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Summary	
  in	
  French	
  
	
  

La voie biosynthétique du mevalonate (MVA) est une voie métabolique essentielle qui amène 

à la production de molécules (ex. cholestérol, dolichol, prenil, ubiquinone) qui sont 

essentielles dans grand nombre de processus physiologiques (Dietschy and Turley, 2004). 

 Différentes études ont émis l’hypothèse que les produits finaux de cette voie 

biosynthétique ont un rôle important dans la physiologie du Système Nerveux Central (SNC) 

(Baytan et al., 2008; Geppert and Sudhof, 1998; Krakowski and Czobor, 2011): En 

particulier, le cholestérol fournit aux axones l’isolation électrique qui est essentielle pour la 

conduction saltatoire de l’impulsion, mais qui est aussi fondamentale pour la formation et la 

stabilité des synapses (Mauch et al., 2001; Pfrieger and Ungerer, 2011) : en outre, 

l’importance de la voie du MVA dans les processus physiologiques du SNC est 

ultérieurement soutenue par des études cliniques qui démontrent comment les perturbations de 

la biosynthétique du MVA sont concomitants avec plusieurs neuropathologies (Valenza and 

Cattaneo, 2011; Segatto et al., 2014a; Wang, 2014). Malgré toutes ces observations, la plupart 

des études effectuées sur le rôle physiologique de cet important processus métabolique dans le 

SNC restent simplement en corrélation. Pour autant, le but des études présentées dans cette 

thèse a été: 

1) évaluer la présence et la régulation des protéines concernées dans le maintien de la 

voie du MVA dans différentes régions du cerveaux de rat en prenant en 

considération l’éventuelle modulation selon le sexe et l’âge ; 

2) analyser l’impact de l’inhibition du 3-hydroxy-3-méthylglutaryl coenzyme A 

reductase (HMGCR), enzyme clef et vitesse limitant de la voie biosynthétique du 

MVA, sur le développement des neurones set sur le comportement des rats; 

3) explorer si la voie biosynthétique du MVA est en quelque sorte modifiée dans une 

pathologie du neurodéveloppement comme l’autisme. 

Les résultats obtenus démontrent que la voie biosynthétique du MVA est régulée 

différemment selon la région du cerveau analysée, ceci probablement dépend du métabolisme 

de chacune mais surtout de la nécessité des ses produits finals dans chaque région spécifique. 

La voie biosynthétique est modulée aussi en fonction de l’âge et du sexe dans chaque région 

cérébrale (Segatto et al., 2012 ; Segatto et al., 2013) : Une partie importante des résultats 

obtenus durant mon travail de recherche met en lumière comment la voie biosynthétique du 

MVA revêt un rôle critique dans la modulation physiologique du comportement animal et du 
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développement des neurones car, l’inhibition pharmacologique du HMGCR induit anxiété 

sociale et amélioration de la mémoire des rats (Segatto et al., 2014b) et augmente la vitesse 

d’allongement des néurites dans un modèle in vitro (Cartocci et al., 2016). Pour finir, mes 

données démontrent, dans un modèle expérimental d’autisme, que la voie biosynthétique du 

MVA est modulée dans plusieurs région du SNC selon l’âge (Cartocci et al., en révision). 

Pour conclure, mes études fournissent des nouvelles connaissances sur le rôle de la voie 

biosynthétique du MVA sur le cerveau, démontrant que ce processus métabolique est exprimé 

et régulé extrêmement selon la région cérébrale étudiée et qu’il y a des différences très 

importantes selon le sexe et l ‘âge. L’impact de la voie biosynthétique du MVA sur le 

comportement et sur le développement des neurones, et le fait que cette voie métabolique soit 

altérée sur le modèle animal d’autisme, nous suggèrent que les différentes protéines 

impliquées et les produits finaux puissent contribuer à la survenue de pathologies 

neurologiques et qu’elles puissent être considérées des cibles potentielles moléculaires pour 

dessiner des nouvelles stratégies thérapeutiques pour le traitement de certains désordres du 

SNC. 
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Summary	
  in	
  English	
  
	
  
The mevalonate (MVA) pathway is an essential metabolic pathway that leads to the 

production of molecules (e.g. cholesterol, dolichol, prenyls, ubiquinone) important in several 

physiological processes. Notably, these products play pivotal roles in the brain. In particular, 

cholesterol provides electrical insulation to the axon that is essential for the conduction of 

rapid saltatory impulse, but it is also critical for synapse formation and stability. Moreover, 

the importance of cholesterol in CNS processes is further supported by clinical studies, which 

demonstrate that an imbalance in the MVA pathway is accompanied by the onset of several 

neuropathological descriptions. Despite these observations, the physiological importance of 

this metabolic process in the brain has remained unclear. My aim was to study the presence 

and the regulation of the proteins involved in the MVA pathway in different rat brain areas in 

a sex- and age-dependent manner, to analyze the impact of the key enzymes on neuronal 

development and on rat behavior, and to explore whether the MVA pathway is affected in a 

neurodevelopmental disease such as autism. My results provide clear evidence that the MVA 

pathway is differently regulated in each brain area, according to the metabolism and the 

regional requirement of end-products. Moreover, the MVA pathway also undergoes specific 

age- and sex-dependent modulation in each brain region. My work also highlights a critical 

role of the MVA pathway in neuronal development and in the physiological modulation of 

behavior and cognition. Inhibition of the key enzyme of the pathway induced the occurrence 

of social anxiety-related behaviors and memory improvements in rats and enhanced neurite 

outgrowth in an in vitro model. Finally, I demonstrated, in an experimental model of autism, 

that the MVA pathway is modulated in different brain areas in an age-dependent manner. 

In conclusion, my studies provide new insights in the physiology of the MVA pathway in the 

brain. They demonstrate that this metabolic process is expressed and modulated in a highly 

region-dependent manner and that age and sex induce physiological differences. Notably, the 

impact of the MVA pathway on behavior and neuronal development suggest that different 

proteins and enzymatic products may be considered as potential molecular targets when 

designing novel therapeutic approaches for the treatment of these pathologies. 
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Introduction	
  
 

The mevalonate (MVA) pathway produces several molecules including cholesterol, prenyls, 

ubiquinone, dolichol that are crucial for a plethora of physiological processes. It has been 

extensively studied in the liver, where a large fraction of cholesterol is synthesized. However 

the metabolic pathway is active in all tissues. Clinical studies demonstrate that an imbalance 

of isoprenoid homoeostasis is accompanied by the onset of several neuropathologies 

underlining the importance of the end products for the central nervous system (CNS). 

However, the scientific literature is fragmented and no systematic studies had been performed 

to investigate the MVA pathway in the CNS. The work I present here addresses this gap, 

taking into account sex- and age-dependent modulation of the MVA pathway in selected brain 

areas, and its pathophysiological role in brain. 
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Mevalonate	
  pathway	
  
	
  

The first committed steps of the MVA pathway (Fig. 1) are the repeated condensation of 

acetyl-CoA units, resulting in 3β-hydroxy 3β-methylglutharyl coenzyme A (HMG-CoA), and 

its subsequent reduction to MVA. The reduction utilizes two molecules of NADPH in a two-

step reaction that is considered rate-limiting for cholesterol biosynthesis. 

 

 
Figure 1. Schematic representation of the main steps of mevalonate pathway. 

 

It is mediated by the 3β-hydroxy 3β-methylglutharyl coenzyme A reductase (HMGCR) (Fig. 

2), one of the best studied enzymes in biochemistry. 

 
Figure 2. Transformation of HMG-CoA into MVA. The reductive deacylation of HMG-CoA to 
MVA is thought to proceed in three steps, with mevaldyl-CoA and mevaldehyde as reaction 
intermediates (Istvan and Deisenhofer, 2000). 
 

The following steps are additions of two phospho groups to MVA requiring two molecules of 

ATP (Istvan and Deisenhofer, 2000). Subsequent dehydration-decarboxylation of MVA-PP 

results in isopentenyl pyrophosphate (IPP), the building block for the different products of the 

pathway (Rozman and Monostory, 2010). IPP can be isomerized to dimethylallyl 
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pyrophosphate by the isopentenyl pyrophosphate isomerase (IPI1). IPP and dimethylallyl 

pyrophosphate condense to form the C-10 geranyl pyrophosphate, which in turn condenses 

with another molecule of IPP to produce the C-15 farnesyl pyrophosphate (FPP) by farnesyl 

pyrophosphate synthase (FDPS) (Rozman and Monostory, 2010). From FPP originates either 

sterol and non-sterol branches of the pathway. Non-sterol branches produce, among others, 

ubiquinone, isoprenyls and dolichol. On the other hand, squalene synthase catalyzes the first 

reaction of the sterol branch producing the C-30 squalene from two molecules of farnesyl 

pyrophosphate in a reaction that requires NADPH. Cholesterol is finally synthesized by 21 

additional reactions (Bentinger et al., 2008). 

	
  

The	
  key	
  enzyme	
  and	
  end-­‐products	
  
	
  
HMGCR	
  activity	
  and	
  regulation	
  	
  

HMGCR is a glycoprotein embedded in the endoplasmic reticulum (ER). It consists of three 

domains: the C-terminal domain of HMGCR contains the catalytic region (residues 460–888) 

located in the cytosol and a linker domain (residues 340–459) that connects the N- and the C-

terminal portions of the protein (Friesen and Rodwell, 2004). The N-terminal domain contains 

339 residues, this part of the enzyme spans eight times the ER membrane and contains the 

Sterol Sensing Domain (SSD). This domain is found in several proteins that are involved in 

cholesterol homeostasis. The activity of this enzyme is rapidly regulated by 

phosphorylation/dephosphorylation (Fig. 5 A). The reversible phosphorylation of the residue 

S872 inhibits the catalytic activity of the enzyme (Beg et al., 1985). AMP-activated Kinase 

(AMPK) is known to be the main regulator of HMGCR in the liver. AMPK regulates energy 

homeostasis in response to changes in the cellular AMP/ATP ratio (Hardie et al., 2016). 

HMGCR dephosphorylation, which re-activates the enzyme, is principally catalyzed by 

protein phosphatase 2A (PP2A), a serine/threonine phosphatase regulating several cellular 

processes (Janssens and Goris, 2001). The increase of sterols induces the binding of HMGCR 

to INSulin Induced Gene (INSIG) that promotes the ubiquitination and proteasomal 

degradation of the enzyme (Sever et al., 2003) (Fig. 3C). 

HMGCR is subjected to transcriptional regulation by an elaborated feedback mechanism that 

depends, once again, on the cellular level of sterols and that involves several key proteins. 

Sterol levels are sensed by an ER-embedded protein named Sterol Regulatory Element 

Binding Protein (SREBP) Cleavage Activating Protein (SCAP), which also contains a SSD. 

When the sterol content of the ER is low, SCAP binds the transcription factors SREBPs and 
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transports them from the ER to the Golgi apparatus. Here, the SREBPs are proteolytically 

cleaved to active fragments (nSREBPs) that enter the nucleus and induce the transcription of 

their target genes (Brown and Goldstein, 1999). These genes mediate cholesterol synthesis 

and uptake and include HMGCR and Low Density Lipoprotein receptor (LDLR) (Brown and 

Goldstein, 1997).  

 
Figure 3. Schematic illustration of HMGCR short (A) and long (B, C) term regulations. In 
particular, panel B and C show the regulation of HMGCR transcription (B) and degradation 
(C) as a function of intracellular sterol amount and of cholesterol uptake (Burg and 
Espenshade, 2011). 
 

When the sterol content increases in the ER, the SCAP/SREBP complex binds to INSIG and 

remains in the ER, so the transcription of its target genes declines (Fig. 3 B) (Yang et al., 

2002). 

Several hormones, such as insulin, glucagon, glucocorticoids, estrogens, and thyroid 

hormones control the transcription and translation of hepatic HMGCR in mammals. Insulin 

promotes HMGCR transcription and protein activity, whereas glucagon induces the opposite. 

Both factors also mediate changes of hepatic HMGCR activity during the circadian rhythm 

(Ness and Chambers, 2000). Thyroid hormones increase hepatic HMGCR levels by enhancing 

the level and stability of encoding transcripts, whereas glucocorticoids destabilize HMGCR 

mRNA. The effects of estrogens on HMGCR activity are still debated. Some studies suggest 

that estrogens increase hepatic HMGCR protein levels by stabilizing mRNA levels and 

increasing the transcription rate. On the other hand, estrogen deficiency elevates serum 

cholesterol levels also called hypercholesterolemia (Ness and Chambers, 2000). Studies 

performed on cell lines and on male rats in vivo show that estrogens increase LDLR at the 

mRNA and protein level, which causes subsequently a decrease in of HMGCR (Messa et al., 

2005);(Pallottini et al., 2006). 
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Products	
  of	
  the	
  MVA	
  pathway:	
  Cholesterol	
  

Cholesterol (Cholest-5-en-3-ol) is the most abundant sterol in vertebrates (Dietschy and 

Turley, 2004). The main source in the body is endogenous biosynthesis (Fig. 4). Hepatocytes 

in the liver synthetize a large fraction of cholesterol, but all organs in the body are able to 

produce significant amounts of this sterol (Dietschy and Turley, 2004). The rate of 

biosynthesis varies inversely with the amount of cholesterol ingested by the diet (Nervi et al., 

1975). During digestion, cholesterol esters are metabolized into unesterified cholesterol and 

long chain fatty acids. Unesterified cholesterol enters the enterocyte through a transporter 

located at the apical membrane of the cell, the Niemann-Pick C1-like 1 protein (NPC1L1) 

(Martini and Pallottini, 2007;Trapani et al., 2011). Within enterocytes, approximately half of 

cholesterol molecules move to the endoplasmic reticulum, where cholesterol is esterified by 

acyl-CoA:cholesterol acyltransferase (ACAT) and incorporated into chylomicrons (CMs) that 

reach the lymph and enter the blood circulation. Unesterified cholesterol is exported from the 

endosomal-lysosomal system and incorporated into cellular membranes. 

Cholesterol synthesized in the liver is delivered to extrahepatic tissues via Very Low Density 

Lipoproteins (VLDL), which are gradually converted into Intermediate-Density Lipoproteins 

(IDL) and LDL. When the need of cholesterol is high, cells take up LDL by LDLR-mediated 

endocytosis (Goldstein et al., 1985). The reverse cholesterol transport from extrahepatic 

tissues to the liver is mediated by HDLs. While it is being transported, cholesterol is acylated 

by lecithin cholesterol acyltransferase (LCAT), which facilitates its transport in the core of the 

lipoproteins. In addition, HDLs promote CM and VLDL turnover by exchanging lipids and 

apolipoproteins (Nilsson and Duan, 2006). 

 

 
Figure 4. Schematic illustration of cholesterol metabolism in the whole body. Several genetic 
mutations can interfere with the maintenance of cholesterol homeostasis, thus leading to the 
manifestation of a plethora of disorders (Burg and Espenshade, 2011). 
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The biological role of cholesterol is dictated by its particular physical and chemical 

properties. The molecule has three parts (Fig. 5): the rigid and flat lipophilic steroid core 

mediates its insertion in the lipid bilayer. The apolar hydrocarbon tail anchors the molecule in 

the lipid bilayer. The polar hydroxyl head group allows for hydrophilic interactions and can 

be chemically modified, for example by esterification.  

 

 

 

Figure 5. Structure of cholesterol molecule. 

 

Cholesterol determines key properties of biological membranes: it modulates their fluidity and 

permeability and the function of integral proteins. Cholesterol together with other lipids and 

proteins also forms microdomains called membrane lipid rafts that coordinate the function 

and the subcellular sorting of several signaling molecules (Tabas, 2002). Rafts are composed 

of sphingolipids and cholesterol in the outer extracellular leaflet, and connected to 

phospholipids and cholesterol in the inner cytoplasmic leaflet of the membrane bilayer. 

Besides its structural role, unesterified cholesterol serves as precursor of several compounds 

important for mammalian physiology. This includes bile acids, vitamin D and steroid 

hormones, connecting this fascinating molecule to essential physiologic functions such as 

nutrition, metabolism, inflammation, immune functions, electrolyte balance and reproduction 

(Tabas, 2002). 

	
  

Products	
  of	
  the	
  MVA	
  pathway:	
  Ubiquinone	
  (CoQ)	
  

CoQ consists of a highly substituted benzoquinone ring and an all-trans poly-isoprenoid side-

chain at carbon 6 (Fig. 6).  

 

 
Figure 6. Structure of CoQ  molecule. 
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CoQ was originally described as an important component of the mitochondrial respiratory 

chain, where it serves as electron carrier from complex I and II to complex III (Mitchell, 

1975). A reduction of CoQ synthesis can cause dysfunction of the electron transport chain and 

thereby reduce intracellular ATP levels, which disturbs the energy balance, increases radical 

production and triggers apoptosis. In addition to its key role in energy metabolism, many 

more functions have been attributed to this lipid. This includes cell growth and differentiation 

(Gomez-Diaz et al., 1997), antioxidant (Bentinger et al., 2008), anti-apoptotic (Papucci et al., 

2003), anti-inflammatory (Bentinger et al., 2008), anti-atherosclerotic activities (Thomas et 

al., 1996). Moreover, it was shown that it prevents also endothelial dysfunction (Hamilton et 

al., 2007).  

	
  

Products	
  of	
  the	
  MVA	
  pathway:	
  	
  Dolichol	
  

Dolichols are long-chain compounds containing variable numbers of isoprene units. In 

particular, mammalian cells synthesize chains of 18–21 units of IPP (Fig 7) (Rip et al., 1985; 

Holstein and Hohl, 2004). The biologic functions of these molecules are debated. It is well 

accepted that the phosphorylated form of dolichol acts as cofactor in the biosynthesis of 

glycoproteins. It has been implied in the fusion and differentiation of rat skeletal muscle 

myoblasts and in the fusion of rat liver microsomes (Belo et al., 1993). Non-phosphorylated 

dolichol seems to modify the organization and packing of phospholipids in model membranes 

and to destabilize their structure (Vigo et al., 1984;Parentini et al., 2005). Moreover, dolichol 

may serve as an indicator of aging (Parentini et al., 2005) and cellular stress (Surmacz and 

Swiezewska, 2011), it may be involved in intracellular traffic of proteins (Buczkowska et al., 

2015) and in cellular defense against adverse environmental conditions (Welti and Hulsmeier, 

2014). 

 

 
Figure 7. Structure of dolichol molecule. 

 

Products	
  of	
  the	
  MVA	
  pathway:	
  prenyls	
  

Prenylation is a post-translational modification of proteins, where 15 (farnesyl) or 20 

(geranylgeranyl) isoprenoid units are added to specific cysteines near the C-terminus (Fig. 8) 

(Shepherd et al., 1995). Prenylation requires three steps: the recognition of the “CAAX” box 
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sequence, proteolysis of the “AAX” sequence, and methyl esterification of the new C-

terminal cysteine. This type of modification enables attachment of proteins to membranes 

(Ridker et al., 2001) or interactions with specific targets (Yamazaki et al., 1995). Many 

signalling pathways require prenylated proteins and 2% of the mammalian proteins are 

subjected to this modification (Anderson et al., 1995).  

 

 
Figure 8. Generic structure of a  prenyl group. 

 

Prominent targets of prenylation are members of the small G protein family. The Ras family 

comprising 36 members in mammals mediates cell growth and differentiation, whereas the 

Rho family with 22 mammalian members is responsible for the cytoskeleton remodelling and 

for the vesicular transport by regulating the actin dynamics. Rab and Arf proteins with more 

than 60 members in humans regulate intracellular traffic of vesicular carriers between cellular 

organelles (Cherfils and Zeghouf, 2013). Small GTPases alternate between two different 

conformations (Vetter and Wittinghofer, 2001) (Fig. 9). The GDP-bound form is considered 

inactive, whereas the GTP-bound form switches on downstream pathways by binding effector 

proteins. The exchange of guanine nucleotides is mediated by socalled guanine nucleotide 

exchange factors (GEFs) enabling GDP dissociation, and by GTPase activating proteins 

(GAPs) inducing GTP hydrolysis (Bos et al., 2007). The molecular activation complex 

contains a small GTPase, a GEF and a GAP. 

 
Figure 9. Regulation of the GDP/GTP switch (inactivation/activation cycle) by GEFs, GAPs, 
and GDIs (Cherfils and Zeghouf, 2013). 
 

Guanine dissociation inhibitors (GDIs) can form soluble complexes with prenylated small 

GTPases that prevent their insertion into the membrane (Takai et al., 2001) (Fig. 9). 

Prenylation targets the small GTPases to membranes inducing their activation. Ras is 
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farnesylated, whereas Rab and Rho require two geranylgeranyl groups (Nakagami et al., 

2003).  

	
  

Role	
  of	
  mevalonate	
  pathway	
  in	
  the	
  brain 
 

Cholesterol is a key molecule for the physiological functions of neurons. Its importance in the 

CNS is clearly indicated by growing evidence that an imbalance in cholesterol homoeostasis 

causes or contributes to CNS diseases (Martin et al., 2014; Segatto et al., 2014a; Cartocci et 

al., 2017). Cholesterol determines the thickness, fluidity (Ohvo-Rekila et al., 2002) and ion 

permeability of biological membranes (Haines, 2001) and thereby influences the excitability 

of neurons. Cholesterol is also crucial for the formation and stability of synapses, where is 

ensures formation of vesicles and the functional integrity of pre- and postsynaptic components 

like transmitter receptors (Mauch et al., 2001; Martin et al., 2014). Overall, the need of 

cholesterol in the brain is probably high (Goritz et al., 2005), last not least because it is a key 

component of myelin, the insulating sheath around axons that is formed by oligodendrocytes 

(Saher and Stumpf, 2015). In fact, myelin contains up to 70% of all cholesterol in the brain 

(Snipes and Orfali, 1998). The high content of cholesterol in myelin explains why the brain 

contains about 25% of the total body cholesterol although it constitutes only 2% of the body 

weight (Pfrieger, 2003a). In peripheral tissues, the demand for cholesterol is met by local de 

novo biosynthesis and by cellular uptake of cholesterol-containing lipoproteins. In the CNS, 

the blood brain barrier (BBB) blocks lipoprotein uptake from the circulation, therefore 

cholesterol must be synthesized de novo within this organ (Bjorkhem and Meaney, 2004). A 

major question is still, which cells produce cholesterol. One hypothesis suggests that 

postnatally, neurons reduce or even abandon their own synthesis and import cholesterol from 

astrocytes. According to in vitro studies, astrocytes synthesize at least 2- to 3-fold more 

cholesterol than neurons and fibroblasts (Pfrieger, 2003b; Nieweg et al., 2009). Astrocytes 

can secrete cholesterol-rich lipoproteins containing apolipoprotein E (APOE) in vitro 

(Shanmugaratnam et al., 1997). APOE binds to LDLR family members, whose expression is 

high in neurons and thereby mediates lipoprotein uptake (Pfrieger, 2003b). In addition to 

LDLR, ATP-binding cassette (ABC) transporters play a key role in shuttling cholesterol from 

astrocytes to neurons. In particular, ABCA1 is highly expressed in astrocytes and mediates 

cholesterol transport to extracellular lipid-free APOA1 and APOE (Oram and Heinecke, 

2005). This model is further supported by recent results from van Deijk and collaborators (van 
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Deijk et al., 2017) demonstrating in vivo that astrocyte lipid metabolism is critical for proper 

development of presynaptic terminals and for hippocampal function.  

If neurons depend on cholesterol import, they should also prevent overload. To remove a 

surplus of cholesterol, the CNS neurons produce 24-S-Hydroxycholesterol (24-OHC) through 

the action of the enzyme CYP46. 24-OHC is able to cross the BBB, thus preventing 

accumulation of cholesterol in the CNS (Leoni and Caccia, 2013). It has been demonstrated 

that 24-OHC is continuously synthesized and released into the systemic circulation both in 

rats (Bjorkhem et al., 1997) and in humans (Lutjohann et al., 1996). Moreover, 24-OHC is a 

ligand for LXRs, which in turn activate APOE and ABCA1 expression (Karasinska and 

Hayden, 2011) (Fig. 10). 

Apart from cholesterol, other MVA end-products play also crucial roles in CNS metabolism 

and functions. CoQ protects brain cells from central neurotoxic damages (Young et al., 2007) 

and clinical studies suggested that low levels of CoQ10 play a role in the pathophysiology of 

myalgic encephalomyelitis/chronic fatigue syndrome (Maes et al., 2009). Isoprenylation of 

specific proteins plays important roles in the CNS. Farnesylated Ras mediates specific aspects 

of synaptic plasticity and thus contributes to learning and memory processes (Mazzucchelli 

and Brambilla, 2000). Geranylated RhoA is involved in the structural modulation of synaptic 

connectivity (Lingor et al., 2007) and its activity has been associated with developmental 

disabilities such as mental retardation (Ramakers and Storm, 2002). Geranlyated Rab3 is 

involved in neurotransmitter release by synaptic vesicle exocytosis (Geppert and Sudhof, 

1998). Finally, defective dolichol metabolism causes a syndrome presenting cerebellar ataxia 

(Morava et al., 2011). Together, there is evidence that all end-products of the MVA pathway 

are important for brain development and function. 

 

 

 
Figure 10. Cholesterol metabolism and intercellular transport in the brain. 
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 Aim 
 

The observations summarized above suggest that the MVA pathway is essential for the 

function of the CNS, but to date, no systematic studies have been carried out to investigate the 

physiological modulation of the proteins involved in the homeostasis of this pathway. 

My first aim was to perform a methodical study to evaluate the presence and the regulation of 

this pathway in different areas of the rodent brain and to study the impacts of sex and age. To 

this end, I used as experimental model, male and female rats of different ages.  

My second aim was to analyze the impact of HMGCR on neuronal development and behavior 

using pharmacologic treatment of cultured neurons and of adult male rats, respectively.  

The results of these studies prompted me to explore, in a third aim, whether the MVA 

pathway is affected in a neurodevelopmental disease using a well-established animal model of 

autism spectrum disorders (ASDs), rats prenatally exposed to VPA. 
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Results	
  
	
  

In the following, I will summarize briefly the key findings of my studies. The details can be 

found in the original articles that are inserted. 

My studies addressing the first aim gave rise to two publications (Segatto et al., 2012; Segatto 

et al., 2013). The results show that the protein levels and the activation state of HMGCR and 

its regulatory proteins vary among selected brain areas of rats and that they are modulated in a 

sex- and age-dependent manner. 

Two papers addressing the second aim show a functional role of the MVA pathway in the 

CNS using a pharmacological approach. By using a HMGCR inhibitor, simvastatin, I studied 

the role of the MVA pathway on emotional reactivity and cognitive performance in rodents. 

In parallel, I used the same approach to study the impact on neuronal development in vitro. 

The results demonstrate that HMGCR activity is involved in rodent memory and social 

interactions (Segatto et al., 2014b). Moreover, inhibition of the enzyme enhances neurite 

outgrowth and neuronal development (Cartocci et al., 2016). The work addressing the third 

aim resulted in one publication showing that rats presenting autistic-like symptoms display 

alterations in key elements of MVA pathway. These changes depend on the age and differ 

among brain areas (Cartocci et al., 2017, under second revision). 

My contribution to the papers was manifold. I obtained funding for the research, I planned the 

experiments and coordinated the members of my research group and the collaborators. I 

analyzed data, performed statistical analyses, created the figures and wrote the manuscripts. 

Being corresponding author on each of the papers, I handled interactions with editors, revised 

the manuscripts and wrote the responses to the referee comments. On the bench-side, I helped 

to treat animals, to sacrifice them, and to collect their tissues. Moreover, I performed all the 

HMGCR activity assays. 
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Abstract

Aim: In this study, we investigated the regulatory network of the key and

rate-limiting enzyme of cholesterol biosynthetic pathway, the 3-hydroxy

3-methylglutaryl coenzyme A reductase (HMGR) in different brain

regions, to add new insight about lipid metabolism and physiology in the

central nervous system (CNS).
Methods: HMGR levels and activation state and the proteins involved in

the enzyme regulatory network were analysed by Western blot in hippo-

campus, cortex, cerebellum and brain stem of adult male rats.
Results: HMGR protein level and phosphorylation state exhibit a specific

pattern in each brain area analysed, according to the levels and activation

state of the proteins responsible for the short- and long-term regulation of

the enzyme. Moreover, low-density lipoprotein receptor expression dis-

plays a similar trend to that of HMGR.
Conclusions: The obtained data indicate that cholesterol biosynthesis

could be differently modulated in each brain region in adult male rat and

emphasize marked differences in HMGR and low-density lipoprotein

receptor regulation. The results provide new insights into the intricate

network that regulates cholesterol homoeostasis in the adult CNS in

connection with the regional needs of this molecule.

Keywords central nervous system, cholesterol, HMG-CoA reductase.

Cholesterol is one of the most well-known molecules

because of its pivotal roles in human physiology and

in pathological conditions, such as atherosclerosis,

cardiovascular and Alzheimer’s disease. Nowadays,

we reached a huge knowledge about the biology of

cholesterol: it determines the properties of cell

membranes and protein components (Yeagle 1985,

Burger et al. 2000), and represents the precursor of

steroid hormones, bile acids and vitamin D (Repa &

Mangelsdorf 2000). However, many questions have to

be still clarified, especially concerning cholesterol

metabolism in the central nervous system (CNS),

where this lipid plays crucial roles in several processes

such as synapse plasticity and formation, and conduc-

tion of the action potential (Dietschy & Turley 2004),

Although the CNS constitutes 2% of the total body

weight, it contains five to ten times more cholesterol

than any other organ, which corresponds to the 23%

of the sterol present in the whole body pool (Pfrieger

2003, Dietschy & Turley 2004). In particular, the

greatest amount of unesterified cholesterol is contained

in myelin membrane. Currently, there is no evidence

for a net transfer of cholesterol from the bloodstream

into the CNS or the spinal cord, probably because

lipoproteins, which are responsible for intercellular

transport of sterols and other lipids, are not able to

cross the blood brain barrier (BBB). Thus, it can be

assumed that all cholesterol present in the CNS is

derived from in situ biosynthesis. Cholesterol synthesis

reaches the highest rate during brain development,

coinciding with the period of major growth and cho-

lesterol-rich myelin formation, but declines at low and

constant levels during adulthood (Dietschy & Turley

2004).
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3b-Hydroxy 3b-methylglutaryl coenzyme A reduc-

tase (HMGR) is considered to be the major regulatory

enzyme in cholesterol production and is one of the

most intensively investigated proteins in biochemistry

(Keller et al. 1985). HMGR is considered the key and

rate-limiting enzyme of cholesterol biosynthetic path-

way, catalysing the NADPH-dependent reduction of

3b-hydroxy 3b-methylglutaryl coenzyme A (HMG-

CoA) to mevalonate, the first committed step in cho-

lesterol biosynthesis (Rozman & Monostory 2010,

Trapani et al. 2011a). As the central enzyme of cho-

lesterol metabolic pathway, HMGR is tightly regu-

lated (Goldstein & Brown 1990). In particular, the

enzyme undergoes both short-term and long-term reg-

ulations.

Short-term regulation is achieved by phosphoryla-

tion/dephosphorylation cycles, able to affect the

enzyme activity. The phosphorylation of enzyme’s res-

idue S872 decreases HMGR catalytic activity whereas

the removal of the phosphate reactivates the enzyme.

AMP-activated kinase (AMPK) appears to be the

major HMGR kinase at least in the liver. AMPK is

known to be involved in the regulation of energy

homoeostasis responding to changes in cellular AMP

to ATP ratio (Towler & Hardie 2007). HMGR

dephosphorylation (activation) is operated principally

by protein phosphatase 2A (PP2A), an abundant cellu-

lar serine/threonine phosphatase that regulates a sig-

nificant network of cellular events (Janssens & Goris

2001).

Aside from short-term regulation, HMGR is sub-

jected to long-term regulation through transcriptional,

translational and post-translational control (Xu et al.

2005). To monitor levels of membrane sterols cells

employ, in addition to HMGR, another membrane-

embedded protein of the ER, sterol regulatory element

binding protein (SREBP) cleavage activating protein

(Scap). Scap is an escort protein for SREBPs, mem-

brane-bound transcription factors able to induce the

expression of genes required for cholesterol synthesis

and uptake, such as HMGR and low-density lipopro-

tein receptor (LDLr) respectively (Brown & Goldstein

1997). In sterol-deprived cells, Scap binds SREBPs and

escorts them from the ER to the Golgi apparatus

where SREBPs are proteolytically processed to yield

N-terminal active fragments (nSREBPs) that enter the

nucleus and induce the expression of their target genes

(Brown & Goldstein 1999). When cholesterol builds

up in ER membranes, the Scap/SREBP complex fails

to exit the ER, the proteolytic processing of SREBPs is

abolished, and the transcription of the target genes

declines (Trapani et al. 2011b). ER retention of Scap/

SREBP is mediated by sterol-dependent binding of

Scap/SREBP to Insig (INSulin Induced Gene), an

ER resident protein (Yang et al. 2002). Moreover,

intracellular accumulation of sterols triggers binding

of HMGR to Insig, which, in turn, initiates the ubiq-

uitination and the subsequent proteasomal degrada-

tion of the enzyme (Sever et al. 2003).

The regulation of HMGR is well characterized in

the liver, where the highest rate of cholesterologenesis

takes place (Goldstein et al. 2006). On the contrary,

little or nothing is known about the modulation of

this key enzyme in the CNS. As far as we know, the

rate of cholesterol synthesis during brain development

correlates closely with both the rate of cholesterol

build-up and the ultimate concentration of this mole-

cule found in each brain region. Thus, the highest

biosynthesis is present in those myelin-rich regions,

such as the brain stem, that ultimately reach the high-

est amount of cholesterol (Dietschy & Turley 2004).

Moreover, it was recently demonstrated that, in adult

rat brain, the transcription factor isoform SREBP-2

shows a specific regional pattern of protein expression

(Kim & Ong 2009). This evidence, together with the

BBB-derived isolation of brain cholesterol metabolism

from any changes in the circulating amounts of lipids,

leads to the hypothesis that HMGR could be differ-

ently modulated in this organ and that specific regio-

nal differences could occur not only in developing but

also in mature brain. In this study, we investigated

the presence, the protein levels and the activation

state of HMGR and its regulatory proteins in four

different brain regions of adult rats, to add new

insight about cerebral lipid metabolism and physiol-

ogy of the analysed regions. In particular, the analysis

was performed in hippocampus, cortex, cerebellum

and brain stem, which differ from neuronal circuits,

cytoarchitecture, white matter composition and

functions.

Materials and methods

Animals

Four 3-month-old male Wistar Rattus norvegicus

(Harlan Nossan, S. Pietro al Natisone, Italy) were

housed under controlled temperature (20 ± 1 °C),
humidity (55 ± 10%) and illumination (lights on for

12 h daily, from 7 AM to 7 PM). Food and water were

provided ad libitum. All rats were held in quarantine

for 2 weeks before the experiments. Tubes for tunnel-

ling and nesting materials (paper towels) were daily

placed in all cages as environmental enrichment. The

experiments were performed according to the ethical

guidelines for the conduct of animal research (Ministero

della Salute, Official Italian Regulation No. 116/92,

Communication to Ministero della Salute no. 391/

121). Rats were killed under deep urethane anaesthe-

sia (1.2 g kg�1, i.p.) by decapitation, and brains were
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immediately removed. Cerebral regions of interest

were collected and frozen at �80 °C for subsequent

biochemical assays.

Lysate preparation

Total lysates were obtained as follows: 100 mg hippo-

campus, cortex, cerebellum or brain stem were

homogenized in 0.01 M Tris–HCl, 0.001 M CaCl2,

0.15 M NaCl and 0.001 M phenylmethylsulfonyl

fluoride (PMSF) (pH 7.5). An aliquot of sample buffer

(0.25 M Tris–HCl pH 6.8, containing 20% SDS and

protease inhibitor cocktail) was added to the homoge-

nate. The samples were solubilized by sonication and

centrifuged for 5 min at 15 600 g, and the superna-

tant was transferred into microtubes. Protein concen-

tration was determined by the method of Lowry and

coll. (Lowry et al. 1951). All samples were boiled for

3 min before loading for Western blotting.

Protein analysis

Protein profiles were analysed by Western blotting.

Protein (30 lg) from total lysates was resolved by

12% for Insig-1 (Novus Biologicals, Cambridge, UK)

and PP2A (Santa Cruz Biotechnology, Santa Cruz,

CA, USA); 10% for P-AMPKa, total AMPKa (Cell

Signalling Technology, Boston, MA, USA) and Glial

fibrillary acidic protein (GFAP) (Synaptic System

GmbH, Goettingen, Germany); and 7% for P-HMGR

(Millipore, Temecula, CA, USA), HMGR (Upstate,

Lake Placid, NY, USA), LDLr ab30532 (Abcam, Cam-

bridge, UK), SREBP-1 (Santa Cruz Biotechnology) and

SREBP-2 (Abcam) SDS-PAGE as previously described

(Trapani et al. 2011b).

Statistical analysis

Data are expressed as means ± SD (standard devia-

tion). The difference in parameters was statistically

tested for significance with one-way analysis of vari-

ance (ANOVA) followed by Tukey–Kramer post-test.

Values of P < 0.05 were considered to indicate a sig-

nificant difference. Statistical analysis was performed

using GRAPHPAD INSTAT3 (GraphPad, La Jolla, CA,

USA) for Windows.

Results

This work was aimed at evaluating the presence, the

levels and the activation state of HMGR and proteins

involved in its regulatory network in different brain

regions. HMGR phosphorylation is responsible for the

modulation of the enzyme activation state. Thus, Wes-

tern blot detection of phosphorylated HMGR

(P-HMGR) by a specific antibody is a good method to

reveal the inactive fraction of the enzyme when com-

pared with the total one. To avoid the full activation

of the enzyme by lysosomal phosphatases, sodium

fluoride (NaF) was added as phosphatase inhibitor

during the preparative procedure. Results in Figure 1

panel (b) show that hippocampus has the highest
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Figure 1 3-hydroxy 3-methylglutaryl coenzyme A reductase (HMGR) levels and phosphorylation state in different brain areas.

The figure shows a representative Western blot (a) and the densitometric analysis of t-HMGR protein levels (b) and P-HMGR/

t-HMGR ratio (c) in hippocampus (Hp), cortex (Cx), cerebellum (Cb) and brain stem (BS). Protein levels were normalized with

a-tubulin. The data are expressed as arbitrary units obtained analysing protein bands using the software IMAGEJ; for details, see

the main text. All the data obtained are reported as the mean ± SD of n = 4 independent experiments carried out in duplicate.

P < 0.001, determined using one-way ANOVA followed by Tukey–Kramer post-test, was compared with hippocampus (*) or

cortex (°) or cerebellum (§) values.
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HMGR protein expression followed by cortex, cere-

bellum and brain stem. Moreover, the ratio (activation

state) between P-HMGR and total protein expression

does not statistically differ between the analysed brain

regions except for the brain stem, wherein P-HMGR

levels are significantly higher in comparison with

hippocampus, cortex and cerebellum (Fig. 1c), suggest-

ing that the enzyme activity could be very low in this

cerebral area. The regional differences in expression and

activation state of HMGR suggest that each brain region

could possess a specific rate of cholesterol biosynthesis.

These results prompted us to evaluate the involve-

ment of the main upstream phosphatase and kinase,

which regulate the enzyme phosphorylation state.

Results show that PP2A catalytic subunit is expressed

at very low levels in brain stem, while a higher and

similar amount is present in hippocampus, cortex and

cerebellum (Fig. 2a). The reduced PP2A levels in brain

stem fit well with the high P-HMGR levels previously

detected in the same region. Moreover, as AMPK acti-

vation depends on the phosphorylation of its catalytic

subunit (Hardie & Sakamoto 2006), both the total

levels and phosphorylation state of AMPKa were anal-

ysed. As shown in Figure 2a, no differences in total

AMPK (t-AMPK) protein levels among the four brain

regions were detected. On the contrary, brain cortex

exhibits the highest AMPK activation state, as obser-

vable from the ratio between the phosphorylated

AMPK (P-AMPK) levels and the total when compared

with hippocampus, cerebellum and brain stem

(Fig. 2b). However, the high AMPK activation does

not correlate with the low P-HMGR levels in brain

cortex, suggesting that, at least in this case, AMPK

seems not to be involved in the modulation of HMGR

activity, but likely committed to the regulation of

other enzymes.

Once the HMGR activation state was defined and

the enzymes involved in HMGR phosphorylation were

analysed, the attention was focused on long-term reg-

ulation of the enzyme to find an explanation about

the different total amount of HMGR found in each

brain region. Enzyme levels depend on intracellular

cholesterol content, and as the homoeostasis mainte-

nance of cholesterol in the brain is guaranteed by an

equilibrium between local biosynthesis and intracellu-

lar uptake of cholesterol-rich lipoproteins (Pfrieger

2003), protein levels and maturation of LDLr were

checked. We used an anti-LDLr antibody that reacting

with both glycosylated and unglycosylated LDLr

forms allows us to analyse the expression and the

post-translational processing of the receptor. Indeed,

LDLr is highly glycosylated through N- and O-link-

ages, migrating at 100 kDa (neo-synthesized receptor),

130 kDa (intermediate form) and 160 kDa (functional

and mature form) on SDS-PAGE, and three specific

bands can be detected (Segatto et al. 2011). Western

blot analysis of LDLr displays a similar distribution to

that of HMGR, with the highest levels of neo-synthe-

sized and mature forms detected in hippocampus, fol-

lowed by cortex, cerebellum and brain stem (Fig. 3).

It is interesting to note that LDLr is expressed at very

low and barely detectable levels in brain stem. To

check whether the region-dependent variations in

HMGR and LDLr expression could be related to a
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Figure 2 PP2A level and AMP-activated kinase (AMPK) activation state in different brain areas. (a) shows a representative

Western blot (top) and the densitometric analysis (bottom) of PP2A protein levels in hippocampus (Hp), cortex (Cx), cerebellum

(Cb) and brain stem (BS). Protein levels were normalized with a-tubulin. (b) shows a representative Western blot (top) of both

P-AMPK and t-AMPK protein levels in hippocampus (Hp), cortex (Cx), cerebellum (Cb) and brain stem (BS); bottom represents

the ratio between the densitometric analysis of each sample analysed. Protein levels were normalized with a-tubulin. The data

are expressed as arbitrary units obtained analysing protein bands using the software IMAGEJ; for details, see the main text. All

the data obtained are reported as the mean ± SD of n = 4 independent experiments carried out in duplicate. P < 0.01, deter-

mined using one-way ANOVA followed by Tukey–Kramer post-test, was compared with hippocampus (*) or cerebellum (§) or cor-

tex (°) or brain stem (#) values.
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different activation of their transcription factors,

active nSREBPs levels were assessed using antibodies

against the cleaved N-terminus of these proteins. Two

genes code for three SREBP isoforms, SREBP-1a,

SREBP-1c and SREBP-2. SREBP-1a is a powerful acti-

vator of all SREBP-responsive genes, including those

that mediate the biosynthesis of cholesterol, triglyce-

rides and fatty acids. The functions of SREBP-1c and

SREBP-2 are more restricted than that of SREBP-1a:

SREBP-1c preferentially enhances the transcription of

genes required for fatty acid but not for cholesterol

biosynthesis; SREBP-2 mostly activates cholesterol

biosynthesis. SREBP-1a and SREBP-2 are the predomi-

nant isoforms of SREBP in several cell lines, whereas

SREBP-1c and SREBP-2 predominate in the liver and

most of other intact tissues (Horton 2002). No differ-

ences are detectable in nSREBP-1 levels among the

four regions (Fig. 4a). It should be considered that the

antibody used for Western blot analysis cannot dis-

criminate between SREBP-1a and -1c; thus, we can

assume that both the transcription factor isoforms are

equally expressed in all brain areas taken into consid-

eration in this study. On the other hand, nSREBP-2

displays a brain area-specific pattern of protein
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Figure 3 Low-density lipoprotein receptor (LDLr) levels in different brain areas. The figure shows the densitometric analysis of

LDLr glycosylation pattern in hippocampus (Hp), cortex (Cx), cerebellum (Cb) and brain stem (BS). Panel (a) represents 160

kDa LDLr; panel (b), 130 kDa; panel (c), 110 kDa. A representative Western blot is shown in panel (d). Protein levels were

normalized with a-tubulin. The data are expressed as arbitrary units obtained analysing protein bands using the software IMAGEJ;

for details, see the main text. All the data obtained are reported as the mean ± SD of n = 4 independent experiments carried out

in duplicate. P < 0.001, determined using one-way ANOVA followed by Tukey–Kramer post-test, was compared with hippocam-

pus (*) or cortex (°) or cerebellum (§) values.
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Figure 4 Levels of sterol regulatory element binding proteins (SREBPs) in different brain areas. (a) shows a representative Western

blot (top) and the densitometric analysis (bottom) of nSREBP-1 protein levels in hippocampus (Hp), cortex (Cx), cerebellum (Cb)

and brain stem (BS). (b) shows a representative Western blot (top) and the densitometric analysis (bottom) of n-SREBP-2 protein

levels in hippocampus (Hp), cortex (Cx), cerebellum (Cb) and brain stem (BS). Protein levels were normalized with a-tubulin. The
data are expressed as arbitrary units obtained analysing protein bands using the software IMAGEJ; for details, see the main text. All

the data obtained are reported as the mean ± SD of n = 4 independent experiments carried out in duplicate. P < 0.001, determined

using one-way ANOVA followed by Tukey–Kramer post-test, was compared with hippocampus (*) or cortex (°) values.
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expression, with the highest levels found in hippocam-

pus and the lowest ones in cerebellum and brain stem

(Fig. 4b), which were consistent with the regional dis-

tribution of HMGR and LDLr. As it is well estab-

lished that Insig-1 binding to HMGR leads to an

accelerated degradation of the enzyme (Sever et al.

2003), the protein amount of Insig-1 was assessed, to

evaluate whether the differences in HMGR protein

levels could depend also on degradative processes

besides transcriptional ones. However, no significant

differences were found among the brain regions analy-

sed (Fig. 5).

Lastly, as astrocytes are the main cell type where

cholesterol biosynthesis occurs in the CNS (Pfrieger

2003), to assess whether the differences among the

analysed proteins are simply due to the number of as-

trocytes or to a distinct metabolic regulation, GFAP

(astrocyte marker) protein expression was measured.

The results indicate that GFAP expression is high in

brain stem, low in hippocampus and cortex, and inter-

mediate in cerebellum. Moreover, the calculation of

total HMGR/GFAP ratio shows that there is no corre-

lation between the protein expression of the enzyme

and the amount of astrocytes found in each brain

region (Fig. 6).

Discussion

Mevalonate pathway is an essential metabolic path-

way in the CNS, as it leads to the production of sev-

eral compounds pivotal for the maintenance of a

number of brain functions. Among these end products,

cholesterol certainly plays critical roles in CNS physi-

ology (Segatto et al. 2011). It fulfils structural tasks

into cellular membranes, as an instance influencing

membrane thickness and fluidity (Ohvo-Rekila et al.

2002) as well as limiting ion leakage by means of cho-

lesterol-rich myelin membranes (Haines 2001), thus

providing electrical insulation to the axon that is
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Figure 5 Insig-1 levels in different brain areas. The figure

shows a representative Western blot (top) and the densito-

metric analysis (bottom) of Insig-1 protein levels in hippo-

campus (Hp), cortex (Cx), cerebellum (Cb) and brain stem

(BS). Protein levels were normalized with a-tubulin. The data

are expressed as arbitrary units obtained analysing protein

bands using the software IMAGEJ; for details see the main text.

All the data obtained are reported as the mean ± SD of n = 4

independent experiments carried out in duplicate. Statistical

analysis was performed using one-way ANOVA followed by

Tukey–Kramer post-test.
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Figure 6 Glial fibrillary acidic protein expression in different brain areas. The figure illustrates a representative Western blot (a)

and the densitometric analysis (b) of GFAP (astrocyte marker) content and t-HMGR/GFAP ratio (c) in hippocampus (Hp), cor-

tex (Cx), cerebellum (Cb) and brain stem (BS). Protein levels were normalized with a-tubulin. The data are represented as arbi-

trary units obtained analysing protein bands using the software IMAGEJ; for details, see the main text. All the data obtained are

reported as the mean ± SD of n = 4 independent experiments carried out in duplicate. P < 0.001, determined using one-way

ANOVA followed by Tukey–Kramer post-test, was compared with hippocampus (*) or cortex (°) or cerebellum (§) values.
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essential for the conduction of rapid saltatory impulse

(Saher et al. 2005). Furthermore, cholesterol is crucial

for synapse formation, as it increases the number of

synapses by enhancing their stability (Pfrieger 2003).

These effects are consistent with the proof that the

removal of cholesterol from hippocampal slices

through HMGR pharmacological inhibition eliminates

the late phase of long-term potentiation (Matthies

et al. 1997). The importance of cholesterol in CNS

processes is also supported by growing clinical studies

that demonstrate that imbalance in cholesterol homo-

eostasis determines several brain pathological descrip-

tions, such as Alzheimer’s disease, Niemann–Pick type

C disease and multiple sclerosis (Pfrieger 2003, Zipp

et al. 2007, Segatto et al. 2011).

Despite this evidence, available information still

remains limited, and no research is addressed to evalu-

ate prospective differences in cholesterol biosynthesis

in distinct brain areas, which are known to differ for

energy balance, cytoarchitecture and function.

Thus, the current work was aimed at evaluating

whether HMGR, the key and rate-limiting enzyme of

cholesterol biosynthetic pathway, could undergo brain

region-specific regulation.

Our data show that HMGR phosphorylation is high

in brain stem, while lower and similar levels are

observed in hippocampus, brain cortex and cerebel-

lum, indicating that HMGR activation is less promi-

nent in brain stem. This result is in agreement with

PP2A catalytic subunit levels detected in the same area,

suggesting that HMGR hyperphosphorylation could be

a consequence of the low amount of the phosphatase.

No differences are shown about AMPK except for cor-

tex, wherein P-AMPK protein levels are higher than in

hippocampus, cerebellum and brain stem. However,

these data do not match the HMGR phosphorylation

state, suggesting that AMPK could not be involved

HMGR short-term modulation we observed. We can

not exclude that other kinases, such as protein kinase

C (Beg et al. 1985), could be involved in. On the other

hand, aside the effects on HMGR phosphorylation state,

the sustained activation of AMPK in cortex could reflect

the energy balance and the metabolic rate of this region.

The evaluation of total HMGR protein content

allowed us to analyse the distribution pattern of the

enzyme in the CNS. HMGR protein levels in hippo-

campus are found to be the highest, followed by brain

cortex; the lowest ones are expressed in cerebellum

and brain stem. The long-term regulation of the

enzyme is exerted through transcriptional events:

while no differences are revealed in the amount of

nSREBP-1, the observed variations in nuclear and

transcriptionally active nSREBP-2 are functionally in

agreement with brain HMGR trend, according to the

classical model well accepted (Goldstein et al. 2006,

Espenshade & Hughes 2007). nSREBP-2 expression

pattern also corroborates with existing literature data,

wherein immunoblot analysis showed a dense band

corresponding to transcriptionally active SREBP-2 in

homogenates from rat hippocampus and cortex, while

hardly detectable bands were present in cerebellum

and brain stem (Kim & Ong 2009). In this study, the

transcriptional regulatory system of HMGR in brain

regions operated by SREBP-2 is also supported by

LDLr expression, which is strongly and moderately

high in hippocampus and cortex, respectively, and

extremely low in cerebellum and brain stem.

A variety of findings claim that during development

and in mature brain, neurons strongly reduce or even

abandon cholesterol synthesis to reserve energy and

import cholesterol from astrocytes through lipopro-

teins. Thus, as the enzymatic machinery to synthesize

cholesterol is mainly expressed in astrocytes (Pfrieger

2003), Western blot quantification of a specific astro-

cyte marker was performed. GFAP determination

showed that there is no correlation between the analy-

sed proteins and GFAP protein expression, thus sug-

gesting that the observed differences in HMGR

regulation in each brain area are not related to the

number of astrocytes, but reflect a distinct metabolic

regulation.

When evaluated as a whole, these data emphasize

marked functional differences in HMGR and LDLr

regulation in brain regions. In particular, hippocam-

pus, followed by cortex, exhibits a lively cholesterol

metabolism, as sustained by the highest levels of

HMGR and LDLr protein expression. On the con-

trary, the main cholesterol metabolic pathways seem

to be nearly suppressed in brain stem, because of the

low HMGR activation and protein levels and the very

little LDLr expression. The results do not necessarily

indicate that a low cholesterol content is present in

these regions, rather than that cholesterol turnover is

very low. For instance, the brain stem possesses the

highest cholesterol content with respect to the other

brain areas analysed (Quan et al. 2003). However, it

is well known that cholesterol half-life is estimated to

be more than 8 months in myelin-rich regions, such as

brain stem (Smith & Weyl 1968). Thus, despite the

high lipid content, the low basal rate of cholesterol

biosynthesis and uptake in this region could reflect the

very slow turnover of cholesterol in myelin mem-

branes. This is consistent with in vivo experiments,

which demonstrate that cholesterol 24-hydroxylase,

the main cytochrome P450 involved in brain

cholesterol turnover, is principally expressed in

neurons of the cortex and hippocampus but not in the

white matter of adult CNS (Lund et al. 2003).

The physiological relevance of our results, which

report a region-specific regulation in LDLr and

© 2012 The Authors
Acta Physiologica © 2012 Scandinavian Physiological Society, doi: 10.1111/j.1748-1716.2012.02450.x 7

Acta Physiol 2012 M Segatto et al. · Regulation of cholesterol biosynthetic pathway



HMGR protein expression and activation state, lies in

the role of cholesterol in brain processes. For instance,

cholesterol is essential for the acquisition of neuronal

morphology. The acquisition of neuronal type-specific

morphogenesis is a key feature of neuronal differentia-

tion and has important consequences for region-spe-

cific functions of the CNS. It was demonstrated that a

well-defined intracellular cholesterol profile is respon-

sible for the different regulation of dendrite and axon

outgrowths in hippocampal and cortical neurons.

Cholesterol content in total homogenate and in lipid

rafts of hippocampal neurons is higher than in cortical

neurons. The depletion of this molecule strongly

induced neurite outgrowth and facilitated the polarity

establishment of hippocampal neurons, which showed

a similar morphology to that of cortical neurons. On

the other hand, variations in the amount of choles-

terol in cortical neurons decreased the neurite out-

growth (Ko et al. 2005). This finding suggests that an

optimal concentration of cholesterol is required to

assure the acquisition and the maintenance of a well-

defined neuronal morphology. The distribution pattern

and the modulation of the main proteins involved in

cholesterol homoeostasis evaluated in the present

work could represent a good explanation of this phe-

nomena, highlighting for the first time that a deep and

tight regional regulation of cholesterol biosynthetic

pathway is essential not only during brain develop-

ment, but also to ensure physiological functions in

adult brain.

As cholesterol is pivotal for synapse maturation, the

observed differences in the regional expression and

activation state of HMGR and LDLr could be also

related to the modulation of synaptic plasticity. Hip-

pocampus, together with cerebral cortex, represents a

highly dynamic structure because of synaptic plastic-

ity: given the importance of cholesterol in synapse for-

mation/stabilization, this phenomenon could account

for an increased cholesterol need in these regions of

adult brain, which reflects in a different modulation of

proteins and enzymes (such as HMGR and LDLr)

responsible for cholesterol homoeostasis maintenance.

The tight regulation of cholesterol biosynthesis and its

essential role in synaptic plasticity is further supported

by the cholesterol disbalance often observed in neuro-

degenerative pathologies. Indeed, synapses are sensi-

tive to cholesterol content, and interferences in the

delivery of this compound from astrocytes to synaptic

compartments are at the root of synapse loss and, in

turn, of neurodegeneration. Alzheimer’s disease (AD),

which is characterized by synapse and neuron loss in

specific brain regions (such as cortex and hippocam-

pus) could, at least in part, depend on disbalance in

cholesterol homoeostasis. In particular, b-amyloid pla-

ques seem to interfere with cholesterol transport from

astrocytes to neurons (Pfrieger 2003). Further evidence

that the onset and the progression of AD is related to

cholesterol deficit in neurons comes from the observa-

tion that neurofibrillary tangles, another AD hallmark,

are also present in patients with Niemann–Pick type C

disease, a genetic disorder caused by a deregulation of

cholesterol storage into cells (Suzuki et al. 1995).

Even though the underlying mechanisms are still

unknown, the puzzling variety of these findings

strongly support a link between neurodegenerative

pathologies and cholesterol metabolism. For this rea-

son, the results about the tight regional regulation of

HMGR in adult brain presented in this work could

represent another starting point to better comprehend

the involvement of cholesterol metabolism in brain

physiology and pathology occurring in specific brain

areas, also suggesting that HMGR could be consid-

ered as a prospective molecular target for the treat-

ment of a variety of CNS disorders.

Moreover, increasing evidence suggests that statins,

powerful HMGR inhibitors widely used in therapies

against hypercholesterolaemia, can induce several

effects on the CNS, such as mood swings, irritability,

depressive syndromes and modulation in cognitive

processes (Golomb et al. 2004, Baytan et al. 2008).

Thus, a deep comprehension of cholesterol biosynthet-

ic pathway among the different brain regions could be

useful to delve deeper into the molecular mechanisms

and the brain areas involved in the onset of these side

effects.

In conclusion, the obtained data indicate that

marked differences in HMGR and LDLr regulation

are present in brain areas analysed. These variations

seem to be related to cholesterol turnover, regional

myelin content and the modulation of synaptic plastic-

High HMGR Low HMGR

High LDLr Low LDLr

High grey/white matter ratio

High synaptic plasticity

Low grey/white matter ratio

High myelin content

High cholesterol turnover Low cholesterol turnover

Figure 7 Potential model to explain the brain region-specific

regulation of 3-hydroxy 3-methylglutaryl coenzyme A reduc-

tase (HMGR) and low-density lipoprotein receptor (LDLr).

Potential model to explain the brain region-specific regulation

of HMGR and LDLr.

© 2012 The Authors
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ity that are specific features of each brain region

(Fig 7).
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Analysis of the Protein Network
of Cholesterol Homeostasis in
Different Brain Regions: An Age
and Sex Dependent Perspective
MARCO SEGATTO, ANNALAURA DI GIOVANNI, MARIA MARINO,

AND VALENTINA PALLOTTINI*

Department of Sciences, University of Roma Tre, Rome, Italy

Although a great knowledge about the patho-physiological roles of cholesterol metabolism perturbation in several organs has been
reached, scarce information is available on the regulation of cholesterol homeostasis in the brain where this lipid is involved in the
maintenance of several of neuronal processes. Currently, no study is available in literature dealing how and if sex and agemaymodulate the
major proteins involved in the regulatory network of cholesterol levels in different brain regions. Here, we investigated the behavior of
3-hydroxy 3-methylglutaryl coenzymeA reductase (HMGR) and low-density lipoprotein receptor (LDLr) in adult (3-month-old) and aged
(12-month-old) male and female rats. The analyses were performed in four different brain regions: cortex, brain stem, hippocampus,
and cerebellumwhich represent brain areas characterized by different neuronal cell types, metabolism, cytoarchitecture andwhitematter
composition. The results show that in hippocampus HMGR is lower (30%) in adult female rats than in age-matched males. Differences in
LDLr expression are also observable in old females with respect to age-matched males: the protein levels increase (40%) in hippocampus
and decrease (20%) in cortex, displaying different mechanisms of regulation. The mechanism underlying the observed modifications are
ascribable to Insig-1 and SREBP-1 modulation. The obtained data demonstrate that age- and sex-related differences in cholesterol
homeostasis maintenance exist among brain regions, such as the hippocampus and the prefrontal cortex, important for learning, memory
and affection. Some of these differences could be at the root of marked gender disparities observed in clinical disease incidence,
manifestation, and prognosis.
J. Cell. Physiol. 228: 1561–1567, 2013. � 2012 Wiley Periodicals, Inc.

Highly intricate regulatory systems have evolved for the
maintenance of cholesterol homeostasis in the body.
Cholesterol fulfills both functional and structural tasks, since it
regulates the cell membrane fluidity and stability (Ohvo-Rekila
et al., 2002) and constitutes the precursor of bile acids and
steroid hormones including vitamin D (Repa and Mangelsdorf,
2000). Although we reached a great knowledge about the
patho-physiological roles of cholesterol metabolism
perturbation in several organs and tissues, only little
information is available on the regulation of cholesterol
homeostasis in the central nervous system (CNS) where this
lipid is involved in themaintenance of several neuronal functions
such as the conduction of the action potential, the stabilization
of synapses, and the formation of lipid rafts (Block et al., 2010).
Even though the human brain accounts for the 2% of the total
body weight, it has been established that approximately 25% of
the total content of cholesterol present in humans is found in
the CNS (Bjorkhem and Meaney, 2004; Dietschy and Turley,
2004).

There is no proof for a direct transport of cholesterol from
the plasma into the CNS or the spinal cord, probably because
the blood brain barrier is able to avoid the transit of the
lipoprotein–cholesterol from the bloodstream. For this reason,
it is widely accepted that almost all the cholesterol found in the
CNS is produced from local biosynthesis. Cholesterol synthesis
is very high in the developing brain, thus reflecting the synthesis
of a large quantity of cholesterol-rich myelin membrane.
However, this rate declines at low and constant levels during
adulthood (Dietschy and Turley, 2004). Recently, our research
group demonstrated that cholesterol biosynthesis could be
differently modulated in different brain regions in adult male
rat and that parallel differences in the proteins involved in
intracellular cholesterol homeostasis maintenance exist
(Segatto et al., 2012). Indeed, the 3-hydroxy 3-methyl glutaryl
coenzyme A reductase (HMGR) the key and the central

regulatory enzyme in cholesterol biosynthesis (Keller et al.,
1985; Segatto et al., 2011), and the low density lipoprotein
receptor (LDLr), the protein responsible of cellular cholesterol
uptake, exhibited a specific brain region pattern of activation
state and protein expression (Segatto et al., 2012). Whether
this pattern remains constant in both sexes and during ageing is
completely unknown.

Age- and sex-dependent regulation of the processes
underlying cholesterol homeostasis maintenance has been well
demonstrated in rat liver (Pallottini et al., 2003, 2004, 2007; De
Marinis et al., 2008; Trapani et al., 2010; Segatto et al., 2011). In
elderlymale and female rat, HMGR is highly activated; however,
the mechanisms driving deregulation of HMGR appear to be
gender-dependent (Trapani and Pallottini, 2010). Studies
carried out on aged male rats suggest that in males, HMGR
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deregulation is due to the increased ROS-induced protein
phosphatase 2A (PP2A) association to HMGR, which results in
the increased enzyme activation (Pallottini et al., 2007). On the
other hand, studies of aged female rats, inwhich the levels of the
sex steroid hormone estrogen are decreased, suggest that
HMGR deregulation is caused by the decreased activation of
AMP activated kinase (AMPK) observed during estrogen
deficiency inducing, also in this case, an increased activation
of the enzyme (Trapani et al., 2010). Sex differences are also
observable in the expression of hepatic HMGR in adult rats:
these variations seem to be dependent on the estrogen-induced
modulation of the proteins involved in HMGR long-term
regulation (De Marinis et al., 2008).

Interestingly, literature data support that deregulations of
cholesterol homeostasis in the brain could lead to the onset of a
variety of neurodegenerative disorders such as Alzheimer’s
disease (AD) (Pfrieger, 2003), the incidence ofwhich is higher in
older women than in age-matched men (Andersen et al., 1999).
A number of observations clearly highlight a link between AD
and cholesterol metabolism, underlying the pivotal role of this
lipid in the brain. In addition, since adult neurons reduce
cholesterol biosynthesis and import this molecule from
astrocytes through lipoproteins (Pfrieger, 2002), the existence
of an intercellular horizontal transport of cholesterol strongly
suggests that both LDLr and HMGR may play essential roles
in this tissue. Given the importance of HMGR in cholesterol
homeostasis maintenance, it is deeply regulated from both
short-term and long-term regulations (Goldstein and Brown,
1990).

Short-term regulation is under the control of
phosphorylation/dephosphorylation events operated by AMPK
andby PP2A that inhibits and activates the enzyme, respectively.
The ratio between phosphorylated and total HMGR provides
the enzyme phosphorylation state (Pallottini et al., 2006).
HMGR also undergoes to long-term regulation by membrane-
bound transcription factors, sterol regulatory element binding
proteins (SREBPs), able to induce the expression of genes
whose products are involved in cholesterol synthesis and
uptake, such as HMGR and LDLr (Brown and Goldstein, 1997).
SREBP activities depend on cellular sterol content.When sterol
concentration falls down into cells, SREBPs migrate from the
endoplasmic reticulum (ER) to the Golgi apparatus where
SREBPs are proteolytically cleaved by Site-1 and Site-2
proteases. This processing determines the release of the
N-terminal transcriptionally active fragments that, once into
the nucleus, induce the expression of the genes involved in lipid
metabolism (Brown and Goldstein, 1999). When cholesterol
accumulates in endoplasmic reticulum membranes, SREBPs are
not able to reach the Golgi apparatus because are held into the
endoplasmic reticulum by other resident proteins: Insulin
induced gene-1 and -2 (Insig-1 and -2); the proteolytic cleavage
of SREBPs is avoided and the transcription of the target genes
declines (Segatto et al., 2011; Trapani et al., 2011). In addition,
Insig proteins, in presence of high cholesterol content, are also
able to induce HMGR degradation (Espenshade and Hughes,
2007), reducing cell ability to produce cholesterol.

Up to now, no research is present in literature dealing how
and if sex and age may modulate the major proteins involved in
the regulatory network of cholesterol levels in different brain
regions. In this study we investigated the presence, the protein
levels and the activation state of HMGR and LDLr, Insigs and
SREBPs in four different brain regions of adult (3-month-old),
aged (12-month-old) male and female rats. To verify whether
the putative changes of the studied protein could be dependent
on estrogen levels, aged (12-month-old) female rats were
treated with 17-b estradiol. Twelve months of age can be
regarded as the beginning of estropause in rats, characterized
by ovarian cycle interruption and reduction in 17-b estradiol
(E2) levels; thus 12-month-old female rats could be considered

to be in a similar condition to that occurring in women at the
onset of menopause (Trapani et al., 2010).

Since cholesterol metabolism in the brain is deeply affected
by different factors, such as the amount of myelin and the cell
metabolic rate, the analysis were performed in hippocampus,
cortex, cerebellum, and brain stem, which are representative
brain areas for different neuronal cell types, metabolism,
cytoarchitecture, and white matter composition.

Materials and Methods
Reagents

All chemicals were obtained from commercial sources and of the
highest quality available. Sources not specified were obtained from
Sigma–Aldrich (Milan, Italy).

Ethical approval

The experiments were performed according to the ethical
guidelines for the conduct of animal research according Official
Italian Regulation No.116/92 and the protocol was approved by
the Ethical Review Board of Roma Tre University (protocol n8
18-VI/1.1).

Animals

Twenty rats, 3- and 12-month-old male and female Wistar Rattus
norvegicus (HarlanNossan, S. Pietro alNatisone, Italy) were housed
under controlled temperature (20� 18C), humidity (55� 10%),
and illumination (lights on for 12 h daily, from 7AM to 7 PM).
Food and water were provided ad libitum. All rats were held in
quarantine for 2 weeks before the experiments. Nesting materials
and tubes for tunneling were placed in all cages as environmental
enrichment. Each experimental group was composed by four
animals.

Adult female rats (3-month-old) were sacrificed in proestrous.
The estrous cycle was determined at 07:00–09:00 using the
method described in the organization for economic co-operation
and development (OECD) guidance document for the histologic
evaluation of endocrine and reproductive test in rodents (OECD,
2008). The cells lining the vagina of the female rat respond to levels
of circulating hormones and represent a valuable marker of the
stage of preparation of the ovary. To obtain vaginal cell samples,
lavage orwashingwith saline orwater from a pipettewas used. The
stages of the rat estrous cycle were classified according to the
presence, absence, or proportions of three cell types in vaginal
smears: cornified (keratinized) cells, epithelial cells, and leukocytes.
Moreover proestrous was confirmed by plasma 17-b estradiol
measurement (Table 1) as already reported (Butcher et al., 1974).

Four 12-month-old female rats were treated with a single
intraperitoneal injection of 1mg/kg 17-b estradiol (E2) or with the
same volume of vehicle dimethylsulfoxyde (DMSO) 24 h before the
experiment. Rats were sacrificed under deep urethane anesthesia
(1.2 g/kg, i.p.) by decapitation and brains were removed. The
cerebral regions used in this study were collected and immediately
frozen at �808C for subsequent biochemical assays.

Lyzate preparation

Total lyzates were obtained as follows: 100mg hippocampus,
cortex, cerebellum, or brain stems were solubilized by sonication

TABLE 1. Plasma 17-b estradiol amount measurement in adult

(3-month-old) and aged (12-month-old) female rats

3-month-old
(vehicle) (pg/ml)

12-month-old
(vehicle) (pg/ml)

12-month-old
(E2) (ns pg/ml) P value

41.5� 2.9 31.2� 1.9a 42.4� 2.3 P< 0.001

Aged rats were treated with vehicle (DMSO 1ml/kg) or 17-b estradiol (1mg/kg).
aAs from ANOVA followed by Tukey–Kramer test with respect to 3-month-old female rats.
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in sample buffer (0.25M Tris–HCl pH 6.8, containing 20% SDS and
protease inhibitor cocktail). Then, the samples were centrifuged
for 5min at 15,600g, and the supernatant was transferred into
microtubes. Protein concentration was determined by themethod
of (Lowry et al., 1951). All samples were boiled for 3min before
loading for Western blotting.

Protein analysis

Protein profiles were analyzed by Western blotting. Protein
(30mg) from total lyzates was resolved by 12% SDS–PAGE for
Insig-1 and Insig-2 (Novus Biologicals, Cambridge, UK), 10% SDS–
PAGE for glial fibrillary acidic protein (GFAP) (Synaptic System
GmbH, Goettingen, Germany), and 7% SDS–PAGE for P-HMGR
(Millipore, Temecula, CA), t-HMGR (Upstate, Lake Placid, NY),
LDLr ab30532 (Abcam, Cambridge, UK), SREBP-1 (Santa Cruz
Biotechnology, Santa Cruz, CA) and SREBP-2 (Abcam) as
previously described (Trapani et al., 2011). a-Tubulin (Sigma–
Aldrich) was used as housekeeping protein. Hrp-conjugated IgG
produced in mouse or in rabbit (Biorad Laboratories, Milan, Italy)
were used as secondary antibodies. Bound antibodies were
visualized using enhanced chemoluminescence detection (GE
Healthcare, Little Chalfont, UK).

Statistical analysis

All images derived from Western blotting were analyzed with
ImageJ (National Institutes of Health, Bethesda, MD) software for
Windows. Each reported value was calculated from the ratio
between arbitrary units (a.u.) obtained by the protein band and
the respective tubulin. Data are expressed as means� standard
deviation (SD). The significance of differences of parameters was
statistically assessed by one-way analysis of variance (ANOVA)
followed by Tukey–Kramer post-test. Values of P< 0.05 were
considered to indicate a significant difference. Statistical analysis
was performed using GraphPad Instat3 (GraphPad, Inc., La Jolla,
CA) for Windows.

Results

In order to evaluate prospective age- and sex-related
differences of cholesterolmetabolism in theCNS,we started to
analyze phosphorylated HMGR (P-HMGR) and total HMGR
(t-HMGR), the main protein involved in cholesterol synthesis.
As illustrated in Figure 1, the phosphorylation state of the
enzyme (i.e., ratio P-HMGR/t-HMGR/tubulin) did not show
any significant sex- and age-related difference in brain stem
(Fig. 1 parts A,B), cerebellum (Fig. 1 parts C,D), brain cortex
(Fig. 1 parts E,F), and hippocampus (Fig. 1 parts G,H). It is
interesting to note that t-HMGR protein expression (Fig. 1
parts G) was lower in 3-month-old female rats if compared
with age-matched males (0.86� .0.04 vs. 1.55� 0.21; P< 0.01)
in hippocampus, meaning that HMGR activity is lower with
respect to the other experimental groups. This sex-related
difference disappears during ageing, since t-HMGR levels rose
up to reaching the expression levels of the enzyme found in the
other physiological conditions analyzed.

Since cholesterol homeostasis is maintained by biosynthetic
processes and extracellular uptake, we turned our attention on
LDLr, it is synthesized in a precursor of apparent molecular
mass of 110 kDa; this is converted to amature formof apparent
molecular mass of 160 kDa (Tolleshaug et al., 1983): the
increase in molecular mass is correlated with extensive N- and
O-glycosylation in the Golgi apparatus and during the vesicular
transfer to the cell surface. LDLr contains 18 O-linked and two
N-linked oligosaccharides (Cummings et al., 1983), which result
to be essential in the binding affinity of the ligand and in the
stability of the receptor (Filipovic, 1989; Reddy and Krieger,
1989). The data obtained in the present work shows that no
changes were observed in LDLr content both in brain stem

(Fig. 2 parts A,B) and in cerebellum (Fig. 2 parts C,D) in all the
experimental groups. Differently, a higher content of both the
precursor and themature forms were observable in 12-month-
old female hippocampus if compared to age-matched-males
(Fig. 2 parts G,H). On the contrary, 12-month-old female
cortex showed an expected decrease of LDLr content
(Fig. 2 parts E,F), confirming our previous data about the
E2-dependent modulation in LDLr expression in aged female
rats (Segatto et al., 2011).

The lower t-HMGR observed in adult female hippocampus
could depend on a different amount of astrocytes since they
represent the main cell pool in producing cholesterol in the
adult CNS (Pfrieger, 2003), thus the level of glial fibrillary acidic
protein (GFAP), an astrocytic marker, was measured in total
hippocampus lysate. Figure 3 shows that GFAP displayed no
differences in hippocampal tissue both in male and female adult
and aged rats; therefore the proteins involved in the long-term
regulation of HMGR were studied. Figure 4 (parts A,B) shows
that Insig-1 protein expression was very high in hippocampus of
3-month-old female rats if compared with both age-matched
males and 12-month-old animals, while no modifications were

Fig. 1. HMGR phosphorylation state in different brain areas of
adult and aged male and female rats. The figure illustrates the
phosphorylation state ofHMGR in brain stem (partsA,B), cerebellum
(parts C,D), cortex (parts E,F), and hippocampus (parts G,H) of adult
(3-month-old) and aged (12-month-old)male and female rats. On the
left a typical Western blot of P-HMGR, t-HMGR and tubulin, on the
right the densitometric analysis of at least four different experiments
performed in duplicate. The graphs show the ratio among P-HMGR/
t-HMGR/tubulin arbitrary units obtained analyzing the bands with
ImageJ for Windows. For details see the main text.
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observable in Insig-2 content (parts C,D). The analyzes of
SREBPs showed that the amount of the transcriptionally active
fraction of SREBP-1 was higher in hippocampus of aged female
rats than in males (Fig. 4 parts E,F). On the contrary, no changes
were observed in the protein amount of SREBP-2 (Fig. 4 parts
G,H).

Moreover, as sex-dependent differences in hippocampal
functions are dependent on activational effects of sex steroid
hormones (Swaab and Hofman, 1995), we verified whether the
circulating levels of E2 could be related to LDLr and HMGR
variations in female hippocampal tissue. To check this
hypothesis, plasma E2, LDLr, and HMGR levels were assessed
in adult and aged female untreated or treated with 1mg/kg E2.
As expected (Segatto et al., 2011), plasma E2 decreased in
aged female rats, and the administration of E2 completely
restored the circulating levels of the hormone as a female
rat in proestrous (Table 1). However, E2 treatment did not

re-establish HMGR expression (Fig. 5, part A) and further
increased both glicosylated and unglicosylated LDLr forms
(Fig. 5, part B).

Discussion

Cholesterol biosynthetic cascade has to be considered an
essential metabolic pathway in the CNS. Beside HMGR, the key
and rate-limiting enzyme of this pathway, lipoprotein uptake by
LDLr results to be an important event in maintaining cellular
cholesterol homeostasis (Segatto et al., 2011). The importance
of the physiological regulation of cholesterol metabolism in
the CNS is also highlighted by several clinical studies, which
demonstrated that impairments in the mechanisms regulating
cholesterol homeostasis are linked to a variety of brain
pathological pictures, such as Alzheimer’s disease, Niemann
Pick type C disease, and multiple sclerosis (Pfrieger, 2003; Zipp
et al., 2007; Segatto et al., 2011). In addition, recent literature
suggests that statins, strong HMGR inhibitors widely used in
hypocholesterolemia treatments, can lead to several side
effects in the CNS, such as mood changes, irritability,
depressive syndromes and modulation in cognition (Golomb
et al., 2004; Baytan et al., 2008), suggesting again the key role of
cholesterol biosynthetic pathway in the CNS.

Recent data obtained in our laboratory demonstrated
that marked differences in HMGR and LDLr expression are
observable in the adult CNS ofmale rats. In fact, themodulation
of the key proteins and enzymes responsible for the
maintenance of cholesterol homeostasis, in specific brain
region, is required in connection with the rate of lipid
metabolism and the specific amount of cholesterol needed in
each brain area (Segatto et al., 2012). Moreover, these proteins
were subjected to both ageing- and sex-dependent regulation in
hepatic tissue (De Marinis et al., 2008; Trapani and Pallottini,
2010).

As far as we know, few researches are addressed to evaluate
differences from an age and a gender perspective in the
regulation of cholesterol homeostasis in different brain areas
important for the maintenance of higher-order functions, such
as learning and memory (Lebron-Milad and Milad, 2012). It is

Fig. 2. LDLr levels in different brain areas of adult and aged male
and female rats. The figure illustrates the LDLr glicosylation pattern
(110, 130, and 160kDa) in brain stem (parts A,B), cerebellum
(parts C,D), cortex (parts E,F), and hippocampus (parts G,H) of adult
(3-month-old) and aged (12-month-old)male and female rats. On the
left a typical Western blot of LDLr mature and precursor forms and
of tubulin, on the right the densitometric analysis of at least four
different experiments performed in duplicate. The graphs show the
ratio between LDLr/tubulin arbitrary units obtained analyzing the
bands with ImageJ for Windows. For details see the main text.
§P<0.005 as from ANOVA followed by Tukey–Kramer test with
respect to 3-month-oldmales; MP<0.001 as fromANOVA followed by
Tukey–Kramer test with respect to 3-month-old females; #P<0.001
as from ANOVA followed by Tukey–Kramer test with respect to
12-month-old males.

Fig. 3. GFAP content in hippocampus of adult and aged male and
female rats. The figure illustrates GFAP in hippocampus of adult
(3-month-old) and aged (12-month-old)male and female rats. On the
top a typicalWestern blot, on the bottom the densitometric analysis
of at least four different experiments performed in duplicate. The
graphs show the ratio of arbitrary units between GFAP/tubulin
obtained by analyzing the protein bands with ImageJ for Windows.
For details see the main text.
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noticeable that a region-specific study results to be of great
importance, since each brain area possess a specific energy
balance, cytoarchitecture, function and myelin composition,
and all of these distinctive features could be influenced by
cholesterol metabolism.

Thus, the present work was aimed at analyzing the proteins
involved in cholesterol homeostasis maintenance from a sex
and age perspective among different brain regions. The
obtained results display that themost relevant differenceswere
observed in the cortex and in the hippocampus. In the cortex,
the reported results confirmed what we previously observed
showing that LDLr content in aged female rats depends on the
plasma E2 decrease during the estropause (Segatto et al., 2011).
On the contrary, the results obtained in hippocampus, which
displayed both sex- and age-dependent variation in bothHMGR
and LDLr protein expression, were never reported before.

The low t-HMGR observed in hippocampal tissues of adult
female rats, depends neither on a different number of
astrocytes nor on a decreased transcription with respect to

adult male rats. Instead, the high Insig-1 level supports an
increased degradation rate of the protein. The increased
amount of t-HMGR in aged female rats, on the contrary, could
be ascribable to themodulation of transcriptional events due to
the high content of SREBP-1 active fragment present in this
physiological state. Moreover, the decrease in Insig-1 protein
content in aged female rats with the respect to young ones
could also contribute to the rise of t-HMGR. Thus, a different
balance of SREBP-1 and Insig-1 is at the root of the low t-HMGR
in adult female hippocampus. The high amount of SREBP-1
active fragment observed in aged female hippocampus can also
explain the high content of LDLr found in the same samples.

The obtained results led us to exclude the involvement of
circulating E2 in the modulations we observed. Indeed, the
exogenous E2 treatment was able to restore neither LDLr
levels nor HMGR content. In particular, E2 administration did
not absolutely affect t-HMGR, while it was able to further
enhance the increase in 130 and 160 kDa LDLr, leading to
hypothesize that the circulating hormone could have an effect
on LDL glycosylation processes. Although E2 could be
produced locally, the sex- and age- dependent differences
observed both in HMGR and in LDLr in hippocampus are not
dependent on circulating E2 levels, and could be explained by an
enhanced HMGR degradation operated by Insig-1 in adult
female rats, and by an intensified LDLr andHMGR transcription
due to the increase in the SREBP-1 transcriptionally active
fraction in aged female rats.

When evaluated as a whole, these data confirm marked
dissimilarities in HMGR and LDLr regulation in brain regions
emphasizing that sex- and age-related differences are present,
in particular in the hippocampus. The differences observed
between adult male and female support the increasing
evidences that physiological dissimilarities are present between
sexes in brain areas (Lebron-Milad and Milad, 2012) which
maintain cholesterol homeostasis with different mechanisms as
reported in other systems (i.e., cardiovascular system) (Pepine
et al., 2006; Marino et al., 2011).

Fig. 4. Insig-1 and -2, SREBP-1 and -2 levels in hippocampus of adult
and aged male and female rats. The figure illustrates Insig-1 content
(parts A), Insig-2 content (part B), Srebp-1 content (parts D), and
SREBP-2 content (parts E) in the hippocampus of adult (3-month-old)
and aged (12-month-old) male and female rats. On the left a typical
Western blot of the analyzed proteins and of tubulin, on the right the
densitometric analysis of at least four different experiments
performed in duplicate. The graphs show the ratio between proteins/
tubulin arbitrary units obtained analyzing the bands with ImageJ for
Windows. For details see the main text. MP<0.001 as from ANOVA
followed by Tukey–Kramer test with respect to 3-month-old males;
#P<0.001 as from ANOVA followed by Tukey–Kramer test with
respect to 3-month-old females; §P<0.001 as from ANOVA followed
by Tukey–Kramer test with respect to 12-month-old males.

Fig. 5. t-HMGR and LDLr in hippocampus of adult and E2 treated
aged female rats. The figure illustrates t-HMGR content (parts A, B)
and LDLr content (part C,D) in the hippocampus of adult female
(3-month-old) and aged (12-month-old) female rats treated with
vehicle (V) or 1mg/kg E2 (E2). On the left a typical Western blot of
the analyzed proteins and of tubulin, on the right the densitometric
analysis of at least four different experiments performed in duplicate.
The graphs show the ratio of arbitrary units between proteins/tubulin
obtained analyzing the bands with ImageJ for Windows. For
details see the main text. MP<0.001 as from ANOVA followed by
Tukey–Kramer test with respect to 3-month-old females; #P<0.001
as from ANOVA followed by Tukey–Kramer test with respect to
12-month-old females.
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Our results obtained from aged rats could be construed on a
pathophysiological point of view. The hippocampus and the
cerebral cortex are twohighly dynamic brain regions in termsof
synaptic plasticity: as the importance of cholesterol in the
stabilization and the formation of synapses, the differences
observed in the presented work may account for the different
incidence of those diseases, in connection to different
physiological conditions such as age and gender, that could be
related to an imbalance in cholesterol homeostasis (Pfrieger,
2003; Zipp et al., 2007; Segatto et al., 2011). It is very interesting
to note that deregulation in cholesterol homeostasis in the
CNS could be related to the appearance of neurodegenerative
disorders such as AD (Pfrieger, 2003), whose incidence is
higher in older women than in age-matched men (Andersen
et al., 1999) and whose onset is initially charged to the
hippocampus, the brain region in which we observed the major
imbalances in the studied proteins. A growing numberof studies
clearly establish a link betweenADand cholesterolmetabolism,
underlying the pivotal role of this lipid in the brain. Indeed, it has
been shown that high levels of intracellular cholesterol inhibit
a-secretase activity (Bodovitz and Klein, 1996) and increase b-
amyloid generation via activation of both b- and g-secretases
(Frears et al., 1999; Xiong et al., 2008) and that diet-induced
hypercholesterolemia increases b-amyloid levels in the brain
thus accelerating extracellular b-amyloid deposition in a
experimentalmodel of AD (Refolo et al., 2000; Shie et al., 2002).
In this respect, it is also important to underlie that 12-month-
old female rats display an increased plasma cholesterol level
that could contribute to the onset of the disease (Trapani et al.,
2010). Moreover, several data demonstrate that cellular
cholesterol uptake through LDLr may be a very important
homeostatic mechanism of clearance as it controls Alzheimer’s
b-amyloid peptide elimination from the brain (Cao et al., 2006;
Zlokovic et al., 2010). Thus the increased hippocampal LDL
expression could be a protective mechanism operated by this
region to counteract the phyisiological age-related amyloid
deposition whose incidence is higher in female (Callahan et al.,
2001). On the other hand, it has been recently demonstrated
that oligomeric b-amyloid peptide reduces the expression of
genes involved in cholesterol synthesis in neurons (Malik et al.,
2012), thus suggesting that hippocampal LDLr increase may be
not only a neuroprotective event but also a feedback response
of the neurons to counteract the prospective reduction in
sterol synthesis.

Considering the strong divergences in the regional
modulation of the proteins involved in cholesterol metabolism
assessed in this work, it is possible to speculate that each brain
area can be considered as a unique structure with a specific
cellular context, able to respond in a different way to the same
stimuli (i.e., E2 treatment).

There are now extensive data in scientific literature
indicating that structural, cellular and molecular differences
exist between male and female brains, especially in regions that
are important for learning, memory and affection, such as
the hippocampus and the prefrontal cortex. Some of these
differences may have clinical relevance, as marked disparities in
disease incidence, manifestation, prognosis and treatment have
been observed between the sexes. The results obtained can be
inserted in this context adding a new piece in the complicated
puzzle of physiological sex differences and in the changes that
occur in dependence of ageing.
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Simvastatin Treatment Highlights a New Role for the
Isoprenoid/Cholesterol Biosynthetic Pathway in the
Modulation of Emotional Reactivity and Cognitive
Performance in Rats

Marco Segatto1, Antonia Manduca1, Claudio Lecis1, Pamela Rosso1, Adam Jozwiak2, Ewa Swiezewska2,
Sandra Moreno1, Viviana Trezza1 and Valentina Pallottini*,1

1Department of Science, University Roma Tre, Viale Marconi, Rome, Italy; 2Institute of Biochemistry and Biophysics Polish Academy of Sciences,

Warsaw, Poland

The aim of the present work was to shed light on the role played by the isoprenoid/cholesterol biosynthetic pathway in the modulation

of emotional reactivity and memory consolidation in rodents through the inhibition of the key and rate-limiting enzyme 3-hydroxy 3-

methylglutaryl Coenzyme A reductase (HMGR) both in vivo and in vitro with simvastatin. Three-month-old male Wistar rats treated for

21 days with simvastatin or vehicle were tested in the social interaction, elevated plus-maze, and inhibitory avoidance tasks; after

behavioral testing, the amygdala, hippocampus, prefrontal cortex, dorsal, and ventral striatum were dissected out for biochemical assays.

In order to delve deeper into the molecular mechanisms underlying the observed effects, primary rat hippocampal neurons were used.

Our results show that HMGR inhibition by simvastatin induces anxiogenic-like effects in the social interaction but not in the elevated plus-

maze test, and improves memory consolidation in the inhibitory avoidance task. These effects are accompanied by imbalances in the

activity of specific prenylated proteins, Rab3 and RhoA, involved in neurotransmitter release, and synaptic plasticity, respectively. Taken

together, the present findings indicate that the isoprenoid/cholesterol biosynthetic pathway is critically involved in the physiological

modulation of both emotional and cognitive processes in rodents.

Neuropsychopharmacology advance online publication, 30 October 2013; doi:10.1038/npp.2013.284
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INTRODUCTION

The isoprenoid/cholesterol biosynthetic pathway, also
known as the mevalonate (MVA) pathway, is one of the
most notorious metabolic processes as it leads to the
production of cholesterol and other non-sterol isoprenoids,
which are essential in the induction and the maintenance of
several cellular processes. The key enzyme of this pathway
is the 3-hydroxy-3-methylglutaryl coenzyme A reductase
(HMGR) (Brown and Goldstein, 1980; Segatto et al, 2013).
The role of the MVA pathway is well-established in the liver,
where a major part of lipid metabolism takes place (Horton,
2002; Pallottini et al, 2007; Segatto et al, 2013). However, this
metabolic pathway is ubiquitously expressed in all eukar-
yotic cells, and recent studies sustain a pivotal role for MVA
end-products in the brain. Although the CNS constitutes the
2% of the body weight, it contains about 25% of the total

body cholesterol (Pfrieger, 2003; Segatto et al, 2013). The
majority of cholesterol is present in myelin sheaths and in
neuronal membranes, where this lipid fulfills structural
and functional tasks. Given the crucial role of cholesterol
in regulating different neuronal processes, eukaryotes have
developed sophisticated homeostatic mechanisms to pre-
serve cholesterol levels in an optimal range in each brain
region (Segatto et al, 2013). Thus, alterations in this essential
equilibrium could lead to pathological consequences in the
CNS, such as the Smith-Lemli-Opitz syndrome, Alzheimer’s,
and Niemann-Pick type C diseases (Dietschy and Turley,
2004; Pfrieger, 2003; Segatto et al, 2011).

Besides cholesterol, isoprenoid compounds carry out
important roles in the CNS. Prenylation, the covalent
binding of farnesyl pyrophosphate (FPP) or geranylgeranyl
pyrophosphate (GGPP) moieties to proteins, is a crucial
post-translational modification for the regulation of protein
localization on cell membranes and, in turn, for key cellular
processes. Isoprenoids are not only required for protein
prenylation but also constitute the side chain of Coenzyme
Q (CoQ) (Matthews et al, 1998), whereas dolichols are
involved in the N-linked glycosylation of proteins (Trapani
et al, 2011b).
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The essential role of MVA end-products in the CNS
physiology is also supported by growing preclinical and
clinical studies on the pleiotropic effects of statins in the
brain. Statins are strong HMGR inhibitors widely prescribed
in therapies against hypercholesterolemia and their benefits
in preventing atherosclerosis and other cardiovascular
diseases are incontrovertible. Recently, it has been reported
that high-dose statin treatment induces effects in emotional,
learning, and memory processes (Kilic et al, 2012; Douma
et al, 2011; Baytan et al, 2008; While and Keen, 2010).
However, the role of the MVA biosynthetic pathway in the
modulation of emotional behavior and cognitive perfor-
mance is still unclear because of the lack of systematic
studies on the causal link between the activation of this
metabolic pathway and behavioral and cognitive outcomes.
As a consequence, the effects exerted by statins in the CNS
still remain confusing and unconvincing. Moreover, no data
about a low-dose statin treatment are available. A better
understanding of these processes could be of great interest
toward new pharmacological interventions for CNS dis-
orders. Thus, the aim of the present work was to shed light
on the role played by the MVA pathway in the modulation
of emotional reactivity and memory consolidation in
rodents, through the inhibition by simvastatin of HMGR
both in vivo and in vitro.

MATERIALS AND METHODS

Animals

Three-month-old male Wistar rats (Harlan Nossan, S Pietro al
Natisone, Italy) were housed in groups of two and maintained
under controlled temperature (20±1 1C), humidity (55±
10%), and illumination (12/12 h light cycle with lights on at
0700 hours). Food and water were provided ad libitum.
All procedures involving animal care or treatments were
approved by the Italian Ministry of Health and performed
in compliance with the guidelines of the US National Institutes
of Health (NIH) and the Italian Ministry of Health (n1 231/
2012-B, according to DL 116/92), the Declaration of Helsinki,
the Guide for the Care and Use of Mammals in Neuroscience
and Behavioral Research (National Research Council 2004)
and the Directive 2010/63/EU of the European Parliament and
of the Council of 22 September 2010 on the protection of
animals used for scientific purposes.

Drug Treatment

Simvastatin (Sigma-Aldrich, Milan, Italy) was dissolved in a
vehicle containing dimethyl sulfoxide—250 ml/kg body
weight of 10% DMSO in sterile H2O (v/v)—and the dose
of 1.5 mg/kg was daily administered by intraperitoneal
injections for 3 weeks. Control animals were treated with
vehicle only. Immediately after testing, rats were deeply
anesthetized using Urethane (1.2 mg/kg) and plasma
obtained from the blood collected into EDTA (1 mg/ml
blood). Subsequently, rats were decapitated and their brains
quickly removed. Brain regions of interest (amygdala,
hippocampus, prefrontal cortex, dorsal, and ventral stria-
tum) were collected and frozen in liquid nitrogen for
subsequent biochemical analyses.

Plasma Cholesterol Analysis

Plasma cholesterol content was estimated by the colori-
metric CHOD-POD kit in accordance to the manufacturer’s
instructions (Assel, Rome, Italy).

Plasma Triglycerides Analysis

The amount of plasma triglycerides was assessed by using the
Triglyceride Quantification Kit in accordance to the manu-
facturer’s instructions (BioVision, Mountain View, CA).

Behavioral Tests

The behavioral experiments were performed the day following
the last administration of either simvastatin or vehicle.
Different groups of rats were used for each behavioral test.

Social interaction test. The social interaction test was
performed under dim light conditions in a Plexiglas arena
(45� 45� 60 cm) with B2 cm of wood shavings covering
the floor.

The test consisted in placing two similarly treated
animals into the test cage for 10 min, with new sawdust as
bedding. The animals in a pair did not differ more than 10 g
in body weight; furthermore, they were housed in different
cages and that therefore had no previous common social
experience from the arrival in our Facility till the day of
testing (File, 1980; Trezza et al, 2008).

The behavior of the animals was recorded on DVD for
subsequent appropriate behavioral analysis carried out by
the same observer, who was unaware of animal treatment,
using the Observer 3.0 software (Noldus Information
Technology BV, Wageningen, the Netherlands).

The total time spent in active social interaction was
obtained as the sum of the time spent in the following
behavioral elements scored per 10 min:

Play-related behaviors: (1) total time spent in pouncing (ie,
when one animal attempts to nose or rub the nape of the neck
of its play partner), which is an index of play solicitation;
(2) total time spent in pinning (ie, the most common terminal
component of a play bout, in which one animal stands over a
supine partner), which is the consummatory measure of play
(Panksepp et al, 1984; Trezza et al, 2010).

Social behaviors unrelated to play: total time spent in
social exploration (sniffing any part of the body of the test
partner, including the anogenital area; social grooming;
following/chasing).

Elevated plus-maze. The elevated plus-maze test was
performed as previously described (Pellow and File, 1986;
Trezza et al, 2009). Briefly, the rats were individually placed
on the central platform of the maze, facing a closed arm,
and allowed to freely explore the maze for 5 min.

The 5 min test period was recorded on DVD for
subsequent appropriate behavioral analysis carried out by
the same observer, unaware of animal treatment, using the
Observer 3.0 software (Noldus Information Technology BV,
Wageningen, the Netherlands).

The following parameters were analyzed:
% time spent on the open arms (% TO): (seconds spent

on the open arms of the maze/300)� 100;
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% open arm entries (% OE): (the number of entries into
the open arms of the maze/number of entries into openþ
centerþ closed arms)� 100;

Number of total arm entries (openþ closed arm entries).

Inhibitory avoidance. The inhibitory-avoidance appara-
tus (Ugo Basile, Comerio, Italy) consisted of a Plexiglas
cage with tilting floor, divided by a sliding door into two
compartments (22� 22� 25 cm each). One of the compart-
ments had white walls and was brightly illuminated by a
10-W bulb. The other compartment had black walls and was
not illuminated. The tilting floor consisted of bars of
stainless Steel connected to a source of scrambled shock.
The procedure consisted of two sessions: acquisition and
retention, that took place on 2 subsequent days (Mereu
et al, 2003; Campolongo et al, 2007). For details see
Supplementary Materials and Methods.

Lipid Extraction

Lipid extraction from brain regions (amygdala, hippocam-
pus, prefrontal cortex, dorsal striatum, and ventral stria-
tum) was assessed by following the previously described
protocol (Trapani et al, 2011a).

HPLC-UV Analysis of Isoprenoids

Cholesterol, Coenzyme Q9 (CoQ9), Coenzyme Q10
(CoQ10), and dolichols were analyzed according to the
previously described protocol (Tang et al, 2001) with
modifications. For details see Supplementary Materials
and Methods.

Lysate, Cytosol, and Membrane Preparation from the
Brain Tissue

Lysate and membrane from the brain tissue were prepared
slightly modifying our previously used protocol (Segatto
et al, 2011). For details, see Supplementary Materials and
Methods.

Synaptic Vesicle Preparation

Synaptic vesicles were prepared following the protocol
described by Huttner et al (1983) with modifications. Rat
brain regions (amygdala, hippocampus, prefrontal cortex,
dorsal striatum, and ventral striatum) were homogenized in
10 vol of ice-cold HEPES-buffered sucrose (4 mM HEPES,
0.32 M sucrose, and 0.001 M PMSF, pH 7.4) with 10 strokes
in a glass-Teflon homogenizer. Homogenates were centri-
fuged at 1000 g to remove nuclei, intact cells and cell debris
(P1 fraction). The supernatant (S1) was spun at 10 000 g for
15 min to yield the crude synaptosomal pellet (P2). The
supernatant (S2) was collected and subsequently centri-
fuged at 100 000 g for 15 min to produce the cytosolic
fraction (S20). The P2 fraction was then resuspended in
10 vol of HEPES-buffered sucrose and respun at 10 000 g for
15 min to obtain the washed crude synaptosomal fraction
(P20). The resulting pellet was lysed by hypoosmotic shock
in 9 vol of ice-cold distilled water plus 0.001 M PMSF and
three strokes of a glass-Teflon homogenizer. Four milli-
molars HEPES (pH 7.4) was rapidly added to the lysate

which was mixed continuously in a cold room for 30 min to
guarantee the total lysis of the sample. The lysate was
subsequently centrifuged at 25 000 g for 20 min and the
supernatant (S3) was collected and spun at 165 000 g for 2 h.
The pellet of synaptic vesicles was finally solubilized in a
sample buffer (0.125 M Tris-HCl, pH 6.8, containing 10%
SDS, 0.001 M PMSF) and transferred into 1.5 ml Eppendorf
tubes. Protein determination was assessed by the method of
Lowry et al (1951). The synaptic vesicle samples were boiled
for 3 min before loading for the western blotting method.
In order to obtain an adequate amount of synaptic vesicles,
each sample was made up from six brain regions pulled
together from six different animals. The protein detection of
synaptophysin (synaptic vesicle marker) and a-tubulin
(cytosolic marker) verified and confirmed a high degree
of purity of the synaptic vesicles (Supplementary Figure S1).

Rab3 ‘In Vitro’ Degradation Assay

Rab3 degradation assay was performed according to the
protocol used by Pallottini et al (2004) with modifications.
For details see Supplementary Materials and Methods.

Hippocampal Neuron Primary Cultures and Drug
Treatment

Primary hippocampal neurons were isolated and
cultured according to the previously described protocol
(Oh et al, 2006). For details see Supplementary Materials
and Methods.

Western Blotting Analysis

Western blot method was performed slightly modifying the
protocol described by Trapani et al (2011a) by using the
following antibodies: LDLr ab30532 (Abcam); SREBP-2
ab28482 (Abcam); NeuN A60 (Chemicon); GFAP 134B1
(Synaptic Systems); Rab3 G-1, CREB, p-CREB, H-Ras M90,
RhoA 26C4, Akt1 B-1, RhoGDI A-20, RabGDI (V-20)-R,
synaptophysin H-93, and caveolin N-20 (Santa Cruz
Biotechnology); p-Akt 193H12 (Cell Signaling). For details
see the Supplementary Materials and Methods.

Immunohistochemistry

Immunohistochemical staining of p-CREB and PSD-95 was
performed on sagittal brain sections of simvastatin- and
vehicle-treated animals according to the previously used
protocols (Moreno et al, 1995; Fanelli et al, 2013). For
details see Supplementary Materials and Methods.

Statistical Analysis

Data obtained from behavioral tests are expressed as
means±SEM (standard error of the mean); data derived
from the analysis of biochemical results are expressed as
means±SD (standard deviation). Data were analyzed with
unpaired Student’s t test or with one-way analysis of
variance (ANOVA) followed by the Dunnett post-test.
Values of Po0.05 were considered to indicate a significant
difference. Statistical analysis was performed using GRAPH-
PAD INSTAT3 (GraphPad, La Jolla, CA, USA) for Windows.
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RESULTS

Systemic Effects of HMGR Inhibition on Lipid
Metabolism

The inhibition of HMGR, and in turn the reduction in MVA
end-products formation, leads to a homeostatic response
that determines the increase of the low-density lipoprotein
(LDL) receptor family members through the enhancement
of their transcription and translocation onto cell mem-
branes, subsequently reducing the amount of plasma lipids
(Jones et al, 1998). Thus, the efficacy of the pharmacological
treatment was checked by estimating the plasma cholesterol
and triglycerides. As shown in Supplementary Table S1,
both cholesterol (t34¼ 3.606, P¼ 0.001) and triglycerides
(t34¼ 4.562, P40.0001) significantly decreased after simvasta-
tin treatment (18% and 32%, respectively). Nevertheless,
similar body weight of simvastatin- and vehicle-treated rats
was observed, indicating that HMGR inhibition failed to
induce changes in the basal metabolism of the animals
(data not shown).

Effects of HMGR Inhibition on Emotional Reactivity and
Cognitive Performance

To evaluate the potential role of the MVA pathway
inhibition by simvastatin in the modulation of emotional
reactivity, rats were tested in the social interaction and
elevated plus-maze tests, two validated animal methods to
evaluate anxiety in rodents.

Chronic simvastatin treatment decreased the total time
spent in active social interaction compared with vehicle-
treated rats (t18¼ 4.123, Po0.001; Figure 1a), expressed as
the sum of the time spent in play-related behaviors
(t18¼ 3.386, P¼ 0.003; figure not shown) and in social
behaviors unrelated to play (t18¼ 2.390, P¼ 0.028; figure not
shown). In contrast, the percentage of time spent in the open
arms (t19¼ � 1.349, P¼ 0.193; Figure 1b), the percentage of
open entries (t19¼ � 1.062, P¼ 0.302; Figure 1c), and the
total arm entries (t19¼ 1.768, P¼ 0.093; Figure 1d) evaluated
in the elevated plus-maze test were unaffected by the
pharmacological inhibition of HMGR.

To investigate whether the MVA pathway has a role in the
modulation of memory consolidation, rats were tested in
the inhibitory avoidance task. Chronic simvastatin treat-
ment had no effect on the approach latencies during
the acquisition trial (t17¼ � 0.620, P¼ 0.544; Figure 1e);
however, it caused a statistically significant improvement
in 24-h retention performance (t17¼ � 2.245, P¼ 0.038;
Figure 1f). This effects were not secondary to drug-induced
hypersensivity to the electrical shock delivered during the
acquisition trial, as simvastatin- and vehicle-treated rats
did not differ in the response to the aversive stimulus
during the acquisition trial (t17¼ � 0.204, P¼ 0.841;
Figure 1g).

Simvastatin Efficacy and Tolerance in the CNS

Evidence for the drug efficacy in the CNS were given by
checking the levels of the active nuclear fraction of the
transcription factor SREBP-2 (nSREBP-2) and the subse-
quent increase in LDL receptor (LDLr), which are induced
by a compensative response due to intracellular cholesterol

decrease (Brown and Goldstein, 1997; Trapani et al, 2011a).
The biochemical analysis was mainly carried out on the
amygdala, hippocampus, prefrontal cortex, dorsal striatum,
and ventral striatum, whose interplay is deeply involved in
the modulation of anxiety, memory, and learning (Mathew
et al, 2001; LaBar and Cabeza, 2006). Our results showed that
HMGR inhibition by chronic simvastatin treatment induced
a classical feedback response, which led to a strong increase
of the active nSREBP-2 in all the brain regions analyzed
(amygdala: t10¼ 2.139, P¼ 0.0291; hippocampus: t10¼ 2.434,
P¼ 0.0176; prefrontal cortex: t10¼ 2.590, P¼ 0.0135; dorsal
striatum: t10¼ 2.045, P¼ 0.034; ventral striatum: t10¼ 2.637,
P¼ 0.0124; Figure 2a). HMGR inhibition was also supported
by the subsequent and the contributory increase in LDLr
expression (amygdala: t10¼ 2.263, P¼ 0.0236; hippocampus:
t10¼ 2.057, P¼ 0.0334; prefrontal cortex: t10¼ 1.933,
P¼ 0.0410; dorsal striatum: t10¼ 1.909, P¼ 0.0427; and
ventral striatum: t10¼ 3.969, P¼ 0.0013; Figure 2b). More-
over, the direct proof of the pharmacological inhibition was
also given by assessing the HMGR activity (amygdala:
t8¼ 7.694, Po0.0001; hippocampus: t8¼ 1.266, Po0.0001;
prefrontal cortex: t8¼ 7.259, Po0.0001; dorsal striatum:
t8¼ 4.934, P¼ 0.0011; and ventral striatum: t8¼ 5.092,
P¼ 0.0009; Supplementary Figure S2a), which was reduced
in all the analyzed brain areas.

Once simvastatin efficacy was ascertained, we focused on
the potential toxic effects exerted by HMGR inhibition on
different brain areas. Protein levels of the neuronal marker
NeuN (amygdala: t10¼ 1.627, P¼ 0.0674; hippocampus:
t10¼ 0.9974, P¼ 0.1710; prefrontal cortex: t10¼ 1.271,
P¼ 0.1162; dorsal striatum: t10¼ 5.005, P¼ 0.3138; and
ventral striatum: t10¼ 0.8166, P¼ 0.2166; Figure 2c) and of
the astrocyte marker GFAP (amygdala: t10¼ 0.5949,
P¼ 0.4769; hippocampus: t10¼ 1.614, P¼ 0.0688; prefrontal
cortex: t10¼ 1.358, P¼ 0.1022; dorsal striatum: t10¼ 0.8068,
P¼ 0.2193; and ventral striatum: t10¼ 0.7905, P¼ 0.2238;
Figure 2d) were unchanged in the examined brain areas.
The analysis of cleaved caspase-3 also showed that the
protein levels of this executive caspase were unaffected by
simvastatin treatment (amygdala: t10¼ 0.5627, P¼ 0.2930;
hippocampus: t10¼ 0.06597, P¼ 0.4744; prefrontal cortex:
t10¼ 0.8944, P¼ 0.1961; dorsal striatum: t10¼ 0.7460,
P¼ 0.2364; and ventral striatum: t10¼ 0.06921, P¼ 0.4731;
Supplementary Figure S2b).

Effect of Simvastatin on Cholesterol, Dolichols, and
CoQs

A prospective perturbation in the MVA pathway end-
products induced by HMGR inhibition could be at the root
of the behavioral and cognitive effects observed in vivo.

Thus, lipid estimation was performed in order to evaluate
the effect of simvastatin on the main sterol and non-sterol
compounds. As observable in Table 1, tissue cholesterol
(amygdala: t7¼ 0.2031, P¼ 0.8448; hippocampus:
t8¼ 0.3502, P¼ 0.7352; prefrontal cortex: t8¼ 0.4874,
P¼ 0.6391; dorsal striatum: t7¼ 1.556, P¼ 0.1636; and
ventral striatum: t6¼ 0.5193, P¼ 0.6221), CoQ9 (amygdala:
t6¼ 0.1524, P¼ 0.8838; hippocampus: t8¼ 0.04377,
P¼ 0.9662; prefrontal cortex: t8¼ 1.211, P¼ 0.2605; dorsal
striatum: t8¼ 1.623, P¼ 0.1433; and ventral striatum:
t5¼ 0.2318, P¼ 0.8259), CoQ10 (amygdala: t6¼ 0.06480,
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P¼ 0.9504; hippocampus: t8¼ 1.301, P¼ 0.2294; prefrontal
cortex: t8¼ 1.294, P¼ 0.2319; dorsal striatum: t8¼ 1.440,
P¼ 0.1879; and ventral striatum: t5¼ 0.2467, P¼ 0.8149),
and dolichol (amygdala: t8¼ 1.805, P¼ 0.1087; hippocam-
pus: t8¼ 0.007556, P¼ 0.9942; prefrontal cortex: t8¼ 0.9631,
P¼ 0.3637; dorsal striatum: t8¼ 0.2134, P¼ 0.8363; and
ventral striatum: t6¼ 0.8525, P¼ 0.4266) were not affected
by HMGR inhibition among the brain regions analyzed.

Prenylated Protein Involved in Synaptic Vesicle Release:
Rab3 Determination

Simvastatin treatment could also induce a downregulation in
the activity of small GTPases by affecting their prenylation.
For the pivotal role in neurotransmitter release, Rab3 protein
localization was analyzed. Rab3 fraction associated with
the synaptic vesicle membranes was strongly reduced in
the hippocampus (t2¼ 3.675, P¼ 0.0334; Figure 3a) and the
prefrontal cortex (t2¼ 7.178, P¼ 0.0094; Figure 3a) after
chronic simvastatin treatment, whereas no differences in the
protein localization were observable in amygdala (t2¼ 1.028,
P¼ 0.4120; Figure 3a), dorsal striatum (t2¼ 1.592, P¼ 0.1262;
Figure 3a), and ventral striatum (t2¼ 0.3310, P¼ 0.3860;
Figure 3a). It is well accepted that membrane vs cytoplasm
localization of Rab3, and other prenylated small GTPases in
general, mirrors the prenylation status and, as a consequence,
the activity of the protein of interest (Seasholtz et al, 1999;
Homma et al, 2008). Thus, the amount of Rab3 active fraction
was expressed as the membrane:cytosol ratio. To further

assess Rab prenylation, coimmunoprecipitation experiments
between RabGDI and Rab3 were performed on cytosolic
fractions. The level of prenylated Rab3 is strongly reduced
in the hippocampus (t4¼ 1.315, P¼ 0.0002, Supplementary
Figure S3a) and the prefrontal cortex (t4¼ 6.759, P¼ 0.0025,
Supplementary Figure S3b) of simvastatin-treated rats. More-
over, the total amount of RabGDI both in the hippocampus
(t6¼ 1.422, P¼ 0.2048, Supplementary Figure S3c) and the
prefrontal cortex (t6¼ 0.8552, P¼ 0.4253, Supplementary
Figure S3d) did not change between the two experimental
groups. The lack of the concurrent accumulation of
unprenylated Rab3 in the cytosolic fraction (generally a
typical phenomenon observed after statin administration) is
in line with the results obtained by other research groups,
who demonstrated that, under specific conditions, some
prenylated proteins could have a shorter half-life compared
with the membrane-bound forms (Haklai et al, 1998; Indolfi
et al, 2002). To test this hypothesis, an ‘in vitro’ degradation
assay of Rab3 was performed. The results show that Rab3 was
more susceptible to degradational events in the hippocampus
and the prefrontal cortex, whereas no differences were
detectable between the two experimental groups in the other
brain regions (Figure 3b).

Prenylated Proteins Involved in Long-Term
Potentiation: Ras and RhoA Determinations

The enhanced memory consolidation in a 24 h inhibitory
avoidance task could correlate with changes in long-term
potentiation (LTP). Thus, prenylated proteins such as Ras
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Figure 1 Effects of chronic simvastatin treatment in the social interaction, elevated plus-maze, and inhibitory avoidance tests. Simvastatin treatment
(1.5 mg/kg per day; i.p.) reduced the total time spent in active social interaction (a). No statistically significant difference was found in (b) the percentage of
time spent in the open arms, (c) the percentage of open entries and in (d) the total arm entries evaluated in the elevated plus-maze test. Simvastatin
treatment (e) had no effects on the approach latency in the acquisition trial of the inhibitory avoidance task, whereas (f) enhanced 24-h avoidance latencies
in the retention trial. (g) No statistically significance difference was found between simvastatin-treated rats and their controls in response to shock delivered
during the acquisition trial of the inhibitory avoidance test. Data represent mean values±SEM. *Po0.05, ***Po0.001 vs control (n¼ 10–11 per treatment
group). Veh, vehicle-treated rats. Sim, simvastatin-treated rats.
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and RhoA, involved in the modulation of this form of
synaptic plasticity (Mazzucchelli and Brambilla, 2000; Rex
et al, 2009) were evaluated. HMGR inhibition did not induce
any statistically significant modification in Ras transloca-
tion (amygdala: t10¼ 0.2375, P¼ 0.4085; hippocampus:
t10¼ 0.2929, P¼ 0.3881; prefrontal cortex: t10¼ 0.2798,
P¼ 0.3927; dorsal striatum: t10¼ 0.01021, P¼ 0.4960; and
ventral striatum: t10¼ 0.1791, P¼ 0.4307; Figure 4a),
whereas it strongly reduced the active membrane-bound
form of RhoA in the amygdala (t10¼ 2.701, P¼ 0.0111;
Figure 4b) and the hippocampus (t10¼ 2.601, P¼ 0.0132;
Figure 4b), with the contributory build-up of the protein in
the cytosol. On the contrary, no differences were observable
in the prefrontal cortex (t10¼ 0.2867, P¼ 0.3901; Figure 4b),
the dorsal striatum (t10¼ 1.442, P¼ 0.0899; Figure 4b), and
the ventral striatum (t10¼ 0.2531, P¼ 0.4026; Figure 4b). As
for Rab3, coimmunoprecipitation experiments highlighted a
reduction in RhoA/RhoGDI complexes in both the amyg-
dala (t4¼ 6.188, P¼ 0.0035, Supplementary Figure S4a) and
the hippocampus (t4¼ 6.636, P¼ 0.0027, Supplementary

Figure S4b), without showing any change in the RhoGDI
protein content (amygdala: t6¼ 1.493, P¼ 0.1860,
Supplementary Figure S4c; hippocampus: t6¼ 0.5134,
P¼ 0.6260, Supplementary Figure S4d). In addition, the
reduction in RhoA translocation to the membrane was
accompanied by a marked and significant increase in Akt
activation state in both the amygdala (t10¼ 2.726,
P¼ 0.0107; Figure 4c) and the hippocampus (t10¼ 2.724,
P¼ 0.0107; Figure 4c), whereas no differences are detectable
in the prefrontal cortex (t10¼ 1.365, P¼ 0.1010; Figure 4c),
the dorsal striatum (t10¼ 0.3652, P¼ 0.3613; Figure 4c), and
the ventral striatum (t10¼ 0.1979, P¼ 0.4236; Figure 4c).
Similar results were also obtained from cell cultures. In
primary rat hippocampal neurons, simvastatin treatment
reproduced the reduction in RhoA active fraction observed
in vivo, as demonstrated from the decrease in the
membrane:cytosol ratio (F(6, 21)¼ 0.4016, P¼ 0.0078).
The supplementation of the medium with either MVA (the
direct product of HMGR) or geranylgeraniol (GG, one of the
MVA pathway products and the substrate for RhoA
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Figure 2 Efficacy of 3-hydroxy 3-methylglutaryl Coenzyme A reductase (HMGR) inhibition by simvastatin and effects on neuronal and astrocytic content
in different brain regions. (a) Representative western blot and densitometric analysis of nSREBP-2 in amygdala (Am), hippocampus (Hp), prefrontal cortex,
dorsal striatum, and ventral striatum. (b) Representative western blot and densitometric analysis of low-density lipoprotein receptor (LDLr) in amygdala
(Am), hippocampus (Hp), prefrontal cortex, dorsal striatum, and ventral striatum. (c) Representative western blot and densitometric analysis of the neuronal
marker NeuN in amygdala (Am), hippocampus (Hp), prefrontal cortex, dorsal striatum, and ventral striatum. (d) Representative western blot and
densitometric analysis of the astrocytic marker GFAP in amygdala (Am), hippocampus (Hp), prefrontal cortex, dorsal striatum, and ventral striatum. Protein
levels were normalized with a-tubulin. The data are expressed as arbitrary units obtained by analyzing the protein bands with Image J software for Windows,
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prenylation) completely reversed the effect of the pharma-
cological inhibition of HMGR. On the other hand, the
administration of MVA, GG, and Rho kinase (ROCK)

inhibitor hydroxyfasudil (HF) alone did not cause any effect
in the protein translocation as expected (Figure 5a). The
estimation of Akt protein levels in primary neuronal culture

Table 1 Effect of Simvastatin on Lipid Composition of Selected Brain Regions

Cholesterol (mg/g tissue) Dolichol (lg/g tissue) CoQ9 (lg/g tissue) CoQ10 (lg/g tissue)

Amygdala

31.77±9.36 1.37±0.16 3.13±0.36 1.72±0.16 Veh (4)

30.45±9.81 1.55±0.17 3.28±0.70 1.75±0.33 Sim (4)

Hippocampus

32.05±6.47 1.47±0.29 3.39±0.07 1.77±0.08 Veh (5)

34.15±10.65 1.46±0.13 3.40±0.19 1.91±0.07 Sim (5)

Prefrontal cortex

29.47±9.82 1.35±0.18 3.11±0.29 1.56±0.14 Veh (5)

31.76±5.18 1.46±0.17 3.48±0.17 1.75±0.08 Sim (5)

Dorsal striatum

34.49±2.16 1.48±0.05 3.58±0.32 1.64±0.17 Veh (5)

31.81±2.83 1.46±0.13 4.23±0.24 1.85±0.11 Sim (5)

Ventral striatum

27.42±1.93 1.32±0.06 2.80±0.70 1.26±0.32 Veh (4)

28.36±5.06 1.46±0.25 3.05±0.76 1.38±0.36 Sim (4)

Number of rats contributing to each value are shown in brackets.

Dorsal
striatum

Amygdala

Sim

Veh

0h 1h 2h 4h 8h 16h 24h

Prefrontal cortex

Sim

Veh

0h 1h 2h 4h 8h 16h 24h

Hippocampus

Sim

Veh

0h 1h 2h 4h 8h 16h 24h

Dorsal striatum

Sim

Veh

0h 1h 2h 4h 8h 16h 24h

Ventral striatum

Sim

Veh

0h 1h 2h 4h 8h 16h 24h

Rab3 degradation assay

membrane

cytosol

24 kDa

24 kDa

Am Hp Prefrontal
cortex

Ventral
striatum

Rab3 active fraction

Veh Sim Veh Sim Veh Sim Veh Sim Veh Sim
0.0

0.5

1.0

1.5

2.0

*

**

R
ab

3 
m

em
br

an
e:

cy
to

so
l r

at
io

 (
a.

u.
)

Figure 3 Effect of 3-hydroxy 3-methylglutaryl Coenzyme A reductase (HMGR) inhibition on Rab3 membrane localization and degradation in different
brain regions. (a) Representative Western blot and densitometric analysis of Rab3 in preparations of synaptic vesicle membranes from amygdala (Am),
hippocampus (Hp), prefrontal cortex, dorsal striatum and ventral striatum. Rab3 active fraction was expressed as the membrane:cytosol ratio. Data are
represented as arbitrary units obtained by analyzing the protein bands with Image J software for Windows, for details see the main text. All the results are
expressed as the mean±SD *Po0.05 and **Po0.01; Student’s t test with respect to the control group of the same brain region analyzed. n¼ 6 animals/
group. Veh¼ vehicle-treated rats. Sim¼ simvastatin-treated rats. (b) Representative Western blot obtained by Rab3 degradation assay in cytosolic fractions
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strongly suggests that Akt phosphorylation was dependent
on RhoA inhibition by simvastatin, as the coadministration
of MVA and GG completely restored the basal levels of Akt
activation state (F(6, 21)¼ 37,02, Po0.0001). HF-mediated
inhibition of ROCK, the main downstream effector of RhoA,
further supports this hypothesis by mimicking the effect of
simvastatin through the induction of Akt phosphorylation
(Figure 5b). Moreover, Akt activation induced a significant
increase in the phosphorylation of the transcription factor
CREB (F(6, 21)¼ 0.4849, P¼ 0.003; Figure 5c).

Immunohistochemical Analyses

Morphological analysis of brains from either simvastatin- or
vehicle-treated rats revealed good preservation of structures

and overall normal cytoarchitecture. Immunohistochemical
localization of p-CREB showed wide neuronal distribution
in the hippocampal formation of both treated and control
groups. Immunostaining was mainly seen in the nucleus of
pyramidal cells in CA1–CA3 fields and of granule cells in
DG. In addition, mossy cells in the hylus were especially
immunoreactive. Consistent with western blot results
obtained from primary hippocampal neuron cultures,
remarkably higher immunostaining intensity throughout
the hippocampus was detected in simvastatin-treated
brains, as compared with their untreated counterparts
(Figure 6a). PSD-95 also immunolocalized to the pyramidal
cell layer of CA1–CA3, to granule neurons of DG,
and to hylar mossy neurons. However, at difference with
p-CREB immunohistochemistry, the staining intensity was
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Figure 4 Effect of 3-hydroxy 3-methylglutaryl Coenzyme A reductase (HMGR) inhibition by simvastatin on Ras, RhoA membrane localization and Akt
activation in different brain regions. (a) Representative Western blot and densitometric analysis of Ras in amygdala (Am), hippocampus (Hp), prefrontal cortex,
dorsal striatum, and ventral striatum. Ras active fraction was expressed as the membrane:cytosol ratio. (b) Representative western blot and densitometric analysis
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membrane:cytosol ratio. (c) Representative western blot and densitometric analysis of Akt phosphorylation/activation in amygdala (Am), hippocampus (Hp),
prefrontal cortex, dorsal striatum, and ventral striatum. Protein levels were normalized with a-tubulin. The results are represented as arbitrary units obtained by
analyzing the protein bands with Image J software for Windows, for details see the main text. All the data are expressed as the mean±SD *Po0.05; Student’s
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comparable between the two experimental conditions, not
being affected by simvastatin treatment (Figure 6b).

DISCUSSION

The present study was performed to provide a deeper
understanding of the CNS functional consequences follow-
ing the pharmacological inhibition of the isoprenoid/
cholesterol biosynthetic pathway in rodents. To this aim
HMGR, the key and rate-limiting enzyme of this pathway,
was inhibited in rats by chronic treatment with simvastatin,
a powerful HMGR inhibitor, which is able to cross the
blood–brain barrier because of its lipophilic properties
(Saheki et al, 1994). To analyze the biological role of the
MVA pathway on rat emotionality, we performed two of
the most popular animal tests of anxiety currently used: the
social interaction and the elevated plus-maze tests (File and
Hyde, 1978; File, 1980; Pellow et al, 1985; Pellow and File,
1986). Chronic simvastatin treatment at a low dose induced
a significant decrease in the total time spent in active social

investigation in the social interaction test, whereas no
significant differences were observed in the elevated plus-
maze test. Although both the elevated plus-maze and the
social interaction tests are two validated animal models to
measure anxiety-like behaviors in rodents (File, 1980; File
and Seth, 2003; Pinheiro et al, 2007; Pellow and File, 1986),
it has been suggested that these tests evoke different states
of anxiety in the laboratory animal (Gonzales et al, 1996;
File, 1992) mediated by different neurobiological pathways
(Cheeta et al, 2000; File et al, 2000; File et al, 2004), and thus
they could have different sensitivity to simvastatin treat-
ment. Specifically, it has been suggested that the elevated
plus-maze test mimics a state of generalized anxiety, as it
produces an approach/avoidance conflict because the
animal is exposed to a novel situation that supposedly
creates a conflict between the motivation to explore the
environment and an unconditioned fear of novelty (File
et al, 2004), and this may be the underlying mechanism
rendering the elevated plus-maze test sensitive to anxioly-
tic-like drugs (Handley and McBlane, 1993; Pinheiro et al,
2007). On the other hand, in the social interaction test, the
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variable is the time spent by pairs of male rats in active
social interaction and one rat influences the behavior of the
other; in fact, when pairs of male rats are placed in a
situation in which neither one has established its territory,
they engage in active social interaction (File and Hyde,
1978). Nevertheless, the social interaction test is also
sensitive to a number of environmental and physiological
factors such as test conditions (light level and familiarity to
the test arena) that can affect anxiety mimicking a state of
anxiety most similar to that experienced in generalized
anxiety disorder (File, 1980; File and Seth, 2003). Further-
more, our results showed that the pharmacological modula-
tion of the MVA pathway end-products is also involved in
the modulation of memory consolidation of aversive
experiences; in particular, HMGR inhibition by simvastatin
treatment led to a specific enhancement of the consolidation
phase of the memory process, as the approach latency,
measured during the first day of the test, did not differ
between the two experimental groups. Our results also
corroborate with existing and recently published data,
showing that a higher dose of simvastatin (10 mg/kg)
resulted in improved memory performance in the passive
avoidance test (Douma et al, 2011). Even though it was
demonstrated that simvastatin induces apoptosis in neu-
rons and astrocytes (Marz et al, 2007), the drug, at a dose of

1.5 mg/kg, did not cause any cell loss as observable by the
unchanged levels of NeuN, GFAP, and of the executive
caspase-3, excluding that potential neurotoxic effects
exerted by simvastatin could be responsible for the
behavioral outcomes observed in the current study. The
lack of toxic effects could be explained by the low dose of
simvastatin used in the present study. In addition, the safety
in terms of necrosis and/or apoptosis of this chronic
pharmacological treatment was also demonstrated in our
previous work (Trapani et al, 2011a). The estimation of
tissue cholesterol, dolichol, and CoQs through HPLC
analyses also excluded the involvement of these end-
products in the onset of the behavioral and cognitive
changes. The lack of any variation in the amount of these
isoprenoids following HMGR inhibition is not surprising if
it is considered that they possess very long half-lives in the
brain (Andersson et al, 1999). Thus, a 3-week chronic
simvastatin treatment, at the dose used in our study, might
not be able to impair the physiological levels of cholesterol,
dolichol, CoQ9, and CoQ10 in the rat brain areas taken into
consideration. On the opposite, membrane-bound Rab3 in
the synaptic vesicle fraction, which corresponds to the
active fraction of the protein, resulted to be strongly
decreased in both the hippocampus and the prefrontal
cortex after chronic HMGR inhibition. It is well-known that

Figure 6 p-CREB and PSD-95 distribution in hippocampus of simvastatin- and vehicle-treated rats. (a) Overview of p-CREB immunohistochemistry in a
sagittal section of rat brain. Hippocampal formation showed higher positivity in the nucleus of pyramidal cells in CA1–CA3 fields and of granule cells in DG.
Mossy cells in the hylus were especially immunoreactive. (b) Overview of PSD-95 immunohistochemistry in a sagittal section of rat brain showing
immunopositivity localized to pyramidal cell layer of CA1–CA3, to granule neurons of DG, and to hylar mossy neurons. GL, granule cell layer; Hp,
hippocampus; ML, molecular layer; Or, stratum oriens; PoDG, polymorphic layer; Pyr, stratum pyramidale; Rad, stratum radiatum.
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Rab and Rho proteins require prenylation for membrane
association and for binding to GDIs. GDIs hold prenylated
proteins in the cytosol, acting not only as passive regulators
of GTPase activity but also preventing their degradation
(Boulter and Garcia-Mata, 2010; Mohamed et al, 2012). GDI
capture of membrane-bound Rabs could be physically
prevented by modifications in the cholesterol content
within the membranes (Ganley and Pfeffer, 2006). Even
though the amount of cholesterol into membranes was not
evaluated in this work, GDI capture of prenylated Rab3 in
cytosolic fractions excluded potential interferences of
membrane cholesterol in RabGDI/Rab3 interaction, sug-
gesting that the deregulation in Rab3 subcellular distribu-
tion is due, at least in part, to an impairment in Rab3
prenylation induced by HMGR inhibition. Moreover, Rab3
seem to be more susceptible to degradational events both in
the hippocampus and the prefrontal cortex of simvastatin-
treated rats. These findings lead us to hypothesize that the
lack of prenylation could impair Rab3/RabGDI interaction
in the cytosol, thus preventing the role of RabGDI in
protecting Rab proteins from degradation. Although there is
a conflicting evidence in literature about the modulation of
the specific synaptic mechanisms, it is clear and well
defined that Rab3 carries out important physiological roles
in neurotransmitter release at a late step during the synaptic
vesicle exocytosis (Geppert and Sudhof, 1998). Perturba-
tions in Rab3 activity have already been established. For
instance, deregulations in Mss4 (mammalian suppressor of
Sec4), a regulator of Rab3 activity, are strongly linked to
impairments in neurotransmitter release and to the
appearance of neurodegenerative and psychological dis-
orders in rodents such as depressive-like syndromes
(Andriamampandry et al, 2002; Baskys et al, 2007; Blaveri
et al, 2010). Given the important role of the hippocampus
and the prefrontal cortex in the modulation of anxiety
(Whitton and Curzon, 1990; Christianson et al, 2009), the
decrease in Rab3 active fraction in both the brain regions as
a molecular consequence of HMGR inhibition could be
related to an impairment in the social behavior observed in
the social interaction test and could represent a good
explanation of the MVA pathway-related molecular me-
chanism underlying the social anxiety-related behavior
observed in our study.

Besides the reduction in membrane-bound Rab3 protein
levels, the role of the MVA pathway in emotional memory
consolidation could be strongly dependent on the modula-
tion of prenylated proteins that are crucial for the induction
and the maintenance of LTP. In particular, a strong and
statistically significant decrease in RhoA active fraction was
observed in the amygdala and the hippocampus. As for
Rab3, additional experiments based on RhoA/RhoGDI
interaction further support the previous finding, indicating
that the reduced amount of RhoA is the consequence of a
defect in prenylation caused by HMGR pharmacological
inhibition. Among Rho GTPases, RhoA has been implicated
in key neurobiological processes, integrating extracellular
and intracellular molecular signals to orchestrate refined
and coordinated changes in gene expression and actin
cytoskeleton, essential prerequisites for the neurite out-
growth and the modulation of synaptic connectivity
(Gopalakrishnan et al, 2008; Lingor et al, 2007). For these
reasons, it is not surprising that RhoA activity has been

deeply related to the onset of developmental disabilities
such as mental retardation (Ramakers and Storm, 2002). As
RhoA is also considered a negative regulator of Akt, whose
phosphorylation, and in turn activation, is a key and
triggering event for LTP induction and consequent memory
retention (Ming et al, 2002; Sui et al, 2008), Akt protein
levels and phosphorylation state were analyzed. In the
present work, the reduction in membrane-bound RhoA is
accompanied by a sustained Akt activation. In order to fully
confirm the causality between HMGR activity, RhoA
activation, and Akt phosphorylation, an additional experi-
ment was performed on cell culture. To this aim, primary
hippocampal neurons were chosen as an experimental
model in order to avoid the well-known incapability of
some used compounds (eg, MVA) to cross the blood–brain
barrier in vivo (Popjak et al, 1977). The rescue experiment
performed on primary hippocampal neurons demonstrated
that the modulation of Akt is strictly dependent on the
RhoA/ROCK pathway, whose activation could be heavily
affected by HMGR inhibition. A role of Akt in the
modulation of cognitive performances in rodents has
already been proposed, as it is able to induce LTP and
other synaptic plasticity phenomena in both the amygdala
and the hippocampus (Opazo et al, 2003; Sui et al, 2008; Lin
et al, 2008). Akt could promote these processes, at least in
part, by activating the nuclear factor CREB (Du and
Montminy, 1998). Indeed, CREB-dependent gene transcrip-
tion appears to be an essential component of long-term
memory formation (Silva et al, 1998). Our data strengthen
this possibility, as Akt activation is followed by an increased
CREB phosphorylation in simvastatin- and HF-treated
hippocampal neurons. The results obtained from hippo-
campal cell cultures are further sustained by p-CREB
immunostaining, which is particularly positive in the
hippocampus of simvastatin-treated rats if compared with
vehicle ones. On the contrary no differences, in terms of
immunoreactivity, were detectable in PSD-95. The obtained
results are in agreement with other recent published data,
which demonstrated that chronic simvastatin treatment
restores the expression of the learning- and memory-related
genes c-Fos and Egr-1 without inducing any modulation in
the classical synaptic markers synaptophysin and PSD-95
(Tong et al, 2012). Moreover, considering that c-Fos and
Egr-1 are downstream of CREB, our findings support the
hypothetical model on cognition effects induced by
simvastatin proposed by Tong et al, 2012. However, we
cannot exclude that perturbations in cytoskeleton remodel-
ing following HMGR inhibition, and in turn RhoA
inactivation, could contribute, together with Akt induction,
to the enhancement of the consolidation of aversive
memories. Considering the divergences in the brain
regional metabolism, it is possible to speculate that each
brain area can be considered as a unique structure with a
specific cellular context, able to react in a different manner
to the same stimulus (Segatto et al, 2013). Moreover in this
case, despite the generalized influence on the MVA pathway
in the CNS, it is clear that simvastatin treatment selectively
affected prenylated proteins in specific brain regions.
Different effects of HMGR inhibition in dependence on
the brain area taken into consideration have already been
reported (Wang et al, 2006). Thus, the selective effects of
simvastatin treatment in reducing the amount of Rab3 and
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RhoA active fractions observed in this study could be
influenced by differences in metabolism, function, turnover,
or relative abundance of specific prenylated proteins in each
brain region.

Despite the involvement of Rab3 and RhoA, other cellular
mechanisms not evaluated in this work could contribute to
the behavioral and cognitive outcomes induced by simvas-
tatin. Growing evidence supports the hypothesis that statins
could lead to brain effects, acting through pleiotropic
mechanisms (Sierra et al, 2011). For instance, previous
works identified changes in the plasma cholesterol with the
onset of mood/anxiety disorders and the modulation of
memory performance (Peter et al, 2002; Henderson et al,
2003; Granholm et al, 2008). Even though the biological
significance of these connections is not widely accepted and
remains to be clarified because of the presence of contra-
dictory data (Papakostas et al, 2004; Taylor et al, 2011; Reitz
et al, 2005), we cannot exclude that changes in plasma
lipids, also observed in our work, could have a role in the
functional effects exerted by simvastatin administration.
Moreover, a very recent paper showed that the enhance-
ment of the autophagic flux alleviates memory deficits in a
transgenic mouse model of AD (Li et al, 2013). As statins
induce autophagy in different cell types (Wei et al, 2013;
Parikh et al, 2010), it is possible that a potential modulation
of this process could participate, together with the
alterations highlighted in this work, in the increased
memory consolidation observed in simvastatin-treated rats.

In summary, these findings indicate that the modulation of
the isoprenoid/cholesterol biosynthetic pathway is critically
involved in the physiological modulation of both emotional
and cognitive processes in rodents (Supplementary Figure
S5). Even though our results provide some hints for the
mechanisms of action of statins in the CNS, more efforts
should be done in order to better understand their
pleiotropic molecular effects in the CNS. Thus, the present
work sets the stage for a future deeper understanding of the
effects induced by simvastatin, which could be useful to
better define the emerging and tight connection between
MVA pathway and brain physiopathology.
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ABSTRACT
During differentiation, neurons acquire their typical shape and functional properties. At present, it is unclear, whether this important
developmental step involves metabolic changes. Here, we studied the contribution of the mevalonate (MVA) pathway to neuronal
differentiation using the mouse neuroblastoma cell line N1E-115 as experimental model. Our results show that during differentiation, the
activity of 3-hydroxy 3-methylglutaryl Coenzyme A reductase (HMGR), a key enzyme of MVA pathway, and the level of Low Density
Lipoprotein receptor (LDLr) decrease, whereas the level of LDLr-related protein-1 (LRP1) and the dimerization of Scavanger Receptor B1
(SRB-1) rise. Pharmacologic inhibition of HMGR by simvastatin accelerated neuronal differentiation by modulating geranylated proteins.
Collectively, our data suggest that during neuronal differentiation, the activity of the MVA pathway decreases and we postulate that any
interference with this process impacts neuronal morphology and function. Therefore, the MVA pathway appears as an attractive
pharmacological target to modulate neurological and metabolic symptoms of developmental neuropathologies. J. Cell. Biochem. 9999: 1–9,
2016. © 2016 Wiley Periodicals, Inc.

KEY WORDS: 3-HYDROXY 3-METHYLGLUTARYL COENZYME A REDUCTASE; CHOLESTEROL; ISOPRENOID; LIPOPROTEIN RECEPTORS; N1E-115;

NEURONAL DIFFERENTIATION

The differentiation of neurons is a decisive phase during brain
development, which spans weeks in rodents and years in

humans. Newly generated neurons acquire their cell-type specific
shape and functional properties [da Silva and Dotti, 2002]. They
grow axons and dendrites, they establish synaptic connections and
they express transmitter receptors and ion channels that determine
the cell-specific firing patterns [Hanson and Landmesser, 2004]. The
function of the adult brain depends critically on the correct
execution of these developmental events. Interference with neuronal
differentiation due to genetic factors, drug treatment or environ-
mental factor exposure can provoke late neurologic or psychiatric
symptoms [Chaudhury et al., 2015; Hill et al., 2015; Nuttall, 2015].
For example, valproic acid treatment or bacterial infections during
pregnancy can cause autism in offspring [Jensen, 1994]. Mutations

in methyl-CpG-binding protein-2 (mecp2) cause Rett syndrome,
a neurodevelopmental disorder [Amir et al., 1999].

A major goal is to identify the metabolic pathways that are
decisive for neuronal differentiation and that are potentially
implied in disease mechanisms. Here, we focused on the
ubiquitously expressed mevalonate (MVA) pathway (Fig. 1). Its
end products (e.g., coenzyme Q10, prenyls, and cholesterol) are
essential for neuronal function [Lee et al., 2014; Segatto et al.,
2014a; Villarroel-Campos et al., 2014]: cholesterol, for example,
is a key component of the myelin sheath and of neuronal
membranes in axons, dendrites, and synapses [Orth and Bellosta,
2012]. It must be synthesized within the brain as the blood-brain
barrier prevents import of lipoproteins, but the cellular origin of
the different pools in neurons are incompletely understood
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[Pfrieger and Ungerer, 2011; Segatto et al., 2014a]. A perturba-
tion of cholesterol homeostasis can cause neurologic and
psychiatric symptoms and contribute to diseases like RETT
syndrome [Buchovecky et al., 2013; Martin et al., 2014; Segatto
et al., 2014c], Huntington disease [Valenza et al., 2015] or autism
[Wang, 2014]. Besides cholesterol, isoprenoids play significant
roles in the CNS. The post-translational binding of farnesyl
pyrophosphate (FPP) or of geranylgeranyl pyrophosphate (GGPP)
moieties to proteins is critical for protein localization and, in
turn, for cell maturation and growth [Prendergast and Oliff,
2000; Sah et al., 2000].

A key enzymeof theMVApathway is 3-hydroxy-3-methylglutaryl
coenzyme A reductase (HMGR), which catalyses the production of
MVA [Brown andGoldstein, 1980; Segatto et al., 2014b]. Its activity is
regulated within minutes by phosphorylation and dephosphorylation
through AMP activated enzyme (AMPK) and Protein Phosphatase 2A
(PP2A), respectively [Pallottini et al., 2007], and within hours by
transcriptional changes through the Sterol Regulatory Element
Binding Proteins (SREBPs) [Espenshade and Hughes, 2007]. The
enzyme is efficiently inhibited by statins, a group of drugs that are
commonly used to treat hypercholesteremia [Trapani et al., 2011].
Statin treatment of humans and rodents impacts the adult brain and
affects emotion, learning, andmemory processes [Baytan et al., 2008;
While and Keen, 2010; Douma et al., 2011; Kilic et al., 2012; Segatto
et al., 2014b]. The effects of statins on the developing brain are less
clear. Previous studies investigated how statins affect neuronal
differentiation in vitro [Maltese and Sheridan, 1985; Fan et al., 2002;
Schulz et al., 2004; Kim et al., 2009; Raina et al., 2013; Samuel et al.,
2014], but the results vary depending on the experimental protocols
and the statins used. Moreover, it is unclear, whether neuronal
differentiation modulates the mevalonate pathway per se. We
addressed these questions using a mouse neuroblastoma cell line as
experimental model permitting DMSO-induced differentiation
[Shim et al., 2006].

MATERIALS AND METHODS

CHEMICALS AND ANTIBODIES
Unless indicated otherwise, all materials were from Sigma–Aldrich
(St. Louis, MO). Geranylgeraniol was a generous gift of Prof. Ewa
Sviezewszka (Polish Academy of Science, Warsaw, Poland). For
immunoblotting, antibodies against the following proteins were
used: P-AMPKa and AMPKa (Cell Signalling Technology, Boston,
MA), PP2A (catalytic sub-unit), RhoA, LRP1, and SREBP-1 (Santa
Cruz Biotechnology, Santa Cruz, CA), LDLr (ab30532 and SREBP-2
(Abcam, Cambridge, United Kingdom), P-HMGR (Millipore, Teme-
cula, CA), HMGR (Upstate, Lake Placid, NY), SRB-1 (Novus
Biological, Littleton, CO). a-Tubulin (Sigma–Aldrich) or caveolin
(Santa Cruz, CA) were used as loading controls . HRP-conjugated IgG
produced in mouse or in rabbit used as secondary antibodies were
obtained from Biorad Laboratories (Milan, Italy).

CELL CULTURE
Mouse neuroblastoma clone N1E-115 was obtained from the
European Collection of Cell Cultures (Cat. no. 88112303) (Salis-
bury, United Kingdom). Cells were grown in Dulbecco0s modified
Eagle0s medium (DMEM) containing 4500mg/L glucose, 2mM
L-glutamine, 10% fetal bovine serum (FBS), penicillin and
streptomycin (Lonza, Milano, Italia) in a humidified incubator
with 5% CO2 at 37°C.

NEURONAL DIFFERENTIATION
N1E-115 cells were plated for 5 h in DMEM medium (GIBCO) 10%
serum to allow cell adhesion. Neuronal differentiation was
induced by the addition of 2% dimethylsulfoxide (DMSO). The
medium containing DMSO was changed on day 3 and neuronal
differentiation was observed up to 120 h in the differentiation
medium. For experimental treatments, cultures were incubated
in the presence of differentiation medium supplemented with
Ethanol (Et-OH) as control or with Simvastatin (Sim). In addition,
culture dishes were treated with different products of the MVA
pathway: Cholesterol (CHOL), Farnesol (Far), Geranylgeraniol
(GG) in the presence or absence of Simvastatin. These
pharmacological agents were used at a concentration of 1mM
dissolved in ET-OH.

NEURITE EXTENSION ASSAY
The degree of differentiation was evaluated based on the length of
neuritic processes in different directions and at different time
intervals (16, 24, 48, 72, and 120 h) using an Olympus CKX 41
microscope equipped with a Leica DFC 420 camera. Electronic
images were further processed using Adobe Photoshop CS2.

For each treatment, 10 randomly selected fields from three
independent preparations were analyzed.

While small and spherical in their undifferentiated state,
morphologically transformed N1E-115 cells are typically 40mm or
larger and extend processes which often span several hundred
micrometer. The neurite length was evaluated with ImageJ software
for Windows (NIH, Bethesda, MD) and was reported as arbitrary
units. Only neuritic processes that were longer than two times the
diameter of the cell were considered.

Fig. 1. Schematic representation of the mevalonate pathway.
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XTT ASSAY
Cell viability was detected by the XTT assay following manufacturer
instructions (Cell Signalling Technology; Boston, MA). This assay
detects a formazan dye produced from XTT conversion by
mitochondrial enzymes. 5� 103 cells were plated in 96 well dishes.
Cells were treated with 2%DMSO in presence and in absence of 1mM
simvastatin for 120 h using ET-OH as control.

FLOW CYTOMETRY ANALYSIS
To evaluate cell viability, 1.5� 105 N1E-115 cells were grown in
3.5 cm Petri dish in DMEM medium (GIBCO) with 10% FBS and
treated with 2% DMSO in the presence of 1mM simvastatin or of
ET-OH alone (0.1% v/v) for 120 h. After trypsin detach, cells were
treated with propidium iodide (PI) (2mg/ml) and immediately
analyzed by flow cytometry. For each experiment, 20,000 events
on were acquired and the percentage of live cells was calculated by
design an electronic gate on PI negative events. To stain SR-B1 on
the live cell surface, 1.5� 105 cells were seeded into 3, 5 cmPetri dish
on DMEM supplemented with 10% FBS for each experimental point.

After 5 h, medium was replaced by fresh complete medium
containing 2 % DMSO or ET-OH. For each time point (t0, t72), cells
were harvested with trypsin and washed twice with cold phosphate
buffered saline (PBS) containing 5% BSA. For each sample, living
cells were incubated with anti-SR-B1 (for 30min at 4°C; 1:100 in
PBS/5% BSA; Novus Biological). Samples were incubated with
FITC-conjugated goat anti-rabbit secondary antibody (30min at
4°C; 1:100 PBS/5% BSA; Cappel). Background controls with
secondary antibody alone were included at each time point.
Immunofluorescence intensity was measured by a Galaxy flow
cytometer (DakoCytomation) and analyzed by Flowjo v.5.4.4
software (Tree Star Inc., Ashland, OR). For each sample, 20,000
events were recorded, data were obtained from three independent
experiments. Dead cells were omitted from analysis by side scatter
electronic gate exclusion.

WESTERN BLOTTING ANALYSIS
To prepare total protein lysate, N1E-115 cells were washed
at indicated times with 1ml of phosphate buffered saline

Fig. 2. HMGR, AMPK, and PP2A analysis in differentiating N1E-115 mouse neuroblastoma. Panel A illustrates HMGR analysis. On the left the densitometric analyses of total
protein content (up) and the phosphorylation state of the enzyme (bottom), quantified as t-HMGR/tubulin and P-HMGR/t-HMGR, respectively. A representative Western blot is
shown on the right (up). The size of HMGR is 90 kDa, the size of tubulin is 50 kDa. ��P< 0.01, ���P< 0.001 versus 0 h as from one-way analysis of variance (ANOVA) followed by
Tukey post-test. Inset illustrates HMGR activity measured as pmol of [14C]-MVA production/min/mg proteins at 0 h and 120 h after the induction of differentiation by using 2%
DMSO. ���P< 0.001 versus 0 h as from a Student0s t-test. Panel B illustrates AMPK (left) and PP2A catalytic sub-unit (right) analysis. On the bottom are represented the
immunoblots from representative experiments. Average protein expression is quantified as P-AMPK/AMPK, and PP2A/tubulin (right graph). The size of AMPK is 68 kDa, The size
of the catalytic subunit of PP2A is 35 kDa, the size of tubulin is 50 kDa. All the presented data derives from three independent experiments, for details see the main text.
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(PBS; PH¼7.4), trypsinized (2min at 37°C), harvested, centri-
fuged (1min at 13,000 rpm at room temperature), resuspended
and sonicated (30 s) in 50ml of sample buffer containing 0.125M
TrisHCL pH 6.8, 10% SDS, 0.062M NaF and Protease Inhibitor
Cocktail (Sigma).

To prepare the membrane fraction, cells were homogenized in
a homogenization buffer (0.01M Tris-HCl, 0.001M CaCl2, 0.15M
NaCl, 0.001M PMSF, pH 7.5) and spun down (10,000 g for
10min). The supernatant was centrifuged two times (100,000 g
for 45min), the pellet containing the membrane fraction was
solubilized (0.125M Tris-HCl -pH 6.8- containing 10% SDS,
0.001M PMSF) and the protein concentration was measured
[Lowry et al., 1951]. Membrane and total lysate samples were

boiled for 3min before SDS-PAGE and subsequent Western
blotting. The presence of caveolin (membrane marker) and
a-tubulin (cytosolic marker) confirmed the purity of the
membrane fractions (data not shown). All experiments were
carried out in triplicate.

Thirty micrograms of protein were separated by SDS–PAGE and
blotted to nitrocellulose membranes (Trans-blott Turbo, BioRad).
Immunoblots were incubated with primary antibodies (1:1,000)
followed by secondary peroxidase-conjugated antibodies (1:10,000;
Biorad). Immunoreactivity was detected by enhanced chemilumi-
nescence (GE Healthcare, Little Chalfont, United Kingdom). All
images derived from Western blotting were analyzed with ImageJ
(National Institutes of Health, Bethesda, MD). Intensity values of

Fig. 3. LDLr, LRP1, and SR-B1 analysis in differentiating N1E-115 mouse neuroblastoma. Panel A illustrates LDLr analysis, Panel B illustrates LRP1 analysis, and Panel C
illustrates SRB-1 analysis. On the right are represented the immunoblots from representative experiments. Average protein expression is represented on the left and quantified as
ratio between protein and tubulin. �P< 0.05, ���P< 0.001 versus 0 h as from one-way analysis of variance (ANOVA) followed by Tukey post-test. Panel D shows membrane
expression of SRB-1 receptor on live cells before and after 72 hr of DMSO-induced differentiation. The results are presented as cytometric histograms distribution (goat anti-
rabbit FITC conjugated control stain [black], versus surface anti-SRB-1 antibody [gray]). These results are representative of three similar experiments.
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selected proteins were normalized to intensities of respective
housekeeping proteins (tubulin or caveolin).

HMGR ACTIVITY ASSAY
Activity was measured using a radioisotopic assay based on the
production of 14C-MVA (mevalonate) from 3-[14C]-HMGCoA
(specific activity 57.0 mCi/mmol. Amersham-Pharmacia, Little
Chalfont, UK). N1E-115 cells were differentiated with 2% DMSO
for 120 h in the presence of 1mM simvastatin or of ET-OH. Cells
were homogenized in phosphate buffer (0.1M sucrose, 0.05M KCl,
0.04M KH2PO4, 0.03M EDTA, 50mM NaF, pH 7.4) and incubated
in the presence of co-factors (20mM glucose-6-phosphate, 20mM
NADP sodium salt, 1 unit of glucose-6-phosphate dehydrogenase,
and 5mM dithiothreitol) in a final volume of 190ml
(for 100mg protein). The assay was started by addition of 10ml
3-[14C]-HMG-CoA (0.088 mCi/11.7 nmol). The synthesized [14C]-
MVA was purified by chromatography (AG1-X8 ion exchange
resin; BioRad, Italy) and the radioactivity measured (Liquid
Scintillator Analyzer, Perkin Elmer). The recovery was calculated
based on an internal standard (3-[3H]-MVA, specific activity 24.0
Ci/mmol (Amersham-Pharmacia, Little Chalfont, United Kingdom).

FILIPIN STAINING
5� 103 cells were seeded, into 96wells plate (Falcon black/clear tissue
culture treated plate flat bottom) and after adhesion (5 h) the medium
was changed with complete medium in presence of 2%DMSOwith or
without 1mM of Simvastatin. The medium was changed with fresh
stimuli each 2 days and cells were cultured for 120 h. To visualize the
intracellular cholesterol distribution, cultured cells were fixed (4%
paraformaldehyde for 15min) and incubated for 2 h with filipin
(10mg/ml with 0.1% ethanol, Sigma). Filipinfluorescencewas imaged
on an inverted microscope (Axiovert 135TV; Zeiss) equipped with a
metal halide lamp (10%; Lumen 200; Prior Scientific), an appropriate
excitation/emission filter (XF02-2; Omega Optical Inc.), a 40�
objective (N.A. 1.3; Zeiss) andanair-cooledmonochromeCCDcamera
(Sensicam, PCO Computer Optics) controlled by custom-written
Labview routines (National Instruments).

Data analysis was performed with ImageJ (National Institutes of
Health, Bethesda, MD) software for Windows. The experiment was
performed with four biological replicates. For each experimental
group 10 randomly selected fields were analyzed.

STATISTICAL ANALYSIS
Data were analyzed by Student0s t-test in the case of two
experimental conditions and by one-way analysis of variance
(ANOVA) followed by Tukey post-test for multiple conditions
(GraphPad Instat3; GraphPad, Inc., La Jolla, CA).

RESULTS

We investigated the role of the MVA pathway during neuron
differentiation using the N1E-115 cell line [Shim et al., 2006]. To
avoid confounding effects of serum and thus cholesterol deprivation
we induced neuronal differentiation by DMSO [Clejan et al., 1996;
Rodrigues et al., 2005; Oh et al., 2006]. As afirst step, we investigated

whether DMSO affected HMGR, a key component of the MVA
pathway. Indeed, as shown in Figure 2A, the amount of total HMGR
protein in neurons decreased and the fraction of phosphorylated
protein increased during differentiation. The levels of enzymes that
regulate the phosphorylation status of HMGR, AMPK, and PP2A,
were stable during 120 h of treatment (Fig. 2B). The observed
changes in HMGR suggested that the level of the enzyme decreases
during DMSO-induced differentiation. Indeed, metabolic labeling of
mevalonate revealed that its activity was significantly reduced after

Fig. 4. SREBP-1 and SREBP-2 analysis, in differentiating N1E-115 mouse
neuroblastoma. Panel A illustrates the transcriptionally active fragment of
SREBP-1 (n-SREBP-1) analysis, Panel B illustrates transcriptionally active
fragment of SREBP-2 (SERBP-2) analysis. On the bottom are represented the
immunoblots from a representative experiment. Similar results were obtained
from three independent experiments for each protein considered. Average
protein expression quantified as ratio between protein and tubulin. ��P< 0.01,
���P< 0.001 versus 0 h as from one-way analysis of variance (ANOVA)
followed by Tukey post-test.
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induction of differentiation (Fig. 2 inset), indicating that the
metabolic flux through the MVA pathway decreases. The MVA
pathway is an important component of lipid homeostasis in cells
together with the machinery that mediates cholesterol uptake. We
therefore tested next, whether lipoprotein receptors were affected by
DMSO-induced neuronal differentiation. The level of LDLr de-
creased, whereas the level of LRP1was increased (Fig. 3A and B). The
latter change was not surprising, because LRP1 is a prominent
component of neurites [Kanekiyo and Bu, 2014], whose growth is
induced by DMSO. On the other hand, we also observed a decrease of

SRB1 at 75 kDa (Fig. 3C), and interestingly, we observed at 72 h
of treatment a band at 150 kDa which may signify the dimerization
of SRB-1 and a possible translocation of the protein complex on
plasmamembrane . The appearance of SRB-1 on the cell surface after
72 h of treatment was confirmed by live labeling with the antibody
and subsequent flow cytometric analyses (Fig. 3D).

The expression of MVA enzymes, lipoprotein receptors, and other
components controlling lipid homeostasis is regulated by two
transcription factors, the so called SREBP-1 and -2, which undergo
cleavage and transfer to the nucleus upon declining lipid levels.

Fig. 5. Evaluation of cell viability in differentiating N1E-115mouse neuroblastoma cells. Figure illustrates on the left XTT assay and on the right PI exclusion assay performed on
N1E-115 cells induced to differentiate with 2% DMSO for 120 h in presence and in absence of 1mM simvastatin. For details see the main text.

Fig. 6. Neurite elongation analysis of N1E-115 mouse neuroblastoma during DMSO-induced differentiation. Panel A shows representative pictures of “in vivo” cell detection
under an Olympus CKX 41 microscope, equipped with a Leica DFC 420 camera. It represents the neurite elongation during DMSO-induced cell differentiation in presence and in
absence of 1mM simvastatin starting from 0h to 120 h. Panel B shows the statistical analysis of neurite elongation performed on 10 randomly selected fields from three
independent preparations. Panel C represents the neurite elongation analysis, at 120 h after the induction of the differentiation by DMSO, in presence and in absence of SIM or
SIMþHMGR end products: MVA, cholesterol (CHOL), geranyl geraniol (GG), Farnesol (Far). All the compounds were administered at 1mM. The analysis was performed on 10
randomly selected fields from three independent preparations. ���P< 0.001 versus Control, ##P< 0.01 versus CHOL, §§P< 0.01 versus Far; as from one-way analysis of variance
(ANOVA) followed by Tukey post-test.

JOURNAL OF CELLULAR BIOCHEMISTRY6 MVA PATHWAY IN NEURONAL DIFFERENTIATION



Immunoblotting revealed that the levels of transcriptionally active
SREBP-1 and of SREBP-2 decreased during differentiation (Fig. 4).

Our results indicated that neuronal differentiation is accompanied
by a decrease in MVA synthesis and predicted that a further decrease
of MVA synthesis will accelerate neuronal differentiation. To test this
hypothesis, we induced neuronal differentiation by DMSO in the
presence or absence of simvastatin, a well-established HMGR
inhibitor, at a concentration that was not toxic to neurons as
indicated by XTT and Propidium Iodide exclusion test (Fig. 5). To
determine the degree of neuronal differentiation,wemeasuredneurite
length. We observed that simvastatin treatment increased the length
of neurites indicating that a decrease of MVA pathway promotes
neuronal differentiation in our experimental model (Fig. 6A and B).
We next tested, which end-product of MVA pathway mediated this
effect. We induced neuronal differentiation in the presence of
simvastatin and added MVA, cholesterol (CHOL), geranylgeranyiol
(GG) or farnesol (Far) for 120h. As shown in Figure 6C, onlyMVA and
GG prevented the simvastatin-induced increase of neurite outgrowth.
Filipin staining of neurons treated or not with simvastatin
demonstrated that cellular cholesterol content did not change (Fig. 7).

GG is required for the prenylation of GTP binding proteins and
prominent targets are the Rho family GTPases. A prominent member of
this family isRhoA,whichnegatively controls neuriteoutgrowth [Govek
et al., 2011] andwhoseprenylationallows its translocation to theplasma
membrane and its subsequent activation [Segatto et al., 2014b]. We
tested whether simvastatin affected the RhoA content of the membrane
fraction. As shown in Figure 8 simvastatin decreased the RhoA level in
membrane lysates, and this effect was reverted by MVA and GG
indicating that the neurite growth promoting effect of simvastatin was
mediated, at least in part, via reduced isoprenylation of RhoA.

DISCUSSION

It is well known that neurons proliferate and then differentiate
changing their morphology, outgrowing neurites and becoming
functionally active. Here, we investigated the role of the MVA
pathway during neuronal differentiation in mouse neuroblastoma
N1E-115 cells, a valuable and widely used experimental model,
which recapitulates key steps of neurite initiation and outgrowth
[Shim et al., 2006].

We focused our attention on the protein network that controls the
MVA pathway and in turn the cellular cholesterol homeostasis
during neuronal differentiation. Intriguingly, HMGR activation
decreased along the considered time points, suggesting a progressive
reduction of cellular cholesterol synthesis during neuronal differen-
tiation. This result is in good agreement with the hypothesis that
during development, neurons decrease their cholesterol synthesis
[Mauch et al., 2001; Pfrieger and Ungerer, 2011]. The decrease of
HMGR activity is due to decline of the total protein levels
and independent from phosphorylation/dephosphorylation
mechanisms. The decrease of both the transcription factors (SREBP1
and -2) not only accounts for the reduced HMGR protein expression,
but also for the significant fall in LDLr [Horton, 2002] and for the
increased LRP1 levels [Llorente-Cortes et al., 2006; Llorente-Cortes
et al., 2007]. Regarding SRB-1 we made interesting observations.

During differentiation the protein dimerizes leading to the
appearance of a 150 kDa band. The dimerization represents a
physiological event, since the protein is functional when expressed
on the cell surface as a dimer [Gaidukov et al., 2011]. Indeed, ourflow
cytometric analysis, performed in live cells, does not show any
SRB-1 signal on membrane surfaces of undifferentiated cells (0 h)

Fig. 7. Cholesterol content evaluation in differentiating N1E-115 mouse
neuroblastoma. N1E-115 cells were treated or not with 1mM Sim, for 120 h
after DMSO administration. Cells were fixed with 4% paraformaldehyde and
stained with filipin. Representative pictures of the filipin staining are shown on
the top. On bottom, data analysis of filipin intensity measured as described in
the main text is illustrated.

JOURNAL OF CELLULAR BIOCHEMISTRY MVA PATHWAY IN NEURONAL DIFFERENTIATION 7



whereas an increase of fluorescence intensity is detectable at 72 h in
accordance with the appearance of the 150 kDa SRB-1 in Western
blot analysis. Thus, since cholesterol synthesis decreases during
neuronal differentiation, cells could supply their cholesterol needs
through the increase of both LRP1 and the functional SRB-1. In our
opinion SR-B1 dimerization may be considered a new marker of
neuronal differentiation.

Our results show that the pharmacological inhibition of MVA
pathway increases the rate of neurite outgrowth. These results are in
goodagreementwith thoseobtainedbyother researchgroups [Maltese
and Sheridan, 1985; Sato-Suzuki and Murota, 1996; Holmberg et al.,
2006; Pooler et al., 2006; Raina et al., 2013]. These effects are
completely prevented by MVA administration, indicating that
simvastatin-induced neurite elongation depends on the specific
HMGR inhibition and not by an effect exerted by simvastatin per
se. Beside cholesterol, MVA is the precursor of isoprenoids such as GG
or Far that are required for the prenylation and the subsequent
activationofdifferentproteins.Ourfinding that onlyGGprevented the
simvastatin-induced neurite outgrowth, suggests that geranylgerany-
lated proteins, rather than farnesylated ones or cholesterol, promote
neurite formation, and elongation. The intracellular cholesterol
content as measured by filipin did not change in differentiating cells
both in presence and in absence of simvastatin. Moreover, we found
that simvastatin significantly reduced membrane-associated
RhoA levels in N1E-115 cells. G Geranylgeranylation of RhoA is
essential for membrane translocation and the activation of its
signaling functions [Seasholtz et al., 1999]. This includes the

actomyosin-based contractility of neurites and the disassembly of
microtubules and intermediate filaments leading to neurite
retraction [Hirose et al., 1998]. We therefore conclude that
simvastatin promotes neurite elongation by preventing the
activation of the negative regulator RhoA.

Taken together our presented data indicate that the decrease of the
MVA pathway is fundamental for neurite outgrowth and in turn
neuronal differentiation. The progressive decrease in the activation
of isoprenoid/cholesterol metabolic pathways is a physiological
feature in differentiating neurons, and assumes that any interference
in the modulation of this metabolic pathway can alter neuronal
function. In neuropathologies caused by disturbed neuronal
development, statin treatment may help to improve the
neurological and metabolic symptoms [Wang, 2014].
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ABSTRACT 

Autism spectrum disorders (ASDs) present a wide range of symptoms characterized by altered 

sociability, compromised communication and stereotyped/repetitive behaviors. These symptoms are 

probably caused by developmental changes, but the mechanisms remain largely unknown. Several 

lines of evidence suggest an impairment of the cholesterol/isoprenoid metabolism in the brain as 

possible cause, but systematic analyses in rodent models of ASDs are lacking. Prenatal exposure to 

the antiepileptic drug valproate (VPA) is a risk factor for ASDs in humans, and the basis of a well-

established rodent model for the disease. Here, we studied cholesterol/isoprenoid metabolism in 

different brain areas of rats prenatally exposed to VPA. We show that VPA-treated rats presenting 

autistic-like symptoms display alterations in key elements of the cholesterol/isoprenoid metabolism 

and a decreased number of hippocampal oligodendrocytes. Our data suggest a relation between 

brain cholesterol homeostasis and ASDs that open new therapeutic possibilities for these disorders. 

 

Key words: Autism; cholesterol; 3-hydroxy 3-methylglutaryl Coenzyme A reductase; isoprenoid. 

 

Highlights:  

 Brain cholesterol metabolism is altered in prenatally VPA-exposed rats. 

 Prenylation is altered mainly in cerebellum of prenatally VPA-exposed rats. 

 Hippocampal olygodendrocytes are reduced in prenatally VPA-exposed rats.   



3 
 

INTRODUCTION 

Autism spectrum disorders (ASDs) are neurodevelopmental syndromes that present altered social 

interactions, compromised communication, repetitive behaviors, and comorbid features such as 

anxiety (Lai et al., 2014; Gillott and Standen, 2007). Currently, genetic factors, maternal stressors, 

infectious agents and drug intake during pregnancy are discussed as causes of ASDs (Dietert et al., 

2011). In particular, prenatal exposure to valproic acid (VPA), an antiepileptic drug, induces autistic 

symptoms in children (Williams et al., 2001) and rodents, which are used as preclinical models of 

ASDs (Servadio et al., 2015; Servadio et al., 2016). 

At present, the molecular mechanisms provoking ASDs are largely unknown. Some lines of 

evidence point to an imbalanced cholesterol/isoprenoid metabolism in the brain (Wang, 2014); 

(Ling and Tejada-Simon, 2016). Characteristic elements of autistic behavior occur in developmental 

diseases including Smith-Lemli-Opitz syndrome (SLOS) (Thurm et al., 2016) or Rett Syndrome 

(Segatto et al., 2014b). SLOS is an autosomal recessive disorder caused by a deficiency of the 7-

dehydrocholesterol (7-DHC) reductase, one of the main cholesterol synthesizing enzyme (DeBarber 

et al., 2011). RETT syndrome is a severe neurodevelopmental disorder that affects almost 

exclusively females where mutations in the gene Methyl-CpG-binding protein 2 were identified as 

the cause of this pathology (Amir and Zoghbi, 2000). Notably, cholesterol supplementation in 

SLOS patients can attenuate their autistic symptoms (Aneja and Tierney, 2008). Moreover, an 

imbalance of cholesterol homeostasis has been demonstrated in vivo, in an animal model of Rett 

syndrome (Buchovecky et al., 2013), and in vitro using human fibroblasts obtained from Rett 

patients (Segatto et al., 2014b). 

Interestingly, several candidate proteins, such as ionotropic and metabotropic receptors and 

transporters, whose dysfunction has been attributed to ASDs, are associated also with cholesterol-

rich lipid rafts (Wang, 2014). 

Cells need cholesterol and isoprenoid compounds to develop and function correctly (Martini and 

Pallottini, 2007; Trapani et al., 2011; Segatto et al., 2014a; Cartocci et al., 2016). This applies 

particularly to neurons in the central nervous system (CNS) that require large amounts of these 

components to form and maintain axons, dendrites and spines and to sustain the function of 

different membrane proteins like neurotransmitter receptors, ion channels and transporters (Mauch 

et al., 2001; Pfrieger, 2003; Dufour et al., 2006; Pfrieger and Ungerer, 2011; Mathews et al., 2014; 

Cartocci et al., 2016; Moutinho et al., 2017). Cells in the brain must regulate their cholesterol and 

isoprenoid levels independently, because the blood brain barrier (BBB) prevents the entry of 

lipoproteins into the brain parenchyma (Dietschy and Turley, 2004). Consequently, alterations in 
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brain cholesterol/isoprenoid homeostasis can perturb CNS development and function (Linetti et al., 

2010; Wang, 2014; Segatto et al., 2014a). 

To further elucidate connections between ASDs and cholesterol/isoprenoid metabolism, we studied 

the protein network controlling cholesterol/isoprenoid homeostasis in different brain areas of male 

rats prenatally exposed to VPA. This protein network comprises a large array of sensors, enzymes 

and transporters enabling a feedback-controlled balance of biosynthesis, uptake and release (Brown 

and Goldstein, 1999; Espenshade and Hughes, 2007). For example, precursors of cholesterol and 

isoprenoids are synthesized by the mevalonate (MVA) pathway. The activity of its key enzyme, 3-

hydroxy 3-methylglutaryl Coenzyme A reductase (HMGCR) (Brown and Goldstein, 1980; 

Pallottini, 2015), is rapidly inhibited by phosphorylation via AMP-activated kinase (AMPK) 

(Pallottini et al., 2007) depending on the energetic status of the cell (Hardie, 2008; Hardie et al., 

2016). 

To capture developmental changes, we analyzed three different postnatal ages (infancy, 

adolescence, and adulthood). Our study reveals that VPA-exposed rats presenting autistic symptoms 

display alterations in key elements of the cholesterol/isoprenoid metabolism and a reduced amount 

of oligodendrocytes in hippocampus of adolescent rats. These data suggest a role of cholesterol 

homeostasis in ASDs, and may open new therapeutic possibilities for these disorders. 

 

EXPERIMENTAL PROCEDURES 

Animals 

Female Wistar rats (Charles River), weighing 250 ± 15 g, were mated overnight. The morning when 

spermatozoa were found was designated as gestational day 1 (GD1). Pregnant rats were singly 

housed in Macrolon cages (40l x 26w x 20h cm), under controlled conditions (temperature 20–

21°C, 55–65% relative humidity and 12/12h light cycle with lights on at 07:00 a.m.). Food 

(standard laboratory diet, VRF1 (P) diet, Special Diets Services, Charles River) and water were 

available ad libitum. On gestational day 12.5, females received a single intraperitoneal injection of 

either sodium valproate (VPA) or saline (SAL). Newborn litters found up to 5 p.m. were considered 

to be born on that day designated postnatal day (PND) 0. On PND 1, the litters were culled to eight 

animals (six males and two females), in order to reduce the litter size-induced variability in the 

growth and development of pups during the postnatal period. On PND 21, the pups were weaned 

and housed in groups of three. Experiments were carried out on the male offspring during infancy 

(PNDs 9-13), adolescence (PND 35), and adulthood (PND 90). The experiments were approved by 

the Italian Ministry of Health (Rome, Italy) and performed in agreement with the guidelines 
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released by the Italian Ministry of Health (D.L. 26/14) and the European Community Directive 

2010/63/EU. 

 

Drugs 

VPA (Cayman) was dissolved in saline at a concentration of 250 mg/ml and administered 

intraperitoneally to pregnant rats at a dose (500 mg/kg) and time (GD 12.5) that have been shown to 

induce autistic-like behavioral changes in the offspring (Markram et al., 2008); (Servadio et al., 

2016). 

 

Isolation-induced ultrasonic vocalizations (USVs)  

On PND 9, 12 male pups (6 SAL- and 6 VPA-exposed) were removed from the nest and 

individually placed into a Plexiglas arena (30l × 30w × 30h cm), located inside a sound-attenuating 

and temperature-controlled chamber, with a camera positioned above the arena. The USVs emitted 

by the pup were detected for 3 min by an ultrasound microphone (Avisoft Bioacoustics, Version 

5.1) sensitive to frequencies between 10 and 200 kHz. Pup axillary temperature was measured 

before and after the test by a digital thermometer. 

 

Three-chamber test  

The apparatus consisted of a rectangular three-chamber box with two lateral chambers (30l × 35w × 

35h cm) connected to a central chamber (15l × 35w × 35h cm). Each lateral chamber contained a 

small Plexiglas cylindrical cage. The test was performed as previously described (Moy et al., 2007); 

(Servadio et al., 2016). At PND 35 or 90, 12 male rats (6 SAL- and 6 VPA-exposed) were 

individually allowed to explore the apparatus for 10 min, and then confined to the central 

compartment. An unfamiliar stimulus animal was placed into the Plexiglas cage in one chamber of 

the apparatus, while the cage in the other chamber was left empty. Both doors to the side chambers 

were then opened, allowing the experimental animal to freely explore the apparatus for 10 min. The 

percent of time spent in social approach (sniffing the stimulus and the cage confining it) was scored 

using the Observer 3.0 software (Noldus Information Technology, The Netherlands). 

 

Elevated plus-maze  

The apparatus comprised two open and two closed arms (50 Large × 10Wide × 40 High cm) that 

extended from a common central platform (10L × 10W cm). At PND 35, 12 male rats (6 SAL- and 

6 VPA-exposed) were individually placed on the central platform of the maze for 5 min. Each 

session was recorded with a camera positioned above the apparatus for subsequent behavioral 
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analysis performed using the Observer 3.0 software (Noldus Information Technology, The 

Netherlands). The following parameters were analyzed (Manduca et al., 2015): 1) the percentage of 

time spent in the open arms (% TO): (seconds spent on the open arms of the maze/seconds spent on 

the open + closed arms) x 100; 2) the percentage of open arm entries (% OE): (the number of 

entries into the open arms of the maze/number of entries into open + closed arms) x 100 and 3) the 

number of closed arm entries (Number of CE). 

Sample collection 

Infant (n=12, 6 SAL and 6 VPA), adolescent (n=12, 6 SAL and 6 VPA), and adult (n=12, 6 SAL 

and 6 VPA) rats were rapidly decapitated. Plasma was obtained from blood collected into EDTA 

(Ethylenediaminetetraacetic acid; 1 mg/ml blood), and the livers and the brains were quickly 

removed. For biochemical evaluations, the brains were cut into coronal slices on a cold plate, and 

amygdala (Amy), cerebellum (Cereb) prefrontal cortex (Cortex), hippocampus (Hippo), nucleus 

accumbens (Nac), and dorsal striatum (Str) were dissected under the stereo-microscope within 2 

min. Tissues were then stored to -80°C until use (Trezza et al., 2012). For immunohistochemical 

analysis whole brains were rapidly frozen in 2-methylbutane and stored at -80 °C.  

 

Sample preparation for western blot analysis 

Total lysate of the livers or the different brain regions (Amy, Cereb, Cortex, Hippo, Nac and Str) 

were obtained by tissue homogenization in 1:10 and 1:5 w/v buffer, respectively containing 0.001 

M Tris-HCl, 0.0001 M CaCl2, 0.15 M NaCl, and 0.001 M phenylmethylsulfonyl fluoride (PMSF) 

(pH 7.5), and Phosphatase inhibitor 1:1000 v/v (SigmaAldrich, Milano). Livers and brain samples 

were sonicated (VCX 130 PB, Sonics, Newtown,06470 CT) on ice, for 1 min. Successively, for 

both the tissues, an aliquot of homogenate was diluted 1:1 in sample buffer 2X (0.25M Tris-HCl PH 

6.8, 20% SDS and 1:1000 protease inhibitor cocktail and 1:1000 phosphatase inhibitor cocktail 

(Sigma-Aldrich)) (Pallottini et al., 2008). These samples were utilized to analyze the following 

proteins: Hydroxy methylglutaryl Coenzyme A reductase (HMGCR), Phospho-Hydroxy 

methylglutaryl Coenzyme A reductase (P-HMGCR), Low Density Lipoprotein receptor (LDLr), 

Scavenger Receptor B1 (SR-B1), LDL related protein 1 (LRP1), AMP-activated kinase (AMPK), 

Phospho-AMP activated kinase (P-AMPK), and Myelin Basic Protein (MBP). 

To evaluate the active fraction of prenylated proteins, cellular membranes were prepared as 

following: homogenates were centrifuged for 45 min at 100,000 g and the pellets containing the 

membrane fractions were solubilized by sonication in sample buffer 1X (0.125M pH 6.8, 10% SDS, 

1:1000 v/v protease inhibitor cocktail, and 1:1000 v/v phosphatase inhibitor cocktail). Protein 
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concentration was measured by the method of Lowry (Lowry et al., 1951). Membrane and total 

lysate samples were boiled for 5 min before loading to the SDS-PAGE. 

 

Immunoblotting 

Proteins (15 μg) from total and membrane lysates were resolved by 7% SDS-PAGE for P-HMGCR 

09-356 (1:1000) (Millipore, Temecula, CA), total HMGCR 07457 (1:1000) (Upstate,Lake Placid, 

NY), LDLr sc 11824 (1:1000) (Santa Cruz Biotechnology, Santa Cruz, CA), LRP1 sc 25462 

(1:1000) (Santa Cruz Biotechnology), SR-B1 NB400-104 (1:1000) (Novus Biologicals, Milano, 

Italy), total AMPKα #2532 (1:1000) (Cell Signalling Technology, Boston, MA,USA), P-AMPKα 

#2535 (1:1000) (Cell Signalling Technology, Boston, MA,USA); 12% SDS-PAGE for RhoA sc 

418 (1:1000) (Santa Cruz Biotechnology); Ras sc 53959 (1:1000) (Santa Cruz Biotechnology) and 

MBP sc 808 (1:1000) (Santa Cruz Biotechnology). Proteins were separated at 30 mA (constant 

current) for 120 min and blotted to nitrocellulose membranes (Trans-Blott Turbo, BioRad, Milano, 

Italy). Immunoblots were incubated with primary antibodies overnight and hrp-conjugated IgG 

produced in mouse, in rabbit or goat were used as secondary antibodies (1:10000) (Biorad). 

Immunoreactivity was detected by enhanced chemiluminescence (GE Healthcare, Little Chalfont, 

United Kingdom).  

 

Immunohistochemistry 

The staining was performed as described (Scuderi et al., 2014). Briefly, rats were perfused 

intracardially and brains were cut using a cryostat to obtain coronal sections containing the 

hippocampal regions. Slices (12 µm thickness) were post-fixed for 7 min in 4% paraformaldehyde 

prepared in 0.1M phosphate buffer solution (PBS) at +4°C. Non-specific antibody binding was 

minimized by incubating slices (placed in a humid chamber) with a blocking solution composed of 

bovine serum albumin (BSA) 0.5% in PBS/triton x-100 0,25% for 1 hour at room temperature. 

Then, slices were incubated overnight at +4°C in a humid chamber, with a mouse anti-Olig2 

primary antibody sc 293163 (1:500) (Santa Cruz Biotechnology) prepared in the same blocking 

solution. The day after, sections were incubated with the proper rhodamine (TRITC)-coupled goat 

anti-mouse IgG (H+L) secondary antibody 115-025-003 (1:200) (Jackson ImmunoResearch) and 

with the nuclear stain Hoechst 33258 (1:5000) (Sigma-Aldrich) in blocking solution at room 

temperature. Then, sections were rinsed in PBS and slices mounted in Fluoromount medium F4680 

(Sigma-Aldrich). Signals were detected using an epifluorescent microscope Eclipse E600 (Nikon). 

Pictures were captured in the stratum radiatum of CA1, CA2 and CA3, and in the hilus of the 
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dentate gyrus (DG) in the hippocampus by a QImaging camera with NISelements BR 3.2 64-bit 

software. 

Experiments were performed three times; at least four slices from each animal were analysed. In 

particular, we used slices corresponding to plates 55–64 in the rat brain atlas (Paxinos and Watson, 

VI ed, 2007). 

 

Tissue and plasma lipid analysis 

Total cholesterol and high-density lipoproteins (HDL) were evaluated in plasma samples. Lipid 

analyses were performed by a Roche Clinical Chemistry instrument with commercial reagents 

(Roche Diagnostics, GmbH). To evaluate the amount of tissue cholesterol, 50 mg and 25 mg of 

liver and brain areas, respectively, were homogenized in chloroform:methanol:H2O 4:2:1 v/v. The 

mixture was vortexed for 2 min, left for 15 min at room temperature and spun-down (10 min at 600 

g). The chloroform fraction was transferred, dried under nitrogen, dissolved in 40 µl isopropanol 

and subjected separated by thin layer chromatography (Silica Gel 60 Å 5X20, Whatman, Maidston, 

England; pre-activated at 100 °C for 60 min). Samples were developed in petroleum ether/ethyl 

ether/acetic acid (75:25:1 v/v) and lipid bands were visualized with iodine vapor and compared with 

cholesterol standard. 

 

Data analysis  

Behavioral experiments were scored and analyzed by a trained observer unaware of treatment 

conditions (Noldus Information Technology, The Netherlands). Images derived from 

immunoblotting, immunofluorescence and TLC were analyzed by ImageJ (National Institutes of 

Health, Bethesda, MD). Data are expressed as mean ± SD for all the experiments except for 

behavioral and immunofluorescence analyses where data are expressed as mean ± SEM. To assess 

the effects of the prenatal treatment (VPA or SAL) on the behavior of the offspring, data were 

analyzed by Student’s t-tests. (GraphPad Instat3; GraphPad, Inc., La Jolla, CA). Cholesterol, 

triglyceride, and HDL contents of plasma and the analysis within the ages were performed by 

ANOVA followed by Tukey-Kramer test (GraphPad Instat3; GraphPad, Inc., La Jolla, CA). 

 

RESULTS 

In this work, we aimed to uncover alterations of cholesterol/isoprenoid homeostasis in the brain of 

infant, adolescent and adult rats prenatally exposed to VPA. 

 

Confirmation of autistic-like behavior 
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We first ensured that VPA-exposed animals displayed autistic-like symptoms compared to control 

rats (Fig. 1). At infancy (PND 9), pups prenatally exposed to VPA emitted less USVs than control 

pups when separated from the dam and the siblings (Fig. 1a) indicating communicative deficits 

induced by prenatal VPA exposure. The elevated plus maze test revealed increased anxiety in VPA-

exposed adolescent rats (PND 35) as indicated by decreased spent time in the open arms of the 

maze (Fig. 1b) and a decreased number of open arm entries (Fig. 1c) compared to SAL-exposed 

rats. The three-chamber test revealed decreased sociability in adolescent (Fig. 1d) and adult 

(PND90) (Fig. 1e) rats as indicated by decreased time spent sniffing the stimulus animal during test 

compared to SAL-exposed animals (Fig. 1e). However, the two groups did not differ in locomotor 

activity as shown by similar closed arm entries (data not shown). 

 

Analyses of peripheral cholesterol/isoprenoid metabolism 

Next, we studied the impact of VPA on peripheral cholesterol homeostasis (Fig. 2). Our analysis 

revealed that VPA exposure per se did not affect both total cholesterol and HDL levels in plasma 

(Fig. 2a and 2b). Measurements in the liver, which is the metabolic power plant of lipid homeostasis 

(Trapani et al., 2012), showed a mild perturbation of proteins ensuring cholesterol homeostasis (Fig. 

2 c-d-e-f) and of cholesterol content (Fig. 2g) only in the VPA-exposed infant rats (PND 13), but no 

changes at older ages. Thus, prenatal VPA exposure altered hepatic cholesterol metabolism only 

transiently and left plasma levels unaffected. 

 

Analyses of cholesterol/isoprenoid homeostasis in different brain areas 

We next studied the protein network ensuring cholesterol/isoprenoid homeostasis in several brain 

areas (Amy, Cereb, Cortex, Hippo, Nac, and Str) that are known to be involved in autism (Dichter 

et al., 2010; Donovan and Basson, 2017; Reim et al., 2017; Wu et al., 2017) (Fig. 2). Firstly, 

HMGCR and LDLr protein levels were measured in each brain region, since they are key 

components of cellular cholesterol homeostasis. Prenatal VPA exposure reduced HMGCR levels in 

the Cortex and the Nac of infant and adolescent rats, respectively, whereas all other brain areas 

were unaffected (Fig. 3a). LDLr (Fig 3b) was significantly reduced in Nac at all ages tested, 

decreased in the Str of infant rats and enhanced in the Cortex of adult animals. The fact that 

HMGCR content appeared largely unaffected by VPA does not exclude changes in enzyme activity, 

which is controlled at the posttranslational level by phosphorylation. Therefore, we investigated 

next the phosphorylation status of HMGCR. Our data revealed that prenatal VPA induced region- 

and age-dependent changes in the ratio of P-HMGCR to total enzyme levels (Fig. 3c). The Cortex, 

for example, showed an age-dependent reversal of the VPA effect: whereas in young mice, the P-
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HMGCR/HMGCR ratio was reduced thereby increasing activity, adult mice showed the opposite 

effect. Interestingly, prenatal VPA exposure had the strongest impact on adolescent rats, where the 

ratio was altered in 5 out of 6 brain areas. To further explore these changes, we measured the 

activation state (phosphorylation) of AMPK, this kinase phosphorylates and thereby deactivates 

HMGCR. Our immunoblots revealed that VPA affected the phosphorylation state of AMPK in a 

manner that was highly correlated with the phosphorylation state of HMGCR (Fig 3d). These 

results suggested that VPA affected HMGCR activity via a signaling cascade involving AMPK 

rather than at the transcriptional level. This is further supported by the fact that changes in HMGCR 

and LDLr were not correlated, although the transcription of both components is controlled by a 

common transcription factor, the Sterol Regulatory Element Binding Protein 2 (SREBP2). To 

complete the picture, we also measured the levels of two lipoprotein receptors, LRP1 and SR-B1, 

which mediate the cellular trafficking of cholesterol which are not directly regulated by the 

SREBP2 pathway (Cartocci et al., 2016). Our data show that VPA affected LRP1 levels in each 

brain area tested, but with distinct age-dependent patterns. Whereas levels in Amy were enhanced 

in infant rats and decreased in adult mice, the levels in the cortex showed exactly the opposite 

changes (Fig. 4a). SR-B1 was altered in all areas in an age-dependent manner except for Cortex and 

the Nac (Fig. 4b). Together, these results indicated highly region- and age-specific effects of VPA 

on the different components of cholesterol/isoprenoid homeostasis. The good correlation between 

phosphorylation states of HMGCR and AMPK levels suggests that VPA induces AMPK-mediated 

changes in HMGCR activity in all regions of adolescent rats except for hippocampus. Among the 

lipoprotein receptors, LRP1 levels were particularly strongly affected by VPA in a region- and age-

dependent manner. 

 

Analyses of HMGCR products in brain regions of adolescent rats 

To test whether the VPA-induced alterations of HMGCR activity impacted the levels of its 

products, we analyzed cholesterol content in brain regions of adolescent rats using quantitative thin-

layer chromatography. As shown in Fig. 5a, we found that prenatal VPA exposure induced a 

significant reduction of cholesterol in the Hippo, but not in any other region tested. In parallel, we 

studied the impact of VPA on the levels of geranylgeranyl and farnesyl. As an indirect measure, we 

determined the levels of membrane-attached RhoA and Ras comparing them to the amount of the 

proteins in the total lysate. Post-translational attachment of geranylgeranyl and farnesyl residues to 

these proteins induces their transition to the plasma membrane. Prenatal VPA exposure strongly 

increased and decreased the level of membrane-attached RhoA (Fig. 5b) and Ras (Fig. 5c) in the 

Cereb and Nac, respectively. Moreover, the content of membrane-bound Ras was reduced in the 



11 
 

Str. Interestingly, the total protein content didn’t change except for the Nac in which an increase of 

the total RhoA and Ras was observed, probably due to a compensatory action of the tissue.  

 

Analyses of oligodendrocyte-mediated myelination in the hippocampus 

Prenatal VPA exposure markedly reduced the level of cholesterol in the hippocampus of adolescent 

rats. Since most cholesterol in the brain is contained in myelin, we studied next whether VPA 

reduced the myelin content in the Hippo using myelin basic protein (MBP) as marker. As shown in 

Fig. 6a, VPA reduced MBP levels. The reduction of myelin content could have several causes. 

Based on published evidence that VPA inhibits differentiation of oligodendrocytes (Shen et al., 

2008), we investigated the density of oligodendrocytes in the Hippo. Immunohistochemical staining 

for Olig2, an oligodendrocyte-specific transcription factor, revealed a VPA-induced reduction of 

Olig2 immunopositive (Olig2
+
) cells in the CA1 and CA2 areas of the Hippo (Fig. 6b, c and d) 

indicating that reduction of myelin is caused by a VPA-induced inhibition of oligodendrocyte 

formation. 

 

Discussion 

Our results reveal that prenatal exposure to VPA provokes long-lasting region- and age-specific 

changes in brain cholesterol/isoprenoid homeostasis and thereby support the hypothesis that 

autistic-like symptoms could be caused by alterations in cholesterol/isoprenoid metabolism in the 

brain (Wang, 2014; Cartocci et al., 2017). 

Our findings clearly underline that cholesterol homeostasis in the brain is vulnerable to 

pharmacologic manipulations. Whereas the hepatic cholesterol metabolism was only transiently 

perturbed by prenatal VPA exposure, the brain showed a wide array of changes that occurred 

immediately or with delays of several weeks, that differed among brain regions and that 

occasionally reverted within a given brain area. This complex reaction indicates, as previously 

suggested (Segatto et al., 2011; Segatto et al., 2013), that cholesterol/isoprenoid metabolism is 

differently regulated in brain areas and supports recent findings that prenatal VPA exposure 

provokes region-and gene-specific reactions (Lauber et al., 2016). These regional differences may 

be due to region-specific cellular composition namely the neuron/glia ratio, metabolic turnover and 

activity pattern. The levels of HMGCR and LDLr remained remarkably stable except for small 

changes that were surprisingly incongruent. Under normal conditions, both components are 

controlled by the SREBP2 pathway, which tightly regulates cholesterol levels in cells. In case of a 

deficit, HMGCR and LDLr are upregulated to increase synthesis and uptake. The divergent changes 

induced by VPA argue against a robust activation of the SREBP2 pathway and suggest that 
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different post-transcriptional regulation can be present, such as diverse mRNA stability as already 

demonstrated (Pallottini et al., 2006). 

Our study reveals that VPA affects the activation state of HMGCR as implied by changing levels of 

the phosphorylated form. In particular, during adolescence, prenatal VPA altered HMGCR activity 

in five out of six brain areas. This includes an increase in Cereb, Cortex, and Strand a decrease in 

Amy and Nac. No changes were observed in the Hippo. The strong correlation between HMGCR 

activation state and the AMPK phosphorylation indicate that VPA acts via the AMPK-dependent 

pathway on cholesterol/isoprenoid metabolism. This is in line with previous evidence that VPA 

activates the kinase (Avery and Bumpus, 2014);(Ji et al., 2015). However, in our experimental 

model AMPK was differently modulated in each brain area. Possible reasons are the involvement of 

other factors or regional differences in cell composition. In line with this observation we previously 

demonstrated that each brain area responds differently to the same stimulus: as an example, rat 

Hippo and Cortex differently react to estradiol stimulation regarding HMGCR and LDLr expression 

(Segatto et al., 2011). 

Our study revealed a strong impact of VPA on the membrane-associated fractions of Ras and RhoA 

and again, the direction of VPA-induced changes differed among brain regions. Their levels 

increased in the Cereb, but decreased in the Nac. In the case of the Cereb, it is likely that the change 

occurred in granule cells, as these cells represent the main cell type in this brain area. The 

functional impact of these changes remains unclear: small G proteins mediate a large number of 

cellular processes: an increase in prenylated Ras can impair long-term potentiation and has been 

associated with cognitive impairment (Hottman and Li, 2014; Mainberger et al., 2016). The 

increase in prenylated RhoA could alter proper neurite outgrowth and synaptic plasticity (Cartocci 

et al., 2016). Both proteins can be anchored at the membrane after posttranslational attachment of 

prenyl residues, whose availability is controlled by HMGCR activity. Moreover, prenylated 

proteins have important roles in neuronal development and plasticity (Homberg et al., 2016).Our 

analysis of adolescent rats revealed that prenatal VPA exposure decreased the cholesterol and 

myelin content in the Hippo, whereas HMGCR was not activated. This reduction was probably due 

to a reduced number of oligodendrocytes. This observation is in line with published evidence that 

VPA inhibits the differentiation of oligodendrocytes (Dehghan et al., 2016);(Pazhoohan et al., 

2014);(Ye et al., 2009). VPA is an inhibitor of Histone Deacetylases (HDACs), and it has been 

demonstrated that inhibition of HDACs decreases myelination and Schwann cell differentiation in 

the peripheral nervous system (Jacob et al., 2011); (Brugger et al., 2017), it might induce epigenetic 

(long lasting) reprogramming, influencing cell types such as oligodendrocytes that are not even 

born at the time of injection (Bianchi et al., 2012). Our results reveal selective effects in the CA1 
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and CA2 regions of the hippocampus explaining the decrease of cholesterol in the same areas 

(Caporali et al., 2016);(Berghoff et al., 2017). At present, we cannot exclude, however, that the 

cholesterol content of neurons was reduced as well. This could impair their development and 

function, in particular at the level of synapses as well as could impact on neuronal survival (Mauch 

et al., 2001, Shrivastava et al., 2010);(Saxena and Chattopadhyay, 2012);(Jafurulla et al., 2014). In 

this regard, in a recent paper, Wu and colleagues demonstrated that FTY720, an immunosuppressor 

used for treatment of multiple sclerosis, rescues VPA-induced autistic behavior exerting a direct 

protection of neuron survival (Wu et al., 2017). Very interestingly, this drug is also able to reduce 

cholesterol content in human fibroblasts as recently demonstrated by Newton and colleague 

(Newton et al., 2017), so suggesting that cholesterol modulation could be really involved in ASDs, 

but further studies on specific cellular types in specific brain areas should necessarily be performed. 

 

CONCLUSIONS 

Overall, our results demonstrate that brain cholesterol/isoprenoid metabolism is altered in a 

preclinical model of ASDs, and suggest that this alteration may impact the differentiation and 

function of neurons and oligodendrocytes. These findings set the basis for future studies to validate 

the implication of cholesterol/isoprenoid homeostasis in ASDs using different experimental models 

and to identify potential drug-based therapeutic approaches. 
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Figure 1. Behavioral tests in infant, adolescent, and adult rats prenatally exposed to VPA. 

Behavioral results obtained in infant rats (PND 9) tested in the isolation-induced USV test (a), in 

adolescent rats (PND 35) tested in the elevated plus-maze test (b-c), and in adolescent and adult 

(PND 90) rats tested in the three-chamber test (d-e). 

 

Figure 2. Peripheral cholesterol metabolism in infant, adolescent, and adult rats prenatally 

exposed to VPA. Levels of both plasma cholesterol and plasma HDL in infant, adolescent and adult 

rats respectively (a-b). The following four panels show the densitometric analysis (left) and a 

typical Western blots (right) of HMGCR phosphorylation state (c), and the protein levels of LDLr 

(d), LRP1 (e), and SR-B1 (f). The densitometric analysis of Western blot is expressed as fold of 

change of VPA treated versus SAL treated (1 value) rats. Panel g illustrates the densitometric 

analysis and a typical TLC of cholesterol contents in livers of infant (PND 13) rats. The data are 

expressed as means ± SD of the arbitrary units obtained analyzing bands (from Western blots or 

TLC, for details see the main text) using the software ImageJ. The densitometric analysis are the 

mean of the results obtained from 6 different animals performed in duplicate. b P<0.01 vs SAL, c 

P<0.001 vs SAL as from a Student’s t test. ***P<0.001 as from ANOVA followed by Tukey-

Kramer test (GraphPad Instat3; GraphPad, Inc., La Jolla, CA). 

Figure 3. Proteins involved in cholesterol/isoprenoid homeostasis in the brain of infant, 

adolescent, and adult rats prenatally exposed to VPA or SAL. Densitometric analysis (left) and 

typical Western blot (right) of total HMGCR (a), LDLr (b), HMGCR phosphorylation state (c) and 

AMPK phospholylation state (d) in indicated brain regions of infant (PND 13), adolescent (PND 

35) and adult (PND 90) rats prenatally exposed to VPA or SAL. Western blot analysis shows 

proteins levels in SAL and VPA rats,. The densitometric analysis of Western blot is expressed as 

fold of change of VPA treated versus SAL treated (1 value) rats. The data are expressed as means ± 

SD of the arbitrary units obtained analyzing bands (from Western blots, for details see the main 

text) using the software ImageJ. The densitometric analysis are the mean of the results obtained 

from 6 different animals performed in duplicate. a=P<0.05 vs SAL; b=P<0.01 vs SAL; c=P<0.001 

vs SAL as from a Student’s t test; *P<0.05 **P<0.01 ***P<0.001 as from ANOVA followed by 

Tukey-Kramer test (GraphPad Instat3; GraphPad, Inc., La Jolla, CA). 

Figure 4. Receptors involved in cholesterol/isoprenoid homeostasis in the brain of infant, 

adolescent and adult rats prenatally exposed to VPA or SAL. LRP1 (a) and SR-B1 (b) 

expression in indicated brain regions of infant (PND 13), adolescent (PND 35) and adult (PND 90) 



23 
 

rats prenatally exposed to VPA or SAL. Western blot analysis shows proteins levels in SAL and 

VPA rats. The densitometric analysis of Western blot is expressed as fold of change of VPA treated 

versus SAL treated (1 value) rats. The data are expressed as means ± SD of the arbitrary units 

obtained analyzing bands (from Western blots, for details see the main text) using the software 

ImageJ. The densitometric analysis are the mean of the results obtained from 6 different animals 

performed in duplicate. a=P<0.05 vs SAL; b=P<0.01 vs SAL; c=P<0.001 vs SAL as from a 

Student’s t test; ***P<0.001 as from ANOVA followed by Tukey-Kramer test (GraphPad Instat3; 

GraphPad, Inc., La Jolla, CA). 

Figure 5. Cholesterol and expression levels of membrane-bound Ras and RhoA in different 

brain areas of VPA- or SAL-exposed adolescent (PND 35) rats. Densitometric analysis (left) and 

a typical TLC (right) of cholesterol content  (a) in different brain areas of VPA- or SAL-exposed 

adolescent (PND 35) rats. The following panels show the densitometric analysis (left) and a typical 

Western blot (right) of RhoA total lysate and membrane content (b) and the Ras total lysate and 

membrane content (c) in indicated brain region of SAL and VPA exposed adolescent rats (PND 35). 

The densitometric analysis of Western blot is expressed as fold of change of VPA treated versus 

SAL treated (1 value) rats. For details see the main text. The data are expressed as means ± SD of 

the arbitrary units obtained analyzing the bands using the software ImageJ. The densitometric 

analysis are the mean of the results obtained from 6 different animals performed in duplicate. 

**P<0.01 and ***P<0.001 as from a Student’s t test vs SAL (1 value). 

Figure 6. MBP protein content and oligodendrocytes immunofluorescence in hippocampi of 

VPA- or SAL-exposed adolescent (PND 35) rats. Densitometric analysis (left) and a typical 

Western blot (right) of MBP content (a) in the hippocampus of VPA- or SAL-exposed adolescent 

rats (PND 35). For details see the main text. (b) Exemplifying photomicrograph of the entire 

hippocampus which shows the sub-regions analyzed (magnification 4X). (c) Representative 

fluorescent photomicrographs of Olig2 (red) staining performed in the stratum radiatum of CA1, 

CA2, CA3, and in the hilus of the DG regions of hippocampi of SAL- and VPA-exposed PND35 

rats (magnification 20X). (d) Cell count analysis expressed as Olig2
+
 cells/4×10

4
 µm

2
. Nuclei were 

stained with Hoechst (blue). The data are expressed as means ± SD for Western blot experiments, 

and means ± SEM for immunofluorescence experiments. Images were analyzed using the software 

ImageJ. The densitometric analyses are the mean of the results obtained from 6 different animals 

performed in duplicate. The cell count analysis is representative of three different experiments 

performed in quadruplicate. *P<0.05 vs SAL; **P<0.01 vs SAL as from a Student’s t test. 
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General	
  conclusions	
  and	
  outlook	
  
	
  

My experimental work demonstrated that the MVA pathway is differently active in each brain 

region in adult male rats, and emphasizes marked regional differences in the regulation of 

HMGCR and LDLR. In particular, the hippocampus followed by the brain cortex, exhibited 

vigorous isoprenoid metabolism, as indicated by the highest levels of HMGCR and LDLR 

protein expression. On the contrary, the MVA pathway seems to be nearly suppressed in the 

brain stem, because of the low HMGCR activation/protein levels and the very low LDLR 

expression (Segatto et al., 2012). The observed differences may be caused by the rate of 

cholesterol turnover, regional myelin content and the modulation of synaptic plasticity of each 

brain region. 

My studies reveal that the MVA pathway is subject to age- and sex-dependent modulation in 

each brain area. LDLR expression in the brain cortex is strongly decreased in aged female 

rats. The hormonal replacement with exogenous 17-β-estradiol highlighted that this alteration 

is related to the circulating levels of the sex hormone (Segatto et al., 2011). On the contrary, 

in the hippocampus, the age- and sex-dependent modulation of HMGCR and LDLR are 

completely independent from plasma estrogen levels (Segatto et al., 2013). The differences 

between adult male and female rats support the evidence of physiological sex-related 

dissimilarities among the brain areas (Lebron-Milad and Milad, 2012). They appear to 

achieve cholesterol homeostasis by different mechanisms as reported in other systems like the 

cardiovascular system (Pepine et al., 2006; Marino et al., 2011). Considering the strong 

divergences in the regional modulation of MVA metabolism shown by my work, it is clear 

that each brain area can be considered as a unique and independent structure with a specific 

cellular context responding in a specific way to the same stimuli (i.e., estrogens). Some of the 

observed differences should be taken into consideration in therapeutic practice, as they may 

have clinical relevance in terms of disease incidence, manifestation, prognosis and treatment, 

such as in Alzheimer disease (AD). For this disorder, the incidence is higher in female and 

seems to be related, at least in part, to cholesterol dysmetabolism (Snyder et al., 2016; Peng et 

al., 2016; Cartocci et al., 2017; Pike, 2017). 

My results also highlight a critical role of the MVA pathway in the modulation of behavior 

and cognition. Inhibition of HMGCR by simvastatin induces social anxiety-related behaviors 

and improves memory retention in rodents. The outcomes induced by the reduced HMGCR 

activity could be mediated, at least in part, by the specific prenylated proteins. It is well 

known that Rab3 carries out important physiological roles in neurotransmitter release at a late 
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step during the synaptic vesicle exocytosis (Geppert and Sudhof, 1998), and pathologic 

consequences of alterations in Rab3 activity have already been established. For instance, 

deregulation in Mss4 (mammalian suppressor of Sec4), a regulator of Rab3 activity, has been 

linked to impaired neurotransmitter release and to the appearance of neurodegenerative and 

psychological disorders in rodents such as depressive-like syndromes (Andriamampandry et 

al., 2002). Given the important role of the hippocampus and the prefrontal cortex in anxiety 

(Whitton and Curzon, 1990; Christianson et al., 2009), the observed decrease in the 

prenylated fraction of Rab3 in these brain regions may explain how modulation of the MVA 

pathway contributes to social anxiety-related behavior emerged in our study (Segatto et al., 

2014b). Besides the reduction in protein levels, MVA pathway may contribute to the 

consolidation of emotional memory by the modulation of prenylated proteins that are crucial 

for the induction and the maintenance of LTP. In particular, a strong and statistically 

significant decrease in the active fraction of RhoA occurs in the amygdala and the 

hippocampus of simvastatin-treated rats. Experiments performed on acutely isolated 

hippocampal neuron highlighted that perturbations in the fraction of active RhoA are 

accompanied by enhanced phosphorylation of Akt and by the subsequent rise in the CREB 

activation state: modulation of the RhoA signal transduction pathway could play a crucial role 

in cognitive performance, as CREB-dependent gene transcription appears to be an essential 

component of long-term memory (Silva et al., 1998). The biological relevance of my results is 

further supported by other studies showing a crucial role for prenylated proteins in the 

pathophysiology of cognitive dysfunction. Notably, it was observed that prenyl production is 

elevated in AD brains, suggesting that protein prenylation may be altered and may contribute 

to AD neuropathophysiology (Eckert et al., 2009). 

My finding that simvastatin promotes neurite elongation by preventing the activation of the 

negative regulator RhoA indicates that inhibition of the MVA pathway is fundamental for 

neurite outgrowth and for neuronal differentiation (Cartocci et al., 2016). The decreasing 

activity isoprenoid/cholesterol metabolic pathway during development is a physiological 

feature in differentiating neurons, and predicts that any interference with this metabolic 

pathway will alter neuronal function. In pathologic conditions caused by disturbed neuronal 

development, a deliberate modulation of the MVA pathway may help to improve the 

neurological and metabolic symptoms. I addressed this topic in a neurodevelopmental 

pathology characterized by altered emotional reactivity and memory, the Autism Spectrum 

Disorders (ASDs) using a well established VPA-exposed animal model (Servadio et al., 2015; 

Servadio et al., 2016). My studies revealed that the MVA pathway in the brain of male 



 

19	
  
	
  

exposed rats is altered indeed suggesting that modulation of the MVA pathway in these areas 

could contribute to this psychiatric disorder. The link between cholesterol homeostasis and 

psychiatric symptoms is further indicated by my observations that pharmacologic inhibition of 

HMGCR in the brain of adult rats altered their emotional reactivity and cognitive performance 

(Segatto et al., 2014b). Intriguingly, preliminary data from my laboratory reveal that the VPA-

induced modulation of the studied proteins is stronger in males than in females confirming the 

sex-dependent modulation of MVA pathway (Cartocci et al., in preparation). This observation 

could correlate to the sex-dependent incidence of ASDs since they are four times more 

common in boys than girls with a ratio of 4:1 (Vijayakumar and Judy, 2016; Halladay et al., 

2016). 

Taken together, my studies provide new insights in the physiology and pathophysiology of the 

MVA pathway in the brain. They demonstrate that this metabolic process is expressed and 

modulated in a highly region-dependent manner and that age and sex induce physiological 

differences. Notably, the impact of the MVA pathway on behavior and neuronal development 

together with its modulation in the experimental model of autism suggest that different 

proteins and enzymatic products of the MVA pathway may be considered as potential 

molecular targets when designing novel therapeutic approaches for the treatment of 

neurodevelopmental disorders.  

A major question rises by my results: which kind of cell does contribute to the observed 

changes in the MVA pathway? Therefore, a next goal should be to evaluate cell-specific 

changes in MVA pathway homeostasis. This will reveal which cell types (neurons and non-

neuronal glial cells) contribute to the observed physiological modulation and reveal their 

respective role in the studied phenomena. Furthermore, the putative therapeutic interventions 

in neurological disease should be tailored to specific cells. A main obstacle to address this 

topic is the lack of in vivo experimental approaches to monitor the activity of the MVA 

pathway in a cell-specific manner. Knockout mice cannot provide answers because they die 

embryonically (Tozawa et al., 1999). A solution could be based on immunohistochemical 

analyses revealing cell-specific levels of enzymes, although this will not reveal their activity. 

Another possibility could be to acutely isolate cells from the different brain areas in all the 

experimental models I used, and although the amounts of the cells are limited, the analyses 

could reveal the cell-specific impact on brain physiopathology. These considerations 

demonstrate that further preclinical studies on animal experimental models should be 

performed to better understand whether modulation of MVA pathway in the brain could be a 

potential pharmacological target to treat CNS diseases. So, I strongly feel that advances on 
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cholesterol/isoprenoid metabolism in the brain and its implications in neurologic diseases 

require radically new and innovative approaches that allow to follow the pathway activities in 

a more detailed and specific manner.  
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