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Abstract

360 degree and spherical multi-cameras built by fixing together several consumer

cameras become popular and are convenient for recent applications like immersive videos,

3D modeling and virtual reality. This type of cameras allows to include the whole scene

in a single view. When the goal of our applications is to merge monocular videos

together into one cylinder video or to obtain 3D informations from environment, there

are several basic steps that should be performed beforehand. Among these tasks, we

consider the synchronization between cameras; the calibration of multi-camera system

including intrinsic and extrinsic parameters (i.e. the relative poses between cameras);

and the rolling shutter calibration. The goal of this thesis is to develop and apply user

friendly method. Our approach does not require a calibration pattern.

First, the multi-camera is initialized thanks to assumptions that are suitable to

an omnidirectional camera without a privileged direction: the cameras have the same

setting (frequency, image resolution, field-of-view) and are roughly equiangular. Second,

a frame-accurate synchronization is estimated from instantaneous angular velocities of

each camera provided by monocular Structure-from-Motion. Third, both inter-camera

poses and intrinsic parameters are refined using multi-camera Structure-from-Motion

and bundle adjustment. Last, we introduce a bundle adjustment that estimates not

only the usual parameters but also a subframe-accurate synchronization and the rolling

shutter.

We experiment in a context that we believe useful for applications (3D modeling

and 360 videos): several consumer cameras or a spherical camera mounted on a helmet

and moving along trajectories of several hundreds of meters or kilometers.

Keywords: Bundle adjustment, self-calibration, synchronization, rolling shutter,

multi-camera.
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Résumé

Les caméras sphériques et 360 deviennent populaires et sont utilisées notamment

pour la création de vidéos immersives et la génération de contenu pour la réalité virtuelle.

Elles sont souvent composées de plusieurs caméras grand-angles/fisheyes pointant dans

différentes directions et rigidement liées les unes aux autres. Cependant, il n’est pas si

simple de les calibrer complètement car ces caméras grand public sont rolling shutter

et peuvent être mal synchronisées. Cette thèse propose des méthodes permettant de

calibrer ces multi-caméras à partir de vidéos sans utiliser de mire de calibration.

On initialise d’abord un modèle de multi-caméra grâce à des hypothèses appro-

priées à un capteur omnidirectionnel sans direction privilégiée : les caméras ont les

mêmes réglages (dont la fréquence et l’angle de champs de vue) et sont approximative-

ment équiangulaires. Deuxièmement, sachant que le module de la vitesse angulaire est le

même pour deux caméras au même instant, nous proposons de synchroniser les caméras

à une image près à partir des vitesses angulaires estimées par structure-from-motion

monoculaire. Troisièmement, les poses inter-caméras et les paramètres intrinsèques sont

estimés par structure-from-motion et ajustement de faisceaux multi-caméras avec les ap-

proximations suivantes: la multi-caméra est centrale, global shutter; et la synchronisa-

tion précédant est imposée. Enfin, nous proposons un ajustement de faisceaux final sans

ces approximations, qui raffine notamment la synchronisation (à précision sous-trame),

le coefficient de rolling shutter et les autres paramètres (intrinsèques, extrinsèques, 3D).

On expérimente dans un contexte que nous pensons utile pour des applications

comme les vidéos 360 et la modélisation 3D de scènes : plusieurs caméras grand public

ou une caméra sphérique fixée(s) sur un casque et se déplaçant le long d’une trajectoire

de quelques centaines de mètres à quelques kilomètres.

Mot clés : ajustement de faisceaux, auto-étalonnage, synchronisation, rolling shut-

ter, multi-caméra.
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I.3 Initialisation en caméra équiangulaire . . . . . . . . . . . . . . . . . . . . 165

I.4 Synchronisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
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Chapter 1

Introduction

Numerous applications can be realized on 2D images taken by a digital camera
with the help of a computer. Omnidirectional cameras, among others, are found in
many applications such as surveillance, navigation, robotics, 360 video, virtual reality,
telepresence, etc. Several applications require a 3D model of an environment which is
a classical problem in the domain of Computer Vision. For example, the efficient mod-
eling of a complete environment requires an acquisition on (almost) the whole viewing
sphere. In comparison to scanners (Lidar, Time-of-flight camera, structured light), the
cameras are usually less costly and more easily to be embedded. For these reasons, our
interest is focused on omnidirectional “multi-camera” sensors built by fixing together
several consumer cameras pointing in different directions. See Figure 1.1 for examples of
omnidirectional multi-cameras or 360 cameras [360rize], [ThetaS], [Gear360], [Virb360],
[Ladybug2]. These cameras become popular thanks to their prices, high resolutions,
growing applications including 360 videos (e.g. in YouTube), generation of virtual re-
ality content, 3D scene modeling. The advantage of omnidirectional multi-cameras is
primarily that they have a large field-of-view and thus provide a large part of the sur-
rounding environment in one instant. They allow to establish more spacious point
correspondences which lead to more complete 3D reconstruction and more stable ego-
motion estimation than standard cameras. Various combinations of several monocular
cameras lead to various types of omnidirectional multi-cameras. Sometimes it arises
from physical setup or from types of optical elements (lenses, camera sensors, etc) or
from the acquisition process.

Camera can be understood as ray-based sensing device. We say that a multi-camera
is central, or has a single viewpoint or a projection center, if all its rays intersect at a
single point. Otherwise, the baseline defined by the distance between the centers of two
cameras is not zero. Depending on the baseline, the multi-camera systems divide into
central and non-central ones.

The digital cameras map surrounding space through optical systems onto photo-
sensitive devices (e.g. charge coupled device - CCD, complementary metal oxide semi-
conductor - CMOS). Today, most digital cameras use a CMOS sensor because of its
lower consumption, cheaper manufacturing and the potential for on-chip processing.
What sensor is used leads to two methods of image capture: rolling shutter camera
(using CMOS sensor) captures the image row-by-row and global shutter camera (using
CCD sensor) captures the entire frame at the same time.
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Figure 1.1: Multi-camera systems and acquired images. From the top: four Gopro
Hero 3 in a cardboard; four Gopro Hero 3 in their housing; PointGrey Ladybug 2 and

Ricoh Theta S.
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The process of recovering the temporal relationship between two or more videos is
necessary for successfully analyzing and integrating available information from several
cameras. We assume that each video has a constant frame rate. The synchronization
methods can be classified in two categories depending on the goal of estimating frame-
accurate or subframe-accurate time-offsets. In the former, frames with the same index
are taken at the same time up to inverse of frame per second. Moreover, there is in
general also a subframe offset. Using the results of the former, the synchronization
problem can be reformulated to achieve the latter.

This thesis deals with omnidirectional multi-cameras. Our work investigates their
properties, synchronization and self-calibration including rolling shutter. As the main
contribution, a complete self-calibration method including synchronization and rolling
shutter is developed.

1.1 Motivation

This work is motivated by using omnidirectional multi-cameras as in Figure 1.1
in applications such as 360 video (e.g. on YouTube) and 3D scene modeling. We do
assumptions that are suitable to an omnidirectional multi-camera without a privileged
direction: the monocular cameras have the same setting (frequency, image resolutions,
field of view, etc). Applications using multiple camera rigs require accurate calibration
of the device, which includes intrinsic parameters and relative poses of each camera with
respect to multi-camera coordinate system. Our work concentrates on the uncalibrated
case without assumptions about the scene (except for rigidity), and establishes relative
pose of multi-camera rigs even if the cameras do not have overlapping view. However,
their complete self-calibration is not easy since the consumer fisheyes are rolling shutter
cameras which can be unsynchronized.

360 video needs a central multi-camera. The smaller the baseline, the better the
stitching quality. The user/manufacturer can reduce the baseline (and the multi-camera
price) thanks to a small number of cameras. Here, we mainly use a DIY1 multi-camera
composed of four Gopro Hero 3 cameras enclosed in a cardboard (Figure 1.1) such that
the baseline is as small as possible. Since a small number of cameras also reduces the
field-of-view (FoV) shared by adjacent cameras, we avoid methods that rely on this
shared FoV such as image matching between different monocular videos. A greater
number of cameras can be used in order to increase the overlapping FoV, but both
price and baseline increase [Virb360]. We also experiment using a spherical camera
(Figure 1.1) having only two large FoV (fisheye-like) images.

Moreover, the video sequence synchronization is essential step for the calibration of
multiple cameras and for any Computer Vision application. In professional applications,
a hardware synchronization usually offers high accuracy requiring a physical connection
but is expensive and complex. In many cases like Gopro cameras, the manufacturer
provides a wifi-based synchronization: the user starts all videos at once by a single click.
However, the resulting time offsets between videos are too inaccurate for applications:
about 0.04 seconds and sometimes above 0.1 seconds in our experiments. Assume that
a central multi-camera moves at 20km/h (e.g. biking in a city) and two cameras have a
time offset equal to only 0.02 second, then explain consequences on a 360 video obtained

1Do It Yourself
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by video stitching. If we neglect this offset, the two videos are stitched as if they have
same camera centers at same frame number, although the distance between these centers
is 0.11 meter (20/3.6*0.02). This generates artifacts in the 360 video due to foreground
objects that are in the FoV shared by the two cameras. Therefore, the synchronization
problem should be solved after video acquisition.

The low price of a consumer camera implies that the camera is rolling shutter. This
means that two different lines of pixels of a frame are acquired at different instants. This
produces predictable distortions in the image when either the camera or the objects in
the scene are moving. In a global shutter, all pixels have the same time. Most Computer
Vision algorithms assume that the cameras have a global shutter although they do
not. This can degrade the quality of results in applications such as 3D reconstruction,
similarly as inaccurate synchronization degrades the quality of 360 videos.

1.2 Goals of the thesis

The goal of the thesis is to develop a self-calibration method of omnidirectional
multi-camera. Our self-calibration takes into account challenges: lack of synchronization,
rolling shutter. The main goals are:

• to synchronize two or more cameras with frame accuracy and subframe accuracy,

• to self-calibrate omnidirectional multi-camera rig from images without assuming
overlapping view between cameras,

• to estimate the coefficient of rolling shutter (time delay between two successive
lines) and the time offsets with subframe accuracy between cameras.

We propose a purely visual approach without additional sensors.

1.3 Contribution of the thesis

The following contributions are brought by the thesis

1. A robust synchronization method based on instantaneous angular velocity assum-
ing jointly moving cameras,

2. Improvements of a previous bundle adjustment designed for global shutter multi-
cameras (refines intrinsic, extrinsic parameters and the other 3D parameters),

3. The first multi-camera bundle adjustment that estimates not only rolling shutter
(line delay) but also synchronization (time offsets), in addition to the usual 3D
parameters,

4. Experiments on long trajectories (hundreds of meters or kilometers) in a context
that we believe useful for applications (3D modeling and 360 video): several con-
sumer cameras or a spherical camera mounted on a helmet and moving along
trajectories by walking or biking.
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1.4 Structure of the thesis

In Chapter 2, the basic terminology used throughout the thesis and overview
of theoretical preliminaries are explained. In particular, we present omnidirectional
projection, parameterizations of rotation, least-square optimizations. Furthermore, we
briefly review the structure-from-motion algorithm that we use. In Chapter 3, previous
and related works are reviewed. The three next chapters explain our works.

In Chapter 4, two monocular camera models (the classical polynomial distortion
model and the unified camera model) are presented. We tackle monocular camera as
follows: the intrinsic parameters are initialized thanks to assumptions that are suitable
to an omnidirectional camera without a privileged direction. A frame accurate synchro-
nization between all videos is obtained using a method based on instantaneous angular
velocity.

In Chapter 5, a central multi-camera calibration is initialized from the estimated in-
trinsic monocular parameters and approximate inter-camera rotations. We apply multi-
camera structure-from-motion and improve a previous multi-camera bundle adjustment
in order to optimize the intrinsic and extrinsic parameters, the multi-camera pose and
3D structure. Up to now, we do assume that the cameras are global shutter and the
time offsets between cameras are integers (frame accurate).

In Chapter 6, we introduce a novel multi-camera bundle adjustment for estimating
subframe-accurate synchronization and line delay rolling shutter parameter in addition
to usual parameters. We experiment using videos taken by multi-cameras mounted on
a helmet and moving along trajectories of several hundreds of meters or kilometer, then
compare our self-calibration results with ground truth.

Finally, Chapter 7 concludes the thesis.
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Chapter 2

Preliminaries

In this chapter, we present notation conventions and outline some important concepts
used throughout this work. A model allowing to represent omnidirectional multi-camera
and all scene points around the camera is described. We briefly present the optimization
framework, especially Levenberg-Marquardt method which is used to solve our non-linear
least squares problems. We also summarize an efficient framework for joint estimation
of camera positions and 3D structure scene from a moving calibrated camera. This
framework is called Structure from Motion. One strategy used in this dissertation is
investigated in [Mouragnon+09].

Contents

2.1 Omnidirectional projection . . . . . . . . . . . . . . . . . . . . 7
2.2 Parametrization of rotations . . . . . . . . . . . . . . . . . . . 10

2.2.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.2 The angle-axis representation . . . . . . . . . . . . . . . . . . . 10
2.2.3 Euler angles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.4 Quaternions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Optimization method . . . . . . . . . . . . . . . . . . . . . . . 12
2.4 Reconstruction from image sequences . . . . . . . . . . . . . 17

2.4.1 Corresponding features . . . . . . . . . . . . . . . . . . . . . . 17
2.4.2 Initial reconstruction . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4.3 Bundle adjustment . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.1 Omnidirectional projection

The camera is a mapping from the 3D world (Euclidean 3-space R
3) to a 2D image

(Euclidean 2-space R2) in which we lose one dimension. This process is usually modeled
by central projection in which projecting rays from 3D world points pass through a fixed
point in space, called as the center of projection. This ray intersects a plane in space,
called as the image plane or focal plane, at an image 2D point. Omnidirectional cameras
have various FoV, e.g. fish-eye camera with FoV larger than 180o, catadioptric camera
consisting of curved mirrors in front of camera with 360o in the horizontal direction
and various FoV in the vertical direction, etc. Multi-camera rigs, as in Figure 1.1, are
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omnidirectional cameras as well. In this section, we start with the simplest camera
model and then describe a rigid multi-camera system.

The basic pinhole model. Assume that the center of projection is at the origin
of an Euclidean coordinate system and the plane Z = f is the image plane. The center
of projection is called the camera center. The line from the camera center perpendicular
to the image plane is called the principal axis or principal ray of the camera. The point
where the principal axis intersects the image plane is called the principal point. A point
XC in 3D space is mapped to a point on the image plane that is the intersection of the
image plane and the line joining the point XC to the camera center. If XC is represented
by the homogeneous 4-vector (XC, YC, ZC, wC)

�, the image point x is represented by a
homogeneous 3-vector, the projection function is expressed conveniently in homogeneous
coordinates as:

x = K[I | 0]XC (2.1)

where the camera calibration matrix is

K =

⎡
⎢⎣fx s u0
0 fy v0
0 0 1

⎤
⎥⎦ . (2.2)

The calibration matrix has focal parameters (fx, fy), principal point p0 = (u0, v0)
�

and skew term s which models non-rectangular pixels. The homogeneous vector x =
(X,Y, Z)� with Z �= 0 represents the image point p = (u, v)� with inhomogeneous
coordinate Ç

u
v

å
= π(x) =

Ç
X/Z
Y/Z

å
. (2.3)

The camera is assumed to be located at the origin of an Euclidean coordinate system
with the principal axis of the camera pointing straight down the ZC−axis, and the point
XC is expressed in this coordinate system. Such a coordinate system is called the camera
coordinate system (see Figure 2.1(a)).

Other models. The above model is used for perspective camera. Many different
cameras consisting of omnidirectional cameras have been investigated and a certain
number of computational models for cameras are proposed in the literature. A survey of
camera models existing in the Computer Vision can be found in [Sturm+11]. Generally,
we add various terms of radial, tangential and other distortions to the basic pinhole
model in order to model more precisely for cameras with a large or very wide FoV.
Radial distortion models have different forms and are defined by distortion function
that links radial distance (distance between image point and distortion center) in the
distorted image to either radial distance in the undistorted image or the incidence angle
between camera ray and principal ray. We also remind the equiangular case where the
incidence angle between camera ray and principal ray is proportional to radial distance
in the distorted image. The camera models that we use, will be described in Chapter 4.

Camera rotation and translation. In general, points in space are expressed in
terms of a different Euclidean coordinate system, known as the world coordinate system.
The transformation between two coordinate systems is represented by a rotation R and
a translation t. If inhomogeneous vectors X̃ and X̃C represent the same point in the
world coordinate system and the camera coordinate system respectively, then we write

8
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X̃ = RX̃C + t. This equation may be rewritten in homogeneous coordinates as

XC =

ñ
R� R�t
0� 1

ô
X. (2.4)

Putting this together with Eq.(2.1) leads to the formula:

x = KR�[I | t]X. (2.5)

where P = KR�[I | t] is the projection matrix and X is in the world coordinate system.
This is the general mapping given by a pinhole camera.

XC

ZC

YC

XC

Image plane

v
u

p0

p

(a) Perspective camera model

XM

YM

ZM

cam
0

c

1
cam11cam

2
c

cam3

XC

YC
ZC

(b) Multi-camera system

Figure 2.1: Perspective camera model and multi-camera system.

Rigid multi-camera system modeling. For a rigid multi-camera system, we
also define a multi-camera coordinate system (see Figure 2.1(b)). The world coordinate
system and the multi-camera coordinate system are related via a rotation RM and a
translation tM. The transformation between the multi-camera coordinate system and
the camera coordinate system is also represented by a rotation RC and a translation tC. If
the monocular projection centers coincide, the multi-camera is central and tC = 0. The
multi-camera is, in general, non central. If a 3D point is represented by inhomogeneous
vectors X̃, X̃M and X̃C in the world coordinate system, the multi-camera coordinate
system and the camera coordinate system, respectively, then we can write

X̃ = RMX̃M + tM and X̃M = RCX̃C + tC. (2.6)

Thus
X̃C = R�C

Ä
R�M(X̃ tM) tC

ä
. (2.7)

This transformation can be represented by a linear transformation of homogeneous co-
ordinates

XC =

ñ
R�C R�CtC
0� 1

ô
XM =

ñ
R�C R�CtC
0� 1

ô ñ
R�M R�MtM
0� 1

ô
X

=

ñ
R�CR

�
M R�CR

�
MtM R�CtC

0� 1

ô
X

(2.8)

where XC is in the camera coordinate system, XM is in the multi-camera coordinate
system and X is in the world coordinate system. The forward projection function from
3D point to image point is written in homogeneous coordinate as (putting this together
with Eq.(2.1))

x = K[I | 0]XC = KR�C
î
R�M | R�MtM tC

ó
X. (2.9)
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This is a general mapping given by a rigid multi-camera system with pinhole camera
model. The parameters RM and tM which relate the multi-camera rig orientation and
position to the world coordinate system are called the multi-camera pose. The parame-
ters contained in K are called the intrinsic parameters of the camera. The transformation
defined by (RC, tC) is called the extrinsic parameters of the multi-camera system. From
the extrinsic parameters, we can deduce relative poses between cameras, called the inter-
camera poses.

2.2 Parametrization of rotations

Parametrization of rotations is usually needed in applications such as structure-
from-motion or camera calibration. We remind that the set of rotations

SO(3) =
¶
R ∈ R

3×3|R�R = I3×3, det(R) = 1
©

(2.10)

forms a matrix group under the operations of matrix multiplication. In this section, we
discuss several parameterizations of SO(3). The most classic ones are three-parameter
representations (angle-axis, Euler-angles) and a four-parameter representation (quater-
nions).

2.2.1 Definitions

A parametrization (or a parametric representation) of SO(3) is a surjective and C1
continuous function R from R

k to SO(3). Since SO(3) is a 3D manifold (same topology
as the real 3D projective space), it has 3 degrees of freedom (DoF) and the integer k
is greater than or equal to 3. Let r0 ∈ R

k and ∂R(r0) be the Jacobian of R at r0,
by considering that SO(3) is a subset of R9. In our context, we say that r0 ∈ R

k is a
singularity of R if the rank of ∂R(r0) < 3. If r0 is not a singularity, this rank is 3 and R
is locally surjective: R maps a (arbitrary small) neighborhood of r0 to a neighborhood
of rotation R(r0) in SO(3). The singularities should be avoided in the parametrization
choice used in bundle adjustment [Triggs+00], [Hartley+04].

Here, we detail the case where k is minimal, i.e. k = 3. We have rank∂R(r0) < 3
iff the kernel ker ∂R(r0) has a non-zero dimension. For example, assume that there is a
curve C (a C1 continuous function) from interval ] − 1, 1[ to R

3 such that the function
composition R ◦ C is constant and C(0) = r0. We have ∂R(r0)∂C(0) = 0 by the
Chain rule, and thus dimker ∂R(r0) > 0, which means that r0 is a singularity. If r0 is
not a singularity, R is a locally C1-diffeomorphism: between a neighborhood of r0 and
a neighborhood of R(r0) in SO(3). All parameterizations of SO(3) with k = 3 have
singularities [Singla+04].

2.2.2 The angle-axis representation

It is shown in [Hartley+04] that every rotation R ∈ SO(3) can be written as

R = exp(Ω) = I+ Ω+ Ω2/2! + Ω3/3! + · · · (2.11)

10
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where Ω is a 3× 3 skew-symmetric matrix. The exponential map is a surjective function
onto SO(3). A matrix Ω can be expressed in terms of the entries of a 3-vector v =
(v1, v2, v3)

� by

Ω = [v]× =

⎡
⎢⎣ 0 −v3 v2
v3 0 −v1
−v2 v1 0

⎤
⎥⎦ . (2.12)

The vector v is known as the angle-axis representation of the rotation. Given a 3-vector
v = θv̂ where v̂ is a unit vector, [Hartley+04] shows that matrix exp[v]× is precisely
the rotation about the unit axis v̂ through angle θ.

The exponential map on exp[.]× : R3 → SO(3) can be computed using Rodrigues’
formula [Hartley+04]:

R(v) = exp[θv̂]× = I+ sin θ[v̂]× + (1− cos θ)[v̂]2×. (2.13)

Note that an alternative representation (2π−θ)(−v̂) represents the same rotation; thus,
the angle-axis representation is not unique. We also note that R(v) = I if ||v|| = 2π.
By using a curve on sphere of equation ||v|| = 2π, we see that this sphere is a set of
singularities of R. Thanks to Eq.(2.13), the concentric spheres with centre 0 and radial
2πZ∗ are singularities.

2.2.3 Euler angles

Euler angles describe a rotation by three successive rotation angles (α, β, γ) around
the vectors of the canonical basis of R3. The order of the basis vector is important here.
We define the following three elementary rotation matrices:

Rx(α) =

⎡
⎢⎣1 0 0
0 cosα − sinα
0 sinα cosα

⎤
⎥⎦ , Ry(β) =

⎡
⎢⎣ cosβ 0 sinβ

0 1 0
− sinβ 0 cosβ

⎤
⎥⎦ , Rz(γ) =

⎡
⎢⎣cos γ − sin γ 0
sin γ cos γ 0
0 0 1

⎤
⎥⎦ ,

(2.14)
then the resultant rotation matrix can be written as

R(α, β, γ) = Rz(γ)Ry(β)Rx(α). (2.15)

In this way, it is possible to define 12 sets of Euler angles associated which 12 repre-
sentations of the rotation matrix: 6 “symmetric” sets when first and last rotation occur
about the same axis, and 6 “asymmetric” sets when all the three rotations occur about
three distinct axes (i.e. change the ordering of Rz, Ry and Rx in Eq.(2.15)). In our work,
we use the representation defined by Eq.(2.15).

These matrices involve the sine and cosine of the Euler angles, and though they
are nonlinear, their derivatives are easy to compute. Euler angles provide an easy to
use interface to animators in form of three independent angles [Singla+04]. Given a
rotation matrix R, Appendix D.1 shows that if sinβ �= ±1, the inverse transformation
problem has two solutions (α, β, γ) and (α + π, π − β, γ + π). The singularities of the
Euler representation form parallel and equidistant planes of equation β = π/2+ lπ, l ∈ Z

[Singla+04] (also see Appendix D.2 for a more detailed proof).
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2.2.4 Quaternions

Quaternions form a group whose underlying set is the four dimensional vector
space R

4 with a multiplication operator that combines both the dot product and cross
product of vectors (see Appendix E). We represent rotation matrix R by quaternion
q = [qr, qi, qj , qk] as

R(q) =
S

||q||2 (2.16)

where

S =

⎡
⎢⎣q

2
r + q2i − q2j − q2k 2qiqj − 2qrqk 2qiqk + 2qrqj
2qiqj + 2qrqk q2r − q2i + q2j − q2k 2qjqk − 2qrqi
2qiqk − 2qrqj 2qjqk + 2qrqi q2r − q2i − q2j + q2k

⎤
⎥⎦ . (2.17)

This parametrization does not have singularities [Dam+98]. In practice, unit-length
quaternions are often used to obtain a rotation. The set of unit-length quaternions is
a sub-group whose underlying set is called H1. A unit quaternion q can be written
q = (cos(θ/2), sin(θ/2)v̂). Such a quaternion represents a rotation through the angle θ
about the vector v̂. Note that, R(q) = R(−q). So both q and −q represent the same
rotation.

Quaternions, however, have one extra DoF. There are four directions in which
quaternion can change, but only three rotation DoF. An optimizer is free to move the
quaternion off the unit quaternion sphere, leading to non-unit quaternions that hence
give a redundant parameterization of rotation. Moreover, any motion in the tangent
plane of sphere H1 will push the quaternion out of sphere. Several strategies have been
developed to deal with these complications. [Ikits00] uses the fact that ||q||2 = 1, opti-
mizes only three components and calculates the remaining components of a quaternion
with this constraint, qr =

»
1− q2i − q2j − q2k. Since it does not allow for negative qr,

this parameterization limits us in a half-part of the parameter space. [Schmidt+01]
proposes a local approximation to the unit quaternion by calculating the tangent space
of the unit quaternion manifold. A movement of quaternion on the unit sphere S

3 is
described by a 3-vector lying the tangential hyperplane (subspace of R4) of the unit
sphere at the point q. This 3-vector is represented in the local coordinate system of
the tangential hyperplane and gives a direction and a distance (its length) to move on
a great circle of the unit sphere. Alternatively, [Agarwal+] suggests an algebraic ap-
proach that is computationally less complex than the above approach (more details in
Appendix C.2.2).

2.3 Optimization method

In this section, we briefly discuss about some algorithms in order to solve our
optimization problems. Let F : Rn → R be C2 continuous function. In typical optimiza-
tion problems, we find a minimizer for F that gives the minimum value of this so-called
objective function or cost function:

x+ = argmin
x∈Rn

F (x). (2.18)

This problem is very hard to solve in general and we are not guaranteed to find such a
global minimizer x+ for F . Therefore, we often focus on the simpler problem of finding a
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local minimizer x∗ in a neighborhood of an initial guess x0 instead. Sufficient condition
for a local minimizer is that the gradient of F (x) is equal to 0 at x∗ and the Hessian
matrix of F (x) is positive definite at x∗.

Gradient descent. We would like to find a local minimizer in the neighborhood
of x0. We start at x0 and walk iteratively x1,x2, . . . ,xk, . . . along the direction of the
negative gradient −g = −∇F (xk). Thus, we employ the following update rule:

xk+1 = xk − αkg. (2.19)

The factor αk is chosen in a way we get a decrease in the value of the objective function. If
no such αk exists, a local minimizer is reached if the Hessian matrix is positive definite.
The value of αk is selected adaptively or by a line search in the downward gradient
direction. A method likes this converges locally, but the convergence rate can be very
slow, even in a close neighborhood of the minimum.

Newton method. Let us assume that an initial estimation x0 is in the neighbor-
hood of a local minimizer x∗ such that the Hessian matrix H of F is positive semi-definite
in this neighborhood. Since x∗ is a local minimizer, g(x∗) = 0. We can approximate
g(x∗) using the first order Taylor expansion:

g(x∗) = g(x0 +Δ) ≈ g(x0) + HF (x0)Δ. (2.20)

Because g(x∗) = 0, we get x∗ = x0 − H−1
F (x0)

g(x0). This leads to the recursive update
rule:

xk+1 = xk − H−1
F (xk)

g(xk). (2.21)

Let Δ = xk+1 − xk. The Newton method can be performed by repetitively solving the
following linear system

HF (xk)Δ = −g(xk) (2.22)

followed by an additive update: xk+1 = xk+Δ. In contrast to gradient descent method,
this method converges especially fast in the neighborhood of the minimum. A disad-
vantage of this approach is that the computation of the Hessian may be difficult. The
behavior of this algorithm depends strongly on the initial guess x0. It is possible that
this procedure does not converge at all if x0 is far from the local minimizer x∗.

Gauss-Newton method. Now we consider a special problem where we would like
to estimate x by minimizing a quadratic cost, called a least squares problem:

F (x) =
1

2
ε(x)�Λε(x) (2.23)

where ε : Rn → R
m is a C2 continuous and Λ ∈ R

m×m is a symmetric, positive semi-
definite matrix. It covers a large class of problem in different domains. Especially, the
classical problem in Computer Vision is to find 3D point positions and camera param-
eters that minimize the reprojection error as we will see later. For high-dimensional
problems, the efficient calculation of Hessian is difficult. The Gauss-Newton method is
based on linear approximation of ε in the neighborhood of x: for small Δ, we write its
Taylor expansion as

ε(x+Δ) ≈ l(Δ) ≡ ε(x) + J(x)Δ (2.24)

13
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where J ∈ R
m×n is the Jacobian matrix of ε. Inserting this to Eq.(2.23), we see that

(with ε = ε(x) and J = J(x))

F (x+Δ) ≈ L(Δ) ≡ 1

2
l(Δ)�Λl(Δ) =

1

2
(ε+ JΔ)�Λ(ε+ JΔ)

=
1

2
ε�Λε+Δ�J�Λε+

1

2
Δ�J�ΛJΔ

= F (x) + Δ�J�Λε+
1

2
Δ�J�ΛJΔ.

(2.25)

It is easily seen that the gradient and the Hessian of L are

gL(Δ) = J�Λε+ J�ΛJΔ and HL(Δ) = J�ΛJ. (2.26)

We see that gL(0) = gF (x) and HL(Δ) is independent of Δ. In the Gauss-Newton
method, the linear system of Eq.(2.22) is approximated by the normal equation

J�ΛJΔ = −J�Λε. (2.27)

This is a good approximation if x is close enough to a minimizer x∗ of F .

Levenberg-Marquardt method (LM). The Newton-type methods work well
close to the minimum, but elsewhere these methods cannot distinguish between local
minima, saddle points and local maxima [Madsen+04]. On the contrary, the gradient
descent converges globally but performs poorly close to the minimum. This leads to the
Levenberg-Marquardt method [Levenberg44], [Marquardt63] which may be seen as a hy-
brid between Gauss-Newton and gradient descent methods. The LM algorithm is used in
many software applications for solving non-linear least squares problems such as Matlab
[Matlab17], MinPack [Devernay07], Eigen [Guennebaud+10], SBA [Lourakis+09], LMA
[Ramadasan+17], Ceres [Agarwal+], etc. The normal equation Eq.(2.27) is altered by
the augmented normal equation as follows:

(J�ΛJ+
1

μ
D)Δ = −J�Λε. (2.28)

where D is a non-negative diagonal matrix, typically the diagonal of matrix J�ΛJ. The
damping parameter μ > 0 has several effects. For all 1/μ > 0, (J�ΛJ + 1

μD) is positive
definite and this ensures that Δ is a descent direction. For large value of 1/μ, the update
vector Δ rotates towards gradient direction, and this is good if the current state is far
from the solution. If 1/μ is very small, LM approaches pure Gauss-Newton and if x is
close to the local minimizer, this method converges fast to the minimum value.

Assume that Λ = I. For simplicity, we start by the basic LM algorithm [Press+96]
summarized in Algorithm 1. kmax is the maximum number of iterations. Typically, the
initial value of μ is μ0 = 103. If the current 1/μ reduces the cost function, i.e. Fnew < F ,
then 1/μ is reduced in the next iteration to accelerate convergence. In this case, LM
behaves like Gauss-Newton method. Otherwise, we increase 1/μ and LM approaches
gradient descent algorithm to guarantee a decreasing cost function. The iteration stops
if F decreases too slowly, i.e. if Fnew > αF where α is a positive parameter which is set
to 0.9999 typically; and the last parameter vector is considered to be the solution.

The damping parameter μ is chosen in order to guarantee convergence of the al-
gorithm. Various heuristic arguments put forward for the best choice for the damping
parameter [Nielsen99]. A tutorial discussing non-linear least squares in general and the

14



Preliminaries

Algorithm 1 Basic Levenberg-Marquardt method [Press+96]

1: k ← 0; x← x0

2: F ← F (x); A← J(x)�J(x); g← J(x)�ε(x)
3: stop← false; μ← μ0

4: while (!stop) and (k < kmax) do

5: k ← k + 1; Solve

Å
A+

1

μ
D

ã
Δ = −g

6: xnew ← x+Δ
7: Fnew ← F (xnew)
8: if (Fnew < F ) then
9: x← xnew

10: if (Fnew < αF ) then
11: μ← μ ∗ 10
12: F ← F (x); A← J(x)�J(x); g← J(x)�ε(x)
13: else
14: stop← true 
 converges
15: end if
16: else
17: μ← μ/10
18: end if
19: end while

Algorithm 2 Levenberg-Marquardt method with updated μ parameter adaptively
[Madsen+04, Algorithm 3.16] with a few modifications in [Agarwal+]

1: k ← 0; ν ← 2; x← x0

2: A← J(x)�J(x); g← J(x)�ε(x)
3: found← (‖g‖∞ ≤ ε1); μ← μ0

4: while (!found) and (k < kmax) and (t < tmax) and (μ > μmin) do

5: k ← k + 1; Solve

Å
A+

1

μ
D

ã
Δ = −g

6: xnew ← x+Δ

7: ρ← F (x)− F (xnew)

L(0)− L(Δ)

8: if (||Δ|| ≤ ε2(||x||+ ε2)) or

Ç |F (x)− F (xnew)|
F (x)

≤ ε0

å
then

9: found← true
10: else
11: if ρ > η1 then 
 accepted step
12: x← xnew; A← J(x)�J(x); g← J(x)�ε(x)
13: found← (‖g‖∞ ≤ ε1)

14: μ← μ/max

ß
1

3
, 1− (2ρ− 1)3

™
; ν ← 2

15: else
16: μ← μ/ν; ν ← 2 ∗ ν
17: end if
18: end if
19: end while
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LM method in particular can be found in [Madsen+04]. In our work, we use an open-
source library Ceres [Agarwal+] which includes an implementation of the LM algorithm
in [Madsen+04] (see Algorithm 2). We briefly summarize it. The ratio

ρ =
F (x)− F (x+Δ)

L(0)− L(Δ)
(2.29)

measures the quality of the step Δ, i.e., how well the linear model L(Δ) (Eq.(2.25))
predicts the decrease of the non-linear objective F (x+Δ). The idea is to increase or to
decrease the radius of the search region of step Δ depending on how well the linearization
L predicts the behavior of the non-linear objective F , which in turn is reflected in the
value of ρ. By construction, the denominator in Eq.(2.29) is positive. Furthermore,
the numerator is negative if the step is not downhill, i.e. the step Δ is too large and
should be reduced. A small value of ρ indicates that we should increase the damping
parameter 1/μ and thereby increase the penalty on large step Δ. Otherwise, a large
value of ρ indicates that L(Δ) is a good approximation of F (x+Δ) for the computed Δ
and the damping parameter 1/μ may be deduced. Notice that if a damping parameter
is accepted, we check that ρ is positive and greater than a lower threshold for relative
decrease η1. Typically, η1 = 1e− 3 and the initial μ0 = 1e4.

There are several stopping criteria for the LM algorithm. We consider that the
algorithm converges if

• Function tolerance: |F (x)− F (xnew)|
F (x)

≤ ε0, (2.30)

where, |F (x)− F (xnew)| is the change in objective function value (up or down) in
the current iteration of LM.

• Gradient tolerance:
||g||∞ ≤ ε1, (2.31)

where ε1 is a small, positive number (reminder: g(x∗) = 0 if x∗ is a local mini-
mizer).

• Parameter tolerance:
||Δ|| ≤ ε2(||x||+ ε2). (2.32)

when the change in x is small.

The two first criteria can be achieved when x is very close to a local minimizer x∗. The
last criterion come into effect if very small values of ε0 and ε1 are chosen. It arises when
there is a poor prediction of the linear model L(Δ) (Eq.(2.25)). In this case, the damping
parameter 1/μ will be augmented in every step. When 1/μ grows fast, it results in small
Δ, and the process should be stopped by Eq.(2.32). As in all iterative processes, we
need a safeguard against an infinite loop:

• A maximum number of iterations and a maximum amount of time for which the
solver should run:

k ≥ kmax and t ≥ tmax. (2.33)
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• The solver can also terminate if the damping parameter becomes smaller than μmin

μ ≤ μmin. (2.34)

In our work, we set ε0 = 1e− 08, ε1 = 1e− 10, ε2 = 1e− 16, kmax = 200 and use Ceres’s
default: tmax = 1e6 (seconds), μmin = 1e− 32.

2.4 Reconstruction from image sequences

In this section, we summarize the Structure from Motion or SfM algorithm
[Mouragnon+07], [Mouragnon+09] that we use. The objective is to automatically com-
pute a reconstruction (both camera poses and 3D scene points) from a video sequence
captured by a central calibrated (multi-)camera. The SfM can be split in three distinct
tasks:

i) track feature points throughout the sequence;

ii) estimate an initial reconstruction which is used as a starting point for

iii) bundle adjustment.

2.4.1 Corresponding features

A video sequence has several advantages over an arbitrary set of images: there
is an ordering on the images; the baseline (distance) between two successive frames is
small. Thus the feature matches are obtained and assessed more easily. In addition,
some of our methods need a video sequence, e.g. bundle adjustment with a model of
continuous-time camera trajectory.

Interest point detection and matching. For each frame, Harris corners [Har-
ris+88] are detected and matched which ones from the previous frame. For each interest
point in the previous frame, we define in the new frame a region of interest whose center
is this position. We select possible corresponding points in the new frame which are
inside the search zone. Then a Zero mean Normalized Cross-Correlation (ZNCC) score
is computed between the point in the previous frame and all the potential candidates in
the new frame. The ZNCC score is defined as follows

ZNCC(p1,p2) =

∑
d∈νw

(L1(p1 + d)− L̄1(p1))(L2(p2 + d)− L̄2(p2))

√ ∑
d∈νw

(L1(p1 + d)− L̄1(p1))2
√ ∑

d∈νw
(L2(p2 + d)− L̄2(p2))2

(2.35)

where

L̄i(pi) =
1

w2

∑
d∈νw

Li(pi + d), (2.36)

p1 and p2 are the two compared points, Li(p) is the luminance value at the point p and
νw is the w × w neighborhood of p. The best candidate with highest score is selected
and put to a list of corresponding point pairs between these two frames.
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Tracking and key frame sampling. The disadvantage of a small baseline be-
tween two frames is that the 3D structure is estimated poorly. It may be mitigated by
tracking through the sequence so that the baseline is enough large. If the camera motion
between two frames is large enough, the computation of the epipolar geometry is a well
conditioned problem. That leads to the concept of key frame. From a video sequence, it
is necessary to extract key frames being not too close and not too far to each other while
still being able to find enough point correspondences between the key frames. Among
algorithms proposed to do that, the method in [Royer+07] is simple and works well. It is
detailed as follows with an improvement in the case of slow camera motion [Litvinov15]:

1. The first frame is always selected as the first key frame.

2. The current frame is rejected if the image motion between it and previous key
frame is small, i.e. if 70% of its matches have 2D motion less than D (a user
defined threshold in pixels).

3. The current frame is the second keyframe if it is not rejected by 2D motion con-
dition above and it has at least N2 matches with the first key frame.

4. When key frames I0, I1, . . . , Ii (i ≥ 1) are selected, a non-rejected previous frame
is chosen as key frame Ii+1 if

i) it has at least N2 matches with the key frame Ii and

ii) is has at least N3 matches with the key frame Ii−1

iii) the current frame does not meet i) or ii).

If the previous frame is not a key frame, then we suppress all its observations from the
currently maintained tracks and replace them by the matches of the current frame. In
this way, the points are continuously tracked between the current key frame and the
future key frame.

2.4.2 Initial reconstruction

Epipolar geometry and pose estimation. In this stage, we need to estimate a
camera (rig) pose defined by a pair (R, t) in the world coordinate system. We first assume
that the cameras are (approximately) calibrated and the scene knowledge is not available
(no 3D point position is known). The epipolar geometry describes the relative position
and internal parameters of two views and does not depend on the scene structure. This
constraint is represented by a 3× 3 matrix called the fundamental matrix [Hartley+04].
Since the cameras are calibrated, we compute the essential matrix [Faugeras93] instead
of the fundamental matrix. We explain it in terms of the rays in space corresponding to
two image points.

Assume that 3D point X is observed by two distinct view points such that the
corresponding ray direction are d1, d2 in the coordinate systems of these frames. The
essential matrix E meets the condition

d�
2 Ed1 = 0. (2.37)

Let (R1, t1) be unknown pose of the first frame and (R2, t2) be unknown pose of second
frame in the world coordinate system. So, R1d1 and R2d2 are the directions of d1 and d2,
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respectively in the world coordinate system. The vectors t1, t2, t1+ R1d1 and t2+ R2d2

are coplanar. In other words, 0, t2 − t1, R1d1 and t2 − t1 + R2d2 are lying on the same
plane defined by d + n�X = 0 where n,X ∈ R

3, n �= 0 and d ∈ R. Since this plane
passes through 0, d = 0. Furthermore, n = (t2 − t1) × R1d1 = [t2 − t1]×R1d1 where ×
is cross product between two vectors and [v]× is the skew-symmetric 3× 3 matrix of a
vector v, defined in Eq.(2.12). Note that n and t2 − t1 + R2d2 are perpendicular (since
d = 0), hence

(t2 − t1 + R2d2)
�[t2 − t1]×R1d1 = 0. (2.38)

Because (t2 − t1)
�n = 0, we obtain

d�
2 R

�
2 [t2 − t1]×R1d1 = 0. (2.39)

So we define the essential matrix E in Eq.(2.37) as following

E = R�2 [t2 − t1]×R1. (2.40)

The pose of the first frame can be defined at the origin of the world coordinate
system with identity matrix orientation. The essential matrix, E = R�2 [t2]× is a homoge-
neous quantity and has only five DoF: 3 for R2 and 3 for t2 but the scale is not significant.
If there are sufficiently many point correspondences (at least 5 points [Nistér04]) to com-
pute the essential matrix up to scale then a pair of camera poses corresponding to the
essential matrix is computed using the relation Eq.(2.40) by a singular value decompo-
sition of E. An alternative and simple method estimates the essential matrix linearly
using 8-point correspondences or using 7-point correspondences in [Hartley+04].

Now we assume that the pose (R1, t1) is known, (R2, t2) is unknown and some 3D
point coordinates X observed by two frames and their set of projected points p ∈ R

2

in the corresponding image have already been computed. According to Section 2.1,
p = f(I, R2, t2,X) where f is the projection function and I is the camera parameters
(both intrinsic and extrinsic parameters). Since the cameras are calibrated, each 3D
point gives rise to 2 equations in unknown parameters of (R2, t2). The camera pose has
6 DoF, so only three 3D points is necessary. We use Grunert’s method [Haralick+94] to
compute the pose.

Triangulation. When a pair of consistent camera matrices is reconstructed, we
wish to compute the initial estimation of 3D points. The rays back-projected from the
image points are inaccurate due to noise. This means that these rays never intersect in
3D space. A simple triangulation method called middle point algorithm in [Faugeras93]
is to find the point X which is exactly at the middle of the shortest line segment that
joins the two projection rays (d1,d2). The estimated point does not exactly satisfy the
projection relations and is not an optimal solution. Thus it should be refined.

The best solution requires the definition and minimization of a cost function. The
approaches in [Hartley+04] consist of minimizing a sum of squares reprojection error
that depends on the camera model. [Mouragnon+09] defines an angular error ε as the
angle between two rays. In practice, ε is a 2D vector whose Euclidean norm is equal to
the tangent of the angle between the given back-projected ray d and the direction X−0
of the line defined by the camera center 0 and 3D point X. Let Rd be a rotation such
that Rdd = k where k = (0, 0, 1)�. Let function π((X,Y, Z)�) = (X/Z, Y/Z)� where
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(X,Y, Z) ∈ R
3. We seek to minimize the modulus of

ε = π(Rd(X− 0)). (2.41)

Using (X,Y, Z)� = Rd(X − 0), we have ||ε||2 = (X2 + Y 2)/Z2 = tan2(k, Rd(X − 0)) =
tan2(d,X− 0). It is a suitable approximation of the squared angle if it is small. In the
ideal case, d and X − 0 are parallel, we have ||ε|| = 0 which is equivalent to an image
reprojection of zero pixel.

Principle of robust estimation. Until now, we calculate the camera poses and
3D points assuming good matching. Unfortunately, in practice, the outliers due to noise
in measured image or false matches, will severely corrupt the precision of computation.
In the following, we give a description of a general and very successful robust estimator
- the RANdom SAmple Consensus (RANSAC) [Fischler+81] which allows to detect the
outliers in the correspondences. More generally, we wish to fit a model and the random
sample consists of a subset of m elements of the data that is sufficient to determine the
model. The score for this model is measured by the number of inliers that lies within
a distance threshold. The random procedure is repeated a number of iterations M and
we retain the estimation which has the largest number of inliers. How do we determine
the number of required iterations M? A sample is accepted if it consists of m good
observations. If the whole set of observations contains up to a fraction ε of outliers, then
the probability that at least one of M subsamples is accepted is given by

P = 1− [1− (1− ε)m]M . (2.42)

So the number of iterations for given value of m and ε meets

M ≥ log(1− P )

log(1− (1− ε)m)
. (2.43)

P must be near to 1, typically P = 0.99.

Robust estimation for triangulation. In our work, we wish to estimate a 3D
point X with RANSAC. Let TX be the track of Nobs observations of X in image. We
compute a 3D point X from two randomly selected correspondences. Then, we compute
the value of angular error in Eq.(2.41) for each observation and check whether the
observation fits the model, i.e. the angular error ||εi||2 < emax where emax is a user
defined threshold and εi = π(Rdi

(X − 0)) as Eq.(2.41). The number of inliers in the
track is determined and the estimate X is retained if the number of inliers is the largest.

Robust estimation for three first key frames I0, I1 and I2. We compute the
poses for the three first key frames when the 3D scene knowledge is not yet available.
Let I0, I1 and I2 be the three first key frames. The RANSAC algorithm is applied to
the track set in order to estimate the first triple pose. The sample size is five, since five
tracks (correspondences) determine an essential matrix. The frame coordinate system
associated to I0 is taken as the world coordinate system. The essential matrix between
I0 and I2 is estimated using the 5-point algorithm [Nistér04]. RANSAC retains the
estimation with the largest number of inliers. Then the pose of key frame I2 is computed.
The 3D coordinates of the points associated to all the tracks are computed using the
correspondences from I0 and I2 in the manner as described in the previous paragraph.
For the key frame I1, its pose is estimated using Grunert’s algorithm [Haralick+94] with
three 3D points. The final pose is chosen after RANSAC for which the number of inliers
is the largest.
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Robust estimation for key frame Ii (i ≥ 3). For the newly selected key frame
Ii, using Grunert’s method [Haralick+94], its pose is robustly estimated from the 3D
points set that is computed from key frames I0, I1, . . . , Ii−1 and matched to image points
in the key frame Ii. Then, new 3D points (i.e those only observed in the 3 last key frames)
are reconstructed using the middle point triangulation method and RANSAC process.
Outliers are eliminated by RANSAC and the results are refined from inliers using local
bundle adjustment that will be mentioned in the next subsection.

2.4.3 Bundle adjustment

Assume that a set of 3D points X = {Xj} is observed by a set of key frames (view
points) I = {(Rk, tk)}. Let pk

j be the observation of the j-th 3D point Xj as seen by

the k-th camera Ik and Pobs = {pk
j } be the set of all inlier observations. Due to the

noise in image measurement, the estimation using RANSAC in the previous subsection
is not perfect and the reprojection errors are not zero. We wish to estimate the frame
poses and 3D points that minimize the cost function F of the observations for every
view where the 3D points appear as inliers, i.e.

F =
∑

pk
j∈Pobs

||εkj ||2 (2.44)

where εkj (involving the back-projected ray of the observation pk
j ) is defined in Eq.(2.41).

The estimation of camera poses and 3D points minimizing such a cost function is
known as bundle adjustment (BA) [Triggs+00]. This method is a non linear optimization
problem and is numerically solved using a LM method in Section 2.3. This problem is
a large sparse parameter estimation problem due to the large number of estimated
parameters. The special sparsity structure is exploited to solve the problem much more
efficiently. Furthermore, it requires a good initialization. It is generally used as a final
step of any reconstruction algorithm. Here, we use the results estimated by RANSAC
as initialization for BAs.

Incremental structure from motion. The computation of geometry presented
in Subsection 2.4.2 does not give a good solution. Let Ii be the last key frame. The
computation of the key frame Ii depends on the previous key frames and the error can
systematically accumulate over the sequence. It is not a good idea to compute all the
camera locations and to use the BA only once to the whole sequence. Moreover, it
possible to use a global BA to the keyframes I0, I1, . . . , Ii after every added keyframe
Ii, but this is very inefficient for large sequence. In order to solve this problem, a better
solution is to use local BA. The idea is to reduce the number of parameters involved in
the optimization process after every added keyframe Ii. Only the pose parameters of the
n last key frames Ii and the chosen 3D points in Xi accounting for the 2D reprojections
in the N (N ≥ n) last key frames are optimized. Thus, Ii = {Ii−n−1, . . . , Ii} and Xi

contains all the 3D points observed as inliers in a key frame in Ii. The cost function Fi

is the sum of the angle errors of points Xj ∈ Xi in the N last key frames as follows

Fi(Ii,Xi) =
∑

Ik∈{Ii−N−1,...,Ii}

∑
Xj∈Xi

||εkj ||2. (2.45)

We choose typically n = 3 and N = 7.
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In practice, the optimization process takes place in two LMs. The first LM is
performed using the inliers classified by RANSAC, then the inliers/outliers of all ob-
servations are updated. The result is re-estimated using the new inliers. Moreover, we
note that all the poses before Ii have already optimized at preceding stages, thus the
estimation of Ii is close to an optimal solution. Thus the number of necessary iterations
for each stage is quite low and the process converges rapidly (with 5 iterations or less
in our case). In this manner, 3D structure scene and poses are computed for large se-
quences. We should note that the cameras are calibrated, in other words, the intrinsic
parameters are not refined in this optimization process.

2.5 Conclusion

This chapter presented preliminaries needed in our work. We described the projection
model for omnidirectional multi-cameras. We wrote the equations of projection from
3D to image for the basic pinhole model. We also reminded different representations of
rotation of the 3-dimensional Euclidean space. We described the SfM algorithm used to
reconstruct the camera position and 3D structure scene from an input video. Of course,
this algorithm is not the only option to compute SfM. But this one is widely used at
Institute Pascal and so its performances and limitations are well known to us. This
makes it a good choice. The results of reconstruction by SfM are used as a starting
point for our work: synchronization and self-calibration.
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Chapter 3

State of the art

There are a number of publications dealing with design, theory and applications of
omnidirectional multi-cameras. Only the works that introduce important concepts close
enough to the subject of this dissertation are mentioned in this chapter. The overview
of the state-of-the-art is divided to six steps. We begin with works on estimation of
intrinsic parameters in Section 3.1. Since we wish to use multiple cameras as one sensor,
the cameras must be synchronized. We continue with the synchronization step for two
or more video sequences in Section 3.2. This step is needed for the precision of the
estimation of extrinsic parameters in the next Section 3.3. In Section 3.4, the brief
historical perspective and state-of-the-art of monocular and multi-camera rolling shutter
is found. We also introduce works in the context of a general multi-sensor in Section 3.5.
Finally, we finish with works on 3D reconstructions from omnidirectional multi-cameras
(Section 3.6).

Contents

3.1 Monocular calibration . . . . . . . . . . . . . . . . . . . . . . . 24
3.2 Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2.1 Stationary or jointly moving cameras . . . . . . . . . . . . . . . 26
3.2.2 Independently moving cameras . . . . . . . . . . . . . . . . . . 30

3.3 Estimation of extrinsic parameters . . . . . . . . . . . . . . . 31
3.3.1 Using calibration objects . . . . . . . . . . . . . . . . . . . . . 31
3.3.2 Self-calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.4 Rolling shutter (RS) . . . . . . . . . . . . . . . . . . . . . . . . 37
3.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.4.2 Distortion effects . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.4.3 Rolling shutter parameter . . . . . . . . . . . . . . . . . . . . . 40
3.4.4 RS calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.4.5 Video rectification and stabilization . . . . . . . . . . . . . . . 42
3.4.6 Perspective-n-point problem . . . . . . . . . . . . . . . . . . . . 43
3.4.7 Structure-from-Motion . . . . . . . . . . . . . . . . . . . . . . . 44

3.5 Self-calibration and synchronization of sensors . . . . . . . . 46
3.6 3D reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

23



State of the art

3.1 Monocular calibration

Camera calibration process has important research and application value in Com-
puter Vision. Its precision directly affects the quality of 3D reconstruction. If the camera
is calibrated (intrinsic parameters only) and an image point is known, the corresponding
ray in the camera coordinate system is uniquely determined. The calibration procedure
allows us to set numeric value in the calibration matrix or the projection matrix. Al-
though the monocular (self-)calibration is not the topic of the thesis, we briefly review
this topic.

In Section 2.1, we introduced the basic pinhole model for lenses that perform ideal
central projection: all lines in 3D are projected to lines in the images. This is not the case
with the real lens such as wide-angle lens, (para, hyperbolic, spherical) catadioptric cam-
eras, fish-eyes, etc. Such a typical lens performs distortion of several pixels: lines in 3D
are projected to curves in the images. There are a number of camera models and calibra-
tion approaches that are proposed in the literature. We reminded radial distortion that
is defined by distortion function that maps radial distance (distance between image point
and distortion center) in the distorted image to either radial distance in the undistorted
image or the incidence angle between camera ray and principal ray. We also mentioned
the equiangular case where the incidence angle between camera ray and principal ray is
proportional to radial distance in the distorted image. According to existing algorithms,
camera calibration methods can be classified into two categories: photogrammetric cal-
ibration uses reference objects with known geometry and self-calibration makes no or a
few assumptions about the particular structure of the scene being viewed.

Photogrammetric calibration takes the advantage of a given calibration reference
object with known shape and size. The calibration of one camera from the known scene
is typically a two stage process. The projection matrix is estimated from the coordinate
points of the known scene. The camera pose and intrinsic parameters are estimated
from the projection matrix using matrix factorization. Figure 3.1 demonstrates some
calibration patterns used widely. There are many implementations of camera calibra-
tion with 2D or 3D pattern: [Tsai86], [Lavest+98], [Zhang00], [Sturm+11], [Bradski00]
OpenCV library, [Bouguet02] toolbox MatlabTM.

Figure 3.1: Calibration patterns: chessboard, symmetric circle board, asymmetric
circle board, circular code.

A survey of self-calibration method for perspective cameras before 2003 can be
found in [Hemayed03], [Hartley+04]. The camera self-calibration methods do not use
a calibration pattern and attempt to calibrate the camera by finding intrinsic parame-
ters that are consistent with the underlying projective geometry of an image sequence.
Some self-calibration methods directly solve Kruppa equation from image pairs (which
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is based on the correspondence of epipolar lines tangent to a conic). Other methods in-
volve the use of the absolute dual quadric (which can be considered as calibration object)
[Hartley+04, Chapter 19] and its projection (the dual image of the absolute conic) over
many images. This approach is summarized in three steps: projective reconstruction
from the given images, self-calibration assuming that pixels are squares, and refinement
using BA [Triggs+00]. Some works extend the self-calibration techniques to use other
constraints: camera motion or scene constraints. The camera motion constraints con-
sider restricted motions: pure translation, pure rotation, planar motion, etc. Moreover,
some methods propose to use scene constraints. For example, the plumb line method
uses straight lines in the scene to provide constraints on intrinsic parameter: [Brito+13]
for radial distortion model, [Zhang+15] for fish-eye cameras. However, straight lines are
not always available in the scene, e.g. in outdoor environments. And when they are
present, it is not easy to detect. Therefore, such methods often require supervision to
ensure that curves in the real scene are not confounded with distorted lines. [Sturm+11]
gives an overview of the vast number of camera models in the literature and the results
on epipolar and multi-view geometry as well as various calibration and self-calibration
approaches for different camera models.

In the context of our work, we have only videos taken in a rigid environment using an
omnidirectional multi-camera system and we do not make special assumption about the
camera motion. Some interesting approaches proposed in [Fitzgibbon01], [Micusik+06]
require nothing more than images and the rigid scene assumption which allow to es-
timate fundamental matrices. The method in [Fitzgibbon01] is used only for cameras
with a standard angle of view (less than 180o), that are modeled by one radial distor-
tion parameter. The simultaneous estimation of a single lens distortion coefficient and
the fundamental matrix is expressed as a Quadratic Eigenvalue Problem. [Micusik+06]
extends the work in [Fitzgibbon01] and proposes a method for fish-eye lens and catadiop-
tric system. The authors also show that the fundamental matrix can be estimated from
a small number of correspondences by solving a Polynomial Eigenvalue Problem (PEP).
The first remark about these works is that the principal point (the center of radial sym-
metry) has to be known or is assumed to be in the center of image, and the camera
has to have square pixels. With these assumptions, in [Micusik+06] using equiangular
approximation, the circular (approximately) known FoV gives an initial estimate which
is not precise but accurate enough to get a working PEP. The second remark is that
the epipolar geometry can be estimated from a small number of correspondences using
a method relying on the solution of generalized eigenproblem, whose convergence is well
studied, and for which fast algorithms exist. The technique can be integrated into a
robust estimation approach (RANSAC) to reject mismatches.

Degenerate configurations

The term degenerate configuration is used to denote the configurations of cameras
and point correspondences where we are not able to self-calibrate the camera or to build
a 3D reconstruction uniquely. 3D reconstruction and self-calibration are well known to
have ambiguous results for some configurations of camera motion and scene structure,
referred to as the critical motion and the critical surface, respectively. In this subsection,
we summarize some degenerate configurations reported in the literature.

For perspective camera model (distortion-free case), degenerate configurations have
been extensively studied, e.g. for Euclidean reconstruction with calibrated camera
[Kahl+99], [Kahl+02] and self-calibration [Sturm97]. A survey of critical motion for
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monocular perspective self-calibration has been presented by [Sturm97]. For radial dis-
tortion self-calibration (including our case), [Micusik+06], [Brito+13] report a special
degenerate case - forward motion. Suppose that the principal axis k lies along the Z-axis
and a motion of camera is along the principal axis. There exists an ambiguity in the
estimated parameter of the camera model. Moreover, [Micusik+06] also shows a spe-
cial case in which pure translation is ambiguous if all point displacements are parallel
to camera translation in XY -plane. A full analysis of the degenerate configuration for
radial distortion self-calibration under a general radial distortion model is presented in
[Wu14]. According to the author, the method can be applied to both standard angle
cameras and central omnidirectional cameras (for example, fisheye). Assume that the
camera moves with an instantaneous translational velocity t and an instantaneous ro-
tational velocity ω. Using motion field approach, the author solves for critical surface
pair that can lead to the same 2D motion field under different radial distortion and
possibly different camera motions. In general, critical surfaces are complicated and de-
pend on radial distortion function and camera motion. The author mentions an example
where unmanned aerial vehicles (UAVs), e.g. cameras pointing to ground, are used to
capture images. The camera motions are parallel to the ground. The visible surface
is near-planar and thus the cameras are not completely calibrated. Moreover, there
exist critical motions under which self-calibration algorithm can fail and any surface is
ambiguous for estimating radial distortion. [Wu14] finds the following critical motions

t× k = ω × k = 0 (3.1)

where × is vector cross product. Note that the critical motion involves both translation
along the principal axis and rotation around the principal axis. The forward motion
degeneracy reported in [Micusik+06], [Brito+13] is special case when ω = 0. These
critical motions for radial distortion case is a subset of that for distortion-free case.
In practice, these degenerate configurations should be avoided in real capture for our
wide-angle cameras.

3.2 Synchronization

The synchronization is the estimation of the temporal relationship between two or
more video sequences. Synchronizing multiple video sequences can be approached in a
pairwise manner. We assume that each video has a constant frame rate. Let t, t′ denote
the frame indices from the first and second video sequences, respectively, recorded at
the same instant. We have

t′ = αt+Δt (3.2)

where α is the ratio of frame rates of the two sequences and Δt is an initial temporal offset
between the sequences. This section describes existing methods to estimate Δt and α for
video sequences acquired by static or jointly moving cameras as well as independently
moving cameras.

3.2.1 Stationary or jointly moving cameras

Several solutions to the problem of video synchronization can be found in the
literature. The distinction is based on the considered assumptions. Methods assume
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that the cameras are static or rigidly hold together (they move while recording), and
that there exist correspondences between the features observed in the two videos.

Caspi et al. publishes a series of papers addressing this problem [Caspi+00],
[Caspi+02a], [Caspi+02b], [Caspi+06]. It can be summarized as follows. For each pixel
(u, v) at frame (time) t in one sequence, finds its corresponding time t′ and position
(u′, v′) in other sequence. Let x(t) be a space-time point in the reference sequence S
(namely, a homogeneous pixel (u, v, 1) at frame (time) t), and let x′(t′) be the matched
space-time point in sequence S′. The first method proposed in [Caspi+00], [Caspi+02b]
is called “direct intensity-based sequence alignment” method. Two cameras have the
same center. It requires neither detection nor tracking of moving objects. It is also
called pixel-based method, i.e. featureless synchronization method using homography
matrices. It can handle much more complex scene dynamics, such as changes in scene
illumination and non-rigid object motion. A dimming and a brightening of a light
source can provide sufficient information to align two sequences. Since global changes
in illumination produce prominent temporal derivative, even homogeneous image re-
gions contribute temporal constraints to the direct sequence-to-sequence alignment. Let
L(x(t)) be the luminance value of sequence S at the space-time point x(t) and L′(x′(t′))
be the luminance value of sequence S′ at the space-time point x′(t′). Exploiting spatio-
temporal brightness variations within each sequence, the authors recover the spatio-
temporal displacement parameters by minimizing squared luminance distances between
corresponding pixels in synchronous frames

argmin
H,Δt

∑
x(t)

||L(x(t))− L′(x′(t′))||2 (3.3)

where t′ is defined as Eq.(3.2) with known α, and x′ = Hx with a homography H.

Moreover, the second method presented in [Caspi+02b] (also published in the longer
version [Caspi+06]), is called feature-based sequence alignment and exploits dynamic
changes which are due to moving object/moving points. Therefore, this method requires
detection and tracking of such object. Two sequences are related by a homography H

(same center case) or by a fundamental matrix F (different center case). The aim of this
approach is to minimize the following error function Eq.(3.4) in the homography case or
Eq.(3.5) in the fundamental matrix case

argmin
H,Δt

∑
t

||x′(αt+Δt)− Hx(t)||2, (3.4)

argmin
F,Δt

∑
t

||(x′(αt+Δt))�Fx(t)||2 (3.5)

where the ratio α is known. Since t′ in Eq.(3.2) is not necessarily an integer value, i.e.
allowing a sub-frame time offset, the value of x′ at t′ is interpolated from the adjacent
integer time: t1 = �t′� and t2 = �t′�. Using the results of Eqs.(3.4) and (3.5) and
then fixing P (denotes either homography transformation H or fundamental matrix F),
the authors refine Δt. The sub-frame time offset accuracy is obtained by searching for
β = t′ − t1 (1 ≥ β ≥ 0) that minimizes the following term

argmin
β

∑
t

d
(
x(t), (1− β)x′(t1) + βx′(t2)

)
(3.6)
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where d(.) is either homography distance or fundamental distance. The closely approach
proposed in [Carceroni+04] relies on the case of an arbitrary number of stationary cam-
eras. Using epipolar geometry and RANSAC, moving scene points are tracked in each
video sequence and their locations in time between frames are approximated by a lin-
ear interpolation. The similar work in [Wedge+06] is also based on epipolar geometry;
however, the object motion is exploited to converge to the correct solution. The authors
show that their method can reach to sub-frame accuracy, and the influence of image
noise on the image point coordinates in the trajectory is not significant.

[Tresadern+03], [Rao+03] present a strategy based on rank constraint. Assuming
two sequences and affine projection, [Tresadern+03] addresses non-rigid objects using
measurement matrix M - a 4×N matrix of N image points in two corresponding frames.
The measurement matrix M is decomposed using SVD

M =

⎡
⎢⎢⎢⎣
u11 · · · un1 · · · uN1
v11 · · · vn1 · · · vN1
u12 · · · un2 · · · uN2
v12 · · · vn2 · · · vN2

⎤
⎥⎥⎥⎦ =

ñ
P1
P2

ô î
X1 · · · Xn · · · XN

ó
= P4×3X3×N (3.7)

where (uni , v
n
i )

� is the vector of image coordinates of the n-th feature in the i-th view, P
is an affine projection matrix and X consists of 3×1 vectors of coordinates in 3D space of
the n-th feature. In the ideal condition, i.e. synchronized and non-noisy case, rankM = 3.
But in general case with noise and matching error, rank M > 3. If the two videos are un-
synchronized, the 4-th singular value is high. [Tresadern+03] uses RANSAC to robustly
obtain the synchronization parameters such that the rank constraint is best satisfied, i.e.
to obtain a small as possible 4-th singular value. [Rao+03] introduces a method based on
epipolar geometry in order to establish temporal correspondence between the frames of
two videos. Because of the noise sensitivity of fundamental matrix, the authors propose
the use of rank constraints of corresponding points in two views to measure the similarity
between trajectories. Given a sufficient number of point matches, an unknown funda-
mental matrix F can be computed using the following equation ([Hartley+04, chapter
10])

Af = 0 (3.8)

where f = (f11, f12, f13, f21, · · · , f33)� (i.e. the 9-vector made up of the entries of F in
row-major order) and A is observation matrix constructed using coordinates of points of
two 2D trajectories. Since Eq.(3.8) is a homogeneous equation, for a solution of f to exist,
matrix A must have rank at most eight. Due to the noise and inexact correspondence,
the rank of A may not be exactly eight. The 9-th eigenvalue increases dramatically when
two trajectories are not synchronized. Therefore, the smallest 9-th singular value of A
corresponds to the best match of trajectories. The authors use this rank constraint as
the alignment error to synchronize two videos.

The above approaches requires that the fields of view of cameras intersect. [Caspi+02a]
copes with the more complex case in which the fields of view do not necessarily overlap,
but still requires that the cameras are jointly moving. Furthermore, the cameras have
the same center of projection but different 3D orientation and the calibration parameters
are unknown but fixed along the sequences. This approach is based on “frame-to-frame”
transformation within each sequence. Generally, frame-to-frame transformation P can
be either homography or affine transformation or fundamental matrices. The distance
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between two frame-to-frame transformation d(P, P′) is described as the following formula

d(P, P′) =
(eig(P))�eig(P′)
||eig(P)||||eig(P′)|| (3.9)

where eig(P) and eig(P′) are vectors of eigenvalues of P and P′, respectively. In other
words, Eq.(3.9) is cosine of angle between 2 vectors, and d(P, P′) ≤ 1. The method
assumes that α = 1. Let Δt be the offset time between 2 sequences:

d(Pt, P
′
t+Δt) = 1. (3.10)

Employing this property, the temporal synchronization Δt is recovered by maximizing
the following objective function

max
Δt

∑
t

d(Pt, P
′
t+Δt). (3.11)

Besides, [Spencer+04] uses the frame-to-frame motion of the sequences instead of pixel
based comparison between the two sequences in order to recover the temporal alignment.
Assume that the two cameras are rigidly joined together and there is non-uniform mo-
tion (no constant motion) of the two cameras. A larger motion in one sequence should
correspond to a larger motion in other sequence. The maximum correlation coefficient of
the motion property occurs at the best temporal offset. The authors propose three mea-
sures based on translation and roll rotation in order to recover the temporal alignment.
In the matrix representation, an affine transformation B and homography H are

B =

⎡
⎢⎣a1 a2 b1
a3 a4 b2
0 0 1

⎤
⎥⎦ and H =

⎡
⎢⎣h11 h12 h13
h21 h22 h23
h31 h32 h33

⎤
⎥⎦ . (3.12)

The translation magnitude measure is defined as follows

tmAffine =
»
b21 + b22, (3.13)

tmH =

√
h213 + h223

h233
. (3.14)

for the affine model and the 3 × 3 homography, respectively. The second measure is
translation direction based on the idea that the relative direction depends on the relative
orientation of the two cameras

dirAffine = tan−1(b1/b2), (3.15)

dirH = tan−1 h23/h33
h13/h33

. (3.16)

The third one is roll measure (rotation about the optical axis) when there is significant
rotation

rollAffine = a2 − a3, (3.17)

rollH = h12 − h21. (3.18)

Finally, a combination of the translation magnitude and roll motion measure works for a
general motion. According to experiments, this paper shows that the similarity measure

29



State of the art

in [Caspi+02a] cannot handle inaccuracies in the frame-to-frame transformation and the
combination measure can get better result than using only one measure.

Moreover, [Gaspar+14] suggests an approach, in which, instead of explicitly using
the features to solve the synchronization, the camera poses using SfM algorithm are
exploited. Since the cameras are stationary or jointly moving, the relative inter-camera
extrinsic parameters are constant, i.e. there exists a constant rotation matrix R and
a constant translation vector t that transform coordinates expressed in the reference
frame of the first camera into the one of the second camera

Rt1R = RRt
′
2 (3.19)

tt1 = λRtt
′
2 + (I− Rt1)t (3.20)

where (Rti, t
t
i) denotes the camera pose of the i-th camera at frame (time) t ∈ T and

λ is non-negative constant scalar factor. Using the quaternion representation of rota-
tion matrix R by 4-vector q, the synchronization problem is written in the form of a
minimization problem

argmin
Δt,q,t,λ

∑
t∈T

Ä
μR||εR(Δt,q)||2 + μt||εt(Δt, λ,q, t)||2 + μq(q

�q− 1)2
ä

(3.21)

where μR, μt and μq are positive weighting coefficients, εR and εt are cost functions that
are derived from the constraints in Eq.(3.19) and Eq.(3.20), respectively; and the last
term in this expression enforces ||q|| to be the unit (more details in [Gaspar+14]).

3.2.2 Independently moving cameras

There are also some works that solve the synchronization problem with free camera
motion. In other words, they do not impose any condition on the relative position of
two cameras but require the intersection in the field-of-view between cameras. [Tuyte-
laars+04] requires the correspondences between features tracked in two video sequences.
Although the scene points may be moving non-rigidly, for perfectly aligned sequences,
these points can be considered as a rigid configuration. The authors compute a rigidity
measure of 5 non-rigidly corresponding pair of trajectories tracked throughout the two
sequences: four scene points define the world coordinate system, fifth scene point pro-
vides a cue for synchronization. Minimizer configuration of this measure corresponds
to the time delay between the two video sequences. Besides, [Yan+04] introduces an
approach based on the distribution of space-time interest point. A histogram over time
is built for each video sequence. And a frame offset is achieved by maximizing cross-
correlation between two histograms.

[Meyer+08] presents a two-step algorithm that leads to sub-frame accuracy synchro-
nization based on motion trajectory correspondences. First, a frame accurate time offset
is estimated by detecting local extrema of trajectories and matching their characteristic
time patterns. The local extrema on trajectory of a moving object in the first sequence
can be found in the second sequence as well. Such points provide sufficient information
for video synchronization. Second, by estimating a fundamental matrix between the two
cameras from nine non-rigidly moving point correspondences, sub-frame accuracy offset
is obtained.
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[Gaspar+14] deals with the most general and complex case when there is no condi-
tion on the relative position of the two cameras. The cameras observe different parts of
a common moving object and a second object, typically a static background. The idea
is to track two sets of feature trajectory in each camera: one on the common moving
object and another on the static background. And the motion of the two objects with
respect to each camera is estimated by using a SfM method. Using these results, the
motion of moving object with respect to the static background that does not depend on
the camera motion, is estimated and provides information for synchronization.

3.3 Estimation of extrinsic parameters

We review the related works on extrinsic calibration. Here we assume that the
cameras are synchronized and global shutter, and their inter-camera poses are constant.

3.3.1 Using calibration objects

With an overlapping multi-camera system, the calibration patterns [Tsai86] such as
chessboard, circular dots or circular landmark, can be used in order to estimate not only
intrinsic parameters but also the inter-camera poses with high accuracy. However, the
drawback of this approach is to require the calibration board to be entirely within the
field of view of the cameras. This approach may be prohibitive in the practical appli-
cations with small overlapping (our case) or with non-overlapping field of views (FoV).
To overcome this problem, [Ikeda+03] presents a complicated approach for Ladybug
using a calibration grid and a laser measurement system. In this work, the calibration
board is put in front of each camera separately. In the meantime, a laser measurement
system is used to determine the 3D coordinate of the grid’s corners. Employing this
geometrical information and point correspondences over images of the grid in different
cameras, calibration parameters are determined. [Li+13] introduces a descriptor-based
board. With the proposed pattern, the calibration only requires neighboring cameras to
see parts of the calibration board at the same time. The disadvantage of this calibration
technique is to require large calibration patterns for multi-camera systems.

[Kumar+08] presents a method in order to calibrate for a multi-camera system
with non-overlapping or barely overlapping views. To overcome the non-overlapping
challenge, an addition mirror is used to allow all cameras to see a common calibration
object such as chessboard. The internal and external parameters of a set of mirrored
camera poses are found out using classical calibration methods. From the constraints
between mirrored camera poses, the authors estimate the external parameters of real
camera by solving a linear problem that requires at least five mirrored images. Inspired
by this work, [Lébraly+10a] extends by using planar mirror with an unknown geometry
scene instead of chessboard, and embeds the multi-cameras rig on a vehicle, for visual
navigation purpose in urban environment. The authors use the “averaging” transforma-
tion in order to estimate the translation and rotation. Finally, the two above methods
use bundle adjustment to determinate the extrinsic parameters corresponding to the real
poses of the cameras by minimizing the reprojection error.
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3.3.2 Self-calibration

3.3.2.1 Observation of a same scene in different cameras

Besides the approaches use the calibration object and require expert supervision,
some researches present a general method without requirement for specific calibration
patterns and which is based on natural features in the environment [Li+05], [Solà+08].
Under the central assumption, the relative camera poses differing only by a rotation
are achieved in unprepared natural or artificial scenes in [Li+05]. This semi-automatic
solution receives as input image point correspondences only and a three-step procedure
sequentially determines the center of distortion, the individual intrinsic parameter of
each camera, and the relative camera orientation. In [Solà+08], a central EKF-SLAM
(Extended Kalman Filter - Simultaneous Localization And Mapping) fuses the informa-
tion coming from a stereo camera rig to obtain the extrinsic parameters.

Under the assumption that the intrinsic camera parameters and the vehicle’s speed
are known, an on-board two-cameras system without overlapping field of view is cali-
brated in [Lamprecht+07]. In this work, the object (e.g. traffic sign) is tracked succes-
sively in each camera. A motion of the car is pure translation along an axis with constant
speed, i.e. the multi-camera poses are known. The problem reduces to estimate the 6
extrinsic parameters and 3D points. The 3D points are tracked while they are inside
the FoV of the first camera at different times. When these points enter the FoV of the
second camera, they are tracked at new different times. The authors track three points
five times per camera and solve the system of nonlinear equations using least-squares
approximation. The extrinsic parameters between two cameras are estimated just by
straight driving with constant speed. However, this method is yet unable to estimate
the third parameter of rotation and the translation with an accurate precision according
to authors.

[Carrera+11] proposes a method to estimate the extrinsic calibration for overlap-
ping as well as non-overlapping multi-camera system. Individually for each camera, a
monocular SLAM algorithm estimates the camera motion and builds a 3D map of visual
feature locations up to scale. A similarity transformation is robustly estimated between
two reconstructions using image matching for 3D points in different reconstructions, a
3-point RANSAC algorithm and bundle adjustment optimization. The calibration pro-
cedure requires the cameras to observe common parts of a scene as the robot makes a
full 360o turn. This requirement is to ensure that the similarity transformation works
by enforcing the global consistency of the maps.

Cannelle et al, publishes papers addressing a panoramic-based calibration method
[Cannelle+10], [Cannelle+12]. [Cannelle+10] presents a method in order to calibrate a
camera from panoramas. In this framework, all images are acquired from the same point
of view and with an overlap ratio around 50%, so they only need to estimate a rotation
between images. After that, a bundle adjustment procedure is implemented to compute
the pose of images in a panorama (rotation) and calibration camera (intrinsic parameter).
In [Cannelle+12], they discuss a method to calibrate a multi-camera head with 10 full
HD cameras on a mobile mapping system equipped with an Inertial Navigation System
(INS). A bundle adjustment is run in order to jointly estimate the position and rotation
of camera relatively to the vehicle/INS, the position and rotation of vehicle relatively to
the ground and the 3D scene points relatively to the ground.
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3.3.2.2 Camera motion based method

Besides the approaches based on the point correspondences established between
the different cameras, an indirect approach (which works even in the case where the
cameras have barely overlapping or completely non-overlapping views) is investigated
by relying on motion. [Nyman+10] presents a method based on motion of multi-camera
rig in which two pure translation motions in different directions are sufficient to linearly
recover the rotation component, then two general motions including both translation
and rotation are sufficient to linearly determine the translation component.
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Figure 3.2: Relation between cameras in the rig.

The authors in [Luong+93], [Esquivel+07], [Oskiper+07], [Kim+08], [Lébraly+10b],
[Heng+13] share the same point start. They compute the displacements of each camera
in the coordinate system of itself (for example, by SfM). To cope with the extrinsic
calibration problem, the idea of their method is to use the commutativity of the diagram
in Figure 3.2 where Tk0(R

k
0, t

k
0) and Tki (R

k
i , t

k
i ) are the displacement of the first camera and

the i-th camera at the k-th frame, in the coordinate system of the first camera and the
i-th camera, respectively; and Ti(Ri, ti, λi) is the transformation from the i-th camera to
the first camera with λi accounts for the different scales of coordinate systems. If the
relative displacement from a camera to another camera does not change, this rigidity
assumption and simple changes of basis lead to:

Tk0Ti = TiT
k
i . (3.22)

Eq.(3.22) can be decomposed into the two following constraints: the first one regarding
only orientations and the second one linking both orientations and positions

Rk0Ri = RiR
k
i , (3.23)

Rk0ti + tk0 = λiRit
k
i + ti. (3.24)

The problem is that we obtain a different relative pose at each instant. Then we should
determine the optimal relative poses. For the translation ti, it is easy to calculate the
mean value (once the rotation Ri is known), but it is more complicated for the rotation.
The orientation constraint in Eq.(3.23) is the same as the hand-eye coordination problem
[Park+94] in which a closed-form least square solution is derived. The rotations Rk0 and
Rki are measured in different coordinate frames. The problem of rotation averaging is
to find a rotation Ri in a way that is most consistent with all rotation pairs (Rk0, R

k
i ).
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Rotation averaging strategies are applied in [Kim+08] in which the authors make a non-
overlapping spherical camera assumption (and the cameras share a single optical center)
in order to calibrate the multi-camera system using motion estimation. A method for
calibrating the rotation between two-camera rig without overlapping FoV using rotation
averaging strategies are discussed in [Dai+09]. The issues such as convergence and
optimality of rotation averaging algorithms are investigated in order to achieve a global
solution for calibration problem. More recently, [Hartley+13] summarizes the research
that has been carried out rotation averaging; as well as provides proofs of convergence
in many cases.

Let qk
0,q

k
i ,qi be the unit quaternion representations corresponding to Rk0, R

k
i , Ri,

respectively. Eq.(3.23) may be written as following linear equation

Akqi = 0 (3.25)

where Ak is 4×4 matrix formed by the elements of qk
0,q

k
i . Given the value of Ri, Eq.(3.24)

simplifies to
Bkti − ck = 0 (3.26)

where Bk = Rk0 − I and ck = λiRit
k
i − tk0. In 2007, [Oskiper+07] and [Esquivel+07]

propose independently the same idea. Their approach first estimates initial parameters
(Ri, ti) then refines these parameters by minimizing a suitable cost function using LM
framework. [Oskiper+07] works on a multi-stereo system with two pairs of backward
and forward looking stereo camera with inertial measurement unit (IMU). The authors
suppose that each stereo camera is calibrated (intrinsic and extrinsic parameters) and
λi = 1. The goal is to determine the relation pose between two stereo cameras. The
set of stereo camera poses is estimated independently using visual odometry (SLAM)
in a feature rich environment. RANSAC process randomly selects 3 pairs of corre-
sponding poses for each stereo camera. First, they estimate the unit quaternion that
minimizes

∑3
j=1 ||Akjqi||2. The solution of qi in each RANSAC trial is obtained as

the unit eigenvectors corresponding to the smallest eigenvalue of the matrix A�A where
A = [A�k1A

�
k2
A�k3 ]

�. Second, from the obtained solution of Ri, the relative translation ti is
estimated by minimizing

∑3
j=1 ||Bkjti−ckj ||2. In other words, they solve for the ti which

minimizes ||Bti− c||2 where B = [B�k1B
�
k2
B�k3 ]

� and c = [c�k1c
�
k2
c�k3 ]

�. Finally, the best hy-
pothesis determined by RANSAC method is then refined by LM method by minimizing
the objective function that is derived from the constraints in Eq.(3.23) and Eq.(3.24)
with Ri = Ri(qi) (multiplying the left-hand-side of Eq.(3.23) by the one of Eq.(3.24) and
the right-hand-side of Eq.(3.23) by the one of Eq.(3.24)):

min
qi,ti

∑
k

∣∣∣∣∣∣(RiRki )�(Ritki + ti)− (Rk0Ri)
�(Rk0ti + tk0)

∣∣∣∣∣∣2 . (3.27)

The work in [Esquivel+07] considers a multi-camera system (without IMU). A monocular
SfM is performed to each camera in order to determine a trajectory for each. The
unknown parameter Ri is obtained by solving directly the linear equation Eq.(3.25) with
one corresponding pose pair of each camera (without RANSAC) if the camera motion
is not pure translation. Given Ri, (ti, λi) are estimated from Eq.(3.26) with at least two
corresponding pose pairs of each camera. And then a nonlinear refinement is used to
estimate simultaneously the relative rotation, translation and scale by minimizing the
error function

min
qi,ti,λi

∑
k

(||Akqi||2 + ||Bkti − λiRi(qi)t
k
i + tk0||2). (3.28)

34



State of the art

This method assumes that the camera poses in initialization step are globally consistent.
Thus, the cost function in Eq.(3.28) only optimizes the extrinsic parameters. In practice,
the initial camera poses (Rki , t

k
i ) can be inaccurate and should be refined with the extrinsic

parameters (Ri, ti) in order to improve the accuracy.

Inspired by [Esquivel+07], [Lébraly+10b], [Lébraly+11] improve the calibration al-
gorithm by extending classical bundle adjustment. The authors consider a multi-camera
system in which the cameras are calibrated (known intrinsic parameters), synchronized
and rigidly moving. An initial estimate of extrinsic parameters is obtained linearly
by solving the hand-eye calibration problem in Eq.(3.23) and Eq.(3.24) whose solu-
tions represent the rotation by a 3 × 3 orthogonal matrix instead of unit quaternions.
[Lébraly+10b] presents complete solutions for general and singular motions. The SfM
algorithm in the case of multiple cameras with constant extrinsic parameters is applied
in order to reconstruct multi-camera poses and 3D scene points in the world coordinate
system. Finally, the 3D scene points, the trajectory of the multi-camera rig and the
extrinsic parameters are refined by using the analytical multi-camera bundle adjustment
algorithm detailed in [Lébraly+11]. However, the reprojection error is in the undistorted
space of the classical polynomial distortion model [Sturm+11]. This is due to the fact
that the forward-projection of this camera model does not have a closed-form. We will
discuss this method in more details in Chapter 5.

The BA for omnidirectional multi-camera in [Schneider+13] deals with points at in-
finity, and uses ray directions as observation. The uncertainty which enables a Maximum-
Likelihood estimation, is transfered from the measure space to the ray space. The
calibration procedure requires the multi-camera system with non-overlapping FoV to
be rotated within the scene such that the corresponding points are visible in different
cameras at different times. The authors show in experiments that the scene points at
infinity can stabilize the estimation of the camera rotations significantly. The refinement
of intrinsic parameters is left as future work in [Lébraly+11], [Schneider+13].

[Habib+11], [Wang+12] introduce a procedure for the calibration of a mobile map-
ping system that integrates multiple sensors for acquisition of images, locations, orienta-
tion such as GPS, IMU, etc. First of all, the camera poses (rotation Rki and translation
tki ) of the k-th frame for the i-th camera in a same global coordinate system are de-
termined through a bundle adjustment. The second step, in each time instant, the
geometric relationship of the cameras is calculated as following, for example between
pair of cameras (0, i):

Ri(k) = (Rk0)
�Rki (3.29)

ti(k) = (Rk0)
�(tki − tk0). (3.30)

An averaging process is performed in order to obtain mean values for relative parame-
ters. [Habib+11] also presents another procedure by exploiting the invariant geometric
relationship (Ri, ti) among the i-th camera and a reference camera (e.g. the first camera,
without loss of generality). Let Xw, Xi be vectors of a same 3D scene point in the global
coordinate system and in the coordinate system of i-th camera and λi be scale factor.
At the k-th frame,

Xw = tki + λiR
k
iXi, tki = tk0 + Rk0ti, R

k
i = Rk0Ri. (3.31)

Thus
Xi = 1/λi(Ri)

�(Rk0)
�(Xw − tk0 − Rk0ti) (3.32)
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and image point pi can be expressed as function of Xi and given intrinsic parameters:

pi = pi(Xi). (3.33)

Note that the scale factor λi is eliminated through projection (division) process. We
can see that the left side of Eq.(3.33) is measured observation, meanwhile, the right side
includes all parameters (Xw, R

k
0, t

k
0, Ri, ti). A general least squares adjustment procedure

is implemented in order to estimate all parameters based on the principle of least squares
of observation residuals. The quality of calibration highly depends on the distribution of
the control points in the calibration field, hence, the procedure is performed in a special
room where hundreds of calibration targets are well distributed along the walls, ceiling
and floor.

[Heng+13], [Heng+14], [Heng+15] propose two methods in order to determine the
relative geometric relationship of the cameras without assumption of overlapping FoV.
In their work, a multi-camera system (a set of four CCD fish-eye cameras integrated into
a car body or mounted on a roof rack) provides a surround view of environment. First
at all, the cameras are calibrated (intrinsic parameters) using calibration pattern. In
[Heng+13] (with improvement in [Heng+15]) introduces SLAM-based self-calibration.
Odometry data (commonly available on vehicles) is used to obtain a set of camera
motions together which is required as an initial estimate step of the extrinsic. The
initial estimate of transformation between camera and odometry is found from camera
poses computed by monocular visual odometry (VO) and odometry data. The 3D scene
points are reconstructed from inlier feature tracks in monocular VO, odometry data and
initial camera-odometry estimate. The camera-odometry transformations and 3D scene
points are refined by minimizing the image reprojection error. 3D scene information
with camera-odometry transformations and images from the multi-camera system are
used in loop closure detection. The vehicle poses are corrected using robust pose graph
optimization. The accuracy of inter-camera transformation is guaranteed by finding
feature point correspondences across different cameras. In other words, the authors do
exhaustive feature matching between each camera’s current frame and these in the other
camera’s frame history. A rectification step is required to ensure a high number of inlier
feature point correspondences. This step is computationally expensive. Finally, a BA
optimizes all parameters: intrinsic camera parameters, camera-odometry relation, inter-
camera relation (extrinsic parameters), vehicle poses (in the world coordinate) and 3D
scene points. The cost function involves the sum of image reprojection error from all
scene observations and the sum of relative pose error in odometry data measurement.
SLAM-based self-calibration has a high computational cost due to finding local inter-
camera feature point correspondences and bundle adjustment.

In order to avoid an exhaustive search of inter-camera feature correspondences and
loop closures, [Heng+14] (expanded in [Heng+15]) proposes an approach by relying on
a pre-existing map. Based on natural features in the environment, a sparse feature
map (as a virtual 3D chessboard) is built by SLAM-based self-calibration [Heng+13].
This method does not require a calibrated odometry and allows us to directly estimate
the extrinsic parameter with metric scale vie image-based localization. From images of
the multi-camera system and the 3D map, the camera poses are estimated. Then, an
average estimate of extrinsic parameters is obtained from hand eye calibration Eq.(3.23)
and Eq.(3.24) using the quaternion averaging method. In order to optimize the camera
extrinsic parameters, the authors solve the non-linear refinement problem minimizing
the sum of all reprojection errors. This method depends on a map of the calibration area
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created by the complex and expensive method in [Heng+13]. According to the authors,
in some occasions, a wrong loop closure, inaccurate odometry data or too few features
in the environment led to an inaccurate map, and in turn, inaccurate estimate of the
extrinsic parameters.

3.4 Rolling shutter (RS)

3.4.1 Introduction

The function of a camera shutter is to allow light to pass through for a determined
period of time. The used shutter can either be mechanical or electronic, and have a
global, block or rolling exposure method. In a global shutter (GS), all pixels in a frame
are acquired at a same instance. On other hand, rolling shutter (RS) is a technique used
when acquiring images by scanning the frame. Instead of imaging the scene at a single
time instance, the scanlines are sequentially captured. Figure 3.3 demonstrates effects
of mechanical RS.

Figure 3.3: A two-wheeled bobsleigh taking a turn at 60 km/h shot by Jacques Henri
Lartigue. This picture is taken with an ICA (Internationale Camera Actiengesellschaft)
camera in 1912. The bystander at the side of the road is leaning to the left, while the

hind wheel of the car is deformed to an oblique ellipse.

The two most common image sensors used in digital cameras are the CCD (Charge-
Coupled Device) and the CMOS (Complementary Metal Oxide Semiconductor) image
sensors. Generally, CCD sensors use GS and CMOS sensors use RS. In CMOS sensors
with RS, each row of pixels are reset, exposed and read out in sequential order over time
(see Figure 3.4). The rows which are not being read out, continue to be exposed.

Due to cost and energy efficiency, the CMOS sensors are gradually replacing CCDs
sensors. Almost all camera-equipped cell-phones make use of a RS. In particular, they
are able to acquire higher frequency scene dynamics via their intrinsic time-varying
intra-image measurements. The RS cameras however generate geometric distortions in
the images if the camera is moving or objects move in scene, and the amount of these
deformations depend on how fast the shutter rolls and how fast the camera motion is.
When a camera equipped with a RS moves quickly relative to the subject of the video,
several of artifacts can be found in the acquired video.
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Figure 3.4: Global Shutter vs Rolling Shutter. Each block symbolizes row of image.

3.4.2 Distortion effects

There are four major types of RS deformations: skew, wobble, smear and partial
exposure. Either due to fast motion or long exposure, another artifact that can be
observed in GS camera as well as RS camera is motion blur.

Skewing occurs when the camera undergoes a constant (or smoothly varying)
motion. It is worth noting that skew will procedure a shear transformation. An example
is shown in Figure 3.5 where the pedestrians appear slanted in image as they move to
the left across the scene.

Figure 3.5: Walk around Madrid, shot by Tomás G. Santis using Panasonic DMC-G6.
Source: www.flickr.com/photos/tgsantis/. The RS goes from top to bottom, the

image motion goes from right to left.

Wobble occurs when there are high accelerations or the motion is at a higher
frequency than the frame rate of the camera. This artifact is particularly pronounced
for cameras mounted on cars or motorbikes when cameras are vibrating. Straight lines in
a scene will occur curved and different parts of a single frame can be either compressed
and stretched at the same time, for example, Figure 3.6. Wobble deformations incline
to be fairly small and as such are often more difficult to notice in still image than in
video sequence.

Smear is a higher frequency artifact than wobble, and is essentially an aliasing
effect occurring between rows. When this occurs, portions of objects can appear to
be floating and disconnected from the rest of the object itself. We usually see smear
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Figure 3.6: London Eye using a mobile phone camera. Source: www.flickr.com/

photos/drinksmachine/.

when an object in the scene is moving at hight speed, rather than the camera itself, for
example, rotation propeller in Figure 3.7.

Figure 3.7: An airplane propeller shot by Jason Mullins using Apple iPhone. Source:
www.flickr.com/photos/jasonmullins/.

Partial exposure occurs when the scene being recorded changes drastically during
the frame image. This will result in a two or more distinct portions of the image that
look strange when combined. Similar problems can arise with fluorescent lighting, strobe
effects, lighting or any extreme situation where very fast motion or very fast bursts
of light are seen while the CMOS chip is sequentially recording a frame. Figure 3.8
demonstrates this phenomenon.

Motion blur occurs in GS camera as well as RS camera. Because of technological
constrains or artistic requirements, the image (all image-GS or each line-RS) represents
the scene over a period of time. Most often we can assume that this exposure time is
instantaneous. But this is not always so, and a fast moving or a longer exposure time
may result in blurring artifact which make this apparent (see Figure 3.9). Motion blur
depends directly on each pixel’s exposure period (electronic shutter interval) and even
with small motions some amount of blur is present. Subsequently if there is enough
motion to produce RS distortions, there is enough motion to create motion blur.
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Figure 3.8: Lightning conditions changed between the top and bottom parts of the
photo. Source: https://en.wikipedia.org/wiki/Rolling_shutter.

Figure 3.9: Motion blur, RS and GS. Source: www.teledynedalsa.com.

3.4.3 Rolling shutter parameter

Early work that specially models RS distortions is presented in [Wilburn+04]. The
authors use an array of CMOS cameras to create undistorted images by selecting the
scan-lines from different cameras but which are acquired at the single instant of time.
A first study on SfM from a RS video sequence is introduced in [Meingast+05]. This
section will discus this model of RS camera.

In a RS camera, the scanlines are sequentially exposed, read in and immediately
sent. The frame rate f (frame/s), the exposure length of one scanline e (μs), the rate at
which scanlines are exposed r (scanline/μs) and any delay between frames d (μs) are the
variables which control exposure of the scanlines (see Figure 3.10). For IIDC/DCAM
cameras (IEEE 1394 interface), the delay d would normally be 0 with a RS; for general
cameras, though, this has to be verified. The effect of non-zero e is motion blur within
the scanline, but has no geometric effects.

When a RS camera creates an image, each scanline of pixels is scanned in sequential
order over time. A camera model is formalized by noting that each scanline corresponds
to a different instant in time. [Meingast+05] assumes that the exposure is instantaneous.
The important parameters for RS modeling is the time between the start of integration
of two consecutive scanlines τ = 1/r, so called line delay. The sign of τ depends on
whether scanning direction is top-to-bottom or bottom-to-top. Let t0 be the starting
instant of the first exposed scanline. The scanline v will be exposed at instant

t(v) = vτ + t0. (3.34)
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Figure 3.10: Rolling shutter model. Each gray block symbolizes the exposure length
of one scanline.

To account for those RS effects, the frame time t0 and line delay τ need to be known.
On most RS cameras, each image is captured with a fixed line delay [Meingast+05]. In
the next Subsection 3.4.4, several methods for dealing with calibration for RS camera
are introduced. Subsection 3.4.5 describes a post-capture processing in order to remove
RS artifacts. The previous works on 3D reconstruction for RS camera are mentioned in
Subsection 3.4.6 and Subsection 3.4.7.

3.4.4 RS calibration

We discuss the important parameter which allows us to model RS deformations. In
this subsection, we review methods that determine the RS line delay.

[Meingast+05] proposes a method to calibrate the RS timing using additional hard-
ware and studies the different RS effects under special fronto-parallel motion. The RS
camera is exposed to a LED flashing at high frequency. The resulting image includes
light and dark lines whose spatial frequency is linked to the line delay and the known
LED frequency. The precise knowledge of the LED frequency is essential for a success-
ful calibration and the authors suggest to remove the lens for best sensor illumination.
This method, however, is prone to imprecision, especially if the camera has a fixed
lens. [Ringaby+11] refines the method of [Meingast+05] to cope with partly illuminated
sensors occurring if the lens is not removed.

Conceptually, the simplest way to calibrate a RS camera in the lab is to first capture
an image of a scene with the camera static and then capture a short video of the same
scene with the camera undergoing a constant motion [Thalin10]. The RS parameter τ
can then be estimated from the motion in the video and an estimate of the skew between
the first still image and a frame in the video. The key element in this set-up is that the
data contains imagery with two different motions (zero and constant).

In some cases, it is possible to calibrate RS camera in the lab. In many cases,
however, all we have is a video obtained from an unknown source. The authors in
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[Baker+10] propose an auto-calibration algorithm to estimate τ from a short segment
of jittery video. This method requires the video to contain temporally varying motion.
Generally speaking, the more jitter, the better the τ estimate. First, they introduce a
method aim to remove wobble artifact. Given line delay τ , they analyze how sensitive is
their RS rectification to an incorrect setting of line delay τ . Then they conclude that, in
theory, with an incorrect value of τ , the applied correction only differs from the one that
would be obtained with the correct value of τ by a slightly different affine warp for each
frame. They attempt to detect and minimize the residual affine jitter. RS rectification
is performed for a sampling of different values of τ and compute optical flow across
each output video, then compute a measure of how “translational” the optical flow is on
average across the sequence. The measure (residual affine from frame to frame) across τ
is plotted. They smooth the result slightly and then perform the calibration by choosing
τ to take a minimum value of the measure.

Besides the line delay calibration proposed by [Meingast+05], [Karpenko+11] pro-
poses a method to estimate the camera’s line delay that relies on a gyroscope. In this
work, a cell-phone camera and a gyroscope are attached rigidly. The camera with a FoV
of 45o is modeled by pinhole camera model. The camera motion is only described in
terms of its rotation R(t) at time t and is interpolated using Special Linear intERPolation
(SLERP) of quaternions [Dam+98] from high-frequency gyroscope data. The unknown
parameters including the focal length, the RS parameters, the gyroscope drift and the
delay between the gyroscope and the image frame sample are recovered by minimizing
the reprojection error of the set of corresponding points between two successive frames.

[Oth+13] proposes an approach to calibrate the line delay using a video sequence
of a calibration pattern with known geometry. A continuous-time trajectory model is
combined with a RS model to estimate the line delay. First, the intrinsic and distortion
coefficients of a RS camera are estimated with GS methods using still images and a
calibration pattern. Next, this camera is moving in front of the known pattern and
produces RS deformation. The authors model the trajectory of the camera in continuous
time domain - continuous-time batch optimization technique. The pose of the camera
is parametrized as a fourth-order B-spline. A smoothing spline is initialized using GS
perspective-n-point (PnP) solution at each image time. They show that the number
of B-spline knots affects the stability of line delay estimate and RMS errors. So an
adaptive knot placement, that needs to represent different parts of the trajectory to avoid
over-fitting, is proposed. They also introduce a linear approximation of the covariance
matrix of reprojection error terms for the RS camera model. The non-linear least-squares
problem is solved using DogLeg method. This method is experimentally evaluated more
accurate than the technique for calibrating the line delay (which requires specialized
hardware) in [Meingast+05].

3.4.5 Video rectification and stabilization

In this subsection, we address to post-capture image rectification and stabilization of
a video. There exists a number of different approaches to remove RS artifacts in special
cases.

[Liang+08] deals with skewing effect. The authors focus on the scenario in which
the camera undergoes with respect to the object a translational motion parallel (or near
parallel) to the image plane. Bézier curve (3 degree polynomial) is chosen to produce
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smooth representation of camera or object trajectory. The global motion (translation) is
found as the peak in a 2D histogram of translation vectors obtained using block match-
ing. This method cannot handle the scenarios with large depth range or multiple objects
having different motions. [Baker+10] copes with wobble artifact under large accelera-
tions or jitter. The authors extend the method in [Liang+08] based on translational
motion model by replacing Bézier interpolation with L1 regularization across scanlines,
allowing for more general motions: affine motion and low-frequency motion.

Partial exposure artifact is investigated in [Bradley+09]. The authors present two
simple methods to solve both RS shear and synchronization at the same time. The first
approach is based on strobe illumination that results in images: darker in some regions
and lighter in others. By locating the exposure flash in each camera, the synchronized
frames are identified. Its applicability is limited to indoor environments. The second
approach, while being less accurate than the previous, is applicable to more general
illumination conditions by employing a sub-frame wrap along optical flow vectors.

[Forssen+10], [Ringaby+11] assume that the RS parameter, line delay τ is known
using the method proposed in [Meingast+05] with a modification. Once camera motion
is known during a RS exposure, it is used to rectify the frame. The authors employ spher-
ical linear interpolation (SLERP) to estimate intermediate rotations. Applying them to
the image point, all rows are rectified to the first row. This rectification algorithm also
allows for video stabilization by smoothing the estimated camera trajectory.

[Grundmann+12] presents an algorithm for removal of RS distortions in uncali-
brated streaming video. The authors partition the image domain in m blocks, resulting
in m unknown homographies Hk (k = 1, . . . ,m) which need to be estimated per frame
to model the RS distortion by using the normalized direct linear transformation [Hart-
ley+04]. They express the RS deformation parametrically as homography mixtures: for
point x, Hx

.
=

∑m
k=1wk(x)Hk where wk(x) is a Gaussian weight centered around the mid-

dle of each scanline block k. Their homography mixtures are regarded as interpolation
techniques to local homographies with additional regularization for improved stability.
To evaluate their results qualitatively and compare to the results of others methods,
they use a user study based on subjective opinion of participants.

3.4.6 Perspective-n-point problem

The Perspective-n-Point (PnP) problem refers to the absolute pose estimation
problem and has a great importance in performing robotics visual SLAM, localization
with respect to a given map, and SfM. While there is an inherent difficulty in the absolute
pose estimation with RS cameras, there is already a widespread usage of RS cameras.
This problem has received much attention but is not the thesis topic. In this section,
we briefly address to previous works on PnP for RS camera(s).

[AitAider+06] for the first time stops considering the RS artifacts as drawback and
exploits them to simultaneously extract the pose (6 DoF) and velocity (6 DoF) of an
object relative to the camera frame from a single view. Using a known 3D model, the
authors propose the first PnP solution for RS camera under linear motion through iter-
ative minimization. Moreover, [AitAider+09] shows how one pair of RS images enables
the computation of both structure and velocity of rigid moving objects. The authors
first compute an initial estimate of the 3D points neglecting RS effect and then refine
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the shape and velocity using a nonlinear least squares algorithm (LM). As an alternative
to iterative approaches, [Magerand+12] proposes an approach for global optimization of
pose and dynamics from a single RS image using Taylor expansion of Rodrigues formula
for rotation and elimination of the translational parameters. However, this approach is
heavily sensitive to mismatches and it is not a feasible solution for a RANSAC loop due
to long run time.

Recent work in [Albl+15] presents a two-step algorithm. The authors first apply a
standard P3P algorithm for GS model to estimate poses and then refine by their R6P
solver based on RS model and a small rotation approximation. [Albl+16a] extends the
solution R6P to R5Pup, “-up” denoted up-vector information. Instead of using the
initialization by a standard P3P, the camera absolute pose directly can be estimated
from five 2D-to-3D matches using IMU information (the rotations around 2 axes are
known). The problem is to estimate 10 parameters: 3 for translation, 1 for rotation
and 6 for velocity. Five 2D-3D correspondences are necessary to solve it. Another
minimal solution to the RS pose and translation estimation problem is introduced in
[Saurer+15] using five 2D-3D correspondences. Under the assumption of a constant
linear translational velocity (the rotational velocity of camera is zero), the solution for
all the 9 unknown parameters (3 DOF for rotation, for translation and for translational
velocity) is based on Gröbner Basic. Finally, the authors relax the assumption and apply
LM method to refine full velocity and pose of the RS camera.

[Dai+16] shows that the usual 3×3 essential matrix for pinhole model does not exist
for RS camera. The authors derive a generalized epipolar geometry: a 5× 5 generalized
essential matrix for a pure translation RS camera with a constant translation velocity and
a 7×7 generalized essential matrix for a RS camera with a constant angular velocity and
a constant linear translation velocity. This algorithm can be integrated into RANSAC
approach. Given the generalized essential matrix, the relative transformation between
two images (i.e. between the poses of their first scanlines), the translation velocity
and/or rotation velocity can be recovered using matrix factorization.

3.4.7 Structure-from-Motion

In this subsection, we address to previous works on SfM problem for RS camera(s).
[Hedborg+11] proposes a RS-specific SfM algorithm. The camera trajectory is described
by linearly interpolating between the camera poses at the beginning of each frame us-
ing SLERP. Considering the observations, the most significant RS deformations occur
for rotational motion, according to the authors. They suggest to invert the projection
equations with a rotation-only assumption to undistort the frames and then apply a GS
SfM algorithm. The preliminary rectification of the frames significantly improves the
results of reconstruction. In several cases, they show that the accuracy of reconstruction
depends on the rectification step and any model errors in this step will also propagate
to the final reconstruction. Furthermore, this rectification step ignores the important
translational velocity information contained in the RS camera. Their approach is gener-
alized in [Hedborg+12]. They remove the rectification step to propose the first RS BA.
The pose between 2 consecutive frames is approximated with a linear interpolation for
the position and SLERP for the rotation parameters. They adapt the BA equations and
propose the triangulation and PnP steps for RS cameras. For solving the perspective
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pose problem, they suggest to use a multi-frame PnP solver and simultaneously esti-
mate the pose of the camera in multiple frames. Experimentally, the direct use of the
RS images improves the performance and stability of the pose estimation.

A SfM pipeline is proposed in [Klingner+13], for cameras mounted on a car, which
uses relative pose prior along the vehicle path. The authors consider images instead of
video (a repository of billions of 2D images captured with RS cameras rigs including
15 cameras along vehicle trajectories) which make tracking harder, but they have the
advantage of starting with a better high-frequency pose prior using GPS and inertial
sensors. A generalized camera model based on raxel (ray pixel) or rosette is used for
their camera rigs. Intrinsic rosette and RS timings are calibrated. The RS model
relates pixel coordinates p and time as some functions t(p). A fundamental operation
in BA is triangulation from multiple views. Given multiple image observation p̃ of
an unknown 3D world point, one wishes to find the world point X that minimizes
reprojection error ||p − p̃||2 where p = T(t(p))X and T(t) is transformation between
world coordinate system and 2D image system at instant t. The constraint is implicit
in p, an approximation is proposed with a simple assumption: t(p) � t(p̃), because RS
tends to be fast and t(p) is slowly changing function. This simplifies the RS problem to
that of standard multi-view triangulation. The authors fuse the sensor data (inertial,
GPS) to establish an initial trajectory for the vehicle without imagery.

[Meilland+13] performs real-time (incremental) dense structure and motion estima-
tion using a RGB-D sensors (Depth sensor). A unified model attempts to simultaneously
correct for both RS and blur motion. The camera is pre-calibrated using the method
proposed in [Ringaby+11]. Six parameters for velocity in Lie Group SE(3) are sufficient
for modeling both RS and blur motion. In this work, a direct dense registration (image-
based approach) that does not require feature extraction and matching, is more robust
than feature-based approach, especially in the case of motion blur. The performance
of this approach is evaluated using both ground truth and real data sequences. Their
proposed approach improves over previous RS approaches because it handles motion
blur.

[Duchamp+15] considers a calibrated camera, i.e. its intrinsic and RS parameters
are known. In comparison to the GS model, the authors add 6 parameters (rotational
and translational velocities) for each keyframe to avoid the linear interpolation of the
pose for each line of the image used in [Hedborg+11]. An initial solution of the camera
pose is found using the epipolar constraint. The authors solve a non linear system
instead of linear system in GS image. The 3D points are obtained by triangulation.
Finally, a BA optimizes not only the camera pose but also rotational and translational
speed at every keyframes. The method is experimented on short synthetic and real data.

The work in [Albl+16a] incorporates R5Pup solver (using only five 2D-3D corre-
spondences and 2 known parameters of camera orientation provided by IMU information)
in SfM pipeline. The initial geometry estimation is still estimated using GS assumption
but immediately optimized using BA with RS model. After that, new added poses are
modeled using R5Pup solver. Four parameters of camera pose (2 rotation parameters
are known) and six parameters of velocity are optimized throughout BA. However, the
reconstruction can fail due to poor precision of the measurements from cellphone IMU.
In order to handle this problem, the authors propose an approach to transform already
reconstructed scenes into a standard position such that downward direction of new cam-
era pose is as close to vertical direction as possible. Their method is compared to SfM
for GS model and is evaluated on real data captured by a cellphone while walking.
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The recent study of [Albl+16b] is the first to show degeneracy in RS SfM in which
the parameters cannot be uniquely determined. The authors use RS model with lin-
earized rotational and constant translational velocity and show that, in many practical
situations, images taken by perspective cameras become critical when reconstructed with
this model. Without loss of generality, supposing that the y-axis of camera coordinate
system is image RS direction (readout direction). A degeneracy occurs if all image poses
have parallel y-axis (of camera coordinate system) in world coordinate system. In their
experiments, they show that in order to obtain a correct reconstruction using RS SfM
algorithm, the input images should be captured with different readout directions, for
example, two image sets with perpendicular readout direction. For the same purpose,
the work in [Ito+17] explains the same degeneracy but in a different way. They con-
sider RS camera model with pure rotation with constant angular velocity and propose
an approximate RS camera model - affine camera approximation, i.e. the first-order
approximation of perspective effect on RS camera. The rotation is also parametrized
by axis-angle representation. The RS parameters are rotational velocities [ω1, ω2, ω3].
They show that the SfM of RS camera is equivalent to self-calibration problem of an
image sequence that has unknown, varying skew and aspect ratio along with varying
lens distortion of a special kind. Particularly, the aspect ratio is ω1 (rigorously, 1− ω1)
and ω2 is unknown and varying skew in the image sequence; and ω3 can be treated
equally to radial distortion. For this model, the general representation of degeneracy
reported in [Albl+16b] is derived. When this critical motion occurs, the estimation of
ω1, ω2, y-component of camera pose for each image and y-component of 3D points are
ambiguous by a scale. Besides avoiding this critical motion, they can deal with by deter-
mining somehow either ω1 or ω2 for a selected single image. A simple way is to find out
an image in the sequence that has as small distortion as possible or free-distortion and
set these parameters to zero. The ambiguous scale is solved. The proposed approach is
evaluated by experimental results on synthetic and real data.

3.5 Self-calibration and synchronization of sensors

In the context of a general multi-sensors, [Furgale+13] simultaneously estimates
the temporal and spatial registrations between sensors. In the experiments, the multi-
sensor is composed of a camera and IMU. The best accuracy is obtained thanks to the
use of all measurements at once, a continuous-time representation (a B-spline for IMU
poses) and maximum likelihood estimation of the parameters (time offset, transformation
between IMU and camera, IMU poses and others). The authors show that it is better to
calibrate jointly time offsets and relative sensor transformation than to determine these
parameters separately.

SLAM on RS camera and IMU is done in [Lovegrove+13], [PatronPerez+15] using
a sliding window batch estimation of the continuous camera trajectory. In these papers,
the authors also investigate the use of their framework to estimate relative pose, bias and
the camera focal length. A continuous-time pose representation makes use of cumulative
cubic B-splines in the Lie group SE(3). According to the authors, using a cumulative
B-spline not only preserves C2 continuity but also provides a simple second derivative for-
mulation that is useful for generating inertial predictions. This parameterization, when
applied locally, is free from any singularities and offers a good analytical approximation
to smooth trajectories. Reprojection errors are computed between the first measurement
of a pattern (reference pose) and subsequent observations (measurement pose) and are
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minimized using non-linear least squares method (LM framework). As the papers use
an expensive IMU with GPS-clock synchronization, no time synchronization is needed.
The RS parameter is also pre-calibrated.

[Vo+16] synchronizes and self-calibrates consumer cameras (Gopro, iPhone 6, Sam-
sung Galaxy 6) using BA in a context different to ours: free camera motion (i.e. in-
dependently moving cameras), assuming that the resulting sequences have significant
overlap. So, this method requires the corresponding 2D trajectories across cameras.
The authors use static scene reconstruction of the scene background, dynamic scene
reconstruction of the scene foreground by jointly optimizing the spatiotemporal camera
parameters (intrinsic parameters, camera poses, time offset between cameras) and static
and dynamic 3D scene. The spatiotemporal cost function involves image reprojection
cost and physics-based motion priors cost for moving objects. The RS is not considered
in this work.

3.6 3D reconstruction

In this section, some previous works on 3D reconstruction from omnidirectional
multi-cameras are mentioned. The state-of-the-art of the image based surface recon-
struction is reviewed in [Litvinov15]. The authors introduce a sparse, incremental and
2-manifold surface reconstruction from a sparse SfM points cloud based on 3D Delaunay
triangulation. More precisely, this method receives as input a sparse 3D point cloud
generated by SfM. For every new frame, the surface is updated in a small neighborhood
of the new frame. It allows us access to results during the processing with low and
constant memory consumption and it is useful to reconstruct large scale scenes. Their
method returns a 2-manifold output surface. Such a surface is useful for post-processing
and applications (see [Litvinov15] for more details). Their method is experimented on
synthetic and real sequences taken by an omnidirectional GS multi-camera.

The authors in [Saurer+13] propose a stereo algorithm that takes into account the
RS model and produces geometrically consistent 3D reconstructions. They attempt to
make traditional Computer Vision algorithms (e.g. stereo, registration) that work on RS
cameras. The camera used in this work is calibrated wide angle RS camera. Significant
lens distortions that often present in wide angle camera, intertwine with RS effects
when the camera is moving in the scene. The algorithm solves for time of exposure and
depth at the same time, even in the presence of lens distortion and produces accurate
3D models from RS cameras. RS needs to be considered only where its effects are
significant, i.e. for stereo in the range of one pixel or more. Locally, these deformation
errors are not as visible and may seem to be of minor importance. However, for accurate
reconstruction from a driving car they are significant. The authors analyze the setting
of camera motion inducing RS artifacts and show that even for every moderate speeds
and resolutions, these effects are significant.

[Saurer+16] proposes and implements a pipeline for sparse to dense 3D reconstruc-
tion from large scale wide baseline images captured by a rig of 15 RS cameras mounted
on a moving car. A RS BA which optimizes 3D points, camera poses and velocities, is
proposed. The optimization which only models RS effect, can fail due to wide baseline
images with poor visual connectivity. To deal with this problem, the cost function in-
volves with GPS/INS information. Furthermore, an additional smoothness term which
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enforces pairwise smoothness between neighboring poses, is introduced. A dense 3D
structure is computed from the refined poses using a multi-view RS plane sweeping
stereo algorithm similar to [Saurer+13] with speed-up improvement. They evaluate
their pipeline on a long camera trajectory.

3.7 Conclusion

In this chapter, we have presented the current state-of-the-art of self-calibration for
multi-camera system: both intrinsic and extrinsic parameters; synchronization of video
sequences; rolling shutter effect and 3D reconstruction from multi-camera systems. A
number of approaches are proposed to estimate these system parameters in separate pro-
cesses in most cases: first estimate time offsets and then solve the spatial transformation
between cameras. Some works consider a synchronized multi-camera system and solve
only extrinsic parameters. In our work, we demonstrate a frame-accurate synchroniza-
tion method that deals with cameras with small (or even empty) shared FoV. Our syn-
chronization method compares instantaneous angular velocity estimated by a monocular
SfM, which does not have the inconveniences in [Spencer+04]: heuristic (translation)
or uncalibrated (homography/fundamental matrix) transformations without radial dis-
tortion. Moreover, we improve a multi-camera BA in the literature [Lébraly+11]. Our
multi-camera BA refines intrinsic parameters (not only inter-camera poses and the other
3D parameters). We also propose the first self-calibration method designed for (omni-
directional) multi-camera systems including synchronization and rolling shutter. We
estimate not only the usual parameters but also subframe-accurate synchronizations
and the RS parameter (line delay). Our approach is visual-only and deals with long
trajectories (hundreds of meters or kilometers).
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Overview of our algorithm

In this thesis, we consider 360 degree and spherical cameras built by fixing together
several consumer cameras pointing in different directions. We propose a framework that
synchronizes and self-calibrates these omnidirectional multi-camera systems.

First, the monocular camera model (we experiment two models) is initialized in
Chapter 4, Section 4.1 thanks to assumptions that are suitable to an omnidirectional
camera without a privileged direction: the cameras have same setting and are roughly
equiangular. We apply monocular SfM and calibration refinement by bundle adjustment
(BA).

Second, a frame-accurate (FA) synchronization between all videos is obtained by
using a method based on instantaneous angular velocity (IAV) in Chapter 4, Section 4.2.
Now, we skip few frames in each video such that the sequels of the videos are FA
synchronized: frames with the same index are taken at the same time up to the inverse
of frame per second (FpS).

Third, a central multi-camera calibration is initialized from the estimated intrinsic
monocular parameters and approximate inter-camera rotations. We apply multi-camera
SfM [Mouragnon+09] (see also Section 2.4) followed by multi-camera bundle adjustment
(MCBA) [Lébraly+11] by adding the intrinsic parameters as new estimated parameters
in Chapter 5. Up to now, we did three approximations: global shutter (GS), central
multi-camera and zero subframe residual time offsets. Furthermore, we only applied
the SfMs (both monocular and multi-cameras) on the beginning of the videos to obtain
initial synchronization and initial calibration (the 2k first frames in our experiments).
Then the multi-camera SfM is applied a second time on the whole videos.

Last, we apply the MCBA in Chapter 6 for estimating subframe accurate synchro-
nization (SFA) and line delay between two successive lines in addition to usual parame-
ters. We experiment using videos taken by consumer cameras mounted on a helmet and
moving along trajectories of several hundreds of meters or kilometers, and compare our
results to ground truth.
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Cameras

The consumer multi-cameras are modeled by several rigidly mounted monocular
cameras and the user fixes them on a helmet. We assume that all calibration param-
eters (time offsets, line delay, intrinsic with radial distortion, relative poses - extrinsic
parameters) are constant during a video acquisition. The camera gain is not fixed and
evolves independently for every camera.

There are 360o cameras composed of four GoPro Hero 3 camera [GoPro], that are
started by a single click on a wifi remote. The user can choose the relative poses of the
cameras: they are enclosed in a cardboard for small baseline (see Figure 3.11) or are
fixed by using the housings provided with the cameras (larger baseline) in Figure 3.12.

There is also a spherical camera modeled by two opposite fisheyes (no relative pose
choice) that are synchronized. The Ricoh Theta S multi-camera [ThetaS] in Figure 3.13
has a very small baseline thanks to the use of a prism mirror in front of a monocular
camera (its FoV is split in two equal parts, each of them sees more than a half-sphere
as a real fisheyes does).

We also experiment on a professional multi-camera (PointGrey Ladybug 2 [Lady-
bug2]) in Figure 3.14 since its ground truth is provided by the manufacturer (as a table of
rays) and also for experimenting on an ideal multi-camera with GS and perfect synchro-
nization. This camera consists of 5 monocular cameras (the camera pointing towards
the sky is unused).

Videos

There are three real multi-camera videos taken under various conditions using four
GoPro camera: BikeCity1 (BC1) - bike riding in a city, WalkTown (WT) - walking in a
town, FlyHill (FH) - paragliding flying at very low height above a hill. WT is taken in
the early morning during summer to avoid moving cars and pedestrians, but lighting is
low. BC1 has sunny lighting (with contre-jours - French for against daylight) and most
cars are parked. WT and BC1 have the same calibration setting. FH has larger baseline
and lower FpS and better angular resolution. Figure 3.11 shows images and cameras of
BC1 and WT, Figure 3.12 shows images and cameras of FH.

BikeCity2 (BC2) is generated by ray-tracking of a synthetic urban scene having
real textures and by moving the camera along a trajectory that mimics that of BC1
(the “pose noises”, i.e. relative poses between consecutive frames, are similar in both
videos). Note that the cameras used to generate BC2 are rolling shutter like BC1 and
WT. We obtain a video for each camera by compressing the output images using ffmpeg
and options “-c:v libx264 -preset slow -crf 18”. BC2 has a complete ground truth.
Figure 3.11 also shows images of BC2.

There is also video WalkUniv (WU) using spherical camera - the Ricoh Theta S
(Figure 3.13). This video is recorded while walking in the campus of the Université
Clermont Auvergne.

Last CarCity (CC) is taken by the global shutter Ladybug 2 and has a similar
trajectory as BC1. Moreover, it is mounted on a car (using a mast) and is about 4
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Figure 3.11: Cameras (four Gopro Hero 3 in a cardboard) and images for BC1, WT
and BC2. The rolling shutter always goes from right to left, the image motion goes
toward left on the two left columns and goes toward right on the two right columns.

Figure 3.12: Cameras (four Gopro Hero 3 in their housings) and images for FH. The
rolling shutter always goes from top to bottom, the image motion goes forward/toward

right/backward/toward left.
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Figure 3.13: Spherical camera (Ricoh Theta S) and images for WU. Both rolling
shutter and image motion go from bottom to top.

meters above the ground, as shown in Figure 3.14. The camera records the suburban
area with building, vegetation, parked cars. The images are uncompressed (all others
are videos compressed using H.264).

Figure 3.14: Camera (PointGrey Ladybug 2) and images for CC. The cameras are
global shutter. The camera pointing toward the sky is not used in our experiments.

Table 3.1 summarizes our main datasets. These datasets will be used in the next
chapters.

Name (short name) Camera Type f r (mr) b (cm) l (m) fr FoV

BikeCity1 (BC1) 4*Gopro 3 RS 100 1.56 7.5 2500 50.4k 90

WalkTown (WT) 4*Gopro 3 RS 100 1.56 7.5 900 70.3k 90

FlyHill (FH) 4*Gopro 3 RS 48 1.06 18 1250 8.6k 90

BikeCity2 (BC2) 4*Gopro 3 RS 100 1.56 7.5 615 12.5k 90

CarCity (CC) Ladybug 2 GS 15 1.90 6 2500 7.7k 72

WalkUniv (WU) Theta S RS 30 3.85 1.5 1260 29.4k 200

Table 3.1: Datasets: frame per second f , angular resolution r (milliradian), diameter
b of multi-camera centers, approximate trajectory length l, numbers of frames fr and

approximate horizontal FoV angle.
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Chapter 4

Initialization of monocular
self-calibration and
synchronization

In this chapter, we present the two first stages in our self-calibration framework
for omnidirectional multi-camera systems. Assuming that the monocular cameras are
roughly equiangular and using an approximate knowledge of their FoV angle, Section 4.1
describes the initialization of two monocular camera models widely used in the bibliogra-
phy: the polynomial distortion model [Lavest+98], [Sturm+11] and the unified camera
model [Geyer+00], [Barreto06]. Using global shutter approximation, Section 4.2 in-
troduces synchronization methods for two or more than two cameras. The methods
presented here are published in [Lhuillier+15], [Nguyen+16b].
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4.1 Monocular calibration initialization

The number of calibration methods has increased during recent years. These
methods are based on different camera models. A survey of camera models used in the
Computer Vision can be found in [Sturm+11]. The choice of a camera model depends
on how appropriate the model is for the type of camera used. A good model balances
goodness of fit with simplicity, i.e. it should explain the data well but not have too
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many parameters. Roughly speaking, more complex models (with more parameters) are
able to fit the data. But if more parameters than necessary are added then this makes
up an overparameterization and overfitting. An overfitted model has poor predictive
performance: it overacts to minor variation in the training data while the performance
on a set of data not used for training becomes worse.

At first, we remind two simple geometric models: central perspective projection
and equiangular projection for fisheye lens. Figure 4.1 shows a typical fisheye projection
in comparison to the the central perspective projection. Let rd be the radial distance
in image (distance between image point and the center of distortion), f be the focal
distance, μ be the incidence angle and α be the reflection angle. In the context of
back-projection, μ is the angle spanned by the principal axis and the back-projected
ray of an image point. The projection rays of the central perspective projection are
straight lines and pass through a single point - the camera center (left of Figure 4.1).
In contrast to the central perspective projection, a ray’s incidence angle μ is different
from its corresponding reflection angle α in fisheye projections (right of Figure 4.1). The
equiangular projection is a type of fisheye projections in which the angles of incidence
are translated linearly into radial distance. We have the following expression for the
equiangular projection:

μ = crd (4.1)

where c is a constant.

Image plane
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Image plane
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Figure 4.1: Central perspective geometry (left, α = μ) vs. fisheye projection geometry
(right, α �= μ).

Camera models involve matrices with particular properties that represent the cam-
era mapping between the 3D world and a 2D image. We remind that the basic pinhole
model (Section 2.1) is a linear relationship between image point position p = (u v)� and
the direction of the associated camera ray X̃C = (XC YC ZC)

� that can be expressed
via the camera calibration matrix K in Eq.(2.2)Ç

u
v

å
= π

Ö
K

Ö
XC

YC
ZC

èè
(4.2)

where

K =

⎡
⎢⎣fx 0 u0
0 fy v0
0 0 1

⎤
⎥⎦ and π

ÖÖ
X
Y
Z

èè
=

Ç
X/Z
Y/Z

å
. (4.3)
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Matrix K depends on four parameters, namely, focal parameters (fx, fy), principal point
p0 = (u0, v0)

� and zero skew. In the following, we describe two monocular camera mod-
els that we use. The classical polynomial distortion model [Lavest+98], [Sturm+11],
[Lébraly+11] is often used since its closed-form back-projection is useful for SfM tasks
and epipolar geometry. It has several radial distortion parameters and can be applied
to consumer camera like Gopro [GoPro]. The unified camera model [Geyer+00], [Bar-
reto06] is also interesting since it deals with fisheye camera having FoV larger than 180o

(like those of spherical camera [ThetaS]) although it only has a single radial distortion
parameter.

First, we review the two monocular camera models and explain how to initialize
these camera models assuming that the cameras are roughly equiangular and using an
approximate knowledge of their FoV angle in Subsection 4.1.1 and 4.1.2 (We remind
that these approximations are suitable for an omnidirectional camera without privileged
direction). Second, the approximate calibration is refined using monocular SfM and BA
in Subsection 4.1.3. The experiments are in Subsection 4.1.4.

4.1.1 Polynomial distortion model

This model introduces a radial distortion function that represents the deflection
of a ray from its perspective trajectory (see Figure 4.2). It models well for wide-angle
distortion camera. We do not use tangential distortion in our work.

0

ZC

YC

XC

Image planeNormalized
plane

y
x

v

u

p0

p

pu

p̄

p̄u

I(r̄d)

X̃C

Figure 4.2: Polynomial distortion model.

4.1.1.1 Back-projection

The mapping from the distorted (original) image to the undistorted (rectified) image
depends on radial distortion parameters ki (tangential distortions are neglected). Let
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p and pu be the distorted and undistorted coordinates of a pixel, respectively. Their
normalized coordinates p̄ and p̄u meetÇ

p̄
1

å
= K−1

Ç
p
1

å
and

Ç
p̄u

1

å
= K−1

Ç
pu

1

å
. (4.4)

Note that pu is the inhomogeneous image coordinate of a point under ideal pinhole
projection in Eq.(4.2). Let r̄d = ||p̄|| be the normalized radial distance in the distorted
image. The distorted point coordinate is related to the undistorted point coordinate by
a radial displacement. More precisely, the radial distortion is defined by

p̄u = I(r̄d)p̄ =

(
1 +

n∑
i=1

kir̄
2i
d

)
p̄. (4.5)

Lastly, the back-projected ray of pixel p has direction (p̄�
u 1)� in the camera coordinate

system. Figure 4.2 illustrates the back-projection using this model.

4.1.1.2 Forward projection

Here, we focus on the projection of 3D point X̃C in camera coordinates to 2D
image point p. Note that the back-projection is straightforward (closed form) thanks to
Eqs.(4.4) and (4.5). But the forward projection is not (it is not closed form). First, we
define vector θ and functions g such that

θ = (fx, fy,p0, k1, k2, . . . , kn, X̃C), pu = π(KX̃C), (4.6)Ç
u
v

å
= z,

Ç
u0
v0

å
= p0, r̄2 =

(u− u0)
2

f2
x

+
(v − v0)

2

f2
y

, (4.7)

g(z,θ) =

(
1 +

n∑
i=1

kir̄
2i

)
(z− p0) + p0 − pu (4.8)

where K is defined in Eq.(4.3),

Ç
z̄
1

å
= K−1

Ç
z
1

å
and

Ç
p̄u

1

å
= K−1

Ç
pu

1

å
.

Second, we show that g(p,θ) = 0. p = z implies that r̄d in Subsection 4.1.1 and r̄

are the same. We obtain g(p,θ) = 0 by multiplying Eq.(4.5) on the left by

Ç
fx 0
0 fy

å
.

Last, using an approximate value p̃ of p, the projected point p is estimated by
non-linear least-squares minimizing z �→ ||g(z,θ0)||2 where θ0 is the current value of θ
(provided by initialization or previous iteration of BA). The implicit function Theorem
implies that we locally have a C1 continuous function ψ such that p = ψ(θ) if det ∂g

∂z �= 0.

4.1.1.3 Initialization

Here we present our equiangular initialization of ki,p0, fx and fy. The camera is
equiangular if the angle μ between the principal axis (0 0 1)� and the back-projected
ray is proportional to the (non normalized) radial distortion rd in the distorted image.
We have rd = ||p − p0||. If the camera is equiangular, fx = fy = f and there is a

56



Initialization of monocular self-calibration and synchronization

constant c such that μ = crd. Thus, μ = cf r̄d. Since tanμ = ||p̄u|| and using Eq.(4.5),
we have

tan(cf r̄d) = tanμ = r̄d +
n∑

i=1

kir̄
2i+1
d . (4.9)

Since tan is not polynomial, Eq.(4.9) can not be exact. We use Taylor’s approxi-
mation

tanμ ≈
n∑

i=0

tiμ
2i+1 = μ+

1

3
μ3 +

2

5
μ5 +

17

315
μ7 +

62

2835
μ9 +

1382

155925
μ11 + . . . (4.10)

and identify coefficients between Eq.(4.9) and Eq.(4.10). We obtain cf = 1 using t0 and
ki = ti if i ≥ 1.

In practice, we initialize p0 at the image center and compute f = rd/μ for a pixel
p at the center of an image border where the half-FoV μ is approximately known.

4.1.2 Unified camera model

The unified camera model aims to model fisheye lenses with more than 180o angle
of view. It can model correctly projection of 3D points with zero and even negative ZC.
Only one projection parameter ξ is used to represent radial distortion. Overall we have
5 projection parameters: fx, fy, u0, v0, ξ.
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Figure 4.3: Unified camera model.

4.1.2.1 Forward projection

Figure 4.3 illustrates the forward projection using this model. Let S be the unit
sphere in R

3 centered at the center of camera coordinate system and let ξ ∈ R
+. The

projection p(X̃C) of X̃C by this model is obtained as follows:
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1. X̃C is projected onto S:

Qs =
X̃C

||X̃C||
=

1

ρ

Ö
XC

YC
ZC

è
(4.11)

where ρ =
»
X2

C + Y 2
C + Z2

C.

2. Perspective projection with center (0, 0,−ξ)� of Qs onto normalized plane:

Ç
p̄
1

å
=

à
XC

ZC + ρξ
YC

ZC + ρξ
1

í
∼

⎛
⎜⎜⎜⎜⎜⎜⎝

XC

ρ
YC
ρ

ZC

ρ
+ ξ

⎞
⎟⎟⎟⎟⎟⎟⎠

(4.12)

3. Affine transformation by intrinsic parameter matrix K in order to obtain image
point Ç

p
1

å
= K

Ç
p̄
1

å
. (4.13)

The projection can be rewritten as

p(X̃C) = π

Ö
K

Ö
X̃C

||X̃C||
+

Ö
0
0
ξ

èèè
(4.14)

where K and π is defined by Eq.(4.3).

4.1.2.2 Back-projection

Here, we describe the mapping from a image point p to a point Qs on the sphere
(and its back-projected ray). The normalized coordinate of a pixel meetsÇ

p̄
1

å
=

Ö
x
y
1

è
= K−1

Ç
p
1

å
. (4.15)

We know that a line joining the normalized point p̄ and the projection center c
intersects the unit sphere at a point Qs. This point is defined as [Barreto03]

Qs =

Ö
ηx
ηy

η − ξ

è
(4.16)

where scale factor

η =
ξ +
»
1 + (x2 + y2)(1− ξ2)

x2 + y2 + 1
. (4.17)
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Demonstration. We choose η by using the fact that Qs is on the unit sphere. Thus
we have

||Qs|| = 1⇔ (x2 + y2 + 1)η2 − 2ξη + (ξ2 − 1) = 0. (4.18)

Let us consider the discriminant of this quadratic equation in η: Δ = 1+(x2+y2)(1−ξ2).
If 0 ≤ ξ < 1, Δ is always positive and Eq.(4.18) has two real roots, one positive and one
negative. We choose the positive root. Now assume that ξ > 1. We have Δ ≥ 0, i.e. Qs

is defined, if

x2 + y2 ≤ 1

ξ2 − 1
. (4.19)

In this case, Eq.(4.18) has two real positive roots. We choose the biggest one. In other
words, we choose the intersection furthest from c. In both cases, we obtain Eq.(4.17).

4.1.2.3 Initialization

Here we initialize ξ,p0, fx and fy for an equiangular camera. Let μ be the angle
between principal direction (0 0 1)� and a back-projected ray, which is a half-line started
at 0 with direction Qs. Appendix A shows that

fx = fy = f ⇒ ||p(X̃C)− p0||
f

=
sinμ

ξ + cosμ
. (4.20)

If the camera is equiangular, fx = fy = f and there is a constant c such that μ =
c||p(X̃C) − p0||. Since sinμ

ξ+cosμ is not linear in μ, we approximate it thanks to Taylor
expansions:

sinμ

ξ + cosμ
≈ μ− μ3/6

ξ + 1− μ2/2
=

μ(1− μ2/6)

(1 + ξ)(1− μ2/(2ξ + 2))

=
μ

1 + ξ

Å
1 + μ2

Å
1

2ξ + 2
− 1

6

ã
+O(μ4)

ã
.

(4.21)

We initialize ξ = 2 such that this approximation is linear in μ. Now we distinguish
two cases for the initialization of p0 and f . If every pixel of the (rectangular) image
has a back-projected ray, we initialize p0 at the image center and take point p1 at the
center of an image border where the half-FoV μ is approximately known. Otherwise,
we assume that the pixels that have back-projected rays form a disk whose radius and
center can be estimated. Then we initialize p0 by the disk center and take point p1

at the disk boundary where the half-FoV μ is approximately known. In both cases, we
should choose μ ≤ 2π/3 according to Appendix A and f is initialized by Eq.(4.20) using
p(X̃C) = p1.

4.1.3 Monocular calibration refinement

The monocular camera model is initialized as in the previous sections assuming that
the camera is roughly equiangular and using an approximate knowledge of their FoV
angles. We apply monocular SfM summarized in Section 2.4 (global shutter assumption).
The camera poses (Ri, ti), 3D points Xj and intrinsic parameters vector I are refined by
a LM algorithm (see Section 2.3) which minimizes the reprojection errors. The residual
vector is described as

εij = p(I, Ri, ti,Xj)− p̃ij (4.22)
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where p̃ij is an inlier 2D observation of the 3D point Xj in the i-th keyframe and p is
the projected point of Xj in the i-th keyframe. We remind that p̃ij is considered as an
inlier if ||εij || is less than a threshold (4 pixels in our experiments). The minimized cost
function is

F =
1

2

∑
ε�ijεij . (4.23)

Under the standard assumption that the image noise due to point detection follows
zero-mean normalized identical and independent Gaussian vectors, the result obtained
by BA is a Maximum-Likelihood Estimation (this assumption is not true in the undis-
torted space, especially in the case of large distortions between undistorted and distorted
spaces).

4.1.4 Experiments

As a reminder, the monocular camera model is initialized assuming that the cameras
are roughly equiangular and using an approximated knowledge of their FoV angle. The
polynomial distortion model is used for the wide-angle cameras: Point Grey Ladybug2
and GoPro. The unified camera model is used for fisheye camera like Ricoh Theta S
that has FoV larger than 180o. Here, we apply monocular SfM on the 2000 first images
in our experiments and calibration refinement by BA for every camera. This is enough
for initializing the next steps of our approach including synchronization.

In this section, we show results for monocular cameras. The cameras and the videos
are summarized in Table 3.1. Figure 4.4(a) shows images for CC-cam2 using Ladybug2
camera. The camera is mounted on a car and records the video in an average traffic, so
there are moving cars and pedestrians. Figure 4.5(a) shows images for WT-cam1 using
GoPro camera mounted on a helmet. This video is recorded while the user is walking in
the streets of a city. Images acquired by Theta S camera include two fisheye sub-images.
This camera is also fixed on a helmet and records video sequence while walking in the
campus of the Université Clermont Auvergne (UCA) (see Figure 4.6(a) for WU-cam1).

For monocular wide-angle camera, the intrinsic parameters are initialized with ap-
proximation FoV = 72o (360o/5) for CC-cam2 or 90o (360o/4) for WT-cam1 and equian-
gular assumption (see Subsection 4.1.1). For fisheye camera, as explained in Subsec-
tion 4.1.2, we initialize ξ = 2 and FoV = 200o. We apply monocular SfM (Section 2.4)
and obtain: 255 keyframes and 24876 3D points for monocular CC-cam2; 63 keyframes
and 3989 3D points for WT-cam1; and 133 keyframes and 32231 3D points for WU-
cam1. Table 4.1 provides the numerical values of intrinsic parameters. We check that
the BA quantitatively improves the intrinsic parameters, especially fx, fy, k1 and k2
(when ground truth is known in Table 4.1). Furthermore, Figures 4.4(b), 4.5(b) and
4.6(b) show a top view of reconstruction before and after BA. The BA qualitatively
improves the camera trajectories shown in the figures. We observe that the BA corrects
scale drift for CC and WT; and corrects rotation drift for WU.

However, there is a limitation. SfM can fail for a video due to the combination of
two difficulties: lack of texture and approximate calibration. We assume that there is at
least one textured enough video such that this is successful. Since the cameras have the
same configuration (this assumption is suitable for an omnidirectional camera without
a privileged direction), we benefit by the refined intrinsic parameters by BA to redo the
monocular SfM of the other videos. Thus, a difficulty is reduced for the less textured
video and the risk of failure decreases.
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(a) Sequence with 1024× 768 resolution at 15 frames/second

(b) Left: Map and trajectory; Center: Before BA; Right: After BA

Figure 4.4: Top view of monocular Point Grey camera (CC-cam2) reconstruction.

CC-cam2 WT-cam1 WU-cam1
c pat2 72 72r pat1 90 90r 200 200r
fx 552.777 611.155 558.169 581.133 611.155 582.541 fx 890.172 859.494
fy 552.909 611.155 555.104 581.182 611.155 578.819 fy 890.172 861.830
u0 511.597 512.0 515.268 639.420 640 640.295 u0 480.0 478.510
v0 383.882 384.0 390.146 481.097 480 478.127 v0 480.0 479.187
k1
k2
k3
k4
k5

0.417
0.093
0.420
−0.376
0.311

0.333
0.400
0.054
0.022
0.008

0.417
0.066
0.578
−0.635
0.467

0.369
0.067
0.004
0.017
0.007

0.333
0.400
0.054
0.022
0.008

0.367
0.056
0.029
−0.007
0.015

ξ 2.000 2.023

Table 4.1: Intrinsic calibration parameters. Notation: pat - ground truth (ob-
tained with a calibration pattern [Lavest+98]), 72/90/200 - initial calibration and

72r/90r/200r - refined calibration.
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(a) Sequence with 1280× 960 resolution at 100 Hz

(b) Left: Map and trajectory; Center: Before BA; Right: After BA

Figure 4.5: Top view of monocular Gopro camera (WT-cam1) reconstruction.

4.2 Synchronization

4.2.1 Motivation

There are several ways to synchronize cameras. Audio-based synchronization is possi-
ble if a distinct sound is available and the cameras do not have audio/video synchroniza-
tion issues. For example, our GoPro Hero3 camera provides poor audio/video synchro-
nization (according to the user guide of VideoStitch (http://www.video-stitch.com/)).
In many cases like our DIY multi-camera based on GoPro, the manufacturer provides a
wifi-based synchronization. However, the resulting time offsets between videos are too
inaccurate for applications: about 0.04s and sometimes above 0.1s in our experiments.
Assume that a central multi-camera moves at 20km/h (e.g. biking in a city) and two
cameras have a time offset equal to only 0.02s, then explain consequences on a 360 video
obtained by video stitching. If we neglect this offset, the two videos are stitched as if
they have same camera centers at same frame number, although the distance between
these centers is 0.11m (20/3.6*0.02). This generates artifacts in the 360 video due to
foreground objects that are in the FoV shared by the two cameras.

In our context, applications like 360 video need a central multi-cameras. However,
the baseline defined by the distance between the centers of two cameras is not zero. The
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(a) Sequence with 960× 960 resolution at 30 frames/second

(b) Left: Map and trajectory (best viewed in the electronic version); Center: Before BA; Right: After BA

Figure 4.6: Top view of monocular fisheye camera (WU-cam1) reconstruction.

smaller the baseline, the better the stitching quality. The user/manufacturer can reduce
the baseline thanks to a small number of cameras. Since a small number of cameras also
reduces the shared FoV (see Figure 1.1), the synchronization methods based on corre-
spondences between the features observed in two videos are not recommended. But, we
can benefit an important constraint: the cameras are moving jointly. The larger motion
in one video, the larger motion in the others. A method close to ours is proposed in
[Spencer+04]: transformations (affine, homography) are estimated between consecutive
frames of every video. The estimated time offset is the one that best “compares” the
transformations between two videos. However, the transformations in [Spencer+04] are
heuristic (translation) or uncalibrated (homography) ignoring radial distortion. Here,
we propose a method based on instantaneous angular velocity estimated by monocular
SfM, which does not have the inconveniences above.

We remind that all cameras have the same setting for an omnidirectional multi-
camera without privileged direction. So the ratio of frames rate of the two sequences
is equal to 1. Let f be the (same) frequency of the cameras. Let si be the number of
skipped frames at the beginning of the i-th video such that the sequels of the videos are
frame-accurately (FA) synchronized. Let Δj be the subframe time offset between the
j-th video and the first video (the 0-th video). It means that if we shift s0/f seconds
in the first video and shift sj/f + Δj seconds in the j-th video then two videos are
synchronized correctly. Figure 4.7 shows all notations.
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camera

t(frames)

0 0 0 0 0 0 ...
s0

1

Δ1f
s1

1 1 1 1 ...

2

Δ2f
s2

2 2 2 2 2 2 ...

3

Δ3f
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Figure 4.7: Synchronization problem. Note that si is a number of frames, Δj is in
seconds.

The synchronization initialization is required by the multi-camera SfM-BA and
has two steps. First, Subsection 4.2.2 estimates instantaneous angular velocities (IAV)
thanks to monocular SfM-BA and GS approximation. Then time offsets are computed
by correlation of IAVs of different cameras; Subsection 4.2.3 and 4.2.4 describe the two-
and multi-camera cases respectively.

4.2.2 Instantaneous angular velocity (IAV)

We assume that every monocular video is reconstructed such that every frame
has a computed pose (both keyframes and non-keyframes). Thus keyframe-based SfM
like [Mouragnon+09] should be followed by pose calculations for the non-keyframes and
by BA. In practice, it is sufficient to reconstruct few thousands of frames at the video
beginning for the synchronization initialization (we use 2k frames as in Section 4.1).

Let Rti be the rotation of the pose of the t-th frame in the reconstruction of the i-th
video. The IAV θti at the t-th frame (of the i-th video) is approximated by the angle of
rotation Rt+1

i (Rti)
�, i.e.

θti = arccos

Ç
trace(Rt+1

i (Rti)
�)− 1)

2

å
. (4.24)

We omit the FpS coefficient since all cameras have the same. Intuitively, the IAV is
the same for two frames of different but jointly moving cameras if they are taken at the
same time. Formerly, we show this as follows. We remind properties of change of basis
in R

3 expressed by rotation matrices: the columns of RA,B are vectors of B expressed
using coordinates in A, we have R�A,B = RB,A and RA,B = RA,CRC,B.

Since the monocular SfMs are not done in the same coordinate system, the notation
Rti in Eq.(4.24) is ambiguous. Here, we write instead Rtwi,i

where wi is the (world) basis
of the i-th video reconstruction (vectors of the i-th camera at frame t expressed using
coordinates in wi). Furthermore, we note that Rwi,wj and Rj,i do not depend on frame
numbers (the former is obvious, the latter is due to the fact that the cameras are rigidly
mounted). If the ti-th frame of the i-th camera and the tj-th frame of the j-th camera
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are taken at the same time,
Rwj ,wiR

ti
wi,i

= R
tj
wj ,j

Rj,i (4.25)

Since the cameras have the same FpS, we also have

Rwj ,wiR
ti+1
wi,i

= R
tj+1
wj ,j

Rj,i (4.26)

Thanks to Eq.(4.25) and Eq.(4.26), we obtain

R
tj+1
wj ,j

(R
tj
wj ,j

)� = Rwj ,wiR
ti+1
wi,i

(Rtiwi,i
)�R�wj ,wi

. (4.27)

Since trace(XY) = trace(YX), we obtain

trace
(
R
tj+1
wj ,j

(R
tj
wj ,j

)�
)
= trace

Ä
Rti+1
wi,i

(Rtiwi,i
)�
ä
. (4.28)

Thus θ
tj
j = θtii according to Eq.(4.24).

4.2.3 Synchronize two cameras

We compute the IAV table for every camera and find the time offset that maximizes
the correlation (ZNCC) between two such tables (matches two subtables with the same
length in different tables). In more details, let oi,j be the frame offset between the i-th

and j-th cameras. According to Subsection 4.2.2, we have θti ≈ θ
t+oi,j
j . The frame offset

oi,j maximizes correlation ZNCCi,j between vectors θi and θj :

ZNCCi,j(oi,j) =

∑
t∈T

Ä
(θti −mi)(θ

t+oi,j
j −mj)

ä ∑
t∈T

(θti −mi)2
 ∑

t∈T
(θ

t+oi,j
j −mj)2

(4.29)

where T ⊂ N is a set of consecutive frame number and mi and mj are the means of the
vector θi and θj , respectively:

mi =
1

|T |
∑
t∈T

θti and mj =
1

|T |
∑
t∈T

θ
t+oi,j
j . (4.30)

We also introduce a simple subframe accurate (SFA) refinement method. The sub-
frame offsets are estimated like sub-pixelic disparity using a quadratic fit: first approx-
imate the mapping from oi,j to ZNCCi,j using a quadratic polynomial defined by its 3
values at oi,j+{−1, 0, 1}; then estimate εi,j such that oi,j+εi,j maximizes this polynomial.
Hence,

εi,j = (Δj −Δi)f. (4.31)

In contrast to the FA offsets oi,j ∈ Z, the SFA offsets oi,j + εi,j ∈ R and are not used for
the input of our BA in the next chapters. This is an alternative SFA synchronization
method assuming that the cameras are global shutter.
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4.2.4 Consistently synchronize more than 2 cameras

We remind that the goal of the FA synchronization is to skip si frames at the
beginning of the i-th video such that the sequels of the videos are FA synchronized
(This is required for multi-camera SfM). Thus oi,j = sj − si for all i �= j, which in turn
imply that the sum of offsets along every loop in the camera graph should be zero (e.g.
we should have o0,1+ o1,2+ o2,0 = 0 for loop 0→ 1→ 2→ 0). However, such a sum can
be non-zero since the offsets are estimated independently.

There are several ways to deal with this loop constraint. First only compute offsets
o0,i. But this solution privileges the first camera. Second compute all oi,j , generate
candidate offsets around oi,j for every pair (i, j), and select the candidate offsets that
maximizes

∑
i �=j ZNCCi,j such that the sum of candidate offsets along every loop is zero.

We implement an intermediate and simple solution where every camera has the same
importance assuming that the cameras are symmetrically mounted around a symmetry
axis: we only consider the spatial adjacency of the n cameras, i.e. we only compute
offsets o0,1, o1,2, . . . , on−2,n−1, on−1,0 (instead of all oi,j) and only use loop 0 → 1 →
. . .→ n− 1→ 0 (instead of all loops) in the scheme above. In practice, we found that it
is sufficient to choose candidate offsets that differ from the initial ones by +1 or 0 or -1.

4.2.5 Experiments

In Subsection 4.2.5.1, we experiment our synchronization method using monocular
SfM for every camera at the beginning of the datasets summarized in Table 3.1 with the
initialization of intrinsic parameters in Section 4.1. We also show the robustness of our
method with respect to intrinsic parameters and compare to the other methods in the
literature (Subsection 4.2.5.2).

4.2.5.1 Frame-accurate synchronization

Using the initialization of intrinsic parameters in Section 4.1 (equiangular ap-
proximation and BA refinement), Figure 4.8 draws the IAV in Eq.(4.24) (in radian) for
consecutive frames taken in a rectilinear segment of the trajectory and the correlation
function in Eq.(4.29) (that maps FA offset candidate o0,1 to ZNCC0,1) for cameras 0
and 1. This is done for biking (BC1), walking (WT) and car+mast (CC). There are
similar variations of the IAV for different cameras and a single maximum of the ZNCC
except for WT. Two consecutive offsets of WT have very similar greatest ZNCC values
and the other ZNCC values are below, which suggest a half-frame residual time offset.
These examples can convince the reader that we have enough information in the IAV to
obtain a FA synchronization (at least if the cameras are helmet-held or mounted on a
car thanks to a mast).

Table 4.2 shows the FA time offsets with loop constraint for all sequences. First
we examine oi,i+1 for the four Gopro Hero 3 cameras in BC1, WT and FH. Different
experiments have different oi,i+1 although they are taken by the same cameras. Thus
synchronization should be done at every experiment. Furthermore, the wifi-based syn-
chronization of the Gopro is not very accurate: about 0.04s and sometimes above 0.1s
(reminder: their FpS is 100Hz for BC1 and WT; or 48Hz for FH). Second we check
that the oi,i+1 are FA when their ground truths are known (BC2, CC and WU). Using
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Figure 4.8: IAV for two cameras (left) and their cross-correlation curves (right) for
rectilinear trajectory segments of trajectories. In the left, we have frame numbers (x-
axes) and IAVs in radian (y-axes). In the right, we have offset candidates oi,j ∈ Z

(x-axes) and its ZNCC correlation in [−1, 1] (y-axes).
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these results, we skip few frames in each video such that the sequences of videos are FA
synchronized: frames with the same index are taken at the same time up to the inverse
of FpS.

Name o0,1 o1,2 o2,3 o3,4 ZNCC1 ZNCC2

BC1 -5 3 4 na 3.912 3.884

WT -15 -1 14 na 3.919 3.918

FH -1 1 -2 na 3.991 3.983

BC2 0 0 0 na 3.915 3.907

CC 0 0 0 0 4.987 4.347

WU 0 na na na 0.993 0.677

Table 4.2: FA time offsets oi,i+1 with loop constraint for all videos. ZNCC1 is the
greatest sum of the n computed time offsets and ZNCC2 is the second greatest ZNCC
(−n ≤ ZNCC ≤ +n). We remind that oi,i+1 counts a signed number of frames between
the i-th and the i+1-th videos (Since the multi-camera has n cameras numbered i from

0 to n− 1, oi,i+1 is “na” if i+ 1 ≥ n).

4.2.5.2 Robustness and comparisons

We detail the experiments on WT sequence with respect to several calibration inputs
and compare our synchronization method to the other methods: an audio-based method
(like http://www.video-stitch.com/) and a translation-based method [Spencer+04].

We introduce some notations. Let Ac be the name of our rotation-based (IAV)
method using calibration c. If c = pat, the cameras are calibrated using a planar
calibration pattern [Lavest+98]. If c = 90, the intrinsic parameters are such that the
cameras are equiangular and their FoV in the horizontal direction is approximately
known (90o for the WT case). If c = 90r, first we apply SfM using c = 90 on keyframes
of the video; then refine c using a global BA; lastly, use SfM once again for all frames
with the refined c. Table 4.1 presents calibration results for c = {pat, 90, 90r}. Let Tf

be the name of the translation-based method such that the mean of translation moduli
is computed in the complete frame of a camera. Let Tb be a variant of Tf : the mean
is computed in a small area including the common FoV with the other cameras (most
left and right columns of images in Figure 3.11). We expect Tb to be better than Tf

if the translation magnitude evolves similarly in different cameras, especially in the
common FoV. Let S be the sound-based synchronization method using correlation of
sound (sound replaces IAV/2D translation moduli in the tables). For WT, there are
four offsets o0,1, o1,2, o2,3 and o3,0 between adjacent cameras that are computed by one
of the six methods above. Let L = o0,1 + o1,2 + o2,3 + o3,0. Since we have a loop
of camera neighbors (Figure 3.11), L should be 0 by enforcing a loop constraint as in
Subsection 4.2.4. We distinguish Li, the sum of integer offsets oi,i+1 (FA), and Lr the
sum of real offsets oi,i+1 + εi,i+1 (SFA) (Subsection 4.2.3).

The estimated offsets without and with loop constraint are showed in Table 4.3 and
Table 4.4, respectively. We see that the offsets computed by Ac are roughly the same
for the attempted calibration c. The better the c value, the better (smaller) the |Lr|
in Table 4.3 and the better (larger) the ZNCC scores in Table 4.4. In comparison, the
|Lr| and ZNCC scores of methods S, Tf and Tb are the worst. The results of Tf and Tb

are not surprising since the translation-based methods are heuristic. One reason for the
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results of the sound-based method S is that some cameras, including our GoPro Hero3,
provide poor audio/video synchronization.

Ac o0,1 o1,2 o2,3 o3,0 Li Lr

A90 -15 -1 14 1 -1 -0.023

A90r -15 -1 14 1 -1 -0.022

Apat -15 -1 14 1 -1 -0.020

Tf -12 0 12 0 0 0.100

Tb -15 0 14 0 -1 -1.450

S -18 -2 17 2 -1 -0.460

Table 4.3: Time offsets without loop constraint for WT. Li and Lr are the sum of
four integer and real time offsets, respectively.

Ac o0,1 o1,2 o2,3 o3,0 ZNCC1 ZNCC2

A90 -14 -1 14 1 3.708 3.707

A90r -15 -1 14 2 3.919 3.918

Apat -15 -1 14 2 3.915 3.915

Tf -12 0 12 0 2.610 2.421

Tb -15 0 14 1 3.319 3.221

S -18 -2 18 2 1.680 1.630

Table 4.4: Time offsets with loop constraint for WT. ZNCC1 is the largest sum of
the four ZNCCs of the four computed time offsets, ZNCC2 is the second largest ZNCC.

−4 ≤ ZNCC ≤ 4.

4.3 Conclusion

This chapter provides an estimate of the monocular intrinsic parameters and the
synchronization between the videos (which will be refined later in our process) using the
global shutter approximation on our cameras. First, we initialize the intrinsic parameters
of the monocular cameras using assumptions that are suitable to an omnidirectional
multi-camera without privileged directions: all cameras have the same setting and are
roughly equiangular with an approximately known FoV angle. Second, we apply to a
video a standard monocular SfM followed by BA that refines the intrinsic parameters.
Since the cameras have the same setting, we use these intrinsic parameters to apply SfM
to the other videos. Now every frame in every monocular video has a pose (in practice
we only need few thousands of frames at the video beginning). Third, we propose to
synchronize the cameras as follows: estimate the instantaneous angular velocities (IAV)
from the poses, then compute the time offsets by correlation of IAVs of different cameras.
Note that the initialization of intrinsic parameters is not the core of the thesis and can be
improved by several ways: monocular self-calibration using previous methods, automatic
choice of the first video (e.g. take the most textured one to reduce the risk of SfM failure),
selection of a video segment where SfM can be applied safely (avoid pure rotation motion
and low textured/blurred frames).
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Chapter 5

Multi-camera bundle adjustment
assuming global shutter and
frame-accurate synchronization

Cameras are used widely in mobile robotic, human-driven vehicles and 3D modeling;
and a wide FoV is usually desirable for accurate ego-motion estimation and complete
3D reconstruction as well as navigation and localization. While this can be achieved by
using single catadioptric omnidirectional camera, this is also provided by omnidirectional
multi-cameras. Multi-camera systems such as these are investigated in our work. A good
accuracy for both extrinsic and intrinsic calibration is usually required.

In this chapter, we improve the previous method [Lébraly+11] that aims at cali-
bration of non-overlapping rigidly linked multi-camera rig without requirement for cal-
ibration patterns or other infrastructure. The multi-camera system moves in a natural
static scene. The BA designed for multi-camera [Lébraly+11] refines the relative poses
between the cameras, the poses of multi-camera frame and 3D points by minimizing a
reprojection error. But the intrinsic parameters are not simultaneously refined and the
reprojection error is in the undistorted (i.e. rectified) space of the classical polynomial
distortion model (see Section 4.1.1). We improve this BA in two points: refine intrinsic
parameters (not only the extrinsic parameters and 3D geometry) and minimize the repro-
jection error in the right space - the original space where the image points are detected.
The extension for the unified camera model (see Section 4.1.2) is straightforward. In
this chapter, we assume that the cameras are global shutter and frame-accurately syn-
chronized thanks to the method in Chapter 4. The method presented here is published
in [Lhuillier+15], [Nguyen+16b].
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5.1 Notations

We consider n ≥ 2 jointly moving cameras with small or even empty shared FoV.
The multi-camera system is moving while each camera observes a static scene X (cloud
of 3D points), and m + 1 poses of the multi-camera system are obtained by a multi-
camera SfM. Let TiM be the homogeneous transformation of the i-th multi-camera pose

in the world coordinate system (i ∈ [0,m]), TjC be the homogeneous transformation of
the j-th camera in the multi-camera coordinate system (j ∈ [0, n 1]), see Figure 5.1.
Each homogeneous transformation T is represented with a rotation R and a translation
t such that

TiM =

ñ
RiM tiM
0� 1

ô
and T

j
C =

ñ
R
j
C tjC

0� 1

ô
(5.1)

where (RiM, tiM) denote the rotation and translation of the i-th multi-camera pose in

the world-coordinate system, (RjC, t
j
C) denote the relative rotation and translation of the

j-th camera in the multi-camera coordinate system. The extrinsic parameters T
j
C are

assumed to be constant over time.
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Figure 5.1: Multi-camera rig moving along a static scene.

Figure 5.2 illustrates our proposed pipeline for multi-camera calibration. First, ini-
tial intrinsic parameters Ij and the extrinsic parameters TjC are initialized in Section 5.2.
Second, the calibration process requires to compute the keyframe multi-camera poses TiM
and 3D structure (see SfM algorithm in Section 2.4). Finally, these parameters will be
refined all together using the multi-camera bundle adjustment (MCBA) in Section 5.3
and Section 5.4.
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Figure 5.2: Calibration scheme of multi-camera system. P is a set of observations in
selected key frames. Apostrophe (′) indicates refined parameters.

5.2 Initialization

First, we remind that the intrinsic parameters are initialized assuming that the
monocular cameras are GS and roughly equiangular with an approximately known FoV.
The cameras have the same setting: frequency, image resolution and FoV. Our assump-
tions are easy to meet in practice and are suitable for an omnidirectional camera without
a privileged direction. Section 4.1 provides more details about the initialization of the
intrinsic parameters.

Second, we also remind that a FA synchronization between all videos is obtained
using the method based on IAV estimated by monocular SfM (see Section 4.2). The
monocular videos are synchronized by removing few frames at their beginning, i.e. the
videos are synchronized up to the inverse of FpS. We define the i-th frame of the multi-
camera by a concatenation of sub-images, every of them is the i-th frame of a monocular
camera. From now on, we use word frame for “frame of the multi-camera” and the video
is the sequence defined by all these frames.

Third, while the relative transformation between cameras can be initialized linearly
using the methods mentioned in Section 3.3, we initialize them using the central approx-
imation for translation and an approximately known inter-camera rotations: n cameras
are symmetrically mounted around a symmetry axis a. This is enough to feed the bundle
adjustment in our case. More precisely, the central approximation means

∀j ∈ {0, . . . , n− 1}, tjC = 0. (5.2)

Let R(a, θ) be the rotation around axis a with angle θ. We have

R
j
C = R(a,

2π

n
j)R0C if j ∈ {1, . . . , n− 1} (5.3)

where R0C is chosen with respect to the symmetry axis a. This holds for all our multi-
cameras (four GoPro, LadyBug, Ricoh ThetaS) for a value of n (n ∈ {4, 5, 2}), see
Figure 5.3. In this figure, the camera pointing directions are perpendicular to a.

Now, we have a complete initialization of the multi-camera calibration and apply a
multi-camera SfM based on keyframe subsampling of the video (see Section 2.4) to obtain
a 3D geometry initialization. The parameters including both intrinsic and extrinsic
parameters, 3D geometry (key-frame poses and 3D structure) are refined by a global
multi-camera BA in the next sections. We remind that the keyframes are the only
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a a a

4 GoPro LadyBug2 Theta S

Figure 5.3: Our multi-cameras and initialization of extrinsic parameters. A pyramid
represents camera’s FoV. Cameras are symmetrically mounted around a symmetry axis

a. For readability of the figure, the FoVs have empty intersections.

frames whose poses are refined by BA. This is useful for both time computation and
accuracy.

5.3 Reprojection error and its derivatives

Subsection 5.3.1 computes the reprojection error minimized by BA. Subsection 5.3.2
introduces some notations for derivatives of reprojection error with respect to a vector
of parameters optimized by BA.

5.3.1 Cost function

Let Ij be the vector of intrinsic parameters of the j-th camera, Xl = (X Y Z w)�

be a 3D point of the scene X = {Xl} expressed in the world coordinate system. First,
by passing from the world coordinate system to the multi-camera coordinate system
with the transformation TiM(RiM, tiM), and then passing from the multi-camera coordi-

nate system to the camera coordinate system with the transformation T
j
C(R

j
C, t

j
C), the

inhomogeneous coordinate X̃C of this 3D point in the j-th camera coordinate system
meets

X̃C = (RjC)
� î(RiM)� | (RiM)�tiM tjC

ó
Xl. (5.4)

The forward projection from X̃C to 2D image point p is detailed in Section 4.1. So the
projected point p is a function of the vector of parameters θ = {Xl, RiM, tiM, RjC, t

j
C, I

j}.
Let p̃ be the observation of the 3D point Xl in the j-th sub-image (provided by the j-th
camera) of the i-th keyframe. We define

εlij = p(θ) p̃ (5.5)
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as the reprojection error of 3D point Xl observed by the j-th camera at the i-th keyframe
pose. The cost function is

F =
1

2

∑
(i,j,l)

(εlij)
�εlij =

1

2
ε�ε (5.6)

where ε is the residual vector concatenating all vectors εlij . Under the standard assump-
tion that the image noise due to point detection follows zero-mean normalized identical
and independent Gaussian vectors, the result returned by BA is a Maximum Likelihood
Estimation. We use the LM algorithm in order to minimize the cost function F as
Eq.(5.6).

Here, we remind the computation of the projection p for the polynomial distortion
model that does not have a closed-form (as discussed in Subsection 4.1.1). This model
is used in [Lébraly+11] but the reprojection error is minimized in the rectified space
(explained in the next paragraph). For the unified camera model, it is straightforward
since the forward projection of this model is closed-form (This is detailed in Appendix B).

Polynomial distortion model. The projection p = pj(X̃C) is described in Sec-
tion 4.1.1.2 assuming that X̃C is known. Generally, X̃C is a function of the extrinsic
parameters (RjC, t

j
C), the multi-camera pose (RiM, tiM) and the 3D point Xl as Eq.(5.4).

The vector θ in this chapter is a generalization of that one in Eq.(4.6). [Lébraly+11]
defines the reprojection error in the rectified space as follows

ε = g(p̃,θ) (5.7)

where g is defined in Eq.(4.8). We assume that the measurement noise is zero-mean
normalized identical and independent Gaussian vector and its effect on the error terms
is also an approximation of a Gaussian distribution. We can see that the measurement
noise in point p̃ detection is not directly fed through to the error term in Eq.(5.7) (one
can see it more clearly in Eq.(4.8) with z = p̃). In essence, the uncertainty from the
image plane, i.e. the original space, needs to transfer to the rectified space. However,
[Lébraly+11] assumes the covariance of the error terms is equal to identity although
there are large distortions between rectified and distorted images (see Figure 5.4). Our
BA minimizes the reprojection error in the original space as defined in Eq.(5.5). It allows
us to use the important assumption in which the covariance matrix for p̃ is identity. Our
BA is a Maximum Likelihood Estimator (this assumption is not true in the undistorted
space).

5.3.2 Analytical derivatives

In this subsection, we summarize the analytical Jacobian of the residuals with respect
to the optimized parameters θ = {Xl, RiM(riM), tiM, RjC(r

j
C), t

j
C, I

j} where riM and rjC are
rotation parameters (local Euler angles or quaternion). In this chapter, we choose the
usual local Euler angles [Triggs+00]. For each iteration of LM algorithm, a local rotation
R(r) is composed with a current rotation R0 to get update rotation R(r) = R(r)R0 where
r = (α β γ)� concatenates the small local Euler angles (this avoids singularities). Let

• A be the Jacobian matrix with respect to all extrinsic T
j
C(r

j
C, t

j
C) and all intrinsic

parameters Ij = (fx, fy, u0, v0, k1, . . . , k5) for the polynomial distortion model or
Ij = (fx, fy, u0, v0, ξ) for the unified camera model,
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Figure 5.4: Example for original image (left) and rectified image (right). Original
image is extracted from the video BC1 using GoPro camera.

• B be the Jacobian matrix with respect to all multi-camera keyframe poses TiM(riM, tiM),

• C be the Jacobian matrix with respect to all 3D points Xl.

Each elementary block of the Jacobian matrix is analytically expressed as follows:

Alij =

(
∂εlij

∂TjC

∂εlij
∂Ij

)
=

Ç
∂p

∂TjC

∂p

∂Ij

å
=

Ç
∂p

∂rjC

∂p

∂tjC

∂p

∂Ij

å
(5.8)

Blij =
∂εlij
∂TiM

=
∂p

∂TiM
=

Ç
∂p

∂riM

∂p

∂tiM

å
(5.9)

Clij =
∂εlij
∂Xl

=
∂p

∂Xl
. (5.10)

Alij is a 2 × 15 matrix for the polynomial distortion model (6 extrinsic and 9 intrinsic
parameters) or a 2× 11 matrix for the unified camera model (6 extrinsic and 5 intrinsic
parameters). Blij and Clij are respectively 2 × 6 and 2 × 3 matrices. The calculation of
Eq.(5.8), Eq.(5.9) and Eq.(5.10) depends on the camera model (detail in Appendix B).

5.4 LM algorithm and normal equation

Suppose that our MCBA problem consists of n cameras, m+1 keyframes and p 3D
points. Let Θ be the vector that concatenates all

• extrinsic parameters (RjC, t
j
C) of the j-th camera in the multi-camera coordinate

system. Note that tjC is optional (If the multi-camera is central, tjC = 0).
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• intrinsic parameters for each camera

• multi-camera poses (RiM, tiM)

• 3D points Xl.

For every cameras, we assume that the intrinsic and extrinsic parameters are constant
(i.e. the same for all keyframes). In our implementation, we use a minimal parametriza-
tion by fixing 10 (central case) or 13 (non-central case) independent parameters as
detailed in Appendix C. As in the monocular case, we remove from Θ the first pose
(R0M, t0M) and one of the 3 coordinates of one tiM where i �= 0 and which is not equal
to that of t0M. Then we remove from Θ the rotation of extrinsic parameter of the first
camera in the multi-camera coordinate R0C. In the non-central case, we also remove t0C.

We remind that the LM algorithm is a non-linear iterative optimization that solves
the least squares problem by combining the advantages of gradient and Gauss-Newton
methods. Using first order approximation, we obtain the normal equation as Eq.(2.27).
The objective is to calculate the Δ that updates Θ; Δ meets

J�JΔ = −J�ε ⇔ HΔ = g (5.11)

where J is Jacobian matrix of residual ε with respect to Θ, H = J�J is an approximation
of the matrix Hessian and g = −J�ε. More precisely, the diagonal terms of matrix
Hessian are multiplied by (1+ 1/μ) as Eq.(2.28) where 1/μ is damping parameter (here
we do not write this to simplify notation).

Using the notations A, B, C in Section 5.3, the Jacobian matrix is partitioned as
J = [A|B|C]. Let Q = A�A, U = B�B, V = C�C, E = A�B, F = A�C, W = B�C, gA = −A�ε,
gB = −B�ε and gC = −C�ε. The normal equation Eq.(5.11) is expressed with block
matrices ⎡

⎢⎣ Q E F

E� U W

F� W� V

⎤
⎥⎦
Ö

ΔA

ΔB

ΔC

è
=

Ö
gA
gB
gC

è
(5.12)

⇔
ñ

Ū W̄

W̄� V

ôÇ
ΔAB

ΔC

å
=

Ç
gAB
gC

å
. (5.13)

where Ū =

ñ
Q E

E� U

ô
, W̄ =

ñ
F

W

ô
and increment of (intrinsic and extrinsic) camera pa-

rameters and multi-camera poses ΔAB =

Ç
ΔA

ΔB

å
. The normal equation of classical BAs

(monocular or multi-camera with fixed intrinsic and extrinsic parameters) have the fol-
lowing form ñ

U W

W� V

ôÇ
ΔB

ΔC

å
=

Ç
gB
gC

å
. (5.14)

In the case of our MCBA, we add in the normal equations the lines and columns rel-
ative to intrinsic and extrinsic parameters. Both sides of Eq.(5.13) are multiplied byñ
I −W̄V−1

0 I

ô
: ñ

Ū− W̄V−1W̄� 0

W̄� V

ôÇ
ΔAB

ΔC

å
=

Ç
gAB − W̄V−1gC

gC

å
. (5.15)
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The matrix
S = Ū− W̄V−1W̄� (5.16)

is the Schur complement of V in H. We have

SΔAB = gAB − W̄V−1gC. (5.17)

The matrix S is also known as the reduced camera/pose matrix, because the parameters
(incremented by ΔAB) in Eq.(5.17) are the ones corresponding to the cameras (multi-
camera pose, intrinsic and extrinsic parameters).

Now, Eq.(5.13) can be solved by first forming S, solving for ΔAB and then back-
substituting ΔAB in order to obtain the value of ΔC. Thus, the solution of Eq.(5.13) is
reduced to the inversion of the block-wise diagonal matrix V, a matrix-matrix and matrix-
vector multiplication and the solution of block sparse linear system in Eq.(5.17). For
almost all problems, the number of keyframe poses is much smaller than the number of
3D points, thus solving Eq.(5.17) is significantly cheaper than directly solving Eq.(5.13).
The matrix S is typically a fairly sparse matrix, as most keyframes only see a small
fraction of the scene. Ceres solver [Agarwal+] stores S as a sparse matrix, uses row and
column re-ordering algorithms to maximize the sparsity of the Cholesky decomposition
and focus the computational effort on the non-zero part of the factorization. The LM
method is summarized in Algorithm 2, Section 2.3.

5.5 Degenerate camera motions

This section summarizes known degenerate motions where the MCBA provides
ambiguous results. If a degenerate motion occurs, the calibration is only partial: some
extrinsic parameters can not be estimated. In other words, changing these parameters
does not change the value of minimized cost function.

As the linear extrinsic calibration as Eqs.(3.23) and (3.24) is the same as hand-
eye problem, we can deduce degenerate cases from the previous studies [Andreff+01],
[Fassi+05]. In the context of motion and structure from stereo images without stereo
correspondence, [Kim+06] reports a degenerate case such that the axes ni

M of the ro-
tations of multi-camera keyframe poses are parallel. The pure translations reported
in [Esquivel+07] are also degenerate cases. Using the representation of rotations by
orthogonal matrices as suggested in [Andreff+01], the work in [Lébraly+10a] outlines
several degenerate motions of extrinsic calibration as illustrated in Table 5.1. Since we
do both intrinsic and extrinsic calibration, these degenerate motions also occur in our
case. The number of observable DoF of the extrinsic parameters of the non-overlapping
multi-cameras is also represented.

A practically important case is planar motion where RiM have parallel axes ni
M which

are orthogonal to the plane of motion. One dimension of the extrinsic translation tjC is
only estimated up to an unknown scale along the normal to the camera plane of motion.
In our context, we deal with omnidirectional multi-camera. In the central case, we fix the
extrinsic translation parameters tjC = 0. Under planar motion, the extrinsic rotation

parameter R
j
C can be fully estimated. In the non-central case, we can not determine

the component perpendicular to the camera plane of motion. Our helmet-held multi-
camera motions are close to this case, but thanks to pose noise (at least small rotation
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Motions Axes of rotation R
j
C tjC

1) Rotations and screw motions about an axis a same and equal to a 2 0

2) Pure translation along an axis a no rotation 2 0

3) Pure translation along several axis no rotation 3 0

4) Planar and screw motions about several axes different and parallel 3 2

5) General case different 3 3

Table 5.1: Number of observable degrees of freedom of the extrinsic parameters of
multi-camera system [Lébraly+10a]. The scale is assumed known.

of the head that we use to synchronize the cameras in Section 4.2) we avoid this critical
motion. [Lébraly+10a] proposes a linear solution to handle this degenerate case using
constraints provided by the scene permutation. In other words, with at least one 3D
point of the scene seen by each camera at different times, the component perpendicular
to the camera plane of motion is calculable. As a result, the extrinsic calibration is fully
estimated.

5.6 Experiments

In this section, our BA is named by a combination of several notations that describes
the estimated parameters:

• C (central approximation) estimates all RjC and fixes all tjC = 0,

• NC (non-central) estimates all (RjC, t
j
C),

• INT (intrinsic) estimates all intrinsic parameters: (fx, fy, u0, v0, k1, . . . , k5) or
(fx, fy, u0, v0, ξ) depending on the camera model (every camera has its own pa-
rameters),

• FA (frame accurate) is used to distinguish synchronization method in Chapter 4
from that in Chapter 6,

• GS (global shutter) is used to distinguish from rolling shutter in Chapter 6.

Thus GS.NC.FA.INT (or gs.nc.fa.int) is a BA that estimates simultaneously all extrinsic
parameters (RjC, t

j
C) and intrinsic parameters and keyframe poses (RiM, tiM) and 3D points.

The threshold for inlier selection is set to 4 pixels in all videos. A BA has three inlier
updates, each one is followed by Levenberg-Marquardt minimization for these inliers.
Table 3.1 summarizes our main datasets used in this chapter.

5.6.1 How to compare two calibrations?

We define the error of the estimated multi-camera calibration by a single number
d which is the RMS for all multi-camera pixels of the angle between rays of the two
calibrations (the estimated one and the ground truth one) that back-project the same
pixel. There are two reasons to do this. First, the accuracy is only needed for the ray
directions in applications (SfM, video stitching, 3D modeling of a scene) in the central
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case. Second, parameters can compensate themselves if their estimations are biased (e.g.
the rotation/ principal point near-ambiguity for one view [Agapito+01]).

We detail the computation of d. Since the rays of the estimated calibration and
the rays of the ground truth (GT) calibration can be expressed in different coordinate
systems, we estimate a registration between both coordinate systems before computing
angles between rays. The registration is defined by a rotation R which maps one ray set
to the other ray set (ignoring translation of ray origins). More precisely, R is minimizer
of

e(R) =
N∑
i=1

||rgti − Rresti ||2 (5.18)

where resti (respectively, rgti ) is the ray direction of the i-th pixel by the estimated
(respectively, GT) multi-camera calibration. Our distance is defined by

d =

 
e(R)

N
(5.19)

where N is the number of (sampled) rays in a multi-camera image. Note that d is
expressed in radians if d � 1; we always convert it in pixels by dividing it by the
angular resolution r in Table 3.1.

5.6.2 Polynomial distortion model: original vs. rectified errors

First of all, we remind that the polynomial distortion model in Subsection 4.1.1 does
not have closed-form for forward projection. The rectified errors are defined in Eq.(5.7).
And the original errors are defined in Eq.(5.5) where the projected point p is defined by
the implicit function ψ in Subsection 4.1.1.2. BA minimizes the reprojection errors for
all inlier observations p̃, i.e. ||ψ(θ)− p̃|| ≤ 4 pixels.

Error init Method #2D RMS d

Rectified 72r gs.c.fa.int 213335 1.216 9.575
pat gs.c.fa 213015 1.225 1.023

Distorted 72r gs.c.fa.int 213495 0.932 1.683
pat gs.c.fa 213108 0.946 1.023

Table 5.2: Comparing accuracy of gs.c.fa.X using rectified and distorted reprojection
errors on 2k first frames of CC (reminder: d is in pixels). The number of keyframes is

198, #2D is number of 2D inliers.

Table 5.2 compares the calibrations obtained by minimizing the reprojection er-
rors in the original (i.e. distorted) and rectified (i.e. undistorted) image spaces using
GS.C.FA.INT applied to the 2k first frames of the CC video which has ground truth
provided by manufacturer (as a table of rays). Column “init” gives details on the initial-
ization of the calibration. “72r” means that we use an initial FoV angle equals to 360o/5
for monocular camera with refinement by a global BA (see Table 4.1), hence “r”. And
“pat” means that we use the calibration estimated using a planar calibration pattern
[Lavest+98]. Although the numbers of 2D inliers are similar, the calibration error d
of the distorted case is quite better (about 6 times smaller) than that of the rectified
one. Such a difference can be explained as follows: there are large distortions between
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rectified and distorted images (see Figure 5.4), the BAs minimize errors in different im-
age spaces (rectified and distorted), and the distorted space is the right one to obtain a
Maximum Likelihood Estimator. We also provide the numbers of 2D inliers and RMS
of GS.C.FA that enforces calibration “pat” during BA; our RMS and inliers are slightly
better but the calibration error d of “pat” is the best. In the remainder of this thesis,
we always use the reprojection error in the original space.

5.6.3 Central vs. non-central calibrations

As a reminder, the central approximation assumes that all cameras have the same
point as center, i.e. all light rays (half-lines) of the multi-camera system go across a
single point. Some applications like 360 video need a central calibration. In our context,
we use (and build in some cases) a central or slightly non-central omnidirectional multi-
camera. So, we need to experiment with synthetic and real datasets; and show affections
of the central approximation. We also remind that the BA input is obtained as follows
(see Overview of our framework): initialization of multi-camera calibration on the video
beginning (SfM and GS.C.FA.INT applied to the 2k first frames) followed by multi-
camera SfM applied to the whole video (see Table 5.3).

Name (short name) Camera fr kfr #Tracks

BikeCity1 (BC1) 4*Gopro 3 50.4k 2047 343k

WalkTown (WT) 4*Gopro 3 70.3k 1363 240k

FlyHill (FH) 4*Gopro 3 8.6k 627 432k

BikeCity2 (BC2) 4*Gopro 3 12.5k 225 51k

CarCity (CC) Ladybug 2 7.7k 891 282k

WalkUniv (WU) Theta S 29.4k 1287 154k

Table 5.3: Datasets: numbers of frames fr, number of keyframes kfr, number of
tracks #Tracks (3D points) obtained by multi-camera SfM. (see more in Table 3.1)

5.6.3.1 Ground truth - LadyBug and synthetic dataset - BC2

Table 5.4 compares calibration error d (and RMS and 2D inliers) obtained us-
ing GS.C.FA.INT, GS.NC.FA.INT, GS.C.FA and GS.NC.FA applied to videos BC2
and CC. First, GS.C.FA.INT provides a better (smaller) d than GS.C.FA since the
intrinsic parameters (INT) are estimated from a longer video. The comparison between
GS.NC.FA.INT and GS.NC.FA is similar. Second, we compare GS.C.FA and GS.NC.FA
and see that the non-central refinement (NC) changes almost nothing if INT is not re-
fined. If INT is refined, the NC refinement improves the BC2 calibration but it does
not improve (even degrades) the CC calibration. We interpret this result as follows: the
central approximation is more tenable for CC than for BC2, since CC has a larger ratio
between camera-scene distance and baseline (the inter-camera distance) than BC2. We
also note that the RMS and 2D inliers are similar in all cases. Figures 5.5 and 5.6 show
a top view of the reconstruction of the method in Table 5.4.

Figure 5.7 depicts the centers of LadyBug2 that form a pentagon in ground truth
(see Figure 5.7(b)). By construction, camera centers tjC(tx ty tz)

� almost lie in a plane.
So, we find a plane π that fits the set of the camera centers. First, we calculate the
mean vector tm of this set and covariance matrix CtC =

∑
j(t

j
C−tm)(tjC−tm)�. Second,
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BC2 CC

Method d RMS #2D d RMS #2D

gs.c.fa 3.379 0.728 204k 1.685 0.938 965k

gs.c.fa.int 2.018 0.723 204k 1.173 0.938 965k

gs.nc.fa 3.397 0.727 204k 1.684 0.938 965k

gs.nc.fa.int 1.417 0.723 204k 1.313 0.937 965k

Table 5.4: Accuracies of gs.fa.X for BC2 (left) and CC (right).

the plane π is determined by tm and a nonzero vector orthogonal n to it, i.e. the
equation of π is n�(t− tm) = 0. The vector n, called the normal vector, is equal to the
eigenvector corresponding to the smallest eigenvalue of the matrix CtC using Singular
Value Decomposition method. The plane π established in this way is a best-fit plane of
the set of the camera centers. We also depict the projected camera centers on the plane
π in Figure 5.7.

Table 5.5 provides accuracies of the intrinsic parameters of the first BC2 camera
using GS.C.FA.INT and GS.NC.FA.INT. The absolute errors of fx, fy, u0, v0 are about
2 pixels or less; the relative errors of k1 and k2 are good and those of ki are bad if i > 2.
The NC-values of fx, fy and uo are slightly better than those of C.

gs.c.fa.int gs.nc.fa.int

G.T. value error value error

fx 580.773 582.809 2.037 581.296 0.523

fy 581.266 582.844 1.578 582.605 1.339

u0 640.827 640.989 0.162 640.978 0.151

v0 469.056 471.305 2.249 471.540 2.284

k1 0.368 0.368 7e-4 0.368 6e-4

k2 0.067 0.063 0.061 0.062 0.062

k3 0.013 0.026 1.001 0.025 0.970

k4 0.002 -0.013 6.463 -0.013 6.378

k5 0.013 0.018 0.434 0.018 0.420

Table 5.5: Accuracies of intrinsic parameters of the first camera (BC2) using
gs.X.fa.int. We show the absolute error in pixels for (fx, fy, u0, v0) and the relative

error for kis.
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(a) Synthetic dataset

(b) gs.c.fa

(c) gs.c.fa.int

(d) gs.nc.fa

(e) gs.nc.fa.int

Figure 5.5: Top views of gs.X.fa.Y reconstruction of BC2.
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(a) Map and trajectory (best viewed in the electronic version)

(b) gs.c.fa (c) gs.c.fa.int

(d) gs.nc.fa (e) gs.nc.fa.int

Figure 5.6: Top views of gs.X.fa.Y reconstruction of CC. The input video is taken by
LadyBug2 mounted on platform of a car.
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(a) LadyBug2

t_y t_x

0
0.01

0.02

-0.01
-0.02

-0.03

-0.03

-0.02

-0.01

t_
z 0

0.01

0.02

0
4

2

3

1

0.03

Ground truth

-0.06

-0.04

-0.02

0

(b) Ground truth

t_y t_x

0.02
0.04

0
-0.02

-0.06

-0.04

t_
z -0.02

0

43

0

2

1

0.02

CC_gs.nc.fa

-0.08
-0.06

-0.04
-0.02

0

(c) gs.nc.fa

t_y t_x

0
0.02

0.04

-0.02
-0.04

-0.06

-0.06

-0.04

t_
z -0.02

0

0.02
4 0

3

2

1

0.04

CC_gs.nc.fa.int

-0.12
-0.1

-0.08
-0.06

-0.04
-0.02

0

(d) gs.nc.fa.int

Figure 5.7: Non-central calibration using GS.NC.FA.INT method for CC (Lady-
Bug2). Camera positions in multi-camera coordinate (solid red line) and its orthogonal

projection on the plane π (dashed blue line). (see explanation in the text)

5.6.3.2 4 GoPro cameras and Theta S on a helmet

We compare the results of our method applied to three real different sequences
taken by same multi-camera (4 Gopro in a cardboard): BC1 - bike riding in a city, WT -
walking in a town and a short sequence CS (Cap-Sicié) - walking around an abandoned
stone house. The sequence CS has the same resolution and FpS in BC1 and WT. For
this sequence (with 15.5k frames), using multi-camera SfM, we obtain 784 keyframes
and 140k 3D points.

In terms of the ratio between the camera-scene distance and the inter-camera dis-
tance, BC1 is larger than WT and CS is smallest. Table 5.6 shows the initial and final
bundle with or without central approximation. For points 3D and 2D inliers (#3D
and #2D) and RMS, the relative error δ between two results rc and rnc is defined as
2(rnc−rc)/(rnc+rc). As can be seen in Table 5.6, the difference between two estimations
(central and non-central calibration) is negligible for BC1. On the contrary, for CS se-
quence, the non-central assumption gives more significant improvement than the central
assumption. The larger ratio between the scene-camera distance and the inter-camera
distance, the better central approximation.

Figure 5.8 illustrates centers of Gopro multi-camera rig. In this setup, four cameras
have the same configuration and their centers form a square. In the same way of CC
case, we establish a plane π that fits the set of the camera centers. The projected
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BC1 WT CS

Method #3D #2D RMS #3D #2D RMS #3D #2D RMS

initial 325k 1579k 0.830 232k 1099k 0.808 136k 619k 0.864

gs.c.fa.int +408 +6748 0.815 +600 +3985 0.790 +236 +2002 0.851

gs.nc.fa.int +435 +6904 0.814 +645 +4326 0.783 +351 +3188 0.818

δ (%) 0.01 0.01 -0.19 0.02 0.03 -0.85 0.08 0.19 -3.95

Table 5.6: Results of gs.c/nc.fa.int for BC1, WT and CS. #3D is the number of points
3D inliers, #2D is the number of points 2D inliers and δ is the relative error between

two results. Note that δ is multiplied by 100 to obtain a percentage.

(a) 4 Gopro
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Figure 5.8: Non-central calibration using GS.NC.FA.INT method for BC1, WT and
CS (four GoPro). Camera positions in multi-camera coordinate (solid red line) and its
orthogonal projection on the plane π (dashed blue line). (see explanation in the text)

camera centers onto this plane π should be in a square form. Moreover, as mentioned
in Section 5.4, we fix the extrinsic parameters (R0C, t

0
C) of the first camera. In our

MCBA, we choose pointing direction of the first camera being perpendicular to the
YZ plane in Figure 5.8. By construction in Figure 5.8(a), acute angle between vector
t1C − t0C and YZ plane should be equal to π/4. From these geometric intuitions, the
non-central calibration estimation in the case of CS is noticeably close to the expected
form. Furthermore, Figure 5.9 shows a top views of CS reconstruction without loop
closure. We can see the improvement by the non-central calibration in the case of CS.
The drift in rotation and translation is reduced, especially the wall at the bottom of this
figure.

Last, the top views of the GS.C.FA.INT resulting keyframes locations and clouds
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(a) Central

(b) Non-central

Figure 5.9: Top views of GS.X.FA.INT reconstruction of CS without loop closure.
The input video of CS are taken by four GoPro cameras mounted on a helmet.

of points can be seen on Figures 5.10 and 5.11 for BC1, WT, FH (four GoPro cameras)
and WU (Theta S). In the WU case, the beginning and end of the trajectory should
be the same, but we observe an important drift in Figure 5.11(a). The drift is less
noticeable in the other examples. Here, we do not enforce loop closure. We remind
that the incremental multi-camera SfM by local BA [Mouragnon+09] is done using an
intermediate calibration computed from only 2k first frames, and we see that the final
BA (GS.C.FA.INT) does not remove the drift. Then, we redo the incremental SfM using
the final multi-camera calibration (computed from the whole sequence by GS.C.FA.INT)
and see that the important part of drift is removed. This confirms that the GS.C.FA.INT
calibration refined on the whole video is better than the intermediate one.

87



MCBA assuming GS and FA synchronization

(a) BC1

(b) WT

(c) FH

Figure 5.10: Top views of GS.C.FA.INT reconstruction of BC1, WT and FH without
loop closure. The input videos of BC1, WT and FH are taken by four GoPro cameras

mounted on a helmet. The FH trajectory has a lot of sharp “S” turns.
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(a) GS.C.FA.INT

(b) Incremental SfM [Mouragnon+09] using the calibration estimated by GS.C.FA.INT

Figure 5.11: Top views of reconstruction of WU without loop closure. The input
video is taken by the Ricoh Theta S mounted on a helmet. The drift is between the

two arrows.

5.6.4 Global shutter approximation and varying camera speed for RS
camera

In this chapter, we do assumptions: global shutter and frame-accurate synchro-
nization. However, the cameras in our experiments are in fact rolling shutter (see Sec-
tion 3.4), except for LadyBug2. The GS approximation is acceptable if the camera
motion is not too fast and the shutter rolls fast enough. In other words, the image
deformations due to rolling shutter should be moderated. Here, we check whether our
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calibration method with GS assumption still works in the case of faster motion than
before. We experiment on synthetic datasets.

In the whole of our experiments, we use synthetic sequence BC2 (about 18km/h)
which mimics bicycle motion in BC1 without motion blur. In this subsection, we generate
new synthetic sequences BC2 such that the mean of the speed is about 2-5 times larger
than 18km/h (we also slow down in shape turns). Table 5.7 shows the results of our
methods applied to these examples in terms of the calibration error d. We note that the
error d increases with respect to speed by using GS.X.FA.INT which is consistent with
the fact that the global shutter approximation is less tenable for high speeds. We also
observe that GS.NC.FA.INT results are worse than those of GS.C.FA.INT when camera
speed is greater than 40km/h. Besides rolling shutter effect, there is also subframe
synchronization (see Figure 4.7) between cameras. These effects provide time-varying
relative poses between sub-images in each keyframe. These results also imply that our
standard SfM still works with these fast motions although it assumes that the cameras
are GS.

Speed kfr Method d

18km/h 225 gs.c.fa.int 2.018
gs.nc.fa.int 1.417

20km/h 232 gs.c.fa.int 2.437
gs.nc.fa.int 1.460

40km/h 211 gs.c.fa.int 3.301
gs.nc.fa.int 3.708

60km/h 202 gs.c.fa.int 4.789
gs.nc.fa.int 6.305

80km/h 198 gs.c.fa.int 6.519
gs.nc.fa.int 7.149

100km/h 182 gs.c.fa.int 9.426
gs.nc.fa.int 10.189

Table 5.7: Comparing accuracies of GS.X.FA.INT for BC2 with respect to multi-
camera’s speed: keyframes kfr and keyframe sampling N2 = 900, N3 = 450 (see Sec-

tion 2.4.1). New BC2s are for 20-100km/h. The original BC2 is for 18km/h.

5.6.5 360 videos and 3D models

One of the applications of an omnidirectional camera is 360 video, also known as
immersive video or spherical video. The video is typically recorded using a multi-camera
rig where several views in several directions are filmed at the same time. Through a
video stitching method, this separate footage is merged together into one cylinder video.
360 video puts users at the centre of the action and they have control of the viewing
direction like a panorama during playback.

A discrepancy of a pixel in an image of a 360 video is the absolute value of the
differences between two luminances captured from different cameras. Figure 5.12 shows
an example of an equirectangular image without and with its discrepancies (Figure 5.12
also shows that the sharing FoV between adjacent cameras is small). The lower the
discrepancy, the darker the gray level.
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(a) Original images

(b) Panorama image

(c) With discrepancies

(d) Local view

Figure 5.12: Equirectangular image without and with discrepancies in area shared
by two original images of BC2 using calibration estimated by GS.C.FA.INT. The lower

the discrepancy, the darker the gray level.
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Another application of our self-calibration method (assuming global shutter and
frame-accurate synchronization) is 3D scene modeling from videos taken by our DIY
helmet-held multi-camera. There are three examples available:

• BC1 (BikeCity1): https://skfb.ly/6tKA8

• Forest: https://skfb.ly/69p8p

• WT (WalkTown): https://youtu.be/5r46SEBvz5w

The two formers are recent examples stored in Sketchfab; the user can move interactively
inside the 3D models (use the first person mode for best viewing, not the orbit mode).
The latter is a companion video of [Lhuillier+15] stored in Youtube; it successively shows
input images, SfM and self-calibration result (as a point cloud), and walkthroughs in
the textured 3D model.

Although the 3D model computation is outside the scope of this thesis, we shortly
summarize the process. In contrast to the PhD manuscript, the loops are detected
and closed after the SfM step and the number of keyframes is higher. These changes
improve the modeling quality for several reasons: loop closing reduces drift and avoid
duplicates/deletions of segments of the reconstructed scene, and the number of recon-
structed points increases when the number of keyframes increases. The self-calibration
is done thanks to GS.C.FA.INT (for BC1 and WT) or GS.NC.FA.INT (for Forest) and
by using the polynomial distortion model [Lavest+98], [Sturm+11]. Once a whole se-
quence is reconstructed and calibrated, we complete the sparse cloud of points for surface
reconstruction by detecting, matching and reconstructing sampled points in the gradi-
ent edges of the keyframes. Last we apply a surface reconstruction by combining two
methods [Lhuillier+13], [Litvinov+14]. More details on the computations after our self-
calibration and comments on the resulting surface are given in [Lhuillier+15, Section
5.4].

5.7 Conclusion

This chapter focuses on the self-calibration of a multi-camera system. Under
approximations, global shutter and frame-accurate synchronization, we first initialize the
extrinsic parameters using the central approximation for translation and approximately
known inter-camera rotations. Then, we extend a previous BA designed for multi-
cameras using a standard polynomial distortion model: both intrinsic and extrinsic
parameters are refined; the reprojection errors are minimized in the right space/original
images, instead of rectified images, although the forward projection is not closed form for
the polynomial distortion model. In the experiments, our method is validated with both
synthetic and real data. We also check the central approximation in the real datasets
and the global shutter approximation with respect to motion of RS camera. In the next
chapter, we will investigate on rolling shutter and sub-frame synchronization.
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Chapter 6

Multi-camera bundle adjustment
adding rolling shutter and
synchronization

Multi-camera rig is built by fixing together several consumer cameras. Such a
multi-camera has drawbacks. A first problem is the lack of accurate synchronization
between the cameras. Secondly, the low price of a consumer camera implies that the
camera is rolling shutter or RS. Both inaccurate synchronization and RS complicate
the self-calibration for the same reason: they act as time varying relative pose between
the cameras, i.e. the multi-camera has a varying non-central calibration. In the pre-
vious chapter, we did approximations: global shutter (GS) and frame-accurate (FA)
synchronization. By contrast, this chapter introduces a self-calibration method for a
multi-camera moving in a static scene, that simultaneously estimates intrinsic parame-
ters, inter-camera poses, time offsets and line delay in addition to the usual parameters
(3D points and multi-camera poses). The results of this chapter are partly published in
[Nguyen+16a], [Nguyen+17].
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6.1 Problem formulation

Instead of a simultaneous acquisition of all pixels in an image, RS camera acquires
images by scanning the image. If the camera moves in the scene, different pixels in
the image have different projection centers (Figure 6.1) and this will result in geomet-
ric distortions. In many cases, for example Gopro multi-camera in our experiments,
the monocular cameras record videos separately. Even though the videos are frame-
accurately synchronized, there are subframe residual time offsets between the videos
(Figure 6.2). The RS effect and inaccurate synchronization can degrade the accuracy of
self-calibration as well as the quality of results in applications such as 3D reconstruction
and 360 video. If the pose of the multi-camera is evaluated at any instant somehow, er-
rors between prediction and observation can be calculated. Thus we require a generalized
camera model for these moving RS multi-camera rigs with inaccurate synchronization.

tp0

X0

p0

tp1

X1

p1

tp2

X2

p2

tp0 p0

tp1 p1
tp2 p2

Figure 6.1: Rolling shutter problem: a rolling shutter monocular camera moves and
sees points at several times/lines in a single frame. Different lines of an image have

different poses.

Similar to Chapter 5, we consider n ≥ 2 jointly linked cameras without assum-
ing that different cameras have common FoV. The cameras are assumed to be frame-
accurately (FA) synchronized. We also remind that the intrinsic and extrinsic parameters
are initialized using the method in Chapter 5 on the beginning of the videos (the 2k
first frames in our experiments) with three approximations: global shutter (GS), cen-
tral multi-camera and zero subframe residual time offsets. Then the multi-camera GS
SfM [Mouragnon+09] (see also Section 2.4) is applied on the whole videos. It generates
m + 1 keyframes and estimates their poses. Let TiM be the homogeneous transforma-
tion of multi-camera keyframe in the world coordinate system at time ti (i ∈ [0,m] is
the keyframe number), TjC be the homogeneous transformation of the j-th camera in
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t
ti−1 ti ti+1

t
ti−1 ti ti+1

Figure 6.2: Inaccurate synchronization problem for a (central) multi-camera: four
monocular cameras at the i-th keyframe, which have non-zero time offsets. Different

cameras have different poses at the same line.

the multi-camera coordinate system (j ∈ [0, n− 1]), see Figure 5.1. Each homogeneous
transformation T is represented with a rotation R and a translation t such that

T =

ñ
R t
0� 1

ô
. (6.1)

In this chapter, our multi-camera BA estimates a subframe-accurate (SFA) syn-
chronization and a line delay coefficient of the RS with usual parameters (intrinsic and
extrinsic parameters, multi-camera poses and 3D points). Section 6.2 defines continuous-
time parametrization of multi-camera motion. The multi-camera trajectories M(t) are
described in Section 6.3 by using the known values of camera motion at time ti corre-
sponding to the beginning of the keyframes. This is useful to moderate the number of
parameters estimated by BA. Section 6.4 explains how to efficiently compute non-closed
form forward projections and their derivatives involved in BA. The experiments and
conclusion are in Sections 6.6 and 6.7, respectively.

6.2 Parametrization

This section presents our continuous-time parametrization of multi-camera motion:
it is defined in Subsection 6.2.1 by the composition of a function M from a time interval
to R

3×R
k and a functionR from R

k to the set of rotations SO(3) in R
3. Subsection 6.2.2

describes a keyframe of the multi-camera, where every line has a time that depends on
the corresponding camera of the captured line, its v-coordinate and the line delay. The
choice of R is detailed in Subsection 6.2.3.

6.2.1 Parametrization of the multi-camera trajectory

Let R be a C1 continuous and surjective function that maps R
k to SO(3) (typical

values are k ∈ {3, 4}). We assume that there is a C3 continuous function M : R →
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R
3 × R

k that parametrizes the motion of the multi-camera. More precisely, M(t)� =Ä
tM(t)�rM(t)�

ä
where t ∈ R is the time, tM(t) ∈ R

3 is the translation and R(rM(t)) ∈
SO(3) is the rotation of the multi-camera pose. The columns of R(rM(t)) and tM(t)
are the vectors of the multi-camera coordinate system at time t expressed in world
coordinates. The choice of R (including rM and k) is detailed in Subsection 6.2.3 for
clarity.

Thanks to these notations and assumptions, we will approximate M(t) by using
values of M taken at few times t0, . . . , tm. Then our model for the camera trajectory
not only provides the multi-camera pose at each instant corresponding to each line of
a frame, but it also has a moderated number of parameters to be estimated by BA:
the vector concatenating all M(ti) has dimension (m + 1)(3 + k). Figures 6.1 and 6.2
illustrate trajectory M(t) of a multi-camera defined by four monocular RS cameras
having non-zero time offsets. In this chapter, we use shortened notation mi = M(ti).

6.2.2 Time, rolling shutter and synchronization parameters

The i-th keyframe is an image composed of sub-images taken by the monocular
cameras. Every line of every sub-image is taken at its own time, which is described now.
The 0-th line of the 0-th sub-image in the i-th keyframe is taken at time ti, assuming
that the time exposure of a line is instantaneous [Meingast+05]. Thus ti+1 − ti is a
multiple of the inverse of FpS. Since the cameras are RS, the line delay τ is such that
the v-th line of the 0-th sub-image in the i-th keyframe is taken at time ti + vτ . Let
Δj ∈ R be the sub-frame residual time offset between the j-th video and the 0-th video.
Then the 0-th line of the j-th sub-image in the i-th keyframe is taken at time ti +Δj .
Since we assume that all cameras have the same FpS and same (and constant) τ , the
v-th line of the j-th sub-image in the i-th keyframe is taken at time

t(v) = ti +Δj + vτ (6.2)

as illustrated in Figure 6.3.

t
ti−1 ti ti+1

Δ1

Δ2

Δ3

t(v) t(v + 1)

v
v + 1

t

τ

Figure 6.3: Time, rolling shutter and synchronization parameters. Left: Δj is time
offset between the j-th camera and the first camera. Right: τ is line delay between the
exposition of two consecutive lines. RS camera moves during the exposure of an image.
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6.2.3 Choice of rotation parametrization R

We remind that the rotation representations are discussed in Section 2.2. In
the context of the BA in this chapter, we need a rotation parametrization R that has
properties as follows

1. The C1 continuity of R is needed by BA for the derivative computation of repro-
jection errors.

2. Since our BA estimates the multi-camera pose (tM(ti),R(rM(ti))) using param-

eters mi =
Ä
tM(ti)

�, rM(ti)
�ä�, the set of all rotations in a neighborhood of a

current estimate of rotation R(rM(ti)) should be reachable by the parametrization
R during every BA iteration [Triggs+00]. Thus, the Jacobian matrix ∂R of R
should have rank 3 at rM(ti). In other words, rM(ti) should not be a singularity
of R.

3. Using a minimal (non-redundant) parametrization R of the rotations is advisable
to limit the number of estimated parameters. Since R(Rk) = SO(3) is a 3D
manifold, k should be 3.

All three representations in Section 2.2 satisfy obviously the first property (1). The
quaternion representation is free from singularity, hence satisfies the second property
(2). k = 4, but rotation has only 3 DOFs. This inconvenience can be solved by using
minimal parametrization for unit quaternions (see Appendix C.2). The angle-axis rep-
resentation and Euler angles have only 3 parameters, hence satisfy (3). Unfortunately,
these representations have singularities [Hartley+04], [Singla+04]. In our application,
this implies that there is always a continuous multi-camera trajectory that crosses a
singularity of R. In practice, we believe that no single parametrization of rotation is
best for all applications.

Here we consider R candidates and describe constraints that they induce on a class
of multi-camera motions: all yaw motions are possible but pitch and roll are small.
Such motions are very common for a helmet-held multi-camera and a user exploring the
environment without special objective like grasping at object on the ground (and also
for a car-fixed multi-camera).

If we choose the angle-axis representation v = θv̂ (see Section 2.2) as in [Oth+13]
and would like to avoid the singularities, the multi-camera should avoid multiple turns
on the left (or right) around buildings and avoid straight trajectory segment where
θ ≈ 2πZ∗.

We also remind the case of Euler angles parametrization (in Section 2.2)

E(α, β, γ) = Rz(γ)Ry(β)Rx(α). (6.3)

where Rx(α), Ry(β) and Rz(γ) are the elementary rotations about the axes of coor-
dinate system (defined in Eq.(2.14)). The singularities (α, β, γ) of R form parallel
and equidistant planes of equations β = π/2 + Zπ [Singla+04] (see the more detailed
proof in Appendix D.2). In our context, helmet-held and car-fixed multi-camera mo-
tions, if we choose R = E , then the question is how to choose the coordinate sys-
tems (both world and multi-camera). If we choose the coordinate systems such that
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∀i,R(rM(ti)) ≈ Rx(αi), we are far from the singularities. If we choose the coordinate
systems such that ∀i,R(rM(ti)) ≈ Ry(π/2)Rx(αi), we are close to the singularities. In-
spired by the Euler angle case above, we introduce

R(α, β, γ) = RARz(γ)Ry(β)Rx(α)RB (6.4)

where rotations RA and RB do not depend on (α, β, γ). We estimate RA and RB such that
β is close to 0 for all keyframe rotations of the multi-camera trajectory before our BA
(technical details in Appendix D.3). Now, the camera motion in our class is far from all
singularities.

In this thesis, we experiment on long trajectories in urban scenes. Some of them
have many loops. Hence, we choose two global parameterizations for rotations: Euler
angles (with our technique to avoid the singularities) and quaternion. In the next section,
we explain how to calculate the trajectory M(t) of a multi-camera using these global
parameterizations. One important point for unit quaternion parametrization, 4-vector
quaternion (i.e. global parameterization, k = 4) is used to parametrize the motion of the
multi-camera but in BA steps, it is updated using local parameterization (Eq.(C.18)) in
Appendix C.2.

6.3 Multi-camera trajectories

In bundle adjustment for RS (and subframe time offset) multi-camera, we need to es-
timate camera pose at any time. The model of continuous-time multi-camera trajectory
depends on the parametrization of camera pose. In this section, we discuss algorithms
which approximate for camera trajectory or generate smooth interpolating splines. In
addition, it is important that computation of each segment relies on local data only. In
such case, a change of values at a particular knot does not imply recalculation of the
whole curve, but only neighbor segments.

The following subsections focus on the model of multi-camera trajectory and three
different approaches are introduced. The first (Subsection 6.3.1) concerns the approxi-
mation using Taylor’s expansion for the Euclidean space. The second (Subsection 6.3.2)
presents the algorithms for unit quaternion in Subsection 6.3.2.1 and Lie groups in Sub-
section 6.3.2.2.

Through the section, M denotes a manifold (Rk or SO(3) or SE(3) in our work) and
TmM is the tangent space to M, at a point m ∈ M (see Appendix F.1). The general
interpolation problem to be studied in this section has the following statement:

Problem 1. Givenm+1 distinct points m0,m1, . . . ,mm in the manifoldM, m+1 vectors
v0,v1, . . . ,vm tangent to M at points m0,m1, . . . ,mm respectively, and a partition
0 = t0 < t1 < . . . < tm = T of the time interval [0, T ], generate a Cl continuous smooth
curve (l ≥ 1) M : [0, T ] ⊂ R→M on M, which satisfies the following conditions:

M(ti) = mi, Ṁ(ti) = vi, 0 ≤ i ≤ m. (6.5)
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6.3.1 Euclidean space

We start with the case when M is the k-dimensional Euclidean space R
k. We

can use for the case: Euler’s angles (R3) or quaternions (R4) and translation (R3). Let
δ = maxi(ti+1 − ti). Thanks to the C3 continuity of M and Taylor’s expansions of M
at ti, we explicit two approximations M1(t) and M2(t) of M(t) in the neighborhood
of ti as functions of mi−1,mi and mi+1 with remainders expressed in terms of δ and
|t − ti|. By neglecting these remainders, we compute M(t) for the v-th line of the j-th
camera/sub-image in the i-th keyframe using t = ti +Δj + τ(0 1)p (Subsection 6.2.2)
during our BA. We remind that mi = M(ti).

6.3.1.1 Linear approximation M1 of M

We have Taylor’s linear expansion

M(t) = mi + (t− ti)Ṁ(ti) +O(|t− ti|2) (6.6)

and express derivative Ṁ(ti) as a function of mi−1,mi and mi+1 using the following
lemma.

Lemma 6.1. Let vectors x,y, z ∈ R
k, strictly positive reals a, b and function

D1(x,y, z, a, b) = − ax

b(a+ b)
+

(a− b)y

ab
+

bz

a(a+ b)
. (6.7)

If M : R→ R
k is a C3 continuous function and t ∈ R,

Ṁ(t) = D1(M(t− b),M(t),M(t+ a), a, b) +O(a2 + b2). (6.8)

Proof. Since M is C3 continuous,

M(t+ a) = M(t) + aṀ(t) +
a2

2
M̈(t) +O(a3), (6.9)

M(t− b) = M(t)− bṀ(t) +
b2

2
M̈(t) +O(b3). (6.10)

We eliminate M̈(t) by summing
b

a
Eq.(6.9) −a

b
Eq.(6.10):

b

a
M(t+ a)− a

b
M(t− b) =

Å
b

a
− a

b

ã
M(t) + (b+ a)Ṁ(t) + bO(a2) + aO(b2). (6.11)

Since a > 0 and b > 0,

Ṁ(t) =
1

a+ b

Å
b

a
M(t+ a)− a

b
M(t− b) +

Å
a

b
− b

a

ã
M(t)

ã
+O(a2 + b2). (6.12)
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Thanks to Lemma 6.1 with t = ti, a = ti+1 − ti, b = ti − ti−1, we have

Ṁ(ti) = D1(mi−1,mi,mi+1, ti+1 − ti, ti − ti−1) +O(δ2). (6.13)

The value of M(t) is approximated by neglecting all remainders expressed by “O” above
and using 3 neighboring control points mi−1,mi and mi+1 as illustrated in Figure 6.4.
For 0 < i < m and t ≈ ti,

M(t) = mi + (t− ti)D1(mi−1,mi,mi+1, ti+1 − ti, ti − ti−1). (6.14)

For i = 0 (similarly for i = m), we use M(t) = m0 +
t− t0
t1 − t0

(m1 −m0).

t

mi−1

ti−1

mi

ti

mi+1

ti+1

b a

D1M(t)

t

Figure 6.4: Linear approximation M1 of M .

6.3.1.2 Quadratic approximation M2 of M

Similarly, we have Taylor’s quadratic expansion of M at ti

M(t) = mi + (t− ti)Ṁ(ti) +
(t− ti)

2

2
M̈(ti) +O(|t− ti|3) (6.15)

and express derivative M̈(ti) as a function of mi−1,mi and mi+1.

Lemma 6.2. Let vectors x,y, z ∈ R
k, strictly positive reals a, b and function

D2(x,y, z, a, b) =
2x

b(a+ b)
− 2y

ab
+

2z

a(a+ b)
. (6.16)

If M : R→ R
k is a C3 continuous function and t ∈ R,

M̈(t) = D2(M(t− b),M(t),M(t+ a), a, b) +O(a+ b). (6.17)

Proof. We eliminate Ṁ(t) by summing b Eq.(6.9) +a Eq.(6.10):

bM(t+ a) + aM(t− b) = (a+ b)M(t) +
ab

2
(a+ b)M̈(t) +O(ba3 + ab3). (6.18)
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Since a > 0 and b > 0,

M̈(t) =
2

a(a+ b)
M(t+ a) +

2

b(a+ b)
M(t− b)− 2

ab
M(t) +O(a+ b). (6.19)

Using Lemma 6.2 with t = ti, a = ti+1 − ti, b = ti − ti−1, we obtain

M̈(ti) = D2(mi−1,mi,mi+1, ti+1 − ti, ti − ti−1) +O(δ). (6.20)

We approximate M(t) from the mi by neglecting all remainders expressed by “O” in
Eq.(6.13) and Eq.(6.20). The value of M(t) is approximated by using 3 neighboring
control points mi−1,mi and mi+1. For 0 < i < m and t ≈ ti,

M(t) = mi + (t− ti)D1(mi−1,mi,mi+1, ti+1 − ti, ti − ti−1)

+
(t− ti)

2

2
D2(mi−1,mi,mi+1, ti+1 − ti, ti − ti−1).

(6.21)

For i = 0 (similarly for i = m), we use M(t) = m0 +
t− t0
t1 − t0

(m1 −m0).

6.3.1.3 Checking the remainders

We remind that the remainders of our Taylor developments are O(|t−ti|2) in Eq.(6.6),
O(δ2) in Eq.(6.13), O(|t− ti|3) in Eq.(6.15) and O(δ) in Eq.(6.20). Here we only check
that the remainders above have intuitive behavior: they converge to 0 if both FpS and
keyframe density increase. More precisely, if the density of control points (keyframes in
the videos) increases (and if there is not stop-and-go in video acquisition), δ decreases.
Furthermore, |vτ | ≤ 1/FpS and the FA synchronization provides |Δj | ≤ 1/FpS. Thus
|t− ti| = |Δj + vτ | decreases if the FpS increases.

6.3.2 Spherical interpolation

In this subsection, we describe two spherical interpolations: Squad for unit quater-
nions and spline on SE(3).

6.3.2.1 Spherical and quadrangle (Squad)

The basic quaternion mathematics are stated in Appendix E (more details in
[Dam+98]). The set of unit quaternions is denoted H1. Let q1,q2 ∈ H1 and h ∈ [0, 1].

Definition 6.3. The spherical linear interpolation (Slerp) has four equivalent defini-
tions [Dam+98]:

Slerp(q1,q2, h) = q1(q
∗
1q2)

h (6.22a)

Slerp(q1,q2, h) = (q1q
∗
2)

1−hq2 (6.22b)

Slerp(q1,q2, h) = (q2q
∗
1)

hq1 (6.22c)

Slerp(q1,q2, h) = q2(q
∗
2q1)

1−h. (6.22d)
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Note that Slerp(q1,q2, h) = Slerp(q2,q1, 1−h). The interpolation curve for Slerp
forms a great arc and shortest on the unit quaternion sphere between q1 and q2. In
differential geometry terms, the great arc is a geodesic - corresponding to a straight line
in R

3. Furthermore, Slerp has constant angular velocity. So Slerp is a convenient choice
for interpolating between two rotations.

Slerp is similar to linear interpolation in R
2 between two points. If we take an

ordered set of points and generate values somewhere between consecutive points using
linear interpolation, we come up against problems: the curve is not smooth at the control
points and the velocity is not constant and not continuous at the control points. The
same problems occur if we interpolate between a series of rotations using Slerp. When
interpolating between a series of control points in a plane, different kinds of cubic curves
such as Bézier curve can be constructed quite simply. Bézier curves are the result of linear
interpolations. Let’s start with the simple explanation for a quadratic Bézier curve from
three points. Three points give us two lines. Linear interpolations over these lines gives
us two points, between which we can again perform linear interpolation, yielding a single
point. All points that we can form in this way taken together form our quadratic Bézier
curve. Inspired by the construction of Bézier curve, spherical cubic equivalent of a Bézier
curve is developed. This interpolation curve is called Squad (spherical and quadrangle)
[Dam+98] for uniform distribution of control points. Figure 6.5 illustrates a simple
linear interpolation, a Bézier curve, Slerp and Squad. For non-uniform distribution of
control points,

Definition 6.4. The non-uniform spherical spline quaternion interpolation (Squad) is
defined by

Squad(qi,qi+1,ai,ai+1, t) = Slerp (Slerp(qi,qi+1, h), Slerp(ai,ai+1, h), 2h(1− h))
(6.23)

with ti ≤ t ≤ ti+1, δi = ti+1 − ti, h =
t− ti
δi

,

ai = qi exp

Ç
−δi log(q

−1
i qi−1) + δi−1 log(q

−1
i qi+1)

2(δi + δi−1)

å
. (6.24)

The resulting expressions for Squad involves the spherical linear interpolation in
Def.6.3. The interpolation curve between qi and qi+1 is solely determined from the
positions of auxiliary points ai, ai+1 defined from control points qi−1,qi,qi+1 and qi+2.
The tangent at qi is defined by the vector ai − qi and the tangent at qi+1 is defined
by the vector ai+1 − qi+1. So, Squad interpolates from 4 neighboring control points
qi−1,qi,qi+1 and qi+2 for ti ≤ t ≤ ti+1.

Proposition 6.5. Squad ∈ C1.

Proof. See [Dam+98].

The expression for Squad in Eq.(6.23) yields an interpolation curve for a series
of quaternions m0, . . . ,mm (in Problem 1). The value of M(t) is evaluated from 4
neighboring control points for every t. The expression is not defined in the first and last
interval since m−1 appears in the expression for a0 and mm+1 appears in the expression
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Pi−1

Pi Pi+1

Pi+2

Ai Ai+1

Pi
Pi+1

Pi−1 Pi+2

(a) Linear interp. and 3rd-order Bézier curve (b) Slerp and Squad

Figure 6.5: Interpolation curve for 3rd-order Bézier curve, Slerp and Squad (thanks
to [Dam+98]). a) Linear interpolation between a series of points and interpolation
between the points Pi and Pi+1 with a 3rd-order Bézier curve where the tangent at the
control points is defined by auxiliary points Ai and Ai+1, respectively; b) Slerp and

Squad between 6 points.

for am. Therefore, it is necessary to define sound values for a0 and am. The simplest
solution is to define a0 ≡ m0 and am ≡ mm. As another solution, we choose the
interpolation curve of Slerp for the first and last interval. For translation parameters,
we use the approximation as in Subsection 6.3.1.

6.3.2.2 Spline on Lie Group SE(3)

The set of matrix

SE(3) =

®
T ∈ R

4×4

∣∣∣∣∣T =

ñ
R t
0� 1

ô
, R ∈ SO(3), t ∈ R

3

´
(6.25)

forms the matrix group under the operation of matrix multiplication. The concepts of
Lie Group SE(3) are more detailed in Appendix F. In this section, we present a smooth
spline generation on Lie Group SE(3). So, in this section, we use the control point Ti
instead of mi, tangent Vi in place of vi and matrix T(t) in place of its parameter vector
M(t) in Problem 1.

[Jakubiak+06] proposes the algorithm of spline construction for k-dimensional Eu-
clidean space R

k and generalizes it to manifold such as a Lie group or a sphere. For our
matrix Lie group SE(3) with Lie algebra se(3), any vector tangent to SE(3) at a point
T is of the form VT, for some generators V ∈ se(3). Each pair (Ti,Vi) ∈ SE(3)× se(3)
determines a unique geodesic t �→ x(t), which passes through Ti at t = ti with veloc-
ity equal to ViTi. This geodesic is defined in terms of the exponential mapping by
x(t) = e(t−ti)ViTi.

For ti ≤ t ≤ ti+1, let δi = ti+1 − ti, h =
t− ti
δi

∈ [0, 1]. First, the left and right

components of the spline segment t �→ T(t) which satisfies the boundary conditions:

T(ti) = Ti, T(ti+1) = Ti+1,

Ṫ(ti) = Vi = ViTi, Ṫ(ti+1) = Vi+1 = Vi+1Ti+1
(6.26)

are given respectively by

Li(t) = e(t−ti)ViTi and Ri(t) = e(t−ti+1)Vi+1Ti+1. (6.27)
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Second, the authors introduce a Cl-smooth real-valued function φ : [0, 1] → [0, 1]
satisfying

φ(0) = 0, φ(1) = 1,

φ(j)(0) = 0, φ(j)(1) = 0, j = 1, 2, . . . , l − 1, (for l > 1),
(6.28)

and the curve t �→ T(t), defined by

T(t) = eφ(h)Bi(t)Li(t) (6.29)

where
Bi(t) = log

Ä
Ri(t)L

−1
i (t)

ä
(6.30)

satisfies the required boundary conditions (Eq.(6.26)) according to [Jakubiak+06, The-

orem 4.1]. We remind that h =
t− ti

ti+1 − ti
∈ [0, 1].

The smoothness properties of the spline Eq.(6.29) depend highly on the choice of the
function φ. For a fixed l, the resulting spline using the function φ given in [Jakubiak+06,
Lemma 3.2], is Cl-smooth. Thus φ is called a smoothing function for the spline. Given l,
the coefficients of the smoothing function φ can be obtained using [Jakubiak+06, Lemma
3.2]. For small values of l,

l = 1, φ(h) = 3h2 − 2h3,
l = 2, φ(h) = 10h3 − 15h4 + 6h5,
l = 3, φ(h) = 35h4 − 84h5 + 70h6 − 20h7,
l = 4, φ(h) = 126h5 − 420h6 + 540h7 − 315h8 + 70h9.

(6.31)

The coefficients are stored in a look-up table.

Proposition 6.6. The curve t �→ T(t) defined by Eqs.(6.27,6.29,6.30) with ti ≤ t ≤ ti+1

is a C1 continuous function.

Proof. See [Jakubiak+06].

The expression Eq.(6.29) yields an interpolation curve for a series of poses T0, . . . , Tm
(in Problem 1). In our BA problem, we do not have velocity Vi at control point Ti, in
practice. Therefore, it is necessary to define values for Vi = ViTi. The simplest solution
is to define:

Vi =
log
Ä
Ti+1T

−1
i−1

ä
δi−1 + δi

. (6.32)

Thus the value of T(t) (hence its parameter vector M(t)) is evaluated from 4 neighboring
control points Ti−1, Ti, Ti+1 and Ti+2, for ti ≤ t ≤ ti+1. Moreover, the expression is not
defined in the first and last interval since T−1 appears in the expression for V0 and Tm+1

appears in the expression for Vm. For t0 ≤ t ≤ t1, we choose the approximation following

T(t) = exp((t− t0)V0)T0 (6.33)

where V0 =
1
δ0

log(T1T
−1
0 ). It is similar for the last interval.
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6.3.3 Enforce continuity of M

Remind that t �→M(t) should be continuous (C3 continuous). Furthermore, ti+1− ti
is small thanks to the keyframe sampling in SfM (see Section 2.4.1). Since our rotation
parameterizations are not injective (both Euler-based and quaternion), we choose M(ti)
such that M(ti+1)−M(ti) is as small as possible.

For Euler angle representation, we do an assumption on the camera motion to keep
away from the singularities (Subsection 6.2.3). Note that in Chapter 5, we use local Euler
angle in order to avoid singularities. By contrast, we consider global Euler angles for the
continuous camera motion M(t) in this chapter. The conversion from rotation matrix
to Euler angle in Appendix D.1 yields a 3-vector (α, β, γ) where −π ≤ α ≤ π,−π/2 ≤
β ≤ π/2,−π ≤ γ ≤ π (Note that, there are two solutions; we only choose one and the
same for all rotation matrices). Furthermore, β is close to 0 thanks to Subsection 6.2.3.
Figure 6.6(a) gives an example. We clearly see discontinuities of Euler angles, although
they are assumed to be a continuous function with respect to time. Here, we propose
a simple correction. We take γ for example, this is similar for α. In fact, angles γ and
γ + dγ2π (dγ ∈ Z) represent the same rotation using Rz (Eq.(2.14)). Firstly, we set
dγ = 0. Then we do a loop on i (0 < i ≤ m). If γi−1 − γi > π then dγ increases by 1. If
γi − γi−1 > π then dγ decreases by 1. Now γi is replaced by γi + dγ2π and i increases
by 1. Figure 6.6(b) illustrates this correction. This preprocessing is necessary to use the
approximations in Eq.(6.14) and Eq.(6.21).
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(d) Corrected quaternions

Figure 6.6: Example for rotation representation parameters (for BC1). x-axis are the
keyframe numbers, y-axis are Euler angles (top) or quaternions (bottom).

Quaternion representation is a singularity-free but redundant parametrization (it
has 4 parameters instead of the minimum 3). Note that, the multi-camera motion in
Section 6.3 requires unit-length constraint of quaternions at control points. Moreover,
according to Appendix E, qi and −qi perform the same rotation. However, they could
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possibly give a significant difference when we apply the approximations in Eq.(6.14),
Eq.(6.21) and Squad interpolation in Eq.(6.23), i.e. the interpolation between qi−1 and
−qi yield a shorter interpolation path than the interpolation between qi−1 and qi (see
Figure 6.6(c)). A simple correction is to verify the angle θ between two quaternion qi−1

and qi using quaternion inner product (Appendix E, Eq.(E.6)). If θ is an acute angle,
interpolation path is shortest. Otherwise, we replace qi by −qi. Like Euler angles case,
this preprocessing is necessary to obtain a continuous camera motion model.

6.4 Non-closed form image projections

Since our BA minimizes the sum of squared modulus of reprojection error for
every inlier, this section describes the computation of a reprojection error for 3D point
Xl ∈ R

4 (in the homogeneous world coordinates) and its inlier observation p̃ ∈ R
2 in

the j-th sub-image of the i-th keyframe.

First, we introduce notations. Let p ∈ R
2 be the projection of Xl in the j-th

sub-image of the i-th keyframe. The reprojection error is

ε = p− p̃. (6.34)

Let (RjC, t
j
C) be the pose of the j-th camera in the multi-camera frame and mi(R

i
M, tiM)

be the parameter vector of the pose of the i-th keyframe in the word coordinate system.
Let pj : R

4 \ {0} → R
2 be the projection function of the j-th camera. We assume that

pj , Rj , tj are constant. The acquisition times of p = (u, v)� and p̃ = (ũ, ṽ)� are

tp = ti +Δj + vτ and tp̃ = ti +Δj + ṽτ. (6.35)

Second, we detail the relation between p and Xl. Both rM(tp) and tM(tp), i.e.
M(tp), are defined by one equation chosen among Eq.(6.14), Eq.(6.21), Eq.(6.23) and
Eq.(6.29) (see Table 6.1) using index i of the keyframe and t = tp. The homogeneous
coordinates of Xl in the multi-camera coordinate system is

XM =

ñR�(rM(tp)) −R�(rM(tp))tM(tp)
0� 1

ô
Xl. (6.36)

The homogeneous coordinates of Xl in the j-th camera coordinate system and the pro-
jection of Xl are

XC =

ñ
(RjC)

� −(RjC)�tjC
0� 1

ô
XM and p = pj(XC). (6.37)

We see that p needs the computation of XM (Eq.(6.37)), which in turn needs the com-
putation of (the v coordinate of) p in Eq.(6.36). This is a chicken-egg problem.

We should also compute derivatives of projection p with respect to a vector θ of
parameters optimized by BA (among τ , Δj , intrinsic and distortion parameters, extrinsic

parameters (RjC, t
j
C), camera motion mi, 3D point Xl) although p does not have a closed-

form expression from them. This is needed by BA.
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6.4.1 General case

We know an approximate value p̃ of p (since p̃ is an inlier detected in an image),
a C1 continuous function g(z,θ) from R

2 × R
p to R

2 such that p is the solution z of
g(z,θ) = 0, and the current value θ0 of θ (provided by initialization or previous iteration
of BA). First p is estimated by non-linear least-squares minimizing z �→ ||g(z,θ0)||2. In
practice, we use the iterative Gauss-Newton’s method starting from z = p̃ with no
more than 5 iterations (Newton’s method can also be used). Then the implicit function
Theorem implies that we locally have a C1 continuous function ψ such that p = ψ(θ) if
det ∂g

∂z �= 0. By differentiating g(ψ(θ),θ) = 0 using the Chain rule, we obtain

∂p

∂θ
=

∂ψ

∂θ
= −

Å
∂g

∂z

ã−1 ∂g

∂θ
. (6.38)

6.4.2 Approximate solution

The chicken-egg problem above is solved thanks to an approximation in [Klingner+13]:
tp is replaced by tp̃ in Eq.(6.36), i.e. the authors assume that the multi-camera pose is
the same at times tp̃ and tp. We think that this is acceptable since |tp̃− tp| ≤ τ ||p− p̃||
and the magnitude order of τ is 10−5 s/pixel and p̃ is an inlier (i.e. ||p− p̃|| ≤ 4 pixels).

By using this approximation, the acquisition time of p is

t(Δj , τ,p) ≈ ti +Δj + τ(0 1)p̃ (6.39)

where p̃ is known. Let θj be the vector concatenating the intrinsic/distortion parameters
and the pose of the j-th camera in the multi-camera coordinate system. If the camera
motion M(mi−1,mi,mi+1, t) is approximated by Eq.(6.14) or Eq.(6.21), the forward
projection is a function

p = pj (θj ,M (mi−1,mi,mi+1, t(Δj , τ)) ,X) . (6.40)

In the same way for Eqs.(6.23) and (6.29), we add the (i + 2)-th point control in the
expression of M .

For the polynomial distortion model, the projection function Eq.(6.40) does not
have a closed-form expression. We apply Subsection 6.4.1 to compute the projection
point p as we did in Section 5.3 and Appendix B.1. For the unified camera model,
Eq.(6.40) has a closed-form expression (see Section 4.1.2 and Appendix B.2). Moreover,
the correct and efficient computation of the Jacobian is the key to good performance.
The derivative calculations are in Appendix B. The difference is that we need to calculate
additionally the derivative of p with respect to neighboring poses mi−1,mi,mi+1 (if we
use the approximation Eqs.(6.14) and (6.21)) and with respect to Δj and τ . Using
the chain rule, the derivative computations can be deduced from the camera motion
(Eq.(6.14) or Eq.(6.21)), the time parameter Eq.(6.39) and the partial derivative of p
with respect to multi-camera pose in Appendix B.3. For Squad Eq.(6.23) and spline
Eq.(6.29), it is, however, difficult to obtain the analytical expression of Jacobian matrix
in BA. In practice, we use numerical derivatives for these interpolation methods.
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6.4.3 Exact solution

Here we focus on the projection p by the j-th camera in the i-th keyframe of 3D
point X in the world coordinate system without the approximation in [Klingner+13]:
tp �= tp̃ in Eq.(6.36). Let pj(θj ,m,X) be the projection of X where m = M(t) is the
parameter of the multi-camera pose in the world coordinates (k = 3 for Euler angle or
k = 4 for quaternion) which is introduced in Section 6.3 and the vector θj is the same
as in Section 6.4.2. The acquisition time of p is

t(Δj , τ,p) = ti +Δj + τ(0 1)p. (6.41)

and we use notation M(mi−1,mi,mi+1, t) for the chosen approximation (if we use
Eq.(6.14) or Eq.(6.21)). Thus, we have

p = pj(θj ,M(mi−1,mi,mi+1, t(Δj , τ,p)),X). (6.42)

Now, we define θ and g by

θ = (θj ,mi−1,mi,mi+1,Δj , τ,X) and (6.43)

g(z,θ) = pj(θj ,M(mi−1,mi,mi+1, t(Δj , τ, z)),X)− z. (6.44)

We see that g(p,θ) = 0 thanks to Eq.(6.42). Then we apply Subsection 6.4.1: find p
by minimizing z �→ ||g(z,θ0)||2 and use Eq.(6.38) for p derivatives.

If we use the linear trajectory approximation M1 as in Eq.(6.14), we have a simple
expression

∂g

∂z
=

∂pj
∂m

∂M

∂t

∂t(Δj , τ, z)

∂z
− I2 = τ

∂pj
∂m

Di
1(0 1)− I2 ∈ R

2×2. (6.45)

We note that the derivative computations without approximation can be deduced from
those with approximation (i.e. ∂p

∂θ = ∂g
∂θ (p̃,θ0)): replace p̃ by p in the derivative by θ

and multiply it on the left side by −
Ä
∂g
∂z

ä−1
. We do not implement the exact solution

with Squad Eq.(6.23) and spline Eq.(6.29) because it is difficult to obtain the analytical
expression of the derivative ∂g

∂z .

Finally, Table 6.1 summarizes our camera motion models and parameterization
in Section 6.3 as well as their feasibility for image projection solution and analytical
derivative for Jacobian matrix in this section. The Taylor approximations Eqs.(6.14) and
(6.21) (in Subsection 6.3.1) are used for the cases: Euler-based (R3), quaternion (R4)
and translation (R3). The interpolation Squad Eq.(6.23) is used for unit quaternion.
Last, Eq.(6.29) is spline on SE(3), i.e. interpolates both rotation part and translation
part. In practice, we use quaternion to parametrize rotation in Eq.(6.29) (we can also
use Euler angle or angle-axis representation).

6.5 Comparison of the reduced camera system (RCS) be-
tween GS and RS

In this section, we explicit the sparsity of the RCS matrix and compare between GS
case (in Chapter 5) and RS (SFA) case in this chapter. This is important for efficient
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Motion model Equation
Param. of R

t(t)
Proj. solution

Jacob
Euler Quat tp = tp̃ tp �= tp̃

Linear approx. Eq.(6.14) x x x x x ana

Quadratic approx. Eq.(6.21) x x x x x ana

Squad Eq.(6.23) x x num

Spline on SE(3) Eq.(6.29) (x) x x x num

Table 6.1: Summary of our camera motion models and parametrizations of rotation
R, translation t. Proj. solution: approximation solution tp = tp̃ and exact solution

tp �= tp̃. Jacobian (Jacob): ana - analytical and num - numerical derivatives.

computations.

6.5.1 Notations and global structure of the RCS

First, we define notations. The m + 1 vectors mi = M(ti) are the parameter of
the multi-camera trajectory (Section 6.3), they meet mi ∈ R

6 for the approximations in
Section 6.3.1, and we defineM = (m�

0 , . . . ,m
�
m)� ∈ R

6(m+1) (here, we only discuss these
approximations and the same methodology is used for the interpolations in Section 6.3.2).
Letm′ ∈ R

m′
be the other optimized camera parameters among the intrinsic parameters,

the camera poses in multi-camera coordinates, the line delay and the time offsets. Since
these other camera parameters are the same at all keyframes, m′ � 6(m + 1). For
example, m + 1 = 1000 and m′ ≤ 4 + 4 ∗ 15 = 64 if the multi-camera has four GoPro
cameras: there are one line delay τ , three time offsets Δ1,Δ2,Δ3 (Section 6.2) and
every camera has parameters fx, fy, u0, v0, k1, . . . , k5 for the polynomial distortion model
(Section 4.1.1) and 6D pose in multi-camera coordinates. The projection function of Xl

(in world coordinates) in the i-th keyframe is concisely written ϕ(mi−1,mi,mi+1,m
′,Xl)

for both approximations in Section 6.3.1 (omit mi−1 if i = 0 and omit mi+1 if i = m).

Let matrix A be the Jacobian matrix with respect to all extrinsic, intrinsic, line delay
and time offsets, B be the Jacobian matrix with respect to all multi-camera keyframe
poses, C be the Jacobian matrix with respect to all 3D points and ε be the residual
vector. And we use the notations (they are almost the same in Section 5.4): Q = A�A,
U = B�B, V = C�C, E = A�B, F = A�C, W = B�C. The Jacobian matrix is partitioned
as J = [A|B|C]. The approximated Hessian H of the cost function minimized by BA is
expressed with block matrices

H = J�J =

⎡
⎢⎣ Q E F

E� U W

F� W� V

⎤
⎥⎦ (6.46)

As mentioned in Section 5.4, the RCS is

S =

ñ
Q E

E� U

ô
−
ñ
F

W

ô
V−1

ñ
F

W

ô�
=

ñ
Z′′ Z′

(Z′)� Z

ô
. (6.47)

We have Z = U − WV−1W� ∈ R
6(m+1)×6(m+1), Z′ ∈ R

6(m+1)×m′
and Z′′ ∈ R

m′×m′
. Since

m′ � 6(m + 1), Z is the preponderant block in the RCS and we only focus on the Z

sparsity.

109



MCBA - Hypothesis: RS and SFA synchronization

6.5.2 Sparsity of Z

Here we present Z by a shape included in Z
2, i.e. a set of pixels in an image

such that every pixel corresponds to a non-zero 6 × 6-block of Z. Then we show in
Appendix H that the shape of our Z (which involves SFA and RS using projection
function ϕ(mi−1,mi,mi+1,m

′,Xl)) is included in a dilation of the shape of the standard
Z (which involves FA and GS using the projection function ϕ(mi,m

′,Xl) in Chapter 5)
by {−1, 0,+1}2. We remind that this dilation is an operation morphology that expands
a shape by one pixel in both dimensions and both directions. Thus our RCS is slightly
less sparse that the standard RCS (in practice it is very similar according to the example
in Figure 6.7).

(a) Standard (GS, FA) case (b) (RS, SFA) case

Figure 6.7: Shape of the standard (GS, FA) and (RS, SFA) Z for video sequence
BC1 with 2047 keyframes and same inliers without loop closure. Each black pixel

corresponds to a non-zero 6× 6-block of Z.

In the case where the loops are not closed in the video and the track length is
bounded by l, the standard Z (GS case) is a 6×6-block-wise band matrix with bandwidth
l (Sec. A6.7.1 in [Hartley+04]) and our Z in (RS, SFA) case is a 6× 6-block-wise band
matrix with bandwidth l + 1.

6.6 Experiments

6.6.1 Main notations

In this section, our BA is named by a combination of several notations that describes
the estimated parameters:

• C (central approximation) estimates all rotations R
j
C and fixes all translations

tjC = 0,

• NC (non-central) estimates all (RjC, t
j
C),
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• INT (intrinsic) estimates all intrinsic parameters: (fx, fy, u0, v0, k1, . . . , k5) or
(fx, fy, u0, v0, ξ) depending on the camera model; every camera has its own pa-
rameters,

• FA (frame accurate) fixes all time offsets Δj = 0,

• SFA (sub-frame accurate) estimates all Δj ,

• GS (global shutter) fixes the line delay τ = 0,

• RS (rolling shutter) estimates τ .

Thus GS.NC.SFA.INT (or gs.nc.sfa.int) is a BA that fixes τ = 0 and estimates simul-
taneously all Δj , R

j
C, t

j
C, intrinsic parameters, keyframe poses mi and 3D points. The

threshold for inlier selection is set to 4 pixels in all videos. Every BA has three inlier
updates, each one is followed by Levenberg-Marquardt minimization for these inliers. A
succession of two BAs is possible, e.g. gs.c.fa.int+rs.c.sfa.

We use shortened notations:

• #2D = number of 2D inliers,

• GT = ground truth,

• f = FpS (in Table 3.1),

• method gs.sfa is the SFA refinement in Subsection 4.2.3 (for comparison),

• vmax is the number of lines of a monocular image (in Table 6.2 below).

Table 6.2 summarizes our datasets (both cameras and videos) and complements to com-
plete Table 3.1. We would like to highlight the ground truth. BC2 has ground truth:
fΔ1 = 0.25, fΔ2 = 0.5, fΔ3 = 0.75 and τ = 9.12μs (reminder: if fΔj = 1, Δj is the
time between two consecutive frames). CC has also complete ground truth. The other
videos (BC1, WT, FH, WU) have incomplete ground truth (a strobe always provides τ ,
see Appendix G).

Name (short name) Camera vmax τ(μs) fΔj kfr #Tracks ||βi||∞
BikeCity1 (BC1) 4*Gopro 3 960 9.10 ? 2047 343k 0.223

WalkTown (WT) 4*Gopro 3 960 9.10 ? 1363 240k 0.268

FlyHill (FH) 4*Gopro 3 1440 11.3 ? 627 432k 0.494

BikeCity2 (BC2) 4*Gopro 3 960 9.12 i/4 225 51k 0.074

CarCity (CC) Ladybug 2 768 0 0 891 282k 0.068

WalkUniv (WU) Theta S 960 -32.1 0 1287 154k 0.129

Table 6.2: Datasets: number of keyframes kfr, maximum of angles |βi| of our Euler
angles parametrization, number of lines vmax of a monocular image, line delay τ (ground

truth), time offset fΔj (ground truth), number of tracks #Tracks (3D points).

Error e(Δ) is the sum of absolute errors of all fΔj . Error e(τ) is the relative error
of τ . We also would like to estimate the error of a multi-camera calibration by a single
number d defined in Subsection 5.6.1. We remind that d is based on the angle between
rays of the two calibrations (the estimated one and the GT one) that have the same
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pixel. In some cases, results are represented by the symbols: “na” (not available) for
missing data, “nan” (not a number) for impossible values (e.g. dividing by zero), “?”
for unknown values (e.g., we do not have ground truth for this estimate).

Note that Section 6.3 presents two approximations (for Euler-based as well as
unit quaternions) and two interpolations (for unit quaternions parametrization and for
Lie group SE(3)) for multi-camera trajectories. Section 6.4 describes the approximate
(tp = tp̃) and exact (tp �= tp̃) calculation for image projection with RS and SFA syn-
chronization (see Table 6.1). The experiments of this chapter are organized as follows:

• In the four first Subsections 6.6.2-6.6.5, we show the performance of our BA using
the simplest method: the linear approximation Eq.(6.14) for camera motion using
Euler angle and the approximation tp = tp̃.

• The results for all videos using quadratic approximation or spherical interpola-
tions of M(t) or using Subsection 6.4.3 (i.e. without approximation tp = tp̃) are
compared in Subsection 6.6.6.

• An experiment in the case of Euler angle that is close to a singularity is presented
in the Subsection 6.6.7.

• The last subsection shows the experiment in the case of fast camera motion.

6.6.2 Rolling shutter and subframe-accurate synchronization

First, Subsection 6.6.2.1 provides all estimation errors of several BAs for videos BC2
and CC that have complete ground truth. Second, Subsection 6.6.2.2 provides SFA time
offsets, line delay and top view of reconstruction for every video using RS.C.SFA.INT.

6.6.2.1 Accuracies

Table 6.3 provides errors e(Δ), e(τ) and d for several BAs estimating both SFA time
offsets Δj and line delay τ . We compare GS.C.FA.INT+RS.C.SFA and RS.C.SFA.INT,
i.e. we compare separate and simultaneous estimations of INT and RS.SFA parame-
ters. We also compare these central BAs and their non-central versions, and the SFA
synchronization without BA in Subsection 4.2.3.

First, we experiment on the only RS sequence that has complete ground truth -
BC2. We see that the simultaneous estimation of INT and RS.SFA has quite smaller
e(τ) and smaller d than separate estimations (both C and NC BAs). However, the
separate case has a twice smaller e(Δ) than the simultaneous case, which in turn is
more than twice smaller than that of the SFA refinement without BA. We remind that
e(Δ) cumulates absolute errors of SFA synchronization: a value of 0.1 (for simultaneous
case) means that the mean SFA sync. error of n cameras is only (0.1/(n− 1)). The NC
BAs also greatly reduce d.

Second, we experiment on CC which is the only real sequence with complete ground
truth. Since it is GS, relative error e(τ) is not a number and we replace it by vmaxfτ (the
smaller absolute value, the better result). We see that all BAs provide small |vmaxfτ |
compared to that of consumer RS cameras: we obtain values in [0.002, 0.009], which are
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Method applied to BC2 e(Δ) e(τ) d

gs.c.fa.int+rs.c.sfa 0.057 14.6% 1.970

rs.c.sfa.int 0.097 2.7% 1.476

gs.nc.fa.int+rs.nc.sfa 0.051 12.2% 1.312

rs.nc.sfa.int 0.111 3.7% 0.366

gs.sfa (in Subsec.4.2.3) 0.215 na na

Method applied to CC e(Δ) vmaxfτ d

gs.c.fa.int+rs.c.sfa 0.052 -0.0052 1.176

rs.c.sfa.int 0.055 -0.0069 1.167

gs.nc.fa.int+rs.nc.sfa 0.034 -0.0020 1.322

rs.nc.sfa.int 0.039 0.0086 1.313

gs.sfa (in Subsec.4.2.3) 6e-3 na na

Table 6.3: Accuracies of rs.X.sfa.Y(int) for BC2 and for CC.

small in comparison to typical values [0.8− 0.9] of consumer RS cameras (see Table 6.2
or the next section). Furthermore, all e(Δ) are smaller that 0.055 for five cameras; d
increases and e(Δ) decreases by NC BAs. The SFA refinement without BA (in Subsec-
tion 4.2.3) provides the smallest e(Δ) in this GS dataset.

6.6.2.2 Time offsets, line delays and reconstruction

Table 6.4 shows time offsets fΔj , normalized line delay vmaxfτ and error e(τ) for
all videos by applying RS.C.SFA.INT. We see that error e(τ) is less than 7.2% except
for WT. In the WT case, τ is over-estimated (vmaxfτ is even greater than its theoretical
maximum value 1) and has large error e(τ) equal to 16%. In contrast to this, e(τ) in the
BC1 case looks lucky. In fact, the τ value in a single experiment should be moderated
since it depends on the keyframe choice (this will be experimented in Subsection 6.6.3).
Note that a negative value of τ (for WU) simply means that the time of the v-th line
increases when v decreases.

Name fΔ1 fΔ2 fΔ3 vmaxfτ GT e(τ)

BC1 -0.334 -0.153 0.132 0.8755 0.8736 0.2%

WT -0.583 -0.320 -0.795 1.0136 0.8736 16.0%

FH 0.287 0.203 -0.326 0.8372 0.7810 7.2%

BC2 0.246 0.546 0.797 0.8989 0.8755 2.7%

CC -0.017 -0.013 -0.006 -0.0069 0 nan

WU 0.001 na na -0.8882 0.9244 3.9%

Table 6.4: SFA time offsets and line delay accuracy for all datasets using rs.c.sfa.int.
Here GT is the ground truth of vmaxfτ .

Figures 6.8 and 6.9 show a top view of the RS.C.SFA.INT reconstructions (both
keyframes locations and 3D point cloud). In the WU case, we observe a non-negligible
drift since the beginning and end of trajectory should be the same (the drift is less
noticeable in the other examples). There are several reasons: we do not enforce loop
closure, the incremental multi-camera SfM by local BA [Mouragnon+09] is done us-
ing an intermediate calibration computed from only 2k first frames, and the final BA
(RS.C.SFA.INT) does not remove the drift. We redo the incremental SfM using the final
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multi-camera calibration (computed from the whole sequence by RS.C.SFA.INT) and
see that an important part of drift is removed. This suggests that the final multi-camera
calibration is better than the intermediate one.

6.6.3 Stability of synchronization and rolling shutter with respect to
keyframe sampling

Now we experiment the stability of our results (SFA synchronization, line delay and
calibration) with respect to moderated changes of keyframe sampling. The keyframe
sampling is tuned by a single threshold N3, which is a lower bound for the number of
matches between three consecutive keyframes (more details in Subsection 2.4.1). For ev-
ery value N3 ∈ {400, 425, 450, 475, 500}, we apply multi-camera SfM based on keyframe
sampling followed by RS.C.SFA.INT and then discuss the results. The initial multi-
camera calibration and FA synchronization are the same for all N3 and are computed
from the video beginning as in the other experiments.

rs.c.sfa.int rs.c.sfa.int+rs.c.sfa.int.h

N3 e(Δ) e(τ) d e(Δ) e(τ) d

400 0.089 1.9% 1.466 0.091 2.4% 1.458

425 0.131 3.0% 1.570 0.123 0.8% 1.563

450 0.097 2.7% 1.476 0.110 2.8% 1.541

475 0.191 7.4% 1.867 0.136 5.5% 1.710

500 0.199 2.7% 1.664 0.101 0.4% 1.499

mean 0.141 3.5% 1.609 0.112 2.4% 1.554

max/min 0.046 4.0 1.274 0.016 12.3 1.17

Table 6.5: Accuracies stability with respect to keyframe sampling for BC2 using
rs.c.sfa.int (left) and rs.c.sfa.int+rs.c.sfa.int.h (right) with h = 70%. There are 206

keyframes if N3 = 400 and 248 keyframes if N3 = 500.

The left of Table 6.5 shows estimation errors e(Δ), e(τ) and d. There are 206
keyframes if N3 = 400 and 248 keyframes if N3 = 500. The variations of errors are
important: from single to double for e(Δ), from single to quadruple for e(τ), and about
30% for d. We provide an explanation in Subsection 6.6.3.1 and a correction of the
results in Subsection 6.6.3.2. Table 6.6 shows times offsets fΔj and error e(τ) for the
longest sequence BC1. The variations of e(τ) are also important; the variations of fΔj

are less than 0.032.

N3 kfr fΔ1 fΔ2 fΔ3 vmaxfτ e(τ)

400 1813 -0.341 -0.171 0.131 0.8920 2.1%

425 1929 -0.337 -0.155 0.131 0.8882 1.6%

450 2047 -0.334 -0.153 0.132 0.8755 0.2%

475 2166 -0.366 -0.156 0.134 0.9399 7.5%

500 2256 -0.337 -0.141 0.130 0.8786 0.5%

mean 2042 -0.343 -0.155 0.132 0.8948 2.4%

max-min 443 0.032 0.030 0.004 0.0644 2.1%

Table 6.6: Stabilities of time offsets and line delay with respect to keyframe sampling
for BC1 using rs.c.sfa.int. The number of keyframe is kfr.

114



MCBA - Hypothesis: RS and SFA synchronization

(a) BC1 (b) WT

(c) CC (d) FH

(e) BC2

Figure 6.8: Top views of RS.C.SFA.INT reconstructions of BC1, WT, FH, BC2 and
CC without loop closure. The input videos of BC1, WT and FH are taken by four
GoPro cameras mounted on a helmet. The FH trajectory has a lot of sharp “S” turns.
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(a) RS.C.SFA.INT

(b) Incremental SfM using the calibration estimated by RS.C.SFA.INT

Figure 6.9: Top views of RS.C.SFA.INT reconstructions of WU without loop closure.
The input video is taken by the Ricoh Theta S mounted on a helmet. The drift is

between the two arrows.

6.6.3.1 Analysis

We remind that the reprojection errors in the i-th keyframe are computed using an
approximation of multi-camera trajectory M(t) where t ≈ ti: M(t) is a linear combina-
tion of mi−1, mi and mi+1 and M is linear (Eq.(6.14)) in time t − ti. The better this
approximation, the smaller the reprojection error in the i-th keyframe.

At first glance, the estimation errors decrease if N3 increases: if N3 increases,
the keyframe density increases, thus the accuracy of these approximations is better
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(the remainders O(δ) and O(δ2) in Subsection 6.3.1 decrease), the reprojection errors
decrease and last the estimation errors decreases. However, the errors in Table 6.5 are
not decreasing series but look noisy.

Here is a second explanation. The true value of M(t) near ti can be different to its
approximated value for some i, e.g. if the true speed vector Ṁ(ti) is different to speed
vector D1 computed using the multi-camera poses of neighboring keyframes i − 1 and
i+1 in Eq.(6.13). Then a keyframe with bad approximation has high reprojection errors
and acts as an outlier perturbing the BA. The estimation errors in the left of Table 6.5
depend on the set of this kind of outliers, which in turn depends on N3.

6.6.3.2 Correction

The idea is simple: if the i-th keyframe has high reprojection errors, we redefine
its approximation by M(t) = mi + (t− ti)di if t ≈ ti thanks to new velocity parameter
di ∈ R

6 that is estimated by BA like mi. Then the camera motion is not constrained by
keyframes i− 1 and i+ 1 if t ≈ ti, and we expect that the resulting reprojection errors
of the i-th keyframe decrease such that the i-th keyframe does not act as an outlier of
the BA.

In practice, we start from a current estimation obtained by RS.C.SFA.INT and
introduce a user defined percentage h. Let ch be the h-fractile over all reprojection
errors. For every keyframe, we compute the RMS of its own reprojection errors. If
this RMS is greater than ch, the keyframe has an additional velocity parameter di as
above (otherwise it does not have). We name RS.C.SFA.INT.h the new BA obtained by
modifying RS.C.SFA.INT like this.

Table 6.5 provides estimation errors e(Δ), e(τ), d of both RS.C.SFA.INT and
RS.C.SFA.INT+RS.C.SFA.INT.h using h = 70%. Thanks to the correction, all er-
rors are improved in the following sense: both mean and maximum of every error are
reduced, the variations of e(Δ) and d are damped (the variations of e(τ) expressed using
ratio max/min are not damped due to a small error 0.4% for N3 = 500).

Lastly, Table 6.7 shows time offsets fΔj , normalized line delay vmaxfτ and error
e(τ) for all videos by applying RS.C.SFA.INT+RS.C.SFA.INT.h. We see that all errors
e(τ) have same magnitude order (in interval [2.8, 8]%). This contrasts to Table 6.4 using
N3 = 450, where e(τ) is small for BC1 and large for WT.

Name #di fΔ1 fΔ2 fΔ3 vmaxfτ GT e(τ)

BC1 141 -0.349 -0.152 0.112 0.9177 0.8736 5.0%

WT 126 -0.541 -0.322 -0.789 0.9139 0.8736 4.6%

FH 132 0.284 0.208 -0.329 0.8435 0.7810 8.0%

BC2 15 0.261 0.548 0.801 0.9001 0.8755 2.8%

CC 3 -0.004 -0.015 -0.011 -0.0009 0 nan

WU 131 -0.001 na na -0.8772 0.9244 5.1%

Table 6.7: SFA time offsets and line delay accuracy for all datasets using
rs.c.sfa.int+rs.c.sfa.int.h with h = 70% (to be compared with Table 6.4). Here GT
is the ground truth of vmaxfτ . The number of keyframes with additional velocity

parameter is #di.
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6.6.4 Robustness with respect to FA synchronization

We would like to know whether an error in the FA synchronization can be corrected
by SFA synchronization. Such an error can have two reasons: the IAV variations are
insufficient in the video beginning for FA synchronization, or a consumer camera skips
frame(s) for any technical reasons. We simulate such an error by skipping x frames of
camera 1 (reminder: camera 0 is the first one), then we use multi-camera SfM followed
by RS.C.SFA.INT and compare the results for x ∈ {0, 1, 2, 3}.

x fΔ1 fΔ2 fΔ3 vmaxfτ e(Δ) e(τ) d

0 0.246 0.546 0.797 0.8989 0.097 2.7% 1.476

1 1.342 0.505 0.769 0.8666 0.117 1.0% 1.743

2 2.026 0.489 0.760 0.7834 0.245 10.5% 1.298

3 2.472 0.532 0.781 0.7848 0.841 10.4% 3.244

Table 6.8: Accuracies of rs.c.sfa.int applied to BC2 if we shift x additional frames(s)
of camera 1. The ideal results meets fΔ1 = x+ 0.25.

Table 6.8 shows errors e(Δ), e(τ), d and time offsets fΔj estimated for BC2. We
see that e(Δ) and d increases moderately if x = 1, e(Δ) is multiplied by 2.5 and e(τ) by
3.9 if x = 2, and all errors increase a lot if x = 3.

6.6.5 Variations of line delay and SFA time offsets in a long sequence

Here we examine the variations of τ and Δj in a long sequence. We split the
GS.C.FA.INT reconstruction of BC1 into six segments of 300 keyframes (segments 0-
299, 300-599, etc) and independently apply RS.C.SFA.INT to every segment. Table 6.9
shows the results.

The variations of fΔj are moderated (less than 0.2) and the fΔjs globally increase
over time, i.e. when s increases. At first glance, we could expect that we can detect a
frame skipped by a camera (if any) by an increase/decrease of 1 as in Subsection 6.6.4.
However, this is not the case. Since all cameras are in the same manufacturing series
and have the same setting, all cameras skip similar numbers of frames (if any) in a seg-
ment, which in turn would imply that we do not observe large time offset perturbations.
Furthermore, we could interpret the slow increase of the fΔjs as follows: the FpS of
camera 0 is slightly lower than those of the other cameras.

The variations of τ are important (especially in the first half part of BC1) and τ
globally decreases over time. The variations of τ are reduced if we take a larger video
segment size, e.g. we divide by two the vmaxfτ range (max-min in Table 6.9) with 500
keyframes per segment.
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D = 300

s fΔ1 fΔ2 fΔ3 vmaxfτ e(τ)

0 -0.443 -0.180 0.014 1.0570 20.1%

1 -0.417 -0.152 0.014 0.9347 6.9%

2 -0.306 -0.073 0.028 0.7678 12.2%

3 -0.308 -0.163 0.115 0.9225 5.6%

4 -0.271 -0.157 0.178 0.9056 3.7%

5 -0.299 -0.105 0.199 0.8394 3.9%

mean -0.341 -0.138 0.091 0.9045 8.7%

max-min 0.172 0.107 0.185 0.2892 16.4%

D = 500

s fΔ1 fΔ2 fΔ3 vmaxfτ e(τ)

0 -0.432 -0.172 0.009 1.0123 15.8%

1 -0.337 -0.138 0.093 0.8773 0.4%

2 -0.300 -0.172 0.132 0.9161 4.8%

3 -0.297 -0.116 0.209 0.8708 0.3%

mean -0.342 -0.150 0.111 0.9191 5.4%

max-min 0.135 0.056 0.200 0.1415 15.5%

Table 6.9: Stabilities of time offsets and line delay over time in long sequence BC1
using rs.c.sfa.int. The s-th video segment is taken between keyframesDs andDs+D−1.

6.6.6 Comparing parameterizations of the multi-camera motion

All previous experiments are done using the linear approximation of M(t) (Eq.(6.14))
for Euler-based angle and using the approximation tp = tp̃ in Eq.(6.39). We remind
that all our motion models are listed in Table 6.1. Table 6.10 shows the results for
all videos using quadratic approximation of M(t) (Eq.(6.21)) or using Subsection 6.4.3
(i.e. without approximation tp = tp̃ in Eq.(6.39)) or using quaternion parametrization.
We do not observe significant improvements of e(τ) in comparison to those in Table 6.4
except for FH using Eq.(6.21). By recomputing errors e(Δ) and d for BC2 and CC
using these three changes (for Euler angle parametrization, linear approx. → quadratic
approx. or tp = tp̃ → tp �= tp̃; or Euler-based → quaternion), we obtain very similar
results as in Table 6.3: e(Δ) difference is less than 0.008 and d difference is less than
0.042.

Table 6.11 provides the results for Gopro multi-camera using spherical interpolations
for camera motion with the time approximation tp = tp̃. For synthetic dataset BC2, we
obtain slightly improvement in terms of e(τ) and e(Δ) using Squad, but no improvement
using spline on SE(3). There is no significant change in terms of d. For other videos,
we keep an eye on e(τ). The spherical interpolations provide similar result for WT.
But the relative error of τ is worse for BC1 and clearly better for FH than that in
Table 6.4 and 6.10. There are several reasons. FH has the fastest image motion among
our videos. Due to sharp “S” turns, spherical interpolations are more precise than Taylor
approximations for this case thanks to its complexity. This also confirms that the linear
Taylor approximation Eq.(6.14) is efficient for camera motion model in many usual cases
(at least in the case of bike riding or walking).

All the experiments in this thesis are performed on a machine with an Intel R©
CoreTM i7-3770 CPU @ 3.40GHz with 16 GB of RAM. We compare the execution
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Name fΔ1 fΔ2 fΔ3 vmaxfτ GT e(τ) e(Δ) d

rs.c.sfa.int (Euler-based, linear approx, tp = tp̃) (ref. Tables 6.4 and 6.3)

BC1 -0.334 -0.153 0.132 0.8755 0.8736 0.2% ? ?

WT -0.583 -0.320 -0.795 1.0136 0.8736 16.0% ? ?

FH 0.287 0.203 -0.326 0.8372 0.7810 7.2% ? ?

BC2 0.246 0.546 0.797 0.8989 0.8755 2.7% 0.097 1.476

CC -0.017 -0.013 -0.006 -0.0069 0 nan 0.055 1.167

WU 0.001 na na -0.8882 0.9244 3.9% 0.001 ?

rs.c.sfa.int (Euler-based, quadratic approx, tp = tp̃)

BC1 -0.337 -0.157 0.127 0.8624 0.8736 1.3% ? ?

WT -0.580 -0.323 -0.791 0.9974 0.8736 14.2% ? ?

FH 0.284 0.201 -0.326 0.8252 0.7810 5.7% ? ?

BC2 0.249 0.551 0.798 0.9020 0.8755 3.0% 0.100 1.476

CC -0.017 -0.013 -0.005 -0.0082 0 nan 0.054 1.175

WU -2e-4 na na -0.8896 -0.9244 3.8% -2e-4 ?

rs.c.sfa.int (Euler-based, linear approx, tp �= tp̃)

BC1 -0.334 -0.153 0.131 0.8758 0.8736 0.3% ? ?

WT -0.581 -0.320 -0.793 1.0061 0.8736 15.2% ? ?

FH 0.287 0.203 -0.326 0.8381 0.7810 7.3% ? ?

BC2 0.245 0.547 0.796 0.9028 0.8755 3.1% 0.098 1.475

CC -0.017 -0.014 -0.005 -0.0096 0 nan 0.055 1.177

WU 0.001 na na -0.8689 -0.9244 6.0% 0.001 ?

rs.c.sfa.int (Quaternion, linear approx, tp = tp̃)

BC1 -0.336 -0.154 0.131 0.8800 0.8736 0.7% ? ?

WT -0.584 -0.322 -0.799 1.0158 0.8736 16.3% ? ?

FH 0.290 0.206 -0.333 0.8485 0.7810 8.6% ? ?

BC2 0.248 0.550 0.803 0.9038 0.8755 3.2% 0.105 1.475

CC -0.021 -0.009 -0.011 0.0063 0 nan 0.059 1.125

WU 0.002 na na -0.8970 -0.9244 3.7% 0.002 ?

Table 6.10: SFA time offsets and line delay accuracy for all datasets using rs.c.sfa.int
with/without approximation tp = tp̃, using linear or quadratic approximation. “?”

means that GT is unknown for this estimate.

time (in seconds) using RS.C.SFA.INT method with different configurations: rotation
parametrization, time approximation as well as camera motion model. Table 6.12 pro-
vides comparison on the computation time for BC2 video (225 keyframes, 50k 3D points,
210k 2D points). For all cases, we only run one inlier update followed by LM with 100
iterations for comparison (Note that our normal BA has 3 inlier updates, each one is
followed by LM algorithm for these inliers with kmax = 200 iterations). As mentioned
in Section 6.4 and Table 6.1, we do perform analytical Jacobian for approximations
(Eq.(6.14) and Eq.(6.21)) and numerical Jacobian for spherical interpolations (Squad
Eq.(6.23) and spline on SE(3) Eq.(6.29)). We can see in Table 6.12 that analytical
Jacobian reduces significantly computation time. In practice, the correct and efficient
computation of the Jacobian matrix is the key to good performance. Moreover, ap-
proximations (Eq.(6.14) and Eq.(6.21)) are functions of 3 neighborhood poses while
spherical interpolations (Eq.(6.23) and SE(3) Eq.(6.29)) yield an interpolation from 4
neighborhood poses. This is the reason why Jacobian density increases for the latter in
comparison to the former. At least for this reason, the computation time is longer.
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Name fΔ1 fΔ2 fΔ3 vmaxfτ GT e(τ) e(Δ) d

rs.c.sfa.int (Quaternion, Squad, tp = tp̃)

BC1 -0.373 -0.177 0.117 0.9267 0.8736 6.1% ? ?

WT -0.584 -0.319 -0.794 1.0048 0.8736 15.0% ? ?

FH 0.273 0.196 -0.311 0.7955 0.7810 1.9% ? ?

BC2 0.252 0.547 0.777 0.8951 0.8755 2.2% 0.075 1.486

rs.c.sfa.int (Quaternion, SE(3), tp = tp̃)

BC1 -0.372 -0.170 0.135 0.9444 0.8736 8.1% ? ?

WT -0.588 -0.320 -0.803 1.0194 0.8736 16.7% ? ?

FH 0.272 0.193 -0.306 0.7979 0.7810 2.2% ? ?

BC2 0.261 0.550 0.789 0.9094 0.8755 3.9% 0.100 1.478

Table 6.11: SFA time offsets and line delay accuracy for Gopro datasets using
rs.c.sfa.int with time approximation using spherical interpolations of quaternion (to be
compared with Table 6.4 and 6.10). “?” means that GT is unknown for this estimate.

Param tp = tp̃ Motion model Jacob eval Linear solver Total

Euler x linear approx. 20.59 27.61 75.75

Euler x quadratic approx. 20.47 27.55 75.42

Euler linear approx. 35.96 27.42 106.11

Euler quadratic approx. 35.67 27.23 105.59

Quat x linear approx. 20.82 27.53 75.16

Quat x Squad 444.57 39.58 506.92

Quat x spline on SE(3) 528.46 40.19 591.69

Table 6.12: Computation time (in seconds) of our MCBA (rs.c.sfa.int) with 100
iterations for BC2 video using parametrization (Param) for rotation without/with time
approximation and camera motion model: linear approximation Eq.(6.14), quadratic

approximation Eq.(6.21), Squad Eq.(6.23) and spline on SE(3) Eq.(6.29).

6.6.7 The case close to a singularity

Here we examine the Euler angles involved in our rotation parametrization in
Section D.3. Figure 6.10(a) illustrates the Euler angles (αi, βi, γi) for keyframe number
i for BC1. This function looks continuous (zoom in to see the blue crosses in the
electronic version); the largest value of |γi − γi−1| is equal to 0.536 rad. Such a result
is expected since M(t) is assumed to be C3 continuous and the keyframe sampling ti is
dense enough to obtain a successful SfM result. Furthermore, |βi| is as small as possible
to keep away from the singularities β ∈ π/2 + πZ. According to Table 6.2, all |βi| are
less than 0.268 radian, except for FH (all |βi| are less than 0.494). The |βi| RMS is
about 0.25-0.47 times the |βi| maximum for every video.

We detail consequences of a naive/unlucky use of Euler angles ignoring singularities
(using the notation in Subsection 6.2.3). Assume that the initial multi-camera poses
meet R0i ≈ Rz(γi)Ry(π/2). This is possible because of a “bad” choice of coordinate
system: let rotation RA and RB as in Appendix D.3 (we have ∀i, RA−1R0i RB

−1 ≈ Rz(γi))
and rotate the world coordinate system by RA

−1 and the multi-camera coordinate system
by RB

−1Ry(π/2) so that R0i is replaced by RA
−1R0i RB

−1Ry(π/2) ≈ Rz(γi)Ry(π/2). Now we
naively set R = E and redo the experiments of BC1. Then βi ≈ π/2 (this is very close to
a singularity). Angles αi and γi are quite more perturbed (as shown by Figure 6.10(b))
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Figure 6.10: Rotation parametrization for BC1. x-axis are the keyframe numbers,
y-axis are Euler angles.

although they are chosen such that the Euler angle function is as continuous as possible
(maxi |γi − γi−1| = 3.099 and maxi |αi − αi−1| = 3.104). Using rs.c.sfa.int with linear
approximation as Eq.(6.14) and time approximation tp = tp̃, the new values of vmaxfτ
is 0.7885 and of fΔj = {−0.283,−0.149, 0.139}, j = {1, 2, 3}. Thus the relative error of
τ increases (9.7%) in comparison to that in Table 6.4 (0.2%), Table 6.10 and Table 6.11.

6.6.8 Robustness with respect to camera’s speed

The previous sections have showed the evaluation of our proposed method. In
the whole of our experiments, we use synthetic sequence BC2 (about 18km/h) which
mimics bicycle motion in BC1 without motion blur. In this subsection, we reuse the
synthetic sequences BC2 in Subsection 5.6.4 such that the mean of the speed is about
2-5 times larger than 18km/h. We also remind that we slow down in sharp turns if
the speed is greater than/equal to 20km/h. Table 6.13 shows the results of our method
applied to these examples. In comparison with GS and FA approximations in Table 5.7,
our MCBA including RS and SFA improves significantly the accuracy in terms of d.
We obtain errors d ≤ 1.8 pixels (expect for the case of 100km/h, d ≈ 4 pixels) using
BA among RS.C.SFA.INT and RS.NC.SFA.INT. Both e(τ) and e(Δ) increase when
the average speed increases and the speed is greater than 40km/h. We remind that
e(Δ) cumulates absolute errors of SFA synchronization. That means the mean SFA
synchronization error of n cameras is about e(Δ)/(n − 1). Since the average speed is
known, we convert e(Δ)/3 (for n = 4 cameras) in meters: about [1.6 − 4.0] (mm) for
speed v ≤ 60 km/h, 1.3 cm for 80 km/h and 2.7 cm for 100 km/h.

6.7 Conclusion

This chapter introduces the first self-calibration method for a multi-camera moving
in a scene, that simultaneously estimates intrinsic and extrinsic parameters, time offsets
and line delay for RS in addition to the usual parameters (3D points and multi-camera
poses). We experiment in a context that we believe useful for applications (3D modeling
and 360 video): several consumer cameras or a spherical camera mounted on a helmet
and moving along long trajectories by walking and biking (among others). Long tra-
jectories are useful for calibration accuracy and are allowed since our BA only refines
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MCBA - Hypothesis: RS and SFA synchronization

Speed (v) kfr Method e(Δ) e(Δ)v
f(n−1) (m) e(τ) d

18km/h 225 gs.c.fa.int 2.018
(5m/s) gs.nc.fa.int 1.417

rs.c.sfa.int 0.097 0.0016 2.7% 1.476
rs.nc.sfa.int 0.110 0.0019 3.7% 0.366

20km/h 232 gs.c.fa.int 2.437
(5.6m/s) gs.nc.fa.int 1.460

rs.c.sfa.int 0.131 0.0024 0.6% 1.815
rs.nc.sfa.int 0.103 0.0019 2.2% 0.902

40km/h 211 gs.c.fa.int 3.301
(11.1m/s) gs.nc.fa.int 3.708

rs.c.sfa.int 0.107 0.0040 2.5% 1.395
rs.nc.sfa.int 0.097 0.0036 1.3% 0.905

60km/h 202 gs.c.fa.int 4.789
(16.7m/s) gs.nc.fa.int 6.305

rs.c.sfa.int 0.048 0.0027 6.8% 1.342
rs.nc.sfa.int 0.043 0.0024 6.2% 1.234

80km/h 198 gs.c.fa.int 6.519
(22.2m/s) gs.nc.fa.int 7.149

rs.c.sfa.int 0.181 0.0134 8.3% 1.620
rs.nc.sfa.int 0.171 0.0126 7.6% 1.595

100km/h 182 gs.c.fa.int 9.426
(27.8m/s) gs.nc.fa.int 10.189

rs.c.sfa.int 0.299 0.0277 16.8% 3.726
rs.nc.sfa.int 0.292 0.0271 16.4% 4.027

Table 6.13: SFA time offsets and line delay accuracy for BC2 with respect to multi-
camera’s speed: n = 4 cameras, keyframes kfr and keyframe sampling N2 = 900,

N3 = 450 (see Section 2.4.1). Comparison to Table 5.7.

the keyframes provided by SfM. We provide accuracies for calibration/line delay/time
offsets with respect to ground truth, examine the influence of the tuning of keyframe
selection, show variations of time offsets in a long sequence, experiment and compare
different approximations (for time continuous camera trajectory and for reprojection
errors), and check the robustness of our method with respect to camera’s speed.
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Chapter 7

Conclusion

7.1 Summary

In this thesis, we present the first self-calibration method of omnidirectional multi-
camera, that simultaneously estimates intrinsic parameters, extrinsic parameters, times
offsets between videos and line delay coefficient of rolling shutter in addition to the usual
parameters: 3D points and multi-camera poses.

In Chapter 4, we start by a rough calibration thanks to assumptions that are suit-
able to an omnidirectional multi-camera without a privileged direction: the cameras
have the same setting (frequency, image resolution, approximate field-of-view angle) and
are roughly equiangular. These initial intrinsic parameters are refined using monocular
Structure-from-Motion and bundle adjustment method. Moreover, one of our contribu-
tions is the frame-accurate synchronization that deals with cameras without assumption
on the field-of-view shared by adjacent cameras. We benefit the important constraint:
the cameras are moving jointly. Then, different cameras have the same angular velocity
at the same instant. We estimate frame-accurate time offsets based on the instantaneous
angular velocity thanks to monocular Structure-from-Motion for all frames. In practice,
we do that on few thousands of frames at the beginning of the videos.

In Chapter 5, we initialize the relative transformation between cameras assuming
that the multi-camera is roughly central with approximately known inter-camera rota-
tions; and that the cameras are global shutter and frame-accurately synchronized. In our
experiments, these assumptions are enough to feed our multi-camera bundle adjustment.
In comparison to multi-camera bundle adjustment in [Lébraly+11], we also estimate the
intrinsic parameters and minimize the reprojection errors in the original image space
(not the rectified one) for the same polynomial distortion model. Our implementation
use both the analytical Jacobian matrix and its sparse data structure to achieve an
efficient calibration. The extension for the unified camera model is straightforward.

We apply Structure-from-Motion and bundle adjustment in Chapter 5 using sim-
ple camera model: global shutter, subframe residual time offsets and central (baseline
between cameras are forced to zero). This calibration is used to initialize our bundle
adjustment for generalized camera model in Chapter 6 that takes account into subframe-
accurate synchronization and line delay coefficient of rolling shutter. This is our main
contribution. Some camera motion models are proposed in our work using different
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parameterizations for rotations. The simple correction method is used to enforce the
continuity of camera motion model. For Euler-based angle parameterization, we de-
velop a technique to keep away from the singularities. We introduce the image projec-
tion that takes into account rolling shutter and synchronization. The approximation
[Klingner+13] is also experimented in the computation of projection point. Besides,
we propose the exact solution for the image projection. Furthermore, our multi-camera
bundle adjustment is done over long video datasets (hundreds of meters or kilometers)
without additional sensors thanks to keyframe sampling in Structure-from-Motion algo-
rithm and efficient implementation of bundle adjustment step which takes into account
sparsity of the Jacobian matrix.

We experiment in cases that we believe useful for applications (3D modeling and
360 videos): several consumer cameras or spherical camera mounted on a helmet and
moving along long trajectories by walking and riding. In Chapter 5, we compare to the
method in [Lébraly+11] for the polynomial distortion model. We see that minimizing
the reprojection errors in the original space is better than that in the rectified space.
Moreover, some applications like 360 video needs the central calibration. We use (and
build in some cases) central and slightly omnidirectional multi-cameras for these pur-
poses. The central approximation is good if the ratio between camera-scene distance
and baseline is large. We also check that the global shutter approximation is less tenable
for high speed videos. In Chapter 6 with multi-camera bundle adjustment adding rolling
shutter and subframe-accurate synchronization, we provide accuracy for calibration/line
delay/time offsets with respect to ground truth. We also examine the influence of the
tuning of keyframe selection, check the robustness of SFA refinement with respect to
bad FA initialization, show variations of time offsets in a long sequence, experiment and
compare different approximations (for time continuous camera trajectory and for repro-
jection errors) and different parameterizations for rotations. We show the robustness of
our proposed method for high speed synthetic videos.

7.2 Future work

Several improvements and future works are possible. In particular, we would like
to highlight the following:

• As mentioned in Chapter 4 and 5, we do not intend to compete with the accuracy
and generality of previous methods that initialize intrinsic and extrinsic param-
eters. These initializations can be improved thanks to previous works for both
intrinsic parameters and inter-camera poses. And a fully automatic method to
estimate these parameters from the environment should be considered, instead
of initializing the parameters using our assumption for omnidirectional camera
without privileged direction.

• Our Structure-from-Motion steps can fail for several reasons: degenerate cam-
era motion, lack of texture, global shutter approximation and central approxi-
mation. Note that Structure-from-Motion is not the contribution of this thesis
and previous methods can be applied to avoid the central approximation. Fur-
thermore, a preprocessing should select segment(s) in the video where we safely
apply Structure-from-Motion (avoid pure/fast camera rotations, critical cases and
blurred/low textured images).
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• As we can observe from this thesis, we experiment on long trajectories in urban
scene and some of them have many loops. Therefore, our self-calibration method
can be improved with a process called loop detection and closure. We detect
when the camera passes by an already reconstructed place, perform an image
matching between the images of the same point of the scene and perform our
multi-camera bundle adjustment with the additional constraints provided by this
matching. More generally, we can match points between different cameras and
between different keyframes in order to improve the precision.

• Variants of the method can be experimented, e.g. by using alternative keyframe
selections and the other camera models.

• We should examine the improvements in applications provided by our non-zero
line delay and subframe-accurate time offsets.
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Appendix A

Properties of the unified camera
model

We remind that this model is described in Chapter 4, Section 4.1.2 using a spherical

projection and a perspective projection. Let k =
Ä
0 0 1

ä�
, c =

Ä
0 0 −ξ

ä�
and 3D

point X̃C = (XC YC ZC)
�. Let ν be the angle between k and a ray of the perspective

camera (a half-line started at c and including Qs = X̃C/||X̃C||). Let μ be the angle
between principal direction k and a ray of the unified camera (half-line started at 0 with
direction Qs).

A.1 Theoretical field-of-view

Figure A.1 shows notations ν, μ, μ0 (a particular value of μ), Qs, c and k in two
cases: ξ > 1 and 0 < ξ < 1.

c
0

k

y

X̃C

Qs

ν
μμ0

ξ 1

c 0
k

X̃C

Qs

ν

μ
μ0

ξ 1

Figure A.1: Theoretical FoV in two cases: ξ > 1 (left) and 0 < ξ < 1 (right).

In both cases, μ0 is the maximum value of μ that ensures that there is only one back-
projected ray direction corresponding to the projection p(X̃C) by the unified camera
model. The angle μ0 is the half-angle of the theoretical FoV of this model, i.e. by
ignoring the bounded size of the image and the projection of the camera itself. The FoV
in our work ignores nothing and is included in the theoretical FoV.
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Properties of the unified camera model

If ξ = 0, the unified camera model is the standard perspective camera model with
center c = 0. Since Qs is in front of the perspective camera, the theoretical FoV is the
half-space ZC > 0 and μ0 = π/2.

If 0 < ξ < 1, c is inside unit sphere S. Since Qs is in front of the perspective
camera, the theoretical FoV is the half-space ZC > −ξ and cosμ0 = −ξ.

If ξ > 1, c is outside S and S is entirely in front of the perspective camera. The
projection of S by p is an ellipse and its interior. Let C be the cone that is tangent to
S with apex c, i.e. the union of every line (cy) that intersects S at a single point y.
We have y�(c− y) = 0 and k�y < 0 and cosμ0 = k�y = 1/(−ξ). For example, ξ = 2
implies that μ ≤ μ0 = 2π/3.

A.2 Angle of back-projected ray

There is a relation between ν and μ in all cases. Using notation
Ä
X Y Z

ä�
= Qs,

we have cosμ = Z and sinμ =
√
X2 + Y 2. Since Qs is in front of the perspective

camera, ξ + Z > 0 and tan ν =

√
X2 + Y 2

(ξ + Z)
. Thus

tan ν =
sinμ

ξ + cosμ
. (A.1)

Since p(X̃C) =

Ç
fx

X

(ξ + Z)
+ u0, fy

Y

(ξ + Z)
+ v0

å
and p(k) = p0,

fx = fy = f ⇒ ||p(X̃C)− p0||
f

= tan ν =
sinμ

ξ + cosμ
. (A.2)
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Appendix B

Analytical Jacobian

In this appendix, we detail the calculation of analytical Jacobian for multi-camera
bundle adjustment. First, we remind the similarity transformation from a 3D point
in the world coordinate system to a point in the camera coordinate system (using all
notations in Section 5.3):

X̃C = (RjC)
� î(RiM)� | − (RiM)�tiM − tjC

ó
Xl. (B.1)

The forward projection from X̃C to a 2D image point p (which depends on camera
model) is detailed in Section 4.1. So the projected point p is a function of θ =
{Xl, RiM, tiM, RjC, t

j
C, I

j}. The observed 2D point is p̃. We also remind the reprojection
error in Section 5.3 as follows

εlij = p(Xl, RiM, tiM, RjC, t
j
C, I

j)− p̃ (B.2)

We detail the computation of block matrices in Section 5.3.2 for two cases: the polyno-
mial distortion model and the unified camera model. We also remind that monocular
case is a special case of multi-camera case.

B.1 Polynomial distortion model

As discussed in Subsection 4.1.1 and 5.3.1, we do not have closed-form for forward
projection. Here we would like to compute p = pj(X̃C) in Eq.(B.1) and its Jacobian
using the camera model in Section 4.1.1 assuming that X̃C is known.

First, we remind the parameter vector and functions g and g1 such that

Ij = (fx, fy,p0, k1, k2, . . . , kn), θ = {Xl, RiM, tiM, RjC, t
j
C, I

j}, pu = π(KX̃C), (B.3)Ç
u
v

å
= z,

Ç
u0
v0

å
= p0, r̄2 =

(u− u0)
2

f2
x

+
(v − v0)

2

f2
y

, K =

Ö
fx 0 u0
0 fy v0
0 0 1

è
(B.4)
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Analytical Jacobian

g(z,θ) =

(
1 +

n∑
i=1

kir̄
2i

)
(z− p0)− pu + p0, (B.5a)

g1(z,θ) =

(
1 +

n∑
i=1

ki||z̄||2i
)
z̄− p̄u. (B.5b)

where

Ç
z̄
1

å
= K−1

Ç
z
1

å
and

Ç
p̄u

1

å
= K−1

Ç
pu

1

å
. We remind that π(x) = π

Ä
(X Y Z)�

ä
=

(X/Z Y/Z)�.

Second, in Subsection 4.1.1.2, we check that g(p,θ) = 0. We also note thatÇ
fx 0
0 fy

å
g1 = g. We obtain g1(p,θ) = 0.

Last, using an approximate value p̃ of p, the projected point p is estimated by
non-linear least-squares minimizing z �→ ||g(z,θ0)||2 where θ0 is the current value of θ
(provided by initialization or previous iteration of BA). The implicit function Theorem
implies that we locally have a C1 continuous function ψ such that p = ψ(θ) if det ∂g

∂z �= 0.
By differentiating g(ψ(θ),θ) = 0, we obtain

∂p

∂θ
=

∂ψ

∂θ
= −

Å
∂g

∂z

ã−1 ∂g

∂θ
. (B.6)

We use Eq.(B.6) for p derivatives

∂p

∂ki
= −

Å
∂g

∂z

ã−1

r̄2i(p− p0) (B.7)

∂p

∂X̃C

=

Å
∂g

∂z

ã−1 ∂pu

∂X̃C

. (B.8)

For derivatives with respect to fx, fy, u0, v0, we use the function g1 defined as Eq.(B.5b)
and z = p, θ = θ0. We note that

∂z̄

∂(u0, v0)
= −

Ç
1/fx 0
0 1/fy

å
= −∂z̄

∂z
, (B.9)

∂z̄

∂(fx, fy)
=

∂z̄

∂z

(
u0−u
fx

0

0 v0−v
fy

)
. (B.10)

Thus
∂g1
∂z

=
∂g1
∂z̄

∂z̄

∂z
, (B.11)

∂g1
∂(u0, v0)

=
∂g1
∂z̄

∂z̄

∂(u0, v0)
= −∂g1

∂z̄

∂z̄

∂z
= −∂g1

∂z
, (B.12)

∂g1
∂(fx, fy)

=
∂g1
∂z̄

∂z̄

∂(fx, fy)
=

∂g1
∂z

(
u0−u
fx

0

0 v0−v
fy

)
. (B.13)
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Analytical Jacobian

Thanks to Eq.(B.6), Eq.(B.12) and Eq.(B.13), we obtainÇ
∂p

∂fx

∂p

∂fy

∂p

∂u0

∂p

∂v0

å
=

Ü
u− u0
fx

0 1 0

0
v − v0
fy

0 1

ê
. (B.14)

We note that the derivative computations in Eq.(B.8) are easy from those of a

standard perspective camera (i.e.
∂pu

∂X̃C

): multiply on the left side by

Å
∂g

∂z

ã−1

. This

also holds for derivatives with respect to all multi-camera parameters thanks to the
Chain rule (see Appendix B.3).

B.2 Unified camera model

The forward projection in Subsection 4.1.2 is closed-form and written as

p(X̃C) = π

Ö
K

Ö
X̃C

||X̃C||
+

Ö
0
0
ξ

èèè
(B.15a)

= π

Ö
K

Ö
XC

YC
ZC + ρξ

èè
(B.15b)

=

Ü
fx

XC

ZC + ρξ
+ u0

fy
YC

ZC + ρξ
+ v0

ê
(B.15c)

where ρ = ||X̃C|| =
»
X2

C + Y 2
C + Z2

C. We remind that π(x) = π
Ä
(X Y Z)�

ä
=

(X/Z Y/Z)�.

Thanks to the Chain rule and Eq.(B.15a), we have

∂p

∂ξ
=

∂π

∂x
K

Ö
0
0
1

è
(B.16)

where
∂π

∂x
=

Ç
1/Z 0 −X/Z2

0 1/Z −Y/Z2

å
. (B.17)

Using Eq.(B.15c), the derivative of p with respect to fx, fy, u0, v0:Ç
∂p

∂fx

∂p

∂fy

∂p

∂u0

∂p

∂v0

å
=

Ü
XC

ZC + ξρ
0 1 0

0
YC

ZC + ξρ
0 1

ê
. (B.18)
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And using Eq.(B.15b), we obtain

∂p

∂X̃C

=
∂π

∂x
K

Ü
1 0 0
0 1 0

ξ
XC

ρ
ξ
YC
ρ

1 + ξ
ZC

ρ

ê
. (B.19)

Finally, from Eq.(B.1) and Eq.(B.19), using the chain rule, we obtain the derivative of
p with respect to {Xl, RiM(riM), tiM, RjC(r

j
C), t

j
C} (see Appendix B.3).

B.3 Derivatives with respect to all multi-camera parame-
ters

The Chain rule leads to
∂p

∂θ
=

∂p

∂X̃C

∂X̃C

∂θ
(B.20)

where X̃C is computed as in Eq.(B.1) and

(a) Partial derivative with respect to 3D points X = {Xl}

∂X̃C

∂Xl
= (RjC)

� î(RiM)� | − (RiM)�tiM − tjC
ó

(B.21)

(b) Partial derivative with respect to multi-camera poses

∂X̃C

∂riM
= (RjC)

�∂(RiM)�

∂riM

î
I | − tiM

ó
Xl (B.22)

∂X̃C

∂tiM
= −w(RjC)�(RiM)� (B.23)

(c) Partial derivative with respect to extrinsic parameters

∂X̃C

∂rjC
=

∂(RjC)
�

∂rjC

î
(RiM)� | − (RiM)�tiM − tjC

ó
Xl (B.24)

∂X̃C

∂tjC
= −w(RjC)�. (B.25)
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Appendix C

Minimal parametrization

We remind the term gauge freedom in [Triggs+00], [Hartley+04]. The work gauge
just means reference coordinate for a parameter set and gauge freedom refers to the
freedom in the choice of reference coordinate of the parameter set, without affecting the
underlying geometry. Hence, gauge freedom does not essentially affect the cost function.
Consider the choice of 3D coordinate system in reconstruction problems, BA updates can
perturb reconstructed scene almost arbitrarily. It causes the normal equation Eqs.(2.27)
and (2.28) to be singular (the matrix is not invertible) and hence to have multiple
solutions. LM algorithm leads to slower convergence in evidence if there is excessive
gauge freedom.

Besides 3D coordinate system, many other types of geometric parametrization in-
volve arbitrary choices. These include homogeneous vectors for 3D points, quaternions,
etc. In this appendix, we detail some methods for obtaining minimal parameteriza-
tions for some parameter sets: 3D coordinate system (Appendix C.1) and homogeneous
vectors (Appendix C.2).

C.1 Parametrization of 3D coordinate system

C.1.1 General case

Let Θ ∈ R
n, Ψ ∈ R

m and E : Rn → R
m a C2 continuous function such that m ≥ n.

We would like to find the minimizer Θ of function F (Θ) = 1
2 ||E(Θ) − Ψ||2 for a given

Ψ. Let J = ∂E
∂Θ ∈ R

m×n and k = dimker J < n. Note that ker J and im J are the kernel
and image of matrix J.

We assume that k is constant for all Θ (J is a function of Θ). If k = 0, Θ is a
minimal parametrization for E. If k ≥ 1 and Θ0 ∈ R

n, we assume that there is a C1
continuous function SΘ0 : Rk → R

n such that SΘ0(R
k) = {Θ ∈ R

n, E(Θ) = E(Θ0)} and

ker
∂SΘ0
∂ϑ = 0, ϑ ∈ R

k.

Lemma C.1. If k ≥ 1, im
∂SΘ0
∂ϑ = ker J. (Here, we have J = J(SΘ0(ϑ)).)
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Proof. The derivative of E(SΘ0(ϑ)) = E(Θ0) is computed by the chain rule: J
∂SΘ0
∂ϑ = 0.

Thus im
∂SΘ0
∂ϑ ⊆ ker J. Since

dim im
∂SΘ0

∂ϑ
= k − dimker

∂SΘ0

∂ϑ
= k = dimker J, (C.1)

we obtain the result.

In the case of k ≥ 1,

• Θ is an over-parametrization for E

• SΘ0 has k DoF; E has n− k DoF

• intuitively, there are k coefficient(s) in Θ that are useless for the minimization (Θ
is not a minimal parametrization for E)

• LM algorithm deals with this over-parametrization if k is “small”.

C.1.2 Monocular case

Here Ψ is the vector concatenation of all 2D (inlier) detected points, Θ is the vector
of concatenation of

• poses (Ri, ti) at the i-th key frame,

• 3D points X̃l (it is more convenient to use inhomogeneous vector),

• optional intrinsic parameters,

• optional line delay for RS camera.

Let s > 0 , R be a rotation, t ∈ R
3 be a translation. We define similarity transformation

in R
3 by

T(s,R,t)(z) = sR�(z− t) (C.2)

where z ∈ R
3. Note that T−1

(s,R,t) = T(1/s,R�,−sR�t). Our E(Θ) is the concatenation of

all projection function π
Ä
T(1,Ri,ti)(X̃l)

ä
. The function π meets π(λx) = π(x) where

x ∈ R
3 \ {0} and λ > 0. The function E can also have other parameters: optional

intrinsic and rolling shutter parameters.

C.1.2.1 Over-parametrization

Now we define SΘ(s, R, t) by a modified version of Θ as follows:

• all Ri of Θ are replaced by R�Ri,

• all ti of Θ are replaced by T(s,R,t)(ti),

• all X̃l of Θ are replaced by by T(s,R,t)(X̃l),
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• the other (optional intrinsic or rolling shutter) parameters of Θ are unchanged.

Since

T(1,R�Ri,T(s,R,t)(ti))

Ä
T(s,R,t)(X̃l)

ä
= (R�Ri)�

Ä
sR�(X̃l − t)− sR�(ti − t)

ä
= sR�i (X̃l − ti) = sT(1,Ri,ti)(X̃l)

(C.3)

and π(λx) = π(x), we have

π
(
T(1,R�Ri,T(s,R,t)(ti))

Ä
T(s,R,t)(X̃l)

ä)
= π

Ä
T(1,Ri,ti)(X̃l)

ä
. (C.4)

By concatenating, we obtain

E (SΘ(s, R, t)) = E(Θ). (C.5)

Note that SΘ is a world coordinate change by similarity transformation T(s,R,t) of recon-
struction Θ. Now, we assume that all assertions in Appendix C.1.1 are true for SΘ and
k = 1+ 3+ 3 = 7 (a rotation is counted as 3 parameters); Θ is an over-parametrization
for E.

C.1.2.2 Minimal parametrization

We need to fix k = 7 independent parameters to obtain a minimal parametrization,
e.g. we remove from Θ the pose (R0, t0) and one of the 3 coordinates of one ti where
i �= 0 and which is not equal to that of t0. Removing R0 from Θ locks R in SΘ(s, R, t)
since the projections change in the 0-th image if R �= I3 (identity matrix). Similarly,
removing t0 from Θ locks t in SΘ(s, R, t) since the projections change in the 0-th image
if t �= 0. Removing two same coordinates of t0 and t1 from Θ locks s in SΘ(s, R, t).

C.1.3 Multi-camera case

Here Ψ is the vector concatenation of all 2D (inlier) detected points, Θ is the vector
of concatenation of

• multi-camera poses (RiM, tiM) at the i-th key frame,

• 3D points X̃l,

• poses (RjC, t
j
C) of the j-th camera in the multi-camera coordinate system; tjC is

optional if the multi-camera is central (tjC = 0 in this case),

• optional intrinsic parameters for each camera,

• optional time offset Δj of the j-th camera,

• optional line delay for RS camera.

Furthermore, E is the concatenation of all projection functions

π
(
T
(1,RjC,t

j
C)

(
T(1,RiM,tiM)(X̃

l)
))

. (C.6)

Function π has the same properties as in Appendix C.1.2.
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C.1.3.1 Over-parametrization

For several reasons, Θ is an over-parametrization for E. According to Eq.(C.3), we
have

T(1,R�RiM,T(s,R,t)(t
i
M))

Ä
T(s,R,t)(X̃

l)
ä
= sT(1,RiM,tiM)(X̃

l). (C.7)

We also have

T
(1,RjC,st

j
C)

(
sT(1,RiM,tiM)(X̃

l)
)
= sT

(1,RjC,t
j
C)

(
T(1,RiM,tiM)(X̃

l)
)
. (C.8)

Thus we have E (Sa
Θ(s, R, t)) = E(Θ) if Sa

Θ is a modified version of Θ as follows:

• all RiM of Θ are replaced by R�RiM,

• all tiM of Θ are replaced by T(s,R,t)(t
i
M),

• all X̃l of Θ are replaced by T(s,R,t)(X̃
l),

• all tjC are replaced by stjC,

• the other (RjC, optional intrinsic, time offset and rolling shutter) parameters of Θ
are unchanged.

Note that Sa
Θ is similar to SΘ of the monocular case; the differences are the update of

tjC.

First, we have

T
(1,RjC,t

j
C)

(
T(1,RiM,tiM)(X̃

l)
)
= (RjC)

� Ä(RiM)�(X̃l − tiM)− tjC
ä

= (RiMR
j
C)

�(X̃l − tiM)− (RjC)
�tjC.

(C.9)

Thus
T
(1,RjC,t

j
C)

(
T(1,RiM,tiM)(X̃

l)
)
= T

(1,R�R
j
C,R

�tjC)

(
T(1,RiMR,tiM)(X̃

l)
)
. (C.10)

Second, we define Sb
Θ(R) as a modified version of Θ as follows. It has the same compo-

nents with the following exception:

• R
j
C are replaced by R�RjC,

• tjC are replaced by R�tjC and

• RiM are replaced by RiMR.

Thanks to Eqs.(C.10) and (C.6), E(Sb
Θ(R)) = E(Θ).

Let t̃iM and t̃jC be in R
3 such that 0 = (RiMR

j
C)

�t̃iM + (RjC)
�t̃jC for all i, j. Thus

Eq.(C.9) implies

T
(1,RjC,t

j
C)

(
T(1,RiM,tiM)(X̃

l)
)
= T

(1,RjC,t
j
C+t̃jC)

(
T(1,RiM,tiM+t̃iM)(X̃

l)
)
. (C.11)
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Since 0 = (RiM)�t̃iM + t̃jC, all t̃
j
C are equal and t̃iM = −RiMt̃0C. Thus

T
(1,RjC,t

i
C)

(
T(1,RiM,tiM)(X̃

l)
)
= T

(1,RjC,t
j
C+t)

(
T(1,RiM,tiM−RiMt)(X̃

l)
)
. (C.12)

We define Sc
Θ(t) as a modified version of Θ as follows. It has the same components with

the following exceptions:

• tjC is replaced by tjC + t and

• tiM is replaced by tiM − RiMt.

Thanks to Eqs.(C.12) and (C.6), E(Sc
Θ) = E(Θ).

Last, we combine Sa
Θ, S

b
Θ and Sc

Θ above into a single SΘ for two cases: the multi-

camera is central (i.e. tjC is not a parameters vector of Θ) or non-central (tjC is a
parameters vector of Θ). In the central case,

SΘ(sa, Ra, ta, Rb) = Sa
Sb
Θ(Rb)

(sa, Ra, ta) (C.13)

and we assume that all assertions in Appendix C.1.1 are true for SΘ and k = 1+3+3+3 =
10. In the non-central case,

SΘ(sa, Ra, ta, Rb, tc) = Sa
Sb
Sc
Θ

(tc)
(Rb)

(sa, Ra, ta) (C.14)

and we assume that all assertions in Appendix C.1.1 are true for SΘ and k = 1 + 3 +
3 + 3 + 3 = 13.

C.1.3.2 Minimal parametrization

We need to fix k = 10 (central case) or k = 13 (non-central case) independent param-
eters to obtain a minimal parametrization. Here is one example. As in the monocular
case, we remove from Θ the pose (R0M, t0M) and one of the 3 coordinates of one tiM where
i �= 0 and which is not equal to that of t0M. Then we remove R0C. In the non-central case,
we also remove t0C.

C.2 Parametrizations of homogeneous vectors

Let x ∈ R
n be an over-parametrization such as homogeneous 4-vector for 3D points

and rotations (unit quaternion). It is numerically and computationally more effective to
optimize x over the tangential hyperplane (of the unit sphere S

n−1) using Δx ∈ R
n−1

at point x ∈ S
n−1, then “move” to the point x′. We define a function

x′ = �(x,Δx) (C.15)

where x′ has the same size of x. The � operator is a generalization of the vector addition.
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C.2.1 Parametrization of 3D points

Homogeneous n-vector is used for 3D points (n = 4) instead of an Euclidean
vector, because it can represent points at infinity. In BA context, it is useful to update
orthogonally to that n-vector [Hartley+04][Appendix 6.9.3 and check Corrections and
Errata]. Assume that last element of x is the scalar component of the homogeneous
vector. Let Δx be a n− 1-vector and define � to be

� (x,Δx) = ||x||Hv(x)f(Δx) (C.16)

where f(Δx) =
Ä
sinc(0.5||Δx||)0.5Δx�, cos(0.5||Δx||)

ä�
and Hv(x) is Householder ma-

trix such that Hv(x)x = ||x||(0, . . . , 0, 1)�.

C.2.2 Parametrization of unit quaternions

The quaternion representation of a rotation (see Section 2.2.4) is a redundant
representation in that it has one extra DoF. [Agarwal+] proposes an algebraic approach
for unit quaternions. Nonlinear optimization moves x to a new point x′ on the unit
sphere. The quaternion difference between these two quaternions is

Δq = x′x−1 (C.17)

where the multiplication between two quaternions is defined in Appendix E. Δq is a
unit quaternion since x and x′ are unit quaternions (thanks to Prop.E.2). Thanks
to Prop.E.4, there exists a vector v ∈ R

3, ||v|| = 1 and θ ∈ R such that Δq =
[cos(θ), sin(θ)v]. Note that θ is not necessarily limited to interval ] − π, π] since θ and
θ+ 2πZ represent a same quaternion. The vector Δx ∈ R

3 is defined by Δx = θv. The
� operator is defined by the multiplication between two quaternions

� (x,Δx) = [cos(||Δx||), sinc(||Δx||)Δx]x. (C.18)

It is preferred to use sinc function since sinc is well-defined at zero.
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Euler parametrization

In this appendix, we detail the singularities of Euler angles representation and explain
how to avoid these singularities in our context. Let E(α, β, γ) = Rz(γ)Ry(β)Rx(α) where
Rx(α), Ry(β) and Rz(γ) are the rotations around the vectors of the canonical basis of R3

with respective to angles α, β and γ. We use shortened notations cα = cosα, sα = sinα,
cβ = cosβ, sβ = sinβ, cγ = cos γ, sγ = sin γ. Thus

E(α, β, γ) =
⎡
⎢⎣cγcβ cγsβsα − sγcα cγsβcα + sγsα
sγcβ sγsβsα + cγcα sγsβcα − cγsα
−sβ cβsα cβcα

⎤
⎥⎦ . (D.1)

D.1 Rotation matrix to Euler angle conversion

A general rotation matrix has the form

R =

⎡
⎢⎣R11 R12 R13

R21 R22 R23

R31 R32 R33

⎤
⎥⎦ . (D.2)

Given a rotation matrix R, we can compute the Euler angle (α, β, γ) such that E(α, β, γ) =
R using a pseudo-code implementation as following:

if R31 �= ±1 then
β = − arcsin(R31); or β = π + arcsin(R31);

α = arctan2

Å
R32

cosβ
,
R33

cosβ

ã
;

γ = arctan2

Å
R21

cosβ
,
R11

cosβ

ã
;

else
γ = anything; {can be set to 0}
if R31 = −1 then

β = π/2; α = γ + arctan2(R12, R13)
else

β = −π/2; α = −γ + arctan2(−R12,−R13)
end if

end if
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D.2 The singularities of Euler angles

Let ∂E be the Jacobian of E at (α, β, γ) with respect to (α, β, γ). We have

∂E =

Å
∂E
∂α

∂E
∂β

∂E
∂γ

ã
∈ R

9×3. (D.3)

Lemma D.1. ker ∂E �= 0 if and only if there is k ∈ Z such that β = π/2 + kπ, i.e. if
and only if the coefficient on the bottom-left corner of E(α, β, γ) is 1 or −1.

Proof. First we show that β = π/2 + kπ implies ker∂E �= 0. Let ε = 1 if k is even,
otherwise ε = −1. We have sβ = sin(επ/2) = ε, cβ = cos(επ/2) = 0, sin(εγ) = εsγ and
cos(εγ) = cγ . Thus

E(α, επ/2, γ) =
⎡
⎢⎣ 0 εcγsα − sγcα εcγcα + sγsα
0 εsγsα + cγcα εsγcα − cγsα
−ε 0 0

⎤
⎥⎦

=

⎡
⎢⎣ 0 ε sin(α− εγ) ε cos(α− εγ)
0 cos(α− εγ) − sin(α− εγ)
−ε 0 0

⎤
⎥⎦ .

(D.4)

Thus δ �→ E(α + εδ, επ/2, γ + δ) is a constant function. We derivate it at δ = 0 thanks

to the chain rule and obtain
Ä
∂E
∂α

∂E
∂β

∂E
∂γ

ä Ä
ε 0 1

ä�
= 0 at point (α, β, γ).

Second we show that β �= π/2 + kπ and
Ä
∂E
∂α

∂E
∂β

∂E
∂γ

ä Ä
a b c

ä�
= 0 imply

a = b = c = 0. Using derivate of the first column of Eq.(D.1), we obtain

b

Ö
−cγsβ
−sγsβ
−cβ

è
+ c

Ö
−sγcβ
cγcβ
0

è
= 0 and cβ �= 0. (D.5)

Thus b = 0 and c = 0. Now we have a ∂E
∂α = 0. Using derivative of the last row of

Eq.(D.1) and cβ �= 0, we obtain a = 0.

D.3 Keep away from the singularities

Here we not only compute RA and RB in the definition of our rotation parametrization
R (Eq.(6.4)), but initialize rM(ti). Let R

0
i be the rotation of the i-th keyframe estimated

by GS BA (before the final BA in Chapter 6). Using the definitions of rM and ti in
Section 6.2, rM(ti) is initialized such that R(rM(ti)) = R0i . We also check that rM(ti) is
far from the singularities of R.

Let k =
Ä
0 0 1

ä�
. Since the multi-camera trajectory has small pitch and roll,

there are rotations RA and RB such that ∀i, RA−1R0i RB
−1 is almost a rotation around k (de-

tails in Appendix D.3.1). Let angles (αi, βi, γi) be such that E(αi, βi, γi) = RA
−1R0i RB

−1

and E is defined in Eq.(6.3) and βi is close to 0 (details in Appendix D.3.2). We initialize
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rM(ti) =
Ä
αi βi γi

ä�
. Thanks to Eqs.(6.4) and (6.3), we obtain

R(rM(ti)) = R(αi, βi, γi) = RAE(αi, βi, γi)RB = R0i . (D.6)

According to Subsection 6.2.3 and Appendix D.2, rM(ti) is a singularity of E iff βi ∈
π/2 + πZ. Since R has the same singularities as E (proof in Appendix D.3.3) and βi is
close to 0, rM(ti) is far from the singularities of R.

D.3.1 Technical Details: Estimate RA and RB

Let R(v, θ) be the rotation with axis v and angle θ. Since the multi-camera trajectory
has small pitch and roll (Subsection 6.2.3), all (R0i )

�R0j are roughly rotations sharing a
same axis v ∈ R

3. Thus there are rotation R and angle θi such that R0i ≈ RR(v, θi). For
all i and j,

(R0i )
�R0j ≈ R(v, θj − θi). (D.7)

Let vi,j be the axis of (R0i )
�R0j .

First, we search v as the most colinear vector to all vi,j , i.e. vmaximizes
∑

i,j(v
�
i,jv)

2.
Thus v is the eigenvector of the largest eigenvalue of the symmetric matrix

Cv =
∑
i,j

vi,jv
�
i,j . (D.8)

Second, we estimate rotation R̃ such that

R̃R0i ≈ R(v, θ′i) (D.9)

Since R0i ≈ RR(v, θi), R
0
iv ≈ Rv. Let ṽ =

∑
i R

0
iv/||

∑
i R

0
iv||. Thus ṽ ≈ Rv ≈ R0iv. Let R̃

be a rotation such that R̃ṽ = v. Since R̃R0iv ≈ R̃ṽ = v, R̃R0i ≈ R(v, θ′i).

Third, we estimate RA and RB. Let R
′ be a rotation such that

R′v = k. (D.10)

We obtain R′R̃R0i R′� ≈ R(k, γi). Thus

RA
−1 = R′R̃ and RB

−1 = R′�. (D.11)

D.3.2 Estimate (αi, βi, γi)

Since E is surjective on the set of 3D rotations SO(3), the angles αi, βi and γi exist.
Furthermore, they are defined up 2π multiples. We choose βi that has the smallest |βi|.
Since E(αi, βi, γi) ≈ R(k, γi) = Rz(γi), |βi| is close to 0. We also remind that rM(t) is
continuous (Subsection 6.2.1) and |ti − ti+1| is small thanks to the keyframe sampling.
Thus the γi series is chosen such that |γi − γi−1| is as small as possible, and we do
similarly for αi (|βi − βi−1| is also small) (see Subsection 6.3.3).
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D.3.3 Proof: R and E have the same singularities

Here we show that ker ∂E = ker ∂(RAERB) if RA and RB are two invertible 3 × 3
matrices. Let x ∈ ker ∂E , Eij be the coefficients of E and ∂Eij be the gradient of Eij with
respect to parameters (α, β, γ). Thus ∂Eij .x = 0 and

(∂(RAERB)ij).x =

Ñ
∂

Ñ∑
k,l

RAikEklRBlj
éé

.x =
∑
k,l

RAikRBlj(∂Ekl).x = 0. (D.12)

We see that ∂(RAERB).x = 0, i.e. ker ∂E ⊆ ker ∂(RAERB). Since RA and RB are invertible,
we use this inclusion (replace E by RAERB, replace RA by RA

−1, replace RB by RB
−1) and

obtain
ker ∂(RAERB) ⊆ ker ∂

Ä
RA

−1(RAERB)RB−1
ä
= ker ∂E . (D.13)
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Quaternion parametrization

E.1 A quick walk-through

Quaternion is an extension of complex numbers. The algebra of quaternions is
equipped with addition and multiplication which is non commutative. (Some proofs
will be ignored, curious readers can find out more details in [Dam+98]). The set of
quaternions is equal to R

4 and usually is denoted H. We use the following forms:

Definition E.1. Let i2 = j2 = k2 = ijk = −1, ij = k and ji = −k. Then q ∈ H can be
written:

q ≡ [qr,v] ≡ [qr, qi, qj , qk] ≡ qr + iqi + jqj + kqk

where qr, qi, qj , qk ∈ R and v ∈ R
3.

Quaternion addition and multiplication are a straightforward generalization of the
addition and multiplication (respectively) of complex number using all four basic element
(1, i, j, k). For any two quaternions q = [qr,v] and q′ = [q′r,v′], the corresponding sum
and product are given as follows:

q+ q′ = [qr + q′r,v + v′] (E.1)

qq′ = [qrq
′
r − v · v′,v × v′ + qrv

′ + q′rv] (E.2)

rq = qr = [r,0][qr,v] = [rqr, rv] (E.3)

where · and × denote the dot and cross product in R
3, respectively and r ∈ R.

Corresponding to the definition of the conjugate of a complex number, we define
the conjugate of a quaternion q = [qr,v]:

q∗ ≡ [qr,v]
∗ ≡ [qr,−v]. (E.4)

The norm of a quaternion q = [qr,v] is obtained using conjugation:

||q|| ≡ √
qq∗ =

»
q2r + v · v =

√
q2r + q2i + q2j + q2k. (E.5)

Proposition E.2. Let q,p ∈ H. Then ||qp|| = ||q||||p||.
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Let q,q′ ∈ H, q = [qr,v] = [qr, qi, qj , qk], q
′ = [q′r,v′] = [q′r, q′i, q′j , q′k]. The inner

product is defined as • : H×H→ R where

q • q′ = q′ • q = qrq
′
r + v · v = qrq

′
r + qiq

′
i + qjq

′
j + qkq

′
k. (E.6)

Let α be the angle between them. Then q • q′ = ||q||||q′|| cosα.
We consider the set of quaternions H̆ = H\{[0, 0, 0, 0]}. The element I = [1,0] ∈ H̆

is the unique neutral element under quaternion multiplication.

Lemma E.3. Let q ∈ H̆. There exists q−1 ∈ H such that qq−1 = q−1 ∗q. Furthermore,

q−1 is unique and given by q−1 =
q∗

||q||2 .

Now we focus on unit quaternion q which meets ||q|| = 1. We will use H1 to denote
the set of unit quaternions. The set of unit quaternions constitutes a unit sphere in
four-dimensional space and plays an important part in relation to general rotations.

Proposition E.4. Let q = [qr,v] ∈ H1. Then there exists v′ ∈ R
3 and θ ∈]−π, π] such

that q = [cos θ,v′ sin θ].

Quaternions perform rotation that is shown in the following propositions.

Proposition E.5. Let p ∈ H, q ∈ H̆. If r ∈ R \ {0} then (rq)p(rq)−1 = qpq−1.

Proposition E.6. Let q ∈ H1,q = [cos θ, sin θn], ||n|| = 1. Let r = (x, y, z) ∈ R
3 and

p = [0, r] ∈ H. Then p′ = qpq−1 is p rotated 2θ about the axis n.

In other words, given a unit vector ||n|| and a rotation angle θ, the unit quaternion
q = [cos θ, sin θn] rotates r ∈ R

3 through the angle 2θ about n. As a consequence of this
proposition, any general three-dimensional rotation R about n (||n|| = 1) with angle θ
can be obtained by a unit quaternion. We compute rotation matrix R using quaternion
q = [qr, qi, qj , qk] by

R =
S

||q||2 (E.7)

where

S =

⎡
⎢⎣q

2
r + q2i − q2j − q2k 2qiqj − 2qrqk 2qiqk + 2qrqj
2qiqj + 2qrqk q2r − q2i + q2j − q2k 2qjqk − 2qrqi
2qiqk − 2qrqj 2qjqk + 2qrqi q2r − q2i − q2j + q2k

⎤
⎥⎦ . (E.8)

Rotation matrix to unit quaternion conversion.

Due to the fact that ||q|| = q2r + q2i + q2j + q2k = 1, it is straightforward to show that

trace(R) = 4q2r − 1 where rotation R has a form as Eq.(D.2). So qr = ±1
2

»
1 + trace(R)

and

q =

ï
qr,

R32 −R23

4qr
,
R13 −R31

4qr
,
R21 −R12

4qr

ò
. (E.9)

This is numerically stable as long as the trace(R) is not close to -1; otherwise, we risk
dividing by (nearly) zero. In that case, suppose R11 is the largest diagonal entry, so qi
will have the largest magnitude (the other cases are similar), then the following is safe

qi = ±1

2

√
1 +R11 −R22 −R33; q =

ï
R32 −R23

4qi
, qi,

R12 +R21

4qi
,
R13 +R31

4qi

ò
. (E.10)
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E.2 The exponential and logarithm functions

We need quaternion versions of the real exponential and logarithm functions. The
definitions and a few consequences of them are given here.

Let q ∈ H1, where q = [cos θ, sin θv] as in Proposition E.4. The logarithm function
log is defined

logq ≡ [0, θv]. (E.11)

Note that log[1, 0, 0, 0] = [0, 0, 0, 0] as in the real case. Note also that log q is not in
general a unit quaternion.

For a quaternion of the form q = [0, θv], θ ∈ R, v ∈ R
3, ||v|| = 1, the exponential

function exp is defined by
expq ≡ [cos θ, sin θv]. (E.12)

Note that the exponential and logarithm functions are mutually inverse, and that exp
maps into H1. From the above definition, we can define exponentiation for q ∈ H1,
t ∈ R: Let q ∈ H1, t ∈ R. Exponentiation qt is defined by

qt ≡ exp(t logq). (E.13)

This gives rise to the following:

Proposition E.7. Let q ∈ H1, t ∈ R. Then log(qt) = t logq.

Proposition E.8. Let q ∈ H1 and a, b ∈ R. Then qaqb = qa+b.

Proposition E.9. Let q ∈ H1 and a, b ∈ R. Then (qa)b = qab.

E.3 Geometric intuition

We make some observations that can help the intuitive understanding of rotation
with quaternion.

The unit quaternion q and q−1. Let q = [qr,v] ∈ H1, then

[qr,v]
−1 = q−1 = q∗ = [qr,−v]. (E.14)

q−1 rotates the same number of degrees as q, but the axis points in the opposite direction.
By inverting the axis and preserving the direction of rotation, a subsequent rotation by
q−1 cancels out the effect of the rotation q.

The quaternions q and −q. From Eq.(E.7), R(q) = R(−q). The quaternion
−q represents exactly the same rotation as q. As a geometrical explanation, if q =
[cos θ

2 , sin
θ
2n], then −q = [cos θ+2π

2 , sin θ+2π
2 n]. Rotations of angle θ and θ + 2π are the

same.

Non-unit quaternions. Follows from Proposition E.5, all quaternions on the line
rq, r ∈ R, r �= 0 represent the same rotation.
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Appendix F

Concepts on SE(3)

F.1 Basic definitions

Throughout this appendix, we use the language of Lie groups and Lie algebras,
but our development does not rely on anything other than elementary knowledge of the
theory of Lie groups. A more in-deep treatment of some of the topics covered in this
appendix can be found in [Gallier11], [Sattinger+13].

A d-dimensional manifold M is a topological space where every point p ∈ M is
endowed with local Euclidean structure. Another way of saying is: the neighborhood of
every point p is homeomorphic to an open ball in R

d. (A function that maps from M

to R
d is homeomorphic if it is a bicontinuous function, that is, both f(·) and its inverse

f(·)−1 are continuous). For example, in the case of M = SO(3), we have d = 3, so SO(3)
is a 3-manifold.

A d-dimensional differentiable manifold M embedded in R
n (with n ≥ d) has an

associated d-dimensional tangent space for every point p ∈M. This space is denoted as
TpM. The points p are called non-singular points if the dimension of the tangent space
at p is identical to that of the manifold; otherwise, they are called singular points and a
curve that crossed itself does not have a unique tangent line at these points. Informally,
a tangent space can be visualized as the vector space of the derivatives at p of all possible
smooth curves that pass through p, e.g. TpM contains all the possible “velocity” vectors
of a particle at p and constrained to M.

Geodesics are defined simply to be locally shortest path on a manifold M. In the
case of M = R

d, geodesics are straight lines.

A Lie group is a group G which is at the same time a differentiable manifold having
the property that a mapping G → G induced by left or right multiplication by a fixed
element g ∈ G is smooth and the mapping g �→ g−1 is smooth. For example, SO(3) and
SE(3) are Lie groups. By the way, Rn can be also considered a Lie group for any n ≥ 1.

Associated with a Lie group G, there is a Lie algebra g. The connection between
these two entities is the exponential map taking an element Ω ∈ g to its (matrix) expo-
nential exp(Ω) which is an element in Lie group G.
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F.2 SE(3) as a Lie group

F.2.1 Properties

The special Euclidean group of transformation is denoted as SE(3), and its members
are the set of 4× 4 matrices with this structure:

T =

ñ
R t
0� 1

ô
(F.1)

with R ∈ SO(3), t = [tx, ty, tz]
� ∈ R

3 and group product the standard matrix product.
SE(3) is a 6-dimensional manifold, i.e. it has 6 DoF. Three DoF correspond to the 3D
translation vector and the other three DoF to the rotation. SE(3) is not isomorphic to
SO(3)×R3 as a group, since the group multiplication of both groups are different. It is
said that SE(3) is a semidirect product of the groups SO(3) and R

3.

F.2.2 Lie algebra of SO(3)

Since SE(3) has the manifold structure of the product SO(3)×R3, it makes sense to
define first the properties of SO(3), which is also a Lie group. The group SO(3) has an
associated Lie algebra so(3) consisting of the set of all skew-symmetric 3 × 3 matrices.
The generators of so(3) are

so(3) =
{
G
so(3)
i

}
i=1,2,3

, G
so(3)
1 =

⎡
⎢⎣10
0

⎤
⎥⎦
×

=

⎡
⎢⎣0 0 0
0 0 −1
0 1 0

⎤
⎥⎦ ,

G
so(3)
2 =

⎡
⎢⎣01
0

⎤
⎥⎦
×

=

⎡
⎢⎣ 0 0 1
0 0 0
−1 0 0

⎤
⎥⎦ , G

so(3)
3 =

⎡
⎢⎣00
1

⎤
⎥⎦
×

=

⎡
⎢⎣0 −1 0
1 0 0
0 0 0

⎤
⎥⎦

(F.2)

where the skew-symmetric matrix operator [·]× is defined in Eq.(2.12).

The exponential map of so(3) is

exp : so(3) → SO(3)

[ω]× �→ R3×3 =
∑
i≥0

([ω]×)i

i! . (F.3)

It corresponds to the matrix exponentiation. The closed-form solution can be computed
using the Rodrigues’ formula:

eω ≡ e[ω]× =

⎧⎪⎨
⎪⎩

I3 + [ω]× +
1

2
[ω]2× for θ → 0

I3 +
sin θ

θ
[ω]× +

1− cos θ

θ2
[ω]2× else

(F.4)

where the angle θ = ||ω||2 and [ω]× is the skew symmetric matrix generated by the
3-vector ω.

The logarithm map is
log : SO(3) → so(3)

R3×3 �→ [ω]×.
(F.5)
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It is the inverse of the exp function defined above and corresponds to the logarithm of
the 3× 3 rotation matrices. The Rodrigues rotation formula gives:

log(R) =

⎧⎪⎪⎨
⎪⎪⎩

1

2
(R− R�) = 03×3 for d→ ±1

arccos(d)

2
√
1− d2

(R− R�) for d ∈ (−1, 1)
where d =

1

2
(trace(R)− 1). (F.6)

F.2.3 Lie algebra of SE(3)

The group SE(3) has an associated Lie algebra se(3) whose generators are six 4× 4
matrices, each corresponding to either rotation or translation along each axis:

se(3) =
{
G
se(3)
i

}
i=1,...,6

, G
se(3)
1,2,3 =

⎡
⎢⎢⎢⎣ G

so(3)
{1,2,3}

0
0
0

03×1 0

⎤
⎥⎥⎥⎦ ,

G
se(3)
4 =

⎡
⎢⎢⎢⎣ 03×3

1
0
0

03×1 0

⎤
⎥⎥⎥⎦ , G

se(3)
5 =

⎡
⎢⎢⎢⎣ 03×3

0
1
0

03×1 0

⎤
⎥⎥⎥⎦ , G

se(3)
6 =

⎡
⎢⎢⎢⎣ 03×3

0
0
1

03×1 0

⎤
⎥⎥⎥⎦ .

(F.7)

The exponential map
exp : se(3)→ SE(3) (F.8)

has the closed form:

exp(υ, ω)se(3) =

ñ
exp([ω]×) Vυ

0 1

ô
∈ SE(3) (F.9)

where the linear map V : R3 → R
3 is invertible and has the closed-form solution [Gal-

lier11]:

V =

⎧⎪⎨
⎪⎩

I+
1

2
[ω]× +

1

6
[ω]2× for θ → 0

I+
1− cos θ

θ2
[ω]× +

θ − sin θ

θ3
[ω]2× else

(F.10)

where the angle θ = ||ω||2.
The logarithm map is

log : SE(3) → se(3)ñ
R t
0� 1

ô
�→ (υ, ω)

(F.11)

where [ω]× = log(R) (see Eq.(F.6)) and υ = V−1t with V defined in Eq.(F.10).
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Appendix G

Rolling shutter calibration using
strobe

Stroboscope STA10K (langlois-france.com) with xenon lamp and a power of 40W
(Figure G.1) is used in our setup. The rotation speed vr in revolutions/minute (rpm)
is indicated by LED digital display. The period To of stroboscope flash is calculated
by 60/vr in seconds. As can be seen in Figure G.2 and G.3, the images exposed by
strobe flash have two or more distinct parts corresponding to on and off periods of the
strobe flash due to the sequential read-out on the CMOS chip. One part of the image
is brightly lit by a flash light, while the next part is dark and unlit, as the flash was off
by the the time that the part of the CMOS was sequenced. The difference between two
parts of the same frame can be observed in Figure G.2 for Gopro camera and the top
corners in Figure G.3 for Ricoh Theta S camera.

If we measure the number of image rows N during a flash period, the line delay can
be obtained as:

τ =
To

N
=

60

vrN
(G.1)

where vr is rotation speed indicated by LED digital display. For the first case Gopro
in Figure G.2, vr = 8442 rpm, N = 781 (315 lit lines + 466 unlit lines) on average, so
τ = 9.10 μs. For the second case Ricoh Theta S in Figure G.3, vr = 8980 rpm, N = 208
(108 lit lines + 100 unlit lines) on average, we obtain τ = 32.1 μs. Furthermore,
in Figure G.3, the sequences of bands of the flash light in left and right images are
synchronous visibly. We can verify that two cameras are synchronous.

Figure G.1: Stroboscope STA10K.
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Rolling shutter calibration using strobe

Figure G.2: Gopro camera observing a wall periodically flashed by a stroboscope
(best viewed in the electronic version).

Figure G.3: Ricoh Theta S camera observing a room periodically flashed by a stro-
boscope. The flash/no flash can be seen on the wall at the top of the circular images

(best viewed in the electronic version).
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Appendix H

Sparsity of Z in the RCS

H.1 Notations and prerequisites

If L1 and L2 are two lists of integers, we use notations

L1 + L2 = {i1 + i2, i1 ∈ L1, i2 ∈ L2}, (H.1)

L1 × L2 = {(i1, i2), i1 ∈ L1, i2 ∈ L2}, (H.2)

(L1)
2 = L1 × L1. (H.3)

We also use Eq.(H.1) if L1 and L2 are two lists of integer pairs. If a matrix A is partitioned
by blocks Ai (horizontally or vertically), we define an index list

L(A) = {i, Ai �= 0}. (H.4)

If a matrix A is partitioned by blocks Aij (both horizontally and vertically), we define a
list of index pairs

L(A) = {(i, j), Ai,j �= 0}. (H.5)

If matrices A and B are horizontally partitioned by blocks Ai and Bj respectively, A�B is
partitioned by blocks A�i Bj and for these blocks, we have

L(A�B) ⊆ L(A)× L(B). (H.6)

If C =
∑

i Ci and all Ci have the same block partition,

L(C) ⊆ ∪iL(Ci). (H.7)

If all blocks considered by L have the same size a× b, we can write La×b instead of L.

In practice, it is improbable that a product or sum of non-zero matrices is zero.
Thus, we replace the inclusions above by equalities in our proof, i.e. we use

L(A�B) = L(A)× L(B) and L(C) = ∪iL(Ci). (H.8)

Let Zg and Zr be the 6(m + 1) × 6(m + 1) top-left blocks of the RCS in the stan-
dard case (GS in Chapter 5) and the (RS, SFA) case in Chapter 6 (more details in
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Section 6.5.2), respectively. In the next section, we show that

L6×6(Z
r) = L6×6(Z

g) + {−1, 0,+1}2. (H.9)

In these expressions and the following ones, we implicitly omit integers that are below
0 and above m (e.g. we omit i− 1 if i = 0 and omit i+ 1 if i = m).

H.2 Proof of Eq.(H.9)

The image projection function of the l-th 3D point in the i-th multi-camera pose is
ϕg
i,l in the standard GS case (in Chapter 5) and ϕr

i,l in the (RS, SFA) case in Chapter 6.
According to Section 6.5.2, we have

ϕg
i,l = ϕ(mi,m

′,Xl) and ϕr
i,l = ϕ(mi−1,mi,mi+1,m

′,Xl). (H.10)

Thus,
∂ϕg

i,l

∂mi′
�= 0 iff i′ = i, and

∂ϕr
i,l

∂mi′
�= 0 iff i′ ∈ {i− 1, i, i+ 1}. We rewrite this using the

notations in Appendix H.1:

L2×6

(
∂ϕg

i,l

∂M

)
= {i} and L2×6

Ç
∂ϕr

i,l

∂M

å
= {i− 1, i, i+ 1}. (H.11)

Notations ϕi,l and Z, U, . . . are used in expressions that hold for both “r” and “g” upper-
indices added to these notations. Let Vl be the list of keyframe indices where the l-th
point is inlier. According to Eqs.(5.12), (5.16), (6.46) and (6.47), we have Z = U−WV−1W�

where

U =
∑
i∈Vl

Å
∂ϕi,l

∂M

ã� ∂ϕi,l

∂M
, W =

∑
i∈Vl

Å
∂ϕi,l

∂M

ã� ∂ϕi,l

∂X
, V =

∑
i∈Vl

Å
∂ϕi,l

∂X

ã� ∂ϕi,l

∂X
. (H.12)

Sine L6×6(U) = ∪i∈Vl

(
L2×6

(
∂ϕi,l

∂M

))2
, we have

L6×6(U
g) = ∪i{(i, i)} and

L6×6(U
r) = ∪i{(i− 1, i, i+ 1)}2 = {(−1, 0,+1)}2 + ∪i{(i, i)}. (H.13)

Furthermore, W in Eqs.(5.12) and (6.46) are horizontally partitioned in blocks Wl =∑
i∈Vl

(
∂ϕi,l

∂M

)� ∂ϕi,l

∂Xl . Since

L6×3(Wl) = ∪i∈Vl
L6×3

ÇÅ
∂ϕi,l

∂M

ã� ∂ϕi,l

∂Xl

å
= ∪i∈Vl

L2×6

Å
∂ϕi,l

∂M

ã
, (H.14)

we have
L6×3(W

g
l ) = Vl and L6×3(W

r
l ) = Vl + {−1, 0,+1}. (H.15)

Since V in in Eqs.(5.12) and (6.46) are block-wise diagonal with invertible blocks Vl =∑
i∈Vl

(
∂ϕi,l

∂Xl

)� ∂ϕi,l

∂Xl and WV−1W� =
∑

l WlV
−1
l W�l , we have L6×6(WV

−1W�) = ∪l(L6×3(Wl))
2

Thus,

L6×6(W
gV−1(Wg)�) = ∪l(Vl)

2 and
L6×6(W

rV−1(Wr)�) = ∪l(Vl + {−1, 0,+1})2 = {−1, 0,+1}2 + ∪l(Vl)
2.

(H.16)
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Thus,
L6×6(Z

g) = ∪i(i, i) ∪l (Vl)
2 and

L6×6(Z
r) = {−1, 0,+1}2 + (∪i{(i, i)} ∪l (Vl)

2).
(H.17)

We obtain Eq.(H.9).
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Annexe I

Résumé étendu en français

De nombreuses caméras à 360o et sphériques existent maintenant sur le marché
(par exemple, une multi-caméra composée de plusieurs caméras Gopro rigidement liées
[360rize] ; ou [ThetaS], [Gear360], [Virb360], [Ladybug2]). Avant son utilisation, une
telle caméra doit tout d’abord être synchronisée et étalonnée. Les travaux de cette thèse
proposent des méthodes souples permettant de synchroniser et d’auto-étalonner (in-
trinsèquement et extrinsèquement) plusieurs caméras grand public sans faire l’hypothèse
qu’elles ont des champs de vue communs, et sans utiliser de mire d’étalonnage ou de
cibles.
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chronisation à précision sous-trame . . . . . . . . . . . . . . . 169
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I.6.2 Trajectoire de multi-caméra . . . . . . . . . . . . . . . . . . . . 171
I.6.3 Projection dans une image . . . . . . . . . . . . . . . . . . . . . 172

I.7 Expérimentations . . . . . . . . . . . . . . . . . . . . . . . . . 173
I.7.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
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I.1 Introduction

I.1.1 Motivation

Les caméras omnidirectionnelles sont utilisées, entre autres, dans des applications
de surveillance, navigation, robotique, réalité virtuelle, télé-présence, etc. Certaines ap-
plications nécessitent un modèle numérique d’un environnement. A côte des scanners
(LIDAR, temps de vol, lumière structure) qui sont très précis mais coûteux et difficile-
ment embarquables, les caméras sont un choix économique et convivial pour l’utilisateur.
De plus, la modélisation efficace d’un environnement complet nécessite une acquisition
sur (quasiment) l’ensemble de la sphère de vue. C’est une des raisons pour lesquelles, on
considère ici un capteur omnidirectionnel et “multi-caméra” formé de plusieurs caméras
grand public fixées rigidement. Par exemple, nous utilisons quatre caméras GoPro [Go-
Pro] enfermées dans une bôıte en carton et fixées sur un casque (Figure I.1). L’utilisateur
se déplace à pied, vélo ou autres dans des environnements urbains et naturels. On se
concentre ici sur les étapes de synchronisation et d’auto-étalonnage de la multi-caméra.

La synchronisation est essentielle afin d’intégrer l’information disponible à partir de
plusieurs vidéos simultanément. Même si une télécommande Wifi permet de démarrer
toutes les vidéos en même temps en un clic, cette synchronisation n’est pas assez précise
pour des applications de vidéo 360 ou modélisation 3D (l’écart entre deux vidéos est de
l’ordre de 0.04 seconde et peut parfois dépasser 0.1 seconde) pour les GoPro Hero3. De
plus, à chaque utilisation de la télécommande, les décalages temporels entre vidéos ne
sont pas les mêmes.

L’étalonnage consiste à trouver la relation (définie par une fonction) entre un point
3D dans l’espace et sa projection dans l’image de la (multi-)caméra. On modélise un
système multi-caméra par un ensemble de n caméras distinctes de la manière suivante :
un modèle de caméra est choisi pour les paramètres intrinsèques de chaque caméra ; on
définit pour chaque caméra une transformation dans le repère multi-caméra (ce sont
les paramètres extrinsèques). Si besoin est, des matrices de passage entre deux caméras
(leurs poses relatives) peuvent s’exprimer avec les paramètres extrinsèques. De plus, on
initialise les paramètres intrinsèques grâce à des hypothèses appropriées à une caméra
omnidirectionnelle sans direction privilégiée : toutes les caméras ont la même configura-
tion (fréquence, résolution, champs de vue) et sont approximativement équiangulaires.
On peut mettre beaucoup de caméras afin d’augmenter les recouvrements de champs
de vues (ce qui facilite la mise en correspondance entre caméras), mais la baseline entre
caméras et le prix augmentent. Dans notre cas, ces recouvrements sont trop petits pour
obtenir automatiquement une mise en correspondance entre caméras. On développe une
méthode flexible qui permet d’étalonner le système multi-caméra. La flexibilité est liée
à la simplicité de la mise en oeuvre : pas besoin de mire, ni de connaissance précise de
la géométrie.

Les caméras d’entrée de gamme sont “rolling shutter” (RS), et ceci est dû à la
technologie CMOS (“Complementary Metal Oxide Semiconductor”). Cette technologie
est très prisée pour les capteurs à faible coût en raison des nombreux avantages : faible
consommation électrique ; simplicité du circuit et donc encombrement réduit ; et un coût
très avantageux. CMOS est opposée à la technologie CCD (“Charge-Coupled Device”)
qui est généralement utilisée pour fabriquer les capteurs haut de gamme ou nécessitant
un rapport signal sur bruit très élevé. Pour une caméra RS, chaque ligne de pixels est
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acquise à un instant différent (autrement, une caméra est “global shutter” (GS) et tous
ses pixels ont la même date). Lorsque la scène est figée (avec illumination constante)
et que la caméra est fixée, l’image obtenue ne contient que les distorsions résultant
du bruit de capteur et du système optique, comme c’est le cas avec une caméra GS.
En revanche si la caméra se déplace ou que la scène est mobile ou que l’illumination
change soudainement, alors des distorsions ou artefacts apparaissent dans l’image ou la
vidéo acquise. Ceux-ci sont d’autant plus notables à l’oeil que la vitesse de l’utilisateur
augmente.

I.1.2 Travaux antérieurs

Synchronisation. L’article [Gaspar+14] propose un état de l’art sur la synchronisa-
tion de vidéos, mais ces méthodes nécessitent une mise en correspondance entre caméras
ou un champ de vue (partiellement) recouvrant, ou sont conçues pour un système de
caméras non rigide. Certaines méthodes ont une précision “sous-trame” : le décalage tem-
porel entre deux vidéos est un nombre d’images non entier (un réel). Plusieurs méthodes
exploitent les points d’intérêt observés dans les vidéos et alignent des vidéos en se basant
sur des caractéristiques visuelles. Une méthode voisine de la notre [Spencer+04] évite
une mise en correspondance entre caméras : elle calcule pour chaque vidéo une suite de
transformations entre images successives, et le décalage temporel est celui qui corrèle le
mieux les suites de deux vidéos. Un exemple intuitif est celui où la transformation est
la translation 2D calculée avec un suivi de points : plus la translation est grande dans
une vidéo, plus la translation est grande dans une autre.

Auto-étalonnage de caméras. Dans le cas d’une caméra (monoculaire), il y a une
approche classique [Hartley+04], [Triggs+00] pour estimer les paramètres intrinsèques.
Ses étapes sont : reconstruction projective, auto-calibration (ex : en supposant que les
pixels sont carrés), et ajustement de faisceaux (AF). La distorsion radiale peut aussi se
calculer [Micusik+06]. Dans le cas d’une multi-caméra, il faut d’abord une estimation
initiale des poses entre caméras (i.e. rotations et translations relatives entre caméras). On
peut les calculer à partir de reconstructions obtenues séparément pour chaque caméra, et
si elles sont synchronisées. Il y a deux types de méthodes pour cela : des récalages basés
sur les points 3D [Carrera+11] ou sur les poses [Esquivel+07]. Dans le premier cas, les
points sont mis en correspondance grâce à leur projections dans deux caméras différentes
embarquées sur un robot (qui doit faire un tour sur lui-même) et par l’estimation robuste
d’une similitude. Dans le second cas, la contrainte de rigidité entre les différents capteurs
du système multi-caméra en mouvement est utilisée. L’évolution temporelle de la pose
de chaque caméra est déterminée. Puis, on déduit la pose relative entre les différentes
caméras (paramètres extrinsèques) qui ne varie pas au cours du temps. Le mouvement
ne doit pas être une translation pure.

Il faut enfin raffiner la géométrie multi-caméra avec un AF. L’AF de [Lébraly+11]
raffine les poses relatives entre caméras, en plus des poses multi-caméras et des points
3D, en minimisant une erreur de reprojection dans l’espace image rectifié du modèle
de distorsion polynomial classique [Lavest+98], [Sturm+11]. L’AF de [Schneider+13]
traite le cas de points à l’infini et utilise les directions de rayons comme observations.
Le raffinement simultané avec les paramètres intrinsèques (focale, distorsion, etc) n’est
suggéré qu’en travaux futurs dans [Lébraly+11] et [Schneider+13].
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Figure I.1: Multi-caméras et images capturées. De haut en bas : quatre caméras
Gopro Hero3 enfermées dans une bôıte en carton ; quatre caméras Gopro Hero3 dans

leurs coques ; PointGrey Ladybug2 et Ricoh Theta S.
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Ajustement de faisceaux pour une caméra rolling shutter. Les AFs antérieurs
monoculaires estiment le coefficient de RS (“line delay”) en supposant que les points 3D
sont connus et sur une mire d’étalonnage [Oth+13] ; ou imposent ce coefficient de RS
connu [Hedborg+12], [Duchamp+15]. Les AFs précédents de multi-caméra n’estiment
ni la synchronisation ni le coefficient de RS ; seuls [Klingner+13] et [Saurer+16] traitent
le cas où le coefficient de RS est connu mais ont besoin d’autres capteurs.

Chaque AF RS a un modèle de la trajectoire de la caméra qui fournit la position
de la caméra à chaque ligne d’une trame, et qui devrait avoir un nombre modéré de
paramètres à estimer. Dans l’article [Hedborg+12], une pose est estimée à chaque image
par AF et les poses entre deux trames consécutives sont interpolées à partir des poses de
ces deux trames. L’AF dans [Duchamp+15] ajoute des paramètres supplémentaires pour
éviter cette hypothèse d’interpolation linéaire : cette méthode optimise non seulement
la pose mais aussi des vitesses de rotation et de translation à chaque image clé. Dans
[Oth+13], un modèle de trajectoire en temps continu utilise des B-splines et l’AF opti-
mise les noeuds des splines. Cette méthode choisit le nombre de noeuds et initialise leur
distribution le long de la trajectoire. Dans [Klingner+13], la pose relative entre une pose
inter-trame et une pose de trame optimisée est fournie par une centrale inertielle (IMU)
à haute fréquence. Dans le travail de [Saurer+16], les vitesses de rotation et de trans-
lation sont également estimées à chaque image (il y a seulement 4 images par seconde)
et l’AF applique une contrainte de pose relative en utilisant les données GPS/INS. Les
méthodes [Hedborg+12], [Oth+13], [Duchamp+15] sont expérimentées sur des trajec-
toires de caméras de quelques mètres de long. Notre approche est purement visuelle et
traite de trajectoires plus longues (centaines de mètres ou kilomètres) car elle estime
seulement des poses aux images clés.

Dans le contexte d’un multi-capteur général, [Furgale+13] estime simultanément les
décalages en temps et en espace entre les capteurs. Dans les expériences, le multi-capteur
est composé d’une caméra et d’une IMU. La meilleure précision est obtenue grâce à
l’utilisation de toutes les mesures à la fois, une représentation continue (une B-spline pour
les poses IMU) et un estimateur au maximum de vraisemblance des paramètres (décalage
temporel, transformation entre IMU et caméra, poses IMU et autres). [Lovegrove+13]
propose un auto-étalonnage (synchronisation, poses relatives, paramètres intrinsèques)
pour un multi-capteur inertiel-caméra par un AF local. Grâce à un paramétrage adéquat
du mouvement continu, il traite également des caméras RS et a un meilleur paramétrage
des rotations. En effet, il évite les singularités du paramétrage global et minimal des
rotations (qu’il y a dans [Furgale+13]), mais suppose que le temps entre deux images clés
consécutives est constant (uniforme). Nous proposons un paramétrage minimal global
de la rotation et traitons la distribution non-uniforme des images clés fournies par le
Structure-from-Motion (SfM) standard [Mouragnon+07], [Mouragnon+09].

I.1.3 Contributions

Nos contributions ne portent pas sur l’initialisation des paramètres intrinsèques/
extrinsèques mais sur la synchronisation, l’AF et le rolling shutter. Ici, on applique
des SfM monoculaire et multi-caméras [Mouragnon+07], [Mouragnon+09] avec des pa-
ramètres intrinsèques approximativement connus, qui sont ensuite raffinés par AF. On
a une estimation initiale des paramètres intrinsèques de chaque caméra car on connâıt
approximativement leur champs de vue et elles sont approximativement équiangulaires
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(Section I.1.1). On a aussi une estimation initiale des poses relatives entre caméras
(mêmes centres, rotation d’angle 2π/n entre deux caméras adjacentes pour n caméras).

Synchronisation. On n’utilise pas directement les points d’intérêt mais les poses
successives de chaque caméra calculées par SfM monoculaire. Comme les caméras sont
rigidement liées les unes aux autres, elles ont la même vitesse de rotation au même ins-
tant. On calcule donc une vitesse de rotation au cours du temps pour chaque caméra,
et on cherche les décalages qui les font le mieux correspondre. La transformation uti-
lisée dans [Spencer+04] n’est pas une rotation mais une translation (heuristique) ou
homographie/matrice fondamentale qui ne tient pas compte de la distorsion radiale des
caméras.

Ajustement de faisceaux.Nous améliorons de deux façons l’AF dans [Lébraly+11]
qui est basé sur le modèle de distorsion polynomial classique [Lavest+98], [Sturm+11]
pour une caméra. Notre AF raffine les paramètres intrinsèques, pas seulement les pa-
ramètres extrinsèques entre caméras et les autres paramètres 3D (poses multi-caméras et
points 3D). Il minimise l’erreur de reprojection dans l’espace image original (i.e. l’espace
“distordu” où les points d’images sont détectés), pas dans l’espace image rectifié. Sous
l’hypothèse habituelle que les bruits d’images sont de moyennes nulles, indépendants, et
ont des distributions normales et identiques, notre AF est un estimateur au maximum
de vraisemblance (cette hypothèse n’est pas vraie dans l’espace image rectifié).

Nous proposons une nouvelle méthode flexible pour obtenir non seulement les pa-
ramètres habituels mais aussi la synchronisation à précision sous-trame et le coefficient
de rolling shutter. On commence par une calibration initiale avec le modèle d’une caméra
le plus simple (le modèle de caméra GS) et la synchronisation à précision trame (FA) en
utilisant les méthodes précédants. Notre AF fournit la synchronisation à précision sous-
trame (SFA), i.e. il estime les décalages à précision réelle entre une vidéo de référence
et les autres. Il estime également le coefficient de RS, i.e. le décalage séparant l’acqui-
sition de deux lignes consécutives de l’image. De plus, on fait des expériences sur des
trajectoires longues (centaines de mètres ou kilomètres) sans capteur additionnel.

I.2 Vue générale de notre méthode

D’abord, le modèle de caméra monoculaire est initialisé comme indiqué dans la
Section I.3 en supposant que les fisheyes sont approximativement équiangulaires et en
utilisant une connaissance approximative de leur angle de champs de vue. Les modèles
de caméra que nous expérimentons sont le modèle de distorsion polynomiale classique
[Lavest+98], [Sturm+11], [Lébraly+11] et le modèle de caméra unifié [Geyer+00].

Deuxièmement, nous appliquons le SfM monoculaire [Mouragnon+07], [Moura-
gnon+09] et un raffinement d’étalonnage par AF pour chaque caméra. Cependant, le
SfM peut échouer sur une vidéo à cause de la combinaison de deux difficultés : manque
de texture et étalonnage approximatif. Nous supposons qu’il existe au moins une vidéo
sur laquelle les SfM et AF réussissent. Étant donné que les caméras ont le même réglage,
nous bénéficions des paramètres intrinsèques raffinés par l’AF pour refaire le SfM mo-
noculaire des autres vidéos. Ainsi, une difficulté (étalonnage approximatif) est réduite
pour les vidéos les moins texturées et le risque d’échec diminue.
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Troisièmement, une synchronisation à précision entière entre toutes les vidéos est
obtenue en utilisant la méthode dans la Section I.4. A partir de là, on saute quelques
images au début de chaque vidéo, de sorte que les restes des vidéos sont synchronisées
à précision “trame” : dorénavant dans ce résumé, les images avec le même index sont
prises en même temps modulo l’inverse du nombre d’images par seconde (ou frame per
second en anglais - FpS).

Quatrièmement, une calibration de multi-caméra centrale est initialisée à partir
des paramètres intrinsèques monoculaires estimés et des rotations inter-caméra approxi-
matives (Section I.5). Nous appliquons le SfM multi-caméra [Mouragnon+07], [Mou-
ragnon+09] suivi de l’AF multi-caméra [Lébraly+11] en ajoutant les paramètres in-
trinsèques comme nouveaux paramètres estimés. Jusqu’à maintenant, nous avons fait
trois approximations : global shutter, multi-caméras centrale et décalages temporels sous-
trame à zéro. En outre, nous avons seulement appliqués les SfM (à la fois monoculaire
et multi-caméras) au début des vidéos pour obtenir la synchronisation et l’étalonnage
initiaux (les 2k premières trames dans nos expériences). Ensuite, le SfM multi-caméras
est appliqué une deuxième fois sur les vidéos complètes (sauf les quelques images au
début sautées).

Enfin, nous appliquons l’AF multi-caméra dans la Section I.6 pour estimer la syn-
chronisation à précision sous-trame et le retard de ligne (line delay) avec les paramètres
habituels dont les paramètres intrinsèques.

I.3 Initialisation en caméra équiangulaire

Dans notre travail, nous utilisons deux modèles de caméra monoculaires. Les deux
impliquent une matrice de paramètres intrinsèques K d’une caméra perspective : les
distances focales fx, fy, et les coordonnées en pixel du point principal p0(u0, v0)

� dans
l’image.

Les déformations géométriques engendrées par l’objectif d’une caméra peuvent être
modélisées par des distorsions radiales (et tangentielles) - le modèle de distorsion poly-
nomial classique [Lavest+98], [Sturm+11], [Lébraly+11]. Ce modèle est souvent utilisé
pour les calculs de SfM et de géométrie épipolaire (pour apparier) car sa projection
inverse est explicite. Le point image non-distordu (et le rayon) peut s’obtenir par une
transformation polynomiale du point image distordu (original) p. En pratique, on choi-
sit un polynôme de degré l à coefficients ki en r2d, où rd est la distance radiale entre
l’axe principal et le point distordu et les ki sont les paramètres de distorsion radiale
(0 ≤ i ≤ l). Ce modèle peut être appliqué à des caméras grand public telle que Gopro
[GoPro]. Mais, celui-ci ne permet pas d’obtenir directement le point image distordu p
car il n’y a pas de formule générale permettant d’exprimer les racines pour un polynôme
de degré l = 5 (ou plus). Une méthode utilisée est celle de Gauss-Newton (ou Newton)
qui a la particularité de converger très vite vers la solution de l’équation.

Le deuxième modèle est le modèle unifié de caméra [Geyer+00] qui est aussi intéres-
sant car il modélise les caméras grand angle (fisheye) ayant un champ de vue supérieur
à 180o (comme celles des caméras sphériques [ThetaS]) bien qu’il ait un seul paramètre
de distorsion radiale ξ. Pour cela, la projection de ce modèle est la composée de deux
projections : la projection sur la sphère unité (par rapport à son centre), puis la pro-
jection par une caméra perspective de paramètres intrinsèques K. La projection sur la
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sphère unité permet de modéliser les non-linéarités induites par l’objectif d’une caméra.
Contrairement au modèle précédant modélisant la distorsion par un polynôme, ce modèle
est “inversible” au sens où il est possible de retrouver analytiquement le point sur la
sphère unité à partir du point image p et vice versa.

On initialise en caméra équiangulaire ces deux modèles de caméra. Une caméra
est équiangulaire si l’angle μ entre l’axe principal et le rayon de projection inverse est
proportionnel à la distance radiale non-normalisée rd = ||p−p0|| dans l’image originale.
Dans ce cas, les pixels sont carrés (i.e. fx = fy = f) et des paramètres de distorsions
approximatifs sont obtenus en utilisant un développement de Taylor. En pratique, nous
initialisons p0 au centre de l’image et prenons f = f(rd(p1), μ) pour un pixel p1 au centre
d’un bord d’image où le demi-champ de vue μ est connu approximativement. D’abord,
on effectue le SfM [Mouragnon+07], [Mouragnon+09] sur une des vidéos monoculaire
avec cette calibration équiangulaire. Ensuite, cette calibration est raffinée par AF global.
L’AF global raffine tous les paramètres : les paramètres intrinsèques, les poses de caméra
et la géométrie (les points 3D). Pour les autres vidéos, on refait le SfM avec la calibration
raffinée (résumé dans la Section I.2).

I.4 Synchronisation

L’initialisation de la synchronisation a deux étapes. Tout d’abord, on calcule les
vitesses angulaires instantanées (IAV ou instantaneous angular velocity en anglais) par
SfM monoculaire et un AF avec l’approximation global shutter. Toutes les trames sont
reconstruites en utilisant le SfM basé sur des images clefs suivi par un calcul de pose
pour toutes les images non clefs. Enfin, les vidéos sont synchronisées par un alignement
de leurs vitesses angulaires. En pratique, on ne reconstruit que les 2000 premières (cela
suffit pour synchroniser).

Soit Rtiwi,i
la matrice de passage du repère monde (wi) au repère de la i-ème caméra

pour sa ti-ème image, i.e. la rotation de la caméra i à l’image ti calculée par SfM mono-
culaire. L’IAV θtii à l’instant ti (pour la ti-ème image) de la i-ème vidéo est approchée
par l’angle de Rti+1

wi,i
(Rtiwi,i

)�, qui est

θtii = arccos

(
trace(Rti+1

wi,i
(Rtiwi,i

)�)− 1

2

)
. (I.1)

Soit Rwj ,wi la matrice de passage du repère monde wj au repère monde wi et Rj,i
la pose relative entre deux caméras i et j. Les deux sont constantes : la première est
évidente et la dernière est aussi car les caméras sont rigidement liées les unes aux autres.
Supposons que l’image ti de la caméra i et l’image tj de la caméra j sont prises au même
instant. En calculant Rtiwi,i

de deux façons différentes, on obtient

Rwj ,wiR
ti
wi,i

= R
tj
wj ,j

Rj,i. (I.2)

On a aussi
Rwj ,wiR

ti+1
w,i = R

tj+1
wj ,j

Rj,i (I.3)

car les fréquences des vidéos sont identiques. Donc

R
tj+1
wj ,j

(R
tj
wj ,j

)� = Rwj ,wiR
ti+1
wi,i

(Rtiwi,i
)�R�wj ,wi

. (I.4)
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Comme trace(XY) = trace(YX), on obtient

trace
(
R
tj+1
wj ,j

(R
tj
wj ,j

)�
)
= trace

Ä
Rti+1
wi,i

(Rtiwi,i
)�
ä

(I.5)

Nous voyons maintenant que θ
tj
j = θtii , i.e. toutes les caméras ont ce même angle au même

instant (c’est la vitesse angulaire instantanée de la multi-caméra). On synchronise alors 2
caméras de la manière suivante : on calcule la table des θti pour chaque caméra i, puis on
recherche le décalage entier o (offset) entre tables qui maximise un score de corrélation
(ZNCC) des tables θi et θj

ZNCC(oi,j) =

∑
t

Ä
(θti −mi)(θ

t+oi,j
j −mj)

ä ∑
t

(θti −mi)2
 ∑

t

(θ
t+oi,j
j −mj)2

(I.6)

où mi et mj sont les moyennes de tables θi et θj .

On peut raffiner o à précision “sous-trame” de la façon suivante. La fonction f
qui à ε ∈ [−1,+1] associe le score de corrélation pour le décalage o + ε est connue en
ε ∈ {−1, 0, 1}. On approxime f par un polynôme de degrés 2 connaissant ses valeurs en
{−1, 0, 1}, et ε maximise ce polynôme.

En pratique, on a plus de 2 caméras et on estime les décalages entiers entre caméras
adjacentes i et i + 1, ex : o0,1, o1,2, o2,3, o3,0 dans le cas de 4 caméras. Soit L = o0,1 +
o1,2 + o2,3 + o3,0. L’objectif de la synchronisation est de passer les si premières images
de la i-ème vidéo, de sorte que les vidéos soient synchronisées pour le SfM et l’AF
multi-caméra. On a donc 4 relations si − si+1 = oi,i+1 (indices modulo 4), et ceci n’est
possible que si L = 0. Comme les décalages sont estimés de façon indépendante, on peut
avoir L �= 0. Dans ce cas, on cherche à remplacer chaque décalage o par un autre dans
{o−k, . . . , o−1, . . . , o+k} de sorte à maximiser la somme des corrélations (pour chaque
o) sous la contrainte L = 0 (k = 1 suffit en pratique). Cette méthode se généralise à n
caméras (considérer tous les oi,j , i �= j et toutes les boucles d’adjacentes i→ j → l→ i).

I.5 Auto-étalonnage avec l’hypothèse de global shutter et
synchronisation à précision trame

Soient n ≥ 2 caméras rigidement liées, dont les paramètres intrinsèques Ij(j ∈
{0, 1, . . . , n − 1}) sont initialisés par la méthode dans la Section I.3. Les caméras sont
synchronisée à précision trame et se déplacent le long d’un parcours en observant un
nuage de points 3D X . Soient m + 1 le nombre de poses du système multi-caméra.
Chaque pose du système multi-caméra est représentée par la transformation homogène
TiM (i ∈ {0, 1, . . . ,m}) dans le repère monde. De même, TjC est la transformation ho-
mogène passant du repère de multi-caméra à celui de la j-ème caméra (elle est également
appelée paramètres extrinsèques). Chaque transformation homogène T est exprimée à
l’aide d’une rotation R et d’une translation t. La Figure I.2 illustre géométriquement
l’ensemble du système, ainsi que les paramètres optimisés.

La méthode suivante permet d’obtenir conjointement l’étalonnage (extrinsèque et
intrinsèque) du système multi-caméra, ses poses et la reconstruction d’une carte 3D
d’amers visuels dans un repère monde.
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Figure I.2: Système multi-caméra se déplaçant le long d’une scène statique.

• A partir d’une connaissance approximative sur les paramètres extrinsèques TjC (ou
d’une estimation initiale par des méthodes antérieures), un algorithme de SfM
multi-caméra [Mouragnon+07], [Mouragnon+09] est appliqué. On obtient alors
une reconstruction grossière.

• Les paramètres extrinsèques et intrinsèques, les poses de la multi-caméra et les
points 3D sont optimisés par l’AF multi-caméra (MCBA pour multi-camera bundle
adjustment).

La Figure I.3 illustre une vue d’ensemble de l’algorithme d’étalonnage proposé.

Initialisation
Optimisation non-
linéaire : MCBA

Estimation de tra-
jectoire pour multi-
caméra système

T
j
C

Ij
Ij

′
, Tj

′
C , T

i′
M,X ′

XTiM

P

Figure I.3: Vue d’ensemble de l’étalonnage de système multi-caméra. P est l’ensemble
de points 2D détectés et appariés dans des images clefs sélectionnées. X est l’ensemble

de points 3D reconstruits.

On décrit maintenant le MCBA. Soit p̃ l’observation d’un point 3D Xl ∈ X détectée
dans la sous-image numéro j (prise par la j-ème caméra) de l’image-clef i et p le point
projeté deXl en changeant de repère de coordonnées 3D deux fois (d’abord en passant du
repère monde au repère multi-caméra avec TiM(RiM, tiM) puis en passant du repère multi-

caméra au repère caméra avec TjC(R
j
C, t

j
C)), puis en appliquant la fonction de projection

(dépendant des paramètres intrinsèques Ij). Donc, la projection p de Xl est une fonction

p = f(Ij , RjC, t
j
C, R

i
M, tiM,Xl). (I.7)

Soit εlij = p p̃ l’erreur de reprojection du point Xl observé par la caméra j à la i-ème
pose dans l’espace image original (distordu). La fonction de coût que l’on cherche à
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Résumé étendu en français

minimiser est

F =
1

2

∑
(i,j,l)

(εlij)
�εlij =

1

2
ε�ε (I.8)

où ε est le vecteur résidu qui concatène les erreurs de reprojection εlij . On utilise l’al-
gorithme de Levenberg-Marquardt (LM) [Madsen+04], [Agarwal+] pour minimiser la
fonction de coût F . Il s’agit d’une optimisation non-linéaire itérative qui résout un
problème de moindres carrés en combinant les advantages des optimisations de type
descente de gradient et de Gauss-Newton.

Les rotations sont paramétrées localement par des angles d’Euler incrémentaux
classiques [Triggs+00]. Une implémentation efficace de l’AF multi-caméra utilise à la
fois la structure creuse et l’expression analytique de la matrice Jacobienne des er-
reurs de reprojection en fonction des paramètres à optimiser. Notre méthode est une
amélioration de l’algorithme proposé par [Lébraly+11] : on raffine en plus les paramètres
intrinsèques, et on minimise les erreurs de reprojection dans l’espace image original (de
mesure/détection) pour le modèle distorsion polynomial classique (Section I.3). Sous
l’hypothèse d’un bruit gaussien des points 2D détectés de moyennes nulles, indépendants
et des distributions normales, notre MCBA est un estimateur au maximum de vraisem-
blance. Cette hypothèse n’est pas vraie dans l’espace d’image rectifié. L’extension pour
le modèle de caméra unifié (dans (Section I.3)) est simple.

I.6 Auto-étalonnage avec l’hypothèse de rolling shutter et
synchronisation à précision sous-trame

Une caméra global shutter (GS) expose toutes les lignes simultanément, donc toutes
les lignes ont la même pose. En revanche, pour une caméra rolling shutter (RS), les
différentes lignes sont acquises de manière séquentielle. Lorsque la caméra se déplace,
chaque ligne de pixels a une pose différente. De plus, dans certains cas, par exemple notre
multi-caméra formée de quatre GoPro, les caméras monoculaires enregistrent les vidéos
séparément. Même si toutes les caméras sont synchronisées à précision trame (FA ou
frame-accurate en anglais), il y a encore les décalages sous-trame entre caméras. La syn-
chronisation à précision sous-trame et le rolling shutter (Figure I.4) compliquent notre
calibration pour la même raison : une calibration variable non-centrale. On propose une
méthode spécifique qui estime non seulement les paramètres habituels (les paramètres
intrinsèques et extrinsèques, les poses de caméra, les points 3D) mais aussi la synchro-
nisation et le coefficient de RS. Ici le formalisme diffère de la Section I.5 où l’on a fait
l’hypothèse de synchronisation FA et approximation GS.

Soient n ≥ 2 caméras rigidement liées, initialement synchronisées (à précision
trame) se déplaçant le long d’une trajectoire. Les paramètres intrinsèques et extrinsèques
(RjC, t

j
C) (avec 0 ≤ j ≤ n− 1) sont initialisés en utilisant la méthode dans la Section I.5

sur le début des vidéos (les 2k premières images dans nos expériences). Le SfM avec
l’hypothèse GS [Mouragnon+09] est appliqué sur les séquences complètes, génère m+1
images clés et estime leurs poses mi(R

i
M, tiM) (avec 0 ≤ i ≤ m). La pose d’une caméra

peut changer durant l’acquisition d’une image complète : l’exposition des lignes (de
pixels) différentes de l’image n’est pas synchrone. Lors de la projection d’un point sur
un pixel, il est nécessaire de connâıtre la trajectoire de caméra au moment de l’exposition
de ce pixel. La notation de pose doit donc être étendue pour prendre en compte cette
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Figure I.4: Trajectoire continue en temps d’une multi-caméra. En haut, quatre
caméras monoculaires à l’instant ti, qui ont des décalages temporels non nulles. En bas,
une caméra RS monoculaire, qui se déplace et observe des points à l’instant différent

dan une seule image. Différentes lignes d’une image ont différentes poses.

dépendance au temps. Cela nécessite de nouveaux paramètres, incluant ceux des poses
clés mi, qui définissent les variations de trajectoire de caméra durant l’acquisition.

La Section I.6.1 présente des nouveaux paramètres qui prennent en compte la syn-
chronisation à précision sous-trame et le rolling shutter. Un modèle de trajectoire de
multi-caméra est introduit dans la Section I.6.2. La Section I.6.3 décrit la projection
d’image.

I.6.1 Paramétrage

Dans le cas d’une image global shutter, il n’a qu’une pose puisque l’ensemble des
pixels de l’image sont exposés au même instant. Pour une image rolling shutter, afin
de pouvoir projeter un point 3D sur un pixel de l’image avec la trajectoire de caméra,
il est nécessaire que cette pose M(t) soit définie à l’instant t où le pixel est exposé.
Soit R une fonction de classe C1 surjective qui à tout vecteur dans R

k associe une
rotation dans l’ensemble SO(3). Pour donner un sens plus précis, il faut s’intéresser à
la paramétrisation de pose M(t)� =

Ä
tM(t)�rM(t)�

ä
où tM(t) ∈ R

3 est la translation
et R(rM(t)) ∈ SO(3) est la rotation. Pour la rotation, on utilise des angles d’Euler
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(globaux) sous forme de vecteurs à trois coordonnées ou des quaternions sous forme de
vecteurs à quatre coordonnées (donc k = 3 ou k = 4). Pour des angles d’Euler, on évite
les cas de singularité en considérant une classe de trajectoires de multi-caméra : tous
les mouvements de lacet sont possibles, mais ceux de tangage et de roulis sont petits.
De tels mouvements sont très fréquents pour une multi-caméra fixée sur un casque et
un utilisateur explorant l’environnement sans objectif spécial, comme la saisie l’objet
sur le terrain (et aussi pour une multi-caméra fixée sur un véhicule). Pour éviter ces
singularités, on change les repères monde et multi-caméra tels que l’angle de rotation
selon l’axe oy est proche de 0 pour toutes les rotations d’images clés de la trajectoire de
multi-caméra avant notre AF.

Comme la caméra est RS, le temps τ séparant l’exposition de lignes adjacentes est
tel que la v-ème ligne de la première sous-image dans la i-ème trame clé est prise au
temps ti+ vτ . De plus, nous avons une multi-caméra. La i-ème trame clé de cette multi-
caméra est composée de sous-images prises par les caméras monoculaires (Figure I.5).
Soit Δj ∈ R le décalage réel entre la j-ème vidéo et la première vidéo. La première ligne
de la j-ème sous-image dans la i-ème trame clé est donc prise à l’instant ti+Δj . Comme
toutes les caméras ont la même fréquence et le même décalage τ (constant), la v-ème
ligne de la j-ème sous-image dans la i-ème trame clé est prise au moment

t(v) = ti +Δj + vτ. (I.9)

On prend mi = M(ti), ce qui correspond à la pose lors de l’exposition ti de la première
ligne de la première sous-image de la trame clé i. En utilisant les poses clés mi voisines,
des approches pour estimer une pose M(t) à l’instant t sont présentées dans la prochaine
partie.

t
ti−1 ti ti+1

Δ1

Δ2

Δ3

t(v) t(v + 1)

v
v + 1

t

τ

Figure I.5: Paramètres de temps, rolling shutter et synchronisation. A gauche, Δj est
le décalage réel entre la j-ème vidéo et la première vidéo. A droite, τ est le décalage
entre l’exposition de deux lignes successives. La caméra se déplace pendant l’exposition

d’une image.

I.6.2 Trajectoire de multi-caméra

On propose une approximation dans l’espace Euclidien R
k qui utilise des développe-

ment de Taylor, et dont on peut calculer les dérivées analytiques facilement. On considère
aussi deux interpolations sphériques (Squad pour les quaternions unitaires [Dam+98]
et spline [Jakubiak+06]). Les deux dernières sont plus complexes, y compris pour les
dérivées. Dans la cadre de ce résumé, on présente seulement l’approximation linéaire
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M1(t) de M(t) dans l’espace Euclidien qui non seulement est efficace au niveau d’implé-
mentation, mais aussi donne des résultats au moins aussi précis que des interpolations
sphériques dans la majorité de nos expériences. Plus de détails sur ces interpolations
sphériques sont présentés dans les chapitres précédents de ce mémoire.

On a le développement de Taylor :

M(t) = mi + (t− ti)Ṁ(ti) +O(|t− ti|2). (I.10)

Soit δ = maxi(ti+1−ti). La dérivée de M par rapport à t en ti est une moyenne pondérée
de 3 poses contrôles voisines mi−1,mi,mi+1 (voir Figure I.6) :

Ṁ(ti) = D1(mi−1,mi,mi+1, ti+1 − ti, ti − ti−1) +O(δ2) (I.11)

où

D1(x,y, z, a, b) = − ax

b(a+ b)
+

(a− b)y

ab
+

bz

a(a+ b)
. (I.12)

La valeur de M à l’instant t est approchée par le développement de Taylor en ti en
négligeant les grands O, pour 0 < i < m,

M1(t) = mi + (t− ti)D1(mi−1,mi,mi+1, ti+1 − ti, ti − ti−1) (I.13)

si t ≈ ti. Pour i = 0 (et similairement pour i = m), on utilise M(t) = m0+(t− t0)(m1−
m0)/(t1 − t0). De la même manière, on obtient une approximation quadratique M2 de
M .

t

mi−1

ti−1

mi

ti

mi+1

ti+1

b a

D1M(t)

t

Figure I.6: Approximation linéaire M1 de M .

I.6.3 Projection dans une image

Étant donné que notre MCBA minimise la somme du module au carré d’erreur de
reprojection pour chaque inlier, cette section décrit le calcul d’une erreur de reprojection
d’un point 3D (dans le repère monde) et son observation p̃ dans la sous-image numéro j
de l’image-clef i. Tout d’abord, on introduit des notations. Soit p la projection du point
3D X dans la sous-image numéro j de l’image-clef i. L’erreur de reprojection est p− p̃.
On rappelle que (RjC, t

j
C) est la pose de caméra j dans le repère multi-caméra. Soit pj

la fonction de projection de la caméra j. On suppose que les paramètres intrinsèques
impliqués dans pj et R

j
C, t

j
C sont constant. Les points p(u, v)� et p̃(ũ, ṽ)� sont acquis

aux instants :
tp = ti +Δj + vτ et tp̃ = ti +Δj + ṽτ. (I.14)
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Deuxièmement, on détaille la relation entre p et X. La pose (rM(tp), tM(tp)), i.e.
M(tp), est définie dans la Section I.6.2 en utilisant l’indice i d’image clé et t = tp. Les
coordonnées de X dans le repère multi-caméra sont dans le vecteur

XM =

ñR�(rM(tp)) −R�(rM(tp))tM(tp)
0� 1

ô
X. (I.15)

Les coordonnées de X dans le repère de la caméra j et la projection de X sont

XC =

ñ
(RjC)

� −(RjC)�tjC
0� 1

ô
XM et p = pj(XC). (I.16)

On voit que le calcul de p a besoin du calcul de XM qui à son tour nécessite le calcul
du point 2D p.

Ce problème peut-être résolu grâce à une approximation [Klingner+13] : tp est
remplacé par tp̃ dans Eq.(I.15). Ceci est acceptable car l’observation p̃ est inlier et
l’ordre de grandeur de τ est très petit : |tp̃ − tp| ≤ τ ||p − p̃|| et τ ≈ 10−5 (s/pixel) et
||p − p̃|| ≤ 4 pixels. On propose aussi le calcul exact de p sans cette approximation,
c’est-à-dire sans tp̃ = tp. Soit θ le vecteur de paramètres optimisés par AF. On sait
que p̃ est proche de p car on ne considère que les inliers. On connâıt aussi une fonction
de classe C1 g(p,θ) de R

2 × R
p à R

2 tel que p est la solution z de g(z,θ) = 0 (grâce
aux Eqs.(I.14,I.15,I.16)), et la valeur courante θ0 de θ (fournie par l’initialisation ou
l’itération précédente d’AF). D’abord, p est estimé par une méthode de moindres carrés
non-linéaire en minimisant z �→ ||g(z,θ0)||2. En pratique, on utilise la méthode itérative
de Gauss-Newton à partir de z = p̃ avec pas plus de 5 itérations. Les dérivées de p par
rapport à tous les paramètres sont obtenues par les théorèmes des fonctions implicites
et de dérivation des fonctions composées.

I.7 Expérimentations

Pour évaluer les performances de nos méthodes, on a effectué un certain nombre
d’expérimentations sur des jeux de données : synthétique et réelles avec différents types
de multi-caméras. Elles ont un champ de vue de 360o dans le plan horizontal et se
déplacent dans des environnements urbains ou ruraux.

I.7.1 Notations

Notre MCBA est caractérisée par une combinaison de plusieurs notations qui
décrivent les paramètres estimés :

• C (l’approximation centrale) estime toutes les rotations RjC et fixe toutes les trans-

lations tjC = 0,

• NC (non-centrale) estime toutes les rotations et translations (RjC, t
j
C),

• INT (intrinsèque) estime tous les paramètres intrinsèques : (fx, fy, u0, v0, k1, . . . , k5)
ou (fx, fy, u0, v0, ξ) selon le modèle de caméra choisi ; chaque caméra a ses propres
paramètres,
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• FA (frame accurate) fixe tous les décalages Δj = 0,

• SFA (sub-frame accurate) estime tous les Δj ,

• GS (global shutter) fixe le line delay τ = 0,

• RS (rolling shutter) estime τ .

Donc, GS.NC.SFA.INT (ou gs.nc.sfa.int) est un AF qui fixe τ = 0 et estime simul-
tanément tous les paramètres Δj , R

j
C, t

j
C, les paramètres intrinsèques, les poses clés mi

et les points 3D. Le seuil d’inlier est de 4 pixels pour tous les cas. Chaque AF a trois
mise à jour d’inliers chacune étant suivie par la minimisation de Levenberg-Marquardt.

I.7.2 Systèmes multi-caméras utilisés

Nous utilisons quatre multi-caméras (voir Figure I.1). Les deux premières sont
composées de quatre caméras Gopro Hero 3 [GoPro] qui sont rolling shutter, fixées sur
un casque. Il y a deux configurations différentes : les caméras sont enfermées dans une
bôıte en carton (avec une baseline faible) et prennent des images 1280 × 960 à 100Hz ;
ou bien elles sont fixées dans leur coques fournies par le constructeur (la baseline entre
les caméras est plus grande) et prennent des images 1920 × 1440 à 48Hz. La troisième
est une caméra à 360o bas de gamme - la Ricoh Theta S [ThetaS] qui est modélisable
par deux caméras fisheyes synchronisées avec un champ de vue plus large que 180o pour
chacune. La dernière (Ladybug 2 [Ladybug2]) est parfaitement calibrée et synchronisée.
Elle est utilisée pour l’évaluation quantitative. Elle est composée de cinq caméras global
shutter prenant des images 1024 × 768 à 15Hz (il y en a une 6-ème pointant vers le
haut, mais on ne l’utilise pas dans nos expériences). A l’exception des cas synthétique et
Ladybug, les multi-caméras ont des vérités terrains incomplètes (un stroboscope fournit
toujours la valeur de τ). Les quatre caméras Gopro et Theta S sont montées sur un
casque. La caméra Ladybug est fixée sur une voiture grâce à un mât.

I.7.3 Jeux de données

Le jeu de données synthétique est un ensemble d’images généré à partir d’un modèle
3D existant de milieu urbain (la vérité terrain de la calibration est complètement connue,
y compris la synchronisation et le coefficient de RS). Les jeux de données réels sont pris
par nos multi-caméras qui se déplacent le long d’un parcours dans des environnements
urbains et naturels. Ils sont acquis dans plusieurs contextes : caméra Ladybug fixée
sur une plate-forme de voiture (CarCity - CC) et placée à environ 4m du sol, quatre
caméras GoPro fixées sur un casque et se déplaçant à vélo (BikeCity1 - BC1) ou à pied
(WalkTown - WT) dans des environnements urbains ou faisant du parapente au-dessus
d’une colline (FlyHill - FH), caméra Ricoh Theta S se déplaçant à pied dans le campus
de l’Université Clermont Auvergne (WalkUniv - WU). La Figure I.1 illustre tous les
jeux de données. Le jeu de données réel le plus long est BC1 (2.5km) et le jeu de donnée
synthétique est BC2. La longueur de la trajectoire est d’au moins 600m.
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I.7.4 Comment évaluer la calibration ?

On aimerait, avec un unique nombre, évaluer l’erreur de notre calibration multi-
caméra avec celle de la vérité terrain. On utilise une distance d basée sur les angles
entre les directions de rayons de calibrations (estimée et vérité terrain) correspondant à
un même pixel. Il y a plusieurs raisons pour faire cela. D’abord, on a seulement besoin
de la direction des rayons pour le calcul de SfM central [Mouragnon+09]. Ensuite, on
utilise la vérité terrain fournie par le constructeur de la multi-caméra (Ladybug), qui est
une table de rayons. Enfin, des paramètres peuvent se compenser s’ils sont biaisés (ex :
l’ambigüıté partielle rotation-point principal [Agapito+01] d’une caméra). Il faut aussi
tenir compte du fait que les repères multi-caméras ne sont pas les mêmes. On estime
pour cela la rotation R qui permet de passer d’un repère à l’autre. On minimise

e(R) =
N∑
i=1

||rvti − Rresti ||2 (I.17)

avec rvti et resti qui sont les directions des rayons correspondants au même pixel pour les
calibrations vérité terrain et estimée, respectivement. Puis, on définit

d =

 
e(R)

N
(I.18)

avec N le nombre de rayons (échantillonnés) dans l’image multi-caméra.

I.7.5 Synchronisation à précision trame

D’abord, on effectue le SfM [Mouragnon+07], [Mouragnon+09] sur une des vidéos
monoculaires avec une calibration équiangulaire à champ de vue approximativement
connu. Ensuite, cette calibration est raffinée par AF global. Pour les autres vidéos,
on refait le SfM avec la calibration raffinée. Jusque là, seules des images clefs sont
reconstruites, on effectue alors un calcul de pose pour toutes les images. En pratique, on
ne calcule que les 2000 premières images de chaque vidéo. Enfin, on calcule les décalages
entiers comme dans la Section I.4.

La Figure I.7 montre la vitesse angulaire instantanée et le score ZNCC pour les trois
séquences BC1 (à vélo), WT (à pied) et CC (sur plate-forme de voiture). La Table I.1
montre les résultats pour tous les jeux de données avec la contrainte L = 0. Les décalages
entiers sont bons : très proches de la vérité terrain pour CC, BC2 et WU. On remarque
qu’il y a un décalage ±15 non négligeable entre caméras (0.15 seconds) pour WT.

I.7.6 Calibration avec l’hypothèse de global shutter et synchronisation
à précision trame

Une fois les décalages entiers calculés, on applique le SfM et l’AF multi-caméras
pour estimer la calibration multi-caméra. On initialise la pose des caméras dans le
repère multi-caméra : les rotations inter-caméras sont d’angles multiples de 2π/n au-
tour de l’axe oz (pour n = {2, 4, 5} caméras) et les centres sont en (0, 0, 0)�. Ici, on
fait l’approximation centrale. Puis l’AF optimise les points 3D, les poses successives
du système multi-caméra, et étalonne intrinsèquement et extrinsèquement les caméras
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Nom o0,1 o1,2 o2,3 o3,4 ZNCC1 ZNCC2

BC1 -5 3 4 na 3.912 3.884

WT -15 -1 14 na 3.919 3.918

FH -1 1 -2 na 3.991 3.983

BC2 0 0 0 na 3.915 3.907

CC 0 0 0 0 4.987 4.347

WU 0 na na na 0.993 0.677

Table I.1: Décalages entiers oj,j+1 avec contrainte de boucle. ZNCC1 est le meilleur
score de n décalages calculés, et ZNCC2 est le deuxième meilleur score (donc −n ≤
ZNCC ≤ +n). On rappelle que oj,j+1 compte un nombre signé de trames entres la
vidéo j. Si la multi-caméra a n caméras numérotées de 0 à n− 1, le décalage oj,j+1 est

“na” si j + 1 ≥ n.
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Figure I.7: Les vitesses angulaires instantanées et le score ZNCC pour cam0 et cam1
de BC1, WT et CC. A gauche, l’axe des abscisses est l’index de trame et l’axe des
ordonnées est la vitesse angulaire instantanée en radian. A droite, on a les décalages

candidats et leur corrélation (ZNCC ∈ [−1, 1]).

(avec l’hypothèse de global shutter et synchronisation à précision trame). On compare
les calibrations obtenues entre minimisations dans les espaces images original et rectifié
pour le modèle de distorsion polynomial classique (dans la Section I.3). La Table I.2
compare les résultats de notre AF en termes de RMS et d’erreur angulaire d. Si init =
72r, les paramètres intrinsèques initiaux sont ceux calculés par la synchronisation (on
part d’une calibration équiangulaire que l’on raffine par AF global - d’où le “r”). Sinon,
init = pat, les caméras sont calibrées avec une mire [Lavest+98] et l’AF ne raffine pas
les paramètres intrinsèques. Dans tous les cas, on a des nombres d’inliers 2D similaires
et l’erreur de calibration d dans l’espace distordu est meilleur (plus petite) que celle

176
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dans l’espace rectifié. On explique cela de la façon suivante : il y a de grandes distorsions
entre les images rectifiées et distordues, les AFs minimisent les erreurs dans les différents
espaces (distordu et rectifié) ; et sous l’hypothèse habituelle que les bruits d’images sont
de moyennes nulles, indépendants, et ont des distributions normales et identiques, notre
AF est un estimateur au maximum de vraisemblance (cette hypothèse n’est pas vraie
dans l’espace rectifié). On donne aussi le nombre d’inliers 2D et le RMS de GS.C.FA
qui utilise les paramètres intrinsèques estimés avec une mire (ces paramètres sont fixés
pendant l’AF) ; nos RMSs et inliers sont légèrement meilleur, mais l’erreur d de pat est
la meilleure.

Erreur init Méthode #2D RMS d

Rectifié 72r gs.c.fa.int 213335 1.216 9.575
pat gs.c.fa 213015 1.225 1.023

Distordu 72r gs.c.fa.int 213495 0.932 1.683
pat gs.c.fa 213108 0.946 1.023

Table I.2: Résultat d’AFs gs.fa.X pour les séquences courtes (2k) de CC : distance d
(convertie en pixels en utilisant la résolution angulaire), nombre de points 2D inliers et

RMS d’erreurs de reprojections en pixels.

I.7.7 Rolling shutter et synchronisation à précision sous-trame

Pour l’étape d’auto-étalonnage avec l’hypothèse de rolling shutter et synchronisation
à précision sous-trame, les résultats sont également évalués quantitativement avec les
vérités terrains. On calcule l’erreur e(Δ) qui est la somme de l’erreur absolue pour tous
les fΔj (il y a n − 1 valeurs), l’erreur relative e(τ) pour τ et l’erreur de calibration
multi-caméra d.

I.7.7.1 Précision

La Table I.3 montre les résultats pour deux séquences BC2 et CC qui ont la vérité
terrain pour τ et Δj . On compare les estimations séparée et simultanée de paramètres
intrinsèques (INT) et rolling shutter et synchronisation sous-trame (RS.SFA), c.-à.-d. on
compare GS.C.FA.INT+RS.C.SFA (le premier suivi du second) et RS.C.SFA.INT. On
compare aussi la calibration centrale et non-centrale, et la synchronisation à précision
sous-trame sans AF de la Section I.4. Pour le jeu de données synthétique BC2, la précision
de τ et d dans l’estimation simultanée est meilleure que celle dans l’estimation séparée
(dans tous les deux cas central ou non-central). Cependant, l’estimation séparée donne
e(Δ) deux fois plus petit que celui de l’estimation simultanée qui à son tour est deux
fois plus petit que celui de la synchronisation sans AF (Section I.4). L’AF non-central
diminue l’erreur d. Pour le jeu de données réel CC, les caméras sont GS et parfaitement
synchronisées. L’erreur relative e(τ) n’est donc pas un nombre et on le remplace par
vmaxfτ (la plus petite valeur absolue donne le meilleur résultat). L’erreur e(Δ) est
inférieure à 0.055 pour cinq caméras. L’erreur d augmente et e(Δ) diminue par les AFs
non-centrals. La synchronisation à précision sous-trame raffinée sans AF (Section I.4)
donne le plus petit e(Δ).
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Méthode appliquée à BC2 e(Δ) e(τ) d

gs.c.fa.int+rs.c.sfa 0.057 14.6% 1.970

rs.c.sfa.int 0.097 2.7% 1.476

gs.nc.fa.int+rs.nc.sfa 0.051 12.2% 1.312

rs.nc.sfa.int 0.111 3.7% 0.366

gs.sfa (dans Sec.I.4) 0.215 na na

Méthode appliquée à CC e(Δ) vmaxfτ d

gs.c.fa.int+rs.c.sfa 0.052 -0.0052 1.176

rs.c.sfa.int 0.055 -0.0069 1.167

gs.nc.fa.int+rs.nc.sfa 0.034 -0.0020 1.322

rs.nc.sfa.int 0.039 0.0086 1.313

gs.sfa (dans Sec.I.4) 6e-3 na na

Table I.3: Précision d’AFs rs.sfa.X(int) pour BC2 et pour CC. Rappel : d est convertie
en pixels. “na” (indisponible) pour les données manquantes.

I.7.7.2 Décalages sous-trames, coefficient de RS et reconstruction

La Table I.4 montre les décalages sous-trames, le coefficient normalisé de RS vmaxfτ
et l’erreur relative e(τ) pour tous les jeux de données par notre méthode avec l’approxi-
mation de calibration centrale et l’approximation de trajectoire de caméra donnée par
l’Eq.(I.13). L’erreur e(τ) est inférieure à 7.2% sauf le cas de WT. Dans le cas de WT, τ
est surestimé (il est même supérieur à sa valeur maximale théorique 1) et a une grande
erreur égale à 16%. Une valeur négative de τ (pour WU) signifie simplement que le
rolling shutter va de bas en haut dans les images (plutôt que de haut en bas).

Nom fΔ1 fΔ2 fΔ3 vmaxfτ VT e(τ)

BC1 -0.334 -0.153 0.132 0.8755 0.8736 0.2%

WT -0.583 -0.320 -0.795 1.0136 0.8736 16.0%

FH 0.287 0.203 -0.326 0.8372 0.7810 7.2%

BC2 0.246 0.546 0.797 0.8989 0.8755 2.7%

CC -0.017 -0.013 -0.006 -0.0069 0 nan

WU 0.001 na na -0.8882 0.9244 3.9%

Table I.4: Décalages sous-trames entre caméras estimés et coefficient τ de RS (pour
tous les jeux de données) estimés par notre AF raffinant simultanément la synchroni-
sation, le rolling shutter, la calibration centrale (extrinsèque et intrinsèque), les poses

et les points 3D. VT est la vérité terrain de vmaxfτ .

Les Figures I.8 et I.9 illustrent les résultats de reconstruction après notre AF global
(les poses de trames clefs et le nuage des points 3D). Pour le jeu de donnée WU, on
observe une dérive non-négligeable de la trajectoire car le début et la fin de la trajectoire
devraient être les mêmes (la dérive est moins notable dans les autres exemples). On
explique cela de la façon suivante : (1) on n’applique pas de fermeture de boucles ; (2)
le SfM multi-caméra incrémental est appliqué en utilisant la calibration intermédiaire
estimée sur seulement 2k (premières) images ; et (3) l’AF final ne compense pas cette
dérive. On refait le SfM multi-caméra incrémental en utilisant la calibration multi-caméra
finale (estimée sur la séquence complète par RS.C.SFA.INT) et on voit que la dérive
obtenue est plus faible. Ceci suggère que la calibration multi-caméra finale est meilleure
que celle intermédiaire.
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(a) BC1 (b) WT

(c) CC (d) FH

(e) BC2

Figure I.8: Vue globale du nuage de points 3D et des poses d’images clefs obtenus
en utilisant l’AF RS.C.SFA.INT pour les séquences BC1, WT, FH, BC2 and CC sans
fermeture de boucles. On note que la trajectoire de la séquence FH a beaucoup de

virages.
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(a) RS.C.SFA.INT

(b) SfM incrémental en utilisant la calibration estimée par l’AF RS.C.SFA.INT

Figure I.9: Vue globale du nuage de points 3D et des poses d’images clefs obtenus
en utilisant l’AF RS.C.SFA.INT pour la séquence WU sans fermeture de boucles. La

dérivée est entre les deux flèches

I.7.8 Autres expériences (résumé)

On expérimente la robustesse de notre méthode pour le cas de mauvaise synchronisa-
tion, mais aussi la stabilité de synchronisation et rolling shutter estimés par rapport aux
sous échantillonnage en images clefs (le coefficient estimé de RS dépend de la distribution
de trames clefs). Les trajectoires longues sont utiles pour la précision de l’étalonnage.

On vérifie l’approximation tp = tp̃ et le calcul exact de projection (Section I.6.3).
On compare aussi les résultats entre les différents paramétrisations : les angles d’Euler et
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quaternions pour rotation, l’approximation linéaire (Eq.(I.13)), quadratique et les inter-
polations sphériques pour la trajectoire de caméra. Les résultats montrent que l’on n’a
pas de gain significatif si on utilise le calcul exact de projection (tp �= tp̃) ou l’approxima-
tion quadratique ou les interpolation sphériques (Squad pour les quaternions unitaires
[Dam+98] et spline [Jakubiak+06]) pour la trajectoire de caméra. Dans de nombreux
cas (au moins dans le cas d’un déplacement à vélo ou à pied), l’approximation linéaire
de trajectoire de caméra et l’approximation de projection suffisent. On teste aussi notre
méthode dans le cas où le paramétrage d’Euler est proche de ses singularités.

On expérimente dans les cas où la vitesse de caméra varie dans les jeux de données
synthétiques. Les résultats montrent que notre SfM standard fonctionne encore dans ces
cas bien qu’il suppose que les caméras sont global shutter et synchronisées à précision
trame. En comparaison avec les résultats de MCBA avec les approximations de global
shutter et de synchronisation à précision trame, notre MCBA, y compris le RS et syn-
chronisation à précision sous-trame, améliore significativement la précision en termes de
l’erreur de calibration multi-caméra d.

I.8 Conclusion

Ce travail de thèse présente la première méthode d’auto-étalonnage pour un système
multi-caméra se déplaçant dans une scène statique qui estime simultanément les pa-
ramètres intrinsèques, les poses inter-caméra, les décalages temporels et le coefficient de
rolling shutter en plus des paramètres habituels (les poses multi-caméra et les points 3D).
On commence par une calibration approximative en supposant que la multi-caméra est
centrale et omnidirectionnelle sans direction privilégiée. Ensuite, on estime les décalages
à précision trame en utilisant un structure-from-motion monoculaire classique et un
ajustement de faisceaux (SfM et AF) sans faire l’hypothèse sur les champs de vue com-
muns entre les caméras voisines. Enfin, on applique le SfM et l’AF multi-caméras deux
fois : en utilisant les modèles simple et complexe de caméra. Contrairement au second,
le premier modèle force à zéro le coefficient de rolling shutter, les décalages sous-trame
entre les vidéos et la baseline entre caméras (le premier sert à initialiser le second).

On expérimente dans un contexte que nous pensons utile pour les applications
(vidéo 360 et modélisation 3D) : plusieurs caméras grand public ou sphériques fixées
sur un casque qui se déplacent des trajectoires longues à pied, vélo, ou autres. Les
trajectoires longues sont utiles pour la précision de l’étalonnage, et sont permises car
notre AF ne raffine que les images clés fournies par SfM. On compare les résultats central
et non-central, donne la précision pour la calibration/les décalages entre caméras/le
coefficient de rolling shutter par rapport à la vérité terrain, examine l’influence de sous-
échantillonnage en images clefs, montre les variations de décalages entre caméras dans
une séquence longue, expérimente et compare des approximations différentes pour la
trajectoire de caméra et l’erreur de reprojection.

Des travaux futurs sont possibles pour toutes les étapes. Tout d’abord, l’initialisa-
tion de paramètres intrinsèques et extrinsèques peut être améliorée grâce à des travaux
antérieurs. Deuxièmement, un pré-traitement devrait sélectionner un (des) segment(s)
dans la vidéo pour appliquer le SfM en toute sécurité (les images doivent avoir suffisam-
ment de texture, le mouvement de caméra ne doit pas avoir de rotation pure, les artefacts
de RS doivent être modérés). Troisièmement, des variantes de la méthode peuvent être
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expérimentées : d’autres méthodes de sous-échantillonnage en images clefs ou d’autres
modèles de caméra. Enfin, il faudrait examiner les améliorations apportées à des appli-
cations fournies par notre synchronisation à précision sous-trame et si on tient compte
du “rolling shutter”.
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