M. Abkarian, M. Faivre, and A. Viallat, Swinging of Red Blood Cells under Shear Flow, Physical Review Letters, vol.81, issue.18, 2007.
DOI : 10.1093/qjmam/35.2.233

C. Allard, N. Mohandas, and M. Bessis, Red Cell Deformability Changes in Hemolytic Anemias Estimated by Diffractometric Methods (Ektacytometry) Preliminary Results, Red Cell Rheology, pp.209-221, 1978.
DOI : 10.1007/978-3-642-67059-6_16

A. C. Allison, Polymorphism and Natural Selection in Human Populations, Cold Spring Harbor Symposia on Quantitative Biology, vol.29, issue.0, pp.137-149, 1964.
DOI : 10.1101/SQB.1964.029.01.018

D. Amato and P. B. Booth, Hereditary ovalocytosis in Melanesians. [WWW Document] URL https://www.docphin.com/research/article-detail/14197732/PubMedID- 269577/Hereditary-ovalocytosis-in-Melanesians, PNG Med J, vol.20, issue.1, 1977.

A. and C. De-cours, Mécanique des Fluides.pdf ; page 141 [WWW Document], Scribd. URL https://www.scribd.com/doc/220887281/ANCEY- Christophe-Notes-de-cours-Mecanique-des-Fluides-pdf (accessed 6

G. M. Artmann, C. Kelemen, D. Porst, G. Büldt, and S. Chien, Temperature Transitions of Protein Properties in Human Red Blood Cells, Biophysical Journal, vol.75, issue.6, pp.3179-3183, 1998.
DOI : 10.1016/S0006-3495(98)77759-8

A. Ashkin, Acceleration and Trapping of Particles by Radiation Pressure, Physical Review Letters, vol.37, issue.4, 1970.
DOI : 10.1007/BF01400195

A. Ashkin and J. M. Dziedzic, Optical Levitation by Radiation Pressure, Applied Physics Letters, vol.19, issue.8, pp.283-285, 1971.
DOI : 10.1103/PhysRevLett.25.1321

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, Observation of a single-beam gradient force optical trap for dielectric particles, Optics Letters, vol.11, issue.5, pp.288-290, 1986.
DOI : 10.1364/OL.11.000288

O. K. Baskurt, M. Boynard, G. C. Cokelet, P. Connes, B. M. Cooke et al., International Expert Panel for Standardization of Hemorheological Methods New guidelines for hemorheological laboratory techniques, Clin. Hemorheol. Microcirc, vol.423233, pp.75-9710, 1202.

R. Bayer, S. Caglayan, and B. Guenther, <title>Discrimination between orientation and elongation of RBC in laminar flow by means of laser diffraction</title>, Biochemical Diagnostic Instrumentation, pp.105-11310180777, 1117.
DOI : 10.1117/12.180777

M. Bessis and G. Delpech, Discovery of the red blood cell with notes on priorities and credits of discoveries, past, present and future, Blood Cells, vol.7, pp.447-480, 1981.

M. Bessis and N. Mohandas, Diffractometric Method for Measurement of Cellular Deformability, Blood Cells, vol.1, pp.307-313, 1975.

M. Bessis, N. Mohandas, and C. Feo, Automated Ektacytometry: A New Method of Measuring Red Cell Deformability and Red Cell Indices, Blood Cells, vol.6, pp.315-327, 1980.
DOI : 10.1007/978-3-642-67756-4_13

N. Bessis and N. Mohandas, Mesure continue de la déformabilité cellulaire par une méthode diffractométrique, CR Acad Sci Paris, vol.278, pp.3-263, 1974.

B. Bhaduri, H. Pham, M. Mir, and G. Popescu, Diffraction phase microscopy with white light, Optics Letters, vol.37, issue.6, pp.1094-1096, 2012.
DOI : 10.1364/OL.37.001094

G. Binnig, C. Quate, and C. Gerber, Atomic Force Microscope, Physical Review Letters, vol.39, issue.9, pp.930-933, 1986.
DOI : 10.1016/0021-9797(72)90039-2

S. M. Block, Making light work with optical tweezers, Nature, vol.29, issue.6403, pp.493-495, 1992.
DOI : 10.1364/AO.29.002382

D. Bolten and M. Türk, Experimental Study on the Surface Tension, Density, and Viscosity of Aqueous Poly(vinylpyrrolidone) Solutions, Journal of Chemical & Engineering Data, vol.56, issue.3, pp.582-588, 2011.
DOI : 10.1021/je101277c

A. Bransky, N. Korin, Y. Nemirovski, and U. Dinnar, An automated cell analysis sensing system based on a microfabricated rheoscope for the study of red blood cells physiology, Biosensors and Bioelectronics, vol.22, issue.2, pp.165-169, 2006.
DOI : 10.1016/j.bios.2005.12.006

F. Brochard and J. F. Lennon, Frequency spectrum of the flicker phenomenon in erythrocytes, Journal de Physique, vol.5, issue.C, pp.1035-1047, 1975.
DOI : 10.1113/jphysiol.1951.sp004568

URL : https://hal.archives-ouvertes.fr/jpa-00208345

D. E. Brooks and E. A. Evans, Rheology of blood cells, Clinical Hemorheology, Developments in Cardiovascular Medicine, pp.73-96, 1987.
DOI : 10.1007/978-94-009-4285-1_3

P. B. Canham, The minimum energy of bending as a possible explanation of the biconcave shape of the human red blood cell, Journal of Theoretical Biology, vol.26, issue.1, pp.61-81, 1970.
DOI : 10.1016/S0022-5193(70)80032-7

P. Chassaing, Mécanique des fluides: PC-PSI, 2005.

S. Chien, Red Cell Deformability and its Relevance to Blood Flow, Annual Review of Physiology, vol.49, issue.1, pp.177-192, 1987.
DOI : 10.1146/annurev.ph.49.030187.001141

S. Chien, Principles and Techniques for Assessing Erythrocyte Deformability Red Cell Rheology, pp.71-99, 1978.

S. Chien, Biophysical behavior of red cells in suspensions. The red blood cell 2, pp.1031-1133, 1975.

S. Chien, K. L. Sung, R. Skalak, S. Usami, and A. Tözeren, Theoretical and experimental studies on viscoelastic properties of erythrocyte membrane, Biophysical Journal, vol.24, issue.2, pp.463-487, 1978.
DOI : 10.1016/S0006-3495(78)85395-8

C. I. Chung, Extrusion of Polymers: Theory and Practice, 2000.

M. R. Clark, N. Mohandas, and S. B. Shohet, Osmotic gradient ektacytometry: comprehensive characterization of red cell volume and surface maintenance, Blood, vol.61, pp.899-910, 1983.

R. J. Cornish, Flow in a Pipe of Rectangular Cross-Section, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.120, issue.786, p.175, 1928.
DOI : 10.1098/rspa.1928.0175

M. Couprie, L. Marak, and H. Talbot, Pink image processing library, 2011.

M. Dao, C. T. Lim, and S. Suresh, Mechanics of the human red blood cell deformed by optical tweezers, Journal of the Mechanics and Physics of Solids, vol.51, issue.11-12, 2003.
DOI : 10.1016/j.jmps.2003.09.019

D. Dhermy, J. Schrével, and M. Lecomte, Spectrin-based skeleton in red blood cells and malaria, Current Opinion in Hematology, vol.14, issue.3, pp.198-202, 2007.
DOI : 10.1097/MOH.0b013e3280d21afd

URL : https://hal.archives-ouvertes.fr/inserm-00128119

J. G. Dobbe, Engineering developments in hemorheology. s.n, 2002.

J. G. Dobbe, G. J. Streekstra, M. R. Hardeman, C. Ince, and C. A. Grimbergen, Measurement of the distribution of red blood cell deformability using an automated rheoscope, Cytometry, vol.6, issue.3, pp.313-325, 2002.
DOI : 10.1172/JCI109888

P. Eaton and P. West, Atomic Force Microscopy. Also available as: eBook, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00356780

S. Eber and S. E. Lux, Hereditary spherocytosis???defects in proteins that connect the membrane skeleton to the lipid bilayer, Seminars in Hematology, vol.41, issue.2, 2004.
DOI : 10.1053/j.seminhematol.2004.01.002

A. Einstein, Eine neue Bestimmung der Molek??ldimensionen, Annalen der Physik, vol.17, issue.2, pp.289-306, 1906.
DOI : 10.1002/andp.19063240204

E. Evans and Y. C. Fung, Improved measurements of the erythrocyte geometry, Microvascular Research, vol.4, issue.4, pp.335-347, 1972.
DOI : 10.1016/0026-2862(72)90069-6

E. A. Evans, Bending elastic modulus of red blood cell membrane derived from buckling instability in micropipet aspiration tests, Biophysical Journal, vol.43, issue.1, pp.27-30, 1983.
DOI : 10.1016/S0006-3495(83)84319-7

E. A. Evans, New Membrane Concept Applied to the Analysis of Fluid Shear- and Micropipette-Deformed Red Blood Cells, Biophysical Journal, vol.13, issue.9, pp.941-954, 1973.
DOI : 10.1016/S0006-3495(73)86036-9

E. A. Evans, R. Waugh, and L. Melnik, Elastic area compressibility modulus of red cell membrane, Biophysical Journal, vol.16, issue.6, pp.585-595, 1976.
DOI : 10.1016/S0006-3495(76)85713-X

R. Fahraus and T. Lindqvist, The viscosity of the blood in narrow capillary tubes, American Journal of Physiology, vol.96, pp.562-568, 1931.

D. A. Fedosov, M. Peltomäki, and G. Gompper, Deformation and dynamics of red blood cells in flow through cylindrical microchannels, Soft Matter, vol.84, issue.24, pp.4258-4267, 2014.
DOI : 10.1103/PhysRevE.84.026314

A. Finkelstein, H. Talbot, S. Topsu, T. Cynober, L. Garçon et al., Comparison between a Camera and a Four Quadrant Detector, in the Measurement of Red Blood Cell Deformability, Journal of Medical and Bioengineering, vol.2, issue.1, pp.62-65, 2013.
DOI : 10.12720/jomb.2.1.62-65

URL : https://hal.archives-ouvertes.fr/hal-00865916

T. Fischer, M. Stohr-lissen, and H. Schmid-schonbein, The red cell as a fluid droplet: tank tread-like motion of the human erythrocyte membrane in shear flow, Science, vol.202, issue.4370, pp.894-896, 1978.
DOI : 10.1126/science.715448

T. M. Fischer, Shape Memory of Human Red Blood Cells, Biophysical Journal, vol.86, issue.5, pp.3304-3313, 2004.
DOI : 10.1016/S0006-3495(04)74378-7

T. M. Fischer and R. Korzeniewski, Threshold shear stress for the transition between tumbling and tank-treading of red blood cells in shear flow: dependence on the viscosity of the suspending medium, Journal of Fluid Mechanics, vol.736, pp.351-365, 2013.
DOI : 10.1017/jfm.2013.496

P. H. Franck, C. Postma, M. Veuger, P. Wijermans, and F. A. Kuypers, A Family with Hereditary Elliptocytosis: Variable Clinical Severity Caused by Three Mutations in the ?-Spectrin Gene, ASH Annual Meeting Abstracts, p.3167, 2011.

R. S. Frank and R. M. Hochmuth, An Investigation of Particle Flow Through Capillary Models With the Resistive Pulse Technique, Journal of Biomechanical Engineering, vol.109, issue.2, 1987.
DOI : 10.1115/1.3138650

G. Hirasaki, Chapter 8-laminar flows with dependence on one dimension, college study notes -Transport phenomena, 2005.

D. Grier, A revolution in optical manipulation, Nature, vol.296, issue.6950, pp.810-816, 2003.
DOI : 10.1126/science.1072133

W. Groner, N. Mohandas, and M. Bessis, New optical technique for measuring erythrocyte deformability with the ektacytometer, Clin. Chem, vol.26, pp.1435-1442, 1980.

J. B. Haldane, The Rate of Mutation of Human Genes, Hereditas, vol.35, 1949.

M. R. Hardeman, P. T. Goedhart, J. G. Dobbe, and K. P. Lettinga, S4.3. Laser-assisted optical rotational cell analyser (Lorca); a new intrument for measurement of various structural hemorheological parameters, Biorheology, vol.32, issue.2-3, pp.605-619, 1994.
DOI : 10.1016/0006-355X(95)91969-A

V. Heinrich and W. Rawicz, ??Automated, High-Resolution Micropipet Aspiration Reveals New Insight into the Physical Properties of Fluid Membranes, Langmuir, vol.21, issue.5, pp.1962-1971, 2005.
DOI : 10.1021/la047801q

S. Hénon, G. Lenormand, A. Richert, and F. Gallet, A New Determination of the Shear Modulus of the Human Erythrocyte Membrane Using Optical Tweezers, Biophysical Journal, vol.76, issue.2, pp.1145-1151, 1999.
DOI : 10.1016/S0006-3495(99)77279-6

E. J. Hinch and L. G. Leal, The effect of Brownian motion on the rheological properties of a suspension of non-spherical particles, Journal of Fluid Mechanics, vol.16, issue.04, pp.683-693, 1972.
DOI : 10.1139/p65-122

H. L. Goldsmith, Deformation of human red cells in tube flow, Biorheology, vol.7, issue.4, pp.235-242, 1971.
DOI : 10.3233/BIR-1971-7407

R. M. Hochmuth, Micropipette aspiration of living cells, Journal of Biomechanics, vol.33, issue.1, pp.15-22, 2000.
DOI : 10.1016/S0021-9290(99)00175-X

A. Howard and . Stone, Introduction to Fluid dynamics for microfluidics flows.pdf, in: CMOS Biotechnology, 2007.

J. O. Wilkes, Chapter 6 Solution of Viscous-Flow Problems -Fluid Mechanics for Chemical Engineers with Microfluidics and CFD, p.122, 2015.

G. B. Jeffery, The Motion of Ellipsoidal Particles Immersed in a Viscous Fluid, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.102, issue.715, pp.161-179, 1922.
DOI : 10.1098/rspa.1922.0078

R. M. Johnson and Y. Ravindranath, Osmotic Scan Ektacytometry in Clinical Diagnosis, Journal of Pediatric Hematology/Oncology, vol.18, issue.2, pp.122-129, 1996.
DOI : 10.1097/00043426-199605000-00005

A. Karnis, H. L. Goldsmith, and S. G. Mason, The kinetics of flowing dispersions, Journal of Colloid and Interface Science, vol.22, issue.6, pp.531-553, 1966.
DOI : 10.1016/0021-9797(66)90048-8

S. R. Keller and R. Skalak, Motion of a tank-treading ellipsoidal particle in a shear flow, Journal of Fluid Mechanics, vol.33, issue.-1, pp.27-47, 1982.
DOI : 10.1016/0005-2736(79)90215-3

J. Kim, H. Lee, and S. Shin, Advances in the measurement of red blood cell deformability: A brief review, Journal of Cellular Biotechnology, vol.6, issue.1, pp.63-79, 2015.
DOI : 10.1021/pr070179d

Y. Kim, K. Kim, and Y. Park, Measurement Techniques for Red Blood Cell Deformability: Recent Advances Blood Cell -An Overview of Studies in Hematology, 2012.

Y. Kim, H. Shim, K. Kim, H. Park, S. Jang et al., Profiling individual human red blood cells using common-path diffraction optical tomography, Scientific Reports, vol.185, issue.1, 2014.
DOI : 10.1038/srep05090

URL : http://www.nature.com/articles/srep06659.pdf

M. King, L. Garçon, J. D. Hoyer, A. Iolascon, V. Picard et al., ICSH guidelines for the laboratory diagnosis of nonimmune hereditary red cell membrane disorders, International Journal of Laboratory Hematology, vol.89, issue.Suppl. 1, pp.304-325
DOI : 10.1038/jp.2014.68

D. Koutsouris, R. , G. Jc, L. Mt, G. et al., Determination of erythrocyte transit times through micropores. I-Basic operational principles, Biorheology, vol.25, issue.5, pp.763-772, 1987.
DOI : 10.3233/BIR-1988-25504

F. A. Kuypers, M. D. Scott, M. A. Schott, B. Lubin, and D. T. Chiu, Use of ektacytometry to determine red cell susceptibility to oxidative stress, J. Lab. Clin. Med, vol.116, pp.535-545, 1990.

D. P. Kwiatkowski, How Malaria Has Affected the Human Genome and What Human Genetics Can Teach Us about Malaria, The American Journal of Human Genetics, vol.77, issue.2, pp.171-192, 2005.
DOI : 10.1086/432519

E. Lazarova, B. Gulbis, B. Oirschot, . Van, and R. Van-wijk, Conclusions:, Clinical Chemistry and Laboratory Medicine (CCLM), vol.27, issue.3, pp.394-402, 2017.
DOI : 20141571168

L. G. Leal and E. J. Hinch, The effect of weak Brownian rotations on particles in shear flow, Journal of Fluid Mechanics, vol.14, issue.04, pp.10-1017, 1971.
DOI : 10.1007/BF01332211

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho et al., Quantitative Phase Imaging Techniques for the Study of Cell Pathophysiology: From Principles to Applications, Sensors, vol.9, issue.4, pp.4170-4191, 2013.
DOI : 10.1038/nmeth.2219

J. G. Lenard, A note on the shape of the erythrocyte, Bulletin of Mathematical Biology, vol.25, issue.1, pp.55-58, 1974.
DOI : 10.1007/BF02461190

L. M. Mcmanus, Pathobiology of Human Disease: A Dynamic Encyclopedia of Disease Mechanisms, 2014.

O. Linderkamp, P. Y. Wu, and H. J. Meiselman, Geometry of Neonatal and Adult Red Blood Cells, Pediatric Research, vol.17, issue.4, pp.250-253, 1983.
DOI : 10.1203/00006450-198304000-00003

S. C. Liu, P. Jarolim, H. L. Rubin, J. Palek, D. Amato et al., The homozygous state for the band 3 protein mutation in Southeast Asian Ovalocytosis may be lethal, Blood, vol.84, pp.3590-3591, 1994.

C. E. Mclaren, G. M. Brittenham, and V. Hasselblad, Statistical and graphical evaluation of erythrocyte volume distributions, American Journal of Physiology-Heart and Circulatory Physiology, vol.252, issue.4, pp.857-866, 1987.
DOI : 10.1152/ajpheart.1987.252.4.H857

J. P. Mills, L. Qie, M. Dao, C. T. Lim, and S. Suresh, Nonlinear elastic and viscoelastic deformation of the human red blood cell with optical tweezers, Mech Chem Biosyst, vol.1, pp.169-180, 2004.

M. Mir, B. Bhaduri, R. Wang, R. Zhu, and G. Popescu, Chapter 3 -Quantitative Phase Imaging, Progress in Optics, Progress in Optics, pp.133-217, 2012.

J. M. Mitchison and M. M. Swann, The Mechanical Properties of the Cell Surface I. The Cell Elastimeter, J Exp Biol, vol.31, pp.443-460, 1954.

N. Mohandas, M. R. Clark, M. S. Jacobs, and S. B. Shohet, Analysis of factors regulating erythrocyte deformability., Journal of Clinical Investigation, vol.66, issue.3, pp.563-573, 1980.
DOI : 10.1172/JCI109888

N. Mohandas and P. G. Gallagher, Red cell membrane: past, present, and future, Blood, vol.112, issue.10, pp.3939-3948, 2008.
DOI : 10.1182/blood-2008-07-161166

N. Mohandas, L. E. Lie-injo, M. Friedman, and J. W. Mak, Rigid membranes of Malayan ovalocytes: a likely genetic barrier against malaria, Blood, vol.63, pp.1385-1392, 1984.

F. C. Mokken, M. Kedaria, C. P. Henny, M. R. Hardeman, and A. W. Gelb, The clinical importance of erythrocyte deformability, a hemorrheological parameter, Annals of Hematology, vol.9, issue.Suppl 156, pp.113-12210, 1007.
DOI : 10.3109/14017438409102390

J. E. Molloy and M. J. Padgett, Lights, action: Optical tweezers, Contemporary Physics, vol.92, issue.4, pp.241-258, 2002.
DOI : 10.1016/S0092-8674(00)80911-3

N. Mp, The Technicon Ektacytometer: automated exploration of erythrocyte function, Biorheology, pp.291-295, 1983.

S. Mueller, E. W. Llewellin, and H. M. Mader, The rheology of suspensions of solid particles, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.340, issue.2, pp.1201-1228, 2010.
DOI : 10.1021/j150458a001

M. Musielak, Red blood cell-deformability measurement: Review of techniques, Clinical Hemorheology and Microcirculation, vol.42, pp.47-64, 2009.

Y. S. Muzychka and M. M. Yovanovich, Pressure Drop in Laminar Developing Flow in Noncircular Ducts: A Scaling and Modeling Approach, Journal of Fluids Engineering, vol.100, issue.11, pp.111105-111105, 2009.
DOI : 10.1002/aic.690180606

P. R. Nott and J. F. Brady, Pressure-driven flow of suspensions: simulation and theory, Journal of Fluid Mechanics, vol.266, issue.-1, pp.10-1017, 1994.
DOI : 10.1063/1.866914

K. Oguz and M. R. Baskurt, Comparison of three commercially available ektacytometers with different shearing geometries, Biorheology, vol.46, pp.251-64, 2009.

H. Park, S. Lee, M. Ji, K. Kim, Y. Son et al., Measuring cell surface area and deformability of individual human red blood cells over blood storage using quantitative phase imaging, Scientific Reports, vol.20, issue.1, 2016.
DOI : 10.1117/1.JBO.20.11.111208

Y. Park, C. A. Best, T. Kuriabova, M. L. Henle, M. S. Feld et al., Measurement of the nonlinear elasticity of red blood cell membranes, Physical Review E, vol.27, issue.5, p.51925, 2011.
DOI : 10.1016/S0006-3495(83)84319-7

Y. Park, M. Diez-silva, G. Popescu, G. Lykotrafitis, W. Choi et al., Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum, Proceedings of the National Academy of Sciences, vol.87, issue.5, pp.13730-13735, 2008.
DOI : 10.1529/biophysj.104.041475

G. Pasvol, Are Children with Homozygous Sickle Cell Disease Really at a Disadvantage in the Face of Malaria? The Malaria Hypothesis Revisited, Clinical Infectious Diseases, vol.49, issue.2, pp.223-224, 2009.
DOI : 10.1086/599835

V. Picard, A. Proust, M. Eveillard, J. F. Flatt, M. Couec et al., Homozygous Southeast Asian ovalocytosis is a severe References 125

O. S. Platt, D. J. Brambilla, W. F. Rosse, P. F. Milner, O. Castro et al., Mortality In Sickle Cell Disease -- Life Expectancy and Risk Factors for Early Death, New England Journal of Medicine, vol.330, issue.23, pp.1639-164410, 1056.
DOI : 10.1056/NEJM199406093302303

G. Popescu, K. Badizadegan, and R. R. Dasari, Observation of dynamic subdomains in red blood cells, J. Biomed. Opt, vol.11, 2006.

G. Popescu, T. Ikeda, K. Goda, C. A. Best-popescu, M. Laposata et al., Optical Measurement of Cell Membrane Tension, Physical Review Letters, vol.75, issue.21, 2006.
DOI : 10.1017/CBO9781139644105

M. Puig-de-morales-marinkovic, K. T. Turner, J. P. Butler, J. J. Fredberg, and S. Suresh, Viscoelasticity of the human red blood cell, American Journal of Physiology-Cell Physiology, vol.293, issue.2, pp.597-605, 2006.
DOI : 10.1016/S0301-0104(02)00548-7

E. M. Purcell, Life at low Reynolds number, AIP Conference Proceedings. Presented at the Physics and Our World: A Symposium in Honor of Victor F. Weisskopf, pp.49-64, 1976.

R. P. Rand and A. C. Burton, Mechanical Properties of the Red Cell Membrane: I. Membrane Stiffness and Intracellular Pressure, Biophysical Journal, vol.464, pp.115-135, 1964.

H. L. Reid, A. J. Barnes, P. J. Lock, J. A. Dormandy, and T. L. Dormandy, A simple method for measuring erythrocyte deformability., Journal of Clinical Pathology, vol.29, issue.9, pp.855-858, 1976.
DOI : 10.1136/jcp.29.9.855

W. H. Reinhart, C. Huang, M. Vayo, G. Norwich, S. Chien et al., Folding of red blood cells in capillaries and narrow pores, Biorheology, vol.28, issue.6, pp.537-549, 1991.
DOI : 10.3233/BIR-1991-28605

P. Ruef, J. M. Pöschl, and O. Linderkamp, The rheodyn SSD for measuring erythrocyte deformability, Biorheology, vol.32, issue.2-3, pp.357-358, 1995.
DOI : 10.1016/0006-355X(95)92349-F

E. Sackmann, . R. Ed, E. Lipowsky, and . Sackmann, Biological Membranes Architecture and Function, Structure and Dynamics of Membranes, 1995.
DOI : 10.1016/S1383-8121(06)80018-7

H. Schmid-schoenbein, R. Wells, and R. Schildkraut, Microscopy and viscometry of blood flowing under uniform shear rate(rheoscopy), Journal of Applied Physiology, vol.26, issue.5, pp.674-678, 1969.
DOI : 10.1152/jappl.1969.26.5.674

H. Schmid-schönbein, R. Wells, and J. Goldstone, Influence of Deformability of Human Red Cells upon Blood Viscosity, Circulation Research, vol.25, issue.2, 1969.
DOI : 10.1161/01.RES.25.2.131

P. D. Schmid-schönbein, J. Weiss, and H. Ludwig, A simple method for measuring red cell deformability in models of the microcirculation, Blut Zeitschrift f??r die Gesamte Blutforschung, vol.12, issue.6, pp.369-379, 1973.
DOI : 10.1007/BF01632746

H. E. Schulz, Hydrodynamics -Optimizing Methods and Tools, 2011.
DOI : 10.5772/2371

S. Shin, Y. Ku, M. Park, and J. Suh, Measurement of red cell deformability and whole blood viscosity using laser-diffraction slit rheometer, Korea-Australia Rheology Journal, pp.85-90, 2004.

R. K. Shah and A. L. London, Laminar Flow Forced Convection in Ducts, Journal of Fluids Engineering, vol.102, issue.2, 1978.
DOI : 10.1115/1.3240677

S. Shin, J. X. Hou, J. S. Suh, and M. Singh, Validation and application of a microfluidic ektacytometer (RheoScan-D) in measuring erythrocyte deformability, Clin. Hemorheol. Microcirc, vol.37, pp.319-328, 2007.

S. Shin, Y. Ku, M. Park, J. Jang, and J. Suh, Rapid cell-deformability sensing system based on slit-flow laser diffractometry with decreasing pressure differential, Biosensors and Bioelectronics, vol.20, issue.7, pp.1291-1297, 2005.
DOI : 10.1016/j.bios.2004.04.025

S. Shin, Y. Ku, M. Park, and J. Suh, Slit-flow ektacytometry: Laser diffraction in a slit rheometer, Cytometry Part B: Clinical Cytometry, vol.96, issue.1, 2005.
DOI : 10.1002/cyto.b.20048

E. Shojaei-baghini, Y. Zheng, and Y. Sun, Automated Micropipette Aspiration of Single Cells, Annals of Biomedical Engineering, vol.70, issue.4, pp.1208-1216, 2013.
DOI : 10.1016/S0006-3495(96)79768-0

Y. Son, Determination of shear viscosity and shear rate from pressure drop and flow rate relationship in a rectangular channel, Polymer, vol.48, issue.2, pp.632-637, 2007.
DOI : 10.1016/j.polymer.2006.11.048

A. Stier, P. Bize, Q. Schull, J. Zoll, F. Singh et al., Avian erythrocytes have functional mitochondria, opening novel perspectives for birds as animal models in the study of ageing, Frontiers in Zoology, vol.10, issue.1, pp.33-43, 2013.
DOI : 10.1007/s00360-005-0055-6

URL : https://hal.archives-ouvertes.fr/hal-00838062

G. J. Streekstra, J. G. Dobbe, and A. G. Hoekstra, Quantification of the fraction poorly deformable red blood cells using ektacytometry, Optics Express, vol.18, issue.13, pp.14173-14182, 2010.
DOI : 10.1364/OE.18.014173

J. Stuart, Erythrocyte rheology., Journal of Clinical Pathology, vol.38, issue.9, pp.965-977, 1985.
DOI : 10.1136/jcp.38.9.965

S. P. Sutera, R. A. Gardner, C. W. Boylan, G. L. Carroll, K. C. Chang et al., Age-related changes in deformability of human erythrocytes, Blood, vol.65, pp.275-282, 1985.

I. Swia?, Design of a Graphical User Interface to control a Medical Analysis System (Master Thesis) Brno University of Technology, 2007.

T. Fischer and H. Schmid-schönbein, Tank Tread Motion of Red Cell Membranes in Viscometric Flow: Behavior of Intracellular and Extracellular Markers (with Film), Blood Cells, pp.351-365, 1977.
DOI : 10.1007/978-3-642-67059-6_26

A. Van-leeuwenhoek, Microscopical observations concerning blood, milk, bones, the brain, spittle, and cuticula, 1674.

N. Wang, J. P. Butler, and D. E. Ingber, Mechanotransduction across the cell surface and through the cytoskeleton, Science, vol.260, issue.5111, pp.1124-1127, 1993.
DOI : 10.1126/science.7684161

X. Wang, H. Zhao, F. Y. Zhuang, and J. F. Stoltz, Measurement of erythrocyte deformability by two laser diffraction methods, in: Clinical Hemorheology and Microcirculation, Presented at the Hemorheology and Tissue Oxygenation in Hypertension and Vascular Diseases. International Conference, pp.291-295, 1999.

A. L. Weisenhorn, M. Khorsandi, S. Kasas, V. Gotzos, and H. Butt, Deformation and height anomaly of soft surfaces studied with an AFM, Nanotechnology, vol.4, issue.2, 1993.
DOI : 10.1088/0957-4484/4/2/006

T. Yaginuma, M. S. Oliveira, R. Lima, T. Ishikawa, and T. Yamaguchi, Human red blood cell behavior under homogeneous extensional flow in a hyperbolicshaped microchannel, 2013.

G. I. Zahalak and S. P. Sutera, Fraunhofer diffraction pattern of an oriented monodisperse system of prolate ellipsoids, Journal of Colloid and Interface Science, vol.82, issue.2, pp.423-429, 1981.
DOI : 10.1016/0021-9797(81)90384-2

R. Zhao, J. F. Antaki, T. Naik, T. N. Bachman, M. V. Kameneva et al., Microscopic investigation of erythrocyte deformation dynamics, Biorheology, vol.43, pp.747-765, 2006.