al. [1995]. None recovers the

power law shape at high plastic strains.

One solution proposed by Desmorat [2010b] is to naturally gain the non-saturation of

the kinematic hardening, but also define for kinematic hardening a power law counterpart

to the usual exponential law.

(

X = 2
3
Cααα

α̇αα = ε̇εε
ppp − 3Γ

2C
XM−2

eq X hẊeqi+
or (isothermal) Ẋ =

2

3
Cε̇εεppp −ΓXM−2

eq X hẊeqi+
(1.12)

where h.i+ stands for positive part, i.e. hẊeqi = Ẋeq = d
dt
(3

2
X : X)1/2 when positive,

hẊeqi = 0 else. One of the main model features obtained for large values of parameter

C is the possibility to represent very steep stress increase at the onset of plasticity (with

no visible elasticity/plasticity slope discontinuity). Such a smooth shape of cyclic stress-

strain curves, very steep just out from the elasticity domain and decreasing rapidly when

yielding (but with no saturation), cannot be represented by means of a single Armstrong-

Frederick law.

Another interesting aspect of this model is that both the cyclic loops σ = f (ε) and the

cyclic plasticity curve ∆σ
2
= f (

∆εp

2
) are non-saturating. The cyclic plasticity response (at

saturated hardening) is given by:

(

∆σ
2
= k+Xmax

∆εp

2
= 1

C

(

Xmax +
Γ

2M
XM

max

) (1.13)

or
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∆εp

2
=

*

∆σ
2
− k

C

+

+

+
1

2

*

∆σ
2
− k

K

+M

+

(1.14)

with K =
(

MC
Γ

)1/M
and k = σy +R. Given that Xmax ⇡ K

⇣

∆εp

2

⌘1/M

then ∆σ
2
= k+Xmax

is also of a power law type, therefore non-saturating. This feature can thus be used for

complex material behavior, such as in the case of 316L stainless steel.

Other more complex phenomena such as mean stress relaxation and ratcheting have

used a modification of some of the kinematic hardening models presented above in order

to more accurately represent the real behavior of the material. This will be presented in

detail in chapter 3, section 1. In the following, another concept used in the literature to

represent more complex cyclic behavior and for certain developments during this thesis is

presented.

3.4 Memory effect

A concept that was developed to represent more complex cyclic behavior and that will be

used during this thesis is the memory surface of the plastic strain developed by Chaboche

et al. [1979] and extended by Ohno [1982]. Such a surface is usually defined as a hy-

persphere in the plastic strain space, similarly to the elasticity yield surface, by a scalar

isotropic variable q, which is the radius, and a tensorial kinematic variable ξ, which gives

the coordinate of the center of the hypersphere (Fig. 1.10). The equation of the hyper-

sphere is the function F = 0:

F =

r

2

3
||εp
ε

p
ε

p −ξ||−q =

r

2

3
(εp
ε

p
ε

p −ξ) : (εp
ε

p
ε

p −ξ)−q  0 (1.15)

Both the normality rule (ξ̇ is proportional to n? = ε
p

ε
p

ε
p−ξ

||εp
ε

p
ε

p−ξ|| ) and the consistency rule

(F = 0 and Ḟ = 0 while ε̇εεppp ≥ 0) are valid. Thus, the evolution laws of the two variables

q and ξ are obtained :

q̇ = ηH (F )hn : n?i+ ṗ

ξ̇ =

r

3

2
(1−η)H (F )hn : n?i+n? ṗ

(1.16)

with η being a material parameter and H (F ) the Heaviside function, the unit normals

being defined as:

n=
∂F
∂σσσ

∣

∣

∣

∣

∣

∣

∂F
∂σσσ

∣

∣

∣

∣

∣

∣

=
σσσ0−X

||σσσ0−X|| n? =
∂F
∂εp
ε

p
ε

p
∣

∣

∣

∣

∣

∣

∂F
∂εp
ε

p
ε

p

∣

∣

∣

∣

∣

∣

=
ε

p
ε

p
ε

p −ξ

||εp
ε

p
ε

p −ξ|| (1.17)

so that:
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Figure 1.10: Memory surface in the pricipal strain space.

ε̇εε
ppp = ṗ

3

2

σσσ0−X

(σσσ0−X)eq
=

r

3

2
n ṗ (1.18)

The memory effect was used by Chaboche et al. [1991] for the representation of a

complex isotropic hardening. It was noticed that trying to model a complex uniaxial

campaign going from large strain levels to smaller ones would fail without taking into

consideration memory effect, given that cyclic softening is dependent on the applied strain

range, for its rapidity, as well as for its magnitude. Thus, the amount of softening is larger

for larger strain ranges and continues to play a role if the strain range is decreased. A

way to circumvent this problem was to use the memory variable q in the description of

the evolution of the isotropic hardening (here in the isothermal case):

Ṙ = bR(Q(q)−R)ṗ (1.19)

where the function Q(q), which defines the amount of cyclic softening is taken as

[Chaboche et al., 1979]:

Q(q) = QM +(Q0 −QM)e−2µq (1.20)

by introducing Q0, QM and µ as material parameters. Such a model was also used by

Ohno [1982]; Ohno and Kachi [1986], and under stabilized conditions q =
∆εp

2
. Other

more sophisticated versions exist, such as in Nouailhas et al. [1982], where a part of the

memory was slowly evanescent, in order to describe both monotonic and cyclic hardening

of 316 SS. Even if much less popular, the memory effect was also used in the description

of kinematic hardening [Delobelle et al., 1995].
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3.5 Tension-compression asymmetry

A phenomenon that was encountered in Inco718DA, even though it’s not very pro-

nounced, is tension-compression asymmetry during cyclic tests. Nevertheless, many dif-

ferent materials exhibit this kind of behavior, porous metallic alloys, ceramics, polymers,

composites or soils.

Several different models exist in the literature for representing this phenomenon, some

related to plasticity criteria being presented in the following. Mohr (1900) introduced

the first model using hydrostatic pressure to represent a non-symmetric behavior. The

criterion is written as:

f = |τ|−σn − c = 0 (1.21)

where τ is the shear stress, σn the normal stress and c the cohesion of the material. Another

solution is the Drucker-Prager criterion (1952), which is a linear combination between the

second invariant of the deviatoric stress J2 and the trace of the stress tensor I1:

f =
p

J2 −A+BI1 = 0 (1.22)

where A and B are material parameters depending on the yield limits in simple tension

and simple compression respectively. It was developed for soil application but is largely

used for tension-compression asymmetry in plasticity.

Raghava et al. [1973] proposes a model for polymers, based on the Drucker-Prager

one, then largely adapted for other materials. Also called ”modified von Mises criterion”

in the literature, it uses the first stress invariant and is written as:

f = J2 +
1

3
I1(σC −σT )−

1

3
σCσT = 0 (1.23)

Other newer models used have an even finer description of the phenomenon of tension-

compression asymmetry for pressure insensitive metals [Cazacu and Barlat, 2004], sheet

metals [Hu, 2005] or cast iron [Augustins, 2014].

4 Existing tests

4.1 Uniaxial tests

Mechanical tests (enriched with a thermal or a loading of a different nature) consist in ob-

taining basic information needed in modeling the mechanical behavior of solid materials

[Lemaitre et al., 2009; Lemaitre and Chaboche, 1985]. In order to be able to make the

link between the behavior of the material and the model, mechanical properties such as

stresses and strains need to be correctly determined. For this reason, the ”homogeneous”

tests, in which the strain or stress states are uniform within the useful volume of the sam-

ple were and still are the main tests used to experimentally characterize material behavior.
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The most common mechanical tests in the domain of material science are still performed

in a uniaxial loading regime.

Depending on the type of behavior needed to model, a large variety of uniaxial tests

exist: hardening, viscosity, damage, etc. They can be monotonic or cyclic, quasi-static or

dynamic, isothermal or anisothermal or can be associated with other loading types, such

as an electromagnetic field.

The most common uniaxial test is the monotonic tension or compression test. It is

usually strain-controlled, at a constant strain rate ε̇ and it allows to obtain the monotonic

evolution of hardening by analyzing the stress vs strain curve. Two other complementary

tests to characterize hardening and viscosity are creep and relaxation, where the sample is

subjected to a constant state of stress (respectively strain) with the purpose of analyzing

the time variation of strain (respectively stress). Multiple hardening-relaxation tests are

also an interesting choice for obtaining hardening characteristics, as well as viscosity

using only one sample.

Cyclic tests are the main type of tests used to estimate fatigue lifetime and cyclic

hardening-softening behavior. They consist in subjecting the specimen to periodic load

(stress or strain) and the evolution of the cyclic response is studied in terms of σ(ε)

gradually and their evolution from one cycle to the other. The main quantities used

in cyclic plasticity rules are the stress amplitude σa = ∆σ
2

= σmax−σmin

2
, the mean stress

σ̄ = σmax+σmin

2
, the strain amplitude ∆ε

2
, the plastic strain amplitude

∆εp

2
and the two load-

ing ratios Rσ = σmin

σmax
and Rε =

εmin
εmax

.

The tests are usually performed in uniaxial testing machines, a classic configuration

being represented schematically in Fig. 1.11a, along with its main elements. One of the

most common uniaxial machines is the servo-hydraulic one, but more recently electrome-

chanical machines have managed to reach comparable maximum loading levels, and are

beginning to be used more and more for the stability of the signal-response loop.

For tension tests, the restriction on the samples is mainly due to machining and heat-

ing devices, thus they can be quite thin, such as the flat dog-bone sample, for which a

good review can be found in [Davis, 2004]. On the other hand, compression or tension-

compression samples need to be more compact, in order to avoid buckling. A typical

tension sample is shown in Fig. 1.11b, (i). It includes the useful part, usually in the mid-

dle area, end grips and shoulders designed to minimize stress concentration. Also shown

in this figure is a typical fatigue sample used in the SAE facilities (ii).

Another, less common, uniaxial test is the tensile test with unloads [Lemaitre and Du-

failly, 1987]. One of the reasons to perform this type of test is to model the highly nonlin-

ear unloading following plastic deformation seen in certain materials [Sun and Wagoner,

2011; Mendiguren et al., 2013], especially those used for metal sheets [Cleveland and

Ghosh, 2002]. One example of a study on the experimental and model characterization

of this phenomenon is shown in Fig. 1.12. Non-linear unloading behavior has been

attributed to residual stress [Hill, 1956], time-dependent anelasticity [Zener, 1948], dam-

age evolution [Halilovič et al., 2008], and piling up and relaxation of dislocation arrays

[Cleveland and Ghosh, 2002]. This type of test needs to have inelastic unloadings in or-
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(a)

(i)

(ii)

(b)

Figure 1.11: a) Schematic diagram of a machine for tension-compression tests [Lemaitre

and Chaboche, 1985] b) (i) Typical sample used for tension tests [Lemaitre and Chaboche,

1985], (ii) Safran Aircraft Engines fatigue sample

der to represent the necessary phenomena. On the other hand, this test can be adapted

and used to obtain both the evolution of the kinematic and isotropic hardenings, if the

unloads are kept elastic [Lemaitre and Desmorat, 2005]. In chapter 2, a monotonic test

with elastic unloads that we performed is described, serving for this second purpose, that

of identifying separately the t

4.1.1 Mean stress relaxation tests

In recent years, a large accent has been put on the comprehension and modeling of mean-

stress relaxation [Landgraf and Chernenkoff, 1988; Chaboche and Jung, 1997; Zhuang

and Halford, 2001; Landersheim et al., 2011; Chaboche et al., 2012]. For these types of

calculations, it is of interest to be able to predict the mean stress relaxation behavior in

a satisfactory way as it has an influence on the fatigue lifetime [Korth, 1991; Chaboche

et al., 2012]. Experimentally, mean stress relaxation is observed when performing strain-

controlled fatigue tests at a non-symmetrical strain ratio Rε 6= −1 [Bonnand et al., 2011;

Gustafsson et al., 2011].

A common approach after performing a significant number of fatigue tests is to ana-

lyze the results on a mean stress relaxation curve σ̄ = f (∆ε
2
). As it may be seen in Fig.

1.13, the mean stress relaxation curve is normally composed of 3 zones: an elastic one,

corresponding to the case where both the first loading and the cyclic loading happen in

the elastic domain; an accommodated elastic zone when the material plastifies during

the first loading and then cycles elastically and finally, the third zone when cyclic plastic

strain may accumulate. In the transition between the accommodated elastic and the cyclic

plasticity zone, phenomena leading to cyclic softening are still not fully understood. In
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Figure 1.12: The effect of repeated cycles on the loading-unloading tests [Sun and Wag-

oner, 2011] a) Four-cycle test vs single-cycle test b) Expanded view as indicated on (a),

fourth cycle vs first cycle
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Figure 1.13: Schematic representation of a mean stress relaxation curve for Rε = 0
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the case of Inco718, cyclic deformation has been shown to be localized to planar slip

bands, where significant shearing of γ00 particles takes place [Xiao et al., 2005]. Before

the present study, a large fatigue database was available but, given that the data is obtained

from samples extracted from different areas of several turbine disk blocks, there is an im-

portant scatter and it is difficult to accurately assess the true mean-stress relaxation curve.

In chapter 2, an original one sample multi-level mean stress relaxation test is proposed, in

order to better understand the gradual cyclic softening that leads to non-zero mean stress.

4.2 Multiaxial tests

With the raise in complexity of design and functions of engineering components, the

comprehension of the uniaxial behavior of materials isn’t sufficient to describe the fatigue

lifetime. Modern fatigue lifetime prediction models include a multiaxial description of the

behavior of materials identified based on experiments with complex loadings at different

degrees of multiaxiality [Sines, 1961; McDiarmid, 1985; Papadopoulos, 1987]. Rotating

parts in turbo-engines, like turbine or compressor discs, are typical examples that undergo

fatigue loading and experience multiaxial stress states. Moreover, given their variable

functioning in service, one must combine the understanding of low cycle fatigue (ground-

to-ground cycles) and high cycle fatigue (vibratory) in regions with high biaxialities and

high mean-stresses [Bonnand et al., 2011; Gaborit, 2015].

Advances in material testing equipment during last 30 years have enabled to develop

multiaxial testing facilities allowing for the study of the behavior of materials and struc-

tural components by applying loads representative of the service lifetime. Many different

multiaxial tests types have been used over the years, some of which being described in

the following. An option was multiaxial fatigue tests in combined tension-compression,

flexion and torsion [Gough and Pollard, 1935; Sines, 1961; Andrews and Ellison, 1973;

Lasserre and Froustey, 1992; Kallmeyer et al., 2002; Delahay and Palinluc, 2006]. An-

other popular option is to use thin-walled tubes subjected to axial load combined with

torsion or internal/external pressure to create biaxial stress states [Shiratori et al., 1979;

Lefebvre et al., 1983; McDiarmid, 1985; Dietmann et al., 1989] and on Inco718 [Worthem

et al., 1989; Bonnand et al., 2011]. The downside of this type of test is that they are diffi-

cult to obtain and are limited to positive, non-symmetrical loadings. Moreover, this type

of tests is not suitable for large strain studies of anisotropic materials, because of buckling

and necking instabilities which may arise before very large strains are attained [Makinde

et al., 1992a]. A more easily applicable solution are the symmetrical flexion tests per-

formed on disk samples that create a biaxial traction state [Geiger et al., 2005; Koutiri,

2011], but they only work for proportional loadings. Other studies include a triaxial cubic

sample where each side is connected to an actuator [Calloch and Marquis, 1997; Calloch,

1997; Feyel et al., 1997; Calloch and Marquis, 1999]. Present PhD study was performed

in the LMT lab on the ASTREE triaxial machine [Cognard et al., 1997], used as a biaxial

testing rig. Its description, as well as the experimental protocol, can be found in chapter 4,

subsubsection 2.1.2.

All of the aforementioned multiaxial tests have advantages and disadvantages, how-
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ever, as mentioned by Demmerle and Boehler [1993], the most realistic experimental

method to create a known in-plane biaxial stress state is the direct biaxial test on cruci-

form specimens as developed by, for example, Shiratori and Ikegami [1968], Hayhurst

[1973], Kelly [1976], Makinde et al. [1992a] among others. Several reviews of the test-

ing facilities, as well as sample types are proposed by Makinde et al. [1992a], Boehler

et al. [1994], Hannon and Tiernan [2008]. In order to be able to properly identify mate-

rial constitutive laws from biaxial tests data, various testing protocols and types of cru-

ciform specimens have been proposed in the literature [Pascoe and De Villiers, 1967;

Shiratori and Ikegami, 1968; Wilson and White, 1971; Makinde et al., 1992a; Demmerle

and Boehler, 1993; Itoh et al., 1994; Doudard et al., 2007; Bellett et al., 2011]. The

focus of these tests vary from thermal fatigue [Rezai-Aria et al., 1988; Sermage, 1998;

Poncelet et al., 2010; Rupil, 2012], crack initiation and propagation [Brown and Miller,

1985; Frémy, 2012; Sadriji et al., 2016], fatigue of pressurized reservoirs [Mathieu, 2013]

or other complex thermo-mechanical loadings in aeronautics and aerospace applications

[Lagoda et al., 1999; Barbier, 2009; Bonnand et al., 2011; Kulawinski et al., 2011a; Ga-

borit, 2015].

5 Modern measurement techniques

One of the challenges in the development of multiaxial tests is knowing the local load in

the Region Of Interest (ROI). Finite element calculations help identify the heterogeneity

of the stress distribution in the ROI [Demmerle and Boehler, 1993; Feyel et al., 1997;

Calloch and Marquis, 1999; Geiger et al., 2005] and define the transfer function between

the loading applied by the machine actuators in terms of force (F1, F2) or displacement

(U1, U2) and the stress and strain state in the ROI [Bonnand et al., 2011]. This estimation

may be satisfying under elastic loads, but can be very complex under cyclic, eventually

non-proportional plastic loading. Some authors used more complex behavior estimation

methods to achieve optimized non-elastic biaxial samples. For example, Makris et al.

[2010] used a numerical optimisation technique (sequential quadratic programming or

SQP) coupled with a parametrically built finite element model (FEM) to concentrate and

initiate damage in the ROI and achieve a uniform strain field by varying the geometrical

characteristics of the cruciform specimen.

Thus, the problem of passing from local measurements to the real material behavior is

not trivial and the means to obtain this state vary. An option is point-wise strain measure-

ments that can be obtained using adapted extensometers [Makinde et al., 1992b; Sermage,

1998; Kulawinski et al., 2011b] or strain gauges, used since the 1930s, for which a good

review was made by Hoffmann [1989]. They give a ”real time” value of the three plane

components of the strain, but they correspond to a mean value of the studied zone. In

both cases the strong assumption that the zone is homogeneous is made, otherwise there is

much difficulty in interpreting these results without a complementary validation method.

An alternative that has grown in popularity in recent years for its versatility and rich-

ness in information is full-field measurements by using Digital Image Correlation (DIC)
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[Sutton et al., 1983a; Hild and Roux, 2012b]. By using optical cameras directed at the

samples, all three components of the strain field can be obtained by derivation from the

displacement field on the surface of the ROI, information that is very important when an-

alyzing biaxial tests [Périé et al., 2002; Poncelet et al., 2010; Rupil, 2012]. DIC can also

be used to assess out of plane displacements when using two or more cameras, with the

technique known as stereo digital image correlation [Geiger et al., 2005; Frémy, 2012;

Mathieu and Hild, 2013; Gaborit, 2015; Pierré et al., 2017]. The principles, as well as the

different types of DIC will be presented in the following.

5.1 Digital Image Correlation

Digital Image Correlation (DIC) is a technique that has as end result the full-field dis-

placements of a loaded sample or structure based on the use of imagery. Since the first

use in experimental mechanics in the early ’80 [Lucas and Kanade, 1981; Sutton et al.,

1983a; Chu et al., 1985], this technique has evolved considerably and is extensively used

both in the academic field [Sutton et al., 2009; Hild and Roux, 2012b] and in the indus-

trial world [Desmars et al., 2004]. As other methods such as photoelasticity [James et al.,

2003] or thermoelasticity [Diaz et al., 2004], this method enables measuring without us-

ing sensors that are in contact with the sample. Therefore, the surface of the sample is

not hidden, and one can use one or several cameras with several DIC algorithms in or-

der to obtain a maximum of information during the experimental test. The displacement

measurements obtained with DIC can be used for model validation, model parameter

identification [Calloch et al., 2002; Avril et al., 2008; Périé et al., 2009; Grédiac and Hild,

2012], or for controlling mechanical tests [Fayolle et al., 2007, 2008; Fayolle and Hild,

2014; Le Flohic et al., 2014; Carpiuc, 2015].

The technique consists in analyzing a series of pictures in order to quantify the be-

havior of a surface (or of a body in the case of tomography). The minimum data required

for the technique is two images. The first one corresponding to the initial state of the

sample, the unloaded state, is called the reference image. The second image corresponds

to a deformed state, after the sample was subjected to a mechanical loading. For the

DIC computation to be accurate enough, a certain pattern has to be present on the sample

(i.e. random and contrasting texture). The most frequent pattern, the speckle, is created

by applying, for example, white and black layers of paint. Moreover, the characteristic

size of the pattern has to be correlated to the physical size of the pixel and to the sought

displacement. In certain cases, using paint layers to create the artificial texture is not pos-

sible (for example the tests performed at high-temperature or at a microscopic scale). In

the first case, the texture can be created by abrasion or by sandblasting [Li et al., 2003].

For the DIC technique used to determine the displacement fields at the microscopic level,

using SEM images, the texture can be obtained by applying nano-particles [Berfield et al.,

2007] or by microlithography [Allais et al., 1994; Guery, 2014]. In some cases, the natu-

ral texture of the material may be enough to perform the computations [Bergonnier et al.,

2007].
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5.2 Standard DIC

If the reference image is denoted by f and the deformed image is denoted by g (Fig-

ure 1.14), the DIC algorithm permits to identify the displacement field u that will mini-

mize the gray level differences between the two images. This relationship is written as

the conservation of gray levels:

Deformed imageInitial image 

Figure 1.14: Schematic reference image (left) and deformed image (right) which consti-

tute the minimum entry data for a DIC computation

f (x) = g(x+u(x)) (1.24)

A functional is written as:

φ(u) =
Z

Ω
[g(x+u(x))− f (x)]2dx (1.25)

and its minimization on the Ω domain leads to the sought u. When the sought displace-

ment is a pure translation, the previous minimization is equivalent to maximizing the

Cross-Correlation Coefficient (CCC):

( f ⇤g) =
Z

Ω
f (x)g(x+u(x))dx (1.26)

The latter is used for a local DIC algorithm [Sutton et al., 1983b], where the region

of interest (ROI) is composed of several sub-images, or zones of interest (ZOI). The local

approach consists of maximizing the cross-correlation for each ZOI. Using this approach,

as the name suggests, each sub-image is treated independently. For each sub-image, the

output of the correlation code is the mean displacement in the middle of the ZOI. In

early applications of this method, the measured quantity was a rigid body translation in

the physical space [Sutton et al., 1983b] or in a Fourier space [Chen et al., 1993]. Later

on, more complex degrees of freedom were taken into account, such as ZOI warping

by implementing linear [Chu et al., 1985], cubic and spline [Schreier and Sutton, 2002]

interpolations.
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5.3 Global DIC

Opposite to the local approaches, a global DIC formulation can be considered [Broggiato,

2004; Besnard et al., 2006b]. Also called Finite-Element DIC (FE-DIC), the global DIC

method applies a finite element mesh on the ROI instead of dividing it into separate sub-

images. In this approach, the displacement field is treated as a continuum and, as the

number of unknowns is reduced, the measurement uncertainty is diminished [Hild and

Roux, 2012a]. The displacement is approximated by:

u(x) =
n

∑
1

uiϕi(x) (1.27)

where ui are the unknown degrees of freedom and ϕi are the chosen shape functions. If

the assumption of small displacements is considered, then g(x+ u(x)+ δu(x)) ⇡ g(x+
u(x))+∇gδu(x) and equation (1.26) becomes:

φ(u) =
ZZ

Ω
[(g(x+u(x))− f (x))+∇g(x+u(x))

n

∑
1

δuiϕi(x))]
2dx (1.28)

The minimization of the functional leads to:

n

∑
1

ZZ
Ω

ϕi(x)∇ f (x)ϕ j(x)∇ f (x)dxδu j =
ZZ

Ω
( f (x)−g(x+u(x)))ϕi(x)∇ f (x)dx (1.29)

8 j 2 [1,n]

which can be written using a matrix form:

[M]δu = b. (1.30)

An iterative algorithm is then used to solve the initial non-linear least squares prob-

lem. At each iteration, a gray level interpolation is required to obtain a sub-pixel mea-

surement resolution. This interpolation is one of the causes of the bias of this technique

[Schreier et al., 2000]. Acquisition noise is also a source of non-conservation of gray

levels [Besnard et al., 2006a].

A big challenge when using DIC is to find the good compromise between the measure-

ment uncertainty and the spatial resolution [Triconnet et al., 2009; Bornert et al., 2009].

One way to reduce the uncertainty is by introducing a mechanical filter, thus eliminating

the displacement that isn’t mechanically admissible. This method, called global regular-

ized DIC [Tomicevic et al., 2013], allowed the computation of displacement fields in poor

contrast images [Taillandier-Thomas et al., 2014; Buljac et al., 2015]. This method has

been used both in 2D [Tomičević et al., 2016] and in 3D applications [Buljac et al., 2017].
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5.4 Stereo DIC

Even though biaxial tests on cross specimens are assumed to develop planar displace-

ments, it is important to check the out-of-plane motions that can appear during the exper-

iment. Some out of plane movements are related to the experimental protocol, such as

a vertical misalignment of the actuators, others may come from design (buckling at high

loading) and can be limited but never fully eliminated (ex: Poisson effect). Therefore,

a 2D DIC computation can be highly influenced by out of plane movement and with-

out any previous knowledge of its appearance the interpretation of the results can lead

to erroneous conclusions. Moreover, unless telecentric lenses are used, a displacement

of the sample along the camera axis will produce a false dilation effect that will create a

measurement error.

In order to measure the 3D displacements or shape of 3D surfaces, a stereo-correlation

technique [Sutton et al., 2009] can be used. More than one camera has to be used (with

a different angle of observation) and at least two reference and two deformed images

of the same ROI. To reconstruct the 3D displacement, a calibration procedure has to be

performed which can vary considerably in difficulty according to the complexity of the

studied sample. Most commonly, the calibration phase is performed using specific targets

[Beaubier et al., 2014] but, with recent developments, the observed surface can directly

be used as the calibration target [Dufour, 2015]. The Matlab code that was used for the

stereo DIC computations during the current study was developed during the thesis of

Dufour [2015] and has two main stages.

The first stage is the construction of the transformation matrices, which serve in the

reconstruction of the 3D model from the 2D images took by the two cameras. For this,

an initial guess is needed, therefore a minimum of six points with apriori known coor-

dinates are selected by the user on each picture. After the reconstruction of the surface,

the software modifies iteratively the position of the two cameras to minimize the global

residual.

The second stage is the determination of the surface metrology. In the present work,

the shape of interest is modeled using a NURBS formalism [Réthoré et al., 2007; Beaubier

et al., 2014], a mathematical model to represent surfaces [Dufour et al., 2015]. Using the

known transformation matrices, NURBS control points are moved away on the theoretical

surface to obtain the actual shape of the sample. The shape parameters are iteratively

changed to obtain a global minimum of the correlation residuals. The main advantage

of such a technique is that the parametric description of the surface needs a much lower

number of degrees of freedom than the FE-DIC [Piegl and Tiller, 1997]. An even more

evolved technique is to recreate a NURBS profile directly from the CAD model with

the advantage that the difference between the real geometry and the ideal one can be

computed [Beaubier et al., 2014]. Stereo DIC isn’t even limited to optical cameras, as it

was successfully applied to an infrared camera coupled with an optical camera to analyze

3D thermal loadings on a 304L steel [Charbal, 2017].
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5.5 Integrated DIC

All the DIC methods described previously have a computational time that is quite high

due to the high number of degrees of freedom (typically in the order of 103 −104). For a

posteriori image treatment this isn’t a crucial issue, but when trying to use DIC in more

agile applications, such as the control of a testing machine, this method falls short with

the current technological conditions.

One option to achieve fast computations but with enough precision is to use an I-DIC

approach (I for Integrated), in the sense that the algorithm uses sought movement as shape

functions [Hild and Roux, 2006; Leclerc et al., 2009]. Through this approach, the number

of degrees of freedom will be drastically reduced. Moreover, as shown by Le Flohic et al.

[2014], the I-DIC algorithm can be implemented on Graphical Processing Units (GPU)

[Köhn et al., 2006], which enables the parallelization of the computation, thus reaching

considerably reduced computational time. Using such an optimized algorithm, Carpiuc

[2015] managed to obtain a control frequency 20 Hz for Nooru-Mohamed type tests in

mortar samples using a 6 degree of freedom electromechanical machine.

In the case of I-DIC, determining the displacement field consists of minimizing the

functional φ (Eq. 1.26) over a set of possible displacements u, where u is a linear com-

bination of ϕi(x) (Eq. 1.27), with the assumption of small displacements. The shape

functions ϕi(x) correspond, in the case of Le Flohic et al. [2014], to the description of

rigid body motion using 3 translations Tx,Ty,Tz and three rotations Rx,Ry,Rz. Neverthe-

less, these shape functions should be chosen to describe the kinematics that is assumed

for the studied case. As rigid body motion wasn’t the main loading type for biaxial tests,

the shape functions used for this thesis relied on the strain components: homogeneous

strains along axis x (ε11) and along axis y (ε22) and homogeneous plane shear γxy.
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Chapter 2

Modeling of uniaxial behavior

Inco718DA is a complex material, therefore important aspects of its be-

havior are still not completely explained. Phenomena like mean stress

relaxation and ratcheting play an important role in determining the life-

time of engine parts, and a better understanding and representation of

these aspects would permit an important reduction of the conservatism

currently present in design. Efforts were made in this sense both in

modeling and in experimental campaigns. The purpose of this chapter

is to present the pre-existing uniaxial database and the tests performed

during the thesis, along with the initial developments in the plasticity

model.
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1 Introduction

Many constitutive material models for the description of cyclic inelasticity have been

proposed in the literature over the past few decades [Frederick and Armstrong, 1966;

Mróz, 1967; Benallal and Marquis, 1987; Contesti and Cailletaud, 1989; Nouailhas, 1989;

Chaboche et al., 1991; Freed and Walker, 1993; Ohno and Wang, 1993a,b; Ohno, 1998;

Abdel-Karim and Ohno, 2000; Portier et al., 2000; François, 2001; Bouvet et al., 2004;

Chaboche et al., 2012], with a complete review by Chaboche [2008] for a detailed dis-

cussion of some other models not mentioned here. Recent models for certain Ni-base su-

peralloys can be found in [Manonukul et al., 2005; Mücke and Bernhardi, 2006; Shenoy

et al., 2006] and for Inco718 specifically [Chaboche, 1991; Iyer and Lissenden, 2003;

Gustafsson et al., 2011; Becker and Hackenberg, 2011; Bonnand et al., 2011]. Most of

them do not cover an important range of modeling temperatures and some are not capable

of describing monotonic, as well as cyclic behavior including softening.

Over the past four decades, extensive investigations on the fatigue lifetime of Inco718

have been made. Ever since the 1970s, Fournier and Pineau [1977] studied the uniaxial

cyclic stress-strain response and the low cycle fatigue lifetime of conventionally heat-

treated Inco718. Among the fatigue lifetime prediction models existing in the literature,

many are still based on the notion of a stabilized stress-strain cycle at every point of the

structure. It has been shown though that for Inco718, a material which softens cycli-

cally, that the inelastic analysis cannot be based solely on the stabilized cyclic behavior

of the material [Chaboche and Cailletaud, 1986; Burlet and Cailletaud, 1986]. In order

to have a precise characterization, both the monotonic (initial) behavior and the cyclic

(softened) one should be introduced [Chaboche et al., 1991]. This is an important diffi-

culty, given the slow transition between these two states especially at low strain levels in

non-symmetrical loading. A second difficulty appears in the description of complex phe-

nomena such as mean-stress relaxation and ratcheting, which have a considerable impact

on fatigue lifetime. Ratcheting and mean stress relaxation have been studied for Inco718

in France [Chaboche and Cailletaud, 1986; Burlet and Cailletaud, 1986; Chaboche, 1991;

Soulé de Lafont et al., 2015] and abroad [Gustafsson et al., 2011; Becker and Hackenberg,

2011] with various solutions emerging.

The database proposed initially for the current study contains uniaxial HCF tests at

different temperatures, loading levels and ratios, and was accumulated over the years

by Safran Aircraft Engines (SAE). A typical SAE HCF fatigue test is strain-controlled

at a given amplitude until 85000 cycles and, if the sample is not yet broken, the test

is continued in force control until fracture. Even if the number of performed tests is

important, most of them are scarce in the amount of detailed information, such as the

hysteresis loops σ(ε) or the evolution of stress during loading. A type of test that was

performed not long before the launch of the thesis is a symmetric strain-controlled test

using 3 loading levels and three speeds per level [Soulé de Lafont et al., 2015]. It helped

in the understanding of certain phenomena occurring in the case of Inco718DA, and will

be detailed in the following.
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As mentioned earlier, the main goal of the thesis is the development of a plasticity

model that is better adapted for Inco718DA. For each parameter of the model, it is crucial

to understand the most adapted type of test for its identification. With this in mind, the

existing experimental database was analyzed and it was observed that there were missing

elements such as: tests giving more reliable information on the material hardening, tests

that could better quantify mean stress relaxation or tests to analyze.

In order to overcome this lack of data, several testing campaigns were performed

both in the LMT lab and in the testing facilities of SAE. The biaxial tests are detailed in

chapter 4. In the uniaxial case, the experimental protocol, as well as the main results will

be presented in the following.

2 Experimental protocol

In the beginning of the study, the first constraint was that the samples should be extracted

from the same forged circular block normally used to machine one high-pressure turbine

disk. In order to achieve large levels of plasticity in the region of interest (ROI) of the

sample, it is needed to induce important reversed loads without causing parasite bending

or buckling. Another need is that the maximum load capacity of our uniaxial testing

machines should be adapted to the sought load levels.

Based on these criteria, a classic LMT uniaxial sample geometry was chosen

[Lemaitre and Chaboche, 1985] (Fig. 2.1) with a reduced diameter of 6 mm for a 12 mm

long central zone (Fig. A.6 in Appendix A). This allows for an increase of stress to occur

and for cracks to normally initiate in this central zone.

Figure 2.1: LMT uniaxial sample

The uniaxial tests were performed using a servo-hydraulic testing machine with a

maximum nominal force of 50 kN. Although more powerful uniaxial machines exist in the

lab, this one is sufficient, given that the critical force for monotonic failure for the chosen
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sample shouldn’t surpass 42 kN. Most of the tests in this campaign were strain-controlled,

using a knife-edge extensometer (model 632.13F-23) with a blade distance of 10 mm and

a range of ±1.50 mm (±0.15 mm/mm). The measurement uncertainty (standard deviation

of the signal at zero load in force control for 100 points) was found for a typical test on

our machine and for our calibration at 1.4·10−6 [mm/mm]. Its usage is recommended in

the temperature range -100°C/175°C. In order to verify how thermal fluctuations inside

the sample occur during loading, the samples were equipped with a thermocouple placed

on the ROI, in between the two blades (Fig. 2.2). Given that reversed loading will be

performed, sliding wedges were used to block the extremities of the samples in place and

eliminate the forming of a space between the sample and the grips.

Uniaxial sample

Thermocouple

10 mm

Extensometer

ROI delimeter

Figure 2.2: Uniaxial experimental set-up

The testing procedures were programmed in the MTS software TestSuite™ or MPE

(Multi Purpose Elite), that offered a considerable number of advantages with respect to

its predecessor, MPT (Multi Purpose TestWare). One important advantage of this version

is the fact that variables can be attributed to certain testing parameters, such as loading

level or speed, data acquisition frequency, with values that can be changed before or even

during the test. Other improvements include the possibility to use visual control structures

(if / while / for) and a finer interpretation of the evolution of the test (more complex

graphs, variable monitoring, threshold detection, etc.). Some of these featured are shown

in Fig. 2.3, where a sample of a control routine is shown in block mode. Another, more

linear visualization will be shown in the following, where specific procedures will be

explained.
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Variable update 
using real time data  

Parallel decision 
block (if/else)

Circular control 
(while / for)

User input

Threshold 
detection

Figure 2.3: MTS software Multi Purpose Elite sample of main features

3 Cyclic tests

One of the most important aspects that needs to be taken into account by a model in the

case of aircraft engine parts is the cyclic behavior. A complex cycle may be seen as a

sequence of the type: take-off/flight/landing or as a complete turn of the turbine disk.

Nevertheless, in the present study we will be referring to a cycle in the classic sense.

A standard cyclic test thus translates as the passage from an initial state to a maximum

level (either in terms of stress or strain) followed by an unloading to a minimum level and

repeat this suite a certain number of times.

3.1 Multi-level cyclic tests with Rε = -1

A stabilized cycle for a 1D strain-controlled test with strain ratio Rε =
εmin
εmax

= -1 may

be observed in Fig. 2.4. One may also see on this figure the main components used in

cyclic plasticity rules such as the stress amplitude σa =
∆σ
2
= σmax−σmin

2
, the mean stress

σ̄ = σmax+σmin

2
, the strain amplitude ∆ε

2
, the plastic strain amplitude

∆εp

2
and the two ratios

Rσ and Rε.

As already mentioned, prior to the launch of this study, a uniaxial cyclic test was per-

formed and analyzed by SAE during an internship [Soulé de Lafont et al., 2015], in order
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Figure 2.4: Main components used to characterize a cyclic test

to better understand the influence of loading speed on the cyclic behavior of Inco718DA.

Thus, a symmetric strain-controlled cyclic test with Rε =−1 was performed on one sam-

ple but for three maximum strain levels (εmax=0.007, 0.009 and 0.011 mm/mm) and three

loading speeds each (ε̇ = 10−5, 10−4 and 10−3s−1). This test represented the first batch

of experimental data that was used for model identification, given the richness of infor-

mation with respect to other available campaigns, notably σ(ε) loops for all cycles and

not only for the stabilized one.

The first test in the uniaxial campaign performed at LMT was a strain-controlled Rε =
−1 multi-level test. The main goals were to validate the LMT experimental protocol,

verify the SAE database (by performing the same three levels) but also to enrich the

test by adding two loading levels, temperature gradients measurement means and a stress

relaxation test at the end. The testing parameters at the end were: Rε =
εmin

εmax
=−1 , εmax =

0.005, 0.007, 0.009, 0.011 and 0.013 mm/mm and the loading speed ε̇ = 10−3s−1 (Fig.

2.5). We chose to perform 100 cycles per level in order to be able to monitor the changes

between levels and so that the whole test would be reasonable in terms of total time (in

this case 5 hours for the whole, test thus a mean of one hour per loading level).

This first uniaxial test was satisfactory for the following reasons:

• The measurement uncertainty of the extensometer (1.4·10−6) is sufficiently small

for the desired strain levels.

• The experimental protocol (fixing of the sample using the sliding wedges, stability

of the fixing system of the extensometer) and the design of our sample ensures a
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Figure 2.5: Multi-level cyclic test performed at Rε = -1 in the LMT lab

proper control in tension-compression.

• The obtained stress levels are very similar to those obtained by SAE for the same

strain-controlled levels, despite the difference in sample geometry, extensometer

and testing machine.

• Even though the stress levels aren’t completely stabilized after the 100 cycles, the

mean difference in maximum stress levels is 0.5 MPa from one cycle to the other

when considering the last 10 cycles of the second loading level (±0.007 [mm/mm]).

When compared to the first 10 cycles of the same loading level, the mean difference

in maximum stress levels was 5MPa, so 10 times larger. Based on this observation,

we considered 100 cycles as acceptable, at least for the Rε =−1 case.

Therefore, the uniaxial experimental protocol was considered viable for the other tests,

even if some of the testing parameters were changed (number of cycles, strain ratio, strain

levels, etc.).

3.2 Multi-level cyclic tests with Rε = 0

A phenomenon that began receiving a lot of attention these recent years due to its influ-

ence over the lifetime of engine parts is mean stress relaxation. It may occur for materials

that soften cyclically, during strain-controlled tests with strain ratios Rε =
εmin
εmax

>−1. As
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it was shown during first chapter (Fig. 1.6), for a loading between fixed strain limits εmax

and εmin, the mean stress σ̄= σmax+σmin

2
will diminish with each cycle. Thus, depending on

the plastic strain amplitude and the number of performed cycles, the sample may exhibit

a partial or even total mean stress relaxation, when σ̄ = 0 for the stabilized cycle.

This phenomenon is usually quantified by plotting the mean stress with respect to the

strain amplitude for the zones 2 and 3 described in chapter 1, as may be seen in Fig.

2.6a. The blue points are values obtained from stabilized cycles issued from SAE fatigue

tests, with the inconvenience that there is an important lack of information such as the

cyclic loops σ(ε), the number of cycles to failure, test conditions and others. Moreover,

the samples used to perform these fatigue tests were extracted from different zones of a

turbine disk block, resulting in a high discrepancy. Due to these limitations, we decided to

obtain the mean stress relaxation curve by performing just one original incremental test.

In order for the test to be comparable to the existing SAE data, the chosen strain ratio was

Rε = 0.

Even if we performed only one Rε = 0 test in the LMT laboratory, the control routine

was written in the MTS software TestSuite™ in a versatile way, being able to use it to

obtain various scenarios. The control routine is shown linearly (without visual blocks) in

Fig. 2.7. The first part is assigning the main loading parameters such as the number of

loading levels, number of cycles/loading level, the strain ratio Rε or the ε step between

levels. Afterwards, a while loop is initiated to run as many times as loading levels chosen.

At the beginning of each loop, the loading limits are computed, thus obtaining ε
i
max, and

with Rε also ε
i
min. An option is to use ⇡ iso-lifetime calculations, where the number of

cycles for each loading level is computed with an upper and lower limit. In this case,

the number of cycles for the first level was chosen 1600, which will be cut at the upper

limit (1000) and for the others, it will be divided by two each time. Any other rule can be

applied of course and if one chooses to perform the same number of cycles per loading

level, it is sufficient to choose N
U p
cyc = NDown

cyc = Ncyc. Finally, the cyclic loading level is

performed and then the routine passes to the next level, so it is completely automatic. At

the end, the data is exported to data files which can also be configured in terms of exit

data, acquisition frequency and other. Given that the test was performed using a triangular

loading with a constant strain rate ε̇ = 10−3s−1, the time needed to perform each cycle

will grow as ∆ε
2

grows. In order to obtain a constant number of points per cycle, the data

acquisition frequency is also calculated at each new level, so there are systematically 200

data points per cycle.

The number of cycles performed for each level is different, given that we chose to

perform the experiment considering approximately the same percentage of lifetime for

each cycle (2%). The initial maximum strain was εmax = 0.005 mm/mm which was incre-

mented by 0.002 mm/mm until εmax = 0.019 mm/mm (Fig. 2.6b). The last cycles from

this test are also represented in black in Fig. 2.6a, alongside the fatigue tests.

Another constraint was for the test to take a reasonable amount of time, given that it

had to be supervised because of its incremental nature. Thus, for the first level, a number

of 1000 cycles were performed and for the next levels 800, 400, 200, 100 and 50 for

the remaining ones. The reasoning to reduce the number of cycles for each increase in
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Figure 2.6: Multi-level cyclic test performed at Rε = 0 in the LMT lab a) Mean stress

relaxation curve b) σ(ε) for all plastic loops
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Figure 2.7: MTS software TestSuite™control routine programmed to apply cyclic loads

εmax gave us the possibility to perform more levels without breaking the sample, with the

inconvenience that some of the cycles weren’t completely stabilized (Fig. 2.8). There

are two effects that make the conception of such a test difficult. The first one is the fact

that increasing the load level causes a reduction of the theoretical number of cycles that

can be performed before fracture and the second one is that the more plastification there

is per cycle the more cycles are needed to stabilize. The exception from the second rule

is when the chosen εmax is so large that total mean stress relaxation is reached after just

a few cycles or instantaneously. The ideal scenario is to find a compromise between the

two phenomena and make all levels exploitable.

In order to obtain a finer discretization of the mean stress relaxation curve but also

be sure of its entire span, another similar test was performed, using the same modular

procedure as for the previous test, but with different entry data. The lessons learned from

the previous test were that first levels didn’t need so many cycles to stabilize and for the

upper levels more cycles were needed. In order to limit the total test time, a constant

number of 100 cycles was performed per level. The initial maximum strain of εmax =

0.005 mm/mm was chosen identical to the previous one, but the increment was smaller

(0.001 mm/mm), in order to obtain a finer discretization of the mean stress relaxation

Modeling of partial mean stress relaxation and biaxial mechanical testing of Inco718DA



42 Modeling of uniaxial behavior

Enough cycles 

Not enough cycles

Cycles

(a)

Stabilized

Not stabilized

All cycles
Last cycle

σ̄[MPa]

(b)

Figure 2.8: Stabilized and non-stabilized relaxation of σ̄: a) Evolution of σ with respect

to the number of cycles b) Mean stress relaxation curve σ̄(∆ε
2
)
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curve. Finally, the last level reached was εmax = 0.025 mm/mm, so a much longer span of

the curve was obtained (Fig. 2.9b). In Fig. 2.9a the mean stress relaxation curve may be

observed. It is worth mentioning that having reached such large levels of maximum strain

εmax and, intrinsically, large levels of strain amplitudes ∆ε
2

, the mean stress relaxation

curve was obtained all the way to the point in which it intersects with the abscissa. At

this point we have a symmetrical stress level, given that the mean stress reaches zero,

or complete mean stress relaxation. For this reason, this second test will be referred to

as the complete mean stress relaxation test. Even if after only 100 cycles some of the

levels aren’t completely stabilized, it is the author’s opinion that the beginning and end of

the curve shouldn’t be affected and that only the middle part might exhibit slightly lower

mean stress values. Nevertheless, the main goal of these two tests was to obtain a clearer

idea of the mean stress relaxation curve at Rε = 0, a goal which is considered achieved.

Of course, a more precise and expensive description of the phenomena may be obtained

by performing complete one level fatigue tests on samples obtained from the same area of

the forged block in order to obtain a more precise description of the mean stress relaxation

curve.

4 Memory effect dependency of the kinematic hardening

rule

The behavior of Inco718DA has certain particularities that represent important modeling

challenges. One level of the Rε=-1 multi-level test may be seen in Fig. 2.10a, revealing

that the material softens cyclically and that there is a slight tension-compression asymme-

try (both in stress levels and in the softening rate. Moreover, one can see that the cyclic

loops are ”sharp”, in the sense that the exit out of the elastic domain is done with a high

modulus. What is more interesting is that for those same sharp cycles we are already in

an assumed saturated plasticity domain on the cyclic plasticity curve (Fig. 2.10b).

This type of behavior isn’t usually taken into account by classic plasticity models. For

example, the non-linear kinematic hardening rule of [Frederick and Armstrong, 1966]

(Ẋ = 2
3
Cε̇

p − γX ṗ - in 1D) can represent a saturated cyclic plasticity curve with a max-

imum saturated stress of σ = σy +R∞ +X∞ (X∞ = C
γ ) when the cyclic plasticity rule is

saturated (∆σ
2
= σy +R∞ +X∞ th

⇣

γ
∆εp

2

⌘

⇡ σy +R∞ +X∞). The inconvenience with this

kinematic hardening rule is that the cycles will also be saturated, thus over-estimating

stress levels (Fig. 2.11).

4.1 Non-saturating kinematic hardening rule

The initial kinematic hardening rule used during this study is the one developed by

[Desmorat, 2010a] that uses a power-law backstress where the governing rate is no longer

ṗ, as in the Armstrong-Frederick rule, but the positive part of Ẋeq = d
dt

q

3
2
X : X . The
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Figure 2.9: Multi-level cyclic test with Rε = 0 a) Mean stress relaxation curve b) σ(ε) for

all plastic loops
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Figure 2.11: Modeling the multi-level Rε =−1 test performed in the LMT lab by use of

the Armstrong-Frederick kinematic hardening rule a) Stabilized cycle b) Cyclic plasticity

description of Ẋ is given in Eq. 2.1 in the isothermal case and will be given as such in all

future references.

Ẋ =
2

3
Cε̇p
ε

p
ε

p −ΓXM−2
eq XhẊeqi (2.1)

This formulation generates sharp cyclic loops but with a cyclic plasticity curve that is

also non-saturating (of power-law type). The used material parameters are C, (Fig. 2.12a)

which is given by the tangent modulus when exiting the elastic domain, the exponent M

(Fig. 2.12b) which is given by the general shape of the loop and Γ which is given by the

curvature of the loop (Fig. 2.13).

4.2 Memory effect principles

In order to achieve sharp cycles in a saturated cyclic plasticity domain, we have intro-

duced into the model an approach similar to the one used by [Chaboche et al., 1979]

and extended by [Ohno, 1982], which is the memory surface of the plastic strain. The

principles behind the memory surface, as well as the governing evolution equations, were

presented in chapter 1, subsection 3.4. In the following, some memory effect properties

will be detailed, given that they will be used in different ways in the composition of the

model.

The governing equations used in the description of the memory effect hypersphere
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Figure 2.12: Influence of the parameters of the kinematic hardening rule proposed by

Desmorat [2010a] for a 316L stainless steel a) Influence of the tangent modulus C, b)

Influence of the exponent M.
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are:

F =

r

2

3
||εp
ε

p
ε

p −ξ||−q  0

q̇ = ηH (F )hn : n?i+ ṗ

ξ̇ =

r

3

2
(1−η)H (F )hn : n?i+n

? ṗ

(2.2)

with η being a material parameter, H (F ) the Heaviside function, p the accumulated

plastic strain, and the unit normals being defined as:

n=
∂F
∂σσσ

∣

∣

∣
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∣
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∂σσσ
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∣
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so that

ε̇εε
ppp = ṗ

3

2

σσσ0−X

(σσσ0−X)eq
=

r

3

2
n ṗ (2.4)

The material parameter η serves as a weight function between the isotropic and the

kinematic parts of the memory surface and, consequently, as a convergence speed. So, for

high values of η the evolution is mainly isotropic (in the plastic strain space): the hyper-

sphere is larger in size but moves very little, thus reaching the stabilized value quickly.

For small values of η the evolution is mainly kinematic, so the hypersphere is moving

more and growing in size less, thus needing more cycles to reach its objective. Under

proportional loading, the optimal value of η (ηopt) in terms of precision and convergence

speed is obtained with the relationship [Gaborit, 2015]:

ηopt

1−ηopt
=

∆εp/2

ε
p thus ηopt =

1−Rε
p

2
=

∆εp/2

ε
p
max

(2.5)

with Rε
p =

ε
p
min

ε
p
max

. The choice of the value of η will therefore be a compromise between pre-

cision and speed according to the purpose of the model. For the 1D case, the convergence

values of the two variables are given by the equations below :

q = max

✓

ηεp
max,

∆εp

2

◆

ξ11 = min((1−η)εp
max,ε

p) (2.6)

The specific case η = 1, corresponding to Rε
p = −1 is equivalent to using q as the

maximum equivalent value of plastic strain over the entire loading history ε
p
eq,max:

ε
p
eq,max = max

t

 

r

2

3
ε

p
ε

p
ε

p : εp
ε

p
ε

p

!

(2.7)
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The case η = 1
2

(corresponding to Rε
p = 0) is often used as a default value [Nouail-

has et al., 1985; Hopperstad et al., 1995], although is doesn’t necessarily relate to the

amplitude of plastic strains.

Even though the memory effect was initially used in the description of the isotropic

hardening [Chaboche et al., 1979], it has also been used previously in the literature in the

definition of the kinematic hardening [Delobelle et al., 1995]. The way the memory effect

is used in the current study is detailed in the following.

4.3 Memory effect like evolution for parameter Γ

An initial identification of the model parameters is achieved quite easily on an available

stabilized cycle. The Young’s modulus E is obtained classically by computing the slope

of the elastic domain. The value of k, which is the yield stress plus the saturated isotropic

hardening (k = σy +R∞), is estimated from the size of the elastic domain. By following

the guidelines represented in Fig. 2.12, parameters M and C of the Desmorat (2010)

kinematic hardening rule can be identified. For the parameter C, its minimum value can

be calculated using Eq. 2.8. This value corresponds to a linear hardening passing through

the point of maximum plastic strain.

Cmin =
∆σ
2
− k

∆ε
p
max

2

(2.8)

With E,k,M,C fixed, we can analytically compute Γ for a certain cycle (in terms of

stress and plastic strain amplitudes) using the following equation, obtained by integrating

the model between the symmetric limits of a typical hysteresis loop :

Γ =

∆εp

2
−

∆σ
2 −k

C

1
2

h∆σ
2 −ki

M

MC

(2.9)

By plotting the evolution of the computed Γ points as a function of the maximum

plastic strain ε
p
max, a distribution very close to linear may be observed both in the case

of Inco718DA and of TA6V [Gaborit, 2015] in Fig. 2.14. In order to implement this

evolution into the model, the initially non-saturant kinematic hardening rule was replaced

by :

Ẋ =
2

3
Cε̇εεp −Γ(q)XM−2

eq XhẊeqi+ (2.10)

where q = ε
p
eq,max is the memory effect variable corresponding to η = 1. Through this

method, no further material parameter is added, Γ simply being replaced by Γ= Γ0
ε

p
eq,max,

with non-material parameter Γ0 being the slope of the linear distribution. This approach

allows to keep the non-saturating cyclic loops, with their corresponding curvatures Γ,

while the cyclic plasticity curve will appear as saturated, given that Γ evolves (Fig. 2.15).

The kinematic hardening parameters found in this identification are:
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E [GPa] k [MPa] M C [MPa] Γ0 [MPa−2]

206 450 3 2·106 2.09 ·10−2

Thus, for an experimental test with Rε =−1 and a symmetrical response, the behavior

is quite well reproduced. Certain adjustments have to be made in order to represent the

monotonic behavior, which will be presented in the following.

5 Monotonic test with elastic unloads

In order to be able to model the transition between cycles in the case of Inco718DA, its

monotonic behavior has to be understood. We disposed of results such as final stresses

from the literature and some tests performed at SAE. Unfortunately, the information pro-

vided by these tests was incomplete or insufficiently ”rich”. Thus, based on a classic

method used to quantify the two types of hardening, isotropic and kinematic, we decided

to perform a test using unloadings down to the replastification limit. The detection of the

passage from the elastic to the plastic regime was made with respect to the principle that

for Inco718DA, as for many metals, in elasticity the force/strain behavior is linear and be-

comes non-linear when surpassing the yield stress (classic threshold detection technique).

This type of test is a classic one, usually being used to identify the parameters of

damage models by analyzing the change in the slope at every unloading [Lemaitre and

Dufailly, 1987]. Nevertheless, for this type of application, a fine detection of the replas-

tification limit is not necessary because the slope is the important information. The main

reason we performed this test was to obtain the decoupled description of the isotropic

hardening R and the kinematic hardening X . For this, we need to plastify as little as

possible so that the detection of the lowest point would be as precise as possible, and thus

the unloadings as close as possible to purely elastic ones. In order to obtain reproducible

results, some authors used the software Labview® coupled with the servo-hydraulic ma-

chine controller to impose the same limit at each unloading [Levieil, 2016]. For this

PdD thesis, we have implemented a similar but simpler detection method using the MTS

software TestSuite™ directly.

First of all, we have written the testing procedure so that it would expect three main

parameters: the first strain level at which to perform an elastic unloading εs, the strain in-

crement between two unloadings ∆ε and the final strain level ε f . As shown schematically

in Fig. 2.16a, after reaching each strain level, an unloading will be performed. In order

to obtain an unloading as close to purely elastic as possible, the replastification will be

precisely detected as the passage from linear to non-linear in the σ(ε) signal. Thus, after

beginning each unloading, the slope of the signal ED is computed Fig. 2.16b. We were

careful to use enough points for the least mean squares fit, but also not to be too close

to the top (to avoid slight load inversion anomalies) or to the non-linear part. Thus, an

equation of the type σ = EDε+bD is obtained for each unloading, with E being the slope

of the linear fit, or in this case also the Young’s modulus, and b being the intersection of
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Figure 2.16: Detail of the method used to perform the monotonic test with elastic unloads

the linear fit and the ordinate. In order to detect the non-linear behavior, a parallel line is

used with the equation ED(ε+Offset)+bD by applying the condition:

ED(εi +Offset)+bD −σi < 0 (2.11)

Therefore, we can detect the first point i that will ”stray” from these lines enough

to be considered as belonging to the plastic domain. It is important to mention that the

choice of this Offset is not trivial because if it is too large, we will plastify too much and

if it is too small we can be too close to the noise of the extensometer and thus trigger

the reload erratically ”too soon”. Rousset has shown that, for a ”large” Offset (0.2% in

his case), the plastic surface doesn’t close [Rousset, 1985]. Other Offset values found at

different authors in the literature vary between 5 · 10−6 and 5 · 10−5 [mm/mm] [Phillips

and Lee, 1979; Rousset, 1985; Helling et al., 1986; Wu and Yeh, 1991]. With the model

of extensometer that we used, for which we found an uncertainty at zero load of 1.4 ·10−6

[mm/mm], we chose an Offset of 5 ·10−5 [mm/mm], coherent with the literature [Aubin,

2001].

After detecting the plasticity threshold, the control procedure was programmed to

reload to the next point of the type εs + i∆ε (Fig. 2.17). The reason why there are 3 un-

loadings until zero stress level is that given the range of the extensometer (±0.1 mm/mm)

and the known approximate monotonic tension limit for Inco718DA (⇡0.2mm/mm), the

test was performed in 4 steps. After each step, the extensometer was re-positioned and

set to zero, the full test being assembled by accumulating the observed final plastic strain

levels for each step. Moreover, two different strain increments ∆ε were used along the

test (∆ε= 0.002 mm/mm for the first and third step and ∆ε= 0.004 mm/mm for the second

and last step) in order to see if there was a considerable difference in the behavior.

Given the important final strain found in this monotonic test (⇡23%), the hypothesis
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Figure 2.17: Monotonic test with elastic unloadings

of small strains isn’t valid and an approach true stress vs true strain would be more ap-

propriate. In the beginning of the thesis, this approach was considered, but in order to

be consistent with the computations performed in SAE, the decision was made to work

with the strain measured by the extensometer and σ = F
S0

where F is the uniaxial force

measured by the load cell of the testing machine and S0 the initial theoretical surface of

the uniaxial sample. Nevertheless, in the regime where we performed the cyclic tests (up

to maximum 0.025 mm/mm) the true stress/true strain values are very close to the ones

obtained in the small strain assumption, thus the error is negligible.

As mentioned previously, the reason we performed this monotonic test with elastic

unloads was to obtain the decoupled description of the isotropic hardening R and the kine-

matic hardening X . This identification was used in the early stages of the PhD study but

a different path was chosen in the final model. Nevertheless, for academic purposes, the

description of this initial identification is given in Appendix B. In the following, the iden-

tification of the monotonic behavior using only kinematic hardening will be presented.

6 The evolution of Γ in the monotonic case

Given that Inco718DA is a material that softens cyclically, we can see that the monotonic

curve is above the cyclic plasticity one (Fig. 2.18). Thus, if we decide to use the pre-

viously identified parameters E,M,C,k, then Γ0 will be different in order to change the
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Figure 2.18: Comparison between the monotonic behavior and cyclic Rε =−1 one

curvature and reach the higher stress level. By developing the model equations, a rough

instantaneous value is obtained for Γ between each two successive points:

Γi =
C

ε
p
i −ε

p
i−1

Xi−Xi−1
−1

XM−1
i

(2.12)

Given the noise and the precision of the method, it can be seen in Fig. 2.19a that the

distribution doesn’t follow a clear linear pattern, but a tendency may still be observed.

The monotonic values used in this figure (the blue dots) are filtered, as neither using the

values in the elastic part or at very large strains (larger than 0.1 mm/mm) makes sense for

this computation. Nevertheless, it can be seen that by using this identification method, the

distribution of Γ vs ε
p
eq,max is no longer linear, but affine.

In order to correctly represent the monotonic behavior using this kinematic hardening

rule, we need to introduce an offset term (Γ0) in the equation so that an affine evolution

can be obtained. The chosen notation for the index was ∞ (Γ0
∞) for the cyclic case (because

the plastic behavior tends towards a stabilized state) and 0 (Γ0
0) for the monotonic case

(because this is when the first plasticity mechanisms are triggered, starting from an initial,

non-plasticized state). An important detail is that Γ is not allowed to become negative,

so in the affine law a threshold is introduced, thus the Prager [1949] linear kinematic

hardening is recovered for low plastic strains. Thus, the equation for computing Γ in

the monotonic case is Γmono = hΓ0
0ε

p
eq,max +Γ0i+, with h.i+ being the positive part (Fig.

2.19b). Given that our identified Offset is negative, we will be using the positive part of Γ
in order to ensure that the dissipation is positive at all times.

The final parameters identified to describe the behavior are given below, with the

already presented identifications in grey:

The final monotonic response is shown in Fig. 2.20 alongside the cyclic plasticity
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curve at Rε=-1. It can be noticed that the monotonic behavior is precisely modeled, thanks

in part to the extra degree of freedom given by Γ0. Using this type of approach allows to

accurately represent both the monotonic and the cyclic symmetrical loading by perform-

ing an independent identification of each one of the two.

7 Conclusions

In this chapter, the main uniaxial data used during the thesis were presented. An important

amount of data was already available, such as HCF fatigue test results, but the amount of

information for each test was quite scarce (no total number of cycles, no stress or strain

evolution, no hysteresis loops). For Inco718, a material which softens cyclically, detailed

analysis in the literature [Chaboche and Cailletaud, 1986; Burlet and Cailletaud, 1986]

shows that the inelastic analysis cannot be based solely on the stabilized cyclic behavior

of the material. In order to have a precise characterization, both the monotonic (initial)

behavior and the cyclic (softened) one should be well described by a model [Chaboche

et al., 1991].

In order to have a clearer understanding of the behavior of the considered material,

as well as avoid the scatter coming from a vast variety of extraction zones and source

forged blocks, we realized a short but ”rich” uniaxial campaign both at the LMT lab and at

SAE, under my supervision, as only dedicated company technicians/engineers can run the

testing machines at SAE. Even though the tests were classic in terms of applied loadings,

several improvements were made so that the results had a better exploitability. Some of

them were related to the used machine control software MTS software TestSuite™ which

allowed for the writing of a versatile procedure used both in the LMT lab and in the SAE

facilities. It also had a lot of customizable features that served a great deal in the live

analysis of the tests as well as their post-processing (more relevant live evolution graphs,

experiment parameters treated as variables to be used in the routine, control and repeat

blocks such as while, for and if).

In order to obtain the cyclic behavior of the material, several multi-level cyclic tests

were performed at different strain ratios (Rε=-1 and Rε=0). The cyclic behavior was

identified using a kinematic hardening law derived from the one developed by Desmorat

[2010b] with elements of memory surface inspired by Chaboche et al. [1979] and Delo-

belle et al. [1995]. This allowed us to obtain a very good description of the stabilized

cyclic response in the Rε=-1 regime. One of the challenges was to obtain sharp stabi-

lized loops in a saturated cyclic plasticity regime; this has been possible using parame-

ter Γ evolving with respect to the maximum plastic strain ε
p
max, in the back-stress of the

Desmorat [2010b] model. The Rε=0 tests were only presented from an experimental point

of view, given that the details concerning this case, as well as the modeling of the incom-
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plete mean stress relaxation, is the main subject of chapter 3. An accurate representation

of this phenomenon is not yet possible in the formulation of the model described earlier,

with the memory effect variable defined as η=1, so that q = ε
p
max.

Using the Rε=-1 strain-controlled test as an example, a second, load-controlled test

was performed in order to quantify uniaxial ratcheting. Even though no modeling was

done for this test, it is presented in Appendix C for future post-treatment.

The monotonic response of the material was analyzed by performing controlled elastic

unloadings which give a finer description of the monotonic hardening evolution. An initial

modeling attempt was made using both kinematic and isotropic hardening laws, described

in Appendix B. Finally, the modeling of the monotonic behavior was described, to prepare

the way for the complete model that will be presented in chapter 3
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Chapter 3

Modeling of partial mean stress relaxation

As it was mentioned in the previous chapter, mean stress relaxation is

a complex phenomenon that plays an important role in determining the

lifetime of engine parts. Therefore, the plasticity model should be able

to represent as accurately as possible the behavior of Inco718DA under

cyclic strain loads. Moreover, the mechanisms that lead to complete or

incomplete (partial) mean stress relaxation should be better understood

in order to better describe these phenomena. The purpose of this chap-

ter is to show an adaptation of the previously presented plasticity model

and how it can help to represent the partial mean stress relaxation curve

using parameters extracted directly from the data files.
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1 Introduction

The mean stress phenomenon has been studied experimentally since the 70s [Jhansale and

Topper, 1971] and its effect on fatigue lifetime has also been analyzed [Lukáš and Kunz,

1989; Wehner and Fatemi, 1991; Arcari et al., 2009; Arcari and Dowling, 2012]. Different

good reviews of various kinematic hardening laws exist [Chaboche, 2008; Ohno, 1990]

and some focus explicitly on ratcheting and mean stress relaxation effects [Chaboche

et al., 2012]. One of the main observations related to mean stress relaxation, as detailed by

[Chaboche et al., 2012], is that for low strain amplitudes (and given positive mean strain),

the mean stress does not relax completely and there is a steady mean stress remaining.

Increasing the strain amplitude leads to a decrease in this stabilized mean stress, until

large strain ranges where both the relaxation rate increases and the mean stress reaches

zero.

In recent years, a large accent has been put on the comprehension and modeling

of mean-stress relaxation [Landgraf and Chernenkoff, 1988; Chaboche and Jung, 1997;

Zhuang and Halford, 2001; Landersheim et al., 2011; Chaboche et al., 2012]. It has

been proven that an accurate description of this phenomenon is crucial given its influ-

ence on the fatigue lifetime [Korth, 1991]. Experimentally, mean stress relaxation is ob-

served when performing strain-controlled fatigue tests at a non-symmetrical strain ratio

Rε 6= −1 [Landgraf and Chernenkoff, 1988; Fang and Berkovits, 1994; Bonnand et al.,

2011; Gustafsson et al., 2011]. It is an effect of the non-closing of the plastic loops be-

cause of the cyclic accumulation of plastic strain. This cyclic deformation of Inco718

has been shown to be localized to planar slip bands, where significant shearing of γ00 par-

ticles takes place [Xiao et al., 2005], thus causing the cyclic softening of the material.

However, the formation of the planar slip bands during the initial loading of the mate-

rial is also likely to cause the initial softening of the material since it significantly lowers

the resistance to subsequent plastic deformation [Gustafsson et al., 2011]. Landgraf and

Chernenkoff [1988] conducted a series of tests on axial steel specimens, with the objective

of evaluating the effect on fatigue lifetime of mechanical or thermal processes employed

to create residual stresses. They showed a dependence of mean stress relaxation on strain

amplitude and material hardness, and they postulated the existence of a strain amplitude

threshold below which no relaxation is exhibited. In a study on cyclic relaxation of mean

stresses in a nickel-based superalloy, Fang and Berkovits [1994] found a transition be-

tween regions of strong and weak relaxation effects around 0.5% strain amplitude. This

value is of the same order as the threshold levels in the Landgraf and Chernenkoff [1988]

work.

As was detailed in chapter 2 subsection 3.2, one manner in which mean stress relax-

ation is quantified is by analyzing the mean stress with respect to the amplitude of total

strain, as may be seen in Fig. 3.1. The empty blue circles are values obtained from stabi-

lized cycles issued from SAE fatigue tests and the black full circles are obtained from the
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Figure 3.1: Mean stress relaxation curve

last cycles of the multi-level cyclic test with Rε = 0 that we performed in the LMT lab.

As it may be seen in Fig. 3.1, the mean stress relaxation curve is normally composed

of 3 zones. The first one, called elastic, corresponds to the case when εmax is sufficiently

small that both the first loading and the cyclic loading happen in the elastic domain. The

slope of the first part of the curve can be computed analytically when developing the

cyclic equations, thus we find Slope=E(1+Rε
1−Rε

). The limits of this zone can also be obtained

analytically, thus σ̄1 =
σy

2
(1+Rε) and

(

∆ε
2

)

1
=

σy

2E
(1−Rε).

In the second zone, called accommodated elastic, the material plastifies during the

first loading and then cycles elastically. The end of this zone corresponds to the moment

the loading (stress range) surpasses the double of the yield stress σy and thus begins to

plastify. Therefore, the limit value of ∆ε
2

of this zone is
(

∆ε
2

)

2
=

σy

E
. Finally, the third zone

corresponds to the case when the material accumulates plastic strain both at the loading

and the unloading part, resulting in mean stress relaxation.

The description of mean stress relaxation is usually done using kinematic hardening

laws. For instance, linear kinematic hardening [Prager, 1949] always leads to elastic or

plastic shakedown, without describing a relaxation. The model presented in chapter 2,

which is based on the [Desmorat, 2010b] hardening rule, has the downside that complete

mean stress relaxation will be obtained in zone 3, given a sufficient number of cycles.

This effect is common to many rules derived from the non-linear kinematic hardening

(NLK) (initiated by [Frederick and Armstrong, 1966]), and is due in part to the fact that
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the models tend towards a symmetrical stress state, thus towards σ̄ = 0. This phenomenon

is represented schematically by the thick blue line in Fig. 3.1. The fact that in the third

zone the value of the mean stress is zero states that such a model, given a sufficient number

of cycles, will eventually reach a symmetrical state, where |σmin|= σmax.

By superimposing several back-stresses [Chaboche et al., 1979; Chaboche and Rous-

selier, 1983] each of them using the Armstrong-Frederic (AF) rule but with different pa-

rameters, an improvement was made in predicting ratcheting but with little gain in the

case of mean stress relaxation representation. One interesting solution in describing the

partial relaxation of the mean stress was proposed by [Chaboche, 1991; Chaboche et al.,

1991] by introducing a threshold in the dynamic recovery term of the NLK model, for one

or several of the superimposed back-stresses. It was justified by the commonly observed

existence of a limit of accommodation [Plenard and Fromont, 1988; Pelissier-Tanon et al.,

1980], both in terms of mean-stress and of stress amplitude. The structure of the addi-

tional back-stress evolution equation becomes:

Ẋ =
2

3
Cε̇

p −ξ

⌧

1−
Xl

||X ||

〉

+

X ṗ (3.1)

Below the threshold, when ||X || < Xl , the back-stress evolves linearly because the

positive part bracket is zero, thus the dynamic recovery term is null. Above this limit it is

a standard AF rule, and it attains the same asymthotic value of C/γ, for ξ =C/(C/γ−Xl).
The main advantage of a model of this type is to use more than one such kinematic hard-

ening rule in order to stop mean stress relaxation at low levels and let it go all the way at

higher strains, as it occurs in reality. The same approach was formulated by [Ohno and

Wang, 1993a] in a slightly different way, using the notion of a ”critical state for dynamic

recovery”. It was shown by [Chaboche, 1994] that the two models, though different, can

be adjusted to give very similar quantitative responses, both for uniaxial and multiaxial

loadings. Other variations on this model were developed, mainly for ratcheting appli-

cations [Mcdowell, 1995; Ohno and Abdel-Karim, 2000; Bari and Hassan, 2001]. As

was mentioned by [Chaboche et al., 2012], models that are able to capture well ratchet-

ing effects should also have at least the potential for a correct prediction of cyclic mean

stress relaxation [Chaboche and Jung, 1997; Hu et al., 1999; Zhuang and Halford, 2001;

Landersheim et al., 2011].

A last class of modified models is based on multi-surface approaches, initiated by

[Mróz, 1967]. Recent works by [Moosbrugger and McDowell, 1990], and [Mróz and

Rodzik, 1996], showed new possibilities. Also, the use of models with discrete memory

surfaces like [Chaboche, 1989a,c] offers additional flexibility [Chaboche and Jung, 1997].

In the case of Inco718, good results were obtained in [Chaboche, 1991] using only 3

thresholds. In more recent works, the NLK model is used to capture several strain ratios

using 5 back-stress terms and an isotropic hardening [Chaboche et al., 2012]. Some of the

results from Chaboche et al. [2012] are presented in Fig. 3.2 which shows the prediction

of the stabilized mean stress as a function of applied strain amplitude for Inco718, for

different strain ratios Rε = 0 in Fig. 3.2a and Rε = 0.25, 0.50, 0.75 in Fig. 3.2b. The
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Figure 3.2: Prediction of the stabilized mean stress for Inco718 at 550 °C using a NLK

model with 5 back-stress terms and an isotropic hardening as presented by Chaboche et al.

[2012] (a) under Rε = 0, (b) under Rε = 0.25, 0.50, 0.75 strain-control

model reproduces quite well the experimentally observed facts, in particular the differ-

ences between the strain ratios for low strain ranges, and the sudden drop of the mean

stress (around 0.4% strain amplitude). Nevertheless, to this authors opinion, the large

scatter in the available data, especially at Rε=0 (Fig. 3.2a) makes it very difficult to find

the true behavior at iso-material parameters. One way to get a better understanding of the

real profile of the mean-stress relaxation curve, is with the multi-level tests on one sample

presented in chapter 2 subsection 3.2. The in detail post-treatment of this test will shown

in this chapter of the thesis.

Other recent modeling work was done on Inco718 by [Gustafsson et al., 2011], using

the Ohno-Wang multi-kinematic hardening model with three back-stresses only. It shows

a good prediction of the mean stress evolution and stabilization at non-zero values for Rε =

0, but only for large strain amplitudes (0.5 and 0.8%). A much more complete model was

also presented recently by [Becker and Hackenberg, 2011], based on a combination of the

Ohno-Wang model for kinematic hardening and the separation of the inelastic strain into

a rate independent and a creep component, including cyclic behavior at high temperature.

This model shows good mean stress relaxation and creep or ratchetting.

In the following, we propose an adaptation of the kinematic hardening rule presented

in chapter 2, that will result in a more accurate representation of partial mean stress relax-

ation based on a finer analysis of the Rε = 0 tests.
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Figure 3.3: Parameter extraction from the hysteresis loops

2 Cyclic hysteresis loops analysis

In order to find a solution for the complete mean stress relaxation represented by the model

in the cyclic plasticity zone, a more detailed analysis of the cyclic loops was performed

(Fig. 3.3).

The analysis technique implies finding the elastic domain of each loop, both at the

descending (parameters with the index D for Down) and the ascending (parameters with

the index U for Up) parts. The technique is similar to the one used to calculate the elastic

unloads in chapter 2, section 5: firstly, the equation of the initial linear zone is obtained

by performing a least-squares regression on a sufficient number of data points. Given

the noise of the signal when changing from loading to unloading, the first few points are

ignored. Thus, for every loop we obtain two equations of the type σ = Eε+ b for the

ascending and descending part, with E being the slope of the linear fit, and in this case

also the Young’s modulus, and b being the value given by the intersection of the linear fit

with the ordinate. Secondly, the conditions:

Descending part: ED(εi +Offset)+bD −σi < 0

Ascending part: EU(εi −Offset)+bU −σi < 0 (3.2)

are used to detect the first point i that will ”stray” from these lines enough to be considered
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as belonging to the plastic domain, in the two parts of the loop. The offset value was

chosen the same as for the monotonic test with elastic unloads, i.e. Offset = 5 · 10−5, in

order to avoid triggering too soon (because of noise) or too late (by overrating the elastic

domain).

Using this approach, the evolution of certain parameters can be obtained, such as the

Young’s modulus E, the size of the elastic domain, which is the double of the yield stress

plus the isotropic hardening 2(σy +R) and the kinematic hardening X , as the position of

the middle of the elastic domain.

This type of technique reaches its limit when the loops have a very small plastic zone.

Given that a nonlinear zone is barely noticed, especially on the descending part on the

loop in Fig. 3.4, no point will be detected as belonging to the plastic domain. Thus, in

the results shown in the following, completely elastic or hysteresis loops with very small

plastic strains have not been included, given that they are not relevant for representing

some parameters such as the kinematic hardening.

2.1 Rε=0

By applying this method to the first experimental test performed at Rε = 0, we were able

to obtain some interesting information concerning the material behavior. Firstly, the evo-

lution of the Young’s modulus was obtained (Fig. 3.5a). Even if the differences in terms

of absolute size are not considerable, the graph being zoomed, the overall tendencies for
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Figure 3.5: Measured evolution at the ascending and descending parts of the cyclic loops

for the first Rε = 0 test for a) Young’s modulus b) Size of the elastic domain

the ascending and descending parts are different. The Young’s modulus at the ascending

part tends to stay constant and at the descending part it decreases slightly.

The second analyzed variable is the size of the elastic domain, assumed to be the sum

between the yield stress and the isotropic hardening σy +R. Similarly to what was seen

on the evolution of the Young’s modulus, the size of the ascending part is constant over

time and at the descending part it decreases (Fig. 3.5b). Moreover, the gap between the

two is quite important, of at least 400 MPa at all times.

Finally, the difference in the evolution of the kinematic hardening on the two parts of

the loops was very important. This may be seen in Fig. 3.6, where we compare the kine-

matic hardening on the descending part (XDown) and the absolute value of the kinematic

hardening on the ascending part (|XU p|).

This important difference gave us the incentive to consider a model that would repre-

sent this dual behavior. As we would see in the following, this type of approach can be

responsible for the partial relaxation of the mean stress.

2.2 Rε=-1

The loop analysis was also applied to the symmetrical strain loading case (Rε =−1) and

may be seen in Fig. 3.7. Both the evolution of the Young’s modulus and of the size of

the elastic domain had lower differences than in the Rε = 0 case (Fig. 3.5). We also have

more scatter in the case of these results, given that the acquisition frequency was lower

for this test, leading to a less precise analysis.

Considering that the loading is symmetrical in terms of strain, an even closer behavior

between the ascending and descending parts of the loops was expected. One of the reasons
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Figure 3.7: Measured evolution at the ascending and descending parts of the cyclic loops

for the first Rε =−1 test for a) Young’s modulus b) Size of the elastic domain
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behind this difference might be the fact that there is a slight asymmetry between tension

and compression stress levels in our Rε =−1 test, which influences the parameters, espe-

cially the kinematic hardening (Fig. 3.8). So far, we do not have a clear explanation for

this asymmetry, but we assume it doesn’t reflect the behavior of the material, but that it

comes rather from the residual stresses induced during the fabrication process. Neverthe-

less, through the modifications of the model that will be presented in the following, such

phenomena as tension-compression asymmetry can be captured.

3 Modeling of partial mean stress relaxation

As the previous analysis reveals, there is a non-negligible difference between the behavior

at the ascending and the descending parts of cyclic loops. We tried to determine if these

differences were responsible for certain effects in the behavior like partial mean stress

relaxation at Rε=0 and tension-compression asymmetry in symmetric strain loading.

In order to model these differences, several approaches were considered. The differ-

ence in the values of the Young’s modulus E was not that important and its evolution with

the accumulation of plastic strain may be treated later using damage models. Using two

values for the exponent M (Eq. 2.10) for the ascending and descending parts would leave

us with equations of different orders, thus several analytical solutions would be needed.

Moreover, to get a finer tuning of this parameter, we would need to use rational numbers

thus making the integration more difficult. Using a dual approach on C, the tangent mod-
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ulus, might be a valid choice but, given that it intervenes in the state laws, we need to

understand its limits.

The chosen parameter to change was thus Γ for its versatility and clearer evolution

patterns. In order to model separately the behavior of the ascending and the descending

parts of the cycle, we identified a constant set of parameters (M,C,E) and determined the

needed Γ to represent each cycle, as was detailed in chapter 2, subsection 4.3. Initially,

this was performed on a trial basis, verifying that we reach the end point, in terms of σmax

and ε
p
max on the ascending part, and in terms of σmin and ε

p
min on the descending part.

Later on, by using a modified version of Eq. 2.9 we were able to calculate Γ
U p
+ and

ΓDown
− systematically using the following equations:

Γ
U p
+ =

M
⇥

C
(

ε
max
p −ε

min
p

)

− (σmax −σmin −2 · kU p)
⇤

(σmax − kU p)M

ΓDown
− =

M
⇥

C
(

ε
max
p −ε

min
p

)

− (σmax −σmin −2 · kDown)
⇤

|σmin + kDown|M

(3.3)

These equations are obtained by integrating the model between the two limits

σmax(ε
p
max) and σmin(ε

p
min) and is a generalized version of Eq. 2.9 presented in chap-

ter 2. Using these equations, we obtain the exact Γ needed to pass through the final point

of each part of the curve. The limitation of the method is that of any back-stress, which is

Modeling of partial mean stress relaxation and biaxial mechanical testing of Inco718DA



Modeling of partial mean stress relaxation 71

0
max

p
[mm/mm]

0 0.0033 0.0065 0.0098 0.013

!

#10
-5

0

1

2

3

4

5

6

7

8

!
+

Up

!
-

Down

(a)

0
max

p
[mm/mm]

0 0.0033 0.0065 0.0098 0.013

!

#10
-5

0

1

2

3

4

5

6

7

8

!
+

Up

!
-

Down

5 10 15

500 

500  

1000 

(b)

Figure 3.10: Computed ΓUP
+ and ΓDown

− for the first Rε=0 test a) For all cycles b) Only

stabilized cycles

the fact that Γ has to stay non-negative. When the computed Γ is negative (which is often

the case for very small cycles depending on the chosen C) we will limit it to zero, thus

resulting in a linear kinematic hardening.

Initially, we included the evolution of the size of the elastic domain k = σy +R in the

computation of Γ, as shown in Fig. 3.9. It may be noticed that there is a large gap between

the evolution of Γ at the ascending part (Γ
U p
var) and at the descending part (ΓDown

var ), espe-

cially for low strain cycles, where k = σy +R varies considerably. Given this difference

and the lack of a clear pattern between the two, we chose a constant value k, equal to the

stabilized one at the ascending part kconst = kstab
U p =342 MPa, consistent with the standard

modeling of isotropic hardening.

The results using this method will be presented in the following for the first multi-level

test with Rε = 0 and the multi-level test with Rε =−1 we performed in the LMT lab.

3.1 Cycles at Rε=0

Using Eq. 3.3 and a constant set of identified parameters (M,C,E,k), the computed values

of the two Γ are represented for all the cycles in Fig. 3.10a and only the stabilized cycles

in Fig. 3.10b. The two dots represented in the lower left part of Fig. 3.10b are the

values of Γ for the first stabilized cycle with a sufficiently large plastic strain to give a

non negative value of Γ. This cycle is represented in the upper left corner of the σ vs ε
graph, with the ascending part highlighted in red and the descending one in blue. As may

be noticed in the same graph, the loading level just before the highlighted one is almost

linear elastic, thus Γ is forced at zero and the plastic area will be represented by a very

steep linear kinematic hardening.
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Given that the values of Γ at the ascending and descending part of each stabilized

cycle are different, the assumption that was made is that in this difference lies the key

to the partial mean stress relaxation. Thus, we wanted to test if by imposing a set of

two Γ in the description of the kinematic hardening rule at the ascending and descending

of a given loading level would amount to the corresponding stabilized cycle extracted

from the experiment. The first chosen set of two Γ corresponds to the cycle highlighted

in Fig. 3.10b. As may be seen in Fig. 3.11b, the first and subsequent loading cycles as

described by the model (red dotted line) doesn’t correspond to the experimental one (black

continuous line), mainly because the monotonic part was not introduced in this version

of the model. Nevertheless, the loading finally saturates at the proper experimental cycle.

As may be seen in Fig. 3.11a, not only are the cycles stabilized, but the value of the mean

stress is non-zero, as opposed to the previous version of the model or to the AF model

[Frederick and Armstrong, 1966]. This is an important result because it indicates that a

correct combination of Γ at the ascending (Γ
U p
+ ) and descending part of the loop (ΓDown

− )

leads not only to the right shape of the cycle, but also to the right stabilized cycle.

After validating the method on the smallest loading level seen in Fig. 3.10b, the other

combination of Γ
U p
+ (red dots) and ΓDown

− (blue dots) were subsequently tested. Thus,

each computation ran using only the two values of Γ, from the corresponding loading

level. As may be seen in Fig. 3.12 the results are coherent in terms of stabilized cycles

for all loading levels. This discovery was further developed in the following sections into

an incremental (rate) model, according to the patterns found in the evolution of the two Γ.

3.2 Cycles at Rε =-1

As mentioned previously, the multi-level experimental test performed at Rε =-1 was stud-

ied using the same approach. Thus, the Γ parameter was computed at the descending and

ascending part of each cycle (Fig. 3.13a).

As it can be seen in the graph, the difference between the two is less important and are

directly influenced by the slight tension-compression asymmetry. Thus, using the dual Γ
approach, at this time taken directly from the values of each stabilized cycle in Fig. 3.13a,

we are directly able to model this asymmetry as shown in (Fig. 3.13b).

The difference between tension and compression in this case is quite small and can

be ignored. Henceforth, in the Rε = -1 case the two values of Γ will be taken equal. It is

important to note though that this type of approach may be interesting for modeling ma-

terials that exhibit notable differences between tension and compression, using a different

approach than those shown in chapter 1, subsection 3.5.

3.3 Unifying patterns in the evolution of Γ

First of all, our understanding of the patterns governing the cyclic loading changed when

the evolutions of the computed parameter Γ were no longer considered in terms of Γ+
U p

and Γ−
Down, but rather in terms of mean value and the amplitude of this parameter for each
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cycle :

Mean value of Γ : Γ̄ =
Γ−

Down +Γ+
U p

2

Amplitude of Γ : Γa =
Γ−

Down −Γ+
U p

2

(3.4)

When computing Γ̄ and Γa, some interesting results arise. In Fig. 3.14, the distribution

of Γ is shown for the first Rε = 0 test in terms of Γ
U p
+ and ΓDown

− (Fig. 3.14a) and of Γ̄ and

Γa (Fig. 3.14b) for all loading levels. Some of the conclusions concerning these results

are:

• In Fig. 3.14b it may be seen that the first computed values of Γ are obtained for

a non-zero maximum plastic strain. This is due to the fact that the first cycles are

either completely elastic or plastify very little. In this particular case it is important

to have a sufficiently large value of the tangent modulus C, to be the least penalizing

possible, as will be explained in the following.

• It may be seen that the last five levels obtain non-negative values of Γ. The ob-

served pattern for Γ̄ is an affine law. This is expected given that with all the other

parameters constant (M,C,k,E) an increase in parameter Γ̄ will cause the loops to

be less sharp. This is what happens in reality, given that for larger strains the loops

have a large plastic component, thus being flatter.

• For Γa, the values are close to zero in the beginning, then seem to reach a peak and

then descend again for last two levels. Given the low number of levels of this test,

it is difficult to conclude on this phenomenon, this being one of the reasons why

the second, or complete mean stress relaxation performed at Rε=0 (Fig. 2.9) has a

significantly larger number of loading levels. One of the conclusions of this more

complete test that will be presented in the following, is that Γa indeed descends

until reaching zero, moment corresponding to a zero mean stress.

In order to obtain a non-negative value for Γ both at the ascending and the descending

part of the loop for any given cycle, certain conditions need to be respected. As seen in

Eq. 2.10 the kinematic hardening X is composed of a linear part (2
3
Cε̇εεppp) and a non-linear

back-stress part (ΓXM−2
eq XhẊeqi+). Thus, in order to be able to represent a given loop,

the linear part of the model should be able to pass through or beyond the extreme points

of the loop. For example, Fig. 3.15a shows a hypothetical non-symmetrical loop. In order

to pass through the point with the coordinates σmax vs ε
p
max using only the linear part of

the kinematic hardening, the tangent modulus C would have to be:

Clinear =
σmax −σmin −2k

ε
p
max − ε

p
min

(3.5)
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Figure 3.14: Computed Γ parameter for the first Rε=0 test, expressed in terms of a) ΓUP
+

and ΓDown
− b) Mean value Γ̄ and amplitude Γa

where 2k is the double of the elastic domain and in the case where there is no isotropic

hardening 2k = 2σy. Thus, in order to be able to pass every time through the extreme

points of a cycle, C needs to be equal or higher than Clinear for this same cycle. In Fig.

3.15b, Clinear is computed for every final cycle of each loading level of the first Rε = 0

test, and represented with red dots with respect to ε
p
max. The blue dots are the values of

εmax with respect to ε
p
max for the same test and serve only to graphically show the total

levels.

It may be observed in Fig. 3.15b that the set of identified parameters is not always

adapted to the studied cases. Indeed, the chosen value for C = 2 ·106 MPa is greater that

Clinear starting from the 4th loading level. This is because the first two levels are elastic

and the third would require a much larger tangent modulus to work (C = 2.47 ·107 MPa).

By choosing to keep this value of C, the 3rd level will be slightly overrated in terms of
∆εp

2

but its σ̄ will still be accurate. In the final part of the chapter, some results will be shown

for C = 1 ·107 MPa and how this can circumvent the presented problem.

The results of the model for the complete mean stress relaxation test will be presented

in detail in subsection 6.2, but one important conclusion can be drawn when looking at

the distribution of Γa in this case. In Fig. 3.16, the computed Γa is plotted with respect

to ε
p
max (red dots) alongside σ̄. As seen for the first Rε = 0 test, the first few cycles are

elastic or slightly plastic, thus a non-zero value is obtained around the same maximum

plastic strain ε
p
max⇡0.005mm/mm. What appears quite clearly is that for the last level,

a mean stress σ̄ equal to zero corresponds to Γa=0, thus the parameter Γ is equal at the

descending and ascending parts of the loop. This means that when the cycles become

symmetrical in terms of stress, then the description of the ascending and the descending

parts of the loops is intrinsically obtained with a single Γ.
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Figure 3.17: Computed Γ parameter for the multi-level Rε =-1 test expressed in terms of

a) Γ
U p
+ and ΓDown

− b) Mean value Γ̄ and amplitude Γa

In Fig. 3.17, the distribution of Γ is shown for the multi-level Rε =-1 test in terms

of Γ
U p
+ and ΓDown

− (Fig. 3.17a) and of Γ̄ and Γa (Fig. 3.17b) for all loading levels. The

difference between the ascending and descending part of the loops is less important than

the Rε = 0 case and what is interesting to see is that the values of Γa are negative.

The final purpose of the model is to be able to represent both the Rε = −1 and the

Rε = 0 cases. In Fig. 3.18 the evolutions of Γ for the two tests are compared, with the last

cycles of each level being represented for Rε =−1 with blue dots and for Rε = 0 with red

dots. In Fig. 3.18a the evolution of Γ̄ is plotted with respect to ε
p
max, which are very close

to linear distributions with different slopes and offsets. A unified model would need to

accurately represent both evolutions in their respective conditions.

In Fig. 3.18b, Γa is shown with respect to ε
p
max. The blue dots representing the

Rε =−1 test are a consequence of the slight tension-compression asymmetry noticed for

this test, as discussed in subsection 3.3. In the final model, this feature will not be used,

given that the differences are negligible and it is not the main purpose of this model. Thus,

for the Rε = −1 case, the hypothesis is made that Γa = 0 for all loading levels, meaning

that all cycles have Γ
U p
+ =ΓDown

− =Γ̄.

The red dots in Fig. 3.18b represent the computed Γa for the last cycles of each level

for the first Rε = 0 test. The dotted line represents the author’s vision of the distribution

of Γa for this test, based on the results from this test but also on the complete mean stress

relaxation test presented earlier. This evolution of Γa allows for the identification of three

modeling zones: the first one when cycles are still elastic or slightly plastic, which will be

represented through an elastic behavior or linear kinematic hardening by the model. The

second zone is the one where partial mean stress relaxation occurs, and where Γa evolves.

Finally, in the third zone, the cycles become symmetrical, meaning σ̄ = 0 thus Γa = 0.
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(in red) a) Mean value Γ̄ b) Amplitude Γa

It is important to note that, as shown in subsection 3.2, not all Rε = 0 loading levels are

stabilized, thus the estimated evolution of Γa is assumed to be lower in absolute value

but similar in shape. High cycle fatigue tests should be performed at each loading level in

order to find the exact position of the stabilized cycle. The inconvenience is that a different

sample would have to be used for each level and the dispersion would be accumulated

from the material properties of each sample. Until a more elaborate experimental design

will be performed, the author feels that the current data at our disposal will serve well for

model identification and further developments will be used to refine the parameters.

4 Proposed plasticity model with partial mean stress re-

laxation

As presented earlier, the partial mean stress relaxation model obtains this feature by im-

posing different values of the material parameter Γ at the ascending part of the loop (Γ
U p
+ )

and at the descending part (ΓDown
− ). For now, these values are fixed for each loading level

as extracted from the experiment, in order to reach the corresponding stabilized cycle. In

the last part of this chapter, the value of Γ will be computed continuously (at each time

increment) based on the evolution of memory effect parameters q and ξ, resulting in an

incremental (rate) model. In the following, the main constitutive equations used for the

model are presented, as well as the proof of the positivity of the intrinsic dissipation.
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4.1 Positivity of the intrinsic dissipation

The thermodynamic forces associated with the internal variables can be obtained from the

state potential of the material:

σ = ρ
∂ψ

∂εεε
=EEE : (εεε−ε

p
ε

p
ε

p)

X = ρ
∂ψ

∂ααα
=

2

3
Cααα

(3.6)

The loading surface for the model is expressed with the following inequality:

f = (σ−X)eq −σy −R  0 (3.7)

where σy is the yield stress and (σσσ−X)eq is the equivalent stress, a scalar value that

allows the usage of the inequality in the tensorial space. The isotropic hardening R is

only used as its saturation value R∞ in the current version of the model, so that the size

of the elastic domain k is constant kconst = σy +R∞. The equivalent stress criterion used

for this model is the von Mises criterion [Mises, 1913] σeq =
q

3
2
σσσ0 : σσσ0, with σσσ0 being the

deviatoric stress.

A full plasticity model using the proposed kinematic hardening laws is a non standard

model, the new springback terms not deriving from an evolution potential. One must then

prove the positivity of the intrinsic dissipation D =σσσ : ε̇εεppp −X : α̇αα. The expression of the

dissipation for the current kinematic hardening law is:

D = (σσσ−X)eq ṗ+
3Γ

2C
XM−2

eq X : X
⌦

Ẋeq

↵

+
= σy ṗ+

Γ

C
XM−2

eq

⌦

Ẋeq

↵

+
(3.8)

Except for the parameter Γ, the other terms in the equation are by default positive.

Thus, in order to ensure the positivity of the dissipation the parameter Γ can simply be

chosen to be positive Γ ≥ 0. This is an important detail and will be taken into account in

the description of the model. Therefore:

if Γ ≥ 0 then D ≥ 0 (3.9)

4.2 Particular plastic loading/unloading conditions

In order to precisely model both the monotonic behavior and the cyclic one, at each time

we need to know in what domain we are. Thus, at any given time the model can be in

one of three distinct situations, which translates in three sets of values for the material

parameter Γ (Fig. 3.19).

The first case is the ”transition phase”, when the time derivatives of the maximum (or

the minimum) value of the maximum (or the minimum) principal strain is evolving. This
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condition is shown in Fig. 3.19 in the ”Yes” branch in the first decision block (Ṁ or ṁ 6=
0). The evolving quantities described in the inequality are:

M = max
t

(max
i

εi)

m = min
t
(min

i
εi)

(3.10)

with a double maximum (resp. minimum) being used, firstly over the three principal

strains (εi), secondly over the time history.

In the numerical scheme used for the model (represented in the following with the

index num), this translates as the maximum (resp. minimum) value reached between 0

and the current time step t for any of the three principal strains εi. Therefore, either one

of the two quantities Mnum or mnum needs to evolve, thus either ∆Mnum = Mt
num −Mt−1

num

or ∆mnum = mt
num −mt−1

num has to be different from zero. This will occur either in the first

loading or unloading (monotonic case), or when going from one loading level to the next

one that is higher in either minimum or maximum strain (transition case). In this case, the

parameter Γ is computed as was presented in chapter 2 section 6, by using the positive

part of an affine law to describe its evolution Γ = Γmono = hΓ0
0ε

p
eq,max +Γ0i+, the positive

part being needed to force the positivity of the intrinsic dissipation, as shown in Eq. 3.9

of the previous part.

When the maximum or minimum value of any of one of the principal strains isn’t

surpassed during loading (the ”No” branch in the first decision block Ṁ or ṁ 6= 0) then

the model will switch to a ”non-monotonic phase”, where the parameter Γ has to use its

two different values, one for loading and the other for unloading. This can be obtained

with respect to the evolution of e, which is the positive part of the maximum value of any

of the principal strains:

e = max
i

hεii+ (3.11)

Thus, when the time derivative of e (ė= de
dt

) is positive (the ”Yes” branch in the second

decision block ė > 0), we are on the ascending part and will use Γ = Γ+
U p. When the strain

is decreasing (the ”No” branch in the second decision block ė > 0), then Γ will take on its

value for the descending part, Γ−
Down.

In the numerical scheme, in the case of strain controlled cyclic tests, the maximum

and minimum strains per level are fixed, thus M and m are constant all along each loading

level. The Γ parameter that we will used in the model will depend on the sign of the

evolution of the strain from the previous time step (t − 1) to the current time step (t) or

∆enum = et
num − et−1

num.

With this type of approach, the behavior is very well represented both for the mono-

tonic case and for the cyclic case for each level. Nevertheless, when modeling the Rε=−1

multi-level strain controlled test, the parameter Γ needs to be re-adapted. In the follow-

ing, a rate formulated method will be presented, that allows representing both symmetrical

Modeling of partial mean stress relaxation and biaxial mechanical testing of Inco718DA



Proposed plasticity model with partial mean stress relaxation 83

Y es

NoY esΓmono = hΓ′

0ε
p
eq,max + Γ0i+

Γ
+
Up Γ

−

Down

No

M = max
t

(max
i

εi)

m = min
t
(min

i
εi)

e = max
i

hεii+
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Figure 3.19: Rule for switching between monotonic and cyclic loading parameters, with

εi being the principal strains

(Rε =−1) and non-symmetrical (Rε 6=−1) strain controlled cyclic loading with only one,

unified model.

4.3 Unified incremental (rate) model using memory effect at stabi-

lized cycle

In order to model the evolution of Γ, both in the case of the Rε = 0 and Rε = −1, a

generalized equation should be used that would allow to be as close as possible to the

given levels and their intermediate values. This would make the model naturally converge

towards a plastic loop as close as possible to the last cycle of each loading level. The

solution adapted to serve this purpose was to again use the principles of memory effect,

but in a different way. As explained in chapter 2 subsection 4.2, the memory surface is

usually defined as a hypersphere in the plastic strain space, similarly to the elasticity yield

surface, by a scalar isotropic variable q, which is the radius, and a tensorial kinematic

variable ξ, which gives the coordinate of the center of the hypersphere. The governing

equations used in the description of the memory effect hypershpere are:

F =

r

2

3
||εp
ε

p
ε

p −ξ||−q  0

q̇ = ηH (F )hn : n?i+ ṗ

ξ̇ =

r

3

2
(1−η)H (F )hn : n?i+n

? ṗ

(3.12)
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Figure 3.20: Unified evolution description based on distributions for Rε = −1 (in blue)

and Rε = 0 (in red) a) Mean value Γ̄ b) Amplitude Γa

For this application, the memory effect will be used with the parameter η, which

serves as a weight function between the isotropic and the kinematic parts of the memory

surface and, consequently, as convergence speed. The values of the two memory effect

variables q and ξ at convergence in the 1D case will thus be :

q = max

✓

ηεp
max,

∆εp

2

◆

ξeq = min
(

(1−η)εp
max, ε̄

p
)

(3.13)

where ξeq =
q

2
3
ξ : ξ. In such a uniaxial case ξeq = ξ11.

Initial attempts were made with small values of η such as 0.05, 0.1 and 0.2 in order to

capture a more gradual transition from the initial to the final cycle of each level. Unfor-

tunately, for some cases this convergence speed was too slow and would cause numerical

instabilities, such as mean stress relaxation reversal. The case η = 1
2

was finally used.

It is a classic choice in the literature as a default value, especially in the Rε = 0 case

[Nouailhas et al., 1985; Hopperstad et al., 1995]. This allows for a quick convergence and

is sufficiently precise in most cases.

Firstly, the unified equation was developed for the evolution of Γ̄. In Fig. 3.20a the

evolution of Γ̄ is plotted with respect to ε
p
max for the last cycles of each level for the first

Rε = 0 test in red dots and for the Rε = −1 test in blue dots. The dashed lines represent

the linear fit for each distribution. The slope of each line is noted m and the offset n so

that we obtain the equations for the two linear distributions as follows:

Γ̄(Rε=−1) = m(Rε=−1)ε
p
max +n(Rε=−1)

Γ̄(Rε=0) = m(Rε=0)ε
p
max +n(Rε=0)

(3.14)
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In order to elegantly unify the two, we combined the two equations based on the fact

that for η = 0.5 in the Rε = −1 case ξeq = min
(
(1−η)ε

p
max, ε̄

p
)

is always ε̄p, and for a

symmetrical loading ε̄
p = 0. Using this feature, the unified equation for computing Γ̄ at

any time is:

Γ̄⇤ =

⌧

Aq+Bξeq +a+b
ξeq

q

〉

+

(3.15)

The notation ”*” was used indicate that the variable is computed at each time step

following the identified equations and not fixed artificially for the whole test / load level.

This convention (”*”) will be used from now on in the definition of the parameter Γ to

differentiate the incremental (rate) model from the manually changed model. The main

parameters in the case of Γ̄⇤ are obtained as follows:

A = m(Rε=−1)

B =
m(Rε=0)−m(Rε=−1)η

1−η

a = n(Rε=−1)

b =
η

1−η

(
n(Rε=0)−n(Rε=−1)

)

(3.16)

In order to check the validity of the model, the equations will be developed case by

case at convergence for η = 0.5:

Rε =−1
⇢

ξeq = 0

q =
∆εp

2
= ε

p
max

∣
∣
∣
∣
Γ̄
(Rε=−1)
⇤ = m(Rε=−1)ε

p
max +n(Rε=−1)

Rε = 0
⇢

ξeq = 0.5ε
p
max

q = 0.5ε
p
max

∣
∣
∣
∣
Γ̄
(Rε=0)
⇤ = m(Rε=−1)0.5ε

p
max +

m(Rε=0)−0.5m(Rε=−1)

!
!0.5

!
!0.5εp

max

+n(Rε=−1)+
!
!0.5

!
!0.5

(
n(Rε=0)−n(Rε=−1)

)⇠⇠⇠⇠
0.5ε

p
max

⇠⇠⇠⇠
0.5ε

p
max

=
(((((((((

m(Rε=−1)0.5ε
p
max +m(Rε=0)ε

p
max −(((((((((

m(Rε=−1)0.5ε
p
max +⇠⇠⇠⇠⇠n(Rε=−1)+n(Rε=0)−

⇠⇠⇠⇠⇠n(Rε=−1)

=) Γ̄
(Rε=0)
⇤ = m(Rε=0)ε

p
max +n(Rε=0)

(3.17)

Therefore, the equations are verified for both cases and we should obtain a good de-

scription of the evolution of Γ̄.

Secondly, the unified equation was developed for the evolution of Γa. In Fig. 3.20b the

evolution of Γa is plotted with respect to ξ11 = (1−η)ε
p
max = 0.5ε

p
max for the last cycles
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Figure 3.21: Evolution laws for Γa
⇤ and Γ̄⇤ in the incremental model, working for both

the Rε = 0 (dots represented in this figure) and the Rε =−1 case (not shown in this graph)

of each level for the first Rε = 0 test in red dots. The red line represents the calculated

distribution using the formula:

Γa
⇤ = Γa

M

⌧

1−

⌧
ξM −ξeq

ξM −ξl

〉al

+

−

⌧
ξeq −ξM

ξr −ξM

〉ar

+

〉

+

(3.18)

where the point Γa
M = f (ξM) is the maximum of the distribution; ξl is the intersection with

the abscissa of the left branch of the curve, so the point where the first plastic cycle can

be represented; ξr is the intersection with the abscissa of the right branch of the curve and

represents the point where the first zero mean stress is obtained and beyond which cycles

are symmetrical. The way the equation works is by activating each positive part at a time.

If ξeq < ξl or ξeq > ξr the quantity inside the large positive part is negative, therefore

Γa
⇤ = 0. If ξl < ξeq < ξM the quantity inside the left positive part is non-negative and if

ξM < ξeq < ξr the quantity inside the right positive part is non-negative. The exponents

al and ar give the degree of the polynomial for each descending branch from the peak

(Γa
M) to zero. By default, a quadratic equation is chosen (al = ar = 2), but it can come

in handy given that it is the only other degree of freedom left besides the aforementioned

parameters.

With this set of equations to describe the evolution of Γa
⇤ and Γ̄⇤, the parameter Γ can

be computed at any given time in one of its three states:
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Monotonic / transition case: Γ = Γmono = hΓ0
0q+Γ0i+

Non-monotonic - loading: Γ = Γ+
U p = hΓ̄⇤(q,ξ)−Γa

⇤(q,ξ)i+

Non-monotonic - unloading: Γ = Γ−
Down = Γ̄⇤(q,ξ)+Γa

⇤(q,ξ)

(3.19)

With this formulation, for any q and ξ the cyclic behavior is very well described both

in the Rε = −1 and in the Rε = 0 case. Moreover, the model is also capable of working

for any given complex loading, possibly random.

One challenge that had to be overcome was the passage from Γ= 0 to a non-zero value.

Given that the model is implemented on one node using an explicit python routine, the size

of the loading increment is a real issue. Even when using a very small increment, small

cycles can exhibit larger plastic strains than in reality, leading to a cycle that stabilizes

at a smaller mean stress than in reality. Given that this issue is far more penalizing in

small plasticity cycles, a cutoff was performed at a value of ε?p = 5 ·10−3 mm/mm. This

also avoids to have cycles with Γ
U p
+ = 0 for a non-zero ΓDown

− , which can cause some

anomalies. This is a palliative solution before a completely implicit routine will solve this

issue. In Fig. 3.21 the cutoff, as well as the evolutions of Γ̄ and Γa are plotted with the

corresponding equations for the first Rε = 0 test. At the end of the study, a higher value

of C was chosen, so that all 5 levels would be covered. In section 6, the final results given

by the model will be presented for the monotonic and cyclic cases.

5 Summary of the proposed plasticity model

The listing below summarizes the constitutive equations of the model for the combined

description of rate dependent inelasticity under monotonic and cyclic loading:
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Strain partition: εεε= ε
e
ε

e
ε

e +ε
p

ε
p

ε
p

Isotropic elasticity: σσσ =EEE : εεεe

Yield function: f = (σσσ−X)eq −σy  0

Plastic strain rate: ε̇εε
ppp = λ̇

3

2

σσσ0−X

(σσσ−X)eq

Memory surface:

8

>><

>>:

F =
q

2
3
||εp
ε

p
ε

p −ξ||−q  0

q̇ = ηH (F )hn : n?i+ ṗ

ξ̇ =
q

3
2
(1−η)H (F )hn : n?i+n

? ṗ

Kinematic hardening: Ẋ =
2

3
Cε̇εεppp −Γ(q,ξ)XM−2

eq X
⌦

Ẋeq

↵

+

Computation of material parameter Γ depending on the loading state :
8

>

>

<

>

>

:

M = max
t

(max
i

εi)

m = min
t
(min

i
εi)

e = max
i
hεii+

if (Ṁ 6= 0) or (ṁ 6= 0) then:

| Γ = Γmono = hΓ0
0q+Γ0i+ : Monotonic / transition case

else if (ė > 0)

| | Γ = Γ+
U p = hΓ̄⇤(q,ξ)−Γa

⇤(q,ξ)i+ : Non-monotonic - loading

| else

| | Γ = Γ−
Down = Γ̄⇤(q,ξ)+Γa

⇤(q,ξ) : Non-monotonic - unloading

| end if

end if

Incremental (rate formulated) computation of Γ, using Γ̄⇤ and Γa
⇤ :

8

<

:

Γ̄⇤ =
D

Aq+Bξeq +a+b
ξeq

q

E

+

Γa
⇤ = Γa

M

D

1−
D

ξM−ξeq

ξM−ξl

Eal

+
−
D

ξeq−ξM

ξr−ξM

Ear

+

E

+

(3.20)

6 Application of the incremental model to Inco718DA

In this section, the results from the use of the incremental model will be presented for the

monotonic loading, the cyclic Rε = 0 and Rε =−1 cases.
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Figure 3.22: Monotonic response obtained with the incremental (rate) plasticity model

for a) The whole span of the test b) The domain used for the complete mean stress relax-

ation test

6.1 Monotonic response

One of the advantages of the described kinematic hardening law is that the monotonic be-

havior can be identified completely apart from the saturated cyclic behavior. During the

development phase of the model, several identification options were considered, depend-

ing on the desired accuracy for each zone of the mean stress relaxation curve. Given that

a well represented monotonic behavior plays an important role especially in the first two

zones of the mean stress relaxation curve (Fig. 3.1), it is important to be able to perform

a fine tuning of the model in order to capture all associated phenomena.

As was presented in chapter 2, section 6, the equation for computing Γ in the mono-

tonic case is Γmono = hΓ0
0ε

p
eq,max+Γ0i+. The need for the extra degree of freedom allowed

by Γ0 was confirmed by an instantaneous computation of Γ in the monotonic case in Ap-

pendix B. In Fig. B.3b, the influence of the offset Γ0 is shown, for a fixed Γ0
0. In this

example, Γ0
0 was used to accurately represent the plastic plateau and Γ0 to reach the final,

desired behavior.

The monotonic response was initially obtained with the same explicit python routine

used for the cyclic loading, but it took several minutes to obtain a result with a sufficiently

fine strain increment. The explicit code is especially increment sensitive in the transition

between the elastic and the plastic behavior. In order to be able to easily identify the

model parameters, an analytical version was obtained for the increment of plastic strain

by integrating the equations of the kinematic hardening law. The resolution is described in

detail in Appendix D. Therefore, by implementing this analytic version of the monotonic

behavior in Microsoft Excel, the impact of the change of each parameter can be seen

instantly. This is a very good tool to help a junior engineer get acquainted with the model
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and how each parameter works. This could also facilitate the introduction of the model in

an optimization software, in order to accurately obtain the best parameter combination.

The final monotonic response is shown in Fig. 3.22 for the whole test (Fig. 3.22a) and

for the domain where the cyclic tests are performed (Fig. 3.22b). The final parameters

identified to describe the monotonic behavior are given below, with the already presented

identifications in grey:

E [GPa] k [MPa] M C [MPa] Γ0
∞ [MPa−2] Γ0

0 [MPa−2] Γ0 [MPa−2]

206 342 3 2·106 2.09 ·10−2 3.9 ·10−2 −1.25 ·10−5

6.2 Rε = 0

As it was presented in the previous sections, the main interest for the proposed plasticity

model in the Rε = 0 case is the possibility to represent partial mean stress relaxation. This

phenomenon is not captured by most kinematic hardening laws, such as the Armstrong-

Frederick law, because they converge at complete mean stress relaxation. This comes

mainly out of the fact that such models have the same description of the ascending and

the descending part of each loop. Therefore, at each new cycle of a strain-controlled test

with a strain ratio different of Rε =−1, the models will relax the mean stress, even if with

a small increment each time. This will always lead to a symmetrical state where σ̄ = 0

if a sufficient number of cycles is performed. In the plasticity model developed during

this thesis, the partial mean stress relaxation lies in the measured assymetry between the

ascending and the descending part of each part of the loop. This assymetry has been

quantified with the parameter Γ initially in terms of Γ
U p
+ and ΓDown

− , and later on in terms

of mean value Γ̄ and amplitude Γa. This allowed the discovery of certain interesting

patterns that are at the core of the incremental model.

In Fig. 3.23 the evolutions of Γ̄ and Γa are plotted for the second Rε = 0 test with

respect to ε
p
max, for all the cycles (Fig. 3.23a) and only for the last cycles of each loading

level (Fig. 3.23b). The continuous lines represent the governing equations used in the

incremental model with ε
?

p=0.005 mm/mm being the cutoff threshold.

The comparison between the results of the model and the experiment for the second

Rε = 0 test are shown in Fig. 3.24 for the last cycles of each level. Fig. 3.24a shows σ
with respect to ε with the model in thick blue lines and the experimental data in black

lines. Fig. 3.24b shows σ̄ with respect to ∆ε
2

with the model in blue and the experimental

data in black. The most important aspect that can be observed from these graphs is that

the last cycles are coherent for the most part and thus the mean stress relaxation curve

is globally well represented, especially the final part. The fact that the first two points

are underrated is a direct consequence of the identified monotonic behavior. The use

of a larger transverse parameter C can correct this, as it will be seen in the following

for the first Rε = 0 test. The issue here is, as mentioned before, the intermediate cycles

between linear kinematic hardening and non-linear, relaxing, kinematic hardening. For

this test, it is the loading level with ∆ε
2

= 0.006 mm/mm which is slightly lower than
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Figure 3.23: Computed Γ̄ and Γa for the second Rε=0 test a) All cycles b) Last cycles of

each loading level and their respective governing equation used in the incremental model

in the experiment in both figures. This minor issue is due to the fact the parameter Γ
can switch from zero (linear kinematic hardening) to a non-zero value, causing an slight

overestimation of the mean stress relaxation. This is assumed to be related to the explicit

formulation of the numerical computation, and should disappear if an implicit description

is used. The implicit implementation, as well as an Abaqus integration of the kinematic

hardening rule, are in development in the PhD work of Estarle R. F. de Souza Campos in

the ENS Cachan university [de Souza Campos et al., 2017].

Nevertheless, the impact on the global model is minimal and will hopefully be fixed

in the future. Another visible aspect is that the elastic part becomes more and more

distanced from reality. This change of the Young’s modulus is usually captured with

damage models. A perspective is to use plasticity coupled with damage to also take into

account this phenomenon.

The final results that will be presented for the Rε = 0 case concern the first test and

mean to show the improvement brought by the usage in the model of a much higher

transverse modulus. Several sensitivity tests were made and the value that was finally

used is C = 1 ·107 MPa. In Fig. 3.25 the evolutions of Γ̄ and Γa are plotted with respect

to ε
p
max. The distributions have slightly changed in shape and considerably in value. Most

importantly, one of the loading levels that was cut off before can be kept. The reason for

this is that in this case the point is on a stable part of the curve and not on a steep descent

as for the C = 2 ·106 MPa. Before, any slight change in the value of ε
p
max would cause an

important change in the value of Γa and would cause instabilities in the cycle. This time,

the cutoff threshold was moved to the left at a value of ε?p=0.003 mm/mm.

With this identification, the level marked with a dotted line in Fig. 3.25 can be repre-

sented with a non-linear kinematic hardening, which is closer to reality. The comparison
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Figure 3.24: Experimental results (in black) compared to the incremental model (in blue)

for the second Rε = 0 test with C = 2 · 106 a) Mean stress relaxation curve b) Cyclic

plasticity loops
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Figure 3.25: New evolution laws for Γa
⇤ and Γ̄⇤ in the incremental model for C = 1 ·107

between the results of the model and the experiment for C = 1 ·107 MPa are shown in Fig.

3.26 for the whole loading history. Fig. 3.26a shows σ with respect to ε with the model in

thick red lines and the experimental data in black lines. Fig. 3.26b shows σ̄ with respect

to ∆ε
2

with the model in red and the experimental data in black for the last cycles of each

level. It may be seen that the forth level is very well represented. The mean stress relax-

ation curve is very accurate for all levels. In order to be as close as possible to the real

behavior, when passing from one loading level to the other the simulation was performed

continuously rather than a separate simulation per level. Thus, for the transitions between

levels, the model doesn’t yet capture the local hardening as in reality. Nevertheless, the

stabilized cycle is obtained at the right level.

6.3 Rε=-1

The symmetrical strain-controlled loading case Rε = −1 was finally tested using the in-

cremental model. As mentioned earlier, the slight tension-compression asymmetry can

be represented by using a non-zero Γa, as was shown in Fig. 3.13b. Given that this phe-

nomenon isn’t very interesting in our case, we chose to use a symmetrical configuration,

thus Γ = Γ
U p
+ = ΓDown

− = Γ̄. Using the evolution of Γ̄ described in Fig. 3.20a the results

shown in Fig. 3.27 are obtained.

These results are more than satisfactory and prove that the incremental model is

adapted to model both the Rε = 0 and the Rε =−1 cases using one unified formulation.
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Figure 3.26: Experimental results (in black) compared to the incremental model (in red)

for the first Rε = 0 test with C = 1 · 107 MPa a) Mean stress relaxation curve b) Cyclic

plasticity loops
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7 Conclusions

In this chapter, a detailed description of the final version of the model is made. The

main feature of this model is that it provides a good description the partial mean stress

relaxation in the cyclic plasticity zone of the σ̄(∆ε
2
) curve. When compared to confirmed

kinematic hardening laws that model non-zero mean stress relaxation [Chaboche, 1991;

Chaboche et al., 2012] our model presents the advantage of using only one backstress,

even if its description is more complex. Moreover, the model is incremental, so it can

take into account complex loadings such as gradually increasing maximum strain tests.

One of the more original parts of the creation of the model is the idea that partial mean

stress relaxation is a direct consequence of the difference between loading and the unload-

ing part of the hysteresis loop. By analyzing the parameters that could be responsible for

this difference such as the Young’s modulus, the size of the elastic domain k or the kine-

matic hardening parameters M,C,Γ, etc., we were able to find patterns that would indicate

that there was indeed a considerable difference between what happens at the ascending

and at the descending part of the loop. For reasons explained in section 3, the chosen

parameter we used to describe this difference was Γ. Its evolution was directly computed

for all the cycles of the available tests and some interesting patterns arose when looking

at Γ in terms of mean value Γ̄ and amplitude Γa obtained for the two parts (loading and

unloading).

One important conclusion when analyzing the Rε=0 tests was that the complete relax-
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ation of the mean stress was linked to Γa becoming zero. In other words, when the two

parts have the same description, the cycle becomes symmetrical. It is an interesting data

to find, and we used it directly in our model to obtain a smooth evolution of the mean

stress relaxation curve. When compared to confirmed non-linear kinematic hardening

with thresholds model developed by Chaboche et al. [1991], the number of used parame-

ters is lower in our model and the description has no subsequent jumps in the response, as

it happens with each deactivation of back-stresses for the NLK hardening with thresholds.

Even if it was not the focus of this study, an interesting aspect that can also be repre-

sented with this dual Γ approach is the small, but observed, asymmetry between tension

and compression. It was shown in subsection 3.3 how by a minimal tuning of the pa-

rameters this asymmetry can be very accurately represented. In the last chapter of the

thesis, a vast biaxial campaign will be presented, along with developments to make I-DIC

strain-controlled tests.
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Chapter 4

Biaxial tests

In the current chapter, the cyclic tests performed on biaxial cross-

shaped samples are presented. The purpose of these tests is to provide

a database used to validate plasticity models under multiaxial condi-

tions and especially the one presented in the previous two chapters.

First, the choice of the sample and the experimental protocol are pre-

sented. Second, the principles and feasibility of the integrated digital

image correlation strain control will be explained. Last, the results of

the experimental campaign will be shown and interpreted.

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

2 Experimental protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

2.1 Mechanical loading . . . . . . . . . . . . . . . . . . . . . . . . . 100

2.2 Instrumentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

2.3 I-DIC control technique . . . . . . . . . . . . . . . . . . . . . . . 112

3 Biaxial tests results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

3.1 First force controlled test XA3 . . . . . . . . . . . . . . . . . . . . 126

3.2 Buckling detecting tests XT2 and XA2 . . . . . . . . . . . . . . . 128

3.3 First equi-biaxial strain-controlled test XB1 . . . . . . . . . . . . . 132

3.4 Non-equi-biaxial strain-controlled tests XA1 and XC4 . . . . . . . 136

3.5 Stabilized equi-biaxial strain-controlled test XB2 . . . . . . . . . . 141

4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

Modeling of partial mean stress relaxation and biaxial mechanical testing of Inco718DA



98 Biaxial tests

Modeling of partial mean stress relaxation and biaxial mechanical testing of Inco718DA



Introduction 99

1 Introduction

The main goal of this study is the development of a plasticity model adapted to the be-

havior of Inco718DA under multiaxial loading conditions. In order to identify the model,

cyclic biaxial tests need to be performed at large cyclic plastic strains.

The biaxial tests were performed in the triaxial testing machine ASTREE from LMT

Cachan [Calloch, 1997; Cognard et al., 1997; Calloch and Marquis, 1999; Frémy, 2012].

In order to be able to properly identify material constitutive laws from biaxial tests data,

various testing protocols and types of cruciform specimens have been used in this machine

varying from thermal fatigue [Sermage, 1998; Poncelet et al., 2010; Rupil, 2012], crack

initiation and propagation [Frémy, 2012; Tomicevic, 2015; Sadriji et al., 2016], fatigue of

pressurized reservoirs [Mathieu, 2013] or other complex thermo-mechanical loadings in

aeronautics and aerospace applications [Barbier, 2009; Gaborit, 2015].

One of the measurement and control techniques classically used is the strain gauge

for its precision and simplicity. Unfortunately, the important strains developed in the

sample are likely to surpass the measurement range and there is also a high risk of gauge

debonding. Biaxial extensometers [Makinde et al., 1992b; Sermage, 1998; Kulawinski

et al., 2011b] also offer reliable strain measurements, but their inconvenience is that they

assess only a mean value for a much more important zone than that of a strain gauge.

In both cases, certain heterogeneities might be missed. Another important aspect is the

detection of unexpected cracks, which is assumed to occur in the center of the sample.

The strain gauge method covers the region of interest (ROI), rendering it non-exploitable,

while the biaxial extensometer solution is possible but unpractical.

An alternative is to perform full-field measurements by using Digital Image Corre-

lation [Sutton et al., 1983a]. Since the first use in experimental mechanics in the early

’80 [Lucas and Kanade, 1981; Sutton et al., 1983a; Chu et al., 1985], this technique has

evolved considerably and is extensively used both in the academic field [Sutton et al.,

2009; Hild and Roux, 2012b] and in the industrial world [Desmars et al., 2004]. With

this approach, the surface of the sample is not hidden, and one can use several cameras

with several DIC algorithms in order to obtain a maximum of information during the

experimental test. The displacement measurements obtained with DIC can be used for

model validation, model parameter identification [Calloch et al., 2002; Avril et al., 2008;

Grédiac and Hild, 2012], or for controlling mechanical tests [Fayolle et al., 2007; Fayolle

and Hild, 2014; Le Flohic et al., 2014; Carpiuc, 2015].

In the following, some of the improvements that had to be made in the lab in order

to perform the biaxial campaign will be presented (sample geometry choice, testing ma-

chine, new grips, instrumentation, strain-control technique) as well as the biaxial tests

results.
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2 Experimental protocol

2.1 Mechanical loading

2.1.1 Biaxial sample geometry

In the beginning of the study, the first constraint was that the samples would be extracted

from a forged circular block, normally used to machine one high-pressure turbine disk.

The forged block is a revolution piece with a section that would fit a sample of maximum

255 mm in length (Fig. A.4). Micrographic cuts were regularly analyzed in the forged

blocks, so we also knew the grain size in this area, which was in the order of 10 µm. Thus,

to obtain a suitable enough sample, we would need a rough minimum volume of interest

of 10⇥10⇥10 grains. In order to achieve large levels of plasticity in this ROI, we would

need to induce important loads and obtain pure strain or stress states (plane strain or plane

stress). Thus, parasite bending or buckling would have to be at a minimum or zero.

Based on this consideration, two cross-shaped specimen geometries were initially

considered, one LMT version developed during several studies [Sermage, 1998; Barbier,

2009], and another developed by Safran Aircraft Engines (SAE) for a biaxial study at ENI

Tarbes [Selva et al., 2017]. Both geometries have been used prior to this work ([Barbier,

2009; Rupil, 2012; Gaborit, 2015] for the LMT one, [Selva et al., 2017] for the SAE one),

which validates their design for loadings close to the aimed ones. A comparison between

the two geometries was carried out in order to choose the better adapted one for our study.

Our main need was to perform cyclic, high amplitude, strain-controlled tests. For this,

we ideally needed a sample that would exhibit a homogeneous strain field in the region

of interest during tests. A heterogeneous stress field would be acceptable in the case of

elasticity, but in the present case of elasto-plasticity, it would not be straightforward at all,

if not impossible to accurately analyze. The gauge zone was uniform in the case of the

SAE sample, but not for the LMT one, given that the latter has a spherical calotte fillet

in the middle, leading to a meniscus shape, and thus a nonconstant thickness. Secondly,

high strain amplitudes needed to be obtained in the central zone in order to have plastic

hysteresis loops to compare to the uniaxial case. Since no high bicompressive stress states

have been applied during the previous studies, rough Abaqus simulations were performed

on both sample types using the same material properties. The material behavior chosen

in Abaqus was an isotropic and elasto-plastic one, and besides the Young’s modulus and

Poisson’s coefficient, stress vs plastic strain data extracted from the uniaxial monotonic

behavior of Inco718DA were used as interpolation points, combined with a von Mises

equivalent stress. As can be seen in Fig. 4.1, the region of high stresses is, as expected,

much more restricted for the LMT specimen. It is also more rigid (Fig. 4.2), and even

going from zero to the full range of the machine would cause very little plastic strains.

Moreover, one must keep in mind that this is the value only in the central point, so it is

actually the maximum for σ and ε
p for the LMT sample given its geometry, and a mean

value over the ROI would be even smaller.

Given the fracture shape of the ROI in the case of some compression tests for the SAE
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Figure 4.1: Comparison between the behavior of the two samples in Abaqus buckling

simulation a) LMT sample b) SAE sample
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Figure 4.2: Comparison between the behavior of the two samples in monotonic compres-

sion a) σeq vs F11 b) ε
p
11 vs F11
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geometry, buckling simulations were also performed in Abaqus. Although restricted to

the global instability type (local buckling may also occur as shown in the following), and

highly dependent on the boundary condition choice (here an equi-biaxial compression

force), it still provides a qualitative indication that the SAE sample behaves better under

compression. Displayed on Fig. 4.1, the appearance of buckling for each specimen geom-

etry shows that the SAE one allows a higher compressive stress without buckling. This

phenomenon will be studied more in detail during experiments, when stereo-correlation

will be used to assess the out-of-plane motions and establish the buckling limit.

Given all the criteria mentioned earlier, the SAE geometry was chosen. The sample

has three orthogonal symmetry planes and the dimensions 200⇥200⇥9.6 mm (Fig. A.8).

The disk sample extraction plan is detailed in Appendix A. As it may be seen in Fig.

4.3, the x,y and z axes correspond to the radial, tangential and out-of-plane directions

respectively.

x

y
z

Figure 4.3: Biaxial sample used during the experimental campaigns

The thickness of the sample is 9.6 mm at arm level and is reduced down to 1 mm in

the center via two successive fillets (intermediate thickness of 6.16 mm). The central zone

is circular, with a 12 mm diameter and it represents our region of interest (ROI). One of

the reasons why this geometry was chosen, was the constant thickness of the gauge zone,

which allows (but does not ensure) a uniform strain field in the ROI. Therefore, it is very

important that the thickness of the central zone, as well as its position with respect to the

mean plane (xy) is respected during the machining phase.

During the reception of a first batch of samples (XA1...4) a machining error was no-

ticed for XA4, which had the center shifted by 1 mm. Thus, this sample was considered

too far beyond the demanded geometrical tolerances and has been used in an initial phase

of the study as a ‘tuning sample’. It was used to make certain adjustments to the machine

such as setting the PID, verifying the testing procedure and the experimental protocol.
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Figure 4.4: Geometry measurements of the biaxial sample a) Coordinate Measuring Ma-

chine schema b) White light interferometry

Given the innovative tests that were envisioned and performed, three other samples were

machined, with the same geometry and out of a material with similar properties as the

Inco718DA (XT1...3). They were created in order to avoid accidentally destroying or

damaging the real samples which were very expensive and scarce.

In order to ensure the quality of the sample surface, a general precision of 0.2 mm

was demanded, with stricter restriction on the ROI (0.1 mm for the coaxiality of the cen-

ter with respect to the group of screw holes and 0.02 mm for the position of each face

with respect to the surface of the arms). Moreover, geometry measurements were made

using a Coordinate Measuring Machine (CMM) on all the samples, and surface quality

measurements on one specimen using white light interferometry (Fig. 4.4), showing the

samples to be withing tolerances or slightly out of range in some cases. The CMM mea-

surements were performed using a machine with an estimated uncertainty of 10 µm for

each measurement point. This step is obviously tremendously important since the accu-

rate knowledge of the real thickness is necessary to calculate the applied stresses. Among

all possible geometrical defects, we focused mainly on those in the central area, in terms

of thickness and position. For the thickness, we measured the distance between the exter-

nal planes determined by 10 points on each of the two sides of the sample, in the central

zone. In order to verify if the ROI wasn’t shifted vertically (on the z axis), the mean plane

was generated using the two faces of the sample at the arm level.

The position of the center of the sample in plane xy was computed using three distinct

references. The first one is the group of screw holes, which also serve as a reference in the

machining plan. The second one is given by the two surfaces of the thickness reducing tori

that surround the central zone. They were approximated to spherical surfaces, given that

the CMM software doesn’t allow the palping of a torus. The center of the sample is thus

given by the intersection between the line unifying the centers of the two spheres and the

mediane plane. The last reference is given by the four ”elbow fillets” between the arms of
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the sample (Fig. 4.3). By treating each of these fillets as a cylindrical surface, we obtain a

quadrilateral by projecting the axis of each one of the cylinders on the median plane. The

intersection of the diagonals of this quadrilateral gives the center of the reduced thickness

region. Given that the first method is used as the reference in the machining plan, the

results from the two others are compared to this one.

Up Down C.Fillets C.Tori Th.ROI Dist.Up Dist.Down

Tol(mm) 0.05 0.05 0.1 0.1 0.04 0.02 0.02

XA1 0.0547 0.0542 0.0823 0.0752 1.0228 0.4718 0.5511

XA2 0.0308 0.0317 0.0722 0.0928 1.0775 0.5099 0.5678

XA3 0.0268 0.0572 0.5092 0.1762 0.9988 0.6270 0.3718

Table 4.1: Coordinate Measuring Machine (CMM) results

In Tab. 2.1.1, the quantities obtained from CMM measurements may be seen: the

flatness of the central zone (for the upper plane Up and for the lower plane Down);

the difference between the position of the center computed with the reference screw holes

and the fillets (C.Fillets) and the two torus surfaces (C.Tori); the thickness of the central

zone (Th.ROI); the distance between the mean plane and the central surfaces (Dist.Up and

Dist.Down, with the obvious relationship Th.ROI = Dist.Up + Dist.Down). The values

are consistent with the imposed tolerances in certain cases, but for the values in red and

orange they slightly surpass them. The error in the thickness of the central zone goes up

to 7%. What also has to be taken into account is the fact that the measurement of the

position of the center with the two methods involve precision palping (small sized central

zone, fillets, etc.), thus needing to be performed with caution. For the rest of the samples

we received (XB1, XB2, XC4), machined after complaints were made to the company,

CMM measurements were performed by an exterior firm, and the results were within the

specified bounds.

The white light interferometry measurements were performed in the LURPA labora-

tory of ENS Cachan on one sample. One sees in Fig. 4.4b that there is a defect of 30 µm

in local flatness. Given that the first batch of samples was machined using the same pro-

cedure, we can assume the same order of magnitude in the size of the defects of each

sample. This is the result of a turning process used to obtain the central area, which can

result in either a hole or a peak, both withing acceptable bounds.

2.1.2 Multiaxial testing machine ASTREE

In order to obtain biaxial tests with plastic cyclic loops, important forces must be applied

to the chosen sample geometry. As one may see in Fig. 4.2, considerable plastic strains

begin to appear in the equi-biaxial case, for loads superior to 80 kN in the monotonic case

(given the chosen behavior, the tension case is symmetrical). The choice was thus made

for the biaxial tests to be performed in the triaxial testing machine ASTREE from LMT

Cachan [Calloch, 1997; Cognard et al., 1997; Calloch and Marquis, 1999; Frémy, 2012].
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Figure 4.5: Triaxial testing machine ASTREE a) Photo b) Modal control (FA1,1 and FA1,2

are the loads corresponding to the two actuators of axis 1)

Among the six servo-hydraulic actuators that the machine is equipped with, the four

horizontal ones are used (Fig. 4.5a). They have a load capacity of 100 kN and a 250 mm

displacement range. The system can be translated vertically to accommodate complex in-

strumentation and different test scenarii. The machine is equipped with a versatile digital

controller (Instron 8800) and is controlled from one main computer using the correspond-

ing interface software (Consol 8.2). The actuators may be controlled either independently

or in pairs. The latter, also called ”modal control”, permits a vast array of linear or non-

linear combinations between the available input signals (forces, displacements or other

external channels). The most common application, as seen in (Fig. 4.5b), is to impose a

given mean load amplitude (FAi,1+FAi,2)/2 and a zero load difference (FAi,1-FAi,2)/2 along

an axis i (composed of two actuators 1 and 2 ). This allows to maintain the center of the

sample motionless (if we suppose the behavior to be symmetrical), which is very useful

in practice, when analyzing a region of interest of reduced size.

For the biaxial tests performed on cross-shaped samples [Hannon and Tiernan, 2008],

the most common scenario in the laboratory was to use the horizontal actuators for the

mechanical loading and the vertical ones for fixing the measurement means [Sermage,

1998; Doudard et al., 2007; Périé et al., 2002; Poncelet et al., 2010; Rupil, 2012; Mathieu

and Hild, 2013; Tomicevic, 2015; Gaborit, 2015]. The vast majority of tests were force

controlled for accuracy and safety purposes (more accurate than displacement, more se-

cure than the strain gauge). Indeed the build-in displacement measurement setup is based

on LVDTs, which are placed very far from the region of interest and are influenced by the

thermal fluctuations of the actuators.

The machine is equipped with a PID controller on each of its axes. As is common

for classic hydraulic machines, the command is calculated using the control error (the

difference between the setpoint and the measured response), its integral and its derivative.

The controller attempts to minimize the error over time by adjusting a control variable
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Load PID Modal 1A Modal 1B Modal 2A Modal 2B

Proportional [dB] -10 0 -10 0

Integral 5.1 10 5.1 5.3

Derivative 0 3 0 0

Table 4.2: Values for the load PID used for the biaxial tests in ASTREE

(such as the position of a control valve) to a new value determined by a weighted sum:

u(t) = Kpe(t)+Ki

Z t

0
e(τ)dτ+Kd

de(t)

dt
(4.1)

where Kp,Ki and Kd denote the coefficients for the proportional, integral, and derivative

terms, respectively (more commonly denoted P, I, and D). These variables thus allow us

to set the contribution of each effect. The PID is adjusted in similar conditions (stiffness,

temperature, load, etc.) as for the test to be performed, and its validity range depends

on the precision we seek at the input features (amplitude and frequency in the case of a

sinusoidal signal) that we impose.

In order to tune the PID for the load cell, different aspects were studied such as neces-

sary load amplitudes, frequencies and cyclic test types (sinusoidal and triangle). Square

signals were also tried out in order to test that the system is sufficiently stable. In the

modal control of ASTREE, commands are usually given in terms of average load (Modal

B), which is the load amplitude imposed to a certain axis, and in terms of load difference

(Modal A), which is usually zero, because we normally don’t want any macroscopic shear

of the arms to occur. Thus, the notation ”Modal 1B” represents the load amplitude for axis

1, in modal control. The final values chosen for the PID are shown in Tab. 2.1.2.

The control of ASTREE is currently performed using two software packages. The

first one, Consol, permits the configuration of all acquisition and control channels. Ba-

sic quasi-static and cyclic (sinusoidal, triangle, square) loading cases, as well as real

time graphs of up to four variables can be programmed using Consol. It’s very practi-

cal for tasks such as PID tuning or sensor calibration (LVDT, load cell, LASER) before

the tests. The second software, called Wavematrix, was developed by Instron for other

multi-actuator platforms and adapted for the triaxial case of ASTREE (Fig. 4.6). It allows

writing more complex procedures containing more diverse functions (e.g.amplitude/phase

control, event triggers, block repetition, relative command and precise camera trigger).

Also, the graphical user interface is color coded and scaled to the range of each chan-

nel, thus making it easier to verify that no mistakes were made in the writing of each

procedure.

2.1.3 New grips for biaxial tests

In order to be able to perform the biaxial tests on the chosen sample geometry, we de-

signed and tested new grips for the ASTREE machine. The main reason behind this is the

fact that the previously used grips wouldn’t allow the mounting of such a sample, which
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Figure 4.6: Typical procedure written in the control software Wavematrix

is shorter and thicker than the ones tested prior to this study. The old grips couldn’t get

so close to each other for the samples to be mounted, and the extra thickness meant that

the mean plane of the sample would no longer be aligned to that of the hydraulic actua-

tors. The new design corrects these inconveniences and presents other advantages as well,

especially greater flexural stiffness, but at the cost of a more restrictive clamping proce-

dure [Poncelet et al., 2014]. The design and some of the features of these new grips are

presented in Appendix E. The sample chosen for the biaxial machine has the central part

identical to the one used in ENI Tarbes, and the arms were modified so that they could be

mounted in the new grips (Fig. 4.3).

The experimental setup also contains two LASER sensors (Keyence LK-G407), which

give the ”real-time” relative displacements between two opposite grips. These sensors are

used because of the lack of precision in the machine’s LVDT sensors, which are far from

the ROI and are prone to errors due to elasticity and thermal fluctuations in the actuators.

They also served as a way to detect eventual slipping of the upper part of the grip with

respect to the lower part, given that the sensors are mounted on the lower parts.

Before launching the biaxial tests, a first stage of adjustments and verification was

needed. This was performed on the calibration sample, XA4. The alignment of the axes

is done using a linear spirit level, thanks to a vertical degree of freedom for each of the

grips, given by the cylindrical centering pin in its slotted hole.

The tightening during the validation of the new grips was performed on samples 5 mm

thick and 274 mm large. The vertical contact was ensured by using textured jaws that are

fixed on the two parts of each grip. The sample is tightened using 8 M8 vertical screws

to ensure contact and 5 M12 horizontal screws to keep the mobile and fixed parts of the

grips together. In order to tighten the cross-shaped sample used for current study (which

is shorter and thicker at arm level than usual biaxial samples used in ASTREE), different,

thinner jaws were machined so that the mean plane of the sample stays aligned with the

Modeling of partial mean stress relaxation and biaxial mechanical testing of Inco718DA



108 Biaxial tests

Figure 4.7: Slipping detected using LASER sensors, before passing to the dynamometric

key

mean plane of the actuators. The vertical tightening was initially made using 6 M8 screws

and an Allen key, but slipping was noticed given the high load levels and surface hardness

of Inco718DA (Fig. 4.7). It was then decided to use 10 M8 screws, in order to create a

more important contact pressure. Moreover, the screws were henceforth tightened using

a dynamometric key, which ensured a more important and constant torque per screw type

(35 Nm for the M8 screws and 50 Nm for the M12 ones). Another important aspect

was the order in which the tightening was made. If either one of the two connection

zones (jaw/sample and mobile part/fixed part) were to be too tightly fixed at first, than the

other wouldn’t have enough freedom to assure good contact and slipping might occur at

high load levels. In order to overcome this problem, an incremental strategy was used,

incremental in the sense that all the screws assuring a contact zone weren’t fully tightened

at first but little by little and in a precise order. In short the strategy was to assure partial

contact between the fixed and mobile part by tightening two M12 screws, then one line of

M8 screws, then untighten the two initial M12 so that good contact can be ensured with

the sample by tightening all the M8 screws. Finally, the 5 M12 screws are tightened to

ensure contact between the parts. The detailed strategy is available in [Poncelet et al.,

2014] and if performed in the correct order, very little or no slipping appeared during our

tests.

During one of the verification tests, an imposed load limit was accidentally triggered

and the machine became unstable and performed high frequency, high amplitude, non

equi-biaxial loadings on the XA4 sample. After 10 seconds, the sample suffered impor-

tant self-heating in the ROI followed by fracture (Fig. 4.8). This allowed us to better

understand how machine limits worked and that stopping the functioning of one axis at a
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Figure 4.8: Accidental fracture of the calibration sample XA4

time just introduced more instability in the system, and did not protect the sample. There-

after we used a limit trigger action called ”System stop”, which transfers to displacement

control on both axes and waits for user decision. Thus, we can choose how to return to a

safe state for the sample and continue testing.

2.2 Instrumentation

The instrumentation inside ASTREE has evolved considerably during past years, thus

optimizing the experimental campaigns by performing fewer but ”richer” tests. During

the thesis, different configurations were used and will be detailed for each test. For most

tests, the default measuring techniques will be presented in the following. As mentioned

earlier, the four horizontal actuators apply the loads along the two horizontal axes (Fig.

4.9). In order to obtain full-field measurements using Digital Image Correlation (DIC)

[Sutton et al., 1983a], two cameras are mounted perpendicular to the horizontal plane,

one facing the upper side (Cam
U p
1 ) and the other one facing the lower side (CamDown

2 ).

The camera model is Dalsa Falcon 2, with a maximum 4:3 resolution of 2432⇥1728 pix,

8 or 10 bit depth and a pixel size of 6 µm. This camera allows the setting of an area of

interest (AI) and multiple regions of interest (ROI) that can be taken during a single shot.

The size and offset of the AI and ROI can be set using serial commands, and are very

practical for fine centering and when important acquisition rates are needed (Fig. 4.10).

The cameras have a maximum frame rate of 168 Hz at full frame but can go up to 450 Hz

for smaller areas of interest. This high resolution vs frame rate is one of the reasons this

model was chosen to be used for the control of the machine using DIC.

The cameras are equipped with ⇥0.5 telecentric lenses and observe zones of

800⇥800 pix in the center of each face (i.e. 9.6⇥9.6 mm). Given that the ROI is supposed

to be in a homogeneous strain zone (inside the circle of thickness 1 mm), we needed to
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Figure 4.9: Instrumentation in ASTREE during biaxial tests
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Figure 4.10: Properties adjustments for the area of interest (AI) and the region of interest

(ROI) of Dalsa cameras
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Figure 4.11: Camera calibration during biaxial tests a) Degrees of freedom cameras b)

Centering device

make sure that the frame is well positioned. Thus, a centering device was designed and

manufactured out of PVC using a 3D printer (Fig. 4.11b). The device has four supports

that snugly fit in the elbow fillets. It is composed of an opaque frame in the middle of

which a translucent part is attached, with a cross marking to precisely see if the center of

the photo corresponds to the center of the piece (Fig. 4.10) 1.

The two Dalsa cameras were adjusted using the following protocol: the focus is set

with a fully open diaphragm (minimum depth of field), afterwards a compromise is made

between a minimum exposure time and a maximum opening of the diaphragm. In order

to center the cameras, a Newport X95 rails system was used, which are attached to the

upper and lower inactive actuators (Fig. 4.11a). The cameras, as well as the vertical rails,

are fixed on joints that slide when not fully tightened, which allows moving vertically and

horizontally respectively.

After noticing some problems in the 2D displacement fields, when large compression

loading was applied, two other cameras were introduced in the experimental protocol in

order to perform stereo-DIC. The cameras are AVT MANTA G-145B (1392⇥1040 pix,

pix size = 6.45 µm, 12 bits), equipped with F1.4 35-mm Zeiss lenses. They observe a zone

of 800⇥800 pix which includes most of the sample, including the visible part of the arms.

This way, we can better assess global and local displacements both in plane but especially

out-of-plane. The initial calibration between the left and right images is performed with

the help of a calibration target, which is a V-shaped prism with a known black and white

chessboard pattern (Fig. 4.12). These squares allow us to precisely select the same points

in the images taken with the left and right cameras, and thus obtain the transformation

1A more complex centering instrument is in development in order to be more versatile (adaptable for

different sample types) and to clamp the sample from the sides so that it doesn’t fall when placed on the

bottom side
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Figure 4.12: Photos of the calibration target used for the stereo-DIC analysis taken with

the left and right cameras

matrix more precisely.

For the lighting of the ROI, two LED spot lights (EFFI-Sharp-FF-000-1) were used

on each side. This ensures a uniform, constant light, thus eliminating fluctuations that

might appear due to environmental changes in luminosity. The LED spots are far-field,

thus allowing their positioning to be further from the sample, making it more accessible

during the tightening phase.

2.3 I-DIC control technique

One of the main experimental objectives of the thesis was to perform strain-controlled

biaxial tests, in order to study biaxial mean stress relaxation. In order to achieve this, the

control of the machine using Digital Image Correlation (DIC) was developed. Several

challenges had to be overcome to achieve this goal. The first was to test if the behavior

of the sample in the ROI was sufficiently homogeneous so that a machine control using a

mean strain was relevant. Second, the data to be used for the control from photos would

have to be recovered, treated and then transmitted to the testing machine, all this in a

sufficiently low time to allow cyclic loading. Last, the DIC signal would have to be suffi-

ciently stable and with a low enough uncertainty for the type of strain increments needed
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Figure 4.13: Principle of digital image correlation a) Global DIC b) Integrated DIC

in our test. The different available types of DIC techniques were presented extensively in

chapter 1 subsection 5.1. In the following, the principles of DIC will be briefly presented,

followed by the validation of the method and finally its implementation.

2.3.1 DIC principles

The principle behind digital image correlation resides in analyzing the gray level of an

initial image f versus that of a deformed image g and minimizing the difference between

the two by conserving the optical flow (Fig. 4.13a, Eq. 2). One of the ways to achieve this

is to discretize the ROI according to the Finite Element formalism [Besnard et al., 2006b],

thus with data at the nodes that are interpolated over the whole element (Fig. 4.13a). The

solution displacement field u is found by solving iteratively the linearized version (Fig.

4.13a, Eq. 3) of the minimization of the previous equation. Basically, [M] represents the

sensitivity of the initial image to the researched degrees of freedom and F the difference

between the two images. The size of [M] and F is proportional to the number of nodes

times the number of degrees of freedom per node (usually equal to 2, corresponding to

the displacements in the two directions). This method, also called the global approach,

gives a high spatial resolution result of the structure, but is quite slow given the important

number of unknowns (typically in the order of 103 −104).

Another option is to use a ROI of the same size, but with only one ”super element”

having only one node, and to enrich the shape function base in order to allow a more

realistic description of its kinematics (Fig. 4.13b). The researched kinematics is therefore

”integrated” into the shape function base (Fig. 4.13a, Eq. 4), thus the name Integrated

Digital Image Correlation (I-DIC). Through this approach, the number of degrees of free-

dom will be drastically reduced. In our case, we may consider sufficient the following 6

shape functions: translations along axis x (Tx) and y (Ty), in-plane rotation around axis z

(Rz), homogeneous strains ε11 and ε22 along axis x and y and homogeneous plane shear

γxy. Even if this approach isn’t as detailed at the global scale as the previous one, its main
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Figure 4.14: Control loop of the biaxial machine using I-DIC

advantage is exactly this speed/precision compromise that allows its use for the control of

a testing machine.

By using the principle of I-DIC, we aim at controlling the machine directly in terms

of strain (ε11 and ε22). To do this, photos of the ROI are taken at 300Hz and analyzed

with I-DIC using graphical processing units (GPUs) to reduce the computational time to

around 0.01 s, i.e. ⇡ 100 Hz measurement frequency. Finally, the measured values of

the two strains are the input for a correction of the command, computed through the PID,

as any other classic external measurement (Fig. 4.14). Among the images used for the

control (taken at a very high frequency and erased from the RAM after use), some will

be saved to be analyzed afterwards, using the global DIC technique, in order to check for

crack initiation or to allow other post-treatments such as localization and damage.

2.3.2 Validity of the mean value for biaxial strain control

In order to test the applicability of the I-DIC control method, elastic force-controlled

experimental tests were performed for typical loading scenarios: equibiaxial, uniaxial,

non-proportional. The post-treatment was performed using the global DIC software with

triangular elements, LMT Correli RT3 [Tomicevic et al., 2013], to obtain a rich field and

verify if a more coarse method (I-DIC) is suitable.

The evolution of loads was performed in steps (sequences of ramp/hold), thus each

photo (corresponding to each point on the graph in Fig. 4.16a) is taken after a period of

constant load, in order to minimize the uncertainty coming from the testing machine. The
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Figure 4.15: Strain maps of ε11 using an ROI of 800⇥800 (purple square) given by the

upper (left) and lower (right) cameras

figure also shows the strain maps in direction 1 (ε11) for the photos taken by camera 1

(upper face) and camera 2 (lower face).

Firstly, it needs to be mentioned that the global DIC computation was performed using

very small triangular elements (30 pix in size) and without mechanical regularization.

This explains the fact that there may be local spikes coming from speckle quality or optical

problems. Other contributors for the slight differences between the DIC elements are the

geometry of the sample and the loading fluctuations. Nevertheless, the global response of

the structure is overall homogeneous in the ROI (represented by the purple square),

Secondly, no important difference is observed for the two faces for ε11 (Fig. 4.16a),

with the values from the upper side in blue and the lower side in red. Therefore, in this

elastic case, no flexion appears and the response of only one camera could be sufficient for

the analysis. Nevertheless, in more extreme loading conditions or during long cyclic cam-

paigns the possible difference in response between the two faces would offer important

information about the behavior of the sample.

Thirdly, we compared the mean strains, which were computed using an optical gauge

the size of the ROI, to the theoretical strain field. In order to obtain the theoretical strain

magnitudes, elastic simulations were performed with Abaqus on an eighth of a sample

(given its symmetry planes). Fig. 4.16a shows the loading for axis 1 (blue) and for axis

2 (red). Moreover, when comparing the experimental response with that of the Abaqus

simulation (Fig. 4.16b), the results are very similar. The evolutions of strains are linear,

which shows that the measurement result is (as expected) proportional to the efforts and

the measurement uncertainty is quite small (lower than 10−4). One of the reasons for the

difference in the results might be the fact that, for the used sample, 3D measurements

performed with a coordinate-measuring machine revealed that the theoretical mean plane

was shifted by approximately 20%. Nevertheless, the fact that the results are coherent

even for such small variations of efforts is a good sign for the applicability of the I-DIC

control method.
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Figure 4.16: Results of elastic tests (ε11) a) DIC optical gauge results (down) showing

ε11 on the upper side (blue) and on the lower side (red) b) Comparison between the DIC

results for the camera on the lower side (red) and the Abaqus simulations (blue)
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Figure 4.17: Vision software that controls camera acquisition

2.3.3 Technical specifications for the ”on-the-fly” I-DIC control

Having validated the applicability of the method by using an ”averaged” global DIC,

we passed to the implementation of the integrated method. A C++ and Cuda code was

developed in order to perform the GPU computations. It is based on a software described

by Le Flohic et al. [2014] and improved by Carpiuc [2015], which was used for a six

actuator testing machine in the LMT-Cachan, the hexapod [Nierenberger et al., 2012].

This software was adapted for our needs (shape function base, viewed variables) and

optimized in order to achieve the necessary speeds. It will be referred in the following as

ASTREE-IDIC.

In the present version, the image acquisition is decoupled from the I-DIC computation

system by use of a shared memory inter-process communication. To this aim, a second

software, named Vision, was developed by Samir Amrouche, an IT developer working

in the lab. The Vision software ensures the communication with the control cameras. It

allows to start/stop the camera acquisition, to set the image parameters (AI, ROI, exposure

time, acquisition frequency) and to have live views of the images and their grey level

histograms (Fig. 4.17). Given that the control cameras run at a very high speed on internal

trigger mode (freerun), we can not use an exterior voltage trigger as is normally done in

the case of other cameras during biaxial tests. One of the advantages of having a home

grown software was the possibility to add a custom trigger function in the code with

the following parameters: time between two saved images, time to take photos, time to

pause acquisition between photo sessions and total acquisition time. For example, when
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Figure 4.18: Graphical user interface of the ASTREE-IDIC software

performing 501 load cycles we wanted to save 20 photos/cycle for 6 cycles (cycles 1, 101,

201, 301, 401, 501). Thus, among the photos taken at a very high frequency (e.g.300 Hz)

we would save a photo each second during 20 s (the time to complete a whole cycle at

0.05 Hz), pause for 1980 s and then repeat this for a total time of 10020 s (the total time

needed to perform the 501 cycles).

Both Vision and ASTREE-IDIC are implemented on the same PC (Intel® Core™ i7

CPU at 3.3Ghz, 12Go DDR3 RAM, Nvidia GTX690 GPU, Linux Ubuntu 14.04 OS).

ASTREE-IDIC is written in the C++ and CUDA languages on the programming platform

Metil [Leclerc, 2007], and uses multithread and parallelized techniques in order to opti-

mize the computational time. The graphical interface and the I-DIC calculation are the

main tasks performed on separate threads. Moreover, the I-DIC computations are sepa-

rated on several threads, each thread corresponding to a camera, and is performed on a

different GPU. The GUI of ASTREE-IDIC (Fig. 4.18) was created using QtDesigner and

allows to monitor the experimental test and to set different parameters like the number of

points to visualize and setting the current photo as a new reference image.

2.3.4 Control loop time optimization and control security

One of the main challenges that had to be overcome for a reasonably fast I-DIC control

was the small time needed for the source-delay-measure cycle. In order to achieve this

cycle, one important part was sending the results from the computer to the testing ma-

chine. This process has to be sufficiently precise but also fast, both in terms of frequency

and delay. Given that the machine controller can only receive analogical signals, we had
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to find a solution involving a digital to analog converter. A first try was using an avail-

able oscilloscope connected by USB. Even if it was acceptable in terms of frequency and

resolution, the oscilloscope has only one analogical exit and the sending delay was about

200 ms (Tab. 4.3). In order to reduce this delay, we looked for solutions that were using

a different, much faster connection. After many discussions and research, we found a

DAC board (Access PCI-DA12-8) that can send 8 synchronized analog signals at a 12bits

resolution with a very small delay due to its PCI connection. The only inconvenience

found while installing the board on the computer, is that the board isn’t compatible with

our motherboard under the current operating system (Linux x64bits), which is necessary

for the GPU calculation. One way to circumvent this issue was to use an extra computer,

with a compatible configuration, just to send the data. The digital data was thus sent to

this intermediate machine using a socket protocol through Ethernet cable. Even with this

solution, less satisfactory than directly plugging the card in the DIC computer, the time to

send the data to the machine is estimated to be around 1 ms.

Solution Advantages Disadvantages

• Frequency = 70 MHz

• Resolution = 16 bits

• Easy coding

• Only one analog output

• Important send time

(⇡200 ms) - USB

• 8 synchronized DACs

• Resolution = 12 bits

• Fast send time - PCI

(⇡50ns =) maximum

frequency of 20kHz)

• Not compatible with our

motherboard =) Using

an intermediate PC

Table 4.3: Digital to analog converter choice between 1) Oscilloscope 2) DAC Board

The DAC board is controlled through a C++ script using typical I/O functions. Its 8

synchronized analog outputs are connected through coaxial cables to the analog inputs of

the testing machine controller. These channels will be used to send the I-DIC computation

signals, such as displacements, strains but also the residual values. Each channel needed

to be finely tuned in order to get the precise exit tension. Given that the board has a

12bits precision (212 = 4096 increments), the range for each channel needed to be well

chosen: small enough for the noise to be sufficiently low, but large enough to stay in the

estimated strain/displacement bounds of each test type. For most tests, the strain range

was set ±1 %. In order to lose as little precision as possible, the strain value (in %) is

transformed into an integer value and then sent to the DAC board. From here on, the

digital data it transformed into electrical tension, on each calibrated channel, and sent to

the machine controller, using the highest available tension range (-10V..+10V) so that the
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Figure 4.19: ASTREE control loop components

signal is sufficiently high with respect to the static noise. Each analog input channel of

the machine is then recovered in the control PC, and the last transformation converts back

to the ±1 % range (Fig. 4.19).

Having found a fast and reliable solution to send the data to the testing machine, we

needed to see if the whole loop was fast enough. This is very important when wanting to

perform cyclic tests at a sufficiently high frequency. The initial target was a frequency of

0.05 Hz, given that it was the strain rate equivalent of the uniaxial tests. In Tab. 4.4 the

main processes involved in the control loop are listed.

Control loop running at 100 Hz Time [ms]

Time for I-DIC computation with 4 iterations 5

Mean time for one I-DIC iteration 2

Time to take one photo 3

Time to transfer one photo 2

Time to send data =) DAC board =) ASTREE 1

Time for complete control loop 10

Table 4.4: Time of each process of the control loop

In order to test the influence the number of iterations has on the precision and speed of
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(a) (b)

Figure 4.20: Study on the influence of the number of iterations used in the I-DIC com-

putation a) Relative residual obtained using 5 iterations per computation b) Total control

loop time using different fixed number of iterations

the I-DIC computation, elastic sinusoidal cycles were performed at large enough loading

levels (F1 = F2 =±20 kN which is equivalent to ε11 = ε22⇡±0.1%). The time needed to

perform an iteration is ⇡2 ms, but it is the first iteration that is by far the longest overall.

Nevertheless, such a low computational time is possible mainly because the result of the

previously analyzed photo is used as an initial guess for the next one. After the first

iteration, the following ones are not only faster but also contribute to a much lesser extent

to the gain in precision. This aspect can be seen in Fig. 4.20a, where the relative residual,

which is the residual at the current iteration (R) over the residual at the first iteration (R0),

is noticed to be close to stabilized after only two iterations. I-DIC computations were

performed using different fixed number of iterations in order to test the impact on the total

loop time. This can be seen in Fig. 4.20b, where the mean value and the standard deviation

is plotted for the total loop time, over a population of 1000 computations, for each fixed

number of iterations. The total times evolves from ⇡8 ms (for the computations with 2

iterations) to ⇡12 ms (for the computations with 5 iterations). Given that a computation

using four iterations amounts to a reasonable total loop time of ⇡10 ms, it has been chosen

to use a fixed number of four iterations all time, in order ensure robustness.

Several safety measures have been introduced in the control loop, in order to avoid an

unstable or accidental behavior of the machine. One such measure was to use as initial

guess the result from the undeformed image, in the computation following a spike in the

residual (as opposed to the usual scenario which is to use the previous image). Such a one-

time event, which could be due to a physical event, camera acquisition bug, computation

error, an insect flying in front of the lens etc., would cause a chain reaction resulting in the

lack of convergence in subsequent correlation if the initial guess wouldn’t be changed. In

order to avoid that such temporary spikes in the signal (usually unrelated to the behavior

of the ROI) wouldn’t disrupt the control, a condition was imposed that if the high levels
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in the residual last less than 3 consecutive photos (⇡30 ms), then it isn’t even sent to the

machine, considering that it is one of the aforementioned situations. If the phenomenon

persists for more than 3 successive photos, then it is decided that the behavior is really

physical and needs to be taken into account, thus the signal is sent to the machine.

A similar safety measure was introduced to compensate for eventual lags in the trans-

mission of data from the computer to the DAC. Thus, if data isn’t received by the socket

for more than 2 s, then it was decided that the strain lag would become too dangerous and

the machine will be put in displacement control until the problem is fixed. In both cases,

the machine will be stopped, given that a limit was imposed on the residual, limit which

would trigged either because the value is actually too large (the first case) or because we

would artificially send a value of the residual surpassing this limit if the data doesn’t arrive

to the DAC for an amount of time considered dangerous.

Apart from these important security considerations, one must retain from Tab. 4.4 that

each process inside the control loop has a reasonable time, and that we manage to get the

control loop running at 100 Hz, with none of the processes being an important bottleneck.

2.3.5 Measurement uncertainty

Another important aspect of the I-DIC control is its reliability, in the sense that control

fields are sufficiently uniform for the mean value to be valid. In order to test the stability

of the mean strain, optical gauges of different sizes were analyzed on the global DIC

treatment of the available images. Given the resolution of the photos (800⇥800 pix), 3

square, centered, optical gauges were considered, with the sizes of 700, 200 and 100 pix.

The results from these gauges are compared to those from the I-DIC computations and

shown in Fig. 4.21 for a typical cycle, in terms of ε11. The difference between the three

optical gauges (700 - in blue, 200 - in red and 100 - in green) is quite small, even though

their sizes vary considerably. The mean difference between the minimum and maximum

values obtained with the three gauges sizes along the studied loading cycle is 15 ·10−3[%]
. It needs to be mentioned that the strain amplitude of the imposed sinusoidal loading is

important (0.8%) and thus the error with respect to this value is of 1.9%.

Another test was to check the evolution of the uncertainty when changing gauge size.

The uncertainty is computed as the standard deviation for the strain (ε11) recorded on 10

photos taken at zero load. During this time, the machine was turned on, so the machine

control noise is already included in the uncertainty. For the 800⇥800 configuration, the

found value varied from one camera to another, but never surpassed 1 · 10−3[%]. More-

over, when analyzing the mean value between the upper and the lower camera, the un-

certainty passes at 0.6 ·10−3[%]. The choice was made to use a mean value between the

responses of the upper and lower faces of the sample for controlling the machine, in order

to avoid flexion effects, with the added advantage of reduced uncertainty. This uncertainty

obtained for the average between the two cameras (0.6 · 10−3[%]) will be considered as

base value for the I-DIC computation in the following.

In Fig. 4.22, the uncertainty is computed for different size optical gauges, as well as

the I-DIC case. For the sake of comparison, the dashed line represents the uncertainty
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obtained for the uniaxial extensometer used to perform the uniaxial tests, which has a

gauge zone (10 mm) equivalent to the 800⇥ 800 I-DIC with the ⇥0.5 lens and chosen

cameras. It may be noticed, as expected, that the uncertainty is higher as the size of

the optical gauge is smaller. Nevertheless, the value is sufficiently small for the control,

thus allowing further acceleration of the method. Given that we had already obtained a
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Figure 4.23: Uniaxial strain control PID using the strain signal from only the upper

camera (εU
11) a) Square loading b) Sinusoidal loading

100 Hz strain-control loop, which was sufficient for the envisioned testing frequency, we

decided to use the 800⇥800 configuration for both its smaller uncertainty level as well

as a safety measure. This way, the signal would be more stable in case some unexpected

local anomalies occurred.

2.3.6 I-DIC control tuning

The next challenge was tuning the PID so that the machine strain control would be reactive

but also stable enough. Thus, a tuning sample was used, XT4, on which several tests were

made (sinusoidal, triangular and square) using different strain amplitudes and loading

frequencies. We started at a baseline close to that of the force PID (P = -10 / I = 0 / D = 0)

and on only one axis (Axis 1). It is worth mentioning that P is given in decibels (dB), thus

is on a logarithmic scale, whereas the other two parameters have a linear scale. The signal

that we first used to control the machine was εU
11, which is the I-DIC strain value for the

upper face (U for Up). We saw that the system would become very unstable, just seconds

after passing in strain control mode, without yet giving any strain level change. The PID

was too reactive and the lag between the command and the response would trigger this

unstable reaction. The value of P was gradually reduced until we managed to control

the machine using a slow ramp, but upon reaching a certain strain level we would again

become unstable. It must be noted that this behavior is unexpected in the framework of

the theory of linear system control, and thus may reveal non-linearities or other violations

of the theoretical assumptions in the complete real control loop. This forced us to make

an important compromise on the value of P, so that instability wouldn’t occur. Therefore,

the final value chosen for the PID was (P = -24 / I = 3 / D = 0).

The contribution of the integral would partially compensate in terms of correction

speed, giving a slight overshoot when performing a square loading (Fig. 4.23a), which is

particularly challenging for DIC measurement (potential blur, initiation value far from the

converged one). Even so, the square loading serves only as a guarantee to the stability of
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Figure 4.24: Passage to the strain control using the mean strain value between the upper

and the lower camera (εii-M) a) Uniaxial square loading b) Triangular biaxial loading

the system, given that the tests needed to be performed are much slower. Thus, it can be

seen in (Fig. 4.23b) that for a sinusoidal load, the less reactive PID is not a real problem

at this strain amplitude and frequency.

In order to correct some of the parasitic factors that may influence the behavior of the

sample (flexural movements, camera noise, asymmetric strains), the values of the strains

in the two directions used to control the machine were replaced with ε
M
11 and ε

M
22 which

are the mean values between the strains from the upper and lower face, εM
ii = -εU

ii +εD
ii )/2.

As mentioned before, the flexion effects will be less impacting and the uncertainty will

be reduced from 1 · 10−3[%] (when using only the upper camera) to 0.6 · 10−3[%](when

using the mean value). Thus, the signal becomes less noisy and the tests will be cleaner

(Fig. 4.24a).

The same PID was then set for signal εM
22, and the first biaxial strain-controlled tuning

tests were performed. As it can be seen in the triangular loading featured in Fig. 4.24b,

the signals for εM
11 and ε

M
22 are less noisy and follow quite well the command, even with a

less reactive PID, for a frequency of 0.1 Hz.

Lastly, it is worth noting that for these tuning loads, the amplitudes were about 10

times smaller than what they will be during the real biaxial tests, so the noise will be

very small with respect to the final strain amplitudes. Other details concerning the strain

control will be presented in the results section, for each type of test.

3 Biaxial tests results

Several biaxial campaigns were performed, with the purpose of providing rich data for

the plasticity model under development. A total of 6 biaxial samples were tested and

another 4 were used for calibration during the experiment development phases. Each

test was unique in terms of loading type and included more than one level (both in the

case of force-controlled and of strain-controlled tests). The test types were decided as
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development progressed, both in the case of the plasticity model and of the strain control

of the machine.

As presented in detail in Appendix A, the names of the biaxial samples are in the

form of two letters and a number. The first letter, X, corresponds to the fact that it is a

biaxial sample, the next one to the block of 4 samples it came from (A, B, C or D) and

the number gives its vertical position inside the circular forged block out of which the

samples were extracted (1-highest, 4-lowest). Apart from the samples tested in order to

asses the behavior of Inco718DA, others were machined to be used for calibration and

tuning before the actual tests. They were also made of inconel, but before being subdued

to the thermo-mechanical processes that improve its properties. Three such samples were

manufactured, being named XT1..3, with T for tuning. Thus, we were able to work on

these samples, quite similar to the real ones. This allowed us to know what to expect and

to eliminate potential problems. The tests will be presented in the following, insisting on

the important aspects of each of them.

3.1 First force controlled test XA3

The first biaxial test was performed soon after the uniaxial campaign in order to test the

behavior of the sample at higher load amplitudes that those performed at ENI Tarbes

[Selva et al., 2017]. The loading levels were initially chosen the same as the levels

of the force-controlled uniaxial test (presented in Appendix C), in terms of equivalent

stress (σeq). This equivalence was made by imposing in Abaqus a material behavior based

on interpolations of given points σ = f (εp) extracted from the uniaxial monotonic curve.

A more elaborate cyclic computation should be performed in order to better estimate this

biaxial-uniaxial equivalence.

The test is equi-biaxial, so F1 should be equal to F2 at any given time. The found

loading levels were: the mean values F̄ = 0,1.5,3,4.5,6 kN and an amplitude ∆F
2

=
75 kN. The loading was sinusoidal, using the same frequency as in the uniaxial case

(5 · 10−2 Hz) for the same number of cycles (300/level). Each level is represented in

Fig. 4.25a by 6 symbolic cycles. After each series of 50 cycles, 4 images were taken

(maximum/ zero/ minimum/ zero load). This was done in order to monitor the evolution

of the test and also for post-treatment. For this test, two PCO Pixelfly cameras were

used (depth of 14 bits, maximum resolution of 1392⇥1040 pix and pixel size of 6.5µm)

equipped with ⇥ 0.5 telecentric lenses.

Given that the sample didn’t break after these first 5 levels, we continued increasing

the mean load F̄ by a step of 5 kN and kept the same load amplitude. Thus, we obtained

3 more levels: with F̄ = 10,15,20 kN and ∆F
2

= 75 kN. After this, the maximum value

of the force was maintained, given that 95% of the machine capacity (Fmax = 95 kN) was

reached. The force amplitude was increased, which gave us a command of F̄ = 15 kN

and ∆F
2
= 80 kN. After 240 cycles at the last level, the sample broke, but the crack wasn’t

detected after the first block of 50 cycles from the last loading level.

An aspect that was noticed during this test was that the strain map is quite different for
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Figure 4.25: First equi-biaxial force controlled test XA3 a) Loading scheme b) Evolution

of the strain components (ε11,ε12 and ε22) on the two sides of the sample obtained with a

global DIC algorithm for an optical gauge of 400⇥400 pix
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Figure 4.26: Local instability phenomenon observed in strain maps at high compression

loading
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Figure 4.27: Out-of-plane displacement Uz in mm during buckling (visual scale of 1:5),

detected on biaxial sample XT2: a) First maximum compressive loading (-80 kN) b) Zero

loading after three cycles

the upper face when compared to the lower one. This generates a difference in the mean

strain (Fig. 4.25b) made on an optical gauge of 400⇥400 pix ⇡ 2.6⇥2.6mm (represented

in purple in Fig. 4.26). By placing a dial indicator on the central surface of the sample

during the test, a relative out-of-plane movement of ∆h = 40 µm per cycle was observed.

Even if this value is smaller than what was found in stereo measurements on the following

test, it was the first sign that buckling might occur for large enough compression stresses

in the central zone. The next tests we performed had the purpose of seeing how far we

could go in compression before local instability occurred.

3.2 Buckling detecting tests XT2 and XA2

In order to better understand the way the buckling phenomenon occurs in the center of

the biaxial samples, multi-level tests were performed. The purpose was to quantify the

out-of-plane movements and determine for which loading levels it would occur. As it was

unclear in the beginning of the study that the heterogeneity seen in the 2D DIC maps of the

previous test (XA3) was indeed local buckling, a first quasi-static loading was performed

on sample XT2.

Thus, the sample was equi-biaxially loaded in tension up to 80 kN, followed by a load-

ing in compression down to -80 kN. Photos are taken of the sample with the two Manta

cameras presented in subsection 2.2 every 5 kN, in order to precisely find when the first

instabilities occur, by using stereo-DIC. Down to -60kN, the measured value of the out-

of-plane displacement (Uz) stays in reasonable bounds with respect to the surrounding,

more rigid area. A value of 0.05 mm relative Uz displacement is thus found for the central

area. With the next levels, we see a considerable increase, reaching a maximum value of
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Figure 4.28: F1 versus Total cycles for the buckling detecting test XA2

⇡-0.31 mm at -80 kN (Fig. 4.27a). After only 3 cycles, this value reaches a maximum of

⇡-0.36 mm at -80 kN. Moreover, a large part of this strain is plastic, given that at the last

unloading (F1 = F2 = 0 kN) the out-of-plane displacement Uz has a value of ⇡-0.27 mm.

We may conclude that there is a threshold in compression that will result in buckling far

too important to consider that the behavior in the ROI remains sufficiently homogeneous.

Moreover, this value represents ⇡30% of the thickness of the sample, so it is imperative

to find the safe load range. This is not trivial, because on the one hand each geometry

is slightly different, and certain eccentricities would exacerbate the phenomenon and, on

the other hand, we would like to obtain important plasticity levels in the center of the

sample, which can be obtained going closer to this limit. Given that during cyclic tests

an accumulation of plastic strain may be encountered, buckling might appear for a certain

load amplitude only after a number of cycles was performed.

In order to better understand the phenomenon, a second equi-biaxial force-controlled

test was performed, this time on the testing sample XA2. As the purpose was to find

the largest force span before buckling would occur, the maximum applied force in both

directions was chosen at 95% of the capacity of the machine in tension (95 kN). The

minimum force was gradually decreased, begining from 0 down to -90 kN in steps of

10 kN at first, then later 5 kN, for a total of 15 levels (Fig. 4.28). For each level, 101

cycles were performed, except for the last level (F1 = F2=+95..-90 kN), when 21 cycles

were achieved before fracture occurred, for a total number of 1416 cycles. The switch

from a step of 10 kN to 5 kN was made at -40 kN, when we assumed the risk of buckling

to increase considerably.

Starting with this test and until the end of the biaxial campaign, the equipment de-
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Figure 4.29: First visible out-of-plane movement on sample XA2 at F1 =-85 kN

scribed in subsection 2.2 was used (Dalsa cameras for the central zone and Manta cameras

for the stereo images). With the Manta cameras being triggered using the analog output

of ASTREE, 3 cycles per level (1,51,101) were captured with a number of 40 photos per

cycle. Each photo is represented as a red circle in the bottom part of Fig. 4.29. The

minimum and maximum levels were mainly analyzed in order to detect obvious changes

in behavior. Given that XA2 was the sample with the thickest central area and small mean

plane shift (Tab. 2.1.1), its behavior was very stable. Only in the last two levels more

important out-of-plane movement was observed, as may be seen in the upper-right part of

Fig. 4.29. The maximum value of Uz is reached at -90 kN in the last loading level and has

an absolute value of Uz⇡0.15 mm but a relative value of only ∆Uz=0.04 mm with respect

to the rest of the thickness reducing fillet zone. This results shows that machining defects

(thickness, mean plane shift) can have an important impact on the behavior of the sample,

affecting if and how buckling occurs. Unfortunately, the exact moment when the ROI

stops being sufficiently homogeneous for the I-DIC computations to be valid is difficult

to assess accurately using the stereo analysis of only one face.

Another measurement technique used during this test was the two Dalsa cameras ob-

serving a zone of 800⇥800 pix. on each side of the sample. Starting with this sample,

the I-DIC computations ran during the test at a frequency of ⇡100 Hz. Thus, the values

of εxx (or ε11) and εyy (or ε22) were transmitted to the machine control software (Wave-

matrix) and stored for each data point we decided to save (⇡400 points per cycle). The

values were marked U (Up) for the upper face and D (Down) for the lower face (e.g.εU
11 is

the strain along axis x measured on the upper side of the sample). The cameras were set

on internal trigger, with a frequency of 300 Hz, to ensure a flow of information as close
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Figure 4.30: Strain vs Time curves for the sample XA2 a) ε11 and ε22 I-DIC results for

the upper face b) ε11 I-DIC results for the upper and lower faces

to ”real-time” as possible before the new I-DIC computation can be performed. Out of

these photos, stored initially in the RAM memory, some were saved in order to be ana-

lyzed a posteriori. The trigger for these photos was synchronized as close as possible to

the trigger for the stereo cameras. The timing of a loading step (cyclic or quasi-static)

is very precise, but the passage between steps has a lag of 2⇠3 seconds. Before such a

manual trigger sequence is initiated (on mouse click) a user input button was placed in

Wavematrix in order not to miss setting off the signal and to systematically follow the

same procedure. Even if the two triggers are not perfectly synchronized, the delay should

stay constant and sufficient points per sinusoidal cycles guaranties an accurate detection

of peaks.

When analyzing the I-DIC computations, some interesting results emerge. First of

all, as we may see Fig. 4.30a, the response of the structure is quite consistent in the

two directions for the most part of the loading history. The evolution of the strains has

very little differences up until the last four levels, when the two seem to drift more and

more. This difference is all the more noticeable in Fig. 4.30b, when comparing what

happens on the upper and lower faces. It can be seen that, due to buckling, the upper

face exhibits increasing compression strains, whereas the lower face begins going in the

opposite direction, even reaching a positive mean strain at F1 = F2=-90 kN during the last

loading levels. This phenomenon is similar to what happens during bending tests, when

one side is in tension and the other in compression. This proves that once we pass a certain

threshold, the percentage of strain due to buckling becomes more important than that due

to the actual load, thus rendering the results unexploitable. Therefore, the divergence

between the I-DIC strains in compression could serve as a viable indicator of bucking

occurring.

What is important to see is that through this measuring method we obtain strain data

for every point and thus plastic force-strain curves can be analyzed (Fig. 4.31a). As
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Figure 4.31: F1 vs ε11 curves for XA2 a) All cycles b) Buckling shown by comparing

results from the upper (εU
11) and lower (εD

11) faces

mentioned previously, the curves extracted from the final levels, when buckling occurs,

can’t be considered valid, as the mean is made on a very heterogeneous field and the

difference between the response from the two faces clearly shows it (Fig. 4.31b). The

very large opening of the hysteresis loops is mostly due to buckling and not in plane

plastic strains.

The difference noticed between the strain levels exhibited on the two sides of the sam-

ple during the acceptable levels (1 to 11) occurred since the first level (Fig. 4.32a), when

the two force-strain curves slightly diverged. This could be due to a number of reasons

such as slight flexion, sample geometry or imperfect centering. In tension, this shift seems

to remain about the same all through the test (Fig. 4.32b), whereas in compression we

notice the influence of the instability, at first just slightly and at the end obviously.

It can be seen in Fig. 4.32b that some of the acceptable levels offer hysteresis force-

strain loops with some plasticity (non-linearity). Thus, this test has shown that we can

obtain plastic force-strain curves below the buckling threshold, which was its initial pur-

pose.

3.3 First equi-biaxial strain-controlled test XB1

The first strain-controlled experiment we performed was an equi-biaxial test with 10 lev-

els, with 101 cycles per level. The purpose of the test was on the one hand to validate the

control method for high strain levels, and on the other hand to study the behavior of the

sample when going more and more into compression. The levels were computed based

on the results given by the previous test (on sample XA2), trying to stay within the safe

bounds where buckling wouldn’t occur. As mentioned in subsection subsubsection 2.3.6,

the chosen control signal was the mean value given by the upper and lower cameras in
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Figure 4.32: F1 vs ε11 curves for XA2 from the upper (εU
11) and lower (εD

11) faces a) Level

1 b) Level 7
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Figure 4.33: εM
11 vs time for the first equi-biaxial strain-controlled test on sample XB1
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Figure 4.34: ε vs time for the first equi-biaxial strain-controlled test on sample XB1 a)
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two directions

each direction, εM
ii = (εU

ii +εD
ii )/2). As in the previous test, the maximum mean strain

(εM
11 = ε

M
22) was chosen close to the theoretical limit strain inflicted by the machine. In

this case, for the first 7 levels, the maximum strain level was chosen ε
max
11 = ε

max
22 = 0.54%

(Fig. 4.33). The minimum strain level started from 0% and was incremented down to

-0.32% in steps of 0.054%. For the last three levels, after having realized that a minimum

strain of -0.46% already generated some buckling effects, there was no point in going

beyond. So, for the last three levels, the minimum strain was ε
min
11 = ε

min
22 = −0.46%,

and the maximum one was decreased in steps, to see how it would influence the behav-

ior (εmax
11 = ε

max
22 = 0.62/0.57/0.51%). The loading frequency was 0.05 Hz, which is

equivalent to that used in the uniaxial strain-controlled tests.

The response of the structure was quite uniform. As can be seen in Fig. 4.33, the

command strain is almost reached and there are no important fluctuations in the control.

The fact that the exact value of the command isn’t reached is due to the less reactive PID,

but also to the high levels needed to be reached and the 10 ms lag for the complete control

loop to happen. Even if the value of εM
11 is reached consistently in the same manner, it can

be seen in Fig. 4.34a that in the last three cycles, when buckling occurs in compression,

ε
U
11 and ε

D
22 begin to diverge in order for the mean value to be constant. Once again, these

loading levels are unexploitable, given that the I-DIC computation performs a mean over

a very heterogeneous zone. Given that this first test was suppose to validate/invalidate

different aspects of the method, for the control of axis 1 only the PID was responsible,

whereas for axis 2 a correction method called ”amplitude control” was also used (Fig.

4.34b). This correction serves the purpose of compensating a PID incapable of reaching

the setpoint. It calculates the difference between setpoint and measured response over the

course of a number of cycles and then begins slowly modifying the command so that it is

finally reached. It can be seen in Fig. 4.34b that εM
22 slowly grows in the begining of each
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Figure 4.35: Slipping occurring during two instances of the XB1 test a) First load up to

0.5% b) Beginning of level 8

new level, which is the direct effect of amplitude control. This feature is very useful in

high cycle fatigue tests, where several tens of initially imperfect (and smaller amplitude)

cycles don’t play such an important role. If the PID can’t be set as sufficiently reactive

due to different causes, this correction could offer a solution if enough cycles were to be

performed. In our case, that of behavior tests, such fluctuations could be detrimental in

understanding the true phenomena occurring in the material.

Another problem that was encountered in the first tests was the slipping of the grips.

An important slip occurred on both axes during the first loading, up to the maximum

strain ε
max
11 = ε

max
22 = 0.54% (Fig. 4.35a). Even though the relative displacements of the

grips during this initial slip, as given by the LASER sensors, were in the order of 0.5

to 1 mm, the displacements encountered in the ROI were a lot smaller, thus the sample

wasn’t shifted too much from its initial position to cause the I-DIC residual displacements

to spike. Moreover, this had little influence over the strains in the ROI, given it is mainly

rigid body motion that occurs. This is also the case when an important change is made in

the minimum and maximum strain levels, during level 8 (Fig. 4.35b). It can be seen that

even though displacements may have important sudden fluctuations, the strain signal isn’t

affected too much, and the strain control manages to remain sufficiently stable.

As mentioned in the beginning of the chapter, the main purpose of the biaxial ex-

perimental campaign is to perform plastic strain-controlled tests. With the limits in load

levels imposed by the machine capacity and the geometry of the sample that results in

buckling problems for high compression, it was important to find out if the loading con-

ditions were proper to obtain exploitable plastic cycles. It can be seen in Fig. 4.36a that

some plastic loops were obtained during this test. For the last three levels, after buckling

occurs, the response is very different on the two sides of the sample, and the mean value,

although reached by the PID, is no longer valid (Fig. 4.36b). It can also be seen that there

are no important drifts in the maximum/minimum strain levels, given that 100 cycles are

represented in these figures. Thus, the strain signal given by the I-DIC computations is
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Figure 4.36: Force vs strain curves for the XB1 test a) Level 7 plastic curves without

buckling b) Level 10 unexploitable curves due to buckling

sufficiently stable and consistent to be used for even longer biaxial campaigns.

Another important aspect of the study was analyzing the mean strain relaxation phe-

nomenon in the biaxial case. It is more difficult to assess the stress state in the ROI, given

the complex geometry of the sample, but some remarks may be made concerning the force

levels. As can be seen in Fig. 4.37, the force in the two directions during the exploitable

cycles (1..7) don’t exhibit important variations during each level. It is thus necessary to

perform more cycles during these plastic levels in order to see if the force remains con-

stant over a longer period of time. One important reason behind this effect is that the

ROI is confined in a much thicker, elastic region, that barely deforms during our tests.

This should have a considerable effect on the potential for relaxation of the applied loads,

given that the local stress in the ROI isn’t well known. When compared to the uniaxial

case, where necking occurs and the plastic strain directly impacts the stress in the loading

direction, a stress relaxation can be more directly linked to a load reduction. For this bi-

axial case, a more complex finite-element structural computation would be necessary in

order to fully quantify the stress relaxation in the ROI. This is one of the aspects that will

be treated in the PhD work of Estarle R. F. de Souza Campos [de Souza Campos et al.,

2017], where Abaqus computations will be performed on our sample, using a UMAT with

the model presented in chapter 3.

3.4 Non-equi-biaxial strain-controlled tests XA1 and XC4

The equi-biaxial strain-controlled tests performed previously have shown that we are able

to obtain valid plastic loops, although with quite small macroscopic plastic strains. A

maximum strain amplitude of ∆ε11 = ∆ε22 = 0.4% has been reached with no buckling

occurring in compression. Other options needed to be explored in order to obtain larger
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Figure 4.37: Force vs time for the first equi-biaxial strain-controlled test on sample XB1

plastic strains in the ROI without causing instabilities. In order to better understand the be-

havior in the central zone of the sample, uniaxial elastic simulations were performed using

ABAQUS on an eight of the sample, given its symmetry axes. After applying a unit force

in one direction (Fk = 1 kN) and a zero force in the perpendicular direction (F? = 0 kN) we

extract the strains and stresses on the surface in the central point (ε1kN
k ,ε1kN

? ,σ1kN
k ,σ1kN

? ).

Using these values, we can calculate the elastic stresses and strains obtained by any com-

bination of forces with the following equations:

(

εk = ε
1kN
k Fk+ε

1kN
? F?

ε? = ε
1kN
k F?+ε

1kN
? Fk

(

σk = σ1kN
k Fk+σ1kN

? F?

σ? = σ1kN
k F?+σ1kN

? Fk

(4.2)

A choice was made for direction 1 to be the one we would like to obtain higher strains

for, so in the following the k and ? directions will be 1 and 2 respectively. Using the

force ratio
(

RF21 =
F2
F1

)

, the strain ratio
⇣

Rε21 =
ε22
ε11

⌘

and the stress ratio
⇣

Rσ21 =
σ22
σ11

⌘

,

Eq. 4.2 was developed to find:
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Figure 4.38: Study of the influence of different force ratios a) Rε21 and Rσ21 vs RF21 b)

Abaqus simulations results for the whole testing machine force range

Rε21 =
ε

1kN
11 +ε

1kN
22 RF21

ε
1kN
11 RF21 +ε

1kN
22

Rσ21 =
σ1kN

11 +σ1kN
22 RF21

σ1kN
11 RF21 +σ1kN

22

(4.3)

Using Eq. 4.3, the strain and stress ratios (Rε21 and Rσ21) were computed for the

entire range of the force ratio RF21 = −1..1. In Fig. 4.38a the evolutions of Rε21 and

Rσ21 are plotted with respect to RF21. It can be seen that the extremes (-1 and 1) are

the same for the three ratios, but the evolutions are quite different. When analyzing the

possible strain ratios to consider, we eliminated the range Rε21 =−0.3..−0.5 given that

in between these limits the system is in a uniaxial state (ν = 0.3..0.5) and thus results for

this case can be obtained through typical uniaxial tests. For Rε21 too close to -1, the strain

maps would become too heterogeneous in the ROI, thus the I-DIC computation would

no longer be relevant. For Rε21 too close to 1, the maximum possible strains are still

not large enough. In order to better understand the behavior of the structure, extensive

simulations were carried out in Abaqus using different ratios RF21, given that controlling

a structure using local strain states is not trivial. Some of these results are shown in Fig.

4.38b, where it can be seen that the lower RF21 is, the larger the potential strain gets in

direction 1. Following these guidelines, two values were chosen for the strain ratio, to be

performed on the samples XA1 and XC4.

For sample XA1, Rε21 was chosen equal to -0.6 which corresponds, during elastic

loading, to a force ratio RF21 = 0. The ratio between maximum and minimum strain

(Rε = ε
min

ε
max ) was, in both directions, equal to 0 (Rε11 = Rε22 = 0). A total number of 6

levels were performed, with 401 cycles per level at a loading frequency of 0.1 Hz. The

maximum command strain in direction 1 began at ⇡0.76%, and was increased by a step
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Figure 4.39: Strain vs total cycles in the first non equi-biaxial test XA1 (Rε21 = -0.6)

of ⇡0.22% at every level, thus obtaining ε
max
11 -C ⇡ 0.76 / 0.97 / 1.19 / 1.41 / 1.62 and

1.84% (Fig. 4.39).

The less reactive PID, but also the material behavior, made it that the zero strain

value, which was the maximum command in direction 2 and the minimum command in

direction 1 (εmin
11 -C=εmax

22 -C=0%), wasn’t exactly reached, although results were consistent

throughout the 401 cycles of each level (Fig. 4.40a). The maximum values are reached in

direction 1, as computed, so the principle behind the non equi-biaxial test was validated.

Unfortunately, as can be seen in Fig. 4.40b, the results do not have the usual shape of

plastic hysteresis curves. Instead of the sharp loops encountered in the uniaxial case that

got wider with strain/stress amplitudes (larger plastic strains), the F1 vs ε11-M curves

seem to go from equally open and blunt at the extremes (Fig. 4.40a), to a shape that

resembles the number 8 (Fig. 4.40b), where the zone that should have the largest opening

has almost none at all. This phenomenon will have to be further examined in order to

make a clearer conclusion.

For sample XC4, Rε21 was chosen equal to zero, so a theoretically uniaxial strain

state. This corresponds, during elastic loading, to a force ratio RF21 = 0.6. A total number

of 6 levels were performed, with 501 cycles per level at a loading frequency of 0.1 Hz.

The maximum command strain in direction 1, εmax
11 , was a constant ⇡0.65% for all levels,

and the minimum, εmin
11 started at 0% and was decreased by a step of 0.11% at every level,

thus resulting in ε
min
11 -C ⇡ 0 / -0.11 / -0.22 / -0.33 / -0.44 and -0.55% (Fig. 4.41).

For this test we can see that the PID is indeed struggling to keep the value of the strain

on the second axis at zero (Fig. 4.42). It has to be taken into account that the material

”naturally” tends towards a state different from zero in the opposite direction of loading,
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Figure 4.40: Force vs strain curves of the XA1 test for a) Level 1 b) Level 6
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Figure 4.41: Strain vs total cycles for non equi-biaxial test XC4 (Rε21 = 0)
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Figure 4.42: Force vs strain curves of the XC4 test for a) Level 1 b) Level 5

due to the Poisson’s effect. Nevertheless, a much more reactive PID would be needed in

the future, at least for the second axis, for the response to be closer to the command. Such

a PID is not trivial to set, given that this problem occurs even in force control, which uses

a signal much more reliable (higher refresh rate and smaller delay), for highly non-equi-

biaxial loading states. Moreover, the decrease noticed in the maximum strain level seen

in red in Fig. 4.41 is also a result of the influence one direction has over the other, causing

the response to be less and less accurate even for the first axis. The loops in direction 1

still do not resemble the uniaxial ones, although the phenomenon seen in the previous test

doesn’t seem to reappear. They don’t, however, get a lot larger, but seem to have the same

permanent strains throughout all levels.

3.5 Stabilized equi-biaxial strain-controlled test XB2

In order to verify if the results found in the case of sample XB1 do not evolve differently

over the course of more than 101 cycles, a test was performed on sample XB2, with 3

levels, 501 cycles per level (Fig. 4.43). The loading levels were chosen among those

performed in the XB1 test, in order to be able to see if the results are consistent. Thus, the

maximum strain command for all three levels was ε
max
11 -C=εmax

22 -C=0.54% and the min-

imum was gradually decreased, resulting in ε
min
11 -C=εmin

22 -C=-0.11/-0.27/-0.32%. These

bounds were chosen large enough to plastify, but without buckling appearing in the center

of the sample. For these first three levels, the loading frequency was, as in the case of

sample XB1, 0.05 Hz.

Given that this test is considered valid in its entirety (no buckling occurred), an in

detail analysis was performed on some of the images taken by the control cameras and

saved during the test. The strain maps were quite homogeneous on both sides of the

sample even in high compression levels. In Fig. 4.45, the strain maps in direction 1 are
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Figure 4.43: Strain vs total cycles for the equi-biaxial strain-controlled test XB2
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Figure 4.44: Force vs strain curves of the XB2 test for a) Level 2 b) Level 3
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Figure 4.45: Homogeneous strain maps for the equi-biaxial strain-controlled test XB2

shown for the two sides of the sample (Up and Down). The photos are taken in a moment

when the minimum strain is reached (ε11-M =ε22-M=-0.32%) and there are no visible

signs of buckling.

As in the previous test, very little difference was encountered in the evolution of F1

and F2 during a loading level, even though the opening in the hysteris loops shows they

are clearly plastic. Thus, no mean force relaxation occurs during these 501 cycle periods

(Fig. 4.44). In order to go even further, the bounds of the last level were kept but the

loading frequency was changed to 0.1%, so twice as fast as before in order to reach 4001

cycles in a reasonable amount of time (Fig. 4.46). We noticed that the less reactive PID

had some trouble in reaching the upper limit, although not the lower one. Even so, very

little evolution was noticed in the force levels, in the order of 3⇠4 kN.

These results make the comparison with the uniaxial strain-controlled results diffi-

cult, given that in the uniaxial case, important mean stress relaxation was noticed. As

mentioned earlier, the stress relaxation in the ROI is masked in the biaxial case by the

elastic thick region surrounding it. To overcome this issue, a more complex FE plastic

computation needs to be made in order to fully asses the stress state in the ROI.

4 Conclusion

For analyzing complex phenomena like mean stress relaxation, a reliable measurement

and control method has to be developed for the high plastic strains occurring in the re-

gion of interest of the sample. Classic measuring techniques, such as strain gauges and
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Figure 4.46: Force vs strain curves for the XB2 test for εmax-C = 0.5% and εmin-C =
−0.3%, 4001 cycles at 0.1 Hz

extensometers are difficult —if not impossible— to use in order to perform biaxial strain-

controlled cyclic tests because of the high levels of plasticity and their aforementioned

inconveniences. Global DIC is too slow to control a testing machine in our testing sce-

narios, thus integrated DIC (I-DIC) was used. By using adequate shape functions on

one element and GPU computations, we were able to obtain measurement frequencies

of 100 Hz with a accumulated response delay of 10 ms. With the current technology,

there isn’t much place for improvement in terms of speed and delay. With more power-

ful GPUs, the treatment time would improve negligibly with the current code. The main

time loss is related to the transfer of the images. Even if they are only transferred in the

computer RAM, it’s still a considerably sized matrix. One lead would be direct camera

treatment, such as FGPA cameras, where images wouldn’t need to be transferred to a

computer. Nevertheless, for low cycle fatigue tests at 0.1 Hz, this method performed very

well.

First elastic tests have revealed that the results are coherent with the Abaqus simula-

tions and that the strain maps are sufficiently uniform to validate the use of a mean value

(I-DIC). After an initial ”on the fly” monitoring of I-DIC obtained strains, results were

coherent in the two directions and on the two sides of the sample up to a certain point,

when the structure exhibits buckling. This phenomenon was extensively studied using

Abaqus simulations and stereo-DIC measurements, in order to determine the safe loading

domain.

The presented biaxial DIC strain-controlled tests were carried out using the mean

value from the upper and lower cameras as a control signal. The loading levels and pur-

pose of all biaxial tests are summarized in Tab. 4.5. The symbols mean: ⇥ - sample

suffered complete fracture during the test, X - sample unbroken after test. The color red
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Sample Test details

⇥ XA3 First force-controlled equi-biaxial test, that shows buckling occurring

( 9 levels |300 cycles/level |∆F /2 = 75..80 kN |F̄ = 0..20 kN )

⇥ XA2 Force-controlled equi-biaxial test performed to find buckling limits

(16 levels |101 cycles/level |Fmax = 95 kN |Fmin = 0..-90 kN )

X XB1 First strain-controlled test performed (Equi-biaxial)

(10 levels |101 cycles/level |εmax
11 = 0.58% |εmin

11 = 0..-0.43%)

X XB2 First fully viable strain-controlled test performed (Equi-biaxial)

( 3 levels |501 cycles/level |εmax
11 = 0.50% |εmin

11 = -0.1/-0.25/-0.3% )

⇥ XA1 Non equi-biaxial strain-controlled test (Rε21 = ε22/ε11=-0.6 |RF21⇡0)

( 7 levels |401 cycles/level |εmax
11 = 0.70..1.9% |εmin

11 = 0% )

⇥ XC4 Non equi-biaxial strain-controlled test (Rε21 = ε22/ε11=0 |RF21⇡0.6)

( 6 levels |501 cycles/level |εmax
11 = 0.70% |εmin

11 = 0/-0.1..-0.5% )

⇥ XA4 Poorly machined, thus used as first tuning sample (accidental fracture)

⇥ XT1 Tuning samples, in different states of damage, used for: centering /

X XT2,XT4 PID adjustments / camera trigger / strain control / testing ASTREE-IDIC

Table 4.5: Summary of the biaxial campaign on cross-shaped specimens

means that an accident occured and the sample broke, whereas the color green means the

sample served its desired purpose.

As was shown in the previous sections, the I-DIC measurements are sufficiently pre-

cise to be used as a reliable ”real-time” sensor for biaxial tests with a sufficiently ho-

mogeneous ROI. Moreover, with its precision and speed, I-DIC proved to be a suitable

technique for controlling a biaxial hydraulic machine. It worked very well for the equi-

biaxial strain control, up to very high levels of strain, superior to gauge capability. In the

more extreme loading cases, such as Rε21=0, the PID wasn’t reactive enough and so the

quality of the results was less accurate. Nevertheless, what was shown through these tests

is that in the biaxial case, at least for the used sample, there was very little or no mean

stress relaxation. This novel result is important and has not been observed so far. It will

have to be taken into account in future studies, when the model will be used to perform

structure computation for the whole sample.
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Due to the increasing complexity of systems used in aeronautics, spatial, automotive in-

dustries, etc., the need for more sophisticated models to describe their behavior has grown

in the past years. This implies that experiments manage to get as close as possible to the

multiaxial loading states encountered in service. To improve the characterization and the

design of their metallic parts, the propulsion systems manufacturer Safran Aircraft En-

gines (SAE) develops constitutive equations, damage laws and fatigue criteria that are

more adapted to the real loading states.

The nickel-based superalloy Inco718DA is used for the manufacturing of the high-

pressure turbine disks. It has been shown though that for Inco718, a material that softens

cyclically, the inelastic analysis cannot be based solely on the stabilized cyclic behavior

of the material [Chaboche and Cailletaud, 1986; Burlet and Cailletaud, 1986; Benallal

and Marquis, 1987; Calloch and Marquis, 1997; Portier et al., 2000]. In order to have a

precise characterization, both the monotonic (initial) behavior and the cyclic (softened)

one should be introduced [Chaboche et al., 1991]. This is an important difficulty, given the

slow transition between these two states especially at low strain levels in non-symmetrical

loading.

The main goal of this thesis was to develop a plasticity model adapted to Inco718DA

and capable of representing several loading conditions (monotonic, symmetrical and non-

symmetrical cyclic loading). The identification of the model was possible thanks to a

”rich” uniaxial campaign, favoring complex, innovative tests to numerous costly fatigue

tests. We performed these tests both in the LMT lab and in the SAE facilities. Such tests

include a monotonic test with elastic unloads, a multi-level Rε =−1 test and two Rε = 0

tests that could better quantify mean stress relaxation, or a test to analyze ratcheting. The

cyclic behavior was identified using a kinematic hardening law derived from the one de-

veloped by Desmorat [2010b] with elements of memory surface inspired by Chaboche

et al. [1979] and Delobelle et al. [1995]. This allowed us to obtain a very good descrip-

tion of the stabilized cyclic response in the Rε=-1 regime. One of the challenges was to

obtain sharp stabilized loops in a saturated cyclic plasticity regime, which was possible

using parameter Γ evolving with respect to the maximum equivalent plastic strain, in the

back-stress of the Desmorat [2010b] model. The uniaxial campaign, as well as the devel-

opment and identification of the model, were described in chapter 2, with the closed form

expressions for the 1D case being given in subsection 4.3.

A second difficulty appears in the description of complex phenomena such as mean
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stress relaxation and ratcheting, which have a considerable impact on fatigue lifetime.

Moreover, given that some failure criteria are not related to fatigue but to the maximum

accumulated plastic strain, a precise description of these phenomena becomes crucial to

a good estimation of component lifetime expectancy.

In chapter 3, a model was proposed for the description of the partial mean stress

relaxation. One of the more original parts of the creation of the model is the idea that

partial mean stress relaxation is a direct consequence of the difference between the loading

and the unloading part of the hysteresis loop. By analyzing the parameters that could be

responsible for this difference, we were able to find patterns that would indicate that there

was indeed a considerable difference between what happens at the ascending and at the

descending part of the loop. For reasons explained in chapter 3, section 3, the chosen

parameter we used to describe this difference was the prefactor of the back-stress term Γ,

for which the thermodynamics allows this liberty. We have shown in subsection 4.1 that

Γ ≥ 0 is a sufficient condition for the intrinsic dissipation to remain positive, whatever the

loading. Its evolution was directly computed for all the cycles of the available tests and

used in the description of the model.

When compared to confirmed kinematic hardening laws that model non-zero mean

stress relaxation [Chaboche, 1991; Chaboche et al., 2012; Gustafsson et al., 2011], our

model presents the advantage of using only one backstress, even if its description is

more complex. Moreover, the model is incremental (written in a rate form in chapter 3,

section 5) so it can take into account complex loadings such as increasing maximum

strain tests, possibly random. Another important aspect when comparing our model to the

confirmed non-linear kinematic hardening with thresholds developed by Chaboche et al.

[1991] is that the description of the mean stress σ̄ vs the strain amplitude ∆ε
2

at a given

strain ratio Rε is continuous. It has no subsequent jumps in the response, as it happens

with each deactivation of back-stresses.

Even if it was not the focus of this study, an interesting aspect that can also be repre-

sented with this dual Γ approach 2 is the asymmetry between tension and compression. It

was shown in subsection 3.3 that with a minimal tuning of the parameters, this asymmetry

can be very accurately represented.

In the last chapter of the thesis a vast biaxial campaign will be presented, along with

developments to make Integrated-DIC (I-DIC) strain controlled tests. The initial goal

of this study was to validate the plasticity model under the multiaxial conditions experi-

enced by the engine components during normal use. Therefore, a biaxial campaign was

performed using LASER sensors, mono and stereo full-field measurements using Digital

Image Correlation (DIC). Moreover, for analyzing complex phenomena like mean stress

relaxation, a reliable measurement and control method has to be developed for the high

plastic strains occurring in the region of interest of the sample. By using adequate shape

functions on one element and GPU computations using I-DIC, we were able to obtain

measurement frequencies of 100 Hz with an accumulated response delay of 10 ms.

As was shown chapter 4, the I-DIC measurements are sufficiently precise to be used as

2dual meaning a different value of the parameter Γ for the ascending and descending loading states
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a reliable ”real-time” sensor for biaxial tests with a sufficiently homogeneous ROI. More-

over, with its precision and speed, I-DIC proved to be a suitable technique for controlling

a biaxial hydraulic machine. It worked very well for the equi-biaxial strain control, up to

very high levels of strain, superior to gauge capability. In the more extreme loading cases,

such as Rε21=0, the PID wasn’t reactive enough and so the quality of the results was less

accurate. Nevertheless, what was shown through these tests is that in the biaxial case, at

least for the used sample, there was very little or no mean stress relaxation. This result is

important and it will have to be taken into account in future studies, when the model will

be used to perform structure computation for the whole sample.
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Disk sampling plan
In this part, the preparations made for the machining of the uniaxial and biaxial samples

will be presented. The main goal was to optimize the placement of samples in a forged

circular block normally used to extract the high-pressure turbine disk. Given the com-

plex thermo-mechanical process the block is submitted to before machining, it was very

important to respect the micrographic charts and to ensure that the samples have their

regions of interest as close as possible to the place where the disk is extracted.

With the dimensions of the disk partially known (Fig. A.1), we estimated that a maxi-

mum of 16 biaxial samples could be obtained (4 blocks containing 4 samples each). The

rest of the usable space was occupied with a maximum number of uniaxial samples. The

software CATIA was used to represent the block and position the samples inside it.

Figure A.1: Turbine disk block plan.

In sampling plans for similar studies the cross-shaped blocks were distributed sym-

metrically. Given the size of our blocks, such a distribution would make it impossible

to have uniaxial samples at the same height and distance from the center as the biaxial

ones. In order to correct this inconvenience, the distance between the cross blocks was

reduced to 1 mm (the recommended minimum distance for the electric wirecut machine).

Nevertheless, the blocks were chamfered, which serves on the one hand as a space saver

and on the other to be able to identify the 4 cross-shaped blocks (Fig. A.2).

The final distribution in the sampling plan can be seen in Fig. A.3 . The color coding

used for the samples is: biaxial samples in red, tangential uniaxial in green, radial uniaxial

in blue and vertical uniaxial in brown. Coded names have been attributed to each sample,

in order to identify its precise position inside the plan. They are numbered starting from

0°clockwise, using the following rules:

1. Biaxial samples (Ex : XA1..4):
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Figure A.2: 3D rendering of the position of the samples in the plan.

• sample type: X - cross;

• block identifier: block A to D;

• number: 1 - highest, 4 - lowest;

2. Uniaxial sample (Ex: TEU1):

• sample type: T (tangential) or R (radial) ou V (vertical);

• position with respect to the biaxial sample : U (up) or D (down);

• number (to increment the samples with the same code);

3. Blocks:

• Large cross-shaped blocks and parallelepiped ones (Ex: BX):

– block code determining its position: (B, C ou D);

– vertical position (X - cross shaped block, U - upper parallelepiped block

(up), D - lower parallelepiped block (down));

• Vertical blocks (Ex: VB1..2)

In Fig. A.3 we also find the different types of chamfers (in black) marked on the view

from above. The positioning of the cuts, necessary for a better understanding of delicate

areas, may also be seen in this figure. The angles are to be used as guides, given that the

real positioning of the blocks is defined by the minimum distance (1 mm) between them

(detail M)
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One of the most important cuts, cut A-A (Fig. A.4) shows the positioning of the first

machined biaxial samples. The contour of the forged block (in purple) is not precise and

has not been used as a reference. The wirecut will be based solely on the reference axis

(vertical, in the center) and the reference plane (horizontal, perpendicular on the reference

axis).

In Fig. A.5 we may see the outline of the uniaxial sample and the limits left for

machining. The name of each sample will be marked on the outline and again on the

sample. Given that the sample is obtained through turning, a line marking the horizontal

plane will be marked on each sample. The machining plan of the uniaxial sample can be

seen in Fig. A.6.

In Fig. A.7 we may see the outline of the biaxial sample. The name of each biaxial

sample will be marked on the outline and engraved on each of the 4 arms, mentioning

by a letter the direction (e.g.XA4-T, T for tangential and R for radial). The 4 arms are

identical, other than the presence or absence of the chamfers 5⇥45°. The machining plan

of the biaxial sample can be seen in Fig. A.8.

Modeling of partial mean stress relaxation and biaxial mechanical testing of Inco718DA



154 Disk sampling plan

T
o
l
e
r
a
n
c
e
 
g
e
n
e
r
a
l
e
 
0
.
2
 
m
m

A
H

B
G

D

E

C

F

B

G

A

H

3

3

2

2
4

4

1

1

S
C
A
L
E

1
:
4

W
E
I
G
H
T
 
(
k
g
)

D
R
A
W
I
N
G
 
N
A
M
E

P
l
a
n
 
g
e
n
e
r
a
l
 
[
v
1
]

N
U
M
B
E
R

1
/
1
4

S
I
Z
E A
3

L
M
T
 
C
a
c
h
a
n

D
E
S
I
G
N
E
D
 
B
Y
:

P
r
i
s
a
c
a
r
i
 
I
o
n
u
t

D
A
T
E
:

1
6
/
0
1
/
2
0
1
3

A
_

B
_

C
_

D
_

E
_

F
_

G
_

V
u
e
 
d
e
 
d
e
s
s
u
s
 

E
c
h
e
l
l
e
 
:
 
 
1
:
4

4
0
.
6

8
1
.
0
3

12
1.

59

162.2
1

4
0
.
6

8
1
.
0
4

11
0.

87

13
5

168.47

-
 
l
e
s
 
a
n
g
l
e
s
 
d
é
f
i
n
i
s
s
a
n
t
 
l
e
s
 
s
e
c
t
i
o
n
s
 
s
o
n
t
 
i
n
d
i
c
a
t
i
f
s
.
 
L
a
 
p
o
s
i
t
i
o
n

r
é
e
l
l
e
 
d
e
s
 
b
l
o
c
s
 
p
r
é
l
e
v
é
s
 
e
s
t
 
d
é
f
i
n
i
e
 
p
a
r
 
l
a
 
d
i
s
t
a
n
c
e
 
m
i
n
i
m
a
l
e
 
(
1
m
m
)

e
n
t
r
e
 
e
u
x
 
(
v
o
i
r
 
d
é
t
a
i
l
 
M
)

-
 
l
e
s
 
c
h
a
n
f
r
e
i
n
s
 
d
é
t
r
o
m
p
e
u
r
s
 
(
e
n
 
n
o
i
r
)
 
m
a
r
q
u
é
s
 
s
u
r
 
l
a
 
V
u
e
 
d
e
 
d
e
s
s
u
s

(
s
a
n
s
 
b
r
u
t
)
 
s
e
r
v
e
n
t
 
à
 
l
’
i
n
d
e
n
t
i
f
i
c
a
t
i
o
n
 
d
e
s
 
c
h
a
q
u
e
 
b
l
o
c
 
m
a
i
s

n
’
a
p
p
a
r
a
i
s
s
e
n
t
 
p
a
s
 
d
a
n
s
 
l
e
 
f
i
c
h
i
e
r
 
C
a
t
i
a
 
;

A

C

D

G B

E

F

H

J

I

M

V
u
e
 
d
e
 
d
e
s
s
u
s

(
s
a
n
s
 
b
r
u
t
)

E
c
h
e
l
l
e
 
:
 
 
1
:
4

X
A
1
 
à
 
X
A
4

T
X
U
5

T
X
U
4

T
X
U
3

T
X
U
2

T
X
U
1

V
B
1

B
U

B
X

V
B
2

C
U

V
M
1

V
M
2

D
U

D
X

V
M
3

V
M
4

V
C
1

V
M
5

V
E
1

C
X

T
E
U
6

T
M
U
2

T
E
U
5

T
E
U
4

T
E
U
7

T
E
U
8

T
M
U
3

R
E
U
1 R
E
U
2 R
E
U
3

R
E
U
4

R
C
U
3

R
C
U
2

R
C
U
1

T
E
U
9

T
E
U
1
0

T
E
U
1
1

T
M
U
4

T
E
U
1
2

T
E
U
1

T
E
U
2

T
M
U
1

T
E
U
3

T
C
U
4

T
C
U
3

T
C
U
2

T
C
U
1

C
h
 
9
x
3

C
h
 
9
x
3

C
h
 
3
x
9

C
h
 
3
x
9

C
h
 
9
x
9

C
h
 
9
x
9

1
D
é
t
a
i
l
 
M

E
c
h
e
l
l
e
 
:
 
 
1
:
2

Figure A.3: Cuts distribution in the plan.
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Figure A.4: Cut A-A.
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Figure A.5: Uniaxial sample outline.
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Figure A.8: Machining plan for the biaxial sample.
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Appendix B

Monotonic test with elastic unloads identification
In the present appendix, the identification of the behavior of Inco718DA is performed

based on the classic principle that a monotonic test with elastic discharges can give the

decoupled evolution of both the isotropic hardening R and the kinematic hardening X .

Based on the assumption that each discharge gives the size of the elastic domain, we may

detect the kinematic hardening X as being the ordinate of the middle of each discharge

on the σ(ε) curve. Thus, what is left is the yield stress σy and the isotropic hardening R

(Fig. B.2a). This allowed to identify the hardening parameters using a classic method and

follow their evolution in the monotonic case.

The evolution of the isotropic hardening using this method is a non-linearly decreas-

ing one. Thus, as shown in Fig. B.2b, for the modeling of the isotropic hardening, an

exponential law was used:

R = R∞

⇣

1− e−bp
⌘

(B.1)

with the values identified for the isotropic hardening parameters are being:

σy [MPa] R∞ [MPa] b

900 -540 18

One aspect that needs to be cleared is the differentiated modeling of the monotonic

behavior with respect to the cyclic one. The cyclic plasticity curve is given by points

obtained during the stabilized cycle when the isotropic hardening is considered to be

saturated. Thus, if we plot the cyclic plasticity curve ∆σ
2
(

∆εp

2
) on the same graph with the

monotonic curve σ(εp), it will be lower due to cyclic softening (Fig. B.1). The general

shape of the two distributions of points is also different, which implies the use of an

evolution of the type Γ = Γ(q) different for the two cases.

By following such an approach to the letter, it can be noticed that the value of σy

will be precisely identified (Fig. B.2b) at quite a large value. Thus, in order to obtain

the full monotonic behavior, the evolution of the kinematic hardening must also be well

described.

The influence of the offset can be seen even more clearly in Fig. B.3b where using only

a linear formulation (Γ0 = 0) is insufficient in the description of the kinematic hardening

and would cause an overshoot in the overall monotonic response (Fig. B.4a).

Thus, when using an affine evolution law for the kinematic hardening parameter Γ,

the overall monotonic behavior is well described (Fig. B.4b), as well as the two types of

hardenings, isotropic (Fig. B.2b) and kinematic (Fig. B.3b). The values found for the two

parameters of the affine law Γ0
0 and Γ0, as identified on the computed Γ points (Fig. B.3a).

The kinematic hardening parameters found in this identification are given below, with

the values that are the same as the official identification (chapter 3, section 6) in grey :

Other identifications were made based on the monotonic test with elastic discharges.
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Figure B.1: Comparison between the monotonic and cyclic behavior.
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Figure B.2: Model identification using monotonic test with elastic discharges: a) Com-

ponent description b) Identification of the isotropic hardening.
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Figure B.3: Distribution of kinematic hardening parameter Γ in the monotonic case: a)

The affine distribution of Γ computed from measured X values b) The influence of the

offset of the affine law Γ0
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Figure B.4: Identification of the monotonic behavior using: a) A linear evolution law

Γ(ε
p
max) = Γ0

0 ·ε
p
max. b) An affine evolution law Γ(ε

p
max) = Γ0

0 ·ε
p
max +Γ0.
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E [GPa] k [MPa] M [MPa] C [MPa] Γ0
0 [MPa−2] Γ0 [MPa−2]

206 450 3 2·106 6.19 ·10−3 3.13 ·10−4

Different types of isotropic hardenings were used in order to obtain an even better de-

scription of the monotonic behavior, such as the sum of two exponential formulations.

The problem when following the isotropic hardening distribution given by the test was

that with such a strong isotropic component (R∞ =-540 MPa) even if it manages to rep-

resent well the monotonic case, the cyclic behavior is too far from the experiment. The

isotropic hardening saturates very quickly, leading to cycles that are very different from

what was obtained during experiments both for Rε = −1 and Rε = 0. This permitted

us to conclude that such a combination of violent monotonic kinematic hardening and

isotropic softening wasn’t compatible with a model capable of accurately describing the

transition from monotonic to saturated cyclic behavior. In 4.3, a different method was

used, based only on the monotonic response without taking into account the results of the

elastic discharges.
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Appendix C

Ratcheting test
In the beginning of this study, when wanting to analyze the behavior of Inco718DA under

load control, no data was found at 20°C in the SAE database. Thus, we decided to perform

a multi-level load-controlled test. Before the actual test, 200 strain-controlled cycles were

performed on the sample (0±0.007 [mm/mm]) in order to saturate the isotropic hardening,

as shown by Chaboche et al. [1991]. This was done in order to analyze pure ratcheting

and not a mix with phenomena like cyclic softening.

In order to analyze the evolution of the ratcheting step δεp (the plastic strain increment

over an hysteresis loop) with the rise in load level, we’ve used equivalent loading levels as

those found for the strain-controlled multi-level test at Rε=-1. For this, the load amplitude

was kept constant and the mean load was incrementally increased. The first level was

the symmetric equivalent of the strain-controlled test performed just before (0±0.007

[mm/mm]), for which we found a mean stress of σ̄ = 0 MPa and an amplitude of ∆σ
2
⇡

1131 MPa. For the following levels, the mean stress was increased by ⇡17.68 MPa at

each level. The values are not round stress-wise because the stress is calculated from

the actual load applied by the machine, which is chosen round. Therefore, the following

set of stress levels were obtained σ̄ ⇡ 0,17,35,53,70 MPa and ∆σ
2
⇡ 1131 MPa (which

correspond to F̄ = 0,0.5,1,1.5,2 kN and ∆F
2
= 32 kN). For the first level, 500 cycles were

performed, in order to make sure the method was accurate enough and for the others, 300

cycles per level. The last level finished in the fracture of the sample after 115 cycles (Fig.

C.1a), for a total of 1515 cycles, without counting the initial 200 strain-controlled ones.

By analyzing the evolution of strain levels during the test, we can see that the ratch-

eting step is increasing with each level and is approximately constant per level, with the

value δεp marked in Fig. C.1b. Ratcheting becomes unstable during the last level, when

complete fracture is approaching.

The modeling of the ratcheting was not performed using the final version of the model.

As shown by Desmorat [2010a], the Frederick and Armstrong [1966] hardening rule has a

larger ratcheting step then the equivalent hardening rule developed by Desmorat [2010a].

The ratcheting step for this model is constant per loading level, which is compatible with

the behavior seen in our test. Nevertheless, the ratcheting step is more important than

that seen in tests. The non-linear kinematic hardening model developed by Chaboche and

Rousselier [1983] is composed of several Armstrong-Frederick back-stresses, often used

for ratcheting applications because of it can be finely adapted, especially for low strain

levels where ratcheting is the most delicate to model.
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Figure C.1: Ratcheting test: a) Stress vs strain curves b) Evolution of ε with the incre-

ment of plastic strain marked for each loading level
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Appendix D

Monotonic loading integration

Integration of the affine evolution of Γ starting from zero

Ẋ =
2

3
Cε̇εεp −ΓXM−2

eq XhẊeqi−3D

Ẋ =Cε̇p − (Γ0 +Γ0
0q)XM−1Ẋ −1D

C
dεp

dX
− (Γ0 +Γ0

0q)XM−1 = 1

C
dεp

dX
−Γ0

0εpXM−1 = 1+Γ0XM−1

C
dεp

dX
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Appendix E

New grips validation
The grips currently used in the triaxial machine Astree have been designed and tested by

an LMT Cachan team, mainly because the grips previously used to perform biaxial tests

on cross-shaped samples (Fig. E.1) wouldn’t work for the sample type used during this

thesis. These samples are shorter and thicker than what was usually used in the laboratory.

One of the important aspects of these new grips is the possibility to perform a vertical

alignment of the two axes using a system involving an oval hole. The complete study

comprising the analysis of need, the design and validation were gathered in an internal

LMT report [Poncelet et al., 2014]. Some elements of this report were part of the PhD

work and will be briefly presented in the following.

1 Numerical validation

In order to quantify the gain in rigidity with respect to the previous grips, Abaqus simu-

lations were made. The goal was to find the critical areas and to compare the manner in

which the two systems distributed the applied loads. The loads weren’t applied directly to

the grips but on one forth of a sample, in order to get closer to the real behavior. For the

clamping zone a perfect contact was used, and a gap was introduced between the lower

(fixed) part and upper (mobile) part of the new grips in order to simulate an imperfect

clamping. Thus, the transmission of loads between the fixed and the mobile part is done,

in this case, via the 5 M12 screws and the sample.

The first simulation was in pure tension, the most common load type during testing.

A force of 100 kN was applied, which is the maximum possible charge of a horizontal

actuator. In Fig. E.2 the represented stresses are limited to 150 MPa (superior values in

gray), value that is still a lot smaller than the fatigue limit for the material used for the

grips (X30Cr13 which is ⇡600 MPa). After having optimized its geometry, the new grips

are below this value, whereas the old grips surpass this limit in more than one area. The

stresses in the critical areas are ⇡2.5 times greater than in the case of the new grips. The

gain in deflection is even greater, seeing a value 15 times larger for the extremity of the

old grips (Tab. 1).

Secondly, accidental loads were studied. A load of 200 kN was applied in the plane of

Measured Tension Shear Vertical

value (100kN) (200kN) (500kN)

Old grips
Deflection (mm) 0.3 - -

Maximum stress (MPa) 350 2000 10000

New grips
Deflection (mm) 0.02 - -

Maximum stress (MPa) 140 700 4000

Table E.1: Numerical simulations results
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(a) (b)

Figure E.1: Component description: a) Former biaxial grips b) Current biaxial grips

(a) (b)

Figure E.2: Axial tension simulations (100 kN) : a) Former biaxial grips b) Current

biaxial grips
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45°

45°
A

B

(a) (b)

Figure E.3: Test samples used for the experimental validation of the new grips a) Strain

gauges b) Digital Image Correlation.

the sample, perpendicular to the axis of the grip. Even if the stresses are not realistic, they

offer a qualitative comprehension of the gain in rigidity. Lastly, the systems were tested

in the case of an accidental load perpendicular to the plane of the sample. A force of

500 kN was applied, representing the maximum effort of a pair of vertical actuators. This

situation is unlikely to happen and is meant to show, as for the previous loading type, that

the compact design and the compensation of the mobile part of the grips result in a better

behavior of the grips. In the two accidental loading scenarios, the weakest link in the case

of the new grips is the M12 screws and their corresponding nuts that are replaceable.

2 Experimental validation

The experimental validation consisted in a comparison between the behaviors of the two

types of grips under common loads. Two test samples have been machined for these tests.

The surface of the first sample was painted with a black and white speckle in order to

post-treat the test results using digital image correlation (Fig. E.3). A second sample

was equipped with 10 strain gauge rosettes (5 on each side) in order to obtain the mean

strains on each arm and in the center of the sample. The term: ”flexural strain” used in

the following is computed as the difference between the corresponding gauges on each

side of the sample. Similarly, the term ”mean strain” is computed as the mean between

the strains given by the corresponding gauge on each side. It also needs to be taken into

consideration the fact that the thickness of the sample in the region of interest is 5 mm.

LVDT sensors were also placed on the extremities of the grips, in order to directly verify

their deflections.
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Figure E.4: Loading types (a) Quasi-static (b) Cyclic loading at a given frequency (5 Hz).

In order to compare the behavior of the old and new grips and to analyze the influence

of different loading parameters, the following tests were performed:

• Tightening / Untightening tests using the 3 measuring techniques: gauges, DIC &

LVDT.

• Quasi-static tests (Fig. E.4a) at different load levels (10, 20, 50 kN)

• Cyclic tests (Fig. E.4b):

– at different test ratios RF = Fmin

Fmax
:

* RF =−1 : ±10, ±20, ±50 kN

* RF 6=−1 : 40±10 kN

– at different loading frequencies: 1, 5, 10, 20 Hz.

The main results of these influence studies are presented in the following.

2.1 Influence of the alignment on the static stress

The strains / static stresses introduced by the tightening and untightening of the sam-

ple have been studied. After performing a standard alignment, the influence of a cross-

tightening of the 8 M8 screws has been studied on the old grips. Fig. E.5 shows the

amplitude of strains on the two sides of the sample during tightening (first on the left with

M8 screws represented in green). The same procedure was applied to the new grips, first

without the axial screws (5 M12 screws represented in orange in Fig. E.5). We obtain a

value similar to that of the old grips, just slightly higher, given their increased rigidity. A

second test was performed, where the axial screws were tightened in order to ensure the
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Figure E.5: Maximum flexural strains due to tightening, and depending on the alignment.

full rigidity of the new grip system. As expected, the result shows that a very rigid but

poorly aligned system can have important static flexion effects on the sample. Finally, the

case of a fine alignment (using the vertical positioning screws) followed by the tightening

of the axial M12 screws was studied. It can be seen that this scenario (which is the one

envisioned for the biaxial tests) causes less harm to the sample than the old grips while

assuring a priori a higher rigidity.

2.2 Influence of the loading amplitude

By changing the loading amplitudes, quasi-proportional variations of the flexural strains

and displacements are found. The values shown in Fig. E.6 represent the mean value on

all of the arms of the sample and the error bars show the dispersion of the measurement

results of the gauges (Fig. E.6a) and the LVDTs respectively (Fig. E.6b). The improve-

ment in the case of the new grips when compared to the old ones is clear both for the

gauges and the LVDTs.

2.3 Influence of the loading frequency

The loading frequency doesn’t show notable variations in the evolution of the mean

strains. Nevertheless, the flexural strains vary during the validation test, without being

able to see a clear tendency. These variations may seem important (up to ⇡30%), but it

needs to be noted that the flexural strains have very low values in the center of the sample

(Fig. E.7) when using the new grips (less than 5% than the mean strain for ±50 kN and

less that 2.5% for ±20 kN). Moreover, this sample has a thickness of 5 mm which makes
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Figure E.6: Influence of the loading amplitude (a) Gauges (b) LVDT.

this case all the more difficult to quantify, given that most biaxial samples tested in the

machine have a thickness in the region of interest of 1 mm.
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Figure E.7: Influence of the loading frequency on the flexural strain in the center of the

sample in direction: (a) 1 (b) 2.
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Dufour, J.-E., Beaubier, B., Hild, F., and Roux, S. (2015). Cad-based displacement mea-

surements with stereo-dic. Experimental Mechanics, 55(9):1657–1668.

Fang, D. and Berkovits, A. (1994). Mean stress models for low-cycle fatigue of a nickel-

base superalloy. International Journal of Fatigue, 16(6):429–437.

Fayman, Y. C. (1987). Microstructural characterization and elemental partitioning in a

direct-aged superalloy (DA 718). Materials Science and Engineering, 92:159–171.

Fayolle, X., Calloch, S., and Hild, F. (2007). Controlling testing machines with digital

image correlation. Experimental Techniques, 31(3):57–63. WOS.

Fayolle, X., Calloch, S., and Hild, F. (2008). Contrôler une machine d’essai avec une
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PhD thesis.

Modeling of partial mean stress relaxation and biaxial mechanical testing of Inco718DA



192 Bibliography
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(Cachan). Laboratoire de m{é}canique et technologie.
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Titre : Modélisation de la relaxation partielle de la contrainte moyenne et essais biaxiaux sur l’Inco718DA
Mots clefs : Inco718DA, Multiaxial, I-CIN, Relaxation de la contrainte moyenne

Résumé : Pour améliorer la caractérisation et le dimen-
sionnement des disques de turbines pour les moteurs d’avion, le
motoriste Safran Aircraft Engines (SAE) développe des modèles
de comportement, des lois d’endommagement et des critères de
fatigue plus adaptés aux chargements réels. Pour aider à cette
démarche, le but de cette étude est de développer un modèle de
plasticité adapté à l’Inco718DA (un alliage à base nickel utilisé
dans la fabrication des turbines haute pression), capable de repré-
senter différents chargements (monotone, cyclique symétrique et
non-symétrique). La proposition puis l’identification du modèle
a été possible grâce à une campagne expérimentale favorisant
des tests complexes et innovants aux essais de fatigue nombreux
et coûteux. Les essais faits incluent un essai monotone avec dé-
charges élastiques, un essai multi-niveau à Rε=-1 et deux essais
multi-niveau à Rε=0 pour mieux caractériser la relaxation de la
contrainte moyenne. Le comportement cyclique du matériau a
été identifié en utilisant un écrouissage cinématique non saturant
avec des éléments s’inspirant de la surface mémoire de Chaboche.
Un des défis a été d’obtenir des boucles stabilisées "pointues"
dans un régime de plasticité cyclique saturante, en utilisant une
évolution du paramètre Γ en fonction de la déformation plastique
équivalente maximale (prefacteur du terme de rappel de la loi
d’écrouissage cinématique).
Une deuxième difficulté apparaît dans la description de la re-
laxation de la contrainte moyenne, phénomène complexe avec
un impact considérable sur la durée de vie en fatigue. Dans le
chapitre 3, un modèle est proposé pour la caractérisation de la
relaxation partielle de la contrainte moyenne. Une originalité du
modèle est l’idée que la relaxation incomplète est une consé-
quence directe de la différence entre la charge et la décharge de

la boucle de hystérésis. Le paramètre choisi pour décrire cette
différence a été le préfacteur du terme de rappel Γ, pour lequel
la thermodynamique donne de la liberté. Par rapport à d’autres
lois d’écrouissage confirmées, notre modèle présente l’avantage
d’utiliser un seul terme de rappel, mais avec une formulation plus
complexe. En plus, le modèle est incrémental (écrit en taux/en
vitesse), il peut donc prendre en compte des chargements com-
plexes tels que aléatoires ou plus simplement tels que dans les
essais multi-niveaux pilotés en déformation.
Dans le dernier chapitre de la thèse, une campagne biaxiale vaste
est présentée, avec les développements pour réaliser des essais
biaxiaux pilotés en déformation. La campagne biaxiale a été réa-
lisée sur des éprouvettes cruciformes en utilisant des capteurs
LASER et des mesures de champs mono et stéréo analysées en
utilisant la Corrélation d’Images Numeriques (CIN). Pour analy-
ser la relaxation de la contrainte moyenne en biaxial un moyen
de mesure et de contrôle fiable a dû être développé, adapté aux
déformations plastiques élevées qui apparaissent dans la région
d’intérêt de l’éprouvette. En utilisant la corrélation d’images in-
tégrée (I-CIN) avec des fonctions de forme adaptées sur un seul
élément et des calculs sur GPU, on a obtenu des fréquences de
mesure de 100 Hz. En plus, avec sa précision et vitesse, I-CIN
a été une technique adapté pour contrôler une machine d’essais
multiaxiale hydraulique. Un résultat important obtenu quand on
a réalisé des essais equi-biaxiaux pilotés en déformation a été l’ob-
servation d’une relaxation de la contrainte moyenne très faible par
rapport au cas uniaxial. Ce résultat doit être pris en compte dans
les études futures avec des calculs éléments finis sur l’éprouvette
complète.

Title : Modeling of partial mean stress relaxation and biaxial mechanical testing of Inco718DA
Keywords : Inco718DA, Multiaxial, I-DIC, Mean stress relaxation

Abstract : To improve the characterization and design of air-
craft engine turbine disks, the propulsion systems manufacturer
Safran Aircraft Engines (SAE) develops constitutive equations,
damage laws and fatigue criteria that are more adapted to real
loadings. As part of this effort, the purpose of the current study is
to develop a plasticity model for Inco718DA (a nickel-based alloy
used in the manufacturing of high-pressure turbine disks), capable
of representing several loading conditions (monotonic, symmetri-
cal and non-symmetrical cyclic loading). The identification of the
model was possible thanks to a uniaxial campaign, favoring a few
but complex, innovative, tests to numerous costly fatigue tests.
The tests we performed include a monotonic test with elastic di-
scharges, a multi-level Rε = -1 test and two multi-level Rε = 0
tests that better quantify the mean stress relaxation. The cyclic
behavior was identified using a non-saturating kinematic harde-
ning law with elements of Chaboche’s memory surface. One of
the challenges was to obtain sharp stabilized loops in a saturated
cyclic plasticity regime, which was possible using parameter Γ

evolving with respect to the maximum equivalent plastic strain,
in the back-stress of kinematic hardening rule.
A second difficulty appears in the description of mean stress re-
laxation, which has a considerable impact on fatigue lifetime. In
chapter 3, a model is proposed for the description of the incom-
plete mean stress relaxation. One of the originalities is the idea
that incomplete mean stress relaxation is a direct consequence
of the difference between the loading and the unloading part of
the hysteresis loop. The parameter we used to describe this dif-

ference, was the prefactor of the back-stress term Γ, for which
the thermodynamics allows liberty. When compared to confirmed
kinematic hardening laws that model non-zero mean stress re-
laxation, our model presents the advantage of using only one
backstress, even if its description is more complex. Moreover, the
model is incremental (written in a rate form in chapter 3 section
5) so it can take into account complex loadings such as multi-level
strain-controlled tests.
In the last chapter of the thesis, a vast biaxial campaign is pre-
sented, along with developments to make biaxial strain-controlled
tests. The biaxial campaign was performed on cross-shaped
samples using LASER sensors, mono and stereo full-field mea-
surements using Digital Image Correlation (DIC). In order to
analyze biaxial mean stress relaxation, a reliable measurement
and control method had to be developed for the high plastic
strains occurring in the region of interest of the sample. By using
an Integrated-DIC (I-DIC) algorithm with adequate shape func-
tions on one element and GPU computations we were able to
obtain measurement frequencies of 100 Hz. Moreover, with its
precision and speed, I-DIC proved to be a suitable technique for
controlling a biaxial hydraulic machine. An important result ob-
tained when performing equi-biaxial I-DIC strain-controlled tests
was that there was very little biaxial mean stress relaxation, with
respect to the uniaxial case. This result will have to be taken into
account in future studies when performing finite element compu-
tations of the whole sample.
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