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Procédé de Production de Succinate à Partir de Xylose Couplant Fermentation 

(Ingénierie Métabolique d’Escherichia Coli) et Purification (Nanofiltration)  

 

Résumé 

 Les ressources de carbone primaires doivent être progressivement remplacées 

par des ressources renouvelables plus complexes comme les matières 

lignocellulosiques, pour produire des biocarburants ou des synthons (bioraffineries de 

2ième génération). Cette évolution nécessite de modifications importantes à différentes 

étapes du procédé, au niveau de la fermentation elle-même ou dans les étapes 

ultérieures nécessaire pour l’obtention du produit cible. Dans ce travail, nous avons 

étudié un procédé de production de succinate à partir du xylose. La fermentation a été 

réalisée en utilisant une souche d’ Escherichia coli modifiée par ingénierie 

métabolique. La purification du succinate a été réalisée par nanofiltration. 

 Des travaux précédents ont permis, par ingénierie métabolique, de mettre au 

point une souche E. coli KJ122 permettant de produire du succinate par fermentation 

anaérobie de glucose dans un milieu contenant des sels minéraux. Cette souche ne 

permet cependant pas une fermentation performante lorsque le xylose est utilisé 

comme substrat. Afin de lever cette limitation, E. coli KJ122 a été modifiée. Le 

transporteur ABC codant pour les gènes xylFGH a été inactivé par une technique de 

suppression de gènes. La souche ainsi obtenue, baptisée KJ12201 (E. coli KJ122 

xylFGH) a permis d’atteindre des vitesses de croissances rapides, des consommations 

de xylose et une production de succinate améliorées par rapport à la souche parente. 

Après modification génétique, E. coli KJ12201-14T permet de produire en mode une 

concentration élevée de succinate de 84 g/L, la concentration d’acétate accumulée étant 

de 11 g/L, à partir d’un milieu de composition adaptée (AM1) contenant 10% de 

xylose. En fermentation fed-batch, E. coli KJ12201-14T permet de produire du 

succinate à une concentration de 84 g/L, avec un rendement de 0.85 g/g et une 

productivité de 2 g/L/h. Ces résultats démontrent les potentialités de cette souche pour 
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produire du succinate à partir de xylose ou d’hydrolysats riches en xylose issus de 

matières lignocellulosiques. 

 La nanofiltration a ensuite été considérée afin de purifier le succinate obtenu 

par fermentation. Les expériences ont été réalisées avec une membrane NF45 et des 

milieux de fermentation synthétiques contenant le succinate et différentes impuretés, 

sels minéraux, glucose ou autres sels d’acides organiques, acétate en particulier. 

L’influence des conditions opératoires (pH, pression) sur les performances de la NF a 

été évaluée. Les mécanismes gouvernant le transfert des espèces à travers la membrane 

ont été étudiés afin d’expliquer la variation des rétentions en fonction de la 

composition du milieu. En solution simple, les résultats ont montré que la rétention du 

succinate augmente avec la pression appliquée et avec le pH et diminue lorsque la 

concentration augmente. Pour des concentrations faibles, de l’ordre de 0.1M, les 

rétentions du succinate et de l’acétate en mélange sont différentes et identiques à celles 

en solution simples. Une bonne purification du succinate est ainsi possible. Au 

contraire, pour des concentrations plus élevées en succinate, la rétention diminue par 

suite de l’écrantage des effets de charge. Les rétentions étant trop proches, la 

séparation acétate/succinate devient impossible. Considérant les mécanismes ainsi mis 

évidence, une méthodologie a été proposée afin de réaliser la purification du succinate 

obtenu par fermentation. La séparation acétate/succinate est effectuée en deux étapes. 

Une diafiltration du jus de fermentation, préalablement dilué, est d’abord réalisée en 

utilisant la membrane NF45. Le rétentat purifié est ensuite concentré, en utilisant une 

membrane d’osmose inverse. Grace à ce procédé, il est possible d’augmenter la pureté 

du succinate de 85 à plus de 99.5% avec un rendement global supérieur à 92%. 

L’intérêt de la nanofiltration pour purifier le succinate produit par fermentation est 

ainsi démontrée. 

Mots-clés: Succinate; Fermentation; Escherichia coli; Ingénierie Métabolique;  

                   Xylose; Nanofiltration; Retention; Separation factor  
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Reengineering of Metabolically Engineered Escherichia coli to Produce Succinate 

from Xylose-containing Medium and Its Purification by Nanofiltration 

 

Abstract  

 Current trend is to move from primary carbohydrate resources to more complex 

ones like lignocellulosic materials as a bio-renewable feedstock, to produce biofuels or 

chemical building blocks. This evolution requires significant modifications at different 

stages in the bioprocess engineering, including fermentation and downstream 

processes. In this work, the succinate production by a newly metabolically engineered 

Escherichia coli from xylose, and its purification from fermentative broth by 

nanofiltration were studied.  

Escherichia coli KJ122 strain was previously engineered to produce high titers 

and yields of succinate in mineral salts medium containing glucose under simple-batch 

anaerobic conditions. However, this strain does not efficiently utilize xylose due to 

catabolic repression. To improve the xylose uptake and its utilization of E. coli KJ122, 

xylFGH genes were inactivated by the gene deletion technique. The mutant strain 

named KJ12201 (E. coli KJ122 xylFGH) exhibited high abilities in fast growth, 

xylose consumption and succinate production compared to those of the parental strains. 

After performing metabolic evolution, E. coli KJ12201-14T efficiently consumed 10% 

xylose to produce a high succinate concentration at 84 g/L with an accumulated acetate 

concentration at 11 g/L in mineral salts medium (AM1) under batch fermentation. 

During fed-batch fermentation, E. coli KJ12201-14T produced succinate at a 

concentration, yield, and overall productivity of 84 g/L, 0.85 g/g, and 1.0 g/L/h, 

respectively. These results demonstrated that E. coli KJ12201 would be a potential 

strain for the economic bio-based succinate production from xylose and other xylose-

rich hydrolysates derived from lignocellulosic materials.  
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The succinate purification from fermentation broth by nanofiltration (NF) was 

also investigated. The experiment was carried out with a NF45 membrane and various 

synthetic fermentation broths containing succinate salt and different impurities such as 

inorganic salts, glucose, and other organic acid salts including acetate. The influence of 

the operating conditions (pH, pressure) as well as the broth composition on the NF 

performances was evaluated. The mechanisms governing the transfer of the solutes 

through the membrane were studied in order to explain the different solute retentions 

observed according to the fermentation broth composition. In single-solute solutions, 

the succinate retention increases with increasing pressure and feed pH and decreases 

with increasing feed concentration. For instance, at a low salts concentration at 0.1 M, 

it was observed that the retentions of succinate and acetate in the mixture are identical 

to those in single solutions. Thus, a good purification of succinate can be obtained. On 

the contrary, with higher succinate concentrations, the retention was decreased due to 

the screening effect. Retentions of those solutes were then too close to achieve a 

separation. Based on abovementioned mechanisms observed, a methodology was 

proposed to perform the succinate purification from fermentation broth. The 

succinate/acetate separation was carried out in two steps. A diafiltration of the diluted 

fermentation broth was initially performed, and the concentration step followed. With 

this process, it was possible to increase the succinate purity from 85% to more than 

99.5% while maintaining a total yield higher than 92%. From this work, it was shown 

that NF could be effectively used for the succinate purification from fermentation 

broth. 

 

Keywords: Succinate; Fermentation; Escherichia coli; Metabolic Engineering;  

                    Xylose; Nanofiltration; Retention; Separation factor  
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EDTA = Ethylenediaminetetraacetic acid 

g/g = Gram per gram 

g/L = Gram per liter 

GalP = Galactose permease 

GatC = Galactitol permease 

h = Hour 

HPLC = High performance liquid chromatography 

HAce = Acetic acid 

HPyr = Pyruvic acid 
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H2Suc = Succinic acid 

LB = Luria-Bertani medium 

M = Molar 

mM = Milli-molar 

ml = Millilitre 

NADH = Nicotinamide adenine dinucleotide (reduced form) 

NAD+ = Nicotinamide adenine dinucleotide (oxidative form) 

OD = Optical cell density 

OAA = Oxaloacetic acid 

PCR = Polymerase Chain Reaction 

PCK = Phosphoenolpyruvate carboxykinase 

PDH = Pyruvate dehydrogenase 

PEP = Phosphoenolpyruvate 

PFLB = Pyruvate formate lyase 

POXB = Pyruvate oxidase 

PTA = Phosphate acetyltransferase 

PPC = Phosphoenolpyruvate carboxylase 

PPP = Pentose phosphate pathway 

PYK = Pyruvate kinase 

rpm = Revolution per minutes 

TAE = Tris-acetate-EDTA 

TBE = Tris-borate-EDTA 
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V = Volt 
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Lpo = Water permeability (L.m-2.h-1.bar-1) 

Jw = Water permeate flux (m3.s-1.m-2) 

P = Pressure difference (Bar) 

R = Retention 

Robs = Observed retention  

Robs,succinate = Observed retention of succinate 

Robs,acetate = Observed retention of acetate 

Cp = Concentration of solute in permeate (M) 

Cf = Concentration of solute in feed (M) 

Cr = Concentration of solute in retentate (M) 

A = Area (m2) 

V = Volume (m3) 

V0 = Volume of feed (L) 

VP = Volume of permeate (L) 

VR = Volume of retentate (L) 

KAce = Potassium acetate 

KPyr = Potassium pyruvate 

K2Suc = Potassium succinate 
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1.1  Background and signification of research problem 

        Succinic acid has been identified by the U.S. Department of Energy as one of the 

top 12 building block chemicals that could be produced from renewable feedstocks 

(Werpy and Petersen, 2004). Current succinic acid production by the hydrogenation of 

petroleum-derived maleic anhydride is too expensive for widespread use as a platform 

chemical. Inexpensive microbial processes could provide succinic acid as a renewable 

building block molecule for conversion into chemical intermediates, specialty 

chemicals, food ingredients, green solvents, pharmaceutical products, and 

biodegradable plastics (Zeikus et al., 1999). Potentially high volume products that can 

be made from succinic acid include tetrahydrofuran, 1,4-butanediol, succindiamide, 

succinonitrile, dimethylsuccinate, N-methyl-pyrrolidone, 2-pyrrolidone, 1,4-

diaminobutane, and γ-butyrolactone (Sauer et al., 2008). The microbial production of 

succinic acid from carbohydrates offers the opportunity to be both greener and more 

cost effective than petroleum-based alternative products. For an economical 

production, lignocellulosic biomass is a promising feedstock for succinate production 

considering its great availability, sustainability, and low cost compared with refined 

sugars (Li et al., 2011; Zheng et al., 2009; Zheng et al., 2010).  

        Xylose is the second most abundant sugar in nature and a major constituent of 
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hemicellulose in lignocellulosic biomass. In E. coli, xylose transport mechanisms 

require ATP as an energy source for uptake and phosphorylation of xylose. Previous 

work has shown that ATP was insufficient to accomplish the conversion of xylose to 

succinate, so that there was an ATP deficit for succinate production (Liu et al., 2012).  

Hasona et al. (2004) found that an E. coli mutant lacking pyruvate formate lyase 

(PFL) was unable to grow anaerobically with xylose as the sole carbon source.  Due to 

the pflB deletion strain can not convert pyruvate to acetyl co-A, the required precursor 

for acetate production, and could not produce the additional ATP (Gonzale et al., 

2000). In other words, E. coli AFP184 was a metabolically engineered strain for 

succinate production by deleting the pflB, ldhA, and ptsG genes. AFP184 can ferment 

xylose with a high growth rate (Anderson et al., 2007). Liu et al. (2012) also showed 

that the engineered E. coli BA204, a pflB, ldhA, and ppc deletion strain 

overexpressing the ATP-forming phosphoenolpyruvate carboxykinase (PEPCK) from 

Bacillus subtilis 168, can produce succinate from xylose with enhancement of the 

ATP supply. However, both strains produce low succinate yield and productivity. 

        Jantama et al. (2008) previously reported that a metabolically engineered E. coli 

KJ122 produced impressive titers and yields of succinate from glucose under simple 

anaerobic conditions. However, Wang et al. (2013) reported this strain performs 

poorly with xylose due to an insufficient ATP supply. Therefore, the improving 

xylose consumption in this strain is desirable for succinate production. 

        Succinate production by fermentation has distinct advantages. However, the 

fermentative broth does not contain only succinate but also other substances and by-

products such as sugar, inorganic salts or other organic acid salts like acetate. Thus 

product recovery is an important step and needs more attention because it needs high 
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costs to achieve the high quality requirement for succinate. In order to reduce the cost, 

numerous studies on succinate separation have been conducted using different 

techniques including reactive distillation, simultaneous-moving bed adsorption, 

membrane technology, ion exchange, electrodialysis (ED) and direct distillation. For 

the solvent extraction, it is limited by undesirable distribution coefficients and by 

using hazardous solvents. Absorption process also has the disadvantages due to a 

short lifetime of adsorbents, low capacity, and additional filtration. ED is used to 

recover succinate from non-ionized compounds with proper ion exchange membrane. 

Direct distillation is an energy-intensive process, and it causes product formation. 

Membrane technologies such as Nanofiltration (NF) have been proving their advances 

in the fields of separation and purification. NF is a recent membrane process that is 

expected to be more competitive and overall more sustainable when compared with 

the chemical separation processes (Li and Shahbazi, 2006; Abels et al., 2013). 

However, NF is a recent membrane process, the mass transfer mechanisms are still to 

be understood especially when complex solutions, like fermentation broths, are 

concerned. For example, results obtained with single-solute solutions can not be 

directly applied to predict those in mixed-solute solutions (Bargeman et al., 2005). 

Indeed, the fermentation broth is a mixture containing a lot of components such as 

neutral and charged solutes. Previous work was investigated that NF could be applied 

for separation of lactate from fermentation broth (Umphuch et al., 2010; Bouchoux et 

al., 2005). Experimental investigation is thus required, at the laboratory scale first to 

screen for operating conditions and membrane choice and then at the pilot scale to 

evaluate the performances of the NF purification at larger scale.  
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        Since the demand of succinate in many applications is high and increasing every 

year, it is important to note that production of succinate by fermentation should be 

developed especially as how it relates to the utilization of agricultural renewable to 

produce higher-value fermentation derived succinate. Also, the product recovery 

should be further investigated for more cost effectiveness of succinate purification 

thus achieving low cost-high purity succinic acid supplying to chemical industry. 

Therefore, this research was focused on the succinate production from xylose and its 

separation by using NF process.  

1.2  Research objectives 

        Succinic acid is an industrially important product with a large and rapidly 

expanding market due to its attractive and valuable multi-function properties. The 

economics of succinic acid production by fermentation is dependent on many factors, 

of which the cost of the raw materials is very significant. Lignocellulosic biomass is a 

promising feedstock for succinic acid production considering its great availability, 

sustainability, and low cost compared with refined sugars. Despite these advantages, 

the commercial use of xylose for succinic acid production is still problematic. 

Therefore, this study investigated the improving xylose fermentation in E. coli KJ122 

by metabolic engineering coupled with metabolic evolution. However, the 

fermentation broth does not only contain succinate but also other impurities. 

Therefore, this work was to investigate the separation and purification of succinate 

from fermentation broth by NF. The better understanding in mass transfer 

mechanisms in NF for succinate purification was expected. In addition, the influence 

of operating conditions (pH, pressure) as well as of the fermentation broth 
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composition were investigated. The innovative technology should be further 

developed and transferred for scaling up the operation unit close to an industrial scale. 

The activity implemented in this work was summarized in Fig. 1.1. 

 

 

Figure 1.1  Flow schematic diagram for an overview activity implemented in this       

                   research. 
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CHAPTER II 

LITERATURE REVIEW         

 

2.1  Succinic acid and its applications 

        Succinic acid is a dicarboxylic acid having the molecular formula of C4H6O4 and 

otherwise known as butanedioic acid. It is a common metabolite formed by plants, 

animals and microorganisms. It is an intermediate compound in the tricarboxylic acid 

cycle (TCA). It is also one of the fermentation products of energy metabolism (Zeikus 

et al., 1999). It has been synthesized from petrochemical based maleic acid, but its 

fermentation production is drawing much attention in response to the current need to 

develop sustainable process using renewable resources (Willke and Vorlop, 2004). 

This is an important point, as succinic acid can be produced from renewable, 

environmentally sound carbohydrates rather than relying on limited petrochemical 

hydrocarbons. It is synthesized by carbondioxide fixation based carboxylation of C3 

metabolism. This unique carbondioxide fixation makes fermentative succinic acid 

production even more attractive. As the importance of succinic acid for use as a 

biodegradable polymer has increased, the biological production by fermentation has 

been focused on the alternative to the petrochemical based process (Zeikus et al., 

1999).    

        Succinic acid is among the new bio-derived building-block chemicals that could 

replace the current maleic anhydride C4 platform. The main interest in succinic acid 

lies in its derivatives, since it can be transformed into a lot of interesting products: 
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1,4-butanediol (BDO), γ-butyrolactone (GBL), tetrahydrofuran (THF), N-methyl-2-

pyrrolidone (NMP), 2-pyrrolidone (2-Pyrr), succinimide, succinic esters, maleic acid 

(M.A.)/maleic anhydride (M.Anh.) and several others (Fig. 2.1). 

 

Figure 2.1  Succinic acid and its derivatives (Kamm and Kamm, 2007). 

2.2  Succinate production  

        Currently, the large use of succinic acid and its derivatives is around 20,000-

30,000 tones per years with the potential price of $400,000,000 per year (Kidwell et 

al., 2008; Zeikus et al., 1999). This rate increases by 10% per year and the market 

size is estimated to be more than 270,000 tons per year (Willke and Vorlop, 2004). A 

commercialized succinic acid is mainly produced by chemical process from butane or 

oxidation of benzene through maleic anhydride. The price of succinic acid is reported 

to be in the range of $5.9-8.8 /kg depending on its purity. Confronted with the rising 

price of petroleum and pollution, there are many researchers tending to make succinic 

acid from renewable resources using microorganism and green biotechnology. The 
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large scale of fermentative succinate was produced in early 1980 (Zeikus, 1980). 

Fermentative succinate production is about 5,000 ton per year and is sold at $2.20/kg 

to the food market. As expected, natural succinate price would be decreased by 

$0.55/kg if production size would be above 75,000 tones due to utilizing cheap carbon 

substrates such as corn, starch, molasses, and sugars (Zeikus et al., 1999; Kidwell et 

al., 2008). Bio-based succinate needs consumption of CO2 during fermentation so this 

process would contribute to reduce green house gas. Moreover, it declines pollution 

from the manufacturer by constituting many commodities based on benzene and 

intermediate petrochemical of over 250 benzene-derived chemicals (Ahmed and 

Morris et al., 1994). In this decade, fermentative succinate has much been developed 

in commercial scale using engineering E. coli strains as a biocatalyst. In 2011-2012, 

hundred tones of succinic acid is expected to be produced using E. coli as a catalyst 

and glucose as a feedstock in an administration plant which was developed by DSM 

and France's Roquette Frères. Meanwhile, Myriant from the USA tested the scale-up 

production of succinic acid in the 20,000 L bioreactor, also used E. coli as a 

biocatalyst and renewable resources as a feedstock (http://www.myriant.com/product/ 

Replacement-products.cfm). In Japan, Mitsubishi has also attempted to industrialize 

fermentation production of succinic acid, which will be used as monomer units of the 

company’s biodegradable plastics (Xu and Guo, 2010). For industrial scale of 

succinate production, the costs of substrates and downstream processing are crucial 

constraints to become economically viable for succinate production. Purification has 

cost around 60%-70% of total bio-production process (Sauer et al., 2008). 
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2.3  Succinate producers 

       Succinic acid is an intermediate in the tricaboxylic acid cycle and one of the 

fermentation end products of anaerobic of metabolism by several anaerobic and 

facultative microorganisms (Song and Lee, 2006). Even though succinate can be 

produced by fungi and bacteria, only bacteria are used in fermentation for food and 

beverages. Various bacteria have been reported to produce succinic acid including 

typical gastrointestinal bacteria, rumen bacteria, some lactobacillus strains and E. coli 

strain (Kaneuchi et al., 1988; Agarwal et al., 2006). There are many bacteria which 

have been found to produce high succinate as a major product in fermentation 

(Guettler et al., 1998). Efficient strains such as Actinobacillus succinogenes (Guettle 

et al., 1996; Guettler et al., 1998). Anaerobiospirillum succiniciproducens (Glassner 

and Datta et al., 1992; Urbance et al., 2003), and Mannheimia succiniciproducens 

(Lee et al., 2003; Lee et al., 2006) naturally produce as high productivity as 4 g/L.h 

with impressive titers at 300-900 mM and high yields more than 1.1 mol 

succinate/mol glucose.  

2.4  Succinate producing pathways in microorganisms 

        Succinic acid producing bacteria produce not only succinate but also by-products 

such as lactic acid, acetic acid, formic acid and ethanol during fermentation. The rumen 

bacterium, A. succiniproducen produced a succinate yield up to 1.2 mol/mol glucose, 

accompanied with by-products of acetate, pyruvate, formate and ethanol (Guettler et al., 

1996). Unlike rumen bacteria, E. coli produces succinate as a minor product as low as 

0.12 mol/mol glucose (Zeikus et al., 1999). In theory, proximally 1.71 mol succinate is 

produced per mol glucose consumed plus CO2 (Eq. 2.1). Based on redox balance, 24 

electrons in glucose are converted to 14 electrons in succinate (Mckinlay et al., 2007). 
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7 C6H12O6 
+ 6 CO2 → 12 C4H6O4 + 6 H2O                              (2.1) 

        Succinate from glucose fermentation is primarily determined by carbon 

partitioning at the phosphoenolpyruvate (PEP) node (Fig. 2.2). In rumen bacteria, 

more than half of the phosphoenolpyruvate formed from glucose is carboxylated to 

oxaloacetate and converted to succinate, the primary fermentation product. However, 

requirements for complex nutrients by these bacteria increase both the cost and 

process complexity. Native strains of E. coli ferment glucose effectively in simple 

mineral salts medium but produce succinate only as a minor product (Neidhardf, 

1996). In E. coli, half of the PEP from glucose is metabolized directly to pyruvate by 

the PEP-dependent phosphotransferase system for glucose uptake. Most of the 

remaining PEP is used for ATP production by pyruvate kinases for ATP. To preserve 

redox balance, the resulting pyruvate is converted to formate, acetate, lactate, ethanol, 

and small amounts of succinate. 
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 Figure 2.2 Central metabolic pathway of E. coli. Solid arrows represent central 

fermentative pathways. Dotted arrow represents microanaerobic pathway 

(poxB) and dash arrow represents minor lactate producing pathway 

(mgsA, gloAB).  

Genes: pyruvate kinase (pykAF), lactate dehydrogenase (ldhA), pyruvate 

formate-lyase (pflB), phosphate acetyltransferase (pta), acetate kinase 

(ackA), alcohol dehydrogenase (adhE), PEP carboxylase (ppc), 

acetyltransferase/dihydrolipoamide acetyltransferase component of the 

pyruvate dehydrogenase complex (aceEF/lpdA), malate dehydrogenase 

(mdh), fumarase (fumABC), fumarate reductase (frdABCD), formate 

dehydrogenase (fdh), methyglyoxal synthase (mgsA), glyoxylase (gloAB), and 

pyruvate oxidase (poxB) (Jantama et  al., 2008a). 
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2.5  Development of succinic acid producing strains from E. coli 

        E. coli has been considered as the best studied bacterium because the 

microorganism has an ability to grow fast without a requirement of complex nutrients 

and it is easy to manipulate its metabolic pathways by genetic engineering. However, 

the feasibility of increasing succinate production yield in this microorganism through 

metabolic engineering has not yet been fully developed. 

        Under anaerobic conditions, glucose was fermented to PEP and the 

carboxylation of PEP to oxaloacetate by ppc is the primary fermentative route for 

succinate. Meanwhile NADH is generated in glycolysis pathway for cell growth and 

being as intermediate (co-enzyme) in succinic acid production. Unfortunately, no 

more than 0.2 mol of succinate is produced per mol of glucose consumed by E. coli 

during fermentation (Lee et al., 2004).  

         Many investigators have described genetic engineering approaches to improve 

succinate production in E. coli by adding foreign genes (Vemuri et al., 2002; Kim et 

al., 2004; Sanchez et al., 2005; Wang et al., 2006). The key to these improvements is 

increasing the carboxylation of PEP and pyruvate to a four-carbon dicarboxylic acid 

precursor of succinate. E. coli has four native carboxylation pathways that could 

potentially serve this function (Fig. 2.3). Overexpression of pyruvate carboxylase in 

strain AFP11 extremely increased succinate titer (99.2 g/L) and increased succinate 

titer (99.2 g/L) and productivity (1.3 g/L/h). Pyruvate could be reconverted to PEP by 

ATP with the formation of PPi and AMP, but the energy is wasted by this process 

(Zhang et al., 2009). Since E. coli excretes succinate in small amount, gene knockouts 

in succinate competition pathway were done to improve its yield. For example, 

AFP111, a mutant in ptsG system (glucose phosphotransferase), pyruvate-formate 
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lyase, and lactate dehydrogenase, could produce succinate at concentration of 36 g/L 

(Chartterjee et al., 2001).  

 

Figure 2.3  Carboxylation pathways potentially available for succinate production in 

E. coli. A. PEP carboxylase (primary fermentation route). B. NADH 

linked malic enzyme (gluconeogenic). C. NADPH-linked malic enzyme 

(gluconeogenic). D. PEP carboxykinase (gluconeogenic). Genes 

encoding carboxylation activities are shown in bold (Zheng et al., 2009). 

        Furthermore, gene inhibition was intensively studied in central pathway of E. 

coli. Sanchez et al., 2005 reported that SBS550MG was efficient in succinate 

production at 1.6 mol/mol glucose consumed with productivity of 10 mM/h. This 

strain was deactivated the fermentation by-products genes such as ldhA encoding 

lactae dehydrogenase, adhE encoding alcohol dehydrogenase, ack-pta encoding 

acetate kinase and phosphate acetyl transferase and the targeting glyoxylate shunt flux 

by deleting the transcriptional repressor of the glyoxylate shunt (iclR) and over 

expressing Bacillus subtilis citrate synthase and B. retli pyc from a multi-copy 
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plasmids. The overexpressions of some key enzymes for succinate development were 

observed. Overexpressed fumurate reductase (frdABCD) activated fumarate to 

succinate in recombinant E. coli with the conversion rate at 93% (Goldberge et al., 

1983; Wang et al., 1998). Carbonic anhydrase from Anabaena sp.7120 was 

overexpressed in E. coli to provide bicarbonate for improved succinate production 

(Wang et al., 2009). 

        For an alternative carboxylation pathway, malate dehydrogenase (mdh) was 

expressed in JCL1208 strain to dissipate accumulated pyruvate to succinate resulting 

in 108 mM succinate with a molar yield of 0.98 mol succinate per mol glucose 

consumed (Millard et al., 1996). In 2009, Wang observed that the specific glucose 

consumption rate and specific productivity were increased with overexpressing mdh 

in the ldhA double mutant NZN111 resulting in 1.14 mol succinate produced per mol 

glucose consumed. Also, E. coli was genetically engineered to produce succinic acid 

under aerobic condition. In 2005, Lin et al. constructed strain HL27659K that was 

eliminated in succinate dehydrogenase (sdhAB), phosphate acetyltransferase-acetate 

kinase (pta-ackA), pyruvate oxidase (poxB), glucose transporter (ptsG), iclR and 

overexpressed phosphorenolpyruvate carboxylase (ppc) to promote the glyoxylate 

shunt and to make succinate as a main product. This strain produced less than 100 

mM succinate with yield (0.91 mol succinate/ mol glucose consumed) and required 

oxygen in fermentation (Lin et al., 2005). Considering the cost of materials (medium), 

purification, and waste disposal, novel strain of E. coli C was genetically engineered 

and developed by growth-based selection (metabolic evolution) for increased 

succinate production in a mineral salts medium supplemented to 1 mM betaine as an 

osmoprotectant (Jantama et al., 2008b). KJ122 was reported to be efficient in 
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metabolizing glucose to succinate in high titer, yield, and productivity but excreting 

less by-products. Hence, this strain can be comparable to the best succinate producing 

rumen bacteria. 

2.6  E. coli KJ122  

        E. coli KJs’ strains were developed to be not only efficient strains, but they also 

acted as an ideal biocatalyst for industrial succinate production based on fast growth, 

no requirement of expensive nutrients, but less mixed organic acids under simple 

batch conditions. There are some dominant KJs’ strains which are noticeable in high 

succinate production. Strain KJ073, derived from wide type E. coli ATCC 8739, was 

constructed by combination of metabolic engineering and metabolic evolution. Strain 

KJ073 was knockout in genes encoding alternative NADH oxidizing pathway such as 

∆ldhA::FRT ∆adhE::FRT ∆ackA::FRT ∆(focA-pflB)::FRT ∆mgsA and ∆poxB. The 

strain produced succinate with molar yield of 1.2 per mole of glucose consumed; 

however, after genes deletion, there are all FRT fragments remain (Jantama et al., 

2008a). Strain KJ091 was genetically improved by removing all FRT fragments in 

which this strain was similar to KJ073 for producing succinate (Jantama et al., 

2008b). Further development, KJ122 was constructed and able to be a high succinate 

producer (Fig. 2.4). Strain KJ122 (∆ldhA ∆adhE ∆ackA ∆(focA- pflB) ∆mgsA ∆poxB 

∆tdcDE ∆citF ∆aspC ∆sfcA) produced succinate yield (1.46 mol/mol glucose), 

succinate titer (80 g/L) and average volumetric productivity (0.9 g/L.h) at 96 h. 
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Figure 2.4  Strain construction of KJ122 (Jantama et al., 2008a, b). 

        Further, Zhang et al. (2009) found that increased succinate production in KJs’ 

strains were due to increasing expression of PEP carboxykinase (pck) and inactivation 

of the glucose phosphoenolpyruvate-dependent phosphotransferase sytem (PTS) after 

metabolic evolution. In addition, the glucose uptakes system was replaced by an 

alternative pathway, galactose permease (GalP) in KJ strains. GalP was noted to use 

ATP rather than PEP for phosphorylation. This provided an energy mechanism to 

increase the pool size of PEP and to facilitate redox balance. Furthermore, improved 

succinate yield made the succinate producing pathway in E. coli that was closed to 

succinate producing rumen bacteria (Zhang et al., 2010). 
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2.7  Succinate production from lignocellulosic biomass 

        2.7.1  Composition of lignocellulosic biomass 

                  The global production of plant biomass, of which over 90% is 

lignocellulose, amounts to �200 × 109 tons per year, where �8-20 × 109 tons of the 

primary biomass remains potentially accessible. Lignocellulosic biomass is organic 

material derived from a biological origin, and represents the most abundant global 

source of biomass that has been largely unutilized (Lin and Tanaka, 2006). It is 

mainly composed of cellulose (insoluble fibers of β-1,4-glucan), hemicellulose 

(noncellulosic polysaccharides including xylans, mannans, and glucans), and lignin (a 

complex polyphenolic structure), which form �90% of the dry matter, plus lesser 

amounts of minerals, oils, and other components (Fig. 2.5) (Balat, 2011; Molina-

Sabio and Rodríguez-Reinoso, 2004; Yang et al., 2009). This biomass includes forest 

and crop residues (Chen and Lee, 1997; Melzoch et al., 1997), municipal solid waste 

(John et al., 2007), waste paper (McCaskey et al., 1994), and wood (Linko et al., 

1984). The structural and chemical composition of lignocellulosic material has 

varying amounts of these components because of genetic and environmental 

influences and their interactions (Demirbas, 2005). The proportion of biomass 

constituents varies between species, and there are distinct differences between 

hardwoods and softwoods. The total content of cellulose and hemicellulose is higher 

in hardwoods (78.8%) than in softwoods (70.3%), but the total content of lignin is 

higher in softwoods (29.2%) than in hardwoods (21.7%) (Balat, 2009). The cellulose, 

hemicellulose, and lignin content depends on the type of lignocellulosic biomass, 

which indicates that an appropriate material should be selected for the corresponding 

fermentation. 
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                  Cellulose, the major component of plant biomass (30-60% of total 

feedstock dry matter), is a homopolysaccharide composed of β-D-glucopyranose 

units, linked by β-(1,4)-glycosidic bonds. The orientation of the linkages and 

additional hydrogen bonding make the polymer rigid and difficult to break. 

Hemicellulose (20-40% of total feedstock dry matter) is a short, highly branched 

heterogeneous polymer consisting of pentose (xylose and arabinose), hexose 

(galactose, glucose, and mannose), and acid sugars (Saha, 2000). Mannose is the 

dominant hemicellulose sugar in soft-woods, while xylose is dominant in hardwoods 

and agricultural residues (Taherzadeh and Karimi, 2008). Hemicellulose is more 

readily hydrolyzed compared to cellulose because of its branched and amorphous 

nature. Lignin (15-25% of total feedstock dry matter) is an aromatic polymer 

synthesized from phenylpropanoid precursors. The phenylpropane units of lignin 

(primarily syringyl, guaiacyl, and phydroxy phenol) are bonded together by a set of 

linkages to form a very complex matrix (Demirbas, 2008). This complex matrix 

consists of a variety of functional groups, e.g., hydroxyl, methoxyl, and carbonyl 

groups, which impart a high polarity to the lignin macromolecule (Feldman et al., 

1991). Lignin is considered to be difficult to use as a fermentation substrate because it 

makes the biomass resistant to chemical and biological degradation (Taherzadeh and 

Karimi, 2008). 
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Figure 2.5  The main components and structure of lignocellulose (Furkan and Remzi,     

                    2015). 

 

        2.7.2  Conventional processes for succinate production by engineered E. coli     

                  strain from lignocellulosic biomass 

                  Despite the advantages in its sustainability and availability, the 

commercial use of lignocellulose in succinate production is still problematic due to its 

complexity. The biochemical conversion of lignocellulosic biomass requires several 

processing steps designed to convert structural carbohydrates to monomeric sugars, 

i.e., glucose, xylose, arabinose, and mannose. Further, these sugars can be fermented 
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to succinate by engineered E. coli strains, with varying degrees of effectiveness. Once 

the technologies are established and commercialized, a wide range of valuable 

products could be produced from lignocellulosic biomass. The conventional processes 

for succinate production from lignocellulosic biomass include the following 5 main 

steps (Fig. 2.6): 

        (1)  Pretreatment-breaking down the structure of the lignocellulosic matrix.  

        (2)  Enzymatic hydrolysis-depolymerizing lignocellulose to fermentative sugars, 

such as glucose and xylose, by means of hydrolytic enzymes.  

        (3)  Improvement of co-consumption of xylose and glucose by metabolic 

engineering and metabolic evolution in engineered E. coli for succinate production. 

        (4)  Fermentation-metabolizing the sugars to succinate, generally by engineered 

E. coli.  

        (5)  Separation and purification of succinate to meet the standards of commercial 

applications.  
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Figure 2.6  A general flow chart of the conventional process for succinate production            

                   from lignocellulosic biomass materials (modified from Abdel-Rahman et    

                   al., 2011). 
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        2.7.3  Xylose uptake in E. coli 

                  A xylose transport system for E. coli was first reported by David and 

Wiesmeyer in 1970 (David and Wiesmeyer, 1970). They showed that the xylose 

permease system is inducible and specific for D-xylose. The system was able to 

transport xylose against a concentration gradient by expending energy. It took almost 

one decade before Shamanna and Sanderson (1979) proved that there were two 

transport systems for xylose in E. coli. Based on kinetic studies, they measured 

apparent Km values of 110 and 24 μM for the low- and high- affinity xylose transport 

system, respectively (Shamanna and Sanderson, 1979). In 1980, Lam and coworkers 

discovered the proton linked D-xylose transport system which showed an alkaline pH 

change while taking up xylose. They tested different mechanisms to find if the 

transporter was energized by a proton-motive force, directly by ATP or acetyl 

phosphate, or phosphorylated by phosphoenolpyruvate. In addition to alkaline pH 

behavior, the energized xylose transport system was found to be inhibited by 

uncoupling agents and insensitive to arsenate or fluoride. Based on the observations, 

they concluded transport system is energized by a proton-motive force (Lam et al., 

1980). They reported an apparent Km value of 23.9±2.4 μM for the transport system 

which was consistent with previous reported values (Shamanna and Sanderson, 1979). 

It was postulated that the lack of other transport activity might be due to repression 

effects of other sugars used in the experiments, especially glucose and glycerol. 

                  Further, Ahlem et al. (1982) purified periplasmic D-xylose-binding protein 

from E. coli K-12. This osmotic shock-releasable binding protein was thought to be 

part of the high affinity xylose transport system that was reported earlier (Shamanna 

and Sanderson, 1979). They also found that the binding protein was produced while 
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growing in media containing both xylose and glycerol. This result was consistent with 

L-arabinose and D-ribose transport systems which include both low affinity and high 

affinity mechanisms with a similar binding protein serving as part of high affinity one 

(Parsons and Hogg, 1974; Willis and Furlong, 1974). In 1984, Davis and coworkers 

did a series of experiments that confirmed the presence of at least two xylose transport 

systems in E. coli, one proton-linked and the other associated with a binding protein. 

Finally, Davis and Henderson, 1987 cloned and sequenced the xylE gene. The xylE 

contains 1473 base pairs encoding for a 491 amino acid protein which is likely the 

only protein responsible for xylose-H+ symport. Like other sugar-proton symport 

proteins, it is highly hydrophobic and there is a high degree of homology with AraE in 

its structure. While analyzing the E. coli genome in 1994, Sofia and coworkers 

identified three genes downstream of xylF. These genes encoded proteins which were 

similar to the components of ABC-type transport systems and the araC regulator. As 

with xylF they proposed the ATP-binding protein gene be called xylG and membrane 

compound of transporter be called xylH due to homology to the arabinose transport 

system. They also named the regulatory protein gene xylR (Sofia et al., 1994). In 

1997, Song and Park characterized the functions and regulation of xyl operon. They 

concluded that the transcription regulation of the XylA, XylB and XylFGH transporter 

is mediated by XylR, and the cylic-AMP receptor protein CRP. 

                  Xylose uptake in E. coli occurs through two transport systems (Fig. 2.6). 

XylFGH, the other D-xylose transport system, belongs to the ATP binding cassette 

(“ABC”) family of transporters and requires one ATP per xylose transported. XylFGH 

exhibits a high affinity with an apparent Km between 0.2 and 4 μM (Sumiya et al., 

1995). In the transporter xylFGH, xylH is the permease of the ABC transporter (Sofia 
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et al., 1994), xylF is the periplasmic xylose-binding protein, (Ahlem et al., 1982) and 

xylG is the ATP-binding protein (Khankal et al., 2008). XylE is a D-xylose proton 

symporter which uses the proton gradient as a source of energy. It possesses a 

relatively low affinity with high Km values between 63 and 169 μM (Sumiya et al., 

1995).  

                  After xylose permeates into the cell, xylose isomerase (XylA) and 

xylulokinase (XylB), which are encoded by the xylAB gene in the xylose-specific 

operon, convert xylose to xylulose 5-phosphate (Fig. 2.7) (Khankal et al., 2008). 

Then, xylulose 5-phosphate is metabolized by the enzymes of the pentose phosphate 

pathway (Desai and Rao, 2010) before entry into the glycolysis pathway. In E. coli, 

xylose is primarily transported through transporter xylFGH, which is driven by ATP 

(Hasona et al., 2004 and Desai and Rao, 2010). During this process, one molecule of 

xylose requires one ATP for its transportation and other ATP for phosphorylation, 

whereas the conversion from xylose to succinate only yields 1.67 net ATP per xylose 

during anaerobic fermentation (Andersson et al., 2007; Liu et al., 2012). Additionally, 

the imbalance of ATP consumption and generation comes from energy requirements 

for uptake and for phosphorylation (Tao et al., 2001; Underwood et al., 2002). 
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Figure 2.7  Xylose transport systems in E. coli. (modified from Utrilla et al., 2012). 

        2.7.4  Previously improved xylose uptake and utilization in E. coli  

                  The preferential utilization of the most available nutrition may be an 

adaptation that allows bacteria to survive in a competitive environment. However, 

carbon catabolite repression (CCR) among these sugar sources hampers the efficient 

production of bio-products. Therefore, a reduction in the utilization efficiency of 

secondary preferred sugars and a long fermentation time at different culture scales 

(Park et al., 2012). To eliminate CCR in E. coli, recently, substantial efforts have been 

devoted to the deletion of the key genes triggering CCR or to the overexpression of 

the genes overcoming CCR (Cirino et al., 2006; Görke and Stülke, 2008; Hernández-

Montalvo, et al., 2003). The deletion of the ptsG gene has been used to ameliorate 

sugar hierarchy utilization. When this mutant is cultivated in mixed sugar 

(glucose/xylose), xylose can be co-utilized with glucose leads to an increase in 

succinate accumulation (Andersson et al., 2007). However, the glucose uptake rate is 

lowered in the ptsG mutant of E. coli. (Nair and Zhao, 2010; Nichols et al., 2001; 

Thakker et al., 2013; Yao et al., 2011). Additionally, the replacement of the native crp 
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gene with a cAMP-independent mutant without CCR can facilitate xylose uptake and 

glucose-arabinose-xylose co-utilization (Cirino et al., 2006; Jojima et al., 2011; 

Khankal et al., 2009; Nair and Zhao, 2010). To co-uptake glucose and xylose, the 

overexpression of catabolic receptor protein (crp
+) affects the repression of ptsG and 

ptsH by the increased Mlc and up-regulates the glycolysis, TCA cycle, and 

gluconeogenesis genes, allowing the co-consumption of glucose and xylose in E. coli 

(Yao et al., 2011). Moreover, replacement of the native fermentation pathway in E. 

coli B with a homo-ethanol pathway from Zymomonas mobilis (pdc and adhB genes) 

resulted in a 30 to 50% increase in growth rate and glycolytic flux during the 

anaerobic fermentation of xylose (Tao et al., 2001). In addition, Wang et al. (2011) 

reported the cyanoacterial ppc overexpression improved the glucose/xylose utilization 

for succinate production. Further, the overexpression of ATP-forming 

phosphoenolpyruvate carboxykinase (PEPCK) from Bacillus subtilis 168 in the 

mutant E. coli, created to increase xylose uptake and succinate accumulation (Liu et 

al., 2012; Liu et al., 2013a,b; Liang et al., 2013; Bao et al., 2014). The mutation in 

gatC and galP also improved xylose fermentation and high organic acids 

accumulation in engineered E. coli (Utrilla et al., 2012; Sawisit et al., 2015). 

Moreover, the deletion of ATP-dependent xylose transporter (xylFGH) resulted an 

increase in growth rate and xylose uptake for lactate production (Utrilla et al., 2012). 

 Jantama et al. (2008) previously reported that a metabolically engineered 

E. coli KJ122 produced impressive titers and yields of succinate from glucose under 

simple anaerobic conditions. Unfortunately, this strain grew poorly on xylose due to 

low ATP supply in E. coli KJ122. Therefore, in this work investigated the improving 

xylose utilization and succinate production by deletion of xylFGH genes to enhance 

ATP supply in E. coli KJ122.  
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2.8  Separation and purification of succinate from the fermentation    

       broth 

        Purification of succinate from the fermentation broth is the last step for 

biological succinate production. The separation and purification of succinate are 

estimated to make up more than 50% of the total costs in its microbial production 

(Cheng et al., 2012). To make fermentation-based succinate production competitive 

with petrochemical processes, the development of optimized producing strains and 

fermentation processes must be combined with cost-saving and energy-effective 

downstream processes to minimize the production costs. The first downstream 

processing step of succinate purification is clarification by centrifugation or filtration 

which is followed by ultrafiltration to separate microbial cells, proteins, 

polysaccharides, and other polymers from the fermentation broth (Fig. 2.8). For the 

separation and purification of succinate, different strategies such as precipitation, 

extraction, ion exchange, membrane process such as electrodialysis and nanofiltration. 

and crystallization have been investigated. 
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Figure 2.8  The operation units for succinic acid production. 

        2.8.1  Precipitation 

                  Precipitating succinic acid is a separation process that was first proposed 

by Datta et al. (1992). In this process, after the fermentation reaches completion, 

solids are centrifuged and separated out of the fermentation broth. This broth is then 

treated with calcium hydroxide, which creates calcium succinate; a solid that 

precipitates out of solution (Lee et al., 2008). This solid is then removed from the 

fermentation broth and washed three times with RO water to remove residual sugar 

and other soluble salts from calcium succinate. A further acidification step, adding 

sulphuric acid to the solid, dissolves the calcium succinate and produces succinic acid. 

The calcium in solution reacts with sulphate to produce solid calcium sulphate, also 

known as gypsum (Datta et al., 1992). This solid can be removed from the solution 

and the succinic acid, dissolved in solution, can to be removed through other 
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separation methods, such as vacuum distillation. This precipitation method can also 

take place in-situ through the addition of a calcium buffer where it helps maintain the 

pH of the system (Lee et al., 2008).  

                   Fermentation process with A. succiniciproducens yields 1.4 mol succinic 

acid/ mol glucose. Using precipitation with calcium hydroxide the yield of succinic 

acid is 1.2 mol/ mol glucose, which already means a loss of nearly 15% of the acid 

(Datta et al., 1992). Precipitation appears to be the most common and simplest 

method for succinic acid separation, but it is also one of the worst processes from an 

environmental and economic standpoint. During fermentation, the pH of the system is 

neutralized and buffered by the addition of chemicals such as lime, or calcium 

hydroxide. Then, when the slurry is treated to remove the succinic acid, large amounts 

of sulphuric acid are added to the solution, creating succinic acid from calcium 

succinate and generating calcium sulphate (Corona-Gonzalez et al., 2008). Gypsum is 

unusable from this process as it can not be sold due to discolouration and smell. 

Therefore, it must be disposed of in a landfill, which adds to the cost of separation. 

The amount of slurry and solid waste created from this process renders it unfit for 

commercial applications. Calcium succinate also needs to be washed after it is 

removed from the fermenter to reduce as much as possible contaminants to be carried 

into the acidification step. This washing requires a large amount of water for the 

process as well, another environmental issue that makes precipitation an unappealing 

choice for succinic acid separation (Brain et al., 2004). 

                   In addition, precipitation with ammonia is possible but so far has only 

been described on a laboratory scale (Berglund et al., 1999; Yedur et al., 2001). In 

this case diammonium succinate is generated by controlling the pH of the 
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fermentation broth with an ammonia-based titration agent or by substituting the cation 

(counter-ion) of the succinate salt with ammonia after fermentation. The diammonium 

salt of succinic acid in the ultrafiltrated fermentation broth is then treated with 

sulphate ions or by combining it with ammonium bisulphate and/or sulfuric acid at 

low pH to yield the succinic acid precipitate and ammonium sulphate. The by-product 

ammonium sulphate can be cracked thermally into ammonia and ammonium 

bisulphate. The precipitated succinic acid is separated and purified after dissolution in 

methanol and re-crystallisation. With this approach, succinic acid can be refined with 

a yield of 93.3% based on the diammonium succinate available in the fermentation 

broth (Yedur et al., 2001). 

                  The advantages of the integrated precipitation with ammonia are the lower 

amount of waste by-products and the possibility of recycling base and acid. The main 

disadvantage is the low selectivity of the precipitation with ammonia. Other organic 

acids present in the fermentation broth were precipitated together with succinate at the 

same time (Yedur et al., 2001). 

        2.8.2  Reactive extraction 

                   Amine-based extraction is a method of reactive extraction that separates 

organic acids based on their pKa values as it removes undissociated acids (Huh et al., 

2006; Hong and Hong, 2005). It is a promising method of separation because 

separation is possible in-situ at room temperature and pressure, so no pre-treatment is 

required (Huh et al., 2004). The focus of much literature in amine-based extraction is 

the use of tri-n-octylamine (ToA) because previous studies have shown that it extracts 

succinic acid very well (Huh et al., 2006). Hong and Hong (2005) used reactive 

extraction with ToA in 1-octanol for succinic acid recovery, succinate yield of 96% 
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and purity of 83.3% were obtained (Table 2.1). However, ToA for reactive extraction 

is toxic to cells. Because of this effect on cell growth and production, other methods 

of succinic acid extraction need to be investigated. There are additional steps that 

must take place to continue the process of separating and purifying succinic acid. 

Bechthold et al. (2008) suggested that the combination of three processes (reactive 

extraction/ vacuum distillation/crystallization) seemed to be the most promising 

separation method. A yield of 73.1% and a purity of 99.8% of succinic acid crystal 

were obtained with this process (Table 2.1). Song et al. (2007) proposed a similar 

process in recovery of succinic acid in fermentation broth, and a yield of 67.1% with a 

purity of 99.5% were obtained (Table 2.1). Umpuch et al. (2015) also reported the 

complex separation process including reactive extraction using ToA, vacuum 

distillation and crystallization successfully purified succinic acid from the other 

organic acids in the simulated fermentation broth. The results showed that the yield 

and purity of succinic acid of 30.25% and 99.10%, respectively were obtained (Table 

2.1). However, there are some problems that remain and would need to be addressed 

before further consideration is given to this method. The main factor is that the 

extraction process is sensitive to pH changes. Since the extraction rates is affected by 

the pH due to the dissociation of succinic acid in the aqueous phase. Then, the 

extraction rates decreases with increasing pH (Jun et al., 2007a). Because only 

undissociated acids can be extracted using ToA, the pH needs to be kept low to ensure 

that acid is removed from solution (Huh et al., 2006). Given that this separation 

method has no selectivity and removes acetic acid first, it should be considered more 

like a pre-treatment step rather than a process to remove succinic acid from solution. 

Further processing of fermentation broth is required after acetic acid removal. Finally, 
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this amine-based extraction to remove succinic acid from the fermentation broth is 

relatively new and the possibility of long-term stability needs to be studied to ensure 

there are no toxic or inhibitory effects on the cells, especially if extractant is used in 

situ on an industrial scale (Bechthold et al., 2008). Additional information is also 

required to determine the cost of this process on an industrial scale.  
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Table 2.1  Feed compositions, the operating conditions for separation, the yield and purity of succinate obtained after recovery using    

       reactive extraction. 

Feed composition 

 
Operating conditions 

  

Results References 

 Yield (%) Purity (%) 

 

Synthetic fermentation broth 

(50 g/L succinic acid and 18.8 g/L 

acetic acid) 

 

 

Reactive extraction (0.25 mol TOA/ kg 1-

octanol, pH 6.5) 

 

96 

 

83.3 

 

Hong and Hong, 

2005 

Real fermentation broth 

(22.3 g/L succinate, 7.0 g/L pyruvate 

and 1.8 g/L acetate)  

 

Reactive extraction (0.25 mol TOA/ kg 1-

octanol, pH 5.0), vacuum distillation and 

crystallization (pH 2.0 and 4.0°C) 

73.1 99.8 Huh et al., 2006 

Real fermentation broth 

(13.6 g/L succinate, 4.82 g/L pyruvate 

and 0.37 g/L acetate) 

 

Reactive extraction (0.25 mol TOA/ kg 1-

octanol, pH 5.0), vacuum distillation and 

crystallization (pH 2.0 and 4.0°C) 

67.1 99.5 Song et al., 2007 

Synthetic fermentation broth (11.67 g/L 

succinic acid, 2.46 g/L malic acid, 1.51 

g/L pyruvic acid and 2.14 g/L acetic 

acid) 

Reactive extraction (0.25 mol TOA/ kg 1-

octanol, pH 6.0), vacuum distillation and 

crystallization (pH 2.0 and 4.0°C) 

30.25 99.1 Umpuch et al., 

2015 
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        2.8.3  Ion exchange 

                  Ion exchange resin, alumina, silica, and zeolite molecular sieve adsorption 

have been recently reported in some journal publications and a patent (Nam et al., 

2011; Straathof et al., 2010). The key desired properties for an ideal sorbent are high 

capacity, complete stable regenerability, and specificity for the product.  

                  Brian et al. (2004) used the resin XUS 40285 to recover succinic acid. 

This resin has a stable capacity of about 0.06 g of succinic acid /g

 

of resin at moderate 

concentrations of 5 g/L succinic acid. It also has a good stable isotherm capacity, 

prefers succinate over glucose, and has good capacities at both acidic and neutral pH. 

Using XUS 40285 in a packed column, succinic acid was removed from simulated 

media containing succinic acid, acetic acid and glucose. The fermentation by-product, 

acetate, was completely separated from succinate. By a modified extraction procedure 

combining acid and hot water washes, XUS 40285 showed both good stable 

capacities for succinic acid over 10 cycles and >95% recovery in a batch operation 

(Table 2.2). 

                  In addition, Jun et al. (2007b) proposed the use of SBA-15 silica as a 

potential adsorbent in the separation and purification processes of succinic acid. The 

competitive adsorption of pyruvic acid and succinic acid was studied using a synthetic 

fermentation broth. They found that pyruvic acid was adsorbed 3-fold better than 

succinic acid. So this kind of silica seems to be more suitable for the removal of 

contaminant acids from broth than for the separation of succinic acid.  

                  Furthermore, after removal of cell biomass and protein impurities, cation-

exchange resin Amberlite IR 120 H, a cationic resin of sulfonic (SO3H) type based on 

a polystyrene-divinylbenzene copolymer, was employed to convert the fermentation 
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products such as succinate, formate, acetate, and pyruvate from the salt form into the 

free acid form. Then, succinic acid was selectively separated from the acid mixture by 

vacuum evaporation at 48°C to eliminate residual volatile carboxylic acids such as 

acetic, formic, and pyruvic acid. The crystallization of succinic acid was carried out at 

4°C for 24 h. The succinic acid yield and purity were 89.5% and 99%, respectively 

(Lin et al., 2010) (Table 2.2). In addition, Li et al. (2010a) studied an alkalic anion 

exchange resin (NERCB 04) for succinic acid recovery from model solutions and real 

fermentation broth. In a packed column test, its adsorption capacity was 0.41 g 

succinic acid /g resin when the feed concentration was 50 g/L (Table 2.2). The spent 

resins were eluted by 0.7 M NaOH and gave 97% average regenerability. Successive 

column loading and regeneration process was tested for 30 times with stable 

adsorption capacity and regenerability. Since in the process of adsorption the 

hydroxyl of the resin is exchanged by the succinate, the effluent of NERCB 04 can be 

used to adjust the pH during fermentation, which provides a new method to couple 

online product removal with pH buffer process in succinic acid production (Li et al., 

2010a). Further, Inci et al. (2011) studied to recover succinic acid from aqueous 

solutions by alumina adsorption. They found that the recovery of succinic acid 

increases with an increasing amount of alumina. The maximum adsorption capacity 

(0.02 g of succinic acid /g

 

of resin) was obtained when using 2 g of alumina (Table 

2.2). The major disadvantage of this process is the high chemicals consumption. In 

addition, this process is not environmentally friendly due to waste water from 

washing, rinsing and regeneration.  
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Table 2.2  Feed compositions, the operating conditions for separation, the adsorption capacity, the yield and purity of succinate obtained 

       after recovery using ion exchange.  

Feed composition 

 
Operating conditions 

 

Results References 

  Adsorption 

capacity (g 

succinic 

acid/g resin) 

Yield (%) Purity (%) 

 

Synthetic fermentation broth 

(5 g/L succinic acid,  

5 g/L acetic acid and  

5 g/L glucose) 

 

 

Resin XUS 40285 

 

0.06 

 

>95 

 

- 

 

Brian et al., 2004 

Real fermentation broth 

(70.6 g/L succinate, 2.3 g/L 

pyruvate, 0.3 g/L formate and 

2.8 g/L acetate)  

 

Ion exchange (resin Amberlite IR 

120 H), vacuum distillation and 

crystallization (pH 2.0 and 4.0°C) 

0.58 89.5 99 Lin et al., 2010 

 

Single solution 

(50 g/L succinic acid) 

 

 

Resin NERCB 04 

 

0.41 

 

97 

 

- 

 

Li et al., 2010a 

 

Single solution 

(0.05 g/L succinic acid) 

 

Resin alumina 0.02 40 - Inci et al., 2011 
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         2.8.4  Electrodialysis 

                   Electrodialysis (ED) is a method that has potential to separate succinate 

from fermentation broth after ultrafiltration. ED is a process using ion exchange 

membranes and electric potential difference to remove impurities e.g. sugar, protein 

and polysaccharide from charged solutes like succinate and lactate. It can also 

constitute a concentration step (Glassner and Datta, 1992).  

                  Precipitation produces large amounts of effluents with a high salt content 

(Bailey and Ollis, 1986). In order to reduce this environmental impact, Bailly et al. 

(2001) investigated the concentration of organic acid salts by conventional 

electrodialysis (EDC). They reported that EDC can efficiently concentrate lactate 

from the fermentation while residal sugar (glucose) can be recycled in the feed tank. 

Glassner and Datta (1992) reported that the succinic acid purity increased from 51.5 

to 79.6% and completely removed proteins and salts, but acetate was still remained 

about 19.9% (Table 2.3). In addition, Glassner et al. (1995) develop a succinic acid 

purification process using combined ED and bipolar membrane electrodialysis 

(BPED). ED is applied to remove impurities from succinate at a first step. It can also 

be used for concentration of succinate together with removal of neutral solutes. In the 

second step, the concentrated succinate is converted to succinic acid by using BPED. 

After two steps, a total succinic acid yield of 60% is obtained with high succinic acid 

purity (95%) (Table 2.3). Fu et al. (2014) also used bipolar membrane electrodialysis 

(BPED) was used to convert sodium succinate into succinic acid. They found that the 

succinic acid yield is ranged between 64 to 97% when the current density increases 

from 12.5 to 37.5 mA/cm2 (Table 2.3). 
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  As discussed above, ED has shown its competence in the production of 

organic acids like succinic acid. However, more improvements are needed for 

adapting ED to industrialization, and more research needs to be conducted for 

optimizing operation parameters and process integration.  
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Table 2.3  Feed compositions, the operating conditions for separation, the yield and purity of succinate obtained after recovery using ED. 

Feed composition 

 
Operating conditions 

 

Results References 

  Yield (%) Purity (%) 

 

Real fermentation broth 

(50.3 g/L succinate, 1.3 g/L formate, 

13.6 g/L acetate and 1.9 g/L glucose) 

 

 

ED, crystallization (pH pH 2.0 and 4.0°C) 

 

97 

 

79.6% 

 

Glassner and 

Datta, 1992 

Real fermentation broth 

(52.9 g/L succinate, 0.7 g/L formate, 

9.5 g/L acetate and 2.3 g/L pyruvate) 

 

ED combined with BPED, crystallization (pH 

pH 2.0 and 4.0°C) 

60 95 Glassner et al., 

1995 

Single solution 

(0.05 M succinate) 

BPED (using current density 37.5 mA/cm2) 97% - Fu et al., 2014 
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        2.8.5  Nanofiltration 

                  Nanofiltration (NF) is known to be a separation technique lying between 

ultrafiltration (UF) and reverse osmosis (RO) which presents a selectivity governed 

both by size and charge effects. It was reported by many research groups that most NF 

membranes have a high retention of compounds of molecular weight up to 150-300 

g/mol and charged molecules, especially multivalent ions. According to its separation 

properties, NF begins to be used in organic acids (succinate, lactate and acetate) 

separation and purification.  

        Bargeman et al. (2005) suggested that the results obtained from single-

solute solutions in NF can not be directly used to predict those for mixed-solute 

solutions. Since the fermentation broth is a mixture containing a lot of components 

such as neutral and charged solutes, the study with a mixed-solute solution 

representative of the fermentation broth is needed. Han and Cheryan (1995) 

investigated to separate acetate from model solution containing acetate (10 g/L) and 

glucose (10 g/L) by NF membrane. Under acidic condition (pH 2.7), NTR729 

membrane has the ability to permeate the acetate while glucose was retained and 

recycled to the feed tank. The retention of acetate (10%) is lower than that of glucose 

(99%) because acetate size might be small compared to the membrane pore size 

(Table 2.4). Further, Kang et al. (2004) reported that NF can efficiently remove 

magnesium ions (together with glucose or lactose) from a raw lactate fermentation 

broth. Bouchoux et al. (2006) also reported that NF could achieve the purification of 

sodium lactate by removing divalent ion and disaccharide sugar such as lactose. 

However, the separation between sodium lactate and glucose was found to be hardly 

achievable in this conditions (Bouchoux et al., 2005). It was also pointed out that 
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glucose retention was significantly lower in mixed-solute solutions, i.e. when sodium 

lactate was present. In order to improve the separation of glucose and sodium lactate 

by NF. Umpuch et al. (2010) suggested that the addition of Na2SO4 to facilitate the 

permeation of lactate while reducing that of glucose. The mechanism of co-ions 

competition was used in this approach, SO4
2- ions had more charge and made lactate 

ions easier to pass through the membrane. Further, Sikder et al. (2012) reported that 

NF3 could retain sucrose (R=94%) while allowing lactate (R=32%) to permeate 

(Table 2.4). 

 In addition, NF could be used to change the composition of monovalent 

anions and divalent anions. Kang and Chang (2005) reported that the retention of 

divalent anions such as succinate was higher than that of monovalent anions such as 

formate, acetate and lactate. The negative retention of monovalent anions was also 

obtained in the presence of divalent anions in some conditions. Furthermore, 

nanofiltration of a mixture solution in a diafiltration mode was developed for removal 

of by-products such as formate, acetate and lactate from simulated fermentation broth. 

 As already reported, NF can separate the organic acids from impurities 

and residual sugar in fermentation broth. Especially, in the case of mixed-salts 

solutions with mono and divalent anions, divalent anions were totally retained by NF 

membrane due to larger size and stronger electrostatic repulsion while monovalent 

anions permeate though the membrane. Then, high retention of divalent anions was 

obtained. It was demonstrated that NF membrane can be used for separation and 

purification of succinate (divalent salts) from impurities such as acetate (monovalent 

salts).  
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Table 2.4  Feed compositions, the operating conditions for separation, the retention and the separation factor of organic acids obtained        

       after recovery using NF. 

Feed composition 

 

 

Operating conditions 

 

Results References 

JV  

(x10-5 m3 m-2 s-1) 

Retention 

(%) 

SFmax 

 

Mixture solution 

(10 g/L acetate and  

10 g/L glucose) 

 

Constant feed concentration - 

NTR729 membrane - pH 2.7 - 

ΔP=6-18 bar 

 

1.7 

 

99 (glucose) 

10 (acetate) 

 

 

 

9 

 

Han and Cheryan, 

1995 

Real fermentation broth 

(0.95 M lactate, 4.8 mM 

glucose, and 1.8 mM 

magnesium ion) 

Constant feed concentration - 

NF45 membrane - pH 5.5 - 

ΔP= 27.5 bar 

0.5 89.1 (glucose) 

34.4 (lactate) 

6.3 Kang et al., 2004 

Mixture solution 

(0.1 lactate, 0.1 M 

glucose and 0.25 M 

Na2SO4) 

Constant feed concentration - 5 

DK membrane - pH 7.0 -  

ΔP=2-20 bar 

 

0.2 65 (glucose) 

30 (lactate) 

1.9 Umpuch et al., 

2010 

Real fermentation broth 

(108.3 g/L lactate and  

30 g/L sucrose) 

 

Constant feed concentration - 

NF3 membrane - pH 5.5 - 

ΔP=5-13 bar 

3.1 94 (sucrose) 

32 (lactate) 

11 Sikder et al., 2012 
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Table 2.4  (continued). 

Feed composition 

 
Operating conditions 

 

Results References 

JV  

(x10-5 m3 m-2 s-1) 

Retention (%) SFmax 

 

Mixture solution 

(0.3 M succinate, 0.1 M 

lactate, 0.1 M formate and 

0.1 M acetate) 

Constant feed concentration - 

NF45 membrane - pH 7.0 - 

ΔP=3.5-20.5 bar 

0.3 87 (succinate) 

20 (lactate) 

-58 (formate) 

-17 (acetate) 

-    Kang and 

Chang, 

2005 

 

Diafiltration - NF45 membrane - 

pH 7.0 - ΔP=13.7 bar - 36 h 

≈ 0.3 78 (succinate) 

-18 (lactate) 

-98 (formate) 

-55 (acetate) 

- 
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         2.8.6  Crystallization 

        The principle in this method is that carboxylic acids have varied 

distribution between dissociated and undissociated forms at varied pH, and the 

undissociated carboxylic acid has different solubility. 

                   After removal of cell biomass and organic impurities by centrifugation and 

activated carbon absorption, respectively, a direct vacuum distillation-crystallization 

was used for succinic acid recovery from broth by Luque et al. (2009). The pH of the 

aqueous broth was adjusted to 4.2 by addition of hydrochloric acid before vacuum 

distillation. Some volatile by-product carboxylic acids, such as acetic, formic acids, 

pyruvate acids in broth were removed under vacuum distillation at 60°C. The followed 

crystallization of succinic acid was carried out at 4°C. When used with a simulated 

broth, the highest succinic acid yield and purity were 75% and 97%, respectively. 

However, when this method was applied in actual fermentation broth produced by A. 

succinogenes ATCC55618, the yield and purity of succinic acid crystals were only 28% 

and 45%, respectively (Luque et al., 2009; Sze et al., 2010) (Table 2.5). 

                  Crystallization method was also studied by Li et al. (2010b). They found that 

the solubility of succinic acid was only 3% at 4°C and pH 2.0 while the other acid by-

products, such as lactic acid, acetic acid, and formic acid, were still fully water 

miscible. In their study, crystallization of succinic acid from broth was carried out at 

4°C and pH < 2. While acidic by-products remained in the solution, succinic acid could 

be selectively crystallized. By this one-step recovery method, succinic acid yield and 

purity were 70% and 90%, respectively (Table 2.5). As one of the oldest but effective 

processes for the preparation of succinic acid crystals, crystallization process could be 

used usually as the final purification step. Direct crystallization might provide the 
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desired product (in solid or crystal form) without the need for many unit operations. 

However, the product yield is low because much succinate is still residual in the broth 

and the low-purity product cannot be used as a monomer for polymerization.  
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Table 2.5  Feed compositions, the operating conditions for separation, the yield and purity of organic acids obtained after recovery using        

       crystallization. 

Feed composition 

 
Operating conditions 

 

Results References 

  Yield (%) Purity (%) 

 

Synthetic fermentation broth 

(50 g/L succinate, 5 g/L pyruvate,  

5 g/L formate and 5 g/L acetate 

 

 

Direct vacuum distillation and 

crystallization (pH 2.0 and 4.0°C) 

 

75 

 

97 

 

Luque et al., 

2009 

Real fermentation broth 

(70.6 g/L succinate, 2.3 g/L pyruvate, 0.3 

g/L formate and 2.8 g/L acetate)  

 

Direct vacuum distillation and 

crystallization (pH 2.0 and 4.0°C) 

28 45 Sze et al., 

2010 

 

Real fermentation broth 

(97.8 g/L succinate, 23.5 g/L formate, 

17.4 g/L acetate and 5.1 g/L lactate) 

Direct crystallization (pH 2.0 and 4.0°C) 70 90 Li et al., 2010b 
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                  2.8.7  Discussion  

 The difficulties in developing an efficient process to separate succinic acid 

from fermentation broths are associated with the complexity of the fermentation broth. 

The common succinate recovery method is based on precipitation. For example, 

calcium hydroxide can be used to control the fermentation pH and precipitate 

succinate. In this process, a large amount of gypsum is accumulated, which is 

commercially useless (McKinlay et al., 2007). In order to reduce this problem, the 

design of alternative production schemes has recently been investigated. Reactive 

extraction, ion exchange, crystallization, electrodialysis and nanofiltration were 

proposed to replace precipitation. However, as far as the reduction of the 

environmental impact is concerned, the use of reactive extraction or ion exchange for 

organic acid recovery from fermentation media still remains problematic. Under 

acidic conditions, the solubility of succinic acid is low and thus the crystallization 

method could be used for the separation of succinate. However, this process requires 

recrystallization step to make the final product suitable for commercial use. Therefore, 

membrane operations, like electrodialysis and nanofiltration for instance, appear very 

attractive since the generation of useless by-products can be significantly reduced. It 

was reported by many research groups that some NF membranes show lower retention 

of monovalent anions such as acetate than that of divalent anions such as succinate 

(Pontalier et al., 1997; Schaep et al., 2001; Kang and Chang, 2005). NF is a novel 

membrane process that is often more capital and energy efficient when compared with 

the chemical separation processes (Li et al., 2006). Therefore, in this work, it was 

chosen to investigate the succinate separation from fermentation broth by using a NF 

process. 
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2.9  Nanofiltration 

         NF is a membrane process that can be used for separating organic acids from 

fermentation broth. The separation mechanism of NF is based upon steric-hindrance 

(size) and charge effects. After a brief introduction into the fundamentals of 

membranes and membrane process, the NF process characteristics are also mentioned. 

Finally, the mass transfer mechanisms of NF process are discussed.  

           2.9.1  General concerns             

                      Membrane filtration can be categorized into four major pressure-driven 

membrane processes: microfiltration (MF), ultrafiltration (UF), nanofiltration (NF), 

reverse osmosis (RO). MF is principally used for separation of micron-sized species 

that are usually particles or large macromolecules. UF is used for the separation of 

macromolecules (e.g. proteins) and NF and RO are used for low-molecular weight 

solutes (e.g. salts or organic solutes). NF is a pressure driven membrane separation 

process. The driving force is pressure difference between the feed (retentate) and the 

filtrate (permeate) sides at the separation layer of the membrane (Wang et al., 2002). 

                      MF and UF membranes have well-defined pores and the separation is 

mainly fixed by size exclusion. For NF and RO membranes, which have smaller pores 

and the suggested separation mechanisms are size exclusion similar to MF and UF, or 

solution diffusion. In the solution-diffusion mechanism, species are absorbed into the 

membrane, which diffuses through the membrane structure, and are then desorbed. 

The relative rates of the adsorption desorption, and diffusion of the species controls 

the separation (Sablani et al., 2007). Moreover, the electrostatic repulsion interaction 

between the charged solute and the fixed charge on membrane surface was also 

identified to play a role (Wang et al., 1997). 
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  NF membranes were characterized by effective pore diameters ranging 

about 1 to a few nanometers, and by molecular weight cut-off between reverse 

osmosis membranes (dense structure) and ultrafiltration membranes (porous 

structure). Because of its selectivity, one or several components of a dissolved mixture 

are retained by the membrane despite the driving force, while water and substances 

with a molecular weight about 200-2000 Daltons are able to pass through. Because 

NF membranes also have selectivity with respect to the charge of the dissolved 

components, monovalent ions can pass through the membrane while divalent ions can 

be rejected (Schäfer et al., 2005). 

           2.9.2  NF process characteristic parameters 

                      Before going further into the mass transfer mechanisms of NF, two 

parameters need to be introduced here which are permeate flux and retention 

coefficient. Moreover, the efficiency of NF process can be expressed using several 

parameters e.g. separation factor, purity, and product recovery (yield). 

                       2.9.2.1  Permeate flux 

                                     In membrane processes, the pressure applied across the 

membrane which is a driving force pushing solute toward the membrane to another 

side is called “transmembrane pressure”. The volumetric flux rate of permeate per unit 

area of membrane is the permeate flux, usually denoted by JV, 

  J� = �

�
. ��

�	
                                                                                               (2.2) 

                                     In which V is the total volume that has permeated through the 

membrane at time t, A is the effective area of the membrane (m2), the units of 

permeate flux are m3.m-2.s-1. The permeate flux (Jv) is calculated by measuring the 
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quantity of permeate collected during a certain time and dividing it by the effective 

membrane area for filtration. 

                                     Furthermore, other parameter that is usually determined before 

doing each experiment is the water flux (Jw). It can be used to calculate the membrane 

permeability, Lp0, which give an image of the membrane. 


�� = �

∆�
                                                     (2.3) 

where Lp0 is the water permeability (L.m-2.h-1.bar-1), Jw is the water flux (L.m-2.h-1) 

and ΔP is the pressure difference (bar). 

                       2.9.2.2  Retention coefficient 

                                     A measure of the solute transfer across the membrane is 

conventionally expressed in term of retention coefficient, R
obs

. R
obs

 is a measurement 

of the membrane selectivity towards a solute. It can be calculated as shown below: 

���� = 1 −
��

��
                                                         (2.4) 

where R
obs is the observed retention of the solute, c

p 
is the concentration of the solute 

in the permeate and c
f 
is the concentration of the solute in the feed. 

 A retention coefficient equal to 1 indicates that the solute is 

totally retained, on the other hand, a retention equal to zero means that the solute 

permeates freely through the membrane.      

            2.9.2.3  Separation factor 

                                    An alternative parameter that is used to express the separation 

efficiency of NF beside the retention coefficient is the separation factor, SF. This 

factor indicates the variation of succinate and acetate composition in the retentate 
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compared with those in the feed. SF values than one like those obtained in this study 

indicate that succinate is enriched in the retentate compared to the feed. In this work, 

since separation of succinate from acetate is the main target, SF is calculated as: 

������� !" $�%�!� =
��,'()*'*) /��,,-((./'*)

��,'()*'*) /��,,-((./'*)
=

�0123,,'()*'*)

�0123,,,-((./'*)
                  (2.5) 

                       2.9.2.4  Yield and purity 

                                    Moreover, the succinate yield and purity can be used to 

characterize the membrane separation performance. The succinate yield is defined as 

the ratio of the succinate concentration in the retentate over the total amount of 

succinate in the feed solution.  

% 5 �67 =
89�9(,-((./'*))

8���(,-((./'*))
× 100%                                      (2.6) 

where Vf  is the feed volume. 

                        The succinate purity is defined as the succinate concentration 

compared with the sum of succinate and acetate concentration in the retentate.  

% >?� �@ =
�9(,-((./'*))

�9(,-((./'*))A�9('()*'*))
× 100%                       (2.7) 

           2.9.3  Mass transfer mechanisms 

                     The retention of neutral solutes, e.g. glucose and lactose etc., in NF can 

be explained by size effects which are governed by solute and membrane pore size 

(Wang et al., 1997). The large solute molecule is retained or held in feed side 

(retentate) while the smaller one passes through the membrane to filtrate side 

(permeate) easier as shown in Fig. 2.9a. The smaller solutes predominantly transport 

across NF membrane by convection (is carried along with the fluid) in the membrane 

pores due to pressure difference. On the other hand, both of the solutes can pass 
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through the membrane more easily when they are filtrated with the more open 

membrane (wider membrane pore size) as shown in Fig. 2.9b. For instance, Pontalier 

et al. (1997) studied solute transfer mechanisms of glucose and lactose with 400Da 

membrane in single-solute solutions. They reported that the retention of glucose was 

68% while that of lactose was 99%. Wang et al. (2002) studied the mass transfer 

mechanism of glucose and sucrose in single-solute solutions with 300Da NF 

membrane. They found that the retention of glucose was about 80% and sucrose 

retention was almost 100%. It can be said that the size of lactose is bigger than that of 

glucose so that the glucose pass through the membrane easier than lactose. In addition, 

Sjöman et al. (2006) studied the separation mechanism of xylose and glucose in 

binary-solute solutions with 150-300Da NF. The results showed that the retention of 

xylose was 80% and glucose was 90%. It was due to the xylose pass through the 

membrane easier than glucose. 

 

 
Figure 2.9  Mass transfer mechanisms of two different size solutes through a NF  

membrane. (a) “tight membrane” (b) “open membrane” (Schäfer et al.,    

2005). 
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                     Mass transfer mechanism of charged solutes e.g. succinate ion, lactate 

ion, magnesium ion, and chloride ion etc., can be explained by combination of size 

and charge effects. Indeed, Schaep et al. (1998) failed to describe mass transfer 

mechanisms of charged solute by only charge effect. The charge effect was an 

influence of electrostatic interaction (repulsion between the same sign of charges and 

attraction between opposite sign of charges) between the solutes and the fixed charges 

on the membrane surface. The co-ions (same sign of charge as fixed membrane 

charges) were repelled by membrane surface, while the counter-ion (opposite sign of 

charge to the fixed charge of membrane) can pass through it. However, the co-ions 

can pass through the membrane as well as the counter-ion because of electroneutrality 

(charges in both retentate and permeate have to be balanced). In the same way co-ions 

were retained in retentate, counter-ions need to also stay in retentate to neutralize 

repelled co-ions and thus salt retention occurs. 

                     Variation of feed concentration can affect the retention of monovalent 

ion whereas it was less effective on retention of divalent ions. This can be explained 

by considering in the mass transfer mechanism of ionic solutes permeation through 

NF membrane as shown in Fig. 2.10. Fig. 2.10a shows ionic solutes cannot permeate 

through NF membrane at low feed concentration. As the monovalent counter-ions and 

co-ions always accompany each other, they cannot pass through the membrane 

separately. If co-ions are repelled by fixed charges of membrane, both cannot pass 

through the membrane. Divalent ions were totally retained because their size was 

larger than that of pore and/or stronger electrostatic repulsion effect e.g. Na2SO4 and 

MgCl2 were completely retained by NF40 membrane whatever the feed concentration 
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(Schaep et al. 1998). Fig. 2.10b illustrates ionic solutes at high feed concentration can 

pass through the membrane, more easily than those at low feed concentration. The 

retention of monovalent salts such as NaCl, KCl and sodium lactate, generally 

decreases with increasing the salt concentration (Bargeman et al., 2005). For instance, 

the sodium lactate retention decreases from 80% to 25% for increasing sodium lactate 

concentration from 0.1 M to 1 M, respectively (Bouchoux et al., 2005). The decrease 

of salt retention in presence of high feed concentration can be explained as followed. 

At the low salt concentrations, electrostatic repulsions were predominant so that high 

salt retentions were obtained. As the feed concentration increases, electrostatic 

interactions become weaker and thus the retention decreases. This is known as the 

‘screening effect’ (Kang et al., 2004; Kang and Chang, 2005). The membrane surface 

being screened by counter-ions, the repulsion between co-ions and fixed charges on 

membrane surface becomes smaller causing the retention decline as shown in Fig. 

2.10(b). Ideally, at a sufficient salt concentration, electrostatic interactions are 

negligible so that the retention of charge solutes is mainly fixed by size effects.  

 
Figure 2.10  Mass transfer mechanisms of charge solute in NF. (a) low concentration    

           (b) high concentration (Schäfer et al., 2005).           
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                       According to the definition of retention coefficient (Eq. 2.4) a negative 

value can be obtained when the solute concentration in the permeate is higher than 

that in the retentate. It was reported by many research groups that numerous NF 

membrane show lower retention of monovalent anion such as chloride ion, formate, 

acetate and lactate than divalent anions such sulfate, succinate (Pontalier et al., 1997; 

Kang and Chang, 2005; Umpuch et al., 2010). Especially, in case of mixed-salt 

solutions with mono and divalent anions, NF membrane can exhibit negative retention 

of monovalent anions (Garcia-Aleman et al., 2004). Kang and Chang (2005) reported 

the negative retention of monovalent anions such as formate, lactate and acetate was 

obtained in the presence of divalent anions such as succinate. In addition, Umpuch et 

al. (2010) also observed a negative retention of monovalent anion in binary-solute 

solution containing lactate and sulphate. 

                     Fig. 2.11 shows schematic diagram of solute transport though NF 

membrane in such condition. In these circumstances a large ion can be excluded from 

transport by a like charged membrane (e.g. SO4
2-) this results in a higher than the 

concentrations of counter- ions (Na+) in the permeate. Consequently, the smaller 

membrane permeable co-ions (Cl-) were drawn across the membrane to neutralize the 

charge imbalance. At this stage the concentration of these smaller ions can be greater 

than in the feed giving negative retention (Mandale and Jones, 2008). Bowen and 

Mukhtar (1996) carried out such experiments when evaluating NF transport models, 

clearly illustrating the negative retention of the chloride ion. 
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Figure 2.11  Schematic diagram of two salts transport through a NF membrane aaaaaa

  (Umpuch, 2010). 

 In this work, nanofiltration was investigated with a mixed salts solution 

containing succinate and acetate. Then negative retention of acetate could be obtained 

in the presence of succinate. Kang and Chang (2005) and Umpuch et al. (2010) 

suggested that the major factor influencing the negative retention of monovalent anion 

was the ratio of the concentration of divalent anion to monovalent anion. Moreover, 

negative values of the retention for monovalent anion are generally obtained at low 

permeate flux (Umpuch et al., 2010). Therefore, to understand the influence of 

various parameters (concentration ratio between divalent anion and monovalent anion, 

retention of the various co-ions, permeate flux) on the retention of acetate (�BCD0), we 

can simulate the acetate retention in the presence of succinate (�EFCG0) using Eq. 2.8 

(mass balance equations were derived as given in detail in Appendix C). 

�BCD0 = �HAI1 + 2L(1 − M)N                                  (2.8) 
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where �BCD0 is the acetate retention, �HA is the potassium retention and L is defined 

as the ratio of succinate to acetate concentrations in the retentate:  

 L =
OEFCPQRS
IBCDQNS

                                  (2.9) 

where I�?%G0N� is the succinate concentration in the retentate,  IT%�0N� is the acetate 

concentration in the retentate and β is the ratio of succinate retention to potassium 

retention: 

 M = 1U-(PQ

1VW
                                                 (2.10) 

where �EFCG0 is the succinate retention. 

 In addition, the retentions of succinate and acetate are affected by the 

solvent flux. At low solvent flux, the retention ratio succinate and potassium increase 

β with Jv. The difference between the succinate and potassium retentions increase. 

Consequently, acetate retention becomes lower and reaches negative values (Fig. 

2.12). On the other hand, the retention ratio (β) of succinate retention to potassium 

retention decreases with Jv to reach a constant value at higher solvent flux. The 

difference between succinate and potassium retentions decreases and becomes 

constant. Then, the acetate retention increases and reaches positive values.  
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Figure 2.12  Retention of succinate, acetate and potassium as a function of aaaaaaaaaa         

permeate flux - general trend. 

           2.9.4  Selectivity of NF 

                     NF offers the possibility to separate monosaccharide and disaccharide. 

Goulas et al. (2002) found that DS-5DL membrane has retention of 77% and 99% for 

fructose and sucrose, respectively, in the binary mixture. NF gives the possibility to 

separate monovalent and divalent ions. Low retention of monovalent ions (at high 

feed concentration) and very high retention of divalent ions in a mixture solution can 

be obtained. Pontalier et al. (1997) studied selective retention of NaCl/Na2SO4 in 

binary-solute solution with a 400Da membrane. The both salts contain the same 

counter-ion and different co-ions. It was observed that the retention of Cl- decreases 

with increasing the salt concentration (either NaCl or Na2SO4). SO4
2- was almost 

completely retained with all salt concentrations while Na+ 
can pass through the 

membrane easily, resulting an excess of positive charge on the permeate side. This 

excess generates an electrostatic force which increases anion transfer, particularly of 
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Cl-, because SO4
2- cannot cross the membrane. However, Na+, which was the counter-

ions, was retained because anions and cations cannot permeate independently, but 

permeate through the membrane while maintaining electroneutrality (Wang et al., 

2002). The difference of mass transfer mechanism between divalent co-ions, which 

are completely retained, and monovalent co-ions, which were allowed to pass through 

the membrane, contributes to the selectivity. Kang and Chang (2005) reported a 

divalent anion such as succinate was more retained than monovalent anions such as 

formate, lactate and acetate. Therefore, it can be concluded that it is possible to 

separate monovalent ion from divalent ion in mixture solution using NF.  

                     The separation of monovalent ion and disaccharide sugar such as lactose 

separation was also investigated (Li and Shahbazi, 2006). It was found that at high salt 

concentration, lactose is completely retained by DS-5DK membrane while sodium 

lactate is enriched in the permeate and thus the purification achieved.  

                     In addition, Bouchoux et al. (2005) investigated the separation between 

glucose and sodium lactate. It was revealed that glucose retention strongly decreased 

with increasing sodium lactate concentration. Thus the retention of both solutes 

became very close to each other making the separation impossible. Moreover, 

Bouchoux et al. (2005) also reported that the presence of glucose does not affect the 

retention of sodium lactate. NF cannot separate monosaccharide from lactate 

monovalent ion in these conditions. However, Umpuch et al. (2010) found that the 

different lactate and glucose retentions increase when adding Na2SO4. Therefore, it 

can be noted that the separation of monovalent ion and monosaccharide with NF is 

achievable by addition of a strongly retained anion e.g. large size and high charge. 
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           2.9.5  Conclusion  

           Due to these interesting separation properties, NF begins to be used in a 

wide range of applications in the food industry. According to the numerous works 

published, the use of NF as a downstream operation in organic acids production 

processes is going to be a large and new application field of this technology (Timmer 

et al., 1994; Moresi et al., 2002) 

          Organic acids (acetic, lactic, succinic acid) are mainly produced by 

fermentation. The fermentation generates a broth containing organic acid salts and 

impurities like salts, residual sugars or other organic acid salts. Different operations of 

separation and purification are then required in order to recover organic acids from 

fermentation broth. The integration of NF in the process can be investigated at 

different stages depending on the composition of fermentation broth. On one hand, NF 

can be used to remove residual sugars such as glucose or sucrose from organic salts. 

On the other hand, NF can be applied to separate divalent anions like succinate from 

monovalent anions like acetate, formate and lactate. It was shown that NF is an 

appropriate method for the downstream processing of succinate fermentation broths. 
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CHAPTER III 

IMPROVED XYLOSE UPTAKE AND UTILIZATION IN 

ENGINEERED Escherichia coli KJ122 FOR  

SUCCINATE PRODUCTION 

 

3.1  Introduction 

        Lignocellulosic biomass has significant potential to serve as a sustainable raw 

material for the production of renewable fuels and chemicals (Chundawat et al., 

2011). Xylose is a major sugar of hemicellulose in lignocellulosic biomass, and most 

of microorganisms are unable to utilize it as a carbon source (Hahn-Hagerdal et al., 

2007). Therefore, the improvement in xylose utilization in microorganism is would be 

beneficial for bio-based succinate production. 

        Succinate is a member of the C4-dicarboxylic acid family. It has attracted much 

interest because it has been used as a precursor of many industrially important 

chemicals in the biopolymer, food, chemical, and pharmaceutical industries 

(Delhomme et al., 2009; McKinlay et al., 2007). Traditionally, succinic acid is 

produced commercially by catalytic hydrogenation of petrochemical derived maleic 

acid or maleic anhydride. Due to increasing global demands for oil and the emergence 

of environmental consequences from excessive using fossil fuels, fermentative 

production of succinic acid from renewable biomass by anaerobic bacteria has 

become more attractive economically (Willke and Vorlop, 2004).  
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        Most studies of succinate fermentations by engineered E. coli used glucose as the 

feedstock (Lin et al., 2005; Andersson et al., 2007; Kwon et al., 2007; Jantama et al., 

2008; Zhang, et al., 2009), and further research is needed to accomplish the efficient 

conversion of renewable lignocellulosic materials to succinate. Poor utilization of 

xylose, the main component of hemicellulose in plants, is a major problem for 

hydrolysate fermentation by engineered E. coli (Wang et al., 2013). 

        Xylose can be transported into the cell by two different inducible permeases in E. 

coli. One is an ABC transporter coded by the xylF, xylG and xylH genes. The second 

is a proton/xylose symporter coded by xylE (Sumiya et al., 1995; Gonzalez et al., 

2002). In E. coli, xylose is transported mainly by the ABC transporter, which is driven 

by ATP (Hasona et al., 2004; Andersson et al., 2007). During this process, one 

molecule of xylose requires one ATP for its transportation and other ATP is needed 

for phosphorylation of xylose, whereas the conversion from xylose to succinate only 

yield 1.67 ATP per xylose during anaerobic fermentation in E. coli strains (Andersson 

et al., 2007; Liu et al., 2012). Therefore, the ATP production is not enough to convert 

xylose to succinate. To improve the utilization efficiency of xylose, it is necessary to 

enhance ATP supply in engineered E. coli. 

        Recently, E. coli KJ122 was originally developed to ferment glucose from starch 

into succinate (Jantama et al., 2008; Zhang et al., 2009). However, this strain 

performs poorly on xylose caused by an ATP deficiency is observed under anaerobic 

conditions (Wang et al., 2013; Hasona et al., 2004). Therefore, this study investigated 

the improving xylose consumption in E.coli KJ122 under anaerobic conditions by a 

combined strategy of metabolic engineering and metabolic evolution. 
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3.2  Objectives 

        The objective of this work was to improve xylose uptake and utilization in E. 

coli KJ122 by using metabolic engineering and metabolic evolution. 

        1)  To investigate the effect of xylFGH and xylE genes deletion in E. coli KJ122 

on succinate production from  pure xylose under anaerobic conditions. 

        2)  To select the mutant strains of E. coli KJ12201 (ΔxylFGH) that exhibited an 

efficient production of succinate from xylose by using metabolic evolution technique.  

        3)  To produce succinate in fed-batch fermentation by an evolved E. coli 

KJ12201 using xylose as carbon substrate.  

3.3  Materials and methods 

        3.3.1  Strains, media and growth conditions 

                  All chromosomal modifications were made in E. coli KJ122. All the 

bacterial strains, plasmids, and primers used in this study are listed in Table 3.1 and 

Table 3.2. Luria Bertani (LB) broth containing the following components per liter of 

broth: 10 g peptone, 5 g yeast extract and 5 g sodium chloride, was used for xylFGH 

and xylE genes deletion of succinate-producing strain, KJ122. Cultures were also 

maintained on solid media (20 g/L agar). Ampicillin (50 μg/mL) and kanamycin (50 

μg/mL) were added to the medium for selecting the positive clones. A slightly 

modified low salts medium, AM1 (Martinez et al., 2007) supplemented with 1 mM 

betaine, was used as a fermentation medium (Table 3.3).  
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Table 3.1 Escherichia coli strains and  plasmids used in this study. 

 Relevant characteristics  Sources 

E. coli Strains 

KJ122  

 

E. coli ATCC 8739 (ΔldhA, ΔadhE, ΔackA, Δ(focA-pflB), ΔmgsA, ΔpoxB, ΔtdcDE, 

ΔcitF, ΔaspC, ΔsfcA, pck*, ptsI*) 

 

Jantama et al., 2008 

KJ12201 KJ122 ΔxylFGH This study 

KJ12202 KJ122 ΔxylE This study 

KJ12203 KJ122 ΔxylFGH ΔxylE This study 

Plasmids 

pKD4 

 

bla FRT-kan-FRT 

 

Datsenko, 2000 

pKD46 bla γ β exo (Red recombinase), temperature-conditional replicon Datsenko, 2000 

pFT-A bla flp temperature-conditional replicon and FLP recombinase Posfai, 1997 

  * spontaneous mutation 
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Table 3.2 Primers used in this study. 

 Relevant characteristics  Sources 

Primers 

XylFGH 

 

Forward: 

5’ATGAAAATAAAGAACATTCTACTCACCCTTTGCACCTCACTCCTGGTGTAGGCTG

GAGCTGCTTC 3’ 

 

This study 

 Reverse: 

5’TCAAGAACGGCGTTTGGTTGCGGAGTCCATCCATACTGCCAGCAACATATGAATA

TCCTCCTTAG 3’ 

This study 

XylE Forward: 

5'ATGAATACCCAGTATAATTCCAGTTATATATTTTCGATTACCTTAGTGTAGGCTGG

AGCTGCTTC 3' 

This study 

 Reverse: 

5’TTGCAGCGTACCAGTTTGTTGTGTTTTCTTCGTTTCCGGTTCCCACATATGAATAT 

CCTCCTTAG 3’ 

This study 

 

 20 bp underlined is kan cassette
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Table 3.3  Composition of AM1 mineral low salts medium (excluding carbon 

sssssssss    source). 

Component Concentration (mmol/L) 

(NH4)2HPO4 19.92 

NH4H2PO4 7.56 

Total PO4 27.48 

Total N 47.93 

aTotal K 1.00 

MgSO4.7H2O 1.50 

Betaine-HCl 1.00 

Trace Elements (µmol/L)b 

    -FeCl3.6H2O 8.88 

    -CoCl2.6H2O 1.26 

    -CuCl2.2H2O 0.88 

    -ZnCl2 2.20 

    -Na2MoO4.2H2O 1.24 

    -H3BO3 1.21 

    -MnCl2.4H2O 2.25 

  Total Salts 4.1 g/L 

 a
KOH was used to neutralize betaine-HCl stock. 

 
b
Trace metal stock (1000X) was prepared in 120 mM HCl. 
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 3.3.2  Genetic engineering techniques 

          3.3.2.1  DNA amplification by Polymerase Chain Reaction (PCR) 

            The standard PCR reaction was performed using 10x PCR 

Master Mix solutions (Qiagen, Valencia, CA) in a PCR reaction of 50 μL. Twenty 

five micro-liters of master mix containing 10 mM of each dNTP (dATP, dGTP, dCTP 

and dTTP), PCR reaction buffer (20 mM Tris-HCl pH 8.8, 10 mM KCl, 10 mM 

(NH4)2SO4, 2 mM MgSO4, 1% (v/v) Triton® X-100, 1 mg/mL nucleasefree BSA, and 

Taq polymerase enzyme), 40 pmole of each primer (forward and reverse strand 

primers), and 50 ng of either plasmid or chromosomal DNA template and distilled 

water, were added to the mixture. The reaction was performed in automated 

Flexcycler PCR machine (Analytikjena, Germany). The PCR condition was shown in 

Table 3.4. After the amplification reaction was finished, an aliquot of the PCR 

reaction mixture was examined on 1.0% (w/v) agarose gel electrophoresis.  
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Table 3.4  PCR parameters for the amplification of specific genes. The extension 

sssss   time is depended on the length of the genes (1 kb/min).  

PCR Profile to amplify gene 

Step Period Temperature (°C) Time Number of cycles 

1 Pre-denaturing 95 5 min 1 

2 Denaturing 95 30 sec  

 Annealing 55 30 sec 35 

 Extension 72 3.3 min  

3 Extra-extension 72 10 min 1 

 

  3.3.2.2 Agarose gel electrophoresis of DNA 

   To analyze the size of DNA fragments, the PCR products and 

DNA fragments was subjected to agarose gel electrophoresis. The appropriate amount 

of agarose powder was dissolved in 0.5x TBE buffer [89 mM Tris-HCl, 89 mM boric 

acid, 25 mM EDTA pH 8.0] or 1x TAE buffer [40 mM Tris-HCl, 40 mM acetic acid, 

25 mM EDTA pH 8.0] under boiling temperature to ensure the homogeneity of the 

gel solution. Five microliters of loading dye [0.1% (w/v) bromophenol blue, 40% 

(w/v) Ficoll and 5 mM EDTA)] were added and mixed well to the DNA samples 

before loading into the wells of the solidified gel. The electrophoresis was performed 

at a constant voltage, 100 V, for 45 hour. After completion of electrophoresis, the gel 

was stained with 2 μg/mL ethidium bromide for 2 to 4 minutes and destained in 

distilled water for 10 min. The DNA bands were visualized under UV light and 

photographed by a gel documentation system.  
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  3.3.2.3  Preparation of E. coli KJ122 competent cells by CaCl2   

               method 

  A single colony (diameter of about 2-3 mm) of E. coli KJ122 

was inoculated into 3 ml of LB broth and incubated at 37°C for overnight. Cells were 

diluted to 1:100 in LB medium and incubated at 37°C with shaking until the OD550 

was 0.3-0.5. The culture was centrifuged at 4,000 rpm, 4°C for 10 min. The pellet was 

re-suspended and washed in 5 ml of ice-cold CaCl2 
for 3 times. After washing the cell, 

the white cell pellet was re-suspended in 2 ml of ice-cold CaCl2 and placed on ice for 

1 h. Glycerol was added into the cell suspension at 15% (v/v) final concentration then 

200 μl aliquots were stored at -80°C. 

  3.3.2.4  Preparation of E. coli KJ122 competent cells by   

               electro-transformation method  

    A single colony (diameter of about 2-3 mm) of E. coli KJ122 

harboring Red recombinase (pKD46) was inoculated into 3 ml of LB broth and 

incubated at 30°C for overnight. Cells were diluted to 1:100 in LB medium with 50 

μg/mL ampicillin and 5% (w/v) L-arabinose, and incubated at 30°C with viscous 

shaking until the OD550 reached 0.3-0.5. The culture was centrifuged at 4,000 rpm, 

4°C for 10 min. The pellet was re-suspended and washed in 5 ml of sterile ice-cold 

water for 4 times. After washing the cell, the white cell pellet was re-suspended in 1 

ml of sterile ice-cold water. Eighty microliters of aliquot were dispensed into 

electroporation cuvette. 
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   3.3.2.5  Transformation of plasmids into E. coli KJ122 by 

                                       heat shock method 

      One microliter of plasmid was mixed gently with 200 

μl of E. coli KJ122 competent cells and placed on ice for 30 min. The cells were heat-

shocked at 42°C for 90 sec and incubated on ice for additional 5 min. The 

transformed cells were mixed with 800 μl of LB broth in 15 ml tube and incubated at 

37°C for 1.5 h. Two hundreds microliters of transformed cells were then plated on LB 

agar plates containing ampicillin (50 μg/mL), and incubated overnight at 30°C. 

  3.3.2.6  Transformation of E. coli KJ122 by electroporation 

      Linearized DNA, 100 ng-10 μg (in 5-10 μl of sterile 

water), was mixed with electroporated competent cells, and the mixture was 

transferred to an ice-cold 0.4 cm electroporation cuvette. The cuvette was incubated 

on ice for 5 min. The cells were pulsed by using electroporation (Bio-Rad  

MicroPulserTM, USA) under the conditions used with E. coli (2,500 V, pulse length 5 

ms). Then 1 ml of 1 M ice-cold LB broth was added to the cuvette immediately and 

the solution was transferred to a sterile 15 ml tube. The tube was incubated at 30°C 

with 150 rpm shaking for 2 h. Transformed cells, 200 μl, was spread on LB agar 

plates containing suitable antibiotics depending on antibiotic resistant genes harbored 

in the DNA fragments, and incubated overnight at 37°C. 

  3.3.2.7  Deletion of xylFGH and xylE genes in E. coli KJ122 

    Plasmids and primers used in this study are 

summarized in Table 3.1 and Table 3.2. Methods for chromosomal deletions, 

integrations, and removal of antibiotic resistance genes have been previously 
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described (Datsenko and Wanner, 2000; Grabar et al., 2006; Posfai et al., 1997; Zhou 

et al., 2006). Sense primers contain sequences corresponding to the N-terminus of 

each targeted gene followed by 20 bp (underlined) corresponding to the FRT-kan-

FRT cassette. Anti-sense primers contain sequences corresponding to the C-terminal 

region of each targeted gene (boldface type) followed by 20 bp (underlined) 

corresponding to the cassette. The FRT-kan-FRT cassette was amplified by PCR by 

using these primers and pKD4 as the template. Amplified DNA fragments were 

electroporated into E. coli KJ122 harboring Red recombinase (pKD46). In resulting 

recombinants, the FRT-kan-FRT cassette replaced the deleted region of the target 

gene by homologous recombination (double-crossover event). After integration, 

recombinants were transformed with pFT-A and grown at 30°C. During growth in LB 

medium with 50 μg/mL chlortetracycline, FLP recombinase was induced and in turn 

excises the DNA bracketed by concurrently facing FRT sites (selectable marker and 

replicon) from the chromosome. After growth at 42°C to eliminate pFT-A, only a 

single FRT should remain in the chromosome. Chromosomal deletions and 

integrations were verified by testing for antibiotic markers, PCR analysis, and 

analysis of fermentation products.  

 3.3.3  Metabolic evolution  

           Metabolic evolution was performed by serial transfers in pH-controlled 

mini-fermenters (Jantama et al., 2008). E. coli KJ12201 was sub-cultured in AM1 

medium containing 10% (w/v) xylose (Fig. 3.1). Starting at initial OD550 nm of 0.1, 

cells was grown at 37°C, pH 7 and 200 rpm. The culture was rapidly transferred in 

fresh AM1 medium when the OD550 nm of the culture approached the range of 1.00 to 

2.00. The transfers were performed until no further improvement in the growth rate 
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was observed. After 14 serial transfers, broth was spreaded on LB agar with 1% 

xylose. The selected colonies were tested individually for xylose utilization. KJ12201-

14T showed the highest growth rate and highest succinate productivity.  

 

Figure 3.1  Metabolic evolution of E. coli KJ12201 in AM1 medium with 10% 

aaaaaa           xylose. 

 3.3.4  Fermentation 

  3.3.4.1  Fermentation in mini-fermenters 

               The inocula were prepared by inoculating seed into AM1 

medium containing 2% (w/v) sugar. All of the inocula were grown at 37 °C, 200 rpm 

for 16 h. Fermentations were inoculated at OD550 of 0.1 into AM1 medium. Batch 

fermentations were performed with AM1 medium (Martinez et al., 2007) 

supplemented with 1 mM betaine, 100 mM KHCO3, and sugar (as indicated) as a 
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carbon source. The cells were cultured in mini-fermentors (500 ml vessels) containing 

300 ml media, under anaerobic condition at 37 °C, pH 7 and 200 rpm. Fermentations 

were run with xylose or a mixture of glucose/xylose at either 5% (w/v) or 10% (w/v) 

total sugar. The pH was kept constant with 6 M KOH and 3 M K2CO3 (Jantama et al., 

2008) automatic additions. No antibiotics were included during the growth of seed 

preparations or in the fermentation broth. All the fermentations were performed 

triplicate (average and standard deviations are shown in the tables and plots). 

  3.3.4.2  Fed-batch fermentation in 2 L bioreactor 

               The fed-batch fermentation was performed in a 2L bioreactor 

with 1L initial working volume containing 5% xylose. The xylose (250 g/L) was 

intermittently fed into the bioreactor. The residual xylose was maintained between 5 

and 30 g/L. The bioreactor was controlled at 37°C and 200 rpm. The pH was 

controlled at 7.0 by automatically adding 6 M KOH and 3 M K2CO3. AM1 was used 

as a fermentation medium. The cultivation conditions in the fed-batch were the same 

as those in batch experiments. The experiments were performed in triplicate. 

 3.3.5  Analytical methods 

          Samples were removed during fermentation for the measurement of cell 

mass, organic acids, and sugars. Cell mass were estimated from the optical density at 

550 nm (1.00 OD550 = 0.33 mg of cell dry weight/ml) with a Spekol® 1500 

spectrophotometer (Analytikjena, Germany). Organic acids and sugars were 

determined by using high performance liquid chromatography, HPLC, (Agilent 

Technology 1200 series, Germany) equipped with refractive index detectors with a 

Bio-Rad Aminex HPX-87H ion exclusion column. The column and detector 
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temperatures were kept constant at 45°C. The mobile phase used in the HPLC system 

is 4 mM sulfuric acid at a flow rate of 0.4 ml/min. The cultures were centrifuged at 

13,500 rpm (Wisespin®) for 4 min to separate cells and supernatant. The supernatant 

was filtered through 0.2 μm filter membrane before injecting to HPLC. Ten 

microliters of injection volume were automatically analyzed. 

3.4  Results  

3.4.1  Influence of xyl transporter deletions on succinate production in 

aaaaa   E. coli KJ122 

            E. coli KJ122 was developed to produce succinate by using metabolic 

engineering and metabolic evolution. The E. coli KJ122 produced a high titers of 

succinate from glucose (Jantama et al., 2008) but poor growth and low succinate 

productivity were observed when this strain was cultured on xylose (Wang et al., 

2013). This problem was confirmed using xylose and served as a starting point for 

strain improvement. E. coli KJ122 exhibited a lag phase of 48 h with 10% xylose. 

Reducing the xylose concentration to 5%, the lag phase was decreased from 48 h to 

24 h (Fig. 3.2). However, xylose was still remained after 120 h. After fermentation, 

25.89±0.89 g/L and 30.99±0.52 g/L succinate were produced from 5% and 10% 

xylose, respectively. In addition, this result was consistent with the succinate yield 

and productivity of KJ122 in both 5% xylose (0.72±0.26 g/g and 0.21±0.01 g/L.h) and 

10% xylose (0.67±0.02 g/g and 0.26±0.01 g/L.h), respectively (Table 3.5). Acetate 

was also increased during cell growth and succinate production. At 120 h, the acetate 

concentrations were about 7.86±0.07 g/L and 8.46±0.37 g/L in the broth containing of 

5% and 10 % xylose, respectively. Since conversion of xylose to succinate in KJ122 
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generates only one ATP during glycolysis, but requires two ATP for xylose utilization 

when xylose is transported through xylFGH genes. Thus, growth and xylose 

metabolism in KJ122 could be limited due to insufficient ATP supply.  

 

 
Figure 3.2  Succinate production from xylose by E.coli KJ122 in AM1 medium. 

aa(a). Fermentation of 10% xylose; (b). Fermentation of 5% xylose. 

aaSymbols for all: xylose (open square), succinate (filled square), acetate 

aa(filled triangle), biomass (open circle). 
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  In order to enhance the ATP supply for xylose metabolism in KJ122, 

genes encoding ATP-dependent xylose transporter (encoded by xylF, xylG and xylH ) 

were deleted. KJ12201 (E.coli KJ122 ΔxylFGH) completed the fermentation of 5% 

xylose within 72 h but the remaining xylose was still about 19.5 g/L when performing 

the fermentation in 10% xylose even though the fermentation time was prolonged 

(Fig. 3.3). At the end of fermentation, KJ12201 produced succinate at 37.43±0.67 g/L 

and 70.76±3.39 g/L from 5% and 10% xylose, respectively. Also, acetate was 

detected at 10.57±0.42 g/L and 9.34±0.74 g/L from 5% and 10% xylose, respectively. 

In addition, strain KJ12201 utilized xylose for higher succinate production with yields 

of 0.77±0.02 g/g and 0.87±0.03 g/g from 5% and 10% xylose, respectively, and the 

productivity of 0.31±0.01 g/L.h and 0.59±0.02 g/L.h from 5% and 10% xylose, 

respectively as compared with KJ122 (Table 3.5). Moreover, strain KJ12201 

exhibited an increase in the cell biomass and xylose consumption (Table 3.5). Utrilla 

et al. (2012), also reported that the deletion of xylFGH genes in E. coli JOU1 

improved growth rate and D-lactate productivity. The lack of xylFGH genes in the 

mutant stain resulted in a conserve ATP supply for xylose metabolism.  
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Figure 3.3  Succinate production from xylose by E.coli KJ12201 (KJ122 ΔxylFGH) 

in AM1 medium. (a). Fermentation of 10% xylose; (b). Fermentation of 

5% xylose. Symbols for all: xylose (open square), succinate (filled 

square), acetate (filled triangle), biomass (open circle). 
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   To investigate the role of xylE in xylose transport, xylE was deleted 

from the parent strain (KJ122). Strain KJ12202 (KJ122 ΔxylE) performs poorly on 

10% xylose (Fig. 3.4a), however, reducing the xylose concentration from 10% to 5% 

improved xylose consumption (Fig. 3.4b). At the end of fermentation time (120 h), 

succinate at the concentration of 23.80±0.59 g/L and 11.46±0.17 g/L were detected in 

5% and 10% xylose fermentation, respectively. In addition, strain KJ12202 produced 

succinate yield at 0.61±0.01 g/g and 0.71±0.02 g/g, respectively, and productivity at 

0.20±0.01 g/L.h and 0.10±0.01 g/L.h, respectively. Acetate was observed as a major 

by-product at the concentration of 12.84±1.06 g/L and 3.97±0.12 g/L in 5% and 10% 

xylose, respectively. KJ12202 showed a 68% and 80% decrease in xylose 

consumption at 10% xylose compared with KJ122 and KJ12201, respectively, due to 

the shortage supply of ATP required by xylFGH transporter. As the insufficient ATP 

supply during xylose fermentation in KJ12202, cells enhance the formation of acetate 

to increase ATP yield (Andersson et al., 2007). As a result, the succinate yield and 

productivity decreased in this mutant strain. Therefore, KJ12202 exhibited a higher 

concentration of acetate compared with KJ122 and KJ12202 when the strain was 

grown on 5% xylose.  
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Figure 3.4  Succinate production from xylose by E.coli KJ12202 (KJ122 ΔxylE ) in 

AM1 medium. (a). Fermentation of 10% xylose; (b). Fermentation of 

5% xylose. Symbols for all: xylose (open square), succinate (filled 

square), acetate (filled triangle), biomass (open circle).  
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      Furthermore, xylFGH and xylE genes were deleted from KJ122. The 

deletions of xylFGH and xylE in KJ122 resulted inhibited poor growth on xylose 

(Fig.3.5 and Table 3.5). Also, lower cell biomass was observed in KJ12203 (KJ122 

ΔxylFGH ΔxylE). This result indicated that xylose is poorly transported in this mutant 

strain due to lack of native xylose transporters (xylFGH and xylE). Utrilla et al. (2012) 

also reported the deletions of xylFGH and xylE in E. coli CL3 (D-lactate producing 

strains) resulted a 26% reduction in growth rate. Moreover, Khankal et al. (2008) 

revealed that the deletion of xylG and xylE in E.coli W3110 exhibited a decrease in 

xylose consumption and xylitol titer. 
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Figure 3.5  Succinate production from xylose by E.coli KJ12203 (KJ122 ΔxylFGH 

ΔxylE) in AM1 medium. (a). Fermentation of 10% xylose; (b). 

Fermentation of 5% xylose. Symbols for all: xylose (open square), 

succinate (filled square), acetate (filled triangle), biomass (open circle).  
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Table 3.5  Kinetic parameters of E. coli KJ122, KJ12201, KJ12202 and KJ12203 in AM1 medium containing xylose in mini-fermenters. 

Strains Xylose (%) KJ122 KJ12201 KJ12202 KJ12203 

Maximum CDW (g/L) 

5 1.43±0.03d, α 1.61±0.08β 1.71±0.01γ 0.93±0.02δ 

10 1.42±0.01α 2.66±0.19β 1.18±0.01γ 0.44±0.05δ 

Xylose consumption (g/L) 

5 35.89±0.31α 48.82±0.96β 39.02±0.07γ 4.93±0.70δ 

10 46.00±0.38α 81.51±0.81β 16.62±0.38γ 5.03±0.63δ 

Succinate (g/L) 

5 25.89±0.89α 37.43±0.67β 23.80±0.59γ 2.66±0.78δ 

10 30.99±0.52α 70.76±3.39β 11.46±0.17γ 2.06±0.10δ 

Succinate yielda (g/g) 

5 0.72±0.26α 0.77±0.02α 0.61±0.01γ 0.54±0.01γ 

10 0.67±0.02α 0.87±0.03β 0.71±0.02γ 0.41±0.05δ 

Succinate productivityb (g/L.h) 

5 0.21±0.01α 0.31±0.01β 0.20±0.01γ 0.02±0.00δ 

10 0.26±0.01α 0.58±0.02β 0.10±0.01γ 0.017±0.00δ 

Specific succinate productivityc 

(g/g.h) 

5 0.16±0.00α 0.20±0.12β 0.11±0.00γ 0.02±0.07δ 

10 0.18±0.00 α 0.19±0.01β 0.09±0.00γ 0.04±0.01δ 
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Table 3.5  (continued). 

Strains Xylose (%) KJ122 KJ12201 KJ12202 KJ12203 

Acetate (g/L) 

5 10.57±0.42α 10.57±0.42β 12.84±1.06γ 1.23±0.05δ 

10 8.39±0.51α 9.34±0.74β 3.97±0.12γ  1.77±0.22δ 

aThe succinate yield was calculated as gram(s) of succinate produced divided by gram(s) of xylose consumed. 

bThe succinate productivity was calculated as succinate concentration produced divided by overall incubation time.  

cThe succinate specific productivity was calculated as succinate productivity divided by cell dry weight.  
dValues bearing different Greek symbols are significantly different (P<0.05) among strains between column. 
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3.4.2  Metabolism of xylose in E. coli KJ12201 

           Xylose is abundant in lignocellulosic biomass. The fermentation of 

xylose is still a key problem in engineered E.coli for conversion of xylose to high 

value chemicals such as succinate. KJ122 has been engineered to produce succinate at 

high yield and titer from glucose but showed a poor ability to metabolize xylose. The 

ATP requirement for xylose uptake is a limitation for xylose metabolism in E. coli 

KJ122 when xylFGH plays the main role in xylose transport. In this research, we 

hypothesized that the deletion of xylFGH genes could enhance the ATP supply and 

high succinate production from xylose in the strain KJ122. 

  Xylose was expected to permeate into cells by a low affinity proton 

symporter, which was a function of xylE with H+ symport (Fig. 3.6). After xylose 

uptake into the cell, xylA (xylose isomerase) convert xylose to xylulose. Then, 

xylulose is phosphorylated to xylulose 5-phosphate by xylB (xylulokinase). Xylulose 

5-phosphate is metabolized by the enzymes of the pentose phosphate pathway (PPP) 

before entering into the glycolysis pathway as fructose 6-phosphate and 

glyceraldehyde 3-phosphate. These are all the key enzymes functioning in the mutant 

strain (KJ12201). In addition, KJ122 is a metabolic engineered strain and it has some 

mutations of key enzymes such as phosphoenolpyruvate carboxykinase (PCK). PCK 

was recognized as a vital enzyme for caboxylation and conservation of energy in 

succinate production pathway (Zhang et al., 2009).  
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Figure 3.6  Proposed mechanism of xylose metabolism in KJ12201.  
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 3.4.3  Metabolic evolution of E. coli KJ12201 to produce E. coli KJ12201-

           14T 

           Metabolic evolution has been applied to microorganisms for many 

fermentation products including ethanol (Yomano et al., 2008), 2,3-butanediol 

(Jantama et al., 2015), D-lactate (Zhou et al., 2003; Utrilla et al., 2012), and succinate 

(Jantama et al., 2008; Sawisit et al., 2015). Under strong pressure such as high 

temperature, strong and sole substrate limitation, microorganisms have mutation 

occurred in DNA genes and then selection occurred in the phenotype which naturally 

change in proteins, especially, substrate specific proteins. This directs the evolution of 

new function. The target gene of evolution in all variants occurs as point mutations in 

the DNA sequence changing the function of enzymes. Many studies on the ability of 

the whole new metabolic pathway have been exposed for metabolic engineering E. 

coli in novel environments. Only microorganisms existing target enzyme can survive 

and enhance reactions in the new resource. This is a selection of strongly genes within 

microorganism for survival under strong pressure of selection (Jantama et al., 2008). 

This procedure was applied to E. coli KJ12201 for the fermentation of xylose to 

obtain the strain exhibiting high growth rate and succinate production.  

            The KJ12201 strain was sub-cultured into a newly fresh AM1 medium 

containing 10% xylose and transferred till the transfer number 20. The succinate 

concentration and biomass increased along with increasing in number transfer (Fig. 

3.7a and b ). During these transfers, accumulation of acetate was still detected (Fig. 

3.7c). At the end of the metabolic evolution, the culture of KJ12201 produced higher 

titer of succinate (83.61 g/L) and improved xylose consumption, while high amount of 

acetate (11.85 g/L) was also observed. From these results, we decided to select the 
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best strain for the succinate production. The culture of KJ12201 from the transfer 

number of 14 was designated E. coli KJ12201-14T, and subjected as the 

representative strain for further experiments. The culture of KJ12201-14T produced 

succinate titer of 83.66±0.19 g/L (709±1.57 mM), with a succinate yield of 0.86±0.01 

g/g (1.31±0.02 mol/mol) based on xylose metabolized. Unlike KJ122, strain 

KJ12201-14T grew on 10% xylose without a lag phase (Fig. 3.7). The maximum 

theoretical yield of succinate from xylose and CO2 (excess) is 1.43 mol per mole 

xylose based on the following Eq. 3.1: 

7 C5H10O5 + 5 CO2 → 10 C4H6O4 + 5 H2O                             (3.1) 

   In addition, KJ12201-14T produced higher levels of biomass and 

improved xylose consumption as compared with KJ122 and KJ12201 (Table 3.6). 

These results demonstrated that the combination of gene deletions and metabolic 

evolution resulted in significant changes in xylose metabolism in E. coli KJ12201-

14T. 
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Figure 3.7  Metabolic evolution of E.coli KJ12201 in AM1 medium containing 10%   

axylose. (a). Cell biomass; (b). Succinate; (c). Acetate. Symbols for all: 

aKJ122 (filled square), KJ12201 (open circle), Blue circle and line 

aindicate the source for isolation of KJ12201-14T.  
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Figure 3.7  (continued).  
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Table 3.6  Kinetic parameters of E.coli KJ122, KJ12201 and KJ12201-14T in AM1 

        medium containing 10% xylose. 

Strains KJ122 KJ12201 KJ12201-14T 

Maximum CDW (g/L) 1.42±0.01d, α 2.66±0.19β 2.98±0.43γ 

Xylose consumption (g/L) 46.00±0.38α 81.51±0.81β 97.36±1.28γ 

Succinate (g/L) 30.99±0.52α 70.76±3.39β 83.66±0.19γ 

Succinate yielda (g/g) 0.67±0.02α 0.87±0.03β 0.86±0.01β 

Succinate productivityb 

(g/L.h) 

0.26±0.01α 0.59±0.02β 0.70±0.01γ 

Specific succinate 

productivityc (g/g.h) 

0.18±0.00 α 0.26±0.01β 0.32±0.06 β 

Acetate (g/L) 8.46±0.37 α 9.34±0.74α 10.78±0.10β 

      aThe succinate yield was calculated as gram(s) of succinate produced divided by gram(s) of xylose     

        consumed. 

         bThe succinate productivity was calculated as succinate concentration produced divided by overall    

        incubation time.  

        cThe succinate specific productivity was calculated as succinate productivity divided by cell    

       dry weight. 

        dValues bearing different Greek symbols are significantly different (P<0.05) among strains between         

       column. 

 

 

 3.4.4  Comparison of E. coli KJ12201 and KJ12201-14T for succinate  

           production in fed-batch fermentation. 

           Fed-batch fermentation is a batch process fed continuously or 

sequentially with substrate. Fed-batch processes were introduced in order to avoid 

substrate inhibition resulting in high osmotic pressure at high sugar concentration 

(Ozmichi and Kargi, 2007). Fed-batch operation offers special advantages over batch 
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and continuous operation by eliminating substrate inhibition as a result of slow 

feeding of highly concentrated substrate solution. Fermentation is started with 

relatively low substrate concentration at a low volume. As the substrate is consumed, 

it is replaced by addition of a concentrated substrate solution at a low rate. In addition, 

fed-batch process is keeping the substrate concentration in the reaction below the 

toxic level (Qureshi and Blaschek, 2001). 

         Fed-batch fermentation for succinate production was carried out in 2L 

bioreactor with an initial volume of 1.0 L containing 50 g/L xylose. KJ12201 strain 

was initial grown in batch mode. At the late exponential phase of batch fermentation, 

100 ml of 250 g/L xylose was intermittently fed into the bioreactor to maintain xylose 

concentration in the range of 5-30 g/L. The results showed that the xylose 

concentration dramatically utilized from 50 g/L to 5 g/L and the biomass was 

increased (1.51±0.11 g/L) (Fig. 3.8a) during the first 60 h. At the same time, succinate 

at concentration of 37.23±0.89 g/L was detected. After 60 and 90 h, xylose was fed 

into the bioreactor. The succinate titer continuously increased up to the concentration 

of 69.94±0.58 g/L at 120 h while the cell entered the stationary phase (Fig. 3.8a). At 

the end of fermentation, acetate was observed as a major by-product at the 

concentration of 18.08±0.79 g/L (Table 3.7). The yield and overall productivity of 

succinate production were 0.79±0.01 g/g and 0.58±0.01 g/L.h, respectively (Table 

3.7). However, the fed-batch cannot greatly enhance succinate production over batch 

process in the case of KJ12201.  

            Based on the above results, strain KJ12201 was improved in growth 

and cell biomass by several sub-culturing under strong pressure conditions or 

metabolic evolution. The clone passing through metabolic evolution process was 
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selected and designated E.coli KJ12201-14T. Therefore, this strain was also 

performed in a fed-batch fermentation and compared the results with a KJ12201, on 

the succinate production, cell growth and xylose metabolism. KJ12201-14T 

fermented xylose within 84 h (Fig. 3.8b). KJ12201-14T could consume 98.89±0.58 

g/L xylose and the highest succinate production reached 84.55±0.67 g/L at 84 h of 

fermentation time. The succinate yield (0.86±0.01 g/g) and productivity (1.01±0.01 

g/L.h) were improved compared with those obtained in KJ12201. Also, the maximum 

biomass concentration in KJ12201-14T (3.35±0.32 g/L) was higher than that in 

KJ12201 (1.69±0.22 g/L). However, the succinate specific productivity of KJ12201 

(0.39±0.01) and KJ12201-14T (0.39±0.02) were not significantly different (Table 

3.7). Furthermore, acetate production was lower in KJ12201-14T (14.41±0.28) as 

compared with KJ12201 (18.08±0.79). These results showed that KJ12201-14T has 

an ability to produce succinate from pure xylose compared with other engineered E. 

coli strains (Table 3.8). In conclusion, fed-batch fermentation was applied to improve 

growth and succinate productivity. Therefore, it would be feasible for industrial 

succinate production from lignocellulosic biomass employed in the future and could 

be applied for other similar fermentation processes. 
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Figure 3.8  Fed-batch fermentation profile of KJ12201 and KJ12201-14T for 

succinate production in AM1 medium containing xylose. (a). Succinate 

production by KJ12201; (b). Succinate production by KJ12201-14T. 

Symbols for all: xylose (open square), succinate (filled square), acetate 

(filled triangle), biomass (open circle). 
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Table 3.7  Kinetic parameters of E.coli KJ12201and KJ12201-14T in fed-batch 

sssssss           fermentation. 

Strains KJ12201 KJ12201-14T 

Maximum CDW (g/L) 1.69±0.22 3.35±0.32 

Xylose consumption (g/L) 89.01±0.94 98.89±0.58 

Succinate concentration (g/L) 69.94±0.58 84.55±0.67 

Succinate yielda (g/g) 0.79±0.01 0.86±0.01 

Succinate productivityb (g/L.h) 0.58±0.01 1.01±0.01 

Specific succinate productivityc (g/g.h) 0.39±0.01 0.39±0.02 

Acetate (g/L) 18.08±0.79 14.41±0.28 

   aThe succinate yield was calculated as gram(s) of succinate produced divided by gram(s) of xylose    

    consumed. 

    bThe succinate productivity was calculated as succinate concentration produced divided by overall    

    incubation time.  

    cThe succinate specific productivity was calculated as succinate productivity divided by cell dry  

    weight. 
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Table 3.8  Comparison of succinate production in various media containing pure xylose by engineered E. coli strains.  

 

Strains  Media/Mode of process Succinate  References 

Titer 

(g /L) 

Yielda 

(g/g) 

Productivityb 

(g/L.h) 

KJ12201-14T (E.coli KJ122 

ΔxylFGH), 14th serials transfer 

in 10% xylose 

 

100 g/L xylose/AM1/batch fermentation 

100 g/L xylose/AM1/fed-batch fermentation 

83.75 

84.35 

0.85 

0.85 

0.70 

1.01 

This study 

AS1600a (E. coli KJ122), 16th 

serials transfer in 10% xylose 

 

100 g/L xylose/AM1/batch fermentation 84.26 0.88 0.70 Sawisit el al., 

2015 

E. coli DC115( ΔldhA, ΔpflB, 

ΔptsG ) selected by the 

atmospheric and room-

temperature plasma mutation 

system combining with a 15th 

serials transfer in 1.5% xylose 

20 g/L xylose/LB medium supplemented 

with chemically defined medium/simple 

bath fermentation 

12.10 

 

0.67 0.17 Jiang el al., 2014 

E. coli BA305 ( ΔldhA, ΔpflB, 

Δppc ) and overexpression of 

ATP-forming (PEPCK) 

40 g/L xylose /LB medium supplemented 

with chemically defined medium/repetitive 

fermentation 

24.00 0.98 Not reported Liang el al., 2014 
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Table 3.8  (continued). 

 

Strains  Media/Mode of process Succinate  References 

Titer 

(g /L) 

Yielda 

(g/g) 

Productivityb 

(g/L.h) 

E. coli BA305, ΔldhA, ΔpflB, 

Δppc, ΔptsG and 

overexpression of ATP-

forming (PEPCK) 

 

 20 g/L xylose/complex medium 

supplemented with LB/simple batch 

fermentation  

5.20 

 

0.72 0.05 Lui el al., 2013 

E. coli BA204, ΔldhA, ΔpflB, 

Δppc and overexpression of 

ATP-forming (PEPCK) 

20 g/ L xylose/complex medium 

supplemented with LB/dual-phase 

fermentation 

9.58 0.87 0.60 Lui el al., 2012 

E. coli AFP184, ΔldhA, ΔpflB 

and ΔptsG 
≈100 g/L xylose/complex medium 

supplemented with 0.4 g/L corn steep liquor 

(50% solid)/dual-phase fermentation 

25.00 0.50 0.78 Andersson et al. 

2007 

aThe succinate yield was calculated as gram(s) of succinate produced divided by gram(s) of xylose consumed. 
bThe succinate productivity was calculated as succinate concentration produced divided by overall incubation time. 
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3.5  Discussion 

        Fermentation of xylose is different from that of glucose because the ATP supply 

during xylose fermentation is lower than that during glucose fermentation in E. coli 

(Hasona et al., 2004). In E. coli KJ122, the net yield of ATP per xylose is 0 mol/mol 

while the net yield of ATP per glucose is 1 mol/mol during anaerobic fermentation. 

Then, the limitations of xylose metabolism in E. coli KJ122 is due to the low ATP 

supply. An improved strain was obtained by deleting the xylFGH genes, designated 

KJ12201.  

  The mutant strain significantly improved in xylose consumption and succinate 

production as results from xylFGH deletion. The result suggests that the deletion of 

xylFGH resulted in more ATP supply to xylose metabolism. In addition, we speculate 

that the mutant strain had increased flux through OAA via PCK activity, resulting in 

high yield of ATP. In addition, xylE gene is positively controlled by cAMP and CRP 

proteins (Gonzalez et al., 2002). Meanwhile, strain KJ12202 showed an increase of 

cAMP and CRP catabolic repression proteins even when growing on xylose. 

Therefore, the high xylose consumption resulted in high succinate yield in KJ12202. 

Despite the major improvements, the succinate productivity using xylose as carbon 

source was only 80% of the productivity displayed on glucose. Therefore, succinate 

productivity and growth could be improved by metabolic evolution. The 14th transfer-

isolated strain (from 20th generation), named KJ12201-14T, exhibited 2.7 and 1.2-fold 

improvement in succinate productivity (0.70±0.02 g/L.h) as compared with KJ122 

and KJ12201, respectively. This indicated that the spontaneous mutations, which 

occurred during metabolic evolution, caused the activation of succinate production 

routes and the increase in biomass yield. Moreover, it is generally known that in the 

presence of oxygen, the PDH complex oxidatively-decarboxylates pyruvate to acetyl-
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CoA with the conservation of reductant as NADH (de Graef et al., 1999). Since 

KJ122 is unable to produce acetyl-CoA due to pflB mutation, the PDH activity 

activated to certain, to compensate the lack of pflB activity, even in the absence of 

oxygen. The NADH produced from PDH activity provided more reducing equivalents 

to reduce fumarate to succinate resulting in a greater molar succinate yield than 1 

mol/mol xylose used. Utrilla et al. (2012) also reported the increase in PDH observed 

in E. coli JU15 when cells were cultured on xylose for lactate production. Moreover, 

they found that the xylA and transketolase 2 were overexpressed during xylose 

fermentation in the mutant strain. However, the slight increase in transketolase 2 has 

no significant changes in gene expression were observed in the PP pathway for xylose 

fermentation in engineered E. coli strains (Tao et al., 2001; Utrilla et al., 2012). In 

addition, Utrilla et al. (2012) reported that the mutation in the gatC is responsible for 

xylose transport in E. coli JU15. Additionally, Sawisit et al. (2015) found that the 

mutation in galP in E. coli AS1600a improved xylose metabolism. 

3.6  Conclusion 

        The E. coli KJ12201-14T (KJ122 ∆xylFGH) strain significantly improved the 

xylose consumption and succinate production yield (up to 0.85 g/g) compared with E. 

coli KJ122. This mutant also exhibited high succinate productivity (1.01±0.01 g/L.h) 

during fed-batch fermentation. Succinate production by the KJ12201-14T strain was 

performed in AM1 medium with pure xylose under aerobic conditions. The use of 

mineral salts medium offers advantages over complex supplements by reducing the 

cost of media and product purification. However, optimized parameters affecting 

succinate biosynthesis by KJ12201-14T need to be further investigated to achieve 

higher and more efficient strategies for succinate production from lignocellulose 

hydrolysates on an industrial scale. 
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CHAPTER IV 

PURIFICATION OF SUCCINATE BY 

NANOFILTRATION 

 

4.1  Introduction 

       Current trend is to move from primary carbohydrate resources to more complex 

ones, like lignocellulosic materials as a bio renewable feedstock, to produce biofuels 

or chemical building blocks, like organic acids. This evolution requires significant 

modifications at different stages in the process, including fermentation and 

downstream processes, among which membrane operation can play an important role 

(Abels et al., 2013). Previous work has also demonstrated that nanofiltration can be 

used for the purification of lactic acid from fermentation broth (Bouchoux et al., 

2005; Umpuch et al., 2010).  

         Succinic acid is an important building block for the synthesis of high added-

value products such as biopolymers, pharmaceuticals or food additives. Currently, 

succinic acid has been mainly supplied by petrochemical process through the 

conversion of maleic anhydride. Unlike chemical process, succinic acid fermentation 

is based on renewable resources. Therefore, the succinic acid fermentation has more 

benefits over the chemical process (Sauer et al., 2008).  

         Recently, E. coli KJ122 was engineered to ferment pure glucose streams from 

starch into high titers of succinate (Jantama et al., 2008). However, fermentation broth 

does not only contain succinate but also some impurities like remaining carbon 
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sources, salts and other organic acids. E. coli KJ122 can produce about 0.35-0.7 M 

succinate from 5%-10% glucose, respectively. Furthermore, 0.05-0.1 M acetate were 

produced from 5%-10% glucose, respectivly, as a major by-product (Jantama et al., 

2008). Thus, the product recovery is an important step in succinate production from 

fermentation. 

        In this work, nanofiltration was investigated as a purification method in the 

production of succinate from fermentation. The experiments were carried out with 

synthetic fermentation broth of increasing complexity containing, succinate salt and 

different impurities like salts, glucose or other organic acids. The influence of the 

operating conditions (pH, pressure) as well as of the fermentation broth composition 

on the NF performances were studied. The mechanisms governing the transfer of the 

solutes through the membrane were investigated in order to determine the best 

conditions for achieving the purification of succinate from fermentation broth. The 

effectiveness of NF in a diafiltration mode was also demonstrated for the removal of 

impurities from succinate. 

4.2  Objectives   

        The objective of this work was to investigate the separation and purification of 

succinate from fermentation broth by using nanofiltration.  

        1) To understand mechanisms governing the mass transfer of solutes through NF 

membranes focusing on the role of operating conditions (pH, pressure) as well as the 

fermemtation broth compositions. 

        2) To obtain an efficient NF process in the recovery and purification of succinate 

from fermentation broth. 
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4.3  Materials and methods 

       4.3.1  Chemicals and fluids 

      The neutral solute used in the experiments was glucose from Acros 

Organics. Three types of potassium salts were used: potassium acetate from VWR 

chemicals PROLABO®, potassium chloride from Acros Organics and potassium 

phosphate from Ajax Finechem. One type of sodium salt was sodium chloride from 

VWR chemicals PROLABO®. Three organic acids were used: succinic acid and 

pyruvic acid from Alfa Aesar® (Johnson Matthey Company) and acetic acid from 

Acros Organics. The relevant characteristics of the solutes used in the NF experiments 

are listed in Table 4.1. These organic compounds were typically representative solutes 

found in succiniate fermentation broth based on E.coli KJ122 strain. As shown in the 

Table 4.1, the differences of these organic compounds are their sizes as well as their 

pKA. The feed concentration of the model solution used was determined in accordance 

with the final composition of succinic acid fermentation of glucose. The compositions 

of feed solutions (single and mixed solutions) used for constant feed concentration NF 

are listed in Table 4.2. The feed composition of synthetic fermentation broth used in 

diafiltration and concentration mode is presented in Table 4.3. Synthetic broths were 

prepared in ultra-pure water. The feed compositions indicated above were combined 

to make synthetic broths of increasing complexity, i.e. single, binary, ternary and 

quaternary solutions. The composition and concentration of synthetic fermentation 

broth were formulated on the basis of raw fermentation broth obtained by E. coli 

KJ122 (Jantama et al., 2008). All feed solutions were prepared with ultra-pure water. 

The pH was adjusted by adding potassium hydroxide (EMSURE®, Merck Millipore). 
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Table 4.1  Relevant characteristics of the solutes used. 

 

Solutes 

MW 

(g.mol-1) 

Diffusion 

coefficient, Ds  

(x10-9 m2.s-1) 

Stokes 

radiuse,  

rs (nm) 

 

pKA 

Glucose 180.16 0.69a 0.365  - 

Na+ 22.99 1.33a 0.184 - 

K+ 39.1 1.957b 0.124 - 

Cl- 35.45 2.032b 0.12 - 

Ace- 59.05 1.295c 0.187 4.76 

Pyr- 87.06 1.233c 0.198 2.5 

Suc2- 116.09 0.94c 0.295 4.2 ; 5.6 

PO4
3- 94.97 0.99d 0.247 2.15 ; 7.09 ; 12.32 

a see Weast et al., 1986 

b see Wang et al., 2005 

c see Liu et al., 2004 

d see Crank, 1976 

e Calculated from the Stokes-Einsten relation rs= kBT/6���Ds, with kB=1.3807x10-23 J/K, �� =    

  8.937x10-4 Pa.s and T=298.15 K 
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Table 4.2  Feed composition of single and mixed solutions used for constant feed 

aaaa         concentration experiments. K2Suc: potassium succinate, Na2Suc: sodium 

         succinate, KPyr: potassium pyruvate, KAce: potassium acetate, KCl: 

         potassium chloride, NaCl: sodium chloride.     

Solutions Compositions  Analytical method 

Single solutions - 0.1 M glucose, 0.1 to 0.7 M K2Suc 

pH 7.0  

- 0.1 M K2Suc pH 2.2 to 7.6 

- 0.1 M KPyr pH 2.0 and pH 7.0 

- 0.1 M KAce pH 2.09 and pH 7.0 

- 0.1 M Na2Suc pH 7.0 

- 0.1 M KCl pH 7.0  

- 0.1 M NaCl pH 7.0  

Refractometer  

          

Refractometer  

         and 

Conductimeter 

Binary solutions - 0.1 M KAce + 0.7 M K2Suc  

 pH 4.2 to 7.6 

- 0.1 M KAce + 0.1 to 0.7 M K2Suc    

pH 7.0 

- 0.7 M K2Suc + 0.1 M KAce 

pH 7.0 (Dilution factor 1) 

- 0.35 M K2Suc+ 0.05 M KAce  

 pH 7.0 (Dilution factor 2) 

HPLC (Shodex) 

and  

Conductimeter 
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Table 4.2  (continued). 

Solutions Compositions  Analytical method 

Binary solutions - 0.175 M K2Suc+ 0.025 M KAce 

pH 7.0 (Dilution factor 4) 

-0.117 M K2Suc + 0.017 M KAce  

pH 7.0 (Dilution factor 6) 

- 0.0875 M K2Suc + 0.0125 M 

KAce 

pH 7.0 (Dilution factor 8) 

- 0.07 M K2Suc + 0.01 M KAce  

pH 7.0 (Dilution factor 10) 

- 0.35 M K2Suc + 0.065 M KAce 

pH 7.0 

HPLC (Shodex) 

and Conductimeter 

 

 

 

 

 

Conductimeter and  

HPLC (Dionex) 

Ternary solutions - 0.35 M K2Suc + 0.065 M KAce 

  0.027 M glucose pH 7.0 

- 0.35 M K2Suc + 0.065 M KAce +  

  0.0045 M KCl pH 7.0 

- 0.35 M K2Suc + 0.065 M KAce +   

  + 0.017 M K3PO4
  pH 7.0 

Conductimeter and  

HPLC  

(Shodex and Dionex) 
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Table 4.2  (continued). 

Solutions Compositions  Analytical method 

Quaternary 

solutions 

- 0.35 M K2Suc + 0.065 M KAce +   

  0.0045 M KCl + 0.017 M K3PO4
     

  + 0.027 M glucose pH 7.0 

- 0.175 M K2Suc + 0.065 M KAce +   

  0.0045 M KCl + 0.017 M K3PO4
     

  + 0.027 M glucose pH 7.0 (Dilution  

  factor 2) 

Conductimeter and  

HPLC  

(Shodex and Dionex) 

 

 

Table 4.3  The compositions of synthetic fermentation broth used for diafiltration   

                  mode and concentration mode.       

Experiments Compositions Analytical method 

Diafiltration mode - 0.175 M K2Suc + 0.065 M KAce + 

0.0045 M KCl + 0.017 M K3PO4    

+ 0.027 M glucose pH 7.0 (Dilution  

  factor 2) 

Conductimeter and  

HPLC 

(Shodex and Dionex) 

Concentration 

mode 

- 0.164 M K2Suc + 0.0008 M KAce 

+ 0.0043 M K3PO4
 + 0.0054 M 

glucose  pH 7.0 

Conductimeter and  

HPLC 

(Shodex and Dionex) 
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        4.3.2  Membranes 

       In this study four membranes were evaluated, three nanofiltration and one 

reverse osmosis membranes: NF45 (Filmtec, Mineapolis, MN), Desal 5 DK, Desal 

HL (GE Osmonic, USA) and XLE (Filmtec, Minneapolis, MN). All four membranes 

are flat sheet composite membranes. The selective layer is polyamide. These 

membranes are negatively charged at pH above 3 for XLE, at pH above 4 for NF45 

and Desal HL and at pH above 5.5 for Desal 5 DK. Average molecular weight cut-off 

of NF45, Desal DK and Desal HL are about 150-300 g.mol-1. XLE membrane has an 

average molecular weight cut-off about ~100 g.mol-1. The maximum operating 

temperatures of the four membranes are 45°C for NF45 and XLE, and 50°C for Desal 

5 DK and Desal HL. These characteristics of the membranes are presented in Table 

4.4. 
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Table 4.4  Characteristics of the membranes used. 

a Rasanen et al. (2002). 

bHussain et al. (2007). 

cTanninen and Nystrom (2002). 

dMullett et al. (2014). 

eDiop et al. (2011). 

fObtained in this work.  

 

 

 

 

 

 

Parameter NF45 Desal 5 DK Desal HL XLE 

Manufacturer  Filmtec GE Osmonic GE Osmonic Filmtec 

Active layer Polyamide Polyamide Polyamide Polyamide 

Maximum operating 

pressure (Bar) 

55a 40a 40b 41e 

Maximum operating 

temperature (°C) 

45 50 50 45 

pH resistance  2-10a 3-10a 3-9b 2-11e 

Molecular weight Cut-

off (g.mol-1) 

150-300 150-300 150-300 ~100 

Isoelectric point (IEP) 4c 4d 5.5b 3e 

Water flux  

(L.m-2.h-1) at 20 bar 

and 25°C  

46.6f 24.0f 93.0f 44.4f 
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        4.3.3  Analytical methods 

                  The analytical methods used in this study are presented in Table 4.2 and 

Table 4.3. In single solutions, glucose and organic salts concentrations were 

determined using a refractometer (Atago RX-5000, Tokyo, Japan). Conductimeter 

(LF318 WTW, Germany) was also used for determining the conductivity of organic 

salts. 

       For binary solution (succinate/acetate), the concentration of succinate and 

acetate were determined by high-performance liquid chromatography (HPLC, Jasco, 

France) using a Shodex SUGAR SH1011 column (Showa Denko, Kawasaki, Japan). 

The details of the HPLC conditions are given in Table 4.5. The samples were diluted 

to 20-50 folds before injection. 

 Table 4.5  Characteristics of the high-performance liquid chromatography analysis. 

HPLC, Jasco  

Column Shodex SH1011 

Temperature 50°C 

Mobile phase H2SO4 (10 mM) 

Flow rate 1 mL.min-1 

Pump  PU2089plus 

Auto sampler AS2055plus 

Injection volume 20 µL 

Refractive index detector RI-2031plus 

 

 For mixed solutions, HPLC (Jasco, France) was used to determine 

concentration of uncharged solute (glucose). The charged solutes such as succinate, 

acetate, chloride, phosphate and potassium concentrations were determined by ion 

chromatography (IEC, Dionex, France). The characteristics of the ion 
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chromatography system are listed in Table 4.6. The samples were diluted about 25-

200 folds by ultra-pure water before injection.  

Table 4.6  Characteristics of the ion chromatography analysis. 

Dionex ICS 3000  

Ion type  Anion, cation 

Column IonPac™ AS11,  IonPac™ CS12 

Temperature 30°C 

Mobile phase NaOH:  5 mM (95%) + 100 mM (5%); 

CH4O3SO3:  20 mM (100%) 

Flow rate 1 mL.min-1 

Pump  GP40 

Auto sampler AS50 

Injection volume 25µL 

Suppresser ASRS 4mm (137mA)  

CSRS 4mm (59mA) 

Conductivity detector CD20 

 

        4.3.4  NF experimental set-up 

                  The NF cell was purchased from Osmonics (Sepa ® CF Membrane Cell). 

As shown in Fig. 4.1, the NF membrane sheet was placed in the NF cell, inside which, 

a permeate carrier was placed on top of the membrane, feed spacer below the 

membrane, and O-ring was used to seal the assembly. The active side of the 

membrane faced the feed spacer. The permeate carrier and the feed spacer were pre-

wetted with ultra-pure water and placed in the cell body. The feed, permeate, and 

concentrate lines were then connected. The surface area of the flat sheet membrane 

was 138 cm2. 
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Figure 4.1  Schematic diagram of the membrane cell set up (Falls, 2002). 

        4.3.5  NF experimental procedure 

                  In this study, nanofiltration system was set up as Fig. 4.2. Synthetic broths 

were prepared in ultra-pure water. The feed composition indicated above was 

combined to make synthetic broths of increasing complexity, i.e. single, binary, 

ternary and quaternary solutions. The composition and concentration of each solution 

in the synthetic fermentation broth were formulated on the basis of raw fermentation 

broth obtained by metabolically engineered E. coli KJ122 (Jantama et al., 2008). The 

feed solution was contained in a 5 L feed vessel. The temperature of the feed vessel 

was controlled at 25 ±0.5oC by using circulating thermostat bath. A high-pressure 

pump was used to pass the feed solution through the cross flow NF membrane 
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module. Transmembrane pressure was controlled by a back pressure valve, which was 

installed on the retentate outlet. The pressure was monitored through two digital 

manometers located on the inlet and outlet of the membrane module. The feed flow 

rate was controlled at 400 L.h-1. The influence of the pressure 2, 4, 6, 8, 10, 14, 18 and 

20 bars and the pH 2 to 7.6 was investigated. After each pressure adjustment, the 

sample was collected when permeate volume was greater than 20 ml. The samples 

were weighted to determine the permeate flux and solute concentrations were 

determined. The conductivity and pH of samples were measured during operation. 

 

Figure 4.2  Flow schematic diagram of the nanofiltration system (Bouchoux et al., 

2005).  
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         4.3.6  Membrane pretreatment and cleaning 

                   In this work, the virgin membrane was pre-compacted by ultra-pure water 

at a constant temperature of 25±0.5°C, flow rate 400 L.h-1 and 20 bars until the water 

permeation flux was constant (1.5 h). At the end of each experiment, the membrane 

was cleaned by RO water until the conductivity of water in the feed tank was below 

20 µS.cm-1. After that, the membrane was continually cleaned with ultra-pure water 

until the conductivity of water in the feed tank was below 5 µS.cm-1. The cleaning 

steps were operated at 25±0.5°C, 10 bar and flow rate 150 L.h-1.  

        4.3.7  Water permeability 

                  The water permeability is always measured prior to and after each 

experiment by circulating ultra-pure water in order to monitor a change in the 

membrane properties during the previous experiment. The mean hydraulic 

permeability Lp0 is then calculated from the slope of the plot of Jw versus ∆P, which 

is in accordance with equation 4.1. 

��� = ��
∆
                                                      (4.1) 

where Lp0 is the water permeability (L.m-2.h-1.bar-1), Jw is the water flux (L.m-2.h-1) 

and ΔP is the applied pressure (bar). 

 The water flux was measured for increasing pressures from 2 to 20 bar. A 

membrane sample presenting a visible mechanical damage or an abnormally high 

water flux (more than 20% difference between two consecutive permeability 

measurements) was replaced by a new one. 

         The initial water permeabilities of Desal 5 DK, Desal HL and NF45 and 

XLE membranes are presented in Table 4.7. The initial water permeability was 
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measured before doing the first experiment. The Desal HL exhibited the highest initial 

water permeability of 5.0 x 10-6m3.s-1.m-2.bar-1 whereas Desal 5 DK exhibited the 

lowest one of 1.3 x 10-6m3.s-1.m-2.bar-1. The initial water permeabilities of NF45 and 

XLE membranes were about 2.5 x 10-6m3.s-1.m-2.bar-1 and 2.5 x 10-6m3.s-1.m-2.bar-1, 

respectively.  

Table 4.7  Initial water permeabilities of Desal 5 DK, Desal HL, NF45 and  XLE   

  membranes (25 °C and 4-20 bars). 

Membrane Pure water permeability 

Lpo (x 10-6m3.s-1.m-2.bar-1) 

R-squared 

Desal 5 DK 1.3 0.971 

Desal HL 5.0 0.956 

NF45 2.5 0.989 

XLE 2.5 0.998 

 

 In addition, Table 4.8 shows the initial hydraulic permeabilities of each 

piece of NF45 membrane used in this work. One can state that the water permeability 

varies about 2.5 to 2.8 x 10-6m3.s-1.m-2.bar-1 and has average value as 2.6 x 10-6m3.s-

1.m-2.bar-1. R-square values obtained from the linear plot J
V versus ∆P were higher 

than 0.989 and had average values as 0.994 ± 0.003. The slight deviation of the initial 

water permeabilities of each membrane guarantees the repeatability of the 

experiments carried out with the different membrane samples.  
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Table 4.8  Initial pure water permeabilities of NF45 membrane samples used in this     

                  work (25°C and 4-20 bars). 

Number of 

membrane 

Pure water permeability 

Lpo (x 10-6m3.s-1.m-2.bar-1) 

R-squared 

1 2.5 0.989 

2 2.6 0.994 

3 2.7 0.998 

4 2.8 0.992 

5 2.6 0.995 

Average 2.6±0.011 0.994±0.003 

 

        4.3.8  Retention coefficient 

       In NF experiments, the observed retention, Robs, of each component is 

usually defined as: 

��� = 1 − ��
��

                                                   (4.2) 

where cp and cf are the permeate and retentate (or feed) solute concentrations (M) 

respectively.  

       The retention coefficient equal to 1 indicates that the solute is totally 

retained, whereas a value of zero means that the solute is completely transfered 

through the membrane. 

 

 

 



 

139

         4.3.9  Experimental procedure at constant feed concentration mode 

                   The investigation of the mass transfer has been carried out in constant 

concentration mode, with both retentate and permeate streams recycled back into the 

feed tank. Firstly, the feed solution (2 L) was circulated at the flow rate of 400 L.h-1 

and at applied pressure of 2 bar during 30 min in order to homogenize the feed 

solution. Then, various pressures have been applied between 2 and 20 bar. For each 

pressure, a permeate sample was collected and weighed in order to determine the 

permeation flux as well as the solute concentration in the permeate to calculate the 

retention of the solutes. 

 The glucose retention has been also measured in order to check the 

membrane characteristics. This was systematically performed after the membrane 

pretreatment step for any new membrane and then randomly once a month with a 

solution of glucose at a concentration of 0.1 M. 

         4.3.10  Experimental procedure for the purification step 

                     The purification step of the synthetic fermentation broth was operated 

using a two-step process. The first one is a nanofiltration step carried out in a 

diafiltration mode. Diafiltration is a dilution process that involves removal of non-

retained impurities and the recovery of retained target species, like succinate based on 

their size and chrges by using NF membrane in order to obtain pure succinate. In that 

case, the permeate is not recycled back to the retentate tank and the retentate volume 

is maintained constant by adding ultra-pure water. The initial retentate volume is 

fixed at 2L. The diafiltration has been carried out at 20 bar during 26 h. The 

permeation flux as well as the solutes concentrations were measured every 30 min. 

The diafiltration mode using the NF membrane has been followed by a concentration 
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step using a RO membrane in order to increase the succinate concentration in the 

purified synthetic fermentation broth. In that case, only retentate is recycled back to 

the feed tank whereas the permeate is collected in the permeate tank. This 

concentration step has been also carried out at 20 bar using the XLE reverse osmosis 

membrane. Starting with 2 L of the diafiltrated synthetic fermentation broth, the 

operation was carried out during 2.5 h. The permeation flux as well as the solutes 

concentrations were measured every 30 min.  
 The schematic diagram of diafiltration mode is shown in Fig. 4.3. The 

mass balance equation can be represented by  

�� = �� exp�−�∗(1 − ���)�                                (4.3) 

and 

�∗ = ��
� 

                                               (4.4) 

where c
0 

is the initial concentration of solute (M), c
r is the concentration of solute in 

retentate (M) and V* is the number of diavolumes. A diavolume was defined as the 

total ultra-pure water volume, Vp (L) added during diafiltration divided by the initial 

retentate volume, V0 (L). 
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Figure 4.3  Schematic diagram of diafiltration mode. 

  Additionally, Fig. 4.4 shows the schematic diagram for concentration 

mode. The mass balance equation can be written in the following way:  

!� 
�"

#
$%&' = �"

� 
                                      (4.5) 

where Vr
 
is the retentate volume (L).

 

Figure 4.4  Schematic diagram of concentration mode. 
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        4.3.11  Separation factor and purification performances 

                    In order to estimate the succinate/acetate separation efficiency, one can 

also use the separation factor, SF, which is expressed by the solute concentration ratio 

in the permeate divided by the concentration ratio in the retentate. The separation 

factor can be also calculated from the succinate and acetate retentions as: 

() = (�*+, �-.+⁄ )�
(�*+, �-.+⁄ )"

= 01$%&',*+,
01$%&',-.+

                                      (4.6) 

  SF values higher than 1, like those obtained in this work, mean that the 

succinate is enriched in the NF retentate, which is the target specie, compared to the 

feed. 

         The process performances can be also evaluated according to the 

succinate yield in the retentate, defined as the succinate concentration in the retentate 

compared to the feed solution was also estimated: 

% 56789 =  �",-.+ �"
��,-.+ ��

× 100                                        (4.7) 

where Vf  and Vr are the feed and retentate volumes (L), respectively. 

 Finally, the succinate purity, defined as the ratio of the succinate 

concentration to the sum of succinate and acetate concentration in the retentate.  

% <=>6?@ =  �",-.+
�",-.+A�",*+,

× 100                                     (4.8) 

4.4  Results and discussions 

        Experiments were first carried out with synthetic single-solute solutions as well 

as binary-solute solutions containing succinate and acetate. The influence of the 

operating conditions (pH, pressure) as well as the broth composition on the 

nanofiltration performances were investigated. Then, according to the knowledge of 
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the mechanisms governing the mass transfer of the solutes through the membranes the 

best conditions to be used to purify the succinate have been evaluated regarding the 

purity of succinate.    

        4.4.1  Preliminary experiments 

 Many research groups have reported that NF membranes show a higher 

retention of divalent anions such as succinate than monovalent anions such as acetate. 

Especially, in the mixed solution with monovalent and divalent anions, some NF 

membranes showed negative retention of monovalent ions. (Schaep et al., 2001; Kang 

et al., 2005; Umpuch et al., 2010). Then, nanofiltration could be applied to recover 

succinate and remove the impurities such as acetate. As succinate is divalent anion 

having a larger size than acetate, the first objective of this study was to select the 

suitable NF membranes for the separation of succinate from acetate in the 

fermentation broth by combination between charge and size effects. In this 

experiments, three NF membranes, NF45, Desal HL and Desal 5 DK were first 

chosen for comparing the process performance. All three NF membranes are 

negatively charged at pH above 4 and average molecular weight cut-off of are about 

150-300 g. mol-1. All three NF membranes were tested with uncharged solutions such 

as glucose for comparing a permeate flux and glucose retention.  

      In order to compare the permeate flux, glucose retention and succinate 

retention, three NF membranes, NF45, Desal HL and Desal 5 DK, were tested with 

pure water, glucose and succinate solutions. Firstly, the experiments with pure water 

and 0.1 M glucose solution were carried out at various pressure differences. The 

variations of the permeate flux in water and glucose solutions versus the applied 

pressure are depicted in Fig. 4.5. As expected, one can observe that all the three 
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membranes show an increase of the permeate flux for increasing pressures. The 

permeate flux in presence of glucose increases in the order: Desal HL > NF45 > Desal 

5 DK. The permeate flux of Desal HL is higher than that of NF45 and Desal 5 DK.  

 

Figure 4.5  Permeate flux for water (empty symbols) and glucose solutions (full   

  symbols) of three NF membranes as a function of the pressure. 

Aaaaaaaaa     NF45 (    ,    ), Desal HL (    ,    ) and Desal 5 DK (    ,    ). 

 Then, the glucose retention was also determined. The variations of 

glucose retentions as a function of the permeate flux for the three NF membranes are 

shown in Fig. 4.6. As expected, the glucose retention of all three membranes increases 

with the permeate flux. It is observed that Desal 5 DK and NF45 membranes show a 

high glucose retention (>90%) for the highest permeate fluxes. Glucose retention by 

Desal HL is lower than those obtained for the other two membranes. The glucose 

retention of Desal 5 DK membrane is slightly higher than that of NF45 membrane for 
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a permeate flux lower than Jv = 1×10-5 m3.m-2s-1 (∆P < 8 bar) and the glucose 

retention for both membranes showed no difference for higher permeation fluxes (∆P 

> 10 bar) (Fig. 4.6). 

 

Figure 4.6  Observed retention of glucose as a function of permeate flux - 0.1 M   

glucose solutions - NF45 (    ), Desal HL (    ) and Desal 5 DK (   ) 

membranes. The lines were fitted by Eq. B.1 (See Appendix A). 

       The retention and permeate flux of a synthetic solution containing 0.7 M 

succinate was measured with the three NF membranes since previous studies have 

reported that E. coli KJ122 produced about 0.7 M succinate from 10 % glucose. Fig. 

4.7 illustrates the variations of the permeate flux versus the operating pressure. As 

expected, the permeate fluxes of succinate with Desal 5 HL, NF45 and Desal 5 DK 

increase with the applied pressure. It was also observed that the permeate flux in 

presence of succinate decreases according to the sequence: Desal HL>NF45>Desal 5 
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DK. In addition, the permeate flux is lower than that of pure water and glucose 

solutions because of the higher osmotic pressure in presence of succinate. 

 
Figure 4.7  Effect of pressure on permeates flux - 0.7 M potassium succinate. 

aaaaaaaa         NF45(    ), Desal HL(     ) and Desal 5 DK(    ) membranes at pH 7.  

 

Figure 4.8  Observed retention of succinate as a function of permeate flux - 0.7 M 

potassium succinate - NF45 (   ), Desal HL (    ) and Desal 5 DK (   ) 

membranes at pH 7. The lines were fitted by Eq. A.1 (See Appendix A). 

0

0,2

0,4

0,6

0,8

1

0 2 4 6 8 10 12 14 16 18 20

P
er

m
ea

te
 f

lu
x
 J

V
(x

1
0

-5
m

3
.m

-2
.s

-1
)

Pressure (Bar)

NF45

Desal HL

Desal 5 DK

0

0,2

0,4

0,6

0,8

1

0 0,1 0,2 0,3 0,4 0,5

R
o
b

sS
u

cc
in

a
te

Permeate flux JV(x10-5m3.m-2.s-1)

NF45

Desal HL

Desal 5 DK



 

147

       In addition, the retention of succinate for the three membranes increases 

with the permeate flux. The retention of succinate is lower than 20% among all the 

three NF membranes. Nevertheless, Desal 5 DK showed a higher retention of 

succinate than that of NF45 and Desal HL (Fig. 4.8).   

 Discussion 

       The permeate flux in presence of glucose is lower than that measured in 

water due to the osmotic pressure of the glucose solution. In addition, the glucose 

retention of three membranes was measured. As the retention of uncharged solute 

such as glucose only results from size effect, glucose is retained because the size of 

glucose might be much larger than that of membrane pore. In addition, the 

observation is analogous to the results reported by Umpuch et al., (2010), Bouchoux 

et al., (2005), Wang et al., (2002a), Wang et al., (2005), and Vellenga and Tragardh 

(1998). Based on the experimental results, it can be concluded that Desal HL 

membrane is the loosest membrane and Desal 5 DK membrane is the tightest 

membrane. 

       Since the succinate is the target product in this work then all three 

membrances were tested with 0.7 M succinate. The transfer of a charged solute such 

as succinate depends on the combination of size and charge effects. The retention of a 

charged solute is high at low concentration due to charge effect. However, it is mainly 

fixed by its size at high concentration (Kang and Cheng, 2005; Umpuch et al., 2010) 

where charge effects are weak. Therefore, the succinate retention of three membranes 

was lower than 20% for the three membranes at 0.7 M of succinate. 

                   The aim of this part was to select a NF membrane for the separation of 

succinate from fermentation broth. All three NF membranes, NF45, Desal HL and 



 

148

Desal 5 DK were tested with glucose solution. A high-flux membrane with a high 

glucose retention would be expected to retain succinate while acetate would be 

removed. Thus, the NF45 membrane was selected for the separation of succinate from 

fermentation broth because it shows a high retention of glucose with a permeate flux 

comparable to that of the other two membranes. 

4.4.2  Mass transfer in single-solute solution 

          4.4.2.1  Succinate transfer 

                   This section investigates the mass transfer of succinate through the 

NF45 membrane. The experiments were carried out with single-solute solutions. The 

influence of the feed concentration as well as the feed solution pH on succinate 

retention are discussed. The influence of the counter-ion such as Na+ and K+ is also 

evaluated.   

                               4.4.2.1.1  Influence of the feed concentration 

                                   The retention of a charged solute depends on its 

concentration, and the retention results from the combination of size and charge 

effects. It was previously shown that the retention of succinate at 0.7 M was low. 

Therefore, the influence of succinate concentration on its retention by NF45 

membrane was investigated.  

        Firstly, the influence of the succinate concentration on 

the retention of succinate was investigated at pH 7 which is close to the value of the 

real fermentation broth. The experiments were carried out with single-solute solutions 

containing 0.1-0.7 M succinate. The observed retention of succinate versus permeate 

flux at different concentrations is presented in Fig. 4.9.  

 



 

149

 

Figure 4.9  Observed retention of succinate as a function of permeate flux - NF45 

aaaa  membrane at pH 7 - influence of succinate concentration: 0.1 M (   ), 

aa  0.2 M (   ), 0.3 M (   ), 0.5 M (   ) and 0.7 M (x). The lines were fitted by 

 Eq. A.1 (See Appendix A). 

               From the results, it is observed that the retention of 

succinate increases with the permeate flux. The decline of the permeate flux through 

the membrane at high feed concentration is due to the effect of the osmotic pressure 

of succinate in feed solution. In addition, a continuous decrease of retention from 96 % 

to 15 % is observed for increasing concentrations from 0.1 to 0.7 M.   

                                                Discussion 

         Generally, the retention of a charged solute such as 

succinate is affected by electrostatic interactions and size effect. The succinate 

retention in single-solute solution is high at low salt concentration since the 
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electrostatic interactions are dominant. However, the retention decreases for 

increasing salt concentrations since the electrostatic repulsion become weaker and the 

retention is mainly governed by size effect. This phenomenon is called the screening 

effect (Kang et al., 2004). In this case, the negative charge of membrane is screened 

up by its counter-ions. Then, the repulsion between co-ions and membrane surface 

becomes small, causing succinate permeate through the membrane more easily 

resulting in a decrease of the succinate retention. Similar results were also obtained by 

Labbez et al. (2002), Mazzoni et al. (2007), Bellona and Drewes, (2005), Kang et al. 

(2004), Bouchoux et al. (2005), Kang and Chang, (2005) and Umpuch et al. (2010). 

Furthermore, the retention of succinate at JV = 0.2 x 10-5m3.m-2.s-1 for different feed 

solutions is shown in Table 4.9. One can observe that at pH 7.0, the succinate 

retention increases with decreasing succinate concentration due to the strong 

electrostatic repulsion. However, the low retention observed at low concentration like 

0.1 M and pH about 2.2 since the succinate is totally neutral form at pH 2.2 thus the 

retention is mainly fixed by size effect. Similarly, the transfer of succinate is governed 

by its size at high succinate concentration. Then, it was indicated that the succinate 

retention is close to the retention of neutal form (succinic acid) when more 

concentrated solutions (>0.7 M) are filtrated. 
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Table 4.9  Retention of succinate at JV= 0.2 x10-5m3.m-2.s-1 for different feed solutions. 

Feed solutions Retention (%)  

0.1 M succinate pH 7.0 90 

0.2 M succinate pH 7.0 69 

0.3 M succinate pH 7.0 58 

0.5 M succinate pH 7.0 26 

0.7 M succinate pH 7.0 15 

0.1 M succinic acid pH 2.2 5 

 

                                                Conclusion 

               In this experiment, the influence of the concentration on 

succinate retention was investigated in single-solute solutions. The retention of 

succinate depends on its concentration and decreases for increasing concentrations 

due to the screening effect. Finally, it was concluded that at low succinate 

concentrations, succinate retention is mainly governed by its charge, while at high 

concentrations it is mainly governed by its size.  

                               4.4.2.1.2  Influence of the feed pH  

                                   It was previously shown that the mass transfer of 

succinate at low salt concentration depends on the electrostatic interactions. These 

interactions, which are fixed by the charge of the solute as well as that of the 

membrane, is thought to be varied according to the pH of the solution. Thus, the 

influence of the pH is investigated at low concentration (0.1 M) where the charge 

effects are still involved.  
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             The influence of the pH on the retention of succinate is 

represented in Fig. 4.10. The retention of succinate increases with the permeate flux 

for all feed pH. From the results, it is also observed that the retention increases with 

increasing feed pH. More precisely, at JV = 4.0 x10-5 m3.m-2.s-1, the retention of 

succinate increases from 28 % to 98 %, when the pH increases from 2.2 to 7.6.  

 

Figure 4.10  Observed retention of succinate and succinic acid as a function of the  

permeate flux at feed concentration 0.1 M - NF45 - influence of feed pH:   

pH 7.6 (   ), pH 7.0 (   ), pH 5.0 (   ), pH 4.2 (   ) and pH 2.2 (×). The 

lines were fitted by Eq. A.1 (See Appendix A). 

                      Discussion  

                                    The results show that the retention of succinate is 

strongly affected by the pH. The succinate retention increases with increasing the feed 

pH. Similar result has been reported by other researchers (Berg et al., 1997; Freger et 

al., 2000; Prochaska et al., 2014). They found that the retention of acetic acid, lactic 
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acid, glutamic acid and fumaric acid increases with increasing pH from 3.0-7.0 due to 

more dissociated form of organic acids as well as more negatively charged membrane 

surface. Additionally, the high retention of amino acid such as L-glutamate (pKA1 = 

2.17 and pKA2 = 9.13) was observed at pH 9.0 since the amino acid is mainly in a 

divalent form at pH 9.0 (Li et al., 2003). In these conditions, one can observe that at 

low concentration, increasing pH resulted in a higher retention because of increasing 

electrostatic repulsions.  

   As succinic acid is a dicarboxylic acid, then it can exist 

in three forms i.e. neutral, monovalent and divalent. As already explained, the ionic 

fraction of each form can be obtained from the dissociation equilibrium constant. (See 

Appendix D). Succinate form varies with pH (pKA1 = 4.2 and pKA2 = 5.6). At pH 2.2, 

succinic acid is totally neutral. At pH 4.2, succinic acid is shared equally between the 

neutral and monovalent forms. At pH 5, it is mixed in the three forms, neutral, 

monovalent and divalent. At pH 5.6, it is a mixing between mono and divalent forms. 

At pH higher than 7, it is mainly in divalent form.  

    To demonstrate the role of the pH on the retention of 

succinate according to the ratio between its neutral and dissociated forms, we report 

the variation of the succinate retention versus the pH for various permeate fluxes in 

Fig. 4.11. The low retention observed at pH 2.2 corresponds to the retention of the 

neutral form (size effect). The retention increases with increasing feed pH from 2.2 to 

5.0 since succinic acid becomes more monovalent form and the retention is fixed by a 

combination between size and charge effects. At pH above 7, the high retention is 

obtained according to the high fraction of divalent form. Furthermore, Fig. 4.12 shows 

that the curve representing the variation of the succinate retention versus the pH is a 
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S-shape curve which is completely similar to the variation of the ionic fraction of the 

divalent succinate form. From this result, it can be considered that at low succinate 

concentrations, the retention increases due to the increasing of divalent succinate ions. 

 

Figure 4.11  Observed retention of succinate as function of feed pH - influence of 

            permeate flux (see legends) - NF45 - feed solutions containing 0.1 M at 

            different pH values (pH 2.2-7.6). 
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Figure 4.12  Observed succinate retention and ionic fraction of divalent succinate 

             ions as function of feed pH - NF45 - feed solutions containing 0.1 M at 

      different pH values (pH 2.2-7.6). 

      Conclusion 

                                                The influence of pH on the succinate retention was 

investigated in single-solute solutions. At low concentration (0.1 M), the succinate 

retention is strongly dependent on the pH. The retention increases with increasing the 

pH from 2.2 to 7.6 due to the electrostatic repulsions. In addition, a good correlation 

has been observed between succinate retention and its divalent ionic fraction. Indeed, 

the retention at high pH is mainly fixed by electrostatic repulsions then the succinate 

is retained. However, the succinate retention decreases at low pH since the succinate 

is totally neutral and its transfer is fixed by its size. 
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                               4.4.2.1.3  Influence of the counter-ion Na+/K+  

                                    In this work, succinic acid has been produced through 

fermentation by E.coli KJ122. To ensure the productivity of succinic acid, a suitable 

pH value for microorganism growth must be maintained at 7.0 by addition of a mixed 

solution of KOH and K2CO3. Thus, the purification process needed to obtain the 

succinic acid in a suitable form (potassium succinate). Previous work on succinate 

purification by NF, was made with a sodium succinate salt (Kang and Chang, 2005). 

Even if sodium ions and potassium ions have the same valence (monovalent cations), 

they have different size and diffusion coefficient as shown in Table 4.10. Then the 

influence of Na+ and K+ on succinate retention was investigated.  

Table 4.10  Diffusion coefficient (Ds) and stokes radius (rs) of ions.  

asee Wang et al., 2005 

bsee  Liu et al., 2004 

cCalculated from the Stokes-Einsten relation rs= kBT/6���Ds, with kB=1.3807x10-23 J/K, �� = 8.937 

  x10-4 Pa.s and T=298.15 K                       

Fig. 4.13 shows the observed retentions of NF45 membrane in single-solute 

solutions (NaCl, KCl, Na2Suc and K2Suc) as functions of permeate flux, at a 

concentration of 0.1 M and pH 7.0. It was observed that the retention increased with 

increasing in permeate flux in all cases. The retentions of K2Suc and Na2Suc were 

Ions Molecular weight 

(g/mol) 

Ds (10-9m2/s) rs 
c 

(nm) 

Valence 

Na+ 23.0 1.333a 0.183 1 

K+ 39.1 1.957a 0.124 1 

Cl- 35.45 2.032a 0.120 1 

Suc2- 116.09 0.94b 0.295 2 



 

157

higher than that of KCl and NaCl. In addition, the retention of KCl was slightly lower 

than NaCl. The retentions of KCl and NaCl were about 58% and 65% at JV = 3.5 x10-5 

m3.m-2.s-1, respectively. At the same value of JV = 3.5 x10-5 m3.m-2.s-1, the retentions 

of Na2Suc and K2Suc were about 99%. 

 

Figure 4.13  Observed retention of the succinate and chloride ions as a function of 

            permeate flux: influence of the cation. 0.1 M K2Suc (   ), Na2Suc (   ), 

            KCl (   ) and NaCl (   ) - NF45 membrane at pH 7.0. The lines were 

           f itted by Eq. A.1 (See Appendix A). 

               Discussion 

   According to these results, one can observe that 

the retentions of Na2Suc and K2Suc are similar and higher than 99%. It might be due 

to the fact that the transfer of succinate is fixed by the fraction of the divalent form at 

pH 7 as already reported. A high succinate retention could be also affected by 
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counter-ions. Furthermore, the experiments were carried out with small anions like 

chloride to evaluate the impact of size and charge of anions on the transfer. It was 

found that the retention of succinate is higher than that of chloride (RNa2Suc>RNaCl and 

RK2Suc>RKCl) due to the larger size and charge of succinate compared with chloride 

ions (Table 4.10). Similar results have been previously reported by Schaep et al. 

(1998) and Wang et al. (2005). They reported that a larger size and charge solute like 

sulphate (SO4
2-) is more retained than chloride. Moreover, it was observed that the 

retention of KCl (K+) is lower than that of NaCl (Na+). As K+ ion has a larger 

diffusion coefficient and a lower stokes radius than those of Na+ (Table 4.10). Then, 

K+ is less retained than Na+ and thus results in a lower retention of KCl. In these 

conditions, one can conclude that the counter-ions like K+ and Na+ has influence on 

the transfer of small size and charge anions like chloride. 

 Conclusion 

                                    Based on the above results, the salt retention sequence 

for a NF45 membrane was: RK2Suc≈RNa2Suc>RNaCl>RKCl. It can indicate that the 

retention of low valence and small size such as chloride is dependent on the diffusion 

coefficient and size of counter ions. On the contrary, the retention of high valence and 

large size solutes such as succinate is quite independent on the diffusion coefficient 

and size of counter ions since the retention is fixed by charge and size of succinate. 

Finally, it can be concluded that Na+ and K+ have no significant effect on succinate 

retention. 
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             4.4.2.2  Transfer of different organic acids 

      E. coli KJ122 was developed for succinate production from glucose, 

acetate is produced as a major by-product and pyruvate is a minor by-product (Jantama 

et al., 2008). pKA of succinic acid, acetic acid and pyruvic acid are below pH 7 and 

above pH 2 as shown in Table 4.11. The comparison of succinate, pyruvate and acetate 

retentions were made at pH 7 and pH about 2. The experiments were carried out at low 

concentration (0.1M) for which the retention is influenced by the charge. 

      Fig. 4.14 illustrates the variation of the organic acids retention as 

function of the permeate flux for the two pH. The results indicate that the organic 

acids retention at pH 7 is higher than that at pH 2. At pH 7, succinate retention is 

higher than other two organic salts. The retentions are 97% for succinate, 81% for 

pyruvate and 80% for acetate at JV = 3.0 x10-5 m3.m-2.s-1. At pH about 2, the retention 

sequence was pyruvic acid >succinic acid >acetic acid. 
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Figure 4.14  Observed retention of organic acids as a function of permeate flux - 

NF45 membrane - potassium salts; 0.1 M succinate pH 7.0 (   ), 0.1 M 

pyruvate pH 7.0 (   ), 0.1 M acetate pH 7.0 (   ), succinic acid pH 2.2  

  (  ), pyruvic acid pH 2.0 (   ), acetic acid pH 2.09 (   ) and 0.7 M 

 succinate (x). The lines were fitted by Eq. A.1 (See Appendix A). 

                                               Discussion 

                                   Since the pKA of the three organic acids (Table 4.11) are 

below pH 7, acetic acid and pyruvic acid are in monovalent form and succinic acid is 

mainly in divalent form, the electrostatic interactions between charged solute and 

charged membrane are dominant compared with the size effect. Then, the retention of 

organic salts (dissociated form) is higher than that in neutral form. At pH 7 the 

succinate retention is higher than the other two organic acid salts as expected from 

their charges (-2 for succinate and -1 for pyruvate and acetate) and sizes 

(succinate>pyruvate>acetate) as shown in Table 4.6. This result is similar to those 

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 1 2 3 4 5 6 7

R
o
b

s

Permeate flux JV(x10-5m3.m-2.s-1)

0.7 M succinate pH 7.0

0.1 M succinate pH 7.0

0.1 M pyruvate pH 7.0

0.1 M acetate pH 7.0

0.1 M succinic acid pH 2.2

0.1 M pyruvic acid pH 2.0

0.1 M acetic acid pH 2.09



 

161

previously obtained with the same NF membrane (NF45) by Kang and Chang (2005). 

Since succinic acid and acetic acid are totally in neutral form at pH about 2, their 

transfer is mainly fixed by their size. Since acetic acid is smaller than succinic acid, 

its retention is lower. However, the retention of pyruvic acid at pH about 2 is higher 

than that succinic acid and acetic acid. This phenomenon could be explained by the 

ionic fraction of pyruvic acid as function of pH. Indeed, based on the pKA of pyruvic 

acid (2.5), at pH 2, pyruvic acid is a mixed form between neutral and monovalent 

(Table 4.12). Thus, at pH 2, the retention of pyruvic acid is affected by its size as well 

as its charge.  

Table 4.11  Characteristics of the solute used. 

Organic 

salts 

Molecular 

weight (g/mol) 

pKA Net charge Ds 
a 

(10-9 m2/s) 

rs 
b 

(nm) 

Succinate 116.09  pKA1 = 4.2 

 pKA2 = 5.6 

2- 0.94 0.295 

Pyruvate 87.06 2.5 1- 1.233 0.198 

Acetate 59.05 4.76 1- 1.295 0.187 

  a see  Liu et al., 2004 

   b Calculated from the Stokes-Einsten relation rs= kBT/6���Ds, with kB=1.3807x10-23 J/K,  

    �� = 8.937x10-4 Pa.s and T=298.15 K 
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Table 4.12  The ionic fraction and organic acids retention at JV = 1x10-5 m3.m-2.s-1 at  

          pH 2 and pH 7. 

pH Ionic fraction (%) Retention (%) 

 H2Suc HSuc- Suc2- HPyr Pyr- HAce Ace- Suc Pyr Ace 

2 100 0 0 70 30 100 0 14 33 8 

7 0 5 95 0 100 0.5 99.5 94 70 67 

 

 Additionally, the retention of the three organic acids is 

compared at JV = 1 x10-5 m3.m-2.s-1 for pH 2 and pH 7 as shown in Table 4.12. It was 

observed that the retention of the impurities such as pyruvate and acetate increases 

with increasing the pH from 2.0 to 7.0 similar to the retention of succinate since the 

fraction of monovalent form of both impurities increases. However, the retention of 

both impurities is not equal to 100 % whilst totally dissociated. It might be due to that 

pyruvate and acetate have low valence and smaller size than succinate. Then, the 

transfer of both impurities at pH 7 is not governed by only their charge but also 

depends on their size. On the other hand, at pH 7, the transfer of succinate is mainly 

fixed by the fraction of divalent form. The retention of succinate was close to 95%. 

Those of acetate and pyruvate were lower, 70 and 67 %, respectively. 

  Conclusion 

    The retention of succinate and impurities depends on the 

pH. At pH 2, the low retention of succinic acid and acetic acid are observed since they 

are in neutral form and the retention is fixed by their size. However, the transfer of 

pyruvic acid is fixed by combination between its charge and size. Then, the retention 

of pyruvic acid is higher than that of other two organic acids. At pH 7, the retention of 
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succinate is higher than that of both impurities due to their charge and size. Then, the 

separation between succinate and the impurities can be expected if it is carried out at 

pH 7.  

       4.4.3  Mass transfer in succinate/acetate mixtures 

     In the case of succinic acid fermentation from 10% glucose, E.coli KJ122 

can produce about 0.7 M succinate with about 0.1 M acetate as the main impurity 

(Jantama et al., 2008). The transfer of these two organic acids through the membrane 

was investigated in order to explain different retentions according to the fermentation 

broth composition. Therefore, experiments were carried out with binary-solute 

solutions containing both succinate and acetate at different concentrations to simulate 

different fermentation broth composition. Also, the influence of pH, concentration 

ratio and dilution factor of feed solution on the retention of both organic salts was 

investigated. 

                   4.4.3.1  Influence of the pH 

                     Succinate and acetate have different charge and size as shown in 

Table 4.11 and the charge of both organic salts depends on the pH (Table 4.12). Then, 

the ratio of charged/uncharged solute of both acetate and succinate can be estimated 

by the relationship between pH and the pKA. 

�BC�
�DE� = 10��F1�G*�                                        (4.6) 

where �H1� is concentration of charged solute and �IH� is concentration of uncharged 

solute. 

 The ratio between charged and uncharged solute is higher than 

one at pH above pKA. Then, both acetate and succinate are mainly charged solute 
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(mono and divalent forms) and thus the transfer of organic salts is governed by their 

charge at low concentration. Consequently, the high retention is obtained at low 

concentration increasing pH above pKA. On the contrary, at pH below pKA, the ratio 

between charged/uncharged solute is lower than one. They shared between charged 

and uncharged solute. Then, the transfer of both acetate and succinate depends on the 

combination of size effect and electrostatic interaction and resulted in lower retention. 

However, it could be considered that the influence of pH on the organic acids 

retention is presented in only single-solute solutions and one knows that it can be 

different in a mixture. Then, the impact of pH on the transfer of succinate and acetate 

in binary-solute solutions was investigated. The experiments with binary-solute 

solutions containing 0.7 M succinate and 0.1 M acetate were performed at different 

feed pH.  

                     The variations of the succinate and acetate retentions in binary-

solute solutions versus the permeate flux at different feed pH (varying between 4.2 to 

7.6) are plotted in Fig. 4.15.  The results obtained in single solutions at pH 7 are also 

reported for comparison. The retention of succinate at pH 7.0 is almost the same as in 

single-solute solution. In contrast, the retention of acetate is lower than that in the 

single salt solution about 60%. The maximum retention of both organic acids is 

around 20% in all conditions. 
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Figure 4.15  Observed retention of succinate and acetate in binary solute solutions 

versus permeate flux - influence of the pH (0.1 M acetate + 0.7 M 

succinate). Single solution: succinate (   ), acetate (   ) and Binary 

solution: succinate (     ), acetate (     ). The lines were fitted by Eq. A.1 

(See Appendix A). 
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Figure 4.15  (continued). 
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 Discussion  

                      Succinic acid and acetic acid are carboxylic acids. Then, the ionic 

fraction of both organic acids varies with pH as shown in the Table 4.13. The charge 

of both organic acids increases with increasing the pH from 4.2 to 7.6. Succinic acid 

is totally in divalent form and acetic acid is in monovalent form. Then, the separation 

between succinate and acetate acid is mainly fixed by electrostatic repulsion at high 

pH and low concentration. However, at pH 7, the low retention of succinate is 

observed at high concentration (0.7 M) because of the screening effect that makes the 

electrostatic repulsions weaker as previously explained. The decrease in the retention 

of acetate in presence of high concentration of succinate is also due to the screening 

effect. Therefore, the retention of succinate is not different from acetate in all cases. 

Consequently, no separation is obtained. One can observe that the charges increase for 

increasing pH have no significant effect on separation since the transfer of both 

organic acids is governed by only their size due to the high salts concentration. 

Table 4.13  Ionic fraction of each solute and each form for various pH investigated. 

pH 
Ionic fraction (%) 

HAce Ace- H2Suc HSuc- Suc2- 

4.2 75 25 50 50 0 

5.0 40 60 15 70 15 

7.0 0.5 99.5 0 5 95 

7.6 0 100 0 1 99 

 

         Conclusion 

  The influence of the pH on the transfer of succinate and acetate is 

investigated in binary-solute solutions containing 0.7 M succinate and 0.1 M acetate. 

The results showed that the separation between succinate and acetate is not achievable 
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whatever the pH because of the strong decrease of acetate retention compared with 

that observed in single solution. Indeed, it was demonstrated that at a low 

concentration like 0.1 M, the retention of acetate is high and fixed by electrostatic 

replusions. But, in presence of a high succinate concentration, the electrostatic 

repulsions become weaker and thus gives a low acetate retention. Consequently, the 

retentions of succinate and acetate are not different in binary-solute solutions. It is 

also shown that the pH has no significant influence on the separation between 

succinate and acetate at such a high concentration. 

                   4.4.3.2  Influence of the concentration ratio  

                     Based on the above results with high salts concentrations, the 

retention of succinate and acetate was low and no separation can be expected due to 

negligible electrostatic repulsions (Fig. 4.15). As we know that electrostatic 

interactions are dominant at low succinate concentration and pH 7, then the retention 

is mainly fixed by charge effect. Since succinate is more retained than acetate at low 

concentration (Fig. 4.14), one can expect a separation by decreasing the succinate 

concentration. Therefore, experiments were conducted to investigate the influence of 

the concentration ratio between succinate and acetate in the feed on the retention. 

Decreasing concentrations of succinate from 0.7 M to 0.1 M were used for a constant 

concentration of acetate, 0.1 M.  

 The variations of the retention of succinate and acetate versus the 

permeate flux are plotted for different concentration ratios (succinate to acetate) in 

Fig. 4.16. As expected, the permeate flux increases with decreasing succinate 

concentrations. Moreover, it was observed that the retentions of succinate and acetate 

increase for decreasing concentration ratios from 7 to 1. 
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  As previously discussed, Fig. 4.16a shows that the retentions of 

succinate and acetate in binary-solute solution that contains 0.7 M succinate and 0.1 

M acetate are too close and lower than 20%. The retention of succinate in binary-

solute solution is not different from that found in single-solute solution. On the other 

hand, the retention of acetate is lower than that in single-solute solution. Fig. 4.16b 

shows the variation of succinate and acetate in binary-solute solution containing 0.5 

M succinate and 0.1 M acetate. The retention of succinate in binary-solute solution is 

similar to that observed in single-solute solution. However, the retention of acetate is 

much lower than that in single-solute solution. Moreover, negative retentions are 

observed. Fig. 4.16c illustrates the retention of succinate and acetate in binary-solute 

solution that contains 0.3 M succinate and 0.1 M acetate. Both retentions are lower 

than those observed in single-solute solution. However, the retention of succinate is 

higher than that of acetate. Finally, Fig. 4.16d shows that the retention of succinate is 

much higher than acetate in binary-solute solution that contains the mixture of 0.1 M 

succinate and 0.1 M acetate. The retentions of each organic acid are not different from 

that in single-solute solution. 
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Figure 4.16  Observed retention of succinate and acetate versus permeate flux - feed 

            pH 7, 0.1 M acetate and 0.1 to 0.7 M succinate - NF45 membrane - 

            influence of the concentration ratio. Single solution: succinate (   ), 

            acetate (   ). Binary solution: succinate (   ), acetate (   ). The lines were 

            fitted by Eq. A.1 (See Appendix A). 
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Figure 4.16  (continued). 
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                                 Discussion 

             The results show that the retention of succinate increases for 

decreasing succinate concentrations. This increase is due to the strong electrostatic 

interaction between the organic acid salts and the membrane. Indeed, the transfer of 

succinate is governed by its charge at low salts concentration thus high succinate 

retention is obtained. On the other hand, at high salts concentration, the succinate 

retention is low since the transfer of succinate is mainly governed by its size (Section 

4.4.2.1.1). Then, decreasing of succinate concentration in binary-solute solutions 

results in a higher retention because of the electrostatic repulsions become stronger. 

As shown in the Fig. 4.16, the succinate retentions in binary-solute solutions are 

almost similar to that observed in single-solute solutions due to the succinate retention 

is mainly fixed by its concentration and to the low acetate concentration. However, in 

binary mixture that contains 0.3 M succinate and 0.1 M acetate, the succinate 

retention was slightly lower than that observed in single-solute solution because the 

effect due to the additional concentration of acetate is no more negligible. 

  The variations of the acetate retention versus the permeate flux 

for various concentrations of succinate are depicted in Fig.4.17. The retention of 

acetate decreases for increasing succinate concentrations. As previously mentioned, at 

high succinate concentration, the electrostatic repulsion become weaker and the 

transfer of solute is fixed by their size. Then, the acetate retentions were lower than 

those observed in single-solute solutions.  

 



 

173

Figure 4.17  Observed retention of acetate as a function of the permeate flux in 

 binary-solute solutions at pH 7, 0.1 M acetate and 0 M to 0.7 M succinate. 

 The lines were fitted by Eq. A.1 (See Appendix A). 

 As mentioned above, lower salt retention is obtained at high salt 

concentration because of the screening effect. Indeed, the electrostatic repulsion 

depends on the ionic strength, I.  

J = 0
K (2K�(=MK1� + 1�HM71� + 3�PA�)              (4.7) 

 To demonstrate the impact of the ionic strength on the retention, 

we report the variation of the succinate and acetate retentions versus the ionic strength 

of the feed for various permeate fluxes in Fig.4.18 and 4.19, respectively. Fig. 4.18 

shows that the succinate retention is strongly affected by increasing salt concentration 

due to the screening effect. It is observed that the succinate retention continuously 

decreases for increasing succinate concentration compared with the succinate 

retention at the same permeate flux, the succinate retention in binary-solute solutions 
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is slightly lower due to the presence of acetate. One can also observe that the acetate 

retention strongly decreases for increasing ionic strength (Fig. 4.19). Again, this 

decrease is due to the screening effect. Indeed, at low ionic strength, the transfer of 

both acetate and succinate are governed by their charge. On the contrary, the transfer 

of both solutes are fixed by their size at high ionic strength. Then, increasing ionic 

strength results in lower succinate and acetate retentions. In these conditions, one can 

observe that the low retention is obtained for an ionic strength higher than 1.6 M. 
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Figure 4.18  Observed retention of acetate as a function of the ionic strength. Single - 

solute solutions (Empty symbols) and binary-solute solutions (Filled         

symbols) at pH 7.0, 0.1 M acetate and 0.1 M to 0.7 M succinate. 
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Figure 4.19  Observed retention of acetate as a function of the ionic strength. Single - 

solute solutions (Empty symbols) and binary-solute solutions (Filled 

symbols) at pH 7.0, 0.1 M acetate and 0 M to 0.7 M succinate. 

                        Negative values of the retentions of ions in nanofiltration were 

already reported during nanofiltration of mixed solutions containing mono- and 

divalent ions (Hagmeyer et al., 1998; Straatsma et al., 2002). It is due to the 

competition for permeation between the membrane co-ions (showing the same sign of 

charge as the membrane), which have different size and/or charge. Divalent anions are 

more retained than monovalent ones through a negatively charged membrane. Then, 

in a solution containing succinate and acetate, succinate is more retained than acetate. 

Moreover, in order to maintain electroneutrality on both sides of the membrane, the 
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acetate permeation increases. When the concentration of acetate in the permeate 

exceeds that in the retentate, negative value of the retention are obtained. The 

permeation of acetate, which is the less retained co-ion, is facilitated by increasing the 

concentration of succinate ions, which is the more retained co-ion.  

  In addition, the negative retention of acetate in the presence of 

succinate can be explained by the concentration ratio of succinate and acetate in the 

feed. Through a simulation study using equation 2.8 (See chapter II), it is found that 

the factor influencing the retention of acetate is the concentration ratio of succinate to 

acetate. At a fixed retention of cation (K+), the retention of acetate decreases with 

increasing concentration ratio between succinate and acetate in the feed (Fig. 4.20). 

Then, the retention of acetate becomes negative at high concentration ratio. For 

instance, at the retention ratio of succinate and potassium equal to 1.1, the negative 

retention of acetate is observed when the concentration ratio is greater than 5. 

However, the negative retention of acetate could also be observed at low 

concentration ratio when the retention of succinate increased (i.e. for increasing 

retention ratio of succinate to potassium (�QRSK1 �GA⁄ )). These results are in an 

agreement with Kang and Chang (2005). They also proposed that the negative 

retention is affected by the concentration ratio between divalent and monovalent, and 

the charge of the membrane. With high concentration ratio and/or low membrane 

surface charge, the negative retention is likely occurred. The negative retention in this 

work is obtained at a concentration ratio about 5 at low permeate flux (Fig. 4.16b). 

Kang and Chang (2005) also reported that the negative retention of acetate is 

observed, at a concentration ratio about 3 for their conditions.  
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Figure 4.20  Acetate retention as a function of concentration ratio of succinate to 

 acetate in the feed ([Suc2-]/[Ace-]) - influence of the retention ratio of  

                      succinate to potassium ion. 

                                   As previously mentioned, different succinate and acetate 

retentions were achieved by decreasing the salt concentration. In order to determine 

the succinate/acetate separation efficiency, the separation factor is used to express the 

ratio of the concentration of acetate and succinate in the permeate relative to the 

concentration ratio of these solutes in the retentate. Then, the variation of separation 

factor versus permeate flux are presented in Fig. 4.21. As expected, the separation 

factor was close to 1 for the concentration ratio about 5 and 7 since the transfer of 

succinate was governed by size effect. However, the separation factor was higher than 

1 for the concentration ratio about 1 and 3 due to the fact that the transfer of succinate 

was fixed by its charge. This means that the retentate solution was enriched in 

succinate compared with the feed. Moreover, as expected, the separation factor 
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increased by decreasing the succinate concentration. The highest separation factor 

was obtained at a concentration ratio about 1. 
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Figure 4.21  Separation factor of succinate as function of the permeate flux at feed 

            pH 7.0 and feed solutions containing 0.1 M acetate and 0.1 to 0.7 M 

            succinate  

 

 

 Conclusion 

   In this section, the influence of the concentration ratio of 

succinate to acetate was studied in binary-solute solutions. The results showed that the 

retention of both solutes depends on the concentration ratio. For a concentration ratio 

equal to 7 (0.7 M succinate/0.1 M acetate), the succinate and acetate retentions are 

low and too close. However, for decreasing concentration ratio to 1 (0.1 M 

succinate/0.1 M acetate), one can observe that the increase of succinate retention is 

higher than that of acetate. Then, the separation between succinate and acetate can be 

expected.  

                   4.4.3.3  Influence of the dilution factor 

                    From the previous experiments, it was concluded that the 

separation of succinate and acetate from a fermentation broth containing 0.7 M of 

succinate and 0.1 M of acetate is not achievable. Indeed, succinate and acetate 

retentions are too close and low (less than 20%) (Figs. 4.15b and 4.16a). However, the 

separation might be effective only at lower salt concentration and pH at 7 since 

succinate is then completely retained contrary to acetate (Fig. 4.16d). In order to 

evaluate the influence of the broth concentration on the transfer of both solutes and 

the separation efficiency, the nanofiltration of the binary-solute solution (0.7 M 
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succinate/0.1M acetate) has been performed at different dilution factors (1 - 2 - 4 - 6 - 

8 - 10) at pH 7. 

  The variations of succinate and acetate retentions versus 

permeate flux were in agreement with those previously observed at various 

concentrations (Fig. 4.22). For a dilution factor equal to 1, the retention of succinate 

and acetate are low and similar. Then, no separation is expected in this condition. But, 

for increasing dilution factors, i.e. decreasing feed concentrations, it is observed that 

the increase of the succinate retention is higher than that of acetate. Then the 

succinate/acetate separation can be achieved for diluted solutions. Moreover, at a 

dilution factor 4, negative values are obtained for the retention of acetate.  
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Figure 4.22  Observed retention of succinate and acetate in binary solute solutions  

                      (0.1 M acetate + 0.7 M succinate) at pH 7- NF45 membrane - influence 

           of the dilution factor. Single solution: succinate (   ), acetate (   ) and 

           Binary solution: succinate (   ), acetate (   ). The lines were fitted by   

           Eq. A.1 (See Appendix A).  
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Figure 4.22  (continued).  
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Figure 4.22  (continued). 
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 Discussion 

   Based on the above results, the retention of succinate and 

acetate increases when increasing dilution factors, i.e. decreasing feed concentrations. 

Then, increasing dilution factor results in a higher retention because of increasing 

electrostatic replusions. It is also observed that the increase of the succinate retention 

is greater than that of acetate because the charge and size of succinate are higher than 

those of acetate. Consequently, the separation between succinate and acetate could be 

achieved for diluted solutions. Similar results have been previously reported (Li et al., 

2003). It was also found that the retention of L-glutamine increased with increasing 

dilution factor due to increasing electrostatic repulsion. Moreover, the acetate 

retention had negative value for a dilution factor increasing from 2-8. As already 

explained, the negative retention of monovalent anions can be obtained in presence of 

divalent anions. However, the negative retention of acetate could not be observed for 

dilution factor equal to 10. As already mentioned, the electrostatic repulsion are 

dominant at low concentration. Consequently, acetate retention becomes higher and 

reached positive values. 

   For increasing dilution factor, the electrostatic repulsion 

become stronger and high salt retentions are obtained. As previously discussed, the 

electrostatic repulsion increases for decreasing the ionic strength. In order to 

demonstate the influence of ionic strength on the retention, the variation of 

corresponding retention of succinate and acetate versus ionic strength are reported in 

Fig. 4.23 and Fig. 4.24, respectively. At dilution factor equal to 1, i.e. high salt 

concentration and high ionic strength, the retentions of succinate and acetate are low 

and similar due to the screening effect. On the other hand, high retentions of both 
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solutes were observed at high dilution factors (low salt concentration and low ionic 

strength) due to the strong electrostatic repulsions. The negative retention of acetate 

could be observed at low permeate flux when increasing the ionic strength from 0.2 to 

1.6 M.   

 

Figure 4.23  Observed retention of succinate as a function of the ionic strength in 

 binary-solute solutions (0.1 M acetate + 0.7 M succinate) at pH 7.0 

aaaa  - NF45 - influence of the dilution factor. 

 

0

0,2

0,4

0,6

0,8

1

0 0,2 0,4 0,6 0,8 1 1,2 1,4 1,6 1,8 2 2,2 2,4

R
o
b

sS
u

cc
in

a
te

Ionic strenght in feed (M) 

Jv=0.1x10-5m3.m-2.s-1

Jv=0.5x10-5m3.m-2.s-1

Jv=1.0x10-5m3.m-2.s-1

Jv=3.0x10-5m3.m-2.s-1



 

187

Figure 4.24  Observed retention of acetate as a function of the ionic strength in 

 binary-solute solutions (0.1 M acetate + 0.7 M succinate) at pH 7.0 

aaaa - NF45 - influence of the dilution factor. 

           As previously suggested, the retention of succinate became 

higher than that of acetate by increasing the dilution factor. In order to evaluate the 

influence of the dilution factor on the separation efficiency, the variations of the 

corresponding separation factor versus permeate flux are reported in Fig. 4.27. As 

expected, a better separation is obtained by increasing the dilution factor. It is found 

that the separation factor is close to 1.0 for non-diluted solution (dilution factor 1) 

while values greater than 1.0 are obtained for more diluted feed solutions. The 

maximum value increases from 2 to 6.5 for dilution factors increasing from 2 to 10. 

The fluxes corresponding to the maximum value of separation factor increased from 
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indicated that the separation performances (separation factor as well as permeate flux) 

were improved for increasing dilution factor, i.e. lower succinate concentration. 

 

Figure 4.25  Separation factor of succinate as function of the permeate flux at feed 

            pH 7.0 and feed solutions containing 0.1 M acetate and 0.7 M succinate 

            - influence of the dilution factor. 
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since the electrostatic repulsion are dominant. Then, the separation between succinate 

and acetate could be achieved by increasing dilution factors. 

        4.4.4  Purification of fermentation broth by nanofiltration 

                    In this section, the objective is to propose a methodology for the 

purification of succinate from the fermentation broth. This methodology is based on 

the knowledge of the previously investigated transfer mechanisms in order to 

determine the optimum condition to be used regarding the purity of succinate. 

                    4.4.4.1  Composition of the fermentation broth 

                      In this study, succinate fermentation broth was produced from 

glucose fermentation by E.coli KJ122 under anaerobic condition. E.coli KJ122 was 

grown in AM1 medium supplemented with 50 g/L glucose and 10 g/L KHCO3. 

Fermentations were performed at 37 oC, 100 rpm with 0.35 L working volume in 0.5 L 

small anaerobic vessel and incubated 72 h. The pH was controlled at 7 by adding 

mixture solution of 6 M KOH and 3 M K2CO3. After fermentation, succinate was 

produced as major product and acetate was produced as the main impurity. Also, 

glucose and some ions such as Cl- and PO4
3- were still remaining in the fermentation 

broth. The composition of fermention broth is shown in the Table 4.14. To evaluate 

the influence of the broth composition on the separation performances, nanofiltration 

experiments are carrired out with synthetic fermentation broths of increasing 

complexity containing succinate and impurities. 
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Table 4.14  Composition of the fermentation broth.  

 Fermentation broth 

Organism E.coli KJ122 

Medium/Condition  AM1 containing 50 g/L glucose with 10 

g/L KHCO3, 500 ml small anaerobic 

vessel, 72 h incubation, pH maintained 

with 1:1 mixture of 6 M KOH + 3 M 

K2CO3 

pH 6.98 

Conductivity (ms.cm-1) 55.85 

Glucose 0.027 M (4.86 g/l) 

Succinate 0.350 M (41.33 g/l) 

Acetate 0.065 M (3.9 g/l) 

PO4
3- 0.017 M (1.62g/l) 

Cl- 0.0045 M (0.16 g/l) 

K+ 0.80 M (31.28 g/l) 

Na+ 0.01 M (0.23 g/l) 

Total anion 

((2[Suc2-]*95%)+ ([Suc2-]*5%)+[Ace-

]+3[PO4
3-]+[Cl-]) 

0.82 

Total cation ([K+]+[Na+]) 0.81 

 

 

 

 

 

 

 



 

191

                    4.4.4.2  Preliminary experimental investigation  

                                 The composition of the fermentation broth considered in this 

study is shown in Table 4.14 at pH 7. The objective of this experiment was to 

investigate the transfer of succinate and acetate in the presence of glucose, chloride 

and phosphate. Then, experiments were performed at different composition of feed 

solutions. 

   Acetate is the major impurity in succinate fermentation broth. 

Then, a binary solution containing 0.35 M succinate and 0.065 M acetate was first 

investigated. The variations of the retention of succinate and acetate versus the 

permeate flux were plotted in Fig. 4.26a. It was observed that the retention of 

succinate is 60 % at JV=0.1x10-5m3.m-2.s-1. The retention of acetate is negative in the 

ranges of flux tested. Furthermore, the transfer of succinate and acetate were 

investigated at feed solution of increasing complexity containing succinate, acetate 

and other impurities such as glucose, chloride and phosphate. With the feed solution 

that contains succinate, acetate and glucose, the succinate retention is similar to that 

observed with binary solute solution without glucose. It was also observed that the 

retention of glucose is lower than that of succinate and the negative retentions of 

acetate obtained in this condition (Fig. 4.26b). Further, Fig 4.26c shows the variation 

of the retention of succinate, acetate and chloride with the permeate flux. The 

retention of succinate is slightly lower than that obseverd in binary-solute solution 

containing succinate and acetate. The retention of acetate is less negative than that of 

chloride. For feed solution containing succinate, acetate and phosphate, the retention 

of succinate is much lower than that observed in binary-solute solution containing 

succinate and acetate. The retention of succinate and phosphate are similar and less 

than 60 % at JV=0.1x10-5 m3.m-2.s-1 (Fig. 4.26d). Also, a negative retention of acetate 

is observed in the ranges of flux tested. 
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Figure 4.26 Observed retention of succinate and impurities as function of the 

permeate flux with increasing complexity of feed solutions. 
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Figure 4.26  (continued). 

 

-0,8

-0,6

-0,4

-0,2

0

0,2

0,4

0,6

0,8

1

0 0,05 0,1 0,15

R
o

b
s

Permeate flux JV(x10-5m3.m-2.s-1)

c) 0.35 M succinate + 0.065 M acetate

+ 0.0045 M chloride 

Suc2-

Ace-

Cl-

-0,8

-0,6

-0,4

-0,2

0

0,2

0,4

0,6

0,8

1

0 0,05 0,1 0,15

R
o

b
s

Permeate flux JV(x10-5 m3.m-2.s-1)

d) 0.35 M succinate + 0.065 M acetate 

+ 0.017 M phosphate

PO43-

Suc2-

Ace-



 

194

                                  As previously reported, the retention of succinate is low at 

concentration higher than 0.2 M (Fig. 4.9) due to the screening effect. Then, in 

binary-solute solution containing 0.35 M succinate and 0.065 M acetate, succinate is 

not completely retained since the electrostatic repulsion is less effective. Furthermore, 

in presence of inorganic salts, like chloride and phosphate in the feed solution, the 

ionic strength is higher so that electrostatic repulsion become weaker. Then, 

decreasing succinate retention is observed. As observed in other investigations, the 

addition of neutral solute like glucose have no impact on the transfer of charged 

solutes (Bargeman et al., 2005; Umpuch et al., 2010). Moreover, the retention of 

acetate was always negative and decreased with increasing permeate flux. Such 

results were in accordance with previous ones obtained with different ions of the same 

sign of charge thus showing a negative retention of the less retained one. However, 

the acetate retention became less negative in the presence of chloride since acetate has 

a bigger charge and size than chloride.  

                   4.4.4.3  Purification of succinate using a two stages process  

                                It was previously pointed out that the separation of succinate and 

acetate was not possible for a succinate concentration higher than 0.2 M. On the 

contrary, it was shown that the succinate was strongly retained by the membrane at 

succinate concentrations lower than 0.2 M at pH higher than 7, whereas the acetate 

retention is low (Fig. 4.14). Consequently, the fermentation broth had to be diluted 

before the nanofiltration step. 

                                 In order to evaluate the impact of the dilution factor on the 

separation of succinate and acetate, experiments were carried out with non-diluted and 

diluted synthetic fermentation broth, results are plotted in Fig. 4.27. The retention of 
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succinate was less than 60% and the acetate retention was negative for non-diluted 

synthetic fermentation broth (Fig. 4.27a). The separation of succinate and acetate was 

not expected under this condition since succinate was not completely retained by the 

membrane at the succinate concentration higher than 0.2 M. However, for decreasing 

feed concentrations by dilution factor 2, it was observed that the increase of the 

succinate retention was higher than that of acetate (Fig. 4.27b). Therefore, the 

separation of succinate and acetate could be expected for diluted synthetic 

fermentation broth.  

  Based on the above results, it was thus decided to carry out the 

nanofiltration of the diluted synthetic fermentation broth (dilution factor 2) in a 

diafiltration mode using NF membrane (NF45) in order to improve the removal of 

acetate and thus the purity of succinate. Finally, the retentate solution was 

concentrated using a RO membrane (XLE), which is known to ensure a complete 

retention of organic salts. The two stages process for succinate purification is 

illustrated in Fig. 4.28. 
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Figure 4.27 Observed retention of succinate and impurities as function of the 

permeate flux: (a) non-diluted synthetic fermentation broth ; (b) diluted 

synthetic fermentation broth (Dilution factor 2). 
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Figure 4.28  The two stages process operations for succinate purification.   

                                   4.4.4.3.1  Stage 1: Purification of succinate - Diafiltration 

                       In this step, the diafiltration of the succinate 

fermentation broth diluted by a factor 2 has been carried out at 20 bar during 26 h. The 

results are firstly presented in terms of the variation of the permeate flux and retention 

of solutes versus the number of diavolumes (Fig. 4.29). A diavolume is defined as the 

total ultra-pure water volume (Vp) added during diafiltration divided by the initial 

retentate feed volume (V0). The permeate flux increased during the first eight 

diavolumes because of the lower concentration and becomes constant for increasing 

diavolumes over eight (Fig. 4.29a). Furthermore, the variation of solute retention versus 

the number of diavolumes is also reported in Fig. 4.29b. One can observe that the 

retention tend towards a constant value after 3 diavolume. As expected, the succinate 

retention is about 99% and the retention of acetate is less than 70% over the whole 

range of the diavolumes. It was also observed that the retention of phosphate and 

glucose is ranged between 92% to 99% and 75% to 95% when the number of 

diavolumes increases from 0.2 to 14. The negative retention of chloride is obtained at 

low diavolume because of the presence of succinate and phosphate in feed solution 
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which is more retained. However, the chloride retention increases with increasing the 

number of diavolumes and reaches positive values due to the increasing permeate flux.  

 

 

Figure 4.29  Permate flux and retention of solutes as function of numbers of 

 diavolumes in a diafiltration of diluted synthetic fermentation broth at  

 pH 7 - ΔP =20 bar - feed composition: 0.175 M succinate + 0.0325 M 

 acetate + 0.0085 M phosphate + 0.0023 M chloride + 0.0135 M 

 glucose (Dilution factor 2). (a) permeate flux; (b) retention of 

 succinate, acetate, chloride, phosphate and glucose in retentate. 
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  Knowing the values of the solutes retentions at the 

given composition of the fermentation broth, the solute concentration in retentate 

during the diafiltration could be predicted and simulated by the mass balance equation 

(Eq. 4.3) assuming a constant retention (the retention values equal to the 

constant/mean value obtained in Fig. 4.29b). The calculated solutes concentrations in 

the retentate versus the number of diavolumes are plotted in Fig. 4.30a. One can 

observe that the concentration of solutes slightly decreases with increasing the 

number of diavolumes. From the process point of view, it is also interesting to 

calculate the purity and the yield of succinate to evaluate the separation efficiency 

during diafiltration (Fig. 4.30b). The purity of succinate is expected to increase from 

85% to 99.4% while the yield is expected to decrease from 100% to 91% when 

increasing the number of diavolumes to 14. Then, it is confirmed that NF in a 

diafiltration mode can be used to achieve the purification of succinate. 
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Figure 4.30  Concentration of solutes in retentate, succinate yield and purity as 

aaaaaa          function of numbers of diavolumes in a diafiltration of diluted synthetic 

   fermentation broth from simulation - at pH 7 - ΔP =20 bar – feed 

aaaaaa   composition: 0.175 M succinate + 0.0325 M acetate + 0.0085 M 

aaaaaa   phosphate + 0.0023 M chloride + 0.0135 M glucose (Dilution factor 2).      

              (a) concentration of succinate, acetate, chloride, phosphate and 

aaaaaaa          glucose in retentate; (b) succinate yield and purity. 
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               Further, the variation of the solute concentrations in 

the retentate versus the number of diavolumes from the experiment is illustrated in 

Figs. 4.31 and 4.32. The predicted values are also plotted for comparison. It was 

observed that the concentration of succinate (RSuc ≈ 99 %) slightly decreased during 

the diafiltration operation while the acetate (RAce ≈ 65 %) concentration decreased 

much greater (Fig. 4.31). Moreover, the concentration of phosphate and glucose 

continuously decreased with increasing the number of diavolumes. The concentration 

of chloride is closed to zero after 2 diavolumes (Fig. 4.32). According to these results, 

one can observe that, the experimental values are in agreement with the predicted 

ones.     

 

Figure 4.31  Concentration of succinate and acetate in retentate as function of 

aaaaaaaa   numbers of diavolumes in a diafiltration of diluted synthetic 

aaaaaaaaa   fermentation broth at pH 7 - ΔP =20 bar - feed composition: 0.175 M 

    succinate + 0.0325 M acetate + 0.0085 M phosphate + 0.0023 M 

aaaaaa     chloride + 0.0135 M glucose (Dilution factor 2). The lines are 

aaaaaaaaa          predicted values. 
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Figure 4.32  Concentration of chloride, phosphate and glucose in retentate as function 

           of numbers of diavolumes in a diafiltration of diluted synthetic 

aaaaaaaaaaa fermentation broth at pH 7 - ΔP =20 bar - feed composition: 0.175 M 

           succinate + 0.0325 M acetate + 0.0085 M phosphate + 0.0023 M chloride  

           + 0.0135 M glucose (Dilution factor 2). The lines are predicted values. 

 As previously reported, Fig. 4.31 shows that the 

concentration of acetate strongly decreased during operation. Then, the concentrations 

of solute in permeate versus the number of diavolumes is reported in Fig. 4.33 and 

Fig. 4.34. As expected, the concentration of acetate is higher than that of succinate 

over the whole range of the diavolume (Fig. 4.33). The concentration of glucose 

decreases with increasing the number of diavolumes (Fig. 4.34). For a diavolume over 

2, the concentration of phosphate and chloride are close to zero.  
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Figure 4.33  Concentration of succinate and acetate in permeate as function of 

aaaaaaa  numbers of diavolumes in a diafiltration of diluted synthetic 

aaaaaaaaaa  fermentation broth at pH 7 - ΔP =20 bar - feed composition: 0.175 M 

              succinate + 0.0325 M acetate + 0.0085 M phosphate + 0.0023 M 

aaaaaaa         chloride + 0.0135 M glucose (Dilution factor 2). The lines are 

aaaaaaaaa         predicted values. 
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Figure 4.34  Concentration of chloride, phosphate and glucose in permeate as 

aaaaaaaa    function of numbers of diavolumes in a diafiltration of diluted 

aaaaaaa   synthetic fermentation broth at pH 7 - ΔP =20 bar - feed composition:   

               0.175 M succinate + 0.0325 M acetate + 0.0085 M phosphate + 0.0023 

                M chloride + 0.0135 M glucose (Dilution factor 2). The lines are 

               predicted values. 

                                               According to Fig. 4.31, the decrease in rate of acetate 

concentration is much higher than that of succinate. Consequently, the purity of 

succinate increased, from 85% (initial value in the feed) to 99.5% for 14 diavolumes 

(Fig. 4.35). Meanwhile the succinate yield remained higher than 93% after 14 

diavolumes.  
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Figure 4.35  Yield and purity of succinate as function of numbers of diavolumes in a 

diafiltration of diluted fermentation broth at pH 7 - ΔP =20 bar - feed 

composition: 0.175 M succinate + 0.0325 M acetate + 0.0085 M 

phosphate + 0.0023 M chloride + 0.0135 M glucose (Dilution factor 2). 

The lines are the predicted values. 

                              4.4.4.3.2  Stage 2: Concentration of the purified succinate - 
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                                              Finally, the diafiltrated fermentation broth (diavolume = 
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increasing the volume reduction factor. The retention of glucose is closed to 100 % 

for the whole range of the volume reduction factor. Moreover, the retention of acetate 

decreases from 95 % to 90 % when the volume reduction factor increases from 1 to 

2.1. As previously mentioned, the higher salt concentration in retentate results in a 

decrease of the solute retention. One can also observe that the permeate flux increases 

during operation in concentration mode due to the high osmotic preesure.  

 

 

Figure 4.36  Retention of succinate, acetate, phosphate, glucose and permeate flux as 

aa              function of volume reduction factor in a concentration mode - at pH 7 

           - ΔP =20 bar. 
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     From the mass balance equation in concentration mode 

(Eq. 4.5), the volume reduction factor depends on the concentration factor (Cr/C0) and 

succinate retention. Then, the solute concentration in retentate can be calculated by 

Eq. 4.5 as constant retention (the retention values equal to the constant/mean value 

obtained in Fig. 4.36). Fig 4.37 shows the predicted values of solute concentration in 

retentate versus the volume reduction factor. As expected according to succinate 

retention (RSuc ≈ 99 %), the succinate concentration is about 0.34 M for the volume 

reduction is higher than 2.  
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 Figure 4.37  Concentration of succinate, acetate, phosphate and glucose as function 

            of the volume reduction factor in a concentration mode - at pH 7 - ΔP 

            =20 bar. (a) concentration of succinate; (b) concentration of acetate, 

            phosphate and glucose. 
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     The concentration of purified succinate solution has 

been carried out at 20 bar. As expected, the concentration of solute increases with 

increasing the volume reduction factor since retention of solute is close to 100%. The 

variation of solute concentration in retentate versus the volume reduction factor is 

plotted in Fig. 4.38. It can observe that the concentration of succinate (RSuc ≈ 99 %) 

strongly increases from 0.16 M to 0.34 M when the volume reduction factor increases 

from 1 to 2.1, while the concentration of acetate (Race ≈ 93 %) is slightly increases. 

The concentration of phosphate (RPO43- ≈ 99 %) and glucose (Rglucose ≈ 99 %) 

increased during concentration step. Also, these results are in agreement with the 

predicted values. Furthermore, the concentration of solute versus the volume 

reduction factor is also reported in Fig. 4.39. One can observe that the concentration 

of succinate, phosphate and glucose continuously increases with the volume reduction 

factor.  
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Figure 4.38  Concentration of succinate, acetate, phosphate and glucose in retentate

            as function of the volume reduction factor in a concentration mode - at 

            pH 7- ΔP =20 bar. (a) concentration of succinate; (b) concentration of 

            acetate, phosphate and glucose. The lines are the predicted values. 
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Figure 4.39  Concentration of succinate, acetate, phosphate and glucose in permeate 

           as function of the volume reduction factor in a concentration mode - at 

           pH 7- ΔP =20 bar. (a) concentration of succinate; (b) concentration of 

           acetate, phosphate and glucose. The lines are the predicted values. 
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  In addition, the composition of initial fermentation 

broth, before/after diafiltration and after concentration step shown in Table 4.15. As 

expected, the concentration of solutes decresases during diafiltration. One can observe 

that chloride ions are completely removed from fermentation broth. After 

concentration step, the solute concentrations increases by 2 times its initial value for 

the volume reduction factor equal to 2.1 since the solute retentions (≈ 99 %). Then, it 

was possible to recover the initial succinate concentration by using concentration step. 

Table 4.15  The composition of initial fermentation broth, before/after diafiltration 

          and after concentration step.  

Feed 

composition 

Initial 

fermentation 

broth  

Before 

diafiltration  

(in the 

retentate) 

After 

diafiltration  

(in the 

retentate) 

After 

concentration 

step (in the 

retentate) 

succinate 0.35 M 0.175 M 0.16 M 0.34 M 

acetate 0.065 M 0.0325 M 0.001 M 0.002 M 

chloride 0.0045 M 0.0023 M - - 

phosphate 0.017 M 0.0085 M 0.004 M 0.009 M 

glucose 0.027 M 0.0135 M 0.005 M 0.01 M 

 

             As already reported, the succinate concentration 

increases during concentration step. Then, the succinate yield slightly decreased with 

increasing the volume reduction factor while the succinate purity was constant (Fig. 

4.40). The succinate purity and yield obtained with this operation were 99.5% and 

99.3%, respectively. 
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Figure 4.40  Yield and purity of succinate as function of volume reduction factor in a  

                      concentration mode. 

                                                Discussion 

                                                As observed in previous results, the concentration of 

succinate in retentate decreased slower than that of acetate during diafiltration. This 

result is in agreement with the work of Kang and chang (2005). They reported that 

the succinate concentration slightly decreased, while the concentration of other 

organic acid salts (lactate, acetate and formate) strongly decreased with time, i.e. for 

increasing the number of diavolumes. However, the retention of succinate in present 

work was higher than that observed in Kang’s work. Since the initial succinate 

concentration in this work was lower than 0.2 M, a high retention was obtained.  

                                               The combination mode of the two steps process is 

proposed in this work, i.e. dilution/diafiltration/concentration operations. It was 

possible to achieve the purification of the fermentation broth, i.e. to increase the 
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succinate purity in the fermentation broth from 85% to 99.5% while minimizing the 

succinate loss, keeping the total yield higher than 92%.  

                                                Conclusion  

                                                The separation between succinate and acetate in the 

fermentation broth containing high succinate concentration (0.3 - 0.7 M) is achievable 

by using the combination of dilution/diafiltration/concentration operations. The 

synthetic fermentation broth was first diluted to a given concentration to make the 

succinate/acetate separation feasible. NF was then used in a diafiltration mode in 

order to achieve the purification of succinate, i.e. the removal of acetate. Finally, a 

concentration step by RO was used to recover the succinate concentration. In this 

manner, the succinate purity is remained higher than 92% and the succinate purity is 

about 99.5%. 

4.5  Conclusion 

        The aim of this work was to investigate nanofiltration as a purification step in the 

production of succinic acid from fermentation i.e removal of impurities such as 

acetate. Experiments were carried out with synthetic solutions of increasing 

complexity were used to investigate the influence of the operating conditions as well 

as of the broth composition on the transfer mechanisms. It was observed that both 

succinate and acetate transfer are strongly affected by the organic salt concentration 

due to charge effects. More precisely, a good correlation has been observed between 

succinate retention and its divalent ionic fraction. Considering the succinate /acetate 

separation it was shown that the nanofiltration performances are improved for 

decreasing salt concentration. Then, based on these knowledge of the transfer 
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mechanisms, a methodology has been proposed to achieve the purification of a 

succinate fermentation broth. The succinate/acetate separation has been carried out 

using the combination of dilution/diafiltration/concentration operations. As expected, 

the succinate purity in the fermentation broth increases from 85 % to 99.5 % while 

minimizing the succinate loss, keeping the total yield higher than 92 %. Then, the 

purification of a succinate fermentation broth can be achieved. 
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CHAPTER V 

CONCLUSION AND PERSPECTIVES  

 

5.1  Conclusion 

 This research works reported the enhancement of succinate production from 

xylose in E. coli KJ122 and its purification by nanofiltration. There are two parts 

comprised in novelty of this study including improvement of xylose fermentation in 

E. coli KJ122 by using metabolic engineering and metabolic evolution and 

purification of succinate from fermentation broth by nanofiltration.  

 First, E. coli KJ122 was developed for the fermentation of xylose to succinate 

by deleting xylFGH genes and using metabolic evolution. The resulting strain, named 

KJ12201 showed an increase in xylose consumption and succinate production 

compared with E. coli KJ122. After metabolic evolution of E. coli KJ12201, the 14th 

transfer-isolated strain, named KJ12201-14T exhibited a high ability to consume 

xylose with high accumulation of succinate (84 g/L) in mineral salts medium (AM1) 

under batch fermentation. Under fed-batch fermentation, KJ12201-14T could produce 

succinate at 84 g/L with the yield and productivity of 0.85 g/g and 1.01 g/L.h, 

respectively within 84 h. Also, acetate was detected at 14 g/L as a by-product. 

Considering these results, KJ12201-14T could be a potential strain for the economic 

succinate production using abundant and feasible renewable substrates such as xylose, 

which are readily available in Thailand. 
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 Second, nanofiltration was investigated as a purification step in the production 

of succinate from fermentation. The experimental investigation was performed with 

solutions of increasing complexity, i.e. single-solute solutions of succinate and 

acetate, binary-solute solutions containing succinate and acetate. A synthetic 

fermentation broth containing succinate and impurities was also performed. The 

investigation of the mass transfer of solute has been carried out with single and 

binary-solute solutions in constant concentration mode. In single-solute solutions, the 

retention of succinate depends on its concentration because its mass transfer was 

governed by charge effects. Succinate retention increases with increasing pH from 2.2 

to 7.6 due to the increase of electrostatic interaction between the charged solute and 

the fixed charge on the membrane surface. More precisely, a good correlation has 

been observed between succinate retention and its divalent ionic fraction. The 

counter-ions such as Na+ and K+ have no effect on succinate retention because the 

retention is fixed by charge and size of succinate. In addition, it was observed that the 

retention of succinate is higher than that of acetate as expected from its size and 

charge. Further, experiments were carried out with binary-solute solutions containing 

succinate and acetate. At high salts concentration containing 0.7 M succinate and 0.1 

M acetate, pH has no influence on the separation between succinate and acetate due to 

the screening effect. According to the results, the separation was expected to be 

feasible at low salts concentration. Then, the separation between succinate and acetate 

was evaluated at various succinate concentrations (0.1 - 0.7 M succinate). As 

expected, the separation was found to be unachievable in binary mixture containing 

0.7 M succinate and 0.1 M acetate. For decreasing in succinate concentration from 0.7 

to 0.1 M, the succinate is more retained than acetate. Then, the succinate/acetate 
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separation can be achieved. In addition, it was shown that both succinate and acetate 

transfer are strongly affected by the organic salt concentration due to charge effects. 

Furthermore, the experiments were performed with binary solutions containing 0.7 M 

succinate and 0.1 M acetate at different dilution factor. Indeed, it was confirmed that 

the separation factor is higher when decreasing salts concentrations. Then, significant 

improvement of the succinate/acetate separation can be achieved by diluting a feed 

solution. Considering the succinate/acetate separation it was shown that the NF 

performances are improved for decreasing salt concentration�

In order to evaluate the influence of the fermentation broth composition on the 

separation, the experiment was carried out with synthetic fermentation broths 

containing succinate and impurities. The composition of the synthetic fermentation 

broth considered in this study which was given in table 4.14 at pH 7. Based on the 

knowledge of the transfer mechanisms, the separation of succinate and acetate is not 

achievable for succinate concentration higher than 0.4 M. Then, the synthetic 

fermentation broth was first diluted down to a given concentration to make the 

succinate/acetate separation feasible. NF was then used in a diafiltration mode in 

order to achieve the purification of succinate, i.e. the removal of acetate. Finally, the 

concentration step by RO was used to recover the initial succinate concentration. In 

this manner, the succinate purity was increased from 85 % to 99.5 % while the total 

yield remained higher than 92 %. 

The outcome of the studies can contribute to the current biotechnological 

production of succinate include the following 4 main point (Fig. 5.1): 

 1. The combination of metabolic engineering and metabolic evolution can be 

useful for the improvement of xylose metabolism and succinate yield in E. coli KJ122; 
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2. Introducing the fed-batch fermentation to improve productivity in succinate 

production from lignocellulosic biomass like xylose;  

 3. The knowledge of the transfer mechanisms of solutes through NF membrane 

can use to design the process for succinate purification from fermentation broth; 

4.  A diafiltration combined with concentration operations can be used as final 

purification step in the downstream processing. 

 

 

Figure 5.1  The diagram for an overview outcome implemented in this work. 

5.2  Perspectives  

         In this work, E. coli KJ122 was developed to ferment pure xylose into succinate 

using xylE for xylose uptake. Lignocellulosic hydrolysates is comprised of glucose, 

xylose and other sugars . Therefore, in order to achieve maximum product yield and 

productivity, a complete utilization of mixed sugars derived from lignocellulosic 

hydrolysates is essential (Saha 2003). Further development, strain KJ122-14T will be 

optimized with sugar mixtures, and in lignocellulosic hydrolysates using a simple 

mineral salts medium. Indeed, bioreactor design and scale-up are important in the 
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development of bioprocess. Hence, the optimization process of succinate production 

in commercial scale by derivative of KJ122 (strain KJ12201-14T) using 

lignocellulosic feedstock will be proposed to find out the most suitable condition for 

succinate production.  

          In order to produce succinate by fermentation, the purification process for 

succinate should be required due to the many impurities in the fermentation broth, 

such as by-produced acids, carbon sources and salts. Traditional downstream 

processes are designed around one or several precipitation stages which produce large 

amounts of effluents with a high salt content (Bailey and Ollis, 1986). In order to 

reduce the environmental impact, membrane technologies (nanofiltration or 

electrodialysis) were proposed to replace precipitation. According to these results, 

nanofiltration could achieve the purification of succinate by removing acetate; 

however, the succinate and acetate separation was found to be hardly achievable for 

high salts concentration (Narebska and Kurantowicz, 1998; Li and Shahbazi, 2006). 

Electrodialysis (ED) is also a novel membrane process that is very attractive since the 

generation of effluents or by products can be significantly reduced when compared 

with the chemical separation process. Bailly et al. (2001) reported ED can be used as 

organic acid recovery process. Therefore, ED will be proposed on succinate 

purification from fermentation broth to compare the selectivity of succinate. 
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APPENDIX A 

IRREVERSIBLE THERMODYNAMICS 

 

 For NF membrane, the transport of solute through a membrane can be 

described by irreversible thermodynamics. The solute flux through the membrane can 

be described as the sum of convective and a diffusive flux. Solute transport by 

convection takes place because of an applied pressure gradient across the membrane. 

A concentration difference on both sides of the membrane causes diffusive transport. 

The retention of solute is defined as: 

                                    (A.1)                

and  

                                (A.2)                

where σ is a reflection coefficient and the solute permeability (PSK) can be estimated 

by 

                                (A.3)                

where  is the solute permeability coefficient and Δx is the effective membrane 

thickness. 
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              Moreover, σ and PSK can be estimated directly from the Robs, since R depends 

on values of the two coefficients, σ and PSK.  

              By plotting the data of solutes retention as a function of the permeate flux, σ 

is the maximum value of the solutes retention at high permeate flux. Also, PSK can be 

estimated from the slope of the plot. 

                                                  (A.4) 

                                                        (A.5) 
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APPENDIX B 

DISSOCIATION EQUILIBRIUM OF SUCCINIC ACID 

 

 An organic acid like succinic acid is the carboxylic acid. The succinic acid 

form depends on pH. Succinic acid act as two carboxyl groups then the two forms of 

succinate were generated. At pH 4.2 (pKA1), one of carboxyl group is dissociated then 

the monovalent from of succinate was fond. When increasing the pH to 5.6 (pKA2), 

the divalent from of succinate was presented since the carboxyl group is deprotonated. 

The dissociation equilibrium equation of succinic acid can be follows: 

                                   (B.1) 

and 

                                    (B.2) 

 

              The dissociation of succinic acid described by the acid dissociation constant, 

KA. As succinic acid has two carboxyl groups, KA is defined by the following 

equation. 

                        (B.3) 

and 
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                        (B.4) 

As KA1 and KA1 of succinic acid are 6.2 x 10-5 and 2.3 x10-6, respectively. 

Then, pKA1 and pKA2 can be estimated by 

 

                    (B.5) 

and 

                    (B.6) 

  Another important point is the relationship between pH and the pKA of 

succinic acid. This relationship is described by the following equation. 

                                  (B.7)  

and                         

                                  (B.8) 

   At pH=pKA1= 4.2, the ratio of /  is equal to 1. This mean 

that the half of the succinate has dissociated to monovalent ions (50 % H2Suc and 50 

% HSuc-). In addition, pH=pKA1= 5.6, the ratio of / is one. Succinic 

acid is completely dissociated. Then, two forms of succinate ions (monovalent ions 

and divalent ions) are observed (50% of HSuc-and 50 % of Suc2-). Moreover, at pH 

=1/2(pKA1 + pKA2), the concentration of H2Suc is equal to Suc2-. The variation of the 

different forms of succinic acid versus the pH is plotted in Fig. B.1. 
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Figure B.1  Ionic fraction of succinic acid as function of pH.  
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APPENDIX C 

THE NEGATIVE RETENTION OF ACETATE 

 

In a mixed salts solution containing a potassium succinate and potassium 

acetate, the negative retention of acetate in the presence of succinate can be explained 

by the electroneutrality equation.  

  In general, the retention of solute can be defined by: 

                                                  (C1.1)       

Therefore,                                           

                        (C1.2) 

and 

    (C1.3) 

For the constant feed concentration mode, the electroneutrality in the 
permeate and in the retentate can be defined as: 
 

   (C1.4) 
 
 Then, the ratio of the ion concentrations in the permeate to the retentate: 
 

    (C1.5) 

 
and the retention of K+ can be expressed as: 
 

                                        (C1.6) 

Then, 
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    (C1.7) 

 Combining Eqs. A7 and A5, we obtain: 
 

   (C1.8) 

 
  As the expression of the succinate concentration in the permeate is presented 

by: 

 
   (C1.9) 

 
Then, 

 

  (C1.10) 

 
Eqs. A1.10 can be divided by the acetate concentration in retentate : 

     (C1.11) 

From Eqs. A1.11,  can be used instead of the ratio of succinate to acetate in 

retentate:  

    (C1.12) 

and  

                            (C1.13) 

Then, 

                           D1.14 

and 

                (C1.15) 
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Eqs. A1.15 can be divided by the retetntion of potassium ( ); 

                        (C1.16) 

Then, 

                 (C1.17) 

Using  as the ratio of succinate retention to potassium retention: 
 

                                     (C1.18) 

Therefore, the acetate retention in the mixing solution can be defined by:  
 

                            (C1.19) 
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