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fun, et aussi de ceux moins bons, de nos thèses et Loic, pour son soutien professionnel

et non.
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indéfectible dans mes choix. Merci à mon frère Paolo de faire partie de ma vie. Merci
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Introduction

This thesis is motivated by a challenging problem in anthropology and forensic
science, that of tridimensional facial reconstruction. Facial reconstruction is about
the following question: from the sole datum of a dry skull, are we able to recon-
struct/estimate a virtual face that would trig the recognition of the subject?

This thesis is devoted to the conception, the development, and the analysis of
mesh deformation strategies for shape modeling, processing and comparison -as shape
matching and surface reconstruction- and, in a rather independent concern, for devis-
ing a robust computational method for facial reconstruction. The main contribution
of the thesis is the design of a novel method for shape matching, borrowing techniques
from the shape optimization context.

To better unravel the structure of the manuscript let us start with some consid-
erations about the application motivating of this work.

Context of the work

This work has been realized in the context of the multi-disciplinary project FaciLe,
gathering together maxillofacial surgeons, anthropologists, computer scientists and
mathematicians from Sorbonne Universités. Facial reconstruction methods are de-
manded in forensic cases for enhancing the identification of deceased people when
the skeletal remains is the sole information available for identification. Facial re-
construction is an ill posed problem, meaning that a facial shape is never uniquely
determined from the underlying osseous structure. However, the strong correlation
between a face and its skull is known since ancient times and has fascinated scholars
over the ages [90]. It is only in the 19th century that facial reconstruction emerges as
a common practice in forensic cases; due to the ethical, legal, social and psychological
consequences of the verdict of a forensic identification, questions around the reliabil-
ity of methods became of capital importance [118]. Traditional facial reconstructions
are based on manual procedures -3d sculptures or 2d portraits- and accomplished by
well-experienced forensic artists; the reliability of the result reposes on skills, anatom-
ical knowledge and subjectivity of the practitioner. With the booming of computer
science and medical imaging, many digital methods have been developed for a twofold
purpose. First, digital methods eliminate the subjectivity of the reconstruction; then,
taking advantage of the flexibility of the software one is able to test different hypoth-
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Figure 1: Goal of facial reconstruction: estimation of the facial shape from the underlying
bone.

esis and propose multiple instances of the reconstruction. Most of actual digital
methods combine statistical analysis with the observation of a database of coupled
skulls and faces for learning the relations between face and skull. The quantitative
analysis of shapes is studied in forensic anthropology using the techniques of geo-
metric Morphometrics, which is based on the statistical analysis of 3d coordinates of
landmarks, defined as anatomical loci that are the same in all the specimen under
investigation [15]. Landmarks are important for their biological meaning, but it is
difficult to translate their definition into geometrical rules. Then, their the defini-
tion and placement on the shape under investigation (bones, anatomical structures)
is done manually following descriptive anatomical rules. Current facial reconstruc-
tion methods have much in common with morphometric analysis methods. In either
manual and digital approaches, a set of anatomical landmarks is usually defined on
the skull and corresponding face to account for the soft tissue variability [26, 118].
The correlation between the underlying bone structure and the outer facial shape
is then studied by looking at the soft tissue thickness measured at landmarks. The
reconstruction of the face coupled with the unknown skull is inferred by a statisti-
cal estimation of the facial landmarks and/or by a template deformation approach.
However, the manual effort required for landmark-based methods is important and
increase with the size of the database under examination, making difficult the com-
parison of a huge amount of data. One concern of this manuscript was to design
a fully-automated procedure, suitable for processing a huge amount of data, using
dense surfaces instead of landmarks. Facial reconstruction is intrinsically an interdis-
ciplinary problem. With the advent of digital methods, forensic experts has started to
interact with mathematicians and computer scientists for the development of robust
tools for analysing and comparing complex 3d shapes. The main concern of project
FaciLe was to combine a strong mathematical background, 3d modeling expertise and
robust software implementation at the service of an interdisciplinary discussion about
the subject of facial reconstruction. Based on techniques of continuous deformation
as ’morphing’ and ’warping’, the proposed approach is integrated with anthropolog-
ical assumptions and mechanical models. Our approach combines classical features
-as the use of a head database of faces and skulls or the anthropological expertise for
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(a) (b) (c)

Figure 2: Three ways of accounting for a the skull shape. (a) Semi landmarks, reprinted
from [13]. (b) Implicit description. (c) Closed surface mesh model.

classifying the unknown skull- with mathematical and computational skills as Partial
Differential Equations (PDE), numerical analysis and 3d geometric modeling. The
whole process is landmark-free and relies on general shapes analysis tools instead
of application-specific ones. The general pipeline of our approach for reconstructing
the face coupled with an unknown skull can be summarized in few points. First, a
craniofacial database of coupled skull and face surfaces is generated. Then, an ex-
amination of the unknown skull determines anthropological parameters like age, sex,
ethnicity and, according to these parameters, some instances of coupled faces and
skulls are selected among the database. For each selected individual, a 3d volumetric
mask -which we will call craniofacial template- is generated for encoding the specific
soft tissue variability. The reconstruction of the face coupled with the unknown skull
is done by deforming the craniofacial template onto the unknown skull. This stage is
accomplished in two steps. First, the inner surface of each mask (i.e. the bone sur-
face) is mapped onto a digital copy of the unknown skull by a landmark-free elastic
dense surface morphing. The considered mask is then ’elastically’ transported onto
the unknown skull for deforming the facial template according to the previously com-
puted skull mapping. Doing so, each individual selected in the database generates an
estimate of the unknown face. The set of facial shapes are eventually combined to-
gether for proposing -one or multiple- instances of the reconstructed facial shape. In a
final stage, hairiness and texture are added to the reconstructed shape for enhancing
lifelike appearance.
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(a) (b) (c) (d)

Figure 3: 2d elastic morphing. (a) Template shape. (d) Signed distance function to the
target shape. (b)-(c) Deformation of the template shape (arms raised) for aligning its
boundary with the isolines of the signed distance function.

An optimization method for elastic shape matching

The key ingredient of our reconstruction method is an original shape matching
technique, devised in collaboration with Maya de Buhan, Charles Dapogny and Pascal
Frey. Beyond the specific task of our application, shape matching or morphing relates
to the following task: given a couple of ’template’ and ’target’ shapes Ω0 and ΩT in
Rd(d = 2, 3), find a method for mapping/morphing/matching Ω0 onto ΩT . Such a
transformation may be used as a means to appraise how much Ω0 and ΩT differ from
one another - for instance in shape retrieval, classification or recognition - or to achieve
physically the transformation from Ω0 to ΩT (in shape registration or reconstruction).
Shape matching plays a crucial role in most geometric modeling and shape analysis
applications [111]; a huge interest has already been devoted to this topic among
the mathematics and computer graphics communities [40, 12, 10, 7, 97, 70]. Our
approach relies on a continuous optimal control problem. Under the sole assumption
that the two shapes share the same topology, the desired mapping is achieved by
minimizing an energy functional based on the distance between the two shapes. For
achieving our goal we rely on the shape optimization setting. Shape optimization
problems are optimization problems involving a functional F (Ω) depending on a
domain Ω. The criterion F (Ω) is optimized by searching over a set of admissible
shapes O. Generally a shape functional depends on the domain in a complex way,
for instance via the solution of a differential equation posed on the domain, making
the optimization problem highly non trivial. We propose to measure the discrepancy
between the ’template’ shape Ω0 and the ’target shape’ ΩT in terms of the following
shape functional:

J(Ω) =

∫
Ω0

dΩT (x)dx,

involving the signed distance function dΩT to ΩT . The signed distance function is a
popular level set function of a domain; for each point x of the ambient space, this
function returns the Euclidean distance d(x, ∂ΩT ) to the boundary ∂ΩT . The sign of
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(a) (b) (c) (d)

(e) (f) (g) (h)

< −0.03 −0.005 0 0.005 > 0.03

Figure 4: 3d elastic morphing of a capsule model into the Eros model. (a) Template
shape. (g) Isovalues of the signed distance function to the target shape. From (b) to (f):
deformation of the template shape for decreasing the values of J . (h) Mesh of the template
shape.

the function is chosen negative if the point lies at the interior of the domain, positive
otherwise. The isoline (resp. isosurface) {x ∈ Rd, dΩT (x) = 0} captures the boundary
∂ΩT of the domain. For decreasing the values of J , the template shape has to retract
in the region of spaces in which dΩT is negative and to expand in those in which
it is positive. Consider a shape Ω ⊂ Rd and suppose ΩT ⊂ Ω. In this case, it is
beneficial for Ω to retract for decreasing the values of J . In contrast, when Ω lies
at the interior of ΩT , it will be advantageous for Ω to expand for gaining a negative
contribution and decreasing the values of J . From the above considerations, we find
out that the functional J(Ω) admits a unique global minimizer equal to the target
shape ΩT , which is a quite nice property for a shape optimization problem. The
above existence property follows from the fact that the functional J is defined on
the whole volume Ω0. The global mapping between Ω0 and ΩT is achieved by an
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iterative procedure devoted to the minimization of J , inferring at each step a descent
direction for the functional J . The desired deformation is achieved numerically by
deforming iteratively a mesh of the template shape into a computational mesh of the
target shape. As far as the numerical setting is concerned, the template shape is
described by means of a computational mesh, and the target shape is known only
via the signed distance function to its boundary. We rely on a gradient descent
algorithm for iteratively deforming the template shape. The optimality conditions
associated to our shape optimization problem are calculated using the framework
of the Hadamard’s shape derivative [18, 1, 60]. Roughly speaking, variations of a
domain Ω are parametrized in terms of vector fields, i.e. are considered under the
form Ωθ = (I+θ)(Ω), where θ is a ’small’ vector field which we will make precise in the
following. Doing so, the definition of differentiability over a set of admissible shapes
is translated into a problem of differentiation over a Banach space, which is equipped
with the classical definitions of derivative. The iterative procedure devoted to the
minimization of J produces a sequence (Ωk)k=0,... of shapes (and corresponding meshes

Tk), which are ’closer and closer’ to ΩT . At each iteration, the domain is deformed
according to a a descent direction θ for the functional J . The descent direction θ is
inferred from the expression of the shape derivative J ′(Ω), so as to guarantee the strict
inequality J((I + θ)Ω)) < J(Ω) for θ small enough. Therefore, the mesh is updated
by pushing its vertices according to (a discrete version of) the descent direction θ. At
this stage, two difficulties which are both numerical and theoretical come into play.
First, a classical calculation shows that the ’natural’ descent direction associated
to the functional J makes sense only on the boundary of Ω; it has therefore to be
extended to Ω as a whole so that it can be a guide for displacing the vertices of T .
Second, the mesh update procedure has to be achieved in a ’smart’ way for avoiding
inversion or stretching of elements, which can result in an invalid configuration. For
encompassing both this difficulties, the ’natural’ descent direction for J has to be
extended and regularized. For achieving this goal, we designed a strategy based on
the particular mechanical system of linearized elasticity. Linear elasticity equations
account for the displacement of a material body which is clamped at a part of its
boundary and subjected to body or surface loads, in the range of ’small’ deformations
[22]. The general idea is to replace the ’natural’ descent direction θ associated to J
with a well-suited elastic displacement u which (i) is an extension of θ; (ii) is defined
on the whole shape Ω; (iii) owning to the mechanical features and regularizing effect of
elliptic equations, is smoother than θ, and so more amenable for moving the mesh into
a valid configuration. In practice, the space of admissible deformations is restrained
by parametrizing with elastic displacements. For achieving this goal, at each iteration
the elastic extension is computed by using the gradient of θ 7→ J ′(Ω)(θ) associated to
the inner product inherited from the operator of linear elasticity. This strategy has
proved extremely versatile in numerical practice, allowing to map shapes which are
not necessarily close from one other. The elastic equations have been implemented
in a Finite Element setting. Figures 3 and 4 show two examples of such a procedure.

A different -but close in essence- strategy consists in imposing a displacement field
uΩ,g generated by a surface load g acting on the boundary of the template domain
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(a) (b) (c)

(e) (f) (g)

< −0.15 −0.1 −0.8 −0.05 > −0.0001

Figure 5: Toy example showing the advantages of volume shape matching over its boundary
counterpart. (a)-(e) Computational mesh of the template shape (small disk) and bound-
ary of the target shape (big disk in blue color). (b)-(c) Occurrence of singularities after
few iterations when deforming the template shape according to the functional P . (f)-(g)
Successful recovering of the target shape when the mesh deformation is driven by J .

Ω. A slight modification of J into a state-constrained functional allows to fulfill
this requirement. In this context, the shape functional J is minimized over a set of
admissible surface loads Oad. In this case, the computation of the descent direction
for J needs to take into account the derivative of the state uΩ,g with respect to the
domain Ω. For rigorously assessing this calculation one has to refer to the notions of
Eulerian and Lagrangian derivatives [1]. An alternative, very fast way for achieving
a formal calculation relies on the use of Céa’s fast derivation method [18]. The
application of Céa’s method leads to an explicit expression of the shape derivative in
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terms of the state equation and a well-suited adjoint state. Despite the two numerical
strategies have much in common, they revealed quite different numerical behaviors.
In particular, for ensuring convergence of the overall optimization problem using the
second strategy, one may suppose that target and template shapes are close enough,
which is in practice a very limiting requirement.

Comparison with a boundary functional

The functional J has also been compared to its more classical surface counterpart,
namely the functional of the domain:

P (Ω0) =

∫
∂Ω0

(d(s, ∂ΩT ))2 ds,

which depends on the euclidean distance function d(·, ∂ΩT ) to ∂ΩT , evaluated at the
boundary of Ω0. The functional P is based on a more intuitive paradigm -aligning
two shapes by aligning their boundaries- and has the advantage to be well-defined
on surfaces instead of shapes. However some drawbacks make the functional P less
suitable for numerical practice. First, the computational cost of each iteration is more
involved when comparing with J , since the shape derivative of boundary functionals
-even at first order- involves terms as the mean curvature of the boundary and the
derivative of the integrand function. Second and perhaps most important aspect, for
decreasing the values of P , a point lying on ∂Ω is forced to move to the closest point
on ∂ΩT ; this behavior can generate ambiguous configurations, leading to numerical
singularities and preventing the convergence of the overall algorithm. See Figure 5
for a comparison between J and P on a 2d shape matching toy problem.

Around an existence problem in shape optimization

The functional J has proven useful in the different context of shape optimization
applied to architectural design [32]. The main idea is to use J as a geometrical
constrain in a structural optimization problem for imposing over the set of admissible
shapes a requirement of the type ’stay close to a specific design ΩT ’. This approach
has lead to the consideration of the following functional of the domain:

Sγ(Ω) = γC(Ω) + (1− γ)J(Ω),

which is minimized over the set OV of admissible shapes sharing a fixed volume
0 < V < 1. In the above formula, C(Ω) account for the elastic compliance of a
structure which is subjected to a fixed, used defined surface or volume load, J(Ω) is
the above defined discrepancy functional depending on a fixed target shape ΩT and
γ ∈ [0, 1] is a weighting parameter. The compliance is defined as the elastic energy
stored during the deformation, or equivalently as the work of external loads [1]. The
functional Sγ induces the following interesting theoretical problem: there exist values
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(a) (b)

Figure 6: (a) Mandible mesh model issued from segmentation of medical images. (b) Closed
surface model of the mandibule generated with our warping algorithm.

of the weighting parameter γ for which the problem of minimizing Sγ over the set OV
is well-posed? When γ = 0, Sγ equals J and the problem admits a unique minimizer
ΩT . Oppositely, when γ = 1 the problem of minimizing Sγ turns into a compliance
minimization problem under volume constraint, which is a well known example of
ill-posed shape optimization problem. It can be shown that the optimum design
for such a problem is a density function instead of a classical black/white domain.
The non existence of classical solutions for this problem is due to the occurrence of
homogenization problems [1]. It is well known that under additional geometrical,
topological or regularity constraints -for instance imposing a finite perimeter or an
upper bound over the number of connected components- the compliance problem
admits a (regular) minimizer [60]. The additional constraints add extra compactness
properties to the functional, with respect to some topology which we do not make
precise now. An analysis of the optimality conditions leads to a characterization of
the optima of the functional Sγ. However, this characterization does not suffice for
concluding about a (non) existence result. At the moment of writing, the problem
about the existence for 0 < γ < 1 is still an open question. We discuss a state of the
art of techniques for getting existence results for shape optimization problems and
also perspectives for the study of the functional.

A warping algorithm for reconstruction of closed surface models

From both theoretical and numerical point of view, for using our shape matching
method we need the reference and target shape to be bounded by a closed, orientable
surface. This requirement allows us to define unambiguously interior and exterior of
the considered shape. This representation allows to infer a topological structure to
the considered shapes; such a step is needed for generating a tetrahedral mesh of the
template mesh and for attributing a sign to the signed distance function to the target
shape. Also, most CAD and engineering applications are based on this paradigm.
However, most real-life models does not fulfill the above requirement, either because
the geometry of the object is not covered by the above description or because of
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Figure 7: Three craniofacial templates.

errors occurred during the generating of the 3d model [39]. In the context of our
specific application, we faced with this issue when it came to study the human skull,
which has by nature a quite complex, non closed structure. For circumventing this
difficulty, we developed a method for generating a closed surface mesh model of an
initially non-closed source mesh model. The method relies on an original PDE-based
mesh evolution technique. A template shape is iteratively deformed, producing a
sequence of shapes that get ’closer and closer’ (with respect to the Hausdorff distance)
to the source triangulation. The topology of the template shape is kept unchanged
during the deformation. The implementation of this technique, again, make use of the
linear elasticity equations. The Finite Elements implementation of the algorithm has
been tackled using two different strategies. In particular, tetrahedral and shell finite
elements are considered. First, we considered the case in which the template shape
to be deformed is given by a thick 3d membrane. This choice lead to the employment
of the 3d liner elasticity equations using classical tetrahedral elements. Next, we
consider shell finite elements adapted to the geometry of a surface. The considered
finite elements depend on the two surface coordinates and a third component given
by the normal to the surface [9, 20]. The proposed method can be also used for
example for generating a valid mesh from invalid data. See Figure 6 for an example
of such a procedure.

Back to the application

To end this introductory discussion, let us return focusing on our facial recon-
struction problem. Our elastic matching method has been used at several stages of
the facial reconstruction pipeline. First, the method is used to map the skull items
into each others to learn about their similarities. The vicinity between a mapped
template shape and and the target shape can be fixed up to a application-prescribed
tolerance. The tolerance can be determined in our context according to the error al-
lowed during the segmentation process. This requirement is achieved numerically by
adjusting the size of the mesh of the template shape. Note that with our approach we
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(a) (b)

Figure 8: (a) Deformation of a skull item onto the unknown skull. (b) Deformed craniofacial
template under the effects of skull changes.

are able to generate computational meshes from invalid data, starting from the datum
of the signed distance function to the shape. Moreover, by systematically deforming
a reference mesh into each item of the database (face or skull) we generate a set of
computational meshes enjoying the same number of elements and connectivity, that
are linked each other by trivially composing their associated deformation functions.
This property has revealed useful when constructing the craniofacial templates. This
step is achieved numerically by filling with a a tetrahedral mesh the region of space
between the skull and the face of each individual (see Figure 7). The generated 3d
mask is then deformed and adapted to the unknown skull again in the context of
linearized elasticity. The deformation is guided by the mapping between the skull
item and the underlying skull. Under the effect of boundary changes, each facial item
is mapped onto an estimate of the unknown face. See Figure 8 for an example of such
a procedure. Finally, from the collection of deformed faces we are able to compute
average shapes taking advantage of the point-to-point correspondence inferred from
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the matching procedure.

Organization of the manuscript

The manuscript is organized in two parts, each one composed of four chapters.
The first part is devoted to the introduction of the mathematical strategies, when
the latter focuses on the facial reconstruction problem. By sacrificing mathematical
and computational details, the second part can be read independently of the first.

Part I

Chapter 1
This chapter is bibliographical and is meant to give a very introductory sur-
vey about notions which are used in the rest of the manuscript. First, we will
start with introducing shape optimization, general definitions and the theoret-
ical background that we need for defining the notion of shape derivative of a
state constrained functional. We present en passant an alternative way of mea-
suring the shape sensitivity: the topological derivative. After introducing shape
optimization fundamentals, we discuss informally about possible choices for de-
scribing shapes. In particular, we introduce the signed distance function -and
in general the notion of level set function to a domain- and a brief recall of
the differentiability properties of this function. Last but not least, the Chapter
ends with an introduction to the linear elasticity setting. The equations of linear
elasticity are recalled and, for the sake of completeness, a survey of existence,
well-posedness, regularity of these equations is provided.

Chapter 2
In this chapter we describe our optimization method for elastic shape matching.
After presenting a short, non exhaustive survey about the state of the art of
shape matching techniques, we introduce our functional J based on the signed
distance function. The general workflow of a descent algorithm for shape op-
timization is provided together with the calculation of the shape derivative of
our functional. Theoretical and numerical aspects of the method are presented,
giving to the reader the sufficient technical background for implementing the
method. Several numerical examples are provided for showing efficiency and
limits of the method. The boundary functional P is discussed as well, and some
examples are proposed to show the limitations in numerical practice.

Chapter 3
This Chapter is more theoretical and focuses on the non existence of optimal
shapes for the functional Sγ. Some well-known examples of non existence of
optimal shapes for classical shape optimization problems are provided, as well
as a survey about existence results achieved by adding extra requirements on the
set of admissible shapes. The Chapter ends with an analysis of the optimality
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conditions associated to the functional Sγ and perspectives for the study of the
open existence problem.

Chapter 4
This chapter provides both theoretical and computational aspects of the warp-
ing algorithm used for generating a close surface mesh model from an initial,
arbitrary source triangulation. The Finite Elements implementations of the
model using tetrahedral and shell elements is discussed. Also, we present sev-
eral numerical examples.

Part II

Chapter 5
This chapter is bibliographical and provides a quick state of the art about cur-
rents methods for facial reconstruction. After briefly recalling some historical
circumstances, we describe the general workflow of a digital method.

Chapter 6
In this chapter we deal with the process of acquisition of our database of skulls
and faces. In particular, we describe how we obtain the 3d geometrical model of
the full head (skulls, faces, muscles) from medical images. This stage contains
the following steps: segmentation of medical images, 3d reconstruction of a mesh
model from the binary images, remeshing of the ill-shaped, oversampled model.

Chapter 7
This chapter describes the pipeline of our method for facial reconstruction,
using the tools introduced in the first part of the manuscript. A detailed, user-
friendly description of our method is provided; this portrayal is deliberately not
technical.

Chapter 8
This chapter contains a gallery of results obtained with the proposed method
and a discussion about perspectives and openings of the study. For the need
of benchmarking, the proposed reconstructions are generated by removing the
individuals under investigation from the craniofacial database. This procedure
allow us to compare the estimated face with the original one.

Part of the work of this manuscript has been published into the journal article:

An optimization method for elastic shape matching, M. De Buhan, C. Dapogny,
P. Frey, C. Nardoni, C.R. Acd. Sci., Paris, Sèrie I, 2016.

The following paper has been submitted:

A mesh deformation based approach for digital facial reconstruction, M. De
Buhan, C. Nardoni.
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1.1 Introduction

The aim of this chapter is to introduce some mathematical background which will
be extensively employed in the rest of the manuscript. First, we will start with re-
calling some notions from shape optimization theory. In particular in Section 1.2 we
will introduce the crucial notion of shape derivative, which allows for studying the
sensitivity of a functional which is defined over a set of admissible shapes. Moreover,
we will discuss about the computation of the shape derivative of functions which
depend on a domain via a state equation, achieved for instance as the solution of
a partial differential equation defined on the domain. Sections 1.3 and 1.4 discuss
about two alternative ways for describing shapes. First, we will introduce the level
set (or implicit) description, and in particular one peculiar instance of level set func-
tion to a domain, namely the signed distance function. Second, we will deal with
the explicit description in which the shape under consideration is equipped with a
mesh. Eventually, Section 1.5 deals with a particular mechanical system which will
be ubiquitous in the manuscript, that of linear elasticity.

25
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Figure 1: Variation Ωθ of a shape Ω according to Hadamard’s method.

1.2 A quick introduction to shape optimization

Generally speaking, shape optimization is about optimizing a cost functional J(Ω)
-or objective functional- over a set of admissible shapes Oad. A generic shape opti-
mization problem reads as:

min
Ω∈Oad

F (Ω), or max
Ω∈Oad

F (Ω).

Shape optimization is a booming area with applications ranging from aerodynamic,
fluid, structural optimization. When the optimization problem is casted over a set
Oad of shapes, some additional difficulties come into play, from both theoretical and
numerical point of view. First, one needs a way for describing admissible variations
over the space Oad and a notion of differentiation over the space Oad, which is needed
for inferring optimality conditions. Moreover, in most problems the dependency of
the objective functional on the domain is highly non-trivial; the functional J may
depends on geometric properties of the domain (i.e. curvature, normals, thickness)
but also on a state uΩ - achieved as the solution of a PDE posed on Ω- and its
derivatives. In this case we have to deal with the derivation of the state uΩ under
consideration with respect to the domain.

1.2.1 Shape sensitivity analysis: Hadamard’s shape derivative

Several notions of differentiation with respect to the domain are available in the
literature. Here we refer to the Hadamard’s boundary variation method (see e.g.
[1, 60, 81]). The general idea is to establish a correspondence between variations
of the domain and diffeomorphisms of Rd. Thus, variations of a given shape Ω are
considered under the form:

Ωθ = (I + θ)(Ω),
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where θ : Rd 7→ Rd is a ’small’ diffeomorphism. Indeed, each admissible variation Ωθ

of Ω is parametrized in terms of a transformation of the form I + θ, which remains
’close’ to the identity. The admissible vector field θ is sought among the Banach
space W 1,∞(Rd,Rd) of bounded and Lipschitz functions endowed with the norm:

||θ||W 1,∞(Rd,Rd):= ||θ||L∞(Rd)d+||∇θ||L∞(Rd)d×d ,∀θ ∈ W 1,∞(Rd,Rd).

The convenience of the choice of this space follows from the following results (from
[1]).

Lemma 1.2.1. For any θ ∈ W 1,∞(Rd,Rd) such that ||θ||W 1,∞(Rd,Rd)≤ 1, the ap-
plication I + θ is a Lipschitz homeomophism with Lipschitz inverse.

Using the correspondence between vector fields and functions, the Hadamard
shape derivative is defined in terms of the classical derivative over a functional space.

Definition 1.2.1. A function F (Ω) of the domain is said to be shape differentiable
at Ω if the mapping θ 7→ F (Ωθ), from W 1,∞(Rd,Rd) into R, is Fréchet differentiable
at θ = 0. The associated Fréchet differential is denoted as θ 7→ F ′(Ω)(θ) and called
the shape derivative of F ; the following expansion then holds:

F (Ωθ) = F (Ω) + F ′(Ω)(θ) + o(θ), where
|o(θ)|

||θ||W 1,∞(Rd,Rd)

θ→0−→ 0.

Following the same construction one can define weaker notions of shape differen-
tiability. So on, a functional F (Ω) of the domain is said to admit a directional (or
Gâteaux) derivative F ′(Ω; θ) at Ω in the direction θ if θ 7→ F (Ωθ) admits a Gâteaux
derivative at Ω in the direction θ. In this case we pose:

F ′(Ω; θ) = lim
t→0

F ((I + tθ)) (Ω)− F (Ω)

t
.

The choice of W 1,∞(Rd,Rd) as underlying Banach space guarantees the requirement
(I + θ) to be invertible with Lipschitz inverse. In most applications it is in practice
more convenient to work with continuous functions, considering for k > 0 the Banach
space Ck,∞(Rd,Rd) = Ck(Rd,Rd) ∩W 1,∞(Rd,Rd) equipped with the norm:

||θ||Ck,∞(Rd,Rd):=
k∑
l=0

sup
α∈Nd,|α|=l

∣∣∣∣∣∣∣∣ ∂θ∂xα
∣∣∣∣∣∣∣∣
L∞(Rd)d

,∀θ ∈ Ck,∞(Rd,Rd).

The application (I + θ) results to be a Ck diffeomorphism and the shape derivative
is defined in terms of the Fréchet derivative at θ = 0 of θ 7→ F (Ωθ) in the considered
Banach space Ck,∞(Rd,Rd). However, when the context is not ambiguous the two
definitions of shape derivative are referred with the same name. A very important
property of the shape derivative is that the form θ 7→ F ′(Ω)(θ) (at least at first order)
does not depends on the tangential component of θ on ∂Ω. More precisely we have
the following statement (see [1]).
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Proposition 1.2.1. Let Ω be a bounded, Lipschitz domain in Rd. Let F be a
functional differentiable at Ω. Let θ 7→ F (Ωθ) be of class C1. If θ · n = 0, n standing
for the outer normal to ∂Ω, then we have:

∀θ ∈ C1,∞(Rd,Rd), F ′(Ω)(θ) = 0.

As a consequence, for each pair θ1, θ2 belonging to C1,∞(Rd,Rd) and verifying the
equality θ1 ·n = θ2 ·n on ∂Ω, then we have: F ′(Ω)(θ1) = F ′(Ω)(θ2). The following two
theorems (see [1, 60]) deal with the expression of the shape derivative for functionals
defined over a whole domain or on its boundary.

Theorem 1.2.1. Let Ω ⊂ Rd a bounded, Lipschitz domain. Let f be in W 1,1(Rd,Rd).
The functional

F (Ω) =

∫
Ω

f(x) dx

is shape differentiable at Ω, and the associated shape derivative reads:

∀θ ∈ W 1,∞(Rd,Rd), F ′(Ω)(θ) =

∫
∂Ω

f θ · n ds,

where n stands the normal vector pointing outward to ∂Ω.

Theorem 1.2.2. Let Ω ⊂ Rd a C2 domain. Let f be in W 2,1(Rd,Rd). The
functional

F (Ω) =

∫
∂Ω

f(x) dx

is shape differentiable at Ω, and the associated shape derivative reads:

∀θ ∈ W 1,∞(Rd,Rd), F ′(Ω)(θ) =

∫
∂Ω

(
∂f

∂n
+ κf

)
θ · n ds,

where κ = div n stands for the mean curvature of ∂Ω.

1.2.2 Shape derivative of state-constrained functionals

Let us now focus on shape optimization problems depending on the domain via a
state uΩ which itself depends on the domain. We are here interested in the case in
which the state uΩ is obtained as the solution of a partial differential equation defined
on Ω. For calculating the shape derivative of such functionals we are confronted with
a new difficulty, namely the computation of the derivative of the function uΩ(x) =
u(Ω, x) with respect to Ω. This is not a straightforward task and we give here a
general outline on the topic. For further references and examples see [1, 60, 30]. The
most intuitive way to address the problem leads to the notion of Eulerian derivative.
Consider a point x ∈ Ω and let Ωθ = (I + θ)(Ω) be the domain transported through
a displacement field θ ∈ W 1,∞(Rd,Rd). Assume at first that x ∈ Ω ∩ Ωθ,which is a
reasonable requirement if x lies far enough from ∂Ω. Then one aims to define the
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Eulerian derivative as the derivative of the application θ 7→ uΩθ(x), i.e. the linear
form l(u) verifying:

u(Ωθ, x) = u(Ω, x) + l(u)θ + o(θ), where
|o(θ)|

||θ||W 1,∞(Rd,Rd)

θ→0−→ 0.

The difficulty in making rigorous the above definition is that uΩθ(x) could not be
defined on ∂Ω. For circumventing this difficulty we needs to rely on the notion of
Lagrangian derivative. Consider the application Ω 7→ uΩ and for all θ ∈ W 1,∞(Rd,Rd)
define the ’transported’ function ū(θ) : W 1,∞(Rd,Rd) 7→ H1(Ω) as follows:

ū(θ) = uΩθ ◦ (I + θ).

Definition 1.2.2. (Lagrangian derivative) The function u of the domain Ω is
said to admit a Lagrangian derivative u̇(Ω)(θ) at Ω in the direction θ if the function
ū(θ) : W 1,∞(Rd,Rd) 7→ H1(Ω) is differentiable at θ = 0.

From the definition of the Lagrangian derivative we can infer a rigorous definition
of the Eulerian derivative by applying the chain rule.

Definition 1.2.3. (Eulerian derivative) The function u of the domain Ω is said
to admit an Eulerian derivative at Ω in the direction θ if it admits a Lagrangian
derivative at Ω in the direction θ and, provided ∇u(Ω) · θ ∈ H1(Ω), the Eulerian
derivative u′(Ω)(θ) is defined as:

u′(Ω)(θ) = u̇(Ω)(θ)−∇u(Ω) · θ. (1.2.1)

The computation of an explicit expression of the Lagrangian and Eulerian deriva-
tives is needed for the derivation of functionals of the form:

F (Ω) =

∫
Ω

f(uΩ)dx,

where uΩ is the solution of a variational problem posed on Ω. The general procedure
for carrying out the derivative F (Ω) involves the following steps:

• write the variational equation satisfied by uΩθ and by a changing of variables
transform it on an equation on ū(θ) posed on the fixed domain Ω;

• compute the Lagrangian derivative of u;

• compute the Eulerian derivative from (1.2.1) for deriving an expression of F ′(θ);

• introduce an appropriate adjoint problem for eliminating the dependency of
F ′(θ) on u′(θ).

The above sketch does not precise the functional spaces involved because they de-
pend on the specific equation at hand. Despite the above method is the rigorous way
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to verify the differentiability of a shape functional, the computation of the material
derivative is very delicate and involved in terms of computations. Moreover, by us-
ing the adjoint problem we end up with an expression of the shape derivative not
depending on u′(θ). A faster alternative method for the computation of the shape
derivative is the so-called Céa’s fast derivation method [18], which we describe in the
following. Despite the method is merely formal because it supposes the differentia-
bility of the mapping Ω 7→ uΩ, it can be justified in a rigorous way in some cases.
Let V be a normed vector space, aΩ,V : V × V 7→ R a symmetric, continuous and
coercive bilinear form and lΩ,V : V 7→ R a continuous linear form. Let us introduce
the state uΩ as the unique solution of the variational problem:

∀v ∈ V, aΩ,V (u, v) = lΩ,V (v).

Let us consider a cost functional of the form:

F (Ω, u) =

∫
Ω

E(u) dx+

∫
∂Ω

G(u) ds,

where E,G are integrable functions depending on u. Pose F (Ω) := F (Ω, uΩ). The
key idea is to introduce a Lagrangian functional L which integrates the state u as a
constraint. Thus, define L : Oad × V × V 7→ R as follows:

L(Ω, u, p) = F (Ω, u) + aΩ,V (u, p)− lΩ,V (p).

The partial derivative of L(Ω, u, p) with respect to p reads:

∀v ∈ V, ∂L
∂p

(Ω, u, p)(v) = aΩ,V (u, v)− lΩ,V (v) = 0, (1.2.2)

whenever u = uΩ. By equating to zero the partial derivative of L(Ω, u, p) with respect
to u we obtain the equation satisfied by the adjoint state pΩ:

∀v ∈ V, ∂L
∂u

(Ω, u, p)(v) = 0. (1.2.3)

Eventually supposing enough regularity on u and using (1.2.2) and (1.2.3) we end up
with the equality:

∀v ∈ V, F ′(Ω)(v) =
∂L
∂Ω

(Ω, uΩ, pΩ)(v).

To fix ideas, let us consider an example taken from [18]. Take V = H1(Ω) and uΩ ∈ V
solution of the problem {

−∆uΩ = f, in Ω,

uΩ = u0, on ∂Ω,

where f ∈ L2(Ω) is the source term and u0 ∈ V is the boundary condition. The
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functional under consideration is a least square criterion:

F (Ω, uΩ) =
1

2

∫
Ω

|u− uT |2, dx,

where uT ∈ V is a target function. The associated Lagrangian reads:

L(Ω, u, p, λ) =
1

2

∫
Ω

|u− uT |2, dx+

∫
Ω

(−∆uΩ − f)p dx+

∫
∂Ω

(u− u0)λ dx,

in which we introduced the additional parameter λ for finding the boundary condi-
tions satisfied by the adjoint state. The adjoint state is determined by choosing p
and λ such that the following identity holds:∫

∂Ω

(u− u0)v dx+

∫
Ω

(−∆u)p dx+

∫
∂Ω

vλ ds = 0.

A Green formula yields:∫
∂Ω

(u− u0)v dx+

∫
Ω

∂v

∂n
p dx =

∫
∂Ω

v(−∆p) dx+

∫
∂Ω

∂p

∂n
v ds = 0.

Therefore pΩ is the solution of the following problem:{
−∆pΩ = −uΩ − u0, in Ω,

∇pΩ = 0, on ∂Ω,

and accordingly λΩ = −∂pΩ

∂n
. Using the expressions of uΩ, pΩ and λΩ the shape

derivative of F is given by Theorems 1.2.1 and 1.2.2. We end up with:

F ′(Ω)(v) =
∂L
∂Ω

(Ω, uΩ, pΩ, λΩ)(v)

=

∫
∂Ω

(1

2
|uΩ − u0|2 + (−∆uΩ − f)p+ λ

∂(uΩ − u0)

∂n
+ (uΩ − u0)λκ

)
v · n ds

=

∫
∂Ω

(1

2
|uΩ − u0|2 −

∂p

∂n
· ∂(uΩ − u0)

∂n

)
v · n ds.

(1.2.4)

1.2.3 Shape sensitivity analysis: the topological gradient

The main idea in Hadamard’s boundary variation method is to work with a fixed
domain and consider variations obtained through a bi-Lipschitz map between this
domain and the modified one. This approach cannot handle topological changes. We
need thus to consider a new notion of variation of a domain. The main idea is to
evaluate the variation of the objective functional when a small hole is cut into the
admissible shape. Obviously, this type of variation of the domain is not covered by the
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Γ ΓΩ ∂ωρ ωρ
Ωρ

Figure 2: Initial domain before (left) and after (right) nucleating an hole.

Hadamard method, and it yields a new concept of topological derivative. Basically
it indicates where a small hole should be put in the shape. Let Ω ⊂ Rd be a open,
bounded domain. For a given x0 we consider the open set ωρ = x0+ρω, where ω ⊂ Rd

is a open set containing the origin. We define the perforated domain Ωρ obtained by
removing ωρ from Ω:

Ωρ = Ω \ ωρ,

and we are interested in the behavior of F (Ωρ) as ρ→ 0.

Definition 1.2.4. A functional of the domain F (Ω) admits a topological derivative
F ′T (x) at a point x if there exists a continuous function f : R → R such that the
following expansion holds in the neighborhood of ρ = 0:

F (Ωρ) = F (Ω) + F ′T (x)f(ρ) + o(ρ),

with limρ→0 f(ρ) = 0, f(ρ) > 0.

The topological sensitivity J ′T (x) indicates where a small hole should be located
in the shape. It follows from the above definition that F (Ωρ) < F (Ω) for ρ small if
F ′T (x) < 0.

1.3 The signed distance function

The key idea with implicit modeling is to represent the boundary of a shape as the
zero level set of an embedding implicit function defined in the whole ambient space.
Level set functions have proven useful in modeling deformations of solid objects,
representation of medical data, dealing with topological changes by undergoing easily
splitting of merging. A shape defined by a close boundary allows the definition
of a level set function to its boundary encoding inside/outside informations. The
definition of a level set function associated to a domain is reported below.

Definition 1.3.1. Let Ω ⊂ Rd be a bounded domain. A level set function of Ω is
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Figure 3: Top right: initial domain Ω in black color. Top left: isolines of the signed
distance function to Ω. Bottom left: computation of the signed distance function to Ω on
an unstructured mesh (the blue color stands for Ω). Bottom right: graph of the signed
distance function to Ω.
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any function φ : Rd → R verifying:
φ(x) < 0 if x ∈ Ω,
φ(x) = 0 if x ∈ ∂Ω,
φ(x) > 0 if x ∈ cΩ.

The (Euclidean) signed distance function dΩ to Ω is a level set function that gives
the distance to the nearest point on ∂Ω at every point of the ambient space.

Definition 1.3.2. The signed distance function dΩ(x) : Rd → R to Ω is defined
as:

∀x ∈ Rd, dΩ(x) =


−d(x, ∂Ω) if x ∈ Ω,

0 if x ∈ ∂Ω,
d(x, ∂Ω) if x ∈ cΩ.

In the above formula, d(x, ∂Ω) = infy∈∂Ω |x − y| denotes the usual Euclidean
distance function to ∂Ω. The signed distance function has been widely used in com-
putational mathematics, for CAD modeling, surface reconstruction from scattered
data [121], and last but not least for reinitializing level set algorithm [86].

Definition 1.3.3. Let x ∈ Rd be a point and Ω ⊂ Rd a bounded, Lipschitz domain.
The set of projections Π∂Ω(x) of x onto ∂Ω is the set:

Π∂Ω(x) = {z ∈ ∂Ω, |z − x| = d(x, ∂Ω)} .

If Π∂Ω(x) is a singleton, its unique element is called the projection of x onto ∂Ω and
it is denoted by p∂Ω(x).

The differentiability of the signed distance function is discussed below. The proof
of the proposition can be found in [6].

Proposition 1.3.1. Let x ∈ Rd \ ∂Ω be a point. If x admits a unique projection
p∂Ω(x) onto ∂Ω then the signed distance function dΩ is differentiable at x and its
gradient is given by:

∇dΩ(x) =
x− p∂Ω(x)

dΩ(x)
.

In particular, the signed distance function solves the following Eikonal equation:

|∇dΩ(x)| = 1,

at every point x where it is differentiable. Moreover, if Ω is of class C1 then

∇dΩ(x) = n(p∂Ω(x)),

where n(y) stands for the unit normal at y, pointing outward to Ω.

The signed distance function is thus a natural extension of the normal vector field.
It can been proved that in the general case in which the signed distance function may
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x0
Γ

Figure 4: The signed distance function to a circle is not differentiable at the center x0: each
point on the boundary Γ belongs to the set Π∂Ω(x0).

not be differentiable, it still solves the Eikonal equation in the sense of viscosity theory
[29, 41].

1.3.1 Numerical computation of the signed distance function

The computation of the signed distance function is usually achieved by numer-
ically solving an Eikonal type equation [94, 30]. This kind of approach has been
widely developed in the context of level set methods. Fast and efficient approaches
have been proposed in the Sethian’s Fast Marching Method [95] and also the Fast
Sweeping Method [122]. Another approach consist in turning the problem into a
time dependent evolution process. In practice, the computation of the signed dis-
tance function is achieved by front propagation methods. The method used in this
manuscript (introduced in [30]) is based on this point of view.

1.4 Definitions and useful notions about meshes

Mesh modeling is probably the most common way to account for shapes. For a
complete overview about basic definitions and mesh generation techniques we refer
to the monograph [44]. Here we limit ourselves to define the objects of interest:
simplicial meshes in R2,R3 and surface meshes in R3. The definitions are taken from
[30].

Definition 1.4.1. Let Ω ⊂ Rd(d = 2, 3) a bounded, open, polygonal domain. A
simplicial mesh T of Ω is a finite collection (Ki)i=1,...,NT

of closed d-simplices verifying
the following requirements:
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1. The elements of T cover Ω: Ω = ∪NTi=1Ki;

2. each simplex Ki of T has non empty interior: K̊ 6= ∅;

3. if Ki, Kj ∈ T , i 6= j, are distinct simplices then their interiors are disjoints:

K̊i ∩ K̊j = ∅;

4. if Ki, Kj ∈ T , i 6= j, are distinct simplices then the intersection Ki ∩Kj is:
either a point or an edge shared by Ki and Kj (if d = 2),
either a point or an edge shared by Ki and Kj or a triangle shared by Ki and
Kj (if d = 3).

The vertices and edges of the simplices Ki are called the vertices and the edges of
T . Obviously, a 2-simplex is a triangle, while a 3d-simplex is a tetrahedra. The first
condition assures that the discrete data T is a tessellation of the domain Ω, i.e. it
is a good descriptor of its geometry; condition (2) is needed for avoiding degenerate
elements; condition (3) avoids overlapping elements; condition (4) guarantees the
conformity of the mesh. In the sequel we will call ”invalid’ a mesh not fulfilling one
of the above listed properties.

Definition 1.4.2. Let Γ ⊂ R3 be a compact polyhedral surface, with our without
boundary. A surface mesh or triangulation S of Γ is a finite collection (Si)i=1,...,NS

of closed triangles Ti ⊂ R3 verifying the following properties:

1. The elements of S form a covering of Γ: Γ = ∪NSi=1Ti;

2. Each triangle Ti of S has non zero two-dimensional measure;

3. The intersection Ti ∩ Tj of every two distinct triangles Ti,Tj of S,i 6= j, is the
edge of a triangle of S;

4. For every two distinct triangles Ti, Tj ∈ S,i 6= j, the intersection Ti∩Tj is either
a point, or a common edge of Ti and Tj.

Generally speaking, meshes are generate for two main purposes: discrete repre-
sentation of geometric data (as in computer graphics) and numerical computations
using the mesh as support. In the first case, we will say that our mesh is of high
’quality’ if it is a good approximation of the geometry of the underlying continuous
object (so as for example if by refining the mesh geometric quantities defined on the
mesh converge to their continuous counterpart). In this case we will refer to geo-
metric meshes. In the second case, the ’quality’ of the mesh will be judged in terms
of the quality of the discrete solution of the numerical problem under investigation.
For example, in Finite Elements computations, the quality of the mesh is related to
a error estimation. In the case in which the mesh will be used as a support for a
Finite Elements computation we will talk about computational meshes or Finite Ele-
ments meshes. In the course of this manuscript we will encounter several time Finite
elements computations. A Finite element type computation relies on the following
steps:
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• Construction of a mesh as support of the computation;

• An interpolation step which constructs the ’finite elements’ starting from the
elements of the mesh;

• Construction of the linear system (mass matrix and right-hand side) correspond-
ing to the discrete version of the continuous problem;

• Computation of the solution of the problem by solving the above assembled
linear system.

In numerical computations one is often confronted with the problem of evaluating the
discrepancy between two given triangulations T0 and T1. Several notions of discrete
distances are available in the literature. In the context of this work we will refer to
the Hausdorff distance dH , defined as the maximum:

dH(T0, T1) := max(ρ(T0, T1), ρ(ρ(T1, T0)). (1.4.1)

Let p be a vertex of T0. The quantity ρ(·, ·) featured in (1.4.1) is defined as:

ρ(T0, T1) = max
p∈T0

d(p, T1).

In the above definition, d(·, T1) stands for the Euclidean distance function to the set
of triangles of T1.

1.5 Linear Elasticity equations

Let us now introduce a particular mechanical system which will be sistematically
employed in in the rest of the manuscript. Let Ω ⊂ Rd(d = 2, 3) a bounded and
Lipschitz domain fulfilled with an homogeneous isotropic elastic material. The set of
points x ∈ Ω describes the geometry of a material body in an unstressed configuration.
Such a configuration is said to be a reference configuration for the body. Since Ω
is instantaneously deformed under external loads, the deformation is described in
terms of an application φ : Ω→ Rd or equivalently in terms of the displacement field
u = φ − Id. The set of points φ(Ω) ⊂ Rd represents the deformed configuration of
the body under the deformation φ. The deformation is measured in terms of the
Cauchy-Green strain tensor

C(φ) = ∇φT∇φ,

or equivalently in terms of the Green-Saint Venant tensor

E(φ) =
1

2
(C − I), or equivalently E(u) =

1

2

(
∇uT +∇u

)
+

1

2
∇uT∇u.

The constitutive equation
σ(u) = D : E(u) (1.5.1)
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relating the internal stress σ(u) and the deformation tensor E(φ) through the fourth
order elasticity tensor D takes into account the material behavior. The classical
theory of linear elasticity is based on two fundamental assumptions:

• in the range of small deformation the strain-displacement relation is described
in terms of the linearized stress tensor e(u) = 1

2
(∇uT + ∇u), which replaces

E(u);

• the constitutive material law is linear.

Under the assumption of linearity the relation (1.5.1) for an homogeneous isotropic
elastic material drastically simplifies into the so called Hook law:

σ(u) = 2µe(u) + λtr(e(u))I,

depending only on two real coefficients λ, µ called the Lamé parameters.
The displacement field of a material body clamped at a part ΓD of its boundary Γ and
submitted to external load f on ΓN := Γ \ ΓD is solution of the following boundary
value problem: 

− div (σ(u)) = f in Ω,

σ(u) · n = g on ΓN ,

u = 0 on ΓD,

(1.5.2)

whose variational form reads:

∀v ∈ H1
0 (Ω)d,

∫
Ω

σ(u) : e(v) dx =

∫
ΓN

gv ds+

∫
ΓD

fv dx. (1.5.3)

The following Korn inequality ensures the well-posedness of the problem (see [69]
for the proof).

Theorem 1.5.1. Let Ω ⊂ Rd be a open Lipschitz domain. Let v ∈ L2(Ω;Rd) and
e(v) ∈ L2(Ω;Md). Then there exists a constant L = L(Ω) such that:

||∇v||2L2(Ω;Md) ≤ L(||v||2L2(Ω;Rd) + ||e(v)||2L2(Ω;Md))

where Md is the set of d× d matrices. Moreover, v ∈ H1(Ω,Rd).

The existence and uniqueness result (from [23]) is the following.

Theorem 1.5.2. Let Ω ⊂ Rd be an open Lipschitz domain. Let ΓD be a measur-
able subset of Γ = ∂Ω of positive measure. Let f ∈ L 6

5 (Ω) and g ∈ L 4
3 (Γ \ΓD). Then

the problem (1.5.3) admits a unique solution u belonging to the space H1
0 (Ω)d = {v ∈

H1(Ω); v = 0 a.e. on ΓD}.

Since the equations under considerations are elliptic, additional regularity on the
data (the domain Ω and the function f, g) leads to additional regularity of the solu-
tion. More precisely for the pure displacement problem (i.e. when g = 0) we have
the following statement (see [23]).
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Figure 5: Square domain before deformation (left) and in deformed configuration (right).

Theorem 1.5.3. Let Ω ⊂ Rd be an open Lipschitz domain. Let p ≥ 6
5
. If Γ

is of class Cm+2 and f ∈ Wm,p then the solution u of (1.5.3) belongs to the space
Wm+2,p(Ω).

The above regularity result does not apply to the general problem with mixed
boundary condition when a transition between boundary conditions of different na-
ture occurs. Otherwise the theorem is still valid if the displacement and the traction
boundaries do not intersect.
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2.1 Introduction

In this chapter we investigate the problem of 2d and 3d shape matching. This
chapter contains the first original contribution of the manuscript. This is a joint work
with Maya de Buhan, Charles Dapogny and Pascal Frey.

Shape morphing or matching arises in a wide variety of situations in areas from
biomedical engineering to computer graphics, scientific computing, robotics, pattern

41
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recognition. Beyond the specific task of each particular application, the general issue
is to find one transformation from a given ‘template’ shape Ω0 into a ‘target’ shape
ΩT . Crucial components of a shape matching procedure are the way for accounting for
shapes and the development of the mathematical model which drives the deformation.
Such a transformation may be used as a means to appraise how much Ω0 and ΩT

differ from one another -for instance in shape retrieval, classification, recognition
or tracking- or to achieve physically the transformation from Ω0 to ΩT (in shape
registration, reconstruction, or simplification). See for instance [111] and references
therein for an overview of several related applications. Understandably enough, a
great deal of work has been devoted to shape matching, and many methods have
been proposed for addressing this problem; we limit ourselves to mentioning a few
approaches. In [12] the authors start by distributing sample points on the contour
of both shapes, that will be matched according to their ’shape context’, namely
a shape descriptor defined as an histogram of the relative position of the sampled
points with respect to a given point on the shape. They eventually infer a global
transformation from this point-to-point correspondence. However, note that reducing
curves or surfaces to sample points risk to discard higher order geometric informations
(tangent plane, curvature), leading to uncorrect results.

In the field of computational anatomy, a series of articles (see e.g. [10, 40, 54])
have suggested to describe the deformation of Ω0 onto ΩT via a diffeomorphic map.
The restraint to diffeomorphims prevents discontinuous or self intersecting deforma-
tions. This approach leads to the so-called Large Deformation Diffeomorphic Metric
Mapping (LDDMM) method which has received a lot of interest in the last years,
especially for dealing with medical data. The LDDMM approach considers shapes
embedded in a metric space and describes the diffeomorphism between two items Ω0

and ΩT as the dynamic flow of a velocity field v. The search for v is then casted as
an optimal control problem. The criterion to be minimized is the sum of a matching
functional -representing the cost of the flow which transports Ω0 onto ΩT - and of a
regularization term, guaranteeing the smoothness of the deformation. The structure
of metric space allows the definition of similarity measures between shapes, in terms
of geodesics in the shape space. The LDDMM formulation produces a global defor-
mation of the ambient space, which in particular matches the shapes of interest into
each other. In [83] the energy functional associated to a LDDMM problem is used for
defining a measure of similarity between two shapes, defined as the geodesic path in
the space of diffeomorphism. The LDDMM framework has been used for landmarks-
based matching using the spline interpolation theory [65], unlabelled point-sets [51],
3d stacks of density images [11, 10], curves [52, 50] or surfaces [49, 108]. In [108] a
theoretical framework is provided for encoding surfaces embedded in R3 as currents;
the optimal control problem is defined consequently as matching of currents. The
resulting mapping is used to study features of organs, detect anomalies, etc.

Several shape matching methods use landmarks or anchor points for which the
correspondence is supposed known; then the deformation is guided by this a priori
information. Depending on the application, these feature points are defined manu-
ally (for example in the case of anatomical landmarks, see Chapters 5 and 6) or by
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automatic extraction, for instance as critical points of a well-suited scalar function
defined on the shape. However the automatic detection of feature points and the con-
struction of a meaningful scalar function are not general and depend on the structure
of the shape at stake.

Conformal geometry theory have been used for translating a 3d shape matching
problem into a 2d one by conformal parametrization of the boundary, via harmonic
maps, conformal maps, least square conformal maps [113, 56, 73]. In a series of articles
devoted to shape matching and retrieval, 3d shape matching is achieved by extraction
and comparison of topological features, namely Reeb graphs [61], or others topological
indicators. However, a Reeb graph is computed from the analysis of the isosurfaces of
a real-valued function defined in a manifold; for many shapes the extraction of such
a function is not a trivial task.

More recently, in the field of Computer Graphics, the optimal transport point
of view has been used to displace an input tetrahedral mesh onto a given object
[70, 99] and to register 2d images [58]. In the optimal transport point of view a
measure (derived from a density function supported by a computational mesh or de-
fined as a sum of Dirac masses) is displaced into another by minimizing the celebrated
Monge-Kantorovitch optimal mass transportation cost. Methods from optimal trans-
port have the merit to be pose independent, which is of tremendous importance for
searching shape similarity, and to allow topology changes.

Our method has much in common with [97, 96], proposing a physically inspired
deformation model which is supported by a computational mesh. For the sake of
generality, the proposed method does not make use of any any preprocessing fea-
ture extraction. For preventing merging and splitting during the deformation, the
proposed framework does not allow topology changes. Our problem is stated as fol-
lows: given a ‘template’ shape Ω0, numerically described by means of a (conforming)
computational mesh, and a ‘target’ shape ΩT , known only via the signed distance
function to its boundary, we aim at deforming (iteratively) the mesh of Ω0 into a
computational mesh of ΩT . Such a technique could be applied, for instance, to the
reconstruction of a computational mesh ΩT from invalid data, to transport quantities
of interest from Ω0 to ΩT , etc. To achieve our purpose, we rely on a method which
has much in common with that of [7], borrowing techniques from shape optimization,
and more generally optimal control. Under the assumption that Ω0 and ΩT share the
same topology, the desired transformation from Ω0 to ΩT is realized as a sequence of
elastic displacements, which are obtained by minimizing an energy functional based
on the distance between Ω0 and ΩT . In doing so, it is expected that the deforma-
tion will be easier to achieve in numerical practice, and in particular by limiting the
troubles due to mesh tangling.
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Figure 1: Deformation of the template shape decreasing the value of J .

2.2 Shape matching without constraint on the displacement

Let Ω0,ΩT ⊂ Rd(d = 2, 3) be respectively ‘template’ and ‘target’ shapes, i.e.
bounded Lipschitz domains. We assume that they share the same topology but
they are not necessarely close from one other. Our purpose is to map Ω0 onto ΩT ,
which we achieve borrowing techniques from shape optimization, and in general from
optimal control theory. Let us present the theoretical framework of the method. The
discrepancy between a reference shape Ω and the target shape ΩT is measured by the
following functional J(Ω) of the domain:

J(Ω) =

∫
Ω

dΩT (x)dx, (2.2.1)

which involves the signed distance function dΩT to ΩT , defined in Section 1.3.

Note that this functional is defined on the whole domain of interest Ω. In order to
decrease the value of J(Ω), the domain Ω must expand in the regions of the ambient
space Rd where dΩT is negative (that is, in the regions comprised in ΩT ), and to
retract in those where it is positive. By deforming the template shape as above we
can always obtain better values for J until the deformed template shape reaches the
target shape ΩT . Therefore we get the following intuitive existence result.

Theorem 2.2.1. The functional J(Ω) has a unique, global minimizer Ω = ΩT

over the space Oad := {Ω ⊂ Rd,Ω open }.

Proof. Let Ω∗ be an optimum for J . From Proposition 1.2.1 and Theorem 1.2.1, the
first order optimality condition for the functional J leads to the equality:

dΩT (x) = 0, for all x ∈ ∂Ω∗.
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Therefore Ω∗ = ΩT .

Note that the same result holds when the signed distance function is replaced
in 2.2.1 with any level set function of the domain ΩT . It is then expected that
an iterative (e.g. gradient-based) algorithm devoted to the minimization of J(Ω),
starting from Ω0, will lead to an interesting way to transform Ω0 into ΩT . In next
section we will describe the general framework of the iterative procedure.

2.3 General procedure for the minimization of J

From the expression of the shape derivative (see Section 1.2.1), the vector field

θ = −dΩT (x)n (2.3.1)

is a natural descent direction for J . Indeed, by Theorem 1.2.1, it guaranties that for
ε > 0 small enough:

J((I + εθ)Ω)) = J(Ω)− ε
∫
∂Ω

d2
ΩT

(s) ds+ o(ε) < J(Ω).

This paves the way for an iterative algorithm, producing a sequence (Ωk)k=0,... of
shapes, which are ‘closer and closer’ to ΩT : at each step, Ωk is updated according to

Ωk+1 = (I + θk)(Ωk), where θk is (an extension to Ωk of) dΩTnΩk , (2.3.2)

where nΩk stands for the unit normal vector to ∂Ωk, pointing outward Ωk. From the
discrete point of view, we aim at generating a sequence of meshes (Tk)k=0,... which

boundaries (Sk)k=0,... are closer and closer to the 0-level set of the scalar function
dΩT . At each iteration the mesh Tk is updated by pushing its vertices according to
the descent direction:

∀x vertex of Tk, x 7→ x+ θk(x). (2.3.3)

The formal procedure described above boils down in deforming a shape Ω in the
negative direction of the L2(∂Ω)d gradient of the differential θ 7→ J ′(Ω)(θ):

J ′(Ω)(θ) = 〈f, θ · n〉L2(∂Ω)d . (2.3.4)

Unfortunately, the descent direction associated to the vector field (2.3.1) reveals un-
suited for at least two reasons:

• the vector field featured in (2.3.1) is defined only on the boundary of Ω; it has
therefore to be extended to Ω as a whole so that it can be a guide for displacing
the vertices of T ;

• if no particular attention is paid to this extension, the extended displacement
field may impose an important stretching in Ω, making the motion of the vertices
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Figure 2: Target and template shapes sharing a common fixed subset ω.

of T via (2.3.3) impossible to achieve without invalidating the mesh.

For overcoming both this difficulties we have investigated two alternative -but close
in essence- strategies. The first one is based on an extension and regularization of the
descent direction (2.3.1) by using the gradient of θ 7→ J ′(Ω)(θ) associated to another
inner product (Section 2.4). The latter consists in restraining the space of admissible
deformations of the template shape Ω0 to elastic displacements generated by suitable
surface loads acting on its boundary (Section 2.5). Both methods make use of the
operator of linear elasticity which we briefly recalled in Section 1.5.

2.4 Shape matching with extension and regularization of the
descent direction

Let Ω0,ΩT ⊂ Rd, be respectively ‘template’ and ‘target’ shapes. In the present
context we assume that they share the same topology but they are not necessarily
close from another. The key idea is to use the gradient of the mapping θ 7→ J ′(Ω)(θ)
associated to another inner product instead of the one featured in (2.3.4). This
velocity extension - regularization issue is quite classical in shape optimization (see
[35] and references therein), and can be thought of as an efficient preconditioning
of the naive procedure (2.3.2). The general strategy is described in the following.
Suppose that the space of admissible deformations is endowed with a structure of
Hilbert space V . Let 〈·, ·〉V be the inner scalar product in V . Therefore, we can
consider the following linear form l(·) acting on elements of V :

∀v ∈ V, l(v) = J ′(Ω)(v).

Now let aV (·, ·) a suitable symmetric, V -elliptic bilinear form acting on elements of
V . The Lax-Mailgram theorem assures the existence of a unique u ∈ V solution of
the variational problem:

∀v ∈ V, aV (u, v) = f(v).
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The vector field −u is naturally a descent direction for J since:

J ′(Ω)(−u) = −aV (u, u) < 0.

A natural choice is the space V = H1(Ω)d equipped with the inner product:

〈v, w〉V =

∫
Ω

a∇u · ∇v + vw, a ∈ R, a > 0.

Another suitable choice in our context is to use the extension inherited from the
operator of liner elasticity introduced in Section 1.5. Therefore, assume that all the
considered shapes Ω are filled with a linear elastic material. Also, imagine that any
such shape Ω contains a given subset ω b Ω on which it is clamped. We now obtain
a descent direction for J(Ωk) as the unique solution uΩ belonging to H1

ω(Ω)d := {v ∈
H1(Ω)d, v = 0 in ω} of the linearized elasticity system:

∀v ∈ H1
ω(Ω)d,

∫
Ω

σ(uΩ) : e(v) dx = −J ′(Ω)(v) = −
∫
∂Ω

dΩT v · n ds. (2.4.1)

This vector field uΩ is naturally a descent direction for J(Ω) since J ′(Ω)(uΩ) ≤ 0
thanks to (2.4.1), and its advantages over the ’natural’ deformation field θ defined in
(2.3.2) are twofold:

1. uΩ is defined on the whole shape Ω; owing to the regularizing effect of elliptic
equations, it is intrinsically smoother than θ = −dΩTn (see for instance [23]);

2. Owing to the mechanical features of elastic displacements (notably their ‘rigid-
ity’), it is expected that uΩ will be more amenable to the displacement of the
mesh T into a valid mesh via (2.3.3); see e.g. [8] for an example of use of elastic
displacements in the context of mesh displacement.

Remark 2.4.1. From the numerical point of view, the choice of a subset ω cor-
responds to a global alignment of shapes (cf. Figure 2). This restriction we used to
guarantee the well-posedness of Problem (2.4.1) could be replaced by adding a 0th-order
term.

Remark 2.4.2. Note that by construction the boundaries ∂ω and ∂Ω do not
intersect, preventing the loss of regularity at the interface between boundary conditions
of different nature.

2.4.1 Numerical issues

As far as the numerical setting is concerned, the template shape Ω0 is discretized as a
simplicial mesh (i.e. a triangulation filled with tetrahedra), and the target shape ΩT

is supplied through its signed distance function, e.g. as a P1 piecewise affine function
on the fixed mesh TD of a large computational domain D.
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Starting from the template shape Ω0 we perform a standard gradient descent algo-
rithm with adaptive step size in order to get a sequence of pairs (Ωk, Tk) of domains
and their corresponding meshes with decreasing values of J(Ωk). The algorithm
stops when the step size is smaller than a fixed tolerance ε. The general scheme is
summarized as follows:

Start from an initial shape Ω0,
for k = 0, · · · convergence

1. compute the state uΩk of the considered PDE system on Ωk by FEM discretiza-
tion;

2. compute the shape gradient J ′(Ωk) and infer a descent direction θk for the shape
functional;

3. perform a line search for getting the optimal step size τk;

4. advect the shape Ωk according to this displacement field, so as to get

Ωk+1 = (I + τkθk)(Ωk).

Remark 2.4.3. The global mapping uΩ from Ω0 to ΩT is easily recovered by the
composition of the different displacements (uk)k=0,... between each iteration.

Remark 2.4.4. The only information required about the target shape ΩT is the da-
tum of its signed distance function which can be defined on a possibly non-conforming
mesh (e.g. showing small gaps, overlapping entities, etc.).

Remark 2.4.5. The computational meshes used to perform the calculation are
non uniform; they are refined in the vicinity of the boundaries according to a curvature
based sizing function and coarsened in the interior of the domain. This has proven to
prevent severe distorsion/tangling of the elements (avoiding the need to remesh the
domain) and hence to increase the efficiency of the overall algorithm.

Note that by updating the mesh at each iteration we are able to devise a defor-
mation between two shapes which are not close from another by using a linear elastic
model, which accounts in principle for ’small’ displacements. Let us now present
several numerical examples to show the performances of the method.

2.4.2 Numerical examples

In all the proposed examples, the calculation of the signed distance function to ΩT

is performed using the algorithm [33]. At first, we consider the 2d test case depicted
in Figure 3. Both target and template meshes are embedded in a unit computational
box with dimensions [0, 1]2. The set ω chosen for aligning Ω0 and ΩT is a small disk
located in the interior of both shapes.
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The template mesh T0 has about 1 200 edges, and the convergence of the gradient
descent procedure is obtained in 1 500 iterations for a tolerance ε = 1.e−6.

Note that the algorithm is able to recover isolines of high curvature resulting in an
excellent matching, even for template and target shape very far from another. Also,
the use of linear elasticity equations makes the deformation smooth preserving the
quality of the mesh under deformation.

The quantitative analysis of the error is performed by computing the discrepancy
between the boundary Γ of deformed template Ωk and the target shape ∂ΩT . The
discrepancy D between Γ and ∂ΩT is evaluated by the following L2 error:

D(Γ, ∂ΩT ) =

(
1

|Γ|

∫
Γ

d2(s, ∂ΩT ) ds

) 1
2

, (2.4.2)

where |Γ| is the measure of Γ and d(·, ∂ΩT ) is the Euclidean distance to ∂ΩT .

The discrepancy D(∂Ωk, ∂ΩT ) calculated on the boundary of the resulting shape
Ω1500 equals 5.7e−4 (much smaller than the minimal mesh size), revealing an excellent
recovering of ΩT .

Figure 4 depicts the morphing between the same template mesh onto several
silhouettes. Figure 5 show the contour superposition between the deformed template
mesh and the contour of the target shape model under consideration. The convergence
analysis is detailed in Table 2.1. The convergence history is reported in Figure 6.

Next, we consider a 3d example; see Figure 7. Both the target and the template
meshes are embedded in a unit computational box D = [0, 1]3. The shapes Ω0 and
ΩT are aligned by choosing a small ball ω in Ω0 ∩ ΩT as for the subset ω. The
template mesh T0 has about 9 000 triangles, and 1 300 iterations of the gradient
descent algorithm have been performed to achieve convergence for a tolerance ε =
1.e−6, running in a few minutes on a standard laptop computer. The L2 discrepancy
D(∂Ω1300, ∂ΩT ) calculated on the boundary of the final shape Ω1 300 equals 5.04e−4

(again, much smaller than the minimal mesh size).

In Figure 8 a spherical template mesh is mapped onto the Igea model. The
convergence analysis is detailed in table 2.1. The convergence history is reported in
Figure 10.

In Figure 9 an ellipsoid template mesh is mapped onto a shape of hippocampus
obtained from segmentation of medical images. The convergence history is reported
in Figure 10. The convergence analysis relative to all the considered examples is
detailed in table 2.1. We refer to Chapter 7 for others examples using medical data.

Remark 2.4.6. We own from Proposition 1.3.1 that the signed distance function
to ΩT is not differentiable at points of the space having multiple projections over ∂ΩT ,
making troubling the definition of the shape derivative. This lack of differentiability
does not create ambiguities here. Indeed if a point x admits multiple projection points
realizing the same distance to the boundary ∂ΩT , the expression of the shape derivative
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to this point will depend only on the values of the signed distance function and not
on the selected projection point.

Test case · · · L2 error Elements Iterations

1. Figure 3 5.7e−4 1 200 1 500

2. Figure 4 (a)-(c) 1.2e−03 1 200 750

3. Figure 4 (d)-(f) 1.0e−03 1 200 500

4. Figure 4 (g)-(i) 1.2e−03 1 200 2 300

5. Figure 7 5.0e−4 9 000 1 300

6. Figure 8 2.3e−4 117 000 1 500

7. Figure 9 7.9e−3 36 000 1 700

Table 2.1: Convergence analysis for the proposed test cases. Second row: error computation
using (2.4.2). Third row: number of elements (triangles in 3d, edges in 2d) of the template
mesh. Fourth row: number of iterations needed to reach convergence.

2.5 Shape matching with constraint on the displacement

Let us now describe an alternative, perhaps more intuitive, strategy for devising
the minimization of the functional 2.2.1. The procedure described in the previous
section accounts for deforming a shape by rectracting/expanding its boundary by
reacting to surface loads imposed on its boundary. At each iteration of the procedure,
an elastic descent direction is computed by submitting the shape to surface loads
which magnitude is proportional to the value of the signed distance function in the
vicinity of the considered point. It seems then natural to try to accomplish this
procedure by restraining the space of admissible deformations to those which are
obtained as elastic displacements generated by surface loads acting on the boundary.
This point of view leads to a minimization problem which is very similar to the one
defined in the previous section, except that it is casted over a space Gad of admissible
loads and the deformations are parametrized as those which are generated by loads
in Gad. Indeed, assume again that all the considered shapes Ω are filled with a linear
elastic material and that any such shape Ω is clamped on a part ΓD ⊂ ∂Ω of its
boundary. In this context, the clamped part ΓD plays the same role then the subset
ω of the previous section. Let also U1 b U2 ⊂ Rd be two open neighborhoods of ΓD,
and χ : Rd → Rd be a smooth function enjoying the properties:

χ ≡ 0 on U1, 0 ≤ χ ≤ 1, χ ≡ 1 on cU2.

The functional under consideration is then:

J(g) =

∫
(I+χuΩ,g)(Ω)

dΩT dx, (2.5.1)
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 3: An example in 2D: (a) Template shape Ω0. Deformed shape Ωk for (b) k = 40;
(c) k = 60; (d) k = 200; (e)k = 300; (f) k = 1500; (g) Isovalues of the signed distance
function to the target shape ΩT defined on the fixed mesh TD. (h) Discrepancy between
ΩT and Ω1500.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4: Three examples in 2D: (a)-(d)-(g) Template shape Ω0 and discrepancy with the
target shape. Deformed shape Ωk for (b) k = 90; (e) k = 60; (h) k = 200. Deformed shape
Ωk for (c) k = 750; (f) k = 500; (i) k = 2 300.
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(a) (b)

(c)

Figure 5: Discrepancy between ΩT and the deformed template shape for the test cases of
Figure 4.
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(c)

Figure 6: Convergence history for the 2d test cases: objective functional J(Ωk) versus
number of iterations k. (a) Figure 3. (b) Figure 4-top row. (c) Figure 4-middle row.

where g belongs to a set Gad ⊂ H−1/2(∂Ω) of sufficiently regular loads and uΩ,g is
the solution belonging to H1

0 (Ω)d := {v ∈ H1(Ω)d, v = 0 on ΓD} of the variational
problem:

∀v ∈ H1
0 (Ω)d,

∫
Ω

σ(uΩ) : e(v) dx = −
∫

Γ

gv ds. (2.5.2)

Note that J is very similar to the functional of section, except that we impose
the displacement vector field to be generated by surface loads g applied on Γ. In
the narrow sense, the functional 2.5.1 is not a functional of the domain. However,
starting from a reference shape Ω we can put into correspondence a surface load g
and the deformed domain Ωug := (I+ug)(Ω) obtained by deforming Ω via the elastic
displacement induced by g. In this sense, casting the minimization problem over Gad
is equivalent to cast it on the set of admissible shapes:

Oad := {Ωg ∈ Rd, ∃g ∈ Gad such that Ωg = (I + ug)(Ω)}.

We can therefore borrow the shape optimization techniques described in Chapter 1
for achieving the minimization of g.

Remark 2.5.1. For the expression (I + χuΩ,g)(Ω) to even make sense, we need
χuΩ,g to enjoy (at least) W 1,∞(Rd,Rd) regularity. From a theoretical point of view,
upon higher regularity assumptions on Ω and g for it is well-known (see Section
1.5 and reference therein) that the solution to the linear elasticity problem (1.5.2) is
‘smooth’ far from the areas where a transition between boundary conditions of different
natures occur, and χ vanishes on those areas.
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 7: An example in 3D: (a) Template shape Ω0. (b)-(f) Evolution of the template
shape. (g) Target shape ΩT as the zero level set of the signed distance function. (h)
Discrepancy between ΩT and Ω1300.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 8: An example in 3D: (a) Template shape Ω0. (b)-(e) Evolution of the template
shape. (f) Deformed shape Ωk for k = 1 500. (g)-(i) Discrepancy between ΩT and Ω1500.(j)-
(l) Target shape ΩT .
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(a) (b) (c)

(d) (e) (f)

Figure 9: An example in 3D: (a) Template shape Ω0. (b) Deformed shape Ωk for k = 50.
(c) Deformed shape Ωk for k = 200. (d)-(e) Deformed shape Ωk for k = 1 700. (f) Target
shape.
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Figure 10: Convergence history for the 3d test cases: objective functional J(Ωk) versus
number of iterations k. Top left: example of Figure 9. Top right: example of Figure 8.
Bottom: example of Figure 7.
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Using again Theorem 1.2.1, the shape derivative of J(g) reads:

∀ĝ ∈ Gad, J ′(g)(ĝ) =

∫
∂(I+χuΩ,g)(Ω)

dΩTuΩ,ĝ · n ds.

Note that the above expression involves the evaluation of the solution uΩ,ĝ with
respect to the surface load ĝ. A more practical expression of the derivative is achieved
by introducing an opportune adjoint state. In the following Theorem we make use
of the tools presented in Section 1.2.2 concerning the derivation of state-constrained
functionals.

Theorem 2.5.1. The shape functional J(g) is Fréchet-differentiable at g = 0,
and its derivative reads:

∀ĝ ∈ Gad, J ′(g)(ĝ) = −
∫
∂Ω

ĝ · pΩ,g ds,

where pΩ,g ∈ H1
0 (Ω)d is an adjoint state, solution to the following variational problem:

∀v ∈ H1
0 (Ω)d,

∫
Ω

σ(uΩ) : e(v) dx = −
∫

Γ

dΩT v · (com(I +∇(χuΩ,g))n) ds. (2.5.3)

Proof. We rely on the method of Céa (Section 1.2.2) to calculate the derivative.
This calculation is merely formal insofar as it assumes that the function g 7→ uΩ,g

is differentiable. Let us introduce the Lagrangian functional L : Gad × (H1
0 (Rd)d ∩

D(Rd)d)2 7→ R defined as:

L(g, v, q) =

∫
(I+χv)(Ω)

dΩT dx+

∫
Ω

σ(uΩ) : e(v) dx−
∫
∂Ω

g · q ds.

By definition of uΩ,g, one has, for any test function q ∈ H1
0 (Rd)d ∩ D(Rd)d:

L(g, uΩ,g, q) = J(g). (2.5.4)

For a given load case g ∈ Gad, we search for the stationary points (u, p) of L(g, ·, ·).

• Equating the partial derivative ∂L
∂p

(g, u, p)(q) to 0 yields:

∀q ∈ H1
ΓD

(Rd)d ∩ D(Rd)d,

∫
Ω

σ(uΩ) : e(q) dx−
∫
∂Ω

g · q ds = 0.

By density of D(Rd)d in H1
0 (Rd)d, this equality actually holds for q ∈ H1

0 (Rd)d,
and we readily identify u as uΩ,g, the solution of (1.5.2) with f = 0.
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• The partial derivative ∂L
∂u

(g, u, p) reads, for any v ∈ H1
0 (Rd)d ∩ D(Rd)d:

∂L
∂u

(g, u, p)(v) =

∫
∂(I+χu)(Ω)

dΩT v · nΩχuΩ,g
ds+

∫
Ω

σ(v̂) : e(p) dx

=

∫
∂Ω

dΩT v ·
(
|com(I +∇(χuΩ,g))n| nΩχuΩ,g

)
ds+

∫
Ω

σ(v) : e(p) dx.

In the last row, com(A) stands for the matrix of cofactors of A. Now, since
u = uΩ,g is smooth enough, equating this last expression to 0 yields that p = pΩ,g,
the unique solution to the adjoint problem (2.5.3).

Eventually, differentiating with respect to g in (2.5.4) yields:

∀ĝ ∈ Gad, J ′(g)(ĝ) =
∂L
∂g

(g, uΩ,g, p)(ĝ) +
∂L
∂u

(g, uΩ,g, p)

(
∂uΩ,g

∂g
(ĝ)

)
.

Now evaluating at p = pΩ,g, we end up with:

∀ĝ ∈ Gad, J ′(g)(ĝ) =
∂L
∂g

(g, uΩ,g, pΩ,g)(ĝ),

which is the desired formula.

Remark 2.5.2. In the present setting, the existence result (2.2.1) is no longer
guaranteed for any pairs of shapes Ω0,ΩT . However, under the additional assumption
that ΩT belongs to the admissible set:

Oad = {Ωad ⊂ R3 | ∃g ∈ Gad : ug(Ω0) = Ωad},

the optimal load g∗ realizes the desired deformation:

(I + u∗g)(Ω0) = ΩT . (2.5.5)

Note that the optimal load g∗ and the associated the displacement ug∗ realizing equality
(2.5.5) are not uniques.

The elastic energy stored during the deformation is written in terms of the optimal
displacement field u∗g:

Eug∗ (Ω0; ΩT ) =
1

2

∫
Ωug∗

|σ(ug∗)|2dx.

The above energy quantifies the mechanical cost of the deformation form Ω0 and ΩT

and can be thought as a similarity measure between target and template shape.

Remark 2.5.3. From the numerical point of view, the identification of a subset ΓD
at which the shapes are clamped guarantees the well-posedness of the elastic problem.
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This condition could be replaced by adding a 0th-order term. For example, imagine
that two subsets ΣT ,Σ0 have been identified respectively on ∂ΩT , ∂Ω0. Then we can
cast the minimization problem over the space:

H1
Σ0

(Ω)d := {v ∈ H1(Ω)d, v = u0 in Σ0},

where u0 is a prescribed mapping between Σ0 and ΣT .

2.5.1 Numerical issues

From the numerical point of view, again the template shape Ω0 is discretized as a
simplicial mesh (i.e. a triangulation), and the target shape ΩT is supplied through its
signed distance function. Starting from the template shape Ω0 we perform a gradient
descent algorithm with adaptive step size in order to get a sequence of pairs (gk, ugk)
of surface loads and corresponding displacements with decreasing values of J(gk).
The algorithm stops when the step size is smaller than a fixed tolerance ε. The
general procedure is described by the following steps:

Start from an initial shape Ω0,
for k = 0, · · · convergence

1. compute the adjoint state pΩk of the considered PDE system on Ωk by FEM
discretization;

2. compute the state uΩk of the considered PDE system on Ωk by FEM discretiza-
tion;

3. compute the shape gradient J ′(Ωk) and infer a descent direction θk for the shape
functional;

4. perform a line search for getting the optimal step size τk;

5. advect the surface load gk according to:

gk+1 = gk + τkgk.

Note that in this context the computation of a descent direction (which is per-
formed at each iteration) involves the evaluation of both direct and adjoint state,
leading to the computation of two Finite Elements solutions. More precisely, the two
system share the same mass matrix (since they are evaluated on the same coordinate
vertices with unchanged connectivity) but the second hand and the resolution of the
linear system have to be updated. This makes the computational cost more involved
when comparing with the algorithm described in the previous section.
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2.5.2 Numerical examples

First, we propose a 2d test case. A template shape is initially deformed onto a
target shape under the effect of a prescribed surface load (Figure 11 (a)-(b)). In-
deed in this case we are by construction in the hypothesis of Remark (2.5.2). Then
we run our shape matching algorithm for recovering the surface load that generated
the deformation of the template shape. Results are presented in Figure 11 (c)-(d)).
The convergence history is reported in Figure 11-(e). The convergence of the proce-
dure is achieved in k = 1 100 iterations for a tolerance ε = 1.e−6. The discrepancy
D(∂∂Ωk, ∂ΩT ) calculated on the boundary ∂Ωk of the resulting shape

Ωk = (I + ugk) (Ω0),

equals 8.3e−4.

Next, we propose a 3d test case. As in the previous example, we deform a com-
putational mesh of the template shape Ω0 under the effect of a prescribed surface
load (Figure 12 (a)-(b)). and we recover its deformation by our algorithm. Results
are presented in Figure 12-(c)-(d). The convergence of the procedure is achieved
in k = 1 800 iterations for a tolerance ε = 1.e−6. The discrepancy D(∂Ωk, ∂ΩT )
calculated on the boundary ∂Ωk of the resulting domain equals 7.1e−4.

Comparing the convergence curves of the present approach with the one of the
previous section, we remark that the second method is more difficult to achieve
convergence. This is because when looking for a global displacement the minimization
process try to rotate the object in all direction, making slower the convergence of the
overall algorithm. Moreover, the theoretical restriction given in Remak 2.5.2 is very
limiting also from the numerical point of view. We experimented the method in a lot
of numerical cases and we always observed a slow or a non convergence. We exploited
some strategies for overcoming this issue. However, at the moment of the redaction
no one was satisfactory. We believe that the proposed setting will be more amenable
with a non linear model accounting for large deformations.
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(a) (b)

(c) (d)

-0.01455

-0.0145

-0.01445

-0.0144

-0.01435

-0.0143

-0.01425

-0.0142

-0.01415

 50  100  150  200

J

k

(e)

Figure 11: (a) Template shape and color map of the displacement field ug. (b) Template
shape deformed onto the target shape under the displacement ug. (c)-(d) Recovering of ug
by the algorithm described in Section 2.5.1. (e) Objective functional J(Ωk) versus number
of iterations k.
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(a) (b)

(c) (d)

Figure 12: (a) Template shape and color map of the displacement field ug. (b) Template
shape deformed onto the target shape under the displacement ug. (c)-(d) Recovering of ug
by the algorithm described in Section 2.5.1.

2.6 A boundary functional for shape matching

The purpose of this section is to compare the elastic matching method based
on the minimization of the functional featured in (2.2.1) with a more classical ap-
proach. Let Ω0,ΩT ⊂ Rd be again respectively ‘template’ and ‘target’ shapes. Under
the assumption that they share the same topology, we want to map Ω0 onto ΩT by
minimizing the discrepancy between the boundaries ∂Ω0, ∂ΩT . The dissimilarity be-
tween a reference shape Ω and the target shape ΩT is thus measured by the following
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functional P (Ω) of the domain:

P (Ω) =

∫
∂Ω

d2(x, ∂ΩT )(x) ds, (2.6.1)

where d(·, ∂ΩT ) denotes the usual Euclidean distance function to ∂ΩT . This func-
tional is based on a more classical paradigm -aligning two shapes by aligning their
boundaries- and is used in a wide variety of situations in the context of non rigid regis-
tration. Our purpose is to show that this functional can induce ambiguous situations
preventing convergence and preservation of the quality of the mesh used as support
of the calculation. By Theorem 1.2.2, the functional (2.6.1) is shape differentiable at
any (enough) regular shape Ω, and the associated shape derivative reads:

∀θ ∈ W 1,∞(Rd,Rd), P ′(Ω)(θ) =

∫
∂Ω

(∂d2

∂n
+Hd2

)
θ · n ds,

where H = div n is the mean curvature of ∂Ω. In the same fashion of Section 2.3 we
can define a formal procedure for the minimization of a functional inferring a descent
direction for P . The ’natural’ vector field inferred from the expression of the shape
derivative is:

θ =

(
∂d2

∂n
+Hd2

)
n. (2.6.2)

Note that in the present context the vector field θ has not to be extended to the
whole domain; the vector (2.6.2) can be used as a guide for displacing the points on
the boundary ∂Ω. However, for the sake of comparison, we place ourselves in the
same theoretical and numerical setting of Section 2.4 and use elastic equations for
parametrizing the descent direction.

2.6.1 Extension-regularization of the descent direction

Following the construction described in Section 2.4, which remains unchanged
in the present setting, we can obtain a descent direction for P (Ωk) as the unique
solution uΩ belonging to H1

ω(Ω)d := {v ∈ H1(Ω)d, v = 0 in ω} of the linearized
elasticity system:

∀v ∈ H1
ω(Ω)d,

∫
Ω

σ(uΩ) : e(v) dx = −P ′(Ω)(v)

= −
∫
∂Ω

(∂d2

∂n
+Hd2

)
θ · n ds.

Starting from Ω0, we produce a sequence of shapes (Ωk)k=0,..., which boundaries ∂Ωk

get closer and closer to ∂ΩT .
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2.6.2 Numerical issues

As far as the numerical setting is concerned, the template shape Ω0 is discretized as a
simplicial mesh (filled with tetrahedra), and the target shape ΩT is supplied through
a contour mesh of its boundary (triangles in 3d, edges in 2d).

We refer to Section 2.4.1 for the general steps of the procedure, which remains
unchanged. The major difference relies on the calculation of the descent direction,
which in the present context demands the following steps:

At iteration k:

1. compute the discrete mean curvature H at each vertex xi of the advecting
boundary ∂Ωk.

2. compute the normal derivative of the distance function d = d(·, ∂ΩT ) at each
vertex xi of the advecting boundary ∂Ωk by the formula:

∂d2

∂n
= ∇(d2) · ni = 2(xi − pΩT (xi)) · ni,

where pΩT (xi) stands for the projection of xi on ∂ΩT and ni stands for the
normal at xi;

3. compute the state uΩk of the considered PDE system on Ωk by FEM discretiza-
tion.

The numerical implementation requires at each iteration k the computation of the
discrete mean curvature of the moving boundary ∂Ωk. The computation of differ-
ential geometry properties of a discrete surface is a active research field and a huge
literxwature has been devoted to this topic. We describe below the two methods
that we used in our experiments for the computation of the discrete mean curvature,
respectively in 2d and 3d space dimension.

2.6.3 Computation of the discrete curvature

For the 2d case we follow the approach described in [34]. Let T the boundary
of a 2d mesh and let {xi}i=0,...,n the list of points lying on T . Let us suppose that
the edges of the boundary has been sorted in such a way that for each vertex xi the
vertex xi−1 (resp. xi+1) denotes the vertex placed before (resp. after) xi, according
to a counterclockwise orientation of T . In such a situation the normal vector at point
xi is estimated as the orthogonal of the (normalized) vector −−−→xixi−1. Then the discrete
radius of curvature ri at vertex xi is given by the formula:

1

κi
= ri =

1

4

( −−−→xixi−1 · −−−→xixi−1

−n(xi) · −−−→xixi−1

+
−−−→xixi+1 · −−−→xixi+1

−n(xi) · −−−→xixi+1

)
.
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The discrete curvature κi at xi is taken as the inverse of the radius of curvature when
the latter is not vanishing, and is set to zero otherwise.

Let us now discuss the 3d case. Most of classical definitions from differential ge-
ometry of smooth curves and surfaces need to be extended to the case of discrete
surfaces. Practically one has to compute approximations of these differential proper-
ties (e.g. normal vector, mean curvature) directly from the discrete data. A general
idea (see [77]) is to evaluate a discrete differential quantity at a vertex x of the mesh
as a spatial average over a neighborhood N(x) of x. The neighborhood of a vertex x
of a surface mesh can be defined as:

• the 1-ring of a vertex, i.e. the collection of all the triangles sharing the vertex;

• the barycenter cells, i.e. the closed polygon obtained by connecting the barycen-
ters of all the triangles belonging to the 1-ring of a vertex;

• the Voronoi cells, i.e. the closed polygon obtained by connecting the circum-
centers of all the triangles belonging to the 1-ring of a vertex.

The mean curvature H of a surface at a point p can be equivalently defined by the
following integral (see [74]):

H =
1

π

∫ π

0

κn(θ) dθ, (2.6.3)

where κn(θ) is the normal curvature at p along a direction making an angle θ with
a fixed direction. Let ∆S be the Laplace Beltrami operator for the surface S. A
discrete approximation KH of ∆S is classically computed via the cotangent formula,
firstly introduced in [88]. When the operator is applied on coordinates functions, this
formula reads:

KH(xi) =
1

2Ai

∑
j∈N(i)

(cotαij + cot βij)(xi − xj), (2.6.4)

where the sum is extended over the 1-neighborhood N(i) of the vertex xi and αij, βij
are the angles opposite to the edge xixj (see Figure 13). From this expression the
scalar (unsigned) mean curvature H(xi) reads:

H(xi) =
1

2
||KH(xi)||. (2.6.5)

The sign of the discrete mean curvature is then chosen according to the orientation of
the normal field. The above formula can be thought as a quadrature of the integral
(2.6.3). Indeed a straightforward calculation (see [77]) shows:

H(xi) =
∑
j∈N(i)

wijh
N
i,j,
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xi

αij

xj

βij

Figure 13: Angles αij and βij opposites to the mesh edge xixj .

where the weights wij are given by:

wij =
1

8Ai
(cotαij + cot βij) ||xi − xj||2,

and the coefficients hNi,j are projections of the normal curvature in the direction of xixj.
Figure 14 shows two examples of computation of the mean curvature distribution.
Note that the formula is very sensitive to noise when the mesh under considerations
is not regular enough (which is the case for example of models coming from scans
segmentation).

2.6.4 Numerical examples

In this section we show three examples of boundary matching.

First, consider the 2d test case of Figure 15. The template shape is a small disk
located at the interior of a target silhouette. The algorithms ends after k = 200,
revealing an excellent matching. Note the recovering of the two singularities of the
target shape.

Next, we perform the same test case of Figure 4-(d)-(f). Note that in this context
the algorithms fails to convergence, invalidating the mesh after few iterations. The
occurrence of singularities is shown in Figure 17.

Also, consider the 3d test case of Figure 16, in which a spherical template is
mapped onto a cube. The template shape is able to recover the flat regions of the
template boundary, but fails in approaching its edges, generating very stretched tri-
angle elements.

Remark 2.6.1. The occurrence of singularities (as in Figure 17) is due to the
non differentiability of the signed distance function (Prop. 1.3.1) when the set of
projections of a point is not a singleton. In such case the shape derivative is not well
defined since we have as many directions as projection points for advecting the points.
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(a)

(b)

Figure 14: Mean curvature plot using pseudo colors. (a) Parametric surface test case. (b)
Irregular mesh test case.

(a) (b) (c)

Figure 15: Computational mesh of the shape Ωk and boundary of the target shape (blue
contour) at iteration (a) k = 0; (b) k = 40;(c) k = 200.
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(a) (b) (c)

Figure 16: (a) Computational mesh of the template shape. (b) Deformed template shape
showing stretched elements. (c) Target shape.

(a) (b) (c)

(d)

Figure 17: Computational mesh of the shape Ωk and boundary of the target shape (blue
contour) at iteration (a) k = 0; (b) k = 40;(c) k = 60. (d) Deformed shape Ω100 generating
singularities.
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2.7 Conclusive remarks

In this chapter we proposed a novel method for elastic shape matching borrowing
techniques from shape optimization. The method has a strong mathematical back-
ground, in particular it relies on the existence of a unique solution of a variational
problem. The advantages of our method are the simple implementation and the intu-
itive formulation. The algorithm presented in Section 2.4 has revealed more suitable
fro numerical practice with respect to the one featured in Section2.5. The method
proposed in Section 2.5 suffers of at least two major limitations. First, for guaran-
teeing the existence of an optimum, the target shape is imposed to belong to the set
of shapes that are recovered by applying surface loads on the template shape. This
condition is too restrictive due to the mechanical constraints of linear elasticity. In
the case in which the target shape does not belong to the set defined in (2.5.2), the
algorithm converges to the best approximation in Oad of the target shape. In such
case the convergence of the algorithm does not guarantees the proximity between the
deformed template shape and the target shape. Second, even when the condition on
the target shape is satisfied, the numerical implementation shows slow convergence
due to the rotational component of the deformation. The method featured in Section
2.4 which accounts for ’small’ displacements has revealed to perform quite better in
numerical practice -helping the algorithm to escape local minima- and less restrictive
in terms of the displacement which can be reached. In particular the method allows
to morph a couple of shapes which are not close from one other.

The volumetric functional based on the paradigm ’ask to Ω0 to occupy all the space
of ΩT ’ has proven much more efficient with respect the one based on the alignment
of boundaries. However, one could think about a combination of the two functionals
J and P for dealing with the problem of partial matching. In this context ,let Ω0,ΩT

be again respectively target and template shapes. Consider a subset ΣT ⊂ ∂ΩT , and
assume that a corresponding subset Σ0 ⊂ ∂Ω0 has been identified on the boundary of
Ω0, which we would like to map to ΣT . The additional information comes for instance
from an automatic mesh segmentation algorithm. Starting from Ω0, it seems natural
to try to minimize the weighted functional:

Lα(Ω) =

∫
Ω

dΩT dx+ α

∫
Σ

d(x,ΣT ) ds,

which impose to the subset Σ0 to be mapped onto ΣT .
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3.1 Introduction

This chapter is devoted to the study of an existence problem for a shape functional
which arises in the context of structural optimization. At the time of writing we don’t
have a precise answer to this existence question. We introduce the problem and some
theoretical tools to study existence in the context of shape optimization. The proof
of a precise statement is still underway.

In Chapter 2 we introduced a shape matching method based on the distance
functional:

J(Ω) =

∫
Ω

dΩT (x)dx,

with dΩT the signed distance function to a target shape ΩT . Evaluating the functional
J at a certain region of the ambient space gives informations of type ’How much am

71
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Figure 1: Reprinted from [32]. Top: load case. Optimal shape for problem (3.1.1) for γ = 1
(middle) and γ = 0.25 (bottom).

I close to the target shape ΩT ?’ or ’Am I at the interior or the exterior of the target
domain ΩT ?’. Therefore, the computation of J at a certain part Ω of the ambient
space gives informations about the ’closeness to the specific design ΩT ’. Beyond
the specific context of shape matching, it seems natural to employ this functional
in the more general context of structural optimization and in architectural design
oriented applications. Although shape optimization methods are currently ubiquitous
in mechanical engineering, the application of their instruments to architectural design
is a new and emergency field [32]. The general purpose in architecture oriented shape
optimization problems is to incorporate aesthetic criteria -as for example the personal
taste of the architect- into a more classical problem which evaluates for instance the
mechanical performance of a structure. In [32] several numerical examples of shape
optimization problems under geometrical constraints are presented. The functionals
under consideration share the very general form Cm(Ω) + Cg(Ω), where Cm is the
mechanical contribution aiming at guaranteeing the robustness of the structure, and
Cg is a geometric constraint, incorporating design aesthetic criteria. In the present
context we focus on a specific problem in which the mechanical performance of the
shape is evaluated in terms of the ’elastic compliance’ and the aesthetic criteria is
mathematically formulated in terms of the distance functional J , related to some
user-defined specific design ΩT . In practice, the compliance is evaluated with respect
to the solution of a mechanical system. For example, consider the linear elasticity
setting introduced in Section 1.5. Consider shapes that are clamped at a part ΓD of
their boundary and subjected to a surface load g on a part ΓN := Γ \ ΓD of Γ = ∂Ω.
For a given load case g, consider the solution uΩ of Problem (1.5.2) posed on Ω. In
this situation the compliance C(Ω) is defined as the work of external loads, namely
the quantity:

C(Ω) :=

∫
Ω

σ(uΩ) : ε(uΩ) dx =

∫
ΓN

guΩ ds.

Let D be a domain in R2 and let ΩT ⊂ D be a given target shape. Incorporating the
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Ω∗ Ω∗ε

Figure 2: Non existence of an optimal design for Problem (3.2.1).

functional J into the process results in the following minimization problem:

min
Ω∈OV

Sγ(Ω), where Sγ(Ω) = γC(Ω) + (1− γ)J(Ω), (3.1.1)

where γ ∈ [0, 1] is a weighting coefficient. The set OV of admissible shapes is defined
as:

OV = {Ω ⊂ D, Ω open , |Ω| = V } .

Figure 1 depicts the numerical computation of an optimal shape for Problem (3.1.1)
with (γ = 0.25) and without (γ = 1) incorporating the geometric constraint. Note
that Problem (3.1.1) admits a unique solution equals to the target shape ΩT when
γ = 0. When γ = 1, the reader familiar with theoretical shape optimization prob-
lems will recognize a well known example of non existence of optimal shapes: the
compliance minimization problem under volume constraint. The non existence of a
classical solution (i.e. a black/white design) is due to the occurrence of homogeniza-
tion phenomena and is a major difficulty in many shape optimization problems. Let
us start our presentation with a very simple example of such a phenomenon.

3.2 An introductory example

This examples is due to G. Buttazzo and extracted from [2]. Let B = B(0, 1) be
the unit ball in R2. Consider the following least squares minimization problem:

min
Ω∈O

F (Ω), where F (Ω) :=

∫
B

(uΩ − c)2, (3.2.1)

with O = {Ω ⊂ B,Ω open } the set of admissible shapes, c ∈ R a constant value and
the state uΩ solution of the following Poisson-Dirichlet problem:{

−∆uΩ = 1 in Ω,

uΩ = 0 in B \ Ω.
(3.2.2)
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For instance, one could think about a conductivity problem in which one wants to
optimize the location of a mixture of two materials ( Ω and B \Ω stand respectively
for the conductive and non conductive material) for matching an ideal constant tem-
perature c. Let us show that Problem (3.2.1) has no solution over O. First, it is easy
to see that the whole ball B cannot be a minimizer of F for c small enough. Indeed,
consider a ball B(0, R) of ray 0 < R ≤ 1 centered at the origin. It is straightforward
to verify that the solution uR := uB(0,R) of problem (3.2.2) with Ω = B(0, R) has the
following expression:

uR(x) =


R2 − |x|2

4
if 0 ≤ x ≤ R,

0 if R < x ≤ 1.
(3.2.3)

Consider the solutions u1 and ur, related respectively to the domains B and B(0, r),
with 0 < r < 1. From (3.2.3) we get the inequality:

(ur − c)2 < (u1 − c)2,

which holds if c verifies c < r2+1
8

. The above inequality leads to:

F (B(0, r)) < F (B),

which holds for each couple (r, c) with 0 < r < 1 and c small enough. This shows that
B is not optimal. Let us now show that F cannot have a (regular) minimizer Ω∗ ( B.
Let us argue by contradiction and suppose that there exists a regular domain Ω∗ ( B
which is a minimizer for F . Since Ω∗ ( B we can find a point x0 and a ball centered
in x0 of small ray ε which is strictly contained in the complementary B \ Ω∗. Let
B(x0, ε) such a ball and let Ω∗ε = Ω∗ ∪B(x0, ε) (see Figure 2). Since Ω∗ε is composed
of two disjoints components and the solution of (3.2.2) can be explicitly computed
for spherical domains, we can easily write the state uΩ∗ε in terms of uΩ∗ :

uΩ∗ε(x) =


uΩ∗(x) if x ∈ B \B(x0, ε),

ε2 − |x− x0|2

4
if x ∈ B(x0, ε).

We can now compare the cost F at Ω∗ε and Ω∗:

F (Ω∗ε) =

∫
B

(
uΩ∗ε − c

)2
dx

=

∫
Ω∗ε

(
uΩ∗ε − c

)2
dx+

∫
B\Ω∗ε

(
uΩ∗ε − c

)2
dx

=

∫
Ω∗

(uΩ∗ − c)2 dx+

∫
B(x0,ε)

(
uΩ∗ε − c

)2
dx+

∫
B\Ω∗

(uΩ∗ − c)2 dx−
∫
B(x0,ε)

c2 dx

= F (Ω∗) +

∫
B(x0,ε)

((
ε2 − |x− x0|2

4
− c
)2

− c2

)
dx.
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Since from (3.2.3) we get 0 < uΩ∗ε < c on B(x0, ε) for ε small enough, we end up with
F (Ω∗ε) < F (Ω∗), proving that Ω∗ is not a minimizer for F . Let us observe that we
can iterate this procedure by adding more small components to Ω∗, always getting
a better value of F (see Figure 2). This behaviour shows that the temperature c is
approached by an homogenization process.

3.3 The compliance minimization problem

α

β
Ω

D

f

ΓN

ΓD

ΓD

ΓN

Figure 3: Model problem for Section 3.3.

Before getting things more rigorous, let us now show how an homogenization
problem prevents the existence of optimal shapes in the case of the compliance min-
imization.

Let D = [0, 1]2 be a fixed design space and consider the set OV of all open
measurable sets contained in D of fixed volume V . Consider the space

UV =

{
χ ∈ L∞(D), χ(1− χ) = 0,

∫
D

χ(x)dx = V

}
.

of characteristic functions of elements of OV . We consider the model of an elastic
membrane supported on D which is submitted to a constant-valued surface load
f = e1 on a part of the boundary ΓN := Γ0 ∪ Γ1, with Γ0 = {0} × [0, 1] and
Γ1 = {1} × [0, 1]. Also, the membrane is clamped at a part ΓD := ∂D \ ΓN of its
boundary. Let 0 < α < β be two real numbers. Suppose the elastic membrane
to be composed of a mixture of two materials (soft and hard) of elastic coefficients
respectively α, β. For all Ω ∈ OV , we define the global coefficient of the membrane
as:

aχ = αχD\Ω + βχ,

where χ is the characteristic function of Ω. The membrane is governed by the fol-



76 3.3. The compliance minimization problem

lowing elasticity system: 
−div(aχ∇uχ) = 0, in D,

aχ∇uχ · n = f, on ΓN ,

uχ = 0, on ΓD.

(3.3.1)

For each Ω ⊂ D Problem (3.3.1) admits a unique solution uχ ∈ H1
ΓD

(D) which is the
minimizer of the following energy functional:

E(uχ) =
1

2

∫
D

aχ|∇uχ|2dx−
∫

ΓN

e1uχds.

We introduce the elastic compliance

C(χ) = −2E(uχ) =

∫
ΓN

fuχds =

∫
D

aχ|∇uχ|2dx, (3.3.2)

and we are interested in the constrained minimization problem:

inf
χ∈UV

C(χ). (3.3.3)

The non existence result extracted from [1] is the following.

Theorem 3.3.1. If 0 < V < 1 then problem (3.3.3) has no solution over UV .

The complete proof of the theorem can be found in [1]. Here we limit ourselves
to report some points of the proof from which we can deduce some properties of the
compliance functional. For finding a lower bound m for C(χ), showing therefore that
the quantity infχ∈UV C(χ) is finite, one can rely on the following duality lemma.

Lemma 3.3.1. Let uχ be the solution of Problem (3.3.1). Then the stress σχ =
aχ∇uχ is the minimum of the following energy functional:

σχ = arg min
σ∈A

F (σ), where F (σ) :=
1

2

∫
Ω

a−1
χ |σ|2.

The space A is the set of admissible stresses:

A :=
{
σ ∈ L2(Ω)2 such that − div σ = 0, σ · n = e1 on ΓN , σ = 0 on ΓD

}
.

Using the above lemma Problem (3.3.3) can be rewritten as:

inf
χ∈UV

inf
σ∈A

∫
D

a−1
χ σ · σ dx.

Now, one can show that the function a−1
χ σ · σ is convex (see [1]). Using this property
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we get the following upper bound for the compliance:∫
D

a−1
Ω σ · σ dx ≥ m := (βV + α(1− V ))−1, ∀σ ∈ A,

which does not depend on Ω. Moreover, it can be shown that the infimum value is
not attended in UV , i.e. that:

∀χ ∈ UV , m < C(χ).

Actually, one can prove that the above featured quantity m := (βV +α(1− V ))−1 is
exactly the infimum of the compliance functional:

inf
χ∈UV

C(χ) = m.

This goal is accomplished by exhibiting a sequence of characteristic functions (χn)n∈N
of UV which minimizes C and converges to a function which does not belong to UV .
In this precise case a minimizing sequence can be constructed explicitly (see Figure
4). Let us consider the set of characteristic functions (χn)n∈N defined as follows.
Consider the following periodic function:

χ(y) =

{
0 0 ≤ y < V,

1 V ≤ y < 1,

and define the sequence as:

χn(x, y) = χ(ny) for n ∈ N. (3.3.4)

It can be shown using homogenization theory (see [1] for more details) that:

lim
n→∞

C(χn(x, y)) = m,

and the sequence (χn)n∈N does not converges to the characteristic function of a do-
main. Let us explain the above result: in order to decrease the values of C, the
minimizing sequence has to create more and more ’holes’ (i.e. has to remove the soft
material α) aligned with the horizontal boundary load. The optimum is then reached
by a composite material, microscopic mixture of the two original materials. See also
[60] for a similar example in the case of a mixture of material and void. Note that the
above result reposes on the explicit construction of a minimizing sequence of shapes,
which appears a bit miraculous, and no general technique exists to construct such a
sequence.
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1
k

1− V

V

α

β

Figure 4: Minimizing sequence for the compliance functional.

3.4 General scheme for getting an existence result

Let us now recall the theoretical requirements for getting an existence result for
a shape optimization problem. Let F (Ω) be a functional of the domain which is
minimized over a set Oad of admissible shapes. Generally speaking, an existence
result for a shape minimization problem comes with the verification of the following
properties (see [60]):

• the quantity m := infΩ∈Oad F (Ω) is finite (boundedness of the functional);

• For each sequence (Ωn)n∈N of shapes in Oad verfying supn |F (Ωn)| < +∞, there
exists a shape Ω∗ ∈ Oad and a subsequence (Ωnk)k∈N which converges (with
respect to some topology) to Ω∗ (compactness of the functional);

• F is sequentially lower semicontinuous:

if Ωn converges to Ω∗ then J(Ω∗) ≤ m.

A crucial and difficult point is the proof of the compactness of the functional. For
making this point more rigorous we need to equip the space of admissible shapes with
a topology. We will present in the following section two topologies which are usually
used in shape optimization context.

3.4.1 Choice of the topology

The choice of the topology on the set of admissible shapes is very important and
depends strongly on the nature of the problem at hand. Such a topology should
provide both semicontinuity of the objective functional and compactness of the set of
admissible shapes. A fruitful approach has been provided in the context of geometric
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measure theory by using the strong L2 topology of the characteristic functions. Let
us introduce a weak notion of convergence for characteristic functions over the space
L∞(Rd).

Definition 3.4.1. (Weak-? convergence ) Let (Ωn)n∈N be a sequence of measur-
able domains with corresponding sequence of characteristic functions (χΩn)n∈N. The
sequence (χΩn)n∈N is said to converge to χ ∈ L∞(Rd) in the weak-? topology if:

∀ψ ∈ L1(Rd), lim
n→∞

∫
Rd
χΩnψ =

∫
Rd
χψ.

Definition 3.4.2. (Convergence in the sense of characteristic functions) Let
(Ωn)n∈N be a sequence of measurable sets and let Ω be a measurable set. The se-
quence (Ωn)n∈N is said to converge to Ω in the sense of characteristic functions if:

χΩn → χΩ in Lploc(R
d).

Note that this is a topology on a set of equivalence classes: it does not distinguish
between shapes that differ only of a set of zero Lebesgue measure. The following
result (from [60]) explains the link between weak and strong convergence.

Proposition 3.4.1. Let (Ωn)n∈N be a sequence of measurable sets of Rd. Then
there exists a subsequence (Ωnk)k∈N such that χΩnk

converges weakly-? in L∞ to a

function χ∗ belonging to the space L∞(Rd, [0, 1]). Moreover, if χ∗ is a bang-bang
function (i.e. is the characteristic function of a domain) the convergence is strong
(i.e. takes place in Lp(Rd) for some p ∈ [1,+∞]).

The problem is that in general the sole weak-? convergence does not guarantee
the limit function to be a characteristic function. The lack of strong convergence is at
the basis of homogenization phenomena explored in Sections 3.4 and 3.3. In general,
the convergence takes place in the space of density functions:

WV =

{
χ ∈ L∞(D), 0 ≤ χ ≤ 1,

∫
D

χ(x)dx = V

}
. (3.4.1)

See [60] for other topologies used in the context of shape optimization.

The probably most natural way to get extra compactness properties of a set of
admissible domains with respect to an objective functional is to restrain the set of
admissible domains by adding geometrical, topological or regularity constraints. Such
a choice depends strongly on the nature of the functional at hand. In order to get an
intuition about the origin of the non existence phenomenon it is useful to analyze the
minimizing sequences of the problem at hand. For example, the minimizing sequence
given in Section 3.3 fulfills the following properties:

• the shapes do not enjoy Lipschitz regularity of the boundary;
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• the perimeter of the shapes is not uniformly bounded;

• the number of their connected components is unbounded.

The first idea coming in mind is to restraint the space in order to prevent shapes
to show one of the above behaviors. See Appendix A for a survey of some classical
existence results obtained by following this idea.

3.5 Presentation of our problem

We now come to the setting described in Section 3.3. Our aim is to incorporate
into the compliance functional the distance functional defined in Chapter 2. We
consider the following minimization problem:

min
χ∈UV

Sγ(χ),where = Sγ(χ) := γC(χ) + (1− γ)J(χ), (3.5.1)

where C(χ) and UV are the compliance and admissible space defined in Section 3.3,
γ ∈ [0, 1] is a weighting parameter and J(χ) is the functional defined in Chapter 2:

J(χ) =

∫
D

χdΩT dx,

where ΩT is a shape in OV . Note that we can always consider the case of ΩT of
measure V without loss of generality. Indeed, suppose that the measure of ΩT does
not equal V . Then we can define a constant M ∈ R and a set

ΩV
T = {x ∈ D, dΩT (x) ≤M} ,

such that |ΩV
T | = V . In this case, we can modify the functional Sγ by observing:

arg min
χ∈UV

Sγ(χ) = arg min
χ∈UV

(
γC(χ) + (1− γ)J̃(χ)

)
,

where

J̃(χ) = J(χ)−MV =

∫
D

χdΩT dx−M
∫
D

χdx

=

∫
D

χ(dΩT −M)dx =

∫
D

χdΩVT
dx.

3.5.1 Boundedness of the functional

The boundedness of the functional is easy to show. For the geometric constraint
we have:

J(χΩT ) ≤ J(χ) ≤ J(χD\ΩT ), for each χ ∈ UV .
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D0

D1

ΩT

D2

Figure 5: Sets D0, D1, D2 featured in (3.5.2) and target shape ΩT (grey color).

Moreover, from Section 3.3 we have the following upper bound for the compliance:

C(χ) =

∫
D

a−1
χ σ · σ dx ≥ (βV + α(1− V ))−1.

Consequently we get the following lower bound mS for Sγ:

mS := γ(βV + α(1− V ))−1 + (1− γ)J(χΩT ).

3.5.2 Optimality conditions in WV

Introduce a sequence (χn)n∈N of characteristic functions of UV which minimizes
Sγ. Consider the weak-? limit χ∗ of (χn)n∈N in L∞(RN). Following the proof of an
existence result in [71], we will now infer optimality conditions for Sγ over the space
WV of density functions introduced in (3.4.1). Our aim would be to prove that for
some value of γ ∈ (0, 1) the limit function χ∗ is the characteristic function of an
optimal domain χ∗ = χΩ∗ . This property would allow to conclude that χ∗ is also the
minimizer of Sγ over the space UV . Let us define the following three sets:

D0 = {x ∈ D,χ∗(x) = 0} , D1 = {x ∈ D,χ∗(x) = 1} , D2 = {x ∈ D, 0 < χ∗(x) < 1} .
(3.5.2)

Note that if |D2| = 0, then χ∗ is the characteristic function of a domain and Problem
(3.5.1) admits a classical solution; conversely when |D2| > 0 the optimum of (3.5.1)
is a density. Let us now characterize the space of admissible variations in the space
WV . Imposing that χ∗ + th belongs to WV leads to the following conditions on h:

h(x) ≥ 0 on D0, h(x) ≤ 0 on D1 and

∫
D

h(x)dx = 0. (3.5.3)
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Let us define the space of admissible variations Had as the space of all functions
h : D 7→ D verifying the properties featured in (3.5.3).

Theorem 3.5.1. The functional Sγ admits the following Gâteau derivative (which
we call S ′γ with a little abuse of notations):

∀h ∈ Had, S
′
γ(χ

∗)(h) = −γ
∫
D

h(x)(β − α)|∇uχ∗(x)|2 dx+ (1− γ)

∫
D

h(x)dΩT (x) dx.

(3.5.4)

Proof. Consider a real parameter t ∈ R+ and a function h(x) ∈ Had. For the func-
tional J we have:

lim
t→0

J(χ∗ + th)− J(χ∗)

t
= lim

t→0

∫
D

(χ∗(x) + th(x)− χ∗(x))dΩT (x) dx

t
=

∫
D

h(x)dΩT (x) dx.

For the compliance term we have:

lim
t→0

C(χ∗ + th)− C(χ∗)

t
= lim

t→0

∫
ΓN

(uχ∗+th − uχ∗) f ds
t

=

∫
ΓN

fδu ds,

where we used the following asymptotic expansion in the neighborhood of t = 0:

uχ∗+th = uχ∗ + tδu+ o(t2). (3.5.5)

The contribution δu in (3.5.5) is defined as the solution of the following linearized
problem: 

−div(aχ∗∇δu) = div(h(β − α)∇uχ∗), in D,

aχ∗∇δu · n = −h(β − α)∇uχ∗ · n, on ΓN ,

δu = 0, sur ΓD.

(3.5.6)

We introduce an adjoint state p and we integrate by parts (3.5.5) to obtain:

−
∫
D

div(aχ∗∇δu)p dx =

∫
D

div(h(β − α)∇uχ∗)p dx∫
D

aχ∗∇δu · ∇p dx−
∫

ΓN

aχ∗∇δu · np ds = −
∫
D

h(β − α)∇uχ∗ · ∇p dx+

+

∫
ΓN

h(β − α)∇uχ∗ · np ds

−
∫
D

div(aχ∗∇p)δu dx+

∫
ΓN

aχ∗∇p · nδu ds = −
∫
D

h(β − α)∇uχ∗ · ∇p dx.

Therefore, by choosing pχ∗ = −uχ∗ , solution of (3.3.1) for a load case equals to −f ,
we end up with:

−
∫

ΓN

fδu ds =

∫
D

h(β − α)|∇uχ∗|2 dx.
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Eventually we get:

S ′γ(χ
∗)(h) = −γ

∫
D

h(x)(β − α)|∇uχ∗(x)|2 dx+ (1− γ)

∫
D

h(x)dΩT (x) dx.

Since χ∗ is a minimizer for Sγ we get the following inequality:

S ′γ(χ
∗)(h) ≥ 0.

Using Theorem 3.5.1 we get:

S ′γ(χ
∗)(h) = −γ

∫
D

h(β − α)|∇uχ∗ |2 dx+ (1− γ)

∫
D

h(x)dΩT (x) dx ≥ 0. (3.5.7)

Let us consider two points x0, x1 ∈ D2 and two sequences of open sets (Gk)k∈N and
(Hk)k∈N ⊂ D2 converging respectively to x0 and x1 and such that |Gk| = |Hk| for
each k ∈ N. Then we choose in (3.5.7) the following sequence (hk)k∈N:

∀k ∈ N, hk = χGk − χHk ∈ Had.

When k goes to +∞ we obtain the following inequality:

− γ(β−α)|∇uχ∗(x0)|2 + (1− γ)dΩT (x0) + γ(β−α)|∇uχ∗(x1)|2− (1− γ)dΩT (x1) ≥ 0.
(3.5.8)

Choosing instead hk = −χGk + χHk ∈ Had leads to:

γ(β − α)|∇uχ∗(x0)|2 − (1− γ)dΩT (x0)− γ(β − α)|∇uχ∗(x1)|2 + (1− γ)dΩT (x1) ≥ 0.
(3.5.9)

From (3.5.8) and (3.5.9) we get an equality for all x0, x1 in D2. We end up with:

− γ(β − α)|∇uχ∗(x)|2 + (1− γ)dΩT (x) = K, ∀x ∈ D2. (3.5.10)

where K is a constant value. Note that in this context we cannot conclude K = 0
because of the volume constraint. Next, let us choose a point x0 in D2 and a point
x1 in D1. By using the same strategy than above we find the inequality:

− γ(β − α)|∇uχ∗(x)|2 + (1− γ)dΩT (x) ≤ K, ∀x ∈ D1. (3.5.11)

Note that the constant K depends on the parameter γ, the design space D, the target
shape ΩT and the load case f and it is hard to characterize. Let us distinguish two
cases. First, let us suppose K ≥ 0. In this case, from (3.5.11) we have:

dΩT (x) ≤ K + γ(β − α)|∇uχ∗(x)|2

1− γ
, ∀x ∈ D1.
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Therefore inequality (3.5.11) is verified for all x ∈ ΩT , so as to get:

ΩT ⊂ D1.

Let us argue by contradiction and suppose that |D2| > 0. Then:∫
D1∪D2

χ∗dx >

∫
D1

χ∗dx ≥
∫

ΩT

dx = V.

By construction χ∗ ∈ WV , then the volume constraint implies:∫
D1∪D2

χ∗dx =

∫
D

χ∗dx = V,

which is a contradiction. Note that in such a case we would have χ∗ = χΩT for each
γ ∈ (0, 1), which looks a bit unrealistic. For the case K = −L with L > 0, we did not
find a contradiction with the assumption |D2| > 0. Then, it is possible in this case
the existence of an ’homogenization’ zone of non zero measure. Then, it is possible
in this case the existence of an ’homogeneization’ of non zero measure.

3.5.3 Optimality conditions in OV

The aim of this section is to infer optimality conditions for Sγ in the space OV of
open subsets of D of measure V . By a slight change of notations, for each Ω ∈ OV
of characteristic function χΩ, we pose aΩ = α(1 − χΩ) + βχΩ and for f ∈ H−1(ΓN),
we consider the following problem:

Find uΩ ∈ H1
ΓD

(D) such that


−div(aΩ∇uΩ) = 0, in D,

aΩ∇uΩ · n = f, on ΓN ,

uΩ = 0, on ΓD.

(3.5.12)

Moreover, let us pose:

C(Ω) =

∫
ΓN

fuΩ ds and J(Ω) =

∫
Ω

dΩT dx,

and consider the minimization problem:

min
Ω∈OV

Sγ(Ω), where Sγ(Ω) = γC(Ω) + (1− γ)J(Ω).

Again, consider a minimizing sequence (Ωn)n∈N for S in OV . Let χ∗ be the limit of
χΩn in the weak-? topology and suppose now that χ∗ is the characteristic function
of a domain Ω∗. Next theorem gives an expression for the shape derivative of Sγ(Ω).
Let us define the space of admissible variations:

Θad =
{
θ ∈ W 1,∞(Rd,Rd) such that divθ = 0

}
.
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Theorem 3.5.2. The functional Sγ(Ω) admits a shape derivative at θ = 0 which
reads:

∀θ ∈ Θad, S
′
γ(Ω

∗)(θ) =

∫
∂Ω∗

(−aΩ∗|∇uΩ∗ |2 + dΩT )θ · n ds.

Proof. The proof follows from Theorem 1.2.1 in the case with volume constraint. Let
us define g = −aΩ∗|∇uΩ∗|2 + dΩT . A classical change of variable yields:

S(Ωθ) = J((Id+ θ)(Ω∗)) =

∫
Ω∗
g ◦ (Id+ θ)| det(I +∇θ)| dx =

∫
Ω∗
g ◦ (Id+ θ) dx,

where we used the fact that Ωθ and Ω∗ have the same measure. We use the following
expansion

g ◦ (Id+ θ)(x) = g(x) +∇g(x)θ(x) + o(θ),

for obtaining

S ′(Ω∗)(θ) =

∫
Ω∗
∇f(x)θ dx.

Observing that ∇gθ = div (gθ) − g div θ and that div θ = 0, we end up with the
desired formula.

The first order optimality condition of Theorem 3.5.2 evaluated at Ω∗ gives:

∀θ ∈ Θad, S
′(Ω∗)(θ) = KO,

where KO ∈ R is a constant value.

3.5.4 Conclusions

The existence problem discussed in this Chapter is still an open problem. Evalu-
ating the optimality conditions inferred in the spaces OV , WV has revealed difficult
because it relies on the comparison of two terms: the ’compliance’ one, depending
on the gradient of the solution uΩ and the ’distance’ one, which is not defined in
variational form. Note that using other notions of shape sensitivity (as for instance
the topological derivative) does not help in escaping this issue. One way for ad-
dressing this problem could consists in writing the functional J(χ) (or equivalently
J(Ω)) as the energy functional associated to the solution of an Eikonal type equa-
tion. However, the analysis of optimality conditions seems suggest the existence of an
homogenization region in the neighborhood of the boundary ∂ΩT . Some numerical
tests that we performed for some particular choice of the target shape ΩT seem reveal
that in general the problem does not admits a classical solution for γ > 0.
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4.1 Introduction

In this chapter we will present an useful computational tool allowing to define a
close surface model from a source unorganized model. This is a joint work with Maya
de Buhan.

In many applications, a shape needs to be defined as the portion of the space
that is bounded by an orientable surface. Such a description partitions the ambient
space into two unambiguous subdomains, corresponding to the exterior and interior
parts of the shape under consideration. Many geometry processing tools and mathe-
matical models -as tetrahedral mesh generation, finite elements computations, shape
representation, implicit modeling - requires such an unambiguous definition of the
geometry of the underlying shape. Unfortunately, in many situations the geometry
underlying the discrete data is unorganized or too complex to be described in terms of
a connected subdomain of the ambient space. In such a situation, shape reconstruc-
tion and topological simplification tools may come into play. Shape reconstruction
methods have been extensively investigated in the context of interface evolution via

87
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level set methods (see [28] and references therein) or via deformable surfaces [39, 78].
In our specific context, we focus on the reconstruction of a connected shape starting
from the discrete data of a source triangulation. Such a triangulation could present
one or more undesirable peculiarities:

• invalid, showing for example overlapping entities;

• not closed, showing holes of arbitrary shape and dimension;

• topologically dirty, showing a huge number of connected components, which can
be intrinsic of the object or issued from errors during the acquisition process
(this is the case, for instance, of data coming from segmentation of noisy images).

Our specific task is to define a closed orientable surface model of the source triangu-
lation so that it can be a guide for generating a tetrahedral mesh of the 3d bounded
domain delimited by the generated surface. Most available geometry processing tools
preserve the topological structure of the source object. In the present context we
want both a surface reconstruction tool and a topology simplification tool. The lat-
ter can be useful to deal with shape representation, parametrization, retrieval. The
specific application we have in mind will be described in Chapter 7. In order to
achieve our goal we propose an original warping algorithm based on mesh deforma-
tion techniques. A closed surface mesh model is iteratively deformed, producing a
sequence of surfaces (and corresponding triangulations) which are ’closer and closer’
to the source triangulation, in the sense of the Hausdorff distance. Since the shape
topology is kept unchanged during deformation, the algorithm generates a closed tri-
angulation warping the source data. The proposed method has been implemented in
two Finite Element settings. At first, in Section 4.3 we make use of the equations
of three-dimensional elasticity acting on a thick template domain and at the end we
extract the surface of interest. Then, in Section 4.4 we propose an elastic shell model
which is able to deform an input surface. Starting from an input triangulation, the
latter method generates three-dimensional finite elements taking the bi-dimensional
surface and the normal vector field at each point of the surface as missing dimension.
Let us now present the general framework of the method.

4.2 Presentation of the method

Let Ω0 be a template shape with boundary ∂Ω0 = Γ0∪Γe composed of two disjoint
closed surfaces Γ0 and Γe. Let TS be the source model which is known only in terms
of the discrete data of a triangulation. Suppose that Ω0 encircles TS. We made this
assumption having in mind a precise application which will be exposed in Chapter 7;
however the method can be easily generalized to the case of two model intersecting
or to the case in which TS encircles Ω0. Our goal is to define a closed surface model
of TS, which we achieve numerically by deforming a computational mesh of Γ0 onto
TS. The initial shape Ω0 is iteratively ’deflated’ in order to produce a sequence of
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shapes (Ωk)k=0,... (and corresponding meshes (Tk)k=0,...) which get closer and closer
to TS. Each step of the procedure is composed of two phases. First, the shape Ωk is
advected; the deformation is driven by the elasticity equations (1.5.3) with boundary
conditions which we precise in the following. Then, potential intersections between
the advancing model and the source model are checked. If a vertex x of the template
shape has intercepted an element of TS of during the deformation, then its coordinates
are updated so that to force the point x to stay clamped at the source triangulation.

At each iteration the template domain is updated according to:

Ωk+1 = (I + vk)(Ωk). (4.2.1)

The displacement field vk featured in 4.2.1 is defined by:

∀x ∈ Ωk, vk(x) =

{
uk(x) if uk(x) ∩ TS = ∅
y − x if uk(x) ∩ TS = {y} (4.2.2)

where uk is the solution of (1.5.3). Let Γk be the transformed of Γ0 at step k. Let ΓDk
and ΓNk := ∂Ωk \ΓDk be respectively the Dirichlet (the clamped subset) and Neumann
(the subset submitted to surface loads) boundaries of the domain Ωk. At each step k,
ΓDk and ΓNk are allowed to vary according to the ray/surface intersection test featured
in (4.2.2): if an intersection point y is found, then x is clamped at this point, so that
ΓDk+1 = ΓDk ∪{y} and ΓNk+1 = ΓNk \ {y}. Doing so, starting from Ω0, which is clamped
at ΓD0 = ω and deflated on ΓN0 = Γ0 \ΓD0 , at each iteration the shape Ωk are advected
according to Equation (1.5.3) until they intercept the triangulation TS. Whenever a
contact between the advecting shape and the source triangulation occurs, the first is
clamped and forced not to cross the boundary of the latter. Doing so, at each step
k the intersection between the vector uk(x) and the triangulation TS is checked for
all x vertex of ΓDk . In case of multiple intersection points, the point y closest to x
is retained. By construction, the advecting sequence of meshes (Tk)k=0,... gets closer
and closer to the source mesh TS guaranteeing the strict inequality:

dH(Γk+1, TS) < dH(Γk, TS),

where dH(·, ·) is the Hausdorff distance between the two triangulations. Indeed, for
k sufficiently large the advecting surface Γk defines a closed boundary that warps the
source triangulation TS. From the numerical point of view we devised two types of
Finite elements fro modeling the problem.

4.3 Model using tetrahedral elements

For the purpose of using Equations (1.5.3) we need to encode the template shape
Ω as a solid medium, even if at the end of the story we will interested only on its
inner surface Γk. Consider an initial closed template surface Γ0. Consider the surface
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(a) (b) (c)

TS TS TS

Ωk Ωk Ωk+1

Figure 1: Schematic description of the warping procedure. (a) Computation of the dis-
placement field uk(black arrows) over the template shape Ωk (grey color) encircling the
source model (red color). (b) Retrieval of intersection points between the displacement
vector field and the source model (white points). (c) Updating of the shape according to
the displacement vk.

obtained by thickening Γ0 in normal direction:

Γe = (I + an)(Γ0),

where a ∈ R+ is a ’small’ parameter standing for the thickness of the solid and n
stands for the unit normal vector to Γ0, pointing outward. Consider the shape Ω0

defined a the domain of R3 bounded by the two surfaces Γ0,Γe. Assume that all the
shapes (Ωk)k=0,... are clamped at a subset ω of Γ0. The displacement field uk at each
iteration is computed as the solution of linear elastic problem 1.5.3 with the following
boundary conditions:

σ(uk) · nk = p p ∈ R, p > 0, on ΓDk ∩ Γk,

σ(uk) · nk = 0 on ΓNk ∩ ∂ (Ωk \ Γk) ,

uk = 0 on ΓDk ,

(4.3.1)

where nk stands for the unit normal vector to ∂Ωk, pointing outward to Ωk.

4.3.1 Numerical issues and examples

As far as the numerical setting is concerned, the template shape Ω0 is discretized as
a computational mesh T0 (filled with tetrahedra), with boundary composed of two
surface triangulations S0 and Se (resp. outer and inner boundary). The inner trian-
gulation S0 supplies a simplicial mesh of the boundary Γ0 of Ω0. The source model
is known only in terms of the discrete data of a triangulation TS. In a preprocessing
step, the two models are aligned in oder to guarantee that Ω0 encircles TS and that
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there exists a common subset ω between Γ0 and TS. This stage corresponds to a rigid
deformation and scaling of the two meshes. Starting from the template mesh T0, we
perform an iterative algorithm in order to get a sequence (Tk, Sk) of meshes with
decreasing values of dH(Sk, TS). For the sake of simplicity, the procedure ends when
a maximal number of iterations kmax is reached. The general procedure relies on the
following steps.

Start from an initial shape Ω0,
for k = 0, · · · , kmax

1. compute the state uΩk of the considered PDE system on Ωk by FEM discretiza-
tion;

2. for each vertex of Γk check intersections between uΩk(x) and TS;

3. compute the discrete vector field vΩk featured in (4.2.2);

4. updated the discrete boundaries corresponding to ΓDk and ΓNk ;

5. advect the shape Ωk according to the displacement vΩk , so as to get

Ωk+1 = (I + vk)(Ωk).

At each iteration the solution uk of the elastic system (1.5.3) related to the domain
Ωk is computed by the Finite Elements Method.

Remark 4.3.1. The numerical implementation of the proposed strategy requires
at each iteration the computation of the Finite Element solution of an elastic problem
(1.5.3). Note that, even if at each iteration both terms in 1.5.3 are updated, the mesh
connectivity does not change (since the shapes are not remeshed), allowing an efficient
reassembly of the elastic system.

Remark 4.3.2. Concerning the stopping criterion, one can devise the following
alternative strategy. Given a fixed integer N , the procedure ends whenever the set ΓNk
is empty (all the points in ΓNk have reached TS) or if N iterations of the process occur
without registering a new ray/triangle intersection. The latter condition deals with
the potential presence of large holes in TS. Alternatively, one could prescribe a fixed
percentage of elements of the the triangulation T0 which have to intercept the source
model.

Computation of the ray/mesh intersection

From a numerical point of view, the intersection test between a 3d segment and a
triangular mesh corresponds to verify the intersection ray/triangle for all triangles
of the triangulation. Moreover, since the target shape is moving during the process,
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 2: Topological simplification of a 3d model. (a) Computational mesh of the template
shape. (b)-(c): Source triangulation. Warped model after k = 10 iterations (d)-(g); k = 20
iterations (e)-(h); k = 80 iterations (f)-(i).
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(a)

(b)

(c)

Figure 3: (a) Mandible mesh model issued from segmentation of medical images. (b)
Computational mesh of the template shape. (c) Closed surface model of the mandible
generated after k = 120 iterations of the procedure.



94 4.3. Model using tetrahedral elements

we need to run the intersection test at each iteration of the process. Doing this
computation in a naive way leads to a quadratic complexity, which is useless in
practice. Our implementation takes advantage of a bucket sort algorithm in order
to reduce significantly the number of intersection evaluations. The general idea is
to endow the ambient space with a uniform grid structure (bucket structure) of low
computational cost allowing to associate elements by means of their spatial vicinity.
In order to do so, the joint bounding box of both source and target triangulations
is partitioned using a uniform grid of non-overlapping cubic bricks of equal size.
Each brick is indexed by a key integer depending only on the coordinates of its
center. The triangles of the fixed source mesh are listed according to the buckets
cells they intersect. When it comes to advect a point x in a prescribed direction
u, a straightforward computation of the key allows to quickly retrieve the spatial
neighborhood of the vector u(x)−x. Then the intersection test is performed only for
the few triangles selected by this process.

Numerical examples

First, consider the example depicted in Figure 2. Both template and source model
are embedded in a computational domain of dimensions [0, 1]3. The template mesh T0

is a thick spherical template with about 20 000 tetrahedra. The source triangulation
has about 15 000 triangles. The parameters we used for assembling the elastic system
are

λ =
Eν

(1 + ν)(1− 2ν)
and µ =

E

2(1 + ν)
,

where E = 10000 kPa is the Young modulus and ν = 0.1 is the Poisson coeffi-
cient, which corresponds to a very soft and compressible material. The pressure
is p = 200 kPa. Figure 2 depicts three possible results of the procedure for the
following values of kmax: kmax = 10, kmax = 20, kmax = 80. Note how well the
triangulation Tkmax approach source model, whose elements are still visible on Tkmax .
The computation takes about 20 minutes on a standard laptop computer.

Next, consider the example depicted in Figure 3. The source triangulation is an
anatomical shape coming from segmentation of medical images. The triangulation
is composed of several holes located on the outer envelope and filled at its interior
with a complex network of triangles corresponding to the spongious bone (Figure
3-(a)). The source triangulation has about 60 000 triangles. The template shape is a
thick domain which envelops the source triangulation (Figure 3-(b)) which has about
11 000 tetrahedra. The elastic parameters are the same of the previous example.
The pressure is p = 50 kPa. At the end of the procedure the parameter kmax
equals 120, generating an high-quality closed model of the mandible (Figure 3-(c)).
The computation takes about 25 minutes on a standard laptop computer. Some
anatomical details of the source model have been lost (the mental foramen, the zones
of insertion of teeth). Note that this issue can be overcame by simply adapting the
size of elements of the template shape according to those of the source triangulation.
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Remark 4.3.3. The computational mesh of the template shape is not uniform.
The inner triangulation is much more dense than the outer one. A control of the
gradation parameter during the generation of the mesh allow the generation of high-
quality tetrahedral elements, needed for the fast convergence of the Finite Element
computation.

Remark 4.3.4. The computational cost of each Finite element computation in-
creases remarkably with the number of elements of the support mesh. For improving
the efficiency of the overall algorithm, one can devise a mesh adaptation scheme
which, starting from a coarse computational mesh, refines the mesh as closer as the
source model is approached.

4.4 Model using shell elements

For avoiding the need of of generating a thick template (which we use only for
the purpose of using 3d elasticity equations) in a preprocessing stage, we devised an
alternative implementation of the method described in Section 4.2. This implementa-
tion relies on the shell theory. A shell structure is a three-dimensional solid structure
in which one dimension is much smaller than the other two dimensions. We will now
introduce some basic definitions needed for the mathematical description of shells.
We follow the monography [20].

4.4.1 Shell elements

ω

φ(ω)
Φ a

2

Figure 4: Geometric description of a shell structure. A bidimensional domain ω is mapped
into the shell mid surface = φ(ω). The enlarged domain Ω in (r, s, t) coordinates is mapped
into a solid medium Ωe = Φ(Ω) through the map Φ.

From the geometrical point of view, a shell is a tridimensional solid medium de-
scribed in terms of a ’midsurface’ immersed in the ambient space R3, and a parameter
accounting for the thickness of the medium in the vicinity of the midsurface. From
a theoretical point of view, the midsurface is described in terms of a collection of
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two-dimensional charts, i.e. smooth injective mappings from domains of R2 to R3.
Without loss of generality, we can consider the case in which the midsurface is defined
in terms of a sole chart. The general case is treated by considering separately each
chart of the collection. Therefore, let ω ⊂ R2 be an open bounded reference domain.
Suppose to know a chart φ:

φ : ω̄ → R3

(r, s)→ (φ1(r, s), φ2(r, s), φ3(r, s)),

which maps the bidimensional domain ω̄ into the midsurface S := φ(ω̄) ⊂ R3 of the

shell. Suppose also that the vectors ∂φ(r,s)
∂r

, ∂φ(r,s)
∂s

are linearly independent at each
point x of the midsurface, so that they span the tangent plane. Then, the unit normal
vector n = n(x) at x is defined according to:

n =
∂φ(r,s)
∂r
× ∂φ(r,s)

∂s

||∂φ(r,s)
∂r
× ∂φ(r,s)

∂s
||
.

Also, consider the three-dimensional domain:

Ωa =
{

(r, s, t) ∈ R3 : (r, s) ∈ ω, t ∈
(
−a

2
,
a

2

)}
,

obtained by enlarging the domain ω lying in the (r, s) plane with a thickness a ∈ R+

representing the thin dimension of the structure. The shell geometry is described in
terms of the map:

Φ : Ωa → R3

(r, s, t)→ φ(r, s) + tn(r, s).

From a numerical point of view, the shell geometry is described in terms of two
data: (i) a surface triangulation TΩ ⊂ R3 representing the discretization of the shell
midsurface; (ii) the normal vector field at vertices and a scalar function a: Ω → R+

which describes the thickness along the normal direction.

One can devise two kinds of shell deformation models: the solid models, for-
mulated in terms of the coordinates of the ambient space R3, or surface models,
formulated in terms of curvilinear coordinates defined on the midsurface (see for in-
stance the monographs [22, 82]). Here we rely on the first approach, using the linear
elastic equations defined in Section 1.5. Note that the linear elasticity framework is
well defined for the shell structure which is a tridimensional medium. Our sole aim
is to devise appropriate Finite Elements which could exploit the peculiar structure of
the solid at stake. In order to do so, we consider tridimensional shell finite elements
formulation taken from [9]. Let us explain briefly the Finite Element setting.

Consider a surface triangulation T . The elements of T will be referred as the shell
mid triangles. Consider the P 1 Lagrange 2d linear functions (hi(r, s))i=0,1,2 defined
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on a reference triangle T ∗ in the (r, s) reference coordinate system:

h0(r, s) = r, h1(r, s) = s, h2(r, s) = 1− r − s.

Consider a shell midtriangle Tk. Let (x(i), y(i), z(i))i=0,...,2 be the coordinates of nodes
(p(i))i=0,...,2, located on Tk and nxi , n

y
i , n

z
i , i = 0, . . . , 2 be the components of unit

normal vectors at nodes (see Figure 5). Let T ek the shell element constructed by en-
larging the midtriangle Tk along the normal direction (Figure 5-right). The cartesian
coordinates (x, y, z) of a point inside the element T ek are expressed in terms of the
shape functions (hi(r, s))i=0,1,2 defined on the (r, s) plane and the unit normal vectors
at nodal positions, according to:

x(r, s, t) =
2∑
i=0

hi(r, s)
(
x(i) + t

a

2
nxi
)
, (4.4.1)

y(r, s, t) =
2∑
i=0

hi(r, s)
(
y(i) + t

a

2
nyi
)
, (4.4.2)

z(r, s, t) =
2∑
i=0

hi(r, s)
(
z(i) + t

a

2
nzi
)
. (4.4.3)
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Figure 5: Mapping a reference triangle T ∗ in the (r, s) coordinates to a shell triangular
element T e, obtained by enlarging the mid triangle T (grey color) in the direction of the
normal vectors (red color) defined at nodes (white circles).

Starting from this expression for points coordinates one can assemble the Finite
Element problem in a standard way. See Appendix A for technical details about the
strain/displacement interpolation. Note that in this context the Jacobian matrix of
the mapping (r, s, t) → (x, y, z) is not constant in (r, s, t) even in the case of linear
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basis functions, since the interpolation (4.4.1) does not depend linearly on the (r, s, t)
coordinates. See Appendix A for an example of mesh deformation using this setting.

4.4.2 Numerical issues and examples

To end this chapter, we are going now to use the algorithm featured in Section 4.3
in the context of shell elements. In the present context, the algorithm is unchanged,
except the fact that it takes as input a surface Γ0 (and a corresponding triangulation
T0) which represents the midsurface of the shell.

First, Figure 6 depicts the same test case of Example 4.3.1 when the template
shape is discretized as a 3d spherical triangulation and the Finite Elements system
is implemented using shell elements. The template shape has about 13 000 triangles.
The elastic parameters we used are the same. The pressure is p = 2000 kPa. The
thickness value of the shell is fixed at a = 0.3. Note that a bigger value of the
pressure (which we multiplied by 10 with respect to the previous example) allows to
reach the source model with a much smaller number of iterations, without stretching
or invalidating the advecting mesh. The computation takes about 10 minutes on a
standard laptop computer.

Next, Figure 7 depicts the deformation of the same template Γ0 of the previous
example onto the source mesh model of a molecule having about 12 000 triangles. The
source model is composed of several connected components, each one representing one
atom of the molecule 7-(f). The elastic parameters and the thickness value are the
same of the previous example. Thanks to our algorithm we are able to generate a
closed surface model which is suitable for generating a tetrahedral mesh of the source
object (Figure 7-(e)). The computation takes about 15 minutes on a standard laptop
computer.
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(a) (b) (c)

(d) (e) (f)

Figure 6: Test case of Example 4.3.1 when using shell elements. Warped model after
(a)-(d)k = 3 iterations; (b)-(e) k = 7 iterations; (c)-(f) k = 10 iterations.
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(a) (b) (c)

(d) (e) (f)

Figure 7: Warping of a molecule mesh model at iteration (a) k = 3; (b)k = 7; (c) k = 10;
(d) k = 49. (e) Tetrahedral mesh of the subdomain bounded by our closed model. (f)
Source model.
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5.1 Introduction

(Cranio)facial reconstruction methods (FR) aim at estimating the facial appear-
ance of an individual from the sole datum of the underlying skull. Facial recon-
struction practices are based on the assumption that there exists a mutual strong
correlation between the bone structure and the soft tissues [62]. However the cre-
ation of the face from the skull is a procedure of approximation: from the observation
of the cranium, one will not be able to recover a big amount of facial features (eyes
color, hair, skin color, lips shape, ears). Moreover the facial likeness of a single indi-
vidual changes considerably depending on factors like nutrition or aging. This face
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flexibility is not reflected on the subjacent skull. While age and sex can be esti-
mated from the observation of the skull, the BMI index can not be predict. A correct
model for facial reconstruction should take into account these variations, eventually
by proposing multiple reconstructions for one single skull (as proposed in [27, 79]).
The final product of a facial reconstruction tool is then expected to reflect somewhere
the intrinsic uncertainty related to this ill-posedness of the problem, no matter which
method is employed (artistic, parametric, statistic, mechanical, etc.). From a mathe-
matical point of view, this issue leads to at least two important difficulties: from one
hand, how to correctly characterize the solution, which might be a continuum spec-
trum of all faces ’consistent’ with a given skull rather than a single exemplar; from the
other hand, how to rigorously assess the degree of accuracy of the result. Despite the
intrinsic difficulty of the problem, the media are full of facial images that have been
constructed on the basis of a single given skull. A fascinating survey of such cases can
be found in the book [90]. The facial reconstruction problem arises in various appli-
cation fields ranging from archeology to medicine. Facial reconstruction methods are
currently employed in forensic medicine and in archeology. In forensic science, facial
reconstruction comes in the process of identification of deceased people when all the
usual methods of identification have failed and the skeletal remain is the sole datum
available for leading to a positive identification. In this context facial reconstruction
might be considered as an enhancing tool for ’recognition’, producing a short list of
candidates from which the individual may be identified by DNA appraisal or other
endorsed methods of identification [118]. In archeological investigations, facial re-
construction is employed with the purpose of identifying skeletal remains of famous
people from the past. The work presented in this part of the manuscript is part of the
ongoing multi-disciplinary project FaciLe ∗, grouping together maxillofacial surgeons,
anthropologists, computer scientists and mathematicians from Sorbonne Universités.

5.1.1 A brief history of facial reconstruction

Facial reconstruction has a fascinating history dating from the early dawn of
civilization and having beautiful links with ancestor worship and burial practices. In
1930s a collection of plastered human skulls (7000 b.c.) was found under the floor of
a Neolithic house in Jericho. Faces were sculpted over the skulls in plaster and shells
were put in the ocular cavity to mimic eyes and to enhance lifelike appearance. In
this context the symbolic meaning is preponderant over anatomical correctness; for
example the lower jaw was systematically separated and removed from the rest of
the cranium. However, the Jericho faces can be considered as the first attempt to
facial reconstruction. Archeological founds record in different cultures the tradition of
manufacturing death masks serving as portrait sculptures. Depending on period and
culture, the death masks were built either by taking a wax cast from the face or by
sculpting the anatomy directly from the bone structure. The work done by the Italian
anatomists Ercole Lelli (1702-66) in Bologna, Gaetano Giulio Zummo (1656-1701) in
Florence fall onto the latter category. Lelli realized a series of extremely accurate

∗http://www.sorbonne-universites.fr/actions/recherche/chaires-thematiques/facile.html
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Figure 1: Jericho plastered skulls (7000 b.c.) housed at British Museum of London (left)
and at Jordan Archaeological Museum of Amman (right). Images reprinted from [90].

anatomical waxes by positioning wax copies of muscles and soft tissues over the bone
armature with the purpose of studying anatomy and teaching medicine students.
Wax anatomical modeling was already practiced in the Renaissance period by artists
of the range of Michelangelo and Andrea del Verrocchio but it was in the seventeenth
century that this discipline turned into the art known as of plastica anatomica.
These anatomists had the merit to understand the correlation between the bone and
the upon musculature. However none of the described attempts were made with the
purpose of forensic identification. The first forensic facial reconstruction is credited to
the German anatomist Wilhelm His (1831-1904) and the sculptor Karl Seffner (1861-
1932) who worked together for producing the famous reconstruction of the bust of
Johann Sebastian Bach from a copy of the skeletal remains. The procedure of His
was based on the collection of measurements of facial soft tissue depths, which he
measured on a small set of 28 cadavers. In the same period the anatomist Hermann
Welcker (1822-1897) was able to conjecture the non authenticity of the skull of the
German poet Schiller, which has been proved in 2008 by DNA comparison, and to
verify the authenticity of the skulls of numerous historical individuals (Dante Alighieri
among them [114]).

It was at the beginning of the twentieth century that the reconstruction of the
face from the skull became a part of forensic science. A famous case of such an
employment is recorded in New York in 1916, when the facial reconstruction of the
disappeared men Domenico la Rosa led to a positive identification of the skeletal rest.

The interest in facial reconstruction increasing, two main reference schools were
developed, namely the Russian School and the American School. The so-called Rus-
sian method is due to the Russian anthropologist Mikhail Gerasimov (1907-1970).
The keystone of Gerasimov’s approach was the assumption that the shape of facial
muscles depends strongly on the underlying bone structure [47, 46]. Then both deep
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Figure 2: 2d manual method, reprinted from [119].

anatomical knowledge of the facial muscles variability and artistic skills were needed
for practitioners of the Russian method. The Russian method does not make use
of soft tissue depths tables. According to Gerasimov’s records, the Russian method
led to the successful identification of 150 forensic cases and to several historical re-
construction. A famous one is the reconstruction of the bust of Ivan the Terrible.
Contemporary and in some sense opposite to the Russian school, the so-called Amer-
ican Method was pioneered by the anthropologist Wilton Krogman [67]. Instead of
requiring the reproduction of the anatomical details, the American method is based
on tables of the measurement of soft tissue thickness. The tissue depth tables are
ranged according with age, sex and ethnicity and used for estimating the position of
facial landmarks. This method basically consist of three steps:

• equip (a replica of) the raw skull with a sparse set of anatomical landmarks;

• apply an average soft tissue thickness to each skull landmark in order to estimate
a corresponding landmark on the face;

• draw up or sculpt a face fitting the estimated landmarks;

• finalize the reconstruction adding artistic features.

Many computer based methods are based on the American method.

In the 80s in England a new school was developed, leading to the so-called Manch-
ester method). This method combines feature from both American and Russian
Method and was developed by Richard Neave and Carolin Wilkinson. Traditional
methods based on manual procedures include also 2d methods based on portraits
[102, 57].
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5.1.2 Difficulties with traditional methods

The results obtained from forensic art are often quite plausible, as the medical
artists may take anatomical, historical, archaeological or other type of expertise into
account, giving the observer a feeling of coherence. However, the manual methods
encounter some criticisms, due to the lack of methodological standardization and the
subjectivity of the reconstruction. First, manual reconstructions require a profound
anatomical knowledge of the human face and remain difficult. Moreover, one single
reconstruction requires several days of work of a well-experienced forensic artist, mak-
ing impracticable the realization of multiples instances and feature variations. The
most important problem with manual methods is the subjectivity of the reconstruc-
tion. A famous examples reported in [57] consisted in asking to nine forensic artist to
realize the facial reconstruction of some victims of the Green River Serial Murderer
(1982) from skeletal remains. In this experiment 24 facial reconstruction methods
has been compared. The reconstructions made by the different artists showed great
variance, even if in some cases they were quite accurate. For employment of facial
reconstruction methods in criminal cases it is crucial to establish a validation proto-
col and a range of reliability. Such a protocol has to be established in the basis of
quantitative analysis and cannot take into account the subjectivity of the artist.

In order to alleviate these difficulties, with the booming of computer science and
medical imaging techniques, several computer graphics tools have been developed
with the purpose of assisting the facial reconstruction. These animation softwares
mimic the methodology of manual methods, allowing the expert to vary some mod-
eling parameter and combining the human expertise with the flexibility of the soft-
ware. See [79, 110] for examples of such a procedure. However, computer assisted
non-automated methods do not eliminate the attribute of subjectivity in the recon-
struction. During the last 30 years an important deal of work has been devoted to the
conception of objective fully-automated methods. A survey and review of 25 facial
reconstruction can be found in [25].

5.1.3 Digital 3d methods

Digital methods shows major advantages as the absence of subjectivity, the ra-
pidity of the processus, and the versatility of the model, allowing to explore several
morphological hypothesis or verify the sensitivity of the model with respect to the
variation of some parameters. Most actual approaches associates statistical models
and database.

5.1.4 General framework of digital FR methods

According to [25], the common framework of an automated facial reconstruction
software reposes on the following phases: 1) database acquisition; 2) anthropological
examination and digitization of the unknown skull; 3) target skull representation; 4)
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Figure 3: 3d manual method, reprinted from [119].

assessment of the craniofacial model; 5) model to skull registration; 6) texturing and
visualization; 7) validation.

The most salient differences between all the current methods concerne the choice
of representation for the unknown skull, the choice of the craniofacial model and
the choice of the admissible geometric transformation for registering the craniofacial
model to the unknown skull.

5.2 Database acquisition

Current numerical craniofacial reconstruction methods all repose on the a priori
information contained in a database of coupled skull and face templates. The ac-
quisition of both skull and face is beastly accomplished by head CT scans of living
subjects, allowing a good visualization of hard tissues. Unfortunately the invasive-
ness of this technique causes serious legal and ethical problems, making troubling the
constitution of a large database of healthy subjects. Due to this difficulty, several
studies have proposed to exploit the relationship between soft and hard tissues by
means of average soft tissue thickness measurements. Soft tissue depth tables are at
the basis of all the traditional facial reconstruction methods and of several computer-
aided methods. Originally acquired by needle punctures on deceased people, these
measurements are currently obtained by CT scans [104], MRI, cone-beam CT scans
[63], or ultrasound systems [36]. When using average soft tissues depth studies the
reconstruction method could be based on the combination of a large database of
face templates together with average soft tissues measurements (as in [25]). Facial
templates can be acquired by non-invasive techniques such as stereophotogrammetry
[55] making the constitution of a large database painless and easy. However there
are issues with the use of soft tissue averages for predicting the facial morphology
(see [68]). Moreover, the average values of soft tissue thickness are systematically
measured on a sparse set (< 53) of (manually positioned) anatomical landmarks.
Since the manual measurement is time consuming and requires expertise in correctly
identifying the landmarks, it is actually infeasible to extend these measurements to a
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dense distribution of points. Due to this limitation, several authors have claimed the
importance of using a dense representation describing the skull and the face in terms
of dense surfaces ([104, 84, 91]) and the correlation between soft and hard tissues in
terms of the volume between the two boundary surfaces ([84, 91]). An alternative
approach is proposed in [87], in which the authors use a face database of IRM images
together with CT scans of dry skulls and a small collection of IRM of both skulls and
faces.

For our study we used a small collection of 28 head CT scans of female healthy
subjects aged between 20 and 40 years from the database [105]. CT images are
acquired from subjects in a horizontal position. As a result, due to gravity effects,
facial shapes extracted from CT images differ from the typical facial shape as viewed
in a standing upright position. This horizontal-to-upright discrepancy might affect
the recognition of the correct subject. Due to the difficulty of collecting full head scans
of healthy subjects and the time consuming segmentation of the data, the existing CT
scan databases are very limited. This lack of adequate data creates serious difficult
for benchmarking existent methodologies, for which it is crucial to use a standard
test data set for researchers for comparing the outcomes. We mention the database
of Kustar et al. [68] composed of full head CT scans of healthy subjects in upright
position.

5.3 Anthropological examination and digitization of the un-
known skull

A basic step common to all existent FR methods is an anthropological examination
of the unknown skull. This procedure consists in taking craniometric measurements
in order to discriminate parameters like age, gender. When pelvic bones are un-
available the skull is considered the best indicator of sex [48, 116]. Also, age can be
estimated from the cranium. The accuracy of those sex determinations varies con-
siderably between different osteological elements, and also between different human
populations [43]. After anthropological examination, a virtual replica of the dry skull
is produced and encoded into the model according with the choice of the skull rep-
resentation. Currently the most popular method for digitalizing the unknown skull
is the acquisition by CT scans (producing gray-level stacks of 2d images) combined
with semi-automatic segmentation (producing a 3d mesh model).

5.4 Target skull representation

The choice of the parametrization for the skull template depends strongly on the
nature of the database. The human skull is characterized by a quite complex struc-
ture, showing very small details which are difficult to acquire, due to the limitations
in resolution of the scan devices and the errors cumulated in the segmentation pro-
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Figure 4: Three representation of the target skull. (a) Anatomical landmarks, reprinted
from [103]. (b) Crest-lines, reprinted from [91]. (c) Level sets of the signed distance function.

cess, and to handle numerically, especially in the process of meshing or matching skull
templates in the database. Due to these difficulties, several authors opt for describing
the skull in terms of underlying anatomical or geometrical substructures. In [27] the
skull is described in terms of 52 estimated landmarks obtained by a database of face
templates and soft tissues depth measurements. In [91] authors use automatically
detected continuous crest-lines. Most of the current methods are based on a dense
representation of the skull. In [24, 109] the skull model is implicitly described by the
euclidean signed distance function to its boundary. However in most methods the
dense description of the skull is coupled with a sparse set of feature points (anatom-
ical landmarks). The feature points drive the process of matching skull templates.
See Chapter 6 for a discussion about the use of landmarks in anthropology.

5.5 Definition of the craniofacial model and registration to
the unknown skull

The assessment of the craniofacial model refers to the following three elements:
modeling of the craniofacial database; choice of a reference face template to be de-
formed on the unknown skull; choice of the admissible geometric transformation for
deforming the reference face incorporating the soft tissue information coming from
the database. After setting up the parameters of the model, the craniofacial tem-
plate model has to be adapted -or registered,warped- onto the unknown skull. Most
current methods use statistical models [13, 27, 106, 37, 100] combined with non rigid
deformation driven by feature points. The modeling of the craniofacial database
refers to the representation of the skull and face templates (sparse landmarks, crest
lines, level set functions, continuous surfaces) and the face/underlying skull relation
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(soft tissue measurements, muscles, volumes). Regarding the storage of soft tissue
information we can distinguish two main approaches: methods based on soft tissue
depth tables and volumetric methods. Basically methods based on soft tissue depth
tables are based on two stages. First, a set of corresponding landmarks is selected
on both osseous and facial couples of a large database. The collection of soft tissue
tables, initially performed on cadavers, is currently accomplished thanks to medical
devices as ultrasons, X-ray based CT or CBCT. Second, a sparse set of parameters
is extracted by measuring the distance between each skull landmark and the homol-
ogous face landmark. The soft tissue parameters are then classified according to sex,
age, ethnicity and IBM for inferring average values of the soft tissue thickness inside a
population. Albeit the information provided by this kind of approach is anatomically
meaningful, because the landmarks are reproductibles by a well trained practicer,
there are some issues with the use of soft tissue tables

5.6 Texturing and visualization

In a last step, in order to achieve a better life-like appearance, secondary features
as skin color and hairiness should be applied to the reconstructed facial shape. This
final step is accomplished by mapping a texture onto the geometric model of the
reconstructed face. This stage is not without issues: albeit the recognition and
identification of an individual is hard when looking at the sole facial geometry, adding
a specific individual texture can false the recognition. When no additional information
about the unidentified individual is available, probably the best choice is to add a
generic texture, generated for instance by averaging specific textures.

5.7 Validation

The validation of a model for facial reconstruction is of tremendous importance for
the purpose of legitimating its use during a criminal investigation. The right question
to ask is the following: assuming that skull and face are deeply correlated, is the cor-
relation enough to ensure the predictability of the face from the skull? As pointed out
in [118], most of digital FR methods have not been tested for accuracy and reliability.
A quantitative validation step as well as a comparison between existent methods is
of crucial importance. The debate about reliability of facial reconstruction methods
is controversial and there is no unanimous opinion within the scientific community.
A first attempt to address this problem is a leave-one-out scheme. In practice one
individual is removed from the database and the method is employed to reconstruct
its face given the sole skull. In a second stage the predicted shape is compared with
the available original face. The discrepancy between the two shapes can be evaluated
mathematically by computing distances between them (Euclidean distance, Hausdorff
distance, Gromov-Hausdorff distance, Wasserstein distance). However, since the fi-
nal purpose of the method is a positive identification, a recognition test can be also
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employed for revealing the power of prediction of the method [26]. A recognition test
consist in showing the predicted face together with a sample of faces which contains
the original face. Then the human volunteer indicates the face (or faces) which is
(are) closer to the predicted one. The positive outcome will then correspond to the
identification of the original face among the sample.
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6.1 Introduction

All current Facial Reconstruction methods repose on the observation of a head
database containing information regarding soft tissue variability. An adequate database
for Facial reconstruction must contain couples of faces and skulls coming from an
healthy individual together with anthropological parameters like age, sex, BMI. For
achieving a good visualization of both bone and soft tissue -and facilitate the process
of data segmentation- we use medical images coming from X-ray CT scans. Due to
the invasiveness of the technique, our data comes from individuals who underwent a
clinical examination. The denomination ’healthy individual’ in this context means
that the patient didn’t show morphological anomalies in correspondence of the zones
of interest.

The purpose of this chapter is to describe the data processing tools we needed
for the establishment of our database. The establishment of the database has been
done in collaboration with Lydie Uro and the others partners of the project FaciLe.
Section 6.2 describes the acquisition of medical images we needed to build our 3d
shape database. Since we are interested in studying the soft tissue informations, we
were constrained to work with medical data coming from living and healthy subjects.
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head CT scan acquisition 
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Figure 1: Stages of the data acquisition process.
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Section 6.3 describes the procedure of segmentation of medical images for extracting
the anatomical structures of interest (bone and facial envelops). Section 6.4 describes
the generation of the geometrical model (3d high-quality meshes) from the segmented
images. In Section 6.6 we discuss about a common choice in data analysis in the
field of computational anatomy: the definition of sparse landmarks for encoding the
information related to the data. We discuss advantages and drawbacks of such a
choice. However, since our main concern is the establishment of a fully-automated
method, we choose to not define landmarks for our analysis. Eventually Section 6.7
describes briefly how to take advantage of the shape morphing method introduced in
Chapter 2 for inferring correspondences between shapes.

6.2 Acquisition of a CT scans head database

The data collection we used for our experiments is composed of full head CT
scans of 26 healthy female aged between 20 and 40 years. The BMI index of the
subjects is known but up to now not included in our study. The CT images used
have been provided by the facial reconstruction project of University Paris Descartes
[105]. The X-ray based acquisition protocol is described in [105]. An independent
study carried out in the context of the project Facile by L. Uro and Y. Maday aims
at segmenting some facial muscles which have considerable influence on facial shape,
in terms of functional importance or volume. In the context of this study a database
of masseter muscles has been generated from 36 partial CT scans coming from both
the database [105] and a database of the Pitié Salpêtrière Oral and Maxillofacial
Surgery department. Unfortunately this latter series is composed of partial scans
which were excluded from the craniofacial database. Despite the CT scan is the
best medical imaging technique for achieving a good visualization of both bone and
soft tissues, the use of CT scans database for facial reconstruction is far from being
unanimous. Some authors have raised up disadvantages to the utilization of CT
scans arguing essentially on three aspects. First, the invasiveness of the technique
(armful radiations) makes serious legal and ethical issues for the acquisition of CT
scans out of the clinical scope. Conversely, most of the CT scans coming from clinical
analyses have been acquired from patients presenting pathologies and morphological
anomalies, so they have to be removed from the database for preventing the risk of
bias. Thereby it is difficult to build up a huge database of full head coming from
’healthy’ people. Second, most of the case the individuals are disposed in supine
position; due to the gravity effect, their face shape is deformed with respect to the
unstressed one. Especially in some zones of the face this deformation risks to bias
the database. Third, CT scans often presents artifacts due to dental filling which
compromises the quality of several slices and complicate the process of segmentation.
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Figure 2: Left: reference gray-level image. Middle: pre-segmentation of the bone using a
threshold technique. Right: segmentation of the bone after denoising and artifacts removal.

6.3 Segmentation of CT scans

The data segmentation consists in identifying the bone and soft tissues on the
stacked 2d gray-level images. This procedure has been carried out in a semi-automated
way. First, the CT slices are automatically pre-segmented using a multi-threshold
technique. This step consists in partitioning the original images into subdomains
which boundaries are identified by given intensity values. The bone and soft tissues
threshold values we used are described in [105]. From the pre-segmentation step we
obtain two sets of binary images, respectively for bone and soft tissues. By stacking
these slices we can essentially detect the 3d structures. However the intensity-based
segmentation is not enough to ensure a correct separation of the tissues of interest,
due to the presence of noise on the data and artifacts occurred during the acquisition
process. The binary images are then cleaned by removing the so-called islands (very
small structures which contours are defined by only a few pixels). These structures
can be external to the tissues of interest (noise added during the acquisition process)
or very thin internal structures (small bones inside the cranium). This action helps
in denoising the images. Moreover in most of the subjects we observed large artifacts
on the images due to dental filling. These defects need to be manually removed on
each affected slice (see Fig. 2). After the correct identification of the subdomains
of interest, we proceed in separating the cranium from the vertebral column. This
operation is also done manually by selecting contours on the slices interested by in-
tersection between the two bone structures and labeling them. See Fig 3. Finally
the column vertebral is excluded from the bone label because it has not influence
on the facial appearance of the individual. The segmentation of the facial muscles
-and in general of soft tissues- from CT scans is a harder issue and at the moment
of the redaction of this manuscript no automated methods exist for addressing this
difficult problem. In the context of project Facile, the work of L. Uro and Y. Maday
will provide a statistical atlas model for the purpose of helping with manual muscle
segmentation. For achieving this goal, they segmented the muscles manually.
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Figure 3: Segmentation of the bone (a) including column vertebral ; (b) after removing
column vertebral.

6.4 3d surface reconstruction using Marching Cubes

From the 2d binary images obtained from segmentation we aim at generating
3d mesh models of the skull, the face and facial muscles. The generation of a 3d
triangular mesh from discrete volumetric data is in general referred as isosurface ex-
traction [17]. The standard tool used for isosurface extraction is the Marching Cubes
algorithm, introduced in [72]. This algorithm is in general employed for meshing
an implicitly-defined domain. In its simplest version, the algorithm takes as input
a cubic lattice T together with an implicit function φ defined at each vertex of T .
The function φ can take either positive value (if the vertex is up to the isosurface to
extract) or negative otherwise. In our context, the lattice is given by the set of voxels
in which the medical images are embedded and the binary function φ is positive at
a given vertex if the vertex belongs to the label under consideration (bone, face or
soft tissue), negative otherwise. The algorithm processes each cell independently in
a divide and conquer paradigm. For each cell of T intersecting the isosurface φ = 0,
i.e. showing both positive and negative values of φ, the algorithm creates a piecewise
linear approximation of the surface based on local informations. First, when an edge
of T is composed of two extrema of opposite sign, a mesh vertex is created along the
edge. In the simplest variant of the algorithm one can take the midpoint of the edge.
Second, the previously defined mesh vertices are connected by triangles. Each ele-
ment of T generates a surface patch composed of 1 to 4 triangles (Figure 4-(a)). The
number of possible configurations (depending on the values of the label field on the
current cell’s corners) is 28, which reduces to 14 when quotienting for rotations and
symmetries (see Figure 4-(a) for a few examples). The triangulation of the isosurface
φ = 0 is obtained by gluing the local patches. Despite the simplicity of the method,
it is well known that in a few cases the classical Marching Cubes method can gen-
erate topologically ambiguous configurations or artificial holes, leading to an invalid
triangulation. For example, an ambiguous situations occurs when a cell in T con-
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tains a face in which vertex of different sign are opposite with respect to the diagonal
two-by-two (see Figure 4-(b)(c)). In other words, the knowledge of φ at vertices of T
is not enough to guarantee a fine reconstruction of the isosurface. For dealing with
this ambiguities several variants of the algorithm have been developed [80, 75, 85].
Most methods are based on a further subdivision of T , by using hierarchical data
structures as octrees [117] or by tetrahedra subdivision [38], for estimating φ in the
interior of the cell and solving the ambiguity. Also, the use of adaptative octrees
allows to speed up the overall algorithm, generating an adaptively well sampled mesh
[115]. This approach could avoid the need of decimating the resulting mesh in a post
processing step. Finally we report the Extended Marching Cubes algorithm [66] for
dealing with a finer approximation of sharp features as ridges or corners. For this
work we used the Marching Cubes algorithm available in the Software Amira [98].

6.5 Geometric remeshing

As pointed out in the previous section, triangulations obtained from Marching
Cubes procedure contain, in general, a prohibitive number of ill-shaped elements
which are redundant and oversampled to correctly describe the geometry of the model.
We are thereby confronted with the problem of surface remeshing. Surface remesh-
ing relates to the enrichment -or oppositely the decimation- of a given triangulation
S with the purpose of enhancing some quality requirements. What one means for
’quality’ of a triangulation is intimately related to the application targeted and can
involve vertex sampling, regularity, grading, complexity, elements size or shape. A
remeshing procedure can either generate a new instance of the given triangulation or
modify the existing one. Remeshing procedures are jeopardized in numerical simu-
lations since very often the initial triangulation provided as support for a numerical
computation suffers of very poor quality elements. Just to name a few situations in
which remeshing is demanded:

• The initial triangulation is a very poor approximation of an underlying con-
tinuous surface and its geometry has to be enriched for the computation of
differential quantities as normal vectors or discrete curvature;

• Surface models coming from scanning devices (as statues, architectural parts or
of course medical images) generated with Marching Cubes like techniques are
often oversampled and ill-shaped;

• Conversely, for real time computer graphics applications (e.g. character anima-
tion, rendering) it is essential to keep the number of element minimal, possibly
by authorizing very stretched elements;

• The local element size has to be adapted to the numerical problem at hand, for
example for capturing a moving interface in the context of a level set method;
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(a)

(b)

(c)

Figure 4: Some example of isosurface-cell intersection in the Marching Cubes algorithm.
The white (resp. black) dots correspond to positive (resp. negative) values of φ. The grey
zone corresponds to the reconstructed surface patch. The whole isosurface is constructed
by gluing the local patches. (a) Some examples of configurations from the look-up table of
Marching Cubes algorithm [72]. (b) A configuration from the look-up table of Marching
Cubes algorithm [72] presenting a topological ambiguity. The grey zones correspond to
two possible connections associated to the same configuration. (c) Topological incoherence
generated from the look-up table of Marching Cubes original algorithm [72] (left) and
repairing (right).
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Figure 5: Top: 3d meshes of the skull (left) and the face (right) generated by March-
ing Cubes. Bottom: local enlargement showing the typical ’staircase’ effect and almost
degenerate triangles.

• Mesh elements have to fulfill a shape quality criteria since it impacts the nu-
merical accuracy of the discrete solution computed using the mesh as geometric
support [44, 14];

• The mesh is moved with the domain (Lagrangian deformation) and if no partic-
ular attention is paid to the deformation, the mesh degenerates in few iterations.

Generally speaking, the remeshing procedure aims at providing (i) a correct and accu-
rate geometric approximation of the underlying 3d model (geometric mesh) and (ii) a
computational mesh of hight quality elements suitable for finite elements simulations
(computational mesh). Remeshing techniques are key ingredients of most engineer-
ing applications and geometric modeling tools; therefore there exists a huge literature
devoted to this subject. Here we limit ourselves to discuss some very general ideas.
See [5] for further references. Remeshing procedure can be categorized into global ap-
proaches, aiming at inferring from the initial triangulation a global description of the
unknown underlying continuous surface, and local approaches, aiming at improving
the mesh by applying local modifications. Among global approaches we can cite the
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ones based on surface parametrization [3, 4, 92]. These methods aims at establishing
a mapping between the initial supplied triangulation and a suitable domain [42]. In
this work we relied on the second approach, using the remeshing procedure described
in [30], and implemented in the surface remeshing software mmg [31]. Let S and S̃
be respectively the initial and remeshed triangulations of the unknown underlying
surface Γ. Together with the triangulation S, the following parameters are taken into
account:

- hhausd controls the proximity authorized between S̃ and Γ, so as to verify
dH(S̃,S) < hhausd;

- hmin [resp. hmax] denotes the minimum [resp. maximum] allowed size for ele-
ments of S;

- hgrad is a parameter that controls the mesh gradation, i.e. the size variation
between neighboring elements.

The method relies on two key ideas. First, for ensuring proximity between the in-
put and the new triangulations, the method guarantees that the Hausdorff distance
dH(S̃,Γ) stays smaller than a user or application prescribed given tolerance ε. For
achieving this requirement the method computes local parameterizations in terms of
Bézier surface patches, whose coefficients are determined from geometric quantities
estimated from the source triangulation. This step aims at providing a fine reconstruc-
tion of the geometry of Γ and has a lot in common with [112]. Second, according to
the inferred geometric information and the input user-defined parameters the method
constructs an isotropic metric size map, i.e. a mapping Γ 7→ R, to which the final
mesh S̃ is adapted. See [44, 30] for more details about isotropic and anisotropic mesh
adaptation to a metric size map. The improvement of the mesh quality is driven by
performing local remeshing operators (Figure 6) on the initial triangulation. Figure
7 shows the influence of the hhausd parameter over the remeshing procedure. For this
study we kept the hhausd parameter smaller than a prescribed tolerance of 0, 1% of
the initial bounding box. This value is chosen according to the tolerance allowed in
the segmentation process. As illustrated in Figure 7, the remeshing procedure also
removes the ’staircases’ artefacts due to the spatial discretization and connectivity.
In this section we made the assumption that the triangulations supplied from image
segmentation are valid. Note that in real-life applications, triangulations obtained by
segmentation may often show intersecting faces, resulting in an invalid configuration.
In Section 6.7 we describe a procedure based in implicit description of shapes whch
allow for generating valid computational meshes from invalid data.

6.6 The role of landmarks in shape analysis for anthropology

As pointed out in Chapter 5 most of modern facial reconstruction digital methods
account for the definition of sparse sets of ’meaningful’ landmarks for describing and
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Figure 6: Local remeshing operators. From left to right: vertex relocation, edge collapse,
edge flip, edge split.

comparing anatomical shapes. The quantitative analysis of shapes is referred in an-
thropology as Morphometrics. It is an active research field in physical anthropology
and evolutive biology. Quantitative approaches to shape comparison have a long tra-
dition. During the Renaissance period Leonardo da Vinci used to study proportions
of the human body in terms of geometrical figures as circles, squares. Traditional
morphometric approaches measure distances, angles, ratios. Geometric morphomet-
rics was pioneered in the 80s in the seminal work [15]. The number of publications
regarding landmark-based matching and comparison testifies the interest in this field
[120, 53]. The main difference with respect to traditional morphometrics reposes on
the representation of shapes in terms of coordinates of anatomical landmarks instead
of linear measures. Landmarks play a fundamental role in computational anthropol-
ogy and are defined as discrete anatomical loci that can be recognized as homologous
in all specimens under investigation. In morphometric practices the sparse set of
anatomical landmarks are used to build a statistical shape model and study varia-
tions. In facial reconstruction practices, landmarks are used to study intra-subject
variations -by analysing the variations of the skull landmarks and their homologous
face landmarks- and inter-subject variations [93]. Despite their crucial importance in
applications as evolutionary processes, I consider that landmark-based shape analysis
suffer of at least two major limitations. First, the choice of landmarks has to be done
by an expert and should a priori account for the variation under consideration. In
other words, a continuous and complex structure as a bone or an organ is reduced
to a sparse set of points and if the choice of salient points is not well suited one
may risk to loose information. Moreover, when the shape analysis is carried out on a
big database, the manual setting of landmarks done by a trained executor becomes
significantly time-consuming, with serious limitations to their effective application.
For allaying both these issues some authors have developed landmark-free, fully au-
tomated methods for shape analysis. An example with application in paleontology
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Figure 7: Curvature-dependent remeshing varying the Hausdorff parameter. Left: hhausd =
0.07. Middle: hhausd = 0.3. Right: hhausd = 1.
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is presented in [89]. Given the great advances in recent years in the fields of shape
acquisition and analysis, and the possibility of collecting huge shape database, sev-
eral very different works has been devoted to the definition of meaningful notions
of shape similarity in the computer science and mathematic communities [76]. Next
section presents a shape modeling procedure based on the shape matching method
introduced in Chapter 2 as a promising framework for shape analysis and comparison.

6.7 Function-to-shape representation

Let us consider a shape database composed of closed surface triangulations T1, . . . , TN
which are piecewise linear approximations of the boundaries of corresponding domains
Ω1, . . . ,ΩN ⊂ R3. In the context of this study the shapes under consideration are the
anatomical hard or soft tissue structures identified from medical images. The sole
assumption we make on the initial discrete triangulations (and on the boundaries of
corresponding shapes) is that they are closed and orientable, i.e. they define without
ambiguity an interior (resp. exterior) region. Obviously for fulfilling the previous
requirement, all the shapes must share the same topology. When the initial supplied
triangulation is not closed -as in the case of the skull- one could apply the warping
algorithm described in Chapter 4 for defining a close surface model. Distinct shape
instances are not assumed to share the same number of elements and could possibly
be invalid (showing for example intersecting faces). For the purpose of comparing
and defining a notion of shape similarity we aim at defining a correspondence be-
tween shape instances from the sole knowledge of the mesh models. For doing this,
for each shape Ωi belonging to the dataset we build a function ui : R3 7→ R3. Doing
so we are able to parametrize the shape dataset in terms of N functions u1, . . . , uN
which are more amenable for performing shape comparison, dimensionality reduction
or for computing average shapes. Let us describe in details the procedure. Let us
suppose that an initial rough alignment of the shape has been performed, so that all
the considered shapes contains at their interior a ’small’ subset ω which is clamped.
Consider the common bounding box D (and corresponding computational mesh TD)
in which all the considered shapes are embedded. Since we assumed the boundaries
∂Ω1, . . . , ∂ΩN to be closed, for each shape Ωi we can compute at the vertices of TD
a piecewise linear approximation of the signed distance function dΩi using the algo-
rithm described in [33]. Note that this procedure can be performed even when the
triangulation Ti is invalid. Let us suppose now that a reference shape Ω0 together
with a computational mesh T0 have been supplied. The shape Ω0 has a fix topology
and is clamped at ω. The reference shape can be either one instance of the database,
or a geometric template as a sphere or an ellipse, or a template generated by combin-
ing the shapes in the database. We are thereby able to morph the reference template
Ω0 onto each instance shape, with global displacement ui. Thanks to the matching
process, we are able to describe all the shapes in the database in terms of the compu-
tational mesh T0 and the set of displacement fields u1, . . . , uN . Each shape is defined
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Figure 8: Texture transfer from a template template shape (top) to two instances of the
database (bottom).

by the mapping:
Ωi = (I + ui)(Ω0) ∀i = 1, . . . , N.

Equivalently, computational meshes Si are obtained by pushing each vertex of the
reference mesh according to :

Ti = (I + ui)(T0) ∀i = 1, . . . , N.

Note that now all the meshes share the same number of elements (vertices, triangles)
and the same connectivity. See figure 9 for an example of such a procedure. This
deformation may be used to transport quantities of interest from one shape to another,
as in Figure 8.
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T0

T2T1 T3

u2

u3u1

Figure 9: Reference mesh T0 (top) mapped onto three anatomical shapes in a database
(bottom). Generation of the computational meshes T1,T2,T3 with the same number of
elements and connectivity (middle).
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A landmark-free method for facial
reconstruction
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7.1 Introduction

This chapter contains the general workflow of the proposed method for Facial
Reconstruction (FR). This is a joint work with Maya de Buhan.

Based on techniques of continuous deformation as morphing and warping, the
proposed approach is a promising framework for integrating anthropological knowl-
edge and for taking into account the biomechanical properties of soft tissue. The key
features of our approach can be summarized in few points:

1. A database of coupled skull and face surfaces is generated from a CT scans data
set;

2. An examination of the unknown skull determines anthropological parameters
like age, sex, ethnicity and according to these parameters, some instances of
coupled faces and skulls are selected among the craniofacial database;

3. For each selected individual, a 3d volumetric mask is generated for encoding
the specific soft tissue variability. Each mask is composed of the region of space
comprised between the inner bone surface and the outer face surface;

127
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4. The inner surface of each mask (i.e. the bone surface) is mapped onto (a digital
copy of) the unknown skull thanks to a landmark-free non-rigid dense surface
morphing;

5. The considered mask is transported onto the unknown skull by deforming the
facial template according to the previously computed skull mapping;

6. Starting from the collection of 3d masks, a set of estimates of the subject’s face
is generated. These facial shapes are combined together for proposing one -or
multiple- instances of the reconstructed facial shape.

The main goal of a FR method is the estimation of the geometry of the facial shape
from the skull. Eventually, the reconstructed face can be finalized by adding a texture
for achieving more lifelike appearance. The proposed method has lot in common with
previous deformation-based FR approaches [107, 91, 84], although the computational
methods and the mathematical background used within each step of the process are
very dissimilar. The chief peculiarity of the method -which was also the major con-
cern motivating this work- is that it does not make use of anatomical landmarks.
Limiting the need for manual procedures, we propose therefore a propitious frame-
work for processing a huge amount of data in an automatic fashion. The sole first step
of the process -which is standard in common FR methods, see Chapter 5- remains
based on the intervention of an expert. Note that this step consists in an examination
of the sole unknown skull; the manual effort required does not increase with the size
of the database. The heart of our pipeline is the shape morphing method introduced
in a much general context in Chapter 2. This procedure allows us to map each skull
item onto the unknown skull. Due to its solid mathematical background, the method
is able to guarantee that the reference and target shapes stay close from one other
up to a fixed prescribed tolerance, which may be for instance inferred from the seg-
mentation error. From the numerical point of view, this requirement is fulfilled by
adjusting the size of the reference mesh elements (see Section 7.3). Also, the method
allows us to establish dense correspondences between pairs of skull items, in the way
described in Chapter 6. This correspondence combined with statistical methods can
be used for clustering the individuals from the database into sub-population, accord-
ing to morphological parameters. Finally, the method is used for computing new
shapes from the combination of a set of existing ones (Section 7.5). This work is
part of an ongoing multidisciplinary project. It must be viewed as the initial promis-
ing prototype that can be enriched and integrated with multidisciplinary expertise
(from anthropology, medicine, biomechanics). See Chapter 8 for a discussion about
difficulties, perspectives and openings of the method.

This chapter is organized as follows. Section 7.2 describes our choice for represent-
ing the unknown skull and the skull items of the database. Section 7.3 describes the
process of skull matching. Examples and error computations are reported for show-
ing the efficiency of the method. Section describes how the craniofacial template is
adapted to the unknown skull. Eventually, Section 7.6 explains how to encode local
information in the global deformation process.
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7.2 Generation of a surface model of the skull

In the proposed procedure each skull template is described in three different ways.
First, we generate a closed surface model which is ’as closer as possible’ to the original
skull model. This topology simplification issue is not novel in facial reconstruction
methods (see [64, 105]) and is of crucial importance in the processus of matching
individuals among the database (see section 7.3). The definition of the surface mesh
model of the skull is achieved by iteratively deforming an elastic membrane using the
algorithm described in Chapter 4. This procedure can be viewed as a 3d extension
of the method proposed in [64, 105] for warping 2d CT scans images. The template
shape well-tailored for our purposes is an annular ring enclosing the skull. Figure
1 depicts an example of skull warping. A comparison between the original skull
triangulation and the deformed membrane warped onto the skull is depicted in Figure
2. The elastic parameters are the same used in Example 4.3.1. The process ends
after kmax = 53 iterations (see Chapter 4 for a description of the parameters). The
discrepancy between the original triangulation and the surface model is depicted
in Figure 1-right, showing the capability of the method in recovering skull details as
teeth, zygomatic and mental foramen. The recovering of the lower jaw is less accurate
at level of insertion of the masseter muscle. For better recovering this zone one may
consider to separate the lower jaw from the cranium during the segmentation process.
This procedure includes also the separation of the teeth, which can be interesting for
modeling facial animations. Thanks to the previous stage, we are able to compute
the signed distance function to the boundary of the skull at the vertices of (the
mesh of) a common computational bounding box. This implicit characterization will
drive the process of elastic matching between skull templates. Level set functions
for describing the skull face were firstly used in [109]. In our implementation we
take advantage of an unstructured computational mesh for storing the values of the
signed distance function. From the information of the signed distance function at
its vertices, the initial computational mesh can be refined in the vicinity of the zero
level set of the signed distance function and coarsened otherwise. See Figure 4 for
an example of such a procedure. Finally, as argued in Chapter 6 we generate a set
of valid computational meshes of the skulls in the database with the same number
of elements and connectivity. Doing so, each skull is encoded by a displacement field
u defined on the computational mesh of a reference skull triangulation (see Section
7.3).

7.3 Skull-to-skull registration

The deformation of the skull items onto the unknown skull is used for (i) establish-
ing a correspondence between the shapes; (ii) deforming the database facial shapes
onto the unknown skull. Therefore it is mandatory not to loose information during
this process. For achieving this goal we rely on the use of dense meshes whose average
element size is smaller than the amplitude between consecutive CT scans slices (0.7
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Figure 1: Left: template shape. Middle: advecting template shape. Right: discrepancy
between the final shape and the target skull model.

Figure 2: Top: 3d model of the skull. Bottom: wrapped skull.
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Figure 3: Matching skull and face templates within the database.

millimeters).

Let (Si)i=0,...,N (and corresponding meshes (Si)i=0,...,N) be the set of skull shapes
from the database. At first, a specific reference skull, say S0, is randomly selected into
the database. In a preprocessing stage, all the considered shapes are initially roughly
aligned (without scaling) using an Iterative Closest Point (ICP) algorithm in order
to guarantee the existence of a fixed common subset ω. After the rigid registration
step, the reference skull S0 is matched onto all the S1, . . . , SN skulls, producing a
set of deformation fields u1, . . . , uN . Each field is defined over the region of space
bounded by the skull envelope. The procedure of matching a reference skull onto the
skull items is used to speed up the overall facial reconstruction procedure. Indeed,
consider now the unknown skull ST (and corresponding mesh ST ). The link between
ST and the database skulls is inferred by the mapping:

ST =
(
I + u0)

(
I + ui)

−1(Si) ∀i = 1, . . . , N, (7.3.1)

where u0 is the global displacement mapping the reference skull S0 onto the target
skull ST (see Figure 3). Therefore, since all the skull items of the database have been
previously matched into each other, one only needs to compute the displacement
u0 to link ST to each skull item. Figure 5 depicts two examples of skull matching.
The template mesh S0 has about 130 000 triangles. The signed distance function to
the target shape is computed at the vertices of a computational box which mesh is
adapted to the contour of the target shape (see Figure 4-(b)). Note that in both
examples the initial alignment between target and template shape is very rough and
the two shapes are initially far from one others. For the test case of Figure 5-(a),
the L2 error D(∂Ω1300, ∂ΩT ) featured in equation (2.4.2) equals 0.2 millimeters, much
smaller than the segmentation tolerance. For the test case of Figure 5-(b), the L2

error D(∂Ω1250, ∂ΩT ) calculated on the boundary of the resulting shape Ω1250 equals
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(a) (b) (c)

Figure 4: (a) Target shape ΩT as the zero level set of the signed distance function; (b)
Adaptive remeshing of the computational box; (c) Color map displaying the signed distance
function to the target shape.

also 0.2 millimeters.

7.4 Face-to-face registration

The morphing chain described in the previous section for the skull is repeated for
the facial shapes of the database. This step has not influence on the deformation
of the facial templates, which can be performed independently. The face morphing
is used in the final stage of the process for inferring to each facial shape the same
number of elements and connectivity, and so for easily computing average shapes.

Let (Fi)i=0,...,N (and corresponding meshes (Fi)i=0,...,N) be the collection of facial

shapes. The reference face F0 (coupled with S0) is deformed onto all the F1, . . . , FN
faces ( with global displacements v1, . . . , vN ).

See Figures 6 and 7 for examples of face matching. Again, both the target and the
template meshes are embedded in a common computational box D. The template
mesh F0 is the same for all the examples and has about 90 000 triangles. For the
test case of Figure 6-(a), the L2 error D(∂Ωk, ∂ΩT ) calculated on the boundary of
the resulting shape Ω1200 equals 1.6 millimeters. For the test case of Figure 6-(b), the
L2 error D(∂Ωk, ∂ΩT ) calculated for k = 1300 equals 1.4 millimeters. For the test
case of Figure 7-(a), the L2 error D(∂Ωk, ∂ΩT ) calculated for k = 1200 equals 1.6
millimeters. For the test case of Figure 7-(b), the L2 error D(∂Ωk, ∂ΩT ) calculated
for k = 1150 equals 1.8 millimeters.

Remark 7.4.1. Due to their flexibility, in some case the ears deformed too drasti-
cally, leading to subdomain intersections which prevent the convergence of the overall
matching process. In order to avoid troubles, and since the ears are not linked with the
underlying skull morphology, we decided to not include the ears in the face matching
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(a)

(b)

Figure 5: Left: Template skull shape S0 and discrepancy w.r.t. the target shape. Middle:
deformed shape Sk0 at the end of the procedure and discrepancy w.r.t. the target shape.
Right: target shape.
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(a)

(b)

Figure 6: Left: Template facial shape F0 and discrepancy w.r.t. the target shape. Middle:
deformed shape F k0 at the end of the procedure and discrepancy w.r.t. the target shape.
Right: target shape.
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(a)

(b)

Figure 7: Left: Template facial shape F0 and discrepancy w.r.t. the target shape. Middle:
deformed shape F k0 at the end of the procedure and discrepancy w.r.t. the target shape.
Right: target shape.
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Figure 8: The corners of the triangle display three face templates. The top template is
chosen as reference shape and matched into the bottom right template and the bottom
left template. The middle of the triangle and the mid-edges display the ’barycenter’ face
computed by averaging the displacement fields.
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Figure 9: Three craniofacial templates.

process. This is accomplished by defining a surface patch Σ ⊂ ∂F0 which is excluded
by the minimization process. Due to this choice, note that in correspondence of the
ears the accuracy of the matching is no longer guaranteed. This discrepancy explains
the bigger error we get in face matching with respect to skull matching. When com-
puting the discrepancy D(·, ∂ΩT ) on the sole region ∂Ωk \ Σ of the advected domain
Ωk we get an error which order is close to the one registered for the skull matching
(between 0.2 and 0.3 millimeters).

Also, thanks to the matching process, we can generate new facial shapes by aver-
aging a set of existing shapes. See Figure 8 for an example of such a procedure.

7.5 Model to skull registration

This step of the procedure refers to the deformation of the craniofacial template
onto the unknown skull for reconstructing an estimate of the unknown face FT . The
procedure is accomplished in three steps. First, the volume between the coupled
surface meshes {(Si,Fi)}i=0,...,N is meshed with tetraehdra and filled with an elastic

material, generating 3d masks (Mi)i=0,...,N which incorporate the soft tissue infor-

mation (see Figure 9). For the generation of the tetrahedral mesh we used the open
source software Tetgen. Then, as explained in Section 7.3 the global displacement
u0 mapping the reference skull S0 onto the target skull ST is computed and used
for linking ST to the database. Then, thanks to the mapping of the skull item Si
onto the unknown skull ST , the 3d mask is elastically deformed under the effect of
the boundary changes (see Figure 10). This step is accomplished by computing the
solution of an elastic problem defined on Mi. Eventually, all the ’transported’ faces
are averaged according to the skull similarities.
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(a) (b)

Figure 10: (a) Deformation of a skull item onto the unknown skull. (b) Deformed cranio-
facial template under the effects of skull changes.

7.6 Enclosing local information

The approach proposed in this section is part of a joint work with Lydie Uro. The
proposed method for facial reconstruction deforms the soft tissue mask in bulk onto
the unknown skull. This global deformation can be integrated by adding the local
information and improving the accuracy of the prediction. For instance, imagine that
instead of the sole skull one has informations about some facial muscle. For explaining
the idea, let us focus on the masseter muscle, which fill an important volume in the
soft tissue and it is relevant from a functional point of view. Suppose also that the
same information (shape and location of the masseter muscle) is available for all the
individuals of the database. Then, one can perform exactly the routine described in
Section 7.1 using the couple skull/muscle instead of the sole skull. Since the masseter
muscle rests on the skull support (see Figure 11-(a)), when discretizing with meshes
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(a)

(b)

Figure 11: (a) 3d model of the skull equipped with the masseter muscles (colored in red).
(b) Warped model.

we obtain two surfaces (respectively, the warped skull and the muscle which is a
priori closed) intersecting in the region of contact between the muscle and the skull.
For avoiding the need of modifying and repairing this invalid model, we rely on the
warping algorithm described in Chapter 4. The considered source triangulation in
this case is the couple skull and muscle. The result of such a procedure is depicted
in Figure 11-(b). In Chapter 8 we will show with an example the influence of the
knowledge of the muscle masseter over the whole FC process.
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Results and perspectives
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8.1 Introduction

In this conclusive chapter I present a gallery of facial reconstruction results ob-
tained with the method described in Chapter 7. The rendering of the reconstructions
has been realized by Loic Norgeot.

The proposed results have to be handled carefully. At time time of writing we are
still developing our strategy for FR and in particular we did not devise a validation
protocol. Therefore, we are not able to ’rigorously’ evaluate the quality of the recon-
structions. However, we content ourselves with a ’visual’ inspection of the results.
The chapter ends with a discussion about perspectives.

8.2 Test cases

For a first prototype of our method we started with a ’simple’ assignment: given
an individual from the database -for which both skull and face are known- use the pro-
posed FR method to estimate the face starting from the observation of the database
and the skull. Doing so, we are able to compare the estimated face with the original
one. Let us consider the example depicted in Figure 1. A collection (Fi)i=0,...,N ,

(Si)i=0,...,N , with N = 8, of faces and corresponding skulls is selected from the
database. Owning to the strategy proposed in Chapter 7, the set of faces is de-
formed onto the ’unknown’ skull ST (again, selected from the database) producing
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a set of N estimates (F ′i )i=0,...,N of the unknown face. For the sake of simplicity, we

propose in Figure 1-(a) the geometric average of the set of facial estimates of the
original face (reported in 1-(b)). The average is computed using the procedure of
Section 6.7. The discrepancy D between a facial shape Γ and a reference facial shape
Γ0 is evaluated by the following mean error:

D(Γ,Γ0) =

(
1

|Γ|

∫
Γ

d2(x,Γ0)dx

) 1
2

,

where |Γ| is the measure of Γ and d(·,Γ0) is the Euclidean distance to Γ0. This error
estimator is used for evaluating the vicinity between:

1. the skull templates of the database and the unknown skull;

2. the face templates of the database and the unknown face associated with the
unknown skull;

3. the face templates after deformation onto the unknown skull and the unknown
face associated with the unknown skull;

4. the face templates of the database and the reconstructed average face.

The minimal, maximum and mean values of D for the 8 templates of the database are
reported in Table 8.1. In particular, we observe that the discrepancy between the face
template and the unknown face is smaller after deformation for all the individuals.
Thus, the elastic transformation used in the method seems to be a good tool to
transport the faces close to the unknown face. Moreover, the face showing after
deformation the smallest discrepancy w.r.t. the unknown face (2.93 mm) corresponds
to the skull showing the smallest discrepancy w.r.t. the unknown skull (5.44 mm).
Finally, the discrepancy between the unknown face and the average predicted face
is 4.24 mm. It is smaller than the discrepancy for any individual in the database,
so this measure D can be used for an automatic numerical identification. Figure 2
shows the distribution of the error over the reconstructed surface. A positive value
of the error means that the estimate is up the original face; otherwise, a negative
value corresponds to regions in which the original face is underestimate. Note that in
the regions of interest (excluding ears and neck in particular), the error is less than
a millimeter. We also remark that in these regions we overestimate the thickness
of the tissue. Using the information coming from the BMI of the individuals in the
database could be a way to propose different reconstructed faces corresponding to
different BMI of the unknown individual.

Next, the same test case is studied using the approach featured in Section 7.6. We
consider the same set of faces and skulls which are now equipped with their masseter
muscles. The result of this procedure is depicted in Figure 1. The discrepancy
between the estimate and the original face is displayed in Figure 2-bottom. Note the
improvement of the reconstruction in the regions of the face face close to the masseter
muscle.
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(a) (b) (c)

Figure 1: (a) Reconstructed face obtained by averaging 8 templates from the database
(without enclosing local information). (b) Reconstructed face obtained by averaging 8
templates from the database (enclosing local information). (c) Original face.

Eventually, let us consider the whole collection (Fi)i=0,...,N , (Si)i=0,...,N , with N =
26, of shapes in the database. Figures 3,4, 5, 6, 7 depict the reconstructions of five
faces which are successively removed from the database. Again, the proposed recon-
struction is obtained as a geometric average of the N = 25 estimated faces. Figures 8,
9 show the distribution error for the five test cases. Note that the reconstruction fea-
tured in 6, even showing a visual resemblance with the original face, fails to correctly
estimate the correct soft tissue. This example suggest that it would be preferable to
propose multiple reconstructions (corresponding to several BMI) instead of a mere
single one. Also, note the underestimation of the nasal region when the original face
shows a prominent nose as the one featured in Figure 7. This result is due to the fact
that the considered nasal shape is not represented in our database. Using information
coming from a larger database could help in improving the result.

Discrepancy between · · · min mean max

1. skulls of the database and the unknown skull 5.44 mm 7.86 mm 13.46 mm

2. faces of the database and the unknown face 5.02 mm 8.94 mm 15.69 mm

3. faces after deformation and the unknown face 2.93 mm 5.8 mm 10.35 mm

4. faces of the database and the average predicted face 4.54 mm 7.03 mm 11.28 mm

Table 8.1: Discrepancy between shapes for our test case.

8.3 Perspectives

The proposed reconstruction method reposes on the ’physical’ deformation of
templates of coupled faces and skulls onto the unknown target skull. Even if our



144 8.3. Perspectives

Figure 2: Discrepancy between the predicted and the original faces for the test case of
Figure 1 with (bottom) and without (top) enclosing local information.



Chapter 8: Results and perspectives 145

(a) (b)

Figure 3: (a) Original face. (b) Reconstructed face.
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(a) (b)

Figure 4: (a) Original face. (b) Reconstructed face.
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(a) (b)

Figure 5: (a) Original face. (b) Reconstructed face.
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(a) (b)

Figure 6: (a) Original face. (b) Reconstructed face.
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(a) (b)

Figure 7: (a) Original face. (b) Reconstructed face.
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(a)

(b)

(c)

Figure 8: Discrepancy between the predicted and the original faces (a) for the test case of
Figure 3; (b) for the test case of Figure 4; (c) for the test case of Figure 5.
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(a)

(b)

Figure 9: Discrepancy between the predicted and the original faces (a) for the test case of
Figure 6; (b) for the test case of Figure 7.
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experiments were carried out on a small toy collection of 26 individuals, our method
produced promising results. Also, the combination of our approach with a more local
one (using the reconstruction of facial muscles) seems to improve the accuracy of the
overall method. In particular the proposed method for shape matching allows an accu-
rate registration, opening for a large range of applications in computational anatomy.
The method is simple to implement and doesn’t need a prescribed landmarks cor-
respondence. We hope to continue to discuss with the forensic and anthropology
community for enriching our method and devising a validation protocol.



Appendix A

Existence results under additional
constraints

In this appendix we provide a survey of classical results of existence in the context
of shape optimization problems. These results are based on the idea of restraining the
set of admissible shapes of a shape optimization problem by adding extra requirement
of topological or geometrical nature, or by asking more regularity for the considered
shapes.

A.0.1 Imposing a uniform cone property

A first idea exploited in [21] consist in adding a regularity constraint on the set of
admissible shapes. More precisely we consider shapes enjoying the so-called uniform
cone property, which is defined above.

Definition A.0.1. Let ξ ∈ Rd be a unit vector, y ∈ Rd be a point and h > 0, θ ∈
(0, π

2
) be real numbers. The cone of angle θ, height h and axis ξ is the set:

C(θ, h, ξ) =
{
z ∈ Rd : 〈z, ξ〉Rd > ||z|| cos θ, ||z|| < h

}
.

Definition A.0.2. Let θ ∈ (0, π
2
), h > 0 and ε > 0 real numbers, with 2ε ≤ h. An

open set Ω is said to verify the uniform cone property if for every x ∈ ∂Ω, there exists
a unit vector ξx such that, for all point y belonging to Ω∩B(x, ε), where B(x, ε) is a
ball of center x and ray ε, then one has:

y + C(h, θ, ξx) ⊂ Ω, ∀y ∈ Ω ∩B(x, ε).

Given a fixed design region D ⊂ Rd, define the space:

Oθ,h,r = {Ω ⊂ D,Ω has the uniform cone property for some θ, h, r}.

The following result has been proved in [21].
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Theorem A.0.1. (Compactness of Oθ,h,r) Let (Ωn)n∈N be a sequence in Oθ,h,r
converging to Ω∗ in the sense of characteristic functions. Then Ω∗ ∈ Oθ,h,r.

The above compactness property leads to existence results for a large class of
objective functionals. The following results can be found in [1].

Theorem A.0.2. The compliance minimization problem with a volume constraint:

min
Ω∈Oθ,h,r,V

∫
Ω

fuΩ(x)dx,

where uΩ is the solution of (3.3.1) and Oθ,h,r,V := {Ω ∈ Oθ,h,r,
∫
D
χΩ = V }, admits

at least one solution.

A.0.2 The Murat-Simon regularity constraint

We are now going to present another regularity constraint due to Murat and Simon
(see [81]) which is strongly linked with the notion of shape derivative that will be
introduced in Section 1.2.1. Let us consider an open, bounded domain Ω0 ⊂ Rd. Let
us introduce the space of diffeomorphisms which are bi-Lipschitz maps:

T := {T : Rd → Rd, (T − I) ∈ W 1,∞(Rd,Rd) and (T−1 − I) ∈ W 1,∞(Rd,Rd)}.

The main idea is to consider the space of admissible designs as the space of all
domains obtained by applying a diffeomorphism of T on the reference domain Ω0.
Let us define the space of all the domains which can be represented as images of Ω0

though an element of T :

D(Ω0) = {Ω ⊂ Rd,∃T ∈ T such that Ω = T (Ω0)}.

For Ω1,Ω2 we can define the following pseudo-distance:

dD(Ω0)(Ω1,Ω2) = inf
T∈T ,T (Ω1)=Ω2

(||T − I||W 1,∞ + ||T−1 − I||W 1,∞).

Finally for each C > 0 let us define the space of admissible designs as the space

OΩ0,C,V = {Ω ∈ D(Ω0), dD(Ω0)(Ω1,Ω2) ≤ C,

∫
Ω

dx = V },

then we have the following existence result.

Theorem A.0.3. The problem

min
Ω∈OΩ0,C,V

C(Ω), where C(Ω) is defined in (3.3.2), (A.0.1)

has at least one solution.
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A.0.3 Sets of finite perimeter

Many shape optimization problems involve constraints on the perimeter of the
admissible sets. For example it is natural to impose the perimeter to be bounded
to control the cost of the design. A theoretical important reason to add perimeter
constraints in the optimization problems is due to the compactness property of sets
of finite perimeter. We need to work with a generalized notion of perimeter.

Definition A.0.3. (Perimeter in the sense of De Giorgi) Let D ⊂ Rd be an open
set. Let Ω ⊂ D be a measurable set. The perimeter of Ω is defined by

PerD(Ω) = sup

{∫
Ω

div (φ) dx |φ ∈ D(D,Rd), ||φ||∞ ≤ 1

}
,

where D(D,Rd) is the space of C∞ functions with compact support equipped with the
norm:

||φ||∞ = sup
x∈D
|φ(x)|.

The following proposition shows that the above definition coincides with the usual
one for regular sets. The proof of this proposition can be found in [60].

Proposition A.0.1. If Ω is of class C1, then PerD(Ω) =
∫
∂Ω

ds, where ds is the
surface element on ∂Ω.

Theorem A.0.4. (Compactness property of sets of finite perimeter) Let D ⊂ Rd

be a domain of finite perimeter. Let (Ωn)n∈N ⊂ D be a sequence of measurable sets
verifying

|Ωn|+ PerD(Ωn) ≤ C,

for some constant C > 0. Then there exist Ω ⊂ D of finite perimeter and a subse-
quence (Ωnk)k∈N such that

χΩnk
→ χΩ in L1(D).

The above compactness property reposes on the following characterization of sets
of finite perimeter.

Proposition A.0.2. Let Ω be a measurable set in D. Then PerD(Ω) is finite iff
∇χΩ

is a Radon measure of finite mass. Moreover in that case, PerD(Ω) = ||∇χΩ
||1.

A.0.4 Imposing a finite number of connected components

As for the perimeter, the number of connected components of the minimizing
sequence (Ωn)n∈N converging to a non classical design is unbounded. So, one can
actually prevent the occurrence of homogenization phenomena by imposing an upper
bound on the number of connected components of the admissible shapes. The fol-
lowing existence results due to Sverak [101] is valid only in two space dimension. A
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similar result in linear elasticity setting has been provided in Chambolle [19]. For a
given k ∈ N let us consider the design space

Ok = {Ω ⊂ Rd,Ω has less then k connected components },

then we have the following existence result.

Theorem A.0.5. The problem

min
Ω∈Ok

C(Ω), where C(Ω) is defined in (3.3.2). (A.0.2)

admits at least one solution.

A.1 A non existence result using the topological gradient

In this section we show how to use the notion of topological derivative to get non
existence of classical minimizers. We follow the approach described in [59]. When the
functional at hand depends on a state uΩ which is the solution of a PDE one has to
inspect the behavior of the state uΩ,ρ related to the perforated domain Ωρ in terms of
the state uΩ related to the reference domain Ω. Asymptotic expansions of such type
has been studied in the context of identification of inhomogeneities in conductivity
problems. In [45] an asymptotic formula is established for prooving the continuous
dependence of the inverse problem. Let us introduce a design space D ⊂ R2. Let us
consider a state uΩ ∈ H1(Ω) solution of the following problem

−∆uΩ = 1 inΩ,

uΩ = 0 on ΓD,

∇uΩ · n = 0 on ΓN ,

(A.1.1)

with ΓD,ΓN ⊂ ∂Ω. Let us introduce the set of admissible shapes OV :

OV = {Ω ∈ D, ΓD ∩ ΓN ⊂ ∂Ω, |Ω| = V } .

Consider the following minimization problem:

min
Ω∈OV

C(Ω), where C(Ω) :=

∫
Ω

uΩ(x)dx. (A.1.2)

The non existence result is the following.

Theorem A.1.1. Problem (A.1.2) has no solution over OV .

Proof. Let Ω∗ be an optimal domain for (A.1.2). Let x0 ∈ Ω∗ a point and let
B(x0, ε) a small circular hole centered in x0. Since by perforating the domain we have
created a new boundary we need to impose new boundary conditions on ∂B(x0, ε).
Let us consider Dirichlet homogeneous condition. Thus the state uε,x0 corresponding
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to the phase Ω∗ \ B(x0, ε) is the solution belonging to H1
ΓD

(Ω∗ \ B(x0, ε)) of the
problem: 

−∆uε,x0 = 1 in Ω∗ \Bε,x0

uε,x0 = 0 on ΓD

uε,x0 = 0 on ∂Bε,x0

∇uε,x0 · n = 0 on ΓN

(A.1.3)

The following asymptotic expansion holds (see [59]):

uε,x0(y) = u(y)− 2π

|log ε|
u(x)φx(y) + o

(
1

| log ε|

)
. (A.1.4)

where φx(y) is the Green function of the Laplace operator vanishing on ∂Ω. In order
to respect the volume constraint we consider a point x1 lying in the complementary
D \ Ω∗ and we add to the domain Ω∗ a circular region of ray ε centered in x1. We
define

Ω∗ε := (Ω∗ \B(x0, ε)) ∪B(x1, ε),

and we investigate the sign of the difference J(Ω∗ε) − J(Ω∗). Since Ω∗ε is composed
of two disjoints components we can evaluate the state uε := uΩ∗ε separately on Ω∗ \
B(x0, ε) and B(x1, ε):

uΩ∗ε(y) =


uΩ∗\B(x0,ε)(y) if y ∈ Ω∗ \B(x0, ε),

ε2 − |y − x1|2

4
if y ∈ B(x1, ε).

(A.1.5)

We can now evaluate the shape difference:

J(Ω∗ε) =

∫
Ω\B(x0,ε)

uε(y)dy +

∫
B(x1,ε)

uε(y)dy

=

∫
Ω

uε(y)dy +

∫
Bε,x1

uε(y)dy

=

∫
Ω

u(y)dy − 2π

| log ε|
u(x0)

∫
Ω

φx0(y)dy +

∫
B(x1,ε)

ε2 − |y − x1|2

4
dy

= J(Ω)− 2π

| log ε|
u(x0)

∫
Ω

φx0(y)dy +

∫
B(x1,ε)

ε2 − |y − x1|2

4
dy + o

(
1

| log ε|

)
= J(Ω)− 2π

| log ε|
u(x0)

∫
Ω

φx0(y)dy + o

(
1

| log ε|

)
.

Remarking that by the maximum principle u(x0) > 0 and φx0(y) > 0 for y close
enough to x0 we end up with

J(Ωε(y)) < J(Ω) for y close to x0,

which contradicts the optimality of Ω.
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Appendix B

Strain/displacement interpolation
for shell Finite Elements

B.0.1 Strain/displacement interpolation

In this appendix we report the computation of the derivatives of the discrete
displacement in context of shell Finite Elements introduced in Chapter 4. We refer to
the notations introduced in 4. The Jacobian matrix of the mapping (r, s, t)→ (x, y, z)
is easily calculated as:

J =

x(0) − x(2) + ta
2
(n0

x − n2
x) y(0) − y(2) + ta

2
(n0

y − n2
y) z(0) − z(2) + ta

2
(n0

z − n2
z)

x(1) − x(2) + ta
2
(n1

x − n2
x) y(1) − y(2) + ta

2
(n1

y − n2
y) z(1) − z(2) + ta

2
(n1

z − n2
z)∑3

i=0 hi(r, s)n
i
x

∑3
i=0 hi(r, s)n

i
y

∑3
i=0 hi(r, s)n

i
z


Mathematical shell models are classically based on the so called Reissner-Mindilin

kinematical assumption : any material line orthogonal to the midsurface in the un-
stressed configuration remains straight and unstretched during deformations. Such a
assumptions allows for the global deplacement field written as the sum of two con-
tributes : the displacement of the shell midsurface and a rotation field encoding the
angle between the unit normal vector in the unstressed and deformed configuration.
The resulting finite element model shows 15 degree of freedom on each element (9 for
midsurface displacement and 6 for angles). The interpolated displacement inside the
element T ek is then written under the form

u(r, s, t) =
3∑
i=0

hi(r, s)
(
u(i) + t

a

2
V i
x

)
, (B.0.1)

v(r, s, t) =
3∑
i=0

hi(r, s)
(
v(i) + t

a

2
V i
y

)
, (B.0.2)
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w(r, s, t) =
3∑
i=0

hi(r, s)
(
w(i) + t

a

2
V i
z

)
. (B.0.3)

The coordinates of the updated normals V i at each node are computed w.r.t. an
orthonormal basis {V i

0 , V
i

1 , V
i

2}. A simple choice for the basis vectors is

V i
0 = N i, (B.0.4)

V i
1 =

ay × V i
0

||ay × V i
0 ||
, (B.0.5)

V i
2 =

V0 × V i
1

||V0 × V i
1 ||
. (B.0.6)

for i = 0, 1, 2. The updated normal is calculated as

V i = −αiV i
2 + βiV

i
1 ,

where αi (resp. βi) are the rotation angles of N i around V i
1 (resp. V i

2 ).

The (B.0.1) turns into

u(r, s, t) =
3∑
i=0

hi(r, s)
(
u(i) + t(αig

i
1x + βig

i
2x)
)

(B.0.7)

v(r, s, t) =
3∑
i=0

hi(r, s)
(
v(i) + t(αig

i
1y + βig

i
2y)
)

(B.0.8)

w(r, s, t) =
3∑
i=0

hi(r, s)
(
w(i) + t(αig

i
1z + βig

i
2z)
)

(B.0.9)

where
gi1 = −a

2
V i

2 and gi2 =
a

2
V i

1 .
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The displacement derivatives w.r.t. the reference coordinates (r, s, t) are written as:



∂u
∂r
∂u
∂s
∂u
∂t
∂v
∂r
∂v
∂s
∂v
∂t
∂w
∂r
∂w
∂s
∂w
∂t


= B



u1

u2

u3

v1

v2

v3

w1

w2

w3

α1

α2

α3

β1

β2

β3



,

where B ∈M9×15(R) is the block matrix

B =

 Bh · · · 0 · · · · · · 0 · · · Bg1x Bg2x

· · · 0 · · · Bh · · · 0 · · · Bg1y Bg2y

· · · 0 · · · · · · 0 · · · Bh Bg1z Bg2z

 .
The matrices Bh, {Bg1}x,y,z, {Bg2}x,y,z ∈M3×5(R) are defined as

Bh =

∂h1

∂r
∂h2

∂r
∂h3

∂r
∂h1

∂s
∂h2

∂s
∂h3

∂s
0 0 0

 ,
{Bgi}x,y,z =

t∂h1

∂r
g1
i t∂h2

∂r
g2
i t∂h3

∂r
g3
i

t∂h1

∂s
g1
i t∂h2

∂s
g2
i t∂h3

∂s
g3
i

h1g
1
i h2g

2
i h3g

3
i


x,y,z

i = 1, 2.

The displacement derivatives w.r.t. to the cartesian coordinates (x, y, z) are computed
as in a standard finite element setting:∂u∂x ∂v

∂x
∂w
∂x

∂u
∂y

∂v
∂y

∂w
∂y

∂u
∂z

∂v
∂z

∂w
∂z

 = J−1

∂u∂r ∂v
∂r

∂w
∂r

∂u
∂s

∂v
∂s

∂w
∂s

∂u
∂t

∂v
∂t

∂w
∂t

 .
Figure 1 depicts the deformation of a circular membrane which is clamped at its

boundary ad submitted to a constant body force which is orthogonal to the midsuface.
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(a) (b)

Figure 1: (a) Undeformed membrane. (b) Deformed membrane.
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[50] Joan Glaunès, Anqi Qiu, Michael I Miller, and Laurent Younes. Large defor-
mation diffeomorphic metric curve mapping. International journal of computer
vision, 80(3):317–336, 2008.



Bibliography 173
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Mesh deformation strategies in shape optimization
Application to forensic facial reconstruction

Abstract :
This thesis is devoted to the conception, the development and the analysis of mesh deformation strategies for shape modeling,
processing and comparison -as shape matching and surface reconstruction- and, in a rather independent concern, for devising a
robust computational method for facial reconstruction. Facial reconstruction is about the estimation of a facial shape from the
sole datum of the underlying skull and is a challenging problem in anthropology and forensic science. The main contribution
of the thesis is the design of a novel method for shape matching, borrowing techniques from the shape optimization context.
Under the sole assumption that the two shapes share the same topology, the desired mapping is achieved as a sequence of elastic
displacements by minimizing an energy functional based on a signed distance function. Several numerical examples are presented
to show the efficiency of the method. Also, a novel method for generating a closed surface mesh model of an initially non-closed
source mesh model is developed. The method relies on an original PDE-based mesh evolution technique. A template shape is
iteratively deformed, producing a sequence of shapes that get ’closer and closer’ to the source triangulation. The second part of
the manuscript deals with the development of a landmark-free, fully automated method for digital facial reconstruction. Based
on techniques of continuous deformation as ’morphing’ and ’warping’, the proposed approach is integrated with anthropological
assumptions and mechanical models.
Keywords : shape matching, shape optimization, liner elasticity, mesh deformation, finite elements, facial reconstruction

Méthodes de déformation de maillage en optimisation de forme
Application à la reconstruction faciale pour la médecine légale

Résumé :
Cette thèse est consacrée à la conception, au développement et à l’analyse de méthodes de déformation de maillage pour la
modélisation, le traitement et la comparaison de forme -telles que l’appariement et la reconstruction de surface- ainsi qu’à la
conception d’une méthode numérique robuste pour la reconstruction faciale. La reconstruction faciale tridimensionnelle consiste à
estimer un visage numérique à partir de la seule donnée de son crâne sec. Il s’agit d’un défi en médecine légale et en anthropologie.
La contribution majeure de cette thèse est la conception d’une nouvelle méthode pour l’appariement de forme, en s’appuyant sur des
techniques d’optimisation de forme. Sous la seule hypothèse que les deux formes ont la même topologie, la transformation cherchée
s’obtient comme une suite de déplacements élastiques, solutions d’un problème de minimisation d’énergie basée sur une fonction
distance signée. Nous proposons également une méthode de drapage permettant la génération d’un modèle de surface fermée à
partir d’un maillage source. La méthode repose sur une technique d’évolution de maillage utilisant les équations de l’élasticité
linéaire. Un maillage modèle est itérativement déformé pour générer une séquence de formes qui s’approche de plus en plus de la
triangulation source. Dans la deuxième partie de ce manuscrit, nous nous intéressons à une méthode automatique de reconstruction
faciale numérique. En s’appuyant sur des techniques de déformation continue telles que le ’morphing’ et le ’warping’, l’approche
proposée est intégrée par des connaissances anthropologiques et mécaniques.
Mot clés : appariement de forme, optimisation de forme, élasticité linéaire, déformation de maillage, éléments finis, reconstruction
faciale


