
HAL Id: tel-01768559
https://theses.hal.science/tel-01768559

Submitted on 17 Apr 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Authentication and encryption protocols : design,
attacks and algorithmic improvements

Diana Ştefania Maimuţ

To cite this version:
Diana Ştefania Maimuţ. Authentication and encryption protocols : design, attacks and algorithmic
improvements. Cryptography and Security [cs.CR]. Ecole normale supérieure - ENS PARIS, 2015.
English. �NNT : 2015ENSU0047�. �tel-01768559�

https://theses.hal.science/tel-01768559
https://hal.archives-ouvertes.fr


Authentication and Encryption Protocols:
Design, Attacks and Algorithmic Improvements

Thèse de Doctorat

en vue de l’obtention du grade de

Docteur de l’École normale supérieure
(spécialité informatique)

présentée et soutenue publiquement le 11 Decembre 2015 par

DIANA ŞTEFANIA MAIMUŢ

devant le jury composé de :

Directeur de thèse : David Naccache (École normale supérieure)
Rapporteurs : Bart Preneel (iMinds, Katholieke Universiteit Leuven)

Moti Yung (Google Inc., Columbia University)
Examinateurs : Jean-Sébastien Coron (Université du Luxembourg)

Antoine Joux (UPMC, Université Paris VI)
David Pointcheval (CNRS, École normale supérieure)
Serge Vaudenay (École polytechnique fédérale de Lausanne)

École doctorale 386: Sciences mathématiques de Paris Centre
Unité de recherche: UMR 8548 - Département d’Informatique de l’École normale supérieure

Laboratoire de recherche affilié au CNRS et a INRIA





Authentication and Encryption Protocols:
Design, Attacks and Algorithmic Improvements

Thèse de Doctorat

en vue de l’obtention du grade de

Docteur de l’École normale supérieure
(spécialité informatique)

présentée et soutenue publiquement le 11 Decembre 2015 par

DIANA ŞTEFANIA MAIMUŢ

devant le jury composé de :

Directeur de thèse : David Naccache (École normale supérieure)
Rapporteurs : Bart Preneel (iMinds, Katholieke Universiteit Leuven)

Moti Yung (Google Inc., Columbia University)
Examinateurs : Jean-Sébastien Coron (Université du Luxembourg)

Antoine Joux (UPMC, Université Paris VI)
David Pointcheval (CNRS, École normale supérieure)
Serge Vaudenay (École polytechnique fédérale de Lausanne)

École doctorale 386: Sciences mathématiques de Paris Centre
Unité de recherche: UMR 8548 - Département d’Informatique de l’École normale supérieure

Laboratoire de recherche affilié au CNRS et a INRIA





ACKNOWLEDGEMENTS

My very first thoughts are dedicated to my parents who have encouraged me in every step I took in
research. I express my infinite gratitude towards my father who left us earlier than expected and who
would have wished to see this thesis finished. Thanks to my mother especially for teaching me not to
give up easily.

I would like to thank David Naccache for his guidance as my thesis advisor during these four years.
You opened many doors for me, showing endless patience and support. I am also grateful to David
Naccache for allowing me to formally supervise master theses in his Information Systems Forensics
Master (Expertise économique et juridique des systèmes d’information).

I also thank my co-authors, Simon Cogliani, Eric Brier, Jean-Sébastien Coron, Houda Ferradi, Cédric
Murdica, Khaled Ouafi, David Pointcheval, Reza Reyhanitabar, Mehdi Tibouchi, Serge Vaudenay, Damian
Vizár, Amaury de Wargny and Hang Zhou. Special thanks to Zineb Benkirane, Marc Beunardeau, Rémi
Géraud and Rodrigo Portella do Canto, it was truly a pleasure working with you.

I would like to express my appreciation towards the members of the crypto team, be it professors or
jeunes chercheurs. Thank you for your welcoming and stimulating team spirit, for the scientific creativity,
the truly international nature of the team and the constant pushing of intellectual boundaries. I am
especially indebted to David Pointcheval for his support throughout the entire course of this thesis.

I have to thank Emil Simion for his useful comments and advices during the last years and, moreover,
for encouraging me to apply to ENS for my PhD studies. I am indebted to Emil Simion for actively
involving me in SECITC 2015. The review of the submissions and the intense technical interaction
with the program committee members were an unforgettable scientific experience. I am also grateful
to Adrian Atanasiu, Dorin Popescu, Cristian Voica and Victor Vuletescu for guiding me in my early
academic life and for showing me the real beauty in mathematics. Thanks to Alecsandru Pătraşcu for his
valuable comments on some of my papers. You truly are a promising young researcher.

I am mostly grateful to Jean-Sébastien Coron, Antoine Joux, David Pointcheval and Serge Vaudenay
for agreeing to serve in this thesis committee. I express my particular gratitude to my thesis referees
Bart Preneel and Moti Yung for their availability and dedication. I am very honoured to have such a
prestigious committee.

The research works presented in this thesis were supported by two high-tech firms. Helping R&D to
apply my research results in commercial products was a thrilling experience, for which I warmly thank
Ingenico and Crocus Technology.

I express my gratitude towards my current employer, the Advanced Technologies Institute. Thank you
for supporting me especially towards the end of this thesis, and for offering me the possibility to apply
the knowledge I accumulated.

Last but most certainly not least, I would like to thank Natacha Laniado for being such a wonderful
person. You supported me since the very beginning, helped me whenever I needed, proofread my papers
and thesis. Wishing you all the best.

1



How long do you want these messages to remain secret?[...]
I want them to remain secret for as long as men are capable of evil.

– Neal Stephenson

The Persistence of Memory – Salvador Dali.



CONTENTS

1 Prolégomènes 5
1.1 Une brève introduction à l’histoire de la cryptographie . . . . . . . . . . . . . . . . . . . . 6

1.1.1 Cryptographie pré-informatique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.1.2 La cryptographie moderne . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2 Résumé de la thèse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Introduction 14
2.1 A Brief Introduction to the History of Cryptography . . . . . . . . . . . . . . . . . . . . . . 15

2.1.1 Pre-Computer Cryptography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.1.2 Modern Cryptography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.3 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3 Mathematical and Cryptographic Preliminaries 38
3.1 Hash Functions and Message Authentication Codes . . . . . . . . . . . . . . . . . . . . . . 39
3.2 Authenticated Encryption (AE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2.1 From the Generic Composition Paradigm to Dedicated AE Algorithms . . . . . . . 42
3.3 Digital Signatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.3.1 General Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.3.2 Signature Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.4 Elliptic Curve Cryptography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4 Protocol Design 58
4.1 Legally Fair Contract Signing without Keystones . . . . . . . . . . . . . . . . . . . . . . . . 59

4.1.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.1.2 Legally Fair Co-Signatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.2 Multi-Party Authentication Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.2.2 Distributed Fiat-Shamir Authentication . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.2.3 Security Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.2.4 Variants and Implementation Trade-offs . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.3 An Authenticated Encryption Scheme: Offset Merkle-Damgård . . . . . . . . . . . . . . . 80
4.3.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.3.2 Design Rationale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.3.3 Security Definitions and Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.3.4 Specification of OMD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.3.5 OMD-SHA256: Primary Recommendation for Instantiating OMD . . . . . . . . . . 85
4.3.6 OMD-SHA512: Secondary Recommendation for Instantiating OMD . . . . . . . . 87
4.3.7 Security Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.3.8 Generalisation of OMD Based on Tweakable Random Functions . . . . . . . . . . . 89
4.3.9 Instantiating Tweakable RFs with PRFs . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.3.10 In Summary: Features of OMD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.3.11 Further Developments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5 Algorithms for Embedded Cryptography 97
5.1 Lightweight Cryptography for Embedded Devices . . . . . . . . . . . . . . . . . . . . . . . 98

5.1.1 RFID Tags: A Cryptography Perspective . . . . . . . . . . . . . . . . . . . . . . . . 100

3



5.2 Double-Speed Barrett Moduli . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.2.1 Barrett’s Reduction Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.2.2 Moduli with a Predetermined Portion . . . . . . . . . . . . . . . . . . . . . . . . . . 106
5.2.3 Barrett-Friendly Moduli . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.2.4 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.3 Applying Cryptographic Techniques to Error Correction . . . . . . . . . . . . . . . . . . . 113
5.3.1 From Modular Reduction to Polynomial Reduction . . . . . . . . . . . . . . . . . . 113
5.3.2 A Number-Theoretic Error-Correcting Code . . . . . . . . . . . . . . . . . . . . . . 124

5.4 Backtracking-Assisted Multiplication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
5.4.1 Multiplication Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
5.4.2 The Proposed Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
5.4.3 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.5 Regulating the Pace of von Neumann Extractors . . . . . . . . . . . . . . . . . . . . . . . . 138
5.5.1 Model and Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
5.5.2 Generic Regulator Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
5.5.3 The Median Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
5.5.4 Memory-Variance Trade-Off: Adaptive Regulators . . . . . . . . . . . . . . . . . . . 140
5.5.5 Parameters for the von Neumann Extractor . . . . . . . . . . . . . . . . . . . . . . . 142
5.5.6 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

5.6 Fault Attacks on Projective-to-Affine Coordinate Conversion . . . . . . . . . . . . . . . . . 145
5.6.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
5.6.2 Faults During Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
5.6.3 Large Unknown Faults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
5.6.4 Two Faults and a Correct Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
5.6.5 Known or Guessable Faults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
5.6.6 Final Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

6 Conclusion and Further Development 156

7 List of Main Abbreviations 174

A Compression Functions 177
A.1 Compression Functions of SHA-256 and SHA-512 . . . . . . . . . . . . . . . . . . . . . . . 177

A.1.1 The Compression Function of SHA-256 . . . . . . . . . . . . . . . . . . . . . . . . . 178
A.1.2 The Compression Function of SHA-512 . . . . . . . . . . . . . . . . . . . . . . . . . 179

B Fault Attacks on ECC: Co-Z Formulæ 181

C Deterministic Signature Scheme 183

D Code: Barrett’s Algorithm for Polynomials 184

E Code: Backtracking Assisted Multiplication 187

F Code: Regulating the Pace of von Neumann Correctors 189



CHAPITRE 1

PROLÉGOMÈNES

If you reveal your secrets to the wind, you should not blame the wind for revealing them to the trees.
Kahlil Gibran.

Résumé

Ce chapitre présente la terminologie nécessaire à la lecture de cette thèse et positionne la cryptographie
dans le domaine plus large de la cryptologie. Nous détaillerons les plus importantes étapes de l’histoire
de la cryptologie, partant de l’antiquité et arrivant à la cryptographie post-quantique avec une insistance
particulière sur les notions de cryptographie symétrique et asymétrique. La section 1.2 décrit de manière
synthétique les sujets abordées dans cette thèse et fixe les objectifs à atteindre. Nos principaux résultats
scientifiques sont des nouveaux protocoles de signature et d’authentification et un nouvel algorithme
de chiffrement authentifié. Nos travaux comportent également des résultats liés aux codes correcteurs
d’erreurs, à la correction de biais lors de la génération d’aléa, à la cryptanalyse et plusieurs améliorations
calculatoires.

Notre premier résultat est un protocole de co-signature prouvé sûr, réalisant une nouvelle forme d’équité
dite équité légale. Le second est un algorithme de chiffrement authentifié prouvé sûr nommé Offset
Merkle-Damgård (OMD). OMD a la rare particularité d’être un mode d’opération pour une fonction
de compression à clé. OMD est actuellement l’un des finalistes de la seconde phase de sélection de la
compétition internationale CAESAR.

En outre, nous présentons un protocole distribué de type Fiat-Shamir permettant l’authentification sur
des réseaux. Nos améliorations algorithmiques comportent plusieurs résultats. Nous décrirons un
nouvel algorithme de multiplication basé sur le retour sur trace. Cet algorithme s’avère particulièrement
adapté aux microprocesseurs bon marché. Une seconde observation permet de doubler la vitesse de
l’algorithme de Barrett à l’aide de modules composites spécifiques et une troisième contribution permet
de régulariser le débit d’extracteurs de von Neumann. Nous présenterons également des nouvelles
stratégies d’accélération de codes BCH utilisant des versions polynomiales de l’algorithme de Barrett ainsi
qu’un nouveau code correcteur d’erreurs inspiré par le système de chiffrement Naccache-Stern. Enfin,
nous décrirons une nouvelle attaque en fautes sur les algorithmes de signature à courbes elliptiques.

5



6 Prolégomènes 1.1

1.1 Une brève introduction à l’histoire de la cryptographie

Selon le dictionnaire de Merriam-Webster [MWb], le terme cryptologie a été utilisé pour la première fois
en 1935 et se réfère à l’étude scientifique de la cryptographie et de la cryptanalyse. Le mot cryptographie est
apparu en 1658 et son origine est étroitement liée au concept du latin moderne cryptographia qui a hérité
du grec les termes kryptos (caché, secret) et graphein (écrire). La première utilisation du mot cryptanalyse
date de 1923 [MWa].

La cryptographie vise à créer des systèmes préservant des informations secrètes ou inaltérées. La
cryptanalyse est l’art dual, consistant à mettre à défaut des systèmes cryptographiques.

Les objectifs traditionnels de la cryptographie sont:
– L’intégrité, garantissant l’inaltérabilité du message lors de sa transmission.
– L’authentification, s’assurant de l’identité de l’expéditeur du message.
– La non-répudiation, empêchant la répudiation des actions passées.

Cryptographie

Confidentialité

Chiffrement
à clef

publique

Chiffrement
par blocs

Authentification
des entités

Preuve à
divulgation

nulle de
connaissance

Non-
répudiation

d’origine

Fonctions
de hachage

Authentification
des données

Schémas de
MAC

Signatures
numériques

Chiffrement
authentifié

Figure 1.1: Quelques objectifs et primitives cryptographiques.

Le terme générique systèmes cryptographiques (ou cryptosystèmes) désigne l’ensemble des algorithmes
accomplissant certains ou tous les objectifs mentionnés précédemment.

L’enjeu du secret est un invariant de la cité, de la société, de nos politiques. Il est à ce point focal
que d’aucuns abordent le secret au titre de la raison dite d’État, ou encore au maintien d’un équilibre
que sauvegardent, les diplomates, les militaires et les espions - qui sont les utilisateurs historique du
chiffrement.

La récente éruption des télécommunications dans notre quotidien a rendu la cryptographie omniprésente.

Notations. Les notations suivantes seront utilisées dans l’ensemble du manuscrit:
– M = {m|m ∈ Alph∗m} désignera l’ensemble des textes clairs (aussi appelé espace des messages), où

Alphm est un alphabet non-vide.
– C = {c|c ∈ Alph∗c} désignera l’ensemble des textes chiffrés (aussi appelé espace des textes chiffrés), où

Alphc est un alphabet non-vide.
– K désignera l’ensemble des clés (aussi appelé l’espace des clés).
Habituellement, Alphm = Alphc.



1.1 Une brève introduction à l’histoire de la cryptographie 7

1.1.1 Cryptographie pré-informatique

Les chiffrements classiques

Les codes secrets classiques sont historiquement importants. Cette catégorie d’algorithmes de chiffrement
est communément désignée par l’expression “chiffrements avec papier et stylo” et comprend des
algorithmes cryptographiques simples qui peuvent être mis en œuvre soit directement à la main soit au
moyen d’outils mécaniques très simples.

L’un des exemples les plus souvent invoqués d’algorithmes de chiffrement anciens est la Scytale, originaire
de Sparte en Grèce. La scytale lacédomienne (skutalé) est considéré comme l’ancêtre des systèmes de
transmission d’information secrète. Le dispositif consistait en un bâton autour duquel était enroulée une
bande de parchemin, sur laquelle le message était écrit sur toute la longueur. Populaires durant le Vème
siècle avant JC, les Scytales appartiennent à la catégorie des chiffrements par transposition.

Le chiffre de César. Ce chiffrement éponyme de Jules César, date du Ier siècle avant JC. Le chiffre de
César est un chiffrement par substitution monoalphabétique.

Considérons les 26 lettres de l’alphabet. Ainsi, Alphm = Alphc = Z26. Le chiffre de César décale
cycliquement chaque lettre du texte claire de trois positions pour obtenir le chiffré. Le nombre de
décalages peut être remplacé par toute clé de chiffrement k ∈ Z26. Le processus de déchiffrement est un
décalage inverse.

Le chiffre de Vigenère. Le chiffre de Vigenère a été développé par Blaise de Vigenère au XVIème
siècle [Kah96].

Considérons de nouveau les 26 lettres de l’alphabet et choisissons un clé κ de longueur r. Le chiffre
de Vigenère peut être construit à partir de r chiffres de César différents (chacun correspondant à un
caractère de κ). Si le message à chiffrer et plus long que κ, la clé est utilisée périodiquement.

Le chiffre de Vigenère est donc un système de substitution.

Le chiffre de VIGENÈRE a été développé par Blaise de Vigenère au 16ème siècle [Kah96].

Considérons de nouveau les 26 lettres de l’alphabet et choisissons un clé κ de longueur r. Le chiffre
de VIGENÈRE peut être construit à partir de r chiffres de César différents (chacun correspondant à un
caractère de κ). Si le message à chiffrer et plus long que κ, la clé est utilisée périodiquement.

Le chiffre de VIGENÈRE est donc un système de substitution.

Le masque jetable. Aussi connu sous le nom de chiffre de Vernam, peut être décrit comme un chiffre
de Vigenère dont la longueur de la clé est la même que la longueur du texte clair. En outre, la clé doit
être choisie aléatoirement et ne peut être utilisée qu’une seule fois.

Le masque jetable souligne le rôle important que les générateurs de nombres aléatoires jouent en
cryptographie.

Des chiffrements par transposition. Les chiffrements par transposition sont encore un autre type de
chiffrement. Clarifions avec un exemple de chiffrement par transposition en colonnes. Un tel chiffrement
commence par diviser le message m en blocs de `-bits l’écrivant par lignes dans un tableau de taille fixée.
Après cela, il applique une permutation 1 σ au message. Le texte chiffré obtenu est lu par colonnes.

Dans la figure 1.2 un exemple est décrit avec m = EXPLAINTRANSPOSITIONCIPHERS, κ = SECRET et X est
utilisé comme un caractère de padding. La permutation est donnée par l’ordre alphabétique sur les lettres
de κ, ce qui résulte en σ = (3, 2, 5, 4, 1, 6). Le texte chiffré est donc PRSCSXTONRANTPXLAIIXENPOEISIHX.

1. qui est fonction de la clé



8 Prolégomènes 1.1

S E C R E T C E E R S T
E X P L A I P X A L E I
N T R A N S R T N A N S
P O S I T I S O T I P I
O N C I P H C N P I O H
E R S X X X S R X X E X

Figure 1.2: Columnar transposition cipher example.

Chiffrements électriques et mécaniques

Pour automatiser le chiffrement et le déchiffrement, différents designs mécaniques ont été proposées,
en particulier pendant les deux guerres mondiales. L’automatisation a permis le développement de
chiffrements plus complexes que ceux utilisant le papier et le stylo ou des dispositifs mécaniques très
simples. Néanmoins, les machines devaient être efficaces et faciles à construire. Cela a conduit les
développeurs à se diriger vers des designs qui répétaient un grand nombre de fois des opérations
simples.

L’invention de la première machine cryptographique est attribuée à Jefferson pour son cylindre de
chiffrement. De toutes ces machines inventées dans la première moitié du XXème siècle, nous en
exposerons Enigma.

Enigma. La non moins notoire machine Enigma, utilisée par l’Allemagne, a été initialement conçue en
1918 à Berlin et présentée publiquement en 1923. Environ 100 000 machines Enigma ont été produites,
dont environ 40 000 pendant la Seconde Guerre Mondiale. Le nom générique Enigma fait référence à
une variété de modèles qui eux, sont basés soit sur le chiffre de Vigenère soit sur le chiffre de Beaufort.

La machine est composée d’un clavier, d’un réflecteur (soit un rotor d’inversion) 2 et, en général, de 3
rotors et d’un tableau de connexions. Le nombre de rotors peut aussi être de 5, 6 ou 7. Chaque rotor
comporte 26 lettres et 3 autres caractères spéciaux dans certains cas.

Considérons le cas à 3 rotors. Dans le processus de chiffrement, au moment de choisir une lettre du
texte clair L, le courant électrique traverse le premier rotor par la lettre L correspondante du texte clair,
et les deux autres rotors effectuent les mêmes actions, mais avec des câblages différents. Ensuite, le
réflecteur mappe le courant électrique à un autre endroit pour traverser les rotors en sens inverse à
nouveau. L’ampoule allumé par le courant correspond à une lettre C qui sera le texte chiffré de L.

Le premier rotor tourne d’une position et, après 26 rotations, le second rotor tourne sur une position.
De même, le troisième rotor tourne sur une position lorsque le second rotor effectue un tour complet.
Le choix de l’ordre et de la position initiale des rotors ainsi qu’une permutation fixe de l’alphabet est le
secret d’Enigma.

Etant donné son énorme espace de clé quotidienne (' 1022), il était admis qu’Enigma était assez sécurisée
à des fins militaires ou diplomatiques.

Avant et pendant la deuxième Guerre Mondiale, casser Enigma s’est révélé être un défi de première
importance. Les premiers résultats cryptanalytiques notables ont été obtenus par le mathématicien
polonais Marjan Rejewski. C’est avec l’aide des clés quotidiennes découvertes par un employé du
Bureau de Chiffrement Allemand que Rejewski a retrouvé la structure interne de la version à trois rotors
d’Enigma. De 1932 à 1939, Rejewski ainsi que d’autres mathématiciens polonais ont permis d’importants
progrès. Perfectionnement qui connaitra l’acmé avec le développement de la “Bombe” polonaise 3. En
1938, les Allemands ont amélioré Enigma en lui ajoutant deux rotors. En 1939, les polonais fournissent
leurs solutions ainsi que deux répliques d’Enigma aux Services Secrets Français et Britannique. Le
Gouvernement Britannique créa le centre cryptologique Code and Cipher School (GC&CS) a Bletchley
Park en Angleterre.

2. Le réflecteur connecte les sorties du dernier rotor par paires, redirigeant le courant dans les rotors selon un chemin différent.
C’est ce réflecteur qui garantit le caractère involutif de d’Enigma: chiffrer est alors identique à déchiffrer. Cependant, le réflecteur
empêche également Enigma de substituer une lettre à elle-même dans le texte chiffré.

3. La “Bombe” polonaise etait constituée de 6 machines Enigma qui travaillaient en parallèle afin d’obtenir les positions des
rotors.



1.1 Une brève introduction à l’histoire de la cryptographie 9

Alain Turing développe la “Bombe” britannique avec l’aide de Welchman, et c’est en Mai 1940 qu’elle
devient opérationnelle. En 1941 et 1942, les cryptanalystes de l’armée américaine et de l’US Navy visitent
Bletchley Park afin d’en apprendre davantage sur Enigma. A partir du mois d’avril 1943 jusqu’à la fin de
la Guerre la “Bombe” américaine est utilisée.

Pour plus d’informations sur la cryptanalyse d’Enigma, nous renvoyons le lecteur à [GO03].

Pour une description plus détaillée des chiffres classiques, nous renvoyons le lecteur à [Kah96].

1.1.2 La cryptographie moderne

La Seconde Guerre Mondiale représente une charnière pour la cryptographie: les perspectives ont été
rapidement et radicalement changées. Les fondements théoriques de la cryptographie se sont établis
progressivement. Leurs assises aussi rigoureuses que scientifiques ont conduit à en établir un champ.
Une spécialité à part entière.

La cryptographie ne peut être réduite à des communications secrètes, surtout de nos jours. Regardant
attentivement l’état actuel de la cryptographie, nous devons prendre en considération les protocoles
d’échange de clés secrètes, l’authentification des messages, les protocoles d’authentification, les sig-
natures numériques, le vote électronique, les monnaies numériques (par exemple Bitcoin) ainsi de
suite.

Dans l’ensemble, le rôle de la cryptographie moderne est de protéger chaque calcul distribué qui seraient
susceptible de s’exposer à une vaste palette d’attaques.

Les principales différences de la cryptographie moderne sont à distinguer entre : les systèmes à clé
secrète (ou symétrique), les systèmes à clé publique (ou asymétrique), les primitives sans clé (fonctions
de hachage), les codes d’authentification de messages (schéma de MAC) et les signatures numériques.
La cryptographie symétrique utilise la même clé pour le chiffrement et le déchiffrement, tandis que la
cryptographie à clé publique utilise une clé publique pour le chiffrement et une clé privée connexe pour
le déchiffrement.

Parties cryptographiques. Les personnages les plus communs de l’univers cryptographique moderne
sont probablement Alice et Bob. Pour plus de flexibilité et pour faciliter la compréhension, au lieu de
simplement utiliser A et B, les noms mentionnés ci-dessus sont préférés. Alice et Bob représentent les
deux parties comprises dans un protocole. Entre ce couple pronominal émergera un troisième acteur :
l’espion. Il sera baptisé Eve (eavesdropper).

Cryptographie symétrique

Pour les protocoles symétriques, nous pouvons considérer dans un scénario de base, qu’Alice et Bob
veulent établir un secret commun et l’utiliser pour communiquer de manière chiffrée. Alice chiffre
un message m en utilisant la clé déjà partagée, tandis que Bob déchiffre le texte chiffré (en utilisant la
même clé) et récupère m lors de la réception. L’objectif des parties ayant convenu d’une clé secrète est
d’empêcher Eve d’apprendre m, en supposant leur communication publique.

Notez que dans ce cadre, la même clé est utilisée pour chiffrer et déchiffrer. Ceci explique pourquoi
ce protocole est appelé symétrique. Ici, la symétrie réside dans le fait que les deux parties partagent la
même clé.

Une hypothèse en filigrane de tout système utilisant le chiffrement à clé symétrique est qu’Alice et Bob
ont d’abord une certaine façon de partager une clé secrète. Dans les milieux militaires, ce n’est pas un
problème car Alice et Bob peuvent se rencontrer physiquement dans un endroit sûr et convenir d’une clé.
Cependant, dans le contexte virtuel d’Internet, les parties ne peuvent pas organiser une telle rencontre
physique. Ceci est source de grandes préoccupations et limite effectivement l’utilité des méthodes à clé
symétrique.

Il existe cependant d’autres paramètres où les méthodes à clé privée suffisent et sont largement étendues;
un exemple est le chiffrement de disques durs, où l’utilisateur (à différents points dans le temps) utilise
une clé secrète fixe pour à la fois écrire et lire sur le disque.



10 Prolégomènes 1.1

La syntaxe d’un système de chiffrement à clé symétrique. Les paragraphes qui suivent formalisent
la description ci-dessus.

Un système de chiffrement à clé symétrique se compose de trois algorithmes probabilistes en temps
polynomial (KEYGEN, ENCRYPT, DECRYPT) : de l’espace des clés K, de l’espace des messagesM, de
l’espace des textes chiffrés C correspondants. KEYGEN est un algorithme de génération de clés, ENCRYPT
est une procédure pour chiffrer, DECRYPT est une procédure pour déchiffrer. La fonctionnalité de ces
algorithmes est donnée à la Table 1.1.

Table 1.1: Algorithmes d’un système de chiffrement à clé symétrique.
KEYGEN On note l’algorithme de génération de clés KEYGEN. KEYGEN est un algo-

rithme probabiliste, dont la sortie est une clé sk, choisie conformément à une
distribution donnée par le système de chiffrement respectif.

ENCRYPT On note l’algorithme de chiffrement ENCRYPT. L’entrée d’ENCRYPT est une
clé sk et un texte clair m. Sa sortie est constituée d’un texte chiffré c. Ainsi, le
chiffrement de m avec la clé sk est désigné par c = ENCRYPT(sk,m).

DECRYPT On note l’algorithme de déchiffrement DECRYPT. L’entrée de DECRYPT est une
clé sk et un texte chiffré c. Sa sortie est constituée d’un texte clair (message) m.
Ainsi, le déchiffrement de c avec la clé sk est désigné par m = Decrypt(sk, c).

Les deux principaux champs de la cryptographie à clé secrète sont les chiffrements par flux et les
chiffrements par blocs. De courts rappels sur ces sujets sont exposés ci-dessous.

Les chiffrements par flux. Les chiffrements par flux sont attribués à Vernam (voir le chiffrement One
Time Pad décrit dans la section 1.1.1). Ce qu’il a construit à l’époque est en substance, une machine
électromécanique qui chiffrait automatiquement la communication par téléscripteur. Le texte clair était
introduit dans la machine sous la forme d’une bande de papier, et le flux de clé avec une deuxième
bande. Ce fut la première machine automatisant à la fois le chiffrement et la transmission.

Le mécanisme sous-jacent de chiffrements par flux consiste à chiffrer les bits individuellement. Un bit
d’un flux de clé est ajouté modulo 2 à un bit de texte clair. Deux types de chiffrements par flux sont
connus: les synchrones et les asynchrones. Dans le cas synchrone le flux de clé dépend uniquement de la
clé. Dans le cas asynchrone le flux de clé dépend également du texte chiffré.

Une manière aisée, mais non sécurisée d’implémenter un chiffrement par flux [Ste87] est de le baser sur
le registre à décalage: des registres à décalage à rétroaction linéaire (LFSR) ou des registres à décalage à
rétroaction non-linéaire (NLFSR).

Contrairement au cas du chiffrement par bloc, la standardisation officielle n’était pas une priorité. Par
conséquent, seule une compétition - secrète dirions-nous -, pour un choix pertinent de chiffrements
par flux a été organisé et terminé en 2008. Parmi les finalistes, ont été retenu : Salsa20/12 [Ber08],
Rabbit [BVP+03], HC-128 [Wu08] et SOSEMANUK [BBC+08] pour le logiciel et Grain v1 [HJM07],
MICKEY v2 [BD08] et Trivium [DCP06] pour le matériel.

Les chiffrements par bloc. Actuellement, les constructions les plus connues dans la cryptographie à
clé secrète sont les chiffrements par blocs. En 1977, la proposition de chiffrement à clé symétrique d’IBM,
appelé Lucifer, a été choisie comme le chiffrement principal par bloc. C’est désormais le Data Encryption
Standard (DES). En réponse aux attaques qui sont apparues [BS91, Fou98, KPP+06], il a été montré que le
double DES peut être attaqué avec une complexité de 257 en temps et 256 en mémoire [MH81]. Le triple
DES [BB12] est donc devenu le principal mode de chiffrement de l’industrie.

La nécessité d’avoir des textes clairs et des clés de plus en plus longues a mené au remplacement
progressif du triple DES par l’Advanced Encryption Standard (AES) [NIS01] aussi appelé Rijndael [DR98].
Outre la sécurité, la vitesse était la caractéristique la plus importante lors du choix de Rijndael comme le
nouveau standard.

Alors que les chiffrements par flux doivent développer la clé, les chiffrements par blocs utilisent la même
clé pour effectuer le chiffrement d’un bloc entier de bits de textes clairs. Par conséquent, le chiffrement



1.1 Une brève introduction à l’histoire de la cryptographie 11

de n’importe quel bit de texte clair dans un bloc donné dépend de tous les autres bits de texte clair dans
ce même bloc. Ce fait est étroitement lié aux notions de confusion 4 et de diffusion 5, initialement définies
par Shannon [Sha49].

La taille usuelle des blocs dans les applications cryptographiques est de 128 bits.

Modes d’opération. Choisir un mode d’opération 6 approprié est essentiel pour les chiffrements par
blocs. Cet outil peut affecter la vitesse des processus de chiffrement et de déchiffrement, la sécurité
contre les adversaires actifs, contre les adversaires passifs et la propagation d’éventuelles erreurs.

Les cinq modes confidentiels d’opération normalisés par le NIST [Dwo01] sont ECB, CBC, CFB, OFB,
CTR.

En 2010, le NIST a approuvé XTS [Dwo10] comme un mode confidentiel d’opération conçu pour les
périphériques de stockage. XTS est une variante du mode XEX 7.

Selon l’application cryptographique sous-jacente, l’un de ces modes d’opération est utilisé. Chacun de
ces modes a des avantages et des inconvénients, mais l’ECB est l’un des plus indésirables étant donné
qu’il préserve certains motifs lors de l’encryption.

Selon l’application cryptographique sous-jacente, l’un de ces modes d’opération est utilisé. Chacun de
ces modes a des avantages et des inconvénients, mais l’ECB est l’un des plus indésirables étant donné
qu’il préserve certains motifs lors de l’encryption.

Cryptographie à clé publique

Comme l’a noté Diffie dans [Dif88], la cryptographie à clé publique est apparue en 1975 [DH76]. Cepen-
dant, Merkle [Mer] avait une proposition sérieuse dans cette perspective, depuis l’automne de 1974 8.
Connue comme “le puzzle de Merkle”, la technique a été littéralement basée sur des “puzzles” qui
étaient plus faciles à résoudre pour l’émetteur et le récepteur que pour un adversaire.

Annonçant une “révolution en cryptographie”, le document de Diffie et Hellman publié en 1976 [DH76]
était le premier document à présenter les fondements théoriques de la cryptographie à clé publique.
Ainsi, ils ont défini le concept de système cryptographique à clé publique et ont discuté des notions
auxiliaires, mais nécessaires telles que les fonctions à sens unique et trappe.

Après cette percée majeure, l’année 1978 aura révélé deux systèmes de chiffrement à clé publique d’une
importance nodale : RSA - qui était une création commune de Rivest, Shamir et Adleman [RSA78] et le
système du sac a dos de Merkle-Hellman [MH78]. Avec les systèmes cryptographiques à clé publique
émergents, le problème des signatures numériques est aussi apparu. Nous developperons ces sujets
dans la section 3.3.

Le système cryptographique RSA est fondé sur la difficulté de factoriser un grand nombre, tandis que le
régime Merkle-Hellman tenait pour hypothèse de sécurité sous-jacente l’une des versions du problème
du sac à dos.

RSA a passé le test du temps restant sécurisé (modulant le changement de la longueur recommandée
de la clé, l’adoption d’un padding adéquat, en évitant les attaques par diffusion, etc.), mais le système
cryptographique de Merkle-Hellman a été cassé par Shamir quelques années après sa découverte [Sha84].

Outre l’introduction des fondements théoriques de la cryptographie à clé publique, Diffie et Hellman
proposent un protocole d’échange de clés basé sur la difficulté du problème du logarithme discret (DLP,
détaillé dans la section 2.1.2) [DH76]. Leur protocole a été implémenté plus tard à base d’EC. Il faut noter
un autre système de chiffrement lié à DLP introduit par El Gamal [EG84].

4. La relation entre la clé et le texte chiffré doit être complexe. Cela veut dire que chaque bit de texte chiffre doit dépendre de
tous les bits de la clé.

5. Dans un bon système de chiffrement, changer un bit de texte clair changera en moyenne la moitier des bits du texte chiffré.
6. D’appres [Dwo01] un mode d’operation est un algorithme pour la transformation cryptographique de données qui fait intervenir un

algorithme de chiffrement symmetrique par bloc.
7. Développé par Rogaway et présenté dans [Rog04a]
8. Merkle a suivi le cours CS244 donné par Hoffman à Berkeley.



12 Prolégomènes 1.2

Dans un algorithme asymétrique, chaque utilisateur sélectionne une paire de clés constituée d’une clé
privée sk et d’une clé publique pk. L’utilisateur doit garder le secret de sk. sk et pk sont liées par une
fonction à sens unique, un concept défini ci-dessous.

Les systèmes cryptographiques à clé publique sont généralement plus lents que ceux à clé secrète.
Par conséquent, le chiffrement asymétrique est le plus couramment utilisé dans la pratique pour les
transports de clé sécurisé (l’emballage des clés 9.). Ensuite, la clé partagée est utilisée pour le chiffrement
des données au moyen d’algorithmes symétriques.

La cryptographie à clé publique a été en réalité découverte en 1969 par Ellis lorsqu’il travaillait pour
le British Government Communications Headquarters. L’échange de clé de Diffie-Hellman et le sys-
tème RSA ont été découverts indépendament par GCHQ, bien des années avant que le monde de la
cryptographie ne les découvrent [Sin99]. Ces faits ont été connus et communiqués récemment.

Definition 1.1 Soit {0, 1}∗ l’ensemble des chaînes de caractères binaires et f : {0, 1}∗ → {0, 1}∗. f est appelée
une fonction a sens unique si

1. Il existe un algorithme efficace qui prend x en argument et retourne f(x)
2. Pour tout adversaire en temps polynomiale A, la probabilité suivante est négligeable en κ:

Pr[x $←− {0, 1}κ; f(A(f(x, y)))f(y) = f(x)].

Définition d’un système de chiffrement à clé publique. Un système de chiffrement à clé asymétrique
est constituée de quatre algorithmes probabilistes en temps polynomial (SETUP, KEYGEN, ENCRYPT,
DECRYPT), un espace des clés K, un espace des messagesM et un espace des textes chiffrés C. SETUP
est une procédure pour générer les paramètres du système, KEYGEN est un algorithme de génération
de clés, ENCRYPT est une procédure pour chiffrer et DECRYPT est une procédure pour dechiffrer. La
Table 2.2 décrit ces algorithmes.

Table 1.2: Algorithmes d’un système de chiffrement à clé publique.
SETUP Soit κ le paramètre de sécurité. SETUP(1κ) génère les paramètres globaux du

système.
KEYGEN Le rôle de KEYGEN est de générer la clé de chiffrement publique pk et la clé de

déchiffrement privée correspondante sk.
ENCRYPT Soit le texte clair m. Le rôle d’ENCRYPT est de chiffrer m pour obtenir un texte

chiffré c = Encrypt(pk,m).
DECRYPT Le but de DECRYPT est de déchiffrer le texte chiffré c en utilisant la clé de

déchiffrement sk. La sortie peut être soit le texte clair m ou ⊥, qui est un
symbole d’invalidité.

1.2 Résumé de la thèse

Nous présentons les fondements théoriques sous-jacents liés à nos résultats dans le chapitre 3.

Nous fournissons une courte introduction sur les fonctions de hachage et les codes d’authentification de
message (MAC) dans le chapitre 3. Nous présentons également le chiffrement authentifié (à la fois le
générique composition paradigme [BN08] 10 et des solutions dédiées 11 [Jut01, GD01, RBBK01]) donne un
aperçu des systèmes de signature numérique. Les courbes elliptiques sont introduits et leur rôle dans la
cryptographie est discuté, au vu des résultats de cryptanalyse présentés dans la section 5.6.

Nos contributions originales sont structurées en deux chapitres: la conception de protocoles (chapitre 4)
et des algorithmes pour la cryptographie intégrée (chapitre 5).

Nous présentons un protocole de co-signature prouvé sûr et un système de chiffrement authentifié prouvé
sûr dans le chapitre 4. Le chapitre 4 comprend également un protocole distribué de type Fiat-Shamir
permettant l’authentification sur des réseaux.

9. L’idée de l’emballage de clé a été proposée pour la première fois dans le papier introduisant RSA [RSA78]
10. La composition paradigme générique se réfère à la combinaison d’un système de chiffrement et un MAC.
11. Une solution dédiée se réfère à la fourniture à la fois de la confidentialité et d’authenticité dans dans le même système.



1.2 Résumé de la thèse 13

La plupart des résultats présentés dans le chapitre 5 concernent des améliorations algorithmiques. Nous
décrivons ces améliorations du point de vue de la cryptographie à bas coût.

La cryptographie à bas coût est adapté pour les appareils contraintes dans lequel les concepteurs doivent
trouver des compromis entre la performance, la sécurité et le coût. Les contraintes peuvent être la
puissance de calcul, mémoire, bande passante, ou de la sécurité.

La section 5.2 comprend un nouveau procédé qui permet de doubler la vitesse de l’algorithme de Barrett
à l’aide de modules composites spécifiques. Nous décrivons un nouvel algorithme de multiplication
basé sur le retour sur trace dans la section 5.4. Cet algorithme s’avère particulièrement adapté aux
microprocesseurs bon marché. présente des nouvelles stratégies d’accélération de codes BCH utilisant
des versions polynomiales de l’algorithme de Barrett dans la section 5.3.1. Nous décrivons un nouveau
code correcteur d’erreurs inspiré par le système de chiffrement Naccache-Stern [NS97, CMNS08] dans la
section 5.3.2. Notre contribution présenté dans la section 5.5 permet de régulariser le débit d’extracteurs
de von Neumann.

Finalement, nous présentons une nouvelle attaque en fautes sur les algorithmes de signature à courbes
elliptiques, à partir de [NSS04] dans la section 5.6.

Donc, les résultats du manuscrit tournent autour de: la conception du protocole, des améliorations
algorithmiques et des attaques.



CHAPTER 2

INTRODUCTION

If you reveal your secrets to the wind, you should not blame the wind for revealing them to the trees.
Kahlil Gibran.

Summary

This chapter introduces terminology and explains the role of cryptography within the broader field of
cryptology. We discuss milestones, and overview the field’s evolution as a short journey starting with
pre-computer (Section 2.1.1) and reaching post-quantum ciphers (Section 2.1.2). We provide technical
details of symmetric and asymmetric key cryptography (Section 2.1.2), discuss computational security,
complexity theory and hardness assumptions, and recall the security notions for secret-key and public-
key cryptography.

Section 2.2 describes the topics addressed in this thesis and sets the goals to be achieved. The main
results in this thesis are new protocols, authenticated encryption and signature schemes, error correcting
code ideas, as well as cryptanalysis and algorithmic improvements.

In the protocol and scheme design part of this thesis, we describe a provably secure co-signature protocol,
introducing a novel form of fairness (legal fairness), as well as a provably secure authenticated encryption
scheme called Offset Merkle-Damgård (OMD). OMD is a keyed compression function mode of operation.
Also, we present a lightweight distributed Fiat-Shamir authentication protocol that enables network
authentication. Protocol and scheme design contributions are further addressed in Chapter 4.

One of our algorithmic improvements is a new backtracking-based multiplication algorithm, particularly
suited to lightweight microprocessors when one of the operands is known in advance. Other improve-
ments are a method allowing to double the speed of Barrett’s algorithm by using specific composite
moduli, new BCH speed-up strategies using polynomial versions of Barrett’s method as well as a new
error-correcting code (ECC) inspired by the Naccache-Stern cryptosystem. We present a new method
to streamline the pace of random bits output by a von Neumann extractor and, finally, venture into
cryptanalysis and describe a new fault attack on elliptic curve cryptography (ECC) implementations.
Algorithmic improvements and cryptanalysis results appear in Chapter 5.

Our main contributions are listed in Section 2.3 along with their publication references and abstracts.

14



2.1 A Brief Introduction to the History of Cryptography 15

2.1 A Brief Introduction to the History of Cryptography

According to the Merriam-Webster dictionary [MWb], the term cryptology was first used in 1935 and
refers to the scientific study of cryptography and cryptanalysis. The word cryptography was first mentioned
in 1658 and its origin is closely related with the Modern Latin concept cryptographia inherited from the
Greek terms kryptos (hidden, secret) and graphein (to write). The first use of the word cryptanalysis dates
back to 1923 [MWa].

Cryptography’s core role is creating systems for keeping information secret and unaltered. In parallel,
cryptanalysis arose as the art of breaking the ciphers designed by cryptographers.

Cryptography’s main goals are the enforcement of confidentiality (keeping information secret), data authenti-
cation (the assurance of message non-alteration during transmission), entity authentication (knowing who
sent a message) and non-repudiation (preventing the denial of past actions). The generic term cryptosystem
refers to algorithms achieving some or all of the previously mentioned goals.

Cryptography

Confidentiality

Public-key
Encryption

Block
Ciphers

Entity
Authentication

Zero-
Knowledge

Proofs

Origin Non-
repudiation

Digital
Signatures

Data
Authentication

MACs

Hash
Functions

Authenticated
Encryption

Figure 2.1: Some cryptographic goals and primitives.

The concern of keeping secrets is millennia old. During centuries the historical users of encryption were
diplomats, spies and militaries.

The recent explosion of telecommunications made cryptography a general necessity.

Notations. The following notations will be used within this thesis:
– M = {m|m ∈ Alph∗m} will denote the non-empty set of plaintext space (also called message space or

cleartext space), where Alphm is a non-empty alphabet.
– C = {c|c ∈ Alph∗c} will denote the set of ciphertexts (also called ciphertext space), where Alphc is a

non-empty alphabet.
– K will denote the set of keys. K is also called key space.
Usually, Alphm = Alphc.

Let S be a finite set. We denote by x $←− S or x ∈R S the operation of picking an element uniformly from
S.

If α is neither an algorithm nor a set then x← α will denote a simple assignment statement.



16 Introduction 2.1

2.1.1 Pre-Computer Cryptography

Classical Ciphers

Classical ciphers are historically important. This category of ciphers is often referred to as "pen and
paper ciphers" and actually includes simple cryptographic algorithms that can be computed directly by
hand or using very simple mechanical tools.

One of the most ancient encryption device examples is the Scytale cipher, originated in Sparta, Greece.
The device Scytale was a cylinder and a parchment ribbon wounded around it, on which the message
was written lengthwise. Popular in the 6th century B.C., Scytales belong to the category of transposition
ciphers.

The CÆSAR Cipher. Named after its most famous user, Julius Cæsar, this cipher dates from the 1st
century B.C. The CÆSAR encryption system is a single alphabet substitution cipher.

Consider the 26-letters alphabet, i.e. Alph∗m = Alph∗c = Z26. The CÆSAR cipher cyclically shifts each
plaintext letter by 3 positions to obtain the ciphertext. The number of shifts can be replaced by any
encryption key k ∈ Z26. Decryption is a reverse shift.

A CÆSAR encryption disk is shown in Figure 2.2.

A

A

B

B

C

C

D

D
E

E
F

F GG

H

H

I

I

J

J
K

K
L

L
M

M
N

N
O

O

P

P

Q

Q
R

R
S

ST T

U

U

V

V

W

W
X

X
Y

Y

Z

Z

Figure 2.2: CÆSAR encryption disk (k = 10).

The VIGENÈRE Cipher. The VIGENÈRE cipher was developed by Blaise de Vigenère in the 16th century
[Kah96].

Again, consider the 26-letters alphabet and chose a key κ of length r. The VIGENÈRE cipher can be seen
as an encryption system constructed from r different CÆSAR ciphers (corresponding to each character
of κ). If the message to be encrypted is longer than κ, the key is used periodically.

Hence, the VIGENÈRE cipher is a poly-alphabetic substitution system.

The ONE TIME PAD. Also known as the Vernam cipher can be easily described as a VIGENÈRE cipher
whose key length equals the plaintext length. Also, all keys must be only used once.

ONE TIME PAD, illustrates the fact that random number generators play a crucial role in cryptography.

If perfectly implemented (using unique, random keys, at least as long as the messages), the One Time
Pad is unconditionally secure (we refer the reader to Section 2.1.2).

Transposition Ciphers. Another type of ciphers are the transposition ciphers. To have a clear example
we consider a columnar transposition cipher. Such a transposition cipher starts by dividing the message



2.1 A Brief Introduction to the History of Cryptography 17

S E C R E T C E E R S T
E X P L A I P X A L E I
N T R A N S R T N A N S
P O S I T I S O T I P I
O N C I P H C N P I O H
E R S X X X S R X X E X

Figure 2.3: Columnar transposition cipher example.

m into blocks of ` bits, writing it row-wise in a table of given size and applying a fixed permutation σ to
the message 1. The obtained ciphertext is read out column-wise.

In Figure 2.3 we give an example in which m is EXPLAINTRANSPOSITIONCIPHERS, κ is SECRET and the
padding character is X . The permutation is given by the alphabetical order of κ’s letters, resulting in
σ = (3, 2, 5, 4, 1, 6). We obtain the ciphertext PRSCSXTONRANTPXLAIIXENPOEISIHX.

Electrical and Mechanical Ciphers

To automate encryption and decryption, different mechanical designs were proposed, especially during
the World Wars. Automation allowed ciphers to become much more complex than paper and pen codes
or simple mechanical devices. Nonetheless, machines had to remain efficient and easy to construct. This
led developers to adopt designs that repeatedly perform simple operations.

The first cryptographic machine is credited to Jefferson who invented his ciphering cylinder [Kah96].
Amongst the numerous electromechanical machines invented during the 1900s two designs are particu-
larly famous: HAGELIN’s ciphering machines [Kah96] and ENIGMA [Kah96].

HAGELIN’s Ciphering Machines. Boris Hagelin was a Swedish engineer who invented the C-35 2, C-38
(M-209) and C-52 ciphering machines. During the second World War about 140.000 C-38 machines were
produced. HAGELIN’s machines were a trade off between security and efficiency - designed for tactical
purposes.

C-38 is based on 6 rotors with 26, 25, 23, 21, 19 and 17 pins. Pins can be either active or passive. When
encrypting a letter, all rotors turn by one position. Hence, after 26 encryptions the first rotor will get back
to its initial place (for the sixth rotor this takes only 17 encryptions).

HAGELIN’s ciphering machines can thus be regarded as a mechanical versions of the VIGENÈRE cipher.
Because the number of pins on the rotors are co-prime. The device’s period is 26×25×23×21×19×17 =
101, 405, 850.

C-52 was an improved model, one of the last electromechanical cipher machines before the computer
age.

ENIGMA. The famous ENIGMA machine, used by Germany, was designed in 1918 in Berlin and publicly
presented in 1923. About 100.000 ENIGMA machines were produced, of which around 40.000 machines
during World War II. The generic name ENIGMA actually refers to a variety of models which are based
on either VIGENÈRE or BEAUFORT ciphers.

ENIGMA’s components are a keyboard, a reflector (i.e. reversal rotor) 3 and, usually, 3 rotors and a
plug-board. The number of rotors can be 5, 6, or 7. Each rotor features 26 letters plus 3 other special
characters in some cases.

In the 3-rotor variant encryption process, when pressing a plaintext letter switch L, an electronic current
enters the first rotor at the plaintext corresponding to L and the other two rotors perform the same

1. Depending on a key κ.
2. The corresponding patent was published in 1937.
3. The reflector connected outputs of the last rotor in pairs, redirecting current back through the rotors by a different route. The

reflector ensured that Enigma is an involution: conveniently, encryption was the same as decryption. However, the reflector also
gave Enigma the property that no letter ever encrypted to itself.



18 Introduction 2.1

actions, but with distinct wirings. Then, the reflector maps the electrical current to another place to
reversely pass through the rotors again. The panel’s light bulb corresponding to a letter C lightened up
by the current is the ciphertext of L.

The first rotor will turn by one position and, after 26 rotations, the second rotor will turn by one
position. Similarly, the third rotor will rotate by a position when the second rotor completes an entire
revolution. ENIGMA’s secret key is the choice, order and initial position of the rotors plus a fixed alphabet
permutation.

Given its huge daily keyspace (' 1022), ENIGMA was thought to be secure enough to serve military and
diplomatic purposes.

An ENIGMA machine is presented in Figure 2.4.

Figure 2.4: A four-rotor ENIGMA machine.

Before and during World War II, breaking ENIGMA was a prime importance challenge. First notable
cryptanalytic results were obtained by the Polish mathematician Marjan Rejewski. With the aid of daily
keys table received from an employee of the German Cipher Bureau, Rejewski reconstructed the internal
structure of ENIGMA’s three rotors. During 1932-1939, Rejewski and other Polish mathematicians made
steady progress that climaxed with the development of the Polish “Bomba” 4. In 1938, Germans enhanced
ENIGMA with two further rotors. In 1939 the Poles provided their solutions and two ENIGMA replicas to
the French and British Intelligence Services. A cryptologic center is created by the British Government
Code and Cipher School (GC&CS) in Bletchley Park, England. Alan Turing develops a British “Bombe”
with the aid of Welchman. The “Bombe” started being used in May 1940. In 1941 and 1942, cryptanalysts
of the US Army and the US Navy visit Bletchley Park to learn about ENIGMA. Since April 1943 and until
the end of the war the American “Bombe” was used.

For further information about the cryptanalysis of ENIGMA the reader may consult [GO03].

For a more detailed description of classical ciphers we refer the reader to [Kah96].

2.1.2 Modern Cryptography

World War II represented a turning point for cryptography: perspectives changed quickly and drastically.
The theoretical foundations of cryptography were progressively established, leading to the rigorous,
scientific study of this field.

Cryptography cannot be reduced to secret communications only, especially nowadays. Looking atten-
tively at the current status of cryptography, we have to take into consideration key exchange protocols,

4. The Polish “Bomba” consisted of six ENIGMA machines working in parallel to obtain the rotors’ positions.



2.1 A Brief Introduction to the History of Cryptography 19

message authentication, entity authentication protocols, digital signatures, electronic voting, digital coins
(e.g. Bitcoin) and so on.

All in all, modern cryptography’s role is to protect each and every distributed computation that could be
prone to a vast palette of attacks.

The main dissociation in modern cryptography is between secret (or symmetric) key systems, public (or
asymmetric) key systems, unkeyed primitives (hash functions), message authentication code algorithms
(MAC algorithms) and digital signatures. Symmetric cryptography uses the same key both for encryption
and decryption, while public key cryptography uses a public key for encryption and a related private
one for decryption.

Cryptographic Parties. For more flexibility and to ease understanding, instead of simply using A and
B, we call parties Alice and Bob. Eve usually stands for eavesdropper.

Symmetric Cryptography

In a symmetric-key setting, Alice and Bob need to establish a common secret and use it to communicate
privately. Alice encrypts a message m using the already shared key, while Bob decrypts the ciphertext
(using the same key) and recovers m. The purpose of the parties is to prevent Eve from learning m, as
their communication is assumed to take place over a public channel.

In this setting, the same key is used to encrypt and decrypt. This explains why this setting is called
symmetric. Here, symmetry lies in the fact that both parties use the same key.

An implicit assumption in any system using symmetric-key encryption is that Alice and Bob have some
way to initially share a key secretly. In military settings, Alice and Bob may physically meet in a secure
location to agree upon a key. In the Internet era, however, parties cannot always arrange any such
physical meeting, but this issue is solved in a different manner (e.g. by means of hybrid encryption).

There are many settings where private-key methods are in wide use; one example is disk encryption,
where the user (at different points in time) uses a fixed secret key to both write to and read from the disk.

The Syntax of a Symmetric Key Encryption Scheme. A symmetric-key encryption scheme consists of
three probabilistic polynomial-time 5 (PPT) algorithms (KEYGEN, ENCRYPT, DECRYPT) and the corre-
sponding key space K, message spaceM and ciphertext space C. KEYGEN is an algorithm for generating
keys, ENCRYPT is a procedure for encrypting, and DECRYPT is a procedure for decrypting. The function-
ality of these algorithms is given in Table 2.1.

Table 2.1: Algorithms of a symmetric-key encryption scheme.
KEYGEN KEYGEN is the key generation algorithm. KEYGEN is a probabilistic algorithm

whose output is a key sk, chosen in accordance with a distribution given by
the encryption scheme.

ENCRYPT ENCRYPT denotes the encryption algorithm 6. The input of ENCRYPT is a key
sk and a plaintext m. ENCRYPT’s output is a ciphertext c. Thus, the encryption
of m with the key sk is referred to as c =ENCRYPT(sk,m).

DECRYPT DECRYPT denotes the decryption algorithm. The input of DECRYPT is a key
sk and a ciphertext c. DECRYPT outputs a plaintext (message) m. Hence, the
decryption of c with the key sk is referred to as m =DECRYPT(sk, c).

The two main sub-areas of secret key cryptography are stream ciphers and block ciphers. Very short
reminders on these sub-areas follow.

5. in the security parameter
6. Encryption may be randomized or stateful.



20 Introduction 2.1

Stream Ciphers. Stream ciphers are attributed to Vernam 7 [Ver26] (see the ONE TIME PAD cipher listed
in Section 2.1.1). Vernam built an electromechanical machine that automatically encrypted teletypewriter
communication. The plaintext was fed into the machine as a paper tape, and the key stream as a second
tape. That was the first time at which encryption and transmission were automated and merged into one
machine.

Stream ciphers usually encrypt bits individually 8. A bit of a key stream is XORed with a plaintext bit.
Two stream cipher types are known: synchronous, and asynchronous. In synchronous stream ciphers
the key stream depends only on the key. In asynchronous stream ciphers the key stream depends on the
ciphertext too.

An easy way to implement (unsafe) stream-ciphers [Ste87] consists in using linear feedback shift registers
(LFSRs) and non-linear feedback shift registers (NLFSRs). Despite their insecurity as primitives by their
own rights LFSRs and NLFSRs 9 are sometimes used as inner design parts.

Unlike the case of block ciphers, stream-cipher standardization was not a priority. Therefore, only a
slightly visible competition for choosing good stream ciphers was organized in 2008 [Conb]. Among
the finalists were Salsa20/12 [Ber08], Rabbit [BVP+03], HC-128 [Wu08] and SOSEMANUK [BBC+08]
(software-based stream ciphers) and Grain v1 [HJM07], MICKEY v2 [BD08] and Trivium [DCP06]
(hardware-based stream ciphers).

Block Ciphers. Block ciphers are the core building blocks of secret key cryptography. In 1977 the
symmetric key cipher Lucifer was chosen by the NIST as the Data Encryption Standard (DES) [NIS99].
As a response to the complexity trade-offs and attacks on DES that appeared [BS91, Fou98, KPP+06] 10.
Triple DES [BB12] became the industry’s prime encryption mode.

The need for longer plaintexts and longer keys eventually led to the adoption of the Advanced Encryption
Standard (AES) [NIS01] originally called Rijndael [DR98]. Apart security, speed was the most important
reason for adopting Rijndael as the new standard.

While stream ciphers need to expand the key, block ciphers use the same key to encrypt an entire plaintext
block. Hence, the encryption of any given plaintext bit in a block depends on every other plaintext bit
in the same block. This fact is closely related with the notions of diffusion 11 and confusion 12, defined by
Shannon in [Sha49]. The usual block length in cryptographic applications is 128 bits 13.

Modes of Operation. Choosing an appropriate mode of operation 14 is critical for block ciphers. The
mode of operation may affect the encryption and decryption speed, security against passive and active
adversaries as well as the the propagation of possible errors.

The five confidentiality (i.e. encryption) modes of operation standardised by NIST [Dwo01] are schemati-
cally described in Figures 2.5 to 2.8 and 2.9. In 2010, NIST approved XTS [Dwo10] as a confidentiality
mode of operation designed for storage devices. XTS is a variation of XEX mode 15.

Encryption and decryption functions follow the color codes given in Table 2.1. We use abbreviations
to refer to the functions. Plaintexts and ciphertexts are assumed to be already divided into blocks. For
clarity, we will only show the first three blocks in each diagram.

7. Recent work by Bellovin seems to indicate that Vernam may not have invented them [Bel11], but he certainly was the first to
build a practical device using them.

8. However, e.g. RC4 [MvOV96] encryption is performed bytewise
9. NLFSRs are vulnerable to distinguishing attacks e.g. linear approximations, short period. Various papers on the cryptanalysis

of Grain were based on some NLFSR vulnerabilities [BGM06, ZW09].
10. Merkle and Hellman have shown that double DES can be attacked with 257 encryptions and 256 14-byte values space [MH81],

while van Oorschot and Wiener have reported an attack that requires 272 encryptions and 16 GB storage [VOW96a].
11. In a good cipher, flipping a bit in the plaintext causes flipping of circa 50% of the ciphertext’s bits.
12. The relations hip between the key and the ciphertext must be complex, meaning that each ciphertext bit must depend on all

the key bits.
13. although the block length of DES which is still used by the banks has is 64 bits
14. According to [Dwo01], a mode of operation is “an algorithm for the cryptographic transformation of data that features a

symmetric key block cipher algorithm”.
15. Developed by Rogaway and presented in [Rog04a].



2.1 A Brief Introduction to the History of Cryptography 21

ENC

P0

k

C0

ENC

P1

k

C1

ENC

P2

k

C2

DEC

C0

k

P0

DEC

C1

k

P1

DEC

C2

k

P2

Figure 2.5: The ECB mode of operation - ENCRYPT and DECRYPT algorithms.

ENC

P0

k

C0

ENC

P1

k

C1

ENC

P2

k

C2

IV

DEC

P0

k

C0

DEC

P1

k

C1

DEC

P2

k

C2

IV

Figure 2.6: The CBC mode of operation - ENCRYPT and DECRYPT algorithms.

ENC

C0

k

P0

ENC

C1

k

P1

ENC

C2

k

P2

IV

ENC

P0

k

C0

ENC

P1

k

C1

ENC

P2

k

C2

IV

Figure 2.7: The CFB mode of operation - ENCRYPT and DECRYPT algorithms.

ENC

C0

k

P0

ENC

C1

k

P1

ENC

C2

k

P2

IV

DEC

P0

k

C0

DEC

P1

k

C1

DEC

P2

k

C2

IV

Figure 2.8: The OFB mode of operation - ENCRYPT and DECRYPT algorithms.

Depending on the underlying cryptographic application, one of these modes of operation is used. Each
of the five modes has pros and cons, but the pattern preserving issue 16 of ECB is one of the most
undesirable ones. To prevent pattern preservation and to hide repetitions, encryption modes CBC, CFB,
and OFB modes include a data block named initialization vector (IV ). The IV is used in an initial step of

16. Identical plaintext blocks are encrypted into identical ciphertext blocks.



22 Introduction 2.1

ENC

Nonce, Ctr

C0

k

P0

ENC

Nonce, Ctr

C1

k

P1

ENC

Nonce, Ctr

C2

k

P2

ENC

Nonce, Ctr

P0

k

C0

ENC

Nonce, Ctr

P1

k

C1

ENC

Nonce, Ctr

P2

k

C2

Figure 2.9: The CTR mode of operation - ENCRYPT and DECRYPT algorithms.

message encryption in the corresponding decryption process. The IV need not be secret. In CBC and
CFB, the IV for any particular execution of encryption must be unpredictable. In OFB, unique IV s (also
called “fresh”) must be used for each encryption. CTR uses a counter instead of a traditional IV .

Public-Key Cryptography

As noted by Diffie in [Dif88], public key cryptography officially appeared in 1976 [DH76]. A year earlier
Merkle [Mer] had a seminal proposal in this direction 17. Known as “Merkle’s puzzle”, the technique
was based on problems which are easier to solve by the sender and receiver who cooperate than by the
adversary.

Announcing a “revolution in cryptography”, Diffie and Hellman’s 1976 paper published in 1976 [DH76]
was the first to lay the theoretical foundations of public key cryptography. [DH76] defined the concept of
public key cryptosystem and discussed auxiliary but necessary notions such as one-way functions and
trapdoors.

After this major breakthrough, 1978 brought up two extremely important public key encryption schemes:
RSA, by Rivest, Shamir and Adleman [RSA78] and the Merkle-Hellman knapsack [MH78]. Along the
emerging public key cryptosystems, digital signatures also started arising. We will develop this topic in
detail in Section 3.3.

RSA is based on the hardness of the integer factorization problem, while Merkle-Hellman’s underlying
security assumption is a specific knapsack problem.

RSA passed the test of time remaining secure (modulo changing the recommended length of the key,
adopting proper padding, avoiding broadcast attacks, etc.), but the Merkle-Hellman cryptosystem was
broken by Shamir a few years after its discovery [Sha84].

Besides introducing the theoretical foundations of public key cryptography, Diffie and Hellman proposed
a key exchange protocol based on the hardness of the Discrete Logarithm Problem (DLP, see Section 2.1.2)
[DH76]. Later, elliptic curve versions of Diffie-Hellman’s protocol were developed. Another DLP-related
cryptosystem worth of mentioning in the introduction is ElGamal [EG84].

In an asymmetric setting each user selects a key pair consisting of a private key sk and a corresponding
public key pk. The user must keep sk secret. sk and pk are related by a one-way function, a concept
defined next.

Public-key cryptosystems are usually slower than secret-key ones. Hence, asymmetric encryption is
most commonly used in practice for secure symmetric key transport (key wrapping 18) and then the
transported key is used for data encryption by means of symmetric algorithms.

Public-key cryptography was actually discovered in 1969 by Ellis while working for the British Gov-
ernment Communications Headquarters. The Diffie-Hellman key exchange and the RSA were hence
independently discovered by GCQH, years before their development by the cryptographic world [Sin99].
These facts surfaced only in 1997.

17. Merkle enrolled in CS244, the course offered by Hoffman at Berkeley.
18. The idea of key wrapping was proposed in the original RSA paper [RSA78].



2.1 A Brief Introduction to the History of Cryptography 23

Concrete Security Conventions. The advantage Adv of an adversaryA is a measure of how successful
an attack against an algorithm A1 is, by distinguishing it from an idealized version of A1 (i.e. a version in
which the security property of A1 clearly holds.).

As usual with the concrete-security definitions, we use the resource parametrized function Advxxx
Π (r)

to denote the maximal value of the adversarial advantage (i.e. Advxxx
Π (r) = maxA {Advxxx

Π (A)}) over all
adversaries A, against the xxx property of a primitive or scheme Π, that use resources bounded by r. The
resource parameter r, depending on the notion, may include time complexity (t), length of queries and
number of queries that an adversary makes to its oracles. If a resource parameter is irrelevant in the
context then we omit r; e.g. for information-theoretic security bounds the time complexity t is omitted.

Let A be an adversary that returns a binary value; by Af(·)(X) = 1 we refer to the event that A on
input X and access to an oracle function f(·) returns 1. By time complexity of an algorithm we mean
the running time, relative to some fixed model of computation plus the size of the description of the
algorithm (program) using some fixed encoding method.

Definition 2.1 (Negligibility) A function f : N→ R is said to be negligible if

∀c ∈ R+,∃λ0 ∈ N s.t. ∀λ > λ0 we have f(λ) > 1
λc
.

Definition 2.2 (Negligible Probability) We say that the probability of an event E(κ) depending on a variable
κ ∈ N is negligible if Pr[E(κ)] is a negligible function.

Definition 2.3 Let {0, 1}∗ be the set of binary strings and let f : {0, 1}∗ → {0, 1}∗. We call f a one-way
function if

1. There exists an efficient algorithm that on input x returns f(x)
2. For any polynomial-time adversary A, the following probability is negligible in κ:

Pr[x $←− {0, 1}κ; y ← A(1κ, f(x)); f(y) = f(x)] .

Defining a Public-Key Encryption Scheme. An asymmetric-key encryption scheme consists of four
PPT 19 algorithms (SETUP, KEYGEN, ENCRYPT, DECRYPT) and a corresponding key space K, message
spaceM and ciphertext space C. SETUP is a procedure for generating the parameters of the scheme,
KEYGEN is an algorithm for generating keys, ENCRYPT is a procedure for encrypting, and DECRYPT is a
procedure for decrypting. The functionalities of these algorithms is given in Figure 2.2.

Table 2.2: Algorithms of a public-key encryption scheme.
SETUP Let κ be a security parameter. SETUP(1κ) generates the global parameters of

the scheme.
KEYGEN KEYGEN takes the global parameters as input and generates the public encryp-

tion key pk and the corresponding private decryption key sk.

ENCRYPT
Let m be the plaintext.
ENCRYPT 21encrypts m into a ciphertext c =ENCRYPT(pk,m).

DECRYPT DECRYPT decrypts c using sk. The output may be either the plaintext m or ⊥
which is an invalidity symbol.

Computational Security

Shannon presented in [Sha48, Sha49] notions that form the mathematical foundation of modern cryptog-
raphy. He defined the concept of perfect secrecy, introduced the idea of entropy of natural languages and
statistical analysis. Moreover, he provided the first security proofs using probability theory and gave
exact connections between provable security, key size, plaintext and ciphertext spaces.

The security of a cryptosystem relies on certain assumptions. Thus, we can distinguish between:
– Information-theoretically secure 22 cryptosystems: systems that no amount of computation can break

19. in the security parameter
21. Encryption may be deterministic or probabilistic.
22. Also called unconditionally secure.



24 Introduction 2.1

– Computationally secure cryptosystems: based on the computational infeasibility of breaking them

In other words, no attack exists against unconditionally secure cryptosystems whereas attacks against
computationally secure cryptosystems exist in theory but are infeasible in practice.

Definition 2.4 The entropy (or, equiv., uncertainty) H(X) of a discrete random variable X with possible values
xi is defined as the expectation of the negative logarithm of the corresponding probability P 23:

H(X) = −
∑
i

P (xi) logP (xi) .

Definition 2.5 A secret key cipher is perfect if and only if H(M) = H(M |C), i.e., when the ciphertext C reveals
no additional information about the message M .

Corollary 2.1 A perfect cipher is unconditionally (or information-theoretically) secure against a ciphertext only
attack 24 (COA).

Definition 2.6 (The Security of a Scheme) Let t, ε be positive constants with ε > 1. We say that a scheme is
(t, ε)-secure if every adversary A running for time at most t succeeds in breaking the scheme with probability at
most ε.

Definition 2.7 (The Asymptotic Security of a Scheme) A scheme is secure if every probabilistic polynomial-
time (PPT) adversary succeeds in breaking the scheme with only negligible probability.

We now turn our attention to proving the security of cryptosystems. We first give an intuition on how
these proofs have to be constructed (having as building blocks reductionist proofs) and then discuss the
models in which we can prove the security of a scheme.

Reductionist Proofs. A reductionist proof (be it uniform or non-uniform) establishes the security of a
cryptographic scheme by showing how an adversary A that breaks the scheme can be used to solve an
underlying problem which is assumed to be hard.

A problem X can be reduced to a problem Y if there is a constructive polynomial-time transformation
that takes any instance of X and maps it to an instance of Y . Thus any algorithm for solving Y can be
transformed into an algorithm solving X . Hence if X belongs to P , and if X is reducible to Y , then
Y ∈ P .

The Adversarial Model. First, we formalise the notion of security: this definition is referred to as the
adversarial model or the security game. More exactly, we model the attacker A as an interactive Turing
machine, specify a challenger C and describe how A and C interact, including the winning condition for
the attacker. There are security notion hierarchies for every type of scheme.

The Random Oracle Model (ROM). The Random Oracle Model (ROM). A random oracle is a black-
box that receives as input binary strings (called queries) and returns randomly looking binary strings
in response. The interaction with such an oracle is available to both honest parties and to adversaries.
However the queries made by each party are assumed to be private to the querying party. The black-box
has an important property called consistence: a repeated query will result in the same repeated response.
In other words, a Random Oracle is, in a way, a “randomness made function”.

Mixed Arguments. Some encryption schemes do not have direct reductions to hardness assumptions,
hence, it is useful to divide the proof into smaller parts. This can be achieved by defining a sequence of
games, starting from the initial security game, and slightly changing its rules until the game becomes
impossible to win. The proof flows by showing that each game is hard to distinguish from the previous
one, making the initial problem hard to distinguish from the final one. For showing that two successive
games are hard to distinguish, one can resort to a hardness assumption or a statistical security argument.

23. assuming P (xi) 6= 0
24. We assume that an attacker has access only to ciphertexts.



2.1 A Brief Introduction to the History of Cryptography 25

Security Notions for Symmetric-Key Cryptography

In the following definitions, LOR will denote left or right indistinguishability, ROR - real or random
indistinguishability, FTG - find then guess indistinguishability and SEM will denote semantic security.
LOR and ROR were initially defined by Bellare et al. [BDJR97], whereas FTG and SEM are symmetric-key
setting adaptations of Goldwasser and Micali’s definitions [GM84]. FTG and SEM will not be detailed or
formally defined next, as our original results are mostly public-key related.

In the definitions below, K will be the key generation algorithm and k ∈ N a security parameter. K
will denote a key and Exp will be an experiment. In the following Definitions (2.8 to 2.11) SKE will be a
symmetric-key encryption scheme. We let b ∈ {0, 1}.

We follow the description and definitions in [BDJR97].

LOR A is allowed queries of the form (x0, x1) where x0, x1 are equal-length messages. We define
the LOR oracle EK(LR(·, ·, b)), where b ∈ {0, 1}, to take the input (x0, x1) and: if b = 0 it computes
C ← EK(x0) and returns C; else it computes C ← EK(x1) and returns C. To model CCAs we allow the
adversary to also have access to a decryption oracle DK(·).

Definition 2.8 (LOR-CPA Security Game and Advantage) Let ACPA be an adversary that has access to the
oracle EK(LR(·, ·, b)). We consider the following game:

1. ExpLOR-CPA−b
SKE,ACPA

(k)

2. K $←− K(k)

3. d← AEK(LR(·,·,b))
CPA (k)

4. Return d

We define the advantage of the adversary as:

AdvLOR-CPA
SKE,ACPA

(k) = Pr[ExpLOR-CPA−1
SKE,ACPA

(k) = 1]− Pr[ExpLOR-CPA−0
SKE,ACPA

(k) = 0] .

Definition 2.9 (LOR-CCA Security Game and Advantage) Let ACCA be an adversary that has access to the
oracles EK(LR(·, ·, b)) and DK(·). We consider the following game:

1. ExpLOR-CCA−b
SKE,ACCA

(k)

2. K $←− K(k)

3. d← AEK(LR(·,·,b)),DK(·)
CCA (k)

4. Return d

We define the advantage of the adversary as:

AdvLOR-CCA
SKE,ACCA

(k) = Pr[ExpLOR-CCA−1
SKE,ACCA

(k) = 1]− Pr[ExpLOR-CCA−0
SKE,ACCA

(k) = 0] .

ROR The idea is thatA cannot distinguish the encryption of a text from an encryption of an equal-length
meaningless string. We define the ROR oracle EK(RR(·, b)) where b ∈ {0, 1}, to take the input x and:

if b = 0 it computes C ← EK(x) and returns C; else it computes C ← EK(r), where r $←− {0, 1}|x| and
returns C.

Definition 2.10 (ROR-CPA) Let ACPA be an adversary that has access to the oracles EK(RR(·, ·, b)) and DK(·).
We consider the following game:

1. ExpROR-CPA−b
SKE,ACPA

(k)

2. K $←− K(k)

3. d← AEK(RR(·,·,b)),DK(·)
CPA (k)

4. Return d

We define the advantage of the adversary as:

AdvROR-CPA
SKE,ACPA

(k) = Pr[ExpROR-CPA−1
SKE,ACPA

(k) = 1]− Pr[ExpROR-CPA−0
SKE,ACPA

(k) = 0] .



26 Introduction 2.1

Definition 2.11 (ROR-CCA) Let ACCA be an adversary that has access to the oracles EK(RR(·, ·, b)) and DK(·).
We consider the following game:

1. ExpROR-CCA−b
SKE,ACCA

(k)

2. K $←− K(k)

3. d← AEK(RR(·,·,b)),DK(·)
CCA (k)

4. Return d

We define the advantage of the adversary as:

AdvROR-CCA
SKE,ACCA

(k) = Pr[ExpROR-CCA−1
SKE,ACCA

(k) = 1]− Pr[ExpROR-CCA−0
SKE,ACCA

(k) = 0] .

[BDJR97] lists relations between these different notions. Mainly, ROR⇔ LOR, LOR⇒ FTG and FTG⇔
SEM under any type of attack.

Complexity Theory

Decision Problems. A decision problem is a problem in a formal system whose solution has to be a yes
or a no. Complexity theory’s main goal is to understand and quantify the difficulty of solving specific
decision problems. A set of problems of related complexity is referred to as a complexity class.

The Turing machine, introduced by Alan Turing in 1936 [Tur36] is the standard computational model on
which the decision problems’ theory is based.

A Turing machine consists of a finite program attached to a reading or writing head moving on an
infinite tape. The tape is divided into squares, each capable of storing one symbol from a finite alphabet
Alph∗ which includes a blank symbol blank. Each machine has a specified input alphabet Alph, which
is a subset of Alph∗, without blank. At a given point during a computation the machine is in a state q
which is in a specified finite set Q of possible states. At first, a finite input string over Alph is written on
adjacent squares of the tape, all other squares are blank (contain blank), the head scans the left-most
symbol of the input string, and the machine is in the initial state q0. At each step, the machine is in a state
q and the head is scanning a tape square containing a tape symbol s. The action performed depends on
the pair (q, s) and is specified by the machine’s transition function τ . The action consists of printing a
symbol on the scanned square, moving the head left or right one square, and assuming a new state.

We further give the definitions of both the P and NP problem classes.

Definition 2.12 (Complexity Class P) A decision problem belongs to the P class if there exists a polynomial-
time algorithm able to solve it, i.e. given an input of length n, there exists an algorithm that produces the answer in
a number of steps polynomial in n.

The decision problems in P are the decision problems that can be solved by a deterministic Turing
machine in polynomial time.

Definition 2.13 (Complexity Class NP) A decision problem belongs to the class NP if a yes instance 25 of the
problem can be verified in polynomial time.

The P versus NP Problem. The P versus NP problem is central in complexity theory. This problem
can be simply stated as follows: “is P = NP?”. This is a major open problem, listed on Clay Mathematics
Institute’s millennium problems list.

Hardness Assumptions

A necessary condition for cryptosystem security is the assumption that some underlying problem is hard
to solve. These concepts must be well established.

Hardness assumptions are the cornerstone of provable security for public-key encryption, a concept
which has become increasingly important over the years. Provable security is also one of the prime

25. An instance for which the purported answer is yes.



2.1 A Brief Introduction to the History of Cryptography 27

expertise areas of the ENS Cryptography Group. Thus, hardness assumptions are among the core
ingredients required for the development of public key cryptosystems. A short description of the most
common hardness assumptions is given next.

Discrete Logarithm Problem instantiations play an important role in this thesis, cf. Section 4.1.

1. The Discrete Logarithm Problem - DLP

Definition 2.14 (The Discrete Logarithm Problem - DLP) Let G be a subgroup of Z∗p. Let g be a gen-
erator of G (of order q). Given g, p, h ∈R G, find a such that h = ga.
The number a is called the discrete logarithm of h to the base g and is denoted by logg h.

Definition 2.15 (The Computational Diffie-Hellman Problem - CDHP) Given a finite cyclic group
G of order q, a generator g of G, and two elements ga and gb, find the element gab.

Definition 2.16 (The Decisional Diffie-Hellman Problem - DDHP) Given a finite cyclic group G, a
generator g of G, three elements ga, gb and gc, decide whether the elements gc and gab are equal.

2. DLP versions for ECC

The elliptic curve variant of Definition 2.14 is given below. For a very short introduction to the
terminology used in elliptic curve cryptography, the reader may consult Section 3.4.

Definition 2.17 (The Elliptic Curve Discrete Logarithm Problem - ECDLP) LetE be an elliptic curve
over the finite field Fp and let P and Q be points in E(Fp). The elliptic curve discrete logarithm problem
consists in finding n ∈ N such that Q = [n]P .

For symmetry with the DLP for G, we denote this integer n by n = logP Q and we call n the elliptic
discrete logarithm of Q with respect to P .
Note. There may be settings in which logP Q is undefined, but in practical cryptographic applica-
tions logP Q exists.

Pairing-Based Cryptography. Let g be a generator for a group G of prime order q, and let e be a
bilinear map on G.

Definition 2.18 Let G1, G2 be two additive cyclic groups of prime order p, and G3 a multiplicative cyclic
group of order p. A pairing is an efficiently computable map e : G1 ×G2 → G3 satisfying
– bilinearity: ∀a, b ∈ F ∗p and ∀P ∈ G1, Q ∈ G2 we have e ([a]P, [b]Q) = e (P,Q)ab
– non-degeneracy: e (P,Q) 6= 1

Definition 2.19 (The Bilinear Diffie-Hellman Problem - BDHP) Let G,GT be two cyclic groups of a
large prime order p. Let e ∈ GT be a bilinear pairing. Given g, gx, gy, gz ∈ G4, compute e(g, g)xyz ∈ GT .

Definition 2.20 (The Bilinear Decisional Diffie-Hellman Problem - BDDHP) LetG,GT be two cyclic
groups of a large prime order p. Let e ∈ GT be a bilinear pairing. Given g, gx, gy, gz ∈ G and e(g, g)w ∈ GT ,
decide if w = xyz mod p.

Obviously, BDHP⇒ BDDHP: Indeed if we can compute the bilinear pairing e(g, g)xyz , then we solve
BDDHP by comparing to the provided value e(g, g)w.

3. Factorization-Related Problems - FACT and ERP

Definition 2.21 Given a positive integer n, find its prime factors, i.e., find the pairwise distinct primes pi
and positive integer powers ei such that n = pe1

1 ...p
en
n .

Definition 2.22 (The e-th Root Problem - ERP) Given a group G of unknown order, a positive integer
e < |G| and an element a ∈ G, find an element b ∈ G such that be = a.

Note. RSA relies on the difficulty of solving equations of the form xe = c mod N , where e, c, and
N are known and x is the unknown. In other words, the security of RSA relies on the assumption
that it is difficult to compute e-th roots modulo N , i.e. the ERP in ZN .
Proving or refuting the equivalence between RSA and FACT is a major open problem in cryptogra-
phy, about which there are only partial and preliminary results so far.

4. Residuosity Problems - QRP and HRP



28 Introduction 2.1

Definition 2.23 Let a, n,m ∈ N with gcd(a, n) = 1. a is called an m-th residue mod n if there exists an
integer x such that a ≡ xm mod n.

The residuosity problem may refer to quadratic or to higher residues.

Definition 2.24 Let n be the product of two primes p and q. An element a ∈ Zn is a quadratic residue
modulo n (or a square) if there exists w ∈ Zn such that w2 ≡ a mod n. If there exist no such w ∈ Zn, a is
called a quadratic non-residue.

Definition 2.25 (The Quadratic Residuosity Problem - QRP) Given a, n ∈ N, 0 ≤ a < n, decide if a
is a quadratic residue.

Definition 2.26 (The Higher Residuosity Problem - HRP) Given a, n,m ∈ N, 0 ≤ a < n, gcd(a, n) =
1 decide if a is an m-th residue.

Note. QRP’s intractability is the basis for the security of Goldwasser–Micali’s cryptosystem [GM82],
the first provably secure probabilistic public key encryption scheme 26. Paillier’s cryptosys-
tem [Pai99] is the best known example of a scheme whose underlying hardness assumption
is the HRP.

Security Notions for Public-Key Cryptography

In the following definitions, IND will denote indistinguishability and NM will denote non-maleability. IND
was initially defined by Goldwasser and Micali [GM84], and NM by Dolev, Dwork and Naor [DDN00].
The NM notion will not be detailed or formally defined in this manuscript. We refer the reader to [BDJR97]
for a precise description of this concept. For defining IND we follow the description given in [BDPR98].

Experiments. Let A be a probabilistic algorithm and denote by A(x1, x2, . . . ; r) is the result of running
A on inputs x1, x2, . . . and coins r.

We let y ← A(x1, x2, . . .) denote the experiment of picking r at random and let y = A(x1, x2, . . . ; r).

We say that y is a potential output of A(x1, x2, . . .) if ∃r such that A(x1, x2, . . . ; r) = y.

IND. A public key encryption scheme PKE satisfies the property IND if the distributions Am1 and Am2

are computationally indistinguishable 27 for all m1,m2 ∈M such that |m1| = |m2|where

Ami =
{
pk,PKE . ENCRYPT(pk,mi) : (pk, sk) $←− PKE .KEYGEN(λ)

}
, for i ∈ {1, 2} .

The commonly desired security properties of public-key encryption are indistinguishability under chosen
plaintext attack (IND-CPA) or semantic security, indistinguishability under chosen ciphertext attack (IND-
CCA1) and indistinguishability under adaptive ciphertext attack (IND-CCA2) defined by the security games of
Definitions 2.27, 2.29 and 2.31. Weaker security notions whose presentations we omit here are one-wayness
under chosen plaintext attack and under chosen ciphertext attack, (OW-CPA and OW-CCA). We refer the reader
to [Poi05] for a detail description of OW-CPA and OW-CCA.

Definition 2.27 (IND-CPA Security Game and Advantage) The IND-CPA security game GIND-CPA
PKE is defined

as a protocol between the challenger C and an adversary A:

1. C runs (sk, pk)← PKE .KEYGEN(λ) and sends pk to A
2. A chooses two messages m0 and m1 and sends them to C
3. C chooses a uniform random bit b and encrypts one of the two message accordingly:

c← PKE . ENCRYPT(pk,mb)

4. A sends a guess b′ to C

26. In the case of a probabilistic encryption scheme a message is encrypted into one of many possible ciphertexts.
27. Two probabilities are computationally indistinguishable if no efficient algorithm can make the difference between them.



2.1 A Brief Introduction to the History of Cryptography 29

5. C outputs 1 if the guess was correct, that is if b = b′, 0 otherwise

The advantage of an IND-CPA adversary A against this game is defined as:

AdvIND-CPA
PKE (A) = Pr [GIND-CPA

PKE (A) = 1]− 1/2

Definition 2.28 (IND-CPA Security) A public-key encryption scheme PKE is said to be IND-CPA secure if for
any adversary A that runs in probabilistic polynomial time (PPT) in the security parameter λ, A’s advantage
AdvIND-CPA

PKE (A) is negligible in λ.

Definition 2.29 (IND-CCA1 Security Game and Advantage) The IND-CCA1 security game GIND-CCA1
PKE is de-

fined as a protocol between the challenger C and an adversary A:

1. C runs (sk, pk)← PKE .KEYGEN(λ) and sends pk to A
2. A may perform polynomially many encryptions, calls to the decryption oracle based on arbitrary ciphertexts,

or other operations

3. Eventually, A submits two distinct chosen plaintexts m0 and m1 to C.

4. C chooses a random bit b and encrypts one of the two message accordingly:

c← PKE .ENCRYPT(pk,mb)

5. A may not 28 make further calls to the decryption oracle

6. A sends a guess b′ to C
7. C outputs 1 if the guess was correct, that is if b = b′, 0 otherwise

The advantage of an IND-CCA1 adversary A against this game is defined as:

AdvIND-CCA1
PKE (A) = Pr

[
GIND-CCA1
PKE (A) = 1

]
− 1/2

Definition 2.30 (IND-CCA1 Security) A public-key encryption scheme PKE is said to be IND-CCA1 secure if
for any adversary A that runs in probabilistic polynomial time (PPT) in the security parameter λ, A’s advantage
AdvIND-CCA1

PKE (A) is negligible in λ.

Definition 2.31 (IND-CCA2 Security Game and Advantage) The IND-CCA2 security game GIND-CCA2
PKE is de-

fined as a protocol between the challenger C and an adversary A:

1. C runs (sk, pk)← PKE .KEYGEN(λ) and sends pk to A
2. A may perform polynomially many encryptions, calls to the decryption oracle based on arbitrary ciphertexts,

or other operations

3. Eventually, A submits two distinct chosen plaintexts m0 and m1 to C
4. C chooses a uniform random bit b and encrypts one of the two message accordingly:

c← PKE .ENCRYPT(pk,mb)

5. Amay make further calls to the encryption or decryption oracles, but may not submit the challenge ciphertext
c to C

6. A sends a guess b′ to C
7. C outputs 1 if the guess was correct, that is if b = b′, 0 otherwise

The advantage of an IND-CCA2 adversary A against this game is defined as:

AdvIND-CCA2
PKE (A) = Pr

[
GIND-CCA2
PKE (A) = 1

]
− 1/2

Definition 2.32 (IND-CCA2 Security) A public-key encryption scheme PKE is said to be IND-CCA2 secure if
for any adversary A that runs in probabilistic polynomial time (PPT) in the security parameter λ, its advantage
AdvIND-CCA2

PKE (A) is negligible in λ.

The implication relations between the above security notions are given in Figure 2.10 and [BDPR98].

28. Step 5 stresses the difference between IND-CCA1 and IND-CCA2. Thus, we underline that for IND-CCA1,Awill not be allowed
to interact with the decryption oracle after step 4.



30 Introduction 2.1

NM-CPA NM-CCA1 NM-CCA2

IND-CPA IND-CCA1 IND-CCA2

Figure 2.10: Relations between public-key security notions.

Post-Quantum Cryptography

The genesis of quantum computation dates back to 1981, when Nobel prize winner Feynman [Fey82]
came up with the idea of using quantum mechanical effects to build a computer that would have
outstanding performance in terms of computational speed. It was only in 1993 that Bernstein and
Vazirani [BV93] understood the importance of Feynman’s remarkable ideas and in 1994 that Shor [Sho97]
pointed out that the advent of quantum computation will render factoring and discrete logarithm
computation efficient.

The above naturally gave birth to the field of post-quantum cryptography [Ber09]. Recently, the National
Institute for Standards and Technology (NIST) has shown a growing interest in the standardization
of quantum resistant cryptography and sponsored several workshops on this topic. Moreover, two
important post-quantum cryptography related projects are funded by the European Union: PQCrypto
[pqc] and SAFEcrypto [saf].

During the last years, one of the main goals in this area was increasing the efficiency of the already
established schemes.

The following are post-quantum cryptography algorithm (or underlying hard problem) families:

Lattice-Based. A lattice is a set of points in the n-dimensional space, having a periodic structure defined
as follows:

Definition 2.33 Let b1, ...,bn ∈ Rn be n-linearly independent vectors 29. The lattice L generated by b1, ...,bn
is the set of vectors

L(b1, ...,bn) =
{ n∑
i=1

xibi|xi ∈ Z
}
.

The underlying security assumptions of lattice-based cryptosystems imply the hardness of basis reduction
and related problems in random lattices [Reg06]. Based on Ajtai’s seminal work [Ajt96] 30, Ajtai and
Dwork [AD97] presented a cryptosystem shown to be provably secure under the assumption that a
certain lattice problem is difficult in the worst-case. However, Nguyen and Stern have shown that the
Ajtai-Dwork cryptosystem is only of theoretical interest [NS98] 31. Another asymmetric lattice-based
key encryption system that caught cryptographers’ attention is the NTRU (Hoffstein–Pipher–Silverman)
cryptosystem [HPS98].

The attempts to solve lattice problems by quantum algorithms have had little success (or even not at
all). The periodicity finding technique [NC11], used by Shor’s quantum factoring and other related
algorithms [Sim97, Hal02], is not applicable to lattice problems. Periodicity finding is mainly based on
quantum computers’ capability of being in many states at the same time: to compute a function’s period
the device evaluates the function at all points simultaneously.

It is conjectured that no polynomial-time quantum algorithm can approximate lattice problems to within
polynomial factors [MR09].

29. The vectors b1, ...,bn are called the basis of the lattice.
30. Ajtai [Ajt96] found the first connection between the worst-case and the average-case complexity of the shortest vector

problem (SVP) [MR09].
31. Nguyen and Stern [NS98] conducted an heuristic attack to recover the private key, given only the public key.



2.1 A Brief Introduction to the History of Cryptography 31

Error Correction Code-Based. The first error-correction based cryptosystem was proposed by McEliece
[McE78] in 1978. Its security is based on the hardness of decoding random linear error-correcting codes.
Finding a codeword of given weight in a linear binary code is an NP-complete problem [BMvT06].

The initial parameters of the McEliece cryptosystem were broken by Bernstein et al. [BLP08]. However,
new parameters secure against all known attacks were proposed in [BLP08].

Hash-Based. In 1979 Merkle proposed a hash-based signature scheme [Mer79]. While being quantum-
resistant, Merkle’s scheme is stateful. This means that the signer must keep a state (history record) that
evolves as messages are being signed.

At EUROCRYPT 2015, Bernstein et al. [BHH+15] presented stateless hash-based signatures.

Multivariate Quadratic Equations (MQE)-Based. MQE-based cryptosystems [FD86, MI88] base their
security on the conjectured hardness of solving some polynomial equations systems. The exact hardness
of breaking MQE-based cryptosystems is still not thoroughly understood.

Note: The impact of quantum computing on symmetric algorithms is usually smaller. Considering as a
typical example the AES [DR02], even if Grover’s algorithm [Gro96] can be used to speed up brute-force
attacks against symmetric ciphers and collision-resistant hash functions, it was shown [BBBV97] that an
`-bit key provides `

2 bits of quantum security. Hence, in a quantum-computer world, AES-256 would
still offer 128 bits of security.



32 Introduction 2.2

2.2 Thesis Outline

A summary of the contributions included in this thesis is given in Section 2.3, as well as a full publica-
tion list and our submission to the Competition for Authenticated Encryption: Security, Applicability, and
Robustness (CAESAR).

Chapter 3 presents the underlying theoretical foundations related to our results.

Chapter 3 provides a short introduction to hash functions and message authentication codes (MACs).
Chapter 3 also presents authenticated encryption (both the generic composition paradigm [BN08] 32 and
dedicated solutions 33 [Jut01, GD01, RBBK01]) and overviews digital signature schemes. Elliptic curves
are introduced and their role in cryptography is discussed, in view of the cryptanalysis results presented
in Section 5.6.

Our original contributions are structured in two chapters: Protocol Design (Chapter 4) and Algorithms
for Embedded Cryptography (Chapter 5).

Chapter 4 presents a provably secure co-signature protocol and a provably secure authenticated encryp-
tion scheme. Chapter 4 also includes a lightweight multiparty Fiat-Shamir authentication protocol.

Chapter 5 includes all the contributions listed in Section 2.2 as well as a fault attack on ECC implementa-
tions, building upon [NSS04].

Therefore, the manuscript’s core results revolve around: protocol design, algorithmic improvements and
attacks.

Protocol Design. Designing secure and efficient cryptographic protocols is challenging, as protocol-
level security proofs are much more complex than proofs of cryptographic primitives.

When discussing multiparty protocols, a very interesting design approach, called rational protocol design,
connects cryptography and game theory. In traditional security definitions, threats are modelled by an
adversary. Rational cryptography doesn’t assume honest and corrupted parties, but rather rational parties,
motivated by certain utility functions. In other words, rational cryptography takes into consideration the
incentives that lead parties to deviate from their prescribed behavior [GKM+13]. In this thesis, we focus on the
traditional protocol design security perspective and not on rational cryptography.

The main result of the thesis, presented in Section 4.1, is a novel form of fairness, called legal fairness, that
does not rely on third parties in the context of contract signing.

A second constructive result is given in Section 4.3: a mode of operation for applying a compression
function to build a nonce-based authenticated encryption with associated data (AD). Associated data
can be seen as a part of the message (for example, some header information) which needs integrity but
not confidentiality protection. Thus, AD is authenticated but not encrypted.

Section 4.2 presents a distributed Fiat-Shamir authentication protocol enabling network node authentica-
tion using very few communication rounds.

Algorithmic Improvements. Besides being secure, real world cryptographic applications must also be
efficient.

Thus, most of the results presented in Chapter 5 concern algorithmic speed-ups. We describe these
improvements from a lightweight cryptography perspective. Lightweight cryptography is cryptography
suitable for constrained devices in which designers must strike trade-offs between performance, security,
and cost. The constraints may be computing power, memory, bandwidth, or security.

Section 5.2 includes a new method allowing to double the speed of Barrett’s algorithm by using specific
composite moduli. Section 5.4 describes a new multiplication algorithm, especially suited for 8-bit
lightweight microprocessors when one of the operands is a known constant. Section 5.3.1 describes new
BCH speed-up strategies using polynomial versions of Barrett’s algorithm. Section 5.3.2 describes a
new error-correcting code (ECC) inspired by the Naccache-Stern cryptosystem [NS97, CMNS08] which

32. The generic composition paradigm refers to combining an encryption scheme and a MAC.
33. A dedicated solution refers to the providing of both privacy and authenticity in a single scheme.



2.3 Publications 33

happens to be more efficient than some established ECCs for certain sets of parameters. Section 5.5
presents a new method to regulate the pace of random bits outputted by the von Neumann randomness
extractor.

Fault Attacks. Fault attacks represent a major threat for cryptographic applications. Some of the
most common side channel attacks are power analysis (Simple Power Analysis and Differential Power
Analysis), electromagnetic radiation analysis and fault injection attacks.

After an introduction to fault injection attacks at the beginning of Chapter 5, we propose a new fault
attack on ECC implementations. The attack consists in injecting a fault during the projective-to-affine
conversion process so the erroneous results reveals information about Z (third coordinate of a point in
the Jacobian projective coordinates system). Several faulty results permit to recover Z and hence, expose
the target to an attack described in [NSS04].

2.3 Publications

The main results of this thesis are presented in the current section: published papers, pre-prints and the
submission to the cryptographic competition CAESAR.

Legally Fair Contract Signing without Keystones [To Appear]

with Houda Ferradi, Rémi Géraud, David Naccache and David Pointcheval

Abstract. In two-party computation, achieving both fairness and guaranteed output delivery is well
known to be impossible. Despite this limitation, many approaches provide solutions of practical interest
by weakening somewhat the fairness requirement. Such approaches fall roughly in three categories:
“gradual release” schemes assume that the aggrieved party can eventually reconstruct the missing
information; “optimistic schemes” assume a trusted third party arbitrator that can restore fairness in case
of litigation; and “concurrent” or “legally fair” schemes in which a breach of fairness is compensated by
the aggrieved party having a digitally signed cheque from the other party (called the keystone).

In this paper we describe and analyse a new contract signing paradigm that doesn’t require keystones to
achieve legal fairness, and give a concrete construction based on Schnorr signatures which is compatible
with standard Schnorr signatures and provably secure.

Note. The details of this paper are given in Chapter 4. My contribution to this paper consisted of
developing the idea.

Offset Merkle-Damgård (OMD) v.1: A CAESAR Proposal

OMD: A Compression Function Mode of Operation for Authenticated Encryption
[CMN+14, Ber]

with Simon Cogliani, David Naccache, Rodrigo Portella, Reza Reyhanitabar, Serge Vaudenay and Damian Vizár

Abstract. We propose the Offset Merkle-Damgard (OMD) scheme, a mode of operation to use a
compression function for building a nonce-based authenticated encryption with associated data. In
OMD, the parts responsible for privacy and authenticity are tightly coupled to minimize the total number
of compression function calls: for processing a message of ` blocks and associated data of a blocks, OMD
needs ` + a + 2 calls to the compression function (plus a single call during the whole lifetime of the
key). OMD is provably secure based on the standard pseudorandom function (PRF) property of the
compression function. Instantiations of OMD using the compression functions of SHA-256 and SHA-512,
called OMD-SHA256 and OMD-SHA512, respectively, provide much higher quantitative level of security



34 Introduction 2.3

compared to the AES-based schemes. OMD-SHA256 can benefit from the new Intel SHA Extensions on
next-generation processors.

Note. Published in the proceedings of SAC 2014. The results mentioned above are presented in detail
in Chapter 4. The compression functions of SHA-256 and SHA-512 are recalled in Appendix A.

Winning he CAESAR competition was amongst the motivation for developing OMD. We were recently
pleased to learn that our scheme was listed as a second round candidate. My contribution to this paper
consisted of developing the idea.

Fault Attacks on Projective-to-Affine Coordinates Conversion [MMNT13]

with Cédric Murdica, David Naccache and Mehdi Tibouchi

Abstract. This paper presents a new type of fault attacks on elliptic curves cryptosystems.

At EUROCRYPT 2004, Naccache et al. showed that when the result of an elliptic curve scalar multipli-
cation [k]P (computed using a fixed scalar multiplication algorithm, such as double-and-add) is given
in projective coordinates, an attacker can recover information on k. The attack is somewhat theoretical,
because elliptic curve cryptosystems implementations usually convert scalar multiplication’s result back
to affine coordinates before outputting [k]P .

This paper explains how injecting faults in the final projective-to-affine coordinate conversion enables an
attacker to retrieve the projective coordinates of [k]P , making Naccache et al.’s attack also applicable to
implementations that output points in affine coordinates. As a result, such faults allow the recovery of
information about k.

Note. Published in the proceedings of COSADE 2013. A detailed version of this work is presented in
Chapter 5. My contribution to this paper consisted of developing the idea.

Double-Speed Barrett Moduli [GMN15c, GMN15a]

with Rémi Géraud and David Naccache

Abstract. Modular multiplication and modular reduction are the atomic constituents of most public-
key cryptosystems. Amongst the numerous algorithms for performing these operations, a particularly
elegant method was proposed by Barrett. This method builds the operation a mod b from bit shifts,
multiplications and additions in Z. This allows to build modular reduction at very marginal code or
silicon costs by leveraging existing hardware or software multipliers.

This paper presents a method allowing to double the speed of Barrett’s algorithm by using specific
composite moduli. This is particularly useful for lightweight devices where such an optimization
can make a difference in terms of power consumption, cost and processing time. The generation of
composite moduli with a predetermined portion is a well-known technique and the use of such moduli
is considered, in statu scientiæ, as safe as using randomly generated composite moduli.

Note. Published in Kahn Festschrift LNCS volume 9100, 2015. This paper is described in Chapter 5. My
contribution to this paper as a leading author consisted of developing the idea and implementing it in
software.

Public-Key Based Lightweight Swarm Authentication [To appear]

with Simon Cogliani, Rémi Géraud, Rodrigo Portella do Canto and David Naccache



2.3 Publications 35

Abstract. We describe a lightweight algorithm performing whole-network authentication in a dis-
tributed way. This protocol is more efficient than one-to-one node authentication: it results in less
communication, less computation, and overall lower energy consumption.

The security of the proposed algorithm can be reduced to the RSA hardness assumption, and it achieves
zero-knowledge authentication of a network in a time logarithmic in the number of nodes.

Note. A detailed version of this paper is presented in Chapter 5. As a leading author I worked on
developing the idea.

Applying Cryptographic Acceleration Techniques to Error Correction [MNPdCS15,
GMN+15b]

with Rémi Géraud, Rodrigo Portella do Canto, David Naccache and Emil Simion

Abstract. Modular reduction is the basic building block of many public-key cryptosystems. BCH codes
require repeated polynomial reductions modulo the same constant polynomial. This is conceptually
very similar to the implementation of public-key cryptography where repeated modular reduction
in Zn or Zp are required for some fixed n or p. It is hence natural to try and transfer the modular
reduction expertise developed by cryptographers during the past decades to obtain new BCH speed-up
strategies. Error correction codes (ECCs) are deployed in digital communication systems to enforce
transmission accuracy. BCH codes are a particularly popular ECC family. This paper generalizes
Barrett’s modular reduction to polynomials to speed up BCH ECCs. A BCH(15, 7, 2) encoder was
implemented in Verilog and synthesized. Results show substantial improvements when compared to
traditional polynomial reduction implementations. We present two BCH code implementations (regular
and pipelined) using Barrett polynomial reduction. These implementations, are respectively 4.3 and 6.7
faster than an improved BCH LFSR design. The regular Barrett design consumes around 53% less power
than the BCH LFSR design, while the faster pipelined version consumes 2.3 times more power than the
BCH LFSR design.

Note. Published in the proceedings of SECITC 2015. This paper is described in Chapter 5. My
contribution to this paper as a leading author consisted of developing the idea and implementing it in
software.

A Number-Theoretic Error-Correcting Code [BCG+15b, BCG+15a]

with Eric Brier, Jean-Sébastien Coron, Rémi Géraud and David Naccache

Abstract. In this paper we describe a new error-correcting code (ECC) inspired by the Naccache-Stern
cryptosystem. While by far less efficient than Turbo codes, the proposed ECC happens to be more
efficient than some established ECCs for certain sets of parameters.

The new ECC adds an appendix to the message. The appendix is the modular product of small primes
representing the message bits. The receiver recomputes the product and detects transmission errors
using modular division and lattice reduction.

Note: Published in the proceedings of SECITC 2015. This paper is presented in Chapter 5. My
contribution to this paper consisted of developing the idea.

Backtracking-Assisted Multiplication [FGM+15b]

with Houda Ferradi, Rémi Géraud, David Naccache and Hang Zhou



36 Introduction 2.3

Abstract. This paper describes a new multiplication algorithm, particularly suited to lightweight
microprocessors when one of the operands is known in advance. The method uses backtracking to find a
multiplication-friendly encoding of one of the operands.

A 68HC05 microprocessor implementation shows that the new algorithm indeed yields a twofold speed
improvement over classical multiplication for 128-byte numbers.

Note: This paper is described in Chapter 5. My contribution to this paper consisted of developing the
idea and implementing it in software.

Regulating the Pace of von Neumann Extractors [FGM+15a]

with Houda Ferradi, Rémi Géraud, David Naccache and Amaury de Wargny

Abstract. In a celebrated paper published in 1951, von Neumann presented a simple procedure al-
lowing to correct the bias of random sources. This device outputs bits at irregular intervals. However,
cryptographic hardware is usually synchronous.

This paper proposes a new building block called Pace Regulator, inserted between the randomness
consumer and the von Neumann extractor to streamline the pace of random bits.

Note: This paper is described in Chapter 5. My contribution to this paper consisted of developing the
idea.

Lightweight Cryptography for RFID Tags [MO12]

with Khaled Ouafi

Abstract. Combining the terms "cryptography" and "lightweight" might invite the reader to think about
a lack of security. However, here the combination refers to suitable cryptography for limited devices for
which trade-offs between performance, security, and cost are highly important. The constraints could be
computing power, memory, bandwidth, or vulnerability to attacks. Lightweight cryptography is not an
alternative to traditional cryptography, it requires a change of perspective. Indeed, with the growth of
ubiquitous devices, protecting security and privacy has become more important than ever. The paper
focuses on describing lightweight-cryptography solutions for RFID tags. It examines possible risks and
the measures researchers have taken to improve their level of security and privacy.

Note. Published in IEEE Security and Privacy 2012. A reworked and updated variant of this paper is
included at the beginning of Chapter 5.

Authenticated Encryption: Toward Next-Generation Algorithms [MR14]

with Reza Reyhanitabar

Abstract. Do researchers have a cryptographic tool able to provide both confidentiality (privacy) and
integrity (authenticity) of a message? The answer to that question is affirmative: authenticated encryption
(AE), a symmetric-key mechanism that transforms a message into a ciphertext and authenticates it. This
article discusses standard AE algorithms, classic security models’ shortcomings for AE algorithms,
and related attacks. Motivated by these attacks, the cryptographic community started a Competition
for Authenticated Encryption: Security, Applicability, and Robustness to promote the development of
next-generation AE algorithms.



2.3 Publications 37

Note. Published in IEEE Security and Privacy 2014. A reworked version of this paper is included in
Chapter 3.



CHAPTER 3

MATHEMATICAL AND CRYPTOGRAPHIC
PRELIMINARIES

Theory is important, at least in theory.
Keith Martin.

Summary

The underlying theoretical foundations of this thesis are presented within this chapter.

We start by presenting the notation used throughout the entire thesis. In view of the contributions
described in Section 4.3, basic notions about hash functions and message authentication codes are
presented in Section 3.1.

Section 3.2 provides basic information regarding Authenticated Encryption (AE): both the generic
composition paradigm and the one-pass solution. Standard AE modes of operation are addressed,
emphasising GCM in view of a comparison with the result in Section 4.3. Security notions are further
presented.

Digital signature schemes are overviewed in Section 3.3. We discuss general concepts, shortly present a
number of widely known signature schemes and recall representative security notions.

Elliptic curves are introduced in Section 3.4 and their importance in cryptography is discussed. Termi-
nology is given and basic algorithms for the arithmetic over ECs are presented.

38



3.1 Hash Functions and Message Authentication Codes 39

Notation. The set of all n-bit binary strings (for some n ∈ N∗) is denoted as {0, 1}n, the set of all binary
strings whose lengths are variable but upper-bounded by n is denoted as {0, 1}≤n and the set of all
binary strings of finite length is denoted by {0, 1}∗.

x||y and xy denote the string obtained by concatenating y to x. For an m-bit binary string x = xm−1 · · ·x0
we denote:

MSB (x) = xm−1 and LSB (x) = x0 .

For two binary strings x = xm−1 · · ·x0 and y = yn−1 · · · y0, the notation x⊕ y denotes bitwise XOR of
xm−1 · · ·xm−1−` and yn−1 · · · yn−1−` where ` = min {m− 1, n− 1}.

3.1 Hash Functions and Message Authentication Codes

Authentication is one of the most important information security goals. Confidentiality and authentica-
tion used to be considered as intrinsically connected until the 1970s.

The usefulness of hash functions for digital signature schemes was initially pointed out by Diffie and
Hellman. Rabin [Rab79], Yuval [Yuv79] and Merkle [Mer79] were the first to provide definitions, analysis
and constructions of cryptographic hash functions during the 1970s. Rabin proposed a 64-bit hash
function based on the DES. Yuval focused on the analysis part, showing how to apply the birthday
paradox to find collisions in hash functions. Merkle introduced the fundamental definitions of collision
resistance, pre-image resistance, and second pre-image resistance. These properties are recalled later on.

Among commonly used and known hash functions nowadays, we mention the MD family [Riv] (e.g.
MD2 and MD5), the Secure Hash Algorithms (SHA) which include the SHA-1, SHA-2 and, more recently,
SHA-3, the RIPEMD family, HAVAL and Whirpool 1.

Hash functions are constructed from so-called “compression functions” 2. A compression function takes
a fixed length input and returns a shorter, usually fixed-length output 3. A message of arbitrary length
is divided into blocks and padded so that the size of the message is a multiple of the block size 4. The
blocks are processed sequentially, taking as input the result of the hash up to that point plus the current
message block. The final output is the digest of the message.

We make use of SHA-2 in Section 4.3 and therefore recall the corresponding compression functions in
Appendix A.

Birthday Attacks. The birthday paradox (problem) [vM39] familiarly refers to the probability that in a
set of n randomly chosen people, two of them have the same birthday.

The generalized birthday problem: Given a year with x days, the generalized birthday problem asks for
the minimal number y(x) such that, in a set of y randomly chosen persons, the probability of a birthday
coincidence is at least 1

2 . In other words, y(x) is the minimal integer y such that

1−
y−1∏
i=1

(
1− i

x

)
≥ 1

2 .

The most common numerical example is x = 365 (a year) for which y = 23 (persons) yields a probability
of at least 1

2 .

Birthday attacks leverage this “paradox” and provide a time-memory collision-search trade-off 5. A
birthday attack on a 160-bit digest requires 280 computations and 280 storage. However, collisions can be
computed using much less memory [QD90, vOW99].

1. [FIP12, BDPVA09, Bos11, ZPS92]
2. The compression function is applied repeatedly until the entire message is processed.
3. usually called digest
4. The padding field typically contains the total message length in bits.
5. Time-memory trade-off refers to saving memory at the cost of cryptanalysis time.



40 Mathematical and Cryptographic Preliminaries 3.1

Hash Functions

Let Alph denote an alphabet. H is a mapping H : Aplh∗ → Alph`, where ` ∈ N is usually a fixed
integer 6. Commonly, Alph = {0, 1} and 128 ≤ ` ≤ 512.

A natural requirement is that H should be easy to evaluate for any sequence in Alph∗. To make H
cryptographically secure, cryptographers often require one or more of the following properties to hold.

1. Pre-image resistance: H is a one-way or pre-image resistant function if for almost all outputs b it
is computationally infeasible to find an input a ∈Alph∗ such that b = H(a).

2. Second pre-image resistance: H is weak collision resistant or second pre-image resistance if given
value a ∈Alph∗ it is computationally infeasible to find a second value a′ ∈Alph∗, a 6= a′, such that
H(a) = H(a′).

3. Collision resistance: H is strong collision resistant or, simply, collision resistant if it is computa-
tionally infeasible to find a pair of values (a, a′) ∈ (Alph∗)2, a 6= a′ such that H(a) = H(a′).

Hash functions are most commonly used in combination with digital signatures to reduce the number
of calls to the (costly) signature algorithm. Usually a long message is hashed by means of a publicly
available hash function and only the corresponding hash value is signed. The receiver re-hashes the
message and verifies that the received signature is correct for this particular hash value. However, hash
functions are also used for authenticating a short string (commitments and data authentication). Digital
signatures are not needed in such an approach.

Even if a hash function meets the above properties, it is still possible to intercept a transmission (a,H(a))
and replace it by an (a′, H(a′)) for some a′ 6= a. Thus, in some specific cases, introducing a secret key
(shared by the sender and the receiver) is desirable. Such constructions are called Message Authentication
Codes (MACs, see Section 3.1 for a description of this concept).

Using block ciphers to construct keyless hash functions is possible.

Message Authentication Codes

Message authentication code algorithms (MAC algorithms) prevent an adversary from modifying
messages sent by Alice to Bob, without Bob detecting the modification.

MAC algorithms are also referred to as keyed hash functions. A good way of constructing MAC
algorithms is by means of a pseudo-random function (PRF). A common class of MAC algorithms is
obtained via the cipher-block chaining mode (CBC) applied for a given block-cipher [fip85]. [fip85] was
withdrawn in September 2008 because it was based on the obsolete DES.

Defining a MAC. A MAC is a 3-tuple of PPT algorithms: (KEYGEN, MAC, VERIFY). KEYGEN is a
probabilistic algorithm. VERIFY consists in re-running MAC on the same input and comparing the
outputs of MAC and VERIFY.

The descriptions of these three algorithms are given in Table 3.1.

KEYGEN Let κ be the security parameter and let 1κ be the input of the key generation
algorithm KEYGEN. KEYGEN outputs a key k.

MAC Given a message m and a key k, MAC 7outputs a tag t.
VERIFY Given k, m, t, VERIFY re-runs MAC and tests if t is a valid tag of m with respect

to k.

Table 3.1: Algorithms of a MAC.

Definition 3.1 (The Message Authentication Game MAC-FORGEA,MAC(κ))

6. Recently, NIST standardized SHAKE-256 and SHA-512, which are extendible output functions based on the Keccak hash
function design.

7. The MAC algorithm may be randomized.



3.1 Hash Functions and Message Authentication Codes 41

1. A random key k $←− {0, 1}κ is chosen.

2. The adversary A is given oracle access to MACk(·) and outputs a pair (m, t). Formally, (m, t) ←
AMACk(·)(1κ). Let A denote the queries of A to the oracle MACk(·).

3. The output after performing the above steps is defined to be 1⇔ m /∈ A and VERIFY(m, t) = True.

Definition 3.2 (MAC-FORGE) A MAC is existentially unforgeable under an adaptive chosen-message attack, or
just secure, if for all PPT adversariesA, there exists a negligible function f such that: Pr[MAC-FORGEA,MAC(κ) =
1] ≤ f(κ).



42 Mathematical and Cryptographic Preliminaries 3.2

3.2 Authenticated Encryption (AE)

With the progressive advent and formalization of hash functions and digital signatures, the fact that
confidentiality and authentication are truly separate and independent objectives became progressively
apparent.

3.2.1 From the Generic Composition Paradigm to Dedicated AE Algorithms

Authenticated Encryption (AE) is a symmetric-key mechanism, a tool able to provide both confidentiality
(privacy) and integrity (authenticity).

Generic Composition. Originally, AE algorithms achieved confidentiality and integrity by combining
two separate primitives: a conventional encryption algorithm to ensure confidentiality and a MAC to
guarantee integrity. However, this approach is computationally suboptimal (because parties process the
input message at least twice) and prone to implementation errors stemming from the miscombining of
encryption and authentication mechanisms.

Dedicated Solutions. To address these concerns, researchers developed AE algorithms that function
as a desirable primitive that APIs would offer to end developers. Providing direct access to a single AE
functionality (rather than requiring developers to call two different lower-level functionalities) as a step
toward improving security-critical code.

We refer the reader to [Pre93] for an overview of the solutions studied in the 1980s 8.

The next sections address standard AE algorithms, classic security models’ shortcomings for AE algo-
rithms, related attacks and a recent AE design competition in which we participated.

Authenticated Encryption as a Cryptographic Goal

AE is adopted by many widely implemented standards 9 such as Secure Shell (SSH), Secure Sockets
Layer/Transport Layer Security (SSL/TLS), IPsec, Wi-Fi and Smart Grid standards to quote only a few.
This wide range of applications made AE ubiquitous in modern security protocols. Developing and
analysing efficient and provably secure AE algorithms are hence important research goals. Compared to
traditional encryption algorithms and MACs, AE algorithms are relatively new. Many still think that
privacy and integrity can be straightforwardly achieved, by simply combining a traditional encryption
algorithm and a MAC: encrypt-and-MAC, MAC-then-encrypt and encrypt-then-MAC are three such
attempts. The AE algorithms adopted by many standards (e.g. SSH, SSL/TLS, and IPsec) fall into this
category.

Unfortunately, miscombinations of these algorithms resulted in several successful attacks [BKN04,
Vau02]. For example, a message recovery attack against OpenSSH-encrypted plaintexts appeared in
2009 [APW09]. The BEAST (Browser Exploit Against SSL/TLS) attack, which uses a vulnerability in TLS
1.0, appeared in 2011 [DR11]. Most of these attacks targeted generic composition algorithms (encrypt-
and-MAC and MAC-then-encrypt), but a recent attack against EAX-Prime shows that dedicated AE
algorithms are also very subtle mathematical objects where precise assumptions are key [MLMI12].

Using secure authenticated encryption schemes would have thwarted some of the most visible recent
attacks. Developing models that include implementation errors and other deviations from mathematical
abstractions is an important aspect of cryptographic primitive evaluation. Hence, a better understanding
of AE schemes must be set as a goal.

8. e.g. Jueneman’s schemes consequently broken by Coppersmith.
9. [rfc06, rfc08, FKL+05, IEE99, SKD+15]



3.2 Authenticated Encryption (AE) 43

Standard AE Modes of Operation

Several standardization bodies adopted a number of AE modes of operation.

The US National Institute of Standards and Technology (NIST) approved five (block cipher) modes for
confidentiality and authentication [WHF03]. One example is CCM (Counter with Cipher Block Chaining
Message Authentication Code). The specification is intended to be compatible with using CCM within a
draft amendment to IEEE 802.11. Another example is GCM (Galois Counter Mode). During the selection
process, another NIST candidate was EAX [BRW03]. These three modes are AEAD (AE with Associated
Data) algorithms. IEEE standards for AE also include CCM and GCM.

ISO/IEC 19772 standardized six AE modes. These include the three modes that we just mentioned and
OCB 2.0 (Offset Codebook Mode) which is a scheme that integrates an MAC into a block cipher [KR14].

The Internet Engineering Task Force RFC 5297 [Har08] describes Synthetic Initialization Vector (SIV)
mode. SIV can work for both conventional (nonce-based, misuse-resistant) and deterministic AE.

The next paragraph focuses on presenting the basics of the Galois Counter Mode (GCM). We chose this
authenticated mode of operation in view of the OMD authenticated encryption scheme, one of our thesis
results detailed in Section 4.3. Considering various features of AES-GCM, we give a comparison between
AES-GCM and our scheme, OMD.

Galois Counter Mode (GCM). The Galois Counter Mode (GCM) is a block cipher mode of operation
based on universal hashing over a binary Galois field in order to provide authenticated encryption.

GCM may be considered as a stand-alone MAC and can be used with initialization vectors (IV s) of
arbitrary length. GCM consists of two operations, namely authenticated encryption and authenticated
decryption.

Algorithm 3.2 presents the steps of the GCM encryption. Algorithm 3.3 describes the corresponding
decryption process. Function GHASH is defined by the formula GHASH(H,A,C) = Xm+n+1, where the
variables Xi for are defined as in Algorithm 3.1.

Xi =



0 for i = 0

(Xi−1 ⊕Ai) ·H for i = 1, ...,m− 1

(Xm−1 ⊕ (A∗m||0128−v)) ·H for i = m

(Xi−1 ⊕ Ci) ·H for i = m+ 1, ...,m+ n− 1

(Xm+n−1 ⊕ (C∗m||0128−u)) ·H for i = m+ n

(Xm+n ⊕ (len(A)||len(C))) ·H for i = m+ n+ 1

(3.1)

Algorithm ENCRYPTION =



H ← ENC(K, 0128)

Y0 ←

{
IV ||0311, if len(IV ) = 96
GHASH(H, {}, IV ), otherwise

Yi ← incr(yi−1) for i = 1, ..., n

Ci ← Pi ⊕ ENC(K,Yi) for i = 1, ..., n− 1

C∗n ← P ∗n ⊕MSBu(ENC(K,Yn))

T ← MSBt(GHASH(H,A,C)⊕ ENC(K,Y0))

(3.2)



44 Mathematical and Cryptographic Preliminaries 3.2

Algorithm DECRYPTION =



H ← ENC(K, 0128)

Y0 ←

{
IV ||0311, if len(IV ) = 96
GHASH(H, {}, IV ), otherwise

Yi ← incr(yi−1) for i = 1, ..., n

T ← MSBt(GHASH(H,A,C)⊕ ENC(K,Y0))

Pi ← Ci ⊕ ENC(K,Yi) for i = 1, ..., n− 1

P ∗n ← C∗n ⊕MSBu(ENC(K,Yn))

(3.3)

Counter0

ENCk

Counter1

ENCk

Counter2

ENCk

incr incr

Ciphertext1 Ciphertext2

multH

multH

Plaintext1 Plaintext2

multHAuth Data1

multH

Auth Tag

len(A)||len(C)

Figure 3.1: The GCM authenticated mode of operation - ENCRYPT.

Security Models for Authenticated Encryption

Although AE security has received much attention, several issues remain. For example, additional secu-
rity and robustness goals are often left as an option. Also, no consensus exists on a set of comprehensive
security properties that would capture a variety of real-world attack scenarios.

The current AE security definitions presume that the entire ciphertext is offered for decryption and
a whole plaintext (or error message) is returned [BN08, RS06]. However, in some applications, the



3.2 Authenticated Encryption (AE) 45

Counter0

ENCk

Counter1

ENCk

Counter2

ENCk

incr incr

Ciphertext1 Ciphertext2

multH

multH

Plaintext1 Plaintext2

multHAuth Data1

multH

Auth Tag

len(A)||len(C)

Figure 3.2: The GCM authenticated mode of operation - DECRYPT.

encrypted data is delivered to the receiver block-by-block. This leads to attacks that bypass the security
models’ plaintext/ciphertext atomicity assumption [JMV02, DR11, BDPS12].

Current AE security models don’t capture many real-world threats such as information leakage via
software and hardware side channels 10 11. Vaudenay identified this weakness [Vau02] of AE security
models. He described side channel attacks that used error information leaked in the padding verification
to attack the MAC-then-encrypt composition used in SSL and many other protocols.

Conventional algorithms feature indistinguishability and nonmalleability as defined in [GM84]. In
addition, Bellare and Namprempre [BN08] formalized different notions of integrity together with their
relationships in the AE context. Up to now, we discussed AE algorithms with a stateful or probabilistic
encryption process but with a stateless deterministic decryption algorithm. Bellare et al. [BKN04]
extended previous models to include stateful decryption, which can thwart more real-world threats,
such as replay attacks and out-of-order-delivery attacks.

Previous AE ciphers modelled encryption and decryption as two-input algorithms (one argument for the
plaintext or ciphertext and the other for the secret key). This approach assumes that the algorithms will
generate and handle any randomness or state information. Rogaway [Rog02] extended the AE syntax
to include a third input for associated data (AD). This aims to model the practical scenarios in which
part of the message (for example, some header information) needs integrity protection but not privacy
protection. AD is assumed to be provided in clear to both the encryption and decryption algorithms.

Nonce-based AE makes the critical assumption that no nonce will repeat during a secret key’s lifetime
[Rog04a]. However, nonce reuse (which is, in fact, a misuse) may occur in practice. To address the

10. Peter Wright described side channels in [Wri87].
11. Kocher was the first to publish timing attacks [Koc96].



46 Mathematical and Cryptographic Preliminaries 3.2

threats that stem from such a reuse, Rogaway and Shrimpton [RS06] proposed deterministic AE (DAE)
and provided a secure DAE scheme based on the generation of the nonce from the message. This
technique is currently called SIV (Synthetic Initialization Vector). Fleischmann et al. noted that the
known DAE schemes weren’t computable online, contrary to many applications’ requirements [FFL12].
Hence [FFL12] introduced on-line AEAD and a secure construction achieving online computability.

A careful review of the state of the art reveals an expanding list of discrepancies between conventional
AE security models and the features desired by real-world applications scenario. Two problems of
particular interest involve formalizing concise security models for AE algorithms that resist fragmentation
attacks [Rog04a] and side channel attacks [FPS12].

We will now formalize the security notions related to AE schemes, following the security notions given
in [Rog02].

Nonce Respecting Adversaries. Let A be an adversary. Let N denote nonces, M denote messages
and C = C||Tag, where C are ciphertexts. We say that an attacker A is nonce-respecting if A never
repeats a nonce in its encryption queries. That is, if A queries the encryption oracle EK(·, ·, ·) on
(N1, A1,M1), · · · , (Nq, Aq,Mq) then N1, · · · , Nq must be pairwise distinct.

In the following, we define the conventional AEAD security properties: namely, privacy (confidentiality
for the plaintext) and authenticity (integrity for the nonce, for the associated data, and for the plaintext).

Privacy of AEAD Schemes. Let Π = (K, E ,D) be a nonce-based AEAD scheme. Let A be a nonce-
respecting adversary. A is provided with an oracle which can be either a real encryption oracle EK(·, ·, ·)
returning C = EK(N,A,M) on input (N,A,M), or a fake encryption oracle $(·, ·, ·) which on any input
(N,A,M) returns |C| fresh random bits. The advantage ofA in mounting a chosen plaintext attack (CPA)
against the privacy property of Π is defined as follows:

Advpriv
Π (A) = Pr[K $←− K : AEK(·,·,·) = 1]− Pr[A$(·,·,·) = 1].

This privacy notion, also called indistinguishability of ciphertext from random bits under CPA (IND$-CPA),
was introduced by [RBBK01] and is a stronger variant of the classical IND-CPA notion [BDJR97, BN00] for
conventional symmetric-key encryption schemes.

Resource Parameters for the CPA Adversary. Let the CPA-adversaryAmake queries (N1, A1,M1), · · · ,
(Nqe , Aqe ,Mqe). We define the resource parameters of A as (t, qe, σA, σM , Lmax) where:

– t is the time complexity
– qe is the total number of encryption queries

– σA =
q∑
i=1
|Ai| is the total length of associated data in bits

– σM =
q∑
i=1
|Mi| is the total length of messages in bits

– Lmax is the maximum length of each query in bits.

The absence of a resource parameter means that the parameter is irrelevant in the context and is hence
omitted.

Authenticity of AEAD Schemes. Let Π = (K, E ,D) be a nonce-based AEAD scheme. Let A be a
nonce-respecting adversary. We stress that nonce-respecting only refers to encryption queries; i.e., A
may repeat nonces during its decryption queries. Amay also ask an encryption query with a nonce that
was already used in a decryption query. Let A be provided with the encryption oracle EK(·, ·, ·) and
the decryption oracle DK(·, ·, ·); i.e., we consider adversaries that can mount chosen ciphertext attacks



3.2 Authenticated Encryption (AE) 47

(CCA). We say that A forges if it makes a decryption query (N,A,C) such that DK(N,A,C) 6= ⊥ and no
previous encryption query EK(N,A,M) returned C.

Advauth
Π (A) = Pr[K $←− K : AEK(·,·,·), DK(·,·,·) forges] .

This authenticity notion, also called ciphertext integrity (INT-CTXT) under CCA attacks, was defined
in [BN00] 12.

Resource Parameters for the CCA Adversary. Let the CCA-adversary A make encryption queries
(N1, A1,M1), · · · , (Nqe , Aqe ,Mqe) and decryption queries (N ′1, A′1,C′1), · · · , (N ′qv , A

′
qv ,C

′
qv ). We define

the resource parameters of A as (t, qe, qv, σA, σM , σA′ , σC′ , Lmax), where:

– t is the time complexity
– qe and qv are respectively the total number of encryption queries and the number of decryption queries
– Lmax is the maximum size of each query in bits

– σA =
qe∑
i=1
|Ai|

– σM =
qe∑
i=1
|Mi|

– σA′ =
qv∑
i=1
|A′i|

– σC′ =
qv∑
i=1

(|C′i| − τ).

The omission of a resource parameter means that the parameter is irrelevant in the context.

Note. The use of the aforementioned privacy (IND-CPA) and authenticity (INT-CTXT) goals to define
AE security schemes is credited to [BN00] who showed that if an AE scheme is IND-CPA secure and
INT-CTXT secure then this AE scheme will also be IND-CCA which, in turn, is equivalent to NM-CCA.

Note. The nonce-respecting assumption on the adversary is justified as follows. The nonce would
typically be a counter (message number) maintained by the sender who encrypts the messages. In
practice, an implementation must make sure that no nonce gets repeated within a session (i.e., the lifetime
of the current encryption key). As the nonce N is needed both to encrypt and to decrypt, N would be
typically transmitted in clear. Note that nonce-respecting is only assumed with respect to encryption
queries, reflecting the fact that the sender who encrypts a message is the party responsible for providing
fresh nonces and the receiver may be stateless.

On Some Attacks. Verifying the provided security proofs and their underlying assumptions is key and
flawed proofs aren’t uncommon [BKN04]. For instance, Iwata et al. showed that GCM’s original proofs
are flawed [IOM12]. Iwata et al. presented a fixed proof, but the new security bounds turned out to be
worse than the previously claimed ones. This shows that even if the target algorithm’s original proofs
are verified and certified, a detailed re-examination may degrade (if a mistake is spotted) or improve the
bounds.

Besides the conventional analyse of the schemes’ security, it is very important to challenge the models in
which proofs are given. Are of particular interest the flaws that might arise when AE schemes operate in
environments that don’t meet the mathematical abstractions used in the proofs. For example, Bellare et al.
proved that SSH BPP 13 variants variants were secure [DR11], using a traditional security model treating
plaintexts and ciphertexts as atomic. However, Albrecht et al. broke SSH BPP in 2009, exploiting the fact
that encrypted data can be delivered to the receiver in a fragmented manner [APW09]. The analysis of
AE security in such advanced threat models must consider a variety of practical misuses. Potential ways

12. not yet defined in the nonce-based context
13. binary packet protocol



48 Mathematical and Cryptographic Preliminaries 3.2

to contradict and violate a scheme must thus be permanently investigated and compared to real-world
scenarios.

Andreeva et al. [And14] have addressed the releasing unverified plaintext 14 (RUP) setting in authenticated
encryption.

14. outputting decrypted plaintext before verification



3.3 Digital Signatures 49

3.3 Digital Signatures

Digital signatures can be thought of as the public-key equivalent of MACs. By opposition to MACs,
digital signatures have the advantage of being publicly verifiable and non-repudiable. Public verifiability
implies the transferability of signatures and, thus, signatures prove useful in many applications and
in public-key infrastructures. Non-repudiation and verifiability make digital signatures particularly
suitable for contract signing purposes. Contract signing will be analysed in further depth in Section 4.1.

Defining a Digital Signature Scheme. A digital signature scheme Σ is a 3-tuple of algorithms: (KEY-
GEN, SIGN, VERIFY). KEYGEN is probabilistic algorithm. SIGN is usually probabilistic, but may, in some
cases, be deterministic. VERIFY is usually deterministic.

The descriptions of these three algorithms are given in Table 3.2.

KEYGEN Let k be the security parameter and let 1k be the input of the key generation
algorithm KEYGEN. KEYGEN outputs a pair (pk, sk) of public and secret keys.

SIGN Given a message m and (pk, sk), SIGN outputs a signature σ.
VERIFY Given σ, m, pk, VERIFY tests if σ is a valid signature of m with respect to pk.

Table 3.2: Algorithms of a digital signature scheme.

The correctness of a digital signature scheme is defined as follows.

Definition 3.3 (Correctness of a Signature Scheme) LetM be a message space A signature scheme is said
correct if, for any message m ∈M the following experiment:

(sk, pk)← KEYGEN(λ), σ ← SIGN(sk,m), b← VERIFY(pk,m, σ)

is such that b = True except with probability negligible in λ.

3.3.1 General Concepts

Consider a digital document m, e.g. a text file. The document’s author wishes to add to m some extra
information σ such that σ could serve as a proof of the authors’ approval of m or m’s origin. Hence, it is
easy to see an analogy between standard (physical) signatures and their computer-age relatives, digital
signatures. Note that physical signatures must also be verifiable.

A signature, be it physical or digital, must be unique, non-imitable, easy to verify, undeniable and easy
to generate.

Formally, Alice’s signature on a message m is a string σ depending on m, on user-specific public and
secret data and (possibly) on a randomiser. Anyone can check the validity of σ using only public data.

The public information pk is called the public key. The secret key is usually denoted by sk. Signatures
must be impossible to produce (forge) by entities who do not possess sk.

Definition 3.4 (Trapdoor Permutation Family) A trapdoor permutation family is a tuple of PPT algorithms
in the security parameter (GEN, EVAL, INVERT) such that:

1. GEN(1k) outputs a pair (f, f−1), where f is a permutation over {0, 1}k.

2. Assume f was output by GEN and x ∈ {0, 1}k. EVAL(1k, f, x) is a deterministic algorithm which outputs
y ∈ {0, 1}k.

3. Assume f−1 was output by GEN and y ∈ {0, 1}k. INVERT(1k, f−1, y) is a deterministic algorithm which
outputs x ∈ {0, 1}k.

4. Correctness: For all k, all (f, f−1) output by GEN and all x ∈ {0, 1}k, we have f−1(EVAL(1k, f, x)) = x.

5. One-wayness: For all PPT algorithms A, the following is negligible:

Pr[(f, f−1)← GEN(1k); y ← {0, 1}k;x← A(1k, f, y) : f(x) = y] .



50 Mathematical and Cryptographic Preliminaries 3.3

A method allowing to construct signatures from encryption trapdoor permutations was presented in
Diffie and Hellman’s paper [DH76]. The first signature scheme based on such a trapdoor permutation
was the celebrated RSA algorithm, proposed in 1978 by Rivest, Shamir and Adleman in [RSA78].

A new method of obtaining signature schemes (derived from fair zero-knowledge identification proto-
cols 15) was introduced by Goldwasser, Micali and Rackoff in 1986 [GMR85].

Fiat and Shamir [FS87] constructed a zero-knowledge identification protocol whose underlying security
assumption was the hardness of extracting modular square roots. [FS87] also presents a corresponding
signature scheme and discusses its security at length.

The first RSA-based digital signature international standard appeared in 1991 [Sec91].

As time passed different types of signatures with additional properties appeared. Five such examples
are blind signatures [Cha82], designated verifier signatures [JSI96a], group signatures [RST01], ring
signatures [RST01] and autotomic signatures [NP12] to quote a few. Fully distributed signatures are
addressed later on, in Section 4.1.

Public Key Infrastructure (PKI). In his very original Bachelor thesis [Koh78], Kohnfelder established
very important concepts of PKI fot the first time.

A public key infrastructure (PKI) is a system allowing the distribution and the identification of public-keys.
PKIs enable users to securely exchange data over networks and verify the identities of remote parties.
Digital certificates are at the core of PKIs. Certificates 16 confirm the identity of a party, and connect a
user identity with his public key contained in the certificate.

A typical PKI includes:
– A trusted party called certificate authority (CA), acting as a root of trust
– A registration authority (RA). In some systems, an RA is a "subordinate CA", certified by the CA to issue

lower-level certificates; nevertheless, in other systems an RA records users and public keys but not
sign certificates.

– A certificate database, storing certificate requests, issuing and revoking certificates
– A certificate store, residing on client computers and storing certificates, public keys and private keys

The CA or an RA issues digital certificates to entities and individuals after verifying their identities. The
CA signs certificates using its private key. The CA’s public key is available to all in a self-signed CA
certificate. RAs use the CA to create a “chain of trust". As we write these lines, many root certificates are
embedded in Web browsers 17. Certificates contain information such as the signing algorithms, entity
identities, expiry dates and entity security privileges.

3.3.2 Signature Schemes

A number of well known digital signature algorithms will further be recalled schematically: RSA in
Figure 3.3, ElGamal in Figure 3.4, Schnorr in Figure 3.5 and Girault-Poupard-Stern in Figure 3.6. We
present the ECDSA in Section 5.6.

The reason why we chose to present the ElGamal signatures is not only historical. Both ElGamal and
Girault-Poupard-Stern can serve to implement the construction described in Section 4.1.

Also, Schnorr signatures are of particular interest for the results of Section 4.1, where Schnorr co-signature
for two parties is described and proved.

An important result about digital signature schemes is that any public-key encryption scheme for which
C =M, can be used as a digital signature scheme.

15. For the sake of precise paternity attribution the GMR construction is implicitly used by El Gamal in [EG84].
16. which are nothing but signatures on public-keys and associated data
17. Thus, having built-in trust of those CAs.



3.3 Digital Signatures 51

RSA (Rivest-Shamir-Adleman)

RSA is probably the most popular signature scheme to date. RSA signature and encryption share the
same key generation algorithm. The security of both relies on the FACT assumption (cf. Section 2.1.2). A
variety of RSA-based signature schemes appeared over time. Despite its elegant mathematical structure,
instantiating RSA is subtle as shown in [Mis98, CNS99, CND+06].

Parameters and Key Generation
Choose large primes p, q and compute n = p · q
Choose e such that gcd(e, ϕ(n)) = 1,
where ϕ(·) is Euler’s totient function 18

Private d such that e · d = 1 mod ϕ(n)
Public n, e

Signing Algorithm (message m)
σ ← md mod n
Output σ as the signature of m

Verification Algorithm 19

if m = σe mod n then
return True

else
return False

Figure 3.3: RSA signature algorithm.

ElGamal

ElGamal’s digital signature and encryption algorithms were introduced in [EG84]. [EG84] didn’t include
the hashing step added in Figure 3.4. Pointcheval-Stern’s version of ElGamal signatures is provably
secure against adaptive chosen-message attacks [PS96, PS00].

Nonetheless, Bleichenbacher [Ble96] has shown how malicious parameters can be generated. Bleichen-
bacher’s attack is also applicable to Pointcheval-Stern’s version of ElGamal.

Schnorr

Schnorr signatures [Sch90] are an ElGamal offspring [EG84] signatures. Schnorr signatures are provably
secure in the Random Oracle Model under the DLP assumption [PS96].

Schnorr signatures will be discussed in further detail in Section 4.1.

Girault-Poupard-Stern (GPS)

Originally, the Girault-Poupard-Stern (GPS) scheme [GPS06] was developed as an identification scheme
whose underlying hardness assumptions were DLP and FACT (see Section 2.1.2 for corresponding
definitions). Applying the Fiat-Shamir transformation [FS87], GPS can be turned into a digital signature
scheme in a straightforward manner.

GPS was the only identification scheme submitted to the NESSIE competition [NES]. NESSIE ended
with 17 selected algorithms (of the initial 42), amongst which was GPS. The main advantage of GPS over
other DLP based schemes is that the prover has only one exponentiation and one addition to perform.
The exponentiation can be precomputed before receiving the challenge. If this is done the prover does
not need to perform any modular reductions after receiving the challenge from the verifier.

19. Let a be a positive integer. Euler’s totient function denoted above ϕ(a) represents the number of positive integers b such that
1 ≤ b ≤ a and gcd(a, b) = 1.

19. For simplicity, we do not consider redundancy check in m for this signature scheme.



52 Mathematical and Cryptographic Preliminaries 3.3

Parameters and Key Generation
Large prime p such that p− 1 contains a large prime factor
g ∈ Z∗p.

Private x ∈R Z∗p
Public p, g, y ← gx mod p

Signing Algorithm (message m)
Pick k ∈R Z∗p such that gcd(k, p− 1) = 1
r ← gk mod p
e← H(m)
s← e− xrk−1 mod p− 1
If s = 0 repeat signature generation.
Output {r, s} as the signature of m

Verification Algorithm
e← H(m)
If 0 < r < p or 0 < s < p− 1 then return False
if ge = yr · rs mod p then

return True
else

return False

Figure 3.4: ElGamal signature algorithm.

Parameters and Key Generation
Large primes p, q such that q ≥ 2κ, where
κ is the security parameter and
p− 1 mod q = 0
g ∈ G (a cyclic group of prime order q)

Private x ∈R Z∗q
Public y ← gx

Signing Algorithm (message m)
Pick k ∈R Z∗q
r ← gk

e← H(m, r)
s← k − ex mod q
Output {r, s} as the signature of m

Verification Algorithm
e← H(m, r)
if gsye = r then

return True
else

return False

Figure 3.5: Schnorr’s signature algorithm.

GPS is a version of Schnorr’s signature algorithm designed to reduce on-line computation and thus
allow on-the-fly signatures. The parameters of the GPS signature scheme have to be chosen taking into
consideration the attack presented by van Oorschot and Wiener in [vOW96b].



3.3 Digital Signatures 53

Parameters and Key Generation
A,B, S ∈ N s.t. |A| ≥ |S|+ |B|+ 80, |B| = 32, |S| > 140
κ is the security parameter and
p, q primes and n = pq

g ∈R Zn s.t. gcd(g, n) = 1.
Private s ∈ [1, S]
Public I = gs mod n

Signing Algorithm (message m)
Pick r ∈R [0, A− 1]
x← gr mod n
c← H(m,x)
y ← r + c · s
Output {c, y} as the signature of m

Verification Algorithm
if 0 < c < B − 1 or 0 < y < A+ (B − 1) · (S − 1)− 1

return False
Compute c′ ← H(m, gy/Ic mod n)
if c′ = c then

return True
else

return False

Figure 3.6: Girault-Poupard-Stern’s signature algorithm.

Security Notions for Digital Signatures

Bellare and Rogaway introduced the concept of "practice-oriented provable security" in a number of
papers of which the first one was [BR94]. This concept naturally results from the convergence of theory
(notably [GM84]) and practice.

As a direct consequence, the random oracle model (we refer the reader to the paragraph in Section 2.1.2)
was introduced in [BR93]. The random oracle model allowed to prove the security of many cryptographic
schemes by abstracting away the random-like properties of hash functions.

Using the random oracle model, Pointcheval and Stern [PS00] present security arguments for a large class
of digital signatures. From their work emerged an approach that proposes computational reductions to
well established problems for proving the security of digital signature schemes.

Security Notions. An efficient adversary A is modelled as a probabilistic polynomial time (PPT)
algorithm.

We say that an adversary A "forges a signature on a new message" or "outputs a forgery" whenever A
outputs a message/signature pair (m,σ) such that VERIFY(pk,m, σ) = True and Awas not previously
given any signature on m. We say that A "outputs a strong forgery" whenever A outputs a message/sig-
nature pair (m,σ) such that VERIFY(pk,m, σ) = True and Awas not previously given the signature σ on
the message m. Note that whenever A outputs a forgery then A also outputs a strong forgery.

Let Σ denote a signature scheme as defined in Section 3.3.

Definition 3.5 (EU-RMA Security) A signature scheme Σ is existentially unforgeable under a random-
message attack (EU-RMA) if for all polynomials p and all PPT adversaries A, the success probability of A in the
following experiment is negligible, as a function of k:

1. A sequence of p = p(k) messages m1, ...,mp are chosen uniformly at random from the message space

2. KEYGEN(1k) is run to obtain a pair of keys (pk, sk)

3. Signature σ1 ← SIGN(sk,m1), ..., σp ←SIGN(sk,mp) are computed



54 Mathematical and Cryptographic Preliminaries 3.3

4. A is given pk and {(mi, σi)}pi=1 and outputs (m,σ)
5. A succeeds if VERIFY(pk,m, σ) = True and m /∈ (m1, ...,mp)

Σ is strongly unforgeable under a random-message attack (SU-RMA) if Σ complies with Definition 3.5
where step 5 is replaced by

5. A succeeds if VERIFY(pk,m, σ) = True and (m,σ) /∈ {(m1, σ1), ..., (mp, σp)}

Definition 3.6 (EU-KMA Security) A signature scheme Σ is existentially unforgeable under a known-
message attack (EU-KMA) if for all polynomials p and all PPT adversaries A, the success probability of A in the
following experiment is negligible as a function of k:

1. A(1k) outputs a sequence of p = p(k) messages m1, ...,mp

2. KEYGEN(1k) is run to obtain a pair of keys (pk, sk)

3. Signature σ1 ← SIGN(sk,m1), ..., σp ←SIGN(sk,mp) are computed

4. A is given pk and {σi}pi=1 and outputs (m,σ)
5. A succeeds if VERIFY(pk,m, σ) = True and m /∈ (m1, ...,mp)

We assume that A is a stateful algorithm, and in particular is allowed to maintain state between steps 1 and 4.

Σ is strongly unforgeable under a known-message attack (SU-KMA) if Σ complies with Definition 3.6
where step 5 is replaced by

5. A succeeds if Verify(pk,m, σ) = True and (m,σ) /∈ {(m1, σ1), ..., (mp, σp)}

Definition 3.7 (EU-CMA Security) A signature scheme Σ is existentially unforgeable under a chosen-
message attack (EU-CMA) if for all PPT adversaries A, the success probability of A in the following experiment
is negligible as a function of k:

1. KEYGEN(1k) is run to obtain a pair of keys (pk, sk)

2. A is given pk and allowed to interact with a signing oracle SIGN(sk, ·), requesting signatures on as many
messages as it likes. Let this attack be denoted as ASIGN(·)

pk

3. Eventually, A outputs (m,σ)
4. A succeeds if VERIFY(pk,m, σ) = True and m /∈M

The desired security notion for signature scheme is strong unforgeability under chosen message attack
(SU-CMA). This notion is defined by the next security game:

Definition 3.8 (SU-CMA Security Game and Advantage) The SU-CMA security game GSU-CMA
Σ is defined

as a protocol between the challenger C and an adversary A:

1. C runs (sk, pk)← KEYGEN(λ) and sends pk to A
2. A adaptively chooses messages m1 . . .mk and sends them to C
3. C responds to each message with the signature σi = SIGN(pk, sk,m)
4. The adversary sends a message and a forgery (m∗, σ∗) to C
5. C outputs{

1 if VERIFY(pk,m∗, σ∗) = True and if (m∗, σ∗) 6= (mi, σi) for all i = 1 . . . k
0 otherwise

The advantage of an SU-CMA adversary A against the signature scheme Σ is defined as:

AdvSU-CMA
Σ (A) = Pr

[
ExpSU-CMA

Σ (A) = 1
]

Definition 3.9 (SU-CMA Security) A signature scheme Σ is said to be SU-CMA secure if for any adversary
A that runs in probabilistic polynomial time (PPT) in the security parameter λ, the adversary’s advantage
AdvSU-CMA

Σ (A) is negligible in λ.

Observations. CMA security can be attained from weaker primitives. Such constructions, exceeding
the purpose of this thesis, are presented in detail in [YK05].



3.4 Elliptic Curve Cryptography 55

3.4 Elliptic Curve Cryptography

The first implicit appearance of elliptic curves is related to the work of Diophantus. The modern theory
of elliptic curves started around 1930 with Hasse’s research on the number of points on elliptic curves
over finite fields [Has35]. This seminal work was later generalized by Weil’s conjectures [And49].

Terminology: An Abelian group is a group satisfying the commutative law. For the definition of genus
we refer the reader to [CFA+12].

Elliptic curves (see Definitions 3.10 and 3.11) are genus 1 algebraic curves. For the cryptographer, the
very interesting property of an elliptic curve is that the set of points on the curve form an Abelian group.
We recall two definitions for the elliptic curve notion, the second of which (Definition 3.11) is of interest
to our purpose.

Definition 3.10 An elliptic curve is a smooth projective curve of genus 1 with a distinguished point.

Definition 3.11 An elliptic curve EC over a finite prime field Fp of characteristic p > 3 can be described by its
reduced Weierstraß form:

E : y2 = x3 + ax+ b . (3.4)

We denote by E(Fp) the set of points (x, y) ∈ F2
p satisfying equation (3.4), together with the point at

infinity O. E(Fp) is an additive Abelian group.

The leftmost part of Figure 3.7 shows an EC over the real numbers. An elliptic curve defined over a finite
field is shown on the rightmost part of Figure 3.7.

Figure 3.7: The EC y2 = x3−x+1 over R (leftmost image) and an EC defined over a finite field (rightmost
image).

Elliptic Curve Cryptography (ECC)

Elliptic curves were first used for cryptographic purposes by Lenstra [Len87]. In 1984 Lenstra mentioned
the idea of an elliptic curve factoring algorithm which was published by 1987 [Len87]. Seeing this
as a breakthrough, Koblitz [Kob87] and V. Miller [Mil86] independently proposed to use the Discrete
Logarithm Problem on an elliptic curve to define public-key cryptosystems (ECC).

ECCs rely on the difficulty of the Elliptic Curve Discrete Logarithm Problem (ECDLP, given P and
Q = [k]P compute k) or on the hardness of related problems such as ECDH or ECDDH [Bon98], which can
be solved if ECDLP can be.

But choosing suitable curves was challenging. Moreover, random curves may prove weak. Recom-
mendations from different standardisation bodies appeared. For example, NIST first provided their



56 Mathematical and Cryptographic Preliminaries 3.4

Recommended Elliptic Curves for Federal Government Use in 1999 [oST99]. Elliptic curves over finite fields of
the form F2n are of great interest for fast implementations as the arithmetic processors corresponding to
such fields can be constructed easily.

The Elliptic Curve Diffie-Hellman (ECDH) and the Elliptic Curve Menezes-Qu-Vanstone (ECMQV)
[LMQ+03] were proposed as key agreement and transport protocols and for the Elliptic Curve Digital
Signature Algorithm (ECDSA) [JM99]. [JM99] was previously presented in Section 3.3.

ECC requires much smaller keys than those used in conventional public key cryptosystems, for an equal
security level. The use of ECs therefore allows faster encryption, decryption and digital signatures.

Elliptic curves used in cryptography have the next properties:

– They are defined over a finite field Fq , where q is either a prime or of the form 2n
– The number of points on a cryptographic EC is ip, where p is prime and i ∈ {1, 2, 3, 4}
– p is typically a 192-bit integer

Hyperelliptic curves are a natural generalization of elliptic curves:

Hyperelliptic Curve Cryptography. Hyperelliptic curves are genus g > 1 curves. In constrast with
well established ECCs whose security has been extensively analysed, hyperelliptic curve cryptography
still includes many unknown parameters. We refer the reader to [CFA+12] for further details.

Pairing-Based Cryptography. Joux [Jou00] noticed that bilinear pairings on ECs have very important
cryptographic applications. These applications were deemed so important that in 2013 Joux, Boneh and
Franklin were awarded the Gödel Prize for this discovery. Initially used for cryptanalysis [MOV93],
pairings became interesting for constructing new ID-based cryptographic primitives [BF01,Lys02,SOK00].
But the majority of these applications requires working with finite fields of prime power order.

Weil pairing was introduced by Weil in 1940 [Wei40] and represents a bilinear form on the points of order
dividing n of an elliptic curve E.

Among the cryptographic applications of Weil pairing, we mention Joux’s tri-partite Diffie–Hellman-like
key exchanges [Jou00] and ID-based public key cryptosystems [BF01, Sma01] in which the public keys
can be selected by the users.

The Tate pairing [Tat58, Tat63] is preferred in cryptographic applications for its relative computational
efficiency.

In the next subsections, the basic properties and algorithms of importance for the arithmetic of elliptic
curves will be overviewed: point addition (Algorithm 1), scalar multiplication (Algorithm 2) and Jacobian
projective arithmetics (Algorithms 3.5 and 3.6). These are important for our results in Section 5.6.1.3.

Point Addition and Point Doubling

Algorithm 1 describes point addition on elliptic curves, and, implicitly, point doubling (when P = Q).

The inverse of point P is defined as −P = (x1,−y1).

Jacobian Projective Arithmetics

To avoid modular inversions, implementers frequently work in the Jacobian projective coordinates
system. The equation of an EC in the Jacobian projective coordinates system in the reduced Weierstraß
form is:

EJ : Y 2 = X3 + aXZ4 + bZ6 .

The projective point (X,Y, Z) corresponds to the affine point (X/Z2, Y/Z3). The point (X,Y, Z) is
equivalent to any point (r2X, r3Y, rZ) with r ∈ F∗p.

We recall the addition (ECADD) and doubling (ECDBL) formulæ in the Jacobian projective coordinates
system. Let P = (X1, Y1, Z1) and Q = (X2, Y2, Z2) be two points of EJ (Fp) with P 6= ±Q.



3.4 Elliptic Curve Cryptography 57

Algorithm 1: Point Addition
Input: Two points P = (x1, y1) 6= O and Q = (x2, y2) 6∈ {O,−P} on E(Fp).
Output: R = (x3, y3) = P +Q

1 if P = Q then

2 λ← 3x2
1 + a

2y1
3 end if
4 else

5 λ← y1 − y2

x1 − x2
6 end if

7 x3 ← λ2 − x1 − x2

8 y3 ← λ(x1 − x3)− y1

9 return R := (x3, y3)

Algorithm ECDBL =



S ← 4X1Y
2
1

M ← 3X2
1 + aZ4

1
X3 ← −2S +M2

Y3 ← −8Y 4
1 +M(S −X3)

Z3 ← 2Y1Z1
P3 := (X3, Y3, Z3) return(P3 = 2P1)

(3.5)

Algorithm ECADD =



U ← X1Z
2
2

S ← Y1Z
3
2

H ← X2Z
2
1 − U

R ← Y2Z
3
1 − S

X3 ← −H3 − 2UH2 +R2

Y3 ← −SH3 +R(UH2 −X3)
Z3 ← Z1Z2H
P3 := (X3, Y3, Z3) return(P3 = P1 + P2)

(3.6)

Scalar Multiplication

In ECC, one has to compute scalar multiplications, i.e. compute [k]P , given P and an integer k. The
Double-and-Add algorithm (Algorithm 2) is a way of doing so.

Algorithm 2: Double-and-Add
Input: A point P and an integer k = (1, kN−2, kN−3, . . . , k0)2
Output: [k]P

1 A← P
2 for i = N − 2 downto 0 do
3 A← ECDBL(A)
4 if ki = 1 then
5 A← ECADD(A,P )
6 end if
7 end for
8 return A



CHAPTER 4

PROTOCOL DESIGN

Everything should be made as simple as possible, but not simpler.
Albert Einstein.

Summary

Designing secure and practical cryptographic protocols is a challenging task. This chapter focuses on
reductionist security and includes the description of a co-signature protocol, a lightweight algorithm
performing network authentication and an authenticated encryption scheme.

The core result of the thesis, detailed in Section 4.1, is a new form of contract co-signature, called legal
fairness, that does not rely on third parties or arbitrators.

The proposed protocol is efficient, compact, fully distributed, fully dynamic, and provably secure in the
Random Oracle Model. The protocol is illustrated for two parties using Schnorr’s signature scheme.

Section 4.2 presents a lightweight algorithm allowing a verifier to collectively identify a community of
provers. This protocol is more efficient than one-to-one node authentication, resulting in less commu-
nication, less computation, and hence a smaller overall energy consumption. The protocol is provably
secure, and achieves zero-knowledge authentication of a time linear in the degree of the spanning tree.

The proposed authentication protocol may be adapted to better fit constraints: in the context of Internet
of Things (IoT), communication is a very costly operation. We describe versions that reduce the amount
of data sent by individual nodes, while maintaining security.

Section 4.3 introduces a novel mode of operation called OMD which uses a compression function for
building a nonce-based authenticated encryption with associated data. OMD is instantiated with the
specific compression functions of SHA-256 and SHA-512. OMD features higher quantitative security
level, flexible key sizes and simpler operations than AES-GCM.

OMD is a second round candidate of the CAESAR competition. OMD was benchmarked both in software
and hardware. Section 4.3.11 discusses further developments regarding authenticated encryption
schemes.

58



4.1 Legally Fair Contract Signing without Keystones 59

4.1 Legally Fair Contract Signing without Keystones

When mutually distrustful parties wish to compute some joint function of their private inputs, they
require a certain number of security properties to hold for that computation:
– Privacy: Nothing is learnt from the protocol besides the output;
– Correctness: The output is distributed according to the prescribed functionality;
– Independence: One party cannot make their inputs depend on the other parties’ inputs;
– Delivery: An adversary cannot prevent the honest parties from successfully computing the functional-

ity;
– Fairness: If one party receives output then so do all.
Any multi-party computation can be securely computed [Yao86, GMW87, Gol04, BOSW88, CCD88] as
long as there is a honest majority [Lin08]. In the case where there is no such majority, and in particular
in the two-party case, it is (in general 1) impossible to achieve both fairness and guaranteed output
delivery [Lin08, Cle86].

Weakening Fairness. To circumvent this limitation, several authors have put forth alternatives to
fairness that try and capture the practical context (e.g. contract-signing, bank transactions, etc.). Three
main directions have been explored:

1. Gradual release models: The output is not revealed all at once, but rather released gradually (e.g. bit
per bit) so that, if an abort occurs, then the adversary has not learnt much more about the output
than the honest party. This solution is unsatisfactory because it is expensive and may not work if
the adversary is more computationally powerful [GHKL08, GAL91, Pin03, GDMPY06].

2. Optimistic models: A trusted server is setup but will not be contacted unless fairness is breached. The
server is able to restore fairness afterwards, and this approach can be efficient, but the infrastructure
requirements and the condition that the server be trusted limit the applicability of this solution
[Mic03, ASW97, CC00]. In particular, the dispute-resolving third party must be endowed with
functions beyond those usually required of a normal certification authority.

3. Legally fair, or concurrent model: The first party to receive output obtains an information dubbed the
“keystone”. The keystone by itself gives nothing and so if the first party aborts after receiving it, no
damage has been done – if the second party aborts after receiving the result (say, a signature) then
the first party is left with a useless keystone. But, as observed in [CKP04] for the signature to be
enforced, it needs to be presented to a court of law, and legally fair signing protocols are designed
so that this signature and the keystone give enough information to reconstruct the missing data.
Therefore, if the cheating party wishes to enforce its signed contract in a court of law, it by doing so
reveal the signature that the first party should receive, thereby restoring fairness [CKP04]. Legal
fairness requires neither a trusted arbitrator nor a high degree of interaction between parties.

Lindell [Lin08] also introduces a notion of “legally enforceable fairness” that sits between legal fairness
and optimistic models: a trusted authority may force a cheating party to act in some fashion, should their
cheating be attested. In this case the keystone consists in a digitally signed cheque for an frighteningly
high amount of money that the cheating party would have to pay if the protocol were to be aborted
prematurely and the signature abused.

Concurrent Signatures. Chen et al. [CKP04] proposed a legally fair signature scheme based on ring
signatures [RST01, AOS02] and designated verifier signatures [JSI96b], that is proven secure in the
Random Oracle Model assuming the hardness of computing discrete logarithms.

Concurrent signatures rely on a property shared by ring and designated verifier signatures called
“ambiguity”. In the case of two-party ring signatures, one cannot say which of the two parties produced
the signature – since either of two parties could have produced such an ambiguous signature, both
parties can deny having produced it. However, within the ring, if A receives a signature then she knows
that it is B who sent it. The idea is to put the ambiguity-lifting information in a “keystone”. When that
keystone is made public, both signatures become simultaneously binding.

Concurrent signatures schemes can achieve legal fairness depending on the context. However their
construction is not abuse-free [BW00, GJDM99]: the party A holding the keystone can always determine

1. See [GHKL08] for a very specific case where completely fair two-party computation can be achieved.



60 Protocol Design 4.1

whether to complete or abort the exchange of signatures, and can demonstrate this by showing an
outside party the signature from B with the keystone, before revealing the keystone to B.

Our Results. We describe a new contract signing protocol that achieves legal fairness and abuse-
freeness. This protocol is based on the well-known Schnorr signature protocol, and produces signatures
compatible with standard Schnorr signatures. For this reason, and as we demonstrate, the new contract
signing protocol is provably secure in the random oracle model under the hardness assumption of
solving the discrete logarithm problem. Our construction can be adapted to other DLP schemes, such as
most 2 of those enumerated in [HPM94], including Girault-Poupard-Stern [GPS06] and ElGamal [EG84].

4.1.1 Preliminaries

4.1.1.1 Schnorr Signatures

Schnorr digital signatures [Sch90] are an offspring of ElGamal [EG84] signatures. This family of signatures
is obtained by converting interactive identification protocols (zero-knowledge proofs) into transferable
proofs of interaction (signatures). This conversion process, implicitly used by ElGamal, was discovered
by Feige, Fiat and Shamir [FFS88] and formalized by Abdalla, Bellare and Namprempre [AABN02].

We will refer to the original Schnorr signature protocol as “classical” Schnorr. This protocol consists in
four algorithms:
– Setup(`): On input a security parameter `, this algorithm selects large primes p, q such that q ≥ 2` and
p− 1 mod q = 0, as well as an element g ∈ G of order q in some multiplicative group G of order p, and
a hash function H : {0, 1}∗ → {0, 1}`. The output is a set of public parameters pp = (p, q, g,G, H).

– KeyGen(pp): On input the public parameters, this algorithm chooses uniformly at random x
$←− Z×q

and computes y ← gx. The output is the couple (sk, pk) where sk = x is kept private, and pk = y is
made public.

– Sign(pp, sk,m): On input public parameters, a secret key, and a message m this algorithm selects a

random k
$←− Z×q , computes

r ← gk

e← H(m||r)
s← k − ex mod q

and outputs 〈r, s〉 as the signature of m.
– Verify(pp, pk,m, σ): On input the public parameters, a public key, a message and a signature σ = 〈r, s〉,

this algorithm computes e ← H(m, r) and returns True if and only if gsye = r; otherwise it returns
False.

The security of classical Schnorr signatures was analysed by Pointcheval and Stern [PS96, PS00] using
the Forking Lemma. Pointcheval and Stern’s main idea is as follows: in the Random Oracle Model, the
opponent can obtain from the forger two valid forgeries {`, s, e} and {`, s′, e′} for the same oracle query
{m, r} but with different message digests e 6= e′. Consequently, r = gsy−e = gs

′
y−e

′
and from that it

becomes straightforward to compute the discrete logarithm of y = gx. Indeed, the previous equation can
be rewritten as ye−e

′ = gs
′−s, and therefore:

y = g
s′−s
e−e′ ⇒ Dlogg(y) = s′ − s

e− e′

The Forking Lemma for Schnorr signatures is originally stated as follows:

Theorem 4.1 (Forking Lemma, [PS00]) Let A be an attacker which performs within a time bound tF an
existential forgery under an adaptively chosen-message attack against the Schnorr signature, with probability εF .
Assume that A makes qh hashing queries to a random oracle and qs queries to a signing oracle.

Then there exists an adversary solving the discrete logarithm problem in subgroups of prime order in polynomial
expected time. Assume that εF ≥ 10(qs + 1)(qs + qh)/q, then the discrete logarithm problem in subgroups of
prime order can be solved within expected time less that 120686 qhtF /εF .

2. In a number of cases, e.g. DSA, the formulae of s do not lend themselves to security proofs.



4.1 Legally Fair Contract Signing without Keystones 61

This security reduction loses a factor O(qh) in the time-to-success ratio. Note that recent work by
Seurin [Seu12] shows that this is essentially the best possible reduction to the discrete logarithm problem.

4.1.1.2 Concurrent Signatures

Let us give a more formal account of legal fairness as described in [CKP04, Lin08] in terms of concurrent
signatures. Unlike classical contract-signing protocol, whereby contractors would exchange full-fledged
signatures (e.g. [Gol83]), in a concurrent signature protocol there are “ambiguous” signatures that do not,
as such, bind their author. This ambiguity can later be lifted by revealing some additional information:
the “keystone”. When the keystone is made public, both signatures become simultaneously binding.

LetM be a message space. Let K be the keystone space and F be the keystone fix space.

Definition 4.1 (Concurrent signature) A concurrent signature is composed of the following algorithms:
– Setup(k): Takes a security parameter k as input and outputs the public keys (yA, yB) of all participants, a

function KeyGen : K → F , and public parameters pp describing the choices ofM,K,F and KeyGen.
– aSign(yi, yj , xi, h2,M): Takes as input the public keys y1 and y2, the private key xi corresponding to yi, an

element h2 ∈ F and some message M ∈M; and outputs an “ambiguous signature”

σ = 〈s, h1, h2〉

where s ∈ S, h1, h2 ∈ F .
– aVerify(σ, yi, yj ,M): Takes as input an ambiguous signature σ = 〈s, h1, h2〉, public keys yi and yj , a message
M ; and outputs a boolean value, with the constraint that

aVerify (σ′, yj , yi,M) = aVerify (σ, yi, yj ,M)

where σ′ = 〈s, h2, h1〉.
– Verify(k, σ, yi, yj ,M): Takes as input k ∈ K and σ, yi, yj ,M as above; and checks whether KeyGen(k) = h2:

If not it terminates with output False, otherwise it outputs the result of aVerify(σ, yi, yj ,M).

A valid concurrent signature is a tuple 〈k, σ, yi, yj ,M〉 that is accepted by the Verify algorithm. Concurrent
signatures are used by two parties A and B in the following way:

1. A and B run Setup to determine the public parameters of the scheme. We assume that A’s public
and private keys are yA and xA, and B’s public and private keys are yB and xB .

2. Without loss of generality, we assume that A initiates the conversation. A picks a random keystone
k ∈ K, and computes f = KeyGen(k). A takes her own public key yA and B’s public key yB and
picks a message MA ∈M to sign. A then computes her ambiguous signature to be

σA = 〈sA, hA, f〉 = aSign(yA, yB , xA, f,MA).

3. Upon receiving A’s ambiguous signature σA, B verifies the signature by checking that

aVerify(sA, hA, f, yA, yB ,MA) = True

If this equality does not hold, then B aborts. Otherwise B picks a message MB ∈M to sign and
computes his ambiguous signature

σB = 〈sB , hB , f〉 = aSign(yB , yA, xB , f,MB)

then sends this back to A. Note that B uses the same value f in his signature as A did to produce
σA.

4. Upon receiving B’s signature σB , A verifies that

aVerify(sB , hB , f, yB , yA,MB) = True

where f is the same keystone fix as A used in the previous steps. If the equality does not hold, then
A aborts. Otherwise A sends keystone k to B.

At the end of this protocol, both 〈k, σA〉 and 〈k, σB〉 are binding, and accepted by the Verify algorithm.



62 Protocol Design 4.1

Remark Note that A has an the upper hand in this protocol: Only when A releases the keystone do both
signatures become simultaneously binding, and there is no guarantee that A will ever do so. Actually,
since A controls the timing of the keystone release (if it is released at all), A may only reveal k to a
third party C but withhold it from B, and gain some advantage by doing so. In other terms, concurrent
signatures can be abused by A [BW00, GJDM99].

Chen et al. [CKP04] argue that there are situations where it is not in A’s interest to try and cheat B,
in which abuse-freeness is not necessary. One interesting scenario is credit card payment in the “four
corner” model. Assume that B’s signature is a payment to A. To obtain payment, A must channel via her
acquiring bank C, which would communicate with B’s issuing bank D. D would ensure that B receives
both the signature and the keystone — as soon as this happens A is bound to her signature. Since in this
scenario there is no possibility for A to keep B’s signature private, fairness is eventually restored.

Example 4.1 A concurrent signature scheme based on the ring signature algorithm of Abe et al. [AOS02] was
proposed by Chen et al. [CKP04]:
– Setup: On input a security parameter `, two large primes p and q are selected such that q|p− 1. An element
g ∈ Z×p of order q is selected. The spaces S = F = Zq andM = K = {0, 1}∗ are chosen. Two cryptographic
hash functions H1, H2 : {0, 1}∗ → Zq are selected and we set KeyGen = H1. Private keys xA, xB are selected
uniformly at random from Zq and the corresponding public keys are computed as gxi mod p.

– aSign: The algorithms takes as input yi, yj , xi, h2,M , verifies that yi 6= yj (otherwise aborts), picks a random
value t ∈ Zq and computes

h = H2

(
gtyh2

j mod p‖M
)

h1 = h− h2 mod q
s = t− h1xi mod q

where ‖ denotes concatenation. The algorithm outputs 〈s, h1, h2〉.
– aVerify: This algorithm takes as input s, h1, h2, yi, yj ,M and checks whether the following equation holds:

h1 + h2 = H2

(
gsyh1

i y
h2
j mod p‖M

)
mod q

The security of this scheme can be proven in the Random Oracle model assuming the hardness of computing discrete
logarithms in Z×p .

4.1.1.3 Legal Fairness for Concurrent Signatures

A concurrent signature scheme is secure when it achieves existential unforgeability, ambiguity and
fairness against an active adversary that has access to a signature oracle. We define these notions in
terms of games played between the adversaryA and a challenger C. In all security games,A can perform
any number of the following queries:
– KeyGen queries: A can receive a keystone fix f = KeyGen(k) where k is chosen by the challenger 3.
– KeyReveal queries: A can request that C reveals which k was chosen to produce a keystone fix f in a

previous KeyGen query. If f was not a previous KeyGen query output then C returns ⊥.
– aSign queries: A can request an ambiguous signature for any message of his choosing and any pair of

users 4.
– SKExtract queries: A can request the private key corresponding to a public key.

Definition 4.2 (Unforgeability) The notion of existential unforgeability for concurrent signatures is defined in
terms of the following security game:

1. The Setup algorithm is run and all public parameters are given to A.

2. A can perform any number of queries to C, as described above.

3. Finally, A outputs a tuple σ = 〈s, h1, f〉 where s ∈ S, h1, f ∈ F , along with public keys yC , yD and a
message M ∈M.

A wins the game if aVerify accepts σ and either of the following holds:

3. The algorithm KeyGen being public,A can compute KeyGen(k) for any k of her choosing.
4. Note that with this information and using KeyGen queries,A can obtain concurrent signatures for any message and any

user pair.



4.1 Legally Fair Contract Signing without Keystones 63

– A did not query SKExtract on yC nor on yD, and did not query aSign on (yC , yD, f,M) nor on (yD, yC , h1,M).
– A did not query aSign on (yC , yi, f,M) for any yi 6= yC , and did not query SKExtract on yC , and f is the

output of KeyGen: either an answer to a KeyGen query, or A can produce a k such that k = KeyGen(k).

The last constraint in the unforgeability security game corresponds to the situation where A knows one
of the private keys (as is the case if A = A or B).

Definition 4.3 (Ambiguity) The notion of ambiguity for concurrent signatures is defined in terms of the follow-
ing security game:

1. The Setup algorithm is run and all public parameters are given to A.
2. Phase 1: A can perform any number of queries to C, as described above.
3. Challenge: A selects a challenge tuple (yi, yj ,M) where yi, yj are public keys and M ∈M. In response, C

selects a random k ∈ K, a random b ∈ {0, 1} and computes f = KeyGen(k). If b = 0, then C outputs

σ1 = 〈s1, h1, f〉 = aSign(yi, yj , xi, f,M)

Otherwise, if b = 1 then C computes

σ2 = 〈s2, h2, f〉 = aSign(yj , yi, xi, f,M)

but outputs σ′2 = 〈s2, f, h2〉 instead.
4. Phase 2: A can perform any number of queries to C, as described above.
5. Finally, A outputs a guess bit b′ ∈ {0, 1}.

A wins the game if b = b′ and if A made no KeyReveal query on f , h1 or h2.

Definition 4.4 (Fairness) The notion of fairness for concurrent signatures is defined in terms of the following
security game:

1. The Setup algorithm is run and all public parameters are given to A.
2. A can perform any number of queries to C, as described above.
3. Finally, A chooses two public keys yC , yD and outputs k ∈ K and S = (s, h1, f, yC , yD,M) where s ∈ S,
h1, f ∈ F , M ∈M.

A wins the game if aVerify(S) accepts and either of the following holds:
– f was output from a KeyGen query, no KeyReveal query was made on f , and Verify accepts 〈k, S〉.
– A can output S′ = (s′, h′1, f, yD, yC ,M ′) where aVerify(S′) accepts and Verify(k, S) accepts, but Verify(k, S′)

rejects.

This definition of fairness formalizes the idea that B cannot be left in a position where a keystone binds
his signature to him while A’s initial signature is not also bound to A. It does not, however, guarantee
that B will ever receive the necessary keystone.

4.1.2 Legally Fair Co-Signatures

4.1.2.1 Legal Fairness Without Keystones

The main idea builds on the following observation: Every signature exchange protocol is plagued by the
possibility that the last step of the protocol is not performed. Indeed, it is in the interest of a malicious
party to get the other party’s signature without revealing its own. As a result, the best one can hope for
is that a trusted third party can eventually restore fairness.

To avoid this destiny, the proposed protocol does not proceed by sending A’s signature to B and vice
versa. Instead, we construct a joint signature, or co-signature, of both A and B. By design, there are no
signatures to steal — and stopping the protocol early does not give the stopper a decisive advantage.
More precisely, the contract they have agreed upon is the best thing an attacker can gather, and if she ever
wishes to enforce this contract by presenting it to a court of law, she would confirm her own commitment
to it as well as the other party’s. Therefore, if one can construct co-signatures without intermediary
individual signatures being sent, legal fairness can be achieved without keystones.

Since keystones can be used by the party having them to abuse the other [CKP04], the co-signature
setting provides an interesting alternative to concurrent signatures.



64 Protocol Design 4.1

Schnorr Co-signatures. To illustrate the new idea, we now discuss a legally fair contract-signing
protocol built from the well-known Schnorr signature protocol, that produces signatures compatible with
standard Schnorr signatures. This contract signing protocol is provably secure in the random oracle
model under the hardness assumption of solving the discrete logarithm problem.

The construction can be adapted to other DLP schemes, such as most 5 of those enumerated in [HPM94],
including Girault-Poupard-Stern [GPS06] and ElGamal [EG84].

Our proposal does not consider methods for dealing with revocation of keys at different levels separately.

– Setup: An independent (not necessarily trusted) authority generates a classical Schnorr parameter-set
p, q, g which is given to A and B. Each user U generates a usual Schnorr public key yU = gxU and
publishes yU on a public directory D (see Figure 4.1). To determine the co-signature public-key yA,B of
the pair 〈A,B〉, a verifier consults D and simply computes yA,B = yA × yB . Naturally, yA,B = yB,A.

Alice

D

Bob

g, p, q

yA
y
B

Figure 4.1: Public directory D distributing the public keys.

– Cosign: To co-sign a message m, A and B compute a common r and a common s, one after the other.
Without loss of generality we assume that B initiates the co-signature.
– During the first phase (Figure 4.2), B chooses a private random number kB and computes rB ← gkB .

He commits to that value by sending to A a message digest ρ ← H(0‖rB). A chooses a private
random number kA, computes rA ← gkA and sends rA to B. B replies with rB , which A checks
against the earlier commitment ρ. Both parties compute r ← rA × rB , and e← H(1‖m‖r), where m
is the message to be co-signed.

– During the second phase of the protocol, B sends sB ← kB − e × xB mod q to A. A replies with
sA ← kA − e× xA mod q. Both users compute s← sA + sB mod q.

Alice Bob

yA,B ← yA × yB yA,B ← yA × yB
kA

$←− Z∗q kB
$←− Z∗q

rA ← gkA rB ← gkB

ρ← H(0‖rB)
ρ←−−−−−−−−−−
rA−−−−−−−−−−→
rB←−−−−−−−−−−

if H(0‖rB) 6= ρ abort
r ← rA × rB r ← rA × rB
e← H(1‖m‖r) e← H(1‖m‖r)
sA ← kA − exA mod q sB ← kB − exB mod q

sB←−−−−−−−−−−
sA−−−−−−−−−−→

s← sA + sB mod q s← sA + sB mod q

Figure 4.2: Generating the Schnorr co-signature of message m.

5. In a number of cases, e.g. DSA, the formulae of s do not lend themselves to security proofs.



4.1 Legally Fair Contract Signing without Keystones 65

– Verify: As in the classical Schnorr signature, the co-signature {r, s} is checked for a message m by
computing e← H(m‖r), and checking whether gsye = r (Figure 4.3). If the equality holds, then the
co-signature binds both A and B to m; otherwise neither party is tied to m.

Co-signature
m, r, s

r
?= gsyeA,B

Incorrect co-signature. No
party involved with m.

Valid co-signature. Both
parties involved with m. noyes

Figure 4.3: Verification of a Schnorr co-signature m, r, s.

Remark Note that during the co-signature protocol, A might decide not to respond to B: In that case, A
would be the only one to have the complete co-signature. This is a breach of fairness insofar as A can
benefit from the co-signature and not B, but the protocol is abuse-free: A cannot use the co-signature
as a proof that B, and B alone, committed to m. Furthermore, it is not a breach of legal fairness: If A
presents the co-signature in a court of law, she ipso facto reveals her commitment as well.

Remark In a general fair-contract signing protocol, A and B can sign different messages mA and mB .
Using the co-signature construction requires that A and B agree first on the content of a single message
m.

Security Analysis The security of the co-signature scheme essentially builds on the unforgeability of
classical Schnorr signatures. Since there is only one co-signature output, the notion of ambiguity does
not apply per se — albeit we will come back to that point later on. The notion of fairness is structural in
the fact that a co-signature, as soon as it is binding, is binding for both parties.

As for concurrent signatures, an adversary A has access to an unlimited amount of conversations and
valid co-signatures, i.e. A can perform the following queries:
– Hash queries: A can request the value of H(x) for a x of its choosing.
– CoSign queries: A can request a valid co-signature r, s for a message m and a public key yC,D of its

choosing.
– Transcript queries: A can request a valid transcript (ρ, rC , rD, sC , sD) of the co-signing protocol for a

message m of its choosing, between users C and D of its choosing.
– SKExtract queries: A can request the private key corresponding to a public key.
– Directory queries: A can request the public key of any user U .
The following definition captures the notion of unforgeability in the co-signing context:

Definition 4.5 (Unforgeability) The notion of unforgeability for co-signatures is defined in terms of the follow-
ing security game between the adversary A and a challenger C:

1. The Setup algorithm is run and all public parameters are provided to A.
2. A can perform any number of queries to C, as described above.
3. Finally, A outputs a tuple (m, r, s, yC,D).

A wins the game if Verify(m, r, s) = True and there exist public keys yC , yD ∈ D such that yC,D = yCyD and
either of the following holds:
– A did not query SKExtract on yC nor on yD, and did not query CoSign onm, yC,D, and did not query Transcript

on m, yC , yD nor m, yD, yC .
– A did not query Transcript on m, yC , yi for any yi 6= yC and did not query SKExtract on yC , and did not query

CoSign on m, yC , yi for any yi 6= yC .
We shall say that a co-signature scheme is unforgeable when the success probability of A in this game is negligible.

To prove that the Schnorr-based scheme described above is secure we use the following strategy:
Assuming an efficient forger A for the co-signature scheme, we turn it into an efficient forger B for
Schnorr signatures, then invoke the Forking Lemma to prove the existence of an efficient solver C for the
discrete logarithm problem. All proofs hold in the Random Oracle model.



66 Protocol Design 4.1

Since the co-signing protocol gives the upper hand to the last-but-one speaker there is an asymmetry:
Alice has more information than Bob. Therefore we address two scenarios: When the attacker plays
Alice’s role, and when the attacker plays Bob’s.

Adversary Attacks Bob.

Theorem 4.2 Let {y, g, p, q} be a DLP instance. If AAlice plays the role of Alice and is able to forge in polynomial
time a co-signature with probability εF , then in the Random Oracle model AAlice can break that DLP instance with
high probability in polynomial time.

Proof: The proof consists in constructing a simulator SBob that interacts with the adversary and forces
it to actually produce a classical Schnorr forgery. Here is how this simulator behaves at each step of the
protocol.

1. Key Establishment Phase:
SBob is given a target DLP instance {y, g, p, q}. As a simulator, SBob emulates not only Bob, but also
all oracles and the directory D (see Figure 4.4).

AAlice SBob

g, p, q, yg, p, q

activate

1

yB = y/yA

2

ss

SAlice ABob

g, p, qg, p, q, y

activate

1

yA = y/yB

2

ss

Figure 4.4: The simulator SBob (left) or SAlice (right) answers the attacker’s queries to the public directory
D.

SBob injects the target y into the game, namely by posting in the directory the “public-key” yB ←
y × y−1

A .
To inject a target DLP instance y ← gx into A, the simulator SBob reads yA from the public directory
and poses as an entity whose public-key is yS ← y × y−1

A . It follows that yA,S , the common
public-key of A and S will be precisely yA,S ← yS × yA which, by construction, is exactly y.
Then SBob activates AAlice, who queries the directory and gets yB . At this point in time, AAlice is
tricked into believing that she has successfully established a common co-signature public-key set
{g, p, q, y}with the “co-signer” SBob.

2. Query Phase:
AAlice will now start to present queries to SBob. In a “normal” attack, AAlice and Bob would
communicate with a random oracle O representing the hash function H . However, here, the
simulator SBob will play O’s role and answer AAlice’s hashing queries.

SBob must respond to three types of queries: hashing queries, co-signature queries and transcript queries.
SBob will maintain an oracle table T containing all the hashing queries performed throughout the
attack. At start T ← ∅. When AAlice submits a hashing query qi to SBob, SBob answers as shown in
Algorithm 3.
When AAlice submits a co-signature query to SBob, SBob proceeds as explained in Algorithm 4.
Finally, whenAAlice requests a conversation transcript, SBob replies by sending {m, ρ, rA, rB , sB , sA}
from a previously successful interaction.

3. Output Phase:
After performing queries, AAlice eventually outputs a co-signature m, r, s valid for yA,S where
r = rArB and s = sA + sB . By design, these parameters are those of a classical Schnorr signature
and therefore AAlice has produced a classical Schnorr forgery.



4.1 Legally Fair Contract Signing without Keystones 67

Algorithm 3: Hashing oracle simulation.
Input: A hashing query qi from A

1 if ∃ei, {qi, ei} ∈ T then
2 ρ← ei
3 else

4 ρ
$←− Z×q

5 end if
6 Append {qi, ρ} to T
7 end if
8 return ρ

Algorithm 4: Co-signing oracle simulation.
Input: A co-signature query m from AAlice

1 sB , e
$←− Z∗q

2 rB ← gsBye

3 Send H(0‖rB) to AAlice
4 Receive rA from AAlice
5 r ← rA × rB
6 u← 1‖m‖r
7 if ∃e′ 6= e, {u, e′} ∈ T then
8 abort
9 else

10 Append {u, e} to T
11 end if
12 end if
13 return sB

To understand SBob’s co-signature reply (Algorithm 4), assume thatAAlice is an honest Alice who plays by
the protocol’s rules. For such an Alice, {s, r} is a valid signature with respect to the common co-signature
public-key set {g, p, q, y}. There is a case in which SBob aborts the protocol before completion: this
happens when it turns out that rA × rB has been previously queried by AAlice. In that case, it is no longer
possible for SBob to reprogram the oracle, which is why SBob must abort. Since AAlice does not know the
random value of rB , such a bad event would only occur with a negligible probability exactly equal to
qh/q (where qh is the number of queries to the hashing oracle).

Therefore, AAlice is turned into a forger for the target Schnorr instance with probability 1− qh/q. Since
AAlice succeeds with probability εF , AAlice’s existence implies the existence of a Schnorr signature forger
of probability εS = (1 − qh/q)εF , which by the Forking Lemma shows that there exists a polynomial
adversary breaking the chosen DLP instance with high probability.

2

Being an attacker, at some point AAlice will output a forgery {m′, r′, s′}. From here on we use the Forking
Lemma and transform AAlice into a DLP solver as described by Pointcheval and Stern in [PS00, Theorem
14].

Adversary Attacks Alice. The case where A targets A is similar but somewhat simpler, and the proof
follows the same strategy.

Theorem 4.3 Let {y, g, p, q} be a DLP instance. If ABob plays the role of Bob and is able to forge a co-signature
with probability εF , then in the Random Oracle model ABob can break that DLP instance in polynomial time with
high probability.



68 Protocol Design 4.1

Proof: Here also the proof consists in constructing a simulator, SAlice, that interacts with the adversary
and forces it to actually produce a classical Schnorr forgery. The simulator’s behaviour at different stages
of the security game is as follows:

1. The Key Establishment Phase:
SAlice is given a target DLP instance {y, g, p, q}. Again, SAlice impersonates not only Alice, but also
O andD. SAlice injects the target y into the game as described in Section 4.1.2.1. Now SAlice activates
ABob, who queries D (actually controlled by SAlice) to get yB . ABob is thus tricked into believing that
it has successfully established a common co-signature public-key set {g, p, q, y}with the “co-signer”
SAlice.

2. The Query Phase:
ABob will now start to present queries to SAlice. Here as well, SAlice will play O’s role and will
answer ABob’s hashing queries.

Again, SAlice must respond to hashing queries and co-signature queries. Hashing queries are
answered as shown in Algorithm 3. When ABob submits a co-signature query to SAlice, SAlice
proceeds as explained in Algorithm 5.

Algorithm 5: Co-signing oracle simulation for SAlice.
Input: A co-signature query m from ABob

1 Receive ρ from ABob
2 Query T to retrieve rB such that H(0‖rB) = ρ

3 e, sA
$←− Zq

4 r ← rBg
sAye

5 u← 1‖m‖r
6 if ∃e′ 6= e, {u, e′} ∈ T then
7 abort
8 else
9 Append {u, e} to T

10 end if
11 end if
12 rA ← r × r−1

B

13 Send rA to ABob
14 Receive rB from ABob ; this rB is not used by SAlice
15 Receive sB from ABob
16 return sA

SAlice controls the oracle O, and as such knows what is the value of rB that ABob is committed to.
The simulator is designed to trick ABob into believing that this is a real interaction with Alice, but
Alice’s private key is not used.

3. Output:
Eventually, ABob produces a forgery that is a classical Schnorr forgery {m, r, s}.

Algorithm 5 may fail with probability 1/q. Using the Forking Lemma again, we transform ABob into an
efficient solver of the chosen DLP instance. 2

4.1.2.2 Concurrent Co-signatures

4.1.2.2.1 Proofs of Involvement. We now address a subtle weakness in the protocol described in the
previous section, which is not captured by the fairness property per se and that we refer to as the existence
of “proofs of involvement”. Such proofs are not valid co-signatures, and would not normally be accepted
by verifiers, but they nevertheless are valid evidence establishing that one party committed to a message.
In a legally fair context, it may happen that such evidence is enough for one party to win a trial against
the other — who lacks both the co-signature, and a proof of involvement.



4.1 Legally Fair Contract Signing without Keystones 69

Example 4.2 In the co-signature protocol of Figure 4.2, sB is not a valid Schnorr signature for Bob. Indeed,
we have gsByeB = rB 6= r. However, Alice can construct s′ = sB − kA, so that m, r, s′ forms a valid classical
signature of Bob alone on m.

Example 4.2 illustrates the possibility that an adversary, while unable to forge a co-signature, may
instead use the information to build a valid (mono-) signature. Note that Alice may opt for a weaker
proof of involvement, for instance by demonstrating her possession of a valid signature using any
zero-knowledge protocol.

A straightforward patch is to refrain from using the public keys yA, yB for both signature and co-signature
— so that attempts at constructing proofs of involvement become vain. For instance, every user could
have a key y(1)

U used for classical signature and for certifying a key y(2)
U used for co-signature 6. If an

adversary generates a classical signature from a co-signature transcript as in Example 4.2, she actually
reveals her harmful intentions.

However, while this exposes the forgery — so that honest verifiers would reject such a signature — the
perpetrator remains anonymous. There are scenarios in which this is not desirable, e.g. because it still
proves that B agreed (with some unknown and dishonest partner) on m.

Note that the existence of proof of involvement is not necessary and depends on the precise choice of
underlying signature scheme.

proof of involvement
m, r, s̄B

proof of involvement
m, r, kA(or ZKA(kA)), sB

∃sB , t ∈ L s.t.
ν(t, gs̄B−sB ) ?= true

∃t ∈ L s.t.
ν(t, gkA) ?= true

Alice is not involved with
m. Bob gets deniability.

No party involved with m.

Alice is Bob’s authorized signatory.
Now check Bob’s role:

r
?= gs̄ByeB

Alice is Bob’s authorized
signatory but Bob did not sign.

No party involved with m.

Alice cheated, involved Bob and
involved herself as well with m.

Both parties involved with m.

no no

s̄ B
←
s B

+
k A

no

Figure 4.5: The verification procedure: proof of involvement.

4.1.2.3 Concurrent Co-signatures

In the interest of fairness, the best we can ask is that if A tries to incriminate B on a message they both
agreed upon, she cannot do so anonymously.

To enforce fairness on the co-signature protocol, we ask that the equivalent of a keystone is transmitted
first; so that in case of dispute, the aggrieved party has a legal recourse. First we define the notion of an
authorized signatory credential:

6. The key y(2)
U may be derived from y

(1)
U in some way, so that the storage needs of D are the same as for classical Schnorr.



70 Protocol Design 4.1

Definition 4.6 (Authorized signatory credential) The data field

ΓAlice,Bob = {Alice,Bob, kA, σ(gkA‖Alice‖Bob)}

is called an authorized signatory credential given by Alice to Bob, where σ is some publicly known auxiliary
signature algorithm.

Any party who gets ΓAlice,Bob can check its validity, and releasing ΓAlice,Bob is by convention functionally
equivalent to Alice giving her private key xA to Bob. A valid signature by Bob on a message m exhibited
with a valid ΓAlice,Bob is legally defined as encompassing the meaning (V) of Alice’s signature on m:

{ΓAlice,Bob, signature by Bob on m}V signature by Alice on m

Second, the co-signature protocol of Figure 4.2 is modified by requesting that Alice provide t to Bob. Bob
stores this in a local memory L along with sB . Together, t and sB act as a keystone enabling Bob (or a
verifier, e.g. a court of law) to reconstruct ΓAlice,Bob if Alice exhibits a (fraudulent) signature binding Bob
alone with his co-signing public key.

Therefore, should Alice try to exhibit as in Example 4.2 a signature of Bob alone on a message they both
agreed upon (which is known as a fraud), the court would be able to identify Alice as the fraudster.

Alice Bob

yA,B ← yA × yB yA,B ← yA × yB
kA ∈R Z∗q kB ∈R Z∗q
rA ← gkA rB ← gkB

ρ← H(0‖rB)
ρ←−−−−−−−−−−

t← σ(rA‖Alice‖Bob) rA,t−−−−−−−−−−→
if t is incorrect then abort
store t in L

rB←−−−−−−−−−−
if H(0‖rB) 6= ρ then abort
r ← rA × rB r ← rA × rB
e← H(1‖m‖r) e← H(1‖m‖r)
sA ← kA − exA mod q sB ← kB − exB mod q

store sB in L
breakpoint 1

sB←−−−−−−−−−−
if sB is incorrect then abort

breakpoint 2

sA−−−−−−−−−−→
if sA is incorrect then abort

breakpoint 3

s← sA + sB mod q s← sA + sB mod q
if {m, r, s} is valid then

erase t, sB from L

Figure 4.6: The legally fair co-signature of message m.

The modified signature protocol is described in Figure 4.6. Alice has only one window of opportunity to
try and construct a fraudulent signature of Bob: by stopping the protocol at breakpoint 2 and using the
information sB 7.

Indeed, if the protocol is interrupted before breakpoint 1 , then no information involving m was released

7. If Bob transmits a wrong or incorrect sB , this will be immediately detected by Alice as rB 6= gsBye
B . Naturally, in such a

case, Bob never sent any information binding him to the contract anyway.



4.1 Legally Fair Contract Signing without Keystones 71

by any of the parties: The protocol’s trace can be simulated without Bob’s help as follows 8

sB , r
$←− Zq

e← H(1‖m‖r‖Alice‖Bob)
rB ← gsByeB

rA ← r × r−1
B

t← σ(rA‖Alice‖Bob)
ρ← H(0‖rB)

and Bob has only received from Alice the signature of a random integer.

If Alice and Bob successfully passed the normal completion breakpoint 3 , both parties have the co-
signature, and are provably committed to m.

8. No time-out mechanism has been taken into account.



72 Protocol Design 4.2

4.2 Multi-Party Authentication Protocols

A growing market focuses on lightweight devices, whose low cost and easy production allow for creative
and pervasive uses. The Internet of Things (IoT) consists in spatially distributed nodes that form a
network, able to control or monitor physical or environmental conditions (such as temperature, pressure,
image and sound), perform computations or store data. IoT nodes are typically low-cost devices with
limited computational resources and limited battery. They transmit the data they acquire through the
network to a gateway, also called the transceiver, which collects information and sends it to a processing
unit. Nodes are usually deployed in hostile environments, and are therefore susceptible to physical
attacks, harsh weather conditions and communication interferences.

Due to the open and distributed nature of the IoT, security is key to the entire network’s proper operation
[VPH+11]. However, the lightweight nature of sensor nodes heavily restricts the type of cryptographic
operations that they can perform, and the constrained power resources make any communication costly.

This section describes an authentication protocol that establishes network integrity, and leverages the
distributed nature of computing nodes to alleviate individual computational effort. This enables the base
station to identify which nodes need replacement or attention.

This is most useful in the context of wireless sensor networks and the IoT, but applies equally well to
mesh network authentication and similar situations.

Related Work: Zero Knowledge (ZK) protocols have been considered for authentication of wireless
sensor networks. For instance, Anshul and Roy [AR05] describe a modified version of the Guillou-
Quisquater identification scheme [GQ88], combined with the µTesla protocol [PST+02] for authentication
broadcast in constrained environments. We stress that the purpose of the scheme of [AR05], and similar
ones, is to authenticate the base station.

Aggregate signature schemes such as [BGLS03,ZQWZ10] may be used to achieve the goal pursued here –
however they are intrinsically non-interactive, and the most efficient aggregate constructions use elliptic
curve pairings, which require powerful devices.

Closer to our concerns, [UMS11] describes a ZK network authentication protocol, but it only authenticates
two nodes at a time, and the base station acts like a trusted third party. As such it takes a very large
number of interactions to authenticate the network as a whole.

What we propose instead is a collective perspective on authentication and not an isolated one.

Organisation: Section 4.2.1 recalls the Fiat-Shamir authentication scheme and present a distributed
algorithm for topology-aware networks. We describe our core idea, a distributed Fiat-Shamir protocol
for IoT authentication, in Section 4.2.2. We analyse the security of the proposed protocol in Section 4.2.3.
Section 4.2.4 provides several improvements and explores trade-offs between security, transmission and
storage.

4.2.1 Preliminaries

4.2.1.1 Fiat-Shamir Authentication

The Fiat-Shamir authentication protocol [FS87] enables a prover P to convince a verifier V that P
possesses a secret key without ever revealing the secret key [GMR85, FFS88].

The algorithm first runs a one-time setup, whereby a trusted authority publishes an RSA modulus
n = pq but keeps the factors p and q private. The prover P selects a secret s < n such that gcd(n, s) = 1,
computes v = s2 mod n and publishes v as its public key.

When a verifier V wishes to identify P , he uses the protocol of Figure 4.7. V may run this protocol several
times until V is convinced that P indeed knows the square root s of v modulo n.



4.2 Multi-Party Authentication Protocols 73

Prover Verifier
r ∈R [1, n− 1]
x← r2 mod n

x−−−−−→
Check x 6= 0
e1, . . . , ek ∈R {0, 1}

e1,...,ek←−−−−−

y ← r

k∏
i=1

seii mod n
y−−−−−→

Check y2 = x

k∏
i=1

veii mod n

Figure 4.7: Fiat-Shamir authentication protocol.

Figure 4.7 describes the original Fiat-Shamir authentication protocol [FS87], which is honest verifier
zero-knowledge 9, and whose security is proven assuming the hardness of computing arbitrary square
roots modulo a composite n, which is equivalent to factoring n.

As pointed out by [FS87], instead of sending x, P can hash it and send the first bits of H(x) to V , for
instance the first 128 bits. With that variant, the last step of the protocol is replaced by the computation
of H(y2∏k

i=1 v
−ai
i mod n), truncated to the first 128 bits, and compared to the value sent by P . Using

this “short commitment” version reduces somewhat the number of communicated bits. However, it
comes at the expense of a reduced security level. A refined analysis of this technique in given in [GS94].

4.2.1.2 Topology-Aware Distributed Spanning Trees

Due to the unreliable nature of sensors, their small size and wireless communication system, the overall
network topology is subject to change. Since sensors send data through the network, a sudden disruption
of the usual route may result in the whole network shutting down.

4.2.1.2.1 Topology-Aware Networks. A topology-aware network detects changes in the connectivity
of neighbours, so that each node has an accurate description of its position within the network. This
information is used to determine a good route for sending sensor data to the base station. This could
be implemented in many ways, for instance by sending discovery messages (to detect additions) and
detecting unacknowledged packets (for deletions). Note that the precise implementation strategy does
not impact the algorithm.

Given any graph G = (V,E) with a distinguished vertex B (the base station), the optimal route for
any vertex v is the shortest path from v to B on the minimum degree spanning tree S = (V,E′) of G.
Unfortunately, the problem of finding such a spanning tree is NP-hard [SL07], even though there exist
optimal approximation algorithms [SL07, LVP08]. Any spanning tree would work for the proposed
algorithm, however the performance of the algorithm gets better as the spanning tree degree gets smaller.

4.2.1.2.2 Mooij-Goga-Wesselink’s Algorithm. The network’s topology is described by a spanning
tree W constructed in a distributed fashion by the Mooij-Goga-Wesselink algorithm [MGW03]. We
assume that nodes can locally detect whether a neighbour has appeared or disappeared, i.e. graph edge
deletion and additions.

W is constructed by aggregating smaller subtrees together. Each node in W is attributed a “parent” node,
which already belongs to a subtree. The complete tree structure of W is characterized by the parenthood

9. This can be fixed by requiring V to commit to the ai before P has sent anything, but this modification will not be necessary
for our purpose.



74 Protocol Design 4.2

relationship, which the Mooij-Goga-Wesselink algorithm computes. Finally, by topological reordering,
the base station T can be put as the root of W .

Each node in W has three local variables {parent, root, dist} that are initially set to a null value ⊥. Nodes
construct distributively a spanning tree by exchanging “M -messages” containing a root information,
distance information and a type. The algorithm has two parts:
– Basic: maintains a spanning tree as long as no edge is removed (it is a variant of the union-find

algorithm [CSRL01]). When a new neighbour w is detected, a discovery M -message (root, dist) is sent
to it. If no topology change is detected for w, and an M -message is received from it, it is processed
by Algorithm 6. Note that a node only becomes active upon an event such as the arriving of an
M -message or a topology change.

– Removal: intervenes after the edge deletion so that the basic algorithm can be run again and give
correct results.

Algorithm 6: Mooij-Goga-Wesselink algorithm, basic part.
Input: An M -message (r, d) coming from a neighbour w

1 (parent, root, dist)← (⊥,⊥,⊥)
2 if (r, d+ 1) < (root, dist) then
3 parent← w
4 root← r
5 dist← d+ 1
6 Send the M -message (root, dist) to all neighbours except w
7 end if

Algorithm 6 has converged once all topology change events have been processed. At that point we have
a spanning tree [MGW03].

For our purposes, we may assume that the network was set up and that Algorithm 6 is running on it, so
that at all times the nodes of the network have access to their parent node. Note that this incurs very
little overhead as long as topology changes are rare.

4.2.2 Distributed Fiat-Shamir Authentication

4.2.2.1 The Approach

Given a k-node network N1, ...,Nk, we may consider the nodes Ni as users and the base station as a
trusted center T . In this context, each node will be given only an 10 si. To achieve collective authentication,
we propose the following Fiat-Shamir based algorithm:

– Step 0: Wait until the network topology has converged and a spanning tree W is constructed with Al-
gorithm 6 presented in Section 4.2.1.2. When that happens, T sends an authentication request message
(AR-message) to all the Ni directly connected to it. The AR-message may contain a commitment to e
(cf. Step 2) to guarantee the protocol’s zero-knowledge property even against dishonest verifiers.

– Step 1: Upon receiving an AR-message, each Ni generates a private ri and computes xi ← r2
i mod n.

Ni then sends an A-message to all its children, if any. When they respond, Ni multiplies all the xj sent
by its children together, and with its own xi, and sends the result up to its own parent. This recursive
construction enables the network to compute the product of all the xis and send the result xc to the
top of the tree in d steps (where d = deg W ). This is illustrated for a simple network including 4 nodes
and a base station in Figure 4.8.

– Step 2: T sends a random e as an authentication challenge (AC-message) to the Ni directly connected
to it.

– Step 3: Upon receiving an AC-message e, eachNi computes yi ← ris
ei
i . Ni then sends the AC-message

to all its children, if any. When they respond, Ni multiplies the yj values received from all its children
together, and with its own yi, and sends the result to its own parent. The network therefore computes
collectively the product of all the yi’s and transmits the result yc to T . This is illustrated in Figure 4.9.

10. This is for clarity. It is straightforward to give each node several private keys, and adapt the algorithm accordingly.



4.2 Multi-Party Authentication Protocols 75

– Step 4: Upon receiving yc, T checks that y2
c = xc

∏
veii , where v1, . . . , vk are the public keys correspond-

ing to s1, . . . , sk respectively.

T

xc = x1x2x3x4 mod n

N4 x4 = r2
4

N2

x2 = r2
2

N3

x3 = r2
3

N1

x1 = r2
1

Figure 4.8: The construction of xc.

T

yc = y1y2y3y4 mod n

N4 y4 = r4s
e4
4

N2

y2 = r2s
e2
2

N3

y3 = r3s
e3
3

N1

y1 = r1s
e1
1

Figure 4.9: The construction of yc.

Figure 4.10: The proposed algorithm running on a network. Each parent node aggregates the values
computed by its children and adds its own information before transmitting the result upwards to the
base station.

Note that the protocol may be interrupted at any step. In the version of the algorithm that we have just
described, this results in a failed authentication.

4.2.2.2 Back-up Authentication

Network authentication may fail for many reasons described and analysed in detail in Section 4.2.3.3.3.
As a consequence of the algorithm’s distributed nature that we have just described, a single defective
node suffices for authentication to fail.

This is the intended behaviour; however there are contexts in which such a brutal answer is not enough,
and more information is needed. For instance, one could wish to know which node is responsible for the
authentication failure.

A simple back-up strategy consists in performing usual Fiat-Shamir authentication with all the nodes
that still respond, to try and identify where the problem lies. Note that, as long as the network is healthy,
using our distributed algorithm instead is more efficient and consumes less bandwidth and less energy.

Since all nodes already embark the hardware and software required for Fiat-Shamir computations, and
can use the same keys, there is no real additional burden in implementing this solution.

4.2.3 Security Proofs

In this section we wish to discuss the security properties relevant to our construction. The first and
foremost fact is that algorithm given in Figure 4.9 is correct: a legitimate network will always succeed in
proving its authenticity, provided that packets are correctly transmitted to the base station T (possibly
hopping from node to node) and that nodes perform correct computations.

The interesting part, therefore, is to understand what happens when such hypotheses do not hold.

4.2.3.1 Soundness

Lemma 4.4 (Soundness) If the authentication protocol of Section 4.2.2.1 succeeds then with overwhelming
probability the network nodes are genuine.

Proof: Assume that an adversaryA simulates the whole network, but does not know the si, and cannot
compute in polynomial time the square roots of the public keys vi. Then, as for the original Fiat-Shamir
protocol [FS87], the base station will accept A’s identification with probability bounded by 1/2k where k
is the number of nodes.



76 Protocol Design 4.2

2

4.2.3.2 Zero-knowledge

Lemma 4.5 (Zero-knowledge) The distributed authentication protocol of Section 4.2.2.1 achieves statistical
zero-knowledge.

Proof: Let P be a prover and A be a (possibly cheating) verifier, who can use any adaptive strategy
and bias the choice of the challenges to try and obtain information about the secret keys.

Consider the following simulator S :

Step 1. Choose e ∈R {0, 1}k and y ∈R [0, n− 1] using any random tape ω′

Step 2. Compute x← y2∏ veii and output (x, e, y).

The simulator S runs in polynomial time and outputs triples that are indistinguishable from the output
of a prover that knows the corresponding private key.

If we assume the protocol is run N times, and that A has learnt information which we denote η, then A
chooses adaptively a challenge using all information available to it e(x, η, ω) (where ω is a random tape).
The proof still holds if we modify S in the following way:

Step 1. Choose e ∈R {0, 1}k and y ∈R [0, n− 1] using any random tape ω′

Step 2. Compute x← y2∏ veii

Step 3. If e(x, η, ω) = e then go to Step 1 ; else output (x, e, y).

Note that the protocol is also “locally” ZK, in the sense that an adversary simulating ` out of k nodes of
the network still has to face the original Fiat-Shamir protocol.

2

4.2.3.3 Security Analysis

4.2.3.3.1 Choice of Parameters. Let λ be a security parameter. To ensure this security level the
following constraints should be enforced on parameters:
– The identification protocol should be run t ≥ dλ/ke times (according to Lemma 4.4), which is reason-

ably close to one as soon as the network is large enough;
– The modulus n should take more than 2λt operations to factor;
– Private and public keys are of size comparable to n.

4.2.3.3.2 Complexity. The number of operations required to authenticate the network depends on the
exact topology at hand, but can safely be bounded above:
– Number of modular squarings: 2kt
– Number of modular multiplications ≤ 3kt
In average, eachNi performs only a constant (a small) number of operations. Finally, only O(d) messages
are sent, where d is the degree of the minimum spanning tree of the network. Pathological cases aside,
d = O(log k), so that only a logarithmic number of messages are sent during authentication.

All in all, for λ = 256, k = 1024 nodes and t = 1, we have n ≥ 21024, and up to 5 modular operations per
node.



4.2 Multi-Party Authentication Protocols 77

4.2.3.3.3 Root Causes of Authentication Failure. Authentication may fail for several reasons. This
may be caused by network disruption, so that no response is received from the network – at which point
not much can be done.

However, more interestingly, T may have received an invalid value of yc. The possible causes are easy to
spot:

1. A topology change occurred during the protocol:
– If all the nodes are still active and responding, the topology will eventually converge and the

algorithm will get back to Step 0.
– If however, the topology change is due to nodes being added or removed, the network’s integrity

has been altered.

2. A message was not transmitted: this is equivalent to a change in topology.

3. A node sent a wrong result. This may stem from low battery failure or when errors appear
within the algorithm the node has to perform (fault injection, malfunctioning, etc). In that case
authentication is expected to fail.

4.2.3.3.4 Effect of Network Noise. Individual nodes may occasionally receive incorrect (ill-formed,
or well-formed but containing wrong information) messages, be it during topology reconstruction
(M -messages) or distributed authentication (A-messages). Upon receiving incorrect A or M messages,
nodes may dismiss them or try and acknowledge them, which may result in a temporary failure to
authenticate. An important parameter which has to be taken into account in such an authentication
context is the number of children of a node (fanout). When a node with many children starts failing,
all its children are disconnected from the network and cannot be contacted or authenticated anymore.
While a malfunction at leaf level might be benign, the failure of a fertile node is catastrophic.

4.2.3.3.5 Man-in-the-Middle. An adversary could install itself between nodes, or between nodes
and the base station, and try to intercept or modify communications. Lemma 4.5 proves that a passive
adversary cannot learn anything valuable, and Lemma 4.4 shows that an active adversary cannot fool
authentication.

It is still possible that the adversary relays information, but any attempt to intercept or send messages
over the network would be detected.

4.2.4 Variants and Implementation Trade-offs

The protocol may be adapted to better fit operational constraints: in the context of IoT for instance
communication is a very costly operations. We describe variants that aim at reducing the amount of
information sent by individual nodes, while maintaining security.

4.2.4.1 Shorter Challenges Variant

In the protocol of Section 4.2.2, the long (say, 128-bit) challenge e is sent throughout the network to all
individual nodes. One way to reduce the length of e without compromising security is the following:
– A short 11 (say, 80-bit) value e is sent to the nodes;
– Each node i computes ei ← H(e‖i), and uses ei as a challenge;
– The base station also computes ei the same way, and uses {e1, ..., ek} to check authentication.
This variant does not impact security, assuming an ideal hash function H , and it can be used in conjunc-
tion with the other improvements described below.

11. but sufficiently long in terms of entropy



78 Protocol Design 4.2

4.2.4.2 Multiple Secret Variant

Instead of keeping one secret value si, each node could have multiple secret values si,1, . . . , si,`. Note
that these additional secrets need not be stored: they can be derived from a secret seed.

The multiple secret variant is described here for a single node, for the sake of clarity. Upon receiving a
challenge ei (assuming for instance that ei was generated by the above procedure), each node computes
a response

yi ← ri
∏̀
j=1

sei,j mod n

This can be checked by the verifier by checking whether

y2
i

?= xi
∏̀
j=1

v
ei,j
i,j mod n.

To achieve swarm authentication, it suffices to perform aggregation as described in the protocol of
Section 4.2.2 at intermediate nodes.

Using this approach, one can adjust the memory-communication trade-off, as the security level is λ = t`
(single-node compromission). Therefore, if ` = 80 for instance, it suffices to authenticate once to get the
same security as t = 80 authentications with ` = 1 (which is the protocol of Section 4.2.2). This drastically
cuts bandwidth usage, a scarce resource for IoT devices.

Furthermore, computational effort can be reduced by using batch exponentiation techniques [MN96,
BGR98] to compute yi.

4.2.4.3 Precomputed Alphabet Variant

The security level we aim at is 80 bits. A way to further reduce computational cost is the following: each
node chooses an alphabet of m words w0, . . . , wm−1 (a word is a 32-bit value), and computes once and
for all the table of all pairwise products pi,j = mimj . Note that each pi,j entry is 64 bits long.

The values si are generated by randomly sampling from the alphabet of ws. Put differently, si is built by
concatenating u words (bit patterns) taken from the alphabet only.

We thus see that each si, which is an mu-bit integer, can take mu possible values. For instance if
m = u = 32 then si is a 1024-bit number chosen amongst 3232 = 2160 possible values. Thanks to
the lookup table, word by word multiplications need not be performed, which provides a substantial
speed-up over the naive approach.

The size of the lookup table is moderate, for the example given, all we need to store is 32×31/2+32 = 528
values. This can be further reduced by noting that the first lines in the table can be removed: 32 values
are zeros, 31 values are the results of multiplications by 1, 30 values are left shifts by 1 of the previous
line, 29 values are the sum of the previous 2 and 28 values are left shifts by 2. Hence all in all the table can
be compressed into 528− 32− 31− 29− 28 = 408 entries. Because each entry is a word, this boils-down
to 1632 bytes only.

4.2.4.4 Precomputed Combination Variant

Computational cost can be also cut down if we precompute and store some products, only to assemble
them online during Fiat-Shamir authentication: in this variant the values of si,1,2 ← si,1si,2, si,2,3 ←
si,2si,3, ... , etc. are stored in a lookup table.

The use of combined values si,a,b in the evaluation of y results in three possible scenarios for each:

1. sasb appears in y – the probability of this occurring is 1/4 – in which case one additional multipli-
cation must be performed;

2. sasb does not appear in y – the probability of this occurring is 1/4 – in which case no action is
performed;



4.2 Multi-Party Authentication Protocols 79

3. sa or sb appears, but not both – this happens with probability 1/2 – in which case one single
multiplication is required.

Consequently the expected number of multiplications is reduced by 25%, to wit 3
4 × 2m−1, where m is

the size of e.

The method can be extended to work with a window of size κ ≥ 2, for instance with κ = 3 we would
precompute:

si,3j,3j+1 ← si,3j × si,3j+1

si,3j+1,3j+2 ← si,3j+1 × si,3j+2

si,3j,3j+2 ← si,3j × si,3j+2

si,3j,3j+1,3j+2 ← si,3j × si,3j+1 × si,3j+2

Following the same analysis above, the expected number of multiplications during the challenge-
response phase is 7

8 ×
2m
3 . The price to pay is that larger κ values claim more precomputing and more

memory.

More precisely, we have the following trade-offs, writing µ = 2m mod κ:

Multiplications (expected) = 2m
(

2κ − 1
2κ

(⌊
2m

κ
− 1
⌋)
− 2µ − 1

2µ

)
Pre-multiplications = `− 1 +

(
(2κ − κ− 1)

⌊
2m

κ

⌋)
+ (2µ − µ− 1)

Stored Values = (2κ − 1)
⌊

2m

κ

⌋
+ (2µ − 1)

where ` is the number of components of si.



80 Protocol Design 4.3

4.3 An Authenticated Encryption Scheme: Offset Merkle-Damgård

As already explained in Section 3.2, the generic composition paradigm is neither most efficient (for
instance, it requires processing the input stream at least twice) nor most robust to implementation
errors [Vau02, CHVV03]. To address these concerns, the notion of AE which simultaneously achieves
confidentiality and integrity was put forward [KY01,BN00,BR00] and further developed [RBBK01,Rog02,
Rog04a, RS06, FFL12] as a desirable primitive to be exposed by libraries and APIs to the end developer.
Providing direct access to AE rather than requiring developers to make calls to several lower-level
functions is seen as a step towards improving quality of security-critical code.

The scheme which will be presented next is called Offset Merkle-Damgård (OMD) and represents a
keyed compression function mode of operation for nonce-based AEAD. The syntax and security notions
for nonce-based AEAD schemes were formalized by Rogaway in [Rog02,Rog04a]. As a concrete example,
we instantiate the OMD mode with two specific compression functions to be keyed and used, namely,
the compression functions of the standard SHA-256 and SHA-512 hash functions. OMD parametrized
with these two compression functions is called OMD-sha256 and OMD-sha512, respectively. The former
is intended for 32-bit implementations and is the primary recommended algorithm, while the latter
could be used specifically for 64-bit machines and is the secondary algorithm.

We believe that an AE scheme whose security is proved by a modular and easy to verify security
reduction, only relying on some widely-verified standard assumption(s) on its underlying primitive(s),
can get more confidence on its security compared to a scheme that demands strong and idealistic
properties from its underlying primitive(s) or is not supported by a formal security proof. Provable
security helps cryptanalysis efforts to be focused on analysing the simpler underlying primitives rather
than the whole scheme.

Setting provable security in the standard model as one of our main design aims, OMD is constructed as a
scheme with its security goals achieved provably, based on the sole assumption that its underlying keyed
compression function is a PRF, an assumption which is among the most well-known and widely-used
assumption. For example, the security of the widely-employed standard HMAC algorithm is also based
on this assumption [Bel06, GPR14]. From a theoretical point of view, this is an advantage for OMD
compared to the recently proposed permutation-based AE schemes in the literature whose security
proofs rely on the ideal permutation assumption.

Unlike the mainstream AE schemes which are blockcipher-based or permutation-based schemes, OMD is
designed to be a compression function based scheme. The cryptographic community has spent more than
two decades on public research and standardization activities on hash functions resulting to development
of a rich source of secure and efficient compression functions. Intel’s announcement in July 2013 [Int13]
about Intel SHA Extensions, supporting performance acceleration of the SHA family of functions (more
precisely, SHA-1 and SHA-256), further encourages the decision to design a compression function based
scheme. The SHA family of algorithms is heavily used in many of the most common cryptographic
applications. For example, every secure web session initiation includes SHA-1, and the latest protocols
involve SHA-256 as well.

The primary recommended scheme, OMD-sha256, uses the compression function of SHA-256 [FIP12].
Comparing its features with the widely known and adopted ones of the AES-GCM mode the scheme
offers the following advantages:

High Quantitative Security Level. The proven security of OMD-sha256 falls off, as usual for birthday-

type security bounds, in
σ2

2256 where σ is the total number of calls to the compression function; while, for

the same key size and tag size, the proven security of AES-GCM [IOM12] falls off in about
σ′2

2128 where σ′

is the total number of calls to AES. That is, with the same key length and tag length, OMD-sha256 offers
higher security level than that of AES-GCM.

Flexible Key Size. AES-GCM only supports three different key lengths, namely 128, 192 and 256 bits.
OMD-sha256 can support any key length between 80 bits and 256 bits.



4.3 An Authenticated Encryption Scheme: Offset Merkle-Damgård 81

Simple Operations. OMD-sha256 only needs the compression function of SHA-256 plus the simple
operations of bitwise XOR and bitwise AND of two binary strings and (left and right) shifting a binary
string. In comparison, AES-GCM in addition to calling AES requires multiplication of two arbitrary
elements in GF(2128). The field multiplication operation demand extra resources and is a complicated
operation in contrast with the basic operations used in OMD-sha256. This is important, in particular,
if one does not have access to Intel CPUs supporting the PCLMULQDQ instruction for implementing
AES-GCM, e.g. on low-end devices.

Resistance Against Software-Level Timing Attacks. Most AES software implementations risk leaking
their keys through cache timing [Ber05] unless they are implemented on machines with Intel CPUs
supporting the constant-time AES-NI and PCLMULQDQ instructions. In comparison, we note that the
only operations in OMD-sha256 are: bitwise XOR, AND and OR of two binary strings (32-bit words in
the compression function of SHA-256 and 256-bit words in the OMD iteration), fixed-distance (left and
right) shift of a binary string (32-bit words in the compression function of SHA-256 and 256-bit words
in the OMD iteration), and 32-bit addition (of words in the compression function of SHA-256). These
operations have the virtue of taking constant time on typical CPUs in which case the implementations
can avoid timing attacks 12.

Organisation. The notations, definitions and concepts considered as preliminaries are presented in
Section 4.3.1. Section 4.3.4 provides the specification of OMD as a mode of operation, and then the
description of our two recommended instantiations: our primary recommended cipher, OMD-sha256,
uses OMD with the compression function of the standard SHA-256 hash function; our secondary
recommendation, OMD-sha512, uses OMD with the compression function of the standard SHA-512 hash
function. We also provide the description of the compression functions of SHA-256 and SHA-512 for
completeness. The security goals for OMD as an AEAD scheme are formally defined in Section 4.3.3. In
Section 4.3.7, we provide the security analysis of OMD. In Section 4.3.10 we detail several interesting
features of OMD. Section 4.3.2 provides an explanation of the main rationales behind the OMD design.

4.3.1 Preliminaries

Specific Notations. Let X[i · · · j] = Xi · · ·Xj denote a substring of X , for 0 ≤ j ≤ i ≤ (m − 1). Let
1n0m denote concatenation of n ones by m zeros. For a non-negative integer i let 〈i〉m denote binary
representation of i by an m-bit string.

For a binary string X = Xm−1 · · ·X0, let X � n denote shifting X to the left by n bits (n leftmost bits are
dropped and n zero bits are entered from the right); that is, X � n = Xm−n−1 · · ·X00n. Analogously, we
let X � n denote shifting X to the right by n bits. ¬X means bitwise complement of X . For two binary
strings X and Y , let X ∧ Y and X ∨ Y denote, respectively, bitwise AND and bitwise OR of the strings.

For two binary strings X = Xm−1 · · ·X0 and Y = Yn−1 · · ·Y0, the notation X ⊕ Y denotes bitwise XOR
of Xm−1 · · ·Xm−1−` and Yn−1 · · ·Yn−1−` where ` = min {m− 1, n− 1}. That is, X ⊕ Y is a binary string
whose length is equal to the length of the shorter operand and is obtained by XORing the shorter operand
with an equal length leftmost substring of the longer operand consisting of its leftmost bits. Clearly, if X
and Y have the same length then X ⊕ Y simply means their usual bitwise XOR.

The special symbol ⊥means that the value of a variable is undefined; we also overload this symbol and
use it to signify an error. Let |Z| denote the number of elements of Z if Z is a set, and the length of Z
in bits if Z is a binary string. The empty string is denoted by ε and we let |ε| = 0. For X ∈ {0, 1}∗ let

X[1]||X[2] · · · ||X[m] b← X denote partitioning X into blocks X[i] such that |X[i]| = b for 1 ≤ i ≤ m− 1
and |X[m]| ≤ b; let m = |X|b denote length of X in b-bit blocks.

Syntax of Keyed and Keyless Compression Functions. We denote a keyed compression function by
F : K × ({0, 1}n × {0, 1}m) → {0, 1}n, where m and n are two positive integers, and the keyspace K
is a non-empty set of strings. We write FK(H,M) = F (K;H,M) for every K ∈ K, H ∈ {0, 1}n and

12. Note that this combination of operations makes it difficult to achieve protection against power and em attacks (e.g. with
masking).



82 Protocol Design 4.3

M ∈ {0, 1}m. We can alternatively think of FK as a single argument function whose domain is {0, 1}n+m

and write FK(H||M) = FK(H,M). If |K| = 1 we assume that K = {ε}, i.e. it only consists of the empty
string, and in this case we call F a keyless compression function. TimeF denotes the time complexity of
computing FK(X) for any K ∈ K and X ∈ {0, 1}n+m, plus the time complexity for sampling from K.

Given a keyless compression function F ′ : {0, 1}n×{0, 1}b → {0, 1}n (e.g. sha-256: {0, 1}256×{0, 1}512 →
{0, 1}256) we convert it to a keyed compression function F by borrowing k bits of its b-bit input block;
i.e. we define FK(H,M) = F ′(H,K||M).

Let (GF(2n),⊕, .) denote the Galois Field with 2n points. Any α ∈ GF(2n) can be represented in any of
the following equivalent ways:

1. As an integer between 0 and 2n;

2. As a binary string αn−1 · · ·α0 ∈ {0, 1}n;

3. As a formal polynomial α(X) = αn−1X
n−1 + · · ·+ α1X + α0 with binary coefficients.

For example, in GF(2256): the string 025410, the number 2 and the polynomial X are different representa-
tions of the same field element; the string 025411, the number 3 and the polynomial X + 1 represent the
same field element, and so forth.

The addition "⊕" and multiplication "." of two elements in GF(2n) are defined as follows. The addition of
two elements α, β ∈ GF(2n) simply means the element obtained by bitwise XORing their representations
as binary strings. For example, 2 ⊕ 1 = 0n−210 ⊕ 0n−201 = 0n−211 = 3, 2 ⊕ 3 = 1, 1 ⊕ 1 = 0, and
so forth. (Note that the addition operation in GF(2n) is different from the addition of integers module
2n.) To multiply two elements, first choose and fix an irreducible polynomial Pn(X) of degree n over
GF(2); for example, choose the lexicographically first polynomial among the irreducible polynomials of
degree n over GF(2) with a minimum number of non-zero coefficients. For example, for n = 256 we use
P256(X) = X256 +X10 +X5 +X2 + 1, for n = 512 we use P512(X) = X512 +X8 +X5 +X2 + 1.

To multiply two elements α and β in GF(2n) denoted by α · β consider them as polynomials α(X) =
αn−1X

n−1 + · · · + α1X + α0 and β(X) = βn−1X
n−1 + · · · + β1X + β0, form their product in GF(2) to

get γ(X) and take the remainder of dividing γ(X) by the irreducible polynomial Pn(X).

It is easy to multiply an arbitrary field element α by the element 2 (i.e. X). We describe this for
GF(2256) and GF(2512). Let α(X) = αn−1X

n−1 + · · ·+ α1X + α0 then multiplying by X we get αnXn +
αn−1X

n−1 · · · + α1X + α0X ; so if MSB(α) = 0 then 2.α = X.α = α � 1. If MSB(α) = 1 then we
need to reduce the result by module Pn(X), i.e. we have to add Xn to α � 1. For n = 256 using
P256(X) = X256 +X10 +X5 +X2 +1, we haveX256 = X10 +X5 +X2 +1 = 024510000100101, so adding
X256 means XORing with 024510000100101. For n = 512 using P512(X) = X512 +X8 +X5 +X2 + 1, we
have X512 = X8 +X5 +X2 + 1 = 0503100100101, so adding X512 means XORing with 0503100100101.
In summary, for GF(2256)

2.α =
{
α� 1 if MSB(α) = 0
(α� 1)⊕ 024510000100101 if MSB(α) = 1

and for GF(2512)

2.α =
{
α� 1 if MSB(α) = 0
(α� 1)⊕ 0503100100101 if MSB(α) = 1

4.3.2 Design Rationale

Provable security. We aimed to have a scheme with a sound security guarantee in the style of reduction-
based provable security relying only on a single well-established standard assumption on the underlying
primitive, namely the PRF assumption on the keyed compression function. The security goals of privacy
and authenticity for OMD are achieved provably; that is, any attack against these security goals will
imply an attack against the classical PRF property of the underlying compression function. We note that
any good keyed compression function (either a dedicated-key one or keyed via some part of its input)
must provide the classical PRF property when its key is secret as otherwise it will be considered useless
for almost any secret key application, e.g. for being used as the compression function of a hash function
in the standard HMAC algorithm. That is, the base PRF assumption on the compression function upon



4.3 An Authenticated Encryption Scheme: Offset Merkle-Damgård 83

which the security of OMD relies is highly assured for compression functions of the practical, standard
hash functions, thanks to the vast amount of cryptanalytic work on these functions.

Simple structure. Simplicity is important in any cryptographic algorithm: the easier an algorithm is to
understand, the easier it is to analyse and to get confidence on its security, and also less prone it is to
implementation errors. Therefore, simplicity was one of our core design goals. The high level structure
of OMD is quite simple and resembles the well-known structures for hash functions and MACs, namely,
the part that is processing the message resembles the Merkle-Damgård iteration where at each iteration
random bits are derived from the chaining values to be used for encryption and a key-dependent offset
value is XORed to the chaining values. The part for processing the associated data is inspired by the
XMACC scheme (counter-based XOR MAC scheme) [BGR95] and is a simple adaptation of the similar
hashing process in the OCB3 algorithm [KR11]. We note that when the message is empty then OMD acts
almost the same as XMACC on the associated data.

Attacks. Any attack against security of OMD means an attack against the specific compression function
that is used for instantiating OMD. For example, attacking OMD-sha256 will imply attacking the
compression function of SHA-256 in the PRF sense.

4.3.3 Security Definitions and Goals

OMD is a nonce-based authenticated encryption scheme with associated data (AEAD), thus it aims at
achieving the security notions for AEAD schemes as presented in Section 3.2.1.

Note. OMD requires the nonce-respecting condition: it does not provide security if the nonce is
repeated. We have not analyzed at which extent the security is lost so far. Our design rationale
stemmed from the security notions formalized in [Rog02, Rog04b] and the liaison with the OCB mode of
operation [RBBK01].

4.3.3.1 Quantitative Security Level of OMD-sha256/512

Let n = 256 (the hash size in the case of sha-256) or n = 512 (the hash size in the case of sha-
512). Based on the concrete security bounds given in Section 4.3.7, we can compute the quantita-
tive security (privacy and authenticity) levels of OMD-sha256/512 for any set of fixed values for
the adversarial resource parameters. For this purpose, we make the assumption that the function
FK(H,M) = sha-256/512(H,K||0256/512−k||M) is a PRF providing a k-bit security; as (to the best of
our knowledge) there is no known attack with complexity less than 2k against it. We note that having
only a single (input, output) pair for FK one can mount an off-line exhaustive search attack with time
complexity 2k.

For the privacy property of OMD-sha256/512 (i.e. “confidentiality for the plaintext”) the security bound

falls off in
3σ2

e

2256/512 . That is, if the adversary has on-line data complexity about σe = 2127/255, where σe
denotes the total number of blocks in all inputs for encryption and decryption as defined in Section 4.3.3.
We note that, giving a single measure for the bit security level of OMD-sha256 is a bit tricky as the terms
determining the security bound and the resources are different in nature (e.g. we have both off-line
complexity and on-line complexity); nevertheless, one can roughly consider min {k, 127/255} as the bit
security.

For the authenticity property of OMD-sha256/512 (i.e. “integrity for the public message number, the
associated data and the plaintext”) the security bound falls off in

3σ2

2256/512 + qv`max

2256/512 + qv
2τ .

That is, if the adversary has on-line data complexity about σe = 2127/255, or qv`max = 2256/512, or qv = 2τ
(we refer to Section 4.3.3 for definitions of the resource parameters). As a single measure for the bit
security of OMD-sha256/512 for the authenticity goal, one can roughly consider min {k, 127/255, τ}.



84 Protocol Design 4.3

Note. We note that a single measure for the "bit security level" should be interpreted carefully regarding
the different on-line/off-line nature of the resources used for complexity measures. For example, just
based on our bit security levels for OMD-sha256/512 one may think that a key length (k) larger than
127/255 bits or larger than the tag length (τ ) is not useful, but this is not true because, for example, while
the role of τ is to prevent on-line attacks, a large k can help prevent (mainly) off-line key recovery attacks
(that may only use one on-line query).

4.3.4 Specification of OMD

4.3.4.1 The OMD Mode of Operation

OMD is a compression function mode of operation for nonce-based AEAD. To use OMD one must specify
a keyed compression function F : K × ({0, 1}n × {0, 1}m)→ {0, 1}n and a tag length τ ≤ n, where the
key space K = {0, 1}k and m ≤ n the case m = n is the optimal choice from efficiency viewpoint. At
first glance, requiring m ≤ n may look a bit odd as usually a compression function has a larger input
block length than its output (hash) length, so we first explain this restriction based on the following two
observations:
– The following description of OMD will clarify that at each call to the compression function only n

random bits (namely, the output bits of the compression function) are available for encrypting an
m-bit message block, hence we must have m ≤ n. The optimal case is when m = n, so no random bits
are wasted. We notice that this limitation applies to any compression function based AE, therefore a
compression function based AE scheme (like OMD) will be usually less efficient than a blockcipher
based AE (like OCB) “unless” one uses a dedicated compression function which is more efficient than
the blockcipher.

– In practice, the compression function of standard hash functions (e.g. SHA-1 or the SHA-2 family)
are keyless, i.e. do not have a dedicated key input, therefore one will need to use k bits of their
b-bit message block to get a keyed function. So, there will be no efficiency waste in each call to the
compression function if m = n and b = n+ k. For example, when the key length is 256 bits and the
compression function of SHA-256 is used.

We let OMD-F denote the OCB mode of operation using a keyed compression function FK : {0, 1}n ×
{0, 1}m → {0, 1}n with m ≤ n and an unspecified tag length. We let OMD[F , τ ] denote the OMD
mode of operation using keyed compression function FK and tag length τ . The encryption algorithm
Enc-OMD[F , τ ] inputs four arguments (secret key K ∈ {0, 1}, nonce N ∈ {0, 1}|N |, associated data
A ∈ {0, 1}∗, message M ∈ {0, 1}∗) and outputs C = C||Tag ∈ {0, 1}|M |+τ . The decryption algorithm
Dec-OMD[F , τ ] inputs four arguments (secret key K ∈ {0, 1}, nonce N ∈ {0, 1}|N |, associated data
A ∈ {0, 1}∗, ciphertext C||Tag ∈ {0, 1}∗) and either outputs the whole M ∈ {0, 1}|C|−τ at once or an
error message (⊥). Note that we have either C = C1 · · ·C` or C = C1 · · ·C`−1C∗ depending on whether
the message length in bits is a multiple of the block length m or not, respectively.

Figure 4.11 depicts the construction of Enc-OMD[F , τ ]. The construction of Dec-OMD[F , τ ] is straight-
forward and almost the same as Enc-OMD[F , τ ] except a tag comparison (verification) at the end of
decryption. In Algorithms 9 and 10 we describe the encryption and decryption algorithms of OMD-F .
We remind the reader that for two binary strings X = Xm−1 · · ·X0 and Y = Yn−1 · · ·Y0, the notation
X ⊕ Y denotes bitwise XOR of Xm−1 · · ·Xm−1−` and Yn−1 · · ·Yn−1−` where ` = min {m− 1, n− 1}.

Computing the Masking Values. As seen from the description of OMD in Figure 4.11, before each call
to the underlying keyed compression function we XOR a masking value denoted as ∆N,i,j (the top and
middle parts of Figure 4.11) and ∆̄i,j (the bottom part of Figure 4.11). In the following, we describe how
these masks are generated. We note that there are both security and efficient related criteria to be satisfied
by the method to compute the masking values. We only explain the efficiency criterion for computing
the masks here; the security related properties will be made clear in Section 4.3.7. By an efficient masking
scheme, we mean a scheme in which the mask value needed for processing a block can be efficiently
computed from the mask value used for processing the previous block.

There are different ways to compute the masking values to satisfy both the security and efficiency criteria.
For example, we refer to [Rog04a, CS08, KR11]. We use the method proposed in [KR11].



4.3 An Authenticated Encryption Scheme: Offset Merkle-Damgård 85

In the following, all multiplications are performed in GF(2n), ntz(i) denotes the number of trailing
zeros (i.e. the number of rightmost bits that are zero) in the binary representation of a positive integer i.

Initialization. 
∆N,0,0 ← FK(N ||10n−1−|N |, 0m)
∆̄0,0 ← 0n
L∗ ← FK(0n, 0m)
L[0] ← 4L∗
L[i] ← 2L[i− 1] for i ≥ 1

We note that the values L[i] can be preprocessed and stored (for a fast implementation) in a table for
0 ≤ i ≤ dlog2(`max)e, where `max is the the bound on the maximum number of m-bit blocks in any
message that can be encrypted or decrypted. Alternatively (if there is a memory restriction), they can be
computed on-the-fly for i ≥ 1.

Masking Sequence for Processing the Message. For i ≥ 1: ∆N,i,0 ← ∆N,i−1,0 ⊕ L[ntz(i)]
∆N,i,1 ← ∆N,i,0 ⊕ 2L∗
∆N,i,2 ← ∆N,i,0 ⊕ 3L∗

Masking Sequence for Processing the Associated Data.{
∆̄i,0 ← ∆̄i−1,0 ⊕ L[ntz(i)] for i ≥ 1
∆̄i,1 ← ∆̄i,0 ⊕ L∗ for i ≥ 0

4.3.5 OMD-SHA256: Primary Recommendation for Instantiating OMD

Our primary recommendation to instantiate OMD is called OMD-sha256 and uses the underlying
compression function of SHA-256 [FIP12]. The compression function of SHA-256 is a map sha-256 :
{0, 1}256 × {0, 1}512 → {0, 1}256. On input a 256-bit chaining block X and a 512-bit message block
Y , it outputs a 256-bit digest Z, i.e. let Z = sha-256(X,Y ). The description of sha-256 is provided in
Section A.1.

To use OMD with sha-256, we use the first 256-bit argument X for chaining values as usual. In our
notation (see Figure 4.11) this means that n = 256. We use the 512-bit argument Y (the message block
in sha-256) to input both a 256-bit message block and the key K which can be of any length k ≤ 256
bits. If k < 256 then let the key be K||0256−k. That is, we define the keyed compression function
FK : {0, 1}256 × {0, 1}256 → {0, 1}256 needed in OMD as FK(H,M) = sha-256(H,K||0256−k||M) .

The parameters of OMD-sha256 are as follows:

– The message block length in bits is m = 256; i.e. |Mi| = 256. If needed, we pad the final block of the
message with 10∗ (i.e., a single 1 followed by the minimal number of 0’s needed) to make its length
exactly 256 bits.

– The key length in bits can be 80 ≤ k ≤ 256; but k < 128 is not recommended. If needed, we pad the key
K with 0256−k to make its length exactly 256 bits.

– The nonce (public message number) length in bits can be 96 ≤ |N | ≤ 255. We always pad the nonce
with 10255−|N | to make its length exactly 256 bits.

– The secret message number 13 length in bits is 0; that is, our scheme does not support secret message
numbers.

– The associated data block length in bits is 2n = 512; i.e. |Ai| = 512. If needed, we pad the final block of
the associated data with 10∗ (i.e., a single 1 followed by the minimal number of 0’s needed) to make its
length exactly 512 bits.

13. The secret message number is a secret nonce; it must be unique for every encryption. This parameter was proposed by the
CAESAR committee in order to add flexibility and security, mostly for multiple-message network protocols.



86 Protocol Design 4.3

Figure 4.11: The encryption process of OMD-(F, τ ) using a keyed compression function FK : ({0, 1}n ×
{0, 1}m) → {0, 1}n with m ≤ n. (Top) The encryption process when the message length is a multi-
ple of the block length m and no padding is required. (Middle) The encryption process when the
message length is not a multiple of the block length and the final block M∗ is padded to make a full
block M∗||10m−|M∗|−1. (Bottom, Left) Computing the intermediate value Ta when the bit length of the
associated data is a multiple of the input length n + m. (Bottom, Right) Computing Ta when the bit
length of the associated data is not a multiple of n+m and the final block is padded to make a full block
A∗||10n+m−|A∗|−1 is needed. The output ciphertext is C||Tag. For operation ⊕ see our convention in
Section 4.3.1. Five types of masking values (corresponding to five mutually exclusive tweak sets) are
used; these are denoted by ∆N,i,0,∆N,i,1,∆N,i,2, ∆̄i,0 and ∆̄j,1, for i ≥ 1 and j ≥ 0, where N is the nonce.
Note that the masks used in computing Ta do not depend on the nonce.



4.3 An Authenticated Encryption Scheme: Offset Merkle-Damgård 87

– The tag length in bits can be 32 ≤ τ ≤ 256, but it must be noted that the selection of the tag length
directly affects the achievable security level. We refer to Section 4.3.7 for the security bounds.

Definition of OMD[F, τ ]. The function F : K × ({0, 1}n × {0, 1}m)→ {0, 1}n is a keyed compression
function with K = {0, 1}k and m ≤ n. The tag length is τ ∈ {0, 1, · · · , n}. Algorithms E and D can
be called with arguments K ∈ K, N ∈ {0, 1}≤n−1, and A,M,C ∈ {0, 1}∗. `max is the bound on the
maximum number of blocks in any input to the encryption or decryption algorithms.

Algorithm 7: INITIALIZE (K)
1 L∗ ← FK(0n, 0m)
2 L[0]← 4.L∗ . 2.(2.L∗), doubling in GF(2n)
3 for i← 1 to dlog2(`max)e do
4 L[i] = 2.L[i− 1] . doubling in GF(2n)
5 end for
6 return

Algorithm 8: HASHK(A)
1 b← n+m

2 A1||A2|| · · · ||A`−1||A`
b← A, where |Ai| = b for 1 ≤ i ≤ `− 1 and |A`| ≤ b

3 Taga ← 0n

4 ∆← 0n

5 for i← 1 to `− 1 do
6 ∆← ∆⊕ L[ntz(i)]
7 Left← Ai[b− 1, · · · ,m]
8 Right← Ai[m− 1, · · · , 0]
9 Taga ← Taga ⊕ FK(Left⊕∆,Right)

10 end for

11 if |A`| = b then
12 ∆← ∆⊕ L[ntz(`)]
13 Left← A`[b− 1, · · · ,m]
14 Right← A`[m− 1, · · · , 0]
15 Taga ← Taga ⊕ FK(Left⊕∆,Right)
16 end if

17 else
18 ∆← ∆⊕ L∗
19 Left← A`||10b−|A`|−1[b− 1, · · · ,m]

20 Right← A`||10b−|A`|−1[m− 1, · · · , 0]
21 Taga ← Taga ⊕ FK(Left⊕∆,Right)
22 end if
23 return Taga

4.3.6 OMD-SHA512: Secondary Recommendation for Instantiating OMD

Our secondary recommendation to instantiate OMD is called OMD-sha512 and uses the underlying
compression function of SHA-512 [FIP12]. The compression function of SHA-512 is a map sha-512 :
{0, 1}512 × {0, 1}1024 → {0, 1}512. On input a 512-bit chaining block X and a 1024-bit message block



88 Protocol Design 4.3

Algorithm 9: EK(N,A,M)
1 if |N | > n− 1 then
2 return
3 end if
4 ⊥M1||M2|| · · · ||M`−1||M`

m←M , where |Mi| = m for 1 ≤ i ≤ `− 1 and |M`| ≤ m

5 ∆← FK(N ||10n−1−|N |, 0m) . initialize ∆N,0,0

6 H ← 0n

7 ∆← ∆⊕ L[0] . compute ∆N,1,0

8 H ← FK(H ⊕∆, 〈τ〉m)
9 for i← 1 to `− 1 do

10 Ci ← H ⊕Mi

11 ∆← ∆⊕ L[ntz(i+ 1)]
12 H ← FK(H ⊕∆,Mi)
13 end for

14 C` ← H ⊕M` if |M`| = m then
15 ∆← ∆⊕ 2.L∗
16 Tage ← FK(H ⊕∆,M`)
17 end if
18 else
19 if |M`| 6= 0 then
20 ∆← ∆⊕ 3.L∗
21 Tage ← FK(H ⊕∆,M`||10m−|M`|−1)
22 end if
23 end if
24 else
25 Tage ← H
26 end if
27 Taga ← HASHK(A)
28 Tag← (Tage ⊕ Taga)[n− 1, · · · , n− τ ]
29 C← C1||C2|| · · · ||C`||Tag return C

Y , it outputs a 512-bit digest Z, i.e. let Z = sha-512(X,Y ). The description of sha-512 is provided in
Section A.1.

To use OMD with sha-512, we use the first 512-bit argument X for chaining values as usual. In our
notation (see Figure 4.11) this means that n = 512. We use the 1024-bit argument Y (the message block
in sha-512) to input both a 512-bit message block and the key K which can be of any length k ≤ 512
bits. If k < 512 then let the key be K||0512−k. That is, we define the keyed compression function
FK : {0, 1}512 × {0, 1}512 → {0, 1}512 needed in OMD as FK(H,M) = sha-512(H,K||0512−k||M) .

The parameters of OMD-sha512 are set as follows:

– The message block length in bits is m = 512; i.e. |Mi| = 512. If needed, we pad the final block of the
message with 10∗ (i.e., a single 1 followed by the minimal number of 0’s needed) to make its length
exactly 512 bits.

– The key length in bits can be 80 ≤ k ≤ 512; but k < 128 is not recommended. If needed, we pad the key
K with 0512−k to make its length exactly 512 bits.

– The nonce (public message number) length in bits can be 96 ≤ |N | ≤ 511. We always pad the nonce
with 10511−|N | to make its length exactly 512 bits.

– The secret message number length in bits is 0; that is, our scheme does not support secret message
numbers.

– The associated data block length in bits is 2n = 1024; i.e. |Ai| = 1024. If needed, we pad the final block



4.3 An Authenticated Encryption Scheme: Offset Merkle-Damgård 89

of the associated data with 10∗ (i.e., a single 1 followed by the minimal number of 0’s needed) to make
its length exactly 1024 bits.

– The tag length in bits can be 32 ≤ τ ≤ 512, but it must be noted that the selection of the tag length
directly affects the achievable security level. We refer to Section 4.3.7 for the security bounds.

4.3.7 Security Proofs

Theorem 4.6 provides the security bounds of OMD.

Theorem 4.6 Fix n ≥ 1 and τ ∈ {0, 1, · · · , n}. Let F : K × ({0, 1}n × {0, 1}m) → {0, 1}n be a PRF, where
the key space K = {0, 1}k for k ≥ 1 and 1 ≤ m ≤ n. Then

Advpriv
OMD[F,τ ](t, qe, σe, `max) ≤ Advprf

F (t′, 2σe) + 3σ2
e

2n

Advauth
OMD[F,τ ](t, qe, qv, σ, `max) ≤ Advprf

F (t′, 2σ) + 3σ2

2n + qv`max

2n + qv
2τ

where qe and qv are, respectively, the number of encryption and decryption queries, `max denotes the maximum
number of m-bit blocks in an encryption or decryption query, t′ = t + cnσ for some constant c, and σe and σ
are the total number of calls to the underlying compression function F in all queries asked by the CPA and CCA
adversaries against the privacy and authenticity of the scheme, respectively.

The proof is obtained by combining Lemma 4.7 in Section 4.3.8 with Lemma 4.8 and Lemma 4.9 in
Section 4.3.9.

Note. Referring to Section 4.3.3 for definitions of the resource parameters, it can be seen that: σe =
dσM/me + dσA/(n+m)e + qe + 2; σ = d(σM + σC′)/me + d(σA + σA′)/(n+m)e + q + 2; and `max =
dLmax/me.

4.3.8 Generalisation of OMD Based on Tweakable Random Functions

Figure 4.12 shows the OMD[R̃, τ ] scheme which is a generalization of OMD[F, τ ] using a tweakable
random function R̃ : T × ({0, 1}n × {0, 1}m) → {0, 1}n. The tweak space T consists of five mutually
exclusive sets of tweaks, namely T = N ×N×{0} ∪ N ×N×{1} ∪ N ×N×{2} ∪ N×{0} ∪ N×{1},
where N = {0, 1}|N | is the set of nonces and N is the set of positive integers.

Lemma 4.7 Let OMD[R̃, τ ] be the scheme shown in Figure 4.12. Then

Advpriv
OMD[R̃,τ ]

(qe, σe, `max) = 0

Advauth
OMD[R̃,τ ]

(qe, qv, σ, `max) ≤ qv`max

2n + qv
2τ .

where qe and qv are, respectively, the number of encryption and decryption queries, `max denotes the maximum
number of m-bit blocks in an encryption or decryption query, and σe and σ are the total number of calls to the
underlying tweakable random function R̃ in all queries asked by the CPA and CCA adversaries against the privacy
and authenticity of the scheme, respectively.

The proof of the privacy bound is straightforward. Let A be a CPA adversary that asks (encryption)
queries (N1, A1,M1), · · · , (Nqe , Aqe ,Mqe) where all Nx values (for 1 ≤ x ≤ qe) are distinct due to
the nonce-respecting assumption on the adversary A. Referring to Figure 4.12, this means that we
are applying independent random functions R̃Nx,i,j each to a single point, hence the images that the
adversary sees (i.e. Cx for 1 ≤ x ≤ qe) are fresh uniformly random values.

The authenticity bound can be shown by a straightforward but lengthy case analysis. First we consider
the single verification case where the adversary only makes one decryption (verification) query and
then we will use the generic result of Bellare et al. [BGM04] to get a bound against adversaries that



90 Protocol Design 4.3

Computing Taga for an associate data whose length is
a multiple of the input length (i.e. |Aa| = n + m).

Computing Taga for an associate data whose length is
not a multiple of the input length. The final block is
padded to make it a full block.

Encrypting a message whose length is not a multiple of the block length. The final
message block is padded to make it a full block.

Encrypting a message whose length is a multiple of the block length. No padding is
needed.

M1 M2 M`−1 M∗||10m−|M∗|−1〈τ〉m

M1 M2 M3 M∗

C∗C3C1

R̃〈N,1,0〉

C2

Tage
n bits

R̃〈N,2,0〉 R̃〈N,3,0〉 R̃〈N,`,0〉 R̃〈N,`,2〉

A∗||10n+m−|A∗|−1Aa−1

Taga

A1

n bits

R̃〈1,0〉 R̃〈a−1,0〉
R̃〈a−1,1〉

n + m

n m

n + m

n m

n + m

n m

AaAa−1

Taga

A1

n bits

R̃〈1,0〉 R̃〈a−1,0〉
R̃〈a,0〉

n + m

n m

n + m

n m

n + m

n m

M1 M2 M`−1 M`〈τ〉m

M1 M2 M3 M`

C`C3C1

R̃〈N,1,0〉

C2

TageH0 = 0n
n bits

R̃〈N,2,0〉 R̃〈N,3,0〉 R̃〈N,`,0〉 R̃〈N,`,1〉H1 H2 H3 H`

H1 H2 H3 H`
H0 = 0n

Tage

Taga

n bits

τ bits
Tag

Figure 4.12: The OMD[R̃, τ ] scheme using a tweakable random function R̃ : T × ({0, 1}n × {0, 1}m)→
{0, 1}n (i.e. R̃ R← FuncT (n+m,n)). The tweak space T consists of five mutually exclusive sets of tweaks,
namely T = N ×N× {0} ∪ N ×N× {1} ∪ N ×N× {2} ∪ N× {0} ∪ N× {1}, where N = {0, 1}|N |
is the set of nonces, N is the set of positive integers.



4.3 An Authenticated Encryption Scheme: Offset Merkle-Damgård 91

make multiple (say qv) verification queries. Let A be a CCA adversary making encryption queries
(N1, A1,M1), · · · , (Nqe , Aqe ,Mqe). Let M i = M i

1, · · · ,M i
`i

or M i = M i
1, · · · ,M i

`i−1M
i
∗ be the message

queries and Ai = Ai1, · · · , Aiai or Ai = Ai1, · · · , Aiai−1A
i
∗ be the associated data queries. Let Ci = Ci||Tagi

be the ciphertext received for query (N i, Ai,M i). That is, we use superscripts to indicate query numbers
and subscripts to denote the block indices in each query.

Let (N,A,C) be the forgery attempt by the adversary, where N ∈ {0, 1}|N | is the nonce, A = A1, · · · , Aa
or A = A1, · · · , Aa−1A∗ is the associate data, C = C||Tag is the ciphertext where C = C1, · · · , C` (where
|Ci| = m for 1 ≤ i ≤ `) or C = C1, · · · , C`−1C∗ (where |Ci| = m for 1 ≤ i ≤ ` − 1 and |C∗| < m), and
Tag = (Tage⊕Taga)[n−1, · · · , n−τ ] ∈ {0, 1}τ is the tag. LetM = M1, · · · ,M` orM = M1, · · · ,M`−1M∗
denote the corresponding decrypted messages, respectively. Note that no superscripts are used for the
strings in the alleged forgery by the adversary. We have the following disjoint cases:

1 N /∈
{
N1, · · · , Nqe

}
. Adversary has to find a correct Tag that is the first τ bits of the value

R̃〈N,x,y〉(final input) ⊕ Taga but has not seen any image under R̃〈N,x,y〉(.), hence the probabil-
ity that the adversary can succeed in doing this is 2−τ . By “final input” we mean H`||M` or
H`||M∗||10m−|M∗|−1 when |C| 6= 0 in which case the final tweak used to generate Tage will be
either 〈N, `, 1〉 or 〈N, `, 2〉 (depending on whether the final block is a full block or not); otherwise
(i.e. for empty message) the “final input” will be H0|| 〈τ〉m and hence the final tweak used to
generate Tage will be 〈N, 1, 0〉.

2 N = N i, |C| 6= |Ci|, and one of |C| and |Ci| is a multiple of m but the other is not. We can ignore
all queries other than the ith query since the responses to such queries are random and unrelated
(because of using different nonces) to the adversary’s task to make the alleged forgery N,A,C
with N = N i. That is, we can assume that adversary has only made a single encryption query
(N i, Ai,M i) and received Ci||Tagi. Then as in Case 1 the adversary has to find a correct Tag,
i.e. the first τ bits of the value R̃〈N,x,y〉(final input) ⊕ Taga, but has not seen any image under
R̃〈N,x,y〉(.). Note that we can even give Taga to the adversary. More precisely, consider the
case that |Ci| is a multiple of m but |C| is not; then adversary must guess the first τbits of the
value R̃〈N,`,2〉(final input)⊕ Taga, but has seen no image under R̃〈N,`,2〉(.). Similarly, in the case
that |C| is a multiple of m but |Ci| is not, the adversary must guess the first τ bits of the value
R̃〈N,x,y〉(final input)⊕ Taga for (N, x, y) = (N, 1, 0) if |C| = 0 or (N, x, y) = (N, `, 1) if |C| 6= 0, but
the adversary has seen no image under R̃〈N,x,y〉(.) under either case.Therefore, the probability that
the adversary can succeed in guessing Tag is 2−τ .

3 N = N i, |C| 6= |Ci|, and either both |C| and |Ci| are multiple of m or none of them is. We may
ignore all queries but the ith query as responses to such queries are unrelated to the adversary’s
task at hand. If both |C| and |Ci| are multiple of m then |C| 6= |Ci| means that ` 6= `i, so from
(the top of) Figure 4.12 it can be easily seen that in this case even if the adversary knows Taga
it must still guess the first τ bits of the output of the random function R̃〈N,`,1〉 while it has seen
no image of this function; the probability to succeed in guessing Tag is clearly 2−τ . Now, let’s
consider the case that neither |C| nor |Ci| is a multiple of m then |C| 6= |Ci|means that we have
two cases: (1) ` 6= `i, and (2) ` = `i but |C∗| 6= |Ci∗|. In the first case, it can be seen the adversary
must guess the first τ bits of the random function R̃〈N,`,2〉 while has seen no image of this function;
the chance to do so is clearly 2−τ . In the second case, the adversary must guess the first τ bits of
R̃〈N,`,2〉((M∗ ⊕ C∗)||(M∗||10m−|M∗|−1)) while it has seen (τ bits of) a single image of this function
for one different domain point, namely ((M i

∗ ⊕ Ci∗)||(M i
∗||10m−|Mi

∗|−1); the probability to succeed
in this case is again 2−τ . (Note that |M∗| = |C∗|. Using 10∗ padding for processing messages whose
length is not a multiple of m is essential for this part.)

4 N = N i, |C| = |Ci|, and A 6= Ai. We can ignore all queries except the ith query because the responses
to such queries are random and unrelated to the adversary’s task to make the alleged forgery
N,A,C with N = N i. That is, we can assume that adversary has only made a single encryption
query (N i, Ai,M i) and received Ci||Tagi. It aims to forge using the same nonce but a different
associated data A. The adversary must find a correct Tag = (Tage + Taga)[n− 1, · · · , n− τ ]. We
consider two subcases: 4a |A| 6= 0 and 4b |A| = 0.

4a In this case, let’s assume that we even provide the adversary with all the functions R̃〈N,x,y〉(.),
so that the adversary can compute the correct value of Tage. Then the adversary’s task will
reduce to guessing a correct value for the first τ bits of Taga. The only relevant information



92 Protocol Design 4.3

that the adversary has is the first τ bits of Tagia. We show that even if the whole Tagia is given
to the adversary, the chance to correctly guess the first τ bits of Taga is still 2−τ . This is done
by a simple case analysis:

1. if only one of |A| and |Ai| is a multiple of n+m then it is easy to see from Figure 4.12 that
the probability to guess the first τ bits of Taga is still 2−τ ;

2. if a 6= ai then again from Figure 4.12 we can see that the probability to guess the first τ
bits of Taga is 2−τ ;

3. otherwise, we have a = ai and either both |A| and |Ai| are multiple of n+m or neither
of them is a multiple of n+m. These two cases are similar. Let’s consider the first one.
As we have A 6= Ai then it must be the case that for some j we have Aj 6= Aij . So, the jth

value XORed to Taga , i.e. R̃〈j,0〉(Aj) is a fresh n-bit random value; hence the adversary’s
chance to guess the first τ bits of Taga is 2−τ .

4b In this case the adversary has seen Ci||Tagi, where Tagi = (Tagie ⊕ Tagia)[n − 1, · · · , n − τ ].
To get the forged tuple (N, ε, C||Tag) be accepted and decrypted, it must find the value of
Tag = Tage[n − 1, · · · , n − τ ] (as Taga = 0n in this case). Now let’s give the adversary all
functions R̃〈N,x,0〉(.) for 1 ≤ x ≤ `. Even in this case, the adversary has seen no image of the
function R̃〈N,x,j〉(.) for j ∈ {1, 2}, since the value Tagi = Tagie ⊕ Tagia that adversary has seen
does not reveal any information about Tagie noting that Tagia is random and unrevealed to
the adversary. So, the probability that the adversary can correctly guess the first τ bits of
Tage = R̃〈N,`,j〉(final input) for j = {1, 2} is 2−τ . (Note that j = 1 when |C| is a multiple of m
and j = 2 when |C| is not a multiple of m).

5 N = N i, A = Ai, and |C| = |Ci| = `m is a multiple of m. We can again ignore all queries except
the ith query. Let’s assume that we make all functions R̃〈x,y〉 (for x ≥ 1 and y ∈ {0, 1}) used in
processing the associate data public to the adversary; i.e assume that the adversary even knows
the values of Taga and Tagia. Now remember that the adversary must not repeat the known tuple
(N i, Ai, Ci||Tagi) as its decryption query, so it must be the case that C 6= Ci as otherwise any
Tag 6= Tagi will be incorrect and rejected. Therefore, we may assume that the alleged forgery will
be of the form (N,A,C||Tag) such that Cj 6= Cij for some 1 ≤ j ≤ `. Now referring to (the top of)
Figure 4.12 it is easy to see that if C` 6= Ci` then the probability that the adversary can correctly
guess the value of Tag is 2−τ ; otherwise there are two cases: (1) if H` 6= Hi

` the chance that Tag is
correct is 2−τ ; (2) if the event H` = Hi

` happens then adversary can simply use Tag = Tagi, but
this event only happens with probability at most `2−n noting that |Hi| = n (note that we credit
the adversary for any possible collision in the iteration, there are ` blocks and the probability of
each collision under the random function is 2−n). So, the total success probability in this case is

bounded by
1
2τ + `

2n .

6 N = N i, A = Ai, and |C| = |Ci| is not a multiple of m. It is easy to see from Figure 4.12 that the
analysis of this case is the same as that of Case 5 and the success probability of the adversary is

bounded by
1
2τ + `

2n .

Finally, using the results of Bellare et al. [BGM04] we get the bound against adversaries that make qv

decryption (verification) queries as
qv
2τ + qv`

2n .

4.3.9 Instantiating Tweakable RFs with PRFs

We proceed to complete the proof of Theorem 4.6 in two steps.

1 Replace the tweakable RF R̃ : T × ({0, 1}n × {0, 1}m) → {0, 1}n in OMD with a tweakable PRF
F̃ : K × T × ({0, 1}n × {0, 1}m)→ {0, 1}n, where K = {0, 1}k. The following lemma states the classical
bound on the security loss induced by this replacement step. The proof is a straightforward reduction
and omitted here.



4.3 An Authenticated Encryption Scheme: Offset Merkle-Damgård 93

FK

Y

F̃
〈T 〉
K

Y

X X

m m

n n nn n

∆K(T )

Figure 4.13: Building a tweakable PRF F̃ 〈T 〉K : {0, 1}n × {0, 1}m → {0, 1}n using a PRF FK : {0, 1}n ×
{0, 1}m → {0, 1}n. There are several efficient ways to define the masking function ∆(T ) [Rog04a, CS08,
KR11]. We use the method of [KR11].

Lemma 4.8 Let R̃ : T ×({0, 1}n×{0, 1}m)→ {0, 1}n be a tweakable RF and F̃ : K×T ×({0, 1}n×{0, 1}m)→
{0, 1}n be a tweakable PRF. Then

Advpriv
OMD[F̃ ,τ ]

(t, qe, σe, `max) ≤ Advpriv
OMD[R̃,τ ]

(qe, σe, `max) + Advp̃rf
F̃

(t′, σe)

Advauth
OMD[F̃ ,τ ]

(t, qe, qv, σ, `max) ≤ Advauth
OMD[R̃,τ ]

(qe, qv, σ, `max) + Advp̃rf
F̃

(t′′, σ)

where qe and qv are, respectively, the number of encryption and decryption queries, q = qe + qv , `max denotes the
maximum number of m-bit blocks in an encryption or decryption query, t′ = t+ cnσe and t′′ = t+ c′nσ for some
constants c, c′, and σe and σ are the total number of calls to the underlying compression function F in all queries
asked by the CPA and CCA adversaries against the privacy and authenticity of the scheme, respectively.

2 We instantiate a tweakable PRF using a PRF by means of XORing (part of) the input by a mask
generated as a function of the key and tweak as shown in Fig. 4.13. This method to tweak a PRF
is (essentially) the XE method of [Rog04a]. In OMD the tweaks are of the form T = (α, i, j) where
α ∈ N ∪ {ε}, 1 ≤ i ≤ 2n−8 and j ∈ {0, 1, 2}. We note that not all combinations are used; for example,
if α = ε (empty) which corresponds to processing of the associate data in Figure 4.11 then j 6= 2. The
masking function ∆K(T ) = ∆K(α, i, j) outputs an n-bit mask such that the following two properties
hold for any fixed string H ∈ {0, 1}n:

1. Pr[∆K(α, i, j) = H] ≤ 2−n for any (α, i, j)
2. Pr[∆K(α, i, j)⊕∆K(α′, i′, j′) = H] ≤ 2−n for (α, i, j) 6= (α′, i′, j′)

where the probabilities are taken over random selection of the secret key K.

It is easy to verify that these two properties are satisfied by the specific masking scheme of OMD as
described in Section 4.3.4.

Lemma 4.9 Let F : K × ({0, 1}n × {0, 1}m) → {0, 1}n be a function family with key space K. Let F̃ : K ×
T × ({0, 1}n×{0, 1}m)→ {0, 1}n be defined by F̃ 〈T 〉K (X||Y ) = FK((X ⊕∆(T ))||Y ) for every T ∈ T ,K ∈ K,
X ∈ {0, 1}n , Y ∈ {0, 1}m and ∆K(T ) is the masking function of OMD as defined in Section 4.3.4. If F is PRF
then F̃ is tweakable PRF. More precisely

Advp̃rf
F̃

(t, q) ≤ Advprf
F (t′, 2q) + 3q2

2n .

The proof is a simple adaptation of a similar result on the security of the XE construction (to tweak a
blockcipher) in [KR11]. As we use a PRF rather than PRP, our bound has two main terms. The first

term is a single birthday bound loss of
0.5q2

2n to take care of the case that a collision might happen

when computing the initial mask ∆N,0,0 = FK(N ||10n−1−|N |, 0m) using a PRF (F ) rather than a PRP

(as in [KR11]). The analysis of the remaining term (i.e.
2.5q2

2n ) is essentially the same as the similar part
in [KR11], but we note that in the context of our construction as we are directly dealing with PRFs



94 Protocol Design 4.3

unlike [KR11] in which PRPs are used, the bound obtained here does not have any loss terms caused by

the switching (PRF/PRP) lemma. Therefore, instead of the
6q2

2n bound in [KR11] (from which
3.5q2

2n is

due to using the switching lemma) our bound has only
2.5q2

2n .

4.3.10 In Summary: Features of OMD

Based on a Single Primitive, Provable Secure and Requiring Minimal Operations. OMD is designed
as a mode of operation for a keyed compression function. Together with blockciphers and permutations,
compression functions are among the most well-known and widely used symmetric key primitives. We
have a rich source of secure compression functions thanks to more than two decades of public research
and standardization activities on hash functions.

The security goals of privacy and authenticity for OMD are achieved provably in the sense of reduction-
based cryptography. That is, any attack against these security goals will imply an attack against the
classical PRF property of the underlying compression function. We note that any keyed compression
function (either a dedicated-key one or keyed via some part of its input) must provide the classical PRF
property when its key is secret as otherwise it will be considered useless for any secret key application,
e.g. for being used as a MAC. That is, the base PRF assumption on the compression function upon which
the security of OMD relies is highly assured for compression functions of the practical, standard hash
functions, thanks to the vast amount of cryptanalytic work on these functions.

The only operations that OMD needs in addition to its core compression function are the basic operations
of bitwise XORing two binary strings and shifting a binary string.

Integrated (One-Pass) AEAD Scheme. In OMD the mechanisms for providing privacy and authen-
ticity of the message are coupled in a single pass of (a variant of) the Merkle-Damgård iteration of the
compression function. This is aimed to make OMD as much efficient as possible (up to the limits that are
inherent to any compression function based AEAD scheme).

On-line Encryption and Internally On-line Decryption. OMD encryption is on-line. That is, it outputs
a stream of ciphertext as a stream of plaintext arrives with a constant latency and using constant memory.
After receiving an indication that the plaintext is over, the final part of ciphertext together with the tag is
output.

OMD decryption is internally on-line: one can generate a stream of plaintext bits as the stream of
ciphertext bits comes in, but no part of the plaintext stream will be revealed before the whole ciphertext
stream is decrypted and the tag is verified to be correct. That is, nothing about the decrypted plaintext
should be made available to adversaries if the tag is incorrect signifying that the queried ciphertext is
invalid. This feature is closely related to the secrecy against RUP presented by Andreeva et al. [And14].

Flexibility of the Key Size and Efficiency. OMD-sha256 can support any key length between 80 bits
and 256 bits. This will be useful for applications requiring unconventional key lengths, e.g. 96-bit keys.

If implemented with a member of the SHA family, OMD can take advantage of the newly introduced
Intel instructions that support performance acceleration of the Secure Hash Algorithm (SHA) on Intel
Architecture processors. In particular, our main recommended scheme, called OMD-sha256, is aimed to
get the most out of these new performance accelerating instructions.

Resistance Against Software-Level Timing Attacks. Most AES software implementations risk leaking
their keys through cache timing [Ber05] unless they are implemented on machines with Intel CPUs
supporting the constant-time AES-NI and PCLMULQDQ instructions. In comparison, we note that the
only operations in OMD-sha256 are: bitwise XOR, AND and OR of two binary strings (32-bit words in
the compression function of SHA-256 and 256-bit words in the OMD iteration), fixed-distance (left and
right) shift of a binary string (32-bit words in the compression function of SHA-256 and 256-bit words
in the OMD iteration), and 32-bit addition (of words in the compression function of SHA-256). These



4.3 An Authenticated Encryption Scheme: Offset Merkle-Damgård 95

operations have the virtue of taking constant time on typical CPUs in which case the implementations
can avoid software-level timing based side-channel leaks.

4.3.11 Further Developments

4.3.11.1 Pure OMD (p-OMD)

After we proposed the initial design of the OMD scheme, Reyhanitabar, Vaudenay and Vizár [RVV15]
presented pure OMD (p-OMD) as a new version. p-OMD inherits the security features of OMD, providing
higher efficiency. Compared to OMD, p-OMD removes the XOR MAC algorithm and is only based on
the MD iteration. For a message of ` blocks and associated data of a blocks, OMD needs `+ a+ 2 calls to
the compression function while p-OMD only requires max {`, a} + 2 calls. In the usual case where ` ≥ a,
p-OMD makes just `+ 2 calls to the compression function.

4.3.11.2 Getting the Tag as a By-Product of Encryption

It might be interesting to see if the authentication of a single block can be obtained as a by-product of
encryption. The study of the following ideas could be appealing.

Consider a block cipher, e.g. AES-128 and the construction depicted in Figure 4.15. The idea consists in
using an inexpensive one-way function for computing the Tag from an intermediate encryption state.
The lightweight perspective offered by such a function could provide tags almost for free (and, thus,
authentication).

m

5 rounds
AES-128

5 rounds
AES-128

c

k

k

k′

f Tag

Figure 4.14: Authentication as a by-product of encryption.

Example 4.3 The lightweight function f might be defined as

f(x) = (x2 mod K) mod 2128,

where K is a 300-bit secret prime.

Conceptually, the previous idea consists in allowing the leakage of certain bits to achieve authentication.

In other words, we create a deliberate side channel. As today the research community has extensively
researched side channel attacks of why not try and apply this knowledge to obtain authentication and
confidentiality by combining “deliberate side channel attacks” with encryption?



96 Protocol Design 4.3

Side Channel
Attacks

+ Encryption

Authenticated
Encryption

Figure 4.15: Authenticated encryption: a new perspective.

Algorithm 10: DK(N,A,C)
1 if |N | > n− 1 or |C| < τ then
2 return ⊥
3 end if

4 C1||C2|| · · · ||C`−1||C`||Tag m← C, where |Ci| = m for 1 ≤ i ≤ `− 1, |C`| ≤ m and |Tag| = τ

5 ∆← FK(N ||10n−1−|N |, 0m) . initialize ∆N,0,0

6 H ← 0n

7 ∆← ∆⊕ L[0] . compute ∆N,1,0

8 H ← FK(H ⊕∆, 〈τ〉m)
9 for i← 1 to `− 1 do

10 Mi ← H ⊕ Ci
11 ∆← ∆⊕ L[ntz(i+ 1)]
12 H ← FK(H ⊕∆,Mi)
13 end for

14 M` ← H ⊕ C`
15 if |C`| = m then
16 ∆← ∆⊕ 2.L∗
17 Tage ← FK(H ⊕∆,M`)
18 end if

19 else
20 if |C`| 6= 0 then
21 ∆← ∆⊕ 3.L∗
22 Tage ← FK(H ⊕∆,M`||10m−|M`|−1)
23 end if
24 end if

25 else
26 Tage ← H
27 end if

28 Taga ← HASHK(A)
29 Tag′ ← (Tage ⊕ Taga)[n− 1, · · · , n− τ ]
30 if Tag′ = Tag then
31 return M ←M1||M2|| · · · ||M`

32 end if

33 else
34 return ⊥
35 end if



CHAPTER 5

ALGORITHMS FOR EMBEDDED
CRYPTOGRAPHY

Lots of people working in cryptography have no deep concern with real application issues. They are trying to
discover things clever enough to write papers about.

Whitfield Diffie.

Summary

This chapter is dedicated to the new but increasingly active field of lightweight cryptography. Lightweight
cryptography has emerged as a direct consequence of the increasing need for small, smart devices.
We stress that associating the terms cryptography and lightweight does not mean weak systems, but
cryptographic solutions suitable for highly resource-constrained mobile devices.

Lightweight (dedicated) solutions for RFID tags are presented in Section 5.1.1. Possible risks are examined
and different measures taken for improving RFID’s security and privacy levels are discussed in the same
section.

Section 5.4 describes a new backtracking-based multiplication algorithm, especially suited for lightweight
microprocessors when one of the operands is known in advance. The constant operand is encoded in a
computation-friendly way, based on linear relationships amongst its sub-words. Our result is backed-up
by an implementation on a 68HC05 microprocessor showing that the new algorithm indeed yields a
twofold speed improvement over classical multiplication for 128-byte numbers.

Barrett’s modular reduction algorithm is described in Section 5.2.1. Section 5.2 presents a method
allowing to double the speed of Barrett’s algorithm by using specific composite moduli. We show how
to generate such Barrett-friendly RSA moduli and apply the idea to other cryptographic primitives (e.g.
DSA) - where we find instances whose entire collection of parameters is multiplication-friendly.

Section 5.3.1 presents polynomial extensions of Barrett’s modular reduction algorithm. We devise new
BCH speed-up strategies using Barrett’s polynomial reduction method as well as (optimised) Linear
Feedback Shift Register (LFSR) architectures, providing comparisons between the proposed solutions.
Section 5.3.2 describes a new error-correcting code (ECC) inspired by the Naccache-Stern cryptosystem.
This ECC happens to be more efficient than some established ECCs for certain sets of parameters. Section
5.5 proposes a new building block called Pace Regulator. The Pace Regulator is inserted between the
randomness consumer and a von Neumann extractor to streamline the pace of random bits.

Section 5.6.1.1 provides an overview and a classification of fault attacks, shortly describing possible
countermeasures. Following the work of Naccache, Smart and Stern [NSS04], Section 5.6 proposes fault
attacks on elliptic curve cryptography implementations.

97



98 Algorithms for Embedded Cryptography 5.1

5.1 Lightweight Cryptography for Embedded Devices

The relatively new and continuously developing sub-field, Lightweight Cryptography, can be defined as a
collection of cryptographic primitives, techniques and ciphers with suitable implementations in highly
resource-constrained mobile devices.

Lightweight Cryptography is hence at a crossroad between cryptography, computer science and electrical
engineering. It focuses on new designs, adaptations or efficient implementations of cryptographic
primitives and protocols.

Considering constraints and the fact that the embedded devices operate in hostile environments (note
that we have to take into consideration physical attacks too), there is an increasing need for security
solutions, especially constructed in view of the current ubiquitous computing tendency.

There are three categories of solutions for providing cryptographic primitives for lightweight applications:
optimized low-cost implementations for standardized and well-known algorithms, slightly modified,
well investigated ciphers and new ciphers especially designed to meet low hardware implementation
costs. Thus, the notion of Lightweight Cryptography is frequently used to describe optimizations of existing
primitives as well as new designs.

The growth of ubiquitous computing made security and privacy increasingly important [Pos09]. Tradi-
tional cryptographic algorithms are unsuited for constrained devices. The main issue when addressing
this concern is how to reach sufficient security using only little computing power. Hence, the trade-off
between lightweightness and the security is the cornerstone of lightweight cryptography.

Security

Physical

Algorithmic

Performance

Throughput

Energy

Low Cost

Area

Power

SW
security

functions

m
ore

lessH
W

se
cu

rit
y

fu
nc

tio
ns

m
or

e

le
ss

type of architecture
µC µP

Figure 5.1: Securing Devices

Our research focused on cryptography for limited devices for which trade-offs between performance,
security, and cost are highly important. The constraints are computing power, memory, bandwidth, or
vulnerability to attacks. Two of the most common examples of lightweight devices are further studies:
RFID tags and wireless sensor networks. Available implementations of already established cryptographic
algorithms and libraries especially developed for constrained devices are very far from being optimal.
As an example, there do not exist many cryptographic libraries engineered for frugality. Many of these
functions are prone to algorithmic optimizations of the types proposed in this chapter.

The Internet of Things (IoT) consists in spatially distributed nodes forming a network, able to control
or monitor physical or environmental conditions (such as temperature, pressure, image and sound),
perform computations or store data.

IoT nodes are typically low-cost devices with limited computational resources and limited battery. They
transmit the data that they acquire through the network to a gateway, also called the transceiver. The



5.1 Lightweight Cryptography for Embedded Devices 99

gateway collects information and sends it to a processing unit. Nodes are usually deployed in hostile
environments, and are therefore susceptible to physical attacks, harsh weather and communication
interferences.

Lightweight Block Ciphers. A suitable solution for lightweight cryptography, other than efficiently
implementing or slightly modifying an already trusted cipher, is to design a new optimized ciphers a
fresh. Among such solutions, we mention PRESENT, which is a 31 round substitution-permutation
network based block cipher (and having a 64 bits block size, and a key of 80 or 128 bits). Poschman
stressed in his thesis [Pos09] that: “The main design philosophy during the design of PRESENT was simplicity:
no part of the cipher was added without a good reason for it, like thwarting an attack”.

PRESENT, KATAN/KTANTAN, ITUbee and PRIDE are some common lightweight block-ciphers. We
present each of them briefly in the next paragraphs.

We stress that PRESENT was not inspired by AES, even though many SPN based ciphers have a structure
close to AES. PRESENT is a typical algorithm designed especially for hardware, using simple wiring and
bit-oriented permutations. PRESENT has been standardized under the reference ISO/IEC 29192 [iso12].

KATAN and KTANTAN [DCDK09] are a family of small hardware-oriented block ciphers. The
optimization of the physical footprint is at the core of these two designs. The main difference between
KATAN and KTANTAN is the key schedule, as KTANTAN uses a fixed hardware encoded key that
cannot be changed.

ITUbee is a software oriented cipher using an internal Feistel structure with key whitening at the
beginning and end of the encryption. Its main features are low power consumption and low memory
management in software.

PRIDE is a block cipher that focuses on the design of the linear layer in Substitution-Permutation
Networks and its main target is 8 bit microcontrollers. The model implementation has been optimized to
the AVR instruction set.

Lightweight Pseudo-Random Number Generators. Poschman [Pos09] applies PRESENT’s hardware
efficiency to seed public-key cryptography: in output feedback mode (OFB) and, hence, making it
a stream cipher. This stream cipher is used as a pseudo-random number generator for a public-key
identification scheme.

General Aspects. Saarinen and Engels [SE12] analysed in depth the constraints and sketched the
guidelines of a successful lightweight cryptographic primitive design.

Targeting an RFID or lightweight sensor network “Do It All Cipher” (DIAC) for IoT, their conclusion
revolves around the following observations.

– The latency of the primitive has to be less than 50 cycles and encryption and decryption throughputs
must exceed more than a bit per cycle.

– Power usage should be less than 1 to 10µW/MHz on average with peaks below 3µW and 30µW
respectively.

– The primitive must be able to operate without significant modification as a single-pass tweakable
authenticated encryption and decryption algorithm as well as a cryptographically secure hash.

– The padding scheme and the operations taken into account for various inputs, including initialization
vectors and authenticated associated data must be clearly stated. Additional data size must be small
to avoid message expansion.

– The initialization vector does not have to be a nonce (one must target security in a repeated chosen-IV
attack). Security level must be high, i.e. with key and state sizes considered under all attack models.

– Hardware implementation must not consist of more than 2000 GE, including state memory and both
encryption and decryption functions. Software implementation speed and size across all MCU and
CPU platforms has to be taken into consideration as well.

From a software perspective, the time complexity of a primitive comprises two ideas which are discussed
next. The number of clock cycles necessary to process a data byte determines the speed of the algorithm,
but this is not enough. Hence, achieving a high speed at the cost of a high computational load, for



100 Algorithms for Embedded Cryptography 5.1

instance because of a complicated key schedule, may not be acceptable in some cases. Latency, i.e. the
delay given by a high computational load (considered in clock cycles) must be considered as well.

Complexity, in this case, actually refers to memory complexity, i.e. the amount of RAM necessary to fulfil
the computations. Nonetheless, e.g. in a flash memory, the space required to store the algorithm must be
taken into account.

Now, from a hardware perspective, the memory requirement corresponds to the number of logical gates
necessary to implement the primitive. This quantity is measured using a unit called G(ate) E(quivalence),
where one GE corresponds to the area of a NAND gate.

Time efficiency (throughput) is measured in bits per second at a given clock frequency, usually 100 Hz,
which corresponds to the amount of data processed in one second using the given clock frequency.
Latency must be considered in hardware, as latency is correlated with the time needed to e.g. derive the
sub-keys. Nevertheless, giving an estimation of these quantities is rather complex.

Measuring the lowest necessary resources for lightweight cryptography applications, we will not obtain a
connection between performance in software and hardware. In reality, between the two implementation
categories arise design trade-offs. We may consider as an example the use of S-boxes, which can be very
efficient when implemented in software (e.g. using a look-up table). But, from a hardware perspective,
they are not so easy to implement. This is one of the reasons why, e.g., Piccolo [SIH+11] was designed
implementing the S-box based on a small Feistel Network.

There is always the other side of the coin, thus, bit-oriented permutations used in PRESENT for example,
can be implemented in hardware for free using wires. Nevertheless, such an approach is rather slow in
software.

Based on the above, we may conclude that it is hard to aim at both software and hardware efficiencies
when it comes to lightweight cryptography.

5.1.1 RFID Tags: A Cryptography Perspective

RFID tags were initially developed during the second World War [Lan]. Nevertheless, they continue
playing an important role given the requirement of easy data sharing backed up by fast and secure
communication channels. Their remarkable development found motivation in, e.g., the wide adoption of
biometric passports 1 as well as the need of replacing bar codes. RFID tags imply simplicity in providing
authentication. Such devices communicate with RFID readers, which are connected to a back-end
database server through a permanent link.

An RFID tag consists of 1 an antenna that emits and receives radio signals and 2 a chip incorporating a
modulator and demodulator for signal processing and a circuit for memory, information processing, and
possibly functions dedicated to specific tasks such as measuring a physical phenomenon’s scale. RFID
tags do not require physical contact to communicate. Compared to smartcards, RFID tags may be much
smaller, ranging between hundreds of µm2 to a few cm2.

There are three classes of tags:

1 Passive - these represent the vast majority of tags, having no battery (being powered by a magnetic
resonance induction field);

2 Active - including a battery, they operate autonomously; being costly, such tags are reserved to
high-end applications (e.g. the US Department of Defence’s inventory-tracking system);

3 Semi-passive - they carry a battery used exclusively for internal computation and rely on an external
power source for communication.

Conventional cryptographic solutions cannot be implemented on such constrained devices. A similar
situation took place towards the end of the 1980s, when smart cards emerged. Cryptographers made
smart cards secure by employing more efficient cryptographic primitives and incorporating powerful
control units in the cards. But even if the constraints are similar, the current situation is different. The
limiting factor now isn’t technology but cost. So, even if implementing sophisticated cryptographic

1. In June 2014 [OK14] estimated the existence of 500 million biometric passports issued by more than 100 countries (of which
485 million were already in circulation).



5.1 Lightweight Cryptography for Embedded Devices 101

protocols in a tiny chip is technically possible, for low-end RFID tags, the circuit dedicated to security
can’t exceed a certain area.

Low-end RFID tags’ chips are limited to 10,000 GEs, of which only 2,000 GEs are for security.

Four main approaches developed in parallel have been considered as suitable solutions: 1 efficiently im-
plementing established ciphers, 2 choosing established ciphers with smaller parameters 2, 3 designing
new ciphers, and 4 developing fully dedicated solutions. Variants of well-known cryptographic algo-
rithms have been implemented. One example is a serialized version of DES that requires 2,310 GEs and
encrypts a plaintext within 144 clock cycles. Another is a 3,100 GE version of AES in an encryption-only
architecture. A relevant conclusion in this area was that the NTRU (n-th degree TRUncated polynomial
ring) cryptosystem shows promise in this area.

DES was also the target of several proposals to fit a classic cryptographic primitive in a low-end RFID
tag. Two examples are DESL (DES Lightweight) and DESXL (DES Extra-Lightweight), versions of DES
with fewer rounds and simplified building blocks. In addition, public-key-based solutions have been
investigated, focusing on standardized elliptic curves, although fitting these solutions to small chips has
been considered impossible. At the same time, researchers have proposed symmetric algorithms such
as Hight, Clefia, Squash, and PRESENT, with limited success. Cipher designers have also proposed
innovative ciphers, such as KATAN and LED (Light Encryption Device), with duplicated internal
components and shorter keys and block sizes. However, this approach has turned out to be risky, as
numerous proposals were quickly shown to be insecure. One of the main dedicated solutions developed
for RFID technology is discussed next.

5.1.1.1 HB Protocols

Classic cryptographic primitives may be unsuitable for RFID tags. An alternative is cryptography based
on NP-complete problems. This area has seen much research since the 1970s. These endeavours laid
the foundations of public-key cryptography and to the development of cryptosystems with "easily
quantifiable" computational security. Unfortunately, the vast majority of NP-complete based schemes
were broken. So, attention moved back to problems which are not proven to be NP-complete, such
as factoring and discrete logarithms. However, the past years have seen several innovative protocol
proposals based on the LPN (Learning Parity with Noise) problem [BKW03] and its generalization,
the LWE (Learning With Errors) problem [Reg10]. Both problems are NP-complete. In particular,
researchers used these problems to design the HB (Hooper and Blum) family of efficient authentication
protocols [HB01, JW05, GRS08]. HB protocols are referred to as lightweight and even ultralightweight
protocols 3 in the literature [JW05, GRS08, Kho14]. However, implementation results are not detailed
(e.g. the required number of GEs). Our experimental results have shown that even the HB protocol
would indeed fit in a device with 3000-8000 GEs. Nonetheless, we consider that some of its variants, e.g.
hHB, would require more GEs 4. While hHB is provably secure in a stronger model, there is a need for
optimizing its implementation. Thus, we consider HB protocols interesting proposals at least from a
theoretical perspective.

Definition 5.1 (The LPN Problem) Let x be a binary vector of length k and η a real positive number smaller
than 1/2 (typically, η is equal to 1/8 or 1/4). Consider an oracle that, at each invocation
– generates a random k-bit vector a and a bit b set to 1 with probability η

and
– returns a · x⊕ b.
The LPN problem is to recover the secret vector x given access to this oracle.

In the following, Berε denotes the Bernoulli distribution with parameter ε.

HB Protocol. HB is a “pen-and-paper” protocol, requiring very simple operations. For each authentica-
tion both parties compute a bit as the scalar product of two binary vectors, and the prover flips its output
with probability ν to mimic the LPN’s noise. The procedure is repeated r times. Authentication succeeds

2. e.g. block size, key length, internal state of the algorithm
3. particularly suitable for RFID tags
4. even though the authors claim that the “computational and storage capabilities of the RFID tag” are not exceeded



102 Algorithms for Embedded Cryptography 5.1

if some minimal number of rounds r succeed. This protocol is secure only against passive eavesdroppers.
An HB protocol round is presented in Figure 5.2. When the noise

The HB protocol consists of r = r(k) authentication rounds between the reader and the tag.

Tag(x, ε) Reader(x)

a← {0, 1}k
a←−−−−−−−−−−

b← Berε
z ← a · x⊕ b

z−−−−−−−−−−→
Verify that a · x = z

Figure 5.2: A round of the HB protocol, where x is a binary vector of length k, α is a k-bit vector, b is a bit
initially set to 1 and Berε denotes the Bernoulli distribution with parameter ε.

As the noise increases, false rejection 5 will grow. Relations between the level of noise and false rejection
rate were analysed by Katz et al. in [KSS10].

HB+ Protocol. Juels and Weis suggested adapting HB for RFID authentication [JW05]. They proposed
HB+, which is an HB variant secure against active adversaries (i.e. assuming that the adversary can
directly interact with tags and readers, although not concurrently). HB+ becomes insecure when the
adversary has concurrent access to both parties, as the GRS (Gilbert, Robshaw, and Sibert) attack
showed [GRS05].

The HB+ protocol consists of r = r(k) authentication rounds between the reader and the tag. Two
random secret keys x and y of length k are shared between the parties. An HB protocol round is
presented in Figure 5.3.

Tag(x, y, ε) Reader(x, y)

b← {0, 1}k
b−−−−−−−−−−→

a← {0, 1}k
a←−−−−−−−−−−

ν ← Berε
z ← a · x⊕ b · y ⊕ ν

z−−−−−−−−−−→
Verify that a · x+ b · y = z

Figure 5.3: A round of the HB+ protocol, where x and y are binary vectors of length k, b and α are k-bit
vectors and Berε denotes the Bernoulli distribution with parameter ε.

HB# Protocol. After a series of attempts to fix HB+ and render it immune to the GRS attack, Henri
Gilbert and his colleagues proposed HB# [GRS08]. They proved that HB# is secure against adversaries
similar to the ones considered by the GRS attack, as long as the LPN problem is hard. In addition, the
authors argued that HB# was secure against general man-in-the-middle adversaries. This conjecture
eventually turned out to be false, as the OOV (Ouafi, Overbeck, and Vaudenay) attack on HB# showed
[OOV08].

Let X ∈ Fkx×m2 and Y ∈ Fky×m2 be Toeplitz matrices.

5. rejection of the honest prover



5.1 Lightweight Cryptography for Embedded Devices 103

Tag(X,Y ) Reader(X,Y )

b← {0, 1}ky
b−−−−−−−−−−→

a← {0, 1}kx
a←−−−−−−−−−−

ν ← {0, 1}m s.t. Pr[νi = 1] = η
z ← a ·X ⊕ b · Y ⊕ ν

z−−−−−−−−−−→
Verify that h(a ·X + b · Y ⊕ z) ≤ t

Figure 5.4: A round of the HB# protocol.

hHB. Given the attacks on HB# various proposals of fixed variants appeared. The hHB protocol stands
for harder HB+. The core idea of it is to let the reader choose a random k-bit secret x and then to send
it to the tag securely. Hence, hHB consists of two stages. In the first stage the reader selects a random
secret x and transmits it to the tag. The second stage of hHB is identical to the HB+ protocol.

The function fs changes the order of elements in a triplet. For a complete definition of hHB, we refer the
reader to [Kho14]. The hHB protocol is presented in Figure 5.5.

The hHB protocol was designed to provide resistance to general Man-in-the-Middle adversaries. The
intuition behind this protocol is the belief that HB+ protocol’s weakness stems from not changing the
secrets x and y. Thus, a random number Γ generated by the reader replaces the two secrets.

Tag(s, y) Reader(s, y)

τ ← {0, 1}, ξ0 ← {0, 1}, ξ1 ← {0, 1}
(τ, ξ0, ξ1)← f−1

s (α, β, γ, 0|s|) (α,β,γ)←−−−−−−−−−− (α, β, γ)← fs(τ, ξ0, ξ1, 0|s|)
θ ← ξr θ ← ξr
p0 ← θ|s| p0 ← θ|s|

Repeat k times
τ ← {0, 1}, ξ0 ← {0, 1}, ξ1 ← {0, 1}

(τ, ξ0, ξ1)← f−1
s (α, β, γ, pi−1) (α,β,γ)←−−−−−−−−−− (α, β, γ)← fs(τ, ξ0, ξ1, pi−1)

xi ← ξr xi ← ξr
pi ← x1x2...(xi)|s|−i+1 pi ← x1x2...(xi)|s|−i+1

Repeat r times

b← {0, 1}k
b−−−−−−−−−−→

a← {0, 1}k
a←−−−−−−−−−−

ν ← Berε
z ← a · x⊕ b · y ⊕ ν

z−−−−−−−−−−→
Verify that a · x+ b · y = z

Figure 5.5: The hHB protocol.



104 Algorithms for Embedded Cryptography 5.2

5.2 Double-Speed Barrett Moduli

We will now present a method allowing to double the speed of Barrett’s algorithm by using specific
composite moduli. As already addressed in Section 5, computational speed-ups are particularly useful
for lightweight devices where such optimizations can make a difference in terms of power consumption,
cost and processing time. The generation of composite moduli with a predetermined portion is a well-
known technique [Joy08, Len98, VZ95] and the use of such moduli is considered, in statu scientiæ, as safe
as using randomly generated composite moduli.

Related Work: Quisquater [Qui92] proposes a fast RSA encryption implementation for which the
modular exponentiation step is divided into two successive operations allowing quasi-reduction based
on a predetermined multiple of the modulus. A fast exponentiation method modulo a prime number for
discrete logarithm based systems is presented by van Tilbourg in [vT91]. Douguet and Dupaquis [DD08]
describe a modified Barrett modular reduction algorithm whose purpose is the acceleration of this type
of operation in certain (elliptic curve) groups of known moduli. Thus, the approach they consider implies
moduli with a given form, e.g. the recommended ones from [fip00]. Estimations of the speed-ups are not
provided, but the resistance of various architectures to different physical attacks is discussed. A general
form of the Barrett constant and of the quotients (when certain moduli are used) are described. As an
example of the proposed techniques, the Elliptic Curve Digital Signature Algorithm (ECDSA) [fip13] is
taken into account.

We stress that no specific modulus generation algorithm is presented in [DD08]. The approach of [DD08]
is rather a practical one, whereas our goal is to provide formal mathematical models for moduli with a
predetermined portion generation.

Knežević, Batina and Verbauwhede [KBV09] propose two sets of moduli for which Barrett’s modular
reduction algorithm can be implemented by avoiding the pre-computation of the Barrett constant. The
types of moduli considered throughout this section do not fall into those sets.

Organisation: Section 5.2.2 recalls background concerning composite moduli a predetermined portion.
Section 5.2.3 introduces the core idea, that leverages Section 5.2.2 to generate Barrett-friendly RSA moduli.
In Section 5.2.4, we apply this idea to other cryptographic primitives, such as DSA [fip13].

5.2.1 Barrett’s Reduction Algorithm

Modular multiplication and modular reduction are the atomic constituents of most public-key cryptosys-
tems. Amongst the numerous algorithms for performing these operations (e.g. [BGV94, Bri83, Knu81,
Mon85]), a particularly elegant method was proposed by Barrett in [Bar87]. This method assembles the
operation a mod b from bit shifts, multiplications and additions in Z. This allows to build modular reduc-
tion at very marginal code or silicon costs by leveraging existing hardware or software multipliers. For a
very detailed comparison of the principal modular reduction strategies, we refer the reader to [BGV94].

Notations. For a given a, let ‖a‖ = 1 + blog2 ac = dlog2 (a+ 1)e. That is, ‖a‖ will denote the bit-length
of a throughout the next two sections. a|b will represent the concatenation of the bit-strings a and b.

x� y will denote binary shift-to-the-right of x by y places i.e.:

x� y =
⌊ x

2y
⌋
.

Barrett’s algorithm (Algorithm 11) approximates the result c = d mod n by a quasi-reduced number
c + εn where 0 ≤ ε ≤ 2. We denote N = ‖n‖ , D = ‖d‖ and set a maximal bit-length reduction capacity
L such that N ≤ D ≤ L. The algorithm will function as long as D ≤ L. In most implementations
D = L = 2N . The algorithm uses the pre-computed constant κ = b2L/nc that depends only on n and L.
The reader is referred to [Bar87] for a proof and a thorough analysis of this algorithm.



5.2 Double-Speed Barrett Moduli 105

Algorithm 11: Barrett’s Algorithm

Input: n < 2N , d < 2D, κ =
⌊

2L
n

⌋
where N ≤ D ≤ L

Output: c = d mod n
1 c1 ← d� (N − 1)
2 c2 ← c1κ

3 c3 ← c2 � (L−N + 1)
4 c4 ← d− nc3
5 while c4 ≥ n do
6 c4 ← c4 − n
7 end while

8 return c4

Example 5.1 Our goal is to reduce 8619 mod 93. The correct result should be 63.

n = 93 ⇒ N = 7

κ =
⌊

232

n

⌋
=10110000001011000000101100

d = 8619 =10000110101011
c1 =10000110101011 = 10000110
c2 =101110000110111000011011100001000
c3 =1011100 00110111000011011100001000 =1011100
nc3 =10000101101100
c4 = 63

Work Factor: ‖c1‖ = D − N + 1 ' D − N and ‖κ‖ = L − N hence their product requires w =
(D−N)(L−N) elementary operations. ‖c3‖ = (D−N) + (L−N)− (L−N + 1) = D−N − 1 ' D−N .
The product nc3 will therefore claim w′ = (D −N)N elementary operations. All in all, work amounts to
w + w′ = (D −N)(L−N) + (D −N)N = (D −N)L.

The results presented in Section 5.2 lead to the halving of this work factor.

5.2.1.1 Dynamic Constant Scaling

Lemma 5.1 If U ≤ L, then κ̄ = κ� U =
⌊

2L−U

n

⌋
.

Proof: ∃ α < 2U and β < n (integers) verifying: κ̄ = κ

2U −
α

2U and κ = 2L

n
− β

n
.

Therefore,

min
αβ

(
2L−U

n
− β + αn

2Un

)
≤ κ̄ = 2L−U

n
− β + αn

2Un ≤ max
α,β

(
2L−U

n
− β + αn

2Un

)
and finally,

2L−U

n
− 1 < 2L−U

n
− 1 + 1

2Un ≤ κ̄ ≤
2L−U

n
.

2



106 Algorithms for Embedded Cryptography 5.2

Work factor: We know now that κ̄ = κ� L−D. Let c5 = D −N + 1. Replacing step 4 of Algorithm
11 with

c6 ← d− n(κ̄c1 � c5),

the multiplication of c1 by κ̄ (κ adjusted to D −N bits, shifting by L−D bits to the right), will be done
in O((D −N)2).

Hence, the new work factor decreases to (D −N)2 +N(D −N) = (D −N)D.

5.2.2 Moduli with a Predetermined Portion

RSA [RSA78] moduli with a predetermined portion are used to reduce storage requirements or com-
putations. As mentioned before, such moduli are presently not known to be cryptographically weaker
than randomly chosen ones. The first techniques for generating composite moduli were proposed
by Vanstone and Zuccherato [VZ95] who presented various ways of specifying N/4 ≤ ` ≤ N/2 bits
of n. Lenstra [Len98] proposed more advanced techniques for specifying up to N/2 bits. Based on
Lenstra’s algorithms, Joye proposed new techniques in [Joy08]. Further works in the area include, for
instance, [Kno88, Mei91, Shp06]. We will hereafter recall the method described by Joye (Algorithm
12)which is a small variation of Lenstra’s algorithm presented in [Joy08], that perfectly fits our purpose 6.

Joye’s Method. The purpose of Lenstra’s technique modified by Joye is to obtain an RSA modulus n
with a predetermined leading part nh. Letting ‖nh‖ = H , we have:

n = nh2N−H + n`, for some 0 < n` < 2N−H (5.1)

The algorithm uses the function NextPrime(x) that returns the prime following x (if x is prime then
x = NextPrime(x)). Note that because the gap between x and NextPrime(x) is unpredictable, the
algorithm may fail to return an n of the form n = nh2N−H +n` and will have to be re-launched. We refer
the reader to [Len98] for a more formal analysis of this process.

Lemma 5.2 (Bounding n and ω) Consider the parameters used in Algorithm 12 and let m = q − ω. Then,
n < nh2N−H + (1 +m)(2N−H − 1) and ω < 2H+1 + 1.

Proof: By definition:

ω =
⌈
η

p

⌉
⇒ ∃ α < p such that ω = η

p
+ α

p

Substituting the value of η, we get:

ω = nh2N−H

p
+ α

p
⇒ q = ω +m = nh2N−H

p
+ α

p
+m

Thus:

n = pq = nh2N−H + α+mp < nh2N−H + (1 +m)p < nh2N−H + (1 +m)(2N−H − 1)

And upper bounding ω we get:

ω <
η

p
+ 1 = nh2N−H

p
+ 1 < nh2N−H

2N−H−1 + 1 = 2nh + 1 < 2H+1 + 1

Note that the most significant bit of p must be set to 1, i.e. 2N−H−1 < p < 2N−H − 1.

2

It follows directly from Lemma 5.2 that:

q = NextPrime[ω] ≤ NextPrime[2H+1 + 1].

6. For the sake of clarity we remove all tests meant to enforce the condition GCD(e, φ(n)) = 1.



5.2 Double-Speed Barrett Moduli 107

Table 5.1: Success rates of Algorithm 12 for N = 1024, H = 512 and 104 experiments.
τ 0 1 2 3 4
‖n̄h‖ 503 502 501 500 499

success rate 85.66% 97.96% 99.96% 100% 100%

Algorithm 12: Joye’s method

Input: N,H ≤ N/2, nh < 2H

Output: n = nh2N−H + n`, such that 0 < n` < 2N−H

1 Generate a random prime p, such that 2N−H−1 < p < 2N−H − 1

2 η ← nh2N−H

3 ω ←
⌈
η
p

⌉
4 q ← NextPrime(ω)
5 n← pq

6 return n

Applying the Prime Number Theorem, we find that m ' ln (2H+1 + 1) ' 0.7(H + 1). In other words,
the log2(m + 1) ' log2(0.7H + 1.7) < log2H least significant bits of nh are likely to get polluted. We
hence rectify the size of nh to H − τ − log2H where τ ∈ N is a parameter allowing to reduce the failure
probability of Algorithm 12 at the cost of further shortening nh. For the sake of clarity, we do not
integrate these fine-tunings in the description of Algorithm 12 but consider that nh is composed of a
“real” prescribed pattern n̄h of sizeH−τ−dlog2He bits right-padded with τ+dlog2He zero bits. Various
success rates for N = 1024, H = 512 are given in Table 5.1. Based on those we recommend to set τ = 0 or
τ = 1 and re-launch the generation process if the algorithm fails.

Note. The algorithm’s theoretical analysis could be simplified and the failure rate improved if step (4)
of Algorithm 12 is replaced by: “If ω is composite then goto 1; else q ← ω”. The quality of the generated
primes will also become theoretically uniform because NextPrime favors primes pi whose distance from
the previous prime pi−1 is large. This modification will, however, come at the cost of more computation
time. The same note is applicable to Algorithm 13 as well.

5.2.3 Barrett-Friendly Moduli

We note that both multiplications in Algorithm 11 are multiplications by n and κ. It is known (e.g. [Ber86])
that multiplications by constants can be performed faster than multiplications by arbitrary integers.
Our goal is to generate 1 a composite n 2 whose leading bits do not need to be multiplied and 3

whose associated κ also features a most significant part that does not need to be multiplied. As for the
least significant parts of n and κ, these are constants and can hence independently benefit of speed-up
techniques such as [Ber86]. The algorithm is given for the very common setting L = D = 2N . For
convenience we introduce a bit-length unit U such that L = 2N = 4U .

Example 5.2 Let N = 100 and L = 200:

r = 1ace38e78e29f η = 8000000000001ace38e78e29f
p = 322a28626f0a7 ω = 28d356763fe4a
q = 51a6acec7fcd5 n = 80000000000a8c93071ac14d9

κ = 1ffffffffffd5cdb3e394fe440

Lemma 5.3 If 0 < x < 2P/2−1, then
⌊

22P

2P−1+x

⌋
= 2P+1 − 4x.



108 Algorithms for Embedded Cryptography 5.2

Algorithm 13: Barrett-friendly modulus generator
Input: L = 2N = 4U
Output: n, an RSA modulus such that 2N−1 < n < 2N−1 + (0.7U + 2)(2U − 1) whose associated κ is

such that 2N+1 − 2U+1(1 + 0.7U) < κ < 2N+1

1 Generate a random integer r such that 2U−1 < r < 2U − 1;
2 η ← 2N−1 + r

3 Generate a random prime p such that 2U−1 < p < 2U − 1

4 ω ←
⌈
η
p

⌉
5 q ← NextPrime(ω)
6 n← pq

7 return n

Proof: Observe that:
22P

2P−1 + x
− (2P+1 − 4x) = 4x2

2P−1 + x
. (5.2)

Furthermore,
4x2

2P−1 + x
< 1⇔ 4x2 − x < 2P−1

This is a polynomial of degree 2, that has one positive and one negative root. We assumed x > 0,
therefore we only need to consider the positive root xmax:

xmax = 1
8

(
1 +

√
1 + 2P+4

)
> 2P/2−1

Therefore, if x < 2P/2−1, then the fraction in equation 5.2 is smaller than one. As a consequence, we have⌊
22P

2P−1 + x
− (2P+1 − 4x)

⌋
=
⌊

22P

2P−1 + x

⌋
− (2P+1 − 4x) = 0,

as 2P+1 − 4x is an integer. 2

Lemma 5.4 (Bounding n, ω and κ in Algorithm 13) Consider the parameters used in Algorithm 13 and let
m = q − ω. Then, n < 2N−1 + (2 +m)(2U − 1), 2N+1 − 2U+1(1 +m) < κ < 2N+1 and ω < 2U + 2.

Proof: By definition:

ω =
⌈
η

p

⌉
, thus ∃ α < p such that ω = η

p
+ α

p
.

Substituting the value of η, we get:

ω = 2N−1 + r

p
+ α

p
⇒ q = ω +m = 2N−1

p
+ r

p
+ α

p
+m.

Thus:
n = pq = 2N−1 + r + α+mp

⇓

n < 2N−1 + r + (1 +m)p < 2N−1 + 2U − 1 + (1 +m)(2U − 1) < 2N−1 + (2 +m)(2U − 1).

We observe that

2N−1 + r + α+mp ≤ 2N−1 + r +mp⇒ 1
2N−1 + r + α+mp

≥ 1
2N−1 + r +mp

.



5.2 Double-Speed Barrett Moduli 109

Table 5.2: Success rates of Algorithm 13 for N = 1024, U = 512 and 104 experiments.
τ 0 1 2 3 4
‖n̄h‖ 503 502 501 500 499

success rate 85.16% 97.51% 99.91% 100% 100%

Bounding κ we obtain:

κ =
⌊

2L

n

⌋
>

2L

n
− 1 ≥ 2L

2N−1 + r +mp
− 1,

Now observe that r +mp < 2N−1, therefore we can write

2L

2N−1 + r +mp
= 22N

2N−1 + r +mp
= 2N+1 1

1 + 21−N (r +mp) = 2N+1
∞∑
`=0

(−2)`(1−N)(r +mp)`

This series is convergent, alternating, and the term is strictly decreasing, therefore its sum is bounded
below (respectively above) by the partial sum of odd (respectively even) degree S`. As a consequence,

κ > S1 − 1 = 2N+1 (1− 21−N (r + pm)
)
− 1 = 2N+1 − 4(r + pm)− 1 > 2N+1 − 2U+1(1 +m).

We observe that

2N−1 + r + α+mp > 2N−1 ⇒ 1
2N−1 + r + α+mp

<
1

2N−1 .

Thus:

κ ≤ 2L

n
= 2L

2N−1 + r + α+mp
<

2L

2N−1 < 2N+1.

Upper bounding ω we get:

ω <
η

p
+ 1 = 2N−1 + r

p
+ 1 < 2N−1 + 2U−1

2U−1 + 1 = 2N−1−U+1 + 1 + 1 < 2U + 2.

Note that the most significant bit of p must be set to 1, i.e. 2U−1 < p < 2U − 1. 2

It follows directly from Lemma 5.4 that:

q = NextPrime[ω] ≤ NextPrime[2U + 2] = NextPrime[2U + 1].

Let nh denote the predetermined portion of n, i.e. nh = 2U−1. Applying the Prime Number Theorem, we
obtainm ' ln (2U + 1) ' 0.7U . Put differently, the log2(m+2) ' log2(0.7U+2) < log2 U least significant
bits of nh are likely to get polluted. We hence rectify the size of nh to U − τ − log2 U where τ ∈ N is a
parameter allowing to reduce the failure probability of Algorithm 13 at the cost of further shortening
nh. For the sake of clarity, we do not integrate these fine-tunings in the description of Algorithm 13 but
consider that nh is composed of a “real” prescribed pattern n̄h of size U − τ − dlog2 Ue bits right-padded
with τ + dlog2 Ue zero bits. Various success rates for N = 1024, U = 512 are given in Table 5.2. Based on
those we recommend to set τ = 0 or τ = 1 and re-launch the generation process if the algorithm fails.

It is easy to see that multiplication by both n and κ is not costly at all. To be more specific, n and κ satisfy
the inequalities:

2N−1 < n < 2N−1 + (0.7U + 2)(2U − 1) and 2N+1 − 2U+1(1 + 0.7U) < κ < 2N+1 .

As a result, this can double the speed of Barrett reduction 7.

7. A few more complexity bits can be grabbed if the variant described in the note at the end of Section 5.2.2 is used.



110 Algorithms for Embedded Cryptography 5.2

Algorithm 14: DSA prime generation
Input: Key lengths P and Q ≤ P .

Output: Parameters (p, q).

1 Choose a Q−bit prime q

2 Choose a P−bit prime modulus p such that p− 1 is a multiple of q

3 return (p, q)

Algorithm 15: Barrett-friendly DSA prime generation
Input: Key lengths P and Q ≤ P .

Output: Parameters (p, q).

1 Generate a Q−bit prime as follows:

2 q ← NextPrime(2Q−1)
3 Construct a P−bit prime modulus p such that p− 1 is a multiple of q in the following way:

4 i← 1

5 F ← 2P−Q−1

6 while p is composite do
7 p← 2q(F + i) + 1
8 i++
9 end while

10 return (p, q)

5.2.4 Extensions

The parameter generation phase of DL cryptosystems requires the generation of two primes (e.g. p and
q). Computations modulo these two primes represent important steps within the algorithms. Thus, a
modular reduction speedup is necessary. It is thus desirable that both p and q to contain significantly long
patterns (i.e. many successive 1s or 0s). We will now propose a Barrett-friendly parameter generation
approach to do so. For the sake of clarity, we choose a particular algorithm to describe our method: the
Digital Signature Algorithm (DSA).

5.2.4.1 Barrett-Friendly DSA Parameters Generation

DSA’s parameter generation is presented in Algorithm 14. For the complete description of the DSA, we
refer the reader to [fip13].

We suggest a modified DSA prime generation process leveraging the idea of Section 5.2.3. The procedure
is described in Algorithm 15.

Lemma 5.5 (Structure of κq) Let κq be the κ associated to q. With the notations of Algorithm 15, we have
κq = 2Q+1 − 4ω, assuming that ω < 2

Q
2 −1.

Proof: Let z = p−1
q and ω = q − 2Q−1. We observe that ‖z‖ = P −Q and q = 2Q−1 + ω. By definition,

κq =
⌊

2Lq
q

⌋
, where Lq = 2Q. As we assumed ω < 2

Q
2 −1, using Lemma 5.3 we have:

κq =
⌊

2LQ
q

⌋
=
⌊

22Q

2Q−1 + ω

⌋
= 2Q+1 − 4ω.

2



5.2 Double-Speed Barrett Moduli 111

The key consequence of Lemma 5.5 is that κq consists of a long pattern (a sequence of 1s) concatenated to
a short different sequence. The predetermined portion is the complement of qh = 2Q−Ω, where Ω = ‖ω‖.
The computation of κq is easy.

Let Lp = 2P . By definition, κp =
⌊

2Lp
p

⌋
.

Lemma 5.6 Let m(n) = 1
8

(
n+
√
n2 + 2P+3n

)
. Let x be a positive integer such that 0 < x < 2P−1 and

m(n) ≤ x < m(n+ 1). Then,⌊
22P

2P−1 + x

⌋
= 2P+1 − 4x+ n and 0 ≤ n < 2P .

Proof: The proof consists of writing the fraction as a geometric series:

κ =
⌊

22P

2P−1 + x

⌋
=
⌊

2P+1
∞∑
n=0

(−x)n2n(1−P )

⌋
=
⌊
2P+1 (1− 21−Px+ 22−2Px2 − 23−3Px3 + . . .

)⌋
=
⌊
2P+1 − 4x+ 23−Px2 − 24−2Px3 + . . .

⌋
Now, 2P+1 − 4x is always a positive integer, it can therefore be safely taken out of the floor function.
None of the remaining terms of the sum is an integer. We have:

κ = 2P+1 − 4x+
⌊ ∞∑
n=2

(−x)n2n(1−P )

⌋
.

The rightmost term is essentially a sum of shifted versions of powers of x. If x is small, then this
contribution quickly vanishes. We now provide an exact value for this sum, by rewriting:

κ = 2P+1 − 4x+
⌊

22−Px2 2P−1

2P−1 + x

⌋
= 2P+1 − 4x+

⌊
4x2

2P−1 + x

⌋
.

For any positive integer n, we have:

4x2

2P−1 + x
= n⇔ x = 1

8

(
n+

√
n2 + 2P+3n

)
.

We assumed x > 0, thus we only need to consider the positive root. The leftmost fraction is a strictly
increasing function of x as its derivative is > 0. Therefore, the rightmost formula strictly increases with
n.
Let m(n) = 1

8

(
n+
√
n2 + 2P+3n

)
and assume that m(n) ≤ x < m(n+ 1). Then, we have:

n ≤ 4x2

2P−1 + x
< n+ 1

Therefore: ⌊
4x2

2P−1 + x

⌋
= n.

Finally, x < 2P−1 implies an upper bound on the value of n, which must therefore be smaller than 2P . 2

An illustrative example for P = 1024 and Q = 160 is given next.

Example 5.3



112 Algorithms for Embedded Cryptography 5.2

ω = 299

ip = 1

Lq = 2 · 160

q = 2159 + 299

κq = 2163 − 4 · 299

Lp = 2 · 1024 = 211

p = (2864 + 2)q + 1 = (2864 + 2)(2159 + 299) + 1

x = 260 + 299 · 2864 + 2 · 299 + 1

κp = 271∑5
k=0 2159k(−299)6−k − 2162 + 2387

Thus, multiplication by p, q, κp and κq is easy.



5.3 Applying Cryptographic Techniques to Error Correction 113

5.3 Applying Cryptographic Techniques to Error Correction

5.3.1 From Modular Reduction to Polynomial Reduction

Modular reduction (e.g. [BGV94, Bri83, Knu81, Mon85]) is the basic building block of many public-key
cryptosystems. We refer the reader to [BGV94] for a detailed comparison of various modular reduction
strategies.

BCH codes are widely used for error correction in digital systems, memory devices and computer
networks. For example, the shortened BCH (48,36,5) was accepted by the U.S. Telecommunications
Industry Association as a standard for the cellular Time Division Multiple Access protocol (TDMA)
[Shp06]. Another example is BCH(511, 493) which was adopted by International Telecommunication
Union as a standard for video conferencing and video phone codecs (Rec. H.26) [Len98]. BCH codes
require repeated polynomial reductions modulo the same constant polynomial. This is conceptually very
similar to the implementation of public-key cryptography where repeated modular reduction in Zn or
Zp are required for some fixed n or p [Bar87].

It is hence natural to try and transfer the modular reduction expertise developed by cryptographers
during the past decades to obtain new BCH speed-up strategies. This work focuses on the "polyno-
mialization" of Barrett’s modular reduction algorithm [Bar87]. Barrett’s method creates the operation
a mod b from bit shifts, multiplications and additions in Z. This allows to build modular reduction at
very marginal code or silicon costs by leveraging existing hardware or software multipliers.

Reduction modulo fixed multivariate polynomials is also very useful in other fields such as robotics and
computer algebra (e.g. for computing Gröbner bases).

Organisation: Section 5.3.1.3 presents our main theoretical results, i.e. a polynomial variant of [Bar87].
Section 5.3.1.6 recalls the basics of BCH error correcting codes (ECC). Section 5.3.1.6 also describes the
integration of the Barrett polynomial variant in a BCH circuit and provides benchmark results.

5.3.1.1 Orders

Definition 5.2 (Monomial Order) Let P, Q and R be three monomials in ν variables. We say that � is a
monomial order if the following conditions are fulfilled:

– P � 1
– P �Q⇒ ∀R, PR � QR

Example 5.4 It is straightforward that the lexicographic order on exponent vectors and defined by

ν∏
i=1

xai �
ν∏
i=1

xbi ⇔ ∃ i, aj = bj for i < j and ai > bi

is a monomial order. We denote it by �.

5.3.1.2 Terminology

Let P =
α∑
i=0

pi

ν∏
j=1

x
yj,i
j ∈ Q[x].

1 The leading term of P according to �, will be denoted by lt(P ) = p0

ν∏
j=1

x
yj,0
j .

2 The leading coefficient of P according to � will be denoted by lc(P ) = p0 ∈ Q.

3 The quotient
lt(P )
lc(P ) =

ν∏
j=1

x
yj,0
j is the leading monomial of P according to �. We denote it by lm(P ).



114 Algorithms for Embedded Cryptography 5.3

The above notations allow to generalize the notion of degree to exponent vectors:

deg(P ) = y0 = 〈y0,0, . . . , yν,0〉 .

Example 5.5 For � and P (x, y) = 2x2
1x

2
2 + 11x1 + 15, we have that:

lt(P ) = 2x2
1x

2
2, lm(P ) = x2

1x
2
2 and lc(P ) = 2 .

5.3.1.3 Barrett’s Algorithm for Multivariate Polynomials

We will now adapt Barrett’s algorithm to Q[x].

Barrett’s algorithm and Lemma 5.1 can be generalised to Q[x], by shifting polynomials instead of shifting
integers.

Definition 5.3 (Polynomial Right Shift) Let P =
∑α
i=0 pi

∏ν
j=1 x

yj,i
j ∈ Q[x] and a = 〈a1, a2, ..., aν〉 ∈

Nν . We denote

P � a =
∑
ϕ(a)

pi

ν∏
j=1

x
yj,i−ai
j ∈ Q[x], where ϕ(a) = {i, ∀j, yi,j ≥ ai} .

Example 5.6

If P (x) = 17x7 + 26x6 + 37x4 + 48x3 + 11, then P � 〈5〉 = 17x2 + 26x .

Theorem 5.7 (Barrett’s Algorithm for Polynomials) Let:

– P =
α∑
i=0

pi

ν∏
j=1

x
yj,0
j ∈ Q[x] and Q =

β∑
i=0

qi

ν∏
j=1

x
wj,i
j ∈ Q[x] s.t. lm(Q) � lm(P )

– L ≥ max (wi,j) ∈ N, h(L) =
ν∏
j=1

xLj and K =
⌊
h(L)
P

⌋
– y0 = 〈y1,0, y2,0, ..., yν,0〉 ∈ Nν

Given the above notations, (K(Q� y0))� (〈Lν〉 − y0) =
⌊
Q

P

⌋
.

Proof: Let G = h(L) mod P and B = (K(Q� y0)) = h(L)−G
P

⌊
Q

lm(P )

⌋
.

⇓

B =

∑
ϕ(y0)

qi

ν∏
j=1

x
L+wj,i−yj,0
j −G

∑
ϕ(y0)

qi

ν∏
j=1

x
wj,i−yj,0
j

P
.

Applying the definition of "�", we obtain

B � (〈L〉ν − y0) = deg≥0

Qϕ(y0) −G
∑
ϕ(y0)

qi

ν∏
j=1

xwj,i−L

P
, where 0 = 〈0〉ν .

Thus,

B � (〈Lν〉 − y0) =
⌊
Qϕ(y0)

P

⌋
− deg≥0

G

P

∑
ϕ(y0)

qi

ν∏
j=1

xwj,i−L =
⌊
Qϕ(y0)

P

⌋
.

We know that

P �G and L ≥ max (wi,j), therefore deg≥0
G

P

∑
ϕ(y0)

qi

ν∏
j=1

xwj,i−L = 0 .



5.3 Applying Cryptographic Techniques to Error Correction 115

Let Q̄ be the irreducible polynomial with respect to P , obtained by removing from Q the terms that
exceed lm(P ). ⌊

Qϕ(y)

P

⌋
=
Qϕ(y) − (Qϕ(y) mod P )

P
= (Q− Q̄)((Q− Q̄) mod P )

P
.

Hence,

B � (〈L〉ν − y0) = (Q− Q̄)((Q− Q̄) mod P )
P

⇓

B � (〈L〉ν − y0) =
⌊
Q

P

⌋
− Q̄− Q̄ mod P

P
=
⌊
Q

P

⌋
.

2

Algorithm 16: Polynomial Barrett Algorithm
Input: P,Q ∈ Q[x] s.t. P �Q

h(L) = xL,y0 = degP and K = h(L) mod P, where degQ ≤ 〈L, . . . , L〉
Output: R = Q mod P

1 B ← (K(Q� y0))� (L− y0)
2 R← Q−BP
3 return R

Remark. Let Q =
α∑
i=0

qi,j

ν∏
j=1

x
wj,i
j , K =

β∑
i=0

ki,j

ν∏
j=1

x
tj,i
j , y = 〈y1, ..., yν〉 and z = 〈z1, ..., zν〉.

Let us have a closer look at the expression B = (K(Q� y))� z.

Given the final shifting by z, the multiplication of K by Q� y can be optimised by being only partially
accomplished. Indeed, during multiplication, we only have to form monomials whose exponent vectors
b = wi + ti′ − y− z = 〈b1, ..., bν〉 are such that bj ≥ 0 for 1 ≤ j ≤ ν.

We implicitly apply the above in the following example.

Example 5.7 Let

� = �

P = x2
1x

2
2 + x2

1 + 2x1x
2
2 + 2x1x2 + x1 + 1

Q = x3
1x

3
2 − 2x3

1 + x2
2x

2
2 + 3.

We let L = 6 and we observe that ν = 2. We pre-compute K:

K = x4
1x

4
2 − x4

1x
2
2 + x4

1 − 2x3
1x

4
2 − 2x3

1x
3
2 + 3x3

1x
2
2 + 4x3

1x2 − 4x3
1+

4x2
1x

4
2 + 8x2

1x
3
2 − 5x2

1x
2
2 − 20x2

1x2 + 3x2
1 − 8x1x

4
2 − 24x1x

3
2+

68x1x2 + 36x1 + 16x4
2 + 64x3

2 + 36x2
2 − 184x2 − 239.

We first shift Q by y0 = 〈2, 2〉, which is the vector of exponents for lm(P ).

Q� y0 = (x3
1x

3
2 − 2x3

1 + x2
2x

2
2 + 3)� 〈2, 2〉 = (x1x2 + 1) .

Then, we compute K(x1x2 + 1) = x5
1x

5
2 − 2x4

1x
5
2 − x4y4 + {terms ≺ x4

1x
4
2}.



116 Algorithms for Embedded Cryptography 5.3

This result shifted by 〈L〉ν − y0 = 〈6, 6〉 − 〈2, 2〉 = 〈4, 4〉 to the right gives:

A = x5
1x

5
2 − 2x4

1x
5
2 − x4y4 + {terms � x4

1x
4
2} � 〈4, 4〉 = x1x2 − 2x2 − 1 .

It is easy to verify that:
Q− PA =

= (x3
1x

3
2 − 2x3

1 + x2
1x

2
2 + 3)− (x2

1x
2
2 + x2

1 + 2x1x
2
2 + 2x1x2 + x1 + 1)(x1x2 − 2x2 − 1)

⇓
Q− PA = 4x1x

3
2 + 6x1x

2
2 − x3

1x2 + x2
1x2 + 3x1x2 + 2x2 − 2x3

1 + x2
1 + x1 + 4 ≺ P .

5.3.1.4 Polynomial Barrett Complexity.

We decompose the algorithm’s analysis into steps and determine at each step the cost and the size of
the result. Size is measured in the number of terms. In all the following we assume that polynomial
multiplication is performed using traditional cross product. Faster (e.g. ν-dimensional FFT [TAL93])
polynomial multiplication strategies may grandly improve the following complexities for asymptotically
increasing L and ν.

Given our focus on on-line operations we do not count the effort required to compute K (that we assume
given). We also do not account for the partial multiplication trick for the sake of clarity and conciseness.

Let ω ∈ Zν , in this appendix we denote by ||ω|| the quantity

||ω|| =
ν∏
j=1

ωj ∈ Z .

1. Q� y0.

(a) Cost: lm(Q) is at most 〈L, ..., L〉 hence Q has at most Lν monomials. Shifting discards all
monomials having exponent vectors ω for which ∃ j such that ωj < yj,0. The number of such
discarded monomials is O(||y0||), hence the overall complexity of this step is:

cost1 = O((Lν − ||y0||)ν) = O((Lν −
ν∏
j=1

yj,0)ν) .

(b) Size: The number of monomials remaining after the shift is

size1 = O(Lν − ||y0||) = O(Lν −
ν∏
j=1

yj,0) .

2. K(Q� y0).

BecauseK is the result of the division of h(L) =
ν∏
j=1

xLj by P , the leading term ofK has an exponent

vector equal to L− y0. This means that K’s second biggest term can be xL−y1,0
1

ν∏
j=2

xLj . Hence, the

size of K is
sizeK = O((L− y1,0)Lν−1) .

(a) Cost: The cost of computing K(Q� y0) is

cost2 = O(ν × size1 × sizeK) .

(b) Size: The size of K(Q� y0) is determined by lm(K(Q� y0)) = lm(K)×lm(Q� y0) which
has the exponent vector u = (L− y0) + 〈L− y1,0, L, ..., L〉.

size2 = O(||u||) = O(2(L− y1,0)
ν∏
j=2

(2L− yj,0))

= O((L− y1,0)
ν∏
j=2

(2L− yj,0)).



5.3 Applying Cryptographic Techniques to Error Correction 117

3. B = (K(Q� y0))� (L− y0)

(a) Cost: The number of discarded monomials is O(||L− y0||), hence the cost of this step is

cost3 = O((2(L− y1,0)
ν∏
j=2

(2L− yj,0)−
ν∏
j=1

(L− yj,0))ν) .

(b) Size: The leading monomial of B has the exponent vector u − L − y0 which is equal to
〈L− y1,0, L, ..., L〉. We thus have sizeB = sizeK .

4. BP
The cost of this step is

cost4 = O(ν × sizeB × sizeP ) = O(ν × sizeB × ||y0||) .

5. Final subtraction Q−BP
The cost of polynomial subtraction is negligible with respect to cost4.

6. Overall complexity
The algorithm’s overall complexity is hence

max(cost1, cost2, cost3, cost4) = cost2 .

5.3.1.5 Dynamic Constant Scaling in C[X]

Lemma 5.8 If 0 ≤ u ≤ L, then K̄ = K � 〈u〉ν =
⌊
h(L−u)

P

⌋
.

Proof: K =
⌊
h(L)
P

⌋
⇒ K = h(L)− h(L) mod P

P
.

Let G = h(L) mod P ⇒ K =

ν∏
j=1

xj
L −G

P
.

Since

〈u〉ν ∈ Nν ⇒ K � 〈u〉ν = deg≥0

ν∏
j=1

xj
L−u −Gϕ(〈u〉ν)

P

⇓

K � 〈u〉ν = deg≥0

ν∏
j=1

xj
L−u

P
− deg≥0

Gϕ(〈u〉ν)

P
.

We know that P �G, thus P �Gϕ(〈u〉ν), thus deg≥0
Gϕ(〈u〉ν)

P
= 0 .

Finally,

K � 〈u〉ν =
⌊∏ν

j=1 xj
L−u

P

⌋
=
⌊
h(L− u)

P

⌋
.

2



118 Algorithms for Embedded Cryptography 5.3

Example 5.8 Let

� = �

P = x2
1x

2
2 + x2

1 + 2x1x
2
2 + 2x1x2 + x1 + 1

Q = x3
1x

3
2 − 2x3

1 + x2
2x

2
2 + 3.

We let u = 4 and we observe that ν = 2. We pre-compute K̄:

K̄ = x2
1x

2
2 − x2

1 − 2x1x
2
2 − 2x1x2 + 3x1 + 4x2

2 + 8x2 − 5.

We first shift Q by y0 = 〈2, 2〉, which is the vector of exponents for lm(P ).

Q� y0 = (x3
1x

3
2 − 2x3

1 + x2
2x

2
2 + 3)� 〈2, 2〉 = (x1x2 + 1) .

Then, we compute K̄(x1x2 + 1) = x3
1x

3
2 − 2x2

1x
3
2 − x2

1x
2
2 + {terms ≺ x2

1x
2
2}.

This result shifted by 〈u〉ν − y0 = 〈4, 4〉 − 〈2, 2〉 = 〈2, 2〉 to the right gives:

A = x3
1x

3
2 − 2x2

1x
3
2 − x2

1x
2
2 + {terms � x2

1x
2
2} � 〈2, 2〉 = x1x2 − 2x2 − 1 .

It is easy to verify that:
Q− PA =

= (x3
1x

3
2 − 2x3

1 + x2
1x

2
2 + 3)− (x2

1x
2
2 + x2

1 + 2x1x
2
2 + 2x1x2 + x1 + 1)(x1x2 − 2x2 − 1)

⇓

Q− PA = 4x1x
3
2 + 6x1x

2
2 − x3

1x2 + x2
1x2 + 3x1x2 + 2x2 − 2x3

1 + x2
1 + x1 + 4 ≺ P .

5.3.1.6 Application to BCH Codes

General Remarks.
BCH codes are cyclic codes that form a large class of multiple random error-correcting codes. Originally

discovered as binary codes of length 2m − 1, BCH codes were subsequently extended to non-binary
settings. Binary BCH codes are a generalization of Hamming codes, discovered by Hocquenghem, Bose
and Chaudhuri [Ber86, Bri83] featuring a better error correction capability. Gorestein and Zierler [Joy08]
generalised BCH codes to pm symbols, for p prime. Two important BCH code sub-classes exist. Typical
representatives of these sub-classes are Hamming codes (binary BCH) and Reed Solomon codes (non-
binary BCH).

Terminology.
We further refer to the vectors of an error correction code as codewords. The codewords’ size is called

the length of the code. The distance between two codewords is the number of coordinates at which they
differ. The minimum distance of a code is the minimum distance between two codewords.

Recall that a primitive element of a finite field is a generator of the multiplicative group of the field.

5.3.1.6.1 BCH Preliminaries.

Definition 5.4 Let m ≥ 3. For a length n = 2m − 1, a distance d and a primitive element α ∈ F∗2m , we define
the binary BCH code:

BCH(n, d) = {(c0, c1, ..., cn−1) ∈ Fn2 | c(x) =
n−1∑
i=0

cix
i satisfies

c(α) = c(α2) = ... = c(αd−1) = 0} .



5.3 Applying Cryptographic Techniques to Error Correction 119

Let m ≥ 3 and 0 < t < 2m−1 be two integers. There exists a binary BCH code (called a t−error correcting
BCH code) with parameters n = 2m−1 (the block length), n−k ≤ mt (the number of parity-check digits)
and d ≥ 2t+ 1 (the minimum distance).

Definition 5.5 Let α be a primitive element in F2m . The generator polynomial g(x) ∈ F2[x] of the t−error-
correcting BCH code of length 2m−1 is the lowest-degree polynomial in F2[x] having roots α, α2, ..., α2t.

The degree of g(x), which is the number of parity-check digits n− k, is at most mt.

Let i ∈ N and denote i = 2rj for odd j and r ≥ 1. Then αi = (αj)2r is a conjugate of αj which implies
that αi and αj have the same minimal polynomial, and therefore φi(x) = φj(x). Consequently, the
generator polynomial g(x) of the t-error correcting BCH code can be written as follow:

g(x) = lcm{φ1(x), φ3(x), φ5(x), ..., φ2t−1(x)} .

Definition 5.6 (Codeword) An n−tuple c = (c0, c1, ..., cn−1) ∈ F2n is a codeword if the polynomial c(x) =∑
cix

i has α, α2, ..., α2t as its roots.

Definition 5.7 (Dual Code) Given a linear code C ⊂ Fnq of length n, the dual code of C (denoted by C⊥) is
defined to be the set of those vectors in Fnq which are orthogonal 8 to every codeword of C, i.e.:

C⊥ = {v ∈ Fnq |v · c = 0,∀c ∈ C} .

As αi is a root of c(x) for 1 ≤ i ≤ 2t, then c(αi) =
∑
ciα

ij . This equality can be written as a matrix
product and results in the next property:

Property: If c = (c0, c1, ..., cn−1) is a codeword, then the parity-check matrix H of this code satisfies
c ·HT = 0, where:

H =


1 α α2 . . . αn−1

1 α2 (α2)2 . . . (α2)n−1

1 α3 (α3)2 . . . (α3)n−1

...
...

...
...

1 α2t (α2t)2 . . . (α2t)n−1

 .

If c ·HT = 0, then c(αi) = 0.

Remark A parity check matrix of a linear block code is a generator matrix of the dual code. Therefore,
c must be a codeword of the t−error correcting BCH code. If each entry of H is replaced by its cor-
responding m−tuple over F2 arranged in column form, we obtain a binary parity-check matrix for the
code.

Definition 5.8 (Systematic Encoding) In systematic encoding, information and check bits are concatenated to
form the message transmitted over the noisy channel.

The speed-up we described applies to systematic BCH coding only.

Consider an (n, k) BCH code. Let m(x) be the information polynomial to be coded and m′xn−k = m(x).

We can write m′(x) as m(x)g(x) + b(x).

The message m(x) is coded as c(x) = m′(x)− b(x) 9.

BCH Decoding. Syndrome decoding is a decoding process for linear codes using the parity-check matrix.

Definition 5.9 (Syndrome) Let c be the emitted word and r the received one. We call the quantity S(r) = r ·HT

the syndrome of r .

If r · HT = 0 then no errors occurred, with overwhelming probability. If r · HT 6= 0, at least one
error occurred and r = c + e, where e is an error vector. Note that S(r) = S(e). The syndrome circuit
consists of 2t components in F2m . To correct t errors, the syndrome has to be a 2t-tuple of the form
S = (S1, S2, · · · , S2t).

8. The scalar product of the two vectors is equal to 0.
9. where b(x) is the remainder of the division of c(x) by g(x)



120 Algorithms for Embedded Cryptography 5.3

Syndrome. In the polynomial setting, Si is obtained by evaluating r at the roots of g(x).

Indeed, letting r(x) = c(x) + e(x), we have

Si = r(αj) = c(αj) + e(αj) = e(αj) =
ν−1∑
k=0

ekα
ik, for i ≤ 1 ≤ 2t .

Suppose that r has ν errors denoted eji . Then

Si =
ν∑
j=1

eji(αi)j` =
ν∑
j=1

eji(αj`)i .

Error Location. Let X` = αj` . Then, for binary BCH codes, we have Si =
∑ν
j=1X

i
` . The X`’s are called

error locators and the error locator polynomial is defined as:

Λ(x) =
ν∏
`=1

(1−X`) = 1 + Λ1x+ ...+ Λνxν .

Note that the roots of Λ(x) point out errors’ places and the number of errors ν is unknown.

There are several ways to compute Λ(x), e.g. Peterson’s algorithm [Kno88] or Berlekamp-Massey
algorithm [Knu81]. Chien’s search method [Mei91] is applied to determine the roots of Λ(x).

Peterson’s Algorithm. Peterson’s Algorithm (Algorithm 17) solves a set of linear equations to find the
value of the coefficients σ1, σ2, . . . σt.

Λ(x) =
ν∏
`=1

(1 + αjl) = 1 + σ1x+ σ2x
2 + · · ·+ σtx

t

Algorithm 17: Peterson’s Algorithm

1 Initialization ν ← t
2 Compute the determinant of S

det (S)← det


S1 S2 · · · St
S2 S3 · · · St+1
...

...
. . .

...
St St+1 · · · S2t−1


3 Find the correct value of ν

det(S) 6= 0 −→ go to step 4

det(S) = 0 −→



if ν = 0 then
The error locator polynomial is empty
stop

else
ν ←− ν − 1, and then repeat step 2

end if

4 Invert S and compute Λ(x)


σν
σν−1

...
σ1

 = S−1 ×


−Sν+1
−Sν+2

...
−S2ν


At the beginning of Algorithm 17, the number of errors is undefined. Hence the maximum number of
errors to resolve the linear equations generated by the matrix S is assumed. Let this number be i = ν = t.



5.3 Applying Cryptographic Techniques to Error Correction 121

Chien’s Error Search. Chien search finds the roots of Λ(x) by brute force [Bri83, Mei91]. The algorithm
evaluates Λ(αi) for i = 1, 2, . . . , 2m − 1. Whenever the result is zero, the algorithm assumes that an error
occurred, thus the position of that error is located. A way to reduce the complexity of Chien search
circuits stems from Equation 5.3 for Λ(αi+1).

Λ(αi) = 1 + σ1 α
i + σ2 (αi)2 + · · ·+ σt (αi)t

= 1 + σ1 α
i + σ2 α

2i + · · ·+ σt α
it

Λ(αi+1) = 1 + σ1 α
i+1 + σ2 (αi+1)2 + · · ·+ σt (αi+1)t

= 1 + α (σ1 α
i) + α2 (σ2 α

2i) + · · ·+ αt (σt αit) (5.3)

5.3.1.6.2 Implementation and Results. To evaluate the efficiency of Barrett’s modular division in
hardware, the BCH(15, 7, 2) was chosen as a case study code. Four BCH encoder versions were designed
and synthesized. Results are presented in detail in the coming sections.

Standard Architecture. The BCH-Standard architecture consists of applying the modular division
using shifts and XORs. Initially, to determine the degree of the input polynomials, each bit 10 of the
dividend and of the divisor are checked until the first bit one is found. Then, the two polynomials are
left-aligned (i.e., the two most significant ones are aligned) and XORed. The resulting polynomial is right
shifted and again left-aligned with the dividend and XORed. This process is repeated until the dividend
and the resulting polynomial are right-aligned. The final resulting polynomial represents the remainder
of the division. Algorithm 18 provides the pseudocode for the standard architecture.

Algorithm 18: Standard modular division (BCH-Standard)
Input: P,Q
Output: remainder = Q mod P

1 diff_degree← deg(Q)− deg(P )
2 shift_counter← diff_degree + 1

3 shift_divisor← P � diff_degree

4 remainder← Q

5 while shift_counter 6= 0 do
6 if remainder[p_degree + shift_counter− 1] = 1 then
7 shift_counter← shift_counter− 1 shift_divisor← shift_divisor� 1
8 end if
9 end while

10 return remainder

LFSR and Improved LFSR Architectures. The BCH-LFSR design is composed from a control unit and
a Linear-Feedback Shift Register (LFSR) submodule. The LFSR submodule receives the input data serially
and shifts it to the internal registers, controlled by the enable signal. The LFSR’s size (the number of
parallel flip-flops) is defined by the BCH parameters n and k, i.e., size(LFSR) = n − k, and the LFSR
registers are called di, enumerated from 0 to n− k − 1. The feedback value is defined by the XOR of the
last LFSR register (dnk−1) and the input data. The feedback connections are defined by the generator
polynomial g(x). In the case of BCH(15, 7, 2), g(x) = x8 +x7 +x6 +x4 + 1, therefore the input of registers
d0, d4, d6 and d7 are XORed with the feedback value. As shown in Fig. 5.6, the multiplexer that selects
the bits to compose the final codeword is controlled by the counter. The LFSR is shifted k times with
the feedback connections enabled. After that, the LFSR state contains the result of the modular division,
therefore the bits can be serially shifted out from the LFSR register.

To calculate the correct codeword, the LFSR must shift the input data during k clock cycles. After that,
the output is serially composed by n− k extra shifts. This means that the LFSR implementation’s total

10. Considered in big endian order.



122 Algorithms for Embedded Cryptography 5.3

d0 d1 d2 d3 d4 d5 d6 d7

10counter

codeword

serial input

feedback

counter > k

Figure 5.6: Standard LFSR architecture block diagram. (Design BCH-LFSR)

latency is n clock cycles. Nevertheless, it is possible to save n − k − 1 clock cycles by outputting the
LFSR in parallel from the sub-module to the control unit after k iterations, while during the k first cycles
the input data is shifted to the output register, as we perform systematic BCH encoding. This decreases
the total latency to k + 1 clock cycles. This method was applied to the BCH-LFSR-improved design
depicted in Fig. 5.7.

d0 d1 d2 d3 d4 d5 d6 d7

7-bit
shift
register

In

feedback

15-bit codeword

7

15

Figure 5.7: Improved LFSR architecture block diagram. In denotes the module’s serial input. (Design
BCH-LFSR-improved)

Barrett Architecture. The LFSR submodule can be replaced by the Barrett submodule to evaluate its
performance. The idea is that Barrett operations can be broken down into up to k + 1 pipeline stages, to
match the LFSR’s latency. The fact that Barrett operations can be easily pipelined drastically increases
the final throughput, while both LFSR implementations do not allow for pipelining.

In the Barrett submodule, the constants y0, L, and K are pre-computed and are defined as parameters of
the block. Since the Barrett parameter P is defined as the generator polynomial, P does not need to be
defined as an input, which saves registers. As previously stated, Barrett operations were cut down to
k iterations (in our example, k = 7). The first register in the pipeline stores the result of Q � y0. The
multiplication by K is the most costly operation, taking 5 clock cycles to complete. Each cycle operates
on 3 bits, shifting and XORing at each one bit of K, according to the rules of multiplication. The last
operation simply computes the intermediate result from the multiplication left-shifted by L− y0.

Performance. As mentioned previously in this thesis, the gate equivalent (GE) metric was calculated by
dividing the total cell area of each design by the size of the smallest NAND−2 of the digital library. This
metric allows comparing area figures without the impact of the technology node size. BCH-Barrett
presented comparable area with the smallest design, the BCH-LFSR. Although the BCH-Barrett does
not reach the maximum clock frequency, it can be seen from Table 5.7 that it actually reaches the best
throughput, around 2.3Gbps. This is mainly achieved by Barrett parallelizable operations, allowing the
design to be easily pipelined. Moreover, Barrett consumes the less power among the four designs.



5.3 Applying Cryptographic Techniques to Error Correction 123

Table 5.3: Synthesis results of the four BCH encoder designs.

Design Gate
Instances

Gate
Equivalent

Max Frequency
(MHz)

Throughput
(Mbps)

Power
(nW)

BCH-Standard 310 447 741 690 978
BCH-LFSR 155 223 1043 972 920

BCH-LFSR-improved 160 236 1043 2080 952
BCH-Barrett 194 260 655 9150 512

BCH-Barrett-pipelined 426 591 995 13900 2208



124 Algorithms for Embedded Cryptography 5.3

5.3.2 A Number-Theoretic Error-Correcting Code

Error-correcting codes (ECCs) are essential to ensure reliable communication. ECCs work by adding
redundancy which enables detecting and correcting mistakes in received data. This extra information is,
of course, costly and it is important to keep it to a minimum: there is a trade-off between how much
data is added for error correction purposes (bandwidth), and the number of errors that can be corrected
(correction capacity).

Shannon showed [Sha48] in 1948 that it is in theory possible to encode messages with a minimal number
of extra bits 11. Two years later, Hamming [Ham50] proposed a construction inspired by parity codes,
which provided both error detection and error correction. Subsequent research saw the emergence of
more efficient codes, such as Reed-Muller [Mul54, Ree54] and Reed-Solomon [RS60]. The latest were
generalized by Goppa [Gop81]. These codes are known as algebraic-geometric codes.

Convolutional codes were first presented in 1955 [Eli55], while recursive systematic convolutional
codes [BGT93] were introduced in 1991. Turbo codes [BGT93] were indeed revolutionary, given their
closeness to the channel capacity (“near Shannon limit”).

Organisation: We further present a new error-correcting code, as well as a form of message size
improvement based on the hybrid use of two ECCs one of which is inspired by the Naccache-Stern
(NS) cryptosystem [NS97, CMNS08]. For some codes and parameter choices, the resulting hybrid codes
outperform the two underlying ECCs.

The proposed ECC is unusual because it is based on number theory rather than on binary operations.

5.3.2.1 Preliminaries

5.3.2.1.1 Notations. Let P = {p1 = 2, . . . } be the ordered set of prime numbers. Let γ ≥ 2 be an
encoding base. For any m ∈ N (the “message”), let {mi} be the digits of m in base γ i.e.:

m =
k−1∑
i=0

γimi mi ∈ [0, γ − 1], k = dlogγme

We denote by h(x) the Hamming weight of x, i.e. the sum of x’s digits in base 2, and, by ‖y‖ the bit-length
of y.

5.3.2.1.2 Error-Correcting Codes. Let M = {0, 1}k be the set of messages, C = {0, 1}n the set of
encoded messages. Let P be a parameter set.

Definition 5.10 (Error-Correcting Code) An error-correcting code is a couple of algorithms:
– An algorithm µ, taking as input some message m ∈ M, as well as some public parameters params ∈ P , and

outputting c ∈ C.
– An algorithm µ−1, taking as input c̃ ∈ C as well as parameters params ∈ P , and outputting m ∈M∪ {⊥}.

The ⊥ symbol indicates that decoding failed.

Definition 5.11 (Correction Capacity) Let (µ, µ−1,M, C,P) be an error-correcting code. There exists an
integer t ≥ 0 and some parameters params ∈ P such that, for all e ∈ {0, 1}n such that h(e) ≤ t,

µ−1 (µ (m, params)⊕ e, params) = m, ∀m ∈M

and for all e such that h(e) > t,

µ−1 (µ (m, params)⊕ e, params) 6= m, ∀m ∈M.

t is called the correction capacity of (µ, µ−1,M, C,P).

Definition 5.12 A code of message length k, of codeword length n and with a correction capacity t is called an
(n, k, t)-code. The ratio ρ = n

k is called the code’s expansion rate.

11. Shannon’s theorem states that the best achievable expansion rate is 1−H2(pb), where H2 is binary entropy and pb is the
acceptable error rate.



5.3 Applying Cryptographic Techniques to Error Correction 125

5.3.2.2 A New Error-Correcting Code

Consider in this section an existing (n, k, t)-code C = (µ, µ−1,M, C,P). For instance C can be a Reed-
Muller code. We describe how the new (n′, k, t)-code C ′ = (ν, ν−1,M, C′,P ′) is constructed.

Parameter Generation: To correct t errors in a k-bit message, we generate a prime p such that:

2 · p2t
k < p < 4 · p2t

k (5.4)

As we will later see, the size of p is obtained by bounding the worst case in which all errors affect the end
of the message. p is a part of P ′.

Encoding: Assume we wish to transmit a k-bit message m over a noisy channel. Let γ = 2 so that mi

denote the i-th bit of m, and define:

c(m) :=
k∏
i=1

pmii mod p . (5.5)

The integer generated by Equation 5.5 is encoded using C to yield µ(c(m)). Finally, the encoded message
ν(m) transmitted over the noisy channel is defined as:

µ(m) := m‖µ(c(m)) . (5.6)

Note that, if we were to use C directly, we would have encoded m (and not c). The value c is, in most
practical situations, much shorter than m. As is explained in Section 5.3.2.2.1, c is smaller than m (except
the cases in which m is very small and which are not interesting in practice) and thereby requires fewer
extra bits for correction. For appropriate parameter choices, this provides a more efficient encoding, as
compared to C.

Decoding: Let α be the received 12 message. Assume that at most t errors occurred during transmission:

α = ν(m)⊕ e = m′‖(µ(c(m))⊕ e′)

where the error vector e is such that h(e) = h(m′ ⊕m) + h(e′) ≤ t.

Since c(m) is encoded with a t-error-capacity code, we can recover the correct value of c(m) from
µ(c(m))⊕ e′ and compute the quantity:

s = c(m′)
c(m) mod p . (5.7)

Using Equation 5.5 s can be written as:

s = a

b
mod p,


a =

∏
(m′

i
=1)∧(mi=0)

pi

b =
∏

(m′
i
=0)∧(mi=1)

pi
(5.8)

Note that since h(m′ ⊕ m) ≤ t, we have that a and b are strictly smaller than (pk)t. Theorem 5.13
from [FSW02] shows that given t the receiver can recover a and b efficiently using a variant of Gauss’
algorithm [Val91].

Theorem 5.9 Let a, b ∈ Z such that −A ≤ a ≤ A and 0 < b ≤ B. Let p be some prime integer such that
2AB < p. Let s = a · b−1 mod p. Then given A, B, s and p, a and b can be recovered in polynomial time.

12. i.e. encoded and potentially corrupted



126 Algorithms for Embedded Cryptography 5.3

As 0 ≤ a ≤ A and 0 < b ≤ B where A = B = (pk)t − 1 and 2AB < p from Equation 5.4, we can recover
a and b from t in polynomial time. Then, by testing the divisibility of a and b with respect to the small
primes pi, the receiver can recover m′ ⊕m and eventually m.

A numerical example is given below.

Example 5.9 Let m be the 10-bit message 1100100111. For t = 2, we let p be the smallest prime number greater
than 2 · 294, i.e. p = 707293. We generate the redundancy:

c(m) = 21 · 31 · 50 · 70 · 111 · 130 · 170 · 191 · 231 · 291 mod 707293

⇒ c(m) = 836418 mod 707293 = 129125 .

As we focus on the new error-correcting code we simply omit the Reed-Muller component. The encoded message is

ν(m) = 11001001112‖12912510 .

Let the received encoded message be α = 11001010112‖12912510. Thus,

c(m′) = 21 · 31 · 50 · 70 · 111 · 130 · 171 · 190 · 231 · 291 mod p

⇒ c(m′) = 748374 mod 707293 = 41081 .

Dividing by c(m) we get

s = c(m′)
c(m) = 41081

129125 mod 707293 = 632842

Applying the rationalize and factor technique we obtain s = 17
19 mod 707293. It follows that m′ ⊕ m =

0000001100. Flipping the bits retrieved by this calculation, we recover m.

Bootstrapping: Note that instead of using an existing code as a sub-contractor for protecting c(m),
the sender may also recursively apply the new scheme described above. To do so consider c(m) as a
message, and protect c = c(c(· · · c(c(m))), which is a rather small value, against accidental alteration by
replicating it 2t+ 1 times. The receiver will use a majority vote to detect the errors in c.

5.3.2.2.1 Performance of the New Error-Correcting Code for γ = 2.

Lemma 5.10 The bit-size of c(m) is:

log2 p ' 2 · t log2(k ln k). (5.9)

Proof: From Equation 5.4 and the Prime Number Theorem 13.

2

The total output length of the new error-correcting code is therefore log2 p, plus the length k of the
message m.

C ′ outperforms the initial error correcting code C if, for equal error capacity t and message length k, it
outputs a shorter encoding, which happens if n′ < n, keeping in mind that both n and n′ depend on k.

Corollary 5.11 Assume that there exists a constant δ > 1 such that, for k large enough, n(k) ≥ δk. Then for k
large enough, n′(k) ≤ n(k).

13. pk ' k ln k.



5.3 Applying Cryptographic Techniques to Error Correction 127

Proof: Let k be the size of m and k′ be the size of c(m).

We have n′(k) = k + n(k′), therefore

n(k)− n′(k) = n(k)− (k + n(k′)) ≥ (δ − 1)k − n(k′).

Now,

(δ − 1)k − n(k′) ≥ 0⇔ (δ − 1)k ≥ n(k′).

But n(k′) ≥ δk′, hence

(δ − 1)k ≥ δk′ ⇒ k ≥ k′δ

(δ − 1) .

Finally, from Lemma 5.10, k′ = O(ln ln k!), which guarantees that there exists a value of k above which
n′(k) ≤ n(k).

2

In other terms, any correcting code whose encoded message size is growing linearly with message size
can benefit from the described construction.

lower bound n
= k

bo
und

on
under

ly
in

g
ECC

n
=
δk

new ECC

n′

n

underlying ECC

gain

k

n(k)

Figure 5.8: Illustration of Corollary 5.11. For large enough values of k, the new ECC uses smaller
codewords as compared to the underlying ECC.

Expansion Rate: Let k be the length of m and consider the bit-size of the corresponding codeword as
in Equation 5.9. The expansion rate ρ is:

ρ = ‖m‖µ(c(m))‖
‖m‖

= k + ‖µ(c(m))‖
k

= 1 + ‖µ(c(m))‖
k

. (5.10)

5.3.2.2.2 Reed-Muller Codes. We illustrate the idea with Reed-Muller codes. Reed-Muller (R-M)
codes are a family of linear codes. Let r ≥ 0 be an integer, and N = log2 n, it can apply to messages of
size

k =
r∑
i=1

(
N

i

)
. (5.11)

Such a code can correct up to t = 2N−r−1 − 1 errors. Some examples of {n, k, t} triples are given in Table
5.4. For instance, a message of size 163 bits can be encoded as a 256-bit string, among which up to 7
errors can be corrected.



128 Algorithms for Embedded Cryptography 5.3

Table 5.4: Examples of length n, dimension k, and error capacity t for
Reed-Muller code.

n 16 64 128 256 512 2048 8192 32768 131072
k 11 42 99 163 382 1024 5812 9949 65536
t 1 3 3 7 7 31 31 255 255

Table 5.5: (n, k, t)-codes generated from Reed-Muller by our construction.
n′ 638 7860 98304
k 382 5812 65536

c(m) 157 931 9931
RM(c(m)) 256 2048 32768

t 7 31 255

To illustrate the benefit of our approach, consider a 5812-bit message, which we wish to protect against
up to 31 errors.

A direct use of Reed-Muller would require n(5812) = 8192 bits as seen in Table 5.4. Contrast this with
our code, which only has to protect c(m), that is 931 bits as shown by Equation 5.9, yielding a total size
of 5812 + n(931) = 5812 + 2048 = 7860 bits.

Other parameters for the Reed-Muller primitive are illustrated in Table 5.5.

Table 5.5 shows that for large message sizes and a small number of errors, our error-correcting code
slightly outperforms Reed-Muller code.

5.3.2.2.3 The Case γ > 2. The difficulty in the case γ > 2 stems from the fact that a binary error in a
γ-base message will in essence scramble all digits preceding the error. As an example,

12200210122020120100111202023 + 230 = 12200210221120001122201101103

Hence, unless γ = 2Γ for some Γ, a generalization makes sense only for channels over which transmission
uses γ symbols. In such cases, we have the following: a k-bit message m is pre-encoded as a γ-base
κ-symbol message m′. Here κ = dk/ log2 γe. Equation 5.4 becomes:

2 · p2t(γ−1)
κ < p < 4 · p2t(γ−1)

κ

Comparison with the binary case is complicated by the fact that here t refers to the number of any errors
regardless their semiologic meaning. In other words, an error transforming a 0 into a 2 counts exactly as
an error transforming 0 into a 1.

Example 5.10 As a typical example, for t = 7, κ = 106 and γ = 3, pκ = 15485863 and p is a 690-bit number.

For the sake of comparison, t = 7, k = 1584963 (corresponding to κ = 106) and γ = 2, yield pk = 25325609 and
a 346-bit p.

5.3.2.3 Improvement Using Smaller Primes

The construction described in the previous section can be improved by choosing a smaller prime p, but
comes at a price; namely decoding becomes only heuristic. T

Parameter Generation: The idea consists in generating a prime p smaller than before. Namely, we
generate a p satisfying :

2u · ptk < p < 2u+1 · ptk (5.12)

for some small integer u ≥ 1.



5.3 Applying Cryptographic Techniques to Error Correction 129

Encoding and Decoding: Encoding remains as previously. The redundancy c(m) being approximately
half as small as the previous section’s one, we have :

s = a

b
mod p,


a =

∏
(m′i=1)∧(mi=0)

pi

b =
∏

(m′i=0)∧(mi=1)
pi

(5.13)

and since there are at most t errors, we must have :

a · b ≤ (pk)t (5.14)

We define a finite sequence {Ai, Bi} of integers such that Ai = 2u·i and Bi = b2p/Aic. From Equations
5.12 and 5.24 there must be at least one index i such that 0 ≤ a ≤ Ai and 0 < b ≤ Bi. Then using Theorem
5.13, given Ai, Bi, p and s, the receiver can recover a and b, and eventually m.

The problem with that approach is that we lost the guarantee that {a, b} is unique. Namely we may
find another {a′, b′} satisfying Equation 5.13 for some other index i′. We expect this to happen with
negligible probability for large enough u, but this makes the modified code heuristic (while perfectly
implementable for all practical purposes).

5.3.2.3.1 Performance.

Lemma 5.12 The bit-size of c(m) is:

log2 p ' u+ t log2(k ln k). (5.15)

Proof: Using Equation 5.12 and the Prime Number Theorem.

2

Thus, the smaller prime variant has a shorter c(m).

As u is a small integer (e.g. u = 50), it follows immediately from Equation 5.4 that, for large n and t, the
size of the new prime p will be approximately half the size of the prime p generated in the preceding
section.

This brings down the minimum message size k above which our construction provides an improvement
over the bare underlying correcting code.

Note: In the case of Reed-Muller codes, this variant provides no improvement over the technique
described in Section 5.3.2.2 for the following reasons: (1) by design, Reed-Muller codewords are powers
of 2; and (2) Equation 5.15 cannot yield a twofold reduction in p. Therefore we cannot hope to reduce p
enough to get a smaller codeword.

That doesn’t preclude other codes to show benefits, but the authors did not look for such codes.

5.3.2.4 Prime Packing Encoding

It is interesting to see whether the optimization technique of [CMNS08] yields more efficient ECCs.
Recall that in [CMNS08], the pis are distributed amongst κ packs. Information is encoded by picking one
pi per pack. This has an immediate impact on decoding: when an error occurs and a symbol σ is replaced
by a symbol σ′, both the numerator and the denominator of s are affected by additional prime factors.

Let C = (µ, µ−1,M, C,P) be a t-error capacity code, such that it is possible to efficiently recover c from
µ(c)⊕ e for any c and any e, where h(e) ≤ t. Let γ ≥ 2 be a positive integer.

Before we proceed, we define κ := dk/ log2 γe and

f := f(γ, κ, t) =
k∏

i=k−t
pγi.



130 Algorithms for Embedded Cryptography 5.3

Parameter Generation: Let p be a prime number such that:

2 · f2 < p < 4 · f2 (5.16)

Let Ĉ = M× Zp and P̂ = (P ∪ P) × N. We now construct a variant of the ECC presented in Section
5.3.2.2 from C and denote it

Ĉ =
(
ν, ν−1,M, Ĉ, P̂

)
.

Encoding: We define the “redundancy” of a k-bit message m ∈M (represented as κ digits in base γ)
by:

ĉ(m) :=
κ−1∏
i=0

piγ+mi+1 mod p

A message m is encoded as follows:
ν(m) := m‖µ (ĉ (m))

Decoding: The received information α differs from ν(m) by a certain number of bits. Again, we assume
that the number of these differing bits is at most t. Therefore α = ν(m) ⊕ e, where h(e) ≤ t. Write
e = em‖eĉ such that

α = ν(m)⊕ e = m⊕ em‖µ(ĉ(m))⊕ eĉ = m′‖µ(ĉ(m))⊕ eĉ.

Since h(e) = h(em) + h(eĉ) ≤ t, the receiver can recover efficiently ĉ(m) from α. It is then possible to
compute

s := ĉ(m′)
ĉ(m) mod p =

κ−1∏
i=0

piγ+m′
i
+1

κ−1∏
i=0

piγ+mi+1

mod p.

s = a

b
mod p,


a =

∏
m′i 6=mi

piγ+m′
i
+1

b =
∏

mi 6=m′i

piγ+mi+1
(5.17)

As h(e) = h(em) + h(eĉ) ≤ t, we have that a and b are strictly smaller than f(γ, κ)2t. As A = B =
f(γ, κ)2t − 1, we observe from Equation 5.16 that 2AB < p. We are now able to recover a, b, gcd(a, b) = 1
such that s = a/b mod p using lattice reduction [Val91].

Testing the divisibility of a and b by p1, . . . , pκγ the receiver can recover em = m′ ⊕m, and from that get
m = m′ ⊕ em. Note that by construction only one prime amongst γ is used per “pack”: the receiver can
therefore skip on average γ/2 primes in the divisibility testing phase.

5.3.2.4.1 Performance. Rosser’s theorem [Dus99, Ros38] states that for n ≥ 6,

lnn+ ln lnn− 1 < pn
n
< lnn+ ln lnn

i.e. pn < n(lnn+ ln lnn). Hence a crude upper bound of p is

p < 4f(κ, γ, t)2

= 4
(

κ∏
i=κ−t

pγi

)2

≤ 4
κ∏

i=κ−t
(iγ(ln iγ + ln ln(iγ)))2

≤ 4γ2t
(

κ!
(κ− t− 1)!

)2
(ln κγ + ln ln κγ)2t



5.3 Applying Cryptographic Techniques to Error Correction 131

Again, the total output length of the new error-correcting code is n′ = k + |p|.

Plugging γ = 3, κ = 106 and t = 7 into Equation 5.16 we get a 410-bit p. This improves over Example 5.10
where p was 690 bits long.



132 Algorithms for Embedded Cryptography 5.4

5.4 Backtracking-Assisted Multiplication

A number of applications require performing long multiplications in performance-restricted environ-
ments. Indeed, low-end devices such as the 68HC05 or the 80C51 microprocessors have a very limited
instruction-set, very limited memory, and operations such as multiplication are rather slow: a mul
instruction typically claims 10 to 20 cycles.

General multiplication has been studied extensively, and there exist algorithms with very good asymp-
totic complexity such as the Schönhage-Strassen algorithm [SS71] which runs in time O(n logn log logn)
or the more recent Fürer algorithm [Für09], some variants of which achieve the slightly better O(23 log∗n

n logn) complexity [HVDHL14]. Such algorithms are interesting when dealing with extremely large
integers, where these asymptotics prove faster than more naive approaches.

In many cryptographic contexts however, multiplication is performed between a variable and a pre-
determined constant:
– During Diffie-Hellman key exchange [DH76] or El-Gamal [EG84] a constant g must be repeatedly

multiplied by itself to compute gx mod p.
– The essential computational effort of a Fiat-Shamir prover [FFS88, FFS87] is the multiplication of a

subset of fixed keys (denoted si in [FFS87]).
– A number of modular reduction algorithms use as a building-block multiplications (in N) by a constant

depending on the modulus. This is for instance the case of Barrett’s algorithm [Bar87] or Montgomery’s
algorithm [Mon85].

The main strategy to exploit the fact that one operand is constant consists in finding a decomposition
of the multiplication into simpler operations (additions, subtractions, bitshifts) that are hardware-
friendly [Ber86]. The problem of finding the decomposition with the least number of operations is known
as “single constant multiplication” (SCM) problem. SCM ∈ NP-complete as shown in [CS84], even
if fairly good approaches exist [WH99, Avi61, DM94, DM95] for small numbers. For larger numbers,
performance is unsatisfactory unless the constant operand has a predetermined format allowing for ad
hoc simplifications.

We propose a completely different approach: the constant operand is encoded in a computation-friendly
way, which makes multiplication faster. This encoding is based on linear relationships detected amongst
the constant’s digits (or, more generally, subwords), and can be performed offline in a reasonable time for
1024-bit numbers and 8-bit microprocessors. We use a graph-based backtracking algorithm [Knu68] to
discover these linear relationships, using recursion to keep the encoder as short and simple as possible.

5.4.1 Multiplication Algorithms

We now provide a short overview of popular multiplication methods. This summary will serve as a
baseline to evaluate the new algorithm’s performance.

Multiplication algorithms usually fall in two broad categories: general divide-and-conquer algorithms
such as Toom-Cook [Too63, Coo66] and Karatsuba [KO62]; and the generation of integer multiplications
by compilers, where one of the arguments is statically known. We are interested in the case where
small-scale optimizations such as Bernstein’s [Ber86] are impractical, but general purpose multiplication
algorithms à la Toom-Cook are not yet interesting.

We will further assume unsigned integers, and denote by w the word size (typically, w = 8), ai, bi and ri
the binary digits of a, b and r respectively:

a =
n−1∑
i=0

2wiai, b =
n−1∑
i=0

2wibi, and r = a× b =
2n−1∑
i=0

2wiri.

5.4.1.1 Textbook Multiplication

A direct way to implement long multiplication consists in extending textbook multiplication to several
words. This is often done by using a MAD 14 routine.

14. An acronym standing for “Multiply Add Divide”



5.4 Backtracking-Assisted Multiplication 133

A MAD routine takes as input four n-bit words {x, y, c, ρ}, and returns the two n-bit words c′, ρ′ such
that 2nc′ + ρ′ = x× y + c+ ρ. We write

{c′, ρ′} ← MAD(x, y, c, ρ).

If such a routine is available then multiplication can be performed in n2 MAD calls using Algorithm 19.
The MIRACL big number library [Cer] provides such a functionality.

Algorithm 19: MAD-based computation of r = a× b.
Input: a, b ∈ N.
Output: r ∈ N such that r = a× b.

1 for i← 0 to 2n− 1 do
2 ri ← 0
3 end for
4 for i← 0 to n− 1 do
5 c← 0
6 for j ← 0 to n− 1 do
7 {c, ri+j} ← MAD(ai, bj , c, ri+j)
8 end for
9 ri+n ← c

10 end for
11 return r

This approach is unsatisfactory: it performs more computation than often needed. Assuming a constant-
time MAD instruction, Algorithm 19 runs in time O(n2).

5.4.1.2 Karatsuba’s Algorithm

Karatsuba [KO62] proposed an ingenious divide-and-conquer multiplication algorithm, where the
operands a and b are split as follows:

r = a× b = (2Lā+ a)× (2Lb̄+ b),

where typically L = nw/2. Instead of computing a multiplication between long integers, Karatsuba
performs multiplications between shorter integers, and (virtually costless) multiplication by powers of 2.
Karatsuba’s algorithm is described in Algorithm 20.

Algorithm 20: Karatsuba’s algorithm to compute r = a× b.
Input: a, b ∈ Z.
Output: r ∈ Z such that r = a× b.

1 u = ā× b̄
2 v = a× b
3 w = (ā+ a)(b̄+ b)− u− v
4 r = 22L × u+ 2L × w + v
5 return r

This approach is much faster than naive multiplication – on which it still relies for multiplication between
short integers – and runs 15 in Θ(nlog2 3).

5.4.1.3 Bernstein’s Multiplication Algorithm

When one of the operands is constant, different ways to optimize multiplication exist. Bernstein [Ber86]
provides a branch-and-bound algorithm based on a cost function.

15. When repeated recursively.



134 Algorithms for Embedded Cryptography 5.4

Table 5.6: An example showing how linear relationships between individual words are encoded and
interpreted.

step a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 meaning reg1 reg2 reg3

0 1 = 1 a5 ← a3 + a7 a5 a3 a7
1 = 2 a4 ← a5 + a5 a5 a4 a7
2 = -1 1 a0 ← a7 − a4 a0 a4 a7
3 2 = a9 ← a4 + a4 a0 a4 a9
4 1 = -1 a1 ← a0 − a9 a0 a1 a9
5 1 = 1 a8 ← a1 + a9 a8 a1 a9
6 1 = 1 a2 ← a1 + a8 a8 a1 a2
7 2 = a6 ← a2 + a2 a8 a6 a2

The minimal cost, and an associated sequence, are found by exploring a tree, possibly using memoization
to avoid redundant searches. More elaborate pruning heuristics exist to further speedup searching. The
minimal cost path produces a list of operations which provide the result of multiplication.

Because of its exponential complexity, Bernstein’s algorithm is quickly overwhelmed when dealing with
large integers. It is however often implemented by compilers for short (32 to 64-bit) constants.

5.4.2 The Proposed Algorithm

5.4.2.1 Intuitive Idea

An alternative representation of the constant operand a: express some ai as a linear combination of other
ajs with small coefficients. Reconstructing b× a from the values of the b× aj only becomes easy.

The more linear combinations we can find, the less multiplications we need to perform. Our algorithm
tries to find the longest sequence of linear relationships between the digits of a. We call this sequence’s
length the coverage of a.

Yet another performance parameter is the number of registers used by the multiplier. Ideally at any
point in time two registers holding intermediate values should be used. This is not always possible and
depends on the digits of a.

In the next table we express a as a subset of words A ∈ {a0, . . . , an−1} and build a sparse table U where
Ui,j ∈ {−1, 0, 1, 2,=}, which encodes linear relationships between individual words.

Hence it suffices to compute b× a3 and b× a7 to infer all other b× ai by long integer additions. Note
that the algorithm only needs to allocate three (n + 1)-word registers reg1, reg2 and reg3 to store
intermediate results.

The values allowed in U can easily be extended to include more complex relationships (larger coeffi-
cients, more variables, etc.) but this immediately impacts the algorithm’s performance. Indeed, the
corresponding search graph has correspondingly many more branches at each node.

Operations can be performed without overflowing (i.e. so that results fit in a word), or modulo the word
size. In the latter case, it is necessary to subtract b � w from the result, where w is the word size, to
obtain the correct result. This incurs some additional cost.

5.4.2.2 Backtracking Algorithm

Algorithm 21: macro Step(u,w).

1 (pd+1,0, pd+1,1)← (u,w)
2 Backtrack(d+ 1)

Linear combinations amongst words of a are found by backtracking [Knu68], the pseudocode of which
is given in Algorithm 23. Our implementation focuses on linear dependencies amongst 8-bit words,



5.4 Backtracking-Assisted Multiplication 135

Algorithm 22: macro EncodeDep(c, opcode).

1 if c < 256 then
2 if vc = False then
3 (vc, pd,2, pd,3)← (True, c, opcode)
4 Step(a, b)
5 Step(a, c)
6 Step(b, c)
7 vc ← False
8 end if
9 end if

Algorithm 23: macro Backtrack(d).

1 if d > dmax then
2 (dmax, pmax)← (d, p)
3 end if
4 (a, b)← (pd,0, pd,1)
5 for opcode ∈ C do
6 EncodeDep(opcode(a, b), opcode)
7 end for

Algorithm 24: Main backtracking program.

Input: A =
∑N−1
i=0 256iAi.

Output: Ui,j
1 // Initialization
2 for i = 0 to 255 do
3 vi ← True
4 end for
5 for i = 0 to N − 1 do
6 vAi ← False
7 end for
8 dmax ← −1
9 // Backtracking

10 for i = 0 to 255 do
11 for j = i+ 1 to 255 do
12 if vi = vj = False then
13 (p0,0, p0,1, vi, vj)← (i, j, True, True)
14 Backtrack(0)
15 (vi, vj)← (False, False)
16 end if
17 end for
18 end for
19 // U -matrix reconstruction
20 Ui,j ← 0
21 for i = 0 to 255 do
22 (in1, in2, out, opcode)← pmax

i

23 (Ui,in1 , Ui,in2 , Ui,out)← (1, 1, opcode)
24 end for
25 return Ui,j

as our main recommendation for applying the proposed multiplication algorithm is exactly an 8-bit
microprocessor.

We take advantage of recursion and macro expansion (see Algorithms 21, 22 and 23) to achieve a more



136 Algorithms for Embedded Cryptography 5.4

compact code. In this implementation, p encodes the current depth’s three registers of Table 5.6 as well
as the current operation. With suitable listing, Algorithm 24 outputs a set of values being related, along
with the corresponding relation. The dependencies that we take into account in our C code (given in
Appendix E) don’t go beyond depth 2. Thus, the corresponding operations are C = {+,−,×2}. We also
add these operations performed modulo 256, to obtain more solutions. The alternative to this approach
is to consider a bigger depth, which naturally leads to more possibilities.

Our program takes as an input an integer p that represents the percentage of a being covered (i.e. the
coverage is p/100 times the length of the a). In a typical lightweight scenario, a 128-byte number is
involved in the multiplication process. Our software attempts to backtrack over a coverage-related
number of values out of 256. It follows immediately that at most a 50% coverage would be required for
performing such a multiplication (as byte collisions are likely to happen).

The program takes as parameter the list of bytes of a. If some bytes appear multiple times, it is not
necessary to re-generate each of them individually: generation is performed once, and the value is cloned
and dispatched where needed.

Note that if precomputation takes too long, the list of ai can be partitioned into several sub-lists on which
backtrackings are run independently. This would entail as many initial multiplications by the online
multiplier but still yield appreciable speed-ups.

5.4.2.3 Multiplication Algorithm

Algorithm 25: Virtual Machine
Input: b, instr = (opcode, i, j, t, p)k, R
Output: r

1 r ← 0
2 foreach (i, v) ∈ R do
3 reg[i]← v × b
4 PlaceAt(v,reg[i])
5 end foreach
6 foreach (opcode, i, j, t, p) ∈ instr do
7 reg[t]← opcode(reg[i],reg[j])
8 PlaceAt(p, t)
9 end foreach

10 return r

With the encoding of a generated by Algorithm 24, it is now possible to implement multiplication
efficiently.

To that end we make use of a specific-purpose multiplication virtual machine (VM) described in Algo-
rithm 25. The VM is provided with instructions of the form

opcode t, i, j, p

that are extracted offline from U . Here, opcode is the operation to perform, i and j are the indices of
the operands, t is the index of the result, and p← w × t is the position in r where to place the result, w
being the word size. The value of p is pre-computed offline to allow for a more efficient implementation.

We store the result in a 2n-byte register initialized with zero. We also make use of a long addition
procedure PlaceAt(p, i) which “places” the contents of the (n+ 1)-byte register reg[i] at position p in r.
PlaceAt performs the addition of register reg[i] starting from an offset p in r, propagating the carry as
needed.

Finally, we assume that the list R = (i, v)k of root nodes (position and value) of U is provided.

After executing all the operations described in U , Algorithm 25 has computed r ← a× b.



5.4 Backtracking-Assisted Multiplication 137

Table 5.7: Performance on a 68HC05 clocked at 5 MHz.
Time RAM Code Size

Usual Algorithm 188 ms 395 bytes 1.1 kilobytes
New Algorithm 72 ms 663 bytes 1.7 kilobytes

Karatsuba Multiplication Using the notations of Algorithm 20 one can see that in settings where a is a
constant, the numbers u, v, w all result from the multiplication of b̄, b and b̄+ b (which are variable) by ā, a
and ā+ a (which are constant). Hence our approach can independently be combined with Karatsuba’s
algorithm to yield further improvements.

5.4.3 Performance

The algorithm has an offline step (backtracking) and an online step (multiplication), which are imple-
mented on different devices.

The offline step is naturally the longest; its performance is heavily dependent on the digit combination
operations allowed and on how many numbers are being dealt with. More precisely, results are near-
instant when dealing with 64 individual bytes and operations {+,−,×2}. It takes much longer if
operations modulo 256 are considered as well, but this gives a better coverage of a, hence better online
results. That being said, modulo 256 operations are slightly less efficient than operations over the integers
(' 1.5 more costly), since they require a subtraction of b afterwards.

Table 5.7 provides comparative performance data for a multiplication by the processed constant bπ21024c.
Backtracking this constant took 85 days on an Altix UV1000 cluster.

Antoine Joux [Jou] rightly noted that for long operands (e.g. 2048 bits) 255 successive additions of b
to itself cover all the digits of a and that, in essence, the vast majority of these values will be actually
used. This will avoid backtracking altogether. While 2048-bit operands are rarely used in lightweight
implementations, Joux’s idea allows to further improve the backtracking’s efficiency by adding to C the
additional opcode “PlusOne” consisting in adding a to a register.

As a final remark, note that one can also reverse the idea and generate a key by which multiplication is
easy. This can be done by progressively picking VM operations until an operand (key) with sufficient
entropy is obtained. While this is not equivalent to randomly selecting keys, we conjecture that, in
practice, the existence of linear relations 16 between key bytes should not significantly weaken public-key
implementations.

16. These linear relations are unknown to the attacker.



138 Algorithms for Embedded Cryptography 5.5

5.5 Regulating the Pace of von Neumann Extractors

In a celebrated paper published in 1951 [vN51], von Neumann presented a simple procedure allowing to
correct the bias of random sources. Consider a biased binary source S emitting 1s with probability p and
0s with probability 1− p. A von Neumann extractor C queries S twice to obtain two bits a, b until a 6= b.
When a 6= b the extractor outputs a.

Because S is biased, Pr[ab = 11] = p2 and Pr[ab = 00] = (1−p)2, but Pr[ab = 01] = Pr[ab = 10] = p(1−p).
Hence C emits 0s and 1s with equal probability.

Cryptographic hardware is usually synchronous. Algorithms such as stream ciphers, block ciphers or
even modular multipliers usually run in a number of clock cycles which is independent of the operands’
values. Feeding such HDL blocks with the inherently irregular output of C frequently proves tricky 17.

We propose a new building block called Pace Regulator (denotedR). R is inserted between the random-
ness consumer F and C to regulate the pace at which random bits reach F (Figure 5.9).

Randomness source S

von Neumann extractor C

Pace RegulatorR

Randomness consumer F

MemoryM

Figure 5.9: Source correction and regulation.

5.5.1 Model and Assumptions

In all generality we have at one end of a chain a generator G (here, G = S ◦ C) that outputs a stream of
objects, continuously but at a varying rate. Objects are denoted by a1, a2, . . . . At the other end, there is a
client F that we wish to feed objects in a timely fashion, i.e. at a near-constant rate.

We wish to design a state machineR that sits between G and F , and turns the erratic output of G into a
tame inflow for F . To this end,Rmay employ a temporary limited storageM. The setting is illustrated
in Figure 5.10.

G (“Irregular”) Inflow−−−−−−−−−−−→ R (“Regular”) Outflow−−−−−−−−−−−→ F
↑↓
M

Figure 5.10: Problem: Design R so that the outflow from R to F is as smooth as possible, despite the
outflow from G being variable.

The output rate of G is governed by a probability distribution: an ai is emitted every t time units, where
t is a random variable with probability distribution T .

We make the following important assumptions:

17. A similar problem is met when RSA primes must be injected into mobile devices on an assembly line. Because the time taken
to generate a prime is variable, optimizing a key injection chain is not straightforward.



5.5 Regulating the Pace of von Neumann Extractors 139

(H1) T is compactly supported, i.e. there exists a maximum possible waiting time tmax and a minimum
waiting time tmin which we know.

(H2) The ais produced by G do not expire, their order does not matter, and they can be stored inM
indefinitely if needed. Hence we can think ofM as a stack of size m.

(H3) Interaction betweenR andM is much faster than waiting times and can for all practical purposes
be considered instantaneous.

5.5.2 Generic Regulator Description

Informally, the idea behind the regulator concept is that we can useM to store some ajs, which we
may later insert between G’s outputs if G takes “too long”. We cannot store infinitely many objects, and
conversely we cannot fill G’s gaps ifM is depleted. Therefore we must determine when to store objects
we receive, and when to emit stored objects.

Mathematically, let µ > 0 be some pivot value to be determined later. We assume that Rmaintains a
timer, so that we know the time ti elapsed between the emission of ai−1 and ai. We then treat ais as
follows:
– ti < µ : ai is “early”. Store ai inM for later use.
– ti = µ : ai is “timely”. Output ai immediately to F .
– If µ time units have elapsed, and still no ai has been received from G (“late”), we fetch an aj from
M, send aj to F , and act as if aj were just received (i.e. ai is given µ additional time units to arrive:
ti ← ti − µ).

Therefore if µ is properly chosen, so thatM never overflows and is never empty,R outputs one ai every
µ.

Furthermore, we wishR to be as simple as possible, and in this work consider thatR is an event-driven
state machine having access to the following primitives:
– Push(a) pushes a on the stackM.
– Pop() pops an object a from the stack and emits it to F .
– Stack() returns the number of objects currently stored inM.
– Signal(t) registers an event EventSig (see below) to be called after time t has elapsed.
The events are:
– EventSig is called when time t has elapsed since the call of Signal(t).
– ObjIn(a) is called when an object is received from G.
– Setup(x) is called once at initialization.
– Error() is called upon errors.
R is inactive between events: it is entirely characterized by describing what it does when events occur.

5.5.2.1 Generic Regulator

The regulator’s functionality is achieved by using the event handlers described in Algorithms 26, 27 and
28. For the sake of simplicity, we allowR to use a single global variable s for its operation which we do
not count as part ofM in the following discussion. We purposely leave the error handler unspecified.

Algorithm 26: Setup()
1 s← tmax
2 Signal(s)

The main question thus is how to choose the function µ appropriately. ForM to be neither empty nor
overflow in the long term, it is necessary that the number of ajs being stored (“early ajs”) and the
number of ajs being fetched (“late ajs”) balance each other.



140 Algorithms for Embedded Cryptography 5.5

Algorithm 27: ObjIn(a)
1 X ← Stack()
2 if X < |M| then
3 Push(a)
4 else
5 Error()
6 end if
7 end if

Algorithm 28: EventSig

1 X ← Stack()
2 if 0 < X then
3 s← µ(X)
4 Pop()
5 else
6 Error()
7 end if
8 end if
9 Signal(s)

5.5.3 The Median Regulator

One way to achieve this balance is to choose µ(X) = µM such that T (t < µM ) = T (t > µM ), which is
exactly the definition of the median. Hence, we can set

µM := t1/2 = Median(t) . (5.18)

Implementing the generic regulator with this choice of µ yields the median regulator. Note that the sample
median could be estimated from the data and used here, instead of the theoretical median (if unknown).

Equation 5.18 is not a sufficient condition: it may be that while being zero on average, the amount of aj
stored inMwanders around. Indeed, there is a 1/2 probability to get an early (resp. late) ai 18, so that
the population Xk ofM undergoes a random walk. We have

lim
k→∞

E
(
|Xk − m

2 |
)

√
k

=
√

2
π

⇒
∣∣∣Xk −

m

2

∣∣∣ ≈ √k .
Therefore, on average, this regulator reaches an error state after receiving

√
m ais.M could be chosen so

that m ≈ k2 where k is the maximal number of packets that we wish to process. However this limitation
is unsatisfactory and we will get rid of it.

5.5.4 Memory-Variance Trade-Off: Adaptive Regulators

The key observation is that Equation 5.18 is not a necessary condition either: all that is required is really
that E(µ) = t1/2. Now we may be smarter and adjust the value of µ to the moment’s needs. Indeed, if
we are about to use too much memory, then decreasing µ would result in more ajs being labelled “late”,
and we would start emptyingM. If on the contraryM is getting dangerously empty, we may increase µ
so that more ajs become “early”, and start repopulatingM. Note that we may vary µ slowly or quickly
over time, this variation being itself irrelevant to the statistical analysis.

Of course, such a strategy incurs a non-zero variance in the outflow, but at this price we may lower the
size ofM. More precisely, for any given memory capacity m = |M| and input-time distribution T , we

18. In other term, we consider that the probability of getting a timely ai is negligible.



5.5 Regulating the Pace of von Neumann Extractors 141

want to construct anRwhose output-time distribution T ′m is such that

limm→∞ Var(T ′m) = 0
limm→0 Var(T ′m) = Var(T )

Var(T ′m) ≤ Var(T )

This is of course the ideal case and the further question now becomes: How do we modulate µ at any
given moment in time, to achieve this?

Let X denote the occupation ofM at a given point in time. If X = 0 then we must take in new ais, and
we cannot output any more ajs, therefore we have no choice but to set µ← tmax. Conversely, if X = m
then we must empty the queue and set 19 µ← tmin. We already saw that if X = m/2 the best choice is
the neutral µ← t1/2.

We wish to interpolate and describe the function µ(X) that is such that

µ(0) = tmax, µ(m/2) = t1/2, µ(m) = tmin

There are several ways to do so.

5.5.4.1 Lagrange Regulator

Take for instance Lagrange interpolation polynomials: let

a = 2
m2

(
tmax + tmin − 2t1/2

)
b = 1

m

(
tmax + 3tmin − 4t1/2

)
c = tmax

Then we can take
µL(X) := aX2 + bX + c.

In the special case where T = Uniform(A, 3A), we have µL(X) = (3− 2X/m)A.

5.5.4.2 Distributional Regulator

The main interest of the Lagrange Regulator is its simplicity. However, there is no reason to consider
that the choice of a µ polynomial in X is optimal. Let Ft be the cumulative distribution function
Ft(y) := T (t ≤ y) and consider its inverse F−1

t . We define the distributional regulator as

µD(X) := F−1
t

(
1− X

m

)
.

Observe that we have

µD(0) = F−1
t (1) = tmax

µD

(m
2

)
= F−1

t

(
1
2

)
= t1/2

µD(m) = F−1
t (0) = tmin

This regulator assumes a complete knowledge of t’s distribution, but provides the best results in the
sense that it minimizes the variance of R’s output. In the special case where T = Uniform(A, 3A), we
have

µD(X) := F−1
t

(
1− X

m

)
= A+ 2A

(
1− X

m

)
=
(

3− 2X
m

)
A = µL(X)

that is, we get the exact same result as the Lagrange Regulator.

19. We do not set µ← 0 or any lower value for two reasons: firstR would empty its whole stack immediately, which is not the
intended behaviour; and second this makes interpretation and analysis harder.



142 Algorithms for Embedded Cryptography 5.5

5.5.5 Parameters for the von Neumann Extractor

We can compute exactly the distribution T for the von Neumann extractor if S outputs one random value
every δ units of time. In that case, one couple is generated every 2δ, and this couple has a probability
2p(1− p) to be accepted. Each couple is generated independently from others, so that the probability of
k successive rejections is (1− 2p(1− p))k. Let ε = 2p2 − 2p+ 1, we have 0 < ε < 1 and

T (2kδ) = εk(1− ε).

Observe that T is not compactly supported, as for any t > 0 we have T (t) > 0. However we can define a
cut-off value above which event probability becomes negligible, i.e. T (t) < 2−N for some N ∈ N. This
gives

kmax = −N − log2(1− ε)
log2(ε) ⇒ tmax = −2δN − log2(1− ε)

log2(ε)
the minimum is tmin = 0, and the median is computed from the cumulative probability

n∑
k=0

T (2kδ) =
n∑
k=0

εk(1− ε) = 1− εn+1

so that k1/2 = − 1
log2 ε

− 1, hence

t1/2 = −2δ
(

1
log2 ε

− 1
)

Example 5.11 Assume δ = 1 and N = 80, we have the following parameters for different biases p:

p ε tmin t1/2 tmax
1/2 1/2 0 4 162
1/4 5/8 0 4.95 241
1/32 481/512 0 24.19 1866

5.5.6 Experimental Results

385 390 395 400 405 410 415

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

0.
14

D
en
si
ty

340 360 380 400 420 440 460

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

0.
14

D
en
si
ty

Figure 5.11: Left: Steady-state output distribution of a Lagrange regulator, with input distribution
T = Uniform(200, 600) and m = 1000. The distribution peaks at µ′ = 400.0, and is contained in [390, 410].
Compare to the input distribution (µ = 400, σ = 115.4). Average memory usage is 500 = m/2. Right:
same thing with m = 100 (blue), 500 (green) and 1000 (red).



5.5 Regulating the Pace of von Neumann Extractors 143

20 40 60 80 100

10
20

30
40

50

Memory

IQR

Std dev.

Figure 5.12: Steady-state IQR (black, circled) and standard deviation (green) as a function of m, for the
same parameter set as in Figure 5.11. Both IQR and standard deviation get lower for larger values of m,
and reach a minimal nonzero value; log log IQR is almost linear, with a slope of −0.008.

To test our regulator we implemented a simulation in Python. The simulation is event-driven: only ai
reception and emission are considered, which allows for an exact solution (in particular, there is no timer
involved). ai generation by G is simulated by inverse sampling of a given distribution. In the simulation
we assume that this distribution is known, and we implement the corresponding Lagrange regulator.
The source code is provided in F.

We choose a certain amount of memory m and run the simulation for n � m objects. The output
distribution is then measured.

After some warming-up time (which is of the order of m/2), the output distribution reaches a steady
state peaked around a central value µ′ ≈ µ. The variance of this distribution is much smaller than the
input variance and a larger memory m results in a narrower distribution.

5.5.6.1 Uniform Input Distribution

Figure 5.11 shows the steady-state distribution of a Lagrange regulator applied to a uniform generator.
Memory usage X fluctuates around m/2. Figure 5.12 shows the evolution of variance and interquartile
range (IQR) as a function of m.



144 Algorithms for Embedded Cryptography 5.5

Statistical dispersion around µ′ decreases quickly as m increases: log log IQR decreases almost linearly
with m. Both standard deviation and IQR reach a minimum value. IQR decreases faster than standard
deviation, which yields a distribution with higher kurtosis as m increases. These observations are
consistent across various parameter choices.

5.5.6.2 Cut-off Geometric Input Distribution

The output times of the von Neumann extractor follow a geometric distribution (cf. 5.5.5). Since this
distribution is not compactly supported, we define a cut-off value tmax.

We use the random.geometric function from numpy to automatically generate sequence of appropri-
ately distributed tis, with a cut-off at 280 for the distributional regulator.

Results are similar to the uniform case, but memory usage is higher on average because of the input
distribution’s large tail. The cut-off incurs a non-zero (albeit negligible) failure probability, that must
be dealt with: When an exceptionally large delay occurs, the degraded operation simply consists in
outputting the late object as soon as it arrives.



5.6 Fault Attacks on Projective-to-Affine Coordinate Conversion 145

5.6 Fault Attacks on Projective-to-Affine Coordinate Conversion

Many papers 20 have been devoted to fault attacks on ECCs. Fault attacks usually target variables involved
in the elliptic curve scalar multiplication, such as the base point coordinates or the curve parameters. In
this section, we consider a different ECC fault attack type, in which fault injection targets the conversion
from projective to affine coordinates that typically follows the computation of the scalar multiplication
(ECSM).

Related Work: Naccache, Smart and Stern showed [NSS04] that if, for a known base point P , the scalar
multiplication’s result [k]P is output in projective (usually Jacobian) coordinates, then information on k
can be recovered. However, in real-life implementations, results are returned in affine coordinates, so the
attack described in [NSS04] cannot be performed.

Given this, we describe a number of fault attacks targeting the final projective-to-affine coordinate
conversion step, making it possible to retrieve information in Jacobian coordinates, and hence carry out
the attack described in [NSS04].

Organisation: Section 5.6.1 briefly recalls the EC attack of [NSS04]. In addition to [NSS04], some
details on the attack’s feasibility on different ECSMs and on different side-channel countermeasures are
given. Section 5.6.2 describes fault injection during conversion. Depending on the type of fault, we
propose three different methods for recovering the Jacobian coordinates. The three methods and their
cryptanalytic consequences are described in Sections 5.6.3, 5.6.4 and 5.6.5.

5.6.1 Preliminaries

We refer the reader to Section 3.4 for an algorithmic presentation of elliptic curves.

A brief overview of [NSS04] is given here. This attack is described for ECs defined over prime fields of
large characteristic, but can easily be adapted, mutatis mutandis, to other base fields.

5.6.1.1 Faults and Failures in Cryptography

Provable security became a central problem in cryptography since the 1990s. The theoretical development
of this topic has been astonishing. As computationally secure cryptosystems started being widely
adopted, researchers got used to invoke flawless mathematical models, but practical implementation
issues started to surface.

Real world applications imply translating into cryptographic models, hardware or software. This fact
has evolved into a major concern as implementations started being shown to be vulnerable to fault and
side channel attacks.

We are particularly interested in fault injection attacks. Fault attacks belong to the category of active
attacks and has been showed to be powerful. The generic technique consists of injecting intentionally
harmful faults into cryptographic devices, observing [AK98, BDL01] and then analysing their erroneous
outputs. The variant of this method is known as Differential Fault Analysis (DFA) and has been described
by Biham and Shamir [BS97].

Differential Fault Analysis (DFA) DFA is a powerful attack on cryptosystems implemented in devices
such as smart cards. If the device can be made to deliver erroneous output under stress (heat, radiation,
power glitches, over-clocking, etc.) then a cryptanalyst comparing correct and erroneous outputs has a
dangerous entry point to the processor’s internals, including keys. Thus, secret keys can be disclosed by
provoking computational errors during calculation.

20. e.g. [BCN+04, BMM00, GK04, CJ05, FLRV08, GKT10, BBPS11, FGV11]



146 Algorithms for Embedded Cryptography 5.6

5.6.1.2 Overview, classification and countermeasures.

The adverse effects of faults on electronic circuits were first observed in chips subjected to radioactive
exposure [BCN+04]. Radiation caused accidental memory bits flipping. During the past couple of
decades, various fault injection techniques were discovered, analysed and experimented.

Fault injection attacks may change the behaviour of a component, either permanently or transiently.
If an attacker is able to modify memory contents or to alter operations in a cryptographic algorithm,
computation errors will surely appear. An erroneous result r̃ as well as a correct output r corresponding
to it, usually allows attackers to obtain valuable information.

Fault attacks are a real threat, especially in the case of IoT devices, which are widely being adopted
currently. The continuous growing market of smartcards, RFID tags and other security tokens stimulated
academic research in this area.

Electronic circuits are prone to a wide variety of fault injection attacks, either invasive or non-invasive.
Within the next paragraphs, we will shortly describe some of these attacks.

A Preliminary Step. To perform some of the attacks, a preliminary step is necessary: removing the
chip package and dissolving the epoxy resin covering the chip (decapsulation).

Optical Fault Attacks. Optical faults are usually injected either using simple (photographic) white
light flashes or lasers.

Light radiation attacks were initially proposed in 2002 [SA03] and used a concentrated ray of light to
provoke faults. The attackers only need a camera flash, a microscope and an aluminium sheet in order to
concentrate the light. This attack allows the modification of selected bits in SRAM.

Laser attacks are more powerful, as their effect is similar to white light attacks, while having in addition
the advantage of precision. Precision is very important advantage, given the sizes of nowaday’s chips.

EEPROM can be altered using UV light, which can be focused on the EEPROM security block cell to
erase lock bitS, and render memory externally readable.

Ion beams and X-rays can also used as fault sources. The advantage of these methods is their ability to
induce fault attacks without necessarily decapsulating the chip. A focused ion beam (FIB) workstation
consists of a vacuum chamber with a particle gun. Gallium ions are accelerated and focused from a liquid
metal cathode into a beam. Attackers can thus simplify manual probing of deep metal and poly-silicon
lines using FIBs. A hole is drilled to the signal line of interest this is filled with platinum, to lift the signal
to the surface, where a large probing pad is created to allow easy access and fault injection.

Power Glitches. A smartcard’s power supply comes from a reader which may be malicious. In such
cases, an attacker may control the target’s power supply. Current variations may hence be applied to the
card and, thus, cause memory faults or even changes in code execution. Finally, an attacker may modify
the program counter to cause uncontrolled program jumps or computation errors in the processor.

Clock Glitches. The clock signal of smartcards is also provided by the reader. As for power glitches,
attackers may alter the incoming clock signal to interfere in the target chip’s behavior. Sudden clock
frequency variations are easy to perform. Such glitches may cause data read errors, instruction skipping
or instruction switching [ADN+10].

Temperature. Temperature variations can be maliciously exploited in three ways: Electronic devices
must operate within safe temperature intervals. When a chip is operated outside the bounds of these
intervals cryptanalytically exploitable processing errors may occur. A second temperature attack consists
in cooling RAM to extreme temperatures to avoid data erasure after a power-off [Cona]. Finally, in some
silicon technologies, long-term data storage in a RAM cell will permanently "burn" the data into the cell.
The etched data can then be read using specific technical means [Gut96].



5.6 Fault Attacks on Projective-to-Affine Coordinate Conversion 147

Directly Injecting Electrical Faults. An electronic probe station is a laboratory test equipment used for
physically acquiring signals from the internal nodes of a target chip. Probe stations can also inject signals
in the target circuit and thereby induce faults.

Memory Overwriting. In some ROM technologies, single bits can be overwritten using a laser. This
may allow attackers to alter executable code and result in key disclosure. Researchers also reported a
physical attack on EPROM in which two probe needles were used to set or clear target EPROM cells
to infer their contents [AK98, WBYD00]. A correct guess (resetting a zero bit or setting a one bit) will
cause no behavioral changes. A bad guess will cause an error. In both cases one secret key bit will be
pulled-out. This is repeated to access all the key’s bits one after the other.

Fault attacks are classified according to the following criteria:

– Spatial control: the attacker may have no control on the memory address being modified. Data
modification may hence occur in a given memory interval or even at a precise bit.

– Time control: If the attacked algorithm is probabilistic 21 the attacker may not know when the fault
occurred. This may foil the attack.

– The number of bits affected by the fault: the fault may affect one bit, several bits, bytes or words. In
some scenarios the number of affected bits is unknown to the attacker.

– The fault’s success probability may depend on a number of technical factors such as the energy level
of the fault injector or the wavelength used.

– The fault’s duration - faults may be transient or permanent.

Protections against fault attacks [BBKN12] belong to several categories: Sensors (temperature, voltage,
frequency, light, etc.) may detect faults and halt the chip before secrets are leaked. Circuits can be
shielded using wire meshes and extra metal layers. Hardware modules can be duplicated to detect
processing mismatch. Finally, data can also be protected by CRCs 22 to detect modification attempts.

Typical Countermeasures. Sensors added to micro-controllers typically detect variations in the external
clock, the internal clock, internal and external voltage, temperature, signal, glitches and light sensors.

Integrated circuits can be covered by programmable active shields. Also, they may be equipped with
signal layers able to detect probing signal injection of decapsulation attempts.

CRC (cyclical redundancy check) modules are used for data integrity. Checking the data to see whether
an error has occurred during transmission, reading or writing is already common practice.

For an overview of fault injection attacks we refer the reader to [BBKN12, JT12].

Therefore, an additional difficulty for small embedded devices is that, if left unprotected, such devices are
physically prone to attacks and can be tampered with. This problem must be carefully considered when
designing cryptographic algorithms. Systems using embedded devices must be designed in such a way
that the compromising of a few devices will endanger the entire system. This is because an adversary
may obtain secrets stored in some devices and attempt to use these stolen secrets to attack the system as
a whole.

5.6.1.3 Leakage in Projective Coordinates

Naccache, Smart and Stern [NSS04] observed that if [k]P is given in Jacobian coordinates it becomes
possible to recover information on k. We briefly overview the way in which this is achieved.

Denote by Ai = (Xi, Yi, Zi) the value of point A at the end of iteration i in Algorithm 2. The attacker
knows the output A0 = (X0, Y0, Z0) in Jacobian coordinates and the input P = (xP , yP ) in affine
coordinates. The attacker will attempt to reverse the scalar multiplication process i.e. replace doubling
by halving and replace additions of P by subtractions.

21. or if the designer purposely introduced random delays to fool the attacker
22. cyclical redundancy checks



148 Algorithms for Embedded Cryptography 5.6

If k0 = 0, A1 can be recovered by halving A0. Given formula (3.5):

Z0 = 2Y1Z1 = 2y1Z
4
1 ⇒ Z4

1 = Z0

2y1
.

We need to compute a fourth root to obtain Z1 from Z0:
– if p ≡ 3 (mod 4), then computing a fourth root is possible for half of the inputs and, when possible,

this computation yields two values
– if p ≡ 1 (mod 4), then computing a fourth root is possible in a quarter of the cases and yields four

values
We can hence obtain X1 and Y1 from Z1.

If, on the other hand, k0 = 1,A1 can be recovered by subtractingP fromA and halving. P is given in affine
coordinates. We denote by (Xt, Yt, Zt) the intermediate point between doubling (step A← ECDBL(A))
and addition (step if ki = 1 then A← ECADD(A,P )). Given formula (3.6), we have:

Z0 = (xPZ2
t −Xt)Zt ⇒ Z3

t = Z0

xP − xt
.

We need to compute a cubic root to obtain Zt from Z0:
– if p ≡ 1 (mod 3), then extracting a cubic root is possible in a third of the cases and, when possible, this

calculation yields one of three possible values
– if p ≡ 2 (mod 3), then extracting a cubic root is always possible and yields a unique value
We can easily obtain Xt and Yt from Zt. After subtraction, the attacker must halve (Xt, Yt, Zt) as
described previously:

Z4
1 = Zt

2yt
.

From this observation, the opponent can recover the least significant bit of k. Indeed, if the value Z0
2y1

isn’t a fourth power, the opponent can immediately conclude that k0 = 1. If Z0
2y1

is a fourth power,
then the attacker must try the subtraction and halving step. If subtracting P from A0 or halving At
is impossible, the attacker concludes that k0 = 0. If both steps are possible (which happens with
non-negligible probability), the attacker cannot immediately identify k0, but can hope to do so by
backtracking, i.e. guessing the values of k1, k2, etc. and computing the corresponding intermediate points
until reaching one of the previous contradictions.

Once k0 is known, the opponent can iterate the procedure starting with k1 and so forth to extract a
few more bits of k. Note that several candidate values for Z1 arise from the reversal process as the
corresponding equations have several roots, and backtracking is usually required to determine the
correct one.

[NSS04] reports experimental data on the number of recovered bits and success probabilities.

To prevent this attack, the defender should in principle output results in affine coordinates. Another
possible countermeasure suggested in [NSS04] is to randomize the output, replacing (X0, Y0, Z0) by
(λ2X0, λ

3Y0, λZ0) for some random λ ∈ F∗p, which effectively avoids any possible leakage from the
Jacobian representation.

As a side note, we point out that, while [NSS04] also claims that attacks are thwarted by randomly
flipping the sign of Z0, this is incorrect: just as k1 can be recovered with significant probability even
though Z1 is only known up to a sign (by simply trying both possibilities and backtracking until a
contradiction is reached), k0 can also be recovered even when Z0 is only known up to a sign. This
observation is important in our case, as the fault attacks described hereafter retrieve Z2

0 rather than Z0
itself.

5.6.1.4 Leakage in Projective Coordinates in Other Representations

The attack was presented in Jacobian coordinates. The attack works in another representation if a n-th
root of a value is computed during backtracking, with n > 1. This is the case in Projective coordinates
system where a point P = (X,Y, Z) corresponds the affine point (X/Z, Y/Z).



5.6 Fault Attacks on Projective-to-Affine Coordinate Conversion 149

5.6.1.5 Leakage in Projective Coordinates in Other ECSMs

The attack was presented with the Double-and-Add algorithm. However, in embedded system, the
Double-and-Add algorithm is vulnerable to a Simple Power Analysis [Cor99]. We give in this section
some details of the attack on other algorithms.

Double-and-Add Always [Cor99]. This algorithm is similar to the Double-and-Add algorithm except
that a dummy addition is performed if the current bit is 0. The output coordinates are the same as the
classical Double-and-Add algorithm. The attack is thus applicable.

Signed Sliding Window Method [BSS99, algorithm IV.7]. This case was described in [NSS04]. If the
attacker knows the coordinates of the precomputed multiples of the base point (which is generally the
case because the precomputed multiples are in affine coordinates for the sake of efficiency), then the
attack applies.

Sliding Window Method [BSS99, algorithm IV.4]. The same analysis of the Signed Sliding Window
method holds here: if the attacker knows the coordinates of the precomputed multiples of the base point,
then the attack applies.

Signed Digit Method. This is a particular case of the Signed Sliding Window method where the size
of the window is one. The attack is applicable.

Montgomery Ladder with Classical Formulæ [JY02]. The Montgomery Ladder uses an additional
temporary point R1 that is not returned, the opponent gets only the Z coordinate of R0. The attacker
cannot halve R1 or subtract R1 without knowing the Z coordinate of R1. The attack does not apply.

Montgomery Ladder with Co-Z Formulæ [GJM10]. Co-Z formulæ are alternative addition formulæ
with points sharing the same Z coordinates. Co-Z formulæ are given in appendix B. If the Montgomery
Ladder with co-Z formulæ (algorithm 33 in appendix) is used, the attacker gets the Z coordinate of R0,
and hence the Z coordinate of R1 because they are the same. The attack can then be applied.

An important remark is that, with co-Z formulæ, only addition and subtraction are performed. Therefore,
only cubic roots are computed during backtracking. If p ≡ 2 (mod 3), then extracting a cubic root is
always possible and yields a unique value, so backtracking cannot be applied because every guess will
yield a solution. In this case, the attack does not apply.

5.6.1.6 Applicability of the Attack in the Presence of Side-Channel Countermeasures

Below, we give some details of the attack in the presence of side-channel countermeasuress.

Random Projective Coordinates [Cor99, §5.3]. Randomizing the point A = (x, y, 1) into (r2X, r3Y, r),
with r ∈ F∗p in algorithm 2 at the beginning of the ECSM will not thwart the attack since only the Z
coordinate of the final output point is needed for the attack.

Random Curve Isomorphism [JT01]. Let ϕ be the isomorphism defined by

ϕ : E ∼−→ E′,

{
O → O

(x, y) → (u−2x, u−3y)

where u ∈ F∗p is random. The countermeasure consisting of computing the ECSM on the random curve
E′ instead of E will not thwart the attack.

The inverse isomorphism in Jacobian coordinates of the point (u−2X,u−3Y,Z) ∈ E′J consists in multi-
plying Z by u−1.



150 Algorithms for Embedded Cryptography 5.6

Let d be a scalar with d0 = 1. Let P = (xP , yP ) ∈ E be the base point (and hence P ′ =
(u−2xP , u

−3yP ) is the base point of E′), Q′ = (u−2X3, u
−3Y3, Z3) = [d]P ′ and (u−2Xt, u

−3Yt, Zt) =
(u−2xtZt, u

−3ytZt, Zt) ∈ E′J the intermediate point between doubling and addition of the last iteration
of the ECSM, then

Z3 = (u−2xPZ
2
t −X ′t)Zt ⇒ u−1Z3 = u−3Z3

t (xP − xt) ⇒ (u−1Zt)3 = u−1Z3

xP − xt
.

The knowledge of (u−1Z3), xP and xt is sufficient to recover (u−1Zt). By analogy, (u−1Zt) can be used
to halve the point (X ′t, Y ′t , Zt).

Scalar Randomization [Cor99, §5.1]. Randomization of the scalar using d′ = d + r ·#E where r is a
random element of Fp will not thwart the attack because the attacker can grab a few bits of the integer d′

which is a solution of the ECDLP.

Point Blinding [Cor99, §5.2]. Computing Q = [d](P +R) instead of [d]P , where R is a pseudo-random
point will thwart the attack since the output coordinates of the point Q− [d]S = (X,Y, Z) will depend
on the unknown coordinates X1, Y1, Z1 of Q and X2, Y2, Z2 of [d]S. Moreover, the knowledge of the base
point P +R is needed for backtracking.

5.6.1.7 Projective-to-Affine Conversion

The following procedure converts P = (X,Y, Z) = (xZ2, yZ3, Z) from Jacobian to affine coordinates
(x, y).

Algorithm CONVERT(X,Y, Z) =


r ← Z−1

s ← r2

x ← X · s
t ← Y · s
y ← t · r return(x, y)

(5.19)

5.6.2 Faults During Conversion

In standardized EC protocols, the computed points are given in affine coordinates, and hence [NSS04]
does not apply. Our idea is to corrupt the conversion process, so that the faulty affine results reveal the
missing Z coordinate.

Suppose that an error corrupted s just after the step s← r2 (of process (5.19)). The corrupted s+ ε yields:

x̃ = X(s+ ε)⇒ x̃ = x+ xZ2ε (5.20)

ỹ = Y (s+ ε)r ⇒ ỹ = y + yZ2ε (5.21)

The next sections describe three different attacks depending on the fault’s precision.

5.6.3 Large Unknown Faults

5.6.3.1 Several Faulty Results and a Correct Result

Equations (5.20) and (5.21) imply
x̃

x
− 1 = Z2ε (5.22)

ỹ

y
− 1 = Z2ε (5.23)



5.6 Fault Attacks on Projective-to-Affine Coordinate Conversion 151

Let ε = (ε1, ..., εn) be a vector of n faults. Each εi satisfies an equation of the form (5.22), thus the attacker
knows n numbers ui = Z2 · εi mod p denoted as a vector u = (u1, ..., un).

Let a < 1. Assume that ∀i ∈ {1, . . . , n}, εi < pa. We want to recover ε.

Let L be the lattice generated by the vector u and pZn in Zn and let s = Z−2 mod p. Since ε satisfies
ε = s · u mod p, ε is a vector in L, of length ‖ε‖ . pa.

Assume further that g = gcd(u1, . . . , un) = 1. This happens with probability ≈ 1/ζ(n) ≈ 1− 2−n, which
is very close to 1. Then, we have vol(L) 1

n = [Zn : L] 1
n = p1− 1

n . Therefore, we can recover ε directly by
reducing the lattice L using LLL [HPS08] as long as pa � p1− 1

n , i.e. n > 1
1−a .

The attack can also be carried out when g > 1: in that case, LLL will recover ±1/g · ε, so exhaustive search
on the few possible values of g is enough. However, the probability that g > 1 is so small makes this
refinement unnecessary.

Table 5.8: Timings for a SAGE implementation on a 2.27 GHz Intel Core i3 CPU core.
Size of p (modulus size) 256 bits
Number of errors (n) 9
Error size (percentage of the modulus size) 224 bits (87.5%)
Success probability 99.8%
CPU time 3 ms

Experimental results. To evaluate the attack, we implemented it in SAGE [Ste12] (without treating the
case g > 1) and observed the results given in Table 5.8. The failure rate of ≈ 0.2% corresponds to the
cases when g > 1, and is consistent with 1/ζ(9) ≈ 0.998.

5.6.3.2 Several Faulty Results and no Correct Result

Now, assume that the attacker has no access to the correctly converted affine coordinates and that all he
gets are the values

xi = x+ xZ2εi

yi = y + yZ2εi

for i = 0, . . . , n. The attack of the previous paragraph extends to this setting. Indeed, Z, x and y can be
recovered as follows.

Step 1: Recovering xZ2, yZ2 and εi − ε0. We have

xi − x0 = xZ2 · (εi − ε0) .

The (εi − ε0) are small. The attacker can hence reuse LLL as in Section 5.6.3.1 with the values xi − x0 and
ε = (ε1 − ε0, . . . , εn − ε0). This will recover xZ2 and ε. The same can be done with y to recover yZ2.

Step 2: Recovering Z. Let u = xZ2 and v = yZ2 and substitute these values into equation (3.4):( v

Z2

)2
=
( u

Z2

)3
+ a

u

Z2 + b hence v2Z2 = u3 + auZ4 + bZ6 .

Z2 can thus be recovered by solving a cubic algebraic equation.

Step 3: Recovering x and y. From x1 − x0 = xZ2 · (ε1 − ε0), compute:

x = Z2 · (ε1 − ε0)
x1 − x0

.

Indeed, Z2, (ε1 − ε0) and (x1 − x0) are all known to the attacker. The same holds for y.



152 Algorithms for Embedded Cryptography 5.6

In Summary. Several faulty conversions allow to recover the missing Z coordinate.

This attack should not jeopardize standard ECDSA signatures, as a fresh random scalar k is generated
during each subsequent run. A schematic presentation of the standard ECDSA is given in Section 3.3,
while the Sign and Verify algorithms are given in more detail in Algorithms 29 and 30. However,
deterministic signature scheme such as [MNPV98] are vulnerable to this attack. This signature scheme is
recalled in appendix B.

Since several faulty results with the same Z coordinate are necessary, any randomization used against
side channel attacks, e.g. scalar randomization [Cor99, §5.1], input blinding [Cor99, §5.2], random
projective coordinates [Cor99, §5.3] or random curve isomorphism [JT01] will thwart this attack.

5.6.4 Two Faults and a Correct Result

As we have just seen, a correct conversion and two faulty conversions yield the values: Z2ε1 and Z2ε2
and hence, by modular division α = ε1ε

−1
2 . Theorem 5.13 (see [FSW02]) guarantees that ε1 and ε2 can be

efficiently recovered from α if each εi is smaller than the square root of p. This problem is known as the
Rational Number Reconstruction [PW04, WP03] and is typically solved using Gau’ algorithm for finding
the shortest vector in a bidimensional lattice [Val91].

Theorem 5.13 Let ε1, ε2 ∈ Z such that −A ≤ ε1 ≤ A and 0 < ε2 ≤ B. Let p > 2AB be a prime and α = ε1ε
−1
2

mod p. Then ε1, ε2 can be recovered from A,B, α, p in polynomial time.

Assume that the εi are smaller than
√
p. Taking A = B = b√pc, we get 2AB < p. Moreover, 0 ≤ ε1 ≤ A

and 0 < ε2 ≤ B. Thus the attacker can recover ε1 and ε2 from α in polynomial time. Note that this attack
is a special case of Section 5.6.3.1.

If the εi are shifted to the left by an arbitrary number of bit positions, this does not change anything as
these powers of two will divide out.

The attack is also feasible in the more general unbalanced case when

ε1ε2 ≤ p/4. (5.24)

In contrast to the case where the εi are bound individually (i.e. 0 ≤ ε1 ≤ A and 0 < ε2 ≤ B) we do not
have a fixed bound for ε1 and ε2 anymore; equation (5.24) only provides a bound for the product ε1ε2.
Equation (5.24) implies that there exists 1 ≤ i ≤ blog2 pc such that 0 ≤ ε1 ≤ 2i and 0 < ε2 ≤ p/2i+1. Then
using Theorem 5.13 again, the attacker can recover the pair (ε1, ε2), and hence Z. In principle, there
could be several candidate solutions depending on the choice of i, making it necessary to consider many
possible values of Z. In practice, however, multiple solutions seem to occur with negligible probability
when p is large enough.

In Summary. With this attack, the missing Z coordinate can be recovered with two faulty results and
one correct result. Faults can have different sizes but the sum of these sizes must not exceed the size of p.

Again, this attack does not threaten standard ECDSA or randomized implementations as it requires two
faulty conversions of the same point. It is however still applicable to [MNPV98].

5.6.5 Known or Guessable Faults

If ε is known or successfully guessed, then one faulty point (x̃ = x+ xZ2ε, ỹ = y + yZ2ε) and the correct
point (x, y) suffice to recover Z.

5.6.5.1 Attacking ECDSA

Widely adopted by standardisation organism such as ANSI, IEEE and NIST, ECDSA is the elliptic curve
version of DSA proposed by Vanstone in 1992 [Van92].

The hardness assumption underlying ECDSA is the intractability of the ECDLP (see Section 2.1.2).



5.6 Fault Attacks on Projective-to-Affine Coordinate Conversion 153

The Elliptic Curve Digital Signature Algorithm (ECDSA) [JM99] uses the following curve parameters:

– E, an elliptic curve over some prime base field Fp
– G, a generator of a subgroup of E of order n

A private key is an integer d randomly chosen in [1, n− 1]. The corresponding public key is P = [d]G.

Algorithm 29: Sign
Input: Private key d, hashed and padded message m

Output: Signature (r, s)

1 k
$←− [1, n− 1]

2 Q← [k]G
3 r ← xQ mod n
4 if r = 0 then
5 go to line 1
6 end if

7 i← k−1 mod n
8 s← i(dr +m) mod n
9 if s = 0 then

10 go to line 1
11 end if

12 return (r, s)

Algorithm 30: Verify
Input: Public key P , hashed and padded message m, signature (r, s)
Output: True or False

1 w ← s−1 mod n
2 u1 ← w ·m mod n
3 u2 ← w · r mod n
4 Q← [u1]G+ [u2]P
5 v ← xQ mod n
6 if v = r then
7 return True
8 end if
9 else

10 return False
11 end if

We suppose that, during Sign, a fault corrupted the conversion of Q and thus has damaged xQ. The
corresponding erroneous value is denoted x̃Q. x̃Q and xQ verify equation (5.20). The erroneous signature
(r̃, s̃) satisfies:

r̃ = x̃Q mod n

s̃ = i(d · r̃ +m) mod n

From (r̃, s̃), the attacker can compute:



154 Algorithms for Embedded Cryptography 5.6

w̃ = s̃−1 modn
ũ1 = w̃ ·m modn
ũ2 = w̃ · r̃ modn
Q̃ = [ũ1]G+ [ũ2]P =

[
km
dr̃+m

]
G+

[
kr̃

dr̃+m

]
P =

[
km
dr̃+m

]
G+

[
dkr̃
dr̃+m

]
G

=
[
k · dr̃+mdr̃+m

]
G = [k]G

The value Q̃ is hence the correct value of [k]G. Thus, if the attacker can guess ε, then the attack of [NSS04]
becomes possible and some bits of k are disclosed. The attacker can repeat this scenario and obtain
several signatures for each of which a few bits of ki are known. This is precisely the scenario considered
in [HGS01] allowing to recover the private key d.

In Summary. This attack requires only one result wrongly converted ECDSA signature under a known
fault to recover Z. When repeated, this attack permits to recover the signer’s private key.

As opposed to the previous attacks, scalar randomization [Cor99, §5.1] and random projective coordi-
nates [Cor99, §5.3] do not seem to thwart this attack.

5.6.6 Final Observations

Synthesis of the Feasibility of the Attacks. From the analysis of Sections 5.6.1.5, 5.6.1.6 and the
analysis of the three different fault attacks, we give a summary of the feasibility of each attack depending
on the ECSM and countermeasures used. X indicates that the ECSM or the countermeasure thwarts the
attack and × indicates that it does not.

The injection of an error ε before the squaring of r i.e. right before the operation r2) will yield

x′

x
− 1 = U(2 + U)

and
y′

y
− 1 = U(U2 + 3U + 3),

where U = εZ.

Alternatively, the injection of an error ε into s just after the operation x = X · s yields a correct x and a
faulty y′. Here y′

y − 1 = εZ2 where y can be derived from x using the curve’s equation.



5.6 Fault Attacks on Projective-to-Affine Coordinate Conversion 155

Ta
bl

e
5.

9:
Sy

nt
he

si
s

of
th

e
at

ta
ck

s.
Fa

ul
tM

od
el

La
rg

e
Fa

ul
ts

Tw
o

Fa
ul

ts
K

no
w

n
Fa

ul
t

Se
ct

io
n

5.
6.

3
Se

ct
io

n
5.

6.
4

Se
ct

io
n

5.
6.

5

E
C

SM

D
ou

bl
e-

an
d-

A
dd

×
×

×
D

ou
bl

e-
an

d-
A

dd
al

w
ay

s
×

×
×

Si
gn

ed
D

ig
it

m
et

ho
d

×
×

×
Sl

id
in

g
W

in
do

w
×

×
×

Si
gn

ed
Sl

id
in

g
W

in
do

w
×

×
×

M
on

tg
om

er
y

La
dd

er
X

X
X

co
-Z

M
on

tg
om

er
y

La
dd

er
×

×
×

C
ou

nt
er

m
ea

su
re

s

R
an

do
m

Pr
oj

ec
ti

ve
C

oo
rd

in
at

es
be

fo
re

E
C

SM
X

X
×

R
an

do
m

Pr
oj

ec
ti

ve
C

oo
rd

in
at

es
af

te
r

E
C

SM
X

X
X

R
an

do
m

C
ur

ve
Is

om
or

ph
is

m
X

X
×

Sc
al

ar
R

an
do

m
iz

at
io

n
X

X
×

Po
in

tB
lin

di
ng

X
X

X
Po

in
tV

er
ifi

ca
ti

on
be

fo
re

co
nv

er
si

on
×

×
×

Po
in

tV
er

ifi
ca

ti
on

af
te

r
co

nv
er

si
on

X
X

X



CHAPTER 6

CONCLUSION AND FURTHER
DEVELOPMENT

This thesis addressed various topics in cryptology. Starting from protocol design, passing through
algorithmic improvements and getting to attacks, both authentication and encryption were considered.
As an extension, various cryptographic techniques were successfully applied to error correcting codes.

A brief historical overview of cryptography is given in the introduction. We further gave technical details
of both symmetric and asymmetric key cryptography, defining the corresponding security notions. We
list our publications, pre-prints and our submission to the cryptographic competition CAESAR, which is
currently a second-round finalist.

Theoretical foundations underlying the discussed results were presented.

We briefly overviewed basic concepts of hash functions, MACs and authenticated encryption: both
the generic composition paradigm and the one-pass solution were presented. An overview of digital
signatures was further given. The basics of elliptic curves were recalled and their importance in
cryptography was discussed.

The thesis’ core results are the following: we replace the individual signatures of two parties by one
co-signature to circumvent the restrictive definitions of fairness and viability that do not apply to co-
signatures. We then introduce a new notion, called legal fairness, defined as the requirement that any
transferable proof of involvement of one party with a message also ties the other.

We implemented legal fairness using Schnorr signatures, and proved the construction’s security. The
proposed paradigm is efficient, compact, fully distributed, fully dynamic, and provably secure in the
Random Oracle Model. The protocol is also flexible (meaning that any arbitrary subset of users can
co-sign a message) but extending legal fairness for more than two co-signers remains an open problem.

A new nonce-based authenticated encryption scheme (AEAD), called Offset Merkle-Damgard (OMD),
offering several attractive features was presented. Unlike the mainstream schemes which are either
block-cipher-based or permutation-based schemes, OMD was designed as a mode of operation for a
compression function. The design rationale included attaining a provable security relying only on a
single well-established standard assumption on the underlying primitive (i.e. the PRF assumption on
the keyed compression function). Further design guidelines were constructing the scheme based on a
simple (as possible) structure and proposing a different approach in view of scheme’s variation.

A distributed Fiat-Shamir authentication protocol is presented next. This protocol enables network
authentication using very few communication rounds, thereby alleviating the burden of resource-limited
devices such as wireless sensors and other IoT nodes. Instead of performing one-to-one authentication
to check the integrity of the network seen a whole (a single entity), our protocol gives a collective proof
of integrity for the whole network at once.

Lightweight cryptography solutions were described, initially for RFID tags. Possible risks were examined
and different measures for improving their level of security and privacy were discussed.

156



6.0 157

A method allowing to double the speed of Barrett’s algorithm by using specific composite moduli was
presented. The technique is particularly useful for lightweight devices where such an optimization
can make a difference in terms of power consumption, cost and processing time. The generation of
composite moduli with a predetermined portion is a well-known technique and the use of such moduli
is considered, in statu scientiæ, as safe as using randomly generated composite moduli. We also suggested
a modified DSA prime generation process leveraging the idea.

We described a new backtracking-based multiplication algorithm, especially tailored for lightweight
microprocessors when one of the operands is known in advance.

A polynomial extension of Barrett’s modular reduction algorithm was presented. Optimisations were
discussed and applied to error correction. The goal was the efficient implementation of an error-
correction code (BCH), suitable for constrained memory specifications. The implementation of the
proposed polynomial variant of Barrett’s algorithm confirms that the new algorithm allows to reduce
hardware complexity and hence save resources. Synthesis results for different ECC circuits reveal various
trade-off possibilities and provide guidelines for choosing a particular hardware architecture depending
on the application’s requirements.

We proposed a new building block denoted Pace Regulator and applied it for streamlining the pace of
random bits outputt by a von Neumann extractor.

We presented a new error-correcting code based on number theory, as well as a form of message size
improvement based on the hybrid use of two ECCs. This construction is inspired by the Naccache-Stern
(NS) cryptosystem [NS97, CMNS08].

If the output of scalar multiplication [k]P on an ECC is given in Jacobian coordinates (X,Y, Z), infor-
mation on k can be recovered [NSS04]. Building upon [NSS04], we proposed a new fault attack on
ECC implementations. The attack consists in injecting a fault during the projective-to-affine conversion
process so the erroneous results reveals information about Z. Several faulty results allow recovering Z
and hence, expose a signer to the attack described in [NSS04]. The attack comes in several variants: if the
error is known or guessed, the attack requires only one faulty point. If the error is unknown then several
faults are necessary. In ECDSA the ability to inject known errors in conjunction with our attacks allows to
recover the signer’s secret key.

As further development, we proposed new authenticated encryption ideas in Section 4.3.11.2: obtaining
the tag as a by-product of encryption, allowing the leakage of certain bits to achieve authentication.

Another research direction we consider is instantiating OMD with a compression function more suit-
able for hardware implementations in terms of efficiency. When analyzing the implications of such
a construction resistance to various types of attacks (even side channel attacks) should be taken into
account.

Based on our Pace Regulator presented in Section 5.5, we propose practical implementations for cryp-
tographic hardware. Furthermore, we recommend analyzing this construction’s benefits seen as a
countermeasure tool, e.g. masking the properties of a True Random Number Generator implemented in
cryptographic hardware.



BIBLIOGRAPHY

[AABN02] M. Abdalla, J. An, M. Bellare, and C. Namprempre. From Identification to Signatures via
the Fiat-Shamir Transform: Minimizing Assumptions for Security and Forward-Security.
In Advances in Cryptology - EUROCRYPT’98, volume 2332 of Lecture Notes in Computer
Science, pages 418–433. Springer, 2002. 60

[AD97] M. A. Ajtai and C. Dwork. A Public-key Cryptosystem with Worst-Case/Average-Case
Equivalence. In Proceedings of the 29th Annual ACM Symposium on Theory of Computing,
STOC’97, pages 284–293. ACM, 1997. 30

[ADN+10] M. Agoyan, J.-M. Dutertre, D. Naccache, B. Robisson, and A. Tria. When Clocks Fail: On
Critical Paths and Clock Faults. In Smart Card Research and Advanced Application, volume
6035 of Lecture Notes in Computer Science. Springer, 2010. 146

[Ajt96] M. A. Ajtai. Generating Hard Instances of Lattice Problems (Extended Abstract). In
Proceedings of the 28th Annual ACM Symposium on Theory of Computing, STOC’96, pages
99–108. ACM, 1996. 30

[AK98] R. J. Anderson and M. G. Kuhn. Low Cost Attacks on Tamper Resistant Devices. In
Proceedings of the 5th International Workshop on Security Protocols, volume 1361 of Lecture
Notes in Computer Science, pages 125–136. Springer-Verlag, 1998. 145, 147

[And49] W. André. Numbers of Solutions of Equations in Finite Fields. Bulletin of the American
Mathematical Society, 55(5):497–508, May 1949. 55

[And14] In Advances in Cryptology – ASIACRYPT’14. 2014. 48, 94

[AOS02] M. Abe, M. Ohkubo, and K. Suzuki. 1-out-of-n Signatures from a Variety of Keys. In
Yuliang Zheng, editor, Advances in Cryptology – ASIACRYPT 2002, volume 2501 of Lecture
Notes in Computer Science, pages 415–432. Springer, December 2002. 59, 62

[APW09] M. R. Albrecht, K. G. Paterson, and G. J. Watson. Plaintext Recovery Attacks Against SSH.
In Proceedings of the 30th IEEE Symposium on Security and Privacy - SP’09, pages 16–26. IEEE
Computer Society, 2009. 42, 47

[AR05] D. Anshul and S. Roy. A ZKP-Based Identification Scheme for Base Nodes in Wireless
Sensor Networks. In Proceedings of the 20th ACM Symposium on Applied Computing - SAC’05,
pages 319–323. ACM, 2005. 72

[ASW97] N. Asokan, M. Schunter, and M. Waidner. Optimistic Protocols for Fair Exchange. In ACM
CCS 97: 4th Conference on Computer and Communications Security, pages 7–17. ACM Press,
April 1997. 59

[Avi61] A. Avižienis. Signed-Digit Number Representations for Fast Parallel Arithmetic. IRE
Transactions on Electronic Computers, (3):389–400, 1961. 132

[Bar87] P. Barrett. Implementing the Rivest, Shamir and Adleman Public-Key Encryption Algo-
rithm on a Standard Digital Signal Processor. In Advances in Cryptology - CRYPTO’86,
volume 263 of Lecture Notes in Computer Science, pages 311–323. Springer, 1987. 104, 113,
132

[BB12] W. C. Barker and E. Barber. Recommendation for the Triple Data Encryption Algorithm
(TDEA) Block Cipher. NIST Special Publication 800-67 Revision 1, January 2012. 10, 20

[BBBV97] C. H. Bennett, E. Bernstein, G. Brassard, and U. Vazirani. Strengths and Weaknesses of
Quantum Computing. SIAM Journal on Computing, 26(5):1510–1523, October 1997. 31

158



6.0 BIBLIOGRAPHY 159

[BBC+08] C. Berbain, O. Billet, A. Canteaut, N. Courtois, H. Gilbert, L. Goubin, A. Gouget,
L. Granboulan, C. Lauradoux, M. Minier, T. Pornin, and H. Sibert. SOSEMANUK: A Fast
Software-Oriented Stream Cipher. CoRR, abs/0810.1858, 2008. 10, 20

[BBKN12] A. Barenghi, L. Breveglieri, I. Koren, and D. Naccache. Fault Injection Attacks on Cryp-
tographic Devices: Theory, Practice, and Countermeasures. Proceedings of the IEEE,
100(11):3056–3076, November 2012. 147

[BBPS11] A. Barenghi, G. Bertoni, A. Palomba, and R. Susella. A Novel Fault Attack Against ECDSA.
In Proceedings of the IEEE International Symposium on Hardware-Oriented Security and Trust -
HOST’11, pages 161–166, 2011. 145

[BCG+15a] E. Brier, J. S. Coron, R. Géraud, D. Maimuţ, and D. Naccache. A Number-Theoretic
Error-Correcting Code. CoRR, abs/1509.00378:302, 2015. 35

[BCG+15b] E. Brier, J. S. Coron, R. Géraud, D. Maimuţ, and D. Naccache. A Number-Theoretic Error-
Correcting Code. In SECITC’15, Lecture Notes in Computer Science. Springer, to appear
in 2015. 35

[BCN+04] H. Bar-El, H. Choukri, D. Naccache, M. Tunstall, and C. Whelan. The Sorcerer’s Apprentice
Guide to Fault Attacks. IACR Cryptology ePrint Archive, 2004:100, 2004. 145, 146

[BD08] S. Babbage and M. Dodd. The MICKEY Stream Ciphers. In New Stream Cipher Designs,
volume 4986 of Lecture Notes in Computer Science, pages 191–209. Springer, 2008. 10, 20

[BDJR97] M. Bellare, A. Desai, E. Jokipii, and Ph. Rogaway. A Concrete Security Treatment of Sym-
metric Encryption. In Proceedings of the 38th International IEEE Symposium on Foundations of
Computer Science - FOCS’97, pages 394–403, 1997. 25, 26, 28, 46

[BDL01] D. Boneh, R. A. Demillo, and R. J. Lipton. On the Importance of Eliminating Errors in
Cryptographic Computations. Journal of Cryptology, 14:101–119, 2001. 145

[BDPR98] M. Bellare, A. Desai, D. Pointcheval, and Ph. Rogaway. Relations Among Notions of
Security for Public-Key Encryption Schemes. In Advances in Cryptology - CRYPTO’98,
volume 1462 of Lecture Notes in Computer Science, pages 26–45. Springer-Verlag, 1998. 28,
29

[BDPS12] A. Boldyreva, Jean P. Degabriele, K. G. Paterson, and M. Stam. Security of Symmetric
Encryption in the Presence of Ciphertext Fragmentation. In Advances in Cryptology -
EUROCRYPT’12, volume 7237 of Lecture Notes in Computer Science, pages 682–699. Springer,
2012. 45

[BDPVA09] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche. Keccak Specifications, 2009. 39
[Bel06] M. Bellare. New Proofs for NMAC and HMAC: Security Without Collision-Resistance.

IACR Cryptology ePrint Archive, 2006:43, 2006. 80
[Bel11] S. M. Bellovin. Frank Miller: Inventor of the One-Time Pad. Cryptologia, 35(3):203–222,

2011. 20
[Ber] D. J. Bernstein. Cryptographic Competitions: CAESAR. http://competitions.cr.

yp.to. 33
[Ber86] R. Bernstein. Multiplication by Integer Constants. Software - Practice and Experience,

16(7):641–652, 1986. 107, 118, 132, 133
[Ber05] D. J. Bernstein. Cache-Timing Attacks on AES, 2005. 81, 94
[Ber08] D. J. Bernstein. The Salsa20 Family of Stream Ciphers. In New Stream Cipher Designs,

volume 4986 of Lecture Notes in Computer Science, pages 84–97. Springer, 2008. 10, 20
[Ber09] Lattice-based Cryptography. In Post-Quantum Cryptography, pages 147–191. Springer, 2009.

30
[BF01] D. Boneh and M. Franklin. Identity-Based Encryption from the Weil Pairing. 2139:213–229,

2001. 56
[BGLS03] D. Boneh, C. Gentry, B. Lynn, and H. Shacham. Aggregate and Verifiably Encrypted

Signatures from Bilinear Maps. In Advances in Cryptology — EUROCRYPT’03, volume
2656 of Lecture Notes in Computer Science, pages 416–432. Springer, 2003. 72

[BGM04] M. Bellare, O. Goldreich, and A. Mityagin. The Power of Verification Queries in Message
Authentication and Authenticated Encryption. IACR Cryptology ePrint Archive, 2004:309,
2004. 89, 92

http://competitions.cr.yp.to
http://competitions.cr.yp.to


160 BIBLIOGRAPHY 6.0

[BGM06] C. Berbain, H. Gilbert, and A. Maximov. Cryptanalysis of Grain. In Fast Software Encryption
- FSE’06, volume 4047 of Lecture Notes in Computer Science, pages 15–29. Springer, 2006. 20

[BGR95] M. Bellare, R. Guérin, and Ph. Rogaway. XOR MACs: New Methods for Message Authen-
tication Using Finite Pseudorandom Functions. In Advances in Cryptology - CRYPTO’95,
volume 963 of Lecture Notes in Computer Science, pages 15–28. Springer, 1995. 83

[BGR98] M. Bellare, J. A. Garay, and T. Rabin. Fast Batch Verification for Modular Exponentiation
and Digital Signatures. In Advances in Cryptology - EUROCRYPT’98, volume 1403 of Lecture
Notes in Computer Science, pages 236–250. Springer, 1998. 78

[BGT93] C. Berrou, A. Glavieux, and P. Thitimajshima. Near Shannon Limit Error-Correcting
Coding and Decoding: Turbo-Codes. In IEEE International Conference on Communications -
ICC’93, volume 2, pages 1064–1070, May 1993. 124

[BGV94] A. Bosselaers, R. Govaerts, and J. Vandewalle. Comparison of Three Modular Reduction
Functions. In Advances in Cryptology - EUROCRYPT’93, volume 773 of Lecture Notes in
Computer Science, pages 175–186. Springer, 1994. 104, 113

[BHH+15] D. J. Bernstein, D. Hopwood, A. Hülsing, T. Lange, R. Niederhagen, L. Papachristodoulou,
M. Schneider, P. Schwabe, and Z. Wilcox-O’Hearn. SPHINCS: Practical Stateless Hash-
Based Signatures. In Advances in Cryptology – EUROCRYPT’15, volume 9056 of Lecture
Notes in Computer Science, pages 368–397. Springer, 2015. 31

[BKN04] M. Bellare, T. Kohno, and C. Namprempre. Breaking and Provably Repairing the SSH
Authenticated Encryption Scheme: A Case Study of the Encode-then-Encrypt-and-MAC
Paradigm. ACM Transactions on Information and System Security - TISSEC’04, 7(2):206–241,
2004. 42, 45, 47

[BKW03] A. Blum, A. Kalai, and H. Wasserman. Noise-Tolerant Learning, the Parity Problem, and
the Statistical Query Model. Journal of the ACM, 50(4):506–519, 2003. 101

[Ble96] D. Bleichenbacher. Generating EIGamal Signatures Without Knowing the Secret Key.
In Advances in Cryptology — EUROCRYPT’96, volume 1070 of Lecture Notes in Computer
Science, pages 10–18. Springer, 1996. 51

[BLP08] D. J. Bernstein, T. Lange, and C. Peters. Attacking and Defending the McEliece Cryp-
tosystem. In Post-Quantum Cryptography, volume 5299 of Lecture Notes in Computer Science,
pages 31–46. Springer Berlin Heidelberg, 2008. 31

[BMM00] I. Biehl, B. Meyer, and V. Müller. Differential Fault Attacks on Elliptic Curve Cryptosystems.
In Advances in Cryptology - CRYPTO’00, volume 1880 of Lecture Notes in Computer Science,
pages 131–146. Springer, 2000. 145

[BMvT06] E. Berlekamp, R. McEliece, and H. van Tilborg. On the Inherent Intractability of Cer-
tain Coding Problems (Corresp.). IEEE Transactions on Information Theory, 24(3):384–386,
September 2006. 31

[BN00] M. Bellare and C. Namprempre. Authenticated Encryption: Relations among Notions and
Analysis of the Generic Composition Paradigm. In Advances in Cryptology - ASIACRYPT’00,
volume 1976 of Lecture Notes in Computer Science, pages 531–545. Springer, 2000. 46, 47, 80

[BN08] M. Bellare and C. Namprempre. Authenticated Encryption: Relations Among Notions
and Analysis of the Generic Composition Paradigm. Journal of Cryptology, 21(4):469–491,
2008. 12, 32, 44, 45

[Bon98] D. Boneh. The Decision Diffie-Hellman Problem. In Proceedings of the 3rd International
Algorithmic Number Theory Symposium on - ANTS’98, volume 1423 of Lecture Notes in
Computer Science, pages 48–63. Springer, 1998. 55

[Bos11] A. Bosselaers. RIPEMD Family. In Encyclopedia of Cryptography and Security, pages 1050–
1053. Springer, 2nd edition, 2011. 39

[BOSW88] M. Ben-Or, Goldwasser. S., and A. Wigderson. Completeness Theorems for Non-
Cryptographic Fault-Tolerant Distributed Computation (Extended Abstract). In 20th
Annual ACM Symposium on Theory of Computing, pages 1–10. ACM Press, May 1988. 59

[BR93] M. Bellare and Ph. Rogaway. Random Oracles are Practical: A Paradigm for Designing
Efficient Protocols. In Proceedings of the 1st ACM Conference on Computer and Communications
Security - CCS’93, pages 62–73. Fairfax, 1993. 53



6.0 BIBLIOGRAPHY 161

[BR94] M. Bellare and Ph. Rogaway. Entity Authentication and Key Distribution. In Advances in
Cryptology - CRYPTO’93, volume 773 of Lecture Notes in Computer Science, pages 232–249.
Springer-Verlag, 1994. 53

[BR00] M. Bellare and Ph. Rogaway. Encode-Then-Encipher Encryption: How to Exploit Nonces
or Redundancy in Plaintexts for Efficient Cryptography. In Advances in Cryptology -
ASIACRYPT’00, volume 1976 of Lecture Notes in Computer Science, pages 317–330. Springer,
2000. 80

[Bri83] E. F. Brickell. A Fast Modular Multiplication Algorithm with Applications to Two Key
Cryptography. In Advances in Cryptology - CRYPTO’82, volume 330, pages 51–60. Plenum,
1983. 104, 113, 118, 121

[BRW03] M. Bellare, P. Rogaway, and D. Wagner. EAX: A Conventional Authenticated-Encryption
Mode, 2003. 43

[BS91] E. Biham and A. Shamir. Differential Cryptanalysis of DES-Like Cryptosystems. In
Advances in Cryptology - CRYPTO’90, volume 537 of Lecture Notes in Computer Science,
pages 2–21. Springer-Verlag, 1991. 10, 20

[BS97] E. Biham and A. Shamir. Differential Fault Analysis of Secret Key Cryptosystems. In
Advances in Cryptology - CRYPTO’97, Lecture Notes in Computer Science, pages 513–525.
Springer-Verlag, 1997. 145

[BSS99] I. F. Blake, G. Seroussi, and N. P. Smart. Elliptic Curves in Cryptography. Cambridge
University Press, 1999. 149

[BV93] E. Bernstein and U. Vazirani. Quantum Complexity Theory. In Proceedings of the 25th
Annual ACM Symposium on Theory of Computing, pages 11–20. ACM, 1993. 30

[BVP+03] M. Boesgaard, M. Vesterager, T. Pedersen, J. Christiansen, and O. Scavenius. Rabbit: A
New High-Performance Stream Cipher. In Fast Software Encryption, volume 2887 of Lecture
Notes in Computer Science, pages 307–329. Springer-Verlag, 2003. 10, 20

[BW00] B. Baum-Waidner and M. Waidner. Round-Optimal and Abuse Free Optimistic Multi-
party Contract Signing. In U. Montanari, J. D. P. Rolim, and E. Welzl, editors, Automata,
Languages and Programming, 27th International Colloquium, ICALP 2000, Geneva, Switzerland,
July 9-15, 2000, Proceedings, volume 1853 of Lecture Notes in Computer Science, pages 524–535.
Springer, 2000. 59, 62

[CC00] C. Cachin and J. Camenisch. Optimistic Fair Secure Computation. In Mihir Bellare, editor,
Advances in Cryptology – CRYPTO 2000, volume 1880 of Lecture Notes in Computer Science,
pages 93–111. Springer, August 2000. 59

[CCD88] D. Chaum, C. Crépeau, and I. Damgård. Multiparty Unconditionally Secure Protocols
(Extended Abstract). In 20th Annual ACM Symposium on Theory of Computing, pages 11–19.
ACM Press, May 1988. 59

[Cer] Certivox. The MIRACL big number library. www.certivox.com/miracl. 133
[CFA+12] H. Cohen, G. Frey, R. Avanzi, C. Doche, T. Lange, K. Nguyen, and F. Vercauteren. Handbook

of Elliptic and Hyperelliptic Curve Cryptography. Chapman & Hall/CRC, 2nd edition, 2012.
55, 56

[Cha82] D. Chaum. Blind Signatures for Untraceable Payments. In Advances in Cryptology -
CRYPTO’82, pages 199–203. Plenum Press, 1982. 50

[CHVV03] B. Canvel, A. P. Hiltgen, S. Vaudenay, and M. Vuagnoux. Password Interception in a
SSL/TLS Channel. In Advances in Cryptology - CRYPTO’03, volume 2729 of Lecture Notes in
Computer Science, pages 583–599. Springer, 2003. 80

[CJ05] M. Ciet and M. Joye. Elliptic Curve Cryptosystems in the Presence of Permanent and
Transient Faults. Journal of Designs, Codes and Cryptography, 36(1):33–43, 2005. 145

[CKP04] L. Chen, C. Kudla, and K. G. Paterson. Concurrent Signatures. In Christian Cachin and Jan
Camenisch, editors, Advances in Cryptology – EUROCRYPT 2004, volume 3027 of Lecture
Notes in Computer Science, pages 287–305. Springer, May 2004. 59, 61, 62, 63

[Cle86] R. Cleve. Limits on the Security of Coin Flips when Half the Processors Are Faulty
(Extended Abstract). In J. Hartmanis, editor, Proceedings of the 18th Annual ACM Symposium
on Theory of Computing, May 28-30, 1986, Berkeley, California, USA, pages 364–369. ACM,
1986. 59

www.certivox.com/miracl


162 BIBLIOGRAPHY 6.0

[CMN+14] S. Cogliani, D.-Ş. Maimuţ, D. Naccache, R. Portella do Canto, R. Reyhanitabar, S. Vaudenay,
and D. Vizár. OMD: A Compression Function Mode of Operation for Authenticated
Encryption. In Selected Areas in Cryptography - SAC’14, volume 8781 of Lecture Notes in
Computer Science, pages 112–128. Springer, 2014. 33

[CMNS08] B. Chevallier-Mames, D. Naccache, and J. Stern. Linear Bandwidth Naccache-Stern
Encryption. In Proceedings of the 6th International Conference on Security and Cryptography
for Networks - SCN ’08, volume 5229 of Lecture Notes in Computer Science, pages 327–339.
Springer, 2008. 13, 32, 124, 129, 157

[CND+06] J.-S. Coron, D. Naccache, Y. Desmedt, A. Odlyzko, and J. P. Stern. Index Calculation
Attacks on RSA Signature and Encryption. Designs, Codes and Cryptography, 38(1):41–53,
2006. 51

[CNS99] J.-S. Coron, D. Naccache, and J. P. Stern. On the Security of RSA Padding. In Advances
in Cryptology - CRYPTO’99, volume 1666 of Lecture Notes in Computer Science, pages 1–18.
Springer-Verlag, 1999. 51

[Cona] Wikipedia Contributors. Cold Boot Attack. In Wikipedia, The Free Encyclopedia. 146
[Conb] Wikipedia Contributors. ESTREAM. In Wikipedia, The Free Encyclopedia. 20
[Coo66] S. A. Cook. On the Minimum Computation Time of Functions. PhD thesis, Harvard University,

1966. 132
[Cor99] J.-S. Coron. Resistance Against Differential Power Analysis for Elliptic Curve Cryp-

tosystems. In Proceedings of the 1st International Workshop on Cryptographic Hardware and
Embedded Systems - CHES’99, volume 1717 of Lecture Notes in Computer Science, pages
292–302. Springer, 1999. 149, 150, 152, 154

[CS84] P. R. Cappello and K. Steiglitz. Some Complexity Issues in Digital Signal Processing. IEEE
Transactions on Acoustics, Speech and Signal Processing, 32(5):1037–1041, 1984. 132

[CS08] D. Chakraborty and P. Sarkar. A General Construction of Tweakable Block Ciphers and
Different Modes of Operations. IEEE Transactions on Information Theory, 54(5):1991–2006,
2008. 84, 93

[CSRL01] T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson. Introduction to Algorithms.
McGraw-Hill Higher Education, 2nd edition, 2001. 74

[DCDK09] C. De Cannière, O. Dunkelman, and M. Knežević. KATAN and KTANTAN - A Family of
Small and Efficient Hardware-Oriented Block Ciphers. In Proceedings of the 11th Interna-
tional Workshop on Cryptographic Hardware and Embedded Systems - CHES’09, volume 5747
of Lecture Notes in Computer Science, pages 272–288. Springer, 2009. 99

[DCP06] C. De Canniere and B. Preneel. TRIVIUM Specifications. eSTREAM, ECRYPT Stream
Cipher Project, 2006. 10, 20

[DD08] M. Douguet and V. Dupaquis. Modular Reduction Using a Special Form of the Modulus.
In U.S. Patent Application 12/033,512, Atmel Corporation, 2008. filed February 19, 2008. 104

[DDN00] D. Dolev, C. Dwork, and M. Naor. Non-Malleable Cryptography. In SIAM Journal on
Computing, pages 542–552. Society for Industrial and Applied Mathematics, 2000. 28

[DH76] W. Diffie and M. E. Hellman. New Directions in Cryptography. IEEE Transactions on
Information Theory, 22(6):644–654, November 1976. 11, 22, 50, 132

[Dif88] W. Diffie. Innovations in Internetworking. In The First Ten Years of Public-key Cryptography,
pages 510–527. Artech House, 1988. 11, 22

[DM94] A. G. Dempster and M. D. Macleod. Constant Integer Multiplication using Minimum
Adders. IEE Proceedings - Circuits, Devices and Systems, 141(5):407–413, 1994. 132

[DM95] A. G. Dempster and M. D. Macleod. Use of Minimum-Adder Multiplier Blocks in FIR
Digital Filters. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal
Processing, 42(9):569–577, 1995. 132

[DR98] J. Daemen and V. Rijmen. AES Proposal: Rijndael, 1998. 10, 20
[DR02] J. Daemen and V. Rijmen. The Design of Rijndael: AES - The Advanced Encryption Standard.

Springer-Verlag, 2002. 31
[DR11] T. Duong and J. Rizzo. BEAST: Surprising Crypto Attack Against HTTPS. In Blog,

September 2011. 42, 45, 47



6.0 BIBLIOGRAPHY 163

[Dus99] P. Dusart. The k-th Prime is Greater than k(ln k + ln ln k − 1) for k ≥ 2. Mathematics of
Computation, pages 411–415, 1999. 130

[Dwo01] M. Dworkin. Recommendation for Block Cipher Modes of Operation. NIST Special
Publication 800-38A, December 2001. 11, 20

[Dwo10] M. Dworkin. Recommendation for Block Cipher Modes of Operation: The XTS-AES Mode
for Confidentiality on Storage Devices. NIST Special Publication 800-38E, January 2010.
11, 20

[EG84] T. El Gamal. A Public Key Cryptosystem and a Signature Scheme Based on Discrete
Logarithms. In Advances in Cryptology - CRYPTO’84, volume 196 of Lecture Notes in
Computer Science, pages 10–18. Springer, 1984. 11, 22, 50, 51, 60, 64, 132

[Eli55] P. Elias. Coding for Noisy Channels. In IRE Wescon Convention Record, pages 37–46, 1955.
124

[FD86] H. J. Fell and W. Diffie. Analysis of a Public Key Approach Based on Polynomial Substi-
tution. In Advances in Cryptology - CRYPTO’85, volume 218 of Lecture Notes in Computer
Science, pages 340–349. Springer-Verlag, 1986. 31

[Fey82] R. P. Feynman. Simulating Physics with Computers. International Journal of Theoretical
Physics, 21(6/7), 1982. 30

[FFL12] E. Fleischmann, C. Forler, and S. Lucks. McOE: A Family of Almost Foolproof On-Line
Authenticated Encryption Schemes. In FSE, volume 7549 of Lecture Notes in Computer
Science, pages 196–215. Springer, 2012. 46, 80

[FFS87] U. Feige, A. Fiat, and A. Shamir. Zero Knowledge Proofs of Identity. In Proceedings of the
19th Annual ACM Symposium on Theory of Computing, 1987, New York, USA, pages 210–217,
1987. 132

[FFS88] U. Feige, A. Fiat, and A. Shamir. Zero-Knowledge Proofs of Identity. Journal of Cryptology,
1(2):77–94, 1988. 60, 72, 132

[FGM+15a] H. Ferradi, R. Géraud, D. Maimuţ, D. Naccache, and A. de Wargny. Regulating the Pace
of von Neumann Correctors. IACR Cryptology ePrint Archive, 2015:849, 2015. 36

[FGM+15b] H. Ferradi, R. Géraud, D. Maimuţ, D. Naccache, and H. Zhou. Backtracking-Assisted
Multiplication. IACR Cryptology ePrint Archive, 2015:787, 2015. 35

[FGV11] J. Fan, B. Gierlichs, and F. Vercauteren. To Infinity and Beyond: Combined Attack on
ECC Using Points of Low Order. In Proceedings of the 13th International Workshop on
Cryptographic Hardware and Embedded Systems - CHES’11, volume 6917 of Lecture Notes in
Computer Science, pages 143–159. Springer, 2011. 145

[fip85] Computer Data Authentication. National Institute of Standards and Technology, May 1985.
Note: Federal Information Processing Standard 113. 40

[fip00] Digital Signature Standard (DSS). National Institute of Standards and Technology, 2000.
Note: Federal Information Processing Standard 186-2. 104

[FIP12] Secure Hash Standard (SHS) . NIST FIPS PUB 180-4, March 2012. 39, 80, 85, 87, 177, 178,
180

[fip13] Digital signature standard (DSS). National Institute of Standards and Technology, 2013.
Note: Federal Information Processing Standard 186-4. 104, 110

[FKL+05] S. E. Frankel, K. Kent, R. Lewkowski, A. D. Orebaugh, R. W. Ritchey, and S. R. Sharma.
Guide to IPsec VPNs. Technical Report 800-38A, 2005. 42

[FLRV08] P.-A. Fouque, R. Lercier, D. Réal, and F. Valette. Fault Attack on Elliptic Curve Montgomery
Ladder Implementation. In Proceedings of Fault Diagnosis and Tolerance in Cryptography -
FDTC’08, pages 92–98. IEEE Computer Society, 2008. 145

[Fou98] Electronic Frontier Foundation. Cracking DES: Secrets of Encryption Research, Wiretap Politics
and Chip Design. O’Reilly & Associates, Inc., 1998. 10, 20

[FPS12] S. Faust, K. Pietrzak, and J. Schipper. Practical Leakage-Resilient Symmetric Cryptography.
In Proceedings of the 14th International Workshop on Cryptographic Hardware and Embedded
Systems - CHES’12, volume 7428 of Lecture Notes in Computer Science, pages 213–232.
Springer, 2012. 46



164 BIBLIOGRAPHY 6.0

[FS87] A. Fiat and A. Shamir. How to Prove Yourself: Practical Solutions to Identification and
Signature Problems. In Advances in Cryptology - CRYPTO’86, volume 263 of Lecture Notes
in Computer Science, pages 186–194. Springer-Verlag, 1987. 50, 51, 72, 73, 75

[FSW02] P.-A. Fouque, J. Stern, and J.-G. Wackers. CryptoComputing with Rationals. In Proceedings
of the 6th International Conference - Financial Cryptography’02, volume 2357 of Lecture Notes
in Computer Science, pages 136–146. Springer, 2002. 125, 152

[Für09] M. Fürer. Faster Integer Multiplication. SIAM Journal on Computing, 39(3):979–1005, 2009.
132

[GAL91] S. Goldwasser and L. A. A. Levin. Fair Computation of General Functions in Presence
of Immoral Majority. In Alfred J. Menezes and Scott A. Vanstone, editors, Advances in
Cryptology – CRYPTO’90, volume 537 of Lecture Notes in Computer Science, pages 77–93.
Springer, August 1991. 59

[GD01] V. D. Gligor and P. Donescu. Fast Encryption and Authentication: XCBC Encryption and
XECB Authentication Modes. In Fast Software Encryption - FSE’01, volume 2355 of Lecture
Notes in Computer Science, pages 92–108, 2001. 12, 32

[GDMPY06] J. A. Garay, P. D. D. MacKenzie, M. Prabhakaran, and K. Yang. Resource Fairness and Com-
posability of Cryptographic Protocols. In Shai Halevi and Tal Rabin, editors, TCC 2006:
3rd Theory of Cryptography Conference, volume 3876 of Lecture Notes in Computer Science,
pages 404–428. Springer, March 2006. 59

[GHKL08] S. D. Gordon, C. Hazay, J. Katz, and Y. Lindell. Complete fairness in secure two-party
computation. In Richard E. Ladner and Cynthia Dwork, editors, 40th Annual ACM
Symposium on Theory of Computing, pages 413–422. ACM Press, May 2008. 59

[GJDM99] J. A. Garay, M. Jakobsson, and P. D. D. MacKenzie. Abuse-Free Optimistic Contract
Signing. In Michael J. Wiener, editor, Advances in Cryptology – CRYPTO’99, volume 1666 of
Lecture Notes in Computer Science, pages 449–466. Springer, August 1999. 59, 62

[GJM10] R. R. Goundar, M. Joye, and A. Miyaji. Co-z Addition Formulæand Binary Ladders on
Elliptic Curves - (Extended Abstract). In Proceedings of the 12th International Workshop on
Cryptographic Hardware and Embedded Systems - CHES’10, volume 6225 of Lecture Notes in
Computer Science, pages 65–79. Springer, 2010. 149, 181, 182

[GK04] C. Giraud and E. W. Knudsen. Fault Attacks on Signature Schemes. In Proceedings of the
9th Australasian Conference on Information Security and Privacy - ACISP’04, volume 3108 of
Lecture Notes in Computer Science, pages 478–491. Springer, 2004. 145

[GKM+13] J. A. Garay, J. Katz, U. Maurer, B. Tackmann, and V. Zikas. Rational Protocol Design:
Cryptography Against Incentive-Driven Adversaries. In Proceedings of the IEEE 54th
Annual Symposium on Foundations of Computer Science - FOCS’13, pages 648–657. IEEE
Computer Society, 2013. 32

[GKT10] C. Giraud, E. W. Knudsen, and M. Tunstall. Improved Fault Analysis of Signature Schemes.
In Proceedings of CARDIS’10, volume 6035 of Lecture Notes in Computer Science, pages 164–
181. Springer, 2010. 145

[GM82] S. Goldwasser and S. Micali. Probabilistic Encryption & How to Play Mental Poker
Keeping Secret All Partial Information. In Proceedings of the 14th Annual ACM Symposium
on Theory of Computing - STOC’82, pages 365–377. ACM, 1982. 28

[GM84] S. Goldwasser and S. Micali. Probabilistic Encryption. Journal of Computer and Systems
Sciences, 28(2):270–299, 1984. 25, 28, 45, 53

[GMN15a] R. Géraud, D. Maimuţ, and D. Naccache. Double-Speed Barrett Moduli. IACR Cryptology
ePrint Archive, 2015:785, 2015. 34

[GMN+15b] R. Géraud, D. Maimuţ, D. Naccache, R. Portella do Canto, and E. Simion. Applying
Cryptographic Acceleration Techniques to Error Correction. IACR Cryptology ePrint
Archive, 2015:886, 2015. 35

[GMN15c] R. Géraud, D. S. Maimuţ, and D. Naccache. Double-Speed Barrett Moduli. In Kahn
Festschrift, volume 9100 of Lecture Notes in Computer Science. Springer, to appear in 2015. 34

[GMR85] S. Goldwasser, S. Micali, and C. Rackoff. The Knowledge Complexity of Interactive
Proof-Systems. In Proceedings of the 17th Annual ACM Symposium on Theory of Computing,
STOC’85, pages 291–304. ACM, 1985. 50, 72



6.0 BIBLIOGRAPHY 165

[GMW87] O. Goldreich, S. Micali, and A. Wigderson. How to Play any Mental Game or A Complete-
ness Theorem for Protocols with Honest Majority. In Alfred Aho, editor, 19th Annual ACM
Symposium on Theory of Computing, pages 218–229. ACM Press, May 1987. 59

[GO03] K. Gaj and A. Orlowski. Facts and Myths of Enigma: Breaking Stereotypes. In Advances
in Cryptology - EUROCRYPT’03, volume 2656 of Lecture Notes in Computer Science, pages
106–122. Springer, 2003. 9, 18

[Gol83] O. Goldreich. A Simple Protocol for Signing Contracts. In D. Chaum, editor, Advances in
Cryptology, Proceedings of CRYPTO ’83, Santa Barbara, California, USA, August 21-24, 1983.,
pages 133–136. Plenum Press, New York, 1983. 61

[Gol04] O. Goldreich. Preface. Journal of Cryptology, 17(1):1–3, 2004. 59
[Gop81] V. D. Goppa. Codes on Algebraic Curves. Soviet Math. Doklady, 24:170–172, 1981. 124
[GPR14] P. Gazi, K. Pietrzak, and M. Rybár. The Exact PRF-Security of NMAC and HMAC. In

Advances in Cryptology - CRYPTO’14, volume 8616 of Lecture Notes in Computer Science,
pages 113–130. Springer, 2014. 80

[GPS06] M. Girault, G. Poupard, and J. Stern. On the Fly Authentication and Signature Schemes
Based on Groups of Unknown Order. Journal of Cryptology, 19(4):463–487, 2006. 51, 60, 64

[GQ88] L. C. Guillou and J.-J. Quisquater. A Practical Zero-knowledge Protocol Fitted to Security
Microprocessor Minimizing Both Transmission and Memory. In Advances in Cryptology -
EUROCRYPT’88, volume 330 of Lecture Notes in Computer Science, pages 123–128. Springer,
1988. 72

[Gro96] L. K. Grover. A Fast Quantum Mechanical Algorithm for Database Search. In Proceedings
of the 28th Annual ACM Symposium on Theory of Computing - STOC’96, pages 212–219. ACM,
1996. 31

[GRS05] H. Gilbert, M. J. B. Robshaw, and H. Sibert. An Active Attack Against HB+ - A Provably
Secure Lightweight Authentication Protocol. IACR Cryptology ePrint Archive, 2005:237,
2005. 102

[GRS08] H. Gilbert, M. J. B. Robshaw, and Y. Seurin. HB#: Increasing the Security and Efficiency
of HB+. In Advances in Cryptology - EUROCRYPT’08, volume 4965 of Lecture Notes in
Computer Science, pages 361–378. Springer, 2008. 101, 102

[GS94] M. Girault and J. Stern. On the Length of Cryptographic Hash-Values Used in Identifica-
tion Schemes. In Advances in Cryptology - CRYPTO’94, pages 202–215, 1994. 73

[Gut96] P. Gutmann. Secure Deletion of Data from Magnetic and Solid-state Memory. In Proceed-
ings of the 6th Conference on USENIX Security Symposium, SSYM’96, pages 8–8. USENIX
Association, 1996. 146

[Hal02] S. Hallgren. Polynomial-Time Quantum Algorithms for Pell’s Equation and the Principal
Ideal Problem. In STOC, pages 653–658. ACM, 2002. 30

[Ham50] R. W. Hamming. Error Detecting and Error Correcting Codes. Bell System Technical Journal,
29(2):147–160, 1950. 124

[Har08] D. Harkind. Synthetic Initialization Vector (SIV) Authenticated Encryption Using the
Advanced Encryption Standard (AES). IETF RFC 5297 (Informational), October 2008. 43

[Has35] H. Hasse. Zur Theorie der abstrakten elliptischen Funktionenkörper. Nachrichten von der
Gesellschaft der Wissenschaften zu Göttingen. Mathematisch-physikalische Klasse. Fach-
gruppe 1. Vandenhoeck & Ruprecht, 1935. 55

[HB01] N. J. Hopper and M. Blum. Secure Human Identification Protocols. In Advances in
Cryptology — ASIACRYPT’01, volume 2248 of Lecture Notes in Computer Science, pages
52–66. Springer, 2001. 101

[HGS01] N. Howgrave-Graham and N. P. Smart. Lattice Attacks on Digital Signature Schemes.
23(3):283–290, 2001. 154

[HJM07] M. Hell, T. Johansson, and W. Meier. Grain: A Stream Cipher for Constrained Envi-
ronments. International Journal of Wireless and Mobile Computing, 2(1):86–93, 2007. 10,
20

[HPM94] P. Horster, H. Petersen, and M. Michels. Meta-El-Gamal Signature Schemes. In ACM CCS
94: 2nd Conference on Computer and Communications Security, pages 96–107. ACM Press,
1994. 60, 64



166 BIBLIOGRAPHY 6.0

[HPS98] J. Hoffstein, J. Pipher, and J. H. Silverman. NTRU: A Ring-Based Public Key Cryptosystem.
In Proceedings of the 3rd International Algorithmic Number Theory Symposium on - ANTS’98,
volume 1423 of Lecture Notes in Computer Science, pages 267–288. Springer, 1998. 30

[HPS08] J. Hoffstein, J. Pipher, and J. H. Silverman. An Introduction to Mathematical Cryptography.
Undergraduate Texts in Mathematics. Springer, 2008. 151

[HVDHL14] D. Harvey, J. Van Der Hoeven, and G. Lecerf. Even Faster Integer Multiplication. CoRR,
abs/1407.3360, 2014. 132

[IEE99] Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications,
June 1999. 42

[Int13] Intel R© SHA Extensions, July 2013. 80

[IOM12] T. Iwata, K. Ohashi, and K. Minematsu. Breaking and Repairing GCM Security Proofs.
In Advances in Cryptology - CRYPTO’12, volume 7417 of Lecture Notes in Computer Science,
pages 31–49. Springer, 2012. 47, 80

[iso12] ISO/IEC 29192-1:2012: Information technology - Security techniques - Lightweight cryp-
tography - Part 1: General, 2012. 99

[JM99] D. Johnson and A. Menezes. The Elliptic Curve Digital Signature Algorithm (ECDSA).
Technical report, Department of C&O, University of Waterloo, 1999. 56, 153

[JMV02] A. Joux, G. Martinet, and F. Valette. Blockwise-Adaptive Attackers: Revisiting the
(In)Security of Some Provably Secure Encryption Models: CBC, GEM, IACBC. In Advances
in Cryptology - CRYPTO’02, volume 2442 of Lecture Notes in Computer Science, pages 17–30.
Springer, 2002. 45

[Jou] A. Joux. 137

[Jou00] A. Joux. A One Round Protocol for Tripartite Diffie–Hellman. In Proceedings of the 4th
International Algorithmic Number Theory Symposium on - ANTS’00, volume 1838 of Lecture
Notes in Computer Science, pages 385–394. Springer, 2000. 56

[Joy08] M. Joye. RSA Moduli with a Predetermined Portion: Techniques and Applications. In
Information Security Practice and Experience, volume 4991 of Lecture Notes in Computer
Science, pages 116–130. Springer, 2008. 104, 106, 118

[JSI96a] M. Jakobsson, K. Sako, and R. Impagliazzo. Designated Verifier Proofs and Their Appli-
cations. In Advances in Cryptology — EUROCRYPT ’96, volume 1070 of Lecture Notes in
Computer Science, pages 143–154. Springer, 1996. 50

[JSI96b] M. Jakobsson, K. Sako, and R. Impagliazzo. Designated Verifier Proofs and Their Applica-
tions. In Ueli M. Maurer, editor, Advances in Cryptology – EUROCRYPT’96, volume 1070 of
Lecture Notes in Computer Science, pages 143–154. Springer, May 1996. 59

[JT01] M. Joye and C. Tymen. Protections Against Differential Analysis for Elliptic Curve
Cryptography. In Proceedings of the 3rd International Workshop on Cryptographic Hardware
and Embedded Systems - CHES’01, volume 2162 of Lecture Notes in Computer Science, pages
377–390. Springer, 2001. 149, 152

[JT12] M. Joye and M. Tunstall. Fault Analysis in Cryptography. Springer, 2012. 147

[Jut01] C. S. Jutla. Encryption Modes with Almost Free Message Integrity. In Advances in
Cryptology - EUROCRYPT’01, volume 2045 of Lecture Notes in Computer Science, pages
529–544. Springer, 2001. 12, 32

[JW05] A. Juels and S. A. Weis. Authenticating Pervasive Devices with Human Protocols. In
Advances in Cryptology - CRYPTO’05, volume 3621 of Lecture Notes in Computer Science,
pages 293–308. Springer, 2005. 101, 102

[JY02] M. Joye and S.-M. Yen. The Montgomery Powering Ladder. In Proceedings of the 4th
International Workshop on Cryptographic Hardware and Embedded Systems - CHES’02, volume
2523 of Lecture Notes in Computer Science, pages 291–302. Springer, 2002. 149

[Kah96] D. Kahn. The Codebreakers: The Comprehensive History of Secret Communication from Ancient
Times to the Internet. Scribner, rev. sub. edition, December 1996. 7, 9, 16, 17, 18

[KBV09] M. Knezevic, L. Batina, and I. Verbauwhede. Modular Reduction without Precomputa-
tional Phase. In International Symposium on Circuits and Systems ISCAS, pages 1389–1392,
2009. 104



6.0 BIBLIOGRAPHY 167

[Kho14] K. A. Khoureich. hHB: a Harder HB+ Protocol. IACR Cryptology ePrint Archive, 2014:562,
2014. 101, 103

[Kno88] H.-J. Knobloch. A Smart Card Implementation of the Fiat-Shamir Identification Scheme. In
Advances in Cryptology - EUROCRYPT’88, volume 330 of Lecture Notes in Computer Science,
pages 87–95. Springer, 1988. 106, 120

[Knu68] D. E. Knuth. The Art of Computer Programming, 1968. 132, 134

[Knu81] D. E. Knuth. Seminumerical Algorithms, volume 2 of The Art of Computer Programming.
Addison-Wesley, 2nd edition, 1981. 104, 113, 120

[KO62] A. Karastuba and Y. Ofman. Multiplication of Many-Digital Numbers by Automatic
Computers. Doklady Akad. Nauk SSSR, 145(293-294), 1962. 132, 133

[Kob87] N. Koblitz. Elliptic Curve Cryptosystems. Mathematics of Computation, 48(177):203–209,
1987. 55

[Koc96] P. C. Kocher. Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and
Other Systems. In Advances in Cryptology — CRYPTO’96, volume 1109 of Lecture Notes in
Computer Science, pages 104–113. Springer, 1996. 45

[Koh78] L. Kohnfelder. Towards a Practical Public-Key Cryptosystem. PhD thesis, Massachusetts
Institute of Technology, May 1978. 50

[KPP+06] S. Kumar, C. Paar, J. Pelzl, G. Pfeiffer, and M. Schimmler. Breaking Ciphers with COPA-
COBANA –A Cost-Optimized Parallel Code Breaker. In Proceedings of the 8th International
Workshop on Cryptographic Hardware and Embedded Systems - CHES’06, volume 4249 of
Lecture Notes in Computer Science, pages 101–118. Springer-Verlag, 2006. 10, 20

[KR11] T. Krovetz and Ph. Rogaway. The Software Performance of Authenticated-Encryption
Modes. In FSE 2011, volume 6733 of Lecture Notes in Computer Science, pages 306–327.
Springer, 2011. 83, 84, 93, 94

[KR14] T. Krovetz and Ph. Rogaway. The OCB Authenticated-Encryption Algorithm, January
2014. 43

[KSS10] J. Katz, J. S. Shin, and A. Smith. Parallel and Concurrent Security of the HB and HB+
Protocols. Journal of Cryptology, 23(3):402–421, 2010. 102

[KY01] J. Katz and M. Yung. Unforgeable Encryption and Chosen Ciphertext Secure Modes of
Operation. In FSE 2000, volume 1978 of Lecture Notes in Computer Science, pages 284–299.
Springer, 2001. 80

[Lan] J. Landt. The History of RFID. www.sepaco-tech.com/modules/Manager/
Articles/the$%$20history$%$20of$%$20rfid.pdf. 100

[Len87] H. W. Lenstra. Factoring Integers with Elliptic Curves. Annals of Mathematics, 126:649–673,
1987. 55

[Len98] A. K. Lenstra. Generating RSA Moduli with a Predetermined Portion. In Advances in
Cryptology - ASIACRYPT’98, volume 1514 of Lecture Notes in Computer Science, pages 1–10.
Springer, 1998. 104, 106, 113

[Lin08] A. Y. Lindell. Legally-enforceable fairness in secure two-party computation. In Tal Malkin,
editor, Topics in Cryptology – CT-RSA 2008, volume 4964 of Lecture Notes in Computer Science,
pages 121–137. Springer, April 2008. 59, 61

[LMQ+03] L. Law, A. Menezes, M. Qu, J. Solinas, and S. Vanstone. An Efficient Protocol for Authenti-
cated Key Agreement. Des. Codes Cryptography, 28(2):119–134, March 2003. 56

[LVP08] C. Lavault and M. Valencia-Pabon. A Distributed Approximation Algorithm for the
Minimum Degree Minimum Weight Spanning Trees. Journal of Parallel and Distributed
Computing, 68(2):200–208, 2008. 73

[Lys02] A. Lysyanskaya. Unique Signatures and Verifiable Random Functions From the DH-
DDH Separation. In Advances in Cryptology - CRYPTO’02, volume 2442 of Lecture Notes in
Computer Science, pages 597–612. Springer, 2002. 56

[McE78] R. J. McEliece. A Public-Key Cryptosystem Based on Algebraic Coding Theory. DSN
progress report, 42(44):114–116, 1978. 31

www.sepaco-tech.com/modules/Manager/Articles/the$%$20history$%$20of$%$20rfid.pdf
www.sepaco-tech.com/modules/Manager/Articles/the$%$20history$%$20of$%$20rfid.pdf


168 BIBLIOGRAPHY 6.0

[Mei91] G. Meister. On an Implementation of the Mohan-Adiga Algorithm. In Advances in
Cryptology - EUROCRYPT’90, volume 473 of Lecture Notes in Computer Science, pages
496–500. Springer, 1991. 106, 120, 121

[Mel07] N. Meloni. New Point Addition Formulae for ECC Applications. In WAIFI, volume 4547
of Lecture Notes in Computer Science, pages 189–201. Springer, 2007. 181

[Mer] R. Merkle. Establishing Secure Communications between Seperate Secure Sites over
Insecure Communication lines. In The Original CS244 Project Proposal from Fall of 1974. 11,
22

[Mer79] R. C. Merkle. Secrecy, Authentication, and Public Key Systems. PhD thesis, 1979. 31, 39

[MGW03] A. J. Mooij, N. Goga, and J. W. Wesselink. A Distributed Spanning Tree Algorithm for Topology-
Aware Networks. Technische Universiteit Eindhoven, Department of Mathematics and
Computer Science, 2003. 73, 74

[MH78] R. C. Merkle and M. E. Hellman. Hiding Information and Signatures in Trapdoor Knap-
sacks. IEEE Transactions on Information Theory, 24(5):525–530, 1978. 11, 22

[MH81] R. C. Merkle and M. E. Hellman. On the Security of Multiple Encryption. Communications
of the ACM, 24(7):465–467, 1981. 10, 20

[MI88] T. Matsumoto and H. Imai. Public Quadratic Polynomial-Tuples for Efficient Signature-
Verification and Message-Encryption. In Advances in Cryptology — EUROCRYPT ’88,
volume 330 of Lecture Notes in Computer Science, pages 419–453. Springer-Verlag, 1988. 31

[Mic03] S. Micali. Simple and fast optimistic protocols for fair electronic exchange. In 22nd ACM
Symposium Annual on Principles of Distributed Computing, pages 12–19. ACM Press, July
2003. 59

[Mil86] V. S. Miller. Use of Elliptic Curves in Cryptography. In Advances in Cryptology - CRYPTO
85, volume 218 of Lecture Notes in Computer Sciences, pages 417–426. Springer-Verlag, 1986.
55

[Mis98] J.-F. Misarsky. How (Not) to Design RSA Signature Schemes. In Public-Key Cryptography,
volume 1431 of Lecture Notes in Computer Science, pages 14–28. Springer-Verlag, 1998. 51

[MLMI12] K. Minematsu, S. Lucks, H. Morita, and T. Iwata. Attacks and Security Proofs of EAX-
Prime, 2012. 42

[MMNT13] D. Maimuţ, C. Murdica, D. Naccache, and M. Tibouchi. Fault Attacks on Projective-
to-Affine Coordinates Conversion. In Proceedings of the 4th International Workshop on
Constructive Side-Channel Analysis and Secure Design - COSADE 2013, volume 7864 of
Lecture Notes in Computer Science, pages 46–61. Springer, 2013. 34

[MN96] D. M’Raïhi and D. Naccache. Batch Exponentiation: A Fast DLP-Based Signature Genera-
tion Strategy. In Proceedings of the 3rd ACM Conference on Computer and Communications
Security - CCS’96, pages 58–61. ACM, 1996. 78

[MNPdCS15] D.-Ş. Maimuţ, D. Naccache, R. Portella do Canto, and E. Simion. Applying Cryptographic
Acceleration Techniques to Error Correction. In SECITC’15, Lecture Notes in Computer
Science. Springer, to appear in 2015. 35

[MNPV98] D. M’Raïhi, D. Naccache, D. Pointcheval, and S. Vaudenay. Computational Alternatives to
Random Number Generators. In Selected Areas in Cryptography - SAC’98, volume 1556 of
Lecture Notes in Computer Science, pages 72–80. Springer, 1998. 152, 183

[MO12] D. Maimuţ and K. Ouafi. Lightweight Cryptography for RFID Tags. IEEE Security &
Privacy, 10(2):76–79, 2012. 36

[Mon85] P. L. Montgomery. Modular Multiplication without Trial Division. Mathematics of Compu-
tation, 44(170):519–521, 1985. 104, 113, 132

[MOV93] A. Menezes, T. Okamoto, and S. A. Vanstone. Reducing Elliptic Curve Logarithms to
Logarithms in a Finite Field. IEEE Transactions on Information Theory, 39(5):1639–1646, 1993.
56

[MR09] D. Micciancio and O. Regev. Lattice-Based Cryptography. In Post-Quantum Cryptography,
pages 147–191. Springer, 2009. 30

[MR14] D. Maimuţ and R. Reyhanitabar. Authenticated Encryption: Toward Next-Generation
Algorithms. IEEE Security & Privacy, 12(2):70–72, 2014. 36



6.0 BIBLIOGRAPHY 169

[Mul54] D. E. Muller. Application of Boolean Algebra to Switching Circuit Design and to Error
Detection. IRE Transactions on Information Theory, (3):6–12, 1954. 124

[MvOV96] A. Menezes, P. C. van Oorschot, and S. A. Vanstone. Handbook of Applied Cryptography.
CRC Press, 1996. 20

[MWa] Merriam-Webster. Cryptanalysis. In Merriam-Webster Dictionary. Encyclopædia Britannica.
6, 15

[MWb] Merriam-Webster. Cryptology. In Merriam-Webster Dictionary. Encyclopædia Britannica.
6, 15

[NC11] M. A. Nielsen and I. L. Chuang. Quantum Computation and Quantum Information: 10th
Anniversary Edition. Cambridge University Press, 10th edition, 2011. 30

[NES] NESSIE. List of NESSIE Submissions as Originally Submitted . In NESSIE Project. 51

[NIS99] FIPS PUB 46-3, Data Encryption Standard (DES), 1999. U.S.Department of Commerce/-
National Institute of Standards and Technology. 20

[NIS01] FIPS PUB 197, Advanced Encryption Standard (AES), 2001. U.S.Department of Com-
merce/National Institute of Standards and Technology. 10, 20

[NP12] D. Naccache and D. Pointcheval. Autotomic Signatures. In Quisquater Festschrift, volume
6805 of Lecture Notes in Computer Science, pages 143–155. Springer, 2012. 50

[NS97] D. Naccache and J. Stern. A New Public-Key Cryptosystem. In Advances in Cryptology -
EUROCRYPT’97, volume 1233 of Lecture Notes in Computer Science, pages 27–36. Springer,
1997. 13, 32, 124, 157

[NS98] P. Nguyen and J. Stern. Cryptanalysis of the Ajtai-Dwork Cryptosystem. In Advances
in Cryptology — CRYPTO ’98, volume 1462 of Lecture Notes in Computer Science, pages
223–242. Springer Berlin Heidelberg, 1998. 30

[NSS04] D. Naccache, N. P. Smart, and J. Stern. Projective Coordinates Leak. In Advances in
Cryptology - EUROCRYPT’04, volume 3027 of Lecture Notes in Computer Science, pages
257–267. Springer, 2004. 13, 32, 33, 97, 145, 147, 148, 149, 150, 154, 157

[OK14] R. O’neil King. National and Civil ID White Paper. Biometrics Research Group, 2014.
http://www.scribd.com/doc/231482826/National-and-Civil-ID-Report.
100

[OOV08] K. Ouafi, R. Overbeck, and S. Vaudenay. On the Security of HB# Against a Man-in-the-
Middle Attack. In Advances in Cryptology - ASIACRYPT’08, volume 5350 of Lecture Notes in
Computer Science, pages 108–124, 2008. 102

[oST99] National Institute of Standards and Technology. Recommended Elliptic Curves for Federal
Government Use, July 1999. 56

[Pai99] P. Paillier. Public-Key Cryptosystems Based on Composite Degree Residuosity Classes. In
Advances in Cryptology - EUROCRYPT’99, volume 1592 of Lecture Notes in Computer Science,
pages 223–238. Springer, 1999. 28

[Pin03] Benny Pinkas. Fair secure two-party computation. In Eli Biham, editor, Advances in
Cryptology – EUROCRYPT 2003, volume 2656 of Lecture Notes in Computer Science, pages
87–105. Springer, May 2003. 59

[Poi05] D. Pointcheval. Advanced Course on Contemporary Cryptology, chapter Provable Security
for Public-Key Schemes, pages 133–189. Advanced Courses CRM Barcelona. Birkhäuser
Publishers, Basel, June 2005. 28

[Pos09] A. Y. Poschmann. Lightweight Cryptography: Cryptographic Engineering for a Pervasive World.
PhD thesis, Ruhr-Universität Bochum, 2009. 98, 99

[pqc] PQCrypto. cordis.europa.eu/project/rcn/194347_en.html. 30

[Pre93] B. Preneel. Analysis and Design of Cryptographic Hash Functions. PhD thesis, Katholieke
Universiteit Leuven, 1993. 42

[PS96] D. Pointcheval and J. Stern. Security Proofs for Signature Schemes. In Advances in
Cryptology - EUROCRYPT’96, volume 1070 of Lecture Notes in Computer Science, pages
387–398. Springer, 1996. 51, 60

http://www.scribd.com/doc/231482826/National-and-Civil-ID-Report
cordis.europa.eu/project/rcn/194347_en.html


170 BIBLIOGRAPHY 6.0

[PS00] D. Pointcheval and J. Stern. Security Arguments for Digital Signatures and Blind Signa-
tures. Journal of Cryptology, 13(3):361–396, 2000. 51, 53, 60, 67

[PST+02] A. Perrig, R. Szewczyk, J. D. Tygar, V. Wen, and D. E. Culler. SPINS: Security Protocols for
Sensor Networks. Wirel. Netw., 8(5):521–534, September 2002. 72

[PW04] V. Y. Pan and X. Wang. On Rational Number Reconstruction and Approximation. SIAM
Journal on Computing, 33(2):502–503, 2004. 152

[QD90] J.-J. Quisquater and J.-P. Delescaille. How Easy is Collision Search. New Results and
Applications to DES. In Advances in Cryptology — CRYPTO’89, volume 435 of Lecture Notes
in Computer Science, pages 408–413. Springer, 1990. 39

[Qui92] J. J. Quisquater. Encoding System According to the So-Called RSA Method, by Means of a
Microcontroller and Arrangement Implementing this System, 1992. filed November 24,
1992. 104

[Rab79] M. O. Rabin. Digitalized Signatures and Public-Key Functions as Intractable as Factoriza-
tion. Technical report, 1979. 39

[RBBK01] Ph. Rogaway, M. Bellare, J. Black, and T. Krovetz. OCB: A Block-Cipher Mode of Operation
for Efficient Authenticated Encryption. In ACM Conference on Computer and Communications
Security, pages 196–205, 2001. 12, 32, 46, 80, 83

[Ree54] I. Reed. A Class of Multiple-Error-Correcting Codes and the Decoding Scheme. IRE
Transactions on Information Theory, (4):38–49, September 1954. 124

[Reg06] O. Regev. Lattice-Based Cryptography. In Advances in Cryptology - CRYPTO’06, volume
4117 of Lecture Notes in Computer Science, pages 131–141. Springer Berlin Heidelberg, 2006.
30

[Reg10] O. Regev. The Learning with Errors Problem (Invited Survey). In Proceedings of the 25th
Annual IEEE Conference on Computational Complexity - CCC’10, pages 191–204, 2010. 101

[rfc06] The Transport Layer Security (TLS) Protocol. IETF RFC 4253 (Informational), January
2006. 42

[rfc08] The Secure Shell (SSH) Transport Layer Protocol. IETF RFC 5246 (Informational), August
2008. 42

[Riv] R. L. Rivest. The MD5 Message-Digest Algorithm (RFC 1321). www.ietf.org/rfc/
rfc1321.txt?number=1321. 39

[Rog02] Ph. Rogaway. Authenticated-Encryption with Associated-Data. In ACM Conference on
Computer and Communications Security, pages 98–107, 2002. 45, 46, 80, 83

[Rog04a] Ph. Rogaway. Efficient Instantiations of Tweakable Blockciphers and Refinements to
Modes OCB and PMAC. In Advances in Cryptology - ASIACRYPT’04, volume 3329 of
Lecture Notes in Computer Science, pages 16–31. Springer, 2004. 11, 20, 45, 46, 80, 84, 93

[Rog04b] Ph. Rogaway. Efficient Instantiations of Tweakable Blockciphers and Refinements to
Modes OCB and PMAC. In Advances in Cryptology - ASIACRYPT’04, pages 16–31, 2004. 83

[Ros38] J. B. Rosser. The n-th Prime is Greater than n lnn. In Proceedings of the London Mathematical
Society, volume 45, pages 21–44, 1938. 130

[RS60] I. S. Reed and G. Solomon. Polynomial Codes Over Certain Finite Fields. Journal of the
Society for Industrial and Applied Mathematics, 8(2):300–304, 1960. 124

[RS06] Ph. Rogaway and T. Shrimpton. A provable-security treatment of the key-wrap problem.
In Advances in Cryptology - EUROCRYPT’06, volume 4341 of Lecture Notes in Computer
Science, pages 373–390. Springer, 2006. 44, 46, 80

[RSA78] R. L. Rivest, A. Shamir, and L. M. Adleman. A Method for Obtaining Digital Signatures
and Public-Key Cryptosystems. Communications of the Association for Computing Machinery,
21(2):120–126, 1978. 11, 12, 22, 50, 106

[RST01] R. L. Rivest, A. Shamir, and Y. Tauman. How to Leak a Secret. In Advances in Cryptology -
ASIACRYPT’01, volume 2248 of Lecture Notes in Computer Science, pages 552–565. Springer,
2001. 50, 59

[RVV15] R. Reyhanitabar, S. Vaudenay, and D. Vizár. Boosting OMD for Almost Free Authentication
of Associated Data. IACR Cryptology ePrint Archive, 2015:302, 2015. 95

www.ietf.org/rfc/rfc1321.txt?number=1321
www.ietf.org/rfc/rfc1321.txt?number=1321


6.0 BIBLIOGRAPHY 171

[SA03] S. P. Skorobogatov and R. J. Anderson. Optical Fault Induction Attacks. In Proceedings of
the 4th International Workshop on Cryptographic Hardware and Embedded Systems - CHES’02,
volume 2523 of Lecture Notes in Computer Science, pages 2–12. Springer, 2003. 146

[saf] SAFEcrypto. www.safecrypto.eu. 30

[Sch90] C.-P. Schnorr. Efficient Identification and Signatures for Smart Cards. In Advances in
Cryptology - CRYPTO’89, volume 434 of Lecture Notes in Computer Science, pages 239–252.
Springer, 1990. 51, 60

[SE12] M.-J. O. Saarinen and D. W. Engels. A Do-It-All-Cipher for RFID: Design Requirements
(Extended Abstract). IACR Cryptology ePrint Archive, 2012(317), 2012. 99

[Sec91] RSA Data Security. Public-Key Cryptography Standards (PKCS) #1: RSA Cryptography
Specifications, 1991. 50

[Seu12] Y. Seurin. On the Exact Security of Schnorr-Type Signatures in the Random Oracle Model.
In Advances in Cryptology - EUROCRYPT’02, volume 7237 of Lecture Notes in Computer
Science, pages 554–571. Springer, 2012. 61

[Sha48] C. E. Shannon. A Mathematical Theory of Communication. Bell System Technical Journal,
27(3):379–423, 1948. 23, 124

[Sha49] C. E. Shannon. Communication Theory of Secrecy Systems. Bell System Technical Journal,
28(4):656–715, 1949. 11, 20, 23

[Sha84] A. Shamir. A Polynomial-Time Algorithm for Breaking the Basic Merkle-Hellman Cryp-
tosystem. IEEE Transactions on Information Theory, 30(5):699–704, 1984. 11, 22

[Sho97] P. W. Shor. Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms
on a Quantum Computer. SIAM Journal on Computing, 26(5):1484–1509, October 1997. 30

[Shp06] I. E. Shparlinski. On RSA Moduli with Prescribed Bit Patterns. Designs, Codes and
Cryptography, 39(1):113–122, 2006. 106, 113

[SIH+11] K. Shibutani, T. Isobe, H. Hiwatari, A. Mitsuda, T. Akishita, and T. Shirai. Piccolo: An Ultra-
Lightweight Blockcipher. In Proceedings of the 13th International Workshop on Cryptographic
Hardware and Embedded Systems – CHES’11, volume 6917 of Lecture Notes in Computer
Science, pages 342–357. Springer, 2011. 100

[Sim97] D. R. Simon. On the Power of Quantum Computation. SIAM Journal on Computing,
26:1474–1483, 1997. 30

[Sin99] S. Singh. The Code Book: The Evolution of Secrecy from Mary, Queen of Scots, to Quantum
Cryptography. Doubleday, 1st edition, 1999. 12, 22

[SKD+15] T. Sato, D. M. Kammen, B. Duan, M. Macuha, Z. Zhou, J. Wu, M. Tariq, and S. A. Asfaw.
Smart Grid Standards: Specifications, Requirements, and Technologies, chapter Future of the
Smart Grid, pages 379–393. John Wiley & Sons Singapore Pte. Ltd, 2015. 42

[SL07] M. Singh and L. C. Lau. Approximating Minimum Bounded Degree Spanning Trees to
within One of Optimal. In Proceedings of the 39th annual ACM symposium on Theory of
computing, pages 661–670. ACM, 2007. 73

[Sma01] N. P. Smart. An Identity Based Authenticated Key Agreement Protocol Based on the Weil
Pairing. Electronics Letters, 38:630–632, 2001. 56

[SOK00] R. Sakai, K. Ohgishi, and M. Kasahara. Cryptosystems Based on Pairings. In Symposium
on Cryptography and Information Security - SCIS’00-c20, Lecture Notes in Computer Science,
2000. 56

[SS71] A. Schönhage and V. Strassen. Schnelle Multiplikation grosser Zahlen. Computing, 7(3-
4):281–292, 1971. 132

[Ste87] J. Stern. Secret Linear Congruential Generators Are Not Cryptographically Secure. In
Proceedings of the 28th Annual Symposium on Foundations of Computer Science - FOCS’87,
pages 421–426. IEEE Computer Society, 1987. 10, 20

[Ste12] W. A. Stein. Sage Mathematics Software (Version 5.0), 2012. 151

[TAL93] R. Tolimieri, M. An, and C. Lu. Mathematics of Multidimensional Fourier Transform Algorithms.
Springer, 1993. 116

[Tat58] J. Tate. WC-Groups Over p-Adic Fields. Séminaire Bourbaki, 4:265–277, 1956-1958. 56

www.safecrypto.eu


172 BIBLIOGRAPHY 6.0

[Tat63] J. Tate. Duality Theorems in Galois Cohomology Over Number Fields. In Proceedings of the
International Congress of Mathematicians - Stockholm’62, Lecture Notes in Computer Science,
page 288–295, 1963. 56

[Too63] A. L. Toom. The Complexity of a Scheme of Functional Elements Realizing the Multiplica-
tion of Integers. Soviet Mathematics Doklady, 3:714–716, 1963. 132

[Tur36] A. Turing. On Computable Numbers with an Application to the ” Entscheidungsproblem”.
Proceeding of the London Mathematical Society, pages 230–265, 1936. 26

[UMS11] S. K. Udgata, A. Mubeen, and S. L. Sabat. Wireless Sensor Network Security Model Using
Zero Knowledge Protocol. In ICC, pages 1–5. IEEE, 2011. 72

[Val91] B. Vallée. Gauss’ Algorithm Revisited. Journal of Algorithms, 12(4):556–572, 1991. 125, 130,
152

[Van92] S. A. Vanstone. Responses to NIST’s Proposal. Communications of the ACM, 35:50–52, 1992.
152

[Vau02] S. Vaudenay. Security Flaws Induced by CBC Padding - Applications to SSL, IPSEC, WTLS
... In Advances in Cryptology - EUROCRYPT’02, volume 2332 of Lecture Notes in Computer
Science, pages 534–546. Springer, 2002. 42, 45, 80

[Ver26] G. S. Vernam. Cipher Printing Telegraph Systems For Secret Wire and Radio Telegraphic
Communications. Transactions of the American Institute of Electrical Engineers, XLV, 1926. 20

[vM39] R. von Mises. Über Aufteilungs-und Besetzungs-Wahrscheinlichkeiten. Revue de la Faculté
des Sciences de l’Université d’Istanbul, (4):145–163, 1939. 39

[vN51] J. von Neumann. Various Techniques used in Connection with Random Digits. National
Bureau of Standards Applied Math Series, 12:36–38, 1951. 138

[VOW96a] P. C. Van Oorschot and M. J. Wiener. Improving Implementable Meet-in-the-Middle
Attacks by Orders of Magnitude. In Advances in Cryptology - CRYPTO’96, volume 1109 of
Lecture Notes in Computer Science, pages 229–236. Springer, 1996. 20

[vOW96b] P. C. van Oorschot and M. J. Wiener. On Diffie-Hellman Key Agreement with Short
Exponents. In Advances in Cryptology — EUROCRYPT’96, volume 1070 of Lecture Notes in
Computer Science, pages 332–343. Springer, 1996. 52

[vOW99] P. C. van Oorschot and M. J. Wiener. Parallel Collision Search with Cryptanalytic Applica-
tions. volume 12, pages 1–28. Springer, 1999. 39

[VPH+11] K. R. Venugopal, L. M. Patnaik, M. Hashim, Santhosh Kumar G., and A. Sreekumar.
Authentication in Wireless Sensor Networks Using Zero Knowledge Protocol. In Computer
Networks and Intelligent Computing, volume 157, pages 416–421. Springer Berlin Heidelberg,
2011. 72

[vT91] J. van Tilbourg. Method for the Modular Reduction of numbers, 1991. filed October 2,
1991. 104

[VZ95] S. A. Vanstone and R. J. Zuccherato. Short RSA Keys and Their Generation. Journal of
Cryptology, 8(2):101–114, 1995. 104, 106

[WBYD00] H. Wu, F. Bao, D. Ye, and R. H. Deng. Cryptanalysis of the m-Permutation Protection
Schemes. In Australasian Conference on Information Security and Privacy - ACISP’00, volume
1841, pages 97–111. Springer, 2000. 147

[Wei40] A. Weil. Sur les fonctions algébriques à corps de constantes fini. Comptes rendus de
l’Académie des Sciences, 210:592–594, 1940. 56

[WH99] H. Wu and M. A. Hasan. Closed-Form Expression for the Average Weight of Signed-Digit
Representations. IEEE Transactions on Computers, 48(8):848–851, 1999. 132

[WHF03] D. Whiting, R. Housley, and N. Ferguson. Counter with CBC-MAC (CCM). IETF RFC
3610 (Informational), September 2003. 43

[WP03] X. Wang and V. Y. Pan. Acceleration of Euclidean Algorithm and Rational Number
Reconstruction. SIAM Journal on Computing, 32(2):548–556, 2003. 152

[Wri87] P. Wright. Spycatcher: The Candid Autobiography of a Senior Intelligence Officer. Mandarin,
1987. 45



6.0 BIBLIOGRAPHY 173

[Wu08] H. Wu. The Stream Cipher HC-128. In New Stream Cipher Designs, volume 4986 of Lecture
Notes in Computer Science, pages 39–47. Springer-Verlag, 2008. 10, 20

[Yao86] A. C.-C. Yao. How to Generate and Exchange Secrets (Extended Abstract). In 27th Annual
Symposium on Foundations of Computer Science, pages 162–167. IEEE Computer Society
Press, October 1986. 59

[YK05] M. Yung and J. Katz. Digital Signatures (Advances in Information Security). Springer-Verlag,
2005. 54

[Yuv79] G. Yuval. How to Swindle Rabin. Cryptologia, 3:187–189, 1979. 39

[ZPS92] Y. Zheng, J. Pieprzyk, and J. Seberry. HAVAL - A One-Way Hashing Algorithm with
Variable Length of Output. In AUSCRYPT, volume 718 of Lecture Notes in Computer Science,
pages 83–104. Springer, 1992. 39

[ZQWZ10] L. Zhang, B. Qin, Q. Wu, and F. Zhang. Efficient Many-to-One Authentication with
Certificateless Aggregate Signatures. Computer Networks, 54(14):2482–2491, 2010. 72

[ZW09] H. Zhang and X. Wang. Cryptanalysis of Stream Cipher Grain Family. IACR Cryptology
ePrint Archive, 2009:109, 2009. 20



CHAPTER 7

LIST OF MAIN ABBREVIATIONS

AE Authenticated Encryption
AEAD Authenticated Encryption with Associated Data
AES Advanced Encryption Standard
AES-GCM Advanced Encryption Standard in Galois Counter Mode
AES-NI Advanced Encryption Standard Instruction Set
AC-Message Authentication Challenge Message
A-Message Authentication Message
ANSI American National Standards Institute
AR-Message Authentication Request Message
AVR Alf and Vegard RISC processor
BCH Bose-Chaudhuri-Hocquenghem
BDDHP Bilinear Decisional Diffie-Hellman Problem
BDHP Bilinear Diffie-Hellman Problem
BEAST Browser Exploit Against SSL/TLS
BPP Binary Packet Protocol
CA Certificate Authority
CBC Cipher Block Chaining
CCM Counter with CBC-MAC
CDHP Computational Diffie-Hellman Problem
CFB Cipher Feedback
CPU Central Processing Unit
CRC Cyclic Redundancy Check
CTR Counter
DDHP Decisional Diffie-Hellman Problem
DES Data Encryption Standard
DESL Data Encryption Standard Lighweight
DESXL Data Encryption Standard Extra-Lighweight
Dlog Discrete logarithm
DLP Discrete Logarithm Problem
DPA Differential Power Analysis
DSA Digital Signature Algorithm
EC Elliptic Curve
ECADD Elliptic Curve (Point) Addition

174



7.0 175

ECB Electronic Codebook
ECC Elliptic Curve Cryptography
ECC Error Correcting Code
ECDBL Elliptic Curve (Point) Doubling
ECDDH Elliptic Curve Decisional Diffie-Hellman
ECDH Elliptic Curve Diffie-Hellman
ECDLP Elliptic Curve Discrete Logarithm Problem
ECDSA Elliptic Curve Digital Signature Algorithm
ECMQV Elliptic Curve Menezes-Qu-Vanstone
ECSM Elliptic Curve Scalar Multiplication
EEPROM Electrically Erasable Programmable Read-Only Memory
EPROM Erasable Programmable Read-Only Memory
ERP The e-th Root Problem
FACT Factoring
FIB Focused Ion Beam
FTG Find then Guess
GCQH The Government Communications Headquarters
GC&QS The Government Code and Cypher School
GCM Galois Counter Mode
GE Gate Equivalent
GPS Girault-Poupard-Stern
HDL Hardware Description Language
HMAC Keyed-Hash Message Authentication Code
HRP The Higher Residuosity Problem
IND Indistinguishability
IND-CCA1 Indistinguishability under Chosen Ciphertext Attack
IND-CCA2 Indistinguishability under Adaptive Ciphertext Attack
IND-CPA Indistinguishability under Chosen Plaintext Attack
INT-CTXT Integrity of Ciphertext
IoT Internet of Things
IQR Interquartile Range
IV Initialization Vector
LFSR Linear Feedback Shift Register
LLL Lenstra–Lenstra–Lovász
LOR Left or Right Indistinguishability
LOR-CCA Left or Right Indistinguishability under Chosen Ciphertext Attack
LOR-CPA Left or Right Indistinguishability under Chosen Plaintext Attack
LPN Learning Parity with Noise
LSB Least Significant Bit
LWE Learning With Errors
MAC Message Authentication Code
MAC-FORGE Message Authentication Code - Forge
MD Message Digest
MSB Most Significant Bit
NAND Negative-AND
NESSIE New European Schemes for Signatures, Integrity and Encryption
NIST National Institute of Standards and Technology
NLFSR Non-Linear Feedback Shift Register



176 List of Main Abbreviations 7.0

NM Non-Maleability
NM-CCA Non-Maleability under Chosen Ciphertext Attack
NTRU n-th degree TRUncated polynomial ring
OCB Offset Codebook Mode
OFB Output Feedback
OMD Offset Merkle-Damgård
PKI Public Key Infrastructure
p-OMD Pure Offset Merkle-Damgård
PPT Probabilistic Polynomial Time
PRF Pseudorandom Function
PRP Pseudorandom Permutation
QRP Quadratic Residuosity Problem
RFC Request for Comments
RFID Radio Frequency Identification
RIPEMD RACE Integrity Primitives Evaluation Message Digest
R-M Reed-Muller
RO Random Oracle
ROM Random Oracle Model
ROR Real or Random Indistinguishability
ROR-CCA Real or Random Indistinguishability under Chosen Ciphertext Attack
ROR-CPA Real or Random Indistinguishability under Chosen Plaintext Attack
ROTR Rotate Right
RSA Rivest-Shamir-Adleman
RUP Releasing Unverified Plaintext
SCA Side Channel Attacks
SCM Single Constant Multiplication
SEM Semantic Security
SHA Secure Hash Algorithm
SHR Right Shift
SIV Synthetic Initialization Vector
SPA Simple Power Analysis
SPN Substitution-Permutation Network
SSH Secure Shell
SSL/TLS Secure Sockets Layer/Transport Layer Security
SU-KMA Strong Unforgeability Under Known-Message Attack
SU-RMA Strong Unforgeability Under Random-Message Attack
TTP Trusted Third Party
UV Ultraviolet
VM Virtual Machine
XEX Xor-Encrypt-Xor
XMACC Counter-Based XOR MAC
XOR Exclusive OR
XTS XEX Tweakable Block Cipher with Ciphertext Stealing
ZADDC Conjugate Addition in co-Z
ZADDU Addition and Update in co-Z
ZK Zero-Knowledge
ZKP Zero-Knowledge Proof/Protocol



APPENDIX A

COMPRESSION FUNCTIONS

A.1 Compression Functions of SHA-256 and SHA-512

We recall the compression functions of the standard SHA-256 and SHA-512 hash functions following
NIST FIPS PUB 180-4 [FIP12]. We denote the underlying compression functions of these standard hash
functions by sha-256 and sha-512, respectively.

Note. In the following, by word we mean a group of either 32 bits (4 bytes) or 64 bits (8 bytes), depending
on the compression function algorithm. Namely, in sha-256 each word is a 32-bit string and in sha-512
each word is a 64-bit string.

ROTRn(x): The rotate right (circular right shift) operation, where x is a w-bit word and n an integer
with 0 ≤ n < w, is defined by ROTRn(x) = (x� n) ∨ (x� w − n)

SHRn(x): The right shift operation, where x is a w-bit word and n an integer with 0 ≤ n < w, is defined
by SHRn(x) = (x� n).

Choice Function. Let m be 32 in the case of sha-256 and 64 in the case of sha-512. The choice function
takes as input two m-bit words y and z, and one m-bit word x selector input, and returns an m-bit word.
Every value of a single bit of x is used to select one of the bit of the m pairs (from (y0, y1) to (zm−2, zm−1)).
It is similar to an m-to-m/2 multiplexer (i.e. m 2-to-1 multiplexers). One can use indifferently whether
inclusive OR (∨) or exclusive OR (⊕). The function is defined as follows:

Ch :
∣∣∣∣ {0, 1}m × {0, 1}m × {0, 1}m −→ {0, 1}m

x, y, z 7−→ (x ∧ y)⊕ (¬x ∧ z)

Majority Function. Let m be 32 in the case of sha-256 and 64 in the case of sha-512. In Boolean logic,
the majority function (also called the median operator) is a function from n inputs to one output. The
value of the operation is false when n/2 or more arguments are false, true otherwise. In sha-256/sha-512
design, majority function takes as input three m-bit words x, y, z, and returns an m-bit word. Such as
choice function, one can use indifferently whether inclusive OR (∨) or exclusive OR (⊕). The function is
defined as follows:

Maj :
∣∣∣∣ {0, 1}m × {0, 1}m × {0, 1}m −→ {0, 1}m

x, y, z 7−→ (x ∧ y)⊕ (x ∧ z)⊕ (y ∧ z)

177



178 Compression Functions A.1

A.1.1 The Compression Function of SHA-256

Sigma Functions. The Σ{256}
0 and Σ{256}

1 functions are respectively represented by a multiplication by
theX2 +X13 +X22 andX6 +X11 +X25 polynomials of F2[X]/X32 +1, if one represents any 32-bit word
W = (W [0]W [1]...W [31]) as a F2[X]/X32 + 1 polynomial W [0] +W [1].X +W [2].X2 + ...+W [31].X31.
The functions as are follows:

Σ{256}
0

∣∣∣∣ {0, 1}32 −→ {0, 1}32

x 7−→ ROTR2(x)⊕ ROTR13(x)⊕ ROTR22(x)

Σ{256}
1

∣∣∣∣ {0, 1}32 −→ {0, 1}32

x 7−→ ROTR6(x)⊕ ROTR11(x)⊕ ROTR25(x)

The σ{256}
0 and σ

{256}
1 functions are respectively represented by a multiplication by the X7 +X18 and

X17 + X19 polynomials of F2[X]/X32 + 1, if one represents any 32-bit word W = (W [0]W [1]...W [31])
as a F2[X]/X32 + 1 polynomial W [0] +W [1].X +W [2].X2 + ...+W [31].X31. These multiplications are
applied on the quotient of the Euclidean division of the polynomial representation of a 32-bit word W ,
and the polynomial P = X . The functions as are follows:

σ
{256}
0

∣∣∣∣ {0, 1}32 −→ {0, 1}32

x 7−→ ROTR7(x)⊕ ROTR18(x)⊕ SHR3(x)

σ
{256}
0

∣∣∣∣ {0, 1}32 −→ {0, 1}32

x 7−→ ROTR17(x)⊕ ROTR19(x)⊕ SHR10(x)

The Process. The sha-256 function process is defined as below:

sha− 256
∣∣∣∣ {0, 1}256 × {0, 1}512 −→ {0, 1}256

H,M 7−→ C

Let H be the 256-bit hash input (chaining input) and M be the 512-bit message input. These two inputs
are represented respectively by an array of eight 32-bit words H0, · · · , H7 and an array of sixteen 32-bit
words M0, · · · ,M15. The 256-bit output value C is also represented as an array of eight 32-bit words
C0, · · · , C7.

During the process of compression, a sequence of 64 constant 32-bit words, K{256}
0 , ...,K

{256}
63 are used.

These 32-bit words represent the first 32 bits of the fractional parts of the cube roots of the first 64 prime
numbers. We refer the reader to [FIP12] for a table containing these constants.

Furthermore, addition (+) is performed modulo 232.



A.1 Compression Functions of SHA-256 and SHA-512 179

The compression function processes is detailed in Algorithm 31.

Algorithm 31: Compression function of SHA-256

1 for t← 0 to 15 do
2 Wt = Mt

3 end for

4 for t← 16 to 63 do
5 σ

{256}
1 (Wt−2) +Wt−7 + σ

{256}
0 (Wt−15) +Wt−16

6 end for

7 (a, b, c, d, e, f, g, h)← (H0, H1, H2, H3, H4, H5, H6, H7)
8 for t← 0 to 63 do
9 T1 ← h+ Σ{256}

1 (e) + Ch(e, f, g) +K
{256}
t +Wt

10 T2 ← Σ{256}
0 (a) + Maj(a, b, c)

11 (h, g, f, e, d, c, b, a)← (g, f, e, d+ T1, c, b, a, T1 + T2)
12 end for

13 (C0, C1, C2, C3, C4, C5, C6, C7)← (a+H0, b+H1, c+H2, d+H3, e+H4, f +H5, g +H6, h+H7)

A.1.2 The Compression Function of SHA-512

Sigma Functions. The Σ{512}
0 and Σ{512}

1 functions are respectively represented by a multiplication by
theX28+X34+X39 andX14+X18+X41 polynomials of F2[X]/X64+1, if one represents any 64-bit word
W = (W [0]W [1]...W [63]) as a F2[X]/X64 + 1 polynomial W [0] +W [1] ·X +W [2] ·X2 + ...+W [63] ·X63.
The functions are as follows:

Σ{512}
0

∣∣∣∣ {0, 1}64 −→ {0, 1}64

x 7−→ ROTR28(x)⊕ ROTR34(x)⊕ ROTR39(x)

Σ{512}
1

∣∣∣∣ {0, 1}64 −→ {0, 1}64

x 7−→ ROTR14(x)⊕ ROTR18(x)⊕ ROTR41(x)

The σ{512}
0 and σ

{512}
1 functions are respectively represented by a multiplication by the X1 + X8 and

X19 +X61 polynomials of F2[X]/X64 + 1, if one represents any 64-bit word W = (W [0]W [1]...W [63]) as
a F2[X]/X64 + 1 polynomial W [0] +W [1] ·X +W [2] ·X2 + ...+W [63] ·X63. These multiplications are
applied on the quotient of the Euclidean division of the polynomial representation of a 64-bit word W ,
and the polynomial P = X . The functions as are follows:

σ
{512}
0

∣∣∣∣ {0, 1}64 −→ {0, 1}64

x 7−→ ROTR1(x)⊕ ROTR8(x)⊕ SHR7(x)

σ
{512}
0

∣∣∣∣ {0, 1}64 −→ {0, 1}64

x 7−→ SHR19(x)⊕ SHR61(x)⊕ SHR6(x)

The Process. The sha-512 compression function is defined as below:

sha− 512
∣∣∣∣ {0, 1}512 × {0, 1}1024 −→ {0, 1}512

H,M 7−→ C

Let M be the 1024-bit message input and H the 512-bit hash input (chaining input). These two inputs are
represented respectively by an array of sixteen 64-bit words M0, · · · ,M15, and an array of eight 64-bit
words H0, · · · , H7. The 512-bit output value C is also represented as an array of eight 64-bit words
C0, · · · , C7.



180 Compression Functions A.1

Let H be the 512-bit hash input (chaining input) and M be the 1024-bit message input. These two inputs
are represented respectively by an array of 8 64-bit words H0, · · · , H7 and an array of 16 64-bit words
M0, · · · ,M15. The 512-bit output value C is also represented as an array of 8 64-bit words C0, · · · , C7.

During the process of compression, a sequence of 80 constant 64-bit words K{512}
0 , ...,K

{512}
79 is used.

These 64-bit words represent the first 64 bits of the fractional parts of the cube roots of the first 80 prime
numbers. We refer the reader to [FIP12] for a table containing these constants.

Addition (+) is performed modulo 264.

The compression function is described in Algorithm 32.

Algorithm 32: Compression function of SHA-512

1 for t← 0 to 15 do
2 Wt = Mt

3 end for

4 for t← 16 to 79 do
5 Wt = σ

{512}
1 (Wt−2) +Wt−7 + σ

{512}
0 (Wt−15) +Wt−16

6 end for

7 (a, b, c, d, e, f, g, h)← (H0, H1, H2, H3, H4, H5, H6, H7)
8 (C0, C1, C2, C3, C4, C5, C6, C7)← (a+H0, b+H1, c+H2, d+H3, e+H4, f +H5, g +H6, h+H7)



APPENDIX B

FAULT ATTACKS ON ECC: CO-Z
FORMULÆ

Let P = (X1, Y1, Z) and Q = (X2, Y2, Z) be two points of EJ (Fp) with P 6= ±Q. Addition and update
in co-Z (ZADDU) is the procedure to compute P + Q and update the point P to feature the same Z-
coordinate (see [Mel07]). Conjugate addition in co-Z (ZADDC) is the procedure to compute P +Q and
P −Q (see [GJM10]).

Algorithm ZADDU =



C ← (X1 −X2)2

W1 ← X1C
W2 ← X2C
Z3 ← Z(X1 −X2)
D ← (Y1 − Y2)2

A1 ← Y1(W1 −W2)
X3 ← D −W1 −W2
Y3 ← (Y1 − Y2)(W1 −X3)−A1
R := (X3, Y3, Z3)
S := (W1, A1, Z3) return(R = P +Q,S)

Algorithm ZADDC =



C ← (X1 −X2)2

W1 ← X1C
W2 ← X2C
Z3 ← Z(X1 −X2)
D1 ← (Y1 − Y2)2

A1 ← Y1(W1 −W2)
X3 ← D1 −W1 −W2
Y3 ← (Y1 − Y2)(W1 −X3)−A1
D2 ← (Y1 + Y2)2

X4 ← D2 −W1 −W2
Y4 ← (Y1 + Y2)(W1 −X4)−A1
R := (X3, Y3, Z3)
S := (X4, Y4, Z3) return(R = P +Q,S = P −Q)

181



182 Fault Attacks on ECC: Co-Z Formulæ B.0

Algorithm 33: Add only Montgomery ladder using co-Z formulæ [GJM10]
Input: a point P and an integer k = (1, kN−2, kN−3, . . . , k0)2

Output: [k]P
1 R0 ← P

2 R1 ← 2P
3 for i = N − 2 downto 0 do
4 (R1−ki , Rki)← ZADDC(Rki , R1−ki )

5 (Rki , R1−ki)← ZADDU(R1−ki , Rki )
6 end for

7 return R0



APPENDIX C

DETERMINISTIC SIGNATURE SCHEME

This section recalls the provably-secure deterministic signature scheme of [MNPV98]. The scheme
initially uses a subgroup of order q of the multiplicative group F∗p. We adapted it to ECCs.

The scheme uses the following curve parameters:
– E : y2 = x3 + ax+ b, an elliptic curve over some prime base field Fp with parameters a, b
– G = (xG, yG), a generator of a subgroup of E of order n
The private key is an integer d ∈R [1, n− 1]. The corresponding public key is P = (xP , yP ) = [d]G.

Algorithm 34: Sign
Input: Private key d, message m, hash function h

Output: Signature (e, s)
1 u← h(d,m, p, a, b, n,G, P )
2 Q← [u]G
3 r ← xQ mod n
4 e← h(m, r) mod n
5 s← u− de mod n
6 return (e, s)

Algorithm 35: Verify
Input: Public key P , message m, signature (e, s), hash function h

Output: True or False

1 Q← [s]G+ [e]P
2 r ← xQ mod n
3 if e = h(m, r) mod n then
4 return True
5 end if
6 else
7 return False
8 end if

183



APPENDIX D

CODE: BARRETT’S ALGORITHM FOR
POLYNOMIALS

184



D.0 185

p1(x) =
∑7

i=0(10 + i)xi and p2(x) = x3 + x2 + 110

(define p1 ’((7 17) (6 16) (5 15) (4 14) (3 13) (2 12) (1 11) (0 10)))

(define p2 ’((3 1) (2 1) (0 110)))

;shifting a polynomial to the right

(define shift (lambda (l q)

(if (or (null? l) (< (caar l) q)) ’() (cons (cons (- (caar l) q) (cdar l))

(shift (cdr l) q)))))

;adding polynomials

(define add (lambda (p q)

(degre (if (>= (caar p) (caar q)) (cons p (list q)) (add q p)))))

;multiplying a term by a polynomial, without monomials≺ xlim

(define txp (lambda (terme p lim)

(if (or (null? p) (> lim (+ (car terme) (caar p)))) ’() (cons (cons (+ (car terme)

(caar p)) (list (* (cadr terme) (cadar p)))) (txp terme (cdr p) lim)))))

;multiplying a polynomial by a polynomial, without monomials≺ xlim

(define mul (lambda (p1 p2 lim)

(if p1 (cons (txp (car p1) p2 lim) (mul (cdr p1) p2 lim)) ’())))

;management of the exponents

(define sort (lambda (p n)

(if p (+ ((lambda(x) (if x (cadr x) 0)) (assoc n (car p))) (sort (cdr p) n)) 0)))

(define order (lambda (p n)

(if(> 0 n) ’() (let ((factor (sort p n))) (if (not (zero? factor))

(cons (cons n (list factor)) (order p (-n 1))) (order p (-n 1)))))))

(define degre (lambda(p) (order p ((lambda(x)(if x x -1)) (caaar p)))))

;Euclidean division

(define divide (lambda (q p r)

(if (and p (<= (caar p) (caar q))) (let ((tampon (cons (- (caar q)(caar p))

(list (/ (cadar q) (cadar p)))))) (divide (add (map (lambda(x) (cons (car x)

(list (-cadr x)))))(txp tampon p -1)) q) p (cons tampon r))) (reverse r)))

(define division (lambda (q p) (divide q p ’())))

;Barrett(k, L, last_P and Y representing K, L, P and y)

(define k)

(define y)

(define L 8)



186 Code: Barrett’s Algorithm for Polynomials D.0

(define last_P)

(define barrett (lambda (q p)

(if (eq ? last_P p) (letrec ((g (caar q)) (h (- (+ g 1) y))) (shift (degre (mul (shift k (-L g 1)) (shift q
y) h)) h)) (begin (set! k (division (list (cons L ’(1) )) p)) (set! y (caar (set! last_P p))) (barrett q
p))))



APPENDIX E

CODE: BACKTRACKING ASSISTED
MULTIPLICATION

187



188 Code: Backtracking Assisted Multiplication E.0

#include <stdio.h>
#include <string.h>
#include <math.h>
#include <stdlib.h>

int False = 0;
int True = 255;

#define step(u,v) path[dep+1][0]=u; path[dep+1][1]=v; backtracking(dep+1);
#define steps(x,n) c=x; if(c<256) {if (visited[c]==False) {visited[c]=True;\

path[dep][2]=c;path[dep][3]=n;step(a,b);step(a,c);step(b,c);visited[c]=False;}}

int visited[2 * 256];
int maxdep,path[256][4],maxpath[256][4];
int size;

void backtracking(int dep){

if (dep > maxdep){
maxdep = dep;
memcpy(maxpath, path, sizeof(path));

}

int a = path[dep][0];
int b = path[dep][1];
int c;

steps(a+b, 1);
steps(a<<1, 2);
steps(b<<1, 3);
steps((a<<1)%256, 4);
steps((b<<1)%256, 5);
steps((a+b)%256, 6);
steps(abs(a-b), 7);

}

int main() {
int i,j;
FILE *Fin, *Fout;
int *A;

Fin = fopen("input.txt", "r");
fscanf(Fin, "%d", &size);
A = (int*)malloc(sizeof(int)*size);
for (i=0; i <size; ++i) {

fscanf(Fin, "%d", &A[i]);
}

for (i=0; i<256; ++i) visited[i] = True;
for (i=0; i<size; ++i) visited[A[i]] = False;

free(A);

maxdep = -1;
for (i=0; i<256; ++i) {

for (j=i+1; j<256; ++j) {
if (visited[i]==True || visited[j]==True) continue;
path[0][0] = i;
path[0][1] = j;
visited[i] = visited[j] = True;
backtracking(0);
visited[i] = visited[j] = False;

}
}

Fout = fopen("output.txt","w");
for (i=0; i < maxdep; ++i)

fprintf(Fout,"%3d %3d %3d %3d\n",
maxpath[i][0], // a_i
maxpath[i][1], // a_j
maxpath[i][2], // a_p
maxpath[i][3]); // op

return EXIT_SUCCESS;
}



APPENDIX F

CODE: REGULATING THE PACE OF VON
NEUMANN CORRECTORS

189



190 Code: Regulating the Pace of von Neumann Correctors F.0

import random
import numpy
import math

# Available memory
m = 1000

# Distributional regulator
mu_D = lambda x:icdf(1 - x/m)

def unif_icdf(x):
"""
Inverse cumulative distribution function for the uniform distribution
U(a, b)
"""
a = 200
b = 600
return a + x * (b-a)

def generator(icdf):
"""
Generates a random number distributed according to the provided
inverse cumulative distribution function
"""
return icdf(random.random())

def simulate(input_events, mu):
"""
Simulation

input_events: relative time between input events
mu: regulator

"""

# Stack population
X = 0

# Current input
k = 0

# Lookahead
j = 0

# Absolute time for output events
M = []

# Compute absolute time for input events
T = [0] * len(input_events)
for k in range(1, len(input_events)):

T[k] = T[k-1] + input_events[k]

# Push the first input
X += 1

while k+j+1 < len(input_events) - 1:
j = 0
# Push all early inputs on stack
while T[k+j+1] < M[-1]:

X+=1
j+=1

# Memory overflow or underflow
if X < 0 or X >= m:

print("Error! Memory under- or overflow: X = %s"%X)
return []

# Pop and emit an object
M.append(M[-1] + mu(X))
X -= 1
k += j

return M

def save_data(ret, filename):
"""
Saves data ret to the file ’filename’
"""
f = open(filename,’w’)
f.write("%s\n"%("mu"))
for u in ret:

a = u
f.write("%s\n"%(a))

f.close()



F.0 191

def generate_events(N,icdf):
"""
Generates N events distributed according to the provided
inverse cumulative distribution function
"""
return [generator(icdf) for i in range(N)]

events = generate_events(100000,unif_icdf)
ret = simulate(events, mu_D(unif_icdf))
save_data(ret, ’output.txt’)



Résumé

Cette thèse aborde différents aspects de la cryptologie, subsumant des champs aussi variés que
la conception de protocoles, l’amélioration d’outils algorithmiques et les attaques. Les deux
principales focales de cette étude sont: un protocole de co-signature prouvé irréfragable et un
système de chiffrement authentifié à sécurité prouvée. Notre protocole de co-signature permet
l’équité légale. L’équité légale est une nouvelle variante de la notion d’équité, ne reposant
pas sur des tiers. Notre instanciation d’équité légale est construite à l’aide des signatures
de Schnorr. Nous présenterons également un protocole d’authentification distribué de type
Fiat-Shamir. La deuxième partie de cette thèse est consacrée aux améliorations algorithmiques.
Nous introduisons une méthode permettant de doubler la vitesse de l’algorithme de Barrett
en utilisant des modules composites spécifiques et un nouvel algorithme de multiplication
à retour sur trace, particulièrement adapté aux microprocesseurs bon marché. Nous nous
intéresserons ensuite à la sécurité des composants en étudiant la régulation du débit des cor-
recteurs de von Neumann et les attaques en fautes sur des implémentations de cryptographie
à courbes elliptiques. Enfin, un des actes novatoires incidents notre travail sera d’adapter
aux codes correcteurs d’erreurs deux techniques empruntées à la cryptographie: un premier
résultat améliore l’efficacité calculatoire des codes BCH grâce à une version de l’algorithme de
Barrett étendue aux polynômes. Le second est un nouveau code correcteur d’erreurs basé sur
la théorie des nombres.

Mots-clés: cryptographie, authentification, chiffrement, équité, arithmetique, attaques, codes
correcteurs d’erreurs.

Abstract

This thesis addresses various topics in cryptology, namely protocol design, algorithmic im-
provements and attacks. In addition, we venture out of cryptography and propose two new
applications of cryptographic techniques to error correcting codes.
Our main results comprise a provably secure co-signature protocol and a provably secure
authenticated encryption scheme. Our co-signature protocol achieves legal fairness, a novel
fairness variant that does not rely on third parties. Legal fairness is implemented using Schnorr
signatures. We also present a distributed Fiat-Shamir authentication protocol.
The second part of the thesis is devoted to computational improvements, we discuss a method
for doubling the speed of Barrett’s algorithm by using specific composite moduli, devise
new BCH speed-up strategies using polynomial extensions of Barrett’s algorithm, describe a
new backtracking-based multiplication algorithm suited for lightweight microprocessors and
present a new number theoretic error-correcting code.
Fault injection attacks are further overviewed and a new fault attack on ECC implementations
is proposed.

Keywords: cryptography, authentication, encryption, fairness, arithmetic, attacks, error
correcting codes.


	Prolégomènes
	Une brève introduction à l'histoire de la cryptographie
	Cryptographie pré-informatique
	La cryptographie moderne

	Résumé de la thèse

	Introduction
	A Brief Introduction to the History of Cryptography
	Pre-Computer Cryptography
	Modern Cryptography

	Thesis Outline
	Publications

	Mathematical and Cryptographic Preliminaries
	Hash Functions and Message Authentication Codes
	Authenticated Encryption (AE)
	From the Generic Composition Paradigm to Dedicated AE Algorithms

	Digital Signatures
	General Concepts
	Signature Schemes

	Elliptic Curve Cryptography

	Protocol Design
	Legally Fair Contract Signing without Keystones
	Preliminaries
	Legally Fair Co-Signatures

	Multi-Party Authentication Protocols
	Preliminaries
	Distributed Fiat-Shamir Authentication
	Security Proofs
	Variants and Implementation Trade-offs

	An Authenticated Encryption Scheme: Offset Merkle-Damgård
	Preliminaries
	Design Rationale
	Security Definitions and Goals
	Specification of OMD
	OMD-SHA256: Primary Recommendation for Instantiating OMD
	OMD-SHA512: Secondary Recommendation for Instantiating OMD
	Security Proofs
	Generalisation of OMD Based on Tweakable Random Functions
	Instantiating Tweakable RFs with PRFs
	In Summary: Features of OMD
	Further Developments


	Algorithms for Embedded Cryptography
	Lightweight Cryptography for Embedded Devices
	RFID Tags: A Cryptography Perspective

	Double-Speed Barrett Moduli
	Barrett's Reduction Algorithm
	Moduli with a Predetermined Portion
	Barrett-Friendly Moduli
	Extensions

	Applying Cryptographic Techniques to Error Correction
	From Modular Reduction to Polynomial Reduction
	A Number-Theoretic Error-Correcting Code

	Backtracking-Assisted Multiplication
	Multiplication Algorithms
	The Proposed Algorithm
	Performance

	Regulating the Pace of von Neumann Extractors
	Model and Assumptions
	Generic Regulator Description
	The Median Regulator
	Memory-Variance Trade-Off: Adaptive Regulators
	Parameters for the von Neumann Extractor
	Experimental Results

	Fault Attacks on Projective-to-Affine Coordinate Conversion
	Preliminaries
	Faults During Conversion
	Large Unknown Faults
	Two Faults and a Correct Result
	Known or Guessable Faults
	Final Observations


	Conclusion and Further Development
	List of Main Abbreviations
	Compression Functions
	Compression Functions of SHA-256 and SHA-512
	The Compression Function of SHA-256 
	The Compression Function of SHA-512


	Fault Attacks on ecc: Co-Z Formulæ
	Deterministic Signature Scheme
	Code: Barrett's Algorithm for Polynomials
	Code: Backtracking Assisted Multiplication
	Code: Regulating the Pace of von Neumann Correctors

