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Chapter 1

Introduction

Cette these consiste en deux parties: la premiere partie est I’étude d’un article de Siu sur la terminaison
effective de I’algorithme de Kohn pour les domaines pseudoconvexes spéciaux dans C3, tandis que la
deuxieme partie est I’étude du tenseur de Hachtroudi-Chern-Moser pour les variétés CR.

1.0.1 Premiere Partie: Méthode de Siu pour I’algorithme de Kohn

En 1979, J.J. Kohn introduit dans son article [Koh79] un algorithme qui établit les relations entre
la géométrie du bord d’un domaine, la régularité des solutions au probleme de 0-Neumann, et les
propriétés algébriques des idéaux multiplicateurs.

Soient (z1,. .., 2n, Znt1) les coordonnées holomorphes sur C" !, et soient F(21,...,2,) ...,
Fyx(z1,...,2,) des germes de fonctions holomorphes en les n premiéres variables qui s’annulent au
point origine. Un domaine spécial €2 est décrit par une inéquation définissante donnée par une fonction
analytique réelle de la forme

ri= Re(an) - Z |Fk(217 s >Zn)‘2 < O’

dont le bord €2 de (2 est le lieux d’annulation de r:

Re(zn+1) - Z ’Fk(zla . 7Zn)|2 =0.

1<k<N

Une forme différentielle ¢ de type (p, ¢) peut s’écrire comme

o= > > ¢rgdzt NdZ,

Hl=p |J]=q

oll les ¢ sont des fonctions sur €. Si ces ¢;; sont ¢!, I’opérateur de Dolbeault, noté d, agit sur ¢
par

dp= > > > 0:,¢15dF N NdZ

ISjsnt1|I|=p |J|=q
Cette forme ¢ est de type (p, ¢ + 1). Si f est une (p, ¢ + 1)-forme lisse, une question importante est
la recherche des solutions ¢ qui satisfont 1I’équation

5¢:f7

assujettie 2 la condition que f = 0. Ce probléme, qui s’appelle le probléme de d-Neumann, est
étudié dans un cadre plus général en utilisant la théorie L? de Hormander.

Pour tout 1 < p,q < n + 1, I’espace de Hilbert L(prq)(Q) consiste en les formes différentielles de
type (p, q) dont les coefficients ¢y sont L2-intégrable sur ) par rapport 2 d) la mesure de Lebesgue.

7



L opérateur O agit sur une telle forme différentielle au sens des distribution, mais ¢ n’est pas forcé-

m2ent dans L%p, g+1) (Q2). Donc, I’opérateur O est une application linéaire non-bornée de L%@ 9 () vers
L

(p.g+1)(§2), et qui est bien définie sur son domaine Dom, ,(0). Ce domaine est dense, parce qu’il
contient les (p, ¢)-formes lisses a support compact.
Cet espace L? )(€2), muni d’un produit scalaire

(p,g+1
(Z Y. oryd NdZT YD YD psde! /\d?]) = >, Grybry dA,
[I|=p|J|=q [I|=p |J|=q L2 [I|=p|J]=q JQ

fournit un opérateur adjoint 9* de O au sens de von Neumann. Cet opérateur O* est non-borné de

L%mH)(Q) vers L?p,q)(Q) défini sur un sous-espace dense Dom(, 411)(0*) de L?p’qﬂ)(Q), et qui satis-

fait la relation de dualité

(0¢,¢)12 = (¢,07) 2

pour tout ¢ € Dom, ,)(9) et tout ¢ € Dom, 441)(9*). L opérateur laplacien

A:=00"+0%0: L?p’q)(Q) — L?M)(Q),
avec son domaine de définition Dom, o)(A), est fermé au sens du graphe, et auto-adjoint au sens de
von Neumann.

La régularité des solutions pour le probléme de J-Neumann se raméne 2 1’étude de la régularité
du laplacien au bord 02 de €2 (voir Proposition 1.17). Plus précisément, soit x € b§2 un point dans le
bord. Existe-t-il un voisinage U C C"*! de x et un nombre strictement positif ¢ > 0 tels que pour
tout ¢ € 7, ,(£2) (Définition 1.13), I’estimée suivante

gl < Cllogll* + " glI* + l1911%) (1.0.1)

soit satisfaite? Ici, ||| - |||? est la norme de Sobolev tangentielle (Section 1.2.4), et la constante C' ne

dépend pas de ¢. C’est a ce moment que Kohn introduit la notion de multiplicateurs sous-elliptiques
(Définition 1.19). Ce sont les fonctions-germes lisses g € €>° en x avec des voisinages U C C"*! de
x, et des nombres strictement positifs €, C' tels que pour toute forme différentielle ¢ € 2, ,(12), une
variante de I’estimée sous-elliptique

lgolllz < Cloa]1* + l0"6l1* + [1]*)

soit satisfaite. Les données U, e, C' dépendent de g. L’ensemble _Z, des multiplicateurs sous-
elliptiques est un idéal radical réel de ’anneau %6° (Proposition 1.21). Evidemment, 1’inégalité
(1.0.1) est établie si et seulementsi 1 € _Z,.

Comme la fonction définissante r et le déterminant de la forme de Levi Lev(r) sont des multipli-
cateurs avec régularités respectives ¢ = 1 et ¢ = 1/2 (Propositions 1.20, 1.24 et remarque avant le
paragraphe 1.2.7), Kohn crée un algorithme qui permet de déduire dans quelles conditions g = 1 est
atteint. L’algorithme pour les domaines spéciaux est le suivant.

Definition 1.0.2. Soit (Fi,..., F\) un idéal de I’anneau local Ocn( des fonctions holomorphes.
Soient ¢y, . . ., g, des éléments de ’idéal (F}, ..., F\), avec le déterminant jacobien

azlgl Ce aanl
det(g) := Jac(g1, ..., gn) = det ' :
Ougn 020

L’idéal I 1# est engendré par les éléments de la forme det(g), et I; est son radical. Si I; est déja

construit, I’1déal I ,f ., estengendré par [}, avec det(hq, ..., h,), ou h; est une fonction holomorphe qui

appartient a [ ou bien une des fonctions Fi,..., Fy. Ensuite, soit /i1 le radical de / f 1 O

8



Alors il est évident qu’il y a une suite croissante d’inclusions d’idéaux
[1 g [2 g )

et comme 1’anneau O¢r o est noethérien, la suite se stabilise. S’il existe un nombre K tel que 1 € I,
I’algorithme s’arréte, et I’estimée sous-elliptique est obtenue.

Kohn donne aussi une interprétation géométrique des idéaux de multiplicateurs sous-elliptiques
qui sont produits par cet algorithme. En utilisant le théoreme de Diederich-Fornass (Théoreme 1.35),
le fait que 1’algorithme se termine avec 1 € Iy pour quelque K équivaut a dire qu’il n’existe pas de
germe de variété analytique complexe contenu dans bS) et passant par x. Dans un domaine spécial
avec x := 0 € b}, cela revient a demander que ’intersection des germes de variétes analytiques
complexes

D{FZ- =0} = {0} (1.0.3)

consiste uniquement en le point origine. Dans le langage de la géométrie analytique locale,
I’intersection totale des variétés définies par les F; est équivalente a la finitude de la dimension de
I’espace vectoriel quotient suivant

dimeOcn o/ (Fy, ..., Fy) i= s < c0. (1.0.4)

Une question pertinente, ¢’est I’existence d’un processus effectif qui termine 1’algorithme de Kohn si
la condition (1.0.4) est satisfaite. Pour un domaine spécial dans C"”, 1’énoncé de Siu dans son article
[Siul0] est suivant:

Théoreme 1.0.5. [l existe un nombre explicite m qui ne dépend que n et s tel que I,,, = Ocn .

Le but de cette partie de la theése est la vérification de ce theoreme pour le cas n + 1 = 3, avec
approfondissement de la méthode de Siu. Le théoreme suivant exprime la régularité € en fonction de
s:

Théoréme 1.0.6. Soient (21, zo, 23) les coordonnées holomorphes dans C3 avec z; = x; +v~1y;. Pour
N > 2, soient Fi,..., Fy des germes de fonctions holomorphes en (21, z2) dans Ocz  qui s’annulent
a lorigine, tels que

dim¢ ﬁC270/<F1, o BN = s < o0

Soit Q) C C3 le domaine spécial défini par

Q= {(zl,zQ,23) € C?: 2Re(z) — Y |Filz, ) < O.}

1<i<N

Alors, I’algorithme de Kohn se termine en au plus 4s* — 1 étapes. De plus, pour tout ¢ € P 1(Q) a
support compact,

llZ < 011 + 101" + lIglI*,

1

2(452—1)5+332(452 _ 1)4(2?:1) ’

€2

En revanche, la méme méthode ne peut pas s’ appliquer aux dimensions supérieures n+ 1 > 4. Le
probleme réside dans 1’assertion [Siul0, page 1234]:

9



Assertion 1.0.7. Soient F1, ..., Fy des germes de fonctions holomorphes sur C" qui s’annulent a
Iorigine telles que l'idéal engendré par les F; contient m¥ pour quelque nombre effectif E (ici,
m est l'idéal maximal unique de I’anneau local Ocn ). Pour tous 1 < 13 < --- < 1, < Net
1< g1 < < g, < n, soit J, 'idéal engendré par

O(Fy,..., F)
8(22‘1., e 7ij) ’

Alors il existe un autre nombre effectif E' tel que cet idéal J, contient m”'.

Cette assertion a un contre-exemple direct: dans C? avec ses coordonnées holomorphes (21, 2o, 23),
il suffit de considérer I’idéal (zy, 23, 23).

La derniére sous-section de cette partie donne des exemples de domaines spéciaux dans C? avec
terminaison effective de I’algorithme en deux étapes. Soient F' et GG des polyndmes homogenes en
deux variables (z,w). Sous I’hypothese que I’intersection des variétés

(F=0}n{G=0}:={0}

ne consiste qu’en le point-origine, en utilisant des résultant, avec une hypothese de généricité, deux
étapes suffisent.

Théoreme 1.0.8. Etant donné deux polynomes homogénes F, G € C[z,w] génériques tels que

Resultant(F, G) # 0,

il existe une transformation linéaire inversible A : C* — C? tel que I’algorithme de Kohn se termine
en deux étapes pour F o A et G o A.

1.0.2 Deuxiéeme partie: Tenseur de Hachtroudi-Chern-Moser en géométrie
CR

La deuxieme partie est consacrée au calcul des invariants des variétés CR dans diverses situations. La
premiére situation est de déterminer I’existence des lieux CR-ombilics pour les ellipsoides dans C2.
La deuxiéme partie est la géométrie des hypersurfaces réelles M dans C"*! qui sont lorentzienne,
d’apres le travail de Bryant [Bry82]. Dans cette partie, en cherchant les équations explicites qui
permettent de trouver les champs de vecteurs possibles pour les courbes holomorphes plongées dans
M, les composantes de I’invariant de Chern-Moser peuvent étre calculées. Dans la troisieme partie,
étant donné les équations aux dérivées partielles:

Ygpagh = FOéﬁ(x’Y’ Y, yx‘i) (lga,ﬂ,'yﬁgn),

nous reconstruisons l’invariant Sgg associé a ces équations, trouvé par Hachtroudi dans sa these,
soutenue pendant I’entre-deux-guerres sous la direction d’Elie Cartan. Ensuite, le tenseur S gg sera

adapté pour le cas ou I’hypersurface réelle M est donnée par une équation définissante implicite
=0.

1.0.2.1 Les lieux CR-ombilics des ellipsoides dans C*> Pour n > 2, I’espace complexe C" qui
s’identifie avec R?", est équipé des coordonnées holomorphes (z1, ..., 2,) ol 2; = x; + v=1y;. Un
ellipsoide est I'image de la sphere de rayon 1:

S ={2ecC": |nu)*+ - +|z|* =1}

10



sous une transformation affine de R?". Un tel ellipsoide est donc défini par une équation de la forme

1<Z< (ova? + Biy?) =1, (1.0.9)

N

ou les ay; > 3; > 0 sont des constantes réelles. En changeant les variables

Zi Zi/\/E7

puis en posant a; := «;/3; > 1, ’equation (1.0.9) se transforme en

> (wx?+yl) =1 (1.0.10)
1<i<n
Ensuite, avec
i 1<i<n).
2&1' + 2

qui satisfont 0 < A; < 1/2, le deuxieéme changement de coordonnées

conduit a I’équation finale d’un ellipsoide considérée par Webster [Web00]

> (zzzz + A(22 + zf)) = 1.

1<isn

Avec ce formalisme, pour n > 3, et si les A; sont choisis génériquement avec 0 < A; < --- < A, <
1/2, Webster démontre qu’il n’y a pas de point CR-ombilics.

Dans C? avec z = 2+ =Ty et w = u++=1v, Huang et Ji dans leur article [XS07] ont démontré que
les ellipsoide de C? ont toujours au moins 4 points CR-ombilics. La deuxieme partie de cette these
établit le résultat nouveau suivant, montrant que I’ensemble des points CR-ombilics est de cardinal
infini. Ce résultat, qui est dans un travail en commun avec Professeur Merker et un doctorant The-Anh
Ta, va apparaitre dans Comptes Rendus Académie des Sciences:

Théoréme 1.0.11 (cf [FMT])). Pour a > 1 et b > 1 avec (a,a) # (1,1), soit v(0) la courbe
parametrée par 0 € R a valeur dans C* = R*:

v 0 — (2(6) + v=1y(0), u(f) + v=1v(0))

| a—1 _ fbla—1)

alab—1) ——cosf, y(0) = T sinf),

b—1 a(b—1)
1/ bab—1) ———sin0, ( \/ 1 cos@.

Alors son image ~(R) est contenue dans le lieu CR-ombilic

ou

Y(R) C Umbcr(Eap) C Eap,
ou E,, est Iellipsoide défini par

az® +y° + bu? + 0% =1,

11



L’idée de la preuve est de considérer les fonctions suivantes,

H(ﬁ) = pipww - 2pzpwpzw + pi}pzz?
L(p) = pupspuws — PPiPrw — PzPuwPei + PwPiPzz-

- [ |
T (42 (1) 2 (4 (1)
e w2 ()] )
O (4) 1 (41) (1) [ ()] 2 (1)

qui s’annule sur la courbe ~y(6), et par conséquent, I’ellipsoide contient des points CR-ombilics.

avec I’invariant

1.0.2.2 Courbes holomorphes dans les hypersurfaces réelles lorentziennes — d’apres Bryant
Soit M une hypersurface réelle dans C" ™! localement définie par une équation définissante r = 0, et
soient (21, . . ., Z,, w = u+v=1v) les coordonnées holomorphes de C"*'. Dans cette partie, la variété
M est supposée rigide, c’est-a-dire qu’elle est de la forme

7’::U—F(I'l,.--,xn7y1,--‘7yn):0‘

Les champs de vecteurs suivants pour 1 < k < n

9 E, 0
L= 0z +M—Fvav’
— 0 F 0
L = + k

0z, —H—FU%

forment des reperes de 710 M := CTMNTYOC" ! etde T M := CT MNT%'C"! respectivement.
En revanche, un co-repere de CT'M naturel est défini par

F, F,

0 = —dv+ — 2 dy, + —k—dz,
! 1<Zk:<nr F, “* 1<zk:<n_\/—l—Fv “

0F = dz,

0 = dz,

ol k est compris entre 1 et n. Evidemment, les 6* engendrent 7% M et les 6* engendrent 7% M.
Par un changement des co-reperes, la 2-forme df peut s’écrire

d) = y=i(£a' Aa' £ ---£a" A@") mod 6.
La variété M est dite lorentzienne si la signature de df est (1,n — 1), ou autrement dit,
d) = v=i(a* Aa' — -+ —a™ A@™) mod 6.

Soient o7 et 7, les champs de vecteurs qui sont duaux de o et @' respectivement. S’il y a une courbe
holomorphe ¢ : D — M qui est contenue dans M, le champ de vecteurs .Z ;) qui est tangent a ¢(ID)
est donné par

0
Ly = >, (1)

7
1<i<n+1 0z;

= fi(t,0)h + - + folt, 1),

12



pour quelques f; correspondant au changement de reperes. Ce champ de vecteurs est dans le noyau
de df qui est une forme quadratique, et donc

‘f1|2 - ‘f2|2 - ‘fn’Q = 0.

Puisque ¢ est une immersion, la fonction f; ne s’annule pas a I’origine, et alors en divisant partout
par fi, I’équation d’une sphere est obtenue.
L’idée de Bryant est de traiter les f;/f; comme des inconnues, et d’introduire de nouvelles vari-
ables Aq,...,\,_1 qui satisfont
> NP =1

1<i<n—1

Donc, ces ); constituent des coordornées locales du fibré en sphére M x S?"~3 au dessus de M. Dans
le formalisme des co-reperes, le systeme de Pfaff suivant est établi:

W=,

wl o= al,
W= af = A\t
ofF = at,

oF ak — \.ab.

Il existe des fonctions Ly, telles que si 7 est la 1 forme

T = — Z j\kd)\k—l— Z j\kch_Yl— Z )\kEkOél,

2<k<n 2<k<n 2<k<
sa tirée en arriere ¢*7 par ¢ au disque ID est zéro. Pour le cas n = 2, le fibré en spheres est M x S!,

avec |A| = 1. Si

est I’idéal engendré par ces 1-formes, la 2-forme d7 modulo 7,
dr = —[ap\* + da A + 6ag + 4a )\ + ax\?] w' Aw' mod I,
est un polyndme en (A, \), et par la théorie de Chern-Moser, les as, a1, ag font partie du composantes

du tenseur de Chern-Moser. La section suivante donne une formule explicite pour ces coefficients.

1.0.3 Tenseur de Hachtroudi-Chern-Moser pour les variétés CR

Dans la derniere partie de cette these, soient (z',..., 2", ) les coordonnées de C™"!. Le but est
I’étude d’un systeme d’équations aux derivées partielles

Ygogs = Faﬁ (:U’Y’ Y, yw5>7 (1<06=57%5<n)
avec la condition de compatibilité
FPe=F*0 Dy (FP) = Dys(F),

ou D, . est la dérivée totale

15) 0 0
+ A + Faﬁ x'y’ y Jx .
o K%@ (27, y,y 6)_0%35

13



Dans sa thése, Hachtroudi [Hac37] utilisait la méthode d’Elie Cartan pour obtenir I’invariant suivant

a,p
Fyﬁy;v

She

1
o a,e o & B a,e B ,€
—H((SPZFMW +5QZEF;TME +9 Zwae + 0, pr
o B B o d,e
22(5p5a+(5(5)Fy6y5.

T 1)(n+2)

Pour adapter cet invariant au cas CR, soient (z1, .. .,

de C"*! et M I’hypersurface réelle définie par r = 0. Pour 1 < k,l < n + 1, définissons

Hk,l =
Hyp:=

- [T'w Tw rzk 2]

- [rw Tw rzk Z

- rzl Tw Tzkw

- rél Tw rzkw

Notons A(r) le determinant de la matrice suivante

Sﬁa‘ld

A(r) -

Tz Tz, r2n+1
Hl,i Hl,ﬁ H1,n+1

. . . )
Hni Hn,ﬁ Hn,T—i—l

- rzkrwrzlw + rzkrzlrww]u

- Tzk rwrélw + rzk ril rww]-

Y20 ,Yze

)

Zn, Zn+1 = W) les coordornées holomorphes

et soit A; j11(r) le déterminant mineur de la matrice A(r) en enlevant la i-eéme colonne et la (j +
1)-ieme ligne. En ré-adaptant les raisonnements de la section sur les ellipsoides, nous retrouvons
I'invariant associé a I’hypersurface réelle M dans C"™! définie par une équation définissante r = 0:

_ Z Z T3n+1 ’ A(k70+1) (r) ai rin-}—l ’ A(l’ﬂ'i'l) (T) @— Ha,U
A(r) - A(r) NG A
1 (., 3 Dy () 72 Awsiny(r) . [ Hae
n+2 {‘@ (Z 2 A(r) Oz, A(r) & =
e Ay (1) [ A (r) H,.\]
07 ( 5 Do et g Vo Qa1 ( ) )
e \ Uk I A(r) "l A(r) : T§n+1 i
A (r) M3 A (r) H T
8 Znt1 (ke+1)\T B Zn41 (k,o+1) ) Qe
FOI (53 e T e ())
r3 A (ry [r3 (r) H \]T
8 Zn41 (ke+1) - Zn41 (k,o+1) 3 p,E
HIIE (535 P g, e T, () )}
3 A(k,e-ﬁ-l) r

—_

HCES )

)

Zn+1

’ A(k,(H—l)(T)

H, o,

S (878 + oP67) s
e 6 k 1

qui est une formule analogue a celle d’Hachtroudi.
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Chapter 2

Kohn’s Algorithm and Siu’s Effective
Methods

1 Kohn’s Algorithm — Introduction

1.1 The O-Neumann problem - a survey

1.1.1 The O equation One of the most important results in analysis in several complex variables is
the solution to the Levi problem. In summary, the theorem is as follows:

Theorem 1.1. Let O¢n be the sheaf of holomorphic functions on C". The following conditions are
equivalent for a domain Q2 C C":

1. Q is a domain of holomorphy,
2. Q is pseudoconvex,

3. forall q > 1, and for all smooth (0, q) forms o such that Oa = 0, there exists a smooth (0, q—1)
form u such that Ou = c. In the language of cohomology, H1(Q2, Ocn) = 0. [

Such an equation du = « is called the Cauchy-Riemann equation, and Kohn’s works study the
behaviour of the equation near the boundary.

1.1.2 Some settings Let (z1,...,2,) be holomorphic coordinates on C", and let 2 C C" be a
domain. Then a (p, ¢) form a on €2 can be expressed as
o = Z Z Qg Z'le,qu(Zl, ce ,Zn) dZii N A dZiP N del VANRICRIVAN dijq,
1< < <ipn 11 <--<Jg<n

or simply
o = Z /Z /OquZ]/\dZ],

Hl=p |J|=q
where the a;’s are functions on 2. Then « belongs to % (€2) the space of smooth (p, ¢) forms if
ayy s are smooth. The space €5 (€2) C 6, (€2) consists of smooth (p, ¢) form « that has a smooth
extension to a slightly larger open neighbourhood of 2. For f and ¢ that are (p, ¢q) forms which are
written as
f=2X"Y" firdsndz, and g = 2" "grsdar Nz,

[I|=p |J|=q |I|=p |J|=q

define the inner product

(fr9) == X "2 frgrrdi,

Hl=p|Jl=q JQ

15
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where d is the Lebesgue measure on C”. Then the space L%p’ o (§2) consists of (p, ¢) forms a such
that

[l = (,a) = "2 " [ Ja?dr < oo

Hl=p |Jl=q JQ

1.1.3  The O Operator Let a € 6;2(€2). The 0 operator is defined by

da == > Y Osaydz; Ndzy.

|J|=q 1<jsn

In the L? setting, the 0 operator is not a bounded operator as can be seen for L3 ,(€). For example, if
(2 is bounded, let

fn =€"% dz;, (i<j).
Then
5fn = ne”zi dgz A d?j.
Therefore,
10full? = n*[le"%||* = n?|| full?,

and so B

10fal®

Hf”2 =n° — +00 as n — +o0.

On the other hand, it may happen that there are some elements u € L(2),1(Q) such that Ju may not be
in Lj , (). For example, in C* with coordinates (21, 2p), write z; = x; + v=1y; fori = 1, 2. Let Q be
the open set of C? given by

Q= {(z21,20) €C*: —-1<m <1, —1<y <lfori=1,2}.

Let u € Lj,(Q) given by

u = \/1+$1d22.

Under the action of the J-operator,
1 _ _
W = —— dZ; NdZs,
2 1 + I

which is not integrable since

d\ = +oo.

_ 1
Bull? :/—
|G Q’4<1+x1>

This requires that d be defined on a suitable set Dom ,(3) C Lg’q(Q) given by
N — 2 . A 2

This set is dense in Lj ,(€2) since it contains all smooth (0, ¢) forms that are compactly supported in
Q. Also the operator 0 : Lj ,(Q) — L§ () is a closed operator in the sense of graph.
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1.1.4 The Hilbert Space Adjoint (‘?* The Hilbert space adjoint * of O on the other hand needs to
be defined on a certain set Domg 441 (9*) of L, (€2), given by

Domg,41(9%) = {ve L§, () : themap T, : Domg,(9) — C

given by u — (Ju, v) is continuous }.

With this, the action of 0* can be found by first applying Hahn-Banach theorem, followed by the
Riesz representation theorem. More precisely, Hahn-Banach theorem allows the unique extension of
T, to a continuous operator 7, : La ,(£2) — C. Then by Riesz representation theorem, there exists

the unique element, denoted by 9*v, such that for all f € L§ (<), T,(f) = (f,0*v). Then for all
u € Domg4(0), )
(Ou,v) = T,(u) = Ty(u) = (u,0"v).

1.1.5  Concrete description of 9* on %, (2) N Domg(0*) on bounded domains 2 Let ) C C"
be a bounded domain given by a ¥>° defining equation = {r < 0}, and assume that r is €"°.
For ¢ € 63 ,(Q) N Domg1(0*) given by ¢ = > ¢;dz;, the Hilbert space adjoint 9* has a geometric
description. In fact,

_ B of
or.0) = 5 [ LGy

- -2 [rEos s [ edtas

1<j<n 0z,

where dS is the surface measure on 0£2. Take a sequence of smooth functions f,, with compact support
so that f,, — f in L*(€Q). By definition that ¢ € Domg1(0*), the map f — (0, ¢) is continuous on
Domg ¢(0), and hence

(0fn, ¢) — (0F,9)

as n — oo. This easily implies that

/ FY 60 ds =0

1<j<n (92]
for all f € Dom070((fr)). Moreover, since ¢ and 6er are continuous on €2, the function

> ¢jﬁ

1<5G<n 0z
is therefore in L ,(€2) because €2 is bounded. This defines a continuous map
T:L5g(Q) — C

Q0 1<j<n Z]

Here L(Q)’O(Q) C L§ () is the set of all L* integrable functions on 2 such that they can be extended
to L? integrable functions on a slightly bigger open neighbourhood of 2. Hence, every element g
in L} ,(€2) may be approximated by elements in 6>°(€2) C L§ (), and in particular, there exists a
sequence g, € 6,°(€2) C L 1(€2) such that

Gn — > Oja— in L(z),o(Q)'

1<j<n aZ]
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Consequently, by continuity of 7', and the fact that 7'(g,,) = 0 for all n:

T( Z ¢]ﬁ) = limy, 00 T(.gn) = 07
1<$j<n 025

Jo

or

> 6

155%n 7 07

2
ds = 0.

Hence

2¢37’

o =
1<<n - 0%;

0

almost everywhere on b(2. Since qu% is continuous on bS), it is therefore zero everywhere.
1<j<n J

1.1.6 The Laplacian A Having introduced 0 and 0*, the laplacian A is given by
A= 00" + 89 I2,(Q) — L2, (Q),
defined on the domain

Domg 4(A) = {f € Laq(Q) : fe Domo,q(é), of € Dom07q+1((§*)
f € Domg4(0%), 0" f € Domg,—1(0)},

which is also a dense set. It is to be emphasised that this is not to be seen as a differential operator
but rather as an unbounded operator on the Hilbert space Lg’ ,(£2). For example, it is known that A
is a closed and self-adjoint operator in the sense of von Neumann. For the self-adjointness, one has
to show that not only A = A* on Domg ,(A) N Domg ,(A*), one also has to show that Domg ,(A) =
Domg ,(A*). These difficulties disappear if (2 is a closed, compact, complex manifold as every smooth
differential forms on €) are automatically smooth differential forms with compact support, and hence
the Hilbert space adjoint 0* is the same as the formal adjoint. Then the laplacian A as a Hilbert space
operator is in this case the same as the differential operator in the usual sense.

1.1.7 Pseudoconvexity and the closedness of R(0) Let 7' : X — Y be an unbounded closed
operator from a Hilbert space X to a Hilbert space Y defined on Domx (7') C X, which is assumed

to be dense in X. Let R(T") denote the range of 7'. Recall that 7" has closed range if R(T") = R(T).
There are several equivalent conditions of closedness of R(7").

Theorem 1.2 (See [CSO1], Chapter 4). Let T be as above. The following statements are equivalent:
1. R(T) is closed in X.

2. There is a constant C such that || f||x < C||Tf||y forall f € Domx(T) N R(T*).
3. R(T*)is closedinY .

4. There exists the same constant C such that ||g|ly < C||T*g||x for all g € Domy (T%) N R(T).
[

Let €2 C C" be a bounded domain which this time is assumed to be pseudoconvex. The following
result is due to Hormander:

Theorem 1.3 (Hormander’s Existence Theorem for 0). Let 2 be a bounded pseudoconvex domain in
C". Foreverya € L;q(Q), where 1 < p <nand1 < g < n, withOa = 0, there exists u € Liqfl(Q)
such that Ou = « and

gllul* < edllalf?,

where e is the Euler constant and 0 is the diameter of (). [
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As a consequence, there is a very important observation:

Corollary 1.4. Let Q be a bounded pseudoconvex domain of C". The range of 0 : Lfmq(Q) —
L%, () is closed.

p,g+1

Proof. Consider the following complex:

Ip,q 51%@{
L3 o(Q) =% L7 441(Q) == L 115 (9).

p,g+1

The theorem of Hérmander above implies that ker(d, ,+1) = R(9,,,). Since 0, 4.1 is a closed operator

in the sense of graph, ker(J,,4+1) is a closed subspace of L2, (€2) and hence so is R(9,,q). O

1.1.8 Consequence of Hormander’s theorem and closedness of R(0) Given that A : L (Q) —
L§ ,(€2) is a closed operator, its kernel ker A is a closed subspace of Lj ,(€2). Therefore, basic Hilbert
space theory shows that there is a decomposition

L3 () = ker(A) @ (ker A)*.

Moreover, (ker A)* = R(A*) = R(A) where the last equality follows from the fact that A is self-
adjoint in the sense of von Neumann. Therefore,

L3, (Q) = ker(A) @ R(A).

Hormander’s theorem implies that ker(A) = {0} (i.e. the operator A is injective). To see this, observe
that ker(A) = ker(9) N ker(9*) since it follows immediately from

(Au,u) = [|0ul* + [|0"ull*.

Next, observe that ker & N ker 9* = {0}. This is because if u € ker 0 N ker 0%, then by Hérmander’s
theorem, there exists v € L§ , ;(€2) such that Jv = u. Hence

[ull* = (u,u) = (0v,u) = (v,0"u) = 0,
so that u = 0. Thus the decomposition may be rewritten as
L3, (Q) = R(A).

The closedness of R(9) implies the closedness of R(A). This is because since 0 is closed, its kernel
is a closed subspace of Lg ,(€2) so that

13,(9) = ker(d) @ (ker(D))",
and ker(9)t = R(0*). Since R(9) is closed, by Theorem 1.2, R(9*) is also a closed subspace of
L5 ,(€2), and hence
L; Q) = ker(9) @ R(9").

By Hormander’s theorem, ker(d) = R(J) and so
Li(Q) = R(D) & R(9").

Let f € Domg 4(9) N Domg 4(
)

( 51*) which contains Domg ,(A). Hence f may be written as f = f; & fs
where f1 € R(0) and f, € R(0*

). Applying 0 and 0" to both sides lead to Of = Of, and 0* f = 0" f,.
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Hence both f; and f, belong to Domg ,(9) N Domg ,(0*). By Theorem 1.2, there exists a constant C
such that

1A < cloh)?
ILI2 < clan)?,

so that

1A%+ A0

Clofl* + llo* fill?)
ClofI* + |I3*f|| )
C((0f,0f) + (0°f,0°f))
C((Af, 1) < CIALIIAL

I1£1?

Al

Dividing || f|| from both sides,
IFIF < CIAF,

from which, combining with Theorem 1.2, implies that A has closed range. Therefore,
L5, (Q) = R(A)

and A : Domg4(A) — L ,(€2) is a vector space isomorphism.

1.1.9 Canonical solution to the O-Neumann problem Given that
A : Domg4(A) — L ()
is a vector space isomorphism, it has an inverse
N : L§ (Q2) — Domgg4(A),
sothat Ao N = idpz (o and No A =idpom,_,(a)- From,
f = 00°Nf + 0°ONT.
by applying 0 to both sides, and noting that 9> = 0,
of = 00*ONf,
it follows that B - S B
NOf = NOO*ONf = N(0*0+ 00" )ONf = ONJ.
Therefore, for any « such that Oa = 0, the equation Ou = « has a solution

u = 0N«

as can be easily verified from

Ou = 00*Na = 00*Na + 0*N da = 00*Na + 9*0Na = ANa = a.
=0
Moreover, the solution u is orthogonal to the kernel of J since for every v € ker 0,
(u,v) = (0*Na,v) = (Na,dv) = 0

This solution O* N« is called the Kohn’s solution, or the canonical solution to the -Neumann prob-
lem.
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1.2 The Cauchy-Riemann geometry of boundary and subelliptic multipliers

1.2.1 The Cauchy-Riemann Geometry of the boundary 0{2 Let 2 be a domain in C", and sup-
pose that the boundary 52 is a smooth manifold. Then a smooth real-valued defining function r is a
local defining function for €2 if b€ is locally given by the zero set of . More precisely, if p € b{2,
then 7 is a local defining function near p if there is a neighbourhood U, C C" such that

r: U, —R

is€°,r<0onQNUy,r=00nb2NUp,r>00nQ°NU, and dr # 0 on U,.
Assume moreover that 7 is real-analytic so that » may be expressed in terms of the convergent

power series
_ i1 in 5J1 Sin
P = D i imgiedn AU A B B

with 7(0) = 0 (i.e. 0 € bS2). The fact that r is real implies that

Vit inglyedn — Td1edn,ilyein:

The first few terms of the expansion of r is given by

r= Y mu+ y Tz o+ O0(z).

1<in 1<isn

By renumbering if necessary, 7, # 0 may be assumed. Then by a biholomorphic change of coordi-
nates
(217 “ e 7271) — (wl’ “ e 7wn> = (21’ RN 7Zn7177,121 + “ e + Tnzn>7

the function  may be re-expressed as

r = w, + w, + h(w,w)
2Re w, + h(w,w),

where h(w,w) = O(Jw|?). Renaming back to z, the real-valued, real-analytic defining function may
be assumed to be of the form

r = 2Re z, + h(z,2), (1.5)
with 1(z,2) = O(|z]?). For 1 < i < n — 1, both

ri = 0,7 =0,h,
77 - aiir = aiiha

vanish at the origin. Based on equation (1.2), for 1 < 7,5 < n — 1, define the following local frames
of CTC"

0 r, O
L, = - =
0z; s, 0z
L =T,
1 0
L, = ——t,
T, 0z
_ 1 0 1 0
T = L,—L,=— -
., 0Zn s, 0Z

The proposition below describes the commutator properties of the vector fields on b€
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Proposition 1.6. Let M be a real hypersurface of C" containing the origin. For 1 < i < n — 1, the
vector fields L;, L; and T defined above form a local frame of CI'M, and they satisfy the following
properties:

1. For1<i,j<n-—1,[L;,L;] =0,
2. For1l g Z,j g n — 1, [LZ,ZJ] = >\ijT; where

TiiTnTn — TialnTj — TpjTiTn + Tnalil;

/\ij =

[7?

The matrix A with the coefficients (\;;)1<; j< is called the Levi matrix. For the n — 1 by n — 1
matrix minor A\,_1 = (\ij)1<ij<n—1, at 0 € C™, observe that its coefficients are given by \;;(0) =
r7(0) since 75(0) = 73(0) = 0 by equation (1.2). Atevery point p € b2, each X € CT,°C" may be
written in terms of the local frames L4, ..., L, as

X = Z szz’p (LUZ'GC),

1<i<n

or sometimes in vector notation, X = (x1,...,x,_1,x,). If X is also tangent to b(), then x,, = 0.
Moreover, the Levi matrix, seen as a bilinear form when restricted to Tpl’ObQ X Tgvle, gives for every
XandY = (y1,...,yn) in T, b2 that

XA\Y™" = (xla cee 7$n71))\n71<y17 cee 7yn71)*7

which is also called as the Levi form.
The Levi form at a point p € bS2 has other descriptions. Let X and Y be (1, 0) vector fields on a
neighbourhood of p. It is also described as the following map:

AT X T°0 — CTM /T, °0Q & T bQ2 (1.7)

(X,,Y,) — [X,Y](p) mod Tpl’ObQ & T]E’le. (1.8)

This map is well-defined, in the sense that this is independent of the choice of vector fields X and Y
whose evaluation at p are respectively X, and Y. These two definitions of the Levi forms are related

by the following 1-form
V=IOT [eThn = VT D T, de}CTbQ-

1<k<n

This is a real differential form because on b(2, the equation is given by » = 0, and whose tangent
bundle is given by the vanishing of dr. Therefore

0 = drlcre = Orlcrea + Orlersa-

Hence
V—laT‘CTbQ = —v—lar|<c:rbsz = V—laT’CTbQ-

The one-form =10r satisfies the following identities

v=i0r(Ly) = ”( S dZ’“) ( - Zi>

1<k<n

T2,
= V1|1, ——71, | =0,
T

v=10r(L;) = 0,
corr) = (2 ran) (b - or)

1<k<n

= J4O
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Therefore, for local sections X and Y of the T°b) bundle, the Levi form may simply be recovered
by

Note that by the Cartan-Lie formula applied to =10,

v=1dor(X AY) = v=1iXor(Y) — v=1Y9(X) — v=10r([X, Y]).

Recognising that Or vanishes on T2 and T%'b() sections, an alternative expression of the Levi
form at p can be written as

ANXp, Yp) = (ﬁaér(p),Xp NY).

1.2.2 Kernel of the Levi form for pseudoconvex domains Recall that b() is pseudoconvex at
p € bS) if the Levi map in equation (1.7) is non-negative definite at p, and strongly pseudoconvex at
p if the matrix is strictly positive definite at p. The following definitions introduce the notions of the
kernel of the Levi form, isotropic cone of the Levi form, and the kernel of the Levi matrix.

Definition 1.9 (Kernel of Levi form). Let A denote the Levi form on the boundary 2. At p € b{2, the
kernel of the Levi form is the subspace of 7}, b2 given by

K0(09) == {X, e T)°0Q : 0=X(X,,Y,) forall Y, € T, °bQ}.

Definition 1.10 (Isotropic cone of the Levi form). At p € b2, the isotropic cone of the Levi form is
given by
COQ) = {X, € T,°bQ2: 0= A(X,, X,)}-

Proposition 1.11. Ler bS) be the boundary of a domain €} C C". Suppose that it is pseudoconvex at
p € bSY, then the kernel of the Levi form and the isotropic cone of the Levi form are the same, in other
words

K0(0) = Cp0(be2).

Proof. The containment /(-°(b2) C C;°(bS) is trivial. For the reverse, since \ is pseudoconvex at
p, it follows from the Cauchy-Schwarz inequality

M, )2 < ALK, Xp)[ - MY, Y5

that if X, lies in the isotropic cone of the Levi form at p, then immediately it belongs to the kernel of
the Levi form. O

The following proposition is clear and will be stated without proof.

Proposition 1.12. Let bS) be the boundary of a domain €2 C C". Suppose that it is pseudoconvex at
p € bS), then X, € CK;’O(Q) if and only if the vector X,, - \ annihilates the first n — 1 columns of the
Levi matrix.

Definition 1.13 (Definition of /V,.). For the rest of the introduction, to follow the exposition of Kohn’s
paper [Koh79], N, will be used to denote the isotropic cone, or the kernel of the Levi matrix, whenever
pseudoconvexity is assumed.
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1.2.3 Subellipticity of A and regularity of the canonical solution As explained earlier, the pseu-
doconvexity condition of the bounded domain 2 C C” implies the existence of Kohn’s canonical
solution to the 9-Neumann problem:

ou = a, (da = 0),

with u a (0, 1)-form. Suppose that o € 2, and o € L ,(2) (or L ,(€2)) so that it is smooth in a
neighbourhood of , then the question is whether Kohn’s canonical solution to the J equation is also
smooth in some neighbourhood of xy. A sufficent condition for this to hold is the notion of subelliptic
estimates for the A operator.

Definition 1.14 (Subelliptic Estimates). If z € €2, the 9-Neumann problem for (p, ¢) forms satisfies
a subelliptic estimate at x, if there exist a neighbourhood U C C" of x(, and constants ¢ > 0 and
C > 0, such that for all

¢ € .@pg(U) = {¢ € Domp,q(é*) : ¢1J € (gcoo(Uﬂ Q)},
the following estimate holds:
lelz < c(lloal* + o7ol* + llol*). O (1.15)

Here ||-||? denotes the Sobolev norm of order €. To ease some notations, given any two (p, q)-forms
¢ and 1, let Q(¢, 1) denote the bilinear pairing

Q(¢,¥) = (09,00) + (9"¢,0")) + (¢,7).

A consequence of the subelliptic estimate in equation (1.15) is the following theorem which answers
the question of local regularity of the canonical solution to the 0 equation:

Theorem 1.16 (Kohn-Nirenberg, see [Koh79]). Suppose that Q0 C C" is a bounded pseudoconvex
domain with € boundary. Assume also that equation (1.15) holds at vy € Q. If a € L2 () is
smooth in a neighbourhood of xy, then N« is also smooth in a neighbourhood of x,. More precisely,
if v is in H® (which is the Sobolov space of order s) in a neighbourhood of x¢, then Noo € H*** and
O*Na € H*e. O

A point to emphasise is that the smoothness of the solution is guaranteed only when such ane > 0
exists. For xq € (), subelliptic estimates always hold with ¢ = 1, as A is elliptic on the interior of
Q2. The problem appears when z, € 0{). The following definition will then be used to explain in
the next paragraph the relation between subelliptic estimates and the tangential subelliptic estimates
when z, € bQ2:

Definition 1.17. For ¢ > 0, let £7(¢) denote the subset of (2 consisting of elements x, such that there
exists a neighbourhood U of xy on which equation (1.15) holds.

1.2.4 Tangential Sobolev Norm Kohn, in the paper [Koh79], shows that for xy € b, the subel-
liptic estimate in equation (1.15) can be reduced to the study of regularity property near the boundary
of 2. For this, the tangential Sobolev norm needs to be introduced. Let 2 C C™ be a bounded domain
with smooth boundary, and let zy € b€). Assume that in a neighbourhood U C C” of x, the boundary
b2 N U may be defined by a defining function @ N U = {r < 0} so that dr does not vanish anywhere
ontheset {r =0} = Q2 NU.

By the Implicit Function Theorem, there exists a change of local coordinates on U such that with
the new system (ty,...,t,1,7) € R?"1 x R = C", the boundary b2 N U is given by 7 = 0. The
tangential Fourier transform is then given by

f(T, r) = (27?)%2_1 /11{2”—1 e~ VoIbT f(t,r) dt,
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where t := (tl, . ,tgn_l), T = (7'1, e ,Tgn_l), andt -7 := Zlgién tZTz
The tangential pseudodifferential operator of order s is given by

1 .
Nf(tr) = —F= / VT (L4 |7P) 2 f (7, r) d,
(271') 2 R2n—1

and the tangential Sobolev norm of order s is defined as

0
= [ R aa.

For a (p, ¢) form ¢ = ZIIl:pZ‘,J‘:q¢1J dz; N dzy, its tangential Sobolev norm of order s is

lgllls = IZ' | Newsll3-

Il=p |J|=q

Near the boundary, the subelliptic estimates as in inequality (1.15) can be expressed entirely in terms
of tangential Sobolev norm instead of the Sobolev norm.

Proposition 1.18 (See [Koh79]). Fore > 0, if xg € IS, then o € &(¢) if and only if there exists a
neighbourhood U of xy and a constant C' > 0 such that for all ¢ € 2, ,(U),

o]l < C Q(g,¢). O (1.19)

Since for the rest of the introduction z is always assumed to be in the boundary b2, equation
(1.19) will also be referred to as the subelliptic estimate of A without much ambiguity. This definition
appears in several literatures such as in [D’A93].

1.2.5 Subelliptic multipliers To solve the O-Neumann problem for bounded pseudoconvex do-
mains, Kohn introduced the notion of subelliptic multipliers.

Definition 1.20 (Subelliptic multipliers). Let €2 be a smoothly bounded pseudoconvex domain in C"
and let 2y € (2 be a point. Let 47 denote the ring of germs of smooth functions at that point. An
element g € 47 is called a subelliptic multiplier for (0, 1)-forms if there is a neighbourhood U C C"
of xy, and positive constants C' > 0 and ¢ > 0, such that

gl < CQ(¢,9)
forall ¢ € Zy1(U). The open set U, and the constants C' and ¢, depend on g. O

An example of a subelliptic multiplier is the following:

Proposition 1.21 (See [D’A93]). Let xq be a point in the smooth boundary bS} of the bounded pseu-
doconvex domain ) C C", which has a defining function r defined in a small neighbourhood U C C"
of xo. Then there exists a constant C' > 0 such that for all ¢ € Py 1(U),

lrolll} < CQ(¢, ¢).

Let J(x) C €, be the collection of all subelliptic multipliers at 9. Then J(z) is an ideal. In
fact, it is also a real radical ideal in the following sense: for any ideal I C ‘K;(f, the real radical of I,
denoted by radg([), is the set of elements g € €7 such that there exists a positive integer IV, and an
element f € [ so that

lg|Y < |f].

More precisely,
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Proposition 1.22 (See [D’A93]). Let 2 C C" be a bounded pseudoconvex domain and xy € bS2.
Suppose f € J(xo) so that there exist U C C" a neighbourhood of x, and constants Cy > 0 and
e > 0, with for all p € Z1(U),
I[folll2 < CrQ(¢,9).
If g € € be such that | g|N < | f| for some positive integer N, then there exists a constant Cy > 0
such that for all ¢ € Py 1(U),
lgollZn < CyQ(¢,¢). O

1.2.6 Vector and matrix multipliers Similar to subelliptic multipliers, there are also vector and
matrix multipliers.

Definition 1.23 (Vector Multipliers). Let zy € bS) be a point in the boundary of a bounded pseudo-
convex domain 2 C C™ with smooth boundary. A (1, 0)-vector field

0
v= ), vi——
1<G<n 025

is a vector multiplier if there is a neighbourhood U of z, and positive constants C' > 0 and € > 0
such that for all ¢ € Z,1(U),

€

An example of a vector multiplier is the following proposition:

Proposition 1.24 (See [D’A93]). Let o € bS) be a point in the smooth boundary of a bounded
pseudoconvex domain ) C C". Suppose that f € 6> is a subelliptic multiplier, that is there exist
U C C" a neighbourhood of x, and positive constants C' > 0 and € > 0, such that

I1foll2 < CQ(4,¢)
forall g € Py 1(U), then there exists a constant C' > 0 such that for all ¢ € Dy1(U),

of

1<7<n 0%;

2

< C'Q(9,0). O

€/2

oy

In other words, the (1,0)-form Jf is a vector multiplier. For example, since 7 is a subelliptic
multiplier by Proposition 1.21, Jr is also a multiplier with regularity ¢ > 1/2. Another example of a
vector multiplier is the first n — 1 columns of the Levi matrix.

Proposition 1.25 (See [Koh79], page 97). Assuming the hypothesis as in the definition 1.26. Each of

the first n — 1 columns of the Levi form X is a vector multiplier. In other words, there exist constant
C' > 0 and an open neighbourhood U C C" of xy such that for all $ € Zy1(U),

2 2
> Aiji < X > Aiji < CQ(¢, ).
Next, let A be an n x n matrix with entries in 4> given by
A = (aijh<ij<n, (aiy€55).-

The action of A on (0,1) forms ¢ = > ¢;dz; can then be defined in the usual way of matrix
multiplication

aixz 0 Qip ¢1

Ap = > ( > ajk¢k) dz;. = :
1<g<n \1<k<n
Ap1 Qpn ¢n
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Definition 1.26. Let x(; € b() be a point in the smooth boundary of a bounded pseudoconvex domain
1 C C>*. A matrix A = (a;;) is a matrix multiplier if there exist a neighbourhood U of z(, and
positive constants C' > 0 and € > 0 such that

1492 < CQ(¢, )
forall o € 2y:1(U). O

Also, given that A is a matrix multiplier in definition 1.26, its determinant detA is a subelliptic
multiplier with

I[(detd)ol[2 < C'Q(6, ).

For details, see [D’A93].

1.2.7 Constructing new multipliers from old ones The properties of subelliptic multipliers, vec-
tor multipliers and matrix multipliers allow the construction of new multipliers from the old ones.
For example, let fi, ..., f, be subelliptic multipliers. By restricting to a smaller open neighbourhood
U C C" of 2y € b5, and by choosing suitable constants C' > 0 and ¢ > 0, for all ¢ € Z1(U), and
1 <7 < n, it may be assumed that

I £id]]12 < CQ(6,¢).

By Proposition 1.24, each 0 f; is a vector multiplier with for all ¢ € %, (U),

10fi - dlllz. < CQ(,0) (1<isn).

Putting each of the vectors 0 f; as a row of the following matrix
Oufr -+ O 1

it is evident that for all ¢ € % 1(U),

I[A9[[I22 < CQ(p,9).

Taking the determinant of the matrix,

[/(det A)g[[1Z, < CQ(o,9).

Hence a new subelliptic multiplier det A is constructed from fi,...,f,. Moreover, some of the rows
in A may be replaced by some of the first n — 1 columns of the Levi matrix, or the vector Jr. Taking
its determinant also constructs a new subelliptic multiplier.

1.2.8 Kohn’s algorithm Let 2 C C" be a bounded pseudoconvex domain with smooth boundary
b2, and let xy € bS) be a point. Let U C C" be a neighbourhood of xy such that b2 N U has a
real-analytic, real-valued defining function b2 N U = {r = 0}, and dr does not vanish anywhere on
b2 U. Based on the discussions in paragraph 1.2.7 on constructing new subelliptic multipliers from
old ones, Kohn’s algorithm provides a systematic approach to construct ideals of multipliers.
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Definition 1.27 (Kohn’s Algorithm). The Kohn’s ideals of subelliptic multipliers are inductively de-
fined by

Jo(xg) = radg(det(pyp)),
Jir1(z0) = radr(Jy(wo), det(pi41)),

where (4 1s a matrix whose rows consist of either one of the first n — 1 columns of the Levi matrix
or the vector Or. Let p11 denote the set of matrices whose rows are either 0 f for some f € Ji.(x),
one of the first n — 1 columns of the the Levi matrix, or the vector Or. The notation det() then
represents the ideal generated by all the determinants of this form.

Observe that there is an increasing sequence of ideals in €57
JD(.CL’()) - Jl(ﬂfo) c ... C Jk(.lfo) C ... ad infinitum.

Say that Kohn’s algorithm terminates if there exists & > 0 such that 1 € Ji (), and therefore clearly
by definition, subelliptic estimates hold at the point xy. The termination of algorithm is related to the
presence of a holomorphic variety contained in b2 N U.

1.3 The geometry of Kohn’s algorithm — complex-valued, real-analytic case

1.3.1 The complex-valued, real-analytic case In this subsection, Kohn’s algorithm is to be seen
in the context of germs of real-analytic functions. Let xy € b(), and let .7, denote the set of germs
of (complex-valued) real-analytic functions at zo. If S C 7, then let (S) denote the ideal of real-
analytic functions generated by .S, and let radg (S) denote the set of all g € o7, such that there exists
a positive integer m > 1, and f € S such that |g|"™ < |f|.

Let [ C 4, be an ideal. Denote V() the germ of real-analytic variety defined by 7, that is take
f1,---,fx be generators of . Let U C C" be the open neighbourhood of zy on which f; is defined for
every ¢. Then

onvl) ={xze€U: fi(z) = - = fr(z) =0}

If v € V(I), let Z,(V(I)) denote the germs of real-analytic functions at = which vanish on V' (I).
The following results and definitions, which are analogous to those in complex analytic geometry,
will be mentioned without proof, and instead readers are referred to [Koh79]. They will be used to
explain the geometry of Kohn’s algorithm.

Theorem 1.28 (Lojasiewicz (Nullstellensatz)). If I C .o, is an ideal of germs of real-analytic func-
tions at 0 € R", then S, (V (1)) = radg(I). O

Proposition 1.29 (Weak form of Coherence). If I C o, is an ideal of real-analytic functions at
0 € R™ Assume that I = radgl. Then there exists a sequence of points x,, € V (I) such that x,, — 0,
and such that each x,, has a neighbourhood U, such that if y € U,NV (1), then .Z,(V (1)) is generated
by finitely many elements of I. O

Definition 1.30 (Zariski Tangent Space). Let I be an ideal of germs of real-analytic functions at x,
and let z € V(I). Define Z!°(I) be the Zariski tangent space of I at = by

Z2(I) = {LeTHC": (0f(x),L) =0forall f € I}.
For a germ of real-analytic variety V' at x(, define
Z0V) = 207V O

An immediate consequence of the definition of Zariski tangent space is the following lemma:
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Lemma 1.31. If I is an ideal of the ring of germs at xo and if v € V (I), then
Z.°(V(I) € Z,°(1). (1.32)
Moreover, if #,V (1) is generated by elements of I, then the inclusion is an equality.

Suppose that [ is generated by fi,...,f; a finite number of real-analytic functions. Then
701 = {LeTHC": (0fi(x),L)y =0fori=1,...,1}.
This is because every f € I may be written as

1<i<l

and hence

of = . fidh; + hiOf.

Onx € V(I),
Of(x) = 22 hi(x)0fi(x),

1<l
which is a linear combination of df;(x). Therefore Z!°(I) is determined by only a finite number
of linear equations. Without ambiguity, Z!°(7) may sometimes be referred to by Z0(f1,..., f;) if

(fi,-.., f1) generates I.
For the rest of the section, let Ji () be the ideals generated by Kohn’s algorithm for the ring .7,

instead of ;. The termination of Kohn’s algorithm is equivalent to the fact that that there exists &
such that 1 € Ji(zo), which in turn is equivalent to saying that V' (Jy(z¢)) = 0.

1.3.2 Holomorphic dimension Observe the following proposition:
Proposition 1.33. If x € V(J(x0)), then © € V (Jyi1(x0)) if and only if
dime(ZY0(Je(zo)) N N,) > 1.

Proof. Given that x € V(Ji(x0)), and suppose that dimc(Z,°(Jy(z0)) N N,) = 0. Let L =
S icienGilile € THOC™. Then L € Z,°(Ji(x0)) N N, if and only if L satisfies the following
linear equations

(Or(xz), L) =0,
= < i< —
g@A”CZ 0. lsysn—l (1.34)

> Li(f)¢ =0, f € Ji(xo).

1<i<n

The first equation says that L € T2, while the first two equation says that L € N,. The last
equation says L € Z10(Jy(2)). The assumption that Z,°(Ji(z0)) N N, is zero dimensional means
that the intersection of the hyperplanes defined by equation in (1.34) consists only of the origin in
Txl’O(C”. Therefore, there exist n hyperplanes from equations in (1.34), say Hy,...,H,, such that their
intersection is only the origin. Let ry,. .., r,, be row vectors that are either Or, or one of the first n — 1
columns of the Levi forms, or 0f for some f € Ji(z() such that r;(x) defines the hyperplane H;.
Putting the 7; as rows of a matrix A, the discussion above implies that detA(x) # 0, hence by the
definition of Kohn’s algorithm, detA € Ji.1(xo). Consequently, there exists an element det(A) in
Jr+1(zo) which does not vanish at z, and so « ¢ Ji11(x).

Conversely, if dime(Z,°(Jx(20)) N N,) > 1, then any of the n hyperplanes given by equation
(1.34) cannot be linearly independent at z. Hence for any n hyperplanes H1, ..., H, taken from the
same equation, if rq,...,r, are row vectors as before, and A be a matrix with row entries 7;, then
det A vanishes at z, and therefore = € V (Jy41(z0)). O
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The notion of holomorphic dimension was introduced by Kohn in his paper [Koh79] to further
understand the relation between subelliptic estimates and the presence of holomorphic varieties in the
boundary. The following is the definition found in the same paper.

Definition 1.35. If V' is a real-analytic variety contained in b(, the holomorphic dimension of V is
defined by
hol-dim V' = min,ey dimec Z2°(V) N N,. O

1.3.3 Zero holomorphic dimension implies termination of algorithm Let €2 be a bounded, pseu-
doconvex domain with smooth boundary, and let zy € b€2. Let U C C" be an open neighbourhood of
xo so that there is a real-analytic, real-valued function r on U, with U N b2 being the zero locus of r.
Also, by shrinking to a smaller open set U, dr may be assumed to be non-vanishing everywhere.

If for every real analytic variety V' C U N b£2, its holomorphic dimension hol-dim(V") = 0, then
Kohn'’s algorithm terminates. Note that there is no assumption that z, € V. More precisely, given the
hypothesis, suppose that at step k, the variety V' (Jy(x¢)) defined by the ideal J(xo) C <, generated
at the k-th step is non-empty, then it is claimed that

dim V(Jk(l‘o)) > dim V(Jk+1(x0))

Suppose otherwise, that is dim V' (Jx(x)) = dim V (Jx41(x0)). By the weak coherence property,
there exists a point © € V(Jx1(x)) € V(Jr(xp)) and a neighbourhood W, C U N bS2 of z in bS2
such that for every y € W, NV (Jy41(x0)), the ideal .7,V (Jy11(x0)) is generated by finitely many
elements of the set Ji1 ().

Then choose a smaller neighbourhood W C W, which does not necessarily contain z, and such
that both W NV (Ji(x0)) and W NV (Jyy1(z0)) are non-empty, and whose dimensions are maximal at
all points. This can be done since the set of singular points forms a thin closed set of W NV (Jy (o))
and W N V(Jgi1(z0)). From the set inclusion V (Ji11(z0)) € V(Jx(z0)) on W, and given that
the dimension of both spaces are equal, there is therefore a set equality W NV (Ji11(zg)) = W N
V(Jk(z0)) := X. Immediate from this, by Proposition 1.33, forall y € X,

dimc (Z,°(Ji(w0)) N N,) > 1.
Now, the proof concludes by showing that this would imply
hol-dim W NV (Ji(z9)) > 1,

and hence X, which does not necessarily contain x, is the variety with positive holomorphic dimen-
sion that is contained in U NbS2, and this contradicts the hypothesis that there is no variety V' C U NbS2
with strictly positive holomorphic dimension. Unravelling the definition of hol-dim W N V' (Ji(zo)),
it is equivalent to showing that at all y € W NV (Jy. (o)),

dime (2, °(F,(W NV (Je(x0)))) N N,) > 1.
By the coherence property, the ideal
Zy(V (J(0)))
is generated by Ji (o). By Lemma 1.31, there is an equality of vector spaces
Z, " (V (Je(20))) = Z,° (Jk(x0))-

By definition 1.30,
Z 2 (V (Jk(20))) == Z,° (L, (W NV (Jr(20)))),

and therefore, it follows easily that
dime(Z,° (S, (W NV (Ji(20)))) N N,) = dimc(Z,°(Je(20)) N N,) > 1.

After arriving at this inequality, the only possible conclusion is that the dimension of V' (Ji(xg)) is
strictly decreasing with respect to increasing k, and hence Kohn’s algorithm must terminate.
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1.3.4 Varieties with positive holomorphic dimension implies non-termination of algorithm
With the same hypothesis as in the previous paragraph, but this time assuming that there exists
V' C U NS of positive holomorphic dimension. The claim is that V' C V' (Ji(x)) for all £ > 0, and
the proof proceeds by induction. Since V' C U N b2, the variety V' lies in the zero set {r = 0}. On
the other hand, since hol-dim V' > 1, the dimension of the kernel of the Levi form )\ is at least 1 at all
y € V. Let A be the matrix whose rows are either one of the first n — 1 columns of the Levi form, or
the vector Or. Therefore det(A) vanishes at y, and V' C V' (Jo(xo)).

It follows that V' C V' (J1(x)) and the reason is as follows. Since hol-dim V' > 1, ateachy € V,
there exists a vector L € T,7°(C") which is not zero such that L € N, and (dg(y), L) = 0 for
all g € #,(V). Since V' C V(Jy(z0)), every function f € Jy(xo) also vanishes on V, and hence
V' C {f = 0}, which implies that L is also tangent to f at y. Thus (0f(y), L) = 0 forany f € Jy(xo)
. For any matrix A whose rows are either Or, or any of the first n — 1 columns of the Levi matrix,
or Jf for some f € Jy(zy), by definition of Kohn’s algorithm the determinant detA € J;(z) lies
in the first ideal, and therefore det(A) vanishes at all y € V. Hence, V' C V(J;(xo)) and the initial
induction step is done.

Now assume that for a certain k, V' C V(Jg(xo)). If ¢ € Ji(xp), then V' C {g = 0} and so
foreach y € V, Z,°(V) C Z°(V(Ji(x0))). But from equation (1.32), there is also an inclusion
Z, UV (Ji(20))) € Zy°(Ji(20)). In summary,

ZEV) € 22V (Jy(a))) € Z5°(Jelo))

By the assumption that
dime (Z,°(V) N N,) > hol-dim(V) > 1,

the inclusion above implies that
dime Z,°(Ji(20)) NN, > 1,

which by Proposition 1.33, shows that z € V(Jxi1(x0)). This completes the induction process.
Hence for all k, the set V' (Jx(zo)) can never be empty for all k£ and therefore the ideal Ji(x() can
never contain 1. This means that Kohn’s algorithm can never terminate. In summary

Theorem 1.36. Let ) be a bounded pseudoconvex domain with smooth boundary in C", and its
boundary is real-analytic near a boundary point py. Let Jy(x() be the sequence of ideals of subelliptic
multipliers at py constructed from Kohn’s algorithm. Then there is an integer k such that 1 € Jy(x)
if and only if there are no varieties of positive holomorphic dimension in any neighbourhood of py.
Therefore, there is a subelliptic estimate for the O-Neumann problem at py if there are no complex
analytic varieties of positive dimension in any neighbourhood of py. 0

1.3.5 The consequences of the Diederich-Fornzss theorem Another notion of the holomorphic
dimension is given in the paper of Diederich-Fornass [DF78], which is defined as follows. For a
variety V' C U N b§2, and for p € V, let Z;’O(V) be the Zariski tangent space as before, and IV, be
the kernel of the Levi form at p. The holomorphic dimension in the sense of Diederich-Fornaess at a
point p is given by

hol-dimpe (V') = supyy—yw (p)infuewny dime(Z,° (V) N Ny),

where IV is an open neighbourhood of p. The holomorphic dimension of V' in the sense of Diederich-
Fornaess is then given by

The Diederich-Fornaess theorem states the following:
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Theorem 1.37 (Diederich-Fornaess). If ) is pseudoconvex, if r is real-analytic in a neighbourhood
U of xo € bS), and if there is a real-analytic variety V- C U N bS2 with hol-dimy (V') > q, then there
exists a complex analytic variety W C U N b2 withdim W = q. O

The condition that the holomorphic dimension in the sense of Kohn is positive, i.e.
hol-dim(V)) = minyey dimc(Z,°(V) N N,) > 1,
implies anyway for any neighbourhood W of p € V, the following inequality holds:
infuewny dime(Z,°(V) N Ny) > 1,

and hence it satisfies the Diederich-Fornaess condition that hol-dim (V) > 1.

However, it is important to note that in the theorem of Diederich-Fornaess, it is not assumed that
xo € V, nor does the conclusion say that xy € W. The following theorem of Fornaess gives a
sufficient condition for which W contains z in the case where IV is a complex analytic variety with
strictly positive complex dimension.

Theorem 1.38 (Fornzss). If Wy, is a sequence of complex varieties with dim W, > q, W), C 1), and
xo is a cluster point of this sequence, then there exists a complex variety W such that dim W > g,

W C b§), and xq € W. O

Therefore, with these two theorems, the following result of Kohn summarises the discussion on
the geometry of subelliptic estimates:

Theorem 1.39 (See [Koh79]). Assume that ) is bounded, pseudoconvex with smooth boundary, xy €
bS2, and r is real-analytic in a neighbourhood of x(. Then the following conditions are equivalent (the
statement differs from the original result in that it is adapted for ¢ = 1):

1. 1 € Ji(xp)) for some k > 1,

2. There exists a neighbourhood U C C" of x( such that U N bS) does not contain any complex
analytic variety of dimension 1,

3. If W is a germ of a complex-analytic variety at xy such that W C bS2, then dim W = (.

Proof. The proof proceeds by 3 — 2 <= 1 =— 3. To show 1 implies 2, the termination of
Kohn’s algorithm is equivalent to the non-existence of real-analytic variety V' C U N b€ of positive
holomorphic dimension by Theorem 1.36. Since every complex analytic variety X C U N bS) of
dimension greater than or equals to 1 is automatically of positive holomorphic dimension, therefore
this implies by contraposition the non-existence of complex analytic variety of dimension 1 contained
in U N b€). To prove 2 implies 1, the hypothesis implies that there exists U C C” of xz( such that
U N bS2 does not contain any variety 1/ of positive holomorphic dimension by the Diederich-Fornaess
theorem (or otherwise, if U N bS) contains a variety with positive holomorphic dimension, then it will
contain a complex analytic variety with dimension at least 1). But by the same Theorem 1.36, this
implies that Kohn’s algorithm terminates, and the first set of equivalent conditions is proved.

Next to prove 3 implies 2, the proof proceeds by contraposition. Assume that every neighbourhood
U C C" of xp has U N 1) containing a complex analytic variety of dimension 1. Choose U, C C"
a sequence of open sets containing x, that converges to zy. Hence U, N D§2 contains a complex
analytic variety W}, with z( as the cluster point. By Fornass’ theorem, there exists W a complex
analytic variety with W C 02, dim W > 1 and xy € W, and hence the proof is done. Finally to
prove 1 implies 3, again proceed by contraposition, and this becomes clear: if there exists W C 02 a
complex analytic variety with dim W > 1 and xy € W, then for every neighbourhood U C C" of xy,
U N b§2 will contain a variety with positive holomorphic dimension, and therefore by Theorem 1.36,
1 ¢ Ji(xo) for all k. O
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1.3.6 Explanation of the Diederich-Fornzess theorem Before the discussion starts, here is an
observation:

Proposition 1.40. On some open subset U of a € hypersurface b2 C C" (pseudoconvexity is not
necessary in this case), if the kernel of the Levi forms at various points p € U gather as a certain
complex vector sub-bundles (identifying U with 0S) upon suitable restriction to a smaller topological
subspace)

K" bQ) C TH(bQ),
then the following three involutiveness conditions are satisfied
(KM (0Q), KX (0Q)] ¢ KY(bQ),
(K%' (0Q), K%' (bQ)] < K™'(bQ),
[KMO(602), K™ (62)] < K'°(bQ) @ K™ (b92).

Proof. See [MPS]. ]

Introduce the following notation
c . 1,0
K, (bS2) = Re K, (b2).

The Diederich-Fornaess theorem may be explained without difficulty 4*° submanifold V' C b of a
real analytic pseudoconvex boundary of 2 C C" is assumed to have a positive constant holomorphic
dimension (and hence independent of p), that is to say define

hol-dimy (V) := dim T,V N K, °(bQ) > 1.

Here TpLOV is understood to be the (1, 0)-tangent space of V' at p, and hence the definition of this
holomorphic dimension differs slightly from Kohn’s definition. On the other hand, if 0f2 is pseudo-
convex, by Proposition 1.11, this is equivalent to the null space [V, of the Levi matrix at p, so there is
no ambiguity here. The subscript “1” is used to make this distinction, but for convenience, it will be
dropped in the rest of this section.

Given this setting, the main point of the Diederich-Fornaess theorem is the involutiveness of the
Levi kernel when p + dimc K7(bS2) has a constant dimension, that is K75(b€2) is a real sub-bundle of
T'(b82). More precisely,

Proposition 1.41. In a € pseudoconvex boundary bS) C C", assume that a ‘€ submanifold V' C
bS2 has the property that the intersection of its tangent bundle with the ambient Levi kernel

TV = TV N K(bQ)|s
is a real vector sub-bundle of T(1S2), then
[D(T°"V), D(T™ V)] C T(T™V).

The proof of this proposition is done in several stages. To begin, the following lemma describes
the order of vanishing of the Levi form at a point p € bS).

Lemma 1.42. Let b2 = {r = 0} be a € boundary, which is pseudoconvex. Let p € b§) and let
2% € T(TH(bR)) be sections of T ) defined in a neighbourhood of p. If

2, € K0 (b)), and %, € K°(bQ)

then the Levi form
b3 qgr— N2, %)(q)

vanishes at least order 2 at ¢ = p.
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Proof. The proof reduces to studying the following map:
©: 23 qg— N2, Z2)(q).

By the pseudoconvexity condition, ¢(gq) > 0 for all ¢ € bQ2. Also ¢ is smooth since r is smooth.
As this map reaches the minimum at ¢ = 0, ¢ and its first derivative vanish at p, and this proves the
simple case.

For the general case, consider the following formulae

ReMZ.%) = Z[MZ+Y, Z+9)-NZL -¥, 2 %),

mMN2, %) = “[MZ +va¥, Z +v%) - NZ —va¥, X —v=%)].

N e

Since Z+%, 2 —%, X +v=1% and 2" — v/=1% belong to the isotropic cone, by the discussion
earlier, the order of vanishing of Re A(Z", %) and Im A(Z",%) at p is at least 2. Hence so is
MZ, ). O

Lemma 1.43. Let 02 = {r = 0} be a € boundary, which is pseudoconvex. Let p € bS) and let
2, € T(TH(bQ)) be sections of TH°0) defined in a neighbourhood of p. If

2, € K)'(bQ2), and ¥, € K (),
then there exists 2 € T(T"°(19))) defined in a neighbourhood of p so that
X+ X%+ = X+ Z +ul,
where the order of vanishing of v at p is at least 2.

Proof. An expansion of the expression on the left side of the equation yields

2+ X9+ = (X, Y+ X, Y|+ (2, 9]+ X, 7]

Write 2 := [27, %] which is a T'°(bS2) section, and hence so is its conjugate 27 = [2", #]. Next,
write o o
(2 Y] = + B+ T,

for some &/ and Z sections of the T9(b§2) bundle. By the previous lemma, y vanishes at p up to

order 2. Similarly, [2", %] is just the conjugate of 2", #|. Therefore,

2+ 2D +Y| = L+ (A +B+PT)+ (A +B+uT)+ 2,
= (LH+AI+B)+(H+A+B)+ (1 + )T

Setting 2 := 24 + &/ + % and i := 1’ + 4/ finishes the proof. O
Finally with these two lemmas, the proof of Proposition proceeds:

Proof of Proposition 1.41. To end the proof, pick p € V and let X, Y be tangent vector field near p
satisfying
X, € T,V N K (02) and Y], € T,V N K;(bQ)

for all ¢ near p. Since V' is a manifold, obviously [X, Y|, € T,V It remains to show that [X,Y]|, €
K(b92). To this effect, introduce

X =X—-y1J(X) and Y=Y —1J(Y),
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where J is the complex structure on 7T'C"™. These are sections of K°(bQ)|y, € THO(bS2)]y. Let T be
the section of the real tangent bundle 7'(bS2) satisfying 1 = v=10r(T'), so that T'|, ¢ T7;(bS2) for all ¢
near p. Hence
C @p T,(bQ2) = T,°(b9) & T, ° (b2) & CT|,.
Moreover, by Lemma 1.43 that
(X,)Y] = 2 +2Z,9 +%]
= X+ Z+uT,

where p vanishes on V' with order at least 2. It follows that for p € V,

(XY = 21, + Z1p-

It remains to show that 2|y, € (K (bQ)) in order to show that [X, Y] € T'(K¢(bS2)). But equiva-
lently, this amounts to showing that for any ¢ € V' that are near p,

MZ,Z)(q) = 0.
Writing ¥ := v=10r,

NZ.2) = 0(2,2)

= IW([Z + Lff]) B B

= W2 + 7. + ), Z]) - 9(uT. Z)).
The second term on the right vanishes on V', as

T, Z) = [T, Z] - Z (W1, Z],

and p vanishes on V' along with its first derivatives. For the remaining term, applying the Jacobi’s
identity to Lie brackets

(2 +Z,9+9).Z] = —[[#+%. 2,2 +2]-[[Z.2+Z)% +¥]
= .2, 2+2]-?,2..2]|-¥.Z],Z]
-z 21+ - [Z,2).2] - [Z.2).7]
Applying the Levi form ¥ = /=10 to both sides, the second, third, fifth and sixth terms on the right
vanishes because they belong to the 71002 @ T%!b() bundle. For the first term and the fourth on the
right, the argument for both is symmetric, hence it suffices to show the vanishing of the first term.
Write o .
Y, %)= + B+ vT.
By the assumption that %[, € T'(K'%Q)|y, v vanishes on V' so that V lies in the zero set {v = 0}.
Also, the assumption X |, € T,V implies that 2" is tangent to V" at ¢, and so it is also tangent to the
zero set {v = 0}. Consequently, both v and £ (v) vanish on V. Therefore, using 2X = 2"+ 2,

[% + 2, [@,_ﬂ = (X, AN+ 2, B)+ X, )+ | X, B
+U[2X, T) + 2X (v)T.

Applying the Levi form to both sides, the first and the fourth term vanish because they lie in 7°0Q &
T%1bQ), while the second and the third term vanish because .2 is in the Levi kernel. The last two
terms vanish because v and 2" (v) vanish on V. O

Proposition 1.41 is the main step of the Diederich-Fornaess theorem. Let S C b() be a real
hypersurface in C™ which contains V. The rest of the proof involves applying the Frobenius theorem
to the bundle TPV to obtain a submanifold V/ C V. Out of a closed set of V'’ of lower dimension,
there is a variety V' C V" that satisfies the property that locally there is a variety of the form C* x {0}
which is tangent to V" to infinite order, and hence S contains a complex variety. (c.f. [DF78],
proposition 3)
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1.4 Examples

1.4.1 Example 1: Strongly pseudoconvex domains Let {2 CC C" be a bounded pseudoconvex
domain with a smooth boundary €2, and assume that 0 € bS). Let U C C" be an open neighbourhood
of the origin so that UMb has a real-analytic defining function UN$2 = {r < 0}. By a biholomorphic
change of coordinate, » may be assumed to be of the form

r = Rez, + h(z,2),

where h = O(|z]?) forall 1 < i < n — 1, and both d,.h and 5, h vanish at the origin. Recall that the
coefficients of the Levi form )\ are given by
N TiiTnTa — TinTnl5 — TpjTila + rm—lrﬁ;'
Y |7 |?

At the origin, all the terms containing r; and r; vanish and hence
Aij(0) = 735(0).

This time, assume that 02 is strongly pseudoconvex at the origin 0, that is to say the Levi matrix at 0,
given by the coefficients (A;;(0)) = (7;5(0)), is strictly positive definite. The assertion is that there is
no holomorphic curve ¢ : D — b€) contained in bS) and passes through the origin 0 € b2. The reason
is as follows, write explicitly ¢ as

@t (1(t), -5 @alt)),

where each ;(t) is a holomorphic function in ¢. Then necessarily,

r(p1(t), .., on(t), o1(t), ..., on(t) = 0.
Taking the derivative with respect to ¢,

d

ET(QOl(t) e (pn(t)a Qpl(t)a ce 7§0n<t))

0

= 3" 20,70 -4l

i=1

Next, taking the derivative of the equation above with respect to ¢ to obtain

= ZZ 8zl 82] t), (1)) - £i(t) (L)

i=1 j=1

At the origin, the following equations are obtained:

Zaf(ow;(m -0, (1.4

Z 8%04 £i(0)¢5(0) = 0. (1.45)

ij

But equation (1.45) will not be satisfied if b( is strictly pseudoconvex at 0, as it would have been
strictly positive instead of being 0. Therefore, if b(2 is strictly pseudoconvex at the origin 0, then there
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1s no holomorphic curve passing through the origin. By Theorem 1.39, Kohn’s algorithm terminates
for strongly pseudoconvex domains and hence there is a subelliptic estimate. In fact, it has been
calculated before Kohn created this algorithm that there exists a positive constant C' such that for all

¢ € P01 (U),
6l < CQ.0).

For details, see [CSO1].

1.4.2 Example 2: Special Domains An important class of real hypersurfaces in C" for the study
of Kohn’s algorithm is the class of special domains. Let F(z1,...,2,),..., Fn(z1,..., 2,) be holo-
morphic function germs at 0 € C" vanishing at the origin of C". Let 2 € C"*! be an open set defined
by

Q= {(z,znﬂ) = (21, ..y 20, 2ng1) €EC"TH 2Re 2,00 — O |FIP < 0}.

1<i<N

Therefore, its boundary

) = {2Re Znp1 = D m\?} (1.46)
1<i<N

contains the origin 0 € C"*!, Its Levi form is a matrix whose coefficients are given by

O0F,, 0F,,

1<m<N 8ZZ aZj

)\ij =

and moreover, b() is pseudoconvex. Its determinant can be expressed as

det(\) = > Vac(Fy,, ..., F;,) %

1<i1 < <in <N

Therefore, det(\)(p) = 0 if and only if for every possible combination (i1, ... ,14,), Jac(F;,, ..., F;,)
vanishes at p. Kohn’s algorithm may be modified as follows:

Definition 1.47 (Kohn’s algorithm for special domains). Let (F7,. .., Fy) be an ideal of O¢n g, the
ring of holomorphic function germs at the origin. Associate with it a sequence of nested radical ideals

L CIL, C--- ad infinitum.
For each choice of g1, ..., g, in the ideal (F7, ..., F\), consider the Jacobian

82191 e azngn
det(g) := Jac(g1,...,gn) = det . :
azlgn ttt azngn

Let
If = (detlg): gi € (Fi...., )

and set [, = \/If the radical (in the usual algebraic sense) of Ifé . Inductively, once I; has been

constructed, let / ,f ', denote the ideal generated by I}, and det A, where A is a matrix whose row is

either of the form dg for some g € I, or OF; for some 1 < ¢ < N. Then let [, = \/],f be the
radical ideal. Note that the original functions F7, ..., Fy do not belong to the nested ideals. O]



38 Wei Guo Foo, Orsay University, Paris, France

The following subelliptic estimates ¢ are assigned to the following operations: for the vector mul-
tipliers OFj, let ¢ = 1/4 (see [Siul0]), and hence by Proposition 1.25, assign 1/4 to Jac(F;,, . .., F;,).
If the subelliptic multiplier f is assigned with ¢, and if ¢™ = f for some positive integer m, then
assign €/m to g. Finally, if every hy, ..., h, is a subelliptic multiplier that is assigned with ¢, then
assign /2 to Jac(hy, ..., hy).

To study holomorphic varieties contained in special domains, let ¢ : D — b2 be a holomorphic
curve given by ¢(t) = (¢1(t),...,¢nr1(t)). Since bS) is a special domain as in equation (1.46),
necessarily ¢, +1(t) = 0. The reason is as follows. Since p(ID) C £, there is an identity

Pnt1(t) + Pnta(t) — 1§<NF¢(90(t)) Fi(@(F) = 0.

If ¢;(w) is the polarisation of ¢;(¢), then necessarily

Pri1(t) + Gnir(w) — 20 Fi(p(t)Fi(p(w))

1<i<N

0.

Setting w = 0 leads to ¢,,+1(t) = 0 and this concludes the claim. Hence any holomorphic curve
v : D — b2 into special domains passing through the origin must necessarily satisfy

2 [Fi(ei(t), . en®) =0,

1<i<N

or equivalently, any holomorphic curve (D) that contains the origin 0 € C" is contained in the

common zero set of F}, i.e.
p(D) € () {F =0}

1<i<N

By a result which is to be seen later, this is equivalent to the finiteness of the intersection multiplicity
dim@ ﬁ((jn}o/(Fl, Ce 7FN> = s < Q.

Question 1.48. The question about Kohn’s algorithm is as follows: are there functions f(s) and g(s)
such that Kohn’s algorithm terminates in f(s) number of steps, and for some open neighbourhood
U C C™*! of the origin

6]l < CQe. )

forall ¢ € %y 1(U), with € > ¢g(s). Here the constant C' is independent of ¢. If such f and g can be
found, Kohn’s algorithm is said to terminate with effectiveness.

1.4.3 Siu’s effective method for special domains in C3, and problems with generalisation To
gain an understanding of Siu’s effective method for special domains in C3, consider the following
“model” space

2

\ A

B+ 2 ai(21)7) },
0<j<A—1

where A\ > 1. Here the aj.(zl)’s are holomorphic functions in z; that vanish at z; = 0, in other

words, 25 + Y a;(21)23 is a Weierstrass polynomial. Moreover, the intersection multiplicity can
0<i<A—-1
be calculated

bQ) = { 2Re Z3 = |Z1|2 +

dim¢ @c?,o/ <21,Z§\+ > aj(zl)z§> =\

0<i<A—1

The first step in Kohn’s algorithm consists of taking the Jacobian

Jac(zQ,z§+ > aj(zl)zg) :)\25‘—14- > jaj(z1)z§—17

0<j<A—1 Iy<Aa—-1
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whose multiplicity is assigned %. Then after A number of steps, the ideal I, contains the constant
function A\! which is invertible, and hence 1 € I,. Moreover, the subelliptic estimate is obtained with
£ = 4.2%. In this case, Kohn’s algorithm terminates with effectiveness.

This idea can be generalised, as shown in the article of Siu [Siul0]. Given Fi,...,F\ holomorphic
function germs at 0 € C™ that vanish at the origin. Assume also that their intersection multiplicity is
finite. The first step is to reduce N functions to the case of two functions by taking a suitable generic
linear combinations

A= > pi and B = > AL,

1<i<N 1<i<N

where 4; and \; are constant complex numbers. Let h be the reduction of Jac(A, B). Then choose
another generic linear combination

hy = Z ¢l

1<i<N

so that
dimcOcz/(h1, ho)

has effective upper bound. From h; and h,, a holomorphic function h, may be constructed so that
ha(0, z2) has an effective vanishing order at zo = 0. Moreover, hy(hy, 22) has an additional property
that it is a subelliptic multiplier, and hence by Weierstrass preparation theorem applied to h(z1, z2)
(forgetting about the unit),

Here A is effective. The rest of Siu’s argument consists of applying the Kohn’s algorithm to the
premultiplier /1, and the subelliptic multiplier hs(hy, 22), and the case is similar to the model case.
The following theorem appeared on Arxiv:

Theorem 1.49. Let (21, 22, 23) be holomorphic coordinates in C* with z; = x; + v=1y;. For some
N > 2, let Fi(z1, 22),...,F\(21, 22) be holomorphic function germs in Oz o vanishing at the origin
such that

dimc @02,0/<F17 L Fy) =8 < 0.
Let Q C C3 be the domain defined by
N
0= {(21,22,23) € Cg : 2Re Z3 — Z ‘E(Zl,ZQ)P < O} .
i=1

Then by Siu’s method, Kohn’s algorithm terminates in at most (4s*> — 1)s steps. Moreover, for any
¢ € Py1(Q2) with compact support,

olll2 < 19¢l* + 11976 11* + 11,

where
1

2(432,1)s+332(432 _ 1)4(2?:1) )

€2

Siu’s argument in the same paper [Siul0O] to generalise this idea to higher dimension has a main
difficulty. The problem lies in Proposition A3, page 1234 in Appendix, which he uses in his main
argument, and it says the following:
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Claim 1.50 (Proposition A3 in Siu). Let F1y, ..., Fy be holomorphic function germs on C™ at the
origin, vanishing at the origin such that the ideal generated by Fi, ..., Fy contains an effective
power of the maximal ideal of C". Let 1 < v < n. Let J,, be the ideal generated by

o(F;,,...,F;)
8(2’]’1, Ce ,ij)

forl1 <ip <--- <1, <Nandl < j; <---<j, <n. Then the ideal J, contains an effective power
of the maximal ideal of C" at the origin.

This claim is true only for ¥ = 1 as a result of the Brian¢on-Skoda theorem (see later chapter for
more information). The problem with v > 2 can be illustrated in the following simple counterexam-
ple: for n = 3, take F} = 21, Fy = 22 and F3 = 23. Take v = 2. Then

Jo = (29, 23, 2223)

which does not contain any powers of the maximal ideal of C? at the origin. Therefore, this thesis
only treats the calculations for special domains in C3.

In the next part of the thesis, the question is whether there is an example where Kohn’s algorithm
terminates in less than 6 steps for special domains in C*? This is a natural question since if J; C
Jy C --- are ideals generated from Kohn’s algorithm in the real-analytic case, then dim V' (J;) >
dim V(J3) > ---. Hence, Kohn’s algorithm should terminate a finite number of steps. For special
domains of the form

Re 23 = |F (21, 20)|* + |G (21, 22) |,

where F and G are generic homogenous polynomials so that the intersection { ' = G = 0} consists
only of the origin, Kohn’s algorithm terminates in 2 steps. The main idea is find a relationship between
the resultants of homogeneous polynomials and the Jacobian of homogeneous polynomials, and keep-
ing track of the resultants at each step of the Kohn’s algorithm. It also shows why taking radicals is
necessary for Kohn’s algorithm to work. Under the assumption that the resultant Resultant(F, G) is
not identically zero (which then leads to { ' = G = 0} = {0}), the first step of Kohn’s algorithm is
to take the Jacobian Jac(F, G) of these F' and G, and let .J4 be the reduction of Jac(F, G) (i.e. the
generator of rad(Jac(F, G))). The next step of Kohn’s algorithm is to take the following Jacobians
Jac(J4, F), and Jac(J4, G). Kohn’s algorithm terminates if either one of the resultants of any two
of the three J4, Jac(J4, F) and Jac(J4, G)) does not vanish, as this would imply that the solution set
of {J4 = Jac(Ja, F') = Jac(Ja,G) = 0} consists only of the origin, and hence by Nullstellensatz,
the radical of the ideal generated by these three elements is the maximal ideal (z,w). Then Kohn’s
algorithm terminates at the next step. Under certain generic conditions, the relationship between the
Jacobian and the resultant is the following formula

, Resultant(F', J4)Resultant(0,Ja, J4)
Resultant(w, J4)

Resultant(J4, F') = (—1) ,
where 7 depends on the degree of F' and G. The definition of the resultant of 2 homogeneous poly-
nomials may be found in chapter 2, section 9, paragraphs 9.1 and 9.2. Here it can be seen that if J4
is not reduced, then Resultant(0,J4, J4), which is the discriminant of J4, would have been zero, and
hence so is Resultant(J/ 4, F'). Kohn’s algorithm might then need to take more than 2 steps.

1.4.4 Other results For other examples where Kohn’s algorithm terminate with effectiveness,
D’ Angelo and Catlin introduced the triangular system in [CD10], which is defined as follows

Definition 1.51 (Triangular Systems). Let / be a collection of non-zero elements of m C O¢» . Then
H is a triangular system of full rank if possibly after a change of coordinates, there exist hg,...,h, in
H such that
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1. Foreach 1 < < n, and whenever j > 1, the derivative of h; with respect to z; vanishes, that is

gi = 0.
2. For each i with 1 < i < n, h;(0, 2;) does not completely vanish. O
Given that {hy, ..., h,} C Ocn forms a triangular system, they may be written in the form
hy = 21",
hy = 23" + z1901(21, 22),
hy = 23" + 21931(21, 22, 23) + 22932(21, 22, 23), (1.52)

The intersection multiplicity of the A;’s is finite, or more precisely, in [CD10],
dimg Ocno/ (b1, ... hy) =my---m,.

This is because the basis of the vector space @cnp/(hl, ..., hy) is spanned by {z{",..., 2% : 0 <

a; < m;}. The following theorem describes the effectiveness of the algorithm for the triangular
systems:

Theorem 1.53 (See [CD10]). There is an effective algorithm for establishing estimates for triangular
systems. Let hy,...,h, define a triangular system as in equation (1.52) . Then

1. There is a finite list of pairs of subelliptic multipliers (B1, Ay),...,(Br, Ar) such that B; =
Ay = det(0.,h;), and By, = A where By is invertible in Ocn .

2. Each Bj; divides a power of Aj, and the power depends on dimension n.
3. The length L equals to my - - - m,,.

Since subelliptic estimates depend on the presence of holomorphic variety contained in the bound-
ary, D’ Angelo has defined a way to measure the closedness of the all types of holomorphic varieties
that touch the boundary b¢2.

Definition 1.54 (A'(b92, p), see [D’A82]). Let (M, p) be the germ at p of a smooth real hypersurface
in C". Let 7, denote a generator of the principal ideal in 4 ° of functions that vanish on M. Then the
maximal order of contact of complex analytic one-dimensional varieties with M at p is the number
ord,(r, o z)

AY (M, p) =
(M, p) = sup, ord, -

where the supremum is taken over all possible holomorphic curve z : D' — C" that passes through
the p, that is z(0) = p.

A point p € b€ is of finite type (see [D’A82]) if there is a bound on the maximum order of contact
of one-dimensional varieties with the boundary at p, or in other words, A! < oo. With this definition,
Catlin has established in [Cat83]; [Cat84]; [Cat87] that the notion of finite type is a necessary and
sufficient condition for subelliptic estimates to hold:

Theorem 1.55 (Theorem of Catlin). Suppose (2 is a smoothly bounded pseudoconvex domain in C",
and p is a boundary point. Then the 0-Neumann problem satisfies a subelliptic estimate on (0, 1)
forms if and only if p is a point of finite type.
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Catlin’s theorem is a generalisation of Kohn’s theorem, as it does not involve anything about the
algorithm. The main idea and also the crucial step in proving Theorem is the following

Theorem 1.56 (Theorem of Catlin). Let () be a smoothly bounded domain, defined near a boundary
point p by {r = 0}. Suppose that there is a neighbourhood U of p such that the following holds: for
each & > 0, there is a smooth function ®s satisfying

1. |®5] <1lonU,
2. s is plurisubharmonic on U, so that its Hessian H(®s) > 0 on U, and
3. H(®s) = co* onUN{d <r <0},

then there is a subelliptic estimate of order < at p.

While the € obtained for triangular systems via Kohn’s algorithm is probably far from optimal,
Catlin and Cho [CC], and independently Khanh and Zampieri [KG14], have established some sharper
subelliptic estimates for certain specific triangular systems using the ideas in Theorem 1.55.

The problem with Kohn’s algorithm is that it terminates but not always with effectiveness. For
example

Proposition 1.57 (See [CD10]). Let (z,w, z3) be holomorphic coordinates of C3, and let 2 C C? be
a pseudoconvex domain whose boundary is defined by the defining function

7(2,Z) = Re 23 + [2M > + |[w" 4+ wz"|?

where K > M > 2 and N > 2. Then the root taken in the radical required in the second step of the
Kohn’s algorithm is at least K, and hence is independent of the intersection multiplicity.

Here, a summary of the reason is given in [CD10] as follows. For simplicity, let g := w® + wz¥.

By the assumption that K > M, the intersection multiplicity of z and g is given by
dim¢ ﬁ@2’0/<ZM,g> = MN.

If Kohn’s algorithm were to terminate, the expected subelliptic regularity € would depend only on the
intersection multiplicity M N. The first step of the Kohn’s algorithm consists in taking the Jacobian
of 2™ and g, which gives

Jyo= (Mg,

and hence its radical [; is generated by the element zg,,. Next by choosing the determinant of the

2 x 2 minor of the matrix
ZM-1 0

9z Juw )
29wz T Gw  ZGww

the ideal generated by zg,, and the two new determinants is given by
Jo = (29w, 2™ Guws 29:Gww — 20w Gaw)-
Let I, be the radical of J5, and it turns out that
I = (z,w)

which is the maximal ideal in O¢z, but 2! does not lie in J; (see [CD10] for more details). To
calculate the £, note that for all (0, 1)-forms in %, ;(U) for some suitable set U (for the rest of the
calculation, U will be ignored),

1Y gudl13 < Q6,6).
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Taking the radical means

legudl’, < Q6. 0).

The next two determinants give also

1Y guudlIPy S Q(6,0)

and
1(29: w0 = 29ugz0) @Il < Q(0,6).

Since the radical of .J; is the maximal ideal, there exists a large R such that 2f € J,. Therefore,

16117, < Q(6.9).

with R > K — 1. Taking the radical,

=6, < Q6.6).

The rest of the calculation is not necessary, as the ¢ obtained from the algorithm would satisfy

1
>
2 AMR

(R=K-1).

Since K is arbitrary, the € obtained here is not effective.

2 Local Geometry of Complex Spaces and Local Intersection
Theory

2.0.5  Throughout this section, we will study study the geometry of analytic varieties near the
origin.

2.0.6  Let Ocn o denote the ring of holomorphic function germs at the origin. It can be canonically
identified with C{zy, ..., z,} the ring of convergent power series.

2.0.7  Thering Ocn  is local and let m denote its unique maximal ideal, which can be characterised
by one of the following equivalent properties:

(1)
m:={f € Ocnp: f(0)=0};
(ii)
m=(z1,...,2.);

(iii) every holomorphic function germ f may be written as f = »_ k>1 Jk @ sum of homogeneous
polynomials f; of degree k.
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2.0.8  Foreachl € N, we define m'*! recursively by

m™ = m.m'

N
= {kagk: N eN, fkem,ngml}.
k=1

For any fixed [ > 1, the following conditions are equivalent:
(i) h € m;
(ii) for each (a4, ..., ) € N*suchthat oy + -+ -+« < 1 — 1,

(95 -+ 92rh)(0) = 0;
(iii)
m! = <z]f1~--z£": ky+ -k, =1);

(iv) h = ), hi. where either h; vanishes or is a homogeneous polynomial of degree k.

2.0.9 Multiplicity

Definition 2.1. Let i € O¢n  be a holomorphic function germ, which can be written as

h = ihk
k=0

a sum of homogeneous polynomials h;, of degree k. The multiplicity of i, which will be denoted by
multy h, is the smallest positive integer k for which A # 0.

2.0.10 By Paragraph 2.0.8((i) <= (iv)), the holomorphic function & lies in m' if and only if
multy i > [. In section 5, we will study the geometric characterisation of multiplicity of a holomorphic
function, and the extension of this notion to certain ideals.

2.1 Local Analytic Geometry

2.1.1 In this subsection, we let F,..., Fy be holomorphic function germs in Oc»  vanishing at
the origin. For easier exposition, we will not specify the domain of definition of the holomorphic
function germs.

2.1.2 Local Analytic Set, Germs of Analytic Space

Definition 2.2. A set X C C" is locally analytic if for any point p € X, there exists an open subset
V of p in C, and finitely many holomorphic functions f,...,fs defined on V, such that

XNV={zeV: fifx)=--= fs(x) =0}

Definition 2.3. A germ of analytic space (X, 0) is a germ at 0 of a locally analytic subset of C".

2.1.3  Any germ of an analytic space (X, 0) may be uniquely written as
(X,0) = (X1,0)U---U(X,,0)

a union of irreducible components', each of which is also a germ of an analytic space ([JP00, Corol-
lary 3.4.18, p 118]).

A germ of an analytic space (X, x) is irreducible if whenever (X, z) = (X1, z) U (X2, z) with (X7, z) and (X2, z)
germs of analytic spaces, either (X, z) = (X1, z) or (X, z) = (X2, ).
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214 (V(F),0),(V(F),0) and 7 (X,0).

Definition 2.4. Let F' € O¢n o. The germ of an analytic hypersurface (V' (F'), 0) is defined as follows.

Let U be an open neighbourhood of the origin on which F’ seen as a power series converges. Consider
V(F)={peU: F(p)=0}. Then (V(F),0) is the germ of V' (F') at zero, and is called the zero set
of F.

Definition 2.5. Let .#p = (Fy, ..., F\) be an ideal of O¢r . The germ of analytic space (V (%), 0)
is defined by

(V(£F),0) = [ (V(F),0).

Definition 2.6. Let (X, 0) be a germ of an analytic space. Then define

(X, 0) ={f € Ocnp: (X,0) € (V(f),0)}.

2.1.5 Properties of (V(.7r),0) and .#(X,0) Let Fi,...,Fy and Gy,...,Gy be holomorphic
function germs in Ocno. Let Ip = (Fy,..., F\) and I5 = (Gy,...,Gy) be the corresponding
ideals they generate. Let (X, 0) and (Y, 0) be germs of analytic spaces.

(i) Ir C J implies that (V(.#;),0) C (V(HF),0);
(ii) (X,0) C (Y,0) implies that .# (Y, 0) C .#(X,0);
(i) for any k& € N>, and for any ideal %, (V(#£),0) = (V(Fr),0);
(iv) for any germ of analytic space (X, 0), (V(.#(X,0)),0) = (X,0)

(v) (Nullstellensatz) & (V (), 0)) = / IF.
For ease of notation, let V (Fy, ..., Fy) or V(Zr) denote (V (ZF),0).

2.2 Local Intersection Theory I

2.2.1 We begin with the characterisation of complete intersections of germs of analytic varieties
at the origin.

Theorem 2.7. Let Fi,..., Fx be holomorphic function germs in Ocn o at the origin. The following
statements are equivalent.

i) V(... Fx) =1{0})
(ii) there exists a positive integer ¢ > 1 such that m? C Ir;
(iii) the number

d|m(C ﬁCTL70/¢]F =S
is finite;

(iv) there exists a positive integer p such that locally

N
2P S D IF
i=1

Proof. The proof proceeds in the following manner: (i) = (ii) = (iil) = (1), and (i1) <= (iv).

For (i) = (i), since V(Fi,...,Fy) = {0} = V(m), there is an equality of ideals
S (V(Fy,...,Fy) = #(V(m)). By Nullstellensatz, therefore m = /m = \/.%r. Hence there
exists ¢ € N3 such that m? C 7.
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For (ii) = (iii), the condition that m? C . implies that there is a surjective map of C-vector
space

ﬁ@nyo/mq — ﬁ(C",O/fF
fmodm? —— f mod .#f.

Hence,
dimg Ocn o/ Ir < dime Ocn g /mY,

and the proof is complete since dimcOcn / m? is always finite for ¢ € N;.
For (iii) = (i), it is needed to show that the set

{(avr,...,0,) €C": F(aq,...,a,) =0foralll <k <N}

is finite. To this effect, it suffices to show that there can only be finitely many choices for each «.
Since Ocn / J is finite dimensional, for each 1 < ¢ < n, there exists k; € N> such that the classes

ki
{1, zi, ..., 2"}
form a linearly dependent set in O¢n / #r. Hence there exist constants {c; o, . .., ¢; x, } such that

k;

Zcijzf = 0 mod jF-

=0
Thus there exists a holomorphic function h;(z1, ..., 2z,) € ZF such that
k;
Zcijzf—hi(zl,...,zn)zo (1<i<n).
=0

If (ovg,...,,) € Fp, then for all 1 < i < n,one has h;(aq, ..., qa,) = 0. Hence

ki
E Cl'jOég =0.
J=0

The equation above is a polynomial equation in degree k;, and so there are at most k; distinct solutions
for c;. This holds for all 7, and therefore V' (.#F) is a finite set. The proof is complete.

The implication (ii)) = (iv) is immediate. The converse will be proved after Skoda’s theorem is
introduced. The proof is reproduced from [Siul0, p 1179] [

Theorem 2.8 (Theorem of Henri Skoda). Let D be a pseudoconvex domain in C" and let x be a
plurisubharmonic function on D. Let g,...,q, be holomorphic functions on D. Let o« > 1 and
[ = min{n, m — 1}. Then for every holomorphic function F on D such that

/ FPlg| % < oo,
D

there exist holomorphic functions ha,. .., h,, on D such that

i=1
and

[ nRlgles < 2 [ Rt
D a—1Jp

where |g] = (X0 1g:[2)"? and |h| = (X0, [ha]?)'2.
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Finishing the proof of Theorem. For any non-negative numbers 7;,. . .,7y, with y1+- - -+, = (n+2)p,
Skoda’s theorem is applied with the following variables: F = z{*---z», m = N+ mn, x = 0,

n

(F1,...,F%,0,...,0) =(91,.--,9m), Ll =nand a = "T“ By the hypothesis in (iv),

N 2(n+2) N (n+2)
[t P S PP g <j£:|f1|> S <j£:|fﬁ|2>
=1

i=1

where the last inequality follows from Jensen’s inequality. Hence over a small pseudoconvex domain

D,
/ B 'Z;fn‘tz S / (i |Fi|2)(n+2) :/ 1 < oo.
P (s ipR)T T e (SL IR
Skoda’s theorem applies and therefore z]* - - - z7» € #r . Consequently, m("+2? C 7. ]
From the proof above, we obtain the following corollary.
Corollary 2.9. Let Fi,..., Fx be holomorphic function germs in Ocn o at the origin, and suppose

there exists p € N> such that
N
Eipial
i=1
in a small neighbourhood 0, then m 2 C 7.

2.2.2 The intersection invariants (p, g, s).

Definition 2.10. Let F},..., Fy be holomorphic function germs in Ocn o at the origin. The ideal
Jr = (Fy,..., Fy) is said to have finite intersection multiplicity with data (p, ¢, s) if

(i) p is the smallest strictly postive integer satsifying
N

2P S D IR
i=1

(ii) ¢ is the smallest strictly positive integer satisfying
m? C I,

(iii) s is following number below
dim(c ﬁ(cn@/fp =.S.

2.2.3 The relations between the intersection invariants.

Proposition 2.11. Let F},..., Fy be holomorphic function germs in Ocn o at the origin so that the
ideal they generate Sy has finite intersection multiplicity with data (p, q, s). Then we have the fol-
lowing inequalities:

. n+g—1
() g <s<("Fh),
() p<g<(n+2)p
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Proof. To prove ¢ < s, it is first observed that Ocx / S is also a local ring with the maximal ideal
m / . In the chain of inclusion of vector spaces with

Ocn m m \? m )5
— D — D | — D.... D 7
fF _fF_ JF - - jp

since Ocn / JF is an s-dimensional complex vector space, there exists a positive integer 1 < k£ < s

such that
k k+1 k
my (™ _ (MmN
(fF) (fF> (fF) (fF) '

m ’ i Ocro
jF jF '

By Nakayama’s lemma?,

0 n

Therefore, if g.. . .,gx are elements of m in Ocr g, then the class g; - - - g5 belongs to (m / fp)’c which
is the zero vector space. Hence the holomorphic function g - - - g, lies in . Since the g; - - - g
generate m”, the ideal m* is contained in .#5. By the definition of ¢, the inequality ¢ < k < s holds.

Next, for s < (”Zﬁ;l), this follows directly from m? C 7.
In the second set of inequalities, to prove p < ¢, observe that since m? C %y,

N
27 S D IFL
i=1

Hence, by the definition of p, p < gq.
To prove g < (n + 2)p, it follows from Corollary 2.9. O

2.2.4 Application of the relations of the invariants.

Lemma 2.12. Let F}, ..., Fy be holomorphic function germs such that the intersection multiplicity
of Ip = (F1,. .., F\) is finite with data (p, q, s). If h € Ocn o is a holomorphic function germ with
h(0) = 0, then h® € Ip.

Proof. Since h(0) = 0, the function A lies in m. Consequently, h* € m®. By ¢ < s, there is an
inclusion of ideals m® C mY. Therefore, h* € m®* C m? C 7. U]

2.3 Local Intersection Theory II

2.3.1  The case where N = n = dim C" brings another set of equivalent conditions for complete
local intersection of n holomorphic function germs Fi, ..., Fy—,.

2.3.2

Theorem 2.13. Let F, ..., F, be holomorphic function germs in Ocr o such that F;(0) = 0 for all
1 <@ < n. The following are equivalent:

(i) dim¢ @Cnp/(Fl, LBy =8 < oo

(ii) the holomorphic map of germs of analytic spaces

F:(C"0) —s (C",0)
21y ) — (Fiy... FY)

2The following version of Nakayama’s lemma is used: let A be a commutative local ring with 1, and m its maximal
ideal. For any finitely generated A-module M, if mM = M, then M =0
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defines a ramified s-sheeted analytic covering;

(iii) for each 1 < 1 < n, let €; be a small strictly positive number, and 1" be given by

Then the residue map of F' at the origin equals to s:

dFy A\ --- NdF,
R F: pum—
es /r FF 5

Proof. See [D’A93, p 60], [GH94, p 666—667], and [Chi89, p 140, Proposition 1] for discussion. [

2.3.3  We will show that given Theorem 2.13, one has multy Jac(F") < s — 1.

Theorem 2.14. Let h be a holomorphic function germ. If h € Y, then

/hdzl/\---/\dzn _0
. F - F, :
Proof. See [D’A93, p 64]. O
Corollary 2.15. Let Fy, ..., F, be holomorphic function germs in Ocn o vanishing at the origin,

whose varieties they define have complete intersection at the origin. Let F' be the map in Theorem
2.13(ii). Then Jac(F) ¢ (I, ..., F\).

Proof. By Theorem 2.13(ii1),

O%S:/dFl/\--J\an:/Jac(F)dzl/\--J\dzn‘
r r

F,---F, F,---F,
Hence Jac(F') ¢ (F1,. .., F,) by Theorem 2.14. O
Corollary 2.16. Let F,..., F,, be holomorphic function germs in Ocn o vanishing at the origin so that

the ideal 9 has finite intersection multiplicity with data (p, q, s). Then the multiplicity of Jac(F') at
the origin cannot be greater than or equal to s.

Proof. Suppose otherwise that multy Jac(F') > s, then Jac(F’) € m®. From the inequality ¢ < s, there

is an inclusion of ideals m* C m? C (F},..., F,). Hence Jac(F') € (Fy,..., F,), which contradicts
Corollary 2.15. 0

2.3.4 Miscellaneous Result We will state the following result which will be used later.
Proposition 2.17. Let fi,..., f,—1, f, and g be holomorphic function germs in Ocn o such that
dimec Ocno/{f1,- .., fo-1, [g) < 0.
Then
dimc Ocno/(f1,---, fo-1, fg) =dimc Ocao/{f1,- .., fa-1, [) +dimc Ocno/{f1, .-, fa-1,9)-

Proof. See [D’A93, p 60, Theorem 1] O]
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3 Ideals Generated by the Components of Gradient

3.0.5 In this section we shall study the ideals generated by the components of the gradient of a
holomorphic function. Let f € O¢n o be a holomorphic function germ such that f(0) = 0. In a first
moment, it will be shown that there exists a positive integer k with

of of
k
e{ =, ..., =).
In a second moment, more accurately, it will be shown that £ = dim C" = n works (optimally)
rendering £ effective.

3.0.6 Example In 1-dimensional complex analysis, every holomorphic function f(¢) with f(0) =
0 may be factorised as

F(¢) = ¢*(0),
where ¢(0) # 0. A differentiation yields

F1(¢) = " (kg(¢) +¢g'(Q)),

and hence f € (f’). Therefore, & = 1 works in this case. In the next few paragraphs we will recall
some notions in algebraic geometry.

3.0.7 Spec, Zariski Topology Let A be a commutative ring with 1. We let
Spec A := {p C A: pisaprimeideal in A}.
For every ideal I C A, set
Va(I) ={p € SpecA : I C p}.

The sets V4 (/) are defined as closed sets in Spec A, and the collection
{Va(I): Iisanideal of A}

defines the Zariski topology of Spec A. For principal ideals (f), Va((f)) may be written as V4 (f).
Therefore,

Da(f) = Spec A\Va(f) = {p € Spec A : [ ¢ p}
is open in Spec A. The collection

{Da(f): €A}

forms a basis for the open set in the Zariski topology. To see this, for any ideal /, one has

spec A\Va(I) = | ] Da(f).
fel

3.0.8  Foranyideal ] C A, there is a one-to-one correspondance between Spec A/ and V4 (/). On
the other hand, let f € A and Ay be its localisation. Every element in Ay is a class with representative
a/f* for some a € A and k € N. The two representatives a/f* and b/ f' are equal if there exists
J = 0 such that

flaf' =bfF) =0 (in A).

It is easily seen that like Q the quotient numbers of Z, A has aring structure, and there is a one-to-one
correspondance (as sets) between Spec Ay and D 4(f).
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3.0.9  Recall that a commutative ring with 1 is semi-local if it has only finitely many maximal
ideals. We state the following Artin-Tate theorem.

Theorem 3.1. Let A be a Noetherian integral domain. Then A is semi-local with dm A < 1 if and
only if there exists f € A such that Ay is a field.

Proof. See [GW10], page 562, Corollary B62. 0

3.0.10  Recall that the Krull dimension of A is given by
dim A :=sup{k: po & p1 & - & Pi}-

Moreover, if A is local, Artin-Tate’s theorem may be restated as follows: there exists f € A such that
Ay is a field if and only if dim A < 1.

3.0.11  For any germ variety V' (.#) defined by an ideal .# C Ogn, the Krull dimension of
Ocn o/ coincides with the usual intuition of dimension.

3.0.12  To see this, recall that the Weierstrass dimension of a germ of complex space (X, z) is the
least number £ such that there exists a Noether normalisation 7* : Ok, < Ox ,. Both the Weier-
strass dimension of (X, z) and the Krull dimension of O, := Ocn /. (X, ) coincide ( [JPOO,
Theorem 4.1.9, pp 131]). The Noether normalisation 7* is uniquely induced by the projection

m: (X, 2) = (CF 2)

of the germ variety (X, z) onto (C", z) with finite fibres. By [JP0O, p 129, Lemma 4.14], dim (X, z) =
dim (C*, ) = k. Hence to say that dim Ox, < 1 is to say that either X is of dimension 1 or 0 (but
the dimension need not be pure).

3.0.13  The following lemma is a restatement of the Artin-Tate’s theorem in more geometric terms.

Lemma 3.2. Let A be an integral Noetherian ring, and let (0) be a point in Spec A. Then the set
{(0)} is open in the Zariski topology of Spec A if and only if Spec A is a finite set and dim A < 1.

Proof. First, it will be shown that the singleton {(0)} is open in Spec A if and only if there exists
f € A such that Ay is a field. Then secondly, it will be shown that Spec A is a finite set and
dim A < 1if and only if A is semi-local (finitely many maximal ideals) and dim A < 1.

For the first assertion, suppose that {(0)} is open, then for some index A,

{(0)} = Dalf).

(ISHN

Therefore, (0) € D4(f;) for some i € A and hence

{(0)} € Da(f:) € U Dalf) = {0},

(1SN

so that {(0)} = Du(fi). By paragraph 3.0.8, this means that the ring A, has only (0) as its prime
ideal, and so Ay is a field. Conversely, if there exists f € A such that Ay is a field, then Spec Ay =
D4(f) ={(0)} as sets. Consequently, the singleton {(0)} is open in Spec A.

For the second assertion, suppose that Spec A is a finite set and dim A < 1. The first condition
implies that A only has finitely many prime ideals. On the other hand, for any maximal chain of prime
ideals
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one has £ < 1 by the second condition. If £ = 1, then p;, is a maximal ideal. If £ = 0, then p is just
the zero ideal. Hence any non-zero prime ideal p; is maximal, and since A has finitely many prime
ideals, A is semi-local. Conversely, suppose that A is semi-local and dim A < 1. By the chain of
inclusion of prime ideals above, any non-zero prime ideal is maximal by second condition. Moreover,
A is semi-local means that there are only finitely many maximal ideals. Hence Spec A is a finite set
and dim A < 1. O

3.0.14  The lemma above is used to prove the following lemma.

Lemma 3.3. Let A be a local integral domain, (0) # m, anddim A =n > 1. Let f € A\{0} be a
non-zero element with f € m. Then there exists a prime ideal p such that dm A/p = 1 and f ¢ p.

Proof. We will construct by induction on k a sequence of inclusion of prime ideals
0)i=poCpi & CpCm

with the following conditions:

(@) f ¢ p;
(ii) for every 1 < ¢ < k, the prime ideal p; is of height one over p; ;. In other words, there is no
prime ideal q with p; 1 € q C p;;
(iii) either dim A/p, = 1 or dim A/p;, < (dim A) — k.

Suppose such a p; is constructed, we see that the second condition in (iii) is always a consequence
of (ii). This is because from the definition of height of a prime, one always has k < Ht(py). By [JP0O,
p 133, Remark 4.1.15], one always has

Ht(p) + dim(A/px) < dim A.

Therefore,
k +dim(A/pr) < Ht(p) + dim(A/pr) < dim A,

and consequently dim(A/p;) < (dim A) — k.

STEP 1: We let Aj := A/py = A. By hypothesis that f # 0 in A, therefore (0) € D4(f), and so
the open set D 4(f) is non-empty. There are two cases according to whether D 4( f) has exactly one
or more than one elements:

(1) Suppose that D 4(f) = {(0)}, then set {(0) } is Zariski open in Spec A. By Lemma 3.2 and remark

in paragraph 3.0.10, one has dim A < 1. By the hypothesis that (0) # m, hence dim A = 1 and the
proof is finished.

(2) Otherwise, the Zariski open set D 4(f) contains another prime ideal p/ in A such that p} # (0).
Moreover, since dim A is finite, Ht(p’) is finite, say h;. Consider a maximal chain of prime ideals

0)=po T g1 << qup =P}

whose length is Ht(p}). By maximality of the chain, Ht(q; ;) = 1. Moreover, f ¢ p| implies that
f ¢ q1.1. Therefore, we may let py := ¢y ;.

INDUCTIVE STEP: Once the prime ideals p, ..., p; have been constructed, the existence of pj 1
that satisfies the first two conditions (i) and (ii) will be constructed. The idea is to pass through the
quotient 7t : A — A/py := Ay, and repeat the steps as in STEP 1. This time, since f € mbut f ¢ py,
hence py # m. So in Ay, the zero ideal (0) is not maximal. Also, the hypothesis that f ¢ p, implies
that the class f is not zero in Aj. Therefore, the open set D4, (f) is not empty since it contains the
zero ideal (0). We study the open set D 4( f) with the two following cases just as before:

(1) Either D4, (f) is a singleton, meaning D4, (f) = {(0)}. Then {(0)} is open in Spec A;. By
Lemma 3.2, one has dim A, < 1. But since (0) # m, dim A, = 1.
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(2) Otherwise, in A, we may find a prime ideal By C Ay such that By, € Dy, (f) and Pr1 # (0).
Since dim Ay, is finite, so is Ht(Px. 1), which is for example /. We let

(0) :==Po C Qrs1,1 & C Q1= P

be a maximal chain of prime ideals in A; corresponding whose length corresponds to the height of
Br+1. Therefore Q11 is of height one by the maximality of the chain, and therefore we may let
Pri1 = ﬂ*1(2k+1,1). Moreover, since the class f does not belong to 3,1, the element f does not
belong to px 1. Hence py 1 satisfies the two conditions and the inductive step is complete.

To conclude, since dim A = n, the length of the chain £ is at most n — 1. In this case one has

But since f € mand f ¢ p,,_1, sodim A/p,,_; = 1, and the proof is complete. O

3.0.15

Lemma 3.4. Let .9 C Ocn be an ideal and 'Y := V (.9) be the variety defined by .%. Let f be a
holomorphic function germ vanishing at the origin and X = V(% + (f)) be the variety defined by
S + (f). If the inclusion X C Y is strict, then there exists an irreducible curve C' C 'Y passing
through the origin such that f|c % 0.

Proof. Almost half of the proof is done by the previous lemma. It suffices to observe that if the
inclusion X C Y is strict, then there exists an irreducible component /' C Y passing through
the origin on which f|y, # 0. Once this is proved, then the condition that f|y, # 0 implies that
f ¢ #(W,0). Since W is irreducible, the ideal .# (W, 0) is prime. Moreover, the dimension of W
is greater than 1, otherwise W will just be the origin but f(0) = 0, which contradicts that f|y # 0.
Put differently, one has f a non-zero element in Oy,y = Ocn o/ (W,0), with f € m. Moreover,
Ow, is a local integral domain with (0) # m since dim W > 1. By previous lemma, there exists
a prime ideal 8 in Oy such that the class f does not lie in B and dim Oyo/P = 1. If we let
T : Ocn g — Ow be the usual ring homomorphism by quotient, one has the prime ideal p := 7~ B
such that dm&cn o/p = dim Oy, /B = 1, with f ¢ p. Hence C = V/(p) is an irreducible one-
dimensional variety on which f does not totally vanish.

It remains to prove the observation. By Primary decomposition theorem, the ideal .# may be
decomposed as an intersection

of primary ideals P;, whose radical v/P; := p; is prime. Hence

Y =V(F) = U V() = V()

i=1

where the last equality follows from Nullstellensatz.

We claim that there exists ¢ such that f ‘V(pi) # 0. Otherwise, for every 1 < ¢ < M, one has
f € Z(V(p;),0) = p; by Nullstellensatz. Therefore, there exists a positive integer k such that for all
1 <i < M,onehas f* € P, and hence f* € .#. Therefore,

X=V(I+ () =V(A)nV()) =V(/) V(") =V(I + () =V(F) =Y,

which contradicts our assumption that X C Y. The proof is complete. [
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3.0.16 We have therefore arrived at one of the main results of this section.

Proposition 3.5. Let f € Ocn g with f(0) = 0. Then there exists k € N such that

v/ Of of
f E<a_zla_zn>

Proof. Let X =V (0., f,...,0., f,f)andY =V (0,,f,...,0., f). If X CY, by previous proposi-
tion, there exists an irreducible curve C' C Y such that f|c # 0. Let

n: (C,0) — (C,0)
be a local normalisation of C'. Hence

df o n(¢)

N
T g OO,

Since n(C,0) € C, 50 (9., f) on(¢) = 0 forall 1 < k < n. Therefore, & (f on) = 0, and hence
f onisaconstant on C. Since f o n(0) = 0, so f o n vanishes identically on C', which contradicts
our hypothesis that f|c # 0. Therefore, X = Y and by Nullstellensatz, there exists an integer k such
that f* € .# and the proof is complete. O

3.1 Ideals Generated by Components of Gradients: Effective Aspects

3.1.1 In fact, the exponent & in the previous proposition may be taken to be k = n = dim C". We
summarise some of the details in [JP96, p 59].

3.1.2

Definition 3.6. Let .# be an ideal in Ocn . The integral closure of .#, denoted by .#, is the set of
germs u € Ocn o such that there exist d € N>, and o, € 7 for 1 < s < d with:

u +autt 4+ ag =0,

Definition 3.7. Let .# = (F},..., F\) be an ideal of O¢n  generated by N elements. Let u € R,.
The ideal 7" is defined by

T Zfue Geny: |u < CFF}
for some constants C' > 0, and where |F|*> = |Fy|? + - - - + | F\[*.

3.1.3 By [JP96, p 60, Proposition 12.2], for every k, [ positive real numbers, y(k) -?(l) - ?(kﬂ).

Moreover, ?(1) — .7 which is the integral closure of the ideal .# ([JP96, p 61, Corollary 12.5]).

3.1.4 By the Briangon-Skoda theorem (1974), if p = min{n — 1,N — 1}, then 7 C 7% for
all £ € N.
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3.1.5 Let f € Ocn be aholomorphic function germ at the origin, and let . and J( f) denote the
following ideals:

. of of
I = <z1—621,...,zn—8zn>,
0 0
J(f) = <a_i%>

It is evident that .#; C J(f). Moreover, one has f € #; = #U ([JP96, p 62, Corollary 12.6]).

Therefore, by Paragraph 3.1.3, f¥ =1 ¢ ?(anl). By Briancon-Skoda theorem, for all £ € N>,
k+n—1 k
f SR

By setting k = 1, f" € J(f). This completes the proof of the following proposition which is well-
known in other literatures:

Proposition 3.8. Let f € Ocn o with f(0) = 0. Then
n. [ Of of
fre <821,...,82n>.

3.2 Application

3.2.1  Let F,...,Fy be holomorphic function germs in Ocn  such that intersection multiplicity of
the ideal (F}, ..., Fy) is finite with data (p, ¢, s). We will show that the ideal

OF; . .
c1<iEN, 1<5<n

. B
82]'

has an effectively bounded intersection multiplicity. More precisely,

Proposition 3.9. For anyn € N34,let Fi,. .., F\ be holomorphic function germs in Ocn o vanishing at

the origin such that the ideal (F}, ..., F\) has finite intersection multiplicity with data (p, q, s). Then
OF; , , (n*+2n)s+n—1
i n 1SN, 1<) < < :
d|m(c ﬁ(c ’0/ <aZ] 1 3 N 1 ] TL> ( (ng + 2n)5 B 1

Proof. By Proposition 3.8, for each 1 < 7 < N,
OF; oF;
F' e ey ).
! < 821 8Zn >

OF; . .
1< N, 1<3<n).
8Zj

Evidently,

(FY, ..., FJ)

N

As a result,

OF,
dime ﬁcn,o/< L 1<i<N, 1< <n> <dime Ocng/(FP,. .., F2).

. B
32]-

It suffices to estimate the term on the right. By the hypothesis that

N
27 <> IR,
=1
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Jensen’s inequality yields
N n
B (Zmr>
i=1
N 1 n
- (2 aim)

=1

N
1
< VIRl
=1
N N
= NI IR S Y IE
=1 =1

By Theorem 2.7, the ideal (F7, ..., F]') has finite intersection multiplicity with data (p’,¢’,s’). By
the definition of p’, one has p’ < np. At the same time, by Proposition 2.11,

<)

Also by Proposition 2.11, using p’ < np, the ¢’ in the inequality above has a bound
¢ <(n+2)p <(n+2)np < (n+2)ng < (n+2)ns.

Hence

J< n+(n+2)ns—1
(n+2)ns —1

and the proof is complete. 0

3.2.2 Remark The estimate can be made more precise in N = n. In this case by repeated applica-
tion of Proposition 2.17 ,

dim¢ ﬁ@n,0/<F{l, . ,FT?> = n"dim(c ﬁ@np/(pl, . ,Fn> =n"s.

Therefore,

OF;
dimcﬁcn,0/<a : 1<z’,j<n> < n”s.
Zj

4 Multiplicity of an ideal

4.0.3  Following [Chi89], we will present the notion of multiplicity of an ideal of holomorphic
functions defining a pure dimensional variety. Let F' € Ocn o be a holomorphic function germ. We
may write F' as an infinite sum of homogeneous polynomials

F= i £,
k=m

where each F}, is of degree k, with F},, Z 0.The multiplicity of F' at 0 is then equal to m.
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4.0.4  Another way to characterise multiplicity is to look at the order of vanishing of /' along
generic lines. Indeed, let

p:C — C"
¢ — (ag, .., ea()

be a parametrisation of a line. Composing ¢ with F' gives
FOQO: ZFk<CIC7"'JCTLC> = ZCka(Clu"'7cn)'
k=m k=m

Therefore, any vector (cy, . . ., ¢,) satisfying

Fo(cr,...,cn) #£0

will imply that ordy F' o ¢ = m = multy F'. Since every line is a complete intersection of n — 1
hyperplanes Hi,...,H, 1, the multiplicity of F is the intersection multiplicity of V (F') = {z € C™ :
F(z) = 0} with n — 1 generic hyperplanes. In other words, if H; = {z € C" : L; = 0} for some
linear function L;, then

multy [’ = dimcﬁcnyo/(F, Ly,...,Lyq).

4.0.5 More generally at 0, for 1 < ¢ < n — 1, let £ = (Fy,..., [F,) be the ideal generated
by ¢ holomorphic function germs and assume that it forms a regular sequence®. We would like to
find a positive integer m analogous to the multiplicity of a function such that for (n — ¢) generic
hyperplanes,

m = dim@ﬁ’@n,g/<F1, ceey Fq, Ll, . ,Ln,q>.

The important point about F},...,F} being a regular sequence is that the variety V' (.#x) defined by
the ideal .#F is of pure dimension n — ¢, due to the property of Cohen-Macaulayness. This allows us
to apply the results in [Chi89, Chapter 2].

Definition 4.1 (Tangent Cones, [Chi89, p. 79]). Let E be an arbitrary set in R". A vector v € R"
is called tangent to F at a point of the closure a € E if there exist a sequence of points a; € F and
positive numbers ¢; > 0 such that a; — a and

tila; —a) —wv (4 — 00).

The set of all such tangent vectors at a is denoted by C'(F, a), and is called the tangent cone to E at
the point a.

4.0.6  The set C(E,a) is a cone with vertex 0: if v € C(E, a), then the vectors tv lie in C(F, a)
for all £ > 0. Geometrically, the cone is a set of limit positions of secants of £ passing through a.

4.0.7 If V is a pure one-dimensional analytic set in C”, the tangent cone at any a € V is a finite
union of complex lines ([Chi89, p. 80, Corollary]).

4.0.8 In general, if 0 € V is a pure analytic subset of a domain D in C”, then C'(V,0) is a pure
p-dimensional algebraic set in C" (c.f. [Chi89, p. 83, Corollary]).

3Let R be alocal ring. A sequence of non-units f1,.. ., is called a regular sequence if for all 1 < i < k, the class f;
is not a zero divisor of R/{f1,..., fi—1)
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4.0.9  Werecall that if a n — p-dimensional variety V' is defined by p holomorphic functions Fi,...,
F,, which form a regular sequence, then V' is a pure (n — p)-dimensional analytic variety.

4.1 Multiplicities of Analytic Sets
We refer the readers to [Chi89, p. 120] for more details.

4.1.1 Let V be a pure p dimensional analytic set in C", and let « € V. Let L be an (n — p)-
dimensional complex subspace in C", such that a is an isolated point of the set V' N (a + L). Then
there is a domain U 3 ain C" of the form U = U’ xU"” C C" P x CP such that VNUN(a+L) = {a},
and the projection

T, :VNU—=U CL*

along L is a ramified k-sheeted analytic cover. This number £ is the multiplicity of the projection
71|y at a, denoted by pi, (71 |v)-

4.1.2  For simplicity, suppose that 0 € V' and a = 0 in the previous paragraph, the multiplicity of
intersection of V' with L is po(7z|v). See [Chi89, p 139, Corollary] and [Chi89, p 140, Proposition 1].

Definition 4.2 (Multiplicity of an Analytic Set at a point). Let V' be a pure p-dimensional analytic set
in C" and let a € V. For every (n — p)-dimensional plane L which contains the origin such that

VNn(a+ L) ={a},
the multiplicity of the projection p, (7 |y ) is finite. The multiplicity of V" at a is given by
pa(V) = min{p.(7|lv) : L € G(n —p,n)}.

Example 4.3. Suppose V' = {F = 0} is a principal analytic set in a neighbourhood of 0 € C", and
F' is the minimum defining function for V. Write F’

F:iO:F/zC

k=ordo F'

as a sum of homogeneous polynomials F}, of degree k. Then by [Chi89, p. 83, Proposition 1],
C(V,0) = { Fyayr = 0}.
For any complex line L containing 0, by [Chi89, p. 121, Proposition 1],
to(mplv) = ordg F'|, = ordg F),
with equality if and only if L N C(V,0) = {0}. In other words, if
¢ (a1, ..., cnQ)
is a parametrisation of the line L, then the line has trivial intersection with C'(V, 0) if and only if
Foaor(c1y ..., cn) # 0.

This agrees with our intuition in paragraph 4.0.4.
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4.1.3  More generally,
Proposition 4.4. Let V' be a pure p-dimensional analytic set in a neighbourhood of 0 € C", and let

L € G(n — p,n). The equality j1o(mp|v) = uo(V') holds if and only if the plane L is transversal to V
at 0. In other words,

LNC(V,0) = {0}.

Proof. See [Chi89, p. 122, Proposition 2]. O]

4.14  Combining paragraphs 4.0.8, 4.0.9, 4.1.2, and Proposition 4.4, we obtain

Proposition 4.5. Let F,..., I, be holomorphic function germs at the origin so that F1(0) = --- =
F,(0) = 0. Suppose that the sequence F\,...,F, is regular so that the variety defined by the intersec-
tion V :=V(Fy,..., F,) is a pure (n — p)-dimensional analytic variety. Then there exists an integer
po(V') such that for a generic choice of p hyperplanes given by the zeros of n — p linear functions

Ly,..., Ly, one has

dimcﬁ@n70/<F1, . ,Fp, Ll, Ce 7Ln—p> = ,LL()(V)

4.2 Multiplicity of an Ideal — Case of a Curve

4.2.1  In this section, we will discuss more in depth of Proposition 4.5 in the case where p = n — 1.
In other words, the ideal ./ = (F},..., F,,_;) forms a regular sequence in Ocx ( so that the variety
V(Fy,...,F,_1)is a pure 1-dimensional analytic variety, which is a union

M
V(Fy, ..., Fo) = Z
k=1
of its irreducible components Z.

4.2.2 For 1 < k < M, since each Z; is an irreducible curve, there exists a parametrisation

-
¢ = (Cuklakl (C)v R Cuknakn(CDv

where for all 1 < j < n, ax;(0) # 0 (c.f. [JPOO, p 164, Theorem 4.4.8]) and [JPOO, p 165, Theo-
rem 4.4.10]).

Theorem 4.6. There exist positive integers my,. .., my such that for any holomorphic function f with
dimcﬁcnp/(Fl, . ’Fn—h f> < 00,

the equality holds

M
dim(cﬁ(cn@/(Fl, ce ,Fn,l, f> = Z mi Ol’dof o nNg.
k=1

Proof. See [D’A93, p 78, Theorem 3] for further discussion. O]
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4.2.3  We begin discussion with a small lemma.

Lemma 4.7. Let Z; be an irreducible 1-dimensional analytic variety and ny, : (C,0) — (Z,0) be
its normalisation. Let f be a holomorphic function germ vanishing at the origin such that ordy f o ny
is finite. Then the intersection Z, N {f = 0} is discrete, and hence the origin is an isolated point in
the intersection.

Proof. There is an equality of sets:

{f=0}NZ, = {ni(Q) : fonk(¢) = 0}.

Now the set on the right is just simply {0}. This is because by hypothesis on the vanishing order of
fong,

fonk(€) =¢"g(0),
where ¢(0) # 0 and m = ordy f o nj < co. Hence
fonk(C):0:>C:0:>nk(C):0 [

Proposition 4.8. Let f be the holomorphic function such that for each 1 < k < M, the vanishing
order ordy [ © ny, is finite. Then the intersection multiplicity of the ideal (F}, ..., F, 1, f) is finite.

Proof. The previous lemma implies that
Zk 0 {f = 0} = {0}
Hence

V(Fy,. . Fa, f) = O {f =0} = (Uzk) nif=0=U@znr=0n=1{0). 0O

k=1 k=1

424  We are now in a position to prove the following lemma.

Proposition 4.9. Let Fy,...,F,_1 be a regular sequence such that V(F\,...,F,_1) is a pure 1-
dimensional variety. For a generic choice of hyperplane defined by a linear function L,

M
dimeOcno/(Fi, .. Fuoy, Ly = > mg min{ g, - i}
k=1

Proof. First of all, L may be written as

L= ZCij (e €C).
j=1

Suppose that the intersection multiplicity of the ideal (F}, ..., F,_1, L) is finite, by Theorem 4.6,

M
dimcOcno/(Fy,..., Fuoy, L) = > my ordgL o ny..
k=1

By Proposition 4.8, it suffices to choose an appropriate L such that ord L o n;, < oo. First, observe
that
Lony = Z cj¢" ay;(C)
=t . (4.10)
_ len{p,kl ..... Hin } Z Cjakj(C) + O(cmln{um ..... Mkn}“rl)‘

{J:pr=min{pp1 - pn }
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If
M n
(1, en) €C" = {(dl,...,dn) €C: ) dja(0) = o},
k=1 j=1
then by equation (4.10),
ordg L o ng = min{ g1, - - -y flgn } < 00.
This completes the proof. ]

5 Generic Selection of Linear Combinations for Effective Termi-
nation

The following proposition appears in [SiulO, p 1190].

Proposition 5.1. Let 0 < ¢ < n, and fi,..., f, be holomorphic function germs on C" at the origin
such that the common zero set {f, = --- = f, = 0} is a pure (n — q)-dimensional variety germ in
C" at the origin. Let m be the multiplicity of the ideal (fi, ..., f,;) in the sense that for any (n — q)
generic homogeneous linear functions L,...,L,_,,

dim(c ﬁ({jn,70/<f1, ceey fq, Ll, ey Lnfq> =m.
LetV(fi,..., fg; L1, ..., Ln_y) be a pure 1 dimensional analytic variety and let

M
V(fi, oo foLny oo Ineg) = | Zn
k=1

be the irreducible decomposition of V (fi,..., fg, L1,...,Lo—g). Let F,..., F\ be holomorphic
function germs in Ocn o vanishing at the origin and p > 1 be an integer such that

N
2P S D IF
i=1

Then there exist M hyperplanes, Hy,. .., Hy, in CN such that for any

M
(c1,... ) GCN—UHi,

i=1

and for any generic (n — q — 1) homogeneous linear functions Ly,...,L,_,_; the following inequality

holds
N
dim(cﬁ((jnyo/ <f1, ey fq, ZC]'FJ', Lla ceey Ln—q—l> é mp.
j=1

Proof. As in the statement of the proof, let

M
V(fi, o Sl Loy = | Z
k=1

be the irreducible decomposition of the pure 1-dimensional analytic variety, and let

ng : (C,O) — (Zk;,O)
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be normalisations of Z;. By Theorem 4.6 and Proposition 4.8, there exist strictly positive integers
mi,...,My such that for any holomorphic function germs g € O¢n o with ordy g o ny, < oo for all £,

M
dimg Ocno/{f1,---  for g L,y Lnog1) = ka ordg g © 1.

k=1
It suffices to find suitable constants (cq, ..., cy) such that the order of vanishing of the following
function .
g ong ::Z CijOTL].C
j=1

is finite for all k. For each fixed 1 < k& < M, the map n; may be explicitly written as

ng : C — (CukylakJ(C)’ R Cuk’nak,n(g))a
where for each 1 < 1 < n, a;,;(0) # 0. Let

Sgo=min {fg1, -y et (1<k<™m).

Pulling back the inequality
N
2P S Y IF
j=1
by the normalisations give

[P S 1(E aka (€), - o, o an (€))7

N
gAZ]Fjonk(Cﬂ (1<k<m).
j=1

Consequently, not all Fj o iy, vanish at the same time. For any F}; o n;, # 0, the one-variable holomor-
phic function may be expanded into power series

o
Fjong = § Fipac (1<j<N, 1<k<M),

I=tjk

where ¢, = ordy Fj o ng and Fj;; € C. By convention, t;;, = oo if Fj on, = 0. For a fixed
1<k<<M,let
ty = min{tm: 1<7 <N, Fjonk;,—é()}<oo.

Hence
¢ < [¢ ™ (1<k<w),

which implies that ¢, < sgp, since |(| < 1. For any (cq,...,cy) € CN,

N N o0

_ I
E ¢;jFjong = E g ¢ Fj5.1C
j=1

7=1 l>tj,k
- Z Cij,k,tk Ctk + O(Cthrl) (1<k<M).
{: tje=ti}
Therefore, the order of vanishing of Z?:l ¢;jFj ony is exactly ty, if Y Gt} G E £ 0. If

M

(e, o) €CY = | J A (dr, . d) €CY s Y diFygy, =0

k=1 {j t]',k:tk}
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which in the complement of the union of M hyperplanes, then foreach 1 < k < M,

OrdoF oNng = tk < SkP-

Consequently,
N
dimCﬁCnp/ <f17 ce 7fq7 Fl, ey Fy, Z CjF}', L17 c. ,anl,1>
j=1
M N
= ka ordg chFj o Ny,
k=1 j=1
M M
= katk < kaskp
k=1 k=1
M
=D Z MESk
k=1
M
=p Z mymin{ fig 1, - - M }-
k=1
By Proposition 4.9, the number Y, mumin{ftx1, ..., i} is the intersection multiplicity of the

curve V(f1,..., fg, L1, .., Ln—q—1) With a generic hyperplane defined by {L,,_, = 0}. By hypothe-
sis,

M
Z mmin{ g1, .. gy = m
k=1

and this completes the proof. 0

5.0.5 Indimension 2 We will state the corollary of Proposition 5.1 in the case of dimension 2.

Corollary 5.2. Let F, ..., F\ be holomorphic functions in Oc:( such that the ideal Jp =
(F1, ..., E\) has finite intersection multiplicity with data (p, q, ). Then there exist generic constants

(c1,...,¢n) € CN such that
N
multy <Z chj> < g < 4dp.
j=1

Moreover, let V(F 1) = UYL, Zy be the irreducible decomposition of the variety. Then there exist M
hyperplanes Hy, ...,Hy in CN such that for all (di, . ..,dy) € CN — U H,,

N N
dimc @cn,o/ <Z ;i F;, Zdej> < 4p® < 452,
j=1 j=1

Proof. First, there exists 1 < ¢ < N such that multy F; < ¢. Otherwise, if multy F; > ¢ + 1 for every
1 <7 <N, then
mqg <F1a"'7FN> gmq-‘rl’

which is a contradiction. So let (cy, ..., cy) be constants so that

N
multy <Z chj> < g < 4p,

J=1

where the last inequality follows from Proposition 2.11. Then the existence of M hyperplanes in CN
and constants (dy, . .., dyx) so that the conclusion holds follow directly from the previous propostion,
and the proof is complete. ]
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6 Proper maps and projections

6.0.6 In this section, let A;.,...,h, be holomorphic function germs in Ocn ( vanishing at the origin
with

dim@ﬁ@L,O/(hl, e hn_1> =:8 < oQ.
Hence the (n—1)-tuple (hq, . .., h,_1) forms a regular sequence. By Proposition 4.9, and by a suitable
linear change of coordinates, there exists a positive integer m such that

dim(cﬁ(cn,g/<h1, Cey hn—l; Zn> =:m

which is the multiplicity of the ideal (hy, ..., h,_1).

6.0.7  The map

v:(C"0) — (C",0)

(21, s 2n) > (h(2),. s hn1(2), 2n) = (w1, ..., Wy_1, W)

is proper and open with finite fibres. Let H = {h,, = 0} be the hypersurface defined by the zeros of
h,,. By Remmert’s proper mapping theorem®, the image o (H ) is also an analytic set. Since the map
restricted to the hypersurface H:

elu H — o(H)

is surjective with finite fibres, by section 4, paragraph 3.0.12 (or [JP0OO, p 129, Lemma 4.1.4]), one
hasdm H =dm p(H) =n — 1.

6.0.8  Since ¢(H) is of dimension n — 1, it is a hypersurface locally defined at the origin by a
certain holomorphic function h,, (w1, . .., w,), which will be shown to have the following properties:
@) hn(0,...,0,w,) # 0 with certain order of vanishing \ := ordy(hn (0, z,)). By the Weierstrass
Preparation Theorem, h,, may be expressed as

A-1

(W) = u(w) (wﬁ + Z aj(ws, ... ,wn_l)wfl) ,

j=

for some unit u(w), and a;(0) = 0forall 0 < j < A — 1.
(i) A < s.

6.0.9

Lemma 6.1. Let hy,...,h,, be holomorphic function germs in Ocn o vanishing at the origin such that
the intersection multiplicity of the ideal (hy, ..., hy) is finite with data (p, q,s). Let H := {h,, = 0}
be the hypersurface defined as the vanishing locus of h,,. Consider the map:

v:H — Cv!
z:=(21,...,2n) > (h1(2),..., hu1(2)).

Then there exists a open neighbourhood U C C"~! of the origin 0 € C"! such that for every
a:=(a,...,a,_1) € U, there are at most s distinct elements in =" (c).

“Remmert’s proper mapping theorem may be stated as follows: if M and N are complex manifolds, f : M — N a
holomorphic map and V' C M an analytic variety such that f|y is proper, then f (V) is an analytic subvariety of N.
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Proof. We prove by contradiction. Suppose for every open neighbourhood U C C"~! of the origin
0 € C"1, there exists a point @ € U such that the number of distinct elements in ¢)~! () is at least
s+ 1.

By hypothesis, the map

v.cC" — C"
Z o <h1(2>7 R hn(z))
is a ramified s-sheeted analytic covering map. Hence, there exists a neighbourhood V = V' x V" C
C"! x C of the origin 0 € C" such that for every 8 := (31,...,,) € V, the number of distinct
points in U~1(3) is at most s.
But by our assumption, given V' a neighbourhood of the origin 0 € C"~!, there exists a point

a:= (ay,...,a,_1) € V' such that there are at least s+ 1 distinct points in ) ~!(«). Since (a,0) € V
and

U@, 0) =7 a),

there are at least s + 1 distinct points in ¥~ (v, 0), which is a contradiction. O

6.0.10  We will therefore answer the first claim in paragraph 3.

Proposition 6.2. Let hy,...,h, be holomorphic function germs in Ocn o vanishing at the origin such
that the multiplicity of the ideal (hy, ..., h,) is s € Ns1. Suppose that the holomorphic map

p:C" — C"
(21, -y 2n) — (h1(2),- . s hon1(2), 20)

defines a ramified k-sheeted covering for some positive integer k. Let h,, be a holomorphic function

such that p({h,, = 0}) = {h,, = 0}. Then hy,(0, z,) % 0.

Proof. Suppose on the contrary that izn(O, z,) = 0. Consider the composition of maps
¥ proj

H—— w(H) — !

(21, vy 2n) —— (R1(2), ...  hn1(2), 20)
(wy, ..., wy) — (W1, ..., Wy_1).

Here ¢ is the map in the statement of the proposition and proj is the projection onto the first n — 1
coordinates. Above 0 € C"!, since hn(0, 2,) =0,

{(0,2,) €C": 2z, € C} C {h, =0} = p(H).
Moreover, since proj(0, z,) = 0 € C"1,
{(0,2,) €C": 2, € C} C proj 1(0).
Therefore, proj '(0) has infinitely many distinct fibre points. Consequently, (proj o )~*(0) has

infinitely many distinct fibre points. But proj o ¢ = 1) in the previous lemma, has finite distinct fibres,
contradiction. 0
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6.0.11  Next, we will show that ordy £/, (0, z,) < s.

Lemma 6.3. Let h,, be a holomorphic function germ in Ocn o with h,(0) = 0, and hy,(0, z,) # 0 so

that ordy h,, (0, z,) < oo. If the projection

7:{h, =0} — (C"1,0)

(a1, ... ) — (aq,...,Qp 1)

is a finite surjective map with at most s distinct fibre points above each point in (C"7',0), then
ordg h,, (0, z,) < s.

Proof. Suppose on the contrary that A := ordy h,(0,2,) > s+ 1. By the hypothesis that A <
oo, Weierstrass Preparation Theorem implies the existence of a unit u(z1, ..., 2,) and ordg h,, (0, 2,)
holomorphic functions a;(z1, ..., z,—1) vanishing at (21, ..., z,—1) = (0,...,0) such that

A-1
h(z1y oy zn) = w21,y 20) <z;\ + Zaj(zl, ey Zne1) zfl) :

j=0

Therefore, above a generic point (o, ..., a, 1) € C"7!, the preimages (v, ...,y 1,2,) of T
which must satisfy the following polynomial equation

>
—_

2+ Y ajar, ..., )2 =0

i
o

has A > s + 1 distinct solutions in z,,. This contradicts the hypothesis in the statement of the lemma.
O

Proposition 6.4. Let hy,...,h, be holomorphic function germs in Ocn o vanishing at the origin such
that
dimc ﬁ({jn’o/<h1, Ce hn> = s < 00.

Let H = {h,, = 0}. Suppose that the holomorphic map
p:C" — C"
(21, oy 2n) > (h1(2),. . s hne1(2), 20)

is proper, open so that there exists a holomorphic function B (w1, ..., w,) with o(H) = {h, = 0}.
Then ordg h,,(0,...,0,w,) < s.

Proof. Consider the map

elu proj
H—— o(H) — !
(z1, .oy 2n) ——— (h1(2),. .., hn1(2), 20)
(wi, ..., wy,) — (W1, .., Wy1).

By lemma 6.1, there exists a neighbourhood U of the origin 0 € C"~! such that for all o € U, there
are at most s distinct points in ¢)~"(a) = (proj o ¢|y) ' (a). Choose a generic point « € C"! as
in the lemma 6.3. Therefore, above a, there are ordy /,,(0, w,,) distinct fibre points in proj~*(«), and
hence

ordg 1, (0, wy,)
— number of distinct points in proj ()

< number of distinct points in (proj o ¢|g) ' (a) < 5. O
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7 Calculation of Explicit ¢ in Dimension 2 (Preliminaries)

7.0.12 In this section we will use some of the results in the earlier sections to establish some
preliminary results for the calculation of explicit ¢ in the case of dimension 2.

7.0.13  Let F,...,F\ be holomorphic function germs in O¢2 o vanishing at the origin such that the
ideal they generate (F1, ..., Fy) has finite intersection multiplicity with data (p, q, s).

7.1 Ideal Generated by Gradient and Generic Selection in Dimension 2

7.1.1  In C?, Proposition 3.9 implies that

OF; 8 1
dimcﬁ@270/<8z : 1<i<N,1<j<2><<8§1—1>.
J

Moreover, if N = 2, there is a better upper bound

OF;
dimcﬁ@2,0/< : 1<z’,j<2><45.
8zj

7.1.2  Lethybe any holomorphic function germ in Oz with multiplicity 1m,. Let

— U Zi
k=1

be the irreducible decomposition of the pure 1-dimensional analytic variety. By Proposition 5.1, there
exist 7 hyperplanes Hj,...,H in C*" such that for all

Ay A b, 0y) € C = | H,

there is an effective upper bound on the intersection multiplicity

OF; OF; _ (8s+1
dim(c ﬁ@Q’O/ <h2, Z)\J az Jaz2> < meo (85 _ 1)

7.1.3

Lemma 7.1. Let h, be any holomorphic function germ in Oz that vanishes at the origin, whose
multiplicity is mo. Suppose that the vanishing locus {ho = 0} is a union of T irreducible components
(not counting multiplicity). Then there exist 21 hyperplanes Hy,. .., Hsz in CN so that whenever

(Cl, c. E CN U Hk
there are 7 hyperplanes H,,...,H: in C2 such that if

(OZ,’)/) € C2 - U ﬁk?

k=1

OF; . 1
dimc ﬁ(C?,O/ <h2, ZC] —|- C]’Va J> < Mo (Sz i_ 1) .

then it holds that
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Proof. By paragraph 7.1.1, the ideal

OF;
< ;1<¢<N,1<j<2>
8zj

has finite intersection multiplicity with data (p’, ¢, s).
By Proposition 5.1, there exist 7 hyperplanes in C*¥ of the form

N
Hz/ = {(Ula"'avNawlv"'awN) e C™: Zamvk+ulkwk = 0} (1<),

k=1

such that if (vy, ..., vy, wy,...,wy) € C*N — U/_, H], then

2N
| OF OF _ (8s+1
dimc @cao/ <h2, E Uk: L 8z§> < M <8§ -~ 1) )

To conclude the proof, it suffices to choose (ci, . . ., cxa, 17, . . ., cyy) € C*N — U H], or equiva-
lently forevery 1 <[ < 7

N
Z ocre + purcry # 0. (7.2)
=1

To this aim, write

N N N
Z OlkCRO+ [kCrY = (Z Ulkck) o+ (Z Mlk%) 7. (7.3)
k=1 k=1 k=1

If

C~

(c1,...,cq) €CY —

{(dl,...,dN) E(CNi ZUlkdk:O}

=1 k=1
7 N

- U{(d17"'7dN) eC": Zﬂlkdkzo}a
=1 k=1

which is in a complement of 27 hyperplanes, the coefficients of o and -y in the equation (7.3) do not
vanish. Once (cq, ..., cy) is chosen, if

(a,7) €C* - U { (Z Ulkck) o+ (Z Mlk@c) V= 0} )

which lies in the complement of 7 hyperplanes in C?, then equation (7.2) holds. Hence the proof is
complete. [

7.1.4

Proposition 7.4. Let (21,2,) € C? be holomorphic coordinates in C2. Let hs be a holomorphic
function germ in Oc: ) vanishing at the origin with multiplicity ms, and suppose that its vanishing
locus {iNzg = 0} has 7 irreducible components (not counting multiplicity).

Let Fi,...,F\ be holomorphic function germs which generate an ideal (F1, ..., F\) having finite
intersection multiplicity with data (p, q, s).
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21\ _ [« B wy
) v 0 Wa
be an invertible linear change of coordinates. Then there are 31 hyperplanes Hi,...,Hs; in C" such

that for each (cy, ..., cy) € C¥ — US| H,, there exist 7 hyperplanes Hy,...,Hz and a hypersurface
defined by a homogeneous polynomial { P = 0} such that whenever

Let

(a,7) € C? — UHk—{P_O}

the linear combination
217 22 E C] 217 22

will satisfies the following conditions:
(i) the intersection multiplicity of the ideal (hy, hs) has an effective bound:

dimg Ocz0/( (h1, ha) < 1hgp < 1ings;

(i) in the new coordinates (w1, ws),

awl

dimc@c?,o/ <}~12(Oéw1 + Bwa, ywi + dws),

8 1
< w0,
8s —1

(iii) the holomorphic map induced from the change of coordinates
0:C* — C?
(wy,wy) +— (h1<aw1 + Pws, yw: + dws), w2)

8h1 (awl + /ng, YW1 + (5w2) >

is a covering map with finite fibres.

Proof. (i) By Proposition 5.1, there exist 7 hyperplanes Hj,...,H: in C so that for all

(Cl,...7 GCN UHk’

one has (in variables (z1, z2))

N
dimg¢ ﬁCQ,O/ <iL2, ZC]'F}'> < mgp < mQS.
j=1

This satisfies the first condition, which remains unchanged even after a linear change of coordinates

(Zl, ZQ) e (’Ujl,wg).
(i) After a change of variables,

Ohi(qwy + Bwy, ywy + 0wz)  Ohi(z1,22) 0% " Ohi(z1, 22) 02
8w1 N 821 8w1 822 8w1
. 8h1(z1, Zg) 6]11 (Zl, ZQ)
n 821 + 7 822
N
6[7] (Zl, 22) 8F (21, 22)

i=1
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By Lemma 7.1, there exist 27 hyperplanes H;,1,...,Hs in CY such that whenever
(€1,...,cy) €CY — U Hy,
there are 7 hyperplanes H.,. .., H; in C2 so that if

(Oé,’}/) € C2 - U Ij[k?

then

OF: 8s+1
dimg ﬁ(CQ,O/ < 21, 22 Z cjo 217 Z2 + C;7Y ]((9217 2'2) > < M (82 + 1) )
) _

or in other words,

h 1
dim¢ ﬁ(C2,O/ <h2(aw1 + Bws, yw; + 511)2), 0h1(0zw1 + BUJQ,’}/'LUl + (S’LU2)> <5 (83 + )

ow, 2 &8s —1

and hence the second condition is attained.
(iii) For the last condition, in order for ¢ to be a covering map with finite fibres, it suffices to find
(a,y) € C? so that the holomorphic function of one variable

hi(awy + Bwa, ywy + 6wa)|{uwy—0y = ha(cwy, yw:)

has a finite order of vanishing at w; = 0. To this effect, h; (21, 22) may be written as an infinite sum

hl(Zl,ZQ) = Pm1 + Z Pk

k>mqi+1

of homogeneous polynomials P of degree k, with m; = multy ;. Hence,

hi(awy, ywy) = Pml(aw1,7w1)+0( mlﬂ)
= w" Pp(a,7) + O(wi" ™).

If (,y) € C* — {P,,, = 0}, then hy(qw;,yw;) # 0 and hence ¢ defines a ramified m,-sheeted
analytic covering.
In summary, there exist 37 hyperplanes Hj,...,Hs; in C so that for every

(Cl,..., E(CN LJ[‘I]€7
there are 7 hyperplanes Hi,...,H:and a hypersurface {P,,, = 0} in C? such that whenever

()= 50

is an invertible linear change of coordinate satisfying

(a,7) € C* — UHk {P,,, =0},

the three conditions (i), (ii), (iii) are satisfied. ]



8. Calculation of Explicit € in Dimension 2 7

8 Calculation of Explicit £ in Dimension 2

8.0.5 As before, we work in C2. Let F},...,Fy be holomorphic function germs in Oz vanishing
at the origin whose ideal ¥ = (F}, ..., Fy) has finite intersection multiplicity with data (p, g, s).

8.0.6 By [SiulO, p 1182], one has for all ¢ € Z1(€2) with compact support that

147 - 81} < Q(6.9) a<ien,

8.0.7  For any two vectors (A, ..., Ax), (i1, ..., puy) in CN, if

Azi&ﬂ and Bzimﬂ,
=1 =1

then by Proposition 1.24
[19ac(4, B)6[3 S Q(6,9).

8.0.8 By Corollary 5.2, there exist vectors (Aq, ..., Ay) and (g1, .. ., px) such that

dime ﬁ@270/<A, B) < 4s°.

By Corollary 2.16,
multy Jac(A, B) < 4s* — 1.

8.0.9 Write

Jac(A, B) = fi" - fa7 8.1
as a product of prime elements, and let v := max{c, ..., a;}. The holomorphic function
iLQ = f1 f7

is also a subelliptic multiplier since
hS = fO. .. f& = fomo ... f27% Jac(A, B)

is a multiple of a subelliptic multiplier. Consequently, by radical property of subelliptic multipliers
Proposition 1.22,

llh26ll% < Q(6, 0).

Moreover, by equation (8.1),

multy Jac(A, B) = Z a; multy (f;) = a.
i=1

Hence
1 1 1

> > )
da ~ 4 multgdac(A, B) ~ 4(4s? —1)

and

A2l

1
4(4s52-1)

< kgl S Q(6,9)



72 Wei Guo Foo, Orsay University, Paris, France

8.0.10 As a remark,

T T
multg }ng = Z multg fz < Zaimulto fz = multy Jac(A, B) < 4s% — 1.
=1

=1

8.0.11 By Proposition 7.4, there exists (c¢q,...,cy) € CN and a linear change of coordinate

(21, 22) = (w1, w3) via ;
()=

such that if h; = 22:1 ¢, F., one has
(1)

dim¢ ﬁc2,0/<h1(04w1 + Pws, ywy + dws), B2(04w1 + Pws, yw + dws))
< (multy hy)s < (45° — 1)s;

(i)

7 h
dim¢ ﬁc?,o/ <h2(aw1 + Buws, yuwr + Sws), Ohy (0w + Pwg, ywy + 5w2)>

8w1

(i) if we let (C?, (w1, w)) [resp. (C?, (z,y))] denote C* with coordinate system (w;,ws) [resp.
(x,y)], the holomorphic map

0 (C* (wr,wa)) — (C?(2,y))
(wy,wa) = (hi(aw; + Bwg, ywi + dwy), wo)

defines a ramified ord,,, —o iLl (cwy, Swy)-cover over C?, which is therefore open and proper with finite
fibres.

8.0.12  Since h; vanishes at the origin, by Lemma 2.12,
ha(Qwy + Buws, yw, + dwy) = DE)

1

8.0.13 Let(Cy := {ﬁg(awl + Bwq, ywy + dws) = 0} be the reduced curve. Since ¢ is a proper
map, by Remmert’s proper mapping theorem, the image C, := ©(Cy) is an analytic set of dimension
1. There exists an analytic function hy on C? such that ¢(Cy) = {ha(x,y) = 0}. By Proposition
6.4, A := ordg h2(0,y) < (4s* — 1)s. Hence, by Weierstrass’ preparation theorem, there exist a unit
u(x,y), and holomorphic functions a;(x), ..., as2—1ys—1(x) that vanish at z = 0 such that hy(z,y)
may be expressed as a Weierstrass polynomial

A-1
ho(z,y) = u(x,y) (yA + Z aj(:c)yj> A<(4s2—1)s.

k=0



8. Calculation of Explicit € in Dimension 2 73

8.0.14  The holomorphic function hy(h(cw; + Pws, yw; + dws), we) is also a subelliptic multi-
plier. More precisely, hy(hi(aw; 4+ fws, ywy + dws), wo) is a multiple of ilg(OéU)l + Bws, ywy + dws)
which is a subelliptic multiplier by paragraph 8.0.9. This follows from the fact (which will be ex-
plained below) that V (hy) C V (hy(hy, w,)) and hence by the Nullstellensatz,

(hz hl,w2 \/ hz h1>w2 \/

where the equality follows from the fact that hs is reduced.
Now to show that V' (ha(awy + Bwa, ywi + dws)) C V(ha(hi(aw; + fws, ywr + dws), wy)), if
(0, 1) € C? satisfies ho(ao + Su,yo + dp) = 0, then

p(o,p) = (h(ao + Bu,yo +6p), p) € {ha(z,y) = 0}.

Hence
0 = ha(p(o, 1)) = ha(hi(ao + Bu,yo + op), w),

from which we have proved the set inclusion. Consequently,

[Pz (P (qws + Bwa, ywy + 5w2)»’w2)¢\”24<4 - S Q(9,0).
Moreover, since u(hy (qw; + Sws, ywy + dws), ws) is a unit,
A—1 4 2
H (wrﬁ + ) aj(ha(ow + Bwy, ywy + 5w2))wé> ¢ S Q(,9),
=1 4(45571)
where A < (4% — 1)s.
8.0.15 To declutter notations, we will set
hl (wl, WQ) = hl (awl + 5IU2, YWy + 521)2)
Ohi(wi,we)  Ohy(awy + Bwy, ywy + dws)
8’(1]1 N 8u)l
ho(wi, wa) = hy(aw; + Pws, ywi + dws)
8s 41
= (45 —1
0= (gt
A = ordg ho(0,7) < (45% — 1)s.
By Paragraph 8.0.12, since
Ohy -
N e { —=, hy ),
! <3w1 2>
there is an estimate oh
R < == + |hol.
1S |G| + Vo

8.1 Siu’s method: Starting Point

8.1.1  Since h; is a pre-multiplier and

oh A1
dhi A dhy = awl ()\ 4 Z]aj (hy)w ) dwy A dws,

7j=1
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the holomorphic function
ahl A—1 — . j—1
ow, Awy ™ + Z]aj(hl)w2
j=1

is also a subelliptic multiplier and we will estimate its regularity property. Since

A—1 2
H <w§+zaj(h1)w%> ¢ S Q(e,9),
=0 1
4(4s2-1)
using Proposition 1.24,
A—1 ' 2
d (wf? + Z%’(’h)%) X S Q(o,0).
= 8(43%71)
Also,
ldh -l s < lldh - ¢lll3 < Q(6,0),
8(4s2—1) 1

where the last inequality comes from Paragraph 8.0.6 and the fact that h, is a linear combination of
the F;. By the remark after Definition 1.26, the regularity of the subelliptic multiplier is obtained
below

2

Oy R .

For (Aws '+ ;jaxhl)w; e - 5000

’ 8(4s2-1)
8.1.2  Since hyisalsoa subelliptic multiplier, so is
hg (/\U}g\_l + Zjaj(hl)w§_1> .
j=1

Hence by paragraph 8.0.9,

ha (Awﬁ_l + Zjaj(hl)w%_l) ¢ S Q9. 9).

= 4(435—1)
8.1.3 By the previous two paragraphs and the inequality in 8.0.15,
Ohy -
Y < |=— h
101 5| G2+

there is an estimate

A—1 ‘ 2

i (2t St ) o
= ey
oh A-1 2 A—1 2
1 _ . i ~ 3 ‘ .
< o (Awg Y dag(h)w 1) ¢ + ||| 2 <)\w§ Y dag(h)w 1) )
= m = 8(4sé71)

S Q9,9).
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8.2 Siu’s method: Inductive Step

821 Leth” :=h,and

A-1
A = o (x\wé\_l + Zjaj(hl)wg_l) :

J=1

For 1 < v < )\, define

v 1% )‘ v ' j—v
hé):h1n<()\ >\ +Z]-I/ )w% >7

which will be shown that it is also a subelliptic multiplier and

S Qe 9).

(s
2V.4(4

8.2.2  We will first calculate something analogous to the first paragraph of the previous subsection.
Suppose that the induction statement is true for » — 1, meaning that

05 6ll2_ o < Q(6,9).

—1.4(4s2-1)

Then
[ Yo/ CHOX
Moreover,
Ildhs - 6lll3 S Q6. 9).
Therefore,

A— .
dhy A dhl ™Y = Oy = N Zl j—!a.(h Ywi ™ | | dwy A dw
1 8101 (/\—l/)' 2 o (]—V)' g\t1)Wo 1 2

whose coefficient is also a subelliptic multiplier with

2
Oy v—1) N e ! <
H awl (hl <()\—V>'w2 +Z(]_V) (hl) ¢ 1 NQ(¢,¢)
” 27 a(as2-1)
8.2.3  Since hy is also a subelliptic multiplier,
A— ‘ 2
7 (v=1) wh iy

1
2V.4(4s52-1)
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8.2.4  Combining the inequalities in the last two paragraphs, and using the fact that || < 0., hu |+

|hal,
(el
2V 4(4s52—1)
2
v )" —v — j' | —V
= hln <<)\_y)'w§ + (_ )'aj(hl)w% ) ¢
! = (- )
2V .4(4s2—-1)
n [ -1 N e ! j—v 2
= h’l hl ()\—V)le +Z (j_y)laj(h’l)wQ ¢
Jj=v P
2V.4(4s2 1)
< ahl n(v—1) Al A—v — -]' Jj—v :
S |3 hy =) up m%(’h)wz ¢
= Paa D
2
s . Al I .
+ ||| he (h;]( b (()\_ V)!wﬁ + Dy V)‘aj(fu)w% )) 0
j=v

1
2V.4(4s2 1)

S Q9. 9).

This finishes the induction process.

8.2.5  Setting v = )\, we get

A
IR0 S Q(6,9).
But h$" = K"\, therefore
IRl S Q6,9).
2A.4(452-1)

8.3 Siu’s method: Conclusion and End of Calculation

8.3.1 Since 5
dim¢ ﬁ@270/<h1, h2> < (482 — 1)8,

by Proposition 2.17,
dimg @C;O/(hi‘", hy) = nA dime Oc20/(, ho) < (45% — 1)sp.
For: =1, 2, by the Lemma 2.12,
wi(4s2—l)5/\77 c <hi\na f~12> ‘
Thus w§452_1)8)‘” is also a multiplier with
™ S [+ (ol

Hence

2_
[Jw ™ D212

Xa@sZon)
< nA 2 7 2
N ¢|||m + |Hh2¢|”m
A ~
S IRPOIIE o+ Ilhall s S Q(0,0).
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By radical property of subelliptic multipliers Proposition 1.22, one has for each ¢ = 1, 2 that

llwsdll?_ . $Q6.9)

Adsna(4s2—1)2

Taking the Jacobian, one obtains by Propositions 1.22 and 1.24 that

22+ T 4s5nA (452 —1)2

and this terminates the calculation, and therefore the following theorem is obtained:

Theorem 8.2. Let (21, 23, z3) be holomorphic coordinates in C3 with z; = x; + v=1y;. For some
N > 2, let F'i(z1, 22),...,Fx(21, 22) be holomorphic function germs in O¢2 o vanishing at the origin
such that

dim¢ ﬁ(c270/<F1, ey FN> =8 < 00.
Let Q2 C C3 be the domain defined by
N
0= {(21,22,23) S Cg : 2Re 23 — Z |E(Zl,22)|2 < 0} .
i—1

Then by Siu’s method, Kohn’s algorithm terminates in at most (4s* — 1)s steps. Moreover, for any
¢ € Py1(Q2) with compact support,

oIz S 19017 + 118" ¢11* + |11,

where
1

2(452,1)s+332(432 _ 1)4(2?:1) )

€=z

9 Homogeneous Polynomials in Two Variables

9.1 Some Properties of Homogeneous Polynomials

9.1.1 In this subsection, we will let ' and G denote any homogeneous polynomials in variables
(z,w) of respective degrees deg F' = m and deg G = n. They may be expressed as

F(z,w) = apz™w’ + - - + @y 2'w™

9.1
G(z,w) = bpz"w" + - - - + b, 2'w". ©-1)
There are two ways to dehomogenise F' and G
F(z,1):= f =apz™ 4+ a12™ ' + - + ap, 9.2)
G(z,1) := g =boz" +b12" " + -+ by, '
and
F(lw):=f=a+aw+--+a,w™, ©93)
G(l,w):=g=by+bjw+ -+ b,w". '
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9.1.2 Factorisation of Homogeneous Polynomials

Lemma 94. Let ' € C[z,w] be a homogeneous polynomial of degree m. Then F' can be written as

a product of linear factors:
kr

F(z,w) =w™"" H(aiz — bw)".

i=1
where Y% ;= 1.,
Proof. By dehomogenising F/,

FX,)Y)=Y"F(X/Y,1) =Y"Q(X/Y),

where () is of degree less than or equals to m. The proof follows by the Fundamental Theorem of
Algebra. 0

9.1.3  The following lemma gives the expressions of Jac(F, ) in a form which simplifies calcula-
tions in the later sections.

Lemma 9.5. Let F' and G be homogeneous polynomials of degrees m and n in equation (9.1). Then

zwdac(F,G) = w(mFG, —nGF,)

9.6
= z(nGF, —mFG,). ©-6)
Proof. From the Euler’s identity applied to F' and G,
zF, +wF, = mF,
G, +wG, = ndG.
Multiplying the two expressions together,
(mF)(nG) = 2*F.G.+ 2wF,G, +wzF,G., +w*F,G,
= 2w(F.G, — F,G.) + (*F.G. + 2wF,G.) + (w*F,Gy + 2wF,G.)
= zwdac(F,G) + 2G,(2F, + wF,) + wF,(2G, + wG,)
= zwlac(F,G) + zG.mF +wF,nG.
Bringing 2:G.mF + wF,nG to the left side of the equation,
zwdac(F, G) = (mF)(nG) — zG.mF — wF.,nG. 9.7)

Using the Euler’s identity for GG, in equation (9.7),

zwlac(F,G) = (mF)(nGQ) — 2G,mF —wF,nG
= mF(nG — zG,) —wF,nG
= mFwG, — wF,nG
= w(mFG, —nGF,),
which gives the first formula in equation (9.6). For the second formula in equation (9.6), applying
Euler’s identity for F'in (9.7) gives
zwdac(F,G) = (mF)(nG) —2G,mF —wF,nG
= nG(mF —wF,) — 2G,mF
= nGzF, — z2G,mF
= z2(nGF, —mFG,).

The proof is then complete. ]
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9.2 Resultants

9.21 Let F, G € C[z,w] be homogeneous polynomials given as before by

F(z,w) = apz"™w’+ -+ apr20™ " + apw™,
G(z,w) = boz"w’ 4 -+ + bp_12w" " + byw™,

The resultant of these two polynomials is given by the following m + n by m + n Sylvester matrix

ayg ap Qg - e A, 0 e 0

0 ag aq Ayp—1 A, O

Resultant,, ,(F, G) := [? bo [? ap  ax . ; (m—1 aén
0 1 2 .« .. n

0 by b b1 by 0

0 0 0 bO bl bnfl bn

Over the field of complex numbers, Resultant,, ,(F, G) = 0 if and only if the equations ' = G = 0
have a solution (x,y) # (0,0) in C? (See [CLOO0S5, page 81]). Direct from the definition, therefore

Resultant; ,, (2, F)) = ap,
Resultant; ,,,(w, F') = ay.

Moreover, by a result of Jouanolou [Jou91], the resultant of homogeneous polynomials satisfies mul-
tiplicative property:

Proposition 9.8 (Section 5.7, page 154 in [Jou91]). Let F, G and H be homogenenous polynomials
in C[z, w] of respective degrees dy, dy and dz. Then

Resultanty, +4, 4, (F'G, H) = Resultanty, 4, (F, H)Resultanty, 4, (G, H).
9.2.2 Resultant by dehomogenised polynomials Let f(z) = F(z,1) and g(z) = G(z, 1) be the

dehomogenisation of the homogeneous polynomials F' and G respectively. Provided that ay # 0 and
by # 0, the resultant of F' and G is then given by

Resultant,, ,(F, G) =: resultant,,, ,(f, g, 2).

Under this assumption, by [CLOO0S, Chapter 3, page 78], resultant,, ,(f,g,z) = 0 if and only
if f and g have common factors. Moreover, by [CLOOS, Chapter 3, page 81, Proposition 1.7],
Resultant,, ,(F,G) # Oifand only if {FF = G =0} = {(0,0)}.

9.2.3  The following lemma is crucial for our calculations.

Lemma 9.9. Let a(z), b(z) and c(z) be polynomials in C|z| given by

a(z) = agz2™ + -+ am_12 + am,
b(z) = bo2" + -+ bp12+ by,
c(z) = ¢4+ a1z +ca,

with m > n and d = m — n. Suppose ag # 0, by # 0 and ag — bycy # 0, then

resultant,,, ,(a — be, b, z) = resultant,, ,,(a, b, 2).
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The proof of this lemma is long and complicated, but an example will explain how the proof should
proceed. For the purpose, let A, B and C' be homogeneous polynomials of respective degrees 3, 2 and
1, so that

a0z3~|—a1z2~|—a22+a3,
b = boZ2+b12+b2,

cC = Coz+ ¢,
and hence
a—bc= (CLO — b0C0)23 + (a1 - boCl — b1C0)Z2 + (CLQ - b1C1 — bgCo)Z + (a3 - bgcl).

The resultant of @ — bc and b is the determinant of the following 5 by 5 matrix:

bo b1 bg 0 0
0 bo b1 b2 0
0 0 bo by by
ag — bOCO a] — b()61 — b100 a9 — b101 — bgCO as — b261 0
0 ag — bQCQ a; — bgCl — blco a9 — b1C1 — bQCO as — b201
bo by by 0 0
R4+4coR1 0 bo bl b2 0
otz g 0 bo by by
ag a1 —bgey az —bie; as — bocy 0
0 ag a; —bocr as — biey as — by
bp by by 0O O
Ritar2 |0 by by by O
Rraks g bo b1 by| = resultant(a, b, 2).
apg ap Qo as 0
0 apg ap Qo as

This lemma has an easy generalisation to homogeneous polynomials.

Lemma 9.10. Let a(z), b(z) and c(z) be polynomials above withm > n, d =m —n, ag # 0, by # 0
and ag — bocy # 0. Let A(z,w), B(z,w) and C(z,w) be homogenisation of a(z), b(z) and c(z)
respectively so that

A(z) = ap2™uw’ 4 - F @ 2™ a2t w™,
B(z) = bpz"w’ + -+ by zw" T + b2 w",
C(z) = coz®u® 4+ corzw®™ + cq2®w?,

then
Resultant,, ,(A — BC, B) = Resultant,,, ,(A, B).

Proof. By the definition of resultant of homogeneous polynomials and applying the previous lemma

Resultant,, ,(A — BC, B) = resultant,, ,(A(z,1) — B(z,1)C(z,1), B(2,1), 2)
= resultant,, ,(a — be, b, z)

= resultant,, ,(a, b, z) = Resultant,, ,(A, B).

Hence the lemma is proved. [
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9.3 Resultants and Jacobians

9.3.1 The relationship between the resultant and the Jacobian The following proposition will
be used for Kohn’s algorithm on homogeneous polynomials.

Proposition 9.11. Let F' and G be homogeneous polynomials with respective degrees m and n. If
ag # 0, ay # 0, by # 0, and

Jac(F, G)(1,0) = nbpa; — magby # 0,
then
amResultant,, ,—2.m(Jac(F, G), F) = (—n)™Resultant,, ,(F, G) Resultant,, 1, (F, F).
Proof. Using the formula of the Jacobian for homogeneous polynomials,

Resultant,, ., (2wdac(F, G), F)) = Resultant,, 4, ,,(mEFwG,, — nGwk,, F)
= Resultant; ,,(w, F')Resultant,, ,—1.,(MFG, — nGFE,, F)
= apResultant, 1, (MFGy, —nGFE,, F)

The coefficient of 2" "™~2 in mF G, — nGF,, is magb; — nbya;, which is non-zero by hypothesis. Set
as in lemma 9.10 the following polynomials

A = nGF,,
B = F
C = Gwa

and observe that the coefficient of 2™ ~! in A is nbya; which is non-zero by hypothesis. Moreover,
the coefficient of 2™ in F'is ay which is also non-zero by hypothesis. Therefore,

deg A = degG +deg F — 1,
deg B = deg F,
degC' = degG —1,

from which it is clear that degC' = degA — degB. Furthermore, the hypothesis nbya; — magb; # 0
implies that deg(A — BC') = degA. By lemma 9.10,

Resultant,,—1,m(mMFG, — nGF,, F) = Resultant,i,—1m(—nGF,, F)
= (—n)"Resultant,,—1.,(GFy, F),

from which one obtains

Resultant, , m (zwdac(F, G), F') = ag(—n)" Resultant,, 1., (GFy, F). (9.12)
From the multiplicative property of the resultant, therefore

Resultant, ., (2wdac(F, G), F) = apa,Resultant, n,—2 ., (Jac(F, G), F) (9.13)
and

Resultant,, +m—1.m(GEFy, F') = Resultant,, ,, (G, F')Resultant,,, 1 m (Fy, F). (9.14)

Hence substituting equations (9.13) and (9.14) into (9.12) proves the identity.
Remark: The condition that both ay # 0 and a; # 0 is equivalent to the fact that both

F(z,0) and  (9,F)(z,0)

do not vanish.
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9.3.2 Some generic conditions In view of the previous result, the following lemma ensures generic
conditions:

Lemma 9.15. Let F}, ..., Fy be homogeneous polynomials in two variables z and w. Let (z,w) +—
(Az + 0w, pz + ow) be an invertible linear change of coordinates. Then for a general matrix

A <)\ 9) |
L o
the new homogeneous polynomials G;(z,w) = F;(Az + Ow, uz + ow) satisfy G;(z,0) # 0 for all i.

Proof. Simply choose (), 6, i, o) such that for each 1,

E(Ap) # 0,
det(A) = Ao —0u # 0,

which completes the proof. 0

Proposition 9.16. Let I, G and H be homogeneous polynomials in z and w each of degree greater
than or equals to 1. Then there exists a general change of coordinates A : (z,w) — (Az + 0w, uz +
ow) such that if

P = F(\z+0w,pz+ ow),
Q = GAz+ 0w, uz+ ow),
R = H\z+ 0w, uz+ ow),

the following properties are satisfied:
P(z,0) #0, OwP(2,0) # 0, Q(z,0) #0, R(z,0) # 0.
Proof. Let 6 and o be chosen so that
00.F (z,w) + 00, F (2, w)

doesn’t vanish identically. This is a generic condition on (§,0) € C2 Then apply the previous
proposition to F', G, H and 00, F(z, w) + 00, F(z, w) to obtain the conclusion, while observing that

Ow(F(Az 4 0w, pz + ow)) = 00, F(Az + Ow, pz + ow) + 60, F (A2 + bw, pz + ow).

9.4 Kohn’s Algorithm Applied to Homogeneous Polynomials in 2 Variables

9.4.1 A recall of Kohn’s Algorithm Let F' and G’ be homogeneous polynomials in (z,w), and
suppose that the common intersection at the origin is 0 dimensional, that is

(F=G=0}={0}.

The degree of each of ' and G may assumed to be at least 2, otherwise if F' is linear, a suitable
change of holomorphic coordinates gives a triangular system in the sense of Catlin-D’Angelo, and
Kohn’s algorithm terminates in 2 steps. Recall the Kohn’s ideal of sub-elliptic multipliers generated
at first step is given by the radical of the Jacobian of the two polynomials

(radical(Jac(F, G)))
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Then the next step involves the following Jacobians
Jac(F, radical(Jac(F, G))), Jac (G, radical(Jac(F, G3))).
For Kohn’s algorithm to terminate at this step, it suffices to show that any of the common intersections

{radical(Jac(F, G)) = Jac(F,radical(Jac(F, G))) = 0} = {0},
{radical(Jac(F, G)) = Jac(G, radical(Jac(F, G))) = 0} = {0},

consists only of the origin. To this end, by the property of resultant, it therefore suffices to show that
either
Resultant (radical (Jac(F, G)), Jac(F, radical(Jac(F, G)))) # 0

or
Resultant(radical (Jac(F, G)), Jac (@, radical(Jac(F, G)))) # 0

holds. This is exactly the case in Proposition 9.11, except that the generic conditions need to be
fulfilled. This can be overcome by applying a suitable linear change of coordinates A : C> — C2 by
a general matrix. More details will be explained below.

9.4.2 Intersection multiplicities of homogeneous polynomials at the origin Let F'(z,w) and
G(z,w) be homogeneous polynomials with degrees deg /' = m and deg G = n. Suppose that the
coefficients of F' and G are chosen so that a sufficient condition

Resultant,, ,(F, G) # 0

is satisfied. By Lemma 9.4, the polynomials /' and G may be written as a product of linear factors:

k1

F(z,w) = [](az - biw)™,
i=1
ko

G(z,w) = H(Ciz—diw)“",
i=1

with Zf’ll A; = m and Zfil p; = n. The condition that Resultant,,, ,(F, G) # 0 implies that
{(z,w) € C*: F(z,w) =G(z,w) =0} = {(0,0)}.
Therefore, for any 1 < ¢ < k; and 1 < j < ko, the linear factors
(a;z — byw), and (cjz — djw)

are not constant multiples of one another. Otherwise, this means that there exists A > 0 such that
a; = A¢j and b; = A\d;, and hence F'(b;,a;) = 0 = G(d;, ¢;) = A%G(bi, a;) is a non-trivial common
solution. Therefore

ki ko
dimcOc2 o/ (F(z,w),G(z,w)) = Z Zdimcﬁcz,o/«aiz — bw)™, (cjz — djw)H)
i=1 j=1
ki ko
= Z Z )\iﬂjdim@ﬁc270/<(aiz — b,w), (CjZ - d]w))
i=1 j=1

i=1 j=1
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943 Let A: C? — C? be an invertible change of coordinates given by

A= (2 i) € GL(2,C).

Firstly, consider /' o A and G o A. The first step in Kohn’s algorithm consists in taking the Jacobian
of F'o A and GG o A, followed by taking its radical. Observe that

Jac(F o A,G o A) = det(A)Jac(F,G) o A.
Set J, := Jac(F o A, G o A) and let J, := radical(Jac(F o A, G o A)). Let I be the identity matrix.

Lemma 9.17. One has
JA = det(A)J] o A.

Proof. The first step involves computing J 4:
Ja = radical(Jac(F o A,Go A))
= radical(det(A)Jac(F,G) o A)
= det(A)radical(Jac(F,G) o A).

Let Jac(F, G) = h{" - -- h* be a decomposition of the Jacobian into product of primes (in fact they
are linear factors). Hence

radical(Jac(F,G) o A) = radical((hy o A)* - (hj o A)*)
(hioA)---(hyo A)
= radical(Jac(F,G))o A= Jro A.

The proof is then complete. ]

9.4.4  The next step in Kohn’s algorithm consists of taking the Jacobians
H, := Jac(Ja, FoA),
Hy, := Jac(Ja,Go A).

Observe that /1, and H, cannot vanish simultaneously, or otherwise Kohn’s algorithm will not termi-
nate despite { /' = 0} and {G = 0} having complete intersection, which is a contradiction. Assume
without loss of generality that /; does not vanish. Next, by the lemma in the previous paragraph,

H, = Jac(Jy,FoA)
= Jac(det(A)J; 0 A, F o A)
= det(A)Jac(Jr o A, F o A) = (det(A))*Jac(J;, F) o A.
9.4.5  Kohn’s algorithm terminates at this point if it can be shown that
Resultant(Jac(Ja, F' o A), J4)

does not vanish. In order to apply the results in the previous section, the following conditions need to
be satisfied:
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In order to achieve this, observe that conditions above are equivalent to the following conditions using
the formula in the previous paragraph and Lemma 9.17

This can be done by a suitable change of coordinates A by Proposition 9.16. Therefore,

,Resultant(F o A, J4)Resultant(0,J 4, Ja)
Resultant(w, J4)

Resultant(Jac(J4, F'o A), J4) = (—n)

9.4.6 Next, it is claimed that Resultant(0,J 4, J4) is not zero. It suffices to prove that .J 4 is reduced.
But from Lemma 9.17, J4 = det(A)J; o A, and since J; is reduced, so is J4.

94.7 On the other hand, to show that
Resultant(F' 0 A, J4) = Resultant(F o A, radical(Jac(F' o A,G o A)))
does not vanish, this is equivalent to proving that
Resultant(F o A, Jac(F o A,G o A))

does not vanish. This is because by the property of resultant and using the decomposition of Jac(F' o
A, G o A) in the proof of lemma 1.14,

det(A) "Resultant(F o A,Jac(F o A,G o A)) = Resultant(F o A,Jac(F,G) o A)
Resultant(F o A, (hy 0 A)* - - (hy, 0 A)**)
(
(

Resultant(F o A, (hy 0 A)**) - - - Resultant(F o A, (hy o A)**)
= Resultant(F o A, (hy 0 A))*" - - - Resultant(F o A, (hy, o A))**.

Hence, Resultant(F'o A, Jac(Fo A, GoA)) does not vanish if and only if each of the terms Resultant(F'o
A, h; o A) does not vanish. Consequently,

k
det(A)™ H Resultant(F o A,h; 0 A) = Resultant(F o A,det(A)(hy o A)---(hyo A))

= Resultant(F o A, det(A)J; o A)
= Resultant(F o A, J,)

does not vanish.

9.4.8  For the non-vanishing of Resultant(F" o A, Jac(F o A, G o A)), Proposition 9.11 will be used
again, and hence the following conditions are needed:

det(A)Jac(F,G) o A(2,0) = Jac(F o A,G o A)(z,0)
F o A(z,0)

Ow(F o A)(z,0)

G o A(z,0)

c o oo
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Again, this can be achieved by a suitable change of coordinates A. Therefore,

Resul A, F o A)Resul FoA),FoA
Resultant(Jac(F o A,Go A),Fo A) = n™ esultant(G o A, F o A)Resultant(0.(F o A), F o )
Resultant(w, F' o A)

By hypothesis, the fact that {G = 0} and { F' = 0} have complete intersection at the origin means that
Resultant(G o A, F' o A) does not vanish. To show that Resultant(0,(F o A), F' o A) does not vanish,
this is equivalent to the fact that the discriminant of the polynomial in one-variable F'(z, 1) does not

vanish. This is because
_dF o A(z,1)

0.(FoA)(z1) 7 :

and therefore

Resultant(0,(F o A), F o A) = resultant(0.(F o A)(z,1), F o A(z,1)

M,Fofl(z 1)) .

= resultant
( dz

Hence the discriminant of F' o A(z, 1), which is

resultant (%w, Fo A(z, 1)) ,
z

does not vanish if and only if F' o A(z,1) does not have repeated factors, and thus it is a generic
condition on the coefficients of F'.

9.4.9  The discussions in paragraph 9.4.8 leads to the following theorem:

Theorem 9.18. Let F and G be homogeneous polynomials in C|z, w| with respective degrees degF =
m and degG = n such that
Resultant(F, G) # 0.

Then for generic choices of F' and G, there exists a generic choice of invertible linear transformation
A : C? — C? such that Kohn’s algorithm terminates in 2 steps for F' o A and G o A.

Corollary 9.19. Let (z,w, v) be holomorphic coordinates on C3. For generic choices of homogeneous
polynomials F and G in Clz, w] with m = degF, and n = degG, let ) be the special domain given
by

Re(v) — |F(z,w)|* + |G (z,w)|* < 0.

Then at the origin 0 € C3, there exists a neighbourhood V. C C3 of 0 such that for all p € 2°(V),

loll2 < 199l + 11976 11* + ],

where

1
> .
2 16(mtn—2202m+n-—2)

Proof. The first step involves taking the Jacobian Jac(F, G), which gives

[Nac(F, G)elll1/a S Q(e, ).

Observe that
radical(Jac(F, G))"™ "2 € (Jac(F, G)),

therefore
|[radical(Jac(F, G)[|> 1+ < Q(p, ).

4(m+n—2)
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Next, taking the Jacobian of radical(Jac(F, G)) and F' gives the following estimates

| Jac(radical(Jac(F,. @), F)lI” . 5 Qg ),
8(m+n—2
llradical(Jac(F, G))¢lI?_+ < Qo 9).

8(m+n—2)

By considering the degrees, the intersection multiplicities of Jac(radical(Jac(F,G)), F') and
radical(Jac(F, )) is at most (2m +n — 2)(m + n — 2). Hence

2 <
el S Qe
[wel]” S Qe 9)

1
8(m+n—2)(2m+n—2)(m+n—2)

Taking the Jacobian of z and w in the final step yields the subelliptic estimate with

1
> :
“Z16(m+n—2202m+n—_2)

]

This therefore provides a special domain in C* which is a triangular system in the sense of
D’ Angelo-Catlin, and yet there is an effective termination of Kohn’s algorithm:

Corollary 9.20. Let (21, 23, 23, 24) be holomorphic coordinates of C*, and let P(z1, z3), Q(21, 22) be
homogeneous polynomials of respective degrees m and n so that

dimcC{z1, 22} /(P, Q) = mn < oc.

Then for each k, |, m € Nx; and for generic choices of P and (), Kohn’s algorithm terminates with
effectiveness for the following special domain defined by

2 2
Re(zs) — ’Z:?’Q - |Z§ - P(Zl,zz)‘ - |Z§n - Q(Zl,zz)‘ -

Proof. The first step in Kohn’s algorithm consists in taking the Jacobian of the functions F' := 2%,

G := 2, — Pand H := 2" — Q, which gives

L1 0(P,Q)
k-1
Jac(F, G, H) = kz, Do)

Let A, be the radical of g((ji)) . Therefore, the first Kohn’s ideal of sub-elliptic multipliers is generated

by z3 - A;. Now to generate the next ideal, consider

I(P, Ay)

Jac(28, 2k — P 23 - Ay) = k2t 8(217 )

which is also a sub-elliptic multiplier. By the previous result, the ideal in C{z, 22}
Jo(P,A
<A1, ( ) 1) >
8(21, 22)
contains (z1, 2o)~ for some effective number N. Therefore, both z;z3 and z;2, are subelliptic multi-

pliers. Taking the following Jacobian implies that

k Lkt
Jac(zy, 2123, 2023) = 23
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is a subelliptic multiplier, and hence by the radical property, so is z3. It follows that

m a P7 Q
JaC(Zg,Zé — P, 23 — Q) = W
is a sub-elliptic multiplier, and so is A;. Moreover,
J(P, A
JaC(Zg, Zé — P, Al) = ﬁ
1, <2

is also a sub-elliptic multiplier. Again by the previous result, this implies that 2} and 2z} are sub-elliptic
multipliers. Since z3 has been shown to be a sub-elliptic multiplier, the proof concludes. [

Another effective example which can be mentioned is the following. Let (z, y, z) be holomorphic
coordinates in C? and let F, G and H be holomorphic function germs at the origin so that there exists
an effective number k& with

(x,y,2)F C (F\, Fy, F3).

Hence there exist holomorphic function germs Ay, Ay, Az, By, Bs, Bs, C1, Cy, C5 such that

o = AF + AyF, + AsF, (9.21)
y* = B\F\ + ByF, + B;F, (9.22)
Zk = OlFl + OQFQ + CgFg. (923)

Proposition 9.24. Let (x,vy, 2, w) be holomorphic coordinates in C* and let Q2 be the special domain
in C* given by the defining function

1<2<3

ri=Re(w) — |Fi|* — |B]* — |F3* — ( > AP+ B + |Oi|2)’

then Kohn’s algorithm terminates with effectiveness.

Proof. The element Jac(z*, 4/*, 2¥) lies in the first subelliptic ideal .J; because

Jac(z, o, 2F) = Jac< > AiF, Y. BiFj, Y. Cka)

1<i<3 1<5<3 1<k<3
= Z Jac(AiFZ-, BjF}'7 Cka)
1<4,5,k<3
= Z (EBjCkJac(Ai,Fj,Fk) + EBijJac(Ai,F},Ck)
1<4,5,k<3
+EFijJaC<Ai, Bj, Ck) + EFjCkJaC(AZ’, Bj, Fk)
+AiBjCkJac(Fi, Fj, Fk) + AiBijJac(Fi, F}‘, Ck)

—l—AiFjCkJac(E, Bj, Fk) + AiP}FkJac(Fi, Bj, Ck))

which lies in the first ideal of subelliptic multipliers /1, and hence so is its radical zyz. The next step
involves

Jac(z®, oy, xyz) = Jac( > AFE, > BiFi,xyz)

1<i<3 1<5<3

= >, (AiBjJac(Fi,Fj,xyz)—l—AiFjJac(Fl-,Bj,:Uyz)

1<i,j<3

+F;B;Jac(A;, F;, xyz) + F;FjJac(A;, By, :zzyz))
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which lies in the second subelliptic multiplier ideal .J5, and hence so is its radical zy. In a similar
manner, so are xz and yz. Finally

2% = Jac(z¥, vy, x2) = Z Adac(F;, xy,yz) + Filac(A;, xy,yz)

1<2<3

which lies in the third subelliptic multiplier ideal /5, and hence so it z. Similarly, so are y and z, and
Kohn’s algorithm terminates at the next step. U



Chapter 3

The Hachtroudi-Chern-Moser invariants in
CR geometry (Introduction)

This chapter serves as an introduction to the rest of the thesis, and it consists mainly of the differential
geometry aspects of CR manifolds.

1 Umbilical points in CR ellipsoids in C?

The second part of the thesis consists of the calculation of local invariants of CR manifolds. The
first part being the calculation of the umbilical locus for certain real hypersurfaces in C2. In 1932,
Elie Cartan [Car]; [Car]; [Car32b] has shown that any local real-analytic hypersurface M C C? is
determined up to local biholomorphic equivalence, by a single local invariant

g M —C.

By invariance, it means that any local biholomorphism & : C? — C? transforms .7 __ by a factor of

Cartan
a non-vanishing function v : M — C so that

I (h(p)) = v(p) I an (D).

Cartan

This guarantees that the vanishing set
UmbCR(M> = {p EM: jcl\grtan(p) = 0}

called the umbilical locus, is intrinsic. It has been known for a while that the explicit calculation of
such a locus can be notoriously difficult for many cases.

Let (z,w) = (z + v=1y, u + v=1v) be holomorphic coordinates for C?, and assume that locally
M is given by a real-analytic, real-defining function of the form {r(z,w, z,w) = 0}. Assume also
0 € M and r,,(0) # 0, so that M is smooth at 0.

Letr(z,w, s, t) be the polarisation of 7(z, w, Z, w), which replaces z and w by holomorphic coordi-
nates s and ¢. Therefore the vanishing locus of 7(z, w, s, t) in C* defines a holomorphic hypersurface,
which is smooth at 0 by ,,(0) # 0. Holomorphic implicit funtion theorem then implies the existence
of a holomorphic function ©(z, s,t) such that r(z,w, s,t) = 0 if and only if w = O(z,s,t). By
restriction to Z = s and w = ¢, the real hypersurface M can be alternatively described as

M ={w=06(z2z,0)}.
Let L(r) be the Levi determinant

0 7. 7w
L(r)=det| rz 7. 7Tuz

To Tzo Tww

90
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which this time is assumed to be Levi non-zero. Let A be the following expression
A — _@w@zg ‘I’ @g@zw.

A direct calculation can be done to show that the Levi non-degeneracy condition translates to the
non-vanishing of A. If .Z is the vector field given by

_ 1 0 0 0 O: 0
f,: —E (—TIDE‘FTEO—U}) = —-— — —w

=L

a theorem in [Mer10] shows that

Theorem 1.1. At a point p € {O4 # 0}, the hypersurface M is spherical if and only if

1 \*

where O = —@A
w

To recall, a real hypersurface M is spherical if locally it is biholomorphic to |z|? + |w|* = 1. Tt
turns out that the Cartan invariant .72, is a multiple of (1.Z )4(@ZZ) by a non-vanishing factor. An

Cartan
expansion of (1.2), followed by the substitution of the following identities

—H(r)

3
Tw

@zz =

y H(T> =TrTww — 2Tzrwrzw + TwTwT 2z,

provides the following formula for the Cartan invariant
= (4T3 (5)

() (1) 2 (40 (1)
L) )

et (49) (1) (40) o[

In the special case where M is an ellipsoid given by

ar? + P+ b+ 02 =1 (a=1, b>1, (ab)(1,1)),

a joint work with Professor Joél Merker and a Ph.D student The-Anh Ta, which is accepted for pub-
lication in Comptes Rendus Académie des Sciences, shows that /[, vanishes on a certain curve con-
tained in M, and thus verifying the existence of umbilical locus:

Theorem 1.3 ([FMT]). For every real numbers a > 1, b > 1 with (a,b) # (1,1), the curve
parametrised by 0 € R valued in C*:

v o= (@(0) + v=1y(0), u(0) + v=10(0)),

with
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and

o b—1 o a(b—1)
u(f) := msm 9, v(0) == — —p 1 s 6.

has image contained in the CR-umbilical locus {I},,; = 0} of the ellipsoid given by ax® + % + bu? +

v? =1

2 Holomorphic curves in Lorentzian CR manifolds

Let (21, 29, w = u + v=1v) be holomorphic coordinates of C3, and M be a real analytic real hyper-
surface passing through the origin of the form

u = F(Zl722,21, 22).

Recall that its T1°M and T%! M sections are respectively given by (for i = 1,2),

0 0
L= gy VT gy
_ 0 0
L= g TG,

By means of taking the Lie brackets between the TH°M and the T%! M sections, the Levi matrix of

M is therefore given by
— F 2121 F. z122
A n 2 (FZQZl FZQZQ) ’
Definition 2.1. The real hypersurface M° C C? is Lorentzian at 0 € M?° if the Levi form at 0 has

1 strictly positive eigenvalue and 1 strictly negative eigenvalue. Moreover the manifold is said to be
Lorentzian if this happens at every point.

The main objective of this section is to study the holomorphic immersions of curves
o:D—M

passing through the origin. To this end, it is necessary to look at the contact form of M?, which is a
one form given by

0=—dv+ >, (—v=1F, )dz + Y. (V=1F%,)dz;.
k=1,2 k=1,2

Therefore,
df =2y=1 ). F.: dz Adz,

ij=1,2
which recovers the Levi matrix. By the Gram-Schmidt process, there is a change of local frames of
T1OM and T%! M that diagonalises df so that

df = v=i(a' Aa' —a® A @) mod 6.

Let o7, ot (resp. ,, /5) be the respective duals of o' and o (resp. &', @?). Since a holomorphic
curve ¢(ID) has tangent space lying in ker 6, its tangent vector may in general be written as

Loy = [1(t, 1) + fo(t, 1) b
This tangent vector field must also satisfy the compatibility condition

d0( L) N ZLow)) = 0,
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and therefore
|f1(t7t_>|2 - |f2(t7t-)|2 = 0.

By the assumption that ¢ is an immersion, f; cannot vanish anywhere at all ¢ € D, and hence

fQ(tvf)
fl(tvf)

which implies that fo = Af; for some A € S'. Since the direction ) is not known, therefore it is
natural to set up the following system of differential forms:

2

I

W= 0
W= ol ot = &t
w? = o=\t o? =a’ - \at,

and let I = (w°, w?, @?).

By a reason which will be explained later, Byrant introduces a second prolongation by adding
additional variables p and thus obtaining the following system of differential forms
W= 40
w ol w? =a? — Aot 7 =d\— La' — po!

o' = &' @*=at- a'  F=d\— La' —fa',

Q

with I, = (w°, w?,@? 72, 7%). The new variable p will have to satisfy the equation of sphere and a
hyperplane

Mt = ML, (2.2)
lw— B> = |BP+ AL+ AL+|L*—C. (2.3)

By substituting equation (2.2) into (2.3), this implies that A will have to satisfy the following equation
INL—B|?=|B+AL+ AL+ |L|* - C (2.4)

subjected to |A|*> = 1. Equation (2.4) describes a hyperbola in R? and hence its intersection with
the circle |A\|> = 1 has at most 4 points of intersection. Finally define the following 1-form 7 =
M\ + ALa' — ALat, and let I, := (I, 7) be the ideal generated by I and 7, the 1-from d7 can be
written as

dr = —[S9911 A" + 459171\ + 651111 + 459171 + Saor1 A mod .

where the coefficients are components of Hachtroudi-Chern-Moser’s .S tensors.

3 The Hachtroudi-Chern-Moser Tensor

The computation of CR invariants in higher dimensions involves the study of the S-tensor, Sgg, which
has its origin traced back to the 1939 Ph.D thesis (these de I’entre-deux-guerres) of Mosen Hachtroudi
[Hac37], who was a student of Elie Cartan.

Let K be either C or R, and let (x!, ..., 2", y) € K""! be its coordinates. The first and second jet
space, denoted respectively by J* (K", K) and J?(K", K), of the graphing function y(z!, ..., "), are
equipped with the following coordinates

+1+
(:Baay7ya:/3) e K" n’
n(n+1)

(.CEO‘, y; ymﬂ7 yé)f'\/x‘s) 6 IK'fl-‘r]_—‘,-n_A'_T ‘



94 Wei Guo Foo, Orsay University, Paris, France

The starting point is to consider the following system of partial differential equations

~—

Yypagh = Faﬁ(l"yv Y, yxé) (1<a75<"
with the compatibility condition that
FoP = phe,

Moreover, assume that this system is completely integrable. This means that for any choice of con-
stants
(a',...,a",b) € K",

there exists a unique K-analytic solution

satisfying
Qwo‘a}ﬁ = Fa’ﬁ(lﬁy Q(I7 a, b)7 Q:c6 (.ZU, a, b))

with the initial conditions

Qmo‘mﬁ (07 a, b) = b7 Qw’Y (07 a, b) - CLV7 (1<'y<n).
If
0 0 = 0
Dye = 2 4y = P
ox® tY 8y+ﬁz::1y ﬁﬁywﬁ

is the vector field on J'(K",K), the complete integrability condition is equivalent by Frobenius’
theorem to the following compatibility equation:

D F =D, s F7.

Using Cartan’s method, the following formula of the Hachtroudi-Chern-Moser S-tensor (See
[Bie07]) is therefore reconstructed:

1
Bo __ , o a, o ; B , B )
SO‘P o FyC:Bp’wa - n + 2 (6p ZE Fygggvyws + 5O‘ZE F;x; Yt + 5p ; Fyijcga’wa + 60‘26 F?j)xivyw‘f)
1
5700 + 6067V PO .
+(n—i— 1)(n+2>z€:;( pra ™ P a) Y8 Yae

To adapt the tensor above to CR hypersurface case, similar argument in the section on ellipsoid in C?
may be applied to real hypersurfaces in higher dimensions.

To this effect, let (21, ..., 2,,w) be holomorphic coordinates in C"*! and let z := (z1,..., 2,).
Suppose that the real hypersurface M C C"*! is given by the local real-valued, real-analytic defin-
ing function {r(z,w,z,w) = 0}, along with the condition that » = 7 and 7,(0) # 0. Let
(s,t) := (s1,-..,5n, w) be the holomorphic coordinates, and r(z,w, s, t) be the polarisation of r.
Then r(z,w, s,t) defines a holomorphic hypersurface in C>**2. By the holomorphic implicit func-
tion theoreom, there exists a holomorphic function O(z, s, t) such that r(z, w, s,t) = 0 if and only if
w = O(z, s, t). Hence by restricting to the subspaces s = Z and t = w, the manifold has an alternative
description M = {w = O(z, z,w)}.

Next, fix the following notation (z,w,w,) which denotes the holomorphic coordinates in C*" 1.
Let ¢ : (C*"F1 (2, 5,t)) = (C*"™! (2, w,w,)) be the holomorphic map given by

90:C2n+1 N (C2n+1
(z,s,t) — (2,0,0,).
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An additional assumption that M is Levi non-degenerate means that the determinant of the following
matrix

0 T2 T2 Tw
Tzy, Tuz o Tzoz Twz
L(r) := det
Tzn Tzl Zn e Tznfn r’wfn
e Tzio “°° Tzygo Tww

:=L(r)

vanishes nowhere. This condition is equivalent to the non-vanishing of the Jacobian of the map ¢,
and thus the non-vanishing of the determinant

681 e ®Sn Gt
@zlsl e G)zlsn ®z1t
A(O) = det ) _ . .
@znsl Tt G)znsn @znt

-

:=i(©)
Therefore, ¢ 1s a local biholomorphism with the inverse
o Nz, wow,) = (2, ALz, w,w,), .., Ap(z,w,w,), (2, w,w,)).

If A(; ;(©) is the determinant of the matrix A; ;(©) = (—1)"*7det(j(O;))), where j(O; ;) is the
matrix with ¢-th row and j-th column removed, then for 1 < i, j < n, an application of Cramer’s rule
shows that the vector field 8ij may be given by

_ A(l,jﬂ)(@) A(n+1,j+1)(®)
Ou., = D A©) s, + NG) d,.

1<i<n

At this point, Cartan’s method applied to

Wzizy = ®zizj(zy Sat)
= Oz M(z,w,w,), ..., Az, w,w,), (2, w, w,))

G (z,w,w.)

provides the following Hachtroudi-Chern-Moser tensor

Bo a,p . 5 o B B
SOCP - Gsz YWz _'_ 2 ( Z wz yWze + 6 Z Gwz sWze (5 Z Gwz yWze 5 Z wza 7w25)
1
+ Z Z (5252 + 5ﬁ50)GfOi5 yWze ©

(n+1)(n+2)=

One of the results in my thesis is to translate the formula above in terms of the implicit function
r = 0 instead of the graphing function w = ©(z, z,w). For 1 <i <n+1land1 <[ < n,let L;,(r)
be the matrix with i + 1-th row and [ 4 1-th column of L(r) deleted, and let L; ;(r') be its determinant.
By exploiting the relations r(z, ©(z, z,w), z, w) = 0, the final form of the vector field J,,. is given
by

(— 1)n+1+k+1Ln+1,k+1 (7)
L(r)

1 l+k+1L
ka S rw( ) Lkt (7)

82 + Ty
1<I<n L(T) :

aﬂn

and thus the following theorem:
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Theorem 3.1 (Theorem 13.20 in page 234). Forn > 2, 1 < ki,ky < nand1 < 1,19 < n, the
CR-umbilical locus is the zero set

B Hy, k, 1 < Hig,y Hy,
O = 8’LUZZ'1 (awzi2 Ti, - n + 2 ZXI: 5k1,i1 8“’21 awz io T’w + 5]4;1712811)2 i ale ,

3
H H
+5k’2 11 aw (810 . bt ) + 6192 19 811} (aw kL ))
) z] z,b2 ) Z5 i1 z] 7,13;}

3
1 Hy
* (n+1)(n+2) (Bt Ot s + O O Z Z Ouy, ( T 2)

li=11ly=1
where
© _ Hy Hij = —[rwrwlsz, — ToTwlamw — Vo Twlew + 7oy Ta T
ZiZ5 T r3 ) ) T whw' z;z45 z;tw! zw zitw! zjw zZil zjtww]-



Chapter 4

Umbilic Points in Ellipsoid in C2

0.0.10 The real-analytic function p. Let (2, w) = (z + v=1y, u + iv=iv) be holomorphic coordi-
nates of C2, and let

p:C* — R
(z,w) — p(z,w,z,w)

be a real analytic, real-valued function. The real analyticity of p means that in a neighbourhood V' of

the origin such that 1/ is compact, p may be expressed as a power series that converges normally on
V:

(o o INe oI e O lNe o]

p(z,w, z,w) = Qijki Zw? ZFat (aijecC).

The condition that p is real implies that the coefficients a;j; satisfy the following property

Qijkl = Qflij- 0.1

Taking derivatives of p with respect to z and w:

o0
(2, w, Z,w0) = i api 2wl 2R
y Wy <y J )
o oo o o
w2, W, 2, W) = a2t T R
y Wy <y ¥l

Taking conjugates on both sides,

p.(z,w, z

w) = E E E E i ighl Z L@l 2Rt
o0 o0 (o] o0

PO — i1 k|

puw(z,w, zZ,w) = E E E E J Qi 2w 2w’

p.(z,w, zZ,w) = g g E E i ap; 2t 2wt
o0 (0] o (o, ¢]
pu(z,w, Z,0) = E g E E J Qi Zad TRl
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Switching the indicies ¢ with k, and j with [:
p.(z,w,z,w) = ZZZZ/{: Caijg 2w 2
puw(z,w,Z,0) = Z Z Z Zl C Qijkl 2w’ ZFapt L

0.2)

0.0.11 Real manifold M in C2. Let M be the real hypersurface in C? given by
M = {(z,w) € C*: p(z,w, z,w) = 0},
with the assumption that
dply = p:lm dz + po|v dw + pz|pmdZ + po|mdw

does not vanish anywhere on M, and therefore is a manifold of real dimension 3 in C? = R*. More-
OVET, P, Pw, Pz and pg do not simultaneously vanish on M. By equation (0.2), this means that p, and
pw do not vanish simultaneously on M, and the same conclusion applies to the pair p; and p.

Such a defining function of M is not unique. In fact, if x(z, w, Z, w) is another real-valued defining
function that does not vanish anywhere on M, then M = {up = 0}. Conversely, if p is another
defining function of M, then there exists a real-valued function p that vanishes nowhere on C? such
that p = pp, as shown in the following lemma below:

Lemma 0.3. Let n > 2 and let 1 and r be two local real analytic, real valued defining functions
for M such that both of them vanish at the origin. Assume also that dr,(0) and drs(0) do not vanish.
Then there exists an open neighbourhood U C C" of the origin, and a non-vanishing function h on
U such that r1 = hry. Moreover, forx € U N M, dry = h - dry for x € U N M.

Proof. Since dry(0) # 0, there exists a neighbourhood of the origin U such that after a local change

of coordinates, M = {ry = 0} = {z,, = 0}. Leta’ = (21, ...,2,-1). Then r1(2’,0) = 0 and by the
Fundamental Theorem of calculus,

1
r(x',x) = r(a,z,) —ri(2',0) = xn/ g, (@ tay,) dt. O
0

Therefore, h is found, which is real-analytic, and
d’l“l = d(hT‘g) = h'd?“Q + 79 dh,
so that if (', z) € M, dry = h - dry. At the origin, dr1(0) = h(0) - dry(0), and by hypothesis, & does

not vanish at the origin. By further restriction to a smaller open set of the origin, / may be assumed
to be non-vanishing everywhere.
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0.0.12 The tangent bundle of M/. Let 7'M denote the real tangent bundle on M, and let CT M =
TM ®g C be its complexified tangent bundle. Designate at each p € M the following vector spaces

T,°M = CI,MNT,"C,
T)'M = CI,MNT)'C.

In terms of sets,

T)°M = {ad. + b0y, : (a,b) € C*, ap.(p) + bpu(p)
01s _ . 2
"M = {a0; + b0z : (a,b) € C, apz(p) + bpz(p)

! 0.4
0 0.4)

Let T1°M and T%* M be the following complex vector bundles

TYM = UpenT, "M,
T™'M = UenT)'M.

A TYOM vector field (or section) is a vector field X of the form
X =a(z,w,z,w)0, + b(z,w, Z,W0)0,

where a and b are functions on M such that for all p € M, X (p) = a(p)d. + b(p)d, € T,°M. The
T M vector field is defined similarly by replacing 0, (respectively 0,,) by 9; (respectively 0,). Set

0 0
L = —PwF z a0
p 82+p8w

_ 0 0
L = —pso Z 5 -
Pz TP o0

The assumption that dp|,; does not vanish anywhere on M implies that both L and L do not vanish
at any point on M. Moreover, they are complex conjugates of each other by (0.2). They also easily
verify

Lp = —pup:+p:pw =0,
Lp = —pwpz+ pzpe = 0.

By equation (0.4), L (respectively L) is a section of the T'CM (respectively T%! M) bundle. Since
T"OM is arank 1 complex line bundle, and L does not vanish anywhere on M, L generates T M at
each point of M. Similarly, L generates T%! M at each point of M.

0.0.13 The Levi form L(p) By the previous paragraph, the 7'M sections X and Y can be ex-
pressed as
X =a(z,w,z,w)L and Y =b(z,w,z,w)L

for some complex-valued functions a and b. Assume that X and Y are €. At each point p € M,
there is a bilinear form

Lp(p) : T)°M x T)'M  — CIT,M mod T,°M@&T)'M
(X().Y(p) +— [X.Y](p) mod T,°M T, M.

This map is well-defined for two reasons. First, if at p € M, two vectors are given

A, = 0oL(p) and B, :=0L(p) (0,0eC).
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Therefore, it is possible to choose two €’ vector fields
X :=oL and Y :=0L (o,0¢C)

so that L,(p)(A,, B,) can be defined for every # and . Secondly, the map L,(p) is independent of the
choice of vector fields X and Y such that X (p) = o L(p) and Y (p) = 0L(p). Suppose another set of
¢! vector fields X and Y are given so that

There exist ¢! functions @ and b such that
X =a(z,w,z,o)L and Y = E(Z,w, zZ,w)L
with

a

p)=o=alp) and  b(p) =6 =b(p).
Taking the Lie bracket [X, Y],

—

[X,Y] = l[aL,bL]
= aL(b)L + abLL —bL(a)L — baLL.

At the point p € M, taking modulo 7,-°M & T}»* M,
o — 7 7 1,0 0,1
(X, Y] = a(p)b(p)|[L, L] mod T,"M & T, M.

By formally replacing a by @ and b by b in the calculations above,

(X,Y](p) = alp)b(p)[L, L] mod T)°M & T)'M
= [X,Y](p) mod T)°M & Ty M.

[R—1

Therefore, the Levi map L,(p) is well-defined at every point p € M.

0.0.14 Explicit Calculations of [, L] To obtain more information about the bilinear map L(p),
[L, L] needs to be calculated.

[L,L] = [=pul: + p:0uw, —pads + p:0a)

= [=puw0:, —pa0z] — [puw0:, pz0a) — [p:0w, Pa0s] + [p:0w, pz0s]

= pwpwza% + pwpﬂ)agz - Pwﬂwgaz - pwpwazz
—PwP2z05 — Pwpzagw + pzpwi0: + pzpwaf@
— P2 Piw0z — pzﬂﬁ;&g}z + papzz0u + pzﬁpzaziz
+pzﬁ72waw + pzpiaiu’; - pipzu?aw - pipzawu?

= puwpw:0z — Papwz0: — Pupzz0s + pPzpuwnl:
—P2Powds + Pap2z0w + P2pzw0s — P2P200w

_ PwPwz 0. — PwPwz P+ PzPww e — PzPww

= - POz
_pwpzéau’) + pwpzéaw + pzpéwaﬂ) - pépzwaw-

Since L and L are sections of the T'°M @ T%' M bundle, using

Pl = p.0y mod TH°M @ T M
pal: = pz0g mod T 00N @ T M,
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to replace 0, (resp 0z) by 0,, (resp Og), the calculation continues as follows

[L, E] = Pw/{wz péaw . pﬂ)pwipzaw + p,%pww pzaw _ pzpti pgauj
_pwpzéau’) + pwpzéaw + pzpéwau’} - pfpzﬂ)aw
1

— [PwPwz — P2PzPow — PoPwPzz + PuPzPzw)On

w

1
—p—[/)wpgpzw — P2P:Pow — PuwPiPzz + PiPzPwz)Ow

w

[PwPw2Pz — P2P2Pow — PoPuwPzz + PupPzPrw) -

1 1
(—&U - —8w> mod TYOM @ T M.
P Pw

Definition 0.5. A smooth hypersurface M? C C? is called Levi non-degenerate at p € M if
L(p) 1= —(PuwPi:pz = PPzPww — PuPuPzz + PuPzPzw)
does not vanish at p.

The expression L(p) coincides with the determinant of a certain matrix

0 P puw
L(p) = —1|Pz Pzz Puwz|-
Po  Pzw Pww

and its general expression in higher dimensions will be presented in the last chapter.

0.0.15 Action on M by biholomorphism of C?. Let
h:C* — C?
(zw) — (f(zw), 9(zw)) = (<, 0)

be a local biholomorphism. The vector fields 0., 0,,, 9., and 0, are related by

- fzaz’ + gza'w’

0.6
fw /+gw w’ ( )

Let M = {p = 0} and M' = {p' = 0} be real analytic hypersurfaces such that h(M) C M’. The
THO M’ vector field on M’ is given by

L' = —p 0 + pliOw.
Upon restriction to a smaller domain of h, h(M) = M’. Thus,
M = {(z,w) € C*: '(f(2,w), g(z,w), f(2, @), §(z,w)) = O}.
By Lemma 0.3, there exists a nowhere vanishing function x : M — C\{0} such that
ulzw, z,0)p(z,w, 2,w) = p(f(2,w), g(z,w), f(Z,0), §(Z,0)).

The T'°M vector field tangent to M defined by the function p'(f, g, f, ) is given by

Ll = _<p,(faga fT? g))waz + (pl(f>ga .]Ev g))zaw
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Using the chain rule

azp,<fvgv.]§g) = p;’(fagv.]ivg)fz+p;u’(f7g7f_7§)gzu
awpl<f7g7f7g) = p;’<f7g7f7g)fw+p2u’(f7g7f7g>gwa

and the relations between 0., d,,, 0, and 0, in equation (0.6) to obtain

Ly = =0 (f,9, [, 9) fu + P (F, 9, F, 3)9w) (202 + 920u)
+(0 (f> 9, F,9) f= + pur (f5 95 ', 3)92) (fuwOzr + GuwOur)
= —0L ([, 9, F,9) fuf:02 — Pl ([, 9, . 3) 9w f-0x
0 (f29, 2 9) fw9:0w — P (f+ 95 [ 5) 900w
0 (f, 9, [, 9) - fuOr + P (f. 9. F, §) 92 furOs
02 (£, 9 F,9) f2900u + P (f1 9 f1 §)92GuOur
= (fo9w — fug:) (= Pl (f, 9, F,9)0 + 0 (.9, . 3)0uw).

On the other hand, for the 71 M vector field on M defined by the function yp,

Ly = —(up)wO: + (11p)-0u
= —pwpO; — p1puw0; + 1p0u + 1p.0y
= pi(=pu0: + p20u) + p(—p0: + 120,)
= pL+ p(—w0: + p20u).

Since Ly = Lo, upon restriction to M = {p = 0},
N(_pwaz + pzaw) = (fzgw - fwgz)(_p;u'az’ + p;/aw/) (0“ M)'

Therefore
p- L =Jac(h) L (on ).

1 M as a graph of a function

1.0.16 Implicit function theorem and the complex graph of // Let M C C? be a real hypersur-
face defined by a real-analytic, real valued defining function p such that dp does not vanish anywhere
on M, or equivalently, M is a smooth real submanifold of C2. Without loss of generality, p,, is as-
sumed to be non-vanishing everywhere on M. Throughout this section, M is also assumed to be Levi
non-degenerate (see Definition 0.5).

Upon polarisation, that is replacing z and ¢ by holomorphic function coordinates s and ¢ respec-
tively, p(z,w, s,t) is a holomorphic function on C* since p is real-analytic. By assumption, and by
restricting to a smaller open set if necessary, p,(z,w, s,t) does not vanish anywhere. Hence by the
Holomorphic Implicit Function Theorem, there exists a holomorphic function ©(z, s,¢) on C? such
that

pla,b,c,d) =0 if and only if b=0(a,cd). (a,be,d €C).

Therefore, by restricting to the subspace s = z and t = w,

and hence the following identity holds clearly by definition:

p(z,0(z,z,w),z,w) = 0. (1.1)
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1.0.17 Some Identities Denote F'(z,w,z,w) = (z,0(z,z,w),z,w). Differentiating equation
(1.1) with respect to z, z and w yields the following set of identities:
0=p, 0 F+0O,p,0F,
0=ps:0F +0O:p,0F, (1.2)
0=pgyoF + Ogpy,oF,
while a further differentiation of equation (1.2) gives another set of identities:

0= pooF + 20,00 F +0.0.pu 0 F +0..py0F.
0=pz0F+0.pz,0 F+0zp.,0 F +0.0:04,0 F +0.:p,0F,
0=p.00 F+0.pp5 0 F +Ogp.0 0 F'+ 0.050u0 0 F + O.gpy, 0 F,
0=p:z:0F +20:p5,0 F 4+ 0:0:p4, 0 F + Oz:py 0 F,

0=pz0 0 F +Ozpup 0 F + Ogpzy 0 F + O:05040 0 F + Ozgpy, 0 F,
0=pos o F +205pu5 0 F 4+ 0505000 0 F 4+ Ogapw o F.

(1.3)

These identities will be useful later in translating invariants from the representation of M by graph to
the representation of M by p.

1.0.18 The expression A Let A denote
A:=0:;0,; — 050.:.
Lemma 1.4. The following identity holds
L(p) o F = —(py o F)*A.
Proof. For the rest of the calculation, the notation o F' will be suppressed. Starting from L(p) o F,
L(p) o F = p.p:zpuww — PsPaPzw — PzPuPzw + PuPapPez,

each of the terms on the right hand side will be replaced by equations (1.2) and (1.3). For example,
for the first term:

PzPzPww = (—@sz)(—@zpw)Pwu‘; - @z@,E Pw Pw Pwiw-
For the second term:
PzPwPzw = (_Gzpw>(_6u7pw>p2w = @z(_)w PwPwPzw-
For the third term:
pépwpzu? - (_@pr)pw(_@zpwu’) - @wpzw - @z@wpww - @prw)
= G)Z@zpwpwpwﬁ) + @ngpwpwpzw + @z@;?@ﬂ)pwpwpww + ®2®z@pwpwpw-
Finally for the last term,
pwpu’;pzi == pw(_e)ﬂ)pw)(_@zpéw - @szw - @zgfpww - @zépw)
= 050.pupuwpzw + OwOzpupPuwprw + OO0z pupPuwPww + OzO 2z pwPwPw-
Therefore,

L(P) o F == @z@,épwpwpww - @z@wpwpwpéw - @2@zpw,0wpww - @ZGw,prwpzw
_@zgé@wpwpwpww - @Egzwpwpwpw + G)w@prpprw + @w(—)ipwpwpzw
+@w®z@2pwpwpww + @ﬁ)@zzpwpwpw

= pi(@w@zz - 6262121)
—(pw o F)3A.



104 Wei Guo Foo, Université Paris-Sud, Orsay

It is immediate from the calculation above, and from the definition of a Levi non-degenerate real
hypersurface is the following:

Corollary 1.5. M is non-degenerate at p if and only if A does not vanish at p.

1.0.19 The vector field éﬁ Set

g2

= oo
and let 5 o 5
2= T 6,00

The vector field éy comes from the transfer of a certain map between the jet spaces. Let (z, s, 1)
and (z,w,w,) be holomorphic coordinates of C3. Here, s and ¢ will represent z and @ respectively.
Let ¢ : C* — C3 be the holomorphic map given by

p:C* — C3

(z,8,t) — (2,0(z,s,1),0,(z,s,t)).

The Jacobian of this map is

1 0 0
Jac(gp) = @z @s @t = @s@zt — @t®zs
@zz @zs @zt

which is recognised as the polarisation of A. By assumption that M is Levi non-degenerate at the
origin, upon restriction to a suitable smaller open neighbourhood of the origin in C3, and by Corollary
1.5, Jac(y) can be assumed to be non-vanishing everywhere. By the inverse function theorem, there
exist functions A(z, w,w,) and TI(z, w, w,) on C? such that

S = A(Z,@(Z,S,t),62(27s7t))’

t= TII(z,0(z,s,t),0.(z,s,t)). (1.6)

Substituting the equations above into the expressions of w and w, to get
w = Oz, Alz,w,w,), (2, w,w,)), (1.7)
w, = 6,(z,A(z,w,w,),(z,w,w,)). (1.8)

Differentiating equations (1.7) and (1.8) with respect to w and w, and give respectively
0=0,+06,A, + 6,11,
1 =06,A, + O11,, (1.9)
0 =06,A,, +6ll,,,

and
0= 622 + @zsAz + @ZtHZ7

0= ®zsAw + @ztl_-[uM (110)
1= @zssz + @ztnwz-
Comparing the first line of (1.9) with the first line of (1.10) and etc, the following system of linear

equations are obtained:
@5 915 Az o - @z
628 @zt Hz - - @zz ’
0, 6, Ay (1
(6. 62) ()= o) )
0, 6, Ay, (0
@zs @Zt sz N ]- ’
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Applying the inverse matrix

0, 6\ _ L 0. -6

@zs ®zt n ®s@zt - ®t@zs _@zs @s
to both sides of equations (1.11) gives the following set of formulae concerning the differentiation of
A and I1 by 2z, w and w,:

o ®t@zz B @z@zt . @z@zs B @s®zz

AZ - ) Hz - I
@se)zt - @t(azs @s®zt - @t@zs
@zt _@zs
Aw = ) Hw = )
®s@zt - ®t@zs @s®zt - @t@zs
A, —© I, i

~ 0.0, -0,0. ~ 0,0, - 0,0,

Let G(z, s, t) be a function on C*. As above, from equation (1.6), G(z, s, t) may be written as
G(z,s,t) = G(z,A(z,w,w,),11(z,w,w,)) .
Therefore,

0.G(z,s,t) = 0.G+ N, 0,G+11,0,G
0wG(z,8,t) = N,0,G+11,0,G
0w.G(2,8,t) = N, 0sG+11,. 0,G.

As a result, the vector field 9,,, may be expressed as

1
O = 56,66, 00 TON

-0, O,
B ®s@zt - @t@zs (65 a gtat> ‘

For any G(z,z,w) a real analytic function on C?, let G(z, s,t) be the polarisation of G(z, z, w).
Therefore

Ow.G(z,5,1)
is the polarisation of
1
E"? (G(Za Z, w))

simply by looking at the power series expansion of G (in both variables (z, s, ) and (z, Z, w)).

1.0.20 Sphericity of M
Definition 1.12. Call M spherical if M is locally biholomorphic to
S*={(z,w) € C*: |2]* + |w]* = 1}.

The following (due to Lie) attributes an equivalent condition to sphericity of M (see [Merl0,
page 20]):

Proposition 1.13. Let M C C? be a smooth, real-analytic, real hypersurface which is Levi non-
degenerate at one point p € M, and has complex defining equation of the form

w=0(z,z,w0)
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for some system of local holomorphic coordinates (z,w) € C? centred at p. Then M is spherical at p
if and only if the right side of the associated second-order complex differential equation:

Wy, = 0,.(2,5,1) = 0,.(2, A(z,w,w,), [I(z,w,w,))
satisfies the single fourth order partial differential equation
O, (O, (0w, (00.(0:2(2, 5,1))))) = 0. (1.14)
Obviously, equation (1.14) implies the vanishing of
l7 (é? (%y (%y(@zz)))) . (1.15)

On the other hand, as remarked earlier,

0

Ow. (aﬂ)z (8102 (8102 (922<Z7 S, t)))))

1—/(1=/(/1—-/1—

7 <—$ (-.,s,ﬂ (_.z (@Zz(z, , w))))) .

O O O (I
It is known that if G is real-analytic and if G(z, s, t) is the polarisation of G(z, z, W), then G(z, s,t) =
0 if and only if G(z, zZ, w) = 0. Based on this fact,

is the polarisation of

Theorem 1.16 (See [Mer10, page 18]). At a point p € {©4 # 0}, the real hypersurface M C C? is
spherical if and only if near p,

Lo (2 (r (S2(e.e20))))

A direct expansion of the expression above gives

0

Corollary 1.17. On the open set {©4 # 0}, the real hypersurface M C C? is spherical if and only if

. 2o
D4
ZOZ'0.)  Z (076 Z'(0Ze.)
o° o° o°
ZOIPZ©.) , 1 ZOZOPZE:)
15O

Proof. The calculations presented below will be done in steps. First,

1 (1  Z0)Z(0..) | Z(0..)
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Next for the second application of

17,
§<1§ (ig(gzz))) o D@(?(m)?(@zz))—3?<D>§<@zz)§<m>mz>
O O O
+u2§3(@zz) —27°(0..)2Z(o)0
D4

0 (0)Z(6..) - B2 (D) Z(6..)

+3§(u)2§<@zz)u2 . 02.7°(0,.) — 2.2°(6..)2(0)0
0s 04
—0.2'(0)2(0..) — 0Z(0)Z (0..)
D4
+3§(u);§(@zz) . 0Z°©..) — g““(@zgy(m).

Therefore,

3

Z(0)Z(0.) , Z'©.)

+3 = =

Finally for the last application of the vector field é?, the application of % to each of the terms above
are calculated as below. For the first term:

1 (y(@m)) 0¥ Z'(0..) — 3022°(0.,)Z (D)

O 03

For the second term:

%g (?(D)QE(@ZZ)) 20°Z(@)Z (M) Z(0..)  0°Z(0)°Z(©..)

D5 Dll Dll
_5.%(D)*%4(0..)Z(0)o
Dll
_ 2Z2(0)Z (0)Z(6..)  Z(0)?*Z (©..)
0s mE
54 (0)°Z(0..)
_ -
For the third term:
1y (%Qf@z») _ 0Z@7'0.) | 0FO)Z6:)
O O O O
A3 2(0)2(0..)
DQ
 Zo)Ze..) ZOZ(6..)
a b 05
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For the final term
—2

5 <§2<m>§<@zz>> 0'Z'(0)Z(6.) , 0'Z(0)Z (©O-)

DQ
_ Z(@Z(6:) , Z(O)Z (6.)
o’ mi
AZ(O)Z (0)Z(6..)
|:|6
Therefore,
(%§>4 o) - Z é?za_ .7 (@;F(m) 2 Z éf)ﬂ@zg
+3§<m>2§2<@zz> 152D gz%mg(@z»
ZOZ6.) | ;L)L (0. L (0)Z(6..)
o’ 6 mi
 Z(0)Z(©..) . L, Z(O)Z (0)Z(6..)
mi mi
REACHE 6?@)53(@%) - 4z2<u)$2<@zz>  Z(Z(e..)
Di ., _D5 B _525 D5_
110 ZOZ 2O | Z0) 5@:(@» 15$<D>D{<@zz)

1.0.21 Explanation by Cartan’s Equivalence Method This subsection gives a very brief sum-
mary of the following differential equation

(éz) (0..)=0

in relation to Cartan’s equivalence method. Interested readers may consult [Olv95]. Set up the fol-
lowing coframes from the defining function in equation

wl = dw—w.dz,
W o= dw, — ®(z,w,w.)dz,
W= dz

Here, ® is the function ©,,(z, A(z, w,w,),1(z,w,w,)) in the previous paragraphs. The reduced G
structure (after normalisation) is given by
aq 0 0
g:=G,= as alagl 0] : ajag #0
ay 0 ag
The lifted coframes are therefore
0 = aw,
0? = ayw'+ alag1w2,

0 = aw'+ agw’.
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Upon computing df*, df? and d6?,
dot = wt At — 0% A 63,
do* = W A O? — (W' — W) A 67, (1.18)
do® = Wt A O' + WO A 63,

where
Gy a2
wo= ol 4 =62 — =63,
a1 a1
2 2.2
s o ara,P,,, + a2a4a692 n ai®,, — ara2a6®P,,, — a2a693
woo= a 2 2 2 g
2
a Aoy
w' = o'+ 507 - =6,
a a
1 1
ay 2a0a6 + a1 Py,
W= ab— 2% — =03,
aq a1Qg

Here, o!, o2, a® and o are coefficients that appear in the Maurer-Cartan form dg - ¢g—!. At this
stage the prologation process proceeds. For i = 1, 2, 4, 6, and 1 < j < 4, introduce the modified
Maurer-Cartan forms 7’ that satisfy

Wh=a = Y 2 (1.19)

1<j<4

Substituting equation into equation, and setting the torsions in df', d9? and df® to zero, the new
Maurer-Cartan forms 7’ are therefore

= w4 20",

= w4 2200 + (2] — 29)6,
7t = wt + 210" + L6°,

70 = W + 206!

(1.20)

The prolonged structure group is therefore a 4-dimensional abelian group with 7 x 7 matrix represen-
tation

2 0 0

A I 0 22 2 =29 0
1_ Cp_ | AT A

G = (R 1) FR= 2} 0 28

28 0 0

From equation, the dr for i = 1, 2, 4, 6 take the following expression after absorption:
drt = p' A0+ TP AR — TP AP,
dr? = pPPAO 4+ (o' =P ) NP+ 72 ATE,
drt = p*AO + PP AP+t A (7 — 1),
dr® = pPPAO =T N0 — 212 AN GP +TO' A 62,
where T’ is the torsion that cannot be absorbed, and has the formula

B 221 — 428 + (24P, — 6P, 0.)

T
a10g
By setting
1 204D, — ag?P
6 1 4 ¥ w, 6 X w,w,
= - 1.21
A 221 + 4(11@6 ( )
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T is normalised to 0. Substituting equation into the expression for 7 in equation, and recalculating

their differentials dr’, the following system of one forms is obtained:
drt = p' ANOP + T A0 — 72 NP,
dm? —,02/\(91—1-%pl/\02+772/\7r6—U92/\93,
d7T4:,04/\91+%p1/\€3+7T4/\<7T1 — 7 — VO A O,

1
dﬂﬁz§p1/\91_w4/\92—27r2/\93+V91/\02+U91A63.

The essential torsion coefficients U and V' are respectively

3 5 12dla4a2 4 6a3a4®,, + 3014262 Dy 0. + aFae D Py . — 4aTagPy. u

U=">
R 4aial

2 2 2
Y 324 n 6agajas + 6a1a;P,,, — 3a1a4a46Poy 0w, + A105Pw 1w, w.
= 5%
2

3,2 )
dajag

where D, is the total differential

D, =0, +w, 0, + P(2,w,w,)0,. .

(1.22)

(1.23)

These torsions U and V' can be normalised by choosing the appropriate values for 2? and z{. With the

6

values 27, zf and zjl chosen, these are substituted back to the expression of 7 in equation, and hence
there exist a modified Maurer-Cartan form p such that the following structure equations are obtained:

a9t = T AOL—02N63,

do> = A0+ (7' —7%) A7

de® = 7 NG + 78 A 63,

drt = pAO + Tt NG — TP NG,
1

dr? = §p/\6’2+7r2/\7r6+K2«91/\02,
1

d7T4 = §p/\¢93+7T4/\(7T1_W6)+K101A937
1

dr® = 5,0/\«91—7T4/\92—27r2/\93.

The only group variable, r1, cannot be absorbed, and hence by adding the final equation
dop=pAmt =21 At — K30' NO? — K40' N 63
to the structure equation above completes Cartan’s method. The torsion K is given by

2
K = %o

6(1,3 WL W Wz Wy
1

- %awZ(awZ(awz(awz(@zz(z,s,t)))))

with s = A(z,w,w,) and t = II(z, w, w,), is exactly (up to some multiplicative constant) the polari-

sation of (£.2)%(6..).
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1.0.22 Translation between {p = 0} and {w = ©} Starting from a defining function p of M, it s
possible to derive O, ,, which is useful for determining if M is spherical. Recall that F'(z, w, z, w) =

(2,0(z,z,w), zZ,w). Set
H(p) = (p: 0 F)*(pww © F) = 2(pz © F)(pu © F)(pzw © F) + (pu © F)*(pzz o F).
Lemma 1.24. The following identity holds:

H(p)
pwo F’

O..(z,z,w) =

Proof. Starting from the first identity in equation (1.3),
0=p..0oF+20.p.,0F+0.,0.p,,0F+06.,.p,0F,
bringing the last term over to the left side of the identity,
-0, ppo F=p,,0F+20,p,,0F +0.,0,p,,0 F.
Multiplying on both sides of the equation by (p,, o F')? to obtain
—(pw © F)*0.. = (puy 0 F)*(p22 0 F) +2(0:p1 0 F)(puy 0 F)(pu= © F) + (02w © F)*(puyus © F).
Using the identities in (1.2), the conclusion follows. O]
The next proposition is the main ingredient for the study of the umbilics for ellipsoids.

Proposition 1.25. Set

o - ()

S[)e(e) e () L5l e ) e ()
L] e () C) R [ GR)] 2 (0F
) , _(H . _(H
() )88 ()2
Then a0 (7)) @)= 1
Proof. Observe that
lz - % (az_g_iaw)
- I oT (W"F”Z‘@Z'(gzoma”)
Substituting
oot
o, _ Peok
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which can be found in equations, into the expression above,

1— . @u‘) @5'(prF)
g? = A~<pwoF>(("W°F)az‘ O, 8“’)
1 _
= ApeR)”

In the calculation of (1L)*(©..) as in paragraph, the expression ( A(plo al L*O., can calculated by
formally replacing 0O by A(p,, o F), and .Z by L. As a consequence,

(éy) ©.) = (ﬁ) ©..)

_ L0 (L(A(puo F)LPO.:) | L*(Alpwo F))L*(O::)
(A(pw o F))* (A(pw o F)) (A(pw o F))
_LA(py 0 F)L(O=:) o [L(A(pw 0 F))PLY(O.:)

- (A(pw o F2)5 - (A(pw © F_)) -

L(A(pw o F))L? (A(pw 0 F)L(O::) | [L(A(pw o F))PL(O::)

™ .

(A(pw o F))° (A(pw o F))

Multiplying on both sides by (A(p,, o F'))7 (suppressing the notation oF’ as usual),

10

(A(pw)’ (1§) 0.) = (Apu)LH(O..) — 6(Apu) L(Apu)*L3(O.2)

O
_4(A/)w)2[_’2(pr)E2(@)zz - (pr)gig(pr)I’(@zz)

+15(Apw) [L(Apw)]*L*(O:2)
+10(Apw) L(Apw) L*(Apw) L(O:2) — 15[L(Apw)]*L(O:2).

Finally, using p,A = % and ©,, = HL(” ) the right side of the equation above is exactly [}, and the
proof is complete. N O

Corollary 1.26. Let M be a smooth real hypersurface in C? with the defining functions {p = 0} =
{w—© =0}. Then (£.£)*(©..) = 0if and only if Ij,) = 0.

2 Ellipsoids in C"

2.0.23 Some background Forn > 2, in C" = R?" equipped with the coordinates z; = x; + v=1y;,
an ellipsoid is the image of the unit sphere

S = {2e€C": |z + -+ + |z = 1}
under the affine transformation of R?" and hence has the equation of the form

Z (azw? + Blyzz) =1 (Ea,ﬁ)a

1<i<n

with real constants a; > [5; > 0. By Webster, two ellipsoids £, 3 = F,/ g are biholomorphically
equivalent if and only if the following relation is satisfied:
— B . o; — B
a+ 0 o+
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By replacing z; by z;/+/[3;, and setting a; := «;/3;, the equation transforms into

2 (aw} + i) = L.

1<i<n

For 0 < A; < 1/2, set A; := 2‘3;12 so that a; = }fgﬁ?. Subsituting the expression for a; into the
equation above,
2 2
L= > (aa] + y))
1<i<n

o Gaa 124, 2 2/=T
S 1424, (22 + 22z + 27 22— 227 + 2P
154, 1 — 24, 4 4

1/1+424, 11424 /1424, )
I;K”Q(l_mﬁ )ZZ " 4(1—2141» )Z " 4(1—2AZ- )Z

1 2 - 1 4A; .

E I;Knﬁ(l—%)z"zi i 71<1—2Ai><zi tE)

_ zzgz AZ 9 5

By a change of variables z; — /1 — 2A;z; and Z; — /1 — 2A,Z;,

Yo zE + A2+ Z) = 1. 2.1)

1<in

When n > 3 the Hachtroudi-Chern-Moser invariant #2. is the tensor ng with1l < «, 5,7, < n.
The CR umbilical locus is defined by

Umbcr(M) = {pe M : S;“f =0, 1<q,8,7,6 <n}.
A theorem of Webster [Web00] shows that forn > 3, andif 0 < 4; < --- < A, < %,
Umbcr(M)(E4,,..a,) = 0.

This motivated Huang-Ji to study real-analytic hypersurface M C C2, and a result in [XS07] shows
that the umbilical locus of every real ellipsoid F,;, C C? whose equation is

ar® + y* + bu® + 0* =1,
where z = x + v~1y and w = u + /~1v, contains a real algbraic curve parametrised by

v 0 — ((0) + v=1y(0), u(f) + v=1v(0)),

with
. a—1 _ [bla—1)
x(6) : alab = 1)cos 0, y(0) = PRl 7
and
o b—1 o a(b—1)
u(f) == (ab— 1)sm 9, v(f) == 51 08 6.
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2.0.24 The case of the invariant (1 £)*(6..) Analogue to the situation above, it can be shown
that the locus of (1_2)*(6..) also vanishes on the same curve ~. This time set

p = ax? + v + b 4+ 0* — 1.

By corollary, it suffices to prove the vanishing for /. The Levi form of the ellipsoid is given by

1
L(p) = =(a?b2? + ab®u® + a*x? + bPu® + av® + by + v + ).

2
Also the Hessian H (p) has the following expression
[ Loy 1, 1,
H(p) = iab uc — §b u* — v=iabuv + v=ibuv — §Cw =+ 51}
Lo o Ly 1 1,
— —a“bx® — —a"x® — =iabry + v=iaxry — =by" + —=y°.
Finally,

P = bu — v=Tv.

Substituting these equations into the expression for [}, a quick calculation by Maple gives the fol-
lowing results of each term that appears in /. By substituting the expressions of the curve for z, y,
u and v, the following expressions are obtained

YT = vl )
TT = Syl 1)
YTy = (-1
YT = A1)
PT = v 1)
TTy = vl 1)
VI = %ﬁ(@—l)%

with the denominator

1

D := (\/ae—m\/ésme)g(ab_m(b_l) ,

ol

ab—1

and the following numerators N;:

Ny := cos0[499a>/%b% + 625a°/%b? — 233a"/2b® + 205a°/2b — 6310726 + 15a°/% — 415a7/2b — 6547/?
+v=1c0s°0sinA[2887a*b™/? + 4401a*b>/2 — 1297a°07/% 4 1905a*6%/% — 4059a°b°/2 + 215a*p/2 — 3327a3b%/? — 7254°b/?]
+c0s°0sin?0[—7023a"/%b* — 13021a7/%6% + 3013a®/2b* — 71050726 + 1101126 — 1075a"/2b + 11059a°/2b? + 3141a°/20]

v=1c0s*0sin®0[—9267a>6/% — 20989ab7/% + 3757a%b%/? — 14101a®0°/2 + 16279a%07/% — 2683a°b>/? + 19891a%b°/2 + 7113a26%/?]
+c0s%0sin*0[7113a°/2b° + 19891a°/2b* — 2683a°/20° 4 16279a°/2b° — 14101a%/2b* + 3757a°/%b* — 20989a°/20° — 9267a%/%1?)

+v=1c0820sin°0[3141a2b/2 4+ 11059a2b%/2 — 1075ab"/2 + 1101162672 — 7105ab®/? + 3013a2b%/2 — 13021ab™/? — 7023ab®/?

+cosfsin

o]
09[—725a3/20° — 3327a%/2b° + 215a/2b° — 4059a%/%b* + 1905a/2b° — 1297a%/%b° + 4401a/2b* + 2287a'/%b%)
[

+v=18in"[—65ab'/? — 415ab'/2 4+ 156132 — 631ab”? + 205611/ — 233ab™/2 + 625b6°/2 + 499b7/2].



2. Ellipsoids in C™ 115

T[=165a°2b® — 193a"/%0% 4 934726 — 67a/%b + 205a7/%0* — 7a°/? + 115a7/%b 4 1947/?]

+v—1c0s50sind[—925a*b"/% — 1389a*b%/2 + 505a°b7/% — 627ab>/? 4 1341a°b°/% — 83a*b'/? + 975a°b%/2 + 203a°b'/?|
+c0s°0sin?0[2177a”/?b* + 4141a7/2b% — 1145a°/%b* + 2359a7/26% — 3673a/2b> + 395a7/%b — 3367a°/2b* — 887a"/%b]
2777a°0°/% + 6649a°b™/? — 1397a2b°/? + 4711a%b°/% — 5499a2b7/2 + 983a3b%/? — 6211a%6°/% — 2063a2b>/?]
2063a°/2b° — 6211a°/%b* + 983a3/2b° — 5449a°/%0% + 4711a>/b* — 1397a°/%b* + 66494%/26° + 27774217
+/—1cos?0sin®9[—887ab' /2 — 3367ab"/? + 395ab'/? — 3673a%b7/% + 2359ab”/? — 1145a%6°/? + 4141ab”/? + 2177ab®/?]
+c0s0sin®0[203a%/ 265 + 975a%/26° — 83a'/268 4 1341a3/2b* — 627426 + 505a/2b® — 1389a'/2b* — 9250/ %]
+v=1sin"0[19ab"3/2 + 115ab*/% — 76'3/2 4 205ab°/? — 6761/2 + 93ab™/? — 193b%/2 — 16567/2).

Ny := cos

+/—=icos*hsin®0

+cos®0sin*0

-
-
[
[
-
-
[
[

N3 := cos”0[—91a"/20% — 1094”20 + 65477263 — 37a%/%b + 115a7/%b* — 3a°/ + 55a7/b + 5a"/?

[-
+v=1c0s50sind[—499a*b"/% — 777a*b*/? 4 349407/ — 357a*b3/% + 17137/ — 47a*bY/? + 483a°0%/% + T7a%b'/?)
+cos”6sin*0[1143a™/%b* + 2281a7/2b° — 781a%/%b* + 1369a7/2b% — 2143a°/2b° + 247a7/%b — 1723a%/2b* — 393a%/b)
+v~1cos*0sin?0[1407a3b%/? + 3589a°b7/% — 937a%67/% 4 2761a3b%/? — 3199a%b7/% + 643a°b%/% — 3271a%b>/? — 993a2b>/?]
[—993a°/2b> — 3271a%/%b* + 643a°/%b° — 3199a°/%6% + 27614/ 2b* — 937a®/%b% + 3589a/2b + 1407a%/%p]

+/—1cos?0sin’0[—393a2b' /2 — 1723a2b%/? 4 247ab'/? — 2143a%b7/% + 1369ab”/? — 781a2b*/? 4 2281ab™/? + 1143ab/?]
+cosBsin®0[77a%/2b° + 483a%/26° — 47a/265 + 771a%2b* — 357a/?0° + 34943263 — 777012t — 49941/ %]
+v=1sin"0[5ab"3/? + 55ab'/? — 3b13/2 4 115ab”/? — 37b'/2 + 65ab™/% — 1096772 — 91b7/2].

+cos>fsin?g

Ny := cos”0[—75a"/20% — 91a"/20% + 75a7/%b — 25a°/%b + 91a7/2b? — 0% + 25a7/%b + a7/?

[-

+v—1c0s0sind[—391a*b"/? — 639ab>/? 4 391467/ — 285a*b3/% + 639ab°/ — 29a*b'/? + 285a°b/% + 294°b'/?]
+cos°sin?6[839a"/2b* + 18314726 — 839a°/2b* + 1165a"/%b? — 1831a°/%6% 4+ 197a7/%b — 1165a°/2b* — 197a°/20]

+v—1cos0sin0[947a°0"/2 + 2779437/ — 9474%6°/ + 2401a3b%/% — 2779a%67/% + 593a3b%/? — 2401a%6°/% — 593a2b>/?]

[—593a°/2b> — 2401a®/%b* + 593a/2b° — 2779a°/%b% + 2401a%/2b* — 947a°/%b% + 27794%/2b° + 947a%/%p?]

+—1cos?0sin’0[—197ab'/? — 1165ab°/? + 197ab'/? — 1831a%b"/% + 1165ab”/? — 839a2b>/? + 1831ab™/? 4 839ab”/?]
+cosBsin®0[29a%/2b° + 285a%/26° — 29a/265 + 6394%/2b* — 285a1/%6° + 391a/%b3 — 6394'/2b* — 39141/ %]
+v=1sin"0[ab'®/? + 25ab'1/2 — p13/2 1 91ab”/? — 2561/ 4 T5ab™/? — 916772 — 75L7/2].

+cos>sin?0

Ns := cos"0[63a”2b> + 69a”/2b? — 4547726 + 250°/%b — 75a7/%b* + 3a°/? — 3547/%b — 5a7/?]
+v—1c0s’0sin[339a*b™/% + 509a*b°/2 — 237a°b7/ + 237ab>/? — 511a°6°/? + 3540/ — 315a3b3/% — 57a%b'/?]
+c0s°0sin*0[—763a"/2b* — 1521a7/20% + 521a°/2b* — 909a7/2b? + 1431a°/%6> — 167a7/%b + 1143a°/%b? + 2650°/ 0]
+v—1c0s*0sin>0[—927ab%/? — 2409a3b™/% 4 617a%6°/? — 1841a3b°/? 4 21394%b7/% — 423a2b>/? 4 2191a%6°/% + 653a2b>/?]
+c0s0sin*0[653a°/26° + 2191a”/2b* — 42343726 + 21394°/26% — 1841a%/%b* + 617a°/2b? — 2409a%/%6* — 927a%/%p?]
+/~1c0s0sin0[265a%b'1 /% 4 1143a%0"/% — 167ab/? + 1431407/ — 909ab”/? + 521a26°/2 — 1521ab™/? — 763ab>/?]
[—57a%/265 — 3154320 + 3547265 — 511a%/%6* + 237020 — 237a%/2b° + 509a/%b* + 3394"/%b7)
[—5ab"®/? — 35ab'/% 4 3613/ — 75ab”/? + 25b1/% — 45ab7/% 4 69672 + 63b7/2].

+cosfsin®e

+,/=1sin’0
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Ng := cos"0[39a/2b + 43a°/%b? — 394726 + 13a°/%b — 43a7/%b* + a°/? — 13d7/%b — a/?]
+v=1c0s50sinf[199a*b™/% + 315a*6°/2 — 199a°b7/% + 141a*b*/? — 315a°0°/2 + 17a*p/? — 141a3b%/% — 17a3b"/?]
419a7/2b* — 9194720 + 419a°/2b* — 577a7/%6% 4 919a°/%b> — 101a"/?b + 577a°/2b? + 101a>/0]
467a3b%% — 1399a°07/% + 467a2b°/? — 1201a°6>/% + 13994207/ — 293a°b>/% + 1201a2%/2 + 2934%6%/?)

[
[
+cos”fsin®6]—
[~
+cos?0sin®0[293a7/2b° + 1201a°/2b* — 293a%/%b° + 139902 — 1201026 + 467a%/b* — 1399a/2b* — 467a%/*b?]
[
[~
[~

+/=icos*#sin®0

+v/~1cos?0sin®0[101a%b"/% + 577ab%/2 — 101ab'/? + 9194%6"/% — 577ab®/? + 419a%6>/% — 919ab™/? — 419ab°/?]
17a%/%05 — 141a*/%6° + 170?05 — 315a®/%b* + 141a'/2b° — 1994%/2b* + 3150 /2b* + 1990217
ab'®? — 13ab'/? 4+ p'3/2 — 43ab%? + 13b"/? — 39ab”/? 4 43672 + 39572

cosfsin®d

+/=Tsin"0

N7 := cos’0]—27a"/%b> — 27a°/20% 4 27a7/%b® — 9a°/%b + 27a7/%b* — a°/% + 9a7/%b + /]
+v=1c0s0sind[—135a*b7/% — 207a*b>/? 4+ 1354307/ — 93a*0%/2 + 207a%b*/% — 13a*b"/% + 93a3b>/% 4 13a3b'/?]
+c0s°0sin?0[279a7/2b* + 615a7/%6° — 279a°/2b* + 381a7/2b% — 615a°/%b° + 69a7/%b — 381a°/%b% — 69a°/%b]
307a%b”/% + 939437/ — 3074262 + 801a*b>/% — 939a2b7/? + 193a°b%/% — 801a2b>/? — 193a%b%/?]
193a°/2b° — 801a”2b* + 193a3/2b° — 9394°/2b + 801a%/%b* — 307a°/%b? + 9394%/2b® + 3070/ %p?]
+/~1cos?0sin’0[—69a2b'/? — 381426/ + 69ab'/? — 615a%b"/? + 381ab®/? — 279a%6/% + 615ab™/? + 279ab/?]
+c0s0sin®0[13a%/26% + 93a/26° — 13a/2b5 + 207a3/%b* — 93a/26° + 135a3/2b> — 207a/?b* — 135a'/%b7)
+v=1sin"0[ab"®/? + 9ab™/? — b13/2 4 27ab7/% — 9pM/2 1 27abT/2 — 270712 — 27b7/?]

+/=icos*#sin%0

+cos3fsin?g

-
-
[
[
-
-
[
[

Finally, with these expression, the following is obtained

1 3 1 1 15 5 15

—N1(0) + —Ny(0) + =N3(0) + <N4(0) + —N5(0) + —Ng(0) + —N7(0) =0
81()+42()+23()+84()+85()+46()+87() ;
and hence the curve is contained in the invariant (%j )10..



Chapter 5

Holomorphic curves in Lorentzian rigid
hypersurfaces in C*

1 CR Geometry of Real-Analytic Hypersurfaces //>"*! ¢ C"*!

1.1 Some Remarks

The purpose of this paper is to study the presence of holomorphic curve in Lorentzian rigid real-
analytic hypersurfaces M® C C3. It has been shown in [Bry82] that out of the umbilical locus any
Lorentzian real-analytic real hypersurface M?, there are at most 4 holomorphic curves contained in
M?®. This paper follows through the argument of the paper and gives an explicit expression of the
equation that defines the possible tangent vectors of the imbedded holomorphic curve, explaining
why there are at most 4 imbedded holomorphic curves for general cases. Through these calculations,
the explicit expressions of some components of the Hachtroudi-Chern-Moser tensor can be obtained.

Since this paper concerns only rigid real hypersurfaces in C3, only two prolongations are needed,
which simplifies many of the calculations. Therefore, this paper only presents a part of what is
presented in [Bry82], which is sufficient for the purpose.

1.2 Recall on Real-Analytic Functions

Let N € N>;. On an open subset {2 C CV, a function F' : 2 — C is real-analytic if locally it can be

expanded as Taylor series. If z := (z1,..., 2zy) are holomorphic coordinates of CV, then F' may be
written as
F(z,2)= Y F,,2°2,
a€NY, beNN
where
F,, € C, 2% =zt 2, 2=z g

If F is real-valued, then the coefficients satisfy the relation

Fa,b = Fb,a'

1.3 The Geometry of CN

For N € N>, let 2z be the holomorphic coordinates as before, and for 1 < ¢ < N, 2; = z; + v=1¥;.

Therefore CY is to be seen as R?N equipped with coordinates (z1, v, - . ., x, Yx). The tangent bundle
T'CN is a real vector bundle generated by the sections
0 0
axz ) ayz 9 (1<Z<N)

117
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This tangent bundle is equipped with a complex structure .J : TCY — T'CN, given at each point in CN

by
0 0 0 0
J(@@-) = 0, and J(@yi) = _0932-'

The complexified tangent bundle CTCY := TC" ®r C decomposes into a direct sum of complex
sub-bundles

CTCN — Tl,OcN D 710,1(CN7

where at each point p € CN,

TOCY = {X,—-v1J(X,): X, € T,C"},
THCY = {X,+v1J(X,): X, € T,C\}.

For 1 < 7 < N, the vector fields

o _ (o 0 o _ (o 0
8zi o 2 8951 _8yi ’ 821- o 2 8ZEZ _8yi .

generate respectively the bundles 71°CY and T%'CV. Dually, the differential forms

dz; = dz; + v=1dy;, dz; = dx; — v=1dy;

generate the respective cotangent bundles 7*'°CN and 7*%*CN.
For 1 < p,q < N, a (p, q) form is given by

n = Z Z Wiy, ..., Ipydlsesiq dZil VASRREIVAY dZZp VAN d2j1 VASRREIVAY déjq,
1< <o <ip KNI g << jg <N
where w;, . ;, are functions on C~. The de-Rham differential operator d is defined on 7 by
d77 = Z Z aziwi17_”7ip,j17m7jq le A\ dZil FANKIIVAN dZZ'p A dzﬁ FANIIVAN dgjq

1<y < <ip<N  1<i<N
1<j1 <+ <jg <N

+ Z Z 02jwi1,m7ip,jhqu d?j VAN dZil VANCRIVAN dZZ'p N d'gjl VANCIVAN dijq.
1<i1<-<ip<N 1<j<N
1<j1 << jg<N
By the anti-symmetry of the wedge product and commutativity of the vector fields d.,, 9z;, the differ-
ential operator is nilpotent, i.e. d? = 0.

1.4 Defining function of M

Let M C C"*! be a real-analytic real hypersurface passing through the origin. Fix a reference point
0 € M. There exists affine holomorphic coordinates in C"*!

(Zl;...72n7w) = (:L‘l—i‘\/jlyl,...,xn—f—\/flymu+\/f1v>

and a real analytic, real-valued function r(x, u, y, v) such that M may be described by the zero locus

of r:
M = {r=0}.

Therefore r(0) = 0. If moreover that M is smooth at 0, that is dr(0) # 0, by a change of coordinates,
without loss of generality r,(0) # 0. By the Implicit Function Theorem, there exists a real-analytic,
real-valued function F'(x, y, v) such that M is described by the following equation

u:F(Ilw"axnayl>"'7ynav)'
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Therefore, the defining function » may be re-expressed as
r=—u+F.

Such a defining function is not unique, as it can be multiplied by a function on C**! which does not
vanish anywhere. By a bihilomorphic change of coordinates in C"*!, the defining function —u + F
may undergo further simiplification so that A/ may be defined by

=y, >, a;jziZ; + O,2(3) + v0, 5, (1),

1<i<n 1<j<n
where a;; € C.

Definition 1.1. Let M be a real-analytic, real hypersurface in C? given by
u= F(z,y,v).
Then M is called rigid if F' is independent of v.

For the rest of the section, M is not supposed to be rigid unless otherwise stated.

1.5 CR bundles induced on M

Over M+ c C"*1 et
M = T°C" |y N(C@g TM)  and  T'M := (T™C"" ) N (C @ TM).

They form complex vector bundles over M, with T1OM = T%! ). The common real part of these
two bundles
T°M := Re(T*°M) = Re(T"'M)

is a real sub-bundle of 7'M of real rank 2n. It may alternatively be defined as
T°M = TM N J(TM).
Ateachp € M,
T)°M = {X, - v=1J(X,): X, € M},
TY'M = {X,+v=1J(X,): X, € TsM}.

1.6 Frames of 71'°M and 7% M

For a real manifold given by

u=F(zz,v),
its extrinsic T1° M sections are given by
0 0
Li= -2 44,2
T 0 + 2 ow’

with
o 1[0 gy 0 g 1
Oz, 2 \ Oz COys ) ow 2

By requiring that Ly (u — F') = 0, it follows that
2F

2

Ap = ————.
14+ v=1F,
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The projection of C**! onto R?"*! by
7 (z,u,y,v) = (x,y,v)

gives a local chart on M?" ! and hence the intrinsic (1, 0) vector fields on M?" ™! become

o 0 F, 0
L = ma(Le) = 0z + v=1— F,0v’

and along with its conjugates
0 F: 0

. S
k 82k+—ﬁ—Fv8fu

(1<k<n)

which form a frame of the 7! M bundle. These vector fields satisfy the involutive properties
%, %) = |4, 4] = 0,

while a lengthy calculation (see MPS) gives

2=

e =y i

(Fuz + FoF.z, — FoF5F.,, — F,F..Fyz, + F. . F; F,,
+\/—71F2sziv - \/lezszz’])

If M is rigid, then

[g,-,,,?j] =2v=1F. ;5.

1.7 Contact Form

A differentiation of the defining function
r=—u+ F(z,y,v)

yields

0= dT|TM = 8T|TM + 8r]TM.
Therefore —v=10r|ry = ﬁérh w18 a real-valued differential form on M. For any nowhere van-
ishing function ¢(z, zZ,v) on M,

0(cr)|TM = 7"|M80|TM + C|M8T|TM = C|M6T|TM.

Therefore, this allows a modification of the defining function r to facilitate calculations later. In fact,
r may be redefined as

2
= — F).
" 1+ Fg( ut F)
With this new defining function, set
0 = _ﬁaT|TM~
Then
F .
0 = —dv+ — 2 dz + I S—
lgzkjgn V-1 — F’u g lézk;gn _\/jl — Fv k

This permits the definition of the CR coframe of M.
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1.8 CR frame and CR coframe

In local intrinsic coordinates (z,y,v) on M, the following differential 1 forms form a coframe for
CTM:

F F;
0 = —d T g I S
U+1§§n \/jl_Fv Zk+1§<n _\/j_Fv .
(9'“ = de,
oF = dz,
where ] < k< n If T := —%, then the following duality relations are obtained:
O(T) =1, 0(%) =0, 0(%) =0,
0(T) = 0, 0'(L) = i, 0'(Z) =0,
0" (T) = 0, 0' (L) = 0, 0' (L) = .

Given these relations, therefore the bundles 7%°M and 7%' M may be re-expressed in terms of dif-
ferential forms: at each point p € M,

T)'M = {X,eT,M@rC: 0=0(X,) =0'(X,)=---=0"(X,)},
TH'M = {X,e ,M&rC: 0=0(X,)=0'(X,) = =0

] F. ] 3
% 7] = —(z(—) —%(L))T,
—v=1—F, V=1 —F,

Applying the de Rham operator d to 6, the following formula comes directly from the Cartan-Lie

Moreover,

formula: P .
o= 5. (o) 5 )
Setting
b= —va(4( == ) - 2 (=2 ) ) ~ Lz,
—v-1—F, v-1—F,
therefore,

d@zﬁ Z hUQ’/\éjmodH

1<, g<n

The matrix (h;;) is then Hermitian, with the diagonal entries being real-valued functions on M.
In the case of rigid real hypersurfaces,

L) = Z(—AE,) = 2/7TF
so that

o= > 2F, 2, 0" A 67 mod 6.

1<ij<n

1.9 The Levi form

There exists a bilinear form on 71° M at each point p € M given as follows: for any two vector fields

X, Y

Lev: T)°M x T,°M — CI,M/T,°M &T)'M
(2 (p), % (p)) — [Z,%](p) mod Tpl’OM S Tl?’lM.
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This map is independent of the choice of sections, that is if 2" and % are another 7'M sections

such that 2”7 (p) = £ (p) and %’ (p) = #"(p), then
Lev(2'(p), % (p)) = Lev(2"(p), #"(p))-
Any two sections 2, % can be written as

2 = Mlgl—i'"'—i_,ungn)
% = V1$1+"‘+Vn$n-

Then the Levi form may be expressed as a Levi matrix which is denoted by A := (;;):

i - lin 241
Lev(%,@):(ﬂl,...,ﬂn) )

where the (4, j)-th entry [;; is given by
lij = 0(v=1-%}, L) = hys.

The Levi form also has another representation by the contact form. Let

r= 1+F3(_U+F)
be the defining function for M as before, and let
0 = —y=10r.

By the Cartan-Lie formula,
A X NY)=20X) - Z0Z)—0(2,%]).
Since @ vanishes on TV9M & T M sections,
(X, Y]) =dO( X NY),

and multiplying on both sides by —/=T, the Levi form may therefore be represented by —./=1 df.

1.10 Diagonalisation of the Levi form
Let .
,Q{j = Z amj.,%m
m=1
be a change of frame so that B
€i0;; = 0(v=1|}, o)),

where §;; is the usual Kronecker delta, and ¢; € {1,0, —1}. Expanding the expression on the right,

9(\/_71[%7‘%]) = 9(\/_71 |:Z a‘ml,j‘zmu Zam2,i$m2])
= Z Z amg,i G(M[gﬂm 3 gmz]) aml,j

mi mao

= Z Zamg,i lmg,ml Qmy ,j-

m1 m2
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Leta := (azj) denote the matrix, and I be the diagonal matrix whose entries are either 1, 0 or —1.
Then the purpose is to seek the matrix a such that

E ="TaAa.
Leta' =)  b;,,0™ be achange of coframe. Then

o= > b;,lnam,

1<m<n

where b; jl are the coefficients of the inverse matrix b~ '. Observe that

hi 4 ha o1
o = v 0| . : mod 6
P P or
I lin 0!
= (6,0 : mod 6
lna lnn o"

= v=i(a, - a)T0 L (1) - b e, .o an)T mod 6
If b = (b;;) is chosen so that for the same matrix £,
E="b"TAb,

then the choice a = b~ works.

1.11 Explicit Diagonalisation of the Levi form

The process of diagonalising the Levi form involves seeking the new frame <7 (1 < i < n) and the
following triangular linear system of equations

o = Cl1,1<$1,
% = a1’2$1+a2’2$2,

Jan - CLl,nogfﬂl + -+ an,ngna
so that with respect to the Levi form Lev,
Lev(%, JZ%) = eiéij,

where ¢ € {1,0, —1} are the signatures of the eigenvalues of the Levi form. At each point p € M,
define the minor determinant A;(p) by

Lhap) - lp)
Aj(p) = det R
lj,l(p) T lj,j (P)

By Gram-Schmidt process, the following proposition gives the explicit diagonalisation of the Levi
form:
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Proposition 1.2. The closed formulae for a T M frame which is orthonormal for the Levi form, i.e.
Lev(ngi, Jij) = eiéij,

are given by

11,1 ll,2 T le
1 : : . :
A S : S
VER A \n i o Ly
A L .ﬁﬁ

2 The Geometry of Lorentzian Real Hypersurfaces in C""!

2.1 Holomorphic Curves in Hypersurfaces

Let M?"t1 C C™™! be a real hypersurfaces and let D := {t € C : |t| < 1} be the unit disk in C. Let
¢ be the map

$:D — C"H!
t o (61(t), s Pn(t), Pnra(t)),

and suppose that ¢(ID) C M so that for all ¢ € D,

r(@1(t), -, On(t), dnsr(t), G1(t), . -, Du(t), Pnpa(t)) = 0.

Differentiating the equation above with respect to ¢,

2.1)

from which it is deduced that at each ¢ € D, the vector field

n+1
0

Loy =Y #i(t)5
i=1 v

lies in T(;(’g)M @ Tg(’i)M . But since the vector field involves 0., and not its conjugates, therefore it lies

. 1,0
in T¢( t)M . Moreover,

0= v=1df( Loy N L o) = v=100r (L) N Lo) = MLogey, Low))- (2.2)
Definition 2.3. At each p € M, the isotropic cone of the Levi form is given by
C)OM = {6, € T)°M : Lev(%,,6,) = 0}.
The common part of the isotropic cone is then given by

c . 1,0 _ 0,1 c
CSM = Re C}°M = Re CO'M C TEM.
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2.2 Holomorphic curves in Lorentzian real hypersurfaces

Definition 2.4. The real hypersurface M?"*! C C"*! is Lorentzian at 0 € M?" ™! if the Levi form
at 0 has 1 strictly positive eigenvalue and n — 1 strictly negative eigenvalues. Moreover, M "1 is
Lorentzian if the Levi form has 1 strictly positive eigenvalue and n — 1 strictly negative eigenvalues
at every point p € M.

When M is Lorentzian, by a change of frames and coframes in Proposition 1.2, there exist vector
fields .7 and differential (71°M)*-forms o' such that

df = y=i(a' Na' — o’ Na® — - —a”Aa")  mod b, (2)

along with the following duality relations

0(T) =1, 0(%) =0, 9(%) =0,
O/<T) =0, Oﬂ(%) = 5ij> Oﬂ(%) =0,
@Z(T) =0, 6”(”%) =0, 6”(%) = 51]

If  : D — C"*! is a holomorphic curve as before, then the vector field L) is a T M vector at
each point ¢(t), and hence may be written as

for some real-analytic functions f;(¢,t) for 1 < i < n. By equations (2.1) and (2.2), d9( Ly N
Zsw)) = 0and 0(Zy()) = 0 for all ¢. Therefore by equation (2.5),

AP =1l = = fa* =0 (teD).

If ¢ is an immersion, then for all t € D, f;(¢, ) # 0, or otherwise then

‘f2(t7£>’2+ ey ’fn(taap =0,

from which one concludes that f5(¢,7) = -+ = f,(t,¢) = 0, which is a contradiction. Consequently,
f1 does not vanish anywhere. Dividing throughout by f1,

f2 2 fn ?

= 4+ =] = 17

hi fi

which is an equation of the sphere. More generally, if (us, . . ., it,) € C"~! be such that |us|* + - - - +
|tin|* = 1, then the vector fields
M_HQ%__NnDQ{n

lie in the isotropic cone of the Levi form. Conversely, the isotropic cones are generated by vector
fields of the form above, i.e.

C'M = |J {2,eT)°M: 0= (a" — \an)(2;), L <k<n—1}

AeS2n—3

For the rest, let L1°M and LY'M be the folowing sets at each x € M and for each fixed
(A2, ..y Ay) € SP7°

LM = {2, € T)°M : 0= (a" — ) (2;), 1 <k <n—1},
LY anM = {2, € TP'M : 0= (0" = \an)(2;), 1<k <n—1}
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2.3 The Sphere Bundle and the First Prolongation

The main idea of [Bry82] is to introduce new unknown variables (A, ..., \,) € S?" 3 to a system of
differential forms, which is known as prolongation in Cartan’s method. Later it will be found that the
variables satisfy certain equations in R”. Let a',. .., o™ be sections of 7*1° M that diagonalise df as in
equation (2.5). Let ¢ : D — C""! be a non-degenerate holomorphic curve such that ¢(D) C M2+,
Then for each 7, there exist real-analytic complex-valued functions a;(t, t) such that

¢*<O‘j> = aj(tvt_) dt

and

¢* (@) = a;(t, 1) dt.
Moreover, in paragraph 2.1, it has been established that ¢p*0 = 0. Therefore
v=i(las(t, O = laz(t, D) — -+ = lan(t, O)*)dt A dE = ¢7(dB) = d(¢"0) = 0.
Since dt A dt is the volume form on D, therefore
lar(t, ) — las(t, O — - — |an(t, D)]* = 0
forall ¢ € D.

Lemma 2.6. Let ¢ : D — M?**! be an immersive holomorphic curve into a Lorentzian real hyper-
surface in C"*1. If ay(t,t) = 0 at some point t € D, then ¢/ (t) = 0.

Proof. By the same reasoning as before, if a;(t, f) = 0, then so are the rest. Since 0, o',..., a™,
al,...,a" form a frame for CT' M at every point in M, and the pullback of each of these differential
1-forms is zero, therefore ¢'(t) = 0. N

Therefore, by setting

P ak(t,f)
k -— al(t,a7

the equation of sphere is obtained
Paf* -+ A = 1.

The functions A\, = «ay/a; also allow the lifting of the holomorphic curves to a bigger space:

M x §=3 (p(t), A(t, 1))
P
pri pri
DM 1 o(1)
Then for 2 < k < n, introduce the 1 forms

WO o= 0,

wl o= al,

W a® — \at,

ol = al,

oF = af - \at,

which is the first prolongation by the new variables (), ..., \,) € $?"73.
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Lemma 2.7. The lift(ﬁ : D — M x S?"73 of the holomorphic curve ¢ : D — M satisfies
0= " (W) = ¢"(W*) = ¢"(").
Conversely, if a real-analytic map

é(tua = (¢17 ey ¢n; Im¢n+17 )\27 ey )\n)

with ¢~> immersive from D to C" x R x S*"~3 annihilates w°, w* and & after pullback, then its projected
image

¢(D) = pri(¢(D)) € M

is a holomorphic curve in M.

Proof. The direct sense holds by definition of (Xz,...,\,) € S?7=3, Conversely, the condition that
0 = ¢*(w") = ¢*(0) implies that

¢+(TD) C Re T O M| y(m).
For any fixed (o, ..., \,) € S*"73, and for all (2 < k < n), the conditions

*(wk) — ¢*(Oék) o i‘k¢*(a1)’
*((Dk) — ¢*(dk) . )\kgb*(dl),

imply that

1,0 0,1
6. (T;D®r C) C qu(t@’()\2 7777 )\n)M @ L¢(t,f),(,\2 7777 )\n)M.

Taking the real part, implies that

-----

which guarantees that the real 2-dimensional locally embedded submanifold ¢(ID) C M has a tangent
bundle that is invariant under multiplication by =1, and hence by the theorem of Levi-Civita [Sha92,
page 991, ¢(ID) is a holomorphic curve. O

2.4 Partial Pullback

At this stage it will be convenient to introduce the notion of partial pullbacks. If ¢:D— M xS™3
is the lifting as in the previous paragraph

t—> (¢1,...,¢n,l/,/\2,...7>\n),

where v(t,t) = Im@p1(t).

Definition 2.8. The partial pullback of differential forms on M x S?**73 replaces
x = (¢1(t),...,0n(t), v(t, 1)) but keeps (Ng, ..., \,) € S?"~3 as untouched variables.

The same notation ¢* will be reserved for partial pullbacks. The partial pullbacks of w* are

0" (") = 6" (a*) = Mg (a')

= (ax(t,1) — Meau(t,7)) dt, 2.9)

while the full-pullback requires \;, be replaced by ay/a;, from which it is deduced that the full pull-
back of w* is identically 0.
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2.5 The Second Prolongation and the Second Lifted Space

Let I denote the Pfaffian system

I:= (W w* &) (2<k<n)

on M x S?"~3, which consists of linear combinations of the 1-forms with real-analytic coefficients.
When doing computations, taking modulo the system [ is synonymous to pulling back the differential
forms by ¢ to the disk ID. By construction,

dw® = db
= valatrnat —a*Anat—---—a"Aa") mod I
= 11— | == )t Aat mod [
0 mod I,

which is analogous to the fact that ¢*(d6) = 0. In the later calculations, observe that for every 1-form
B on M, its exterior derivative d /3 may be expressed as

dB = B(xz,\) - o' Na' mod 1,
where here = denotes the coordinate system on M, and B is a function. Therefore, foreach2 < k£ < n,

dw® = —d\. Aol + daF — \dat
= —(d)\k —Lkdl)/\ozl mod ],

for some function L. From equation (2.9), the partial pullback ¢*dw* = d(¢*w") gives

d(¢*w") = apr dt A dt — d\p A aydt — Npay ¢ dE A dt
= —d\ A (ardt) + 5L Gy dE) A (ardt) —
a1aq

_— (dAk - { et ), }aldf) A (aydt).
a1ay a1aq

When ), is replaced by a /a1, d(¢*w®) = 0. But

(aldf) N (aldt) (210)

AN = Apdt + Mg di

involves the term A ;, which is missing from equation (2.10) since dt A dt = 0. Therefore it necessi-
tates a second prolongation to compensate the loss. For example,

d(p* M) = (L, 1) ¢ at + my ¢t
where

Aalt,B)
CL1<t t_)

Le(t,8) = At and  my(t,0) = 2.11)

a(t,t)’
has to be compared with the corresponding two form

dw* —(d\, — Lpa') A o mod [

= —(d\ — Lyga' — Mpa') Ao’ mod I,

for some function M. The second prolongation then introduces new variables

M:(N%"'aun)écn
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together with the new one forms
7= d\, — Lpa' — ,ukozl
on the second lifted space
(2, Mgy oo Ay s oy ) € M X SP"73 x CL

The second lift of holomorphic curve also exists

M x SQn—i’) X (Cn—l (¢(t),)\2,...,)\n,,ug,...,,un)
lpTZ Lprz
M x S2n—3 )\27---7/\n)

]\l;” lpﬁ

o(t),

with
t,t
(¢ i) (t, 1) = et 1) _ = my(t, ). (2.12)

a1 (t7 3
Lemma 2.13. The pullback of L. by qz~5 gives
&*(Li) = I(L, 1).

Proof. Starting from
dw® = —(d\, — Lya*) A o',

its full pullback is given by
0 = ¢"(dwt)
= —(dqb*()\k) - qb*(Lk)dldf) A aqdt
= —(lkaldt_—F mkaldt - gZﬁ*(Lk)C_leZ?) N (lldt.

From the fact that dt A dt vanishes nowhere on D, therefore

lk@?ﬂ - qg*(Lk) [

2.6 The hyperplane and sphere equation on the fibres (ys, ..., pu,) € C*!

The new variables j;, must satisfy a hyperplane equation:

Proposition 2.14. After pullback to D, a non-trivial affine hyperplane relation is satisfied by the fibres
(foy - in) Of pro : M x 2773 x C*=1 — M x S§*3;

2<k<n 2<k<n

Proof. From equation (2.12), and the fact that ¢(Ly,) = (%, t),
26 WG (1) + S H MG (L) = SAEDmu(t.D) + S D)

L)) Awilt: £)
- Zk/\( )al(t,ﬂ +2/\k(tf> (t,{)
= E\)\k(t O,

(t ai(t,0) 0t %
and since ) |\z|? = 1, its derivative 9, |\1|? = O vanishes. O
k k
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Next let 7 be the one-form on M x S?"~3 given by

T .= — Z S\kd)\k—i- Z j\kLkdl— Z Akikal.

2<k<n 2<k<n 2<k<n

From the relation ) )
> Mdhp = — Do Adg,

2<k<n 2<k<n

one has therefore
T+7=0.

Lemma 2.15. The full pullback of T is zero.

Proof. Directly from the expression of 7, using Lemma 2.13 and [;, in (2.11), is pullback turns out to
be zero:

—Zk? &* (M) & (dAr) + p ¢" ()" (Li)o" (@) — 2}; ¢"(M\e)d" (Li)#" (o)
= 5 (a[hdi + )\mdt]) S A - 3 M
k k 3] k aq

= —dt (Z (/\k:,tj\k -+ )\k)\k:,t)) +0
k
= 0. O

Since the pullback of 7% and 7* by ¢ to the disk I is zero, it is natural to introduce an enlarged

Pfaffian system on M x S?"73 x C"~1:
I = (W0, WF &F, % 7).

The following proposition describes the equation of the sphere that is satisfied by (ug, ..., pu,) €
cnt

Proposition 2.16. After pulling back to D, a non-trivial affine sphere relation is satisfied by the fibres
(fay -y i) Of pro : M x §2773 x C — M x S?"73 given by

Y. | — B> —E=0

2<k<n
for functions B and E on M x S?"73,
Proof. By applying the exterior differential operator d to 7,
dr = zk: d\i A d)y,
+Zk: LidX, Nt + Zk: AedLy A&t + ij Ao Lpda
_§ Liyd\; Aot — Zk Ned Ly A ot — Zk A\ Lrdal.
Modulo [ the Pfaffian system, there exist complex-valued functions A, B and C' such that
dr = zk: dX\i A d)y,
+Zk: Apd)p A ot — ij Apd)g N &t
+Zk Byd g Aot — Zk Byd\g A &t

+Cat A at mod 1.
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Modulo the enlarged Pfaffian system I,, replacing in effect d\; by L&' + pzo' and similarly for
dj\ki

k

dr = >, (Lkal + uka1> A (Ekal - ,ukal)
+ (Z AkLkO_él + Z Akuk&l) A\ Oél — (Z Akik&
k k k

_I_
=
o
>
=/
2

+
=[]
uv]
bl
=
ol
QH
N~ —
>
Qi

+ (Z Bkikﬁl -+ Z Bkﬂk@1> A\ Oél — (Z BkLkC_‘[
k k k
+Ca' A at mod /s,
and after some reorganisation,

dr = {Z |l — Bil? = 22 (|Bk;|2 + ALy + ALy + |Lk|2> +C }041 Aat o mod I,
E E

-~

=F

In order that d7 to vanish while requiring that ' A &' to remain non-zero, the equation of the sphere
is obtained. =

2.7 Rigid Real hypersurface //° and the Hachtroudi-Chern-Moser Tensor in
CS

Let M® C C? be a real-analytic, rigid real hypersurface that contains the origin, and suppose that
it is smooth. Let (21, 22, w) be holomorphic coordinates with z; = z; + v=1y; and w = u + v=Tv.
Then by a biholomorphic change of coordinates, there exists a real-analytic function F'(z, z) (here
z 1= (21, 22)) such that

u=F(z2).

The fact that M is rigid means that F is independent of v. The intrinsic 71°M sections (see section
1.6) are generated in local coordinates (z, z, v) by

;zi — ﬁFZlg (i=1,2)

Z: (91}7

while their conjugates generate the corresponding 7% M.
The Levi form of M? is given by the matrix

A — ll,l l1,2 — 2 FZ151 F2221 — hl,l h2,1 .
loqg oo F. .z F.z hio hap
The coefficients of the Levi matrix, and hence the Levi determinant A, are independent of the variable
v. Since M is Lorentzian, —A is also strictly positive and hence there is no ambiguity when taking

the square roots.
The contact form of M? is given by

0=—dv+ Y (—v=1iF.)dz + > (v=1F%)dz;,
k=1,2 k=1,2

with {0, dzy, dzs, dZ;, dZ,} forming a coframe of CT* M. By Proposition 1.2 on explicit diagonalisa-
tion of the Levi form, there exist 71" M sections .7, and 2% that diagonalise the Levi form. Dually,
there exist 7*9M sections o' and o such that

dd = v=i(a' ANa' —a? A a?) mod 6.



132 Wei Guo Foo, Orsay University, Paris, France

Let A € S! be an element in the circle in R?, and set up the following system

0._

w =0, 1 .
11 W =a,

W =a, —2 . _2_5\@1
2. 2 1 =
w”i=a — Ao,

and let I = (w?, ©?) be the Pfaffian system. Then by earlier discussions, there exists a complex valued
function L such that

dw® = —(d\ — La') A o' mod I.

Set the following 1 form
T ==X+ ALa' — ALa'.

Then it is clear that 7 + 7 = (. Taking the differential d7, one obtains functions A, B, C' such that

dr = dIANdN+AdI\Na' — Ad\Aa
+Bd\Aa' — Bd\Aat
+C ot A at mod I.

The second prolongation gives the following system of differential one-forms:

w =a, 7?:=d\ — La' — pal,
w? = a? — \a', 72 =d\ — La' — fia’.
The equations of the hyperplane and the sphere are therefore given by

Mt = ML,
lu— B = |B*+ AL+ AL+ |L|*-C.

This time, let I, be the ideal generated by [ and 7. Then it will be seen later that d7 may be written
as

dr = —[ag)\? + day ) + 6ag + dag X + N w' A O mod I,
where ao, a1, ag and their conjugates are independent of A. By [Bry82, page 217],
ap = Suii = Ao, ar = ST, az = Soa11
are the components of the Hachtroudi-Chern-Moser tensor S. Let
K()) := ag\? + dar A + 6ag + 4@, ) + ax\’.
In classical literature, the points where K (\) = 0 for all A € S! are called the umbilical points of M.
In the later sections that deal with explicit calculations dealing with intersection of lines with circles

for the case of 5-dimensional CR real-hypersurfaces in C3, we will explain the following:

Proposition 2.17 (See Proposition 3.8). Let M be a Lorentzian CR manifold. At each point of M, the
number of possible holomorphic curves that passes through it and contained in M is at most 4.
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3 Lorentzian rigid real hypersurfaces //° in C*-Calculations

3.1 Setting

Let M be a Lorentzian rigid hypersurface in C? containing the origin. In coordinates (21, 22, 23 := w)
where w = u + /=1v, this means that A/ may be defined by

v = F(217Z27217 ZQ)a

where F' is independent of u. By Proposition 1.2, if %, and .% are T1°(M) sections, the following
vector fields

1
o = 4
1 \/E 1,
—1 1
oy = —— (L, )G + ——(L, AL
2 \/Tlll< 2 1> 1+\/Tl11< 1 1> 2

diagonalise the Levi matrix. The following 2-forms

A, 4) (%, A)

o = ), + 22 g, (3.1)
Vin 0T

a? = ;Adzg (3.2)

lll

diagonalise the 1-form df so that
d) = v=i(a' Na' —a® A@®)  mod 6.
For simplicity, let P, Q, R denote the following coefficients of o' and o/?:

A, Y %, L
PI: < 1 1>7 Q:: < 29 1>7 R:: :
Vi Vi Vi
and observe that each of them is independent of u. Moreover, P and R are real-valued functions.
Equations (3.1) and (3.2) allow the differential 1-forms be written as

i

ol = Pdz +Qdz,

o’ = Rdz,
with its inversion . 0
dzy = —ab — =-a?,
ro P Jf (3.3)
dZQ = EOCQ,

3.2 The Exterior Derivative

Let G(21, 22, Z1, Z2) be any function that is independent of u. An application of the exterior derivative
to GG gives
oG oG —
k=1, 2 0z k=1, 2 0% k=1, 2 k=1, 2
A direct calculation shows that dG may be expressed in terms of .27, and o*:

dG = o (G)a! + oh(G)a? + o1 (G)a" + o (G)a’. (3.4)
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3.3 The Pfaffian system

Let A € S! be an element in the unit circle. The following system of differential forms

WOo= 0,
wl o= al, ol = 641,
W o= o? =\t 0% = a? — \at,

along with the ideal
1= (0,5

sets up the Pfaffian system for the existence of holomorphic curves in M.

3.4 Calculations of do' and do?

Using equation (3.3), an application of the exterior differentiation to o' and a? gives

dot = Y (P)afF Ndzy+ Y, 4(Q) oF Adz
k=1,2 k=1,2
+ > FP)a" Ndo + Y Q) @ Adzy,
k=1,2 k=1,2
do? = Y h(R)a* Ndz+ >, & 1(R) a" Adz,.
k=1,2 k=1,2

Substituting the dz; and dz; by the inversion formula in equation (3.3) and reorganise:

dat = (AQ) - o8 - pohP)) @t nat+ () Jat na
(PQRﬂl( —%ﬂl Oé /\OZ +( 132(]3))&1/\&2

(PQRMQ( —}124272 )(1/2/\ s

1
do® = }—%%(R)oz A o? ——52/1 (R)a* A at __eQ{Q(R>062/\@2.

Modulo the ideal I, the form o is replaced by Aa! and &% by Aa'. These replacements transform
da! and do? into

do! = o' A&t [(%E(P))A + ( ¢ o/ 5(P) — %EQ(Q) - %31(13))

PR
1
1 1__
dOé2 = Oél VAN 6[1 |:§=5272<R) - EJZ%1<R))\:| mod [.
Recalling that P = P and R = R, their respective conjugates are therefore
it = atnat|( = Loar)+ Lan @)+ (= LniP)+ Len(0) + Len(p)
- PR R PR R P

()]

da* = a'A |:R£71(R)/\+ %(R)} mod /.

1
R
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3.5 Calculation of dw’ and the expression of L
The exterior differentiation applied to
w? =a? - Ao
yields
dw®* = da* —d\Aa' — Mdao'
—d\ A ot + (da? — \dat).
Using the expressions of da! and da® modulo I in equation (3.5), it follows that

dw? = —d\Aat

tal Aa! K%EQ(R) - %EQ(P)) + (%32(13) - %EQ(Q) _ %El(P) + %El(m)x
- (%EI(P) - }%EI(Q)) )\2} mod 1,

and hence the expression of L may be obtained:

L= (}%EQ(R) - lEQ(P)) + (QEQ(P) o0 - ta.m+ lyl(R))A

N (P%El (P) - %E(Q)) N,

along with its conjugate:

— Q 1 T Q 1 - 1 1 <
L = | =%(P)——= —ahH(P) — — — —a(P)+ —
(FReh(P) = (@) ¥+ (reh(P) = Q) = A(P) + oA(R) )3
1 1
+(geatr) - pap))
3.6 Equation of the hyperplane
From section 2.7, the equation of the hyperplane is therefore given by
M= AL,
whose solution in u is of the form
v = ML
[ Q IR Q IR PP 1
= (D) = (@) + (mhlP) — oAhlQ) ~ HAP) + ()

+(ear) - pontp))

3.7 The differential forms 7 and dr
Recall that previously, the differential forms 7 and d7 are given by
T = —Ad\+ALa' — Lot
dr = dANAd\+ LdAAa' + MdL A a' + ALda'
—Ld\ A o' — MdL A o' — NLda'.

To obtain the explicit expressions of d7 modulo the Pfaffian system /, the following terms will be
calculated in the following order:



136 Wei Guo Foo, Orsay University, Paris, France

1. Ld\ A &' and Ld) A ot

2. ML A a' and MdL A o,

3. A\Lda' and \Ldo*.

Almost nothing can be for the first pair at this moment. For the second pair,

LG = KP%%(P) ~ Lh(@Q) ~ HA(P) + %%(R))x ; (%m«m - %m@))} AN a!
+al Aat
{(%(32(3)) EACHS) N (P)ely(P) ”le(R)E?(R))A
R P P2 R2
+(«5271(Ez(3)) _ h(\(P)) N QN (H5(P)) i (5(Q))
R P PR R
L TAR) _ ATAP))  A(PITAP) _ (R (R)
R_ P o P2 o R? o
LARTAQ) _ QARTAP) _ AQT(P) _ Qeh(PI(P)
R PR? PR P?R
H(P)FAP)  h(R)T>(R)
L )
A (A1(Q))  Qah(1(P))  b(1(R)) b(d:i(P))
+( "~ ®R T PR T R T~ P
_HQ) | QAFa(P)) | F(QAR) _ QoAP)T1(P)
R PR R P°R_
_ QaA(R)1(P) N H(Q)\(P)  ah(R)1(R) N aty(P)el 1(P)
PR? PR R? 2
ah(R) 5(Q) N Q) 2(P)  Qah(R)ol/o(P) Q%(P)MQ(P))/\
R2 PR PR? P2R
+(Q%<E<P>) _BT(Q) | BQTP) QAP (P)
PR R PR P2R
Qty(R) o/ 1(P) (R 1(Q)) .
_ VI + 2 ))\ } mod 1,

and

Mina = [(Fonr) - @) + ( ©A(P) — S h(Q) — HAP) + A A arnal

PR R PR? R R
+at Aat
{(Ez(%(@) _ QAa(AA(P)  A5(Q)(P) N Qo 5(P) <t (P)
R PR PR P2R

PR? R?

QAR TARAD 5o,
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T F1(Q) _ @A \(AP) _ Foh(R)) | Fah(P))

R PR R P
L Tolh(@) _ QFAA(P)) _ AQT:R)  QeA(P)TA(P)
TR PR R PR
LQAPITAR)_ FNQAP) | ARTAR) _ APIT(P)
PR? PR 2 P2
Q) 3(R)  5(Q)h(P)  Q2(R)h(P) | Qah(P)a(P)Y
~— R PR T pPr T PR )A
d1(A(R)  F1(A(P)  Q(h(P))  1((Q))
+( " R ' P PR T R
 dh(5(R)) N Ay (eh(P))  eh(P)e/1(P) N 4 (R)</\(R)
O i L Rz
_Z(R)H(Q) | QA(R)A(P) A 1(Q)h(P) n Qs (P) /1 (P)
R PR? PR PR
HOITAD) | AR
P2 R2
o1 (H(R))  d1(h(P) o (P)h(P)  o1(R)h(R)
+( R T Y = R -7 >A}
mod /.

For the final pair,

ALda' = o'nal
{(E Q%(P)%(P) _ da(P)A(Q) Q5 (R)eh(P ))5\2
P2R PR PR?
( R)A(P) | Q<1 (R) < (P) N Qo 5(P)ty(P) Qs \(R)H(P)
PR P?R P?R PR2
da(P)h(Q)  F1(P)h(Q)  QQ5(P)eh(P) N 1 (R) a4 (Q)
- PR o PR B __P2R2 o R?
LQA(QAP)  A(R)AH(Q)  Qels(R)H(P) _ o5(P)A(P)
PR? R? PR? P2
Ao(P)A(Q)  Fa(Q)FA(Q))
T PR T R >A
+< _ d\(P)A(P) N Q1(P)ah(P)  52(Q)h(Q)  QQ5(P)dh(P)
P2 P2R R? P2R?
o 5(P) s (P) N S 1(R)A(P) o \(P)5(Q) Qe 1(R)h(P)
PR PR PR PR
_(P)A(P) | A(R)4Q)  QQAP)A(P)  A1(Q)A(Q)
o P2 ) 7_R2 7£2R2 o R2
LQAP)A(Q)  QA(Q)AP) | QF3(Q)A(P) | a(R)ah(P)
PR? PR? PR? PR

TAQH(P) | Qx(P)#(Q)
-LGAD) | IO AD)



Wei Guo Foo, Orsay Unive

rsity, Paris, France

+(Q32(P)%(Q) +31(R)%(P) N Q1 (P)eh(Q) N Qe 1(Q)t(P)
P2R PR PR? PR?
 d1(QAA(P)  F1(Q)A(Q) | QI \(P)eh(P)  QQ/\(P)eh(P)
PR R? P?R) P2R?
As(Q)eh(P) g1(1[’)«@72(1[’)))\
PR P2
F1(Q)Hh(P) QA \(P)eh(P) 4
+(_ PR + PR ))\} mod I,
and
ALdoa! = ot _07 ) o
{(d 4 (Q) Qrﬁafz(P)ﬂ{l(P))/v
P?R
( P)%(P) _QTAQAP) | T QAQ) _ QFo(P)(P)
P2 PR? R? P2R
_QL\(P)ah(P) | (P)h(Q)  a(P)(R) n QQ 5(P) st (P)
PR PR PR P2R?
+%2(P)%(Q) B Qﬂ%(ﬂﬂﬁ(@))A
PR PR?
(QQ@%( )y (P)  oy(P)h(R)  Qelo(P)h(P)  5(Q)h(P)
P2R2 PR P2R PR
Q) (R) | \(P)ah(P) N 1(Q)(Q) N o 5(P)ty(P)
2 P 2 P
QQ&A( ) (P)  Qel»(Q)h(P) N 1(P)eh(Q) Qe \(P)sh(P)
P2R? PR? PR P2R
_QL\(P)4(Q) +EQ(Q)%(Q) _ d(P)A(R)  Q1(Q)(P)
PR2 o R? PR PR?
(AP | FAPIoA)
PR? PR?
H(QELAD)_ GFADHQ) | TAQAE) , T (@bl
P2R? PR? PR R?
_QF(Q)#h(P)  o5(Q)(R) N o\(P)h(P)  1(Q)(R)
PR? R s R
_QI\(P)eh(P) | 1(Q)h(P) | Qe (P)h(R)  o1(P)ah(R)
PR PR PR? PR
_QEQ(P>@{2(P> n QWQ(P)%(R)>)\
P2R PR?
d1(Q)h(R)  Qa\(P)h(R) Qe 1(P)ah(P)  1(Q)h(P)Y ,
+( " pPr PR T PR )A }
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3.8 The expressions A, B, C' and the equation of the Sphere
The expressions of A, B and C' in section 2.7 are therefore explicitly given by
A = —IL,

B - (PQRM() RAQ) A (pelP) -

1 ~ 1 1

- - = P -

L h(Q) — 5 (P) + me))
c = C,Q)\ +C,1>\+Co+01)\+02)\2,

So(A(Q)) Q2 (FA(P))  25(R)FA(Q) _ 207,(R)A(P)
R PR R i PR?
LQA(P)A(P) | A(P)(Q) _ 245(P)(Q)

P?R PR PR

C_o9 = —

+

A(T(P)) | SH(To(R) | QFr(AP) | QTa(h(P))
P R PR PR o
TAWQ) _ Folh@Q) | FoAR) _ Faleh(P) | A(P)TQ)
R ) R R P PR
2(QAQ) | 2(RAWQ) | 22(R)h(Q) _ 23(R)A(R)
o R2 ) o RQ ) o R2 o RQ
2(P)AQ)  2F(P)A(Q) | To(P)H(R) | Fo(R)A(P)
PR PR PR PR
QA P)A(P) | 205(QA(P) _ 2Q1(R)AP) _ 2QQ2(P)(P)
PR B  RP  RP P*R?
L 20F:P)H(Q) | QTo(P)A(P)  2Q(R)A(P) | AP)F(Q)
PR? P2R R2P PR ’

LACAS)) %(EQ(Q))JF%(E(R)) Qi (5(P))

© - P TR ~ R PR
_ B Ao(P)) | (o) Ao(A(R)  F1(A(P))
P ~ R R P
TAAP) _ FAQ) | Fr(AR) QT (A(P)
P R ~ R ' PR )
STARAR) 2T (QAQ) _ 20QF(P)AP) | 2071 (P)4(Q)
R? “®R PR PR
L2Q(Q)A(P)  25(Q)(Q) L 226Q)a(R) | 24,(B)(Q)
PR? R R? R?
2LRAR) | DoP)h(R) | ToR)AHP) G\ (P)h(P)
R PR ~ PR PR
2TP)YAQ) | TAPIAR) _ 2TAQAP) 20T oQ)A(P)
PR ~_ PR PR PR?
LB (P)  2Q(R)h(P) | QD) (P)  20Q45(P) (D)
PR PR? P?R P?R?

+2Q32(P)%(Q) 2Qd5(P)oh(R) n A5(P)(Q) n 4 (P)1(Q)
PR? PR? PR PR ’
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H(To(Q) _ A (P) | AR QaA(TAP)

R P R PR
LQAT(P) _AGNQ) | Fr(AR) _ Fr(A(P)
PR R R P
FoP)H(Q) 2 (QH(Q) | 2T QAR) | 2:(QA(R)
PR R? R2 R?
2(R)H(R) _ 25,(QA(P) | F1(P)h(R) _ 23(Q)h(P)
R? PR PR PR
\TRHP) | QFUPVAP) _ ~2QQF\(P)oh(P) | 2051(P)4(Q)
PR P2R PZR2 PR?
20F\(P)A(R) | 205,(QA(P) | Qo(P)h(P) 2Qe5(P)h(R)
PR? PR? P2R PR?
L (P)AWQ)
PR ’

QeA(\(P)  h(1(Q) 21(Q)h(P) | Qe (P)h(P)

cy = _PR R_ PR_ P2R
L 291(Qh(R)  2Q1(P)h(R) | 71(P)h(Q)
R? PR? PR

Observe that ¢ = ¢35, ¢c; = ¢_1 and ¢y is real-valued function on M. Therefore, C' may be
re-expressed as
C = 2Re(co\? + c1 A\ + ¢p).

On the other hand, ;¢ B and L may be expressed as

o= pX + A+ po,
B = Bi\+ By,
L = LoA2+ L)+ L.

The following expressions are therefore obtained:

[BI* = 2Re(BiBoA + 0.5(B1[* + | Bol*)),
ILI> = 2Re(LyLoA + (LaLy + LiLo)A + 0.5(|Laf* + [ L1 [* + [ Lo[?)),
ln— B> = Re(kaA* + ki + ko),

where here kg, k; and ko are complex-valued functions whose calculations will not be presented here.
Therefore, the equation of the sphere in the previous section

= BI* =Bl +|LI” = C, (3.6)
can be in general written as
Re(P\? + PA + Py) =0, (3.7)

where again P, P, and F, are complex-valued functions which not be made explicit here.

Suppose that in some neighbourhood U C M of a fixed point z € M, equation (3.7) is not
identically zero, then it is of interest to find values of \ satisfying the equation of the sphere subjected
to the condition |\|* = 1.
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Writing A as A = s + y=it; and at x € M, write also
PQ(ZE) = X1 + \/leQ,
Pl(l') = }/1 + \/_71}/27
P()(.I‘) = Z1 + \/TIZQ

for some real numbers X, X5, Y, Y5, Z;, Z5. Hence

0 = Re(P(2))\*+ Pi(x)\ + Py(x))
= X152 —2Xost — X1t + Yis — Yot + Z4,

which can be recognised as the equation of a hyperbola in R?, whose intersection with the unit sphere
|A|? = s? 4 t? = 1 provides at most 4 intersection points. This leads to the following proposition:

Proposition 3.8. At each point x € M where
= BI* = (IBF +|L" = C)
does not identically vanish, there are at most 4 values of \ satisfying

=B = (IBP+|L*-C) = 0,
N = 1. O

4 'The Hachtroudi-Chern-Moser tensor components

4.1 The components of the invariant tensor

Let I, be the ideal of differential forms given by
I, = (W W’ @ 7).

The reason why 7 is taken into consideration is that its pullback to the unit disk is zero. Hence two
equations are obtained:

d\ = La' — \Lat mod [, d\ = Lo — N?La' mod /..

Thus

dr = a'Aa'| — AL — AL + BNL + BN2L + C mod I,

ol /\61(7'_25\2 +7 A+ 7 +7‘1/\+Tg)\2) mod /.
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4.2 Relation to the defining function u = F'(z, 2)

The final expressions of the coefficients 75, 7_1, 79, 71 and 7, may be expressed in terms of F' as
follows:

T—2
B 1
F321:21 (F2121 FZ222 - FZ221 lefz)

2 2
F21z15151Fz - 2F21215152F2151F2152 + F21Z15252F

122 z1Z1
1
TF (FonFom —Fon Fon)?
z1Z21\* 2121+ 2222 22214 2122

2 3
- FZ1Z151FZ15121Fz122FZ222 + 2FZ1Z121FZ12152F2151FZ152FZ222 - FZ13122FZ22222F

Z121

2 2
_2lez122F212152FZ151F21§2F22§1 + FZ12151 F21Z1Z2F FZQZ1 - FZllelF,ﬂEQZQF FZQEQ

2122 z121
2 2 2
+2F212152F225122Fz121FZ152 - F212122F222121F2121Fz122 + FZ12122F212252FZ121F2221
2 3 2
_F21Z121F222122FZ121FZ122 + F212121F222121F2122 + F212151F225222Fz121FZ122 ’

T-1
2
<_FZ121FZ222 + F2221Fz122)5/2F2 )

z1Z1

2 2 3
4F2121 F2251FZ152FZ252F21215152 - 3F2151 F2251Fz FZ252F21215121 - F FZ251 F2152F21z2§252

122 z121

3 3 2 2
Fz121 F2251 F2252F21215252 - 2Fz FZ152F2252F21222152 + F F FZ122F21215252

121 Z1Z17 2221
2 2 2 2 2 2
+2Fz121F2221F2122F21222122 + Fz121 Fz122F2222F21222121 + Fz121F2122Fz222FZ1Z12121

_3F2121F2 F2 F21212122 - F2121F2221F3 F212’25121 + F4

22217 2122 2122 z121FZ252F2’1322222
3 2 2 3
_Fz Fz F21215152 + 2Fz F F21212151 + leflFZ251F2152FZ222F212151F212152

1217 2222 2217 2122
2 2
_3Fz121Fzz21Fz122F2222F212122FZ12121 + 4F, FZ221F2122F2222FZ1212122 - 2lezlFZ221F2122FZ12122F212222

2121
2 2 2
_3Fz151F2251F2152F222152F21Z122 - lezlFZ221FZ152FZ25252FZ1z121 - lezlFZ2E1Fz2E2Fz15122F212152 +
2 2 2
Fz121 F2221 F2222F215222F21Z151 - Fz FZ152F2222FZ22151F212152 + 2F F2122F2222FZ12152FZ12251

121 2121
2 2 2
_leleZ152FZ222FZ25122FZ12151 + 3Fz FzgleZ122F212122FZ1Z122 + FZ121FZ leézFZ15121FZ1Z222

2 2 2
+2F2151FZ221Fz152FZ25151F212152 + 3F2151Fz251Fz122FZ25122F212151 - F2151Fz122F2252F215151F21z221
2 2 2
+F2121F F2222F222121F21Z121 - leilFZ F F

2122 122 2222F512121F21Z121 =+ 2F2221 z122F2222FZ12121F212121

3 3 3
"’F Fz221 Fz12222F21Z222 + F F2221F225252F2’12122 + 2F F2122F225122F212252

2121 2121 z121
3 3 3
+Fz F2152F21Z251 FZ2Z252 + F Fz252FZ25152Fz12152 - F FZ252F212251 FZ15252

121 z121 Z121
2 2 2 2 2 2

_FZ121 FZ221 FZ FZ - F2121 F2122FZ FZ - 2F2121 F2122FZ22122 FZIZ221
2 2 3 2 2

+Fz Fz FZ12122FZ12’121 + FZ121F F222121F2122E1 —2F F FZ12151F21Z122

1217 2222 Z122 22217 2122

121 221

12222+ 212122 22121 12222

3 4
_2F2251Fz F2251Z1 F21Z121 - F Fzgégngzlzgzg 5

122 z121
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To
1

F2 (FZ151 F2252 - 1{721521{72251)3

z121

—6F3_ F?

21217 2122

F, .5z +12F

2
—10F7, 5
4
_FZ121

+2F3

2121

+4F?
—F?_F3_

3
+6F2121 Fzgél
—4F*_F?

21217 2222

F,,. F?

Z122

F2

2921

2222

F2

Z122

2121

—8F?

2121

—6F?

2271

+6F?

2122

+6F?

2929

—8F3

2121

—4F3

z121

+2F3

Z121

+2F3

2121

+8F7
_Fz2121 F22221
81 s,
_Flezl Fz2122
+F%_F?.

21217 2222
_6Fz2221 F22122
_6F,22221 Fz2122

+2F*

2121

F2251 F2122F222122 Fz1z222
FZQ21 Fzz22F215122 F212252
Fz221 Fzgngz12221 F212252
Fz122F2222F212122F222221
F2

2921

Fz121F222121FZ12152
F2222F215151 lezlzl

2121

3 2
_FZ1 z1 le Zo
3 2
+4F21 z1 FZQZQ
o B

22227 2121

5
_F FZQZQZQFzQZQEQ 9

z121

2

FZQEQFZ122Z121 - 7F
4
F2221 F2122F22222252 - 2F2121
3

leizFZ1Z22222 + F

Z121

2 3
FzgilF F21z15122 + lezl 2122

F2122F21512222 - 8F22121
lez12122 + 6F2151F2
lezzilzg + Flele
4F2 = FZ221Fz122Fz222FZ12121FZ12222 + 6F2 3 F2221FZ122FZ222FZ22121F21Z122

F2221F2122F2252F222152F212151
F2 Fz121FZ1Z2FZ252F215152F212151
Fz121Fz221F2222F225121FZ12121

FZ221F2122FZ15122FZ22222

FzzélFmézezénglEléglezg21 + 4F2
lefl leinggizelilfl F212122 + 6
F2121F2221F2222F212121F212221 - 6F2
leélegélelénglaélFZ

FozyFrpgz Fryzyzy + AF2 L F2
FozFy s Flsz, + F?
FoyFosiz Frypez, +AF2 F?
Foa Foyzz Foyzyz — 6F%

4
FZ122FZ22122F22Z222 + F

2121

4 3
—F F2222F222251FZ15222 - 2Fz121 z2Z1

3
FZ22151F222252 - 2Fz121 2122

3
FZ12122F21Z221 + F

2121

F215121FZ12121 + 6F3

22217 2122

3
FZ221F2122F2’222FZ1,222122 - 10F

2121

2
Fz221FZ122F

z121 2222
4
F2221F2222F21222252 - 2Fz121
2 3
Fz221 FZ222FZ1215222 + 2F,

2121
9 3

F Fz252F22225121 + 4F2151
2 2

F2122F21222122 - F2121FZ

3 5
Fz122F21222121 + F

F2

2221

2221

129 F21215151

2121
2121
2221

2122

—2F3

12121 z121

- 2Fz3121 FZ251 F2152F212221 F225222
- 4Fz3121 F2221 F2222F222122 lezlzg
- 4F,23121F2122FZ222Fz22121Fz1z222
- 4F,23121F2152F2252F215152F212221
2121F22221FZ122F222122FZ1Z122
21217 2071 F2252F31Z152 lezlzg
F3s,

F2

2222

2121
Z121
Z1Z17 2122

121 z2221

—6F?_ F?

22217 Z122

+ F4 F2251 F215222F223252 + 2F

z1Z1

Fz122F22zz21 F222222 + 4F4

2121
F2 F212222Fz1zg22 - F3 F2
F2 Fzgzling22221 - F3 F2
F2 F212222Fz1z122 + F3 F2

2121 2122

F2 F212121F21z122 + 6F3 F

while 7, and 7y are conjugates of 7_, and 7_; respectively.
The following next few pages are the Maple codes for the calculations. The first Maple file cal-
culates the expression of C' in d7 modulo I, whereas the second maple file calculates the S tensor

components in terms of F'.

Fz1z12121 + 12F2151
leing222F22222122
F,
F2152
271

2121 FZ122 F22222222

Fz221Fz12121F22z222 + 6
F2221F212121F212152 - 4F2
F2252F225121 lezzél - 4
F3 z leinglélénglaig -
Fz121F222122F212121 - 6

z

21217 2221 FZ22222 FZ1Z122

21721 zQ22F225151 FZ12122

Z121

21221 2 FZ2Z151FZ1Z151

F2

z

122

leizezinglzlilig

FZQZQlezl,?lZl

F2221 F222121 Fz1z222
F2221F212122FZ12151
Fz152Fz12121 FZ12251
F2121 F212121FZ1Z222
Fz121 Fz221 F222121 F212251
F2221 Fzg,%gzg lezQZQ
F2222F222122FZ12252



> restart:

HARBRRERHHARBRERHRARBR BB HRRRRR BB HARR BB HRARRRRRHRAR BB HR AR R R RS HAH
######### 1) Load differential geometry package #############H#I#H
######### 2) Define the coframes and their conjugates ###########
HARRARERHHARBRERHHARRRBRHRRRRR BB HARR BB RARRRRBHRARR BB HR AR R R R A A

with(difforms):

alias(conjugate(alpha[l])=alphalbar);
alias(conjugate(alpha[2])=alpha2bar);
alias(conjugate(lambda)=1ambdabar) ;
alias(alpha[l]l=alphal);
alias(alpha[2]=alpha2);

al,az,k,al

oy, o, A, oy, 0, (1)

> HEHHHBBRBBBBBBHHBRBRBBBBBHBHBBRRRBBBBHRRBRRBR B BB HHHHHH
# 1) defform sets the degree of differential forms ##
#2) test that wedge of two same 1 forms -is O ########
HUHHRBRRRBBBBBBBRBRBBBBBBHRRRBRBRB BB B HBRBRRBR BB BB RS H

defform(alphal=1, alphalbar=1, alpha2=1, alpha2bar=1, P=scalar, Q=
scalar, R=scalar, lambda=scalar, lambdabar=scalar, dlambda=1,
dlambdalbar=1);

simpform(alphalbar &\ alpha2bar);
simpform(alphalbar &\ alphalbar);

@ &,
0 (2)

> HHRBBHRBRARBRARBRBRBRBRRRRARBRARBRBRRRBHRBRARBRARARBHRRHS
# Formally assign algebraic properties of 1lst order ####
# differential operator to a symbol Al etc #############
HABRARBRARRRBRRBRARBRBRRRBRRRRARBRARBRBRRRRARBRBRARBHRARH

Al := proc (x)
local y; y := op(1, x);
if type(x, +') = true then add(Al(op(i,x)), i



=1 .. nops(x))
A1(x/y))
-1)*A1(y)

= true

end proc:

A2 := proc (x)
local y; y

=1 .. nops(x))
A2(x/y))
-1)*A2(y)

= true

end proc:

Albar := proc (x
local y

x)), i=1.. nop
(y) /y+y*Albar(x/y
x) -1)*Albar(y)

symbol) = true

end proc:

A2bar := proc (x
local y

x)), i=1.. nop
(y) /y+y*A2bar(x/y

x)-1)*A2bar(y)

elif type(x, *') = true
elif type(x, 'A’) = true
elif type(x, function) =

then A[1](x) else O
end if

:= op(1, x);
if type(x, "+°) = true
elif type(x, "*°) = true

elif type(x, 'A’) = true

elif type(x, function)

then A[2](x) else O
end if

)
3y = 0p(l, x);

if type(x, “+7)
s(x))

elif type(x, **°)
))

then
then

true

then
then
then

true

expand(x*A1l(y) /y+y*
op(2,x)*yA(op(2,x)

or type(x, symbol)

add(A2(op(i,x)), i
expand(x*A2(y) /y+y*
op(2,x)*yA(op(2,x)

or type(x, symbol)

true then add(Albar(op(i,

true then expand(x*Albar

elif type(x, 'A’) = true then op(2,x)*yA(op(2,

elif type(x, function)

= true or type(x,

then conjugate(A[1]) (x) else 0

end if

)
; Yy = 0p(l, x);

if type(x, +7)
s(x))

elif type(x, *7)
))

true then add(A2bar(op(i,

true then expand(x*A2bar

elif type(x, 'A’) = true then op(2,x)*yA(op(2,

elif type(x, function)

= true or type(x,



symbol) = true
then conjugate(A[2]) (x) else 0
end if
end proc:

Z1 := proc (x)
local y; y := op(1, x);
if type(x, +) = true then add(Z1l(op(i,x)),
i=1.. nops(x))
elif type(x, "*°) = true then expand(x*Z1(y)
/Y+Y*Z1(x/y))

x)-1)*Z1(y)

elif type(x, A7) true then op(2,x)*yA(op(2,

elif type(x, function) = true or type(x,
symbol) = true
then Z[1](x) else 0
end if
end proc:

Z2 := proc (X)
local y; y := op(1, x);
if type(x, "+°) = true then add(Z2(op(i,x)),
i=1.. nops(x))

elif type(x, *7) true then expand(x*Z2(y)

/y+y*Z2(x/y))

x)-1)*Z2(y)

elif type(x, 'A’) = true then op(2,x)*yA(op(2,

elif type(x, function) = true or type(x,
symbol) = true
then Z[2](x) else 0
end if
end proc:

RAHHBRARHHRRAAHBRARHHBRRAHHRRRHHBRARHHBRAHHHRARAHRR AR HBR A H
# Set up the Pfaffian system (see page [Bryant, page 208) ##
#Set the condition that |lambda|A2=1 ##########L#B#R#RHREREH
RAHHBRARHHRRAAHBRARHHBRRAHHRRRHHBRARHHBRAHHHRARAH B R AR H B R H

assign(alpha2=1ambda*alphal) ;
assign(alpha2bar=1ambdabar*alphalbar) ;
assign('lambdabar'=1/Tambda) ;

AAHHBRARHHRAAAHRRARAHBRARHHRRRAHBRARHHBRARHHBRRHHHH
# Calculation of exterior differential of alphal #
# Simplification of the expression d(alphal) #####
RAHHRRAAHHRARAHBRRAHHRARAHBRARHHRRRAHBRARHHRARAHRH

dalphalA:= simpform(



expand(
((1/R)*A1(Q)-(Q/(P*R))*A1(P)-(1/P)*A2(P))*alphal &\ alpha2
E(—l/P)*Albar(P))*a1pha1 &A alphalbar
z(Q/(P*R))*Albar(P)—(1/R)*A1bar(Q))*a1phaZ &A alphalbar
Z(—l/P)*AZbar(P))*a]phal &\ alpha2bar

+

(Q/(P*R))*A2bar(P)-(1/R)*A2bar(Q))*alpha2 &\ alpha2bar

)

);

dalphal:=collect(dalphalA, alpha[l] & conjugate(alpha[1]));

(R+1Q) A (P) o, &\ o, Loy & oy A (Q)

dalphalA :=

PR R
.\ (-R+AQ) Ay(P) oy &Ny oy &M 0ty AH(Q)
PAR R
((R+2Q)A(P) LA (Q)  (R+1Q) A(P) A(Q)
dalphal := PR B + PAR TR oy &N
conjugate(al)

>

> HHRAHRAAHRAHRAHRRHRRHHRRHRAHRRHR R AR RHRRHRRHR R AR RS
# Calculation of exterior differential of alpha2 ##
#Simplification of the expression d(alpha2) #######
RURRHRRAHARAHRAHRAHRRHHRRHRRHRRHR R AR RHRRHRAHR R AR RS

dalpha2A:=simpform(expand(
(1/R)*A1(R)*alphal &A alpha2

(1/R)*Albar(R)* alpha2 &A alphalbar

(1/R)*A2bar(R)* alpha2 &A alpha2bar
));
dalpha2:=collect(dalpha2A, alpha[l] &\ conjugate(alpha[1]));

AR Moy &MNoy Ay(R) oy &M oy

dalpha2A :=

R R
A/(R) A A,(R) -
dalpha? := 1 R 2R o, &N oy

> HHAHHHHHHHHBBBBBRRRAAARAARHHHHHBHBRBRRR1H
# 1) calculation of d(alphalbar) #######
# 2) simplify to factor out the 2-form #
# (whose order 1is not right!) #######

(3)



# 3) copy out the coeffcient ###########
# 4) rewrite d(alphalbar) so that the ##
# 2-form 1is 1in right order ##########
HERBRHBBRBRBRBHBBBRBRRBRBRBRBRBRBRRHRRHH

dalphalbarA:=simpform(expand(
((1/R)*Albar(conjugate(Q))-((conjugate(Q))/(P*R))*Albar(P)-(1/P)*
A2bar(P))*alphalbar &A alpha2bar

+((-1/P)*A1(P))*alphalbar &\ alphal
+(((conjugate(Q))/(P*R))*A1(P)-(1/R)*Al(conjugate(Q)))*alpha2bar
&\ alphal

+((-1/P)*A2(P))*alphalbar &\ alpha2
+((conjugate(Q)/(P*R))*A2(P)-(1/R)*A2(conjugate(Q)))*alpha2bar &A
alpha2

));
A (P) o &\ oy
dalphalbarA = P (5)
o & oy QA(P) o & oy A Q) A(P)hoy &y
APR AR P
L &0 QA P) o &N oy A4 Q)
PR R

> dalphalbarB := collect(dalphalbarA, conjugate(alpha[l]) &A alpha
[11);
coeffdalphalB :=dalphalbarB/(alphalbar &A alphal);
dalphalbarBB := simpform(-coeffdalphalB*(alphal &\ alphalbar));
dalphalbar :=collect(dalphalbarBB, alphal &\ alphalbar);

AP)  QAP) A(Q APIL Q4P A(Q)
P APR AR P PR R
conjugate (ocl) &N

AP) | QAP) A(Q APL Q4P A(Q

dalphalbarB:.=

dalphalB:=
coeffdalpha P APR AR P PR R
A(P) o, & o, QA(P)o, & o, A (Q) o, & o,
dalphalbarBB := ! : 1—Q L L Ly Do 1
P LPR AR
A(P)roy &N o, QAP o &N oy A(Q) o &M ay
* P - PR * R
A(P) QA/(P) A(Q A(P)A QA(P) A(Q)
dalphalbar:= | ——— - - 6
alphalbar P PR + R + P PR + R oy (6)
&N\

%



> HHHH#RRRRBBBBHHHRBRBHBBBHHHHHH
#Calculation of d(alpha2bar) #
HUHHHRRRRBR BB HHHRARBRRRRHHH R

dalpha2bar:=((conjugate(lambda) /R) *A1(R)+(1/R)*A2(R))*alphal &A
alphalbar;
A(R) Ay (R)

dalphaZbar := +
p AR R

o, & oy (7)

> HEHRBHRBHRBHRBARBRRBRRBRBHRBHRBHRBHRBHRBHRBHRBRRHHRH
# 1) Calculation of d(omega2) #########R##RLHBHHRHHY
# 2) Simplify by grouping according to diff forms ##
# 3) Copy out the coefficient L #############BHHBHHY
HABBARBRARBRBRRBRRRBRBRRRBRRBRRRBRRRBRBRRRBRRBRRHRRH

domega2:= simpform(expand(
-dlambda &A alphal-lambda*dalphal+dalpha2
));

L(-R+1Q) A (P) o, & 0,
domegaZ :=-dlambda &" o, - ( Q) A 1

1 (8)

PR
) - — — S
N Aoy &Mooy A(Q) B (-R+1Q) A (P) o, &N oy
R PR
+_ka1&A&IAﬂ(D_;ANR)kal&A&I_fg(R)al&A&I
R R R

> domega2A := collect(domega2, alEha[l] &A conqugte(a1pha[1]));

A 2
domegaZA::( MRHLQ)A(P)  NA(Q) (R+1Q) A(P) o

PR R PR
LA Q) AR A A (R)
R R R

> L:= collect(-(domega2A+(dlambda &\ alphal))/(alphal &\ alphalbar),
Tambda) ;

+

] oy &\ oc_l—dlambda &N oy

B QAl(P)_Xl(Q)J 2
= [ PR R A B B B B (10)
A(P) A4(Q)  A(R) QAZ(P)] AP AR
+[ p R * R * PR " p - R

>

> HHRBBHRBRARBRARBRBRARBRRBRARBRBRRRBRRRBHRBRHRBRBHARH
#Conjugate of d(omega2bar) to check conjugate of L #
HARRERBBHRRRRERBHRRARBERBRRRRRBRRRARRRERBHARRRBRBHHRRH



domega2bar:=simpform(-dlambdabar &\ alphalbar - \lambdabar*
dalphalbar + dalpha2bar);

A (P) oy &/\oc_1

AP

Ay (P) oy &/\oc_1

domegaZbar := —-dlambdabar &" o, -

L QAP o &y A(Q o &y

2° PR 2° R P
QAP oy &N ey A(Q) oy &My L AR o &\ o , AR &\ o
APR AR AR R
> domega2barA := o11ect(domega2bar, a1pha1 &N a1pha1ba_l
domegalbarA := [ i QA —Al(Q) - + QAP 2(Q

AP 2° PR 2’ R P LPR xR
Al (R) N Ay (R)
AR R

] o, &N\ oc dlambdabar&/\oc

(11)

(12)

> Lbar := collect((domega2barA+(dlambdabar &A alphalbar))/(alphal &A

alphalbar),lambda) ; o o
A (P) N QA (P) A (Q) N A (R)

_ A(P) AR P PR R R
Lbar:= P + R + .
QA (P) A (Q
" PR . R
A

> HHHAHAH#RAHRAHRAHHRAHRRHRRARRAHRAHRAHRAAHRAHRAHH
# Find the norm of L ###########H#RLHRHAHBHHRHHY
# Organise them in terms of degree of lambda #
RURAAHRAHRAHRAHHRAHRAHRRARRAHRRHRAHR A AR AHRAHH

series(expand(L*Lbar) , 1ambda) ;

A(P) QAP) | AP A(Q AR A(Q | A(R) QA (P)

R PR R R>P 1
2 + B
A A
A,(Q) QA,(P) N A(Q) A (Q)
_R2P B R? - B
A[(R) QA[(P) A(R)A(Q AR A(P) AyP) A(R)

R>P R? RP PR

(13)

(14)



QA(P) QA|(P)  A(P)A(P) QA(P) A (Q

i PR i P PR®
L AP AQ AP QAP A R) A4(Q)
PR P°R R
L AR AR) AP QAP | AR Q4P AP AQ)
R P°R R*P PR
AQAQ AR AR QAP A4(Q A P) A(R)
R R PR? PR
L QAP AR 4(Q) QAP AP AR) | QA4 P) QA4 (P)
PR® R*P PR P°R®
QA(P) QA((P) A(R) A4(Q) | A4(Q) A4(Q) A (P) A(P)
PR R R P
A(Q A(P) A(P)QA(P) QA(P)A(Q  A(Q A(R)
RP P°R PR® R
A(Q QA(P) AR A(P) AyR) A4(P)  A(P) 4(Q)
R2p RP RP PR
Al(R) QA)(P)  QAY(P) Al(P) | AyR) AR)  Ay(P) Ay(P)
5 - + 5 + +
R*P PR R P
QA (P) A(P) | QA(P) QAP) | A4y(Q) A4y(P) | QA(P) A(R)
P°R PR RP PR?
A(Q A(P) A(Q) A(R)
RP R2
L QAP AR) A (Q) QAP A(R) A(P) QA (P) 4(Q)
PR? R°P RP PR*
AP) 4(P) | A(Q) 4(Q) A(P) AR) A(Q) A(R)
P R PR R
QAP A(P) | A(R) A(R) ] H[ QA,(P) Ay(P)
P°R R P°R
QA|(P) 4(R)  A(Q) A(R)  A(Q) A(P) ] 2
+ 5 - > A
PR R RP

>

> HAARHHBARAHBRARHHBRARHHBRRAHBRARHHBRARHHRARHH B R A H
# Calculation of dL and dLbar for finding A,B,C #
#in the expression of dtau mod I ##############E#
RAHHRRARHHRARAHBRARHHBRRAHHRARAHBRARHHRRRAH B R AR H



dLxx:=

RUBRHHRRHRRHBRBHRBHRRHBRBRRBHRRHRRBHRBHBRHRRHH
#Tell the software that Tambda is a constant #
RUBRHHBRHRRHRRERBRHRRHRRBRRBHRRHRRIRBHHBRHRRHH

assign(A[1] (1ambda)=0, A[2] (1ambda)=0) ;
Al(lambda) ;
A2(1ambda) ;

0 (15)

HARBRRBRBRBRBRARBRRBBRBBRRRBRBRRRBRRRBRBRBRBRRBRRRBRHRBRHRRH
# Calculate the exterior derivative of L, step 1 ###########
# Only holomorphic part is needed because it will ##########
# wedge with alphalbar then taking mod I (Pfaffian system) #
# The result here will be multiples of alphal because ######
# alpha2 = Tambda alphal mod I #########BHAHBBARRREHHBHERERH
HABBRRBRBRBRBRRBBRRBRRBBRRBBRBRRRBRRBERBRBRBRBRBRRBRHBRRRRRH

dLxx:= simpform(A1(L)*alphal+A2(L)*alpha2);
A (A (R)) oy n Ay(Ay(R)) Aoy

(16)
R R
. M A4 (P) 4(Q o A4R) AR o (-R+1Q) A4(P) A (P) o
PR R PR
N M A,(Q) A(R) oy 1 QA(P) A(R) o
R PR’
N NAP) 4(Q o N A(A(Q) o , (RE2Q) A (4(P) o,
PR R PR
A(-R+1Q) A(A(P)) oy KA (Q) A(R) o
+ + 5
PR R
.\ 22 (-R+1Q) Ay(A(P)) o ) 1> QA (P) A4(R) o ) Ay(R) Ay(R) Loy, )
PR PR’ R
2 Ay (Ay(Q)) o . KA (AR) oy W (-R+AQ) A(P) Ay(P) oy
R R P°R
A (-R+21 Q) Ay (P) Ay(P) o
PR

+k(—R+kQ)A1(X1(P))a1 NA(A(Q) oy AA(A(Q)) o

PR R R




) MA(A(R) oy A(R)A AR oy A(-R+1Q) A(P)A(P) oy
R R P°R
MAP)A(Q @, QAP AR o, A A(Q) A(R) o

_|_
PR PR’ R
LA (Q) Aj(R) o, LA(R)A(R) o
R ) R
L AP A Qo AQAP) AR e
PR PR?

> HHERAHAH#HAHBAHRAHRRAHRAHRRHRAAHRAHRAHRAH
# Calculate one of the terms of dtau #
# (1/1ambda)*dL * alphalbar ##########
# And gather only the coefficients ###
RARRHRRRHRAHRRHRRHH R AR RHRAHRARHRAHRAH

dL := co11ect(expand((1/1ambda) dex), a1pha1),
o [ A A P)) X A(A(Q) AA(A(P)) +xA( ) A(Q) 17
AP R p PR
LQA|(A(P)) LQA(P)A(P) LQA(P)A(R)
PR P°R PR’
A(AR) LA (AQ) | A(P)A(P)
AR R AP
LA (Q A(R) AR A(R) N A(Q) A(R)  A(P)A/(P)
+ 2 - 2 2 +
R AR R P
LA (P) A(P)  A)(Q) A(R)
P R
LA Q) A(R) AR A(R) AR AA(R) | QA (A(P)
R R R PR
A(P) A (P)  A)(R) Ay(R) 2 QA,(P) A,(P) 1’ QA|(P) A(R)
P R PR PR
QA (P) A[(P) AQA(P) A(P) QA(P)A(R) LQA (R)
P°R P°R PR PR




K QA (AP) A(AP)  AAR) rA(A(Q)
PR P R R
MAA(R)  AA(P) 4(Q)  AQA(A(P))
- R - PR - PR %

> Y1 := collect(dL/alphal,lambda);

(AP AQ) QAP AP QAP AR)  QA(A(P)

YI:
PR P°R PR? PR
A(Q) AR A(A(Q) ) .2 [ A(AQ) | A(P)AQ)
+ 2 R A+ R + PR
L A(AR) AR AR) QA4 (P) AR)
R R’ PR°
LA AP A(A(Q) QAP A(P) QA(P) A(R)
_ P R PR P
L AQAR) QA AP) H(A4MP))  QA4H(4P)
R? PR P PR
L AQAR) QAP AP AP 4H(Q)), AR) A(R)
R® PR PR R2
AQAR) A (AR) QA (A(P)
* R? * R * PR
A(AHR))  A(A4P) AR AR) QAP A(P) A (4(Q)
+ — — — —
R P R P°R
L AP AP QAP AR) AP AP A(A(P)
P PR° P P
L AP AWQ
A (A (P)) . Al(A(R)  A(R) A(R) N A, (P) A, (P)
P R R P
A
>

> HEHRBHRBHRBEHRERRBRRRRRRRRRBRRRRBHRHHRH
# Calculate one of the terms of dtau #
# lambda*dLbar * alphal ##############
# And gather only the coefficients ###
HURHRHHBHABHRBHRBHRBHRBHRBHRBRRBHRHHRH

>

> HEARBARBERBHRBHREHRERREHRBRRRRRBRRRBRBRRHHRH
# Assign doesnt work well with conjugates###

(18)



# Introduce an auxiliary vector field Z1 Z2#
# to replace Albar and A2bar for the moment#
HABBERRBRARBRBRRBBRRBBRRBERRBRBRBRBRBRBRRBHHH
assign(Z1(lambda)=0);

assign(Z2(lambda)=0);

Z1(lambda) ;

Z2(1ambda) ;

0 (19)

> H#ARH#ABHAHABHLBHLHALHLSH
# Calculation of dLbar #
HABBHBHAHABHABHB RS HAHAY

dLbarxxx:=simpform(21ngar)*a1phalbar+ZZ(Lbar)*a1phaZbar);

Z(A(P)) o, QA(P)Z,(P) o, V4 o,
ALbaron 1(A(P)) oy QA 3) Al )0‘1 QZy(A(P)) oy (20)
p A’ P°R »’ PR
AP Z(PI e, AR Z(R) e QA(A4P) e Q4P Z(P) %
+ B 2 B 2
P R »* PR A" P°R
AP Z(Qo; AP Z(Qua;  A(P)Z(P)a, A(Q) Z(R)a;
+ 2 + 3 + 2 + 2 52
A" PR A> PR A" PP A°R
Z,(A(R)) o, QA)P) Z)(P)o,  AyP) Z(Q @, QAYP) Zy(R) o
+ 2 - + 2 - 2 pp2
A" R AP’ R A" PR A" PR
) QZZ(AZ(P))OL_ A(R) Zy(R) o, _QAZ(P) Z,(R) o,
»° PR R*\ A PR
QZ(A(P)) oy ~ Z)(A(Q) o ~ QA|(P) Zy(R) oy
APR 2’ R 2> PR?
L AQZB Y AR LR G 4(AP)Y 4(4Q)%
AR 2> R AP AR
Z(AR) e Z(AQ)o  A(P) Z(P) oy
— 2 _|_
AR A" R P’
A(P)Z(P) oy AR Z(R) oy QA(P) Zi(P) oy Zy(A(P)) oy
) P AR 22 PP R P
ZZ(AZ(R))a_l_ZZ(Al(P))a_l_Z2(A2((_2))a_1 N A(Q) Z(R) o

Mmm@@+a@4mmgammmma+a%mn

APR BRSO pR R




> HAAHHHBRAHHHBARHHBRAAHHBRAHHRRARHHBRARHHRAH
# Simplify to collect the #############R##Y
# coefficients of lambda*dLbar*alphalbar ##
RAHHBRARHHRRAHHBRAAHHBRAHHHRARHHBRARHHBRAHH

dLbar:=-collect(expand(lambda*dLbarxxx) ,alphalbar) ;
A (P) Z,(P) N A (Q) Z(R) N A, (P) Z,(P)

dLbar .= - 21
ar P e P .
A(Q) Z,(R)  A{(R) Zy(R)
TR AR
AQ Z(R)  QA(P) Z(P) QA(P) Z(R) | QZ(A(P))
2 R’ AP R APR? APR
AP Z(Q AP 5(P)
APR P
L MZ4(AR) _QA((P) Z,(P)  QA(P) Z(R)
R 2 P°R 3> PR?
. QZ(A(P)) A(R) Z(R) Ay(R) Z(R)
»° PR R R
L AP Z(Q Q4P 4(P) QAP Zi(R) | QZ(A4(P))
PR PR PR® PR
L BAR) B(4(Q) HAWP) M4(AP) 4(AWQ)
AR AR AP P AR
A(Q Zy(R)  AA(P) Zi(P) AA(R) Z/(R) Zy(A(Q)
TR P ) R? 2R
Z(AMP)  Z(A4HQ) | Z(AR)
p R R
A (P) Z,(Q) QA (P) 4,(P) QA (P) Zy(R)
APR AP’ R A PR
Q2(4(P)  Z(4(P) | Z(AHR) AP 5(Q))
- + + o
APR P R »° PR !
> assign(Z[1l]l=conjugate(A[1]1));
assign(Z[2]=conjugate(A[2]));
Y2:=collect(dLbar/alphalbar,lambda);
o A(AP)  A(AR) . A (R) Ay(R)  A(P) Ay(P) ) 22)
j2 R R? P



> Y3A:=collect

Y3A:=

> HE#ABHRBHRBHRBHRAHRAHRARR A AR H AR AR R HRBHRSH RS

## Computation of lambdabar*L*dalphalbar #
## 1in dtau mod , step 3 #########H#HRHHRH#Y
HARBRHBRRRBRRBRBBRHBBRBRBRBRBRBRBBRHRRRHHRH

dalphalbar; B B B
A(P)  QA(P) N A (Q N A (P) L QA (P) N A Q)
p APR AR P PR R

QA|(P) Ay(P)  QA(P) Ay(R)
A PPR 2> PR
AQA[(P) A (P) LA(Q)A(Q A (Q) A(Q)
+ — —_
P°R R? A R®

L QAP A(P) QAP AR) | QAP A(P)  QA(P) A\(R)

N
al& o,

AP°R A PR’ LP°R A PR’

(23)

(expand(1amb§gbar*L*da1phalbar), alphal &\ alphalbar);

(24)



kRZ XZ R2
L AQAR) APIAR) AQAQ AP A(P)
AR AP R P
LA (P) A (P) A Q) A(Q | Al(R) A(Q)
P S S B B
L AR AP A(P) A4(P) QA(P) QA(P) | QA(P) A(Q)
RP P PR PR’
" QA[(P) A(P)  A(Q) QA/(P)
+
_ PR EP L
L AP QAP AP A4(Q A4Q AP | A(Q) QAP)
P°R PR RP R°P
AR A(P) A(R) QA(P)  QA(P) A(P)
RP R°P P°R
L QA)(P) Ay(P)  QA,(P) QA)(P)  QAYP) A(Q)  A(Q) QA|(P)
+ - 5 + 5 + 5
P°R P°R PR AR P
A(R)A(P)  LQA(P) A(Q  QA(P)A(Q  AA[(R) Ay(P)
+ + + +
ARP PR A PR RP
L MALQ) QAP) L QA(P) QAP QA P) QA(P)
R°P P’ R A P* R?
LA Q) A(P)  A(P)A(Q  A(P)A(Q LA Q) A(P)
RP ALPR ALPR RP
22 A[(Q) AP) A (P) A Q) _
1RP = ZA?P; o, &N oy

> Y3:=collect(Y3A/(alphal &A alphalbar),lambda);
¥3 e ( A1(Q) Ay (P) N QA;(P) A (P) )73

RP P°R
N [ QA P) A(P) | A(R) A(P) | A(Q) QA4(P) A (Q) 4(Q)
P°R RP R°P R
L QAP A(Q AP A(P) A4y (Q) A(P)
PR? P RP

QA[(P) A[(P) A(Q)A/(P) QA[(P) QA,(P) A,(Q) A (P)
+ - - A- -
P°R RP P’ R’ RP

(25)



R*P PR’ R R°P
A(R) A(P) 4)(Q) QA(P)
RP R*P
AR AP AP AQ AQ AQ
RP PR R®
A(R) A(Q A(P)A(P)  A(P) QA(P)  QA(P) A(Q
+ 5 - + + 5
R P P°R PR
QA(P)A(P)  QA(P) A(Q)  QA|(P) QA(P) A (P) A (P)
PR PR’ PR’ P
L1 (_QAP)QAP) AR) QAP) | A(P) QA P)  A4y(P) A(P)
A PR R°P P°R P
A(P) QA(P) A(R) QA|(P) Ay (P) A(Q)
PR R*P PR
AR AQ AQAQ AR A | A4(Q QA(P)
R R TR RZP
L ARAP) AP AQ | Q4P AWQ)
RP PR PR?
A (P) QA((P)  A(R) QA(P) AP A(Q | A(R) A(Q)
P°R R°P PR R
kZ

>

> HRHRRHRAAHRAHRAHRAHHRAHRRHRRHR AR RAHRAHRA
## Computation of lambda*Lbar*dalphal #
## 1in dtau mod , step 4 ############R#RH
RAHHRRARHHRARAHBRARHHRARAHBRARHHRARAH R R A

Y4A:=9911ectggxpand(1gmbda*Lbar*da1phg}),a1pha1 &\ alphalbar);

QA (P) A(P)  AQA(P) A (P) N L QA (P) A (R)

Y4A =
2 PP R P°R PR’
AAL(Q) A(Q)  A(Q) A(Q) QAL(P) A (P) QA (P) A (P)
+ 5 + 5 - -
R AR LP°R ALP°R
A(P)A(P) LA (Q) A(R)  A(Q) A(Q A AI(Q) A(R)
+ a 2 + 2 B 2
A P R R R
A(P)A[(P)  LA(P) Ay(P)
+ +

P

(26)



L AQAQ AQAR) 2AQ AR) A (P) A(R)

3|

R R R PR
L AP AP) QAP QA(P) QAP A(Q A QA (P) Ay(P)
P PR PR® P°R
L M QAP AR) A(Q) QA(P)  A(P) QA (P)
PR® R*P P°R
L AP AQ AP AR)
PR PR
A(Q) A(P) A(Q) QA(P)  QA(P)A(P) LQA/P) A(P)
_RP R*P PR PR
QA (P) QA)(P)  QA(P) A(Q) | QA(P) Al(R)
+ - +
PR PR° PR°
L RQAP) AR) 4(Q) QA(P) LQAP) AQ QAP AQ
PR® AR P PR® A PR
MA(Q) QAP) | L QA(P) QAP) | QAP) QA(P)
R*P PR AP R
MA(Q) A(P) | A(P)A(Q | A(P)AQ  LAI(Q) A(P)
+ + +
RP APR APR RP
1 A,(Q) Ay(P) L APV AQ RAP) A(R) A (R) A(P)
RP 2% PR PR ARP
o, &N oy

> Y4:=collect(Y4A/(alphal &A alphalbar),lambda) ;

Ve ( QA (P) A, (P) N QA (P) ?Z(R) _Al(Q) ;42(R) N A (Q) Ay(P) jkz 27)
B P°R PR R RP
[ A (P) A,(P) QA[(P)A(Q) QA (P) A(R)
= +
B P B PR’ B PR’ B
N QA(P) A/(R) _Al(Q) A;(R) N A (Q) A (P) _AZ(Q) Ay (R)
PR® R® RP R
A, (Q) A (P) _Al(P) A,(R)
_RP PR - B
N QA,(P) QA,(P) ~ QA,(P) A (P) _Al(Q) QA,(P) ~ QA,(P) A, (P)
PZRZ_ B P°R R°P P°R

N A (Q) ;42((2) - A (Q) ;42(@ N A, (P) A, (P)
R R P




A (P) A (P) QA (P) A(Q)  A(P) A(R)  A(Q) A(R)
2

P PR PR R B
A(Q QAP) | A(Q AP | QAP A(R) | A(P) A4(Q)
R*P RP PR’ PR
L AQAQ AP AR) AP QAP QAP A(P)
R PR PR PR

QA(P) A(Q) | QA(P) QA(P)  QA(P) QA(P)  A(Q) QA,(P)
_|_ —
PR PR PR R°P
L1 (AP QAP QAP QA(P)  A(Q) QA(P)
ML PR PR RP
L AP A4Q APV AR) | AQ AQ A4P) QA (P)
PR PR R? P°R
AP A(Q) | AP AP QAP A(Q ),
PR P PR®
Ay (P) A (Q)  Ay(P) QA(P)
PR P°R
;\‘2

> HEARBHRBHREHRERRBRRRRRRBRRBRBRBHRRHH
# Finally explicit expression of C #
# in dtau mod I #######BHARBRAHHBHHH
HARBRRBRRBRRBRRBBRRBRRRBRBRBRBRRRBHH

C:=series(Y1-Y2+Y3-Y4,1lambda,5):
C[-2] := coeff(C,lambda,-2);

. Ay(P) QA (P)  2A,(R) QA|(P) 2A)(P)A(Q) L 2A4R) A Q) 08)
= P°R R*P PR R
QA,(A(P)) L AP AQ  A(AQ)

PR PR R

> C:=series(Y1-Y2+Y3-Y4,lambda,5):
C[-1] := coeff(C,T1ambda,-1); o o L
coo BAR) AAQ) AHAPR) AH(AQ) A4 (4(P)) (29)
e R R P R PR
AP AQ | QA (A(P)




A (R) A (P)  2A4(Q) A(Q) N 2A(R) A (Q)

RP RZ RZ
2 A)(R) A)(Q) 2 A,(R)A[(R) ~ A(P) QA|(P)
+ 5 - 5 +
R R PR
24,(Q) QA |(P) 2A(R) QA(P) 2 QA)(P) QA(P)
KPP RP PR B
2QA(P)A(Q) . A(P) QA(P) 24 (R) QA(P) A (A(P))
+ 5 + - 5 -
PR P°R R*P P
A (A (R))
* R

> C:=series(Y1-Y2+Y3-Y4,lambda,5):
MO := coeff(C,lambda,0);

oo AAP)  A(AQ) | A(AR) A(AP) | A(A(R)
p__ K R P R
L AP AQ QA (AP) 2A4(QA(Q  24(Q) 4((Q
PR PR R? R?
2A(Q) AR)  2A/(R)A(Q 2A(R)A(R) = A(P)A(R)
+ - +
RZ R2 R2 PR
L AR AP) QA (A(P)  2A4(R) AR) 2 QAP) QA(P)
RP PR R PR

L 20A MM AQ | 2A4(Q) QAP | A(P) QAP 2A(P) A(Q

PR® R*P P°R PR
L AP AR) 24Q AP 24(Q) QA(P)
PR RP R°P
AR A(P) 2 A(R) QAy(P) | QA(P) A(P) 2 QA (P) QAy(P)
RP R*P PR PR
L 204 AQ 2Q4((P) A(R) A(AP) A(4(Q)
PR° PR° P R
LAAR) AP AQ) A (A4(P) | A(4R)
R PR P R

> C:=series(Y1-Y2+Y3-Y4,lambda,5):
M1 := coeff(C,lambda,1);
A(AH(P)  A(AQ) 2A(Q) A(P)

Ml = -
p R RP

AP AR) 24(Q) A4(P)  AR) A4(P) 2A4(Q) A4(Q)
PR RP RP R?

(30)

(31)



2 A[(Q) A (R) . 2 A,(Q) Ay(R) 2 A[(R) Ay(R)

R? R? R?
L QAP A(P) 2QA(P) QA(P)
PR PK L
2QA,(P) A(Q) 2QA(P)A(R) 2A(Q) QA,(P)
+ 2 N 2 + 2
- PR - PR R P
QA,(P) Ay(P) 2 QA,(P) Ay(R)
+ —
B P°R B PR® B B
L AUARR) AAPR) AH(A4(Q)  A(AR) QA (A(P)
R P R R PR
A(P) A Q) QA (A(P))  A(P)A(Q)
+ PR + PR + PR

> C:=series(Y1-Y2+Y3-Y4,lambda,5):
M2 := coeff(C,Tlambda,?2);

2A(Q) A(P)  QA[(P)A(P) 2QA[(P)A(R)  2A(Q) A)R)

M2:= 2P + P - TS + 2 (32)
.\ A, (P) A(Q) .\ QA4(A(P) A (AQ)
PR PR R
>

> ###BHHHBRHHBRHHARHHARRHHBRBHARHH
# Check against old manuscript #
RARBERBERBRARERERARARERBERBHAREREH

C2:= expand(A2((Q/(P*R))*Albar(P)-(1/R)*Albar(Q))-((Q/(P*R))*Albar
(P)-(1/R)*Albar(Q))*((-1/P)*A2(P))-((1/R)*A2(R)-(1/P)*A2(P))*((Q/
(P*R))*Albar(P)-(1/R)*Albar(Q)));__ _

ZAﬂQL%UU4_QAﬂPM%GU_2QAﬂPL%UU_+2ANQL%UU

2=
¢ ~ RP lfzz B PR? R® 59
N A (P) A(Q) N QA (A(P)) A (A(Q))
PR PR R

> Cl:= expand(A1((Q/(P*R))*Albar(P)-(1/R)*Albar(Q))+A2((Q/(P*R))*
A2bar(P)-(1/R)*A2bar(Q)-(1/P)*Albar(P)+(1/R)*Albar (R))+Albar((1/R)
*A2(R)-(1/P)*A2(P))-(C(Q/(P*R))*Albar(P)-(1/R)*Albar(Q))*(
(conjugate(Q)/(P*R))*A2(P)-(1/R)*A2(conjugate(Q))-(1/P)*A1(P))-(
(Q/ (P*R))*A2bar (P)-(1/R)*A2bar (Q)-(1/P)*Albar (P)+(1/R)*Albar (R))*(
(-1/P)*A2(P))-((conjugate(Q)/(P*R))*A2(P)-(1/R)*A2(conjugate(Q))-
(1/P)*A1(P)+(1/R)*A1(R))*((Q/(P*R))*Albar(P)-(1/R)*Albar(Q))-(
(1éR)iA§§§)—(1/P)*A2(P))*((Q/(P*R))*AZbar(P)—(1/R)*A2bar(Q)—(1/P)*
Albar (P ;

(34)



Cl:= - - (34)
p R RP
L AP AR) 24(Q) A4(P) | A(R) A4(P) 24(Q) A4(Q)
PR RP RP R?
2A1(Q) A(R)  2A,(Q) AJ(R) 2A[(R) A(R)
" R® " R® B R®
L QAP AP) 2 QA(P) QA(P)
P°R P’ R
L 20AMP AQ 2QA(P)A(R)  2A,(Q) QAP)
PR’ PR® R°P
QA,(P) A(P) 2 QA,(P) A)(R)
n _
P°R PR’
A(AR)  A(A(P)) A(A4(Q) N Ay(A(R)) N QA (Ay(P))
R P R R PR
L AP A4(Q) QA (A (P)) L AP AWQ)
PR PR PR

> C0:=expand(A1((Q/(P*R))*A2bar(P)-(1/R)*A2bar(Q)-(1/P)*Albar(P)+
(1/R)*Albar(R))+Albar((conjugate(Q)/(P*R))*A2(P)-(1/R)*A2
(conjugate(Q))-(1/P)*A1(P)+(1/R)*A1(R))+A2((1/R)*A2bar(R)-(1/P)*
A2bar(P))+A2bar((1/R)*A2(R)-(1/P)*A2(P))-2*((Q/(P*R))*Albar(P)-
(1/R)*Albar(Q))*((conjugate(Q)/(P*R))*A1(P)-(1/R)*Al(conjugate(Q))
)-((1/R)*A2bar(R)-(1/P)*A2bar(P))*((-1/P)*A2(P))-((1/R)*A2(R) -
(1/P)*A2(P))*((-1/P)*A2bar(P))-((Q/(P*R))*A2bar(P)-(1/R)*A2bar(Q) -
(1/P)*Albar(P)+(1/R)*Albar(R))*((conjugate(Q) /(P*R))*A2(P)-(1/R)*
A2(conjugate(Q))-(1/P)*A1(P))-((conjugate(Q)/(P*R))*A2(P)-(1/R)*A2
(conjugate(Q))-(1/P)*A1(P)+(1/R)*A1(R))*((Q/(P*R))*A2bar(P)-(1/R)*
A2bar(Q)-(1/P)*Albar(P))); _

_ AAP) AAKQ)  ANR)) AH(A4P) | A(AR)
CO:= P R + R P _+ R (35)
L AP AQ | QA (A4(P) 24(Q AQ 24(Q) 4(Q)
PR PR R? R?
24,(Q) Al(R)  2A/(R) A(Q 2A(R) A(R)  A(P) A(R)
+ + - +
RZ R2 R2 PR
L AR AP QA (AP)  2A4R) AR)  2QAP) QA(P)
RP PR R PR

2QA,(P)A(Q 2A(Q) QA(P) A[(P) QA(P) 2A/(P) A (Q)
+ 5 + 5 + -
PR R’P P°R PR




Al(P)Al(R) 2A(Q) A(P)  2A(Q) QA)(P)

T PR RP i R*P
AR A(P) 2A(R) QA(P)  QA(P) A(P) 2 QA4 (P) QA(P)
RP R'P PR PR
2QA(P) A(Q 204 (P)A(R) A(A(P) A(AQ)
" PR? ) PR? P R
AAR) AP AQ  A(A4P) | A(A4(R)
- - PR p * R

> HERBHHBRBBHBBRBIHBRBRHHBRBBHBRBRBHBRBRHHBRRHH
#### Final verification of C ##########H#H#H#H
REHBEHBRHRRHRREHBRHRRHRRIHBRHBRHRRIHBBHBRHRRH

M2-C2;
M1-C1;
M0-CO;
0
0
0 (36)



> restart:
with(linalg):

with (PDEtools, casesplit, declare):
with (DEtools, gensys):

> declare(F(z[1l],z[2],a[l],a[2])):

F(zl, Zy, 4y, az) will now be displayed as F 1)

> L1 := proc(fonction) diff (fonction,z[1l]) end proc;
L2 := proc(fonction) diff (fonction,z[2]) end proc;
Llbar := proc(fonction) diff (fonction, (a[l])) end proc;
L2bar := proc(fonction) diff (fonction, (a[2])) end proc;
L1 :=proc( fonction) diff ( fonction, z[1]) end proc
L2 :=proc( fonction) diff ( fonction, z[2]) end proc
Li1bar = proc( fonction) diff ( fonction, a[1]) end proc
L2bar = proc( fonction) diff ( fonction, a[2]) end proc ?2)
> Fzlal := Ll (Llbar(F(z[1],z[2],a[1l],al2])));
Fz2al := L2(Llbar(F(z[1],z[2],al[l],al2])));
Fzla2 := L1 (L2bar(F(z[l1],z[2],al[l]l,al[2])));
Fz2a2 := L2 (L2bar(F(z[1],z[2],a[l]l,al[2])));
Fzlal = F,
71
F}Za]:ZIz B
2
Fzla2 :=F, |
271
Fz2a2 :=F, | Q)]
272

> ## DECLARER P, Q, R
## DECLARER J, K, L LEURS CONJUGUES COMPLEXIFIES



> Delta := Fzlal*Fz2a2 - Fz2al*Fzla2;

A=F, ,F, . —F, _F @)

z Ta,
11 2 r2 21

N

> P := sqrt(Fzlal);
Q := Fz2al/sqrt(Fzlal);
R := sqrt(-Delta)/sqrt(Fzlal) ;
pP=|F, .
1
Fa z
2
0:=
Fa ,Z
I
/ _Fal, Z1 Faz, Z2 + F(ll, 22 Faz, Z1
R:= )]
Fa z
i U1
> J := P;
K := Fzla2/sqrt(Fzlal);
L :=R;
J=|F,
1
Faz’ 7
K =
Fa ,Z
1
/ _F(ll, Z1 Faz, 22 + Fal, Z2 Fa2 Z1
L= (©)
Fa z
i U1

[> ## CHAMPS DE VECTEURS ORTHOGONORMES

1/p;
- Q/ (P*R) ;
1/R;

s<<a
W




a,z
U1
Ll],Z2
Vi.=-
/Fa,z /_Fa,z E ,Z +Fa Fa,
1 't 272 r2 271
Fa,z
1
W= @)
\/—Fa, F,.+F, . F,
't 272 2 271
> X :=1/3;
Y := - K/ (J*L) ;
Z :=1/L;
X = I
a.,z
1
24
Y=-
\/Fa,z _Fa,zFa,z +Fa, Fa,
71 't 272 2 1
Fal’zl
Z = )
\/_Fa ZFLl,Z +Fa ZFCI z
i 't 272 r'2 271
[> 271 := proc(fonction) U*diff (fonction,z[1])
end proc;
Z2 := proc(fonction) V*diff (fonction,z[1l]) + W*diff (fonction,z
[2]) end proc;
Al := proc(fonction) X*diff (fonction,a[l])
end proc;
A2 := proc(fonction) Y*diff (fonction,a[l]) + Z*diff (fonction,a

[2]) end proc;

Z1 :=proc( fonction) U* (diff ( fonction,z[1])) end proc
Z2 = proc( fonction) V* (diff ( fonction, z[1])) + W* (diff ( fonction, z[2])) end proc
Al = proc( fonction) X* (diff ( fonction, a[1])) end proc
A2 = proc( fonction) Y* (diff ( fonction, a[1])) + Z* (diff ( fonction, a[2])) end proc )




> ## TESTS DIVERS
simplify( Al(A2(z1(F(z[1],z[2],a[1l],a[2])))) ):
simplify( Q*Z1(Z2(P))/(P*R) ):

simplify( Al(21(R))/R ):

[> ## CALCULS EN FONCTION DE F

> newCT[-2] := sort(factor(simplify (K*A2 (21 (P))/(P*R)+21(P)*A2(K)/
(P*R) -2*Z1 (K) *A2 (P) / (P*R) -2*K*Z1 (P) *A2 (R) / (P*R*2) +K*Z1 (P) *A2 (P) /
(P*2*R) -A2 (Z1 (K) ) /R+2*Z1 (K) *A2 (R) /R"*2))) ;
nops (op(1,newCT[-2])) ;

newCT _, = (—
-2 2 z z,z z z
FiZ(ELZELZ—F;ZFAZ) 271 11 rr 272

'

18 (10)

> newCT[-1] := sort(factor(simplify (3*Q*Z1 (K)*A2(P)/(P*R*2)+K*Al
(z1(P))/ (P*R)+K*A2 (Z2 (P) )/ (P*R)+Z1 (P) *Al (K) / (P*R) -3*Z1 (K) *Al (P) /
(P*R)+2Z2 (P) *A2 (K) / (P*R) -Z2 (K) *A2 (P) / (P*R) -3*K*Z1 (P) *Al (R) / (P*
R*2) +3*K*Z1 (P) *A2 (Q) / (P*R*2) -K*Z2 (P) *A2 (R) / (P*R*2) -Z1 (A2 (P) ) /P-
A2 (Z1(P))/P-3*Q*K*Z1 (P) *A2 (P) / (P*2*R*2) +2*K*Z1 (P) *Al (P) / (P*2*R) +
Z1 (P) *A2 (P) /P~2+Z1 (A2 (R) ) /R-Al (Z1 (K) ) /R+A2 (Z1 (R) ) /R-A2(Z2 (K) ) /R-
Z1 (R) *A2 (R) /R*2+3*2Z1 (K) *Al (R) /R*2-3*Z1 (K) *A2 (Q) /R*2+Z2 (K) *A2 (R)
/R*2)));
nops (op(2,newCT[-1])) ;




newCT

- N
N .
e WY N N Z,l 2,2
LSRN k S
~ = S W S s~ SN
on N “— N F F a
~ l_l I_l |+I - Fa Z; — S a.l. l_l
e N S - Fa s ; : g -
: . - . ) = -
- 3 - - l_l ; A/Fa N ~ — F S
Fa : Z., : al = o al Z., —_— o
) i i i R - W 7Fa 3 s w S
N I, S e, o o aal Zl S am,l ~ N Rk 2Fa2 a,l
- — -/
K W Z.,2 W a’l =+ F — M_Ll ?Fal F | a’2 + ~ F
SRR SR S PR T T
Fa : : s al ) al o IT l_l o 22 - — -
— F i N N . N N — N - A/F - ; F A/F
“ SS9 ¢ L : B
WY ~ N N - — ; ; : ¥ k \
o~ 22 N 9\ - s R - . . ! ) "5 - ﬁ/P -
! , ] ] - F - _ . . s N] N S “— _ N
@ £ a,2 N Fa o ) s S - a>2 ‘™ + R + Fa — <
O A R R S
o ) ) ) g < Z, F F N ~ — “— ! ] —
S s T N TR S
F - a : : g k - _ o ) o il v > N a2 K\l o\l
IS az an/. A/F F “— ™ 27 a., az N Z.|A az al — QF Fa .
N} az a2 F “— — F F as A Z,.l.
o o _ — N n -
s N ~

- — —
N - -
s N N — K N
- - 2 -
7F — — — Fa 7__.Fa z, : \ z2 - zl o .
- SRS N . . M " - - o
o S oo o _ ‘™ N Fa k
N - kel

_ | [ _ g
p— ’1 — —
N N K K N N — 1 ,
z,l Z,2 Zal W R R S o Z,.l Z,l 1wﬂal z,l Z,l n 7Fa " o
A T ol WL T W " T
N az K\l “— — N _ F " HZ.l.
— —_ - S N N — — ™ R v R R -~ ¥
N N " — = 59 — . "\ " " 2 5 v -~ 3 7Fa
S o - Je S + | z,l ' Z,l n" S N A/__.«_4 e 7Fa a,l N !
3 - ; : o _ o R ~ ~ “ N " + N] o~
S s o = 8) nT Ry k N ; = ) | :
R R o R 9 AN S <9 R N "
— — ! N N . e N Q o ; R - C :
) : - - k. a,2 - L v <3 N N Y N Ny N ‘™ — ‘™
- - - a - : 3 3 5
RO I . & R s S S I S G — RS R o
T e N S A R VR S
59 N N N S S a a “ b )
WY ~ N g & . - ) ) ) : " )
N N — — — P = ~ = ta - a
" " . N’ N S} SN Y W N N = 3 : g = Lt
Fa s . o oo . — . . N N NT n N = 3 7nb ! -
o T T T W T T T N N
LT OB O S S N S s S -
z Z Z i 22 ) ] F F F F N N} “ al —
N N N N N - - - ; b a = :
N N N N W s - & -
A N NS
[




F‘Z,z Fa a,z,z))

2?71 U111
46 a1

> newCT[0] := sort(factor (simplify (2*Z1 (R)*A2(Q)/R*2-4*Z1 (K)*Al (Q)
/R*2-2*71 (R) *Al (R) /R*2-21 (A2 (Q) ) /R-A1 (21 (P)) /P+Al (Z1 (R)) /R-Z1 (Al
(P))/P+Z1 (A1l (R)) /R+Q*Z1 (A2 (P) )/ (P*R) -2*Z1 (P) *A2(Q) / (P*R) +Z1 (Q) *
A2 (P)/ (P*R) +2Z1 (P) *Al (R) / (P*R) +Z1 (R) *Al (P) / (P*R) +Q*Z1 (P) *A2 (P) /
(PA2*R) -2*%Q*Z1 (R) *A2 (P) / (P*R*2) +4*K*Z1 (P) *Al (Q) / (P*R"2) +4*Q*Z1
(K) *Al (P) / (P*R*2) -4*Q*K*Z1 (P) *Al (P) / (P*2*R*2) +Z2 (A2 (R) ) /R-22 (A2
(P))/P+A2 (22 (R) ) /R-A2 (Z2 (P)) /P-Al (22 (K) ) /R-2*Q*K*Z2 (P) *A2 (P) /
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1 2 5 T T e Mt M T R T 1
i 79 12)
_>'newCT[1] := sort(factor (simplify (Q*Z1 (Al (P))/ (P*R)+Q*Z2 (A2(P))/

(P*R) -3*Q*Z1 (R) *Al (P) / (P*R*2) -Q*Z2 (R) *A2 (P) / (P*R"2) +3*Q*Z2 (K) *Al
(P) / (P*R”2) -3*Z1 (P) *A1 (Q) / (P*R) +21 (Q) *Al (P) / (P*R) -Z2 (P) *A2(Q) /
(P*R) +22 (Q) *A2 (P) / (P*R) +3*K*Z2 (P) *Al1 (Q) / (P*R"*2) -Z22 (A1l (P) ) /P-Al
(Zz2 (P) ) /P+2*Q*Z1 (P) *Al (P) / (P*2*R) —-3*Q*K*Z2 (P) *Al (P) / (P*"2*R"2) +Z2
(P) *Al (P) /P*2-21 (A1 (Q)) /R+Z2 (A1 (R)) /R-22(A2(Q) ) /R+Al (Z2 (R)) /R+3*
Z1 (R) *Al (Q) /R*2-Z2 (R) *Al (R) /R*2+Z2 (R) *A2 (Q) /R*2-3*Z2 (K) *Al (Q)
/R*2)));

nops (op (2,newCT[1])) ;

1
newCT, = (2(
1 5/2
_Fa,z Fa,z +Fa,z Fa,z F‘czz,z
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_3Fa ZFa Faz a FaazFa,z,z +Fa,zFa Fa Fa,zFaa Faz
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Fﬁ zFa ZFa, zFa,Z +Fa,zFZ zFa ZFa a a,zz_Fa z
1 2 1 1 2 2 11 11 2 22 I 11 21 1 11
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F?z,zFa,zFa,a,zFa,z,z +2F‘2,2Fi,zFa,z a.,a,z,z +Fi,z
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'2 272 1270 't 172 271 27172 't 2 1272 2777
+Fi,zFa,zFi,zFa,a,z,z +FZ,2F(1, Fz,zFa,a,z,z Fﬁ,z
't 12 27 272 't 112 272 11 'l
F‘z,zFa,a,zFa,z,z +F‘2,2F2,ZF, N Fa,z,z _F, F‘z,zFa,z a,a,z,z
271 U172 2 't 272 11T rrn 't 112 271 1
+Fa,an31, Fa,a,zFa, s _3Fa ZFL21,ZF2,zFa,a,Z,z —2
1 1’2 1271 2 't 12 27 1
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46 (13)
_>»newCT[2] := sort(factor (simplify (Q*z2 (Al (P))/ (P*R)-2*Q*Z2 (R) *Al

(P)/ (P*R*2)-2*Z2 (P) *Al (Q) / (P*R) +Z2 (Q) *Al (P) / (P*R) +Q*Z2 (P) *Al (P) /
(P*2*R) -Z2 (A1 (Q) ) /R+2*Z2 (R) *Al1 (Q) /R*2))) ;
nops (op(1,newCT[2])) ;

18 (14)




Chapter 6

Hachtroudi-Chern-Moser tensor in CR
geometry

1 First and Second Jet Lifts of Equivalences

Let K = R be the field of real numbers, or the field C of complex numbers. To fix ideas, only
K-analytic objects will be dealt with, although everything will appear a posteriori to be true in the
% *-smoothness category.

Let n > 1 be an integer, and on K"*!, consider coordinates:

(:Ul, e ,x",y).
Similarly, on another space K"+ consider coordinates:
(X',...,X"Y),
and assume that a local K-analytic diffeomorphism is given:
E: (xl,...,x",y) — (Xl,...,X”,Y)

(Xl(xl,...,x”,y),...,X”(ml,...,:U",y),Y(xl,...,x",y)).

By local is meant that £ is defined in some small open neighborhood of the origin in K"*!. To lighten
the formalism, open sets and subsets will never be mentioned.

Provided F is close enough to the identity, it transfers graphed K-analytic hypersurfaces {y =
y(z!,...,2™)} to similar graphed K-analytic hypersurfaces {Y = Y (X!, ..., X™)}.

Notational Convention 1.1. Integer indices running in {1,2, ..., n} will be denoted using the (first
letters of the) Greek alphabet:

a? /87 77 57 87 CJ 777 97 [/7 R? >\7 /’L7 V? 57 07 7T7 p? 0-7 7-7 U? ()07 XJ /(/}7 w.
The first and second jet spaces of such graphing functions y(z', ... z"):

JHK", K),
J2 (K", K),

come equipped with independent coordinates:

(maayayxﬁ) € KnJrlJrn,

n(n+1)
+14ng Rl
(l,oz’ Y, Yzs, y:ﬂx‘s) € K" " 2
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which are independent, and correspond of course to partial derivatives of graphing functions. Simi-
larly, the target jet spaces come equipped with coordinates:

(Xa,YV,YXﬁ) c Kn—l—l—‘rn’

n(n+1)

(Xa7 Y, Yxs, YX’YX5) c Krritnt G

The way partial derivatives of such graphing functions are transferred through E:

JQ(KTLJ K) ;QE- J2(Kn7 K) (mav Y, Yus yaﬂx‘;) - (Xaa Y, Yxs, YX“/X‘S)
JU K", K) L5 J (K", K) (%,9,909) (XY, Vo)
Knt+l E Kn+1’ (l’a, y) (Xa, Y)’

is provided by classical formulas [ML15]; [BK89]; [Mer08], the proof of which will not be redone
here. To present them, introduce the

Definition 1.2. On J!(K", K), for each index 1 < a < n, the total differentiation along the x* axis
is the operator:

0 0 u 0
on‘ = o B T~ -
ox® ty 8y+;y ﬁay;pﬁ

In the concerned formulas below, a matrix must be inverted.

Proposition 1.3. The first prolongation J'E of the diffeomorphism E to the first jet space expresses

as.
1

Yy Dyt(XY) -+ Da(X™) )\ [ Da(Y)

Yxn Den (X1 ++o Dgn(X™) D (Y)
and the second prolongation J*E, for 1 < o < n, as:

-1
Yyaox1 Doi(X1) -+ Da(X™) D1 (Yxa)
: = : : : ) O]

Yy xn Dy (X1) -+ Dyn(X7) D, (Yya)

In fact, it can be realized that the diffeomorphism (z, y) EN (X,Y) transfers horizontal graphs
{y = y(x)} to horizontal graphs {Y = Y (X)} if and only if the above n x n matrix is invertible.

Because of the presence of such an inverse matrix, these formulas are not handy as soon as n > 2.
In the case n = 1, they become after reorganization:

Yo +y. Y,
Yy ,
Xy + Y. Xy
and:
1 X, X, X, Xow Xo Xy Xow Xy
X, X X X, X
Yl {‘ N e B }—yxyxyx oY )
Yo Yy Yoy Yy Yy Yy




1. First and Second Jet Lifts of Equivalences 177

Then a direct computation shows after pulling back through £

Y, +vy. Y,
JE*(dY —YxdX) = Yydr + Y, dy — ——2 [X,dr+ X, d
( x dX) T+ Yyay Xijyny[ v+ X, dy]
with the nowhere vanishing function:
XY, — XY,
U= —
Xo + Yz Xy

Furthermore, using:
0YX 8YX aYVX

JPE*(dYy) = —2d —d
( X) ox T oy y+3y$

a direct, although more delicate, computation gives:

J2E*(dYX —YXXdX) =v- (dy—yxd:v) +w - (dym —ymda:),

dy,,

with the function:

1
v = m {XxXxY:cy - XIXyYIx - XxXnyx + XyXxxYac +
T Ny

t . (waxyyy — Xo Xy Yy — XoXyy Ve — Xy X, Veo + X, XouVy + XyXnyx> 4
 yae (Xa Xy Yoy — Xa Xy ¥y — XX, Yoy + X, X0V, ) +
+ Yo YzYx ( - XwaYy + XyXyY:v> }7

and with the nowhere vanishing function:

XY, — X, X,
W= e
[Xsc + Yz Xy]g
In the case of n > 2 independent variables (z', ..., z"), similar computations can be achieved,

with some mastered efforts in the algebra of formal matrices.
But it is known [ML15]; [BK89], [OIv95, p. 125] (without much computations) that the corre-
sponding ideals of contact differential forms:

<dY ~ Y Yye an>,

and:
<dY 3 Ve dX, dYxe — 3 Yyays dX° >
o B

have kernels invariant under pullbacks, as stated in the following (admitted)
Lemma 1.4. On the source jet spaces J' (K", K) and J*(K",K), there exist 1 + n + n? functions:
u = u(z),y,y) and Uo = U (T, Y, Yus, Yaeac )
Ve = V(27 Yas s Yot )
with u # 0 and 0 # detv® nowhere vanishing, such that:

JE* <dY ~ Y Yye an> — u <dy . Zﬁ Yo da;/3>,

J°E* <dYXa — % Yyaxs dXB> = Uy (dy — % Y das5> + % Ug <dyxﬁ — > Yph daﬂ). ]
Y
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To complete the picture, it is plain that there are functions u* — not to be confused with the
U, — and ug such that:

E*(dX®) = XS dy+ ) X3 da”
B

— X0 (dy 3 s dxﬁ) +3 Dys (X) da”
B B

=: u” (dy — > Yo dxﬁ> +> ug da”,
B B

with a nowhere vanishing determinant, as follows from an already mentioned hypothesis:
0 # detuj = det (Dx;a (XO‘)).

These three pullback formulas will justify the shape of the initial G-structure associated to equiv-
alences of certain systems of partial differential equations.

2 Completely Integrable Second Order Systems
Still in K™ *!, consider a system of partial differential equations:
Ypags = Fa’ﬁ(ﬁvaya%c&) (I<a,B<n),

with K-analytic right-hand sides:
P = ol

Assume that this system is completely integrable, in the sense that for every choice of constants:

which satisfies identically:

Qqogs(x,0,b) = F*P <x7,Q(x,a, b), Qs (z,a, b)),
together with the initial conditions:
Q(O,(I,b) = b7 wa(O,a,b) =a’ (1<y<n).

A simple differential characterization of complete integrability exists by means of total differenti-
ations.

Lemma 2.1. The system y,a,s = F* is completely integrable if and only if:
va (Fa’ﬁ> = Dxﬁ (Fa,'y) (1<a,B8,v<n).

Proof. The known argument — details are skipped — consists in applying the Frobenius theorem
within the second-order jet space J*(K", K). O
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Next, with the coordinates:
1 2n+1
(a: ,...,x",y,yxl,...,ymn) € K**

on the (2n + 1)-dimensional first jet space J*(K", K), introduce the 1 + n + n differential 1-forms
(mind index positions):

@ = dy — > Yo da’
B
w® = dz® (1<a<n),

o 1= dYpe — Y, Fa’ﬂ(aﬂ,y,yx(s) dz”? (1<a<n),
B

which are visibly independent at every point, hence constitute a coframe. By assumption of complete
integrability, the Pfaffian system (zero-set):

{w:w1:~~~:wn:0}

has the family of integral manifolds {y = Q(z, a, b) }a,b parametrized by (a, b), while the 1-forms ww®
are added to have a coframe.

In what follows, 9,5 Will always be replaced by F®8 (:ﬂ, Y, yxa), which means pullbacking to
the graphed submanifold of J?(K", K) defined by:

{(x77y7y1’57y:v°‘:vﬁ) € J2(Kn7K>: Ygogh = Faﬂ(lﬁ?yvym‘s)}7

that corresponds naturally to the considered system of partial differential equations. In particular:

Dy = 7+yma3—y+z Fo (a7, y,s) e (1<asn).

G — dy+za 4+ Y 25 gy,

re-expresses in terms of the coframe {w, w*, wa} as:
dG = G, w + Za: Dy (G) - w® + Za: Gy - Wa-
Proof. Indeed, it suffices to plug the inverse formulas:
dy = W+§yxﬁ @’

dz® = w?,
dyaco‘ = Z Faﬁ YD’B—}—?DO“
B

in:

dG = G, [w + D Yo wa] + 20 Gpo [@*] + 20 Gy [Z P of +
a « @ ﬁ
— G, ot Y [Gma b Gy + Fﬂﬁanyﬁ} "+ Y Gy - W
« B «

and to recognize the presence of the total differentiation operator. [
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Lemma 2.3. The initial Darboux-Cartan structure of the coframe {w, w, wa} is:
dw = Y, @ Awg,
B
dw® = 0,

dw, = —% F;’B-w/\wﬁ—k% ; Fy‘;’f-wﬁ/\wv.
Proof. Starting with the last formula, compute:
dw, = > da’ NdF*P
B
=Y @A [Fyo‘ﬁ At Dm(FO"B) w4+ Fyaf . wv}
s v v

= -Zwne [+ 2 T e’ A" | Dn(F)] + 2 T @ Aw [F7),
p Y B . 3 5 Yy

and observe that the middle term:

> @A D (F) = D (™) |,

1<B<y<n

vanishes due to complete integrability.

Then the first formula:
dw = Y. dz? A dy,s
B

=Y @A [w5+z Fﬁ’”w“’}
B Y
follows from the index symmetry F7-% = FA7, U
Corollary 2.4. The complete integrability hypothesis D .~ (F @B ) =D,s (F 0"7) reads as:

dw = 0 mod <w,wﬁ> and dw® = 0 mod <w,w5>,
dw = 0 mod (w, ws) and dw, = 0 mod (w, ws). [

3 Initial G;-structure and Its First Reduction

Lemma 1.4 provides the general form of how such a coframe {w, w?, wa} transfers through any
local K-analytic equivalence. According to the general procedure of Cartan’s method of equivalence,
it is therefore advisable to replace such functions by independent (fiber) coordinates:

u e K,
u® € K, ug € K,
Uy € K, UﬁEK,

and to introduce the following 1 4+ n + n lifted 1-forms:

w = u-w,
(3.1) w* = u w+ ) uf @’
B

Wo = ua-w+z vg-w5,
B
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which live on the product space Knt1+m x Ktn*+n+ntn oquipped with coordinates:
(xa7 Y, Yz Us u%, Uga u®, ua)-

As is standard, the fiber space with its coordinates (u, ug, vg, u®, u,) has the structure of a matrix
subgroup of GLy,, 1 (K):

v 0 O
= u® ug 0 € Gla,41(K): u,ug,vﬁ u“, uq € K, 0 u, 0 det (ug), 0 # det (vg) :

(e}
U, 0 o

for which the stability under matrix multiplication can easily be checked, minding how indices refer
to either rows R or columns C:

Uar 0 wvar

so that the placement, bottom and up, of row and column indices, is not the same in ug and in vg!
Later computations will require to express inversely the w, w®, w, in terms of the w, w*, w,, and
for this, it is necessary to introduce the two inverse n X n matrices:

(@) = @5)  amd (0%) = (%),
also specifying their row R and column C indices. They satisfy by definition:
%=Zﬁ%=2ﬁﬂv
6% = Z vl vﬁ Z vl
employing the Kronecker symbol 4¢ in a special font to avoid status confusion with the already used

running Greek index 1 < § < n, which will also several times be used later on.
Back to (3.1), the first line inverts as:

For what concerns then the middle n lines:
> ugwﬁ = —u u”w+w?,
B
a multiplication-summation by ) @'7 (-) gives:
o =2
a B
_1 _
(53 °) oA T o,
«
hence changing indices:
w® = (Zu 'y 5) w+ D u' W
Lastly, for what concerns the last n lines:

%vg'wﬁ = _u_lua'w+waa
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a multiplication-summation by > v'%(-) gives:
w, = ; Zﬁ Ulgvg-wﬁ
= - (S uu) W+ Z 0w,
a
hence changing indices:

We = — <Z uto? u5) w0 ws.
B B

In summary, the inversion of the lifting is:

w = u_l-w,

(3.2) w® = (Z u! 'y 5)
Wo = — (% u o u5>

+% a'G - w’,
+%UlﬁW5

Now, following the general Cartan procedure, the 2-forms dw, dw®, dw, should be expressed in
terms of the lifted coframe {w, w®, w, } in order to chase some essential torsion coefficients.

However here, it is known that such essential (non-absorbable) torsion coefficients already appear
when computing dw, hence it is not necessary for the moment to touch dw® and dw,,.

Indeed, applying the exterior differentiation operator to the first line of (3.1):

dw = duNw+u-dw
[Lemma 2.3] =duhw+u-Y, w*Aw,

[Equations (3.2)] = utdunw+
+uy, ( Zu_l 7' u’ w—i—ZElg-wﬁ) A (—Zu Loy - w—l—Zﬁﬁ-wO,
o B v v
hence the result can be abbreviated as:

dw = (u‘ldu + something> Aw+2. > (Z uzfg 1712) WP A Wsy.
B o

Here, none of the coefficients of the 2-forms w” A w~ can be absorbed in (something) A w, and this
proves that these coefficients are essential torsion coefficients.
According to the general Cartan procedure, they can be normalized by setting:

7= ) = 0P = wa,

so that the v fiber variables disappear, and the above result simplifies as:
dw = (u’ldu + something) Aw+ Zﬁ: > (Z U, Ulg u_’loug) WA Wy
vy [}
= (u’ldu + something) Aw+d WA wg.
B
The computation of the unshown 1-form in parenthesis will be done later.
Thus, the initial G';-structure reduces to a G-structure with new group:
u 0 0

Gy = u® uf 0 € Glop1(K): w,uf, u® uy € K, 0% u, 0# det (ug) ,

o 0 uu?’



4. Reduced Go-structure and Stabilization 183

of smaller dimension:
dimgGe = 14 n2+n+n < 1+n2+n>+n+n = dmg Gy.
After elimination of v?, the formulas for the lifted coframe become:

W = u-w,
(3.3) WY = u® Y, ug-wﬁ,
B

W 1= Ug -0+ D, udlg-wﬁ,
B

and the useful inverse formulas are:

(3.4) o = = (S utege’) wt T,

2
B B

Wy = — (Z u’2u§u5> cw s uM e wg
B B

In matrix form:

w u 0 0 w
w* | = [ u* uz 0 w? |,
Wq Uy 0 ua'’ wg
with inverse:
ut 0 0
w 1,10, B —10¢ w
D uTruGu” a 0
@ — 2,83 B B wB ’
Wa —Zﬁ:u 2uug 0 wluf wg
where:
3.5) 6% = ; Ugug = ; u? Ulg,

4 Reduced G5-structure and Stabilization

After this first group-parameter normalization v’ = u @ 1§, the Cartan procedure requires to restart the
computations, to calculate the exterior differentials:

dw = du Nw+ u - dw,

4.1) dw® = du® Nw +u® - dw + ) dug/\wﬁ%—z ug-dwﬂo,
B B
dw, = duaAw+ua-dw+Zdu/\61§w5+
B
+zﬁ: udu’ﬁ/\wB—l—Zﬁudlg-dwﬁ,

and to re-express the right-hand sides in terms of the lifted coframe {w, w?, wa}.
Consequently, beyond Lemma 2.3, it is necessary to re-express at first doww, dw®, dw,, in the lifted
coframe. To this aim, in continuation with Lemma 2.2, a preliminary is needed.
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Lemma 4.2. The exterior differential dG of any K-analytic function G = G (xo‘, Y, yxg) expresses as:
dG = w - [u’le —> > ut 1Bua Ds(G) — > > u’nguaGy 5} +
a B a B ‘

+ > W [ZB: " D, (G)} + Za: Wo - [Zg: u g nyﬁ].

[0}

Proof. Back to the expression, given by Lemma 2.2, of dG in the coframe {w, w?, wa}, it suffices
to replace, using (3.4):

dG = Gy - @+ ), Dma(G)-w“—l—Z Gypo " Wa
= u_le-wa—Z Z u” ulguBD (@) - w—i-zo; Z/; ' Dga (G) - w” —
— Z Zu QUBUﬁ Juo w+z Zu W@, . - ws,
to collect terms:
dG = w- [u‘le — za: %: u G u’ Do (G) — Xa: 25: u”ul ug Gyza} +
+3 WP [XO; 'y DIQ(G)} + > wse [Xa: u_lug Gyza],

B
and to change indices o <— f3. O

Proposition 4.3. In the coframe {w,w®, w, }:

dw = Zﬁ:u_2u5~w/\wﬁ—2u_2u5-w/\w5+%:u_1~wﬂ/\wﬁ,
dw® = 0,
(4.4) dw, = %: wAw? - [_ ; u F;»w; 22w 2w a'yu PO |+
+Zﬂ:w/\w5' [— ; 25: ngu%ﬁulguéF;;f] +
+Z,3: Zwﬁ/\ww [%: You vl 7 F‘“;]
~ e

Proof. Back to Lemma 2.3, for the first work, it is necessary to replace and to expand:
dw = % @ A wg
=D, <— ; u‘lufzﬂ-w%—;ulf-uﬂ) A <— 25 u‘zu%ug-w+25 u‘lug-w5>
o> u’lalf u” u’lug Cw A ws —
)

’15 u_2u55 Us - W' A w+

|
=[] =[] =[]
=[]
qu 9

> 1115 u_lug -w? A wg,
o)

to reorganize:

)
[Equations (3.5)] > > u? (Z u% af) us - w A w~+
vy 0 B
5
-5
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and to realize three sum cancellations:

doo = — ). u_2u7-w/\w7—zu_2u7-w7/\w+2u_1-aﬂ/\w7,
v v v

to reach the first line of (4.4).
Since dw® = 0 trivially, the third and last work starts from Lemma 2.3 as:

dwa:f%ﬂf’ﬁ'w/\wﬁJr%:;Ez’f'wﬁ/\wy
:—%F;’ﬁ~(u_1-w)/\(—zu ‘1ﬁu7 w—l—Z‘lB w”)—i—
¥
+%;F$§.(,%:uflglfufs.erZgl? w5) ( %:u U, Ue w+¥u71u’€¥'w5)’
and this becomes:

[y «— 8l dw, = —

St ’ﬁu‘su us FOP o A w, —

e 6] S

>
B
-
B
[0 «+— ] z
B
[0 «— Band e +— 7] +Z

B

while the left-mentioned changes of indices followed by final reordering concludes. [

Corollary 4.5. The complete integrability of Corollary 2.4 reads as:

dw = 0 mod <w,wﬁ> and dw® =0 mod <w,w*8>,
dw

0 mod (w,ws) and dwo, = 0 mod (w,wg).

Proof. A look at formulas (4.1), (3.4), (4.4):

dw € <w, dw> - <w, w5> N <w, wﬁ>,
dw® € <w,dw,w'3> - <w7w/8>7
dwo, € (w,dw,wg, dwg) C (w,wg),
makes the claims transparent. [

With these preliminaries at hand, the computation of dw, unfinished in Section 3, can now be
finalized:

dw = du Nw + u-dw
=utduhw+u- (Z u_zuﬁ-w/\wﬁ—Zu_2uﬁ-w/\w5+z u_l-wﬁ/\c%)
B B B
=: w/\gp—irZwﬁ/\wg,
B

with:
o= —utdu+ Y utug W’ Zu u? - wg.
B
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S Unparametric Cartan Lemma Reasonings

Since subsequent computations start to become harder, it is appropriate to employ unparametric rea-
sonings to anticipate and to economize completely explicit computations. All differential forms now
live in the space of variables:

« . a
(‘T 'Yy YuBs u7uﬁyu auoc)-

Proposition 5.1. After absorption of torsion, there exist modified Maurer-Cartan 1-forms

0, P 9% Pa,
such that the structure equations for the Gy-lifted coframe read as:

dw = > W* Awe +w A @,

dw® = Zw’g/\gog—i—w/\goa,
B

dwa - ZQOOE[/\WQ+MQA@+W/\§0&.
B

The thing is that no (essential) torsion coefficients remain.
Proof. The first structure equation was already obtained above:

(5.2) dw = WA @+, W* A w,.

Next, back to (4.1), replace w, dw, w?:
dw® = du® Nw +u*dw + Y dug/\wﬁJrO
B

= dua/\(u_lw)+u°‘ (Z U_2U5'W/\WB—ZU_2UB'W/\W5+Z u_l-wﬁ/\w5>+
B B B
+> dug N (— Zu‘ldlgu”w+z Ulg-uﬂ).
B v Y

All terms here are either multiple of w or of some w?, hence there are 1-forms gog, ©® such that:

(5.3) dw® = Zﬁj W’ A @G +w A .
Without finishing the computation (a task that will be done later), it is visible here that:
05 = — ; '} - dugj + something,
0" = —ut - du® + Zﬁ: > u_ldf u” - duf + something,
Y

but the choice of ¢j, ©* is not unique, as will be discussed later.

The last work concerns dw,, and is a bit delicate. Complete computations will be done in the next
Section 6. However, it is interesting to see how expanded computations can be somehow avoided,
getting some information about the shape of dw, without replacing w, dw, ws, dwg in the third
group of equations (4.1).

The (indirect) trick is to differentiate (5.2) and to replace dw, dw®, but not dw,, about which an
information is wanted:

0 = ddw
= doAp—wAdp+ Y dv*Awe — D w* Adwg
replace o replace a

= (w/\goo+2wa/\wa>/\g0—w/\dgo+

+> (ZwﬁAcpg+wAgpa>/\wa—Zw“/\dwa
« B «
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which is:

(5.4) 0= Zwa/\(—dwa—&—%(pg/\w5+wa/\g@)+w/\(— dgo—&-zaz sOD‘Awa).

@

=:Qq

To this identity, with the ideal of 1-forms (w®, w) on the manifold K21 x K™*+2"*+1 equipped with
the coframe {w, W, Wa; du, duf, du®, dua}, the Cartan Lemma 12.1 applies and shows that:

Q, = —dwa—l—Zgog/\wB—i-wa/\go
B
= 0 mod <w,w7>,

the same being true for:
= —dp+Y, ¢* Aw, mod <w,uﬂ>,

although this will not be useful for the moment.
On the other hand, since Corollary 4.5 showed that dw, = 0 modulo (w, w. ), it comes:

—dwe + c,pg/\wg—i—wa/\go =0 mod<w,wﬂ,>,
B

hence from these two conditions:

0 mod (w”),
0 mod (w,),

Q, mod (w) = {

it comes that there are functions A2 _ on K2+ x K™ +2"+1 such that:
O, = Z,B: ; A7 -w” Awg mod (w).

Assertion 5.5. Index symmetries hold:
Aﬁa = Agﬂ 1<a,B8,v<n).
Proof. Indeed, back to (5.4) which becomes:

0= w*AQ, mod(w),

insert:
0=, % >AL W Aw Awg mod (w),
a 2!
collect > _ » and identify to 0 the coefficients of w® A w™. [l

Next, replace:
QOZ — @g_z Ag,v'w’y
v
= &ga
which, thanks to the above symmetries:

dw® = 20 W' A @G +w A
B
= %wﬁ/\<<ﬁg+;flgn-uﬂ>+w/\gpa

O

= Zw5A$g+w/\g0“,
B
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leaves unchanged the previously obtained structure equations (5.3), in order that the new 2-form:
§~2a = Qu =D Agﬁ-uﬂ/\w@
B

= —dwa+Zg0§/\w,3+wa/\g0—ZZAfm-uﬂ/\wg
B B~ '

= —dwa—FE@gAwﬁvaa/\go,
B

satisfy:

Q, =0 mod(w),

whence there exist differential 1-forms ¢, such that:

—dwe + D2 B AWwsFwWa Ap = —w A g
B
Renaming ©° simply as ? concludes the proof of the third group of n equations in Proposition 5.1.
O]
In fact, this work — and the previous as well! — is not achieved properly, because Maurer-Cartan

forms should be pointed out precisely, and because starting from:

dwy = dug N + ug dw + Y du AT 0ws + > uwdid” ANws + Y ud' - dwg
B g B

= du, A (u'w) —i—Zﬁ: a du A (— Zy: u_2ugu7-w+; u_lug-a@) +
+> uddlg/\ (— > u_zuguv-w—i—z u_lug.w7>,
B v v

torsion (remainder) terms should be computed before absorption in order to know what ¢, ¢, ¢, ¢,
really are.
In particular, it will be necessary to compute:

di'” .

6 Parametric Determination of ¢, ©3, ©“, ¢,

Abbreviating (3.3) as:
w=g-w,

where g € G is a general element of the group G parametrized by u, ug, u®, u,, equations (4.1)

contract as:
dv =dgNw+g-dw

=dg-g ' ANw+g-dw,

hence the very first natural task is to compute the Maurer-Cartan matrix:

u™t 0 0
du 0 0 —1,18R, v ,10R
dg-g~" = | du® duf, 0 _; Uty s 0
dug 0 d(uat’) = utuhuy, 0w u,
B!
utdu 0 0
uldu® = > u*1615u7 . ducﬁy > Ulg . dug 0
= B B )
utdu,, — % ; U Uy - d(uua') 0 doutu - d(ua's)
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specifying rows R of the right factor that couple up with columns C of left factor, simply here are as a
> - Two entries of the last row incorporate differentials:

d(uw 15) :
hence the computation is unfinished.

Lemma 6.1. Forall1 < o, < n:

differentiate it:

apply summation Y~ " (-):

«

N——
—89
[ s 4] = —ZZUli~duf;~1I1g+ddlg,
a y
and change indices as indicated on the left to conclude. 0
Consequently:
v tdu 0 0
-1, -1,-18 @ 18 @ w
dg- g w = u” du —%:;u a'u” - dug Xﬁ:u15-du6 0 Al w
u tdu, — Y. Zu‘%}wY . d(uu‘ﬁ) 0 > u‘lug . d(ualg) W
B B

which shows:

dw = u tdu A w + torsion,

dw® = (u_l du® — Zg ; u_lu’lf u” - dug) Aw+ Zﬁ Zb_: a - dufy A\ w’ + torsion®,

dw, = (u_l du,, — Zg ; u™? ug Uy - d(u u’ﬁ)) Aw—+ Zﬁ Z(s: ut u‘g . d(uvfg) A ws + torsion,,

so that Lemma 6.1 helps to finish the computation of the third line:

dw, = (u_l - dug — Zﬁ ; u” ) uy (alﬁ cdu+ u - dzIﬁ)) Aw+

+ Zﬁ: %: u_lug (dlg ~du+u - ddlg) A ws + torsion,
= (u‘ldua - ; u”%u, (2,8: up Ulg) ~du + %: ; %: 25: u_lug w7 - dul - Ui) Aw+

+ Za <u_1 Zﬁ ug a' - du — % Zg ZC ug a' - dug - Uﬁ) A ws + torsion,,

= (u_l cdug — U U du 4+ Y D0 uT " ug - duf) Aw+
B

+>. <6i uwtedu—=Y) Elg . du?) N ws —+ torsion,,
g ¢
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hence changing indices conducts to a finalization of the Maurer-Cartan part:

do = wA (— u! -du) + torsion,
dw® = Zwﬁ/\(— Zalg-dzﬁ)%—
B v
(6.2) +wA ( —uhdu+ )Y u_lu’l,ﬁy u? - du%‘) + torsion®,
B v
=D wsA (— Jgu_l~du+21fl-du§>+
B

—i—w/\( cdug + u g, - du—ZZu Y'Y ug - du)—i—torsiona.

The next task is to determine the torsion remainders. For the first (easy) line, this has already been
done at the end of Section 4.

For the second n lines, thanks to (4.4), it is similarly easy:

torsion® = u* - dw
= % u_2u°‘u5-w/\w5 — % u_2uo‘uﬁ-w/\w5+% uu® - WP A wg.

For the last n lines, the use of (4.4) requires more efforts:

torsion, = u, - dw + zﬂ: udlg - dwg

= Zu_2uauﬁ-wAw6—zu_2uau6-w/\w5+z u_lua-wﬁ/\wﬁﬂL
B

B +—1] +%Zw/\w7-<— ] ‘15 _I‘SFB‘S—i—ZZZu 1ulﬁuau U Ff85>—|—
o
[8 +— 1] +%;wAw7-(—Z§Z€ZCululﬁu5u uFB<>+
J7.8) > (6.6.7)] FE TR nw (2 X alugat )
_Zw/\w (u Ug Ug — ;Z{S ﬂ%FJ”@%%ZCu L 12uCF,];§>+

+%w/\w5 (_u 200 ° ;Zézezcu‘lalgufafueFﬁ)Jr

When summing up what has been done, put in advance two “+0” terms which are for the moment
inexistent in the computations above, but will soon be replaced with terms that are zero, and are useful
for subsequent computations.
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Lemma 6.3. After absorption of torsion, the structure equations are:

dw:%wBAw5+wA(—u_1~du+zu_1u5-wﬁ—%:u_luﬁ-wlg),
dwa:%wﬂ/\( Z’” duS +u~ Ly wﬁJrO)Jr
—l—w/\(—u_1~dua+%;u_ldlgu"~dug+%u_Quau5-w5—Zu_2uau5~w5),
:Zﬁ:wg/\(—6§u71~du+;ﬂlg-du,€+z[—Jgu’lua—%:%:zgl‘suc ’1€F65]~w7+0)+
—I—w/\(—u_1~dua—|—u_2ua-du—22u La ug - du
+% {u_2u5ua ZZ T ’15F7’ +ZZEZU_1 wuéu uCFWE}-wB—f—
+Z[—u u? ZZZZuluwu ul u Fgﬂ wg). O

B

Indeed, to get an appropriate collection of modified Maurer-Cartan 1-forms ¢, ¢j3, ¢, @, as in
Proposition 5.1, a final adaptation must be done. The choice is not unique, but a natural choice is as
follows. The first “4+-0” term will be:

Zﬁ:wﬁ/\(JrO) :ZwBA(5%2u71u7~w7+u*1u5~w0‘+;%:g%:ﬂliu?ﬂlgFﬁ;‘szJ
= (Zu Uy - w7)+Zu ug - W AW+
(Fo® = Fi< ) + > (ZZZulEug“ul‘;F“—ZZZulgu?uliFj’i )-wﬂ/\uﬂ
z 1<B<r<n § € § € ¢ wo
=0+0

which is indeed zero, and the second term will also be null:

zﬁ:wg/\(—i-()) = Zﬁ:w5A<—5§; u’luv-wv—ufluﬁ-wa)

= 0.
Remind that the 1-form ¢ has already been introduced:

dw = Zwﬂ/\w5+w/\<—u_1-du+z u_1u5~w5—2u_1uﬁ~w5>
B B B

~

g

=
has already been defined. Next, adding the mentioned first term:

dw“:Zwﬁ/\< Z 1" - du 4+ u” Ly w5+6g2u_lun,-w'y+u_1u5-w“+zzzZaiu?aﬂgﬂf’i-w7)+

=1¢3

+wA (—u_l-duo‘—i—% ;u_lﬂlgu7~dug+%:u_zuau5~w5—%:u_2uauﬁ~w5>,

=: %

provides appropriate 1-forms 3, ¢“.
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Lastly, adding the mentioned second term in a supplementary line:

o = S (8 S 43 [ e S kol ]
g v Y N ’

— 6§ S uTtY CWy — w P -wa) +
Bl
+w/\<—u’1~dua+u*2ua~du—zﬁ:Zu L ug - duﬂ+

+%[u‘2uﬁua DR R RS 20 b o Pl R0 LA ) Rt
+> [—u u? ZZZZu‘l TRl ’lguéu szﬂ w5>

5
= ZwM(tfisD—sog)erAwm
] —_———

?

provides without ambiguity appropriate 1-forms ®, but it must be checked that, with the definitions
of , ¢, ¢ just given, what is underbraced matches (visually) correctly with:

6BSO %% = —5§U_1-du+5§2 u_luy-uﬂ —6§Z u_1u7~w7+
v

+Zdll~du —u wa—JQZu_1u7~w7 -

— U g - ZZZZU ucul‘sF%-

vy 4§ €

thanks to a cancellation of two terms.
The gain of this pain is a parametric determination improving much Proposition 5.1. The 1-forms
constructed above will now be denoted:

e 0% 9%, Pa
Proposition 6.4. After absorption of torsion:
dw = >, wa/\wa—kw/\g%,
dw® = ZB: RN AV
dw, = Zﬁj O Aws +wa AP+ w A Pa,

with the explicit modified Maurer-Cartan 1-forms:

gootz —u . du+

+ Z u71u5 ‘WP — Zﬁ: uw P - wg,
0B =—Z 7'y - du +

+utu® ~wg+5gz’y:uiluv'w7+u71u5~wa+zﬂ;Z(;ZE:zg: u?ﬁgFj;i~w7,
e = —ulodu® + Y Zu‘lﬂlfu”dug—i—

B v

+ Z u2u® ug - WP — Z u2u® uP - wg,

Vo = — g, + u 2y, - du—ZZu Ya ug - duﬂ—k
B

+Z {u‘ Ug Ug — ZZ Tl ’15F7’ +ZZZZu 1uwu5u uc F)* WP+
+Z{—u uf a—;zézs;uflﬂlgﬁlgué ngﬂ wg. O
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7 The 1-form 7

Proposition 7.1. The most general 1-forms ¢, v3, ¢* and @, that satisfy
do = Y, W*Awe + WA,
dw® = Zﬁ W' NS+ wA e,

due = D P Aws + WaAp + WA,
B8

. o o o o
express in terms of ¢, ¢, ¢ and @, as

@:t'w + (7007

95 = bsw + ¥g,

gpa:ca-w + Zbg_wﬁ T ;204’
B

Vo =do - w + Z(égt_bg)'wﬁ + S%a-
B

(7.2)

Proof. The proposition is proved by repeated use of Cartan’s lemma using the two sets of equations:

dv = Zwo‘/\wa—i—w/\&),
do® = ¥ A + wAPY,
B
dwe = Y P Awsg + Wa AN + WA Pa,
B

and
do = Y w*Aws + WA,
dw® = Zwﬁ/\cpg+w/\g0a,
B

dwe = D PP AW + Wa A + WA P,
B

First, subtracting (7.6) from (7.3) yields,

0=wA(p—g)

By Cartan’s lemma, there exists some function ¢ such that

[e)

p=t -w-+ .

Next, subtracting equation (7.7) from (7.4),

0=§w%<$;§—wg> + wA (P — 9.

Therefore, by Cartan’s lemma again, there exist functions bg, rg, c®, d%, such that

0% = b3-w + Z/;Tg-wﬂ + 93,

o

p* = " w + ng-wﬁ + ©“.
B

(7.3)
(7.4)

(7.5)

(7.6)

(7.7)

(7.8)

(7.9)

(7.10)
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Similarly, substracting equation (7.8) from (7.5) gives
0=2 (o0 —w) Aws + wa AP =) + WA (Pa = ).
By Cartan’s lemma, there exist functions g?, h?, d,, 2 such that
Pu = Libarws + how o+ 8
Yo = do-w + zﬁ:eg-wg + Pas
or, by switching the indices o <+ 3 only in the first equation above,
5 = g5 wa + hEw + (7.11)
Yo = do-w + Zﬂjeg-w + Do (7.12)
Next, subtracting equation (7.11) from (7.9) yields
0= —zo;ggwua + Zﬁjrgwuﬁ + (b3 — h3) - w.

From the linear independence of coframes, it follows that
ggzr;}:O and g:hg.

Therefore, the expressions of ¢, @,, p* are obtained below

p = t-w + g%’ (713)

05 = 05w + ¢, (7.14)

= w+ dh W+ g (7.15)
B

G = do-w+ 2 €8 ws + Qo (7.16)
B

It remains to find eg and dg. To this end, substitute equations (7.14) and (7.15) into (7.7) to get
dw® = 2WPADG w4+ ¢ +wA (ca-w + ng-wﬁﬂoo"‘)
B B

= Z(bg—dg)wﬂ/\w—kaﬁ/\g%g—l—w/\g%a
B B

= Z(bg—d%)wﬁ/\ijdw“,
B

and notice that dw® cancels on both sides of the equation. This results in

0= (b — djw’ Aw,
B

and hence by linear independence of coframes, it comes instantly that dj = b3.
Finally, replacing the ©°, ¢ and ¢, in equation (7.8) by their corresponding expressions in equa-
tions (7.13) to (7.16), the term dw, becomes

dug = 0P ANws + wa A+ WA @,
B8

= %:(bg-w + &g)/\w/g + wa/\(t‘w—i—g%) —|—w/\(da‘w + Zﬁzeg-wg + g%a)

= Zﬁjbg-wAwﬁ + b we Aw +Zﬁje§-w/\w5+ Eﬁ)g%g/\wﬂ + Wa A + WA Qg

= Zbg-w/\c% + t-wa Aw + Zeg-w/\wﬁ—l—dwa.
B B
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By a similar observation as before, the term dw, cancels on both sides of the equation to obtain the
following linear relation

0 = Zﬁ:bg-w/\wg + twa Aw + Zﬁ:eg-w/\wg
= %bg-w/\wﬁ - %tdg-w/\wg +%e§-w/\w5
— ZB: (e — (to2 — V7)) - w A wg.
By linear independence of w A wg, it follows that
8 — 157 — 1.
Then replacing b3 = d3, and e = ¢ — bf, the proposition is proved. O
Proposition 7.17. There is a 1-form v such that
dp = D W A Ye — 2 wa ANP™ + wA.
Proof. The argument again relies on Cartan’s lemma. From
dw =D W* Awe + WA,
it is inferred that
0= d’w = Y dw* Awy — > w* ANdws + dw A — wAdp.
Then put the last term over to the left,
wWAde = Y dw* Awe — D w* Adws + dw A .
By replacing dw®, dw, and dw above by their corresponding expressions in equations (7.6) to (7.8),

the right side of the equation may also be expressed as a multiple of w in a different manner:

«

wAdp = Y, (%wﬁ/\apg> AWe+ D wA QY Awy
> WA (Xﬁ:gog/\wﬁ%—wa/\gojLw/\goa) - (Zw“/\wantw/\gp) A
a a
— %:zﬁ:wﬂ/\gogf/\wa — %}%wa/\@g/\wﬁ — zo;wa/\wa/\@
+X WA wWa A + WA <nga/\wa = Zwo‘/\@a)
= wA (ngo‘/\wa + Zwa/\<pa> .
Taking the difference between both sides of the equation above, it follows that
A <d<p— [Zwa/\goa—Zwa/\gpa]) =0,
allowing the application of Cartan’s lemma to deduce the existence of a 1-form, 1, such that
dp = D WA@Yy — D wWa AY® + wAY,

and hence concluding the proof. [
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Lemma 7.18. The I-form i) can be chosen to take on the following explicit expression:
Y= —dt + to + Yd-w — P wy + 2uTtug @ = > uTP g,
ot a B B

Before starting the proof of the lemma, there is another observation to be made. It is known that

o
from the previous proposition, there exist 1-forms, ¢) and v, such that

dy Ewa/\wa—Zwa/\wo‘—l—w/\%

d:O = Zwa/\&a_zwa/\;oa_{'u}/\@b'
(&7 [0}
It follows that their difference is a multiple of w:

(d(p - Zwa/\(pa + Zwa/\(pa> - (d& - Zwa/\&;a + Zwa/\&;a)

= WA -1)
=0 mod (w).

[e)

The following lemma shows that it is possible to compute w A (¢ — 1)) without calculating explicitly
either 1 or 1.

Lemma 7.19. The following expression holds:

o

wA (W —1) = w/\(—dt + 1o + Dody - w® — anwua).

in which the first four terms of 1 appear.

Proof. From p =1 -w + g% in equation (7.13), taking its differential dy and then replacing dw by the
expression in (7.3):

dp = dtAw + t-dw + dp
= dt Aw —|—t<2w°‘/\wa +w/\$p> + dp

= WA (t-wa) + WA (=dt + tp) + d.
Using ¢, in Proposition 7.1, the term ¢ - w, may be replaced by

tL-Wey = Qo — do-w + Zbg-wﬁ — c}a
B
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to obtain
dp = %wo‘/\ <g0a — dy-w + Zﬁbg-wﬁ—&a>
+w A (—=dt +1- )—I— dp
= YW APy + D2 WA (bg-wg) + w/\(Zda'w“)
« a «
—> WA Py + WA (=dt + t-@) + d
= Y WA, + ZZ[;MBA (bg-wa)
+wA (—dt +t-@ + Zda-w“) — YW A Q. + dp
— Tutnge - Suan (S05-7)
« « B
4+ wA (—dt + t-g?z + Zda-wo‘) — Zwo‘/\&)a + dg?).
The next step is to use ¢ in Proposition 7.1 to replace > 8 bgwﬁ by
Zﬁbg'wﬁ = ¢ —w = ¢

to get the conclusion

dgpsza/\@a — Zwa/\wo‘ + Y wa A w F Zwa/\éa

—|—w/\(—dt +t-@ + Zda~w"‘) — YW A + dp

(7.20)
=D W APy — 2wa AP+ WA <—dt + ot 4+ D ody - w* — anwua)
+ [d&’z - (Zwam‘éa —wa&“ﬂ,
and this terminates the proof. [

Lemma 7.19 completes part of the proof of lemma 7.18. The rest of the proof lies in computing

d&? - (Zwa/\&a - Zwa/\&a>

[0}

to obtain further terms that are multiples of w which do not show up in w A (¢ — 1)). To this end, the
terms in the parenthesis will be calculated first, then dgcz)).

7.1 Theterm ) w® A°p, — >, wo A Q"
Lemma 7.21. The following identities hold:

0 = ZE u’2u5ua w Aw?,
0 = ZZZZ UW‘I‘S F”‘;w Aw?
a B v

o::zzzzzzum%ﬂwgywAw
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Proof. The proof of the first identity relies on the anti-commutativity w® A w? = —w? A w®:
200 u tugu, w A W= > u” A (Ugp — Ugla) W A Wl =0.
a f a<f

For the second identity, the calculation proceeds in a similar manner, using the symmetry property
F7% = F%7 to obtain

EEEY wlat ot awt = LS (@ - ael) £t
vy 4
(—I’Yalg . al’gu—li) wa,é WA wﬂ
+3 2 | (@ay — aa) )Y

+ (@) — aal) B | w* Aw?

Finally for the last identity, the vanishing follows from
SEYNYY wlalweFu FY ot Aw
a B v & € ¢ x
- T8 vl (SETT @ Bt an), 02

(.

'

=0

where the expression above the underbrace is zero because it is similar to the second identity. The
lemma is proved. [

7.1.1 Calculation of > w* A gooa Using gooa in Proposition 6.4, and by the use of Lemma 7.21 that
the terms in ) | w® A g%a containing w® A w” vanish, the following expression is obtained:

N Ay = Sutdug Aw® =2 utug du Aw® + D30 u lu”uﬁduﬁ/\wa
a o a B v

> [uQUBua — 22111761‘; F”‘s
a f v
+ZZZZu 1u”u5u5u F”‘S} w® A WP
+§Zgz{ —u 2P, ZZZZ (TR TS 1§u§u5FQL’§} w* A wg
= > utdug Aw® — Zu uadu/\w + ZZZU 1uwu5duf/\w°‘

(e}
-3 u_zuﬁuawa/\cug — ZZZZZZ u 1uwu uéuaFVCw A wg.
a a B v § € ¢

B
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7.1.2 Calculation of ) w, A gop‘” On the other hand, using g?)a in Proposition 6.4 gives
S wa A = D wa A (— uwtdu® + DY u_lu’l,ﬁyu“* duj
a a B
+ 3 u g w? — Y u R’ wg)
B B
= Y utdut Aw, — DD u’ldlfu7 duf A wa
a a B

+2 u_2uo‘u5 wa Aw? — 35w tu e’ w, A wg,
a a

(. J

~~
=0

where the last term in the equation above is zero by anti-symmetry of the differential form w, A ws =
—wg N\ Wq-

7.1.3 Calculation of ) w* A Do — YoaWa ¢ Taking the difference of the two terms, it follows
that

> wa/\&a - > wa/\g?aa =>" u tdug Aw® — D> u"%u, du A w®
(0% (0% (0%

(0%
+ 22> u g duf/\wo‘ — > utdu® Aw,
a B v «

+EEY v dug Aw,

a B v

-2 Zﬂ: DY XC: uTh S uut FS w A wg,
o ¥

(7.23)

which terminates a part of the computation, and will be reserved for the computation of dc,%.

7.2 The term d°p

The next step, which is also more difficult, is the computation of
dp = d <—u‘1 du + Y utugw® — Y ut’ w5> .
B B

The computation of each of the terms that appears on the right side of the equation above will be
presented here. Notice that

du™ = ——

which gives rise to the following identities concerning the three terms of dgoo:
d
d(u™'du) = =< ANdu = 0, (7.24)
u
d(u " ug) = ug du™' + u" dug
= —uugdu + u ! dug,

du v’y = —u %’ du + ut du”. (7.26)

(7.25)

Therefore, the term dg% may be re-written as
dg% = > - u_2u5 du Aw? + > u! dug A+ Y u_1u5 dw”
B B B

+ 3wt du N\ wg — St du® ANwg + ST ouhf dwpg.
B B B
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Replacing dw” and dws by the expressions in equations (7.5) and (7.6), the term which contains w
may be partially obtained as below:

dg% = >, —u_2u5du/\wﬁ + Zu_ldu5Aw5 + Zu‘lw <Z uﬂ/\g%f—i—w/\gzﬂ)
B B B v
+ > u P du N\ wg — St duﬁ/\c%
B B
_% u_luﬁ (; g%g)/\(,u7 + (,U5/\Q% + CU/\9005>
— Zﬁ —u?ug du AW’ + Zﬁ u™t dug AwP + %:Z wlug WA P

Y

—1—253 uu? du A wg — Zﬂ: u ™t du® Aws — zﬁ:z u’luﬁg%g/\ww
vy

S uPug A+ wA A,
B

where

A=) u_1u5 c,%ﬁ - > u '’ QOOB,
B B

which gives the last two terms of 1. For the rest of the terms of 1), it is necessary to use the full
expression of gcég , g%g and 4,?7 Using equations in Proposition 6.4, therefore

dp = —> uugduAw® + X udug AP
B B
+ zﬁ:; utug WA (— Z(s: dlfsy du) + v Pw, + 25: 557[1%; W+ u i, WP

FETET wus s wé)
+> u P du N wg — St du® A wg
B B

— Zﬁ:z u_luﬂ( — 25: Elg dul + vt ws + 5;2(; u s W+ T g w?
v

+ Z{; ZE: 24: zﬂ: ElgulldlgF;;g w5> A w,
= u_luﬁwﬁ A(—utdu + > u_lu7 W= > u Y wy) + wAA.
B v Y
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Expanding the expressions above, therefore

dp = —% u"ug du AW’ + % u™t dug A w?
- ZB: > 253 uflug’lff;y Wl A du'g + zﬁ: > utugu’ W A w,
v v
+ Z E > 55U_2Uﬁu5 wl Aw’ + Z Z u g, WA WP
5
+ZZZ(SZZZ u ug'sul 18F‘5’C W A
3

+ 3 u P duAwg — Z u™t du® A wg

B

+D 3> u luﬁévu us w° ANwy, — 23 u 2uPu ws Aw,
B v 6 B v

— 33> um 1u657u us w° ANwy — 2D u_2u5u6w7/\wy
B v é B v

— ZB: Z; 25: 28: XC: zﬁ: u’luﬁdlgugalgF;;g WA Wey

+> u_2u5w5/\du - >3 u_2uf}u7¢ug/\w7 + > > u_2uﬁzﬂu)5/\w7 + wA A
B B v B~

Recognising that some terms cancel each other out, the term simplifies further to give

dg% = —> u_ng du Aw® + > ut dug AP =333 u_lu/ﬂfi w? /\du?
B B B v 9

— S utdiP Aws + DD § w BT dul) A w
B B Wls vy
B B8 v

=2 w P G E W Awy + wA A
B v & € ¢ 1
= > u My dug Aw® — D0 uPug du Aw® 4+ DD u ugu) dug/\wa
o a B o7

[e7

> utdu® Aw, + E > u*1u77jlf duf A wq

@ 8
- LYY XY v el atuu B wt Awg + w A A
o By § € ¢

By equation (7.23) in section 7.1, the first 6 terms on the right may be replaced by
YW /\g%a — D Wa /\(,ooa
= > ou g dug Aw® — D0 uTPug du Aw® 4+ Y>> utugu') dug A w®
o « a B v

> utdu Aw, + Z D uilu'yﬁlf duf A wq

fed 8
—ZZZZZZu NS uSuTFY Wt Aws + w A A,
a B

to obtain the final form of dg%:

dg%:Zwo‘/\gOpa—Zwa/\gooaqu/\A. (7.27)
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Replacing d by equation (7.27) in the expansion of d¢ that appears in equation (7.20),

dp = Zwa/\goa — Zwa/\ap“

+w/\(—dt + 0+ > dyw® — an-wa)

07

+ [df’p - (Z WA Qo — Zwam%“)]

= Zwa/\gpa — Zwa/\go"‘

—I—w/\(—dt + t-gop + > dy - w™ — an-wa)

«

+FwA (Z u g - gOO’B — > u &5)
B B

= Zwa/\goa — Zwa/\cpa

+w/\(—dt Tt 4 D dyw — Y w2 uT g — Zuluﬁ-g%g),
a o' B B

and hence Lemma 7.18 is proved.

8 The S tensor — a review

The following equations are given before:

dw® = 2w’ Ae§+wA e,
B

dw, = Zapg/\wg + Wa AP + WA pg.
B

Proposition 8.1. There exist 1-forms ®°, ®* and ®,, of the following form

;)

@CM

Dq

1
dpl = L GL N = wa NP+ pa N+ 000 00 AT + SO0 Aw,
v o
(e o o 1 (e}
de® — o N —%3905/\¢g+§¢/\w :

1
d@a—%SOg/\SO,B+§¢/\Wm

that satisfy the following relations

Zwﬂ/\@g—l—w/\@a =0
B

YD ANws—wAD, = 0.
B

Proof. Taking the exterior derivative of dw®, then replacing dw® and dw by equations (7.6) and (7.7),
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recovers some of the terms of @g and ®:

0 = d*w®
= zﬁ:dwﬁ/\gpg—%wﬁ/\d@g—kdw/\gpa—w/\dgy“

= Zﬁ(ZwVAgof—l—w/\goﬁ)/\gag — Zﬁwﬁ/\dgog
Y

+(Zw7/\wy+w/\gp> Ap* — w A dp®
ol
= %;wms@?/\s@g + %WAwﬁAwg - %wﬁAdwg
2 W AW, AP® + wAP AP — wAdp®
Y
= Zﬁ:;wﬂ/\gog/\gos + wA (Zﬁ:goﬁ/\gog) — zﬁjwﬁ/\dgog
+ WP Awg A + WA (P Ap* — dp®)
B
= ZBWBA <—d¢3+29@§/\9@3+wﬁ/\¢“) +wA (—d90°“+<ﬂ/\90“+%90”¢§)-
v
On the other hand, to get the rest of the terms, it is necessary to take the exterior derivative of dw,:

0 = d’w,
= Zﬁd(pﬁ/\wﬁ — Zﬁgpﬁ/\dwﬁ + dwg AN — wa Ndp + dw A\ o — w A dep,.

Replacing dw, and dw by the expressions in equations (7.6) to (7.8), and dy by the expression in
Proposition 7.17, gives

0 = chpg/\wg — 20N (Zﬁpg/\wy%—wﬁ/\w%—w/\goﬁ)
8 B v
+(290§/\w5+wa/\g0+w/\goa> AP —we A (ZwﬁAgpﬁ—Zwﬂ/\@B+w/\¢)
B B B

+<Zw'6/\w5+w/\go>/\gpa—w/\dgpa
B
= Zﬂ:ds@ﬁAwﬁ - %ZwﬁAngww - %Jsoﬁ/www - %wﬁAwAw
v
+Z¢§/\w5/\<p+wAg0a/\go—Zwa/\wV/\g%%—Zwa/\wg/\goﬁ
B v B
—wa/\w/\@b—kaﬁAwﬂ/\gpa—f—w/\(p/\@a—w/\dgoa
B
= > del Awg —ZZ¢ZA¢5AW5+ZSD§A9@/\WB+W/\(290§/\<Pﬁ)
B B v B B
—ZB?sOQAW\wBerA(%MO) —Zﬁ:(égzw”A%)Awﬁ—Z(waAsoﬂ)Awﬁ
v

B
FWA (W AY) = 2 (W Apa) Awg + WA (P A s —wAdpa)
B

= %(dapg—ngg/\gpg—5§Zw7/\<,07—wa/\90’3—w’8/\90a> N wp
v Y

+wA(Zsoﬁ/\@ﬁﬂowwﬂo/\%—d%) + wAwa A,
B
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By splitting
1 1
WA W N = §w/\wa/\w— 52((5g‘w/\w)/\w5,
B

into sum of two halves, therefore,

1
3 (dcpg—Zgog/\goﬁ—wa/\go%rcpa/\w“régz%/\whr§6g¢Aw> A wg
B B 2 B

=Py

1
—w A (dwa—zsoﬁwﬁ+§wwa) =0.
B
=d,

Hence the expression for ®° and @, are recovered. To obtain ®%, the term ®° found has to be
compatible with the following relation

ZwﬁA(I)g+w/\q)°‘:0,
B
which can be obtained from
0 = dw”
- Zwﬁ/\(—dgog+2gogAg0§”+w,g/\goa)+w/\<—dgpo‘+g0/\g0a+2905/\<pg>
B Y B
1
= %wﬁ/\(—dgpg%—;gpg/\gpﬁ%—wﬁ/\gpa)+w/\<§¢/\wa)

1
+w/\(—dgpa+ga/\goa+z<ﬂﬁ/\<p§—§w/\w“) ,
B

=—Pp

while recognising that in the first two terms of the right side of the equation above can be further
reorganised:

1
Zwﬁ/\<—d¢§+2w2/\gp$+w5/\gpa)+w/\<§w/\wa)
B v
1
_ %wﬁA(—d¢§+%ﬁs@2/\w$+W5/\w“)—Xﬁ:wﬁA(§5g¢Aw)
1
— %wﬁ/\(—d¢§+§g@§/\gﬂ+w5/\g@a—55‘5@0/\&))+0.
Replacing the 0 above by the following identity
%WBAQOQ/\WQ_F%W/BA(;dg@VAW’Y):O,
recovers the 1-form ®3:
1
Zﬂ:wﬁ/\(—dgongngog/\goﬁang/\goa—éégw/\w)
B!
1
= Zﬁ;wﬁ/\(—dgog+zg0gAg0$+w5Agoa—§5§w/\w)
B!
—|—Zﬁw6/\gpg/\wa—l—zﬁwﬂ/\253¢7/\w“’
v

1
— Zﬁjwﬁ/\ <—dgpg+2gog/\go;‘+w5/\goa—§5g¢/\w+gog/\w"‘+5gz%/\m)
Y Y —_Ppa
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Therefore,
wﬂ/\CI)g—i-w/\CI)a:O,

and this concludes the proof of the Proposition. [

Cartan’s lemma applied to
wﬁ/\<I>g+w/\<I>a:(),

implies the existence of the S-tensor S 5;; (which is also known as the Hachtroudi-Chern-Moser ten-
sor), and a one form ng such that

PP = Sng”/\w(7 + wAYPl,

The next section will be devoted to the explicit calculation of this tensor.

9 The S tensor — an explicit calculation

The S-tensor involves extracting the coefficients of w” A w, in

1
¥ =deh LN —wa A, T pa N+ U g AW+ S8 Aw,
gl D —7 cC

where the letters that underlined each of the first 5 terms are used for labelling purposes. The calcu-
lations will start with the following easier terms:

wa NQ7, pa AW 55(2%/\W”), and D¢l Al
o v

The term that is the most difficult to calculate here, dgog, will be reserved for the last. The underlined
terms are the ones that will be needed for the S-tensor.

9.1 The term w, A ”

Replacing g%ﬁ in

gpﬂ = cﬁ-w+2b2+&ﬁ
n

by the expansion of &’75 in Proposition 6.4:
{25 = —u'dd® + X u_lﬂlguedug + > u_2uﬁunw” - > u_2u*8u”w7,,
n 0 n n

gives
o = Pw+ > bgw" — utdu® + >0 ufldlguadug
n n 0
+>. u72u5unw” — Zu’Qu’Bu"wn.
7 n
Hence, wedging on both sides by w,, taking note of the terms of the form w* A w, (or w, A w*), yields
wa/\goﬁ = cﬁwa/\w—l—Zbgwa/\w” — uwy A di®
n ..
—  (A.i)
+>. Zg u_lu’lgue Wo N dug + > u_Qume7 Wa A w" — S uPu" w, A Wy-
n n (A) n
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9.2 The term p, A w”

Next, consider the equation of ¢, that appears in Proposition 7.1, and the equation of g%a that appears
in Proposition 6.4:
Pa = daw + 2 (00 =Dy + Pa
Vo = 1dua+u 2y du — ZZu ’19undu9
+>u? Up o W ZZZUlQ*lnge‘w"+ZZZZZu ! 19 ’\ 1“u F“w”
n
+3° —u%u"u, Wy — ZZZZZU ‘li ‘1/\u77 kFB’\ Wy

n
Wedging ., with w?, and ¢, with w?, give

Ya AW = daw/\wﬁjtZ((SZt—bZ)wn/\wﬁ+<,00a/\wﬂ,
n
fpa/\wﬁ = —uldug A® + u P, du A W? ZZU ‘lgundug/\w
—i—Zu‘zunuaw"/\w ZZZ TRt ‘1LF9Lw’7/\w
n
+> 20: >0 ZA: uta? uAu“‘u AP W A WP
n LK
+>. —u_Qu"uawn/\w ZZZZZ ot 19 1)‘u”u”F“wn/\cuﬁ
n

Hence, by substituting the full expression of g?a A WP into ¢, A WP, the following equation is obtained

Ya AW = dywAw’ + Z((Sgt—bg)wn/\wﬁ — udug A+ u P, du A WP
i (B.i)
—ZZu l’leunolu(,/\w + > u unuaw”/\w ZZZ’IQ ’“Fa‘oﬂ/\wﬁ

n

+ZZZZZU 1U19U)‘Umu Fyejwnw/\wﬁ + > —u 2u”uw Wy A WP
n A 7

(B.ii)

_ZZZZZU 1,10 71)\un KFQ)\UJ”/\(JJ :

(B.iii)

with the necessary terms underlined.

9.3 The term 6 >, A w’

The term 67 > o Yo Aw’ is the most straightforward, simply by using g%a in Proposition 6.4 and ¢,, in
Proposition 7.1 to obtain the expressions of ¢, A w”, then changing o and 3 to o, while taking note
of the sum 67 > :
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552 Yo NW’

5£(ngw/\w”+ZZ(5Zt—bZ)wn/\wU — > utdu, AW
o o 7 o

(C.i)

+>uuy du A w® ZZZU ‘16 du? \w?
—i—EZu*lunugw A w? EZZZ ’le’ume”/\w”
+ZZZZZEU 1 19 /\ mu Fann/\w

200 —u_2u7’uaw7,/\w” — ZZZZZZU ! 19 1)‘u77u’“””1‘76)‘wn/\w )

o n .
(C.ii) (C.iii)

9.4 Collecting terms with w* A w, from w, A ¢, 0, Aw” and 67>, A w®

Collecting the underlined terms, one has:

In wy A @7
> u_2uﬂu7, We A" = =) u_Zu’Bun W A Wq, (A.)
7 1
DU wa Aw" = =3 bW A w,. (A.ii)
7 1
In @, A wW?:
D (61t —b1) wy Aw? = =37 (87t — b7) WP A wy, (B.1)
n n
> w2 u, wy A W =3 u R g, WP A Wy, (B.ii)
" 7

33> > wta 19 1Au”u“F“wn/\wﬂ—E:Z:Z:z:z:u ! 19 u“Fﬁ;:\ wﬁ/\wn. (B.iii)

n 6 ¢ K A

Finally in 67 "¢, A w”:

SO0t —b7) wy Aw’ = —603 YT (61 — b1) W A Wy, (C.i)
o n o n

—652 S w2, wy A w? = 552 S u M, w’ A W, (C.i1)
o n o n

_5522222211’ 1 19 1)\un EFG}\wn/\w _ 5ﬁzzzzzzu 1 IQUIAUWUHFH/\ J/\wn'

(C.ii1)

By renaming the indices so that each of the terms above are expressed in the following form w” Aw,,
(which means that the use of Kronecker’s delta is necessary here), the corresponding terms become

> > 5Zu’2uﬁup w? A\ wyg, (A.)
p o
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9.5 Theterm )7 A P

As the expression for ¢} is complicated, the calculations can be very involved, starting with

and

—225265 WP’ A\ we,
p o

>3 55(5gt —b7) WP A wy,

p o

o3 (5§u_2u"uaw” A We,
p o

zz(zzzzw%lwuuww“)fm%

p o 06 ¢ K A

—603" 3 (65t = b)) W’ AN ws,
p o
552 > u_zu"up w? A wy,
p o

wzz(zzzzumﬁﬂawﬂ)wA%.

gl

blw + gOOZé

17 -1 -1 -1
blw + (— >oandu) + vt wy 4 0D uT W U uaw”?
7 n

+ZZZZ*Mﬁ%mﬂ,

B o]
bow + ¢

bfw + (— ;Ul;\duf + u_luﬁw7 + 552}\:u_1u)\w’\ + u_luvwﬂ

+ ; >0 Z @S FYw A) :
nwov

(A.ii)

(B.1)

(B.i1)

(B.iii)

(C.1)

(C.i1)

(C.11)
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Hence a direct expansion yields the wedge product of the two expressions

N
A -1 -1 A
= bgbfu)/\w - z)\:bztulvw/\duf + P wAw, + 5§Zu u bl w A w
+u_1bgu7w/\wﬁ + ZZZZ(M&@? le;;’w/\w
N T 7 3
Zumbﬁ duy Nw + ZZAWZU% dug/\duf — Y alu du A w,
n n
- (fZZUIZu_lu,\ du?,/\w’\ — > alu du?l/\w ZZZZZUWUIKU? 1ﬁ]ﬂfé’alu%/\cu’\
noA n n A pov

+ u’lzﬂbf W AW — X/\:dlﬁ;u’lw W A duf + w20 wa A Wey

+ (552 w2y wy A w? + u- 'zﬂu7 Wa A WP —|— Z Z Z Z TR TRE TR /\ug 1fyLFy“’E Wo A W

A (D) (D.iii)
+ 01> u_lunbg WIAw — 8> > u” unul)‘ WA du/\ + (WZU Uy, u? WA Wey

K oA (D.iv)

+ 55532 z}\: U uguy W AW+ (532 U 2wy, WA WP
g
T Ye

+ 03> ; > % dou 'y ,\ug 1“F“’ W Awt + u_luabf WA w
n v

+ 552 u luguy W Awd + u*2uau7 W AW

-1 DY B8 —2 B8
— Z}\ju uau17 WY Aduy + U uqu oﬂ/\w%D.V)
+2222u71uauliuf ”V‘F;‘;’w'y/\w + ZZZE 7u ’19F9Lb'8w’7/\w

—ZZZZZ w e Fytdy W A duf + ZZZZu”M 0 FO u P W A w,

(D.vi)

5BZZZZZ_UU7_12F;ZU Luy w? Awd + ZZZZ‘”UW_IGFHLU L, W A WP
+;%;Zﬁ;%;z&Ul;uZUliF;;E/\ug %F;’E w"/\w .

9.6 Collecting terms with w* A w. in Y- ¢7 A ¢l

Collecting the terms of the form w* A w, (or w, A w*) in ¢ A gof , the following terms are obtained
552)\: U0 Uy w A W = —55; w0 uy, W A w,, (D.1)

—92 _9 ..
U U Uy o A W= —u u Uy WP A Wa, (D.i1)

SIS S w e a Au5 I‘VLF;; Wa A = =D 33 S w tuva /\us lﬁY‘Fy“’& W Awy, (D)
Apov o€ Apov €
Y u_2unu5 WA wy, (D.iv)
n

u ugu” Wl A Wy (D.v)

D33 d%uldﬁFﬁ;’; w P W A Wy (D.vi)
K
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Summing over 7, and re-expressing the terms in the form w” A w,,

—> uy (Z u‘%ﬂdg) AW, == upégu_QuB w? A\ wy, (D.1)
A o1 o

p

(Z — u_QuVuV) W Aw, =D {(5552 (Z — u_QzﬂuV)] w? A Wy, (D.i1)
p o

v v

—Z/\: (Zzzzgu_lqﬂu )\ug 15F;’§> W AWy = =2 0,67 (Zzzgu_lu“’u ué I’VLF;’E) W’ AW,
v ow o p o v oo

(D.iii)
> (Z (5gu_2unuﬁ) WA wy = > (5gu_2upuf3 WP A Wg, (D.iv)
n o\ 7 p o
ST u2ugu” WA Wy = SN 5gu_2uauﬁ W’ A\ w,, (D.v)
v p o

ZZ(EZZ’LLWW@L%FE%U u>w"/\w7:ZE(ZZZUE o IZngu uﬁ) WP A wy.
nov p o K

L 0
(D.vi)

9.7 The term dy?

The calculation of this term is very complicated, and will be broken down into steps. From
5 = b + blw,

and using the expression for &ag,

() = d( - ; '), dug) + d<u_1uﬂwa) + d((sgz u wv) - d(u_luawﬁ)

Step 1 Step 2 : Step 3 Step 4

; d(;;gzweug i m) - d(bw)

Step 5

Step 6

the calculation will be broken down into 6 steps.

9.71 Step1 From
d( — > a dufj) = —> du') Adub,
Y v

and using Lemma,

da') = —ZZU I du

therefore

d(—Zulzédu,ﬁy) = —Z( ZZuwmdu>/\du5
v v
= > > > uyu’ du /\du
v on 0

Hence there is no term of the form w* A w,.
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9.7.2 Step 2 For step 2, replacing dw,, by equation (7.8) in Proposition 7.1 to obtain:

du " uPw,) = (du™)u’ Awe +utdu’ Awy +u il dw,
= —u 2P duNw, +ut du® Aw,

Ny uﬁ(ng Awn+wa/\<p+w/\<,oa>
= —u 2P duNw, +ut duﬁ/\wa+u_1uﬂz¢g/\wn
n

+u P we A p+ u '’ w A Pa-

Any terms that contain w may be safely ignored, and hence the expression of w A ¢, may be left
unexpanded. Using equation (7.2) to replace ¢! and ¢ by

in the expression of d(u~'ufw,), it follows that

duwfuw,) = —u P duhw, + vt du’ Aw, + Y (bnw*l's%) AWy

+u M Pwa A (tw + @) + v’ wA @,
= vl dunw, + v TdP Aw, + u” uﬁz O Awy + u Tl wy A

Fw A (u U gpa+u uBZb"w —u 1u6twa)

To get all the terms of the form w* A w,, the terms fpg and g% will be replaced by

SZZ - Z‘Mdu/\ + u uw, +5”2u uw” 4+ 1 tuaw” —i—ZZZZ‘“u“‘ﬂFj; A
0

S = -1 - n —1,m
o = —uldu + Y uTluw’ — Zu uwy,
n n
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to get

du™wlw,) = —u P duhw, + urdu’ A w,

+u Z( Z T Adul 4 W, 4+ ST u rupw?
)
=y 16 10,0
+ v tu,w" 4 ZZZE Sl Fot w >/\w,7

+u e wy A ( —u du+ Y u W — Y ulu"wn)
n n

+w/\<u U gpa+u UBanw —u 1u5twa)
= —u uﬂdu/\wa—kulduﬂ/\wa—i-u uﬂzz ‘1’\du)\/\wn

+u” uﬁz:u"cua/\w77 + ZZ§"U wPuy w? A wy + Z:u_2u6uauﬁ7/\w77
(E.) "
—i-zzzzzu Ll u"‘liFjiwA/\wn — u2uP wy A du
(E.iii)
+Zu_2u’8un Wo A W — S u Py Wa A Wy

i (E.iv) K

(E.ii)

—l—w/\(u P, +u” uBZb"wn—u uﬁtwa>

9.7.3 Step 3 For Step 3,
d <5§Z uluwﬂ) = 05> d(u""uyw")
v v
= 5?27: ( —u?uy du AW +u duy AW + u_luvdoﬂ> :
Replacing dw” above by

doﬂz%oﬂ/\gp;%—w/\go”

in Proposition yields 7.1
d <(5§Z uluﬁyuﬂ) = =052 utuyduAw? + 05> u duy AW
v 0l v

+ 5§Z u <Z W' A ) +w A g&”)
v

n
= —5;‘; u_2u7 du N W' + 5;‘; u! duy, A w?

+ 52‘; zﬁ: u W A ey + WA ((52‘; u1u7<p7> .

Then replacing ] above by
o) = bjw + @),

the term takes on the following expression.
d (52’2 u_luyoﬂ) = —5;‘2 utu, du AW+ 52’2 u”tduy, AW
v g v

+ 53; Zn: u” MW A g(z)ag + wA <5g; u ) — 52‘; 277: uluﬁ,bgw").
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Making the final substitution using
Z T du} + u_luvwn (Wz uwruy w4+ u” unuﬂ + Z Z Z z 7 u”UIng%Z W,
the following full expression
d(égz uluyuﬂ) = —(55‘2 u’Qu7 du AW’ + 5;‘2 ut du, A w”
v v B!
—|—5gz doutunw A ( — ZA 1113 du) +u M W, + 57]; wtuy w?

Yon

+u” unw”—l—ZZZZu ult 1OFQL A)
+w A (552 u’luvgo“’ — 552 > uluvbgw")
vy v o
= =05 uuy duAw? + 050 u duy Aw?
v v

— 55; zﬁ: Z/\: wluyah WA dul + 53; Zn: u”unuY WA W,

(Ev)

FET T s o AW+ 5 Ty o A
Yoon

+5§ZZZZZZu (TN u”ulGFGL W A w?
+ w A (5“2 u- quO — 5‘“2 Z uw uvbvw”)
shows that there is only one term that contains w* A w.

9.7.4 Step 4: The term d(u'u,w’) To calculate d(u~ u,w”), using Proposition 7.1

dw® = Zw”/\gpfl—kw/\goﬁ,
1

yields the expansion of d(u~lu,w?):
du " uew?) = (du™ug AW’ + uldug AW? + u M ugdw”
= —u2uy, du A® 4+ uTt dug AW® 4+ Ty, dw”

= —u%u, du Aw® + urdug A WP+ u g, (Z Wl A go,f +wA @ﬁ)
n

= —u2ug du AN® + T dug A WP+ uT g Y W A gog + wA (u ugp?).
n
Then by using @f] = bﬁ w + 905 the calculation continues:

du " uew®) = —u"uy du A W+ w dug AW+ uT > W A <b§w + g%f])
n

+wA (u’luagoﬁ)
= —u2uy duNw® 4+ uT dug AW 4w Y W A goog
7

+wA (uluatpﬁ —u Yy bgw")
n
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Making a final substitution of g?: by
Z ™ duf + u P w, + 552 utuy Wt a0 DD Z’Jl;u lgFfi A
A A L
it follows that the following term
du ™ uew?) = —uug du AW’ + ut dug AP

+utug Y W A ( — Elf‘]duf + u_luﬁwn + 552 TR TINA
n A A

+utuwf + ZEZZu ul 12Fy9; )
Fw A (0 ua? — utugd bgw")
n

= —uu, du ANw® + uT dug AW — uT Y Y Ul;\lw" A duf
n oA

+u" 2, > uP W A Wh + > (55u_2uau,\ WA W + > u_2uau77 W A wP
" (E.vi) moA K

+ Y w gt 1ZF52 WA W 4w A (uluawﬁ —u > bf)w”> )
n X 6 ¢ K n

also has only one needed term.

9.7.5 Step S Finally, the following term will be calculated
((STETwuinz )

with

(5Tt s)

£

A z B

>

=]

>3 (u B F(Sg d‘l‘E AwY + UlidliF;’i du? Aw?Y
e ¢

ulau?Fjs di®® A W —I—Elsu? d(F‘SE) A w? +1Ilauf ‘15F56 dw” )
C

Before computing each of the terms A to E, the following formulae will be used

du, = —E Zu [ du
da® = —Z Z @'yl dul,
n

d(FyS) = Xw'A [203 glngQ(Fji)] + 2wy A {29) uTrugFYS 9}
n

n
+wA [u‘le;;y - L D (FE) = D FyS } :

dw? = Zw"/\wg—kw/\@”’
n

= 2 W AW +wA (c”w—l—%:bgwe%—(;”),
n

el = bw+ .
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Hence the terms corresponding to (A) to (E) yields by substitution of the terms above the following
expressions:

(A) —15F58 d—1~E AW = u?dliFji ( — ZZELZEW du ) A w?
_ _Zzug _laF;idlzﬂm du /\w“/
_ ,5 s, B
(B) uli 1aFyi duC AW,
O enir et n (D) s

_ _1€ 10 _—an 18, 'y
— zﬁ:%:uvucueuaFyCdu Aw

(D) a, ? d(F‘SE)/\aﬂ = ZZ@Uﬁu?dliaﬁDxe(F;:’E‘Z)cu”/\cu7
n
7 P 5,
+ZﬁZu1§u< Y lungiyy , Wy Aw?
Y.y

—i—w/\uﬂ[u u?u ( O —Z%:u’lﬂlf]u”Dxe(F;;)
"

2 5,
_; Zeu ugu, F, gc:y 9)}

_1e _6 d, _ e, B,-10 16,
() wSuluoFys do’ = atu laFyi@W"W%wW”)
_ 616 anji(%:wﬁ/\(bgw_F:pg)) +w A (u uC 12F;ig0)
_ Ule —15F652w77/\9002;+w/\ (Ul U —15F5590 _1118 —15F6€Zbgw77>.

av y.¢ aryY.c a” Y.

In the expression (E), using c,opg in Proposition 6.4:
fpg — —Z}\ Ul;; du} + u_lzﬂf,u77 (WZU uy w +u” unuﬂ + Z z Z Z T u7E12F5;2 W

yields

Oéy<

(E) Elfyu?UiF;’i dw’ = uu g ‘15F5€Zw’7 A ( Z I o dul +u 0w, +57Zu Ly

+u W + Z Z Z Z Pl F A)

— ,3 3, _ B.-16 1 v, m
+w A <u7 U aFyzcgp a' uC aFyCanw>
= —; u’v? aF;f] ’1Aw’7/\du)\+u T ’iFﬁiu‘lu”;w”/\wn
+22

n

+2.

n

+w A <u1€u?u16 F‘SE o — " uC B Foe b?lw”>.

ayc

>
)
Zéu UNT u< ’16F§5 W A w? —I—ZUEUC ’16F65u Luyw™ A w?
)
)

—1e 5—15 8, uY —10 0, 7
ZQZLZHUVUC aFyC ugu, Frw A w
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Combining the terms A to E, while not forgetting the sums Y > > >, therefore,
Yy & e ¢

J\Q

u F55121‘271m du /\w”—i-zzzz I _151‘756 du?/\w7

ZH am Y. a™yY.¢

>t 16*12F;’2 du® /\w7+ZZZZZZu1€uC B 1‘9D (Fy‘si) wh A W
9 xT

>

9

Uliu’fdl‘s -1 "Fiiy , Wy Aw? — ZZZZZZUlEUC ’I‘SF‘SE ’1)‘w A du

(E.vii) 7

>
¢
>
¢
2 2.
v ¢
—i—;;zzc:zn:dli ?UaFy‘iiu " W A w, +;ZZZZZ(WU uNa' uc’l‘SF‘SE W A w
2 2.
¢
2.
¢

(E.viii)

—1€, B,-10 17d,e 1 n ol
Sa ucuaFyzCu Uy WA w

>
5

)IDIDIPIPIDID DY aFfizzl; WY O W A w +w A X,
§ € n X 0

where X is a one-form which will not concern the calculation of S.

9.7.6 Step 6 Finally, to calculate d(b°w), using the formula for dw,

d(bPw) = db’ Aw+bldw
= dP AW+ W Aw, +w A bl
n

= bYW Aw, +w A (—db? + pbP).
n .
(E.ix)

9.7.7 The term dp® Combining Steps 1 to 6,

dy})
= ZZZU”’W du /\du

—u” uﬁdu/\wa+u1du5Awa+u uﬁzz ‘IAduA/\wn

+u~ 116221"@04/\@77 —|—ZZ§"U uPuy w? N Wy —1—Zu_Quﬁuoécu"/\(,u77
(Ed) iU
19335 SR VLA RN Y !
(Eii)
+> u_zuﬁw7 Wa A W — > uPu" wa A Wy
1 (E.iv) K

—5§‘Z u_2u7 du AW + 5;“2 ut du, AW’
B 2

(E.ii)

— 5%; Zn: z}\: u’1u7E17’; WA dul + 55; ; u” P uu? WA W,

(Ev)

+ 5;2 Z Z 53U_2U«,UA W Aw? + 552 Z u”uu, WA WY
—l—%ZZZZZZu UL U lgFfi w”Aw
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= 2y du AW+ uT dug AW — T gyl Y Ul,’;w" A duf + u2uy Yy u’ WA Wy
n oA

i (Evi)

+Z;5§u_2uau)\ WA W + z:u_2uau77 w”/\wﬁ—l—zZZZZu_luau ‘ﬁFﬁi W A w?

n

—ZEZZEZUC 15F55u9umdu /\uﬂ—i—zzzz’l& 15F55 duc/\uﬂ
ST a0 s TR TRt ton s
—l—;%:z;%:%:%:dﬁugu’liu ! ”Fy‘siygwn/\w”’ _EZZZ;Z\: EaFy‘si ’1’\w A du
+;;§Z<2615u?’15F58u " W' A wy +;ZZZ;Z}\5u uuvu?aliFji W A w

RN DRI Ly W AT
6 €
FL LS DD S e A et o A

ngw” Awn +wAY,
i (E.ix)

for some one-form Y which will not be concerned in the calculation of the S-tensor.

9.7.8 Terms of the form w” A w, in dgog First, the terms of the form w* A w, are as follows

> 52u72u5u,\ W A W, (E.1)
n oA
S u P ug W A Wy, (E.ii)
n
SIS S wWPa A1,07’1112}7;2 w A Wy, (E.iii)
n X 6 ¢ K
S u 2P U, we AW = = u P u, WA w,, (E.iv)
n ! n !
9w usu” WA wy, (E.v)
B i Y U]
uug Y u W A W, (E.vi)
7
_ 5 .
—> Zﬁ > ZC > Ze uiu?ulau lugFj’i e W Awn, (E.vii)
S aula FY T Y W Aw,, (E.viii)
Yy 6 € ¢ n N
VYW A wy,. (E.ix)
7

Rewriting them in the form w” A w,, therefore the 9 terms are

SN 60w P, WP A w,, (E.1)
«@ P
p o
S5 6u HPuy WP A w,, (E.ii)
p
p o

>0 (ZZZU 1u5u“u" IGF(”) wf A wg, (E.iii)
o 0 ¢ K

p



218 Wei Guo Foo, Orsay University, Paris, France

= 5gu*2u6up w? A wg,
p o
52‘2 3 5Zu_2u7u7 w? A Wy,
p oo v

T TRTED DD o w? A we,
p o

9.8 The S tensor

From the calculations above, Sfjg comes from the following

> ((E.i + E.ii + E.iii + E.iv + E.v + E.iv + E.vii + E.viii 4 E.ix)
o p

—(D.i + D.i + Diiii + D.iv + D.v 4+ D.vi)

—(Ad+ A.ii) + (B + B.ii + Biii) + (Ci + Cii + C.iii)) WP A Wy

+w A ¢§
Therefore,

st

= 67uu up+5"u u ua+ZZZu luﬁ‘” "‘IQF?J@; —6gu_2uﬁup

Ii (6
L K

+5§§gz u”uu + 5gu U U Z Z Z z Eleuc Bt ougu”
v
_{_5222221{1“7 “u aF;i +b,8(5a
vy 0
+up5gu_ 536‘72 u- 1ﬂuV + 5‘72 Z > Z w e ug
_5gu—2up ZZZU 1 ,8 1L 0'—19FOL _5pu 2uauﬁ

+67u"*uPu, + (5%’8 5ﬂ(5” — b") + (5§u_2u”ua

+Z Z Z Z 56u_1u19 ul’\u"u”Fe A 55(5;’15 —07) + SPuu"u,

+Z Z Z Z SPu ! ul’\u”u“F‘) A

(E.iv)

(E.v)

(E.v1)

(E.vii)

(E.viii)

(E.ix)
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10. Normalisation of the S tensor

After cancellations, rearranging of terms, and relabelling the indices,

She
:u_2(5g
e, B 10, 0, —1 10,
ECEGPCQG Yy (Y0
—1, k10 ,B,ZII)\FG,/\ ©.D

+ {00 0 o T a4 6000 30 D S
6 ¢ ) 0 i

KA LKA
+ 552 S u_lu”zfiufdliFf;:\ + 552 Y3 u_lu“dlzufﬂliFyif‘
0 ¢ K A\ 0 ¢ K A
B §o B o opB 018 B0 B10

— (5p(5a + 5a(5p)t + ((5pba + (5abp + (5pba + 5abp).

e + 05ulu, + 00 uug + 6u"u,) + (8505 4 6567) > u u u,y
R

In Proposition 7.1, when ¢t = g =d, = c¢* = 0 so that
5 = 3, 0% = 7, Do = Pa

then immediate from S 5;, the following tensor is obtained

SQZ = Sgg\tzbg:da:ca:o
u’2(5guﬁua + 0%uPu, + 5§u"ua + 80uu,) + (6508 + 5555); u w0,

e, 8.6 o, —1 16,
=Y > > atuiatuguT Y
P P @ YuC Y0
_10 EEDN
1uﬁu1 uﬁul FG,/\

_ _10 1\ _

F[072 22 Y uT g u F 0503 S D pU Uy
0 ¢ K A 0 ¢ K A

1,k 10 cral)\FG,)\ )

3 1 k0 o ApON | B -
+(5p%:z;zl;z/\:u u”ulauLulﬁFymL—i-éa%:Z;;z)\:u uta ula F

10 Normalisation of the S tensor

Therefore, the transformation in Proposition 7.1 changes S gg into .S, 5;’ in the following way:

Bo _ QBo . so1B o so1B 1 sBro o sBpo _ sBso Bso
SPo = 557 4 5702 4 636 + 8087 + 8207 — 6067t — 6557, (10.1)

The normalisation of Sgg involves finding an appropriate b? so that the trace is zero

£ 8% =0

g

The term Y SP7 can be expressed as

3557 — (857 4 6768 + 8768 + 6802 + 6507 — 606t — 67671)
= (Z %ﬁ‘;) +nb + b5 405 4+ 655 — ndPt — 6Pt (10.2)

= (Z %ﬁg) + (n 4 2)02 + 02307 — (n+1)0°t,
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where 7 is used to avoid confusion of notations. To choose an appropriate b° so that ) S?7 = 0, first

>_ b7 has to be calculated, and this can be done by taking trace with respect to o and 3 on ) S57:

2280 = ( ZS”“) n+2)2bg+25g;b;—(n+1)zpagt

= YYST 2+ )E 0 — (n+ Dnt,

m T

where 7 is used so as to avoid confusion of notations. Since b” is assumed to satisfy D S?7 = 0

therefore D > 57 = 0 and hence
p o

1

;b:=m<—;;§;:+(n+1)nt) =2<n_—i1)(;;§ﬂ) +gt. (10.3)

Substitute equation (10.3) into (10.2),

_ S gbo g0 Dl grr| 4 ™) 55t
0 ;SM <EU)SM)+(n+2)ba+6a(2<n+1){;ZTDSM}+2> ( )
° 1 ° n—+2
_ BT Y ) - 6Pt
(S32) + ot - a2t (Dx 5 - - e,
and therefore the expression of b” is obtained:
= L (5er) s ! Z Z o) 4 oot (10.4)
« n+2 - aT Oé2( +1)(n+2) T™T a27
along with the other set of coefficients
= L (yar) 1o ! ST a0
PFoon2\F 7 2n+ )(n+2)\FF ™ ’
-1 ° 1 © t
bO’ — oT 50’ T 60’_ 10.5
—1 o 1 o
o oT 5° T 5=
7= 73 (%) ey (B 5) +4
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Substitute equations (10.5) and (10.4) into (10.1),

o = 87 4 WQHQ(ZQ?%”5W+Sm+m ﬂZﬁﬂ>+£3
. 55(71;12 (ZT: E*gj) +5§2(n+ 1§(n+2) ) ZTI§ZZ> +65%>
+ 5§<n+12 (ZT ég:) +522(n+ 1%(”*’ 2)\= ;g’ﬂ) +5§%)
+ g(% (; “%ZTT) +522(n+ 1§(n+2) m ZTég) +5g%)

ﬁo‘ 60
R R
1

(
(
(
(
=5 - n+2p( Sg;) 555&2(n+1(n+2)(;;§2:
(
(
(

(Z Sf;) + 0507

“P2n+1)(n+2)

(2 sg:) + 6857

PR9(n + 1)(n + 2)

o B oT B so
—n+25a (ZT:S;W) + 020

TP2(n+1)(n+2)

11 Explicit calculation of 577

[e] [e] [¢]
The calculation starts with the explicit expression of Y S57 and ) S™7. For the term ), S°T which
T T T

is the first trace of Sﬂp

ao?

using equation (9.1),
D080 =u Y (6TuPug 4 0Lu s 4 S0uTug + SouTur) + D0 (6507 + 6267) > u P,
T T T vy
LR
{Zzzzzér -1 n—li Lﬁti;:\ +ZZZZZ5TU 1un7116u6 _IQF;LA
1856 36 5) SEIRIST AT ARE 02D 3 op ot OO A
KA
=(n + 2)u v uy + (n + 2)u‘25§Z uuy, — Z 2 Z Ut 16 _IF;i Yue
+(n+2)ZZZZu u uleuﬁ _12F5’j\+55222u_1 IQF;?
LKA N 0 K A

The expressions Z S o Z ST and ) S or are obtained by changing appropriate letters. Next, taking

the second trace,

S g‘ﬂ = u?(n+2)> u uy + (n+2)u*> uu, (Z 5;) Z 2.2 (Z u?ufi) U ES
T T u v T ’

¢ 9

+r+ 22N (2-19 ”)‘%Fy@? (Zé” (ZZZu -%F;j)

o
= u?(n+2)(n+ 1) uwu, — ZZU’leiy _+2(n+1) Zzzuflu“uléF;’;\
v 0 kK
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By using the explicit expressions of Z S ors Z S o, Z S or» and Z Z S 77, after much cancellations

and reorganisation of the terms,

% = EIEReC R,

n 26: > Z ((5C’uC B 4 50“4 B + 5'3u" 7% o+ 55u2ﬂ1§)Fi‘27yT€

T TR ] DO

Finally, let u, x, A and v be new indices. Then
S = L LYYt

- B o)) e

1

ey (Sad) (Set ) (S Sopuat )£,
1

B () (S ) (SR et )
1

- —1, o 6ﬁ pl)\)F&s

Ty (T (B (TR e ) i

1

Ty (Sat ) (Sate ) (S S ) B,

1 o -1 A« o,
s (SR ) (SR ) R
1
+ 50 YT 55 1A )F(Se 7
e (BT ) (o)
from which one obtains
SMi= —udl 3 Y ubathuluSee
a B o p
K,V 1 K,E v,e A K,E A v,E
- Fyéx,yzu _n+2<5MZFyxys (wszxys +9 szuys +9 ZFyu,yz)
6“5A 6’\5“ Fo¢
'Wn+nm+2932( R
or in the standard notation in [CM75],
Sﬂa — Fop 1 502 Fo 5UZFp€ 562}7&5 (S,BZ
ap T YpB 1Yo +2 y/svys—i_ YpBrYae p Yo Yae 7y75

o o d,e
22(5,,5’6 (55(5 )Fyéyze,

'Wn+nm+m

which is the expression of the invariant.
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12 Appendix: Cartan Lemma for 1-Forms and for 2-Forms

Lemma 12.1. On K~*! equipped with a number 1 < M < N of independent (local) differential
1-forms {7‘1, e ,TM}, if given differential 1-forms {)\1, ey /\M} satisfy:

O=mAM+ - +TuAI = Z i N i,

1<i<M
then:
AN =0 mod<7'1,...,7'M> (1<i<™m),
and more precisely, there exist functions A, ; such that:
1<j<m
Observe that when M = N, the statement is void, since {7’1, cee TN} is then a coframe along which
any 1-form decomposes.
Proof. Complete {71, ..., 7y} as a coframe {71,...,Tu, X1, - - - , Xn—w } » decompose:
Ai = Z Aij-1i+ Z Big - Xk
1<jsm 1<k<N—M
insert in the hypothesis:
1<is™m
S IFTETCRS Db iy NEVEOS
1<isM 1<y 1<6<M 1<k<N—M

and conclude that all B, ;, = 0, since all 2-forms 7; A x;, are independent, and do not mix linearly with
the others 7; A 7;. ]

Lemma 12.2. On K"*! equipped with a number 1 < M < N of independent (local) differential
1-forms {Tl, e ,TM}, if given differential 2-forms {Ql, e ,QM} satisfy:

O :Tl/\Ql+"'+TM/\QM = Z Ti/\Qi,

1<i<m
then:

Q, =0 mod<71,...,7'M> (1<i<™m),
and more precisely, completing {T,..., Ty} as a coframe {Tl, e T X1y - - - aXN—M}r there exist

functions A; ;, ;, and B; j i, such that:

O = Z Ai7j17j2 “Ti N Ty + Z Z Bi’j’k REEARYS

1<j1<ja M 1<G<M 1<k<N—M
Proof. Observe that wedge products between its elements are:

(T X)) A (Tias Xka) = (Tin A Tia) + (T AXk) + (X AT )+ (X A X
= <Tj1 /\ 7—_7‘2> + <7_j /\ Xk’> _l_ <Xk’1 /\ Xk:2>7
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whence there are functions A; j, ;,, Bi j ks Ci ki k, sSuch that:

Q; = Z Aijigs T NTj + Z Z Bijrk -1 N Xk + Z Cikrdea * Xor N Xeas

1<j1<ja <M 1<G<M 1<k<N—M 1<k <ko<N—M

insert this in the hypothesis:

1<is™m
= D> D A TATLAT,E DY) > Bk T AT A X+
1<isM 11 <ja M 1<isM 1<g<M 1<k<SN—M

+ ) > Cikika T A X A Xk >

1<iM 1<k <ko<N—M

and conclude that all C; x, , = 0, since all 3-forms 7; A xx, A X, With k; < k, are independent, and
do not mix linearly with the others 7; A 7, A 7j,, 3 AT A X ]

13 Hachtroudi-Chern-Moser tensor in CR geometry
In the previous section, the S-tensor is an invariant associated to the second order PDE systems

Ygpags = Fa,ﬁ(w'y’ Y, yﬁ)'

This chapter will discuss the application of the .S tensor to CR geometry, notably the case of real
hypersurfaces in C"*!. The exposition closely follows the previous chapter on the umbilic locus of
the CR ellipsoids in C?, except with a few differences.

13.1 Some preliminaries
Let (21, ..., 2n, w) be holomorphic coordinates on C" !, with
Zp= T +V-1Y;
w= U+ /-1
which at the end, w will be denoted by z,, ;. Also, set z := (z1, ..., z,), and let
r.C" SR
(z,w) +—  r(z,w, z,w),

be a real-analytic, real-valued function with (0) = 0. By analyticity condition,  may be expressed

as a converging power series in a neighbourhood of the origin
— S i, ingying1 51| Singpint
ro= ) Z ) Z Qi seying 1,41, 0dnt1 21 Znnw " 21 Znnw .
(7417--~7Z7L+1)€Nn+1 (]17"'7.77L+1)€Nn+1

Since 7 is real, the conjugation of the coefficients permutes the indices:

Qi soying 1,015 dntr — Q1 fing 1y, ning 1 (13.1)
and hence just as before, for every 1 < k < n, the following relations are obtained:
rzk(sz?%al?) :Tfk(zawa;gaqf})a (132)
Tw(z,w, Z, W) = rg(z,w, Z,0)
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13.2 Real Manifold M /2" ¢ ¢l

Let r be a real-analytic, real-valued function as before, and let A/>"*! C C"*! be the real hypersurface
passing through the origin defined by

M = {r =0}.
Assume that the following differential form restricted to M

dT’M: Z Tzk|Mde+Tw|de+ Z Tgk‘Md5k+T@|MdU_J

1<k<n 1<k<n

does not vanish anywhere, therefore M is a real manifold of real dimension 2n + 1. By renumbering
the coordinates and restricting dr|; to a smaller subset if necessary, without loss of generality, 7,
may be assumed to be non-vanishing anywhere on M .

13.3 Tangent bundle on )/, extrinsic version

Let T'M be the real tangent bundle on M, and let CT'M = T'M ®g C be its complexified tangent
bundle. At each p € M, denote the following vector spaces

T,°M := CI,MNT,°C"*"
T)'M = CI,MNT)'C",

or more explicitly, they can be written as

M = { >, ap0., +ady, : (ay,...,an,a) € C" Y7 apr., (p) + ary(p) = },

1<k<n 1<k<n

TI?JM = { Y. ap0s, +adp : (ay,...,an,a) € C" Y7 apr., (p) + ary(p) = O}.

1<k<n 1<k<n

Since each of the vector spaces above is defined by a non-degenerate (because r,, does not vanish
everywhere) hyperplane equation in C"*!, the complex dimension of each of them is n, and hence
the rank of each of the following vector bundles

™M = | | 1M,

peM
0,1 . 0,1
™'M = | |1,
peEM
is n. The vector fields
Ly = —ry0,, + 7,0y (1<k<n)

form a frame of 71" bundle because r,, is assumed to be non-vanishing everywhere, and they
annihilate r at every point in M. Their respective conjugates L;, form a frame for the 7% M bundle.

13.4 Commutator properties and the Levi matrix

A quick calculation shows that for 1 < 7,5 < n,

[Li, L] = [Li, Lj] = 0.
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In contrast, the commutators of 71°M and T M vector fields are not zero in general:
[Li7 Lj] = [_Twazi + Tziazm _rwazj + rgjaw]
= [—T’wazi, —T@azj] - [Twazi, szaﬁ)] - [Tziawy rwazj] + [Tziawu Tfjaﬁ)]
= /’n’w/’nzi’wﬁfj - ru’)réjwazi - T’w/’azifjaw + rijrwwazi

_Tzirwwﬁgj + rﬂ_)rzj'zia’w + Tzirwéj aU_J - réjrz,-u?aw

Twl 2w rwrfjw
- : 782j - Twazi - Twrziéj a’lf)
Tw Tw

Tz;Tww

Tz Tww
" Twazi — ;,, T@&gj + T@ngziaw + Tzi’f’ngam — ngrzi@aw.
w w

By using the following relations

Tw0s, = 7.0 mod T'OM @& T%! M,

7"@821. = Tgiauj mod TLOM b TOJM,
the Lie bracket of the two vector fields takes on the final expression:

7 1 1 1,0 0,1
[Li, Lj] = [ruTalzz;, — Twlz, Tz — T2 TaTwz; + 7272, Twa) T—aw — r—aﬂ, mod T M @& T M.
w w
Definition 13.3. The Levi matrix L(r) = ();;) is a matrix whose entries are given by
Aij = Twlalzz; — TwlzTzw — Tz oTwz; T 72Tz, Twa-

Definition 13.4. A smooth real manifold M?"*! C C"*! defined by a real-analytic, real-valued
defining function r is Levi non-degenerate at p € M if det(L(r)) does not vanish at p. The manifold
is Levi non-degenerate if det(L(r)) does not vanish anywhere.

13.5 M as a graph of complex-valued function

The assumption that r,, does not vanish anywhere on M means that M/ may be expressed as a graph
of a complex-valued function, like in the case of C?. More precisely, let (s,t) := (s1,...,8p,t) be
holomorphic coordinates that complexifies (zi, ..., Z,,w). Then r(z,w, s,t) is the polarisation of
r(z,w, z,w). Since r,, does not vanish anywhere on M, its polarisation r,,(z, w, s, t) does not vanish
anywhere in a small neighbourhood of the origin in C?*"*2. By the Holomorphic Implicit Function
theorem, there exists a holomorphic function ©(z, s, t) such that

{r(z,w,s,t) =0} = {w = 06(zs,t)}.
Upon restriction to {s = Z,¢ = w}, the manifold M may be represented in two ways:
M ={r(z,w,z,w) =0} = {w=0(z,z,w)}.
Based on the definition, the following trivial identity holds:
0=r(z,0(zz,w),z,0). (13.5)

13.6 Some identities between r and O.

Let F(z,w,z,w) := (2,0(z, z,w), Z, w). By differentiating equation (13.5) with respect to z;, z; and
w, the following identities are obtained:
0 = r,,oF+0,7,0F, (13.6)
0 = r;;0F+0;57,0F, (13.7)
0 = rgoF +0Ogzr,oF. (13.8)
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Since the assumption that 7, vanishes nowhere, by equation (13.8), the function ©; vanishes
nowhere. Differentiating equation (13.6) with respect to z; and w yields

0 = ryz;0 F+ 057, 0 F+ 0,7z, 0F+0,0:r,,0 F+0,:7,0F), (13.9)
0 = 1o F+0u7,u0 F+0,,1,50F +0,0zr,,0F +0,,5r,0F. (13.10)

There is also another identity coming from differentiating equation (13.6) with respect to z;, which
will be used later:

0=r.:;0F+0.7.,0 F+0,.17,0 F+0.7..,0F+06,0,7,,0F. (13.11)

In what follows, the notation oF' may sometimes be suppressed, and at the end of this chapter the
variable w may be replaced by a new notation z,, 1.

13.7 The expression 0;;.
Just as in the previous chapter, let §;; denote the following expression
0ij = 02,0, 5 — g0z,
A similar proof shows that
Lemma 13.12. The following identity holds
Xijo F=—(ry,o F)Séij.

Proof. The proof is carried out verbatim as in the C? case, replacing z by z; and z by Zz;. Starting
from
A’L] o F = rZi sz Tww — TZZ'T’U_}T’U)EJ' - ng T’wrziw + T’wru_)rzizj7

using equations (13.6) to (13.9) concludes the proof. [

13.8 The Levi non-degenerate condition

Fix the following notation (z,w,w,) := (z1,..., Zy, W, W,,, ..., w,, ) which will be one of the holo-
morphic coordinates on C*"*1. Let ¢ : (C*"*! (2, 5,t)) — (C** (2, w,w,)) be the holomorphic
map given by
Q: (C2n+1 — (C2n+1
(z,8,t) — (21,...,20,0(2,8,1),0,,(2,8,1),...,0,, (z5,t)),

whose Jacobian matrix is

1 0 0 0 0
0 1 0 0 0
J(@) = @Zl Zn 651 (—)Sn @t
@z1z1 @z1zn 62131 @zlsn @zlt
@znzl e @znzn @znsl tt ®znsn @znt
Let j(©) be the lower right block of the matrix
O, -+ O, O
. @2’181 e @Z1Sn G)zlt
i(©):= : . . N (13.13)

@znsl e @znsn @znt
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Therefore, the Jacobian of the map ¢ is the determinant of the lower right block matrix
A(O) := Jac(p) = detj(O).

Proposition 13.14. Let M*"*1 C C"*! be a smooth, real hypersurface given by the vanishing locus
of a real analytic, real-valued function r. Then the following identity holds on M

det((Aij)1<ijcn) = (=1)"(r0)™(©a)" A u).
Therefore, M is Levi non-degenerate if and only if A(©|y) vanishes nowhere on M.

Proof. The proof involves formal manipulation of matrices. By lemma 13.12,

det((Aij)1<ijcn) = det((=rmdi)1<ijcn) = (—=1)"(rw)*"det((0;)1<ij<n) -

It remains to calculate det((5;;)1<i,j<n ). Observe that

@21 621@ - 915@2151 e ®2n@z1ﬂ) - @lﬁ@zlzn
det((dij)1<ijan) = : :
@21 @znw - Gw@znél e @E,L@znw - @w@znin
921 6571
GZ121 - 9_w®Z1’lf) T @Zlfn - ®_w@Z1’lI}
_ nQon . .
- (_1> @ﬁ; . :
Oz Oz,
@znil - 92 @znw e ®zn2n - O @znﬂ}
% ce Oz 1
g 8
o @n @,2121 - 6_2@2’111} e @Zlfn - 92;1 @le O
- w . . .
92 @5
®zn,§1 - @_61@2"15 ®zn2n - @1: ®znw O
C'-')Zl @Zn
o Ce oy 1
- o 92121 @zwn @zlw
- w .
@zn,El @znin @zlw
O, O:, O
O, . S . 6. -
n—1 2121 21Zn 210 n-1
el N — 01 A®]u),
@zn,El @znin @zlw
which proves the proposition. 0

Under the assumption that M is Levi non-degenerate, by restricting ¢ to a smaller subset of C***1,

the map ¢ is a local biholomorphism. Hence there exist n + 1 functions A4, ..., A, II such that for
1< <n,

s; = Ai(z,@(z,s,t),@Zl(z,s,t),...,@Zn(z,s,t)),
t = H(z,@(z,s,t),@zl(z,s,t),...,@Zn(z,s,t)),

as well as

w o= @(z, A (z,w,w,), ..., Ap(z,w,w,), (2, w, wz)), (13.15)
. 0., (2, Mi(z,w,w,), ..., Az, w,w,), (2, w, w,)). (13.16)

Wy
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By differentiating equations (13.15) and (13.16) with respect to w and w,,, the following system of
equations is obtained for 1 < 7,5 < n:

Os A + - + Os, Apw + Orlly,
0 = OyAiu, + O A + Ol ,
= O,gMwt + 0., A e+ O,
Oz M, + o Qs A, + Ol .

Consequently, the equations above may be expressed in terms of matrix multiplication:

@sl e @sn @t Al,w /xl,wz1 e Al,wzn
®z131 e @zlsn @zlt A2,w A2,wzl Tt A2,wzn
A : S O
@Znﬂsl T @Znﬂsn ®Zn71t An,w An,wzl T An,wzn
®zn51 e @znsn ®znt Hw szl e szn

Let A(; j(©) be the determinant of the matrix
Ai(0) = (=1)""det (j(©) ),

where (j(©))(;,;) is the matrix with i-th row and j-th column of j(©) removed. Therefore by Cramer’s
rule, for1 <,7 < n,

Aiw = ’—7
’ A(©)
A(nt1,1)(0)
m, — Setn®)
A(©)

A - Ban(®)
iWz; A(@) )
1 - B

" A(©)

13.9 Translation between O and r

The functions A, ,,, IL,,, A,-7wzj, Hij and @Zizj may be expressed in terms of the defining function 7.
To this end, let 2,1 := w (in some places w may also appear), and for 1 < k,! < n + 1, define on
M the following functions

H,, = _[TwTwrzkzl — Ty wl 2w — o Twlzw + Tzkrzlrww]a

Hyy = —[roTulaz — TaTwlzw = T Twlzw + T2 T2 Tww),

Proposition 13.17. For1 < i, < nand 1 < k,l < n+ 1, the following identities hold on M :

ZiZj - 3
7aw
0 . H kl
Kz

3
T’UJ
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Proof. Moving ©.,. 1, in equation (13.11)
0=r.z + 0,700+ 027w + 0,720 + 02,0, Tww
over to the left gives
=0T =Tz, T O T + 027w + 04,0, T
Multiplying on both sides by 72, and then using equations (13.6) to (13.8), yields
—@zizjrfj} = Tzizj’f‘?u + =TT — Tz + 7oz Tww-
Therefore, the first identity is proved. The rest of the proof is done in the same way. 0

Let A(r) denote the determinant of the following matrix:

Tz 0 Tz Tz

Alr) = Hyy - Hg Ho
(r) = : .. : : :

Hn7T T anﬁ Hn,nJrl

Based on the identities above, the determinants A; ;11)(©) and A(O) can be expressed in terms of r
when restricted to M. More explicitly, applying equations (13.6) to (13.8) and proposition 13.17 to
each of the coefficients in A(; j11)(O]a):

O, . O, ©:,,, O:, O4
@Zlgl o @Zlgifl 6Zlfwrl Gznin @zuf)
_ i+J
A(i7j+1)(@‘M) - <_1) ®Zj—151 U ®Zj—15i—1 ®zj—15i+1 ot @zj—lin @Zj—NIJ
@Zj+121 o @Zj+12i—1 @Zj+12z‘+1 e @Zj+15n @Zj+1u7
Oun 0 Oz, O,z 0.z O
Tz e Tzi1 Tziq e Tzn T Znt1
Hl,T e Hl,ﬁ Hl,iTl T Hl,ﬁ Hl,n+1
—(=1)"t : - : : K : :
(ry)3n2 HJ—I,T T Hj—lﬁ Hj—l,iTl o Hjag Hj—l,ﬁ
w - DY — — .« . . p— —_
Hj 1 Himr Hyjp Hinm Hjpmgn
Hnj e Hmm Hn,m e Hn,ﬁ Hn,n—l—l

—1
(T )371—2A(i7j+1) (T)
Zn+1

The restriction of A(O) to M is also written in a similar way:

—1

S A)-

A(O[n) =

Consequently, their quotients are related by a factor of a non-vanishing function on M:

A(i,j+1)(®|M) _ A(i»j+1)<r)r3
A(B]xr) Alr) o
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13.10 The vector field 8ka

geometry

For any differentiable function
G(z,s,t)

its derivative with respect to w,; for

= G(z,

and the Hachtroudi-Chern-Moser tensor for CR

eachl < j <

A (z,w,w,), ...,

A (z,w,w,), 11(z, w, wz)),

n gives

8wsz(z, s,t) = At 0s,G(2z,8,t) + -+ + An ., 05, G(z,8,1) + Il 0,G(z,s,1)
Ag,+1)(0) Aps1,4+1)(O)
= ’ S ) ) t . ) ) t *
123@ A(©) 05,G(z,s,t) + A(©) 0,G(z,s,1)

By restriction to M and again adopting the notation z,,.; := w yields

O, G(2,2,0) = (1)’ (g@%jﬁ’)(”aﬁ (2,2, @) + A(”%ﬁ(”a@a(z, Z, w))
- (TZHI)SKKZ;LHA(X%?)WaZZG(z,z,2n+1).
At this point, Cartan’s method applied to
wW=0(21,.-.,2n,81,--+,5n, 1)
along with the associated second order PDE
Wz, @zizj(zl,...,zn,sl,...,sn,t)
= O,z M(z,w,w,), ..., Ay(2,w,w,), II(z, w,w,))

= GY(z,w,w,)

provides the following Hachtroudi-Chern-Moser tensor

1

n—+ 2
1

(n+1)(n+2)=

Gr

Weg W

SBU|1d

+

whose restriction to M gives

(552 Gg’:ﬁ}:wza + 622 Gfl;jﬁywzs + 552 Gg;i"’wZ
€ € €

> Z (6765 + 6702) G -

= Z Z T‘gnJrl ) A(k’a+1) (T) ai T§n+l ’ A(l,ﬂ-{-l) (T) 37 Ha,o’
kol A(r) - A(r) N\
1 Ty Bery(r) o [72 0 Duepen(r)  (Ha,
e 2{ 2o (Z N A(r) v
Tz A e+1)( T) _7’3 A, 5+1 H,.
o n+1 ’ B n+1
I (53 P g [P e (1 =)))
rd A (ry [r3 A H,.
B Zn+1 (k ‘E+1) B Zn+1 (k‘ O'+].
75 (3 P o [P o (2 )
rd A (ry [r2 A (r) H,
8 Znt1 (k,e+1) e (k,o+1)
FE (53 T T P ) )}
3
.

1
(n+1)(n+2)

+

S (8788 + oPo7) s
e 0 k 1

2o Dsry(r)

+ 552 GoE

)

Hés

A(k» a+1)( )aZk [

A(r) A(r)

o
:

3
Zn+1

)
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13.11 An alternative formulation

There is in fact a more natural expression of the vector field d,, . For 1 < i,5 < n, let
Aij = T %Two — ToTaTwz; — T2, Twl 2w + Twlelzz, be the components of the Levi form as previ-
ously mentioned, and let ();;) denote the matrix with coefficients \;;. (Here the convention w = 2,44
is adopted).

Proposition 13.18. Ler L(r) be the following matrix

0 ry 0 T Tw
7021 702121 e rznél wal
L(T) == )
rzn Tzlzn T Tznzn rwfn
s Tzio *°° Tzpw  Tww
and let L(r) := det(L(r)). Then
det(\ij) = —(ryra)" ' L(r).
Proof. The first and the important step is to observe that
0 ry o0 Ty Tw
_ Tz Ao A 0
det(\;:) = det | : : - : :
( U) Twlo . . . . . ’
Tz, >\1n tee >\rm 0
re 0 -+ 0 0

then the rest follows from repeated use of column and row operations of the matrix to remove multi-
plies of 7, and r;, in A;; to obtain r,;.. For example,

0 T2 . T2, Tw
r T21 Tz Tww — Tz ToTz w Tan Tz Two —Tzp Moz w O
21 =T TwTa o tTwlaTz 7 —TE TwTzn @ FTwl @20 21
det
r- Tz1TznTww — Tz TwTzpnw . TanTznTwdw —TzpToTzZpw O
Zn _Tznrw"’zlu')"!""wTszlfn _rinTw"’znw"F"'wTu'JTann
Tw 0 e 0 0
0 T2 e T2, Tw
’]"21 _Télrw"qzlw"!‘rwruirzlil ... _Télrw'fznw"rrwrwrznfl Twrwrilw — T'wT21 Twm
= det
7“2” _Tinrwrz1w+7wrwrz12n e Tz Twlzpw TTwTwT zn 2n Twru—)’rgnw — Twrgnrww
e 0 .. 0 0
0 ro T T
Tze TwlaTzxz: 0 TwlaTz,z1 TwlaTzw
= det
Tz, TwloTzz, " Twlolz,z, Twlolz,w
Te TwlaTzo 0 TwleTz,o TwloTws
0 7, T2 Tw
Tzy, Tzz o Tzzm Tzw
n,.n
= 7, redet []
Tz, Tzizn, *°° Tzpzn Tzow

e Tzo " Tzygo Tww
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By Proposition 13.14,

—(rwra)" 'L(r) = det(\;)
= (—1)n(7"w)3"@i%71A(@|M)

= (—1)(re)" 2 A(O )

= —(ra)" T AO ).

Consequently,
L(r) = r™2A(O|y).

13.12 A direct approach to the alternative formulation

A direct approach may be done using the following formulae

0 = Tzizj + Tziwe)fj + Tij @zl + Tww(azi@;?j + Tw@ziija
0 = 7ﬁziu’) + rziw@u? + rwu’)@zi + Twwgzi 6111 _'_ Tw@ziw-

Therefore
0 7y 0 Ty Tw
T21 rzlil e Tznil Tw,?l
L(r) = det
Tz Tzzn 0 Tzpz, Twz,
T Tzxwo - Tzwo Two
0 -0, e -0 1
1 Zn
Tz1w Twzq Tzpw "7'111151 _
_@_ T Trw egl_ Tw ®Z1 e T Trw 921_ Tw ez'n TwZz1
#1 *T;wa @zl @21 *92121 *%Qil @zn 7@zn21 Tw
n+2 :
= r, “det
w _rw O _Twzp _Tzpw O _Twzp o
_@_ Tw zn Tw #1 .. Tw cn Tw Zn Twzp
Zn - T,:,ﬂww 921 9277, 7921 Zn - T:‘{Zﬂ ezn @Zn 7@Zn5n Tw
Tziw Twdm TZpw Tww
_@ _ - Tiu @@7 ﬁww 621 “ .. - T‘ZJ @(,— 71‘11]11)1) 92" Tww
w - 7;wa ezl @w—@zlw - T;wa ®zn @w—anw Tw
0 0 e 0 1
Tz1w T Twz
=0z —Les TEre.,05-0x5 - —TLEO5 TEL050:,-0:,0;
n+2
= 7, “det
w :
T Tans
—@gn - ii}w Oz, — 020z, - 0212, - *%@Zn — LS, Oz, —Ozp 2, —:jz"
w
T r _
—0p 0T, 05055 - =L C BRI C R R fen
0 0 e 0 1
Twzy
_@21 _62151 o _@Zn21 o
2 . . . . .
= ’I":LU+ det :
—O. _ e = _ Twzn
®zn ®z1zn @znzn o
- — . — _ Tww
@w @zlw @znw o
n+2 n+3 n+1
ro (=1)"H(=1)"AO )

= r"P2A(O)y).

Onthe otherhand, forl1 <i<n+land1 <l <n+1,let f/il(r) be the matrix with 7 + 1-th row and
the /-th column deleted, and let L; ;(7) be its determinant. By a slight modification of the calculations
above, directly the following proposition holds:
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Proposition 13.19. The following identity holds for 1 <i<n+1land2 <l <n+1:
LL[(T) = va+1det(j(@|M)(l’i)),

This follows immediately from inspecting the matrix in the calculations of the previous page.
Therefore,

(=) Ly (r) = ™ (=)™ det(;(O1a) 1)) = 7™ Ay (O] ar).-

Hence,

o A (Oly) _ (=1)™ Lig(r)
T2 A(O]m) L)~

or

A(i,l)(®|M) 0 (—1)”%1,1(7“)
A(O|u) Y L)

Therefore, the vector fields d,,, are given by

A r+1)(Olnr) Ai1,k+1)(Oar)

(9“,2 — agl + aﬁ,
k 1§<n A(@|M) A(O|r)
(1) Ly gy (1) (=)L ke (1)
= w : 82 w : aw.
2! L(r) N L(r)

Theorem 13.20. Forn > 2, 1 < k1, ks < nand 1 < iy,iy < n, the CR-umbilical locus is the zero

set
H .
0 = 0. <aw2_ Lk
7/1 12 rw

n

1 Hp, Hyp,
_n + 2 lzl: ((5161,7;18102[ (811}2 in ’]”w ) + 5k1 1281”2 (ale 7"3

w

Hy, Hy,
i1 O, (a% = )+5k2 2O, (3leT—3>)

w

1 Hy
0 z5 io 52@15112 wy wi -
+(n+1)(n+2)(k11k2 + Oks,i1 Ok Zza 1( 2 3 )

l1=112=1
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Titre: Calculs explicites pour la terminaison effective de 1’algorithme de Kohn d’apres Siu, et
tenseurs de Hachtroudi-Chern-Moser en géométrie CR.

Résumé: La premiere partie présente des calculs explicites de terminaison effective de 1’algorithme
de Kohn proposée par Siu. Dans la deuxieme partie, nous étudions la géométrie des hypersurfaces
réelles dans C”, et nous calculons des invariants explicites avec la méthode d’équivalences de Cartan
pour déterminer les lieux CR-ombilics.
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Abstract: The first part of the thesis consists of calculations around Siu’s effective termination of
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and calculates various explicit invariants using Cartan’s equivalence method to study CR-umbilical
points.
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