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Chapter 1

Evaluation of Embedded
Cryptography

Schätzen ist Schaffen: hört es, ihr Schaffenden!

Schätzen selber ist aller geschätzten Dinge Schatz und Kleinod.

Friedrich Nietzsche - Also sprach Zarathustra

1.1 History

Cryptosystems are present in a lot of devices used in everyday life, such as smart cards, smartphones,
set-top-boxes, or passports. All those products embed cryptography for various purposes, ranging
from the privacy of user’s data in his phone, to the security of banking transactions. Nonetheless,
implementing cryptographic algorithms in such constraint environments is a challenging task, and
the apparition of side-channel analysis in the 90’s [Koc96] showed that specific precautions should
be taken. Indeed, specific emanations about the manipulation of variables can occur when such
algorithms are performed. On embedded devices, these emanations are quite easy to observe, and
may hence hinder the strength of the underlying cryptography. Recent works [GST14; GPPT15;
GPT15; GPPT16; GPP+16] have illustrated that these phenomena can also be observed on larger
devices, such as laptops or desktops.

To ensure reliability on the designer’s and reseller’s claims of security, guidelines and standards
have been published by governments and economic interests groups. One of the earliest examples of
such standardisation effort is the Trusted Computer System Evaluation Criteria (TCSEC) [Def85],
often referred to as the orange book, released by the United States Government Department of
Defence in 1983, and updated in 1985. This book was the first part of a whole collection of standards
on computer security, named the rainbow series after their colourful covers. This standard defined
four divisions A, B, C, D of decreasing level of security. The level achieved by the evaluated system
was determined by a list of requirements on hardware and software protections and resilience against
a vast class of attacks.

Inspired by this work, France, Germany, the Netherlands and the United Kingdom published
in 1990 the Information Technology Security Evaluation Criteria (ITSEC), which was standardised
by the European Union one year later [EC90]. This document introduced the term of target
of evaluation (TOE) to design the part of the device subjected to a detailed examination. In

9
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particular, its functionality, effectiveness and correctness are studied. This time, the product can
obtain one of six levels of security (E1 to E6), reflecting the requirements in terms of development
and operational processes and environment.

In 1993, the Canadian Trusted Computer Product Evaluation Criteria (CTCPEC) was intro-
duced by the Communications Security Establishment Canada. The goal of this standard is to build
upon ITSEC and TCSEC to fix their respective shortcomings. In particular, the observation that
the orange book put a strong emphasis on confidentiality of data and not much on integrity led the
CTCPEC to include a part on the evaluation of mechanisms preventing unauthorised modifications.

1.2 Common Criteria

The TCSEC, ITSEC and CTCPEC standards were unified and superseded in 1999 by the Common
Criteria for Information Technology Security Evaluation (Common Criteria, or CC), through the
creation of the international standard ISO/IEC 15408 [ISO]. Even though this norm has been
revised several times since its creation (at the time of writing, Common Criteria are in version 3.1
revision 4), their philosophy has stayed the same. Common Criteria define three entities around
the life of a security product: the designer, which imagines and produces it, the evaluator (or Infor-
mation Technology Security Evaluation Facility (ITSEF)), which tests the resilience of the product
against attacks and the certification body (oftentimes a governmental organism - like ANSSI), which
ensures the quality and pertinence of the results of the evaluation, and the end user, to which the
tested device is sold.

The process in the common criteria setting starts by the designer’s will to certify a product,
in order to provide a certain assurance on its technical level, and, consequently, to be able to sell
it to end users seeking for strong security properties. To this end, a request is registered by a
certification body of its choice. The designer must specifically define the target of evaluation, and
list its claimed security features. The document describing these features is called the Security

Target (ST), and is formally constituted of a list of Security Functional requirements (SFR), which
specify individual security functions. To ease the redaction of the ST, the CC propose a catalogue
of standard SFRs, and several Protection Profiles (PP), which serve as guidelines. Precisely, a PP
is a collection of security features, descriptions of use environments, threats, and requirements,
stating the security problem for a given family of products. Examples of PPs include smart cards,
firewalls, anti-virus, or trusted environment systems. The designer also claims, through the security
target, the assurance level of the product which is the target of the evaluation.

In CC, seven Evaluation Assurance Levels (EAL) are defined, of increasing insurance of strength:

• Functionally Tested (EAL1): provides an evaluation of the TOE through basic analysis of
the SFRs, supported by a functional testing and a simple penetration testing. EAL1 can be
successfully conducted without assistance from the developer of the TOE.

• Structurally Tested (EAL2): provides an evaluation of the TOE through a vulnerability analy-
sis demonstrating resistance against basic penetration attacks, evidence of developer testing,
and confirmation of those tests. EAL2 requires the provision of a basic description of the
architecture of the TOE.

• Methodically Tested and Checked (EAL3): provides an evaluation of the TOE on the same
basis as EAL2, enhanced with a more complete documentation. In particular, EAL3 requires
controls of development environments, and the furniture of a more complete architectural
design of the TOE.
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• Methodically Designed, Tested and Reviewed (EAL4): provides an evaluation of the TOE
through a vulnerability analysis demonstrating resistance against enhanced penetration at-
tacks. EAL4 requires the furniture of an implementation representation (for example, the
source code) of all security functions.

• Semi-formally Designed and Tested (EAL5): provides an evaluation of the TOE through a
vulnerability analysis demonstrating resistance against advanced penetration attacks. EAL5
requires semi-formal design descriptions of the TOE and a structured and analysable descrip-
tion of its architecture.

• Semi-formally Verified Design and Tested (EAL6): provides an evaluation of the TOE through
a vulnerability analysis demonstrating resistance against high-level penetration attacks. EAL6
requires formal design descriptions of the TOE and its architecture, and controls the struc-
tured development process.

• Formally Verified Design and Tested (EAL7): provides an evaluation of the TOE on the
same basis as EAL6, enhanced with an assurance that the TOE was formally designed. In
particular, EAL7 requires a comprehensive analysis using formal representations and formal
correspondence, as well as a comprehensive analysis of the TOE.

The process of evaluation is thoroughly described in the Common Methodology for Information
Technology Security Evaluation ([CEM]). The evaluator is charged to verify the SFRs of the security
target, according to the claimed Evaluation Assurance Level. To this end, the ITSEF verifies the
claims through five conformity classes and one attack class. Each class is subdivided in one or
several families, and the product is evaluated against each requirement corresponding to these
families:

• ADV Development: provides information about the TOE. The knowledge obtained by this
information is used as the basis for conducting vulnerability analysis and testing upon the
TOE. The class encompasses requirements for structuring and representing the security func-
tions at various levels and forms of abstraction. It is subdivided in 6 families: Security Ar-
chitecture (ADV_ARC), Functional specification (ADV_FSP), Implementation representa-

tion (ADV_IMP), TOE Security Functions internals (ADV_INT), Security policy modelling
(ADV_SPM), TOE design (ADV_TDS).

• AGD Guidance documents: provides the requirements for guidance documentation for all
user roles. The description of all relevant aspects for the secure handling of the TOE is
mandatory. The class also addresses the possibility of incorrect configuration of the TOE.
The class is subdivided in 2 families: Operational user guidance (AGD_OPE), Preparative
procedures (AGD_PRE).

• ALC Life-cycle support: establishes discipline and control in the processes of refinement of the
TOE during its development and maintenance. This class allows for an accurate definition of
whether the TOE is under the responsibility of the developer or user depending on the phase
of its life. It is subdivided in 7 families: Configuration Management capabilities (ALC_CMC),
Configuration Management scope (ALC_CMS), Delivery (ALC_DEL), Development security
(ALC_DVS), Flaw remediation (ALC_FLR), Life-cycle definition (ALC_LCD), Tools and
techniques (ALC_TAT).

• ASE Security Target evaluation: evaluated the soundness and internal consistency, and, if the
ST is an instantiation of one or several protection profiles, that this instantiation is correct.
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This class is subdivided in 7 families: ST introduction (ASE_INT), Conformance claims

(ASE_CCL), Security problem definition (ASE_SPD), Security objectives (ASE_OBJ), Ex-
tended components definition (ASE_ECD), Security requirements (ASE_REQ), TOE sum-

mary specification (ASE_TSS).

• ATE Tests: provides assurance that the TOE Security Functions behave as described (in
the specification, TOE design, and implementation representation). Two families of this
class address the completeness of developer testing. The two others address the documen-
tation and performance of those tests. The class is hence subdivided in 4 families: Cover-
age (ATE_COV), Depth (ATE_DPT), Functional tests (ATE_FUN), Independent testing
(ATE_IND).

• AVA Vulnerability assessment: addresses the possibility of exploitable vulnerabilities intro-
duced in the development or the operation of the TOE. This is the only attack class of
the Common Criteria framework. This class is subdivided in a single family: Vulnerability
analysis (AVA_VAN).

For each family, the product is attributed a grade (from 1 to 6)1 depending on the met require-
ments. The norm defines precisely the requirements needed to achieve each grade in each family.
The obtention of a given Evaluation Assurance Level depends on all the grades obtained during
the evaluation. Table 1.1 summarises the required grades for the obtention of the EAL levels.

Sometimes, an Evaluation Assurance Level can be augmented, that is, the requirements for a
certain family can be upped to a greater grade than the one required by the level. For example, a
product can be certified EAL4, with a grade in the AVA_VAN family of 5, instead of the required 3.
The product is hence certified with an Evaluation Assurance Level 4, augmented with AVA_VAN
5. This is sometimes written by simply adding a + sign: the product is certified EAL4+. Note
however that the + sign only signifies that the Evaluation Assurance Level is augmented, but do
not tell which class or family has actually met higher requirements.

Based on its analyses, the evaluator redacts an Evaluation Technical Report (ETR), where its
methodology is described, and which supports or denies the claimed security features of the product.
This report is transmitted to the certification body, which validates or invalidates it, allowing to
judge for the security of the TOE. If the features claimed by the TOE are not met, the designer can
modify its design and recommendation guides to better resist the attacks or problems discovered by
the evaluation. This process can be repeated as many times as wanted, until the evaluator claims
the security of the product, and the certification body validates the report. The certification body
hence issues a certificate, mentioning the Evaluation Assurance Level of the chip, which can then
be presented by the designer to the end users. The ETR is however kept confidential.

This certificate may be valid in several countries, thanks to the existence of the Common
Criteria Recognition Arrangement (CCRA). This arrangement is signed by 17 countries, that all
have a certification body and can hence actually produce certificates: Australia, Canada, France,
Germany, India, Italy, Japan, Malaysia, Netherlands, New Zealand, Norway, Republic of Korea,
Spain, Sweden, Turkey, United Kingdom, United States. Moreover, 10 other countries recognise
these evaluations: Austria, Czech Republic, Denmark, Finland, Greece, Hungary, Israel, Pakistan,
Qatar, Singapore. The members of CCRA agreed on recognition of certificates claiming Evaluation
Assurance Levels 1 and 2 as well as the family ALC_FLR. The members of the Senior Officials
Group Information Systems Security (SOG-IS), a committee working together to define and up-
date Protection Profiles and coordinate the standardisation of CC, composed by Austria, Finland,

1For some of the families, the maximum grade is less than 6.
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Class Family
Assurance Components by EAL

EAL1 EAL2 EAL3 EAL4 EAL5 EAL6 EAL7

Development

ADV_ARC 1 1 1 1 1 1
ADV_FSP 1 2 3 4 5 5 6
ADV_IMP 1 1 2 2
ADV_INT 2 3 3
ADV_SPM 1 1
ADV_TDS 1 2 3 4 5 6

Guidance Documents
AGD_OPE 1 1 1 1 1 1 1
AGD_PRE 1 1 1 1 1 1 1

Life-cycle support

ALC_CMC 1 2 3 4 4 5 5
ALC_CMS 1 2 3 4 5 5 5
ALC_DEL 1 1 1 1 1 1
ALC_DVS 1 1 1 2 2
ALC_FLR
ALC_LCD 1 1 1 1 2
ALC_TAT 1 2 3 3

ST evaluation

ASE_CCL 1 1 1 1 1 1 1
ASE_ECD 1 1 1 1 1 1 1
ASE_INT 1 1 1 1 1 1 1
ASE_OBJ 1 2 2 2 2 2 2
ASE_REQ 1 2 2 2 2 2 2
ASE_SPD 1 1 1 1 1 1
ASE_TSS 1 1 1 1 1 1 1

Tests

ATE_COV 1 2 2 2 3 3
ATE_DPT 1 1 3 3 4
ATE_FUN 1 1 1 1 2 2
ATE_IND 1 2 2 2 2 2 3

Vulnerability assessment AVA_VAN 1 2 2 3 4 5 5

Table 1.1: Required grades for the obtention of EAL levels.

France, Germany, Italy, Netherlands, Norway, Spain, Sweden and United Kingdom recognise cer-
tificate until EAL4. The ex-members of the ITSEC consortium (France, Germany, the Netherlands
and the United Kingdom) also recognise with each others certificates of any Evaluation Assurance
Level.

Nonetheless, despite its will of genericity, Common Criteria are not the only evaluation and
certification scheme. Indeed, a wide range of criticism has been directed towards this model. The
main drawbacks are the length and cost of evaluation. Indeed, the whole process for the obtention of
a CC certificate induces an overhead of at least 6 months, sometimes more depending on the aimed
EAL, while the overhead costs range from several dozens of thousands euros to several hundreds
of thousands euros. Several specific alternatives to CC have then be proposed. For example, one
can cite the US’s Federal Information Processing Standard (FIPS) 140-2, or France’s Certification
de Sécurité de Premier Niveau (CSPN), both of which aiming at a lower assurance of security,
but faster and cheaper evaluations, and many private schemes, such as EMVCo certifications for
banking smart cards and payment terminal, aiming at more specific tests and evaluations.
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1.3 Penetration testing

Every evaluation process aiming at the issuance of a high level certificate should contain a phase of
penetration testing, ie., a phase where the evaluator tries to circumvent all the protections of the
evaluated product to retrieve sensitive information (secret keys, personal data, etc.). This phase is
critical, as its goal is to reflect the resilience of the product in the field, in the hands of malicious
attackers. Consequently, it is often the longest and costliest part of the evaluation. In the Common
Criteria, this phase is reflected by the family AVA_VAN.

In this thesis, we will mainly focus on the context of side-channel attacks on embedded cryp-
tography. The general consensus on these attacks is that, by collecting a large enough number of
observations, and considering a huge number of points of interest and a perfect knowledge of the
target, it is always possible to retrieve information on the targeted sensitive data (see Chapter 2 for
more concrete bounds). However, such ideal attacks would sometimes require unrealistic amounts
of time and/or money to be actually performed. The goal of the penetration testing phase can then
rather be seen as an estimation of how realistic these attacks are against the evaluated product.

In the Common Criteria, as well as in several other schemes, the realism issue is captured by
the notion of attack potential. The grade attributed in the AVA_VAN family corresponds to the
resilience of the product against an adversary with basic, enhanced-basic, moderate, or high attack
potential. Roughly, an adversary with a basic (resp. enhanced-basic, moderate, high) attack
potential is an adversary that can only perform at most basic (resp. enhanced-basic, moderate,
high) attacks. This approach hence induces a hierarchisation of the attacks, and necessitates a
metric to compare them. This metric is defined by the norm thanks to a cotation table, associating
to each attack a score, reflecting its difficulty to perform. The goal of the table is to rate the
difficulty of performing the attack against several criteria, and to give a global score by summing
these ratings. The sum is directly translated to an attack potential: less than 9 points makes a
basic attack, less than 14 points makes an enhanced-basic attack, etc. The rating criteria are:

• elapsed time: the time required to perform the attack, in days, months, or years

• expertise: the expertise of the attacker, from the layman to the necessity of having multiple
experts in various domains

• knowledge of the TOE : the amount of information needed about the evaluated product, from
its source code, to its datasheets, or precise layout

• access to the TOE/window of opportunity: the access opportunity to the TOE, usually mean-
ing the number and variety of products that are needed to mount the attack

• equipement: the equipement needed to perform the attack, from simple pen and paper to
multi-million specifically crafted devices.

In previous revisions of the Common Criteria, the cotation table was also divided in two parts:
the identification part, aiming at reflecting the difficulty for an adversary to find the attack and the
exploitation part, which reflected the difficulty to actually perform it once all details were known
and published. This distinction is no longer applied in the latest revision.

It is interesting to note how the Common Criteria assessment of the dangerosity of an attack
differs from the classical cryptanalytical approach. In the classical approach, cryptanalyses are
considered according to their complexity classes, for example logarithmic, linear, polynomial, or
(sub)exponential, in one or several parameters. Such complexity can be computed for time and
memory, sometimes even very explicitly, allowing for an accurate evaluation of the requirements
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for an attacker to perform this attack. However, these evaluations alone do not tell if the attack
is actually feasible, especially for very borderline bounds. Consequently the classical notion of
complexity sometimes fail to give a practical answer to the security of an implementation.

Take for example the classic case of a bruteforce attack on the Data Encryption Standard
(DES). The feasibility of the exhaustion of the 256 possible keys depends on numerous factors
that have to be taken into account. An obvious factor is the cost of devices built for this specific
issue in a reasonable, practical time. As early as 1976, Diffie and Hellman estimated that such
a machine would cost about $20 million [Des]. In 1998, the Electronic Frontier Foundation built
such a machine for less than $250 thousand, a cost that was reduced to less than $10 thousands
with the construction of COPACOBANA in 2006 [KPP+06]. Nowadays, such an exhaustion can
be performed as a service, for only a few hundreds dollars2. This simple example shows that the
time complexity of 256 was, during all these times, reachable for different attackers. However,
the complexity alone does not allow to judge for this feasibility. Simply stating the complexity
of an attack also overlooks the specifics of the algorithm itself. Especially, the execution times of
asymmetric algorithms are several orders of magnitude higher than the one of symmetric algorithms.
How would one qualify an attack which necessitates the exhaustion of 256 RSA keys, given that
one execution of RSA algorithm takes around 210 times longer than one execution of DES (see for
example [GPW+04; STC07])?

The cotation table precisely aims at answering all those shortcomings, by translating each aspect
of the attack into one or several practically measurable criteria. The notion of time complexity
is replaced by the notion of time itself, and the specific devices which can be built correspond to
points in the equipement criterion, that can be rated with more or less points depending on their
cost. This results in an accurate grade reflecting the practical relevance of an attack, whereas the
classical complexity approach would sometimes fail to do so.

1.4 Evaluation of smart cards and related devices

Smart cards and related devices are of particular relevance in the scope of this thesis. Indeed, the
numerous constraints of size, consumption, and usability make them a prime target to the attacks
and constructions described in this manuscript. We hence chose to further describe the specificities
of their evaluation.

In fact, numerous documents have been produced by several working groups of the SOG-IS to
define attack potentials depending on the product type. Consequently, specifications have been
written for the evaluation of particular products, such as hardware devices with security boxes, or
smartcards. We describe hereafter the specificities of the so-called Application of Attack Potential
to Smartcards [Lib], that is, the specificities of the vulnerability analysis of such devices.

This document, along with the other documents produced by the SOG-IS, is presented as an in-
terpretation of the Common Methodology for Information Technology Security Evaluation (CEM),
based on the experience of smartcard CC evaluation and several working groups of industrials,
academics, and certification bodies. Nonetheless, some aspects of the CEM are in fact modified by
this document, such as the precise way of rating attacks, or new criteria. As such, this document
supersedes the CEM on several points.

The main difference with the CEM is that, in the context of smartcards and similar devices, the
distinction between identification and exploitation part is kept. The identification is defined as the
effort required to create the attack and to demonstrate that it can be successfully applied to the

2A specific DES challenge was also broken in 1997 through distributed computing. It is however difficult to
accurately assess the cost of this attack.
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TOE. The exploitation is defined as the effort required to reproduce the attack on another TOE,
while following a tutorial describing it in details. The final score of the attack is then computed by
adding the scores obtained in both parts.

The rating criteria vary slightly from the CEM. Obviously, both the identification and the
exploitation part are separately rated against all the criteria, each with a specific notation. We
describe hereafter the criteria and their changes from the CEM:

• elapsed time: further granularity is introduced, distinguishing from less than one hour, less
than one day, less than one week, less than one month, more than one month, or unpractical.

• expertise: several types of experts are defined, depending of their domain of knowledge. Ex-
amples are given, including expertise in chemistry, focused ion beam manipulation, chemistry,
cryptography, side-channel analysis, reverse engineering, etc. To reflect the diversity of such a
vast array of fields, a new level multiple expert is introduced, rating higher than the conserved
levels expert, proficient and layman. This level is chosen when the attack requires expertise
from different domains. It should be noted that for this level to apply, the expertise fields
must be strictly different.

• knowledge of the TOE : any information required for the exploitation phase is not considered
for the identification (this information should be in the description of the attack already). The
criterion distinguishes between public information, restricted information such as guidance
documents or administrative documents which can leak during the various phases of smartcard
developments, sensitive information such as high or low level design of the architecture, critical
information such as the source code or design, and very critical hardware design.

• access to the TOE : defined as the number of samples required to perform the attack. In
some cases, the attack can succeed only with a small probability depending on the device, or
even destroy some devices. The number of devices is then taken into account for the rating,
depending on whether the attack requires less than 10 samples, less than 30 samples, less
than 100 samples, more than 100 samples, or if it is unpractical.

• equipement: a list of tools is provided, ranging from UV-light emitter to atomic force micro-
scope. Each of this tool is assigned a level, being standard, specialised or bespoke. These levels
are completed by the possibility of using no equipement, or using multiple bespoke tools.

An important notion introduced by this document is the definition of open samples, and of
samples with known secrets. Within the context of CC, it is sometimes possible for an ITSEF to
have access of an exact copy of the TOE, where the evaluator can load specific software, or set
certain variables at chosen values. Such copies are called open samples. The evaluator can for
example use open samples to fix secret keys or random numbers used by cryptographic algorithms,
hence allowing an easier characterisation of the behaviour of the device. This characterisation can
then be used to perform a realistic attack on the TOE. A simple example of the use of open samples
is the so-called template attack, which is described in Chapter 2. We also explain in Chapter 3 how
the characterisation of a chip can be used to efficiently deduce the probability of success of various
classical attack. The samples with known secrets cover the same notion, but consider devices where
secret parameters are known, instead of chosen by the evaluator. The use of open samples and
samples with known secrets in an evaluation is hence added as a (single) rating criterion. The
rating for open samples models the difficulty for an attacker to have access to such a device, which
could occur as a leak during the development process. The rating for samples with known secrets
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reflects the difficulty for an attacker to find a copy of the TOE where secrets can be deduced, either
from leaks of specific documentations, or the use of copies in lower security schemes.





Chapter 2

Side-Channel Analysis

We don’t need the key. We’ll break in.

Zack de la Rocha - Know your enemy

2.1 Introduction

The first known example of side-channel analysis dates back to World War I. For cost reasons,
telephone wires were built such that only one signal wire was deployed, while the ground was
used for the return circuit. Some information was hence propagating directly in the ground. The
German army used valve amplifiers and stuck electrodes in the trenches in order to intercept such
compromising signals [Bau04].

In 1943, a Bell’s researcher observed peaks on an oscilloscope while he was typing on a distant
device. By studying these peaks, he was able to retrieve the pressed keys on the computer [NSA].
The discovery triggered the launch of the TEMPEST program by the National Security Agency, in
an effort to study these compromising emanations. The first academic result on this topic appeared
in a 1985 paper by Van Eck [Eck85], describing how to use these techniques to reconstruct a video
signal.

In 1996, Kocher published the first public side-channel analysis of a cryptographic implementa-
tion [Koc96]. In this paper, he showed how the execution time of an implementation can leak infor-
mation on the secret value being manipulated. In 1998, Kocher et al. showed how such information
can be obtained by observing the power consumption of a device during a computation [KJJ99].
Following these seminal works, more and more side-channels were used to retrieve information on
manipulated data: electromagnetic emanations [QS01], temperature [HS14], acoustics [GST14],...

2.2 Principle

Most cryptosystems are now built in accordance to Kerckhoffs’s principle: the construction of the
whole system is public, and its security only resides in a small secret parameter known as the key.

In classical cryptanalysis hence, following this principle, an attacker tries to recover the secret
key knowing the algorithm description and some inputs and/or outputs of this algorithm.

This approach however fails to take into account the implementation of the targeted crypto-
graphic algorithm. The algorithm is indeed seen as a black box, in the sense that no internal

19
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variable manipulated during the execution can be observed. Nonetheless, the implementation of
the algorithm can have a tremendous and devastating effect on the security of such algorithms, as
illustrated by the examples in Section 2.1.

Side-channel analysis captures the possibility for an attacker to get information about the
internal variables manipulated by the algorithm. A side-channel attack is an attack where physical
observations about the device are used to recover a secret parameter manipulated by it. Oftentimes
this parameter is the key itself.

A side-channel attack can be described as the succession of four distinct but related phases:

1. Sensitive data identification. The attacker studies the cryptographic algorithm and its imple-
mentation to find a sensitive intermediate value vk. A sensitive value is a value that can be
expressed as a deterministic part of the plaintext and a guessable part k⋆ of the secret key
(for example, an Sbox output). Note that the identification of a sensitive value can either
be the result of a careful analysis of the algorithm or the consequence of observations about
the device behaviour. In this last case, several statistical techniques can be used, such as
signal-to-noise ratio or t-test approaches.

2. Leakage collection phase. The attacker observes the device behaviour during the manipulation
of the identified sensitive variable. Using a particular setting depending on the physical
observable of his choice, he collects several leakages (ℓk⋆,i)i characterizing the manipulation
of the data, while being provided a constant key k⋆ and various plaintexts (pi)i.

3. Hypotheses construction. The attacker exhausts all possible values for k⋆. For each hypothesis
k and for each plaintext pi, he computes the corresponding sensitive variable (vk,i) hypothet-
ically manipulated by the device. Then, the attacker chooses a leakage model function m, to
map the value of the sensitive data towards the estimated leakage. He hence obtains (hk,i)i,
where for every i, we have hk,i = m(vk,i).

4. Distinguishing. The attacker compares the leakages (ℓk⋆,i)i obtained in the second phase with
all hypotheses (m(vk,i))i he constructed in third phase. This comparison is done using some
statistical distinguisher and lays the most likely value for the used key.

According to this description, side-channel attacks can hence differ on the targeted variable, the
measurement setup, the leakage model, and the statistical distinguisher.

Targeted variable

The targeted variable heavily depends on the targeted algorithm. It must be small enough to allow
an exhaustion of all its possible values in the third phase. Usually, it corresponds to an information
depending on both the plaintext and a small part of the key. Its size is typically less than 32 bits.
For example, the typical targeted value in an AES implementation is the 8-bits output of the first
substitution table. The set of all guessable key hypotheses is denoted K.

Measurement setup

The measurement setup heavily depends on the chosen physical observable. However, the general
setting is often similar, and is illustrated in Figure 2.1. In this figure, the targeted device is a smart
card.
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Figure 2.1: Example of measurement setup. A smart card is plugged in a reader, driven by a computer.
An oscilloscope monitors both the communications and physical emanations of the card. The
computer records the observations captured by the oscilloscope, and post-processes them.

This setup allows an attacker to obtain measurements of the processing of the cryptographic
algorithm. Nonetheless, physical phenomena and/or countermeasures can induce desynchroniza-
tions between different executions. The measurement setup hence also include a post-processing
of the leakages. The objective of this part is twofold: first, to ensure a synchronization of all
measurements, and secondly, to identify points of interest, ie. points that actually correspond to
the manipulation of the targeted variable. It is indeed interesting to note that, due to physical
phenomena and/or countermeasures, relevant information about the sensitive value can occur at
different points of the trace.

The synchronization can be done using several methods, which mainly consist in comparing
measurements with one another. This comparison are oftentimes customly made in practice, de-
pending on the shape of the curves themselves. Nonetheless, statistical methods are also used, such
as auto-correlation or difference of means (see for example [HNI+06; RCC+08]).

The identification of points of interest can be done using several statistical tools. The compu-
tation of a signal-to-noise ratio for each point is computed, and dimension reduction techniques
such as principal component analysis [Jol86].

Leakage model

The observed physical phenomena can be explained by the impact of different physical causes. An
often exploited source is the switching gates of an electronic circuit, which leak information about
the processed internal variables through power consuption and electromagnetic radiation. The
nature of this phenomenon can give to an attacker an accurate relation between the manipulated
data and the physical observation. Such a relation is called a leakage model. Most commonly used
leakage models are the Hamming weight model and the Hamming distance model. In the Hamming
weight model, it is assumed that the physical observation depends on the number of set bits of the
data being processed. In the Hamming distance model, it is assumed that the physical observation
depends on the Hamming weight of the XOR between two data being successively processed. The
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idea capture that both of these models is that each bit leaks information independently, through the
charge or decharge of its corresponding gate. More complexes models are sometimes used, which
can consider cross-impacts on those charges, considering that physical effects occuring on a gate
can also impact its neighbours. Actually, the modelisation of these behaviors is a complex issue,
and has been the subject of several researches. We describe in Section 2.4 a wider state-of-the-art
on this subject.

Statistical Distinguisher

As highlighted by our description of an attack in Phase 4, the notion of statistical distinguisher
is essential in side-channel analysis. We must hence introduce some notations from the field of
statistics and probabilites in order to allow for a formal explanation. In the following, calligraphic
letters, like X , are used to denote definition sets of random variables denoted in capital letters, like
X. Any realization of a random variable on this set denoted in lowercase, like x. The probability of
an event ev is denoted P [ev]. The size of the collection of inputs (pi)i, and equivalently of leakages
(ℓi)i is denoted by n. Each leakage ℓi is moreover defined as a vector of a finite integer t points.

The statistical distinguisher takes as input the leakages (ℓi)i obtained in Phase 2 and the
hypotheses (hk,i)i) obtained in Phase 3. It outputs a score for each key hypothesis k, which
measures how much the associated collection matches the leakages. In order to allow for the
distinguishing, an order needs to be defined on the scores. Most of the time, the scores take values
in R, with its standard order. These distinguishers come from the world of statistics or machine
learning. For example, we can cite the linear correlation coefficient [Pea95], the Kullback–Leibler
divergence [KL51], the difference of means [Fis20] or the maximum likelihood [Fis22].

2.3 Examples of side-channel attacks

Several types of side-channel attacks have been introduced in the last two decades. Most of them
are agnostic with regard to the targeted variable and measurement setup. We propose hereafter to
shortly describe some of the most commonly used side-channel attacks:

Template analysis

Template analysis was introduced in 2002 by Chari, Rao and Rohatgi [CRR03]. The attacker is
assumed to be able to perform encryptions with the secret key of his choice on the targeted device,
or a similar one [CK14]. Using this ability, he collects several leakage traces and uses them to
extract as many meaningful statistical moments as possible for each possible key. Specifically, a
Gaussian model approach [Tre68; CRR03] is usually performed, considering a Gaussian noise and
the need to estimate statistical moments up to the second order. For each sensitive value vk, the
adversary is hence able to compute the associated leakage distribution (also called template in this
context) Dk composed of a mean vector µk and a covariance matrix Σk.

The model function m of a template analysis simply maps back every value vk,i to its estimated
leakage distribution Dk. A maximum-likelihood approach is hence performed.

In the Gaussian model, for a single observation (ie. when n = 1), the score of the hypothesis k
is given by the likelihood:

ML(ℓi, hk,i) = ML(ℓi, Dk) =
1√

(2π)tdet(Σk)
e−

(ℓi−µk)
⊤(Σk)

−1(ℓi−µk)

2 . (2.1)
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Furthermore, in the case where several observations are made, the score of the hypothesis k is
given by:

ML((ℓi)i, (hk,i)i) =
∏

i

ML(ℓi, hk,i). (2.2)

Remark 2.3.1. The computation of ML((ℓi)i, (hk,i)i) involves the product of several small values.
When the number of observations is too high, this score can hence be so small that it lies below
most systems precision. To avoid such a problem, which would cause the impossibility of computing
a maximum-likelihood, this score is often replaced in practice by the equivalent log-likelihood, ie. its
logarithmic value. Consequently, the score is given by:

log-ML((ℓi)i, (hk,i)i) =
∑

i

log-ML(ℓi, hk,i), (2.3)

where log-ML(ℓi, hk,i) = log(ML(ℓi, hk,i)).

Linear regression analysis

Linear regression analysis was introduced in 2005 by Schindler, Lemke and Paar [SLP05].
The linear regression analysis (similarly to all the following examples of side-channel attacks)

performs on univariate leakages, that is, leakages considering only one point. Consequently, the
attack is either performed sequentially on each point of the acquired leakage, or the leakages are
reduced to only one point, which is done during the post-processing part of the measurement setup.

The dimension of every vector ℓi being t = 1, the collection of leakages can be seen as a
n-dimensional vector ℓ, of coordinates (ℓi)i.

The statistical distinguisher makes extensive use of linear algebra: it performs linear regressions
of the leakage against functions of the hypotheses’ bits, and compares the goodness of fit of these
regressions. Specifically, an attacker chooses a regression basis of functions (gj(·))j . The leakage
of an hypothesis vk,i is then represented as the polynomial p(vk,i) =

∑
j αjgj(vk,i), where (αj)j are

coefficients in R. The goal of the linear regression is to find the collection of coefficients (αj)j such
that the values (p(vk,i))i are as close as the observed leakages (ℓi)i as possible. To perform this
regression, for each k, the functions (gj(vk,i))j are evaluated, and form an n rows matrix Mk.
The score for k is then given by the goodness of fit:

LRA((ℓi)i, (hk,i)i)) = LRA(ℓ, Mk)) =
||ℓ − Mk((Mk)

⊤Mk)
−1(Mk)

⊤ℓ||
1
n

∑n
i=1(ℓi − ℓ̄)2

, (2.4)

where || · || denotes the Euclidean distance, n denotes the number of measurements, and (ℓ̄) denotes
the mean 1

n

∑
i ℓi of ℓ. It is interesting to note that the vector ((Mk)⊤Mk)−1(Mk)⊤ℓ gives the

coefficients (αj)j of the regression of the leakages on the basis chosen by the attacker, with respect
to hypothesis k.

Correlation power analysis

Correlation power analysis was introduced in 2004 by Brier, Clavier and Olivier [BCO04]. The
model function maps the hypothetic sensitive variable towards an element of R. Usually, the
chosen function is the Hamming weight of this value, but several other model functions can be
used. The statistical distinguisher is the Pearson linear correlation coefficient. Denoting by ℓ̄ (resp.
h̄k) the mean

1
n

∑
i ℓi (resp.

1
n

∑
i hk,i), the score is given by:

CPA((ℓi)i, (hk,i)i)) =
1
n

∑n
i=1(ℓi − ℓ̄) · (hk,i − h̄k)√

1
n

∑n
i=1(ℓi − ℓ̄)2

√
1
n

∑n
i=1(hk,i − h̄k)2

· (2.5)
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Differential power analysis

Differential power analysis was introduced in 1999 by Kocher, Jaffe and Jun [KJJ99]. The statistical
distinguisher is the difference of means. In this context, the values taken by the hypotheses are
reduced to a set of cardinal 2. Without loss of generality, we denote these two possible values 0
and 1. Usually, the model function maps the sensitive variable towards the value of one specific bit
(for example, its least significant bit). Using these notations, and the same as introduced for the
correlation power analysis, the score is hence:

DPA((ℓi)i, (hk,i)i)) =

∑
i|hk,i=0 ℓi

#(i|hk,i = 0)
−

∑
i|hk,i=1 ℓi

#(i|hk,i = 1)
· (2.6)

Remark 2.3.2. Is is argued in [DPRS11] that the differential power analysis, correlation power
analysis and linear regression analysis are not only asymptotically equivalent when the number
of observations increase, but can also be rewritten one in function of the other, only by refining
the used model leakage. Specifially, the differential and correlation power analysis can be seen as
specific cases of linear regression analysis.

Simple power analysis

Simple power analysis was introduced in 1996 by Kocher [Koc96]. It can be seen as an implicit
template analysis, where only a very limited number of templates -typically two- is used. Instead of
collecting these patterns by performing encryptions with a known secret, the attacker is supposed
to know them beforehand, or at least distinguish between them, because of their small number and
simplicity.

2.4 Problem Modeling

State of the art

The study of the effectiveness of side-channel attacks and their countermeasures requires a formal
framework. In 2003, Ishai, Sahai and Wagner introduced in [ISW03] the d-probing model, where
an attacker can learn the exact value of a bounded number d of intermediate values during a com-
putation. Furthermore, they proposed a method to transform any black-box circuit implementing
a function to an equivalent circuit secure in this model. This paper proposed a method to build
private circuits resistant in such a model, at a cost of a size blow-up quadratic in d. Nonetheless,
even though this paradigm is convenient to write security proofs, it does not accurately represent
a side-channel attacker. Indeed, this setting supposes that the attacker knows the exact value of
only the d targeted intermediate variables, and fails to capture the whole information available.
In particular, to achieve a good understanding of side-channel analysis, it is necessary to define a
model that captures all the information that is leaked to the adversary.

The first general approach towards this understanding is the physically observable cryptography
framework introduced by Micali and Reyzin in [MR04], which allows to represent any physical
implementation. A very important axiom in this model is that only computation leaks information.
This founding work paved the way for subsequent works on the resilience of cryptographic imple-
mentations against side-channel attacks, in particular the seminal paper written by Dziembowski
and Pietrzak [DP08], which introduced the notion of continuous leakage model to the world of
side-channel, that is, the assumption that only a bounded amount of information about the ma-
nipulated variable can leak during a given period. In this model, Dziembowski and Pietrzak were
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moreover able to construct a particular cipher proven to be resilient against any side-channel attack,
using a pseudo-random number generator. However, the overhead (in terms of computation time,
memory, and randomness) induced by this construction is too high to be considered as practical.
Moreover, as argued by Standaert in [Sta11], the continuous leakage model is too theoretical, as
it encompasses a very strong and unrealistic attacker. Specifically, the model allows the attacker
to arbitrarly define the leakage function, even if it could revert the cryptographic properties of the
algorithm itself. The paper [FRR+10] proposed an alternative approach, by restraining the choice
of the leakage model to functions in the complexity class AC0, ie. which circuit is of constant depth
and polynomialy sized in the number of inputs. Sadly, this class is too small to actually describe
all practical attacks. For example, the parity function is not in AC0 [FSS84]. Another approach
proposed in the same paper is a slight variation on the probing model, considering a possible error
on each read bit with a fixed probability. It is nonetheless unclear how realistic this leakage model
fits the physical reality of power and/or electromagnetic leakages.

A more realistic approach was proposed in [CJRR99] by Chari et al., introducing the noisy
leakage model. This model considers that the physical observable is a noisy observation of a deter-
ministic function of the sensitive variable. This is particularly relevant in the practical case, as it
seems to accurately capture physical phenomena induced by both the device architecture and the
attacker’s measurement setup [MOP07]. This work moreover focuses on the case where the noise
is Gaussian. This noise model is generally considered to be a good approximation of the reality.
Indeed, the central limit theorem ensures that the sum of noises caused by enough different sources
converges towards a Gaussian distribution. The paper [CJRR99] however restrains its study to the
case where the sensitive value is only one bit, shared as a sum of d bits (cf. 2.5.1). Nonetheless,
this model allows to formally evaluate the effectiveness of a side-channel attack in this context.
Precisely, for any side-channel attack to succeed in distinguishing the secret bit with probability α,
the number of measurements n is lower bounded, by a value depending on the standard deviation
σ of the Gaussian noise and the number d of shares:

n > σ
t+4 logα

logσ . (2.7)

This work was generalized by Prouff and Rivain in 2013 [PR13] by getting rid of the single-
bit limitation, and allowing for arbitrary noise. This study extends to the analysis of any affine
function or multiplication. Even more, these results can be composed to the protection of a whole
cryptographic algorithm, by assuming the presence of leak-free gates ie. components allowing to
refresh the sharing of a variable. These gates allow them to compose several secure operations while
maintaining a security all along the execution of the algorithm. Furthermore, this construction
allows them to prove information-theoretical results about the security of the obtained circuit. For
any manipulated variable X, the authors model the leakage obtained by an attacker by a non-
deterministic function L(X). This non-deterministic part can be represented in several ways. This
modeling can be seen as a generalization of an often chosen model: the additive noisy leakage,
where L(X) is written as the sum of a noise B and a deterministic function ϕ of the manipulated
variable X:

L(X) = ϕ(X) +B. (2.8)

In [PR13], the authors choose to model the noise of a leakage by the bias introduced on the
distribution of the manipulated random variable. For a manipulated variable X, and a measured
leakage L(X), the bias β(X|L(X)) of X given L(X) is defined as the expected statistical distance
between X and X|L(X):

β(X|L(X)) =
∑

y

P [L(X) = y] ·∆(X, (X|L(X) = y)), (2.9)
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where ∆(X, X|L(X) = y) = ||PX − PX|L(X)=y||, with || · || denoting the Euclidean distance, and
PX (resp. PX|L(X)=y) denoting the vector (P [X = x])x (resp. (P [X = x|Y = y])x). The bias is an
information metric between X and L(X). Note that if X and L(X) are independent, the bias is
null. It is deeply related to the mutual information MI between the random variables X and L(X),
that is the difference between the Shannon entropies [Sha48] of X and of X|L(X).

Indeed, by assuming a uniform distribution of X in a set of cardinality N , the mutual informa-
tion between the sensitive variable X and its leakage L(X) can be bounded:

MI(X, L(X)) ≤
N

ln 2
β(X|L(X)). (2.10)

This property is the cornerstone of the proofs in [PR13]. Assuming that the designer of a circuit
can control a noise parameter ω, and that, at any point of the execution, the bias between the
manipulated variable and the leakage never exceeds 1

ω (this assumption defines the so-called 1
ω -

noisy leakage model), the authors show that the information an attacker can get by looking at a
whole execution is upper bounded by ω−(d+1).

The approach in [PR13] suffers from several shortcomings: it requires the existence of leak-free
gates, the attacker can only access to randomly generated inputs, and the proof method is hard
to generalize to new protection schemes. The next year, Duc et al. solved these shortcomings
in [DDF14], and proved a reduction from the noisy leakage model used in [PR13] to the probing
model used in [ISW03], in which proofs are more convenient. Specifically, they proved that for
any attacker in the 1

ω -noisy leakage model introduced in [PR13], there exists an attacker in the
d-probing model, where d is a value linear in 1

ω . This is of particular interest, since it implies that
any circuit proven secure in the d-probing model is also secure in the 1

ω -noisy leakage model for
some ω. However, the expression of d as a linear function of 1

ω implies large constants, which render
the obtained security impractical.

The link between these models have further been studied in [DFS15b; DFS15a]. In particular,
it is shown in these papers that, if a circuit is secure in the d-probing model, then the probability of
distinguishing the correct key among |K| hypotheses is upper bounded by |K| · 2−d/9, if the leakage
L(X) satisfies, at each time:

MI(X, L(X)) ≤ 2 · (|K| · (28d+ 16))−2. (2.11)

These results imply that any proof of security obtained in the probing model can be transcribed
as a proof of security in the noisy leakage model. Namely, if a construction is proven secure in the
probing model (where the amount of observations an adversary can have is bounded), then there
exists a bound on the amount of information one can have by observing the whole computation
in the noisy leakage model. This is particularly interesting, since proofs in the probing model are
easier.

We now formally describe a side-channel attack based on the noisy leakage model, which closely
corresponds to a practical setting. This description is based on the one made in [PR13].

Algorithm

An algorithm is modeled by a sequence of elementary calculations (Ci)i implemented by Turing
machines possessing a set of adresses called the state. An elementary calculation reads its input and
writes its output on the state. When an elementary calculation Ci is invoked, its input is written
from the state to its input tape, then Ci is executed, and its output is written back to the state.
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Physical implementation

Similarly to an algorithm, its physical implementation is modeled by a sequence of physical ele-
mentary calculations. A physical elementary calculation is simply an elementary calculation Ci

associated with a leakage function Li(·). A leakage function is defined as a function taking two
parameters: the first one corresponds to the value of the part of the state accessed by its corre-
sponding elementary calculation, and the second one is a random chain modeling the leakage noise.
Denoting I = (Ci, Li)i the physical implementation of an algorithm, each execution of I leaks the
values Li(Zi, ri)i, where Zi designs the part of the state accessed by Ci before its execution and
ri the corresponding random chain. By definition, the different ri are supposed mutually indepen-
dent. For the sake of simplicity, we will often omit the random chain and write Li(Zi) the leakage
corresponding to the value Zi. In this sense, Li(Zi) can be seen as the result of a probabilistic
Turing machine. When only one variable is considered, we will omit the index i and simply write
L(Z).

Noisy leakage model

In the noisy leakage model, the leakage L(Z) occuring during the manipulation of an intermediate
value Z is modeled as a non-deterministic function of Z. In the remaining of this thesis, we will
often consider a particular case, corresponding to the additive noisy leakage model, as described in
Equation 2.8. Even more specifically, we will model L(Z) as:

L(Z) = ϕ(Z) +B, (2.12)

where ϕ is an unknown deterministic function depending on the architecture and where B is a
Gaussian noise of null mean and of variance σ2: B ∼ N (0, σ2). We will often instanciate, ϕ as
the Hamming weight or Hamming distance. Note that, according to this definition, the leakage on
variable Z only depends on Z, though ϕ could somehow capture information about previous states.
This is a slight imperfection of the model. This simple model will be used as a basic brick of our
study of side-channel attacks effectiveness in Chapter 3.

Moreover, the distribution fL(Z) of the leakage L(Z) is a Gaussian mixture sastisfying:

fL(Z) =
∑

ǫ∈Im(ϕ)

P [ϕ(Z) = ǫ] N (ǫ, σ2). (2.13)

We will use this observation in the study of the particular case of maximum-likelihood in
Section 3.6.

2.5 Countermeasures

One can distinguish two main families of countermeasures against side-channel analysis. The first
one, called masking, modifies the algorithm in order to make the sensitive variables manipulated
independent from the secret key. The second one, called hiding, covers the processing of the
algorithm by noise in order to make the exploitation of the observed signal too difficult.

2.5.1 Masking

A brief history

The first countermeasure against side-channel analysis actually appeared alongside the first attack
in the seminal paper of Kocher [Koc96]. The idea is to introduce randomness in the computation of
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the algorithm, in order to mask the sensitive data manipulated by the algorithm. The countermea-
sure modifies the input m fed into the RSA algorithm thanks to a uniformly drawn random value
r. Instead of cumputing a ciphertext c defined as c = md mod N , the algorithm now computes
a ciphertext c′ defined as c′ = (mre)d mod N . Then, the ciphertext c is retrieved by computing
c = (c′r−1) mod N . Due to the multiplication by re, the intermediate values manipulated during
the computation of c′ are not trivially deduced from md. The information that can be retrieved by
the attacker on the private exponent is hence smaller.

This approach was generalized and applied to symmetric algorithms independently by Goubin
and Patarin [GP99] and Chari et al. [CJRR99]. Usually, for historical reasons the countermeasure
applied to asymmetric algorithms is called blinding, while it is called masking when applied to
symmetrical algorithms. Nonetheless, the modus operandi of the countermeasures stays the same.
This family of countermeasures affects the distinguishing phase of the attack, by shrinking the
statistical dependencies between the manipulated variables and the secret data. The impact of
masking is nowadays well understood thanks to the works of modeling described in 2.4.

Formally, each sensitive variable x is divided into d+1 variables {xi}0≤i≤d referred to as shares.
Among those values, d are generated uniformly at random and the last one is computed such that
the combination of the d+1 shares, according to a chosen composition law ⋆, is equal to the initial
variable x, ie., x = x0 ⋆ · · ·⋆xd. One of the shares say x0 is sometimes referred to as masked variable
and the other shares x1, · · · xd as the masks. For the masking approach to be sound, it is required
that the masks are uniformly and independently generated. In that case, the (d+1)-tuple of shares
can be modeled as a random vector (X0, · · · , Xd) where for i ≥ 1, the Xi are mutually independent
random variables with uniform distribution on X , and X0 is computed such that it holds:

x =⋆d
i=0Xi. (2.14)

The choice of the law ⋆ depends on the algorithm and its implementation. The most trivial
instantiations are with the bitwise addition (aka. XOR or addition in the field of two elements)
law ⊕ or with the field product law ×, respectively used by the Boolean sharing [GP99; CJRR99]
and multiplicative sharing [AG01]. More complex instantiations can be deduced from descriptions
of other secret sharing schemes, such as Shamir’s secret sharing scheme [Sha79] or inner masking
product [BFGV12; BFG15].

Remark 2.5.1. For security reasons, ⋆ should form a group law on the definition set of the sensitive
variables x. This property has been sometimes overlooked and provoked flaws in some schemes. For
example, the multiplicative masking proposed in [AG01] could not mask the value 0, which however
was in the definition set of x. This allows a statistical attack breaking the scheme’s security [GT03].
Multiplicative masking is however a possible construction when the definition set does not include
the value 0, as illustrated in [GPQ10]. Its use in practical settings is nonetheless quite costly due
to the workarounds required to solve the 0 problem.

Remark 2.5.2. In an implementation protected by making, the sensitive variable x is not manip-
ulated anymore, but all shares are manipulated instead. Often, these manipulations are sequential.
An immediate consequence is that the attacker cannot obtain a leakage depending on x anymore,
but he can instead obtain a leakage tuple L corresponding to the different leakages of each share:

L = (L0, · · · , Ld), (2.15)

wherer Li denotes the leakage associated to the random value Xi, for any i < d+1. The obtention
of such a tuple can lead to so-called high order side-channel attacks, which aim at recovering the
sensitive value x by studying the distribution of L. We will detail and study the effectiveness of
such attacks in Chapter 3.
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The inverse operation of masking, constisting in the retrieval of x from the shares {xi}0≤i≤d is
referred as a reconstruction, and can be performed thanks to Equation 2.14.

Remark 2.5.3. The so-called threshold implementations [BGG+14] are a family of countermea-
sures, extending the idea of masking, in a wider model. In this model, additional physical leaks can
occur, such as leakages due to glitches, where more than one variable is involved in each observa-
tion. Glitches are unwanted transitions at the output of gates resulting from differences in signals
arrival time. The number of such transitions can be detected by side-channel analysis and reveal
information about the sensitive value. Threshold implementations hence increase the number of
shares used in the classical masking countermeasures, to ensure that these leaks do not induce a
security flaw (see for example [RBN+15]).

Masking as linear codes

All these countermeasures except multiplicative masking can be expressed in the domain of linear
error correcting codes theory. This link was first made by Massey in [Mas93], and allows for a
better understanding of the mathematical properties of these constructions. The author proved
an equivalence between linear coding theory and linear secret-sharing techniques. The sharing can
hence be reformulated in those terms. To proceed to the sharing of a sensitive value x into d + 1
shares x0, · · · , xd, a linear code C of length d + 2, dimension n and minimal distance δ is chosen.
Denoting the minimal distance of its dual code C⊥ by δ⊥, the results of [Mas93] imply that, as long
as δ, δ⊥ ≥ 2, one can build a sharing scheme from C. Then, n −1 random variables r1, · · · , rn−1 are
uniformly drawn, and the vector (x, r1, · · · , rn−1) is encoded by C hence obtaining the codeword
(x, x0, x1, · · · , xd). Denoting by G the generator matrix of C, we have:

(x, r1, · · · , rn−1) · G = (x, x0, x1, · · · , xd). (2.16)

The reconstruction of the shared variable x is hence seen as a decoding problem: several
shares (xi)i are known, and the reconstruction of x amounts to the decoding of the codeword
(x, x0, x1, · · · , xd). Note that this procedure must also be performed securely. Formally, a vector
λ = (λi)i exists, such that x =

∑
i λixi. In secret-sharing theory, a set of indices I such that the

shares {xi|i ∈ I} allow for the reconstruction of x is called a qualified set. The set of qualified
sets is further called an access structure. It is argued in [Mas93] that the access structure of a
secret-sharing scheme is entirely defined by the dual code C⊥.

In [CCG+07], Chen et al. furthermore studied the security properties of such a construction.
Considering x as the realization of a random variable X and each xi as the realization of a random
variable Xi, they show that, for any set of indices I of cardinality less than δ⊥ − 2, the mutual
information between X and (Xi)i∈I is null. Moreover, the authors prove that there exists a set I
of cardinality d − δ + 3 such that x can be reconstructed from the shares (xi)i∈I .

These results are of particular interest in the case of maximum distance separable (MDS) codes,
ie. codes whose parameters achieve the so-called Singleton bound, ie. verify the equation δ =
d + 2 − n + 1 = d − n + 3. Indeed, if C is MDS, then, C⊥ is also MDS. Therefore we have that
δ⊥ = d + 2 − (d + 2 − n) + 1 = n + 1. This results applied to the bounds of [CCG+07] show
that no information can be retrieved on the shared variable when the number of known shares is
strictly lower than n, but that n shares suffice to reconstruct x. Such a scheme is called a threshold
secret-sharing scheme.
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Algorithm 1 Transcoding algorithm

Require: linear codes C, C′ of respective length ℓ+2, ℓ′+2, dimension k, k′, minimal distance δ, δ′ ≥
2 and minimal distance of their duals δ, δ′⊥ ≥ 2, shares (x′

0, · · · , x′
ℓ′) such that (x, x′

0, · · · , x′
ℓ′) ∈ C′,

a reconstruction vector λ′ of C′

Ensure: shares (x0, · · · , xℓ) such that (x, x0, · · · , xℓ) ∈ C
for i = 0 to ℓ′ do

(z0,i, · · · , zℓ,i)← encoding of λ′
ix

′
i in C (cf Eq. 2.16)

for j = 0 to ℓ do
(x0, · · · , xℓ) = (

∑ℓ′

i=0 z0,i, · · · ,
∑ℓ′

i=0 zℓ,i)

Computing on masked data

Obviously, being able to share and reconstruct a sensitive variable is not sufficient to ensure the
full security of an implementation. Indeed, operations must be performed on these variables, and
consequently the masking needs to be resilient to these operations. Namely, if a sensitive variable x
is shared, and an operation f is to be performed, it is required that the execution of f does not leak
information on x, and that the obtained value is still a sharing of f(x). This problem is a major
issue in the field of countermeasures against side-channel attacks, and also appears in another form
in the multi-party computation domain.

We first tackle the issue of stable transformations (ie. any linear operation such as the addition
with another codeword or a scalar multiplication). In those cases, the security is trivially maintained
thanks to the linear coding theory. To see it, let (β, β0, β1, · · · , βd) denote a codeword of C, and
let α denote a scalar, then the shares of the value f(x) = αx+ β are f(x0), · · · , f(xd). Indeed, the
vector (αx+ β, αx0 + β0, αx1 + β1, · · · , αxd + βd) is still a codeword of C.

The problem of non-linear operations is way more complex. Indeed, if f is non-linear, then
the corresponding word (f(x), f(x0), · · · , f(xd)) is not ensured to be in C. The issue of the secure
evaluation of f is hence tackled in two parts: first, f is written as a composition of linear operations
and multiplications (note that this is always possible, since every function f defined over a finite field
can be written as a polynomial over this field), then, each of this operation is secured independently,
and composed in such a way to maintain security. The multiplication of two shared variables is still
a non-linear operation and requires some tricks to be performed. This construction was described
by [BOGW88] and [CCD88] for a particular secret-sharing scheme before being generalized in terms
of coding theory in [CC06].

Let us consider two codewords cx = (x, x0, · · · , xd) and cy = (y, y0, · · · , yd) in C, corresponding
respectively to the sharings of two variables x and y. The goal of the multiplication step is to
retrieve a sharing of the product xy in the code C. The multiplication of all coordinates of cx with
those of cy lays the word cxy = (xy, x0y0, · · · , xdyd). This word does not belong to the code C.
Nonetheless, it belongs to another linear code C′, defined by the span of vectors in {c · c′|c, c′ ∈ C}.
When C′ and its dual code both have minimal distance higher than 2, we know from Section 2.5.1
that they can define a secret-sharing scheme. Consequently, under those conditions on the minimal
distances of C′ and its dual, there exists a reconstruction vector λ such that xy =

∑
i λxiyi. This

observation allows for a transcoding operation, that is, an algorithm allowing to map a sharing from
a linear code C′ towards a corresponding sharing from another linear code C.

To complete the multiplication, it hence suffices to perform Algorithm 1 to transcode the shares
(x0y0, · · · , xdyd) from C′ to the corresponding shares in C.
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Remark 2.5.4. The protocol described in Algorithm 1 is furthermore a secure transcoding opera-
tion, in the sense that, as long as the respective minimal distances δ, δ′, δ⊥, δ′⊥, of C, C ′ and their
duals are greater than 2, any set of at most max(d′⊥, d)−2 intermediate values is independent from
the shared variable.

Being the cornerstone of the evaluation of the multiplication, the transcoding operation has
been the subject of several works, proposing new algorithms to achieve more efficient or more
secure results. Some other constructions can be found for example in [GM11; CPR12].

Sometimes, the code C′ resulting from the coordinate-wise product of the codewords of C does
not verify the requirements on the minimal distance. For example, for the code associated to
the Boolean sharing, which we describe lower, the code C′ is exactly the whole space on which C is
defined. Consequently, the corresponding minimal distance is 1. In this case, the described trick can
be adapted, by replacing the code C′ by the code C⋆, where the coordinate-wise product is replaced
by the outer product, viewed as a vector. The transcoding operation described in Algorithm 1 can
then be used. We study particularly this setting in Chapter 4 of this thesis, and we propose new
efficient solutions, that can be written as new transcoding procedures.

Even with clever tricks, dealing with linear operations is still cheaper than dealing with non-
linear ones. Consequently, to improve performance, the decomposition of the function f must
minimize the number of non-linear operations. These last years, the protection of the symmetrical
algorithms, especially AES, has been studied. In AES, the only non linear part is the substitution
layer, itself composed of small non-linear functions (called Sboxes). The decomposition of the AES’-
Sbox function has consequently been the subject of several studies. The element manipulated by
these functions are in a field of characteristic 2, hence the squares operations are linear. Rivain
and Prouff showed in [RP10] that this function can be evaluated using as few as 4 multiplications,
and proposed a secure scheme for it, by extending the seminal construction of [ISW03] from F2 to
F28 . The problem of the minimization of non-linear operations in the expression of Sboxes in fields
of characteristic 2 has recently been tackled by the works of [CGP+12; RV13; CRV14; GPS14;
CPRR15]. These papers allow to prove lower bounds on the number of such operations that one
can obtain by decomposing any polynomial function on a field of characteristic 2, and they provide
several constructions to efficiently find good decompositions.

In [GHS12], Gentry et al. proposed a new decomposition of the AES Sbox where 2 out of 4
multiplications are computed in parallel. Moreover, it can be observed that these two multiplica-
tions have a common input. Recently, Coron et al. [CGPZ16] took advantage of this parallelization
to further reduce the complexity of the evaluation. Though not really reducing the number of
multiplications in the expression of the Sbox, the authors design a trick to artifically reduce the
computation complexity, by introducing the notion of common shares. Denoting by c · a and c · b
the two parallel multiplications occuring in the construction of [GHS12], they set the first half of
the sharing of b as equal to the first half of the sharing of a. Consequently, part of the operations
performed to compute c · a and c · b are similar, and can hence be computed only once. This trick
allows to reduce the number of multiplications in the AES Sbox evaluation to the equivalent of 2.8
instead of 4.

The composition of several secure constructions, or gadgets, is a prime issue in the design of
secure evaluations. Indeed, the succession of two secure gadgets is not necessarly secure: one
needs to prove that combining observations between both gadgets does not give information about
the manipulated sensitive values. To allow proofs of compositions, the notion of strong non-
interference (SNI) was introduced by Barthe et al. in [BBD+15a], extending the previous notion
of non-interference (NI) defined in [BBD+15b]. Essentially, a gadget is said t-SNI if it can be
simulated using a number of each of its input shares that is only bounded by the number of ob-
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servations made by the adversary on inner variables manipulation, and is independent from the
number of observations made on output values, as long as the total number of observations does
not exceed t. This definition directly implies that a t-SNI algorithm is t-secure. Indeed, for any
t variables observed by an attacker, it is possible to perfectly simulate the distribution of these
variables from some random bits and a set of less than t inputs. The composition of two t-SNI
algorithms is itself t-SNI. The composition of t-NI and t-SNI gadgets is not necessarly t-SNI, and
such constructions must hence be proven otherwise. We extensively use these notions in Chapter 4
to prove the security of our constructions.

Examples of secret sharing schemes

For illustration purposes, we describe hereafter the matrices Gbool, GIP and GSSS , respectively
corresponding to the Boolean sharing, inner product masking, and Shamir’s scheme, and the gen-
erator matrices Hbool, HIP and HSSS of their dual codes. For any integer n, we denote by In the
n-dimensional identity matrix.

In the Boolean sharing, the sensitive value x is divided in d + 1 shares through the law ⊕.
Hence, Gbool is simply the parity matrix:

Gbool =


 Id+1

1
...
1


 .

The generator matrix Hbool of the dual code is therefore:

Hbool = (−1, · · · , −1, 1).

The masking of a sensitive value through inner product sharing is described in [BFG15]. The
sharing is in fact very similar to the Boolean sharing’s one. In fact, the only difference is that the
last share is not computed using a XOR law, but with an inner product with a publicly known
vector (1, l1, l2, · · · , ld). This allow us for the description of the generator matrix GIP :

GIP =




Id+1

1
l1
...
ld




.

The generator matrix HIP of the dual code is therefore:

HIP = (−1, −l2, · · · , −ld, 1).

In Shamir’s secret sharing, the shares correspond to evaluations of a certain polynomial in d+1
different public points αi, for i ∈ [0, d]. This is equivalent to a Reed-Solomon code, where the
coefficients of the polynomial correspond to the input vector. In particular, the sensitive value is
the constant term of this polynomial. Consequently, GSSS is the Vandermonde matrix:

GSSS =




1 1 · · · 1
0 α0 · · · αd

0 α2
0 · · · α2

d
...

...
...

...
0 αn−1

0 · · · αn−1
d




.
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The dual code is therefore also a Reed-Solomon code, of generator matrix HSSS :

HSSS =




1 1 · · · 1
0 α0 · · · αd

0 α2
0 · · · α2

d
...

...
...

...
0 αd−n−1

0 · · · αd−n−1
d




.

Remark 2.5.5. All these codes are MDS. Note that, contrary to the Boolean sharing or the
inner product masking, where the dimension of the code has to be d + 1, Shamir’s secret sharing
scheme allows for arbitrary dimension n. The corresponding dual codes for Boolean sharing and
inner product masking are therefore of dimension 1, and consequently, reconstructions with these
schemes require that all shares are known. Shamir’s secret sharing allow for more a complex access
structure, ie. every set of shares of cardinality higher than a chosen dimension n.

2.5.2 Hiding

Another approach is taken by so-called hiding countermeasures, introduced in [KJJ99]. The goal
of such countermeasures is to hide the manipulation of data among a lot of noise. Using this
approach, the sensitive variable is indeed manipulated by the device, but the exploitation of the
leakage obtained by the attacker is very difficult. This family of countermeasures target the leakage
collection phase of the attack, by increasing the difficulty of the signal resynchronisation and the
identification of the correct instant when the sensitive value is manipulated.

The first approach designed to achieve such a feit is the so-called balancing method. This
countermeasure aims at the insurance of a balance of the power consumed by an electronic device
in such a way that, at each time, the consumption is as constant as possible. The obtained signal
is consequently unrelated to the data being processed. Several means have been considered to
reach this goal: balanced gate constructions [KJJ99], dual-rail precharge logic [PM05], modification
of current mode [MSH+04] and asynchronous logic [MMC+02]. Through theoretically efficient,
these countermeasures are very hard to implement in practice. Indeed, the power consumption
of electronic devices depends on a large number of parameters on which the modern designer has
little to no control, such as wire routing, capacitive effects or even cross-talk between wires. These
countermeasures are therefore seldom used in the real world.

The second approach is built on the idea of artificially inducing noise in the measurement
themselves. We can further separate this approach in two sub-families, the first one hiding the
relevant signal with amplitude noise, and the second one hiding it with temporal noise. With the
amplitude approach, the device will perform unrelated operations at the exact same time as the
relevant computation is being performed. The amplitude of the resulting signal obtained by an
attacker will hence be polluted by the unrelated operations. Nonetheless, this countermeasure is
also difficult to efficiently implement. Indeed, while a power measurement of the whole device would
be affected, a very local measurement of the electromagnetic emanations could be unaffected by
operations occuring in another area. The temporal approach uses random interruptions, random
accesses, and temporal duplications of algorithms to hide the relevant operation among dummy ones.
The relevant signal is hence temporaly lost in the middle of a lot of noise. An usual circumvention
to this countermeasure applies integrating techniques on the signal in order to fall back into an
amplitude noise problem [CCD00].
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2.6 Randomness complexity

Most countermeasures described in Section 2.5 make use of randomness. Hiding countermeasures
might require randomness to shuffle executions, and insert unpredictable delays. Masking coun-
termeasures require randomness to share variables such that the manipulations are uncorrelated
to the secret. Moreover, operations manipulating masked values induce an overhead in term of
needed randoms during the transcoding part. Quite surprisingly, the problem of the amount of
randomness required by those countermeasures is often overlooked.

The production of random bits is however a complex issue in the design of secure devices. Indeed,
in practice, randomness is often generated using the succession of sophisticated components: a true
random number generator (TRNG) exploits an unpredictable process, such as analog phenomena,
to accumulate entropy and output random bits, which are then retreated by a deterministic random
number generator (DRBG), such as a cryptographic algorithm. The unpredictability of the TRNG
is ensured physically, and that of the DRBG is ensured computationally and/or statistically. In
addition of being a theoreitcal chicken-and-egg problem, this whole process often suffers from a low
throughput and a long execution time, and countermeasures usually require a lot of randomness
to efficiently secure algorithms. Indeed, in general, for a DRBG based on a 128-bit block cipher,
one call to this block cipher enables to generate 128 pseudorandom bits (see [BK12]). However,
one invocation of the standard AES-128 block cipher with the ISW multiplication requires as much
as 30,720 random bits (6 random bytes per multiplication, 4 multiplications per S-box [RP10])
to protect the multiplications when masked at the low order d = 3, which corresponds to 240
preliminary calls to the DRBG.

We hence argue that the amount of randomness required by countermeasures against side-
channel attacks should be estimated along the classical evaluations of time, area and number of
operations. To the best of our knowledge however, this problem was only tackled in the seminal
paper of [ISW03]. In Chapters 4 and 5, we put a primary focus on the notion of randomness
complexity, that is, the amount of randomness needed to achieve secure constructions. Respectively,
we evaluate this complexity in several new proposed computations of non-linear operations on
masked variables, and on new protocols allowing to securely compute a veto.

2.7 Effectiveness of side-channel attacks

The wide variety of side-channel attacks available in the state of the art calls for the need to compare
their respective effectiveness. Indeed, in the constraints of limited time and resources, designers,
evaluators and attackers are not able to perform all attacks, and a choice must hence be made.
This choice is mostly driven by the chance of success of an analysis, that is, the probability for an
attacker to retrieve the secret variable manipulated by the device in the least possible number of
observations.

This need for a classification of attacks based on their chance of success led the community to
apply the notion of success rate to side-channel analysis. The success rate measures the probability
of success of an attack.

In [WO11b], Whitnall and Oswald proposed a framework to further compare side-channel at-
tacks and their distinguishers, using several criteria:

• Correct key ranking: the position of the correct key when ranked by score value.

• Relative distinguishing margin: the difference between the scores of the correct key and the
best alternative, normalized by the variance of scores.
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• Absolute distinguishing margin: the difference between the scores of the correct key and the
best alternative, divided by this expected difference in a noiseless setting.

• Standard score: the number of standard deviations above or below the mean for the correct
key score.

The authors also added two other criteria regarding the cardinality of the set of plaintexts
required for an attack to be successful: the average critical support and the critical support for p%
success rate, respectively corresponding to the average required cardinality of the set for the attack
to be successful, and to the cardinality for which the rate of success is at least p%.

All these criteria are of interest to compare different side-channel attacks. However, the main
issue for a practical attacker is that they all rely on a posteriori results, that is, they measure the
effectiveness of an attack after it has been performed. Oftentimes, for example, the success rate is
estimated empirically: the attack is repeated a large number of times, and the number of successes
is counted, allowing for the computation of the empirical success rate SRemp:

SRemp =
number of successes

number of attacks
· (2.17)

Such an estimation is hence very dependent of the number of attacks, and consequently of
the time and resources deployed by the attacker. It is hence oftentimes impractical to compute.
Moreover, the clever choice of an attack should rely on an a priori approach, allowing the estimation
of effectiveness before it is even performed.

We tackle this problem in Chapter 3, by reviewing state of the art approaches to theoretically
estimate the success rate, and we extend those works to a whole family of side-channel attacks,
based on so-called additive distinguishers. Moreover, we give rationales for the practical interest of
this approach in the choice of an attack, by illustrating how the characterization of a device and
measurement setup is much cheaper to perform than the attack itself.





Chapter 3

Estimating the Success Rate of
Side-Channel Attacks

My success rate is 100%. Do the math.

Charlie Sheen

In this chapter, we propose to tackle out the problematic of success rate’s evaluation. Part of
this work has been the subject of two papers published in the workshop on Cryptographic Hardware
and Embedded Systems in 2013 [TPR13] and 2014 [LPR+14].

3.1 Introduction

Side-channel attacks against block cipher implementations usually consider the secret as a tuple
of so-called subkeys and apply a divide-and-conquer strategy to recover them separately. During
the conquering phase, a partial attack, limited in time and space, is run against each subkey.
Heuristics are then applied to decide on the success or unsuccess of each of these attacks. Subkeys
corresponding to attack failures are deduced by exhaustive search. In practice, this last step is
often executed either for efficiency reasons or because it is assumed that there is no chance to get
the missing subkeys directly by side channel analysis. This description makes apparent that the
attack effectiveness greatly depends on the heuristic applied by the adversary. Indeed, incorrect
heuristics leave the subsequent exhaustive search little chance to succeed.

As described in Section 2.2, a partial attack is performed on a finite set of measurements and
aims at the recovery of a correct subkey k∗ among a small set K of hypotheses (usually, |K| = 28

or 216). For such a purpose, a score is computed for every subkey hypothesis k ∈ K, leading to an
ordered scores vector. The position rk of an hypothesis k in this vector is called its rank. Note that
the notion of rank of an hypothesis trivially extends the correct key ranking criteria described in
Section 2.7. The attack is said to be successful if rk∗ equals 1. Extending this notion, an attack is
said o-th order successful if rk∗ is lower than or equal to o.

Depending on the context, the secret k∗ can either be known or unknown. Before putting a
product in the field, resilience of its cryptographic implementations against side-channel attacks is
often evaluated both by their designers and by independent evaluation laboratories. In this context,
k∗ is often known and/or chosen, allowing for a very accurate assessment of the implementation’s
security. Once in the field, the profile of attacker changes for someone more malicious. The approach

37
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is now totally black-box, and the key is unknown. In this chapter, we study how accurately security
can be assessed in both contexts.

Under the assumption that the secret k∗ is known, the success of a partial attack can be un-
ambiguously stated. This even allows for the estimation of its success rate, by simply dividing
the number of attack successes (for which rk∗ ≤ o) by the total number of attacks (see Equa-
tion 2.17). Estimating the success rate of a side-channel attack –that uses a given number of leakage
observations– is a central issue regarding the physical security evaluation of a cryptographic im-
plementation. The empirical way is to perform the attack a certain number of times and to record
the average number of successes. However, this approach is prohibitive against implementations
protected by effective countermeasures since the attacks may become too costly to be performed
several times (or even once). This does not mean that the implementation is secure though; this
only means that the implementation is secure beyond the means of the evaluator (which may not
compete with the means of a motivated attacker). This situation is not satisfactory in practice
where one desires that the computational cost of performing a security evaluation be fairly low and
uncorrelated to the actual security of the target implementation.

The problem of evaluating the success of an attack has already been tackled in several pa-
pers [FLD12; Man04; SPRQ06; Riv09]. In [Man04] and [SPRQ06], the CPA success rate is eval-
uated by using Fisher’s transformation (see for instance [Fis22]): simple formulae are exhibited
to estimate the success rate in terms of both the noise standard deviation and the correlation
corresponding to the correct key. These works were a first important step towards answering our
problem. However, they were conducted under the assumption that wrong hypotheses are uncor-
related to the leakage, which turned out to be incorrect.

To illustrate this, we study the sampling distribution of the rank, by running an experiment
where several CPA targeting the output of the AES sbox are performed, assuming a Hamming
weight leakage model with a Gaussian noise of standard deviation 3. A random subkey k∗ is drawn,
and q leakage observations are generated. Then, the rank rk,q of each hypothesis k is computed with
respect to the CPA scores. This experiment is repeated several times with new leakage observations,
and the mean and variance of the associated random variables Rk,q are computed. We then perform
the same experiment on a leakage of standard deviation 10.

The results, plotted in Figure 3.1 show that this assumption, sometimes called wrong key ran-
domization hypothesis [Har96], does not fit with the reality: each hypothesis score indeed actually
depends on the bit-wise difference between the hypothesis and the correct key. The error induced
by the assumption is not damaging when one only needs to have an idea about the general attack
trends. It is however not acceptable when the purpose is to have a precise understanding of the
attack success behavior and of the effect of the sbox properties on it. This observation has been
the starting point of the analyses conducted in [FLD12] and [Riv09], where the wrong key random-
ization hypothesis is relaxed. In Rivain’s paper, a new and more accurate success rate evaluation
formula is proposed for the CPA. In [FLD12], Fei et al. introduce the notion of confusion coefficient,
and use it to precisely express the success rate of the monobit DPA. This work can be viewed as a
specification of Rivain’s, as monobit DPA is a particular case of a CPA [DPRS11].

When the secret k∗ is unknown, the adversary chooses a candidate which is the most likely
according to some selection rules. In this case, the success can only be decided a posteriori and
a confidence level must hence be associated a priori to the choice before the decision is made.
Clearly the soundness of the latter process depends on both the selection and the confidence, which
must hence be carefully defined. In particular, to be effective in a practical setting, the confidence
associated to a decision must be accurately evaluated even for a small number of observations.

This need is illustrated in Figure 3.2. A usual selection rule is to simply choose the best ranked
key. Using 280 observations, this rule would lead to the choice of the right subkey, whereas a wrong
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Figure 3.1: Results of CPA experiments on the AES sbox. The averages of the ranks are plotted, in function
of the number of measurements used for each attack (logscaled), in (a) and (b) for Gaussian noises
of standard deviation respectively equal to 3 and 10. Their respective variances are plotted in
(c) and (d).

subkey would have been chosen using 420 observations. An optimal heuristic would then deem the
first attack a success, and the second one a failure.

Figure 3.2: Correlation coefficients obtained from a CPA on AES. The correct hypothesis is plotted in black.

Interestingly, the invalidation of the wrong key randomization hypothesis, as illustrated by
Figure 3.1, implies that the evolution of the sampling distribution of every Rk is eventually related
to the value of the correct key and hence brings information about it. In other terms, the full
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vector of ranks gives information on the correct key (and not only the hypothesis ranked first).
Based on this observation, it seems natural to use this information to increase the attack efficiency
and/or the confidence in the attack results. To be able to precisely assess both kinds of increase,
the distributions of all the variables Rk therefore need to be understood. Bearing this in mind,
we now formalize some information that an adversary can obtain while performing a side-channel
attack on a set of q independent observations. Scores are computed using a progressive approach,
i.e. taking an increasing number of traces into account. Namely, the scores are computed after
q1 < q observations, then again after q2 > q1 observations, and so on until the q observations have
been considered. This approach enables the computation of the matrix1:

Ms =




s(1, q1) s(1, q2) · · · s(1, q)
...

...
. . .

...
s(|K|, q1) s(|K|, q2) · · · s(|K|, q)


 ,

where s(k, qi) denotes the score of the hypothesis k computed using qi observations.

According to the Neyman-Pearson lemma [NP33], an optimal selection rule would then require
the knowledge of the statistical distribution of this matrix when the correct subkey is known. In
a real attack setup however, the latter subkey is unknown and one then has to proceed with a
likelihood-ratio approach in order to retrieve it. Even optimal from an effectiveness point of view,
this approach is not realistic as it reposes on two major issues: the knowledge of the distribution of
the matrix (which requires a theoretical study over highly dimensional data) and the computation
and storage of every score (which may require a lot of time and memory). Moreover, one could
wonder if all the information contained in the matrix is relevant, or if there is some redundancy. On
the opposite side, the actual attacks only use small parts of the available information. For example,
the classical selection of the best ranked key simply amounts to choose the maximum of the last
column of scores inMs. Between those two extrem approaches, one could wonder if other tractable
parts of the matrix can be used to give better selection rules or better confidence estimators.

Several criteria indicating the effectiveness of side-channels have also been studied to compare
side-channel attacks (e.g. [WO11a]). Among those, the particular behavior of the right subkey
ranking have been exploited in [NSGD11] to propose an improvement of the attack efficiency
when the correct key is unknown. This approach illustrates the importance of such criteria in
practical attacks, but it is purely empirical. To optimize the exhaustive search phase, the authors
of [VGRS11] propose an algorithm taking as inputs the confidence of the results of each partial
attack, thus illustrating the need for a precise study of this problem.

In this chapter, we propose a methodology to estimate the success rate of side-channel attacks
targeting implementations protected by masking. Our methodology is based on the approach pro-
posed by Rivain in [Riv09] in the context of first-order side-channel attacks. It trivially extends to
first order side-channel attacks against unprotected implementations. The principle of this approach
is to study the multivariate distribution of the score vector resulting from an attack. Specifically,
Rivain suggests to approximate this distribution by a multivariate Gaussian distribution, which
is sound in the context of additive distinguishers such as the correlation and the likelihood. We
generalize this approach to high order side-channel analysis (HO-SCA) and we show how to de-
rive the distribution parameters with respect to the leakage parameters. We show that using this
methodology makes it possible to accurately estimate the success rate of a high order side-channel
attack based on a simple profiling of the leakage parameters. Moreover, we demonstrate the sound-
ness of our methodology by comparing its results to various attack experiments against masked

1Note that this matrix does not capture all the information available to an attacker. Indeed, for example all sets
of size q1 could be used to gain information, not only the first set of measurements.
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AES implementations running on two different microcontrollers. We also introduce the notion of
confidence level, aiming at evaluating the probability of correctness of a side-channel attack result.

3.2 Preliminaries

The expectation and the variance of a random variable X are respectively denoted by E [X] and
Var [X]. The covariance between two random variables X and Y is denoted by Cov [X, Y ].

The Gaussian distribution of dimension T with expectation vector m in RT and T ×T covariance
matrix Σ is denoted by N (m,Σ), and the corresponding probability density function (pdf) is
denoted by φm,Σ. We recall that this pdf is defined for every x ∈ RT as

φm,Σ(x) =
1√

(2π)T |Σ|
exp

(
−
1

2
(x − m)⊺ ·Σ−1 · (x − m)

)
, (3.1)

where (x − m)⊺ denotes the transpose of the vector (x − m) and |Σ| denotes the determinant of
the matrix Σ. The corresponding cumulative distribution function (cdf) is denoted Φm,Σ and is
defined for a pair of vectors a = (a1, a2, . . . , aT ) and b = (b1, b2, . . . , bT ) over (R∪ {−∞,+∞})T by

Φm,Σ(a, b) =

∫ b1

a1

∫ b2

a2
· · ·

∫ bT

aT

φm,Σ(x) dx . (3.2)

If the dimension T equals 1, then the Gaussian distribution is said to be univariate and its
covariance matrix is reduced to the variance of the single coordinate denoted σ2. If T is greater
than 1, the Gaussian distribution is said to be multivariate.

3.3 Side-Channel Model

We consider a cryptographic algorithm protected by masking and running on a leaking device. A
(high order) side-channel attack exploits the leakage resulting from intermediate computations in
order to recover (part of) the secret involved in the cryptographic algorithm. Let s denote such an
intermediate variable satisfying:

s = ϕ(x, k∗) , (3.3)

where x is (part of) the public input of the algorithm, k∗ is (part of) the secret input of the
algorithm, and ϕ is some function from X × K to S.

As described in Section 2.5.1, for an implementation protected with masking, such a variable
s is never stored nor handled in clear but in the form of several, say d + 1, shares s0, s1, . . . , sd

satisfying the relation

s0 ⋆ s1 ⋆ · · · ⋆ sd = s (3.4)

for some operation ⋆. In the common case of Boolean masking this operation is the bitwise addition
modulo 2 (or XOR, denoted ⊕), but it might be some other group addition law. In that case, it
can be noted that the (d + 1)-tuple of shares can be modeled as a random vector (S0, S1, . . . , Sd)
where S0 = s ⊕

⊕d
j=1 Sj and, for j > 1, the Sj are mutually independent random variables with

uniform distribution over S.
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3.3.1 Leakage Model

As stated in Remark 2.5.2, during the execution of the algorithm, the processing of each share Sj

produces some leakage Lj revealing some information about the share value, hence forming the
leakage tuple

L = (L0, L1, . . . , Ld) . (3.5)

We shall sometimes use the alternative notation Ls or Lx,k∗ to indicate that the leakage arises for
the shared value s = ϕ(x, k∗).

In this chapter, we use the leakage model described in Section 2.4, in particular the additive
Gaussian noisy leakage. Therefore, Equation 2.12 implies that, for every j ≤ d+1, we have: shares,
the leakage has a Gaussian distribution. This assumption is referred

Lj = fj(Sj) +Nj , (3.6)

where fj is a deterministic function.
As a final assumption, we consider that for any fixed values of the shares, the leakage components

are independent. That is, for every (s0, s1, . . . , sd) ∈ Sd+1, the random variables (Lj | Sj = sj) are
mutually independent. Under the Gaussian noise assumption, this simply means that the noises
Nj are mutually independent, and that is why we shall refer this assumption as the independent
noises assumption.

Remark 3.3.1. For the sake of simplicity, we consider that all the leakages Lj have the same
dimension T . Note that our analysis could be easily extended to the general case where each
leakage Lj has its own dimension Tj .

3.3.2 Side-Channel Attacks

In a side-channel attack (SCA), the adversary aims to extract information about k∗ by monitoring
the leakage of the shares. Specifically, the adversary observes several samples ℓi ∈ L of the leakage
Lxi,k∗ , corresponding to some public input xi that he may either choose or just know. According to
the above leakage model, the leakage space L is defined as L = RT ×(d+1) and each leakage sample
can be written as

ℓi = (ℓi,0, ℓi,1, · · · , ℓi,d) , (3.7)

with ℓi,j ∈ RT for every j. Moreover, the Gaussian noise assumption implies that each leakage
sample coordinate can be further written as

ℓi,j = fj(si,j) + ni,j , (3.8)

where si,1, si,2, . . . , si,d are d random mask values, where si,0 = ϕ(xi, k∗) ⊕
⊕d

j=1 si,j , and where
ni,0, ni,1, . . . , ni,d are samples of the Gaussian noises N0, N1, . . . , Nd.

Once several, say q, leakage samples have been collected, the adversary makes use of a distin-
guisher, that is a function mapping the input-leakage samples (x1, ℓ1), (x2, ℓ2), . . . , (xq, ℓq) to some
score vector d = (dk)k∈K ∈ R|K|. If the distinguisher is sound and if the leakage brings enough
information on the shares, then the equality

k∗ = argmax
k∈K

dk

should hold with a probability substantially greater than 1
|K| .
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In what follows, we shall consider a natural equivalence relation between distinguishers. We say
that two score vectors are rank-equivalent if for every n ∈ {1, 2, . . . , |K|}, the n coordinates with
highest scores are the same for the two vectors. Two distinguishers d and d′ are then said equivalent,
denoted d ≡ d′ if for every (xi, ℓi)i ∈ (X × L)q, the score vectors d

(
(xi, ℓi)i

)
and d′

(
(xi, ℓi)i

)
are

rank-equivalent.

In this chapter, we focus on additive distinguishers which we formally define hereafter.

Definition 3.3.2. A distinguisher d is additive if for every (x1, x2, . . . , xq) ∈ X q, there exists a
family of functions {gx,k : L → R ; (x, k) ∈ X × K} such that for every (ℓ1, ℓ2, . . . , ℓq) ∈ L

q we
have

d
(
(xi, ℓi)i

)
= (dk)k∈K with dk =

1

q

q∑

i=1

gxi,k(ℓi) for every k ∈ K.

A distinguisher equivalent to an additive distinguisher as defined above is also said to be additive.

It was shown in [Riv09] that the widely used first-order correlation and likelihood distinguishers
are both additive distinguishers in the sense of the above definition. We will show in Sections 3.5
and 3.6 that their high order counterparts are also additive.

3.4 Estimating the Success Rate

In this section, we generalize the methodology introduced in [Riv09] to high order side-channel
attacks as modeled in the previous section. Namely, we show how to get a sound estimation of the
attack success rate by studying the multivariate probability distribution of the score vector for the
case of additive distinguishers.

The success rate of a high order side-channel attack, denoted Succd

x,k∗ , is defined with respect to
some input vector x = (x1, x2, . . . , xq), some secret k∗, and some distinguisher d, as the probability:

P
[
k∗ = argmax

k∈K
dk

∣∣∣ ℓ1
$

←− Lx1,k∗ ; . . . ; ℓq
$

←− Lxq ,k∗ ; (dk)k∈K = d
(
(xi, ℓi)i

)]
,

where ℓi
$

←− Lxi,k∗ means randomly sampling ℓi according to the distribution of Lxi,k∗ .

Remark 3.4.1. For the sake of generality, we chose to fix the input vector x as a parameter of the
attack so that we do not need to assume any specific strategy for the choice of the public inputs.
However, we will investigate the particular setting where the xi are uniformly distributed.

According to Definition 3.3.2, the score vector (dk)k∈K resulting from an additive distinguisher
satisfies

dk =
1

q

q∑

i=1

gxi,k(ℓi) , (3.9)

for some gx,k : L → R. Then a simple application of the central limit theorem yields the fol-
lowing result, where we define the occurrence ratio τx of an element x ∈ X in the input vector
(x1, x2, . . . , xq) as

τx =
|{i; xi = x}|

q
. (3.10)
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Proposition 3.4.2. The distribution of the score vector (dk)k∈K tends toward a multivariate Gaus-
sian distribution as q grows, with expectation vector (E [dk])k∈K satisfying

E [dk] =
∑

x∈X

τx E [gx,k(Lx,k∗)] (3.11)

for every k ∈ K, and with covariance matrix (Cov [dk1 , dk2 ])(k1,k2)∈K2 satisfying

Cov [dk1 , dk2 ] =
1

q

∑

x∈X

τx Cov [gx,k1(Lx,k∗), gx,k2(Lx,k∗)] (3.12)

for every (k1, k2) ∈ K2.

Proof. The first statement results by definition of additive distinguishers and the central limit
theorem. Equation (3.11) and Equation (3.12) directly hold by mutual independence between the
leakage samples. �

The above proposition shows that for a sufficient number of leakage observations, the distribu-
tion of the score vector d = (dk)k∈K can be soundly estimated by a multivariate Gaussian. As in
[Riv09], we now define the comparison vector as the (|K| − 1)-size vector c = (ck)k∈K/{k∗} whose
coordinates satisfy

ck = dk∗ − dk , (3.13)

for every k ∈ K/{k∗}. The comparison vector is a linear transformation of the score vector by a
((|K| − 1) × |K|)-matrix P whose expression straightforwardly follows from Equation (3.13). This
implies that the distribution of the comparison vector can also be soundly estimated by a multi-
variate Gaussian distribution N (mc,Σc) where mc = P · md and Σc = P ·Σd · P ′. Moreover, by
definition of the comparison vector, an attack is successful (ie. the correct secret k∗ is ranked first
in the score vector) if and only if all the coordinates of the comparison vector are positive. We
deduce that the success rate Succd

x,k∗ of a distinguisher d satisfies

Succd

x,k∗ = P[c > 0] ≈ Φmc,Σc

(
0, ∞

)
(3.14)

where Φm,Σ denotes the Gaussian cdf as defined in Equation (3.2), 0 denotes the null vector, and
∞ denotes the vector (∞, ∞, . . . , ∞).

Remark 3.4.3. In [SMY06], Standaert et al. propose to extend the notion of success rate to
different orders. The o-th order success rate of a side-channel attack is defined as the probability
that the target secret k∗ is ranked among the o first key guesses by the score vector. The authors
of [SMY06] also suggest to consider the so-called guessing entropy, which is defined as the expected
rank of the good key guess in the score vector [Mas94; Cac97]. As shown in [Riv09], both the
success rate of any order and the guessing entropy can be estimated using a similar approach as
above.

Methodology.

According to the above analysis, we propose the following methodology for an evaluator of some
cryptographic algorithm to estimate the success rate of a (HO-)SCA against his (masked) imple-
mentation. We consider that the evaluator has access to the random masks generated during the
computation, and is therefore able to predict the value of each share involved in the successive
execution of the protected algorithm. The methodology is composed of three main steps:
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1. Profile the leakage of every share using standard estimation techniques. Under the Gaussian
leakage assumption, this estimation amounts to compute the sample means and the sample
covariance matrices of the leakage (Li | Si = s) for every share Si and every possible value s ∈
S based on a set of collected leakage samples. using for instance linear regression techniques
as described in [SLP05].

2. Use Proposition 3.4.2 to compute the expectation vector and covariance matrix of the score
vector with respect to the leakage parameters.

3. Deduce the parameters of the comparison vector distribution and evaluate the success rate
according to Equation (3.14).

The precision of the obtained estimation is impacted by two main factors:

• the accuracy of the leakage parameter estimations, and

• the tightness of the Gaussian approximation arising in Proposition 3.4.2.

The accurate estimation of leakage parameters has been a widely investigated issue and efficient
techniques are known to deal with it (see for instance [CRR03; SLP05; APSQ06; GLRP06]). Ba-
sically, the more noisy the leakage, the more samples must be used to get an accurate estimation.
Note that in our approach, the evaluator only has to estimate first-order leakage parameters with
respect to the share values. Practical aspects of leakage parameter estimation are further discussed
in Section 3.8.

On the other hand, the Gaussian approximation is the main issue in our approach. One can
fairly expect that if the considered implementation is not too weak, the convergence toward the
Gaussian distribution should be rather fast compared to the number of leakage observations required
to succeed the HO-SCA. In order to validate this intuition, we provide in Section 3.7 an empirical
validation of the Gaussian approximation.

3.5 Application to the Correlation Distinguisher

In this section, we apply the general methodology described in Section 3.4 when the linear correla-
tion coefficient is used as a distinguisher [BCO04]. To simplify the explanations and developments,
we assume that the dimension T of the components Lj of the leakage vector L equals 1. This implies
in particular that the Lj follow a univariate Gaussian distribution with zero mean and variance
σ2

j (instead of a Gaussian multivariate distribution N (0,Σj)). The reasoning straightforwardly
extends to the case T > 1. For two samples x = (x1, x2, . . . , xq) ∈ Rq and y = (y1, y2, . . . , yq) ∈ Rq,
the linear coefficient is defined by

ρ(x, y) =

1
q

∑q
i=1(xi − x) · (yi − y)

√
1
q

∑
i(xi − x)2 ·

√
1
q

∑
i(yi − y)2

, (3.15)

where x (resp. y) denotes the sample mean q−1 ∑
i xi (resp. q−1 ∑

i yi).

In the context of HO-SCA, the correlation coefficient is used together with a model function
m : X × K Ô→ R and a combining function C : L Ô→ R (see for instance [PRB10]). The combining
function is involved to map a leakage sample into a univariate sample combining the leakages of
the different shares. On the other hand, the model function computes some expected value for
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the combined leakage with respect to some input x and some guess k on the target secret. The
correlation distinguisher dcor is then defined as

dcor

(
(xi, ℓi)i

)
= ρ

(
(m(xi, k))i, (C(ℓi))i

)
. (3.16)

The following proposition extends the analysis conducted in [Riv09] and states that the (high
order) correlation distinguisher dcor is additive. This particularly implies that the methodology
described in Section 3.4 can be applied to this distinguisher.

Proposition 3.5.1. For any model function m : X ×K Ô→ R and any combining function C : L Ô→ R,
the correlation distinguisher dcor is additive. Moreover, dcor is equivalent to the distinguisher d′

cor

defined for every (xi, ℓi)i ∈ (X × L)q by

d′
cor

(
(xi, ℓi)i

)
=

(1
q

q∑

i=1

gxi,k(ℓi)
)

k∈K
,

where the function gx,k : L → R satisfies

gx,k(ℓ) =
1

sk
(m(x, k)− mk) · C(ℓ) , (3.17)

for every (x, k) ∈ X × K, with mk =
1
q

∑
i m(xi, k) and sk =

√
1
q

∑
i(m(xi, k)− mk)2.

Proof. Let (dk)k∈K = dcor

(
(xi, ℓi)i

)
and (d′

k)k∈K = d′
cor

(
(xi, ℓi)i

)
for some input-leakage samples

(xi, ℓi)i6q ∈ (X × L)q. We have:

dk =
1

sC

∑q
i=1(m(xi, k)− mk)C(ℓi)

sk
=

1

sC

d′
k ,

where sC =
√

1
q

∑
i(C(ℓi)− C)2 with C = 1

q

∑
i C(ℓi).

Since sC is strictly positive and constant with respect to the guess k, the score vectors (dk)k∈K

and (d′
k)k∈K are clearly rank-equivalent, implying that the distinguishers dcor and d′

cor are equiv-
alent. Moreover, after denoting by gx,k the function ℓi Ô→ s−1

k (m(x, k) − mk)C(ℓi), we get d′
k =

1
q

∑q
i=1 gxi,k(ℓi), which implies that d′

cor is additive. �

Remark 3.5.2. If we focus on the uniform setting where the input vector x = (x1, x2, . . . , xq) is
balanced (meaning that each value x ∈ X have an occurrence ratio of τx =

1
|X |), then mk and sk

are constant with respect to k and dcor is equivalent to another simpler distinguisher:

d′′
cor :

(
(xi, ℓi)i

)
Ô→

(1
q

∑
i
m(xi, k) · C(ℓi)

)
k∈K

. (3.18)

Confusion coefficient

We propose hereafter to show how our approach can be seen as an extension to the work of Fei et
al. [FLD12], which is itself an extension of the notion of transparency order introduced in [Pro05]
(see also the recent publication [CSM+14], which redefines this notion). We apply our approach to
the first-order attack, and illustrate how the notion of confusion coefficient can be extended in this
setting. In [FLD12], the confusion coefficient associated to a key k was defined for the mono-bit
DPA as the probability on x that the prediction m(x, k) differs from the correct prediction m(x, k).
In a multi-bit setting, we modify this definition in order to accurately capture the confusing effect
of the cryptographic operation between predicted values.
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Definition 3.5.3. Let k∗ denote the correct key of a cryptographic implementation, and k any key
in the set of possible keys K. Let x denote an element of the set of possible inputs X . Let m denote
a modeling function. The CPA confusion coefficient κk is then defined as:

κk =
1

#X

∑

x∈X

m(x, k)m(x, k∗).

Remark 3.5.4. In the case of a first-order CPA, the confusion coefficient allows for the expression
of the parameters of the multivariate normal law followed by d′′

cor, hence recovering the results
of [Riv09]. Indeed, the expectation of the score d′′

k associated to a key hypothesis k is equal to the
confusion coefficient κk. Furthermore, in the particular case where all occurrences ratios are equal,
the covariance matrix associated to the distribution of d′′

cor can also be expressed with confusion

coefficients: namely, each coefficient of coordinate (i, j) of this matrix is equal to σ2

N κi⊕j .

In Figure 3.3 we illustrate the CPA confusion coefficient in the case where m is the composition
of the Hamming weight with some classical sboxes. This figure, along with Remark 3.5.4 gives a
straightforward intuition on why CPA performs differently depending on the targeted sbox. Indeed,
one can observe a stronger dispersion in the DES and PRESENT sboxes than in the AES sbox.

Application to the Normalized Product Combining.

Let us now study the particular case of the high order correlation distinguisher based on the
centered product combining function [PRB10]. This combining function is defined for univariate
share leakages (ie. for T = 1 in the model of Section 3.3), namely its domain is L = Rd+1. For
every (ℓ0, ℓ1, . . . , ℓd) ∈ L, it is defined as

C(ℓ0, ℓ1, . . . , ℓd) =
d∏

j=0

(ℓj − µj) , (3.19)

where µj denotes the leakage expectation E [Lj ].

Note that in practice, the adversary does not know the exact expectation µj but he can estimate
it based on leakage samples. As argued in [PRB10], the number of leakage samples required to
succeed a HO-SCA is substantially greater than the number of leakage samples required to get
precise estimations of the expectations µj . Therefore, we can soundly assume that the µj in
Equation (3.19) are the exact expectations E [Lj ]. Note that replacing them by inexact estimations
would not change our analysis.

We recall that, according to the leakage model presented in Section 3.3.1, the j-th leakage
component Lj satisfies Lj = fj(Sj) +Nj where fj : s Ô→ mj,s and Nj ∼ N (0, σ2

j ). Since the noise
Nj is centered in 0, we have E [fj(Sj)] = E [Lj ] = µj . Moreover, we shall denote νj = Var [fj(Sj)].
By uniformity of Sj over S, we have:

µj =
1

|S|

∑

s∈S

mj,s and νj =
1

|S|

∑

s∈S

(mj,s − µj)
2 . (3.20)

In the following we shall further denote, for every s ∈ S,

αs :=
1

|S|d

∑

s1∈S

∑

s2∈S

· · ·
∑

sd∈S

d∏

j=0

(mj,sj
− µj) (3.21)
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Figure 3.3: Values of κδ under the assumption that ϕ is the Hamming weight function, for different sboxes
S, in function of the Hamming weight of δ.

and

βs :=
1

|S|d

∑

s1∈S

∑

s2∈S

· · ·
∑

sd∈S

d∏

j=0

(mj,sj
− µj)

2 (3.22)

where s0 = s ⊕
⊕d

j=1 sj .

Note that both Equation (3.21) and Equation (3.22) can be expressed as a higher-order convo-
lution product of the form

H(s) =
∑

s1

∑

s2

· · ·
∑

sd

h0(s ⊕ s1 ⊕ s2 ⊕ · · · ⊕ sd) · h1(s1) · h2(s2) · · · hd(sd) . (3.23)

We show in proposition 3.5.5 how such a convolution can be efficiently computed for all values
over S in O(d · |S| · log |S|) operations.

Proposition 3.5.5. Let d be a positive integer, and let (S, ⊕) be a group of size |S| = 2m. Let
(hj)0≤j≤d be a family of functions from S into R, such that hj(s) can be efficiently evaluated for
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every s ∈ S in o(1) operations (one typically has a look-up table for every hj). Consider the function
H : S → R defined as

H : s Ô→
∑

s1∈S

∑

s2∈S

· · ·
∑

sd∈S

h0(s ⊕ s1 ⊕ s2 ⊕ · · · ⊕ sd) · h1(s1) · h2(s2) · · · hd(sd) .

Then, the whole set of outputs {H(s) ; s ∈ S} can be computed in O(d · 2m · m) operations.

Proof. For every s ∈ S, the function H satisfies

H(s) =
∑

sd∈S

hd(sd) · · ·
∑

s2∈S

h2(s2)
∑

s1∈S

h1(s1) · h0(s ⊕ s1 ⊕ s2 ⊕ · · · sd)

Consider the convolution product of the form

h1 ⊗ h0 : s Ô→
∑

t∈S

h1(t) · h0(s ⊕ t) .

We have
WH(h1 ⊗ h0) = 2WH(h1) ⋆ WH(h2) ,

where WH is the Walsh-Hadamard transform (WHT), and ⋆ denotes the coordinate-wise multipli-
cation (or Schur product). This convolution product can hence be efficiently computed from three
evaluations of fast WHT2 that each takes O(2m · m) operations.
One can check that the sequence of functions (Hi)0≤i≤d defined as

{
H0 = h0

Hi = hi ⊗ Hi−1 for every i > 1

is such that Hd = H. One can then sequentially compute the set of outputs of H1, H2, . . . , Hd = H
by evaluating d convolution products, which gives a total cost of O(d · 2m · m) operations. �

We then have the following corollary of Proposition 3.4.2 for the distinguisher d′
cor with centered

product combining function.

Corollary 3.5.6. Let k∗ ∈ K, let (x1, x2, . . . , xq) ∈ X q and let ℓi
$

←− Lxi,k∗ for every i ∈
{1, 2, . . . , q}. Then the distribution of the score vector (d′

k)k∈K = d′
cor

(
(xi, ℓi)i

)
with centered prod-

uct combining function tends toward a multivariate Gaussian distribution with expectation vec-
tor (E [d′

k])k∈K satisfying

E
[
d′

k

]
=

∑

x∈X

τx M(x, k) αϕ(x,k∗) , (3.24)

for every k ∈ K, and with covariance matrix (Cov
[
d′

k1
, d′

k2

]
)(k1,k2)∈K2 satisfying

Cov
[
d′

k1 , d′
k2

]
=
1

q

∑

x∈X

τx M(x, k1) M(x, k2)

×
(
βϕ(x,k∗) − α2

ϕ(x,k∗) +
d∏

j=0

(νj + σ2
j )−

d∏

j=0

νj

)
, (3.25)

for every (k1, k2) ∈ K2, where

M : (x, k) Ô→
m(x, k)− mk

sk
. (3.26)

2The WHT is involutive, hence we have h1 ⊗ h0 = 2 WH
(
WH(h1) ⋆ WH(h2)

)
.
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Proof. To prove the corollary, we first introduce the following lemma.

Lemma 3.5.7. The expectation and variance of the random variable C(Lx,k∗) respectively satisfy

E [C(Lx,k∗)] = αϕ(x,k∗) (3.27)

and

Var [C(Lx,k∗)] = βϕ(x,k∗) − α2
ϕ(x,k∗) +

d∏

j=0

(νj + σ2
j )−

d∏

j=0

νj . (3.28)

Proof. Since the Nj are independent and centered in 0, we have

E [C(Lx,k∗)] = E
[
C

(
f0(S0), f1(S1), . . . , fd(Sd)

)2]
= αϕ(x,k∗) ,

On the other hand, by definition of the variance, we have

Var [C(Lx,k∗)] = E
[
C(Lx,k∗)2

]
− E [C(Lx,k∗)]2 = E

[
C(Lx,k∗)2

]
− α2

ϕ(x,k∗) .

Then, we have

E
[
C(Lx,k∗)2

]
= E




d∏

j=0

(
fj(Sj) +Nj − µj

)2

 = E




d∏

j=0

(
(fj(Sj)− µj)

2 +N2
j

)



where the second holds since the Nj have zero means and are mutually independent and independent
of the Sj . By developing the product, we get a sum of monomials, such that each monomial
involves random variables that are mutually independent, except for one single monomial which is∏d

j=0(fj(Sj)− µj)
2. We can then develop the above equation as

E
[
C(Lx,k∗)2

]
=

d∏

j=0

(
E

[
(fj(Sj)− µj)

2
]
+ E

[
N2

j

] )

−
d∏

j=0

E
[
(fj(Sj)− µj)

2
]
+ E




d∏

j=0

(fj(Sj)− µj)
2


 ,

which gives

E
[
C(Lx,k∗)2

]
=

d∏

j=0

(νj + σ2
j )−

d∏

j=0

νj + βϕ(x,k∗).

�

Proof of Corollary 3.5.6. Applying Equation (3.11) and Equation (3.12) to the functions gx,k : ℓ Ô→
1
sk
(m(x, k)− mk) · C(ℓ) as defined in Equation (3.17), we get

E
[
d′

k

]
=
1

sk

∑

x∈X

τx (m(x, k)− mk) E [C(Lx,k∗)] ,

and
Cov

[
d′

k1 , d′
k2

]
=
1

q

1

sk1sk2

∑

x∈X

τx (m(x, k1)− mk1) (m(x, k2)− mk2)Var [C(Lx,k∗)] ,

Then Lemma 3.5.7 directly yields the corollary statement. �

�
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Remark 3.5.8. For the distinguisher d′′
cor defined in Equation (3.18) and which is equivalent to

the correlation distinguisher in the uniform setting (see Remark 3.5.2), we have the same result as
in Corollary 3.5.6 but the function M is simply defined as the model function m.

According to Corollary 3.5.6, the methodology presented in Section 3.4 can be applied to esti-
mate the success rate of a HO-SCA based on the correlation distinguisher with centered product
combining. The first step of the methodology shall provide estimations of the leakage functions
fj : s Ô→ mj,s (and hence of the corresponding µj and νj), while the second step shall simply consist
in the evaluations of Equation (3.24) and Equation (3.25).

3.6 Application to the Likelihood Distinguisher

In this section, we apply the general methodology described in Section 3.4 when the likelihood is
used as distinguisher [CRR03]. The likelihood distinguisher, denoted dlik, is usually applied after
a profiling step whose goal is to provide an estimation p̂s of the pdf of the random variable Ls for
every s ∈ S. Then, for every sample (xi, ℓi)i ∈ (X × L)q, the likelihood distinguisher is defined as

dlik

(
(xi, ℓi)i

)
=

q∏

i=1

p̂ϕ(xi,k)(ℓi) . (3.29)

In practice, one often makes use of the equivalent (averaged) log-likelihood distinguisher d′
lik

defined
as

d′
lik

(
(xi, ℓi)i

)
=

1

q
log dlik

(
(xi, ℓi)i

)
=

1

q

q∑

i=1

log(p̂ϕ(xi,k)(ℓi)) . (3.30)

The log-likelihood distinguisher is usually preferred as it less susceptible to approximation errors
than the likelihood. We straightforwardly get the following proposition.

Proposition 3.6.1. The likelihood distinguisher dlik is additive and equivalent to the log-likelihood
distinguisher d′

lik
. Moreover, for every (xi, ℓi)i ∈ (X × L)q, d′

lik
satisfies

d′
lik

(
(xi, ℓi)i

)
=

(1
q

q∑

i=1

gxi,k(ℓi)
)

k∈K
, (3.31)

where the function gx,k : L → R satisfies

gx,k(ℓ) = log(p̂ϕ(x,k)(ℓ)) , (3.32)

for every (x, k) ∈ X × K.

Under the Gaussian leakage assumption, it can be checked that the variable Ls has a Gaussian
mixture distribution, with pdf ps satisfying

ps : (ℓ0, ℓ1, . . . , ℓd) Ô→
1

|S|d

∑

s1∈S

∑

s2∈S

· · ·
∑

sd∈S

d∏

j=0

φmj,sj
,Σj

(ℓj) , (3.33)

where s0 = s⊕
⊕d

j=1 sj . Note that for every s ∈ S, the estimated pdf p̂s obtained from the profiling
phase has a similar expression as ps but with estimations m̂j,sj

and Σ̂j for the leakage means and
covariance matrices.
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Here again, it can be seen from Equation (3.33) that for a given ℓ ∈ L the probability ps(ℓ) is a
higher-order convolution product as in Equation (3.23). The set of probability values {ps(ℓ) ; s ∈
S} can then be computed in O(d · |S| · log |S|) operations thanks to Proposition 3.5.5.

Let us now consider the two functions:

λ(s1, s2) :=

∫

ℓ∈L

log(p̂s1(ℓ)) ps2(ℓ) dℓ , (3.34)

and
ψ(s1, s2, s3) :=

∫

ℓ∈L

log(p̂s1(ℓ)) log(p̂s2(ℓ)) ps3(ℓ) dℓ . (3.35)

Then, by definition, we have

Λ(x, k, k∗) := λ(ϕ(x, k), ϕ(x, k∗)) = E [gx,k(Lx,k∗)]

and

Ψ(x, k1, k2, k∗) := ψ(ϕ(x, k1), ϕ(x, k2), ϕ(x, k∗))

= E [gx,k1(Lx,k∗) · gx,k2(Lx,k∗)] .

A direct application of Proposition 3.4.2 then yields the following corollary for the log-likelihood
distinguisher.

Corollary 3.6.2. Let k∗ ∈ K, let (x1, x2, . . . , xq) ∈ X q and let ℓi
$

←− Lxi,k∗ for every i ∈
{1, 2, . . . , q}. Then the distribution of the score vector (d′

k)k∈K = d′
lik

(
(xi, ℓi)i

)
tends toward a

multivariate Gaussian distribution with expectation vector (E [d′
k])k∈K satisfying

E
[
d′

k

]
=

∑

x∈X

τx Λ(x, k, k∗) , (3.36)

for every k ∈ K, and with covariance matrix (Cov
[
d′

k1
, d′

k2

]
)(k1,k2)∈K2 satisfying

Cov
[
d′

k1 , d′
k2

]
=

1

q

∑

x∈X

τx
(
Ψ(x, k1, k2, k∗) − Λ(x, k1, k∗) · Λ(x, k2, k∗)

)
. (3.37)

According to Corollary 3.6.2, the methodology presented in Section 3.4 can be applied to esti-
mate the success rate of a HO-SCA based on the likelihood distinguisher.

3.7 Empirical Validation of the Gaussian Approximation

In Section 3.4, we have presented a methodology to estimate the success rate of side-channel attacks
based on so-called additive distinguishers. The principle of this methodology is to approximate
the distribution of the score vector by a multivariate Gaussian distribution whose parameters are
derived from the leakage parameters. This Gaussian approximation is asymptotically sound by the
central limit theorem. However, in the non-asymptotic context of a SCA with a given number of
leakage samples, it is fair to question whether this approximation is sound or not. In this section,
we conduct an empirical study of the Gaussian approximation. For this purpose, we compare
the success rates obtained from attack simulations, to the success rates obtained by applying the
methodology of Section 3.4.
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Since our purpose here is the sole validation of the Gaussian approximation, we do not focus
on the leakage estimation issue, but we assume the exact leakage parameters {(mj,s, σ2

j ) ; 0 6 j 6

d, s ∈ S} are known (in a univariate setting). From these leakage parameters, and for a given
HO-SCA based on some distinguisher d ∈ {dcor, dlik}, we evaluate the success rate with the two
following approaches:

• Simulation success rate. We perform several attack simulations and count the number of
successes in order to get an estimation of the success rate. For each attack simulation, we
randomly generate input-leakage samples (x1, ℓ1), (x2, ℓ2), . . . , (xq, ℓq). Specifically, for every
i, xi is uniformly picked up and ℓi is randomly sampled from the variable Lxi,k∗ according to
the leakage parameters. Then we apply the distinguisher d to these samples, and we count a
success whenever the good secret is ranked first.

• Gaussian cdf evaluation. We apply Corollaries 3.5.6 and 3.6.2 to compute the expectation
vector and covariance matrix of the score vector with respect to the leakage parameters
and taking τx = 1/|X | as occurrence ratio for every x ∈ X (in accordance to the uniform
distribution of the xi). Then we compute the Gaussian cdf of the comparison vector to
evaluate the success rate according to Equation (3.14).

We plot hereafter the results obtained with these two approaches for different HO-SCA targeting
an AES Sbox output:

ϕ(x, k∗) = SB(x ⊕ k∗) ,

where SB denote the AES Sbox function. For the leakage parameters, we used sample means and
sample variances obtained by monitoring the leakage of two different devices running masked AES
implementations (Device A and Device B, see Section 3.8 for details).
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Figure 3.4: Simulation SR (plain curve) vs. the-
oretical SR (dashed curve) for 2nd-
order correlation attack.
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Figure 3.5: Simulation SR (plain curves) vs. the-
oretical SR (dashed curves) for 2nd-
order likelihood attacks.

Figure 3.4 shows the results obtained for a second-order correlation attack with centered product
combining function and Hamming weight model function (ie. m = HW), for leakage parameters from
Device A. Figure 3.5 plots the results of a second-order likelihood attack with the same leakage
parameters, assuming a perfect profiling (ie. p̂s = ps for every s) on the one hand and a slightly
erroneous profiling on the other hand.3 We observe that for both distinguishers, the experimental

3Specifically, we introduce random errors in the (mj,s)j,s used in the estimated pdfs p̂s.
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success rate curves and theoretical success rate curves clearly match. This validates the Gaussian
approximation in these HO-SCA contexts.
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Figure 3.6: Simulation SR (plain curve) vs. the-
oretical SR (dashed curve) for 3rd-
order correlation attack.
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Figure 3.7: Simulation SR (plain curve) vs. the-
oretical SR (dashed curve) for 4th-
order correlation attack.

In order to test the Gaussian approximation to high orders, we also performed third-order and
fourth-order attacks, with leakage parameters from Device B. The results of the correlation attacks
(centered product combining function and Hamming weight model function) are presented in Figure
3.6 and Figure 3.7 respectively. We see that the curves perfectly match, which further validates
the Gaussian approximation in these high order contexts.

3.8 Practical Experiments

In this section, we confront our methodology to practical attack experiments. We report the
results of several high order correlation attacks against two different devices running masked AES
implementations. We also apply our methodology to estimate the expected success rate of these
attacks with respect to the inferred leakage parameters.

Experimental setup. Practical experiments were performed on two microcontrollers made in dif-
ferent CMOS technologies (130 and 350 nanometer processes, respectively called devices A and
device B in the sequel). The side-channel traces were obtained by measuring the electromagnetic
(EM) radiations emitted by the device during a masked AES-128 encryption handling one byte
at a time. To this aim, an EM sensor was used (made of several coils of copper with diameter
of 500µm), and was plugged into a low-noise amplifier. To sample the leakage measurements, a
digital oscilloscope was used with a sampling rate of 10G samples per second for the device A and
2G samples per second for the device B, whereas microcontrollers were running at few dozen of
MHz. As the microcontrollers clocks were not stable, we had to resynchronize the EM traces. This
process is out of the scope of this work, but we would like to emphasize that resynchronization
is always required in a practical context and it has a non negligible impact on the measurements
noise.

In our attack context, the random values involved in the masking/sharing could be known by
the evaluator and we used this ability to identify the time samples corresponding to the different
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manipulation of the different shares. This step allowed us to associate each share to a unique time
sample (the one with maximal SNR) and to profile the leakage parameters.4

Estimation of the leakage parameters. To estimate the leakage functions fj : s Ô→ mj,s, we applied
linear regression techniques on 200000 leakage samples. When applied on leakage samples ℓ1,j ,
ℓ2,j , . . . , ℓq,j , corresponding to successive share values s1,j , s2,j , . . . , sq,j , a linear regression of
degree t returns an approximation of fj(s) as a degree-t polynomial in the bits of s (see [SLP05;
DPRS11] for more detail on linear regression in the context of side-channel attacks). We applied
linear regression of degree 1 and 2 on Device A and B respectively. Once the fj function estimated,
we could easily get an estimation for the variance σ2

j of the noise Nj by computing the sample
variance of (ℓi,j − fj(si,j))i for every j.

Methodology versus practice.

In order to validate our methodology in practice, we performed high order correlation attacks
with centered product combining function (see Section 3.5) and Hamming weight model function
(ie. m = HW). On the other hand, the success rate was estimated using the methodology described
in Sections 3.4 and 3.5 by computing the parameters of the multivariate Gaussian distribution
arising for the correlation distinguisher with respect to the inferred leakage parameters.
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Figure 3.8: Experimental SR (plain curve) vs.
theoretical SR (dashed curve) for
2nd-order correlation attack on De-
vice A.
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Figure 3.9: Experimental SR (plain curve) vs.
theoretical SR (dashed curve) for
2nd-order correlation attack on De-
vice B.

Figures 3.8 and 3.9 plot the experimental success rates versus the theoretical success rates
for the second-order correlation attacks against Device A and Device B. In order to validate our
approach with respect to high order attacks in practice, we also compare the results obtained with
our methodology to third-order and fourth-order attack results on Device B (see Figures 3.10 and
3.11). We observe a clear match between the experimental and theoretical success rate curves.
These results demonstrate the soundness of the methodology in practice.

Impact of the leakage profiling.

In order to observe the impact of the leakage profiling phase on our methodology, we applied it
using a lower profiling rate. In order to determine the minimal number of samples required for a
sound estimation, we first observed the convergence of the linear regression. Figure 3.12 plots the

4The knowledge of the masks was however not used in the attack phase itself.



56 CHAPTER 3. ESTIMATING THE SUCCESS RATE OF SIDE-CHANNEL ATTACKS

0 2000 4000 6000 8000 10000

0

20

40

60

80

100

Figure 3.10: Experimental SR (plain curve) vs.
theoretical SR (dashed curve) for
3rd-order correlation attack on De-
vice B.
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Figure 3.11: Experimental SR (plain curve) vs.
theoretical SR (dashed curve) for
4th-order correlation attack on De-
vice B.

8 coefficients of degree one (the dominant coefficients) of the function f0 obtained from the linear
regression with respect to the number of used samples. We observe that the coefficients converge
after around 1200 samples. Then we applied our methodology to estimate the success rate of the
second-order correlation attack on Device B based on a profiling using either 400 or 1500 samples
(instead of 200000 samples). The results are presented in Figure 3.13. The plain curves represents
the experimental success rate and theoretical success rate with full profiling (200000 samples), while
the dotted and dashed curves represent the theoretical success rates with profiling based on 400
and 1500 samples respectively. We see that our methodology still matches quite well for a profiling
based on 1500 samples but clearly fails for a profiling based on 400 samples. This shows that it
is sound to study the convergence of the linear regression to determine the number of samples
required for a sound estimation of the success rate.
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Figure 3.12: Convergence of linear regression coefficients.
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Figure 3.13: 2nd-order correlation attack
on Device B: experimental SR
vs. theoretical SR for different
amounts of profiling samples.

3.9 Confidence in a result

When performing an attack without the knowledge of the correct subkey k∗, the adversary needs
to determine how to select the most likely hypothesis, and when (ie. after which number of ob-
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servations). Usually, the how problem is answered by using a selection rule, such as "choosing the
best ranked subkey". This rule however does not deal with the when problem: it simply processes
the result of the attack and always returns a candidate key. This type of selection rule is called an
unconditioned selection rule. To answer the when problem, one should condition this rule by the
observation of some pattern, like the stabilization of the rank of the best hypothesis. Figure 3.14
aims at experimentally validating the latter approach. In the first case, we perform several CPA
against an AES Sbox output using an increasing number q of observations and we compute the
attack success rate as a function of q. In the second case, we perform the same CPA but we out-
put a candidate subkey only if it has been ranked first both with q and q

2 observations. For the
latter experiment, we plot the attack success rate considering either the total number of experi-
ments in dotted light grey and considering only the experiments where a key candidate was output
(ie. appeared ranked first with q and q

2 observations) in dashed light grey.
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(a) Noise standard deviation σ = 5
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Figure 3.14: Probabilities of the correctness of the output of attacks in function of the number of observations
q in different contexts: 1) the best ranked subkey is always returned (plain dark grey, 2)) the
best ranked subkey is returned only when it was also ranked first with q

2 observations and the
success is computed against the number of times both attacks returned the same result (dashed
light grey) 3) the best ranked subkey is returned only when it was also ranked first with q

2
observations and the success is computed against the number of times the attack has been
launched (dotted light grey).

As it can be seen on Figure 3.14, when it outputs a result, the attack based on the stabilization
criterion has a better chance (up to 15%) to be correct. However, the success rate takes into account
all executions of the attack. Hence, the success rate of this attack is significantly lower than the
classical CPA success rate. To summarize, the candidate selection rule increases the confidence in
the selected subkey but decreases the success rate. In fact, we argue here that the two notions are
important when studying an attack effectiveness. When attacking several subkeys separately, the
assessment of a wrong candidate as a subpart of the whole secret key will lead to an indubitable
failure, whereas a subkey that is not found (because the corresponding partial attack does not give
a satisfying confidence level) will be recovered by bruteforce.

In the following, we give a theoretical justification to this empirical and natural attack effec-
tiveness improvement. To this end, we introduce the notion of confidence, which aims at helping
the adversary to assess the success or failure of an attack with a known error margin.
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3.9.1 Confidence in an hypothesis

Applying the notations introduced previously, we assume that a partial attack is performed on a
set of q independent observations and aims at the recovery of a correct subkey k∗ among a set of
hypotheses. For our analysis, the score of each candidate is computed at different steps of the attack
(ie. for an increasing number of traces). Namely, the scores are computed after q1 < q observations,
then again after q2 > q1 observations, and so on until the q observations are considered. In the
sequel, the attack on qi observations is called the i-th attack. All those attacks result in a matrix
Ms containing the scores s(k, qi) for every hypothesis k and every number qi of observations. With
this construction, the last column vector (s(k, q))k corresponds to the final attack scores, whereas
(s(k, qi))k corresponds to intermediate scores (for the i-th attack). In other terms, the right-column
of Ms is the attack result, and the rest of the matrix corresponds to the attack history. With this
formalism in hand, the key candidate selection may be viewed as the application of some selection
rule R to Ms, returning a subkey candidate KR. The question raised in the preamble of this
section may then be rephrased as: "For some rule R, what is the confidence one can have in KR?".
To answer this question, we introduce hereafter the notion of confidence in KR.

Definition 3.9.1 (Confidence). For an attack aiming at the recovery of a key k∗ and applying a
selection rule R to output a candidate subkey KR, the confidence is defined by:

c(KR) =
P(KR = k∗)∑
k∈KP(K

R = k)
.

Remark 3.9.2. The confidence level associated to a rule R merges with the notion of success rate
only when the selection rule always outputs a subkey candidate, eg. the rule R0 defined in the
following.

Let us illustrate the application of the confidence level with the comparison of the two following
rules, corresponding to the criterion described in the preamble of this section:

• Rule R0: output the candidate ranked first at the end of the q − th attack.

• Rule Rt: output the candidate ranked first at the end of the q − th attack, only if it was also
ranked first for all attacks performed using qt to N observations.

By definition of R0, the confidence associated to R0 satisfies:

c(KR0) =
P(R0(q) = 1)∑
δ P(Rδ(q) = 1)

= P(R0(q) = 1),

which can be computed thanks to the method presented in the previous sections.
With a similar reasoning, we have:

c(KRt) =
P(R0(qt) = 1, R0(qt+1) = 1, · · · , R0(q) = 1)∑

δ P(Rδ(qt) = 1, , · · · , Rδ(q) = 1)
,

whose evaluation requires more development than that of c(KR0). For such a purpose, the dis-
tribution of the ranks vector (Rδ(qt), Rδ(qt+1), · · · , Rδ(q)) needs to be studied5. We thus fol-
low a similar approach as in Section 3.4, and we build the progressive score vector dδ,t(q) =
(dδ(qt)||dδ(qt+1)|| · · · ||dδ(q)) where || denotes the vector concatenation operator. This vector can
be used to compute the progressive comparison vector cδ,t(q) similarly as in Section 3.4. We give
hereafter the distribution of the progressive score vector.

5It is worth noting at this point that the variable Rδ(qi) does not verify the Markov property, and that the whole
vector has to be studied.
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Proposition 3.9.3. For a CPA exploiting a number q of observations, the progressive score vector
dδ,t(q) follows a multivariate normal distribution with expectation vector (E [dk,t])k∈K, a |K|(q − qt)
vector satisfying:

E [dk,t] = E [dk]

and covariance matrix (Cov
[
dk1,ti

, dk2,tj

]
)(k1,k2)∈K2 a |K|(q − qt)× |K|(q − qt) matrix, satisfying

Cov
[
dk1,ti

, dk2,tj

]
(q) =

(
q

max(ti, tj)
Cov [dk1 , dk2 ]

)
.

Proof. By its construction, the progressive score vector dδ,t(q) follows a multivariate normal law
whose mean vector is trivially deduced from the mean vector of the score vector. To compute the
covariance matrix, without loss of generality, one consider tj > ti. Since we consider an additive
distinguisher, the score dk2,tj

can hence be written dk2,tj
= dk2,ti

+ d̃, where d̃ is computable from
the observations from ti + 1 to tj . By assumption, these observations are independent from the
ti-th first ones. Consequently, the linearity of covariance ensures the result.

This proposition allows for the evaluation of the distribution of dδ,t(q), and thus for the eval-
uation of P(Rδ(qt) = 1, Rδ(qt+1) = 1, · · · , Rδ(q) = 1) for all hypotheses kδ. We are then able to
compute the confidence c(KRt).

As an illustration, we study the case where a single intermediate ranking is taken into account,
ie. we study the probability P(Rδ(

q
2) = 1, Rδ(q) = 1), and we plot in Figure 3.15 the obtained

confidences.

Figure 3.15: Evaluation of confidences in function of the number of measurements for R0 (plain dark grey),
and for R q

2

(dashed light grey), with σ = 10.

As we can see, at any number of observations, the rule R q
2

actually increases the confidence in
the output of an attack compared to the rule R0.

3.9.2 Discussion and empirical study of convergence and score rules

The accurate evaluation of the confidence level allows a side-channel attacker to assess the success
or failure of a partial attack with a known margin of error. For example, and as illustrated in
the previous section, applying the selection rule R0 for a CPA on 800 noisy observations (with
Gaussian noise standard deviation equal to 10) leads to an attack failure in 18% of the cases. As a
consequence, to reach a 90% confidence level, the attacker has either to perform the attack on more
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observations (1000 in our example), or to use an other selection rule. Indeed, different selection rules
lead to different confidence levels, as they are based on different information. Though a rule based
on the whole matrix Ms may theoretically give better results, the estimation of the confidence level
in such a case would be difficult. An interesting open problem is to find an acceptable tradeoff
between the computation of the involved probabilities and the accuracy of the obtained confidence.

In this section, we study two rules often observed in practice. The first one exploits the con-
vergence of the best hypothesis’ rank. To this end, we consider a rule Rγ

t (with 1 ≤ γ ≤ |K|) and
define it as a slight variation of Rt. The rule Rγ

t returns the best ranked key candidate after the
q-th attack only if it was ranked lower than γ for the attack on qt observations. As in previous
section, we simulate the simple case where only the ranking obtained with an arbitrary number x
of observations is taken into account. We hence experimentally estimate the confidence given by
Rγ

x for all γ in Figure 3.16.
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Figure 3.16: Confidence in the key ranked first after a CPA on 1000 observations with σ = 10, knowing that
it was ranked below a given rank γ (in y-axis) on a smaller number of measurements qt (in
x-axis).

For example, when the final best ranked key is ranked lower than 50 using 200 messages, the
confidence is around 94% (compared to 92% when using R0).

Eventually, the analysis conducted in this section shows that though a stabilization of the rank
brings a strong confidence, its convergence can also bring some information to an adversary.

The second rule we study considers a transverse approach, by observing the last vector of scores
(instead of the rank obtained from intermediate attacks). Namely, we focus on a rule outputting the
best ranked candidate when the difference between its score and the score of every other hypothesis
is greater than a certain value. This criterion is considered for example in [WO11a]. We simulate
this rule, for several bounds, and we plot the results in Figure 3.17. It is of particular interest to
note that this rule can bring a huge confidence. Indeed, if the difference using 500 observations
is higher than 0.06, then the obtain confidence is around 96% (while 1000 observations would not
suffice to attain this level using R0).

3.9.3 Learning from past attacks

The notion of confidence applied to the convergence rule hints that the results of any intermediate
attack (that is, an attack using less than the maximum number q of measurements) gives information
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Figure 3.17: Confidence in the best ranked key after a CPA with σ = 10, on a given number of observations
(in x-axis), knowing that its score is higher by a certain value (in y-axis) than every other
hypothesis score.

about the key. This observation raises the question of the definition of a new unconditional selection
rule taking into account the results of any intermediate attack. This subsection is the fruit of
discussions on this topic with Carolyn Whitnall, following the publications of [TPR13; LPR+14].

We study here if the results of the intermediate attacks can help to design a rule that would
increase the success rate of the standard rule R0. To this end, an attacker should use the additional
information to change its selection, by choosing a most likely key hypothesis than the one he would
have chosen by following R0.

We give in the following a first (negative) partial answer to this question, by studying a specific
case. Particularly, we focus on a maximum-likelihood approach on the score vectors.

Score-vector based meta-attack

We showed in Section 3.3 that, for a side-channel attack using an additive distinguisher, the pa-
rameters of the distribution of the score vector is computable from the knowledge of the correct
key k∗. We argued furthermore that, when k∗ is known, we can use this property to accurately
evaluate the success rate of the attack. An interesting observation one can make is that, when k∗

is unknown, it is possible to compute the parameters for all possible distributions for every k ∈ K.
We propose hereafter to mount an attack based on this observation.

Formally, we mount a maximum-likelihood attack, which we will call a score-vector based meta-
attack, comparing an observation against |K| different distributions. The observed value of our
attack is the score vector dq obtained by performing a side-channel attack with q measurements,
while the hypothetic distributions are all the distributions Dk

q for each k ∈ |K|, and the distinguisher

is the maximum-likelihood. We proved in Section 3.3 that Dk
q is the multivariate normal law. Hence,

denoting by µk
q and Σ

k
q respectively its expectation vector and covariance matrix, we define the score

returned by this distinguisher as (see Equation 2.1):

ML(dq, Dk
q ) =

1√
(2π)|K|det(Σk

q )
e−

(dq−µk
q )

⊤(Σk
q )

−1(dq−µk
q )

2 , (3.38)

where |K| is the size of dq.
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For the convenience of our following proofs, we also introduce the following statistical tool
M̂L(dq, Dk

q ), defined as:

M̂L(dq, Dk
q ) = (dq − µk

q)
⊤(Σk

q )
−1(dq − µk

q). (3.39)

Problem description

In order to get a sense of the impact of intermediate attacks on the likelihood of correctness of
a key hypothesis, we consider the following setting. Similarly to the setting of Section 3.9, we
consider several sets of strictly increasing numbers q1, q2, · · · qn of measurements. As in [Riv09], we
assume a uniform setting, that is, that all occurrences ratio (see Equation 3.10) are equal. Note
that this requirement is trivially fulfilled if the attacker is in a chosen-plaintext scenario. Then,
n side-channel attacks based on the same additive distinguisher are performed, respectively using
q1, q2, · · · qn measurements. These attacks respectively lay n scores vector dq1

, dq2
, · · · , dqn

. We
then perform two score-vector based meta-attacks. The first one is performed on dqn

. The second
one is performed on the concatenation of all scores vector dq = dq1

||dq2
|| · · · dqn

6. (Note that
the size of dq, is now n|K| instead of |K|). Our goal is to compare the two distinguishers of these
attacks. We will in fact prove that they are equivalent, thus hinting that the past results are useless
for the construction of a good selection rule. Precisely, we will prove the following Theorem:

Theorem 3.9.4. Let q1, q2, · · · qn be strictly positive increasing integers. In the uniform setting,
when q1 is high enough, there exist a real numbers α > 0 such that, for any hypothesis k ∈ K, it
holds:

ML(dq, Dk
q ) = αML(dqn

, Dk
qn
). (3.40)

Proof of Theorem 3.9.4

The core of the proof for this theorem relies on the following Lemma:

Lemma 3.9.5. Let q1, q2, · · · qn be strictly positive increasing integers. In the uniform setting, when
q1 is high enough, there exist a real number γ, such that, for any hypothesis k ∈ K, it holds:

M̂L(dq, Dk
q ) = M̂L(dqn

, Dk
qn
) + γ. (3.41)

To be able to prove this, we claim the following Lemma:

Lemma 3.9.6. In the uniform setting, for any key hypothesis k, and for any number of measure-
ments q, the covariance matrix Σk

q is constant.

Proof. Let k1, k2 be two key hypotheses in K. In the uniform setting, it is proven in [Riv09]
that the distributions Dk1

q and Dk2
q are identical up to a rearrangement of the coordinates (a

⊕-rotation) of the corresponding score vectors dk1
q , dk2

q . We denote by dk1
i (resp. dk2

i ) the i-th
coordinate of dk1

q (resp. dk2
q ). It follows that, for any two hypotheses k, k′ in K, the equality

Cov(dk1
k⊕k1

, dk1
k′⊕k1

) = Cov(dk2
k⊕k2

, dk2
k′⊕k2

) holds. Hence, the covariance matrices are identical for all
considered distributions.

6One can check that this concatenation also trivially follows a multivariate normal law when q1 is large enough,
thanks to the arguments of 3.3.
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In the following, we hence omit the index k in the notation of the covariance matrices. Let
us now study the distribution Dk

q of the concatenation vector dk
q obtained when considering k as

the correct hypothesis. By construction, Dk
q is also a multivariate normal law, and we denote its

parameters such that: Dk
q = N (µk

q ,Σk
q ). The following lemma allows to express those parameters

from those of Dk
qn

:

Lemma 3.9.7. In the uniform setting, for any strictly increasing natural numbers q1, q2, · · · qn, the
expectation vector µk

q can be expressed as:

µk
q = µk

qn
||µk

qn
||µk

qn
|| · · · ||µk

qn
,

and the covariance matrix Σk
q is constant for any k ∈ K and can be expressed thanks to the covari-

ance matrix Σqn as:

Σk
q = qn




q1
−1Σqn q2

−1Σqn q3
−1Σqn · · · q−1

n Σqn

q2
−1Σqn q2

−1Σqn q3
−1Σqn · · · q−1

n Σqn

q3
−1Σqn q3

−1Σqn q3
−1Σqn · · · q−1

n Σqn

...
...

...
...

...
q−1

n Σqn q−1
n Σqn q−1

n Σqn · · · q−1
n Σqn




.

Proof. Since, for any k, dk
q = dk

q1
||dk

q2
||dk

q3
|| · · · ||dk

qn
, the parameters of Dk

q can be deduced exactly
as in Proposition 3.9.3. This, together with Lemma 3.9.6 lays the result.

Consequently, we will also omit the index k in the notation of this covariance matrix. Let us
now study the expression of M̂L(dq, Dk

q ):

M̂L(dq, Dk
q ) = (dq − µk

q)
⊤(Σq)

−1(dq − µk
q). (3.42)

We see Σ−1
q as a n ×n block matrix and we denote Σ−1

q [i, j] its block of coordinate (i, j). Using
Lemma 3.9.7, Equation 3.42 can be rewritten as:

M̂L(dq, Dk
q ) =

∑

i,j

(dqi
− µk

qn
)⊤Σ−1

q [i, j] (dqj
− µk

qn
). (3.43)

Let us now focus on the inversion of Σq. Denoting by I|K| the |K|-th dimension identity matrix,
we deduce from Lemma 3.9.7:

Σ−1
q = q−1

n




Σ−1
qn

0 0 · · · 0

0 Σ−1
qn

0 · · · 0

0 0 Σ−1
qn

· · · 0
...

...
...

...
...

0 0 0 · · · Σ−1
qn







q1
−1I|K| q2

−1I|K| q3
−1I|K| · · · q−1

n I|K|

q2
−1I|K| q2

−1I|K| q3
−1I|K| · · · q−1

n I|K|

q3
−1I|K| q3

−1I|K| q3
−1I|K| · · · q−1

n I|K|
...

...
...

...
...

q−1
n I|K| q−1

n I|K| q−1
n I|K| · · · q−1

n I|K|




−1

,

(3.44)
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hence:

Σ−1
q = q−1

n




q1q2
q2−q1

Σ−1
qn

q1q2
q1−q2

Σ−1
qn

0 · · · 0

q1q2
q1−q2

Σ−1
qn

(q3−q1)q22
(q1−q2)(q2−q3)

Σ−1
qn

q2q3
q2−q3

Σ−1
qn

. . . 0

0 q2q3
q2−q3

Σ−1
qn

(q4−q2)q23
(q2−q3)(q3−q4)

Σ−1
qn

. . . 0
...

. . . . . . . . .
...

0 0 qn−1qn

qn−1−qn
Σ−1

qn
· · · q2n

qn−qn−1
Σ−1

qn




(3.45)

Note that this matrix actually exists, since for every i < n, qi Ó= qi+1. Since Σq is a covariance
matrix, it is positive-definite. Each block Σ−1

q [i, j] can hence be written as αi,jΣ
−1
qn

, where αi,j is
deduced from Equation 3.45:





αi,i+1 =
qiqi+1

qn(qi − qi+1)
, for 1 ≤ i < n

αi+1,i = αi,i+1, for 1 ≤ i < n

αi,i = −αi,i+1, for i = 1

αi,i =
q2i (qi+1 − qi−1)

qn(qi−1 − qi)(qi − qi+1)
, for 1 < i < n

αi,i =
q2i

qn(qi − qi−1)
, for i = n

αi,j = 0, otherwise

(3.46)

Thanks to the symmetry of Σ−1
q , Equation 3.43 becomes:

M̂L(dq, Dk
q ) =

n−1∑

i=1

(
αi,i(dqi

− µk
qn
)⊤Σ−1

qn
(dqi

− µk
qn
) + 2αi,i+1(dqi

− µk
qn
)⊤Σ−1

qn
(dqi+1

− µk
qn
)
)

+αn,n(dqn
− µk

qn
)⊤Σ−1

qn
(dqn

− µk
qn
)

(3.47)

For any i lower than n, we now denote by ∆i the difference between the scores vector dqi
and

dqn
: ∆i = dqi

− dqn
. Since Σqn is symmetrical, then for any i, j lower than n, we have:

(dqi
− µk

qn
)⊤Σ−1

qn
(dqj

− µk
qn
) = ∆⊤

i Σ
−1
qn
∆j + (dqn

− µk
qn
)⊤Σ−1

qn
(dqn

− µk
qn
)

+(∆i +∆j)
⊤Σ−1

qn
(dqn

− µk
qn
) (3.48)

(3.49)
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Hence, Equation 3.47 becomes:

M̂L(dq, Dk
q ) =

n−1∑

i=1

αi,i(∆
⊤
i Σ

−1
qn
∆i + M̂L(dqn

, Dk
qn
) + 2∆⊤

i Σ
−1
qn
(dqn

− µk
qn
))

+2
n−1∑

i=1

αi,i+1(∆
⊤
i Σ

−1
qn
∆i+1 + M̂L(dqn

, Dk
qn
) + (∆i +∆i+1)

⊤Σ−1
qn
(dqn

− µk
qn
))

+αn,nM̂L(dqn
, Dk

qn
) (3.50)

= (αn,n +
n−1∑

i=1

(αi,i + 2αi,i+1))M̂L(dqn
, Dk

qn
)

+
n−1∑

i=1

∆⊤
i Σ

−1
qn
(αi,i∆i + 2αi,i+1∆i+1)

+2
n−1∑

i=1

((αi,i + αi,i+1)∆i + αi,i+1∆i+1)
⊤Σ−1

qn
(dqn

− µk
qn
)). (3.51)

Let us simplify this equation. First, from Equations 3.44 and 3.45 we have:

n−1∑

i=1

((αi,i+αi,i+1)∆i+αi,i+1∆i+1) = (α1,1+α1,2)∆1+αn−1,n∆n+
n−1∑

i=2

(αi,i+αi,i+1+αi−1,i)∆i. (3.52)

Trivially, we have ∆n = 0, and it can easily be checked that α1,1 + α1,2 = 0. Let us study the
last part of the sum from the expression of Σq. For any 1 < i < n, we get:

αi,i + αi,i+1 + αi−1,i =
q2i (qi+1 − qi−1)

qn(qi−1 − qi)(qi − qi+1)
+

qiqi+1

qn(qi − qi+1)
+

qiqi−1

qn(qi−1 − qi)
= 0. (3.53)

Consequently, Equation 3.50 becomes:

M̂L(dq, Dk
q ) = (αn,n+

n−1∑

i=1

(αi,i+2αi,i+1))M̂L(dqn
, Dk

qn
)+

n−1∑

i=1

∆⊤
i Σ

−1
qn
(αi,i∆i+2αi,i+1∆i+1). (3.54)

Moreover, from Equation 3.53 it holds that α1,2 = −α1,1 and that αi,i + αi,i+1 = −αi−1,i for
1 < i < n. Therefore, we obtain: αn,n +

∑n−1
i=1 (αi,i + 2αi,i+1) = αn,n + αn−1,n = 1. And thus we

get:

M̂L(dq, Dk
q ) = M̂L(dqn

, Dk
qn
) +

n−1∑

i=1

∆⊤
i Σ

−1
qn
(αi,i∆i + 2αi,i+1∆i+1). (3.55)

It is clear that nothing except M̂L(dqn
, Dk

qn
) depends on k in the right term of this equation.

This concludes the proof of Lemma 3.9.5.
To prove Theorem 3.9.4, we start from Lemma 3.9.5, and use properties of the exponential

function. Reusing the notation γ of this lemma, we get for any hypothesis k ∈ K:

e−
M̂L(dq ,Dk

q )

2 = e− γ
2 · e−

M̂L(dqn ,Dk
qn
)

2 . (3.56)

From Lemma 3.9.7 (resp. 3.9.6), we moreover know that, for any hypothesis k ∈ K, the covari-
ance matrix Σk

qn
(resp Σk

q ) is constant, and can be denoted Σqn (resp. Σq). Hence, multiplying
Equation 3.56 by a constant, we obtain:
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1√
(2π)n|K|det(Σq)

e−
M̂L(dq ,Dk

q )

2 =
e− γ

2

√
(2π)n|K|det(Σq)

· e−
M̂L(dqn ,Dk

qn
)

2 . (3.57)

Finally, this equation lays:

ML(dq, Dk
q ) = e− γ

2

√
(2π)(1−n)|K|

det(Σqn)

det(Σq)
· ML(dqn

, Dk
qn
). (3.58)

Note that nothing in the right term of this equation depends on k except for ML(dqn
, Dk

qn
).

Moreover, since Σqn and Σq are covariance matrices, their determinant are strictly positive, and
hence the square root is well defined and non-zero. Since the exponential function is strictly positive
on R, Equation 3.58 finishes the proof of Theorem 3.9.4.

3.10 Conclusion

In this chapter we have studied the methods for assessing the security of cryptographic implemen-
tations against side-channel attacks, both in the context of a known and an unknown key. In the
context of a known key, we have presented a methodology to evaluate the success rate of side-channel
attacks. We have shown how to apply this methodology in the particular cases of attacks based on
the correlation and likelihood distinguishers. The soundness of our approach has been validated by
simulations and experiments performed on different microcontrollers. Using this methodology, an
evaluator can estimate the side-channel resistance of his masked cryptographic implementation at
the cost of inferring a few linear regression coefficients. In the context of an unknown key, we give a
rationale for the use of some empirical criteria (such as the convergence of the best hypothesis’ rank
towards 1) as indicators of the attack success. We hence involve the notion of confidence to allow
for the accurate estimation of this success. As an avenue for further research, this work opens the
new problem of the exhibition of novel selection rules allowing to efficiently and accurately evaluate
the confidence in a side-channel attack while conserving an acceptable success rate.



Chapter 4

Randomness Complexity of Private
Circuits for Multiplication

Après son retour de Zurich à Prague, Tomas fut pris de malaise à l’idée

que sa rencontre avec Tereza avait été le résultat de six improbables hasards.

Milan Kundera - L’insoutenable légèreté de l’être

Many cryptographic algorithms are vulnerable to side-channel analysis and several leakage
models have been introduced to better understand these flaws. In 2003, Ishai, Sahai and Wagner
introduced the d-probing security model, in which an attacker can observe at most d intermediate
values during a processing. They also proposed an algorithm that securely performs the multipli-
cation of 2 bits in this model, using only d(d+ 1)/2 random bits to protect the computation. We
study the randomness complexity of multiplication algorithms secure in the d-probing model. We
propose several contributions: we provide new theoretical characterizations and constructions, new
practical constructions and a new efficient algorithmic tool to analyze the security of such schemes.

We start with a theoretical treatment of the subject: we propose an algebraic model for mul-
tiplication algorithms and exhibit an algebraic characterization of the security in the d-probing
model. Using this characterization, we prove a linear (in d) lower bound and a quasi-linear (non-
constructive) upper bound for this randomness cost. Then, we construct a new generic algorithm
to perform secure multiplication in the d-probing model that only uses d+ d2/4 random bits.

From a practical point of view, we consider the important cases d ≤ 4 that are actually used in
current real-life implementations and we build algorithms with a randomness complexity matching
our theoretical lower bound for these small-order cases. Finally, still using our algebraic charac-
terization, we provide a new dedicated verification tool, based on information set decoding, which
aims at finding attacks on algorithms for fixed order d at a very low computational cost. Part of
this work has been published at the Eurocrypt conference [BBP+16].

4.1 Introduction

Most commonly used cryptographic algorithms are now considered secure against classical black-
box attacks, when the adversary has only knowledge of their inputs or outputs. Today, it is however
well known that their implementations are vulnerable to side-channel attacks, as revealed in the
academic community by Kocher in 1996 [Koc96]. These attacks exploit the physical emanations of
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the underlying device such as the execution time, the device temperature, or the power consumption
during the algorithm execution.

To thwart side-channel attacks, many countermeasures have been proposed by the community.
Among them, the most widely deployed one is probably masking (a.k.a. secret/processing shar-
ing) [GP99; CJRR99], which has strong links with techniques usually applied in secure multi-party
computation (see e.g., [Yao82; BOGKW88]) or private circuits theory [ISW03]. For many kinds
of real-life implementations, this countermeasure indeed demonstrated its effectiveness when com-
bined with noise and processing jittering. The idea of the masking approach is to split every single
sensitive variable/processing, which depends on the secret and on known variables, into several
shares. Each share is generated uniformly at random except the last one which ensures that the
combination of all the shares is equal to the initial sensitive value. This technique aims at making
the physical leakage of one variable independent of the secret and thus useless for the attacker.
The tuple of shares still brings information about the shared data but, in practice, the leakages are
noisy and the complexity of extracting useful information increases exponentially with the number
of shares, the basis of the exponent being related to the amount of noise [CJRR99].

In order to formally prove the security of masking schemes, the community has made important
efforts to define leakage models that accurately capture the leakage complexity and simultaneously
enable to build security arguments. In 2003, Ishai et al. introduced the d-probing model in which the
attacker can observe at most d exact intermediate values [ISW03]. This model is very convenient to
make security proofs but does not fit the reality of embedded devices which leak noisy functions of all
their intermediate variables. In 2013, Prouff and Rivain extended the noisy leakage model [PR13],
initially introduced by Chari et al. [CJRR99], to propose a new one more accurate than [ISW03] but
not very convenient for security proofs. The two models [ISW03] and [PR13] were later unified by
Duc, Dziembowski, and Faust [DDF14] and Duc, Faust, and Standaert [DFS15a] who showed that
a security proof in the noisy leakage model can be deduced from security proofs in the d-probing
model. This sequence of works shows that proving the security of implementations in the d-probing
model makes sense both from a theoretical and practical point of view. An implementation secure in
the d-probing model is said to satisfy the d-privacy property or equivalently to be d-private [ISW03]
(or secure at order d).

It is worth noting that there is a tight link between sharing techniques,Multi Party Computation
(MPC) and also threshold implementations [NRS11; BGN+14a; BGN+14b]. In particular, the
study in the classical d-probing security model can be seen as a particular case of MPC with
honest players. Furthermore, the threshold implementations manipulate sharing techniques with
additional restrictions to thwart further hardware attacks resulting from the leakage of electronic
glitches. This problem can itself be similarly seen as a particular case of MPC, with Byzantine
players [LSP82].

4.1.1 Our Problem

Since most symmetric cryptographic algorithms manipulate Boolean values, the most practical way
to protect them is generally to implement Boolean sharing (a.k.a. masking): namely, each sensitive
intermediate result x is shared into several pieces, say d+1, which are manipulated by the algorithm
and whose parity is equal to x. To secure the processing of a function f on a shared data, one
must design a so-called masking scheme (or formally a private circuit) that describes how to build
a sharing of f(x) from that of x while maintaining the d-probing security.

In the context of Boolean sharing, we usually separate the protection of linear functions from
that of non-linear ones. In particular, at the hardware level, any circuit can be implemented using
only two gates: the linear XOR gate and the non-linear AND gate. While the protection of linear
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operations (e.g., XOR) is straightforward since the initial function f can be applied to each share
separately, it becomes more difficult for non-linear operations (e.g., AND). In these cases, the shares
cannot be manipulated separately and must generally be processed all together to compute the
correct result. These values must then be further protected using additional random bits which
results in an important timing overhead.

State-of-the-art solutions to implement Boolean sharing on non-linear functions [RP10; CPRR14]
have focused on optimizing the computation complexity. Surprisingly, the amount of necessary ran-
dom bits has only been in the scope of the seminal paper of Ishai, Sahai and Wagner [ISW03]. In
this work, the authors proposed and proved a clever construction (further referred to as ISW mul-
tiplication) allowing to compute the multiplication of two shared bits by using d(d+ 1)/2 random
bits, that is, half as many random bits as the straightforward solution uses. Their construction has
since become a cornerstone of secure implementations [RP10; DDF14; DFS15b; RBN+15]. Even
if this result is very important, the quantity of randomness remains very expensive to generate in
embedded cryptographic implementations. Indeed, such a generation is usually performed using a
physical generator followed by a deterministic random bit generator (DRBG). In addition of being a
theoretical “chicken-and-egg” problem for this DRBG protection, in practice the physical generator
has often a low throughput and the DRBG is also time-consuming. In general, for a DRBG based
on a 128-bit block cipher, one call to this block cipher enables to generate 128 pseudo-random
bits1 (see [BK12]). However, one invocation of the standard AES-128 block cipher with the ISW
multiplication requires as much as 30,720 random bits (6 random bytes per multiplication, 4 mul-
tiplications per S-box [RP10]) to protect the multiplications when masked at the low order d = 3,
which corresponds to 240 preliminary calls to the DRBG.

4.1.2 Our Contributions

We analyze the quantity of randomness required to define a d-private multiplication algorithm at
any order d. Given the sharings a = (ai)0≤i≤d, b = (bi)0≤i≤d of two bits a and b, the problem we
tackle out is to find the minimal number of random bits necessary to securely compute a sharing
(ci)0≤i≤d of the bit c = ab with a d-private algorithm. We limit our scope to the construction of
a multiplication based on the sum of shares’ products. That is, as in [ISW03], we start with the
pairwise products of a’s and b’s shares and we work on optimizing their sum into d+1 shares with
as few random bits as possible. We show that this reduces to studying the randomness complexity
of some particular d-private compression algorithm that securely transforms the (d + 1)2 shares’
products into d+ 1 shares of c. In our study we make extensive use of the following theorem that
gives an alternative characterization of the d-privacy:

Theorem 4.3.1 (informal). A compression algorithm is d-private if and only if there does not
exist a set of ℓ intermediate results {p1, . . . , pℓ} such that ℓ 6 d and

∑ℓ
i=1 pi can be written as

a⊺ · M · b with M being some matrix such that the all-ones vector is in the row space or in the
column space of M .

From this theorem, we deduce the following lower bound on the randomness complexity:

Theorems 4.4.3–4.4.4 (informal). If d > 3 (resp. d = 2), then a d-private compression algo-
rithm for multiplication must involve at least d+ 1 random bits (resp. 2).

This theorem shows that the randomness complexity is in Ω(d). Following the probabilistic
method, we additionally prove the following theorem which claims that there exists a d-private

1Actually, the generation of pseudo-random bits roughly corresponds to the execution of a block cipher but we
should also consider the regular internal state update.
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Figure 4.1: Randomness complexity of d-private multiplication algorithms

multiplication algorithm with randomness complexity O(d · log d). This provides a quasi-linear
upper bound O(d · log d) for the randomness complexity, when d → ∞.

Theorem 4.4.6 (informal). There exists a d-private multiplication algorithm with randomness
complexity O(d · log d), when d → ∞.

This upper bound is non-constructive: we show that a randomly chosen multiplication algorithm
(in some carefully designed family of multiplication algorithms using O(d · log d) random bits) is
d-private with non-zero probability. This means that there exists one algorithm in this family which
is d-private.

In order to explicitly construct private algorithms with low randomness, we analyze the ISW
multiplication to bring out necessary and sufficient conditions on the use of the random bits.
In particular, we identify necessary chainings and we notice that some random bits may be used
several times at several locations to protect more shares’ products, while in the ISW multiplication,
each random bit is only used twice. From this analysis, we deduce a new d-private multiplication
algorithm requiring ⌊d2/4⌋ + d random bits instead of d(d + 1)/2. As a positive side-effect, our
new construction also reduces the algorithmic complexity of ISW multiplication (i.e., its number
of operations).

Based on this generic construction, we then try to optimize some widely used small order
instances. In particular, we bring out new multiplication algorithms, for the orders d = 2, 3 and
4, which exactly achieve our proven linear lower bound while maintaining the d-privacy. Namely,
we present the optimal multiplication algorithms for orders 2, 3 and 4 when summing the shares’
products into d+1 shares. We formally verify their security using the tool provided in [BBD+15b].
Figure 4.1 illustrates the randomness complexity of our constructions (for general orders d and
small orders) and our lower bound.

Note that while the ISW algorithm was initially given for multiplications of bits, it was later
extended by Rivain and Prouff in [RP10] for any multiplication in F2n . In the following, for the
sake of simplicity, we refer to binary multiplications (n = 1) for our constructions, but note that
all of them can also be adapted to multiplication in F2n .

Contrary to the ISW algorithm, our new constructions are not directly composable — in the
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sense of Strong Non-Interferent (SNI) in [BBD+15a] — at any order. Fortunately, they can still be
used in compositions instead of the ISW algorithms at carefully chosen locations. In this chapter,
we thus recall the different security properties related to compositions and we show that in the
AES example, our new constructions can replace half the ISW ones while preserving the d-privacy
of the whole algorithm.

Finally, while the tool provided in [BBD+15b] — which is based on Easycrypt — is able to
reveal potential attack paths and formally prove security in the d-probing model with full confidence,
it is limited to the verification of small orders (d = 6 in our case). Therefore, we propose a new
dedicated probabilistic verification tool, which aims at finding attacks in fixed order private circuits
(or equivalently masking schemes) at a very low cost. The tool is developed in Sage (Python) [Sage]
and though less generic than [BBD+15b] it is orders of magnitude faster. It relies on some heuristic
assumption (i.e. it cannot be used to actually prove the security) but it usually finds attacks very
swiftly for any practical order d. It makes use of information set decoding (a technique from
coding theory introduced to the cryptographic community for the security analysis of the McEliece
cryptosystem in [Pra62; McE78]).

4.2 Preliminaries

This section defines the notations and basic notions that we use in this chapter, but also some
elementary constructions we refer to. In particular, we introduce the notion of d-private compression
algorithm for multiplication and we present its only concrete instance which was proposed by Ishai,
Sahai, and Wagner [ISW03].

4.2.1 Notations

For a set S, we denote by |S| its cardinality, and by s
$

← S the operation of picking up an element s
of S uniformly at random. We denote by Fq the finite field with q elements. Vectors are denoted by
lower case bold font letters, and matrices are denoted by upper case bold font letters. All vectors
are column vectors unless otherwise specified. The kernel (resp. the image) of the linear map
associated to a matrix M is denoted by ker(M) (resp. im(M)). For a vector x, we denote by xi

its i-th coordinate and by HW(x) its Hamming weight (i.e., the number of its coordinates that are
different from 0).

For any fixed n ≥ 1, let Un ∈ Fn×n
2 denote the matrix whose coefficients ui,j equal 1 for all

1 ≤ i, j ≤ n. Let 0n,ℓ ∈ Fn×ℓ
2 denote the matrix whose coefficients are all 0. Let un ∈ Fn

2 denote
the vector (1, . . . , 1)⊺ and 0n ∈ Fn

2 denote the vector (0, . . . , 0)⊺. For vectors x1, . . . , xt in Fn
2 we

denote 〈x1, . . . , xt〉 the vector space generated by the set {x1, . . . , xt}.

We say that an expression f(x1, . . . , xn, r) functionally depends on the variable r if there exists
a1, . . . , an such that the function r Ô→ f(a1, . . . , an, r) is not constant.

For an algorithm A, we denote by y ← A(x1, x2, . . . ) the operation of running A on inputs

(x1, x2, . . . ) and letting y denote the output. Moreover, if A is randomized, we denote by y
$

←
A(x1, x2, . . . ; r) the operation of running A on inputs (x1, x2, . . . ) and with uniform randomness r
(or with fresh randomness if r is not specified) and letting y denote the output. The probability
density function associated to a discrete random variable X defined over S (e.g., F2) is the function
which maps x ∈ S to P [X = x ]. It is denoted by {X} or by {X}r if there is a need to precise the
randomness source r over which the distribution is considered.
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4.2.2 Private Circuits

We examine the privacy property in the setting of Boolean circuits and start with the definition
of circuit and randomized circuit given in [ISW03]. A deterministic circuit C is a directed acyclic
graph whose vertices are Boolean gates and whose edges are wires. A randomized circuit is a
circuit augmented with random-bit gates. A random-bit gate is a gate with fan-in 0 that produces
a random bit and sends it along its output wire; the bit is selected uniformly and independently
of everything else afresh for each invocation of the circuit. From the two previous notions, we may
deduce the following definition of a private circuit inspired from [IKL+13].

Definition 4.2.1. [IKL+13] A private circuit for f : Fn
2 → Fm

2 is defined by a triple (I, C, O),
where

• I: Fn
2 → Fn′

2 is a randomized circuit with uniform randomness ρ and called input encoder;

• C is a randomized boolean circuit with input in Fn′

2 , output in Fm′

2 , and uniform randomness
r ∈ Ft

2;

• O: Fm′

2 → Fm
2 is a circuit, called output decoder.

We say that C is a d-private implementation of f with encoder I and decoder O if the following
requirements hold:

• Correctness: for any input w ∈ Fn
2 , P [O(C(I(w; ρ); r)) = f(w) ] = 1, where the probability is

over the randomness ρ and r;

• Privacy: for any w, w′ ∈ Fn
2 and any set P of d wires in C, the distributions {CP (I(w; ρ); r)}ρ,r

and {CP (I(w
′; ρ); r)}ρ,r are identical, where CP (I(w; ρ); r) denotes the list of the d values on

the wires from P .

Remark 4.2.2. It may be noticed that the notions of d-privacy and of security in the d-probing
model used, e.g., in [BBD+15b] are perfectly equivalent.

Unless noted otherwise, we assume I and O to be the following canonical encoder and decoder:
I encodes each bit-coordinate b of its input w by a block (bj)0≤j≤d of d+1 random bits with parity
b, and O takes the parity of each block of d+ 1 bits. Each block (bj)0≤j≤d is called a sharing of b
and each bj is called a share of b.

From now on, the wires in a set P used to attack an implementation are referred as the probes and
the corresponding values in CP (I(w; ρ); r) as the intermediate results. To simplify the descriptions,
a probe p is sometimes used to directly denote the corresponding result. A set of probes P such
that the distributions {CP (I(w; ρ); r)}ρ,r and {CP (I(w

′; ρ); r)}ρ,r are not identical for some inputs
w, w′ ∈ Fn

2 shall be called an attack. When the inputs w are clear from the context, the distribution
{CP (I(w; ρ); r)}ρ,r is simplified to {(p)p∈P }.

We now introduce the notions of multiplication algorithm and of d-compression algorithm for
multiplication. In this chapter, we deeply study d-private multiplication algorithms and d-private
compression algorithms for multiplication.

Definition 4.2.3. A multiplication algorithm is a circuit for the multiplication of 2 bits (i.e., with
f being the function f : (a, b) ∈ F2

2 Ô→ a · b ∈ F2), using the canonical encoder and decoder.
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Before moving on to the next notion, let us first introduce a new particular encoder, called
multiplicative, which has been used in all the previous attempts to build a d-private multiplication
algorithm. This encoder takes as input two bits (a, b) ∈ F2

2, runs the canonical encoder on these
two bits to get d+1 random bits (a0, . . . , ad) and (b0, . . . , bd) with parity a and b respectively, and
outputs the (d + 1)2 bits (αi,j)0≤i,j≤d with αi,j = ai · bj . Please note that, in particular, we have

a · b = (
∑d

i=0 ai) · (
∑d

i=0 bi) =
∑

06i,j6d αi,j .

Definition 4.2.4. A d-compression algorithm for multiplication is a circuit for the multiplication
of 2 bits (i.e., with f being the function f : (a, b) ∈ F2

2 Ô→ a · b ∈ F2), using the canonical decoder
and the multiplicative encoder. Moreover, we restrict the circuit C to only perform additions in F2.

When clear from the context, we often omit the parameter d and simply say “a compression
algorithm for multiplication”.

Remark 4.2.5. Any d-compression algorithm for multiplication yields a multiplication algorithm,
as the algorithm can start by computing αi,j given its inputs (a0, . . . , ad, b0, . . . , bd).

Proposition 4.2.6. A multiplication algorithm B constructed from a d-compression algorithm for
multiplication A (as in Remark 4.2.5) is d-private if and only if the compression algorithm A is
d-private.

Clearly if B is d-private, so is A. However, the converse is not straightforward, as an adversary
can also probe the input shares ai and bi in B, while it cannot in A. The full proof of this proposition
will be given in Section 4.3.4 and is surprisingly hard: we actually use a stronger version of our
algebraic characterization. In the remaining of the chapter, we focus on compression algorithms
and we do not need to consider probes on the input shares ai and bi, which makes the notation
simpler.

In the sequel, a d-compression algorithm for multiplication is denoted by A(a, b; r) with r

denoting the tuple of uniform random bits used by the algorithm and with a (resp. b) denoting
the vector of d+ 1 shares of the multiplication operand a (resp. b).

The purpose of the rest of this chapter is to investigate how much randomness is needed for
such an algorithm to satisfy the d-privacy and to propose efficient or optimal constructions with
respect to the consumption of this resource. The number of bits involved in an algorithm A(a, b; r)
(i.e., the size of r) is called its randomness complexity or randomness cost.

4.2.3 ISW Algorithm

The first occurrence of a d-private compression circuit for multiplication in the literature is the
ISW algorithm, introduced by Ishai, Sahai, and Wagner in [ISW03]. It is described in Algorithm 2.
Its randomness cost is d(d+ 1)/2.

To better understand this algorithm, let us first write it explicitly for d = 3:

c0 ← α0,0 + r0,1 + r0,2 + r0,3

c1 ← α1,1 + (r0,1 + α0,1 + α1,0) + r1,2 + r1,3

c2 ← α2,2 + (r0,2 + α0,2 + α2,0) + (r1,2 + α1,2 + α2,1) + r2,3

c3 ← α3,3 + (r0,3 + α0,3 + α3,0) + (r1,3 + α1,3 + α3,1) + (r2,3 + α2,3 + α3,2)

where, for the security to hold, the terms are added from left to right and where the brackets indicate
the order in which the operations must be performed (from d-privacy point of view, the addition is
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Algorithm 2 ISW algorithm

Require: sharing (αi,j)0≤i,j≤d
Ensure: sharing (ci)0≤i≤d

for i = 0 to d do
for j = i+ 1 to d do

ri,j
$

← F2; ti,j ← ri,j ; tj,i ← ri,j + αi,j + αj,i

ci ← αi,i

for i = 0 to d do
for j = 0 to d do
if i Ó= j then

ci ← ci + ti,j

not commutative). In particular, when the brackets gather three terms (e.g., (r0,1 + α0,1 + α1,0)),
the attacker is allowed to probe two values from left to right (e.g., r0,1+α0,1 and (r0,1+α0,1+α1,0)).

Let us now simplify the description by removing all the + symbols, the assignments ci ←, and
defining α̂i,j as αi,j + αj,i if i Ó= j and αi,i if i = j. The ISW algorithm for d = 3 can then be
rewritten as:

α̂0,0 r0,1 r0,2 r0,3

α̂1,1 (r0,1 α̂0,1) r1,2 r1,3

α̂2,2 (r0,2 α̂0,2) (r1,2 α̂1,2) r2,3

α̂3,3 (r0,3 α̂0,3) (r1,3 α̂1,3) (r2,3 α̂2,3).

Please note that the expression of α̂i,j with i Ó= j (i.e. αi,j + αj,i) is expanded before the actual
evaluation, i.e., as in the previous representation, the sum αi,j + αj,i is not evaluated beforehand
but evaluated during the processing of ri,j + α̂i,j = ri,j + αi,j + αj,i.

4.3 Algebraic Characterization

In order to reason about the required quantity of randomness in d-private compression algorithms
for multiplication, we define an algebraic condition on the security and we prove that an algorithm
is d-private if and only if there is no set of probes which satisfies it.

4.3.1 Matrix Notation

As our condition is algebraic, it is practical to introduce some matrix notation for our probes. We
write a = (a0, . . . , ad)

⊺ and b = (b0, . . . , bd)
⊺ the vectors corresponding to the shares of the inputs

a and b respectively. We also denote by r = (r1, . . . , rR)
⊺ the vector of the random bits.

We remark that, for any probe p on a compression algorithm for multiplication, p is always
an expression that can be written as a sum of αi,j ’s (with αi,j = ai · bj) and rk’s, and possibly a
constant cp ∈ F2. In other words, we can write p as

p = a ⊺ · Mp · b + s⊺
p · r + cp,

with Mp being a matrix in F
(d+1)×(d+1)
2 and sp being a vector in FR

2 . This matrix Mp and this
vector sp are uniquely defined. In addition, any sum of probes can also be written that way.

Furthermore, if cp = 1, we can always sum the probe with 1 and consider p + 1 instead of p.
This does not change anything on the probability distribution we consider. Therefore, for the sake
of simplicity, we always assume cp = 0 in all the chapter.
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4.3.2 Algebraic Condition

We now introduce our algebraic condition:

Condition 1. A set of probes P = {p1, . . . , pℓ} on a d-compression algorithm for multiplication
satisfies Condition 1 if and only if the expression f =

∑ℓ
i=1 pi can be written as f = a ⊺ · M · b

with M being some matrix such that ud+1 is in the row space or the column space of M .

As seen previously, the expression f can always be written as

f = a ⊺ · M · b+ s ⊺ · r,

for some matrix M and some vector s. Therefore, what the condition enforces is that s = 0R (or
in other words, f does not functionally depend on any random bit) and the column space or the
row space of M contains the vector ud+1.

A Weaker Condition. To better understand Condition 1, let us introduce a weaker condition
which is often easier to deal with:

Condition 2 (weak condition). A set of probes P = {p1, . . . , pℓ} on a d-compression algorithm for
multiplication satisfies Condition 2 if and only if the expression f =

∑ℓ
i=1 pi does not functionally

depend on any rk and there exists a map γ: {0, . . . , d} → {0, . . . , d} such that f does functionally
depend on every (αi,γ(i))0≤i≤d

or on every (αγ(i),i)0≤i≤d
.

This condition could be reformulated as: f =
∑ℓ

i=1 pi functionally depends on either all the ai’s
or all the bi’s and does not functionally depend on any rk. It is easy to see that any set P verifying
Condition 1 also verifies Condition 2.

4.3.3 Algebraic Characterization

Theorem 4.3.1. Let A be a d-compression algorithm for multiplication. Then, A is d-private if
and only if there does not exist a set P = {p1, . . . , pℓ} of ℓ ≤ d probes that satisfies Condition 1.
Furthermore any set P = {p1, . . . , pℓ} satisfying Condition 1 is an attack.

Please note that Theorem 4.3.1 would not be valid with Condition 2 (instead of Condition 1).
Let us indeed consider the following 2-compression scheme for multiplication:

α2,0 r1 α0,0 r2 α0,2

α2,1 r1 α1,1 r3 α1,2

α1,0 r2 α0,1 r3 α2,2

It is easy to see that the only set of probes satisfying Condition 2 is

P = {α2,0 + r1 + α0,0, α2,1 + r1 + α1,1} .

However, this set does not satisfy Condition 1, and in fact, this compression algorithm is 2-private.

Proof. Direction 1: Left to right. We prove hereafter that if A is d-private, then there does not
exist a set P = {p1, . . . , pℓ} of ℓ ≤ d probes that satisfies Condition 1.

By contrapositive, let us assume that there exists a set P = {p1, . . . , pℓ} of at most d probes
that satisfies Condition 1. Let M be the matrix such that f =

∑ℓ
i=1 pi = a ⊺ · M · b and let us
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assume, without loss of generality, that ud+1 is in the vector subspace generated by the columns of
M . We remark that, for any v ∈ Fd+1

2 :

P [a ⊺ · v = a ] =

{
1 when v = ud+1

1
2 when v Ó= ud+1

by definition of the sharing a of a (probability is taken over a). Thus we have, when a = 0
(assuming that b is uniformly random)

P [ f = 0 | a = 0 ]

= P [a ⊺ · M · b = 0 | a ⊺ · ud+1 = 0 ]

= P [a ⊺ · ud+1 = 0 | a = 0 and M · b = ud+1 ] · P [M · b = ud+1 ]

+
∑

v∈Fd+1
2 \{ud+1} P [a

⊺ · v = 0 | a = 0 and M · b = v ] · P [M · b = v ]

= 1 · P [M · b = ud+1 ] +
∑

v∈Fd+1
2 \{ud+1}

1
2 · P [M · b = v ]

= 1 · P [M · b = ud+1 ] +
1
2(1− P [M · b = ud+1 ])

= 1
2 +

1
2P [M · b = ud+1 ].

Similarly, when a = 1, we have

P [ f = 0 | a = 1 ] = 1
2 − 1

2P [M · b = ud+1 ].

As ud+1 is in the column space of M , the distribution of {f} is not the same when a = 0 and
when a = 1. This implies that the distribution {(p1, . . . , pℓ)} is also different when a = 0 and a = 1.
Hence A is not d-private.

This concludes the proof of the first implication and the fact that any set P = {p1, . . . , pℓ}
satisfying Condition 1 is an attack.

Direction 2: Right to left. Let us now prove by contradiction that if there does not exist a set
P = {p1, . . . , pℓ} of ℓ ≤ d probes that satisfies Condition 1, then A is d-private.

Let us assume that A is not d-private. Then there exists an attack using a set of probes
P = {p1, . . . , pℓ} with ℓ ≤ d. This is equivalent to say that there exists two inputs (a(0), b(0)) Ó=
(a(1), b(1)) such that the distribution {(p1, . . . , pℓ)} is not the same whether (a, b) = (a(0), b(0)) or
(a, b) = (a(1), b(1)).

We first remark that we can consider 0 = a(0) Ó= a(1) = 1, without loss of generality as the a(i)’s
and the b(i)’s play a symmetric role (and (a(0), b(0)) Ó= (a(1), b(1))). Furthermore, we can always
choose b(0) = b(1), as if the distribution {(p1, . . . , pℓ)} is not the same whether (a, b) = (0, b(0)) or
(a, b) = (1, b(1)), with b(0) Ó= b(1), then:

• it is not the same whether (a, b) = (0, b(0)) or (a, b) = (1, b(0)) (in which case, we could have
taken b(1) = b(0)), or

• it is not the same whether (a, b) = (1, b(0)) or (a, b) = (1, b(1)) (in which case, we can just
exchange the a’s and the b’s roles).

To summarize, there exists b(0) such that the distribution {(p1, . . . , pℓ)} is not the same whether
(a, b) = (0, b(0)) or (a, b) = (1, b(0)).

In the sequel b(0) is fixed and we call a tuple (p1, . . . , pℓ) satisfying the previous property an
attack tuple.
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We now remark that if ℓ = 1 or if even the distribution {(
∑ℓ

i=1 pi)} is not the same whether
(a, b) = (0, b(0)) or (a, b) = (1, b(0)) (i.e., (

∑ℓ
i=1 pi) is an attack tuple), then it follows easily from

the probability analysis of the previous proof for the other direction of the theorem, that the set
P satisfies Condition 1. The main difficulty is that it is not necessarily the case that ℓ = 1 or
(
∑ℓ

i=1 pi) is an attack tuple. To overcome it, we use linear algebra.

But first, let us introduce some useful notations and lemmas. We write p the vector (p1, . . . , pℓ)
⊺

and we say that p is an attack vector if and only if (p1, . . . , pℓ) is an attack tuple. Elements of p

are polynomials in the ai’s, the bj ’s and the rk’s.

Lemma 4.3.2. If p is an attack vector and N is an invertible matrix in Fℓ×ℓ
2 , then N · p is an

attack vector.

Proof. This is immediate from the fact that N is invertible. Indeed, as a matrix over F2, N−1 is
also a matrix over F2. Hence, multiplying the set of probes {N · p} by N−1 (which leads to the
first set of probes {p}) can be done by simply computing sums of elements in {N · p}. Hence, as
the distribution of {p} differs when (a, b) = (0, b(0)) and (a, b) = (1, b(0)), the same is true for the
distribution {N · p}.

We also use the following straightforward lemma.

Lemma 4.3.3. If (p1, . . . , pℓ) is an attack tuple such that the ℓ−t+1 random variables (p1, . . . , pt),
pt+1, . . . , and pℓ are mutually independent, and the distributions of (pt+1, . . . , pℓ) is the same for
all the values of the inputs (a, b), then (p1, . . . , pt) is an attack tuple.

Let us consider the matrix S ∈ Fℓ×R
2 whose coefficients si,j are defined as si,j = 1 if and only if

the expression pi functionally depends on rj . In other words, if we write pi = a ⊺ · Mpi
· b+ s

⊺
pi · r,

the i-th row of S is s
⊺
pi . We can permute the random bits (i.e., the columns of S and the rows of

r) such that a row reduction on the matrix S yields a matrix of the form:

S′ =

(
0t,t 0t,ℓ−t

It S′′

)
.

LetN be the invertible matrix in Fℓ×ℓ
2 such thatN ·S = S′. And we write p′ = (p′

1, . . . , p′
ℓ)

⊺ =N ·p.
Then, p′ is also an attack vector according to Lemma 4.3.2. In addition, for t < i ≤ ℓ, p′

i does
functionally depend on ri and no other p′

j does functionally depend on rj (due to the shape of S′).
Therefore, according to Lemma 4.3.3, (p′

1, . . . , p′
t) is an attack tuple.

We remark that (p′
1, . . . , p′

t) does not functionally depend on any random bit, due to the shape
of S′. Therefore, for each 1 ≤ i ≤ t, we can write:

p′
i = a⊺ · M ′

i · b,

for some matrix M ′

i .

We now need a final lemma to be able to conclude.

Lemma 4.3.4. If (p′
1, . . . , p′

t) is an attack tuple, then there exists a vector b∗ ∈ Fd+1
2 such that

ud+1 is in the vector space 〈M ′

1 · b∗, . . . , M ′

t · b∗〉.

Proof. This lemma can be seen as a generalization of the probability analysis in the proof of the
first direction of the theorem.



78
CHAPTER 4. RANDOMNESS COMPLEXITY OF PRIVATE CIRCUITS FOR

MULTIPLICATION

We suppose by contradiction that (p′
1, . . . , p′

t) is an attack vector but there does not exist a
vector b∗ ∈ Fd+1

2 such that ud+1 is in the vector space 〈M ′

1 · b∗, . . . , M ′

t · b∗〉. Then, for any value
a(0), any vector b(0) ∈ Fd+1

2 , and any vector x = (x1, . . . , xt)
⊺ ∈ Ft

2:

P
[
(p′

1, . . . , p′
t) = (x1, . . . , xt)

∣∣∣ a = a(0) and b = b(0)
]

= P
[
(a ⊺ · M ′

1 · b(0), . . . , a ⊺ · M ′

t · b(0)) = (x1, . . . , xt)
∣∣∣ a⊺ · ud+1 = a(0)

]

= P
[

a ⊺ · B = x ⊺
∣∣∣ a ⊺ · ud+1 = a(0)

]
,

where B is the matrix whose i-th column is the vector M ′

i · b(0). To conclude, we just need to
remark that

P [a ⊺ · B = x ⊺ | a ⊺ · ud+1 = 0 ] = P [a
⊺ · B = x ⊺ | a ⊺ · ud+1 = 1 ],

which implies that the probability distribution of (p′
1, . . . , p′

t) is independent of the value of a, which
contradicts the fact the (p′

1, . . . , p′
t) is an attack tuple.

To prove the previous equality, we use the fact that ud+1 is not in the column space of B and
therefore the value of a⊺ · ud+1 is uniform and independent of the value of a⊺ · B (when a is a
uniform vector in Fd+1

2 ).

Thanks to Lemma 4.3.4, there exists a vector σ = (σ1, . . . , σt)
⊺ ∈ Ft

2 and a vector b∗ ∈ Fd+1
2

such that (
t∑

i=1

σi · M ′

i

)
· b∗ = ud+1 . (4.1)

Let σ′ be the vector in Fℓ
2 defined by σ′⊺ =

(
σ⊺

0
⊺
ℓ−t

)
· N . We have:

σ′⊺ · p =
t∑

i=1

σi · p′
i =

t∑

i=1

σi · a⊺ · M ′

i · b = a⊺ ·

(
t∑

i=1

σi · M ′

i

)
· b . (4.2)

Therefore, we can define the set P ′ = {pi | σi = 1}. This set satisfies Condition 1, according to
Equations (4.1) and (4.2).

This concludes the proof.

4.3.4 Approach extension

We now propose to prove Proposition 4.2.6 by extending our algebraic condition. As explained in
Section 4.2.2, we just need to prove that we can transform an attack set P = {p1, . . . , pℓ} of size
ℓ ≤ d for the multiplication algorithm B into an attack set P ′ for the compression algorithm A.
The only difference is that some probes in P may be the inputs ai or bi, while such probes are
forbidden in P ′.

This is actually surprisingly very hard.

Extended Matrix Notation

We now write probes p as:

p = a⊺ · Mp · b+ a⊺ · mp,a +m
⊺
p,b · b+ s⊺

p · r + cp,
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where Mp is a matrix in F
(d+1)×(d+1)
2 , mp,a and mm,b are two vectors in Fd+1

2 , and cp ∈ F2 is
a constant which is supposed to be zero in the sequel (as in Section 4.3). This notation can be
extended to the sum of probes.

Notice that actually, for all the probes we consider: at most one of the matrices or vectors Mp,
mp,a, and mp,b is non-zero. Furthermore the Hamming weight of mp,a, and mp,b is at most 1.
However, it is easier to deal with this slight generalization.

Extended Algebraic Condition

We now introduce our extended algebraic condition:

Condition 3. A set of probes P = {p1, . . . , pℓ} on a multiplication algorithm satisfies Condition 1
if and only if the expression f =

∑ℓ
i=1 pi can be written as f = a⊺ · M · b+ a⊺ · ma +m

⊺
b · b with

M being some matrix and ma and mb being some vectors such that ud+1 is in the affine space
ma + im(M) or mb + im(M

⊺), where im(M) is the column space of M and im(M⊺) is the row
space of M .

Extended Algebraic Characterization

Theorem 4.3.5. Let B be a multiplication algorithm constructed from a d-compression algorithm
for multiplication as in Remark 4.2.5. Then, B is d-private if and only if there does not exist a set
P = {p1, . . . , pℓ} of ℓ ≤ d probes that satisfies Condition 3. Furthermore any set P = {p1, . . . , pℓ}
satisfying Condition 1 is an attack.

Proof. The left-to-right direction can be proven similarly as for Theorem 4.3.1. Let us focus on the
right-to-left direction.

The proof is exactly the same up to the definition of the p′
i (since what comes before that only

considers the random bits in the probes and hence is similar when probes of the form ai or bi are
taken into account), which can now be written as:

p′
i = a⊺ · M ′

i · b+ a⊺ · m′
i,a +m

′⊺
i,b · b,

for some matrix M ′

i and vectors m′
i,a and m′

i,b.
We now can conclude using the following lemma, which is an extended version of Lemma 4.3.4

and whose proof is similar:

Lemma 4.3.6. If (p′
1, . . . , p′

t) is an attack tuple, then there exists a vector b∗ ∈ Fd+1
2 such that

ud+1 is in the vector space 〈M ′

1 · b∗ +m′
1,a, . . . , M ′

t · b∗ +m′
t,a〉.

Thanks to Lemma 4.3.6, there exists a vector σ = (σ1, . . . , σt)
⊺ ∈ Ft

2 and a vector b∗ ∈ Fd+1
2 ,

such that (
t∑

i=1

σi · M ′

i

)
· b∗ +

(
t∑

i=1

σi · m′

i,b

)
= ud+1 . (4.3)

Let σ′ be the vector in Fℓ
2 defined by σ′⊺ =

(
σ⊺

0
⊺
ℓ−t

)
· N . We have:

σ′⊺ · p =
t∑

i=1

σi · p′
i =

t∑

i=1

σi · a⊺ · M ′

i · b+
t∑

i=1

σi · a⊺ · m′
i,a +

t∑

i=1

σi · m
′⊺
i,b · b
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so that:

σ′⊺ · p = a⊺ ·

(
t∑

i=1

σi · M ′

i

)
· b+ a⊺ ·

(
t∑

i=1

σi · m′
i,a

)
+

(
t∑

i=1

σi · m
′⊺
i,b

)
· b . (4.4)

Therefore, we can define the set P ′ = {pi | σi = 1}. This set satisfies Condition 3, according to
Equations (4.3) and (4.4).

This concludes the proof.

Proof of Proposition 4.2.6

We can now prove Proposition 4.2.6.

Proof. Let us suppose by contraposition that B is not d-private. Thanks to Theorem 4.3.5, this
means that there exists a set of probes P = {p1, . . . , pℓ} satisfying Condition 3. We suppose without
loss of generality that:

ℓ∑

i=1

pi = a⊺ · M · b+ a⊺ · ma +m
⊺
b · b

and ud+1 is in the affine space ma + im(M).
From the shapes of possibles probes, we know that for any i, if ma,i = 1, then one of the probe

pj has to be ai. Let us spit our set of probes P in three sets:

• P1 contains all the probes pj such that pj = ai and ma,i = 1;

• P2 contains all the probes which are not of the form ai or bj ;

• P3 contains all the other probes.

We remark that: ∑

p∈P1∪P2

p = a⊺ · M · b+ a⊺ · ma.

Let b∗ ∈ Fd+1
2 be a vector such that ud+1 = ma + B · b∗. The Hamming weight of ma is

exactly the cardinality of P1 and is at most d. Therefore, b∗ Ó= 0d+1 and we can arbitrarily choose
0 ≤ j∗ ≤ d such that b∗

j∗ = 1. Finally, let us set P ′
1 = {αi,j∗ | ma,i = 1}. We can write

∑

p∈P ′

1∪P2

p = a⊺ · M ′ · b,

and we have that:
M ′ · b∗ =M · b∗ +ma = ud+1.

Therefore P ′
1∪P2 is a set of probes (for the compression algorithm A) which satisfies Condition 1.

This concludes the proof.

4.4 Theoretical Lower and Upper Bounds

In this section, we exhibit lower and upper bounds for the randomness complexity of a d-private
compression algorithm for multiplication. We first prove an algebraic result and an intermediate
lemma that we then use to show that at least d + 1 random bits are required to construct a d-
private compression algorithm for multiplication, for any d ≥ 3 (and 2 random bits are required
for d = 2). Finally, we provide a (non-constructive) proof that for large enough d, there exists a
d-private multiplication algorithm with a randomness complexity O(d · log d).
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4.4.1 A Splitting Lemma

We first prove an algebraic result, stated in the lemma below, that we further use to prove
Lemma 4.4.2. The latter allows us to easily exhibit attacks in order to prove our lower bounds.

Lemma 4.4.1. Let n ≥ 1. Let M0, M1 ∈ Fn×n
2 such that M0 +M1 = Un. Then, there exists a

vector v ∈ Fn
2 such that:

M0 · v = un or M1 · v = un or M
⊺
0 · v = un or M

⊺
1 · v = un .

Proof. We show the above lemma by induction on n.

Base case: for n = 1, M0, M1, U ∈ F2, so M0+M1 = 1, which implies M0 = 1 or M1 = 1 and
the claim immediately follows.

Inductive case: let us assume that the claim holds for a fixed n ≥ 1. Let us consider two matrices
M0, M1 ∈ F

(n+1)×(n+1)
2 such that M0 +M1 = Un+1.

Clearly, if M0 (or M1) is invertible, then the claim is true (as un+1 is in its range). Then, let
us assume that M0 is not invertible. Then, there exists a non-zero vector x ∈ ker(M0). Now, as
im(Un+1) = {0n+1, un+1}, if Un+1 · x = un+1, then M1 · x = un+1 and the claim is true. Hence,
clearly, the claim is true if ker(M0) Ó= ker(M1) (with the symmetric remark). The same remarks
hold when considering matrices M

⊺
0 and M

⊺
1.

Hence, the only remaining case to consider is when ker(M0) Ó= {0n+1}, ker(M
⊺
0) Ó= {0n+1} and

when ker(M0) = ker(M1) and ker(M
⊺
0) = ker(M

⊺
1). In particular, we have ker(M0) ⊆ ker(Un+1)

and ker(M⊺
0) ⊆ ker(Un+1).

Let x ∈ ker(M0) (and then x ∈ ker(M1) as well) be a non-zero vector. Up to some rear-
rangement of the columns of M0 and M1 (by permuting some columns), we can assume without
loss of generality that x = (1, . . . , 1, 0, . . . , 0)⊺. Let X denote the matrix (x, e2, . . . , en+1) where
ei = (0, . . . , 0, 1, 0, . . . , 0)⊺ is the i-th canonical vector of length n+ 1, so that it has a 1 in the i-th
position and 0’s everywhere else.

Now, let y ∈ ker(M⊺
0) (and then y ∈ ker(M⊺

1) as well) be a non-zero vector, so y⊺ · M
⊺
0 =

0
⊺
n+1. Moreover, up to some rearrangement of the rows of M0 and M1, we can assume that

y = (1, . . . , 1, 0, . . . , 0)⊺. Let Y denote the matrix (y, e2, . . . , en+1).
Please note that rearrangements apply to the columns in the first case and to the rows in the

second case, so we can assume without loss of generality that there exists both x ∈ ker(M0) and
y ∈ ker(M⊺

0) with the above form and matrices X and Y are well defined.
We now define the matrices M ′

0 = Y ⊺ · M0 · X and M ′
1 = Y ⊺ · M1 · X. We have:

M ′
0 =

(
y⊺

0n In

)
· M0 ·

(
x
0
⊺
n

In

)
=

(
y⊺

0n In

)
·
(
0n+1 M

(1)
0

)

where M
(1)
0 is the matrix extracted from M0 by removing its first column. Hence:

M ′
0 =

(
0 0

⊺
n

0n M
(1,1)
0

)

where M
(1,1)
0 is the matrix extracted from M0 by removing its first column and its first row.

Similar equation holds for M ′
1 as well. Thus, it is clear that:

M ′
0 +M ′

1 =

(
0 0

⊺
n

0n Un

)
.
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Let us consider the matrices M ′′
0 and M ′′

1 in Fn×n
2 that are extracted from matrices M ′

0 and M ′
1

by removing their first row and their first column (i.e., M ′′
i =M

′(1,1)
i with the previous notation).

Then, it is clear that M ′′
0 +M ′′

1 = Un. As matrices in Fn×n
2 , by induction hypothesis, there exists

v′′ ∈ Fn
2 such that at least one of the 4 propositions from Lemma 4.4.1 holds. We can assume

without loss of generality that M ′′
0 · v′′ = un.

Let v′ =

(
0

v′′

)
∈ Fn+1

2 . Then, we have:

M ′
0 · v′ =

(
0 0

⊺
n

0n M ′′
0

)
·

(
0

v′′

)
=

(
0n · v′′

M ′′
0 · v′′

)
=

(
0

un

)
.

Now, let v =X · v′ and w =M0 · w, so Y ⊺ · w = Y ⊺ · M0X · v′ =M ′
0 · v′ =

(
0

un

)
. Moreover,

as Y is invertible, w is the unique vector such that Y ⊺ · w =

(
0

un

)
. Finally, as the vector un+1

satisfies Y ⊺ · un+1 =

(
0

un

)
, then w = un+1, and the claim follows for n + 1, since v satisfies

M0 · v = w = un+1.

Conclusion: The claim follows for any n ≥ 1, and so does Lemma 4.4.1.

We can now easily prove the following statement that is our main tool for proving our lower
bounds, as explained after its proof.

Lemma 4.4.2. Let A be a d-compression algorithm for multiplication. If there exist two sets S1

and S2 of at most d probes such that si =
∑

p∈Si
p does not functionally depend on any of the

random bits, for i ∈ {0, 1}, and such that s0 + s1 = a · b, then A is not d-private.

Proof. Let A, S0, S1, s0 and s1 defined in the above statement. Then, there exists M i ∈

F
(d+1)×(d+1)
2 such that si = a⊺ · M i · b, for i ∈ {0, 1}. Furthermore, as s0+ s1 = a · b = a⊺ · Ud+1 · b,

we have M0 +M1 = Ud+1. Hence, via Lemma 4.4.1, there exists v ∈ Fd+1
2 and i ∈ {0, 1} such

that M i · v = ud+1 or M
⊺
i · v = ud+1. This means that ud+1 is in the row subspace or in the

column subspace of M i, and therefore, Mi satisfies Condition 1. Therefore, as |Si| ≤ d, applying
Theorem 4.3.1, A is not d-private. Lemma 4.4.2 follows.

We use the above lemma to prove our lower bounds as follows: for proving that at least R(d)
random bits are required in order to achieve d-privacy for a compression algorithm for multiplica-
tion, we prove that any algorithm with a lower randomness complexity is not d-private by exhibiting
two sets of probes S0 and S1 that satisfy the requirements of Lemma 4.4.2.

4.4.2 Simple Linear Lower Bound

As a warm-up, we show that at least d random bits are required, for d > 2.

Theorem 4.4.3. Let d > 2. Let us consider a d-compression algorithm for multiplication A. If A
uses only d − 1 random bits, then A is not d-private.

Proof. Let r1, . . . , rd−1 denote the random bits used by A. Let c0, . . . , cd denote the outputs of A.
Let us define N ∈ F

(d−1)×d
2 as the matrix whose coefficients ni,j are equal to 1 if and only if cj
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functionally depends on ri, for 1 6 i 6 d − 1 and 1 6 j 6 d. Please note in particular that N does
not depend on c0.

As a matrix over F2 with d columns and d − 1 rows, there is necessarily a vector w ∈ Fd
2 with

w Ó= 0d such that N · w = 0d−1.
The latter implies that the expression s0 =

∑d
i=1 wi · ci does not functionally depend on any

of the rk’s. Furthermore, by correctness, we also have that s1 = c0 +
∑d

i=1(1 − wi) · ci does not
functionally depend on any of the rk’s, and s0 + s1 =

∑d
i=0 ci = a · b. Then, the sets of probes

S0 = {ci | wi = 1} and S1 = {c0} ∪ {ci | wi = 0} (whose cardinalities are at most d) satisfy the
requirements of Lemma 4.4.2, and then, A is not d-private. Theorem 4.4.3 follows.

4.4.3 Better Linear Lower Bound

We now show that at least d+ 1 random bits are actually required if d > 3.

Theorem 4.4.4. Let d > 3. Let us consider a d-compression algorithm for multiplication A. If A
uses only d random bits, then A is not d-private.

Proof. Let r1, . . . , rd denote the random bits used by A. Let c0, . . . , cd denote the outputs of A.
The proof is organized through 4 steps as follows:

1. we prove that at least one ci (further referred to as c0) functionally depends on at least two
distinct random bits,

2. we prove that at least two shares c0 and cj (further referred to as c1) both functionally depend
on at least two distinct random bits,

3. we prove that at least one random bit r1 is such that no additive share functionally depends
on only r1,

4. we exhibit an attack.

Step 1: c0 functionally depends on at least two distinct random bits.

Let us first show that at least one of the (ci)06i6d functionally depends on two different random
bits. By contradiction, let us assume that every (ci)06i6d functionally depends on at most 1 random
bit. Then, as there are d random bits, it implies that, either one ci does not functionally depend on
any random bit, or there exist i < j such that ci and cj functionally depend on the same random
bit:

• In the first case, let us assume that c0 does not functionally depend on any random bit.
Then, by correctness, neither does

∑d
i=1 ci. Then, S0 = {c0} and S1 = {c1, . . . , cd} satisfy the

requirements of Lemma 4.4.2 and A is not d-private.

• In the second case, let us assume without loss of generality that c0 and c1 functionally depend
on the same random bit (and only on this one by assumption). Then, c0 + c1 does not
depend on any random bit and so does

∑d
i=2 ci via correctness. Then, S0 = {c0, c1} and

S1 = {c2, . . . , cd} satisfy the requirements of Lemma 4.4.2 and A is not d-private.

Then, we can now assume without loss of generality that c0 functionally depends on at least two
distinct random bits.
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Step 2: both c0 and c1 functionally depend on at least two distinct random bits.

By contradiction, let us now assume that for all 1 ≤ i ≤ d, ci functionally depends on only
one random bit. In order to achieve correctness, there must exist ci, cj with 1 ≤ i < j ≤ d that
respectively depend on the first and second of the two distinct random bits on which c0 functionally
depends on. As we assume that there are d random bits in total, all the d random bits on which
the ci’s functionally depend on for i > 1 have to be different. Hence, we can assume without loss
of generality that ci functionally depends on ri, for 1 ≤ i ≤ d. Thus, by correctness, c0 functionally
depends on all ri for i = 1, . . . , d.

Then, we can simply probe the first subsum p of c0 that functionally depends on at least 2
distinct random bits (actually, any subsum that functionally depends on at least 2 and at most
d − 1 random bits would work).

Let us denote by I = {i1, i2} the set of indices corresponding to the random bits on which p
functionally depends on. Then, S0 = {p, ci1 , ci2} and S1 = {c0, p} ∪ {ci | i ∈ {1, . . . , d}\{i1, i2}}
satisfy the requirements of Lemma 4.4.2 and A is not d-private.

Therefore, it is not possible that every ci for 1 ≤ i ≤ d functionally depends on only one random
bit and thus, there are at least two ci, cj with i Ó= j that functionally depend on at least 2 distinct
random bits. We can assume without loss of generality that c0 and c1 each functionally depend on
at least 2 distinct random bits.

Step 3: r1 is such that no ci (for i = 0, . . . , d) functionally depends on only r1 (and on
no other random bits).

By correctness, c0 functionally depends on all the random bits on which
∑d

i=1 ci functionally de-
pends on. We just proved that c1 functionally depends on at least two distinct bits. Also, all
random bits have to be used (otherwise there are at most d − 1 bits and Theorem 4.4.3 already
proves that A is not d-private). Consequently, each of the at most d − 2 random bits on which
c1 does not functionally depend on have to satisfy that at least one of the ci for 2 ≤ i ≤ d func-
tionally depends on this random bit. Thus, it is not possible that all ci for i > 2 functionally
depend on only 1 random bit (otherwise, there would exist 2 6 i1 < i2 6 d such that ci1 and
ci2 functionally depend only on the same random bit. Indeed, in that case, S0 = {ci1 , ci2} and
S1 = {c0} ∪ {ci | i ∈ {1, . . . , d}\{i1, i2}} satisfy the requirements of Lemma 4.4.2 and A is not
d-private.

Thus, this proves that at least one of the random bits, say r1 without loss of generality, is such
that no ci (for i = 0, . . . , d) functionally depends on only r1 (and on no other random bits).

Step 4: there exists an attack with at most d probes.

Let us now consider, similarly to what we did in the proof of Theorem 4.4.3, the matrix N ∈ Fd×d
2

defined as the matrix whose coefficients ni,j are equal to 1 if and only if cj functionally depends on
the random bit ri, for 1 6 i, j 6 d. Please note once again that this matrix does not depend of c0.
In order to prevent the same kind of attack than the one we used in the proof of Theorem 4.4.3,
it is clear that this matrix has to be invertible. Hence, there exists w ∈ Fd

2 such that N · w = e1
where e1 denotes the first vector of the canonical basis of F

d
2. Moreover, since c0 and

∑d
i=1 ci both

functionally depends on the same at least 2 distinct random bits, then by correctness, we have
w Ó= 1d. Also, the Hamming weight of w is at least 2, since r1 never appears alone in an additive
share, which implies that e1 is not a column in N . Hence, we have 2 6 HW(w) 6 d − 1.

To conclude the proof, we just note that S0 = {r′, c0}∪{ci | wi = 0} and S1 = {r′}∪{ci | wi = 1}
satisfy the requirements of Lemma 4.4.2 and A is not d-private.
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Algorithm 3 Random algorithm

Require: sharing (αi,j)0≤i,j≤d
Ensure: sharing (ci)0≤i≤d

for i = 1 to R do
ri

$
← F2

for i = 0 to d do
ci ← αi,i

for j = i+ 1 to d do
ci ← ci + ρ(i, j) + αi,j + αj,i ⊲ ρ(i, j) is not computed first

cd ← cd + ρ(d, d)

Theorem 4.4.4 follows.

4.4.4 (Non-Constructive) Quasi-Linear Upper Bound

We now construct a d-private compression algorithm for multiplication which requires a quasi-linear
number of random bits. More precisely, we show that with non-zero probability, a random algorithm
in some family of algorithms (using a quasi-linear number of random bits) is secure, which directly
implies the existence of such an algorithm. Note that it is an interesting open problem (though
probably difficult) to derandomize this construction.

Concretely, let d be some masking order and R be some number of random bits (used in the
algorithm), to be fixed later. For i = 0, . . . , d − 1 and j = i+ 1, . . . , d, let us define ρ(i, j) as:

ρ(i, j) =
∑R

k=1 Xi,j,k · rk

with Xi,j,k
$

← {0, 1} for i = 0, . . . , d−1, j = i+1, . . . , d and k = 1, . . . , R, so that ρ(i, j) is a random
sum of all the random bits r1, . . . , rR where each bit appears in ρ(i, j) with probability 1/2. We
also define Xd,d,k =

∑d−1
i=0

∑d
j=i+1 Xi,j,k and ρ(d, d) as:

ρ(d, d) =
∑R

k=1 Xd,d,k · rk.

We generate a (random) algorithm as in Algorithm 3. This algorithm is correct because the
sum of all ρ(i, j) is equal to 0.

We point out that we use two kinds of random which should not be confused: the R fresh
random bits r1, . . . , rR used in the algorithm to ensure its d-privacy (R is what we really want to
be as low as possible), and the random variables Xi,j,k used to define a random family of such
algorithms (which are “meta”-random bits). In a concrete implementation or algorithm, these
latter values are fixed.

Lemma 4.4.5. Algorithm 3 is d-private with probability at least

1−

(
(R+ 3) · d · (d+ 1)/2

d

)
· 2−R

over the values of the Xi,j,k’s.

Proof. In order to simplify the proof, we are going to show that, with non-zero probability, there is
no set of probes P = {p1, . . . , pℓ} with ℓ ≤ d that satisfies Condition 2. In particular, this implies
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that, with non-zero probability, there is no set of probes P = {p1, . . . , pℓ} with ℓ ≤ d that satisfies
Condition 1, which, via Theorem 4.3.1, is equivalent to the algorithm being d-private.

One can only consider sets of exactly d probes as if there is a set of ℓ < d probes P ′ that satisfies
Condition 2, one can always complete P ′ into a set P with exactly d probes by adding d − ℓ times
the same probe on some input αi,j such that P ′ initially does not depend on αi,j . That is, if M ′

denotes the matrix such that
∑

p′∈P ′ p′ = a · M ′ · b, one could complete P ′ with any αi,j such that
m′

i,j = 0, so that P , with
∑

p∈P p = a · M · b still satisfies Condition 2 if P ′ initially satisfied the
condition.

Thus, let us consider an arbitrary set of d probes P = {p1, . . . , pd} and let us bound the
probability that P satisfies Condition 2. Let f =

∑d
i=1 pi. Let us first show that f has to contain

at least one ρ(i, j) (meaning that it appears an odd number of times in the sum). Let us assume
the contrary, so f does not contain any ρ(i, j). Every ρ(i, j) appears only once in the shares (in
the share ci precisely). Then, one can assume that every probe is made on the same share. Let us
assume (without loss of generality) that every probe is made on c0. If no probe contains any ρ(0, j),
then clearly P cannot satisfy Condition 2 as this means that each probe contain at most one α0,j ,
to P cannot contain more than d different α0,j . Hence, at least one (so at least two) probe contains
at least one ρ(0, j). We note that every probe has one of the following form: either it is exactly a
random rk, a share α0,j , a certain ρ(0, j), a certain ρ(0, j)+α0,j or ρ(0, j)+α0,j+αj,0, or a subsum
(starting from α0,0) of c0. Every form gives at most one α0,j with a new index j except probes on
subsums. However, in any subsum, there is always a random ρ(i, j) between α0,j and α0,j+1 and
one needs to get all the d+ 1 indices to get a set satisfying Condition 2. Then, it is clear that one
cannot achieve this unless there is a ρ(i, j) that does not cancel out in the sum, which is exactly
what we wanted to show. Now, let 1 ≤ k ≤ R be an integer and let us compute the probability
(over the Xi,j,k’s) that f contains rk. There exists some set S of pairs (i, j), such that f is the sum
of

∑
(i,j)∈S Xi,j,k · rk and some other expression not containing any Xi,j,k · rk. From the previous

point, S is not empty. Furthermore, as there are d + 1 outputs c0, . . . , cd and as there are only d
probes, S cannot contain all the possible pairs (i, j), and therefore, all the random variables Xi,j,k

for (i, j) ∈ S are mutually independent. Therefore,
∑

(i,j)∈S Xi,j,k is 1 with probability 1/2 and
f functionally depends on the random rk with probability 1/2. As there are R possible random
bits, f does not functionally depend on any rk (and then P satisfies Condition 2) with probability
(1/2)R.

There are N possibles probes with

N ≤
d · (d+ 1)

2
+R+ (R+ 2) ·

d · (d − 1)

2
≤ (R+ 3) ·

d · (d+ 1)

2
,

as every ρ contains at most R random bits rk. Also, there are
(N

d

)
possible sets P = {p1, . . . , pd}.

Therefore, by union bound, the above algorithm is not secure (so there is an attack) with probability
at most (

N

d

)
/2R ≤

(
(R+ 3) · d · (d+ 1)/2

d

)
· 2−R

which concludes the proof of Lemma 4.4.5.

Theorem 4.4.6. For some R = O(d · log d), there exists a choice of ρ(i, j) such that Algorithm 3
is a d-private d-compression algorithm for multiplication, when d → ∞.

We just need to remark that for some R = O(d · log d), the probability that Algorithm 3 is
d-private, according to Lemma 4.4.5 is non-zero.
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Proof. We remark that a random algorithm as defined in Algorithm 3 and Lemma 4.4.5 is secure
with probability at least

1−

(
(R+ 3) · d · (d+ 1)/2

d

)
· 2−R ≥ 1− ((R+ 3) · d · (d+ 1)/2)d · 2−R

= 1− 2d·log((R+3)·d·(d+1)/2)−R.

When this probability is greater than 0, then there exists necessarily a choice of ρ(i, j) leading to
a secure algorithm. This condition can be rewritten as:

d · log((R+ 3) · d · (d+ 1)/2)− R < 0.

Let us take R = K · d · log d − 3 with K some constant to be fixed later. As d · (d+ 1)/2 ≤ d2, we
have

d · log((R+ 3) · d · (d+ 1)/2)− R ≤ d · log(K · d3 · log d)− K · d · log d+ 3

= d · ((3− K) · log d+ logK + log log d) + 3

When K is large enough, this is always negative. Theorem 4.4.6 easily follows.

4.5 New Construction

The goal of this section is to propose a new d-private multiplication algorithm. Compared to the
construction in [ISW03], our construction halves the number of required random bits. It is therefore
the most efficient existing construction of a d-private multiplication.

Some rationales behind our new construction may be found in the two following necessary
conditions deduced from a careful study of the original work of Ishai, Sahai and Wagner [ISW03].

Lemma 4.5.1. Let A(a, b; r) be a d-compression algorithm for multiplication. Let f be an inter-
mediate result taking the form f = a⊺ · M · b + s⊺ · r. Let t denote the greatest Hamming weight
of an element in the vector subspace generated by the rows of M or by the columns of M . If
HW(s) < t − 1, then A(a, b; r) is not d-private.

Proof. By definition of s, the value a⊺ · M · b can be recovered by probing f and then each of the
HW(s) < t − 1 random bits on which s⊺ · r functionally depends and by summing all these probes.
Let P1 = {f, p1, . . . , pj} with j < t − 1 denote the set of these at most t − 1 probes. Then, we just

showed that f +
∑j

i=1 pi = a⊺ · M · b.

To conclude the proof, we want to argue that there is a set of at most d − (t − 1) probes
P2 = {p′

1, . . . , p′
k} such that f +

∑j
i=1 pi +

∑k
ℓ=1 p′

ℓ = a⊺ · M ′ · b, where M ′ is a matrix such that
ud+1 is in its row space or in its column space. If such a set P2 exists, then the set of probes
P1 ∪ P2 (whose cardinality is at most d) satisfies Condition 1, and then A is not d-private, via
Theorem 4.3.1.

We now use the fact that there is a vector of Hamming weight t in the row space or in the column
space of M . We can assume (without loss of generality) that there exists a vector w ∈ Fd+1

2 of
Hamming weight t in the column subspace of M , so that w =

∑
j∈J mj , with J ⊆ {0, . . . , d} and

mj the j-th column vector of M . Let i1, . . . , id+1−t denote the indices i of w such that wi = 0.
Then, let j ∈ J , we claim that P2 = {αi1,j , . . . , αid+1−t,j} allows us to conclude the proof. Please
note that all these values are probes of intermediate values of A.
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α̂0,0 r0,1 r0,2 r0,3 r0,4 r0,5 r0,6

α̂1,1 (r0,1 α̂0,1) r1,2 r1,3 r1,4 r1,5 r1,6

α̂2,2 (r0,2 α̂0,2) (r1,2 α̂1,2) r2,3 r2,4 r2,5 r2,6

α̂3,3 (r0,3 α̂0,3) (r1,3 α̂1,3) (r2,3 α̂2,3) r3,4 r3,5 r3,6

α̂4,4 (r0,4 α̂0,4) (r1,4 α̂1,4) (r2,4 α̂2,4) (r3,4 α̂3,4) r4,5 r4,6

α̂5,5 (r0,5 α̂0,5) (r1,5 α̂1,5) (r2,5 α̂2,5) (r3,5 α̂3,5) (r4,5 α̂4,5) r5,6

α̂6,6 (r0,6 α̂0,6) (r1,6 α̂1,6) (r2,6 α̂2,6) (r3,6 α̂3,6) (r4,6 α̂4,6) (r5,6 α̂5,6)

Figure 4.2: ISW construction for d = 6, with α̂i,j = αi,j + αj,i

α̂0,0 (r0,6 α̂0,6) (r0,5 α̂0,5) (r0,4 α̂0,4) (r0,3 α̂0,3) (r0,2 α̂0,2) (r0,1 α̂0,1)
α̂1,1 (r1,6 α̂1,6) (r1,5 α̂1,5) (r1,4 α̂1,4) (r1,3 α̂1,3) (r1,2 α̂1,2) r0,1

α̂2,2 (r2,6 α̂2,6) (r2,5 α̂2,5) (r2,4 α̂2,4) (r2,3 α̂2,3) r1,2 r0,2

α̂3,3 (r3,6 α̂3,6) (r3,5 α̂3,5) (r3,4 α̂3,4) r2,3 r1,3 r0,3

α̂4,4 (r4,6 α̂4,6) (r4,5 α̂4,5) r3,4 r2,4 r1,4 r0,4

α̂5,5 (r5,6 α̂5,6) r4,5 r3,5 r2,5 r1,5 r0,5

α̂6,6 r5,6 r4,6 r3,6 r2,6 r1,6 r0,6

Figure 4.3: First step of our new construction for d = 6, with α̂i,j = αi,j + αj,i

Indeed, we have f +
∑j

i=1 pi +
∑d+1−t

k=1 αik,j = a⊺ · M ′ · b where all coefficients of M ′ are the
same as coefficients of M except for coefficients in positions (i1, j), . . . , (id+1−t, j) which are the
opposite, and now

∑
j∈J m′

j = ud+1, where m′
j is the j-th column vector of M ′. Lemma 4.5.1

easily follows.

In our construction, we satisfy the necessary condition in Lemma 4.5.1 by ensuring that any
intermediate result that functionally depends on t shares of a (resp. of b) also functionally depends
on at least t − 1 random bits.

The multiplication algorithm of Ishai, Sahai and Wagner is the starting point of our construc-
tion. Before exhibiting it, we hence start by giving the basic ideas thanks to an illustration in
the particular case d = 6. In Figure 4.2 we recall the description of ISW already introduced in
Section 4.2.3.

The first step of our construction is to order the expressions α̂i,j differently. Precisely, to
compute the output share ci (which corresponds, in ISW, to the sum ri,i,+

∑
j<i(rj,i+α̂j,i)+

∑
j>i ri,j

from left to right), we process ri,i,+
∑

j<d−i(ri,d−j+α̂i,j)+
∑

16j6i rd−j,i from left to right. Of course,
we also put particular care to satisfy the necessary condition highlighted by Lemma 4.5.1. This
leads to the construction illustrated in Figure 4.3.

Then, the core idea is to decrease the randomness cost by reusing some well chosen random bit
to protect different steps of the processing. Specifically, for any even positive number k, we show
that replacing all the random bits ri,j such that k = j − i with a fixed random bit rk preserves
the d-privacy of ISW algorithm. Note, however, that the computations then have to be performed
with a slightly different bracketing in order to protect the intermediate variables which involve the
same random bits. The obtained construction is illustrated in Figure 4.4.

Finally, we suppress from our construction the useless repetitions of random bits that appear at
the end of certain computations. Hence, we obtain our new construction, illustrated in Figure 4.5.

Before proving that this scheme is indeed d-private, we propose a formal description in Algo-
rithm 4. As can be seen, this new scheme involves 3d2/2 + d(d + 2)/4 + 2d sums if d is even and
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α̂0,0 (r0,6 α̂0,6 r5 α̂0,5) (r0,4 α̂0,4 r3 α̂0,3) (r0,2 α̂0,2 r1 α̂0,1)
α̂1,1 (r1,6 α̂1,6 r5 α̂1,5) (r1,4 α̂1,4 r3 α̂1,3) (r1,2 α̂1,2) r1
α̂2,2 (r2,6 α̂2,6 r5 α̂2,5) (r2,4 α̂2,4 r3 α̂2,3) r1,2 r0,2

α̂3,3 (r3,6 α̂3,6 r5 α̂3,5) (r3,4 α̂3,4) r3 r3 r3
α̂4,4 (r4,6 α̂4,6 r5 α̂4,5) r3,4 r2,4 r1,4 r0,4

α̂5,5 (r5,6 α̂5,6) r5 r5 r5 r5 r5
α̂6,6 r5,6 r4,6 r3,6 r2,6 r1,6 r0,6

Figure 4.4: Second step of our new construction for d = 6, with α̂i,j = αi,j + αj,i

α̂0,0 (r0,6 α̂0,6 r5 α̂0,5) (r0,4 α̂0,4 r3 α̂0,3) (r0,2 α̂0,2 r1 α̂0,1)
α̂1,1 (r1,6 α̂1,6 r5 α̂1,5) (r1,4 α̂1,4 r3 α̂1,3) (r1,2 α̂1,2) r1
α̂2,2 (r2,6 α̂2,6 r5 α̂2,5) (r2,4 α̂2,4 r3 α̂2,3) r1,2 r0,2

α̂3,3 (r3,6 α̂3,6 r5 α̂3,5) (r3,4 α̂3,4) r3
α̂4,4 (r4,6 α̂4,6 r5 α̂4,5) r3,4 r2,4 r1,4 r0,4

α̂5,5 (r5,6 α̂5,6) r5
α̂6,6 r5,6 r4,6 r3,6 r2,6 r1,6 r0,6

Figure 4.5: Application of our new construction for d = 6, with α̂i,j = αi,j + αj,i

Algorithm 4 New construction for d-secure multiplication

Require: sharing (αi,j)0≤i,j≤d
Ensure: sharing (ci)0≤i≤d

1: for i = 0 to d do ⊲ Random Bits Generation
2: for j = 0 to d − i − 1 by 2 do

3: ri,d−j
$

← F2

4: for j = d − 1 downto 1 by 2 do

5: rj
$

← F2

6: for i = 0 to d do ⊲ Multiplication
7: ci ← αi,i

8: for j = d downto i + 2 by 2 do
9: ti,j ← ri,j + αi,j + αj,i + rj−1 + αi,j−1 + αj−1,i; ci ← ci + ti,j

10: if i Ó≡ d (mod 2) then
11: ti,i+1 ← ri,i+1 + αi,i+1 + αi+1,i; ci ← ci + ti,i+1

12: if i ≡ 1 (mod 2) then ⊲ Correction ri

13: ci ← ci + ri

14: else
15: for j = i − 1 downto 0 do ⊲ Correction ri,j

16: ci ← ci + rj,i

3(d2−1)/2+(d+1)2/4+3(d+1)/2 if d is odd. In every case, it also involves (d+1)2 multiplications
and requires the generation of d2/4+d random values in F2 if d is even and (d2−1)/4+d otherwise
(see Table 4.1 for values at several orders and comparison with ISW).

Proposition 4.5.2. Algorithm 4 is d-private.

Algorithm 4 was proven to be d-private with the verifier built by Barthe et al. [BBD+15b] up
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Table 4.1: Complexities of ISW, our new d-private compression algorithm for multiplication and our specific
algorithms at several orders

Complexities Algorithm ISW Algorithm 4 Algorithms 5, 6 and 7
Second-Order Masking

sums 12 12 10
products 9 9 9

random bits 3 3 2
Third-Order Masking

sums 24 22 20
products 16 16 16

random bits 6 5 4
Fourth-Order Masking

sums 40 38 30
products 25 25 25

random bits 10 8 5
dth-Order Masking

sums 2d(d+ 1)

{
d(7d+ 10)/4 (d even)

(7d+ 1)(d+ 1)/4 (d odd)
-

products (d+ 1)2 (d+ 1)2 -

random bits d(d+ 1)/2

{
d2/4 + d (d even)

(d2 − 1)/4 + d (d odd)
-

to order d = 6.
Furthermore, we propose hereafter a pen-and-paper proof.

Proof. Inspired from simulation-based proofs of multiplications in [RP10; CPRR14], our proof
consists in constructing two sets I and J of indices in [0, d] of size at most d and such that the
distribution of any d-tuple (v1, v2, . . . , vd) of intermediate variables can be perfectly simulated from
αI,J = (αi,j)i∈I,j∈J . This proves our statement as long as the cardinalities of I and J are smaller
than d+ 1. We now describe the construction of I and J .

Construction of the sets I and J .

Initially, I and J are empty. We fill them in the following specific order according to the possible
attacker’s probes.

1. for any observed variable αi,i, add i to I and i to J .

2. for any observed variable αi,j , add i to I and j to J .

3. for any observed variable rj , put j in I and j in J .

4. for any observed intermediate sum occurring during the computation of ci, assign from short-
est sums (in terms of number of terms) to longest sums:

• if i Ó∈ I, add i to I. Otherwise, if ci involves corrective terms (i.e., random bits not in
ti,j), consider them successively (from left to right). For a random of the form rj,i, if
j Ó∈ I, add j to I, otherwise, consider the next random. For a random of the form rj ,



4.5. NEW CONSTRUCTION 91

if j Ó∈ I, add j to I. If there are no more corrective terms to consider, or if ci does not
involve corrective terms, consider the involved ti,j in reverse order (from right to left).
Add to I the first index j that is not in I.

• if i Ó∈ J , add i in J . Otherwise, if ci involves corrective terms (i.e., random bits not
in ti,j),consider them successively (from left to right). For a random of the form rj,i, if
j Ó∈ J , add j to J , otherwise, consider the next random. For a random of the form rj ,
if j Ó∈ J , add j to J . If there are no more corrective terms to consider, or if ci does not
involve corrective terms, consider the involved ti,j in reverse order (from right to left).
Add to J the first index j that is not in J .

5. for any observed variable ri,j :

• if i Ó∈ I, add i to I, otherwise add j to I.

• if i Ó∈ J , add i to J , otherwise add j to J .

6. for any observed intermediate sum t occurring during the computation of ti,j we distinguish
two cases:

• t is a sum of at most 3 terms2:

– if i Ó∈ I, add i to I, otherwise add j to I.

– if i Ó∈ J , add i to J , otherwise add j to J .

• t is a sum of strictly more than 3 terms:

– if j − 1 Ó∈ I, add j − 1 to I. Otherwise, if i Ó∈ I, add i to I, otherwise add j to I.

– if j − 1 Ó∈ J , add j − 1 to J . Otherwise, if i Ó∈ J , add i to J , otherwise add j to J .

We can check that these categories cover all possible intermediate variables in our algorithm.
Moreover, each observation adds at most one index in I and one index in J . With at most d probes,
their cardinals hence cannot be greater than d.

Simulation phase.

Before simulating, we make the following useful observations.

(i). all variables whose expression involves ri,j are: ri,j , ti,j , ci, cj .

(ii). all variables whose expression involves rj−1 are: rj−1, tk,j , cj−1, ck, for any k 6 j − 2.

(iii). all variables whose expression involves both ri,j and rj−1 are: ci and ti,j .

We now prove that every observed value can be perfectly simulated with the input shares whose
indexes are among I and J .

1. any variable αi,i is trivially simulated thanks to the fact that i is in I and in J .

2. any variable αi,j is trivially simulated thanks to the fact that i is in I and j is in J .

3. any variable ri,j is assigned to a uniformly distributed random value, as it is the case in the
real algorithm.

2Note that the case where it involves only one term ri,j has already been treated.
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4. any variable rj is assigned to a uniformly distributed random value, as it is the case in the
real algorithm.

5. for any variable t of at most three terms manipulated during the computation of ti,j :

• if t is a sum of at most 3 terms (i.e., t = ri,j+αi,j or t = ri,j+αi,j+αj,i), then necessarily
we have i ∈ I and i ∈ J . Moreover :

– if j ∈ I and j ∈ J , t can be perfectly simulated with αi,j and αj,i thanks to the
indexes in I and J .

– otherwise, we show that t can be assigned to a random value. In particular, we show
that if t is non-random, we must have i, j ∈ I and i, j ∈ J . The variable t involves
ri,j . As noted in Observation (i), this variable can only appear either alone, in ci,
in cj , in another t′ of less than three terms part of ti,j , or in another t′ of strictly
more than three terms part of ti,j .

∗ ri,j appears alone: this probe involved i ∈ I and i ∈ J , and hence the probe of
t added j in I and j in J

∗ ri,j appears in an observed ci: this probe involved i ∈ I and i ∈ J , and hence
the probe of t added j in I and j in J

∗ ri,j appears in an observed cj : this probe involved j ∈ I and j ∈ J and hence
the probe of t added i in I and i in J

∗ ri,j appears in another observed t′ of less than three terms: the probe of two
variables t and t′ of this kind leads to first i ∈ I and i ∈ J and then j ∈ I and
j ∈ J

∗ ri,j appears in another observed t′ of strictly more than three terms: in this
case, t′ also involves the random rj−1. With Observation (ii), we know that
rj−1 can either be observed alone, in cj−1, in t′′ of more than three terms part
of tk,j or in ck. Once again, considering rj−1 or cj−1, and t and t′, we get that
j − 1, j, i ∈ I and j − 1, j, i ∈ J . Considering t′′ of more than three terms, or
ck, if k = i, we have already treated this case and we have i, j ∈ I and i, j ∈ J ,
otherwise, the variable involves rk,j . Once again thanks to Observation (i), we
know exactly in which variables of the protocol rk,j can be involved. It can be
checked that i, j, k, j − 1 are in I and in J for each variables that are not part
of ck′ or tk,j . Consequently, each other probe that does not imply i, j ∈ I and
i, j ∈ J are variables of these kinds. However, each of these variables involves
both rj−1 and rk′,j for a certain k′. To summarize, t has been queried, which
involves only ri,j , and the only other possible variables involve rj−1 and rℓ,j ,
where ℓ is the index of the line. Hence, the parity of the number of occurrences
of rj−1 is different from the parity of the number of occurrences of rℓ,j . This
ensures that it is impossible to get rid of rj−1 and all variables rℓ,j at the same
time. Therefore, in those cases t can be assigned to a random value.

• if t is a sum of strictly more than 3 terms:

– if i, j, j − 1 ∈ I and i, j, j − 1 ∈ J , then t can be simulated from the indexes in I and
J .

– t involves ri,j and rj−1. Observations (i) and (ii) provide us the variables in which
these random bits are involved. For all but four cases, we trivially have i, j, j −1 ∈ I
and i, j, j −1 ∈ J . Those four cases are the queries of (ri,j , t′) with t′ part of tk,j and
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Algorithm 5 Second-Order Compression
Algorithm

Require: sharing (αi,j)0≤i,j≤2
Ensure: sharing (ci)0≤i≤2

r0
$

← F2; r1 ← F2

c0 ← α0,0 + r0 + α0,2 + α2,0

c1 ← α1,1 + r1 + α0,1 + α1,0

c2 ← α2,2 + r0 + r1 + α1,2 + α2,1

Algorithm 6 Third-Order Compression Algorithm

Require: sharing (αi,j)0≤i,j≤3
Ensure: sharing (ci)0≤i≤3

r0
$

← F2; r1
$

← F2; r2
$

← F2; r3
$

← F2

c0 ← α0,0 + r0 + α0,3 + α3,0 + r1 + α0,2 + α2,0

c1 ← α1,1 + r2 + α1,3 + α3,1 + r1 + α1,2 + α2,1

c2 ← α2,2 + r3 + α2,3 + α3,2

c3 ← α3,3 + r3 + r2 + r0 + α0,1 + α1,0

involving strictly more than three terms, (c, c′), where c and c′ are part of ci, (t′, t′′)
with t′ part of ti,j and t′′ part of tk,j , where t′′ is assigned before t′, both involving
more than three terms, and finally, any other couple involving a part of ck.

∗ the cases (ri,j , t′) and (t′, t′′) imply the involvement of rk,j . Thanks to Observa-
tion (i), all possible cases can be exhausted, and we obtain i, k, j − 1, j ∈ I and
i, k, j − 1, j ∈ J .

∗ the case (c, c′) is particular. Indeed, we can assume that c is computed during
the computation of c′. We can hence safely assign t to a random variable if this
is the only case where ri,j and rj−1 have been involved.

∗ the query of a c, part of ck and involving rj−1 involves the variable rk,j . From
Observation (i), we can exhaust the possible cases. For each of these cases
except five, we have i, j, j − 1, k ∈ I and i, j, j − 1, k ∈ J . The five remaining
cases are (cj , cj), (cj , ck), (rk,j , ck), (ci, ck), (ti,j , ck). With the case involving cj ,
by construction we have that rk,j and ri,j appear after the addition of all the
terms of the form tj,ℓ. Consequently, this expression involves the term rj−1,j (if
i = j − 1, ti,j does not exist, and if k = j − 1, the probe of ck assures that we
have j −1 in I and J , hence we also get i, j ∈ I and i, j ∈ J). Using Observation
(i), we find out that the only way not to have i, j, j − 1 ∈ I and i, j, j − 1 ∈ I
is to make another probe to cj . However, this case is similar to the one we just
observed: it is safe to randomly assign t. For any another case, the random rk,j

reappears, and we must hence query another variable to get rid of it. The only
possibility is to query ck once more. Hence t can be randomly assigned.

4.6 Optimal Small Cases

We propose three secure compression algorithms using less random bits than the generic solution
given by ISW and than our new solution for the specific small orders d = 2, 3 and 4. These
algorithms actually use only the optimal numbers of random bits for these small quantity of probes,
as proven in Section 4.4. Furthermore, since they all are dedicated to a specific order d (among
2, 3, and 4), we got use of the verifier proposed by Barthe et al. in [BBD+15b] to formally prove
their correctness and their d-privacy.

Proposition 4.6.1. Algorithms 5, 6, and 7 are correct and respectively 2, 3 and 4-private.
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Algorithm 7 Fourth-Order Compression Algorithm

Require: sharing (αi,j)0≤i,j≤4
Ensure: sharing (ci)0≤i≤4

r0
$

← F2; r1
$

← F2; r2
$

← F2; r3
$

← F2; r4
$

← F2

c0 ← α0,0 + r0 + α0,1 + α1,0 + r1 + α0,2 + α2,0

c1 ← α1,1 + r1 + α1,2 + α2,1 + r2 + α1,3 + α3,1

c2 ← α2,2 + r2 + α2,3 + α3,2 + r3 + α2,4 + α4,2

c3 ← α3,3 + r3 + α3,4 + α4,3 + r4 + α3,0 + α0,3

c4 ← α4,4 + r4 + α4,0 + α0,4 + r0 + α4,1 + α1,4

Table 4.1 (Section 4.5) compares the amount of randomness used by the new construction
proposed in Section 4.5 and by our optimal small algorithms. We recall that each of them attains
the lower bound proved in Section 4.4.

4.7 Composition

Our new algorithms are all d-private, when applied on the outputs of a multiplicative encoder
parameterized at order d. We now aim to show how they can be involved in the design of larger
functions (e.g., block ciphers) to achieve a global d-privacy. In [BBD+15a], Barthe et al. introduce
and formally prove a method to compose small d-private algorithms (a.k.a., gadgets) into d-private
larger functions. The idea is to carefully refresh the sharings when necessary, according to the
security properties of the gadgets. Before going further into the details of this composition, we
recall some security properties used in [BBD+15a].

4.7.1 Compositional Security Notions

Before stating the new security definitions, we first need to introduce the notion of simulatability.
For the sake of simplicity, we only state this notion for multiplication algorithm, but this can easily
be extended to more general algorithms.

Definition 4.7.1. A set P = {p1, . . . , pℓ} of ℓ probes of a multiplication algorithm can be simulated
with at most t shares of each input, if there exists two sets I = {i1, . . . , it} and J = {j1, . . . , jt}
of t indices from {0, . . . , d} and a random function f taking as input 2t bits and outputting ℓ bits
such that for any fixed bits (ai)0≤i≤d and (bj)0≤j≤d, the distributions {p1, . . . , pℓ} (which implicitly
depends on (ai)0≤i≤d, (bj)0≤j≤d, and the random bits used in the multiplication algorithm) and
{f(ai1 , . . . , ait , bj1 , . . . , bjt)} are identical.

We write f(ai1 , . . . , ait , bj1 , . . . , bjt) = f(aI , bJ).

Definition 4.7.2. An algorithm is d-non-interferent (or d-NI) if and only if every set of at most d
probes can be simulated with at most d shares of each input.

While this notion might be stronger than the notion of security we used, all our concrete
constructions in Sections 4.5 and 4.6 satisfy it. The proof of Algorithm 4 is indeed a proof by
simulation, while the small cases in Section 4.6 are proven using the verifier by Barthe et al.
in [BBD+15b], which directly proves NI.

Definition 4.7.3. An algorithm is d-tight non-interferent (or d-TNI) if and only if every set of
t 6 d probes can be simulated with at most t shares of each input.
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While this notion of d-tight non-interference was assumed to be stronger than the notion of
d-non-interference in [BBD+15a], we show hereafter that these two security notions are actually
equivalent. In particular, this means that all our concrete constructions are also TNI.

Proposition 4.7.4. (d-NI ⇔ d-TNI) An algorithm is d-non-interferent if and only if it is d-tight
non-interferent.

Proof. The right-to-left implication is straightforward from the definitions. Let us thus consider
the left-to-right direction.

For that purpose, we first need to introduce a technical lemma. Again, for the sake of simplic-
ity, we only consider multiplication algorithm, with only two inputs, but the proof can easily be
generalized to any algorithm.

Lemma 4.7.5. Let P = {p1, . . . , pℓ} be a set of ℓ probes which can be simulated by the sets (I, J)
and also by the sets (I ′, J ′). Then it can also be simulated by (I ∩ I ′, J ∩ J ′).

Proof. Let f the function corresponding to I, J and f ′ the function corresponding to I ′, J ′. We
have that for any bits (ai)0≤i≤d and (bj)0≤j≤d, the distributions {p1, . . . , pℓ}, {f(aI , bJ)}, and
{f ′(aI′ , bJ ′)} are identical. Therefore, f does not depend on ai nor bj for i ∈ I \ I ′ and j ∈ J \ J ′,
since f ′ does not depend on them. Thus, P can be simulated by only shares from I ∩ I ′, J ∩ J ′

(using the function f where the inputs corresponding to ai and bj for i ∈ I \ I ′ and j ∈ J \ J ′ are
just set to zero, for example).

We now assume that an algorithm A is d-NI, that is, every set of at most d probes can be
simulated with at most d shares of each input. Now, by contradiction, let us consider a set P
with minimal cardinality t < d of probes on A, such that it cannot be simulated by at most t
shares of each input. Let us consider the sets I, J corresponding to the intersection of all sets I ′, J ′

(respectively) such that the set P can be simulated by I ′, J ′. The sets I, J also simulate P thanks
to Lemma 4.7.5. Furthermore, by hypothesis, t < |I| ≤ d or t < |J | ≤ d. Without loss of generality,
let us suppose that |I| > t.

Let i∗ be an arbitrary element of {0, . . . , d} \ I (which is not an empty set as |I| ≤ d). Let us
now consider the set of probes P ′ = P ∪ {ai∗}. By hypothesis, P ′ can be simulated by at most
|P ′| = t+ 1 shares of each input. Let I ′, J ′ two sets of size at most t+ 1 simulating P ′. These two
sets also simulate P ⊆ P ′, therefore, I ∩ I ′, J ∩ J ′ also simulate P . Furthermore, i∗ ∈ I, as all the
shares ai are independent. Since i∗ /∈ I, |I ∩ I ′| ≤ t and I ∩ I ′ ( I, which contradicts the fact that
I and J were the intersection of all sets I ′′, J ′′ simulating P .

Definition 4.7.6. An algorithm A is d-strong non-interferent (or d-SNI) if and only if for every
set I of t1 probes on intermediate variables (i.e., no output wires or shares) and every set O of t2
probes on output shares such that t1 + t2 6 d, the set I ∪ O of probes can be simulated by only t1
shares of each input.

The composition of two d-SNI algorithms is itself d-SNI, while that of d-TNI algorithms is not
necessarily d-TNI. This implies that d-SNI gadgets can be directly composed while maintaining the
d-privacy property, whereas a so-called refreshing gadget must sometimes be involved before the
composition of d-TNI algorithms. Since the latter refreshing gadgets consume the same quantity
of random values as ISW, limiting their use is crucial if the goal is to reduce the global amount of
randomness.
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Figure 4.6: AES ·254

4.7.2 Building Compositions with our New Algorithms

In [BBD+15a], the authors show that the ISW multiplication is d-SNI and use it to build secure
compositions. Unfortunately, our new multiplication algorithms are d-TNI but not d-SNI. There-
fore, as discussed in the previous section, they can replace only some of the ISW multiplications in
secure compositions. Let us take the example of the AES inversion that is depicted in [BBD+15a].
We can prove that replacing the first (A7) and the third (A2) ISW multiplications by d-TNI multi-
plications (e.g., our new constructions) and moving the refreshing algorithm R in different locations
preserves the strong non-interference of the inversion, while benefiting from our reduction of the
randomness consumption.

The tweaked inversion is given in Figure 4.6. ⊗ denotes the d-SNI ISW multiplication, ·α

denotes the exponentiation to the power α, Ai refers to the i-th algorithm or gadget (indexed from
left to right), R denotes the d-SNI refreshing gadget, Ii denotes the set of internal probes in the
i-th algorithm, Si

j denotes the set of shares from the j inputs of algorithm Ai used to simulate all
further probes. Finally, x denotes the inversion input and O denotes the set of probes at the output
of the inversion. The global constraint for the inversion to be d-SNI (and thus itself composable) is
that: |S8 ∪ S9| 6

∑
16i69 |Ii|, i.e., all the internal probes can be perfectly simulated with at most∑

16i69 |Ii| shares of x.

Proposition 4.7.7. The AES inversion given in Figure 4.6 with A1 and A4 being d-SNI multipli-
cations and A2 and A7 being d-TNI multiplications is d-SNI.

Proof. From the d-probing model, we assume that the total number of probes used to attack the
inversion is limited to d, that is

∑
16i69 |Ii|+ |O| 6 d. As in [BBD+15a], we build the proof from

right to left by simulating each algorithm. Algorithm A1 is d-SNI, thus |S1
1 |, |S1

2 | 6 |I1|. Algorithm
A2 is d-TNI, thus |S2

1 |, |S2
2 | 6 |I1 + I2|. As explained in [BBD+15a], since Algorithm A3 is affine,

then |S3| 6 |S2
1 + I3| 6 |I1 + I2 + I3|. Algorithm A4 is d-SNI, thus |S4

1 |, |S4
2 | 6 |I4|. Algorithm

A5 is d-SNI, thus |S5| 6 |I5|. Algorithm A6 is affine, thus |S6| 6 |S5 + I6| 6 |I5 + I6|. Algorithm
A7 is d-TNI, thus |S7

1 |, |S7
2 | 6 |S6 + S4

1 + I7| 6 |I4 + I5 + I6 + I7|. Algorithm A8 is d-SNI, thus
|S8| 6 |I8|. Algorithm A9 is affine, thus |S9| 6 |I9 + S8| 6 |I8 + I9|. Finally, all the probes of
this inversion can be perfectly simulated from |S9 ∪ S7

1 | 6 |I4 + I5 + I6 + I7 + I8 + I9| shares of
x, which proves that the inversion is still d-SNI.

From Proposition 4.7.7, our new constructions can be used to build d-SNI algorithms. In the
case of the AES block cipher, half of the d-SNI ISW multiplications can be replaced by ours while
preserving the whole d-SNI security.
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4.8 New Automatic Tool for Finding Attacks

In this section, we describe a new automatic tool for finding attacks on compression algorithms for
multiplication which is developed in Sage (Python) [Sage]. Compared to the verifier developed by
Barthe et al. [BBD+15b] and based on Easycrypt, to find attacks in practice, our tool is not as
generic as it focuses on compression algorithms for multiplication and its soundness is not perfect
(and relies on some heuristic assumption). Nevertheless, it is order of magnitudes faster.

A non-perfect soundness means that the algorithm may not find an attack and can only guar-
antee that there does not exist an attack except with probability ε. We believe that, in practice,
this limitation is not a big issue as if ε is small enough (e.g., 2−20), a software bug is much more
likely than an attack on the scheme. Furthermore, the running time of the algorithm depends
only linearly on log(1/ε). Concretely, for all the schemes we manually tested for d = 3, 4, 5 and 6,
attacks on invalid schemes were found almost immediately. If not used to formally prove schemes,
our tool can at least be used to quickly eliminate (most) incorrect schemes, and enables to focus
efforts on trying to prove “non-trivially-broken” schemes.

4.8.1 Algorithm of the Tool

From Theorem 4.3.1, in order to find an attack P = {p1, . . . , pℓ} with ℓ ≤ d, we just need to find a
set P = {p1, . . . , pℓ} satisfying Condition 1. If no such set P exists, the compression algorithm for
multiplication is d-private.

A naive way to check the existence of such a set P is to enumerate all the sets of d probes. How-
ever, there are

(N
d

)
such sets, with N being the number of intermediate variables of the algorithm.

For instance, to achieve 4-privacy, our construction (see Section 4.6) uses N = 81 intermediate
variables, which makes more than 220 sets of four variables to test. In [BBD+15b], the authors
proposed a faster way of enumerating these sets by considering larger sets which are still indepen-
dent from the secret. However, their method falls short for the compression algorithms proposed
here as soon as d > 6, as shown in Section 4.8.4. Furthermore even for d = 3, 4, 5, their tool takes
several minutes to prove security (around 5 minutes to check security of Algorithm 4 with d = 5)
or to find an attack for incorrect schemes, which prevent people from quickly checking the validity
of a newly designed scheme.

To counteract this issue, we design a new tool which is completely different and which borrows
ideas from coding theory to enumerate the sets of d or less intermediate variables. Let γ1, . . . , γν

be all the intermediate results whose expression functionally depends on at least one random and
γ′
1, . . . , γ′

ν′ be the other intermediate results that we refer to as deterministic intermediate results
(ν + ν ′ = N). We remark that all the αi,j = aibj are intermediate results and that no intermediate
result can functionally depend on more than one shares’ product αi,j = aibj without also depending
on a random bit. Otherwise, the compression algorithm would not be d-private, according to
Lemma 4.5.1. As this condition can be easily tested, we now assume that the only deterministic
intermediate results are the αi,j = aibj that we refer to as γ′

k in the following. As an example,
intermediate results of Algorithm 5 are depicted in Table 4.2.

An attack set P = {p1, . . . , pℓ} can then be separated into two sets Q = {γi1 , . . . , γiδ
} and

Q′ = {γi′

1
, . . . , γi′

δ′
}, with ℓ = δ + δ′ ≤ d. We remark that necessarily

∑
p∈Q p does not functionally

depend on any random value. Actually, we even have the following lemma:

Lemma 4.8.1. Let A(a, b; r) be a compression algorithm for multiplication. Then A is d-private
if and only if there does not exist a set of non-deterministic probes Q = {γi1 , . . . , γiδ

} with δ 6 d
such that

∑
p∈Q p = a ⊺ · M · b where the column space or the row space of M contains a vector of

Hamming weight at least δ + 1.
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Table 4.2: Intermediate results of Algorithm 5

non-deterministic (ν = 12) deterministic (ν ′ = 9)

γ1 = a0b0 + r0 γ7 = c1 γ′
1 = a0b0 γ′

6 = a1b0
γ2 = a0b0 + r0 + a0b2 γ8 = r1 γ′

2 = a0b2 γ′
7 = a2b2

γ3 = c0 γ9 = a2b2 + r1 γ′
3 = a2b0 γ′

8 = a1b2
γ4 = r0 γ10 = a2b2 + r1 + r0 γ′

4 = a1b1 γ′
9 = a2b1

γ5 = a1b1 + r1 γ11 = a2b2 + r1 + r0 + a1b2 γ′
5 = a0b1

γ6 = a1b1 + r1 + a0b1 γ12 = c2

Furthermore, if such a set Q exists, there exists a set {γi′

1
, . . . , γi′

δ′
}, with δ + δ′ ≤ d, such that

P = Q ∪ Q′ is an attack.
Moreover, the lemma is still true when we restrict ourselves to sets Q such that there exists no

proper subset Q̂ ( Q such that
∑

p∈Q̂ p does not functionally depend on any random.

Proof. The two first paragraphs of the lemma can be proven similarly to Lemma 4.5.1. Thus, we
only need to prove its last part.

By contradiction, let us suppose that there exists a set Q of non-deterministic probes Q =
{γi1 , . . . , γiδ

} such that
∑

p∈Q p = a ⊺ · M · b and the column space (without loss of generality,
by symmetry of the ai’s and bi’s) of M contains a vector of Hamming weight at least δ + 1, but
such that any subset Q̂ ( Q where

∑
p∈Q̂ p that does not functionally depend on any random.

Consequently, the sum
∑

p∈Q̂ p = a ⊺ · M̂ · b, is such that the column space (still without loss of

generality) of M̂ does not contain any vector of Hamming weight at least |Q̂| + 1.
First, let us set M̄ = M̂ + M (over F2), so

∑
p∈Q\Q̂ p = a ⊺ · M̄ · b, as

∑
p∈Q̂ p +

∑
p∈Q\Q̂ =

∑
p∈Q p = a ⊺ · M · b and let δ̂ = |Q̂| and δ̄ = |Q \ Q̂| = δ − δ̂. Let also ω, ω̂, and ω̄ be the

maximum Hamming weights of the vectors in the column space of M , M̂ , and M̄ , respectively.
Since M = M̂ + M̄ , then ω ≤ ω̂+ ω̄ and since ω > δ+1, and δ = δ̂ + δ̄, then ω̂ > δ̂ or ω̄ > δ̄. We
set Q̃ = Q̂ if ω̂ > δ̂, and Q̃ = Q \ Q̂ otherwise. According to the definitions of δ̂ and ω̄ , we have
that Q̃ ( Q is such that

∑
p∈Q p = a ⊺ · M̃ · b where the column space of M̃ contains a vector of

Hamming weight at least |Q̃| + 1. This contradicts the definition of Q and concludes the proof of
the lemma.

To quickly enumerate all the possible attacks, we first enumerate the sets Q = {γi1 , . . . , γiδ
} of

size δ ≤ d such that
∑

p∈Q p does not functionally depend on any random bit (and no proper subset
of Q̂ ( Q is such that

∑
p∈Q̂ p does not functionally depend on any random bit), using information

set decoding, recalled in the next section. Then, for each possible set Q, we check if the column
space or the row space of M (as defined in the previous lemma) contains a vector of Hamming
weight at least δ + 1. A naive approach would consist in enumerating all the vectors in the row
space and the column space of M . Our tool however uses the two following facts to perform this
test very quickly in most cases:

• when M contains at most δ non-zero rows and at most δ non-zero columns, Q does not yield
an attack;

• when M contains exactly δ +1 non-zero rows (resp. columns), that we assume to be the first
δ + 1 (without loss of generality), Q yields an attack if and only if the vector (u ⊺

δ+1,0
⊺

d−δ)
is in the row space (resp. (uδ+1,0d−δ) is in the column space) of M (this condition can be
checked in polynomial time in d).
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4.8.2 Information Set Decoding and Error Probability

We now explain how to perform the enumeration step of our algorithm using information set
decoding. Information set decoding was introduced in the original security analysis of the McEliece
cryptosystem in [Pra62; McE78] as a way to break the McEliece cryptosystem by finding small code
words in a random linear code. It was further explored by Lee and Brickell in [LB88]. We should
point out that since then, many improvements were proposed, e.g., in [Leo88; Ste88]. However, for
the sake of simplicity and because it already gives very good results, we use the original information
set decoding algorithm. Furthermore, it is not clear that the aforementioned improvements also
apply in our case, as the codes we consider are far from the Singleton bound.

We assume that random bits are denoted r1, . . . , rR. For each intermediate γk containing some
random bit, we associate the vector τ ∈ ZR

2 , where τi = 1 if and only if γk functionally depends on
the random bit ri. We then consider the matrix Γ ∈ ZR×ν

2 whose k-th column is τ . For instance,
for Algorithm 5, we have:

γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8 γ9 γ10 γ11 γ12

Γ =

(
1 1 1 1 0 0 0 0 1 1 1 1
0 0 0 0 1 1 1 1 0 1 1 1

)
r0
r1

.

For every δ ≤ d, enumerating the sets Q = {γi1 , . . . , γiδ
}, such that

∑
p∈Q p does not functionally

depend on any random, consists in enumerating the vectors x of Hamming weight δ such that Γ·x =
0 (specifically, {i1, . . . , iδ} are the coordinates of the non-zero components of x). Furthermore, we
can restrict ourselves to vector x such that no vector x̂ < x satisfies Γ · x̂ = 0 (where x̂ < x means
that x̂ Ó= x and for any 1 ≤ i ≤ ν, if xi = 0 then x̂i = 0), since we can restrict ourselves to sets
Q such that no proper subset Q̂ ( Q is such that

∑
p∈Q̂ p does not functionally depend on any

random bit. This is close to the problem of finding code words x of small Hamming weight for the
linear code of parity matrix Γ and we show this can be solved using information set decoding.

The basic idea is the following one. We first apply a row-reduction to Γ. Let us call the resulting
matrix Γ′. We remark that, for any vector x, Γ · x = 0 if and only if Γ′ · x = 0 and thus we can use
Γ′ instead of Γ in our problem. We assume in a first time that the first R columns of Γ are linearly
independent (recall that the number ν of columns of Γ is much larger than its number R of rows), so
that the R first columns of Γ′ forms an identity matrix. Then, for any k∗ > R, if the k∗-th column
of Γ′ has Hamming weight at most d − 1, we can consider the vector x defined as xk∗ = 1, xk = 1
when Γ′

k,k∗ = 1, and xk = 0 otherwise; and this vector satisfies the conditions we were looking for:
its Hamming weight is at most d and Γ′ · x = 0. That way, we have quickly enumerated all the
vectors x of Hamming weight at most d such that Γ′ · x = 0 and with the additional property that
xk = 0 for all k > R except for at most3 one index k∗. Without the condition Γ′ · x = 0, there are
(ν − R+1) ·

∑d−1
i=0

(R
i

)
+

(R
d

)
such vectors, as there are

∑d
i=0

(R
i

)
vectors x such that HW(x) ≤ d and

xk = 0 for every k > R, and there are (ν − R) ·
∑d−1

i=0

(R
i

)
vectors x such that HW(x) ≤ d and xk = 1,

for a single k > R.
In other words, using row-reduction, we have been able to check (ν − R + 1) ·

∑d−1
i=0

(R
i

)
+

(R
d

)

possible vectors x among at most
∑d

i=1

(ν
i

)
vectors which could be used to mount an attack, by

testing at most ν − R vectors.4

3We have seen that for one index k∗, but it is easy to see that, as the first R columns of Γ′ form an identity
matrix, there does not exist such vector x so that xk = 0 for all k > R anyway.

4There are exactly
∑d

i=1

(
ν

i

)
vectors of Hamming weight at most d, but here we recall that we only consider

vectors x satisfying the following additional condition: there is no vector x̂ < x such that Γ · x̂ = 0. We also remark
that the vectors x generated by the described algorithm all satisfy this additional condition.
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Table 4.3: Complexities of exhibiting an attack at several orders

Time to find an attack
Order Target Algorithm Verifier [BBD+15b] New tool

d = 2 tweaked Algorithm 5 less than 1 ms less than 10 ms
d = 3 tweaked Algorithm 6 36 ms less than 10 ms
d = 4 tweaked Algorithm 7 108 ms less than 10 ms
d = 5 tweaked Algorithm 4 6.264 s less than 100 ms
d = 6 tweaked Algorithm 4 26 min less than 300 ms

Then, we can randomly permute the columns of Γ and repeat this algorithm. Each iteration
would find an attack (if there was one attack) with probability at least

(
(ν − R + 1) ·

∑
d−1

i=0

(
R

i

)
+

(
R

d

))
/

∑
d

i=1

(
ν

i

)
.

Therefore, after K iterations, the error probability is only

ε ≤

(
1−

(ν − R + 1) ·
∑d−1

i=0

(R
i

)
+

(R
d

)
∑d

i=1

(ν
i

)
)K

,

and the required number of iterations is linear with log(1/ε), which is what we wanted.
Now, we just need to handle the case when the first R columns of Γ are not linearly independent,

for some permuted matrix Γ at some iteration. We can simply redraw the permutation or taking
the pivots in the row-reduction instead of taking the first R columns of Γ. In both cases, this may
slightly bias the probability. We make the heuristic assumption that the bias is negligible. To sup-
port this heuristic assumption, we remark that if we iterate the algorithm for all the permutations
for which the first R columns of Γ are not linearly independent, then we would enumerate all the
vectors x we are interested in, thanks to the additional condition that there is no vector x̂ < x

such that Γ · x̂ = 0.

4.8.3 The Tool

The tool takes as input a description of a compression algorithm for multiplication similar to the
ones we used in this chapter (see Figure 4.2 for instance) and the maximum error probability ε we
allow, and tries to find an attack. If no attack is found, then the scheme is secure with probability
1 − ε. The tool can also output a description of the scheme which can be fed off into the tool
in [BBD+15b].

4.8.4 Complexity Comparison

It is difficult to compare the complexity of our new tool to the complexity of the tool proposed
in [BBD+15b] since it strongly depends on the tested algorithm. Nevertheless, we try to give some
values for the verification time of both tools when we intentionally modify our constructions to
yield an attack. From order 2 to 4, we start with our optimal constructions and we just invert two
random bits in an output share ci. Similarly, for orders 5 and 6, we use our generic construction and
apply the same small modification. The computations were performed on a Intel(R) Core(TM) i5-
2467M CPU @ 1.60GHz and the results are given in Table 4.3. We can see that in all the considered
cases, our new tool reveals the attack in less than 300 ms while the generic verifier of Barthe et al.
needs up to 26 minutes for order d = 6.



Chapter 5

Private Veto with Constant
Randomness

Quando você diz sim para outros, certifique-se de não estar dizendo não a si mesmo.

Paulo Coelho

In this chapter, we formalize and study the problem of private veto protocols. A private veto
protocol allows a set of players to test whether there is general agreement on a given decision while
keeping each player’s choice secret. We consider the problem of n honest-but-curious players with
private bits x1, . . . , xn who wish to compute their AND value x1 ∧ · · · ∧ xn in such a way that,
after the execution of the protocol, no player obtains any information about the inputs of the
remaining players (other than what can be deduced from their own inputs and the AND value). This
problem can be seen as the counterpart of the classical problem of the secure XOR evaluation. The
study of private veto protocols can then be seen a first step towards the secure evaluation of any
Boolean function, through its expression in an algebraic normal form. In distributed protocols, it is
natural to consider randomness as a resource like space and time and we here study the amount of
randomness needed in such private protocols. However, the problem of the randomness complexity
of the secure evaluation of private veto protocols was never tackled specifically. We propose in
this chapter a protocol that requires as few as 6 random bits for three players and we present a
protocol for all n ∈ N with less than 26 random bits. In the particular case where n belongs to
the infinite geometric progression of integers {3 · 2i, i ∈ N}, our proposal uses only 12 random bits.
The conception of our protocols is modular which allows us to present the general solution in a
recursive way (with simplified correctness and privacy proofs).

5.1 Introduction

A private veto protocol should only reveal whether there is consensus, rather than an individual
count of the number of agreeing and disagreeing players. We propose several concrete constructions
for this problem and prove their security in the information-theoretic security model. We notably
propose a protocol that requires as few as 6 random bits for three players and a generic protocol
that constantly uses 12 random bits for an unbounded number of players (of a particular form).
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5.1.1 Previous work

Secure distributed computation is the problem of cooperative evaluation of a function such that
the output becomes commonly known while the inputs remain secret. More precisely, a private
multi-party protocol allows a set of players to compute a function of the players’ private inputs in
such a way that each player learns the result but no player learns anything about another’s private
input.

The basic problem of designing private protocols for arbitrary functions was first solved for
two players by Yao [Yao86], and for any number of players by Goldreich et al. [GMW87]. These
solutions rely on unproven computational assumptions and Ben-Or et al. [BOGW88], and Chaum et
al. [CCD88] later removed the reliance on such assumptions. In these latter works, no assumption
is made about the computing power of the players and security proofs rely on information-theoretic
arguments. In this setting, an adversary (passive or active) may control some corrupted players
but the communication channels are assumed to be private (i.e. players are connected via ideal
point-to-point authenticated and encrypted channels).

In the case of passive adversaries (i.e. when the corrupted parties are honest-but-curious) the
protocols proposed in [BOGW88; CCD88] are secure against adversaries corrupting up to t < n/2
players. In the case of active adversaries, where the corrupted players may arbitrarily deviate from
the protocol, the threshold is reduced from n/2 to n/3. In this chapter, we consider only the security
in the information-theoretic setting against a passive adversary and the t-privacy property means
that any passive coalition of at most t players cannot learn anything from the execution of the
protocol (except what is implied by the result and its own private input). We define formally this
notion of information-theoretical privacy in Section 5.2. In this honest-but-curious model enforcing
the correctness constraint is usually easy, but enforcing the privacy constraint is hard.

As argued in Section 2.6, randomness plays a crucial role in several areas of computer science,
including probabilistic algorithms, cryptography, and distributed computing. Random bits are
hard to produce and devices that generate them, such as Geiger counters and Zener diodes are
slow. It can be readily seen that, except for degenerate cases, randomness is essential to maintain
privacy in multi-party computation. In order to compute a function f : (Zp)

n → Zp (with p a
rational prime number) of n players’ private inputs (with n < p), while satisfying the t-privacy,
the protocols from [BOGW88; CCD88] require Ω(ntm log(p)) random bits, where m denotes the
number of multiplication gates in the arithmetic circuit representing the function f . Since then,
considerable effort has been devoted to reduce the number of random bits used by secure multi-party
protocols.

Explicit results on the so-called randomness complexity of secure distributed computation are
known only for the computation of the specific function XOR-n : {0, 1}n → {0, 1}, (x1, . . . , xn) Ô→
x1 ⊕ · · · ⊕ xn. It can be easily seen that one random bit is necessary and sufficient to compute
the XOR-n function in a 1-private way (using n rounds of communication). In [KM96], Kushilevitz
and Mansour proved that Ω(t) bits are necessary, and O(t2 log(n/t)) are sufficient, for the t-private
computation of the XOR-n function. A lower bound Ω(logn) was later given by Gál and Rosén
in [GR03] for any t > 2 (proving that the upper bound from [KM96] is tight, up to constant
factors, for any fixed constant t). It is also known that there exists a 1-private protocol in only 2
communication rounds using n−2 random bits (other tradeoffs between randomness complexity and
round complexity are given in [KR98]). Several works also analyse the randomness complexity of
the secure evaluation of the XOR-n function on multiple instances and prove that one can “amortize”
the randomness on several executions of the protocol [KOR03; BGP07].

Even if the properties for the XOR-n function are well-understood, very few studies show how to
reduce the randomness complexity of other arbitrary functions, even simple. In particular, finding
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good upper bounds on the randomness complexity of useful functions such as the AND-n : {0, 1}n →
{0, 1}, (x1, . . . , xn) Ô→ x1∧· · ·∧xn is of high interest. In [KOR99], Kushilevitz et al. proved that the
class of Boolean functions that can be 1-privately evaluated by n players with a constant number of
random bits are exactly those with O(n)-complexity size circuits. Their proof is constructive and
their construction gives a solution for the AND-n function using 73 random bits (for n > 8 players).
More precisely, their protocol requires 72m/(n − 1) + 1 random bits for the private evaluation of a
Boolean function that can be computed with a Boolean circuit with m binary gates. The underlying
idea is to “recycle” the randomness in the protocol by distributing it to different players. Of course,
this idea must be pursued with caution, since reusing randomness may hinder the security of the
protocols. In [CKOR00], Canetti et al. then proved that t-private computations of functions with
size m Boolean circuit (ie. m logical gates) and n inputs is possible using O(poly(t) ·(log(n)+m/n))
random bits.

In spite of these very strong results, the exact randomness complexity of simple Boolean func-
tions is still not well-understood. In particular, the situation is more complex for the AND-n function
than for the XOR-n. The analysis of the randomness complexity of this function (or equivalently
of OR-n) is therefore interesting and challenging. It is the main goal of the present chapter to
investigate this problem. One application of such protocols is for private veto [KY03] (or related
“dining cryptographers” [Cha88]1), since it allows to take decisions by some jury, which must be
unanimous, without ever revealing the possible vetoing party(-ies). Another motivation for the
study of the AND-n function is that they form, together with the XOR-n function, a basis for the
Boolean algebra: simple and efficient protocols for their private evaluation should therefore lead to
simple and efficient protocols for the private evaluation of any Boolean function.

5.1.2 Contributions

Using the seminal protocol from [BOGW88] (with the improvement proposed in [GRR98]), one
obtains a 1-private protocol for the AND-3 function (with 3 players) which requires 36 random bits.
In this computation, the players compute shares of the output of an arithmetic gate given shares of
the input wires of that gate (using Shamir’s secret sharing [Sha79]). Therefore, each player has to
share his private input bit using a linear polynomial over the finite field F4 and each multiplication
requires a re-sharing of the result with another linear polynomial over F4. Note that this protocol
follows closely the transcoding method described in Algorithm 1 (Section 2.5.1). Surprisingly, to the
best of our knowledge, this simple protocol is the most randomness-efficient that has been proposed
in the literature. Our first contribution is to propose an alternative protocol with a randomness
complexity reduced to 6 bits. It seems very difficult to prove a tight lower bound on this randomness
complexity. Obviously no deterministic protocol can exist and we prove that protocols using less
than two random bits cannot be private (Section 5.3). Applying the same ideas as for AND-3, we
propose private protocols for the private evaluation of AND-n for n ∈ [4, 15], with the improved
randomness complexity given in Table 5.1. Our approach is modular and is based on protocols for
private computation of several functions that are of independent interest. In particular, they allow
us to present a randomness-efficient 1-private protocol for the MAJORITY3 function and we use them
in our improved protocol for the AND-n function when n is large.

As mentioned above, for n > 16, the protocol with the lowest randomness complexity is the
generic protocol from [KOR99] which requires 73 random bits. In this chapter, we present a 1-

1Chaum introduced the dining cryptographers problem in 1988 [Cha88]: several cryptographers want to find out
whether the National Security Agency (NSA) or (exactly) one of them pays for the dinner, while respecting each
other’s right to make a payment anonymously. His famous protocol computes the OR-n function for arbitrary n using
n random bits but only for the case where the Hamming weight of the inputs vector is 0 or 1.
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n 3 4 5 6 7 8 9 10 11 12 13 14 15
[GRR98] 36 41.79 50.54 50.54 54 57.06 62.29 62.29 66.61 66.61 72 72 72

Us 6 11 13 11 15 16 15 18 18 12 17 16 16

Table 5.1: Randomness complexity for 1-private complexity of AND-n.

private protocol to process the AND-n function for all n ∈ N with less than 26 random bits. In
the particular case where n belongs to the infinite geometric progression of integers {3 · 2i, i ∈ N},
we propose an improved protocol which requires only 12 random bits. The conception of our
protocols is modular which allows us to present the general protocol for any n ∈ N in a recursive
way (with simplified correctness and privacy proofs). As a side effect, our approach also permits to
improve the overall randomness complexity of the generic protocol from [KOR99]. We detail this
improvement in Section 5.9.

5.2 Notations and Preliminaries

In this section, we formally define basic concepts that will be used thorough this chapter, and we
introduce notations.

Protocols presented in this chapter are executed by a set of players {Pi; 1 ≤ i ≤ n}, each
holding one secret bit xi. Formally, the set of players can be seen as a set of randomized Turing
machine, interacting with each others, and each associated to a random tape. The random variable
corresponding to the random tape associated to Pi is denoted by Ri, whereas a realization of it will
be denoted ri ←֓ Ri. The set of Boolean values will be viewed as the binary field F2 with addition
and multiplication respectively denoted by + (aka XOR operation) and · (aka AND operation). When
there is no ambiguity, the notation · is omitted. The vector (x1, . . . , xn) ∈ Fn

2 is denoted by x and
the set of Boolean functions defined over Fn

2 is denoted by Bn. We will denote by x ∈ x the fact
that x is a coordinate of x. A protocol run by n players (Pi)i6n to evaluate f ∈ Bn on x is denoted
by P((Pi)i, f). If there is no ambiguity on the players, the notation will be simplified in P(n, f).

At each step of a protocol P(n, f), a player Pi can read one or several random bit(s) on its
random tape. Then, he may send messages to the other players (note that messages are sent over
secure channels, ie. that only the intended receiver can listen to them). At the end of the protocol,
a particular player may broadcast the final message f(x). The communication Ci associated to Pi

is defined as the vector of all messages received by this player during the protocol execution. Note
that Ci depends on random bits, and is therefore viewed as a random variable. A realization of it
will be denoted by ci ←֓ Ci.

We shall use the notation Pi{. . . } to define a player together with a list of values he knows. For
instance, the notation Pi{xi, ri, r} refers to a player Pi who knows xi, ri and r. More generally, for
a given protocol, we shall denote by Pi{Ci, Ri, xi} the player Pi with communication Ci, random
tape Ri and input bit xi. The random variable (Ci | Ri = ri, Xi = xi) (or (C | R = r, X = x) if
there is no ambiguity on i) simply corresponds to the values taken by the communication vector
when the player random bits and secret inputs are respectively fixed to ri and xi.

We now list classical properties which must be satisfied by a protocol in our context.

Definition 5.2.1 (Correctness). Let f be a Boolean function. A protocol aiming at evaluating f is
said to be correct if, after its execution, each player always gets an evaluation of f in the players’
secret bits.
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Definition 5.2.2 (Privacy). A protocol P((Pi{Xi})i6n, f) is said to be private with respect to the
player P{C, R, X} with X ∈ X = (X1, . . . , Xn), if for every message c ←֓ C, every r ←֓ R, every
vector x ←֓ X and every bit b ←֓ B, the following equality holds: Pr (C = c|R = r, X = x, f(X) = b) =
Pr (C = c|R = r, X = x, f(X) = b) , where the probability is taken on the supports of C, R, X. A
protocol is said to be private if it is private with respect to all players taking part in it.

The privacy property states that any player taking part in the protocol does not learn more
information about the other player’s inputs than that he can deduce from its own input x and
the result of the evaluation f(x). To prove the privacy of some protocols, we will also need the
following property.

Definition 5.2.3 (Instance-Secrecy). A protocol P((Pi{Xi})i6n, f) is said to satisfy the instance-
secrecy property with respect to the player P{C, R, X} with X ∈ X = (X1, . . . , Xn), if for
every message c ←֓ C, every r ←֓ R and every vector x ←֓ X, the following equality holds:
Pr (C = c|R = r, X = x) = Pr (C = c|R = r, X = x) , where the probability is taken on the sup-
ports of C, R, X. A protocol is said to satisfy the instance-secrecy property if it satisfies it with
respect to all players taking part in it.

The instance-secrecy property states that a player learns nothing about the other players’ secrets
during the protocol execution, including the result of the protocol itself (which is the difference with
the privacy property that allows each player to know the result). Indeed, several protocols built in
the next sections do not directly return the evaluation of a function f , but an encoding of it. The
encoding of a variable y is here defined as a pair (y + r, r) such that y and r are independent. For
protocols returning such an encoding of a function evaluation f(x), the instance-secrecy property
implies that no player learns f(x), which itself implies that no player learns both f(x) + r and r.

In the following lemma, we exhibit a particular situation where stating the instance-secrecy prop-
erty of a protocol with respect to a player is relatively easy.

Lemma 5.2.4. Let P be a protocol with players Pi{Xi}. Let P{C, R, x} be one these players. If
the random variable (C | R = r, X = x) is independent of X = (X1, . . . , Xn) for any r ←֓ R and
any x ←֓ X, then the protocol satisfies the instance-secrecy property with respect to P.

Proof. Let C ′ denote the random variable (C | R = r, X = x). If C ′ is independent of X, then
P (C′ = c′|X = x) = P (C′ = c′) for any c′ ←֓ C ′. This directly implies that P satisfies the
instance-secrecy property with respect to P. ⋄

In our proofs, we will extensively use the following notion of functional independence:

Definition 5.2.5 (Functional Independence). Let n and i be positive integers such that i ∈ [1;n]
and let f ∈ Bn. If f satisfies f(x1, . . . , xi, . . . , xn) = f(x1, . . . , xi+1, . . . , xn) for every (x1, . . . , xn) ∈
Fn
2 , then f is said to be functionally independent of xi, which is denoted by f ⊥ xi. Let x be a vector
composed of coordinates of (x1, . . . , xn). The function f is said to be functionally independent of
x, denoted f ⊥ x, if it is independent of every coordinate of x.

Remark 5.2.6. The functional independence is closely related to the classic notion of sensitivity:
a function f is functionally independent of the variable xi if and only if f is not sensitive to xi. The
functional independence implies the statistical one, whereas the converse is false. Definition 5.2.5
directly extends to random variables: if a random variable Y can be described as a function
depending only on variables statistically independent from a random variable X, then X ⊥ Y .
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Remark 5.2.7. The notion of functional dependence is trivially defined as the contrary of the
functional independence: if f is not functionally independent of xi, it is functionally dependent on
xi.

In the privacy proofs done in this chapter, we will often use the following Lemmas 5.2.8 and
5.2.9 which establish a link between the notions of statistical and functional dependencies in some
useful contexts.

Lemma 5.2.8. Let R, X and V be three random vectors such that R is uniformly distributed
and independent of X, and V is a function of X and R. If any non-zero linear combination
of coordinates of V can be written g(X, R) + R with R ∈ R and g ⊥ R, then V is statistically
independent of X.

Proof. Since every coordinate of R is uniform, then any variable taking the form g(X, R) + R
with g ⊥ R is uniform. Moreover, the functional independence between g and R implies that this
uniformity holds even knowing X = x for any x. We deduce that (V | X = x) is uniform whatever
x, which implies the independence between V and X. ⋄

Lemma 5.2.9. Let X, Y, R be three random variables, such that R is uniformly distributed, and X
and Y are functions. If X ⊥ R and Y ⊥ R then X + Y +R is statistically independent of (X, Y ).

Proof. Since X ⊥ R and Y ⊥ R, then (X + Y ) ⊥ R. Moreover, since R is uniformly distributed,
then X + Y +R is also uniformly distributed, and statistically independent of (X, Y ). ⋄

The main purpose of this chapter is to reduce the number of random bits required to evaluate
some particular Boolean functions, while continuing to satisfy the privacy property. We define
hereafter the randomness complexity of a protocol.

Definition 5.2.10 (Randomness Complexity). A protocol is said to be d-random if, for any exe-
cution, the total number of random bits used by the players is at most d.

5.3 A lower bound

The private processing of the AND-n function has been proven to be infeasible for n = 2 [BOGW88].
The exhibition of a private protocol involving the minimal number of three players is therefore a
natural problem.

In this section, we restrict our study to what we further design as oblivious protocols, ie. pro-
tocols where, for any execution, the players generating/reading the random bits are always the
same.

This section presents the proof of the following theorem:

Theorem 5.3.1. The minimal randomness complexity of any 1-private oblivious protocol computing
the AND-3 function is strictly higher than 2.

We reason ad absurdio and distinguish two cases: at the beginning of the protocol, either
both random bits are known by a single player, or are held by two different players. We denote
those random bits by r1 and r2 respectively. Before giving the proof we start by introducing a
formalisation of our problem in terms of circuit privacy [SYY99].
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5.3.1 Problem Formalisation and Notations

Following the approach in [ISW03], we define a deterministic circuit as a directed acyclic graph
whose vertices are Boolean gates and whose edges are wires. Without loss of generality, we assume
that every gate has fan-in at most 2. A randomised circuit is a circuit augmented with random-bit
gates. A random-bit gate is a gate with fan-in 0 that produces a uniformly distributed random bit
and sends it along its output wire. The depth of a circuit is the length of the longest path from
a circuit’s input to a circuit’s output. Similarly, the depth of a gate is the length of the longest
path from a circuit’s input to this gate. We define a total order on the gates of a circuit by first
ordering all gates according to their depth, and then arbitrarily for each gate at the same depth.
An illustration of such an ordering on a simple circuit is illustrated in Figure 5.1.

1

2

3 4

Figure 5.1: Example of circuit ordering.

We see a protocol as a randomised circuit of gates NOT and AND (together with random bit
gates). Its randomness complexity is the number of random-bit gates. To analyse the privacy of
the 2-random protocol for the AND-3 function, we follow an assignment/simulation approach (as
e.g. in [ISW03]):

• assignment phase; the first step of the proof consists in assigning each node/gate of the
graph/circuit to a single player2. Then, for each edge/wire in the graph/circuit linking a
node assigned to Player Pi to a node assigned to Player Pj , the edge is assigned to both Pi

and Pj . Note that edges can hence be assigned to at most two players. The three input wires
x1, x2 and x3 of the protocol are always assigned to P1, P2 and P3 respectively. For the
special case of the output gate, x1x2x3 is always assigned to all three players.

• privacy; a protocol is private with respect to a player Pi if and only if the joint distribution of
all the bits on wires assigned to Pi is independent from every other player’s input conditioned
by the output of the protocol. A protocol is private if and only if it is private with respect to
every player taking part in it.

5.3.2 Proof’s Part 1: Both Random Bits Belong to the Same Player

Without loss of generality we assume that the wires of both random-bit gates are assigned to P1,
which implies that every random-bit gate is also assigned to P1.

Since the circuit evaluates x1x2x3, there exists at least one gate in the protocol that evaluates
a function of degree 3 in the xi’s. We denote by G the first AND gate of this kind and we prove
hereafter that every possible assignment of this gate breaks the privacy. To this end, we consider
each possible assignment.

2Note that this assignment does not make sense for non-oblivious protocols, where the random bits could be
generated by different players depending on the execution.
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• case G assigned to P1: by construction, at least one input wire of G functionally depends
on x2 or on x3. The value on this wire is denoted by v: by definition, there exists a Boolean
function f such that v = f(x1, x2, x3, r1, r2) and f(x1, x2, x3, r1, r2) is functionally dependent
on {x2, x3}. Since P1 knows {v, r1, r2, x1} (by assignment), it can then be deduced that P1

can retrieve information on {x2, x3} (by definition of the functional dependence, there exists
certain r1, r2, x1, such that v becomes a non constant function of {x2, x3}). Consequently,
privacy is broken.

• case G assigned to P2 (symmetric case for P3): by construction, at least one input wire of G
is of degree 2 in the xi’s, while the other one is of degree 1 or 2 in the xi’s, and both wires
are assigned to P2. To maintain privacy, the degree 2 wire has to be additively protected by
a random bit (ie., a random bit has to be used as a mask), and the other wire must either be
equal to x2 or to be additively protected by a different random bit.

We denote by w one of these wires which functionally depends on x2. According to what
we just said, w is hence either x2, or can be without loss of generality expressed as f2 ⊕ R,
where f2 functionally depends on x2 and on no random bit, and R ∈ {r1, r2, r1 ⊕ r2}. We
denote by v the value on the other wire, which must hence functionally depend on either x1

or x3 (or both) and must additively involve R′, with R′ ∈ {r1, r2, r1 ⊕ r2} \ R. Without loss
of generality, in the following, we will always set R = r2 and R′ = r1.

By construction, and according to the inputs of G, the algebraic normal form of the Boolean
function representing the output of G involves the term f2r1, where f2 depends on x2.

The output of the circuit being x1x2x3, there must hence be another gate in the circuit
computing a Boolean function involving f2r1. Here are the ways this can be achieved:

1. a gate G0 evaluates a product between f2 and r1

2. a gate G1 evaluates a product between f2 and a value of the form r1 ⊕ · · · ⊕ r2 and a
gate G2 evaluates f2r2

3. a gate G1 evaluates a product between f2 and a value of the form v̂ ⊕ · · ·⊕ r1 and a gate
G2 evaluates a product between f2 and v̂

4. a gate G1 evaluates a product between a value of the form f2 ⊕ · · · ⊕ r2 and a value of
the form v̂ ⊕ · · · ⊕ r1 and a gate G2 evaluates r1r2.

Let us study separately each of these cases. We will show that every possible assignment of
G0,G1 or G2 breaks the privacy:

1. Since one of the two input wires of G0 is f2, privacy can only be maintained if G0 is
assigned to P2. However, if G0 is assigned to P2, then by construction the other input
wire is also assigned to P2. This implies that r1 is also assigned to P2. The set of
wires assigned to P2 hence contains {f2, r1, w, v}. Denote by fv the Boolean function
evaluating v. Since fv functionally depends on either x1 or x3 and fv functionally
depends on r1, privacy is broken.

2. Since both G1 and G2 have an input wire whose value is f2, then both G1 and G2 must
be assigned to P2. Consequently, the assignment of P2 contains {r2, r1 ⊕ · · · ⊕ r2, v}.
Denote by fv the Boolean function evaluating v. Since fv functionally depends on either
x1 or x3 and fv functionally depends on r1, privacy is broken.

3. Since both G1 and G2 have an input wire whose value is f2, then both G1 and G2 must
be assigned to P2. Consequently, the assignment of P2 contains {r2, v̂ ⊕ · · · ⊕ r1, v, v̂}.
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Denote by fv the Boolean function evaluating v. Since fv functionally depends on either
x1 or x3 and fv depends on r1, privacy is broken.

4. Let us denote by v′ the value f2 ⊕ · · · ⊕ r2, and by respectively fv and f ′
v the Boolean

functions evaluating v and v′. We focus on the player that G1 can be assigned to. First
of all, if G1 is assigned to P1, its assignment contains {v′, r1, r2}. Since f2 depends
on x2, hence privacy is broken. If G1 is assigned to P2, hence its assignment contains
{v′, v, v̂ ⊕ · · · ⊕ r1}. Since fv functionally depends on either x1 or x3 and fv depends on
r1, privacy is broken. If G1 is assigned to P3, his assignment contains {v′, v̂ ⊕ · · · ⊕ r1}.
In this case, ifG2 is assigned to P2, privacy is broken because fv functionally depends on
r1 and on x1 or x3. If G2 is assigned to P3, privacy is broken because fv′ depends on r2
and on x2. Consequently, r1r2 can only be known by P1. Hence no further message can
be sent without breaking privacy and consequently it is impossible to compute x1x2x3.

Hence, no oblivious protocol using only two random bits drawn by the same player and allowing
for the 1-private secure computation of the AND of three players can exist.

5.3.3 Proof’s part 2: Both bits held by different players

We consider that both random-bit gates (and their wires) are assigned to two different players,
without loss of generality P1 and P2, to which are assigned respectively r1 and r2. Consider the
first AND gate G which evaluates a value of degree 3 in xi’s.

• case G assigned to P1 (the case is symmetric for P2):

As in the previous subsection, we denote by w one of the input wires of G which functionally
depends on x1 (w is either x1 or can be without loss of generality expressed as f1 ⊕ R, where
f1 functionally depends on x1, and R ∈ {r1, r2, r1 ⊕ r2}); and we denote by v the value on the
other wire, which must hence functionally depend on either x2 or x3 (or both) and additively
involve R′, with R′ ∈ {r1, r2, r1 ⊕ r2} \ R. Without loss of generality, in the following, we will
always set R = r1 and R′ = r2. Similarly, we denote by v the input of G that is not w. The
output of G can be evaluated by a Boolean function. We can show similarly to the previous
case, that the ANF of this function involves the term f1r2, where f1 depends on x1.

The output of the circuit being x1x2x3, there must hence be another gate in the circuit
computing a Boolean function involving f1r2. Here are all the possible ways this can be
achieved:

1. a gate G0 evaluates a product between f1 and r2

2. a gate G1 evaluates a product between f1 and a value of the form r1 ⊕ · · · ⊕ r2 and a
gate G2 evaluates f1r1

3. a gate G1 evaluates a product between f1 and a value of the form v̂ ⊕ · · ·⊕ r2 and a gate
G2 evaluates a product between f1 and v̂

4. a gate G1 evaluates a product between a value of the form f1 ⊕ · · · ⊕ r1 and a value of
the form v̂ ⊕ · · · ⊕ r2 and a gate G2 evaluates r1r2.

Let us study separately each of these cases. We will show that every possible assignment of
G0,G1 or G2 breaks the privacy:
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1. Since one of the input wires of G0 is f1, privacy can only be maintained if this gate
is assigned to P1. Its assignment hence contains {f1, r2, v}. Denote by fv the Boolean
function evaluating v. Since fv functionally depends on either x2 or x3 and the only
random bit fv depends on is r2, privacy is broken.

2. Since one of the input wires of G1 is f1, privacy can only be maintained if this gate is
assigned to P1. Its assignment hence contains {r1, f1, r1 ⊕ · · · ⊕ r2, v}. Denote by fv the
Boolean function evaluating v. Since fv functionally depends on either x2 or x3 and fv

depends on r2, privacy is broken.

3. Since one of the input wires of G1 is f1, privacy can only be maintained if this gate is
assigned to P1. Its assignment hence contains {r1, f1, v̂ ⊕ · · · ⊕ r2, v}. Denote by fv the
Boolean function evaluating v. Since fv functionally depends on either x2 or x3 and fv

functionally depends on r2, privacy is broken.

4. We denote by v′ the value of the form f1 ⊕ · · · ⊕ r1. We focus on the player that G1 can
be assigned to. If it is assigned to P1, then his assignment contains {v, v′, r1}. Denote
by fv the Boolean function evaluating v. P1 obtains information on x2 or x3 thanks to
the fact that fv is functionally dependent on one of these variables. If it is assigned to
P2 then his assignment contains {v′, v̂ ⊕ · · · ⊕ r2}. Hence G2 can only be assigned to
P3 (whose assignment hence contains {r1, v̂ ⊕ · · · ⊕ r2} and hence no further message
can be assigned to any player without breaking privacy. Consequently it is impossible
to compute x1x2x3. Similarly, if G1 is assigned to P3 then G2 can only be assigned to
P2 and for the same reason, it is impossible to compute x1x2x3.

• caseG assigned to P3: Similarly, we denote by w one of the input wires ofG which functionally
depends on x3 (w is either x3 or can be without loss of generality expressed as f3 ⊕ R, where
f3 functionally depends on x3 and on no random bit, and R ∈ {r1, r2, r1⊕r2}); and we denote
by v the value on the other wire, which must hence functionally depend on either x1 or x2

(or both) and additively involve R′, with R′ ∈ {r1, r2, r1 ⊕ r2} \ R. Without loss of generality,
in the following, we will always set R = r2 and R′ = r1. Similarly, we denote by v the input
of G that is not w. The output of G can be evaluated by a Boolean function. We can show
similarly to the previous case, that the ANF of this function involves the term f3r1, where f3
functionally depends on x3.

The output of the circuit being x1x2x3, there must hence be another gate in the circuit
computing a Boolean function involving f3r1. Here are the ways this can be achieved:

1. a gate G0 evaluates a product between f3 and r1

2. a gate G1 evaluates a product between f3 and a value of the form r1 ⊕ · · · ⊕ r2 and a
gate G2 evaluates f3r2

3. a gate G1 evaluates a product between f3 and a value of the form v̂ ⊕ · · ·⊕ r1 and a gate
G2 evaluates a product between f3 and v̂

4. a gate G1 evaluates a product between a value of the form f3 ⊕ · · · ⊕ r2 and a value of
the form v̂ ⊕ · · · ⊕ r1 and a gate G2 evaluates r1r2.

Let us study separately each of these cases. We will show that every possible assignment of
G0,G1 or G2 breaks the privacy:

1. Since f3 is an input of G, then this gate must be assigned to P3. Hence its assignment
contains {v, r1}, and privacy is broken because v functionally depends on x1 or x2.
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2. Since f3 is an input of G, then this gate must be assigned to P3. Hence its assignment
contains {v, r1, r1 ⊕ · · · ⊕ r2, w}, and privacy is broken because v functionally depends
on x1 or x2.

3. Since f3 is an input of G, then this gate must be assigned to P3. Hence its assignment
contains {v, r1, v̂ ⊕ · · · ⊕ r1}, and privacy is broken because v functionally depends on
x1 or x2.

4. If G2 is assigned to a player, then this player knows both r1 and r2. This is the first
case of our proof, and we already proved that such protocol is impossible.

Hence, no protocol using only two random bits drawn by different players and allowing for the
1-private secure computation of the AND of three players can exist.

5.4 Private Evaluation of AND-n for n = 3

To the best of our knowledge, the most random-efficient 1-private protocol for the AND-3 function
requires 36 random bits and is based on [BOGW88; GRR98].
In this section, we tackle this problem by describing a 6-random protocol allowing to process

AND-3 in a 1-private way. We also propose an alternative protocol where the result is returned in
an encoded form, and therefore stays unknown to any player. It will be the cornerstone of our
general protocol presented in Sections 5.6 and 5.7.
Let us recall the goal of our protocol. Three players P1{x1}, P2{x2}, P3{x3} are provided with a

limited number of independent3 and uniformly distributed random bits. At each round, a player can
read one or several random bit(s) on its random tape, and send one or several message(s) to other
players. After the execution of the protocol, each player must know the value AND(x1, x2, x3) =
x1x2x3 (correctness property), but must not learn more information on (x1, x2, x3) than that given
by its own input xi and AND(x1, x2, x3) (privacy property). This section aims at describing a protocol
PAND-3 verifying these two properties with a randomness complexity equal to 6. This protocol is

the composition of the three following protocols P−
AND-2

, P
(1)
AND-2

and PXOR.
The first protocol, P−

AND-2
allows three players to process the multiplication of two of their secrets,

while satisfying the instance-secrecy property. It is 3-random and, at the end of its execution, the
AND of the two secrets is encoded among the players who own these secrets.

Protocol P−
AND-2

Require: players Pa{xa, Ra}, Pb{xb, Rb} and Pc{Rc}
Ensure: Pb gets xaxb + r with r a random bit known by Pc only

round 1 : Players Pa and Pb read random bits r1 and r2 on their respective random tapes
Pa sends m1 = xa + r1 to Pb and r1 to Pc

Pb sends m2 = xb + r2 to Pa and r2 to Pc

round 2 : Pc reads a random bit r on its random tape
Pc sends m3 = r1r2 + r to Pa

round 3 : Pa sends m4 = m3 +m2xa to Pb ⊲ m4 = r1r2 + r + (xb + r2)xa

Pb computes m5 = m4 + r2m1 ⊲ m5 = xaxb + r

3For the ease of exposition, we assume that the players are provided with random tapes. However, we do not
consider the model in which parties receive a sample from a predetermined joint distribution where random strings
are correlated as in [IKM+13]. When two players have the same random bit r in their random tape, we actually
assume that one player has picked r uniformly at random and has then sent it to the other player.
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We describe hereafter two other protocols P
(1)
AND-2

and PXOR. The first one is very close to P−
AND-2

;
the main difference is that one of the secrets which must be multiplied by the protocol comes in
an encoded form at input. It is also 3-random and outputs a refreshed encoding of the AND of
the encoded input and the other secret. The protocol PXOR allows n players to privately process
the addition of two of their secrets. It is well-known that it is impossible to privately compute
the addition of n > 3 inputs deterministically but this is not the case for two inputs. The simple
solution that we propose for PXOR is indeed deterministic. It will be used each time we shall need
to recover and broadcast a value owned in an encoded form by a set of players.

We can now present our new 6-random protocol allowing three players to process the multiplica-
tion of their respective secrets. We present two versions of it: the first one provides the players with
an encoding of the evaluation, whereas the second one allows all of them to know the evaluation
itself. Before executing the protocols, the three players P1, P2 and P3 are respectively provided
with the random tapes R1, R2 ∪ R′

2 and R3 ∪ R′
3. Random tapes Ri (resp. R′

i) will be used

when executing protocol P−
AND-2

(resp. P
(1)
AND-2

). Before the execution of the protocol, each player
fills his random tape such that: R1 ← {r1}, R2 ← {r2}, R′

2 ← {r′
1}, R3 ← {r}, R′

3 ← {r′
2, r′′}.

This implies that each player has initially generated the random bits he is going to use during the
protocol. This assumption will be useful in the next section as it will enable the reuse of some
random bits when executing several protocols in parallel or sequentially. At the end of this section
we propose another protocol that will be useful in the next section. This protocol is very close to

P
(1)
AND-2

: it allows three players to process the encoding of the multiplication of two encoded secrets.
The protocol is 5-random. The correctness of all protocols can be directly checked thanks to the
comments inserted in the algorithms descriptions.

Protocol P
(1)
AND-2

Require: players Pa{xa + r′, Ra}, Pb{xb, r′, Rb} and Pc

Ensure: Pa gets xaxb + r′′ with r′′ a random bit known by Pb only

round 1 : Players Pa and Pb read a random bit r′
1 and r′

2 on their tapes
Pa sends m1 = (xa + r′) + r′

1 to Pb and r′
1 to Pc

Pb sends m2 = xb + r′
2 to Pa and r′

2 to Pc

round 2 : Pb reads a random bit r′′ on its random tape
Pb sends m3 = (m1 + r′)xb + r′′ to Pc

⊲ m3 = (xa + r′
1)xb + r′′

round 3 : Pc sends m4 = m3 + r′
1r

′
2 to Pa

⊲ m4 = xaxb + r′
1(xb + r′

2) + r′′

Pa computes m5 = m4 + r′
1m2

⊲ m5 = xaxb + r′′
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Protocol PXOR

Require: a list of players (Pi)i≤n containing Pa{xa} and Pb{xb}.
Ensure: all players get xa + xb.

round 1 : Player Pa sends m1 = xa to Pb

Player Pb computes m2 = m1 + xb ⊲ m2 = xa + xb

round 2 : Player Pb broadcasts m2

⊲ we get (P1{xa + xb}, · · · , Pn{xa + xb})

Protocol P−
AND-3

Require: players P1{x1, R1}, P2{x2, R2 ∪ R′
2} and P3{x3, R′

3}
Ensure: P1 gets x1x2x3 + r′′, where r′′ is a random bit only known by P3

Protocol P−
AND-2

for (P1{x1, R1}, P2{x2, R2}, P3)
⊲ we get (P2{x2, x1x2 + r}, P3{x3, r})

Protocol P
(1)
AND-2

for (P2{x1x2 + r, R′
2}, P3{x3, r, R′

3}, P1)
⊲ we get (P2{x1x2x3 + r′′}, P3{r′′})

Protocol PAND-3

Require: players P1{x1, R1}, P2{x2, R2 ∪ R⋆
2} and P3{x3, R⋆

3}
Ensure: P1, P2, P3 get x1x2x3

Protocol P−
AND-3

for P1{x1, R1}, P2{x2, R2 ∪ R⋆
2} and P3{x3, R⋆

3}
⊲ we get (P2{x1x2x3 + r′′}, P3{r′′})

Protocol PXOR for P2{x1x2x3 + r′′}, P3{r′′} and P1

⊲ we get (P1{x1x2x3}, P2{x1x2x3}, P3{x1x2x3})

The following theorem states the instance-secrecy of Protocol P−
AND-3

and the privacy of Proto-
col PAND-3.

Theorem 5.4.1. Protocol P−
AND-3

satisfies the instance-secrecy property and Protocol PAND-3 is pri-
vate.

Proof. We start by proving the instance-secrecy of Protocol P−
AND-3

. To this end, we first need to
introduce the two following useful lemmas:

Lemma 5.4.2. Let Pi{Ci, Ri}, i ∈ {a, b, c}, be a player taking part in P−
AND-2

. Every non-zero
linear combination of Ci coordinates can be written g(Xa, Xb, Ra, Rb, Rc) +R⋆ where R⋆ ∈ (Ra ∪
Rb ∪ Rc)\Ri and g ⊥ R⋆.
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Proof. We prove the lemma statement for the three players taking part in P−
AND-2

. By construction
we have Ca = (Xb + R2, R1R2 + R), Cb = (Xa + R1, R1R2 + Xa(Xb + R1) + R) and Cc =
(R1, R2) (where the players’ secrets and random tapes content are viewed as random variables, and
are therefore denoted with capital letters). Moreover, the content of the random tapes of the 3
players are {R1}, {R2} and {R} respectively. It can be checked that they are disjoint. Any linear
combination of Ca coordinates involving the second coordinate can be written as g(· · · ) + R with
g ⊥ R and R ∈ Rc. The remaining non-zero combination can be written as g(· · · ) + R2 with
g ⊥ R2 and R2 ∈ Rb. Any linear combination involving the second coordinate of Cb is of the form
g(· · · )+R with g ⊥ R and R ∈ Rc. The remaining combination is already of the form g(· · · )+R1,
with R1 ∈ Ra. Finally, any linear combination of Cc coordinates can be written as g(· · · ) + Ri

with Ri ∈ Ra ∪ Rb. ⋄

Lemma 5.4.3. Let Pi{Ci, Ri}, i ∈ {a, b, c}, be a player taking part in P
(1)
AND-2

. Every non-zero linear
combination of Ci coordinates can be written g(Xa, Xb, Ra, Rb) + R⋆ where R⋆ ∈ (Ra ∪ Rb)\Ri

and g ⊥ R⋆.

Proof. For players Pa and Pc, the proof is similar as for Lemma 5.4.2 (after replacing R1, R2 and
R by R′

1, R′
2 and R′′ respectively). For player Pb, we have Cb = (Xa + R′ + R′

1) which is already
of the form g(· · · ) +R′

1 with g ⊥ R′
1 and R′

1 ∈ Ra. The lemma statement is hence correct. ⋄

Based on Lemmas 5.4.2 and 5.4.3, we can now prove the instance-secrecy of P−
AND-3

.

Proof. Let us check the instance-secrecy property with respect to each player attending to P−
AND-3

.
Note that every value appearing during the protocol is replaced by the corresponding random
variable (to enable independence proofs). We moreover denote by Ci the set of messages received
by Pi during P−

AND-3
.

• P1{C1, R1} plays the role of the first player in P−
AND-2

, and of the third player in P
(1)
AND-2

. During
P−

AND-3
, he only receives messages coming from the execution of these two protocols. The sets

of random tapes used in P−
AND-2

and P
(1)
AND-2

are respectively R1 ∪ R2 ∪ R3 = {R1, R2, R} and
R′

2 ∪ R′
3 = {R1

′, R2
′, R′′}, which are disjoint. Applying Lemmas 5.4.2 and 5.4.3, we get that

any non-zero linear combination of C1 coordinates takes the form g1(X1, X2, R1, R2, R3) +
g2(X1X2+R, X3, R′

2, R′
3)+R⋆

1+R⋆
2 where R⋆

1 ∈ R2 ∪ R3 (resp. R⋆
2 ∈ R′

2 ∪ R′
3), and g1 ⊥ R⋆

1

(resp. g2 ⊥ R⋆
2). Since R1 ∪ R2 ∪ R3 and R′

2 ∪ R′
3 are disjoint, we have g1 ⊥ R⋆

2 and g2 ⊥ R⋆
1,

from which we deduce (g1+g2) ⊥ R⋆
1 and (g1+g2) ⊥ R⋆

2. As a consequence, any non-zero linear
combination of C1 coordinates takes the form of a sum g(X1, X2, X3, R1, R2, R3, R′

2, R′
3)+R⋆

such that R⋆ ∈ R2∪R3∪R′
2∪R′

3 and g ⊥ R⋆. Hence, for every x1 ←֓ X1 and every r1 ←֓ R1,
the set of messages C1 is independent of (X2, X3) (by Lemma 5.2.8) which implies that P−

AND-3

satisfies the instance-secrecy property with respect to P1 (Lemma 5.2.4).

• P2{C2, R2∪R′
2} plays the role of the second player in P−

AND-2
, and of the first player in P

(1)
AND-2

.
During P−

AND-3
, he only receives messages coming from the execution of these two protocols.

The same reasoning as for P1 shows that any non-zero linear combination of C2 coordinates
coming only from P−

AND-2
and P

(1)
AND-2

takes the form of a sum g(X1, X2, X3, R1, R2, R3, R′
2, R′

3)+
R⋆ such that R⋆ ∈ R1 ∪ R′

3 and g ⊥ R⋆. We hence conclude that for every x2 ←֓ X2 and
every (r2, r′

1) ←֓ (R2, R′
2), the set of messages C2 is independent of (X1, X3) (by Lemma

5.2.8) which implies that P−
AND-3

satisfies the instance-secrecy property with respect to P2

(Lemma 5.2.4).
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• P3{C3, R′
3} plays the role of the third player in P−

AND-2
, and of the second player in P

(1)
AND-2

. Dur-
ing P−

AND-3
, he only receives messages coming from the execution of these two protocols. The

same reasoning as for P1 shows that any non-zero linear combination of C3 coordinates coming
only from P−

AND-2
and P

(1)
AND-2

takes the form of a sum g(X1, X2, X3, R1, R2, R3, R′
2, R′

3) +R⋆

such that R⋆ ∈ R1 ∪ R2 ∪ R′
2 and g ⊥ R⋆. Eventually, we get that for every x3 ←֓ X3 and

every (r, r′
2, r′′) ←֓ (R3, R′

3), the set of messages C3 is independent of (X1, X2) (by Lemma
5.2.8) which implies that P−

AND-3
satisfies the instance-secrecy property with respect to P3

(Lemma 5.2.4).

We eventually conclude that P−
AND-3

satisfies the instance-secrecy property. ⋄

We now prove the privacy of Protocol PAND-3.

Proof. By construction, any message received by a player running PAND-3 is either a message
received in P−

AND-3
or in PXOR. Moreover, P−

AND-3
satisfies the instance-secrecy property with respect

to the three players. During PXOR, each player receives a single message. P1 receives X1X2X3. As
this variable is functionally independent of any element of the random tapes at input of PAND-3, this
player learns nothing new except the protocol output: PAND-3 is private with respect to P1. Player
P3 receives X1X2X3 + R′′ with R′′ in his random tape R′

3: he then learns X1X2X3. As shown
in the proof of the instance-secrecy of P−

AND-3
, all messages received by him during P−

AND-3
take the

form g(X1, X2, X3, R1, R2, R′
2, R′

3) + R⋆ with R⋆ ∈ R1 ∪ R2 ∪ R′
2 and g ⊥ R⋆. We therefore

deduce that the sum of any such message with X1X2X3 + R′′ is still in the form g(· · · ) + R⋆

with R⋆ ∈ R1 ∪ R2 ∪ R′
2 and g ⊥ R⋆. This implies that P3 learns nothing about the secrets

of the other players, except the final result X1X2X3. Player P2 receives X1X2X3 and he knows
X1X2X3 + R′′. He then deduces X1X2X3 and R′′. Among all the messages he received during
P−

AND-3
, only X1X2X3+R′

1(X3+R′
2)+R′′ is also protected by R′′ (any other combination of received

messages takes the form g(· · · ) + R⋆ with R⋆ ∈ (R1 ∪ R′
3)\{R′′}. The sum of this message with

X1X2X3 + R′′ gives R′
1(X3 + R′

2) which is independent of X3 (even knowing R′
1 ∈ R′

2) as long
as R′

2 is unknown. The only other message received by P2 which functionally depends on R′
2 is

X3 + R′
2, but it can be checked that this gives no additional information. We eventually deduce

that P2 learns nothing more than X1X2X3 and X2: PAND-3 is private with respect to P2. ⋄
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Protocol P
(2)
AND2

Require: Players Pa{xa + r, Ra}, Pb{xb + r, Rb}, Pc{r}.
Ensure: Pc gets xaxb + r⋆ with r⋆ a random bit known by Pb only.

round 1 : Pa and Pb respectively read random bits r1, r2 and r3, r4 on their random tapes
Pa sends m1 = xa + r + r1 + r2 to Pc, r1 to Pb and r2 to Pc

Pb sends m2 = xb + r + r3 + r4 to Pc, r3 to Pa and r4 to Pc

round 2 : Pc sends m3 = m2 + r to Pa and m4 = m1 + r to Pb ⊲ m3 = xb + r3 + r4,
m4 = xa + r1 + r2
round 3 : Pb reads a random bit r⋆ on its random tape
Pb sends m5 = m4(xb+ r)+ r1(r3+ r4)+ r⋆ to Pa⊲ m5 = (xa+ r1+ r2)(xb+ r)+ r1(r3+ r4)+ r⋆

round 4 : Pa sends m6 = m5 +m3(r1 + r2) + r2r3 to Pc

⊲ m6 = xaxb + r2r4 + r(xa + r1 + r2) + r⋆

round 5 : Pc computes m7 = m6 + r2r4 + rm4 ⊲ m7 = xaxb + r⋆

Interestingly, it is also possible to privately evaluate the MAJORITY function for three players. In
dimension 3, this function may be defined MAJORITY(x1, x2, x3) = x1x2+x1x3+x2x3, or equivalently
MAJORITY(x1, x2, x3) = (x1 + x2)(x1 + x3) + x1. We describe herafter a private protocol for the
evaluation of this function.

Protocol PMAJORITY3

Require: Players P1{x1, R1}, P2{x2, R2}, P3{x3, R3}
Ensure: All players get MAJORITY3(x1, x2, x3)

Player P1 reads a random bit r on its random tape
P1 sends m1 = x1 + r to P2 and to P3

Protocol P
(2)
AND2 for (P2{x1 + x2 + r, R2}, P3{x1 + x3 + r, R3}, P1{r})

⊲ we get (P1{(x1 + x2)(x1 + x3) + r⋆}, P3{r⋆})
P3 sends r⋆ to P1

P1 computes m2 = (x1 + x2)(x1 + x3) + r⋆ + r⋆ + x1

⊲ m2 = (x1 + x2)(x1 + x3) + x1

P1 broadcasts m2

The correctness of PMAJORITY3 can be checked thanks to the comments inserted in the description.
The privacy may moreover be deduced from the forthcoming Lemma 5.6.5.

5.5 Private Evaluation of AND-n for n = 4, 5

We follow the same approach as in Section 5.4 to build protocols PAND-4 and PAND-5 enabling the
private evaluation of AND-n for n = 4, 5. Their respective randomness complexity is 11 and 13.

To this end, we introduce new protocols P
(3)
AND2, P−

AND4, P
(4)
AND2 and P−

AND5.

The following protocol P
(3)
AND2 allows three players to output the encoding of the multiplication

of two values, one of them being itself encoded. This protocol is 4-random.
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Protocol P
(3)
AND2

Require: players Pa{xa + r, Ra}, Pb{xb, Rb}, Pc{r, Rc}
Ensure: Pa gets xaxb + r′ with r′ a random bit known by Pb only
round 1: Players Pa and Pb read a random bit r1 and r2 on their respective random tapes
Pa sends m1 = xa + r + r1 to Pc and r1 to Pb

Pb sends m2 = xb + r2 to Pa and r2 to Pc

round 2: Player Pc reads a random bit r3 on its random tape
Pc sends m3 = m1 + r + r3 to Pb and r3 to Pa ⊲ m3 = xa + r1 + r3
round 3: Player Pb reads a random bit r′ on its random tape
Pb sends m4 = m3xb + r1r2 + r′ to Pc ⊲ m4 = xaxb + r1(xb + r2) + r3xb + r′

round 4: Pc sends m5 = m4 + r2r3 to Pa ⊲ m5 = xaxb + (xb + r2)(r1 + r3) + r′

round 5: Pa computes m6 = m5 + (r1 + r3)(xb + r2) ⊲ m6 = xaxb + r′

The following sequence of two protocols P−
AND4 and PAND4 allows four players to privately compute

the multiplication of their secret inputs. The four players P1, P2, P3 and P4 are respectively provided
with the random tapes R1, R2 ∪ R′

2, R3 ∪ R′
3 and R′

4. Random tapes Ri (resp. R′
i) will be used

when executing protocol P−
AND-2

(resp. P
(3)
AND-2

). Before the execution of the protocol, each player
fills his random tape such that: R1 ← {r1, r′}, R2 ← {r′

1, r2, r}, R3 ← {r′
2, r′′}, R′

2 ← {r′′
1},

R′
4 ← {r′′

2 , r′′′} and R′
3 ← {r′′

3}. These protocols are 11-random.

Protocol P−
AND4

Require: players P1{x1, R1},P2{x2, R2 ∪ R′
2},P3{x3, R3 ∪ R′

3}, P4{x4, R′
4}

Ensure: P2 gets x1x2x3x4 + r′′′ with r′′′ a random bit known by only P4

Protocol P−
AND3 for (P1{x1, R1}, P2{x2, R2}, P3{x3, R3})

⊲ we get (P2{x1x2x3 + r′′}, P3{r′′})

Protocol P
(3)
AND2 for (P2{x1x2x3 + r′′, R′

2}, P4{x4, R′
4}, P3{r′′, R′

3})
⊲ we get (P2{x1x2x3x4 + r′′′}, P4{r′′′})

Protocol PAND4

Require: players P1{x1, R1},P2{x2, R2 ∪ R′
2},P3{x3, R3 ∪ R′

3}, P4{x4, R′
4}

Ensure: P1, P2, P3, P4 get x1x2x3x4

Protocol P−
AND4 for P1{x1, R1}, P2{x2, R2 ∪ R′

2} and P3{x3, R3 ∪ R′
3}, P4{x4, R′

4}
⊲ we get (P2{x1x2x3x4 + r′′′}, P3{r′′′})

Protocol PXOR for P2{x1x2x3x4 + r′′′}, P3{r′′′} , P1 and P4

⊲ we get (P1{x1x2x3x4}, P2{x1x2x3x4}, P3{x1x2x3x4}, P4{x1x2x3x4}})

The following protocol P
(4)
AND2 allows three players to compute the multiplication of two encoded

secrets. This protocol is 5-random.
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Protocol P
(4)
AND2

Require: players Pa{xa + r, Ra}, Pb{xb + r′, Rb}, Pc{r, r′}
Ensure: Pc gets xaxb + r′′ with r′′ a random bit known by Pb only
round 1 : Pa and Pb respectively read random bits r1, r2 and r3, r4 on their random tapes
Pa sends m1 = xa + r + r1 + r2 to Pc, r1 to Pb and r2 to Pc

Pb sends m2 = xb + r′ + r3 + r4 to Pc, r3 to Pa and r4 to Pc

round 2 : Pc sends m3 = m2 + r to Pa and m4 = m1 + r′ to Pb

⊲ m3 = xb + r3 + r4, m4 = xa + r1 + r2
round 3 : Pb reads a random bit r′′ on its random tape
Pb sends m5 = m4(xb + r′) + r1(r3 + r4) + r′′ to Pa

⊲ m5 = (xa + r1 + r2)(xb + r′) + r1(r3 + r4) + r′′

round 4 : Pa sends m6 = m5 +m3(r1 + r2) + r2r3 to Pc

⊲ m6 = xaxb + r2r4 + r′(xa + r1 + r2) + r′′

round 5 : Pc computes m7 = m6 + r2r4 + rm4 ⊲ m7 = xaxb + r′′

The following sequence of two protocols P−
AND5 and PAND5 allow five players to privately compute

the multiplication of their secrets. The five players P1, P2, P3, P4 and P5 are respectively provided
with the random tapes R1∪R′

1, R2∪R′′
2, R′′

3, R4∪R′
4∪R′′

4 and R5. Random tapes Ri will be used
for the first execution of protocol P−

AND-2
, random tapes R′

i will be used for the second execution
and random tapes R′′

i will be used for P
(3)
AND-2

. Before the execution of the protocol, each player
fills his random tape such that: R1 = {r1} R2 = {r2, r} R4 = {r1} R5 = {r2, r′} R′

1 = {r′
1, r′

2}
R′

4 = {r′
3, r′

4, r′′} R′′
2 = {r′′

1} R′′
3 = {r′′

2 , r′′′} R′′
4 = {r′′

3}. These protocols are 13-random.

Protocol P−
AND5

Require: players P1{x1, R1∪R′
1},Pb{x2, R2∪R′

2∪R′′
2},P3{x3, R′

3}, P4{x4, R4∪R′
4}, P5{x5, R5}

Ensure: P2 gets x1x2x3x4x5 + r′′′ with r′′′ a random bit known by only P3

Protocol P−
AND2 for (P1{x1, R1}, P2{x2, R2}, P3)

⊲ we get (P1{x1x2 + r}, P2{r})
Protocol P−

AND2 for (P4{x4, R4}, P5{x5, R5}, P3)
⊲ we get (P4{x4x5 + r′}, P5{r′})

P5 sends r′ to P2

Protocol P
(4)
AND2 for (P1{x1x2 + r, R′

1}, P4{x4x5 + r′, R′
4}, P2{r, r′})

⊲ we get (P2{x1x2x4x5 + r′′}, P4{r′′})

Protocol P
(3)
AND2 for (P2{x1x2x4x5 + r′′, R′′

2}, P3{x3, R′′
3}, P4{r′′, R′′

4})
⊲ we get (P2{x1x2x3x4x5 + r′′′}, P3{r′′′})



5.6. PRIVATE EVALUATION OF AND-n FOR ANY n = 3 · 2j 119

Protocol PAND5

Require: players P1{x1, R1∪R′
1},Pb{x2, R2∪R′

2∪R′′
2},P3{x3, R′

3}, P4{x4, R4∪R′
4}, P5{x5, R5}

Ensure: P1, P2, P3, P4, P5 get x1x2x3x4x5

Protocol P−
AND5 for (P1{x1, R1 ∪ R′

1}, P2{x2, R2 ∪ R′
2 ∪ R′′

2}, P3{x3, R′
3}, P4{x4, R4 ∪

R′
4},P5{x5, R5})

⊲ we get (P2{x1x2x3x4x5 + r′′′}, P3{r′′′})
Protocol PXOR for (P2{x1x2x3x4x5 + r′′′}, P3{r′′′},P1,P4,P5)

⊲ we get
(P1{x1x2x3x4x5}, P2{x1x2x3x4x5}, P3{x1x2x3x4x5}, P4{x1x2x3x4x5}, P5{x1x2x3x4x5})

The proofs proposed in Section 5.4 can be easily adapted to argue that P
(3)
AND2, P

(4)
AND2, P−

AND4 and
P−

AND5 satisfy the instance-secrecy property, and that PAND4 and PAND5 are private.

5.6 Private Evaluation of AND-n for any n = 3 · 2
j

The AND function has a linear size circuit (indeed the AND of n bits can be computed by a circuit of
n binary AND gates). This observation and the analysis in [KOR99] imply that this function can be
privately evaluated by any arbitrarily high number n of players with a d-random protocol, where d
stays constant with respect to n. Nonetheless, a straightforward adaptation of [KOR99] leads to a
73-random protocol. In this section, we aim at improving this randomness complexity.

For such a purpose, we deduce a new protocol PAND-n from the protocols P−
AND3, P

(2)
AND2 and PXOR

introduced in the previous section.

5.6.1 Core Idea

The description of the new protocol PAND-n slightly differs depending on the number of players n
taking part in it. The simplest version requires that n takes the form 3 × 2j with j ∈ N. In
what follows, we present the protocol in this ideal case. Also, since the case n = 3 has already
been addressed in Section 5.4 (Protocol PAND-3), n is assumed here to be strictly greater than 3
(ie. n = 3×2j with j > 1). Adaptations to deal with any number n of players are described further
in Section 5.7.

The first case we have to consider is the case of n = 6 players. A naive idea is to divide these
players into two sets of 3 players and make them perform the P−

AND3 protocol in parallel before
computing the product of the encoded results. It is indeed possible to use the same random bits in
the two parallel executions of the protocol while maintaining the privacy. We then use the protocol

P
(2)
AND2 (with new random bits) to obtain the result (see Figure 5.2), thus building an efficient protocol

which is 11-random.

One can generalize this idea recursively for any integer n of the form 3× 2j by first performing
in parallel 2j runs of the protocol P−

AND3 and then multiplying the results using a complete binary
tree of depth j where each node runs a P−

AND2 protocol (using three players). This idea further gives
a way to 1-privately evaluate the AND-n function with n = 3 · 2j player in 11 + (j − 1) = O(log(n))
random bits. To achieve constant randomness complexity, we must remark that it is possible to
recycle the random bits used at each level of the tree without breaking the privacy of the protocol.
For n = 12, it is also possible to reuse some random bits from the first level in the final second level
by a careful selection of the players involved at each level (see Figure 5.3). We obtain a 12-random
protocol for the AND-n function for n = 12.
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Figure 5.2: Description of the protocol PAND-n for n = 6
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Figure 5.3: Description of the protocol PAND-n for n = 12

The final idea is that there is no need to use a fresh random bit for each level of the tree. Indeed,
one can use one bit for nodes at even depth and another bit for nodes at odd depth, thus obtaining
a 12-random protocol for all such n. In order to transform this intuition into a concrete protocol,
we have to check that it is always possible to find teams of 3 players to perform the P−

AND2 protocols
and that the reuse of the random bits do not hinder the security of the protocol.

This check, as long as the correctness and privacy proofs, are done in Section 5.6.2. To enable
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these analyses, the next section presents our new protocol in a formal (recursive) way.

5.6.2 Formal Description

Because our construction is recursive, we need two versions of the protocol: the first version (used in
the recursion) is called P−

AND-n
and provides the players with an encoding of the evaluation, whereas

the second version PAND-n allows all of them to know the evaluation result (it will be used only once
after the recursion). Moreover, as the number of random bits must be kept constant w.r.t. n, we
allow the players to work with copies of the same limited sets of random bits during the protocol
execution. To grant this possibility, before the execution P−

AND-n
and PAND-n, all the players Pi start

by running a protocol enabling to generate all the needed random bits and to distribute them to
the appropriate players. After this initial protocol, each player Pi is provided with two random
tapes Ri and R⋆

i defined such that Ri = Ei mod 3 and

R⋆
i =





F1 if i ≡ 1, 2 (mod 6)
F1
2 if i ≡ 4 (mod 6) and the 2-adic valuation of i−4

6 + 1 is odd
F0
2 if i ≡ 4 (mod 6) and the 2-adic valuation of i−4

6 + 1 is even
F1
2 if i ≡ 5 (mod 6)

F0 otherwise

, (5.1)

with E1 = {r1}, E2 = {r2, r, r′
1}, E0 = {r′

2, r′′}, F0 = ∅, F1 = {r′′
1 , r′′

2}, F0
2 = {r′′

3 , r′′
4 , r⋆

0} and
F1
2 = {r′′

3 , r′′
4 , r⋆

1}.

The n players (Pi{xi, Ri ∪ R⋆
i })16i6n can now process the following recursive protocols P−

AND-n

and PAND-n, where players indexation is done thanks to two functions τ and τ ′ defined on N2 by:

τ(t, n) =

{
(t+ 5, t+ 3) if n = 12
(t+ n

4 − 2, t+ n
4 ) otherwise

and τ ′(t, n) =

{
(t+ 11, t+ 9) if n = 12
(t+ 3n

4 − 2, t+ 3n
4 ) otherwise

.
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Protocol P−
AND-n

Require: Players Pt+1{xt+1, Rt+1 ∪R⋆
t+1}, · · · , Pt+n{xt+n, Rt+n ∪R⋆

t+n} with n and t of the form
3 · 2j for j > 1.

Ensure: Player Pt+n
2

gets
∏n

l=1 xt+l + r⋆
k
. The random bit r⋆

k
is known by other players but not

by Pt+n
2
.

1: if n = 6 then ⊲ n = 6 players
2: Protocol P−

AND3 for (Pt+1{xt+1, Rt+1}, Pt+2{xt+2, Rt+2}, Pt+3{xt+3, Rt+3})
3: ⊲ we get (Pt+2{xt+1xt+2xt+3 + r′′}, Pt+3{r′′})
4: Protocol P−

AND3 for (Pt+4{xt+4, Rt+4}, Pt+5{xt+5, Rt+5}, Pt+6{xt+6, Rt+6})
5: ⊲ we get (Pt+5{xt+4xt+5xt+6 + r′′}, Pt+6{r′′})

6: Protocol P
(2)
AND2 for (Pt+2{xt+1xt+2xt+3+r′′, R⋆

t+2}, Pt+5{xt+4xt+5xt+6+r′′, R⋆
t+5}, Pt+3{r′′})

7: ⊲ we get (Pt+5{
∏6

l=1 xt+l + r⋆
1}, Pt+3{r⋆

1})

8: else ⊲ n > 6 players
9: Protocol P−

AND-n
for (Pt+1{xt+1, Rt+1 ∪ R⋆

t+1}, · · · , Pt+n
2
{xt+n

2
, Rt+n

2
∪ R⋆

t+n
2
+1})

10: ⊲ we get (Pd{
∏ n

2
l=1 xt+l + r⋆

k}, Pe{r⋆
k}), with (d, e) = τ(t, n)

11: Protocol P−
AND-n

for (Pt+n
2
+1{xt+n

2
+1, Rt+n

2
+1 ∪ R⋆

t+n
2
+1}, · · · , Pt+n{xt+n, Rt+n ∪ R⋆

t+n})

12: ⊲ we get (Pf {
∏n

l=n
2

xt+l + r⋆
k}, Pg{r⋆

k}), with (f, g) = τ ′(t, n)

13: a ← t+ n
2 − 5, b ← t+ n

2 − 2 and c ← t+ n
2

14: Pd sends
∏ n

2
l=1 xt+l + r⋆

k to Pa, Pf sends
∏n

l=n
2

xt+l + r⋆
k to Pb, and Pe sends r⋆

k to Pc

15: Protocol P
(2)
AND2 for (Pa{

∏ n
2
l=1 xt+l + r⋆

k, R⋆
a}, Pb{

∏n
l=n

2
xt+l + r⋆

k, R⋆
b}, Pc{r⋆

k, R⋆
c})

16: ⊲ we get Pc{
∏n

l=1 xt+l + r⋆
k
} with r⋆

k
∈ R⋆

b

Notation. In Protocol P−
AND-n

, the index k satisfies k = log2(
n
3 ) mod 2 by construction of the random

tapes.

Protocol PAND-n

Require: n players P1{x1, R1 ∪ R⋆
1}, · · · , Pn{xn, Rn ∪ R⋆

n} with n in the form 3 · 2j for j > 1.
Ensure: All the players get

∏n
i=1 xi

Protocol P−
AND-n

for (P1{x1, R1 ∪ R⋆
1}, · · · , Pn{xn, Rn ∪ R⋆

n})
⊲ we get P n

2
{
∏n

i=1 xi + r⋆
k
} with r⋆

k
∈ R⋆

n
2

−2

Protocol PXOR for (· · · , P n
2

−2{r⋆
k
}, · · · , P n

2
{
∏n

i=1 xi + r⋆
k
}, · · · )
⊲ we get (P1{

∏n
i=1 xi}, · · · , Pn{

∏n
i=1 xi})

The recursive protocol P−
AND-n

has been built such that each player executes P−
AND-3

only once,
and protocol P

(2)
AND-2

at most once. In the following, we show that it is indeed the case, and we use
this property to prove the protocol correctness.

According to our description, the protocol P−
AND-n

for n = 3 · 2j for some integer j > 1, splits the
n players into 2j−1 teams made of 6 players. Among these 6 players, three players run the protocol
P

(2)
AND2 to obtain an encoded form of the AND of their 6 entries. These players, with indices in residue

classes 2, 3 and 5 modulo 6, run the protocol P
(2)
AND2 with random tapes F1 = {r′′

1 , r′′
2}, F0 = ∅ and
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Figure 5.4: Illustration of the teams involved in P
(2)
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AND-n
for n = 48
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Figure 5.5: Illustration of the teams involved in P
(2)
AND2 runs in P−

AND-n
for n = 96

F1
2 = {r′′

3 , r′′
4 , r⋆

1} (respectively). The three other players will be involved later in another execution
of the protocol P

(2)
AND2 in the recursive evaluation of the binary tree.

The three fresh players in teams with odd indices are involved in protocols that compute an
encoded form of the AND-value of 12 private inputs (i.e. the first involved in Step 15 of protocol
P−

AND-n
or equivalently in the maximum depth of the binary tree). These players, with indices in

residue classes 1, 4 and 6 modulo 12, run the protocol P
(2)
AND2 with random tapes F1 = {r′′

1 , r′′
2},

F0
2 = {r′′

3 , r′′
4 , r⋆

0} and F0 = ∅ (respectively). The players in teams with even indices run the
protocol P

(2)
AND2 later in the recursion. For instance, the teams with indices in residue class 2 modulo

4 are involved in the next level of the recursion (i.e. the one which computes the AND-value of 24
private inputs). Figures 5.4 and 5.5 illustrate the teams involved in each execution of the protocol
P

(2)
AND2 following this idea. They indicate for each team which random tape among F0

2 and F1
2 is

actually used in the execution of the protocol P
(2)
AND2.

We now prove the correctness of PAND-n. For such a purpose, we prove that protocols P−
AND3 and

P
(2)
AND2 are always run with a triplet of players that have the required random tapes.

Proposition 5.6.1. For any number of players n = 3× 2j running P−
AND-n

, the players Pt+1, Pt+2,
Pt+3, Pt+4, Pt+5, Pt+6 with t ∈ {6i; i ∈ [0; n

6 − 1]} possess the required random tapes to run P−
AND3.
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Proof. At each terminal point of the recursion, Protocol P−
AND3 is executed by a triplet of players

which is either (Pt+1, Pt+2, Pt+3) or (Pt+4, Pt+5, Pt+6) with t ∈ {6i; i ∈ [0; n
6 − 1]}. By construction,

each player Pt+j runs P−
AND3 with the random set Rt+j defined such that Rt+j

.
= Et+j mod 3 (see the

definition of the Ri). Since, by construction, t equals 0 modulo 3, then the players Pt+1, Pt+2, Pt+3

(resp. Pt+4, Pt+5, Pt+6) hold respectively the random sets E1, E2 and E0. Consequently, the two
processings of P−

AND3 can be performed, leading to the expected encoding (xt+1xt+2xt+3 + r′′, r′′)
(resp. (xt+4xt+5xt+6 + r′′, r′′)). ⋄

Proposition 5.6.2. For any number of players n = 3 × 2j running P−
AND-n

, the triplet of players
Pt+2, Pt+3, Pt+5 with t ∈ {6i; i ∈ [0; n

6 − 1]} possesses the required random tapes to run the protocol

P
(2)
AND2 at Step 6.

Proof. At each terminal point of the recursion, Protocol P ′
AND2 is run by a triplet of players

(Pt+2, Pt+3, Pt+5) such that t ∈ {6i; i ∈ [0; n
6 − 1]}. Since t is by construction a multiple of 6, we

have that t+2 = 2 mod 6, t+3 = 3 mod 6, t+5 = 5 mod 6. Thus, according to the definition of R⋆
i

(see Relation Equation (5.1)), players Pt+2, Pt+5, Pt+3 indeed possess the random sets F1, F1
2 , F0.

Consequently, they can perform P
(2)
AND2, leading to the encoding (

∏6
l=1 xt+l + r⋆

1, r⋆
1). ⋄

Proposition 5.6.3. For any number of players n = 3 × 2j running P−
AND-n

, the protocol P
(2)
AND2 at

Step 15 is always executed by a triplet of players Pa, Pb and Pc who possesses the required random
tapes.

Proof. Let us prove the lemma statement for each level ℓ of the recursion (level 0 corresponding to
the first call to P−

AND-n
and level j −2 corresponding to the last call to P−

AND-n
for a number of players

strictly greater than 6). By construction, for each such level, Protocol P
(2)
AND2 at Step 15 is executed

by a triplet of players (Pa, Pb, Pc) such that a = t + n
2ℓ+1 − 5, b = t + n

2ℓ+1 − 2 and c = t + n
2ℓ+1

with ℓ ∈ [0; j − 2] and t ∈ { n
2ℓ i; i ∈ [0, 2ℓ − 1]}. The execution of P

(2)
AND2 at Step 15 leads to an

encoding of the form (
∏ n

2ℓ

l=1 xt+l + r⋆
k
, r⋆

k
), with k = log3(

n
3·2ℓ ) − 1 mod 2, if the players Pa, Pb, Pc

respectively have the random sets F1, Fk
2 , and F0. Since n

2ℓ+1 and n
2ℓ are multiples of 6 as long as

ℓ 6 j − 2, the indices a and c satisfy a = 1 mod 6 and c = 0 mod 6. Therefore, by definition of R⋆
i

(see Equation (5.1)), players Pa and Pc respectively possess F1, F0. Eventually, by construction,
b equals 4 modulo 6 and satisfies b−4

6 + 1 = t
6 +

n
6·2ℓ+1 that is b−4

6 + 1 = n
3·2ℓ+2 (2i + 1) for some

i ∈ [0, 2ℓ − 1]. The parity of the 2-valuation of b−4
6 is hence that of log2(

n
3·2ℓ+2 ), which exactly

corresponds to k. Eventually, by construction of R⋆
b (see Relation Equation (5.1)), Pb possesses the

random set Fk
2 . We conclude that players Pa, Pb, Pc possess the required random sets to perform

P
(2)
AND2.

⋄

Propositions 5.6.1, 5.6.2 and 5.6.3 imply that PAND-n is correct.
These results allow us to state the following theorem.

Theorem 5.6.4. Protocol P−
AND-n

satisfies the instance-secrecy property and Protocol PAND-n is pri-
vate.

Proof. We start by proving the instance-secrecy of Protocol P−
AND-n

. To this end, we introduce the
following useful Lemmas 5.6.5 and 5.6.6.
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Lemma 5.6.5. Let Pi{Ci, Ri} be a player taking part in P
(2)
AND2. Every non-zero linear combination

of coordinates of Ci can be written as g(Xa, Xb, Ra, Rb, Rc)+R⋆ where R⋆ ∈ (Ra ∪ Rb ∪ Rc) \ Ri

and g ⊥ R⋆.

Proof. We prove the lemma statement for the three players taking part in P
(2)
AND2. By construction

we have Ca = (R3, Xb+R3+R4, (Xa+R1+R2)(Xb+R)+R1(R3+R4)+R⋆), Cb = (R1, Xa+R1+R2)
and Cc = (Xa+R+R1+R2, R2, Xb+R+R3+R4, R4, XaXb+R2R4+R(Xa+R1+R2)+R⋆) (where
the player’s secrets and random tapes content are viewed as random variables, and are therefore
denoted by capital letters). Moreover, the random tapes of the 3 players are {R1, R2}, {R3, R4, R⋆}
and ∅ respectively. They are disjoint. Any linear combination of Ca coordinates involving the
third coordinate can be written as g(· · · ) + R⋆, where g(· · · ) ⊥ R⋆ and R⋆ ∈ Rb. Any other
combination involving the second coordinate can be written g(· · · )+R4, with g ⊥ R4 and R4 ∈ Rb.
The remaining non-zero combination takes the form g(· · · ) + R3 with g ⊥ R3 and R3 ∈ Rb.
This concludes the proof for player Pa. Any linear combination of coordinates of Cb involving its
second coordinate can be written g(· · · ) + R2 with g ⊥ R2 and R2 ∈ Ra, and the only remaining
combination can be written g(· · · ) + R1 with g ⊥ R1 and R1 ∈ Ra. The lemma statement hence
holds for player Pb. Finally, any linear combination of coordinates of Cc involving the last coordinate
can be written as g(· · · ) + R⋆ with g ⊥ R⋆, R⋆ ∈ Rb. Any other combination involving the first
(resp. third) coordinate can be written respectively g(· · · ) + R1 (resp. g(· · · ) + R3), with g ⊥ R1

(resp. g ⊥ R3) and R1 ∈ Ra (resp. R3 ∈ Rb). Any other combination involving its second (resp.
fourth) coordinate takes the form g(· · · ) +R2 (resp. g(· · · ) +R4), with g ⊥ R2 (resp. g ⊥ R4) and
R2 ∈ Ra (resp. R4 ∈ Rb). ⋄

Lemma 5.6.6. During the execution of P−
AND-n

, any player executes P
(2)
AND2 at most once.

Proof. By assumption in P−
AND-n

, the number of players n verifies n = 3 ·2j for some positive integer
j. Due to the recursive construction of our protocol, every player Pi such that i = 2, 3, 5 mod 6
executes P

(2)
AND2 at Step 6, when P−

AND-n
reaches a terminal point. During the other level of the

recursions (not terminal), executions of P
(2)
AND2 (at Step 15) are performed by players of indices

a = t+ n
2ℓ+1 −5, b = t+ n

2ℓ+1 −2 and c = t+ n
2ℓ+1 with ℓ ∈ [0; j −2] and t ∈ { n

2ℓ i; i ∈ [0, 2ℓ −1]}. For
such values ℓ and t, it can be checked that t+ n

2ℓ+1 is a multiple of 6 which implies a ≡ 1 (mod 6),
b ≡ 4 (mod 6) and c ≡ 0 (mod 6). This shows that no player can participate to the execution
of P

(2)
AND2 at both Steps 6 and 15 of the recursion. Moreover, for x ∈ {1, 4, 6}, ℓ ∈ [0; j − 2] and

i ∈ [0, 2ℓ − 1], it can be checked that the function x, ℓ, i Ô→ n
2ℓ+1 (2i + 1) + x − 6 is injective, which

implies that no player can perform P
(2)
AND2 at Step 15 more than once during the recursion. ⋄

We can now prove the instance-secrecy of P−
AND-n

.

Proof. We reason by induction.
Basis. We assume n = 6. In this case, players P1, P4 and P6 run no other protocol than P−

AND3

(and only once) and hence only receive messages during this execution. Moreover, P−
AND3 satisfies

the instance-secrecy property with respect to these players. For any other player P , all received
messages are either received during P−

AND3 or P
(2)
AND2. Lemma 5.6.5 ensures that any non-zero linear

combination involving only messages of P−
AND3 or of P

(2)
AND2 takes the form g(· · · ) + R with R not

in the random tape of P and g ⊥ R. Moreover, no message sent in P−
AND3 functionally depends

on any random bit used in P
(2)
AND2 (they indeed both use disjoint triplets of random tapes). Thus,

Lemma 5.2.9 ensures that every linear combination of messages received during P
(2)
AND2 and P−

AND3

takes the form g(· · · )+R with R not in the random tape of P and g ⊥ R. Lemma 5.2.8 thus implies
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that the communication vector received by any player P{Xi} is independent of (X1, · · · , X6)|Xi =
xi for any xi ∈ F2, which itself implies that P−

AND-n
satisfies the instance-secrecy property for n = 6

(Lemma 5.2.4).
Induction. We assume that (H1) P−

AND-n
satisfies the instance-secrecy property for an integer

n such that n = 3× 2j , and (H2) every non-zero linear combination of coordinates of the commu-
nication vector C

(n)
i received by a player Pi{Ri} during P−

AND-n
can be written as g(· · · ) +R with

R /∈ Ri ∪ R⋆
i and g ⊥ R.

We consider now the execution of P−
AND-n

for 2n players. By construction, the communication
C
(2n)
i received by each player Pi{Ri} can be written as (C(n)

i , C′
i, C′′

i ), where C
(n)
i is the com-

munication received by Pi during the execution of P−
AND-n

for n players (Step 9 or Step 11), C′′
i

is the communication received during the execution of P
(2)
AND2 at Step 15, and C′

i is the communi-
cation received between these two calls (Step 14). Note that, for all but three players, we have
C′

i = C′′
i = 0. Thus, by hypothesis, P−

AND-n
satisfies the instance-secrecy property with respect to

all these players and their communication vectors C
(2n)
i satisfy Hypothesis (H2) for 2n instead of

n.
For any of the three remaining players Pi with i ∈ {a, b, c}, we deduce from Lemma 5.6.6 and

C′′
i Ó= 0 that no message in C

(n)
i has been received during the execution of P

(2)
AND2. As a consequence,

no message in C
(n)
i functionally depends on R⋆

i (the random tape used by Pi to execute P
(2)
AND2).

The single message in C′
i can be written g′(· · · ) +R⋆

k. Moreover, by construction, indices a, b and
c respectively equal n − 5, n − 2 and n. The same reasoning as in the proof of Proposition 5.6.3
then shows that R⋆

a = F1, R⋆
b = Fk

2 and R⋆
c = F0. For every i ∈ {a, b, c}, we deduce that the

single message in C′
i is functionally independent of the random tapes R⋆

a, R⋆
b and R⋆

c used in P
(2)
AND2.

Together with Lemma 5.6.5, this independency implies that any non-zero linear combination of C′
i

with elements in C′′
i takes the form g(· · · ) + R with R ∈ (R⋆

a ∪ R⋆
b ∪ R⋆

c)\(R
⋆
i ) and g ⊥ R. Since

no message in C
(n)
i functionally depends on R⋆

a ∪ R⋆
b ∪ R⋆

c , we eventually deduce from Hypothesis

(H2) that any non-zero linear combination of messages from C
(2n)
i can be written as g(· · · ) + R

with R ∈ (Ra ∪ R⋆
a ∪ Rb ∪ R⋆

b ∪ Rc ∪ R⋆
c)\(Ri ∪ R⋆

i ) and g ⊥ R. Thanks to Lemma 5.2.8, we hence
conclude that P−

AND-n
satisfies the instance-secrecy property with respect to the three players Pa, Pb

and Pc and that their communication vectors C
(2n)
i satisfy Hypothesis (H2) for 2n instead of n.

We have shown that P−
AND-n

satisfies the instance-secrecy property for 2n players if it satisfies
the instance-secrecy property for n in the form 3 · 2j . As the instance-secrecy property is true for
n = 6 we can conclude that the proposition statement is true for any n in the form 3 ·2j with j > 1.
⋄

We now prove the privacy of Protocol PAND-n.

Proof. By construction, any message received by a player running PAND-n is either a message
received in P−

AND-n
or in PXOR. Moreover, P−

AND-n
satisfies the instance-secrecy property with respect

to every player. During PXOR, each player receives a single message. All players but P n
2

and P n
2

−2,

who played respectively the roles of Pc and Pb during the last call to P
(2)
AND2, receive

∏n
i=1 Xi and

learn nothing new except the protocol output.

• Player P n
2

−2 receives
∏n

i=1 Xi + R⋆
k

and knows R⋆
k
. He then deduced

∏n
i=1 Xi but learns

nothing new: PAND-n is private w.r.t P n
2

−2.

• Player P n
2
receives

∏n
i=1 Xi and knows

∏n
i=1 Xi+R⋆

k
. He then deduces R⋆

k
who is used to secure

communications during executions of P
(2)
AND2. Due to Lemma 5.6.6, P n

2
ran the latter protocol



5.7. PRIVATE AND EVALUATION WITH ANY NUMBER OF PLAYERS 127

only once. Hence, his communication vector contains a single message which functionally
depends on R⋆

k
, which is

∏n
i=1 Xi + R′′

2R′′
4 + R⋆

k(
∏n/2

i=1 Xi + R′′
1 + R′′

2) + R⋆
k
. The sum of this

message with
∏n

i=1 Xi+R⋆
k
gives R′′

2R′′
4 +R⋆

k(
∏n/2

l=1 Xi+R′′
1 +R′′

2). Since P n
2

also received R′′
2

and R′′
4 during P

(2)
AND2, he can deduce the value

∏n/2
i=1 Xi+R′′

1 . The latter one is still protected

by R′′
1 which is unknown to P n

2
. Among the other messages received by P n

2
during P

(2)
AND2, only∏n/2

i=1 Xi + R′′
1 + R′′

2 functionally depends on R′′
1 , however this message brings no additional

information. We therefore deduce that P n
2

learns nothing more than his secret and the final
result: PAND-n is private w.r.t. P n

2
.

Eventually, we get that PAND-n is private with respect to all the players, which concludes the proof.
⋄

5.7 Private AND evaluation with any number of players

In this section, we describe the protocol P⋆
AND-n

allowing the private multiplication of any number n
of input bits. It completes the protocol PAND-n presented in Sections 4 for any number n of players
taking the form 3 × 2j . As Section 5.5 addresses the particular cases n = 4, 5, we focus hereafter
on the case n > 6.

Protocol P⋆
AND-n

mainly consists in two separate instances of P−
AND-n

for two sets of players of
same cardinal n′ defined as the largest integer of the form 3× 2j which is smaller than n. The first
instance of P−

AND-n
is performed by players (P1, · · · , Pn′) and it returns an encoding of x1 · · · xn′ .

Since n′ and n satisfy 2n′ > n, the second execution of P−
AND-n

involves not only the remaining players
(Pn′+1, · · · , Pn), but also dummy players (holding a public input 1) who are actually personified by
players involved in the first instance. For the sake of clarity, we assume that each dummy player
(Pn+1, · · · , P2n′) is in fact simulated by the corresponding player Pn−n′+i. Eventually, the second
execution of P−

AND-n
returns an encoding of xn′ , · · · , xn. A further execution of P

(4)
AND2 therefore

suffices to provide players with an encoding of x1 · · · xn. Finally, running PXOR ensures that every
player get the expected result. Each player Pi is provided with the random tapes Ri, R⋆

i and R′
i.

Random tapes Ri and R⋆
i will be used for the executions of P−

AND-n
and random tapes R′

i will be

used for P
(4)
AND2. Before running the protocol, players fill their random tapes such that:

Ri =





{r1} if i ≡ 1 (mod 3) and i ≤ n′, {s1} if i ≡ 1 (mod 3) and i > n′

{r2, r, r′
1} if i ≡ 2 (mod 3) and i ≤ n′, {s2, s, s′

1} if i ≡ 2 (mod 3) and i > n′

{r′
2, r′′} if i ≡ 0 (mod 3) and i ≤ n′, {s′

2, s′′} if i ≡ 0 (mod 3) and i > n′

R⋆
i =





{r′′
1 , r′′

2} if i ≡ 1, 2 (mod 6) and i ≤ n′

{r′′
3 , r′′

4 , r⋆
1} if i ≡ 4 (mod 6) and the 2-adic valuation of i−4

6 + 1 is odd and i ≤ n′

{r′′
3 , r′′

4 , r⋆
0} if i ≡ 4 (mod 6) and the 2-adic valuation of i−4

6 + 1 is not odd and i ≤ n′

{r′′
3 , r′′

4 , r⋆
1} if i ≡ 5 (mod 6) and i ≤ n′

{s′′
1, s′′

2} if i ≡ 1, 2 (mod 6) and i > n′

{s′′
3, s′′

4, s⋆
1} if i ≡ 4 (mod 6) and the 2-adic valuation of i−4

6 + 1 is odd and i > n′

{s′′
3, s′′

4, s⋆
0} if i ≡ 4 (mod 6) and the 2-adic valuation of i−4

6 + 1 is not odd and i > n′

{s′′
3, s′′

4, s⋆
1} if i ≡ 5 (mod 6) and i > n′

∅ otherwise
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R′

i =





{r′′
1 , r′′

2} if i = n′ − 5
{r′′

3 , r′′
4 , r⋆} if i = n′ − 2

∅ otherwise

We hence get the following 26-random protocol:

Protocol P⋆−
AND-n

Require: n players P1{x1, R1 ∪ R⋆
1 ∪ R′

1}, · · · , Pn{xn, Rn ∪ R⋆
n ∪ R′

n}
Ensure: Player Pn′ gets

∏n
i=1 xi + r⋆ where r⋆ is a random bit known byPn′−2 only

Protocol P−
AND-n

for (P1{x1, R1 ∪ R⋆
1}, · · · , Pn′{xn′ ∪ Rn′ , R⋆

n′})
⊲ we get (P n′

2

{x1 · · · xn′ + r⋆
k}, P n′

2
−2

{r⋆
k})

Protocol P−
AND-n

for (Pn′+1{xn′+1, Rn′+1 ∪ R⋆
n′+1}, · · · , P2n′{1, R2n′ ∪ R2n′⋆})

⊲ we get (P 3n′

2

{xn′+1 · · · xn + s⋆
k}, P 3n′

2
−2

{s⋆
k})

P n′

2

sends x1 · · · xn′ + r⋆
k to Pn′−5

P 3n′

2

sends xn′+1 · · · xn + s⋆
k to Pn′−2

P n′

2
−2

sends r⋆
k to Pn′

P 3n′

2

sends s⋆
k to Pn′

Protocol P
(4)
AND2 for (Pn′−5{x1 · · · xn′ + r⋆

k, R′
n′−5}, Pn′−2{xn′+1 · · · xn + s⋆

k, R′
n′−2}, Pn′{r⋆

k, s⋆
k})

⊲ we get (Pn′{
∏n

i=1 xi + r⋆}, Pn′−2{r⋆})

Protocol P⋆
AND-n

Require: n players P1{x1, R1 ∪ R⋆
1}, · · · , Pn{xn, Rn ∪ R⋆

n} with n in the form 3 · 2j for j > 1.
Ensure: All the players get

∏n
i=1 xi

Protocol P⋆−
AND-n

for (P1{x1, R1 ∪ R⋆
1 ∪ R′

1}, · · · , Pn{xn, Rn ∪ R⋆
n ∪ R′

n})
⊲ we get Pn′{

∏n
i=1 xi + r⋆} with r⋆ ∈ R′

n′
−2

Protocol PXOR for (· · · , P n′

2
−2

{r⋆}, · · · , Pn′{
∏n

i=1 xi + r⋆}, · · · )

⊲ we get (P1{
∏n

i=1 xi}, · · · Pn{
∏n

i=1 xi})

The correctness of P⋆
AND-n

can be checked thanks to the comments inserted in the protocol
description. We now state the following theorem:

We then deduce the following theorem:

Theorem 5.7.1. Protocol P⋆−
AND-n

satisfies the instance-secrecy property and Protocol P⋆
AND-n

is
private for any number of players.

Proof. We start by proving the instance-secrecy of Protocol P⋆
AND-n

. To this end, we introduce the
following lemma:

Lemma 5.7.2. In protocol PAND-n with n = 3× 2j and j > 1, the players Pn−5, Pn−2 and Pn never

execute P
(2)
AND2.
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Proof. Since n = 3 × 2j , we have n − 5 = 1 mod 6, n − 2 = 4 mod 6 and n = 0 mod 6.
Thus, none of these players can execute P

(2)
AND2 during a terminal point of P−

AND-n
. As previously

stated, when not in a terminal point, executions of P
(2)
AND2 are performed by players of indices

a = t + n
2ℓ+1 − 5, b = t + n

2ℓ+1 − 2 and c = t + n
2ℓ+1 with ℓ ∈ [0, j − 2] and t ∈ { n

2ℓ i; i ∈ [0, 2ℓ − 1]}.

Thus, players Pn−5, Pn−2 and Pn perform P
(2)
AND2 at Step 15 if and only if the equation t+ n

2ℓ+1 = n
has a solution. However, due to the expression of t, it can be checked that this equation is equivalent
to 2i + 1 = 2ℓ+1, which accepts no solution. Consequently, players Pn−5, Pn−2, Pn do not perform
P

(2)
AND2. ⋄

We can now prove the instance-secrecy of Protocol P⋆
AND-n

:

Proof. By construction, the communication C
(n)
i received by each player Pi can be written as

(C
(1)
i , C

(2)
i , C

(3)
i ), where C

(1)
i is the communication received during the first execution of P−

AND-n

with n′ players, C
(2)
i is the communication received during the second execution of P−

AND-n
with n′

players, and C
(3)
i is the communication received during the execution of P

(4)
AND2. Note that, for all

players but Pn′−5, Pn′−2, Pn′ , we have C
(3)
i = 0.

Let us first recall that n′ in P⋆−
AND-n

corresponds to the largest value of the form 3 · 2j which is
smaller than n. We denote by I1 (resp. I2) the union of intervals [1, n − n′] ∪ [n′ + 1, n] (resp. the
interval [n − n′ + 1, n′]). The set {n′ − 5, n′ − 2, n′} is moreover denoted by I3.

By construction, players Pi with index i ∈ I1 participated in a single execution of P−
AND-n

(and
thus C

(n)
i equals either C

(1)
i if i ∈ [1, n − n′] or C

(2)
i if i ∈ [n′+1, n]). The remaining players with

i ∈ I2 participated in both executions.

• In the case i ∈ I1\I3, we deduce from Lemma 5.2.8 that any non-zero linear combination of
C
(n)
i coordinates can be written as g(· · · )+R with g ⊥ R and R ∈ (

⋃n′

l=1(Rl∪R⋆
l ))\(Ri∪R⋆

i )

or R ∈ (
⋃2n′

l=n′+1(Rl ∪ R⋆
l )) \ (Ri ∪ R⋆

i ). We hence deduce from Lemma 5.2.8 that P⋆−
AND-n

satisfies the instance-secrecy property with respect to players Pi with i ∈ I1\I3.

• In the case i ∈ I2\I3, the players Pi have not only their random tapes Ri ∪ R⋆
i but also the

random tapes Rn′+i ∪ R⋆
n′+i

(to play the role of the dummy players Pn′+i). By construction,

no message sent in C
(2)
i is functionally dependent of any random bit in

⋃n′

l=1(Rl ∪ R⋆
l )

(involved in C
(1)
i ), hence any non-zero linear combination of C

(n)
i can be written as g(· · · )+R

with g ⊥ R and R ∈ (
⋃2n′

l=1(Rl∪R⋆
l ))\(Ri∪R⋆

i ∪Rn′+i∪R⋆
n′+i

). We deduce from Lemma 5.2.8
that P⋆−

AND-n
satisfies the instance-secrecy property with respect to players Pi with i ∈ I2\I3.

• For players Pi with i ∈ I3 (who also played the roles of the dummy players with indices in
{2n′−5, 2n′−2, 2n′} during the second call to P−

AND-n
), Lemma 5.7.2 imply that every non-zero

linear combination of C
(1)
i coordinates can be written as g(· · · )+R with R ∈ (

⋃n′

l=1(Rl))\Ri

and g ⊥ R. Similarly, every non-zero linear combination of C
(2)
i coordinates can be written

as g(· · · ) +R, with R ∈ (
⋃2n′

l=n′+1(Rl)) \ Rn′+i and g ⊥ S. Moreover, we have that any non-

linear combination of C
(3)
i coordinates takes the form g(· · · ) +R, with R ∈ (

⋃2n′

l=1(R
′
l)) \ R′

i

and g ⊥ R. Since every message in C
(1)
i or C

(2)
i is functionally independent of any element

in
⋃2n′

l=1 R′
l, we have that every non-zero linear combination involving a coordinate of C

(3)
i

can be written as g(· · · ) + R′, with R′ ∈ (
⋃2n′

l=1(R
′
l)) \ (R′

i) and g ⊥ R′. Finally, since no

message sent in C
(2)
i is functionally dependent on any random bit in

⋃n′

l=1(Rl ∪ R⋆
l ), we get

that any non-zero linear combination of C
(n)
i can be written as g(· · · ) + R with g ⊥ R and
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R ∈ (
⋃2n′

l=1(Rl ∪ R⋆
l )) \ (Ri ∪ R⋆

i ∪ Rn′+i ∪ R⋆
n′+i

∪ R′
i). Thanks to Lemma 5.2.8, we hence

conclude that P⋆−
AND-n

satisfies the instance-secrecy property with respect to Pi with i ∈ I3.

We eventually conclude that P⋆−
AND-n

satisfies the instance-secrecy property. Since P⋆−
AND-n

satisfies
the instance-secrecy property, the proof of the privacy of PAND-n follows. ⋄

According to the definition of our random tapes, P⋆
AND-n

uses 26 random bits.

5.8 Direct Extension of the Results

All the protocols described in this paper can be straightforwardly extended to privately evaluate
the multiplication in any finite ring R. The randomness complexity of our protocols is multiplied
by the binary logarithm of the cardinality of R.

Proposition 5.8.1. Let R be a finite ring with multiplication law denoted by ×. Let n be a positive
integer and let MUL-n denotes the function (x1, · · · , xn) ∈ R Ô→ x1 × · · · × xn. Then, for every n,
there exists a private protocol P(n, MUL-n) with randomness complexity equal to 12 · log2(#R) if n
takes the form 3 · 2j or 26 · log2(#R) otherwise.

To the best of our knowledge, the protocol described in [KOR99] cannot be adapted to this
general case. Our proposal is hence of particular relevance in this context.

The construction of [KOR99] is however still relevant, as it considers a much larger class of
functions. We propose in Section 5.9 an improvement to its randomness complexity.

5.9 Diminution of the random complexity of the KOR protocol

In this section, we adapt the protocol proposed [KOR99] and show how its random complexity can
be straightforwardly improved by our results.

We start by giving a very high level description of the approach.
The n players P1, . . . , Pn taking part in the protocol from [KOR99] are divided into two groups

∆1 = {P1, · · · , P⌊ n
2

⌋}, and ∆2 = {P⌊ n
2

⌋+1, · · · , Pn}. The player P1 plays the role of a randomness
player. That is, P1 reads every random bit used in the protocol and distributes some of them to
the other players. Players in ∆1 \ {P1} are further separated in k ≃ n

6 teams {T1, · · · , Tk} of three
players. We denote by Ai, Bi, Ci the three players forming the i-th team Ti.

The function evaluated by the n players is considered as a circuit taking as inputs each player’s
secret, as well as their negations. The circuit is assumed to be composed of only AND and OR gates
of fan-in 2 and arbitrary fan-out. The number of gates in this circuit is denoted m.

At the beginning of the protocol, P1 reads a random bit r0 and sends it to each player in ∆1.
Then, each player Pi ∈ ∆1 sends xi + r0 to Pi+⌊ n

2
⌋. The idea of the protocol is to use the teams

T1, · · · , Tk to simulate the m gates of the circuit. Specifically, each team will be responsible for the
simulation of at most m

k gates. The protocol ensures that each time a team is evaluating a function
c = f(a, b), the players Ai and Bi should hold respectively a ⊕ rd and b ⊕ rd where rd is a random
bit known by P1 only. Through a particular interaction between Ai, Bi, Ci and P1, the protocol
ensures that Ci gets the value c ⊕ sd, where sd is a random bit known by P1 only. When the final
gate has been simulated, the output of the evaluated function is then computed with the protocol
PXOR.
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The randomness complexity of this protocol is limited by the fact that, each team evaluating
its j-th gate, will use the same set Rj of random bits. Therefore, the random complexity of this
protocol is exactly (α+2)× m

k +1, where α is the number of random bits used to simulate a gate.
Since k ≈ n

6 , then for each function for which the number of gates m is a linear function of the
number of players n, this randomness complexity is constant. In the protocol given in [KOR99],
we have α = 10. Note that in the particular case of the AND function, we have m = n − 1, and
therefore the protocol needs 6× 12 + 1 = 73 random bits.

The results we presented in Section 4 allow for the reduction of the number α, and therefore for
the reduction of the random complexity of such a protocol for any function which can be evaluated
with a linear circuit. Indeed, for evaluating an AND gate, players A, B, C just need to perform the
protocol P

(2)
AND2 with random tapes provided by P1. The evaluation of any OR gate is trivial thanks

to De Morgan’s theorem: instead of performing P
(2)
AND2 with inputs a+ rd, b+ rd, players perform it

with inputs a+ rd + 1, b+ rd + 1, ensuring the return of c+ rd + 1, which gives c+ rd. Since P
(2)
AND2

is 5-random, we get that α = 5.
Therefore, each function f can be securely computed with 42× m

n−1 + 1 random bits, where m
is the number of gates of the circuit evaluating f , and n is the number of input variables.

5.10 Conclusion

This chapter opens the study of the exact randomness complexity of private veto protocols. In
addition to its intrinsic interest, the analysis of this problem has already found applications in
other private protocols (as shown in Sections 5.8 and 5.9) and raises several questions for future
research.

For 1-private protocols, the tantalizing open problem is naturally to provide a non-trivial lower
bound on the randomness complexity of the evaluation of the AND-n function. Even for three
players, it seems very difficult to prove that a protocol requires more than 3 random bits. For
t > 2, the results from [KM96] and [GR03] imply that Ω(max(t, log(n))) random bits are necessary
for the t-private computation of the AND-n function. The most random-efficient t-private protocol
for t > 2 requires O(poly(t) log(n)) random bits [CKOR00]. It is an interesting open problem to
develop new techniques for proving improved lower bounds and/or to find better constructions
than those proposed here (for t = 1). Finally, finding tradeoffs between randomness complexity
and round complexity for private veto protocols (on one or several instances) also deserves further
attention.





Chapter 6

Conclusion and Perspectives

During these three years, we have addressed several issues concerning embedded cryptography. In
this manuscript, we chose to present three distinct but related topics.

First, we introduced a novel methodology allowing to estimate the success rate of side-channel
attacks, without even having to perform them. This methodology could help evaluators and de-
signers to get a strong sense of the security of their products, in a limited time. We also gave some
rationales about the confidence one can have in the results of such attacks when they are actually
performed. Part of these results have been presented at the CHES conference ([TPR13; LPR+14]).

Then, we tackled the problem of the randomness complexity of the multiplication. Our approach
studied the design of private circuits allowing to compute the product of two shared variables. We
deeply analyzed this problem, and offered bounds on such a complexity, as well as concrete proven
constructions. We also studied the composition of these algorithms, allowing for the design of
circuits implementing whole cryptographic functions. These results could help designers to achieve
secure implementations, while maintaining correct performance. Part of these results have been
presentend at the Eurocrypt conference ([BBP+16]).

Finally, we addressed the construction of 1-private veto protocols, in the honest but curious
model. We gave lower and upper bounds on the randomness complexity of such protocols. We then
used several small protocols as basic bricks to modularly construct secure solutions to this problem.
Our ideas allow for the secure computation of more complex functions, such as the majority, or
field products. This work is unpublished.

We also tackled other topics, that are not presented in this manuscript.

Just before the official beginning of this thesis, we addressed at the Fault Diagnosis and Tol-
erance in Cryptography conference (FDTC) ([LRT12]) the issue of fault attacks. Fault attacks
consists in the perturbation of a device while it is performing a cryptographic algorithm, in order
to obtain erroneous ciphertexts. These erroneous ciphertexts are then compared with the corre-
sponding expected correct ciphertexts, thanks to a statistical treatment, allowing to retrieve the
secret key. The main contribution of our paper was to present several attacks against countermea-
sures supposed to thwart these attacks, proving their inefficiency by using simple mathematical
properties. We then proposed several other constructions to prevent such attacks.

We continued with the subject of fault attacks at the FDTC conference ([FJLT13]). This time,
we demonstrated how it is possible to actually attack cryptographic algorithms with faults, without
the knowledge of the expected correct ciphertexts. We validated our approach against AES. These
results show the inefficiency of a family of protocol countermeasures which prevented the same
plaintext to be encrypted twice.

Finally, we provided at the PKC conference ([BCTV16]) a toolbox based on analytic combi-
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natorics to ease some public-key cryptanalysis methods based on Coppersmith’s algorithm. The
use of this toolbox allows to easily recover known results, sometimes even allowing more accurate
estimations of their complexities.

All those subjects are still opened for further interesting and exciting researches.
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Résumé
Les cryptosystèmes sont présents dans de nombreux

appareils utilisés dans la vie courante, tels que les

cartes à puces, ordiphones, ou passeports. La sécu-

rité de ces appareils est menacée par les attaques par

canaux auxiliaires, où un attaquant observe leur com-

portement physique pour obtenir de l’information sur

les secrets manipulés. L’évaluation de la résilience

de ces produits contre de telles attaques est obliga-

toire afin de s’assurer la robustesse de la cryptogra-

phie embarquée. Dans cette thèse, nous exhibons

une méthodologie pour évaluer efficacement le taux

de succès d’attaques par canaux auxiliaires, sans avoir

besoin de les réaliser en pratique. En particulier,

nous étendons les résultats obtenus par Rivain en

2009, et nous exhibons des formules permettant de cal-

culer précisément le taux de succès d’attaques d’ordre

supérieur. Cette approche permet une estimation

rapide de la probabilité de succès de telles attaques.

Puis, nous étudions pour la première fois depuis le pa-

pier séminal de Ishai, Sahai et Wagner en 2003 le prob-

lème de la quantité d’aléa nécessaire dans la réalisa-

tion sécurisée d’une multiplication de deux bits. Nous

fournissons des constructions explicites pour des or-

dres pratiques de masquage, et prouvons leur sécurité

et optimalité. Finalement, nous proposons un pro-

tocole permettant le calcul sécurisé d’un veto parmi

un nombre de joueurs arbitrairement grand, tout en

maintenant un nombre constant de bits aléatoires.

Notre construction permet également la multiplica-

tion sécurisée de n’importe quel nombre d’éléments

d’un corps fini.

Mots Clés
canaux auxiliaires, cryptographie, aléa, calcul multi-

parties, masquage

Abstract
Cryptosystems are present in a lot of everyday life

devices, such as smart cards, smartphones, set-top-

boxes or passports. The security of these devices is

threatened by side-channel attacks, where an attacker

observes their physical behavior to learn information

about the manipulated secrets. The evaluation of the

resilience of products against such attacks is manda-

tory to ensure the robustness of the embedded cryp-

tography. In this thesis, we exhibit a methodology

to efficiently evaluate the success rate of side-channel

attacks, without the need to actually perform them.

In particular, we build upon a paper written by Ri-

vain in 2009, and exhibit explicit formulaes allowing

to accurately compute the success rate of high-order

side-channel attacks. We compare this theoretical ap-

proach against practical experiments. This approach

allows for a quick assessment of the probability of suc-

cess of any attack based on an additive distinguisher.

We then tackle the issue of countermeasures against

side- channel attacks. To the best of our knowledge,

we study for the first time since the seminal paper

of Ishai, Sahai and Wagner in 2003 the issue of the

amount of randomness in those countermeasures. We

improve the state of the art constructions and show

several constructions and bounds on the number of

random bits needed to securely perform the multipli-

cation of two bits. We provide specific constructions

for practical orders of masking, and prove their secu-

rity and optimality. Finally, we propose a protocol

allowing for the private computation of a secure veto

among an arbitrary large number of players, while

using a constant number of random bits. Our con-

struction also allows for the secure multiplication of

any number of elements of a finite field.

Keywords
side-channel, cryptography, randomness, multi-party

computation, masking


