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Résumé Une prédiction �dèle des écoulements hypersoniques à haute en-
thalpie est capitale pour les missions de rentrée atmosphérique. Cependant, la
présence d'incertitudes est inévitable, sur les conditions de l'écoulement libre
comme sur d'autres paramètres des modèles physico-chimiques. Pour cette
raison, une quanti�cation rigoureuse de l'e�et de ces incertitudes est obliga-
toire pour évaluer la robustesse et la prédictivité des simulations numériques.
De plus, une reconstruction correcte des paramètres incertains à partir des
mesures en vol peut aider à réduire le niveau d'incertitude sur les sorties.
Dans ce travail, nous utilisons un cadre statistique pour la propagation di-
recte des incertitudes ainsi que pour la reconstruction inverse des conditions
de l'écoulement libre dans le cas d'écoulements de rentrée atmosphérique. La
possibilité d'exploiter les mesures de �ux thermique au nez du véhicule pour
la reconstruction des variables de l'écoulement libre et des paramètres incer-
tains du modèle est évaluée pour les écoulements de rentrée hypersoniques.
Cette reconstruction est réalisée dans un cadre bayésien, permettant la prise
en compte des di�érentes sources d'incertitudes et des erreurs de mesure. Dif-
férentes techniques sont introduites pour améliorer les capacités de la stratégie
statistique de quanti�cation des incertitudes. Premièrement, une approche est
proposée pour la génération d'un métamodèle amélioré, basée sur le couplage
de Kriging et Sparse Polynomial Dimensional Decomposition. Ensuite, une
méthode d'ajoute adaptatif de nouveaux points à un plan d'expériences ex-
istant est présentée dans le but d'améliorer la précision du métamodèle créé.
En�n, une manière d'exploiter les sous-espaces actifs dans les algorithmes de
Markov Chain Monte Carlo pour les problèmes inverses bayésiens est égale-
ment exposée.

Title Predictive numerical simulations for rebuilding freestream conditions
in atmospheric entry �ows

Abstract Accurate prediction of hypersonic high-enthalpy �ows is of main
relevance for atmospheric entry missions. However, uncertainties are inevitable
on freestream conditions and other parameters of the physico-chemical models.
For this reason, a rigorous quanti�cation of the e�ect of uncertainties on the
prediction of the model is mandatory to assess the robustness and predictivity
of numerical simulations. Furthermore, a proper reconstruction of uncertain
parameters from in-�ight measurements can help in reducing the level of un-
certainties of the output. In this work, we will use a statistical framework
for direct propagation of uncertainties and inverse freestream reconstruction
applied to atmospheric entry �ows. We propose an assessment of the possi-
bility of exploiting forebody heat �ux measurements for the reconstruction of
freestream variables and uncertain parameters of the model for hypersonic en-
try �ows. This reconstruction is performed in a Bayesian framework, allowing
to account for sources of uncertainties and measurement errors. Di�erent tech-
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niques are introduced to enhance the capabilities of the statistical framework
for the quanti�cation of uncertainties. First, an improved surrogate modeling
technique is proposed, based on Kriging and Sparse Polynomial Dimensional
Decomposition. Then, a method is proposed to adaptively add new train-
ing points to an existing experimental design to improve the accuracy of the
trained surrogate model. A way to exploit active subspaces in Markov Chain
Monte Carlo algorithms for Bayesian inverse problems is also proposed.

Keywords Hypersonic �ows, Atmospheric entry, Freestream reconstruction,
Bayesian inverse problems, Uncertainty Quanti�cation, Surrogate models, Uni-
versal Kriging, Adaptive design of experiments, Active Subspaces

Mots-clés Écoulements hypersoniques, Rentrée atmosphérique, Reconstruc-
tion des conditions en amont, Problèmes inverses Bayesiens, Quanti�cation des
incertitudes, Métamodèles, Krigeage universel, Plan d'expériences adaptatif,
Sous-espaces actifs
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Résumé étendu

Introduction et objectifs

L'aérodynamique hypersonique joue un rôle principal dans la rentrée atmo-
sphérique des véhicules spatiaux et une simulation aérothermique précise de
l'écoulement d'entrée est cruciale pour la conception du véhicule et de la tra-
jectoire d'entrée. Les écoulements d'entrée hypersoniques sont des phénomènes
complexes, car le fort chau�age post-choc peut originer plusieurs phénomènes,
comme la dissociation des molécules et d'autres réactions chimiques, la ioni-
sation, les e�ets de non-équilibre chimique et thermique, le chau�age radiatif
et les e�ets d'interaction avec la paroi, comme catalyse et ablation [Anderson,
2000; Sarma, 2000]. En raison de leur complexité, il est très di�cile de repro-
duire les écoulements d'entrée dans des installations expérimentales, en partic-
ulier parce que la similitude expérimentale exacte ne peut pas être obtenue dans
une situation générale de non-équilibre, sauf si un modèle en dimension réelle
est utilisé. L'acquisition de mesures pendant un vol d'entrée réel peut fournir
beaucoup de données utiles, mais cela est infaisable sur une base régulière,
puisque chaque mission d'entrée implique des coûts économiques élevés. Par
conséquent, les simulations numériques au moyen de la dynamique des �u-
ides computationnelle (CFD) sont souvent la seule ressource disponible pour
obtenir des données quantitatives sur les écoulements hypersoniques d'entrée
[Longo, 2004; zur Nieden et Olivier, 2007].

A�n de produire des simulations précises et prédictives, il est essentiel de
fournir des valeurs précises pour les conditions limites, comme la composition
et l'état thermodynamique de l'atmosphère et la vitesse de vol. Malheureuse-
ment, les connaissances sur les propriétés atmosphériques et l'état thermo-
dynamique sont généralement caractérisées par un haut degré d'incertitude,
en particulier pour des autres planètes que la Terre. En plus, les �uctua-
tions atmosphériques peuvent provoquer des écarts aléatoires par rapport aux
modèles atmosphériques standards [Enzian et al., 2002]. Pour améliorer les
connaissances sur les conditions en amont, il est courant de reconstruire les
paramètres atmosphériques à partir des données de vol lors de l'analyse post-
vol. Cela permet d'améliorer les modèles atmosphériques pour la conception
et l'analyse des missions EDL et de fournir des conditions limites d'entrée sig-
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ni�catives pour des simulations CFD prédictives. La reconstruction des con-
ditions atmosphériques et l'état du véhicule sont également importants pour
le contrôle et le guidage des véhicules opérationnels [Koppenwallner, 2007].

Les techniques classiques de reconstruction de la trajectoire d'entrée et
des conditions atmosphériques sont des approches déterministes basées sur
des accélérations linéaires et des rotations angulaires mesurées par des ac-
céléromètres et des gyroscopes composant l'Inertial Measurement Unit (IMU),
qui fait partie de l'instrumentation standard des véhicules d'entrée [Withers
et al., 2003]. Cependant, même si les données de vol inertielles sont idéales
pour la reconstruction de la trajectoire d'entrée [Desai et al., 2011], elles ne sont
pas forcement su�santes pour caractériser précisément l'environnement atmo-
sphérique, puisqu'elles n'incluent aucune information directe sur l'écoulement
d'air autour de la capsule [Van Hove et Karatekin]. Pour cette raison, sur
certains autres véhicules d'entrée, un système dénommé Flush Air Data Sys-
tem (FADS) est également disponible [Cobleigh et al., 1999], composé par des
capteurs de pression (et d'autres capteurs dans certains cas) intégrés dans
le bouclier thermique. Par conséquent, les mesures FADS consistent nor-
malement en des données de pression à plusieurs points de l'avant-corps du
véhicule. Ce système est capable de fournir des mesures complémentaires à
celles de l'IMU, car elles contiennent des informations directes de l'écoulement
et l'environnement atmosphérique auxquels la surface du véhicule est exposée.
Sur certains véhicules d'entrée, le FADS peut également fournir des mesures
de �ux de chaleur. L'ensemble d'instrumentation RAFLEX (Re-entry Aerody-
namic Flow Experiment) [Müller-Eigner et Koppenwallner, 2001], par exemple,
est composé par plusieurs sondes capables de mesurer la pression et le �ux de
chaleur au même endroit. Néanmoins, au moins jusqu'à la connaissance de
l'auteur, les mesures de �ux de chaleur ne sont pas exploitées normalement
pour la caractérisation atmosphérique et de la trajectoire, probablement en
raison de la di�culté de réaliser à la fois des mesures précises [Loehle, 2016]
et des simulations signi�catives du chau�age à la surface.

Les modèles numériques pour simuler des écoulements d'entrée atmop-
shérique nécessitent de nombreux paramètres d'entrée pour décrire les con-
ditions limites et les propriétés du modèle, dont les valeurs doivent être in-
diquées avec précision pour avoir des prédictions signi�catives. Pourtant, cer-
tains paramètres décrivant les conditions limites, tels que les conditions atmo-
sphériques, sont connus avec des incertitudes, puisque, comme on a vu, ils sont
reconstruits à partir de mesures indirectes, et ces mesures sont intrinsèquement
incertaines. Des autres entrées du modèle peuvent également être incertaines,
en raison de leur variabilité intrinsèque ou du manque de connaissances de la
parte de l'analyste. La quanti�cation des incertitudes (UQ) est en train de
gagner de plus en plus d'importance pour quanti�er rigoureusement les incer-
titudes introduites dans les résultats des simulations numériques a�n d'établir
objectivement leurs capacités prédictives [Roy et Oberkampf, 2011]. L'un des
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principaux objectifs de la UQ est de propager les incertitudes des di�érentes
sources à travers le modèle de simulation a�n d'obtenir des informations quan-
titatives sur la variabilité de certaines quantités d'intérêts (sorties).

Les objectifs de ce travail sont à la fois liés au domaine d'application des
écoulements d'entrée hypersoniques, et en particulier à la reconstruction des
conditions en amont, ainsi qu'aux outils mathématiques de quanti�cation des
incertitudes. Du point de vue de la reconstruction des conditions en amont
pour les écoulements d'entrée hypersonique, le but de ce travail est d'évaluer
la possibilité et l'utilité d'exploiter les mesures de �ux thermique de surface,
données par des capteurs de type FADS/RAFLEX avec aussi des mesures de
pression, pour la caractérisation des quantités en amont, telles que la densité
atmosphérique, la vitesse et les angles de vol, et d'autres paramètres incertains
des modèles. Cela est fait dans un cadre statistique bayésien, comme dans
[Tryoen et al., 2014], qui permet de prendre en compte les erreurs de mesure
et les incertitudes sur certains paramètres du modèle physico-chimique. D'un
point de vue mathématique, le travail veut plutôt proposer des techniques qui
pourraient améliorer l'analyse UQ directe et inverse. Comme, normalement, la
propagation UQ devient exponentiellement plus exigeante en termes de coût
de calcul en augmentant la taille de l'espace des paramètres d'entrée incertains
[Donoho, 2000], des outils e�caces sont nécessaires pour fournir une solution
aux problèmes de dimension moyenne à élevée sans nécessiter d'e�orts de cal-
cul exceptionnels. Donc, les principaux objectifs de ce sujet sont de fournir
une technique améliorée pour la création d'un métamodèle, nécessitant un
plus petit nombre de points d'entraînement, où le modèle CFD coûteux doit
être exécuté, pour donner une prédiction précise de la quantité d'intérêt. En
plus, une stratégie de réduction de la dimensionnalité des entrées récemment
développée, basée sur des sous-espaces actifs [Constantine, 2015], est testée
pour améliorer l'e�cacité numérique des problèmes de propagation directe
et inverse. En�n, une technique d'échantillonnage adaptatif est proposée, a�n
d'augmenter le nombre de points d'apprentissage représentant les informations
sur les gradients de la fonction et les erreurs de métamodélisation.

Travail e�ectué

Une technique de métamodélisation améliorée, dénommée PDD-UK, a été pro-
posée. Elle consiste en l'utilisation des fonctions de base polynomiales sélec-
tionnées par un algorithme de sparse Polynomial Dimensional Decomposition
(PDD) adaptative [Tang et al., 2016; Rahman, 2008] comme fonctions de ré-
gression pour un métamodèle de Krigeage universel (Universal Kriging, UK)
[Cressie, 1993; Rasmussen et Williams, 2006]. Cette approche améliorée s'est
avérée bien fonctionner sur les nombreux tests e�ectués, à la fois analytiques
et issus d'applications dans le domaine de l'entrée atmosphérique, fournissant
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une précision de métamodélisation améliorée par rapport au krigeage ordinaire
et aussi au sparse-PDD. Ces tests ont montré que le métamodèle adaptatif pro-
posé est capable de traiter des problèmes avec un nombre relativement élevé
d'entrées incertaines, dans le cas où la contribution majeure à la variabilité
de la sortie est donnée par un sous-ensemble limité d'entrées. Les tests e�ec-
tués ont également montré que, pour obtenir les meilleurs résultats en termes
de précision, il est nécessaire de choisir un ensemble adéquat de paramètres
d'entrée (i.e. l'ordre polynomial maximal, l'ordre d'interaction, etc. ). Cela
peut nécessiter une analyse préliminaire avec des estimations d'erreur pour
déterminer le meilleur ensemble de paramètres d'entrée.

Une nouvelle technique a été aussi développée pour ajouter de manière
adaptative des nouveaux points d'entraînement à un plan expérimental (ex-
perimental design, ED) existant, dans le cas où l'on veut améliorer la pré-
cision du métamodèle construit sur ce premier ED. La technique repose sur
la construction d'un maillage de Delaunay d'éléments simplexes où les points
d'entraînement coïncident avec les sommets des éléments, et exploite des tech-
niques derivées de l'adaptation de maillage anisotrope [Coupez, 2011; Coupez
et al., 2013]. La méthode est aussi capable de prendre en compte l'information
sur la fonction d'intérêt acquise pendant la creation du premier métamodèle
sur le plan expérimental initial. En particulier, la méthode tient compte des
gradients de la fonction et des estimations locales de l'erreur de métamodélisa-
tion. La technique permet d'ajouter un nombre �xe de points d'entraînement,
choisis par l'utilisateur, de sorte que le nouveaux ED fonctionne mieux qu'un
plan Latin Hypercubes (LH) [McKay et al., 1979] normal en termes d'erreur
moyenne de métamodélisation. Le principal inconvénient de la méthodologie
proposée est que la construction d'une grille de Delaunay devient très exigeante
en termes de coût de calcul quand l'on augmente la dimensionnalité de l'espace
d'entrée. Lorsqu'il n'est pas possible de diminuer la dimensionnalité des entrées
par des techniques de réduction de dimensionnalité, cela devient un problème
majeur qui peut empêcher l'utilisation de la méthodologie proposée.

Une manière émergente d'e�ectuer une réduction de dimensionnalité con-
siste à exploiter le sous-espace actif d'une fonction d'intérêt [Constantine,
2015]. Dans ce travail, ils sont exploités pour la réduction de dimensionnalité
appliquée aux problèmes inverses bayésiens. Une nouvelle approche pour les
utiliser dans cette situation est proposée et comparée à celle introduite dans
[Constantine et al., 2016b]. Les sous-espaces actifs se sont démontrés très e�-
caces pour la réduction de dimensionnalité pour la propagation directe des in-
certitudes et l'analyse de sensibilité, permettant d'obtenir des informations sur
les structures à dimensionalité reduite cachées dans la fonction d'intérêt et de
produire des densités de probabilité précises pour les sorties. Si la structure des
fonctions d'intérêt permet l'existence de sous-espaces actifs, ils peuvent aussi
être e�cacement exploités pour des problèmes inverses bayésiens, mais avec
la complication d'exiger une algorithme Markov Chain Monte Carlo (MCMC)

viii Andrea Francesco CORTESI



[Gilks et al., 1996; Tarantola, 2005] supplémentaire pour échantillonner les
variables physiques en partant des variables actives composant le sous-espace
actif. Cependant, il faut noter que l'algorithme MCMC supplémentaire n'exige
aucune évaluation du code de simulation coûteux ni du métamodèle.

La reconstitution de la densité freestream, des angles aérodynamiques et du
coe�cient catalytique Le problème inverse de reconstruction a été résolu dans
un cadre bayésien pour le véhicule EXPERT (European eXPErimental Reentry
Testbed) de l'Agence Spatiale Européenne [Muylaert et al., 2007; Thoemel
et al., 2009], en exploitant les mesures de �ux de chaleur sur la surface du
nez du véhicule, ainsi que les mesures de pression disponibles classiquement.
Au niveau actuel de précision pour les mesures de �ux de chaleur (erreur de
mesure élevée, de l'ordre de 10% de la valeur mesurée), ce type de données
ne fournit pas su�samment d'informations et donc ne permet pas de réduire
les incertitudes les quantités par rapport aux reconstructions e�ectuées avec
seulement des mesures de pression. La reconstruction de la vitesse et de la
densité en amont a également été testée, en utilisant des mesures de pression
et de �ux de chaleur, pour la con�guration expérimentale du cylindre HEG
(High Enthalpy shock tunnel Göttingen) [Karl et al., 2003]. L'utilisation de ce
type de mesures done des résultats beaucoup plus incertains, c'est-à-dire avec
une variation plus élevée, que la reconstruction classique par données inertielles
(fournie par l'IMU) comme il est habituellement fait dans la littérature. Le seul
scénario où les mesures de �ux de chaleur deviendraient plus utiles est dans le
cas d'un dysfonctionnement de l'IMU: en absence des données inertielles, une
reconstruction relativement incertaine par �ux thermique serait meilleure que
l'impossibilité totale de reconstruire cette variable.

Predictive numerical simulations for rebuilding freestream conditions in
atmospheric entry �ows
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Introduction

Context

Relevance of space exploration

One driving force behind the advancement of aviation has always been the
desire to �y higher and faster [Anderson, 2005, Chapter 1.11]. This has led
to the beginning of the �rst space programs, whose intent was the exploration
of space. The �rst main achievements of space programs occurred from the
end of the '50s and throughout the '60s of the twentieth century, during the
space race generated by the desire to demonstrate technological supremacy
between the USA and the URSS during the Cold War. In 1957, the Russian
satellite Sputnik I was the �rst arti�cial satellite to be sent to orbit around
the Earth. A few years later, in 1961, the Russian Yuri Gagarin was the �rst
man experiencing space �ight, orbiting around the Earth and safely returning.
At the same time, he has been the �rst human being in history to experience
hypersonic �ight during his earth reentry on the Vostok spacecraft. Another
important landmark of that era, and maybe the most well-known, has been
the �rst manned landing on the Moon and following reentry, with the Apollo
11 mission in 1969. Space missions produced many scienti�c and technologi-
cal innovations, which yielded innovations that in�uenced directly the society
and the life of many people. One example of these technological advances are
applications related to arti�cial satellites: satellite communication and guid-
ance, environmental and meteorological surveillance, disaster warning [Dick
et Launius, 2007; ISECG, 2013]. Space mission themselves and the induced
technological developments had of course also a strong economical impact for
the countries involved in space programs.

For the �rst decades of human space �ight, government space agencies, as
the National Aeronautics and Space Administration (NASA) and the European
Space Agency (ESA), have had the exclusive control on space programs for the
development of spacecraft capable of delivering humans into space. However,
more recently, private organizations have made considerable progress, with the
goal of taking the lead in the future of space �ight and space tourism. This
new context is leading to further advances in the �eld of space missions, which
will provide the technologies that will eventually lead to the development of a
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space economy and the space-access market [Crawford, 2016]. One of the main
objectives of this renovated interest for space missions consists in the explo-
ration of Mars, which will eventually lead to the �rst manned landing on the
planet. Martian missions are more complex from a technological point of view,
leading also to socio-economical and socio-political di�culties [Shaghaghi et
Antonakopoulos, 2012], due to the elevated associated economical cost and the
necessity of building collaborations between di�erent stakeholders to produce
the necessary technological advances. The big technological challenges of a
Martian manned mission space from making possible and safe such a long stay
in a spatial environment of the human crew to the design of an adequate vehi-
cle that could handle the di�cult Entry, Descent and Landing (EDL) on Mars
with manned vehicles [Braun et Manning, 2007].

Atmospheric entry and hypersonic �ows

Hypersonic aerodynamics plays a big role in the atmospheric entry of space
vehicles and an accurate aerothermal simulation of the entry �ow is crucial
in the design of the vehicle and the entry trajectory. In fact, aerodynamic
�ows in the hypersonic regime are characterized by the presence of a strong
bow shock in front of the vehicle forebody, which converts a big part of the
kinetic energy of the �ow into thermal energy. This causes a huge increase
in the temperature of the shock layer, the part of the �uid �ow between the
shock and the body. For this reason, the surface of the vehicle is exposed
to a strong heating, requiring the presence of a Thermal Protection System
(TPS, also called heat shield) which needs to be designed to protect the struc-
ture and internal components from excessive temperatures. Also the design
and reconstruction of EDL trajectories is signi�cantly a�ected by hypersonic
aerodynamics. In fact, the aerodynamic drag produced during the hypersonic
phase of the entry trajectory provides a major contribution to the deceleration
of the capsule, in�uencing the design of the entry trajectory. Therefore, an
accurate prediction of the aerodynamic and thermal loads is fundamental for
the success of an entry mission.

Hypersonic entry �ows are complex phenomena, because the strong post-
shock heating is the origin of multiple features such as dissociation and other
chemical reactions, ionization, chemical and thermal non-equilibrium e�ects,
radiative heating and interaction e�ects with the wall such as catalysis and
ablation [Anderson, 2000; Sarma, 2000]. As a consequence of their complexity,
it is very di�cult to reproduce entry �ows in experimental facilities, espe-
cially because exact experimental similitude can not be obtained in a general
non-equilibrium situation, unless a real-sized model is used. Acquiring mea-
surements during real-world entry �ight can provide useful data about the �uid
�ow, but it is infeasible on a regular basis, since every entry mission involves
elevated economical costs. Therefore, numerical simulations by means of Com-
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Figure 1: Representation of the main phases of an EDL mission. All the
entry phase, from the entry interface to the parachute deployment, is usually
characterized by hypersonic �ows. Image credit: NASA [NASA, 2012].

putational Fluid Dynamics (CFD) are often the only available resource to get
quantitative data about hypersonic entry �ows [Longo, 2004; zur Nieden et
Olivier, 2007].

The simulation of hypersonic entry �ows has seen big advances in the lit-
erature [Sinha, 2010; Longo, 2004]. However, an accurate simulation of the
complex phenomena occurring in the air �ow around an entering vehicle is a
challenging problem [Candler, 1998; Gno�o, 1999]. Thermal loads are espe-
cially more challenging [Knight et al., 2012, 2017; Bose et al., 2013], because
they require an accurate modeling of all the phisico-chemical phenomena they
depend on (non-equilibrium e�ects, catalysis, ablation, radiation, etc.) [Sinha
et Reddy, 2011] and also an accurate numerical resolution, with stable numeri-
cal schemes [Druguet et al., 2005] and adequate computational grids [Saunders
et al., 2007].

Freestream reconstruction

In order to produce accurate and predictive simulations, it is essential to have
accurate values for the boundary conditions, such as the composition and the
thermodynamic state of the atmosphere at the freestream and �ight speed. Un-
fortunately, the knowledge about atmospheric properties and thermodynamic

Predictive numerical simulations for rebuilding freestream conditions in
atmospheric entry �ows
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state is generally characterized by a high degree of uncertainty, especially away
from Earth. Furthermore, the variability of atmospheric conditions, in partic-
ular density, has important implications for EDL mission planning, design and
performance [Talay et al., 1985], since entry velocities are reduced mainly by
aerodynamic drag. In fact, atmospheric �uctuations can cause random devia-
tions from standard-atmospheric models, which can be substantially di�erent
over altitudes of a few kilometers [Enzian et al., 2002] (as shown in Figure 2).
To improve the knowledge about freestream conditions, it is common prac-

Figure 2: Deviations between atmospheric densities derived by Shuttle mea-
surements and the 1962 U.S. standard atmosphere (from [Talay et al., 1985]).

tice to rebuild atmospheric parameters from �ight data in post-�ight analysis.
This enables the improvement of atmospheric models for design and analysis
of EDL missions and provides critical input boundary conditions for predictive
CFD simulations. The reconstruction of atmospheric conditions and the state
of the vehicle is also important for the control and guidance of manned vehicles
[Koppenwallner, 2007].

Classical reconstruction techniques of the entry trajectory and atmospheric
conditions are deterministic approaches based on linear accelerations and an-
gular rotations measured by accelerometers and gyros composing the Inertial
Measurement Unit (IMU), which is part of the standard instrumentation on
entry vehicles. Inertial measurements on an entering spherical probe have
been used to characterize Earth's upper atmospheric density and temperature
variations [Jones et al., 1959]. They have been exploited also for the character-
ization of Martian atmosphere [Sei� et Reese, 1965] and for other planets [Sei�,
1991]. Moreover, the post-�ight analysis of the entry phase of many di�erent
space missions relied mainly on inertial data to rebuild the entry trajectory
and characterize the atmospheric freestream conditions. Examples in litera-
ture can be found for the Mars Path�nder mission [Spencer et al., 1999], the
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Mars Exploration Rover mission [Desai et al., 2003; Withers et Smith, 2006],
the Phoenix mission [Blanchard et Desai, 2011; Desai et Knocke, 2007] and the
Huygens mission [Kazeminejad et al., 2007; Colombatti et al., 2008], to cite
some. They have been successfully used also in the presence of aerobraking for
the Mars Odyssey mission [Tolson et al., 2005, 2007, 2008]. A more modern
formulation and review of IMU-based trajectory and atmosphere reconstruc-
tion approaches can be found in [Withers et al., 2003], with an application to
the Path�nder EDL mission. However, while inertial �ight data are ideally
suited for the entry trajectory reconstruction [Desai et al., 2011], they may
not be su�cient to accurately characterize the atmospheric environment [Van
Hove et Karatekin], since they do not include any direct information about the
air �ow around the capsule.

For this reason, on some other entry vehicles a Flush Air Data System
(FADS) is also available, consisting of pressure ports (and other sensors in
some cases) integrated into the heat shield [Cobleigh et al., 1999]. Hence,
FADS measurements normally consist of pressure data at several points of the
vehicle forebody. This system is able to provide measurements that are com-
plementary to those provided by IMU, since they contain direct information
about the �ow and the atmospheric environment to which the vehicle surface
is exposed. FADS sensors were mounted on di�erent entry vehicles, for exam-

(a) (b)

Figure 3: Image of the FADS/RAFLEX probe (a) and their mounting inside
the forebody of the EXPERT entry vehicle from European Space Agency (b)
(taken from [Ratti et al.]).

ple Viking [Euler et al., 1978] and Mars Science Laboratory (MSL) [Karlgaard
et al., 2014b] in case of Mars missions, or on the Space Shuttle, with the
Shuttle entry air data system (SEADS) [Pruett et al., 1983], for Earth entry
missions. Freestream reconstruction techniques have been developed in the
literature to exploit also surface pressure data, as a direct measurement of the
�ow given by the FADS. Often, these techniques do not take into account many
high-temperature e�ects (e.g. chemical non-equilibrium, surface catalysis, ab-
lation and radiative e�ects), and they usually rely on the calorically perfect

Predictive numerical simulations for rebuilding freestream conditions in
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gas approximation. For example, results in [Müller-Eigner et al., 1999; Kop-
penwallner, 2007] show how the Pitot pressure can be linked to the freestream
pressure in the case of a supersonic �ow, considering calorically perfect gas.
[Häuser et al., 2004] used several pressure measurements on the surface of
the space vehicle to rebuild also the angle of attack and the yaw angle. In
this context, they used the so called analytic sensor functions [Koppenwallner,
2003], based on the assumption of Newtonian �ow. Moreover, an empirical
correction was used to account for geometrical e�ects as well as �ow viscos-
ity and non-equilibrium phenomena. [zur Nieden et Olivier, 2007] proposed
a more advanced curve-�t method as well as an analytically derived function
for freestream reconstruction based on both FADS and IMU data. Other re-
cent implementations of trajectory and freestream reconstruction exploiting
FADS measurements can be found in [Karlgaard et al., 2014b,a; Van Hove
et Karatekin, 2017] for the entry of the MSL vehicle in Martian atmosphere.
Other than in entry vehicles, FADS have been exploited for freestream rebuild-
ing also in other contexts, for example on the X-34 transatmospheric vehicle
[Whitmore et Ellsworth, 2008], for aeronautical applications like in tests on the
F-14 [Larson et al., 1987] and F-18 [Whitmore et al., 1995] aircrafts or on mini
air vehicles (MAV) [Samy et al., 2010], and on vessels for nautical applications
[Srivastava et al., 2012; Srivastava et Meade, 2015]. Notice that both [Samy
et al., 2010] and [Srivastava et al., 2012; Srivastava et Meade, 2015] used more
advanced reconstruction techniques based on Neural Networks [Bishop, 1995].

In order to account for measurement errors, which intrinsically a�ect �ight
data, many trajectory and freestream reconstruction techniques have been de-
veloped in the literature to satisfy the need of accounting for these uncertainties
in the rebuilt values. For example [Van Hove et Karatekin, 2017] used Monte
Carlo methods to propagate uncertainties in the reconstruction inverse prob-
lem, in [Kutty, 2014] instead, uncertainties have been propagated by linear
covariance mapping. [Christian et al., 2007] proposed to use Kalman �ltering
to account for uncertainties in the freestream and trajectory rebuilding prob-
lem. A more advanced method for freestream characterization was discussed
in [Dutta et Braun, 2014; Dutta et al., 2013, 2014], where di�erent statisti-
cal estimation methods, namely Extended Kalman �lter, Unscented Kalman
�lter, and adaptive �lter, were used to statistically estimate trajectories and
freestream conditions from �ight data, containing pressure measurements to-
gether with gyroscope, accelerometer and radar altimeter data, as well as to
quantify uncertainties in these estimates. This method was applied in the
context of post-�ight analysis for Mars Science Laboratory (MSL) mission.

On some entry vehicles, �ush-mounted sensors are able to provide also heat
�ux measurements. The Re-entry Aerodynamic Flow Experiment (RAFLEX)
[Müller-Eigner et Koppenwallner, 2001] instrumentation package, for example,
is composed by several �ush-mounted probes that are able to measure pressure
and heat �ux at the same location. This system equips di�erent vehicles, such
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as MIRKA (Mikro-Rückkehrkapsel) [Müller-Eigner et al., 1999] and EXPERT
(European eXPErimental Re-entry Test-bed) [Thoemel et al., 2009]. However,
at least up to the author's knowledge, heat �ux measurements normally are
not exploited, probably due to the di�culty of realizing both accurate mea-
surements [Loehle, 2016] and precise simulations of the heating. Some e�orts
in this direction can be found in the literature with the preliminary analysis of
[Alekseev et Pavlov, 1998], which showed, by means of analytical correlations,
that surface heat �ux data were able to supplement standard trajectory and
freestream reconstruction methods with additional information. Another use
of heat �ux measurements can be found in [Müller-Eigner et al., 1999], where
it has been used, together with dynamic pressure measurements, to determine
the freestream velocity for MIRKA vehicle through an analytic relation.

Quantifying the uncertainties

Numerical models to simulate entry �ows require many input parameter to de-
scribe boundary conditions and model properties, whose values must be accu-
rately given in order to have signi�cant predictions [Roy et Oberkampf, 2011].
However, some parameters describing boundary condition, such as freestream
atmospheric conditions, are known within uncertainties, since, as seen, they are
reconstructed from indirect measurements, and these measurements are intrin-
sically uncertain. Also many other model inputs may be uncertain, due to their
intrinsic variability or lack of knowledge by the analyst. The thermo-physical
models are mostly derived from a combination of theoretical and empirical
assessments based on perhaps limited amount of experimental data. For ex-
ample atmospheric chemistry parameters [Park et al., 1994; Bose et al., 2004]
and wall chemistry parameters (catalysis) [Villedieu et al., 2012; Sanson et al.,
2017b] may be known with uncertainties. The need for robust predictive sim-
ulations in the analysis and design process requires a rigorous quanti�cation
of how these uncertainties a�ect the output of the simulations. Uncertainty
Quanti�cation (UQ) is gaining increasing importance in rigorously quantifying
the uncertainties introduced in the output of numerical simulations needed to
establish objectively their predictive capabilities [Roy et Oberkampf, 2011].
One of the main goals of UQ is to propagate the di�erent sources of uncertain-
ties through the simulation model in order to obtain quantitative informations
about the variability of some quantities of interests (outputs). Uncertainty
quanti�cation has been used in the literature in di�erent applications in the
�eld of entry �ows [Bose et al., 2006, 2013; Lockwood et Mavriplis, 2013; West
et Hosder, 2015; Falchi et al., 2017; Wang et al., 2017] and hypersonic aerother-
modynamics [Constantine et al., 2011, 2015]. A statistical Bayesian framework
has been tested for both direct and inverse uncertainty propagation in [Tryoen
et al., 2014], to account for measurement errors and other sources of uncer-
tainties in inverse problems for atmospheric reconstruction. Bayesian inversion
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has been used also in [Panesi et al., 2011; Miki et al., 2015] for the calibra-
tion of parameters of non-equilibrium thermochemical models for hypersonic
�ows and for shock tube experiments [Panesi et al., 2012]. Atmospheric entry
of space debris is another relevant application in the aerospace �eld that is
seeing the development of a statistical uncertainty quanti�cation framework
to account for variability in the results of simulations [Sanson et al., 2017a;
Mehta et al., 2016a,b, 2017].

Challenges and main objectives

The underlying objective motivating this work is to assess the possibility
and the usefulness of exploiting surface heat �ux measurements, given by
FADS/RAFLEX-like sensors together with pressure measurements, for the
characterization of freestream quantities, like atmospheric density, �ight ve-
locity and angles, and of other uncertain parameters in the physico-chemical
model. Due to the high measurement errors associated with heat �ux data
and the presence of uncertainties in the complex computational model of the
hypersonic �ow, a Bayesian statistical framework is chosen to formulate the
reconstruction problem, like in [Tryoen et al., 2014]. From this choice, some
challenges arise, which are related to numerical algorithms used both for the
simulation of the �ow and the solution of the inference problem. In fact, the
solving algorithms for uncertainty problems require a fair amount of evalu-
ations of the computational model. Therefore, CFD simulations should be
able to provide reasonably accurate results without the constant monitoring
of the user. Also, since CFD simulations are quite expensive from a compu-
tational point of view, it will be mandatory to use a surrogate model for the
quantities of interest. Further challenges are related to the construction of an
accurate surrogate model which is also e�cient, in the sense that it requires the
least amount possible of evaluations of the actual computational model, espe-
cially when considering a medium-to-large number of uncertain parameters. In
fact, usually, UQ problems get exponentially more computationally demanding
when increasing the size of the space of uncertain input parameters [Donoho,
2000], and e�cient tools are needed to provide a solution for medium-to-high
dimensional problems without requiring excessive computational e�orts.

The other objectives of this work are therefore focused at tackling chal-
lenges related to the algorithmic development. Firstly, an automated strategy
is needed for producing relatively accurate CFD simulations, that at the same
time is not too computationally demanding, having in mind the UQ appli-
cations. From the point of view of the resolution of the uncertainty problem,
instead, the work wants to seek for enhanced techniques that could improve the
forward propagation and inverse reconstruction problems. Therefore, the main
goals in this topic are to provide an improved surrogate modeling technique,
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Introduction

requiring a smaller number of training points, in which the CFD model needs
to be run, able to provide an accurate prediction of the quantity of interest.
In the following list, the main objectives are summarized for clarity.

1. Assess the capabilities of using surface heat �ux measurements in atmo-
spheric reconstruction for hypersonic entry �ows

2. Set-up of a numerical framework for getting accurate numerical simula-
tion of the �ow under a UQ perspective

3. Formulate direct and inverse problems of uncertainty propagation for
entry �ow simulations in a statistical Bayesian framework

4. Develop an appropriate algorithmic framework for the construction of a
robust and accurate surrogate model usable in the Bayesian UQ frame-
work. It should be e�cient, in the sense that it should require a limited
number of training points to produce an accurate approximation of the
computational model

Outline

The present work is divided in six chapters. The �rst two are mainly introduc-
tory about aspects related to the modeling and simulation of hypersonic �ows
and the formulation of the statistical uncertainty quanti�cation framework,
together with a review of some UQ tools. The �rst chapter also addresses
the objective of setting-up a numerical framework for robust automated CFD
simulations. The following three chapters deal with the development of algo-
rithmic aspects for robust and accurate solutions of the UQ problem. The last
chapter proposes an application to assess freestream reconstruction for entry
�ows of the EXPERT vehicle. Three appendix give further information about
some topics mentioned in the core discussion but not completely clari�ed.

Chapter 1 is an introduction to hypersonic atmospheric entry �ows. The
purpose is to give an insight of the main phenomena that characterize this kind
of �ows, to provide mathematical models used to describe the physics and to
show how numerical simulations can be performed. Since research activity
in this �eld was not the main purpose of this work, the chapter serves as a
description of existing models taken from the literature.

Chapter 2 acts an in introduction to Uncertainty Quanti�cation, global
Sensitivity Analysis and Bayesian inference. Forward and inverse uncertainty
quanti�cation problems are de�ned in a statistical framework. A review is
given of di�erent techniques to solve the UQ problems, with particular em-
phasis given on the tools that will be used in the following parts of the work.

Predictive numerical simulations for rebuilding freestream conditions in
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Outline

Chapter 3 proposes a novel technique for the construction of a surrogate
model of an expensive computational model. This technique is derived as the
coupling between two other methods taken from the literature, namely Uni-
versal Kriging and sparse Polynomial Dimensional Decomposition. Firstly, a
description of the two existing techniques is given. Then the coupling algo-
rithm is proposed. The technique is assessed on di�erent analytical test cases
and engineering application cases.

Chapter 4 introduces a novel technique for the adaptation of the experi-
mental design for the training of surrogate models. This technique is based
on the idea of creating a simplex grid using the training points as nodes, and
then exploiting an algorithm derived from anisotropic mesh re�nement to add
new training points.

Chapter 5 is about the application of dimension reduction by active sub-
spaces in the context of uncertainty propagation and Bayesian inference. Firstly,
the methodology is described, and then an application is proposed for the hy-
personic high-temperature �ow past a cylinder, with a �rst assessment of heat
�ux-based freestream reconstruction.

Chapter 6 presents results for assessment of freestream and model param-
eters rebuilding starting from surface pressure and heat �ux measurements,
in the case of entry �ows of the EXPERT vehicle. Di�erent con�gurations
are tested, in order to rebuild freestream density, �ight angles and catalytic
recombination coe�cient.

Conclusions contain a summary of the several accomplishments of the work
and recommendations for future developments.

Appendix A introduces to the main ideas of classical freestream reconstruc-
tion techniques, namely the ones based on IMU data and the ones that exploit
also pressure measurements from the FADS.

Appendix B provides in-depth details about Kriging (or Gaussian process
regressions), such as their derivation, together with other technical details.

Appendix C is about the review of the techniques used in the work to
estimate the surrogate modeling error, in order to assess their quality and
accuracy.
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Chapter 1

Physical context and numerical
simulations of hypersonic entry
�ows

This �rst chapter is meant to be an introduction to the phenomenology

and the models related to hypersonic entry �ows. The physical and math-

ematical models used in this work to represent the phenomena are �rst

described, and then the numerical methods employed to simulate them

are provided. An automated mesh adaptation strategy is shown, which is

meant to be used in the perspective of uncertainty quanti�cation applica-

tions. Finally, some physical application cases in the atmospheric entry

�eld are presented, and they will be used throughout the work.

1.1 Introduction

The main application �eld of this PhD work is about aerodynamic �ows occur-
ring during the atmospheric entry of a space vehicle. Along its entry trajectory,
a space vehicle experiences many di�erent �ow regimes [Gno�o, 1999]: from
free molecular regime, where individual molecular impacts on the surface are
important, to transitional regime, in which traditional no-slip boundary con-
ditions are no longer valid, to continuum regime. In this work we will focus
only on hypersonic �ows where the continuum hypothesis is completely valid,
and classical Navier-Stokes equations can be used to describe the �uid motion.
Hypersonic entry �ows involve complex physical phenomena, where several
aspects (as �uids dynamics, thermodynamics, transport and chemistry) and
their interaction need to be accounted for, in order to have a representative
model [Anderson, 2000].

Conventionally, hypersonic �ows are de�ned for Mach numbers of M > 5.
However, this is more a rule of thumbs than an actual de�nition, as, more
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1.1. Introduction

precisely, hypersonic aerodynamics can be de�ned as the regime where certain
physical phenomena in the �ow become progressively more important as the
Mach number is increased. Hypersonic �ows are, in the �rst place, charac-
terized by the presence of a strong shock in front of the object, due to the
high Mach number. Across this strong bow shock, a large amount of kinetic
energy is converted to internal energy of the gas, translating into a very high
temperature in the post-shock region. This can cause several phenomena, that
are normally referred to as high-temperature e�ects. In fact, if the tempera-
ture becomes high enough, it can excite vibrational energy within molecules
and can cause dissociation and other chemical reactions, and even ionization.
Therefore, hypersonic high-temperature �ows are usually also multicomponent

Figure 1.1: Representation of some physical phenomena involved in hypersonic
atmospheric entry �ows (modi�ed from [Anderson, 2000]).

and reacting �ows. If the time associated to vibrational excitation and chem-
ical reactions is smaller in comparison to the time it takes for a �uid element
to move through the �ow �eld, the �ow is in vibrational and chemical equi-
librium. Otherwise, if the �ow characteristic time is smaller than the one of
molecular excitation and chemistry, non-equilibrium e�ects on thermodynam-
ics and chemistry need to be accounted for, and the air mixture properties
become function of the history of each �uid element [Gno�o et al., 1989]. In
addition, closer to the vehicle body, the strong viscous dissipation occurring in
hypersonic boundary layers can create very high temperatures and can cause
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1. Physical context and numerical simulations of hypersonic entry �ows

the boundary layer to become chemically reacting. Therefore, a hypersonic en-
try �ow can be also characterized by chemically reacting boundary layer at the
surface of the vehicle. For entry speeds of about 7 km/s, typical of LEO (Low
Earth Orbit) return, the wall can be made of a catalytic material that tends to
promote chemical recombination of atoms at the surface. Furthermore, for en-
try speed greater than 10 km/s, typical for example of Moon return missions,
due to the strong heating, the surface of an entry vehicle is usually protected
by an ablative thermal protection system (TPS), and the products of the abla-
tion process are also present in the boundary layer. Moreover, a further e�ect
arises when the shock layer temperature is high enough: the thermal radia-
tion emitted by the gas becomes important and produces a radiative heating,
which further increases the surface heating. All these various e�ects related to
hypersonic entry �ows are summarized in Figure 1.1.

In this chapter, the mathematical modeling of the physical phenomena is
described, together with the numerical methods used to simulate the model.
First, in Section 1.2, we brie�y present the governing equations used for repre-
senting hypersonic entry �ows and the thermodynamic, transport and chemical
models used to compute the properties of the gas mixture. Some further details
about catalysis and ablation gas-surface interactions are reported in Section
1.3. Then, Section 1.4 contains an overview on the numerical schemes used to
solve the system of equations and their implementation in the COSMIC code,
with an emphasis on the need for mesh adaptation (Sec. 1.5). Finally, the
application cases on which hypersonic high-temperature �ows are simulated
are described in Section 1.6, which contains also the characterization of the
uncertainties on some model parameters, which will be used for the following
uncertainty quanti�cation on the model outputs.

1.2 Governing equations and physico-chemical

model

In this section, the governing equations and the physico-chemical models used
to describe the hypersonic entry �ows are presented. A �rst assumption that
is made is that each species composing the �uid can be treated as a perfect gas
in the range of thermodynamic conditions of interest to the proposed applica-
tions. A second hypothesis is that the �uid can be described as a continuum,
meaning that the macroscopic quantities describing the �ow can be identi�ed
with suitable average values of molecular quantities at any location in the �ow.
This allows to use Navier-Stokes equations as governing equations for the �uid
�ow. The continuum hypothesis is valid as long as there is a su�cient number
of molecules within the smallest signi�cant volume of the �ow. This is true
if the Knudsen number Kn, de�ned as the ratio between the mean free path
and a suitable reference length, is Kn < 0.01. The application cases presented

Predictive numerical simulations for rebuilding freestream conditions in
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1.2. Governing equations and physico-chemical model

in this work are all in the continuum regime and Navier-Stokes equations can
be used without any issue. The �ow is considered to be in local thermal equi-
librium, which is a valid hypothesis for the range of considered freestream
conditions, but chemical non-equilibrium is taken into account.

1.2.1 Conservation equations for a mixture of reacting

perfect gases

Here we recall the governing equations describing the unsteady compressible
�ow of a mixture of reacting perfect gases in chemical non-equilibrium. The
derivation of the governing equations in �uid dynamics can be found in many
references [Anderson, 2000, 2010]. Usually, it is performed by means of the
control volume method, that consists in applying the conservation principles
on a suitable control volume in the �ow �eld. However, the control volume
approach is not linked to a speci�c physico-chemical model, therefore di�erent
physical and chemical models are needed to provide the missing description
of transport terms and thermodynamic properties of the reacting gas. In this
framework, statistical mechanics (suitably coupled with quantum mechanics)
is able to provide the thermodynamic properties of the gas mixture (inter-
nal energy, speci�c heat) and kinetic theory is used to describe the transport
properties (viscosity, thermal conductivity, di�usion). The model used in this
work has been developed by Barbante in his PhD work, and more detail can
be found in [Barbante, 2001].

Continuity

The equation that describes the global conservation of mass in the system is
the so-called continuity equation, and it can be written in the classical form:

∂ρ

∂t
+∇ ·

(
ρu
)

= 0 , (1.1)

where ρ is the air mixture density and u is the vector containing the compo-
nents of the average mixture velocity.

Species continuity

For a non-equilibrium �ow, in addition to the global continuity equation given
by eq. (1.1), s species continuity equation are needed, one for each chemical
species in the mixture. They can be written as:

∂ρi
∂t

+∇ ·
(
ρiu
)

+∇ ·
(
ρiV i

)
= ω̇i for i = 1, . . . , s , (1.2)

with ρi and ω̇i representing respectively the partial density of each mixture
component and the rate of production due to chemical reaction for the i-th
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1. Physical context and numerical simulations of hypersonic entry �ows

species, and where V i is the di�usion velocity of each species, which satisfy
the following property:

s∑
i=1

ρiV i = 0. (1.3)

Momentum

The equation describing the conservation of momentum can be written as:

∂ρu

∂t
+∇ ·

(
ρu⊗ u

)
= −∇p+∇ · τ , (1.4)

where p is the mixture pressure, τ the tensor of viscous stress. We assume
that the plasma is quasi-neutral, that no external electromagnetic forcing is
applied, and that the internal electric �eld for the ionized mixture arises from
the so-called ambipolar di�usion constraint, i.e. the di�usion current is zero,
and the magnetic �eld is negligible. We also assume the e�ects of gravitational
forces to be negligible.

Energy

The total energy conservation equation for the mixture reads:

∂ρE

∂t
+∇ ·

[
(ρE + p)u

]
−∇ ·

(
τ · u

)
+∇ · q = 0 , (1.5)

where E is the total energy per unit mass, sum of the internal and kinetic
energy E = e + |u|2/2, and q is the heat �ux. Note that the assumptions on
the electromagnetic and gravitational forces lead to a null work for this kind
of forcing.

1.2.2 Physico-chemical Models

Here the di�erent physical and chemical model used to compute the thermody-
namic properties of the mixture and the transport terms are outlined. These
models are necessary for the closure of the conservation equations.

Thermodynamic model: Perfect gas

As already stated, each species in the gas mixture is supposed to behave like a
perfect gas, i.e. a gas where the e�ects of intermolecular forces are negligible.
The well-known perfect gas equation of state, valid for each species, is:

pi = ρiRiT , (1.6)

with Ri = R/Mi the speci�c gas constant for the i-th mixture component,
which is the ratio between the universal gas constant R and the molar mass
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1.2. Governing equations and physico-chemical model

Mi, pi the partial pressure and T the temperature. From Dalton's law, we
have that the mixture pressure is p =

∑s
i=1 pi and it follows that the mixture

density is equally de�ned as ρ =
∑s

i=1 ρi. Mass fractions yi are de�ned as the
mass of i-th species per unit mass of mixture yi = ρi/ρ and concentrations xi
(mole fractions) are de�ned as the ratio between the number of moles of the
i-th species and the total number of moles of the mixture xi = ni/n.

Statistical thermodynamics and quantum physics are used to de�ne the
internal energy and, subsequently, the thermodynamic properties of the gas
mixture [Anderson, 2000, Chapter 11]. It can be shown that the internal
energy of a species is related to the partition function Q [Mayer et Mayer,
1946]:

ei = RiT
2

(
∂ lnQi
∂T

)
v

, (1.7)

and the enthalpy is de�ned as hi = ei + RiT . Note that, form this theory,
in agreement with the factorization property of the partition function, the
internal energy for a molecule can be written as the sum of the energies related
to di�erent energy modes of the molecule itself:

ei = etri︸︷︷︸
translational

+ eroti︸︷︷︸
rotational

+ evibi︸︷︷︸
vibrational

+ eeli︸︷︷︸
electronic

+ e0i︸︷︷︸
zero-point

. (1.8)

The energies related to each di�erent mode are expressed relatively to the
value they assume at absolute zero, called the zero-point energy e0 or ground
state, so that the computed energy is not the absolute energy but instead the
sensible one. The zero-point energy generally cannot be directly computed
or measured. However, in a reacting mixture, it is necessary to establish a
common level from which all the species energies are measured. Therefore, it
follows that the zero-point energy of a species can be replaced by the heat of
formation of the same species at the reference temperature, which are available
in literature. Once an expression for the energy of each species is available,
mixture energy per unit mass can be easily obtained from the energies of the
di�erent species:

e =
s∑
i=1

yi ei. (1.9)

From the mixture energy and the enthalpy, it is possible to compute the
speci�c heats of the reacting gas mixture. In the case of chemical equilibrium
�ow, the speci�c heats are function of two thermodynamic variables, for exam-
ple (p, T ), since the mixture composition depends also on two thermodynamic

16 Andrea Francesco CORTESI



1. Physical context and numerical simulations of hypersonic entry �ows

0 1000 2000 3000 4000 5000 6000 7000
T [K]

-0.5

0

0.5

1

1.5

2

2.5

3

h 
[J

/k
g]

10 7

tr
rot
vib
el
h

0

total

Figure 1.2: Enthalpy for �ve species air [Park et al., 2001] as a function of the
temperature (in black) and decomposition in translational, rotational, vibra-
tional, electronic and zero point contributions. Figure obtained by means of
the Mutation++ library [Magin et al., 2006a]

variables, and they can be expressed as:

cp =

(
∂h

∂T

)
p

=
s∑
i=1

[(
∂yi
∂T

)
p

hi + yi

(
∂hi
∂T

)
p

]
(1.10)

cv =

(
∂e

∂T

)
v

=
s∑
i=1

[(
∂yi
∂T

)
v

ei + yi

(
∂ei
∂T

)
v

]
. (1.11)

Instead, in the other limit case of a frozen mixture, where chemical composition
does not change, heat �uxes are function only of temperature (through the
energy and the enthalpy):

c(fr)
p =

s∑
i=1

yi

(
∂hi
∂T

)
p

(1.12)

c(fr)
v =

s∑
i=1

yi

(
∂ei
∂T

)
v

. (1.13)

Finally, in the intermediate case of chemical non-equilibrium, the chemical
composition is function not only of two thermodynamic variables, but also of
the previous �ow history and the position. Therefore, speci�c heats are not
uniquely de�ned and the only speci�c heat that is logical to consider is the
frozen one.
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Figure 1.3: Comparison between equilibrium (solid line) and frozen (dashed
line) speci�c heats at constant pressure of 1 atm for the �ve species air mech-
anism described in [Park et al., 2001]. Figure obtained by means of the Mu-
tation++ library [Magin et al., 2006a].

Chemical production term

Here we show how to �nd an expression for chemical production term ω̇i for
each species. Let us start by considering an elementary reaction (identi�ed
with index r), which is a reaction that takes place in only one step. It can be
formally written as:

s∑
i=1

ν ′irXi =
s∑
i=1

ν ′′irXi , (1.14)

where Xi is the symbol for the i-th species, and ν ′ir and ν
′′
ir are respectively the

stoichiometric coe�cients for the i-th reactant and product. An elementary
reaction can proceed in both directions (forward and backward reactions) and
is always reversible. When the forward and backward reactions are in perfect
balance, the reaction is said to be in chemical equilibrium. The net rate of
production of the i-th species by the r-th elementary reaction can be expressed
as [Barbante et Magin, 2004]:

ω̇
(r)
i = Mi(ν

′′
ir − ν ′ir)

[
kfr

s∏
j=1

(
ρj
Mj

)ν′jr
− kbr

s∏
j=1

(
ρj
Mj

)ν′′jr]
. (1.15)

Since this equation must be valid also at the equilibrium, and the forward kfr
and backward kbr reaction rates are linked by the equilibrium constant Ker

through the following expression: kfr = Kerkbr. This ensures that the chemi-
cal composition is correctly computed when the �ow is locally in equilibrium
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conditions. Ker is linked to the Gibbs free energy and for a perfect gas it is
a function only of temperature. Referring to the elementary reaction r, Ker

reads [Anderson, 2000]:

logKer = −
s∑
i=1

(ν ′′ir − ν ′ir)ĝi
RT − log(RT )

s∑
i=1

(ν ′′ir − ν ′ir) , (1.16)

where ĝi is the Gibbs free energy per unit mole of species i and is equal to
ĝi = ĥi − T ŝi, with ĥi and ŝi respectively the enthalpy and entropy of species
i per unit mole. In theory, it is possible to derive the forward reaction rate
kfr from kinetic theory, doing several assumptions. In practice this approach
is not always possible, and a semi-empirical formulation, called Arrhenius for-
mulation, is used instead to compute the forward rate:

kfr = ArT
νre−

Edr
kT , (1.17)

with k the Boltzmann constant. Ar > 0 is a constant pre-exponential factor,
νr a positive or negative exponent and Edr is the activation energy for the r-th
reaction. These parameters values are usually computed by �tting experimen-
tal data, and di�erent values can be found in literature. Therefore, they can
be a�ected by uncertainties, especially the pre-exponential coe�cient Ar.

If Nr elementary reaction involving the i-th species take place, the produc-
tion term for this species is obtained by summing over the contribution of all
the reactions:

ω̇i =
Nr∑
r=1

ω̇
(r)
i . (1.18)

Air mixture mechanism

Air at ambient temperature is a mixture of molecular nitrogen (N2), molecular
oxygen (O2), argon (Ar), carbon dioxide (CO2) and other minor components.
For the applications of interest in this work, air can be assumed to be made
by just the two dominant species, with a composition of 79% N2 and 21% O2

in volume.
As temperature increases, di�erent chemical reactions start to take place,

modifying in this way the mixture composition (see Figure 1.4). A suitable set
of chemical reactions is needed to represent all the chemical phenomena, like
dissociation, exchange reactions and ionization. In this work we will mainly use
the air model from [Park et al., 2001] for 5 species air (N2,O2,N,O,NO), which
is valid for lower entry speeds, where the post-shock temperature increase is
not su�cient to cause ionization. The chemical reactions taking place in this
�ve species model are reported in Table 1.1.

A brief comparison between the 5 species and an 11 species model is pro-
posed in 3.6.1 for the HEG cylinder test case, described in 1.6.1.
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Figure 1.4: Mass concentrations at constant pressure of 1 atm for the �ve
species air mechanism described in [Park et al., 2001]. Figure obtained by
means of the Mutation++ library [Magin et al., 2006a].

Reaction number Reaction

1-3
N2 +M→ 2N+M

where M = N2,NO,O2

4,5
N2 +M→ 2N+M

where M = O,N

6-10
O2 +M→ 2O+M

where M = N2,NO,O2,O,N

11-15
NO+M→ N+O+M

where M = NO,N,O,N2,O2

16 N2 +O→ NO+N

17 NO+O→ O2 +N

Table 1.1: Reactions constituting the chemical mechanism for the �ve species
air model.

Transport �uxes

Transport �uxes, namely the di�usion �ux Ji = ρiV i, the stress tensor τ and
the heat �ux q and the related transport coe�cients, are computed by the ki-
netic theory of gases [Chikhaoui et al., 1997]. The starting point of the theory
is the Boltzmann equation, which describes a mixture from the molecular point
of view. Then, the Chapman-Enskog method [Chapman et Cowling, 1970] for
the solution of the Boltzmann equation gives the transport �uxes of mass, mo-
mentum and energy as linear functions of the macroscopic variables gradients
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through some proportionality scalar quantities, the transport coe�cients.
Di�usion is a very important phenomenon in reacting �ows, for example for

an accurate computation of the heat �ux experienced by a space entry vehicle.
Often in literature, di�usion is approximated by Fick's law or some modi�ed
version [Ramshaw, 1990]. However, in the model of [Barbante, 2001], a more
rigorous form of the di�usion �ux for the i-th species has been used:

Ji = −ρi
( s∑
j=1

Dij∇xj
)
, (1.19)

where the baro and thermal di�usion e�ects are neglected. Dij are the mul-
ticomponent di�usion coe�cients, which also account for the di�usion caused
by the ambipolar electric �eld that arises for the presence of ionized species in
the mixture.

The viscous stress tensor in the Chapman-Enskog approximation can be
written as:

τ = µ
(
∇u+∇uT

)
+

(
η +

2

3
µ

)
∇ · uI , (1.20)

with µ the shear viscosity coe�cient and η the volume viscosity coe�cient.
The volume viscosity is usually neglected in multicomponent �ow modeling,
the main reason being that the necessary data to correctly computing it are
lacking.

Finally, the approximation of the heat �ux reads:

q = −λ∇T +
s∑
i=1

hiJi , (1.21)

where λ is the coe�cient of thermal conductivity and thermal di�usion is ne-
glected. Notice that in this work we neglect the e�ect of the radiative heat
�ux, because it is not an in�uent phenomenon at entry speed taken into ac-
count. For more information about the derivation of the transport �uxes and
the de�nitions of the transport coe�cients, see [Barbante, 2001; Anderson,
2000]

1.3 Gas-surface interactions

This section is about the interaction arising in hypersonic entry �ows between
the high-temperature reacting gas and the wall of the vehicle. The section
is divided in two parts. The �rst is about the interaction seen by the �uid
point of view when reusable materials are used for the wall, and some details
are given by catalysis and the relative wall boundary condition used for the
simulations of the �ow. The second part instead is about the interaction seen
by the wall material point of view in case of ablative materials, and introduces
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Figure 1.5: Plot of the viscosity coe�cient (a) and the coe�cient of thermal
conductivity (b) at the pressure of 1atm for the �ve species air air mecha-
nism described in [Park et al., 2001]. In �gure (b) the solid line represents
the equilibrium coe�cient of thermal conductivity of the mixture, and the
dashed line the reactive thermal conductivity. Figure obtained by means of
the Mutation++ library [Magin et al., 2006a].

the concept of ablation. While the ablation of the heat shield is not taken
into account in the �ow numerical simulations performed in this work, the
decoupled simulation of the phenomena is used as test case for one of the
uncertainty quanti�cation tools developed later in this work.

1.3.1 Reusable material: catalytic wall

In a typical hypersonic reentry �ow, due to the high post-shock temperatures,
the gas surrounding an aerospace vehicle is dissociated. In such circumstances,
atomic species can recombine not only in the boundary layer for the tempera-
ture reduction, but also at the vehicle surface, because the heat shield material
can act as a catalyzer and promote some chemical reactions without altering
its own chemical composition. The releasing of reaction energy due to the
catalytic recombinations can increase the thermal load, therefore is important
to account for these e�ects in an entry �ow simulation.

The wall shows di�erent behaviors with respect to catalytic recombination
depending on the composition of the material. When the material is completely
inert and does not promote atomic recombination, the wall is called non-
catalytic. Instead, when it promotes the recombination of all the impinging
atoms, the wall is said to be fully catalytic. Note that the de�nition of fully
catalytic wall as the wall that promotes the recombination of all the impinging
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Figure 1.6: Simple graphical representation of the catalysis phenomenon.

atoms is not correct. A more rigorous de�nition of fully catalytic wall is a
material that allows the local gas composition to be equal to the equilibrium
one. In the literature such a wall is often known as local equilibrium wall.
Finally, a partially catalytic wall promotes just a partial recombination and
sits in between the other two de�nitions.

Thanks to a catalytic wall model, it is possible to determine the rate of
production or destruction of each species due to the surface reactions by sum-
ming up over all the elementary reactions. Since di�usion is the mechanisms
that feeds particles from the gas to the surface, at steady state the net amount
of species i produced or destroyed by catalytic reactions has to be balanced by
the di�usion �ux:

Ji|w · nw = ω̇
(cat)
i . (1.22)

A possible approach to de�ne the wall production rate ω̇(cat)
i is by assuming

that the impinging species recombine with a certain recombination probability
γi, also called e�ective catalytic recombination property (in the following, it
will be often referred to as catalytic coe�cient), de�ned as the ratio between
the number �ux of the i-th species recombining at the surface Mrec

i and the
number �ux of the imping at the surfaceM(in)

i :

γi =
M(rec)

i

M(in)
i

. (1.23)

Since the net �ux Ji|w · nw is equal to the di�erence between the impinging
�ux and the �ux leaving the surfaceM(out)

i , multiplied by the species mass mi,
we have that

ω̇
(cat)
i = mi

(
M(in)

i −M(out)
i

)
= mi

(
M(in)

i − (M(in)
i −M(rec)

i )
)

= γimiM(in)
i . (1.24)

Kinetic theory provides an expression for the impinging �uxM(in)
i , thanks to

the Chapman-Enskog method:

M(in)
i = ni

√
kTw
2πmi

+
1

2mi

Ji|w · nw , (1.25)
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1.3. Gas-surface interactions

where Tw is the wall temperature, ni the species number density and k the
Boltzmann constant.

1.3.2 Ablative material: ablation

Non-reusable thermal protection materials constituting the heat shield of an
entering vehicle are normally subject to the ablation phenomenon [Lachaud
et al., 2011]. This means that the virgin material, as heated, undergoes thermal
degradation, caused by sublimation and pyrolysis, and ultimately recession.
On the other hand, the ablation process is able to divert a signi�cant part of
the convective and radiative heat �ux away from the heat shield.

Heat
Flux

Surface
ablation

Surface

Air Flow

Char layer

Pyrolysis
zone

Virgin
material

Pyrolysis
gases

Heat
transfer

Figure 1.7: Simple graphical representation of the ablation phenomenon.

Figure 1.7 simply resumes the main physical aspects related to the ablation
of a sacri�cial heat shield material [Moyer et Rindal, 1968]. In the pyrolysis
zone, the virgin material (or rather one or more components of the original
composite) thermally decomposes and progressively carbonizes, releasing py-
rolysis gases and leaving a porous residue, which for most materials of interest
is a carbonized char. The pyrolysis gases released by solid pyrolysis convect
and di�use to the surface through the porous char. Reactions within the py-
rolysis gaseous mixture and between pyrolysis gases and the char may take
place, with possible e�ects like erosion or deposition of an additional residue
upon it (so called coking phenomenon). Further reactions of the pyrolysis
gases with boundary layer gases may occur when boundary layer gases pen-
etrate into the pores of the charred material by forced convection or due to
fast di�usion at low pressures. In the ablation zone at the surface, the charred
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material is removed by ablation and the initial surface recedes. Depending on
entry conditions, ablation can be caused by chemical reactions, phase change,
or mechanical erosion.

The complete physical and mathematical description of porous ablative ma-
terials is quite complex, and here we will give only the basic volume-averaged
conservation equations. Their form is somehow related with the one of conser-
vation equations presented for hypersonic �ows, but additional terms account
for the e�ect of �uid motion in porous media and reactions between solid and
gaseous phases. More details about the description of the phenomena can be
found in [Lachaud et al., 2011; Moyer et Rindal, 1968]. Let us take into ac-
count a carbon-phenolic low-density ablating material, and let us assume that
it is composed by three phases: solid carbon �bers, solid phenolic matrix and
gaseous phase in the pores produced by pyrolysis. The mass conservation for
gaseous phase can be written as:

∂

∂t
(εgρg) +∇ · (εgρgug) = Π , (1.26)

where ρg is the gas density, εg its volume fraction and ug the average gas
velocity. The pyrolysis gas production term Π is usually obtained by �tting
experimental data with Arrhenius laws, like the ones presented in (1.15) and
(1.17). The species conservation for the gaseous phase equation, expressed in
terms of mass fractions yi for each one of the s species, reads:

∂

∂t
(εgρgyi) +∇ · (εgρgyiug) +∇ · Ji = πiMi + εgωiMi , (1.27)

with Ji the di�usion �ux of the i-th species, πi the production of the i-th
species,Mi its molar mass and ωi the production term due to reactions between
pyrolysis gases. Solid phase mass conservation is used to compute the e�ective
density of the matrix, after changes due to pyrolysis, and it is modeled in the
following way:

∂

∂t
(εmρm) = −Π , (1.28)

with ρm is the solid matrix density and εm its volume fraction. The momentum
conservation in porous media is used to obtain the average gas velocity:

ug = − 1

εgµ

1 + β/p

1 + Fo
K · ∇p , (1.29)

where µ is the viscosity, β the Klinkenberg coe�cient to account for slip e�ects
at the pore scale when the Knudsn number is not small, p the pressure, Fo the
Forchheimer number that accounts for high velocity e�ects at the pore scale,
K the second-order permeability tensor, for the general case of anisotropic
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material. Finally, energy conservation, under the assumption of thermal equi-
librium between gaseous and solid phases, can be written as

∂

∂t
(ρaea) +∇ · (εgρghgug) +∇ ·

s∑
i=1

hiJi =

= ∇ · (λ · ∇T ) + µε2g(K
−1 · ug) · ug , (1.30)

where ea is the energy of the whole ablative material, written as ρaea =
εgρgeg + εmρmhm + εfρfhf , with h the enthalpy and the subscript f refer-
ring to the non-pyrolyzing �bers. T is the temperature and λ the second order
conductivity tensor, accounting for conductivity in the solid, in the gas and
e�ective radiative heat transfer.

The coupling between the �uid �ow and surface ablation is important to
accurately predict surface thermal loads [Gno�o et al., 2009], but at the same
time is quite complex and computationally expensive. The accounting of ab-
lation phenomena and their coupling with the hypersonic �uid �ow is beyond
the purposed of this work. However, the sensitivity analysis of the tempera-
ture of an ablating material with respect to uncertainties in the parameters
describing the material itself will be used as an application case to test one of
the uncertainty quanti�cation tools developed in this work. The application
will be brie�y described in Section 1.6.3.

1.4 COSMIC code

The governing equations for a mixture of reacting gases, as presented in Section
1.2, are a set of hyperbolic-parabolic partial di�erential equations. They can
be rewritten in compact form as

∂rεU

∂t
+∇ · (rεF ) +∇ · (rεH) = rεS , (1.31)

where U = (ρ, ρi, ρu, ρv, ρE) is the vector of conserved variables, F are the
convective �uxes, H the transport �uxes and S the source terms, respectively
de�ned as:

F =


ρu ρv
ρiu ρiv

ρu2 + p ρvu
ρuv ρv2 + p

(ρE + p)u (ρE + p)v

 S =


0
ω̇i
0
0
0


H =


0 0

ρiVix ρiViy
−τxx −τyx
−τxy −τyy

−τxxu− τxyv + qx −τyxu− τyyv + qy

 .
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The term rε, with ε = 0 for bi-dimensional �ows and ε = 1 for axisymmetric
ones, is used to automatically account for the modi�cations to the equations
when changing coordinate system. The set of equations we have to solve is
very complex, and in practical applications it is impossible to �nd analytical
solutions. Therefore we have to rely on a numerical method implemented in
a computer code to simulate the �ow. At this purpose, in this work we use
the code COSMIC [Barbante, 2001] from Von Karman Institute for Fluid Dy-
namics, which contains implementations of di�erent �nite volumes numerical
schemes to simulate 2D or axisymmetric reacting �ows. It is coupled with the
library Pegase [Bottin et al., 1999] for the computation of the thermodynamic
and transport properties of the reacting mixture. In the following, some details
about the COSMIC code and the used numerical schemes are reported.

Note that, in this work, we are only interested in steady state solutions of
the �ow. Nevertheless, the equations are kept unsteady and the simulation
is run until the steady state, because in this way the governing equations are
always hyperbolic-parabolic and a unique numerical technique can be used for
their solution.

1.4.1 Numerical schemes

Since we are interested in hypersonic applications, where the �ow �eld is char-
acterized by a strong shock in front of the object, it is better to use a numerical
method which is based on the integral form of the equation, rather than on the
di�erential one in equation 1.31. This is because the di�erential form is valid
only if the solution is continuous and di�erentiable, while the integral form
admits also weak solutions with the presence of discontinuities (as shocks).
The integral formulation of the governing equation is obtained by integrating
equation 1.31 on the �xed domain and applying the Gauss theorem on the
terms containing a divergence:

∂

∂t

∫
Ω

rεU dΩ +

∫
Γ

rεF · n dΓ +

∫
Γ

rεH · n dΓ =

∫
Ω

rεS dΩ , (1.32)

where Ω is the computational domain, Γ = ∂Ω its boundary and n the normal.
This equation is mathematically equivalent to eq. 1.31 for continuous solutions,
but it admits also discontinuous solutions. From this integral form of the
governing equations, it is possible to introduce the spatial and time numerical
discretizations.

Spatial discretization: Finite Volumes

The integral form of governing equations 1.32 is discretized with the �nite
volumes technique. First of all, consider a structured computational grid dis-
cretizing the domain, like in Figure 1.8. Then equation 1.32 can be applied to
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i,ji-1,j i+1,j

i,j-1

i,j+1

Figure 1.8: Example of structured mesh.

each cell composing the grid, indicated with the indices i and j.

rεijΩij
∂Uij
∂t

+
4∑

k=1

∫
Γkij

rεkFk · nk dΓkij +
4∑

k=1

∫
Γkij

rεkHk · nk dΓkij =

∫
Ωij

rεS dΩij ,

(1.33)
where the unknowns Uij are the average values of the conserved quantities on
each cell. The surface integrals have been replaced by the sum over the four
faces constituting the interfaces of each cell. The spatial numerical discretiza-
tion consists then in �nding suitable expressions for the convective and the
transport �uxes across the cell interfaces and for the volume integral of the
source term.

The discretization of the transport �uxes and the source terms is quite
straightforward, and involves for example, the discretization of the gradients
of some variables at the cell interface and the details can be found in [Barbante,
2001].

The convective �uxes, instead, are more di�cult and delicate to discretize.
In fact they are nonlinear, and this nonlinearity is responsible for the appear-
ance of shocks in the solution. A good numerical method has to capture the
shock accurately in a monotone way, i.e. without generating numerical os-
cillations. For the discretization of convective �uxes, two of the numerical
schemes implemented in COSMIC are used: Hybrid Upwind Splitting (HUS)
and Arti�cially Upstream Flux vector Splitting (AUFS) schemes.

Hybrid Upwind Splitting scheme

The Hybrid Upwind Splitting (HUS) scheme [Coquel et Liou, 1995] is an at-
tempt of combining rigorously the two families of �ux di�erence schemes (FDS)
and �ux vector splitting (FVS) schemes (see for example [LeVeque, 2002, Chap-
ter 4] for more details about the de�nition of the two families) with the aim to
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create a scheme that keeps only the good properties of the two families. The
combination of a FDS and a FVS scheme is done at the level of the deter-
mination of the numerical convective �ux: the FDS scheme takes care of the
contact discontinuity and the FVS scheme of the shocks or of the rarefaction
waves. In the code COSMIC, the hybridization of Van Leer [Van Leer, 1979,
1982] and Osher [Osher et Solomon, 1982] schemes has been used.

If we call FHUS(UL, UR) the approximated numerical �ux for the HUS
scheme, that is a function of the conserved variable vector UL and UR at the
left and right state, meaning at the two cells sharing the considered interface,
its expression can be written as:

FHUS(UL, UR) = F+
V L(UL) + F−V L(UR)︸ ︷︷ ︸
Van Leer scheme

+

{
F−V L(U∗L) + F−V L(U∗R) if V ∗n > 0

−F+
V L(U∗L) + F+

V L(U∗R) otherwise ,

(1.34)
where F+

V L(UL) and F−V L(UR) are the split �uxes of the Van Leer scheme. The
HUS scheme has the following interpretation: it is basically equal to the Van
Leer scheme plus an anti-di�usive term expressed in term of the Van Leer
�ux. The anti-di�usive contribution allows the exact capturing of contact
discontinuities and the good resolution of boundary layers and, thus, a good
computation of the thermal loads. The scheme requires the determination
of the intermediate points U∗R and U∗L and the corresponding velocity normal
to the interface V ∗n , this is done by means of the Riemann invariants (see
[Barbante, 2001, Chapter 3.5] for more details).

MUSCL approach The numerical method described up to now is only �rst
order accurate, because the left and right states correspond to the cell center
values. However, the use of a higher order scheme is very handy to obtain
an accurate solution while reducing the computational cost. As observed by
[Van Leer, 1977], it is possible to build a higher accuracy scheme by replac-
ing the left and right states constant on the cells with a piecewise polynomial
representation. In particular, a piecewise linear representation is second or-
der accurate, a quadratic representation third order accurate and so on. This
procedure of generating higher order upwind schemes via variable extrapo-
lation is called MUSCL approach (Monotone Upstream-centred Schemes for
Conservation Laws). In Cosmic, we are using second order accurate numerical
schemes.

TDV approach and limiters The MUSCL extrapolation method is able
to produce a higher accuracy scheme, but it has also the drawback of allowing
the appearance of spurious oscillations in the solution, especially across shocks.
The reason is related to the fact that the interpolated value of U depends
on the di�erence of the solution between di�erent cells (or the gradient in a
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broader sense), and this can cause problems near discontinuities, where the
gradients tends to in�nity. Therefore, oscillations can be avoided by a suitable
limitation of the gradients. The idea is to switch on the limiter in regions of
strong gradients, thus preventing oscillations, at the price of reducing the local
accuracy to roughly �rst order, and to switch it o� in regions of smooth �ow,
to recover second order accuracy. A criteria for the de�nition of the limiting
functions is given by the Total Variation Diminishing (TVD) approach [Hirsch,
1990]. In particular, in the simulations performed with COSMIC, we will use
a Van Albada limiter [Van Albada et al., 1982].

Carbuncle �x Most numerical schemes have been originally developed for
1D conservation laws, and then extended to 2D and 3D by projecting the
solution along the normal to the interface and computing the 1D �uxes along
this direction. In 1D con�gurations usually the schemes behave in a physically
correct way for a wide range of conditions. However, when extended to two
or more dimensions, some pathologic behaviors may appear [Quirk, 1994].
One of these pathologies, the so-called carbuncle phenomenon, appears when
computing high Mach number �ows over blunt body con�gurations. Therefore
it is of main relevance in this work. The carbuncle phenomenon is an alteration
of the �ow characterized by an area of recirculation near the stagnation point
and a protrusion of the bow shock which, therefore, appears oblique near
the stagnation line [Sermeus, 2013, Chapter 6]. This phenomenon shows up
with most shock-capturing schemes that are able to exactly capture a contact
discontinuity [Pandol� et D'Ambrosio, 2001]. Instead, FVS schemes, such as
Van Leer scheme, and shock-�tting schemes [Paciorri et Bon�glioli, 2009] are
free of carbuncle.

In COSMIC, an empirical ad-hoc shock-�x for the HUS scheme is imple-
mented to prevent the appearance of carbuncle. Since the basic Van Leer
scheme is free of carbuncle, the shock-�x is obtained by multiplying the anti-
di�usive contribution by a suitable coe�cient which has to be less than one
when a shock parallel to the grid is detected [Barbante, 2001, Section 3.7].

AUFS scheme

Another numerical scheme implemented in the COSMIC code and used in some
parts of this work is the Arti�cially Upstream Flux vector Splitting (AUFS)
scheme by [Sun et Takayama, 2003]. This is an accurate FVS scheme that
is able to exactly resolve stationary 1D contact discontinuities, and it avoids
the carbuncle problem in multi-dimensional computations. In this work, a
modi�ed preconditioned version of the AUFS scheme, recently developed and
implemented by [Bellas-Chatzigeorgis et al., 2017], has been used.
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Time discretization

After having introduced the spatial discretization for all the terms, equation
(1.33) is reduce to a system of �rst-order ordinary di�erential equations in
time:

∂Uij

∂t
= − 1

rεijΩij

Rij(U) , (1.35)

where Rij is called the residual, and it consists in the sum of all the �uxes
and source terms for the cell i, j. For a steady state computation, no interest
is given to the transient and the time evolution is just a convenient way of
preserving the same mathematical characteristics for the governing equations
through all Mach numbers. Therefore, the objective is to decrease the residual
to zero as quickly as possible.

For this reason, in this work only an implicit scheme is used for time dis-
cretization, meaning that both terms of equation (1.35) are taken at the same
time level. Hence, after having discretized the time derivative, the solution
is found by solving a nonlinear system, since the residual Rij is nonlinear in
the unknown. More details about the implicit time solver implemented in
COSMIC can be found in [Barbante, 2001, Chapter 3.9].

1.5 Mesh adaptation for CFD simulations

Practitioners and experts of hypersonic �ows simulations know the importance
of using a good computational grid in order to obtain accurate results. Often,
a good computational grid is the result of some grid adaptation tool but also
of the expertise and the monitoring of an expert user [Saunders et al., 2007;
Candler et al., 2009].

As it will be more clear from Chapter 2, to perform an uncertainty quan-
ti�cation study on a computational model, it is necessary to evaluate some
output quantity at several (also thousands) con�gurations of the uncertain
variables. This translates in having to perform many simulations with di�er-
ent values of input parameters, for example of freestream values. It is clear,
that in this case, the monitoring of the convergence of the solution is much
more di�cult, and it can be impossible to think about doing non-automated
interventions to improve the quality of the mesh. However, for uncertainty
quanti�cation it is very important to have su�ciently accurate and reliable
evaluations of the outputs, otherwise �uctuations caused by numerical errors
could be misinterpreted as variations due to input uncertainties.

Note that uncertainty propagation through a CFD code is often performed
by using a �xed mesh, since a converged mesh in nominal conditions can be
reasonably considered as converged also if some variations of the operating
conditions are taken into account. This approach is usually su�cient in the ab-
sence of shock waves and in non-hypersonic �ows [Kawai et Shimoyama, 2014;
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Salehi et al., 2017], but it has been used also for hypersonic �ows [Hosder et al.,
2006; Constantine et al., 2015]. However, as it will be shown in the following,
this can yield highly inaccurate results in hypersonic reacting �ows over blunt
bodies. In fact, in the numerical simulation of hypersonic �ows by means of a
second-order accuracy cell-centered �nite-volume discretization method, and
in general of shock-capturing methods, it is known that a proper alignment
between the shock and the discretization grid is essential to get a meaningful
solution [Bon�glioli et al., 2013; Onofri et al., 2011]. As suggested in [Bon-
�glioli et al., 2013], the main cause of poor heating predictions is thought to
be lack of a truly multidimensional shock-capturing scheme, able to produce
solutions that are insensitive to the relative orientation of the control volume
faces with respect to the shock. This becomes especially more challenging for
UQ applications, where, to make the required simulations more a�ordable, one
would prefer using grids that are automatically generated and not excessively
re�ned. However, in when considering uncertainties on some input parame-
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Figure 1.9: Example of problem caused by using a �xed nominal mesh when
perturbing the freestream conditions: stagnation heat �ux for the HEG cylin-
der (Sec. 1.6.1) versus 10% variation of the freestream velocity. Results ob-
tained with COSMIC using second order HUS scheme with Van Albada limiter
and carbuncle �x. Comparison between di�erent �xed grids and mesh adap-
tation.

ters, the values of freestream conditions, such as freestream velocity, may be
subject to variations, which leads to di�erent shock stand-o� distances for each
sample of input parameters. This can lead to a mesh/shock misalignment and
bad simulation results, causing poor heat �ux trends, as clearly noticeable in
�gure 1.9. From this same �gure, it can be noticed that using a more re�ned
nominal mesh for all the simulations at di�erent input values does not solve
this problem, at least for the computational code employed in this work. But
it is essential to adopt a simple mesh adaptation technique to realign the shock
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to the mesh for each di�erent freestream con�guration.
Di�erent solutions for mesh adaptation in case of shock-capturing sim-

ulations have been proposed in the literature [Hartmann et Houston, 2002;
Wang et Mavriplis, 2009; Frauholz et al., 2012], which are meant to be used
with di�erent numerical approaches than the one adopted in this work, and
which are able to work in complex con�gurations. Here we describe brie�y
the adaptation technique adopted in this work,which is a very simple tool that
uses basic algorithms well-known to practitioner in the hypersonic �ows �eld.
However, it is important to stress out the fact that here the process needs to
be automated and can not be directly monitored by the user, because several
simulations need to be run. The di�erent steps of the algorithm used for com-
putations of the HEG cylinder con�guration with the HUF numerical scheme
are summarized in Algorithm 1. A �rst solution is computed on the nominal

Algorithm 1 Mesh adaptation algorithm to automatically ensure a good
alignment between the shock and the mesh.
Starting from a nominal mesh and a starting solution computed at nominal
condition,

1. Compute a CFD solution with the value of input parameters for a speci�c
sample in the stochastic space

2. Find the shock position by looking at the jump in Mach number in the
�ow �eld

3. Adapt the mesh solving the solution of 1D linear elasticity equations
along the radial directions, imposing a rigid constraint on a row of nodes
corresponding to the shock position, and also at the wall surface and
outer bound shape

Repeat this steps until the maximum number of iterations is reached.

mesh, and the shock position is found by looking at the Mach number in the
�ow �eld. Then, the adaptation is performed by solving 1D linear elasticity
equations along the radial directions. The alignment to the shock is enforced
by imposing a rigid constraint on a row of nodes corresponding to the shock
position, and also the wall surface and outer bound shape are constrained in
the same way. No forcing is considered. If a small re�nement near the shock
is needed, two rows of nodes are added by splitting existing cells close to the
shock during the �rst iteration.

Axisymmetric simulations of the �ow around the forebody of the EXPERT
entry vehicle (see Section 1.6.2) have instead been performed using the AUFS
numerical scheme. A slightly di�erent adaptation strategy empirically proved
to be more suitable for this case: after a �rst computation on the nominal mesh,
the computational grid is re�ned around the shock position, and successively
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Figure 1.10: Surface heat �ux prediction for the EXPERT vehicle (a). No-
tice that the original computational grid and the one generated by the �rst
adaptation steps present bad solutions, especially in the region near the stag-
nation, while the last adaptation shows a better trend, with just some small
local oscillations. Original (b) and �nal (c) computational grid are shown too.

regularized by means of a laplacian smoothing, without changing the position
of the boundary layer and near-shock cells. Then a second computation is
performed on the new grid, following by one iteration of Algorithm 1, in order
to obtain the �nal grid for the considered input parameters combination.

1.6 Description of the application cases

In this section, three application cases are described. They will be used in the
following parts of this work to test some of the developed tools for Uncertainty
Quanti�cation and Bayesian inference. The �rst is about the simulation of the
hypersonic �ow past a cylinder in an experimental con�guration. The second
instead, represents a real entry con�guration for the EXPERT vehicle. Finally,
an ablation problem of the TACOT material is presented.

1.6.1 HEG cylinder

This �rst application case deals with the hypersonic high-temperature react-
ing �ow around a cylinder. The reference con�guration chosen in this work
is the experimental con�guration used at the HEG facility (High Enthalpy
shock tunnel Göttingen), which has been described and tested in [Karl et al.,
2003]. It has also been used in [Knight et al., 2012] to assess and compare the
prediction capabilities of di�erent CFD codes. An image of the experimental
setup is reported in Figure 1.11. The nominal freestream conditions chosen
for the numerical simulations are the ones referred to as HEG I con�guration
in [Knight et al., 2012], and they are reported in Table 1.2. The simulation
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Figure 1.11: Image of the cylindrical experimental model in the HEG facility
(taken from [Karl et al., 2003]).

problem consists in computing the quantities of interest, namely the pressure
pst and heat �ux qst at the stagnation point,

The set of governing equations and physico-chemical models used to de-
scribe the phenomena is the one described in Section 1.2. Two-dimensional
Navier-Stokes equations are combined with the chemical mechanism intro-
duced by Park et al. [Park et al., 2001] applied to a mixture of �ve species
air (N, O, NO, N2 and O2). Five species are su�cient to represent the main
chemical phenomena involved in the �ow for the considered con�guration, as
will be motivated in Section 3.6.1. To obtain the numerical results, we use
the numerical method described in Section 1.4, in particular the HUS scheme
with carbuncle �x, together with the mesh adaptation technique in Section 1.5
used to obtain meaningful results. Figure 1.12a shows an example of solution
temperature �eld together with a label for each boundary. Supersonic in�ow
and out�ow boundary conditions are imposed respectively on boundaries 1 and
2. On boundary 3, a solid wall with no-slip condition boundary is imposed.
Furthermore, the catalyticity of the vehicle surface is taken into account, and
it is modeled as a catalytic wall at imposed wall temperature Tw, with recombi-
nation coe�cient γ = 1. Finally, on boundary 4 a planar symmetry condition
is imposed.

Veri�cation and validation

The COSMIC code has been extensively tested in [Barbante, 2001]. Here, a
further test is proposed on the HEG cylinder con�guration, especially to check
the grid re�nement and the mesh adaptation technique.

A structured mesh of 99 × 26 cells has been chosen as nominal grid. The
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Quantity Value
u∞ [m/s] 5956
ρ∞ [kg/m3] 1.547e-3
p∞ [Pa] 476
T∞ [K] 901
M∞ 8.98
Y [N2]∞ 0.75430704
Y [O2]∞ 0.00713123
Y [NO]∞ 0.01026010
Y [N ]∞ 6.5e-7
Y [O]∞ 0.22830098
Tw [K] 300

Table 1.2: Nominal freestream conditions and wall temperature for the simu-
lation con�guration.

number of nodes should be a good compromise between solution accuracy and
computational e�ciency, since the simulation needs to be repeated several
times for the UQ study. Figure 1.13 shows the comparison of a zoom between
the starting nominal mesh close to the symmetry axis and the same area of
the mesh adapted for input conditions corresponding to one of the samples in
the stochastic space. One example of the solution temperature �eld obtained
at the end of the adaptation process is shown in �gure 1.12a together with the
temperature pro�le on the stagnation line in �gure 1.12b.

To assess the e�ectiveness of the mesh adaptation algorithm, several com-
putations are repeated by perturbing the freestream velocity, which is assumed
to vary randomly in the interval of ±10% of its nominal value. Three steps of
the mesh adaptation algorithm are performed for each input condition start-
ing from the nominal mesh. The obtained evolution of the pressure and heat
�ux at the stagnation point is plotted with respect to the freestream velocity
(Figure 1.14). Furthermore, we compare the results obtained with adaptation
with the ones of di�erent �xed meshes. Note that the comparison is done also
with computations performed on 119× 99 mesh, which is a mesh size used in
[Knight et al., 2012]. Finally, also results obtained with �rst-order HUS scheme
are compared. From the comparison (Figure 1.14b), it can be observed the
necessity to adapt the mesh over each di�erent condition, while the use of a
�xed mesh yields a large numerical error and wrong heat �ux trends. Instead,
as known, the stagnation pressure is much less a�ected by this issue (Figure
1.14a). Also the �rst-order solution does not present the numerical oscillations,
but its accuracy is not su�cient for a grid of this size. As a consequence, it is
possible to state that the Algorithm 1 allows an automatic mesh adaptation,
and the highest in�uence on the output value is caused by the proper align-
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Figure 1.12: Solution temperature �eld (a) around the cylinder computed on
the adapted mesh and temperature pro�le (b) on the stagnation line.

ment between the shock and the grid, rather than the grid re�nement itself.
From these results, it is possible to estimate that the numerical error due to
mesh alignment associated to the output value of the heat �ux is contained
in the ±2% interval. An example the comparison of heat �ux solution on the
cylinder surface before and after mesh adaptation is shown in �gure 1.15. A
non negligible di�erence in heat �ux values, especially close the stagnation
point, is noticeable.

Furthermore, a comparison with the experimental data presented in [Karl
et al., 2003; Knight et al., 2012] is used to validate the simulations at nominal
conditions. The nominal mesh with three steps of the adaptation algorithm
is used to compute the solution. In Figure 1.16, the pressure and heat �ux at
the wall of the cylinder are compared with experimental data. For the sake of
comparison, for the heat �ux some simulations from [Knight et al., 2012] are
reported too, together with a computation performed with COSMIC code on
a �ner 119x99 mesh. It can be noticed that the agreement is very good for
the pressure, and quite good for the heat �ux, but worse than the pressure,
as expected due to the known di�culties in the simulation of the heat �ux
at the wall for hypersonic �ows. Other codes, such as the one of Nompelis
[Knight et al., 2012] show better performance, while the re�ned mesh does not
improve substantially the result. However, results can be considered satisfying,
especially near the stagnation, which is where we will focus for the UQ study.

Characterization of the uncertainties

For this study case, aleatory uncertainties have been considered on the freestream
conditions and also on parameters of the chemistry model. In particular, the
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Figure 1.13: Comparison between a zoom of the starting nominal mesh close
to the symmetry axis (left) and the same area of the adapted mesh for one of
the training points (right).
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Figure 1.14: Comparison between numerical results obtained with grids of
increasing size, to test the mesh convergence.

freestream density and velocity have been considered uniformly distributed
on a ±20% interval around the nominal condition, as described in Table 1.3.
These uncertainties have been chosen quite arbitrarily, and they mainly con-
stitute a prior belief of a relatively wide range of possible values for these
two inputs, as their calibration is proposed in Chapters 3 and 5 by means of
Bayesian calibration.

Concerning the air chemical model, seventeen (17) uncertain variables are
considered for this test case, which are the pre-exponential factors Ar of the
Arrhenius rate coe�cients kr of all the reactions constituting the chemical
mechanism. Other parameters, such as the activation energy, are supposed to
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Figure 1.15: Solution heat �ux around the cylinder surface computed on the
original mesh compared to the one obtained at the end of the adaptation
pro�le, for a speed of 5929 m/s.

Variable Distribution Minimum Maximum
ρ∞, kg/m3 Uniform 1.237 · 10−3 1.856 · 10−3

u∞ m/s Uniform 4764.8 7147.2

Table 1.3: Uniform uncertainties on freestream conditions for the HEG cylin-
der.

be known with a higher accuracy and so are considered �xed to their nominal
values. Pre-exponential factors are supposed to be distributed with a log-
normal distribution (as in [Bose et al., 2004; Bellas-Chatzigeorgis et al., 2013])
centered on their mean values and standard deviations given in Table 1.4.
This corresponds to a normal uncertainty on their exponent. Later, in Section
3.6.1, a preliminary sensitivity study is used to reduce the number of chemistry
uncertainties for the HEG cylinder, and �nally, in the CFD-based uncertainty
analysis, only the six most in�uent pre-exponential factors uncertainties will
be kept.

Another source of uncertainty in the problem of freestream calibration is
related with the experimental measurement errors associated to pressure and
heat �ux data at the stagnation point. Experimental data are here considered
to be a�ected by Gaussian noise, as it will be more clear in Chapter 2. The
standard deviation model for the stagnation pressure noise is σp = 0.02 p∗st, and
the standard deviation model for stagnation heat �ux is σq = 0.1 q∗st; where
p∗st and q

∗
st are the measured values. The di�erences in noise levels model the

engineers' trust in the sensors for pressure and heat �ux; in other words, we
expect roughly 2% error in pressure measurements and 10% error in heat �ux
measurements.
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Figure 1.16: Comparison between numerical and experimental data for the
nominal conditions.

1.6.2 EXPERT vehicle

The second application proposed in this work is about the atmospheric entry
�ow around the forebody of the EXPERT (European eXPErimental Reen-
try Testbed) vehicle from the European Space Agency [Muylaert et al., 2007;
Thoemel et al., 2009]. We focus on the part of the entry trajectory where
the hypothesis of continuum regime is valid. Two speci�c points of the en-

(a) (b)

Figure 1.17: Representation of th EXPERT vehicle and detail about the loca-
tion of the nose sensors.
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Variable Reaction Deviation σ

1-3
N2 +M→ 2N+M

where M = N2,NO,O2
0.11

4,5
N2 +M→ 2N+M

where M = O,N
0.15

6-10
O2 +M→ 2O+M

where M = N2,NO,O2,O,N
0.10

11-15
NO+M→ N+O+M

where M = NO,N,O,N2,O2
0.12

16 N2 +O→ NO+N 0.10

17 NO+O→ O2 +N 0.10

Table 1.4: Standard deviations of the pdfs for the reaction rate coe�cients
preexponential factors.

try trajectory are considered for the freestream calibration (see Figure 1.18).
The �rst, at a higher altitude, known to exhibit chemical non-equilibrium ef-
fects, while the second, situated in a lower part of the trajectory, close to the
peak heating point, where the chemistry tends to be at equilibrium. Nominal
freestream conditions for both trajectory points are reported in Table 1.5

Figure 1.18: Aerodynamic and kinetic �ow regimes in the altitude-velocity
map (from [zur Nieden et Olivier, 2007]), with, in blue, an approximate rep-
resentation of the ballistic entry trajectory of the EXPERT vehicle. The blue
and red dots represent the two trajectory points where the UQ analysis is
carried out

Axisymmetric Navier-Stokes governing equations are used to describe the
�ow, together with the same physico-chemical models (Section 1.2) used for
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Altitude, Km T∞, K p∞, Pa ρ∞, kg/m3 u∞ m/s M∞
60 245.5 20.3 2.8806e-04 4868.6 15.5
30 220 1200 0.0190 3657.3 12.3

Table 1.5: Freestream conditions for two points of the trajectory of the EX-
PERT vehicle.

the HEG cylinder. The equations are combined with the chemical mechanism
introduced by Park et al. [Park et al., 2001] applied to a mixture of �ve species
air (N, O, NO, N2 and O2). COSMIC code is used to simulate the �ow,
using AUFS numerical scheme, and the mesh adaptation technique described
in Section 1.5 is adopted. The simulation problem consists of computing the
quantities of interest, which correspond to the pressure and heat �ux measured
by �ve sensors integrated in the nose heat shield. As it can be seen from �gure
1.17, the �rst sensor is located at the center of the nose of the vehicle, which,
in our axisymmetry hypothesis, coincides with the stagnation point, the others
are disposed at an angle of (approximatively) 45 degrees from the center line.
In practice, the solution, computed with the �nite volume code, is available
at the nodes of the computational grid, and it is interpolate to the desired
locations.

Figure 1.19 shows the n×m nominal computational grid, with labels for the
bounds, and the solution temperature �eld computed for the 60km trajectory
point. Supersonic in�ow and out�ow boundary conditions are again imposed

1

2

3

4

(a) (b)

Figure 1.19: Nominal computational grid (a) and nominal temperature �eld
for the 60km trajectory point (b) of the EXPERT vehicle.

respectively on boundaries 1 and 2. On boundary 3, a partially catalytic wall
at radiative equilibrium and with no-slip condition is imposed. The nominal
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value of recombination probability is taken as γ = 0.0015. Finally, on boundary
4 the axisymmetry condition is imposed.

Characterization of the uncertainties

For the EXPERT entry problem, uncertainties are taken into account on
the uncertain freestream conditions that we will try to rebuild by means of
Bayesian inference and also on some parameters of the air chemistry mech-
anism. Concerning the freestream conditions, at each di�erent calibration
problem treated in Chapter 6, a uniformly distributed prior uncertainty in the
±20% interval around the nominal condition is considered on the quantity we
wish to rebuild. The relatively wide uncertainty rage is chosen arbitrarily to al-
low the rebuilt parameters to be mainly informed by the measurements rather
than by the priors, as it will be more clear in Section 2.5. Furthermore, an
uncertainty on the catalytic recombination coe�cient γ is taken into account.
It is a uniform uncertainty of ±33% around the nominal value of 0.0015, as
proposed by [Villedieu et al., 2012]. Finally, as for the HEG cylinder, centered
log-normal uncertainties are considered on the pre-exponential factors of the
Arrhenius reaction rate coe�cients. As in [Tryoen et al., 2014], the standard
deviation values reported in Table 1.6 are chosen.

Gas reaction Distribution of log10Ar σr
NO + O→ N + O + O Normal 0.12
NO + N→ N + O + N Normal 0.12
O2 + N2 → 2O + N2 Normal 0.10
O2 + O→ 2O + O Normal 0.10

Table 1.6: Uncertainties on gas reaction rates for EXPERT reentry.

As for the HEG cylinder, experimental data are considered to be a�ected
by Gaussian measurement noise. Pressure measurements are assumed to be
a�ected by a noise with standard deviation σp = 0.02 p∗st, and the standard
deviation value for heat �ux measurements is assumed to be σq = 0.1 q∗st;
where p∗st and q

∗
st are measured values.

1.6.3 TACOT material ablation

A third application case related to atmospheric entry problems is here pre-
sented. It does not concern a hypersonic �ow simulation, but it is focused
instead on the analysis of the temperature of an ablative material at a �xed
position and imposed time during the ablation process. In particular, we
consider the unidirectional ablation of a 7.21 cm thick TACOT (Theoretical
Ablative Composite for Open Testing) material [Lachaud et al., 2010], a low
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density carbon-phenolic created from literature data, exposed to a constant
heat �ux for one minute before radiatively cooling down. This rectangular
incoming �ux is an interesting case to test the surrogate modeling method
proposed in Chapter 3. While this case does not represent a real ablation pro-
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Figure 1.20: Temperature trend of the reference point at 5.61cm inside TACOT
material compared to the one of the heated surface, obtained with nominal
material parameters. The black vertical line indicates the reference time at
which the sensitivity analysis is carried out.

cess of a TPS material occurring during the atmospheric entry of a spacecraft,
it is however quite close to an ablation test in the Plasmatron facility [Bottin
et al., 2000] of the Von Karman Institute for Fluid Dynamics.

The quantity of interest is chosen to be the temperature of the material
at a position x = 5.61 cm, meaning 1.6 cm inside from the heated surface, at
the time t = 80 s over 120 s of simulation (see Figure 1.20). The measuring
position corresponds to the location of a sensor, and it is deep enough into
the material so that it does not reach the surface because of the recession
caused by ablation. Computational simulations have been performed with the
PATO code [Lachaud et Mansour, 2014], on the one-dimensional computa-
tional grid shown in �gure 1.21. Note that the grid shows a strong re�nement
near the heated surface. Figure 1.20 shows the nominal temperature trend
of the reference point used for the test case, located at 5.61 cm inside the
TACOT material (in orange). It is compared to the temperature trend of the
heated surface (in red) and the one of the bottom of the material (in blue).
Concerning the uncertainty characterization, uncertainties are considered on
27 input parameters related to the physical and chemical properties of the
di�erent components constituting the virgin composite material and the char.
A uniform distribution is associated to each uncertain variable, with values
reported in Table 1.7. The de�nition of some terms can be found in Section
1.3.2, for the others the reader is referred to [Lachaud et al., 2011].
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Figure 1.21: Computational grid used for the 1D simulation of the ablation of
the TACOT material by means of the PATO code.

Referring to the conservation equations introduced in 1.3.2, uncertainties
are assigned to the densities of both �ber ρf and matrix ρm of the composite
material, and also to their volume fractions εf and εm. Uncertain are also
the permeabilities K, heat capacities cp, emissivities Ce, Cr re�ectivities and
conductivities λ in the i,j and k directions of both the virgin material and the
char, denoted with the subscripts v and c respectively. Finally, uncertainties
are accounted on pre-exponential factors, enthalpies and activation energies of
Arrhenius forward rates of reactions 1 and 2 of the chemical mechanism de-
scribed in [Lachaud et al., 2011, Table 2] and on carbon, oxygen and hydrogen
mass fractions yi in the gaseous phase.

1.7 Conclusions

In this section we �rstly introduced the phenomenology related to hypersonic
entry �ows. Then, we have provided the description of the models and the
computational schemes used in this work to perform numerical simulations.
Governing equations for hypersonic reacting �ows were given, together with
the closure physico-chemical models. The computational code used in the rest
of the work to perform CFD simulations was described. Emphasis was given
to the importance of mesh adaptation in case of simulations of hypersonic
reacting �ows. Finally, all the application cases used throughout the work
were detailed, namely the �ow around the HEG cylinder con�guration and the
node of the EXPERT vehicle, and the ablation of a TACOT material.

Predictive numerical simulations for rebuilding freestream conditions in
atmospheric entry �ows

45



1.7. Conclusions

Variable Description Minimum Maximum

ρf Fiber density 1520 1680

εf Fiber volume fraction 0.095 0.105

ρm Matrix density 1140 1260

εm Matrix volume fraction 0.095 0.105

Kv Permeability of the virgin material 1.52e-11 1.68e-11

Kc Permeability of the char 1.9e-11 2.1e-11

yC Carbon fraction 0.1854 0.2266

yH Hydrogen fraction 0.6111 0.7469

yO Oxygen fraction 0.1035 0.1265

A1 Pre-exponential factor reaction 1 10800 13200

e1 Activation energy reaction 1 64017.801 78243.979

h1 Pyrolysis enthalpy reaction 1 -4.4e6 -3.6e6

A2 Pre-exponential factor reaction 2 4.479993e8 5.475547e8

e2 Activation energy reaction 2 1.529775e5 1.869725e5

h2 Pyrolysis enthalpy reaction 2 -4.4e6 -3.6e6

cpv Heat capacity virgin 0.95 1.05

λiv Conductivity i virgin 0.95 1.05

λjv Conductivity j virgin 0.95 1.05

λkv Conductivity k virgin 0.95 1.05

Cev Emissivity virgin 0.95 1.05

Crv Re�ectivity virgin 0.95 1.05

cpc Heat capacity char 0.95 1.05

λic Conductivity i char 0.95 1.05

λjc Conductivity j char 0.95 1.05

λkc Conductivity k char 0.95 1.05

Cec Emissivity char 0.95 1.05

Crc Re�ectivity char 0.95 1.05

Table 1.7: Uncertainties characterization for PATO: minimum and maximum
of the uniform distribution associated to each uncertain input.
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Chapter 2

Uncertainty Quanti�cation,
Sensitivity Analysis and Bayesian
inference

In this chapter, the statistical framework for direct and inverse uncer-

tainty quanti�cation and global sensitivity analysis is introduced. A def-

inition and classi�cation of uncertainties is given, together with the def-

initions of forward and inverse uncertainty quanti�cation problems. A

brief review presents di�erent techniques in the literature, with empha-

sis given on the ones that will be exploited in the following parts of the

present work.

2.1 Introduction

Simulation of several engineering systems requires numerical resolution of com-
plex computational models, which often involve a large number of physical
parameters. In some practical cases, it can be di�cult, or even impossible, to
obtain enough experimental data to adequately calibrate the parameters of the
physical model and furthermore, in general, experimental data, when available,
is intrinsically a�ected by measurement errors. The need for robust predictive
simulations in the analysis and design process requires rigorous quanti�cation
of how these uncertainties a�ect the values of quantities of interest. This
is valid, obviously, also for atmospheric entry problems, where complex mul-
tidisciplinary models are used to model the complex phenomena related to
hypersonic entry �ows, and where it can be di�cult to obtain accurate data
about the atmospheric environment and its chemical behavior.

Techniques to de�ne the quality of numerical simulations have been orga-
nized in the framework of so-called veri�cation and validation [Oberkampf et
Roy, 2010; Stern et al., 2001]. The aim of veri�cation is to check that the
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equations of the simulation model are being solved correctly. This is done
�rstly by assessing the convergence and then by quantifying the errors of the
numerical algorithms used to solve the governing equations. Validation, in-
stead, veri�es if the correct set of equations, constituting the mathematical
model, is used to describe the physics by comparing the numerical predictions
to reality, i.e. to experimental data. There is a growing recognition of the
fact that validation can not be carried out without accounting for uncertain-
ties present in both experimental measurements and numerical computations
[Roy et Oberkampf, 2011]. Furthermore, information on the uncertainties in
simulations is critical in the decision-making process for the design and anal-
ysis of physical and engineering systems. Without estimating the uncertainty
associated to a prediction, the decision-making process could be misleading,
which could cause inadequate safety, reliability and performance of the sys-
tem. For these reasons, Uncertainty Quanti�cation (UQ) is gaining increasing
importance to rigorously quantify the uncertainties introduced in the output
of numerical simulations to assess their predictive capabilities.

One of the main goals of UQ is to propagate the di�erent sources of un-
certainties through the simulation model in order to obtain quantitative infor-
mation about the variability of some quantities of interests (outputs) [Glimm
et Sharp, 1999]. The �rst step necessary for this process is to identify and
characterize all the di�erent sources of uncertainties. In section 2.2, a brief
overview is given about this important topic. In this work we will mainly
focus on the e�ect of uncertainties associated to model input data, such as
boundary freestream conditions and physical model parameters, where some
physically-sound assumptions on their probability density function (PDF) are
done. In this probabilistic uncertainty quanti�cation framework, the prob-
lem of uncertainty propagation consists in computing the PDFs of the outputs
given the distributions of the uncertain input parameters. Several approaches
have been developed to solve this problem, which are reviewed in section 2.3,
in which the description of two popular classes of methods, namely sampling
techniques and spectral methods, is given, due to their use in this work.

Another objective of UQ can be to rank the uncertain inputs according
to their in�uence on the variability of the quantity of interest. This type of
problem is called Sensitivity Analysis (SA). In Section 2.4 more details are
given about the formulation of this problem and some classes of SA methods
that can be found in literature.

A way to reduce the variability of the output of a simulation is to reduce
the uncertainty of some input parameter, especially of the ones who presented
higher relative weights in sensitivity analysis. Often, the lack of direct ex-
perimental data and the di�culty of characterizing uncertainties on aleatory
parameters leads to the choice of associating them with analytical probability
distributions (Gaussian, uniform) speci�ed by expert opinions, which can lead
to poor estimates. In this context, it is possible to improve the characterization
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of uncertain parameters by inferring their PDFs from experimental measure-
ments available on some quantities of interest. Probabilistic approaches such
as Bayesian inference (see Section 2.5) are able to treat these problems by tak-
ing into account also the error intrinsically associated to experimental data.
Uncertainty propagation and Bayesian calibration can be seen as two major
types of problems in uncertainty quanti�cation. The �rst is a forward UQ
problem, since the various sources of uncertainty are propagated through the
model to predict the uncertainty in the system response, while the other is
an inverse problem, since the input model parameters are the solutions of a
calibration done by exploiting measurements of some model outputs. The rela-
tions and di�erences between forward problem of uncertainty propagation and
the inverse problem associate to Bayesian inference are graphically displayed
in �gure 2.1.

  

Prior PDFPrior PDF Output PDFOutput PDFPredictionPrediction

Training 
sample

Training 
sample SurrogateSurrogate

Posterior PDFPosterior PDF MeasurementsMeasurements

Forward propagation

Bayesian calibration

LikelihoodLikelihood

 CFD CFDInput
parameters

Quantities 
of interest

Figure 2.1: Diagram explaining inputs, outputs and di�erent actors in the
forward uncertainty propagation and Bayesian calibration problems.

2.2 Sources of uncertainties: identi�cation and

characterization

A proper identi�cation, characterization and description of the uncertainties
is crucial to obtain reliable uncertainty quanti�cation results. Furthermore,
the presence of di�erent types of uncertainties may lead, as here brie�y de-
scribed, to the use di�erent approaches and tools for their description and,
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subsequently, for the following UQ analysis.
Uncertainties are often classi�ed in two categories [Iaccarino, 2014]: aleatory

or epistemic. Aleatory (or stochastic) uncertainty measures the physical vari-
ability in the system under analysis, or in other words the intrinsic variation
of a quantity. It is not strictly related to a lack of knowledge and it can
not be reduced or completely eliminated, but given su�cient samples of the
stochastic process, can be characterized by a random variable (RV) and its
probability density function. For example, the operating conditions of an en-
gineering system normally are assumed as aleatory sources of uncertainties.
Epistemic (or reducible) uncertainty, instead, is an uncertainty due to lack
of knowledge. This kind of uncertainties can arise from assumptions in the
physical and mathematical modeling of the phenomena, and can be reduced
for example by improving the physical models. This type of uncertainty is
usually represented as an interval (with no associated PDF) or, as done in the
probabilistic Bayesian approach to uncertainty [Gelman et al., 2003], as a PDF
(usually uniform) representing the degree of belief of the analyst on the true
value. Other approaches to treat epistemic uncertainties are fuzzy set [Shafer,
1976] and possibility and evidence theory [Zimmermann, 1996]. An example
of sources of epistemic uncertainty are turbulence or chemical kinetics model
assumptions. Notice that the two categories constituting this classi�cation are
not neatly separated, but sometimes complex uncertainties may result of an
interaction between aleatory and epistemic e�ects.

In scienti�c computing, sources of uncertainties can be further divided in
three categories [Oberkampf et Roy, 2010]: model inputs, model form and
poorly-characterized numerical approximation errors. Model input uncertain-
ties are used to describe variability in things such as geometry, constitutive
model parameters, and initial and boundary conditions, and can come from
a range of sources including experimental measurement, theory, other sup-
porting simulations, or expert opinion. Input parameter uncertainties can be
classi�ed as aleatory, epistemic, or a mixture of the two. The characterization
of the numerical approximation errors is done with veri�cation. When numer-
ical approximation errors can be exactly estimated, their uncertainty can, in
principle, be eliminated, given that su�cient computing resources are avail-
able. If this is not feasible, they should generally be converted to epistemic
uncertainties due to the uncertainties associated with the error estimation pro-
cess itself [Roy et Oberkampf, 2011]. Model form uncertainties are related to
assumptions embodied in the mathematical model. The characterization of
model form uncertainty is commonly estimated using model validation. Model
form uncertainties are usually treated as epistemic [Ferson et al., 2008].

In this work, the attention is focused on uncertainties related to bound-
ary conditions (freestream conditions) and input parameters of the physico-
chemical model (chemical mechanism of the air mixture and catalysis). They
may be considered as both aleatory or epistemic uncertainties, since they rep-
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resent both the intrinsic variability of the atmosphere/materials and the lack of
knowledge related to improvable measurements. However, we decided to adopt
a Bayesian stochastic framework for their description, which is considered to
naturally be the more suitable for treating this kind of uncertainties. There-
fore, in this framework, uncertain variables are described as random variables
and their PDFs represent the degree of belief of the true value on the part of
the analyst, given by expert opinion.

2.3 Forward uncertainty propagation

In a probabilistic framework, the problem of uncertainty propagation consists
in the computation of PDFs of some output quantity of interest given the
probability distributions of the uncertain inputs (�gure 2.2), in order to get
mean values, variances, con�dence intervals and other statistical indicators of
the output or the likelihood of a certain outcome.

Figure 2.2: Propagation of uncertainties associated to model input parameters
to obtain output uncertainties (taken from [Oberkampf et Roy, 2010]).

Let us describe this problem from a mathematical point of view. In the
adopted probabilistic (statistical) framework, it is possible to consider the d-
dimensional vector of input uncertainties x ∈ Rd as a random variable X,
with joint probability density function σX(x) de�ned in a probability space
(Rd,Bd,ΣX) , where Bd is the Borel σ-algebra of the event space Rd and ΣX is
its probability measure [Delmas, 2010]. The response of the model y = f(x),
with y ∈ R, is consequently described by a random variable Y = f(X). The
upper-case letters, X and Y , denote a list of input random variables (random
vector) and a scalar random output, respectively, while the lower-case letters
x and y represent the realizations. The model response Y is assumed to have
�nite variance, hence it belongs to the Hilbert space L2(Rd,ΣX) of square-
integrable functions with respect to the measure ΣX. This space is known to
be equipped with the inner product 〈·, ·〉L2 , de�ned as

〈g(X), h(X)〉L2 =

∫ ∞
−∞

g(x)h(x)σX(x) dx , (2.1)
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which also induces the norm ‖g(X)‖2
L2 = 〈g(X), g(X)〉L2 .

Performing uncertainty propagation through the model Y = f(X) means to
characterize the random variable Y and its variability, which usually requires
the computation of n-th order statistical moments about a constant c ∈ R
(that is equal to the mean for centered moments), that can be written in the
form:

E[(Y − c)n] =

∫ ∞
−∞

(f(x)− c)nσX(x) dx. (2.2)

The previous expression can be generally written as an expectation of a generic
function g(·) of the input:

E[g(x)] =

∫ ∞
−∞

g(x)σX(x) dx. (2.3)

In most applications, the integral in (2.3) cannot be evaluated analytically.
For this reason, several techniques have been proposed in the literature to
solve the uncertainty propagation problem [Lucor, 2011; Geraci, 2013; Iac-
carino, 2014]. A big distinction is usually done between non-intrusive and
intrusive approaches: non-intrusive approaches require only multiple runs of
the existing deterministic numerical code, which can be used as a black-box,
while intrusive methods require to reformulate entirely the theoretical formu-
lation of the problem and a deep modi�cation of the numerical code. Being
able to use the computer code as a black-box presents a big advantage for
many applications, as very complex physical models (highly nonlinear models,
multiphysics, coupled problems, . . . ) can be used in the uncertainty propaga-
tion without having to modify the computational code. Another advantage is
that the di�erent deterministic simulations can be easily performed in parallel.
These features make non-intrusive methods very attractive for UQ problems in
industrial applications and when complex computational models are involved.
However, a drawback of non-intrusive methods is that their numerical cost
directly increases with the number of deterministic simulations that need to
be performed to construct the approximation. This number can become very
large, since most of non-intrusive methods su�er from the so-called curse of
dimensionality [Donoho, 2000]. This means that the number of required evalu-
ations of the computational model increases exponentially with the dimension
of the input stochastic space, i.e. with the number of independent input ran-
dom variables.

The more straightforward family of non-intrusive methods for uncertainty
propagation are sampling techniques, like Monte Carlo approach [Ca�isch,
1998], which focus on stochastic integration methods to compute the integrals
in eq. (2.3). However they are characterized by a slow convergence rate, and
therefore are often associated to high computational costs, especially when the
evaluation of the function of interest requires expensive numerical simulations
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(see Section 2.3.1 for more details). On the other hand, deterministic numeri-
cal integration techniques such as quadrature rules [Smolyak, 1963] try to solve
the integral in a deterministic way. Stochastic collocation methods [Babuska
et al., 2007; Xiu et Hesthaven, 2005][Witteveen et Iaccarino, 2012, 2013] rely
instead on a global or piecewise interpolation of the function of interest given
its evaluation in a set of deterministic collocation points. The interpolation is
then exploited for the characterization of the statistics of the output.

Another family of UQ methods are stochastic spectral approaches (see
[Le Maître et Knio, 2010] for an extensive review), like the well-known Polyno-
mial Chaos expansion [Xiu, 2010] or Polynomial Dimensional Decomposition
[Rahman, 2008]. These methods aim at giving an approximated representation
of the output random variable as a functional expansion on an orthogonal func-
tional basis of the stochastic space (see section 2.3.2 for more details). Inside
this family of methods, several techniques have been developed to determine
the (deterministic) expansion coe�cients. Stochastic Galerkin approaches [Xiu
et Karniadakis, 2002; Le Maître et al., 2001; Xiu et al., 2002], which are in-
trusive, rely on the weak formulation of the stochastic problem in a similar
mathematical framework as deterministic Galerkin methods. Spectral meth-
ods can be implemented also in many non-intrusive ways, like non-intrusive
spectral projection [Reagan et al., 2003; Congedo et al., 2011], collocation [Xiu,
2009] and regression [Blatman et Sudret, 2010a] to cite some. More recently,
also some semi-intrusive implementations of spectral approaches have been
proposed [Abgrall et Congedo, 2013; Geraci et al., 2016], which only require
some minor modi�cations to the existing computational code.

A further family of approaches for uncertainty propagation has been ini-
tially developed with the aim of alleviating the high computational cost asso-
ciated to sampling methods. It is based on the idea of constructing approx-
imation models, known as surrogate models (also referred to as metamodels
or response surfaces) [Simpson et al., 2001; Hastie et al., 2009], which are
mathematical models that mimic the behavior of the computational model as
accurately as possible, while being cheaper to evaluate. Surrogate models are
built exploiting the information about the computational model on a limited
number of points, called training points, where the expensive computational
model needs to be evaluated, and therefore they are normally considered as
non-intrusive techniques. The problem of building accurate and computation-
ally e�cient surrogate models is not trivial, hence several e�orts have been and
are still carried out in literature in this direction. Once a su�ciently accurate
surrogate model of the function of interest is available, it can be exploited to
compute predictions, rare events and statistics of the output at a reduced com-
putational cost. Surrogate models are useful mathematical tools that are also
used in other applications, like global optimization [Jones et al., 1998] and sta-
tistical learning [Rasmussen et Williams, 2006]. Among the many surrogate
modeling techniques available in literature, it is possible to mention least-
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squares regressions [Hastie et al., 2009], polynomial response surface methods
[Box et Draper, 1987; Jones, 2001], radial basis functions [Powell, 1987; Buh-
mann, 2003], arti�cial neural networks [Bishop, 1995] and Kriging [Cressie,
1993] (or Gaussian process regressions [Rasmussen et Williams, 2006]). Also
the previously mentioned spectral expansions and stochastic collocation inter-
polations can be considered as surrogate models of the function of interest.
The fact that non-intrusive surrogate models su�er from the curse of dimen-
sionality makes more challenging the construction of a good surrogate for a
medium-to-high number of input dimensions, that is at the same time accurate
and e�cient, requiring an as-small-as-possible number of training point to be
built. This is the direction where the recent research on surrogate models is fo-
cused, with the use of sparse representations [Blatman et Sudret, 2010a; Tang
et al., 2016] or dimensional reduction techniques [Constantine, 2015; Tripathy
et al., 2016]. Chapters 3 and 5 of the present work also focus respectively on
the construction of an e�cient surrogate model and on dimension reduction.

Two popular classes of UQ methods are described more formally in the
two following subsections, because of their relevance for the rest of the work.
In particular, more details about sampling techniques are given in 2.3.1, and
about spectral approaches in 2.3.2. For the same reason, Kriging surrogate
models will be extensively discussed in Section 3.2.1 and Appendix B.

2.3.1 Sampling techniques

Sampling techniques are the simplest available approach to propagate input
uncertainties through a numerical simulation. A useful characteristic of sam-
pling techniques is that their rate of convergence is independent of the problem
dimensionality. The Monte Carlo method (MC) and its variants [Hammers-
ley et Handscomb, 1964] are the most popular sampling approach. It consists
in drawing independent random samples xi from the joint PDF of the input
parameters and evaluating the model output for each sample. All the results
are then used to characterize the statistics of the output. It is possible to use
sampling expected values as MC estimators of the real expectations:

E[f(x)] ≈ 1

N

N∑
i=1

f(xi) , (2.4)

with N the number of samples. The method has many advantages, being sim-
ple, robust, versatile and universally applicable, and it is non-intrusive, not
requiring any modi�cation to the existing deterministic computational code,
which can be used as a black-box. However, while it converges to the ex-
act solution as the number of samples goes to in�nity, its convergence is very
slow, since its convergence rate is only of the order O(N−1/2) [Fishman, 1996].
Therefore several thousands (or even millions) of samples, and hence of nu-
merical simulations, are required to obtain accurate estimations, making it
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too expensive in order to be used in problems where the evaluation of the out-
put involves the solution of complex systems of partial di�erential equations,
like in CFD. It is competitive with respect to other methods only in case of
high-dimensional input probability spaces, since its order of convergence is
independent of the number of random parameters.

Latin Hypercube sampling (LHS) [McKay et al., 1979] is one of the most
popular methods that have been developed to partially accelerate the conver-
gence of Monte Carlo approaches. It is based on dividing the range of each
input parameter in intervals of equal probability, and then on drawing ran-
dom samples from each one of the equiprobability interval. The convergence
is faster than simple Monte Carlo [Stein, 1987], since LHS provides an optimal
coverage of the input space [Helton et Davis, 2003]. Another popular improve-
ment over Monte Carlo sampling methods is the family of quasi-Monte Carlo
(qMC) methods [Ca�isch, 1998]. In qMC methods, the random generation
of samples is substituted by a low-discrepancy sequence, for example the well
known low discrepancy sequence introduced by [Sobol', 1967]. In Figure 2.3,
a comparison between MC and LHS sampling points is shown by drawing 50
samples from a uniformly-distributed two-dimensional stochastic vector.
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Figure 2.3: Plots of 50 samples drawn from a uniformly-distributed two-
dimensional stochastic vector with Monte Carlo and Latin Hypercubes and
quasi Monte Carlo sampling methods.

2.3.2 Spectral approaches

Let us consider again the problem of propagating the multidimensional uncer-
tain random input X, with joint probability density function σX(x) de�ned
in the probability space (Rd,Bd,ΣX), through the model Y = f(X). Let us
suppose the output random variable to have �nite variance and therefore to
belong to the space L2(Rd,ΣX) of square-integrable random variables, which is
equipped with the previously de�ned inner product and the induced L2 norm.
Let us suppose, for simplicity, that the components of the input random vector
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are independent, therefore the joint PDF can be written

σX(x) =
d∏
i=1

σXi(xi) , (2.5)

with σXi(xi) the marginal PDF of the i-th component. Spectral approaches
are available also for mutually dependent inputs, but the formulation is more
complex [Le Maître et Knio, 2010]. Spectral methods for UQ [Xiu, 2010]
aim at reconstructing the functional dependence of the solution on the input
uncertainties. This functional dependence is typically expressed in terms of a
series expansion:

f(X) =
∞∑
k=0

Ckψk(X) , (2.6)

where the ψk are suitably selected functionals of the input random variables
which constitute a multi-dimensional orthogonal basis of the Hilbert stochastic
space, and the Ck are deterministic expansion coe�cients. After computing
the coe�cients, the expansion can be exploited to determine the statistics of
the output, either analytically, by manipulation of the expansion coe�cients
or via sampling. Therefore the problem is shifted to the computation of the
series coe�cients.

A well know spectral method for uncertainty quanti�cation is Polynomial
Chaos (PC) expansion. It was �rst introduced by [Ghanem et Spanos, 1991]
for Gaussian random variables, then [Xiu et Karniadakis, 2002] introduced
generalized Polynomial Chaos (gPC) for inputs distributed with other PDFs.
Generalized PC uses orthogonal polynomials from the Askey family [Xiu et
Karniadakis, 2002] as basis for the spectral decomposition. This polynomials
are orthogonal with respect to the measure associated to the probability space
of the input variable:∫

ψj(x)ψk(x)σx(x) dx = δjk with δjk =

{
1, if j = k

0, otherwise.
(2.7)

A traditional way to write a gPC decomposition of a d-dimensional function
f(x) of maximum polynomial order p is:

f(x) ≈ c0Γ0 +
d∑

i1=1

ci1Γ1(xi1) +
d∑

i1=1

i1∑
i2=1

ci1,i2Γ2(xi1 , xi2)+

+ · · ·+
d∑

i1=1

i1∑
i2=1

· · ·
ip−1∑
ip=1

ci1...ipΓp(xi1 , . . . , xip) , (2.8)

where the polynomial chaoses Γp of order p are various combinations of tensor
products of sets of univariate orthonormal polynomials ψ(xi). This representa-
tion shows spectral (exponential) convergence with respect to the polynomial
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order p in the L2 norm [Wan et Karniadakis, 2005; Lucor, 2011] for smooth
functions of interest. It can be noticed that the gPC expansion is organized
with respect to an increasing degree of multivariate polynomials, and not to
an increasing order of parameter interactions. The total number of terms in
the expansion P is linked to the dimensionality of the input and the imposed
maximum polynomial order:

P + 1 =
(d+ p)!

d! p!
. (2.9)

As previously seen, several intrusive and non-intrusive approaches exist
in the literature to compute the expansion coe�cient of stochastic spectral
methods. A review of these approaches and more details about PC expansions
can be found in [Le Maître et Knio, 2010]. Notice that another polynomial
spectral expansion method is present in the literature, the so-called Polynomial
Dimensional Decomposition (PDD) [Rahman, 2008]. It will be extensively
described in Section 3.2.2, since it plays a fundamental role in the improved
metamodeling strategy proposed in Chapter 3.

2.4 Global Sensitivity Analysis

In uncertainty quanti�cation, it is important to determine which uncertain
inputs have the biggest impact on the variability of the model output. This can
be useful for example to reduce the dimensionality of the input by discarding
those variables whose relative impact on the output is negligible or to know on
which variables is more e�ective to reduce the uncertainty in order to reduce
the variance of the function of interest.

Sensitivity Analysis (SA) is the mathematical discipline that studies vari-
ations in the output of a mathematical model with respect to some input
parameters. There are two categories of methods for sensitivity analysis: local
SA and global SA. Local SA is focused on the local variation of the model
with respect to the inputs. The impact on the output of small perturbations
of input parameters around nominal values is studied. This deterministic ap-
proach consists in calculating or estimating the partial derivatives of the model
at a speci�c nominal point, hence relying on the use of gradients of the func-
tion of interest. Instead, global SA takes into account the global in�uence
of input parameters and their interactions on the output quantity of interest,
by considering the entire input domain rather than considering gradients at a
speci�c nominal point. In contrast to local SA, global sensitivity methods are
developed in a statistical framework. Global SA has been largely studied and
many approaches have been proposed in literature.

We will restrict on the sensitivity with respect to the global variability of
the model output, usually measured by its variance. Several types of indices
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have been introduced to measure variance-based sensitivity. Screening meth-
ods, such as Morris method [Morris, 1991], are qualitative methods useful for
studying sensitivities on models containing a high number of input variables.
Other quantitative measures are, for example, Standard Regression Coe�-
cients (SSC) [Saltelli et al., 2008, Chapter 1.2.5], based on the analysis of a
�tted linear model, or graphical regression methods. [Iooss et Lemaître, 2015;
Borgonovo et Plischke, 2016] give a overview on global and local SA methods.

In the following section we will focus on global SA using Sobol' indices
[Sobol', 1993] to determine input variables (or groups of variables) mostly re-
sponsible of the variance in the model output [Homma et Saltelli, 1996]. The
Sobol' sensitivity indices are obtained from a functional decomposition of the
output with respect to its variance (ANOVA decomposition). Several meth-
ods had been developed to compute these indices directly through sampling
using Monte-Carlo and quasi-Monte-Carlo (QMC) methods or by building a
metamodel to approximate the ANOVA decomposition and then compute the
indices from the metamodel with lower computational cost.

2.4.1 ANOVA decomposition and Sobol' sensitivity in-

dices

Let us suppose to write the set of uncertain input parameters in a d-dimensional
input random variable X = {x1, . . . , xd} with a joint probability density func-
tion (PDF) σX(x) de�ned in the probability space (Rd,Bd,ΣX). The assump-
tion of independence of the components of this random vector implies that its
PDF can be written as

σX(x) =
d∏
i

σXi(xi), (2.10)

where σXi(xi) is the marginal PDF of xi. Let us suppose that the response of
the system is represented by a multivariate function of interest y = f(x).

It is possible to represent the function of interest f(x) by the following
functional decomposition:

f(x) = f0 +
d∑
s=1

d∑
i1<···<is

fi1...is(xi1 , . . . , xis)

= f0 +
d∑

1≤i≤d

fi(xi) +
d∑

1≤i<j≤d

fij(xi, xj) + · · ·+ f1,2,...,d(x1, x2, . . . , xd) ,

(2.11)

which can be rewritten in compact form exploiting a multi-index notation:

y = f0 +
M∑
j=1

fsj(xsj) with M = 2d − 1. (2.12)
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This representation is called ANOVA (Analysis of Variance) decomposition
[Sobol', 2001, 1993] if, for any j ∈ 1, . . . ,M, the following condition is re-
spected ∫

fsj(xsj)σXi(xi) dxi = 0 for xi ∈ {xsj}. (2.13)

From this de�nition, it follows that all of the terms of the ANOVA decompo-
sition are orthogonal. It follows also that the expectation of any component
function, excluding f0, is zero:

E[fi1...is(xi1 , . . . , xis)] = 0. (2.14)

From this property, it can be noticed that the term f0 represents the mean of
the function. The ANOVA expansion decomposes the original high-dimensional
space into a union of several low-dimensional spaces that are orthogonal be-
tween each other.

Assuming that f(x) is square integrable, then also all the component func-
tions fi1...is of the ANOVA decomposition are square integrable, hence the
variance D of the function can be computed as

D =

∫
f 2(x)σX(x)dx− f 2

0 =
d∑
s=1

d∑
i1<···<is

∫
f 2
i1...is

σXi1...isdxi1 . . . dxis , (2.15)

and the so-called conditional variances of each component function is de�ned
as

Di1...is = Var[fi1...is ] ≡
∫
f 2
i1...is

σXi1...is dxi1 . . . dxis , (2.16)

where pXi1...is is the joint probability distribution of the set of variables (xi1 , . . . , xis).
Hence the following property is valid

D =
d∑
s=1

d∑
i1<···<is

Di1...is , (2.17)

which means that the total variance is the sum of the conditional variances
associate to every component function of the ANOVA expansion.

The ANOVA decomposition is closely related to the Sobol' sensitivity in-
dices (SI), which are global sensitivity indices de�ned as the ratios

Si1...is =
Di1...is

D
. (2.18)

They express the sensitivity of the output with respect to an input variable or
set of variables as the ratio between their contribution to the output variance,
expressed by their conditional variance, and the total output variance itself.
The integer s is often called the order or the dimension of the index, thus
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indices accounting for the contribution of a single variable are called �rst-order
indices, while higher order indices account for interaction e�ects between sets
of variables. From this de�nition, it is possible to see that all the Si1...is are
non negative and that they sum up to the unity:

d∑
s=1

d∑
i1<···<is

Si1...is = 1. (2.19)

Furthermore, it is also possible to de�ne the total Sobol' sensitivity indices,
which summarizes the total impact related to a variable xi on the output
variance. Indeed, it is de�ned as the sum of all the sensitivity indices containing
xi. In a multi-index notation, it can be written as

Stoti =
∑
sj3i

Ssj , (2.20)

with sj = (i1, . . . , is). The sensitivity indices are useful to compare the impact
on the function variance of input variables or set of variables. In uncertainty
quanti�cation, they are used to state the sensitivity of the quantity of interest
to each source of uncertainty, and to rank the random inputs according to
their impact on the solution variance. The input variable xi is in�uential on
the output variance if the �rst-order Sobol' index Si associated to that variable
is important, while it can be considered as a non-in�uential parameter if Si
and STi are small. Moreover, if the �rst-order index Si is close to the total
index STi , it means that the variable xi has a negligible interaction with the
other uncertain parameters.

2.4.2 Computing Sobol' indices

The evaluation of the integrals involved in the computation of Sobol' sensitivity
indices can be performed with Monte Carlo (MC) techniques, as described for
example in [Sobol', 2001].

Consider an arbitrary subset of the input variables z = (xk1 , . . . , xkm) of
dimension m, with 1 ≤ m ≤ d − 1. Calling w the set of dimension d −m of
complementary variables, we have that x = (z, w). Let K = (k1, . . . , km), with
1 ≤ k1 < · · · < km ≤ d. The variance corresponding to the subset z is de�ned
as

Dz =
m∑
s=1

∑
(i1<···<is)∈K

Di1...is . (2.21)

Similarly, the variance Dw can be introduced. Then the total variance corre-
sponding to the subset z is

Dtot
z = D −Dw. (2.22)
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From these de�nitions and equation (2.11) it can be proven that [Sobol', 2001,
Sec. 8]

Dz =

∫
f(x)f(z, w′)σxσw dxdw′ − f 2

0 (2.23)

and a similar formula can be written for Dw

Dw =

∫
f(x)f(z′, w)σxσz dxdz′ − f 2

0 . (2.24)

Therefore, it can be seen that for computing the sensitivity indices Sz and Stotz ,
the following four integrals need to be estimated:

f0 =

∫
f(x)σxdx D + f 2

0 =

∫
f(x)2σxdx (2.25)

Dz + f 2
0 =

∫
f(x)f(z, w′)σxσwdxdw′ Dw + f 2

0 =

∫
f(x)f(z′, w)σxσzdxdz′.

A Monte Carlo method can be used to estimate those integrals. Consider two
independent random samples ξ and ξ′ of the joint PDF of the inputs, and let
ξ = (η, ζ) and ξ′ = (η′, ζ ′). Each Monte Carlo point requires three evaluations
of the model: f(η, ζ)), f(η, ζ ′)) and f(η′, ζ)). A further evaluation must be
added for each subset of variables for which the SI is desired. This fact makes
the process very computationally demanding, especially when the evaluation of
expensive codes is concerned. After ns trials, Monte Carlo estimates of mean,
variance and sensitivity indices are computed from equation (2.4):

f0 ≈
1

ns

ns∑
i=1

f(ξi) D ≈ 1

ns

ns∑
i=1

f(ξi)
2 − f 2

0 (2.26)

Dz ≈
1

ns

ns∑
i=1

f(ξi)f(ηi, ζ
′
i)− f 2

0 Dw ≈
1

ns

ns∑
i=1

f(ξi)f(η′i, ζi)− f 2
0 .

The total sensitivity index can be obtained exploiting eq. (2.22). It can be
noticed that, when dealing with small sensitivity indices, this MC-based algo-
rithm may be spoiled by loss of accuracy. Some computational tricks [Sobol'
et Myshetskaya, 2008] are available to improve the accuracy in these cases.

The main drawback of this method is that, as for all MC based techniques,
its convergence is quite slow, thus requiring several thousands evaluations of
the model. In many engineering applications, where the evaluation of the
quantities of interest involves expensive solutions of systems of PDEs describ-
ing the physical phenomena, those methods become prohibitively expensive.
One possible way to reduce the computational cost of the evaluation of the
sensitivity indices can be through the use of a surrogate model to accelerate
the model prediction, as in [Iooss et al., 2006], where a response surface surro-
gate model has been used to predict the model output at the MC samples, or
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in [Marseguerra et al., 2003], where instead a neural network surrogate model
has been preferred, or in [Marrel et al., 2009] where Gaussian process surro-
gate (see Section 3.2.1) has been used. In this case, the evaluation of the true
value of the function of interest is substituted by the evaluation of its surro-
gate model for each MC sample of the uncertain parameters. Thus the only
expensive solutions of the true model required are the ones necessary for the
evaluation of the training points for the metamodel. Generally speaking, an
accurate estimation of the sensitivity indices obtained by means of a meta-
model can be obtained only if the metamodel is accurately representative of
the function of interest.

The use of other kinds of surrogate models, such as spectral methods like
Polynomial Chas expansion and Polynomial Dimension Decomposition (see
Sections 2.3.2 and 3.2.2) allows to compute Sobol' indices analytically from
the coe�cients of the polynomial expansion which constitutes the surrogate
model. A discussion for gPC can be found in [Crestaux et al., 2009; Sudret,
2008], while for PDD it will be discussed in Section 2. This is indeed an
advantage from the point of view of computational cost, since SIs are obtained
by analytical manipulations of the expansion coe�cients instead of evaluating
(with the actual model or with the metamodel) the output in thousands of
MC sampling points.

2.5 Bayesian setting for inverse UQ problems

This section is focused on the inverse UQ problem of rebuilding some non-
observable uncertain input parameters m starting from experimental (i.e.
noisy) measurements d of some observable quantities of interest. We also
want to be able to account for other stochastic input uncertainties c of the
physical model y = f(m, c). The Bayesian setting [Calvetti et Somersalo,
2007] allows to rigorously treat inverse problems with noisy data and uncer-
tain forward models. Notice that the output of the inverse problem in this
stochastic framework is no more a single deterministic value but a probabil-
ity distribution that summarizes all available information about measurements
and uncertain parameters.

Let us collect all the uncertain inputs in the vector x = {m, c} ∈ Rd. In
the Bayesian setting, both the uncertain inputs and the measured quantities
are random variables, denoted respectively with the upper-case letters X and
D. The probability density of the uncertain input X, denoted with σ(x),
represents the degree of belief about possible values of X before observing the
data. For this reason, it is called the prior PDF. The actual measured data
d is an observed realization of D. Solving the reconstruction problem in the
Bayesian sense means to �nd the conditional probability distribution of the
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variable X given the observed data d:

given: σ(x) and d

�nd: σpos(x|d). (2.27)

The conditional probability distribution σpos(x|d) is called the posterior dis-
tribution of X, and it expresses what we know about X after observing the
realization of the measurements d. Bayes rule is used to de�ne the posterior
probability density σpos(x|d) for the uncertain input quantities given measure-
ments of the quantities of interest [Kaipio et Somersalo, 2005]:

σpos(x|d) =
`(d|x)σ(x)∫
`(d|x)σ(x) dx

. (2.28)

The conditional probability `(d|x) is called the likelihood function, because it
expresses the likelihood of a measurement outcome given a realization x of the
inputs.

The construction of the likelihood models the information about the mea-
surement noise and other modeling uncertainties. Often in the classical litera-
ture [Kaipio et Somersalo, 2005], measurement errors are considered as additive
noise H (with realization η), mutually independent of X:

D = f(X) +H . (2.29)

The probability density pH(η) of the noiseH is assumed to be known. In this
case the likelihood distribution becomes:

`(d|x) =
nm∏
j=1

`dj(dj|x) =
nm∏
j=1

pHj(dj − fj(x)) , (2.30)

where pHj(ηj) is the Gaussian probability density representing the noise asso-
ciated to the j-th measured quantity, and nm is the number of independent
measurements. In the present work, we will assume measurement errors as
Gaussian noise with zero mean and a standard deviation that quanti�es the
experimental error. With this additive noise model, the likelihood models the
discrepancy between the model output f(x) and the measured data, which is
equal to the measurement error if the model is considered to be exact.

Modeling the prior density σ(x) consists in writing in a formal way the qual-
itative prior belief on the unknown parameters. The prior is usually chosen by
expert judgment or de�ned on previous analysis and uncertainty characteriza-
tion (see [Kaipio et Somersalo, 2005, Chapter 3] for more details about di�erent
prior models). In the absence of additional information, one may simply choose
a prior that is uninformative. In this work, we will be always considering the
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prior belief that input random parameters are independent, hence their joint
prior σ(x) is the product of the univariate prior of each stochastic variable:

σ(x) =
d∏
i=1

σXi(xi). (2.31)

In order to compute means, moments and other statistical indicators of the
posterior, often the only possible way is by drawing samples [Stuart, 2010].
This because the normalization integral in the expression for the posterior
distribution (2.28) is di�cult to be evaluated in the case of general prior and
likelihood models. The most common class of sampling methods used at this
purpose are Markov Chain Monte Carlo methods, which are introduced in the
next section.

2.5.1 Markov Chain Monte Carlo

The most common class of sampling methods for characterizing the posterior
distribution, de�ned in eq. (2.28), are Markov Chain Monte Carlo (MCMC)
methods [Gilks et al., 1996; Tarantola, 2005]. They are a broad class of meth-
ods used to draw samples from a probability density by constructing a Markov
chain whose stationary distribution converges to the desired posterior. Sev-
eral implementations of MCMC exist in literature, that di�er in the way they
construct a Markov chain such that the stationary distribution is exactly the
distribution of interest.

A well-known implementation of MCMC is the Metropolis-Hastings algo-
rithm [Hastings, 1970]. For this algorithm, at each step k, the next sample
(state) of the chain xk+1 is chosen by �rstly sampling a candidate point x̃ from
a proposal distribution q(·,xk) that may depend on the current state xk. The
candidate point has then to pass and acceptance test, and it is accepted with
a probability α(xk, x̃), where

α(xk, x̃) = min

{
1,

π(x̃)q(xk, x̃)

π(xk)q(x̃,xk)

}
, (2.32)

where π(·) is the target distribution from which one wants to sample, and
in the case of inverse problems it coincides with the posterior given by eq.
(2.28). If the candidate point is accepted, then the chain moves to the next
state xk+1 = x̃, otherwise the chain does not move, and xk+1 = xk. This
algorithm converges theoretically to the target distribution independently on
the choice of the proposal distribution, but a good proposal is fundamental to
have a good convergence in a reasonable time (see [Gilks et al., 1996, Chapers
1 and 3] for more details). To give an example, here the Metropolis-Hastings
algorithm with single-site updating and Gaussian proposal density is reported
in Algorithm 2. It will be used in applications in following parts of this work
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Figure 2.4: Illustration of the single-site updating Metropolis-Hastings MCMC
(taken from [Gilks et al., 1996]).

to draw samples from posterior distributions. An illustration of the algorithm
is also given in Figure 2.4.

Once the MCMC algorithm has run, samples can be exploited to character-
ize the joint posterior distribution of the unknowns. The marginal distribution
of the inferred parameters m given the measurements

σpos(m|d) ∝
∫
σpos(m, c|d)dc (2.34)

can be directly estimated by kernel density estimation (KDE) [Silverman, 1986]
from the MCMC sample. Given such sample, it is also possible to compute
posterior statistics of the parameters, such as moments, quantiles. Sampling
means and variances of the rebuilt quantities can be estimated exploiting eq.
(2.4),

µ(mi) =
1

NMCMC − b

NMCMC∑
k=b+1

mk
i (2.35)

σ2(mi) =
1

NMCMC − b− 1

NMCMC∑
k=b+1

(mk
i − µ(mi))

2. (2.36)

Note that, in this sampling expectations, the �rst b iterations of the chain have
been neglected. It is a common practice to discard the �rst iterations of a chain,
called burn-in [Brooks et al., 2011], since they can be strongly in�uenced by
the starting values and so they may not provide correct information about the
posterior. Burn-in is a simple way to account for the dependence of the chain
on the starting value, but it is not very e�cient, since it obliges to discard
many sampling points.

Predictive numerical simulations for rebuilding freestream conditions in
atmospheric entry �ows

65



2.5. Bayesian setting for inverse UQ problems

Algorithm 2 A Metropolis-Hastings MCMC algorithm with single-site up-
dating and Gaussian proposal density (see [Tryoen et al., 2014])

Initialize the chain state xk=0 ∈ Rd.
For k = 1, 2, . . . , NMCMC:
For each input random variable xi, i = 1, . . . , d:

1. Draw a candidate x̃i from a Gaussian proposal distribution centered at
xki and with standard deviation ωi

2. Call the candidate sample vector x̃k,i = (xk−1
/xi

, x̃i)

3. Evaluate the acceptance rate:

α(xk−1, x̃k,i) = min

{
1,

`(d|x̃k,i)σx(x̃k,i)

`(d|xk−1)σx(xk−1)

}
(2.33)

4. Draw uk,i ∼ U(0, 1) from a uniform distribution in [0,1]

5. Perform the acceptance test: if uk,i < α(xk−1, x̃k,i) then xki = x̃i, else
xki = xk−1

i .

In order to have a chain that is representative of the real posterior dis-
tribution, the proposal distribution widths ωi, of the Gaussian proposal in
Algorithm 2, have to be chosen carefully. If the proposal distribution widths
are too large, most of the proposed moves will be rejected, and the chain will
not move very often. On the other hand, if they are too small, most pro-
posed values will be accepted but the chain will explore very slowly the entire
support of the posterior. Adaptive strategies exist to choose proper values of
ωi [Gilks et al., 1996]. An e�cient way to verify if a good value for ωi has
been chosen is to plot the empirical autocorrelation at lag s, denoted by β(s),
for each component of the input vector. The autocorrelation quanti�es the
interdependence of the iterations of the chain, therefore a proper value for the
proposal distribution width implies a quick decay of the autocorrelation with
the lag.

MCMC algorithms produce a Markov Chain that converges to a stationary
distribution that coincides with the posterior distribution, independently of
the initial state. However, to obtain good inference results from sequences of
MCMC samples, it is necessary that the chain has converged to the true poste-
rior. Theory guarantees this condition as the number of iterations approaches
in�nity, however, run the MCMC algorithm for a su�ciently high number of
iterations to ensure a reasonable approximation. Unfortunately, no universal
rule exists to, so the convergence must be assessed for each MCMC estimation
with convergence diagnostics [Brooks et al., 2011].

66 Andrea Francesco CORTESI



2. Uncertainty Quanti�cation, Sensitivity Analysis and Bayesian inference

The most simple and straightforward approach for assessing convergence
is based on visual inspection of plots of chain traces and histograms of the
MCMC sample [Lynch, 2007, Chapter 6]. Often, the lack of convergence is
caused by poor mixing of the chain, which is the degree to which the Markov
chain explores the support of the posterior distribution. Poor mixing can
arise from inappropriate choice of proposal distributions or from attempting
to estimate models with highly correlated variables. If the plot of the trace
of values for each variable exhibits asymptotic stationary behavior over the
last set of iterations, meaning that variance and the mean value of the sample
stays relatively constant, this can be considered as a satisfactory proof for
convergence. Another similar approach is to plot a histogram for every set
of iterations of arbitrary size after the burn-in. If the histograms are not
visibly di�erent between the intervals, it is another reasonable evidence for
convergence. There exist other more formal and rigorous statistical approaches
to assess convergence of a MCMC chain [Raftery et Lewis, 1970; Cowles et
Carlin, 1996], but they will not be used in this work. With most diagnostics
methods, convergence cannot be guaranteed. While the evidence for lack of
convergence implies lack of convergence, the absence of this evidence does
not guarantee convergence in the chain. However, if one or more criteria
provide good convergence results, this can assure the users that their sample
will provide valid inferences.

It is well known that MCMC-based methods struggle to produce accurate
estimates when the parameter space dimension is large. In e�ect, the Markov
chain must explore the high dimensional space to reveal all regions of high
posterior probability. Such exploration su�ers from the curse of dimensional-
ity [Donoho, 2000], where the cost of thorough parameter space exploration
scales exponentially with the dimension of the space.

2.5.2 Accelerating MCMC with surrogate models

As seen in Algorithm 2, MCMC methods, as all sampling methods, require
several thousand of model evaluations to achieve convergence. Furthermore,
unlike in standard MC methods, the evaluation in di�erent samples from the
same chain can not be run in parallel, since the acceptance of a new sam-
ple requires to know the evaluation of the likelihood at the previous. This
makes impossible the direct application of MCMC methods to expensive com-
putational modes, like in CFD applications. One possible way to reduce the
computational cost in such cases is to replace the expensive model evaluation
by the use of a surrogate model [Marzouk et al., 2007; Birolleau et al., 2014].
In this case, in the likelihood expression (2.30) the exact model evaluation
f(x) is replaced by the prediction given by the surrogate model f̂(x).

When replacing the actual model f(x) with the surrogate f̂(x), the model
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for the measurement errors given in eq. (2.29) becomes:

D = f̂(X) +H + ∆(x) , (2.37)

where ∆(x) is the term that accounts for the discrepancy between the actual
model and the surrogate, i.e. the surrogate modeling error. If this error is small
enough with respect to the measurement errors, that is when the surrogate is
converging to the actual function of interest, it is safe to neglect the surrogate
modeling error from the likelihood without loss of accuracy, as done for example
in [Marzouk et Najm, 2009] or [Constantine et al., 2011].

2.6 Conclusions

This chapter introduced direct uncertainty propagation and global sensitivity
analysis. A brief review was given on the literature related to this subject, in-
troducing to di�erent techniques related to the statistical (Bayesian) approach
to uncertainties. Some more insights have been given about the tools that will
be exploited in the following part of the work, like sampling methods, statis-
tical spectral methods for UQ and surrogate models, ANOVA decomposition
and global sensitivity analysis. Also the inverse UQ problem has been formu-
lated in a Bayesian framework, and MCMC algorithms have been described to
sample from the posterior distribution of the inferred parameters.
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Chapter 3

Improved surrogate model:
coupled Kriging-PDD

In this chapter, an improved surrogate modeling strategy is proposed.

It relies on the coupling between Universal Kriging and Polynomial Di-

mensional Decomposition. Firstly, the two starting-point techniques are

recalled and detailed, then the coupling algorithm is described. Finally,

the strategy is assessed on several analytical functions of increasing di-

mensionality and used to propagate uncertainties for engineering appli-

cations in the �eld of atmospheric entry, namely the hypersonic �ow

around the HEG cylinder and the unidimensional ablation of a piece of

TACOT material.

3.1 Introduction

In the previous chapter, it has been shown that a common practice for UQ
problems involving the evaluations of expensive computational models is to
resort using a surrogate model to replace evaluations of the actual model.
Training an accurate but at the same time computationally e�cient surrogate
is not a trivial task. Problems arise especially when the dimensionality of
the input tends to increase, due to the so-called curse of dimensionality, that
causes the number of required training points to increase exponentially with
the dimension of the input. In this chapter, a technique to build an improved
surrogate model is introduced, which tries to improve the accuracy of existing
classes of surrogates while remaining usable for medium-to-high dimensions. It
consists in coupling two di�erent metamodeling strategies, Universal Kriging
and Polynomial Dimensional Decomposition, in order to reduce the e�ects
of some of their limitations. First, in Section 3.2, the two basic surrogate
models will be described. Then, in 3.3 the coupling strategy is described.
In Section 3.4, the coupling strategy is assessed on several test functions of
increasing dimensionality, and �nally in Sections 1.3.2 and 3.6, two applications
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are proposed in the atmospheric entry context.

3.2 Starting point: existing metamodels

Let us suppose to have a d dimensional vector x ∈ Rd of uncertain input
parameters, with x = {x1, . . . , xd}. In a probabilistic (statistical) framework, it
is possible to consider this vector as a random variable, de�ned in a probability
space (Rd,Bd,ΣX) , where Bd is the Borel σ-algebra of the event space Rd

and ΣX is its probability measure. We refer to the joint probability density
function of the input vector as σx(x). The assumption of independence of the
components of this random vector implies that its PDF can be written as

σx(x) =
d∏
i=1

σxi(xi) , (3.1)

where σxi(xi) is the marginal PDF of each component xi. Let us suppose that
the response of the computational model y = f(x) is represented by a scalar
function of interest, hence y ∈ R.

3.2.1 Universal Kriging

A very popular technique for building surrogate models is Kriging [Sacks et al.,
1989b; Cressie, 1993]. Its name is due to [Matheron, 1971], who �rstly formal-
ized the idea introduced by [Krige, 1951] in the geostatistics literature. It can
be also seen as an implementation of the so-called Gaussian Process regres-
sions [Rasmussen et Williams, 2006] in supervised learning, referring to the
statistical learning literature.

The main idea of Kriging method is to consider the output of the deter-
ministic model f(x) as a realization of a Gaussian stochastic process F (x). In
Universal Kriging (UK), the stochastic process is written in the form of the
sum of a deterministic linear regression model and a stochastic departure term
[Dubourg, 2011]:

F (x) =
n∑
j=1

βjhj(x) + Z(x) = hT (x)β + Z(x) , (3.2)

where hj(x) are n linearly independent known regression functions, βj are
unknown weights, and Z(x) is a stationary Gaussian process with zero mean
function

E[Z(x)] = 0 ∀x ∈ Rd , (3.3)

and a stationary autocovariance function

E[Z(x), Z(x′)] = σ2k(x− x′) ∀x,x′ ∈ Rd. (3.4)
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The autocovariance σ2k(x − x′) is assumed to be known. Normally, in the
case of computer models this is not the case, therefore it needs to be mod-
eled empirically by choosing among a family of correlation models, such as
exponential, Gaussian or Matèrn correlation functions (see [Picheny, 2009] or
Appendix B.4), and estimating the unknown hyperparameters, namely the co-
variance magnitude σ2 and the correlation lengths θ, from the training set
xobs = {xi : i = 1, . . . , Ns} (see Appendix B.5). The idea behind this model is
that the departure of the response of the actual model from the regression, even
if deterministic, can be seen as a sample path of a suitable stochastic process.
Notice that the hypothesis of a stationary covariance is not strictly necessary,
but it is often done in the classical literature on Kriging interpolation. There
are examples of Kriging metamodels with non-stationary covariance models in
the Kriging literature [Xiong et al., 2007], and in the statistical learning litera-
ture this hypothesis is often not done, to enable more complex kernel structures
(see for example [Duvenaud, 2014]). However, the use of non-stationary kernels
is beyond the purpose of this work.

The Gaussian process assumption in Eq. (3.2) holds for both the unob-
served values f(x) and the observations of the model at the training points
fobs = (f(x1), . . . , f(xNs))

T . Thanks to this, it is possible to write the joint
normal PDF of the observed and unobserved values:{

F (x)
F (xobs)

}
∼ N

({
hT (x)β
Hβ

}
, σ2

[
1 cT (x)
c(x) C

])
, (3.5)

where h(x) = (h1(x), . . . , hn(x))T is the vector of basis functions, H is a Ns×n
matrix whose elements are the evaluation of the j-th basis function at the i-
th training point Hij = hj(xi), c(x) is a vector of length Ns whose elements
ci = k(x− xi) contain the correlations between the point x and each training
point xi, and C is a Ns × Ns matrix of correlations among training points
Cij = k(xi − xj).

The aim of Kriging is to build a linear predictor of the function of interest
F (x). This means that the predictor F̂ (x) is written as a linear combination
of the observations Fobs = (F (x1), . . . , F (xNs))

T of the actual model at the Ns

training points:

F̂ (x) =
Ns∑
i=1

F (xi)ai(x) = aT (x)Fobs. (3.6)

where ai(x) are unknown weights. We want the predictor to be the best linear
unbiased predictor (BLUP) of the quantity of interest. This means that it
has to minimize the mean-squared error (MSE) between the model and the
predictor

MSE(x) = E
[(
F (x)− F̂ (x)

)2
]
, (3.7)

while respecting the constraint of unbiasedness:

E
[
F (x)− F̂ (x)

]
= 0. (3.8)
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Note that these expectations are taken with respect to the joint Gaussian PDF
of the observed and unobserved values. Therefore, the optimization problem
consists in �nding the optimal set of weights a∗(x) of the linear predictor with
respect to the following optimization problem

a∗(x) = arg min
a

E
[(
F (x)− aT (x)fobs

)2
]

subject to E
[
F (x)− aT (x)fobs

]
= 0. (3.9)

By solving the optimization problem and replacing the optimal a∗(x) in
(3.6) (see Appendix B.2), it is possible to obtain the mean of the best unbi-
ased linear predictor, that is used as a surrogate model f̂(x) of the original
computational model f(x):

f(x) ≈ f̂(x) = µk(x) = E[F̂ (x)] =

= hT (x)β + c(x)TC−1(fobs −Hβ) , (3.10)

with
β = (HTC−1H)−1HTC−1fobs. (3.11)

It is also possible to have an expression for the MSE between the model and
the predictor, which can be used as a local model-based error estimate

s2
k(x) = E

[
(F̂ (x)− F (x))2

]
=

= σ2
(

1 + u(x)T (HTC−1H)−1u(x)− c(x)TC−1c(x)
)
, (3.12)

where
u(x) = HTC−1c(x)− h(x). (3.13)

More details about Universal Kriging can be found in Appendix B.

Remark 1. Let us suppose to apply the predictor at a location x = xi coincid-
ing to the one of a training point. Then c(xi) coincides to the i-th column C: i

of C. If a covariance model without nugget e�ect is used, for which k(x,x) = 1,
then it is possible to show [Lophaven et al., 2002] that the Kriging predictor
is an interpolation of the training data

f̂(xi) = f obsi = f(xi). (3.14)

It can be also shown that the prediction error at the training point is null

s2
k(xi) = 0 , (3.15)

meaning that observations are supposed to be error-free.
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Including numerical simulation errors in the metamodel training

Often, when dealing with the construction of surrogate models for computer
codes, the output of the computational model is considered to be exact, hence
to coincide with the actual model output. In other words, the training data
are considered to be noiseless. When choosing a correlation model for noiseless
data, it is assumed that k(x,x) = 1. As shown in Remark 1, in these cases,
the Kriging predictor behaves like an interpolation of the function of interest
at the training data.

In this work, instead, as discussed in Section 1.5, the results of the numer-
ical simulations can be a�ected by some numerical error, since the heat �ux
value is very sensitive to the mesh-shock alignment, and it is very di�cult to
properly align the shock and the mesh when automatically performing an high
number of simulations on each sampling point. Hence, to account for the noise
on the training data, it is possible to add a (small) nugget e�ect (Appendix
B.4.4) to the autocorrelation model of the Gaussian process [Neal, 1997]:

E[Z(x), Z(x′)] = σ2k(x− x′) + σ2
nδ(x− x′) ∀x,x′. (3.16)

In such cases, the C matrix of correlations between training points can be
rewritten as:

C(n) = C +
σ2
n

σ2
I , (3.17)

where I is the identity matrix. This translates in the fact that the Kriging
surrogate model is no more an exact interpolation of the training data, but
becomes a regression. Furthermore, the predictive variance is no more equal
to zero at the training points, but has a positive value equal to σ2

n.
It has to be noticed that the Kriging process implemented in the ForK

library [Lockwood] used in this work (as in many other practical implemen-
tations), includes also the nugget e�ect variance in the covariance model even
for noiseless data. From a theoretical point of view, this should not be correct,
but in practice this can often be useful, since a small nugget e�ect can improve
the conditioning [Gramacy et Lee, 2012; Andrianakis et Challenor, 2012] of the
numerical problem related to the inversion of the matrix C.

Ordinary Kriging

In real-world applications, often the Universal Kriging is not used, because it
can be di�cult to determine relevant basis functions for the regression term
in Equation (3.2) without the proper a priori knowledge about the evolution
of the quantity of interest. Hence, one is limited to use the simpler technique
called Ordinary Kriging [Lophaven et al., 2002], in which the regression func-
tions are chosen as y1(x) = 1 and yj(x) = 0 for j 6= 1, which means that only
a constant regression term is kept and then only β1 needs to be determined.
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In Ordinary Kriging, the stochastic process can be written in the form of
the sum of a constant deterministic mean model and a stochastic departure
term, as follows

F (x) = β + Z(x). (3.18)

In this way, the mean of the stochastic predictor, that can be used as
surrogate model, simpli�es to:

f(x) ' f̂(x) = µk(x) =

(
c(x) +

1
(
1− 1TC−1c(x)

)
1TC−11

)T
C−1fobs , (3.19)

where 1 is unity vector.
This fact simpli�es the method but can limit the power of the metamodeling

technique, thus requiring a higher number of training points in order to obtain
a representation of the output function with a certain level of accuracy.

3.2.2 Sparse adaptive Polynomial Dimensional Decom-

position

In this subsection, the adaptive sparse-Polynomial Dimensional Decomposition
(sPDD) implementation used in this work is detailed. This adaptive strategy
to build a PDD metamodel with the sparse approach has been recently pro-
posed by [Tang et al., 2016]. In the original paper, the technique is addressed
primarily to problems of global sensitivity analysis, but it can be employed also
as a surrogate model for other applications. In this manuscript, this technique
is used as a component of the improved surrogate developed in the present
chapter, and it is also retained as a reference for assessing the performances of
the proposed approach.

Classical PDD representation

Let us brie�y recall the ANOVA representation of a multivariate function.
More details about it can be found in Section 2.4.1, or for example, in [Sobol',
1993, 2001]. In general, the multivariate function of interest can be represented
by the following expansion:

f(x) = f0 +
d∑
s=1

d∑
i1<···<is

fi1...is(xi1 , . . . , xis). (3.20)

This representation is called ANOVA decomposition if, for any component
function fi1...is(xi1 , . . . , xis), the orthogonality condition in equation (2.13) is
respected.

At this point, the component functions of the ANOVA decomposition of
the function of interest are not determined yet. Polynomials can be e�ciently
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used to represent the component functions in the ANOVA expansion. In lit-
erature several metamodeling techniques are used at this purpose. Two of the
most well known are generalized Polynomial Chaos expansion (Section 2.3.2)
and Polynomial Dimensional Decomposition (PDD). As in [Tang et al., 2016],
the PDD is here preferred for its closer structure with respect to ANOVA
decomposition. Let us consider an orthogonal set of univariate polynomials
{ψj(xi); j = 0, 1, . . . } in the Hilbert space L2. The orthogonality condition
means that for any couple of polynomials in the set:∫

R
ψj(xi)ψ

k(xi) σxi(xi) dxi = γj,xi δjk with δjk =

{
1, if j = k

0, otherwise ,
(3.21)

where j and k are the orders of the polynomials for the variable xi and with
the normalization constant γj,xi determined as

γj,xi =

∫
R

(
ψj(xi)

)2
σxi(xi) dxi. (3.22)

As for generalized Polynomial Chaos, polynomials from the Askey family [Xiu
et Karniadakis, 2002] can be used as orthogonal basis with respect to the
PDFs of the input variables. As known in literature (see [Rahman, 2008]
for example), speci�c orthogonal polynomials are associated to common input
probability distributions also for PDD. For example uniform distributions can
be associated to Legendre polynomials and Gaussian distributions to Hermite
polynomials.

Let us consider a T -dimensional component function of the ANOVA de-
composition, with 1 ≤ T ≤ d. It is possible to write it in the compact form

fi1,i2,...,iT (xi1 , xi2 , . . . , xiT ) = fiT (xT ). (3.23)

The assumption of independence between the components of the random input
vector allows the tensorized polynomial

ΨjT
iT

(xi1 , xi2 , . . . , xiT ) =
T∏
k=1

ψjk(xik) with jT = {j1, j2, . . . , jT} (3.24)

to be a multivariate basis in the T -dimensional space. Exploiting the zero-mean
property (eq. (2.14)) of ANOVA expansion, each T -dimensional component
function can be expanded by tensor product as in [Rahman, 2008]:

fi1,i2,...,iT (xi1 , xi2 , . . . , xiT ) =
∞∑

jT=1

· · ·
∞∑
j1=1

Cj1,j2,...,jT
i1,i2,...,iT

T∏
k=1

ψjk(xik). (3.25)

In compact form, this is equivalent to:

fiT (xT ) =
∞∑

jT ,...,j1

CjTiT ΨjT
iT

(xT ). (3.26)
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In practice, this in�nite expansion must be truncated, leavingm terms for each
dimension, where m is the maximum polynomial order taken into account.

fi1,i2,...,iT (xi1 , xi2 , . . . , xiT ) ≈
m∑

jT=1

· · ·
m∑
j1=1

Cj1,j2,...,jT
i1,i2,...,iT

T∏
k=1

ψjk(xik). (3.27)

Thus, repeating the same process for every component function of the ANOVA
decomposition, the polynomial dimensional decomposition fm(x) of order m
of the function of interest f(x) can be written as follows:

f(x) ≈f̂(x) = fm(x) =

=f0 +
d∑
i=1

m∑
j=1

Cj
i ψ

j(xi) +
d∑

i1<i2

m∑
j2=1

m∑
j1=1

Cj1,j2
i1,i2

ψj1(xi1)ψ
j2(xi2)+

+
d∑

i1<i2<i3

m∑
j3=1

m∑
j2=1

m∑
j1=1

Cj1,j2,j3
i1,i2,i3

ψj1(xi1)ψ
j2(xi2)ψ

j3(xi3)+

+ · · ·+
d∑

i1<···<id

m∑
jd=1

· · ·
m∑
j1=1

Cj1,j2,...,jd
i1,i2,...,id

d∏
k=1

ψjk(xik). (3.28)

Hence, the total size P of the m-th order PDD expansion of an q-dimensional
function is P = (1 +m)d.

Remark 2. Notice that the PDD and PC expansions, even if they share
the same orthogonal polynomial basis, when truncated do not lead to the
same representation of the function. In fact, the terms in a p-th order PC
approximation, given in Eq. (2.8) and here recalled for clarity

f(x) ≈ c0Γ0 +
d∑

i1=1

ci1Γ1(xi1) +
d∑

i1=1

i1∑
i2=1

ci1,i2Γ2(xi1 , xi2)+

+ · · ·+
d∑

i1=1

i1∑
i2=1

· · ·
ip−1∑
ip=1

ci1...ipΓp(xi1 , . . . , xip) , (3.29)

are organized with respect to the increasing order of polynomials. In contrast,
the terms in the PDD approximation, given in Eq. (3.28), are organized with
respect to the degree of interaction between input variables. Therefore, sig-
ni�cant di�erences in terms of accuracy and convergence properties may arise
when truncating the expansions. In this way, the PDD is able to give the
priority to exploit low-order parameter interactions, following the principle
where low-order ANOVA component functions are dominant for most engi-
neering cases. For this reason, PDD is preferred over Polynomial Chaos (PC)
expansion in this work. In fact, as pointed out in [Yadav et Rahman, 2014],
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if a (stochastic) function is highly nonlinear, but contains rapidly diminishing
interaction e�ects of multiple variables, the PDD approximation is expected to
be more e�ective than the PC approximation, as the lower-variate interaction
terms of the PDD approximation can be just as nonlinear by selecting appro-
priate values of maximum polynomial degree in the PDD. However, many more
terms and expansion coe�cients must be included in the PCE approximation
to capture such a high nonlinearity.

Computation of the expansion coe�cients

As for other spectral approaches for UQ, di�erent methods are available to
compute the coe�cients of the PDD expansion. As in [Tang et al., 2016], a
regression approach is preferred with respect to a projection approach. Pro-
jection approaches require the computation of d-dimensional integrals. Usu-
ally, they are computed by multidimensional quadrature rules or by sampling
methods. Quadrature rules, however, su�ering from the curse of dimension-
ality, become too expensive for high-dimensions, while sampling methods are
costly since their convergence rate is slow. A regression approach is instead
supposed to be more suitable for problems with a moderate-to-high number
of input variables, since it allows to choose more �exibly the location and the
number of sampling points. Nevertheless, it has the characteristic of creating
a metamodel which does not exactly interpolate the training points, but acts
like a regression.

For regression methods, the sampling points (or experimental design) are
chosen as a set of samples of the input random vector, for examples by Latin
Hypercube [McKay et al., 1979] or quasi Monte Carlo (qMC) sampling [Ca�isch,
1998]. It is possible to denote the training set as X = (x1,x2, . . . ,xN)T . Its
size N needs to be larger than the PDD expansion size P , so that the problem
is not under-determined. It is common to choose 2P ≤ N ≤ 3P . The model
output at each training point is collected in the vector Y = (y1, y2, . . . , yN)T .

For convenience, it is possible to rewrite the PDD expansion in a vectorial
form:

fm(x) = CTψ(x) , (3.30)

where C = (C0, . . . , CP−1)T is a vector containing all of the P expansion co-
e�cients and ψ(x) = (ψ0, . . . ,ψP−1) contains all the multivariate basis poly-
nomials including ψ0 = 1.

The idea of regression methods is to compute the expansion coe�cients by
minimizing the error in L2 norm between the surrogate model and the actual
model evaluations at the training points. This means that the coe�cients are
solution of the following optimization problem:

C = arg min
C̃

N∑
i=1

(
yi − C̃Tψ(xi)

)2

. (3.31)
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The solution of the least-squares regression (LSR) problem (3.31) can be found
by using a variational approach:

∂

∂Cj

[
N∑
i=1

(
yi −CTψ(xi)

)2
]

= 0 for j = 0, . . . , P − 1. (3.32)

This leads to the solution the following linear system:

ATA C = ATY , (3.33)

where A is a N × P matrix whose elements Aij = ψj(x
i) are the evaluations

of the j-th polynomial at the i-th training point.

Global Sensitivity Indices with PDD

The Sobol' global sensitivity indices can be obtained in a straightforward way
with PDD by analytical manipulation of the expansion coe�cients, as it is
possible also for generalized Polynomial Chaos. PDD (eq. (3.28)) has the
advantage of being organized with respect to an increasing order of parameter
interactions, while the gPC formulation (eq. (2.8)) is organized with respect
to an increasing degree of multivariate polynomials. For this reason, in order
to compute the Sobol' indices for PC, additional reordering of the PC terms
is needed, with respect to the random variables they depend on.

Let us now see how to get the variance-based sensitivity indices form PDD
coe�cients. Exploiting the orthogonality of the polynomial basis, the variance
of the model output can be computed as:

Var[fm(x)] = E[f 2
m(x)]− f 2

0 =
P−1∑
j=1

C2
j γj. (3.34)

If using normalized polynomials, all the normalization coe�cients are equal to
1, and the variance reduces to the sum of all expansion coe�cients. It is then
straightforward to write the variance-based global sensitivity indices by using
the PDD expansion coe�cients:

Si1,...,iT =
Var[fi1,...,iT ]

Var[fm(x)]
=

1

Var[fm(x)]

∑
j⊆(i1,...,iT )

C2
j γj. (3.35)

The total sensitivity index Stoti is simply obtained by summing all the indices
Si1,...,iT that involve a contribution of the variable xi.

Adaptive dimension reduction for the model representation

For practical problems, in particular the ones with a moderate-to-large num-
ber of stochastic input variables, the size of the PDD expansion becomes re-
ally big, therefore requiring a very high number training points to solve the
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least-squares regression problem (3.31). Since the actual model needs to be
evaluated at each training point, this makes the problem not feasible in case
of problems involving expensive computer codes. For this reason, techniques
for an adaptive dimension reduction of the representation have been proposed
[Yadav et Rahman, 2014; Tang et al., 2016]. In the following, we will focus
on the implementation by [Tang et al., 2016], which is based on three levels
of dimension reduction. Its �rst step consists in applying a truncation to the
interaction dimensionality, a widely used approach for the ANOVA component
functions. Then two additional levels of dimension reduction are considered:
an adaptive ANOVA decomposition, and a stepwise regression to retrieve the
most signi�cant polynomials using a variance-based or an error-based selection
criterion

Truncated ANOVA: Since the lower-order interaction terms often have
the greater impact on the output [Sobol', 2001], the ANOVA expansion can
be truncated at a maximum dimension of component functions ν < d, called
the truncation dimension

f(x) = f0 +
ν∑

T=1

d∑
i1<···<iT

fi1,i2,...,iT (xi1 , xi2 , . . . , xiT ). (3.36)

This reduces to ν the maximum interaction dimensionality taken into account
in the truncated ANOVA expansion.

Adaptive ANOVA: Even considering a truncated ANOVA expansion with
small dimension ν, for problems with a high dimension of the stochastic space
d, the computation of all the terms in the decomposition can be still very
expensive. This problem can be addressed by using the adaptive ANOVA
decomposition, which can be written:

f(x) = f0 +
ν∑

T=1

DT∑
i1<···<iT

fi1,i2,...,iT (xi1 , xi2 , . . . , xiT ). (3.37)

In adaptive ANOVA,DT < d is the active dimension of the component function
of T -th order.

In this adaptive approach, it is considered D1 = d. The active dimension
for higher order terms is determined with a variance-based criterion, which
is used for choosing the active dimension D2, and, for simplicity, then we set
DT = D2 for T ≥ 3. The criterion consists in computing the �rst-order terms
variances

Var(fi(x)) =
m∑
j=1

(Cj
i )

2γji for i = 1, . . . , d , (3.38)
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and the total �rst order variance

Var1st(f(x)) =
d∑
i=1

Var(fi(x)) =
d∑
i=1

m∑
j=1

(Cj
i )

2γji . (3.39)

Then, assuming the sensitivity indices to be monotonically-decreasing ordered
with respect to i, it is possible to choose the active dimension D2 for second
order ANOVA functions such as:

D2∑
i=1

Var(fi(x)) ≥ pVar1st(f(x)) , (3.40)

where p is a user-de�ned constant parameter ∈ [0, 1], usually chosen to be very
close to 1.

Sparse PDD representation: Even with an adaptive-truncated ANOVA
expansion, the computational cost required to compute the classical PDD ex-
pansion for each component function can still be very high for high-dimensional
inputs. However, in many real-world problems the contribution of some poly-
nomial terms is negligible with respect to the accuracy of the metamodel or
their impact on the global variance [Blatman et Sudret, 2010a]. This fact can
be exploited to build a sparse PDD representation without compromising the
accuracy of the UQ result.

The global adaptive sparse PDD algorithm can be described combining the
two adaptive ANOVA steps and a sparse PDD representation:

1. Construct a full set of PDD representation (given the maximum polyno-
mial order m) for all the �rst-order ANOVA component functions

f(x) ' f0 +
d∑
i=1

fi(xi) = f0 +
d∑
i=1

m∑
j=1

Cj
i ψj(xi). (3.41)

Compute then the �rst-order terms variances and the total �rst-order
variance (eq. (3.38) and (3.39)), and determine the active dimension D2

for second order ANOVA functions with the criterion in equation (3.40).

2. Reduce the size of the �rst order PDD expansion expressed in equation
(3.41), eliminating the less important terms with respect to the chosen
criteria (variance-based or error-based). The obtained �rst-order reduced
basis is denoted by {ψα1}

3. After de�ning a truncation dimension ν, enrich the model by adding
signi�cant higher-order PDD polynomials {ψα2+} to the reduced �rst-
order basis, by means of Algorithm 3 or 4, obtaining the �nal basis
{ψαF }.
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In [Tang et al., 2016] two di�erent algorithms were proposed to choose
the most relevant polynomial terms to be added to the sparse basis: the �rst
based on the variance (Algorithm 3) and the second on the metamodeling error
(Algorithm 4). The common idea is that new terms are added to the existing
polynomial set by adding recursively one new polynomial candidate from the
set of higher-order ANOVA functions. During this recursive procedure, the
polynomial terms that are quanti�ed as irrelevant to the output are discarded.
In the variance-based algorithm the terms are chosen according to their relative

Algorithm 3 Variance-based adaptive PDD by stepwise regression

1: Initialization of the �rst-order PDD basis {ψw} = {ψα1}
2: for ψαi ∈ {ψα2+} do
3: Add ψαi into {ψw}, namely {ψw} = {ψw, ψαi}
4: Solve the regression system to determine the PDD coe�cients
5: Compute the total variance Var(fw(x)) =

∑
k(Cαk)

2γαk
6: for ψαj ∈ {ψw} do
7: if (Cαj)

2γαj/Var(f
w(x)) < θ then

8: Eliminate this polynomial: {ψw} = {ψw}\ψαj
9: end if
10: end for
11: end for
12: Solve the �nal regression system based on the constructed basis {ψF}

contribution to the total variance associated to the output function of interest:
if the ratio between the contribution of the term and the total variance is lower
than a certain threshold θ (for example a typical value is θ = 10−5), the term is
discarded. This algorithm, �rstly introduced by [Tang et al., 2016], proved to
be very e�ective for the computation of the sensitivity indices. The error-based
algorithm [Blatman et Sudret, 2010b; Tang et al., 2016], instead, selects the
most relevant terms according to their contribution to the global metamodeling
accuracy computed with leave-one-out cross-validation (LOOCV) error (see
Appendix C.2 for more details about this technique). This second criterion
states that, if the decrease of the model accuracy is smaller than threshold εQ2

when excluding the polynomial term in consideration, it is then possible to
eliminate this term from the basis. This second criterion is more e�ective for
the construction of a surrogate model with higher accuracy with respect to the
previous criterion. Note that the initialization of the �rst order multivariate
PDD bases (Operation 1) can be also realized by this second criterion.

Remark 3. [Tang et al., 2016] pointed out a disadvantage of Algorithm 4,
compared to Algorithm 3, consisting in the fact that it requires the solution of a
bigger number of regression systems. For instance, in order to select signi�cant
polynomials from the set {Ψ} whose cardinality is denoted by |Ψ|, we need
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Algorithm 4 Error-based adaptive PDD by stepwise regression

1: Initialization of the �rst order PDD basis {ψw} = {ψα1}
2: for ψαi ∈ {ψα2+} do
3: Add ψαi into {ψw}, namely {ψw} = {ψw, ψαi}
4: Solve the regression system to determine the PDD coe�cients
5: Evaluate the metamodel accuracy Q2

i by LOOCV error
6: if Q2

i ≥ Q2
tgt then

7: exit
8: end if
9: for ψαj ∈ {ψw} do
10: Solve the regression system with the polynomial basis {ψw}\ψαj
11: Evaluate the accuracy of the metamodel Q2

i\αj without ψαj
12: if Q2

i −Q2
i\αj < εQ2 then

13: Eliminate this polynomial: {ψw} = {ψw}\ψαj
14: end if
15: end for
16: end for
17: Solve the �nal regression system based on the constructed basis {ψF}

to solve |Ψ| + 1 least-squares systems, while Algorithm 3 requires only one.
Although the cost of resolving a linear system is negligible compared to the
one of a deterministic model simulation, the di�erence in computational cost
between the two algorithms becomes visible when high-dimensional problems
are treated.

3.3 Coupling strategy (PDD-UK)

As pointed out by [Kersaudy et al., 2015], often the lack of a priori knowl-
edge on the function of interest does not allow a choice for appropriate basis
functions for the regression term in Universal Kriging (equation (3.2)). For
this reason, often in real-world applications, the simpler Ordinary Kriging is
preferred to Universal Kriging. In Ordinary Kriging, as seen in Section 1, the
regression term is replaced by a constant mean term, whose value is learned
by the training process. In a previous work, the blind-Kriging method [Joseph
et al., 2008] was developed in the attempt to �nd a representative set of ba-
sis functions for the unknown quantity of interest by exploiting a Bayesian
selection technique. More recently, [Kersaudy et al., 2015] proposed to use a
sparse Polynomial Chaos (PC) expansion computed with least-angles regres-
sion (LARS) algorithm to obtain a set of relevant regression functions to build
an Universal Kriging surrogate model.

The idea here is to take inspiration by [Kersaudy et al., 2015], but using
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instead the �nal basis obtained with the adaptive sparse PDD algorithm (Sec.
3.2.2) as regression functions for the Universal Kriging surrogate model. This
is a very sparse representation of the function of interest that is able to achieve
a good metamodeling accuracy and to discard the stochastic variables whose
in�uence on the output value is negligible. The use of the most in�uential PDD
polynomials as basis for the Universal Kriging improves the quality of the �nal
metamodel by adding the most relevant information about the trends of the
quantity of interest to the regression term. To be concise, we will denote this

  

Initial ED (LHS)Initial ED (LHS)

Evaluate QoI for each x
i
 in ED

(CFD, mesh adaptation)

Evaluate QoI for each x
i
 in ED

(CFD, mesh adaptation)

Run adaptive sparse PDD 
to find basis functions

Run adaptive sparse PDD 
to find basis functions

Train Universal Kriging 
using sparse basis from PDD

Train Universal Kriging 
using sparse basis from PDD

Use the PDD-UK surrogateUse the PDD-UK surrogate

PDD-UK

Figure 3.1: Diagram showing the coupling strategy behind the PDD-UK sur-
rogate modeling technique.

coupled metamodeling method as PDD-UK technique. The algorithm used
here to couple Universal Kriging with the sparse-PDD basis functions is the
following:

1. Build an experimental design (set of training points)

2. Train an adaptive sparse PDD metamodel (see Section 2):

f̂(x) = f0 +
∑
α∈αF

Cαψα with Cαψα = Cjα
iα
ψjα(xiα) , (3.42)

where iα and jα are respectively multi-indices. This allows to obtain a
set of relevant basis function {ψαF } describing the main trends of the
QoI. Notice that also ψ0 = 1 must be kept in the set of basis function
for the Universal kriging.
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3. Train the Kriging surrogate, with Universal Kriging technique, using the
�nal basis functions of the sparse PDD {ψαF } as regression functions

F (x) =
∑
j∈αF

βjψj + Z(x). (3.43)

The coupling algorithm is resumed in Figure 3.1.
Notice that the original coupling algorithm of Kersaudy and coworkers is

more complex. In fact, for each step of the cycle used to enrich the sparse
PC basis, they build a coupled UK metamodel and compute cross-validation
error for each metamodel. Then, they chose the �nal surrogate as the best
with respect to the LOOCV error. Even if this approach could lead to further
improvements of the quality of the metamodel, it seems quite complex and
computationally expensive, especially for high dimensional functions where a
lot of polynomial terms are required in the sparse PDD representation. How-
ever, this di�erence in the implementation does not change the main idea of
the coupling process, and this feature could always be added later.

3.3.1 Parameters of interest

In this section, an overview is given on the user-de�ned parameters of the
coupled strategy, with their role and suggestions on a possible range of values.
They are all listed in Table 3.1.

Name Possible values Role

m [1,∞] maximum polynomial degree for PDD

ν [1, d] maximum size of ANOVA interaction for PDD

p [0, 1] variance threshold for adaptation in sparse-PDD

ε or θ [0, 1] error threshold for adaptation in sparse-PDD

Q2
tgt [0, 1] accuracy threshold for adaptation in sparse-PDD

Table 3.1: Parameters chosen by the user in the algorithm for the construction
of the PDD-UK surrogate.

One of the most relevant is the maximum polynomial order m, since it
strongly in�uences the accuracy of the intermediate sparse PDD surrogate,
and hence the amount of information added to the �nal coupled surrogate
model. As it has been shown in Chapter 3, it's value needs to be chosen
according to the function of interest, and, if necessary, a preliminary test can
be carried out. A bad value can spoil the convergence of the �nal surrogate
model. The value on ν, the maximum size of ANOVA interaction terms, is
easier to determine, as it can be left equal to the number of variables for
smaller input, or �xed to 3 or 4 for higher inputs, following the principle that
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in most application cases, most relevant interactions occur at lower interaction
orders. For the sensitivity of the sparse-PDD to the thresholds p, ε, θ and Q2

tgt

one can refer to [Tang et al., 2016]. Author's experience would suggest to �x
them to standard values and concentrate mostly on m and ν to improve the
convergence of the surrogate model.

3.3.2 Exploiting active dimensions in Kriging

In cases where just a subset of the input variables contributes to the variation
of the output, it could be possible to reduce the size of the input to facilitate
the training of the surrogate model, thus reducing the computational cost and
improving its quality. The simple strategy that can be exploited in the pro-
posed framework consists in building the �nal PDD-UK considering as input
variables of the Universal Kriging just the ones whose total sensitivity indices,
computed with the preliminary sparse-PDD, are non-null. In this way, all
the inputs which show an irrelevant contribution to the output are neglected,
simplifying the training problem and the �tting of the hyperparameters. This
simple sensitivity-based dimension reduction strategy will be just tested here
for the 100-dimension Sobol' function 3.4.5 and the TACOT ablation engineer-
ing case 1.3.2.

Other techniques for the input size reduction and their coupling with Krig-
ing surrogate models have been developed in literature. Two examples are
the Active Subspaces method [Constantine et al., 2014] and anchored-ANOVA
[Margheri et Sagaut, 2016], but the in-deep analysis and comparison are not
object of study in this chapter. We will talk about Active Subspaces in Chapter
5.

3.4 Analytical test cases

The PDD-UK will be used in this section to build surrogate models for dif-
ferent analytical test functions, verify the convergence of the metamodeling
errors with the size of the Experimental Design and compare results with the
ones obtained with Ordinary Kriging and sparse-PDD. Clearly, a comparison
with Universal Kriging is not done, because in real-world it would be di�cult
to choose appropriate regression functions without a proper a priori knowl-
edge about the function or a further processing step like done with PDD-UK.
Furthermore, the sensitivity of the coupled method with respect to some pa-
rameters of the sparse adaptive selection of the PDD basis function will be
analyzed. In Table 3.2, the characteristics of the test function used in the
work are reported for clarity. Test 2 is a 2D function built with the purpose
of testing the coupled metamodel and later the adaptation approach. Test 3,
4, 5 are well known test functions for metamodels for UQ and optimization
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taken from literature.

Name Input dim. Domain Function

TEST 1 1 [−1, 1] f(x) = g(10x− 2) cos(5x2)
TEST 2 2 [−1, 1] f(x) = g(10x1 − 2) cos(5x2

1) cos(x
2
2)(3− x2)

2

with g(s) = s|s|
1+s2

TEST 3 3 [−π, π] f(x) = sinx1 + a sin2 x2 + bx4
3 sinx1

TEST 4 8 [0, 1] f(x) =
∏8
i=1

|4xi−2|+ci
1+ci

TEST 5 100 [0, 1] f(x) =
∏100
i=1

|4xi−2|+ci
1+ci

Table 3.2: Test functions used for the assessment of the UK-PDD method

3.4.1 TEST 1: 1D test function

This �rst test case deals with a test function described in [Chkifa et al., 2013]:

f(x) = g(10x− 2) cos(5x2) with g(s) =
s|s|

1 + s2
. (3.44)

The function is evaluated in the domain x ∈ [−1, 1]. It is plotted for clarity in
Figure 3.2a. We mainly use this simple 1D test to draw in Figure 3.2b a visual
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Figure 3.2: TEST 1: Visual comparison between the actual 1D test function
3.2a and the surrogate models 3.2b.

comparison between the original test function and di�erent surrogate models
trained on 8 LHS training points.

From the plot, it is clear that the Ordinary kriging with Matérn kernel (in
green), while representing a good surrogate model in regions rich of training
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3. Improved surrogate model: coupled Kriging-PDD

points thanks to its interpolation characteristic, it is not able to capture the
trend of the function at the �rst peak. Instead PDD with m = 5 (in blue)
captures very well the trends of the function, but does not give a very accurate
surrogate model of the function. The PDD-UK (in red) is able to couple the
good aspects of the two previous techniques: as the Ordinary Kriging, it passes
exactly through the training points, and in addition it captures pretty well the
�rst peak thanks to trend information given by the PDD polynomials.

3.4.2 TEST 2: 2D test function

For this test case, we introduce the following bivariate function, which has
been derived from the univariate test case [Chkifa et al., 2013] already used in
TEST 1:

f(x) = g(10x1 − 2) cos(5x2
1) cos(x2

2)(3− x2)2 with g(s) =
s|s|

1 + s2
. (3.45)

The function is evaluated in the domain x ∈ [−1, 1]2, and it is plotted for
clarity in Figure 3.3. This function can be used as �rst simple case to test
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Figure 3.3: TEST 2: Three-dimensional plot (a) and 2D contour (b) of the 2D
test function in equation (3.45).

the convergence of the coupled PDD-UK method when increasing the size
of the experimental design. The convergence test is performed by increasing
the number of training points, chosen with Latin Hypercube sampling, and by
computing the RMSE between the metamodels and the true function evaluated
in 100000 LHS test points. Computations are repeated �fteen times for each
size of the experimental design, in order to account for the variability of the
LHS experimental design. The tested surrogate models are: Ordinary Kriging
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with exponential kernel function, sparse PDD with m = 5 and the coupled
PDD-UK. Results are reported in Figure 3.4.
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Figure 3.4: TEST 2: Mean RMSE convergence comparison between Ordinary
Kriging, sparse PDD and coupled PDD-UK metamodels, m = 5, εQ2 = 10−8

First of all, it can be seen that the RMSE of the coupled metamodel de-
creases monotonically with the increase of the number of training points. Its
mean value, computed on the �fteen di�erent numerical experiments, is always
lower than the ones of the two starting metamodels. For this particular case,
the OK metamodel performs better than the sparse PDD, but the PDD-UK is
still able to improve the results of the Ordinary Kriging exploiting the function
trends.

3.4.3 TEST 3: Ishigami function

The well-known Ishigami function is considered another analytical example
to verify the convergence of the method and to test the sensibility to the
parameter m of the PDD, since sometimes it could be di�cult to determine
a priori a good value of maximum polynomial order. This function, which is
widely used for benchmarking in global sensitivity analysis, depends on three
independent input parameters and can be written as:

f(x) = sin x1 + a sin2 x2 + bx4
3 sinx1, (3.46)

where the input random variables x = {x1, x2, x3} are uniformly distributed
over [−π, π]. The constants are set to a = 7 and b = 0.1, as done for example
in [Tang et al., 2016; Kersaudy et al., 2015]. As training sets, we use Latin
Hypercube designs of di�erent sizes. Each training plan is used to build an Or-
dinary Kriging metamodel, a sparse-PDD and a coupled PDD-UK surrogate.
The obtained metamodels are tested on a LHS plan of 100000 points.
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A low maximum PDD order of m = 3 is initially considered and the two
variance-based (v) and error-based (e) selection algorithms are compared. Ta-
ble 3.3 reports values of RMSE, MSEr and Q2 (see Appendix C for their
de�nitions) for all the surrogates. Firstly, it can be noticed from this compar-

Ns OK s-PDDe PDD-UKe s-PDDv PDD-UKv

40 RMSE 2.19369 3.93583 3.14090 103.9839 -

MSEr 0.35438 1.09102 0.70760 1.0050 -

Q2 0.413350 0.534050 0.864321 - -

80 RMSE 1.62157 2.92508 1.04595 74.7111 -

MSEr 0.19322 0.62815 8.0481e-2 1.00314 -

Q2 0.798325 0.527088 0.940881 - -

160 RMSE 1.0656 2.53986 0.47179 7.54097 -

MSEr 8.27647e-2 0.47480 1.6393e-2 1.12117 -

Q2 0.897168 0.519746 0.973951 0.855120e-1 -

320 RMSE 0.66843 2.6088 0.34148 4.09612 -

MSEr 3.29050e-2 0.50122 8.58841e-3 0.79921 -

Q2 0.959829 0.633514 0.990904 0.572308 -

640 RMSE 0.442623 2.537008 0.227492 3.910519 0.369953

MSEr 1.442877e-2 0.474011 3.811484e-3 0.782575 1.007985e-2

Q2 0.981296 0.560523 0.995585 0.532891 0.986737

Table 3.3: TEST 3: Actual error measures for the Ordinary Kriging, Sparse-
PDD with error-based (e) and variance-based (v) selection algorithms and
coupled PDD-UK surrogate models of the Ishigami function, m = 3, θ = 10−5,
εQ2 = 10−8.

ison that the variance-based adaptation approach for the sparse-PDD always
produces a less accurate surrogate model with respect to the error based one.
For this reason, it can happen that the set of basis functions given to the Uni-
versal Kriging in the coupled approach, in the case of variance-based approach,
is not enough representative of the actual function trends for the method to
converge. Hence no results are obtained for the coupled method. The error
based approach, instead, is always able produce a representative set of basis
functions and the coupled method is then able to converge. When considering
the small value of m = 3 for the maximum PDD order, OK performs better
than sparse-PDD for the Ishigami function. Except for the 40 points train-
ing plan, the coupled method always delivers a better surrogate model than
the Ordinary Kriging and the sparse-PDD, having a smaller metamodeling er-
ror (RMSE and MSEr) and higher LOOCV metamodeling accuracy Q2. This
means that the additional information in the regression part of the Kriging
surrogate is actually able to improve the representation of the function, or,
seen from the opposite point of view, that the Kriging departure term is able
to improve the representation given only by the sparse-PDD regression. The
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behavior in the case of 40 points training plan is likely to be caused by the fact
that this set of points is too small to give enough information for the PDD to
produce an accurate enough set of basis functions.

The same analysis is repeated when considering a higher maximum PDD
order of m = 10. In Table 3.4 results are shown. When using the error-based
adaptive approach, sparse-PDD surrogates are this time better than the Ordi-
nary Kriging ones. The coupled PDD-UK approach is always able to further
reduce the metamodeling error. However, it is important to mention that, as
pointed out in [Tang et al., 2016], the computational cost associated with the
error-based criterion can be way higher than the one needed to perform the
variance-based criterion because a higher number of regression systems need
to be solved to build the sparse representation. While this can be negligible for
simple low-dimensional cases such as the Ishigami function, it can be relevant
for higher-dimensional problems.

Ns OK s-PDDe PDD-UKe s-PDDv PDD-UKv

40 RMSE 2.193697 3.68578 2.19369 - -

MSEr 0.354380 1.00000 0.354380 - -

Q2 0.413350 - 0.413350 - -

80 RMSE 1.621572 1.08661 1.00083 50.22814 1.625250

MSEr 0.19322 8.69541e-2 7.376024e-2 1.30340 0.194121

Q2 0.798325 0.994236 0.995617 0.999215 0.792188

160 RMSE 1.06008 0.636108 0.35959 5.358411 1.0424

MSEr 8.2764e-2 2.9793e-2 9.5226e-3 2.114611 8.00259e-2

Q2 0.897168 0.995448 0.998263 0.999857 0.912285

320 RMSE 0.668438 0.32831 8.42948e-2 5.51245 0.63282

MSEr 3.2905e-2 7.93837e-3 5.233157e-4 2.23793 2.94929e-2

Q2 0.959829 0.998906 0.999896 0.999981 0.963671

640 RMSE 0.442623 7.291311e-2 1.559595e-2 5.161115 0.321574

MSEr 1.442877e-2 3.915368e-4 1.791371e-5 1.961754 7.615962e-3

Q2 0.981296 0.999900 0.999994 0.999978 0.989006

Table 3.4: TEST 3: Error measures and accuracies for the Ordinary Kriging,
Sparse-PDD with error-based (e) and variance-based (v) selection algorithms
and coupled PDD-UK surrogate models of the Ishigami function, m = 10,
θ = 10−5, εQ2 = 10−8.

The comparison between the m = 3 and the m = 10 cases shows, as it
could be expected, that this parameter has a high in�uence also on the quality
of the �nal coupled metamodel, hence it must be chosen wisely. When no
information at all is available about the trends of the function to guide the
choice of this parameter, a preliminary convergence study of the sparse-PDD
algorithm varying m could be usefully performed on the available design of
experiments to help to choose a good value. This means repeating the training
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of di�erent sparse-PDD (or better of di�erent PDD-UK) varying the value of
m, and choosing as surrogate the one which shows lower metamodeling error.

A further test of the convergence of the PDD-UK method can be performed
on the sensitivity indices associated to the Ishigami function, since analytical
values are known in literature (see for example [Tang et al., 2016, Sec. 5.1]). A
comparison with the numerical values obtained with the three metamodeling
techniques under analysis and direct Monte Carlo sampling (MC) (Section
2.4.2) is reported in Table 3.5. Values for PDD are directly computed with the
expansion coe�cients (see 2), Monte Carlo sampling is performed to obtain
the sensitivities from the two other Kriging-based techniques. The size of the
training set is �xed at 200 points to be consistent with the results in [Tang
et al., 2016, Tab. 3].

SI Exact Kriging s-PDDv PDD-UKv s-PDDe PDD-UKe MC

S1 0.3138 0.3558 0.3133 0.3486 0.3126 0.3137 0.3147

S2 0.4424 0.4804 0.4397 0.4949 0.4448 0.4431 0.4419

S3 0 0.0063 0 0.0064 0 0.0046 0.0045

S12 0 0.0053 0 0.0035 0 -0.0002 0

S13 0.2436 0.1462 0.2470 0.1426 0.2423 0.2386 0.2389

S23 0 0.0031 0 0.0022 0 0.0001 0

S123 0 0.0029 0 0.0018 0.0023 0.0001 0

f0 3.5 3.4861 3.5023 3.4785 3.4983 3.4946 3.4955

D 13.845 11.8388 13.9338 12.7512 13.8550 13.8793 13.8720

Q2 0.91604 0.99959 0.92383 0.99991 0.99996

Eval. 200 200 200 200 200 6×100000

Table 3.5: TEST 3: numerical mean f0, variance D, metamodel accuracy
Q2 and sensitivity indices S of the Ishigami function obtained with di�erent
metamodeling techniques and comparison with exact values and Monte Carlo
results. For PDD, these values have been used m = 10, ν = 3, εQ2 = 10−8,
θ = 10−3.

A general good convergence is shown for the �rst order sensitivity indices,
while the convergence of the second order indices is more di�cult for the
sampling-based computations, especially when they have really small (or null)
values. This because there is an intrinsic di�culty in the MC computation of
small sensitivity indices [Sobol' et Myshetskaya, 2008], and also because the
computation of high-order indices depends on the estimated values for lower-
order indices [Sobol', 1993], hence it can be spoiled by a loss of accuracy (see
for example the negative index in Tab. 3.5 for PDD-UKe).

Note that, in practical applications, the direct MC approach on the actual
function would be drastically more expensive than the others, due to the high
number of model evaluations required. Therefore, the metamodel-based tech-
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niques represent a very attractive option, due to the good trade o� between
accuracy and e�ciency.

3.4.4 TEST 4: 8D Sobol' function

To test the approach on a higher-dimensional problem, the eight-dimensional
Sobol' function is considered [Tang et al., 2016]. Its expression is:

f(x) =
8∏
i=1

|4xi − 2|+ ci
1 + ci

, (3.47)

where the components of the input vector x are uniformly distributed over
[0, 1] and the vector of positive coe�cients is c = {1, 2, 5, 10, 20, 50, 100, 500}.

SI Exact Kriging (MC) s-PDD PDD-UK (MC) MC
S1 0.603 0.654 0.632 0.607 0.603
S2 0.268 0.265 0.284 0.269 0.271
S3 0.067 0.045 0.048 0.072 0.069
S4 0.020 0.015 0.018 0.025 0.022
S5 0.0055 0.004 0.006 0.010 0.009
S6 0.000 0.002 0.002 0.005 0.003
S7 0.000 0.002 0.003 0.004 0.003
S8 0.000 0.001 0.003 0.004 0.002
f0 1.0000 1.0064 0.9988 0.9960 0.9998
D 0.1380 0.1185 0.1307 0.1302 0.1378
Q2 0.9394 0.9896 0.9913
Eval. 150 150 150 100000

Table 3.6: TEST 4: numerical mean, variance, metamodel accuracy and sen-
sitivity indices of the 8-dimensional Sobol function obtained with di�erent
metamodeling techniques and comparison with exact values and Monte Carlo
results, m = 4, ν = 2.

A �rst comparison between Ordinary Kriging, variance-based sparse PDD
and the coupled PDD-UK method can be performed on the �rst order sensitiv-
ity indices obtained with the three surrogate modeling techniques. Results are
reported in Table 3.6, and a further comparison is done with analytical (exact)
results and values obtained with a classical Monte Carlo sapling performed on
the original function.

Results show a general good convergence of all methods. It can be noticed
that, while being slightly more accurate in some cases, especially for the most
in�uent indices, the coupled PDD-UK approach is not able to outperform the
sparse-PDD in the approximation of the sensitivity indices, as observed also

92 Andrea Francesco CORTESI



3. Improved surrogate model: coupled Kriging-PDD

for the Ishigami function. Hence, in general, it is not necessary to perform the
MC sampling on the �nal UK-PDD surrogate to obtain the SIs, but one could
simply rely on the use of the PDD coe�cients computed during the interme-
diate construction of the sparse-PDD surrogate to compute the sensitivities.
In this way the SIs would come almost e�ortlessly and with a good accuracy.
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Figure 3.5: TEST 4: Actual (RMSE) and cross-validation (Q2) error measures
when increasing the number of training points. Results are plotted for the
Ordinary Kriging, Sparse-PDD and coupled PDD-UK surrogate models of the
8-dimensional Sobol function at di�erent values of m. Error-based adaptive
algorithm.

A second convergence test is performed by plotting the trends of the RMSE
and Q2 when increasing the size of the training plan Ns at di�erent values of
the maximum polynomial degree m. Values are compared for the sparse-PDD
method, the Ordinary Kriging and the coupled UK-PDD method. Results
are shown in Figure 3.5. The comparison shows that the convergence of the
sparse-PDD is not monotone with the value ofm, as already remarked in [Tang
et al., 2016], and this re�ects on the convergence of the coupled method. In this
context, the more complex and expensive coupling strategy developed in [Ker-
saudy et al., 2015] could reduce the sensitivity of the �nal PDD-UK metamodel
to the maximum polynomial order m, but with an increasing computational
e�ort, which could not always be justi�ed, as in general all the coupled meta-
models at di�erent values of m are better than the single sparse-PDD ones
(in the RMSE sense, which is the actual metamodeling error estimate). An-
other option could be to test the convergence of sparse-PDD with respect to
m before training the coupled PDD-UK surrogate.

It is also important to notice that the Q2 accuracy, and so the cross-
validation error, being only an estimate of the true error, sometimes are not
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able to capture properly the di�erence in accuracy of di�erent metamodels, es-
pecially when they are relatively close. This is a known fact [Goel et al., 2009;
Meckesheimer et al., 2002], which must be kept into account in application
where it is not possible to compute the RMSE.

3.4.5 TEST 5: 100D Sobol' function

A high-dimensional test case is proposed here with the 100-dimensional Sobol
function. The model is the same as in the previous test case 3.4.4, but with
di�erent parameter values, namely ci = i2. This means that the in�uence of
the variables on the output decays quite rapidly with their index. For this
high-dimensional test case, the error-based algorithm is computationally too
expensive, hence computations are performed only with the variance-based
selection algorithm for PDD. A convergence study is performed by gradually
increasing the number of Latin Hypercube training points. The maximum
polynomial order m is �xed to 4, since, as pointed out in [Tang et al., 2016],
for m = 3 the accuracy of the metamodel for the sparse PDD tends to decrease
when increasing the size of the design of experiments, and some preliminary
tests showed that the coupled approach was not always able to produce good
results in this case.
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Figure 3.6: TEST 5: Actual (RMSE) and cross-validation (1−Q2) error mea-
sures when increasing the number of training points. Results are plotted for
the Ordinary Kriging, Sparse-PDD and coupled PDD-UK surrogate models of
the 100-dimensional Sobol function. Variance-based adaptive algorithm.

In Figure 3.6, errors estimates are reported for the three metamodeling
methods at di�erent sizes of the DoE. First of all, it has to be noticed that
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the error associated to the Ordinary Kriging is quite large, as the number
of training points used is quite limited with respect to the number of input
variables, and in general it is not easy to build an accurate Ordinary Kriging
surrogate model with a high-dimensional input. However the sparse PDD
is able to produce far better results, since the adaptive procedure allows to
recognize the most in�uencing variables and neglect the others. The coupled
approach is able to exploit the sparse functional basis taken from the sPDD
and so that also its metamodeling error is relatively small.

It is possible to remark that the RMSE associated to both the sPDD and
the PDD-UK decreases when increasing the number of training points, while
the cross-validation error increases slightly. As observed in [Tang et al., 2016],
the Q2 error estimate could not always be the most appropriate way to com-
pare metamodels accuracy, since it directly depends on the design of exper-
iments and its size. Unfortunately, when the computation of the RMSE is
una�ordable, one must rely on some error estimate as the LOOCV, to state
the accuracy of the surrogate.

Finally, an example of the possible advantages of the simple dimension-
ality reduction proposed in Section 3.3.2 for high-dimensional cases is here
presented. In Table 3.7 a comparison is proposed, for the experimental design
with 2000 points, between the RMSEs of the RMSE of a normal PDD-UK
surrogate and the one of a PDD-UK with the kriging built only on the vari-
ables that have a positive contribution to the output variance, according to the
sparse-PDD adaptation process. Results are compared also with the ordinary
Kriging and sparse-PDD. In the case under analysis, reducing in such way the
dimensionality of the problem means that the �nal kriging step of the PDD-
UK is trained on only 24 over 100. It is possible to notice that this leads to a
further improvement of the metamodeling accuracy, with a further reduction
of RMSE.

Kriging s-PDD PDD-UK PDD-UK reduced
0.3229 0.11021 5.8727E-002 1.7138E-002

Table 3.7: TEST 5: comparison of RMSE between ordinary Kriging, spare
PDD, PDD-UK and PDD-UK with reduction of the input dimension, 2000
training points.

3.5 Engineering application: Ablative material

TACOT

A higher dimensional engineering case is here proposed with the analysis of the
temperature of an ablative material at a �xed position and imposed time of
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an ablation process. In particular, let us consider the unidirectional ablation
of a 7.21cm thick TACOT (Theoretical Ablative Composite for Open Testing)
material (previously described in section 1.6.3), exposed to a constant heat �ux
for one minute before radiatively cooling down. This rectangular incoming �ux
is an interesting case to test the metamodeling method here proposed.

Uncertainties are considered on 27 input parameters related to the physical
and chemical properties of the material. An uniform distribution is associated
to each uncertain variable, with values reported in Table 1.7. The quantity of
interest, as seen in Section 1.3.2 is the temperature of the material at a position
x = 5.61cm, meaning 1.6cm from the heated surface, at the time t = 80s over
120s of simulation (see Figure 1.20), performed with the PATO code [Lachaud
et Mansour, 2014].

Here again, PDD-UK surrogate models are built on experimental design
of increasing size (200, 300, 400, 500, 600 and 700 training points) to verify
the convergence of the coupled method. In order to reduce the computational
e�ort while not a�ecting the metamodeling accuracy, the PDD-UK is built just
on the input variables which are not completely neglected in the the sparse-
PDD regression, as tested on the 100-dimensional Sobol function in Sec. 3.4.5.
This leads to considering only 18 input dimensions in the �nal metamodel.

Ns OK s-PDD 1 PDD-UK 1 s-PDD 2 PDD-UK 2
200 2.4191 3.8836 3.8798 2.9348 2.5952
300 1.5707 3.3070 2.7257 2.6766 1.4420
400 1.2439 3.0733 1.8667 2.6449 1.1829
500 0.9394 1.9956 0.6890 2.6574 0.8736
600 0.7055 1.6047 0.4821 2.5490 0.6620
700 0.5779 1.3625 0.4470 2.5658 0.5427

Table 3.8: PATO, RMSE comparison of the ordinary Kriging, sparse-PDD
and PDD-UK metamodels. For the PDD, the following parameters values
have been used: ν = 2, m = 4 for case 1, ν = 1, m = 2 for case 2.

The comparison between the three metamodeling techniques is reported in
Table 3.8. First of all, it can be noticed that each one of the three techniques
converges when increasing the size of the Latin Hypercubes Experimental De-
sign. For the smaller design with size of 200 samples, the best performing
surrogate is Ordinary Kriging. Since more than 100 basis functions are kept
in sparse PDD representation with ν = 2, m = 4, the computation of the
coe�cients and so the choice of the rejected basis function can not be accurate
enough for the smaller designs, hence also the coupled PDD-UK metamodel
su�ers the inaccurate choice of regression functions, and results less accurate
than Ordinary Kriging. However, when enough training points are considered,
the metamodeling error of the PDD-UK becomes the smaller of the three tech-
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niques. The convergence of the method for smaller DoE could be improved
by reducing the number of terms kept in the �nal regression by reducing the
maximum polynomial order and the order of interaction, as shown in the case
2, with ν = 1, m = 2.

Ns OK s-PDD PDD-UK
200 2.4191 2.4103 1.6193
300 1.5707 2.2190 0.8193
400 1.2439 1.8097 0.5365
500 0.9394 1.4698 0.4777
600 0.7055 1.3344 0.4235
700 0.5779 1.1882 0.4232

Table 3.9: PATO, RMSE comparison of the ordinary Kriging, sparse-PDD
and PDD-UK metamodels, with optimized parameter m for the PDD at each
training set. ν = 2 have been used

The RMSE values obtained for optimized values of ν and m parameters is
reported in table 3.9. The maximum ANOVA interaction is set ν = 2, and m
is kept equal to one for the smaller training plans and then increased to two
at 700 training points. Note the consistent gain in accuracy obtained with the
coupled metamodel for smaller experimental design, while for the larger the
error seems to be at convergence.

3.6 Study Case: HEG cylinder

In this Section, a forward UQ study and sensitivity analysis are performed
on the hypersonic �ow around a cylinder described in Section 1.6.1. The
goal is to see how uncertainties on the freestream conditions and chemical
model parameter in�uence the pressure and heat �ux at the stagnation point.
The tools introduced in the chapter, especially sparse-PDD and the PDD-UK
method developed in this section, will be exploited at this purpose.

3.6.1 Preliminary analysis of the atmospheric chemical

model

Before performing the UQ study on the COSMIC computational model, a
preliminary study on the chemical model is performed using a simpli�ed and
less expensive computational model. First of all, a comparison between two
chemical mixture is performed to choose the best to represent the phenomena.
Then, a global sensitivity analysis is performed on the chosen model to reduce
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the number of uncertain chemical parameter that are taken into account in the
�nal study.

Choice of the number of species

A �rst step in the analysis of the atmospheric chemistry model is to verify
which species are mostly in�uential in the post shock region, to be able to
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Figure 3.7: Comparison of mass fraction post-shock variations between air 5
and air 11 mixtures.

choose the simpler mixture that represents the phenomena. Here, the Park's
air model [Park et al., 2001] with 5 species (air5) is compared to the one with
11 species (air11). Since, in [Knight et al., 2012], every simulation is performed
with just 5 species air model, we are expecting to observe a good agreement
between the two di�erent mixtures.

For this analysis, a simpler simulation of the post-shock �ow �eld is per-
formed by means of the Shocking code (details about this code are provided in
[Magin et al., 2006b]), which computes the downstream �ow �eld using the 1D
conservation equations of mass, momentum and global energy plus the conser-
vation of vibrational energy of the nitrogen molecules. This code is not able
to account for the deceleration due to the body and the stand-o� distance is
imposed a priori to an approximate value equal to 9.5 mm.

The comparison between the two gas mixtures is done by looking at the
di�erences between mass fractions of the common species and by checking
if a strong presence of ionized species, typical of air11 mixture, is observed,
especially at the position corresponding to the stand o� distance. As it can
be noticed from Figure 3.7, the two mixtures behave practically in the same
way in all the post-shock region, and the mass fractions of ionized species, and
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3. Improved surrogate model: coupled Kriging-PDD

especially of electrons, are very small with respect to the ones of the species
composing the air5 mixture. Hence it is safe to continue the analysis on the
simpler air5 mixture, knowing that the main chemical characteristics of the
�ow are correctly described.

Global Sensitivity Analysis on the chemical model

Here, the two Quantities of Interest chosen for the sensitivity analysis on the
air5 model are the mass fractions of nitrogen [N]w and oxygen [O]w at a distance
from the shock corresponding to the stand-o� distance dso between the shock
and the cylinder wall. These two QoIs are chosen since they have a major
in�uence in the recombination of atoms at the surface of a reusable thermal
protection material.

Seventeen (17) uncertain variables are considered for this problem, which
are the pre-exponential factors Ar of the forward reaction rate coe�cients in
the Arrhenius formulation. Other parameters such as the activation energy
are supposed to be known with a higher accuracy, so they are supposed �xed.
The uncertain parameters are supposed to be distributed with a log-normal
distribution centered on their mean values and with standard deviations given
in Table 1.4. This corresponds to consider a normal uncertainty on their
exponent. The freestream variables are �xed to their nominal values described
in Table 1.2, and the stando� distance is taken dso = 0.0095m. Latin hypercube
sampling is used to select 20000 sampling points in the stochastic input space,
and the Shocking code is run for each sample to get the values of the outputs
for each input condition. Then, a sparse PDD surrogate is built on the QoIs
in order to get their �rst-order sensitivity indices.

In Tables 3.10 and 3.11, the sorted �rst order sensitivity indices obtained for
the two quantities of interest are shown. These tables illustrate the hierarchy
of the uncertain Arrhenius coe�cients with respect to the their contribution
to the variance of the outputs. It can be noticed that the �rst two reactions,
namely the dissociation of NO with third body being respectively O and N,
contribute to about the 98% of the variance of the QoIs in this particular
con�guration. For this reason, it is important to take into account at least the
uncertainties associated to these two reactions in the following UQ analysis
performed by means of the CFD tool. For sake of completeness, we consider
also the four following reactions, thus arriving to 99.7% of the output variance
contribution.

3.6.2 UQ propagation through the CFD model

Since the number of important chemical species has been chosen, as well as
the in�uential uncertainties to consider for the chemical model, it is possible to
continue with the UQ study on the computational model of the �ow around the
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Variable Reaction SI 1st order % Variance
13 NO + O→ N + O + O 0.5128 0.51287
12 NO + N→ N + O + N 0.4636 0.97657
16 N2 + O→ NO + N 0.9996e-2 0.98656
4 N2 + O→ 2N + O 0.4294e-2 0.99086
5 N2 + N→ 2N + N 0.3559e-2 0.99442
14 NO + N2 → N + O + N2 0.3412e-2 0.99783
9 O2 + O→ 2O + O 0.6639e-3 0.99849
10 O2 + N→ 2O + N 0.5532e-3 0.99905
11 NO + NO→ N + O + NO 0.3693e-3 0.99942
1 N2 + N2 → 2N + N2 0.2516e-3 0.99967
6 O2 + N2 → 2O + N2 0.1309e-3 0.99980
17 NO + O→ O2 + N 0.1051e-3 0.99990
7 O2 + NO→ 2O + NO 0.5214e-4 0.99996
3 N2 + O2 → 2N + O2 0.1544e-4 0.99997
2 N2 + NO→ 2N + NO 0.1157e-4 0.99998
15 NO + O2 → N + O + O2 0.6492e-5 0.99999
8 O2 + O2 → 2O + O2 0.6155e-5 1.0000

Table 3.10: Sorted �rst-order sensitivity Indices for HEG cylinder chemistry,
QoI [N ]w.

cylinder. We consider in total 8 uncertain input parameters: the freestream
density and velocity, characterized by uniform probability densities described
in Table 1.3, and the preexponential factors Ar for the rate coe�cients of 6
elementary chemical processes (dissociation of N2 and NO and exchange reac-
tion of formation of NO). The choice of the atmospheric model and uncertain
variables is based on the analysis presented in the previous Section 3.6.1, and
the chosen uncertain chemical parameters are reported for clarity in Table
3.12. The output of the simulations, namely the stagnation pressure and heat
�ux, are evaluated on a 576 points Latin Hypercube experimental design in
the 8-dimensional input space by exploiting the COSMIC code.

Global Sensitivity Analysis

Here, sparse PDD is used to perform a global Sensitivity Analysis of the two
functions of interests. As seen, the method can easily provide the �rst or-
der Sobol' Sensitivity Indices, which are used to hierarchically rank the input
variables according to their contribution to the variance of the output. Com-
putations are performed considering a maximum ANOVA order of interaction
ν = 3 and a maximum polynomial order m = 4 for both quantities of interest.
The obtained Sobol' indices are given in Table 3.13 for the pressure and 3.14
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Variable Reaction SI 1st order % Variance
13 NO + O→ N + O + O 0.5165 0.51652
12 NO + N→ N + O + N 0.4683 0.98489
4 N2 + O→ 2N + O 0.3978e-2 0.98887
14 NO + N2 → N + O + N2 0.3450e-2 0.99232
5 N2 + N→ 2N + N 0.3284e-2 0.99560
16 N2 + O→ NO + N 0.1997e-2 0.99760
9 O2 + O→ 2O + O 0.8116e-3 0.99841
10 O2 + N→ 2O + N 0.6824e-3 0.99909
11 NO + NO→ N + O + NO 0.3827e-3 0.99948
1 N2 + N2 → 2N + N2 0.2328e-3 0.99971
6 O2 + N2 → 2O + N2 0.1435e-3 0.99985
7 O2 + NO→ 2O + NO 0.6008e-4 0.99991
17 NO + O→ O2 + N 0.3895e-4 0.99995
3 N2 + O2 → 2N + O2 0.1665e-4 0.99997
2 N2 + NO→ 2N + NO 0.1420e-4 0.99998
15 NO + O2 → N + O + O2 0.7047e-5 0.99999
8 O2 + O2 → 2O + O2 0.6463e-5 1.0000

Table 3.11: Sorted �rst-order sensitivity Indices for HEG cylinder chemistry,
QoI [O]w.

Variable Index Gas reaction Density of log10Ar σr
A1 13 NO + O→ N + O + O Normal 0.12
A2 12 NO + N→ N + O + N Normal 0.12
A3 16 N2 + O→ NO + N Normal 0.10
A4 4 N2 + O→ 2N + O Normal 0.15
A5 5 N2 + N→ 2N + N Normal 0.15
A6 14 NO + N2 → N + O + N2 Normal 0.12

Table 3.12: Uncertainties on gas reaction rates. The index is referred to the
notation used in Section 3.6.1.

for the heat �ux.

What can be noticed from these results is that the 20% uncertainty on
the velocity value has the greatest impact on both outputs. Especially for the
heat �ux, where the theory suggests a dependence with the cube of the velocity,
this variable is responsible of more than the 96% of the total output variance.
Uncertainties on the chemistry play a very small role in the variance of the
output for both quantities, and values of their sensitivity indices are mostly
related to numerical noise. This was expected for the stagnation pressure, since
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Variable SI 1st order % Variance Total SI
u∞ 0.7970115 0.7970115 0.802208
ρ∞ 0.2027181 0.9997297 0.208394
A5 0.8159018E-04 0.9998113 0.520080E-06
A6 0.7354608E-04 0.9998848 0.510802E-07
A2 0.4810281E-04 0.9999329 0.261344E-06
A3 0.4020067E-04 0.9999731 0.170147E-05
A4 0.2178639E-04 0.9999949 0.175886E-06
A1 0.5055511E-05 1.000000 0.376313E-06

Table 3.13: Sorted �rst order and total Sensitivity Indices for HEG cylinder
simulation, QoI pst.

Variable SI 1st order % Variance Total SI
u∞ 0.9644307 0.9644307 0.965089
ρ∞ 0.3547857E-01 0.9999093 0.375331E-01
A6 0.3577629E-04 0.9999450 0.465707E-05
A5 0.2533707E-04 0.9999704 0.474139E-05
A1 0.1540559E-04 0.9999858 0.104035E-04
A2 0.5799109E-05 0.9999916 0.353491E-05
A3 0.5159200E-05 0.9999967 0.260056E-04
A4 0.3205809E-05 0.9999999 0.626155E-05

Table 3.14: Sorted �rst order and total Sensitivity Indices for HEG cylinder
simulation, QoI qst.

it is known to be mainly dependent on the free stream density and velocity.
For the heat �ux, this can be explained �rstly by the fact that the 20% uniform
uncertainty on the velocity causes big variations of the heat �ux. Furthermore,
in the considered con�guration the Mach number is relatively small, and only
molecular oxygen dissociates. In addition, the imposed value of γ = 1 for
the catalicity is forcing chemical equilibrium at the wall. Therefore, the fact
that small sensitivity indices are associated to the chemistry should not be
surprising. Also Total SIs are reported for both QoIs in Tables 3.13 and 3.14.
The fact that their values are quite similar to the ones of the �rst order indices
means that the interaction between variables is not very strong.

Forward uncertainty propagation

To perform the uncertainty propagation, PDD-UK surrogate models for the
stagnation pressure and heat �ux are trained. Di�erent surrogate models are
built on experimental design of increasing size (72, 144, 288 and 576 training
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points) to state the convergence of the metamodeling technique in this appli-
cation. Exploiting the very reduced cost of evaluating the surrogate model,
a Monte Carlo sampling technique can be applied to the PDD-UK metamod-
els in order to perform a forward uncertainty propagation and estimate the
probability densities of the statistics of the quantities of interest.
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Figure 3.8: Kernel density estimates of the probability density functions of
stagnation pressure and heat �ux computed on the MC sample propagated
through PDD-UK metamodels. Comparisons are proposed for results obtained
with di�erent surrogates trained on experimental design of increasing size.

Figure 3.8 shows the kernel density estimates (KDE) [Silverman, 1986]
of the output PDFs. The comparison between surrogates built on di�erent
training sets shows a very good convergence of the technique, even for the
smaller experimental design. Notice that in this 8-dimensional application,
only two dimensions play an important role on the variation of the outputs,
as seen from the sensitivity analysis. Therefore the task to build a surrogate
model is simpler than on a problem where all the inputs are relevant.

µ σ σ/µ
pst [Pa] 53088 13925 0.262

qst [W/m2] 7.2093 e6 2.0703 e6 0.287

Table 3.15: Sampling estimates of mean value, standard deviation and coe�-
cient of variation for the pressure and heat �ux. Values are computed propa-
gating 100000 Latin Hypercube samples on the PDD-UK response surfaces for
the quantities of interest.

Table 3.15 reports sampling estimates of mean value, standard deviation
and coe�cient of variation for the pressure and heat �ux computed on the
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surrogates built on 576 training point. Notice that, considering uniform uncer-
tainties of 20% on the freestream density and velocity, the resulting variations
of the stagnation pressure and heat �ux are respectively of about 26% and
29%.

3.7 Conclusions

In this chapter, an improved surrogate modeling strategy has been proposed,
that uses basis functions chosen by an adaptive sparse-PDD algorithm as re-
gression functions for a Universal Kriging surrogate. This improved surrogate
has proven to perform better, in the sense of metamodeling accuracy, than
both adaptive sparse-PDD and Ordinary Kriging on several analytical test
cases and engineering applications, allowing to e�ciently perform sensitivity
analysis and uncertainty propagation. However, since PDD-UK requires addi-
tional complexity of having to perform a MC sensitivity estimation, the origi-
nal sparse-PDD technique seems to be more suited, especially in the cheaper-
to-train variance-based approach, if the only purpose is the computation of
Sobol' sensitivity indices. The reason is that sparse-PDD, due to its close
link with ANOVA decomposition, allows a straightforward and more accu-
rate computation of the indices, especially for higher-order ones and when
small sensitivity values are involved. However, as stated before, the PDD-
UK metamodel presents a higher LOO cross-validation accuracy, hence the
method can be useful if the application requires a good surrogate model of the
actual function, such as forward and inverse uncertainty propagation. Further-
more, another feature of the PDD-UK metamodel that can be advantageous
over the sparse-PDD in some applications, is that, being a Gaussian process,
it can be exploited in several techniques that have been developed based on
this hypothesis, such as with Expected Improvement (EI) and E�cient Global
Optimization (EGO) algorithms [Jones et al., 1998] and the a priori optimal
design methods called Integrated Mean Square Error (IMSE) and Maximum
Mean Square Error (MMSE) [Sacks et al., 1989a] .

This surrogate modeling strategy will be exploited in the following parts
of this manuscript to train surrogate models for quantities of interest, both in
forward and inverse UQ applications. In next chapter, it will further coupled
with an adaptation technique to enrich the experimental design, to further
improve the accuracy of the surrogate.
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Chapter 4

Novel adaptive re�nement of the
Experimental Design by mesh
adaptation

In this chapter, a novel strategy is introduced to adaptively add new

points to an existing set of training points. The proposed method is based

on the idea of building a Delaunay triangulation of simplex elements us-

ing the existing training points as nodes of the grid, and exploiting an

error criterion to add new points on the edges that maximize the cri-

terion. Di�erent computational algorithms that implement this concept

are proposed and compared. Then the method is tested on several ana-

lytical functions and on an application case, coupled with the PDD-UK

surrogate model introduced in the previous chapter.

4.1 Introduction

One important aspect in the accuracy of surrogate models is the choice of a
good set of training points, also called Experimental Design (ED) or Design
of Experiments (DoE), or simply design. Often in literature, and as done
also in the previous parts of the work, points are chosen according to space-
�lling criteria, such as Latin Hypercubes (LH) designs [McKay et al., 1979]
(brie�y described in Chapter 2). This kind of ED, being fast to generate, is
widely used with fairly good results, also for practical applications. However,
in some applications, the total number of available evaluations of the actual
numerical model can be limited by its elevated computational cost, and a sur-
rogate model built on a �rst relatively small space-fulling ED could show a
lower accuracy than desired. For this reason, methods have been developed
for e�ciently adding training points to the initial ED, without discarding the
previous model evaluations or to produce more optimal ED from scratch. For
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example a nested Latin Hypercube sampling was introduced in [Wang, 2003]
to enrich an existing LHS with new training points, while keeping its space-
�lling properties. However, this method does not rely on the information about
the function of interest obtained by evaluating it in the initial set of training
points and by training an initial surrogate model. Many other methods have
been introduced to directly create an ED that is optimal with respect to some
criterion. [Sacks et al., 1989a,b] proposed optimal designs that minimize the
Integrated Mean Squared Error (IMSE) for Gaussian Process metamodels, and
[Sacks et al., 1989b] proposed also an adaptive sampling strategy minimizing
the maximum mean squared error (MMSE). Though the IMSE and MMSE
based designs are optimized using some information from the function, they
are strongly model-based, meaning that their performance still depends on
parameters associated with Kriging surrogate modeling techniques, as the co-
variance model and the selected hyperparameters. [Shewry et Wynn, 1987;
Currin et al., 1991] proposed optimal designs that maximize the entropy, also
based on Gaussian process surrogates. Both these designs are more e�cient
than LH designs, in the sense that they are able to produce surrogate models
with lower prediction error, but at the same time they are much more expen-
sive to compute, especially when increasing the number of dimensions or of
points. An early review of such techniques can be found in [Koehler et Owen,
1996]. Another review and comparison can be found in [Bursztyn et Steinberg,
2006], where also an alternative technique is proposed for regression models
based on the so called alias matrix [Draper et Guttman, 1992]. [Park, 1994]
proposed a combination between Latin Hypercubes and optimal designs, in-
troducing optimal LH designs (OLHD), which are LH designs that are nearly
optimal at minimizing the IMSE or maximizing the entropy. Other methods
have been presented in the literature, which aim at sequentially adding new
points to an existing ED to globally enhance the surrogate accuracy. This
class of methods is usually called adaptive sampling (also known as sequen-
tial sampling). For example, sequential versions of the IMSE, MMSE and
maximum entropy design exist [Jin et al., 2002]. In [Jin et al., 2002], two se-
quential sampling approaches are also proposed: the Maximin Scaled Distance
approach and the cross-validation approach. Both approaches exploit the in-
formation from the existing metamodel trained on the �rst ED and are not
limited to the Kriging method. Another strategy for sequential design can be
found in [Crombecq et al., 2011], named the LOLA-Voronoi strategy, which
involves a combination of Voronoi Tessellations, for domain exploration, and
local linear approximation (LOLA) for exploitation of local information about
the function. [Xu et al., 2014] employed Voronoi tessellations for dividing the
domain into smaller regions and then placed samples based on cross valida-
tion errors. [Ajdari et Mahlooji, 2014] proposed the so-called Delaunay-hybrid
adaptive sequential design (DHASD) which employs Delaunay triangulation
for exploration of the domain and cross validation error for exploitation of the
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information about the function. More recent surveys on adaptive Design of
Experiments can be found in [Liu et al., 2017; Garud et al., 2017]. Notice that
adaptive sampling techniques discussed in this section aim at enhancing surro-
gate quality globally. Thus, they di�er from adaptive sampling techniques for
surrogate-assisted optimization, like the well-known Expected Improvement
(EI) [Jones et al., 1998; Jones, 2001]. However, EI has also been reformulated
for global �t problems, as in [Loeppky et al., 2010]. [Quan, 2014] proposed
a review of DoE for computer experiment based on EI, introducing develop-
ments focused on batch methods (parallel computations of several new training
points) combining EI and space �lling criteria in order to construct e�cient
experimental designs.

In this chapter we want to propose and assess an adaptation method that
does not strictly depend on the chosen surrogate modeling technique and that
is able to account for the information about the function of interest, gained by
evaluating the model in the �rst set of training point and by having trained a
�rst surrogate model. Another requirement of the technique is to be able to
add several new training points in a single run, making it suited for parallel
(batch) evaluation of the computational model in the new points. The main
idea of the adaptation method proposed in this work is to build a Delaunay
grid [Delaunay, 1934] of simplex elements in the stochastic space of the input
parameters, considering the training points as nodes of the elements, to be
able, in this way, to exploit for the adaptation an approach derived from a mesh
adaptation technique. The points insertion method is adapted from the work
in [Coupez, 2011; Coupez et al., 2013], where an anisotropic mesh adaptation
technique was introduced. New training points are added along the edges of
the grid according to the optimization of an error criterion. The possibility of
adding nodes just on the edges can sound limiting, and surely it leads to a non
optimality of the methodology, but at the same time, in practical applications,
it can help avoid an excessive clustering of new points around the area which
de�nes the optimum of the adaptation criterion. The real drawback of the
technique is the fact that it relies on the notion of edges of a mesh, and, as
known, the construction of an n-dimensional Delaunay triangulation for higher
dimensional spaces can become very costly. Although the adaptive sampling
strategy proposed does not depend directly on the adopted surrogate modeling
method, it will be coupled with the PDD-UK surrogate model introduced in
the previous chapter, and a model-based surrogate modeling error estimate will
be used for convenience in the adaptation criterion. The coupling between the
adaptation process and the metamodeling process is represented in Figure 4.1.
It is important to notice that, after the ED adaptation phase, the surrogate
model is re-trained completely, accounting for the information added by the
new training points, meaning that the sparse-PDD is run again to select basis
functions and the hyperparameters for the UK are re-optimized.

The chapter is structured as follows. Section 4.2 describes the basic idea
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Initial ED (LHS)Initial ED (LHS)

Evaluate QoI for each x
i
 in ED

(CFD, mesh adaptation)

Evaluate QoI for each x
i
 in ED

(CFD, mesh adaptation)

Train surrogate (PDD-UK)Train surrogate (PDD-UK)

Is 
surrogate

error
acceptable?

Is 
surrogate

error
acceptable?

Adaptation

Choice of criterionChoice of criterion

Enrich EDEnrich ED

Choice of parameters
(number of new points, weight)

Choice of parameters
(number of new points, weight)

no

Use the surrogate
(propagation, inference)

Use the surrogate
(propagation, inference)

yes

Figure 4.1: Diagram describing the link between metamodeling and adaptation
process, including the PDD-UK metamodel presented in Chapter 3 and the
DoE adaptation technique presented in this chapter. The aspects developed
in this work are highlighted with orange-colored boxes.

behind this approach and introduces the criterion used to decide where to
add new training points to an existing design. Section 4.3 introduces the
algorithms used to add a �xed number of new training points, imposed by
the user according to the available computational resources. In Section 4.4,
an extrapolation method is presented to deal with high dimensional problems.
The method and the di�erent algorithms are tested on several test functions
in Section 4.6. Finally, in section 4.7, an application to the HEG cylinder case
study is presented.

4.2 Basic Idea

A �rst simple implementation of the algorithm is directly derived from the
work of [Coupez, 2011; Coupez et al., 2013] on anisotropic adaptive meshing.
This will be the starting point to create the �nal �operating� algorithm. With
the original algorithm from Coupez and coworkers, the total number of mesh
nodes is �xed and does not change during the adaptive process. Therefore,
the number of nodes of the mesh does not increase, but nodes are only moved
in the remeshing process. The algorithm controls an error criterion along the
edges while respecting a �xed number of nodes in the mesh. A threshold global
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error is used to compute stretching and shrinking factors of the edges in order
to adapt the mesh by moving the existing nodes. In this work, instead, the
interest is basically in adding new points to the existing experimental design.
To do this, we decided to explore the idea of considering the existing training
points as nodes of a mesh of simplex elements. New points are added in such
a way that they minimize an error criterion computed on the constructed
mesh. Unlike in the original method of [Coupez, 2011; Coupez et al., 2013],
old mesh nodes will not be allowed to move all over the domain, since they
coincide with training points where the expensive computational model has
already been evaluated. Therefore, as it will be described in what follows, the
algorithm will be adapted to a node insertion approach.

Let us consider a scalar function of interest f(x), with x ∈ Rd, and let
us denote g(x) = ∇f(x) the gradient of the function. Let us suppose to
construct a Delaunay mesh of simplex elements using the training points as
element nodes. The number of total edges constituting the mesh is denoted by
ne. The error measure on each edge ek, with k = 1, . . . , ne, can be quadratically
de�ned, in analogy with the work in [Coupez et al., 2013], as the projected
gradient on that edge. Hence, the edge based error criterion is expressed as
the following quantity:

ek =

√√√√ d∑
j=1

(
(gj(xk

(2))− gj(xk(1)))(xk(2)j − xk(1)j )

)2

(4.1)

where xk
(1)

and xk
(2)

are the coordinates of the two nodes of the k-th edge,
and gj(.) is the j-th component of the gradient of the function of interest. In
practice, since the gradient of the actual model usually is not known in the
case of UQ applications, one could generally exploit the metamodel to compute
numerical gradients at the training points. For a Kriging surrogate model, as
for polynomial based metamodels and other surrogates, an analytical gradient
can be (tediously) computed. Then, a stretching factor sk can be de�ned for
each edge, starting from the computed error value ek and a target value etgt:

sk =

(
etgt
ek

) 1
2

. (4.2)

If the stretching factor is smaller than one, it means that the error is higher
than the target value, hence it is necessary to add a number nk of nodes evenly
spaced along the edge. This number is computed as:

Nk =

⌊
1

sk

⌋
= bnkc (4.3)

where bnkc denotes the �oor of the quantity nk, meaning the closer integer
smaller or equal than nk. The resulting algorithm is described in Algorithm
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Algorithm 5 Basic algorithm

1: Build the triangulation
2: Compute ek for each edge k = 1 . . . ne
3: Compute sk = (etgt/ek)

1/2 and Nk = b1/skc
4: for each edge k do
5: if Nk > 0 then
6: add Nk evenly spaced new points along the edge
7: add the new points to the DoE
8: end if
9: end for

5. This procedure can then be repeated several times in an iterative cycle to
increase sequentially the number of added training points. An illustration of
the node insertion approach along an edge ek is illustrated in �gure 4.2.

x
k

(1)

x
k

(2)

e
k

Figure 4.2: Graphical representation of the adaptation model: adding two
evenly spaced nodes to the edge ek.

With this algorithm, the user has no direct control on the number of points
added to the experimental design, and the relation between Nk and the im-
posed target error is not intuitive, neither it is intuitive to assign an appropriate
value to et to obtained a desired global metamodeling accuracy. A way to im-
prove this algorithm is to give the user the possibility to control directly the
number of added training points.
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4.2.1 Including metamodeling error into the error indi-

cator

In order to improve this adaptation approach, it is useful to add some informa-
tion about the accuracy of the metamodel to the error criterion. This is useful,
�rst of all, to add new training point where the metamodel is supposed to be
less accurate, and secondly because we do not want to put too much con�-
dence in gradients values where the metamodel is not accurate, since gradients
are computed numerically starting from the metamodel itself. Therefore, it is
interesting to re�ne also in regions where the gradient-based criterion is esti-
mated to be small, if the metamodeling error is high, since it is not possible to
trust completely the computed gradient value. Hence, a weighted combination
of metamodeling error and gradient error indicators is developed in this section.
Since we will couple this adaptation strategy with the metamodeling technique
introduced in Chapter 3, which is based on universal Kriging, the model-based
error estimate associated with this technique will be exploited. However, it is
important to notice that this adaptation method can be applied to whatever
surrogate modeling technique, if a proper local metamodeling error estimation
is available.

A simple local model-based error estimator for Kriging surrogate models
is given by the Gaussian process predictive variance (see Eq. (3.12)). Notice
however, that in absence of nugget e�ect this indicator is zero at the training
points, since the metamodel is an exact interpolation and that at these points
the exact function value is known. Hence, a possible way to account for the
metamodeling error in the computation of ek is to consider its value computed
at the center of each k-th edge, denoted xck = (xk

(1)
+ xk

(2)
)/2. Therefore,

denoting e(m)
k the edge-centered metamodeling error, we have:

e
(m)
k =

√
s2
k(x

ck). (4.4)

This value can now be re-scaled and summed to the existing gradient based
error criterion ek, de�ned in Eq. (4.1), to obtain a weighted error criterion
e

(w)
k :

e
(w)
k = α

ek
maxk (ek)

+ (1− α)
e

(m)
k

maxk (e
(m)
k )

(4.5)

where the weight α can be adjusted to control the relative in�uence of the two
criteria. Note that other ways to include a metamodeling error estimate in the
error criterion are available. For example, one possibility, not explored in this
work because considered too computationally demanding, could be to consider
the integral of the predictive variance along the edge as metamodeling error
measure. Another metamodeling error measure, this time available at each
node, can be the point-wise leave-one-out cross-validation error.
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4.3 Adding a �xed number of training points

Having the possibility to choose the number of added nodes can be advanta-
geous, because in this way the user will be able to �x this value according to
the available computational resources. For example, it becomes easier to par-
allelize, according to the available resources, the task of computing the actual
value of the function of interest, which can involve expensive simulations.

Two di�erent strategies for the implementation of this feature are available.
The �rst, denoted brute approach, is a more rigorous mathematical formulation
of the problem, but it translates in a more di�cult and expensive solving
algorithm, while the second, called fast approach tackles the problem directly
on the computational algorithm, resulting in a faster procedure. The two
approaches will be detailed in the next subsections.

4.3.1 Brute approach

A �rst rigorous attempt to insert a �xed number of nodes is developed. It con-
sists in formulating the adaptation problem as �nding the best combination of
positions of a �xed number Na of new nodes on the ne edges in order to min-
imize an imposed error criterion. We seek to solve the following optimization
problem:

N∗k = arg min(ϕ(Nk)) with ϕ(Nk) =
ne∑
k=1

1

2

ek
(Nk + 1)2

(4.6)

subject to: Na =
ne∑
k=1

Nk

where ek is the edge error and Nk is the number of nodes added on each edge.
The cost functions is designed in such a way that new points are added with
priority along edges where the error is higher. This optimization problem can
be quite tricky to solve, due to the discrete nature of the design variables
(Nk ∈ N). However, it can be noticed that, when Na < ne, it is possible to
consider in the optimization just the Na edges associated to a higher error
value, so the problem becomes:

N∗k = arg min(ϕ(Nk)) with ϕ(Nk) =
Na∑
k=1

1

2

ek
(Nk + 1)2

(4.7)

subject to: Na =
Na∑
k=1

Nk

At this point, a possible approach to solve the problem through the use of
brute force consists in seeking among all possible permutations of Na nodes
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on Na edges the one that minimizes ϕ(Nk). As it can be easily seen, this
approach is convenient just for small enough values of Na (i.e. Na ≤ 10), since
the number of total cases to be explored nt increases quickly:

nt =
(Na +Na − 1)!

(Na − 1)!Na!
(4.8)

The method showed to be powerful and very accurate for low dimensions prob-
lems. However, it might be di�cult to implement and expensive to solve for
increasing size of the dimensional space.

Improved numerical algorithm

A simple and e�cient algorithm to �nd a solution for the optimization problem
in equation (4.6) can be built by exploiting the structure of the objective
function. In fact, it is constructed as the sum of the di�erent edge errors,
which are constant known values during the optimization process, divided by
a monotone function of the number of new training points points added along
that edge. It is possible to imagine to add one new point at the time: the
contribution to the total error of the edge where the point is added will be
divided by 22, while the ones of the other edges will remain the same. Of
course, in this situation the solution that guarantees a higher decrease in the
value of the total objective function consists in adding one point along the
edge where ek is higher. If a second point needs to be added, it is possible
to follow the same process and add the new point on the edge where ek

(Nk+1)2

is maximum. This can be be iterated until the total desired number of new
training point has been reached and the constraint is satis�ed. This procedure
is resumed in Algorithm 6.

Algorithm 6 Improved brute algorithm

1: Build the triangulation
2: Compute ek for each edge k = 1 . . . ne
3: Initialize Nk = 0 and etmpk = ek for all k = 1 . . . ne
4: while

∑Ne
k=1Nk < Na do

5: Find the edge where etmpk is maximum
6: Update Nk = Nk + 1 and etmpk = etmpk/(Nk + 1)2

7: end while
8: for each edge k do
9: if Nk > 0 then
10: add Nk evenly spaced new points along the edge
11: add the new points to the DoE
12: end if
13: end for
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4.3. Adding a �xed number of training points

This algorithm has been introduced just lately in our research, therefore
it has not been thoroughly tested, but it should be able to give the exact
same results as what we called the �brute� approach, but at a signi�cantly
reduced computational cost. Note that other optimization approaches could
be explored, for example genetic algorithms with discrete design variables. We
tested an implementation of this method but without obtaining the desired
results.

4.3.2 Fast approach: edge-based length distribution method

The second approach consists in rewriting the optimization problem and mod-
ifying the iterative cycle of the original Algorithm 5 so that it adds, at each
iteration, a �xed number of points Na imposed by the user. While this in-
sertion technique does not necessarily converge, from a strict and rigorous
mathematical point of view, to the actual optimal solution, it highly decreases
the computational cost, especially for higher values of Na.

First of all, note that the optimization problem can be stated also with
respect to the stretching factors sk associated to the edges of the mesh, since
the number of points added on each edge can be related to the stretching
factors (and hence to the error estimates) through the relation Nk = bs−1

k c:

minimize ϕ(sk) =
ne∑
k=1

1

2

ek(
bs−1
k c+ 1

)2 (4.9)

subject to Na =
ne∑
k=1

bs−1
k c.

It can be noticed, however, that also in this case, although the design variable
is continuous, there is a function in the constraint that transforms it into an
integer, and so the same di�culties of the previous approach arise. In practice,
to overcome this problem, we decided to relax this constraint by removing the
�oor operator. Therefore, the rigorous formulation is replaced by a weaker and
more empirical formulation de�ned in the following way:

minimize ϕ(sk) =
ne∑
k=1

1

2
s2
kek (4.10)

subject to Ntot =
ne∑
k=1

s−1
k

where Ntot = Ns+Na, and Ns is the number of current training points. At this
point, it is possible to �nd a solution of the optimization problem by exploiting
the Lagrangian formalism:

L(sk, λ) =
1

2

ne∑
k=1

s2
kek + λ

( ne∑
k=1

s−1
k −Ntot

)
. (4.11)
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By putting to zero the derivatives of the Lagrangian, the following system is
obtained:

∂L
∂sk

= skek − λs−2
k = 0

∂L
∂λ

=
ne∑
k=1

s−1
k −Ntot = 0 (4.12)

which leads to:

sk =
( λ
ek

) 1
3

(4.13)

with the multiplier

λ =

(∑ne
k=1 e

1
3
k

Ntot

)3

. (4.14)

This process will add new points where it is most needed i.e. where the error is
most important. However, clearly, the generated solution will not necessarily
respect the exact number of nodes as a truncation to the integer part of s−1

k is
applied. Consequently, the solution of problem (4.10) will result in an adap-
tation algorithm that adds a number of points not necessarily equal to Na,
since the rigorous formulation has been replaced by a weaker one. Therefore,
in order to meet the constraint on the number of nodes, a correction part has
been implemented in Algorithm 7. It consists in repeating the cycle of node
insertion where the estimated error is most important as long as the target
number of nodes has not been reached. The implementation of the algorithm
is described in Algorithm 7.

4.4 Extrapolation technique for high dimensional

inputs

A drawback of the direct derivation of the adaptation methodology from the
mesh adaptation technique is that, in order to be able to adapt in the whole
domain, it is necessary to have nodes (training points) also in each vertex of the
hypercube representing the domain when each input is uniformly distributed.
However, this can be really limiting when the size of the input variables in-
creases, since the number of vertices of the hypercube rapidly increases as 2d,
and subsequently the number of extra training points in which is necessary to
evaluate the function of interest augments.

A possible simple solution for this problem, inspired by the work of [Wit-
teveen et Iaccarino, 2012] on simplex stochastic collocation, can be to consider
only training points inside the domain and then exploit an extrapolation to
cover the remaining part up to the corners and the bounds. The extrapolation
procedure can be structured as follows. First, a metamodel is trained on the
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Algorithm 7 Fixed Na adaptation, fast approach

1: Calculate ek for each edge k = 1 . . . ne

2: Compute λ =
(∑ne

k=1

e
1/3
k

Ntot

)3
, where Ntot = Nt +Na

and sk =
(
λ
ek

)1/3

3: Compute Nk = b 1
sk
c

4: while k ≤ ne and
∑

k npk < Na do
5: if (Nk > 0) then
6: for j = 1 : Nk do
7: npk = npk + 1
8: if

∑
k np = Na then

9: EXIT
10: end if
11: end for
12: end if
13: k = k + 1
14: end while
15: if

∑
k npk < Na then

16: Compute snewk = 1
sk
−Nk

17: Sort the edges k according to their value of snewk in decreasing order and
compute Nnew

k = b 1
snewk
c+ 1

18: while k ≤ nedges and
∑

k npk < Na do
19: if (Nnew

k > 0) then
20: for j = 1 : Nk + 1 do
21: npk = npk + 1
22: if

∑
k np = Na then

23: EXIT
24: end if
25: end for
26: end if
27: k = k + 1
28: end while
29: end if
30: for each edge k where npk > 0 do
31: add npk evenly spaced new points along the edge
32: end for

initial design of experiments, which can be a Latin Hypercube or quasi Monte
Carlo design. Then, the triangulation of the domain is built including also
the corners in the set of nodes. It is important to note that the true function
values are not computed at the corner points. Thus, two di�erent types of
edges will be considered: the interpolation edges, constructed by joining two
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training nodes, and the extrapolation edges, for which at least one of the two
nodes is a corner of the domain (Figure 4.3). At this point, it is important

Figure 4.3: Example of the extrapolation technique: the black solid lines rep-
resent the edges where the real function value is known for both nodes, while
red dashed lines represent extrapolated edges, where the function values is
extrapolated in at least one of the nodes.

to highlight the fact that, since the actual value of the QoI is not known on
the extrapolation edges, one could be less con�dent about the gradient value
computed in the error criteria. Hence, when computing the global error, it is
possible to put a smaller weight (or even a null weight) on the gradient part,
with respect to the interpolation edges. Then the procedure for adding the
new nodes is exactly the same as described in Algorithm 7. While the normal
approach is supposed to work at least as �ne, or even better than the extrap-
olation one for smaller sizes of the input, this last should behave better when
the number of input variables starts to increase, and the number of corners
becomes comparable to the size of a DoE to get a su�ciently good metamodel
of the QoI.

4.5 Parameters of interest

In this section, as also done in the previous chapter, a brief overview is given
on the parameters of the adaptation algorithm that need to be set by the user,
with their role and suggestions on a possible range of values.

Most of the parameters whose value needs to be imposed by the user in
the global algorithm, accounting for both the PDD-UK surrogate model and
the adaptation technique, as in Figure 4.1, are related to the sparse PDD
algorithm, and a discussion can be found in Section 3.3.1. Concerning the
adaptation algorithm, the two main parameters that need to be assigned are
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Name Possible values Role

Na [1,∞] �xed number of added points in re�nement algorithm

α [0, 1] error weight in re�nement algorithm

Table 4.1: Parameters chosen by the user in the algorithm for the adaptation
of the ED.

the number of added points Na, and the error weight α. The normal opera-
tional use of the adaptation algorithm would be perform only one or very few
iterations of the adaptation, and choose Na to add a number of nodes accord-
ing to the available computational resources, if the accuracy of the metamodel
trained on the initial experimental design is not satisfactory. A comparison of
computations at di�erent values of α is proposed in Section 4.6.

4.6 Numerical experiments

In this section the proposed strategy to adaptively add new points to the
Experimental Design is assessed. Firstly, the fast approach is compared to
the more rigorous one to verify its robustness. Then, several iterations of
the adaptation algorithm are applied to di�erent test functions to test its
convergence in RMSE sense. It has to be noticed that in a normal application,
just few iterations of the algorithm are likely to be performed, since, if the
adequate computational power is available to evaluate the QoI in a lot of
training points, it would be more advisable to generate a bigger Experimental
Design from the beginning. Notice that for each new ED, the surrogate model
is trained completely from scratch, meaning that both the basis functions and
the hyperparameters are recomputed.

4.6.1 Comparison between brute and fast approach

In this �rst part of the results related to the adaptation strategy, a comparison
between the optimal but computationally expensive approach presented in
Sec. 4.3.1 and the faster one described in 4.3.2 is presented. The analysis is
performed on the following 2D test function, derived from the 1D test case in
Table 3.2: The function is evaluated in the domain x ∈ [−1, 1].

In Figure 4.5, results obtained starting from an initial LHS design of 24
points (20 actual LHS points plus the four corners of the bidimensional domain)
are compared. Comparisons between the brute (a,c,e) and the faster approach
(b,d,f) are performed for three di�erent values of α, i.e. 0.2, 0.5 and 0.8. Note
that curves relative to di�erent values of Na are shown in di�erent colors. As it
is possible to notice, the obtained solutions are, most of the times, practically
identical between the two algorithms for both di�erent values of the parameters
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Na and α. Sometimes, as it can be seen in Figure 4.5b for Na = 2, the
convergence performance of the faster algorithm is better, even if the reasons
are not clear.
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Figure 4.4: 2D testcase: Comparison between the computational cost of brute
and fast approach, initial DoE of 24 points

Concerning the computational cost of the two algorithms, �gure 4.4 shows
the trend of the CPU time when increasing the value of points added at each
iteration Na for di�erent values of α. It can be seen that, as expected, the
fast algorithm outperforms the brute approach for Na > 10. In fact the brute
approach becomes almost unusable in this conditions. Another possible re-
mark is that, for the fast algorithm, the computational time decreases with
Na, because less iterations of the adaptation algorithm are required, which
includes also the construction of the Delaunay triangulation of the domain.
This di�erence in computational cost is expected to increase with the size of
the input space.

The same convergence analysis can be repeated for a bigger training plan,
this time of 44 training points. The behavior, as shown in Figure 4.6, is
generally the same, with the fast algorithm performing at least as good as the
other one.

4.6.2 Convergence

As stated in the previous section, the fast algorithm is able to perform ade-
quately well and allows a bigger �exibility and lower computational cost with
respect to the so-called brute approach. Using this assumption, the fast al-
gorithm is then retained for the following analysis. The adaptive part of the
algorithm is then tested on TEST 2, 3 and 4 (see Table 3.2). Note that the
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(a) brute, α = 0.8
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(b) fast, α = 0.8
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(c) brute, α = 0.5

20 40 60 80 100 120 140
0.5

1

1.5

2

2.5

Ns

R
M

S
E

 

 

Na=2
Na=5
Na=10

(d) fast, α = 0.5
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(e) brute, α = 0.2
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(f) fast, α = 0.2

Figure 4.5: 2D testcase: Comparison between brute and fast approach, initial
DoE of 24 points
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(a) brute, α = 0.8
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(b) fast, α = 0.8
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(c) brute, α = 0.5
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(d) fast, α = 0.5
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(e) brute, α = 0.2
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Figure 4.6: 2D testcase: Comparison between brute and fast approach, initial
LHS of 44 points
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convergence is systematically assessed by repeating the adaptation process
starting from di�erent LH designs of same size, and comparing then the ob-
tained RMSE mean value and the standard deviation with the ones one would
get with standard LHS designs of increasing size. Note also that the number
of points added at each iteration is a choice of the user. A sensitivity over
this parameter is provided in the following to illustrate the in�uence on the
convergence.

TEST 2: 2D test function

It is �rst possible to state the convergence of the algorithm for the 2-dimensional
test function described in Equation 3.45. The convergence test is done by re-
peating the adaptation process starting from 15 di�erent LH design of same
size, and comparing the obtained RMSE mean value and the standard devia-
tion with the ones one would get with normal LHS design of increasing size.
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Figure 4.7: TEST 2: Convergence of the mean value of the RMSE and corre-
sponding deviation computed with 15 di�erent starting LHS DoE. The result
of a simple increase of LHS point is compared with adaptation at di�erent
values of α coe�cient

In Figure 4.7, it can be seen that, for this test case, the mean error related
to the adaptive strategy converges faster than the the one of simple LHS,
especially for α = 0.5 and α = 0.2, namely when taking into account also the
Kriging estimation of the metamodeling error. Furthermore, the adaptation
in this particular test case delivers more robust results, since variance of the
RMSE is smaller. Note also that a consistent reduction is observed for both
cases with 10 and 20 points added for each iteration.
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4. Adaptive re�nement of the Experimental Design by mesh adaptation

TEST 3: Ishigami function

It is possible to repeat the same convergence test also for the TEST 3 function
(see Table 3.2). Figure 4.8 shows the obtained results. Also for this test
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Figure 4.8: TEST 3: Convergence of the mean value of the RMSE and corre-
sponding deviation computed with 15 di�erent starting LHS DoE. The result
of a simple increase of LHS point is compared with adaptation at di�erent
values of α coe�cient

case, the adaptive strategy converges faster than the simple LHS, for the three
selected values of the weight α. Notice also that here a fairly high number
of points has been added at each iteration of the adaptation step, namely 50
points, and the resulting convergence curve is stable. However, in this test
case, the RMSE variance of the adapted designs is not clearly smaller than the
one of the simple LHS designs to which we compared.

TEST 4: 8D Sobol' function

Finally, a test is performed on the TEST 4 function introduced in Table 3.2, to
verify if convergence is retained also on a higher-dimensional case. In this case,
the extrapolation method presented in 4.4 is assessed. Results for this test-case
are reported in Figures 4.9, 4.10 and 4.11. As it can be seen in 4.9a, the normal
approach that puts nodes in the corners of the domain does not converge at
least as fast as LHS, probably due to the fact that a relatively high number of
training points with respect to the size of the initial DoE (256 over 320) needs
to be put in the corners of the domain, leaving too little information to train an
adequate metamodel inside the domain. Therefore, the adaptation is repeated
with the extrapolating approach in Figure 4.9b, where all the training points
are strictly inside the domain. This is able to improve results and to provide a
convergence which is, for the �rst iteration, much better than the one obtained
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Figure 4.9: TEST 4: Convergence of the mean value of the RMSE and corre-
sponding deviation computed with 14 di�erent starting LHS DoE of 320 points.
The result of a simple increase of LHS points is compared with adaptation at
di�erent values of α coe�cient. A comparison is done between the normal
algorithm (a) and the one with extrapolation near the corners of the domain
(b).
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Figure 4.10: TEST 4: Convergence of the mean value of the RMSE and corre-
sponding deviation computed with 7 di�erent starting LHS DoE of 270 points.
The result of a simple increase of LHS point is compared with adaptation at
di�erent values of α coe�cient. A comparison is done between the addition of
100 and 50 points per iteration.

by just increasing in the size of the LHS plan. This extrapolating approach
also allows to reduce the number of training point to a number which is lower
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4. Adaptive re�nement of the Experimental Design by mesh adaptation

than (or very close to) the number of corners, as shown in Figure 4.10 and
4.11. It can be however noticed that the convergence of the adaptive approach
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Figure 4.11: TEST 4: Convergence of the mean value of the RMSE and corre-
sponding deviation computed with 7 di�erent starting LHS DoE of 220 points.
The result of a simple increase of LHS point is compared with adaptation at
di�erent values of α coe�cient.

for this 8-dimensional case rapidly tends to be almost �at when adding 100
new points for each iteration. It is noticeable instead (Figure 4.10b and 4.11),
when adding 50 samples per iteration, that the metamodeling error decreases
generally faster than with the normal LHS: the �rst iteration decreases strongly
the error, and, while the next iteration tends to realign to LHS, the trend is
however better.

4.7 Application case: HEG cylinder

The �nal result presented in this chapter is about the application of the DoE
adaptation technique to the application case of the HEG cylinder. The pur-
pose is to test how the proposed approach behaves on a function issued from
an engineering application, whose evaluation is quite expensive, since associ-
ated to CFD runs. Here we will concentrate only on the adaptation of an
experimental design for the stagnation pressure, where the accuracy of the
CFD simulations is higher. Since the results of the sensitivity analysis per-
formed in Section 3.6.2 showed that only two variables contribute actively to
the variation of the output (namely the freestream density and velocity), and
given the fact that the construction of a Delaunay triangulation can be quite
expensive in an 8-dimensional space, we decided to perform the adaptation
only on the two-dimensional space constituted by ρ∞ and u∞. In view of
the reduced dimensionality of the domain, and the fact that all the surrogate
models analyzed in Chapter 3 were well converged even in the full space (see
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Figure 3.8), we decided to start the adaptation process from a small initial
design of experiments of only 10 training points, including the four corners of
the domain constituted by the uniform prior bounds in Table 1.3. The com-
putational model needs to be evaluated at each training point, obtaining the
training set in Figure 4.12. A �rst PDD-UK surrogate is trained on the initial
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Figure 4.12: Evaluation of the quantity of interest, i.e. the stagnation pressure,
in the 10 points composing the initial Latin Hypercube design.

experimental design. Plots of the prediction and the predictive variance can
be seen respectively in Figures 4.13a and 4.13b. As it can be noticed from
the prediction on this �rst surrogate model, the function of interest appears to
be very simple and smooth, with a monotone trend. It is important to notice
that it behaves as a ridge function, appearing almost constant along a certain
direction. This will be useful in the next chapter.

It is now possible to run the adaptation algorithm. Firstly a triangulation
is built on the existing training points. Gradient is evaluated at each training
point and metamodeling error at each edge midpoint, and the weighted error
criterion is computed for a value of the weight α chosen by the user. Then, the
improved version of the brute approach is run to select the new training points.
We chose to add 5 and 10 new training points to the existing DoE, to compare
the results. Figure 4.14a shows the obtained triangulation and the location
of the new training points, when adding 10 points for a choice of α = 0.2,
meaning that more importance is given to the reduction of the metamodeling
error estimate. This choice can be motivated by the observation that the
function of interest is monotone and does not present any complex feature.
Just for comparison sake, a test with α = 0.8 is also run.

At this point, the output of the computational model is evaluated at each
new training point, and the whole augmented training set is used to build a
new PDD-UK surrogate. It is then evaluated at 288 test points, where the
actual model output is known, and the prediction output is used to compute
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Figure 4.13: PDD-UK surrogate model trained on the initial design of experi-
ments. The surrogate prediction is plotted in (a), and the predictive variance
in (b). Sub�gure (c) shows the gradient-based error criterion and (d) the
weighted error for α = 0.2 criterion at each edge center

the RMSE. Figure 4.14b shows the RMSE of the adapted design compared
to the values obtained for di�erent normal LHS designs of di�erent sizes. It
can be noticed that one step of the adaptation process is able to produce
an experimental design with a lower metamodeling error than a simple Latin
Hypercube training sample with the same number of points, and in the case of
5 new points, of almost the same value than with a training set twice as big.
Curiously, when adding 5 points, the choice of α = 0.8 performed better than
α = 0.2, while when adding 10 points the opposite is true.
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1.4 1.5 1.6 1.7

x 10
−3

5400

5600

5800

6000

6200

6400

ρ [kg/m3]

u 
[m

/s
]

(a) Starting design

10 15 20 25 30
N

s

46

48

50

52

54

56

58

60

R
M

S
E

normal LHS
10pt a=0.2
10pt a=0.8
5pt a=0.2
5pt 5a=0.8

(b) Surrogate model

Figure 4.14: Triangulation built on the starting experimental design and po-
sition of the new 10 training points added with α = 0.2 (a). Sub�gure (b)
shows the comparison of the RMSE obtained with adaptation and the values
associated to simple LHS design.

4.8 Conclusions

In this chapter, a technique derived from anisotropic mesh adaptation has been
used to adaptively add new points to an exiting experimental design for the
construction of a surrogate model. The method needs the construction of a
simplex triangulation in the space of the uncertain inputs, using the existing
training points as the nodes of the grid. It then exploits an error criterion,
based on function gradients and surrogate modeling error, to adaptively add
new training points along the edges of the grid maximizing the criterion. From
several tests performed on analytic functions with the PDD-UK surrogate,this
method produces, on average, more accurate surrogate models than a normal
LHS design of the same size if the number of added points is not too large.
When several iterations of the technique are performed, the accuracy tends to
converge to the simple LHS designs. This methodology could be useful in case
a surrogate trained on an initial experimental design is not accurate enough,
and a relatively small number of new training points needs to be adaptively
added to reduce the metamodeling error under a certain threshold.
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Chapter 5

Dimension reduction by Active
Subspaces for Bayesian inference

An emerging way to perform dimensionality reduction is by exploiting

the active subspace of a function of interest. In this chapter, after de�n-

ing active subspaces, they are exploited for dimensionality reduction ap-

plied to Bayesian inverse problems. A novel approach to use them for

the problem of interest is proposed and compared to the one based on

the mis�t function, introduced in [Constantine et al., 2016b]. The two

methodologies are compared on the HEG cylinder application case.

5.1 Introduction

Most of global sensitivity analysis methods usually measure the variation of
the output along the input coordinates, and then use these measures to rank
the coordinates. This is done, for example, when looking at �rst-order Sobol'
sensitivity indices (see Chapter 2). Many multivariate functions in engineering
models vary mainly along a reduced number of directions in the space of input
parameters [Constantine et al., 2016a]. When these directions correspond to
coordinate directions, global sensitivity measures are very e�ective to deter-
mine the most in�uential parameters. However, some functions vary mostly
along directions of the input space that are not aligned with the coordinate
system of the input space. In these cases, these methods can perform poorly.
Let us take, as a simple example, the following function:

f(x, y) = (0.32x+ 0.68y)2 ,

with x, y ∈ [−1, 1]. As it can be noticed form �gure 5.1, f varies the most along
the direction (0.32, 0.68), while it is constant along the direction (−0.32, 0.68).
This bivariate function can be actually consider univariate once the coordi-
nate system has been rotated appropriately. Functions showing this behavior
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Figure 5.1: This function f(x, y) = (0.32x+ 0.68y)2 varies the most along the
direction (0.32, 0.68), while it is constant along the perpendicular direction
(−0.32, 0.68).

are often referred to as ridge functions. This suggests an alternative form of
dimension reduction: rotate the coordinates such that the directions of the
strongest variation are aligned with the rotated coordinates, and construct a
response surface using only the most important rotated coordinates. Stagna-
tion pressure and heat �ux for the HEG cylinder as a function of freestream
density and velocity, as can be seen in Figure 5.2, also behave like ridge func-
tion, as many other physical functions of interests, as discussed in [Constantine
et al., 2016a].
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Figure 5.2: Ridge behavior for stagnation pressure and heat �ux as function
of freestream density and velocity for the HEG cylinder.
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[Constantine et al., 2014; Constantine, 2015] proposed a method for detect-
ing and exploiting the directions of strongest variability of a given function,
called active subspaces, to construct an approximation of the function on a
low-dimensional subspace of inputs. These directions are exploited by �rst
projecting the input space to the low-dimensional subspace and then approx-
imating the function on this active subspace. This kind of dimensionality
reduction can be very e�ective if the function of interest shows a ridge behav-
ior, allowing a smaller reduced input space compared to other more classical
techniques like Sobol' indices.

Since the functions of interest for the study case of the HEG cylinder show
a ridge behavior, we are interested in exploiting active subspaces to build a
low-dimensional surrogate model and use it for direct and inverse uncertainty
propagation. The possibility to work in a very low dimensionality is very
advantageous for the training of a surrogate model, and also for the choice of
an adequate set of proposal distribution widths ωi (in Algorithm 2) allowing the
MCMC algorithm used in the Bayesian inverse problem to e�ciently explore
the posterior space and converge in a number of iterations that is not too large.

In this chapter, active subspaces are �rstly de�ned in 5.2. Then, in Sec-
tion 5.3 a method for detecting active subspaces for computational models is
presented. An approach to exploit active subspaces to accelerate Bayesian in-
ference is proposed in 5.4 and compared with another approach presented in
the recent literature [Constantine et al., 2016b]. Finally, in Section 5.5.4, the
two approaches are used for the freestream reconstruction in the HEG cylinder
study case.

5.2 Active Subspaces

To review active subspaces, we closely follow [Constantine, 2015, Chapter 3]
and [Constantine et al., 2014]. We denote a given function of d input variables
f : Rd → R, where x ∈ Rd is the vector of input parameters, with a joint prob-
ability density function σ : Rd → R, and f(x) ∈ R is the output of interest.
Assume that f is continuous and di�erentiable in the support of σ, with con-
tinuous and square-integrable (with respect to σ) derivatives. Note that there
is nothing inherently linked to stochastic inputs about active subspaces: we
chose to perform the analysis using random inputs and tools from probability
theory such as expectations since this work is focused on uncertainty quan-
ti�cation and probability notation gives interesting interpretations, but active
subspaces can be found also for functions with deterministic inputs, and ex-
ploited in deterministic applications such as design optimization [Lukaczyk
et al., 2014].
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Let us de�ne the d× d symmetric, positive semide�nite matrix C as:

C =

∫
∇f(x)∇f(x)T σ(x) dx , (5.1)

where the gradient of f is de�ned by the column vector∇f(x) = ( ∂f
∂x1

. . . ∂f
∂xd

)T .
C can be interpreted as the uncentered covariance of the gradient vector. Since
C is symmetric and positive semide�nite, it admits a real eigenvalue decom-
position, that is:

C = WΛW T , (5.2)

where W is the orthogonal matrix of eigenvectors and Λ is diagonal matrix
of non-negative eigenvalues Λ = diag(λ1, . . . , λd) arranged in descending order
λ1 ≥ · · · ≥ λd ≥ 0. The eigenpairs of this matrix are able to reveal structures
in the function f , since (see [Constantine, 2015, Lemma 3.1]),

λi =

∫ (
wT
i ∇f(x)

)2
σ(x) dx, i = 1, . . . , d. (5.3)

In words, the i-th eigenvalue measures the average, squared directional deriva-
tive of f along the corresponding eigenvector. Thus, if λi > λj, then perturbing
x along wi changes f more, on average, than perturbing x along wj. More-
over, if C is rank de�cient, meaning that has some null eigenvalues, then its
null space contains directions in the space of x along which f is constant.

With eigenvalues arranged in decreasing order, it is possible to separate
them into a set that corresponds to greater average variation and a set corre-
sponding to smaller average variation of f :

Λ =

[
Λ1 0
0 Λ2

]
and W =

[
W1 W2

]
, (5.4)

with Λ1 = diag(λ1, . . . , λn), with n < d, andW1 the collection of n eigenvectors
corresponding to the eigenvalues Λ1. Note that the eigenvectors W de�ne a
rotation of Rd and consequently of the domain of f . Therefore, it is possible
to de�ne the following rotated coordinates

y = W T
1 x (5.5)

z = W T
2 x , (5.6)

with y ∈ Rn and z ∈ Rd−n. Thanks to this de�nition and the orthogonality of
W , it is possible to decompose x in the following way

x = WW Tx = W1W
T
1 x +W2W

T
2 x = W1y +W2z , (5.7)

and the function can be rewritten showing its dependency on the rotated vari-
ables:

f(x) = f(W1y +W2z). (5.8)
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An important property, taken from [Constantine et al., 2014, Lemma 2.2], can
be derived by this new description of the function:∫

(∇yf)T∇yf σ(x) dx =
n∑
i=1

λi (5.9)

∫
(∇zf)T∇zf σ(x) dx =

d∑
i=n+1

λi. (5.10)

This property motivates the use of the name active subspace for the subset y
of the rotated coordinates. In fact, y is the subset of directions de�ned by the
columns ofW1 along which f varies more on average, while along the directions
z de�ned by the columns of W2 the function shows small average variations.
Note that, in the extreme case where the eigenvalues λn+1, . . . , λd are all zero,
equation (5.10) implies that the gradient along z is zero everywhere in x and
therefore the function is z-invariant.

Active subspaces can be exploited to �nd an approximation of reduced
dimensionality for a function that is z-invariant or nearly z-invariant. They
allow to �nd an n-dimensional, z-invariant approximation of the original d-
dimensional function. This is useful when d is too high to allow a�ordable UQ
study or surrogate model training. For an arbitrarily �xed y, the best guess
one can make at the value of f is its average over all values of x that map to
y [Constantine et al., 2014]. This is the conditional expectation of f given y.
Therefore, we can de�ne the function g that depends only on y by

g(y) = E(f |y) =

∫
z

f(W1y +W2z) πz|y(z) dz , (5.11)

with the conditional density πz|y(z) de�ned in the standard way from the joint
density of the rotated variables π(y, z) = σx(W1y+W2z). The function g can
be used to approximate f at a given x with the following construction:

f(x) ≈ g(y) = g(W T
1 x). (5.12)

For de�nition, each evaluation of g requires an integral of the actual model
with respect to the inactive variables z. However, if f is nearly z-invariant,
it means that it is nearly constant along the coordinates z. Thus, in many
practical applications no integrations are needed to approximate the function,
as will be shown in Section 5.3.

It is �nally possible to build a surrogate model ĝ of the lower-dimensional
function g. This allows to construct a response surface with respect to the few
variables y ∈ Rn instead of the original variables x ∈ Rd.

f(x) ≈ g(W T
1 x) ≈ ĝ(W T

1 x). (5.13)
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5.3 Finding active subspaces for dimension re-

duction

When simulation codes have gradient capabilities (e.g., adjoint-based deriva-
tives or algorithmic di�erentiation [Griewank et Walther, 2008]), then it is
possible to estimate C from (5.1) with numerical integration such as by simple
Monte Carlo. Then the eigenpairs of C's estimate provide estimates of the
active subspaces [Constantine et Gleich, 2015]. However, many complex sim-
ulation codes do not have subroutines for gradients. In this case, we resort to
modeling the gradients using function evaluations. For example, �nite di�er-
ence approximations of partial derivatives are the slope of a plane that inter-
polates two nearby function evaluations. The approach outlined in Algorithm
8, based on a least-squares-�t linear approximation of f(x), has been surpris-
ingly e�ective for uncovering one-dimensional active subspaces in a range of
applications from integrated hydrological modeling [Je�erson et al., 2015] to
multiphysics scramjet modeling [Constantine et al., 2015] to satellite system
modeling [Hu et al., 2016].

Algorithm 8 Linear model-based approach for estimating a one-dimensional
active subspace; see [Constantine, 2015, Algorithm 1.3].

1. Choose N > d+ 1 sampling points xj ∈ Rd in the support of σ(x).

2. For each xj, run the simulation model to compute fj = f(xj).

3. Find the coe�cients â0 and â of the least-squares-�t linear model such
that

fj ≈ â0 + âTxj, j = 1, . . . , N. (5.14)

4. Compute the vector ŵ that is the normalized gradient of the linear model,

ŵ = â/‖â‖, (5.15)

where ‖ · ‖ is the vector 2-norm.

There are no eigenvalues computed in Algorithm 8, but the vector it com-
putes often de�nes a one-dimensional active subspace. The algorithm is moti-
vated as follows. Suppose that f(x) is nearly linear and its gradient is nearly
constant, i.e., for some constants a0 ∈ R and a ∈ Rd,

f(x) ≈ a0 + aTx, ∇f(x) ≈ a. (5.16)

Then C from (5.1) becomes

C ≈
∫

a aT σ(x) dx = a aT = w λwT , (5.17)
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where w = a/‖a‖ and λ = ‖a‖2. This linear model-based approach is closely
related to the ordinary least-squares method [Li et Duan, 1989] for su�cient
dimension reduction [Cook, 1998] in statistical regression. Although the al-
gorithms across the two literatures are the same, the interpretation di�ers
substantially between methods for data sets with random noise compared to
methods for deterministic computer simulations.

To verify that the computed vector ŵ from Algorithm 8 has identi�ed a
one-dimensional active subspace, it is possible to make a summary plot, which
is a scatter plot of fj versus the rotated coordinate ŵTxj. Such plots are
common in regression graphics for identifying low-dimensional structures in
regression data sets [Cook, 1998], and they are related to statistical techniques
for projection pursuit [Huber, 1985]. If the plot reveals a strong univariate
trend, then we can con�dently approximate

f(x) ≈ ĝ(ŵTx), (5.18)

where ĝ : R → R is �tted (e.g., a least-squares-�t polynomial) with the pairs
(ŵTxj, fj), hence it is already usable as surrogate model of the function of
interest with respect to the active variable. The plot enables the engineer to
assess the quality of the �tted surface visually without the need to interpret
complicated response surface quality metrics.

5.4 Exploiting Active Subspaces in MCMC for

Bayesian inversion

The dimensional reduction enabled by active subspaces can be very useful in
both forward and inverse UQ. The forward uncertainty propagation takes di-
rect advantage of the presence of active subspace in the function of interest
because this allows to train a surrogate model on a lower-dimensional space, re-
ducing the drawbacks caused by the curse of dimensionality. Active subspaces
can also be exploited to accelerate Markov Chain Monte Carlo (MCMC) al-
gorithms (Section 2.5.1) to draw samples from the posterior distribution of
Bayesian inference, even if more care has to be taken on some aspects. For
this reason, in this section two approaches are detailed to exploit active sub-
spaces in MCMC for Bayesian inversion. The �rst aims to reduce the input
dimensionality in the so-called data mis�t function 5.4.1, while the second in
the parameter-to-observable map which the computational model constitutes
5.4.2.

5.4.1 Active subspace of the data mis�t function

Let us recall the likelihood function `(d|x) for independent additive mea-
surement noise, describe in equation (2.30). Assume the measurement noise
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η to be a Gaussian vector with zero mean and diagonal covariance matrix
diag(σ2

1, . . . , σ
2
nm), with σ2

j representing the amplitude of the measurement er-
rors for each of the nm independent measurements. In this case, the likelihood
reads:

`(d|x) =
nm∏
j=1

pηj(dj − fj(x)) ∝ exp

(
−

nm∑
j=1

(
dj − fj(x)

)2

σ2
j

)
. (5.19)

As suggested by [Constantine et al., 2016b] and also by [Cui et al., 2014], to
reduce the dimensionality of the MCMC related to a Bayesian inversion, it is
possible to look for the active subspaces of the so-called data mis�t function
m(x), or just mis�t, that is the negative log-likelihood:

m(x) =
nm∑
j=1

(
dj − fj(x)

)2

σ2
j

. (5.20)

For a given point in the parameter space, the mis�t measures how far the model
observations are from the given data. When using the mis�t to de�ne the active
subspace, the the inactive subspace identi�es the directions along which the
likelihood is relatively �at. This means that perturbing the parameters along
the inactive variables changes the likelihood relatively little, on average, and
so that the data will inform mostly the active directions.

From a theoretical point of view, to compute the averages de�ning the ma-
trix C in (5.1) we need to integrate using the prior distribution σ(x), which re-
quires a careful interpretation of the data d. In the measurement errors model
(2.29) for Bayesian inference, d is a random variable whose mean depends on
x. Therefore d and x are not independent, and so we can not integrate against
the prior without changing d as x varies. However, if we treat the realization
d as a �xed and constant vector, then we can perform the integral de�ning
C without any problem. By doing this, C and all derived quantities can not
be interpreted anymore as random variables conditioned on d, but they are
functions of d. Hence, in practice, when changing set of data, it is necessary
to recompute the active subspace for the mis�t.

Once the active subspace y for the mis�t function have been identi�ed and a
surrogate m̂(y) have been trained, it is possible to exploit this low-dimensional
structure in an MCMC. Algorithm 9 is a simple Metropolis-Hastings algorithm
modi�ed to run in the n-dimensional active subspace of the mis�t function
instead than in the d > n original variables.

5.4.2 Active subspaces of the parameters-to-observables

map

In this section, we introduce another way to use active subspaces for Bayesian
calibration. It exploits the low-dimensional structure in the parameter-to-
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Algorithm 9 A Metropolis-Hastings MCMC (see [Kaipio et Somersalo, 2005,
Chapter 3.6.2]) on the active variables using the mis�t surrogate m̂(y) and the
kernel density estimate of the prior π̂y.
Given an initial point y0 ∈ Rn. For k = 0, 1, 2, . . . ,

1. Draw y′ ∈ Rn from a symmetric proposal distribution centered at yk.

2. Compute the acceptance ratio,

α(y′,yk) = minimum

(
1,

exp(−m̂(y′)) π̂y(y′)

exp(−m̂(yk)) π̂y(yk)

)
. (5.21)

3. Draw t uniformly from [0, 1]. If α(y′,yk) > t, set yk+1 = y′. Otherwise,
set yk+1 = yk.

observable map revealed by the active subspaces to enable e�cient Bayesian
inversion with MCMC. In contrast to the approach in Section 5.4.1, here nm
one-dimensional active subspaces in the parameter-to-observable maps are ex-
ploited, one for each output, corresponding to the measured quantities.

Let us suppose that each quantity of interest fj, with j = 1, . . . , nm, de-
pends on just one active variable. This hypothesis is reasonable for many
engineering systems, as mentioned in Section 5.3. The directions ŵj that de-
�ne these active variables are in general correlated but not identical. De�ne
the matrix W ∈ Rd×nm as the collection of the vectors de�ning the active
directions of each output

W =
[
ŵ1 . . . ŵnm

]
, (5.22)

and let V ∈ Rd×(d−nm) contain a basis for the null space of W T . For conve-
nience, we orthogonalize the basis for the range of W . Let

W = UR, with U ∈ Rd×nm , R ∈ Rnm×nm , (5.23)

be the tall QR factorization of W , where U has orthogonal columns and R
is upper triangular. Any parameter point x ∈ Rd can be decomposed into a
projection on the range ofW and projection onto its orthogonal complement,

x = UUTx + V V Tx = Uy + V z, (5.24)

where y = UTx and z = V Tx. From the QR decomposition in (5.23), any
point y in the active variables space can be written

y = UTx = R−1W Tx, (5.25)
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which implies  r1y
. . .

rnmy

 = Ry = W Tx =

 ŵT
1 x
. . .

ŵT
nmx

 , (5.26)

where rj are the rows of R. In other words, given a sample of y, we get the
arguments to the response surfaces by a linear transformation with R.

Let us denote with ĝj(ŵT
j x) the response surfaces of the form in equation

(5.18) with vectors ŵj computed from Algorithm 8. The summary plots for
one-dimensional active subspaces provide strong evidence that perturbing z
in (5.24) has little-to-no e�ect on either quantity of interest. Therefore, such
perturbations should not a�ect the likelihood (5.19). Then the likelihood in
the active variables `y(d|y), derived from (5.19), is

`y(d|y) ∝ exp

(
−

nm∑
j=1

(
dj − ĝj(rjy)

)2

σ2
j

)
. (5.27)

In other words, we can ignore the variables z for the Bayesian inversion, since
we cannot calibrate them anyway.

To exploit this lower-dimensional structure, we need to derive also a prior
for the active variables as follows. For the prior probability density σ(x) on
the parameter space, we have

σ(x) = σ(Uy + V z)

= π(y, z)

= πy(y)πy|z(z|y),

(5.28)

where π(y, z) is a joint density on the active and inactive variables, πy is the
marginal density on the active variables, and πz|y is the conditional density
on the inactive variables given the active variables. The change of variables
is straightforward since the determinant of the Jacobian

[
U V

]
of the linear

transformation is 1, by orthogonality. Note that the marginal prior of the
active variables in some simpler cases can be computed analytically from the
one of the physical parameters, but often only a numerical estimation π̂y is
possible, for example by kernel density estimation [Silverman, 1986].

Knowing the marginal prior of the active variables π̂y and the likelihood `y,
we can run a MCMC to draw samples of the posterior on the active variables y.
Algorithm 10 shows a Metropolis-Hastings MCMC algorithm (from Kaipio and
Sommersalo [Kaipio et Somersalo, 2005, Chapter 3.6.2]) where the continuous
state space for the Markov chain is the space of active variables y.

This approach, the way it is currently formulated, requires the number
of measured quantities to be smaller than the number of input parameters
nm < d. In general, it is also more computationally demanding in case several
independent measurements are used for the inference, because an active sub-
space must be detected for each one. On the other hand, the surrogates built
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Algorithm 10 AMetropolis-Hastings MCMC (see [Kaipio et Somersalo, 2005,
Chapter 3.6.2]) on the active variables using the likelihood `y from (5.27) and
the kernel density estimate of the prior π̂y.

Given an initial point y0 ∈ R2. For k = 0, 1, 2, . . . ,

1. Draw y′ ∈ R2 from a symmetric proposal distribution centered at yk.

2. Compute the acceptance ratio,

α(y′,yk) = minimum

(
1,

`y(d|y′) π̂y(y′)

`y(d|yk) π̂y(yk)

)
. (5.29)

3. Draw t uniformly from [0, 1]. If α(y′,yk) > t, set yk+1 = y′. Otherwise,
set yk+1 = yk.

on the active subspaces are not speci�c for inverse problems and do not depend
on the data, therefore they can be reused with di�erent set of measurement
and exploited also for direct UQ.

5.4.3 Sampling back to the original variables

With the two previous approaches in Sections 5.4.1 and 5.4.2, it is possible to
e�ciently draw MCMC samples from the posterior of the active variables y
given the measurements. However, our goal is to estimate a posterior density of
the original parameters x of the computational model. To achieve this goal, it
is possible to exploit a relationship similar to (5.28). Let σpos(x) be the desired
posterior density on the input parameters x. Then, for the output-based active
subspaces, we have

σpos(x|d) = σpos(Uy + V z|d)

= πpos(y, z|d)

= πpos
y (y|d)πpos

z|y (z|y,d)

= πpos
y (y|d)πz|y(z|y).

(5.30)

The second line is a change of variables, where, similar to (5.28), the deter-
minant of the linear transformation

[
U V

]
is 1. The same expression can

be obtained for the mis�t-based case by just replacing U with W . The last
line uses the fact that the inactive variables are independent of the data, so
the conditional posterior of z given y (and the measurements d) is equal to
the conditional prior on z given y. Therefore, given y drawn according to the
posterior on the active variables πpos

y (i.e., from the MCMC on the active vari-
ables), we can draw z according to the conditional prior πy|z; then a sample
x from the posterior σpos with the construction (5.24). Algorithm 11 shows a
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5.5. Study case: HEG cylinder

simple Metropolis-Hastings MCMC for drawing z according to the conditional
prior πz|y.

Algorithm 11 A Metropolis-Hastings MCMC [Kaipio et Somersalo, 2005,
Chapter 3.6.2] on the inactive variables z given a value for the active variables
y.
Given y and an initial point z ∈ Rd−n. For k = 0, 1, 2, . . . ,

1. Draw z′ ∈ Rd−n from a symmetric proposal distribution centered at zk.

2. Compute the acceptance ratio,

α(z′, zk) = minimum

(
1,

σx(Uy + V z′)

σx(Uy + V zk)

)
. (5.31)

3. Draw t uniformly from [0, 1]. If α(z′, zk) > t, set zk+1 = z′. Otherwise,
set zk+1 = zk.

Note that Algorithm 11 should be run for every sample yk, with k =
1, . . . , NMCMC , de�ning the posterior of the active variables y. Since often
thousands of samples are drawn with an MCMC, this operation can be very
demanding from a computational point of view. However, a few details must
be kept in mind. Fist of all, Algorithm 11 can be run just for the points of the
�rst chain that remain after discarding the burn-in and taking into account a
gap to reduce the autocorrelation of the chain. This may reduce substantially
the number of run of the second chain. Furthermore, since normally the num-
ber of active variables to infer with the �rst MCMC is small, the �rst chain
can be run with a relatively smaller number of points, at least when compared
to higher dimensional reconstructions, and the visualization of the output of
the chain and its convergence check is easier. Secondly, Algorithm 11 does
not require the evaluation of any model or surrogate model, therefore it runs
without a high computational demand.

5.5 Study case: HEG cylinder

In this section, the forward propagation of uncertainties on the HEG cylinder
study case, already performed with the PDD-UK method in Chapter 3, will be
repeated by exploiting the active subspaces of the two quantities of interest,
namely the pressure and heat �ux at the stagnation point. Furthermore, results
of a Bayesian inference problem accelerated by surrogate models in the active
variables are proposed. This is done to state the feasibility of the calibration
of freestream density and velocity from stagnation pressure and heat �ux data.
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5.5.1 Active Subspaces for stagnation pressure and heat

�ux

As a �rst step, using the bounds in Table 1.3 for the two uncertain freestream
parameters ρ∞ and u∞, and the standard deviations in Table 3.12 for the
six uncertain chemical parameters, we shift and scale the parameter space to
[−1, 1]2×R6, meaning that we want each uniform variable to be rescaled in the
interval [−1, 1], and each normal to have zero mean and unity variance. This
normalization is convenient for studying and exploiting the active subspaces.
The thrust of active subspaces is to rotate high-dimensional surfaces until they
reveal low-dimensional structure manifesting as directions along which the sur-
face is �at, globally. Centering the parameter space at the origin ensures that
all rotations occur about the origin. The prior densities on the normalized
space are therefore 1/4 (the uniform density on the box [−1, 1]2) times a mul-
tivariate standard Gaussian on R6.

Here we use the same 576 model evaluations at the training points, used
for the PDD-UK surrogate in Chapter 3, to detect active spaces for the two
quantities of interest. We use this training set within Algorithm 8 to compute
the vectors ŵp and ŵq. Figure 5.3 shows the summary plots and weight vec-
tor components for stagnation pressure pst and heat �ux qst. The blue dots
represent the 576 independent runs of COSMIC code with inputs drawn from
the probability densities in Tables 1.3 and 3.12.

Figure 5.3a is the summary plot for pressure, and Figure 5.3b is the sum-
mary plot for heat �ux. These summary plots reveal low-dimensional structure
in the map from input parameters to output observables. The strong univari-
ate trend in the blue dots for each output suggests that orthogonal to the
active direction, the surface is relatively constant. The black lines show the
one-dimensional polynomial response surfaces ĝ from (5.18) �tted to the data
pairs. Each surface is a simple univariate quadratic functions with three coef-
�cients. Since the behavior of the rotated quantities of interest is very simple,
and only one active variable is retained, it is not necessary to use the more
complex PDD-UK surrogate model introduced in Chapter 3. Furthermore, a
simple polynomial �t is suited for smoothing the projection errors that arise
from the fact that the reduced structure of the functions are not exactly one-
dimensional. The data varies roughly 1 or 2% from the �tted surface, but this
variation is almost indistinguishable from numerical errors in the complex �ow
simulation, especially for heat �ux values.

Figures 5.3c and 5.3d shows bar plots of the components of ŵp and ŵq,
respectively. The vector components give insight into the important input
parameters. The relative insensitivity of pressure and heat �ux to the reaction
rates suggests that it is not possible to reliably calibrate the reaction rates
using stagnation pressure and heat �ux measurements, but at the same time
that uncertainties on the chemical model will not in�uence strongly the rebuild
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Figure 5.3: One-dimensional summary plots (top row) for pressure (left) and
heat �ux (right) using the vectors ŵp and ŵq, respectively, from Algorithm
8, along with bar plots (bottom row) of the components of ŵp and ŵq. The
black lines show the one-dimensional response surfaces. The red horizontal
lines are at the given measurements, p∗st and q

∗
st. The vertical red lines show

the value of the respective active variables, ŵT
p x and ŵT

q x, that maps to the
measurements.

of freestream values and the variance of the quantities of interest.

5.5.2 Comparison with classical global sensitivity analy-

sis

It is possible to compare vector components of the active directions in Figures
5.3c and 5.3d to the variance-based global sensitivity indices computed using
the adaptive sparse PDD in Section 3.6.2.
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(a) Pressure weights and SI (b) Heat �ux weights and SI

Figure 5.4: Bar plots of the components of ŵp and ŵq (red) along with the
global sensitivity indices (blue).

Figure 5.4 shows bar plots comparing the weights of vectors ŵp and ŵq (in
red) with the Sobol' sensitivity indices computed with sparse PDD (in blue)
for both outputs (see Tables 3.13 and 3.14). From the plots, it is possible to
notice that global sensitivity indices show a hierarchy of input variables that
is consistent with the one of vectors ŵp and ŵq. For these two outputs, the
weights suggest that neither pressure nor heat �ux is sensitive to changes in
the reaction rate coe�cients, compared to their sensitivity with respect to free
stream conditions.

When the summary plots (i.e., Figures 5.3a and 5.3b) show such strong
evidence of univariate structure, the components of the vectors ŵp and ŵq

can be used as global sensitivity metrics. Since these weights are derived
from the coe�cients of the least-squares-�t linear model, they are similar to
the standard regression coe�cients [Saltelli et al., 2008, Chapter 1.2.5] with
di�erent normalization, though their interpretation is signi�cantly di�erent.
For more general connections between active subspaces and global sensitivity
analysis, see [Constantine et Diaz, 2017].

5.5.3 Forward propagation of uncertainties

Exploiting the very reduced cost of evaluating the surrogate model, a simple
Monte Carlo (MC) sampling technique can be applied to the two polynomial
response surfaces in the active variables in order to perform a forward uncer-
tainty propagation and compute the statistics of the quantities of interest. This
will give the chance to compare to results obtained with PDD-UK surrogate
model in Section 3.6.2.

In order to get a set of sampling points of the active variables, 100000
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Monte Carlo samples are drawn from the priors of the physical variables and
then projected on the active subspace by means of the linear transformation
y = ŵTx. Their kernel density estimate (KDE) is reported in Figure 5.5.

(a) Pressure active var. (b) Heat �ux active var.

Figure 5.5: Probability densities of the �rst active variables for the stagnation
pressure (left) and heat �ux (right)

The two one-dimensional polynomial response surfaces in the active vari-
ables ĝp(ŵpx) and ĝq(ŵqx) are evaluated at the MC sampling points to prop-
agate the input uncertainties to the two outputs. The probability density
functions of the output quantities, estimated by means of kernel density esti-
mations on the Monte Carlo samples, are reported in Figure 5.6. The �gure
shows the propagation of the PDF of the two active variables for pst and qst
through the one-dimensional surrogate models and the obtained PDF. The fact
of having reduced the input dimensionality of the problem makes the visual-
ization of the uncertainty propagation process very easy. Comparison between
results obtained on the active subspace metamodel (blue) and the ones of the
physical variables metamodel (green and red) con�rm a very good agreement.

Mean and variance of pst and qst are reported in Table 5.1. Di�erences
between results of active subspace and physical variables are very small, being
inferior to 1% for the means and up to 1% for variances. This means that
the reduced order approximation of the functions of interest introduced by
the active subspace (see Equation (5.18)) is able to conserve all the important
information in the input-to-output map, as expected. Coe�cients of variation
are respectively about 26% for the pressure and 29% for the heat �ux. It can be
noticed that the forward propagation of prior probability densities produces
coe�cients of variation of the outputs that are bigger than the percentage
measurement errors. This allows the posteriors to be mainly informed by the
measurements and not by the priors, which in this work are just uninformative
intervals chosen by the authors.

144 Andrea Francesco CORTESI



5. Dimension reduction by Active Subspaces for Bayesian inference

(a) Pressure (b) Heat �ux

Figure 5.6: Uncertainty propagation process from the probability densities of
the �rst active variables (top row) to the ones of the stagnation pressure and
heat �ux (bottom row) through the one-dimensional response surfaces built on
the �rst active variable. Comparison between results obtained on the active
subspace metamodel (blue) and the ones of the physical variables metamodel
(green for the polynomial response surface and red for the PDD-UK) con�rm
a very good agreement.

5.5.4 Freestream calibration with Bayesian inference

This section is focused on the inverse UQ problem of rebuilding some uncertain
parameters m = (ρ∞, u∞) starting from experimental (i.e. noisy) measure-
ments d = (p∗st, q

∗
st) of the stagnation quantities of interest at the wall of the

cylinder. We also want to be able to account for other aleatory uncertainties
in the physico-chemical model, namely the uncertainties on the chemical re-
action rate coe�cients c = {(Ar)r=1,...,nr}. Results are presented by following
the two sampling procedure based on MCMC in the active subspace presented
in Section 5.4.

Mis�t

Let us here follow the approach presented in Section 5.4.1, where the MCMC
is run in the active variables of the mis�t function. First of all, it is necessary
to de�ne the data mis�t function m(x) for this particular calibration problem.
It reads:

m(x) =

(
(p∗st − pst(x))2

σ2
p

+
(q∗st − qst(x))2

σ2
q

)
. (5.32)

The given arti�cial measurements are stagnation pressure p∗st = 5.2 · 104 Pa
and stagnation heat �ux q∗st = 7.0 · 106 W/m2. The standard deviation model
for the stagnation pressure noise is σp = 0.02 p∗st, and the standard deviation
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AS var. 8D polyn. PDD-UK

pst [Pa]
µ 53033 53050 53088
σ 13782 13760 13925
σ/µ 0.260 0.259 0.262

qst [W/m2]
µ 7.2029 e6 7.2054 e6 7.2093 e6
σ 2.0586 e6 2.0596 e6 2.0703 e6
σ/µ 0.286 0.286 0.287

Table 5.1: Mean value and standard deviation of the quantities of interest
computed with the response surfaces built on the pressure and heat �ux active
variables. Values are computed with 100000 Latin Hypercubes samples and
compared to results obtained with a propagation on a polynomial surrogate
and the PDD-UK in the 8-dimensional physical input.

model for stagnation heat �ux is σq = 0.1 q∗st. Once the mis�t is de�ned, it
is possible to compute the matrix C to detect if it shows an active subspace.
In this case, it is not good to rely on Algorithm 8, since we know from its
de�nition that the mis�t function is not nearly-linear.

Figure 5.7 shows the summary plots and weight vector components for
the active variable of the mis�t function. This summary plot reveal low-
dimensional structure in the map from input parameters to output observables.
The strong univariate trend in the blue dots for each output suggests that or-
thogonal to the active direction, the surface is (relatively) constant. The black
lines show the one-dimensional 4-th order polynomial response surfaces ĝ from
(5.18) �tted to the data pairs. Also for the mis�t function, as expected, the
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Figure 5.7: One-dimensional summary plots (left) for mis�t function using the
vectors ŵm, along with bar plots of the components of ŵm. The black lines
show the one-dimensional response surfaces.
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most in�uent vector components are the two freestream variables, meaning
that the chemistry parameters will not be informed by the inference.

In Figure 5.8a a KDE of the prior of the active variable is shown. It is
obtained bt projecting along the active direction the Monte Carlo samples of
the physical variables. Figure 5.8b shows instead the KDE of the posterior
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Figure 5.8: Prior (left) and posterior (right) distributions for the active variable
y of the mis�t function.

distribution of the active variable y, obtained with the MCMC algorithm in
Algorithm 9, using a Gaussian proposal distribution with an adapted explo-
ration step. The chain has been run for 500000 iterations and 100000 were
discarded as burn-in.

Parameters-to-observables map

In this section, we illustrate the results for the Bayesian calibration following
the approach in Section 5.4.2. As seen in Section 5.5.1, stagnation pressure
and heat �ux each depend on one active variable. The two directions, ŵp and
ŵq, that de�ne these two active variables are used to de�ne the matrix W as

W =
[
ŵp ŵq

]
, (5.33)

that is orthogonalized for convenience in

W = UR, U ∈ R8×2, R ∈ R2×2, (5.34)

The next step that must be done to draw samples from the posterior of
the active variables with Algorithm 10 is to de�ne the prior πy of the active
variables starting from the one of the physical parameters σ(x). If σ(x) was
Gaussian, then πy would also have been a Gaussian density. However, prior
components are not all Gaussian (see Table 1.3), hence πy must be estimated
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numerically. Since it is only a bivariate density and the forward map y =
UTx is simple (with no dependence on the complex physics model), we can
estimate πy to su�cient accuracy with a bivariate kernel density estimate.
Figure 5.9b shows the contours of a bivariate kernel density estimate using the
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Figure 5.9: The left �gure shows 200 samples of the active variables y = UTx
with x drawn from its normalized prior. The right �gure shows the contours of
the bivariate kernel density estimate for the active variables constructed from
50000 samples; it is essentially a rotate bivariate uniform density. The small
scale �uctuations are a result of the �nite sampling.

Python SciKit Learn's KernelDensity function [Pedregosa et al., 2011] with
parameters bandwidth=0.15 and kernel='tophat' constructed from 50000
samples of y = UTx, where x's are drawn according to the normalized prior.
Figure 5.9a shows a subset of 200 samples for reference. The small scale
contour �uctuations near the center of the domain are due to �nite sampling.
Essentially, the marginal on the two active variables y = [y1, y2]T is a rotated
uniform density. This is consistent with the weights from Figures 5.3c and
5.3d, since the largest weights are associated with the two parameters (ρ∞ and
u∞) that have uniform priors. Denote the kernel density estimate of πy by π̂y.

We use the same response surfaces shown in Figures 5.3a and 5.3b to build
a likelihood function on the active variables. Hence, the likelihood in the active
variables `y(p∗st, q

∗
st|y), derived from (5.19), is

`y(p∗st, q
∗
st|y) ∝ exp

(−(p∗st − gp(r1y))2

σ2
p

+
−(q∗st − gq(r2y))2

σ2
q

)
. (5.35)

In our numerical implementation of Algorithm 10, we use a Gaussian pro-
posal density centered at the current state (yk, see Step 1) with covariance
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matrix diag(0.232, 1.022), where the two variance values are issue from an adap-
tation of the exploration step. We run one chain of 250000 steps, and, following
the suggestion of Brooks et al. [Brooks et al., 2011, Chapter 6.5], we discard
the �rst part of the chain's samples as burn in, and we take in the �nal sample
one sample eache 10 samples, which leaves us with 20000 samples. This is
su�cient to cover the two-dimensional space of active variables.

Figure 5.10a shows 200 samples from the MCMC. The samples apparent
alignment with the axes y1 and y2 is consistent with the rotation induced
by R from (5.23) to create orthogonal coordinates (i.e., the columns of U
from (5.23) are orthonormal). The di�erence in the samples spread along the
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Figure 5.10: The left �gure shows 200 samples from the response surface-
enabled MCMC on the active variables. The spread along coordinate axes
is consistent with the di�erent noise assumptions in the measurements. The
right �gure shows contours of a bivariate kernel density estimate of the MCMC
samples compared to the prior contours.

axes is consistent with the di�erent noise levels for each output. In e�ect,
the relatively large noise (10%) in the heat �ux measurement q∗st permits a
larger range of y2 values that are consistent with the noisy measurements.
The relatively low noise (2%) in the pressure measurement p∗st leads to less
spread in the y1 samples. Figure 5.10b shows contours (purple) of a kernel
density estimate of the posterior on y from the MCMC samples; the estimate
uses a Gaussian kernel with bandwidth 0.15 implemented in SciKit Learn's
KernelDensity [Pedregosa et al., 2011]. The axis alignment is consistent with
the discussion of the samples in Figure 5.10a. The apparent slight asymmetry
about the y2 axis results from the mild nonlinearity in the response surfaces.
The same asymmetry appears in the y1 axis, though it is not as apparent since
the support of the contours is relatively narrow. The posterior contours are
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superimposed on top of the contours from the density estimate of the prior
π̂y. The support of the posterior is smaller than the prior, which implies that
the measurements (pressure p∗st and heat �ux q∗st) have provided additional
information about the parameter uncertainty in the active variables.

Note that the analysis of the posterior density on the active variables pro-
vides insights into the workings of the MCMC for Bayesian inversion, par-
ticularly since having only two active variables in this case permits helpful
visualization.

Posteriors of the physical variables

The �nal goal of the study case is to have samples from the posterior densities
of the physical parameters. It is possible to restore to this set of variables
starting from the posteriors of the active variables by means of Eq. (5.30),
for both the mis�t approach and the parameters-to-observable map approach.
If the joint prior on (y, z) was Gaussian, then the conditional πz|y would also
have been Gaussian. Instead, in our case, the joint prior on (y, z) is not
Gaussian (see section 1.6.1); hence the Metropolis-Hastings MCMC provides
a general way to sample from the conditional PDF. In our implementation of
Algorithm 11, we use a Gaussian proposal in Step 1 with covariance matrix
(0.8)2 I, where I is the 6 × 6 identity matrix. In our numerical experiments,
we draw 100 samples of z per MCMC sample of y from Algorithm 10. From
20000 samples of y, we get 2000000 samples of x with (5.24). Note that since
z is independent of the measurements, the algorithm for drawing z given y
does not call for the simulation model or its response surface approximation.

Figure 5.11 compares the univariate marginal posterior densities (blue, red
and green lines) on the model parameters to the associated marginal prior
densities (black lines) (see Tables 1.3 and 3.12). Notice that the MCMC in
the physical variables (green line) used a simple second-order polynomial �t as
surrogate. It has been preferred to the PDD-UK since it was already known
from the previous analysis that the behavior of the function was easily approx-
imated by such a polynomial representation, and this allowed a reduction in
the computational e�ort involved in the MCMC run. It can be noticed that the
only two parameters that are informed by the stagnation point measurements,
p∗st and q

∗
st, (i.e., their posteriors di�er substantially from the priors) are the

freestream conditions ρ∞ and u∞. Since the measurements cannot inform the
reaction rates, the reaction rate posteriors are the same as the priors. A further
comparison is proposed between the posteriors from the mis�t approach (red
lines), the ones from the parameters-to-observables approach (blue) and the
ones obtained with a single-site updating Metropolis-Hastings MCMC sam-
pling directly in the 8-dimensional physical parameters space (green lines),
considering 8D quadratic regressions as metamodels for the stagnation pres-
sure and heat �ux. The chain ran for 500000 steps, with adapted explorations
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5.11: Posterior marginal densities from the parameter-to-observables
approach (blue lines) on the eight model parameters compared to their
marginal priors (black lines); see Tables 1.3 and 3.12. A comparison is shown
also with the posteriors obtained with the mis�t approach (red) and the ones
by MCMC sampling directly in the physical space (green lines). The reaction
rate parameters are not informed by the data, so their posterior is essentially
the prior. Notice that that the MCMC in the physical variables used a simple
second-order polynomial regression as surrogate.

steps for the Gaussian proposals in every dimension. It can be noticed that all
the posteriors present a good qualitative agreement.

Figure 5.12 shows the most interesting bivariate marginal posterior, which
is on the freestream parameters informed by the measurements, obtained with
the parameters-to-observable results. The contours are the posterior and the
red box is the joint prior. The freestream parameters are highly correlated
in their posterior, so the univariate marginals alone can be misleading. Com-
paring the contours in Figure 5.12 to the posterior on the active variables in
Figure 5.10b, the shapes are essentially the same but rotated; the correlation
in the freestream parameters is related to the rotation induced by the matrix
R from (5.23).

Posterior means and standard deviations of the free stream are then com-
puted exploiting the MCMC samples of the posteriors and are reported in
Table 5.2. A comparison is also performed with the posterior values sampled
in the physical space. Values show a good agreement, with di�erences in the
mean values smaller than 1% for both the density and the velocity.

Looking at the potential interest in using heat �ux data for reconstruction,
note that the coe�cient of variation for freestream density and velocity are
8.3% and 4.1%, respectively. This shows how heat �ux data could provide
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Figure 5.12: Bivariate marginal posterior contours for free stream parameters
ρ∞ and u∞ compared to the joint marginal prior; see Table 1.3. Compare
these contours to the posterior on the active variables in Figure 5.10b.

AS AS mis�t Physical var.

ρ∞ [kg/m3]
µ 1.5666e-03 1.5524e-03 1.5545e-03
σ 1.2954e-04 1.6081e-04 1.4806e-04

u∞ [m/s]
µ 5930.18 5967.83 5939.10
σ 246.50 316.15 279.13

Table 5.2: Posterior mean value and standard deviation of the inferred free
stream quantities computed with the MCMC samples. Comparison between
values obtained for the regular chain directly run on the physical variables and
the chains for the two di�erent approaches in the active subspace.

additional insights towards the reconstruction of freestream conditions. How-
ever, the obtained posterior uncertainties are quite big if compared to other
freestream reconstructions in literature (for example [Van Hove et Karatekin,
2017]). This is because the accuracy on velocity is much higher when rebuilt
using IMU data, allowing also for a better estimation of the freestream den-
sity. Of course an improvement of results would be obtained assuming smaller
noise associated with heat �ux measurements. Another possibility would be
to include IMU results in the Bayesian setting, to get a smaller uncertainty
on the velocity, and using heat �ux measurements to calibrate other uncertain
freestream or model parameters. These aspects should clearly be tested in the
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future, also in the context of a real space mission.

5.6 Conclusions

In this chapter, the input dimensionality of direct and inverse UQ problems has
been reduced by exploiting active subspaces. In particular, a novel approach to
exploit the active subspace in Bayesian inverse problems and MCMC has been
introduced. It is based on the use of the active subspace of the actual function
of interest, namely the input-to-output map, instead of the use of the active
subspace of the log-likelihood (or mis�t) function, as proposed in [Constan-
tine et al., 2016b]. This new approach is more versatile, in the sense that the
surrogate model built on the active subspace of a function does not depend
on measured data, and therefore can be exploited for di�erent applications.
Furthermore, it is able to provide direct information on low-dimensional struc-
tures of the function of interest, if they exist. The comparison showed that a
very small loss of accuracy has to be expected when using active subspaces,
with respect to the full-dimensional problem, and a valuable reduction of the
input dimensionality. The only drawback of Bayesian inversion with active
subspaces is the need to perform a second MCMC algorithm to sample the
posterior of the physical variables, after having sampled the one of the active
variables. This adds numerical complexity and cost, however, this operation
does not require the evaluation of any computational model.
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Chapter 6

Application: freestream
characterization for EXPERT
vehicle

The objective of this chapter is to assess the advantage of exploiting heat

�ux measurements at the heat shield of the vehicle, together with pres-

sure measurements, to rebuild freestream parameters and other uncertain

model parameters. In particular, we will focus on the reconstruction of

freestream density, �ow angles and catalytic recombination coe�cient.

Di�erent tests are presented in which the reconstruction problem is solved

in a Bayesian framework, exploiting the PDD-UK surrogate model previ-

ously introduced to accelerate the MCMC algorithm used to sample from

the posterior distributions.

6.1 Introduction

This chapter is devoted to the study of an inverse uncertainty propagation
problem within the framework of atmospheric entry of the EXPERT entry
vehicle, by the European Space Agency (see Section 1.6.2 for details about
the con�guration under analysis). The goal is to understand the advantage of
using heat �ux measurements at the heat shield of the vehicle, together with
pressure measurements, for rebuilding the freestream parameters and other
uncertain model parameters.

Classical freestream characterization techniques, as reviewed in the intro-
duction and brie�y detailed in Appendix A, mostly rely on inertial and surface
pressure measurements. Nevertheless, modern entry vehicles are equipped with
many di�erent types of sensors, able to provide further information about the
air �ow near the heat shield. Heat �ux data is for example available for ve-
hicles equipped with RAFLEX-like probes, e.g. used on the EXPERT vehicle.
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However, to the author's knowledge, little e�ort has been done to try to include
this data in the reconstruction process.

The statistical Bayesian approach introduced in Chapter 2 is adopted to
solve the inverse problem of the reconstruction. This allows to account for
measurement errors and other uncertain model parameters, and to consider
complex forward models able to describe the phenomena occurring during the
entry �ight.

The chapter is structured as follows: in Section 6.2, some practical con-
siderations are given about the choice of the inferred parameters. Then, in
Section 6.3 we give a description about the hypothesis and the model used in
order to consider the e�ect of �ow angles in the case where only axisymmetric
computational models are available. Section 6.4.1 describes the construction
of the surrogate models for the quantities of interest, used to accelerate the
Markov Chain Monte Carlo algorithm to sample the posterior distributions
of the inferred quantities. Finally, in Section 6.5, results are shown for sev-
eral cases of parameter calibrations: using only pressure measurements, to
reproduce classical reconstruction techniques in the Bayesian framework (Sec.
6.5.1), using only heat �ux measurements, to assess the advantage of using
this kind of data (Sec. 6.5.2), and exploiting both pressure and heat �ux (Sec.
6.5.3). All these explored con�gurations are summarized for clarity in Table
6.1.

Measurements Rebuilt variables
p stag. p all q all ρ∞ γ angles

Case 1a × ×
Case 1b × ×
Case 2 × ×
Case 4 × × ×
Case 5 × ×
Case 5 × × ×
Case 6 × × × ×
Case 7 × × × × ×

Table 6.1: Reconstruction cases explored in this chapter for the EXPERT
vehicle. Note that �p stag.� refers to the use of only pressure measurement at
the stagnation point, while �all� indicates that all the measurements are used,
which are available in �ve locations on the forebody (see Figures 6.2 and 6.3).
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6.2 Remark on the choice of the inferred param-

eters

Currently, freestream reconstruction for entry trajectories exploits mainly iner-
tial data, provided by IMU (Inertial Measurement Unit) measurements, com-
bined with pressure data from the FADS (Flush Air Data System), mounted
in the thermal protection system (TPS) of the vehicle forebody. In general,
inertial data are able to give a very accurate estimate of the vehicle velocity
along the trajectory, with error bounds in the order of very few meters per
second for velocities in the order of kilometers per second. For this reason, if
neglecting the e�ect of wind gusts, it is possible to suppose that the freestream
velocity is exactly known.

Classically, pressure measurements are used to reconstruct the atmospheric
conditions at the freestream, especially the density of the gas mixture. In this
work, we will consider the freestream temperature to be known and rebuild the
density from wall pressure measurements. The third thermodynamic variable
can be computed with the perfect gas law, knowing the value of the other two.
Furthermore, the di�erence in pressure values at di�erent sensor locations can
be used to estimate the �ow angles, as done in the literature [Häuser et al.,
2004].

Knowing these facts, we have to �nd a way to usefully exploit heat �ux
measurements in the reconstruction of other freestream or model parameters,
whose value is usually known within a certain degree of uncertainty, or to
improve the quality of the reconstruction for the previously mentioned quan-
tities. It is important to keep in mind that, with current technologies, heat
�ux measurements are a�ected by much higher measurement errors than pres-
sure ones. Therefore, the chosen rebuilt parameters should be well informed
by heat �ux measurements, or, in other words, the measured heat �ux value
should be strongly in�uenced by variations of those variables. Even though
heat �ux measurements could be very useful to inform many di�erent �ow
quantities, for example freestream velocity, parameters related to the chemical
mechanism of the gas mixture, wall catalycity and ablation parameters, and
so on, in practice they are not commonly exploited in the literature, probably
due to their elevated measurement error.

One possible choice could be to infer the freestream velocity, which is known
to have a strong in�uence on the wall heating [Sutton et Graves, 1971]. The
case study of the HEG cylinder, repetitively used in this work, although not
being representative of a real entry problem, served as a preliminary analysis
of the in�uence of stagnation heat �ux with respect to velocity variations and
to state the possibility of rebuilding this quantity starting from wall heating
measurements. As seen in Section 5.5.4, freestream velocity was well informed
by heat �ux measurements. Nevertheless, the posterior coe�cient of variation
of about 4% tells us that the posterior uncertainty on the velocity obtained
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by heat �ux measurements is much higher that the one associated to IMU
reconstructions. Given accurate heat �ux models and measurements, velocity
might be reconstructed. However this is not feasible, since models and sensors
are not accurate enough, nor is required, since velocity is already accurately
reconstructed from IMU measurements. However, heat �ux measurements
could be usefully exploited when inertial measurements are not available, for
example in case of an IMU malfunctioning. In this case, the fact of having
the ability to still be able to rebuild the velocity value can be very important,
even if with a higher uncertainty level. However, in this chapter, we will not
repeat the reconstruction of the velocity but we investigate the possibility of
using forebody heat �ux data to reconstruct the wall catalycity.
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Figure 6.1: Stagnation heat �ux as a function of γ values form 10−5 to 1 (left)
and zoom on the interval of the prior (right) for the 30km (top line) and 60km
(bottom line) trajectory points.

The quantity to be reconstructed from heat �ux measurements is the co-
e�cient γ, expressing the wall recombination probability due to catalysis at
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the wall, called for simplicity catalycity coe�cient. This is because it is well
known that the heat exchange between the �ow and the vehicle can be strongly
in�uenced by the species recombination at the wall caused by catalysis [San-
son et al., 2016]. This is shown in Figure 6.1. In Figure 6.1a and 6.1c, the
variation of the stagnation heat �ux value is shown versus the variation of
the γ coe�cient for both the 30km and 60km trajectory points. It can be
seen that the stagnation heat �ux has an increases by 18% from the value
with a non-catalytic wall (γ → 0) to the fully catalytic wall (γ = 1) for the
30km point, and it doubles for the other altitude. However, considering only
variations of γ in the plausible prior interval for EXPERT vehicle (a uniform
uncertainty of ±33% around the nominal value of 0.0015, as explained in Sec-
tion 1.6.2), the resulting variation of the heat �ux is much smaller (Figure 6.1b
and 6.1d). Therefore, since the measurement error on heating data is quite
big, with a standard deviation of 10% of the measured value, we do not expect
the measurements to inform strongly the inferred parameter. A further prac-
tical reason that led us to explore this possibility is the fact that the numerical
simulation code COSMIC accounts for wall catalysis phenomena.

6.3 Modeling the aerodynamic angles e�ect on

measured quantities

Aerodynamic angles reconstruction is one of the classical applications for FADS
problems. One of the goals is to exploit the di�erent pressure and heat �ux
measurements to infer the value of the angles of attack α and sideslip β (re-
ferred to as �ow or aerodynamic angles). However, since simulations are per-
formed with the axisymmetric code COSMIC, it is not possible to directly
simulate the change in pressure and heat �ux at each sensor location due to
changes of aerodynamic angles. Instead, it could be rigorously done by the
use of a 3D computational code. Nevertheless, doing some hypothesis on the
geometry of the EXPERT forebody, it is possible to exploit the output of the
axisymmetric 2D simulation to evaluate the pressure and the heat �ux at some
measurement locations as a function of the aerodynamic angles.

The supporting geometrical hypothesis consists of assuming the nose of
the EXPERT vehicle as a half sphere. While this is not its actual geometry,
it consists in a relatively good approximation, from a geometrical point of
view, as can be noticed from �gure 6.2d. Since for a sphere the air �ow
does not change when changing the aerodynamic angles, a single axisymmetric
simulation performed at α and β equal to zero can just be rotated and used to
describe the behavior at di�erent angle values. By geometrically treating the
EXPERT forebody as a hemisphere, we assume that the �ow �eld is invariant
with respect to some small changes in the aerodynamic angles, and the surface
pressure and heat �ux from the axisymmetric simulation can just be rotated to
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(a) Flow angles (b) Total aerodynamic angles

ϕ
s

(c) Sensors clock angle

 λs

(d) Sensors cone an-
gle

Figure 6.2: The �rst row gives a graphical representation of the �ow angles (a)
and total aerodynamic angles (b). In the second, there is a graphical de�nition
of sensors clock (c) and cone (d) angles, together with a comparison between
the actual EXPERT nose shape and the hypothesis of spherical nose (red line)
(d).

describe the surface values with non-zero aerodynamic angles. This hypothesis
allows to run only an axisymmetric simulations for the actual geometry of
the nose, and then properly rotate the pressure and heat �ux distributions
according to the aerodynamic angles we want to account for.

When considering the forebody geometry as a sphere, it is practical to de-
scribe the position of a point on the surface, and particular sensors locations,
by means of its cone λs and clock φs angles (see Figures 6.2c and 6.2d). With
this convention, the locations of the ns = 5 sensors on the EXPERT con�gu-
ration are given by the values in Table 6.2. Then, the surface angle θ, namely
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Sensors
1 (stag.) 2 (top) 3 (left) 4 (bottom) 5 (right)

λs [deg] 0 45 45 45 45
φs [deg] 0 180 90 0 270

Table 6.2: Locations of the FADS sensors for the EXPERT vehicle expressed
by means of the angles λs and φs.

the total angle from the sensor location to the velocity direction, can be com-
puted from the �ow angles and the sensor angles by means of the following
trigonometric relation:

cos(θ) = cos(α) cos(β) cos(λs)+

+ sin(β) sin(φs) sin(λs)+

+ sin(α) cos(β) cos(φs) sin(λs). (6.1)

This surface angle is used to rotate the axisymmetric solution at the wall to
get the pressure and heat �ux values at each sensor location. In practice, the
axisymmetric solution, that is given at the Cartesian coordinates of the surface
points, is rewritten with respect to the cone angle of this point, that coincides
with the angle θ (see Figure 6.4). In fact, if θ = 0 it means that the velocity
and the sensor location vector are aligned, and therefore the sensor reads the
stagnation values. When instead the sensor and the velocity are not aligned,
the measurement will read a value of pressure or heat �ux at an angle θ from
the stagnation.

Figure 6.3: Graphical representation of the angle theta between the sensor
location direction and the wind speed.
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Proof for relation 6.1: In analogy with the de�nition of the sensors loca-
tion, it is useful to describe the direction of the velocity vector by means of a
total aerodynamic angle αt and total aerodynamic clock angle φt (see �gure
6.2b). From the de�nitions of the three components of the velocity vectors
written in the two di�erent sets of angles, it is possible to derive the following
relations:

cos(αt) = cos(α) cos(β) (6.2)

tan(φt) =
sin(β)

cos(β) sin(α)
, (6.3)

and the inverse relations:

sin(β) = sin(αt) sin(φt) (6.4)

tan(α) =
sin(αt) cos(φt)

cos(αt)
. (6.5)

The surface angle θ between the vector de�ning the velocity direction and
the one de�ning the position of the sensor on the sphere can be computed
remembering the de�nition of scalar product between two vectors:

u · rs = |u||rs| cos(θ). (6.6)

The components of the two vectors u and rs are de�ned as follows:

u =


cos(αt)

sin(αt) sin(φt)
sin(αt) cos(φt)

 rs =


cos(λs)

sin(λs) sin(φs)
sin(λs) cos(φs)

 , (6.7)

considering unit vectors, since we are interested only in θ and not the actual
scalar product. Computing the scalar product between these two vectors, after
some simple manipulation, it is possible to obtain the following expression

cos(θ) = cos(αt) cos(λs) + sin(αt) sin(λs) cos(φs − φt). (6.8)

Substituting in this expression the relations between total aerodynamic angles
(αt, φt) and aerodynamic angles (α, β), it is possible to obtain equation (6.1).

6.4 Methodology for Bayesian reconstruction

The statistical Bayesian approach introduced in Chapter 2 is adopted to solve
the inverse problem that leads to the results of the reconstruction. All of
the following reconstruction problems are solved in the framework of Bayesian
inference (Section 2.5):

σpos(x|d) =
`(d|x)σ(x)∫
`(d|x)σ(x) dx

. (6.9)

162 Andrea Francesco CORTESI



6. Application: freestream characterization for EXPERT vehicle

Bayes rule, here recalled, is able to provide the posterior joint PDF σpos(x|d)
of the inferred parameters (x = {ρ∞, γ, α, β} in the most general case here
considered) given the measurements of pressure and heat �ux at the sensors
locations d = {pi; qi}nsi=1. Prior distributions described in Section 1.6.2 are
used to describe the a priori knowledge σ(x) about the parameters that we
want to reconstruct. The likelihood function `(d|x) is modeled as in Section
2.5, and measurement errors are chosen to be respectively 2% for pressure and
10% for heat �ux, as motivated in Section 1.6.2. The posterior distributions of
the inferred parameters are sampled by means of Markov Chain Monte Carlo
(MCMC) algorithms (see Sec. 2.5.1).

PDD-UK technique introduced in chapter 3 is used to train surrogate mod-
els for the quantities of interest, which coincide to pressure and heat �ux at
sensors locations. These surrogates are needed to accelerate the MCMC algo-
rithms. Some technical aspects related to the training process are discussed
in the following subsection 6.4.1, exploiting the relationship between �ow an-
gles and total surface angle modeled in Section 6.3. Once the metamodels for
the quantities of interest are available, it is possible to tackle di�erent inverse
problems relative to the freestream reconstruction for the entry trajectory of
the EXPERT vehicle. Di�erent cases will be analyzed. In all the cases shown
in the results, freestream velocity and temperature are assumed to be known
exactly and therefore �xed to their nominal value, given in Table 1.5. For the
velocity, this can be justi�ed by the fact that it can be rebuilt usually from
IMU measurement with a high accuracy, as explained in Section 6.2. Related
measurement errors are in the order of few meters per second and they do not
in�uence the results of the reconstruction.

Arti�cial measurements are produced by evaluating the surrogate models
described in Section 6.4.1 at the values of ρ∞, γ and corresponding to their
nominal values. Regarding θ, the value is computed at each location of the
sensors at the reference �ow angles. No additional perturbation is added to
the obtained value, because the main purpose of this chapter is to assess the
interest of the reconstructions using heat �ux measurement and not to repro-
duce a realistic case. Measurement errors are still accounted in the posterior
distributions thanks to the formulation of the problem in the Bayesian frame-
work.

For each case, a preliminary chain is run to adapt the values of the proposal
distribution widths ωi of the MCMC algorithm in Algorithm 2. They are cho-
sen so that the resulting acceptance rate of the chain, namely the ratio between
accepted and total steps, is close to an empirical optimal value, that is equal to
0.234 [Brooks et al., 2011, Chapter 4]. After the adaptation process, MCMC
chains are run for 250000 iterations. Then, for each �nal chain, the �rst 50000
iterations are discarded as burn-in time. The already small autocorrelation
between samples of the obtained chain is already reduced by keeping in the
�nal sampling point only one every 100 samples. These choices may seem too
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conservative for the problems under analysis, but were adopted in order to
have robust solutions. Of course, some more e�cient setups are available, for
example multiple short chains run in parallel [Brooks et al., 2011, Chapter
7], and they could be exploited in these applications, after some testing and
comparison with results given by longer chains.

6.4.1 Surrogate models

Surrogate models for the quantities of interest need to be constructed and
used to accelerate the di�erent MCMC algorithms involved in the di�erent
inverse problems described in the following sections. The coupled PDD-Kriging
technique, introduced in Chapter 3, is used at this purpose.
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Figure 6.4: Output of the COSMIC simulations performed at nominal con-
ditions for the 30km trajectory point. Axisymmetric simulations give results
between 0◦ and 90◦, and results for negative angles are obtained by symmetry.

Firstly, Latin Hypercube training points are drawn in the space of the uni-
form prior distributions of ρ∞ and γ. Sets containing Ns = 72 training points
are created for each individual uncertain variable and for the bi-dimensional
case that arises when considering both of them. Simulations of the COSMIC
code are run for every training point, exploiting the automated mesh adap-
tation approach described in Section 1.5. The output of each simulation is
the value of pressure and heat �ux at the wall, given at each cell center of
the computational grid, a shown in Figure 6.4 for the output obtained using
nominal input values at the 30km trajectory point.

When creating the surrogate model, a decision has to be made on whether
building it with respect to the �ow angles (α, β) or the surface angle θ. We
decide to create the surrogate in the angle θ, because in this way it is possible
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to reduce the input dimensionality and secondly for the simpler physical and
graphical interpretation that this choice allows.

However, a practical issue arises if choosing θ as training variable. Let
us take as example the case where a surrogate model is built in the variables
(ρ∞, θ). If one considered as training points all the points where the solution at
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Figure 6.5: Example of full (a) and reduced (b) set of training points for the
EXPERT application case.

the surface is available, there would be Np×2Ns = 5472 training points in two
dimensions (see Figure 6.5a), since the number of cells of the computational
domain along the surface is Np = 38 for the considered grid. This number
of training points is too big, and would lead to an excessive computational
costs related to the training and the evaluation of the metamodel. Therefore,
we made the decision to keep only four points in the direction θ for each of
the 72 sample values of density, randomly chosen between the 32 available.
This leads to a total number of 288 training points (Figure 6.5b), which is
a good compromise between the level of information given to the surrogate
and the training cost. Notice that the resulting training plan is not a Latin
Hypercubes plan, and it will not be optimal in the sense of the point spacing,
but this fact is not critical for the application, since the function we want to
represent are su�ciently regular and simple. The same procedure is applied
to build surrogates in (γ, θ) and (ρ∞, γ, θ). Notice, therefore, that surrogates
are trained over either two or three dimensional inputs.

Finally, from this training set, it is possible to build a PDD-UK surrogate
model for every quantity of interest. Figure 6.6 contains the plot of di�erent
surrogates, showing the variation of the quantities of interest with respect to
(ρ∞, θ) and (γ, θ) respectively. Notice that the quantities that contributes the
most to the variation of the outputs are clearly the density and the surface
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Figure 6.6: Plots of training points and surrogate models for the surface pres-
sure and the heat �ux as function of (ρ∞, θ) (top row) and (γ, θ) (bottom
row).

angle, while the catalytic coe�cient does not show a strong contribution. This
will suggest that it will probably be more di�cult to have a good reconstruction
of the value of γ. Notice also that in the following we will use di�erent di�erent
metamodels for every set of input variables, but it could be possible to train
a single global surrogate considering all three variables (ρ∞,γ and θ), and to
�x the ones that are temporarily not considered for the reconstruction to their
nominal value.

One last remark needs to be made about the symmetry of the solution. In
fact, since the response of the system is symmetrical with respect to the angle
θ, it could be possible to train a surrogate model just in the domain [0, 90] deg.
However, we preferred to consider the whole domain [−90, 90] deg, because this
helped to have a more accurate surrogate at the symmetry point in θ = 0 deg
without having to introduce new constraints in the training phase.
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6.5 Results of freestream parameters reconstruc-

tions

In this section, results are presented from the di�erent reconstruction problems
reported in Table 6.1. Each case represents a possible con�guration of avail-
able measurements and quantities that are inferred exploiting the available
information.

6.5.1 Reconstructions from pressure measurements

At �rst, the Bayesian approach is adopted to calibrate some freestream quan-
tities, namely the atmospheric density and the �ow angles, starting only from
pressure measurements at the wall of the vehicle. This problem is equivalent
to the typical reconstruction performed by means of FADS sensors. The dif-
ference is that the Bayesian approach naturally allows to account for priors
uncertainties, error measurements and complex direct models (CFD) able to
accurately describe the physics of entry �ows.

Rebuilding freestream density

A �rst very simple test for the MCMC sampler of the posterior distribution is
performed on the problem of rebuilding the freestream density solely from pres-
sure measurements at the stagnation point, neglecting the other o�-stagnation
measurements and supposing γ and �ow angles to be exactly known. This
simple single-input-single-output problem is used mainly as a sanity check to
verify correct functioning of the numerical setup. The MCMC algorithm is ac-
celerated by the use of a surrogate model for the pressure as a function of the
freestream density. The reference value of density is taken as ρr = 1.9002 ·10−2

kg/m3 for the 30km trajectory point and ρr = 2.8806·10−4 kg/m3 for the 60km
one, corresponding to nominal values, where an exact evaluation of the model
is available. Arti�cial measurements are produced by evaluating the surrogate
model at ρr and values of θ corresponding to the location of the sensors at
the imposed �ow angles. Figure 6.7 shows the obtained posterior PDFs for
the density at both trajectory points. As expected, the freestream density is
well informed by stagnation pressure values, allowing a good calibration of its
value at both analyzed con�gurations, since the posteriors are much narrower
than the uniform prior, which is represented by the plot intervals on the ab-
scissa. Mean values, standard deviations and coe�cient of variation σ/µ of
the posterior PDF are reported in table 6.3, together with the relative errors
between the posterior mean and the reference measured density. Both present
a variation of about 2% and a support that is noticeably smaller than the one
of the prior. The fact that the posterior coe�cient of variation is about 2% is
expected from the fact that the model is nearly linear in an interval around
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Figure 6.7: PDFs of the density rebuilt from stagnation pressure measurements
(solid black line). The dashed line represents the posterior mean value and the
red line the reference value. The x axis width shows the uniform prior interval.

30 km 60 km

ρ∞ [kg/m3]

µ 1.900741e-02 2.881030e-04
σ 3.820336e-04 5.683209e-06
σ/µ 2.010 % 1.973 %
ε% 0.028113 % 0.013997 %

Table 6.3: Posterior mean value, standard deviation and coe�cient of variation
of the freestream density inferred from stagnation pressure data for both tra-
jectory points. The error ε% represents the relative error between the reference
and the mean posterior values.

the reference value, and the measurement error on the stagnation pressure is
considered to be of the order of the 2%.

The density reconstruction is then repeated using all of the �ve pressure
measurements at the di�erent sensors locations, expecting an improvement on
the quality of the rebuilt solutions. The resulting posterior PDFs are shown in
6.8. It can be noticed that, as expected, using all of the available sensors output
improves the quality of the reconstruction in the sense that the coe�cient of
variation of the posterior is smaller than the one obtained with just a single
stagnation data (see Table 6.4). This allows for a less uncertain posterior
density value. The obtained relative errors ε% from the reference density is
very small, with a comparable order of magnitude as the one obtained from a
single stagnation data.
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Figure 6.8: PDFs of the density rebuilt from wall pressure measurements (solid
black line). The dashed line represents the posterior mean value and the red
line the reference value. The x axis width shows the uniform prior interval.

30 km 60 km

ρ∞ [kg/m3]

µ 1.900424e-02 2.880628e-04
σ 1.738477e-04 2.627332e-06
σ/µ 0.91 % 0.912 %
ε% 0.011402 % 0.000055 %

Table 6.4: Posterior mean value, standard deviation and coe�cient of variation
of the inferred freestream density inferred from all pressure measurements for
both trajectory points. The error ε% represents the relative error between the
reference and the mean posterior values.

Rebuilding �ow angles

The second calibration tested consists in the reconstruction of �ow angles
α and β from the �ve pressure measurements available, �xing all the other
freestream quantities to their reference values. Reference values for the �ow
angles are arbitrarily supposed to be αr = 5 degrees and βr = −1 degrees.
Arti�cial measurements are created by evaluating the surrogate at θ values
obtained at every sensor location for the reference values of �ow angles. The
surrogate-accelerated MCMC algorithm is run as in the previous case. Figure
6.9 shows the posterior probability distribution of the �ow angles. Even in this
case, as known in literature, the inferred quantities are well informed by the
pressure data. Therefore, the support of their posteriors is noticeably smaller
than their prior. Statistics of the posterior distribution are shown in table
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Figure 6.9: Posterior PDFs of the �ow angles rebuilt from pressure measure-
ments for the 30km trajectory point.

6.5, together with the error (in degrees) between the reference and the mean
posterior values. Also in this case the calibration is able to lead to good results,
with standard deviations of 0.2 degrees and small errors with respect to the
reference value.

30 km 60 km

α [deg]

µ 5.006348 4.998393
σ 0.254892 0.2726189

1σ interval [4.751455, 5.261241] [4.725774, 5.271011]
εdeg 0.006348 0.001607

β [deg]

µ -1.015074 -0.982090
σ 0.204631 0.203602

1σ interval [-1.219705, -0.810443] [-1.185692 , -0.778488]
εdeg 0.015074 0.017910

Table 6.5: Posterior mean value, standard deviation and con�dence intervals of
the inferred �ow angles computed with the MCMC samples for both trajectory
points. The absolute error εdeg represents the di�erence between the reference
and the mean posterior values.

Rebuilding freestream density and �ow angles

Finally, the global FADS problem of rebuilding freestream density and �ow
angles from wall pressure measurements is here performed. As in the previous
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cases, the reference values for the inferred parameters are taken as ρr = 1.9309·
10−2 kg/m3, αr = 5 degrees and βr = −1 degrees for the 30km trajectory point,
and changing to ρr = 2.8806 · 10−4 kg/m3 for the 60km point, and arti�cial
measurements are created by evaluating the surrogate at those values for each
sensor location. We will use this problem to verify if a loss of performance
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Figure 6.10: PDFs of the freestream density and �ow angles rebuilt from wall
pressure measurements (solid black line) for the 30km trajectory points. The
dashed line represents the posterior mean value and the red line the reference
value. The x axis width shows the uniform prior interval.

occurs with respect to the two simpler cases previously shown. The posterior
probability densities of the inferred parameters are plotted in Figure 6.10 for
the trajectory point at 30km, and their statistics are displayed in Table 6.6.
The comparison between these results with the ones respectively in Tables 6.4
and 6.5 does not show a signi�cant increase in the variability or loss of accuracy
of the inferred parameters. In fact the coe�cient of variation of the freestream
density is very close to the one obtained by the single-variable reconstruction
(0.90% with respect to 0.87%). Comparing with the previous case, also the
standard deviations values associated to the �ow angles result very close. The
di�erences in the errors respect to the reference values are more di�cult to
interpret, because the ones of the density and angle of attack are higher, while
the one of the angle of sideslip is lower. It is possible that these errors are so
small that these di�erences are mainly associated with the intrinsic variability
of results related to the use of a MCMC algorithm than to physical aspects.

6.5.2 Reconstructions from heat �ux measurements

In this subsection, we explore some calibration possibilities given by the avail-
ability of heat �ux measurements at the wall of the entering vehicle.
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30 km 60 km

ρ∞ [kg/m3]

µ 1.899502e-02 2.880108e-04
σ 1.710478e-04 2.638375e-06
σ/µ 0.903937 % 0.916068 %
ε% 0.037084 % 0.018024 %

α [deg]

µ 4.999603 5.004188
σ 0.2611465 0.2592601

1σ interval [4.738456, 5.260749] [4.744927, 5.263448]
εdeg 0.000397 0.004188

β [deg]

µ -0.995729 -0.982169
σ 0.209720 0.197225

1σ interval [-1.199647, -0.791811] [-1.179394, -0.784944]
εdeg 0.004271 0.017831

Table 6.6: Posterior mean value, standard deviation and coe�cient of variation
of the inferred freestream density and �ow angles computed with the MCMC
samples for both trajectory points. The error ε% represents the relative error
between the reference and the mean posterior values.

Rebuilding the catalytic coe�cient

For this Bayesian reconstruction, arti�cial measurements are produced by eval-
uating the surrogate models of heat �ux at the sensors locations for the ref-
erence value of catalytic coe�cient, chosen to be equal to the nominal value
of γr = 0.0015 for both trajectory points. The posterior PDF resulting from
the inference is shown in Figure 6.11. It is clear that the information added
by the measurements is not su�cient to reduce the support of the probability
density of γ, but it just slightly reduces its variance. However, better recon-
struction results could be obtained if measurements with lower noise would be
available, or the reconstruction could prove more useful in case of a wider prior
distribution.

Rebuilding catalycity coe�cient and �ow angles

Now we want to asses the possibility of using heat �ux measurements to rebuild
�ow angles, accounting also for the uncertainty on the catalycity coe�cient.
Even though the inverse problems is formulated as the reconstruction of the
three quantities, it is already possible to know from the previous example that
γ will not be properly inferred, because of the large measurement error, and
will mainly act just as a small source of uncertainty for the characterization of
the value of α and β. The same reference values as the previous examples for γ
and the �ow angles are used. As expected, results in Figure 6.12 show that the
heat �ux measurements are not able to improve the information on the value
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Figure 6.11: PDFs of the coe�cient γ rebuilt from wall heat �ux measurements
(solid black line). The dashed line represents the posterior mean value and the
red line the reference value. The x axis width shows the uniform prior interval.

of catalycity coe�cient with respect to its prior, but they can provide some
information about the �ow angles, even if with much bigger uncertainties than
the reconstruction performed with pressure measurements (compared to Fig-
ure 6.9). Therefore, heat �ux measurements alone, up to current measurement
error values, are not able to adequately infer �ow angle values.

6.5.3 Reconstructions from both pressure and heat �ux

measurements

In this �nal section, both pressure and heat �ux measurements are exploited
simultaneously. Some reconstructions previously performed with just pressure
measurements, are repeated to see if the additional information added by heat
�ux measurement can improve the quality of the reconstruction. Finally, a
complete case of reconstruction of density, �ow angles and catalycity will be
presented.

Rebuilding freestream density

First, the reconstruction of the density is repeated taking into account also
heat �ux measurements at the �ve sensors locations. The statistics obtained
for the posteriors are shown in Table 6.7 for both trajectory points.

From these results, it is possible to observe a very slight reduction in the
uncertainty associated with the rebuilt variable, with posterior coe�cient of
variations passing from 0.91% of the case with just pressure measurements
(Tab 6.4) to 0.88% when considering also the heat �ux for the 30km condi-
tions, and from 0.91% to about 0.89% for the 60km case. It is a quite small
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Figure 6.12: PDFs of the γ coe�cient and �ow angles rebuilt from wall pressure
measurements (solid black line) for the 30km trajectory points. The dashed
line represents the posterior mean value and the red line the reference value.
The x axis width shows the uniform prior interval.

improvement, but could be potentially more substantial if better measurements
and prediction capabilities were available for the heat �ux.

30 km 60 km

ρ∞ [kg/m3]

µ 1.900850e-02 2.880591e-04
σ 1.675554e-04 2.586513e-06
σ/µ 0.881476 % 0.897910 %
ε% 0.033853 % 0.001255 %

Table 6.7: Posterior mean value, standard deviation and coe�cient of variation
of the freestream density inferred from pressure and heat �ux measurements
for both trajectory points. The error ε% represents the relative error between
the reference and the mean posterior values.

Rebuilding �ow angles

The reconstruction of �ow angles is repeated considering both pressure and
heat �ux measurements. Since we already saw that heat �ux alone was not
able to adequately infer �ow angles, we do not expect that it will add signif-
icant information with respect to the results already obtained with pressure
measurements.

Results of means, standard deviations and 1σ intervals associated to the
posteriors of α and β for both trajectory points are reported in Table 6.8. As
expected, results are substantially equal to the ones obtained in Section 6.5.1,
reported in Table 6.5. Posterior standard deviations are always of about the
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30 km 60 km

α [deg]

µ 5.001861 4.997776
σ 0.263014 0.2660837

1σ interval [4.738846 , 5.264875] [4.731692 , 5.263859]
εdeg 0.001861 0.002224

β [deg]

µ -0.994782 -0.986635
σ 0.206962 0.197795

1σ interval [-1.201744 , -0.787820] [-1.184430 , -0.788839]
εdeg 0.005218 0.013365

Table 6.8: Posterior mean value, standard deviation and con�dence intervals of
the inferred �ow angles computed with the MCMC samples for both trajectory
points. The absolute error εdeg represents the di�erence between the reference
and the mean posterior values.

same amplitude, 0.26 deg for α and 0.2 deg for β, with no reduction of the
uncertainties brought by the heat �ux.

Complete reconstruction of density, �ow angles and catalycity

This �nal section is about the global reconstruction of freestream density, �ow
angles and catalycity exploiting both pressure and heat �ux measurements.
The reconstruction is repeated for both the 30km and 60km trajectory points.
The obtained posterior PDFs are shown in Figure 6.13 for the 30km case,
and analogous plots, not reported here, are obtained for the other condition.
Posterior statistics are shown in Table 6.9 for both trajectory points.

Comparing these results with the ones in Table 6.6, where just pressure
had been used to reconstruct density and �ow angles, it is possible to notice a
small reduction in the coe�cient of variation of the density, while the posterior
variance associated with �ow angles remains substantially the same. This con-
�rms what was observed in the two former tests, where density and �ow angles
were independently reconstructed from pressure and heating data. Therefore,
in the considered con�guration, accounting for heat �ux measurements does
not seem to provide valuable improvements on reconstructions that can be
done with only FADS pressure measurements.

A further test is here performed, repeating the global problem of recon-
structing density, �ow angles and catalycity coe�cient in order to show how
results would improve if measurement error of the heat �ux were only at 2%
of the measured quantity, that is the same level of accuracy than for pressure
measurements. The obtained posterior distributions are shown in Figure 6.14
and statistics are reported in Table 6.10. From the �gure, it is clear that there
is an improvement in the estimate of the catalycity: even though the support
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Figure 6.13: PDFs of the freestream density and �ow angles rebuilt from wall
pressure measurements (solid black line) for the 30km trajectory points. The
dashed line represents the posterior mean value and the red line the reference
value. The x axis width shows the uniform prior interval.

of the posterior is still as large as the prior, its variance is reduced. Looking at
the quantitative results in Table 6.10, it is evident that the coe�cient of varia-
tion of γ passed from about 19% (in Table 6.9) to respectively 14.8% and 12.5%
when reducing the measurement error. It is more complicated to compare the
other results, since for the 30km trajectory point it is possible to see an im-
provement especially on the reconstruction of the density, while for the 60km
trajectory point the more noticeable improvement is on the reconstruction of
�ow angles.
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6. Application: freestream characterization for EXPERT vehicle

30km 60km

ρ∞ [kg/m3]

µ 1.900030e-02 2.886678e-04
σ 1.676463e-04 2.597421e-06
σ/µ 0.882 % 0.899796 %
ε% 0.009335 % 0.210063 %

γ

µ 1.495664e-03 1.484817e-03
σ 0.000285 0.000283
σ/µ 19.035 % 19.076693 %
ε% 0.289057 % 1.080869 %

α [deg]

µ 5.017937 4.945957
σ 0.2672945 0.2673363

1σ interval [4.750642 , 5.285231] [4.678620 , 5.213293]
εdeg 0.017937 0.054043

β [deg]

µ -1.003269 -0.976203
σ 0.203691 0.190685

1σ interval [-1.206960 , -0.799579] [-1.166888 , -0.785518]
εdeg 0.003269 0.023797

Table 6.9: Posterior mean value, standard deviation and coe�cient of variation
of the inferred freestream density and �ow angles computed with the MCMC
samples for 30km and 60km trajectory point. The error ε% represents the
relative error between the reference and the mean posterior values.

6.6 Conclusions

This chapter illustrated a study about the assessment of the interest in using
forebody heat �ux measurements on entry vehicles to reconstruct freestream
values, namely the atmospheric density and the �ow angles, and the uncertain
wall catalycity coe�cient, instead of just using surface pressure measurement,
as usually done in the literature. All the reconstruction problems were done in a
Bayesian framework, coupled with the PDD-UK surrogate modeling technique
to emulate the response of expensive CFD simulations of the �ow. The tests
performed showed that, up to the current measurement errors for heat �ux,
this type of data is not able to bring much information to rebuilt freestream
values, that are better characterized by pressure measurements. Heat �ux data
do not bring substantial information on the catalycity either, with respect to
the fairly precise expert-based prior information considered for this variable.
According to the results of a recent work [Sanson et al., 2016], the expert-based
prior distribution used for γ could be too optimistic, meaning that in practice
wider prior PDFs could be expected for this parameter. In this case, it could
be useful to show whether in-�ight heat �ux measurements could improve the
characterization of γ. One last empirical test showed that the contribution
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Figure 6.14: PDFs of the freestream density and �ight angles rebuilt from
wall pressure measurements (solid black line) for the 30km trajectory points
obtained with reduced measurement error for the heat �ux.

of heat �ux measurement could be more useful if measurement errors were
substantially reduced. In a real-life scenario, bene�ts from including heat
�ux measurements will probably be obtained if, together with measurement
accuracy, also prediction capabilities of numerical simulations were improved.
In fact, when dealing with more complex �ow, as the ones involved in Mars
atmospheric entry, where ablation and radiation a�ect the surface heating,
all these contributions to the global wall heat �ux should also be accurately
modeled, in order for the reconstruction to be meaningful.
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30km 60km

ρ∞ [kg/m3]

µ 1.899699e-02 2.887507e-04
σ 1.626812e-04 2.592369e-06
σ/µ 0.856 % 0.897788 %
ε% 0.026751 % 0.238849 %

γ

µ 1.504720e-03 1.485240e-03
σ 0.000223 0.000186
σ/µ 14.844634 % 12.555283 %
ε% 0.314693 % 1.333834 %

α [deg]

µ 5.017937 4.956571
σ 0.2672945 0.2254609

1σ interval [4.750642 , 5.285231] [4.731110 , 5.182032]
εdeg 0.017937 0.043429

β [deg]

µ -1.003269 -0.996722
σ 0.203691 0.161652

1σ interval [-1.206960 , -0.799579] [-1.158374 , -0.835070]
εdeg 0.003269 0.003278

Table 6.10: Posterior mean value, standard deviation and coe�cient of vari-
ation of the inferred freestream density and �ight angles computed with the
MCMC samples for 30km and 60km trajectory point. The error ε% represents
the relative error between the reference and the mean posterior values.
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Conclusions

This work focused on statistical forward and inverse uncertainty propagation
problems applied to atmospheric entry �ows, with a particular interest in the
assessment of the possibility to exploit heat �ux measurements at the forebody
of the vehicle to rebuild values of freestream conditions and uncertain param-
eters of the model. The work contributed to improvements to mathematical
tools used to perform propagation of uncertainties. Furthermore, some inter-
esting conclusions can be drawn from the point of view of engineering and
scienti�c applications. In the following list, some considerations are illustrated
with respect to all the main objectives listed in the introduction, in addition
global conclusions will be presented in the following discussion.

1. From a physical/application point of view, the reconstruction of freestream
density, aerodynamic angles and catalytic coe�cient has been performed
in a Bayesian framework for the EXPERT vehicle, exploiting heat �ux
measurements at the forebody of the entry vehicle, together with the
classically-available surface pressure measurements. It is found that,
at the current level of accuracy for heat �ux measurements (high mea-
surement error, of the order of 10% the measured value), this kind of
data does not provide enough information and, therefore, it does not
reduce uncertainties on the rebuilt quantities with respect to reconstruc-
tions performed with only pressure measurements. The reconstruction of
freestream velocity and density has also been tested, using pressure and
heat �ux measurements, for the HEG cylinder experimental con�gura-
tion. The use of this kind of measurements leads to results for the velocity
that are much more uncertain, i.e. with a higher 1σ variation, than the
classical reconstruction by inertial data (provided by the IMU) as usually
done in the literature. The only scenario where heat �ux measurements
would become more useful is in the case of IMU malfunctioning: in the
absence of inertial data, a relatively uncertain reconstruction by heat
�ux would be better than the complete impossibility of rebuilding this
variable.

2. Bayesian statistical framework was adopted to formulate direct and in-
verse uncertainty propagation problems related to hypersonic entry �ows.
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The framework worked as expected, for both direct and inverse uncer-
tainty propagation problems. It proved to be very versatile, allowing to
consider several sources of uncertainties, measurement errors and com-
plex CFD models. The use of numerical models which are expensive to
compute brings the need of replacing them by surrogate models, since
several evaluations of the quantities of interest are required to fully char-
acterize output uncertainties. This framework was particularly useful to
perform robust prediction of hypersonic entry �ows, rigorously quantify-
ing output uncertainties related to pressure and heating at the stagnation
point. It also allowed the rigorous statistical solution of the freestream
reconstruction problem, applied only at single points of the entry tra-
jectory. For this reason, the formulation used in this work is not suited
for freestream reconstruction along the whole trajectory. However, it
was not in the purpose of this work to �nd an alternative method to
replace Kalman �lters or other statistical techniques from the literature
for atmospheric reconstruction.

3. From the point of view of numerical CFD simulations, it is important to
remark that, in this work, a major unexpected challenge was to obtain ac-
curate and robust numerical simulations for the heat �ux, especially near
the stagnation, even for relatively simple geometries like the HEG cylin-
der and EXPERT nose. The tested automated mesh adaptation strategy
was not working universally, but it needed adjustments and modi�cations
when changing a test case, geometry (2D or axisymmetric), numerical
scheme and uncertain input parameters. If single computations needs
to be performed, some more ad hoc strategies may be used, but this is
very penalizing in the UQ framework, where several input con�gurations
must be simulated and one needs to be able to automatically run the
simulations.

4. Since uncertainty problems required a high number of evaluations of the
function of interest, it was mandatory to exploit a surrogate model to
replace the evaluations of the expensive computational CFD code for
the simulation of hypersonic �ows. With the methods introduced in this
work, it has been possible to build an e�cient and accurate surrogate
model. In particular, three main algorithmic aspects have been investi-
gated:

(a) An improved surrogate modeling technique, denoted PDD-UK, has
been introduced. It consists in the use of polynomial basis functions
selected by an adaptive sparse-Polynomial Dimensional Decompo-
sition algorithm as regression functions for a Universal Kriging sur-
rogate. This improved approach proved to work well on several
tests performed, both analytical and issued from applications in
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the atmospheric entry �eld, providing an improved metamodeling
accuracy with respect to both Ordinary Kriging and sparse-PDD.
These tests showed that the proposed adaptive surrogate is able to
handle problems with a relatively high number of uncertain inputs,
in the case where the major contribution on the variability of the
output is given by a limited subset of inputs. The performed tests
also showed that, in order to have best results in terms of accuracy,
it is necessary to choose an adequate set of input parameters (i.e.
the maximum polynomial order m, the interaction order ν, etc.).
This may require a preliminary analysis with error estimates (e.g.
cross-validation error) to determine the best set of input parameters.
Notice that the PDD-UK, although only accounting for polynomial
basis functions, showed good performances even for test functions
that did not possess an underlying polynomial trends. Other tech-
niques, as Blind Kriging [Joseph et al., 2008], allow the use of other
di�erent kind of functions, according to the features of the function
of interest. Of course the possibility to include, for example, peri-
odic bases in the case of periodic behaviors is very useful, but at
the same time this would increase the complexity of the technique.

(b) A novel technique has been developed to adaptively add new train-
ing points to an existing experimental design, in case one wants
to improve the accuracy of a surrogate built on this �rst ED. The
technique relies on the construction of a Delaunay grid of simplex
elements where the training points coincide with the vertices of the
elements, and is able to account for the information on the function
of interest acquired during the training process of the �rst surrogate
model on the initial experimental design. In particular, it accounts
for functions gradients and local estimates of the surrogate model-
ing error. The technique was able to add a �xed number of training
points, chosen by the user, so that the new experimental design per-
formed better than a normal LHS design in terms of average RMSE
surrogate modeling error. The suggested use of this technique is to
add a �xed and relatively small number of training points, when
compared to the size of the ED, when new points are needed to im-
prove the quality of the surrogate model built on the initial ED. This
technique is not meant to be used iteratively in order to increase
substantially the size of the ED. In such situation, its performance
tends to converge to the one of a simple LHS, which has, how-
ever, the advantage of being computationally cheaper. The main
drawback of the proposed methodology is that the construction of
a simplex Delaunay grid becomes very computationally demanding
when increasing the dimensionality of the input space. When it is
not possible to decrease the dimensionality of the input by dimen-
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sionality reduction techniques, this becomes a major problem that
can prevent from the utilization of the proposed methodology. It is
important to notice the di�culties associated to the construction of
an adaptation technique that is as general as possible and does not
rely on any assumption on the structure of the function in unex-
plored regions of the domain. In fact, a technique which relies too
much on the information available about the function may miss to
�nd new critical region in which it is worth adapting, and on the
other hand, a technique which favors excessively the exploration of
the domain is often not optimal.

(c) Active subspaces proved to be very e�ective for dimensionality re-
duction for direct propagation of uncertainties and sensitivity analy-
sis, allowing to capture of information about low-dimensional struc-
tures hidden in the function of interest and to produce accurate out-
put PDFs despite the highly-reduced dimensionality. We described
an alternative way to exploit the low-dimensional structure in the
parameter-to-observable map revealed by the active subspaces to
enable e�cient Bayesian inversion with MCMC. Instead of relying
only on active subspaces of the log-likelihood (or mis�t) function
to reduce the dimension of the Markov chain as in [Constantine
et al., 2016b], here the two one-dimensional active subspaces in the
parameter-to-observable maps have been exploited. If the structure
of the functions of interest allows for the existence of active sub-
spaces, they can be e�ectively exploited for Bayesian inverse prob-
lems. The proposed approach has one drawback that arises in cases
where a non-Gaussian prior is present in the physical space. In or-
der to have a sample of the posterior density in physical variables,
one has to draw samples from the conditioned probability of the
inactive variables given the active variables, which is not analytical
when the joint prior on the active variables is not Gaussian. Hence,
one must run a second MCMC to sample from the conditional pdf,
which adds numerical e�orts and complications. This makes the
methodology more complicated and adds computational costs with
respect to the full-dimensional counterpart, however the reduced
dimensionality helps in curing the curse of dimensionality in both
the construction of the surrogate and the convergence of the main
MCMC. However, it must be noticed that the extra MCMC algo-
rithm does not require any evaluation of the expensive simulation
code nor of the surrogate model. Once a more e�cient implemen-
tation of the double MCMC algorithm is available, the technique
will be very usable even for real world applications, especially when
the structure of the function of interest allows for a high dimen-
sionality reduction. One advantage of the introduced strategy with
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respect to the mis�t-based method is that the active subspaces and
metamodels for the functions of interest do not depend anymore
on the measurements but just on the prior densities. This makes
the approach more versatile as the surrogates can be used also for
forward uncertainty propagation, and reused if changing measure-
ments values. Furthermore, discovering and exploiting the active
subspaces in the simulation model's parameter-to-observable map
provides global sensitivity metrics, which give comparable rankings
of the input as global variance-based sensitivity indices.

From the results of this work, freestream and parameter reconstruction
possibilities given by heat �ux forebody measurements were less useful than
expected. Nevertheless, this does not mean that this kind of measurements
are useless or that it is not worth trying to include di�erent newly-available
in-�ight data in the trajectory and atmospheric reconstruction process. On the
contrary, this partially disappointing result should motivate research on how
to fully exploit the available in-�ight data in a global framework to improve
the information on uncertain parameters. Furthermore, the quality of surface
heat �ux measurements will probably improve in the future, since they are
very useful for a direct monitoring of the TPS heating and performance. More
accurate measurements will allow to improve also the predictive capabilities
of numerical simulations. All these factors will eventually lead to progress in
accuracy and robustness of predictions and freestream reconstruction.

As already noticed, the Bayesian framework for inverse problems was ver-
satile and useful, and could be further exploited in direct and inverse UQ
problems and sensitivity analysis for hypersonic entry �ows and other aspects
related to atmospheric entry. It must be kept in mind that it is especially suited
for punctual analysis, and does not replace �ltering methods to reconstruct the
whole entry trajectory. It can instead be used in applications involving data
from experimental facilities, as for example in [Sanson et al., 2016]. Experi-
mental con�gurations with stationary phenomena and adequate control over
measurement errors could bene�t from Bayesian inversion to characterize un-
certain parameters which are not directly measurable. As a further remark,
it is worth to stress the importance of the choice of the prior in a Bayesian
setting. In fact, the quality of the results depends strongly on the prior. When
weakly-informative (i.e. wide) priors are given, it is probably easy to obtain a
posterior that improves the information over the prior, but at the same time, if
model and measurement uncertainties are high, the posterior uncertainty will
still be quite relevant. On the other hand, when very informative (i.e. narrow)
priors are given, posteriors will be narrower too, but it may be very di�cult to
see an improvement over the prior. Furthermore, the result might be mainly
in�uenced by the prior belief rather than learning from the data.
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To conclude, we assessed atmospheric reconstruction performed with heat
�ux. Moreover, this work allowed to identify some critical aspects for UQ
problems in hypersonic entry �ows. In particular, mesh adaptation for nu-
merical simulations of the �ow was a very critical aspect, since it was causing
major problems to get accurate yet automated simulations. While this may be
obvious for experts in the �eld of numerical simulations of hypersonic �ows,
it becomes less evident when trying to perform a high number of simulations
for UQ. This aspect needs an adequate collaboration between UQ people and
experts in numerical simulations, in order to de�ne a more general and rig-
orous operational framework. Another general conclusion that can be drawn
from this work is that many further aspects in atmospheric entry are worth
being analyzed in a UQ framework, for example the e�ect of ablation phe-
nomena on surface heating, entry �ows in atmospheres of di�erent planets and
entry trajectories of capsules and debris. All these problems involve complex
models, with parameters that are di�cult to estimate because of the lack of
experimental data for a proper calibration, and therefore the whole validation
and veri�cation process could bene�t from the quanti�cation of uncertainties
to robustly evaluate predictive capabilities of simulations.

6.7 Perspectives and future developments

This work has illustrated the developments for providing some solutions to
some challenging points indicated in the objectives. We will illustrate now some
perspectives, which may take advantage of the novelties introduced in the work,
or others which could improve some of the weak points highlighted. From the
point of view of the application to entry �ows and freestream characterization,
the following points are worth being explored.

• A short term improvement for the results of the freestream reconstruction
for EXPERT would be to account for chemistry uncertainties, as done
for the HEG cylinder.

• It would be de�nitively interesting to test Bayesian inversion for freestream
reconstruction in a real-world case, where real in-�ight data are avail-
able, containing also heat �ux measurements. This would allow to verify
the actual performance of both the methodology and heat �ux measure-
ments for freestream reconstruction. In such context, the discrepancy
between measurements and model predictions would become more criti-
cal, thus the predictive capabilities of the computational model should be
thoroughly assessed and the discrepancy with measured data adequately
modeled in order to have representative inverse solutions.

• It could be very interesting to perform a forward propagation of uncer-
tainties and sensitivity analysis for the entry in an atmospheric environ-

186 Andrea Francesco CORTESI



Conclusions

ment di�erent than air, taking into account for example a Martian entry
mission (e.g. MSL or EXOMARS missions), as done for example in [Bose
et al., 2004] for Titan's atmosphere. The higher uncertainty present on
atmospheric models of other planets than Earth could produce more rel-
evant uncertainties on the outputs of numerical simulations, therefore
robust predictions would bene�t from a rigorous attempt to quantify
these variations. These extra-terrestrial entry missions would also prob-
ably require accounting for e�ects of the ablation of the heat shield for
more predictive simulations. This would require to include uncertainties
associated with parameters of the ablation model, that can a�ect the
heating response, leading to di�erent UQ results. This may become rel-
evant also for the inverse UQ problem, where the usefulness of heat �ux
measurements might be higher.

• Another point that can be interesting to explore is the optimization of
sensors position and accuracy in a Bayesian framework, in order to obtain
a con�guration which maximizes the accuracy of the reconstruction, by
minimizing the variance of the posterior for example. Results might
then be compared with more classically optimized sensors con�guration,
which may not take into account model uncertainties, but which may
bene�t from experimental tests and calibrations.

From a more mathematical point of view, di�erent improvements could be
tested for the methodologies proposed in the work.

• It would be interesting to test the implementation of sparse polynomial
basis functions in the kernel (autocovariance) of a Gaussian process sur-
rogate model with no regression trends. For example, [Duvenaud, 2014,
Chapter 2] showed how to use di�erent type of kernels to build surro-
gate models of functions of interest with many di�erent structures. The
implementation of features of the functions in the kernel of a Gaussian
process is more common in the literature of machine learning [Duvenaud
et al., 2011; Bach, 2009] and should help �ght against the curse of dimen-
sionality [Bengio et al., 2005], while it is less explored in the literature
of uncertainty quanti�cation. A natural comparison will be with the im-
plementation proposed in this work, which uses polynomial basis in the
regression term of the Universal Kriging surrogate.

• In order to improve the computational performance of the adaptation
technique proposed in Chapter 4, the main interest is to get rid of the
need of constructing a Delaunay simplex grid, which is one of the main
features of the technique, but at the same time the bottleneck when in-
creasing the input space dimensionality. Furthermore, other implemen-
tations of the error criterion could be explored, for example accounting
for the average surrogate modeling error along the edge, instead of its
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value in the edge midpoint. Although more complex and expensive, this
implementations should be more representative of actual errors, since it
is able to account for strong variations of surrogate modeling error along
each edge.

• Since the use of active subspace was very e�ective, it is worth to im-
prove the numerical e�ciency of the proposed algorithm and use them
for Bayesian inverse problem in practical applications. An intensive re-
search is currently being carried out on active subspaces and their appli-
cation, and the implementation of all the derived novelties will improve
the e�ectiveness of this tool.

As already mentioned, more practical improvements should be carried out
concerning the methodology for numerical simulations of hypersonic �ows
adopted in the work, in particular about mesh adaptation. Because of the
di�culties in the mesh re�nement, it could be interesting to exploit other
more advanced mesh adaptation techniques for hypersonic �ows as [Saunders
et al., 2007], to verify if they can produce more accurate and reliable results,
without being too cumbersome to be adopted in the case of UQ applications.
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Appendix A

Brief overview of conventional
methods for atmospheric
reconstruction

This appendix reviews the main ideas behind two classical techniques used for
the reconstruction of the entry trajectory and the characterization of atmo-
spheric quantities. The �st method infers all the unknown parameters starting
from acceleration and rotation measurements given by the Inertial Measure-
ment Unit (IMU), which is part of the normal equipment of a space vehicle.
Then a second more advanced technique is described, which exploits also pres-
sure measurements given by the FADS in the process of atmospheric rebuilding.

A.1 Conventional reconstruction method based

on IMU data

An Inertial Measurement Unit (IMU) is a package of accelerometers and gy-
roscopes that measures linear accelerations and angular rotation rates. IMU
�ight data have to be numerically integrated to provide the vehicle positional
state through time, i.e. its trajectory. Starting from an initial navigational
state, the velocity and rotation rates can be integrated with a numerical inte-
gration scheme. This provides atmospheric entry trajectory in terms of alti-
tude, velocity, angle of attack, etc. Trajectory reconstruction is described in
more detail in [Withers et al., 2003; Van Hove et Karatekin, 2013]. However,
IMU alone does not provide direct information on wind velocity which a�ects
the determination of air speed and �ow angles, as will be discussed below.

In a second step, atmospheric pro�les may be derived along the recon-
structed trajectory. Atmospheric density is commonly estimated from the
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drag equation:

D = m|aD| =
1

2
ρ∞u

2
∞Aref CD , (A.1)

where D is the drag, which is equal the aerodynamic deceleration along the
drag direction |aD| times the vehicle mass m, ρ∞ is the freestream density
at a given altitude h, CD the non-dimensional aerodynamic drag coe�cient,
u∞ the air velocity and Aref the reference surface area for a particular entry
vehicle. This equation can be rearranged to calculate atmospheric density as
a function of measured deceleration:

ρ∞ = 2
m|aD|

CD Aref u2
∞
. (A.2)

Note that CD is computed from the predicted aerodynamic drag and cannot be
constrained by IMU �ight data. Any drag coe�cient uncertainty, caused by in-
accuracy of CFD simulations, is then propagated directly to the reconstructed
atmospheric density.

Additional atmospheric quantities are derived from the density pro�le in
two steps. First in Eq. (A.3), atmospheric pressure p∞ is estimated by in-
tegrating density over altitude according to hydrostatic equilibrium. Second
in Eq. (A.4), density and pressure are then combined in the ideal gas law to
derive atmospheric temperature T∞

p∞(h) = p∞(h0)−
∫ h

h0

gρ∞ dh (A.3)

T∞ =
µp∞
Rρ∞

, (A.4)

with gravitational acceleration g, ideal gas constant R = 8.3144621 J/mol/K
and the molecular weight µ of the atmospheric gas mixture. Uncertainties
bounds on this deterministic method are typically estimated by Monte Carlo
sampling, as, for example, in [Withers et Catling, 2010].

The main disadvantage of this IMU-based atmosphere reconstruction method
is the reliance of Eq. (A.2) on the aerodynamic drag coe�cient. CD estima-
tions from pre-�ight wind tunnel testing and/or CFD simulations cannot be
compared against real-�ight coe�cients, because they serve as an input for the
calculations.

A.2 Reconstruction based on surface stagnation

pressure

In recent decades, Flush Air Data Systems (FADS), consisting of a grid of
heat shield integrated pressure sensors, have been developed for a variety of
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high-speed vehicles, from jet �ghters to planetary exploration vehicles. For the
latter, this may also include heat �ux measurements; but atmospheric recon-
struction with FADS has so far been based on forebody pressure only [Dutta et
Braun, 2014]. The derivation of the �ow environment from forebody pressure
is an inverse problem, as opposed to the more common forward calculation
of the heat shield surface pressure distribution. While no aerodynamic coe�-
cients are required in the pressure based reconstruction method, the forebody
pressure must be predicted as function of atmospheric freestream conditions.
The �ow model can be constructed using CFD look-up tables, wind tunnel
testing or approximate analytical relations. Here, the latter approach is used
to obtain a FADS solver that is generally applicable to a wide range of blunt
nosed entry vehicles.

Atmospheric conditions are classically derived from stagnation pressure pt2
with the analytical Rayleigh-pitot tube formula [Pruett et al., 1983] in Eq.
(A.5):

pt2
q∞

=
2

γM∞

(
(γ + 1)2M2

∞
4γM2

∞ − 2(γ − 1)

) γ
γ−1
(

1− γ + 2γM2
∞

γ + 1

)
, (A.5)

with Mach number M∞ and the heat capacity ratio γ = cp/cv. Eq. (A.5)
rests on the assumption that γ is constant along the stagnation streamline. In
reality, the shock wave ahead of the vehicle signi�cantly raises the temperature,
modifying γ and making perfect non-reacting gas relations such as Eq. (A.5)
invalid. To take high-temperature e�ects into account, it is possible to use
equivalent values for γ derived from thermochemical equilibrium solutions of
the shock conservation equations of mass, energy and momentum.

Once the freestream dynamic pressure has been determined, atmospheric
density ρ∞ can be derived according to Eq. A.6, where the required air speed
is provided by IMU data:

ρ∞ =
2q∞
V 2
∞
. (A.6)
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Appendix B

Complements on Kriging and
Gaussian Process regressions

B.1 Gaussian Process

Formally, a Gaussian process is a collection of random variables Z(x) indexed
by x, any �nite number of which have a joint Gaussian distribution.

A Gaussian process Z(x) is a second-order stochastic process that is com-
pletely de�ned by its �rst and second-order statistical moments, namely by
its mean function µ(x) = E[Z(x)] and its autocovariance function C(x,x′) =
E[(Z(x)−µ(x))(Z(x′)−µ(x′))]. Therefore, it is possible to denote a Gaussian
process as:

Y (x) ∼ GP(µ(x), C(x,x′)). (B.1)

B.1.1 Stationary Gaussian process

A stationary stochastic process is a process that is invariant by translation.
Therefore, it follows that it has a constant mean function

µ(x) = µ0 ∀x , (B.2)

and an autocovariance function that depends only on the shift between x and
x′

C(x,x′) = σ2k(x− x′) ∀x,x′ , (B.3)

where σ2 is a constant variance magnitude and k(x−x′) is called the autocor-
relation function.

B.2 Universal Kriging and the BLUP problem

In this section, the analytical resolution of the best linear unbiased predic-
tor (BLUP) is proposed. This problem arises in the formulation of the the
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Universal Kriging predictor described in Section 3.2.1.
We recall that the main idea of Kriging method is to consider the output of

the deterministic model f(x) as a realization of a Gaussian stochastic process
F (x). In Universal Kriging (UK), the stochastic process is written in the form
of the sum of a deterministic linear regression model and a stochastic departure
term:

F (x) =
n∑
j=1

βjhj(x) + Z(x) = hT (x)β + Z(x) , (B.4)

where hj(x) are n linearly independent known regression functions, βj are
unknown weights, and Z(x) is a stationary Gaussian process with zero mean
function

E[Z(x)] = 0 ∀x , (B.5)

and a stationary autocovariance function

E[Z(x), Z(x′)] = σ2k(x− x′) ∀x,x′. (B.6)

The autocovariance σ2k(x−x′) is assumed to be known. The Gaussian process
assumption in Eq. (3.2) holds for both the unobserved values f(x) and the
observations of the model at the training points fobs = (f(x1), . . . , f(xNs))

T .
The aim of Kriging is to build a linear predictor of the function of interest

F (x). This means that the predictor F̂ (x) is written as a linear combination
of the observations Fobs = (F (x1), . . . , F (xNs))

T of the actual model at the Ns

training points:

F̂ (x) =
Ns∑
i=1

F (xi)ai(x) = aT (x)Fobs. (B.7)

where ai(x) are unknown weights. We want the predictor to be the best linear
unbiased predictor (BLUP) of the quantity of interest. This means that it has
to minimize the mean-square prediction error (MSPE) between the model and
the predictor

MSPE(x) = E
[(
F (x)− F̂ (x)

)2
]
, (B.8)

while respecting the constraint of unbiasedness:

E
[
F (x)− F̂ (x)

]
= 0. (B.9)

Therefore, the optimization problem consists in �nding the optimal set of
weights a∗(x) of the linear predictor with respect to the following optimization
problem

a∗(x) = arg min
a

E
[(
F (x)− aT (x)fobs

)2
]

subject to E
[
F (x)− aT (x)fobs

]
= 0. (B.10)
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B.2.1 Resolution of the BLUP problem

The resolution of the BLUP problem is here proposed following the one in
[Dubourg, 2011]. The stochastic error between the linear prediction F̂ (x) and
the model F (x) can be rewritten by replacing F (x) and Fobs with the Gaussian
process model:

F̂ (x)− F (x) = aTFobs − F (x) =

= aT (Hβ +Z)− (h(x)Tβ + Z(x)) =

= aTZ − Z(x) + (aTH − h(x)T )β , (B.11)

withZ = (Z(xi)), . . . , Z(xNs)) the vector of Gaussian departure at the training
points, and where h(x) = (h1(x), . . . , hn(x))T is the vector of basis functions,
H is a Ns × n matrix whose elements are the evaluation of the j-th basis
function at the i-th training point Hij = hj(xi). Imposing the expectation of
the error equal to zero for the unbiasedness, and putting E[aTZ−Z(x)] = 0 for
the zero-mean assumption on the Gaussian process, we obtain the constraint

aTH − h(x)T = 0. (B.12)

Exploiting this relation, the mean-squared error can be simpli�ed as follows:

E
[(
F (x)− F̂ (x)

)2
]

= E
[(
aTFobs − F (x)

)2
]

=

= E[aTZZTa+ Z2(x)− 2aTZZ(x)] =

= aTE[ZZT ]a+ E[Z2(x)]− 2aTE[ZZ(x)] =

= aTσ2Ca+ σ2 − 2aTσ2c(x) , (B.13)

with c(x) is a vector of length Ns whose elements ci = k(x − xi) contain the
correlations between the point x and each training point xi, and C is a Ns×Ns

matrix of correlations among training points Cij = k(xi − xj). It follows that

E
[(
F (x)− F̂ (x)

)2
]

= σ2
(
1 + aTCa− 2aTc(x)

)
. (B.14)

The BLUP optimization problem can now be solved exploiting the Lagrangian
formalism. Introducing the vector of Lagrange multipliers λ, the Lagrangian
function for the constrained optimization problem is:

L(a,λ) = σ2
(
1 + aT (Ca− 2c(x))

)
+ λ

(
aTH − h(x)T

)
. (B.15)

As known, the optimal solution is found by putting to zero the gradients of
the Lagrangian with respect to the unknowns and the multipliers. This leads
to the following conditions:{

∇aL(a,λ) = 2σ2(Ca− 2c(x)) +Hλ = 0

∇λL(a,λ) = HTa− h(x) = 0.
(B.16)
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B.2. Universal Kriging and the BLUP problem

Being a linear system, it can be written in matrix form, calling λ̃ = λ
2σ[

C H
HT 0

]{
a

λ̃

}
=

{
c(x)
h(x)

}
. (B.17)

Multiplying the �rst line by HTC−1 and subtracting to the second line, we
obtain

λ∗(x) =
(
HTC−1H

)−1(
HTC−1c(x)− h(x)

)
. (B.18)

Then, substituting in the �rst line, it is possible to obtain the expression for
the optimal coe�cients

a∗(x) = C−1

(
c(x)−H

(
HTC−1H

)−1(
HTC−1c(x)− h(x)

))
. (B.19)

Replacing this optimal coe�cients in the mean value of the linear predictor, it
is possible to obtain the expression for the Universal Kriging predictor, that is
the relation used for the surrogate model implementation:

µk(x) = E[F̂ (x)] = aTfobs =

=

(
c(x)−H

(
HTC−1H

)−1(
HTC−1c(x)− h(x)

))T
C−1fobs =

= c(x)TC−1fobs−
[(
HTC−1H

)−1
HTC−1c(x)+

(
HTC−1H

)−1
h(x)

]T
HTC−1fobs =

= h(x)T
(
HTC−1H

)−1
HTC−1fobs︸ ︷︷ ︸

β

+c(x)TC−1
(
fobs −H

(
HTC−1H

)−1
HTC−1fobs︸ ︷︷ ︸

β

)
=

= hT (x)β + c(x)TC−1(fobs −Hβ). (B.20)

It is also possible to replace the optimal values of the linear predictor co-
e�cients in the mean-squared error between the prediction and the actual
function, to obtain a model-based metamodeling error estimator. Let us
�rst call u(x) = HTC−1c(x) − h(x), it follows that a∗(x) = C−1

(
c(x) −

H
(
HTC−1H

)−1
u
)
. Replacing this expression in the de�nition of mean-squared

error it is possible to obtain:

s2
k = E

[(
F̂ (x)− F (x)

)2
]

=

= σ2
(
1 + aTCa− 2aTc(x)

)
=

= σ2
{

1 + (c(x)−H(HTC−1H)−1u)TC−1[(c(x)−H(HTC−1H)−1u)− 2u]
}

=

= σ2
[
1− (c(x)−H(HTC−1H)−1u)TC−1(c(x) +H(HTC−1H)−1u)

]
=

= σ2
[
1− (c(x)TC−1c(x)− (H(HTC−1H)−1u)TC−1H(HTC−1H)−1u)

]
=

= σ2
[
1− c(x)TC−1c(x) + uT (HTC−1H)−1u

]
. (B.21)
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B.3 Universal Kriging and Gaussian process pre-

dictors, frequentist point of view

In this section, we will derive the Universal Kriging surrogate model in an
alternative way, within the framework of the stochastic prediction methodol-
ogy. The main assumption of stochastic predictions consists in considering the
observation of the function of interest, gathered in the vector fobs, together
with the value of the function at an unobserved point f(x) to be a realization
of a random vector (F (x),Fobs)

T distributed according to a joint probability
distribution P : {

F (x)
Fobs

}
∼ P . (B.22)

By means of the stochastic prediction methodology, it is possible to derive a
predictor F̂ (x) for the unobserved values of the function by exploiting this
statistical relation. At this purpose, the fundamental theorem of prediction
[Santner et al., 2003, Theorem 3.2.1] de�nes the optimal predictor minimiz-
ing the mean squared prediction error (MSPE = EP [(F (x) − F̂ (x))2]) as the
conditional distribution of F (x) given the observations:

F̂ (x) = EP [F (x)|Fobs]. (B.23)

A particular case of stochastic predictor is the Gaussian predictor, where
the distribution P is a multivariate Gaussian distribution N . In this case, the
relationship between the input x and the model output f(x) is a sample path
from a Gaussian process F (x) to be characterized. A common model for the
Gaussian process is constituted by the linear regression model:

F (x) =
n∑
j=1

βjhj(x) + Z(x) = hT (x)β + Z(x) , (B.24)

where the stochastic process is written in the form of a deterministic linear
regression model plus a stochastic departure term Z(x), which is a Gaussian
process with zero mean function E[Z(x)] = 0 and a stationary autocovariance
function E[Z(x), Z(x′)] = σ2k(x − x′), with k(x − x′) assumed to be known.
Thanks to this model, it is possible to write the joint distribution between the
predictions and the observations in the following way:{

F (x)
Fobs

}
∼ N

({
hT (x)β
Hβ

}
, σ2

[
1 cT (x)
c(x) C

])
, (B.25)

where h(x) = (h1(x), . . . , hn(x))T is the vector of basis functions, H is a
Ns × n matrix whose elements are the evaluation of the j-th basis function
at the i-th training point Hij = hj(xi), c(x) is a vector of length Ns whose
elements ci = k(x− xi) contain the correlations between the point x and each
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B.3. Universal Kriging and Gaussian process predictors

training point xi, and C is a Ns × Nsmatrix of correlations among training
points Cij = k(xi − xj). From this normal joint distribution, the best MSPE
predictor given by the theorem (B.23) becomes (see [Rasmussen et Williams,
2006, Appendix A.2] for the conditioned distribution of a Gaussian vector):

F̂ (x) = E[F (x)|Fobs] ∼
∼ N

(
hT (x)β + c(x)TC−1(fobs −Hβ) , σ2(1− c(x)TC−1c(x))

)
.

(B.26)

Therefore, the predictive mean, used as surrogate model is simply the expec-
tation of the predictor:

µk(x) = E[F̂ (x)] = hT (x)β + c(x)TC−1(fobs −Hβ). (B.27)

B.3.1 Generalized least-squares by maximum likelihood

estimation

In order to compute the regression coe�cients β for the predictor, we will solve
a generalized least-squares problem in a frequentist approach. The Gaussian
linear model (B.24) is valid for the observations of the function at the training
points, therefore we can write:

F obs
i =

n∑
j=1

βjhj(xi) + Zi i = 1, . . . , Ns , (B.28)

where Zi are the Gaussian deviation terms at the training points, which are
collected in the vector Z, leading to E[Z] = 0 and E[ZZT ] = σ2C. Due to the
general linear regression model in (B.28), the random vector of the observations
is distributed with the following multivariate normal distribution:

Fobs ∼ N
(
Hβ , σ2C

)
, (B.29)

where H is a Ns × n matrix whose terms are de�ned as Hij = hj(xi).
The solution to the regression problem in the least squares sense consists

in �nding the optimal values for β that maximizes the likelihood of the ob-
servations given β. In the Gaussian linear model framework, the likelihood is
de�ned as follows from the multivariate normal probability density function of
the observations:

`(fobs|β) =
1√

(2πσ2)Ns det[C]
exp

(
−(fobs −Hβ)TC−1(fobs −Hβ)

2σ2

)
. (B.30)

Normally, instead of directly maximizing the likelihood, it is simpler to solve
the equivalent problem of minimizing the negative log-likelihood. Therefore
the maximum likelihood estimation (MLE) problem can be expressed as:

β∗ = arg min
β

(
− log `(fobs|β)

)
, (B.31)
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where log is the natural logarithm. The optimality condition for this uncon-
strained optimization problem can be found by putting to zero the derivatives
of the likelihood with respect to the design parameters β

∇β log `(fobs|σ2,β) = 0. (B.32)

By computing the derivatives, we obtain the following linear system of equa-
tions:

1

σ2

(
HTC−1fobs −HTC−1Hβ

)
= 0 ∀σ2. (B.33)

This system can be easily solved, obtaining the generalized least-squares esti-
mate for the regression weights

β∗ =
(
HTC−1H

)−1
HTC−1fobs. (B.34)

B.4 Stationary autocorrelation functions

In this section, some stationary autocorrelation functions (also called kernels)
for Gaussian process are reported. These are well-known examples of autocor-
relation functions present in many Kriging predictor implementations.

B.4.1 Exponential

A �rst simple model is given by the (anisotropic) exponential autocorrelation
function, de�ned as:

k(x− x′) = exp

{
−

d∑
i=1

|xi − x′i|
θi

}
. (B.35)

The sample path resulting from a Gaussian process with this autocorrelation
function are continuous but non-di�erentiable functions. This means that a
predictor obtained using this kernel will present discontinuous derivative.

B.4.2 Squared exponential

Similarly, the (anisotropic) squared exponential autocorrelation function is de-
�ned as follows:

k(x− x′) = exp

{
−

d∑
i=1

(
xi − x′i
θi

)2
}
. (B.36)

In this case, the correlation function provides a sample path with in�nite degree
of di�erentiability, meaning that all its derivatives are continuous.
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B.4.3 Matérn

Another very common autocorrelation function is given by the Matérn kernel:

k(x− x′) =
d∏
i=1

1

2ν−1Γ(ν)

(
2
√
ν
|xi − x′i|

θi

)ν
Kν

(
2
√
ν
|xi − x′i|

θi

)
, (B.37)

where ν ≥ 1/2 is called shape parameter, Γ is the Euler Gamma function
and Kν the modi�ed Bessel function of the second kind. A characteristic of
this correlation function is that sample paths from the corresponding Gaussian
process are dν − 1e times di�erentiable [Dubourg, 2011], with d·e the ceiling
operator. Therefore, when ν = 1/2 the Matérn correlation function coincides
with the exponential function. on the other limiting case, when ν → ∞, the
Matérn correlation function tends to the squared exponential function. In
practice, three classical implementations of the function are given by:

k(x− x′) =
d∏
i=1


e−ri for ν = 1/2,(
1 +
√

3ri
)
e−
√

3ri for ν = 3/2,(
1 +
√

5ri + 5
3
r2
i

)
e−
√

5ri for ν = 5/2,

, (B.38)

with ri =
|xi−x′i|
θi

.

B.4.4 Nugget

The nugget autocorrelation function is called in this way for historical reasons
associated to early applications of Kriging in geology and mining. It is de�ned
as a Dirac delta function:

k(x− x′) = δ(x− x′) , (B.39)

which is equal to one if x = x′ and zero otherwise. This means that all points
are characterized by the lack of any correlation. It is often used as an additive
term to other autocorrelation models to be able to account for noise in the
training data and to improve the numerical conditioning.

B.5 Empirical estimation of the autocorrelation

model by maximum likelihood

When deriving the Kriging Gaussian predictor, the autocovariance model is
assumed to be known. In practice, in the context of computer codes, normally
this assumption is not true. Therefore, the user needs to choose a family of
stationary autocorrelation function, for example between one of the classical
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models reported in Section B.4, and then estimate the unknown hyperparam-
eters, that for the models in B.4 consist in the covariance magnitude σ2 and
the correlation length scales θ.

Several approaches can be used to determine a suitable value of the hyper-
parameters. Some examples are given by the variogram [Cressie, 1993], mainly
used in the �eld of geostatistcs, cross validation and bayesian estimation [Ras-
mussen et Williams, 2006, Chapter 5]. In this work we will follow another
common approach, that consists in maximizing the likelihood of the observa-
tions with respect to the hyperparameters. By picking the hyperparameters
that maximize this probability, a Kriging model that best describes the data
can be constructed. The likelihood is de�ned the probability of the Gaussian
process describing the training data given the hyperparameters, and can be
written as follows:

`(fobs|σ2,θ,β) =
1√

(2πσ2)d det[C(θ)]
exp

(
−(fobs −Hβ)TC(θ)−1(fobs −Hβ)

2σ2

)
.

(B.40)
As done in B.3.1, the problem is restated by minimizing the negative log-
likelihood:

(β∗, σ∗2,θ) = arg min
β,σ2,θ

(
− log `(fobs|σ2,θ,β)

)
. (B.41)

Note that the maximum likelihood estimates of β and σ2 can be found ana-
lytically by solving the optimality conditions of the likelihood:{

∇β log `(fobs|σ2,β) = 0
∂
∂σ2 log `(fobs|σ2,β) = 0.

(B.42)

This leads to the following system of equations:{
1
σ2

(
HTC−1fobs −HTC−1Hβ

)
= 0

Ns
2σ2 − (fobs−Hβ)TC−1(fobs−Hβ)

2σ4 = 0.
(B.43)

This system can be easily solved, obtaining the generalized least-squares esti-
mate for the regression weights

β∗ =
(
HTC−1H

)−1
HTC−1fobs , (B.44)

and for the variance estimate

σ∗2 =
(fobs −Hβ∗)TC−1(fobs −Hβ∗)

Ns

. (B.45)

Plugging this two solutions in the likelihood, it is possible to obtain the so-
called reduced likelihood function, depending only on θ. The maximum like-
lihood estimate of the correlation lengths is therefore obtained by minimizing
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the reduced likelihood function. This global optimization problem can not
be solved analytically, requiring the use of some numerical optimization tech-
nique. Notice that some numerical di�culties are associated to the solution of
this optimization problem, as shown in [Marrel et al., 2008].

Note that this method is valid for noiseless data. It is also valid when a
pseudo-noise prescribed by the user is considered to ensure proper conditioning
of the covariance matrix, thus making numerically more robust the computa-
tion of the hyperparameters and of β. In this case, the noise ratio σ2

n/σ
2 can

be �xed by the user and therefore the covariance matrix C(n)(θ) = C(θ) + σ2
n

σ2 I
is still a function of only θ. In the more general case of noisy data, when σ2

n

is directly imposed or considered as a further hyperparameter to be optimized
from the likelihood, the covariance matrix becomes a function of both θ and σ2,
and equation B.45 is not valid anymore. In such cases, hyperparameters can
be obtained by direct numerical optimization of the negative log-likelihood.
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Appendix C

Surrogate models assessment

Several error measures can be found in literature [Queipo et al., 2005] to state
the quality of a metamodel f̂(x), that is its accuracy at representing the actual
function of interest f(x). A �rst distinction that can be done is between local
(or pointwise) and global error estimates. As it is clearly understandable, local
estimates provide a value for the metamodeling error at a speci�c location x,
while global estimates provide and indication of the accuracy of the metamodel
over the whole domain. A second distinction can be made between model-based
and model-independent estimates. In the �rsts, the method to compute the
estimate relies on the structure and on some assumptions done to train the
surrogate, while the seconds are independent on the kind of metamodeling
technique. Model-dependent estimates can be very inaccurate when the as-
sumptions are not respected, while model-independent estimates are normally
associated to a higher computational cost.

In this paper, we rely mainly on two di�erent global and model-independent
techniques, in particular, a cross validation estimate and the root mean squared
error. They will be brie�y described in this appendix, where also other def-
initions will be given of estimates used for sake of comparison with previous
works.

C.1 Root mean-squared error

If one can a�ord to compute the actual value of the quantity of interest in
di�erent points of the stochastic space other than the training points, it is
easy then to compute the point wise metamodeling error e(x), de�ned as the
di�erence at those points between the actual solution and the prediction given
by the surrogate:

e(x) = f(x)− f̂(x). (C.1)

By integrating this local error measure on the whole domain Ω, it is possible
to obtain the global Root Mean Squared Error (RMSE), which is often used
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as a measure of the accuracy of the approximation.

RMSE =

√
1

V

∫
Ω

e2(x) dx , (C.2)

with V =
∫

Ω
dx the volume of the domain. In practice, since normally only a

limited number of evaluations of the true model can be a�orded, the integration
is done numerically [Goel et al., 2009]. by evaluating the function in a �nite
set of Nt test points, and then the integral can be expressed as

RMSE =

√∑Nt
i=1 e

2
i ξi∑Nt

i=1 ξi
, (C.3)

where ei = e(xi) is the error evaluation at the Nt test point and ξi are the
integration weights. It is possible to use the collocation points of a quadrature
method as test points. Hence a quadrature formula can be exploited to com-
pute the integral in eq. C.3. Another possibility is to compute the integral via
Monte Carlo sampling, leading to the following expression

RMSE =

√√√√ 1

Nt

Nt∑
i=1

(
f(xi)− f̂(xi)

)2
. (C.4)

Notice that the RMSE tends to the actual metamodeling error for a large
enough number of test points.

The same information can be used to compute a normalized measure called
relative mean square error MSEr, used for example in [Kersaudy et al., 2015]:

MSEr =

∑Nt
i=1

(
f(xi)− f̂(xi)

)2∑Nt
i=1

(
f(xi)− µ̂y

)2 , (C.5)

where µ̂y is the estimated mean of the output variable.
Often, in practical applications the computational cost associated to the

evaluation of the model solution is too high, hence the RMSE can not be
directly computed. In this cases an estimate of the error measure is instead
required.

C.1.1 RMSE for Kriging surrogates

As already mentioned in section 3.2.1 and Appendix B, for Kriging meta-
models, the predictive variance of the process (eq. (3.12)) can be used as an
estimate of the pointwise mean squared error, hence it follows that:

e(x) =
√
s2
k(x). (C.6)
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It is possible to integrate this local model-based error estimate to obtain an
estimate of the global root mean squared error (RMSE). In practice, also here
the integration is done by a numerical integration technique.

It has to be noticed that this error measure is a model based estimate,
because it is based on some assumptions on which the metamodeling technique
relies. For example the computations of s2

k depends on the assumption on
the covariance k(u,v) to be of a certain functional form. This fact can lead
sometimes to poor error evaluations, especially when the chosen covariance
model is not well representative of the behavior of the real function.

C.2 Cross-validation error

In literature there can be found many model independent error measures, that
are able to deal with many kinds of surrogate models [Queipo et al., 2005]. One
of the most popular among these methods is k-fold cross validation, also called
leave-k-out cross-validation. In particular, as suggested in [Goel et al., 2009]
and [Meckesheimer et al., 2002], one recommended choice is to use leave-one-
out cross validation (often abbreviated as LOOCV) to estimate the Kriging
metamodel error. This method consists in �tting a surrogate model on Ns −
1 points, by leaving out one training point at a time, then the response is
predicted at this point with the metamodel. Then the cross validation error
(CV) can be de�ned as following, in analogy with the RMSE error

CV =

√√√√ 1

Ns

Ns∑
i=1

(
fi − f̂ (−i)

i

)2

, (C.7)

where fi is the training point observed response, while f̂ (−i)
i is the predic-

tion at the left-out point using the surrogate built from all the other points.
The CV error can be used to estimate the actual root mean squared error of
the approximation. Although being relatively expensive, since the training of
the surrogate must be repeated at each left out point, this error estimate is
supposed to perform quite well. Moreover, being a model independent error
measure, it does not depend on the structure and the parameters of the meta-
modeling technique, since it only needs the output of the prediction, hence it
can be used for black-box metamodeling codes. However, as can be seen from
its de�nition, the LOOCV acts more as an indicator of the in�uence of each
training point in the training of the surrogate. For this reason, in some cases
it can bring to inaccurate error estimations.

Notice that one way to reduce the computational cost of leave-one-out
cross-validation error for Kriging metamodels, often used in literature, is to
keep the same hyperparameters for all the reduced training plans, since the
exclusion on just one single point is not strongly in�uencing the output of the
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C.2. Cross-validation error

optimization problem, and since the covariance model should be considered as
a known input for the training of the Kriging surrogate.

An easier way to interpret the CV error as accuracy indicator can be
achieved by computing the determination coe�cient Q2, as done in [Tang
et al., 2016]

Q2 = 1− CV2

V̂ [Y ]
, (C.8)

where V [Y ] is the estimated output variance associated to the training set,
computed as:

V̂ [Y ] =
1

Ns − 1

Ns∑
i=1

(yi − ȳ)2 with ȳ =
1

Ns

Ns∑
i=1

yi. (C.9)

Therefore, if Q2 is close to unity it means that the metamodel is accurate, and
it is able to well �t the function of interest.
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