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Abstract

Clustering phenomena affect many aspects of nature and social sciences. They con-
sist in the creation of groups of correlated objects which modify the behaviour of a
given system introducing symmetries and order. As an example, in the largest scale
known to humans, cluster effects determine the formation of congregate of galaxies.
On human being scales, clustering is widely present in everyday aspects, leading to
collective social behaviours as consensus in social and technological networks and
synchronization in biological systems. In nuclear physics, clustering is one of the
most fascinating results of the Pauli exclusion principle and characterizes a large
variety of nuclear states, especially in light nuclear systems. Nuclear structures
resulting from these phenomena are quite unusual and peculiar, and their investiga-
tion is extremely important in the understanding of nuclear forces and their related
properties. As an example, cluster structures evolve from self-conjugated nuclei to
neutron-rich ones with the appearance of highly deformed structures. In the latter
case, the cluster centers are bounded together by means of extra-neutrons, which
act in a glue-like effect increasing the stability of the structure. Clustering plays
also a role in nuclear astrophysics, where it is involved in the creation of elements
in stars.

In this thesis, we experimentally investigate clustering aspects of light nuclear
systems with a multi-method approach and by using different and complementary
techniques. In Chapter one, we show how the appearance of clustering phenom-
ena is naturally encouraged by independent-particle approaches to nuclear structure
and how, for a detailed description of such aspects, further, collective models, are
required. After a comprehensive overview of theoretical models attempting to de-
scribe clustering phenomena in nuclei, such as the a-particle model, shell-like model
approaches, and microscopic models, and their predictions within physical cases
of recent interest, we make a systematic discussion of the experimental techniques
which are usually applied to point out such phenomena.

In Chapter 2 we describe the results of our experimental campaign, carried out
in different laboratories and facilities, aimed to improve the present knowledge of
clusters in light nuclei and their evolution with the neutron excess. These studies
have been performed by using nuclear reactions involving light nuclear systems. We
started from the °Be nucleus. It is associated to a two a-like structure coupled
to two valence neutrons: it presents nice properties of symmetry. The structure
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Abstract

of this nucleus is explored by means of direct reactions which involve the popu-
lation of highly-excited states in °Be and their subsequent in-flight decay. The
experiment was performed by using a fragmentation cocktail beam at the FRIBs
facility of INFN-LNS (Catania) and the CHIMERA 47 multi-detector. Invariant
mass techniques are used to reconstruct the spectroscopy of *Be, giving the hint for
the existence of a new state, possibly associated to a new member of the molecular
rotational band.

While the effects of clusterization are well visible and quite well understood in
beryllium isotopes, they are much less known in carbon isotopes. For this reason,
different neutron-poor and neutron-rich carbon isotopes are here investigated, pro-
viding interesting information on the carbon isotopic chain 11213160 11C as well as
13C, are studied by means of low energy compound nucleus reactions; respectively,
we measured the °B(p,a) reaction (E, = 0.6-1.0 MeV) and the *Be(a,«) resonant
elastic scattering (E, = 3.3-10 MeV) at the Tandem accelerator in Naples. We an-
alyzed the differential cross section with a comprehensive R-matrix approach, also
by including other data published in the literature. We succeeded in refining their
spectroscopy above the a-disintegration thresholds, with interesting speculation on
the existence of molecular rotational bands. The structure of the neutron-rich 6C
isotope is studied with the same experimental apparatus of the °Be case by using
the most intense 'C beam produced up to date for nuclear physics experiments at
intermediate energies. We provide signatures of the possible existence of high-lying
excited states of this poorly known nucleus never observed before. To conclude our
studies of clustering in carbon isotopes, the Hoyle state in 2C (7.654 MeV, 07)
was investigated via a high-precision dedicated experiment. The cluster properties
of this state are quite crucial; as an example, it has been predicted that its three
constituent a-particles may form a Bose-FEinstein condensate. We proved, with an
unprecedented precision, the fully sequential decay width of this state by using the
1N(d,a) reaction at 10.5 MeV at the Tandem accelerator of INFN-LNS. To achieve a
such high precision we developed a new hodoscope detector. Our result is important
since it provides stringent constraints on microscopic theoretical calculations which
describe clustering in nuclei, as well as to nuclear astrophysics for the production of
carbon and heavier elements in the universe.

Clustering phenomena in F and ?°Ne have been studied by means of the
YF(p,a) reaction at deeply sub-Coulomb energies (E.,, = 0.18-0.60 MeV) at the
AN-2000 Van der Graff accelerator of INFN-LNL. An analysis of angular distribu-
tions at various energies gives signatures of possible cluster structures in °F. The
compound nucleus 2°Ne spectroscopy is instead studied by means of a R-matrix
approach; the astrophysical relevance of our work is also discussed.

Chapter 3 is finally dedicated to a different, complementary, point of view in
the study of clustering phenomena: the analysis of Heavy Ion Collisions (HICs) at
intermediate energies. Cluster states, produced by overlapping zones formed in HICs
and characterized by high temperatures and low densities, can be used as a suitable
probe for nuclear structure and dynamics. We implemented a thermal model aimed
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Abstract

to reproduce in-flight resonance decay phenomena in HICs. This model has been
applied to the case of a-a correlations in 3% Ar+°8Ni central collisions data at various
bombarding energies (32-95 AMeV); they have been measured with the INDRA
47 multi-detector at the GANIL. The comparisons of data with thermal model
predictions allows us to make interesting speculations on the processes contributing
to the formation of ®Be states in such highly excited and diluted environments.
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Chapter 1

Introduction: Clusters in Nuclear
Physics

1.1 Clusters in nature and social sciences

The dynamical evolution of many body systems in nature is determined by the prop-
erties of what physicists define as potential energy. In particular, physical systems
find more convenient reaching stages characterized by lower values of the corre-
sponding potential energy, resulting in a gain in stability. A genuine effect of this
fact is often the propensity of objects, belonging to a physical system, to congre-
gate in sub-units, named as clusters. This collective phenomenon, which is called
clustering, is present in a large varieties of physical systems and in an extremely
broad range of length scales. On the largest one, the universe, it is known for ex-
ample that the pattern of galaxies in the sky is not random [1]. The study of the
survey of 2dF galaxy redshift has indeed pointed out that, as a result of the post
Big Bang inhomogeneities, matter congregates into filament-like structures, forming
superclusters of galaxies [2]. On a smaller scale, our universe shows the interesting
appearance of gravitational assemblages of stars into galaxies and planets into solar
systems, which represent an analogous example of gravitational clusters but in a
more reduced scale. On human beings scales, clustering phenomena may often in-
fluence everyday aspects, leading to peculiar collective behaviours such as consensus
in social and technological networks [3] and synchronization in biological systems [4].
The first aspect is related to the nascent field of network science |5, which involves
a quite interdisciplinary mixing of academic fields like sociology, statistics and graph
theory. The most complex social networks, the so called complex networks, involve
indeed features of social complezity.

Clustering is a fundamental aspect in the theory of complex networks, since
they show non-trivial topologies, where connections between nodes are not entirely
random. In such complex systems, the tendency of nodes of a graph to cluster
together is observed, resulting in the appearance of knit groups characterized by
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Figure 1.1: A group of yellow runner fishes schooling. Staying together in schools
helps to protect fish from their enemies. While a predator might easily grab a fish
by itself, it is much harder for a predator to single out a victim if a fish is surrounded
by hundreds of them.

quite large densities of ties. This trend usually significantly overcomes the average
probability of randomly established connections between nodes [6]. An example is
the graph structure induced by the friendship links in social networks like Face-
book or LinkedIn. Clustering is a fundamental aspect also in social sciences like
Economics. Clustering phenomena indeed affect the competition of companies by
increasing their productivity, by driving innovation in the field and by stimulating
new businesses [7], resulting in the spontaneous creation of interconnected busi-
nesses. The study of such agglomerations is very important, for instance, in the so
called strategic management. A particularly fascinating example is the case of the
Silicon Valley in California. In the second half of 1990s, it was the gravitational
center of a large number of computer-technology related companies and startups.
This geographical cluster effect led to a cluster effect in the labour market. In other
words, as the number of companies increased in Silicon Valley, an increasing number
of highly skilled workers decided to move there, leading to a high density concentra-
tion of technically skilled people. So the probability for companies and startups to
find good job candidates in the Silicon Valley started to become significantly higher
than any other place, giving to high-tech workers a further incentive to move there.

In computer science, clusters of computing nodes, called computer clusters, are
widely used in order to increase the performances in executing tasks with relatively
low costs and better reliability. They consist in a set of connected computers that
work together in a system in which each node executes the same task, in a way that
they can be seen as a single system.

On aspects related to life, many biological systems exhibit clustering phenomena.
Particular species of fishes, for example, are used to stay together for social reasons,
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Figure 1.2: The bonobo, formely called the pygmy chimpanzee, is used to clusterize in
complex social groups which can amount at 30-80 units. It is a fascinating example
of how clustering in biological systems can offer evolutionary advantages.

i.e. shoaling. Shoaling is a collective behaviour of fish consisting in the formation
of a group where fishes swim independently but staying connected. They derive
many advantages from shoaling, such as higher probability to survive against preda-
tors, enhanced success in providing food or in finding a mate. Another interesting
collective behaviour involving fish is the so called schooling, where the clustered
group starts to swim in the same direction (Figure 1.1). This behaviour allows to
improved hydrodynamic efficiency and predator avoidance, and it is mandatory for
species like tuns. It represents a nice example of how biological systems recognize the
importance of clustering for evolutionary advantages [8|. Clustering behaviours are
widely present in other animal species like the bonobo, or pygmy chimpanzee. They
have quite complex social connections, grouping into communities made of 30-80
units and spreading in quite large surfaces. Despite the non-vanishing superposi-
tions of territories belonging to different groups, they behave as social units strongly
clustered (Figure 1.2). This attitude offers the advantages of limiting possible ag-
gressions between members of the community and to significantly improve their
social communication skills, leading to behaviours which are quite similar to human
ones. Finally, microscopic systems also recognize the fundamental importance of
collective behaviours and symmetry. In atomic physics, as an example, atoms clus-
ter into molecules and bindings between molecules in chemical compounds also show
the propensity to form clusters. An example is the interaction of the Acrylamide
compound with water molecules (Arc+W) forming hydrogen bonded clusters, where
strong hydrogen bonds between water play a very crucial role [9] allowing to reach
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optimized energy states. This acts in a loss of degrees of freedom of the atoms in
the compound, imposing more order in the system.

The world of the extremely small, such as nuclei or sub-nuclear particles, exhibit
peculiar and quite unusual clustering effects [10]. While in sub-nuclear physics the
systematic binding of quarks in sub-units, made of 3 or 2 constituents, makes it
possible the appearance of baryons and mesons, in the nuclear domain clustering
phenomena can occur between nucleons. Nuclei are indeed quite far to be static
collections of nucleons; they are highly dynamic systems where constituents, i.e.
protons and neutrons, move with velocities which amounts to significant fractions
of the speed of light. Their dynamics imposes strong correlations, originated by
quantum mechanical effects. The Pauli exclusion principle, as an example, forces
like-nucleons to couple in singlet spin state, i.e. with anti-aligned spins; so they can
minimize the repulsion originating from the Pauli principle and increase the binding
energy of the system. In such a way, the highest correlated system in nuclei is the
quartet 2p + 2n, i.e. the so-called « particle. On a qualitative point of view it does
not surprise that the appearance of such highly correlated quartets in nuclei would
provide an energetic advantage and that, once formed, these compact sub-units can
propagate within the nuclear volume quite unperturbed and for a significant time.
This phenomenon is called a-clustering and it is one of the most fascinating aspects
of Nuclear Physics.

In this thesis, clustering phenomena in light nuclei are discussed from a multi-
method point of view. Results from our experimental campaigns, providing com-
plementary aspects of nuclear clustering, are described in Chapter 2 and Chapter 3.
The present chapter is dedicated to a general description of clustering in nuclei.
In Section 1.2, we provide an historical overview of nuclear models attempting to
describe static properties of nuclei. The generalities of the cluster model, which
will be introduced as a complementary point of view to describe certain aspects of
nuclei beyond the mean-field approach, are discussed in detail in Section 1.3, while
Section 1.4 is fully dedicated to applications of the cluster model to physical cases of
interest in modern nuclear physics. An overview of experimental techniques, which
can be used in order to unveil on the presence of clustering phenomena in light nu-
clear systems, will be described in Section 1.5. Finally, a résumé of these contents
and a general summary of the entire thesis will be outlined in Section 1.6.

1.2 Nuclear models and structure

The most important question of nuclear physics is understanding how nuclei work.
They are indeed extremely complex many-body systems where fundamental con-
stituents, i.e. protons and neutrons, are not actually fundamental particles. Protons
and neutrons are in fact aggregates of quarks. Anyway, a comprehensive analytical
description of nuclei starting from the Quantum Cromodynamics (QCD) is currently
impossible, because of the divergence of the complexity of the problem. At variance,
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attempts of describing nuclei as systems of nucleons have been developed starting
from the discovery of the atomic nucleus. The force governing such systems can
be seen as the residual, at the nucleons scales, of the strong interaction between
quarks, and it is therefore an effective force. Under this assumption, solving the
main problem of nuclear physics is equivalent to the resolution of the Schrédinger
equation:

H|U) = E|V) (1.1)

where the degrees of freedom are the spatial coordinates 7}, spins o; and isospins
7; of each nucleon (i = 1,...,A), ie. ¥ = V(rj,01,71,...,74,04,7T4a) and the
Hamiltonian H, consequently, is defined as:

R, 1 1
-y =S V(L =S W, 1.2

W =

The particular definition of the Hamiltonian of equation 1.2 involves both a two
body term, which is related to nucleon-nucleon interactions, and a three body one,
which appear in the presence of three or more bodies. The latter is mandatory
in order to describe nuclei and it belongs from the fact that nuclear forces do not
present additivity; in other words, extra interactions, not reproducible by adding
separately each interaction, occur in the presence of more than two bodies. These
strange properties make the problem of equation 1.1 an extremely difficult problem.
This kind of approach is called ab-initio, since it starts from nucleon-nucleon and
multi-nucleon interactions. Recent developments in two-nucleon (like for example
the Argonne potential [11]) and three-nucleon potential (see the Urbana potential
[12]) have been achieved but, despite the strong effort, only a partial description of
the structure of a limited class of light nuclei, can be reasonably obtained.

In the absence of a general and comprehensive theory for the description of
nuclei, a number of nuclear models have been historically developed in order to
reproduce their properties. Each model attempts in reproducing a specific set of
properties, under peculiar (and simplifying) assumptions. In this way, different
models are able to explain different portions of our experimental knowledge about
nuclei. The first nuclear atom model was developed by Nagaoka at the very begin-
ning of the XX century [13, 14]. This model, which assumed the existence of rings
of rotating electrons around a positive charged core, brought however to difficulties
in the classical electromagnetic theory. The charged-cloud atom model was then
developed by J.J. Thomson, in order to circumvent the contradictions introduced
by the Nagaoka’s model. In the famous Thomson model, electrons where uniformly
distributed throughout a sphere of positive charge [15]. The vision given by the
Thomson model was contradicted by E. Rutherford [16] by giving the basis of the
model which opened the doors to the modern nuclear physics. According to the
Rutherford model, the positive charge of the atom had to be concentrated in an
extremely small portion of space. Whereas Thomson’s atomic cloud has the dimen-
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sions of the order of 107® cm, Rutherford’s atomic nucleus has a diameter which
doesn’t exceed 107! cm.

1.2.1 A first approach to nuclear structure: the liquid drop
model

The liquid drop model is historically the first model for the description of the prop-
erties of nuclei [17]. The basic idea of this model is originated in Bohr’s concept of
compound nucleus reactions. An incident particle captured by a target nucleus, to
form a compound system, shares its energy with all the nucleons quite rapidly. The
corresponding mean free path of the particle is significantly shorter than the nuclear
radius. To explain this, interactions between nucleons have to be strong and short
ranged and particles cannot be considered as independently moving. According to
this evidence, nucleons in nuclei should exhibit collective behaviours. Also the nu-
clear binding energy! per nucleon B(A,Z)/A reflects similar properties of nuclei.
The dependence of the binding energy on the number of nucleons clearly exhibits
saturation properties typical of short range interactions. Indeed, a non-saturated
force would lead to a binding energy given by A(A—1)/2 times the nucleon two-body
interaction energy, which is in contradiction with the experimental observation of
Figure 1.3. Furthermore, nuclei present low compressibility and well defined surface
effects. All these features evidence analogies with liquids. A liquid drop model is
therefore useful in order to describe such properties of nuclear systems.

The liquid drop model is particularly suited for quantitative studies of nuclear
masses, the nuclear energy surface and the energetic of decays and nuclear reactions.
In this model, nuclei are approximated to a charged liquid drop. It is possible to
study, under such an approximation, three fundamental terms contributing to the
nuclear binding energy. The first one is the so called volume contribution and it is
responsible of the saturation of B(A, Z)/A, to values of about 8MeV +10%, observed
in the experimental data (see Figure 1.3) for A > 16. This term gives:

BV == avA (13)

where the arbitrary constant ay is evaluated by empirically fitting the experimental
data. The second term reflects also the short range of the force between nucleons.
This term can be seen as a correction of the previous one for the nucleons which
constitute the nuclear surface, which are only partially surrounded by other nucleons,
and, therefore, less bound. A liquid drop treatment of this term lead to:

BS = —(ISA% (14)

IThe binding energy of a system is the difference between the mass of the free constituents
and the mass of the bound system [14]. In nuclei, the nuclear binding energy of a nucleus with A
nucleons and Z protons can be calculated as follows: B(A,2) = Z-m(p)+(A—2Z)-m(n)—m(Z, A).
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Figure 1.3: The binding energy per nucleon (B/A) as a function of the number of
nucleons A for a large variety of nuclei. The systematic of nuclear masses is taken
from [18, 19]. The insert shows a zoom of the A < 28 mass region, where lines of
different colours represent the trend of B/A for each isotopic chain. They peak on
self-conjugated isotopes, which are indicated by labels, as a result of the clustering.

Coulomb effects have to be taken into account since a charge of eZ is present within
the nuclear volume. Considering, according to the model, a sphere of uniform dis-
tributed charge, the corresponding correction to the binding energy can be evaluated
by means of simple considerations of general physics (see for example [17]):

Be = —acZ(Z — 1)A3 (1.5)

The binding energy terms of equations 1.3, 1.4 and 1.5 can be used in order to
compute, for a large variety of nuclei, the total binding energy of the system, and,
consequently the nuclear mass. In Figure 1.4, deviations of nuclear mass values cal-
culated via a drop model assumption with respect to the experimental values (see
[18, 19]) are shown as a function of the proton number Z. Nuclei have been divided
in two classes on the basis of their neutron-proton asymmetry. In particular nuclei
obtained with the condition |[N — Z|/A < 0.22 (where N represents the number
of neutrons of the nucleus) are plotted in blue colour. Green points represent the
complementary set of nuclei, i.e. nuclei characterized by |N — Z|/A > 0.22 values,
which present a strong neutron or proton excess. From the figure, some conclusions
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Figure 1.4: Deviations between experimental nuclear masses (taken from [18, 19])
with respect to the ones calculated by means of the nuclear drop model binding
energies as a function of the proton number Z. Green points represent nuclei with a
degree of neutron-proton asymmetry (|N — Z|/A) larger than 0.22 while blue points
are obtained by the condition |N —Z|/A < 0.22. Periodicity in the shown deviations
evidences features that go beyond a liquid drop model treatment of nuclei.

about the validity of nuclear liquid drop model can be drawn. The first is that
the description of nuclear masses becomes worst as the neutron-proton asymmetry
increases. This is typical of nuclei which are far from the stability valley?®. This fact
reflects the appearance of quantum mechanical behaviours in nuclei, which are due
to the large asymmetry in these unstable configurations, with significant deviation
from a classical liquid drop assumption. Another interesting feature observed in the
Figure 1.4 (blue points) consists in the presence of systematic periodicity in the de-
viations between calculated and experimental masses. These periodicity reflects the
so-called shell closures, which represent extraordinary conditions of nuclear stability
(i.e. nuclei are characterized by extremely low masses) occurring in correspondence
of particular number of nucleons. The above mentioned aspects clearly evidence
the limitation of the liquid drop model. In the following paragraphs, further de-

2The so-called stability valley is the locus, on the (Z, N') plane, where the m(4X) distribution,
i.e. the mass of a generic nucleus X with Z protons and N neutrons, reaches an absolute minimum
(%(m(éX ))|a = 0). Nuclei close to the stability valley represent the most stable configurations.

8
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velopments of nuclear models beyond the liquid drop model will be introduced. It
will be shown how an independent particle treatment of nuclei can be useful for the
description of many of the above aspects, but also the limits of independent particle
models will be pointed out. The cluster model will be finally introduced, showing
his connections with independent particle models.

1.2.2 Towards a mean field approach: the Hartree-Fock
method in nuclei

Independent-particle approaches to nuclei and nuclear structure are largely used to
probe binding energies of nuclei, ground state properties and nuclear levels. Such
an independent particle picture assumes the existence of an average nuclear field
(the mean field) where nucleons can move almost independently from each other
and with a large mean-free path. The latter feature can be well understood and
qualitatively expalined by means of the Pauli principle. Collisions between nucleons
are indeed strongly inhibited because of the Pauli principle and, as a consequence,
nucleons describe orbits inside the nuclear volume which length is well larger than
the average dimensions of the nucleus itself. This is in strong contradiction with a
liquid drop behaviour, where instead long mean free paths were excluded.

The fact that nucleons move under an average field is instead much less obvious.
An analytical approach to the equation 1.1, consisting in the so called Hartree Fock
method?, can be used in order to approximately solve the equation.

Considering the Hamiltonian of equation 1.2, and reducing, for simplicity, the
potential to the two-body term (the approach is more general and can be applied
for any choice of the potential), one obtains for each point of the space the following
potential energy:

U@ =Y [ EVE N (16)

where ¢ = 1,..., A and ¢; is the wavefunction of the i-th nucleon. This equation
shows that, starting from a given two-body interaction, i.e. from a given potential
V', one should know the wavefunctions ¢;(7) in each point of the space in order to
determine the average one-body field U(7), but to evaluate ¢; one should know the
average one-body field. This problem is therefore a typical iterative problem, which
can be solved either by starting from a set of wavefunctions or a potential U(#). The
Schrodinger equation associated to this problem follows from the application of the

3The Hartree-Fock method is an approximated method for solving Schrédinger equations,
largely used and developed in sub-atomic physics, in the presence of many-body interacting objects.
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variational principle to the equation 1.1:

——wamz / (7))o () - on()
(1.7)

—Z / GV, 7)oi(P) - 0P = cappal)

where the antisymmetrization of the wave functions, written as Slater determinant
of single-particle wave functions (needed to satisfy the Pauli principle) results in the
appearance of the second additional term to the one-body field. A compact re-write
of the equation 1.7 leads to:

e Veuli) + [ Ul (18)

where U (7, 7") is the so called self-consistent field, defined by:

A

U ) = 67~ 1) Z [VEMa e - S VES e (19

i=1

This result is extremely important since it demonstrates, starting from a basic
nucleon-nucleon interaction, that the collective presence of all the nucleons inside
the nuclear volume leads to the appearence of a mean field. The first term of equa-
tion 1.9 is the so called Hartree field and it is a local term. The second term, a
non-local term, is related to the antisymmetrization properties of the wavefunctions
and it is called exchange term (Fock). A solution to this problem, accordingly to
the Hartree-Fock method, can be found via an iterative procedure leading, at the
convergence, to a set of wavefunctions ¥ (7), to a potential U#F () and to the
values e/7F

1.2.3 The simplest independent particle model: the
Fermi-gas model

The result obtained with the Hartree-Fock method applied to nuclear systems gives
the possibility of describing nuclei as many body sistems moving under a common
potential, which can be seen as generated by the collective presence of nucleons
within the nuclear volume. Under this charming assumption, in antithesis with
the liquid drop model description, independent particle models can be developed.
The simplest one is the Fermi-gas model. In this model, nucleons are described
as elements of a fermionic gas which move in a volume of 4/37r3 A, equal to the
nuclear volume, and their motion is described by plane waves. Two potential wells,
for neutrons and protons, are introduced in this model. The one of protons is less
deep because of the Coulomb repulsion, to which it is associated an energy amount

10
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of E¢, and extends externally the nuclear range with trend o 1/r. Each energy level
can be filled with two nucleons in a singlet state, i.e. with different spin orientations.
In the limit of zero temperature (7" = 0), states are fully occupied up to the Fermi
level, leading to a density of states which amounts to:

VP

From this expression it is possible to estimate the highest momentum, i.e. the Fermi
momentum Pr, which a proton or a neutron can have within the nucleus:

ho(9rN\ Y3 A A
Ppp=—(21) 0 pp, =2 (22 1.11
E To ( 4A ) Ep To ( 414 ) ( )

In the case of a self-conjugated* nucleus, as an example, the maximum kinetic energy
associated to the less bound nucleons results to be, accordingly to the Fermi-gas

model:

P2

Ep = —£ ~33MeV (1.12)

2m
wich indicates that nucleons move inside nuclei with velocities which amount to
significant fractions of the speed of light, as a reflection of the Pauli principle. This
presence of a large amount of zero-point energy leads to a strong quantum mechanical
pressure.

Another very interesting result that can be achieved with the Fermi-gas model
is the existence of a further term contributing to the nuclear binding energy, which
cannot be predicted by the liquid drop model (see paragraph 1.2.1): the asymme-
try term. This term reflects the amount of extra-energy (which contribute to a
reduction of the total binding energy) generated by the presence of a non-vanishing
neutron-proton asymmetry. According to the above considerations, the average ki-
netic energy associated to the zero-point motion of nucleons within a nucleus is given
by:

(E(A,Z)) =(E(A,Z =A)J2)) + AE,, (1.13)
where the first term corresponds to the total kinetic energy for a self-conjugated

configuration and the second term is the asymmetry energy. This can be expressed
in terms of (N — Z)/A and turns to be:

AFE,q ~ 11MeV(N — Z)?A™* (1.14)

which has to be subtracted to the total binding energy, i.e. B,sy = —AE,qy.

4A self-conjugated nucleus is an even-even nucleus with equal number of protons and neutrons,
i.e. Z =N = A/2. These particular configurations can be decomposed into « particles.

11
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1.2.4 The nuclear shell model

The nuclear shell model was developed in the '50s of the last century. It consists
of an independent particle model where nucleons are supposed to move under a
central potential. The main differences with the Fermi-gas model are in the use
of wave functions of particle moving in a spherically symmetrical potential instead
of plane waves. This model offers, especially in the case of light nuclear systems,
the possibility of predicting many nuclear spectroscopic properties in addition to
binding energies.

One of the principal indications that shell closure should exist in nuclei is ob-
tained by comparing the behaviour of nuclear binding energies with the analogous
picture of electrons in atoms. A clear indication of magic numbers was indeed ob-
tained while studying the trend of ionization energy of atoms as a function of the
number of atomic electrons. This systematic shows conditions of pronounced sta-
bility in correspondence of 2, 10, 18, 36, 54, 86 electron numbers, indicating rapid
variations of ionization energy while overcoming each shell closure. An interpreta-
tion to this fact is that the last electron of the configuration is much less bound,
since it starts to fill a new shell and it experiences a screening effect of the Coulomb
potential given by the more internal shells. In nuclei, discontinuities are observed,
as previously discussed, in the systematics of binding energies and masses (see Fig-
ure 1.4) leading to anomalies in total number and relative abundances of isotopes
[20] and to higher excitation energy of the first excited state of nuclei characterized
by particular Z and N numbers. These properties suggest that nuclei containing 2,
8, 20, 28, 50, 82 or 126 protons or neutrons are particularly stable, and they were
historically called magic numbers. A clear experimental evidence of these numbers
can be obtained from the analysis of the first excited states of nuclei. In particular,
in Figure 1.5 the trend of the average energy of the first excited state (< E%;,..; >)
is shown for doubly-even nuclei as a function of the neutron number N. From this
picture the extra-stability achieved in correspondence of magic neutron numbers
is very clear. Indeed, under the assumption of the existence of shells, the energy
required to populate the first excited state has a discontinuity in correspondence
of shell closures. Ideas supporting the shell model have received confirmation by
extremely fascinating experiments [21]. Direct observations of shell structures were
attained via (p,2p) reactions at protons energy of 50-400 MeV. Measuring the out-
going proton from '2C +p — "B + 2p two different contributions to the total
strength were identified and associated to a proton in a s-state or p-state of the 2C
nucleus.

The hamiltonian of the shell model can be written in the form:

A
H = Zl [TQ+V(7~Q) _ L5, (1.15)

where V(r,) is a central field which is normally chosen as a Wood-Sazon or an
harmonic oscillator potential [20, 22|. The last term is called spin-orbit coupling
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Figure 1.5: Average energy of the first excited state for doubly-even nuclei as a
function of the neutron number [17]. Neutron numbers of magic nuclei are labelled
in magenta. Peaks evidence shell closures.

and it was independently introduced by Mayer and Haxel, Jensen and Suess in 1949
[23, 24]. They demonstrated that, in order to reproduce the correct sequence of
magic numbers in nuclei, a non-central component had to be considered in the force
acting on a nucleon in the nuclear well. This non-central force depends on the relative
orientation of the angular momentum and the spin of the nucleon. In this model
they assumed that the spin-orbit force separates the motion of a nucleon with orbital
momentum [ into two sub-states with total angular momentum j = [ + %, where
the level having the higher spin is the more stable. The hamiltonian of equation
1.15 does not commute with L, and s,, while, on the contrary, it commutes with
j2=(L+35)?, j.=L.+s., L? and s%. The corresponding eigenstates are therefore
of the form |n,l,j = [ + %) The corresponding levels for an harmonic oscillator

potential split into:

131/2; 1]73/21171/2; 1d5/2251/21d3/2; 2f7/2; 2p3/21f5/22p1/2199/2; ce (1-16)

where each state of given j can accommodate 25+ 1 neutrons and 25 41 protons and
the shell closures occur at the right Z and N magic numbers seen experimentally.
The final total wave function of a nucleus depends on the coupling of the individual
angular momenta of the nucleons in each state, allowing to predict spectroscopic
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properties like total spin, parity, magnetic and electric moments of the whole nuclear
configuration.

The shell model is able to predict the properties of ground states for an ex-
tremely large variety of nuclei in terms of single-particle properties. In attempting
to reproduce excited states one can assume that, if the level is sufficiently close to
the ground state, it can be described via a single-particle excitation, assuming a well
compact core. The situation is anyway much more complicated in the description
of higher energy levels, where even nucleons belonging to the core can be excited
and the properties of the states cannot be described in terms of single particle exci-
tations. In the presence of multi-particle excitations, a residual interaction occurs
between nucleons participating in the excitation and a further collective term should
be considered in the compute of the excitation energy. These residual interactions
can be introduced in the shell model as a small perturbation. If one indicates with
|U,,) the eigenstates of the perturbed hamiltonian H = Hy + Vj; and with |¢;) the
ones of the unperturbed hamiltonian Hy, it is possible to re-write the first as a linear
combination of the unperturbed solutions: |¥,) = >, agn)|g0i>. From the property
of orthonormality of the |g;), it follows:

(0) (n) —
{(En — Ef)a;” = 30" (pilVijles) = 0 (1.17)

> oil(Bn — ED)dij — (04 Vijle)] = 0

which is a system of two coupled homogeneous equations. Under the assumption
that the majority of the contributions to the |¥,) are given by the first terms of the
linear combinations, it is possible to use the system of equation 1.17 to determine the
set of coefficients a which gives the most realistic energies F,, and wave-functions
(r|¥,). This method was used by Zuker [25] to determine the excited states of
160 starting from a core of >C and 4 further nucleons. The picture considered by
Zuker and collaborators in their calculations is the one proposed in Figure 1.6 (left),
where the nucleons of the core occupy the 1s;/, and 1ps/; shells and the 4 nucleons,
two protons and two neutrons, can be placed in the 1p;/2, 251/ and 1ds/; shells.
By choosing different combinations of 4 nucleons arrangement in these orbitals it is
possible to well reproduce the '°0 levels as in Figure 1.6 (right). As an example, for
the first excited state of %0 (6.05 MeV, 07) the result of the perturbation calculation
gives (omitting amplitudes smaller than 0.28):

W) = —0.34p* — 0.625" + 0.394%(01)s*(01) — 0.40d*(10)s> (1.18)

where the configurations =" indicate a state produced by a n-particles n-holes exci-
tation (np-nh) in the [-shell and number in parenthesis indicate the J7 spin-isospin
coupling (see [25]). In other words, the wave function |W;), relative to the first ex-
cited state of 190, calculated starting from the residual interaction of the 4 further
neutrons, and considering a 2C core as prescribed by the shell model, exhibits a
predominant (4p, 4h) nature. The corresponding amplitude (« ® 2C|¥,) for which
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the calculation is not easy and requires the use of four angular momentum coupling
coefficients, turns out to be ~ 1, revealing a pronounced a-cluster nature of the
state.

Residual interactions leading to clustering phenomena can be also used to un-
derstand apparently anomalous low-lying levels of light nuclei [26]. For instance,
in °F there are two possible cluster decompositions involving closed-shell nuclei.
The a-'°N substructure has an inter-cluster binding energy of only 4 MeV. If one
assumes that the clusters are in a relative s-state, the corresponding spin and parity

1

are 5 . The only cluster decomposition that one could expect from the shell model

is instead the °O-3H substructure. It has an inter-cluster binding energy of 12 MeV

and, according to the Nilsson model®, its spin and parity are %+. The first excited

state of 1F lies at only 0.11 MeV excitation energy and it has spin-parity %7. Its
simple shell model interpretation is the excitation of a proton coming from the 6O-
like core to the Nilsson 1/2% orbital, leaving a hole in the 1p;/, state. This would
result in several MeV of excitation energy. Evidently, the couples of two protons and
two neutrons holding the (1/2%) Nilsson orbitals tend to form a very compact a-like
cluster, and the energy gain in forming such a a-'>N sub-structure is responsible of
a large reduction of the excitation energy to a few hundreds of keV. Therefore, the
appearance of such a low lying excited state in F can be associated to a cluster
model joke.

These intriguing results demonstrate that cluster structures emerge naturally
while modifying the shell model including residual interaction of nucleons partici-
pating in the collective excitation. These long range correlations between nucleons
are a signature of cluster structure. Anyway, the spatial localization of clusters,
which is considered one of the most important aspects of clustering in nuclei, is not
easily describable with shell model. In the following section, an overview of theoret-
ical models trying to explain the appearance of clusters in nuclei will be presented.

1.3 Cluster models of nuclei

The main aim of nuclear models attempting to describe clustering phenomena con-
sists in the study of the spatial distribution of clusters within the nuclear volume. To
do this job it is useful to define the so-called correlation operator, which represents
the probability of finding two nucleons respectively with momentum Q) and Q)

5The A ~20 region is characterized by strong deformations, and the ordinary shell model based
on spherical potential is no longer valid. An extension of the single-particle shell model to deformed
potentials was theoretically developed by S.G. Nilsson [26]. The main effect of (quadrupolar)
deformation results in the removal of degeneracy of spherical shell states, leading to energy-split
of sub-shells. For example, the 1ds/, spherical shell orbital is split into three different sub-shells
(Nilsson orbitals) (1/2%), (3/2%) and (5/27), characterized by increasingly larger energies. The
valence proton in 19ng holds the (1/27%) Nilsson orbital, and this explains the experimental value
of JT=1/2%.
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Figure 1.6: (left) Schematic view of the picture used by Zuker and collaborators [25].
The shells 1s1/ and 1ps/, are the 12C, used as a core in the calculations. States of
160 (indicated in the right panel) can be predicted by changing the configurations
of the 4 extra nucleons in the shells 1p; /o, 251/, and 1ds,.

when the nucleus is in the ground state U [28]:

(o a0 = [ [ Q0 QO QY
Q Q

(1.19)
where each integral is extended to the whole momentum space and the compact no-
tations ¢ and f represent two different sets of values of spin and isospin coordinates.
The diagonal terms of this operator give the probability for two nucleons to be at a

distance r = |#| = |#") — #@)|. The spatial correlation of a pair of nucleons will be
then:

g(r) = (ilgli) (1.20)

]

The sum is here extended to couples of nucleons with same charge and spin (that
will be indicated in the following as congruent nucleons, and identified by the suffix
=) and to couples of nucleons which differ either for the charge or the spin or
both (non-congruent, #). Congruent nucleons can be in any of the four states
3(7)41%(0)+1, while non-congruent nucleons can be in any of the other 12 possible
states. The correlation operator of eq. 1.19 can be re-written in terms of the ordinary
and mixed densities, as a first approximation, neglecting any two-body interaction
between nucleons and by assuming that each nucleon wave-function is a plane wave:

({9170 = s - 1 [GINRERE?) — IR P f) o, 7)) (121)

(A-1)
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Figure 1.7: Spatial correlations as a function of the relative distance between nucle-
ons in the case of non-congruent nucleons (left) and congruent nucleons (right). The
dashed line is the result of the calculations in which no account is taken of nuclear
interactions. The solid line is the result of the calculations via the procedure shown
in [27].

Here, P, and P, are spin and isospin projectors, while

p(@) = = (1.22)

G(r) (1.23)

are the ordinary and mixed densities. The mixed density p(Z(), #®?) is connected
to the superposition of nucleon wave-functions respectively in the positions (")

and #®. The function G(r) = W(sin(vl\lﬂ — (yR7)cos(yXr)) derives from the

solution of the integral 1.19, being X~! the range of nuclear forces (~2 fm) and

— (97)Y/3.(Rrg) 1 . .
= ~—~———, with ry the radius of a nucleon. The eq. 1.21 then becomes, for

large A values:

1

; 0 —
(1919 = 11

(L] f) = G| P Pr | f)GP ()] (1.24)
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On can obtain, under this approximation:

00(r) = To5ld — 4GP = 5[l — () (1.25)
09(r) = = [12 - 0G2()] = (1.26)

These indicate that, even in the absence of two-body nuclear interactions, correla-
tions appear between congruent nucleons. The corresponding spatial correlation has
the trend of Figure 1.7 (right panel, dashed line). The decreasing at small values
of relative distance is the effect of the Pauli exclusion principle. In the case of non-
congruent nucleons, instead, no correlations appear and the corresponding spatial
correlation is flat, as indicated by the dashed line of Figure 1.7 (left). A simplified
nuclear interaction can be taken into account by following the method described in
[27]. This method brings to a next approximation of the spatial correlations:

1 bro 1

1 _ 0 (1) (1)

g(:)(r) - _4_W ' 4_71_2 ’ g(Gord - Gemch) (127)
1 b’f’o 2 3

90 = g s [5G = Gl + S+ G5 (1:28)

where G,.q and Gy, derive from the integral 1.19 once that a reliable nucleon-
nucleon force constituted by a ordinary and an exchange term is included. The
constant ¢ represents the ratio between strengths of singlet and triplet components
of the force, while b is a constant related to the strength of the nucleon-nucleon
interaction [28]. The trends of g (r) and gg)(r) are shown in Figure 1.7 with solid
lines. The effect of nuclear interaction is to widen the hole in the spatial correlation
of congruent nucleons while, in the case of non-congruent nucleons, correlations start
to manifest. These result in an accumulation of nucleons close to » = 0. The density
fluctuations due to nuclear interaction thus favour the appearance of clusters. The
simplest, and most correlated, is made by four nucleons in different spin and isospin
states, which are called a-clusters.

A second order approximation gives a correction to the nuclear energy. This
contribution (see [28]) is always negative and can be interpreted as a gain in binding
energy of the nucleus as a result of the clusterization, as observed in the systematic
of binding energies of self-conjugated nuclei of Figure 1.3 (insert). Anyway, the gain
in binding energy of a given nucleus is dependent on the particular interaction used
to create a-clusters as well as the properties of the cluster themselves. Theoretical
models in which a-clusters are recognized from the outset lead to more refined results
in the description of energetics of cluster states. In the Figure 1.8, a summary of
the historical development of such cluster models is presented.

1.3.1 The a-particle model

The first and simplest model aimed at the description of cluster states in nuclei is
the so-called a-particle model. This model was developed in 1930’s, starting from
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1930 1949 1960 1970 1980 1990

Shell model (mean-field)

a-particle midel
Microscopic models
Quartets model

MD models (unstable nuclei)

Figure 1.8: Historical developments of cluster models of nuclei from 1930’s.

the experimental observations of Wefelmeier [30, 31| and of Hafstad and Teller [29].
They brought out the fact that the binding energies of self-conjugated nuclei showed
local maxima, as a result of the appearance of clustering. This fact is evident in the
insert of Figure 1.3, where self-conjugated configurations clearly exhibit peaks on
the corresponding isotopic lines. Another important fact pointed out by Hafstad and
Teller was that, if one assumes an a-particle structure of self-conjugated systems,
their binding energies are linearly correlated with the possible number of connections
between « centers. This evidence supported the assumption of a geometrical model
describing these nuclei as consisting of close packing of rigid spheres (a-particles),
with a certain number of bonds (pairs of adjacent particles). In such a way, one can
describe their binding energies as the sum of the binding energy of each constituent
a-cluster and the a-binding energy, i.e. the binding energy associated to each bond
between a-particles. Figure 1.9 shows the correlation between the total binding
energy of the lightest self-conjugated nuclei and the corresponding number of bonds,
following the scheme of Hafstad and Teller, compared with the result of a linear fit.
These structures, as supposed by [29] and reported in [10], are shown in Figure 1.10
for self-conjugated nuclei up to 28Si. They are summarized in the table 1.1 together
with the empirical values of binding energies associated to a-particle bonds; the
geometrical arrangements of a-particles in the first self-conjugated systems, up to
32§ are also indicated. Empirical a-binding energies show clearly a proportionality
with the number of bonds and, as a consequence, the a-binding energy per number
of bonds is surprisingly almost constant for each system®, indicating an apparently

6The value of a-binding energy per bond of 2.130 MeV in the case of 2°Ne is slightly lower than
the neighbouring nuclei ones; Ref.[32] suggests that also a squared pyramid a-configuration might
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Figure 1.9: Binding energy for the lightest self conjugated-nuclei as a function of
the number of bonds between between a-cluster centers, see [29]. The red line is
the result of a linear fit of data. Experimental binding energies are extracted from
[18, 19].

constant a-a interaction and the resilience of the a-particle constituents in the
ground states of light self-conjugated systems.

All the above mentioned experimental evidences supported the development of
the a-particle model of nuclei. This model describes self-conjugated nuclei as sys-
tems of interacting a-particles and, therefore, the development of the model his-
torically followed the theoretical study of the a-a interaction. The basic ideas of
the interaction between « particles were proposed by Wheeler [33] and were used
as a starting point in the building of the a-particle model. The theory is based on
the application of the Hartree-Fock variational method (see paragraph 1.2.2) to the
system of eight nucleons, which constituted two interacting a-particles. The vector

be used to describe the structure of 2°Ne with just 8 bonds instead of the 9 bonds correspondent to
the trigonal bipyramid. In such a case, a a-binding energy per bond of 2.396 MeV would result in
better agreement with the other self-conjugated nuclei. In any case, the arbitrariness of the choice
of the particular configuration represents a limit of the model. Another qualitative interpretation
of the low value of binding energy per bond of 2°Ne is given by [30, 31], and suggests that the two
extremal a-particles of the (more symmetric) trigonal bipyramid configuration are shielded from
each other by the presence of a quite compact triangular basis; hence, one should count 2°Ne as
having only 8 effective bonds.
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8Be (1 bond) 20Ne (9 bonds)

12C (3 bonds) 24Mg (12 bonds)

160 (6 bonds) 288j (26 bonds)

Figure 1.10: Arrangements of a-particle constituents in self-conjugated nuclei, fol-
lowing the scheme of [29], for the lightest self-conjugated systems. The number of
bonds is indicated for each geometrical configuration [10].

R joining the centers of mass of the two a-particles is treated as a parameter. The
difference between the total energy of the system and the one of the two a-particles
at an infinite distance, i.e. not interacting, gives the interaction energy. Indicating
with &) (i = 1,2,3,4) the vectors from the center of mass of the first a-cluster to
its constituents, one can write the Slater determinant of such a system, considered
as an aggregate of two a-clusters by using only two distinct spatial eigenfunctions
of individual nucleons: ¢(7®) and o(R — #®) (i = 1,2,3,4). They have to be
multiplied by the appropriate spin and isospin eigenfunctions. The result of the first
approximation of calculations is strongly dependent on the exchange properties and
on the distance dependence of the interaction between two nucleons. The interac-
tion energy of the two a-particles represents an attractive potential for every value
of R, and the resulting range is of the same order of the nucleon-nucleon poten-
tial; repulsive contributions will clearly dominate both at small distances, because
of the increase of kinetic energy of the ®Be system, and at large distances, where
the Coulomb repulsion is the only interaction. If the nucleon-nucleon interaction
has a sufficiently strong tail, or residual intensity, the attractive part of the a-a
potential may become strong enough to overcome the Coulomb repulsion at inter-
mediate distance; moreover, if the tail of the nucleon potential is of the ordinary
type, the attraction between a-centers will exhibit additivity properties typical of
intermolecular van der Waals forces. A simplified assumption on the nucleon inter-
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Nucleus N. of a-s Configuration N. bonds a-binding en- «-binding en-
ergy (MeV) ergy per bond

(MeV)
*Be 2 straight line 1 —0.092 —0.092
12C 3 triangle 3 7.275 2.425
160 4 tetrahedron 6 14.437 2.406
20Ne ) trigonal 9 19.167 2.130
bipyramid
Mg 6 tetragonal 12 28.483 2.374
bipyramid
(octahedron)
#Gi 7 pentagonal 16 38.467 2.404
bipyramid
328 8 sphenoidal 19 45.415 2.390
bipyramid

Table 1.1: Geometrical configurations proposed by [29-31| for the first self-
conjugated nuclei. The number of bonds is indicated together with the a-binding
energy and the a-binding energy per bond.

action represented by a Gauss potential was introduced by Margenau [34]. As trial
wavefunctions ¢(%) for the variational approach, he used simple harmonic oscilla-
tor eigenfunctions involving a variational parameter. However, at a first order of
approximation, a repulsive force results in the a-a interaction at all distances, and
higher approximations are required to account for the binding energy of a-particles.
This fact reflects the closed structure of a-particle (analogous to the rare gas config-
uration in atomic systems) and it has a more general scope [35]: mutual attractions
can only manifest themselves through virtual polarization of such structures. These
features appear in the second approximation of the model. In the Margenau calcu-
lations it has been shown that attractive forces result in the second order but with
a range shorter than the first order repulsion. This feature is reversed in the case of
intermolecular forces, where the analogous term has the longer range, representing
the van dar Waals attraction. The result of this fact is that, at the second order
approximation of the a-particle model, there can be no additivity of the interac-
tion between more than two a-particles. Any simple explanation of the regularities
showed in the empirical values of the table 1.1 cannot be therefore given from the
results of a-« interaction of the Margenau’s model. These features can be explained
in terms of complicated compensations between energy terms of different orders of
approximations, involving essentially non-additive many body features of a-particle
interactions [28].

Anyway, it is important to underline that the assumption of a rigid a-structure
of the nucleus has been questioned by many authors. In fact, in finite nuclei one can
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expect to find a considerable amount of local correlations of particles that can give
rise to instantaneous a-groupings, but, because of the interaction, they continually
merge one to another without preserving their identity for any appreciable length
of time [36].

The a-particle model, as seen from the previous discussion, is not able to explain,
on a quantitative and theoretically exhaustive basis, the energies of self-conjugated
nuclei as reported in table 1.1. Anyway, more quantitative predictions can be at-
tained in describing rotations and vibrations of a-nuclei. Let us consider, as an
example, the n-th surface vibration mode of a nucleus, and be A ~ 2rR/n (where R
is the nuclear radius) the corresponding wave-length. If n is sufficiently small, i.e.
n < A%, A/2 is larger than the dimension of an a-cluster. Under this assumption,
the angular frequency w can be obtained via the Rayleigh formula [28]:

4 1
w?=n(n—1)(n+2)7, - T

being v, = ;% the surface tension of the nucleus, with a, the surface coefficient
of the semi-empirical mass formula, R the radius of the nucleus and m the average
mass of a nucleon. For the period one can derive the approximate formula [28]:

TAnT2AZ 0410 (1.30)

The frailty of an a-cluster in this state can then be defined as the time ¢ required
by such a cluster to exchange a nucleon with a part of its surroundings moving in
opposite phase. The latter is of the same order of magnitude of the time required
for a nucleon to diffuse through a distance A/2, which can be classically determined
as [28]:

tran2A%-0.6-107%s (1.31)

The conditions for treating the nucleus as a system of a-particles are fulfilled in
the case of rotational or vibrational states at low excitation energy. For increasing
excitation energies, a-clusters tend gradually to dissolve and the behaviour of nu-
clei as liquid droplets without cluster structures dominates. The vibrational quanta
expected for an a-nucleus according to the a-particle model can be obtained by con-
sidering the potential energy of the quasi-elastic forces responsible for the vibration
mode, taken for an amplitude corresponding to the dissociation of an a-particle,
and the value of the binding energy of this particle to the residual nucleus. For
the lightest a-nuclei, vibration quanta turn to be of the order of few MeV, which
correspond to the lowest (n = 2) mode of surface vibration of the classical liquid
drop of the equation 1.29.

Regarding the order of magnitude of rotational quanta, they can be estimated
starting from the moment of inertia Is of a spherical homogeneous distribution of
the nuclear mass:

Is = %mARQ = %mr%Ag (1.32)
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The corresponding rotational quanta ki?/Ig are of the order of:
R2/Ig ~ 54A~3MeV (1.33)

which gives hundred keV in the case of light a-nuclei and only a few keV for heavy
nuclei. The latter estimate is at least one order of magnitude lower than experimen-
tal observation on fine structures in « spectra coming from the decay of actinide
nuclei [37]. More reliable estimates can be obtained by explicitly taking into account
the appearance of « clustering in heavy nuclei [28]. Such a model assumes (in a very
simplified way) the nucleus as constituted by an ensemble of N, « particles. The
rotation of such a structure of identical particles of a given angle ¢ can be always
replaced by a suitable displacement (translation) of the « particles [38]. This sym-
metry forbids the appearance of groups of rotational levels at too low excitation
energies, leading to predictions (of the order of 0.2 MeV for A =200 nuclei) much
closer to the experimental values [28].

The appearance of symmetries triggered by the « cluster structure of nuclei plays
an important role also in the case of light nuclei, where it causes a considerable
reduction in the number of low-lying levels. As an example, in the case of the
two a-particle system ®Be, only wave-functions corresponding to even values of the
angular momentum satisfy the requirement of the Bose statistics. A number of
states results indeed to be shifted to levels of excitation higher than in the spectrum
of analogous systems of nucleons without a-particle structure. At higher excitation
energies, the spectrum assumes a purely classical behaviour, merging into that of a
vibrating fluid continuum.

1.3.2 Microscopic cluster models (RGM, GCM, OCM)

Microscopic cluster models [39, 40| are based on a detailed treatment of the Pauli
principle among clusters and on a detailed description of the inter-cluster motion.
Developments of microscopic cluster models have been remarkably done in the early
1960s (see Figure 1.8) with the realization of the Resonating Group Method (RGM)
[41]. The RGM strongly influenced the evolution of cluster models in the subsequent
decades as well as the development of the Generator Coordinate Method (GCM)
[42] and the Orthogonality Condition Method (OCM) [43]. The RGM and GCM
are fully-microscopic models while the OCM is considered a semi-microscopic model,
since the treatment of Pauli blocking effects does not reflect a completely microscopic
treatment.

The basic ideas of the RGM have been given by Wheeler [41]. The description
of nuclei given in this model is that of a superposition of all possible type of nucleon
clusters, i.e. attributing to the nucleus a resonating group structure. Nucleons
are treated as spending part of their time in different configurations called groups;
for example, they can be arranged into a-particles or into other groupings. The
method of resonating group structure is therefore in contrast with the concept of
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mean field which emerges from the Hartree-Fock procedure. The wave function built
with this method is made of a properly antisymmetrized combination of partial wave
functions, which correspond to any possible type of grouping. This wave function for
the whole nucleus, out of partial wave functions which describe the close interaction
within the individual group, clearly takes advantage from the saturation of nuclear
binding, being the largest part of the binding energy accounted by the internal
binding of each separate group. Considering a system of m protons and n neutrons,
the total wave function ¥ can be written, according to this model, as the sum
of parts, of which each term represents a particular grouping (configuration) of the
N = m+n particles. Such a term is the product of wave functions ®, which represent
the motion of particles within each group. They are also multiplied by particular
functions of the positions and spin variables (the total angular momentum mg of
a group) F(X,mg). The F functions are unknown and they belong to different
configurations. For instance, for the °Li nucleus, F' might represent the relative
motion of a a-particle and a deuteron, while F'? could represent a configuration of
°Li plus neutron, etc. The general expression of the anti-symmetrized wave function
assumes therefore the form:

Vo> FUX(I),ms,(I); Xi(11)ms, (11))@4(I)®;(1T) (1.34)

the sum extends over all configurations of possible groupings of, for simplicity, two
clusters, indexed by 7. ®; represents the wave-functions of each of the two clusters
I and II. The coefficients F* depend only on the inter-cluster coordinates XZ(I ) —
)Zi(l I), resulting in a reduction of the corresponding degrees of freedom. They
should be determined as solutions of a certain set of integral-differential equations
involving these coordinates as variables; the expression of these equations is rather
heavy and not systematic and the reliability of the model is for this reason limited to
systems involving a small number of nucleons. The RGM has been recently fruitfully
applied to describe nuclear reactions and scattering processes involving light nuclei;
in particular, for example, it is able to reproduce nicely the trend of experimental
S-factor” of the astrophysically important *He(c, v)"Be reaction at very low energies
[44].

The restrictions imposed by the RGM can be overcome via the GCM. In this
model, the F* functions, describing the relative motion of clusters, are expanded over
a set of projected gaussian functions, centered at different generator coordinates R,,.

"The S-factor is an alternative way to display a reaction cross section at very low energies, free
from effects due to entrance channel penetrability. It is commonly adopted in Nuclear Astrophysics,
where reactions are measured at low incident energies. Indeed, because of Coulomb barriers in the
entrance channel, reaction cross sections usually exhibit exponential falls for decreasing energies,
leading to difficulties in representing the data. The S-factor is defined by the equation: S(E) =
1e2™(E)g(E), where o(E) is the reaction cross section and e2™(¥) is the inverse of the s-wave
penetrability factor.
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The wave-function of eq. 1.34 ca be rewritten as:

WMoY N fi (Ra) 18T (Ry) (1.35)
IS

n

where Jm represent spin and parity of the system and M the projection of the
total spin. The first sum is extended over all values of channel spins S and angular
momenta [, while the second one runs over all generator coordinates. The fi5"(R,)
functions are called generator functions. Their calculation is quite systematic when
changing system, and can therefore be applied with large versatility to systems much
more complicated than in the RGM.

1.3.3 The quartet model

The quartet model aims at the description of excited states of self-conjugated nuclei
that cannot be easily described via the independent particle shell model. The picture
given in the quartet model is the existence of quartets. A quartet is a strong inter-
acting structure made of 2 protons and 2 neutrons occupying a fourfold degenerate
single particle state [45]. The separation energy of a nucleon in a self-conjugated
nucleus is much larger than the one of an a-particle. For example, while the neutron
emission threshold in 0 is 15.7 MeV, the o emission threshold is only 7.2 MeV.
This empirical evidence means that the less bound nucleon interacts strongly with
the other three which make up the emitted a-particle and much more weakly with
the rest. More in detail, in '°O, a proton of the p; /o orbit has about 5 MeV of inter-
action energy with the 2C core and about 10 MeV interaction with the remaining
nucleons of the p;/, orbit. In the quartet model, excited states of self-conjugated
nuclei are obtained by means of particle-hole excitations of quartet structures, char-
acterized by strong internal binding energies and weak interaction between each
others. For self-conjugated systems from '2C to *?Fe, quartets are restricted to the
(0p), (0d,1s) and (0f,1p) shells of a spherical harmonic oscillator. The interaction
energy between two quartets across the Op and (0d,1s) and across the (0d,1s) and
(0f,1p) shells can be determined by the position of the first 07 excited state of 160
and °Ca®, respectively, while the interaction between the (Op) and (0f,1p) shell is
supposed to be small due to the extremely small radial overlap of the relative wave-
functions. Independently on the mass number and the number of excited quartets,
quartet-hole interactions are supposed constant in this model. Assuming *He as the
core, one can indicate as [xyz| a generic configuration of quartets arranged in the
above mentioned shells in the following way: = quartets are in the N = 1 major
shell, y quartets are in the N = 2 major shell and 2z quartets are in the N = 3 major

shell. One can designate with @7, Z(JS A and prf) these configurations. Restricting

81t is known from the literature that such states have a large a-structure [45].
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Figure 1.11: Terms contributing to the compute of the excitation energy of the [210]
configuration of 10, i.e. the first excited state (6.05 MeV, 0%). The difference of
the interaction energy of the 2C [200] and the 'O [300] configurations corresponds
to the interaction energy of a hole in the N = 1 shell.

the calculation, for simplicity, to the first two orbits, N = 1,2, one finds:
EX(Q, ?sd)) =FEo(4z + 4,22 + 2) + Ey(4y + 16,2y + 8)

(1.36)
—Eo(4(x +y) +4,2(x +y) +2) — Eo(16,8) + (3 — 2)yV}, (sa)

In the formula of eq. 1.36, Ey(A, Z) represents the interaction energy of a nucleus
with A nucleons and Z protons, while V), 4q) is the interaction between y N = 2
quartets and (3—x) N = 1 holes. The latter is fixed by setting the one-quartet one-
hole excitation energy equal to the excitation energy of the first excited J™ = 0%
state in '°0. To better clarify the above discussed method, Figure 1.11 shows
the configurations which contribute to the compute of the excitation energy, as an
example, of the first excited state (6.05 MeV, 07) of 'O, assumed to be in the [210]
configuration. In detail eq. 1.36 becomes: E*(Q5Q(.y) = (Eo(12,6) — Eo(16,8)) +
(E0(20,10) — Ey(16,8))+ V), (sa), where the first term in round brackets represents the
interaction energy of a hole in the N = 1 shell, the second term in round brackets
corresponds to the interaction energy of a quartet in the N = 2 shell, and the last
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160 [xyz] E*(MeV)

[300] 0.0
[210] 6.06
201] 1114V
[120] 15.0
[111]  195+2V
[102]  20.0+4V
[030] 23.1
021]  23.1+3V
012]  23.1+6V
[003]  23.1+9V

Table 1.2: Possible 1°0O configurations predicted by the quartet model. Both two
shells and three shells [zyz] configurations are shown. V represents the interaction
between the (0p) and (0f,1p) shell, here left unspecified [45].

term is the quartet-hole interaction. Table 1.2 finally reports the %0 states which
can be predicted by using the above mentioned procedure.

Much more accurate predictions concerning the spectroscopy of light nuclei as
20Ne, Mg and 28Si have been recently obtained by using a fully microscopical
quartet model [46], that has been extended to include quartets with arbitrary values
of isospin and angular momentum [47]. Excellent description of the low energy part
of level schemes of self-conjugated and non self-conjugated nuclei have been reported,
pointing out the importance of four-body correlations in light and medium-light
nuclei [47].

1.3.4 Molecular Dynamics (MD) models: clustering in
unstable nuclei

Molecular Dynamics (MD) many-body models are extensively used to provide direct
connections to the observable physical states [48]. These models are based on the
resolution of the Schrédinger equation by using single-particle wave functions as
Gaussian wave packets of the form:

i = Qg XiTi (1.37)
where ¢ g represents the spatial part of the wave-function of the ¢-th nucleon:

v (F.,ﬁ)Q
bx,(F)oce N (1.38)
x; and 7; are, respectively, the intrinsic spin function and the isospin function.
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Particularly interesting for the description of clustering phenomena in nuclei is
the Antisymmetrized Molecular Dynamics (AMD) model. The AMD model was
developed by Kanada-En’yo, Horiuchi and co-workers [48-50], and it has been used
quite extensively in the description of nuclear systems beyond the N = Z line and
to investigate structures which are not easily obtained with shell model calculations.
This model is able to reproduce a big variety of nuclear properties, such as excitation
energy, radii, magnetic moments and electromagnetic transition probabilities. The
AMD wave functions are given by an antisymmetrized product (Slater-determinant)
of single particle MD functions of the type in eq. 1.37:

1
(I)AMD(Z) = ﬁd{%, P2, .- ,SOA} (1-39)

The AMD wave function is parametrized by a set of complex parameters Z =
{X,i,&} with n = 1,2, 3 indexing the spatial coordinates X and i = 1,..., A.
The Gaussian center positions X; and the intrinsic-spin orientations &; are treated
independently as variational parameters. The optimum wave function is determined
from the set of parameters which minimize the expectation value of the energy
& = (P|H|P)/(®|P). The AMD model contains mean-field states as well as cluster
states, which represents one of the most powerful features of this model, allowing to
describe, in a consistent way, the coexistence of shell and cluster states [51].
Another interesting approach for the study of the structure of light nuclei is the
Fermionic Molecular Dynamics (FMD) model. The FMD wave function is of the
same type of the AMD, with the major difference regarding the width parameter,
which is chosen as common for all nucleons in the case of AMD and which can be
independently chosen for each nucleon in the case of FMD. In structure studies,
the flexibility in the treatment of the width parameters of the FMD is particularly
powerful, for example, to unveil the neutron-halo structure of neutron-rich nuclei

[52].

1.3.5 The deformed harmonic oscillator (HO)

Apart from the clear connection between clustering phenomena and energetics, a
further key ingredient, symmetries, strongly affects the appearance of clusters in
nuclei. They have impact in the collective excitation of nuclei, driving the formation
of clusters themselves via their influence on the mean-field of light nuclei [10]. These
connections between mean-field and the cluster degree of freedom can be understood
via the so called deformed harmonic oscillator model of nuclei.

The harmonic oscillator (HO) is one of the possible central potentials which can
be used in the nuclear shell model (see Section 1.2.4). In this picture, nucleons are
supposed to move in a parabolic potential, which leads to energy levels in the form:

E = hw(n + 3/2) (1.40)
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where n is the number of oscillator quanta. Introducing a deformation of the po-
tential, for example along the z-axis, the oscillation frequency becomes lower along
the direction of the deformation while it is increased in the perpendicular directions.
The degeneracy of equation 1.40 is therefore removed and the new values of energy
are:

3
E = hwlnL+hwznz+§ﬁwo (1.41)

being w, the oscillation frequency along the deformation axis, w, the one for oscil-
lations perpendicular to the z-axis and wy = (2w, + w,). The so-called quadrupole
deformation €5 can be expressed as:

€2 = (Wi — w,)/wo (1.42)

with a total number of oscillator quanta which is the sum of those on the parallel
and perpendicular axes (n, +ny). Energy levels of the deformed HO are shown in
Figure 1.12 [53]|. Crossings of levels in the picture represent energy values having
high degeneracy. Shell structures appear in this model in correspondence of those
energy values for which the degeneracy is maximized. As clearly visible from the
picture, shell structures which appear at e = 0 (spherical nucleus) disappear as
the potential is deformed, but reappear for deformations (w; : w,) of 2: 1 or 3 : 1.
This occurs when the ratio of the parameters describing three-dimensional deformed
potential, (w,, wy, w,), are integers. By examining the sequence of degeneracies, one
observes that the values (2,6,12,20,...) are repeated twice at a deformation 2 : 1
and three times for a deformation of 3 : 1, etc. An application of this model to
the case of ®Be is rather simple. Being 2 : 1 the corresponding deformation, the
levels which are labelled with degeneracy 2 are given by the quantum numbers
[ni,n.] = [0,0] and [0,1]. These levels can be occupied by pairs of protons and
neutrons coupled to a zero-spin state. The corresponding density distributions are
given by the square of the wave-functions g and ¢ 1, which correspond to the
two distinct levels. The overall ®Be density is given by the sum |pgo]* + |¢0.1]?.
This is plotted in the Figure 1.13 b) as a function of the z coordinate [53|. The
feature which emerges is that the density is double humped corresponding to the
arrangement of protons and neutrons into two a-particles. The HO wave-functions
can be expressed in terms of the above basis of linearly independent states ¢;:

1
Pa(x) = ﬁ(wom +¢01) (1.43)

which corresponds to project out the point symmetry of the two clusters. The over-
lap of an isolated a-particle, ¢, = %6(7&7«2/2) is found to be > 90% [53]. The square
of the two wave-functions is shown in the Figure 1.13 a) (dashed lines) together
with the overall ®Be density. What is evident is that the symmetries found in de-
generacies of deformed HO approach are present even in the density, and they give
rise to new magic numbers which are called deformed magic numbers. They have
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Figure 1.12: Energy levels of the deformed harmonic oscillator as a function of
the quadrupole deformation €;. The numbers inside circles indicate the degeneracy
of the levels in correspondence of each crossing point. Shell structure appears for
spherical configurations and 2 : 1 and 3 : 1 deformed configurations. From [53].

been largely explored in the literature in order to identify some particular cluster
partitions [10]. Rae [54] focused on details about deformed magic numbers in order
to explicitly probe the cluster decompositions. He demonstrates that these numbers
could be expressed as the sums of spherical magic numbers. The results of his work
are shown in table 1.3. This description locates at each deformation the associated
cluster structure. In correspondence of a 2 : 1 deformation, for example, superde-
formed structures should be found in ®Be (a + ), *Ne (1°0 + «), 3%S (60 + 1°0),
etc., while, in correspondence of a 3 : 1 structure, hyperdeformations are predicted
in 2C (o + a+ a), Mg (a + %0 + ), etc.
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Figure 1.13: a) HO wave-functions of the form given in 1.43 shown as dashed lines.
The solid line represents the overall ®Be density |poo|> + |p01]?. b) The density
corresponding to the HO configurations for ®Be (solid line). Dashed lines show the
two separate contributions |pgl* and |pg1[*. From [10].

1.4 Applications of cluster models

In the previous section we gave a brief summary of the ideas on which cluster models
of nuclei are based. This section is dedicated to a discussion on applications of cluster
models to physical cases of interest in nuclear physics. It is important to stress that,
even if the content of this section offers a quite comprehensive overview of the nuclei
of interest for the present thesis, and also of other particularly remarkable cases, we
are certainly far from a complete overview of the state of the art of nuclear cluster
physics, for which more details can be found, for example, in Refs. [10, 55-58|.

1.4.1 Light self-conjugated nuclei: 2C, 90, ?Ne

Since the beginning of nuclear clustering physics, self-conjugated nuclei were object
of several theoretical investigations. It became clear in the early 1960s, from the
work of Tkeda and collaborators [59], that clustering phenomena should not mani-
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Deformed Spherical Cluster configuration
magic magic
numbers numbers

wtw,=2:1

4 2+2 a+ o

10 8+ 2 160 + o

16 8+8 160 + 160
28 20+ 8 40Ca + 160
40 20 + 20 0Ca 4 1Ca

wl tw,=3:1

6 24242 a+a+ o
12 2+ 842 a+ %0 +a
18 8+2+8 160 4+ a + 190
24 S+8+8 160 4 160 + 160
36 8+20+38 160 + 40Ca, + 160

Table 1.3: Decomposition of deformed magic numbers in terms of spherical magic
numbers, at a deformation of 2 : 1 and 3 : 1, from [54]. The associated cluster
structure is indicated for each deformed magic number.

fest in the ground states of a-nuclei but, on the contrary, they should emerge for
increasing internal energies of the nucleus. At the point where the nucleus is sepa-
rated into its clusters, an energy which corresponds to the mass difference between
the host and the clusters is required. This semi-quantitative evidence led Ikeda in
formulating his hypothesis regarding the formations of clusters. In order to form a
cluster structure, with large probability, an excitation energy close to the nucleus
separation energy into clusters should be required. This result is summarized in the
so-called Ikeda diagram, which is shown in Figure 1.14. This diagram shows the
possible a-cluster decompositions of light self-conjugated nuclei in correspondence
of each decay threshold. In this way, there is a gradual transition from the compact
ground state to the fully N-a clustered structure. The a-particle configurations are
here shown schematically as linearly arranged, even if that is not the most stable
configuration [60]. The picture proposed in the diagram suggests that the cluster
degree of freedom is only liberated while the excitation energy of the system ap-
proaches the one of the cluster emission threshold. As an example, while ®Be has
a strongly clustered structure in its ground state, which is located at about 0.0918
MeV from the 2-« threshold, an excitation energy of about 7.27 MeV is suggested
to search for the 3-a structures in '2C.
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Figure 1.14: The Ikeda diagram [59] of self-conjugated nuclei. Possible a-cluster
arrangements, and their evolution with the excitation energy, are shown. As the
energy increases, fully V-« structures appear. The basic idea held by this diagram is
that clustering phenomena are expected to manifest, with larger probability, around
the corresponding decay threshold. From [55].

1.4.1.1 The '2C and the Hoyle state

Following the scheme of Tkeda, it does not suprise that the excitation energy region of
the C nucleus close to the 3-a decay threshold (7.274 MeV) is particularly interest-
ing in the comprehension of clustering phenomena in nuclei [61-63|. Carbon, as well
as beryllium isotopes, are indeed intriguing examples of clustering, because of their
3-centers and 2-centers behaviour [10, 61|. A number of models have been deployed
to understand the structure of '2C in this complicated energy region. Single-particle
approaches are for example able to describe rather well the energy of the first 27
excited state (27, 4.44 MeV [26]), while a void in such calculations is present in the
region of the second 0% state (05, 7.654 MeV) [64]. This state, named Hoyle state,
is crucial since it presents a well developed and quite unusual cluster configuration
[65] and also for its astrophysical relevance in the nucleosynthesis of elements [66]
(see paragraph 1.4.2).

The states of 12C close to the 3-a threshold were object of several theoretical
calculations. The a-cluster model is able, for example, to suggest the geometrical
arrangement of a-particles by varying their location and size to minimize the energy
of the system. Within this framework, Brink [67] suggested two possible a-structures
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of 12C, an equilateral triangular arrangement and a linear chain configuration. The
first was associated to the ground state while the second, where a-clusters assume
a linear shape was directly linked to the 7.654 MeV state. This idea supported
the Morinaga [68] scheme, where, based on the 3-a linear structure of the Hoyle
state, he predicted the 2% member of the rotational band to be located at around
9.70 MeV. The subsequent rotational excitation of such a deformed structure where
instead predicted at 14.18 MeV. These two states were linked, respectively, to the
experimental 9.61 MeV and the 14.16 MeV, whose spectroscopic properties were
unknown at the time. With the increasingly precise information on 2C spectroscopy
obtained during five decades of experimental investigations, the idea of a linear chain
in 12C lost its relevance, being in striking contrast with experimental data.

Microscopic models have well reproduced the spectrum of the low-lying excited
states of 12C observed below 15 MeV. By using a fully-microscopic a-particle model,
where the Pauli principle is treated exactly, Uegaki and collaborators [62] success-
fully described such a spectrum in the GCM framework. Together with the compact
configurations usually expected in low energy nuclear states, they found a new phase
of aggregation. In a number of the states characterized by the new phase, 2C is
described as constituted by a fully dissociated 3-a weakly interacting system, where
the clusters move freely over a wide spatial region. The energy of the 0 state is
well reproduced within this model, and it appears not as a chain-like state but as a
finite a-boson gas. The ground state of 12C is predicted to have a stable deformation
with a compact 3-a triangular configuration, as well as the entire rotational band
K™ = 0% build on it. Similar results, concerning the description of the Hoyle state
as an a-particle gas state, were attained by Kamimura [63] in his RGM microscopic
calculations.

Given the bosonic nature of the 3-a system, it is possible to assume, if the
inter-cluster separation is sufficiently large, that the internal structure of a-particles
becomes no longer so important. The condition needed to achieve this is that the
nuclear radius is large enough that an a-particle may explore (by tunnelling) the
classically prohibited region, increasing the nuclear volume. In such a circumstance,
the antisymmetrization properties of the fermionic system play a negligible role and
the system can be treated as made of 3 bosons, which may form a condensate. This
hypothesis was supported, for the 12C 05 state, by electron scattering experiments
[71], which pointed out that the Hoyle state has a radius well larger (of a factor
~ 1.5) than the one of the ground state. Microscopic calculations were developed
to describe the Hoyle state as a Bose-FEinstein condensate under the framework of
the THSR (Tohsaki, Horiuchi, Schuck and Ropke) wave function [72-75]. They
succeeded in the reproduction of the charge form factor derived from electron scat-
tering experiments [72] without any arbitrary normalization. The Figure 1.15 shows
the decomposition of the THSR wave function, as a result of the calculations of
Refs. |69, 70], into its orbital components, for the ground state and the Hoyle state
in 12C. This revels that, for the Hoyle state, the THSR wave function has a strong
(=~ 70%) overlap with one of 3 a-particles in the Sj-orbital, while other contributions

35



Chapter 1. Introduction: Clusters in Nuclear Physics

1.0

08F

061

A

0.4F

0.2F

S, DGy S Dy GaSy DyGy S, Dy Gy Sy Dy Gy S5 Dy Gy
Ground state Hoyle state

Figure 1.15: Decomposition of the THSR wave function describing the 2C g.s. (left)
and the 2C Hoyle state (05, right) into its components. The 70% of superposition
with the S orbital for the Hoyle state wave function indicates a possible BEC nature.
This behaviour is not present in the g.s., where S, D and G orbitals contribute with
almost the same amplitude. From [69, 70].

are small, a clear evidence that BEC phenomena are predicted to occur in this de-
scription. The 30% of overlap with orbitals different from the S; indicates that the
Pauli principle plays a small role in the interior region of the Hoyle state. The same
picture for the ground state (Figure 1.15) clearly indicates that BEC phenomena do
not occur in such a state, where, on the contrary, there is an almost equal contri-
bution of S, D and G orbitals, reflecting the strong influence of the Pauli principle.
FMD calculations also succeed in the reproduction of the electron scattering form
factors of [71]. They predict the Hoyle state as constituted by a dominant weakly
bounded a-particles structure, with relative positions of a-clusters which reflect a
a+8Be configuration. In such a model, antisymmetrization properties are not neg-
ligible and this is in contradiction with an hypothesis of the BEC nature of this
state.

Very recent microscopic 3-a calculations, based on the Faddeev three-body for-
malism [26]|, were published by Ishikawa [76]. They show the presence of three
distinct local peaks in the calculated density p(z,y) in correspondence of the res-
onance energy of the Hoyle state, denoted with A, B and C in Figure 1.16 (left)
and corresponding to three distinct a-clusters. This picture is the one of a strongly
clustered structure, where the inter-cluster A-B distance is reduced compared to the
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Figure 1.16: (left) Density distribution p(z,y) of the Hoyle state in '? from micro-
scopic calculations based on the Faddeev three-body formalism. (right) Symmetric
Dalitz plot of Hoyle state 3-a decay (a) obtained from the calculations of the left
panel. (b) schematic explanation of the region of the plot occupied by sequential
decays (SD), Direct Decays from a Linear chain (DDL) and Direct Decay with Equal
energy (DDE). The figures are extracted from [76].

A-C and B-C distances, indicating the presence of a ®Be together with an a-particle.
The structure of the Hoyle state is found to be a weak mixture of configurations
including a possible bent-arm arrangement. This model allows to describe the decay
path of the Hoyle state. An analysis with the symmetric Dalitz plot technique (see
Paragraph 2.3 of Chapter 2), as shown in Figure 1.16 (right), points out a dominant
sequential decay (SD) mode, i.e. the decay in the a+®Be final state, contribution,
which is associated, in the plot, to an horizontal band (as shown by the Figure 1.16
(b), right panel). Other contributions, i.e. Direct Decays from a Linear chain (DDL)
and Direct Decay with Equal energy (DDE) are found to be well below 1% of the to-
tal decay width. A possible bent-arm configuration for the Hoyle state is also found
in Ref. [77] by means of an ab-initio lattice calculation. In the framework of the
lattice calculations, they found a compact triangular configuration of a-cluters for
the ground state and the first 27 state of 12C, while, an obtuse triangular configura-
tion (bent-arm) is found to describe the structure of the Hoyle state and to provide
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Figure 1.17: Energy levels of ?C obtained from the AMD calculations of Ref. [79]
compared to the experimental one and to RGM [63] and GCM [62] results. From
[79].

evidence of the second 2% state. The latter is linked to the rotational excitation of
the Hoyle state, which is currently one of the hot topics in nuclear physics [78].
AMD calculations of '2C structure have been performed in Ref. [79]. This model,
employed by Kanada-En’yo and von Oertzen, provides a good description of 2C
excited states for both shell model and cluster states. The corresponding energy
spectrum of 12C states is reported in Figure 1.17 (from [79]), in comparison with the
experimental one and with those obtained from, respectively, RGM [63] and GCM
[62] calculations. The latter are able to reproduce some states above threshold, but
fail in reproducing the energy of the 27 state. For the Hoyle state it is found that it
is dominated by a [*Be(07) ® 1 = 0];—0 (« + ®Be) configuration and that it exhibits
cluster-gas features. The 23 state, which is considered to be the first rotational
excitation of the Hoyle state, is found at an excitation energy of about 9.9 MeV.
The authors linked this state to the one experimentally observed in Ref. [80].
Finally, calculations made using the Algebraic Cluster Model (ACM, see for
example [83]) have been recently applied to ?C structure in [81]. In this model,
a-clusters are assumed to be the corners of an equilateral triangle. In analogy with
molecular physics, the wave-function of a symmetric object has to obey to particular
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Figure 1.18: (left) Comparisons between experimental observed states currently
assigned to the ground state and Hoyle band in ?C and (right) the calculated ones
via the ACM [81]. From [82].

symmetries that are well described in the group theory [84]. For example, for an
equilateral triangle, the D3, symmetry has to be used. Excited states of such a
structure can be constructed both through rotation of the whole triangle or through
expansions and contractions of its corners. Starting from the Dj, symmetry, the
authors of Ref. [81] predicted a peculiar sequence of states, at increasing excitation
energy, having J™ = 0%, 2*, 37, 4F and 5~. The energies predicted by the ACM
are shown in Figure 1.18 (right) compared with the ones obtained in experimental
works (left). Two types of structures are identified: the first, with a smaller moment
of inertia, is associated to the ground state and gives rise to a rotational band
(ground band, K™ = 0f), the second is instead much more deformed and gives rise
to the Hoyle band, i.e. the rotational band having the Hoyle state as band-head
(K™ = 03). The 07 and 2% excitations correspond to the rotation of the triangle
around an axis lying in the plane of the triangle, while states of higher order of spin
are relative to rotations around an axis perpendicular to the plane itself. The ACM
not only reproduces the ground state properties of 12C and the ground band?, but
also describes the Hoyle state and its excitations as a symmetric stretching vibration

9Hints for the presence of a triangular a-cluster configuration even in the ground state of 12C
were obtained from high precision experiments performed by the Naples and Milan groups in the ’70
[85, 86]; unfortunately, these works were largely overlooked. They measured angular distributions
of p+12C elastic scattering data at energies going from 3 to 64 MeV. At these energies, the projectile
wavelength is of the same order (some fm) of the inter-cluster separation distances, and peculiar
diffraction patterns would appear. From very accurate measurements and analysis of angular
distributions, the authors of Refs. [85, 86] quoted a 20% probability that « triangular structure
can appear even in '2C ground state and estimated an average inter-a-cluster distance of about 4
fm.
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of the equilateral triangle coupled to a rotation.

In general, the properties of the Hoyle state which are described by means of
cluster models could be better understood by means of high precision experiments.
As an example, the identification of the missing Hoyle band members is of crucial
importance, since it makes possible to experimentally extract quantities like the
moment of inertia of the rotating structure and therefore its deformation'®. The 2F
member of the Hoyle band was initially identified by Itoh and co-workers [80] and
recently confirmed by Freer and collaborators [87| using inelastic proton scattering
experiments and by Zimmermann et al [88| by carbon photo-disintegration. In 2011,
the authors of [89] found evidence of a 4 state at about 13.3 MeV and having a
width of 1.7 MeV. This state can be attributed to the 47 member of the Hoyle band,
seen in the ACM calculations of Figure 1.18 and further confirmed in [90]. These
results, together with the theoretical studies, allow to rule out possible conjectures
about a linear chain structure of the Hoyle state.

1.4.1.2 Theoretical calculations for 0O and *°Ne

The a-particle model has been successfully applied to the case of 1°O. In Ref. [91],
it is proposed a tetrahedral symmetry of 4-a particles, where the a-clusters lie
in the corners of a tetrahedron, T; symmetry. Two kinds of rotating structures,
respectively associated with 2C 4+ o and 4a configurations, are proposed. They
should be observed, following the Ikeda scheme, around an energy of, respectively,
7.16 MeV and 14.44 MeV. The head of the K™ = 05 band (lying at 6.05 MeV
excitation energy) is linked with a quasi-planar structure. ACM calculations have
been also employed for describing the spectrum of 0. An attempt to describe the
rotation-vibration spectrum of 4« configuration with tetrahedral symmetry is made
in Ref. [92] by means of ACM calculations. These theoretical predictions, which are
capable of describing the full dynamics of four-body clusters, show evidence for the
occurrence of this symmetry in the low-lying spectrum of 0. Within this model,
the authors were also able to make a detailed description of energies, electromagnetic
transition rates, form factors, and B(FL) values. The 90O spectrum obtained from
these calculations is shown in Figure 1.19, where four rotational bands are identified
with different symmetries. They reproduce in a quite satisfactory way the observed
160 spectrum [93]. Other theoretical calculations involving the '®O nucleus include
the Hartree-Fock (HF) approximation |94, 95], the Nilsson-Strutinksy (NS) model
[96] and the core + « potential model [97].

The cluster structure of 2°Ne is particularly remarkable, since two closed shell
nuclei are involved in its cluster decomposition (see table 1.3): the a-cluster resides
outside the O magic core. The simple core + « potential model of Buck and

10T a simple rigid body model, energy of rotational members belonging to a band is connected
to their total angular momentum J through the moment of inertia of the rotating structure:
E; = %J (J 4+ 1). The latter can be extracted if one knows the values of excitation energies of
rotating states for different J values.
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Figure 1.19: Schematic spectrum of %O calculated by assuming spherical top with
4-a tetrahedral symmetry. Four rotational-vibrational bands are identified, having
A- E- and F-like Sy symmetries. From [98].

collaborators provides a rather good description of a number of low-lying states
belonging to positive and negative parity bands [99]. A further improved theoretical
interpretation of these rotational bands has been given in [100], where they pointed
out the molecular nature of ?°Ne in studying self-conjugated nuclei rotational bands.
They showed that the first rotational bands K™ = 0% of 0 and ?°Ne could be
unified as the twins of the same molecule-like structure of an a-particle with a
residual nucleus. In the case of 80, the positive parity band built on the 05 state
was attributed to configurations in which a '2C core is coupled with a a-particle in
the sd shell [101]. The second 'O band build on the 1~ state (9.58 MeV excitation
energy) was instead explained as a result of the grazing motion of the a-particle
around the '2C core. The same picture was extended by Horiuchi and Tkeda [100]
to the detailed description of the ground state band in **Ne (K™ = 07) and the
K™ =0 (built on the £, = 5.80 MeV state). A summary of their results is shown
in the Figure 1.20, where the energy spectra of the K™ = 0% rotational bands of
160 and *°Ne, calculated via a molecule-like o + residual structure, are displayed.
This asymmetric cluster molecule-like structure is also rather well described in the
framework of the AMD [102] model, from which it emerges quite naturally and
without any a-priori constraint on the arrangement of the 20 nucleons. The quartet
model has been, finally, used to probe a-like structures of 2°Ne under and above the
a-decay threshold (4.73 MeV) [45-47].
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Figure 1.20: (a) Rotational spectra of a heteropolar diatomic molecule used for
comparison. (b) Energy spectra of K = 07 and K = 0~ rotational bands for: 50
(left), 2°Ne (right). They are calculated assuming a « + core molecule-like structure.
In the case of 2’Ne, the K = 0" band is built on the ground state, while the K = 0~
band has the 17 5.8 MeV state as band-head. From [100].

1.4.2 Astrophysical relevance of clustering

Clustering phenomena assume a key role also in nuclear astrophysics, where different
scenarios of stellar nucleosynthesis can be affected by the properties of nuclear states
involved in the reactions [103]. A very interesting example is the case of 12C. It is
useful to clarify the importance of clustering in astrophysics and it is of particular
relevance for this work since it is object of one of the investigations we will discuss
in Chapter 2. '2C is one of the major constituents of living beings, and, therefore,
understanding its origins represents a challenging problem. Our knowledge traces
the origin of 2C to the so-called 3a process of stellar nucleosynthesis [104, 105].
This process occurs in stars during the helium burning stages of their evolution and
proceeds essentially via the initial fusion of two a-particles followed by the subse-
quent radiative capture of a third « to the ground state of 12C. Anyway, the reaction
rate of this process is strongly suppressed by its intermediate stage, where a ®Be is
formed. The extremely short life-time of the unbound ®Be (of the order of 107165)
acts indeed as a sort of bottleneck for the whole process. A non-resonant two-step
process, therefore, cannot explain the observed abundances of carbon, and conse-
quently of the heavier elements, in the universe. This fact led Fred Hoyle, in 1953,
formulate the hypothesis that the 3a process should be a resonant process, proceed-
ing through a resonant state of 12C located close to the corresponding ®Be + « decay
threshold [106, 107]|, as schematically shown in Figure 1.21. This state, according to
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Figure 1.21: Scheme of low-lying states of ?C. The Hoyle state (7.654 MeV, 07)
is shown together with the corresponding 3a and a+®Be decay thresholds. The
12C(7.654)— a+®Be decay and the possible electromagnetic transitions to the
ground state are shown. From [10].

the Hoyle hypothesis, should be characterized by J™ = 0T, in such a way that the
centrifugal barrier of the a-capture vanishes (s-wave capture) and the second step
of the process maximizes the probability of producing '>C. The fusion probability
is further increased if one assumes a strongly clustered ®Be + « structure for the
Hoyle state. This state was then confirmed a few years later by Cook and collabo-
rators [108], and it was found to lie at 7.654 MeV, only 285 keV above the a decay
threshold, as shown in Figure 1.21.

Since three body collisions are strongly inhibited in the temperature range where
the helium burning occurs, one can conclude that the 3a process is essentially a two-
step process made of:

‘He + “He — ®Be (1.44)
‘He 4 ®Be — 2C + (1.45)

where the second step is maximized by the fact that the 92 keV of energy required
to make such a fusion is remarkably close to the energy of the so-called Gamow
window!! [103], which is located, as an example, at around 85 keV (60 keV width)
for a temperature of 10°K. The amount of C that is so formed can be calculated

"1 The Gamow window, see the Section 2.6 of Chapter 2, corresponds to the range of energies
which mainly contribute in the compute of the reaction rate within a star. In other words, only
nuclear resonances which are approximately inside the Gamow window give a sizeable contribution
to the reaction rate.
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Figure 1.22: Evaluation of the 3« reaction rate with different methods: hyperscalar
harmonic R-matrix method (solid), the NACRE evaluation [109] (red dotted), the
Continuum Discretized Coupled Channel (CDDC) [66, 110] and the more recent
three-body Breit Wigner method BW(3B) [111]. From [111].

from the competition between a-decays of the Hoyle state (which are regulated by
the I', partial width [103]) and radiative ones (I';qq = I'y+T'e+.- ) for the two possible
radiative transitions, e.g. gamma emission through the 2 state and pair production,
which lead to the ground state of 12C (see Figure 1.21). The corresponding reaction
rate is so fully determined by the properties of the Hoyle state:

1—‘ozl_‘rad - Er
— €

< ov > BT (1.46)

being Er the energy of the Hoyle resonance, kp the Boltzmann constant and I' the
total level width. The latter is known to be fully dominated by the a decay width, i.e.
I' =T, + yeqg = Ty, and so it results in a dynamical equilibrium *He + ®Be < 12C*
only broken by the small leakage to the >C ground state given by the radiative
decays. At stellar temperatures of 7'~ 10® — 10°K this process is thus dominated
by the fusion through the ®Be ground state, which is therefore regulated by the so-
called sequential decay (SD) width of the Hoyle state, which corresponds to a-decays
leading the residual 2« system under the 92 keV ®Be level. However, in astrophysical
scenarios that burn helium at lower temperatures, like for instance helium-accreting
white dwarfs or neutron stars with small accretion rate, the reaction rate of the 3«
process is completely dominated by another decay mode of the Hoyle state: the non-
resonant, or direct, v decay (DD) [110, 112, 113], where the two « particles bypass
the formation of ®Be via the 92 keV resonance. Recent theoretical calculations
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show that, at temperatures below 0.07GK, the reaction rate of the direct process is
largely enhanced with respect to the one calculated by assuming only the sequential
scenario [109]; as an example, for temperatures around 0.02GK such enhancement is
predicted to be 7-20 orders of magnitude [66, 111, 112, 114, 115|. This can be seen
in Figure 1.22, where the authors of [111] show the reaction rate of the 3« process
computed with different models in comparison with their three-body Breit-Wigner
method BW(3B), which represents the state of art of reaction rate calculations for
such a process.

A precise knowledge of the above mentioned decay widths of the Hoyle state
is therefore required to understand its astrophysical relevance, especially for low
temperature stars, where even a small contribution of direct decays would result in
strong enhancements of the 3a reaction rate. In Section 2.3 (Chapter 2) we will
discuss the results of our experiment aimed to improve the present knowledge of
such a branching ratio.

1.4.3 Non-self-conjugated nuclei: nuclear molecules

Clustering phenomena beyond pure a-clustering appear also in the case of non-
self-conjugated nuclei. For example, in the case of neutron-rich nuclei, clustering
features are strongly influenced by the presence of extra neutrons. The first attempt
to theoretically describe clustering phenomena in non-a-conjugated systems was
made by Hafstad and Teller [29] considering a series of neutron-rich isotopes with
only one extra-neutron respect to the corresponding self-conjugated configuration:
’He, °Be, *C and 0. They observed how the binding energies of these 4n + 1
nuclei depend not only on the a-a interaction, but also on the role of the extra
neutron, which reflects the additional degrees of freedom brought by the extra-
neutrons to systems. In this way, while the binding energy of He was reflecting the
a-n interaction, the 9Be (a + n + a) was recognized having a contribution to the
Hamiltonian from an exchange interaction. The basic description of neutron-rich
nuclei given by Hafstad and Teller was that of clustered systems in which covalent
exchange neutrons are shared between a-cores in order to increase the stability of the
structure. This behaviour presents a quite clear analogy with the case of covalent
bonding in molecules and, therefore, the extra neutrons are often called covalent
particles, while the corresponding nuclear configuration is named nuclear molecule.
They gave the basis of the treatment of clustering phenomena in non-self-conjugated
nuclei, even if significant progress has been achieved only 50 years later. As in the
case of self-conjugated nuclei, we will focus here on a limited class of examples,
which will be useful for the analysis that will be presented in Chapter 2. For a more
detailed and comprehensive review, see Refs. [10, 55| and references therein.
Nuclear molecules!? are a special class of systems which can be described in
terms of the exchange of valence particles between stable clusters. The variety

2Tt is important to stress that in the case of nuclei with an extra-neutron outside of the a-
centers, the analogy to molecules is a bit delicate. Indeed, the Born-Oppenheimer approximation
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Figure 1.23: Modified Ikeda diagram to account cluster structures in the presence
of extra neutrons. In analogy to the analogous diagram for self-conjugated nuclei
(Figure 1.14) cluster configuratios of neutron rich nuclei are shown in correspondence
of the emission thresholds.

of cluster structures which can be in such a way obtained for light neutron-rich
nuclei is shown in Figure 1.23. This diagram is called modified Ikeda diagram, since
it provides a scheme analogous to the one proposed by Ikeda for self-conjugated
nuclei (Figure 1.14) but extended to the case of systems with extra-neutrons. The
evolution of clustering phenomena is here described as a function of the neutron-
richness and the corresponding decay thresholds at which these structures should
appear are also shown. Carbon and beryllium isotopes are remarkable examples,
since they represent the simplest nuclear molecules constituted, respectively, by a
two-center (dimeric) and a three-center (trimeric) configuration.

[84] treats the extra-electron as a rapidly moving particle with a negligible weight. This approxi-
mation is reasonably valid for molecules, where the mass ratio of the electron to nucleus is of the
order of 10™*, but less valid in nuclear molecules, where the mass of the valence particle is of the
same order of the ones of the a-centers [36].
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Figure 1.24: Excitation energy spectrum of °Be as a result of the variational calcu-
lations after spin-parity projection (VAP) in the AMD framework (right) compared
to the experimental one from [119] (left). Density distributions for protons (left) and

neutrons (right) are shown for each state considered as band head of a rotational
band, i.e. 0y, 25, 05 and 1. From [120].

The exchange of neutrons between a-particle cores is an extremely important
concept which gives the basis to the treatment of the beryllium isotopic chain [61,
116]. The glue-like effect played by extra neutrons can be quite well understood by
looking at the case of “Be. While ®Be is unbound against a-decay, *Be is stable.
Giving the highly clustered nature of ®Be, one can assume a a+n+a structure for an
appropriate description of “Be. The presence of a further neutron makes it possible
for the structure to be bound, and, furthermore, °Be is the only stable beryllium
isotope. Moreover, electron scattering on Be has suggested a high deformation of
this nucleus, in possible agreement with a dimeric structure [117, 118]. °Be is a
further interesting case since it can be described in terms of a symmetric nuclear
dimer with a couple of valence neutrons [61]. The AMD model provides a good
description of both shell model and molecular-like aspects, which often coexist within
the domain of light neutron-rich nuclei. In order to theoretically study low-lying
excited state of the °Be isotope, Kanada-En’yo, Horiuchi and Doté [120] developed
variational calculations after parity and total angular momentum projection in the
framework of AMD. Results are shown in Figure 1.24 (right panel). Excited levels
are grouped into rotational bands such as K = 0, 25, 05 and 1;. For each state,
here considered as band-head of rotational bands, proton (left) and neutron (right)
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Figure 1.25: Schematic representation of molecular orbit 7 (left) and o (right) in the
case of two a-centers. In the case of a m bond, the valence neutrons lie ortogonally
to the axis of the two a-cores, while in the ¢ bond they lie between the a-cores.
The inter-cluster separation is much more pronounced in the o orbital. From [120].

density distributions are shown. They indicate quite deformed shapes, as a reflection
of the 2a + 2n clustering structure. From an analysis of the single-particle wave-
functions of valence neutrons, the 07 as well as the 2% and 4T members of the
ground band are found to be in the negative parity orbits, characterized to be
bonds (Figure 1.25 left). In this configuration, valence neutrons lie orthogonally to
the a-centers axis which, consequently, have a less pronounced separation. On the
other hand, clustering phenomena are more evident in the 1~ band and, especially,
in the 05 band (built, respectively, on the 5.96 MeV 1~ and the 6.18 MeV 0T states).
The latter is characterized by significant components of positive parity orbits, which
are analogous to the o orbit (Figure 1.25 right). In this case valence neutrons are
localized in the region in between the clusters, leading to a larger separation of
clusters and a much more developed cluster nature. These findings are in agreement
with the ones of von Oertzen [61], obtained with his dimer model of beryllium
isotopes. More recent calculations have been performed by using a microscopic
a + a + n +n model based on the molecular orbit (MO) model. Low-lying states
of "Be were predicted by using several configurations of valence neutrons built as
combinations of three basic orbitals whose positions are determined variationally.
These orbits originate from the low-lying 3/27, 1/2% and 1/2~ states in “Be. The
10Be ground state together with the 03 state appear to be characterized by the m
orbit of the valence neutrons. The first is therefore, in analogy with Refs. [61, 120],
rather strongly bound and it does not exhibit a particularly pronounced cluster
separation. The second 07 state exhibits instead a large inter-cluster distance (as
in the case of the AMD calculations [120]), being characterized by a o orbit. The
present experimental knowledge of 1°Be cluster states and rotational bands is quite
controversial [121], and it will be one of the subjects of the experimental investigation
we will present in Section 2.1 of Chapter 2.

The above discussion concerning two-center nuclear molecules can be naturally
extended to the case of multi-center molecules: the so-called nuclear polymers [61].
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Carbon isotopes represent the simplest cases of nuclear polymers, since they are
constituted by 3 a-cores, and, therefore, they are a particularly significant example
of nuclear molecules with more than 2 centers [10, 55|. Along the carbon isotopic
chain, particularly remarkable examples are present among both proton-rich and
neutron-rich isotopes. In the first case, 'C is considered an interesting isotope,
being it constituted by a missing neutron with respect to the self-conjugated 2C
configuration. Kanada and collaborators proposed a systematic study of its negative
parity states within the AMD framework [122]. In this work, they succeded for the
first time in reproducing the 3/25 state of 1'C at an excitation energy of 8.10 MeV. Tt
has been linked to a structure quite similar to the one of the Hoyle state in '2C, and,
therefore, considered as a gas-like state with a pronounced 2 o + 3He configuration,
where the two a-clusters and the 3He are weakly interacting and spatially extended.
On the other hand, a 5/25 state, which is considered a non-cluster state, is found
quite at the same excitation energy. An analysis of the mirror nucleus 'B, i.e.
the nucleus obtained from ''C by exchanging of role protons with neutrons, has
revealed a correspondence between states of these two nuclei with same properties.
As an example, the above discussed 3/2; state of "C is linked to the 8.56 MeV
mirror state in "B, which presents a diluted-gas structure [123, 124]. These states
are summarized and compared to the ones of "B in Figure 1.26, taken from [123].
Cluster states of 11C have been organized into rotational bands, and these results
are discussed in [125, 126].

The first neutron-rich carbon isotope is the *C. As in the case of ' C, its cluster-
configurations are strongly linked to the ones of '2C, since it has only a further
neutron outside of the '2C configuration [61]. In the case of 3C, a quite large
number of theoretical papers have been published regarding its cluster structure.
Milin and von Oertzen [127] focused on parity doublets, i.e. couples of rotational
bands with opposite parity and the same structure. These bands reflect the intrinsic
asymmetry of the underlying structure (Be + « or a + a + « +n). They proposed
two opposite parity bands, the K™ = 3/2~ built on the 9.897 MeV state and the
the K™ = 3/2", which has the 11.080 MeV as band-head, based on the “Be(3/27,
g.s.) + a structure. All the states belonging to these bands, i.e. the 5/2% 7/2%,
9/2*% and 11/2* members'? (see Figure 1.27), are found to be populated in reactions
involving a-transfer. This evidence allowed the authors to conclude that they are
strongly characterized by a pronounced a-cluster nature. The properties of these
states have also been characterized on the basis of a molecular orbital model. The
band heads are found to coincide with the two lowest states based on the three-center
molecular orbital approach. From an analysis of the moment of inertia they suggest
a linear chain arrangement of the three a-particles bound by a covalent neutron.
States corresponding to the Be(1/2%, 1.68 MeV) + « structure are predicted as

13Many of the J™ assignments, especially those for high-J values, are very tentative and often
subject of debate. In Section 2.4 we will report new results on '3C spectroscopy at energies above
the a threshold.
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Figure 1.26: Comparison between the mirror nuclei " C (right) and "B (left) low-
lying states from [123|. An almost perfect correspondence is reported between cou-
ples of states. As an example, the 3/2; state of 1'C, lying at 8.10 MeV, has the 8.56
MeV 3/23 as a correspondent in " B. They are both characterized by a diluted-gas
cluster three-center configuration, respectively 2 a + 3He and 2 o + t.

well and they have been linked by the authors to possible triangular configurations.
A doublet of J™ = 1/2* experimentally observed states lying, respectively, at 10.996
MeV and 8.86 MeV are considered as candidates for this structure. Finally, they
suggested that the distinction between linear and triangular fashions in the '3C
cluster arrangement should be linked to considerations of o and w-orbitals for the
ground and first excited states of °Be, in which the valence neutron occupies two
different and orthogonal configurations. *C low-lying states have been also object
of microscopic 3a-n calculations [128-131].

High energy '3C rotational bands, based on its 3o cluster structure, were pre-
dicted by Furutachi and co-workers [129] via a 3a + n cluster model based on the
GCM wave-function. Their model is able to reproduce the energy of the ground
state of 3C but not the energies of the 5/2; and 7/2;, which belong as well to
the ground state rotational band and which are probably not consistent with the
model assumption of 3a-clusters. Two excited rotational bands are predicted to be
built on 3/25 (11.4 MeV) and 3/25 (14.5 MeV) states around the threshold energy,
called, respectively K™ = 3/2; and 3/2; (see Figure 1.28). Both bands appear
as characterized by large moment of inertia and a pronounced cluster configuration.
The K™ = 3/25 band, which is linked by the authors to the 3/2~ band of [127] (blue
open squares in figure) corresponds to a bent 3a linear chain configuration, more
compact than the gas-like configurations predicted by the same model in the case
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Figure 1.27: Parity split rotational bands (K = 1/2%) based on the ?Be(3/27, g.s.)
+ « structure, as suggested in [127] on the basis of a three-center molecular orbital
model. Energy of their rotational members is plotted as a function of J(J + 1).
They correspond to linear chain arrangements of 3 a-cores with a valence neutron.

From [127].

of 12C. A 1/2; state (yellow circle in Figure 1.28) is finally found around the 3a+n
threshold (12.221 MeV), but it is not linked to the previously discussed rotational
bands since it is not described by a 3a + n structure.

The possible existence of 1/2 states in '*C based on a 3« nature is extremely
important, since they can be possibly related to the coupling of a valence neutron
to the Hoyle state in *C. AMD calculations with the constraint of the harmonic
oscillator quanta (HON) pointed out that, differently from the 1/25 state predicted
in [129], the 1/25 (E, ~ 18.0 MeV) has a strong 3a + n structure, giving rise
to a linear chain band (K™ = 1/27) with a large deformation [130]. The 1/2]
state identified at 14.9 MeV is associated to the K™ = 1/2% rotational band. The
K = 1/2* bands form a parity doublet which reflects the asymmetric intrinsic
structure of *C* seen as a nuclear molecule. A 1/25 state, lying at about 15.7 MeV
excitation energy, is associated to a large *C(07%) ® n(s, /2) spectroscopic factor.
This state can be interpreted as the Hoyle analog state in 3C, i.e. as the 05 state
of 12C accompanied by a valence neutron in s-wave. This state has a larger radius
(2.78 fm) than the one of the ground state of '3C (2.52 fm), further confirming
its analogous nature to the Hoyle state. However, it should be noted that such a
gas-like structure is distorted by the presence of the valence neutron, which makes
the radius smaller than the one observed for the Hoyle state (2.90 fm). Another
possible Hoyle analog state is found, by means of 3 +n OCM calculations [131], at
an excitation energy of about 14.9 MeV. This state, named as 1/2; by the authors of
[131], is described by a gas-like configuration with an extremely large radius (4.3fm).
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Figure 1.28: Energy of the calculated 3C rotational bands, computed from the
3a+n decay threshold (12.221 MeV) as a function of the J(J +1). The one labeled
as Exp. K™ = 3/2~ corresponds to the one suggested by the Ref. [127] and shown in
Figure 1.27. From [129].

It is characterized by a dominant (= 0.6) C(0 %) ® n(s, /2) spectroscopic factor, as
observed in the Figure 1.29.

The last example here discussed is the case of 19C. Its possible cluster molecular-
like configurations are constituted by a symmetric three-center structure of the type
3a + 4n. This structure is the most promising candidate for a stable linear-chain
configuration because its stability against the bending motion was pointed out by
molecular-orbital model calculations [133]. Despite its importance, our present ex-
perimental knowledge of 1°C is extremely poor [134], and only a few experiments
concerning its cluster configurations are reported in the literature and with extremely
low statistics [135, 136]. Very recently, a theoretical calculation, performed with the
AMD code, has been published [132]. Two kind of 3« structures are suggested, the
one with the a-clusters forming an isosceles triangular configuration and the other
where they are arranged in a linear-chain, see Figure 1.30. The latter is particularly
stable thanks to the role of the valence neutrons. In the case of the triangular config-
uration, the surrounding valence neutrons are found to occupy the sd shell, while the
linear-chain configurations are qualitatively understood in terms of 3/2, and 1/2;
molecular orbits, as predicted by the molecular-orbital model [133]|. Such states have
been organized by the authors of Ref. [132] in rotational bands as in Figure 1.31.
Triangular and linear rotational bands a