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From Numerical Optimization Strategies to Blind Deconvolution and Shift-variant Deblurring Contributions pour la restauration d'images: des stratégies d'optimisation

numérique à la déconvolution aveugle et à la correction de flous spatialement variables

v Résumé L'introduction de dégradations lors du processus de formation d'images est un phénomène inévitable: les images souffrent de flou et de la présence de bruit. Avec les progrès technologiques et les outils numériques, ces dégradations peuvent être compensées jusqu'à un certain point. Cependant, la qualité des images acquises est insuffisante pour de nombreuses applications. Cette thèse contribue au domaine de la restauration d'images.

La thèse est divisée en cinq chapitres, chacun incluant une discussion détaillée sur différents aspects de la restauration d'images. La thèse commence par une présentation générale des systèmes d'imagerie et pointe les dégradations qui peuvent survenir ainsi que leurs origines. Dans certains cas, le flou peut être considéré stationnaire dans tout le champ de vue et est alors simplement modélisé par un produit de convolution. Néanmoins, dans de nombreux cas de figure, le flou est spatialement variable et sa modélisation est plus difficile, un compromis devant être réalisé entre la précision de modélisation et la complexité calculatoire. La première partie de la thèse présente une discussion détaillée sur la modélisation des flous spatialement variables et différentes approximations efficaces permettant de les simuler. Elle décrit ensuite un modèle de formation de l'image générique. Puis, la thèse montre que la restauration d'images peut s'interpréter comme un problème d'inférence bayésienne et ainsi être reformulé en un problème d'optimisation en grande dimension. La deuxième partie de la thèse considère alors la résolution de problèmes d'optimisation génériques, en grande dimension, tels que rencontrés dans de nombreux domaines applicatifs. Une nouvelle classe de méthodes d'optimisation est proposée pour la résolution des problèmes inverses en imagerie. Les algorithmes proposés sont aussi rapides que l'état de l'art (d'après plusieurs comparaisons expérimentales) tout en supprimant la difficulté du réglage de paramètres propres à l'algorithme d'optimisation, ce qui est particulièrement utile pour les utilisateurs. La troisième partie de la thèse traite du problème de la déconvolution aveugle (estimation conjointe d'un flou invariant et d'une image plus nette) et suggère différentes façons de contraindre ce problème d'estimation. Une méthode de déconvolution aveugle adaptée à la restauration d'images astronomiques est développée. Elle se base sur une décomposition de l'image en sources ponctuelles et sources étendues et alterne des étapes de restauration de l'image et d'estimation du flou. Les résultats obtenus en simulation suggèrent que la méthode peut être un bon point de départ pour le développement de traitements dédiés à l'astronomie. La dernière partie de la thèse étend les modèles de flous spatialement variables pour leur mise en oeuvre pratique. Une méthode d'estimation du flou est proposée dans une étape d'étalonnage. Elle est appliquée à un système expérimental, démontrant qu'il est possible d'imposer des contraintes de régularité et d'invariance lors de l'estimation du flou. L'inversion du flou estimé permet ensuite d'améliorer significativement la qualité des images. Les deux étapes d'estimation du flou et de restauration forment les deux briques indispensables pour mettre en oeuvre, à l'avenir, une méthode de restauration aveugle (c'est à dire, sans étalonnage préalable). La thèse se termine par une conclusion ouvrant des perspectives qui pourront être abordées lors de travaux futurs. 
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Résumé des chapitres

Chapitre 1: Une introduction à la restauration d'images: des modèles de flou aux méthodes de restauration

Dans quasiment tous les systèmes d'imagerie, l'image acquise n'est pas une représentation fidèle de la scène réelle dans le sens où une structure ponctuelle de la scène apparaît comme un point étalé dans l'image et qu'il peut y avoir des décalages relatifs entre les positions des points de l'image et de la scène. Ce phénomène d'étalement est généralement désigné sous le terme de "flou". Lorsqu'on image un champ de vue étroit, le flou peut être considéré constant dans tout le champ. Par contre, lorsque le champ de vue est plus grand, le flou varie spatialement, on parle alors de flou variable ou non stationnaire (shift-variant blur en anglais). Hormis le flou, l'acquisition d'image implique un processus aléatoire ajoutant des fluctuations stochastiques à l'image, un phénomène couramment appelé bruit. La première moitié de ce chapitre porte sur la modélisation de la formation de l'image, notamment sur les approximations rapides des dégradations dues aux flous non stationnaires et les modèles de bruit. La seconde partie traite du problème de restauration d'images et discute des méthodes applicables. Le chapitre se termine par un aperçu de la structure de la thèse.

Chapitre 2: Une stratégie d'optimisation non lisse pour les problèmes inverses en imagerie

De nombreux problèmes en traitement du signal et de l'image, vision par ordinateur et en apprentissage automatique peuvent être formulés comme des problèmes d'optimisation convexe. Il s'agit le plus souvent de problèmes de très grande dimension, sous contraintes, portant sur une fonction de coût non différentiable en certains points du domaine. Il existe un grand nombre de méthodes d'optimisation convexe, mais la plupart ne sont pas applicablea lorsque la fonction de coût est non différentiable et/ou sous contraintes. Les méthodes proximales de type forward-backward sont largement utilisées pour résoudre ces problèmes non lisses grâce au concept d'opérateurs proximaux. Dans ce chapitre, je propose une classe d'algorithmes pour les problèmes d'optimisation convexe non lisses et sous contraintes. Ces algorithmes s'insèrent dans le cadre des méthodes de type "lagrangien augmenté" pour lesquelles des garanties de convergence existent pour les problèmes convexes. Les algorithmes proposés associent une méthode de quasi-Newton à mémoire limitée, les opérateurs proximaux et une stratégie d'optimisation hiérarchique. Les comparaisons de performance des algorithmes proposés (ALBHO) avec les méthodes état de l'art montrent que la même performance peut être atteinte sans nécessiter le réglage de nombreux paramètres. Cette facilité de réglage représente un grand avantage en pratique.

Chapitre 3: Une approche de type "décomposition d'images" pour la restauration

La décomposition des signaux est une approche fondamentale dans de nombreuses applications du traitement du signal. Un exemple classique est l'analyse de Fourier qui dé-compose les signaux en leurs composantes sinusoïdales. Ces deux dernières décennies, la décomposition des images en composantes élémentaires ou en composantes plus sémantiques est apparue comme un outil très efficace pour différentes applications de traitement de l'image et de vision par ordinateur telles que la restauration d'images, la segmentation, la compression, le tatouage d'images, etc. . . . Ce chapitre démarre par une présentation générale de la décomposition d'images et son application aux problèmes de traitement de l'image, en particulier de restauration d'images (débruitage et défloutage). Une majeure partie du chapitre est dédiée à la description d'une méthode de restauration des images astronomiques de type "déconvolution aveugle" basée sur une approche de décomposition d'images. Les résultats de la méthode de restauration aveugle sur des images synthétiques sont prometteurs et suggèrent qu'une telle approche peut être utilisée dans des scénarios réels après certains ajustements de ses ingrédients.

Chapitre 4: Restauration d'images dégradées par un flou non stationnaire

Symbols, Notations and Some Definitions

I briefly introduce here some of the notations, and definitions frequently used in this thesis. Moreover, each chapter will recall the notations whenever they occur, and some notations will be used in only some specific chapters, in this case they will be defined in the context.

Throughout the manuscript, we denote a scalar by lower case Latin or Greek letter, a column vector by a bold lowercase letter, and a matrix by bold uppercase alphabet.

In many places the two-dimensional images are represented by a column vector by lexicographical ordering of their pixels, until stated otherwise.

For x ∈ R n , n denotes the length of the vector, x i ∈ R denotes the ith component of x, and x T denotes the transpose of x.

For v ∈ R n×2 , v i ∈ R 2 denotes the ith row vector of v, i.e., v i = (v i,1 , v i,2 ).

For x, y ∈ R n , x, y R n = x T y denotes the inner product on R n .

For x ∈ R n , x 2 = √ x T x denotes the 2 -norm on R n .

For W ∈ R n×n be a positive semidefinite matrix, x W = √ x T W x denotes the weighted 2 -norm on R n associated with W .

For x ∈ R n , x ∞ = max i∈{1,2,••• ,n} {|x i |} denotes the ∞ -norm on R n .

The {•} + denotes the componentwise positive part of the input vector, i.e., {t} + = max{t, 0}, and and {•} {•} denote componentwise multiplication and division, respectively.

Let A be a linear transform A : R n → R n , and A T denotes its transpose.

In certain chapters dealing with iterative methods for optimization, f (k) , ∇f (k) , and ∇ 2 f (k) denote the function value, its gradient, and its Hessian, respectively, at iteration k for some point x (k) .

Introduction

Images play very important roles in many aspects of our life; from commercial photography to astronomy. The quality of images does matter in every field of application, in particular, high resolution imaging is essential in many scientific applications. The quality/resolution of images is not limited only by technological limitations in imaging systems, but also due to the inherent properties of light and matter. With the advances in technologies and fast computational methods, the quality/resolution of images have improved drastically in the last few decades. However, there still exists a good perspective in improvement of imaging systems, pushing further the quality/resolution of images beyond the physical limitations. There are many situations where, due to some physical constraints, higher quality/resolution image cannot be obtained without the help of numerical methods, such as image restoration techniques. A general objective of my thesis is to contribute this goal. To be more specific, the objective of my thesis is to improve the resolution of the images which have been degraded due to blur and noise by developing image restoration techniques. The literature of imaging is full of many image restoration methods, however a huge number of them are dedicated to restoration of images degraded only by shift-invariant blur, which is still considered as a difficult problem in many cases. The emergence of restoration methods accounting for the blur variation across the field of view (shift-variant blur) is recent. Image restoration accounting for shift-variant blur is a relatively more difficult task than shift-invariant blur, but essential for many applications. In wide field-of-view imaging, the blur varies due to several reasons, e.g., the optics (aberrations), atmospheric turbulences for ground-based astronomical imaging, and relative motion between the objects and the imaging system.

A more challenging and realistic situation in imaging is when the blur in an image is not known beforehand. The image restoration technique in such situations is called blind image restoration, since one needs to identify both the underlying blur and the crisp image just from the observed blurry and noisy image. To be more precise, the long-term objective of my thesis is to develop blind image restoration techniques for shift-variant blur. Since astronomical images captured by ground-based imaging system suffer from shift-variant blur, one of the goals of my thesis is also to develop methods that could restore those images, and this is why this work is a collaboration between the image formation and reconstruction group at the Laboratoire Hubert Curien CNRS UMR 5516 at Saint-Etienne, and the Centre de Recherche Astrophysique de Lyon CNRS UMR 5574 at Observatoire de Lyon. Blind image restoration technique, even in the case of shift-invariant blur, is a difficult problem for many imaging situations, thus it is still an active research topic with many open questions. With shift-variant blur, it even becomes harder.

As is the case for many other PhD, I started my thesis with an effort to understand the basics of the problem and to evaluate what has been already done in that direction. In order to be acquainted to the domain and to have more confidence, I started working with what has been already done, and progressively got into the difficulties of the problems. Image restoration techniques boil down to numerical optimization problems, thus a significant part of my thesis is dedicated to development optimization algorithms suitable for it. Once I became confident enough in solving optimization problems related to image restoration, I dwelved into blind restoration of images with shift-invariant blur. A significant effort in my thesis has been put on blind image restoration techniques for improving the quality of astronomical images. I propose a blind image restoration technique based on image decomposition approach. The preliminary results on restoration of synthetic astronomical scenes are promising giving a hope for further improvements so that it will be applicable to astronomical applications. Since in many imaging situations, including astronomical imaging, the degradations are due to the shift-variant blur, thus, I started working on image restoration with shift-variant blur. As said before, this is the most difficult problem in image restoration, and not much research has been published in this direction. In this regard, I have worked with an existing implementation of a shiftvariant blur operator developed by my supervisors. At present, while I am completing my thesis, I have implemented a semi-blind image restoration technique for shift-variant blur, and have validated it on images with shift-variant blur due to optical aberrations. In what follows here, I explain the details of my PhD thesis work along with required theoretical and experimental justifications/descriptions into chapters.

A Brief Introduction to Imaging Systems

Imaging systems are not able to capture a faithful representation of the actual scene. In order to give a sense of "faithful representation", I start the chapter with a definition of an imaging system. Mathematically, an imaging system (traditionally also referred to as a camera) is a mapping function, which maps a three dimensional object space into a two dimensional image space.

An Ideal Imaging System: An ideal camera is a concept in which the mapping is strictly a perspective projection. This implies that a point source in object space should appear as a point on the image plane.

A Real Imaging System: In practice, a real camera does not involve just a simple perspective projection but also other mapping functions, which appear for several reasons. A real camera consists of several components: the media between the object and the image sensors (including the atmosphere, and the lens), the finite size aperture, and the sensor. All these components add their contribution to the global degradation. The final effect of these extra mappings is that a point source in the scene does not appear as a point, but it can be spread over a large area (e.g., diffraction patterns are unbounded) in the image plane, which is commonly known as blur. Moreover, the relative positions between the (a) Blur due to finite aperture: a distant point source in object space is mapped as an Airy disk on the image plane (b) Ray diagram of optical aberrations: the amount and the shape of the blur due optical aberrations varies with position on the image plane. Only distortion itself does not result into blur (mix of information), but misplacement of information, which can be accounted by shift of Dirac delta PSF in the local field. However, in presence of other aberrations, distortion adds to the final blur. Some of these diagrams are adapted from Wikipedia.

point sources in the scene are also altered in the image, a phenomenon commonly known as geometrical distortion. Blur can be interpreted as a mixing of object information over the image plane, whereas geometrical distortions can be interpreted as a spatial shift of information.

Point Spread Function: The Point Spread Function (PSF) describes the response of an imaging system to a point source in object space, and is a common quantitative measure of the blur introduced by a camera in the image, and it is also central to the modeling of blur.

Three Fundamental Causes of Blur

Blur in an image can be due to several reasons, but most of them can be categorized into the following three fundamental causes:

1. Blur due to the media between the object and the image plane: Commonly, terrestrial imaging systems and ground-based astronomical imaging systems involve two media between the object and the image plane: the atmosphere and the lens system. In case of ground-based astronomical imaging, both the atmospheric turbulence and the lens system are accountable for irregular bending of light rays (or equivalently for the deformation of the wavefronts) coming from distant objects. In the case of terrestrial imaging, the lens system is mostly responsible, and the effect is commonly referred to as optical aberrations: a departure of the performance of an optical system from the predictions of paraxial optics, as illustrated in Fig. 1.1b. However, in long distance terrestrial imaging the atmospheric turbulence is also involved. The irregular bending of light (or wavefront deformations) introduces blur in the image, and the final shape and the size of the PSF is dependent upon the wavelength of the light, and other several factors associated with the two media. In a narrow field-of-view, the PSF due to the media can be assumed to be constant over the entire image plane, but for a wide field-of-view, the PSF varies throughout the image plane, resulting into shift-variant blur.

2. Blur due to the finite aperture: Due to the finite size of the aperture of the camera, only a small portion of the incoming light wavefront is intercepted (as illustrated in Fig. 1.1a) for the image formation; thus, the information carried by the remaining part of the wavefront is lost, which causes the blur in the image. This phenomenon is also referred to as diffraction due to finite aperture. Wavefront intercepted by a finite circular aperture forms an Airy pattern in the image plane; the smaller the aperture, the larger the spread of the central bright spot in the Airy pattern, and vice-versa. Any two points in object space whose angular separation (measured with respect to the center of the aperture) less than θ such that sin θ ≈ λ/d, are not resolved (well separated) in the image plane, where λ is the wavelength of light used, and d is the diameter of the aperture. This is the fundamental limit on resolution of an imaging system, known as Rayleigh criterion; it can be overcome under some assumptions (e.g., sub-pixel PSF fit in astronomy)1 .

3. Blur due to motion: Image sensors (both the semiconductor and photographic film) require a sufficient amount of photons to record a good contrast image, thus need 8 Chapter 1. An Introduction to Image Restoration: From Blur Models to Restoration Methods a certain integration time, commonly referred to as the exposure time. Any relative movement between the objects and the camera during the exposure time introduces an additional blur in the image, which is commonly called as motion blur. Besides, this motion blur, a certain amount of blur is inherent to semiconductor sensors, and the mechanism involved in it, e.g., a small amount of photo electrons leakage between the neighboring pixels, and due to integration over the photosensitive area of the pixels.

In general, the blur due to finite aperture (except in diffraction limited imaging case) and semiconductor image capturing mechanism is significantly smaller than the blur introduced by the propagating media, optical aberration and relative motion.

Modeling the Blur Degradation and its Approximations

Remark: This section is adapted from our journal paper "Fast Approximation of Shift-Variant Blur" [Denis 2015].

As mentioned in the definition, the point-spread-function (PSF) fully characterizes the blur introduced in an image. In image deblurring applications, it is necessary to simulate the effect of the blur introduced by the camera system on the image of the object. Thus, one needs an image blurring model, and a fast numerical implementation of it. A fairly general modeling of blurring in the continuous domain takes the form of a Fredholm integral equation of the first kind:

y(r) = h(r, s) x(s)ds (1.1)
where x denotes ideal perspective projected (crisp) image, h(•, s) denotes the PSF at location s, and y denotes the blurry image. The PSF h may be considered as the conditional probability density p(r|s) describing the probability that a photon entering the system at location s lands at location r in the image plane. Here, the locations r and s are vectors defining the 2D or 3D coordinates, a d-dimensional vector in the following. In some cases, the PSF is shift-invariant ∀t, h(r, s) = h(r + t, s + t), i.e., it depends only on the difference rs. In this case, the blurring model (1.1) becomes a convolution and the system is called isoplanatic. In many cases, the PSFs vary smoothly with the input location s. In order to distinguish true PSF variations from simple shifts of the PSF h(r, s) due to changes in the input location s, it will prove useful in the following to consider un-shifted PSF defined by: k(r, s) = h(rs, s). The above blurring model (1.1) can then be rewritten under the form:

y(r) = k(r -s, s) x(s)ds (1.2)
In the general case, evaluation of the blurring model (1.1) is computationally intensive.

As explained in [START_REF] Gilad | A fast algorithm for convolution integrals with space and time variant kernels[END_REF]], this evaluation becomes computational less expensive if a separable bilinear approximation of the kernel is used:

k(r, s) ≈ p m p (r) w p (s) (1.3)
where k(r, s) = h(r + s, s) is the centered PSF, m p are components of the PSF model and w p are the weights depending on the location s, which should follow the condition p w p (s) = 1 2 . The trade off between accuracy of equivalent PSF and computational expense can be easily controlled by varying the density of the sampling of PSFs in the field of view. With constant weights w p (s) = w p , the corresponding kernel would be shift-invariant. By letting the weight w p (s) of each model m p vary with the location s, a shift-variant model is derived. With this approximation, the blurring model (1.1) can be reduced to a simple sum of convolutions:

y(r) ≈ p m p * (w p x) (r) (1.4)
where * is the classical notation for convolution, and is for componentwise multiplication. Equation (1.4) approximates the shift-variant operator as a sum of convolutions of weighted versions of the input image x. Existence of fast algorithms for discrete convolution makes this decomposition very useful, as we will see in the following. Discretization of the above blurring operation is necessary from an implementation point of view. An approximation of the discrete version of the blurring operation can also be considered from the point of view of matrix decomposition/approximation problems. Discretization of the above blurring model (1.1) can be written as a matrix-vector product:

y = H x = X h (1.5)
where y ∈ R n is the n-pixels blurry image, x ∈ R m is the m-pixels crisp image, and H ∈ R n×m is the blurring operator. These discrete images are represented as column vectors by lexicographically ordering their pixel values. The matrix H defining the discrete operator is obtained by sampling the continuous operator h at locations

(r i ) i=1,••• ,n and (s i ) i=1,••• ,m : ∀i : 1 ≤ i ≤ n; ∀j : 1 ≤ j ≤ m H i,j = h(r i , s j )∆ j (1.6)
where ∆ j is the elementary volume measure ensuring normalization of H and possible nonuniform sampling of the input field (s j ) j=1,••• ,m . The jth column H •,j corresponds to the sampled PSF for a point-source located at s j . By analogy, X ∈ R n×m is the corresponding discrete blurring operator obtained by sampling the continuous image x. In the coming paragraphs, all the discussions will be based only on the operator H, but are analogously applicable to operator X. Discretization (1.6) has some limitations. Using the generalized sampling theory, as described by in [Chacko 2013], Denis et al. in [Denis 2015] write the blurring operation in a more generalized form as:

y i ≈ ϑ pix i (r) h(r, s) j ϑ int j (s) x j ds dr (1.7)
In this generalization, a continuous image x int is defined by using a sequence of discrete coefficients x j as the weights of a set of basis function:

x int (s) = j ϑ int j (s) x j ,
with ϑ int j a shifted copy of a certain "mother" basis function ϑ int (e.g., B-splines). Coefficients x j are typically chosen as to minimize the approximation error, i.e., the continuous image x int corresponds to the orthogonal projection of x onto the subspace spanned by Chapter 1. An Introduction to Image Restoration: From Blur Models to Restoration Methods basis function ϑ int j . Digitization of the blurred image by the sensor involves integration on the sensitive area of the pixel that is modeled as:

y i = ϑ pix i (r) g(r) dr,
with ϑ pix i a shifted copy of the pixel spatial sensitivity (e.g. indicator function of the sensitive area).

Using the above generalization of the blurring operation, the discrete operator H can be defined as:

∀i : 1 ≤ i ≤ n; ∀j : 1 ≤ j ≤ m H i,j = ϑ pix i (r) h(r, s) ϑ int j (s) ds dr (1.8)
By using the separable approximation as in (1.3), the collection K of the centered PSFs, as introduced in the continuous case, is written as:

K ≈ p m p (i) w p (j) ↔ K ≈ p m p w T p (1.9)
and the shift-variant blurring operator as the sum of convolutions with prior weightings:

H ≈ p conv(m p ) diag(w p ) (1.10)
where conv(m p ) denotes the discrete convolution matrix with kernel m p , diag(w p ) is a diagonal matrix whose diagonal is given by the vector w p .

Shift-Invariant Blur

For a small field-of-view, the blur introduced by any of the causes mentioned in Section 1.2 can be considered to be shift-invariant. For shift-invariant PSF, K is a rank-one matrix with identical columns equal to the single PSF k. The operator H, in this case corresponds to a discrete convolution. While discrete circular convolution is mapped as a simple componentwise product in Fourier domain, the discrete convolution needs adequate zero-padding and cropping operations, and thus the blur operator can be written as:

H ≡ conv(k) = R F -1 diag( k) F circular convolution E x and (1.11) X ≡ conv(x) = R F -1 diag(x) F circular convolution E h
where E h and E x are expansion operators that add zeros to the boundaries of the input signals: the image and the PSF, respectively, R is a restriction operator that truncates the output blurred signal to the original size of the input signal, F and F -1 are the direct and inverse discrete Fourier transforms, and k is the discrete Fourier transform of the PSF:

k = F E h k and (1.12) x = F E x x
Now, the application of the blur operator H to an image x can be computed very efficiently using fast Fourier transforms (FFT), and because of the zero-padding followed by chopping operations, the blurring operation is no more circular convolution.

Shift-Variant Blur

Most of the fast shift-variant blurring operators in the literature are based on the separable linear approximation (1.3) or are similar to it. However, recently [Escande 2014] has proposed an approach based on the wavelet transform to efficiently encode the shift-variant blur operator. Now, in the following, we will see some of the relevant approximations.

Piecewise Constant PSFs:

The simplest and fastest known shift-variant approximations is the piecewise constant PSFs approximation. In this approximation, an image is partitioned into P small-enough regions so that the PSF within each region can be considered invariant, and then each region is treated with shift-invariant blur operator. The collection K of the centered PSF is a rank-P matrix. Using the linear separable approximation (1.10), the piecewise constant blur operator can be written as:

H = P p=1 conv(k p ) diag(ι p ) (1.13)
where ι p is the vector of binary weights indicating the locations s j belonging to the pth region of the input field. Being the fastest approximation, this approach has adverse consequences; it generates important artifacts at the region's boundaries due to the discontinuities in the PSFs approximation.

Smoothly Varying PSFs and their Local Approximation:

To tackle artifacts at the region boundaries, smoothly varying PSFs approximations are proposed in the literature. In many applications, in fact, the PSFs vary smoothly across the field. In such cases, a PSF (e.g., column k j from K) can be well approximated by the other neighboring PSFs. If P columns of K are selected, i.e., {k p | p ∈ G P }, where G P represents the set of all points on a given grid, each column of K can be approximated by the weighted sum of P columns out of M (typically with P M ):

K ≈ p∈G P k p ϕ T p (1.14)
The interpolation weights ϕ T p are no longer constrained to take binary values, and weights are spatially localized: they are nonzero only on a spatial neighborhood surrounding location s. The extend of that neighborhood depends on the interpolation order, e.g., it corresponds to a square twice the grid step along each dimension for first-order (linear) interpolation. Using the approximation (1.14), the blur operator in (1.10) becomes:

H ≈ p∈G P conv(k p ) diag(ϕ p ) (1.15)
The weights localizations make this decomposition very suitable from a computational point of view: full-field convolution computations are not necessary since the preceding weighting operation introduces zeros everywhere except on regions with size twice the grid step. This formulation of a shift-variant blur operator has been independently suggested in [START_REF] Gilad | A fast algorithm for convolution integrals with space and time variant kernels[END_REF]] and [Hirsch 2010]. Denis et al. in [Denis 2011] show that this for-Methods mulation is a natural consequence of PSFs interpolation; this is why in [Denis 2015] they termed it as a PSF interpolation approach. On the contrary, Nagy et al. [Nagy 1998] propose to smooth out the transitions at boundaries of the partitions by interpolating between the blurred images obtained by convolution with different PSFs. For this reason, in [Denis 2015] this approach and the similar approaches in [Calvetti 2000, Nagy 2004[START_REF] Preza | Depth-variant maximumlikelihood restoration for three-dimensional fluorescence microscopy[END_REF], Bardsley 2006[START_REF] Rogers | [END_REF]] are termed image interpolation approaches. The equivalent blur operator for image interpolation approaches can be written as:

H ≈ p∈G P diag(ϕ p ) conv(k p ) (1.16)
We can see that the sequence of operations in (1.16) is just the opposite of (1.15). The blur operator defined in (1.16) lacks physical basis in that it is not related to a natural approximation of PSFs. As illustrated in [Denis 2015], unlike PSF interpolation approach, the image interpolation approach does not fulfill basic properties of PSF, such as symmetry and normalization, and generates a non convergent approximation.

Low-Rank Approximation on PSF Modes:

It is often adequate to consider that PSF variations are well captured by a few number of modes, i.e., K, the collection of centered PSFs, is a low-rank matrix. A rank-P approximation of matrix K is expandable as a sum of P rank-one matrices:

K ≈ P p=1 c p w T p
(1.17)

The closest rank-P approximation (with minimum Frobenius norm error) can be obtained by the singular value decomposition (SVD) of matrix K by retaining only the first P left and right singular vectors weighted by the corresponding largest singular values:

K = P p=1 u p σ p v T p (1.18)
where u p and v p are the pth left and right singular vectors, and σ p the corresponding singular value. In contrast to binary weights of piecewise constant PSFs, or localized weights used in PSF interpolation approach, components of vector v p take arbitrary values (positive or negative) and are defined over the whole input field. The vector u p can no longer be interpreted as a PSF (no natural normalization nor positivity), but rather as PSF modes.

By the similar reasoning as in (1.14) and (1.15), the blur operator for the low-rank matrix K can be written as:

H ≈ P p=1 conv(u p ) diag(σ p v p ) (1.19)
Since weights are not localized, P full-field convolutions must be computed in this approximation leading to a large computational budget when P 1. This decomposition (1.19) has been proposed in [START_REF] Ralf | Anisoplanatic deconvolution of adaptive optics images[END_REF][START_REF] Miraut | [END_REF]].

Optimal Local Approximation of PSFs:

Low-rank decomposition (1.19) is appealing because it is optimal in the sense of Frobenius norm error with respect to exact PSFs, but the corresponding weights are not localized, increasing the computational cost proportionally to the number of added PSF modes.

The PSF interpolation approach is preferable in this regard since weights localizations prevent the computation of full-field convolutions, saving computation costs especially for small PSF supports. Taking into account the advantages of these approaches, Denis et al. [Denis 2015] propose an intermediate solution where the weights are local, and the Frobenius norm error between the approximated PSFs and the exact PSFs is minimal. They define the optimal local approximation of matrix K as:

K ≈ P p=1 c * p w * p T (1.20)
where PSF {c [Denis 2015] for the detail of the minimization algorithm). With the so-found optimal PSFs and weights, the shift-variant blur operator H is approximated, following the decomposition in (1.19), as:

H ≈ P p=1 conv(c * p ) diag(w * p ) (1.23)
Optimal vectors c * p and optimal weights w * p can be computed beforehand (i.e., for a given model H). The complexity of approximation (1.23) is the same as approximation (1.19).

Comparison of Blur Approximations:

In the literature of shift-variant blur approximations, much of the attention has been paid to the computational aspect, whereas the equivalent PSF is never mentioned explicitly. Yet, it is essential to relate a given approximation method to the corresponding approximation in terms of PSF. The authors in [Denis 2015] provide a detailed discussion on it, which is summarized here for the sake of comparison. The PSF k j for a point source located at s j is approximated by an equivalent PSF kj that depends upon the model:

With a shift-invariant PSF model (1.11) : k(Cst) j = k.
With a piecewise constant PSF model (1.13) : 

k(PCst) j = k p , for p such that ι p (j) = 1.
= p σ p v p (j) u p .
Finally, with optimal local approximation based model (1.23) :

k(OptLoc) j = p w * p (j) c * p .
Depending on the approximation method, the equivalent PSF can fulfill some desirable properties of PSF, which are pointed out in Table 1.1. We can see that PSF interpolation Methods Figure 1.1: Shift-variant blur applied to an image with 4 different models: (a) the model of [Nagy 1998] first convolves image regions with different PSF and then interpolates the blurry results; (b) [START_REF] Ralf | Anisoplanatic deconvolution of adaptive optics images[END_REF]] approximate local PSF on few PSF modes, the image is thus weighted according to the importance of each mode in the decomposition before convolving with PSF modes; (c) interpolating PSF leads to the model proposed by [Hirsch 2010], image blocks are first weighted according to the interpolation kernel, then convolved by the PSF; (d) the optimal local approximation of PSF follows the same procedure, the weights and PSF chosen so as to minimize the approximation error. This illustration is taken from [Denis 2015].

based approximation is the most appealing from the point of view that it preserves all the basic properties of classically defined PSF, whereas the image interpolation based approximation does not except positivity. The positivity constraint for optimal local approximation can be enforced into the minimization problem (1.21), whereas this is not applicable for the low-rank approximation on PSF modes (global optimal approximation).

Figure 1.2: Grid of PSFs generated from the shift-variant model based on phase aberration and vignetting. Contrast is inverted in order to improve its visualization. This figure is taken from [Denis 2015] and PSFs simulation model is detailed there.

Image deblurring process requires many evaluations of the inversion of the approximate blurring model. Each approximation discussed so far requires a different computational effort, regardless of the approximation quality. For an image of size m pixels and a PSF with a rectangular support of l pixels, if we consider the processing time t taken by a shift-invariant blurring as a reference time, then the processing time for piecewise constant PSFs approximation is the same under the assumption that l m (so that the overhead required to compute values at the outerborder of the regions is negligible). For the approximation based on PSF interpolation, the complexity is dependent on the number of dimensions along which PSFs vary and on the interpolation order o. For 2D shift-variant blur and first-order interpolation, PSF are interpolated by bi-linear interpolation; there are 2 2 non-zero terms in the sum of Eq.(1.15). More generally, there are (o + 1) d non-zero terms and if outer-border computation times are negligible (support of the weights ϕ p being large compared to the support of the PSF), the total time is ≈ t×(o+1) d . For 2D images and bilinear interpolation the computational cost is ≈ 4t. The method based on image inter- polation has also the same complexity since convolutions are computed on areas that have similar sizes. By contrast, the method based on the decomposition on PSF modes does not enforce localization of weights, thus each of the P convolutions must be computed on the full image support, which is much more costly than all other methods. While blur approximation with low computational complexity is preferable, it is also essential to measure that how well an approximation matches with a given reference shift-variant blur operator or equivalently how small is the approximation error. The piecewise constant PSF model matches the reference operator H when the number of terms P equals the number of input pixels m. Similarly, the PSF interpolation model with interpolation weights ϕ j restricted to a single pixel matches exactly the reference operator H. In contrast, the image interpolation based approximation with the same interpolation weights produces an approximation error bounded from below (with the consequence of a systematic irreducible error). In the extreme case of a grid of PSFs with the same density as the pixel grid, the approximated PSF does not correspond to the reference PSFs. With similar computational cost as the PSF interpolation based approximation, the image interpolation based approximation does not reach a perfect approximation with regions as small as a single pixel, which is a serious reason for this model to be disregarded. The approximation based on a decomposition on PSF modes provides an exact representation of the reference operator H as long as the number P of terms is at least equal to the rank of H (at most min(m, n)). Similar is the case for the optimal local approximation based model (1.23).

Modeling the Blur Degradation and its

The shift-variant blur operator is ultimately used for image restoration, thus the comparison of the different shift-variant blur approximations based on image deblurring performance is also important. The authors in [Denis 2015] show that the PSF interpolation based approximation and optimal local approximation produce the highest quality (measured in terms of peak signal-to-noise ratio) of deblurred images for a similar computational cost.

Chapter 1. An Introduction to Image Restoration: From Blur Models to Restoration Methods

Noise in the Image Acquisition Process

In addition to the deformations introduced in the images due to blur, which can be deterministic in nature 3 , the images suffer from further degradation due to a statistical process involved in the image capturing mechanism, whose effect is commonly known as noise.

The two fundamental causes of noise in an image are: the particle nature of light, and the constant thermal agitation of electrons in semiconductor sensor and amplifiers. The light coming from the observed source is detected in the form of photons. The photons impinging the image sensor generate a proportional number of photoelectrons. The expected number of photons detected in a pixel is proportional to the brightness distribution integrated on the pixel area during the exposure time. The number of photons impinging the sensor within the exposure time is modeled by a Poisson process, and the effect of the uncertainty in the Poisson process is called Poisson or shot noise. Independently of this Poisson process of photoelectrons generation, there is always a constant thermal agitation of electrons in the semiconductor sensor and amplifier. The distribution of the thermally agitated electrons can be approximately modeled by a Gaussian process. This thermally agitated electrons adds to the photoelectrons, and the effect is called detector noise. Both of these noises happen to be independent of each other, and happen independently at each pixel in the sensor. Thus, these noises are also referred to as white noise. The Poisson noise is significantly perceptible in the image captured under dim light condition when the number of photons is sufficiently small so that uncertainties due to the Poisson process, which describes the occurrence of independent random events, are of significance. The mean and variance is the same for a Poisson process, thus the variance of Poisson noise is the number of photons arriving to the image sensor within a certain exposure time. The detector noise in an image is perceptible as a constant noise level in dark areas whose mean is zero and the variance is directly related to the absolute temperature of the sensor and amplifier. A part of detector noise called "dark current" due to the thermal agitation of the electrons can be minimized by using a supercooled image sensor.

Except these two fundamental noise sources in image acquisition processes, there could be some other noise sources too, but most of them can be avoided or removed from the images because either their nature is deterministic or their origins can be easily traced. For example all pixels in a sensor do not behave exactly the same, but their behavior follows a pattern for a fixed sensor, so the final effect can be easily estimated by calibration methods and removed from the image. Another example of noise is impulsive or salt-and pepper noise, which can be due to the error in analog-to-digital converter or bit error in transmission, but this noise can be easily avoided by a certain care. Thus, in image restoration and denoising literature the main concern is only on the two fundamental noises, the Poisson and the detector noise. This is why we limit our considerations to these two fundamental noises while discussing image restoration problems.

Image Restoration

As we saw in our previous discussion, the final raw image acquired from a camera system is not a simple perspective projection of the 3D world onto the image plane, but it is degraded: distorted and corrupted by blur and noise, respectively. It is inevitable for many imaging systems and situations to introduce a certain level of distortion and corruption. However, for several reasons, either for aesthetic purpose or for scientific measurement and analysis purpose, it is crucial to have fair representation of the objects in images. Image restoration is a technique to recover the underlying original image given the blurry and noisy image. Image restoration can be used to suppress noise, improve the resolution, the contrast of blurred structures in images.

A Generic Image Formation Model: Before one can devise any image restoration (reverse) technique, one should have an accurate forward measurement/degradation model, referred as image formation model, in this context. A generic image formation model, which takes into account the blur and the two noise processes, discussed previously, can be written as:

y = P(H x) + n (1.24)
where y ∈ R n is the observed blurry and noisy image, P represents Poisson process with expected value (H x), and n ∼ N (0, σ 2 ) is an additive detector noise (it is assumed that the detector bias has been removed). Here again, H ∈ R n×m denotes the discrete blur operator, and x ∈ R m represents the original unknown image.

In the following, with some abuse of notation, both a grid of PSFs in the case of the shift-variant blur and a single PSF in the case of shift-invariant blur will be represented by h, and the corresponding blurring operator by H.

Image Restoration Problem:

Image restoration problem can be stated as inferring the true underlying image, x, given the observed blurry and noisy image, y. Two situations may arise:

1. when the most significant part of the degradation comes from noise and blur is neglected, then image restoration is called image denoising, 2. when the significant part of the degradation is due to blur, and some noise also, then the resolution of the image can be improved by a restoration technique called image deblurring.

From a theoretical point of view, image denoising problems are comparatively easier than image deblurring problems, at least for the reasons discussed in the next paragraph.

Image deblurring problems can be further categorized into two classes:

1. In some imaging situations, the PSFs h are assumed to be known perfectly beforehand, either from simulations or obtained by calibration methods or derived analytically from parametric models, then the image deblurring problem is referred to as nonblind image deblurring.

2. In many practical imaging situations, the PSFs are not known beforehand, either because they cannot be calibrated at the moment when the image is being captured or previously calibrated PSFs are no more applicable (are far from the underlying true PSF), then both the underlying original image and PSF are assumed to be unknown, and the image deblurring is referred to as blind image deblurring.

Nonblind image deblurring is considerably much easier than blind image deblurring, at least, for the following degeneracies associated with shift-invariant blind deblurring:

• scaling:

( 1 τ h) * (τ x) = h * x • shift: x * h = (δ -s * x) * (δ s * h),
where δ s and δ -s is shifted Dirac-delta function.

• identity: δ * y = y (no blur explanation case)

• reducibility: (g * x) * h = x * (g * h)
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• inversion: x * h = (s * x) * (s -1 * h)
In the upcoming sections, we will see how these degeneracies can be tackled in blind image deblurring by taking into account certain physical constraints and justifiable assumptions.

Image deblurring, in general, belongs to the category of ill-posed inverse problems, which means that any attempt to estimate the unknown quantities, without taking into account any information about the unknown quantities will always result into a failure; the solution will be corrupted by an amplified noise. In other words, because of the blurring operation, some high frequency information is permanently lost from the observed blurry and noisy image, thus it is impossible to recover back the underlying original image by simple inversion of the blur operator( i.e., x = H -1 y) without considering any further information on the underlying original image, even if the blurring operator is known perfectly. This fact motivates/obliges us to recognize that the image deblurring problems should be tackled by the methods of statistical estimation theory or regularization principles. The statistical estimation methods based on Bayesian inference are the most popular and successful methods for their flexibility to include all the subjective beliefs on the unknowns, and the other related methods can be interpreted easily from a Bayesian point of view. The methods based on the maximum likelihood estimation, the maximum entropy, regularizations, etc, can be seen as special cases of Bayesian inference, this is described in the next section.

For blind image deblurring, the existing approaches can be categorized into two classes: a priori blur identification methods, and joint identification methods. In the former approach, the blur is identified first from the given blurry and noisy image, then it is used with a nonblind image deblurring scheme to estimate the underlying original image. The majority of existing methods fall into the second class, where the image and the blur are identified simultaneously. In practice many methods in this class use an alternating approach to estimate the unknown x and h rather than truly finding the joint solution. Most of the methods in both classes fall into the Bayesian inference framework, however there also exists other methods not belonging to this approach (for example see [START_REF] Campisi | [END_REF]). In this thesis, my works are mostly based on Bayesian inference framework.

Bayesian Inference Framework for Image Restoration

It is a common practice in the Bayesian inference framework to consider all parameters and observable variables as unknown stochastic quantities, assigning probability distributions based on subjective beliefs. Thus, in image deblurring problem, the original underlying image x, the PSF h, and the noise n in image formation model (1.24) can be treated as samples drawn from random fields, with corresponding prior probability density functions (PDFs) that model our knowledge about the imaging process, the nature of images and the PSF. Further, these distributions depend on some parameters which will be denoted by Θ. The parameters of the prior distributions are commonly referred as hyperparameters. Often Θ is assumed to be known, otherwise one can adopt the hierarchical Bayesian framework, such as the one in [Molina 1994], where Θ is also assumed unknown, in which case one can also model prior knowledge of its values. The PDFs of the hyperparameters are termed hyperprior distributions. The hierarchical modeling allows to write the joint global distribution as: p(Θ, x, h, y) = p(Θ) p(x, h|Θ) p(y|Θ, x, h) (1.25)

Bayesian Inference Framework for Image Restoration
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where p(y|Θ, x, h) is termed the likelihood of the observations. Without loss of generality, one can assume that x and h are a priori conditionally independent, given Θ, i.e., p(x, h|Θ) = p(x|Θ) p(h|Θ). Now, one can perform inference using the a posterior:

p(x, h, Θ|y) = p(y|x, h, Θ) p(x|Θ) p(h|Θ) p(Θ) p(y) (1.26)
In many situations the values of some parameters are assumed to be known beforehand, which is equivalent to use degenerate distributions for the priors, i.e., p(Θ 0 ) = 1 and the posterior distribution becomes:

p(x, h|y) = p(y|x, h) p(x|Θ 0 ) p(h|Θ 0 ) p(y) (1.27)
Given this formulation, the estimation of the underlying original image and the blur can be done in many different ways. Many methods in the literature seek point estimates of the parameters x and h, which boils down to solving an optimization problem. In the following, we will discuss strategies using inference for the image deblurring problem starting from the simple case to the most difficult one.

Image Restoration Strategies

Nonblind Image Deblurring: Nonblind image deblurring is an ill-posed problem, since the blur operator H is often ill-conditioned; thus it is necessary to include a priori on the underlying original image in the estimation method. Maximum-a-Posteriori (MAP) estimation gives a point estimate of x by maximizing the posteriori probability density (1.26), given the blurry and noisy image y and the known PSF h 0 . In many image deblurring methods, the values of the hyperparameters are chosen heuristically or estimated beforehand by using certain criteria, thus the MAP estimation for nonblind deblurring is written as:

x = arg max x {p(y|x, h 0 , Θ 0 ) p(x|Θ 0 )} (1.28)
The denominator in (1.27) is dropped since the probability of the data y alone does not depend on the unknowns. In nonblind image deblurring, the shift-invariant deblurring (image deconvolution) is comparatively an easier task than the shift-variant deblurring from a computational point of view, and also from a practical point of view: estimating beforehand a grid of PSFs, even in some standard settings, can involve difficult calibration methods compared to the estimation of a single PSF. From a practical point of view, it is hard to compare if a shift-variant operator is less or more ill-conditioned than a shiftinvariant operator under similar imaging conditions, e.g., a central PSF or the average of the grid of PSFs for a certain imaging system can be less or more ill-conditioned than each PSF on the grid.

Blind Image Deblurring: Maximum-a-Posteriori (MAP) gives a point estimate of x, and h by maximizing the posterior probability density (1.27) given only the data y:

{x, ĥ} MAP = arg max x,h {p(y|x, h, Θ 0 ) p(x|Θ 0 ) p(h|Θ 0 )} (1.29)
Here again, it is assumed that the parameter Θ 0 is known or estimated beforehand. This a posteriori maximization can be written equivalently as a minimization problem by taking the negative logarithm of (1.29):

{x, ĥ} MAP = arg min

x,h {log p(y|x, h)log p(x)log p(h)} (1.30)
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With some abuse of notation, the hyperparameter Θ 0 has been dropped out whenever it is known/estimated beforehand. One can consider nonblind image deblurring as a special case of blind image deblurring by using a degenerate distribution for p(h).

Let us consider the solution of the MAP estimation (1.30). Blind image deblurring, in general, is a harder problem than nonblind image deblurring for the reason that the joint estimation of the crisp image x and the PSF h is severely ill-posed. From optimization point of view, it is a nonconvex problem. Even if the solution is regularized and restricted by several physical constraints, there is no any guarantee to find a unique solution (a global minimum). One can refer to [START_REF] Thiébaut | Optimization issues in blind deconvolution algorithms[END_REF]] to see how some of the issues in joint blind deblurring can be tackled correctly. In order to avoid difficulties with joint optimization, a widely used approach is the Alternating Minimization (AM), which minimizes the MAP (1.30) with respect to one unknown while holding the other unknown constant. This approach has been widely used by many [Ayers 1988[START_REF] You | A Regularization Approach to Joint Blur Identification and Image Restoration[END_REF], Kundur 1996, Chan 2000]. The blind image deblurring problem becomes even harder when considering shift-variant blur at least for the reason that the number of unknowns increases drastically for the same number of observations. We will further discuss on this topic it in the upcoming sections.

Marginalizing Hidden Variables: Instead of simultaneously estimating both the unknowns x and h as discussed above, another way is to estimate one of the unknowns by maximizing the marginalization over all possible values of the another unknown. For example, one can approach the blind image deblurring inference problem by first calculating:

ĥ, Θ = arg max h,Θ x p(Θ) p(x, h|Θ) p(y|Θ, x, h) dx (1.31)
and then doing the nonblind image deblurring:

x = arg max x p(x| Θ) p(y| Θ, x, ĥ) (1.32)
to get the estimate of the underlying original image. The other way is also possible, where one can marginalize over h and Θ, and get an estimate of the underlying image as:

x = arg max x h,Θ p(Θ) p(x, h|Θ) p(y|Θ, x, h) dh dΘ (1.33)
The marginalized variables are called hidden variables, and the two above inference models were introduced in [Molina 1994, Molina 2006] where they are named as Evidence-and Empirical-based analysis, respectively. The former approach, the marginalization over the image x to estimate the PSF h has been studied further in [Fergus 2006, Levin 2011a, Levin 2011b, Blanco , Babacan 2012]. The high-level justification for this approach is the strong asymmetry between the dimensionality of x and h; while the number of unknowns in x increases with image size, the dimensionality of h remains small, thus MAP estimation of h alone (marginalizing over x) is well constrained and can recover an accurate PSF. However, the marginalization over the high-dimensional image x, the integral in (1.31), is computationally intractable given realistic image priors. Consequently, a variational Bayesian strategy proposed in [Miskin 2000] is used to approximate the troublesome marginalization, in which several other crude approximations are done compromising thus the original high-level justification of the approach. The methods proposed in [Fergus 2006, Levin 2011a, Levin 2011b, Babacan 2012] have been shown to be successful in blind deblurring of images degraded only due to camera motion blur, and relatively small amount of noise. These methods

Observation Models

do not impose any other prior on PSF except the positivity and normalization constraint. The analysis in [Babacan 2012] says that given the positivity and normalization constraint on PSF h, these approaches implicitly impose PSF spreading constraint due to the way they estimate the marginalization. In short, these approaches lose the transparency of the MAP estimation; thus it remains unclear by exactly what mechanism these approaches are able to operate, which makes it difficult to understand, suggest some improvements and extensions (see [START_REF] Wipf | [END_REF]] for a detailed analysis, shortcomings and possible improvements for these approaches). In contrast, imposing explicitly a prior on the PSF favoring some amount of spread and using joint MAP estimation for blind image deblurring seems to be more rational over the unjustified approximations involved in variational Bayesian for marginalization over the image for PSF estimation, and then estimating the image.

This thesis is focused toward image deblurring of broader classes of blurs e.g. defocus, optical aberrations, atmospheric turbulence, etc. Unlike the approach in [Levin 2011a], a prior favoring a certain amount of spread of PSF is considered, as discussed in Section 1.8. Thus, in this thesis, the widely used joint MAP estimation has been considered for the blind image deblurring problems for its transparency in understanding, avoiding unjustified approximations, simplicity of its implementations, and computational efficiency (variational Bayesian approaches are generally expensive).

To realize blind image deblurring using a Bayesian framework, one must solve the resulting optimization problems needing the analytical expressions for the PDFs. In the next sections, we will have a detailed discussion on each PDF, and derivations of their analytical expressions.

Observation Models

The likelihood term (often referred as data-fidelity) in (1.27) is related to the observational noise. Thus, the analytical expression of the likelihood term depends upon the forward image formation model and the type of noise present in the image. In many applications such as fluorescence microscopy or astronomy, only a small number of photons reach the sensors, due to various physical limitations, e.g., distant dim sources, short-exposure. In such imaging situations, the likelihood of the blurred image, z = H x, ∀x i ∈ [0, +∞), dominantly corrupted with the signal dependent Poisson noise, i.e., u = P(z), is written as:

p(u i |z i ) = z ui i exp(-z i ) u i ! (1.34)
For a scene with sufficient brightness, the identically independent distribution (i.i.d.) additive Gaussian noise is dominant in the image. In this case the likelihood of the blurred image, v = z + n, is written as:

p(v i |z i ) = 1 σ √ 2π exp - (v i -z i ) 2 2 σ 2 (1.35)
where σ 2 is the variance of the noise. As discussed in Section 1. 

p(y i |z i ) = ui p(y i |u i ) p(u i |z i ) = +∞ ui=0 1 σ √ 2π exp - (y i -u i ) 2 2σ 2 z ui i u i ! exp(-z i ) (1.36)
Here, the summation considered is an infinite series because the number of photons reaching the sensor can be any number with the range [0+∞). With the assumption of independence between pixels, the exact likelihood function of the image y corrupted by a mixture of Poisson and Gaussian noise is written as:

p(y|z) = n i=1 +∞ ui=0 1 σ √ 2π exp - (y i -u i ) 2 2σ 2 z ui i u i ! exp(-z i ) (1.37)
Without any further assumptions, from an optimization algorithm point of view, this theoretically sound likelihood is complex and computationally expensive. The authors in [START_REF] Mugnier | [END_REF]] take an intermediate approach for the above exact-likelihood and propose a non-stationary white Gaussian noise model as an approximation to exact mixture of Poisson and Gaussian:

p(y|z) = n i=1 1 σ i √ 2π exp - (y i -z i ) 2 2 σ 2 i (1.38) with (σ i ) 2 = (σ ph i ) 2 + (σ det i ) 2
, where (σ ph i ) 2 and (σ det i ) 2 are the variance of photon (Poisson) and detector (Gaussian) noise. This approximate likelihood for a mixture of Poisson and white Gaussian noise is pretty accurate while keeping the complexity lower from the optimization algorithm point of view. In dark regions of the image, the noise is predominantly detector noise, which is of white Gaussian type, and approximately stationary. In bright regions, noise in photons count follows Poisson statistics and is non-stationary. In many imaging situations, the noise variances, (σ det i ) 2 , (σ ph i ) 2 , can be estimated from the blurry and noisy image itself. The photon noise variance can be approximately estimated from the blurry and noisy image as:

(σ ph i ) 2 = max(y i , 0) (1.39)
which is quite accurate for the bright regions in the image; its low accuracy in the dark regions does not matter because those regions are dominated by detector noise. The detector noise variance in the case of images having dark background can be estimated by considering an uniform region R in the image (possibly with no significant structures in it), and then using the formula given in [START_REF] Mugnier | [END_REF]] as:

(σ det i ) 2 = π 2 Card(R -) i∈R - y 2 i (1.40)
where R -= {i ∈ R : y i ≤ 0} represents region where pixel values are less than or equal to zero and Card represents cardinality of a set. Of course this estimate can be accurate only if the camera offset has been subtracted carefully from the blurry and noisy image. One can refer to [Foi 2008] for a detailed discussion on noise parameter estimation method from a single image raw-data.

The negative logarithm of the likelihood (1.38) is written as:

-log p(y|x, h) = n i=1 1 2σ 2 i (y i -(H x) i ) 2 = 1 2 y -H x 2 W
(1.41)

Image and PSF Prior Models

where the constant terms and the terms independent of the unknown x and/or H are dropped out, and the matrix W is the inverse of the diagonal variance matrix, i.e., W i,i = 1/σ 2 i . The above likelihood term in Eq. (1.41) is very generic, it allows us to easily handle the missing and saturated pixels, and to handle correctly the boundary artifacts in image deblurring arising due to wraparound effect of the circular convolution. For unmeasured ith pixel data, one should consider W i,i = 0, i.e., the variance is infinite. In order to correctly model the values measured at the boundary of the image, one should reconstruct a larger region at boundary (i.e., add a border half the PSF size around the actual size of the blurry and noisy image in the reconstructed image). There are two options to do so: i) one can zero-pad the boundary of the blurry and noisy image up to at least half the PSF size, and consider W i,i = 0 at those corresponding locations, ii) one can use a restriction operator as described in Eq. 1.11, so that the operator H is a rectangular matrix. The result of such a consideration is that an unmeasured pixel will be estimated by its surrounding pixels, a phenomenon referred to as diffusion. A similar idea of handling the boundaries in an image deblurring is proposed in [START_REF] Matakos | [END_REF]].

Image and PSF Prior Models

As mentioned previously, the image deblurring is an ill-posed problem, thus providing any relevant information about the unknowns in the MAP estimation (1.28) and (1.30) will always prove to be helpful in constraining (regularizing) the solutions. The information is modeled in stochastic sense through the priors, typically by specifying probabilistic relations between neighboring image/PSF pixels or their derivatives. Generally, exponential model of the forms:

p(x|Θ) = 1 Z x (Θ) exp(-U x (x, Θ)) (1.42) p(h|Θ) = 1 Z h (Θ) exp(-U h (h, Θ)) (1.43)
are used to represent the image and PSF priors. The normalization terms Z x and Z h depend on the hyperparameters for each distribution, and can be considered as constants if the hyperparameters are known beforehand.

The most popular model is the class of Gaussian models given by U x = λ 2 D x 2 2 . The negative logarithm of the priors can be written as:

-log p(x) = λ 2 D x 2 2
(1.44)

The classical prior, called Tikhonov regularization, can be obtained by taking D = I, an identity matrix. In this case the prior favors small 2 -norm on the magnitude of intensity distribution of x. Another form of this classical priors are obtained when D represent the discrete first-order derivative operator, and D 2 represent the discrete Laplacian operator. These classical priors favor smoothness of the solution. Often, the solution image obtained after deblurring using these priors is quite smooth, even the sharp structures are smoothed out.

Since the last decade, sparsity based priors have played a very important role in image restoration. The fundamental assumption behind sparsity-based priors is that a signal can be represented sparsely in a certain transformed domain, i.e., it requires only few elements (basis functions) of the transformation to reconstruct the original signal. In order to precisely represent different structures in images, several transformation domains, commonly
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called a dictionary of atoms, e.g., wavelets and their derivatives, have been proposed in last decades. If Φ represents the transformation operator, then the vastly used sparsity inducing prior is written as:

-log p(x) = λ Φ x 1 (1.45)
where t 1 = n i=1 |t i |, n being the length of vector t. Total variation (TV) prior, introduced in [Rudin 1992], is widely used prior for image restoration problems. It is based on the assumption that many images are piecewise smooth with possible abrupt edges and contours, thus they can be sparsely represented in image gradient domain. The image prior base on TV is written as:

-log p(x) = λ TV(x) (1.46)
where in discrete domain isotropic-TV is defined as: TV

(x) = n i=1 (D 1 x) 2 i + (D 2 x) 2 i
with D 1 and D 2 being first-order difference operators in vertical and horizontal directions. The advantage of using TV prior is that the sharp edges in the images are very well preserved, unlike the classical quadratic priors (e.g., Tikhonov), which penalize the edges too. However, it has some disadvantages too, such as the suppression of fine details and textures, and staircase effects can also appear in smoothly varying regions. A stronger sparsity inducing prior on image gradient:

-log p(x) = λ n i=1 (|D 1 x| α i + |D 2 x| α i ) (1.47)
for α = [0, 1], has been used in [Fergus 2006, Almeida 2010, Levin 2011a, Xu 2013] for blind deblurring of natural images suffering motion blur. Unlike the quadratic priors, the sparsity based priors yields nonlinear estimators of the unknowns. Some hybrid types of priors on image have been proposed in the literature that attempt to preserve both the sharp edges, the fine details, and also to prevent staircase effects. It will be discussed further in Chapter 3. Apart from structure preserving criteria, a simple physical constraint, the positivity of image, i.e., ∀i = 1, • • • , m, x i ≥ 0, is a very helpful prior in imaging situations with dark background since it prevents ripple around bright sources.

For blind image deblurring, as discussed in Section 1.6.1, the absence of prior favoring certain spread of PSF can lead to failure. For the blurs, due to out of focus, optical aberration, atmospheric turbulences, and some others, the PSF is smooth, thus, a smoothness inducing classical quadratic priors, discussed above, are necessary prior on PSF. For the case of blur due to motion, the PSF can have a very irregular shape and be sparse in the spatial domain, thus for such cases one could use a sparsity inducing prior, as in (1.45) with Φ = I could be used. Usually, in many imaging situations, it is assumed that there is no any loss of flux in the blurring process. In the case of shift-invariant blur, this constraint implies that the PSF h is normalized, i.e., i h i = 1, and the scaling degeneracy associated with blind image deconvolution is avoided. In the case of shift-variant blur with PSF interpolation approach, each PSF at grid can be normalized, and then any flux loss such as vignetting effect can be modeled by the interpolation weights. Another physical constraint on a PSF for many imaging systems is positivity. For shift-invariant blur, one can simply impose the constraint ∀i = 1, • • • , m, h i ≥ 0, and for shift-variant blur, the positivity constraint can be imposed by using positive interpolation weights and imposing that each local PSFs on the grid are also positive. The shift degeneracy can also be easily avoided by centering the PSF before using it for image deblurring.

Our Approach to Blind Image Deblurring

Role of Hyperparameters and their Estimation

In both nonblind and blind image deblurring methods, after selecting relevant priors, it is very important to select the good values of hyperparameters to achieve a correct balance between data-fidelity and regularization. If one has higher confidence on measured data, i.e., strength of noise is less, then it is advisable to use smaller value of the hyperparameters, otherwise vice-versa. Though the values of the hyperparameters are related to the noise variance, selecting values of the hyperparameters that yield good restoration results is typically a challenging task.

Several methods for estimation of the optimal values of hyperparameters have been proposed in the literature; they can be classified into the following categories: i) Use of the discrepancy principle, ii) L-curve based methods, iii) Bayesian methods, iv) Generalized cross validation methods, and v) Stein's unbiased risk estimated based methods. The discrepancy principle methods selects the hyperparameter by matching the data-fidelity term to the noise variance [START_REF] Galatsanos | [END_REF]]. The L-curve methods choose the hyperparameter by balancing the effect of data-fidelity and regularization term [Hansen 1993]. Bayesian methods [Molina 2006, Babacan 2012] estimate the hyperparameter by first selecting some hyperpriori, then marginalizing over all the possible values of the image and/or PSF the one given by Eq.(1.33). Generalized cross validation (GCV) method is based on the "leaveone-out" principle [Wahba 1990, Golub 1979] and is known to yield a value of the hyperparameter, which asymptotically minimizes (under certain hypotheses) the mean-squareerror (MSE) between the estimated solution and the underlying original image. Stein's unbiased risk estimate (SURE) was proposed in [Stein 1981] as an estimate of the MSE in the Gaussian denoising problem, and extended in [START_REF] Eldar | Generalized SURE for exponential families: Applications to regularization[END_REF]] to handle more general inverse problems. SURE-based methods select the hyperparameter value in such a way that the MSE estimated by SURE is minimized. The methods based on the discrepancy principle, L-curve based method, GCV based methods, and SURE based methods were initially developed for linear estimators, however some of them have been extended in [Ramani 2008, Giryes 2011] for nonlinear estimators using sparsity based priors.

The selection of hyperparameters in the case of blind image deblurring is a far more challenging task. In the literature of blind image deblurring, the hyperparameters are often selected by heuristic methods. In this thesis, I do not explore hyperparameter selection methods, and the hyperparameters for the considered examples of image deblurring are chosen heuristically to achieve a good quality of restored images.

Our Approach to Blind Image Deblurring

This thesis aims at the development of shift-variant image deblurring. Selecting a fast and accurate shift-variant blurring operator and implementing it is a difficult task in itself. In this thesis, I select the joint MAP estimation approach rather than the marginalization over unknown variable approach to solve the blind image deblurring problem for the following reasons: its transparency in understanding (indeed it does not involve unjustified approximations), simplicity in its implementation, and its low computational cost. After replacing each term in Eq. 1.30 by its analytical expression, the blind image deblurring can be exclusively written as a constrained minimization problem:

{x, ĥ} MAP = arg min x≥0,h≥0 1 2 y -H x 2 W + λ Ψ x (x) + η Ψ h (h) (1.48)
where Ψ x and Ψ h are problem specific priors on the image and the PSF, respectively. The blind image deblurring applications that are considered in this thesis use the sparsity pro-
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moting priors on image, and smoothness inducing with normalization constraint prior on PSF. Even after imposing all possible constraints in order to restrict the solution space, it is extremely difficult to find a global minimum of the blind image deblurring problem (1.48) However, considering one variable to be known, the problem (1.48) is convex with respect to the other variable (under the assumption that the likelihood term is convex and the priors are also convex), thus, an Alternating Minimization approach, depicted below, has been selected for estimating a local minimum of the problem. One can reach a good expected local minimum, if one starts with a guess of PSF not so far from the underlying PSF. In some imaging situations, the initial PSF can be extracted from the observed blurry and noisy image itself, e.g., in astronomical images, one can consider some blurry pointlike sources as the initial PSF, and in some cases one could start with previously calibrated PSF. The success of blind image deblurring depends upon the structures in the underlying unknown image. In absence of striking structures (significantly stronger than noise) in the underlying unknown image, the progressive refinement of the PSF may not happen, and then the blind image deblurring can fail totally. Many methods in the literature for blind deblurring of natural images blurred due to motion apply some prespecified edge enhancing filters (e.g., shock filter) to the blurry image before estimating the PSF (thus these methods are not truly blind methods). In Chapter 3, we will see how striking structures in the image are inferred in a truly blind way to achieve a good estimate of the underlying PSF and the image.

AM:

Alternating Minimization for Blind Image Deblurring Data: y, W , and {λ, η}. Result: {x, ĥ} Initialization: h (0) ← h 0 and k ← 0; while convergence not reached do Image Estimation:

x(k+1) = arg min x≥0 1 2 y -H (k) x 2 W + λ Ψ x (x)
PSF Estimation: ĥ

(k+1) = arg min h≥0 1 2 y -X (k+1) h 2 W + λ Ψ h (h) k = k + 1 return: x, ĥ

Outline of the Thesis and Contributions

I started my work with the understanding of the fundamentals of the image restoration problem and its difficulties. Progressively, I learned different mathematical tools for solving the subproblems arising in image restoration. Staring with the simplest problems in image deblurring, I am ultimately reaching to the hardest problem, the blind deblurring of image with shift-variant blur. Here is a short description of the different chapters of my thesis outlining my contributions.

• Chapter 1: The current chapter gives an overview of the image restoration problem starting with the fundamentals of the image formation models ending with the discussion on blind image deblurring methods. The chapter starts with a detailed overview of shift-variant blur with different existing fast and accurate discrete blur operators, and discusses their advantages and limitations. The chapter progresses by shortly discussing different methods for image restoration, and then providing the details of Bayesian inference framework for both nonblind and blind image deblurring and its ingredients. The chapter ends with the description of the approach for blind image deblurring adopted in this thesis providing a certain rationale for selecting such an approach.

• Chapter 2: In the current chapter, we saw that an image restoration problem can be casted to an optimization problem, thus, one can regard optimization algorithms as the backbone of the image restoration methods. Thus, this chapter is about optimization strategies for inverse problems in imaging. The literature in optimization abounds in different optimization methods suitable for specific problems, however, for several reasons the existing methods are still not very suitable (efficient) for the optimization problems arising in image processing, specifically the inverse problems. The chapter starts by answering the questions "why are the existing optimization algorithms are not sufficient, and why is it necessary to develop suitable new optimization algorithms?". The chapter proposes a class of optimization algorithms for solving nonsmooth constrained convex optimization problems, and proves by several illustrations, comparisons, and theoretical justifications why the proposed algorithm "Augmented Lagrangian By Hierarchical Optimization" (ALBHO) is an efficient tool for the restoration problem. I show that the proposed algorithm ALBHO reaches the state-of-the-art performance without hassle of parameters tuning, which makes a huge difference in practice.

• Chapter 3: This chapter is an in-depth covering blind image deblurring methods. It starts with an introduction on image decomposition, and then progressively introduces ideas on how suitable image priors can be obtained via image decomposition approach. It discusses all the necessary considerations one must take in order to obtain successful blind image deblurring results. The chapter discusses an approach of astronomical image restoration, and proposes a blind image deblurring method, that will be referred by the name "Blind Deblurring via Image Decomposition" (BDID).

The chapter shows by several illustrations on synthetic astronomical scenes that the proposed BDID algorithm is capable of restoring astronomical images, and is a good candidate for further improvements to restore astronomical images.

• Chapter 4 : This chapter is about shift-variant image deblurring. It starts with a discussion on the selection of a suitable shift-variant blur operators among the different existing operators presented in chapter 1, and then discusses the implementation details of the selected blur operator. It puts forward reasons and situations where image deblurring with shift-variant blur is necessary. It shows some nonblind image deblurring results on shift-variant blur images, and then some illustrations on semiblind image deblurring of images captured with simple doublet lens camera. Finally, the chapter ends with a discussion on further works to be done to accomplish blind image deblurring with shift-variant blur.

• Chapter 5: The thesis ends with this chapter where I summarize and conclude the whole work of this PhD thesis. Finally, I discuss about perspective works which could be done in continuation of this thesis.

Abstract

Several problems in signal/image processing, computer vision, and machine learning can be casted as convex optimization problems. Often, they are of huge-scale, have constraints, and are nonsmooth in the unknown parameters. There exists plethora of algorithms for smooth unconstrained convex problems, but these are not directly applicable to constrained and/or nonsmooth problems, which has led to a considerable amount of research in this direction. The general proximal forward-backward methods are the vastly used algorithms for solving these types of problems via proximal operators. In this chapter1 , I propose a class of algorithms for constrained nonsmooth convex problems, which is an instance of the so-called augmented Lagrangian method for which theoretical convergence is well established for convex problems. The proposed algorithm is a blend of robust limited memory quasi-Newton method, proximal operators, and hierarchical optimization strategy. The performance comparison of the proposed algorithm with state-of-theart proximal forward-backward methods for constrained nonsmooth convex optimization problems arising in inverse problems in imaging shows that our proposed algorithms are as fast as the state-of-the-art methods, but requires fewer tuning parameters and are much less sensitive to the values of these parameters, which makes a huge difference in practice.

Introduction

Many problems in signal processing, computer vision, and machine learning boil down to the following generic optimization problem:

x * := arg min

x∈R n {F (x) = f (x) + g(x)} , (2.1) 
where f : R n → (-∞, ∞) is convex and twice continuously differentiable for every x ∈ R n , g : R n → (-∞, ∞] is proper closed and convex but not differentiable for every x ∈ R n . Despite its simplicity, the problem (2.1) is rich enough to represent several classes of convex optimization problems arising in signal/image and machine learning. For the sake of convenience, depending on the situations/applications, we categorize the problem (2.1) into the three following subclasses:

• Class-I: Unconstrained smooth convex problems When g(x) = 0, ∀x ∈ R n . e.g., maximum-a-posteriori (MAP) estimation with Tikhonov regularization is widely used for signal restoration.

• Class-II: Constrained smooth convex problems

When g(x) is an indicator function ι C (x) = 0 if x ∈ C ∞ if x / ∈ C , C ⊂ R n is a closed convex non-empty set.
e.g., MAP estimation with positivity constraint is a vastly investigated problem for signal restoration.

• Class-III: Constrained nonsmooth convex problems When g(x) = r(x) + ι C (x), where r :

R n → (-∞, ∞) is non-differentiable convex function, and ι C : R n → (-∞, ∞] is an indicator function of a closed convex non- empty set C.
Most of the problems in signal/image processing and machine learning are ill-posed, and the solutions need to be regularized properly. Often, the problems involve f as a loss function, and r as regularizer. In the last two decades, the nonsmooth regularizers have emerged as very successful priors, e.g., those promoting sparsity of the solution in some transformed domain. 

Recall of Notations and Some Convex Optimization Properties

Before we proceed our discussion further, for the sake of convenience, I recall the notations and symbols used in this chapter. The column vectors are represented by lowercase Latin or Greek bold alphabets, the matrices by Latin uppercase bold alphabets, and the scalars by lowercase Latin or Greek alphabets. A two dimensional image matrix is represented by a column vector after lexicographically ordering the pixels. For x ∈ R n , x i denotes the ith component of x, and x T denotes transpose of x.

For x, y ∈ R n , x, y R n = x T y denotes the inner product on R n . For v ∈ R n×2 , v i ∈ R 2 denotes i-th row vector of v, i.e., v i = (v i,1 , v i,2 ). For v ∈ R n×2 , w ∈ R n×2 , v, w ∈R n×2 = n i=1 2 j=1 v i,j w i,j = v T •,1 w •,1 + v T •,2 w •,2 denotes the inner product on R n×2 . For x ∈ R n , x 1 = n i=1 |x i | denotes 1 -norm on R n and x 2 = √ x T x denotes 2 -norm on R n . For W ∈ R n×n be a positive semidefinite matrix, x W = √ x T W x denotes weighted 2 -norm on R n . For x ∈ R n , x ∞ = max i∈{1,2,••• ,n} {|x i |} denotes ∞ -norm on R n .
The {•} + denotes the componentwise positive part of the input vector, i.e., {t} + = max{t, 0}, and and {•} {•} denotes componentwise multiplication and division, respectively. Since the chapter will be discussing several iterative algorithms to solve the generic problem (2.1), the evolution of certain variables in the iterative process will be represented by a sequence, e.g., x (k) where k denotes the iteration counter. For a continuously twice differentiable function f (x (k) ), ∇f (x (k) ) and ∇ 2 f (x (k) ) represent the first-order and second-order derivatives of f at some point x (k) ∈ R n , respectively, and interchangeably f (k) , ∇f (k) and ∇ 2 f (k) will denote the same quantities. Now, we will recall some convex optimization properties. Several optimization algorithms are based on a local quadratic approximation of the function f to be optimized. We will consider in the following the family of quadratic approximations of function f around point y:

q (t,B,y) (x) = f (y) + (x -y) T ∇f (y) + 1 2t x -y 2 B (2.2)
for t ∈ R, t > 0, and B a positive semidefinite matrix. For B = I, Eq. ( 2.2) is referred to as first-order approximation, since it is built only on the first-order information ∇f (y), and regularized by the quadratic proximal term, which makes it strongly convex. For B = t∇ 2 f (y), Eq.( 2.2) is called second-order approximation, since it uses second-order information too. The approximation is strongly convex when B is positive definite, i.e.,

x T Bx > 0, ∀x = 0.

The concept of subdifferential generalizes the notion of derivative to functions which are not differentiable. The subdifferential of a function g at a point x ∈ R n is defined as:

∂g(x) = {u ∈ R n : g(x) + u, (y -x) R n ≤ g(y), ∀y ∈ R n } (2.
3)

The vector u ∈ ∂g(x) is called a subgradient.

g(x)

x 0 subgradients Figure 2.1: All the tangent lines (red) passing through the point (x 0 , g(x 0 )) and below the function g(x) (blue) are subgradients of g at x 0 . The set of all subgradients is called subdifferential at x 0 and denoted by ∂g(x 0 ). Subdifferential is always convex compact set.

For a proper closed convex function g, and for any scalar t > 0, let

g t (x) = min y∈R n g(y) + 1 2t x -y 2 2 (2.4)
then, the minimum of (2.4) is attained at the unique point y * satisfying the first-optimality condition:

0 ∈ t ∂g(y * ) + y * -x ⇒ x ∈ (I + t ∂g)(y * )
The mapping

y * = arg min y∈R n g(y) + 1 2t x -y 2 2 = (I + t ∂g) -1 (x)
is referred to as Moreau's proximal mapping of x onto the function g, see [Moreau 1965, Parikh 2013] for details. The mapping (I + t ∂g) -1 (x) is single valued from R n to itself, and is non-expansive. In the following, we will consider the notation prox g,t (x) for this mapping, i.e., prox g,t (x) = arg min

y∈R n g(y) + 1 2t x -y 2 2 , ∀x ∈ R n (2.5)
A very interesting theorem on proximal mapping due to Moreau [Moreau 1965] states that the function g t in (2.4), also referred as Moreau's envelope function, is a finite, convex and continuously differentiable function on R n with a 1 t -Lipschitz gradient given as: In particular, if g = ι C , the indicator function of a nonempty closed convex set C ⊂ R n , then for any t > 0, prox g,t (x) = Π C , commonly referred to as the Euclidean projection on C:

∇g t (x) = 1 t (I -prox g,t )(x), ∀x ∈ R n (2.6) g(x) = |x| g t (x) = Huber prox g,t (x) = Shrinkage t -t
Π C (x) = arg min y∈C 1 2t x -y 2 2
(2.7)

For example, when C = {x : l ≤ x ≤ u}, is a simple bounded constraint set, the Euclidean projection is separable and is given by:

Π C (x i ) =    x i , if l i ≤ x i ≤ u i l i , if x i < l i u i , if x i > u i (2.8)
Consider the 1 -norm function, g(x) = x 1 , the proximal mapping is separable and given by:

prox g,t (x i ) = sign(x i ){|x i | -t} + (2.9)
and its Moreau's envelop is given by:

g t (x i ) = 1 2t |x i | 2 if |x i | ≤ t |x i | -t 2 if |x i | > t (2.10)
Similarly, the proximal mapping of the function g(x) = x 2 , is also separable, and is given by:

prox g,t (x) = { x 2 -t} + x x 2 (2.11)
and its Moreau's envelop is given by:

g t (x) = 1 2t x 2 2 if x 2 ≤ t x 2 -t 2 if x 2 > t
(2.12)

A scaled Moreau's proximal mapping of function g for a positive definite matrix W is defined by

prox g,t,W (x) = arg min y∈R n g(y) + 1 2t x -y 2 W (2.13)
Depending on the function g and the structure of W , the proximal mapping (2.13) may have a closed-form solution, otherwise it can be estimated by an iterative method.

Relevant Existing Approaches

The problems represented by (2.1), in general, do not have closed-form solutions, and rely on iterative methods. The Class-I (smooth and unconstrained) problems are the simplest case of the generic problem (2.1), and the Newton or quasi-Newton methods, based on quadratic approximation (2.2) of the function, are the widely used. The iterations of these methods can written as:

x (k+1) = x (k) + α (k) d (k) (2.14)
where α is step-size commonly computed by line-search methods such backtracking in [Bertsekas 2004] or more sophisticated strategy in [START_REF] More | Line Search Algorithms with Guranteed Sufficient Decrease[END_REF]], and d is descent direction given by d (k) = -B (k) ∇f (k) with B being positive definite matrix, generally an approximation of inverse of Hessian of function:

B (k) ≈ [∇ 2 f (k) ] -1
, commonly computed by Broyden-Fletcher-Goldfarb-Shanno (BFGS) methods [Dennis 1977, Davidon 1991]. These algorithms have local superlinear convergence rate provided that f is strongly convex and Lipschitz continuous in a ball around the solution. Since the problems in signal/image processing, and machine learning are often of large-scale (n > 10 6 ), the memory required by these algorithms increases drastically, and thus they become practically unusable. Limited-memory version of quasi-Newton methods, e.g., LBFGS in [Nocedal 1980], and non-linear conjugate gradient (NCG) methods in [START_REF] Hestenes | [END_REF][START_REF] Polak | [END_REF], Fletcher 1964] are efficient tools for solving large-scale problems in Class-I with a similar convergence rate as quasi-Newton methods under the same assumptions. A generic limited-memory quasi-Newton method is depicted in Algorithm LMVM on page 37, where the descent direction is calculated by LBFGS method presented in [Nocedal 1980]. Another competitive class of algorithms for solving Class-I problems are the majorize-minimize strategy for subspace optimization proposed in [Chouzenoux 2011, Chouzenoux 2013], where the iterations are given by:

x (k+1) = x (k) + D (k) s (k) (2.15) Here, D = [d (k) 1 , d (k) 2 , • • • , d (k) m ] ∈ R n×m
is the subspace spanned by a set of m directions with 1 ≤ m n, and s (k) ∈ R m is a multivariate step-size, which is estimated by a majorization-minimization strategy so as to minimize f (x

(k) + D (k) s (k) ) .
The Class-II (smooth and constrained) problems are harder than Class-I (smooth and uncontrained) problems, and algorithms based on LBFGS direction update with inexact line-search method, for example, LBFGS-B in [Zhu 1995], VMLM-B in [START_REF] Thiébaut | Optimization issues in blind deconvolution algorithms[END_REF]], BLMVM in [Benson 2001], ASA-CG in [Hager 2006], minConf_TMP in [Schmidt 2009] are efficient algorithms for solving the problems with C = {x : l ≤ x ≤ u}, a simple bound constraint set. Like the unconstrained version of quasi-Newton methods, these algorithms have a superlinear convergence rate in the vicinity of the solution given that f is strongly convex.

The Class-II (smooth and constrained) problems when C is a general convex constraint set, and Class-III (nonsmooth and may be constrained) problems are the most difficult

LMVM:

A Generic Limited-Memory Quasi-Newton Method Given: m > 0, x (0) . Allocate memory slots:

S, Y ∈ R n×m , Set k ← 0, Calculate: d (k) ← -∇f (k)
while not converged do Select β (k) by a line-search method (e.g, [START_REF] More | Line Search Algorithms with Guranteed Sufficient Decrease[END_REF]])

Update:

x (k+1) ← x (k) + β (k) d (k) Update: s ← x (k+1) -x (k) , y ← ∇f (k+1) -∇f (k) if y, s > 0 then if k > m then remove the oldest pair {s, y} from S (k) , Y (k) S (k+1) ← [S (k) s]; Y (k+1) ← [Y (k) y]
Calculate the descent direction: k+1) , where H is an approximation of inverse of Hessian (i.e., H ≈ [∇ 2 f (k+1) ] -1 ) using {S (k+1) , Y (k+1) } by the algorithm described in [Nocedal 1980]

d = -H (k+1) ∇f (
if -H (k+1) ∇f (k+1) , ∇f (k+1) > 0 then d (k+1) ← -H (k+1) ∇f (k+1) else d (k+1) ← -∇f (k+1) k ← k + 1 return x
cases of the problem (2.1). None of the above mentioned algorithms are usable off-theshelf. Some efforts have been made in an ad-hoc manner to apply LBFGS methods directly to Class-III problems, which are differentiable almost everywhere, and have no constraint. Convergence to the optimum has been noted [Lemaréchal 1982] in the cases when no nonsmooth point is encountered, otherwise [Luksan 1999, Haarala 2004[START_REF] Lewis | [END_REF] report catastrophic failures (convergence to a non-optimum) of such direct methods. The traditional algorithms for nonsmooth optimization are based on a stabilization of steepest descent by exploiting gradients or subgradients information evaluated at multiple points, which is the essential idea behind subgradient methods [Nedic 2001[START_REF] Yu | A Quasi-Newton Approach to Nonsmooth Convex Optimization Problems in Machine Learning[END_REF]], the bundle methods [Haarala 2004[START_REF] Karmitsa | [END_REF], Teo 2010], and the gradient sampling algorithms [Burke 2005, Kiwiel 2007]. Most of these algorithms use computationally expensive line-search methods, are efficient provided that the subgradients are easily computable, and they solve nonsmooth problems up to sublinear convergence rate. Moreover, these algorithms are practically usable (memory efficient) only for moderate size problems, (n ≤ 10 5 ).

A generic method to solve the Class-II (smooth and constrained) and Class-III (nonsmooth and may be constrained) problems is the proximal forward-backward iterative scheme introduced in [Passty 1979] and [Bruck 1977]; see the surveys [START_REF] Combettes | Signal recovery by proximal forward-backward splitting[END_REF], Beck 2010[START_REF] Patrick | Proximal splitting methods in signal processing[END_REF]] and the references therein for very general convergence results of proximal forward-backward algorithms under various conditions and settings relevant to problem (2.1). Here, I revise the concept of two very related algorithms in the proximal forward-backward iterative scheme. If we consider the Class-II problem, and approximate the function f (x) by a quadratic model built using only first-order information, then by simple arrangement of (2.2) it can be written as:

q (t,I,y) (x) = 1 2t x -(y -t ∇f (y)) 2 2 + f (y) - t 2 ∇f (y) 2 2
(2.16)

The iterative scheme for solving the Class-II problem is then written as:

x (k+1) = arg min x∈C q (t,I,x (k) ) (x) = arg min x∈C 1 2 x -(x (k) -t (k) ∇f (x (k) )) 2 2
(2.17)

where the constant terms are ignored and the fixed point y is replaced by x (k) . This minimization problem is nothing else than an Euclidean projection onto C:

x (k+1) = Π C x (k) -t (k) ∇f (x (k) ) (2.18)
commonly referred as gradient projection method for solving smooth constrained minimization problem, and t (k) is step length. Similarly, if we consider the Class-III problem without the constraint, and approximate the function f (x) by a first-order approximation (2.2), then the minimization problem can be solved by following iterative scheme:

x (k+1) = arg min x∈R n g(x) + 1 2t x -(x (k) -t (k) ∇f (x (k) )) 2 2 (2.19)
which is nothing else than proximal mapping onto g:

x (k+1) = prox g,t (k) x (k) -t (k) ∇f (x (k) ) (2.20)
which is commonly referred as proximal gradient methods for solving nonsmooth minimization problem, and again t (k) is step length that can be kept constant or estimated by backtracking line-search method presented in [Bertsekas 2004]. In these two methods, the term inside the bracket in the right hand side is the forward-step, and projection/proximal mapping is the backward-step. Unlike quasi-Newton methods, these methods have only sublinear convergence rate in function values, i.e. F (x (k) ) -F (x * ) ≈ O(1/k). The convergence rates of these algorithms is further improved in [Bioucas-Dias 2007, Beck 2009b] up to O(1/k 2 ) by using Nesterov's idea [Nesterov 1983] developed as early as 1983. This idea is based on extrapolation of the intermediate solution using the current and the previous solution, which can be viewed as introducing partial second-order information.

Another attempt to improve the convergence speed of the general proximal forward-backward techniques is Projected/Proximal Newton-type methods proposed in [START_REF] Schmidt | [END_REF], Lee 2014]. The key idea is to build a second-order quadratic model using only the differentiable part, and tackle the non-differentiable part via a suitable proximal mapping. A generic proximal Newton-type method is depicted in Algorithm PQNT on page 39. The positive-definite Hessian approximation in these methods is usually done by BFGS or LBFGS method depending on the size of the problem. Lee et al. in [Lee 2014] show that proximal Newton-type methods are globally convergent, and achieve superlinear rates of convergence in the vicinity of x * provided that f is strongly convex. However, estimating the search direction in these method involves solving a scaled-proximal mapping, such as (2.13), which is computationally expensive, and often, an iterative method such as SPG in [Birgin 2000] is used to solve it approximately. Given the f (k) and ∇f (k) , the SPG iterations are dominated by evaluations of q α (x), ∇q α (x) and the proximal mapping of g. The evaluation of q α (x), and ∇q α (x) have O(mn) cost by using LBFGS Hessian approximation, which are less expensive than evaluating f (k) and ∇f (k) in many applications. Thus, proximal Newton-type methods are efficient only if the proximal mapping of g is not expensive. In overall, proximal Newton-type methods are computationally more expensive than quasi-Newton methods per iteration; indeed they require to solve a similar type of optimization problem twice per iteration. In our experiments, we compare the convergence time of proximal Newton-type method (particularly minConf_QNST in [START_REF] Schmidt | [END_REF]) with variants of ADMM (what is discussed next), and our proposed algorithm, and find that the proximal Newton-type method is significantly slower than ADMM and our proposed algorithm.

PQNT:

A Generic Proximal Newton-type Method [START_REF] Schmidt | [END_REF], Lee 2014] Given:

x (0) ∈ dom f , set k ← 0 while not converged do if prox g,1 x (k) -∇f (k) -x (k) ≤ ε then Converged Choose a positive definite B (k) ≈ ∇ 2 f (k)
Build local quadratic model:

q α (x, x (k) ) = f (k) + (x -x (k) )∇f (k) + 1 2α (x -x (k) ) T B (k) (x -x (k) ) + g(x)
Solve the subproblem for a search direction:

x(k) = arg min x q α (x, x (k) ) = prox g,α,B x (k) -α[B (k) ] -1 ∇f (k) d (k) ← x(k) -x (k)
Select β (k) with backtracking line-search such as described in [Bertsekas 2004] Update:

x (k+1) ← x (k) + β (k) d (k) k ← k + 1 return x
A similar attempt to accelerate the general forward-backward techniques for solving Class-III problems is proposed in [Chouzenoux 2014], where that variable metric (approximation of inverse of Hessian) is built using Majorization-Minimization strategy. The computational expense per iteration for this method is similar to the proximal Newton-type methods in [START_REF] Schmidt | [END_REF], Lee 2014] and has been shown to be faster than accelerated proximal gradient methods(using Nesterov's idea) on some image restoration problems. The step-size in this method is kept fixed and chosen manually for the fast convergence.

Other instances of the general proximal forward-backward iterative scheme are the Alternating Minimization Algorithm in [Tseng 1991], and Alternating Direction Method of Multipliers (ADMM) proposed in [START_REF] Gabay | A dual algorithm for the solution of nonlinear variational problems via finite element approximations[END_REF]], which are closely related to algorithms such as dual decomposition, the method of multipliers, Douglas-Rachford splittings, Dykstra's alternating projections, split Bregman iterative method, and others; see the monograph [START_REF] Boyd | [END_REF]] for general perspectives and applications. These algorithms are based on the idea of variable splitting and augmented Lagrangian to handle the constraints.

For the sake of completeness, before proceeding to the description of the method of multipliers and the ADMM, we review the concept of Lagrangian and augmented Lagrangian on which both the method of multipliers and the ADMM are built on. Introducing a variable splitting, z = x, the problem (2.1) can be equivalently written into a constrained 40 Chapter 2. A Nonsmooth Optimization Strategy for Inverse Problems in Imaging form:

min (x,z)∈R n ×R n { f (x) + g(z) } such that x -z = 0.
(2.21)

This constrained optimization problem (2.21) can be converted into unconstrained form by forming its Lagrangian:

L(x, z, y) = f (x) + g(z) + y T (x -z) (2.22)
where y ∈ R n is called a dual variable or Lagrange multiplier. The saddle point of the Lagrangian is the solution of the constrained problem (2.22), which is commonly found by the dual ascent method:

(x (k+1) , z (k+1) ) = arg min (x,z)∈R n ×R n L(x, z, y (k) ) y (k+1) = y (k) + t k (x (k+1) -z (k+1) )
where t (k) > 0 is a step length. However, the dual ascent converges to the solution only if f and g are strongly convex. Augmented Lagrangian (AL) was first proposed in [Hestenes 1969, Powell 1969] to add robustness to the dual ascent method, and in particular, to yield convergence without assumptions like strict convexity or finiteness of f and g. The augmented Lagrangian of the constrained problem is formulated by adding a quadratic penalty term to the Lagrangian, which makes it strongly convex. The augmented Lagrangian of the constrained problem (2.21) is written as:

L ρ (x, z, y) = f (x) + g(z) + y T (x -z) + ρ 2 x -z 2 2 ,
where the scalar, ρ > 0, is an augmented penalty parameter. It can be written in a more convenient form (the last term is dropped when the augmented Lagrangian is minimized for at a given u) as:

L ρ (x, z, u) = f (x) + g(z) + ρ 2 x -z + u 2 2 - ρ 2 u 2 2 (2.23)
with the scaled dual variable, u = ( 1 ρ )y. Now, applying dual ascent method to the modified formulation (2.23), with some initial value u (0) , yields the algorithm:

(x (k+1) , z (k+1) ) = arg min (x,z)∈R n ×R n L(x, z, u (k) ) u (k+1) = u (k) + x (k+1) -z (k+1)
which is known as the method of multipliers (MM), first proposed in [Hestenes 1969, Powell 1969]. Rather than jointly minimizing with respect to x and z, given some initial u (0) , and z (0) , the ADMM finds the saddle point of the augmented Lagrangian (2.23) by the following iterations:

x (k+1) := arg min x∈R n f (x) + ρ 2 x -z (k) + u (k) 2 2 z (k+1) := arg min z∈R n g(z) + ρ 2 x (k+1) -z + u (k) 2 2 u (k+1) := u (k) + x (k+1) -z (k+1)
Looking at the iterations of ADMM, it is easy to realize that ADMM is an instance of the generic proximal forward-backward iterative scheme: the x-update can be considered as the forward-step, and the z-update as the backward-step. ADMM and the method of multipliers are quite similar except that ADMM separates the minimization over x and z into two steps. In fact, ADMM is viewed as a version of the method of multipliers where a single Gauss-Seidel iteration over x and z is used instead of the usual joint minimization.

The ADMM is a blend of decomposability of dual ascent and superior convergence properties of the method of multipliers. Because of its flexibility to handle a variety of objective functions/constraints, and its simplicity in implementation for distributed optimization, ADMM has gained a large popularity among both the signal processing and machine learning communities, since the last few decades. The advantage of the two methods: the method of multipliers and ADMM, is their guaranteed convergence to the solution under very mild assumptions:

1. The real-valued functions f and g are closed, proper, and convex.

2. The Lagrangian L 0 has a saddle point.

See [Bertsekas 1976[START_REF] Gabay | Applications of the method of multipliers to variational inequalities[END_REF][START_REF] Eckstein | [END_REF][START_REF] Boyd | [END_REF] for general convergence discussion of ADMM. Assumption 1 implies that the subproblem(s) arising in the x and zupdate is(are) solvable, i.e., there exists x and z, not necessarily unique (without further assumptions), that minimize the augmented Lagrangian. Assumption 2 implies that there exists (x * , z * , y * ), for which

L 0 (x * , z * , y) ≤ L 0 (x * , z * , y * ) ≤ L 0 (x, z, y * )
hold for all x, z, y. By assumption 1, it follows that L 0 (x * , z * , y * ) is finite for any saddle point (x * , z * , y * ), which implies that (x * , z * ) is the solution of constrained problem (2.21).

One more advantage of these methods is that they do converge even when the x and z-updates are not carried out exactly (it is the cases when the updates do not have closedform solutions, and are estimated by some iterative methods), provided that the 2 -norm of the errors between the exact and approximate updates at each iteration are summable, see [START_REF] Eckstein | [END_REF]] for the proof.

Like the other algorithms in proximal forward-backward iterative schemes, ADMM can achieve sublinear convergence rate under the stated assumptions. However, the authors in [Afonso 2010a, Afonso 2010b[START_REF] Afonso | [END_REF][START_REF] Matakos | [END_REF] show experimentally that ADMM converges faster than many other algorithms in the general proximal forwardbackward iterative scheme provided that it decomposes the problem into multiple subproblems such that each of them can be solved exactly (in closed-form), and all the penalty parameters associated with the augmented terms are tuned optimally. However, the optimal tuning of the involved penalty parameters is still an open challenge; in our experimental results we will see that the convergence speed of ADMM is very sensitive to the variation in the penalty parameters.

Proposed Algorithm

Motivation and Contributions

Motivation: As pointed out in the preceding section 2.2, the algorithms based on the general proximal forward-backward iterative scheme are good candidates for solving large size constrained nonsmooth problems like (2.1). Among them, the accelerated proximal gradient methods (e.g., MFISTA in [Beck 2009a, Beck 2009b]), the proximal Newtontype method (e.g., minConf_PQN, minConf_QNST in [Schmidt 2009[START_REF] Schmidt | [END_REF],

and [Lee 2014]), and variants of ADMM (e.g., SALSA in [Afonso 2010a], C-SALSA in [START_REF] Afonso | [END_REF]], and [START_REF] Matakos | [END_REF]) are notable state-of-the-art algorithms for solving the problems (2.1) in signal/image processing and machine learning. Recently proposed variants of ADMM [Afonso 2010a[START_REF] Afonso | [END_REF][START_REF] Matakos | [END_REF]] have shown to outperform the accelerated proximal gradient methods in [START_REF] Becker | [END_REF], Bioucas-Dias 2007, Beck 2009a, Beck 2009b] in term of convergence speed for solving the instances of the general problem (2.1) in applications related to image restoration, and other linear inverse problems. Lee et al. show in [Lee 2014] that proximal Newton-type methods achieve a fast convergence rate in the vicinity of the optimal solution under the assumption that the function f is strongly convex. In many practical applications, it is rarely necessary to reach the exact optimal solution, and, moreover, the function f is not always strongly convex (we will see in Section 2.4 that some image restoration problems are not strongly convex). In our experimental results, I compare the convergence speed of the minConf_QNST with a variant of ADMM for image restoration problem, and find that the ADMM outperforms the minConf_QNST by a large margin (time). With these observations, we can conclude that certain variants of ADMM are the most efficient candidates for solving the generic problem (2.1). The experimental results in [Afonso 2010b[START_REF] Matakos | [END_REF] clearly demonstrate that the variants of ADMM converge faster than other variants, given that:

1. a sufficient number of variable splittings are introduced so that each variable update can be carried out in closed-form, and 2. separately optimally tuned augmented penalty parameters are used.

Unfortunately, there does not exist a universal method for optimal tuning of the augmented penalty parameters, and a nonoptimal tuning of the augmented penalty parameters significantly degrades the convergence speed of ADMM. Though, the authors in [Afonso 2010b[START_REF] Matakos | [END_REF] suggest some thumb-rules to tune the parameters, but these rules cannot be generalized (in fact, their thumb-rules are efficient only on the particular problem they try to solve in their papers) since the optimal value of the penalty parameter depends on the scale of the data, and the specific (particularly regularization) parameters in the problem. Keeping this in mind, a nonsmooth constrained convex problem such as image deblurring problem with total variation (TV) regularization, as the one considered in Section 2.4.1, requires multiple variable splittings, which may result in significantly slower convergence speed in lack of optimal tuning of the multiple parameters. Later, in Section (2.5.3), I will discuss about the need for separate penalty parameters for higher convergence rate.

Contributions: In this chapter, I propose a class of algorithms for solving a nonsmooth constrained convex optimization problem based on the variable splitting trick and augmented Lagrangian similar to ADMM. The proposed algorithms is an instance of the method of multipliers, where the joint optimization is tackled by hierarchical optimization strategy. The joint optimization is carried out using robust and well established limitedmemory quasi-Newton method (e.g., BLMVM) in conjunction with proximal operator for nonsmooth part in the optimization problem. The use of quasi-Newton method avoids the requirement of multiple variable splittings. Experimentally, I show that the convergence speed of ADMM is highly dependent on the involved penalty parameters, whereas the proposed algorithms involve fewer tunable parameters, are as fast as the variants of ADMM in [Afonso 2010a, Afonso 2010b[START_REF] Afonso | [END_REF][START_REF] Matakos | [END_REF], and with a convergence speed almost insensitive to large variations in the penalty parameters.

Basic Ingredients

The proposed algorithm for nonsmooth constrained convex optimization problem is based on the variable splitting trick, and on the augmented Lagrangian. It is an instance of the method of multipliers, where the joint optimization is tackled by hierarchical optimization strategy, and the nonsmoothness by proximal mapping. To avoid multiple variable splittings, and for other advantages (that we will see), limited-memory quasi-Newton method is used for the joint optimization. Before proceeding further into the details of the proposed algorithm, I recall here its basic ingredients.

Variable Splitting, Augmented Lagrangian, and the Method of Multipliers: In order to decouple the smooth part and the nonsmooth part of the generic problem (2.1), a variable splitting is introduced, and the equivalent problem is written into a constrained form:

min (x,z)∈R n ×R n {f (x) + g(z)} such that x -z = 0.
(2.24)

This constrained problem (2.24) is converted into an unconstrained form by the augmented Lagrangian technique, and is written as:

L ρ (x, z, u) = f (x) + g(z) + ρ 2 x -z + u 2 2 - ρ 2 u 2 2 (2.25)
where ρ > 0 is an augmented penalty parameter, and u is scaled dual variable. The saddle point of the augmented Lagrangian (2.25) is the solution to the constrained problem (2.24). This saddle point is found by the method of multipliers whose iterations are:

{x (k+1) , z (k+1) } = arg min (x,z)∈R n ×R n f (x) + g(z) + ρ 2 x -z + u (k) 2 2
(2.26)

u (k+1) = u (k) + x (k+1) -z (k+1) (2.27)
The optimization problem (2.26) is almost as difficult as the main problem (2.1). In the proposed algorithm, this is solved by the limited-memory quasi-Newton method in conjunction with proximal mapping for the nonsmooth part. Let me now present the quasi-Newton method that I have used in my work.

Limited Memory Quasi-Newton Method for Smooth Bound Constrained Optimization:

As mentioned earlier, there are several efficient algorithms (e.g., LBFGS-B, VMLM-B, BLMVM, minConf_TMP) for solving the large-scale Class-II (smooth and constrained) problems when C = {x : l ≤ x ≤ u}, is a simple bounded constraint set. In the proposed algorithm, I use the BLMVM 2 . Like other quasi-Newton methods, BLMVM is based on quadratic approximation (2.2) of the function f at the current iteration, which gives the

descent direction d = -[B (k) ] -1 ∇f (x (k) )
, where B (k) is positive definite approximation of the Hessian. The Hessian is approximated by LBFGS method using only m, (m n), correction pairs (s, y). Unlike LBFGS-B, the BLMVM uses projected gradient, defined as:

T (∇f (x), x) =    (∇f (x)) i if x i ∈ (l i , u i ) min{(∇f (x)) i , 0} if x i = l i max{(∇f (x)) i , 0} if x i = u i
in LBFGS matrix update instead of normal gradient, where l and u are lower and upper bounds. It is easy to see that the restricted variables set with indices given by B(x) = {i : x i = l i and (∇f (x)) i ≥ 0, or x i = u i and (∇f (x)) i ≤ 0} are at their possible optimal values, and cannot be changed further. Thus, using the projected gradients for LBFGS matrix update, only the free variables set, the complement of set B, can move toward their optimal values without violating the bound constraint.

BLMVM:

A Limited-Memory Variable Metric Method in Subspace and Bound Constrained Problems [Benson 2001[START_REF] Thiébaut | Optimization issues in blind deconvolution algorithms[END_REF] Given: m > 0, N > 0, and x (0) ; Set k ← 0, and

x (k) ← Π C (x (0) ) ; Allocate memory slots: S, Y ∈ R n×m ; Compute: d (k) ← -T (∇f (k) , x (k) ); while not converged do
Select β (k) by a projected line-search;

Update:

x (k+1) ← Π C (x (k) + β (k) d (k) );
Compute: ∇f (k+1) and T (∇f

(k+1) , x (k+1) ); if T (∇f (k+1) , x (k+1) ) 2 ≤ ε or k == N then Converged; Compute: s ← x (k+1) -x (k) , y ← T (∇f (k+1) , x (k+1) ) -T (∇f (k) , x (k) ); if y, s > 0 then if k > m then remove the oldest pair {s, y} from S (k) , Y (k) ; S (k+1) ← [S (k) s], Y (k+1) ← [Y (k) y];
Compute the descent direction -H (k+1) ∇f (k+1) using S (k+1) , Y (k+1) by two-loop recursion algorithm in [Nocedal 1980];

if -T (H (k+1) ∇f (k+1) , x (k+1) ), ∇f (k+1) > 0 then d (k+1) = -H (k+1) ∇f (k+1) ; else d (k+1) = -T (∇f (k+1) ); k ← k + 1; return x
The algorithms (LBFGS-B, VMLM-B, BLMVM, minConf_TMP) are similar in the aspect that they are all based on quadratic approximation using approximate Hessian estimated by LBFGS update, however they differ from each other in some subtle ways, e.g., VMLM-B and BLMVM uses projected gradients to update the limited memory BFGS matrix whereas the LBFGS-B uses normal gradient to update the full matrix, and work with a reduced matrix. VMLM-B applies the BFGS recursion in the subspace of free variables, while BLMVM simply stores the projected gradient updates (instead of the gradients). It is worth to note that when C = R n , the algorithm VMLM-B and BLMVM behaves like the other unconstrained limited-memory quasi-Newton methods, e.g., LBFGS.

For large-scale optimization problems, it has been observed that 5 ≤ m ≤ 8 is sufficient to achieve a fast convergence; increasing further the value of m does not have any significant impact on the convergence rate, except that it increases the memory requirements and computational overhead. The computational cost for finding the search direction is of order O(mn); otherwise the overall cost of the BLMVM and VMLM-B is dominated by the costs of evaluating f (k) , and ∇f (k) for many applications. So, the global cost of BLMVM and VMLM-B is of order [O(mn) N + (O(n) + c) N eval ], where N is the number of successful iterations, N eval is the number of evaluations of function value and its gradient, and c is total cost of evaluating the function and its gradient.

Derivation of the Algorithm

The joint minimization problem (2.26) is formulated in a hierarchical way:

x * := arg min

x∈R n f (x) + g(z * (x)) + ρ 2 x -z * (x) + u (k) 2 2 with z * (x) = arg min z g(z) + ρ 2 x -z + u (k) 2 2
(2.28)

The inner optimization, the computation of z * (x), is a proximal mapping, which is often known in closed-form or computed by some efficient iterative method.

Proposition 1. The gradient of the partially optimized augmented Lagrangian with respect to x is given by:

∇ x L ρ (x, z * (x), u) = ∇f (x) + ρ(x -z * (x) + u) (2.29)
Proof. By using the definition of Moreau's envelope function associated with function g, namely

E(v) = min w {g(w) + 1 2λ w -v 2 2 },
the above augmented Lagrangian (2.28) can be written as:

L(x, z * (x), u) = f (x) + E(x + u)
where λ = 1/ρ. Recall the Moreau's theorem on differentiability of Moreau's envelope function, which states that Moreau's envelope function is continuously differentiable with 1 λ -Lipschitz gradient given by:

∇E(v) = 1 λ (I -prox g,λ )(v)
By applying this theorem, the gradient of the augmented Lagrangian (2.28) can be written as:

∇ x L ρ (x, z * , u) = ∇ x f (x) + ρ x + u -prox g, 1 ρ (x + u) = ∇ x f (x) + ρ(x -z * + u)
where λ = 1 ρ . This proves the Proposition 1.

Proposition 2. The difference between the gradients of the augmented Lagrangian at two consecutive iterations of the proposed algorithm is independent of the value of the scaled dual variable u:

∇ x L ρ x (2) , z * (x (2) ), u -∇ x L ρ x (1) , z * (x (1) ), u = ∇f (x (2) ) -∇f (x (1) ) + ρ x (2) -x (1) + z * (x (1) ) -z * (x (2) )
Proof. Follows from Proposition 1, and one can see in the BLMVM that the gradient difference is computed and stored before the scaled dual variable is updated (2.27).
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ALBHO:

Augmented Lagrangian By Hierarchical Optimization Given: x (0) , u (0) , N > 0, Set k ← 0 ; while not converged do

x (k+1) = BLMVM x (k) , F, N
where

     F(x) = f (x) + g(z * (x)) + ρ 2 x -z * (x) + u (k) 2 2 , ∇ F(x) = ∇f (x) + ρ(x -z * (x) + u (k) ), z * (x) = prox g, 1 ρ (x + u (k) ).      z (k+1) = prox g, 1 ρ (x (k+1) + u (k) ) u (k+1) = u (k) + x (k+1) -z (k+1) if max x (k+1) -x (k) 2 / x (k) 2 , z (k+1) -z (k) 2 / z (k) 2 < ε then converged k ← k + 1 return x

The Proposed Algorithm: ALBHO

Using Proposition 1, a smooth optimization method, such as BLMVM, which is solely based on objective function value and its gradient evaluations, can be used to perform joint minimization over x and z. Since BLMVM uses gradient differences to collect second order information, the memorized previous steps can be used even after the scaled dual variable, u, has been updated, since gradient differences are not affected by its update; see Proposition 2 (in BLMVM, the gradient difference y is calculated before updating the scaled dual variable). From now onward we will refer to the proposed algorithm by the name "Augmented Lagrangian By Hierarchical Optimization" (ALBHO). In ALBHO, F (x) represents the partially optimized augmented Lagrangian, and ∇F (x) represents its gradient. Like the ADMM, the convergence of the ALBHO is not hindered even if the joint minimization of (x, z) is carried out approximately before updating the scaled dual variable, u; in fact few iterations of BLMVM, let say N at least greater or equal to some small integer k 0 , is sufficient. In practice, we find that 8 ≤ k 0 ≤ 10 is sufficient for achieving fast convergence rate by the ALBHO (see the plots in Fig. 2.4); increasing further the value of k 0 does not improve significantly the convergence speed. Once BLMVM completes N inner iterations, the scaled dual variable, u, is updated, and then BLMVM resumes for the next N iterations from exactly the same state where it left before. The iterations of the proposed ALBHO is stopped once the relative 2-norm change in the solution between two consecutive iterations is below a certain value.

ALBHO is efficient for the problems for which the inner minimization (the z-update) can be carried out precisely (closed-form solution is preferable) with computational cost not greater than evaluating F (x) and ∇F (x).

Comparison of ALBHO with State-Of-The-Art Algorithms

As pointed out in section 2.2, variants of ADMM have been proven to be fast and efficient state-of-the-art algorithms for solving constrained convex nonsmooth optimization problems in signal/image processing, and computer vision. Thus, to demonstrate the advantages and the performance of the proposed ALBHO over the ADMM, I consider some of the vastly investigated problems in image processing and computer vision. 

Problem 1: Image Deblurring with TV and Positivity Constraint

The first problem considered for the illustration is shift-invariant image deblurring with total variation (TV) regularization and positivity constraint, stated as:

x * := arg min

x∈R n 1 2 y -Hx 2 W + ι C (x) + λ TV(x) (2.30)
where y is the blurry and noisy image obtained from the crisp image x after applying the discrete blurring operator H, and corrupting it with Gaussian noise. It is often efficient to apply the blurring operator in Fourier domain using fast Fourier transform (FFT) as described in Section 1.3.1 in Chapter 1. Note that the two dimensional image matrix is represented by a column vector by lexicographically ordering its pixels. The set C = {x : x ≥ 0} represents the set of vectors in the positive-orthant. The regularization parameter λ > 0 is tuned to reach a good compromise between the likelihood data-fidelity and the prior regularizer, TV(x) the isotropic total variation defined as: TV(x) = i (Dx) i 2 , where Dx ∈ R n×2 , and

D = [D T (1) , D T (2)
] T is the circular first-order finite difference operator in two dimensions. As discussed in [START_REF] Matakos | [END_REF]], due the circular blurring operator, the deblurred image suffers from wraparound artifact along the boundary. The wraparound artifact come from the implied periodicity of the circular blurring operator. Thus, to handle this problem, a weighted least-square likelihood term is considered, a similar idea as in [START_REF] Matakos | [END_REF]]. W is the inverse of the diagonal noise covariance matrix. The pixels outside the field-of-view or any unmeasured pixel (e.g. dead or saturated pixels) in the observed image can be considered to have an infinite variance, thus, are given zero weight in matrix W (i.e. if pixel k is unmeasured, then W (k, k) = 0). To prevent the wraparound artifact along the boundaries of the image, we seek to reconstruct x ∈ R n slightly larger than the available observed image y ∈ R m , where n > m. Thus, we extend the observed image to new size n by zero-padding at boundaries, i.e. y ∈ R n . Similarly, we add zeros to W for the corresponding boundary pixels.

The optimization problem (2.30) is a perfect instance of the general problem (2.1). It involves a continuously differentiable data-fidelity term, a nonsmooth regularizer term, and positivity constraint. To compare the performance and advantages of the proposed ALBHO, two variants of ADMM are considered to solve the problem (2.30). The variants of ADMM and the proposed ALBHO are presented in what follows.

ADMM-1x

The first variant of ADMM that solves the problem (2.30) is obtained by introducing a single variable splitting: v = Dx, in order to decouple the smooth and nonsmooth part in the problem (hence the suffix 1x in its name). The resulting augmented Lagrangian of the problem is written as:

L γ (x, v, u) = 1 2 y -Hx 2 W + ι C (x) + n i=1 λ v i 2 + γ 2 (Dx -v + u) i 2 2 
(2.31)

where γ is a Lagrangian penalty parameter. The iterations of ADMM to find the saddle

ADMM-1x:

ADMM with single variable splitting

Choose v (0) ∈ R n×2 , u (0) ∈ R n×2 , γ > 0; Set k ← 0 ; while not converged do x (k+1) = arg min x≥0 1 2 y -Hx 2 W + γ 2 Dx -v (k) + u (k) 2 2
(solved by few iterations of BLMVM)

v (k+1) = arg min v i λ v i 2 + γ 2 (Dx (k+1) -v + u (k) ) i 2 2 
(solved by 2D soft-thresholding) (2.31) are depicted in ADMM-1x. The x-update is approximately solved by a few iterations of BLMVM, and the v-update has a closed-form solution similar to (2.35).

u (k+1) = u (k) + Dx (k+1) -v (k+1) if max x (k+1) -x (k) 2 / x (k) 2 < ε, v (k+1) -v (k) 2 / v (k) 2 < ε then converged k ← k + 1 return x point of

ADMM-3x

As illustrated in [START_REF] Matakos | [END_REF]], the fastest variant of the ADMM is obtained by the decomposing of the main problem into multiple subproblems so that each one has a closedform solution, and uses separate penalty parameters for each augmented term. Thus, for the problem (2.30), three variable splittings: ξ = y -Hx, z = x and v = Dx are introduced (hence the suffix 3x in its name). The resulting augmented Lagrangian is:

L ρ,ν,γ (x, ξ, z, v, u 1 , u 2 , u 3 ) = ρ 2 y -Hx -ξ + u 1 2 2 + 1 2 ξ 2 W + ι C (z) + ν 2 x -z + u 2 2 2 + n i=1 λ v i 2 + γ 2 (Dx -v + u 3 ) i 2 2
(2.32)
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where ρ, ν, and γ are the Lagrangian penalty parameters. The iterations are depicted in ADMM-3x. The closed-form solutions for x-, ξ-, z-, and v-updates are given by:

x = γD T D + ρH T H + νI -1 γD T (v -u 3 ) + ρH T (y -ξ + u 1 ) + ν(z -u 2 )
(2.33)

ξ = (ρI + W ) -1 ρ (y -Hx + u 1 ) (2.34) v i = ϑ i 2 - λ γ + ϑ i ϑ i 2 , with ϑ = (Dx + u 3 ) (2.35) z = {x + u 2 } + (2.36) ADMM-3x: ADMM with three variable splittings Choose ξ (0) ∈ R n , v (0) ∈ R n×2 , z (0) ∈ R n , u (0) 1 ∈ R n , u (0) 2 ∈ R n , u (0) 3 ∈ R n×2 , ρ, γ, ν; Set k ← 0 ; while not converged do x (k+1) = arg min x ρ 2 y -Hx -ξ (k) + u (k) 1 2 2 + ν 2 x -z (k) + u (k) 2 2 2 + γ 2 Dx -v (k) + u (k) 3 2 2 ξ (k+1) = arg min ξ 1 2 ξ 2 W + ρ 2 y -Hx (k+1) -ξ + u (k) 1 2 2 v (k+1) = arg min v n i=1 λ v i 2 + γ 2 (Dx (k+1) -v + u (k) 3 ) i 2 2 z (k+1) = arg min z g(z) + ν 2 x (k+1) -z + u (k) 2 2 2 u (k+1) 1 = u (k) 1 + y -Hx (k+1) -ξ (k+1) u (k+1) 2 = u (k) 2 + x (k+1) -z (k+1) u (k+1) 3 = u (k) 3 + Dx (k+1) -v (k+1) if max x (k+1) -x (k) 2 / x (k) 2 , z (k+1) -z (k) 2 / z (k) 2 < ε then converged k ← k + 1 return z

ALBHO

Similar to ADMM-1x, a single splitting: v = Dx, is introduced, and the augmented Lagrangian is written exactly as in (2.31). ALBHO minimizes the augmented Lagrangian (2.31), given the two input expressions:

F(x) = n i=1 λ v * i (x) 2 + γ 2 (ϑ -v * (x)) i 2 2 + 1 2 y -Hx 2 W ∇ F(x) = γ D T (ϑ -v * (x)) -H T W (y -Hx) where v * i (x) = ϑ i 2 - λ γ + ϑ i ϑ i 2
, and ϑ = (Dx + u).
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The scaled dual variable, u, is updated as:

u (k+1) = u (k) + Dx (k+1) -v (k+1)
(2.37)

Problem 2: Poissonian Image Deblurring with TV and Positivity Constraint

In low lighting condition, images captured by many imaging systems are heavily corrupted with Poisson (photon) noise along with some blur. Among different Poissonian image deblurring models, I considered the model with TV regularization proposed by [START_REF] Figueiredo | [END_REF]]. Poissonian image deblurring problem is stated as:

x * := arg min

x {ϕ(CHx) + ι C (x) + λ TV(x)} (2.38)
where ϕ(t) = 1 T ty T log(t), and the set C = {x : x ≥ 0}. We consider conventionaly that log(0) = -∞, and 0 log(0) = 0. Again, y ∈ R m represents the observed image obtained from the crisp image x ∈ R n after being blurred by the blurring operator H ∈ R n×n , and corrupted by Poisson noise. To prevent the wraparound artifact along the boundaries of the image due to the implied periodicity of circular blurring operator, the crisp image x is reconstructed slightly larger than the observed image y by introducing a chopping operator C ∈ R m×n , n > m, in a similar way as in [START_REF] Matakos | [END_REF]].

The problem (2.38) is an instance of the general problem (2.1); it is convex (strictly convex if CH is injective, and y i = 0), constrained, and nonsmooth. As in the case of Problem 1 in section 2.4.1, we compare the performance of the ALBHO against ADMM, four variants of ADMM are considered. The subsequent subsections present all the algorithms.

ADMM-1x

As in section 2.4.1, we introduce a single variable splitting: v = Dx, to decouple the smooth and nonsmooth part, and the augmented Lagrangian is written as:

L γ (x, v, u) = n i=1 λ v i 2 + γ 2 (Dx -v + u) i 2 2 + ι C (x) + ϕ(CHx) (2.39)
where γ is Lagrangian penalty parameter. The iterations of ADMM for finding the saddle point of the augmented Lagrangian (2.39) are very similar to ADMM-1x in section 2.4.1. The x-update is carried out by a few iterations of BLMVM, and the v-update has the closed-form solution (2.35).

ADMM-4x-A

Similar to ADMM-3x in Section (2.4.1), four variable splittings: w = Hx, ξ = Cw, v = Dx, and z = x, are introduced, and the resulting augmented Lagrangian is:

L ρ,ν,γ,η (x, w,ξ, v, z, u 1 , u 2 , u 3 , u 4 ) = ν 2 Hx -w + u 2 2 2 + ϕ(ξ) + ρ 2 Cw -ξ + u 1 2 2 + ι C (z) + η 2 x -z + u 4 2 2 + i λ v i 2 + γ 2 (Dx -v + u 3 ) i 2 2
(2.40)

The iterations of ADMM for finding the saddle point of augmented Lagrangian (2.40) are depicted in ADMM-4x-A. The closed-form solution for ξ-, w-, x-, v-, and z-updates are given by:

ξ i = 1 2   t i - 1 ρ + t i - 1 ρ 2 + 4y i ρ   , [ Figueiredo 2010] 
(2.41)

where t = Cw + u 1 .

w = ρC T C + νI -1 ρC T ζ 1 + νζ 2 (2.42)
where

ζ 1 = ξ -u 1 , and ζ 2 = Hx + u 2 . x = νH T H + γD T D + ηI -1 νH T ζ 1 + γD T ζ 2 + ηζ 3 , (2.43) 
where

ζ 1 = w -u 2 , ζ 2 = v -u 3 , and ζ 3 = z -u 4 . v i = ϑ i 2 - λ γ + ϑ i ϑ i 2
, where ϑ = (Dx + u 3 ) (2.44)

z = {x + u 4 } + (2.45)

ADMM-4x-A:

ADMM with four variable splittings

Choose

w (0) ∈ R n , ξ (0) ∈ R n , v (0) ∈ R n×2 , z (k) ∈ R n , u (0) 1 ∈ R n , u (0) 2 ∈ R n , u (0) 3 ∈ R n×2 , u (0) 4 ∈ R n , ρ > 0, γ > 0, ν > 0, η > 0; Set k ← 0 ; while not converged do x (k+1) = arg min x ν 2 Hx -w (k) + u (2) 2 2 2 + η 2 x -z (k) + u (k) 4 2 2 + γ 2 Dx -v (k) + u (k) 3 2 2 w (k+1) = arg min w ρ 2 Cw -ξ (k) + u (k) 1 2 2 + ν 2 Hx (k+1) -w + u (k) 2 2 2 v (k+1) = arg min v i λ v i 2 + γ 2 (Dx (k+1) -v + u (k) 3 ) i 2 2 ξ (k+1) = arg min ξ ϕ(ξ) + ρ 2 Cw (k) -ξ + u (k) 1 2 2 z (k+1) = arg min z ι C (z) + η 2 x (k+1) -z + u (k) 4 2 2 u (k+1) 1 = u (k) 1 + Cw (k+1) -ξ (k+1) u (k+1) 2 = u (k) 2 + Hx (k+1) -w (k+1) u (k+1) 3 = u (k) 3 + Dx (k=1) -v (k+1) u (k+1) 4 = u (k) 4 + x (k+1) -z (k+1) if max x (k+1) -x (k) 2 / x (k) 2 , z (k+1) -z (k) 2 / z (k) 2 < ε then converged k ← k + 1 return z

ADMM-4x-B

This variant of ADMM is very similar to ADMM-4x-A except that the variable splitting v = Dx is replaced by v = x, and the resulting TV denoising problem is solved by Chambolle's projection algorithm as suggested in [START_REF] Figueiredo | [END_REF]]. As ADMM does converge 52 Chapter 2. A Nonsmooth Optimization Strategy for Inverse Problems in Imaging even if the subproblems are not solved exactly (provided that the 2 -norm error between the exact and approximate solution at each iteration are summable [START_REF] Eckstein | [END_REF]]), thus, few iterations of Chambolle's projection are sufficient for the convergence of ADMM-4x-B if the internal dual variables in Chambolle's projection method are initialized by the value obtained at previous iteration, see [START_REF] Figueiredo | [END_REF]] for proof. In the experiments, it observed that 5 iterations of Chambolle's projection method are sufficient for ADMM-4x-B to converge after a sufficient number of main iterations.

ALBHO

As in ADMM-1x, a single variable splitting: v = Dx is introduced, and the resulting augmented Lagrangian is the same as in (2.39). ALBHO solves the problem, given the two input expressions:

F(x) = n i=1 λ v * i (x) 2 + γ 2 (ϑ -v * (x)) i 2 2 + ϕ(CHx) ∇ F(x) = H T C T 1 - y CHx + γ D T (ϑ -v * (x))
where

v * i (x) = ϑ i 2 - λ γ + ϑ i ϑ i 2
, and ϑ = (Dx + u)

The scaled dual variable, u, is updated as:

u (k+1) := u (k) + Dx (k+1) -v (k+1) .

Problem 3: Image Segmentation

The variational models for image segmentation have many applications in computer vision. The early models such as geodesic active contour/snakes model proposed in [Kass 2004], and active contours without edges model proposed in [Chan 2001] suffer from substantial difficulties because none of these model is convex, thus are computationally slow. Recently globally convex segmentation models based on TV have been introduced, which are originally inspired from [Chan 2006]. Here, for illustration, the globally convex segmentation model discussed by Goldstein et al. in [Goldstein 2010] is considered (see the reference for details of the model and convergence analysis). The globally convex segmentation model in [Goldstein 2010] is based on following convex minimization:

x * := arg min x∈C TV ψ (x) + λ h T x (2.46)
where

C = {t : 0 ≤ t ≤ 1}, x is level set function, h = (c 1 1-y) 2 -(c 2 1-y) 2
, y is the image to be segmented, c 1 , c 2 ∈ R represent the mean intensity inside and outside the segmented regions: Θ in , Θ out , respectively. Here, TV ψ is a weighted TV-norm, defined as:

TV ψ (x) = i ψ(i) (Dx) i 2 ,
where i indicates the location of pixels, ψ is edge indicator function defined in [Bresson 2007]. Once the optimization problem (2.46) is solved, the segmented region is found by thresholding the level set function, x, to get the region Θ in = {i : x i > α}, for some α ∈ (0, 1).

The iterative scheme for the globally convex segmentation approach in [Goldstein 2010] is depicted in GCS. The optimization problem (2.46) is an instance
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GCS:

Globally Convex Segmentation Method [Goldstein 2010]

Initialize: c 1 = 0, c 2 = 0, k ← 0 while x (k+1) -x (k) 2 ≥ ε do Define h (k) = (c (k) 1 1 -y) 2 -(c (k) 2 1 -y) 2 Solve x (k) = arg min 0≤x≤1 TV ψ (x) + λ (h (k) ) T x Set Θ (k) in = {i : x i > α}, Θ (k) out = {i : x i ≤ α} Update c (k+1) 1 = i∈Θ in y i , c (k+1) 2 = i∈Θout y i k ← k + 1 return {Θ in , Θ out }
of the general problem (2.1); it is constrained, convex and nonsmooth. With the variable splitting: v = Dx, the augmented Lagrangian of the problem is written as:

L ρ (x, v, u) = i ψ(i) v i 2 + γ 2 (Dx -v + u) i 2 2 + ι C (x) + λ h T x (2.47)
The authors in [Goldstein 2010] use Split Bregman method (a variant of ADMM) to find the saddle point of the augmented Lagrangian (2.47), where they choose a few iterations of Gauss-Seidel method for an approximate x-update, and 2D soft-thresholding formula for v-update, before updating the regions, (Θ

(k) in , Θ (k) 
out ). We find the saddle point of the augmented Lagrangian (2.47) by a few iterations of ALBHO for which the two inputs expressions are:

F(x) = n i=1 v * i (x) 2 + γ 2 (ϑ -v * (x)) i 2 2 + λ h T x, ∇ F(x) = γD T (ϑ -v * (x)),
where

v * i (x) = ϑ i 2 - ψ(i) γ + ϑ i ϑ i 2
, and ϑ = Dx + u.

Performance Comparison of Proximal Newton-type Method vs. ADMM vs. ALBHO

Recently proposed proximal Newton-type methods are becoming popular candidates for solving the instances of problem (2.1). Here, the performance of the proximal Newtontype method minConf_QNST proposed in [START_REF] Schmidt | [END_REF]] is compared against the variants of ADMM and the ALBHO on image restoration problems similar to the Problem 1. The two image restoration problems are:

x * := arg min

x∈R n 1 2 y -Hx 2 W + λ x 1 (2.48)
and

x * := arg min

x∈R n 1 2 y -Hx 2 W + λ TV(x) (2.49)
respectively, with similar notations as in problem (2.30). In order to make the problems simple, we do not impose the positivity constraint. The variants of ADMM, the ALBHO, and minConf_QNST are presented in what follows.
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ADMM-2x

For the variants of ADMM, the variable splittings: ξ = y -Hx and z = x for problem (2.48), and ξ = y -Hx and v = Dx for problem (2.49), are introduced, respectively. The resulting augmented Lagrangians are:

L ρ,γ (x, ξ, z, u 1 , u 2 ) = 1 2 ξ 2 W + ρ 2 y -Hx -ξ + u 1 2 2 + λ z 1 + γ 2 x -z + u 2 2 2
(2.50)

and

L ρ,γ (x, ξ, z, u 1 , u 2 ) = 1 2 ξ 2 W + ρ 2 y -Hx -ξ + u 1 2 2 + i λ v i 2 + γ 2 (Dx -v + u 2 ) i 2 2 
(2.51)

The ADMM iterations needed for finding the saddle point of the above augmented Lagrangian are depicted in ADMM-2x-A and ADMM-2x-B, respectively. The closed-form solutions for ξ-, x-, z-updates in ADMM-2x-A are given by:

ξ = (ρI + W ) -1 ρ (y -Hx + u 1 ) (2.52) x = ρH T H + γI -1 ρH T (y -ξ + u 1 ) + γ(z -u 2 )
(2.53)

z i = sign(ϑ i ) ϑ i - λ γ + , where ϑ = x + u 2 .
(2.54)

and the closed-form solutions for ξ-, x-, v-updates in ADMM-2x-B are given by:

ξ = (ρI + W ) -1 ρ (y -Hx + u 1 ) (2.55) x = ρH T H + γD T D -1 ρH T (y -ξ + u 1 ) + γD T (v -u 2 ) (2.56) v i = ϑ i 2 - λ γ + ϑ i ϑ i 2
, where ϑ = Dx + u 2 .

(2.57)

ALBHO

For ALBHO, the variable splitting, z = x, for problem (2.48), and v = Dx for the problem (2.49), are introduced, respectively. The resulting augmented Lagrangians are:

L ρ,γ (x, z, u) = 1 2 y -Hx 2 W + λ z 1 + γ 2 x -z + u 2 2 (2.58) and L ρ,γ (x, v, u) = 1 2 y -Hx 2 W + i λ v i 2 + γ 2 (Dx -v + u) i 2 2 
(2.59) ALBHO finds the saddle points of the above augmented Lagrangian (without imposing the bound constraint) given the two input expressions:

F(x) = 1 2 y -Hx 2 W + λ z * (x) 1 + γ 2 ϑ -z * (x) 2 2 , ∇ F(x) = H T W (Hx -y) + γ(ϑ -z * (x)), where z * i (x) = sign(ϑ i ){|ϑ i | - λ γ
} + , and ϑ = x + u.
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ADMM-2x-A: ADMM with two variable splittings

Choose

ξ (0) ∈ R n , z (0) ∈ R n , u (0) 1 ∈ R n , u (0) 2 ∈ R n , ρ > 0, γ > 0; Set k ← 0; while not converged do x (k+1) = arg min x ρ 2 y -Hx -ξ (k) + u (k) 1 2 2 + γ 2 x -z (k) + u (k) 2 2 2 ξ (k+1) = arg min ξ 1 2 ξ 2 W + ρ 2 y -Hx (k+1) -ξ + u (k) 1 2 2 z (k+1) = arg min z λ z 1 + γ 2 x (k+1) -z + u (k) 2 2 2 u (k+1) 1 = u (k) 1 + y -Hx (k+1) -ξ (k+1) u (k+1) 2 = u (k) 2 + x (k+1) -z (k+1) if max x (k+1) -x (k) 2 / x (k) 2 , z (k+1) -z (k) 2 / z (k) 2 < ε then converged k ← k + 1 return x ADMM-2x-B: ADMM with two variable splittings Choose ξ (0) ∈ R n , v (0) ∈ R n×2 , u (0) 1 ∈ R n , u (0) 2 ∈ R n×2 , ρ > 0, γ > 0; Set k ← 0; while not converged do x (k+1) = arg min x ρ 2 y -Hx -ξ (k) + u (k) 1 2 2 γ 2 Dx -v (k) + u (k) 3 2 2 ξ (k+1) = arg min ξ 1 2 ξ 2 W + ρ 2 y -Hx (k+1) -ξ + u (k) 1 2 2 v (k+1) = arg min v n i=1 λ v i 2 + γ 2 (Dx (k+1) -v + u (k) 2 ) i 2 2 u (k+1) 1 = u (k) 1 + y -Hx (k+1) -ξ (k+1) u (k+1) 2 = u (k) 3 + Dx (k+1) -v (k+1) if x (k+1) -x (k) 2 / x (k) 2 < ε then converged k ← k + 1 return x and F(x) = 1 2 y -Hx 2 W + λ i v * i (x) 2 + γ 2 (ϑ -v * (x)) i 2 2 , ∇F(x) = H T W (Hx -y) + γ D T (ϑ -v * (x)), where v * i (x) = ϑ i 2 - λ γ + ϑ i ϑ i 2
, and ϑ = (Dx + u)
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for the problem (2.48) and (2.49), respectively.

minConf_QNST

The algorithm minConf_QNST is suitable for solving the optimization problem (2.1) for which the proximal mapping of the nonsmooth part can be evaluated efficiently (preferably in closed-form). The input needed by algorithm minConf_QNST" for solving the nonsmooth convex problems are: the objective function cost, the gradient of the smooth part, and the proximal mapping of the nonsmooth part, at a given point x, given by the respective expressions:

F(x) = 1 2 y -Hx 2 W + λ x 1 , ∇F(x) = H T W (Hx -y), prox g,λ (x) = sign(x) {|x| -λ} +
for the problem (2.48), and

F(x) = 1 2 y -Hx 2 W + λ i (Dx) i 2 , ∇ F(x) = H T W (Hx -y), prox g,λ (x) = Chambolle's Projection(x)
for the problem (2.49). Though the closed-form solution for the proximal mapping for TV(x) does not exist, but a few iterations of the Chambolle's projection [Chambolle 2004], are enough to get a sufficiently accurate solution. If the internal dual variables in Chambolle's method are initialized from the previously obtained values (see [START_REF] Figueiredo | [END_REF]] for a detailed discussion), then we observed in our experiments that 5 iterations of Chambolle's projection are sufficient for the convergence of minConf_QNST, and it converges to the same solution as the other algorithms, after a sufficient number of iterations.

Computational Cost of the Algorithms

In all the image restoration algorithms presented so far, the matrix-vector products, Hx and H T y, can be computed efficiently with O(n log n) cost using Fast Fourier Transforms (FFT) without explicitly building the matrices, H and H T , since they are block-circulant matrices with circulant blocks, which are diagonalizable by Fourier Transform. Similarly, the matrix inversions in (2.33), (2.43), (2.53) and (2.56) involving H T H and D T D can be computed with O(n log n) cost in Fourier domain. The first-order difference operator, D, and its transpose, D T , can be applied to a vector in O(n) cost. The other remaining operations have O(n) cost. Thus, the cost of the ADMM-3x and the ADMM-4x is of order O(6n log n + K 1 n) per iteration. The cost of the ADMM-1x and our ALBHO per iteration on average is O(mnN ) plus the cost of evaluating f , and ∇f during line-search procedure, which is O(4n log n + K 2 n). For significantly large n ≥ 512 2 , the computational cost of the variants of ADMM and the ALBHO is dominated by the computation of FFTs.

For the image segmentation problem presented in Section 2.4.3, the cost of ALBHO and the algorithm by the authors in [Goldstein 2010] are of order O(n) per iteration.

As pointed out in Section 2.2, the algorithm minconf_QNST is costlier than limitedmemory quasi-Newton methods (e.g., VMLM-B). The additional cost involved per iteration in minconf_QNST is the call to SPG algorithm [Birgin 2000], which has the cost O(mnc) assuming that the proximal mapping of g takes O(n), where c represents the average number of internal iterations of SPG.
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Numerical Experiments and Results

Here, I report the experimental results on the problems we saw in previous sections. All the variants of ADMM are implemented using MATLAB script, and the ALBHO are implemented by combination of MATLAB script and C programs. The line-search and descent direction estimation blocks in BLMVM is implemented in C with MATLAB MEX interface, whereas the evaluations of the objective function value, its gradient and projected gradient are implemented using MATLAB script. For Problem 3, the implementation of GCS proposed in [Goldstein 2010] is openly available at one of the authors personal website, and it is completely written in C program with a MATLAB MEX interface for inputs and outputs. My implementation for the GCS uses combination of MATLAB Script and C programs where the optimization problem (2.46) is solved by the ALBHO.

Experimental Setup

For the Problem 1 (image deblurring with TV and positivity constraint), a portion of Lena image of size 512 × 512 pixels, shown in Fig. 2.7a is considered, and the pixel values are rescaled in the range [0, 1]. This original undistorted image will be referred to by the name true image. The blurred image is obtained by taking only the central valid region of convolution of the true image with a bivariate Gaussian blur kernel (FWHM = 4 × 4 pixels in two directions, and size 31 × 31 pixels). Gaussian noise (standard deviation σ = 0.01) is added to the blurred image (of size 481 × 481 pixels) to obtain the blurry and noisy image that will be referred to by the name observed image. This observed image is zero-padded at its boundary to bring it back to its original size (512 × 512) pixels as shown in Fig. For Problem 3 (globally convex segmentation), the Brain image (size 315 × 315 pixels), shown in Fig. 2.11a is considered, its gray levels are rescaled in the range [1,256]. For the performance comparison of Proximal Newton-type method considered in Section 2.4.4, an image (size 255 × 255 pixels) containing several single pixel spikes on a dark background, shown in Fig. 2.14, is considered for the problem (2.48), and a portion of Lena Image (size 255×255), shown in Fig. 2.14 is considered for the problem (2.49). The pixel values of these images are in the range [0, 1], and the blurred images are obtained by using a Gaussian blur kernel (FWHM = 4 × 4 pixels and size 15 × 15 pixels) and taking only the central valid convolution region. The final observed images are obtained by corrupting them with Gaussian noise (σ = 0.001) and zero-padding them at boundary to get back the original size.

To apply the image restoration algorithms on these observed images, we need to select appropriate values of the regularization parameters λ so as to get possibly the best estimation according to some quality criteria. The value of λ is directly related to the strength of the noise in the observed image. Also, it is worth to point out that the value of λ affects the convergence speed of the iterative optimization methods: the larger the value of λ, the faster the convergence of the algorithms while smaller values of λ can result in slower convergence. Thus, keeping this in mind, we select in our experiments the noise level in the observed image at an intermediate level. In the experiments, the values of λ are selected by a few trials to attain the highest value of improved signal-to-noise Ratio (ISNR = 58 Chapter 2. A Nonsmooth Optimization Strategy for Inverse Problems in Imaging 10 log 10 ( yx 2 2 / xx 2 2 ), where x and x represent the true image and estimated image, respectively). Also, it is very important that iterative algorithms reach the solution for a low computational budget. Ideally, for any positive value of the penalty parameters, the ADMM should converge under the assumptions stated previously, but as pointed out earlier, the convergence speed of the ADMM is very much dependent on penalty parameters. Thus, to reach a certain optimality level within a given computational budget, one must strive to find optimal values of the penalty parameters. In experiments, several short trials (fixed number of iterations of ADMM) are done with different values of the penalty parameters, and the set of possibly optimal values of the penalty parameters are found making the variants of ADMM to attain certain optimality level within a given computational budget. One could use Nelder-Mead Simplex method to find the best set of parameters for a given number of iterations of ADMM. In contrast to the ADMMs, ALBHO reaches the same optimality level for a consistent value 1 for the penalty parameters, in all the problems considered so far.

Performance Comparison of the Algorithms

The theoretical rate of convergence of an iterative optimization algorithms, gives a fair idea about the performance of the algorithm, but in practice the algorithms with lower computational cost per iteration are the most preferable ones. Thus, the performances of the optimization algorithms are compared on the base of their total computational costs, rather than on the number of iterations used to reach a certain optimality level. Comparison based on time consumed by each algorithm on a certain machine can be a fair way, provided that each algorithm is implemented in a same environment using the same numerical libraries. Since in this work, MATLAB scripts are used for the variants of ADMM, and a mixture of MATLAB script and C program is used for ALBHO, the elapsed time is not a fair way to compare performances of the algorithms. As discussed in Section 2.4.5, the computational costs of the ADMMs and ALBHO, for the image restoration problems considered here, are highly dominated by the computation of the FFTs for a sufficiently large n > 512 2 , thus, the number of FFTs consumed by each algorithm to reach a certain optimality level are chosen as the performance measure of the algorithms.

For Problem 3 (globally convex segmentation), the performance of the Bresson et al. method and ALBHO is compared on the base of elapsed time, since both have the same computational cost per iteration, and have roughly a similar implementation environments (Bresson et al's method is fully implemented in C program with MATLAB interface, and the computationally expensive part of ALBHO is also implemented in C, for this particular problem).

For comparison of minConf_QNST with other algorithms on image restoration problems, the elapsed time for each algorithm is considered, since minConf_QNST and the ALBHO have a roughly similar implementation environment (the LBFGS part in both methods is implemented in a C program, and the most expensive part, the evaluation of objective function value and its gradient, is implemented in a MATLAB script).

In order to compare the convergence speed of the different algorithms on the problems presented in Section 2.4, I use two different optimality measures: the objective function value of original problem and the relative solution error ( xx * 2 / x * 2 ), where x is the solution reached by the algorithms using a given computational budget (number of FFTs evaluations or time consumed). The image x * is the optimal solution reached using a very large computational budget (each algorithm reaches to the same solution after convergence). In order to see the dependence of convergence speed of the different algorithms on the augmented penalty parameters, several trials of all the algorithms with different values of the penalty parameters around the heuristically so-found optimal values have been conducted. For ADMM with the multiple penalty parameters, a penalty parameter is changed one at a time, keeping the other parameters constant at already sofound optimal values. The graphs in Fig. 2.5, Fig. 2.6 and Fig. 2.11d show the objective cost and/or the relative solution error reached by each of the algorithms after a certain computational budget (1500 FFTs for image restoration problem, and 3 seconds for image segmentation problem). The plots in Fig. 2.8 and Fig. 2.10 compare the convergence speed of the different algorithms with so-found optimal values of the penalty parameters against the number of FFTs and time in seconds.

Analysis of Results

The plots in Fig. 2.5 and Fig. 2.6 clearly show that the optimality level reached by the variants of ADMM within a fixed computational budget is highly dependent on the penalty parameters. It is obvious from these plots that different penalty parameters have different sensitivities, and thus, having a same value for all the penalty parameters may result into a possible fast convergence speed. This could be due to the fact that each variable in AD-MMs can have a different scale. Moreover, the range of values of the penalty parameters for which ADMMs have satisfactory convergence speed is dependent on the scale of observed image, for example, for Problem 1 (image deblurring with TV and positivity), the values of the penalty parameters around 10 -2 results in satisfactory convergence speed, whereas for Problem 2 (Poissonian image deblurring with TV and positivity), the values of the penalty parameters around 10 -5 give a satisfactory convergence. Similarly, the plots in Fig. 2.11d also show that convergence speed of Bresson et al. method (a variant of ADMM) is very sensitive to a variation in the penalty parameter. On the contrary, ALBHO does not require multiple variable splittings to achieve the same fast convergence speed, and it reaches the same optimality level within the same computational budget for any value of the penalty parameter in a large range; in fact ALBHO have satisfactory convergence speed for a consistent value 1 for all the different problems considered here so far. However, it is worth to note that both the ADMM and ALBHO (or any other algorithms based on augmented Lagrangian) become unstable or diverging or begins to oscillate for the penalty parameters below certain values (the lower values of the penalty parameters for which the algorithms in the experiments become unstable are indicated on the respective plots).

The plots in Fig. 2.8 and Fig. 2.10 compare the convergence of the variants of ADMM and ALBHO with a heuristically so-found set of optimal penalty parameters on Problem 1 (image deblurring with TV and positivity constraint) and Problem 2 (Poissonian image deblurring with TV and positivity constraint), respectively. The plots show the convergence against both the number of FFTs and the time in second consumed, which shows a good correspondence between the number of FFTs and the time elapsed before attaining a certain optimality, thus justifying experimentally that it is fair to consider the number of FFTs consumed for performance comparison of the algorithms.

The plots in Fig. 2.13 and Fig. 2.15 compare the convergence of the minConf_QNST against a variant of ADMM and ALBHO on image restoration problems; it is obvious that the minConf_QNST is slower and more computationally expensive per iteration than the two other algorithms. The figure shows the contour plot of the objective function and the iterations of the two algorithms with a different penalty parameter, ρ. On the left is the plot of ALBHO, and on the right is ADMM. For small values of the penalty parameter, e.g., ρ = 0.1, both the algorithms do not make any progress toward the minimum (get stuck), but for any other larger value, ALBHO always reaches the minimum, whereas ADMM converges only for very particular values. Oscillating/Unstable region 10 -8 10 -6 10 -4 10 -2 10 0 10 2 10 4 -5.17 -5.17 -5.17 -5.17 -5.17 -5.17 -5.17 -5.17 -5.17 -5.17 -5.17
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Numerical Experiments and
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Objective cost ADMM-4x-A ADMM-4x-B ADMM-1x ALBHO 0 2 4 6 8 10 12 14 -5.17 -5.17 -5.17 -5.17

Time in Sec

Objective cost (a) 0 500 1,000 1,500 2,000 2,500 -5.17 -5.17 -5.17 -5.17 -5.17

•10 8 number of FFTs Objective cost ADMM-4x-A ADMM-4x-B ADMM-1x ALBHO 0 500 1,000 1,500 2,0 -5.17 -5.17 -5.17 -5.17 -5.17 

Conclusions

• Large-scale constrained convex nonsmooth optimization problems arise in many applications in signal/image processing, computer vision, and machine learning.

• Proximal forward-backward iterative methods are state-of-the-art methods for solving these types of optimization problem.

• In the last two decades, ADMM, which also belongs to proximal forward-backward iterative method, has evolved as a prominent optimization strategy for large-scale convex optimization problem.

• Variants of ADMM have been shown to be faster than all other algorithms in proximal forward-backward iterative schemes provided that it introduces enough variable splittings such that each subproblem has a closedform solution,

each augmented penalty parameter associated with augmented term is tuned optimally.

• Optimal tuning of augmented penalty parameters is still an open challenge.

• The convergence speed of ADMM is highly dependent on the values of the augmented penalty parameters.

• In this thesis, I proposed an optimization algorithm named ALBHO for large-scale nonsmooth constrained convex optimization problems, which is as fast as the fastest variant of ADMM.

• ALBHO avoids multiple variable splittings, and it is almost parameter tuning free (its convergence speed is almost insensitive to the augmented penalty parameter).

• ALBHO uses a limited-memory quasi-Newton method with bound constraint, thus, it directly handles the bound constraints without any extra effort (variable splitting) unlike the ADMM.

• I illustrated the applicability and performance of ALBHO on different inverse problems in imaging and computer vision, which proves that ALBHO is a viable alternative method for optimization problems in signal/image processing, computer vision and machine learning.

Summary

This chapter is entirely devoted to numerical optimization techniques suitable for image restoration problem. It discusses different existing optimization approaches for constrained nonsmooth optimization problems, and then proposes a new class of optimization algorithms based on augmented Lagrangian and hierarchical optimization strategy. The proposed algorithm is as efficient as the state-of-art algorithms with an advantage over them that it is almost parameter tuning free.

Chapter 3. Image Decomposition Approach for Image Restoration

Abstract

Signal decomposition is a very fundamental approach in many signal processing applications. The classic and still pervasive example is Fourier analysis which breaks periodical signals into sinusoidal (smooth oscillating) components. In the last two decades, image decomposition into fundamental components or more semantic components has been proven to be a very effective tool for several image processing/computer vision applications such as image restoration, image segmentation, image compression, image encryption, etc. This chapter starts with a general overview of image decomposition and its application in image processing problems, specifically in image restoration (denoising and deblurring). A major part of this chapter is dedicated to an approach toward astronomical image restoration via image decomposition and blind image deblurring. The results of the proposed blind image restoration on synthetically blurred and noisy astronomical images are promising; it suggests that such an approach can be used in real scenarios after certain modifications and improvements in its ingredients, such as the noise model, and the priors.

Introduction

A very basic approach in signal processing is to decompose an original signal into its primitive or fundamental constituents and to perform simple operations separately on each component, thereby accomplishing extremely sophisticated operations by a combination of individually simple operations. The typical assumption for such an approach in many applications is that the given signal is a linear mixture of several source signals of a more coherent origin. The classical and still pervasive example is Fourier analysis [START_REF] Fourier | Mémoire sur la propagation de la chaleur dans les corps solides[END_REF]], the theory and practice that breaks signals into sinusoidal (smooth oscillating) components, e.g., a complex sound can be decomposed into rich combinations of simple tones. The Fourier methods have been supplemented by other approaches, most notably the many methods now subsumed under the general heading of wavelets [Mallat 1993, Kahane 1995, Mallat 1999]. These alternatives hold promise for providing more useful ways of analyzing and processing signals for different applications. These decompositions have been a key to theoretical tools for the modern communications techniques e.g., understanding and advancement of error-control coding (finite field wavelet transform for design of multiresolution analysis for multilevel error-control coding) and compression for reliable communications, signal processing for removing unwanted noise and signals, and for improving the quality of signals.

Another trend is the decomposition of a given signal into more semantic components rather than into fundamental constituents using Fourier transform or simple wavelets. This decomposition is commonly referred to as source separation. A classical example is the cocktail party problem where a sound signal containing several concurrent speaker is to be separated into the sound emanating from each speaker. In image processing, a similar situation is encountered in many cases, e.g., photographs containing transparent layers due to reflection. During recent years, this decomposition trend has evolved as a viable tool in image restoration problem, e.g., decomposition of a natural image into geometrical and textural components, decomposition of an astronomical image into point-like sources (stars) and extended smooth sources (comets, galaxies). Since image restoration problems are often ill-posed, they need appropriate regularizations, from a Bayesian point-of-view, the image decomposition into more appropriate and adapted domains can be seen as providing more informative prior to them.

Both signal decomposition trends, the decomposition into fundamental constituents and the decomposition into more semantic components have been shown to be very useful in image restoration applications. However, image restorations using the first decomposition trend have been mostly used for problems like signal denoising, where the effort is on discrimination of the random noise from the meaningful signal, whereas the second decomposition trend is used in applications where the extraction of different semantic components is beneficial, e.g., restoring only cartoon and textural parts precisely while mitigating the noise in image deblurring problems. Similarly, extracting precisely the contours/edges in a degraded image improves the accuracy of PSF estimation in blind image deblurring process. In the coming sections, we will see some applications of the second trend of image decomposition relevant to image restoration problems.

Signal Decomposition Approaches

The existing signal decomposition approaches in the literature can be coarsely categorized into two groups: synthesis-based approach, and analysis-based approach (the authors in [Elad 2007] present a detailed comparison between these two approaches and also show under what conditions these two approaches are similar or differ from each other). The synthesis-based approach uses a sparse representation of a signal into sets of atoms, commonly referred to as dictionaries of functions, and matching pursuit schemes (e.g. stagewise orthogonal matching pursuit and morphological component analysis) to achieve the decomposition [Zibulevsky 2001, Starck 2005a[START_REF] Fadili | Image Decomposition and Separation Using Sparse Representations: An Overview[END_REF]]. The analysisbased approach uses different functional space norms and partial differential equations methods to achieve the decomposition, commonly referred to as variational formulation [Vese 2003, Osher 2003, Aujol 2005a, Aujol 2006]. There also exist some image decomposition techniques, e.g. [Starck 2005b, Aujol 2005b], which merge these approaches to take advantages of both and obtain better results. Synthesis Based Approach: Zibulevsky's seminal work [Zibulevsky 2001] initiated the sparsity based approaches for source separation. The success of such an approach is based on two principles: sparsity and morphological diversity, i.e. each semantic component is sparsely representable in a specific dictionary (transformed domain), and this dictionary is highly non-sparse in representing the other components of the mixture. A dictionary is consist of atoms, which are elementary signals representing templates, e.g., sinusoids, monomials, wavelets, Gaussians, etc. A dictionary Φ = [ϕ 1 , • • • , ϕ m ] defines a n × m matrix whose columns are unit l 2 -norm atoms ϕ k . A dictionary is called overcomplete or redundant when m > n = rank(Φ). A common assumption is that a signal or an image x ∈ R n is the linear superposition of K components, possibly contaminated with noise:

x = K k=1 x k + ε, σ 2 ε = Var[ε] < +∞ (3.1)
A popular source separation approach based on sparsity and morphological diversity is presented in [Starck 2005a]. It assumes that each component x k is sparsely representable in an associated basis Φ k :

x k = Φ k α k , k = 1, • • • , K, (3.2)
where α k is a sparse coefficient vector. Thus, a dictionary can be built by assembling several transforms (Φ 1 , • • • , Φ K ) such that, for each k, the representation of x k in Φ k is sparse and non-sparse in other Φ l , l = k, then the source separation is done by solving the following underdetermined system of equations:

{α 1 , • • • , α K } := arg min α1,••• ,α K K k=1 α k p p such that y - K k=1 Φ k α k 2 ≤ τ (3.3)
where the most interesting regime is 0 ≤ p ≤ 1 for sparsity, and τ is typically chosen as a constant times √ nσ ε . The problem (3.3) is a hard problem, especially when p < 1 (for p = 0 it is even NP-hard). Nevertheless, if all the components x l = Φ l α l but the k-th are fixed, then it is shown in [Starck 2005a] that solution α k is given by hard-thresholding (for p = 0) or soft-thresholding (for p = 1) the marginal residual r k = yl =k Φ l α l in the transformed domain. The algorithm presented in [Starck 2005a] is basically a blockcoordinate relaxation algorithm (or alternating minimization method) that cycles through the components at each iteration and applies a thresholding to the marginal residuals in the transformed domain.

The success of such an approach is very much dependent on the choice of the dictionaries for the components to be separated. Of course there are no perfect dictionaries allowing a sparse representation of all the features/structures in an image, however it has been observed that most of the isotropic structures can be coded efficiently by wavelets presented in [Mallat 1999]. The curvelet system [Candès 2006] is a good candidate for representing piecewise smooth features in images. Similarly, the ridgelet transform [START_REF] Candes | [END_REF]] has been shown to be effective for representing global lines in an image. For locally oscillating textures, local DCTs (discrete cosine transform) [Mallat 1993], Waveatoms [Demanet 2007], Brushlets [Meyer 1997] are proven to be effective. These transforms are computationally tractable for large-scale problems, and they do not require to be built explicitly. The associated implicit fast analysis and synthesis operators have typical complexities of order O(n) (e.g., orthogonal or bi-orthogonal wavelets transforms) or O(n log n) (e.g., ridgelets, curvelets, local DCTs, and Waveatoms). When no fixed a priori dictionary is able to represent faithfully and sparsely a certain components (e.g. a complex natural texture), the authors in [Peyre 2007] have shown that a more effective and adaptive dictionary can be learned from a set of exemplars.

Analysis Based Approach:

The approach is based on the assumption that a certain component of a signal is well captured in a certain functional space, i.e., a semantic component of a signal has a smaller norm in a certain functional space than in any other functional space. This assumption makes it possible to do signal decomposition by energy minimization techniques. The seminal paper of Rudin-Osher-Fatemi (ROF) [Rudin 1992] introduced nonlinear partial differential equation methods in image processing problems. The ROF model is based on the assumption that discontinuities along curves in images, commonly called geometrical or cartoon parts, belong to Bounded-Variation Banach space BV(Ω), which is the subspace of functions x ∈ L1 (Ω) such that their total variation, TV(x) is finite. The total variation of x is defined as: TV(x) = |Dx|(Ω), which is a distributional derivative on the domain of image, Ω, an open connected set of R 2 with Lipschitz boundary

1 . If x has gradient ∇x ∈ L 1 (Ω), then TV(x) = Ω |∇x(u)| du, where |t| = t 2 1 + t 2 2
for all t ∈ R 2 . The ROF model has been shown very effective for the preservation of the sharp features (edges) in images while suppressing the fine textural details. The image decomposition into a component x belonging to BV and a component z in L 2 based on T V -L 2 model is achieved by the following energy minimization:

arg min x∈BV TV(x) + 1 2λ y -x 2 2 (3.4)
where y ∈ X is the image to be decomposed, and the latter component is given by z = yx. This model performs well for denoising images while preserving the edges, however, fine details, such as textures, are suppressed. Meyer introduced a space G in [Meyer 2001] for oscillating patterns, e.g., textures. G is the Banach space composed of the distributions

z = ∂ 1 g 1 + ∂ 2 g 2 = div(g), with g 1 and g 2 in L ∞ (Ω).
The space G is endowed with the following norm:

z G = inf g L ∞ (Ω;R 2 ) : z = div(g) with g L ∞ (Ω,R 2 ) = sup u∈Ω g 1 2 + g 2 2 (u).
This space happens to be very close to the dual space 2 of BV. In this space the oscillating patterns have a small norm, thus the norm on G is well-adapted to capture the oscillations of a function in an energy minimization method. The image decomposition into components x belonging to BV and z belonging to G, proposed by Meyer in [Meyer 2001], also referred as T V -G model, is achieved by the following energy minimization:

arg min x∈BV TV(x) + 1 2λ y -x G (3.5)
where the latter component is given by z = yx. Meyer also suggested another space E to capture oscillating patterns. The space E is defined as G, but now the g 1 , g 2 belongs to Besov space B ∞ -1,∞ (Ω) 3 . The image decomposition into x belonging to BV , and z belonging to E, also referred as T V -E model, is achieved by the following energy minimization:

arg min x∈BV TV(x) + 1 λ y -x E (3.6)
where the latter component is given by z = yx. Meyer did not provide any numerical scheme in [Meyer 2001] to solve the above minimization problems (3.5) and (3.6), and the solutions to these problems are quite difficult to compute due to the complexity of the G and E norms. The solutions to model (3.5) (or quite close problems) are proposed in [Vese 2003, Aujol 2003, Aujol 2005a]. In Appendix, A.2, we will see some applications (e.g., denoising, deblurring) of the above image decomposition models. In the next Section 3.3, I present an approach for astronomical image restoration via an image decomposition model and blind image deblurring. The image decomposition model used in the image restoration problem is an analysis-based approach, where the image is decomposed into two semantic maps by using sparsity inducing prior and smoothness inducing as well as an edges preserving prior. 2 A linear form on a vector space V is f :

V → R satisfying f (u + v) = f (u) + f (v), and f (cu) = cf (u), where u ∈ V, v ∈ V, c ∈ R.
The dual space V * is the collection of all linear forms. If V is finite dimensional then V * has the same dimension as V . The dual norm of f is defined as

f * = sup{|f (u)| : u ∈ V, u 2 ≤ 1}. 3 The dual space of E = B ∞ -1,∞ is B 1 1,1 . B 1 1,1
is the usual Besov space. Let ψ j,k represent the orthonormal base composed of smooth and compactly supported wavelets. B 1 1,1 is a subspace of L 2 (R 2 ), and function f belongs to B 1 1,1 if and only if: j∈Z k∈Z 2 |c j,k | < +∞, where c j,k are the wavelet coefficients of f .

An Approach Toward Astronomical Image Restoration via Image Decomposition and Blind Image Deblurring

Remark: The work presented in this section was accepted at 23rd EUSIPCO 2015, Nice, under the title "A Blind Deblurring and Image Decomposition Approach For Astronomical Image Restoration" [Mourya 2015a], and received the "Best Student Paper Award".

Introduction

Acquiring photometrically precise and high resolution images from a ground-based imaging system is highly desirable and remains a long-standing problem in astronomy. The atmospheric turbulence is the major culprit for the distortions in the acquired images. With the progress of adaptive optics (AO) systems [Davies 2012], the PSFs of ground-based telescopes have been brought closer to the diffraction limit and the resolution of the acquired images has improved drastically. However, the compensation for atmospheric turbulence is still partial [START_REF][END_REF], Rigaut 2000, Drummond 2009]. This leaves good scope for digital restoration techniques to recover fine details in the images, which are very important for the astrophysical interpretations. Considering the uncertainty in the measurement (calibration) of PSF and variability of long-exposure PSF with time, blind image deblurring (BID) has been shown [Ayers 1988, Molina 2001[START_REF] Mugnier | [END_REF]] to be a viable image restoration technique for restoring the fine details in those images. Image restoration, in general, has a long history that began in the 1950s with astronomical image restoration, however, the development of blind image deblurring can be traced back to the 1970s [Cannon 1976]; see [Molina 2001] for a survey on astronomical image restoration. Blind image deblurring has been vastly explored for restoring natural images degraded by motion blur and camera defocus, see [Almeida 2010, Levin 2011a] and the references within, but relatively few articles are available on works dedicated to astronomical image restoration; [Cannon 1976, Lane 1992[START_REF] Molina | [END_REF], Jefferies 1993, Tsumuraya 1994, Schulz 1997[START_REF] Thiébaut | [END_REF][START_REF][END_REF][START_REF] Thiébaut | Optimization issues in blind deconvolution algorithms[END_REF][START_REF] Mugnier | [END_REF], Chao 2006, Harmeling 2009] are the prominent ones to be mentioned. The blind image deblurring approaches are specific to the applications, however, most of these successful approaches are built on a Bayesian framework differing primarily by the stage at which the PSF is estimated, and what priors are included about the image and/or the PSF. According to the stage at which the PSF is estimated in these methods, they can be categorized into two groups: a priori blur identification methods, and simultaneous blur identification methods. In the first category, the PSF is identified separately from the blurred and noisy image and then it is used by a non-blind deblurring method to get the crisp image. For example, an experimental approach for astronomical images is to collect one or more point sources in the image, and then use them to obtain an estimate of the PSF. An another sophisticated approach in this category is due to [Likas 2004, Molina 2006, Levin 2011a], in which the PSF is estimated a priori by marginalizing over a high-dimensional space of image using variational Bayesian strategy. In the second category, both the unknowns (the underlying PSF and the image) are estimated simultaneously, mostly using an alternating minimization approach [Ayers 1988, Chan 2000] in which the underlying PSF and the image are estimated in alternating steps, rather than by a truly joint minimization. The majority of techniques found in the literature fall into the second category due to three main reasons: i). a priori estimated PSF may not be always very accurate for certain technical reasons, ii). marginalization involved in the approach by Levin et al. [Levin 2011a] cannot be evaluated in straightforward way considering real image prior, and thus it in-
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volves many unjustified approximations [START_REF] Wipf | [END_REF]], and iii). the alternating estimation approaches are easier to understand, implement, and are computationally less expensive compared to marginalization approach. Another advantage of alternating estimation approach is that the approximate a priori estimate of the PSF, either by experimental methods or by model fitting methods, can always serve as a good initial guess of PSF to start the alternating estimation, and with progress of the alternation one can ensure a better estimate of the underlying PSF and the image by imposing appropriate priors on both the PSF and the image.

The Objective and The Proposed Approach

Considering that the compensation of the effect of atmospheric turbulence provided by the adaptive optics system is partial, in this work I put an effort in the enhancement of the quality of the images captured under an adaptive optics system by a blind image deblurring approach. The proposed approach for astronomical image restoration is an instance of maximum-a-posteriori estimation, and the unknowns are estimated by alternating minimization. The proposed approach for blind image deblurring considers an appropriate noise model, an image prior via image decomposition, and necessary prior on the PSF. From now onward, I will refer to the proposed approach by the name "Blind Deblurring via Image Decomposition" (BDID). Here in this work, BDID is only applicable to the restoration of the narrow field-of-view images, nevertheless, it can be used for wide fieldof-view images after certain modifications (this is the subject of discussion in Chapter 4). Before we proceed toward the details of the BDID, I will recall here the image formation model and restate the blind image deblurring problem. For a narrow field of view, the PSF of an imaging system can be considered stationary, and the blurred and noisy image y formed at the focal plane of the imaging system due to the underlying sharp image x can be modeled by the discretized image formation model:

y = P(H x) + n (3.7)
where n is a vector drawn from a white Gaussian distribution, P denotes a Poisson random process, H is the discrete convolution matrix corresponding to the PSF h. The image formation model (3.7) is valid once the scale of image values is expressed in photons, and the background and the flat field corrections have been done on the raw blurry and noisy image. Blind image deconvolution is stated as the estimation of both the underlying PSF, h, and the crisp image, x, given only the observed blurred and noisy image y.

As discussed in Chapter 1, blind image deblurring is an ill-posed inverse problem, thus, appropriate priors on both the unknowns, x and h are necessary to regularize (restrict) the solution to be meaningful. The maximum-a-posteriori (MAP) estimation:

{x * , h * } MAP = arg max x,h {p(y|x, h)p(x)p(h)} (3.8)
is one of the well known approaches for blind image deblurring, which considers estimating the unknown quantities jointly. The first term, p(y|x, h), in above formulation (3.8), commonly referred to as likelihood, is dependent on the noise statistics and image formation model, and the remaining two terms, p(x) and p(h), are prior on the image and the PSF, respectively, that impose any prior knowledge on the sought quantities. The above formulation of blind image deblurring can be equivalently casted as the following minimization problem:

{x * , h * } MAP = arg min x,h {-log p(y|x, h) -log p(x) -log p(h)} (3.9)
By looking at the above formulation of blind image deconvolution, it is obvious that the two important ingredients of blind image deblurring are: i). the problem specific noise model and the priors on the PSF and the image, and ii). the optimization algorithm, which must be efficient enough to reach the solution within a reasonable computational budget. Contribution: As discussed in previous sections, certain dictionaries in the synthesisbased approach or certain functional spaces in analysis-based approach, are able to well represent or capture the semantic components in images, thus image decomposition models have been shown to be effective for image restoration in several works [Osher 2003, Giovannelli 2005, Daubechies 2005, Starck 2005b[START_REF] Wang | [END_REF]]. From a Bayesian point of view, this can be seen as providing better priors for each semantic component in the image that we want to restore. Many astronomical images can be described as a superimposition of two types of components: point-like sources (PS) and extended smooth sources (ES), on a dark background. Recovering precisely the position and intensity of PS embedded in ES is of great interest for astronomers, and PS are very effective features in the astronomical images for precisely estimating the unknown PSF. In this work, the image decomposition approach of [Giovannelli 2005] is adopted and extended to a blind image deblurring setting. Since the two components are very different from each other, obviously two different priors are suitable for each of them. PS are sparse in the spatial domain, thus a spatial sparsity promoting prior is imposed on the unknown image for extracting the PS map. ES are often piecewise smoothness, thus a smoothness inducing edge preserving prior is imposed on the unknown image for the extraction of the ES map. An appropriate prior on the PSF is imposed as well relevant to adaptive optics system. A noise model, which is simple yet very efficient to represent a mixture of white Gaussian and Poisson noise, is considered. The resulting optimization problem is solved by alternating minimization, in which each subproblem is solved efficiently by BLMVM proposed in Chapter 2. The details of each ingredient of the BDID is presented in what follows.

The Likelihood and The Priors

Likelihood: The noise present in astronomical images can be fairly represented by a mixture of white Gaussian and Poisson noise, as expressed in image formation model (3.7). Thus, the non-stationary white Gaussian noise model (also referred as Weighted Least Square (WL2) ) presented in [START_REF] Mugnier | [END_REF]] is adopted in this work. This noise model is a pretty accurate approximation for a mixture of Gaussian and Poisson noise while keeping the complexity arising in the optimization problem at a moderate level. We believe that sufficiently accurate and simple noise model with strict a priori on the solution can result into better behavior of the blind image deconvolution than a more complex noise model, which can hinder in strict enforcement of the constraints. Recently, the authors in [Chouzenoux 2015] show that an exact Poisson-Gaussian likelihood for mixture of Poisson and white Gaussian noise can result into better image quality than the WL2 model on certain example images considered by them, but at the cost of increasing the complexity of the resulting optimization problem.

Dropping out the constant terms and the terms independent of x and h, the likelihood term for non-stationary white Gaussian noise can be written approximately as:

-log p(y|x, h) = i 1 2 σ 2 i (y -h * x) 2 i = 1 2 y -Hx 2 W (3.10)
where

(σ i ) 2 = (σ ph i ) 2 + (σ det i ) 2
, and (σ ph i ) 2 and (σ det i ) 2 are the photon and the detector noise variances at the ith pixel, respectively. W is a diagonal and inverse of noise covariance
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matrix, i.e., W i,j = δ i,j /σ2 i , where δ i,j represents Kronecker delta. The quantities σ ph and σ det can be estimated from the blurred and noisy image as suggested in [START_REF] Mugnier | [END_REF]], and also discussed in Chapter 1 Section 1.7. For unknown measurements, such as dead or saturated or boundary pixels, W i,i = 0, is considered, as also suggested in [START_REF] Matakos | [END_REF]] for correctly handling boundaries.

Image Priors: From a statistical point of view, the PS can be modeled as sparse uncorrelated pixels, thus, a sparsity inducing 1 -norm is imposed on the image for PS. The ES are smoothly varying correlated pixels may be with some sharp edges, thus a smoothness inducing edge-preserving prior, such as total variation, can be imposed. But, as mentioned previously, total variation preserves well only the sharp edges and suppresses the subtle details, thus, an intermediate behavior prior, such as Huber-function (a hybrid 1 / 2 -norm) on gradient image is more appropriate for the ES, since, in many cases ES is not only piecewise smooth, but may also contain some fine textures. In this way, using two priors, two separate maps: x P and x E , are estimated from the single blurry and noisy image, then combined together to get the final estimate of the underlying image. An important physical constraint, such as the positivity of these maps, is also imposed. Now, the prior on PS and ES are written as:

-log p(x P ) = λ x P 1 , x P ≥ 0 (3.11) -log p(x E ) = µ i φ δ (D i x E ), x E ≥ 0 (3.12) 
where

φ δ (t) = 1 2 t 2 2 t 2 δ δ( t 2 -δ 2 ) t 2 > δ is the Huber-function, D = [D T (1) , D T (2) 
] T represents two dimensional finite first-order difference operator, and D i x ∈ R 2 represents the gradient vector at the ith pixel of the image. {λ, µ} > 0 are tunable hyperparameters, and δ ≥ 0 is a threshold. The Huber-function on gradient image is an intermediate between total variation and squared PSF Prior: For ground-based large telescopes, there are mainly two regimes of imaging: long and short (less than ≈ 1/4 second) exposures. Short exposure images take the form of speckle patterns, consisting of multiple distorted and overlayed copies of the diffractionlimited PSF. In order to increase the signal-to-noise ratio, almost all astronomical imaging is performed with long exposures, unless conditions (such as high sky brightness in the infrared) prevent it. Because the short-exposure PSFs are highly variable, both in structure and centroid position, the summed long-exposure PSF is highly blurred compared to the diffraction-limit, even with good seeing conditions. Thanks to the real-time correction of the AO system, the long-exposure PSF is maintained closer to the diffraction-limit, but because of some remaining perturbations in the imaging system, the effective PSF still has some uncorrected parts. Several measurements of PSF done at Gemini north and Keck observatory [Drummond 2009] reveal that the uncorrected part of the PSF are approximately Lorentzian or Gaussian shape or both atop the Airy pattern. The PSF of the AO corrected imaging system is quite smooth with small aberrations, thus a smoothness inducing squared 2 -norm on gradient of the sought PSF is chosen as a prior for the PSF. The PSF of the considered imaging system is always positive and upper bounded by the peak value of the diffraction-limited PSF. Moreover, the blurring process is considered to follow energy conservation, i.e., the total intensity of the blurry image is equal to the total intensity of the underlying crisp image, thus a normalization constraint on the PSF is very necessary. With all these constraints the prior on PSF is written as:

-log p(h) = η 2 i D i h 2 2 , 0 ≤ h ≤ α, 1 T h = 1. (3.13)
where α is the peak value of the Airy pattern for a given aperture, and η > 0 is a hyperparameter.

Blind Image Deblurring as a Constrained Minimization Problem

Substituting all the analytical expressions of the terms in (3.9), blind image deblurring is expressed as a constrained optimization problem:

{x * P , x * E , h * } MAP = arg min x P ,x E ,h 1 2 y -H(x P + x E ) 2 W + λ x P 1 + µ i φ δ (D i x E ) + η 2 i D i h 2 2 such that x P ≥ 0, x E ≥ 0, 0 ≤ h ≤ α, 1 T h = 1. (3.14) 
This is a difficult large-scale nonsmooth nonconvex optimization. It still may have several local minima even though we restrict its solution space with all the possible penalties and constraints. Few authors [Lane 1992[START_REF] Thiébaut | Optimization issues in blind deconvolution algorithms[END_REF]] take a joint minimization approach (estimating simultaneously x and h) to solve the optimization problem arising in blind image deconvolution, and [START_REF] Thiébaut | Optimization issues in blind deconvolution algorithms[END_REF]] considers the several issues arising in joint minimization, but their optimization problems are comparatively simpler in the sense that the priors used are simple. In the optimization problem (3.14), it is easy to realize that the problem is convex with respect to one of the unknown variables when considering the other fixed, thus, a much simpler and widespread approach is to perform Alternating Minimization, as presented in Algorithm BDID on page 81. One can reach a good expected local minimum by Algorithm BDID, provided that one starts with a good initial guess of the PSF. Luckily, in the case of astronomical imaging, finding a good initial guess of the PSF is not always a tedious task; one could extract it from the blurry and noisy image itself by selecting a few blurry point-like sources (reference stars), otherwise one could ask for calibrated PSF from the astronomers (they always have model fitted PSF to characterize their imaging system). The calibrated PSF of an imaging system with AO is quite close to the true PSF, and can serve as a good initial guess. The optimization problems (3.15) and (3.16) in BDID are solved by the variable splitting trick, and transforming the resulting constrained optimization problem into an unconstrained problem by forming the augmented Lagrangian. The solution is then found by ALBHO proposed in Chapter 2. With the variables splittings: z P = x P and z E = ∇x E , the augmented Lagrangian of the problem (3.15) is written as:

L ρ1,ρ2 (x P , x E , z P , z E , u P , u E ) = 1 2 y -H(x P + x E ) 2 W + ι C (x P ) + λ z P 1 + ρ 1 2 x P -z P + u P 2 2 + ι C (x E ) + i µφ δ (z E ) i + ρ 2 2 (∇x E -z E + u E ) i 2 2 
(3.17)
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BDID: Blind Deblurring via Image Decomposition Data: y, W , and {λ, µ, δ, η}.

Result: {x, ĥ} Initialization: h (0) ← h 0 and k ← 1; while convergence not reached do Image Estimation:

{x (k+1) P , x (k+1) 
E } = arg min x P ,x E 1 2 y -H(x P + X E ) 2 W + λ x P 1 + µ i φ δ (D i x E ) such that x P ≥ 0, x E ≥ 0. (3.15) PSF Estimation: ĥ(k+1) = arg min h { 1 2 y -X (k+1) h 2 W + η 2 i ∇ i h 2 2 } such that 1 T h = 1, 0 ≤ h ≤ α. (3.16) k = k + 1 return: x, ĥ
where ι C is an indicator function of the set C = {x : x ≥ 0}, {u P , u E } are scaled Lagrangian multipliers, and {ρ 1 , ρ 2 } > 0 are augmented penalty parameters. The x P and x E are jointly estimated by the ALBHO for which the inputs are the objective function to be minimized and its gradient:

F x P x E = 1 2 y -H(x P + x E ) 2 W + λ z * P (x P ) 1 + ρ 1 2 x P -z * P (x P ) + u P 2 2 + µ i φ δ (z * E (x E )) i + ρ 2 2 ∇x E -z * E (x E ) + u E 2 2 
(3.18)

∇ F x P x E = H T W (H(x P + x E ) -y) + ρ 1 (x P -z * P (x P ) + u P ) H T W (H(x P + x E ) -y) + ρ 2 ∇ T (∇x E -z * E (x E ) + u E ) (3.19) 
where

z * P (x P ) = sign(x P + u P ) max{x P + u P - λ ρ 1 , 0} z * E (x E ) = ρ2 µ+ρ2 (∇x E + u E ), if ∇x E + u E 2 ≤ δ( µ+ρ2 ρ2 ) max{ ∇x E + u E 2 -δ µ ρ2 , 0} ∇x E +u E ∇x E +u E 2 , otherwise
The scaled Lagrangian multipliers u P and u E are updated at every iteration of ALBHO as follows:

u (k+1) P = u (k) P + x (k+1) P -z (k+1) P u (k+1) E = u (k) E + ∇x (k+1) E -z (k+1) E
Note: The positivity constraints in above the problem is handled within the ALBHO by the BLMVM. In a similar way, the problem (3.16) with the variable splitting, z = h, is solved via the augmented Lagrangian:

L ρ3 (h, z, u) = 1 2 y -Xh 2 W + η 2 i ∇ i h 2 2 + ι Θ (z) + ρ 3 2 h -z + u 2 2 (3.20)
where X is the discrete convolution matrix corresponding to the image x, and ι Θ (t) is an indicator function that t belongs to a probability simplex: Θ = {t : t ≥ 0, 1 T t = 1}. The ρ 3 > 0 is an augmented penalty parameter, and u is a scaled Lagrange multiplier. Once again, the problem (3.20) is solved by the ALBHO for which the inputs are the objective function and its gradient:

F(h) = 1 2 y -Xh 2 W + η 2 i ∇ i h 2 2 + ρ 3 2 h -z * (h) + u 2 2 (3.21) ∇ F(h) = X T W (Xh -y) + η∇ T ∇h + ρ 3 (h -z * (h) + u) (3.22)
where

z * (h) = Π Θ (h + u) (3.23)
The projection, Π Θ , onto the simplex of R n can be computed by the O(n log n) algorithm proposed in [START_REF] Wang | [END_REF]].

As illustrated in Chapter 2, the choices of the augmented penalty parameters are not critical, since the ALBHO is almost parameter tuning free. The iterations of the ALBHO for each subproblem in BDID can be stopped once it reaches a certain maximum number or attains a certain optimality condition as described in Chapter 2. It is not necessary to solve each of the subproblems in BDID very accurately for the BDID to reach the expected good local minimum. In fact, in experiments, I found that the BDID behaves better when the accuracy is increased gradually with every iteration of the BDID. This is due to the fact that the initial PSF is not close to the actual PSF, thus it is not necessary to estimate the image up to very high accuracy with this initial PSF, and gradually when the estimation of PSF gets better, one can progressively increase the accuracy of image estimation. In my implementation, this is achieved by progressively increasing the number of iterations taken by ALBHO at every iteration of BDID. The outer iterations in BDID are stopped once the relative change in the estimated image reaches a certain small value.

Selection of Hyperparameters

The BDID includes three tunable hyperparameters, {λ, µ, η} ≥ 0, and a tunable threshold, δ ≥ 0. The hyperparameters balance the likelihood term and the priors, and their values are related to noise variance in the blurry and noisy image. Hyperparameter λ controls the sparsity in the PS map, µ and δ control the smoothness and sharp edges in the ES map, and the η controls the smoothness of the PSF. A good balance among the hyperparameters is essential to obtain a satisfactory decomposition into PS and ES maps. However, finding optimal values for the hyperparameters is a non-trivial task, but at the same time it makes the BDID flexible. If one believes that the blurry and noisy image contains only PS, then one can mask out the ES setting µ → ∞ (and conversely λ → ∞ to suppress point sources). In the numerical experiments, the hyperparameters were chosen after a few trials to achieve the highest peak signal-to-noise ratio, PSNR= 10 log 10

(max(x ref )) 2 x ref -x 2 2
, where x and x ref are the estimated and the reference images, respectively.
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Experiments and Results

We evaluate the BDID on numerical simulations of simplified synthetic astronomical scenes, and some astronomical images obtained from space telescopes downloaded from some astronomical databases. The ground truth images in Fig. 3.1, and Fig. 3.5 consists of numerous point-like sources made of single pixels, and extended sources made of few small Lorentzian disks and large bivariate-Gaussian structures in different orientations or a spiral, all on a dark background. These images are very simple representations of real astronomical image. The ground truth images in Fig. 3.9 and Fig. 3.11 are obtained from Spitzer Heritage Archive and SIMBAD Astronomical Database, respectively. These images, captured by a space telescope, are distorted only by imperfections in the imaging system, but not by the atmospheric turbulences. These images are considered for the reason that they contains more complex structures, and are slightly realistic representations of astronomical images. Both the synthetic and the astronomical images have high dynamic ranges, and their gray levels have been linearly scaled to the range [0, 6000]. The PSF considered in the experiment is a typical example of Gemini north 8.1 m telescope, which has been generated here by the convolution between an Airy pattern of radius 1.5 pixels and a Gaussian with FWHM = 3.5 × 4 pixels [Drummond 2009]. The simulated blurred images are created by blurring the ground truth images with this PSF, and then corrupting them with a mixture of Poisson and white Gaussian noise with different variances. To apply the blind restoration method BDID on each of these simulated data, a blurry point-like looking source from the blurry and noisy image is extracted and aligned to get the initial guess of the PSF (one could take more than one point-like source, align and average them to get an initial guess of PSF). The hyperparameters are selected by a few trials so as to achieve possibly highest PSNR values for the estimated images and the estimated PSFs.

Analysis of Results

The images in Fig. 3.2 show performance comparison between nonblind and blind image deblurring. The PSNR of the restored image obtained by nonblind deblurring is 34.56 dB, whereas the PSNR of the restored image obtained by blind image deblurring is 32.52 dB. The result shows that the BDID can produce almost the same quality of images as nonblind image deblurring, given that hyperparameters are well selected, and the initial guess of the PSF is not very different from the underlying PSF. In the case of astronomical images, the good initial PSF can be obtained from the blurry and noisy image, as it is done here. Figure 3.3 compares the performance of the BDID with a blind image deblurring without decomposition into two maps (i.e., considering single prior on the image). In this case, when only Huber-function on the gradient image is considered as prior on the image, one cannot recover all the point-like sources while keeping the extended sources smooth, and if one attempts to keep the extended object smooth, then the point-like sources are also wiped out. When using only the sparsity inducing prior favoring point-like sources, then most point-like sources are well recovered but the extended objects are not smooth at all. Thus, the result clearly shows the advantages of using the proposed image decomposition approach for blind image deblurring compared to the single component model.

Detecting correctly the position and intensity of point-like sources in astronomical image is of great interest for astronomers. We can see that BDID is able to recover almost all point-like sources very accurately, provided that one selects good values for the hyperparameters. Even though, selecting a good set of the hyperparameters is non-trivial task, nevertheless BDID is flexible, in the sense that one can slightly modify the parameters, e.g., δ in oder to change the detection rate of the point-like sources, as shown in Fig. 3.4. By a slight change in the value of δ one could recover the point-like sources hidden in the extended object or one could merge them in the extended sources. If one increases the value of δ, the extended object becomes smoother and the submerged point-like sources appear further, and vice-versa.

As discussed previously, blind deconvolution is a nonconvex optimization problem, thus, the final result obtained by BDID is very dependent upon the initial PSF. The images in shown in Fig. 3.7 and 3.8 show the influence of different initial PSF on the final results. It is obvious from the results that a very peaky initial PSF with much smaller support than the reference leads to the solution (local minimum) very far from the expected solution (closer to the reference image and reference PSF) . As expected, the initial PSF closer to the reference PSF lead to the good expected solutions. However, the initial PSFs, which are more flattened than the reference PSF also lead to the good expected solutions. One can see in the evolution of PSNR of estimated image with number of iterations that the PSNR falls down during first few iterations and then quickly rises up to high value. This is due to the fact that at start the more flattened PSF over deconvolve the image better recovering only the point-like sources and degrading the structure of the smooth-extended sources. The better recovery of the point-like sources lead to better estimate of the PSF, and progressively the estimate of both the image and the PSF gets better. These results suggest that an initial PSF closer to the reference PSF or slight more flattened PSF will lead to good expected solution, given that the hyperparameters were well chosen.

The remaining images in Fig. 3.5, 3.6, and Fig. 3.9, 3.10, show more results obtained by the BDID. From the PSNR vs number of FFTS plots in these Figures, we can see that the BDID always converges to a local minimum, which is also a good minimum, given that the hyperparameters were well selected. The presence of the small disk-like sources in the images appear as outliers, since they cannot be correctly assimilated either as point-like sources or as extended sources, and due to sparsity prior favoring point-like sources, these disks tend to shrink as point-like sources, with the consequence that the peak value of restored image overshoots the peak value of the reference image. Also, some very nearby point-like sources merge into single sources, causing an overshoot of the peak value. This phenomenon is observable in all the illustrations except in the image in Fig. 3.5 where there is no such disks. 
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Conclusion and Perspective

In this chapter, I have presented an approach toward restoration of astronomical images via image decomposition and blind image deblurring techniques assuming that many astronomical scenes can be approximated by superimposition of mainly point-like sources and extended smooth sources. We can see that the restoration results on synthetic images in Fig. 3.1 and Fig. 3.5 are promising; most of the point-like sources and the small disks are well resolved without distorting the shapes and structures of the extended sources. The restoration results on astronomical images from space telescope in Fig. 3.9 and Fig. 3.11 are slightly less satisfactory; however we can see certain gains in PSNR values. The possible reasons for slightly less satisfactory results on these images could be that assumptions are not very well satisfied by these images since they contain more complex structures. Further improvements to the proposed image restoration technique can be done by considering more sophisticated image priors, especially for the complex structures in the extended sources, and by an accurate estimation of the noise variances.

Even though here in this work, I used only PSNR metric for evaluating the quality of image, but one should consider astrometry (precision of the position) and photometry (precision of the luminosity) as criteria to measure the quality of restoration. Depending on the strength of the prior term (the values of the hyperparameters), the solutions obtained from BDID are biased, thus one can improve the photometry of the estimated point-like sources by debiasing the final point-like sources map alone. Considering the detection of point-like sources, a good tradeoff between false alarm and true detection should be found by tuning the hyperparameters.

The astronomical images available at the astronomical database are not the raw images directly obtained from ground-based imaging systems. They have been subjected to sequences of several preprocessing steps. In fact, they are constructed from multiple exposures of the same field with small shifts and rotations with respect to each other, commonly referred as "dithered" images. The common practice in astronomy is to resample (using some interpolation method) and align the multiple exposures, and then superimpose/coadd them to get the final image. This introduces highly correlated (colored) noise in the final image. Instead of superimposing directly the several aligned images to obtain the final image, one could apply multiframe blind image deblurring [Schulz 1993[START_REF] Hom | [END_REF]] on those several exposures of the same field, to achieve better results, of course with higher computational budget than BDID. In the framework of the BDID, the multi-frame blind image deblurring could be stated as:

{x * P , x * E , h * 1 , • • • , h * k } = arg min x P ,x E ,h1,••• ,h k 1 2 K k=1 y k -H k (x P + x E ) 2 W k + λ x P 1 + µ i φ(∇ i x E ) + η 2 i ∇ i h k 2 2 + • • • + η 2 i ∇ i h K 2 2 such that x P ≥ 0, x E ≥ 0, 0 ≤ h k ≤ α, 1 T h k = 1, ∀k = 1, • • • , K.
where y k , h k and W k are the k-th observed image, the associated PSF and the inverse of noise covariance matrix, respectively. One could account for translations of the blurry and noisy images by shifted PSFs, and if one consider shift-variant blur operator, then one could also even account for rotation between the images. Solving this problem in the way as described in Section 3.3.4 is possible when K is not very large, otherwise one could an online-scheme similar to the one presented in [Harmeling 2009].

Introduction

In many imaging systems the degradation of the acquired image due to blur and noise is inevitable. In Chapter 1, we saw three fundamental causes of blur: i) the media between the object and image plane, ii) finite aperture of the imaging system, and iii) finite exposure time. Among these three fundamental causes, the blur due to the second cause is shiftinvariant, whereas the blur due to the remaining two causes can result in shift-variant blur. For narrow field-of-view imaging, the blur due to the first cause is almost shiftinvariant, while for wide field-of-view imaging, the blur due to it is shift-variant in many imaging situations. For examples, in case of shallow depth of focus; for low cost cameras the lens produce optical aberrations; in long distance imaging the effect of atmospheric turbulences is added; in microscopy, the shallow depth of focus and optical aberrations; all these causes contribute to shift-variant blur. In bright light situation, a small integration time is sufficient to capture a good contrast image, thus blur due to the third reason is avoidable, but, in low lighting condition, the chances of blur due to motion is high, and the resulting blur is mostly shift-variant in the field of view.

The quality/resolution of the images suffering from shift-variant blur can be improved significantly by digital image deblurring methods provided that the shift-variant PSF is known beforehand or can be estimated accurately by some mean. The quality of the restored image is dependent upon the accuracy of the given PSFs, and if one knows the PSFs at the every pixel location, one can achieve high quality image, of course, also dependent on the signal-to-noise ratio. However, in many imaging situations, the knowledge of the PSF at the every pixel location is practically impossible, except in the case where the PSF is described by a parametric model. Image blurring and deblurring are computationally intensive if one considers the PSF at the every pixel location. In many situations, the blur varies smoothly in the field of view, except in the cases of shallow depth of focus where one object is completely in focus, and surrounding objects are completely defocused (as shown in Fig. 4.1a) or the focused object in the image is moving with respect to the surroundings (as shown in Fig. 4.1b). In the latter cases, the blurred image cannot be related to a single planar crisp image, but can be considered as composed of several layers of planar crisp images with their associated alpha matte (i.e., opacity image), see [Porter 1984[START_REF] Wang | [END_REF]],
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and image deblurring of such images is very challenging task. In this thesis, I limit my study to the cases where blur is varying smoothly (as shown in Fig. 4.1c), which is already a difficult problem. With smooth variation of blur, it is sufficient to have a grid of PSFs (locations in the field of view where PSFs are sampled), depending upon how smoothly the PSFs are varying, and then the PSFs between grid points can be approximated by interpolation methods. In Chapter 1, we saw some shift-variant blurring approximations other than PSFs interpolation, however, in those models we cannot simply impose the normalization and positivity constraint. Moreover, on the low-rank approximation on PSFs modes approach cannot be used in straightforward way or can be computationally expensive if one wants to impose certain constraints on the PSFs in estimation methods, which will we discuss in upcoming sections. Thus, in my work, I consider the PSFs interpolation approximation for shift-variant blur. With this approach, the blurring operation is simplified by the following separable approximation as described in Chapter 1:

H ≈ p∈G P conv(k p ) diag(w p ) (4.1)
where G P denotes the set of all points on a given grid of PSFs, conv(k p ) denotes the discrete convolution matrix with blur kernel k p at the pth grid point, diag(w p ) is a diagonal matrix whose diagonal is given by the interpolation weight vector w p around the pth grid point, which has a limited support. The convolution can be efficiently done in Fourier domain using Fast Fourier Transform (FFT) algorithms, and thus the total computational cost of the above blurring operator depends upon the number of dimensions along which the PSFs vary, and on the interpolation order used for a given grid of PSFs. In this chapter, I demonstrate only 2D image deblurring with bilinear interpolation weights. In the next section we will see the implementation aspect of the blur operator and its complexity in detail.

Implementation and Cost Complexity Details of Shift-Variant Blur Operator

Let us consider P 2D PSFs of equal support of size, t = t x ×t y , pixels uniformly sampled on a rectangular grid within the support of a given 2D image x of size, m = m x × m y , pixels.

From an implementation point of view, the blur operator in Eq. ( 4.1) can be written:

H = R P p=1 Z p H p W p C (x) p (4.2)
where C (x) p ∈ R l×m is a cropping operator, which extracts pth 2D image patch of size l = l x × l y matching to the support of the interpolation weights matrix W p = diag(w p ) ∈ R l×l . The matrix H p = conv(k p ) ∈ R [(lx+tx-1)×(ly+ty-1)]× [lx×ly] is a discrete convolution matrix corresponding to the PSF at pth grid that can be diagonalized by Fourier transform:

H p = F -1 diag( kp ) F E (x) (4.3) where kp = F E (k) k p (4.4)
The matrices E (k) ∈ R [(lx+tx-1)×(ly+ty-1)]× [tx×ty] and E (x) ∈ R [(lx+tx-1)×(ly+ty-1)]× [lx×ly] are extension operators, which zero-pad the PSF and the image patch to the size [(l x + In the PSF estimation step in blind image deblurring solved by alternating minimization, the blurring operator formed from image is required. It can be analogously written as:

X = R P p=1 Z p X p C (k) p (4.5)
where C (k) p ∈ R [tx×ty]×[P ×(tx×ty)] extracts the pth PSF from a column vector containing all P PSFs. The matrix X p ∈ R [(lx+tx-1)×(ly+ty-1)]× [tx×ty] is the discrete convolution matrix formed from the weighted image patch x p = W p C (x) p x than can be diagonalized by Fourier transform:

X p = F -1 diag(x p ) E (k) (4.6) where xp = F E (x) x p (4.7)
The matrices E (k) and E (x) are extension operators, which zero-pad the weighted image patch x p and the PSF k p to the size [(l x + t x -1) × (l x + t x -1)]. The operators Z p and R have the same meanings as in Eq. ( 4.2).

In Bayesian inference framework, the image deblurring and the PSF estimation methods boil down to optimization problems, thus they often require to evaluate the adjoint operators H T and X T . Following the conventions used in the definition of the blur operators H and X, their adjoints are written as:

H T = P p=1 C (x) p T W p H T p Z T p R T (4.8)
and

X T = P p=1 C (k) p T X T p Z T p R T (4.9)
where

H T p = E (x) T F -1 diag( kp ) F (4.10)
and 4.11) where (•) represents the complex conjugate of the input argument. Now, given the implementational details of the blur operator Eq.( 4.2), we can express accurately its complexity. Though the blur operators are written considering only 2D images and first-order interpolation weights, here I show the complexity for a general case, where d represents the dimension along which PSFs vary and o is the order of interpolation. With a crisp image of size m pixels, P PSFs of equal supports of size t pixels on a rectangular grid, the number of pixels inside a grid cell is on average m/P . Due to the overlap of interpolation weights, each convolution in Eq. ( 4.2) is carried on (o + 1) d cells. These convolutions are computed using FFTs with an appropriate padding with t 1/d zeros along each dimension, assuming that PSFs have identical size in each dimensions. The FFTs are then computed on an area of about [(o + 1) × (m/P ) 1/d + t 1/d ] d pixels. Since the whole operator involves P such computations, the total complexity is of order 

X T = E (k) T F -1 diag(x p ) F ( 
/d + t 1/d ] d log[(o + 1) × (m/P ) 1/d + t 1/d ].
If the PSF supports are much smaller than each cell of the grid (t m/P ), the complexity is of order (o + 1) d × m log m, which corresponds to (o + 1) d full-size convolutions. For example, for the 2D images with first-order interpolation, the complexity is of order 4m log m. If the support of the PSF is very large, (t m/P ), the complexity rises to P full-size convolutions. The size of the patches which are convolved using FFTs affect the efficiency of FFTs and other operations, which is not obvious when looking at the asymptotic computational complexity. This is due to the fact that smaller patches better fit into the different levels of memory cache of processors. Thus, it may be beneficial to use a finer grid of PSFs. PSFs with larger supports involve larger border effects, and thus the computational times can increase when the grid get finer.

Shift-Variant Image Deblurring

Image deblurring is one of the steps in the blind image deblurring method solved by alternating minimization as discussed in Section 1.9 in Chapter 1. Here, for an illustration on shift-variant image deblurring, I consider the image deblurring with total variation (TV) regularization and a positivity constraint, stated as:

x * = arg min x≥0 1 2 y -H x 2 W + λ TV(x) (4.12)
where TV(x) denotes total variation on the underlying crisp image x, and y is the captured blurry and noisy image. One could also select other regularization/prior on the underlying crisp image depending on the content of the image as discussed in Chapter 1.

The minimization problem (4.12) can be solved efficiently by ALBHO proposed in Chapter 2. 4.3b is obtained by a parametric model where each PSF is a bivariate Gaussian with different FWHM in the two directions. The PSF at the optical axis (center of field of view) has smaller FWHM, and the PSFs farther from the optical axis have larger FWHM and are elongated along the radial directions. This grid of PSFs is a coarse approximation of the grid of PSFs one would obtain from a lens system with optical aberrations. The observed blurred and noisy image shown in Fig. 4.3c is obtained by applying this grid of PSFs on the crisp image shown in 4.3a with shift-variant blur operator Eq. (4.2) using bilinear interpolation weights, and then subjecting it to a mixture of Poisson and Gaussian noise with σ = 10.

In order to see the improvement brought by shift-variant deblurring, the observed blurry and noisy image in Fig. 4.3c is deblurred using three different sampling intervals of the PSFs on the grid. For the image in Fig. 4.3d, the full (9 × 9) grid of PSFs was used, whereas for the image in Fig. 4.3e and Fig. 4.3f, 5 × 5 and 3 × 3 grid of PSFs were used, respectively. It is obvious from these images that a finer grid of PSFs produces better result than a coarser grid or a single averaged PSF. A notable gain in the quality of image can be obtained with shift-variant deblurring compared to the classical shift-invariant deblurring. 

Estimation of Shift-Variant Blur

PSF estimation is one of the steps in the blind image deblurring methods solved by alternating minimization discussed in Section 1.9 in Chapter 1. PSFs estimation, shift-variant case is a more ill-posed problem than shift-invariant case, since the former involves more unknown variables than the latter while the number of observed data points remains constant. Given the coarse estimate of the underlying crisp image x from a previous iteration of alternating minimization in blind image deblurring, the estimation of a grid of PSFs in Bayesian inference framework can be stated as the following minimization:

k * = arg min k 1 2 y -X k 2 W + η Ψ prior (k) such that 1 T k p = 1, k p ≥ 0, ∀p = 1, 2, • • • , P. (4.13)
where k represents a column vector formed by concatenating all k p . To account for the variable attenuation of brightness in images, e.g., vignetting effect, one can relax the normalization constraint on the PSFs. Depending upon one's belief about the characteristic of the PSFs, one can impose a prior on each of the PSFs on the grid, e.g., smoothness inducing squared 2 -norm of the gradient of each of the PSFs, if one believes that they are locally smooth, total variation on each of the PSFs if they are supposed to have sharp discontinuities, and sparsity inducing 1 -norm on each of the PSFs if they are supposed to be sparse. A precise estimation of PSFs is largely dependent upon the presence of sharp structures in the underlying crisp image x: smooth or flat regions, commonly occurring in images, do not contribute to the estimation of PSFs. For a coarser grid of PSFs, considering the priors such as normalization, positivity and smoothness, locally on each of the PSFs makes the problem less ill-posed; however, if the grid of PSFs is refined, these priors on the local PSFs are not sufficient, since the problem gets more ill-posed. One must consider stronger prior on the PSFs to precisely estimate them, further discussed in the next section.

Characteristics of Blur due to Optical Aberrations

In the case of images which are significantly degraded by optical aberrations, the blur varies sufficiently smoothly, and moreover, it follows some strong characteristics, which can be exploited in the PSF regularization to get more accurate estimates of the PSFs. To describe these characteristics of the blur due to optical aberrations, an introduction of a few new notations is necessary. Without loss of generality, let us consider that the optical axis passes through the center of the image. Let us consider a rectangular grid on the image with a total P grid points, and let l p denote a line passing through the pth grid point and the center of the image. Let r p denote the radial distance between the pth grid point and the center of the image. The PSFs due to optical aberrations for many optical systems has the following characteristics:

1. Global rotation symmetry: two PSFs k p and k q with their centers at the pth and the qth grid points located at the same radial distances from the center, i.e., r p = r q , are related to each other by a rotation symmetry around the center: k p = R θp,q k q , where R θp,q is an interpolation operation that performs a rotation of a PSF around its center by an angle θ p,q between the lines l p and l q .

2. Radial behavior: Along any line passing through the image center, the PSFs vary smoothly, i.e., two PSFs k p and k q with their centers lying on the same line are related by: k pk q 108 Chapter 4. Restoration of Images with Shift-Variant Blur These characteristics of blur due to optical aberrations have been also exploited in [START_REF] Schuler | [END_REF]], but their implementation is quite different from what is being presented in this work. Moreover, [START_REF] Schuler | [END_REF]] also utilizes local reflection symmetry, i.e. a PSF at pth grid point has reflection symmetric with respect to the line l p . This characteristic imposes very strict constraint on the local PSF. In my work, I do not impose this constraint, since the two characteristics are already imposing strong priors on the PSFs, and it can be enough for many applications (at least in all the illustrations I have considered here, the PSFs are well constrained by only these two characteristics), otherwise one can consider the local reflection symmetry constraint to decrease the ill-posedness in the case of a very low signal-to-noise ratio in the blurred image.

If θ p be the angle between the line l p and any fixed reference axis in the image plane, and R θp represents the corresponding rotation operator, then the first two characteristics can be merged and written as: In the introduction part, I shortly mentioned the reasons for selecting PSF interpolation approximation among the other shift-variant approximations discussed in Chapter 1. The other approximations do not preserve positivity, normalization and symmetry constraints, while PSF interpolation approximation preserves them. Moreover, now we can see that if we want to impose the characteristic Eq.(4.14), i.e., to impose constraints between the local PSFs on the grid, it can be easily done in the case of PSF interpolation approximation without any further changes in the model. But, for the other approximations, such as low rank approximation on PSFs modes or the locally optimal PSFs, there is no straightforward way to impose the Eq.(4.14); otherwise one can achieve it by computationally expensive operations, e.g., applying global rotational symmetry constraint in case of low rank PSFs approximation is expensive.

R θp k p -R θq k q 2 2 ∝ |r p -r q |, ∀p = 1, 2, • • • P, and q = 1, 2, • • • , P. ( 4 

Estimation of Shift-Variant Blur due to Optical Aberrations

The relation (4.14) between two local PSFs is a strong prior on PSFs. With this strong prior and local smoothness inducing prior, the PSF estimation problem can be restated as:

k * = arg min k 1 2 y -X k 2 W + η 2 P p=1 ∇k p 2 2 + µ 2 p,q ω p,q R θp k p -R θq k q 2 2 such that 1 T k p = 1, k p ≥ 0, ∀p = 1, 2, • • • , P and q = 1, 2, • • • , P. (4.15)
The first regularization parameter η controls the smoothness of individual PSFs. The second parameter µ controls the strength of inter-PSFs smoothness regularization. The weight ω p,q is defined as: Figure 4.5: Plot of ω p,q as an example when δ L = 5 and δ H = 25.

ω i,j =      0 if |r i -r j | > δ H δ L |ri-rj | if δ L ≤ |r i -r j | ≤ δ H 1 if δ L < |r i -r j |
where the two thresholds δ L , δ H decide how strongly two local PSFs are related to each other. The PSFs closer than a minimal radial distance δ L are imposed to be very similar.

For the PSFs within radial distance δ L and δ H , their similarities decrease in inverse ratio with distance, and for the PSFs apart from each other more than radial distance δ H , they are not directly related to each other, but, are globally interlinked depending upon the value of µ. The plot in Fig. 4.5 shows the behavior of ω p,q for certain values δ L and δ H . Such a behavior is chosen because the PSFs lie on a rectangular grid, and not on a polar coordinate grid, thus the nearby grid points have slightly different radial distances but the PSFs on those grids should be highly related. To avoid the division by zero in the case where the PSFs are at exactly the same radial distance, ω = 1 is considered. The choice of the values of δ L and δ H is not very critical; in many cases one can select δ H equal to the largest diagonal distance between two grid point, and for δ L one can select 1/4th of δ H . The overall inter-PSFs smoothness is controlled by µ.

The minimization problem Eq. ( 4.15) can be solved by the ALBHO proposed in Chapter 2. To do so, variable splittings: 

h p = k p , ∀p = 1, 2
L ρ (k, h, u) = 1 2 y -X k 2 W + η 2 P p=1 ∇k p 2 2 + µ 2 p,q ω p,q R θp k p -R θq k q 2 2 + P p=1 ι C (h p ) + ρ 2 k p -h p + u p 2 2 (4.16)
where ι C is the indicator function of the simplex set C = {t : 1 T t = 1, t ≥ 0}. ALBHO finds a saddle point of the above augmented Lagrangian, which is also the solution of the problem (4.15), given the function value and its gradient:

F(k) = 1 2 y -X k 2 W + P p=1 η 2 ∇k p 2 2 + µ 2 p,q ω p,q R θp k p -R θq k q 2 2 + P p=1 ρ 2 k p -h * p + u p 2 2 
(4.17)

where

h * p = arg min hp L ρ (k, h, u) = Π C (k p + u p ). (4.18) 
The gradient of F(k) with respect to k p can be written as:

∇ kp F(k) = C (k) p T X T p Z T p R T W (RZ p X p C (k) p k p -y) + η∇ T ∇k p + µ q =p ω p,q R T θp (R θp k p -R θq k q ) + ρ (k p -h * p + u p ) (4.19)
so the gradient with respect to all PSFs k can be written as:

∇ k F (k) = X T W ( Xk -y) + η   ∇ T ∇ 0 • • • 0 ∇ T ∇ 0 0 • • • ∇ T ∇   k + µ M k + ρ (k -h * + u)
where M is a matrix of P × P blocks whose blocks are :

M p,q = -ω p,q R T θp R θq , if p = q, M p,p =   q =p ω p,q   R T θp R θp
The projection Π C (t) can be computed efficiently (in cost O(m log m)) by the algorithm proposed in [START_REF] Wang | [END_REF]]. In order to prove the validity and evaluate the performance of the proposed method for PSFs estimation in the case of an image suffering from optical aberrations, I considered a numerical experiment. A blurry image is obtained from the crisp image shown in Fig 

Shift-Variant PSFs Calibration

In the above illustrations, the grid of shift-variant PSFs is simulated using a bivariate Gaussian model. In order to get close experience of the PSFs due to optical aberrations, I did an experiment in Imaging and Optical Design laboratory under the supervision of Thierry Lépine (an assistant Professor at Institut d'Optique). The objective was to capture images in a controlled environment with a simple lens camera, calibrate the PSF of this simple camera, and compare the experimental PSFs with the PSFs simulated by Zemax optical design software1 . The experimental setup scheme is shown in Fig. 4.7. The camera selected was THE IMAGINGSOURCE DMK 41 monochrome camera with pixels size 4.65 × 4.65 µm 2 , and a matrix of 1280 × 960 pixels. This is an industrial grade camera that was selected for its low noise performance and simplicity to use with its interface to the computer. The lens was a achromatic doublet with focal length of 100 mm. This lens was suggested by Thierry Lépine after a few simulations on Zemax to see if it introduces sufficient shift-variant blur for our demonstration purpose, and it was selected to be achromatic because we did not want chromatic aberrations in the captured images. Also, to avoid any chromatic aberration, a red filter with bandpass around 600 nm was placed before the CCD sensor. The exit pupil was selected to be circular with diameter of 10 mm. This size of pupil was selected so that the diffraction limited PSF on the optical axis is not undersampled (i.e. it covers at least 2 pixels on the sensor). I selected a LCD screen to display the scenes instead of using the scenes printed on paper because the print quality was not good enough on the printer at hand. Thus, the scenes were displayed at their native resolution on a mobile phone LCD display of pixel resolution 1920 × 1080 with 445 pixels per inch (i.e. pixel size of 57.07 × 57.07 µ 2 m). The top left corner of the scene (screen) was approximately adjusted at optical axis of the whole imaging system. We can see that the pixel size of the screen is almost 10 times bigger than the pixel size of camera sensor, thus in order to have a magnification factor of almost one between the scene and the captured image, the object distance was adjusted to be 1200mm, and the image distance was 110 mm. Since the object distance was at least 10 times larger than the image distance, a single pixel in the scene (on the screen) could be considered as a point source when seen from the optical center. All the images were captured in a darkroom to avoid any stray light that could corrupt the measurements.

In the experiment for the PSF calibration, I captured different target patterns, such as point sources on dark background, and random noise pattern. However, for the reason discussed below, I finally used only the target pattern with point sources for the final calibration. The captured image shown in Fig. 4.8b shows that the imaging process was quite noisy even the gamma gain of the camera was kept at lower value. Moreover the dark background of the captured images have some nonuniform camera offset. This is due to the fact that the LCD screen are backlit. In order to do precisely the PSF calibration one should be able suppress/handle the noise and the nonuniform background offset. In the case of calibration pattern image containing point sources, this task turns out to be relatively easier because there is a large space between the point sources, and one could mask out the background leaving only the point sources by using morphological dilations.
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The background corrected captured image is shown in Fig. 4.9a. However, estimating the background offset in images, which do not have a dark background is a more difficult task. Before doing the final calibration, one has also to align the reference images with respect the captured images, since the captured images are a portion of a bigger reference images and there are always some affine transform involved between them. In this work, the alignment and transformation of the reference image was done using MATLAB "Control Point Registration" method, where one selects a few corresponding points in the two images, and then by the function "fitgeotrans" one gets the corresponding affine transform to be applied on the reference image. In the case of target pattern with random noise, it became difficult to align it even with some alignment pattern on it, and due to the affine transform (involving interpolation) the crisp random pattern became slightly blurry.

Once the background corrected captured image and the aligned reference image of the point sources was available, a 21 × 21 grid of PSFs was estimated by the PSF estimation method presented in Section 4.4.2. The grid of PSFs at the four corners of the field of view are shown in Fig. 4.9b. The regularization parameters used in the estimation are µ = 10 2 , η = 1.0, δ L = 5 and δ H = 15. Since, in this captured image, point sources are available throughout the field of view, the regularization parameters are smaller than that is being used in the illustration in Fig. 4.4.2. With this estimated (calibrated) grid of PSFs shown in Fig. 4.9b, an image shown in Fig. 4.10a was deblurred using the shift-variant image deblurring method described in Section 4.3. The regularization parameter was set to be λ = 5.0 × 10 -4

Comparing the captured image shown in the Fig. 4.9a and the estimated grid of PSFs shown in Fig. 4.9b, we can say that the calibrated grid of PSFs is in good accordance with the captured PSFs of the imaging system used in the experiment. This is also supported by the results of deblurring shown in Fig. 4.10, 4.11 and 4.12. We can see that the captured blurry and noisy images have been restored with a quite good quality. For example, in Fig. 4.10, the regions marked by the red patches 1 and 2, are well restored, however, in the region in patch 3, the blur is quite heavy compared to the signal-to-noise ratio. Also, one can notice that deblurred images contain some feeble vertical traces on the uniform regions. This is due to the fact that the protective film on the LCD screen had some fine traces on it, which became obvious after deblurring the captured image.

The simulated PSFs by Zemax have smaller support (are less spread out) than what is being captured by the camera. This could happen due to several reasons; may be the camera was not perfectly focused, and the spread in PSFs are due to some defocus; back lit LCD screen create some diffusion of light, making the point sources a little hazy; the plane of the LCD screen and the CCD sensor were not perfectly perpendicular to the optical axis. All these causes contribute to some extra blur in the captured image than the simulated PSFs.

Conclusion

In many practical imaging systems, the blur is mostly shift-variant; thus, shift-variant image deblurring is essential for those applications as it can produce better quality of images than the shift-invariant deblurring. Considering a different PSF at each pixel location is redundant and this leads to computationally expensive blurring operations. For many imaging situations, the blur varies smoothly throughout the field-of-view, thus one can significantly reduce the computation cost of shift-variant blurring by considering separable linear approximation, without loosing significantly the accuracy of the blur. In this chapter, I presented a detailed implementational view of the PSF interpolation approxima-tion for shift-variant blur operator with its computational cost. Among the other approximations of the shift-variant blur, only this operator is able preserve characteristics such as positivity, symmetry, normalization. It is also very flexible in the sense that several constraints on PSFs can be imposed easily in the PSF estimation step, without any extra computational cost, whereas for the approximation based on low rank approximation on PSFs modes, one cannot directly impose the constraints discussed in PSF estimation for blur due to optical aberrations.

In this chapter, I showed that the images suffering from optical aberrations can be corrected up to a significant level by exploiting the properties of the optical aberrations. I verified it on the simulated images, and images obtained from a calibrated camera system. In practice, the accurate measurement of the PSFs of imaging systems is often not possible, thus one has to rather rely on blind image deblurring techniques. In this chapter, I described and proposed the two essential steps of the blind image deblurring for shiftvariant blur. It remains for a future study to utilize these two steps, and combine them to get blind image deblurring. As we saw in Chapter 3 that we can restore the synthetic astronomical scenes quite satisfactorily, the next step will be to utilize the shift-variant deblurring and PSF estimation methods for astronomical images restoration. Moreover, the methods presented here can be used to restore microscopy images suffering from a shift-variant blur that varies with depth.

Summary

In this chapter, we saw a detailed overview of the shift-variant blur operators based on the PSF interpolation approximation with its implementational aspect and computational complexity. The conclusion that can be drawn is that shift-variant deblurring can produce better quality of images than the widely used classical shift-invariant deblurring, thus it can be an essential tool for many imaging applications. Also, we saw the way to estimate a shift-variant blur when the optical aberrations are the main causes of varying blur. This is verified by both the simulation results and the results from calibrated camera. The chapter ends by the hope in a near future development of shift-variant blind image deblurring using the two components described in this chapter. CHAPTER 5

Conclusions and Future Works

The future is not so far away, yet not so trivial to reach there... -Anonymous

Discussion and Conclusion

This thesis covers the subject of image deblurring. It starts with an overview of image restoration, with a special focus on shift-variant blur modeling. Image deblurring is stated as a large-scale numerical optimization problem, with non-smooth terms and/or constraints. This calls for the development of a versatile optimization algorithm. The proposed optimization algorithm, ALBHO, is of practical interest due to its fast convergence without the hassle of tuning parameters. A blind image deblurring via image decomposition, BDID, is proposed for restoration of astronomical scenes. The results obtained from BDID are convincing, and the method is close to applicability in astronomical applications. Finally, the thesis presents a detailed discussion on image deblurring and PSFs estimation in case of shift-variant blur. It clearly shows the necessity of shift-variant image deblurring for many imaging situations, and proposes an approach to estimate PSFs from images degraded by optical aberrations. The results from shift-variant PSFs estimation using a calibrated camera, and then image deblurring using the estimated PSFs are convincing. The next step will be toward shift-variant blind image deblurring. In the following, I will put discussion, limitations and conclusion for each chapter of the thesis.

• In Chapter 1, we saw a general overview of imaging systems and image formation models for both shift-invariant and shift-variant blur. The chapter explains the fundamental causes of blur and noise present in acquired images. It points out the necessities of modeling blur in many imaging systems by a shift-variant blur model, and then it describes several approximations for shift-variant blur with their advantages and limitations. This chapter sheds light on different types of problems under the general topic of image restoration, then it presents the Bayesian inference formulation for general image restoration problem, and discusses several special cases of it. This chapter discusses different possible ways for solving the restoration problem, in particular, it justifies the alternating minimization approach for blind image restoration over the hidden variable marginalization approach. The chapter ends with a detailed discussion on the ill-posedness of the restoration problem, and how to handle it by using different types of prior/regularization in different situations.

• Throughout the thesis, a nonstationary white Gaussian noise model has been used to approximate the mixture of Poisson and Gaussian noise present in images. This noise model is pretty accurate for many imaging situations. An important topic that should be considered next is the accurate estimation of variance of noise present in 122 Chapter 5. Conclusions and Future Works the images, which is very essential, and is related to the selection of regularization parameters. The thesis does not discuss in detail how to select the hyperparameters/regularization parameters, which is very essential to obtain high quality image from restoration technique. It is another difficult problem in image restoration. Literature on regularization parameter selection is vast, so the near future task will be to adapt some existing methods with certain modifications/improvements for the image restoration methods used or proposed in this thesis.

Few papers in literature, such as [Molina 2006, Babacan 2012], advocate to use hidden variable marginalization approach for blind image restoration in which all three unknown variables: the blur, the crisp image and the hyperparameters/regularization parameters are estimated using the variable marginalization. However, in the literature one would not find much works concerning the comparison of marginalization approach vs the alternating minimization with justifications for the cases where one of them would perform better than the other. This could be an interesting future long-term work.

• Chapter 2 focuses on the optimization problems arising in imaging, computer vision and machine learning. The contribution of this chapter is to address a generic optimization problem (constrained nonsmooth optimization problem) found in different domains, and the chapter proposes a class of optimization algorithms, ALBHO, for solving them. The proposed algorithms are based on variable splitting and the augmented Lagrangian, and they are faster or at least as fast as the state-of-the-art algorithms based on the augmented Lagrangian, while being hassle free of parameter tuning, which is a great relief for the users. Another advantage of this algorithm is its easy implementability with a part of its implementation comes from the well established limited-memory quasi-Newton method with bound constraint, which have almost standard implementation in the literature. The chapters shows the applicability of the proposed algorithm on different types of optimization problems.

Since ALBHO is very general, it may be adapted for solving problems arising in other domains, such as machine learning. A short-term goal could be to compare its efficiency to the state-of-the-art algorithms in machine learning.

• Chapter 3 discusses image decomposition approach for image restoration, which can be seen as a way to design specific priors for structures in images. In particular, the chapter presents a blind image deblurring method via image decomposition for the restoration of astronomical images. The blind image restoration method is based on the assumptions that astronomical images contain mainly two types of sources: point-like sources and extended smooth sources, and the blur is shift-invariant. The proposed blind deblurring method, BDID, suggests to include several constraints to avoid the ill-posedness of the problem. The presented method solves the problem by alternating minimization, where the resulting subproblems (optimization problem) are efficiently solved by ALBHO proposed in Chapter 2. The restoration results obtained on synthetic astronomical images are promising. A near future work will be to improve it applicability to real astronomical applications, and validate the results using astrometry and photometry.

• Chapter 4 deals with the restoration of images degraded by a shift-variant blur, which is relevant in many practical imaging situations, but is much harder than the classical shift-invariant case. In many practical cases, the blur throughout the field of view varies due to several reasons; considering a separate blurring operation at each pixel location is computationally impractical. Thus, it becomes essential to model
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the shift-variant blur with an approximation, which can achieve a good trade-off between the accuracy and the computational cost. Among the several existing approximation, this chapter advocates the use of the PSF interpolation approximation. This chapter provides a detailed overview of this shift-variant approximation with its implementational aspects and the computational complexity. The main contributions of this chapter are the development of a shift-variant image deblurring, and the shiftvariant PSFs estimation, which are the two steps towards blind image deblurring, the main long-term goal of this thesis topic. In PSF estimation approach, characteristics of the blur due to optical aberrations are exploited to reduce the ill-posedness of the problem, and the numerical results show that this contribution is helpful for deblurring images suffering from optical aberrations or similar shift-variant blur. This has been experimentally validated by deblurring images from a calibrated camera, and the calibration method has been described in detail. Since the two steps towards shift-variant blind image deblurring are working well, a near future work is to perform blind deblurring of real scenes suffering from shift-variant blurs, e.g. an extension to the blind image deblurring method presented in Chapter 3.

Future Work

I have pointed out in the Discussion and Conclusion section, some of the interesting near future and long-term works based on this thesis. Here, I will recollect them in the sequence from short-term to a long-term future works:

• Application of the blind image deblurring method, BDID, proposed in Chapter 3 for real astronomical images, and validation of the method by evaluating the astrometry and photometry of the restored images.

• Extension of the BDID to the case of shift-variant blur, first on numerical simulations, and then on real astronomical images.

• Extension of the blind image deblurring method for restoring natural images blurred due to motion blur mostly happening in photography and computer vision applications.

• Application of the shift-variant blind image deblurring method for restoring 3D microscopy images for biomedical applications.

• The result of the restoration is very much dependent upon the choice of the regularization parameters, thus finding/developing an efficient method for regularization parameter selection is very important.

• Comparison between the alternating minimization and variable marginalization approaches for blind image restoration with analysis on the advantages one of the method over the other both from a theoretical and practical point of view.

• Modeling efficiently and accurately the shift-variant blur happening due to a shallow depth of field, occlusion and relative motion between the foreground and background objects could be addressed in the long-term work.

CHAPTER 6
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Discussion et Conclusion

Travaux futurs

J'ai pointé dans le paragraphe précédent un certain nombre de perspectives à court ou moyen terme pouvant faire suite à ces travaux de thèse. Je détaille ici ces perspectives en les organisant depuis les perspectives à court terme jusqu'à celles qui relèvent d'une réflexion à plus long terme:

• Application de la méthode de déconvolution aveugle du chapitre 3 à des jeux de données astronomiques réelles, ainsi que validation de la méthode en évaluant les précisions astrométriques et photométriques dans les images restaurées.

• Extension de la méthode de déconvolution aveugle au cas du flou variable dans le champ, d'abord sur des simulations numériques, puis sur des données astronomiques réelles.

• Application de la méthode de restauration aveugle aux images naturelles dégradées par un flou de bougé (applications en photographie et en vision par ordinateur).

• Application des algorithmes de restauration adaptés au cas de flous spatialement variables aux images de microscopie 3D pour des applications biomédicales.

• Développement d'une méthode pour le réglage des paramètres de régularisation.

• Comparaison entre les stratégies de minimisation alternée et de marginalisation pour la restauration aveugle, avec analyse des avantages d'une méthode par rapport à l'autre à la fois d'un point de vue théorique et pratique.

• Modélisation et inversion du flou de défocalisation apparaissant dans les scènes 3D (notamment les occlusions) ainsi que lors du mouvement relatif d'objets pendant le temps d'intégration de la caméra. 
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Chapter 1 .Figure 1 . 3 :

 113 Figure 1.3: Restoration of a resolution target degraded by shift-variant blur due to the grid of PSF shown in Fig. 1.2: (a) degraded image, (b) single-PSF deblurring, (c-f) deblurring with shift-variant PSF models of comparable computational complexity (coarse models), (g-j) deblurring with shift-variant PSF models of comparable computational complexity (fine models). A line profile along the red line indicated by the symbols and is drawn below each image. The restoration problem: x = arg min x≥0 1 2 { y -H x 2 2 + µ TV(x)} is considered, where TV denotes total variation defined later in Section 1.8. The figure is taken from [Denis 2015].

Figure 2 . 2 :

 22 Figure 2.2: Proximal operator and Moreau's envelop of the absolute function. Proximal operator of the absolute function is shrinkage (soft-thresholding) function and Moreau's envelop is Huber function.

  2.7c. Similarly, for Problem 2 (Poissonian image deblurring with TV and positivity constraint) the Cameraman image of size 256 × 256 pixels is taken, and blurred by applying a Gaussian blur kernel (FWHM = 4 × 4 pixels and size 15 × 15). Again, only the central valid convolution region of size 242 × 242 is considered, and its pixel values are scaled into the range [0, 3000] before applying Poisson noise on it by using 'poissrnd' function in MATLAB to obtain the final observed image shown in Fig. 2.9c.

Figure 2 . 3 :

 23 Figure 2.3: Influence of penalty parameters on convergence: Comparison of ADMM and the proposed ALBHO on a toy problem: x * := arg min x∈Ω {x T Qx + bT x + λ x 1 }, where Q ∈ R 2×2is a positive definite matrix, and x ∈ R 2 . The set Ω is the constrained region in green. The figure shows the contour plot of the objective function and the iterations of the two algorithms with a different penalty parameter, ρ. On the left is the plot of ALBHO, and on the right is ADMM. For small values of the penalty parameter, e.g., ρ = 0.1, both the algorithms do not make any progress toward the minimum (get stuck), but for any other larger value, ALBHO always reaches the minimum, whereas ADMM converges only for very particular values.
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 2425 Figure 2.4: Influence of the number of inner iterations of BLMVM on the convergence speed of proposed ALBHO for Problem 1 (image deblurring with TV and positivity constraint). The numbers in the legend denote the number of BLMVM iterations before updating the dual variable in the outer iteration of ALBHO.

•10 8 Figure 2 . 6 :Figure 2 . 8 :

 82628 Figure 2.6: Influence of augmented penalty parameters on convergence speed of different algorithms for Problem 2 (Poissonian image deblurring with TV and positivity constraint). Penalty parameters: Fixed ρ = 5 × 10 -6 , Fixed ν = 5 × 10 -6 , Fixed η = 5 × 10 -6 , Fixed γ = 5 × 10 -6 Regularization parameter λ = 1 × 10 -3 .
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 29 Figure 2.9: The images used in numerical experiments on Problem 2 (Poissonian image deblurring with TV and positivity). The pixel values of the ground truth image are in range [0, 3000], and the blurry and noisy image is subjected to Poisson noise. Notice the extended boundary in estimated image.

Figure 2 .

 2 Figure 2.10: Convergence comparison of four algorithms on the Problem 2 (Poissonian image deblurring with TV and positivity). ADMM-4x with penalty parameters: ρ = 1 × 10 -5 , ν = 1 × 10 -5 , η = 1 × 10 -5 , γ = 5 × 10 -6 , ADMM-1x with augmented penalty parameters: γ = 5 × 10 -6 , ALBHO with augmented penalty parameter: γ = 1 × 10 -1 . The regularization parameter: λ = 1 × 10 -3 .

  (a) original brain image: 315 × 315 pixels (b) output image estimated by ALBHO (c) brain image with segmentation contour on it Influence of penalty parameter on convergence

Figure 2 .

 2 Figure 2.11: Results on Problem 3 (globally convex segmentation)

Figure 2 .

 2 Figure 2.13: Convergence speed comparison of three optimization methods on image restoration problem(2.48). ADMM-2x-A penalty parameters: ρ = 5 × 10 -3 , γ = 5 × 10 -2 , ALBHO penalty parameter: γ = 5 × 10 -1 , and minConf_QNST parameters default provided bySchmidt et al. 

Figure 2 .

 2 Figure 2.14: The images used for the performance comparison of minConf_QNST in Section 2.4.4 for problem (2.49). The observed image is obtained by blurring the true image with a Gaussian PSF of size 15×15 pixels with FWHM = 4×4 pixels, and adding a white Gaussian noise with σ = 5 × 10 -3 .
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 3132333334 Figure 3.1: Illustration of BDID: the images and PSFs used for comparison in order to see the effects of the parameters on results by BDID: (a) the synthetic reference image, (b) the blurry and noisy image, (c) the reference PSF (d) The initial PSF. The scale for the images (a) and (b) are in photons per pixels. Images are displayed with false colors to enhance the visibility. The absolute range of all images are indicated above them. The noise in (b) is mixture of Poisson noise and Gaussian noise with σ det = 10. (d) is extracted from the blurry and noisy image by selecting one of the point-like sources.

3. 3 .

 3 Figure 3.5: Illustration of BDID on synthetic image: the blurry and noisy image is obtained by blurring the reference image with the reference PSF shown in Fig.3.6a, and then adding a mixture of Poisson and white Gaussian noise with σ det = 5. The scale of the images is in photons per pixel.

Figure 3 . 6 :Figure 3

 363 Figure 3.6: continued from Fig.3.5. The initial PSF is obtained by selecting a point-like object in the blurry and noisy image. The regularization parameters are λ = 1.4 × 10 -3 , µ = 2.0 × 10 -5 , δ = 9.0 × 10 2 , and η = 2.0 × 10 6 .
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 39333 Figure 3.9: Illustration of BDID on Image from Spitzer Heritage Archive: A constant gray level has been subtracted from the image to have dark background in the regions where there is no significant structure, and then linearly rescaled the gray level into the range [0, 6000]. The blurry and noisy image is obtained by blurring it with the PSF shown in Fig.3.10a and then adding a mixture of Poisson and white Gaussian noise with σ det = 5. The scale of image is in photons per pixels.

  (a) Blur due to shallow depth of field (b) Blur in background due to motion (c) Blur due to optical aberrations

Figure 4 . 1 : 4 . 2 .

 4142 Figure 4.1: Illustration of shift-variant blurs: In top row, images with abrupt change of blur between foreground and background. In bottom row, image with smoothly varying blur due to optical aberrations.

Figure 4 . 2 :

 42 Figure 4.2: Illustration of blurring process using the shift-variant blur operator (4.2). The crossing of the red dashed lines overlayed on input image (a) are the grid points where PSFs are sampled. The dimension of the image patches and PSFs are shown at respective places. After applying the final restriction operator R, the output blurred image (b) has the same size as input image (a).

  (o + 1) × (m/P ) 1

Figure 4 .

 4 Figure 4.3 shows an example of shift-variant image deblurring. The (9 × 9) grid of PSFs shown in Fig.4.3b is obtained by a parametric model where each PSF is a bivariate Gaussian with different FWHM in the two directions. The PSF at the optical axis (center of field of view) has smaller FWHM, and the PSFs farther from the optical axis have larger FWHM and are elongated along the radial directions. This grid of PSFs is a coarse approximation of the grid of PSFs one would obtain from a lens system with optical aberrations. The observed blurred and noisy image shown in Fig.4.3c is obtained by applying this grid of PSFs on the crisp image shown in 4.3a with shift-variant blur operator Eq. (4.2) using bilinear interpolation weights, and then subjecting it to a mixture of Poisson and Gaussian noise with σ = 10.

  (a) original crisp image of size 474 × 640 pixels with gray levels rescaled in the range 0 to 10 4 (b) grid of PSFs (c) blurry and noisy image with BSNR=30.1580, SSIM=0.3472 (d) estimated image with ISNR=3.2398 and SSIM=0.5734 (e) estimated image with ISNR=3.1271 and SSIM=0.5624 (f) estimated image with ISNR=2.7305 and SSIM=0.5338

Figure 4 . 3 :

 43 Figure 4.3: Illustration of nonblind shift-variant image deblurring: (a) original crisp image with gray level in the range [0, 10 4 ], (b) shift-variant PSFs on a 9 × 9 grid obtained from a Gaussian parametric model, (c) blurry and noisy image obtained after applying shiftvariant PSFs in (c), and then adding a mixture of Poisson and Gaussian noise with σ = 10, (d) estimated image using the full 9 × 9 grid of PSFs and λ = 3.0 × 10 -4 , (e) estimated image using only 5 × 5 grid of PSFs encircled in blue and red with λ = 6.0 × 10 -4 and (f) estimated image using only 3 × 3 grid of PSFs encircled in red with λ = 1.0 × 10 -3 . The regularization parameter λ was selected to achieve the best ISNR.
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Figure 4 . 4 :

 44 Figure 4.4: Illustration of symmetry and closeness properties of PSFs due to optical aberrations: The optical axis passes through the point C, and k p and k q are two PSFs on the grid.

. 4 .

 4 3a by applying shift-variant blur with the grid of PSFs shown in Fig.4.6a. This blurry image is corrupted by Poisson and Gaussian noise with σ = 10. To see how effective is the inter-PSFs constraint, i.e., if a good estimates of PSFs within certain regions of the image can propagate to regions of the image where there is no available information to estimate the PSFs, a big portion of the blurred and noisy image has been masked out, as shown in Fig.4.6b. The corresponding entries in the matrix W are also set to zero. The minimization problem (4.15) is solved by 30 iterations of ALBHO given the crisp image and the masked out blurry and noisy image. The regularization parameters are set to µ = 10 5 , η = 1.0, δ L = 5 pixels, and δ H = 25 pixels. As expected, the PSFs over the whole field of view are fairly estimated, except at the corners, which are relatively far from the regions where data are available. The estimated PSFs on the grid are shown in Fig.4.6c and their corresponding PSNR value is shown in Fig.4.6d at the same relative positions. The higher the value of µ, the stronger the inter-PSFs constraint, and good estimate of PSFs propagate to regions where there is no information for the estimation.

  Figure 4.6: Out of field of view PSFs estimation for blur due to optical aberrations

Figure 4 .

 4 Figure 4.7: Experimental setup scheme for PSFs calibration.

  a region of aligned reference image (b) bottom right corner of the captured image (gray values in logarithmic scale ) (c) a region of reference image containing point sources overlayed on captured image after the alignment. Cyan represents point sources and magenta represents the captured image.

Figure 4 . 8 :

 48 Figure 4.8: Images used in PSFs calibration: (a) a region of aligned reference image containing point sources image, (b) a region (at bottom right corner) of captured image farthest from the optical center (at top left corner) displayed in logarithmic scale to enhance the presence of nonuniform and noisy background, and (c) a region of the reference image overlayed on the captured image showing that the alignment was quite perfect.
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 49 Figure 4.9: Results of PSFs calibration: (a) the four corners of the captured image after background correction, (b) four corners of the estimated grid of PSFs, and (c) four corners of Zemax simulated grid of PSFs. The grid of PSFs shown in the four corners has the same pixel resolution except that the grid points are sampled at different distances in all the three cases.

Figure 4 .

 4 Figure 4.10: An illustration of image deblurring with a calibrated grid of PSFs obtained by experimental measurement. The blurry and noisy image was captured using the same experimental setup. The optical axis lies at the top-left corner of the image.

  (a) captured blurry and noisy image (b) estimated image by nonblind image deblurring using the calibrated grid of PSFs

Figure 4 .

 4 Figure 4.11: An illustration of image deblurring with a calibrated grid of PSFs obtained by experimental measurement. The blurry and noisy image was captured using the same experimental setup. The optical axis lies at the top-left corner of the image.

Figure 4 .

 4 Figure 4.12: An illustration of image deblurring with a calibrated grid of PSFs obtained by experimental measurement. The blurry and noisy image was captured using the same experimental setup. The optical axis lies at the top-left corner of the image.

Figure A. 3 :

 3 Figure A.3: Comparison of image deblurring two different image decomposition models. (a) is in range [0, 255], (b) is obtained by blurring with a Gaussian PSF (size=21 × 21, FWHM=4 × 4 pixels), (c) obtained from (b) by adding white Gaussian noise (σ = 20), (d) restored by T V -E deblurring model with α = 3 and η = 0.1, (e) restored by T V -L 2 deblurring model with α = 3. Notice the extended unobserved boundary pixels in (c) are also fairly estimated to avoid any boundary (ringing) artifacts.

Figure A. 4 :

 4 Figure A.4: Comparison of image deblurring two different image decomposition models. (a) is in range [0, 255], (b) is obtained by blurring with a Gaussian PSF (size=21 × 21, FWHM=4 × 4 pixels), (c) obtained from (b) by adding white Gaussian noise (σ = 5), (d) restored by T V -E deblurring model with α = 0.6 and η = 0.05, (e) restored by T V -L 2 deblurring model with α = 0.6. Notice the extended unobserved boundary pixels in (c) are also fairly estimated to avoid any boundary (ringing) artifacts.

  

  

Approximations 17Table 1 .

 1 1: Summary of the main properties of shift-variant blur models (P is the number of terms in the approximation)

	Method	Reference	Assumptions	Properties	Complexity
					(convolutions)
	interpolate deconvolu-	[A]	slow PSF variations	-no shift-variant PSF model	≈ P
	tion results				
	piecewise constant PSF		large isoplanatic regions	-strong boundary artifacts	≈ 1
	convolve, then apply	[B]	smooth PSF variations	+ preserves PSF positivity	≈ 4 in 2D
	linear weighting				
	use linear weighting,	[C]	smooth PSF variations	+ interpolates PSF, preserves	≈ 4 in 2D
	then convolve			PSF positivity, normalization	
				and symmetry	
	decompose on PSF	[D]	PSF captured by few modes	+ optimal global approximation	P
	modes				
	use optimal weighting,	[E]	smooth PSF variations	+ optimal local approximation	≈ 4 in 2D
	then convolve				

if the PSF support is small compared to the size of the regions; for approximations involving the 4 nearest PSFs References: [A]

[Maalouf 2011

]; [B]

[Nagy 1998

]; [C]

[Hirsch 2010

];

[D] [Flicker 2005]

; [E]

[Denis 2015] 

Chapter 1. An Introduction to Image Restoration: From Blur Models to Restoration Methods of

  4, fundamentally, images are corrupted by a mixture of Poisson and Gaussian noise. If we consider the image formation model: y = u + n, then the exact likelihood of the image corrupted by a mixture Poisson and i.i.d. Gaussian noise is written as:

  Common examples of this class of problems in signal/image processing applications are signal restoration from distorted and noisy observation, and blind source separation. In computer vision, geometry/texture image decomposition problems, labeling (segmentation) problem, image registration, and disparity map estimation are common examples. In machine learning, the common examples are logistic regression, graphical model structure learning, low rank approximation, support vector machines, etc.

  The first problem (Problem 1) is image deblurring with TV and positivity constraint in which the datafidelity term is quadratic. The second problem (Problem 2) is Poissonian image deblurring with TV and positivity in which the data-fidelity term is not quadratic, but contains a logarithmic term. The third problem (Problem 3) is globally convex image segmentation, in which the data-fidelity term is linear. Two more image deblurring problems are considered for comparison with proximal Newton-type method, which are slightly different in order to show that the ALBHO is applicable to a wide range of optimization problems arising in imaging, and it is as fast as other state-of-the-art algorithms, but without any parameter tuning. The problems and the algorithms are presented in what follows.

110 Chapter 4. Restoration of Images with Shift-Variant Blur augmented

  , • • • , P are considered, and then the Lagrangian is written as:

126 Chapter 6. Conclusion et travaux futurs dans

  Cette thèse traite du sujet de la restauration d'images. Elle démarre par une présentation générale de la restauration d'images, avec un focus particulier sur la modélisation du flou variable dans le champ. La restauration d'images est reformulée comme un problème d'optimisation en grande dimension, avec des termes non lisses et/ou des contraintes. Elle est donc nécessaire de développer un algorithme d'optimisation générique. L'algorithme proposé, ALBHO, est utile en pratique car il converge rapidement sans nécessiter de régler de nombreux paramètres. Une méthode de déconvolution aveugle basée sur la décomposition d'images en sources ponctuelles et sources étendues est proposée pour la restauration d'images astronomiques. Les résultats obtenus sont encourageants pour une application, après adaptation, sur des jeux de données réelles. Enfin, la thèse présente une discussion détaillée sur la restauration d'images et l'estimation du flou dans le cas de flous spatialement variables. Il met en évidence la nécessité de corriger le flou dans différents contextes et propose une méthode pour l'étalonnage du flou. Les résultats expérimentaux d'estimation du flou, puis de restauration d'images floues valident les méthodes développées. Ces méthodes forment les briques de base pour attaquer le problème de la restauration aveugle d'images dégradées par un flou spatialement variable. Je détaille cidessous les contributions propres à chaque chapitre, les limitations et les perspectives de ces travaux:• Le chapitre 1 donne une présentation générale des systèmes d'imagerie et des modèles de formation de l'image dans le cas de flous invariants et spatialement variables.Les différentes causes du flou et du bruit présents dans les images sont analysées. L'importance de la modélisation des variations spatiales du flou est pointée et différentes approximations du flou sont décrites ainsi que leurs avantages et limites. Le chapitre discute de différents types de problèmes rencontrés dans le cadre de la restauration d'images, puis présente une formulation générale de la restauration d'images dans le cadre bayésien ainsi que ses différentes déclinaisons. Différentes façons de résoudre le problème de restauration sont envisagées et le choix d'une approche de type minimisation alternée plutôt que marginalisation pour la restauration aveugle est justifiée. Le chapitre se termine par une discussion de la difficulté du problème de restauration et comment des stratégies de régularisation peuvent être mises au point pour mieux contraindre le problème.• Tout au long de la thèse, un modèle de bruit blanc gaussien non stationnaire est utilisé pour approximer le mélange de bruit gaussien et de bruit poissonnien présent les images. Ce modèle de bruit est relativement précis dans de nombreux cas. Une question importante qui mérite une investigation est l'estimation de la variance du bruit dans les images, un problème lié au problème du réglage des hyperparamètres, c'est à dire des paramètres de régularisation des méthodes restauration. Le réglage de ces hyper-paramètres n'a pas été abordé dans cette thèse. Une large bibliographie existe sur le sujet. Une perspective à court terme consisterait à adapter ces techniques aux méthodes de restauration proposées dans cette thèse.Quelques travaux dans la littérature, tels[Molina 2006, Babacan 2012], proposent d'utiliser une approche de type marginalisation pour la restauration aveugle et l'estimation des hyper-paramètres. Il manque cependant une comparaison de cette approche avec la minimisation alternée que nous avons utilisée, avec une justification des cas dans lesquels l'une est préférable par rapport à l'autre. Cela pourrait être une perspective intéressante. • Le chapitre 2 se focalise sur les problèmes d'optimisation apparaissant en imagerie et que l'on rencontre également en vision par ordinateur ou en apprentissage automatique. La contribution de ce chapitre est une classe d'algorithmes d'optimisation, ALBHO, permettant de résoudre des problèmes d'optimisation généraux (de type "optimisation non-lisse sous contraintes"). Les algorithmes proposés sont basés sur le principe de la séparation de variables et du lagrangien augmenté. Ils sont aussi rapides, voire plus rapides que les méthodes de l'état de l'art également basées sur le lagrangien augmenté tout en étant beaucoup plus faciles d'utilisation car ne nécessitant pas le réglage de nombreux paramètres. Un autre avantage de ces algorithmes est leur implémentation facile, le coeur de l'algorithme étant constitué d'un algorithme d'optimisation de quasi-Newton à mémoire limitée, dont il existe des implémentations bien établies. Le chapitre illustre sur plusieurs problèmes d'optimisation l'application des algorithmes ALBHO. Puisqu'il s'agit d'une méthode générale, elle peut être utile pour résoudre des problèmes d'optimisation rencontrés dans d'autres domaines applicatifs comme l'apprentissage automatique. Des travaux futurs pourraient porter sur la comparaison d'ALBHO aux méthodes état de l'art en apprentissage automatique. • Le chapitre 3 présente une approche de décomposition d'images pour la restauration. La décomposition d'une image en plusieurs composantes permet d'associer à chacune un a priori spécifique et modéliser ainsi la présence de structures plus complexes. Plus précisément, le chapitre décrit une méthode de déconvolution aveugle destinée aux images astronomiques dont l'étape de restauration est basée sur une décomposition d'images. La décomposition est basée sur l'hypothèse que les images astronomiques contiennent essentiellement deux types de sources: les sources ponctuelles et les sources étendues. La méthode de restauration aveugle proposée, appliquée au cas des flous stationnaires, inclut plusieurs contraintes dans la procédure d'estimation. Le problème de déconvolution aveugle est résolu par minimisation alternée et chaque sous-problème d'optimisation est résolu par une instance d'ALBHO décrit au chapitre 2. Les résultats de restauration obtenus sur des images synthétiques sont encourageants. Les travaux futurs à court terme porteront sur l'application à des données astronomiques réelles et sur la validation des résultats en étudiant les précisions astrométriques et photométriques. • Le chapitre 4 porte sur la restauration d'images dégradées par un flou variable dans le champ. De tels flous sont rencontrés dans divers contextes applicatifs mais leur estimation et leur inversion est plus difficile que pour les flous stationnaires. Il est en 6.

2. Travaux futurs 127 effet

  nécessaire de trouver un compromis entre la flexibilité du modèle de flou afin pouvoir décrire précisément les différents cas rencontrés en pratique et le nombre de degrés de libertés à résoudre lors de l'estimation. Ce chapitre utilise un modèle basé sur l'interpolation d'une grille de réponses impulsionnelles. Après avoir détaillé la complexité algorithmique de ce modèle et l'avoir appliqué sur une simulation numérique dans laquelle le flou est supposé connu, le problème de l'estimation d'un flou spatialement variable est présenté. La méthode d'estimation du flou et la méthode de restauration forment les deux briques nécessaires à la réalisation à plus long terme de la restauration aveugle d'images dégradées par un flou non stationnaire. Lors de l'estimation du flou, les caractéristiques des aberrations optiques sont exploitées afin de contraindre le problème d'estimation. Les expériences numériques montrent que ces contraintes permettent de reconstruire le flou. Ensuite, une validation expérimentale est conduite pour valider la méthode d'étalonnage du flou et pour évaluer l'apport de la restauration basée sur un modèle non stationnaire du flou. Puisque chacune des deux étapes nécessaires à la restauration aveugle a été validée, une perspective à court terme est de réaliser une restauration aveugle de scènes réelles, par exemple en étendant la méthode de déconvolution aveugle présentée au chapitre 3.

Dans de nombreux systèmes d'imagerie, le flou n'est pas stationnaire dans tout le champ, c'est par exemple le cas de l'imagerie grand champ en astronomie, ou des variations avec la profondeur de la réponse impulsionnelle en microscopie 3D, ou encore du flou de bougé en photographie. Les images capturées par de tels systèmes souffrent de flou non stationnaire. Cependant, il est important dans diverses applications de pouvoir obtenir des images de haute résolution. Les méthodes de déconvolution classiques sont quant à elles basées sur une hypothèse de flou stationnaire. Ce chapitre traite de la restauration d'images dans le cas de flous non stationnaires. Le chapitre démarre par un rappel des modèles de flou discutés dans le chapitre 1 et détaille l'implémentation de l'approximation basée sur l'interpolation des réponses impulsionnelles. Le chapitre présente ensuite les deux étapes principales: la restauration des images et l'estimation du flou. Les résultats de chacune de ces deux étapes sont prometteurs et indiquent que de bons résultats sont atteignables dans un futur proche pour obtenir une méthode de restauration aveugle basée sur les deux étapes décrites dans ce chapitre.

For small θ, the separation of two points in an image is given by ∆x = 1.22λ/F #, where F # = d i /d is f-number. In a digital camera, a pixel of sensor smaller than ∆x does not increase optical image resolution, but the over-sampling may improve the final image quality, and can be used in PSF measurement with sub-pixel accuracy.

This condition ensures that if mp, the components of the PSF model, are normalized, i.e., s mp(s) = 1, then each of the interpolated PSFs k(r, s) are also normalized.

blur due to atmospheric turbulence may not be deterministic.1.5. Image Restoration

Remark: A part of the work in this chapter appeared in IEEE ICIP

2015, Quebec under the title "Augmented Lagrangian without Alternating Directions: Practical Algorithms for Inverse Problems in Imaging."[Mourya 2015b].

An open source implementation of BLMVM, VMLM-B and other optimization algorithms are available at https://github.com/emmt/OptimPack.

A Lipschitz domain (or domain with Lipschitz boundary) is a domain in Euclidean space whose boundary is "sufficiently regular" in the sense that it can be thought of as locally being the graph of a Lipschitz continuous function.

-norm of the gradient image, and its behavior is adjusted by δ. It is worth to mention that the staircase artifact produced by total variation can be avoided in Huber-norm by adjusting the threshold.

∝ |r pr q |.

Zemax optical design software is industry standard design and simulation software for optical and illumination designers, and researchers. http://www.zemax.com/.
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CHAPTER 3

Image Decomposition Approach for Image Restoration

What has been already divided into parts cannot be recovered back from them without adding to the total entropy. -Anonymous

Summary

The chapter presented a general discuss on image decomposition, different decomposition methods from synthesis and analysis based approaches, and the fruitfulness of decomposition in image restoration. Further, this chapter presented a detailed overview of blind image deblurring methods, and proposed a blind image deblurring algorithm via image decomposition (BDID) for restoration of astronomical image. The results from BDID on the synthetically created images are promising with hope that the method can be further improved to handle real astronomical images.

CHAPTER 4

Restoration of Images with Shift-Variant Blur

Everything should be made as simple as possible, but not simpler.

-Albert Einstein

Contents

Abstract

In many practical imaging systems, the blur is not stationary throughout the field-of-view, for example, wide-field-view imaging in astronomy, along the depth in microscopic imaging, and motion blur in photography. The images captured by such systems suffer from shift-variant blur degradation. However, it is essential in many applications to have high resolution images. Most of the classical image deblurring methods are based on shiftinvariant blur assumption, and they cannot improve the quality of images suffering from shift-variant blur. In this chapter, we will see a detailed discussion on shift-variant image deblurring. The chapter will start with a recall of shift-variant blur model discussed in Chapter 1, and then it will provide the detailed implementational overview of shift-variant blur operator based on PSF interpolation. It will also discuss the advantages of using this particular model. Afterwards the two main steps: the image deblurring and the PSF estimation, for blind image deblurring in the case of shift-variant blur, will be presented.

The results from the two steps are promising, and indicate that we can achieve good results in the near future from the blind image deblurring method combining the two steps presented in this chapter.

Appendix

A.1 Functional Analysis

A.1.1 Definitions

• Open, Closed and Compact Sets: For a vector x ∈ R n and a scalar ε > 0, let S(x; ε) denotes an open sphere centered at x with radius ε > 0, i.e.,

S(x

If S is open and x ∈ S, then S is said to be a neighborhood of x.

A set S is closed if and only if its complement in R n is open. Equivalently S is closed if and only if every convergent sequence x k with elements in S converges to a point which also belongs to S.

A subset S of R n is said to be compact if and only if it is both closed and bounded (i.e., it is closed and for some M > 0 we have x 2 ≤ M for all x ∈ S). A set S is compact if and only if every sequence x k with elements in S has at least one limit point which belongs to S.

• Convex Sets: A set C ∈ R n is convex if for any two points x, y ∈ C, the segment joining them belongs to

The function f is said to be continuous over S 1 if it is continuous at every point x ∈ S 1 . If S 1 ,S 2 , and S 3 are sets and f 1 : S 1 → S 2 and f 2 : S 2 → S 3 are functions, the function

an open set if all partial derivatives of order p exist and are continuous as function of x over X .

strictly convex on C if the above inequality is strict strongly convex on C if ∀x, y ∈ C and α ∈ (0, 1), there exists a constant ε > 0 such that

A.2 Solution to T V -G and T V -E image decomposition models

In [Aujol 2005a], the authors propose to solve the model (3.5) by the following energy minimization:

or equivalently arg min

where J * (z/µ) is the indicator function of the closed convex set {ω : ω G ≤ µ}. Similarly, in [Aujol 2005b] the authors propose to solve problem (3.6) by minimizing the following energy functional:

where B * (ω/δ) is the indicator function of the closed convex set, {ω : ω E ≤ δ}, and

A.2.1 Image Denoising by T V -E Model

The approach in [Aujol 2005b] for solving the T V -E decomposition model is recalled below. It can be observed that when λ → 0, solving problem (A.3) gives a solution of problem (3.6). The approach to solve the problem (A.3) is depicted in following algorithm:

T V -E Image Decomposition Algorithm:

1. Initialization:

2. Iterations:

Here, δB E represents closed convex set {ω : ω E ≤ δ}. The problem (A.5) is solved by its dual formulation:

which leads to the solution (A.6) (see Proposition 4.7 in [Aujol 2005b]), where W ST denotes wavelet soft-thresholding, and the threshold, δ, is estimated by δ = ησ 2 log(n 2 ), and η ≤ 1. The Π Gα represents orthogonal projection on G α , which can be computed by Chambolle's projection algorithm proposed in [Chambolle 2004].

In [Aujol 2005b], the authors shows that BV is well adapted for the geometrical part of an image, G for the texture part and E = B ∞ -1,∞ for the noise. They show by their experimental results that the model (3.6) is a very good candidate for denoising textured images. This can be due to the fact that it simultaneously minimizes the total variation of restored image and a Besov norm (which amounts to a wavelet shrinkage), thus benefiting from the advantages of both methods. However, better results are obtained by relatively higher computational cost than the T V -L 
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A.2.2 Image Deblurring via T V -E model

Seeing the performance of T V -E denoising model, in the Section A.2.1, in the restoration of the fine textures even in presence of heavy noise, here, I extend the T V -E decomposition model (A.3) for image deblurring purpose. The proposed T V -E deblurring model is based on the following energy minimization:

where B * (ω/δ) is indicator function of the closed convex set, {ω : ω E ≤ δ}, y ∈ X represents the available observed (blurred and noisy) image, x ∈ X represent the unknown true (original sharp) image, z ∈ X represents the fine texture parts, such as noise, H represents the blurring operator (convolution matrix corresponding to a given PSF), and W is diagonal weighing matrix, which has zero values, i.e., W i,i = 0 for unobserved i-th pixel values, for example unobservable pixels at the boundary of image sensor, and it has ones for measured pixels, i.e., W i,i = 1 for the observed ith pixel. To minimize the above problem (A.10), a variable splitting and augmented Lagrangian (AL) approach is considered. With variable splittings: x = x, z = z, and ξ = y-Hx-Hz, , the augmented Lagrangian of the problem (A.10) is written as: .11) where {ρ 1 , ρ 2 , ρ 3 } > 0 are the augmented penalty parameters, and {u 1 , u 2 , u 3 } ∈ X are scaled Lagrangian multipliers. It is possible to use ALBHO in Chapter 2 to find the saddle point of the AL (A.11) (the solution of problem (A.10) ), but I use a similar alternating minimization approach as presented in Section A.2.1 in order that the deblurring results are not biased by the optimization method. The proposed algorithm for finding the saddle point of the augmented Lagrangian (A.11) is a variant of ADMM, and is as follows:

T V -E Deblurring Algorithm:

1. Initialization:

2. Iterations:

3 ) (A.17)

A.2. Solution to T V -G and T V -E image decomposition models 137

Here again, W ST represents the wavelet soft-thresholding, and the threshold is estimated as δ = ησ 2 log(n 2 ), and η ≤ 1. The Π G (1/ρ 1 ) represents orthogonal projector on G (1/ρ1) , which is computed by Chambolle's projection algorithm [Chambolle 2004]. The matrix-vector multiplications, such as Hx and H T y can be computed efficiently in Fourier domain using FFTs. Similarly, the matrix inversions in (A.15) and (A.17) can also computed efficiently in Fourier domain. The matrix inversion in (A.13) is straight forward since W is diagonal. In my experiments, the augmented penalty parameters ρ 1 , ρ 2 , and ρ 3 are chosen heuristically to have possible fast convergence. The regularization parameters α and η are also chosen to have possible high values of image quality metrics, PSNR.

Conclusions:

The results of T V -E deblurring model on natural images, illustrated in Fig. A.3 and Fig.A.4,clearly show that the T V -E deblurring model is able to restore the textures in images better than T V -L 2 deblurring model. Thus, one can expect to have a better image quality from blind image deblurring restoration using this T V -E or similar image decomposition model, e.g., the fine details in the smooth extended sources in astronomical image as illustrated in Fig. 3.11 can be enhanced.