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Abstract 

 
Midbrain dopaminergic (DA) neurons play several key functions in the brain such as the 

processing of salient information but are also associated with the emergence of pathologies including 

Parkinson’s disease and drug addiction. Because these processes have in common to modify the firing 

activity of midbrain DA neurons, it is of crucial importance to understand the mechanisms underlying 

this activity. Among the various ions channels and receptors involved in the generation of the firing 

activity of midbrain DA neurons, glutamate N-methyl-D-aspartate receptors (NMDAR) and calcium-

dependent potassium SK channels strongly modulate the firing pattern and functionally interact in 

several neuronal types including DA neurons. However, the mechanisms by which they regulate the 

firing pattern are poorly understood. Since the functional coupling between NMDAR and SK channels 

depends on their relative membrane distribution, we hypothesized that the lateral diffusion of 

NMDAR, which regulates the surface localization of the receptor, could play a role in the firing pattern 

of midbrain DA neurons through the modulation of SK channel function. We showed first that 

membrane NMDAR was highly mobile in cultured DA neurons. Alteration of its surface trafficking by a 

crosslink with NMDAR antibodies profoundly modified the regularity of the firing pattern of DA 

neurons in midbrain slices, whereas pharmacological blockade of NMDAR did not affect it. 

Furthermore, a SK channel blocker, which induces a similar change in the firing regularity in control 

conditions, was less effective when NMDAR surface trafficking was altered. Taken together, these 

results demonstrate that NMDAR surface dynamics modulate the firing pattern of midbrain DA 

neurons by regulating SK channel function. 
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Résumé 

 
Les neurones dopaminergiques (DA) mésencéphaliques jouent un rôle prépondérant dans de 

nombreuses fonctions cérébrales telles que la motivation, mais ils sont également impliqués dans 

l’émergence de pathologies telles que la maladie de Parkinson et l’addiction aux drogues. Ces 

processus ayant en commun de modifier l’activité de décharge des neurones DA mésencéphaliques, il 

est d’une importance primordiale de comprendre les mécanismes sous-tendant cette activité. Parmi 

les différents canaux ioniques et récepteurs impliqués dans la génération de l’activité de décharge des 

neurones DA, les récepteurs au glutamate de type N-Methyl-D-Aspartate (NMDAR) et les canaux 

potassiques calcium-dépendants SK régulent fortement le patron de décharge, et interagissent 

fonctionnellement dans divers types neuronaux incluant les neurones DA. Cependant, les mécanismes 

mis en jeu dans cette régulation restent méconnus. Le couplage fonctionnel des NMDAR et des canaux 

SK dépendant notamment de leur distribution membranaire relative, nous avons émis l’hypothèse que 

la diffusion latérale des NMDAR, processus qui régule la localisation de surface du récepteur, pouvait 

jouer un rôle dans le patron de décharge des neurones DA via la modulation de la fonction des canaux 

SK. Nous avons tout d’abord montré que les NMDAR membranaires étaient mobiles dans les neurones 

DA en culture. L’altération de leur trafic de surface par immobilisation avec des anticorps anti-NMDAR 

modifie profondément la régularité du patron de décharge des neurones DA issus de tranches aigües 

de mésencéphale, alors que le blocage pharmacologique des NMDAR est sans effet. De plus, j’ai mis 

en évidence qu’un bloqueur des canaux SK, l’apamine, qui induit un changement similaire de la 

régularité du patron de décharge en condition contrôle, était moins efficace lorsque la mobilité latérale 

des NMDAR était altérée. Ainsi, ces résultats démontrent que la dynamique de surface des NMDAR 

module le patron de décharge des neurones DA en régulant la fonction des canaux SK. 

 

 

 

 

 

Mots-clés: récepteurs au glutamate de type NMDA, dynamique de surface, dopamine, patron de 

décharge, crosslink, électrophysiologie 

 



 

 

Résumé long 
 

Les neurones dopaminergiques (DA) mésencéphaliques, principalement localisés au sein de la 

substance noire compacte (SNc) et de l’aire tegmentale ventrale (VTA), jouent un rôle prépondérant 

dans de nombreuses fonctions physiologiques telles que la recherche de récompense ou la motivation, 

tandis que des altérations de ce système sont impliquées dans l’émergence de maladies 

neuropsychiatriques, parmi lesquelles figurent la maladie de Parkinson et la schizophrénie. De façon 

remarquable, la plupart de ces processus est associée à des modifications de l’activité de décharge des 

neurones DA mésencéphaliques. Ainsi, la compréhension des mécanismes à l’origine de la décharge 

des neurones DA revêt une importante capitale. Parmi les canaux ioniques et les récepteurs aux 

neurotransmetteurs responsables de la génération de cette activité, les récepteurs au glutamate de 

type N-Methyl-D-Aspartate (NMDAR) et les canaux potassiques calcium-dépendants SK modulent 

fortement le patron de décharge des neurones DA. En effet, l’activation des NMDAR et le blocage des 

canaux SK par des approches pharmacologiques favorisent l’apparition de bouffées de potentiels 

d’action in vivo et in vitro. De plus, les NMDAR et les canaux SK interagissent de façon fonctionnelle 

dans divers types neuronaux incluant les neurones DA, et sont situés à proximité l’un de l’autre au sein 

de la membrane plasmique. Cependant, les mécanismes moléculaires mis en jeu dans cette régulation 

restent méconnus. Le développement de techniques d’imagerie à haute résolution a mis en évidence 

que les NMDAR étaient mobiles au sein de la membrane neuronale, et qu’un tel phénomène régulait 

la localisation des NMDAR à la surface des neurones. Sachant que le couplage fonctionnel entre les 

NMDAR et les canaux SK dépend notamment de leur distribution membranaire relative, j’ai émis 

l’hypothèse que la dynamique de surface des NMDAR pouvait jouer un rôle dans l’activité de décharge 

des neurones DA mésencéphaliques, via la modulation de la fonction des canaux SK.  

 Dans un premier temps, l’objectif était de caractériser la mobilité latérale des NMDAR dans 

des neurones DA car celle-ci n’a été étudiée que dans des neurones d’hippocampe. Pour cela, j’ai utilisé 

des techniques d’imagerie de suivi de particules uniques pour suivre la diffusion des NMDAR 

membranaires en temps réel sur des neurones DA mésencéphaliques en culture issus de souris 

Tyrosine Hydroxylase (TH)-tdTomato. La culture mésencéphalique n’étant pas uniquement composée 

de neurones DA, ces souris permettent d’identifier ces neurones par la présence de la protéine 

fluorescente tdTomato car elles expriment la protéine tdTomato sous le contrôle du promoteur de la 

TH, qui est l’enzyme de synthèse de la DA. Ainsi, j’ai pu mettre en évidence que les NMDAR étaient 

hautement mobiles à la surface des neurones DA, dû en partie à la faible proportion de NMDAR 

immobiles. De plus, j’ai caractérisé la diffusion membranaire des NMDAR dans des neurones DA 

humains issus de cellules souches. L’analyse des trajectoires des NMDAR sur ces neurones a révélé que 



 

 

les NMDAR étaient aussi fortement mobiles dans les neurones DA issus de cellules humaines. 

Contrairement à la situation in vivo où les neurones DA sont présents au sein d’un tissu neuronal très 

dense et sont contactés par de multiples afférences glutamatergiques, les neurones DA en culture sont 

plus isolés et reçoivent très peu d’afférences excitatrices puisque la culture primaire mésencéphalique 

est majoritairement composé de neurones DA et Gamma-AminoButyric Acid (GABA)-ergiques. Pour 

étudier la dynamique de surface des NMDAR dans des préparations neuronales plus intégrées et/ou 

sous l’influence d’afférences glutamatergiques excitatrices, j’ai mis en place plusieurs stratégies. La 

première consistait à exprimer in vivo des récepteurs NMDAR  « taggés » dans les neurones DA par 

électroporation in utero afin de suivre la diffusion de ces NMDAR exogènes sur des tranches aigües de 

mésencéphale grâce à des techniques d’imagerie de suivi de particules uniques. Bien que cette 

approche développée dans le laboratoire ait permis de suivre la diffusion de récepteurs membranaires 

dans des neurones hippocampiques, il n’a pas été possible d’adapter l’électroporation in utero au 

mésencéphale en raison de contraintes techniques. Une seconde stratégie envisagée était d’estimer 

la diffusion de surface des NMDAR grâce à des approches d’électrophysiologie combinées à l’utilisation 

du bloqueur MK-801 des NMDAR. Cette technique, développée par Tovar et Westbrook dans des 

cultures hippocampiques, utilise la propriété du MK-801 de ne bloquer que les NMDAR activés en 

raison de son site de liaison localisé au niveau du pore du récepteur. Ainsi, après le blocage des NMDAR 

synaptiques par stimulation synaptique en présence de MK-801, les auteurs ont noté qu’une 

récupération des courants synaptiques dépendants des NMDAR (NMDAR-EPSC) avait lieu lors du 

rinçage de la drogue. Curieusement, cette récupération était absente lorsque la totalité des NMDAR 

membranaires  (synaptiques et extrasynaptiques) étaient bloqués par l’application conjointe de NMDA 

et de MK-801. Le MK-801 se liant de façon irréversible aux NMDAR, les auteurs en ont conclu que la 

récupération observée après le blocage des NMDAR synaptiques provenait du recrutement des 

NMDAR extrasynaptiques à la synapse. Cette approche permettant d’estimer la population mobile de 

NMDAR par la récupération des NMDAR-EPSC, j’ai voulu la tester sur des neurones DA de la VTA en 

tranches aigües. A la différence des neurones hippocampiques en culture où la stimulation synaptique 

en présence de MK-801 induit la suppression quasi-totale des NMDAR-EPSC en quelques minutes (3-4 

minutes), la cinétique de blocage est beaucoup plus lente sur les neurones DA, n’atteignant que 50% 

d’inhibition après 15-20 minutes de rinçage. Or il est nécessaire d’obtenir une diminution nette et 

rapide des NMDAR-EPSC pour pouvoir observer la récupération des NMDAR-EPSC. En effet, dans le cas 

d’un blocage lent des NMDAR-EPSC, il est possible qu’une récupération des courants se fasse en même 

temps que le blocage, masquant ainsi le phénomène de récupération. Augmenter la concentration de 

MK-801 ou changer le protocole de stimulation synaptique (double pulse de stimulation au lieu d’un 

seul) ne modifiant pas la cinétique de blocage des NMDAR-EPSC, cette méthode ne peut pas être 

utilisée pour estimer la dynamique de surface des NMDAR dans des neurones DA en tranches. En 



 

 

parallèle de ces approches menées sur des tranches aigües de cerveau, j’ai également mis en place des 

co-cultures de mésencéphale et de cortex pour recréer un système in vitro dans lequel les neurones 

DA reçoivent des informations excitatrices corticales, et pourvoir suivre la dynamique des NMDAR dans 

les neurones DA dans ces conditions. Pour cela, des neurones de mésencéphale et de cortex ont été 

mis en culture dans des chambres microfuidiques permettant de séparer les deux populations 

neuronales. Ces deux chambres étant reliés par des micro-canaux très fins, seules les projections 

neuronales peuvent traverser ces micro-canaux pour rejoindre les chambres. Alors que ce système a 

été développé avec succès avec des cultures embryonnaires de mésencéphale et de cortex, il n’a pas 

été possible de maintenir viables des cultures postnatales de mésencéphales issus des souris TH-

tdTomato, condition nécessaire pour pouvoir identifier les neurones DA en culture et suivre la 

dynamique des NMDAR de surface.  

En parallèle, j’ai testé l’impact de l’activation des NMDAR sur l’activité de décharge des neurones DA 

dans des tranches aigües de mésencéphale. Pour cela, j’ai enregistré l’activité de décharge des 

neurones DA en tranches par la technique de patch clamp en configuration cellule-attachée, en 

réponse à l’application de NMDA. Alors que l’activité basale des neurones DA en tranches est 

caractérisée par une décharge régulière de potentiels d’action, la présence de NMDA en augmente la 

fréquence et l’irrégularité. De façon remarquable, la présence de NMDA active les NMDAR mais aussi 

modifie la dynamique de surface des récepteurs, suggérant ainsi que l’un et/ou l’autre de ces 

paramètres pouvait être responsable des effets observés sur le patron de décharge. Cependant, le 

blocage des NMDAR par des agents pharmacologiques tels que le MK-801, ou l’antagoniste compétitif 

D-APV ne modifie pas l’activité de décharge des neurones. Aux vues de ces données, l‘activation basale 

des NMDAR semble peu impliquée dans le patron de décharge spontané des neurones DA en tranches, 

ouvrant la possibilité que la dynamique de surface des NMDAR joue un rôle dans l’activité de décharge 

des neurones DA. 

 

  Dans un second temps, j’ai testé cette hypothèse en modulant de façon expérimentale la 

dynamique de surface des NMDAR par un protocole de crosslink précédemment développé dans le 

laboratoire. Ce protocole, reposant sur l’incubation des neurones avec des anticorps anti-NMDAR 

dirigés contre un épitope extracellulaire de la sous-unité GluN1 des NMDAR, immobilise les NMDAR 

membranaires sans en altérer leur fonction ; et a été utilisé avec succès in vitro et in vivo dans des 

neurones hippocampiques. De façon similaire, j’ai démontré que ce protocole réduit drastiquement la 

diffusion des NMDAR dans des neurones DA de souris et dérivés de cellules humaines en culture. De 

façon remarquable, l’injection in vivo d’anticorps anti NMDAR dans le mésencéphale n’altère pas la 

fonction des NMDAR synaptiques dans les neurones DA par rapport à la condition contrôle où des 

anticorps non spécifiques sont injectés. De plus, le mésencéphale et en particulier la VTA étant aussi 



 

 

composée de neurones GABAergiques qui contactent les neurones DA, il est possible que le crosslink 

affecte les neurones GABAergiques, qui en retour, modifient la décharge des neurones DA. J’ai donc 

vérifié que le crosslink ne modifiait pas l’activité des neurones GABAergiques en enregistrant et en 

comparant les courants spontanés GABAergiques sur des neurones DA issus de rats injectés par des 

anticorps anti NMDAR ou des anticorps non spécifiques. Aucune différence de cinétique et d’amplitude 

des courants n’étant noté, cela indique que le protocole de crosslink ne modifie pas la transmission 

GABAergique sur les neurones DA. Une fois ces vérifications faites, j’ai testé l’effet du crosslink sur 

l’activité de décharge des neurones DA en tranches. L’injection d’anticorps anti-NMDAR diminue la 

fréquence de décharge et augmente l’irrégularité de la décharge de ces neurones par rapport à la 

condition contrôle. De façon remarquable, il a été reporté dans la littérature qu’une modification de 

l’activité des canaux potassiques SK calcium-dépendants par l’application du bloqueur apamine, ou 

l’expression d’un mutant inactif des canaux potassiques SK augmentait de façon similaire l’irrégularité 

de la décharge spontanée des neurones DA sur des tranches aigües de mésencéphale. Ceci suggère 

que l’effet induit par le protocole de crosslink résulte d’une modification des canaux SK. Ces canaux 

nécessitant une entrée de calcium pour être activés, ils sont couplés fonctionnellement avec des 

sources calciques, notamment les NMDAR. Etant donné qu’un tel couplage requiert une proximité 

entre les canaux SK et leurs sources calciques, l’altération de la dynamique membranaire des NMDAR 

pourrait affecter le couplage fonctionnel avec les canaux SK, entrainant ainsi une diminution de 

fonction de ces canaux et une augmentation de l’irrégularité de décharge. Avant de vérifier cette 

hypothèse, j’ai tout d’abord testé l’effet du blocage pharmacologique des canaux SK par l’apamine sur 

la décharge des neurones DA. Comme reporté dans la littérature, le blocage de ces canaux induit une 

irrégularité de la décharge neuronale. Si la modification de la dynamique membranaire des NMDAR 

par le protocole de crosslink diminue la fonction des canaux SK, l’effet de l’apamine devrait être 

moindre qu’en condition contrôle. Pour cela, j’ai comparé l’effet de l’apamine sur la décharge des 

neurones DA issus de rats injectés avec le crosslink ou des anticorps non spécifiques. Comme prédit, la 

présence d’apamine induit une augmentation de l’irrégularité de 300% en condition contrôle et de 

seulement 190% en condition crosslink. En accord avec ces résultats, le nombre de neurones 

répondant à l’apamine est diminué en condition crosslink, indiquant ainsi que les canaux SK sont 

altérés lorsque la dynamique des NMDAR est modifiée. De façon intéressante, le contenu total des 

sous-unités SK3, l’isoforme prédominant des canaux SK dans les neurones DA, est inchangé en 

condition contrôle. Ainsi, ces résultats suggèrent que la diminution de l’effet de l’apamine en condition 

crosslink n’est pas due à une internalisation et une dégradation du canal mais à une perte de sa 

fonction.  



 

 

 Ce projet de thèse avait pour but de tester l’hypothèse innovante selon laquelle la dynamique 

membranaire des NMDAR pouvait moduler le patron de décharge des neurones DA 

mésencéphaliques. J’ai ainsi pu démontrer que d’une part, les NMDAR étaient hautement mobiles au 

sein de la membrane plasmique des neurones DA en culture, et d’autre part, que l’altération de cette 

mobilité modulait le patron de décharge des neurones DA en tranches par une diminution de la 

fonction des canaux potassiques calcium-dépendants SK. Ainsi, ces travaux ouvrent un nouveau regard 

sur les mécanismes de régulation de l’activité neuronale, et suggèrent que la dynamique des 

récepteurs et/ou canaux joue un rôle à part entière dans cette régulation.  
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INTRODUCTION 

 

I. The dopaminergic system in the brain 

 

1. Role of midbrain DA neurons  

 

The brain is composed of several areas connected to each other to evoke suitable behaviors. 

Communication between neurons is possible through the release of neurotransmitters and their 

capture by receptors in specific junction areas called synapses. Among these neurotransmitters, a lot 

of attention has been focused on dopamine (DA) given its involvement in fundamental physiological 

functions and neuropsychiatric disorders. The presence of DA was suggested in 1951, when Raab and 

Gigee found a catecholamine in several brain structures that was neither noradrenaline nor adrenaline 

(Raab and Gigee, 1951). Few years later, Montagu confirmed by paper chromatography the presence 

of DA in brains of several species (Montagu, 1957). The first visualization of catecholamines, including 

dopamine, was allowed by Falck and Hillarp in 1962 with the development of a formaldehyde-based 

histofluorescence method (Falck et al., 1982). Although this method was successfully used to unravel 

the catecholamines circuit, it requires special equipment, and thus was replaced by 

immunohistochemistry against tyrosine hydroxylase (DA-synthesis enzyme). Besides being more 

accessible for most laboratories, immunohistochemistry enabled to distinguish DA (positive for TH) 

from noradrenergic and adrenergic systems (positive for TH and dopamine beta-hydroxylase, the 

synthesis enzyme of the noradrenaline) and thus, helped to map more accurately the DA circuit in the 

brain.  

 

a) Midbrain DA pathways  

 

The main source of dopamine comes from three neuronal groups located in the midbrain: the 

retrorubral area (A8), the substantia nigra pars compacta (SNc; A9) and the ventral tegmental area 

(VTA; A10)  (Fallon and Moore, 1978). SNc DA neurons mainly project to the dorsal part of the striatum 

(caudate nucleus and putamen) forming the nigrostriatal pathway (Figure 1) (Ungerstedt, 1971; 
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Beckstead et al., 1979; Loughlin and Fallon, 1984). By innervating the cortex and the ventral striatum 

(nucleus accumbens), the VTA is involved in the meso-cortical and the meso-limbic pathways, 

respectively (Figure 1) (Beckstead et al., 1979; Swanson, 1982). In return, midbrain DA neurons receive 

inputs from the cortex, the basal ganglia and the brainstem (Watabe-Uchida et al., 2012). In particular, 

SNc DA neurons integrate inputs from somatosensory and motor cortices, the subthalamic nucleus 

and the globus pallidus (Watabe-Uchida et al., 2012). VTA DA neurons receive glutamatergic inputs 

from various structures including the prefrontal cortex (Sesack and Pickel, 1992), the bed nucleus of 

the stria terminalis (Georges and Aston-Jones, 2001), the pedunculopontine tegmental nucleus 

(Floresco et al., 2003), the laterodorsal tegmental nucleus (Omelchenko and Sesack, 2005) and the 

dorsal raphe nucleus (Beier et al., 2015). It also receives inhibitory information from the lateral 

hypothalamus, the ventral pallidum and the rostromedial mesopontine tegmental nucleus (Morales 

and Margolis, 2017). Within the midbrain and especially the VTA, GABAergic (GABA : gamma-

aminobutyric acid) and glutamatergic neurons are also present and modulate the neighboring DA 

neurons (Johnson and North, 1992; Omelchenko and Sesack, 2009; Dobi et al., 2010). Given the wide 

heterogeneity of the connections of the midbrain DA neurons, they have been extensively studied to 

unravel their functions in physiological and pathological conditions.  

 

Figure 1. Schematic representation of the principal dopaminergic pathways in an human brain, in a 

sagittal view. SNc DA neurons mainly project to the dorsal part of the striatum, forming the nigro-striatal 

pathway. As VTA DA neurons contact the cortex and the ventral part of the striatum (nucleus accumbens), they 

belong to the meso-cortical and the meso-limbic pathways respectively. 
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b) Action on DA receptors 

 

DA is synthetized in the cell body and transported into vesicles along the axons. When the 

vesicles release DA in synaptic clefts, it binds to dopamine receptors (DAR) located in the membrane 

of post synaptic neurons. Besides its classical release of neurotransmitters by axons, DA neurons also 

release locally DA from somato-dendritic regions, which act on presynaptic DA auto-receptors (Groves 

et al., 1975; Jaffe et al., 1998). DAR are G-protein-coupled receptors and have been classified into two 

families regarding the nature of the G proteins. D1-like family, composed of D1 and D5 receptors, is 

coupled to Gs protein that activates the adenylate cyclase and thus, stimulates cyclic adenosine 

monophosphate (AMP) production (Missale et al., 1998; Beaulieu and Gainetdinov, 2011). By contrast, 

D2, D3 and D4 receptors, which belong to the D2-like family, are coupled to Gi protein. This latter 

decreases the concentration of cyclic AMP by inhibiting the adenylate cyclase (Missale et al., 1998; 

Beaulieu and Gainetdinov, 2011). Because Gs and Gi proteins differentially regulate the level of second 

messengers such as cyclic AMP, different molecular cascades and protein kinases are triggered 

following the activation of D1 or D2-like family. For example, the production of cyclic AMP induced by 

the activation of D1-like receptors activates the phosphokinase A and DARPP-32, which in turn 

modulate the glutamate AMPA and NMDA receptors (Greengard, 2001). DA auto-receptors, which 

comprised D2R localized in the somato-dendritic and axonal compartments of DA neurons (Sesack et 

al., 1994), are coupled to Gi proteins and inhibit neurotransmitter release by modulating potassium 

channels (Congar et al., 2002). Therefore, the activation of DAR triggers a variety of intracellular 

signaling cascades that modulate the fast synaptic transmission, and enables to exert various brain 

functions. 

 

c) Role of midbrain DA in physiological and pathological conditions 

 

Role in the control of voluntary movements and Parkinson’s disease 

One of the main roles of DA is their involvement in the control of voluntary movements and 

Parkinson’s disease (PD) through the nigrostriatal pathway. PD is a degenerative disorder associated 

with dopaminergic cell loss in the SN, causing symptoms such as bradykinesia (slowness of movement), 

rigidity and loss of posture (Bernheimer et al., 1973). In the 60’s, Carlsson and Sano used 

chromatography to quantify DA content in various tissues and found that DA was present in the brain 

(Carlsson et al., 1958) and especially enriched in the striatum (Sano et al., 1959). Because the striatum 

belongs to the extrapyramidal system, it was first hypothesized that DA could be involved in the control 

of movements. Relying on this study, Hornykiewicz studied the DA content of PD patients’ brains and 

noticed a decrease in the nigral and striatal DA levels (Hornykiewicz, 2006), suggesting that the cell 
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loss in SNc could cause the deficit in striatal DA in PD. Since this discovery, following studies have 

confirmed the role of the nigrostriatal DA pathway in the control of voluntary movements and in PD. 

For example, PET (position emission tomography) studies in healthy volunteers using a radio ligand 

binding to DAR revealed that a sequential finger movements elicits the release of DA in the striatum, 

pointing out the role of this pathway in the control of voluntary movement (Goerendt et al., 2003). In 

mice trained to press a lever to earn a reward, Jin et al. reported that DA neurons from the nigrostriatal 

pathway increased their firing before level pressing (Jin and Costa, 2010), indicating that these neurons 

signal the initiation of a specific learned action sequence and further supporting their involvement in 

the control of movements. Regarding their implication in PD, there is a well-documented and abundant 

literature investigating the factors involved in the vulnerability and degeneration of SNc DA neurons 

(Olanow and Tatton, 1999; González-Hernández, 2010; Surmeier et al., 2010; Dragicevic et al., 2015).  

 

Role in the coding of reward and salient information 

Midbrain DA neurons are also implicated in the reward system, which is a group of different 

neuronal structures responsible for pleasure (positive emotional state) and motivation (voluntary 

behavior). The pioneering study of Schultz et al. showed that midbrain DA neurons were phasically 

activated when a natural reward such as fruit juice droplet was given to monkeys (Schultz, 1999). A 

neutral stimulus could also induce activation of DA neurons if it was previously associated with the 

delivery of reward (Ljungberg et al., 1992), and confirmed the role of  midbrain DA neurons in reward-

related events. Interestingly, a novel stimulus non-associated with a reward such as door opening can 

also elicit activation of these neurons (Ljungberg et al., 1992), suggesting a more general role of 

midbrain DA neurons in encoding behavioral relevant stimuli. This hypothesis, along which DA neurons 

would code not only for reward-related events but also for salient information, was further supported 

by more recent studies. Li et al. showed that a form of long-term synaptic plasticity was facilitated in 

the hippocampus when the rat was previously exposed to novelty but prevented by direct infusion of 

DAR antagonists in the hippocampus (Li et al., 2003). This implies that novelty stimulus is sufficient to 

stimulate DA neurons and its release in the hippocampus. Surprisingly, Brischoux et al. discovered that 

a subgroup of neurons located in the ventral part of the VTA from anesthetized rats was excited by 

noxious stimuli (footshocks) (Brischoux et al., 2009). By discovering that DA neurons might also fire in 

response to unpleasant events, these data raise the following question : how can DA neurons fire and 

code for both reward delivery and aversive experiences ? To address this question, Lammel et al.  took 

advantage of the recent advancements of optogenetics to selectively activate two DA VTA neuronal 

subpopulations innervating two different areas (Lammel et al., 2012). They found that, depending on 

the innervated areas, some DA subpopulations responded to either reward or aversive-related events. 
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Therefore, midbrain DA neurons form a complex and heterogeneous center, and are essential to sense 

and respond to behaviorally relevant situations, be they pleasant or unpleasant.  

 

Role in drug abuse and addiction 

Functional alterations of midbrain DA neurons have been observed in various pathologies 

including addiction to drugs of abuse, which is characterized by a loss of control of intake of a particular 

substance. Acute and chronic administration of cocaine increases extracellular DA level in the striatum 

of rats (Di Chiara and Imperato, 1988; Pettit and Justice, 1989) and is associated with changes in the 

firing activity of VTA DA neurons (Einhorn et al., 1988; Henry et al., 1989). On the cellular level, acute 

administration of cocaine induced a form of plasticity of excitatory glutamatergic synapses specifically 

on VTA DA neurons in mice (Bellone and Lüscher, 2006; Bellone et al., 2011) and not on neighboring 

VTA GABAergic neurons (Ungless et al., 2001), highlighting the central role of VTA DA neurons in 

cocaine-mediated alterations (Koob and Bloom, 1988). Interestingly, other drugs of abuse such as 

ethanol and opioids also affect midbrain DA neurons. In particular, they modify the extracellular 

striatal DA concentration (Rada et al., 1991; Wozniak et al., 1991; Weiss et al., 1993), the firing activity 

of VTA DA neurons (Matthews and German, 1984; Mereu et al., 1984), and induce synaptic plasticity 

of excitatory synapses on these neurons (Saal et al., 2003). In addition, withdrawal from drug exposure 

is also characterized by a change in the spontaneous firing activity of midbrain DA neurons (Diana et 

al., 1998). In view of these data, VTA DA neurons appear as one of the major targets of drugs of abuse 

and undergo molecular adaptations in response to drug exposure and other aspects of addiction such 

as withdrawal.  

 

Role in schizophrenia 

Besides its role in addiction, Carlsson and colleagues suggested a link between DA and 

schizophrenia since the 1970’s (Carlsson, 1977). Schizophrenia is a mental disorder characterized by 

hallucinations or thought disorders (positive symptoms), reduction of pleasure and motivation 

(negative symptoms) and cognitive dysfunctions. Pioneering studies have discovered that various 

neuroleptics (reserpine, chlorpromazine and haloperidol), used to treat schizophrenic patients 

(Hollister et al., 1955; Davis, 1965), increased the turnover of catecholamines (Bertler, 1961; Carlsson 

and Lindqvist, 1963; Andén et al., 1972). The development of radioactive 3H-DA and 3H-Haloperidol 

binding to DAR demonstrated that the neuroleptics compete with the radioligands for the same 

binding sites, mainly located in the striatum (Creese et al., 1975). Then, it was inferred that 

neuroleptics attenuated psychosis by interfering with DAR. On the behavioral level, local application 

of DAR agonists in the striatum induced alteration in the sensorimotor gating in rats (Wan and 

Swerdlow, 1993), which is one of the well-documented symptoms of schizophrenic patients (Braff et 



6 

 

al., 1978). Moreover, immunohistochemical studies performed on post mortem schizophrenic patients 

brains revealed a decrease of dopaminergic innervation in the prefrontal cortex (Akil et al., 1999). 

Therefore, it was hypothesized that the symptoms of schizophrenia came from a DA imbalance 

between different brain areas, with an hypodopaminergia in the prefrontal cortex resulting in negative 

symptoms and an hyperdopaminergia in the striatum responsible for the positive symptoms (Howes 

and Kapur, 2009). Although the etiology of the pathology is not fully understood and involves other 

neurotransmitters such as glutamate (Brisch, 2014), DA alterations remain a hallmark of schizophrenia. 

 

In conclusion, by innervating the dorsal and ventral parts of striatum and cortex, DA neurons 

are essential to multiple physiological functions, such as the coding of salient information or motor 

control. As a consequence, alterations of this system are associated with the emergence of different 

pathologies including PD, drug addiction and schizophrenia. 

 

 

 2. Electrical activity of midbrain DA neurons 

 

a) Electrophysiological identification of DA neurons 

 

Given the wide range of behavioral functions involving the midbrain DA system, a lot of efforts 

have been put to understand the physiology of DA neurons, by electrophysiological approaches 

conducted in in vivo and in vitro preparations. However, the presence of other neuronal types in the 

midbrain made their study challenging. Quantifications based on TH-immunohistochemistry estimated 

that DA neurons represent between 55% and 75% of the neurons in the VTA (Swanson, 1982; Margolis 

et al., 2006), and almost 90% in the SNc (Margolis et al., 2006). The great majority of the non-DA 

neurons were classified as GABAergic, since they were identified by immunohistochemistry against 

GABA (Van Bockstaele and Pickel, 1995) or GABA-transaminase (the GABA-metabolizing enzyme) 

(Nagai et al., 1983) and more recently, by in situ hybridization for glutamid acid decarboxylase (the 

GABA-synthesis enzyme) (Nair-Roberts et al., 2008). Using the same technique for the vesicular 

glutamate transporter VgluT2, several studies reported the presence of a weak proportion (2-3%) of 

glutamate neurons in the VTA (Yamaguchi et al., 2007; Nair-Roberts et al., 2008). Thus, scientists have 

established several electrophysiological and pharmacological criteria to identify DA neurons in vivo 

and in vitro (Figure 2). Compared to GABAergic neurons, they discharge at low frequency (4 Hz) with a 

broad action potential (AP) (>1ms) in vivo (Grace and Bunney, 1983; Steffensen et al., 1998) and in 

vitro (Grace and Onn, 1989). Besides, their firing is inhibited by DA through D2 auto-receptors (Lacey 

et al., 1987; Cameron et al., 1997). In midbrain slices, the presence of an hyperpolarization-activated 
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cation current (named Ih) is the main electrophysiology criterion used to identify DA neurons (Johnson 

and North, 1992; Bonci and Malenka, 1999; Neuhoff et al., 2002; Bellone and Lüscher, 2006). Although 

the morphology alone is not sufficient to discriminate DA neurons (Margolis et al., 2006), some authors 

noticed that they exhibit a larger cell body than GABA neurons (Chieng et al., 2011). It is worth noting 

that a group reported the existence of non DA neurons that were indistinguishable from DA neurons 

regarding various electrophysiological parameters such as the body size, the presence of an Ih current 

and the width of the AP; but  differed by the spontaneous firing activity (Margolis et al., 2006). These 

data, in disagreement with others reporting the strong reliability of the presence of an Ih conductance 

to identify DA neurons (Wanat et al., 2008; Mao et al., 2011), raise the question of the reliability of this 

criterion alone to discriminate DA neurons. However, some caution should be taken about the 

limitation of this study. Indeed, Zhang et al. observed that recording DA neurons from TH-EGFP mice 

for more than 15 minutes dramatically decreased the number of TH immunolabelled neurons to 20 % 

(Zhang et al., 2010), which may lead to false “negative” DA neurons in the study of Margolis. Taken 

together, these data provide evidence that the identification of DA neurons by electrophysiology is 

possible both in in vivo and in vitro preparations, but it might be preferable to use several criteria to 

confirm the DA nature. 

 

 

Figure 2. Electrophysiological characteristics of DA neurons in acute midbrain slices (from Ungless and Grace, 

2012). a) A recorded neuron with an intracellular solution containing biocytin is positive for TH-immunolabelling, 

confirming its DA nature. b) Hyperpolarizing voltage steps induce an Ih inward current. c) Typical 

electrophysiological trace in current clamp of a DA neuron recorded in slices with a slow regular firing pattern. 

d) Magnified image of a broad action potential, characteristics of DA neurons. Scale bar : (a) 10 µm;  (b) 80 ms, 

80 pA; (c) 350 ms, 6.25 mV; (d) 1 ms, 10 mV. 
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b) Discharge patterns exhibited in vivo and in vitro 

 

In vivo  

In vivo extracellular and intracellular recordings in anesthetized and freely moving rats have 

shown that midbrain DA neurons can be inactive, probably due to strong inhibition mediated by 

GABAergic neurons, or spontaneously active. When active, they can fire either in a single spike manner 

or in bursts of action potentials (AP) (Figure 3). The single spike pattern (or tonic activity) is 

characterized by an irregular discharge of single AP at low frequency (4.5 Hz) (Grace and Bunney, 

1984a). Bursts, which are encountered in more than 50% of midbrain DA neurons, are composed of 

trains of AP firing at high frequency (<15Hz), with AP of decreasing amplitude within the bursts (Grace 

and Bunney, 1984b). To define these latter, Grace and Bunney established the following parameters 

in the early eighties : a burst starts with a pair of AP with an interspike interval (ISI) ≤ 80ms and ends 

with an ISI ≥160ms. In vivo, burst generation was promoted by the iontophoretic application of 

glutamate or N-methyl-D-aspartate (NMDA), an agonist of glutamate NMDA receptors (NMDAR) 

(Overton and Clark, 1992; Christoffersen and Meltzer, 1995), whereas NMDAR antagonists decreased 

burst firing (Overton and Clark, 1992; Christoffersen and Meltzer, 1995; Connelly and Shepard, 1997). 

By contrast, application of the glutamate α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid 

receptor (AMPAR) blocker did not affect bursting activity, showing a preferential role for NMDAR to 

modulate this activity. Besides, bursts were prevented by the intracellular injection of calcium 

chelators (Grace and Bunney, 1984b), pointing out the fundamental role of calcium in the spontaneous 

burst firing of DA neurons. From these data, it was postulated that excitatory glutamate inputs were 

responsible for the induction of burst firing in midbrain DA neurons through NMDAR, via a calcium-

dependent mechanism.  

What could be the relevance for DA neurons to exhibit different activity patterns ? Growing evidence 

suggests that tonic and phasic firing patterns differentially regulate DA release. The tonic activity of DA 

neurons would contribute to the steady state of extracellular DA (Keefe et al., 1993; Nissbrandt et al., 

1994; Moore et al., 1998; Floresco et al., 2003) and the phasic burst firing would be associated with 

transient massive DA release (Floresco et al., 2003; Zweifel et al., 2009). By evoking large DA release in 

targeted areas, burst firing strongly influences animals’ behavior, and thus receives a great attention. 

The pioneering works of Shultz on behaving monkeys, as mentioned earlier, emphasized the role of 

burst activity of midbrain DA in reward-related events, and more generally in the encoding of salient 

information (Schultz, 2010). One of the most prominent proofs confirming the link between this 

activity pattern and some behavioral outcomes was given by Tsai et al., who used optogenetics to 

spatially and temporally control the activity of midbrain DA neurons (Tsai et al., 2009). Evoking phasic 
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but not tonic activation in these neurons was sufficient to induce a conditioned place preference in 

these mice, meaning that mice moved selectively in the compartment associated with phasic activation 

and in the absence of any reward. On the contrary, reducing burst frequency by inhibiting NMDAR 

specifically in midbrain DA neurons impaired the acquisition of a conditioned place preference for 

cocaine (Zweifel et al., 2009). Unlike bursting pattern, tonic activity receives less attention and the 

physiological relevance of this pattern is still elusive. A recent study using optogenetics found that 

tonic (5 Hz) but not phasic (50 Hz) stimulation of midbrain DA neurons decreased ethanol self-

administration behaviors in mice (Bass et al., 2013), implying that the tonic activity per itself modulates 

some animal behaviors, independently from burst firing.   

 

In vitro 

Unlike the in vivo situation, DA neurons in midbrain acute slices do not exhibit bursting activity 

but rather a regular single spike firing called pacemaker activity (Grace and Onn, 1989). One exception 

comes from the study of Mereu et al., who found that a small proportion of midbrain DA neurons has 

spontaneous bursting activity in midbrain slices from immature rats (PD 15-21) (Mereu et al., 1997). 

Because most studies only report the presence of a pacemaker activity (Grace and Onn, 1989; Seutin 

et al., 1990; Mercuri et al., 1992; Soden et al., 2013), it is thought that the excitatory synaptic inputs 

contacting DA neurons are severed during the slicing process, which prevents spontaneous burst 

generation. On the contrary, pacemaker activity does not appear to depend on glutamate inputs and 

might result from the intrinsic properties of the DA neurons. In line with this, administration of the 

excitatory amino acid antagonist kynurenate induced a pacemaker-like firing in vivo in midbrain DA 

neurons (Grenhoff et al., 1988). In slices, the pacemaker activity is characterized by a low frequency 

(1-5 Hz) and a high regularity, assessed by the regular coefficient of variation of the inter-spike intervals 

(CV-ISI) (Wolfart and Roeper, 2002; Deignan et al., 2012; de Vrind et al., 2016). Since pacemaker activity 

was initially only encountered in in vitro preparations, the relevance of this pattern to the in vivo 

physiology of DA neurons has been questioned. However, few studies noticed the presence of a regular 

single spike firing in vivo in rodent midbrain (Hyland et al., 2002; Herrik et al., 2010) and thus, 

challenges the view that only in vitro DA neurons fire with a pacemaker pattern. 
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Figure 3. Firing patterns of midbrain DA neurons recorded in in vivo and in vitro preparations (from Marinelli et 

al., 2006). In vivo, DA neuron can fire in two modes: a bursting pattern with bursts of AP at high frequency, or a 

slow irregular pattern. In vitro, DA neurons fire in a slow regular manner, called pacemaker activity. 

 

Despite the fact that DA neurons do not exhibit spontaneous bursts, these can be induced in acute 

slices by several pharmacological agents. Depending on the agents used, the induced-bursts display 

different characteristics that are summed up in Table 1. When hyperpolarizing DA neurons, bath 

application of NMDA evokes bursts of 2 to 10 AP (Johnson and Wu, 2004). Contrary to the in vivo 

situation, NMDA-induced bursts are calcium independent and do not show decreased AP amplitude 

within bursts. Application of apamin, a blocker of SK2 and to a lesser extent of SK3 channels (Ishii et 

al., 1997b) has given conflicting results. Whereas Shepard and colleagues could evoke burst activity in 

50% of the recorded DA neurons by applying apamin alone (Shepard and Bunney, 1991; Ping and 

Shepard, 1996), Johnson et al. could not replicate these results unless a continuous depolarizing 

current was injected in neurons (Johnson and Wu, 2004). These apamin-induced bursts share some 

similarities with the in vivo bursts such as decreasing AP amplitude and calcium-dependence. The 

combination of NMDA and apamin evokes bursts in 90% of the recorded neurons, appearing as the 

most efficient way to induce bursts in slices (Seutin et al., 1993). Of note, it is possible to induce bursts 

with NMDA in combination with BMI which blocks SK channels (Johnson and Seutin, 1997), or with the 

K-ATP channels blocker NN414 (Schiemann et al., 2012). As nickel inhibits T-type calcium channels 

responsible for the activation of SK channels in DA neurons, it can also elicit bursts (Wolfart and 

Roeper, 2002). Finally, iontophoretic application of glutamate also triggers bursts (Deister et al., 2009). 

Therefore, the modulation of NMDAR and/or potassium channels such as K-ATP and SK channels 

permits burst generation in DA neurons in vitro. 
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Table 1. Different ways to induce bursts firing in DA neurons in vitro.  

Burst 

Induction 

Species and age Recording 

method 

Ca 

dep. 

APs/ 

burst 

AP red. Burst ind. 

rate (%) 

Reference 

Spontaneous SD rats 

Adult (200-300g) 

In vivo (SNc) 

Extra and intra 

Yes 2,9 Yes - Grace and 

Bunney, 1984 

 

NMDA (10-30µM) 

+ current inj 

Male SD rats 

Adult 

In vitro (VTA) 

Intra 

No 2-10 No - Johnson et al, 

1992 

NMDA (20-30µM)  

+ current inj 

Male SD rats 

Adult (150-300g) 

In vitro (VTA) 

Intra 

- 9,6 No 33% Johnson and 

Wu, 2004 

APA (100-200nM)  

+ current inj. 

Male SD rats 

Adult (150-300g) 

In vitro (VTA) 

Intra 

Yes - Yes 50% Johnson and 

Wu, 2004 

APA 

(1µM) 

Male SD rats  

Young (125-175g) 

In vitro (SNc) 

Intra 

- 3-12 Yes 30% Shepard and 

Bunney, 1991 

 

APA (100nM) + 

NMDA (20-30µM) 

Male SD rats 

Adult 

In vitro 

Intra 

- 3-15 No 90% Seutin  et al, 

1993 

 

Nickel (100µM) C57BL/6J mice 

10-14 days 

In vitro (SNc) 

Perforated 

patch 

- 2,3 No 11% Wolfart and 

Roeper, 2002 

 

Ni (100µM) +  

APA (300nM) 

C57BL/6J mice 

10-14 days 

In vitro (SNc) 

Perforated 

patch 

- 2,6 No 31% Wolfart and 

Roeper, 2002 

 

NMDA (10µM) +  

BMI (30µM) 

Male SD rats 

Adult 

In vitro 

Intra 

- At least 

3 

No 55% Johnson and 

Seutin, 1997 

 

Glutamate 

(iontophoresis) 

SD rats 

15-37 days 

In vitro (SNc) 

Whole cell 

- 4.9 Yes - Deister et al, 

2009 

 

 

NMDA  (30µM) + 

NN414 (10 µM) 

WT mouse 

Adult 

In vitro (SNc) 

Whole cell 

 

 

- - - 80% Schiemann et 

al, 2012 

 

As the reference, the characteristics of the spontaneous bursts described in vivo by Grace and Bunney is 

presented in the first line. 

Current inj: current injection, intra : intracellular , extra : extracellular, Ca dep. : calcium dependence, APs/burst 

: number of AP per burst, AP red. : reduction of the AP amplitude within the burst, Burst ind. Rate : burst induction 

rate, indicating the percentage of neurons exhibiting bursts following the application of the pharmacology 

agents, apa : apamin. 
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c) Regulation of the discharge pattern 

 

The firing activity of midbrain DA neurons is modulated by multiple factors. This has been 

thoroughly reviewed (Marinelli et al., 2006; Marinelli and McCutcheon, 2014). Here, I will mostly 

discuss two main parameters influencing the neuronal activity of DA neurons, i.e the stage of brain 

development and the pathological conditions. 

 

Regulation during development  

During development, midbrain DA neurons from 2-week-old animals fire in a single spike mode 

in vivo whereas burst activity is encountered in more than 50% of these neurons in adults (Levine et 

al., 1982; Pitts et al., 1990), suggesting that the discharge pattern of DA neurons is strongly regulated 

during development. Recordings of spontaneous activity of SNc DA neurons at several postnatal days 

(PD) in rats showed that most of the changes occur during the first three postnatal weeks. In the first 

PD, DA neurons fire at low frequency in a random pattern, switch to a regular discharge with doublets 

within the second postnatal week, then to a more mature pattern with longer bursts after the third 

postnatal week (Tepper et al., 1990). Wang and Pitts observed that VTA DA neurons followed similar 

pattern changes (single spike mode, doublets mode, then a mature firing with bursts) during this time 

window (Wang and Pitts, 1994). Of note, bursts appear as early as PD 14, although their properties are 

still immature in terms of burst number and duration, and they gradually increase in numbers during 

development. Some changes in the firing pattern also occur later in development, between 

adolescence and adulthood. Indeed, VTA DA neurons fire faster in adolescent (PD 37-48) than in adult 

(PD 82-100) rats in vivo (McCutcheon et al., 2012). In particular, the single spike frequency and the 

number of spikes per burst are higher during adolescence. This change is accompanied by a decreased 

amplitude and frequency of GABA receptor-mediated events, suggesting that the increased tone of 

GABA during development may be responsible for the lower firing frequency of these neurons in 

adulthood. Once the animal reaches adulthood, the basal firing rate and the bursts properties of 

midbrain DA neurons seem to be relatively stable; as no age-related differences were found between 

rats aged of 3 and 28 months (Freeman et al., 1989).  

The spontaneous firing exhibited in acute slices is also subjected to developmental maturation. 

Contrary to the mature pacemaker activity encountered in animals above PD 15 (Grace and Onn, 1989; 

Liss et al., 2001; Soden et al., 2013), Cui et al noticed that midbrain DA neurons from PD 6-12 rats fire 

in an irregular manner (Cui, 2004). A detailed analysis performed on each age during the three 

postnatal weeks of rats established that these neurons undergo three major changes in their firing 

pattern: they are purely bursters between PD 2-3, become irregular between PD 5-11 and switch to a 

regular pacemaker activity after PD 12 (Figure 4) (Dufour et al., 2014a). So, the pattern activity of 
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midbrain DA neurons is regulated during development, in particular during the first postnatal weeks 

of life. 

Figure 4. Postnatal development of the firing pattern of DA neurons in SNc acute slices (from Dufour et al., 2014). 

A) Electrophysiological traces of the spontaneous firing of DA neurons in current clamp from PD 2 (red), PD 6 

(green) and PD 16 (blue) rats. At PD 2, DA neurons have a bursting activity, whereas they exhibit an irregular and 

regular pacemaker activity at 6 PD and 16 PD respectively. B) Plot of the coefficient of variation of the inter-spike 

intervals (CV-ISI, representing the regularity of the firing) as a function of the postnatal ages of the rats. Burst 

patterns (characterized by a CV-ISI > 80%) are encountered in PD 2 rats, irregular (80% <CV-ISI< 20%) in PD 5-12 

rats and regular (CV-ISI < 20%) after PD 12. 

 

Regulation in response to drugs of abuse and addiction  

As mentioned earlier, acute administration of drugs of abuse modifies the firing pattern of VTA 

DA neurons. In vivo, the firing rate was decreased by systemic administration of cocaine  (Einhorn et 

al., 1988; Bunney et al., 2001) whereas the neurons were excited by acute exposure to morphine 

(Matthews and German, 1984) or ethanol (Mereu et al., 1984; Bunney et al., 2001). These effects seem 

to be dependent on the state (anesthetized versus non anesthetized) of the rat, as cocaine induced an 

increase in the firing rate in awake rats (Koulchitsky et al., 2012) and ethanol failed to excite DA 

neurons in anesthetized rats (Mereu et al., 1984). Interestingly, modifications of the firing activity 

persist in absence of drugs in rats trained to self-administer drugs. Regarding cannabinoids, withdrawal 

from a chronic treatment with this drug resulted in a decline of midbrain DA neurons activity (Diana et 

al., 1998). On the contrary, DA neurons had an increase firing rate and modifications of the bursting 

activity after cocaine self-administration (Marinelli et al., 2003). In fact, the amount of bursts, the 

number of spikes per burst and the proportion of neurons with a high level of bursts were enhanced 

after self-administration. The increase in the burst activity was very transient and was only observed 

the first day of withdrawal whereas the firing rate returned to baseline value after 10-30 days of 

withdrawal. Therefore, chronic exposure to drugs can induce long-lasting modifications of the activity 

Bursty 

Irregular 

Regular 

A B
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that can persist in the absence of the substance. On the behavioral level, the firing activity is also 

related to individual vulnerability to drugs of abuse, since animals exhibiting higher basal firing rate 

and bursting activity in VTA DA neurons were more prone to self-administer drugs (Marinelli and 

White, 2000). 

Besides affecting the firing pattern of the neurons, drugs of abuse can also change the number of 

spontaneous active DA neurons. Indeed, repeated administration of cocaine increased the number of 

active DA neurons in the VTA (Henry et al., 1989) whereas exposure to ethanol dramatically reduced 

this number (Xu and Shen, 2001). Therefore, drugs of abuse strongly regulate the DA system, by 

modulating both the firing pattern and the number of spontaneous active DA neurons.  

 

Regulation in Parkinson disease  

Alterations of the firing pattern of SNc DA neurons are a common feature encountered in 

various animal models of PD. In midbrain organotypic slices treated with 6-OHDA, a neurotoxin that 

selectively kills DA neurons and models the cell loss observed in PD, the firing activity of DA neurons 

switched from a pacemaker activity to an irregular pattern with bursting activity (Wang et al., 2014). 

Consistent with this study, Branch et al. found that the firing properties of in vitro SNc DA neurons 

from MitoPark mice, a genetic model of PD mimicking the progressive loss of these neurons, were 

modified. After 16 weeks, the pacemaker activity of SNc DA neurons in slices from MitoPark mice was 

increased and more irregular than the control littermates (Branch et al., 2016). Janezic et al. reported 

that the firing rate of SNc DA neurons was also enhanced in vivo in aged transgenic mice from a 

different transgenic PD model (Janezic et al., 2013). In addition, the firing pattern was more irregular 

in SNc DA neurons from slices of PINK 1 mice model of PD, which promoted burst firing in vivo (Bishop 

et al., 2010). Therefore, animal models of PD are associated with an enhancement in the firing rate 

and in the irregularity of the pattern, favoring bursts generation. Interestingly, a similar increase in the 

bursting activity was reported in vivo in SN DA neurons from PD patients (Schiemann et al., 2012), 

confirming the importance of DA neuron activity in the etiology of the disease.  

 

Modifications in schizophrenia 

Dopaminergic dysfunctions are a hallmark of schizophrenia. In particular, alterations of the 

firing activity of midbrain DA neurons have been associated with schizophrenia. The psychotomimetics 

MK-801 and PCP, which induce psychotic symptoms that resemble those expressed in schizophrenia 

patients (Javitt and Zukin, 1991), enhanced the firing rate and the bursting activity of VTA DA neurons 

in vivo (French et al., 1993). Inactivation of the delta 1 glutamate receptor (GluD1), whose gene has 

been linked to schizophrenia (Greenwood et al., 2011), prevented the burst firing of midbrain DA 

neurons in vivo without affecting the overall firing frequency (Benamer et al., 2017). Besides, the 
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expression of a human mutation of the calcium-dependant potassium SK3 channels, identified in 

schizophrenic patients, favoured the bursts generation of VTA DA neurons in vitro and in vivo (Soden 

et al., 2013). This was accompanied by alterations of the sensory gating, a process known to be 

disturbed in schizophrenia patients (Swerdlow and Qeyer, 1975). Of note, Valenti et al. observed that 

developmental rat model of schizophrenia exhibited a higher number of spontaneously active DA 

neurons in vivo in the VTA (Valenti et al., 2011). Remarkably, acute and chronic treatments with 

antipsychotic drugs used to treat schizophrenia patients such as haloperidol, reduced the DA neuron 

population activity in these rats. Taken together, these data give credence to the fact that dysfunctions 

in the DA neurons activity likely contribute to the physiology of schizophrenia. 

 

 

3. Channels involved in firing activity of midbrain DA neurons 

 

The firing of midbrain DA neurons results from the interplay of a number of ion channels and 

receptors (Figure 5). As mentioned earlier, it is thought that ions channels give the intrinsic membrane 

properties responsible for the pacemaker activity whereas inhibitory and excitatory synaptic inputs 

modulate the firing through the activation of ligand-gated receptors. These aspects have been 

thoroughly reviewed (Liss and Roeper, 2008; Paladini and Roeper, 2014; Dragicevic et al., 2015). Here, 

I will first describe the ionic conductances contributing to the generation of the firing activity of DA 

neurons. A particular focus will be put on SK channels, and therefore a brief overview regarding their 

structure, trafficking, distribution and their role in DA neurons will be given. In the second part, the 

main receptors modulating the firing pattern of midbrain DA neurons will be presented. 
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Figure 5. Channels and receptors involved in the generation and modulation of the firing activity of midbrain DA 

neurons. Non selective cations (HCN and TRP channels) and sodium channels (Nav) are in pink, potassium 

channels (SK, Kv, A-type Kv, GIRK and K-ATP channels) in green, the calcium channels (L-, P/Q- and N-type) in blue 

and the modulators (DAR, GABAR, NMDAR) in orange. Leak channels and the Na+/K+ pump are in grey. 

 

a) Ionic conductances involved in the generation of the firing activity 

 

a.1) Overview of SK channels 

 

Structure 

The small conductance calcium-activated potassium channels family, so called because of their 

slow unitary conductance in the order of 5-20 pS (Sah, 1996), can be made of 4 subunits (SK1, SK2, SK3 

and SK4) (Köhler et al., 1996; Ishii et al., 1997b), though channels formed by SK4 subunits are often 

referred as IK (intermediate) channels because of their relatively higher conductance (30-70 pS). 

Functional channels are composed of four subunits associated to form homo- or hetero-tetramers 

(MacKinnon, 1991; Ishii et al., 1997b) (Figure 6). Each subunit is composed of 6 transmembrane 

domains, with intracellular N and C terminals (Faber, 2009). The SK subtypes are highly homologous in 

their structure and mainly differ by their C and N termini. The pore region lies between the 5th and the 

last transmembrane domain. The calcium sensitivity is conferred by the constitutive binding of the 
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calmodulin protein with the CAM-binding domain (CAMBD) located in the C terminal of SK channels 

(Xia et al., 1998). Binding of calcium to calmodulin induces a change in the conformation of SK channels, 

resulting in the opening of the pore (Schumacher et al., 2001). Interestingly, SK1, SK2 and SK3 

homomers exhibit a different pharmacology regarding the SK channel blocker apamin. Indeed, SK2 is 

the most sensitive, followed by SK3, then SK1 channels. This difference is due to the binding site of 

apamin, which is located in the pore region and on a serine residue placed in the extracellular region 

between the 3rd and the 4th transmembrane domain (Ishii et al., 1997a; Nolting et al., 2007). In SK1 

channels, the serine is replaced by a threonine residue, lowering the apamin sensitivity. Although they 

superficially resemble calcium-dependent big conductance potassium channels BK, they differed in 

some aspects : SK channels are voltage-insensitive and are not blocked by tetraethylammonium (TEA), 

a known potassium channel blocker (Lancaster and Nicoll, 1987; Köhler et al., 1996). 

 

Figure 6. Schematic structure of one SK channel subunit. Each subunit is composed of 6 trans-membrane domains 

and intracellular C and N terminals. The binding site of apamin is localized between the pore region (between S5 

and S6) and a serine residue between S3 and S4. Calmoduline is constitutively bound to the C-terminal of the 

channel subunit. 

 

Distribution 

In the brain. In situ hybridization of SK mARN revealed a differential distribution of SK channels, 

with SK3 being the prevailing form in the midbrain (Tacconi et al., 2001; Sailer et al., 2004). Accordingly, 

studies focusing more specifically on DA neurons showed that these neurons highly express SK3 
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channels (Wolfart et al., 2001; Bosch et al., 2002).The presence of SK2 in the midbrain, and in particular 

in DA neurons is more controversial. Some authors detected its presence in low amount in the 

midbrain  (Stocker and Pedarzani, 2000), whereas others did not (Gymnopoulos et al., 2014). 

Moreover, Deignan et al. detected SK2 channels in the dendrites of DA neurons with immunogold 

electron microscopy (Deignan et al., 2012). On the contrary, Wolfart et al. failed to find SK2 mARN by 

single cell PCR (polymerase chain reaction) in midbrain DA neurons (Wolfart et al., 2001). In addition, 

the death of midbrain DA neurons induced by administration of the neurotoxin 6-OHDA was correlated 

with a reduction of SK3 channel expression and left SK2 channels expression unchanged, which also 

argues against the presence of SK2 subtypes in DA neurons (Mourre et al., 2016). Regarding SK3 

channels expression, some regional differences in the distribution exist in the midbrain, with VTA 

neurons expressing less SK3 channels than SNc neurons (Wolfart et al., 2001). Within the VTA, their 

expression is heterogeneous since the medial part of the VTA is less enriched than the lateral part 

(Sarpal et al., 2004). Besides, SK3 channel expression is up-regulated during development in the brain 

(Gymnopoulos et al., 2014). Indeed, their expression is higher in the midbrain from young rats than 

from adults (Sarpal et al., 2004). However, the expression of SK channels seems to stabilize in the 

adulthood, as the SK channel-mediated currents were not different in SNc DA neurons from adult and 

aged mice (Branch et al., 2014).  

 

In neurons. Recent evidence shows that the neuronal distribution of SK channels plays an 

important role in the regulation of several biological processes (Faber, 2009). For example, it was 

shown that the distribution of SK channels differently affected the firing activity in midbrain DA 

neurons, with somatic (and to a lesser extent, dendritic) SK3 channels contributing to the frequency 

and the precision of the pacemaker activity, and dendritic SK2 channels contributing only to the latter 

(Deignan et al., 2012). Moreover, the subcellular localisation of membrane SK channels also impacts 

their coupling with calcium sources in hippocampal neurons. Dendritic SK channels are tightly coupled 

with R-type calcium channels, whereas somatic SK channels are weakly coupled with other calcium 

channels (Jones and Stuart, 2013). Thus, the distribution of SK channels regulate their neuronal 

function but also their coupling with calcium sources.  

Sparse information is available on the distribution of SK channels in DA neurons. Immunolabelling of 

SK3 channels in cultured midbrain DA neurons showed the strongest staining in the soma and the 

presence of clusters in dendrites (Herrik et al., 2012). In accordance with these observations, Deignan 

et al. also found by electron microscopy (EM) that SK3 immunogold particles were localized in the 

soma and to a lesser extent in both proximal and distal dendrites of midbrain DA neurons (Deignan et 

al., 2012). They also found dendritic SK2 channels mostly localized in the proximal part of the dendrites. 
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Of note, SK3 channels were detected into excitatory synapses and in the extrasynaptic compartment 

in VTA DA neurons (Soden et al., 2013). 

 

Trafficking 

Because SK3 is the main isoform found in DA neurons (Stocker and Pedarzani, 2000; Tacconi 

et al., 2001), I will focus on the trafficking of SK3 channels. A lot of mutants have been created to 

identify the molecular domains necessary for the correct membrane addressing of SK channels (Figure 

7). The different SK3 variants, their deletions and/or mutations, their expression pattern and the 

effects on SK channel-mediated currents are summarized d in the Table 2. 

 

 

Figure 7. Schema of the structure of the SK3 channel mutants. The native SK3 channels are composed of an N-

terminal (N-ter), 6 transmembrane domains (S1-S6), a calmodulin binding domain (CAMBD) and a distal C-

terminal (distal C-ter). For SK3 1-B and SK3 1-C, the red and the purple segments represent the exon 1B and the 

exon 1C respectively. Green GFP segments represent the addition of Green Fluorescent protein (GFP). 

 

 

The mutant GFPSK3ΔN, for which the N terminal (N-term) of SK3 was deleted, was mostly found 

expressed in the intracellular compartment. Similarly, alteration of N-term in the mutants SK3-1B and 

SK3-1C induced the sequestration of endogenous SK3 in the intracellular space and leads to the 

abolition of endogenous SK mediated currents. Besides, co-immunoprecipitation experiments done by 

Roncarati et al. revealed that GFPSK3ΔN could interact with wild type (wt) SK3 in HEK cells (Roncarati et 
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al., 2005). Taken together, these data indicate that the N-term of SK3 is required for its membrane 

delivery but does not seem necessary for SK oligomerization. Interestingly, SK3-1B and SK3-1C have a 

dominant negative effect on the endogenous SK channel current. Thus, one can hypothesize that N-

term mutants of SK3 associate with wt SK3 subunits and, as the mutant SK3 cannot be delivered in the 

membrane, sequester wt SK3 intracellularly. Disruption of the entire C terminal (C-term), which 

contains both CAMBD and the distal part of C-term of SK3, resulted in a total loss of GFPSK3Δ578–736 

mutant surface expression and their retention in the endoplasmic reticulum (ER). Deletion of CAMBD 

caused a similar distribution of GFPSK3ΔCaMBD mutants in the ER whereas GFPSK3Δ640-736 mutants, for 

which the distal part of C-term was removed, were also found in the Golgi apparatus. These results 

imply that the distal part of C-term and CAMBD would control different steps in the SK3 secretory 

pathway, the CAMBD being required to exit the RE and the distal part of C-term to exit the Golgi 

apparatus. In addition, both GFPSK3Δ640-736 and GFPSK3ΔCaMBD mutants were capable of interacting with 

wt SK3 in co-immunoprecipitation, but not the SK3 mutants with the deletion of the entire C-term 

(Roncarati et al., 2005), suggesting that several domains in the entire C-term would contribute to SK3 

tetramers assembly. Finally, hSK3-Δ mutants and its derivatives (GFPhSK3Δ1-285 and hSK3ΔNLS-GFP), 

which only contained the N-term of SK3, suppressed SK channels endogenous current, as previously 

seen with the N-term SK3 mutants. These data strongly suggest that these mutants can assemble with 

wt SK3 and prevent their membrane delivery. Because hSK3-Δ mutants and their derivatives are devoid 

of C-term, this hypothesis is in conflict with the results obtained by Roncarati et al. that describe that 

the C-term domain and not the N-term was required to form SK3 tetramers (Roncarati et al., 2005). 

However, Frei et al. challenged this finding and revealed interaction between N- and N-term, and 

between N- and C-term of SK3 in yeasts (Frei et al., 2006). Thus, it might be possible that N-term of 

hSK3-Δ mutants and their derivatives interact with N- or C-term of wt SK3, and alter their distribution 

and/or function. To conclude, N-term and C-term are important for the correct membrane delivery of 

SK3 tetramers but much work is needed to fully understand the mechanisms underlying the assembly 

and membrane trafficking of these receptors.  

 

Once in the membrane, it is known that glutamate receptors such as AMPAR or NMDAR are 

anchored in the synapses through the binding to several sets of scaffold proteins, such as the PDZ 

domain-containing proteins (Kim and Sheng, 2004). Surface SK channels seem to also be anchored in 

the synapses, through actin-dependent processes (Allison et al., 1998). Indeed, pharmacological 

disruption of the cytoskeleton prevents the enhancement of synaptic transmission induced by SK 

channel blockade in amygdala neurons (Faber et al., 2008). In addition, the surface content of various 

receptors such as AMPAR or NMDAR is regulated by clathrin-mediated endocytosis (Carroll et al., 1999; 

Roche et al., 2001). SK channels appear to share a similar mechanism of internalization, as 
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demonstrated by Faber et al. who used blockers of dynamin, an essential component of the clathrin-

mediated endocytosis (Faber et al., 2008). 

 

 It is interesting to mention that the lateral trafficking of receptors, among which NMDAR, has 

been identified as a key modulator of their surface distribution (Groc et al., 2006). Although SK channel 

lateral trafficking has not been investigated yet, several hints favor the idea that SK channels are 

dynamic in the membrane as well. Given that NMDAR and L-type calcium channels, two calcium 

sources for SK channels, diffuse in the neuronal membrane (Groc et al., 2004; Biase et al., 2012) and 

that SK channels need to be located in the vicinity (distance 100-150 nm) of their calcium source (Jones 

and Stuart, 2013), the lateral mobility of SK channels would allow to regulate their distance from the 

calcium sources, and also their synaptic and extrasynaptic membrane distribution. Besides, an elegant 

study using atomic-force microscopy revealed that protein kinase A regulates both somatodendritic 

distribution and nanoclustering of native SK channels in hippocampal neurons (Abiraman et al., 2016). 

This reinforces the idea that the SK channel distribution is highly dynamic and modulated by activity.  
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SK3 variant 

name 

Size of SK3 Mutation / deletion Used expression 

system 

Effect on SK current  Expression pattern of endogenous/  

mutant SK3 

Reference 

Endogenous 

human SK3 

Human : 

736 aa 

Exon 1 A - - - - 

SK3-1B 418 aa Alternative Exon 1B 

(Lack of the N-term  + 1st transmb 

segment) 

PC12 

 

 

Human Jurkat T 

lymphocytes 

 

Suppression of endo-

genous SK3 current 

 

Suppression of endo-

genous SK2 current 

 

Endogenous SK3 : mostly intracellular  

 

Tomita, 2003 

SK3-1C 640 aa Alternative Exon 1C PC12 

 

HEK -293T 

Suppression of endo-

genous SK3 current 

 

Suppression of exo-

genous SK1, SK2 and 

IKCa currents 

Endogenous SK3 : mostly intracellular  

 

Kolski-

Andreaco, 

2004 

GFPSK3 736 aa 

(+239 for 

GFP) 

Addition of GFP in the N-term PC12 

 

 

 

HPC culture 

Biophysical and 

pharma-cological 

properties similar to 

wt SK3 channels 

Colocalization between mutant and 

endogenous SK3 (plasma mb + intracellular) 

 

 

Mutant SK3 : present in cell body, axon, 

dendrite 

 

Roncarati,2005 

 

 

 

 

Decimo,2006 

Table 2. Principal characteristics of the SK3 channels mutants  
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GFPSK3Δ578–736  578 aa 

(+239 for 

GFP) 

Addition of GFP in the N-term 

Deletion of the entire C-term (CaMBD 

and C-term distal domains) 

PC12, HEK293 

 

 

HPC culture 

- Mutant SK3 : loss of surface channels 

colocalization with ER 

 

Mutant SK3 : Only somatic, colocalization with 

ER  

Roncarati,2005 

 

 

 

Decimo,2006 

GFPSK3Δ640-736 640 aa 

(+239 for 

GFP) 

Addition of GFP in the N-term 

Deletion of C-term distal domain 

PC12, HEK293 

 

 

 

HPC culture 

- Mutant SK3 : reduction of 70% of cell surface 

localization 

Colocalization with ER and Golgi 

 

Mutant SK3 : present in cell body, axon, 

dendrite  

Roncarati,2005 

 

 

 

 

Decimo,2006 

GFPSK3ΔCaMBD 677 aa 

(+239 for 

GFP) 

Addition of GFP in the N-term 

Deletion of CaMBD 

PC12, HEK 293  

 

 

HPC culture 

- Mutant SK3 : mostly intracellular 

 

 

Mutant SK3: small clusters in soma and 

proximal dendrites, 

colocalization with ER 

 

Roncarati,2005 

 

 

 

Decimo,2006 

GFPSK3ΔN 465 aa 

(+239 for 

GFP) 

Addition of GFP in the 1st transmb 

segment 

Deletion of N-term 

PC12, HEK293 

 

 

HPC culture 

- Mutant SK3 : loss of surface expression 

Retention in the ER 

 

Mutant SK3 : Only somatic 

Colocalization with ER 

 

Roncarati,2005 

 

 

 

Decimo,2006 

hSK3Δ-GFP 286 aa 

(+239 for 

GFP) 

Addition of GFP after the last aa  

Frame shift mutation in exon 1 

      expression of only the first 283 aa 

(before the 1st transmb segment) of SK3 

+ 3 aa (Thr, Met, Leu) 

In the VTA DA 

neurons, in vivo 

Suppression of endo-

genous SK currents  

Mutant SK3 : localization in dopamine neuron 

processes and nucleus 

 

Soden,2013 
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hSK3ΔNLS-

GFP 

255 aa 

(+239 for 

GFP) 

Addition of GFP after the last aa 

Deletion of the last 31 aa from 

hSK3-Δ 

In the VTA DA 

neurons, in vivo 

Suppression of endo-

genous SK currents 

Mutant SK3 : localization in soma and 

processes (no more in the nucleus) 

Soden,2013 

GFPhSK3Δ1-285 285 aa 

(+239 for 

GFP) 

Addition of GFP in N-term 

Frame shift mutation in exon 1 

       expression of only the first 283 aa 

(before the 1st transmb segment) of SK3 

+ 2 aa (Ser+ Asp) 

COS-7,   Human 

Jurkat T 

lymphocytes  

Suppression of endo-

genous SK2 currents 

Mutant SK3 : exclusively in the nucleus Miller,2001 
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Role of SK channels in DA neurons 

When activated by calcium, SK channels induce an efflux of potassium contributing to the 

after-hyperpolarization (AHP) following an AP. The AHP is composed of 3 phases: a fast (fAHP), a 

medium (mAHP) and a slow (sAHP) components. Whereas BK channels contribute to the fAHP 

(Lancaster and Nicoll, 1987), SK channels mediate the mAHP (Sah, 1996) and control the firing activity 

of many neurons, including DA (Wolfart et al., 2001). First, SK channels contribute to the control of 

firing frequency. Inhibition of SK channels by apamin induced an increase in the firing rate of DA 

neurons in midbrain slices (Shepard and Bunney, 1988; Wolfart et al., 2001; Deignan et al., 2012) and 

in vivo (Waroux et al., 2005; Soden et al., 2013; Creed et al., 2016), whereas a positive SK2/SK3 

modulator decreased it in midbrain slices (Herrik et al., 2010). It should be noted that some authors 

did not find a change in the firing rate following apamin application in vitro (Soden et al., 2013) and in 

vivo (Ji and Shepard, 2006). However, the most striking effect of SK channels is on the firing pattern of 

DA neurons. In midbrain slices, apamin alters the precision of pacemaker activity of DA neurons 

(Wolfart et al., 2001; Deignan et al., 2012; Soden et al., 2013). Therefore, they fire in a more irregular 

pattern, quantified by an increase in the CV-ISI. Occasionally, apamin alone can trigger the apparition 

of bursts of AP in some neurons (Shepard and Bunney, 1988, 1991; Ping and Shepard, 1996) but is 

mostly used in combination with NMDA to induce bursts in slices (Seutin et al., 1993; Johnson and Wu, 

2004). It is worth pointing that VTA DA neurons, which express less SK3 channels, exhibited a less 

regular pattern than SNc DA neurons (Wolfart et al., 2001), and that the increase in the firing regularity 

of SNc DA neurons observed in vitro during the development (Dufour et al., 2014a) was paralleled with 

a greater membrane expression of SK3 channels (Dufour et al., 2014b). Therefore, all these data 

strongly support a role of these channels in the control of the pacemaker precision in vitro. In vivo, 

pharmacological inhibition of SK channels promoted burst discharge of midbrain DA neurons by 

increasing both the number of spikes within bursts and the CV-ISI (Waroux et al., 2005; Ji and Shepard, 

2006). Using a mutated inactive form of SK3 channels initially identified in patients with schizophrenia, 

Soden et al found a similar result in vivo with an enhanced burst discharge in midbrain DA neurons 

(Soden et al., 2013). On the contrary, systemic administration of the SK opener 1-EBIO decreased the 

number of spikes within a burst and the CV-ISI (Ji and Shepard, 2006). Thus, by regulating the regularity 

of midbrain DA neuron firing, SK channels might control the switch between the tonic and bursting 

patterns. 

 

Functional coupling to calcium sources 

To be activated, SK channels require calcium entry in the cell. In the literature, different 

sources of calcium have been identified in neurons and include voltage gated calcium channels (N-, P-

,Q-, R-, L- and T-type), NMDAR or calcium release from intracellular stores. As mentioned earlier, the 
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coupling of SK channel with its calcium source, and by extension their function, seems to be quite 

variable in different types of neurons (Stocker, 2004). In DA neurons, several calcium sources have 

been characterized so far. In SNc DA neurons, the almost full inhibition of SK channel-mediated AHP 

by the T-type calcium channel blocker mibefradil highlighted the predominant position of T-type 

calcium channels as a calcium source for SK channels (Wolfart and Roeper, 2002). However, this result 

was at odds with the study of De Vrind et al., who found that another more specific T-type calcium 

channel blocker TTA-P2 was not effective in blocking SK channels-mediated AHP (de Vrind et al., 2016). 

To explain this discrepancy, the authors pointed out the difference in the age of animals, juvenile mice 

(PD 10-14) for Wolfart et al. and adults rats (6-8 weeks) for De Vrind et al. Indeed, T-type channels can 

spontaneously open in DA neurons in young rats (PD 6-12) (Cui, 2004) and this could contribute to the 

irregular firing of DA neurons observed in young animals (Dufour et al., 2014a). As the firing becomes 

regular in adults, T-type calcium channels might no longer be involved in the coupling with SK channels, 

explaining their absence of contribution in the study of de Vrind et al. Interestingly, this raises the 

question of whether the coupling of SK channels with calcium sources is also regulated during the 

development in DA neurons. By contrast, both studies of Wolfart. and De Vrind. agreed on the 

involvement of N-type calcium channels in activating SK channels, although the results of De Vrind. 

indicate that these channels participate to a greater extent to the coupling with SK channels in mature 

DA neurons. There is also evidence to suggest the contribution of L-type calcium channels as a source 

of calcium for SK channels (Nedergaard et al., 1993). Finally, given that the broad voltage-gated calcium 

channel blocker cobalt did not fully block SK channel-mediated AHP (Wolfart and Roeper, 2002; de 

Vrind et al., 2016), activation of SK channels may require other calcium sources. In line with this, Seutin 

et al. found that SK channel-mediated spontaneous hyperpolarisations occurring in midbrain DA 

neurons from young rats were dependent on calcium release form intracellular stores (Seutin et al., 

1998, 2000) and thereby, confirms the presence of other calcium sources used by SK channels. 

 

a.2) Other channels  

 

In addition to SK channels, other conductances are also involved in the generation of the firing 

activity of midbrain DA neurons. 

 

Leak channels 

Contrary to non-pacemaker cells, midbrain DA neurons exhibit few leak potassium channels 

and more nonselective cation leak and sodium leak channels (Talley et al., 2001; Khaliq and Bean, 

1996). Given the low value of the potassium equilibrium potential (-90mV) and the relatively high value 
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of the sodium equilibrium potential (+40mV), this would explain the relative positive membrane 

potential (-60mV) of these neurons. 

 

Voltage-gated sodium and non-selective cations channels 

Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels. HCN channels, formed 

of four subunits, are non-selective cation cannels. Among the 4 subunits identified (HCN1-4) (Ludwig 

et al., 1998; Santoro et al., 1998), HCN2, HCN3 and HCN4 are expressed in midbrain DA neurons (Franz 

et al., 2000; Santoro et al., 2000; Notomi and Shigemoto, 2004). When activated by hyperpolarization, 

HCN channels open and allow the entry of sodium (and to a lesser extent the exit of potassium) 

responsible for the “Ih current”, which depolarizes the membrane. In current clamp, the presence of 

the Ih conductance is recognizable by a “sag response”, resulting from the depolarization that counters 

the hyperpolarization. The Ih current is the main criteria to identify DA neurons in slices (Grace and 

Onn, 1989; Neuhoff et al., 2002; Wanat et al., 2008; Mao et al., 2011). However, its contribution to the 

firing activity is ambiguous. Mercuri et al. found that blocking Ih current by cesium had no effect on 

the frequency of pacemaker activity (Mercuri et al., 1995). By contrast, application of ZDZ7288, which 

is a more specific Ih blocker, inhibits the spontaneous firing of a subset of midbrain DA neurons (Seutin 

et al., 2001; Puopolo et al., 2007). Accordingly, Neuhoff et al. also noticed that this agent slowed the 

pacemaker activity of a subpopulation of SNc DA neurons, whereas it has not effect on VTA DA neurons 

(Neuhoff et al., 2002). Thus, it seems that the effect of Ih channels on DA neuron excitability depends 

on the population of recorded midbrain DA neurons. 

 

Voltage gated sodium channels. TTX-sensitive voltage-gated sodium channels (NaV channels) 

are well-known for their crucial role in the depolarization phase leading to the AP generation in 

neurons. The Nav family contains 9 members (Nav 1.1-1.9). They are present in pacemaker cells 

(Raman and Bean, 1999; Taddese and Bean, 2002), including midbrain DA neurons where they drive 

the pacemaker activity (Khaliq and Bean, 1996). To better understand the role of NaV channels in these 

neurons, Tucker et al. used advantage of the dynamic clamp, which consists in inserting virtual 

conductances generated by computer in a living neuron, in real time (Tucker et al., 2012). They found 

that the low pacemaker rate could be simulated by a low density of somatic NaV channels, suggesting 

that midbrain DA neurons contain a low density of these channels in the soma. Despite their important 

role in generating pacemaker activity, NaV channels are not the only contributors to the depolarization 

during AP generation because some DA neurons still exhibit pacemaker activity with broader and 

smaller AP in the presence of TTX (Puopolo et al., 2007).  
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 Transient receptor potential (TRP) channels. TRP channels, composed of 28 members divided 

into three subfamilies (TRPC, TRPV and TRPM), are non-selective cations channels, with some of which 

permeable to calcium (Bollimuntha et al., 2011). In midbrain slices, activation of the temperature gated 

TRPV-4 channels increased the firing rate of SNc DA neurons in vitro (Guatteo et al., 2005). Besides, 

application of a TRP channel blocker decreased the pacemaker activity and eliminated the bursts 

induced by NMDA application in slices (Mrejeru et al., 2011). Together, these data suggest a role for 

TRP channels in modulating the firing pattern and the frequency of in vitro DA neurons. In a worm 

mutant with degeneration of DA neurons, Nagarajan et al. identified gain-of-function mutations in TRP 

channels that were responsible for the necrosis of DA neurons through a calcium dependent 

mechanism (Nagarajan et al., 2014), suggesting that TRP channels might be also involved in the survival 

of DA neurons. 

 

Potassium channels 

Voltage gated potassium channels channels. The presence of voltage-gated potassium 

channels (KV) in DA neurons was first suggested by Chiodo and Kapatos in primary dissociated 

mesencephalic cultures (Chiodo and Kapatos, 1992). By depolarizing the membrane of DA neurons, 

they discovered an outward potassium current that was non-inactivating during steps duration 

(500ms), TEA-sensitive and had a delayed onset. In others neuron types, it was shown that these 

channels are responsible for the repolarization phase during AP generation (Kang et al., 2014). 

Although these channels were poorly studied specifically in midbrain DA neurons, one can assume that 

they could play a similar role in midbrain DA neurons. Interestingly, Kv channels seem to play a critical 

role in the vulnerability of midbrain DA neurons to the neurotoxin 6-OHDA. Application of 6-OHDA, 

widely used in PD models, enhances both DA neuronal cell death and a Kv channel-mediated current 

in DA neurons (Redman et al., 2006). The toxic effect of 6-OHDA could be reversed by application of 

TEA, suggesting an important role of Kv channels in the vulnerability of midbrain DA neuron to 

neurotoxin 6-OHDA. 

 

A-type potassium channels. Belonging to the Kv channels family, voltage-dependent A-type 

potassium (A-type Kv) channels are present in midbrain DA neurons, with a predominance of the Kv4.3 

channels (Serôdio and Rudy, 1998; Liss et al., 2001). When activated by membrane depolarization, they 

induce an outward current (named IA) carried by potassium ions, slowing the subsequent AP 

generation (Koyama and Appel, 2006). Besides, they quickly inactivate. In SNc DA neurons, it was 

suggested that A-type Kv channels play a role in tuning pacemaker activity because a strong correlation 

exists between pacemaker frequency and their number (Liss et al., 2001). Accordingly, Hahn et al. 

found that the upregulation of A-type potassium channels slowed the pacemaker activity of midbrain 
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DA neurons (Hahn et al., 2006). By using dynamic clamp to further investigate the role of these 

channels, the authors showed that the regularity of the firing was also modulated by A-type Kv 

channels. 

 

G protein-coupled inwardly-rectifying potassium (GIRK) channels. GIRK channels are 

potassium channels activated by intracellular cascades mediated by G protein-coupled receptors 

(GPCRs) (Andrade et al., 1986). In midbrain DA neurons, activation of GABAB or D2 receptors, which 

are two well-known GPCR coupled to Gi/o proteins (Odagaki and Koyama, 2001; Beaulieu and 

Gainetdinov, 2011) induces an outward potassium current mediated by GIRK channels, resulting in a 

late hyperpolarizing potential (Johnson and North, 1992). Notably, Lalive et al. found that GIRK 

channel-mediated currents were modulated by the firing pattern of midbrain DA neurons, with phasic 

firing enhancing these currents and tonic current depressing them (Lalive et al., 2014). By inhibiting DA 

neurons after burst firing or promoting their excitability after tonic firing, GIRK channels may 

participate in controlling the switch between phasic and tonic firing. 

 

ATP sensitive potassium (K-ATP) channels. K-ATP channels, composed of four Kir6.2 subunits 

and four regulatory SUR1 subunits (Nichols, 2006), have been detected in DA neurons from midbrain 

slices (Liss et al., 1999). In K-ATP channel knockout mice, Schiemann et al. observed that the firing 

pattern in SNc DA neurons was altered in vivo (Schiemann et al., 2012). Instead of an irregular discharge 

of AP with bursts, they fire in a regular manner with no more bursts. In the same study, the authors 

also showed that co-activation of NMDA and K-ATP was sufficient to induce bursts in DA neurons from 

midbrain slices, corroborating the fact that K-ATP channels play a role in the firing pattern of midbrain 

DA neurons. 

 

Calcium channels  

Pioneering studies of Grace and Bunney investigated the calcium dependence of the 

spontaneous activity of midbrain DA neurons in vivo. Injecting calcium or a calcium chelator such as 

EGTA changed the single spike and the bursting firing patterns respectively (Grace and Bunney, 1984a, 

1984b), pointing out the fundamental role of calcium in the spontaneous firing of DA neurons. So far, 

several voltage gated calcium channels have been identified in midbrain DA neurons and include the 

high voltage activated L-, N-, P/Q-type (Wolfart and Roeper, 2002; Puopolo et al., 2007; de Vrind et al., 

2016; Philippart et al., 2016) and the low voltage activated T-type channels (Cui, 2004). As previously 

reported, some SNc DA neurons still exhibit pacemaker activity in vitro with broader and smaller AP in 

presence of TTX (Puopolo, 200). This TTX-insensitive activity was calcium dependent and could be 

slowed down by both L-type and P/Q channel blockers, suggesting their involvement in the generation 



30 

 

of the pacemaker activity in midbrain DA neurons. Besides, most of these calcium channels are 

involved in the regulation of the firing precision of DA neurons, likely due in part to their functional 

coupling with SK channels. Indeed, modulation of L-type and N-type channels impacted the firing 

regularity of midbrain DA neurons (Wolfart and Roeper, 2002; de Vrind et al., 2016; Philippart et al., 

2016). The T-type channels, responsible for spontaneous miniature hyperpolarizations in immature DA 

neurons, contributed to their irregular firing at immature stages (Cui, 2004). 

 

Sodium-potassium ATPase (Na+/K+-ATPase) pumps 

The Na+/K+ ATPase is an electrogenic pump, which transports potassium and sodium ions 

against their electro-chemical gradients to maintain the resting membrane potential of neurons 

(Vassalle, 1987). In DA neurons, the sodium pump also contributes to modulation of the firing pattern 

of in vitro midbrain DA neurons. The sodium pump blocker ouabain prevented the bursts induced by 

NMDA application but had no effect in the pacemaker activity of DA neurons in slices (Johnson et al., 

1992). Thus, the authors proposed that sodium ions entered the cell through NMDAR following NMDA 

application and activated the sodium pump, which hyperpolarized the neuron and ended the burst. In 

accordance with this hypothesis, Shen and Johnson found that the current evoked by the sodium pump 

was increased in response to higher intracellular sodium concentration (Shen and Johnson, 1998). 

However, because NMDA-induced and in vivo bursts differed in some aspects, the role of the sodium 

pump in the burst activity remains questionable in vivo. 

 

b) Receptors modulating the firing activity 

 

Auto-receptors 

In the 70’s, Di Chiara et al. (1977) observed that pharmacological destruction of striatum had 

no impact on the self-inhibition of DA metabolism induced by the DAR agonist apomorphine (Di Chiara 

et al., 1977). Thus, they postulated the existence of a negative feedback loop mediated by DA auto-

receptors present in the somatodendritic compartment of midbrain DA neurons. The presence of such 

receptors was confirmed by autoradiography, and revealed that both D2R and D3R were present in DA 

neurons (Filloux and Wamsley, 1988; Morelli et al., 1988; Tepper et al., 1997). The pioneering study of 

Lacey et al (1897) showed that application of DA induced a potassium channel-mediated 

hyperpolarization that inhibits the spontaneous firing rate of DA neurons in slices. Since then, several 

potassium conductances modulated by D2R have been identified. Hahn et al. showed that D2R 

activation slowed the firing of DA neurons in vitro by modulating the A-type Kv channels (Hahn et al., 

2006). Besides, GIRK channels are also controlled by D2R (Congar et al., 2002). Therefore, auto-
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receptors tune the excitability of midbrain DA neurons by activating potassium conductances, as do 

many other receptors coupled to Gi/o proteins. 

 

GABA receptors 

Recordings of VTA DA neurons from midbrain slices revealed the presence of hyperpolarizing 

synaptic potentials sensitive to bicuculline, which is an antagonist of the ionotropic GABAA receptors 

(Johnson and North, 1992). By RNA analysis and in situ hybridizations, Okada et al. demonstrated the 

presence of transcripts coding several GABAA receptors subunits in dopaminergic neurons (Okada et 

al., 2004). The metabotropic GABAB receptors are also present in rat midbrain DA neurons (Wirtshafter 

and Sheppard, 2001). In vivo, GABAA and GABAB receptors modulate both the firing pattern and the 

firing rate of midbrain DA neurons. Although several authors reported the antagonist effects of GABAA 

and GABAB in regulating both parameters (Engberg et al., 1993; Paladini and Tepper, 1999; Brazhnik et 

al., 2008), they observed contradictory effects with GABA receptors antagonists and agonists, 

depending on the methods of drugs administration. Local application of GABAA and GABAB receptors 

antagonists respectively increased and decreased the firing rate in vivo in midbrain DA neurons 

(Paladini and Tepper, 1999; Brazhnik et al., 2008). By contrast, systemic administration of GABAB 

receptors antagonists and GABAA receptors agonists induce a modest increase in the firing frequency 

(Engberg et al., 1993; Erhardt et al., 2002). Similar discrepancies were noted regarding the firing 

pattern. Whereas local GABAA receptor blockade favors the bursting activity, inhibition of GABAB 

receptors regularize the firing pattern (Paladini and Tepper, 1999; Brazhnik et al., 2008). As for the 

firing rate, Erhardt and Engberg found the exact opposite effect with intravenous and systemic 

administration of drugs (Engberg et al., 1993; Erhardt et al., 2002). However, these studies converge 

to the idea that both GABAA and GABAB receptors differently affected the firing of midbrain DA 

neurons. By using dynamic clamp experiments on in vitro DA neurons, Lobb et al. confirmed the role 

of GABAA receptors in the firing pattern by showing that removal of GABAA conductances favored the 

burst generation (Lobb and Paladini, 2010). 

 

Glutamate NMDA receptors 

The glutamate N-methyl-D-aspartate receptors (NMDAR), which are one of the principal 

modulators of the firing of midbrain DA neurons, are essential for the bursting pattern. Earlier in vivo 

studies showed that iontophoretic administration of NMDA, an NMDAR agonist, increased the firing 

rate and the burst activity of midbrain DA neurons by enhancing the burst frequency and the number 

of spikes per bursts (Overton and Clark, 1992; Christoffersen and Meltzer, 1995). On the contrary, 

exposure to NMDAR antagonists reduced the burst activity in vivo (Overton and Clark, 1992; 

Christoffersen and Meltzer, 1995) and increased the regularity of the firing (Engberg et al., 1993; 
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Connelly and Shepard, 1997). These observations were confirmed by in vitro experiments on brain 

slices. Bath application of NMDA increases the frequency of the pacemaker activity of DA neurons in a 

concentration-dependent manner (Seutin et al., 1990; Mercuri et al., 1992; Wang et al., 1994; Mereu 

et al., 1997). In addition, bursts could be evoked by NMDA application in midbrain slices under certain 

circumstances (Figure 8) (Johnson et al., 1992; Johnson and Wu, 2004). Indeed, NMDA application 

alone is not sufficient to induce bursts (Seutin et al., 1990; Mercuri et al., 1992), and it requires the 

concomitant injection of an hyperpolarizing current in DA neurons to prevent an excessive 

depolarization and allow burst generation (Johnson and Wu, 2004). Of note, NMDA alone might be 

sufficient to induce bursts in slices (Mereu et al., 1997). Interestingly, even when an hyperpolarizing 

current was injected in neurons, application of NMDA only evoked burst in 33% of the recorded 

neurons (Johnson and Wu, 2004), suggesting that NMDAR activation is necessary but not sufficient to 

induce bursts in slices. Regarding the effects of NMDAR antagonists, D-APV alone had not effect on the 

basal pacemaker activity of midbrain DA neurons but reversed the changes in the firing activity induced 

by NMDA (Seutin et al., 1990; Mercuri et al., 1992; Mereu et al., 1997). 

Although these data strongly support the role of NMDAR in the firing pattern of midbrain DA 

neurons, they do not directly prove that the effect is mediated by NMDAR localized in DA neurons. 

More recently, Zweifel et al. showed that genetic inactivation of GluN1, the obligatory subunit of the 

NMDAR, specifically in midbrain DA neurons induced a strong reduction of the in vivo burst frequency 

by 6-fold (Zweifel et al., 2009); and thus, provide the first direct evidence of the role of NMDAR in the 

burst generation of midbrain DA neurons.  

 

Figure 8. Burst generation in DA neurons from midbrain slices by bath application of NMDA (30µM) (adapted 

from Johnson et al., 1992). In control conditions, DA neurons fire in a regular pacemaker mode. Following NMDA 

application and injection of an hyperpolarizing current, rhythmic bursts are elicited in DA neurons. 
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II. Glutamate NMDA receptors (NMDAR) 
 

 

Glutamate is the main excitatory neurotransmitter in the brain. Three ionotropic glutamate 

receptors were pharmacologically identified according to their relative affinity to the following 

agonists: α-amino-3-hydroxy-5-méthylisoazol-4-propionate (AMPA), N-méthyl-D-aspartate (NMDA) 

and kainate (Dingledine et al., 1999). Because they differ in various parameters including ion 

selectivity, conductance and activation-deactivation kinetics, they have different roles in the synaptic 

transmission:  

-  AMPA receptors (AMPAR) are responsible for fast synaptic transmission 

- Kainate receptors are also involved in synaptic transmission and regulate glutamate release 

-Compared to the other ionotropic receptors, NMDA receptors (NMDAR) have a special role in 

synaptic plasticity due to their unique channel properties. First, as their opening requires the 

concomitant release of glutamate by the presynaptic neuron and membrane depolarization of the 

postsynaptic element, they are considered as coincidence detectors. This characteristic is consistent 

with the Hebbian rule in which the synapse between two neurons should be strengthened if cells are 

activated at the same time. Second, they have a high permeability for calcium (MacDermott et al., 

1986), which is known to have a key role in synaptic plasticity (Bliss and Collingridge, 1993). 

 

In contrast to ionotropic receptors which induce a rapid entry of cations when activated, 

glutamate can also bind to metabotropic receptors (mGluR). These channels belong to the G-protein-

coupled receptors and transmit signals by intracellular cascades (Niswender and Conn, 2010). Given 

the slow onset of their responses, metabotropic receptors are said to modulate  synaptic transmission. 

 

A. On neurons in general 

 

1. Structure and composition of NMDAR 

 

a) NMDAR subunits  

 

NMDAR are one of the three ionotropic glutamate receptors. They form hetero-tetramers 

composed of two GluN1 and two GluN2 or GluN3 subunits. Each subunit is composed of 4 

transmembrane domains (M1-M4), a N terminal domain in the extracellular space (NTD) and an 

internal C terminal domain (Figure 9) (Paoletti et al., 2013). The channel pore is formed by the M2 
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loops of the four subunits. To be fully activated, NMDAR require the binding of an agonist such as 

glutamate or NMDA (MacDonald and Wojtowicz, 1980) and a co-agonist, which can be glycine 

(Kleckner and Dingledine, 1988) or D-Serine (Mothet et al., 2000). These binding sites are located in 

different subunits of the receptor. The agonist binding site is in the extracellular part of the GluN2 

subunit (Monyer et al., 1992; Laube et al., 1997) whereas the co-agonist can bind the extracellular part 

of the GluN1 or GluN3 subunits (Kuryatov et al., 1994; Yao and Mayer, 2006). On the functional level, 

NMDAR are permeable to potassium and sodium ions (Mayer and Westbrook, 1987) but also to 

calcium, for which they have a high permeability (MacDermott et al., 1986). Interestingly, at resting 

membrane potential, NMDAR are blocked by extracellular magnesium ions. This confers a voltage-

dependence because a membrane depolarization is required to remove the magnesium block (Nowak 

et al., 1984).   

 

The cloning of GluN1 in oocytes showed that expressed homomeric NMDAR, although 

functional, exhibit low current amplitudes (Moriyoshi et al., 1991; Yamazaki et al., 1992), predicting 

that natural NMDAR should occurred in heteromeric configuration. It appears that this subunit is 

obligatory, as functional NMDAR cannot be expressed in the absence of GluN1 subunit in heterologous 

cells (Monyer et al., 1992; Ciabarra et al., 1995; Chatterton et al., 2002) or in GluN1 knock out mice 

(Fukaya et al., 2003). In this latter study, inhibiting GluN1 expression retains and aggregates GluN2 

subunits in the endoplasmic reticulum, preventing its trafficking to the membrane. For GluN2 and 

GluN3 subunits, multiple isoforms exist in the brain. GluN2 and GluN3 present 4 (GluN2A-2B-2C-2D) 

and 2 isoforms (GluN3A-3B) respectively, which confers different characteristics for the NMDAR 

regarding the activation and deactivation kinetics, the conductance,  the calcium permeability, the 

magnesium sensitivity, the agonist and the antagonist sensitivity (Cull-Candy et al., 2001). For example, 

GluN2A and GluN2B-containing NMDAR have a higher conductance, sensitivity to magnesium and 

permeability to calcium than GluN2C or GluN2D-containing NMDAR. Incorporation of GluN3 subunits 

results in a decrease of ionic conductance, magnesium sensitivity and is accompanied by a drastic 

diminution of calcium permeability (Ciabarra et al., 1995; Henson et al., 2010). Except GluN1 which is 

expressed at all embryonic stages from 14 embryonic day (E14) (Laurie and Seeburg, 1994), GluN2 and 

GluN3 isoforms are differentially distributed and regulated during development in the brain (Monyer 

et al., 1994). GluN2B and GluN2D subunits are first detected between E14 and E17 in the spinal cord, 

and in the hypothalamus for GluN2B and the midbrain for GluN2D subunits. During the postnatal 

development, GluN2B subunit expression spreads and is found in the cortex and the hippocampus 

whereas GluN2D is mainly expressed in the midbrain, the spinal cord and to a lesser extent in the 

hippocampus. GluN2A and GluN2C subunits appear at birth, with GluN2A in the hippocampus and 

cortex and GluN2Csubunit restricted to the cerebellum. In adult rodents, GluN2A subunit is the most 
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ubiquitous subunit as it is found in almost all brain regions. GluN2B subunit is restricted to the 

forebrain regions, GluN2C subunit to the cerebellum and GluN2D subunit to thalamic, mesencephalic 

and brain stem structures (Wenzel et al., 1995). Regarding the less studied GluN3 subunit isoforms, 

the GluN3A subunit is detected early in the development (E15) and is present in moderate amount in 

several areas including the cortex and the midbrain during the first postnatal week  (Ciabarra et al., 

1995; Al-Hallaq et al., 2002). GluN3B subunit expression, detected at birth, seems to be constant during 

postnatal development and is found mainly in the midbrain, the medulla and the spinal cord in the 

adults (Matsuda et al., 2002).  

 

b) NMDAR subtypes 

 

 

As described above, NMDAR are heterotetramers formed by the assembly of the obligatory 

GluN1 subunits with either GluN2 or GluN3 subunits. The comparison of native and recombinant 

NMDAR channel characteristics by electrophysiology has enabled to infer the composition of native 

NMDAR in several brain region (Cull-Candy et al., 2001). For example, when Farrant et al. recorded 

NMDAR single channel currents in cerebellar granule cells, they noted that these neurons exhibited 

some atypical NMDAR properties like low conductance (20-30pS) and short opening kinetics (Farrant 

et al., 1994). These characteristics being strikingly similar to those reported for recombinant GluN1 

and GuN2C-containing NMDAR expressed in heterologous systems, it was assumed that NMDAR-

containing GluN2C subunits were present in cerebellar granule cells. Moreover, the discovery that 

several drugs have different affinities for specific subunits has facilitated the identification of the 

NMDAR composition in the brain. Among these drugs, ifenprodil inhibits recombinant GluN2B-

Figure 9. Schematic structure of a GluN subunit (from 

Paoletti et al., 2013). 

Each GluN subunit is composed of an extracellular N terminal 

domain (NTD), an agonist binding domain (ABD), 4 

transmembrane domains (M1-M4) and a C terminal domain 

(CTD). The pore is formed by the assembly of the M2 

transmembrane domains from the four subunits. 
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containing NMDAR currents with a concentration 400 fold lower than GluN2A-containing NMDAR in 

Xenopus oocytes (Williams, 1993). Given this high selectivity for GluN2B versus GluN2A-containing 

NMDAR, this drug has been widely used to characterize NMDAR composition in brain structures like 

the SNc (Brothwell et al., 2008). Up to now, several pharmacological agents are available to target 

specific NMDAR subunit. They include zinc or DQP 1102, which preferentially block GluN2A and 

GluN2C/2D-containing NMDAR respectively (Paoletti et al., 1997; Acker et al., 2011).  

 

Based on these tools, it is admitted that most native NMDAR are di-heteromers composed of 

two GluN1 with two similar GluN2 or GluN3 subunits. Growing evidence also points to the existence 

of triheteromers in several brain regions. Co-immunoprecipitation experiments have highlighted the 

presence of tri-heteromers containing GluN1 with both GluN2A and GluN2B subunits in the 

hippocampus (Al-Hallaq et al., 2007) and since then, other combinations have been proposed, such as 

GluN1/2A/2D (Dunah et al., 1998) or GluN1/2A/3A (Perez-Otano et al., 2001). Interestingly, 

electrophysiological and pharmacological approaches also support the existence of tri-heteromers in 

the brain: GluN1/2B/2D in the midbrain (Brothwell et al., 2008), GluN1/2A/2C in the cerebellum 

(Chazot et al., 1994) or GluN1/2B/3A in the cortex (Das et al., 1998).  

 

2.  NMDAR distribution, function and regulation of its properties 

 

a) Neuronal localization 

  

Synaptic distribution 

Subcellular distribution of NMDAR was first described by immunohistochemistry against the 

GluN1 subunit and revealed that NMDAR are present in synaptic sites and in close apposition to axons 

(Aoki et al., 1994). Within the synapses, NMDAR accumulate in the post-synaptic density (PSD) (Figure 

10) (Valtschanoff and Weinberg, 2001; Barrow et al., 2009). The latter, visualized by a dense electron 

area in electron microscopy, is composed of signaling molecules, cytoskeleton proteins and scaffold 

molecules such as the MAGUK proteins (Kennedy, 2000), which anchor NMDAR in the synapses (Bard 

et al., 2010). Because the PSD faces the presynaptic terminals (Valtschanoff and Weinberg, 2001), 

synaptic NMDAR are activated by glutamate release from synaptic vesicles.    
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Figure 10. NMDAR are expressed in the excitatory synapses of hippocampal neurons, and are enriched in the 

PSD (adapted from Petralia et al., 1994; Kennedy, 2000). A) Left, Electron micrograph of the excitatory synapse 

of a pyramidal neuron. Right, Schematic representation of the major synaptic structures present in A). The 

presynaptic terminal forms two spines and the PSDs are recognizable by the dense electron areas. B) Electron 

micrograph of hippocampus immunostained for GluN1 subunits. A dense labelling (arrow) is observed in the PSD 

of a dendritic spine.  

 

To decipher the composition of synaptic NMDAR, electrophysiological approaches using 

selective NMDAR subunits blockers were used. The kinetics of NMDAR-mediated EPSC were not 

altered by the GluN2B subunits blocker ifenprodil in the hippocampus of young (> PD 16) and mature 

rats (Dalby and Mody, 2003; Bellone and Nicoll, 2007), but was affected by the GluN2A blocker zinc 

(Bellone and Nicoll, 2007); predicting that synaptic NMDAR preferentially contain GluN2A subunits. In 

accordance with these studies, electron microscopy experiments performed in the hippocampus and 

the retina found that GluN2A-containing NMDAR predominate in synapses (Petralia et al., 2005; Zhang 

and Diamond, 2009). Depending on the developmental stages and the nature of the brain structure, 

other subunits can also be found in synapses such as GluN2B subunits in hippocampal neurons (Harris 

and Pettit, 2007), GluN2D in the SNc (Brothwell et al., 2008) and GluN2C in the cerebellum (Farrant et 

al., 1994). 

 

Extrasynaptic localization 

High resolution electron microscopy with immunogold GluN1 also detected NMDAR in 

extrasynaptic sites along the dendrites (Petralia et al., 2010). By using the open channel blocker MK-

801 to “remove”  the contribution of synaptic NMDAR, electrophysiological experiments estimated 

that 75% of the NMDAR are extrasynaptic in hippocampal neurons during the first week in vitro (Tovar 

and Westbrook, 1999). This proportion decreased to 30-50 % by two weeks (Ivanov et al., 2006). Of 

note, a rather similar proportion of extrasynaptic NMDAR was obtained in hippocampal acute slices 

from PD 14-P21 rats by Harris and Pettit, who found that around 35% of NMDAR were extrasynaptic 

(Harris and Pettit, 2007). Intriguingly, extrasynaptic receptors are not uniformly distributed in the 

A B 
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membrane but form clusters adjacent to axon terminals or glia (Petralia et al., 2010). In cortical and 

hippocampal neurons, GluN2B subunits are present in the extrasynaptic compartment during 

postnatal development (Stocca and Vicini, 1998; Tovar and Westbrook, 1999; Harris and Pettit, 2007). 

It has been shown that GluN2B-containing NMDAR can be activated by glutamate spillover following 

synaptic stimulation of neighboring neurons (Scimemi et al., 2004), suggesting that extrasynaptic 

NMDAR could be activated by glutamate escaping from the synaptic cleft. In addition, glutamate 

released from astrocytes preferentially acts on extraysynaptic NMDAR (Fellin et al., 2004). Therefore, 

extrasynaptic receptors might be activated by the glutamate release evoked by the activation of 

neighboring neurons or astrocytes. Regarding the contribution of other NMDAR subunits,  Brickley et 

al. identified the presence of extrasynaptic GluN2D-containing NMDAR in isolated membrane patches 

from cerebellar Golgi neurons (Brickley et al., 2003). Furthermore, GluN3A subunits were also localized 

outside synapses in hippocampal neurons by conventional and electron microscopy (Pérez-Otaño et 

al., 2006). 

 

Presynaptic NMDAR 

 The existence of presynaptic NMDAR was first demonstrated by electron microscopy, and 

revealed that GluN1 subunits could be found in the presynaptic membrane (Aoki et al., 1994). In 

addition, electrophysiological approaches further supported the presence of presynaptic NMDAR. The 

study conducted by Berretta and Jones showed that the application of the NMDAR antagonist D-APV 

reduced the frequency of spontaneous EPSC in entorhinal cortical neurons, even when postsynaptic 

NMDAR were blocked by intracellular infusion of MK-801 (Berretta and Jones, 1996). Because this 

protocol also affected the paired-pulse facilitation, a process known to involve presynaptic changes, it 

was speculated that presynaptic NMDAR modulated the spontaneous neurotransmitter release. 

Similar findings were found in the hippocampus (Mameli et al., 2005) and in the visual cortex (Corlew 

et al., 2007).  Of note, the modulation of neurotransmitter release by presynaptic NMDAR seems to be 

regulated during development, as presynaptic NMDAR facilitated it early in the development in the 

cortex (<PD 20) and the hippocampus (PD 3-4) but not at later developmental stages (Mameli et al., 

2005; Corlew et al., 2007). Besides, growing evidence indicates that presynaptic NMDAR are also 

involved in synaptic plasticity, in particular in long-term depression (Sjöström et al., 2003; Corlew et 

al., 2007, 2008). 
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b) Role of NMDAR  

 

NMDAR have different roles depending on their membrane distribution. Whereas synaptic 

NMDAR are mostly associated with synaptic plasticity, it is thought that extrasynaptic NMDAR 

contribute to excitotoxicity and cell death. Furthermore, a new concept has emerged that NMDAR 

could exert functions independently of the ion flux. These functions would be briefly described in the 

following section. 

 

Role of NMDAR in synaptic plasticity 

In hippocampal neurons and other cell types, glutamatergic synapses can undergo long lasting 

changes of their synaptic strength, a process called synaptic plasticity. The synaptic strength can be 

either potentiated (long-term potentiation, LTP) or depressed (long-term depression, LTD). It has been 

well established that NMDAR play a key role in both plastic processes. Application of various NMDAR 

blockers such as the competitive antagonist D-APV, the open channel MK-801 and an antagonist of the 

allosteric glycine site prevented the induction of NMDAR-dependent LTP following tetanic stimulation 

in hippocampal slices (Collingridge et al., 1983; Coan et al., 1987; Bashir et al., 1990). Activation of 

NMDAR by a strong synaptic stimulation induces a massive entry of calcium that activates the 

calmoduline kinase II (Gardoni et al., 2001; Lisman et al., 2012), which in turn contributes to the 

membrane insertion of AMPAR (Ehlers, 2000) and increases their conductances (Benke et al., 1998). 

As a consequence, excitatory synaptic transmission is enhanced. Besides being required for the 

induction of NMDAR-dependent LTP, the receptors are also involved in the expression of LTP. For 

example, Kullman et al. reported that LTP induced by a pairing protocol or a tetanic stimulation in 

hippocampal slices was accompanied with a potentiation of NMDAR-mediated synaptic currents 

(Kullmann et al., 1996).  

Following repeated stimulations at low frequency (1-3 Hz), long-term depression of the 

excitatory transmission could be observed in hippocampal slices, and was prevented by application of 

D-APV (Dudek and Bear, 1992), confirming that LTD induction requires NMDAR activation. It is thought 

that moderate entry of calcium through NMDAR activates a protein phosphatase cascade including 

calcineurine, which downregulates AMPAR synaptic function (Mulkey et al., 1994; Lüscher and 

Malenka, 2012). Interestingly, Bhouri et al. showed that low frequency stimulation of the Schaffer 

collateral pathway also evoked a decrease of the NMDAR-mediated currents in hippocampal neurons, 

that was mGluR dependent (Bhouri et al., 2014). Altogether, these data revealed that NMDAR play a 

prominent role in the induction and the expression of both LTP and LTD. 
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Role in excitotoxicity 

It was earlier hypothesized that extrasynaptic NMDAR were only a reserve pool of receptors 

that was mobilized in synapses through lateral diffusion. However, this view was challenged by 

evidence showing that extrasynaptic NMDAR per se play specific roles. Since applying NMDA in the 

bath will activate all membrane NMDAR and cannot help to discriminate the role of extrasynaptic 

NMDAR, a specific protocol has been developed to selectively activate extrasynaptic receptors. It 

consists of NMDA or glutamate bath application after blockade of synaptic NMDAR by synaptic 

stimulation in presence of MK-801 (Tovar and Westbrook, 1999; Ivanov et al., 2006; Xu et al., 2009). 

Stimulation of extrasynaptic NMDAR increased the release of the lactate deshydrogenase and reduced 

the MAP-2 labelling in cortical neurons (Xu et al., 2009). Because these two changes are associated 

with cell death (Legrand et al., 1992; Brooke et al., 1999), it indicates that extrasynaptic stimulation 

promotes the neuronal death. Accordingly, activation of extrasynaptic NMDAR was accompanied with 

a depolarization of the mitochondrial membrane and the swelling of the cell body in cortical culture 

(Leveille et al., 2008), two hallmarks of excitotoxicity. Finally, extrasynaptic stimulation of NMDAR 

inactivated CREB pathway and consequently blocked the expression of brain-derived neurotrophic 

factor (BDNF), which contributes to neuronal survival (Alderson et al., 1990). On the contrary, synaptic 

NMDAR were mostly associated to a pro-survival function, as they activated the CREB and ERK 

pathways involved in cell survival (Hardingham et al., 2002; Ivanov et al., 2006; Leveille et al., 2008). 

 

Non-ionotropic function of NMDAR 

Intriguingly, it was proposed that NMDAR can have a role independently of the ion influx, so 

called non-ionotropic functions. One of the first studies proposing a non-ionotropic role for NMDAR 

was conducted by Alvarez and colleagues in 2007 (Alvarez et al., 2007). They showed that inhibiting 

NMDAR expression by shRNA GluN1 decreased spine density in hippocampal organotypic slices, 

whereas pharmacology blockade of NMDAR with D-APV was ineffective. Because D-APV inhibits ion 

influx, this result suggested that the physical presence of NMDAR but not the ionotropic function was 

required for spine stability. Since then, other studies have investigated the putative role of the non-

ionotropic function of NMDAR. Nabavi et al. found that LTD induced by low frequency stimulation was 

blocked by the competitive NMDAR blocker D-APV but not by the open channel blocker MK-801 or the 

competitive antagonist of the co-agonist binding site 7-chlorokynurenate (7CK). Therefore, the authors 

hypothesized that the binding of the ligand to the glutamate binding site but not the ion channel flow 

was necessary to induce LTP. Moreover, LTD induction required basal free calcium in the cell but not 

calcium rise through the NMDAR, and involved p38 MAPK signaling. Of note, some of these results 

were challenged by Babiec et al., who found that MK-801 effectively blocked LTD induction in young 

and adult rats (Babiec et al., 2014). However, another study confirmed the involvement of non-
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ionotropic functions of NMDAR in LTD (Stein et al., 2015). Indeed, the authors reported that 7CK did 

not block either the LTD or the shrinkage of spines, a process commonly associated with LTD (Nägerl 

et al., 2004). The spine shrinkage was abolished with a selective p38 MAK inhibitor and surprisingly, 

could be evoked by a LTP induction protocol (tetanic stimulation) in the presence of MK-801 to prevent 

NMDAR ion flow. Thus, these data suggest that the binding of glutamate to NMDAR could induce LTD 

independently of the ion channel flow, through p38 MAPK signaling. Since then, other studies reported 

the involvement of non-ionotropic functions of NMDAR in neuroprotection through glycine (Hu et al., 

2016; Chen et al., 2017). Therefore, although this concept of non-ionotropic functions of NMDAR is 

still debated, growing evidence indicates that the signaling through NMDAR is more complex than 

previously thought. Interestingly, the recent discovery that its binding of NMDA to the binding site 

induced a conformational change of the NMDAR C-term in the presence of 7CK and MK-801 but not 

D-APV (Dore et al., 2015), and that this change altered interaction with kinases (Aow et al., 2015), 

opens the possibility that signaling pathways could be mediated independently of  ion flow by receptor 

conformational changes. 

 

c) Regulation by functional coupling with ion channels: focus on SK channels 

 

NMDAR signaling is subjected to many regulatory process, from phosphorylation (Chen and Roche, 

2007) to protein-protein interactions (Dingledine et al., 1999; Fan et al., 2014; Ladépêche et al., 2014). 

Among the family of membrane proteins, I will here described the modulation of NMDAR signaling by 

the SK channels. First, electron microscopy experiments detected that NMDAR and SK2/SK3 channels 

colocalize in the PSD of spines from hippocampal neurons (Lin et al., 2008; Ballesteros-Merino et al., 

2014), indicating their close proximity in the neuronal membrane. Using two-photon imaging 

techniques combined with electrophysiology, Ngo-Anh et al. showed that blocking SK channels 

increased the excitatory synaptic responses in the hippocampus, by enhancing the amplitudes of 

NMDAR-mediated synaptic responses and calcium influx (Ngo-Anh et al., 2005). From these data, the 

authors concluded that synaptic activation evoked calcium entry activating SK channels, which in 

response, reduced both synaptic responses and calcium influx through NMDAR. Other authors found 

a similar “shunt” of NMDAR-mediated synaptic responses mediated by SK channel activation in the 

ventral hippocampus (Babiec et al., 2017), the amygdala (Faber et al., 2005), and the cortex (Faber, 

2010). Besides, pharmacological inhibition of SK channel activation promoted LTP induction in the 

hippocampus (Babiec et al., 2017) and increased its intensity in the amygdala (Faber et al., 2005). On 

the contrary, genetic overexpression of SK2 channels enhanced the restriction of the excitatory 

synaptic currents and reduced the induction of LTP in the hippocampus (Hammond, 2006). Therefore, 

by regulating NMDAR function, SK channels can modulate the synaptic plasticity. Furthermore, NMDAR 
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also regulate the activity of SK channels. Indeed, enhancing NMDAR activity by reducing magnesium 

concentration amplify the responses of SK channels to the blocker apamin (Faber et al., 2005; Ngo-Anh 

et al., 2005; Hammond, 2006), consistent with an increased activation of SK channels. Whereas calcium 

influx though NMDAR is sufficient to activate SK channels and the effects they mediate in the amygdala 

(Ngo-Anh et al., 2005) and the hippocampus (Faber et al., 2005), multiple sources of calcium contribute 

to SK channel activation in the cortex (Faber, 2010). In conclusion, SK channels finely regulate the 

excitatory responses mediated by NMDAR, which in turn modulates the activation of these channels.  

Given the role of NMDAR in synaptic plasticity, one could expect that the modulation mediated by 

SK channels is accompanied with behavioral outcomes. It seems to be the case, as Hammond et al. 

demonstrated that transgenic mice overexpressing SK2 channels, which exhibited reduced 

hippocampal LTP, had impairments of hippocampal-dependent learning and memory in the Morris 

water maze and a contextual fear conditioning (Hammond, 2006). In line with these findings, blockade 

of SK channels facilitated the LTP induction in the hippocampus and accelerated spatial and non-spatial 

learning (Stackman et al., 2002). 

 

3. Surface expression of NMDAR 

 

a) Synthesis of NMDAR in the endoplasmic reticulum 

 

The obligatory GluN1 subunits being expressed in excess compared to the others, it is thought 

that NMDAR expression highly depends on the amount of GluN2 subunits. Overexpression of GluN2A 

or GluN2B but not GluN1 subunits increased the number of functional NMDAR in cerebellar and 

cortical cell cultures (Prybylowski et al., 2002). Once the subunits are translated into proteins, they 

assemble into tetramers in the endoplasmic reticulum (ER). Monomeric or uncompleted assembled 

NMDAR are retained in the ER (McIlhinney et al., 1998; Fukaya et al., 2003) and thus, cannot be 

delivered to cell membrane. The correct assembly into tetramers appears crucial to overcome the ER 

retention, which serves as a quality control mechanism to guarantee the production of functional 

NMDAR in the neuronal membrane. Indeed, it is currently hypothesized that the assembly between 

GluN1 and GluN2 subunits mask retention signals, enabling the exit of the heterotetrameric receptors 

from the ER (Qiu et al., 2009). Several retention signals have been identified so far. Qiu et al highlighted 

the presence of a retention signal located in the N-terminal domain of GluN2A, which is silenced by 

the association with the N-terminal domain of GluN1 subunits (Qiu et al., 2009). Interestingly, this 

retention signal was not found in the N-terminal domain of GluN2B subunit, indicating that the exit of 

GluN2A and GluN2B-containing NMDAR from the ER may be differentlialy regulated. In line with this 

idea, another retention signal located in the M3 transmembrane domains of the GluN1 and GluN2B 
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subunits has been identified by Horak et al. (Horak et al., 2008). This signal can be masked by the 

assembly of these M3 domains together with the M4 domain of GluN1. However, other mechanisms 

seem to regulate the exit of NMDAR from the ER. It has been shown that a retention signal in the C-

terminal tail of the GluN1 subunits can be overcome by protein kinase-mediated phosphorylation on 

specific serine residues (Scott et al., 2003). Moreover, Mu et al pointed out that the export of NMDAR 

from the ER could be accelerated by modifications of GluN1 mRNA splicing in response to activity 

blockade, suggesting that the activity also influences the NMDAR secretory pathway (Mu et al., 2003). 

Besides, GluN2B subunit mutants with a reduced affinity for glutamate exhibited a decreased 

expression in the Golgi apparatus and the neuronal membrane, implying that the glutamate binding is 

required for the forward trafficking of NMDAR to the cell surface. Therefore, these data revealed that 

NMDAR early trafficking is also modulated by the agonist binding (She et al., 2012). 

 

b) Membrane addressing of NMDAR 

 

Once released from the ER, assembled NMDAR are directed to the somatic Golgi apparatus, 

where they undergo post translational modifications like palmitoylations (Hayashi et al., 2009) and 

then, reach the membrane by vesicle exocytosis. However, the work of Jeyifous et al. has challenged 

the idea that NMDAR would only traffic through this classical secretory pathway. Indeed, the authors 

observed that preventing the formation of intracellular vesicles induced an accumulation of AMPAR 

but not NMDAR in the somatic Golgi. Instead, an increase of these receptors in the Golgi membranes 

located in the dendrites was reported, suggesting that unlike AMPAR, NMDAR trafficking could bypass 

the somatic Golgi and use an atypical secretory pathway through dendritic Golgi membranes (Jeyifous 

et al., 2009). 

 

After their export form the ER, NMDAR are trafficked toward different cell compartments 

through intracellular vesicles. These receptors are not exported alone but are associated with protein 

complexes along their intracellular trafficking toward the plasma membrane (Figure 11). Among these 

proteins, SAP102 and SAP-97, two synaptic scaffold proteins from the PDZ family, seem to play a major 

role in membrane delivery. After exiting from ER, GluN2B subunits associate with SAP102, enabling the 

interaction with Sec8 protein which belongs to the exocyst complex (Sans et al., 2003). This complex, 

composed of 8 proteins, drive vesicles to the plasma membrane and thus, enables the correct delivery 

of transmembrane receptors. Altering the interaction between Sec8 and the GluN1/GluN2B-SAP102 

complex results in a decreased expression of membrane receptors (Sans et al., 2003). In addition, 

immunohistochemistry combined with immunoprecipitation techniques revealed that SAP97 

associates with NMDAR in ER-derived vesicles and is absolutely necessary for the transport of 
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receptors through the atypical secretory pathway described earlier (Jeyifous et al., 2009). Up to now, 

the export of GluN2A-containing NMDAR has been less investigated. It was shown that GluN2A and 

SAP97 colocalized in the ER in hippocampal neurons and that the phosphorylation of SAP-97 in specific 

positions regulate GluN2A-containing NMDAR membrane insertion (Mauceri et al., 2007), supporting 

the model that GluN2A-containing NMDAR traffic required the same partners. In conclusion, NMDAR 

transport requires the association with PDZ-domain proteins in the early steps of intracellular 

trafficking for their correct membrane delivery.  

 

Once intracellular vesicles containing NMDAR and their partners are formed, they are 

transported along the microtubule network (Figure 11). It is known that motor proteins such as kinesin 

superfamily proteins (KIFs) are able to carry vesicles and move them along the microtubules (Hirokawa, 

1998). Setou et al. provided the first evidence that NMDAR-containing vesicles could be also 

transported via these proteins. Indeed, the authors showed that GluN2B subunits interact with KIF17 

via a protein complex including a PDZ-domain protein called mLin-10 (Setou et al., 2000). The proposed 

interaction was supported by the combination of live and fixed immunostaining studies on 

hippocampal neuron cultures showing colocalizations between these 3 partners (Guillaud et al., 2003). 

This interaction between KIF17 and GluN2B-containing NMDAR appears crucial for the surface 

distribution of these receptors. Generation of transgenic mice overexpressing KIF17 results in an 

increased expression of GluN2B subunits (Wong et al., 2002). On the contrary, inhibiting KIF17 by using 

dominant –negative mutants or antisense oligonucleotides induced a decrease in the GluN2B subunit 

expression (Guillaud et al., 2003). Moreover, a recent study showed that septin9, a member of the 

septin protein family involved in microtubule-dependent transport, physically interfered with the 

binding of mLin10 to KIF17 by competing with mLin10 to bind KIF17 (Bai and Karasmanis, 2016). By 

doing so, septin9 down-regulated the GluN2B subunit surface expression in hippocampal cultures. This 

confirms the predominant role of KIF17 in GluN2B-containing NMDAR transport. Another kinesin 

protein KIF1bα has been shown to interact with several MAGUK proteins like PSD-95 and SAP97 (Mok 

et al., 2002), and thus, could also be involved in the transport of NMDAR-carrying vesicles along the 

microtubules. 

 

c) Reaching the synaptic compartment 

 

To incorporate NMDAR at the surface of neurons, the vesicular membrane containing NMDAR 

needs to fuse with the neuronal membrane. This mechanism is mediated by the SNARE complex. By 

imaging NMDAR exocytosis with total internal reflection fluorescence (TIRF) that enables to visualize 

membrane events, Gu and Huganir identified several components of this SNARE complex (Gu and 
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Huganir, 2016). Knocking down SNAP-25, VAMP-1, and syntaxin4 proteins by interfering RNA reduces 

surface expression of GluN1 subunits in the synaptic and extrasynaptic compartments, indicating that 

these proteins regulate the surface content of NMDAR. Intriguingly, the authors noted that most of 

the exocytotic events occurred in the extrasynaptic compartment. This observation is in line with 

previous evidence suggesting that NMDAR delivery would preferentially occur outside synapses. 

Indeed, Guillaud et al did not find any colocalization of KIF17 with GluN2B and PSD-95 or with GluN2B 

and synaptophysin (a presynaptic marker of glutamatergic synapse) whereas KIF17 and GluN2B clearly 

colocalize in the dendritic shaft (Guillaud et al., 2003). The absence of KIF17 and GluN2B in synapses 

clearly revealed that kinesin proteins carrying NMDAR do not enter directly into glutamatergic 

synapses. Moreover, Prybylowski and colleagues reported that overexpression of GluN2 subunits 

increased the number of NMDAR clusters but decreased colocalization with the synaptic marker 

synaptophysin (Prybylowski et al., 2002). From these data, it can be hypothesized that newly formed 

NMDAR are delivered in the extrasynaptic part of the membrane. As a consequence, other 

mechanisms are needed for receptors to reach synapses. Super resolution techniques have deciphered 

that one key regulator of  NMDAR distribution is the lateral diffusion of receptors along the membrane 

(Groc et al., 2009), which enables receptors to enter or exit synapses.  

 

d) Endocytosis 

 

Similarly to AMPAR (Carroll et al., 1999), several studies indicated that NMDAR are 

endocytosed by a clathrin-mediated mechanism. Roche et al. identified on the C-terminal of GluN2B 

subunits a consensus internalization motif involved in clathrin-dependent endocytosis (Roche et al., 

2001). This motif enables the binding of AP-2 adaptors that link internalized cargo to clathrin. As this 

motif is in close proximity to the PDZ-binding domain of GluN2B subunit, the authors discovered that 

PSD-95, a synaptic scaffold protein which binds to the PDZ-binding domain, can inhibit NMDAR 

internalization and probably stabilize these receptors at the synapses (Roche et al., 2001). As many 

other biological processes, the internalization of receptors is regulated by several factors. In this same 

study, the authors observed that the rate of NMDAR endocytosis is decreased as neurons mature. This 

in accordance with the study of Petralia et al. who found that clathrin-coated pits were commonly 

encountered at glutamatergic synapses at early postnatal days but rarely in adults (Petralia et al., 

2003). Besides being regulated during development, NMDAR internalization is also modulated by its 

co-agonist. Stimulation of the glycine co-agonist site “primes” NMDAR for clathrin-mediated 

endocytosis. It also requires activation of the agonist site, as glycine application alone (without NMDA 

agonist) do not promote NMDAR internalization in hippocampal neurons (Nong et al., 2003).  
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Interestingly, co-labelling of NMDAR and clathrin-coated pits by immunogold particules with 

electron microscopy was found in extrasynaptic sites but not within synapses (Petralia et al., 2003). In 

addition, Blanpied et al. reported that endocytosis occurs in specialized zones located in the vicinity of 

the postsynaptic density in mature neurons (Blanpied et al., 2002). These data and the others reported 

in the previous section strongly indicate that NMDAR endocytosis and exocytosis would take place in 

dedicated areas located outside synapses.  

 

 

Figure 11. Schema of NMDAR assembly and trafficking to spines (adapted from Lau and Zukin, 2007). NMDAR 

subunits are translated and assembled into tetramers in the endoplasmic reticulum. Once the tetramer is 

formed, NMDAR is transported with PDZ-domain proteins in the Golgi apparatus. The vesicles containing NMDAR 

are carried by kinesin proteins along the microtubule. Finally, newly formed NMDAR are mostly delivered outside 

synapses, in dedicated places.  

 

 

4. Role and regulation of NMDAR surface trafficking  

 

The concept of lateral diffusion of receptors started 40 years ago when Axelrod et al. used 

fluorescence imaging techniques to measure the mobility of surface acetylcholine receptors in muscles 

(Axelrod et al., 1976b). But it was not until 2002 that the lateral diffusion of NMDAR was demonstrated 
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in living neurons (Tovar and Westbrook, 2002). Since then, various techniques have been successfully 

used to characterize NMDAR surface dynamics in neurons (Groc et al., 2009). These techniques can be 

subdivided in 2 categories: a) ensemble methods measuring the average diffusion of population of 

receptors and b) single-molecule detection techniques which enable to track individual receptors over 

time. 

 

a) Measure of NMDAR lateral mobility 

 

a.1) Ensemble methods  

 

Electrophysiology 

One of the first hints that NMDAR diffuse within the membrane was provided by 

electrophysiological approaches combined with the NMDAR blocker MK-801. As MK-801 is an 

irreversible open channel blocker (Huettner, 1988), it enables to irreversibly tag and block synaptic 

(opened) NMDAR. After blockade of NMDAR-mediated synaptic responses with MK-801 and 

subsequent washout, a recovery of responses was observed after several minutes (Figure 12) (Tovar 

and Westbrook, 2002). This recovery being absent when all surface NMDAR were blocked by co-

application of NMDA and MK-801, it could not be attributed to the insertion of new NMDAR within the 

membrane. Instead, the authors suggest that NMDAR move laterally and contribute to the recovery of 

responses when entering synapses. As far as 65% of synaptic NMDAR were exchanged within 7 

minutes, showing that a large portion of NMDAR are mobile in young hippocampal neurons. Using a 

similar approach, Harris and Pettit did not find any recovery of the NMDAR synaptic currents after 

synaptic blockade with MK-801 and washout (Harris and Pettit, 2007). Such a discrepancy could be due 

to differences in the brain preparation (hippocampal culture versus hippocampal slice) or the 

developmental age of the neurons (1-week versus 2-3 week old). 
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Figure 12. NMDAR-mediated synaptic currents recovered following the blockade of synaptic NMDAR but not 

total surface receptors (adapted from Tovar and Westbrook, 2002). Left, Following bath application of NMDA 

and MK-801 to block all membrane NMDAR, no recovery of the NMDAR-EPSC was observed. Right, After synaptic 

stimulation in the presence of MK-801, recovery of the NMDAR-mediated currents was observed after few 

minutes of wash. It was hypothesized that the recovery is due to the recruitment of extrasynaptic membrane 

NMDAR to synapses. 

 

Fluorescence recovery after photobleaching (FRAP) 

The FRAP technique was developed by Axelrod and Webb in the 70’s (Axelrod et al., 1976a). It 

consists to bleach (or “switch-off”) fluorescent molecules in a specific area and to observe the recovery 

of the fluorescence in the same area. As the photobleaching is an irreversible process, the recovery is 

caused by the entry of fluorescent molecules inside the “bleached” area and thus, can provide 

information about the diffusion of a population of receptors. In fact, two parameters can be extracted 

from the recovery curves: the coefficient of diffusion of the molecules and the extent of recovery at 

the end of the experiment, which characterizes the mobile fraction of molecules. The first FRAP 

experiment on NMDAR was done by labelling the receptors with conotoxin (a NMDAR blocker) bound 

to tetramethylrhodamine on cortical neuronal cultures (Benke et al., 1993). However, because the 

neurons were incubated during 1h, a time lapse sufficient to induce NMDAR endocytosis (Roche et al., 

2001), it is unlikely that the NMDAR mobility was characterized in a pure population of surface NMDAR, 

but rather involved the contribution of internalized NMDAR. Taking advantage of the Super Ecliptic 

Fluorin (SEP), which is a pH-sensitive derivative of GFP that fluoresces at extracellular pH but not in 

acid intracellular compartments (Ashby et al., 2004), Bard et al. characterized the surface diffusion of 

NMDAR in hippocampal neurons (Bard et al., 2010). The recovery of fluorescence reaches 50% in 

dendrites and 20% in synapses, meaning that most synaptic NMDAR (80%) are immobile. Accordingly, 
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Sharma et al. found an almost similar fraction (70%) of immobile synaptic NMDAR in neuronal cultures 

(Sharma et al., 2006). 

 

a.2) Single particle techniques 

 

High resolution techniques : Quantum dots 

Quantum dots (QD) (10-30 nm) are passive nanoparticules composed of an inorganic 

semiconductor crystal, coated and functionalized for biological applications (Groc et al., 2007b). 

Compared to single dyes, QD exhibit several advantages. First, they are brighter, so that they can be 

excited by a mercury lamp and they are much more photostable, allowing to record longer trajectories 

of receptors. In addition, they are subjected to blinking, a random alternance between “on” and “off” 

states of fluorescence, which provides a criterion to identify individual QD (Michalet et al., 2005). 

Because of their high signal-to-noise ratio, fluorescence signals of a single QD can be fitted with a two-

dimensional Gaussian function as it acts as a single point emission. This allows to identify the centroid 

of the signal with a pointing accuracy of 5-20 nm (Groc et al., 2007b), which is well below the diffraction 

limited resolution of a typical wide-field fluorescence microscopy (250 nm). Therefore, membrane 

receptors can be tracked during several seconds by single QD coupled to primary antibodies against 

an extracellular part of the receptors (Figure 13). From the reconstructed trajectories, several 

parameters can be extracted (Triller and Choquet, 2008):  

1) The mean square displacement (MSD) over time, MSD(t) = <r2> (t) = 4Dr, with D the 

instantaneous diffusion coefficient (Figure 13). As it is the mean area explored by receptors over time, 

MSD reflects the diffusion behaviour of the receptors. In the case of Brownian diffusion, the MSD plot 

is linear whereas it tends to a plateau when the diffusion is confined. 

2) The instantaneous coefficient of diffusion (D) (µm2/s), estimated from the linear fit of the 

first four points of the MSD plot over time, represents the speed of the receptors within the plasma 

membrane 

3) The immobile fraction, estimated by the first point of the cumulative distribution of the 

diffusion coefficient, characterizes the proportion of immobile receptors. 

 

Although QD display several advantages, they are bulky and bigger than single dyes. Because 

the total size of the QD-antibody-receptor can reach a size of 30 nm, it may influence the diffusion 

properties in restricted areas, such as synapses. Accordingly, receptors followed by QD were less 

localized in synapses than when tracked by single dyes (Groc et al., 2007b). However, receptors 

coupled to QD still enter the synapses (Dahan, 2003). In addition, the diffusion coefficient of mobile 

receptors and the immobile fraction were not different between receptors tracked by QD and single 



50 

 

dyes (Groc et al., 2007b).  Therefore, QD tracking enables to follow membrane receptors in the synaptic 

and extrasynaptic compartments, and the recent development of smaller probes should allow a better 

access to synapses (Chamma et al., 2016). 

 

Figure 13. Detection and tracking of single receptors with quantum dots (QD) imaging. A) Schematic 

representation of a receptor targeted by a QD-primary antibody (Ab) complex in the extracellular compartment. 

B) Single QD-Ab complexes are detected and tracked by imaging 500 frames at 20 Hz. C) Trajectories of single 

QD-Ab  complexes collected over 500 frames are reconnected with a dedicated multi-dimensional image analysis 

software. To take into account the blinking of the tracked QD, the software allows to reconnect trajectories 

constructed during the non-blinking states. D) Plot of mean square displacement (MSD) over time for a receptor 

trajectory (blue curve). Compared to the behaviour of a freely diffusing molecule (dotted grey line), receptors 

display a more confined behaviour, due to the alternance of diffusion in the extrasynapic sites and stabilization 

in the synapses. 

 

Super resolution techniques 

To decipher the localization of molecules with a nanometer spatial resolution,  several super 

resolution methods based on image reconstruction such as the photoactivatable localization 

microscopy (PALM) (Betzig et al., 2006) or the points-accumulation-for-imaging-in-nanoscale-

topography (PAINT)  (Sharonov and Hochstrasser, 2006) have been developed and give access to the 

localization of a high number of individual molecules. Using total internal reflection fluorescence (TIRF) 

that enables to illuminate the cell surface, single particle tracking (spt) of membrane proteins was 

obtained at high density by sptPALM with a high spatial resolution in living cells (Manley et al., 2008). 

Besides, an optimized version of PAINT, called uPAINT, was successfully used to study the diffusion of 

endogenous glutamate AMPA receptors on living neurons (Giannone et al., 2010). By imaging diffusing 

proteins at high density with a nanometer resolution, sptPALM and uPAINT appear as powerful 

techniques to better understand the diffusing behaviour of membrane receptors in living neurons.  
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b) Role of NMDAR surface trafficking 

 

Since the discovery that NMDAR diffuse laterally within the plasma membrane, several studies 

have investigated their putative functional role.  As surface trafficking regulates the membrane 

distribution of the receptor, it seems that the surface dynamics contributes to several processes 

involving a change in NMDAR membrane localization.  

 

Role in synaptic maturation during development 

It is well established that NMDAR subunits composition change over development. Indeed, in 

situ hybridizations showed that the GluN2B subunit is predominant in the early development in several 

structures whereas, after the second postnatal week, GluN2A predominates (Monyer et al., 1994). 

Using electrophysiological approaches, Carmignoto and Vicini observed that the NMDAR-EPSC decay 

time was longer in cortical neurons from young rats than from adults (Carmignoto and Vicini, 1992), 

consistent with a developmental change in NMDAR subunit composition occurring in the brain. A 

similar switch was reported in hippocampal neurons, with NMDAR-EPSC decay time becoming faster 

with age (Kirson and Yaari, 1996; Bellone and Nicoll, 2007). Besides, NMDAR-mediated synaptic 

currents were highly sensitive to the GluN2B specific antagonist ifenprodil at early developmental 

stages in hippocampus slices, and weakly sensitive after 2-3 postnatal weeks (Bellone and Nicoll, 2007). 

Accordingly, western blot analysis revealed that the GluN2A subunit level was dramatically increased 

after 2 weeks in vitro in hippocampal neurons and in the cortex of PD 15 rats (Sheng et al., 1994; 

Ferreira et al., 2015). Thus, these data indicate that synaptic GluN2B- are replaced with GluN2A-

containing NMDAR during postnatal development in several brain regions. Remarkably, this 

developmental switch of NMDAR subunit composition is influenced by sensory experience and activity. 

Visual deprivation by rearing rats in the dark enhanced the sensitivity to ifenprodil while decreasing 

the NMDAR-mediated EPSC decay kinetics in the cortex, congruous with a decreased GluN2A/GluN2B 

subunits ratio (Philpot et al., 2001). On the contrary, visual experience decreased the proportion of 

GluN2B-containing NMDAR, showing that this effect is reversible (Philpot et al., 2001). Blocking 

NMDAR activity with D-APV prevented the switch from GluN2B to GluB2A subunits (Matta et al., 2011) 

and therefore, confirms the activity-dependent regulation of the NMDAR composition switch. 

Interestingly, this process was independent of protein synthesis (Matta et al., 2011), possibly 

suggesting that a redistribution of surface NMDAR subunits could occur through lateral diffusion. In 

line with this hypothesis, Groc et al. showed by single particle tracking that the developmental switch 

of synaptic NMDAR composition occurring during the first two postnatal weeks in culture was 

correlated with a developmental change of the time spent by the GluN2 subunits within the synapses 

(Groc et al., 2007a). The residence time (time spend within the synapses) of GluN2B-contaning NMDAR 



52 

 

was drastically decreased by a factor 3 between 8 and 15 days and became inferior to the resident 

time of GluN2A-containing NMDAR. From these data, it emerges that the developmental switch of 

NMDAR composition results from the differential stabilization of surface GluN2B and GluN2A subunits 

within synapses, with a higher stabilization of synaptic GluN2B and GluN2A subunits at 8 and 15 days 

in culture respectively. What could be the factors impacting the synaptic stabilization of NMDAR? One 

candidate is the extracellular matrix protein reelin. Using a combination of single particle tracking and 

electrophysiology in hippocampal culture, Groc et al. demonstrated that reelin contributed to the 

developmental maturation of excitatory synapses by regulating the lateral diffusion of GluN2B 

subunits and their time spent in synapses (Groc et al., 2007a). Recent evidence also highlighted that 

NMDAR co-agonists D-serine and glycine regulate the surface trafficking and the synaptic content of 

NMDAR subunits. Since D-serine and glycine availability is regulated during the postnatal development 

(Le Bail et al., 2015), it was proposed that the NMDAR co-agonists modulate the developmental switch 

of NMDAR subunits (Ferreira et al., 2017). 

 

Role in synaptic plasticity 

Although the contribution of NMDAR to synaptic plasticity (LTD and LTP) is well established, 

the involvement of NMDAR subunits and the relative change in NMDAR signaling following plasticity 

is less clear. Regarding LTP, the prevailing view was that GluN2A is the predominant subunit required 

for its expression. Indeed, LTP induced by tetanic stimulation was reduced in the hippocampus of 

GluN2A knock-out mice (Sakimura et al., 1995) and in mice expressing a C-terminal truncated form of 

GluN2A subunit (Sprengel et al., 1998). Pharmacological approaches using GluN2A preferential 

blockers confirmed these findings (Liu et al., 2004; Papouin et al., 2012). Contrary to Liu et al. who 

found that blocking GluN2B subunit did not impair LTP, evidence for the contribution of GluN2B 

subunit in LTP was provided by others (Bartlett et al., 2007; von Engelhardt et al., 2008). For instance, 

blocking GluN2B containing NMDAR by ifenprodil or replacing synaptic GluN2B with GluN2A subunits 

by overexpression of GluN1/GluN2A subunits significantly decreased the extent of LTP in hippocampal 

organotypic slices (Barria and Malinow, 2005). In view of these data, the relative contribution of 

GluN2A and GluN2B subunits is still not fully understood but both subunits seem to be required for 

LTP. Besides, NMDAR subunit composition is changed following synaptic potentiation. Therefore, it 

seems that both GluN2A and GluN2B subunits are involved in LTP. Besides, NMDAR undergo changes 

in the subunit composition following synaptic potentiation. After LTP induction in hippocampal slices 

from young rats, the NMDAR-EPSC were less affected by the GluN2B blocker ifenprodil and exhibited 

faster decay kinetics (Bellone and Nicoll, 2007; Matta et al., 2011), which is characteristic of a loss of 

GluN2B subunits in the synapses and the insertion of GluN2A subunits. This switch was reversible by a 

depotentiation protocol and was absent after a LTP induction protocol in mature slices (Bellone and 
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Nicoll, 2007), suggesting that this form of plasticity was specifically expressed in immature synapses, 

when Glu2B-containing NMDAR predominate in synapses. Other forms of plasticity also involved a 

change in surface distribution of NMDAR. For instance, synaptic plasticity induced by cocaine exposure 

drives the insertion of GluN2B- and GluN3A-containing NMDAR in excitatory synapses from VTA DA 

neurons (Yuan et al., 2013). Moreover, Grosshans et al. could elicit a synaptic potentiation that 

required insertion of membrane GluN2A subunits In hippocampal slices from adults rats (Grosshans et 

al., 2002). Remarkably, although both GluN2A and GluN2B subunits likely contribute to LTP, several 

lines of evidence point to the predominant role of the synaptic distribution of GluN2B subunits in its 

induction. Transgenic rats overexpressing GluN2B subunits in the cortex and hippocampus exhibited 

enhanced LTP in the hippocampus (Wang, 2009), suggesting that the increased expression of synaptic 

GluN2B could promote LTP. Another study tackled directly the role of synaptic GluN2B-contaning 

NMDAR on LTP by disrupting the interaction between the synaptic anchoring protein PSD-95 and 

GluN2B subunits with a competing peptide (Gardoni et al., 2009). Treatment of hippocampal slices 

with this peptide specifically reduced synaptic GluN2B-containing NMDAR, and was accompanied with 

a reduction of LTP. Thus, these data highlight the changes in the NMDAR signaling following plasticity, 

although lacking direct evidence for such physical changes in receptors.  

To tackle this point, Dupuis et al. used single molecule imaging techniques to track the diffusion 

of GluN2A and GluN2B subunits following LTP (Dupuis et al., 2014). The authors showed that LTP 

induction was associated with an increased lateral diffusion of GluN2B subunits while GluN2A 

trafficking remained unaffected in immature hippocampal neurons. Remarkably, GluN2B subunits 

were displaced out of the synaptic and perisynaptic compartments. To further assess the role of 

GluN2B dynamics in synaptic plasticity, NMDAR surface trafficking was immobilized with a cross-link 

protocol, which consists of incubating neurons with primary GluN1 antibodies targeting the 

extracellular part of NMDAR and secondary antibodies (Dupuis et al., 2014). This protocol had the 

advantage of impairing specifically NMDAR surface trafficking without altering their function. Surface 

NMDAR cross-link prevented LTP induction by altering the redistribution of CAMKII into spines. As 

GluN2B subunit and CAMKII directly interact (Leonard et al., 1999; Barria and Malinow, 2005), these 

data support the view that the increased NMDAR surface trafficking during synaptic stimulation 

contributes to the synaptic translocation of CAMKII into the spines, which promotes LTP. Of interest, 

a similar approach of surface NMDAR cross-link was used in vivo in adults rats (Potier et al., 2015). 

Direct injection of GluN1 antibodies in the hippocampus blocked LTP and was accompanied by 

impairments of associative memory. Taken together, these data suggest that, beyond NMDAR 

activation, the surface trafficking of NMDAR per se is involved in LTP and the acquisition of associative 

memory. 
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 Regarding LTD, fewer studies are available and give conflicted results about the role of NMDAR 

subunits. Selective blockade of GluN2B-containing NMDAR abolished the induction of LTP in 

hippocampal slices from young rats (Liu et al., 2004). Similarly, i.p injection of a selective GluN2B 

subunit antagonist fully blocked hippocampal LTD in vivo (Fox et al., 2006). By contrast, overexpression 

of GluN2B subunits in forebrain structures, which up-regulated the contribution of synaptic GluN2B, 

failed to affect LTD induced by two different protocols in hippocampal slices (Tang et al., 1999). Bartlett 

et al. also found that LTD was unaffected by a GluNB2 selective antagonist, but was blocked in presence 

of a GluN2A selective antagonist (Bartlett et al., 2007). Such discrepancies between studies could result 

from differences in the preparation (slice or in vivo), the age of animals or the induction protocol used. 

Although no study has investigated the role of NMDAR surface diffusion in LTD, several hints suggest 

that the mobility of NMDAR could be involved as well. Peng et al. elicited an LTD of the NMDAR-EPSC 

in hippocampal slices that was unaffected by exocytosis and endocytosis inhibitors (Peng et al., 2010). 

In addition, this LTD increased the NMDAR-EPSC decay kinetics and the contribution of ifenprodil-

sensitive synaptic currents; and was blocked when actin dynamics was altered by pharmacology. Given 

that the actin cytoskeleton contributes to the synaptic anchoring of NMDAR (Allison et al., 1998), these 

data support a model in which LTD induces a redistribution of surface GluN2B-containing NMDAR into 

synapses by lateral diffusion within the membrane.  

 

In conclusion, it is challenging to determine the precise role of NMDAR subunits in LTP and/or 

LTD. However, these studies shed a new light on the contribution of NMDAR subunits, by showing that 

their membrane dynamics could be a common mechanism to regulate both LTP and LTD. 

 

c) Modulators of NMDAR surface trafficking 

 

NMDAR lateral mobility is regulated by several proteins. These proteins can be in the extracellular 

environment, intracellular partners or receptors anchored in the plasma membrane. 

 

Extracellular interactors  

Proteins of the extracellular matrix: example of Reelin. Reelin is a glycoprotein from the 

extracellular matrix. This protein modulates the glutamatergic transmission, as application of reelin 

enhanced both NMDAR-mediated synaptic transmission and LTP in hippocampal neurons (Qiu et al., 

2006). Groc et al. further investigated the molecular mechanisms underlying the modulation of 

NMDAR by reelin in culture. Inhibiting reelin function prevented the decrease of GluN2B subunits-

mediated synaptic currents occurring during development and was correlated with a greater 

stabilization of GluN2B subunits in synapses. On the reverse, chronic treatment with reelin 
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dramatically reduced the time spent by GluN2B subunits in immature synapses and suppressed their 

contribution to the NMDAR-EPSC in immature neurons. Remarkably, the developmental switch of 

synaptic GluN2B to GluN2A subunits occurring between 8 and 10-12 days in culture was concomitant 

with an upregulation of reelin within synapses (Groc et al., 2007a). Thus, reelin modulates NMDAR 

surface trafficking and thereby, likely contributes to the maturation of excitatory synapses in neurons.  

 

NMDAR co-agonists. One of the major hints arguing that NMDAR co-agonists could modulate 

the receptor surface dynamics comes from the work of Papouin et al., who showed that glycine and D-

serine co-agonists differentially regulated the surface trafficking of GluN2A- and GluN2B-contaning 

NMDAR in the hippocampus (Papouin et al., 2012). GluN2A subunit-mediated currents were slowed 

down by exogenous application of glycine but unaffected by D-serine. On the reverse, the diffusion of 

GluN2B subunits was reduced following D-serine but not changed by glycine. By further investigating 

the mechanisms involved in the modulation of NMDAR trafficking by co-agonists, Ferreira et al. found 

that application of D-serine reduced the synaptic content of GluN2B subunits by altering the binding 

of NMDAR with the synaptic anchoring protein PSD-95 (Ferreira et al., 2017). Fluorescence resonance 

energy transfer (FRET) revealed that this alteration resulted from a conformational change of the C-

terminal of NMDAR (Ferreira et al., 2017), which is known to regulate the binding of several 

intracellular proteins like PSD-95 (Bard et al., 2010). Since the developmental switch of GluN2A and 

GluN2B subunits occurring during the development in the hippocampus is paralleled by a change in 

the co-agonist levels (Le Bail et al., 2015; Ferreira et al., 2017), it is proposed that the co-agonist 

availability may underlie the maturation of excitatory synapses during development by regulating 

NMDAR membrane dynamics. 

  

Intracellular proteins 

MAGUKs (membrane-associated guanylate kinases). MAGUKs are a superfamily of proteins 

with PDZ-binding domains, which accumulate in the PSD. Among them, PSD-95, PSD-93, SAP-102 and 

SAP-97 participate to the regulation of NMDAR trafficking. Triple knock down of PSD-95, PSD-93 and 

SAP-102 reduced the NMDAR-mediated synaptic transmission in hippocampal neurons and was 

accompanied by a decrease in the number of NMDAR assessed by electron microscopy tomography 

(Chen et al., 2015), indicating that MAGUK proteins contributed to the stabilization of NMDAR in 

synapses. Accumulating evidence converge to the view that this stabilization is mediated by the 

interaction of the MAGUK proteins with the C-terminal of GluN2 subunits. Overexpression of C-

terminal mutants of GluN2B subunits increased the total number of NMDAR at the surface without 

changing NMDAR synaptic current, indicating the incapacity of C-term mutants NMDAR to enter the 

synapses (Prybylowski et al., 2002). Furthermore, Gardoni et al. found that application of a permeable 
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peptide mimicking the last amino-acids of the C-term of GluN2B (TAT-2B) disrupted the interaction 

with PSD-95, SAP-102 and SP-97, and redistributed GluN2B-containing NMDAR outside synapses 

(Gardoni et al., 2006). Regarding GluN2A subunits, similar interactions with MAGUK proteins seem to 

regulate the synaptic retention of NMDAR. GluN2A subunits with a truncated C-term were less 

concentrated in synapses than the full-length wt, and decreased the NMDAR-mediated synaptic 

currents (Steigerwald et al., 2000). As extrasynaptic NMDAR were not affected by the truncated form 

of GluN2A, this indicated that the C-term was required to enter synapses. Using combined single 

particle tracking and co-immunoprecipitations, it was shown that the presence of a divalent peptide 

mimicking the last amino-acids of the C-terminal of GluN2A subunits increased the surface diffusion of 

synaptic GluN2A subunits by disturbing the interaction between NMDAR and PSD-95 in hippocampal 

neurons (Bard et al., 2010). As a consequence, GluN2A subunits were displaced out of synapses; and 

as the kinetics of the NMDAR-EPSC were slower and more sensitive to the GluN2B blocker ifenprodil 

in the presence of the biomimetic peptide (Bard et al., 2010), it indicated a compensatory insertion of 

synaptic GluN2B-containing NMDAR. Therefore, MAGUK proteins modulate the trafficking of NMDAR 

by contributing to their synaptic anchoring. 

  

CAM kinase II (calcium/calmodulin-dependent protein kinase II). CAMKII is a kinase protein 

involved in a multitude of biological processes including LTP (Lisman et al., 2012). Following NMDAR 

activation, the increase of intracellular calcium activates calmodulin, which in turn activates CAMKII 

and promotes its autophosphorylation (Shen and Meyer, 1999). Once activated, CAMKII is translocated 

into the PSD (Shen and Meyer, 1999), which favors its binding with NMDAR (Leonard et al., 1999). 

Besides, the interaction between CAMKII and the C-terminal of GluN2B subunits locked the kinase in 

an active conformation, enabling to sustain CAMKII activity without calmodulin (Bayer et al., 2001), 

thereby enabling LTP (Barria and Malinow, 2005). Notably, this effect is specific to GluN2B subunits, as 

GluN2A subunits weakly interact with CAMKII (Leonard et al., 1999; Barria and Malinow, 2005). 

Application of CAMKII blockers strongly reduced the surface dynamics of synaptic GluN2B while it did 

not change the diffusion of synaptic GluN2A subunits in hippocampal culture (Dupuis et al., 2014), 

consistent with a negligible binding between GluN2A subunits and CAMKII. Moreover, the expression 

of GluN2B mutants with a dual point mutation that prevented its binding with the kinase (Strack et al., 

2000), blocked the increased diffusion of membrane GluN2B subunits induced by chemical LTP (Dupuis 

et al., 2014). Therefore, NMDAR surface trafficking is regulated by CAMKII activity and by direct 

interaction with the kinase. In this study, other kinases such as casein kinase II were also shown to 

affect the lateral mobility of NMDAR in culture (Dupuis et al., 2014). 
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Transmembrane receptors : example with DAR 

At the functional level, it was first shown that NMDAR synaptic transmission was influenced by 

DA receptors (Harvey and Lacey, 1997). Application of D1/D5 agonists induced either a depression or 

a potentiation of the NMDAR-EPSC in hippocampal CA1 neurons, depending on GluN2 subunits (Varela 

et al., 2009). Activation of the D2-family receptors depressed NMDAR-dependent synaptic currents in 

hippocampal, cortical and striatal neurons (Cepeda et al., 1993; Beazely et al., 2006). In addition to this 

functional coupling, NMDAR and DAR physically interact, with D1R associating with GluN1 and GluN2A 

subunits via its C-tail (Lee et al., 2002) and D2R with GluN2B subunits (Liu et al., 2006).  Acute disruption 

of D1R-GluN1 interaction by a cell permeable peptide mimicking the last amino-acids of the C-term of 

D1R altered the clustering of D1R in the vicinity of PSD and displaced the receptors out of the synapses 

by increasing their lateral diffusion (Ladepeche et al., 2013). This alteration was accompanied with a 

redistribution of GluN1 subunits in synapses, leading to an enhancement of NMDAR-mediated synaptic 

currents and LTP in hippocampal neurons. Since similar modifications were observed following 

pharmacological activation of D1R (Ladepeche et al., 2013), it was proposed that D1R activation 

disrupted the interaction with NMDAR. Therefore, D1R were redistributed in the extrasynaptic 

compartment and NMDAR reached synapses, which promoted the NMDAR-mediated synaptic 

transmission. 

 

d) Altering NMDAR trafficking with NMDAR antibody 

 

Crosslink of NMDAR with commercial antibodies 

The first studies using commercial antibodies to modulate receptors surface trafficking were 

conducted on AMPAR on cultured hippocampal neurons (Groc et al., 2008; Heine et al., 2008) 

Incubating the cultures with GluA2 antibodies targeting an extracellular epitope in the N-term of 

AMPAR immobilized (or crosslinked) the receptors in both the synaptic and the extrasynaptic 

compartments (Heine et al., 2008). However, the amplitude and the kinetics of AMPAR-EPSC were 

unchanged, allowing to directly investigate the role of AMPAR trafficking per se with the crosslink 

without modifying receptor activity. Few years later, a similar approach was used to study the role of 

NMDAR trafficking. Incubating cultured hippocampal neurons with GluN1 antibodies targeting an 

epitope on the N-terminal of NMDAR (X-link GluN1) coupled to secondary antibodies dramatically 

reduced the surface diffusion of GluN1 (Figure 14) but did not change the synaptic content of NMDAR 

in hippocampal culture (Dupuis et al., 2014). Besides, it did not affect either the calcium influx through 

NMDAR following NMDA application, or the properties of spontaneous NMDAR-EPSC regarding the 

frequency, the amplitude and the kinetics. The absence of effect of the X-link GluN1 on synaptic 

transmission was further demonstrated in vivo, where stereotaxic injection of GluN1 antibodies in the 
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hippocampus did not modify basal synaptic transmission (Potier et al., 2015). Finally, since X-link GluN1 

effectively reduced the lateral diffusion of NMDAR in dissociated neurons (Dupuis et al., 2014) and in 

organotypic slices (Varela et al., 2016) and induced a similar alteration of the synaptic plasticity in 

cultured neurons and in acute slices (Dupuis et al., 2014), this protocol is a reliable and powerful way 

to specifically study the impact of NMDAR surface trafficking  both in vitro and in more integrated 

preparations.  

Figure 14. X-link GluN1 immobilizes the diffusion of membrane NMDAR in hippocampal neurons from primary 

culture and organotypic slices (adapted from Dupuis et al., 2014; Varela et al., 2016). A) Trajectories of single QD-

GluN1 (yellow traces) in hippocampal culture before (left) and after X-link GluN1 (middle). Application of GluN1 

Ab (primary Ab) and secondary Ab shorten the GluN1 trajectories. Right, The cumulative distribution of GluN1 

diffusion coefficient in control and X-link GluN1 conditions showed that GluN1 subunits diffuse less  with X-link. 

B) Left, Schematic representation of X-link GluN1 protocol, consisting of incubating GluN1 primary Ab in 

hippocampal organotypic slices. Trajectories of single QD-GluN1 complexes in control (middle) and X-link 

conditions are represented (bottom). Middle, Plot of MSD over time of GluN1 subunits in control and X-link 

conditions in organotypic slices. The behaviour of GluN1 subunits is more confined in the presence of X-link 

GluN1. Right, The diffusion coefficient of NMDAR is significantly decreased by X-link GluN1. 

 

Alteration of NMDAR surface trafficking with auto-antibodies against NMDAR 

 In 2007, a severe form of encephalitis associated with auto-antibodies (Ab) against the GluN1 

subunits of NMDAR was reported (Dalmau et al., 2007). Patients with anti NMDAR encephalitis first 

developed several symptoms consisting of headaches, fever, nausea and after few weeks, psychiatric 

symptoms appear like anxiety, paranoia and social withdrawal (Dalmau et al., 2011). Expression of a 

mutated form of GluN1 subunits in HEK cells decreased the reactivity of serum patients, suggesting 

that NMDAR auto-Ab target an extracellular epitope on GluN1 subunits (Dalmau et al., 2008). 

A 

B 
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Compelling evidence indicates that these Ab affect the membrane content of NMDAR. Chronic 

treatment with patients’ Ab decreased the number of NMDAR clusters in hippocampal neurons in vitro 

(Dalmau et al., 2008) and in vivo (Hughes et al., 2010). In this latter study, the authors reported that 

this chronic treatment also reduced the synaptic NMDAR clusters in vitro, and was associated with a 

decrease of NMDAR-mediated synaptic currents. In line with these studies, long exposure with patients 

auto-Ab prevented the induction of LTP in cultured neurons (Mikasova et al., 2012). Therefore, the 

chronic treatment of NMDAR auto-Ab impaired NMDAR synaptic function by promoting its 

endocytosis. Although less investigated, acute treatment with patients’ Ab seems to involve other 

mechanisms than endocytosis. Indeed, 2-5h exposure with auto-Ab increased the diffusion of synaptic 

GluN2A subunits and altered their interaction with the receptor kinase EphB2 (Mikasova et al., 2012). 

This latter interacts with NMDAR by the extracellular domains in response to the binding of the EphB 

ligand (Dalva et al., 2000) and favours the clustering of synaptic NMDAR (Henderson et al., 2001). From 

these data, it emerged that acute exposure to auto-Ab decreased the synaptic retention of GluN2A-

containing NMDAR by altering its coupling with the receptor kinase EphB2. In addition to encephalitis, 

auto-Ab against NMDAR were also associated to schizophrenia, which is a debilitating disorder 

characterized by psychotic symptoms including delusions and hallucinations (Tsutsui et al., 2012; 

Pearlman and Najjar, 2014). Noteworthy, the presence of NMDAR auto-Ab in schizophrenia patients is 

still a matter of debate, and might depend on the detection methods used (Sinmaz et al., 2015). 

Similarly to encephalitis, acute exposure to auto-Ab from schizophrenic patients increased the surface 

trafficking of GluN2A subunits and dramatically reduced their synaptic stabilization, impairing the 

NMDAR-dependent LTP (Jezequel et al., 2017). Since the synaptic content of EphB2 receptors was also 

impaired in this condition, it favours a scenario in which auto-Ab alter the synaptic stabilization of 

NMDAR-containing GluN2A subunits by disturbing the synaptic anchoring partner EphB2 receptor. 

Notably, the acute exposure to auto-Ab did not change the membrane content of synaptic NMDAR, 

neither the NMDAR-mediated calcium transients (Jezequel et al., 2017), indicating that these effects 

were not mediated by NMDAR endocytosis or alterations of NMDAR channel activity but rather results 

from an abnormal NMDAR surface diffusion.  

 

B. On midbrain DA neurons 

 

Since decades, investigating the role of NMDAR in midbrain DA neurons was challenging 

because of technical limitations. The midbrain and in particular the VTA are composed of several 

neuronal types such as DA neurons, GABA interneurons and some glutamatergic neurons (Swanson, 

1982; Yamaguchi et al., 2007; Nair-Roberts et al., 2008; Dobi et al., 2010; Margolis et al., 2012). This 
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renders the pharmacological approaches using injection of NMDAR antagonists in the VTA quite hard 

to interpret, as the effects observed in the presence of NMDAR modulators can be due to a direct 

effect on NMDAR contained in DA neurons or to a “network” effect caused by action on NMDAR from 

another neuronal type. The role of NMDAR was also investigated with transgenic GluN1 null mice who 

had a ubiquitous deletion of GluN1 subunits (Forrest et al., 1994). But using these mice could be 

problematic because they died several hours after birth. Besides, as the deletion is ubiquitous, it is 

challenging to draw final conclusions about the role of NMDAR in the studied structure. Fortunately, 

the generation of conditional knock out mice has enabled to selectively remove NMDAR in midbrain 

DA neurons (Zweifel et al., 2009) and thus, helped to decipher the involvement of NMDAR in various 

processes. For this reason, studies using conditional knock out mice will be more developed in this 

part. However, it should be mentioned that one cannot rule out that some compensatory mechanisms 

can occur during development and account for some effects observed in these mice. 

 

1. Role of NMDAR in physiological and pathological conditions 

 

Role in synaptic plasticity 

NMDAR is responsible for the induction of NMDAR-dependent LTP and LTD, which mostly rely 

on the incorporation and removal of synaptic AMPAR respectively (Lüscher and Malenka, 2012). 

Because synaptic plasticity was mostly described in the hippocampus in the CA3-CA1 synapse, one can 

wonder if similar plasticity (LTP and/or LTD) can occur in midbrain DA neurons. In 1999, two 

independent teams tested if LTP could also be elicited in vitro in DA neurons from VTA (Bonci and 

Malenka, 1999) and SNc acute slices (Overton et al., 1999). In both groups, strong electrical stimulation 

induced a potentiation of the responses amplitude that lasted at least 40 minutes and was completely 

abolished in the presence of NMDAR blockers, two properties similar to NMDAR-dependent LTP 

encountered in the hippocampus. The presence of NMDAR-dependent LTP was further supported by 

the fact that mice lacking NMDAR selectively in midbrain DA neurons did not exhibit LTP following high 

frequency stimulation (Zweifel et al., 2008). Beyond the role of NMDAR in the induction of “classical’ 

LTP, another form of plasticity was identified in midbrain DA neurons and was expressed by an 

enhancement of NMDAR-mediated synaptic transmission (Harnett et al., 2009). This potentiation was 

induced by presynaptic stimulation paired with delayed bursts of AP evoked in the postsynaptic neuron 

and required both NMDAR activation and calcium release from intracellular stores. The induction of 

LTP of NMDAR did not change the extent of NMDAR-EPSC inhibition by GluN2B and GluN2A blockers 

(Harnett et al., 2009). Although the authors concluded that this LTD did not require change of synaptic 

NMDAR composition, one cannot exclude that LTP drives the synaptic insertion of tri-heteromers, 

which are less sensitive to these blockers than “pure” GluN2A and GluN2B di-heteromers, (Schilström 
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et al., 2006). In parallel, other groups investigated the presence of NMDAR-dependent LTD in DA 

neurons. Despite the fact that Jones and Kauer found that LTD could be elicited in midbrain DA 

neurons, this depression was distinct from hippocampus NMDAR-dependent LTD, because this LTD 

was NMDAR-independent and rather involved mGluR for its induction (Jones et al., 2000). Of note, 

pairing burst firing before presynaptic stimulation induced a depression of the NMDAR synaptic 

transmission (Harnett et al., 2009). Taken together, these data confirm the critical role of NMDAR in 

the induction and the expression of synaptic plasticity in midbrain DA neurons.  

 

Role in drug-induced modifications and addiction 

In the hippocampus, LTP is thought to be one of the mechanisms underlying memory 

formation, whereas it is thought to be associated with drugs exposure in the midbrain. Indeed, a  single 

exposure to cocaine induced a potentiation of excitatory synapses in midbrain DA neurons that 

resembles the LTP (Ungless et al., 2001). In particular, cocaine enhanced the excitatory synaptic 

strength measured by the ratio of AMPAR- over NMDAR-mediated synaptic currents (AMPA/NMDA 

ratio) in DA neurons, increased AMPAR synaptic currents, and occluded LTP induction in these neurons. 

Finally, this plasticity was prevented when the NMDAR blocker MK-801 was co-administered (Ungless 

et al., 2001) or more recently, when GluN1 subunit was genetically inactivated in midbrain DA neurons 

(Engblom et al., 2008). This indicates that, similarly to hippocampal LTP, induction of cocaine-driven 

potentiation requires activation of NMDAR. However, western blot analysis failed to reveal changes in 

AMPAR expression (Ungless et al., 2001), which clearly contrasts with the increased AMPAR expression 

occurring after LTP induction (Lüscher and Malenka, 2012). Bellone and Lüscher further unraveled the 

molecular mechanisms underlying this potentiation and found that the increase in AMPA/NMDA ratio 

was paralleled with a rise in the AMPAR rectification index (Bellone and Lüscher, 2006). As calcium-

permeable AMPAR displayed a strong rectifying synaptic response, it was proposed that cocaine-

induced potentiation was mediated by a switch to calcium permeable AMPAR at excitatory synapses 

onto DA neurons. Interestingly, this form of plasticity modulated not only AMPAR synaptic 

transmission but also NMDAR synaptic transmission. Electrophysiological recordings revealed that 

injection of cocaine changed NMDAR subunits composition with the insertion of GluN2B and GluN3A 

subunits at the excitatory synapses (Yuan et al., 2013). Given that GluN3A subunits confer a low 

conductance to NMDAR (Ciabarra et al., 1995; Henson et al., 2010), these results are consistent with 

the diminution of NMDAR-mediated synaptic transmission following cocaine administration previously 

reported (Mameli et al., 2011). By contrast, Schilstrom et al. observed the reverse effect on NMDAR 

synaptic currents following cocaine exposure (Schilström et al., 2006). A single injection of cocaine or 

the direct incubation of slices with cocaine enhanced the NMDAR-EPSC in VTA DA neurons, and was 

correlated with an incorporation of GluN2B subunits in the membrane (Schilström et al., 2006). 
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Although in disagreement, these studies demonstrate that the role of NMDAR is not limited to the 

induction of plasticity but that the receptors also participate to the expression of plasticity. To note, in 

vivo administration of other addictive drugs like morphine or nicotine also elicits potentiation of 

excitatory synapses in midbrain DA neurons (Saal et al., 2003), and enhances the AMPAR rectification 

index by a redistribution of calcium permeable AMPAR into synapses (Brown et al., 2010). Besides, 

nicotine-induced potentiation is blocked in presence of NMDAR antagonists, demonstrating the 

requirement of NMDAR to induce drug-driven synaptic potentiation (Mansvelder and McGehee, 2000). 

Given the wide range of action mechanisms of these drugs, it appears that NMDAR is a common target 

necessary to mediate synaptic plasticity driven by drugs of abuse. 

 

On the behavioral level, NMDAR contribute to various aspect of drug addiction. Locomotor 

sensitization is characterized by an increased locomotor activity of the animals following repeated drug 

administration, and it persists after drug administration stops. Genetic inactivation of NMDAR in 

midbrain DA neurons attenuated the locomotor sensitization after 21 days of withdrawal but not 3 

days, meaning that NMDAR are involved in the late phase of withdrawal-induced sensitization (Zweifel 

et al., 2008).  Using a similar genetic approach, Engblom et al. discovered that the relapse was also 

altered in mice lacking NMDAR in DA neurons (Engblom et al., 2008). The relapse, which is the 

reinstatement of drug-seeking behavior, can be triggered by drug exposition. Therefore, the authors 

investigated the effect of a single dose of cocaine to reinstate a conditioned place preference, a test 

modeling the drug seeking behavior. They found that, contrary to control mice that spent more time 

in the compartment associated with cocaine, mice lacking NMDAR on midbrain DA did not display any 

preference for this compartment (Engblom et al., 2008), indicating that these mice did not “relapse” 

following drug re-exposure. In view of these data, NMDAR seem to be particularly involved in the 

persistence of drug addiction.  

 

Role in burst firing 

As already mentioned in the section “I.3. Channels and receptors involved in the firing of 

midbrain DA neurons”, there is a bulk of data highlighting the central role of NMDAR in the generation 

of burst firing of midbrain DA neurons.  

 

Role in cue-dependent learning and habit 

By contributing to burst firing and synaptic plasticity, NMDAR appears as a key modulator of 

the activity of midbrain DA neurons. Because DA neurons activity is thought to encode reward–related 

and salient information like aversive stimuli (see section I.1. Role of midbrain DA in physiological and 

pathological conditions) that drives learning, the view has emerged that NMDAR might be involved in 
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all these processes as well. In accordance with this hypothesis, injection of NMDAR antagonists in the 

VTA modified the reward responses induced by electrical self-stimulation in rats (Bergeron and 

Rompré, 2013) and prevented the development of cue-reward association (Stuber, 2008). Taking 

advantage of the conditional knock out mice (KO GluN1DAT mice), Zweifel et al. reported that 

inactivating NMDAR function in midbrain DA neurons  impaired burst firing and altered a cue-

dependent learning associated with reward (Zweifel et al., 2008, 2009). To assess it, the authors used 

several tests including t-maze test, which consists of 2 arms with different visual cues, one arm (with 

vertical stripe cues) associated with accessible food and the other with inaccessible food (horizontal 

strip). Wild type mice chose more often to go to the arm associated with the accessible reward, 

reflecting that mice learned which arm was rewarding (Zweifel et al., 2009). By contrast, KO GluN1DAT 

mice entered in both arms with the same frequency, and thus were unable to correctly perform this 

task. Intriguingly, some DA-dependent behaviors like working memory or locomotor activity were not 

altered in these mice (Zweifel et al., 2008, 2009). These findings suggest that NMDAR and subsequent 

burst firing are necessary for cue-dependent learning associated with reward but do not contribute to 

other DA-dependent tasks. As tonic activity was not affected in these mice (Zweifel et al., 2009), it was 

interpreted that tonic DA could be sufficient to evoke some behaviors. Because DA neurons activity 

was also associated with the coding of aversive stimuli (Brischoux et al., 2009), the KO GluN1DAT mice 

were also used to test the implication of NMDAR onto DA neurons in this process (Zweifel et al., 2011) 

The startle responses of mice to a sound was monitored after fear conditioning was established by 

several presentation of aversive stimuli (foot shock) associated with a neutral stimuli (light pulse). As 

expected, wild-type mice startled more in presence of the cue (light pulse) previously associated with 

the foot shock, whereas mice lacking NMDAR in DA neurons startle to the same extent if the neutral 

cue was present or not. The absence of an increased startle responses suggest a deficit in the learning 

associated with aversive information. DA signaling being also required for habit learning (Faure et al., 

2010), Wang et al. investigated the implication of NMDAR by assessing navigation in water maze in 

these mice (Wang et al., 2011). Extensive training caused the wild type mice to switch from a cue-

based navigation that engages spatial memory to a habit strategy because the pathway in the maze 

was still the same to reach the searched target and did not require the use of cues anymore. On the 

contrary, KO GluN1DAT mice were unable to switch to a habit strategy (Wang et al., 2011), 

demonstrating that NMDAR on DA neurons are necessary for habit learning.  

 

Role in excitotoxicity and Parkinson’s disease (PD) 

It has long been hypothesized that glutamate, and in particular NMDAR, contribute to 

excitotoxicity on SNc DA neurons and might be involved in the etiology of PD (Surmeier et al., 2010). 

Chronic injection of MPTP, a neurotoxin that mimics PD by killing DA neurons, elevated extracellular 
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level of glutamate in the SN and was accompanied by the appearance of apoptosis and autophagy 

markers (Meredith et al., 2009). Besides, the anti-parkinsonian drug pramipexole attenuates the DA 

neuron loss induced by glutamate application in midbrain culture (Izumi et al., 2007). In vitro 

application of NMDAR antagonists prevented the loss of midbrain DA neurons induced by various toxic 

stimuli such as glutamate application (Sonsalla et al., 1998; Izumi et al., 2007) or a metabolic stress 

(Zeevalk et al., 1995) and attenuated it in response to both combined (Marey-Semper et al., 1995). 

Consistently, the presence of the NMDAR blocker memantine, used to treat neurodegenerative 

diseases including PD, prevented the DA cell loss evoked by NMDA application in SNc slices (Wild et 

al., 2013). In vivo, co-injection of MPP+, a derivative of the MPTP, with NMDAR antagonists such as 

MK-801 or CPP directly into the SNc provided protection against MPP+ induced toxicity (Turski et al., 

1991). However, some studies gave conflicting results about the importance of NMDAR in mediating 

toxicity induced by glutamate and/or metabolic stress. Several authors found that application of 

NMDAR antagonists provided a mild protection against the DA neuron loss induced by glutamate 

(Weller et al., 1993) or glutamate combined with a metabolic stress (Marey-Semper et al., 1995), and 

no protection for MPP+ induced toxicity (Sawada et al., 1996). In the study of Marey-Semper, the 

toxicity was also attenuated with AMPAR antagonists (Marey-Semper et al., 1995), suggesting that 

likely both NMDAR and AMPAR mediated excitotoxicity in midbrain DA neurons. Remarkably, the 

maturation of NMDAR synaptic transmission was altered in SNc DA neurons during development in a 

genetic mouse model of PD (Pearlstein et al., 2016). In this mouse, NMDAR-mediated synaptic 

transmission was severely decreased; in particular the bursts of NMDAR-mediated EPSC occurring in 

wild type mice during the first two weeks of postnatal development were almost absent. In addition, 

whereas GluN2D subunits contributed to NMDAR synaptic currents in SNc DA neurons from 1 week-

old wild type mice (Pearlstein et al., 2015), it was not the case in age-matched PD model mice 

(Pearlstein et al., 2016).  

In view of these data, the role of NMDAR onto DA neurons in excitotoxicity and PD is unclear 

and much remains to be worked out to fully understand its contribution in these processes. However, 

the recent discovery of Pearlstein and collaborators suggests that early alteration of NMDAR might 

lead to dysfunction of DA system, and thereby could contribute to long-term DA impairments in PD. 

 

2. Influence of NMDAR co-agonists on the DA system 

 

 The NMDAR co-agonists D-serine and glycine were first detected by high performance liquid 

chromatography in the rat midbrain (Hashimoto et al., 1993). Accordingly, the enzyme D-amino acid 

oxidase (DAO) responsible for the D-serine degradation was also found in the midbrain, and especially 

in DA neurons from SNc and VTA (Horiike et al., 1994; Verrall et al., 2007; Betts et al., 2014). Injection 
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of the DAO blocker sodium benzoate in the VTA increased the extracellular levels of DA and its 

metabolites in the cortex, suggesting a functional role of the co-agonist in the DA system (Betts et al., 

2014). Injection of the glycine binding site agonist D-cycloserine in the SNc also enhanced the 

extracellular level of DA in the dorsal striatum, and attenuated motor deficits induced by antipsychotic 

injections (Shimizu et al., 2017). Furthermore, DAO knock out mice exhibited a greater number of 

burst-firing VTA DA neurons in vivo, but no changes in the bursts properties and the overall firing rate 

were observed compared to control mice (Schweimer et al., 2014). Although the authors did not assess 

the D-serine content in the VTA, the absence of DAO should up-regulate its level and thereby, influence 

the firing of DA neurons. Because the firing rate of non VTA DA neurons (probably GABAergic neurons) 

was decreased in DAO knock out mice (Schweimer et al., 2014), the enhancement of burst firing might 

result from the decreased activity of GABAergic neurons and/or direct effects on the NMDAR-mediated 

transmission onto DA neurons.  

Up to now, the direct influence of the NMDAR co-agonist glycine on DA neurons activity was 

poorly investigated. Application of glycine transporter (Glyt1) inhibitors enhanced the amplitude of the 

NMDAR-mediated evoked synaptic currents in DA neurons from SNc acute slices (Schmitz et al., 2013), 

which is similar to what was found in hippocampal neurons (Bergeron et al., 1998). Besides, Glyt1 

inhibitors favoured the DA reinnervation of the striatum following loss of DA neurons by 6-OHDA 

injection, and restored motor deficits (Schmitz et al., 2013). Such recoveries were not observed in 

presence of Glyt1 inhibitors in mice line lacking NMDAR in DA neurons, confirming that the effects 

required the presence of NMDAR in DA neurons. Altogether, it appears that the NMDAR co-agonists 

influence the DA neuronal activity and the resulting behaviours. However, whether the reported 

effects are due to the direct modulation of NMDAR onto midbrain DA neurons or involved indirect 

effects through other neuronal types is still elusive and further investigations are needed to address 

this question. 

 

3. NMDAR expression and modulation in DA neurons 

 

Since NMDA application modify the firing pattern of midbrain DA neurons in vivo and in vitro 

(Seutin et al., 1990; Overton and Clark, 1992; Mereu et al., 1997), it was postulated that active NMDAR 

were present in these neurons. This was further corroborated by immunohistochemistry and in situ 

hybridization revealing the presence of GluN1 subunits in DA neurons from SNc and VTA (Paquet et 

al., 1997). Finally, synaptic stimulation evoked EPSC in DA neurons from midbrain acute slices that 

were partly inhibited by NMDAR antagonists (Mereu et al., 1991), confirming the existence of 

functional NMDAR in midbrain DA neurons. 
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a) NMDAR subtypes expression 

   

The NMDAR composition in midbrain DA neurons was inferred from in situ hybridizations, 

immunohistochemistry and electrophysiology approaches. In one week-old rats, Bellone et al. found 

that the NMDAR-mediated synaptic currents on VTA DA neurons were inhibited by the GluN2B 

antagonist ifenprodil, indicating the presence of GluN2B subunits in the early development (Bellone et 

al., 2011). In older rats (3 weeks-old), the GluN2A antagonist zinc produced a robust inhibition of 

NMDAR-EPSC whereas ifenprodil was poorly effective (Figure 15). These data reveal that excitatory 

synapses onto VTA DA neurons undergo a switch of synaptic GluN2B to GluN2A subunits during the 

postnatal development, similarly to what was found in the hippocampal synapses (Bellone and Nicoll, 

2007). It is worth noting that GluN3A subunits were detected by immunoblots in midbrain from young 

rats (Al-Hallaq et al., 2002) and in synaptosomes from both cortex and midbrain (Wee et al., 2016). 

Besides, exposure to cocaine drive the insertion of GluN3A subunits in VTA DA neurons (Yuan et al., 

2013; Creed et al., 2016). As cocaine mimics some changes observed during development and is 

thought to induce the re-juvenilation of synapses with the re-appearance of synaptic GluN2B subunits 

(Dong and Nestler, 2014), it is possible that midbrain DA neurons contain GluN3A subunits during the 

postnatal development. Therefore, it seems that synaptic NMDAR on VTA DA neurons are composed 

of GluN2B and potentially GluN3A subunits early in the development, and are replaced by GluN2A-

containining NMDAR after 2-3 postnatal weeks. 

 

Figure 15. Developmental switch of synaptic GluN2B- by GluN2A-containing NMDAR in DA neurons from VTA 

acute slices (adapted from Bellone et al., 2011). A) Top, Electrophysiology traces of NMDAR-EPSC in DA neurons 

from P2-P6 rats (Blue) and P14-P26 rats (light blue). Down, The NMDAR-EPSC decay kinetics is faster in PD 14-26 

rats. B) Top, Electrophysiology traces of NMDAR-EPSC in DA neurons from slices of P2-P6 rats (Blue) and PD 14-

A B C 
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26 rats (light blue) before and after the application of the GluN2A blocker zinc. The NMDAR-EPSC is significantly 

more sensitive to zinc in PD 14-26 rat slices. C) Up, Electrophysiology traces of NMDAR-EPSC in DA neurons from 

slices of PD 2-6 rats (Blue) and PD 14-26 rats (light blue) before and after the application of the GluN2B blocker 

ifenprodil. Down, The ifenprodil inhibited to a larger extent the NMDAR-EPSC in slices from PD 2-6 (blue) than 

PD 14-26 rats (light blue). 

 

In agreement with in situ hybridizations showing a preponderance of GluN2D in the midbrain 

in rats from 1 week-old and a further decline during development (Monyer et al., 1994; Wenzel et al., 

1995),  Brothwell et al. found that GluN2B and GluN2D subunits were present in SNc DA neurons from 

P7 rats (Brothwell et al., 2008). During development, the inhibition of NMDAR-EPSC by the GluN2D 

preferential antagonist UBP141 was unchanged whereas the ifenprodil block was reduced. These data 

argue against the replacement of GluN2B-containing NMDAR by GluN2D di-heteromers, but rather 

support the contribution of GluN2B/GluN2D tri-heteromers along development (Brothwell et al., 

2008), which was previously suggested by analysis of single NMDAR channel properties (Jones and 

Gibb, 2005). Pearlstein et al. also highlighted the presence of both GluN2B and GluN2D subunits in SNc 

DA neurons during early development and further showed that GluN2D subunits did not contribute to 

NMDAR-EPSC in young adult rats (Pearlstein et al., 2015), consistent with the observed decline of 

GluN2D mARN in the midbrain during development (Monyer et al., 1994). Strikingly, NMDAR-EPSC of 

SNc DA neurons were not affected by GluN2A preferential antagonists in juvenile rats (Jones and Gibb, 

2005; Brothwell et al., 2008; Suárez et al., 2010). Besides, Salamone et al. reported that DA release 

evoked by NMDA in synaptosomes from adult rat midbrain was not inhibited by GluN2A antagonists 

(Salamone et al., 2014). This suggests that NMDAR onto SNc DA neurons are devoid of GluN2A 

subunits. Taken together, these data indicate that immature SNc DA neurons the synaptic transmission 

is mediated by GluN2B and GluN2D subunits, probably assembled in diheteromers. During the 

development, these latter might be partially replaced by GluN2B -GluN2D tri-heteromers.  

In conclusion, these data highlight a marked difference in the synaptic NMDAR composition in 

DA neurons from SNc and VTA, and revealed that, similarly to other brain regions, this composition is 

developmentally regulated.  

 

b) Functional coupling of NMDAR and ionic channels:  focus on SK channels 

 

As observed in the hippocampus (Ngo-Anh et al., 2005; Hammond, 2006; Babiec et al., 2017), 

the amygdala (Faber et al., 2005) and the cortex (Faber, 2010), SK channels also modulate the synaptic 

activity of NMDAR in VTA DA neurons. Application of apamin potentiates NMDAR-mediated synaptic 

responses in DA neurons in vitro (Soden et al., 2013) and in vivo (Creed et al., 2016). Moreover, the 

NMDAR-EPSC in DA neurons from VTA slices from mice expressing a dominant negative mutant of SK 
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channels had a slower decay time than the EPSC from control mice (Soden et al., 2013), consistent with 

a “shunt” of NMDAR activity by SK channels in midbrain DA neurons. In this latter paper, the authors 

immunolabelled NMDAR and SK3 channels with gold particles and further demonstrated that these 

two proteins were in close proximity in the post-synaptic density of midbrain DA neurons (Figure 16), 

which is consistent with the modulation exerted by SK channels on synaptic NMDAR. 

Conversely, do NMDAR regulate SK channel activity? Whereas calcium influx through NMDAR 

activates SK channels in the hippocampus (Ngo-Anh et al., 2005), the amygdala (Faber et al., 2005) and 

the cortex (Faber, 2010), the situation appears less clear in the midbrain. When Paul et al. investigated 

the modulation of SK channels by NMDAR activity, they unexpectedly found that bath application of 

NMDA decreased the SK channels-mediated currents in DA neurons from midbrain slices (Paul et al., 

2003), implying that NMDAR negatively modulated SK channel function in these neurons. 

Nevertheless, even if Creed et al. did not directly investigate the coupling of NMDAR with SK channels, 

their work suggest that NMDAR activation could promote the activation of SK channels (Creed et al., 

2016). Indeed, exposure to cocaine, which drives the insertion of the calcium impermeable GluN3A 

subunits (Henson et al., 2010; Yuan et al., 2013), significantly reduced the function of SK channels in 

wild type mice but not in mice knocked down for GluN3A (Creed et al., 2016). These data indirectly 

suggest that in control conditions, calcium influx through NMDAR activate the SK channels, and that 

insertion of calcium impermeable GluN3A subunits impairs this coupling. Therefore, it is difficult to 

draw a clear cut conclusion about the direction of the modulation of SK channels but altogether, these 

data revealed the presence of a reciprocal coupling between NMDAR and SK channels in midbrain DA 

neurons, with NMDAR activation regulating SK channels function.  

Figure 16. NMDAR and SK3 channels are found in close proximity in the PSD of VTA DA neurons (adapted from 

Soden et al., 2013). A) Electron microscopy image of a double immunogold labelling of GluN1 subunits and SK3 

channels in VTA DA neurons. SK channels (10 nm gold particule) were detected in the extrasynaptic (black arrow) 

and in the synaptic (black arrowhead) compartments. Within the PSD, NMDAR (white arrowhead) and SK3 

channels (black arrowhead) are close to each other. Den : dendrite, at : axon terminal B) Analysis of the relative 

distribution of GluN1 subunits and SK3 channels along the PSD. NMDAR and SK3 channels follow a similar pattern 

of distribution within the synapses. 
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The existence of a functional coupling between these 2 partners was also inferred from their 

relative action on the firing pattern of midbrain DA neurons in slices. Interestingly, combining the 

activation of NMDAR and the inhibition of SK channels was more effective to elicit bursts in midbrain 

slices (Seutin et al., 1993; Prisco et al., 2002) than the modulation of SK channels or NMDAR alone 

(Shepard and Bunney, 1988; Johnson et al., 1992; Johnson and Wu, 2004), indicating that they both 

interact to promote the burst generation. Therefore, the coupling of NMDAR and SK channels appears 

to play a crucial role in the regulation of the firing pattern of midbrain DA neurons.  
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PhD OBJECTIVES 
 

 

 

It is well established that NMDAR and other ion channels such as SK channels modulate the 

firing pattern of midbrain DA neurons. However, the molecular mechanisms by which these two 

partners control the firing pattern remain elusive. The development of single molecule imaging 

revealed that NMDAR are mobile within the plasma membrane of hippocampal neurons. This appears 

as a key mechanism to regulate their membrane distribution. Since the functional interaction between 

NMDAR and SK channels highly depends on their relative membrane localization, NMDAR membrane 

trafficking might modulate the firing pattern of midbrain DA neurons by regulating its interplay with 

SK channels. 

 

In the first part of my thesis, the objective was to investigate the surface dynamics of NMDAR 

in midbrain DA neurons. To do so, single particle tracking with quantum dots was used to track the 

diffusion of membrane NMDAR in cultured DA neurons from TH-tdTomato mice and in human induced 

pluripotent stem cells (iPSC)-derived DA neurons. Since cultured DA neurons lack the glutamatergic 

inputs and the tissue architecture of native preparations, I also wanted to characterize the lateral 

mobility of NMDAR in a more integrated preparation, i.e rodent midbrain acute slices. Although 

challenging, our team recently developed a protocol to track surface tagged receptors in hippocampal 

acute slices by single molecule imaging techniques, which was the subject of a publication (annexe 1). 

However, due to technical limitations described in the annexe 2, it was impossible to adapt this 

technique to the midbrain. Therefore, a second strategy based on electrophysiological approaches 

combined with MK-801 was considered to estimate the diffusion of membrane NMDAR in midbrain 

acute slices. Thus, I implemented midbrain acute slices in the laboratory and tested the protocol 

developed by Tovar and Westbrook to characterize the surface diffusion of receptors. Here again, it 

seemed that this approach was not appropriate for midbrain DA neurons (annexe 3). Finally, as the 

characterization of the NMDAR surface diffusion was not possible in acute brain slices, I attempted to 

circumvent the problem of the low glutamatergic tone in cultured midbrain DA neurons by co-culturing 

DA neurons with cortical neurons. Because both cultures required different culture media, I privileged 

the development of co-culture in microfluidic chambers. Although the co-culture between embryonic 

midbrain and cortical neurons was successfully established, the postnatal midbrain culture from TH-
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tdTomato mice did not survive in microfluidic devices (annexe 4), currently limiting the full 

characterization of NMDAR surface trafficking in cultured DA neurons under the influence of 

glutamatergic inputs. 

 

In the second part of the project, I aimed at testing if NMDAR surface trafficking modulated 

the firing pattern of midbrain DA neurons. If yes, the second objective was to decipher the 

mechanisms responsible for the modification of the firing pattern. For this aim, I used a crosslink 

protocol developed in the team to specifically alter the NMDAR surface diffusion, and studied its 

impact on the firing pattern of DA neurons. The firing activity was recorded in DA neurons from acute 

midbrain slices because the spontaneous firing is highly reliable and conserved across laboratories in 

this preparation. 
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ABSTRACT 

 

Midbrain dopaminergic (DA) neurons play a central role in major physiological brain functions such 

as motivation, while their dysfunctions have been associated with neuropsychiatric diseases 

including schizophrenia and addiction. The activity and firing pattern of midbrain DA neurons are 

controlled by various ion channels and neurotransmitter receptors, such as the glutamate NMDA 

receptor (NMDAR) and small conductance calcium-dependent potassium channel (SK). Although 

intracellular regulatory cascades have been identified, the cellular pathway by which these channels 

interact and tune the firing pattern of midbrain dopaminergic (DA) neurons remains unclear. As the 

functional interplay between NMDAR and SK channels likely depends on their surface distribution, 

we tested the hypothesis that the surface dynamics of NMDAR tunes the firing pattern of midbrain 

DA neurons by regulating the function of other channels such as SK channels. Using single molecule 

imaging, we report that NMDAR are highly diffusive at the surface of cultured midbrain DA neurons 

from rodents and humans. Strikingly, altering in vivo the NMDAR membrane dynamics with an 

artificial crosslink of the receptors, which leaves intact the ionotropic function, strongly modified 

the firing pattern of midbrain DA neurons. In this condition, the SK channels blocker apamin, which 

perturbs the DA neuron firing pattern, was poorly effective. As this loss of function was not 

associated with a reduced membrane content of SK channels, these data fuel a model in which the 

altered surface dynamics of NMDAR downregulated the function of SK channels. Collectively, these 

data unveil that the surface dynamics of NMDAR, and not solely its ionotropic function, can tune the 

firing pattern of midbrain DA neurons through control of the function of SK channels.  
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INTRODUCTION 

The midbrain dopaminergic (DA) system, composed of neurons from the retrorubral area, the 

substantia nigra pars compacta (SNc) and the ventral tegmental area (VTA), is involved in several key 

physiological functions, like motivation, learning and processing of salient information (Bromberg-

Martin et al., 2010; Schultz, 2010). Dysfunctions of this system have been reported in neuropsychiatric 

diseases such as schizophrenia (Carlsson, 1977) and addiction (Koob and Bloom, 1988). Interestingly, 

most of these processes are associated with a change in the firing activity of midbrain DA neurons 

(Einhorn et al., 1988; Ljungberg et al., 1992; French et al., 1993; Brischoux et al., 2009). Therefore, 

deciphering the mechanisms responsible for the firing activity of midbrain DA neurons is of crucial 

importance to shed lights on the DA-dependent behaviors and pathological alterations. 

In the rodent brain, DA neurons fire in a tonic or phasic mode with bursts of action potentials (Grace 

and Bunney, 1984a, 1984b), whereas these neurons only exhibit regular pacemaker activity in brain 

slices (Grace and Onn, 1989; Wolfart et al., 2001; Deignan et al., 2012). It is well-accepted that the 

firing activity is generated and modulated by the combination of ion channels and neurotransmitter 

receptors (Liss and Roeper, 2008; Paladini and Roeper, 2014; Dragicevic et al., 2015). Among these, 

the ionotropic glutamate NMDA receptors (NMDAR) and small conductance calcium-dependent 

potassium channels SK are of particular interest, since they strongly regulate the firing pattern of 

midbrain DA neurons in vitro (Johnson and North, 1992; Wolfart and Roeper, 2002; Johnson and Wu, 

2004) as well as in vivo (Overton and Clark, 1992; Waroux et al., 2005; Ji and Shepard, 2006; Herrik et 

al., 2012) . Besides, NMDAR and SK channels functionally interact in midbrain DA neurons (Paul et al., 

2003; Soden et al., 2013) and thus, might work in synergy to tune the firing pattern of these neurons. 

Consistently, NMDAR and SK channels have been detected in the area of the postsynaptic 

compartment of glutamate synapses onto midbrain DA neurons (Soden et al., 2013). Thus, the 

pathways that regulate membrane distribution of these two channels are likely to play an important 

role in their functional interaction and, consequently, on the firing pattern of midbrain DA neurons.  
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The membrane and synaptic distributions of NMDAR are processed by exocytosis, endocytosis and 

lateral diffusion (Bard and Groc, 2011; Paoletti et al., 2013; Lussier et al., 2015). Once they laterally 

reach the synapse (Tovar and Westbrook, 2002; Groc et al., 2004, 2006; Bard et al., 2010), NMDAR are 

actively anchored through protein-protein interaction and phosphorylation processes (Lussier et al., 

2015). Most of these findings emerged thanks to the single molecule imaging that has now unveiled 

that neurotransmitter receptors as well as ion channels are highly dynamic at the surface of brain cells 

(Triller and Choquet, 2008), shedding new and unexpected lights on the molecular regulation of brain 

cell communication. In forebrain neurons, the surface dynamics of NMDAR is finely tuned by 

intracellular, transmembrane and extracellular regulators (Groc et al., 2009; Dupuis et al., 2014; 

Ladépêche et al., 2014; Ferreira et al., 2017), constituting one of the major site for regulation of 

NMDAR-mediated transmission, synaptic plasticity and behavior (Dupuis et al., 2014; Potier et al., 

2015). Our understanding of the receptors and channels surface trafficking onto midbrain DA neurons 

is in comparison still in its infancy. It has been shown that the DA transporter laterally explores large 

areas in cultured midbrain neurons (Eriksen et al., 2009), with biophysical properties similar to the 

ones of transporters in hippocampal cells (Chamma et al., 2013). Thus, it is likely that neurotransmitter 

receptors and ion channels in midbrain DA neurons are also highly diffusive at the neuronal surface, 

with specific regulations related to the morphology of the dendritic architecture of midbrain neurons.  

Here, we hypothesized that NMDAR surface trafficking plays a role in the firing pattern of midbrain DA 

neurons by regulating SK channel function. Combining single molecule imaging and 

electrophysiological approaches, we show that NMDAR diffuse at the surface of cultured midbrain DA 

neurons from mice and human induced pluripotent stem cells (iPSC)-derived neurons, and that the 

alteration of their surface trafficking in vivo modifies the firing pattern of DA neurons in acute midbrain 

slices. Remarkably, impairing NMDAR trafficking or blocking SK channels similarly increased the 

irregularity of the firing. This increased induced by SK channel inhibition was less pronounced when 

NMDAR surface trafficking was impaired, while the membrane content of the channels was not 

affected. Together, these results revealed that NMDAR surface dynamics per se modulates the firing 
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activity of DA neurons and suggest that this effect is mediated by the modulation of SK channels 

function. 
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RESULTS 

 

NMDAR diffuse at the plasma membrane of cultured midbrain DA neurons 

Although surface NMDAR diffuse broadly in cultured hippocampal neurons, as well as in cultured and 

acute hippocampal slices (Bard et al., 2010; Dupuis et al., 2014; Groc et al., 2009; Groc et al., 2004; 

Groc et al., 2006; Tovar and Westbrook, 2002; Varela et al., 2016), their surface mobility in midbrain 

DA neurons has not been investigated. To assess whether surface NMDAR are mobile onto DA neurons, 

we first focused on mice cultured DA neurons. Since DA neurons represent only a weak proportion of 

neurons in our cultures (<5%, unpublished observations), we used tyrosine hydroxylase (TH)-tdTomato 

mice obtained by crossing homozygous male TH-Cre mice (Savitt et al., 2005) with homozygous female 

Cre-reporter tdTomato Ai9 (Madisen et al., 2010) (Fig 1 A1). Indeed, TH is the synthesis enzyme of 

dopamine, allowing then to image live DA cells in our preparation (identified by tdTomato protein 

expression). Accordingly, 86% of the TH-tdTomato neurons colocalized with TH immuno-labelling in 

our cultures (n=3 different cultures, data not shown), demonstrating the high specificity of the tomato 

protein expression in DA neurons (Fig 1 A2). To study the lateral mobility of endogenous NMDAR on 

cultured DA neurons, we used the single nanoparticle tracking approach to track single quantum dots 

(QD) coupled to antibodies against the extracellular N terminal of GluN1, the obligatory NMDAR 

subunit (Fig 1 B1,B2). Analysis of QD-NMDAR trajectories revealed that the mean square displacement 

(MSD), which reflects the mean area explored by QD, did not vary linearly with time (Fig 1 C). This non-

linearity indicates that NMDAR are not freely diffusing, but rather confined at the surface of DA 

neurons from mice midbrain culture, as demonstrated for virtually all neurotransmitter receptors 

(Triller and Choquet, 2008). When compared to the dynamics of NMDAR in cultured hippocampal 

neurons, the instantaneous diffusion coefficient was rather high (0.127 µm2/s, IQR = 0.038-0.206 

µm2/s, n=750 trajectories) and exhibited a low proportion of immobile receptors (9%) (Fig 1 C). In 

parallel, we explored the dynamics of membrane NMDAR in human iPSC-derived DA neurons (Fig 1 

D1;D3), which are enriched in TH-positive neurons (Fig 1 D2). Accordingly, co-labelling of the nuclear 
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marker DAPI and the TH enzyme confirmed the high proportion of DA neurons in this culture (40%, 

data not shown). Tracking of endogenous NMDAR with GluN1 Ab coupled to QD in iPSC-derived DA 

neurons showed that the receptors were highly diffusive at the membrane of neurons, with limited 

confinement behavior (Fig 1 E). Notably, the fraction of immobile receptors was very similar between 

DA neurons from mice culture and human iPSC-derived neurons, indicating that most of surface 

NMDAR were mobile in mice and human DA neurons. Thus, the NMDAR located at the plasma 

membrane of midbrain DA neurons are quite dynamic, exploring a large area of the DA neuron 

dendritic tree.  

 

NMDAR activation alters the receptor surface dynamics and the firing pattern of midbrain DA 

neurons 

The NMDAR membrane dynamics is highly regulated by several modulators, including intracellular, 

extracellular and transmembrane partners(Groc et al., 2009). In addition, the activation of the receptor 

by its agonist or co-agonist instantaneously modulates its surface trafficking in hippocampal neurons 

(Papouin et al., 2012; De Rossi et al., 2016; Ferreira et al., 2017). To test whether NMDAR activation 

also modulated the receptor dynamics in DA neurons, we investigated the diffusion properties of 

membrane GluN1-NMDAR in human iPSC-derived DA neurons before and 5 minutes after NMDA 

application in the recording chamber (Fig 2 A1;A2). Acute NMDA application significantly decreased 

the instantaneous diffusion coefficient of NMDAR, and subsequently increased the confinement 

behavior of the receptor (Fig 2 B). Therefore, NMDA application, beyond activating the receptor, 

efficiently modifies its membrane trafficking in cultured DA neurons.  

A remarkable feature of DA neurons is their reliable and robust pacemaker activity in acute midbrain 

slices (Shepard and Bunney, 1988; Grace and Onn, 1989; Wolfart and Roeper, 2002). Therefore, we 

performed electrophysiological recordings of DA neurons in acute VTA slices and assessed the impact 

of NMDA application on the neuronal firing pattern (Fig 2 C1). We privileged the cell-attached voltage 

clamp configuration for recording spontaneous firing activity to avoid dialysis of the cytoplasm that 
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might affect the firing pattern. The VTA is composed of a heterologous population of neurons such as 

GABAergic and DA neurons. In our experiments, these latter were identified by the presence of a 

hyperpolarization-activated current (Ih) (Johnson and North, 1992; Bonci and Malenka, 1999; Neuhoff 

et al., 2002) (Fig 2 C1). In addition, we further confirmed the DA phenotype of the recorded neurons 

by adding neurobiotin in the intracellular patch solution, and assessed the colocalization of the labelled 

neurons with TH immuno-staining (Fig 2 C2). Cell-attached recordings in voltage clamp showed that 

DA neurons exhibit a robust pacemaker activity in basal condition characterized by a mean frequency  

of ~1.7 Hz and a coefficient of variation of the inter-spike intervals (CV-ISI), which estimates the firing 

regularity (Fig 2 D1;D2), of ~10% (Figure 2 D1;D2). Bath application of NMDA (20 µM) induced a 

significant increase in both the frequency and CV-ISI of midbrain DA neurons ((Fig 2 D1;D2), indicating 

that they fired both faster and with a more irregular pattern. Consistent with former studies (Overton 

and Clark, 1992; Connelly and Shepard, 1997), these observations highlight the role of NMDAR 

activation in the frequency and regularity of the DA neuronal firing. However, NMDA activation will 

simultaneously activate the receptor and change its surface dynamic distribution, raising the possibility 

that the trafficking of NMDAR contributes to the neuronal firing pattern.  

 

The basal surface dynamics, but not the spontaneous activity, of NMDAR tunes the firing pattern of 

midbrain DA neurons 

To elucidate the relative contribution of the activation and membrane dynamics of NMDAR in the 

midbrain DA neuron firing pattern, we first investigated the impact of NMDAR blockade on this 

process. In basal conditions, the frequency of spontaneous excitatory post-synaptic events from VTA 

DA neurons was approximately ~0.14 Hz (data not shown), a value consistent with recordings from 

young SNc DA neurons (Pearlstein et al., 2015). Application of the NMDAR non-competitive open 

channel blocker MK-801 (10 µM) change neither the frequency nor the CV-ISI of DA neurons (Fig 3 

A;B). As MK-801 only blocks opened receptors, we tested another NMDAR blocker: the competitive 

inhibitor D-APV (50 µM). Similarly to MK-801, neither the frequency, nor the CV-ISI were altered by D-



80 

 

APV application (Fig 3 C,D). Thus, these results revealed that the spontaneous activation of NMDAR in 

VTA DA neurons does not contribute to the neuronal firing pattern.  

We next investigated the putative role of NMDAR basal dynamics in this process. To this aim, we used 

a previously described protocol, i.e GluN1 subunit cross-link (X-link) that alters the lateral dynamics of 

NMDAR in vitro, ex vivo or in vivo, leaving intact their ionotropic transmission (Mikasova et al., 2012; 

Ladepeche et al., 2013; Potier et al., 2015). Schematically, the X-link consists of incubating neurons 

with primary antibodies directed against an extracellular epitope of the GluN1 subunit (Fig 4 A). As the 

X-link GluN1 was only described in hippocampal neurons, we first tested the reliability of this approach 

in midbrain DA neurons. We performed these experiments onto DAT-tdTomato neurons as DAT-

tdTomato mice exhibit a greater colocalization rate with TH than TH-tdTomato mice (94% in midbrain 

slices, n= 3 mice, data not shown), and similar median diffusion coefficients of NMDAR onto cultured 

DA neurons (data not shown). NMDAR surface diffusion in DA neurons was imaged before and 30 

minutes after X-link GluN1 (Fig 4 A). As expected, the NMDAR membrane dynamics was greatly 

reduced following X-link GluN1, with an increased proportion of immobile and confined receptors (Fig 

4 B), indicating that X-link GluN1 strongly immobilized the receptors. Similarly, pre-incubating human 

iPSC-derived DA neurons with X-link GluN1 severely decreased the mobility of membrane NMDAR and 

confined the receptors (Fig 4C-D). Together, this result confirmed that X-link GluN1 modulates NMDAR 

surface trafficking in both mice and human DA neurons.  

We next investigated the impact of such NMDAR immobilization on the firing activity of DA neurons. 

To this aim, we injected either IgG against GluN1 (so called, X-link GluN1) or control IgG (goat anti-

rabbit) in the VTA of young rats (Fig 5 A1; A2). VTA DA neurons were recorded in acute slices 2-3h after 

the injection. To assess that neither the stereotaxic injection nor the presence of IgG itself modify the 

firing of DA neurons, we recorded pacemaker activity in acute slices from both naive rats (no surgery) 

and rats injected with control IgG, and compared the frequency and CV-ISI. The frequency and CV-ISI 

were undistinguishable between naive and control IgG rats (Fig 5 B1;B2), indicating that the injection 

procedure and the presence of IgG did not affect the firing of DA neurons. Although it has been 



81 

 

demonstrated that X-link GluN1 impairs NMDAR surface dynamics in hippocampal neurons without 

altering their current (Dupuis et al., 2014; Potier et al., 2015), we recorded the NMDAR and AMPAR-

mediated currents in X-link or control IgG conditions. The AMPAR/NMDAR ratio was calculated as the 

ratio between the peak amplitude of evoked AMPAR-mediated excitatory postsynaptic currents 

(eEPSC) at -60 mV and the peak amplitude of evoked EPSC at +40mv, 50 ms after the onset to isolate 

the NMDAR-mediated component, in the presence of the GABAA antagonist bicuculline (20 µM) (Fig 5 

C1). The AMPAR/NMDAR ratio from X-link GluN1 and control IgG were not statistically different (Fig 5 

C2). In addition, the mean amplitude of the AMPAR- and NMDAR-mediated eEPSCs, as well as the 

NMDAR decay time, were not altered by GluN1 X-link (Fig 5 C2). The impact of X-link GluN1 on the VTA 

firing pattern was then tested by recording the spontaneous firing activity of DA neurons in the cell-

attached voltage clamp configuration. Strikingly, the X-link GluN1 altered the firing pattern of midbrain 

DA neurons. The CV-ISI was increased in X-link GluN1 condition, reflecting an increase in the irregularity 

of the neuronal firing (Fig 5 E1;E2). Of note, the frequency was also decreased in X-link GluN1 condition 

(Fig 5 E2). Collectively, these data indicate that the basal surface dynamics, and not the spontaneous 

activity, of NMDAR tunes the firing pattern of midbrain DA neurons recorded in acute brain slices. 

GABA neurons represent a significant proportion of VTA neurons (Nagai et al., 1983; Johnson 

and North, 1992; Nair-Roberts et al., 2008), which project locally on DA neurons and express NMDAR 

(Steffensen et al., 1998; Bonci and Malenka, 1999; Omelchenko and Sesack, 2009). Therefore, we 

tackled the possibility that X-link GluN1 altered GABAergic neuron activity and consequently the 

GABAergic drive onto VTA DA neurons. Spontaneous GABAA receptor (GABAAR)-mediated IPSC were 

recorded from DA neurons in X-link GluN1 and control IgG conditions in presence of the AMPAR 

blocker NBQX (10 µM) (Fig 5 D1). Neither the amplitude, inter-event intervals, rise or decay time were 

affected by the GluN1 X-link (Fig 5 D2;D3), indicating that the GABAAR-mediated transmission onto DA 

neurons is not likely to contribute to the firing pattern change observed after reducing NMDAR surface 

dynamics.  
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Downregulation of SK channel function in immobilized surface NMDAR condition 

Similar change in the irregularity of midbrain DA neuron firing has been described in DA neurons 

expressing genetically- or pharmacologically (apamin)-inactivated SK channels (Ping and Shepard, 

1996; Wolfart et al., 2001; Soden et al., 2013; Creed et al., 2016). This raised the intriguing possibility 

that the irregular pattern observed when NMDAR were artificially immobilized results from a 

downregulation of SK channel function. Indeed, SK channel are activated by calcium and functionally 

coupled to calcium sources such as NMDAR (Faber et al., 2005, 2008; Ngo-Anh et al., 2005) and other 

channels (Nedergaard et al., 1993; Wolfart et al., 2001; de Vrind et al., 2016). Given that such a coupling 

requires a close proximity between SK channel and its calcium source (Marrion and Tavalin, 1998; 

Jones and Stuart, 2013), an altered NMDAR trafficking and distribution might uncouple SK channels 

from calcium sources and tune the firing pattern of DA neurons. To test the functionality of SK 

channels, we used the SK channel blocker, apamin. Consistent with the role of SK channels in the firing 

of DA neurons (Deignan et al., 2012; Creed et al., 2016), apamin (200nM) modified the firing pattern, 

favoring an irregular pattern while the frequency was unchanged (Fig 6 A1;A2). We then compared the 

effect of apamin on the firing pattern of DA neurons in acute VTA slices from rats injected with either 

GluN1 antibodies or control IgG. Similarly to naive rats, SK channels blockade did not affect the firing 

frequency of neurons in both control IgG and X-link GluN1 conditions (Fig 6 B1). However, apamin was 

less effective in X-link GluN1 conditions, as the firing irregularity was increased by 300% in control IgG 

and only by 190% in X-link GluN1 conditions (Fig 6 B2). This suggests that injection of GluN1 antibodies 

impairs SK channels function. We then calculated the number of apamin responders in rats injected 

with control IgG or GluN1 antibodies. Neurons were considered as responders if the normalized CV-ISI 

after apamin was higher than the normalized CV before the drug plus one standard deviation. 

Consistent with the above data, the number of apamin responders in X-link GluN1 conditions (45%) 

was lower than in control IgG (75%) or naïve conditions (83%) (Fig 6 C). Altogether, these data 

demonstrate that blocking SK channels or disturbing NMDAR trafficking similarly promote DA neurons 

to fire with an irregular pattern in acute slice.  
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Such a downregulation of the SK channels function can originate from a reduced function or membrane 

content of the channel. To discriminate between these two possibilities, we estimated the membrane 

content of GluN1 subunits and SK3 channels, which are the predominant SK channel isoforms in the 

VTA (Wolfart et al., 2001; Bosch et al., 2002), in X-link GluN1 and control IgG conditions by western 

blot (Fig 6 D1). We report that GluN1 subunit and SK3 channels membrane fractions from midbrain 

slices were unchanged between these two conditions (Fig 6 D2). Therefore, it is unlikely that the 

decreased SK channels function originates from internalization. In conclusion, these data showed that 

in vivo acute modulation of NMDAR membrane trafficking by GluN1 X-link impaired the firing pattern 

of midbrain DA neurons, likely through a loss of function of SK channels. 
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DISCUSSION 

Here, we investigated the role of NMDAR surface trafficking in the firing pattern of midbrain DA 

neurons. Using a combination of high-resolution single nanoparticle tracking and electrophysiology 

approaches, we showed that NMDAR are highly mobile in DA neurons from rodents and humans. Quite 

surprisingly, an acute alteration of NMDAR trafficking in vivo profoundly affects the firing pattern of 

DA neurons. Since this artificial manipulation did not alter the NMDAR transmission and since the 

pharmacological blockade of NMDAR did not alter neuronal firing pattern, it emerges that NMDAR 

surface trafficking per se plays a critical role in the regulation of the firing pattern of midbrain DA 

neurons. Such change in the firing was paralleled to a loss of function (no change in the membrane 

content) of the SK channels, fueling a model in which the NMDAR surface dynamics and distribution 

regulate the function of SK channel and thus the firing activity of DA neurons.  

 

Alteration of NMDAR surface trafficking with X-link GluN1. To investigate the role of NMDAR 

trafficking, we used a crosslink GluN1 protocol previously described in hippocampal neurons (Dupuis 

et al., 2014; Potier et al., 2015). This manipulation consists in incubating neurons with antibodies 

directed against the GluN1 subunit to immobilize the receptors without altering their channel 

properties. We confirmed that this protocol strongly decreased NMDAR membrane dynamics in DA 

neurons from mice or human-derived iPSC neurons. Furthermore, injecting in vivo GluN1 antibodies 

(X-link GluN1) did not alter the synaptic function of NMDAR and the spontaneous GABAAR-mediated 

transmission in DA neurons from acute midbrain slices. Therefore, X-link GluN1 enables to study 

specifically the role of NMDAR surface trafficking in DA neurons and does not involve indirect effects 

through neighboring GABAergic neurons. This protocol does not appear to change the membrane 

content of NMDAR, through favored endocytosis for instance. Indeed, western blot experiments 

showed that the GluN1 subunits membrane fraction was unchanged in X-link GluN1 and control IgG 

conditions. In addition, the NMDAR-mediated synaptic currents remained unaltered in these 
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conditions. Thus, consistent with former studies (Dupuis et al., 2014; Potier et al., 2015), our data 

indicate that X-link GluN1 does not favor NMDAR endocytosis or channel blockade. 

 

Modulation of the firing pattern of DA neurons: unsuspected role of NMDAR basal dynamics. We 

found here that blocking NMDAR spontaneous activation with two different antagonists, either the 

open channel blocker MK-801 that mostly blocks synaptic NMDAR or the competitive D-APV that 

inhibits all membrane receptors, did not change the firing pattern of midbrain DA neurons. These 

results, consistent with the literature reporting that D-APV application was ineffective in modifying the 

firing pattern of midbrain DA neurons in acute slices (Seutin et al., 1990; Mereu et al., 1997), imply 

that the spontaneous activation of NMDAR does not contribute to the pacemaker activity of DA 

neurons in acute slices. By contrast, we observed that the acute alteration of the basal membrane 

dynamics of NMDAR affected the firing pattern of DA neurons. Besides, exogenous activation of 

NMDAR strongly modifies the firing pattern of DA neurons in vitro (Johnson et al., 1992; Johnson and 

Wu, 2004) and in vivo (Overton and Clark, 1992; Chergui et al., 1993). Therefore, we propose that 

NMDAR membrane dynamics modulates the firing pattern of midbrain DA neurons. In basal conditions, 

the receptor membrane dynamics, but not its ionotropic function, would mainly regulate the firing 

pattern whereas NMDAR ionotropic function would be required following strong channel activation.  

 

Alteration of SK channels with X-link GluN1. As previously reported in the literature (Wolfart et al., 

2001; Waroux et al., 2005; Ji and Shepard, 2006), we found here that SK channels inhibition increased 

the irregularity of the firing of midbrain DA neurons. Interestingly, a similar modification of the firing 

pattern was observed when NMDAR trafficking was altered by X-link GluN1, suggesting that both 

processes share similar mechanisms. In addition, the firing irregularity induced by SK channels 

blockade was less pronounced when NMDAR surface diffusion was impaired. Interestingly, the 

membrane content of SK channels was not altered in midbrain slices in this condition. Thus, these 

results suggest that the alteration of NMDAR surface trafficking affects the SK channels function, but 
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not its membrane expression. What cellular scenario could explain such an observation? The SK 

channels need calcium entry through calcium sources, among which NMDAR and voltage gated calcium 

channels such as T-type, N-type or L-type calcium channels (Nedergaard et al., 1993; Wolfart and 

Roeper, 2002; Paul et al., 2003; Ngo-Anh et al., 2005; de Vrind et al., 2016). The calcium influx through 

channels being restricted to micro- or nano-domains (Augustine et al., 2003), SK channels have been 

found in close proximity to NMDAR (Soden et al., 2013) and voltage gated calcium channels (Marrion 

and Tavalin, 1998; Jones and Stuart, 2013). Altering NMDAR surface trafficking likely disturbs NMDAR 

surface distribution, un-coupling SK channels from the receptor. Consequently, the decreased function 

of SK channels would increase the firing irregularity in midbrain DA neurons. Noteworthy, blocking the 

spontaneous activity of NMDAR did not alter the firing pattern, indicating that in basal conditions the 

functional coupling between NMDAR and SK channels does not contribute to the pacemaker activity. 

Alternatively, altered NMDAR membrane dynamics and distribution might modify the availability of 

key kinase and phosphatase proteins that regulate SK channels function such as the casein kinase II 

and the phosphatase 2A (Allen et al., 2007; Maingret et al., 2008). Indeed, both SK channels and 

NMDAR interact with these proteins (Chan and Sucher, 2001; Chung et al., 2004; Allen et al., 2007). 

Such a scenario is further supported by the former observation in hippocampal neurons that NMDAR 

surface dynamics control the spine content of the calmoduline kinase II (Dupuis et al., 2014). 

Therefore, we unveil a functional interplay between NMDAR surface dynamics and SK channels 

function, opening a new avenue of research to identify the molecular complex underlying this process.  

 

Relevance of X-link GluN1 to in vivo physiology. In this study, we artificially alter NMDAR surface 

diffusion by injecting GluN1 antibodies. What kind of relevance such alteration may have in functional 

brains? Auto-antibodies against NMDAR were identified in the serum and the cerebrospinal fluid of 

patients suffering from a severe form of encephalitis (Dalmau et al., 2007) and psychiatric disorders 

(Tsutsui et al., 2012). These auto-antibodies recognized an epitope localized in the extracellular part 

of GluN1 subunits (Dalmau et al., 2008), profoundly altered NMDAR surface trafficking (Mikasova et 
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al., 2012; Dupuis et al., 2014), and blocked the synaptic long-term potentiation LTP in hippocampal 

neurons (Dupuis et al., 2014; Jezequel et al, 2017). Therefore, these studies highlight the link between 

alteration of NMDAR surface dynamics and psychiatric conditions. Whether these human 

autoantibodies alter the firing pattern of DA neurons, through a dysfunction of the receptor surface 

dynamics, is an opened and intriguing question. 

Changes in the firing pattern of midbrain DA neurons have been associated with the coding of reward 

and salient information (Schultz, 2010) and are also observed in neuropsychiatric disorders such as in 

animal models of schizophrenia or in response to drug exposure (Matthews and German, 1984; Mereu 

et al., 1984). Given the crucial role of DA neurons, a lot of efforts have been put to understand the 

physiology of these neurons. So far, studies investigating the regulation of the firing pattern mainly 

focused on testing the role of channels/receptors ionotropic functions (Johnson et al., 1992; Ji and 

Shepard, 2006; Herrik et al., 2010, 2012). Investigating the surface dynamics of receptors and channels 

in controlling DA neurons firing is likely to shed new and unsuspected lights.  
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MATERIELS AND METHODS 

 

All experiments were carried out in accordance with University of Bordeaux guidelines and regulations. 

The animal procedures were approved by the ethical committee of the University of Bordeaux (Laurent 

Groc experimentation authorization number 3306009).  

 

Neuronal cultures 

Postnatal mice midbrain culture. Tyrosine hydroxylase (TH) – tdTomato  and dopamine transporter 

(DAT)-tdTomato mice were generated by crossing TH-Cre (Savitt et al., 2005) or DAT-Cre mice (Turiault 

et al., 2007)with Cre-reporter line tdTomato Ai9 (Madisen et al., 2010). Neonatal pups were sacrificed 

by decapitation. The brains were quickly removed and put on petri dish containing cold Leibovitz’s L-

15 medium (ThermoFisher). The mesencephalon was dissected and incubated at 37°C for 15 minutes 

with a papain solution for chemical dissociation. Then, the neurons were mechanically dissociated by 

going up and down with pipettes, and the cellular suspension was centrifugated at 300 Xg for 5 

minutes. The supernatant was removed and 1 mL of DMEM (ThermoFisher) supplemented with fetal 

bovine serum (10%, ThermoFisher) was added. The viable cells were counted with a Malassey cell and 

plated at a concentration of 150 000 cell/mL on poly-lysine pre-coated coverslips, in petri dish 

containing 5 mL of DMEM. Cultures were maintained at 37°c in an incubator (5% C02). Two days later, 

the medium was replaced by EF12 medium. 

Human iPSC-derived DA neurons. The bDopa.4U cell culture was obtained from Ncardia (USA) and 

prepared according to the bDopa.4U handling guide. Briefly, the cryopreserved culture (2 million 

cells/vial) was thawed with a Neuro.4U basal medium supplemented with Neuro-Supplement 4. Then, 

the neurons were seeded (50 000 cells/cm2) and cultured with bDopa.4U culture media on coverslips 

coated with poly-L-ornithine (10 µg/ml, diluted in PBS, Sigma) and laminin (10 µg/ml, diluted in PBS, 

Roche). The medium was changed twice a week by replacing half of the medium with the same amount 

of fresh medium. Experiments were done on cultures from 9 to 13 days in vitro (DIV).  



89 

 

 

Single particle tracking of NMDAR 

Postnatal midbrain cultures (10-12 DIV) or human iPSC-derived DA neurons (11-13 DIV) were incubated 

15 minutes with rabbit antibodies (Ab) against GluN1 (1/200 Alomone labs, Jerusalem) at 37°C. After 

3 washes with equilibrated EF12 medium, coverslips were incubated 10 minutes with quantum dot 

(QD) 655 coated with goat Ab fragments anti rabbit (1/10 000, Invitrogen) at 37°C. Non-specific binding 

was blocked by adding 1% of bovine serum albumin (BSA, Sigma) during antibody and QD incubation. 

After 3 washes with EF12, coverslips were mounted on a heated chamber for image acquisition. A wild 

field epifluorescence microscope (Nikon) equipped with a mercury lamp, a Evolve EMCCD camera 

(Photometrics) and appropriate emission/excitation filters was used to detect QD (QD 655) and TH 

fluorescence (tdTomato). 500 consecutive frames were recorded at 20 Hz and processed with 

Metamorph software (Molecular Devices). Recording sessions did not exceed 30 minutes to minimize 

receptor endocytosis. The instantaneous coefficient of diffusion of GluN1, which reflects the diffusion 

speed, was calculated for each trajectory, from linear fits of the first four points of the mean square 

displacement vs. time function using MSD(t) = <r2> (t) = 4Dr. 

 

Stereotaxic injections of antibodies 

Antibodies (GluN1 or control immunoglobulins (IgG)) were injected in male and female Sprague 

Dawley rats between 12 postnatal day (PD 12) and PD 16. After ip injection of buprenorphine 

(0.05mg/kg), the animals were anesthetized and maintained with isoflurane during the surgery at 5% 

and 2.5% respectively. Then, the rats were placed on a stereotaxic frame and constantly warm at 37°C 

with a heating pad during the surgery. After subcutaneous injection of lurocaine (50µL), a bilateral 

craniotomy was made in the VTA at the following coordinates (AP : -5.60 to 6.10, L : 0.85 and P : -5.60 

to -5.80). To inject the antibodies (Ab), glass capillaries were pulled with a horizontal puller. 1,5 µL of 

solution containing GluN1 Ab or control IgG (diluted at 1/5 with bromophenol blue) were injected per 

side and the pipette was maintained during at least 3 minutes to avoid liquid reflux. Once the injections 
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were done, the wound was closed with surgical glue and the animal was allowed to recover during 2-

3 h. 

 

Electrophysiology 

Slices preparation. Electrophysiological recording were performed on Sprague Dawley rats (male and 

female), between PD 12 and PD 16. After isoflurane anesthesia, animals were sacrificed by 

decapitation.The brain was quickly removed and put into cooled artificial cerebro-spinal fluid (ACSF) - 

Sucrose solution containing (in mM): 250 Sucrose, 2 KCl,  7 MgCl2, 0.5 CaCl2, 1.15 NaH2PO4, 11 glucose, 

and 26 NaHCO3, and bubbled with 95% O2 and 5% CO2. Horizontal slices (250 µM) containing the 

ventral tegmental area (VTA) were prepared in ACSF-Sucrose using a vibratome (Leica Instruments, 

Germany), and then transferred in an ACSF solution containing (in mM): 126 NaCl, 3.5 KCl, 2 CaCl2, 1.3 

MgCl2, 1.2 NaH2PO4, 25 NaHCO3, and 12.1 glucose bubbled with 95% O2 and 5% CO2. Slices were first 

maintained at 34°C for 40 minutes and then at room temperature.  

 

Patch clamp recordings. Slices were submerged and continuously perfused (2.5 mL/min) at 30-31°C. 

The VTA was determined as the area surrounded by the rostral interstitial nucleus of medial 

longitudinal fasciculus and the medial terminal nucleus of the accessory optic tract (Atlas Paxinos). 

Dopaminergic neurons were identified by their regular firing at low frequency (between 1 and 4 Hz, 

Grace & Onn, 1989) in cell-attached mode and the presence of an Ih current in whole-cell mode 

(Neuhoff, 2002). The presence of Ih was assessed by -20mV steps from -60 to -140 mV in voltage clamp 

mode and/or by -50 pA steps from 0 to -200 pA in current clamp to see a sag potential. Recordings 

were made using an HEKA Patch clamp amplifier (double EPC 10 USB, Harvard BioScience, US). For the 

cell-attached mode, pulled pipettes (R>10mΩ) containing (in mM) : 142 potassium gluconate, 1 CaCl2, 

2 MgCl2, 10 HEPES, 10 EGTA, 2 Na2ATP; Na3GTP (pH 7.3-7.4, osmolarity between 290-300mosm) were 

used. Spontaneous activity of VTA DA neurons in the cell-attached voltage clamp was recorded at the 

holding potential that gives a holding current of 0 pA (Perkins, 2006). Basal firing activity was recorded 
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for 10 minutes and when a drug was applied, the firing activity was recorded at least after 5 minutes 

of drug perfusion. For the whole-cell mode, 5-6 MΩ pipettes were filled with either CsMeSO4- or KCl-

based solutions to measure the evoked excitatory postsynaptic currents (eEPSC) and the spontaneous 

inhibitory postsynaptic currents (sIPSC), respectively. The composition of each solution was (in Mm) : 

135 CsMeSO4, 8 NaCl, 10 HEPES, 4 Na2ATP, Na3GTP, 5 TEA-Cl, 10 EGTA for CsMeSO4- ; 142 KCl, 10 

HEPES, 8 NaCl, 4 Mg2ATP, 0.3 Na3GTP, 0.5 EGTA for KCl-. For some immunohistochemistry experiments, 

neurobiotin (0.1%) was added in the internal solution to label the recorded neurons. To measure 

AMPAR/NMDAR ratio, AMPAR and NMDAR-mediated synaptic currents were evoked at 0.05Hz with 

bipolar electrodes placed rostral to the VTA, and recorded with the GABAA receptor blocker bicuculline 

(20µM) at a holding potential of -60 and +40mV, respectively. Because both AMPAR and NMDAR are 

activated at +40 mV, NMDAR-mediated synaptic current amplitude was measured 50 ms after the 

onset of the mixed EPSC. The sIPSC were recorded at -60 mV in presence of the AMPAR blocker NBQX 

(10µM) during 10 minutes. For both eEPSC and sIPSC recordings, the access resistance was monitored 

by a hyperpolarizing step of -5 mV for each sweep and experiments were discarded if the access 

resistance varied more than 20%.  

 

Drugs. Electrophysiology drugs :  NBQX (10 µM), MK-801 (10 µM), Bicuculline methochloride (20 µM), 

D-APV (50 µM), NMDA (20µM) and Apamin (200 nM) were purchased at Tocris (UK). Neurobiotin 

(0.1%) was obtained from Vectorlabs (US).  

 

Immunostaining 

Cell culture. Mice postnatal midbrain culture and iSPC-derived DA neurons (9-12 DIV) were fixed 10 

minutes with paraformaldehyde (PFA) 4%. After PBS washes, cells were incubated 10 minutes with 

NH4Cl to eliminate the background noise, permeabilized with 0.1% Triton  X-100 in PBS and saturated 

with bovine serum albumin (BSA) 1%. Coverslips were then incubated 1h with primary antibodies (anti 

TH, 1/1000, Millipore) followed by 30 minutes with secondary antibodies (donkey anti mouse 
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Alexa488, 1/1000, Invitrogen) after washes in PBS, at room temperature. Coverslips were mounted on 

glass slides with Mowiol medium and kept in a black box at 4°C before imaging. 

 

Brain slices. After patching neurons with an intracellular solution containing neurobiotin (0.1%), acute 

VTA slices were washed with PBS and saturated 2h with a PBS solution supplemented with 2% normal 

donkey serum and 0.1% Triton. Primary antibodies (mouse anti TH, 1/1000, Millipore) were incubated 

overnight at 4°C and after PBS washes, slices were incubated 2h with the secondary antibodies 

(streptavidine A488, 1/1000, ThermoFisher and donkey anti-mouse A568, 1/1000, Invitrogen) at room 

temperature. After washes, floating slices were mounted on glass slides with Vectashield medium 

(Vectorlabs). 

 

Western blot experiments 

Horizontal midbrain slices (250 µm thick) were homogenized and dissociated in STE (0.32M sucrose, 

20mM tris pH8, 2mM EDTA, and protease inhibitor cocktail (1:1000, Calbiochem)). After centrifugation 

(1,000 g; 10min; 4°C), the supernatant was saved and centrifuged (20,000g; 1h; 4°C). Supernatants 

were collected and kept at -80°C. Before loading on a gel, the samples were boiled at 95°C for 5 

minutes. 30µL of samples were separated by SDS/PAGE (Mini-Protean TGX precast gels 7.5% Stain-

Free, Biorad) for 1h at 150V and blotted onto nitrocellulose membrane during 1h at 100V. After 

blocking 1h in 5% milk in Tris-saline – 0.05% tween 20 (TBST), the membranes were hybridized with an 

anti-SK3 Ab (3.2µg/mL, Rabbit polyclonal Ab, Alomone) or an anti-GluN1 (0.5µg/mL, Mouse 

monoclonal Ab, BD Biosciences), diluted in TBST 5% milk, during overnight at 4°C. Corresponding 

secondary antibodies were used at 1/5000 in TBST 5% milk. Detection was performed using the 

SuperSignal West Dura Extended Duration Substrate detection System (ThermoFisher) revealed with 

a ChemiDoc system (Biorad). Quantification of band intensity was performed using Image Lab software 

(Biorad); GluN1 and SK3 detection were normalized on total protein detection with Stain-Free 

technology. 
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Data and statistical analysis  

For single particle tracking, the analysis was performed with Metamorph software. The instantaneous 

coefficients of diffusion were expressed as median +/- interquartile range (IQR) 25%-75%, and 

compared with unpaired Mann-Whitney tests. Electrophysiology data were analyzed with Clampfit 

software 10.7.03, except sIPSC that were analyzed with Mini analysis software. Group values are 

expressed as mean +/- SEM. Data were compared with impaired or paired Student’s t tests. 

Significance levels were defined at *p<0.05, **p< 0.01, ***p<0.001, ****p<0.0001  
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Fig 1. Endogenous NMDAR diffuse at the surface of dopaminergic neurons both from mice midbrain 

culture and derived from human iPSC.  

A1) TH-tdTomato mice were obtained from male TH-Cre mice crossed with female Cre reporter 

tdTomato Ai9 mice. A2) Example of a fluorescent TH-tdTomato neuron (9 DIV) that is TH immuno-

positive, in postnatal mice midbrain culture (86% of tdTomato/TH colocalization, n=3 cultures).  

B1) Schematic drawing of a single QD-antibody complex targeting the GuN1 subunit of surface NMDAR 

(left). QD were detected with an exposure time of 50 ms (right). B2) Representative trajectories (25 s, 

20 Hz acquisition, blue traces) of QD-GluN1 complexes on neurites from a TH-tdTomato neuron. Insert, 

Magnified reconstructed trajectory of a single QD-GluN1 complex.  

C) Top, Cumulative distribution of the NMDAR instantaneous diffusion coefficient on TH-tdTomato 

neurons (median diffusion coefficient = 0.13 µm2/s, IQR = 0.04-0.21 µm2/s, n=750 trajectories, 5 

different cultures). The immobile fraction, indicated by the first point of the curve, is 9%. Down, Plot 

of the mean square displacement (MSD) over time of QD-GluN1 trajectories. 

D1) Schematic drawing of the experimental procedure to track membrane NMDAR on human iPSC-

derived DA neurons. D2) Example of TH immuno-positive human iPSC-derived DA neurons. D3) DIC 

images of cultured human iPSC-derived DA neurons with representative membrane QD-GluN1 

trajectories (blue traces). Insert, Magnified reconstructed trajectory of a single QD-GluN1 complex (25 

s, 20 Hz acquisition). 

E) Top, Cumulative distribution of the NMDAR instantaneous diffusion coefficient on human iPSC-

derived DA neurons (median diffusion coefficient = 0.25 µm2/s, IQR = 0.12-0.36 µm2/s, n=738 

trajectories, 1 culture). The immobile fraction is 12.5 %. Down, Plot of the MSD over time of QD-GluN1 

trajectories.  
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Fig 2. NMDAR activation modifies the receptor membrane dynamics on human iPSC-derived DA 

neurons and the firing pattern of DA neurons in VTA acute slices.  

A1) Schematic drawing of the experimental procedure to track surface NMDAR following 

pharmacological NMDAR activation. A2) DIC images of human iPSC-derived DA neurons with 

representative QD-GluN1 trajectories (blue traces) before (left) and after NMDA application (20 µM, 

right).  

B) Left, Plot of the MSD over time of QD-GluN1 trajectories on human iPSC-derived DA neurons before 

and after NMDA application. Right, Median NMDAR diffusion coefficients before (0.26 µm2/s, IQR = 

0.12-0.37 µm2/s, n=462 trajectories, 1 culture) and after NMDA (0.23 µm2/s, IQR = 0.10-0.33 µm2/s, 

n=817 trajectories, 1 culture). Unpaired Mann Whitney test, ** p = 0.0053. 

C1) Left, Schematic drawing of the section plane (horizontal) for VTA acute slices (up) and transmission 

image of a patched neuron (down). Right, Example of an Ih current on a midbrain DA neuron by 

stepping the membrane potential from -60 to -140 mV (increment of 40 mV). C2) Example of a patched 

neuron filled with neurobiotin (0.1%) positive for TH immunolabelling.  

D1) Representative firing pattern of a midbrain DA neuron recorded in VTA slices in cell-attached 

voltage clamp mode before (control) and after NMDA application (20 µM, 5 minutes). D2) Left, Firing 

frequency (left Y axis) and normalized frequency (right Y axis) of midbrain DA neurons before (1.72 ± 

0.15 Hz, n=12 neurons) and after NMDA application (3.26 ± 0.32 Hz; mean normalized frequency = 1.96 

± 0.16, n=12). Paired Student’s t test, **** p<0.0001. Right, Coefficients of variation of the inter-spike 

intervals (CV-ISI) (left Y axis) and normalized CV-ISI (right Y axis) before (9.91 ± 1.15, n=12) and after 

NMDA application (19.99 ± 1.15; normalized CV-ISI = 1.95 ± 0.32, n = 12). Paired Student’s t test, * 

p=0.0121. Each frequency and CV-ISI values after drug application were normalized to the values 

before the drug. Data are expressed as mean values ± SEM. 
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Fig 3. Pharmacological blockade of NMDAR does not affect the firing pattern of midbrain DA neurons 

in VTA slices.  

A) Firing pattern of a midbrain DA neuron in VTA slices before (control) and after bath application of 

the open channel blocker MK-801 (10 µM, 5-10 minutes). 

B) Left, Frequency (left Y axis) and normalized frequency (right Y axis) before (1.79 ± 0.22 Hz, n=8 

neurons) and after MK-801 application (2.22 ± 0.36 Hz; normalized frequency = 1.29 ± 0.24, n=8). 

Paired Student’s t test, p=0.257. Right, CV-ISI (left Y axis) and normalized CV-ISI (right Y axis) before 

(14.09 ± 2.15, n=8) and after MK-801 (9.61 ± 1.22; normalized CV-ISI = 0.76 ± 0.11, n=8). Paired 

Student’s t test, p=0.068. 

C) Firing pattern of a DA neuron in VTA slices before (control) and after bath application of the 

competitive antagonist D-APV (50 µM, 5-10 minutes). 

D) Left, Frequency and normalized frequency before (1.59 ± 0.12 Hz, n=6 neurons) and after D-APV 

(1.61 ± 0.16 Hz; normalized frequency = 1.01 ± 0.04, n=6). Paired Student t-test, p = 0.898. Right, CV-

ISI and normalized CV-ISI before (10.51 ± 2.14, n=6) and after D-APV application (9.69 ± 1.26; 

normalized CV-ISI = 1.04 ± 0.18, n=6). Paired Student’s t test, p = 0.842. Each frequency and CV-ISI 

values after drug application were normalized to the values before the drug. Data are expressed as 

mean values ± SEM. 
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Fig 4. X-link GluN1 strongly reduces the NMDAR surface diffusion in DA neurons from mice 

midbrain culture and derived from human iPSC. 

A) Example of fluorescent DAT-tdTomato neurons with representative QD-NMDAR trajectories (blue 

traces) in control (left) and X-link GluN1 conditions (right). Middle panel, Schematic drawing of the 

NMDAR X-link with primary GluN1 Ab (1/5, 30 minutes incubation). Inserts, Magnified reconstructed 

trajectories of single QD-GluN1 complexes in control (left) and X-link GluN1 conditions (right). 

B) Left, Cumulative distribution of the NMDAR instantaneous diffusion coefficients in DAT-tdTomato 

neurons before (n= 70 trajectories, 1 culture) and after X-link GluN1 (n= 71 trajectories, 1 culture). The 

immobile fractions are 26% and 51% in control and X-link GluN1 conditions, respectively. Middle, Plot 

of the MSD over time of QD-GluN1 trajectories before and after X-link GluN1. Right, Median NMDAR 

diffusion coefficients before (0.16 µm2/s, IQR = 0.01-0.32 µm2/s) and after X-link GluN1 (0.01 µm2/s, 

IQR = 0.0003-0.0507µm2/s). Unpaired Mann Whitney test, **** p < 0.0001. 

C) DIC images of human iPSC-derived DA neurons with representatives QD-GluN1 trajectories (blue 

traces) in control (left) and X-link GluN1 conditions (1/5, 30 minutes incubation, right). Inserts, 

Magnified trajectories of single QD-NMDAR complexes in control (left) and X-link GluN1 conditions 

(right). 

D) Cumulative distribution of the NMDAR instantaneous diffusion coefficients in human iPSC-derived 

DA neurons before (n= 276 trajectories, 1 culture) and after X-link GluN1 (n= 501 trajectories, 1 

culture). The immobile fractions are 13% and 62% in control and X-link GluN1 conditions, respectively. 

Middle, Plot of the MSD over time of QD-GluN1 trajectories before and after X-link GluN1. Right, 

Median NMDAR diffusion coefficients before (0.23 µm2/s, IQR = 0.12-0.33 µm2/s) and after X-link 

GluN1 (0.0004µm2/s, IQR = 0.00006-0.0118 µm2/s). Unpaired Mann Whitney test, **** p < 0.0001. 
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Fig 5. Acute alteration of NMDAR membrane dynamics modifies the firing pattern of midbrain DA 

neurons in VTA slices, without affecting NMDAR- and GABAA receptor-mediated synaptic currents. 

A1) Schematic drawing of the in vivo X-link, based on the stereotaxic injection of GluN1 antibodies (Ab) 

in the midbrain. A2) Horizontal brain section showing the injection site identified with bromophenol 

blue (top left). Injected GluN1 Ab revealed by immunolabelling are present in the VTA, localized thanks 

to the TH immunostaining.  

B1) Representative firing pattern of DA neurons in VTA slices from a naive and control IgG (goat anti 

rabbit) injected rats. B2) Firing frequency (left) (1.86 ± 0.16 Hz, n=14 neurons for naïve and 1.67 ± 0.10 

Hz, n=16 for control IgG) and CV-ISI (right) (13.68 ± 1.37, n=14 for naive and 10.84 ± 1.23, n=16 for 

control IgG) of DA neurons from naive and control IgG injected rats. Unpaired Student’s t tests, p=0.326 

for the frequency, and p=0.132 for the CV-ISI. Data are expressed as mean ± SEM.  

C1) AMPA receptors (AMPAR)-mediated evoked excitatory postsynaptic currents (eEPSC, below) and 

mixed AMPAR/ NMDAR-mediated eEPSC (top) recorded in whole cell configuration at -60 and +40 mV 

respectively, in the presence of bicuculline (20 µM), in control IgG and X-link GluN1 conditions. The 

amplitude of NMDAR-eEPSC was obtained 50 ms after the onset of the eEPSC. C2) AMPAR/NMDAR 

ratio (2.14 ± 0.34, n=13 neurons for control IgG and 1.89 ± 0.18, n=13 for X-link GluN1), mean 

amplitudes of NMDAR- (46.38 ± 5.85 pA, n=13 for control IgG and 48.91 ± 6.99 pA, n=13 for X-link 

GluN1, middle) and AMPAR-eEPSC (89.98 ± 11.13 pA, n=13 for control IgG and 86.25 ± 6.86 pA, n=13 

for X-link GluN1), and NMDAR decay time (117.00 ± 23.54 ms, n=13 for control IgG and 98.68 ± 22.29 

ms, n=13 for X-link GluN1). Unpaired Student’s t tests : p=0.513, p=0.784, p=0.777, p=0.579 

respectively. 

D1) Left, Spontaneous inhibitory postsynaptic currents (siPSC) recorded in DA neurons at -60 mV in 

presence of NBQX (10 µM) in VTA acute slices from control IgG and X-link GluN1 injected rats. Right, 

Overlay of single sIPSC in control IgG and X-link GluN1 conditions. D2) Mean amplitudes (56.49 ± 9.56 

pA, n=6 neurons for control IgG and 47.38 ± 3.65 pA, n=7 for X-link GluN1). D3). Decay time (12.35 ± 

0.67 ms, n=6 for control IgG and 13.31 ± 0.85 ms, n=7 for X-link GluN1), inter-event intervals (1378 ± 

282 ms, n=6 for control IgG and 836 ± 138 ms, n=7 for X-link GluN1), and rise time (1.90 ± 0.17 ms, n=6 

for control IgG and 1.77 ± 0.07 ms, n=7 for X-link GluN1) of sIPSC. Unpaired Student’s t test : p=0.437, 

p=0.407, p= 0.097, p=0.459, respectively. 

E1) Representative firing pattern of DA neurons in VTA slices from control IgG or X-link GluN1 injected 

rats. E2) Firing frequency (2.03 ± 0.13 Hz, n=19 neurons for control IgG and 1.40 ± 0.14 Hz, n=19 cells 

for X-link GluN1) and CV-ISI (12.14 ± 1.27, n=19 for control IgG and 20.15 ± 3.89, n=19 for X-link GluN1). 

Unpaired Student’s t tests : **p=0.0018,* p=0.0291, respectively. Data are expressed as mean ± SEM. 
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Fig 6. Acute alteration of NMDAR membrane dynamics by X-link GluN1 decreases SK channels 

modulatory effect but not its membrane content in the midbrain. 

A1) Representative firing pattern of a midbrain DA neuron in acute VTA slices from a naive rat before 

(control) and after the blockade of SK channels by apamin (200 nM, 5-10 minutes). A2) Left, Firing 

frequency (left Y axis) and normalized frequency (right Y axis) of DA neurons before (1.75 ± 0.13 Hz, 

n=12 cells) and after apamin application (1.73 ± 0.14 Hz, normalized frequency = 0.99 ± 0.05, n=12). 

Paired Student’s t-test, p=0.894. Right, CV-ISI and normalized CV-ISI before (12.67 ± 1.6, n=12) and 

after apamin application (29.62 ± 5.96; normalized CV-ISI = 3.47 ± 0.80, n=12). Paired Student’s t test, 

**p=0.0052.  

B1) Firing frequency and normalized frequency of DA neurons in control IgG (1.60 ± 0.11 Hz and 1.71 

± 0.15 Hz before and after apamin respectively; normalized frequency after apamin = 1.06 ± 0.07, n=12 

neurons) and X-link GuN1 injected rats (1.63 ± 0.23 Hz and 1.61 ± 0.23 Hz before and after apamin, 

respectively; normalized frequency after apamin = 1.05 ± 0.08, n=11 neurons). Paired Student’s t tests: 

p=0.390 for control IgG and p=0.565 for X-link GluN1 respectively. B2) CV-ISI and normalized CV-ISI 

before and after apamin in control IgG (CV-ISI = 12.67 ± 1.60 and 29.62 ± 5.96 before and after apamin 

respectively; normalized frequency after apamin = 3.04 ± 0.98, n=12 neurons) and X-link GluN1 rats 

(CV-ISI = 31.68 ± 5.99 and 45.93 ± 9.08 before and after apamin respectively; normalized CV-ISI after 

apamin = 1.94 ± 0.43, n=11 neurons). Paired Student’s t tests: *p=0.031 for control IgG and *p=0.027 

for X-link GluN1 respectively. 

C) Diagram of the proportion of apamin responders and non-responders DA neurons. DA neurons are 

considered as responders if the value of the CV-ISI after apamin was higher than the CV-ISI before the 

drug plus the standard deviation.  

D1) Schematic drawing of the experimental procedure to obtain midbrain membrane fractions of rats 

injected with either control IgG or X-link GluN1. Briefly, antibodies were injected in the midbrain and 

acute midbrain slices were prepared to perform western blotting experiments. D2) Left, western blots 

of GluN1 and SK channels membrane factions revealed in midbrain slices from control IgG and X-link 

GluN1 injected rats. Right, Normalized membrane fraction of GluN1 (1.06 ± 0.08, n=6 animals for X-

link GluN1) and SK3 channels proteins (0.90 ± 0.06, n=6 animals for X-link GluN1). Unpaired Student’s 

t tests: p=0.530 for GluN1, p=0.380 for SK3. All the values were normalized to the control IgG condition 

(n=6 animals). Data are expressed as mean ± SEM. 
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DISCUSSION AND PERSPECTIVES 
 

 

The aim of the PhD project was to investigate the interplay between NMDAR surface trafficking 

and the firing pattern of midbrain DA neurons. To address this question, I used a combination of single 

particle imaging techniques in primary midbrain cultured neurons and iPSC-derived DA neurons, and 

electrophysiological approaches in rat midbrain acute slices. I showed that both NMDAR and SK 

channels activity regulate the firing pattern of midbrain DA neurons, whereas blocking the 

spontaneous activity of NMDAR was ineffective. As NMDAR activation produced both ion fluxes and 

modulates the membrane diffusion of the receptor, I investigated the specific role of NMDAR surface 

dynamics in the firing of DA neurons. Altering this dynamics by X-link GluN1 profoundly modified the 

firing pattern of midbrain DA neurons and reduced the efficacy of SK channel blockers, while the total 

membrane content of SK channels remained constant. Together, the data collected during my PhD 

thesis fuel a model in which NMDAR dynamic distribution at the surface of DA neurons tunes the firing 

pattern of these neurons through an alteration of SK channel function. These different points will be 

discussed in the following sections.  

 

Modulation of the firing activity of midbrain DA neurons by NMDAR and SK channel activity 

SK channel inhibition. A large broad of evidence showed that SK channels regulate the firing 

precision of midbrain DA neuron in vitro (Shepard and Bunney, 1988; Wolfart et al., 2001; Deignan et 

al., 2012; Herrik et al., 2012), and also the in vivo burst generation (Waroux et al., 2005; Ji and Shepard, 

2006; Herrik et al., 2010; Soden et al., 2013). Consistent with the literature (Shepard and Bunney, 1988; 

Wolfart et al., 2001; Deignan et al., 2012; Herrik et al., 2012), I found that the SK channel blocker 

apamin decreased the regularity of the pacemaker activity in DA neurons from midbrain slices. In 

addition, several studies reported that SK channels modulate the firing rate of DA neurons, since 

exposure to SK channel blockers increased the global firing rate both in vitro (Shepard and Bunney, 

1988; Wolfart et al., 2001; Deignan et al., 2012) and in vivo (Waroux et al., 2005; Herrik et al., 2010; 

Creed et al., 2016). I and others have found that apamin exposure did not affect the firing rate of DA 

neurons in vitro (Seutin et al., 1993; Soden et al., 2013) and in vivo (Ji and Shepard, 2006). Shepard and 

Bunney reported that 20% of the recorded DA neurons did not change their firing rate in response to 

apamin application (Shepard and Bunney, 1988). Note that Wolfart and collaborators revealed that 
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the in vitro effect of SK channel blockade on the firing rate was highly dependent on the firing 

frequency of the neurons before the drug (Wolfart et al., 2001). Pharmacological inhibition of SK 

channels had a small effect on the firing rate, quantified by a relative change of 1.2 in DA neurons with 

a low firing frequency (<2 Hz), whereas it increased to 1.7 and 2.3 for DA neurons with a firing 

frequency of 2-4 Hz and 4-6 Hz respectively. In my study and the ones from Soden and collaborators 

(2013) and Seutin and collaborators (1993) where apamin did not affect the rate, the mean firing 

frequency was between 1.5 and 1.7 Hz for in vitro DA neurons (Seutin et al., 1993; Soden et al., 2013), 

whereas Deignan and collaborators and Shepard and Bunney, who observed an effect of apamin, 

reported a firing rate above 2 Hz (Shepard and Bunney, 1988; Deignan et al., 2012). Thus, it is possible 

that the frequency was too low to detect a significant change in the firing rate induced by apamin. 

Nevertheless, this relationship between the firing frequency and the effect of SK channels blockade 

does not fully explain the discrepancies between studies. Although the firing frequency of in vivo DA 

neurons was comprised in the same range of 3-4 Hz in several studies (Waroux et al., 2005; Ji and 

Shepard, 2006; Herrik et al., 2010; Creed et al., 2016), only Ji and Shepard found that blocking SK 

channels did not affect the overall firing rate. As different SK channel blockers and different doses were 

used in these studies, these parameters likely contribute to the discrepancies. Therefore, the effect of 

SK channels on the firing rate of midbrain DA neurons is less consistent than the effect on the firing 

precision and likely depends on firing frequency, SK channel blockers and the concentrations used.  

 

NMDAR activation. NMDAR regulate the burst firing and the firing rate of midbrain DA neurons 

in vivo (Overton and Clark, 1992; Christoffersen and Meltzer, 1995; Connelly and Shepard, 1997). In 

vitro, the firing frequency was increased by NMDA application (Seutin et al., 1990; Mercuri et al., 1992; 

Mereu et al., 1997) but its effect on the firing pattern was less clear. Whereas some authors observed 

the presence of bursts in DA neurons from midbrain slices in response to NMDA (Mereu, 1997; 

Johnson, 1992), others failed to evoke bursts (Mercuri, 1992; Seutin, 1990). Similarly, NMDA 

application did not induce burst firing in midbrain DA neurons in our study. These discrepancies could 

be explained by differences in brain preparations and experimental procedures. Indeed, injection of a 

hyperpolarizing current in DA neurons is required to prevent the excessive depolarization induced by 

NMDA application and enables the bursts generation (Johnson et al., 1992; Seutin et al., 1993; Johnson 

and Wu, 2004). Unlike most of the studies that only reported the existence of a pacemaker activity in 

midbrain DA neurons from slices (Grace and Onn, 1989; Seutin et al., 1990; Mercuri et al., 1992; Soden 

et al., 2013), Mereu et al. showed that in vitro DA neurons from immature rats also exhibit irregular 

and bursting patterns, and reported that NMDA application induced bursts in a different proportion of 

neurons, depending on their basal firing patterns. The existence of different firing patterns could be 
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attributed to the different section plane of the midbrain slices (coronal for Mereu versus horizontal for 

the others), and therefore, it is possible that the effect of NMDA application also differs according to 

the orientation of the brain slices. It is interesting to note that in these studies, the effect of NMDA in 

vitro was mostly qualitative (presence or not of the bursts) and eventually quantified by the number 

of bursty neurons and the percentage of spikes occurring in bursts (Seutin et al., 1990; Mercuri et al., 

1992; Mereu et al., 1997; Johnson and Wu, 2004). My study provides a quantitative analysis of the in 

vitro effect of NMDA application on the firing pattern of midbrain DA neurons by evaluating the CV-

ISI. Remarkably, I found that the pharmacological activation of NMDAR decreased the firing precision. 

Given that the regularity of the firing is correlated with the occurrence of bursts, my results are in 

accordance with in vivo studies demonstrating that NMDAR activation increased the burst firing 

(Overton and Clark, 1992; Christoffersen and Meltzer, 1995) whereas their inhibition decreased both 

the bursts activity and the CV-ISI (Christoffersen and Meltzer, 1995; Connelly and Shepard, 1997). We 

can conclude that activation of NMDAR increases the irregularity of the firing, which likely favours 

burst generation in midbrain DA neurons.  

 

Blockade of the basal NMDAR activity. In agreement with others (Seutin et al., 1990; Mereu 

et al., 1997), I report that the basal firing pattern of DA neurons from midbrain slices was not changed 

following NMDAR antagonist application. Since DA neurons receive excitatory glutamatergic inputs, it 

is unlikely that the blockade was ineffective because DA neurons were devoid of glutamatergic 

synapses. However, the frequency of the spontaneous excitatory events was very low (<0.2 Hz) and 

thus, it is conceivable that the inhibition of these few events is not sufficient to change the firing rate. 

Also, such spontaneous activity may only partially activate NMDAR that need membrane 

depolarization for full activation. Given that application of D-APV prevented the effects mediated by 

SK channels in vitro in the hippocampus and the amygdala (Faber et al., 2005; Ngo-Anh et al., 2005), 

which is consistent with the requirement of NMDAR to active SK channels, the absence of effect of 

NMDAR blockade on the firing pattern may appear surprising. Of note, the coupling between NMDAR 

and SK channels is less clear in midbrain DA neurons since activation of NMDAR might decrease or 

increase SK channel function (Paul et al., 2003; Creed et al., 2016). Still, the concept that NMDAR can 

modulate the activity of SK channels in midbrain DA neurons is likely of interest.  

How is it that D-APV and MK-801 do not change the firing of midbrain DA neurons? Growing evidence 

indicates that GluN3A subunits are present in midbrain DA neurons. GluN3A subunits are inserted in 

excitatory synapses from midbrain DA neurons after cocaine exposure (Yuan et al., 2013), inducing a 

“re-juvenation” of the excitatory synapses with the re-emergence of synaptic GluN2B subunits (Bellone 

et al., 2011; Dong and Nestler, 2014). This subunit has also been detected by immunoblots in the 
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midbrain and in synaptosomes from both midbrain and forebrain, with the highest level between PD 

10-14 (Al-Hallaq et al., 2002; Wee et al., 2016). Since I recorded DA neurons between PD 12-16, 

midbrain DA neurons might express GluN3A-containing NMDAR. These receptors being weakly 

permeable to calcium (Henson et al., 2010), they may poorly contribute to the regulation of SK 

channels that can be activated by other calcium sources (Nedergaard et al., 1993; Wolfart and Roeper, 

2002; de Vrind et al., 2016). Alternatively, the sources of calcium of SK channels can be multiple in 

midbrain DA neurons. Therefore, if NMDAR are inhibited, other calcium sources identified in midbrain 

DA neurons such as the voltage gated calcium channels of L-, N-, P/Q or T-type (Nedergaard et al., 

1993; Wolfart and Roeper, 2002; Cui, 2004; de Vrind et al., 2016) might be sufficient to compensate 

the NMDAR blockade and activate SK channels. In accordance with this hypothesis, De Vrind et al. 

found that blocking only one type of voltage gated calcium channels induced none to moderate 

decrease of SK channel-mediated AHP and did not reverse the increased irregularity of midbrain DA 

neurons induced by apamin application, except for the blocker of L-type channels that partially 

reversed it. Moreover, even if T-type blockers almost abolished the SK channel-mediated AHP and 

induced bursting activity in SNc DA neurons, the combination with apamin strongly favoured bursts 

(Wolfart and Roeper, 2002), suggesting that several calcium sources cooperate to maintain SK channel 

function in midbrain DA neurons. 

 

Modulation of the firing pattern of midbrain DA neurons by NMDAR surface trafficking 

Lateral mobility of NMDAR. The surface trafficking of NMDAR was never investigated in DA 

neurons, so I took advantage of the TH-tdTomato mice to identify live DA cultured neurons and tracked 

NMDAR at the neuronal surface using single particle tracking approaches. I showed that membrane 

NMDAR diffused with a mean instantaneous diffusion coefficient of 0.127 µm2/s and an immobile 

fraction of approximately 9% (fraction of NMDAR diffusing with an instantaneous coefficient <0.005 

µm2/s). I also characterized for the first time the NMDAR membrane dynamics in human iPSC-derived 

DA neurons and reported that NMDAR diffused even faster in human cultured neurons but exhibited 

a similar low fraction of immobile receptors. Of note, it is strikingly different from what is found for 

surface NMDAR tracking in embryonic hippocampal culture, where the median diffusion coefficient is 

approximately 0.070 µm2/s and the immobile fraction estimated at 15%. Because NMDAR are 

stabilized and anchored in glutamatergic synapses (Groc et al., 2004), a low number of glutamatergic 

synapses in midbrain cultured neurons could explain the high diffusion of NMDAR in these neurons 

when compared to hippocampal ones. In line with this possibility, several studies reported that rodent 

postnatal midbrain cultures are mainly composed of GABAergic and DA neurons (Chiodo and Kapatos, 

1992; Masuko et al., 1992) and that cultured DA neurons exhibited none to moderate spontaneous 
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activity (0% for Masuko et al., 1992; , 11% for Rayport et al., 1992; 47%  for Chiodo and Kapatos, 1992- 

but see 68% for Cardozo, 1993). Thus, cultured midbrain DA neurons likely have moderate 

glutamatergic connections. Furthermore, DA neurons are aspiny, meaning that synapses are mostly 

localized onto dendritic shafts. As the receptor diffusion is reduced in spine, possibly through the high 

compartmentalization, a low level of spines will further favor NMDAR diffusion. 

 

Alteration of NMDAR surface trafficking with X-link GluN1. Since membrane NMDAR are 

highly mobile in cultured DA neurons, the functional role of this process was investigated by using the 

X-link GluN1 protocol. Primary antibodies against the GluN1 subunit reduce the lateral mobility of 

NMDAR without affecting their function or the global NMDAR membrane content, allowing to 

specifically study the effect of the trafficking per se. Notably, X-link GluN1 impaired both the frequency 

and the firing precision of DA neurons. Since the blockade of the spontaneous NMDAR activity was 

ineffective in changing the firing activity, I propose that, in basal conditions, NMDAR surface trafficking, 

but not its ionotropic activity, is involved in the pacemaker activity of midbrain DA neurons. 

 

Models of the alteration of SK channels by X-link GluN1. In my thesis, I unveiled that 

application of the SK channel blocker apamin, which induces irregularity in DA neurons in control 

conditions, was less effective when NMDAR surface trafficking was altered with X-link GluN1. 

Therefore, several scenarios can be considered to explain this effect (Figure 17). Firstly, a loss of SK 

channel function could be due to a massive channel endocytosis induced by the NMDAR 

immobilization (scenario 1). However, I did not detect any change in the SK3 channel content in 

membrane fraction by western blots, arguing against the reduction of SK channel function through 

internalization and degradation. Given that SK channels are coupled with NMDAR in several neurons 

including DA neurons (Paul et al., 2003; Faber et al., 2005; Ngo-Anh et al., 2005; Creed et al., 2016), 

altering NMDAR trafficking might disturb the membrane distribution of the receptor and alter the 

spatial relationship between the calcium source and SK channels (scenario 2). As a consequence, the 

decreased activity of SK channels would induce a more irregular pattern of midbrain DA neurons. 

Although tempting, this hypothesis is inconsistent with the results obtained with NMDAR blockers. 

Indeed, if NMDAR-mediated calcium influx was necessary to activate SK channels, I would expect that 

blocking NMDAR would impair its functional coupling with SK channels and affect the firing pattern. As 

NMDAR blockers were ineffective, this scenario seems not the most plausible to explain the alteration 

of SK channels. A third hypothesis is that the X-link GluN1 disturbs both the distribution of NMDAR and 

SK channels, uncoupling the channel from other calcium sources (scenario 3). This hypothesis relies on 

the fact that NMDAR and SK channels can interact directly or indirectly through macromolecular 

complexes. There is no evidence of a direct interaction between NMDAR and SK channels and they are 
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only observed in close proximity (no colocalization) (Lin et al., 2008; Soden et al., 2013). However, 

NMDAR and SK channels interact with similar partners including casein kinase II (Bildl et al., 2004; 

Chung et al., 2004) and calmoduline protein (Xia et al., 1998; Krupp et al., 1999), making possible the 

existence of large macromolecular complexes. Therefore, the X-link GluN1 might alter the distribution 

of both NMDAR and SK channels, and uncouple these latter from their calcium sources.  Alternatively, 

alteration of NMDAR surface trafficking might disturb the distribution of protein kinases and 

phosphatases, modulating the function of SK channels (scenario 4). In support of this possibility, 

NMDAR physically interact with casein kinase 2 (CKII) (Chung et al., 2004) and protein phosphatase 2 

(PP2A) (Chan and Sucher, 2001), which can associate with SK channels and regulate the channel 

properties (Allen et al., 2007; Maingret et al., 2008). Interestingly, altering the surface dynamics of 

NMDAR, and not its activity, changed the intracellular trafficking and the spine content of CAMKII in 

hippocampal neurons (Dupuis et al., 2014). Therefore, impairing NMDAR dynamic distribution might 

affect SK channel properties by disturbing the availability of these proteins. To shed lights on these 

possibilities, several experiments can be envisioned. First, I plan to confirm the loss of SK channel 

function by recording and comparing the SK channel-mediated currents in X-link GluN1 and control 

conditions. Besides, to investigate if X-link GluN1 affects the membrane distribution of SK channels 

(scenario 3), live immunohistochemistry against SK channels is needed to label membrane channels. 

Because available antibodies against SK3 channels are directed against the intracellular N and C 

terminals, and thereby require permeabilization, I favour the use of apamin-biotin complexes, which 

should allow to only label surface channels. In parallel, it would be interesting to perform co-

immunoprecipitations to highlight the presence of NMDAR-SK channels macrocomplexes. To 

investigate whether kinases/phosphatases such as CKII or PP2A are involved in the change of the firing 

activity of midbrain DA neurons induced by X-link GluN1 (scenario 4), a first hint could be to test the 

contribution of these proteins in the basal activity of SK channels. Indeed, if blockers of CKII or PP2A 

do not change the spontaneous firing rate in basal conditions, the scenario 4 would be unlikely to 

explain the effect induced by X-link GluN1. 
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Figure 17. Scenarios to explain the loss of SK channel function by X-link GluN1. In basal conditions, SK channels 

are functional but lose their function when NMDAR membrane dynamics is altered by X-link GluN1.The different 

scenarios are described in details in the text. 

 

 

Implications of NMDAR surface trafficking in physiological and pathological conditions 

Role of NMDAR surface trafficking in burst firing. The increased irregularity of the firing 

pattern observed in vitro following NMDAR activation and SK channel inhibition was correlated with 

an enhancement of the bursting activity in midbrain DA neurons in vivo (Seutin et al., 1990; Overton 

and Clark, 1992; Soden et al., 2013). Given that disrupting NMDAR membrane dynamics also increased 

the irregularity of the pacemaker activity, NMDAR surface trafficking might regulate the burst firing in 

vivo, and it would be interesting to confirm it by recording in vivo the firing of midbrain DA neurons 

with the X-link GluN1 protocol. The burst generation induced by NMDA application in vivo was mostly 

attributed to NMDAR activation and the resulting calcium entry (Grace and Bunney, 1984), but the fact 

that NMDA also modified NMDAR surface trafficking in DA neurons opens the possibility that this latter 

process might contribute to the burst induction as well. Therefore, the presence of NMDA might 

promote burst activity by modulating both channel activity and its trafficking. Except for artificial 

application of NMDA, what could be the factors influencing the NMDAR surface trafficking and the 

burst firing in physiological conditions ? Interestingly, several studies revealed that NMDAR co-agonists 

D-serine and glycine modulate the lateral mobility of NMDAR in cultured hippocampal neurons 

(Papouin et al., 2012; Ferreira et al., 2017). Besides, mice lacking D-amino acid oxidase, which degrades 

D-serine, exhibited a greater number of bursting DA neurons in the VTA (Schweimer et al., 2014). From 
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these data, the possibility emerges that the availability of NMDAR co-agonists might regulate the 

NMDAR membrane dynamics, which in turn might control the bursts firing of DA neurons. Moreover, 

it has been shown in the hippocampus that the availability of the co-agonists is regulated during 

development, with glycine predominating before the third postnatal week and D-serine after this 

period (Le Bail et al., 2015; Ferreira et al., 2017). Since appearance of bursts in midbrain DA neurons is 

also subjected to developmental regulation - they appear only after the third postnatal week in vivo 

(Tepper et al., 1990; Wang and Pitts, 1994) - a change in the co-agonist availability might be involved 

in the control of the burst appearance. Thereby, it would be interesting to test whether a similar switch 

of NMDAR co-agonists occurs around the third postnatal week in the midbrain. Up to now, information 

about the midbrain content of D-serine and glycine and their regulation during development is very 

scarce (Hashimoto et al., 1993; Nagata et al., 1994) and do not allow to confirm or refute this 

hypothesis.  

  

Role of NMDAR surface trafficking in pathological conditions. Anti-NMDAR auto-antibodies, 

including anti-GluN1 antibodies, were detected in several neuropsychiatric disorders such as anti 

NMDAR encephalitis (Dalmau et al., 2007) and schizophrenia (Tsutsui et al., 2012; Pearlman and Najjar, 

2014). Chronic exposure with NMDAR auto-antibodies from schizophrenia and encephalitis patients 

was associated with synaptic NMDAR endocytosis and thereby, prevented LTP induction (Dalmau et 

al., 2008; Hughes et al., 2010; Mikasova et al., 2012; Jezequel et al., 2017). Remarkably, acute 

treatment with auto-antibodies did not affect the membrane content of NMDAR but impaired its 

surface diffusion (Mikasova et al., 2012; Jezequel et al., 2017). As X-link GluN1 with commercial 

antibodies also altered NMDAR membrane dynamics without disrupting the receptor synaptic content 

(Dupuis et al., 2014), it raises the possibility that the changes in firing pattern observed with 

commercial anti-GluN1 antibodies could also be induced by pathogenic auto-antibodies. It is 

interesting to note that psychotomimetics drugs such as MK-801 or PCP, which reproduce psychotic 

symptoms expressed by schizophrenic patients (Javitt and Zukin, 1991), modify the firing rate of VTA 

DA neurons by increasing both firing rate and bursting activity (French et al., 1993). Besides, mutated 

inactive forms of the delta 1 glutamate receptor and the SK3 channels, whose genes have been 

associated with schizophrenia (Greenwood et al., 2011; Askland et al., 2012), profoundly impact burst 

generation in VTA DA neurons in vivo (Soden et al., 2013; Benamer et al., 2017). In light of my results 

and these data, it would be interesting to test whether NMDAR auto-antibodies from schizophrenia 

patients affect the firing activity of midbrain DA neurons, because it might partly explain the causes of 

the DA dysfunction encountered in schizophrenia patients.   

 



120 

 

Conclusion and perspectives 

By revealing that NMDAR membrane dynamics tunes the firing pattern of midbrain DA neurons, my 

PhD study sheds new and rather unsuspected light on the molecular mechanisms contributing to the 

regulation of DA neuron activity. Indeed, in addition to the ionotropic function of receptor/channel, 

their membrane dynamics appears to play a key role in this process, challenging our classical view of 

the regulation of neuronal activity. The firing pattern appears as a highly dynamic process with 

diffusive receptors and future investigations are needed to fully understand how the activity and the 

membrane dynamics of channels and receptors cooperate to regulate the neuronal activity, essential 

for communication within the brain. 
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ANNEXE 2: Investigating NMDAR surface trafficking with single particle 

tracking in acute midbrain slices 

 

 

Surface trafficking of NMDAR is regulated by proteins that can be intracellular like kinases and 

MAGUK proteins, extracellular such as proteins from the extracellular matrix or anchored in the plasma 

membrane as transmembrane receptors (Groc et al., 2009). Up to now, most of the studies 

investigating the lateral diffusion of receptors were done in dissociated neuronal culture. In this 

preparation, neurons are dissociated and cultured with specific media in petri dishes and thus, lack the 

extracellular environment and the tissue architecture. To circumvent this technical limitation, we 

developed in the laboratory a new protocol to track the lateral mobility of tagged membrane receptors 

such as NMDAR or DAR in acute brain slices (Figure 1) (Varela et al., 2016a, 2016b). To track NMDAR, 

the first step was to incorporate DNA constructs coding for GluN1-superecliptic pHluorin (SEP), a pH 

sensitive derivative of the green fluorescent protein (GFP). We introduced GluN1-SEP DNA construct 

by in vivo electroporation (in utero or postnatal electroporation) to express tagged NMDAR and we 

added GFP to identify electroporated neurons. Then, quantum dot nanoparticles coupled to antibodies 

against the GFP tag are delivered in vivo through intraventricular injections. Once acute brain slices are 

prepared, tagged NMDAR are tracked by single particle tracking imaging techniques in electroporated 

neurons. This protocol, initially developed for DAR (Varela et al., 2016a), was successfully used to track 

NMDAR lateral diffusion in hippocampal acute brain slices and was subjected to a publication (Varela 

et al., 2016b). In this latter paper, the authors took advantage of this new approach to compare 

NMDAR surface trafficking in three different hippocampal preparations: in dissociated culture, and in 

organotypic and acute brain slices. The fractions of immobile and mobile receptors were similar 

between the preparations but the mobility of NMDAR in acute slices was decreased, probably because 

of the dense extracellular environment in slices. Therefore, although these different preparations 

share similarities, it seems that the extracellular environment influences NMDAR membrane dynamics. 
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Figure 1. Protocol allowing the tracking of tagged NMDAR in acute brain slices (adapted from Varela et al, 2016). 

A) Top, DNA constructs coding for GluN1-SEP and EGFP are injected in the cerebral ventricles of P0-P1 rat pups 

to express tagged NMDAR and identify electroporated neurons, respectively. Note that in utero electroporation 

is also possible to express these DNA constructs. Down, Then, five electrical pulses (150 V, 50 ms, 1s interpulse 

interval) are given by bipolar electrodes for each brain hemisphere. B) After few days, electroporated neurons 

can be observed in the cortex or hippocampus, depending on the targeted structure. C) Three days after 

electroporation, pups received an intraventricular injection of quantum dots (QD) with anti GFP antibody. 2-3h 

after injection, brain slices are prepared and imaged with a spinning disk confocal microscope. In the bottom, an 

example of a QD GluN1-SEP trajectory tracked at the surface of a GFP positive neuron. 

 

 

During my phD, I investigated NMDAR lateral mobility in mice midbrain primary culture. This 

latter is characterized by a very low proportion of DA neurons (usually less than 5%, except for co-

culture with astrocytic layer for which the yield of DA neurons can reach more than 20%, see Masuko 

et al., 1992; Rayport et al., 1992) and a high proportion of GABA neurons (Chiodo and Kapatos, 1992; 

Masuko et al., 1992; Rayport et al., 1992; Gaven et al., 2014; Weinert et al., 2015). This is strikingly 

different from what is found in vivo, where DA neurons represents more than 50% and almost 90% in 

VTA and SNc respectively, and GABA neurons around 35% in the VTA (Swanson, 1982; Margolis et al., 

2006; Nair-Roberts et al., 2008). Therefore, the environment of DA neurons is quite different in culture 

regarding the neuronal inputs and the tissue architecture and thereby, should impact NMDAR surface 

trafficking. For this reason, I wanted to characterize the lateral mobility of receptors in a more 

preserved environment, i.e in midbrain acute slices, using the protocol developed in the laboratory. 

The first step was to electroporate GluN1-SEP in midbrain DA neurons. In utero electroporation is 

based on the introduction of DNA in neuronal progenitors bordering the cerebral ventricles that will 

become mature neurons after undergoing maturation and migration to their final localization. DNA is 

injected in the cerebral lateral ventricles of the rat embryo with a micropipette through the uterine 

wall and the yolk sac (Figure 2A). Bromophenol blue is added to the DNA solution to check the injection 

site (Figure 2B). After DNA injection, electrical pulses are delivered through forceps-type circular 
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electrodes (Figure 2C, 2D). These electrical shocks destabilize the plasma membrane and create pores 

in the membrane. Then, negatively charged DNA will migrate toward the positive electrode and enter 

the neurons through the pores.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. In utero electroporation of the midbrain to express tagged NMDAR in DA neurons. A) Solution 

containing GluN1-SEP, GFP DNA constructs and bromophenol blue is injected in one ventricle of E16 embryos 

with a glass micropipette. B) The injection is validated if the blue staining spreads in the other ventricle, as 

observed in the image. C) Bipolar electrodes with a positive (yellow marker) and a negative poles are used. D) 

Injected embryos are electroporated by given 5 electrical pulses (50 V, 50 ms, 1s interpulse interval). E) Schematic 

representation of the configuration of the bipolar electrodes on a E16 embryo, in a sagittal (left) and coronal 

(right) view. The ventricular system is represented in blue and the position of the DA neuron progenitors in 

orange. To target these progenitors, the positive electrode is placed under the muzzle of the embryo. F) 

Schematic representation of the configuration of the bipolar electrodes in “real” conditions. Indeed, because of 

the uterin wall (dotted line) and the albumen yolk (continue line circling the embryo), the positive electrode 

cannot be placed under the muzzle but rather along the uterine wall. G) Fluorescence image of a coronal brain 

slice (500 µM) with electroporated GFP neurons (white circle with dotted line) localized in the subiculum. Thal. 

= Thalamus Bar scale = 2mm H) Magnification of the circled area in Fig 1G. Several electroporated neurons are 

observed in this area. I) Schematic representation of a rat brain in the sagittal plane. The circled area from fig 1G 

is represented by the black circle with dotted line. It is worth noting that the electroporated neurons are localized 

in a more anterior part than the midbrain, resulting from the misplacement of the electrodes due to the uterin 

wall and the yolk sac.  
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To successfully electroporate midbrain DA neurons, several parameters had to be considered. 

First, I chose to electroporate pregnant rats at the embryonic stage 16 (E16) because most of midbrain 

DA neurons are generated between E13 and E16 (Altman and Bayer, 1980). Another parameter to take 

into account is the positioning of the bipolar electrodes. As midbrain progenitors are localized in the 

floor plate of the mesencephalon, the positive electrode has to be positioned under the muzzle to 

enable DNA to migrate ventrally (Figure 2E). However, due to the presence of the uterine wall and the 

yolk sac, it is very difficult to put the electrode under the muzzle (Figure 2F). Consequently, I could not 

find electroporated neurons in the midbrain. Instead, GFP positive neurons were present in more 

anterior structures, confirming the misplacement of the bipolar electrode (Figure 2G-2I). To 

circumvent this problem, I wanted to test triple electrodes recently developed by Maschio et al., which 

enables to target brain structures such as the cerebellum that was not accessible with standard bipolar 

electrodes (dal Maschio et al., 2012). These triple electrodes are not commercialized and thus, we 

developed our home-made triple electrodes in the laboratory. Unfortunately, I was not able to reach 

the midbrain with this configuration and up to now, no study reported successful in vivo 

electroporation of the midbrain. Therefore, despite the recent improvement of in utero 

electroporation, it seems that this technique remains unadaptable to the midbrain.  
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ANNEXE 3: Investigating NMDAR surface trafficking on DA neurons by 

electrophysiology with MK-801  

 

 

Before the development of high resolution imaging techniques, NMDAR membrane dynamics 

was first suggested by using pharmacological tools such as the irreversible open channel blocker MK-

801. As the binding site of MK-801 is located inside the receptor pore (Huettner, 1988), this 

pharmacological agent binds selectively to activated NMDAR that opened in response to synaptic 

glutamate release. Besides, the blockade of NMDAR persists after the drug was washed out (Huettner, 

1988), making the MK-801 a powerful tool to investigate the properties of synaptic NMDAR. Tovar and 

Westbrook took advantage of these characteristics to selectively and irreversibly block synaptic 

NMDAR, by  stimulating synapses (paired-pulse stimulation at 0.125Hz) in the presence of MK-801 (5-

20µM) (Tovar and Westbrook, 2002). After blockade of synaptic NMDAR and subsequent washes, the 

authors observed a gradual recovery of the evoked NMDAR-mediated post-synaptic currents (EPSC) 

(Figure 1A). Surprisingly, this recovery was not observed when synaptic and extrasynaptic NMDAR 

were blocked by co-application of MK-801 (20 µM) and the agonist NMDA (1mM) (Figure 1B), ruling 

out the possibility that this effect was due to insertion of new NMDAR inside the membrane. It rather 

suggests that in the case of synaptic block with MK-801 (Fig 1A), membrane extrasynaptic receptors 

are recruited to synapses, thereby contributing to the recovery of synaptic currents. Since this 

discovery, the surface trafficking of NMDAR was later confirmed by single particle tracking and other 

imaging techniques such as FRAP (Groc et al., 2004; Bard et al., 2010). Thus, the use of 

electrophysiology combined with MK-801 appears as a robust way to explore NMDAR membrane 

trafficking, especially in brain slices where application of such imaging techniques is still challenging. 
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Figure 1. Recovery of evoked NMDAR-mediated post-synaptic current (EPSC) following synaptic block with MK-

801 application (adapted from Tovar and Westbrook, 2002. A) Top, Schematic drawing of NMDAR (black 

rectangles) in the synaptic compartment (delimited by the black circle), which are blocked by synaptic stimulation 

with MK-801 bath application. Extrasynaptic NMDAR (white rectangles) are not blocked. Down, Application of 

MK-801 (5-20µM) during synaptic stimulation induces a fast and almost full inhibition (90%) of NMDAR-mediated 

EPSC. After 15 minutes, the ESPC showed a recovery of more than 25% of the control EPSC amplitude. B) Top, 

Schematic drawing of the synaptic and extrasynaptic membrane NMDAR following NMDA and MK-801 co-

application. Note that this protocol blocked both extrasynaptic and synaptic NMDAR. Down, Four times 

(indicated by arrows) co-applications of MK-801 (20 µM) and NMDA (1 mM) result in a complete abolition of 

NMDAR-mediated EPSC. No recovery was observed in this case, even after 30 minutes. 

 

 My phD project aimed at investigating the role of NMDAR membrane dynamics in the firing 

pattern of midbrain DA neurons. As this was done in acute midbrain slices, the idea here was to 

characterize the lateral mobility of NMDAR in the same preparation with the protocol used by Tovar 

and Westbrook. To do so, evoked NMDAR mediated EPSC (NMDAR-eEPSC) were recorded in DA 

neurons from VTA acute slices from young rats (PD 10-P15). To inhibit synaptic NMDAR, MK-801 (10 

µM) was bath applied for 5 minutes when stimulating synapses at 0.05Hz with a single pulse protocol. 

The kinetics of MK-801 blockade was quite slow, reaching 40-50% of inhibition after 15-20 minutes of 

drug application (Figure 2A). In contrast, Tovar and Westbrook reported an almost full inhibition (90% 

inhibition) after few minutes. To note, the synaptic block should be fast and strong enough to see 

recovery. Indeed, if the recovery process starts when the synaptic block is still occurring, it would mask 

the recovery and result in a stable value of current amplitude. 

Patching neurons during several minutes (>20 minutes) can induce a significant rundown of 

the NMDAR-mediated currents probably because of cell dialysis (Rosenmund and Westbrook, 1993; 

Wu et al., 2007; Wild et al., 2013b). So, it raises the possibility that the gradual inhibition of synaptic 

currents was due to nonspecific rundown instead of MK-801 action. To test it, I patched neurons during 
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at least 25 minutes without adding any drug. As no rundown was observed after 25 minutes of patch 

(Figure 2B), it is unlikely that the slow decreased of synaptic current resulted from nonspecific 

rundown. 

 

Time (min)

N
M

D
A

R
-m

ed
ia

te
d

eE
P

S
C

 a
m

pl
itu

de
 (

%
 b

a
se

lin
e

)

0 5 10 15 20 25 30
0

50

100

150 MK
(10µM)

Time (min)

N
M

D
A

R
-m

ed
ia

te
d

eE
P

S
C

 a
m

pl
itu

de
 (

%
 b

as
el

in
e)

0 5 10 15 20 25
0

50

100

150

200

 

 

Figure 2. The gradual decrease of NMDAR-eEPSC observed in midbrain DA neurons following MK-801 application 

is not due to nonspecific rundown of currents. A) MK-801 (10 µM, 5 minutes) application during synaptic 

stimulation evoked by bipolar electrodes placed rostral to the VTA induces a gradual and progressive decrease 

of the NMDAR-eEPSC amplitude. After 5 minutes of MK-801, only 40-50% of the EPSC amplitude are inhibited. 

The EPSC amplitudes are normalized to the mean amplitude of ESPC recorded before the drug (5 minutes). Bars 

represent SEM. n=5. B) Example of the NMDAR-eEPSC recorded in a midbrain DA neuron in whole-cell patch 

clamp configuration. Note that the recording is quite stable after 25 minutes, showing that synaptic NMDAR 

currents do not undergo rundown due to intracellular dialysis. 
 

 

The slow kinetic of MK-801 could also be due to a problem of drug penetration into slices. To 

discard this possibility, I recorded NMDAR-eEPSC in the presence of another NMDAR blocker D-APV. 

D-APV (50µM) is a competitive antagonist that inhibits NMDAR independently of its state (opened or 

closed). Contrary to MK-801, D-APV decreases current by 78% after 5 minutes (Figure 3),indicating that 

the low access of drug into slices is unlikely to account for the slow kinetic of MK-801.  
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Figure 3. D-APV induces a rapid inhibition of 

NMDAR-eEPSC in DA neurons from VTA slices. 

Here is an example of the NMDAR-eEPSC recorded 

in a DA neuron. Application of the antagonist D-

APV (50 µM, 5 minutes) induces a strong and fast 

decrease of synaptic currents. After 5 minutes, the 

residual current is about 18%, meaning that the 

drug easily penetrates brain slices to act on 

NMDAR.   
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One of the main differences between my preparation and the one described by Tovar and 

Westbrook is that they used autaptic primary mouse culture whereas I worked on acute brain slices. 

Although the authors mentioned that recovery from MK-801 occurred with single or paired-pulse 

stimulation, it is possible that the single pulse stimulation activated too few synapses and thus, was 

not sufficient to induce a massive block of synaptic NMDAR in acute slices. Remarkably, Harris and 

Pettit, who used MK-801 to block synaptic NMDAR in acute hippocampal slices, stimulated synapses 

with single pulses given at 0.1 Hz (Harris and Pettit, 2007). However, they increased the concentration 

of MK-801 to 50 µM. Since their protocol induces a rapid and strong block of NMDAR-mediated 

synaptic current in brain slices (Figure 4, black curve), the same conditions were used to optimize the 

extent of the NMDAR synaptic block. When stimulating synapses with paired pulses given at 0.1 Hz in 

the presence of a high concentration of MK-801 (50µM), the inhibition of the synaptic currents was 

still very gradual, reaching 80% of block 10 minutes after MK-801 application (Figure 5). To compare, 

Harris and Pettit obtained the same extent of synaptic block after 5 minutes of MK-801 application. 

Therefore, these stimulation conditions were sufficient to abolish synaptic currents in hippocampal 

acute slices, but not in DA neurons from acute VTA slices.  

 

 

 

 

 

Figure 4. Synaptic stimulation at 0.1 Hz in 

presence of MK-801 (50 µM) in the bath induced 

a rapid and robust inhibition of the NMDAR-

mediated synaptic currents in acute 

hippocampal slices (adapted from Harris and 

Pettit, 2007). After 5 minutes of MK-801, 

approximatively 75-80% of the NMDAR-

mediated EPSC amplitude is blocked.  

 

Figure 5. Application of a high concentration of 

MK-801 (50 µM) with a paired-pulse synaptic 

stimulation protocol at 0.1 Hz causes a slow 

inhibition of NMDAR-eEPSC in a DA neuron from 

acute VTA slices. 5 minutes of MK-801 

application reduces the NMDAR-eEPSC by 52%. 

Addition of D-APV (50µM) further decreases the 

residual synaptic currents, indicating that the 

MK-801-induced block was not total after 15 

minutes of recording. 
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Interestingly, Wild et al. found a similar kinetics of the MK-801 blockade in DA neurons from 

acute SNc slices (Wild et al., 2013a). Synaptic stimulation at 0.1 Hz with a bipolar electrode in the 

presence of 10 µM of MK-801 very progressively blocked synaptic NMDAR-mediated currents (Figure 

6, black curve). Unlike hippocampal neurons, 15 minutes were required to inhibit 70% of the synaptic 

currents in SN DA neurons. Note that I obtained a similar extent of block within 10 minutes in VTA DA 

neurons, which clearly differs from the almost full blockade observed in hippocampal neurons in less 

than 5 minutes (Figure 1A, Figure 4). Therefore, these data suggest that the slow kinetic of the drug 

seems to be “specific” of midbrain DA neurons. 

 

 

 

How can we explain such difference of the MK-801 kinetic between hippocampal and midbrain 

preparations ? One hypothesis could be a difference in the release probability of excitatory 

glutamatergic synapses in the midbrain compared to the hippocampus. Synapses with a low release 

probability need more stimulations to trigger release of vesicles than synapses with a high probability. 

If glutamatergic synapses onto DA neurons have a low release probability, few synapses will be 

activated by each synaptic stimulation. Consequently, the synapses will be gradually activated and 

inhibited by MK-801. Although tempting, no data in the literature confirm or invalidate this hypothesis, 

since no study estimated the release probability of excitatory synapses onto DA neurons. It is believed 

that the 2 glutamate transporters VGLUT1 and VGLUT2 are associated with low and high release 

probability respectively (Fremeau et al., 2001). Therefore, the relative distribution of VGLUT1 and 

VGLUT2 on terminals contacting DA neurons could give a hint on the release probability of these 

synapses. However, both VGLUT1 and VGLUT2 were detected in glutamatergic terminals onto VTA DA 

neurons (Omelchenko and Sesack, 2007) and thus, prevent to draw definitive conclusions regarding 

the release probability of glutamatergic synapses on VTA DA neurons.  

Figure 6. Repetitive synaptic stimulation at 0.1 Hz in 

presence of MK-801 (10µM) produced a slow 

reduction of the NMDAR-mediated EPSC in DA 

neurons from acute SNc slices (adapted from Wild et 

al.  2013).  

After 15 minutes of MK-801 perfusion, NMDAR-eEPSC 

are diminished by 70% (black curve). 
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Another parameter to take into account is the type of stimulation electrode. The hippocampus 

is a very well organized structure. Because axons form a single tract, it is possible to use monopolar 

electrode to obtain a single-fiber stimulation. On the contrary, glutamatergic inputs contacting the VTA 

are far less organized and come from various directions. Bipolar electrodes are most commonly used 

in this structure because they enable to stimulate a broader area (Comte, 1982). Therefore, we can 

hypothesize that each stimulation with bipolar electrodes would recruit a lot of synapses, among which 

new synapses that are not blocked by MK-801. In this condition, it would require a lot of stimulations 

to effectively block all the synapses that are potentially activated by bipolar electrodes. 

Finally, the slow kinetics observed with MK-801 in my conditions might be caused by a 

difference in the NMDAR composition between the hippocampal and the midbrain neurons. Whereas 

hippocampal neurons mostly express GluN2A and GluN2B-containing NMDAR (Groc et al., 2006; 

Bellone and Nicoll, 2007), several evidence suggest that the GluN3A subunits are present in midbrain 

DA neurons during postnatal development (Ciabarra et al., 1995; Yuan et al., 2013; Wee et al., 2016). 

Incorporation of GluN3 subunits modifies the properties of NMDAR, including their sensitivity to 

various NMDAR blockers. McClymond et al. investigated the efficacy of open channel blockers when 

GluN3A or GluN3B was co-expressed with GluN1 and GluN2A subunits in Xenopus oocytes, and found 

that the efficacy of MK-801 block was reduced by GluN3 subunit incorporation (McClymont et al., 

2012). Thus, the presence of GluN3A subunits might decrease the sensitivity of MK-801 and slow down 

drug efficacy. In contrast, D-APV inhibition does not seem to be influenced by GluN3A expression (Yuan 

et al., 2013), which could explain the relative fast block of NMDAR-mediated EPSC observed with D-

APV (Figure 3) and not with MK-801. The slow kinetics of MK-801 was also observed in SNc DA neurons. 

Although GluN3A subunit was detected in the whole midbrain, including the SNC and the VTA (Ciabarra 

et al., 1995; Wee et al., 2016), no studies reported its presence in DA neurons from the SNc, in contrast 

to the VTA (Yuan et al., 2013; Creed et al., 2016). Thereby, this explanation is not completely 

satisfactory to explain the slow kinetics of MK-801. 

 

In conclusion, although the electrophysiological approach combined with MK-801 was a 

promising tool to investigate NMDAR surface trafficking in midbrain DA neurons from acute slices, this 

technique cannot be applied in these neurons. Indeed, the very low kinetics of the MK-801 block is not 

compatible with the observation of the recovery of the synaptic NMDAR-mediated currents, essential 

to characterize the NMDAR membrane dynamics. 
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ANNEXE 4: Establishment of a compartimentalized cortex-midbrain co-culture 

in microfluidic devices  

 

 

Primary midbrain cultures are mainly composed of DA and GABA neurons (Silva et al., 1988; 

Chiodo and Kapatos, 1992; Masuko et al., 1992). Therefore, DA neurons likely received few excitatory 

glutamate inputs and a massive GABAergic drive. In accordance with this hypothesis, few DA neurons 

exhibited spontaneous activity in primary culture (0% for Masuko et al., 1992; , 11% for Rayport et al., 

1992; 47%  for Chiodo and Kapatos, 1992- but see 68% for Cardozo, 1993). It is worth noting that, 

although some DA neurons have been shown to co-release glutamate in vitro, they represent less than 

15% of DA neurons in standard midbrain culture (Mendez et al., 2008); supporting the view that 

midbrain cultures exhibit a low glutamatergic tone. As the NMDAR membrane trafficking is strongly 

regulated by its agonist NMDA (De Rossi et al., 2016), I wanted to study the receptor dynamics in the 

presence of a higher glutamatergic drive. To do so, we recreated the projections from glutamatergic 

neurons to DA neurons by co-culturing these two neuronal populations in a microfluidic device. Since 

midbrain DA neurons receive a dense glutamatergic innervation from the cortex (Carr and Sesack, 

2000; Omelchenko and Sesack, 2007), we decided to co-culture cortical and midbrain neurons. The 

objective was then to track NMDAR membrane dynamics by single particle imaging techniques in 

postnatal DA neurons from TH-tdTomato mice co-cultured with cortical neurons in the microfluidic 

chambers. 

 

In microfluidic devices, each neuronal population is plated in one microfluidic chamber, 

composed of 2 wells opened in the top and linked by a “covered” bridge (Figure 1). The 2 chambers 

are separated by microgrooves thin enough (10 µm width) to only allow the crossing of neurites but 

not the cell bodies. Thus, neurons contained in the bridge can send projections to reach the other 

chamber. By compartmentalizing each neuronal population, this device displays several advantages. 

First, it enables to culture 2 populations requiring different culture media, which is not possible in 

classical co-culture on petri dish. It is the case here because cortical neurons grow in neurobasal 

medium whereas midbrain neurons are cultured with EF 12 medium. The configuration of such devices 

also allows to selectively modulate one neuronal population. For example, application of drugs such 

as glutamate in the chamber containing cortical neurons would activate only these neurons without 

affecting the other chamber.  
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As embryonic cultures (midbrain and cortical from E14 and E18 rats embryos, respectively) 

were routinely made in the laboratory, I use them first to test the growth and the survival of cultures 

in the microfluidic chambers, before using the postnatal midbrain culture from TH-tdTomato mice. 

Given that these cultures derived from embryos at different stages, I plated first the midbrain culture 

and 1 to 2 days later, the cortical neurons. To find the best conditions for neuronal survival, I tested 

several cell concentrations in the microfluidic chambers. When plated with a concentration higher than 

100 000 cells/chamber, midbrain neurons fasciculate and form big “clusters” of neurons (Figure 2A) 

whereas when lower than 50 000 cells/chamber, the neurons did not survive. Thus, the dilution 

ranging from 100 to 50 000 cells/chamber was used in the following experiments (Figure 2B).  

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Plating concentrations affects the confluence of midbrain neurons into the microfluidic 

chambers. A) DIC image of midbrain neurons at 11 days in vitro (DIV), when plating at a concentration of more 

than 100 000 cells/chamber. Note that the neurons fasciculate in the microfluidic chambers. B) DIC image of 

midbrain neurons at 11 DIV, with the plating concentration comprised between 50 and 100 000 cells/chamber. 

The neurons are mostly distributed homogenously in the chamber. 

10 mm 

Microfluidic device 

Cortex Midbrain 

50 µm 

Well 

Bridge 

Micro-channels 

Figure 1. Picture of the microfluidic 

device developed by Millipore (AXIS 

150). It is composed of 2 chambers 

where 2 neuronal populations (cortical 

and midbrain culture) are plated. Each 

chamber is composed of 2 wells and one 

bridge. Each bridge is connected by 

micro-channels (150 µm long) thin 

enough to enable the crossing of 

neurites but not the cell bodies.  

Midbrain culture 

>100 000 c/chamber 

A B 
Midbrain culture 

50-100 000 c/chamber 

150 µm 
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After several days in vitro (DIV), immunostainings were done in microfluidic chambers to assess 

if neurons could send projections through the micro-channels. Cortical neurons were labelled for Tau, 

a microtubule associated proteins enriched in axons, to investigate if cortical neurites, and especially 

axons, crossed the micro-channels. Midbrain culture was stained with TH antibody to check the 

presence of DA neurons and the crossing as well. Given the low proportion of DA neurons in our 

midbrain culture (< 5%), we observed very few DA neurons sending projections through the channels 

to reach the cortical chamber (Figure 3). On the contrary, a lot of cortical neurites, among which axons, 

crossed the microgrooves to project to the midbrain culture (Figure 3). We never observed TH positive 

neurons in the cortical chamber, confirming the efficient compartmentalization of the co-culture.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Mibrain (E14) - 8 DIV 
TH immuno  

Cortex (E18) – 7DIV 
Tau  immuno  

100 µM 

50 µm 

A 

B 

Figure 3. Cortical and midbrain co-culture send projections to each other through the microchannels. A) 

Fluorescence image of the co-culture cortex – midbrain in the microfluidic chambers. Cortical chamber was 

labelled with anti Tau antibody (1:1000) and the secondary antibody anti mouse Alexa 568 (A568). Midbrain 

neurons were labelled with TH antibody (1:1000) coupled to A 488 to identify DA neurons. Because cortical 

and midbrain culture were not placed at the same time, cortical and midbrain neurons are at different DIV, 

7 and 8 DIV respectively. Both cultures send projections through the micro-channels (delimited by the dotted 

white lines). The high density of Tau labelling suggests that cortical neurons send axons through the micro-

channels. B) A higher magnification of another microfluidic device stained with Tau and TH antibodies for 

cortical and midbrain chambers respectively. Here again, both culture send projections. In the micro-

channels. 

 

 



138 

 

Because the cortical culture was very dense in the microfluidic chambers, I took advantage of 

the transfection technique that enables to label few neurons, to observe the global morphology of 

cortical neurons. After 13 DIV, green fluorescent protein (GFP) transfected cortical neurons were highly 

ramified and exhibit spines along thin processes (Figure 4), as observed in standard primary cortical 

culture (Li et al., 1998). By contrast, the morphology of DA neurons was very different. They were often 

fusiform, bipolar and had thicker dendrites, which are the morphological characteristics of DA neurons 

in classical midbrain culture (Silva et al., 1988; Rayport et al., 1992). So, the relative development of 

the midbrain and cortical cultures do not seem to be altered by the configuration of the microfluidic 

device.  

 

 

 

 

 

 

 

 

 

Figure 4. Typical morphology of cortical and midbrain DA neurons in the microfluidic device. A) Fluorescence 

image of a GFP transfected cortical neuron in the microfluidic chamber. The neuron is highly ramified, with 

several dendrites coming out the soma. Some protusions (blue arrowheads), presumably spines or filopodia, can 

be observed along thin dendrites. B) Fluorescence image of a TH positive neuron (TH : 1:1000) stained with A568 

in the midbrain chamber. The morphology is quite different from the the cortical neuron. The neuron is fusiform 

and bipolar with 2 thick primary dendrites coming out the cell body. These morphological features are generally 

associated to midbrain DA neurons in standard culture. 
 

The objective being to track NMDAR surface diffusion in midbrain DA neurons, the presence 

of surface NMDAR in DA neurons was also assessed. Since the co-culture became confluent and very 

dense after 2 weeks in vitro, NMDAR immunostainings were performed in 1 week-old cultures. I 

immunolabelled the GluN2B subunit because it is the predominant NMDAR subunit in immature 

midbrain DA neurons (Brothwell et al., 2008; Bellone et al., 2011). Even if the staining was very dense 

as early as 7 DIV, some clusters of GluN2B could be detected in neurites and cell bodies from DA 

neurons (Figure 5), supporting the presence of surface NMDAR in DA neurons maintained in 

microfluidic chambers. 
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Figure 5. Midbrain DA neurons express surface GluN2B-containing NMDAR in microfluidic chamber. A) 

Fluorescence image of a TH positive neuron stained with A488, presumed to be DA. B) Fluorescence image of 

surface GluN2B staining. To label only surface NMDAR, the microfluidic chamber was incubated 15 minutes with 

anti GluN2B rabbit antibodies at 37°C. Then the cells were permeabilized with Triton and incubated with 

secondary antibodies anti rabbit A568. Note the presence of GluN2B clusters (white arrows) along the cell body. 

C) Fluorescence image of the superposition between TH and GluN2B labellings. The GluN2B clusters (white 

arrows) observed in B) are present in the cell body and proximal dendrites. D) Higher magnification of the cell 

body in C). The GluN2B clusters are around the nucleus and in proximal dendrites.  

 

After validating that the co-culture developed in microfluidic chambers and that cortical 

neurons sent projections to the midbrain, the viability of postnatal culture from TH-tdTomato mice 

was tested. When postnatal midbrain neurons were plated at the range of concentrations used with 

embryonic cultures, they did not survive. Notably, changing the cell concentration or the coating did 

not improve the neuronal survival. Therefore, it was not possible maintain postnatal midbrain DA 

neurons in microfluidic chambers. It should be mentioned that this culture is particularly vulnerable to 

neuronal death, even in standard culture. Indeed, postnatal cultures are known to have a lot of debris 

and less neuronal survival than embryonic ones. In addition, DA phenotype seem to be particular 

vulnerable to death in culture. The number of DA neurons is dramatically reduced 24h after plating 

(Cardozo, 1993), and they represent less than 5% of the neurons in standard midbrain culture (Silva et 

al., 1988; Cardozo, 1993; Gaven et al., 2014). The microfluidic device has a configuration that could 

exacerbate the neuronal loss. There is not direct access to the covered bridge and thus, neurons are 

plated in one well and are transported in the bridge through the liquid fluid going to the second well. 

In this way, we cannot control the neuronal concentration in the bridge and this can affect the neuronal 

survival. The covered bridge could also cause an insufficient exchange between the air and the media 

and thereby, might alter the oxygen availability. Finally, the volume of the well could be too small to 

feed the culture.  

In conclusion, I successfully implemented embryonic midbrain and cortex co-culture in 

microfluidic devices. However, the postnatal midbrain culture from TH-tdTomato mice did not survive 

A 

20 µm 

B 

C D 

5 µm 



140 

 

in these conditions. Because these cultures are required to label live DA neurons, the investigation of 

NMDAR membrane dynamics in microfluidic devices is currently limited due to technical limitations. 
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