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INTRODUCTION

Virtual Reality is a scientific and technological field exploiting computer science and behavioral interfaces in order to simulate in artificial worlds the behavior of 3D autonomous entities that interact in real time between each other and with one or more immersed users through multiple sensorial channels (such as visual and auditory) [START_REF] Desmeulles | In virtuo Experiments Based on the Multi-Interaction System Framework: the RéISCOP Meta-Model[END_REF] [2]. Accordingly, rich multi-modal human interaction input/output systems are used, such as head-mounted displays (HMD), CAVE, motion tracking devices, data gloves and body sensors [START_REF] Giraldi | Introduction to virtual reality[END_REF]. Oculus VR 1 as one of the first virtual reality headset released for the general public and especially for gamers. Since this date, several vendors like Samsung, HTC, Sony, Microsoft, Google, Epson and LG had also released a large panel of different types of virtual reality HMDs. Among these HMDs, there are low-cost platforms with simple components, such as the Google Cardboard, and advanced platforms, like HTC Vive and PlayStation VR (Figure 1). Earlier, professionals have frequently applied virtual reality and used complex Virtual Reality devices such as the CAVE and the force feedback arms (Figure 2). Even if these devices are useful for industrial and academia and interesting for small and medium-sized enterprises (SME), the future of this type of devices will depend on the success in game development for public.

Figure 2. Complex virtual reality devices

Virtual Reality has been used in several professional domains. Beyond gaming, the entertainment, mental health and shopping fields are considered among the usages of Virtual Reality. Users can be immersed in virtual environments to watch movies, virtually visit historical places around the world, find a relaxing environment to reduce stress and anxiety, or get a shopping experience through a virtual tour of a store [3] [5].

In addition, education is an essential domain applying Virtual Reality [START_REF] Mei | Applying situated learning in a virtual reality system to enhance learning motivation[END_REF]. Major virtual reality applications facilitate training in industrial [START_REF] Sacco | Virtual Factory Manager[END_REF], medical [8] [9], engineering [START_REF] Greunke | Taking Immersive VR Leap in Training of Landing Signal Officers[END_REF], sports [START_REF] Miles | Investigation of a virtual environment for rugby skills training[END_REF], and military domains [START_REF] Gerbaud | GVT: a platform to create virtual environments for procedural training[END_REF]. The user can gain more experiences by repeatedly executing the procedure and trying different solutions without serious expenses. Moreover, virtual reality provides users a safe environment to practice and allows them to make mistakes without real impacts. This pragmatic approach of Virtual Reality for learning is used by SMEs such as Virtualys and Clarte2 when developing new products in this field. But Virtual Reality permits developing new educational strategies and this implies new methodologies to create the virtual environment. This is a research domain that we call "Virtual Learning Environment" (VLE) [START_REF] Dillenbourg | Virtual learning environments[END_REF]. In the sequel, we delve more in depth in VLEs and the various known approaches to build them. This shall reveal the opportunities left in the literature for us to introduce our thesis contribution.

Virtual Learning Environment

We propose to divide the competencies that can be acquired in VLE in three categories:

1-Gesture competencies: Users can train in VLEs on gestures of concerned domain. They can perform required tasks in virtual environments using Virtual Reality tools. For instance, a surgical training is applied in [START_REF] Huber | New dimensions in surgical training: immersive virtual reality laparoscopic simulation exhilarates surgical staff[END_REF] using Virtual Reality HMDs with Virtual Reality laparoscopic simulators [START_REF] Palter | Individualized deliberate practice on a virtual reality simulator improves technical performance of surgical novices in the operating room: a randomized controlled trial[END_REF]. Trainers apply surgical activities, such as holding objects with attached blood vessels and separating small vessels from big ones, using real surgical devices that are instrumented in the virtual environment (Figure 3). In this study, the impact of Virtual Reality on the learning performance were time, instrument path length, and angles of used tools. 3-Procedural knowledge: A VLE can be constructed to train users on applying procedures. For example, the solution in [START_REF] Gerbaud | GVT: a platform to create virtual environments for procedural training[END_REF] train engineers on the maintenance tasks of complex engineering system. As shown in Figure 5, trainees have to use a virtual hand to interact with objects in the virtual environment in order to trigger a chain of actions to complete the procedure.

Figure 5. Procedural training on complex engineering system

We can notice how much the domains in VR applications can vary. Such systems can highly cost and consume plenty of time to be developed and updated. Computer scientists have to build the applications based on domain and pedagogical models. What is more problematic is that implicitly, the computer scientists may include their own vision of pedagogy while implementing pedagogical scenarios provided by trainers. Therefore, it is crucial in a VLE to consider the methodologies that directly incorporate domain experts and trainers. In this purpose, some methodologies and tools have been already proposed in the literature to build a VLE with the ability for end-users to create or at least to parameterize the domain and the pedagogical scenarios [START_REF] Edward | Modelling autonomous virtual agent behaviours in a virtual environment for risk[END_REF]. Significantly, the IMSLD [START_REF] Koper | Ims learning design information model[END_REF], MASCARET [START_REF] Querrec | Agent metamodel for virtual reality applications[END_REF], #FIVE [START_REF] Bouville | #FIVE: High-Level Components for Developing Collaborative and Interactive Virtual Environments[END_REF], and SELDON [START_REF] Barot | Using planning to predict and influence autonomous agents behaviour in a virtual environment for training[END_REF] are among the major systems that provide such methodologies.

Furthermore, VLE methodologies can use cognitive science results to propose generic algorithm to generate assistance to the learner to improve his learning performance.

These results include the knowledge about several factors for users, like intellectual and emotional, which can support the tutor in building better pedagogical strategies for the learning environments [START_REF] Souza | Cognitive strategies for virtual learning environments[END_REF]. For example, the proposed system in [START_REF] Edward | Modelling autonomous virtual agent behaviours in a virtual environment for risk[END_REF] simulates tutor agents and their cognitive processes to teach users the risk prevention in dangerous working situations. This type of VLE requires creating an agent architecture with agents that have knowledge bases to hold the domain and pedagogical scenarios along with the information gained from monitoring and interacting with users. Moreover, previous works, like STEVE (Soar Training Expert for Virtual Environments) [START_REF] Rickel | Steve: An animated pedagogical agent for procedural training in virtual environments[END_REF], have proven that virtual learning environment could be improved if they use the same communicative channels that humans use. This means that integrating "Embodied Conversational Agents" (ECAs) can facilitate the interaction between the user and the virtual environment.

Embodied Conversational Agent

The interaction between users and the VLE may not be so natural and could generate frustration for users [START_REF] Klein | This computer responds to user frustration: Theory, design, and results[END_REF]. Therefore, a computer interface with human-like embodied conversational agents (ECA) can be used to avoid this frustration. An ECA is a computer-generated intelligent agent that is represented with human-like body. It can interact with other agents and with users within the virtual environment using verbal and nonverbal signals, such as speech, facial expressions and gestures [START_REF] Cassell | Embodied conversational agents[END_REF].

Experiments have proven that ECAs can motivate users in performing tasks [START_REF] Lester | The persona effect: affective impact of animated pedagogical agents[END_REF]. Originally, only an animated face was representing the ECA (Figure 6-a) [START_REF] Friedman | Human values and the design of computer technology[END_REF]. It could show some facial expressions and apply lips synchronization during vocal communication. Afterward, ECAs are represented in virtual environments with 3D human-like embodied agents (Figure 6-b). These agents have to use their body parts (like head, body, arms and legs) to realize physical behaviors and interact with users.

The interaction skills of these agents are developed to realize human-like behaviors [START_REF] Nijholt | Humor and embodied conversational agents[END_REF]. ECAs depend on their verbal (speaking) and non-verbal communicative capabilities (such as body gestures and movements) to establish natural interactions with users.

Figure 6. Simple and advanced ECAs

To increase the accuracy of these behaviors, ECA researches are lately focusing on developing these interaction skills so that additional properties, like emotions, can be expressed [START_REF] Cassell | Embodied conversational agents[END_REF]. Prettifying the facial display of the ECA and adding the social presence for human-computer interactions can make the ECA more realistic and motivate users to confidently interact with virtual environments having ECAs [START_REF] Lane | Learning intercultural communication skills with virtual humans: Feedback and fidelity[END_REF].

The researchers of most of the released ECA systems do not include complex knowledge about the environments in the reasoning capabilities of the ECA. They mainly focus on enhancing the physical representation and the communication capabilities of the ECA.

The current research work of ECA systems done by other colleagues, deals more on the social, emotional aspect of the relation between the user and the agent than on the content of the communication. However, in our work, we will ensure that the ECAs have to aware of the context of the virtual environment [START_REF] Johnson | Animated pedagogical agents: Face-to-face interaction in interactive learning environments[END_REF] [START_REF] Lester | Deictic believability: Coordinated gesture, locomotion, and speech in lifelike pedagogical agents[END_REF]. They must consider the changing states of entities, located in the environment, that are caused by actions triggered by the user and other agents [START_REF] Doyle | Believability through context using knowledge in the world to create intelligent characters[END_REF]. We will work on modelling the knowledge patterns and the reasoning capabilities, defined in the VLE, in order to be able to determine the communicative behaviors of the ECAs by analyzing them [START_REF] Nijholt | Humor and embodied conversational agents[END_REF].

Thesis objectives and plan

In my thesis, and at a conceptual level, we focus on modelling a VLE that can teach users the procedures of industrial systems (procedure of usage or procedure to repair the system) and that is able to answer to questions they can ask. Compared to classical VLEs, we propose to embody the agents using existing ECA platforms. This permits to motivate users and to have more natural communication abilities. In our proposition, the embodied intelligent agents do not only show natural communication (interaction) with the user but also own a knowledge base on the domain model and the pedagogical model.

At an implementation level, we work on building a real-time system able to sustain natural interaction with the user in a VLE. To implement this model, we use MASCARET as an Intelligent Virtual Environment model [START_REF] Querrec | Agent metamodel for virtual reality applications[END_REF] [START_REF] Chevaillier | Semantic modeling of virtual environments using Mascaret[END_REF] that can help giving the knowledge base to the integrated ECA so that it can exchange knowledge with other agents and with the user. Based on this knowledge base, the intentions of the agents are determined and then transmitted to the user through verbal and non-verbal communicative behaviors of integrated ECAs. We aim in this work to formalize the action of communication in MASCARET.

Subsequently, we implemented a concrete application of our proposed model. We built a real life intelligent biomedical tutoring system and applied it as an experimental scenario on several participants. Based on objective performance measures, and similar to previous evaluation works [START_REF] Atkinson | Optimizing learning from examples using animated pedagogical agents[END_REF], we aim to show the efficiency of our proposed model. We applied the experimental protocols defined by Hoareau et al. [START_REF] Hoareau | Evolution of cognitive load when learning a procedure in a virtual environment for training[END_REF]. By following these protocols, we can evaluate the interest of virtual reality for learning procedures based on the determined performance measures.

An overview of existing frameworks and tools that could be used to achieve the aimed VLE is discussed in Chapter 2 with the functionalities of the components of the MASCARET meta-model that we developed. In Chapter 3, we present the global architecture of our proposed model. Thereafter, the structure and the implementation details of our application are shown in Chapter 4. In Chapter 5, we detail the results of applied experiments and evaluation protocols. In the last chapter, we summarize the presented approaches and propose the future perspectives of our work.
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BACKGROUND AND LITERATURE REVIEW

In this thesis, we aim to build a virtual environment that can be used to provide a knowledge base to agents. This principle is called an "Intelligent Virtual Environment" (IVE) [START_REF] Aylett | Intelligent Virtual Environments-A state-of-the-art Chapter 7: Bibliography[END_REF], and has been used in several works in the Virtual Learning Environment (VLE) (section 2.1). Having an IVE is not enough to formalize the knowledge base of an agent and its capacity to reason in the goal of naturally interacting with the user. A study of agent architectures is presented in section 2.2. As seen previously, to increase the natural aspect with the user, we propose to use Embodied Conversational Agents (ECA). Some ECA architectures are presented in section 2.3.

In this chapter, we will study the work that is already done in existing frameworks and tools, which we could use to develop an intelligent virtual learning environment.

Intelligent Virtual Learning Environment (IVLE)

Virtual reality has been already used for educational objectives and had a lot of advantages. The impacts of the considered immersion and interaction modes were evaluated [37] [38]. The main disadvantage obtained in building VR learning applications is that the computer scientists who are developing these applications are intervening in the implementation of all phases of the model including the pedagogical one. They have to design the pedagogical scenarios by applying their understanding of the concerned domain and their own approximation of the learning processes.

One idea is to let the different experts (domain expert and pedagogical expert) to represent them using an external software. In this case, those knowledge are considered as data and can be use in real-time in a virtual environment. This principle is known as intelligent virtual environment (IVE) [START_REF] Aylett | Intelligent Virtual Environments-A state-of-the-art Chapter 7: Bibliography[END_REF].

IVE models are used to build intelligent virtual reality systems with intelligent operations. It integrates Artificial Intelligence (AI) techniques in the environments of VR systems to enhance the interactivity of a virtual environment. IVE permits building interactive interfaces that are essential to construct the virtual environments of planning and problem-solving applications. Graphical interfaces and natural language interfaces can be considered to represent the knowledge of the system to the user. Based on this knowledge, reasonable behaviors are executed in the virtual environment. IVEs have been used in many applications and research fields. We are focusing in our work to embed an IVE in the architecture of the VLE that we aim to build.

The semantics of the concerned domain, which are addressed by experts and instructors, are represented in the VLE using various knowledge patterns. Accordingly, the autonomous agents, which represent the tutor agents for example, can be assigned in the VLE to interact with each other throughout the virtual environment. These semantics play a fundamental role in managing the methodologies of the learning system in a VLE.

The common requirements of a VLE revolve around building a reactive virtual environment that includes the domain model. In addition, necessary pedagogical strategies have to be defined so that the agents could guide the user acquiring some domain knowledge in the virtual environment (a procedure for example).

Various intelligent technological tools, i.e. pedagogical strategies, which can facilitate applying the learning processes, are integrated in the VLEs [START_REF] Dillenbourg | Virtual learning environments[END_REF]. STEVE [START_REF] Rickel | Steve: An animated pedagogical agent for procedural training in virtual environments[END_REF] is among the initial projects that proposed a virtual environment for training. It has a pedagogical agent, called STEVE, which individually helps the user in a virtual environment to train on applying procedural tasks for maintaining a boat.

The generic virtual training (GVT) platform [START_REF] Gerbaud | GVT: a platform to create virtual environments for procedural training[END_REF] was also established to simplify the development of virtual environments with pedagogical tasks that can help in applying the domain procedures. The produced models of the GVT platform allowed executing more than 50 maintenance scenarios on military equipment.

In fact, to reuse the previously well-established VLEs, such as MASCARET [START_REF] Querrec | Agent metamodel for virtual reality applications[END_REF],

#FIVE [START_REF] Bouville | #FIVE: High-Level Components for Developing Collaborative and Interactive Virtual Environments[END_REF], and SELDON [START_REF] Barot | Using planning to predict and influence autonomous agents behaviour in a virtual environment for training[END_REF], and benefit from the implemented operations, we have to embed generic models [START_REF] Gerbaud | GVT: a platform to create virtual environments for procedural training[END_REF] while developing our VLE. Integrating such primary characteristics is a fundamental process to develop a reliable VLE.

SELDON

The SELDON (ScEnario and Learning situations adaptation through Dynamic

OrchestratioN) [START_REF] Barot | Using planning to predict and influence autonomous agents behaviour in a virtual environment for training[END_REF] [39] is a dynamic model that focuses on simulating real world aspects in virtual environments (Figure 7). It includes cognitive characters that can naturally react with human-factors. These characters are used by SELDON to control the events while the user is training in the virtual environment. The user has the complete freedom to act in the environment, where the system of SELDON can naturally responds to these actions.

SELDON provides reactive adaptation by managing the consequences of the actions performed by the user. It enables dynamic adaptation by triggering these outcomes in order to assist the user through pedagogical actions. Accordingly, a pedagogical scenario is defined to guide the user in performing required tasks.

Figure 7. Artificial world with real aspects

The SELDON model generates learning situations that corresponds to the activities of the user. It depends on the TAILOR and the DIRECTOR modules that constitute the system architecture of SELDON (Figure 8). The TAILOR module generates learning situations and a sequence of constraints according to the state of the user and the virtual environment [START_REF] Carpentier | Dynamic Selection of Learning Situations in Virtual Environment[END_REF], and the DIRECTOR module, which is considered as the scenario planner, generates the scenario based on these constraints. While monitoring the user who is working on the training scenario, SELDON considers her/him as one of the virtual characters defined in the virtual environment. It works on expecting the actions of the user and their consequences through the planning process of the model in order to predict upcoming activities.

SELDON is considered as a model that can dynamically generate scenarios in the virtual environment after respecting the activities of the user in real time. These activities updates the beliefs of the system in order to determine the state of the virtual environment and select necessary pedagogical actions. 9). The Relation Engine determines the behaviors of the entities in the virtual environment. However, the Interaction Engine manages the interactions with the user. A communication protocol is also established within these modules to permit the communication between all the modules of #FIVE that can facilitate executing the behaviors (Figure 9).

In addition, these modules permit the developer to manage the behaviors and the relations with the entities in the VE, and to determine the manipulation techniques of these entities. Furthermore, they are working on considering more independence mechanisms in the framework to distribute #FIVE virtual environments in various 3D interface engines.

MASCARET

MASCARET is a Multi-Agent System for Collaborative, Adaptive and Realistic Environments for Training [19] [33] [41] [START_REF] Saunier | A methodology for the design of pedagogically adaptable learning environments[END_REF] that can be used to define an intelligent virtual environment. It provides a virtual reality meta-model to describe the semantic of the virtual environment in order for the user and the agents to interact and perform tasks. The structure of the environments, the ontology of the domain, the activities and interactions of the agents and the user, and the knowledge patterns of these agents, are among the main aspects represented in the MASCARET meta-model using the Unified Modelling Language (UML).

In MASCARET, pedagogy is considered as a specific domain model. The same modelling language (UML) is used to describe the domain and the pedagogical model. The pedagogical model is represented by the pedagogical scenario. Koper [START_REF] Palter | Individualized deliberate practice on a virtual reality simulator improves technical performance of surgical novices in the operating room: a randomized controlled trial[END_REF] considers that a pedagogical scenario is composed of five main elements: pedagogical objectives, pedagogical prerequisites, pedagogical activities, pedagogical organizations and pedagogical environments. In Mascaret, pedagogical scenarios are implemented through a chain of actions and activities. Those actions and activities can be either pedagogical actions, like explaining a resource, or domain actions, like manipulating an object.

Class diagrams are used in MASCARET to describe the different types of entities, their properties and the structure of the environment. Asynchronous discreet entity behaviors are defined through state machines. Activities are designed as predefined collaborative scenarios (called procedures), which represent plans of actions for virtual agents or instructions provided to users for assisting them. The way the activity is interpreted by the agents is defined using specific agent behaviors.

To embed the MASCARET meta-model in a virtual application, the following steps have to be executed:

1-The model of the virtual environment has to be designed by the domain experts using a UML modeller. The experts must use UML diagrams (class diagrams, activity diagrams and state machines) to define the class models, the behavioral models and the actions of the user.

After finishing the design of the VE using the UML modeller, it has to be exported into an XMI file. Nevertheless, this process should be executed upon modifying or adding any element in the UML diagrams.

2-To construct the virtual environment and the shapes and geometries of objects that should occur in it, developers have to design the scene using 3D entities that are constructed by designers using a 3D modeller. The developers have also to define the behaviors of these entities, and a MASCARET plugin has to be imported to the 3D modeler in order to reference the UML model (XMI file).

3-The user has to launch the simulation platform that loads the virtual environment and all the defined models, such as the domain model and the pedagogical model, and activates the interactive interfaces.

Using MASCARET, end-users (pedagogue, domain expert and domain trainer) are directly involved in the creation of the VE (as seen in Figure 11). They are responsible for constructing all the elements of the virtual environment for learning (domain scenario, pedagogical scenario…).

The pedagogue defines the pedagogical scenario to assist the user in performing the domain application in the VE. This scenario consists of a sequence of pedagogical actions that should be linked to the domain actions that the user should perform and to the objects of the VE that should be manipulated. The domain experts, who define the activity that the user should learn, formalizes the sequence of actions and interactions with the objects of the environment.

The domain trainer defines pedagogical scenarios (the sequence of situations in which the trainee acts in the environment) and the pedagogical assistance provided by the system in real time. To define the scenarios, the domain trainer uses (1) the environment and the objects it contains, (2) the potential actions of the user on the objects and the good practices (defined by the domain expert), and (3) the generic pedagogical actions (defined by the pedagogue). The same concepts for defining the models, using the UML, are used in MASCARET to build the meta-model of the multi-agent system to simulate the activities of the user in the environment. These activities require manipulating objects in the virtual environment. Therefore, MASCARET uses the same language (UML) to define the activities and the environment. Several agent meta-models were proposed in the literature and used UML but did not incorporate modelling the environment with the activities. -Multi-Agent System and behaviors of the agents: The agent is an instance in the environment that is characterized with several properties and actions that are actually formulated in the AgentClass (Figure 12). It can perform behaviors and communicate with other agents. MASCARET provides a multi-agent system to define several agents that can execute several behaviors, such as the pedagogical behavior. Each agent has a name and is hosted by an agent-platform. Any property, action, behavior or even an agent in MASCARET can be easily added or modified without affecting other elements in the model.

MASCARET implements the model of JADE [START_REF] Rimassa | Runtime support for distributed multi-agent systems[END_REF] to describe the behaviors of the agents. The behaviors consist of a set of actions that are arranged in a procedure and scheduled by MASCARET.

- -Organization: To endow modularity to the behaviors of the agents, MASCARET defines an organization according to the specific rules of the behaviors and the agents. Based on the structure of the environment and the defined agents, the organizational entity is created to specify the rights and the duties of these agents by structuring their roles using the RoleClass (Figure 12). A role describes the responsibility of the agent and determines the actions it can

execute. An agent could be prevented from applying certain actions that another agent is responsible to execute.

The organizational entities of MASCARET are defined in UML since it depends on the properties of the environment and the agents which are also defined in UML. Therefore, the behaviors of the multi-agent system are described using an activity diagram (considered as an organization) to ensure implementing the rules of the behaviors and defining the role of each agent. The organizations and the roles are linked to the environment in order to be able to use its entities (resources) that are defined using the Entity class.

An XML file is dynamically managed in MASCARET to instantiate the entities of the environment, the agents and the organizational entities.

Pedagogical Scenario

The adaptability of the VLE ensures executing behaviors depending on the context of the environment and on the effectiveness of activities performed by the user. For this reason, it is not typical to statically assist the user through a learning scenario. A pedagogical scenario with appropriate pedagogical activities has to be defined and linked to the requested activities and their relative properties [START_REF] Koper | Ims learning design information model[END_REF].

The pedagogical scenario is an organization for learning activities. It is implemented in MASCARET and includes several properties: the objectives of the domain scenario, a list with the prerequisites of actions, the virtual environment, the activities of the pedagogical scenario, and the pedagogical resources that are linked to the entities of the environment that should be manipulated by the user to perform required actions. The agents could reason on the properties of a pedagogical scenario which are considered as its knowledge base.

Several tutoring models with pedagogical scenarios are previously built in VR, like FORMID [START_REF] Guéraud | L'exploitation d'Objets Pédagogiques Interactifs à distance: le projet FORMID[END_REF]. The learning behaviors of the pedagogical scenarios in these models depend on the continuously estimated states of manipulated objects but are previously chosen at the design stage. Such models miss some significant characteristics like genericity and do not separate between the procedural scenarios and the pedagogical ones.

Figure 13 shows the activity diagram of an application that integrates the MASCARET meta-model to define two roles: the domain actions for the trainee, and the pedagogical actions for the virtual teacher. The user does not know a priori how to perform the domain actions and which objects to manipulate. Therefore, a pedagogical scenario that includes all necessary properties is appended. We can view in Figure 13 how the pedagogical actions are linked to the domain actions and to the entities. This procedure starts with an action to explain the objective of the domain scenario that the user should attain.

Figure 13. UML activity diagram of a MASCARET application with a domain model for the trainee and a linked pedagogical model for the virtual teacher

The domain teacher is capable of updating any element in this generic UML activity diagram, such as adding/removing a pedagogical action or even changing the description of this action. To consider these updates, the XMI file has to be exported from the UML modeller upon each update.

While executing the scenarios, the virtual agents monitor the activities of the user to provide necessary assistance when required. The agent in MASCARET depends on the semantic modelling of the virtual environment and the activities [START_REF] Chevaillier | Semantic modeling of virtual environments using Mascaret[END_REF].

In the following section, we discuss the most significant cognitive agent architectures, BDI, SOAR and ACT-R, and their main functionalities that could be embedded in the structure of the IVLE.

Cognitive architectures

Intelligent systems (like autonomous agents and intelligent tutoring systems) can recognize, reason, learn, and act intelligently using the accessible knowledge in intelligent virtual environments. The infrastructure of such systems can be defined using a cognitive architecture which applies various human intelligent aspects (cognitive functions).

Cognitive architectures are produced to build the structure of intelligent systems. It represents the knowledge of these systems, which is composed of the contents of the concerned domain and the acquired knowledge of performed activities in the environment [45] [46]. Most of the intelligent tutoring systems integrate cognitive architectures in their structures in order to provide accurate explanations to the user in a virtual learning environment.

An agent with a cognitive architecture can consider all the knowledge patterns of the concerned domain, the pedagogical scenarios, the actual context of the environment and the impacts of user's activities [47] [48]. Several modules that represent these knowledge patterns collaborate to include the history of attained processes and the altered states of environmental entities. The user starts executing the procedural scenario without knowing the steps that should be followed. The cognitive resources can be used to direct the user for applying the desired actions and manipulating the proper objects. When the user gains the ability to perform the procedural scenario, the procedural knowledge is considered to be acquired and less cognitive requests are needed [START_REF] Lefevre | Processing instructional texts and examples[END_REF].

It is essential to embed a significant cognitive architecture when building a VLE, so that the roles of its virtual agents can be promoted. According to [START_REF] Langley | Cognitive architectures: Research issues and challenges[END_REF], a cognitive architecture provides the agents with knowledge patterns and reasoning capabilities, namely:

Semantic knowledge:

The knowledge which is known a priori by the agent, such as the knowledge about the plan of actions and entities in the virtual environment.

Perception to knowledge modifications: Acquiring new or updated states of entities in the virtual environment.

Cooperation of agents:

The communication between the agents while cooperating to achieve individual or collective goals.

Planning: Planning for an arranged sequence of actions with their expected impacts and consequences.

Reasoning: Considering all the facts that could influence forming the sequence of actions.

Based on such capabilities, the intelligent behaviors can autonomously be prepared and handled by the virtual agents of the VLE. Moreover, the agents in the VLE cooperate to perform the assigned activities by sharing their knowledge bases. They communicate with each other by exchanging messages built upon an agent communication language.

Significant cognitive agent architectures

Different models and architectures, like BDI (Belief-Desire-Intention), SOAR (State, Operator, and Result) and ACT-R (Adaptive Components of Thought-Rational) are developed to build cognitive frameworks for intelligent agents in order to be able to plan for human-like natural behaviors across different domains and applications.

The Belief-Desire-Intention (BDI) architecture [START_REF] Bratman | Plans and resource-bounded practical reasoning[END_REF] [52] [START_REF] Guerra-Hernández | Learning in BDI multi-agent systems[END_REF] is one of the best approaches that are considered to build an intelligent system for tutor agents in order to illustrate human reasoning models. It assigns short and long term memories among the knowledge base of these agents. The short term memory in BDI includes the beliefs and facts about the virtual environment [START_REF] Chong | Integrated cognitive architectures: a survey[END_REF]. It uses a database to save the context of the virtual environment with the continuously updated states of its virtual entities.

Emotional [START_REF] Courgeon | MARC: a framework that features emotion models for facial animation during human-computer interaction[END_REF] and social states of agents, forming its internal state, are also estimated according to obtained context. Therefore, all patterns of knowledge are accordingly modified upon the perception of any activity.

Every agent holds a long term memory [START_REF] Chong | Integrated cognitive architectures: a survey[END_REF] that holds the plan of goals and desires it has to attain, such as the tutoring and the pedagogical objectives. The agent depends on its beliefs in order for suitable intentions to be selected. Behaviors and actions are then assigned to the agent to achieve its determined desires.

The beliefs, desires and intentions are considered as the mental attitudes carried by the BDI agents which reactively cooperate to achieve targeted objectives (Figure 14). The BDI architecture focuses on constructing the intentions of the agents to represent their commitments and execute particular plans of actions [START_REF] Georgeff | Decision-making in an embedded reasoning system[END_REF].

Several specifications of BDI architectures have been already released, such as formal specifications using standard software engineering tools [START_REF] Inverno | The dMARS architecture: A specification of the distributed multi-agent reasoning system[END_REF] and procedural concepts for building procedural reasoning systems. These BDI architectures are still the most durable agent architectures that are being used [START_REF] Wooldridge | An introduction to multiagent systems[END_REF].

Researchers in [START_REF] Norling | Folk psychology for human modelling: Extending the BDI Chapter 7: Bibliography 127 paradigm[END_REF] improved the BDI architecture by relating the representation of knowledge in the framework to the expressed knowledge of experts through particular learning techniques. Consequently, several agent-based systems, like Jadex [START_REF] Pokahr | Jadex: A BDI reasoning engine[END_REF],

adopted the BDI-model for the implementation of intelligent agents.

Figure 14. The BDI architecture

The State, Operator, and Result (SOAR) cognitive architecture [START_REF] Laird | Soar: An architecture for general intelligence[END_REF] focuses on building the agent's intelligence according to its acquired experience. Recent SOAR evolutions cover human-like behaviors by appending educational mechanisms, long term memory and various types of knowledge (Figure 15). These mechanisms have a major role to develop reasoning, planning and decision making processes in the VLE.

Figure 15. Memory structures in Soar [62]

The long term memory holds the procedural knowledge that handles the most applicable behaviors of the concerned model, while the semantic memory holds the context of the virtual environment. However, the working memory is considered as the short term memory responsible for processing the current event the agent is working on. The proceedings of modified states are saved inside the episodic memory which is recently altered by [START_REF] Nuxoll | Extending cognitive architecture with episodic memory[END_REF]. When the required states, which are set in the working memory, are obtained within the environment, the agents can then realize essential behaviors.

SOAR and BDI provide quite similar reasoning capabilities to the agents [START_REF] Wooldridge | Reasoning about rational agents[END_REF]. They both require a knowledge base to store various facts and inputs from the context of the virtual environment. They use a decision-making procedure to generate intentions based on the desired output or goal. However, SOAR considers the elementary actions, but not plans, i.e. sequences of actions, and does not offer flexible means to define the preference semantics of the reasoning phase that generates the intentions of agents [START_REF] Wooldridge | Reasoning about rational agents[END_REF].

The ACT-R (Adaptive Components of Thought-Rational) [START_REF] Anderson | The Newell test for a theory of cognition[END_REF] is a cognitive architecture that applies a modular decomposition of cognition for modeling human behaviors [66] [48]. It proposes a theory to integrate these modules in order to build reasonable cognition (Figure 16). Among these modules, we have the perceptual module for recognizing visual entities in the environments, the motor module to manage and apply actions, the declarative module to get information from the long-term memory, the goal module to follow the steps to solve assigned tasks, and the production module that organizes the tasks of all modules. The production module cyclically demands information from other modules using the operations of the system. Certain constraints are requested by sending and receiving chunks through buffers.

The ACT-R system can only launch one production to retrieve the knowledge of a certain memory, while with SOAR several productions could be simultaneously launched.

The architecture of ACT-R has been embedded in several psychological studies and VLEs, such as the shared work with fRMI data [START_REF] Borst | Using the ACT-R Cognitive Architecture in combination with fMRI data[END_REF]. However, ambitious strategies for problem solving and reasoning are still needed. 

Embodied Conversational Agent (ECA)

The Embodied Conversational Agent (ECA) is a computer interface that is represented as a human-embodied agent that can naturally interact with the user. Verbal and nonverbal behaviors can be realized by an ECA including vocal speech, facial expressions, hand gestures and other body movements. These behaviors allow the ECA to communicate with the user in the most human-like methods which could motivate the user to respond and interact [START_REF] Foster | Enhancing human-computer interaction with embodied conversational agents[END_REF].

The embodied agents have to be characterized with several capabilities to reach the level of human intelligence throughout their interactions with the user, such as planning, and emotional reasoning [START_REF] Swartout | Toward virtual humans[END_REF]. However, the influence of using an ECA for interacting with the user can be evaluated by reviewing their responses and comparing the results of performed scenarios [START_REF] Foster | Enhancing human-computer interaction with embodied conversational agents[END_REF].

Interest of ECA for virtual learning environment

ECAs are progressively being developed to adopt the most realistic human visual representation and communication capabilities [START_REF] Morie | Embodied conversational agent avatars in virtual worlds: Making today's immersive environments more responsive to participants[END_REF]. They are considered as computer interfaces that could replace human tutors, for example, in practicing and learning scenarios. During the interaction with the user and the virtual environments, these agents have the ability to execute verbal and non-verbal behaviors like speaking, facial expressions, body gestures and locomotion activities. Experiments, like in [START_REF] Lester | The persona effect: affective impact of animated pedagogical agents[END_REF], prove that involving ECAs in learning scenarios as tutor agents can motivate the user to accomplish required tasks.

The capabilities of an ECA can draw the attention of the user with the most common and natural manners, such as gaze and deictic gestures. For instance, it would be considerable if the ECA looked at an object and pointed to it while moving in the virtual environment and discussing the required task with the user. Such human-like manners are essential to provide the user with realistic contexts and motivate her/him to naturally interact with the ECA and consider the ECA as a human tutor.

Several ECA projects have been developed so far, but ECA with light and specific domain knowledge, like STEVE [START_REF] Rickel | Steve: An animated pedagogical agent for procedural training in virtual environments[END_REF] and MAX [START_REF] Kopp | A conversational Generation of Communicative Intentions for Virtual Agents in an Intelligent Virtual Environment 128 agent as museum guide-design and evaluation of a real-world application[END_REF], were initially created. Latest ECA researches are further focusing on achieving more credible intelligent ECAs by improving the natural interaction (human-like), the intelligent capabilities, the emotions and the facial expressions. The Virtual Human Toolkit 4 [START_REF] Hartholt | All together now. Introducing the Virtual Human Toolkit[END_REF], Greta 5 [START_REF] Poggi | Greta. a believable embodied conversational agent[END_REF] and MARC 6 [START_REF] Courgeon | MARC: a framework that features emotion models for facial animation during human-computer interaction[END_REF] are examples of the currently utilized ECA platforms. 4 https://vhtoolkit.ict.usc.edu/ (accessed November, 2017) Virtual Environments) [START_REF] Rickel | Steve: An animated pedagogical agent for procedural training in virtual environments[END_REF] was used as a tutor agent to execute particular pedagogical scenarios. Using SOAR, STEVE was developed to interact and train the user on predefined operations of a ship's control panel. STEVE is an interactive system since it interprets various input sources from the user such as keyboard strokes, mouse clicks, and voice commands. STEVE interacts with the user through an animated embodied agent that has a physical representation of a human-like face and body. It uses gestures to communicate while navigating in the virtual environment.

In consequence, the primary tasks of STEVE revolve on demonstrating required actions to the user and on observing the performed actions. STEVE can support the user when needed by replying to inquiries about prior actions.

The concerned domain knowledge of STEVE includes the initial states of entities in the virtual environment, and the procedural scenario that should be followed. Nevertheless, STEVE is characterized with several human-like capabilities which weren't provided by previously utilized agents. It can realize several human-like actions and movements, reply to inquired questions, use gestures and gaze actions, follow implementing the sequence of actions of assigned procedure, and uses its memory components to record performed actions and altered states of the entities. For this purpose, several components are supplied by the architecture of STEVE:

1-Simulator: applies the behaviors in the virtual environment 2-Visual Interface: permits the user to interact with the virtual objects 3-Audio Component: needed to vocalize and to accept vocal messages from the user 4-Speech Generation: transforms the created text messages into speech in order to be vocally transmitted to the user 5-Speech Recognition: receives vocal messages from the user and transforms them into natural language text in order to be analyzed by the system 6-Agent: represented by an ECA which is responsible to naturally realize the selected behaviors Moreover, the architecture of STEVE is composed of the three main modules [START_REF] Rickel | Animated agents for procedural training in virtual reality: Perception, cognition, and motor control[END_REF]:

perception, cognition and motor control (Figure 17). STEVE uses these modules simultaneously in order to execute desired scenarios. The perception module recognizes the consequences of actions performed by the user and the agent and records the altered states of entities. The cognitive module analyzes the recognized input stream and relatively reviews the domain knowledge components in order to plan for the objectives to be achieved. Appropriate actions and motor commands are then specified and sent to the ECA in order to be realize.

STEVE uses a stack to manage the planned tasks of a given scenario. The sequence of actions is set in this stack in order to progressively be executed. To perform an action, STEVE checks for the position of the object that should be manipulated, and then moves to its location. Before applying the action, STEVE points to the object and describes the action that should be performed. For example, as in Figure 18, STEVE is pointing to the power light and vocally explaining the action that should be performed.

After demonstrating the action, obtained results are shown. After all, STEVE is just a mono-agent system that uses a virtual agent to act as a tutor.

In certain scenarios, having several agents with different roles can be a major requirement to implement required solutions. For this reason, it is necessary to use a multi-agent system where further operations could be involved.

Besides, the pedagogical strategies defined in STEVE are constant. It is preferable to be dynamically considered according to the acquired knowledge bases of the agents. For this reason, the learning environments must be flexible and adaptable where several intelligent capabilities have to be appended to the utilized ECA platforms. ECAs like Greta, MARC and the Virtual Human Toolkit can be integrated in such environments since they differ in complexity, graphical output and application domains.

Greta

Greta [START_REF] Hartmann | Formational parameters and adaptive prototype instantiation for MPEG-4 compliant gesture synthesis[END_REF] [76] is an ECA platform that focuses on two main properties, believability and individuality. These properties enhance the interaction skills of embodied agents represented in the virtual environments in order to naturally interact with the user by realizing verbal and non-verbal communication behaviors. In Greta, the context of the virtual environment is also considered to apply synchronized multimodal behaviors. and age, can be set. The modular structure, functionalities and the communication protocol of the ECA are defined in the architecture of Greta using the SAIBA framework [START_REF] Mancini | Greta: a SAIBA compliant ECA system[END_REF]. SAIBA, which is detailed in the following section, is responsible for representing the communicative intentions and the communicative behaviors that the ECA has to realize using the two standard XML languages FML and BML.

Among the architecture of Greta (Figure 19), the Listener Intent Planner (LIT) receives the input from the user including audio and visual information, such as vocal messages and head nods. The communicative intentions of the agent are then chosen and represented in the FML-APML script. It is defined by the intent planner (first module in SAIBA) using an input file, where the communicative intentions of the ECA are determined and sent to the behavior planner (second module in SAIBA) via the Psyclone messaging system [START_REF] Thórisson | Whiteboards: Scheduling blackboards for semantic routing of messages & streams[END_REF]. After that, the behavior planner generates the corresponding communicative behaviors and represents them using a BML script. The signals of these behaviors are sent to the behavior realizer (third module in SAIBA) to produce MPEG4 FAP-BAP animation files in order to display the realized behaviors on the ECA using the FAP-BAP player [START_REF] Niewiadomski | Greta: an interactive expressive ECA system[END_REF]. In addition to the FML-APML input stream, the mentioned discrete high-level inner states and the set of expressivity parameters are linked together to build MPEG4 animations that can demonstrate the behaviors of an individual ECA in the platform of Greta (Figure 20).

Figure 20. The individualized actions of Greta

Virtual Human Toolkit

The project of the Virtual Human is constructed at the Institute for Creative Technologies (ICT) [START_REF] Kenny | Building interactive virtual humans for training environments[END_REF]. Its objective is to build and naturally structure embodied agents that can realize human-like actions while interacting with the user during the implementation of social trainings in the virtual environments (Figure 21).

Figure 21. Virtual Humans

In fact, Virtual Humans (VH) are autonomous agents that perceive their environments and recognize performed activities in order to accordingly update their beliefs. They model their own and other's believes, desires and intentions, and follow the assigned plans to naturally interact with the user by realizing verbal and non-verbal communication behaviors. Furthermore, various roles can be handled by these agents for supporting the user in executing training scenarios [START_REF] Kenny | Building interactive virtual humans for training environments[END_REF].

To naturally collaborate with the user and other cooperating agents, several capabilities are carried out by the VH agents [START_REF] Swartout | Toward virtual humans[END_REF], such as the automated speech recognition, perception using the Computer Expression Recognition Toolbox (CERT) [START_REF] Littlewort | The computer expression recognition toolbox (CERT)[END_REF], task modeling using the DTask [START_REF] Bickmore | Dtask and Litebody: Open source, standards-based tools for building web-deployed embodied conversational agents[END_REF], natural language generation [START_REF] Stone | Knowledge representation for language engineering[END_REF], and the text-to-speech using the Festival engine [START_REF] Taylor | The architecture of the Festival speech synthesis system[END_REF].

Consequently, the ICT developed the architecture (Figure 22) of the Virtual Human Toolkit that defines, at an abstract level, the essential modules that can properly realize the functionalities of the virtual human. The VH Toolkit is composed of several modules, tools, libraries and 3rd party software that cooperate to attain these functionalities.

Figure 22. The Virtual Human Architecture

When the user verbally interacts with the system, the speech recognition module transforms the speech into a natural language text that can be used for reasoning by the dialogue manager of the agent. However, the audio-visual sensing relies on sensory input that can also recognize the nonverbal communication behaviors.

After analyzing these inputs and reviewing the internal state, the VH works on building the communicative intents in order to properly reply to the user. Based on these intents, suitable verbal and non-verbal behaviors are generated. The behavior realization module of the VH synchronizes the realization of all behaviors such as the speech, lip synching and facial expressions.

Lists of questions and answers

Among the integrated modules and tools within the VH Toolkit architecture, and upon the creation of a VH character, the NPCEditor [START_REF] Leuski | NPCEditor: A Tool for Building Question-Answering Characters[END_REF] is used. The NPCEditor is a text classifier that acquire the speech of the VH characters that corresponds to the questions asked by the user. It depends on a dialogue manager that contains a list of questions that the user might ask while interacting with the VH, and linked to a list of answers that the VH characters have to verbally realize among the communication behavior [START_REF]VHToolkit -Confluence Institute for Creative Technologies[END_REF].

The NPCEditor includes a .plist file that contains the lists of questions and answers and their essential properties such as ID, Text, Speaker, Type, Domain and Score. These properties are used to properly link answers to expected questions listed (as shown in Figure 23). The dialogue manager can be modified in the NPCEditor to specify new lists and update the properties of the linked questions and answers [START_REF]VHToolkit -Confluence Institute for Creative Technologies[END_REF].

Figure 23. Linking questions and answers using the NPC Editor

Although the questions can be easily managed by the NPCEditor, still it is not considered really dynamic or generic when all possible questions have to be listed. For example, if we have three objects (OBJ1, OBJ2 and OBJ3) in the virtual environment, we have then to include all possible questions about them, such as:

-What is OBJ1?

-What is OBJ2? -What is OBJ3?
Alternatively, we propose a solution to this problematic in our model (in Chapter 4)

where generic questions can be adopted.

MARC

MARC is a Multimodal Affective and Reactive Character that is created to examine the influences of expressions of virtual agents when interacting with the user among affective computing applications, and their abilities to appropriately respond with realtime affective behaviors and expressions (Figure 24) [START_REF] Courgeon | Marc: a multimodal affective and reactive character[END_REF].

Figure 24. An affective computing application of MARC

The real-time interactions and the emotional models are frequently limited in the previously developed virtual agent frameworks. However, in MARC categorical, dimensional, cognitive and social emotional approaches are implemented. The framework of MARC allows examining various emotional models and considering multimodal interactions with expressive virtual agents [START_REF] Courgeon | MARC: a framework that features emotion models for facial animation during human-computer interaction[END_REF].

MARC can be integrated in any suitable environment such as a VLE. The tools found in such environments can communicate with MARC to manage the behaviors that he should realize in real-time by sending messages using the Behavior Markup Language (BML). Moreover, a toolkit with a set of tools that can manage the characters of MARC and their properties is lately released (Figure 25) [START_REF] Courgeon | MARC Toolkit[END_REF]. The multimodal information that can be obtained from the user must be integrated in the architecture of the embodied agents to improve their interaction performance. Most ECA systems, such as Greta, MARC and Virtual Human Toolkit, worked on finding a common real-time multimodal behavior generation framework that can independently generate communicative functions to be realized by these ECAs [START_REF] Cafaro | Representing communicative functions in saiba with a unified function markup language[END_REF]. Accordingly, the SAIBA (Situation, Agent, Intention, Behavior and Animation) framework was created [90] [91].

SAIBA is a framework that can be integrated in an ECA system to generate natural Realizer) on a virtual agent (Figure 26). However, the separation of communicative intentions and the realization of its behaviors is supported in SAIBA through two interfaces using the Function Markup Language (FML) [START_REF] Heylen | The next step towards a function markup language[END_REF] [89] and the Behavior Markup Language (BML) [START_REF] Vilhjálmsson | The behavior markup language: Recent developments and challenges[END_REF] [90] respectively. These intentions are coded using the FML script. This language still lacks a unified standard, although several systems following this framework are trying to propose their own version [START_REF] Cafaro | Representing communicative functions in saiba with a unified function markup language[END_REF].

The properties of existing ECA systems helped in structuring the FML script to represent the selected communicative intents. The FML is created based on the Multimodal Utterance Representation Markup Language (MURML) used in MAX [START_REF] Kopp | Max-a multimodal assistant in virtual reality construction[END_REF],

and mainly on the FML-APML (FML-Affective Presentation Markup Language) [START_REF] Mancini | The fml-apml language[END_REF] which was created for Greta. However, the Virtual Human Toolkit also uses an FMLlike concept to generate the communicative intents of its agents.

Based on these contributions, an FML specification is proposed by [START_REF] Cafaro | Representing communicative functions in saiba with a unified function markup language[END_REF] with several important components:

1-Contextual information and person characteristics: Includes detailed information about the semantics of the virtual environment and the characteristics of the user that is interacting with the system.

2-Communicative actions: Verbal and non-verbal communicative actions are chosen so that the agents can handle their specified roles.

3-Emotional and mental states: Suitable emotions are selected to increase the motivational effect of communicative intents, and the mental states such as remembering and planning are considered as cognitive processes.

Accordingly, the FML considers several important matters to define the communicative intentions:

1-Various contextual information The communicative intentions are parsed by the Behavior Planner module, where multimodal behaviors are automatically selected and coded using the internationally adopted BML language [START_REF] Niewiadomski | Cross-media agent platform[END_REF]. The properties of these behaviors and their timing information are described in this BML script. It is then forwarded to the Behavior Realizer to be realized by an ECA [START_REF] Kopp | Towards a common framework for multimodal generation: The behavior markup language[END_REF].

The communicative Behavior Markup Language (BML) is an XML based language that is used to represent and coordinate different types of verbal and non-verbal behaviors including speech, gestures, facial expressions, and body movement [START_REF] Vilhjálmsson | The behavior markup language: Recent developments and challenges[END_REF]. The Behavior Planner computes the start and the end timing information of each communicative behavior in order to be realized consequently. For instance, here is a simple BML script that could be generated by the Behavior Planner (Figure 28):

Figure 28. A generated BML script

The Behavior Planner describes the multimodal behaviors using BML elements with necessary attributes (Table I). Various elements are commonly used to define the properties of the communicative behaviors that should draw the attention of the user interacting with the ECA [START_REF] Kopp | Towards a common framework for multimodal generation: The behavior markup language[END_REF]. The BML message containing the generated BML elements is then broadcasted to the Behavior Realizer which generates alternative animations. The Behavior Realizer in SAIBA framework is a realization engine that can realize all aspects of the multimodal behaviors which are scheduled by the Behavior Planner [START_REF] Kopp | Towards a common framework for multimodal generation: The behavior markup language[END_REF].

Such engines are BML-realizers that can compile BML scripts.

The behavior realizer uses a text-to-speech module to realize the speech of the verbal planned behaviors. In consequence, the animations of the movements of the ECA are directly generated upon receiving the BML messages from the Behavior Planner. The temporal constraints assigned to the planned behaviors play a significant role in organizing its execution [90] [91]. The ECA platforms that are complaint with the SAIBA framework, such as Greta, MARC and the Virtual Human Toolkit, are considered as the Behavior Realizers.

MODEL

In this chapter, we present the architecture of our model. As introduced in the previous chapter, we extended the meta-model MASCARET. We aim at adding a BDI-like cognitive module, able to reason about the environment, which allows the agents to make decisions about their high-level intentions. An embodied agent can also have communicative intentions that must be transmitted to the user through natural communicative channels, such as voice, facial expressions, gestures etc. To achieve this goal, ECA systems based on the SAIBA framework are integrated to MASCARET.

Global Architecture

Figure 29 shows the overall architecture of our model. It is entirely based on MASCARET and it extends this meta-model by adding two more modules: (i) a virtual character integrator module (Figure 29 in green), which allows the integration of ECA system that are SAIBA compliant, and (ii) a BDI-based cognitive module (Figure 29 in blue), which determines the virtual character's intentions and desires according to its knowledge

(beliefs).
We remind that one of our aims consists in introducing an Embodied Conversational Agent in the Virtual Learning Environment in order to allow the user to communicate naturally while interacting with the system. To achieve such a goal, we are not going to implement a brand new ECA since several virtual agent systems already exist and provide all communicative capabilities we need.

Figure 29. Global view of our model

What we want is to make it easy to integrate any ECA system that is compatible with the standard SAIBA framework. As explained in section 2. We have several reasons why we want to make it possible to integrate any SAIBA compliant ECA architecture in our model. Firstly, the systems built on a common standardized framework can be easily integrated. To generate the agent communicative behavior, all existing ECA systems based on SAIBA need to receive FML and/or BML messages according to the levels of abstraction they provide. For example, the Greta platform [START_REF] Pelachaud | Greta: an interactive expressive embodied conversational agent[END_REF] implements both the Behavior Planner and the Behavior Realizer, which means that it can generate the agent behavior from FML and BML messages. MARC [START_REF] Courgeon | Marc: a multimodal affective and reactive character[END_REF] and the Virtual Human Toolkit [START_REF] Kenny | Building interactive virtual humans for training environments[END_REF] provide a Behavior Realizer, which means that they can generate the agent behavior described in the BML messages they receive.

Secondly, the existing ECA systems can be embedded with different communication capabilities, like speaking and human-like body movements, so we prefer to make it possible to choose the ECA that would fit better for a given application. As described in chapter 2, the "desires" of an agent can be considered as its higher goal to reach. To attain this goal, the agent organizes lower level goals (intentions). An "intention" can modify the higher-level goal of an agent. We consider that this recursive design pattern can be implemented through behaviors (Figure 29, BDI-Desire) and actions (Figure 29, BDI-Intention) in MASCARET (BEHAVIOR and ACTION classes).

This hierarchical and recursive design pattern between desire and intention permits to develop complex behaviors for the agents. We consider in this work that in MASCARET the desire will be represented by BEHAVIOR and intention by ACTION. The communicative intention (actions) are generated by those complex behaviors. For example, when the agent is embodied, communicative actions are planned to transmit its communicative intentions. So, for embodied agents which need to communicate with the user, we propose to implement the Intent Planner of SAIBA.

We propose a specific type of action to represent communication between agents in general and communicative intention in particular (intentions). By representing this communicative action in MASCARET metamodel (COMMUNICATIONACTION class), it permits to use this action in higher behaviors which represent the desires of the agents (desires). We present how we implement these concepts in section 3.3.

The knowledge base of the agents (beliefs) is used to permit them to reason on their environment. We modify MASCARET to formalize the knowledge base of the agents based on the ontology of the organization and activity and the exchanged messages in the virtual environment (see Chapter 2). The detailed definition of the knowledge base is presented in section 3.2.

The knowledge base of the agents has to constantly be updated. Therefore, we developed two ways of updating the knowledge base of the agents: through perception and through communication. Embodied agents can perceive the states of entities while navigating in the virtual environment, or they can communicate with each other to exchange information and share their knowledge.

Implementation details of our architecture are provided in the following sections and the next chapter shows how this generic architecture can be instantiated to implement a pedagogical situation in a Virtual Learning Environment which involves a tutor agent and a learner.

Model of Knowledge

According to the BDI agent architecture (discussed in section 2.2.1), each agent holds its own "beliefs" including information about itself, other agents and the contents of its environment [START_REF] Salamon | Design of agent-based models[END_REF]. In BDI, a distinction between beliefs and knowledge is considered. In beliefs, some assumptions about accuracy and implicitness can be carried out by the agent on the gathered information (knowledge) [START_REF] Rao | Modeling rational agents within a BDIarchitecture[END_REF].

Domain experts usually define the domain model of a real system. They can provide the most accurate representation of the system in order to simulate it in the virtual environment. In MASCARET meta-model, the ENVIRONMENT and the MODEL classes, which are held by the MASCARETAPPLICATION singleton, are used to hold this domain expert representation (Figure 30). In this work, we explicitly add an association between the AGENT and the ENVIRONMENT classes to represent the knowledge of agents. We can notice that our system allows to have several agents referencing different instances of ENVIRONMENT and MODEL classes. This is to say that in our model agents can coexist in the same virtual environment and they can have different knowledge on it. This knowledge can be different from the model held by MASCARETAPPLICATION. This way of representing the knowledge can be seen as the beliefs of agents.

In the following sections, we discuss what the knowledge base of agents includes, and how it is fetched, exchanged and evolved.

Components of Knowledge

The knowledge base of the agents has the same structure of the ENVIRONMENT of MASCARETAPPLICATION, but it includes some additional components: organizations (agents and activities) and exchanged messages.

Hence, three knowledge components constitute the knowledge base of the AGENT: the structure of the environment, the agents and organizations in the environment, and the messages in the mailbox. We modify Mascaret by creating associations in the metamodel (in red in Figure 30) to represent these components. Therefore, the agent knowledge base refers to an ENVIRONMENT and its MODEL (Figure 31). The detailed content of those classes has been described in Chapter 2. We just remind here some essential components held by the ENVIRONMENT and MODEL from MASCARET to emphasize the content of agent's knowledge base using this model. Each class in the MODEL can have a state machine to describe the autonomous asynchronous reactive behaviors of the entities of this class. All the concepts in this state machine can also be documented and used as a knowledge base for the agent.

Agents and Organizations

Agents in MASCARET are aware of further agents and organizations found in their environments (through AGENTPLATFORM, see Chapter 2). In our model, we also use this as a knowledge base for the agents. Each agent has a reference to an AGENTPLATFORM that enriches its knowledge base with a set of organizations (ORGANIZATIONALENTITIES: instances of ORGANIZATIONALSTRUCTURE) and agents in its environment. Here again, we do not add concepts in this structure, we just remember some important elements that are used as knowledge by agents.

The ORGANIZATIONALSTRUCTURE provides the knowledge base of the agents with the structure of ORGANIZATIONALENTITY through PROCEDURES, RESOURCES and ROLES (Figure 32). For example, when the user asks about the next action in the procedure, the AGENT checks the organization in the AGENTPLATFORM in its knowledge base and gets the name of the next action from the PROCEDURE. The way the agents interpret contents of messages will be explained in section 3.3.2.1. It also permits to solve consistency problem about the actual state of the ENVIRONMENT and the knowledge base of the agents. Nevertheless, it is not realistic for agents to gain the full knowledge of the system while interacting with the user. Thus, we propose a model that permits each agent to hold its own instance of the ENVIRONMENT and the MODEL classes within its own knowledge base. This knowledge base has to be constantly updated whenever changes in its environment are perceived.

Consequently, agents in our system might carry a total or partial notion of the real model held by the MASCARETAPPLICATION. The knowledge base of each agent can then be seen as its own beliefs about the environment.

Three knowledge design patterns can be instantiated for the knowledge base of the agents:

1. Agent that shares the ENVIRONMENT instance referenced by the MASCARETAPPLICATION and structured in the MODEL instance. This agent has a complete and exact knowledge on the simulated ENVIRONMENT. We can notice in Figure 34 how Agent1 has in its knowledge base the same instances of the ENVIRONMENT (Environment1) and the MODEL (Model1) referenced by the MASCARETAPPLICATION singleton (MascaretApplication1).

As an illustration, when an instance of an entity is created in Environment1 using the structure specified in Model1, the knowledge base of Agent1 is automatically consistent. Furthermore, Agent1 is unaware of anything found outside its environment (Environment2), but surely abides by the structures found in Model1. For instance, when we specify the structure of a "BOX" entity in Model1 with the "Color" and "Size" attributes, instances of this entity with different "Color" and "Size" values can be set in Environment1 and Environment2. However, Agent1

will only hold the knowledge of "BOX" instances found in Environment2. 36). In this case, same states and results could be attained on entities found in Environment1 and Environment2, but distinct activities defined in Model1 and Model2 are considered.

For example, suppose that instances of the tool shown in Figure 37 are set in Environment1 and in Environment2, and the user had to adjust its "HOUR" value. The relevant functions implemented in Model1 and Model2 could ask for different requirements. The function of Model1 could require the "CLOCK" button to be pressed in parallel with the "HOUR" button in order to increment its value, while that of Model2 could recommend from Agent1 that the "CLOCK" button has to be pressed and released before the "HOUR" button is pressed.

This principle permits not only to have more realistic behaviors as agents may not have a complete knowledge on the environments, but it permits also to let several models of the same system (from several experts) co-exists in the same environment. 

Behaviors and Actions

As described in chapter 2, the "desire" of an agent can be considered as its higher goal to reach. To attain this goal, the agent organizes lower level goals ("intention"). An "intention" can modify the higher-level goal (Figure 40). We consider that this recursive design pattern can be implemented through behaviors (BDI-Desire) and actions (BDI-Intention) in MASCARET (BEHAVIOR and ACTION classes). In the next section, we propose a generic behavior for an agent to actualize its knowledge through its perception when navigating in the virtual environment.

In other words, in MASCARET, the behaviors of the agent generate the execution of the actions (Intention). In MASCARET, some generic behaviors are implemented. The PROCEDURALBEHAVIOR is one example. This permits to execute activities (procedures) that organize a priori actions. As we focus on communication between the user and the agents, those actions can be communication actions (intentions). In the following of this chapter, we present a formalization of communication action that can be inserted in an activity.

However, MASCARET allows also to implement new behaviors. We then propose a PERCEPTIONBEHAVIOR in order for an agent to update his knowledge base (see section 3.3.1) and a COMMUNICATIONBEHAVIOR that permits to an agent to understand messages from other agents (or the user) and generate answers (execute a COMMUNICATIONACTION) (see section 3.3.2).

To be clear, according to the SAIBA framework, in our model we consider that the set of behaviors that the agent is running represents its Intent Planner. Those behaviors will generate communicative intentions (scripted in an activity or as the result of a deliberative behavior). This communicative intention will then be executed by SAIBA modules.

Perception behavior

As seen in section 3.2.2, agents can have their own beliefs on the environment. As this

environment is an open environment (human user may manipulate entities), we propose a generic behavior for the agents to update their knowledge through perception when navigating.

In MASCARET, the embodied agents are defined using the EMBODIEDAGENT class that inherits the AGENT class and has a body (Figure 38). For this purpose, we add a field of view (angle and distance) in the EMBODIEDAGENT class of MASCARET (Figure 38). We could propose other way to perceive the environment, like ray casting for example, but this is not the purpose of our work. Using its perception, an agent can detect new entities and add them in its knowledge base or update properties of already known entities. This behavior is useful when the agent knowledge base does not refer the same instance of ENVIRONMENT as MASCARETAPPLICATION as seen in section 3.2.2. We consider that as soon as an agent perceive an entity, it has access to all its properties.

The following example shows how we implement the evolution of the knowledge through perception.

Figure 38. Embodied agent with detection properties

When we define two agents (Astrid and Bruce) in the virtual environment (shown in the initial values of the properties of these boxes, such as their color (Box1-color="Brown" and Box2-color="Blue"). Let us suppose that a realized behavior changed the state of Box1 to "opened" and its color property to "Red" (Figure 39-b).

Since Box1 is in the field of view of Bruce, he directly detects this variation and automatically update his knowledge base with the new state and color value of Box1.

While Astrid does not notice this change since Box1 is not in her field of view.

However, when Astrid navigates in the environment and sees Box1 in her field of view (Figure 39-c), she updates her knowledge base with the detected changes in the state and the properties of Box1. 

Communication Action

As seen before, we use the design patterns "Behavior" and "Action" to represent the concepts of "Desire" and "Intention" of the agents in MASCARET. In our work, we mainly focus on the communication between agents.

MASCARET is founded on UML metamodel, and proposes several types of actions (classes that inherit from the ACTION class) like CALLOPERATIONACTION, which is an elementary operation that the agent calls to execute an operation on an object in the environment, and CALLBEHAVIORACTION, which triggers another behavior with a set of necessary actions. These actions can be used in behaviors, like activity. MASCARET uses the ACTIVITY class to describe the procedures (domain model or pedagogical scenario for example).

We propose here a new type of ACTION to represent the communication action (COMMUNICATIONACTION class), or in terms of BDI and SAIBA, the communicative intention (Figure 40). This COMMUNICATIONACTION can be used in behaviors. The first level (AGENT level) is presented in this section, while the latter (EMBODIEDAGENT level) is presented in section 3.4.2.3.

Agent communication protocol and content language

Among the existing agent communication languages, MASCARET uses the FIPA-ACL as a communication protocol between its autonomous agents, and considers the FIPA-SL 7(Semantic Language) as the message content language.

The fundamental properties of the FIPA-ACL protocol are shown in Table II. In our model, we also manage the sender, the receivers and the message content of the FIPA-ACL messages. The effective content of the message can be formalized by a content language. We choose to use FIPA-SL and we explain it in the next section. The other properties of FIPA-ACL messages (conversation, in-reply-to,…) are out of our scope in this work.

The ACLMESSAGE class in MASCARET (Figure 42) allows to code messages according to the typical structure of the FIPA-ACL messages. The agent uses instances of the ACLMESSAGE class to build and parse exchanged messages with other agents.

The content property of a FIPA-ACL message is defined using the FIPA-SL (content language specification). In our model, we enriched the FIPA-SL parser in MASCARET, to parse the contents of the FIPA-ACL messages using the standard parsing rules defined by FIPA. The complete grammar (FIPASL.g4 in ANTLR) is presented in Appendix 2.

Figure 42. Agents in MASCARET communicate using the ACLMessage class

In this section, we just take one typical example of message content to explain how it works in our model. Among the referential operators defined in the FIPA-SL, the "iota"

operator allows asking for a term (property) inside the knowledge base of an agent. The value of a property is stored in MASCARET in a "slot". Therefore, when an agent receives a FIPA-ACL message and detects the "iota" operator in its content, it recognizes that it should get the "slot" value of the specified entity. In the reply message, the "INFORM" performative function should be used to transmit the "slot" value.

For example, when "Agent1" in MASCARET receives a FIPA-ACL message from "Agent2" with the "QUERY-REF" performative asking for the position of "Agent3" in the environment, "Agent1" checks its knowledge base for the necessary information and replies with another FIPA-ACL message to "Agent2" using the "INFORM" performative function.

The FIPA-ACL request message received by "Agent1" would be:

(query-ref :sender (agent-identifier :name Agent2)

:receiver (set (agent-identifier :name Agent1))

:content ((iota ?position (slot ?position ?Agent3)))

:language FIPA-SL0

:ontology Agent-Management :protocol fipa-request )

When "Agent1" succeeds to obtain the coordinates of the position of "Agent3" from its knowledge base (value of the slot "position" of entity "Agent3"), the reply message has this form: In the COMMUNICATIONACTION class, we defined properties (performative, receivers, resources, FIPA-SL content, and natural content) to specify the characteristics of the exchanged communication actions of the agents (explained in the previous section).

Here is a brief description about these properties:

Performative: the function that specifies the style of the action the agent has to realize.

Receivers: the agents that should receive the communication action.

Resources: the objects of the environment involved in the communication action.

FipaSLContent: the content property of the FIPA-ACL message using the formal content language FIPA-SL (as explained earlier). This content can be automatically interpreted (and generated) by agents.

NaturalContent: the natural language text that the agent can use to inform the user. This text cannot be interpreted by the agent. It will be only treated by the SAIBA integration. It will cause nothing in the environment.

As the COMMUNICATIONACTION inherits from ACTION, it can be used in BEHAVIORS in MASCARET. For example, it can be used as an ACTION in an activity.

UML activity diagrams are used in MASCARET to provide scenarios and procedures through a sequence of actions. Within these activity diagrams, we can assign the actions of the agents. In this work, we use Modelio as UML Modeler. Modelio permits to create UML profiles by the addition of stereotypes. Hence, to create the communication action of the agents in the UML model, we create an instance of the ACTION class and append a "CommunicationAction" stereotype to it (Figure 43). To specify the communicative intents of the agents, we defined in this "CommunicationAction" the same properties of the COMMUNICATIONACTION class in MASCARET (Performative, Receivers, Resources, FIPA and Natural).

The "FIPA" property is set to communicate with the agents and request actions from them. For example, when we require an agent to inform the user about the next requested action in the domain procedure, we set the following FIPA-SL content in the "FIPA" property: "((action AgentName (NEXT)))" (Figure 43). The agent can parse this message, gets the "Description" of the desired action, and transmits it to the user (agent playing the role "utilisateur" in the activity). In section 0, we will present how this message will be automatically generated in natural language.

Figure 43. Instantiating the CommunicationAction in the UML profile

To directly inform the user with a specified natural text, we set the "Natural" property in the "CommunicationAction" in the activity diagram. If an embodied agent is realizing the communication action, it takes the value of the "Natural" property, and vocally tells it to the user through an ECA. However, to set a particular sentence, the person working on this profile can easily change the value of this property (Figure 44). 

3-if (FIPAmsg!= null) 4- if (FIPAmsg.performative == REQUEST) 5- manageRequest (FIPAmsg) 6- if (FIPAmsg.performative == INFORM) 7- manageInform (FIPAmsg) 8- if (FIPAmsg.performative == QUERY-REF) 9- manageQueryRef (FIPAmsg)
When the agent receives a FIPA-ACL message, it is added to the queue of the ReceivedMessages list in its MAILBOX. The agent gets the next message from this list and starts parsing it by checking its performative function (as seen in Algorithm 1).

The "REQUEST" performative is already used in MASCARET to synchronize the actions between agents, we just modified it by taking into account our proposition on FIPA-ACL and FIPA-SL. We do not present it here, but we will focus on INFORM and QUERY-REF for knowledge transfer.

When an agent needs to ask another agent about an object in the virtual environment, it builds a FIPA-ACL message using the "QUERY-REF" performative and the FIPA-SL expression that includes necessary operators. To form the FIPA-SL expression of the message, the agent defines a term using the required operators. In our model, we implement "Algorithm 2" in the COMMUNICATIONBEHAVIOR class to deal with exchanged FIPA-ACL messages between agents that use the "QUERY-REF"

performative. The FIPA-SL expression has 3 operators: iota, any or all. The "iota" is the reference operator that can be used to find a specific object that satisfies a defined property. While "any" indicates finding any object that satisfies this property. However, to find all objects that satisfies this property, the "all" referential operator can be used.

In our work, we are only using the "iota" operator to ask the agents about the properties of specific actions and entities (predicates), such as the name of an entity, the description of an action, the post-condition of an action, etc… For example, when the agent needs to ask about any predicate of an entity, the following FIPA-SL expression is used:

( ( iota ?entity (predicate ?entity) ) )

When an agent receives a FIPA-ACL message and parses its FIPA-SL content, it realizes the required predicate and reply with the data in its knowledge base. When the "iota" operator is detected, the parser gets the value of the desired property and selects a behavior according to the value of the predicate like informing the requesting agent with this value using the following expression:

( (= (iota ? entity (predicate ? entity) ) value) )

All properties of an entity are stored in slots. We are using the "slot" predicate to inquire about the parameters, the description and positions of entities, and the "postcondition" predicate to inquire about the goal of an action (Algorithm 2).

To manage inquiring about a slot of an entity, the agent has first to check if the slot exists in the specified entity (Algorithm 3). If the slot is recognized, the agent uses the "inform" parameter with the slot value to prepare the attributes of the COMMUNICATIONACTION (Performative and FipaSLContent) in order to reply to the inquiring agent and inform him with the value of the desired slot. The user could ask about the "position" of the entity (Where is entity?) in order to manipulate it, or she/he might ask about any property for this entity (What is the property of entity?), like "description", "color", "width", "height", etc… If the slot is not recognized, the agent uses the "NOT_UNDERSTOOD" performative and a natural text statement (NaturalContent) in the COMMUNICATIONACTION to inform to the requesting agent that the inquiry is not understood (Algorithm 3). Therefore, we show in the next section The user might also ask about the goals of required actions. We use the "postcondition"

predicate in the iota operator to determine such inquiry (Algorithm 4). When the "postcondition" predicate is recognized, the agent reviews the list of SentMessages in its MAILBOX to reply accordingly. The agent proceeds in parsing the inquiry if the previously sent message was to inform about a certain matter, otherwise, it replies with a "Not Understood" message. If this matter was to inform about an action in the procedure, the agent checks for the next action to be done by the agent that is asking (maybe the user) and gets its goal from the "Postcondition" stereotype that is set in the procedural scenario. The agent uses this attribute to prepare a COMMUNICATIONACTION to inform the inquiring agent about this property (Algorithm 4).

The agent also checks if the user is consecutively asking about the postcondition of an action (Algorithm 4). After reviewing the previously sent message, the agent could detect that it was for replying for an inquiry of an agent about a slot (using iota). To reply with a higher-level purpose for applying the action, the agent makes sure that the predicate of the previous message was the "postcondition" of the action. It can then inform the agent that is asking about the goal of the activity. However, if a different predicate was determined in the previous message, the agent replies with a "Not Understood" message. For example, it is illogical to ask "Why?" after asking for the name of an entity (Algorithm 4). 
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While managing the received messages in the COMMUNICATIONBEHAVIOR, we ensure that the agent checks for the previously parsed messages in order to give accurate replies. Therefore, the agent can confirm if the consecutively asked questions are valid.

For example, when the user asks about the position of an entity and then for a post condition for the position, the agent replies with a message using the "NOT_UNDERSTOOD" performative to notify the user about this fault.

As soon as the context of the reply is specified for the agent, we instantiate a COMMUNICATIONACTION (3.3.2) by setting its attributes with the obtained values (Algorithm 6). We send this action to the inquiring agent in order to be informed with the reply and to plan for a communicative intention. When the performative of the received message is "INFORM", the agent parses its FIPA-SL content and updates its knowledge base with the provided information (Algorithm 7). Upon receiving a FIPA-ACL message with the "INFORM" performative and the "iota" operator (isIotaEqual), the agent parses its contents to update its own knowledge base with the value of the entity slot if recognized, or about the user whenever she/he starts/accomplish an action in the procedural behavior (Algorithm 7).

To update the knowledge base with the received slot value of the specified entity, the agent checks for this entity among the entities of the ENVIRONMENT in its knowledge base. If the entity is recognized in its knowledge base, the agent updates its knowledge base with the assigned slot value (Algorithm 7). ECA to manage the natural dialogue.

Taxonomy of Questions

In a virtual environment implemented through our model, the user can ask different types of questions. Therefore, the scope of expected questions has to be defined for the agents. The agents can parse received inquiries from the user, review their knowledge base, and build suitable replies.

The questions of the user that can be foreseen are mainly about the properties of the agents they are interacting with, the entities they should manipulate, and the actions they should perform. Using the communication behavior, the agents respond to all inquiries of the user even when the received questions are not correctly formulated or are out of the scope. Here is a list of questions with their properties that the agents in MASCARET have in their knowledge base in order to properly reply to the user: 

SAIBA Integration

The different behaviors (desires) of the agents generates (organizes) the execution of actions (intentions). Some of those actions are communication actions (communication intentions). We explained in the previous section how those communication actions are executed in the context of agent communication (in the sense of FIPA).

Figure 46. Modules of SAIBA framework

An agent can be an embodied agent. To do that, we embody each agent meant to interact with the user through an ECA which is displayed in the virtual environment. In MASCARET, the embodied agents are defined using the EMBODIEDAGENT class that inherits the AGENT class and adds a body (Figure 47). If the agent is embodied, the communication intentions are added to the agent, and managed by the SAIBA compliant platform. The fact that the communication intentions are added to the agent (by a behavior) permits us to enrich the communication intention with some internal property that an agent can have (but that we did not manage here) such as emotions.

To integrate SAIBA compliant ECAs in MASCARET, we implement two modules of the SAIBA framework [START_REF] Kopp | Towards a common framework for multimodal generation: The behavior markup language[END_REF] through an interface for the Behavior Planner and an interface for the Behavior Realizer (Figure 46).

Figure 47. Implementing SAIBA modules for embodied agents

The EMBODIEDAGENT plans for the communicative intentions and represents them through instances of the COMMUNICATIONACTION (see section 3.3.2.2) (Figure 47). The intentions of the agents are prepared in the BDI module that we implemented in MASCARET (see section 3.1). We specify the intentions in the EMBODIEDAGENT since at this level it is only for communication.

Implementation of Behavior Planner and Behavior Realizer interfaces

To connect MASCARET to the two modules of SAIBA (Behavior Planner and Behavior Realizer) that are implemented in ECA platforms, we added two classes in MASCARET (the BEHAVIORPLANNER and the BEHAVIORREALIZER classes) to represent the two modules of SAIBA framework (Figure 47). The BEHAVIORPLANNER is a class with the parseIntention(CommunicationAction ca) method. This method has a default generic implementation that just initialize the list of BML strings, but this method has to be overridden by the concrete behavior planner class (see in next section) in the 3D engine.

The EMBODIEDAGENT has an association with the BEHAVIORPLANNER (Figure 47) to code the communicative behaviors in a BML format string and sends it to the associated BEHAVIORREALIZER. The BEHAVIORREALIZER class has an abstract method addBehavior(string bml) that has to be overridden in the behavior realizer concrete class in the 3D engine. These concrete classes manages the connection with the "Behavior

Planner" and "Behavior Realizer" modules of the integrated ECA systems in order to transmit the planned communicative behaviors. In Figure 48, we show the sequence chart of the represented SAIBA modules in our model. Among the SAIBA compliant ECA platforms, we had to connect at the "Behavior Planner" level of the ECA (e.g. Greta). This ECA parses the received behavioral signals (UNITYVHBEHAVIORREALIZER and UNITYMARCBEHAVIORREALIZER) using the addBehavior method of the BEHAVIORREALIZER class of MASCARET that we override in these classes. We developed these classes in order to transmit the relative multimodal behavioral signals to the "Behavior Realizer" of the corresponding ECA in the appropriate BML language. We communicate with the ECA of the Virtual Human Toolkit through the UNITYVHBEHAVIORREALIZER by sending ActiveMQ8 messages using the VH Messaging library 9 . Whereas, we built a UDP connection with MARC through the UNITYMARCBEHAVIORREALIZER to transmit the multimodal behavioral signals to the "Behavior Realizer" of MARC. The "Behavior Realizers" of these ECAs can generate the agent animation from the multimodal signals received in order to be realized.

An ECA system that provides a Behavior Planner and a Behavior Realizer

Other ECA platforms, like Greta, provide a "Behavior Planner" to plan for multimodal signals from the received communicative intentions, and a "Behavior Realizer" to generate the agent's animations from these signals.

Using our model, [START_REF] Taoum | A Design Proposition for Interactive Virtual Tutors in an Informed Environment[END_REF] connected Greta to an EMBODIEDAGENT in MASCARET. To do that, they developed the UNITYGRETABEHAVIORPLANNER concrete class that implements the abstract method (parseIntention) of the BEHAVIORPLANNER classes in MASCARET to transmit the communicative intentions to Greta.

Moreover, Greta has its own world representation. In order for Greta to realize communication behaviors in the virtual environment, a link was created between the virtual environment and the environment in the Greta module [START_REF] Taoum | A Design Proposition for Interactive Virtual Tutors in an Informed Environment[END_REF]. For instance, when Greta has to show objects, we have to send the position of the agent and the positions of all the objects involved in the communication action.

The communicative intention for Greta are planned in MASCARET through the COMMUNICATIONBEHAVIOR of agents. It has to be assigned to the EMBODIEDAGENT that is connected to Greta using the addCommunicativeIntention method. We developed the UNITYGRETABEHAVIORPLANNER concrete class in the 3D engine that inherits the BEHAVIORPLANNER. We override the parseIntention method to parse the received communication actions and to transmit them to Greta.

When the UNITYGRETABEHAVIORPLANNER receives a communication action, it checks the properties of this action (performative, sender, receivers, natural content, resources, emotions…) to code the communicative intentions in FML-APML, and sends them to the "Behavior Planner" of Greta. For example, when the "INFORM" performative function is detected, the UNITYGRETABEHAVIORPLANNER can formulate the following message, which has to be sent to Greta in order to communicate with the user:

<?xml version="1.0" encoding="ISO-8859-1" ?> <fml-apml> <bml> <speech id="s1" language="english" voice="openmary" type="SAPI4" text=""><description level="1" type="gretabml"><reference> tmp/from-fml-apml.pho</reference></description> <tm id="tm1"/> Natural Content <tm id="tm2"/> </speech> </bml> <fml> <performative id="p2" type="inform" start="s1:tm1" end="s1:tm2" importance="1.0"/> </fml> </fml-apml>

We established a link between the properties of the received communication action, which are set according to the FIPA-ACL messages received by the agents in MASCARET (as we mentioned earlier), and the elements of the FML-APML script that has to be generated in the UNITYGRETABEHAVIORPLANNER. Therefore, in the UNITYGRETABEHAVIORPLANNER, we depend on the properties of the received communication actions (mainly the Performative) to code the communicative intentions and the natural text the agent of Greta has to utter. For example, the above FML-APML script could be formed when the agent in MASCARET receives the following FIPA-ACL message:

(inform :sender (agent-identifier :name Agent)

:receiver (set (agent-identifier :name UserAgent))

:content ((= (iota ?description (slot ?description ?EntityName))

NaturalContent))

:language FIPA-SL ) As seen in the example, we set the "inform" performative and the "speech" tag in the FML-APML script, according to the "performative" and the "naturalContent" properties of the communication action that are set in MASCARET based on the FIPA-ACL message received by the agent.

We show in Table IV the performative functions of FIPA and FML that we linked to facilitate coding the communicative intentions of Greta. In the next chapter (Chapter 4 Application), we show how we instantiate the generic architecture of our model (Figure 49) in order to implement a pedagogical situation in a VLE that involves tutor agents and the user. In our application, we consider the ECAs that are represented in the virtual environment as tutors that can assist the user to perform the domain procedure. The user interacts with the system to submit inquiries and requests. As we mentioned, agents can only communicate through an agent communication language (see section 3.3.2.1). Therefore, the user's communicative acts have to be translated before being delivered to the agents. As explained in section 3.1, MASCARET represents the user as an instance of the class AGENT (the user-agent) in order to communicate with the agents in the virtual environment.

To transmit user's inquiries to the agents in MASCARET, we used two modules to translate these inquiries from natural language into FIPA-ACL messages that the useragent can send to other agents in MASCARET. To transform the vocal messages of the user into natural language text, we integrated the Intel RealSense voice recognizer SDK [START_REF]Intel® RealSense™ SDK[END_REF]. We used the AIML (Artificial Intelligence Markup Language) chatbot [START_REF] Marietto | Artificial Intelligence Markup Language: A Brief Tutorial[END_REF] to translate the natural language text into FIPA-ACL messages.

The AIML is an XML-compliant language that depends on generic rules that consist of tags, words, spaces and wildcards ("*" and "_") to parse natural language text and generate relative messages (like FIPA-ACL messages). These rules have to be built upon the expected inquiries of the user. For example, when the user inquires about the description of an entity in the virtual environment using the question "What is EntityName?", we have to create the following AIML generic pattern to generate the corresponding FIPA-ACL message: ((iota ?description (slot ?description ?EntityName)))

In our model, we developed most of the generic patterns to translate the expected questions of the user (listed in section 3.3.4) into FIPA-ACL messages that can be sent to the agents communicating with the user.

As seen above, the agents depend on the COMMUNICATIONBEHAVIOR to communicate with each other and exchange information. When the user-agent sends a FIPA-ACL message to other agents using its COMMUNICATIONBEHAVIOR, the agent that receives this message parses it and checks its knowledge base in order to prepare for a response.

Subsequently, this agent formulates the response with a new FIPA-ACL message and sends it to the user-agent using its COMMUNICATIONBEHAVIOR. This message is then transmitted to the user through the ECA.

Here is a communication scenario that could take place in the virtual environment between the user and the agents:

User's question:

What is EntityName?

AIML pattern: <category> <pattern>What is *</pattern> <template> ((iota ?description (slot ?description ?<star index="1"/>)))

</template> </category>

The generated FIPA-ACL message that the user-agent sends to other agents in MASCARET:

(query-ref :sender (agent-identifier :name User-Agent)

:receiver (set (agent-identifier :name Agent))

:content ((iota ?description (slot ?description ?EntityName)))

:language FIPA-SL )

When the agent receives the FIPA-ACL message, it checks its knowledge base and the procedural scenario to obtain the requested information. Different responses can be generated:

Case 1: The agent succeeds to obtain the description of the specified entity from its own knowledge base and transmits it to the user-agent.

Case 2: If the agent does not recognize the specified entity, it forwards a similar FIPA-ACL message to other agents. If one of the agents succeeds to acquire the desired information, it sends a response to the main agent through a FIPA-ACL message. The main agent can then forwards the response to the user-agent: :content ((iota ?description (slot ?description ?EntityName)))

:language FIPA-SL )

In addition to the verbal communicative acts, ECAs can perform non-verbal signals, such as pointing to an object and lips synchronization. After determining the communicative intentions, our SAIBA interface takes care of the virtual agent animation (as explained in section 0). In the previous chapter, we presented the structure of our proposed model and the interactive capabilities that can be realized by the agents and the user. We focused on

showing the knowledge components that can be gathered by the agents, the actions and behaviors they can apply, the activities which the user can perform, and the tools and frameworks that we integrated in order to provide natural interaction between the agents and the user.

In this chapter we show how our model is used to develop VLEs to tutor the user applying procedures in a specific domain. More precisely, we show how we used our model to build a VLE on the biomedical domain for training on a blood analysis instrument. The aim of the developed application is to tutor the user on a pre-operative blood analysis procedure. The environment is a biomedical laboratory including necessary products [START_REF] Le Corre | A Pedagogical Scenario Language for Virtual Learning Environment based on UML Metamodel[END_REF].

Technical Architecture

In this section, we present the technical architecture to apply our proposed model. We show how a real pedagogical scenario with tutoring objectives can be implemented using our model. The VLE is implemented using Unity3d engine. In the virtual environment, we added the virtual entities that have to be manipulated while applying the actions of the procedural scenario but also some elements for decorations. In addition, we integrated ECAs in order to interact with the user in a pedagogical objective (Figure 51). According to the pedagogical scenario, various roles can be assigned to these agents while tutoring the user (detailed in Section 2.1.3). We first present the composition of the virtual environment (section 4.1.1) and then we present the domain model (section 4.1.3).

The virtual environment

The virtual environment of the blood analysis procedure is composed of several products and tools (tubes, scanner, basket, paillasse, buttons, rack...) that the user has to manipulate while executing the actions of the procedure. Among these entities, there are the automaton (Figure 50-a) and a set of chemical and blood tubes required to prepare the reagents (Figure 50-b).

Figure 50. The automaton and products for reagents preparation

Integrating the ECAs

As we described in our model, we made it easy to integrate ECA platforms that are compliant with the SAIBA framework. Three well known ECA platforms have been integrated: Greta, Virtual Human Toolkit and MARC. One embodied agent of each platform can be seen in Figure 51. These embodied agents can represent the tutors in the virtual environment and they can communicate naturally with the user.

We integrate these ECA platforms in our environment according to their particular specifications. For instance, as shown in Figure 51, the ECA of MARC is represented in a separate window with a similar environment. It could not be added into our environment since it requires defining its own environment using its own specific 3D engine. This is not very convenient, we then used only the two agents that can be integrated in the Unity3D: VHToolkit and Greta. After implementing the concrete classes that are responsible for sending the communicative intentions and behaviors to these ECAs, we assign a particular tutoring role to each ECA (detailed in Section 4.1.2).

Moreover, the user can address any of the embodied agents in the environment by saying the name of the intended agent while interacting with the system (explained in the implemented scenario in Section 4.3). and behavioral models (Figure 52) in order to be used by the ECA as a knowledge base to execute the pedagogical scenario.

We used the Modelio10 UML modeler to build the appropriate class models, activity diagrams and state machines.

Figure 52. Properties and operations of entities

In this section, we take the example of the blood analysis procedure. This procedure is composed of a sequence of 38 actions, such as holding and opening tubes, using the automaton, and scanning mixed reagents (Appendix 3).

Figure 53. Extract of blood analysis procedure

We defined this procedure in an activity diagram by setting the initial, the final and the domain action nodes. For each action, we had to set its name, call the appropriate operation and link it to one or more defined objects (Figure 53). The user should manipulate these objects in order to execute these actions. For example, to mix the two chemical products, "Neoplastine" and "Solvent", the user has to find the tubes of "Neoplastine" and "Solvent" in the virtual environment and consecutively perform the "Take" and "Open" actions in order to prepare the reagents.

The embodied agents in our system can inform the user about the actions she/he should perform and about the objects she/he should manipulate. We defined a pedagogical scenario with two tutoring roles, designated by the pedagogical expert. In this section, we take the example of a pedagogical scenario for a user who realises the procedure for tutor agent to present the instructions explicitly to the user. This property can easily be updated by the instructor while developing the pedagogical scenario (Figure 55).

Figure 55. Description property to explain domain actions

To define the agent communicative actions, we added the following fundamental properties to every pedagogical action that refers to a communication with the learner (Figure 56):

1-Performative: the performative function, 2-Receivers: the receivers of the message, 3-Natural: the natural language text to communicate with the user, 4-FIPA: the FIPA-SL script of the communicative action, 5-Resources: the virtual objects to be manipulated.

For example, in the first pedagogical action in Figure 56, the agent has to inform the user about starting the procedure, we defined an agent communicative action by specifying the "user" as the Receivers, the "inform" as the Performative function and a natural text "We will start to prepare the reagents" in the Natural property to inform the user about starting the procedure (Figure 56). When we needed to communicate with a tutor agent to request an action (like informing the user about the description of a domain action), we had to set the Performative property and the FIPA-SL content "((action user (NEXT)))" in the FIPA property (Figure 57). To integrate the MASCARET metamodel in the application in order to execute the domain and the pedagogical models, we imported MASCARET library using a DLL (Dynamiclink Library) file (Mascaret.dll) into our application in the Unity3D engine.

After building the class models and the behavioral models (domain model and pedagogical scenario) in Modelio, we exported them as an XMI (XML Metadata Interchange) file. To consider these models in our application, we imported this XMI file in the interface engine (in the StreamingAssets directory for Unity3D). We had to apply a similar process (exporting and importing the XMI file) whenever we modify any component in the class and behavioral models.

Moreover, we had to represent the virtual environment to MASCARET in order to consider it and use its entities. Therefore, we built an XML (eXtensible Markup Language) file (environment.xml) to outline the structure of the environment by representing all the virtual entities in the environment, their properties (such as names, positions, shapes…) and the affectation of ECA to roles. We put this XML file in the StreamingAssets of Unity3D and refer it in MASCARET.

Communication methods for the user

In addition to the specified peripherals for interacting with the system, the user can vocally communicate with the agents in the virtual environment. We used the Intel RealSense SDK to implement the voice recognition module in the Unity3D engine. It recognizes the natural language speech and converts it to simple text in order to submit the inquiries of the user to the tutor agents. The RealSense SDK depends on a library with dictionary words and phrases to recognize the contents of the vocal messages.

However, the vocabulary words of the concerned domain can be added to this library using a text file. The user can also use the text field displayed in the interface of the application in order to communicate with the agents using text messages that can be submitted in this form (Figure 58). 

Tutor Behavior

The PROCEDURALBEHAVIOR executes the pedagogical scenario to guide the user in performing the domain scenario. To ensure applying the domain actions of the scenario, the agents in the VLE should be able to monitor the activities of the user including the inquiries that could be submitted. Accordingly, we defined a TUTORBEHAVIOR (Figure 59) that could be executed by the agents in MASCARET that play the role of the tutor. 

Figure 60. Procedural scenario with pedagogical actions

As an example, Figure 60 shows a procedural scenario with domain actions that are preceded by pedagogical actions to clarify to the learner the required actions to perform and the objects to manipulate. However, the learner can interrupt the domain scenario at any time and asks for a precision or new information (Figure 61). When such event is recognized, the tutor agent has to work on replying to the inquiry. While executing the domain procedure, the tutor-agents monitor the communicative acts performed by the learner. The agent representing the learner uses its COMMUNICATIONBEHAVIOR to forward the FIPA-ACL message, which represent the inquiries of the learner, to the tutor-agent in order to reply. The tutor-agent checks its knowledge base, the procedural scenario and the previously exchanged messages with the agents in order to determine and provide the suitable reply. For instance, when the tutor-agent informs the learner about the goal of an action, the learner might repeatedly ask for the purpose of performing that action. Rather than just repeating the same postcondition to the learner, the tutor-agent refers to the hierarchy of the procedure to provide the learner with a further knowledge about the required action, such as the goal of the activity.

Figure 62. Post conditions of actions

While executing the domain procedure, the tutor agent constantly checks its environment and the running procedure and executes the TUTORBEHAVIOR. It monitors the activities performed by the learner. When the learner performs an action, the tutoragent compares this action with the required action in the running domain procedure.

The tutor-agent starts by checking if the learner manipulated the entity that is connected to the required domain action. If an incorrect entity is manipulated, the tutor-agent prepares a COMMUNICATIONACTION with the "INFORM" performative to inform the learner that a wrong entity is selected using this Natural-Content: "This is wrongObjectName and not correctObjectName".

The learner could manipulate the correct entity in the VE but performs a different action from the desired one in the domain procedure. In this case, the tutor-agent prepares a COMMUNICATIONACTION to inform the user that this is the correct object but an incorrect action is selected using this Natural-Content: "This is correctObjectName, but you have to correctOperationDescription".

When the learner performs the correct action and manipulates the connected entity to the domain action, a "DONE" action message is sent to the tutor-agent in order to proceed to the next action planned in the domain procedure and it realizes the corresponding pedagogical action. Upon finishing the domain procedure, the tutor-agent informs the learner that the procedure is accomplished.

Implemented Scenario

We implemented the blood analysis procedure (Figure 53) using the different types of the defined behaviors of the agents. The scenario consists in tutoring the learner on the domain procedure using the corresponding pedagogical scenario (Figure 54). We assigned various tutoring roles to the instances of the three integrated ECA platforms (Virtual Human Toolkit-Mike, Greta-Obadiah and MARC-Simon) to show how different roles can be specified for the agents (Figure 63-1). Mike realizes the first pedagogical action to inform the learner about starting the procedure (Figure 63-2). We defined the communication action of this pedagogical action in the activity diagram of the scenario with the "inform" performative and the natural language text that Mike has to say to the learner through its verbal behaviors (Figure 56). Obadiah executes the second pedagogical action that requires informing the learner about the description of the first domain action (Figure 54, Figure 63-3). As we explained earlier, the FIPA property of the communication action in this pedagogical action indicates getting the description property, which is defined by the domain expert, from the domain action using the appropriate FIPA message (Figure 57).

The learner can interrupt the scenario and ask questions to acquire for additional information. The learner might inquire about the goal of the requested action by asking "Why?" (Figure 63-4). When the learner does not specify the tutor agent that she/he intends to interact with, Obadiah who is the default agent processes the inquiry and replies to the learner with the post-condition of the requested domain action (Figure 63- [START_REF] Gobbetti | Virtual reality: Past, present, and future[END_REF]. Moreover, the learner might intend to obtain additional information about the action she/he has to perform by consecutively asking "Why?" (Figure 63-6). The tutor agent refers to the hierarchy of the procedure to provide the learner with the activity goal as a further knowledge to that action (Figure 63-7).

The learner can communicate with a particular tutor agent by naming it when she/he formulates the question. For example, when the learner intends to ask Mike about the description of the object that she/he should manipulate, she/he has to start the question with "Mike" (Mike, why?). The learner can vocally communicate with the tutor agent using a microphone, or they can submit their questions using the text field that is displayed in the interface (Figure 63-8). Mike obtains the description of the object from its "Description" property and vocally transmits it to the learner (Figure 63-9).

The location of the appropriate object might be unknown to the learner. She/he could try to use the wrong object to execute the action (Figure 63 The pedagogical scenario automatically proceeds to the following pedagogical action that consists in informing the learner about the next domain action she/he has to perform (Figure . When the learner performs all the domain actions, Obadiah announces the accomplishment of the procedural scenario with a thankful message (Figure 63-19).

In Chapter 5, we evaluate our model by describing the experiment we conducted on an experiment on a group of participants using a demonstration of the developed application. We apply evaluation techniques and relative statistical tests on the obtained results of the experiment in order to validate the methodologies of our model. 

EVALUATION

Similar to previous evaluations [START_REF] Atkinson | Optimizing learning from examples using animated pedagogical agents[END_REF], we want to validate the impact of our model on the natural interaction between a user and an ECA, more precisely in a VLE, having the possibility to exchange knowledge by communications using the model we proposed in Chapter 3. In order to do this, we choose the context of our application, which is a virtual environment to learn a procedure (Chapter 4).

Experiment protocol

In the experiment we settled, the learner has to follow the blood analysis procedure which implies the manipulation of virtual objects in the virtual environment. Initially, the learner has to retrieve the information about the procedural actions before executing them. She/he can also consult the instructions about the execution of an action.

We use the same protocol as Hoareau et al [START_REF] Hoareau | Evolution of cognitive load when learning a procedure in a virtual environment for training[END_REF] then, the experiment requires the learner to repeat the procedure for several trials. The learner could acquire the procedural knowledge to her/his memory. We make the hypothesis that upon repetition, the performance of learning will be better. In Hoareau, the performance is represented by the time of execution, the number of errors and the number of assistances.

The hypothesis of our experiment is to assume that the presence of an Embodied Conversational Agent (ECA) in a Virtual Environment (VE) enhances the learning performance (or at least does not degrade it) in the context of a learning procedure.

The procedure of this experiment is composed of 38 actions (see Appendix 3) that the learner should realize for several trials. Forty participants with different ages and academic backgrounds from the academic institute, Arts, Sciences and Technology University in Lebanon (AUL), were involved in this study. Each participant played the role of the learner whose goal is to perform the procedure for seven trials. They were unaware of the procedure and how many rounds (trials) the experiment takes. We separated them in two groups of twenty participants with different experiment conditions (Group 1 -20 participants -Condition 1, Group 2 -20 participants -Condition 2).

Description of the experiment

In this experiment, each learner has to execute the procedure in seven consecutive trials.

Several measures are gathered in every trial in order to be studied and to observe the variations in the activities and the collected results. The consumed time to complete the procedure, the number of consultations of the instructions, and the number of committed errors, are the measures that we considered for the evaluation. Subsequently, a log file with these measures is generated after every trial of each participant.

Figure 64. Interactive menu for selecting actions

The scenario of the experiment is executed in a virtual environment that represents the blood analysis laboratory (Figure 65). The learner is requested to perform the procedure of the blood analysis tests on the automaton biological analysis machine. To perform this procedure, the learner must follow up the given instructions in order to select suitable actions and manipulate the right objects. To manipulate an object and perform the required action, the learner has to press the left mouse button over an object, use the "up and down" keyboard arrow keys to select an action, and then to press the "Enter" button in order to confirm her/his selection (Figure 64). The scenario with the second condition (Condition 2) shows the integration of an ECAtutor in the virtual environment (Figure 66). The learner has to vocally communicate with the ECA-tutor to inquire about the next action by clearly saying "NEXT". The ECA responds and points to the object that should be manipulated while it is blinking in red (Figure 66). The learner can repeatedly refer to the instructions as much as needed. 

Results

To evaluate the experiment and validate the impact of the proposed facts in our model, we execute the formulas of several statistical tests on the collected performance measures in the log files.

While studying these log files, we recognized that the three last trials correspond to the third phase of learning (the autonomous phase) [START_REF] Taylor | The role of strategies in motor learning[END_REF]. In this phase, the learner is just trying to improve her/his performance and not getting new knowledge. Accordingly, we consider that we have just to compare the results of the two first phases (Cognitive phase and Associative phase) using the four first trials where our proposition can have an impact.

The objective performance measures are represented in the statistical formulas as Dependent Variables (DV). We consider the funnel concept to organize the adopted performance measures (1-Execution time → 2-Consulting assistance → 3-Number of errors) (Figure 68). A funnel is used to represent the measures of the experiment, since a prospect descends into the next stage of the funnel when its interest increases. 

Execution Time

The condition of this application is to know if we do parametric or non-parametric statistical tests. In these two parametric tests, we have to get p > x in order to be significant: We can reason on the obtained results of Friedman's test to say that the number of trials has an effect on the time needed to execute a trial. The time decreases significantly according to the executed trials. This is a classical result in the learning curve. It means that using our system, the learner is learning.

We also need to check for the effect of the presence of the virtual agent on the time (IV corresponds to the presence or the absence of the virtual agent):

1. Wilcoxon rank sum test with continuity correction (two independent groups).

The data listed in Table VI (the mean and the standard deviation of the results of all participants in both conditions separately) and graphically represented in We can reason on the obtained results of Wilcoxon's test to say that the presence of the virtual agent has an effect on the time. Interacting with a virtual agent is consuming more time than just clicking on an icon to enquire about the desired action. It means that using a virtual agent in our system need additional time from the learner.

We will check now for the effect of the presence or the absence of the virtual agent at each trial on the time consumed to finish the procedure. The data listed in We can reason on the obtained results of Wilcoxon's test, by applying the trials of the experiment on the two conditions, to say that the number of trials has an effect on the time while applying the two conditions (Condition-ECA and Condition-Icon). The time decreases significantly according to the executed trials. This is a classical result in the learning curve. It means that using our system in any of the two conditions, the learner is learning.

We can notice that the presence of the virtual agent has an effect on the time consumed by the participants (in Condition-ECA) during the performed trials of the experiment. We can reason on the obtained results of Friedman's test to say that the number of trials has an effect on the help consultations. The number of times asking for help decreases significantly according to the executed trials. This means that using our system, the learner is learning.

We present here the effect of the presence of the virtual agent on the number of Help consultations (IV corresponds to the presence or absence of the virtual agent).

2. Wilcoxon rank sum test with continuity correction. The data listed in Table IX (the mean and the standard deviation of the results of all participants in both conditions separately) and graphically represented in Figure 73 According to the above results, we can notice that we do not have a significant difference in the number of help consultations inquired by the participants in both conditions during the performed trials of the experiment. But according to the obtained results of Wilcoxon's test, we can say that the number of trials has an effect on the number of help consultations in both conditions. The number of times asking for help decreases significantly according to the executed trials. It means that using our system, the learner is learning.

Number of errors (Incorrect Actions)

The condition of this application is to know if we do parametric or non-parametric statistical tests. In these two parametric tests, we have to get p > x in order to be significant: Result p < x → Not Significant, so we do not respect the homogeneity of variances Since we don't have significant results in these two tests, we will do non-parametric statistical tests. We have to check for the effect of number of trials on number of incorrect actions (IV corresponds to the number of trials). Here, we have to get p < x in order to be significant. We can reason on the obtained results of Friedman's test to say that the number of trials has an effect on the number of incorrect actions. After executing the first trial to recognize the required actions, the number of times for making fault actions decreases significantly according to the executed trials. This means that using our system, the learner is learning.

DV: Number of incorrect actions

We have to acquire the effect of the presence of the virtual agent on the number of incorrect actions (IV corresponds to the presence or absence of the virtual agent).

2. Wilcoxon rank sum test with continuity correction. The data listed in Table XII (the mean and the standard deviation of the results of all participants in both conditions separately) and graphically represented in Figure 76 We can reason on the obtained results of Wilcoxon test to say that applying the different conditions has no effect on the number of incorrect actions. The number of times for making fault actions decreases significantly according to the executed trials. This means that using our system, the learner is learning in both conditions.

We will check now for the effect of the presence or the absence of the virtual agent at each trial on the number of incorrect actions. The data listed in According to the above results, we can notice that we do not have a significant difference in the number of incorrect actions committed by the participants in the two conditions among all the trials of the experiment. But according to the obtained results of Wilcoxon's test, we can say that the number of trials has an effect on decreasing the number of incorrect actions in both conditions. The number of incorrect actions decreases significantly according to the executed trials. It means that using our system, the learner is learning.

Discussion

As we previously declared, the purpose of evaluating the experiment is to find the effect of the existence of the Independent Variables (Presence or absence of a virtual agent, and Number of trials) on the Dependent Variables (Execution time, Consulting assistance, and Number of errors) based on the results of the statistical tests in order to be able to confirm or deny the proposed hypothesis (we assume that the presence of ECA in a VE enhances the learning performance in the context of a learning procedure).

By referring to the statistical test results, we conclude that there is no significant effect for the presence or the absence of the ECA on the "Help" and "Incorrect Actions" DVs.

We can also notice that it takes more time for participants to perform the procedure in each trial when they have to vocally communicate with the ECA rather than just pressing on the "?" icon. However, what might be important is the difference between the measures of trials and not their values. The difference between the measures of trials when having an ECA is greater than that when using the "?" ICON (Table V, Table VIII and Table XI). Accordingly, we can say that a better learning performance could be gained when an ECA is used.

To confirm the obtained results, we conducted the same experiment on an expert of the procedural scenario of the blood analysis. The same results were attained.

As a conclusion, we use these results to partially confirm the hypothesis of the applied experiment and assure that having an ECA in the virtual environment does not degrade the performance of the learner in the context of a learning procedure. More effects of IVs can probably be studied when executing an advanced procedure with a better pedagogical behavior and by including more aspects in studying the performance of the learner. Our model is implemented on top of MASCARET. This allows domain experts, with no or little technical background, to define their pedagogical scenarios using UML. They can also reuse artifacts from previous scenarios and easily extend existing ones. We extend MASCARET with bricks to implement our agents' cognitive architecture, and we use SAIBA to map agents' behaviors to concrete ECA interactions.

Using our implemented model, we built a biomedical pedagogical scenario, in which virtual tutors guide laboratory workers to learn and apply a blood analysis procedure.

The learner is advised to follow the default sequence of actions needed to successfully accomplish the procedure, and receives the right directions even when unintentional disruptions interrupts the normal sequel of the procedure.

We used this tutoring system to apply an experimental scenario on several participants.

We applied the experimental protocols defined by Hoareau et al. [START_REF] Hoareau | Evolution of cognitive load when learning a procedure in a virtual environment for training[END_REF] to evaluate the experiment and to validate the impact of our model based on objective performance measures. We used the results of this evaluation to partially confirm the hypothesis of the experiment and assure that having an ECA in the VLE does not degrade the performance of the learner in the context of a learning procedure.

Perspectives

We aim to implement our model on different scenarios in order to confirm the authenticity of our model. Nevertheless, we are going to indicate in this section the several perspectives that can extend our work to include additional functionalities for the VLE.

Building an advanced Tutoring Behavior

The agent in our model is able to answer to questions, but it can be interesting if this agent can ask questions to the learner while executing the domain procedure and after finishing it in order to make sure that the domain procedure is well tutored. This can be acquired by checking the learner's knowledge. An examination pedagogical scenario can be defined and linked to the domain procedure. While executing the domain procedure, the tutor agent can perform pedagogical actions in this scenario to ask the learner about acquired information to make sure that she/he can succeed in continuing the procedure.

Consequently, going further on interpretation of the natural language of the learner is a mandatory operation that has to be implemented in order to parse the answers of the learner. The generic AIML patterns, which are defined to interpret the learner's dialogue, should be developed to understand the domain terms and the answers of the learner.

The learner could not realize how to perform a certain action in the domain procedure.

Therefore, the tutor agent should be able to execute all domain actions, and the learner can then request from a tutor agent to perform the difficult actions. Necessary performative functions and slots have to be used in the COMMUNICATIONACTIONs that are exchanged between the agents to implement the action-requests of the learner.

To consider more human interaction behaviors in the VLE, the facial expressions of the learner could be detected in order to recognize her/his feedback after being informed about performing a domain action. For example, when the tutor agent asks the learner to manipulate an object in the environment, if the learner expresses a negative feedback, the agent can provide additional information about that entity, like its role or any other property.

In a similar way, facial expressions could be as well realized by the tutor agents to express natural feedback in the virtual environment. The tutor agent has to analyse all actions performed by the learner and realize necessary facial expressions. For example, when the learner performs for several times the same incorrect action, in addition for informing the learner with the correct notes, the tutor agent can realize a wondering facial expression to naturally react to the faulty performance of the learner.

To implement these perspectives, further work on the ECA and on an Intelligent

Tutoring System (ITS) in the domain application of the VLE have to be implemented.

Intelligent Tutoring System

The intelligent tutoring system (ITS) is a computer system that can be used to tutor the user on the knowledge of a certain domain through communication and interaction. The major common objective of all ITSs is to support the learning processes of handled scenarios by supplying it with appropriate tutoring services. The domain knowledge provided by the domain experts is represented in the domain model (declarative knowledge), while the pedagogical knowledge is defined by the domain instructors to provide the reasoning facts to demonstrate the declarative knowledge [START_REF] Nkambou | Un modèle de représentation des connaissances relatives au contenu dans un système tutoriel intelligent[END_REF].

While executing the learning scenario, the student model carries the knowledge about the achieved progress of the learner. When the learner interacts with the environment, this model tracks the activities, the cognitive states and the attained knowledge of the learner. These assets are considered as the reasoning aspects that are required to execute suitable actions.

The interactions between the learner and the agents are well managed in the ITS. The ITS follows pedagogical strategies that are educationally well tested. The tutoring model considers the knowledge aspects of the domain and student models in order to select the pedagogical and tutoring activities that can assist the learner. This model is also responsible for replying to the inquiries of the user [104] [107].

The interface model permits the interaction and the exchange of information between the learner and the system. Different types of interface behaviors, such as text, visual or auditory fields, are adopted to translate the system information to the learner. Besides, several input sources and communication conventions, such as microphone, keyboard, mouse and joystick can be used by the learner to interact with the system [START_REF] Vigano | The virtual reality design tool: Case studies and interfacing open topics[END_REF].

Many ITS models, such as [START_REF] Pesty | The baghera multiagent learning environment[END_REF], [START_REF] Santos | Integrating intelligent agents, user models, and automatic content categorization in a virtual environment[END_REF], [START_REF] Sorensen | Simulation-based automated intelligent tutoring[END_REF] and [START_REF] Buche | PEGASE: A generic and adaptable intelligent system for virtual reality learning environments[END_REF] are previously released and used. The ITS of [START_REF] Pesty | The baghera multiagent learning environment[END_REF] includes a web-based environment for teaching geometry proofs.

While in [START_REF] Santos | Integrating intelligent agents, user models, and automatic content categorization in a virtual environment[END_REF], the ITS automatically categorizes the contents of the virtual environment, but can only provide a poor interaction techniques with the learner.

Whereas, [START_REF] Sorensen | Simulation-based automated intelligent tutoring[END_REF] defines a simulated framework that acts as an ITS and includes a scenario authoring tool for the medical domain.
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 11 Figure 11. Mascaret workflow to design a virtual environment for learning
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 12 Figure 12. The agent meta-model of MASCARET

  Communication of agents: A standard communication protocol is considered to facilitate the communication between the agents. MASCARET uses the FIPA (Foundation for Intelligent Physical Agents) protocol that adopts the FIPA-ACL (Agent Communication Language) specifications. Each agent in MASCARET has a communication behavior that is responsible for managing and analyzing the FIPA-ACL messages that are exchanged with other agents. The purpose of the FIPA-ACL message is represented by one of the 23 performative functions proposed by the FIPA. The agents of MASCARET uses the REQUEST performative to obtain the value of a property or to make it execute an action. In response, these agents use the INFORM performative to inform about the value of the specified property or to confirm executing an action. The researchers and developers of MASCARET are still working on using the other performatives to evolve the communication aspects of the agents.
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 16 Figure 16. The main modules of ACT-R [67]
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 17 Figure 17. The three main modules of STEVE
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 18 Figure 18. Steve describing the actions to be performed
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 2 Background and Literature Review 29 This can increase the believability of the agent and motivates the user to communicate with the ECA.

Figure 19 .

 19 Figure 19. The architecture of Greta
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 25 Figure 25. General Overview on MARC Architecture

  multimodal behaviors. This framework takes into consideration how the agents should reason about what it has to do or say. It generates the natural multimodal communicative intentions and behaviors, which should be realized by the ECA, and represents it using normalized languages. The SAIBA framework is composed of three separated levels of abstraction: 1) representing the planned communicative intentions (Intent Planner), 2) planning for a multimodal realization by selecting the communicative behaviors of planned intentions (Behavior Planner), and 3) the realization of the communicative behaviors (Behavior Chapter 2: Background and Literature Review 35

Figure 26 .

 26 Figure 26. SAIBA framework for multimodal generation

2 -

 2 Classifying communicative actions into categories 3-Distinguishing planned intents from unconscious intents, like emotions 4-Dividing the communicative intents into small chunks with particular timing information in order to be processed separately 5-Defining the structure of the FML script in an XML-like syntax with rules to embed tags 6-Dealing with one or several ECAs relatively 7-Handling one or multiple roles to the agentsThe proposed FML specification is considered preliminary and has many limitations, but it facilitates generating the communicative behaviors by transforming the FML chunks contents into a BML script (Figure27).

Figure 27 .

 27 Figure 27. Proposed FML Specification

3 . 3 ,

 33 this framework divides the process to generate the virtual agent behavior into three levels of abstraction: from the selection of the agent communicative intentions, to the choice of the multimodal signals needed to transmit them and the signals realization on the virtual character graphical representation. These three levels, respectively, the Intent Planner, the Behavior Planner and the Behavior Realizer, communicate through standard languages: the FML, which codes the communicative intentions and the BML, which codes the multimodal signals[START_REF] Cafaro | Representing communicative functions in saiba with a unified function markup language[END_REF] [START_REF] Vilhjálmsson | The behavior markup language: Recent developments and challenges[END_REF].

  For such a reason, to allow the integration of these platforms in MASCARET, we propose to implement two interfaces, one for the Behavior Planner (BEHAVIORPLANNER) and the other for the Behavior Realizer (BEHAVIORREALIZER) (Figure29in green). The details of this integration are presented in section 0.Another main goal of this work is to formalize the intention of the agents. To achieve this goal, we implement a cognitive module within MASCARET inspired by BDI architecture that permits us to generate high-level intentions for the agents (Figure29in blue). Beliefs are considered as the knowledge base of the agents. It consists of references to domain concepts (like the structure and the properties of the defined entities of the considered domain), environment topology (such as the position of entities) and activities of all agents in the environment (including the user).
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Figure 32 .

 32 Figure 32. The platform of the Agent
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 33 Figure 33. The mailbox of the Agent

Figure 34 .

 34 Figure 34. Agent with complete knowledge
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 35 Figure 35. Agent with individualized Environment of a common Model
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 3637 Figure 36. Agent with particular Environment and Model
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 39 Figure 39-a) with the knowledge about existing entities (Box1 and Box2), the initial knowledge of Astrid and Bruce includes the states (Box1[closed] and Box2[closed]) and
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 39 Figure 39. The evolution of agent's knowledge through perception
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 40 Figure 40. The actions for the activities of agents
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 41 Figure 41. The actions of a complex behavior
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 2 agent-identifier :name Agent1) :receiver (set (agent-identifier :name Agent2)) :content ((= (iota ? position (slot ?position ?Agent3)) 120,50,240)) Communication Action class As we introduced in this section (3.3.2), we extended the ACTION class in MASCARET to develop the COMMUNICATIONACTION class in order to represent the communication between agents and by extension (in EMBODIEDAGENT class) the communicative intentions of the agents.

Figure 44 .

 44 Figure 44. Setting a natural language text in the communication action

Figure 45 .

 45 Figure 45. The behaviors of the agents

Algorithm 2: manageQueryRef 1 -

 1 FIPASLParserResult result = parseFipaSL(FIPAmsg.content) 2-if (result.isIota){ 3-iota = result.iota 4-if (iota.predicate == "slot"){ 5-//Manage Slot 6-} else if (iota.predicate == "postcondition"

( 3 . 3 . 4 )

 334 how we are generically considering the inquiries of the user. Algorithm 3: Manage Slot 1-object = findObjectInProcedure(iota.object) 2-value = getSlot(iota.parameter) //property of the object 3-if (value){ //slot value 4-perf = INFORM //performative 5-naturalContent = value 6-//FIPA-SL to give the slot value of the object 7-FipaSLContent = "((= (iota ?perf (slot ?perf ?object))

Algorithm 4 :

 4 Manage Postcondition 1-msgCount = Agent.Mailbox.MessagesSent.Count 2-if (msgCount > 0) { 3-lastMessage = Agent.Mailbox.MessagesSent [msgCount -1] 4-if (lastMessage.Performative == "INFORM"((iota ?actionToDo.name (postcondition 12-?actionToDo.name ?iota.object)))" 13-} else if (resultLastMessage.isIota) = "I do not understand what you want" 28-perf = NOT_UNDERSTOOD 29-} 30-} else { 31-naturalContent = "I do not understand what you want" 32-perf = NOT_UNDERSTOOD 33-} In our work, we handled inquiring about the description of an action whenever the "action" operator is detected. When the user asks about the next desired action, the agent representing the user uses the "action" expression in the FIPA-SL content of the FIPA-ACL message that it sends to another agent (Algorithm 5). If the procedure is not finished, the agent prepares the attributes of the COMMUNICATIONACTION to inform the user-agent with the description property of the desired action (Algorithm 5). Algorithm 5: Inquiring about actions 1-if (result.isAction){ 2-actionToDo = findNextActionToDo() //desired action in procedure 3-value = actionToDo.Description //description stereotype of action 4-performative = INFORM //performative 5-naturalContent = value 6-FipaSLContent = "((action actionToDo.performer (actionToDo)))"

Algorithm 6 : 2 - 10 -

 6210 Instantiating Communication Action in manageQueryRef 1-if (FIPAmsg.performative == "QUERY_REF"){ FIPASLParserResult result = parseFipaSL(FIPAmsg.content) CommunicationAction ca = new CommunicationAction() 11-ca.performative = p 12-ca.naturalContent = n 13-ca.FipaSLContent = FipaSLContent 14-}

Algorithm 7: manageInform 1 -

 1 FIPASLParserResult result = parseFipaSL(FIPAmsg.content) 2-entityName = result.iota.entity 3-slotName = result.iota.slot 4-value = result.iota.value 5-if (result.isIotaEqual){ 6-KnowledgeBase = Agent.KnowledgeBase 7-entities = KnowledgeBase.getEntities() 8-foreach (entity in entities) { 9-if (entity.name == entityName) section (3.3.4), we outline how we can generically determine the dialogue contents of the verbal communicative acts of the user and how the agents can recognize these inquiries and parse them successfully. While in section 0, we will explain how the communication actions exchanged by the agents are instantiated by an

Figure 48 .

 48 Figure 48. The sequence chart of the represented SAIBA modules in our model

  .resources.count > 0) rsrc = action.resources[0].name string msg msg = "<?xml version="1.0" encoding="UTF-8"?> <act> <participant id="agent.name" role="actor"/> <bml>" if (action.performative == "INFORM") { <speech id="sp1" type="application/ssml+xml"> action.naturalContent </speech>" } if (rsrc) { msg += "<animation name="IndicateResource" target="rsrc"/> } else if (action.performative == "NOT_UNDERSTOOD") { msg += "<animation name="ShowNegative"/>"

Figure 49 .

 49 Figure 49. Instantiation of the global architecture by a user and an agent

  ?description (slot ?description ?<star index="1"/>)))
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Case 3 :

 3 agent-identifier :name Agent) :receiver (set (agent-identifier :name User-Agent)) :content ((= (iota ?description (slot ?description ?EntityName)) descriptionValue)) :language FIPA-SL ) Neither the solicited agent nor the other contacted agents succeed to obtain the description of the specified entity. The solicited agent uses the "DISCONFIRM" performative function to send a FIPA-ACL message to the user-agent to indicate that the requested information cannot be obtained:(disconfirm :sender (agent-identifier :name Agent) :receiver (set (agent-identifier :name User-Agent))
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Figure 51 .

 51 Figure 51. The integration of various ECA platforms

  the first time. In this case, one agent has to explain the goal of the global procedure (and its subparts) and the other has to give the instructions (what action to do) and to show the object to manipulate. This pedagogical scenario comes from our collaboration with colleagues in cognitive psychology. As shown in Figure54, we added a set of pedagogical actions to the procedural scenario in the UML modeller (Modelio) and connected them to the actions from the domain procedure that the user has to perform.The pedagogical actions are distributed within the pedagogical scenario under the two roles of the tutor agents (Role 1-Formateur and Role 2-FR).

Figure 54 .

 54 Figure 54. Building a pedagogical scenario with necessary roles

Figure 56 .Figure 57 .

 5657 Figure 56. First pedagogical action with necessary properties

As we mentioned in Chapter 3 ,

 3 the agents in our model use FIPA-ACL messages to communicate with each other to share their knowledge bases and cooperate to execute actions. Therefore, we need to translate the text received from the user into FIPA-ACL messages in order to send the inquiries to the tutor agents. We defined the appropriate AIML generic patterns of questions that the user can ask. The agent representing the user in MASCARET sends these messages to the tutor agents. Parsing rules, which are set in the FipaSL.g4 module in MASCARET, are used to parse the FIPA-ACL messages of these agents.

Figure 58 .

 58 Figure 58. Simple text field to communicate with the agents

Figure 59 .

 59 Figure 59. Adding the Tutor Behavior for the agents

Figure 61 .

 61 Figure 61. Interrupting the pedagogical scenario of a procedure

  -10). Since the tutor agents are constantly monitoring the activities of the learner, they can discover that an incorrect object is selected and inform the learner with the committed error (Figure63-11). The learner can then ask about the position of the object using the "Where is ObjectName" phrase and naming the object in the inquiry (Figure63-12). After getting the orientation of this object from the environment, Obadiah (the default tutor agent) points with his hand to the object that also blinks with red color, and he vocally tells its place (Figure63-13). Furthermore, when the learner selects an inappropriate action on the right object (Figure 63-14), Obadiah informs the learner about the committed fault after checking the domain procedure (Figure 63-15). When the learner performs the requested action (Figure 63-16), the corresponding animation, like opening a tube, is realized in the virtual environment (Figure 63-17).

Figure 63 .

 63 Figure 63. The implemented scenario of the blood analysis procedure

Chapter 5: Evaluation 97 We

 97 define two different tutoring conditions (Condition 1: with ECA, Condition 2: without ECA).

5. 1 . 1 . 1

 111 Experiment with HELP iconIn the scenario of the experiment with the first condition (Condition 1), the instructions to perform the actions of the procedure are vocally given. The learner can press the question-mark icon ( ), which is displayed at the bottom right corner of the screen (Figure65), in order for vocal instruction to be given or repeated. After pressing this icon, a synthetic voice provides the learner with the description of the next action to perform, and the object that should be manipulated blinks red until the learner presses on it and selects an action (Figure65). The learner can repeatedly refer to these instructions as much as needed.

Figure 65 .

 65 Figure 65. Experiment with HELP icon

Figure 66 .

 66 Figure 66. Experiment with an ECA

Figure 67 .

 67 Figure 67. NASA TLX questionnaire rating scale

Figure 68 . 2 -

 682 Figure 68. The funnel design concept of the objective performance measures

Figure 70 Friedman:

 70 Figure 70 is used in this test:

Figure 72 .

 72 Figure 72. Friedman: Effect of Number of Trials / Help

  Not significant, so we do not respect the normality F test of homogeneity of variances (F Fisher Test)

Figure 75 .

 75 Figure 75. Friedman: Effect of Number of Trials / Incorrect Actions

Figure 76 .

 76 Figure 76. Wilcoxon: Effect of Condition / Incorrect Actions

Chapter 6 :

 6 Conclusion & Perspectives 117 6 CONCLUSION & PERSPECTIVES In this thesis, we proposed a novel model for conceiving and implementing VLE with intelligent virtual agents having a BDI-like based cognitive architecture and materialized through ECAs that ensure human-like and credible interactions with the user during the progress of the pedagogical scenarios. The proposed cognitive architecture represents both, the knowledge on the environment and the internal state of the agents and their evolution. It allows to plugin rich reasoning models to draw out sound decisions and intentions.

  The architecture of the ITS consists of four models (Domain model, Student model, Tutoring model and Interface model)[START_REF] Wenger | Artificial intelligence and tutoring systems: computational and cognitive approaches to the communication of knowledge[END_REF] (Figure78) which require studying and analyzing the knowledge patterns and the reasoning sources[START_REF] Nkambou | Advances in intelligent tutoring systems[END_REF] in the VLE. This analysis can specify the behaviors of the agents to properly interact with the learner and the environment.

Figure 78 .

 78 Figure 78. The four-component architecture of an ITS
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Table I . The BML behavior elements BML Element Description

 I 

	<head>	Movement of the head, like nodding and shaking
	<torso>	Movement of the spine and shoulder
	<face>	Movement of facial muscles to form certain expressions, like eyebrows and mouth movements
	<gaze>	Coordinated movement of the eyes, neck and head direction, to indicate where the character is looking
	<body>	Full body movement, like changing position and posture
	<legs>	Movements of the body elements downward from the hip, like legs including knee, toes and ankle
	<gesture>	Coordinated movement with arms and hands, including pointing and reaching
	<speech>	Verbal behaviors, including the words to be spoken
	<lips>	Controlling lips shapes including the visualization of phonemes
	2.3.3.3 Behavior Realizer: realization of the planned behaviors

  Thirdly, the ECA systems provide different graphical representation of virtual agents that can be displayed through diverse players and in diverse devices (such as CAVE, HMD, screen...). For instance, Greta platform provides several agents of different gender that can appear in an Ogre player or in a Unity3D application; while MARC provides many tools to create new characters using a custom graphic engine based on OpenGL and other open-source API. So, we want our model capable of integrating the appropriate ECA system according to the virtual reality device and the graphical agent representation we need for a given application. Finally, we hope to incite ECA researchers to easily use and test our model.Existing ECA platforms which are SAIBA compliant, provide mainly an implementation for the Behavior Planner and/or the Behavior Realizer.
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Table II . Parameters used in FIPA-ACL messages

 II 

	reply-with	expression used by replying agent to identify the message
	in-reply-to	date/time label to indicate when an answer must be received
	reply-by		reference to a previous action, where the message is an answer
	The performative property has a fundamental role in building FIPA-ACL messages. It
	specifies the objective of the FIPA-ACL message and the speech act that an agent wants
	to deliver to another agent. Appendix 1 shows the twenty-three FIPA-ACL performative
	functions and their corresponding meanings. These functions propose a wide variety of
	Parameter	Category of Parameters
	performative	message label; type of communicative acts
	Sender	message sender
	Receivers	message receivers
	Content	contents of the message
	language	adopted language
	encoding	encoding message
	ontology	adopted ontology
	protocol	message protocol
	conversation-id	conversation unique identity

request and response messages that the agents can exchange. For example, in our model, when an agent seeks for the value of an attribute of an object in the virtual environment, it must use the "QUERY-REF" performative function since it denotes making a request (see example in section 3.3.2.1).
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Table III . Expected questions from the user and the necessary resources in MASCARET to reply

 III 

		Targets	in	Sources in Mascaret Questions Styles
		Mascaret	
		Questions about properties of behaviors and procedures
		Agent Behaviors:	Agent	-What should I do now?
	Targets	in Procedural Sources in Mascaret Questions Styles → AgentBehavior -What can I do now?
	Mascaret	Execution,		-What can I do in order to …?
	Questions about properties of a certain entity Activity,	-What should I use to ActionName
	Entity Properties: Resource, Agent		-What is EntityName? EntityName?
	Slots,	Role…	→ Knowledgebase	-What can I do with EntityName? -Who?
	Position,		→ Environment	-Who has to ActionName EntityName?
	Sound,		→		-How?
	Animation,		InstanceSpecification	-How can I ActionName EntityName?
	Parent,		→ Entity		-Can I ActionName EntityName?
	Subclasses…	→ Slots		-Why?
					-Why should I ActionName EntityName?
					-Why do I have to ActionName
					EntityName?
					-When can I ActionName EntityName?
					-When	should	I	ActionName
					EntityName?
	The Agent is a specialization of Entity. Here are the generic questions about agents:
					-What is AgentName?
					-What can AgentName do?
					-Where is AgentName?
					-Who is AgentName?

-What are the features of EntityName? -What is the function of EntityName? -What is the Slot of EntityName? -Where is EntityName? -Which one is EntityName? -How would you describe EntityName? -How would you explain EntityName? -How many EntityName we have? -Can you define EntityName? -Can you illustrate EntityName?

Table IV . Relating FIPA-performatives and FML-performatives FIPA-Performatives FML-Performatives

 IV 

	Query Ref	question, ask
	Refuse	Refuse
	Reject Proposal	Criticize
	Request	Request
	Accept Proposal	accept, approve
	Agree	Agree
	Call for Proposal	order, incite
	Confirm	Confirm
	Disconfirm	Disagree
	Inform	Inform
	Propagate	Announce
	Propose	propose, suggest
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Table V . Friedman: Effect of Number of Trials / Time in minutes

 V 

	DV: Time		Execution time	
	Shapiro-Wilk Normality Test		
	Data	Time (execution time) Trial	Consulting assistance 1 2 3	4
	p.value	0.0142097 Mean	5.076766 4.429500 3.121051 2.835630
	Result	Number of errors p < x → Not significant, so we do not respect the normality Standard Deviation 1.897760 2.032023 1.863305 1.242661
	F test of homogeneity of variances (F Fisher Test)	
	Data	Time by Condition		
	p.value	0.02261723		
	Result	p < x → Not Significant, so we don't respect the homogeneity of
		Figure 69.		
	DV: Time			
	Friedman: Effect of Number of Trials / Time	
	Data	Responses		
	p.value	2.2e-16		
	Result	p < x → Significant		

11 

https://www.r-project.org/ (accessed November, 2017) variances Since we do not have significant results in these two tests, we will do non-parametric statistical tests. We need to check for the effect of number of trials on Time (IV corresponds to the number of trials). Here, we have to get p < x in order to be significant:

Friedman rank sum test (for all participants). We use this test when we have more than two trials. The data of each trial is listed in Table V (the mean and the standard deviation of the results of all participants in every trial), and graphically represented in Figure 69.

Friedman: Effect of Number of Trials / Time in minutes

  

Table VII

 VII 

	Trial 4: Wilcoxon: Effect of Condition / Time for Trial4
	Data	Time by Condition
	p.value	0. 002702
	Result	p < x → Significant
			(the
		average time consumed in every trial by all participants in both conditions separately)
		and graphically represented in Figure 71 is used in these tests:
		DV: Time
		Trial 1: Wilcoxon: Effect of Condition / Time for Trial1
		Data	Time by Condition
		p.value	0.04084
		Result	p < x → Significant
		We notice that there is a time difference between the two conditions in the first trial, so
		we have to refer to the average table (Table VII) to check which condition took more
		time to finish the procedure.
		DV: Time
		Trial 2: Wilcoxon: Effect of Condition / Time for Trial2
		Data	Time by Condition
		p.value	0. 001963
		Result	p < x → Significant
		Trial 3: Wilcoxon: Effect of Condition / Time for Trial3
		Data	Time by Condition
		p.value	0. 003155
		Result	p < x → Significant

Table VII . Wilcoxon: Effect of Condition / Time for each Trial

 VII 

	Trials	1	2	3	4
	Condition-ECA 5.463996 5.340858 3.869896 3.517959
	Condition-Icon 4.689536 3.518142 2.372206 2.153302
	Figure 71.				

Wilcoxon: Effect of Condition / Time for each Trial

  

DV: number of times asking for help (number of times to consult instructions)

  5.2.1.2 Consulting assistance (Help)The condition of this application is to know if we do parametric or non-parametric statistical tests. In these parametric tests, we have to get p > x in order to be significant:

	Shapiro-Wilk Normality Test
	Data	Help
	p.value	2.884966e-10
	Result	p < x → Not significant, so we do not respect the normality
	F test of homogeneity of variances (F Fisher Test)
	Data	Help by Condition
	p.value	0.4908131
	DV: Help	
	Friedman: Effect of Number of Trials / Help
	Data	Responses
	IV corresponds to the number of trials
	p.value	0.0003501
	Result	p < x → Significant

Result

p > x → Significant, so we respect the homogeneity of variances

Since not both tests are significant, we have to do non-parametric statistical tests. We have to check for the effect of number of trials on number of Help consultations (IV corresponds to the number of trials). Here, we have to get p < x in order to be significant.

1. Friedman rank sum test. The data listed in Table

VIII

(the mean and the standard deviations of the results of all participants in every trial) and graphically represented in Figure

72

is used in this test:

Table VIII . Friedman: Effect of Number of Trials / Help

 VIII 

	Trial	1	2	3	4
	Mean	36.166667 18.6	6.833333 3.866667
	Standard Deviation 9.667162 11.254424 9.843897 7.532611

Table IX . Wilcoxon: Effect of Condition / Help

 IX 

	p.value	0.2295	
	Result	p > x → Not Significant	
			Mean	Standard Deviation
		Friedman: Effect of Number of Trials / Help Condition-ECA 18.26667 16.57123
	num of help consultations	0 5 10 15 20 25 30 35 40	Condition-Icon 14.46667 15.14279
		1	2	3	4
			Trials	
					is used in this
	test:			
	DV: Help			
	Wilcoxon: Effect of Condition / Help	
	Data	Help by Condition	
	IV corresponds to the presence or absence of the virtual agent

Figure 73. Wilcoxon: Effect of Condition / Help We

  are going to check for the effect of the presence or the absence of the virtual agent at each trial on the number of help consultations. The data listed in Table X (the average of the number of help consultations in every trial by all participants in both conditions separately) and graphically represented in Figure74is used in these tests:

	Result	p > x → Not Significant
	Trial 2: Wilcoxon: Effect of Condition / Help for Trial2
	Data	Help	
	p.value	0.2897	
	Result	p > x → Not Significant
	Trial 3: Wilcoxon: Effect of Condition / Help for Trial3
	Data	Help	
	p.value	0.4012	
	Result	p > x → Not Significant
	Wilcoxon: Effect of Condition / Help Trial 4: Wilcoxon: Effect of Condition / Help for Trial4
			40
	Data	Help	35
	p.value Result	5 10 15 20 25 30 p > x → Not Significant 0.405 num of help consultations
			0
			-5	Condition-ECA	Condition-Icon
		DV: Help	
		Trial 1: Wilcoxon: Effect of Condition / Help for Trial1
		Data	Help
		p.value	0.2026

Table X . Wilcoxon: Effect of Condition / Help for each Trial

 X 

	Trials	1	2	3	4
	Condition-ECA 37	21.26667 9	5.8
	Condition-Icon	35.33333 15.93333 4.666667 1.933333

Figure 74. Wilcoxon: Effect of Condition / Help for each Trial

  

Table XI . Friedman: Effect of Number of Trials / Incorrect Actions

 XI 1. Friedman rank sum test (for all participants). We use this test when we have more than two trials. The data listed in Table XI (the mean and the standard deviations of the results of all participants in every trial) and graphically represented in Figure75is used in this test:

	DV: Number of incorrect actions			
	Friedman: Effect of Number of Trials / Incorrect Actions	
	Data	Responses			
	IV corresponds to the number of trials			
	p.value	1.125e-05			
	Result	p < x → Significant			
	Trial	1	2	3	4
	Mean	2.133333 8.933333	8.566667 5.766667
	Standard Deviation 2.270247 11.682387 8.071591 5.437313

Table XII . Wilcoxon: Effect of Condition / Incorrect Actions

 XII 

		Friedman: Effect of Number of Trials /
	0 2 4 6 8 10 Condition-ECA 7.933333 10.547498 1 2 Incorrect Actions Mean Standard Deviation 3 num of incorrect actions Condition-Icon 4.766667 3.863636	4
		Trials
			is used in this
	test:	
	DV: Number of incorrect actions
	Wilcoxon: Effect of Condition / Incorrect Actions
	Data	Errors by Condition
	IV corresponds to the presence or absence of the virtual agent
	p.value	0.3053
	Result	p > x → Not Significant, so the presence of the virtual agent has no effect on the number of errors

Table XIII . Wilcoxon: Effect of Condition / Incorrect Actions for each Trial

 XIII Table XIII (the average of the number of incorrect actions in every trial by all participants in both conditions separately) and graphically represented in Figure 77 is used in these tests:

	Trial 2: Wilcoxon: Effect of Condition / Incorrect Actions for Trial2
	Data		Errors	
	p.value	0.9336	
	Result		p > x → Not Significant
	Trial 3: Wilcoxon: Effect of Condition / Incorrect Actions for Trial3
	Data	Wilcoxon: Effect of Condition / Incorrect Errors
	p.value	0.1968	Actions
	20 Result		p > x → Not Significant
	0 5 10 15 Trial 4: Wilcoxon: Effect of Condition / Incorrect Actions for Trial4 Data Errors p.value 0.1748 num of incorrect actions Result p > x → Not Significant
				Condition-ECA		Condition-Icon
	-5				
				Trials	1	2	3	4
				Condition-ECA 2	10.933333 11.2	7.6
				Condition-Icon 2.266667 6.933333	5.933333 3.933333
	DV: Number of incorrect actions
	Trial 1: Wilcoxon: Effect of Condition / Incorrect Actions for Trial1
	Data	Errors		
	p.value	1			
	Result	p > x → Not Significant

Figure 77. Wilcoxon: Effect of Condition / Incorrect Actions for each Trial
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LIST OF APPENDICES

Human Toolkit and MARC) we had to connect at the "Behavior Realizer" level.

ECA systems that only provide a Behavior Realizer

Virtual Human Toolkit and MARC provides a "Behavior Realizer", so they can receive a list of behavioral signals, coded in BML language, and generate the corresponding animation on the virtual agent representation they provide in a player.

In the Unity3D interface engine, we developed the UNITYVHBEHAVIORPLANNER, UNITYVHBEHAVIORREALIZER, UNITYMARCBEHAVIORPLANNER and UNITYMARCBEHAVIORREALIZER concrete classes that inherits the abstract classes of MASCARET in order to plan for behavioral signals that are sent to the "Behavior Realizer" of the ECA which realizes them.

MARC's BML is a hybrid version between BML 0.9 and BML 1.0. For this reason, MARC researchers recommend using the BML visual editor that is included within the MARC-toolkit in order to generate BML messages that are valid in MARC. Therefore, we developed the UNITYMARCBEHAVIORPLANNER to generate similar BML scripts.

While the Virtual Human Toolkit accepts the standard versions of BML (0.9 and 1.0) that can also be generated through the UNITYVHBEHAVIORPLANNER that we developed.

Within these two concrete classes, and based on the properties of the communicative intentions (performative, sender, receivers, natural content, resources, emotions…), we override the parseIntention method to parse the received communicative intentions and code the behavioral signals in the relative BML language messages of MARC and Virtual Human Toolkit. In other words, we check for the "performative" property of the communicative intention in these classes, and for example, when the "inform" function is detected, a speech behavioral signal is set based on other properties like the "natural content".

We developed the parseIntention method in the UNITYVHBEHAVIORPLANNER to generate the BML script, which is compatible with the VHToolkit, according to the performative function that is specified in the communication action received. For instance, when the "INFORM" performative is detected, we use the speech behavior to inform the user with the natural content, and if the resource is also specified in the communication action, the animation for indicating this resource is selected. Here is the simple scenario that we implemented: 

Accept Proposal

The action of accepting a previously submitted proposal to perform an action.

Agree

The action of agreeing to perform some action, possibly in the future.

Cancel

The action of one agent informing another agent that the first agent no longer has the intention that the second agent perform some action.

Call for Proposal

The action of calling for proposals to perform a given action.

Confirm

The sender informs the receiver that a given proposition is true, where the receiver is known to be uncertain about the proposition.

Disconfirm

The sender informs the receiver that a given proposition is false, where the receiver is known to believe, or believe it likely that, the proposition is true.

Failure

The action of telling another agent that an action was attempted but the attempt failed.

Inform

The sender informs the receiver that a given proposition is true.

Inform If

A macro action for the agent of the action to inform the recipient whether or not a proposition is true.

Inform Ref

A macro action for sender to inform the receiver the object which corresponds to a descriptor, for example, a name.

Not Understood

The sender of the act (for example, i) informs the receiver (for example, j) that it perceived that j performed some action, but that i did not understand what j just did. A particular common case is that i tells j that i did not understand the message that j has just sent to i.

Propagate

The sender intends that the receiver treat the embedded message as sent directly to the receiver, and wants the receiver to identify the agents denoted by the given descriptor and send the received propagate message to them.

Propose

The action of submitting a proposal to perform a certain action, given certain preconditions.

Proxy

The sender wants the receiver to select target agents denoted by a given description and to send an embedded message to them.

Query If

The action of asking another agent whether or not a given proposition is true.

Query Ref

The action of asking another agent for the object referred to by a referential expression.

Refuse

The action of refusing to perform a given action, and explaining the reason for the refusal.

Reject Proposal

The action of rejecting a proposal to perform some action during a negotiation.

Request

The sender requests the receiver to perform some action.

One important class of uses of the request act is to request the receiver to perform another communicative act.

Request When

The sender wants the receiver to perform some action when some given proposition becomes true.

Request Whenever

The sender wants the receiver to perform some action as soon as some proposition becomes true and thereafter each time the proposition becomes true again.

Subscribe

The act of requesting a persistent intention to notify the sender of the value of a reference, and to notify again whenever the object identified by the reference changes. To formalize the intention of the agents, we implement a cognitive module within MASCARET inspired by BDI (Belief-Desire-Intention) architecture that permits us to generate high-level intentions for the agents. Furthermore, we integrate Embodied Conversational Agents (ECA), which are based on the SAIBA (Situation, Agent, Intention, Behavior, Animation) framework. The embodied agents of the environment have communicative intentions that are transmitted to the user through natural communication channels, namely the verbal and non-verbal communicative acts and behaviors of the ECAs. To evaluate our model, we implement it in a concrete pedagogical scenario for learning blood analysis procedures in a biomedical laboratory. We use this application to settle an experiment to validate the propositions of our model. The hypothesis of this experiment is to assume that the presence of an ECA in a Virtual Environment (VE) enhances the learning performance (or at least does not degrade it) in the context of a learning procedure. The performance is represented by the time of execution, the number of committed errors and the number of requests for assistance. We analyze the results of this evaluation, which partially confirms the hypothesis of the experiment and assure that having an ECA in the VLE does not degrade the performance of the learner in the context of a learning procedure.