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1 INTRODUCTION 

Virtual Reality is a scientific and technological field exploiting computer science and 

behavioral interfaces in order to simulate in artificial worlds the behavior of 3D 

autonomous entities that interact in real time between each other and with one or more 

immersed users through multiple sensorial channels (such as visual and auditory) [1] 

[2]. Accordingly, rich multi-modal human interaction input/output systems are used, 

such as head-mounted displays (HMD), CAVE, motion tracking devices, data gloves 

and body sensors [2]. 

 

 

Figure 1. Virtual reality head mounted displays 

 

Virtual Reality systems exist since 1980s but they have drawn much attention in the last 

few years by the general public [3] [4]. As an example, in 2014, Facebook acquired 



Generation of Communicative Intentions for Virtual Agents in an Intelligent Virtual Environment 

2 

Oculus VR1 as one of the first virtual reality headset released for the general public and 

especially for gamers. Since this date, several vendors like Samsung, HTC, Sony, 

Microsoft, Google, Epson and LG had also released a large panel of different types of 

virtual reality HMDs. Among these HMDs, there are low-cost platforms with simple 

components, such as the Google Cardboard, and advanced platforms, like HTC Vive 

and PlayStation VR (Figure 1). Earlier, professionals have frequently applied virtual 

reality and used complex Virtual Reality devices such as the CAVE and the force 

feedback arms (Figure 2). Even if these devices are useful for industrial and academia 

and interesting for small and medium-sized enterprises (SME), the future of this type of 

devices will depend on the success in game development for public. 

 

Figure 2. Complex virtual reality devices 

Virtual Reality has been used in several professional domains. Beyond gaming, the 

entertainment, mental health and shopping fields are considered among the usages of 

Virtual Reality. Users can be immersed in virtual environments to watch movies, 

virtually visit historical places around the world, find a relaxing environment to reduce 

stress and anxiety, or get a shopping experience through a virtual tour of a store [3] [5].  

In addition, education is an essential domain applying Virtual Reality [6]. Major virtual 

reality applications facilitate training in industrial [7], medical [8] [9], engineering [10], 

sports [11], and military domains [12]. The user can gain more experiences by 

repeatedly executing the procedure and trying different solutions without serious 

expenses. Moreover, virtual reality provides users a safe environment to practice and 

allows them to make mistakes without real impacts. This pragmatic approach of Virtual 

                                                 

1 http://thefarm51.com/ripress/VR_market_report_2015_The_Farm51.pdf (accessed on November, 2017) 

http://thefarm51.com/ripress/VR_market_report_2015_The_Farm51.pdf
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Reality for learning is used by SMEs such as Virtualys and Clarte2 when developing 

new products in this field. But Virtual Reality permits developing new educational 

strategies and this implies new methodologies to create the virtual environment. This is 

a research domain that we call “Virtual Learning Environment” (VLE) [13]. In the 

sequel, we delve more in depth in VLEs and the various known approaches to build 

them. This shall reveal the opportunities left in the literature for us to introduce our 

thesis contribution. 

1.1 Virtual Learning Environment 
We propose to divide the competencies that can be acquired in VLE in three categories: 

1- Gesture competencies: Users can train in VLEs on gestures of concerned 

domain. They can perform required tasks in virtual environments using Virtual 

Reality tools. For instance, a surgical training is applied in [14] using Virtual 

Reality HMDs with Virtual Reality laparoscopic simulators [15]. Trainers apply 

surgical activities, such as holding objects with attached blood vessels and 

separating small vessels from big ones, using real surgical devices that are 

instrumented in the virtual environment (Figure 3). In this study, the impact of 

Virtual Reality on the learning performance were time, instrument path length, 

and angles of used tools. 

 

Figure 3. Virtual reality laparoscopy setup 

                                                 

2 https://www.virtualys.fr, http://www.clarte-lab.fr/ (accessed November, 2017) 

https://www.virtualys.fr/
http://www.clarte-lab.fr/
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2- Declarative knowledge: Other VLEs are used to acquire declarative knowledge 

that refers to static information of processes and events with their related 

attributes, such as teaching soldiers on principles and theories for corrosion 

prevention and control [16]. VR-based multimedia instructions are presented in 

the VLE to transmit training information to participants. The Vizard™ VR 

toolkit3 is used to construct the virtual environment. Participants could answer 

the corrosion-based trivia questions by shooting the displayed answers (Figure 

4). 

 

Figure 4. Interactive learning environment for armies 

3- Procedural knowledge: A VLE can be constructed to train users on applying 

procedures. For example, the solution in [12] train engineers on the maintenance 

tasks of complex engineering system. As shown in Figure 5, trainees have to use 

a virtual hand to interact with objects in the virtual environment in order to 

trigger a chain of actions to complete the procedure. 

 

Figure 5. Procedural training on complex engineering system 

We can notice how much the domains in VR applications can vary. Such systems can 

highly cost and consume plenty of time to be developed and updated. Computer 

scientists have to build the applications based on domain and pedagogical models. What 

                                                 

3 http://www.worldviz.com/vizard-5-1/ (accessed November, 2017) 

http://www.worldviz.com/vizard-5-1/
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is more problematic is that implicitly, the computer scientists may include their own 

vision of pedagogy while implementing pedagogical scenarios provided by trainers. 

Therefore, it is crucial in a VLE to consider the methodologies that directly incorporate 

domain experts and trainers. In this purpose, some methodologies and tools have been 

already proposed in the literature to build a VLE with the ability for end-users to create 

or at least to parameterize the domain and the pedagogical scenarios [17]. Significantly, 

the IMSLD [18], MASCARET [19], #FIVE [20], and SELDON [21] are among the 

major systems that provide such methodologies. 

Furthermore, VLE methodologies can use cognitive science results to propose generic 

algorithm to generate assistance to the learner to improve his learning performance. 

These results include the knowledge about several factors for users, like intellectual and 

emotional, which can support the tutor in building better pedagogical strategies for the 

learning environments [22]. For example, the proposed system in [17] simulates tutor 

agents and their cognitive processes to teach users the risk prevention in dangerous 

working situations. 

This type of VLE requires creating an agent architecture with agents that have 

knowledge bases to hold the domain and pedagogical scenarios along with the 

information gained from monitoring and interacting with users. Moreover, previous 

works, like STEVE (Soar Training Expert for Virtual Environments) [23], have proven 

that virtual learning environment could be improved if they use the same 

communicative channels that humans use. This means that integrating “Embodied 

Conversational Agents” (ECAs) can facilitate the interaction between the user and the 

virtual environment. 

1.2 Embodied Conversational Agent 
The interaction between users and the VLE may not be so natural and could generate 

frustration for users [24]. Therefore, a computer interface with human-like embodied 

conversational agents (ECA) can be used to avoid this frustration. An ECA is a 

computer-generated intelligent agent that is represented with human-like body. It can 

interact with other agents and with users within the virtual environment using verbal 

and nonverbal signals, such as speech, facial expressions and gestures [25]. 

Experiments have proven that ECAs can motivate users in performing tasks [26]. 
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Originally, only an animated face was representing the ECA (Figure 6-a) [27]. It could 

show some facial expressions and apply lips synchronization during vocal 

communication. Afterward, ECAs are represented in virtual environments with 3D 

human-like embodied agents (Figure 6-b). These agents have to use their body parts 

(like head, body, arms and legs) to realize physical behaviors and interact with users. 

The interaction skills of these agents are developed to realize human-like behaviors 

[28]. ECAs depend on their verbal (speaking) and non-verbal communicative 

capabilities (such as body gestures and movements) to establish natural interactions 

with users. 

 

Figure 6. Simple and advanced ECAs 

To increase the accuracy of these behaviors, ECA researches are lately focusing on 

developing these interaction skills so that additional properties, like emotions, can be 

expressed [25]. Prettifying the facial display of the ECA and adding the social presence 

for human-computer interactions can make the ECA more realistic and motivate users to 

confidently interact with virtual environments having ECAs [29]. 

The researchers of most of the released ECA systems do not include complex 

knowledge about the environments in the reasoning capabilities of the ECA. They 

mainly focus on enhancing the physical representation and the communication 

capabilities of the ECA. 

The current research work of ECA systems done by other colleagues, deals more on the 

social, emotional aspect of the relation between the user and the agent than on the 

content of the communication. However, in our work, we will ensure that the ECAs 

have to aware of the context of the virtual environment [30] [31]. They must consider 

the changing states of entities, located in the environment, that are caused by actions 
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triggered by the user and other agents [32]. We will work on modelling the knowledge 

patterns and the reasoning capabilities, defined in the VLE, in order to be able to 

determine the communicative behaviors of the ECAs by analyzing them [28]. 

1.3 Thesis objectives and plan 

In my thesis, and at a conceptual level, we focus on modelling a VLE that can teach 

users the procedures of industrial systems (procedure of usage or procedure to repair the 

system) and that is able to answer to questions they can ask. Compared to classical 

VLEs, we propose to embody the agents using existing ECA platforms. This permits to 

motivate users and to have more natural communication abilities. In our proposition, the 

embodied intelligent agents do not only show natural communication (interaction) with 

the user but also own a knowledge base on the domain model and the pedagogical 

model. 

At an implementation level, we work on building a real-time system able to sustain 

natural interaction with the user in a VLE. To implement this model, we use MASCARET 

as an Intelligent Virtual Environment model [19] [33] that can help giving the 

knowledge base to the integrated ECA so that it can exchange knowledge with other 

agents and with the user. Based on this knowledge base, the intentions of the agents are 

determined and then transmitted to the user through verbal and non-verbal 

communicative behaviors of integrated ECAs. We aim in this work to formalize the 

action of communication in MASCARET. 

Subsequently, we implemented a concrete application of our proposed model. We built 

a real life intelligent biomedical tutoring system and applied it as an experimental 

scenario on several participants. Based on objective performance measures, and similar 

to previous evaluation works [34], we aim to show the efficiency of our proposed 

model. We applied the experimental protocols defined by Hoareau et al. [35]. By 

following these protocols, we can evaluate the interest of virtual reality for learning 

procedures based on the determined performance measures. 

An overview of existing frameworks and tools that could be used to achieve the aimed 

VLE is discussed in Chapter 2 with the functionalities of the components of the 

MASCARET meta-model that we developed. In Chapter 3, we present the global 

architecture of our proposed model. Thereafter, the structure and the implementation 

details of our application are shown in Chapter 4. In Chapter 5, we detail the results of 
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applied experiments and evaluation protocols. In the last chapter, we summarize the 

presented approaches and propose the future perspectives of our work. 
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2 BACKGROUND AND 
LITERATURE REVIEW 

In this thesis, we aim to build a virtual environment that can be used to provide a 

knowledge base to agents. This principle is called an “Intelligent Virtual Environment” 

(IVE) [36], and has been used in several works in the Virtual Learning Environment 

(VLE) (section 2.1). Having an IVE is not enough to formalize the knowledge base of 

an agent and its capacity to reason in the goal of naturally interacting with the user. A 

study of agent architectures is presented in section 2.2. As seen previously, to increase 

the natural aspect with the user, we propose to use Embodied Conversational Agents 

(ECA). Some ECA architectures are presented in section 2.3. 

In this chapter, we will study the work that is already done in existing frameworks and 

tools, which we could use to develop an intelligent virtual learning environment. 

2.1 Intelligent Virtual Learning Environment (IVLE) 
Virtual reality has been already used for educational objectives and had a lot of 

advantages. The impacts of the considered immersion and interaction modes were 

evaluated [37] [38]. The main disadvantage obtained in building VR learning 

applications is that the computer scientists who are developing these applications are 

intervening in the implementation of all phases of the model including the pedagogical 

one. They have to design the pedagogical scenarios by applying their understanding of 

the concerned domain and their own approximation of the learning processes. 
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One idea is to let the different experts (domain expert and pedagogical expert) to 

represent them using an external software. In this case, those knowledge are considered 

as data and can be use in real-time in a virtual environment. This principle is known as 

intelligent virtual environment (IVE) [36]. 

IVE models are used to build intelligent virtual reality systems with intelligent 

operations. It integrates Artificial Intelligence (AI) techniques in the environments of 

VR systems to enhance the interactivity of a virtual environment. IVE permits building 

interactive interfaces that are essential to construct the virtual environments of planning 

and problem-solving applications. Graphical interfaces and natural language interfaces 

can be considered to represent the knowledge of the system to the user. Based on this 

knowledge, reasonable behaviors are executed in the virtual environment. IVEs have 

been used in many applications and research fields. We are focusing in our work to 

embed an IVE in the architecture of the VLE that we aim to build. 

The semantics of the concerned domain, which are addressed by experts and instructors, 

are represented in the VLE using various knowledge patterns. Accordingly, the 

autonomous agents, which represent the tutor agents for example, can be assigned in the 

VLE to interact with each other throughout the virtual environment. These semantics 

play a fundamental role in managing the methodologies of the learning system in a 

VLE. 

The common requirements of a VLE revolve around building a reactive virtual 

environment that includes the domain model. In addition, necessary pedagogical 

strategies have to be defined so that the agents could guide the user acquiring some 

domain knowledge in the virtual environment (a procedure for example). 

Various intelligent technological tools, i.e. pedagogical strategies, which can facilitate 

applying the learning processes, are integrated in the VLEs [13]. STEVE [23] is among 

the initial projects that proposed a virtual environment for training. It has a pedagogical 

agent, called STEVE, which individually helps the user in a virtual environment to train 

on applying procedural tasks for maintaining a boat. 

The generic virtual training (GVT) platform [12] was also established to simplify the 

development of virtual environments with pedagogical tasks that can help in applying 

the domain procedures. The produced models of the GVT platform allowed executing 

more than 50 maintenance scenarios on military equipment. 
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In fact, to reuse the previously well-established VLEs, such as MASCARET [19], 

#FIVE [20], and SELDON [21], and benefit from the implemented operations, we have 

to embed generic models [12] while developing our VLE. Integrating such primary 

characteristics is a fundamental process to develop a reliable VLE. 

2.1.1 SELDON 

The SELDON (ScEnario and Learning situations adaptation through Dynamic 

OrchestratioN) [21] [39] is a dynamic model that focuses on simulating real world 

aspects in virtual environments (Figure 7). It includes cognitive characters that can 

naturally react with human-factors. These characters are used by SELDON to control 

the events while the user is training in the virtual environment. The user has the 

complete freedom to act in the environment, where the system of SELDON can 

naturally responds to these actions. 

SELDON provides reactive adaptation by managing the consequences of the actions 

performed by the user. It enables dynamic adaptation by triggering these outcomes in 

order to assist the user through pedagogical actions. Accordingly, a pedagogical 

scenario is defined to guide the user in performing required tasks. 

 

Figure 7. Artificial world with real aspects 

The SELDON model generates learning situations that corresponds to the activities of 

the user. It depends on the TAILOR and the DIRECTOR modules that constitute the 

system architecture of SELDON (Figure 8). The TAILOR module generates learning 

situations and a sequence of constraints according to the state of the user and the virtual 

environment [40], and the DIRECTOR module, which is considered as the scenario 

planner, generates the scenario based on these constraints. 
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Figure 8. SELDON system architecture 

The orchestration in SELDON is a process that determines the desired and feasible 

scenarios in a learning environment. It monitors these scenarios in order to accurately 

manage and execute them. The model of SELDON adapts with the running scenario to 

dynamically control the behaviors. It depends on the constraints of current situations in 

the scenario that are generated by TAILOR. 

While monitoring the user who is working on the training scenario, SELDON considers 

her/him as one of the virtual characters defined in the virtual environment. It works on 

expecting the actions of the user and their consequences through the planning process of 

the model in order to predict upcoming activities. 

SELDON is considered as a model that can dynamically generate scenarios in the 

virtual environment after respecting the activities of the user in real time. These 

activities updates the beliefs of the system in order to determine the state of the virtual 

environment and select necessary pedagogical actions. 

2.1.2 #FIVE 

#FIVE (Framework for Interactive Virtual Environments) is a framework that can be 

used to build interactive virtual environments. It aims at facilitating the management of 

the environments in VR applications by:  
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- simplifying the declaration of the entities’ behaviors in the virtual environment 

- defining the available collaborative interactive techniques 

- building compliant virtual environment to be used on various platforms 

(Computer, CAVE, Tablet...) and by multiple users 

- providing the developer with instructions to ensure constructing an interactive 

and collaborative VE 

Two core modules constitute the model of #FIVE: the Relation Engine and the 

Interaction Engine (Figure 9). The Relation Engine determines the behaviors of the 

entities in the virtual environment. However, the Interaction Engine manages the 

interactions with the user. A communication protocol is also established within these 

modules to permit the communication between all the modules of #FIVE that can 

facilitate executing the behaviors (Figure 9). 

In addition, these modules permit the developer to manage the behaviors and the 

relations with the entities in the VE, and to determine the manipulation techniques of 

these entities. 

 

Figure 9. Architecture of #FIVE 

#FIVE provides the developer with an abstract layer to construct an interactive, 

collaborative and distributed VEs. The developer can integrate the #FIVE model in any 

VE without any restrictions by using any interface engine. The developer has to discuss 

with the domain expert to get the instructions of the concerned domain in order to code 

them in an interactive and collaborative environment. Later on, this environment can be 

distributed to other usages. 

#FIVE permits the developer to reuse components from other #FIVE-based application, 

such as the properties and the behaviors of the entities in the VE. For example, the 

architecture of the #FIVE-based application in Figure 10 shows how the Relation and 
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Interaction engines of #FIVE (blue) can simultaneously use the previously defined 

components of #FIVE-based applications (red) with new components (green) in a new 

#FIVE application. 

 

Figure 10. The architecture of a #FIVE-based application 

The #FIVE model is still in the development phase. The authors are trying to extend the 

control of the avatars and to integrate additional interactive and collaborative manners. 

Furthermore, they are working on considering more independence mechanisms in the 

framework to distribute #FIVE virtual environments in various 3D interface engines. 

2.1.3 MASCARET 

MASCARET is a Multi-Agent System for Collaborative, Adaptive and Realistic 

Environments for Training [19] [33] [41] [42] that can be used to define an intelligent 

virtual environment. It provides a virtual reality meta-model to describe the semantic of 

the virtual environment in order for the user and the agents to interact and perform 

tasks. The structure of the environments, the ontology of the domain, the activities and 

interactions of the agents and the user, and the knowledge patterns of these agents, are 

among the main aspects represented in the MASCARET meta-model using the Unified 

Modelling Language (UML). 

In MASCARET, pedagogy is considered as a specific domain model. The same modelling 

language (UML) is used to describe the domain and the pedagogical model. The 

pedagogical model is represented by the pedagogical scenario. Koper [15] considers that 

a pedagogical scenario is composed of five main elements: pedagogical objectives, 

pedagogical prerequisites, pedagogical activities, pedagogical organizations and 

pedagogical environments. In Mascaret, pedagogical scenarios are implemented through 

a chain of actions and activities. Those actions and activities can be either pedagogical 

actions, like explaining a resource, or domain actions, like manipulating an object. 

Class diagrams are used in MASCARET to describe the different types of entities, their 

properties and the structure of the environment. Asynchronous discreet entity behaviors 
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are defined through state machines. Activities are designed as predefined collaborative 

scenarios (called procedures), which represent plans of actions for virtual agents or 

instructions provided to users for assisting them. The way the activity is interpreted by 

the agents is defined using specific agent behaviors. 

To embed the MASCARET meta-model in a virtual application, the following steps have 

to be executed: 

1- The model of the virtual environment has to be designed by the domain experts 

using a UML modeller. The experts must use UML diagrams (class diagrams, 

activity diagrams and state machines) to define the class models, the behavioral 

models and the actions of the user. 

After finishing the design of the VE using the UML modeller, it has to be 

exported into an XMI file. Nevertheless, this process should be executed upon 

modifying or adding any element in the UML diagrams. 

2- To construct the virtual environment and the shapes and geometries of objects 

that should occur in it, developers have to design the scene using 3D entities that 

are constructed by designers using a 3D modeller. The developers have also to 

define the behaviors of these entities, and a MASCARET plugin has to be 

imported to the 3D modeler in order to reference the UML model (XMI file). 

3- The user has to launch the simulation platform that loads the virtual environment 

and all the defined models, such as the domain model and the pedagogical 

model, and activates the interactive interfaces. 

Using MASCARET, end-users (pedagogue, domain expert and domain trainer) are 

directly involved in the creation of the VE (as seen in Figure 11). They are responsible 

for constructing all the elements of the virtual environment for learning (domain 

scenario, pedagogical scenario…). 

The pedagogue defines the pedagogical scenario to assist the user in performing the 

domain application in the VE. This scenario consists of a sequence of pedagogical 

actions that should be linked to the domain actions that the user should perform and to 

the objects of the VE that should be manipulated. The domain experts, who define the 

activity that the user should learn, formalizes the sequence of actions and interactions 

with the objects of the environment. 

The domain trainer defines pedagogical scenarios (the sequence of situations in which 

the trainee acts in the environment) and the pedagogical assistance provided by the 
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system in real time. To define the scenarios, the domain trainer uses (1) the environment 

and the objects it contains, (2) the potential actions of the user on the objects and the 

good practices (defined by the domain expert), and (3) the generic pedagogical actions 

(defined by the pedagogue). 

 

Figure 11. Mascaret workflow to design a virtual environment for learning 

2.1.3.1 The agent metamodel 

The same concepts for defining the models, using the UML, are used in MASCARET to 

build the meta-model of the multi-agent system to simulate the activities of the user in 

the environment. These activities require manipulating objects in the virtual 

environment. Therefore, MASCARET uses the same language (UML) to define the 

activities and the environment. Several agent meta-models were proposed in the 

literature and used UML but did not incorporate modelling the environment with the 

activities. 
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Figure 12. The agent meta-model of MASCARET 

Figure 12 represents the concepts that are involved in building the agent meta-model of 

MASCARET: 

- Multi-Agent System and behaviors of the agents: The agent is an instance in the 

environment that is characterized with several properties and actions that are 

actually formulated in the AgentClass (Figure 12). It can perform behaviors and 

communicate with other agents. MASCARET provides a multi-agent system to 

define several agents that can execute several behaviors, such as the pedagogical 

behavior. Each agent has a name and is hosted by an agent-platform. Any 

property, action, behavior or even an agent in MASCARET can be easily added or 

modified without affecting other elements in the model. 

MASCARET implements the model of JADE [43] to describe the behaviors of the 

agents. The behaviors consist of a set of actions that are arranged in a procedure 

and scheduled by MASCARET. 

- Communication of agents: A standard communication protocol is considered to 

facilitate the communication between the agents. MASCARET uses the FIPA 

(Foundation for Intelligent Physical Agents) protocol that adopts the FIPA-ACL 

(Agent Communication Language) specifications. Each agent in MASCARET has 

a communication behavior that is responsible for managing and analyzing the 

FIPA-ACL messages that are exchanged with other agents. The purpose of the 

FIPA-ACL message is represented by one of the 23 performative functions 

proposed by the FIPA. The agents of MASCARET uses the REQUEST 

performative to obtain the value of a property or to make it execute an action. In 

response, these agents use the INFORM performative to inform about the value 
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of the specified property or to confirm executing an action. The researchers and 

developers of MASCARET are still working on using the other performatives to 

evolve the communication aspects of the agents. 

- Organization: To endow modularity to the behaviors of the agents, MASCARET 

defines an organization according to the specific rules of the behaviors and the 

agents. Based on the structure of the environment and the defined agents, the 

organizational entity is created to specify the rights and the duties of these 

agents by structuring their roles using the RoleClass (Figure 12). A role 

describes the responsibility of the agent and determines the actions it can 

execute. An agent could be prevented from applying certain actions that another 

agent is responsible to execute. 

The organizational entities of MASCARET are defined in UML since it depends 

on the properties of the environment and the agents which are also defined in 

UML. Therefore, the behaviors of the multi-agent system are described using an 

activity diagram (considered as an organization) to ensure implementing the 

rules of the behaviors and defining the role of each agent. The organizations and 

the roles are linked to the environment in order to be able to use its entities 

(resources) that are defined using the Entity class. 

An XML file is dynamically managed in MASCARET to instantiate the entities of 

the environment, the agents and the organizational entities. 

2.1.3.2 Pedagogical Scenario 

The adaptability of the VLE ensures executing behaviors depending on the context of 

the environment and on the effectiveness of activities performed by the user. For this 

reason, it is not typical to statically assist the user through a learning scenario. A 

pedagogical scenario with appropriate pedagogical activities has to be defined and 

linked to the requested activities and their relative properties [18]. 

The pedagogical scenario is an organization for learning activities. It is implemented in 

MASCARET and includes several properties: the objectives of the domain scenario, a list 

with the prerequisites of actions, the virtual environment, the activities of the 

pedagogical scenario, and the pedagogical resources that are linked to the entities of the 

environment that should be manipulated by the user to perform required actions. The 

agents could reason on the properties of a pedagogical scenario which are considered as 

its knowledge base. 
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Several tutoring models with pedagogical scenarios are previously built in VR, like 

FORMID [44]. The learning behaviors of the pedagogical scenarios in these models 

depend on the continuously estimated states of manipulated objects but are previously 

chosen at the design stage. Such models miss some significant characteristics like 

genericity and do not separate between the procedural scenarios and the pedagogical 

ones. 

Figure 13 shows the activity diagram of an application that integrates the MASCARET 

meta-model to define two roles: the domain actions for the trainee, and the pedagogical 

actions for the virtual teacher. The user does not know a priori how to perform the 

domain actions and which objects to manipulate. Therefore, a pedagogical scenario that 

includes all necessary properties is appended. We can view in Figure 13 how the 

pedagogical actions are linked to the domain actions and to the entities. This procedure 

starts with an action to explain the objective of the domain scenario that the user should 

attain. 

 

Figure 13. UML activity diagram of a MASCARET application with a domain model 

for the trainee and a linked pedagogical model for the virtual teacher 
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The domain teacher is capable of updating any element in this generic UML activity 

diagram, such as adding/removing a pedagogical action or even changing the 

description of this action. To consider these updates, the XMI file has to be exported 

from the UML modeller upon each update. 

While executing the scenarios, the virtual agents monitor the activities of the user to 

provide necessary assistance when required. The agent in MASCARET depends on the 

semantic modelling of the virtual environment and the activities [33].  

In the following section, we discuss the most significant cognitive agent architectures, 

BDI, SOAR and ACT-R, and their main functionalities that could be embedded in the 

structure of the IVLE. 

2.2 Cognitive architectures 

Intelligent systems (like autonomous agents and intelligent tutoring systems) can 

recognize, reason, learn, and act intelligently using the accessible knowledge in 

intelligent virtual environments. The infrastructure of such systems can be defined using 

a cognitive architecture which applies various human intelligent aspects (cognitive 

functions). 

Cognitive architectures are produced to build the structure of intelligent systems. It 

represents the knowledge of these systems, which is composed of the contents of the 

concerned domain and the acquired knowledge of performed activities in the 

environment [45] [46]. Most of the intelligent tutoring systems integrate cognitive 

architectures in their structures in order to provide accurate explanations to the user in a 

virtual learning environment. 

An agent with a cognitive architecture can consider all the knowledge patterns of the 

concerned domain, the pedagogical scenarios, the actual context of the environment and 

the impacts of user’s activities [47] [48]. Several modules that represent these 

knowledge patterns collaborate to include the history of attained processes and the 

altered states of environmental entities. The user starts executing the procedural 

scenario without knowing the steps that should be followed. The cognitive resources 

can be used to direct the user for applying the desired actions and manipulating the 

proper objects. When the user gains the ability to perform the procedural scenario, the 

procedural knowledge is considered to be acquired and less cognitive requests are 

needed [49]. 
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It is essential to embed a significant cognitive architecture when building a VLE, so that 

the roles of its virtual agents can be promoted. According to [50], a cognitive 

architecture provides the agents with knowledge patterns and reasoning capabilities, 

namely: 

 Semantic knowledge: The knowledge which is known a priori by the agent, 

such as the knowledge about the plan of actions and entities in the virtual 

environment. 

 Perception to knowledge modifications: Acquiring new or updated states of 

entities in the virtual environment. 

 Cooperation of agents: The communication between the agents while 

cooperating to achieve individual or collective goals. 

 Planning: Planning for an arranged sequence of actions with their expected 

impacts and consequences. 

 Reasoning: Considering all the facts that could influence forming the sequence 

of actions. 

Based on such capabilities, the intelligent behaviors can autonomously be prepared and 

handled by the virtual agents of the VLE. Moreover, the agents in the VLE cooperate to 

perform the assigned activities by sharing their knowledge bases. They communicate 

with each other by exchanging messages built upon an agent communication language. 

2.2.1 Significant cognitive agent architectures 

Different models and architectures, like BDI (Belief-Desire-Intention), SOAR (State, 

Operator, and Result) and ACT-R (Adaptive Components of Thought-Rational) are 

developed to build cognitive frameworks for intelligent agents in order to be able to 

plan for human-like natural behaviors across different domains and applications. 

The Belief-Desire-Intention (BDI) architecture [51] [52] [53] is one of the best 

approaches that are considered to build an intelligent system for tutor agents in order to 

illustrate human reasoning models. It assigns short and long term memories among the 

knowledge base of these agents. The short term memory in BDI includes the beliefs and 

facts about the virtual environment [54]. It uses a database to save the context of the 

virtual environment with the continuously updated states of its virtual entities. 

Emotional [55] and social states of agents, forming its internal state, are also estimated 
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according to obtained context. Therefore, all patterns of knowledge are accordingly 

modified upon the perception of any activity. 

Every agent holds a long term memory [54] that holds the plan of goals and desires it 

has to attain, such as the tutoring and the pedagogical objectives. The agent depends on 

its beliefs in order for suitable intentions to be selected. Behaviors and actions are then 

assigned to the agent to achieve its determined desires. 

The beliefs, desires and intentions are considered as the mental attitudes carried by the 

BDI agents which reactively cooperate to achieve targeted objectives (Figure 14). The 

BDI architecture focuses on constructing the intentions of the agents to represent their 

commitments and execute particular plans of actions [56].  

Several specifications of BDI architectures have been already released, such as formal 

specifications using standard software engineering tools [57] and procedural concepts 

for building procedural reasoning systems. These BDI architectures are still the most 

durable agent architectures that are being used [58].  

Researchers in [59] improved the BDI architecture by relating the representation of 

knowledge in the framework to the expressed knowledge of experts through particular 

learning techniques. Consequently, several agent-based systems, like Jadex [60], 

adopted the BDI-model for the implementation of intelligent agents. 

 

Figure 14. The BDI architecture 

The State, Operator, and Result (SOAR) cognitive architecture [61] focuses on building 

the agent’s intelligence according to its acquired experience. Recent SOAR evolutions 

cover human-like behaviors by appending educational mechanisms, long term memory 

and various types of knowledge (Figure 15). These mechanisms have a major role to 

develop reasoning, planning and decision making processes in the VLE. 
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Figure 15. Memory structures in Soar [62] 

The long term memory holds the procedural knowledge that handles the most applicable 

behaviors of the concerned model, while the semantic memory holds the context of the 

virtual environment. However, the working memory is considered as the short term 

memory responsible for processing the current event the agent is working on. The 

proceedings of modified states are saved inside the episodic memory which is recently 

altered by [63]. When the required states, which are set in the working memory, are 

obtained within the environment, the agents can then realize essential behaviors. 

SOAR and BDI provide quite similar reasoning capabilities to the agents [64]. They 

both require a knowledge base to store various facts and inputs from the context of the 

virtual environment. They use a decision-making procedure to generate intentions based 

on the desired output or goal. However, SOAR considers the elementary actions, but not 

plans, i.e. sequences of actions, and does not offer flexible means to define the 

preference semantics of the reasoning phase that generates the intentions of agents [64]. 

The ACT-R (Adaptive Components of Thought-Rational) [65] is a cognitive 

architecture that applies a modular decomposition of cognition for modeling human 

behaviors [66] [48]. It proposes a theory to integrate these modules in order to build 

reasonable cognition (Figure 16). Among these modules, we have the perceptual 

module for recognizing visual entities in the environments, the motor module to manage 
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and apply actions, the declarative module to get information from the long-term 

memory, the goal module to follow the steps to solve assigned tasks, and the production 

module that organizes the tasks of all modules. The production module cyclically 

demands information from other modules using the operations of the system. Certain 

constraints are requested by sending and receiving chunks through buffers.  

The ACT-R system can only launch one production to retrieve the knowledge of a 

certain memory, while with SOAR several productions could be simultaneously 

launched. 

The architecture of ACT-R has been embedded in several psychological studies and 

VLEs, such as the shared work with fRMI data [67]. However, ambitious strategies for 

problem solving and reasoning are still needed. 

 

Figure 16. The main modules of ACT-R [67] 

2.3 Embodied Conversational Agent (ECA) 
The Embodied Conversational Agent (ECA) is a computer interface that is represented 

as a human-embodied agent that can naturally interact with the user. Verbal and non-

verbal behaviors can be realized by an ECA including vocal speech, facial expressions, 

hand gestures and other body movements. These behaviors allow the ECA to 

communicate with the user in the most human-like methods which could motivate the 

user to respond and interact [68]. 
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The embodied agents have to be characterized with several capabilities to reach the 

level of human intelligence throughout their interactions with the user, such as planning, 

and emotional reasoning [69]. However, the influence of using an ECA for interacting 

with the user can be evaluated by reviewing their responses and comparing the results of 

performed scenarios [68]. 

2.3.1 Interest of ECA for virtual learning environment 

ECAs are progressively being developed to adopt the most realistic human visual 

representation and communication capabilities [70]. They are considered as computer 

interfaces that could replace human tutors, for example, in practicing and learning 

scenarios. During the interaction with the user and the virtual environments, these 

agents have the ability to execute verbal and non-verbal behaviors like speaking, facial 

expressions, body gestures and locomotion activities. Experiments, like in [26], prove 

that involving ECAs in learning scenarios as tutor agents can motivate the user to 

accomplish required tasks. 

The capabilities of an ECA can draw the attention of the user with the most common 

and natural manners, such as gaze and deictic gestures. For instance, it would be 

considerable if the ECA looked at an object and pointed to it while moving in the virtual 

environment and discussing the required task with the user. Such human-like manners 

are essential to provide the user with realistic contexts and motivate her/him to naturally 

interact with the ECA and consider the ECA as a human tutor. 

Several ECA projects have been developed so far, but ECA with light and specific 

domain knowledge, like STEVE [23] and MAX [71], were initially created. Latest ECA 

researches are further focusing on achieving more credible intelligent ECAs by 

improving the natural interaction (human-like), the intelligent capabilities, the emotions 

and the facial expressions. The Virtual Human Toolkit4 [72], Greta5 [73] and MARC6 

[55] are examples of the currently utilized ECA platforms. 

                                                 

4 https://vhtoolkit.ict.usc.edu/ (accessed November, 2017) 

5 https://perso.telecom-paristech.fr/~pelachau/Greta/ (accessed November, 2017) 

6 http://www.marc-toolkit.net/ (accessed November, 2017) 

https://vhtoolkit.ict.usc.edu/
https://perso.telecom-paristech.fr/~pelachau/Greta/
http://www.marc-toolkit.net/
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2.3.2 ECA platforms 

Among the initially established ECA platforms, STEVE (Soar Training Expert for 

Virtual Environments) [23] was used as a tutor agent to execute particular pedagogical 

scenarios. Using SOAR, STEVE was developed to interact and train the user on 

predefined operations of a ship’s control panel. STEVE is an interactive system since it 

interprets various input sources from the user such as keyboard strokes, mouse clicks, 

and voice commands. STEVE interacts with the user through an animated embodied 

agent that has a physical representation of a human-like face and body. It uses gestures 

to communicate while navigating in the virtual environment.  

In consequence, the primary tasks of STEVE revolve on demonstrating required actions 

to the user and on observing the performed actions. STEVE can support the user when 

needed by replying to inquiries about prior actions. 

The concerned domain knowledge of STEVE includes the initial states of entities in the 

virtual environment, and the procedural scenario that should be followed. Nevertheless, 

STEVE is characterized with several human-like capabilities which weren’t provided by 

previously utilized agents. It can realize several human-like actions and movements, 

reply to inquired questions, use gestures and gaze actions, follow implementing the 

sequence of actions of assigned procedure, and uses its memory components to record 

performed actions and altered states of the entities. For this purpose, several 

components are supplied by the architecture of STEVE:  

1- Simulator: applies the behaviors in the virtual environment 

2- Visual Interface: permits the user to interact with the virtual objects 

3- Audio Component: needed to vocalize and to accept vocal messages from the 

user 

4- Speech Generation: transforms the created text messages into speech in order to 

be vocally transmitted to the user 

5- Speech Recognition: receives vocal messages from the user and transforms them 

into natural language text in order to be analyzed by the system 

6- Agent: represented by an ECA which is responsible to naturally realize the 

selected behaviors 

Moreover, the architecture of STEVE is composed of the three main modules [74]: 

perception, cognition and motor control (Figure 17). STEVE uses these modules 

simultaneously in order to execute desired scenarios. The perception module recognizes 
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the consequences of actions performed by the user and the agent and records the altered 

states of entities. The cognitive module analyzes the recognized input stream and 

relatively reviews the domain knowledge components in order to plan for the objectives 

to be achieved. Appropriate actions and motor commands are then specified and sent to 

the ECA in order to be realize. 

STEVE uses a stack to manage the planned tasks of a given scenario. The sequence of 

actions is set in this stack in order to progressively be executed. To perform an action, 

STEVE checks for the position of the object that should be manipulated, and then 

moves to its location. Before applying the action, STEVE points to the object and 

describes the action that should be performed. For example, as in Figure 18, STEVE is 

pointing to the power light and vocally explaining the action that should be performed. 

After demonstrating the action, obtained results are shown. 

 

Figure 17. The three main modules of STEVE 

As a matter of fact, actions and inquiries of the user are continuously being monitored 

by STEVE. When a performed action is recognized, STEVE compares it with the 

current required action in the procedure. If the performed action is valid, obtained 

results are explained to the user and the following action is stated. While if an 

inappropriate action is detected, STEVE rejects the action and re-explain the desired 

one. 
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Figure 18. Steve describing the actions to be performed 

The user can direct various questions to inquire about the required actions and the 

environmental objects to be manipulated. For instance, the user can ask about the next 

action that should be performed (User: “What should I do next?”), STEVE has then to 

inform the user with the specifications of the required action. The user might fail to 

perform this action, and asks STEVE to show its appliance (User: “Show me what to 

do”), STEVE has then to demonstrate the action in the virtual environment. 

After all, STEVE is just a mono-agent system that uses a virtual agent to act as a tutor. 

In certain scenarios, having several agents with different roles can be a major 

requirement to implement required solutions. For this reason, it is necessary to use a 

multi-agent system where further operations could be involved.  

Besides, the pedagogical strategies defined in STEVE are constant. It is preferable to be 

dynamically considered according to the acquired knowledge bases of the agents. For 

this reason, the learning environments must be flexible and adaptable where several 

intelligent capabilities have to be appended to the utilized ECA platforms. ECAs like 

Greta, MARC and the Virtual Human Toolkit can be integrated in such environments 

since they differ in complexity, graphical output and application domains. 

2.3.2.1 Greta 

Greta [75] [76] is an ECA platform that focuses on two main properties, believability 

and individuality. These properties enhance the interaction skills of embodied agents 

represented in the virtual environments in order to naturally interact with the user by 

realizing verbal and non-verbal communication behaviors. In Greta, the context of the 

virtual environment is also considered to apply synchronized multimodal behaviors. 
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This can increase the believability of the agent and motivates the user to communicate 

with the ECA. 

 

Figure 19. The architecture of Greta 

Furthermore, the inner states of the ECA are also considered in Greta. The real feelings 

and the individualized properties of each ECA, such as emotions, culture, mood, gender, 

and age, can be set. The modular structure, functionalities and the communication 

protocol of the ECA are defined in the architecture of Greta using the SAIBA 

framework [77]. SAIBA, which is detailed in the following section, is responsible for 

representing the communicative intentions and the communicative behaviors that the 

ECA has to realize using the two standard XML languages FML and BML. 

Among the architecture of Greta (Figure 19), the Listener Intent Planner (LIT) receives 

the input from the user including audio and visual information, such as vocal messages 

and head nods. The communicative intentions of the agent are then chosen and 

represented in the FML-APML script. It is defined by the intent planner (first module in 

SAIBA) using an input file, where the communicative intentions of the ECA are 

determined and sent to the behavior planner (second module in SAIBA) via the 

Psyclone messaging system [78]. After that, the behavior planner generates the 

corresponding communicative behaviors and represents them using a BML script. The 

signals of these behaviors are sent to the behavior realizer (third module in SAIBA) to 
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produce MPEG4 FAP-BAP animation files in order to display the realized behaviors on 

the ECA using the FAP-BAP player [79]. In addition to the FML-APML input stream, 

the mentioned discrete high-level inner states and the set of expressivity parameters are 

linked together to build MPEG4 animations that can demonstrate the behaviors of an 

individual ECA in the platform of Greta (Figure 20). 

 

Figure 20. The individualized actions of Greta 

2.3.2.2 Virtual Human Toolkit 

The project of the Virtual Human is constructed at the Institute for Creative 

Technologies (ICT) [80]. Its objective is to build and naturally structure embodied 

agents that can realize human-like actions while interacting with the user during the 

implementation of social trainings in the virtual environments (Figure 21). 

 

Figure 21. Virtual Humans 



Chapter 2: Background and Literature Review 

     31 

 

In fact, Virtual Humans (VH) are autonomous agents that perceive their environments 

and recognize performed activities in order to accordingly update their beliefs. They 

model their own and other’s believes, desires and intentions, and follow the assigned 

plans to naturally interact with the user by realizing verbal and non-verbal 

communication behaviors. Furthermore, various roles can be handled by these agents 

for supporting the user in executing training scenarios [80]. 

To naturally collaborate with the user and other cooperating agents, several capabilities 

are carried out by the VH agents [69], such as the automated speech recognition, 

perception using the Computer Expression Recognition Toolbox (CERT) [81], task 

modeling using the DTask [82], natural language generation [83], and the text-to-speech 

using the Festival engine [84]. 

Consequently, the ICT developed the architecture (Figure 22) of the Virtual Human 

Toolkit that defines, at an abstract level, the essential modules that can properly realize 

the functionalities of the virtual human. The VH Toolkit is composed of several 

modules, tools, libraries and 3rd party software that cooperate to attain these 

functionalities. 

 

Figure 22. The Virtual Human Architecture 
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When the user verbally interacts with the system, the speech recognition module 

transforms the speech into a natural language text that can be used for reasoning by the 

dialogue manager of the agent. However, the audio-visual sensing relies on sensory 

input that can also recognize the nonverbal communication behaviors.  

After analyzing these inputs and reviewing the internal state, the VH works on building 

the communicative intents in order to properly reply to the user. Based on these intents, 

suitable verbal and non-verbal behaviors are generated. The behavior realization module 

of the VH synchronizes the realization of all behaviors such as the speech, lip synching 

and facial expressions. 

2.3.2.2.1 Lists of questions and answers 

Among the integrated modules and tools within the VH Toolkit architecture, and upon 

the creation of a VH character, the NPCEditor [85] is used. The NPCEditor is a text 

classifier that acquire the speech of the VH characters that corresponds to the questions 

asked by the user. It depends on a dialogue manager that contains a list of questions that 

the user might ask while interacting with the VH, and linked to a list of answers that the 

VH characters have to verbally realize among the communication behavior [86]. 

The NPCEditor includes a .plist file that contains the lists of questions and answers and 

their essential properties such as ID, Text, Speaker, Type, Domain and Score. These 

properties are used to properly link answers to expected questions listed (as shown in 

Figure 23). The dialogue manager can be modified in the NPCEditor to specify new 

lists and update the properties of the linked questions and answers [86]. 

 

Figure 23. Linking questions and answers using the NPC Editor 
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Although the questions can be easily managed by the NPCEditor, still it is not 

considered really dynamic or generic when all possible questions have to be listed. For 

example, if we have three objects (OBJ1, OBJ2 and OBJ3) in the virtual environment, 

we have then to include all possible questions about them, such as: 

- What is OBJ1? 

- What is OBJ2? 

- What is OBJ3? 

Alternatively, we propose a solution to this problematic in our model (in Chapter 4) 

where generic questions can be adopted. 

2.3.2.3 MARC 

MARC is a Multimodal Affective and Reactive Character that is created to examine the 

influences of expressions of virtual agents when interacting with the user among 

affective computing applications, and their abilities to appropriately respond with real-

time affective behaviors and expressions (Figure 24) [87]. 

 

Figure 24. An affective computing application of MARC 

The real-time interactions and the emotional models are frequently limited in the 

previously developed virtual agent frameworks. However, in MARC categorical, 

dimensional, cognitive and social emotional approaches are implemented. The 

framework of MARC allows examining various emotional models and considering 

multimodal interactions with expressive virtual agents [55]. 

MARC can be integrated in any suitable environment such as a VLE. The tools found in 

such environments can communicate with MARC to manage the behaviors that he 

should realize in real-time by sending messages using the Behavior Markup Language 

(BML). Moreover, a toolkit with a set of tools that can manage the characters of MARC 

and their properties is lately released (Figure 25) [88]. 
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Figure 25. General Overview on MARC Architecture 

2.3.3 SAIBA Framework 

The multimodal information that can be obtained from the user must be integrated in the 

architecture of the embodied agents to improve their interaction performance. Most 

ECA systems, such as Greta, MARC and Virtual Human Toolkit, worked on finding a 

common real-time multimodal behavior generation framework that can independently 

generate communicative functions to be realized by these ECAs [89]. Accordingly, the 

SAIBA (Situation, Agent, Intention, Behavior and Animation) framework was created 

[90] [91]. 

SAIBA is a framework that can be integrated in an ECA system to generate natural 

multimodal behaviors. This framework takes into consideration how the agents should 

reason about what it has to do or say. It generates the natural multimodal 

communicative intentions and behaviors, which should be realized by the ECA, and 

represents it using normalized languages. 

The SAIBA framework is composed of three separated levels of abstraction: 1) 

representing the planned communicative intentions (Intent Planner), 2) planning for a 

multimodal realization by selecting the communicative behaviors of planned intentions 

(Behavior Planner), and 3) the realization of the communicative behaviors (Behavior 
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Realizer) on a virtual agent (Figure 26). However, the separation of communicative 

intentions and the realization of its behaviors is supported in SAIBA through two 

interfaces using the Function Markup Language (FML) [92] [89] and the Behavior 

Markup Language (BML) [91] [90] respectively. 

 

Figure 26. SAIBA framework for multimodal generation 

The FML is used to represent the communicative intentions for the interface between 

the first two stages (Intent Planner and Behavior Planner) in order to plan for the 

communicative behaviors in the second stage. Likewise, the BML is used to represent 

the multimodal behaviors in the interface between the Behavior Planner stage and the 

Behavior Realizer stage. 

2.3.3.1 Intention Planner: planning of communicative intents 

All knowledge patterns defined in the cognitive architecture can be used by the Intent 

Planner module of SAIBA to determine the communicative intentions of the agent and 

without any reference to physical behaviors. The communicative intentions consist of 

performative actions, emotions and references to the context of the virtual environment. 

These intentions are coded using the FML script. This language still lacks a unified 

standard, although several systems following this framework are trying to propose their 

own version [89]. 

The properties of existing ECA systems helped in structuring the FML script to 

represent the selected communicative intents. The FML is created based on the 

Multimodal Utterance Representation Markup Language (MURML) used in MAX [93], 

and mainly on the FML-APML (FML-Affective Presentation Markup Language) [94] 

which was created for Greta. However, the Virtual Human Toolkit also uses an FML-

like concept to generate the communicative intents of its agents. 

Based on these contributions, an FML specification is proposed by [89] with several 

important components: 
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1- Contextual information and person characteristics: Includes detailed information 

about the semantics of the virtual environment and the characteristics of the user 

that is interacting with the system. 

2- Communicative actions: Verbal and non-verbal communicative actions are 

chosen so that the agents can handle their specified roles. 

3- Emotional and mental states: Suitable emotions are selected to increase the 

motivational effect of communicative intents, and the mental states such as 

remembering and planning are considered as cognitive processes. 

Accordingly, the FML considers several important matters to define the communicative 

intentions: 

1- Various contextual information 

2- Classifying communicative actions into categories 

3- Distinguishing planned intents from unconscious intents, like emotions 

4- Dividing the communicative intents into small chunks with particular timing 

information in order to be processed separately 

5- Defining the structure of the FML script in an XML-like syntax with rules to 

embed tags 

6- Dealing with one or several ECAs relatively 

7- Handling one or multiple roles to the agents 

The proposed FML specification is considered preliminary and has many limitations, 

but it facilitates generating the communicative behaviors by transforming the FML 

chunks contents into a BML script (Figure 27). 
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Figure 27. Proposed FML Specification 

2.3.3.2 Behavior Planner: planning of communicative behaviors 

The communicative intentions are parsed by the Behavior Planner module, where 

multimodal behaviors are automatically selected and coded using the internationally 

adopted BML language [95]. The properties of these behaviors and their timing 

information are described in this BML script. It is then forwarded to the Behavior 

Realizer to be realized by an ECA [90]. 

The communicative Behavior Markup Language (BML) is an XML based language that 

is used to represent and coordinate different types of verbal and non-verbal behaviors 

including speech, gestures, facial expressions, and body movement [91]. The Behavior 

Planner computes the start and the end timing information of each communicative 

behavior in order to be realized consequently. For instance, here is a simple BML script 

that could be generated by the Behavior Planner (Figure 28): 

 

Figure 28. A generated BML script 
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The Behavior Planner describes the multimodal behaviors using BML elements with 

necessary attributes (Table I). Various elements are commonly used to define the 

properties of the communicative behaviors that should draw the attention of the user 

interacting with the ECA [90]. The BML message containing the generated BML 

elements is then broadcasted to the Behavior Realizer which generates alternative 

animations. 

Table I. The BML behavior elements 

BML Element Description 

<head> Movement of the head, like nodding and shaking 

<torso> Movement of the spine and shoulder 

<face> 
Movement of facial muscles to form certain expressions, like 

eyebrows and mouth movements 

<gaze> 
Coordinated movement of the eyes, neck and head direction, to 

indicate where the character is looking 

<body> Full body movement, like changing position and posture 

<legs> 
Movements of the body elements downward from the hip, like 

legs including knee, toes and ankle 

<gesture> 
Coordinated movement with arms and hands, including pointing 

and reaching 

<speech> Verbal behaviors, including the words to be spoken 

<lips> Controlling lips shapes including the visualization of phonemes 

2.3.3.3 Behavior Realizer: realization of the planned behaviors 

The Behavior Realizer in SAIBA framework is a realization engine that can realize all 

aspects of the multimodal behaviors which are scheduled by the Behavior Planner [90]. 

Such engines are BML-realizers that can compile BML scripts. 

The behavior realizer uses a text-to-speech module to realize the speech of the verbal 

planned behaviors. In consequence, the animations of the movements of the ECA are 

directly generated upon receiving the BML messages from the Behavior Planner. The 

temporal constraints assigned to the planned behaviors play a significant role in 
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organizing its execution [90] [91]. The ECA platforms that are complaint with the 

SAIBA framework, such as Greta, MARC and the Virtual Human Toolkit, are 

considered as the Behavior Realizers. 
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3 MODEL 

In this chapter, we present the architecture of our model. As introduced in the previous 

chapter, we extended the meta-model MASCARET. We aim at adding a BDI-like 

cognitive module, able to reason about the environment, which allows the agents to 

make decisions about their high-level intentions. An embodied agent can also have 

communicative intentions that must be transmitted to the user through natural 

communicative channels, such as voice, facial expressions, gestures etc. To achieve this 

goal, ECA systems based on the SAIBA framework are integrated to MASCARET. 

3.1 Global Architecture 

Figure 29 shows the overall architecture of our model. It is entirely based on MASCARET 

and it extends this meta-model by adding two more modules: (i) a virtual character 

integrator module (Figure 29 in green), which allows the integration of ECA system that 

are SAIBA compliant, and (ii) a BDI-based cognitive module (Figure 29 in blue), which 

determines the virtual character’s intentions and desires according to its knowledge 

(beliefs). 

We remind that one of our aims consists in introducing an Embodied Conversational 

Agent in the Virtual Learning Environment in order to allow the user to communicate 

naturally while interacting with the system. To achieve such a goal, we are not going to 

implement a brand new ECA since several virtual agent systems already exist and 

provide all communicative capabilities we need. 
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Figure 29. Global view of our model 

What we want is to make it easy to integrate any ECA system that is compatible with 

the standard SAIBA framework. As explained in section 2.3.3, this framework divides 

the process to generate the virtual agent behavior into three levels of abstraction: from 

the selection of the agent communicative intentions, to the choice of the multimodal 

signals needed to transmit them and the signals realization on the virtual character 

graphical representation. These three levels, respectively, the Intent Planner, the 

Behavior Planner and the Behavior Realizer, communicate through standard languages: 

the FML, which codes the communicative intentions and the BML, which codes the 

multimodal signals [89] [91].  

We have several reasons why we want to make it possible to integrate any SAIBA 

compliant ECA architecture in our model. Firstly, the systems built on a common 

standardized framework can be easily integrated. To generate the agent communicative 

behavior, all existing ECA systems based on SAIBA need to receive FML and/or BML 

messages according to the levels of abstraction they provide. For example, the Greta 

platform [76] implements both the Behavior Planner and the Behavior Realizer, which 

means that it can generate the agent behavior from FML and BML messages. MARC 

[87] and the Virtual Human Toolkit [80] provide a Behavior Realizer, which means that 

they can generate the agent behavior described in the BML messages they receive. 

Secondly, the existing ECA systems can be embedded with different communication 
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capabilities, like speaking and human-like body movements, so we prefer to make it 

possible to choose the ECA that would fit better for a given application. Thirdly, the 

ECA systems provide different graphical representation of virtual agents that can be 

displayed through diverse players and in diverse devices (such as CAVE, HMD, 

screen...). For instance, Greta platform provides several agents of different gender that 

can appear in an Ogre player or in a Unity3D application; while MARC provides many 

tools to create new characters using a custom graphic engine based on OpenGL and 

other open-source API. So, we want our model capable of integrating the appropriate 

ECA system according to the virtual reality device and the graphical agent 

representation we need for a given application. Finally, we hope to incite ECA 

researchers to easily use and test our model. 

Existing ECA platforms which are SAIBA compliant, provide mainly an 

implementation for the Behavior Planner and/or the Behavior Realizer. For such a 

reason, to allow the integration of these platforms in MASCARET, we propose to 

implement two interfaces, one for the Behavior Planner (BEHAVIORPLANNER) and the 

other for the Behavior Realizer (BEHAVIORREALIZER) (Figure 29 in green). The details 

of this integration are presented in section 0. 

Another main goal of this work is to formalize the intention of the agents. To achieve 

this goal, we implement a cognitive module within MASCARET inspired by BDI 

architecture that permits us to generate high-level intentions for the agents (Figure 29 in 

blue). Beliefs are considered as the knowledge base of the agents. It consists of 

references to domain concepts (like the structure and the properties of the defined 

entities of the considered domain), environment topology (such as the position of 

entities) and activities of all agents in the environment (including the user).  

As described in chapter 2, the “desires” of an agent can be considered as its higher goal 

to reach. To attain this goal, the agent organizes lower level goals (intentions). An 

“intention” can modify the higher-level goal of an agent. We consider that this 

recursive design pattern can be implemented through behaviors (Figure 29, BDI-Desire) 

and actions (Figure 29, BDI-Intention) in MASCARET (BEHAVIOR and ACTION classes). 

This hierarchical and recursive design pattern between desire and intention permits to 

develop complex behaviors for the agents. We consider in this work that in MASCARET 

the desire will be represented by BEHAVIOR and intention by ACTION. The 

communicative intention (actions) are generated by those complex behaviors. For 

example, when the agent is embodied, communicative actions are planned to transmit 
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its communicative intentions. So, for embodied agents which need to communicate with 

the user, we propose to implement the Intent Planner of SAIBA. 

We propose a specific type of action to represent communication between agents in 

general and communicative intention in particular (intentions). By representing this 

communicative action in MASCARET metamodel (COMMUNICATIONACTION class), it 

permits to use this action in higher behaviors which represent the desires of the agents 

(desires). We present how we implement these concepts in section 3.3. 

The knowledge base of the agents (beliefs) is used to permit them to reason on their 

environment. We modify MASCARET to formalize the knowledge base of the agents 

based on the ontology of the organization and activity and the exchanged messages in 

the virtual environment (see Chapter 2). The detailed definition of the knowledge base 

is presented in section 3.2. 

The knowledge base of the agents has to constantly be updated. Therefore, we 

developed two ways of updating the knowledge base of the agents: through perception 

and through communication. Embodied agents can perceive the states of entities while 

navigating in the virtual environment, or they can communicate with each other to 

exchange information and share their knowledge. 

Implementation details of our architecture are provided in the following sections and the 

next chapter shows how this generic architecture can be instantiated to implement a 

pedagogical situation in a Virtual Learning Environment which involves a tutor agent 

and a learner. 

3.2 Model of Knowledge 

According to the BDI agent architecture (discussed in section 2.2.1), each agent holds 

its own “beliefs” including information about itself, other agents and the contents of its 

environment [96]. In BDI, a distinction between beliefs and knowledge is considered. In 

beliefs, some assumptions about accuracy and implicitness can be carried out by the 

agent on the gathered information (knowledge) [52]. 

Domain experts usually define the domain model of a real system. They can provide the 

most accurate representation of the system in order to simulate it in the virtual 

environment. In MASCARET meta-model, the ENVIRONMENT and the MODEL classes, 

which are held by the MASCARETAPPLICATION singleton, are used to hold this domain 

expert representation (Figure 30). 
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In this work, we explicitly add an association between the AGENT and the 

ENVIRONMENT classes to represent the knowledge of agents. We can notice that our 

system allows to have several agents referencing different instances of ENVIRONMENT 

and MODEL classes. This is to say that in our model agents can coexist in the same 

virtual environment and they can have different knowledge on it. This knowledge can 

be different from the model held by MASCARETAPPLICATION. This way of representing 

the knowledge can be seen as the beliefs of agents. 

In the following sections, we discuss what the knowledge base of agents includes, and 

how it is fetched, exchanged and evolved. 

3.2.1 Components of Knowledge 

The knowledge base of the agents has the same structure of the ENVIRONMENT of 

MASCARETAPPLICATION, but it includes some additional components: organizations 

(agents and activities) and exchanged messages. 

Hence, three knowledge components constitute the knowledge base of the AGENT: the 

structure of the environment, the agents and organizations in the environment, and the 

messages in the mailbox. We modify Mascaret by creating associations in the meta-

model (in red in Figure 30) to represent these components. 

 

Figure 30. The knowledge base of the Agent 

3.2.1.1 Structure of the Environment 

The knowledge base of the agent is represented by the same structure used to describe 

the real system through the MASCARETAPPLICATION and its ENVIRONMENT and MODEL. 

Therefore, the agent knowledge base refers to an ENVIRONMENT and its MODEL (Figure 

31). The detailed content of those classes has been described in Chapter 2. We just 
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remind here some essential components held by the ENVIRONMENT and MODEL from 

MASCARET to emphasize the content of agent’s knowledge base using this model. 

 

Figure 31. The structure of Agent’s Environment 

In summary, an ENVIRONMENT (and then the knowledge base of the agent) is composed 

of entities and their properties. It also contains information on the geometric 

representation, position, animation and topology of entities. It refers to a MODEL that 

describes the structure of the ENVIRONMENT based on the classes, properties and 

relations. The documentation on the instances of those concepts is also maintained in 

the model and can be used as a knowledge base for the agents. For example, when an 

agent is asked for the definition of an object, it can introspect its knowledge base and 

get this description. 

Each class in the MODEL can have a state machine to describe the autonomous 

asynchronous reactive behaviors of the entities of this class. All the concepts in this 

state machine can also be documented and used as a knowledge base for the agent. 

3.2.1.2 Agents and Organizations 

Agents in MASCARET are aware of further agents and organizations found in their 

environments (through AGENTPLATFORM, see Chapter 2). In our model, we also use this 

as a knowledge base for the agents. Each agent has a reference to an AGENTPLATFORM 

that enriches its knowledge base with a set of organizations 

(ORGANIZATIONALENTITIES: instances of ORGANIZATIONALSTRUCTURE) and agents in 

its environment. Here again, we do not add concepts in this structure, we just remember 

some important elements that are used as knowledge by agents. 

The ORGANIZATIONALSTRUCTURE provides the knowledge base of the agents with the 

structure of ORGANIZATIONALENTITY through PROCEDURES, RESOURCES and ROLES 
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(Figure 32). For example, when the user asks about the next action in the procedure, the 

AGENT checks the organization in the AGENTPLATFORM in its knowledge base and gets 

the name of the next action from the PROCEDURE. 

 

Figure 32. The platform of the Agent 

3.2.1.3 Mailbox 

Agents communicate with each other by exchanging messages. They constantly archive 

the exchanged messages through instances of the MAILBOX class in MASCARET. In our 

model, we also use this principle as a knowledge base for the agent. 

The MAILBOX class includes different types of messages: ReceivedMessages, 

CheckedMessages and SentMessages (Figure 33). Initially, messages received by an 

agent are stored in the ReceivedMessages list. When the agent checks the contents of a 

received message, the message is directly moved to the CheckedMessages list. While 

the messages that the agent sends are stored in the list of SentMessages. This process is 

made by default in MASCARET. 

In our model, an agent considers the different types of messages stored in its MAILBOX 

as a knowledge base. For example, when an agent explains the next action to be done by 

the user, it sends a message and stores it in the SentMessages. Then, if it receives a new 

message from the user asking for the goal of this action, it uses the sent message to get 

the information about what is the requested action. 

The way the agents interpret contents of messages will be explained in section 3.3.2.1. 
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Figure 33. The mailbox of the Agent 

3.2.2 Initial instantiation of knowledge base 

All agents in MASCARET can share the same instance of the ENVIRONMENT as a 

knowledge base and then refer to the ENVIRONMENT referenced by the 

MASCARETAPPLICATION. This permits to save time and memory during the simulation. 

It also permits to solve consistency problem about the actual state of the ENVIRONMENT 

and the knowledge base of the agents. Nevertheless, it is not realistic for agents to gain 

the full knowledge of the system while interacting with the user. Thus, we propose a 

model that permits each agent to hold its own instance of the ENVIRONMENT and the 

MODEL classes within its own knowledge base. This knowledge base has to be 

constantly updated whenever changes in its environment are perceived. 

Consequently, agents in our system might carry a total or partial notion of the real 

model held by the MASCARETAPPLICATION. The knowledge base of each agent can then 

be seen as its own beliefs about the environment.  

Three knowledge design patterns can be instantiated for the knowledge base of the 

agents: 

1. Agent that shares the ENVIRONMENT instance referenced by the 

MASCARETAPPLICATION and structured in the MODEL instance. This agent has a 

complete and exact knowledge on the simulated ENVIRONMENT. We can notice 

in Figure 34 how Agent1 has in its knowledge base the same instances of the 

ENVIRONMENT (Environment1) and the MODEL (Model1) referenced by the 

MASCARETAPPLICATION singleton (MascaretApplication1). 

As an illustration, when an instance of an entity is created in Environment1 

using the structure specified in Model1, the knowledge base of Agent1 is 

automatically consistent. 
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Figure 34. Agent with complete knowledge 

2. Agent referencing its own instance of the ENVIRONMENT (Environment2) but 

shares the same structure in the MODEL instance (Model1) of the 

MascaretApplication1 (Figure 35). When a class of a certain entity is defined in 

Model1, various instances with the same structure of this entity can be 

established in Environment1 and Environment2. 

Furthermore, Agent1 is unaware of anything found outside its environment 

(Environment2), but surely abides by the structures found in Model1. For 

instance, when we specify the structure of a “BOX” entity in Model1 with the 

“Color” and “Size” attributes, instances of this entity with different “Color” and 

“Size” values can be set in Environment1 and Environment2. However, Agent1 

will only hold the knowledge of “BOX” instances found in Environment2. 

 

Figure 35. Agent with individualized Environment of a common Model 

3. Agent carrying the knowledge about its own environment (Environment2) based 

on a different MODEL (Model2) (Figure 36). In this case, same states and results 
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could be attained on entities found in Environment1 and Environment2, but 

distinct activities defined in Model1 and Model2 are considered.  

For example, suppose that instances of the tool shown in Figure 37 are set in 

Environment1 and in Environment2, and the user had to adjust its “HOUR” 

value. The relevant functions implemented in Model1 and Model2 could ask for 

different requirements. The function of Model1 could require the “CLOCK” 

button to be pressed in parallel with the “HOUR” button in order to increment 

its value, while that of Model2 could recommend from Agent1 that the 

“CLOCK” button has to be pressed and released before the “HOUR” button is 

pressed. 

This principle permits not only to have more realistic behaviors as agents may 

not have a complete knowledge on the environments, but it permits also to let 

several models of the same system (from several experts) co-exists in the same 

environment. 

 

Figure 36. Agent with particular Environment and Model 

 

Figure 37. Environment tool 
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3.3 Behaviors and Actions 

As described in chapter 2, the “desire” of an agent can be considered as its higher goal 

to reach. To attain this goal, the agent organizes lower level goals (“intention”). An 

“intention” can modify the higher-level goal (Figure 40). We consider that this recursive 

design pattern can be implemented through behaviors (BDI-Desire) and actions (BDI-

Intention) in MASCARET (BEHAVIOR and ACTION classes). In the next section, we 

propose a generic behavior for an agent to actualize its knowledge through its 

perception when navigating in the virtual environment. 

In other words, in MASCARET, the behaviors of the agent generate the execution of the 

actions (Intention). In MASCARET, some generic behaviors are implemented. The 

PROCEDURALBEHAVIOR is one example. This permits to execute activities (procedures) 

that organize a priori actions. As we focus on communication between the user and the 

agents, those actions can be communication actions (intentions). In the following of this 

chapter, we present a formalization of communication action that can be inserted in an 

activity. 

However, MASCARET allows also to implement new behaviors. We then propose a 

PERCEPTIONBEHAVIOR in order for an agent to update his knowledge base (see 

section 3.3.1) and a COMMUNICATIONBEHAVIOR that permits to an agent to understand 

messages from other agents (or the user) and generate answers (execute a 

COMMUNICATIONACTION) (see section 3.3.2). 

To be clear, according to the SAIBA framework, in our model we consider that the set 

of behaviors that the agent is running represents its Intent Planner. Those behaviors will 

generate communicative intentions (scripted in an activity or as the result of a 

deliberative behavior). This communicative intention will then be executed by SAIBA 

modules. 

3.3.1 Perception behavior 

As seen in section 3.2.2, agents can have their own beliefs on the environment. As this 

environment is an open environment (human user may manipulate entities), we propose 

a generic behavior for the agents to update their knowledge through perception when 

navigating.  

In MASCARET, the embodied agents are defined using the EMBODIEDAGENT class that 

inherits the AGENT class and has a body (Figure 38). For this purpose, we add a field of 
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view (angle and distance) in the EMBODIEDAGENT class of MASCARET (Figure 38). We 

could propose other way to perceive the environment, like ray casting for example, but 

this is not the purpose of our work. Using its perception, an agent can detect new 

entities and add them in its knowledge base or update properties of already known 

entities. This behavior is useful when the agent knowledge base does not refer the same 

instance of ENVIRONMENT as MASCARETAPPLICATION as seen in section 3.2.2. We 

consider that as soon as an agent perceive an entity, it has access to all its properties. 

The following example shows how we implement the evolution of the knowledge 

through perception. 

 

Figure 38. Embodied agent with detection properties 

When we define two agents (Astrid and Bruce) in the virtual environment (shown in 

Figure 39-a) with the knowledge about existing entities (Box1 and Box2), the initial 

knowledge of Astrid and Bruce includes the states (Box1[closed] and Box2[closed]) and 

the initial values of the properties of these boxes, such as their color (Box1-

color=”Brown” and Box2-color=”Blue”). Let us suppose that a realized behavior 

changed the state of Box1 to “opened” and its color property to “Red” (Figure 39-b). 

Since Box1 is in the field of view of Bruce, he directly detects this variation and 

automatically update his knowledge base with the new state and color value of Box1. 

While Astrid does not notice this change since Box1 is not in her field of view. 

However, when Astrid navigates in the environment and sees Box1 in her field of view 

(Figure 39-c), she updates her knowledge base with the detected changes in the state 

and the properties of Box1. 
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Figure 39. The evolution of agent’s knowledge through perception 

3.3.2 Communication Action 

As seen before, we use the design patterns “Behavior” and “Action” to represent the 

concepts of “Desire” and “Intention” of the agents in MASCARET. In our work, we 

mainly focus on the communication between agents. 

MASCARET is founded on UML metamodel, and proposes several types of actions 

(classes that inherit from the ACTION class) like CALLOPERATIONACTION, which is an 

elementary operation that the agent calls to execute an operation on an object in the 

environment, and CALLBEHAVIORACTION, which triggers another behavior with a set of 

necessary actions. These actions can be used in behaviors, like activity. MASCARET uses 

the ACTIVITY class to describe the procedures (domain model or pedagogical scenario 

for example). 

We propose here a new type of ACTION to represent the communication action 

(COMMUNICATIONACTION class), or in terms of BDI and SAIBA, the communicative 

intention (Figure 40). This COMMUNICATIONACTION can be used in behaviors. 
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Figure 40. The actions for the activities of agents 

For example, when executing an activity where the agent needs to show an object in the 

environment to the user, it uses the CALLBEHAVIORACTION “Explain [ObjectName]” to 

trigger a new behavior (Figure 41). The activity of the “Explain” behavior uses the 

CALLOPERATIONACTION “Highlight (ObjectName)” to highlight the specified object 

and the COMMUNICATIONACTION to inform the user with the description of the activity. 

 

Figure 41. The actions of a complex behavior 

At the AGENT level, we instantiate the COMMUNICATIONACTION class to perceive the 

sense of communication between agents. While at the EMBODIEDAGENT level we use 

the COMMUNICATIONACTION to naturally communicate with the user through the 

behaviors of the connected ECAs (emit/perceive voices, gestures, natural language, lip 

sync…).  
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When a behavior triggers a communication action (execute() on a 

COMMUNICATIONACTION), the agent running the behavior first sends a FIPA-ACL 

message according to the content and the context of the communication action. If the 

agent is an embodied agent (remember that EMBODIEDAGENT is a subclass of AGENT), it 

adds this communication action as a new communicative intention (using the 

addCommunicativeIntention operation in EMBODIEDAGENT) to be managed by our 

SAIBA integration.  

The first level (AGENT level) is presented in this section, while the latter 

(EMBODIEDAGENT level) is presented in section 3.4.2.3. 

3.3.2.1 Agent communication protocol and content language 

Among the existing agent communication languages, MASCARET uses the FIPA-ACL as 

a communication protocol between its autonomous agents, and considers the FIPA-SL7 

(Semantic Language) as the message content language. 

The fundamental properties of the FIPA-ACL protocol are shown in Table II. 

Table II. Parameters used in FIPA-ACL messages 

Parameter Category of Parameters 

performative message label; type of communicative acts 

Sender message sender 

Receivers message receivers 

Content contents of the message 

language adopted language 

encoding encoding message 

ontology adopted ontology 

protocol message protocol 

conversation-id conversation unique identity 

                                                 

7 http://www.fipa.org/specs/fipa00008/SC00008I.html (accessed November, 2017) 

http://www.fipa.org/specs/fipa00008/SC00008I.html
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reply-with expression used by replying agent to identify the message 

in-reply-to 
date/time label to indicate when an answer must be 

received 

reply-by 
reference to a previous action, where the message is an 

answer 

The performative property has a fundamental role in building FIPA-ACL messages. It 

specifies the objective of the FIPA-ACL message and the speech act that an agent wants 

to deliver to another agent. Appendix 1 shows the twenty-three FIPA-ACL performative 

functions and their corresponding meanings. These functions propose a wide variety of 

request and response messages that the agents can exchange. For example, in our model, 

when an agent seeks for the value of an attribute of an object in the virtual environment, 

it must use the “QUERY-REF” performative function since it denotes making a request 

(see example in section 3.3.2.1). 

In our model, we also manage the sender, the receivers and the message content of the 

FIPA-ACL messages. The effective content of the message can be formalized by a 

content language. We choose to use FIPA-SL and we explain it in the next section. The 

other properties of FIPA-ACL messages (conversation, in-reply-to,…) are out of our 

scope in this work. 

The ACLMESSAGE class in MASCARET (Figure 42) allows to code messages according 

to the typical structure of the FIPA-ACL messages. The agent uses instances of the 

ACLMESSAGE class to build and parse exchanged messages with other agents. 

The content property of a FIPA-ACL message is defined using the FIPA-SL (content 

language specification). In our model, we enriched the FIPA-SL parser in MASCARET, 

to parse the contents of the FIPA-ACL messages using the standard parsing rules 

defined by FIPA. The complete grammar (FIPASL.g4 in ANTLR) is presented in 

Appendix 2. 
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Figure 42. Agents in MASCARET communicate using the ACLMessage class 

In this section, we just take one typical example of message content to explain how it 

works in our model. Among the referential operators defined in the FIPA-SL, the “iota” 

operator allows asking for a term (property) inside the knowledge base of an agent. The 

value of a property is stored in MASCARET in a “slot”. Therefore, when an agent 

receives a FIPA-ACL message and detects the “iota” operator in its content, it 

recognizes that it should get the “slot” value of the specified entity. In the reply 

message, the “INFORM” performative function should be used to transmit the “slot” 

value. 

For example, when “Agent1” in MASCARET receives a FIPA-ACL message from 

“Agent2” with the “QUERY-REF” performative asking for the position of “Agent3” in 

the environment, “Agent1” checks its knowledge base for the necessary information and 

replies with another FIPA-ACL message to “Agent2” using the “INFORM” 

performative function. 

The FIPA-ACL request message received by “Agent1” would be: 

(query-ref 

 :sender (agent-identifier :name Agent2) 

 :receiver (set (agent-identifier :name Agent1)) 



Chapter 3: Model 

     57 

 

 :content ((iota ?position (slot ?position ?Agent3))) 

 :language FIPA-SL0 

 :ontology Agent-Management  

 :protocol fipa-request 

) 

When “Agent1” succeeds to obtain the coordinates of the position of “Agent3” from its 

knowledge base (value of the slot “position” of entity “Agent3”), the reply message has 

this form: 

 (inform 

 :sender (agent-identifier :name Agent1) 

 :receiver (set (agent-identifier :name Agent2)) 

 :content ((= (iota ? position (slot ?position ?Agent3)) 120,50,240)) 

 :language FIPA-SL0 

 :ontology Agent-Management  

 :protocol fipa-request 

) 

3.3.2.2 Communication Action class 

As we introduced in this section (3.3.2), we extended the ACTION class in MASCARET to 

develop the COMMUNICATIONACTION class in order to represent the communication 

between agents and by extension (in EMBODIEDAGENT class) the communicative 

intentions of the agents. 

In the COMMUNICATIONACTION class, we defined properties (performative, receivers, 

resources, FIPA-SL content, and natural content) to specify the characteristics of the 

exchanged communication actions of the agents (explained in the previous section). 

Here is a brief description about these properties: 

 Performative: the function that specifies the style of the action the agent has to 

realize. 

 Receivers: the agents that should receive the communication action. 
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 Resources: the objects of the environment involved in the communication 

action. 

 FipaSLContent: the content property of the FIPA-ACL message using the 

formal content language FIPA-SL (as explained earlier). This content can be 

automatically interpreted (and generated) by agents. 

 NaturalContent: the natural language text that the agent can use to inform the 

user. This text cannot be interpreted by the agent. It will be only treated by the 

SAIBA integration. It will cause nothing in the environment. 

As the COMMUNICATIONACTION inherits from ACTION, it can be used in BEHAVIORS in 

MASCARET. For example, it can be used as an ACTION in an activity. 

UML activity diagrams are used in MASCARET to provide scenarios and procedures 

through a sequence of actions. Within these activity diagrams, we can assign the actions 

of the agents. In this work, we use Modelio as UML Modeler. Modelio permits to create 

UML profiles by the addition of stereotypes. Hence, to create the communication action 

of the agents in the UML model, we create an instance of the ACTION class and append 

a “CommunicationAction” stereotype to it (Figure 43). To specify the communicative 

intents of the agents, we defined in this “CommunicationAction” the same properties 

of the COMMUNICATIONACTION class in MASCARET (Performative, Receivers, 

Resources, FIPA and Natural). 

The “FIPA” property is set to communicate with the agents and request actions from 

them. For example, when we require an agent to inform the user about the next 

requested action in the domain procedure, we set the following FIPA-SL content in the 

“FIPA” property: “((action AgentName (NEXT)))” (Figure 43). The agent can parse this 

message, gets the “Description” of the desired action, and transmits it to the user (agent 

playing the role “utilisateur” in the activity). In section 0, we will present how this 

message will be automatically generated in natural language. 
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Figure 43. Instantiating the CommunicationAction in the UML profile 

To directly inform the user with a specified natural text, we set the “Natural” property 

in the “CommunicationAction” in the activity diagram. If an embodied agent is 

realizing the communication action, it takes the value of the “Natural” property, and 

vocally tells it to the user through an ECA. However, to set a particular sentence, the 

person working on this profile can easily change the value of this property (Figure 44).  

 

Figure 44. Setting a natural language text in the communication action 

3.3.3 Communication Behavior 

We propose a generic COMMUNICATIONBEHAVIOR to automatically manage the 

communication between agents. This behavior inherits from the AGENTBEHAVIOR class 

like other behaviors (desires) of the agents (Figure 45) such as the 

PROCEDURALBEHAVIOR (already proposed in MASCARET) that is defined to realize a 

scheduled activity. 
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This generic behavior is defined according to the formalization of the communication 

protocol (FIPA-ACL and performative) and the communication content (FIPA-SL 

syntax) proposed in the previous section. 

 

Figure 45. The behaviors of the agents 

In this behavior, we didn’t propose to manage all the 22 performatives of FIPA, as we 

focus on communication (transfer of knowledge between agents), we propose a generic 

behavior, called “action”, to automatically manage three performatives: REQUEST, 

INFORM and QUERY-REF (Algorithm 1). 

Algorithm 1: action() 

1- //get next message 

2- ACLMessage FIPAmsg = performer.receive() 

3- if (FIPAmsg!= null) 

4- if (FIPAmsg.performative == REQUEST) 

5-  manageRequest (FIPAmsg) 

6- if (FIPAmsg.performative == INFORM) 

7-  manageInform (FIPAmsg) 

8- if (FIPAmsg.performative == QUERY-REF) 

9-  manageQueryRef (FIPAmsg) 
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When the agent receives a FIPA-ACL message, it is added to the queue of the 

ReceivedMessages list in its MAILBOX. The agent gets the next message from this list 

and starts parsing it by checking its performative function (as seen in Algorithm 1).  

The “REQUEST” performative is already used in MASCARET to synchronize the actions 

between agents, we just modified it by taking into account our proposition on FIPA-

ACL and FIPA-SL. We do not present it here, but we will focus on INFORM and 

QUERY-REF for knowledge transfer. 

When an agent needs to ask another agent about an object in the virtual environment, it 

builds a FIPA-ACL message using the “QUERY-REF” performative and the FIPA-SL 

expression that includes necessary operators. To form the FIPA-SL expression of the 

message, the agent defines a term using the required operators. In our model, we 

implement “Algorithm 2” in the COMMUNICATIONBEHAVIOR class to deal with 

exchanged FIPA-ACL messages between agents that use the “QUERY-REF” 

performative. 

Algorithm 2: manageQueryRef 

1- FIPASLParserResult result = parseFipaSL(FIPAmsg.content) 

2- if (result.isIota){ 

3-    iota = result.iota 

4-    if (iota.predicate == "slot"){ 

5-       //Manage Slot 

6-    } else if (iota.predicate == "postcondition"){ 

7-       //Manage Postcondition 

8- } 

The FIPA-SL expression has 3 operators: iota, any or all. The “iota” is the reference 

operator that can be used to find a specific object that satisfies a defined property. While 

“any” indicates finding any object that satisfies this property. However, to find all 

objects that satisfies this property, the “all” referential operator can be used. 

In our work, we are only using the “iota” operator to ask the agents about the properties 

of specific actions and entities (predicates), such as the name of an entity, the 

description of an action, the post-condition of an action, etc… For example, when the 
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agent needs to ask about any predicate of an entity, the following FIPA-SL expression is 

used: 

 ( ( iota ?entity (predicate ?entity) ) ) 

When an agent receives a FIPA-ACL message and parses its FIPA-SL content, it 

realizes the required predicate and reply with the data in its knowledge base. When the 

“iota” operator is detected, the parser gets the value of the desired property and selects a 

behavior according to the value of the predicate like informing the requesting agent with 

this value using the following expression: 

 ( (= (iota ? entity (predicate ? entity) ) value) ) 

All properties of an entity are stored in slots. We are using the “slot” predicate to 

inquire about the parameters, the description and positions of entities, and the 

“postcondition” predicate to inquire about the goal of an action (Algorithm 2). 

To manage inquiring about a slot of an entity, the agent has first to check if the slot 

exists in the specified entity (Algorithm 3). If the slot is recognized, the agent uses the 

“inform” parameter with the slot value to prepare the attributes of the 

COMMUNICATIONACTION (Performative and FipaSLContent) in order to reply to the 

inquiring agent and inform him with the value of the desired slot. The user could ask 

about the “position” of the entity (Where is entity?) in order to manipulate it, or she/he 

might ask about any property for this entity (What is the property of entity?), like 

“description”, “color”, “width”, “height”, etc… If the slot is not recognized, the agent 

uses the “NOT_UNDERSTOOD” performative and a natural text statement 

(NaturalContent) in the COMMUNICATIONACTION to inform to the requesting agent that 

the inquiry is not understood (Algorithm 3). Therefore, we show in the next section 

(3.3.4) how we are generically considering the inquiries of the user. 

Algorithm 3: Manage Slot 

 1- object = findObjectInProcedure(iota.object) 

 2- value = getSlot(iota.parameter) //property of the object 

 3- if (value){ //slot value 

 4-    perf = INFORM   //performative 

 5-    naturalContent = value 

 6-    //FIPA-SL to give the slot value of the object 
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 7-    FipaSLContent = "((= (iota ?perf (slot ?perf ?object)) 

     naturalContent))" 

 8- } else { 

 9-    perf = NOT_UNDERSTOOD      //performative 

10-    naturalContent = "I didn't understand. Can you repeat?" 

11-    FipaSLContent = "" 

12- } 

The user might also ask about the goals of required actions. We use the “postcondition” 

predicate in the iota operator to determine such inquiry (Algorithm 4). When the 

“postcondition” predicate is recognized, the agent reviews the list of SentMessages in its 

MAILBOX to reply accordingly. The agent proceeds in parsing the inquiry if the 

previously sent message was to inform about a certain matter, otherwise, it replies with 

a “Not Understood” message. If this matter was to inform about an action in the 

procedure, the agent checks for the next action to be done by the agent that is asking 

(maybe the user) and gets its goal from the “Postcondition” stereotype that is set in the 

procedural scenario. The agent uses this attribute to prepare a COMMUNICATIONACTION 

to inform the inquiring agent about this property (Algorithm 4). 

The agent also checks if the user is consecutively asking about the postcondition of an 

action (Algorithm 4). After reviewing the previously sent message, the agent could 

detect that it was for replying for an inquiry of an agent about a slot (using iota). To 

reply with a higher-level purpose for applying the action, the agent makes sure that the 

predicate of the previous message was the “postcondition” of the action. It can then 

inform the agent that is asking about the goal of the activity. However, if a different 

predicate was determined in the previous message, the agent replies with a “Not 

Understood” message. For example, it is illogical to ask “Why?” after asking for the 

name of an entity (Algorithm 4). 

Algorithm 4: Manage Postcondition 

 1- msgCount = Agent.Mailbox.MessagesSent.Count 

 2- if (msgCount > 0) { 

 3-   lastMessage = Agent.Mailbox.MessagesSent [msgCount - 1] 
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 4-   if (lastMessage.Performative == "INFORM") { 

 5-     contentLastMessage = lastMessage.Content; 

 6-     resultLastMessage = parseFipaSL(contentLastMessage); 

 7-     if (resultLastMessage.isAction) { 

 8-       actionToDo = findNextActionToDo() 

 9-       naturalContent = actionToDo.goal 

10-       perf = INFORM 

11-       FipaSLContent = "((iota ?actionToDo.name (postcondition  

12-     ?actionToDo.name ?iota.object)))" 

13-     } else if (resultLastMessage.isIota) { 

14-       iotaLastMessage = resultLastMessage.iota 

15-       if (iotaLastMessage.predicate == "postcondition") { 

16-         actionToDo = findNextActionToDo() 

17-      naturalContent = actionToDo.Activity.goal 

18-      perf = INFORM 

19-      FipaSLContent = "((iota ?actionToDo.name (postcondition  

20-       ?actionToDo.name ?iota.object)))" 

21-       } else { 

22-         naturalContent = "I do not understand what you want" 

23-         perf = NOT_UNDERSTOOD 

24-       } 

25-     } 

26-   } else { 

27-     naturalContent = "I do not understand what you want" 

28-     perf = NOT_UNDERSTOOD 

29-   } 

30- } else { 
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31-   naturalContent = "I do not understand what you want" 

32-   perf = NOT_UNDERSTOOD 

33- } 

In our work, we handled inquiring about the description of an action whenever the 

“action” operator is detected. When the user asks about the next desired action, the 

agent representing the user uses the “action” expression in the FIPA-SL content of the 

FIPA-ACL message that it sends to another agent (Algorithm 5). If the procedure is not 

finished, the agent prepares the attributes of the COMMUNICATIONACTION to inform the 

user-agent with the description property of the desired action (Algorithm 5). 

Algorithm 5: Inquiring about actions 

1- if (result.isAction){ 

2-   actionToDo = findNextActionToDo() //desired action in procedure 

3-   value = actionToDo.Description //description stereotype of action 

4-   performative = INFORM   //performative 

5-   naturalContent = value 

6-   FipaSLContent = "((action actionToDo.performer (actionToDo)))" 

7- } 

While managing the received messages in the COMMUNICATIONBEHAVIOR, we ensure 

that the agent checks for the previously parsed messages in order to give accurate 

replies. Therefore, the agent can confirm if the consecutively asked questions are valid. 

For example, when the user asks about the position of an entity and then for a post 

condition for the position, the agent replies with a message using the 

“NOT_UNDERSTOOD” performative to notify the user about this fault. 

As soon as the context of the reply is specified for the agent, we instantiate a 

COMMUNICATIONACTION (3.3.2) by setting its attributes with the obtained values 

(Algorithm 6). We send this action to the inquiring agent in order to be informed with 

the reply and to plan for a communicative intention. 

Algorithm 6: Instantiating Communication Action in manageQueryRef 

 1- if (FIPAmsg.performative == "QUERY_REF"){ 
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 2-   FIPASLParserResult result = parseFipaSL(FIPAmsg.content) 

 3-   if (result.isIota){ 

 4-      //manage iota 

 5-   } else if (result.isAction){ 

 6-      //manage action 

 7-   } else { 

 8-      // not understood 

 9-   } 

10-   CommunicationAction ca = new CommunicationAction() 

11-   ca.performative = p 

12-   ca.naturalContent = n 

13-   ca.FipaSLContent = FipaSLContent 

14- } 

When the performative of the received message is “INFORM”, the agent parses its 

FIPA-SL content and updates its knowledge base with the provided information 

(Algorithm 7). Upon receiving a FIPA-ACL message with the “INFORM” performative 

and the “iota” operator (isIotaEqual), the agent parses its contents to update its own 

knowledge base with the value of the entity slot if recognized, or about the user 

whenever she/he starts/accomplish an action in the procedural behavior (Algorithm 7).  

To update the knowledge base with the received slot value of the specified entity, the 

agent checks for this entity among the entities of the ENVIRONMENT in its knowledge 

base. If the entity is recognized in its knowledge base, the agent updates its knowledge 

base with the assigned slot value (Algorithm 7). 

Algorithm 7: manageInform 

 1- FIPASLParserResult result = parseFipaSL(FIPAmsg.content) 

 2- entityName = result.iota.entity 

 3- slotName = result.iota.slot 

 4- value = result.iota.value 
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 5- if (result.isIotaEqual){ 

 6-   KnowledgeBase = Agent.KnowledgeBase 

 7-   entities = KnowledgeBase.getEntities() 

 8-   foreach (entity in entities) { 

 9-     if (entity.name == entityName) { 

10-       foreach (slot in entity.Slots) { 

11-         if (slot.Value.name == slotName) { 

12-           slot.Value = value 

13-         } 

14-       } 

15-     } 

16-   } 

17- } 

In the following section (3.3.4), we outline how we can generically determine the 

dialogue contents of the verbal communicative acts of the user and how the agents can 

recognize these inquiries and parse them successfully. While in section 0, we will 

explain how the communication actions exchanged by the agents are instantiated by an 

ECA to manage the natural dialogue. 

3.3.4 Taxonomy of Questions 

In a virtual environment implemented through our model, the user can ask different 

types of questions. Therefore, the scope of expected questions has to be defined for the 

agents. The agents can parse received inquiries from the user, review their knowledge 

base, and build suitable replies. 

The questions of the user that can be foreseen are mainly about the properties of the 

agents they are interacting with, the entities they should manipulate, and the actions 

they should perform. Using the communication behavior, the agents respond to all 

inquiries of the user even when the received questions are not correctly formulated or 

are out of the scope. 
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Here is a list of questions with their properties that the agents in MASCARET have in 

their knowledge base in order to properly reply to the user: 

Table III. Expected questions from the user and the necessary resources in 

MASCARET to reply 

Targets in 

Mascaret 

Sources in Mascaret Questions Styles 

Questions about properties of a certain entity 

Entity Properties: 

Slots,  

Position,  

Sound,  

Animation,  

Parent,  

Subclasses… 

Agent  

→ Knowledgebase  

→ Environment  

→ 

InstanceSpecification 

→ Entity 

→ Slots 

-What is EntityName? 

-What can I do with EntityName? 

-What are the features of EntityName? 

-What is the function of EntityName? 

-What is the Slot of EntityName? 

-Where is EntityName? 

-Which one is EntityName? 

-How would you describe EntityName? 

-How would you explain EntityName? 

-How many EntityName we have? 

-Can you define EntityName? 

-Can you illustrate EntityName? 

The Agent is a specialization of Entity. Here are the generic questions about agents: 

   -What is AgentName? 

-What can AgentName do? 

-Where is AgentName? 

-Who is AgentName? 
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Targets in 

Mascaret 

Sources in Mascaret Questions Styles 

Questions about properties of behaviors and procedures 

Agent Behaviors: 

Procedural 

Execution,  

Activity,  

Resource,  

Role… 

Agent  

→ AgentBehavior 

-What should I do now? 

-What can I do now? 

-What can I do in order to …? 

-What should I use to ActionName 

EntityName? 

-Who? 

-Who has to ActionName EntityName? 

-How? 

-How can I ActionName EntityName? 

-Can I ActionName EntityName? 

-Why? 

-Why should I ActionName EntityName? 

-Why do I have to ActionName 

EntityName? 

-When can I ActionName EntityName? 

-When should I ActionName 

EntityName? 

3.4 SAIBA Integration 

The different behaviors (desires) of the agents generates (organizes) the execution of 

actions (intentions). Some of those actions are communication actions (communication 

intentions). We explained in the previous section how those communication actions are 

executed in the context of agent communication (in the sense of FIPA).  
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Figure 46. Modules of SAIBA framework 

An agent can be an embodied agent. To do that, we embody each agent meant to 

interact with the user through an ECA which is displayed in the virtual environment. In 

MASCARET, the embodied agents are defined using the EMBODIEDAGENT class that 

inherits the AGENT class and adds a body (Figure 47). If the agent is embodied, the 

communication intentions are added to the agent, and managed by the SAIBA 

compliant platform. The fact that the communication intentions are added to the agent 

(by a behavior) permits us to enrich the communication intention with some internal 

property that an agent can have (but that we did not manage here) such as emotions. 

To integrate SAIBA compliant ECAs in MASCARET, we implement two modules of the 

SAIBA framework [90] through an interface for the Behavior Planner and an interface 

for the Behavior Realizer (Figure 46). 

 

Figure 47. Implementing SAIBA modules for embodied agents 

The EMBODIEDAGENT plans for the communicative intentions and represents them 

through instances of the COMMUNICATIONACTION (see section 3.3.2.2) (Figure 47). The 

intentions of the agents are prepared in the BDI module that we implemented in 

MASCARET (see section 3.1). We specify the intentions in the EMBODIEDAGENT since at 

this level it is only for communication. 
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3.4.1 Implementation of Behavior Planner and Behavior Realizer interfaces 

To connect MASCARET to the two modules of SAIBA (Behavior Planner and Behavior 

Realizer) that are implemented in ECA platforms, we added two classes in MASCARET 

(the BEHAVIORPLANNER and the BEHAVIORREALIZER classes) to represent the two 

modules of SAIBA framework (Figure 47). The BEHAVIORPLANNER is a class with the 

parseIntention(CommunicationAction ca) method. This method has a default generic 

implementation that just initialize the list of BML strings, but this method has to be 

overridden by the concrete behavior planner class (see in next section) in the 3D engine. 

The EMBODIEDAGENT has an association with the BEHAVIORPLANNER (Figure 47) to 

code the communicative behaviors in a BML format string and sends it to the associated 

BEHAVIORREALIZER. The BEHAVIORREALIZER class has an abstract method 

addBehavior(string bml) that has to be overridden in the behavior realizer concrete class 

in the 3D engine. These concrete classes manages the connection with the “Behavior 

Planner” and “Behavior Realizer” modules of the integrated ECA systems in order to 

transmit the planned communicative behaviors. In Figure 48, we show the sequence 

chart of the represented SAIBA modules in our model. 

 

Figure 48. The sequence chart of the represented SAIBA modules in our model 

3.4.2 Integrating ECA platforms 

We used the interface engine to integrate different ECAs in the virtual environment. The 

concrete classes of these interfaces implement the abstract methods of the 

BEHAVIORPLANNER and BEHAVIORREALIZER of MASCARET. 

Among the SAIBA compliant ECA platforms, we had to connect at the “Behavior 

Planner” level of the ECA (e.g. Greta). This ECA parses the received behavioral signals 
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in order to realize the communication behaviors. While for other ECAs (e.g. Virtual 

Human Toolkit and MARC) we had to connect at the “Behavior Realizer” level. 

3.4.2.1 ECA systems that only provide a Behavior Realizer 

Virtual Human Toolkit and MARC provides a “Behavior Realizer”, so they can receive 

a list of behavioral signals, coded in BML language, and generate the corresponding 

animation on the virtual agent representation they provide in a player. 

In the Unity3D interface engine, we developed the UNITYVHBEHAVIORPLANNER, 

UNITYVHBEHAVIORREALIZER, UNITYMARCBEHAVIORPLANNER and 

UNITYMARCBEHAVIORREALIZER concrete classes that inherits the abstract classes of 

MASCARET in order to plan for behavioral signals that are sent to the “Behavior 

Realizer” of the ECA which realizes them.  

MARC's BML is a hybrid version between BML 0.9 and BML 1.0. For this reason, 

MARC researchers recommend using the BML visual editor that is included within the 

MARC-toolkit in order to generate BML messages that are valid in MARC. Therefore, 

we developed the UNITYMARCBEHAVIORPLANNER to generate similar BML scripts. 

While the Virtual Human Toolkit accepts the standard versions of BML (0.9 and 1.0) 

that can also be generated through the UNITYVHBEHAVIORPLANNER that we developed. 

Within these two concrete classes, and based on the properties of the communicative 

intentions (performative, sender, receivers, natural content, resources, emotions…), we 

override the parseIntention method to parse the received communicative intentions and 

code the behavioral signals in the relative BML language messages of MARC and 

Virtual Human Toolkit. In other words, we check for the “performative” property of the 

communicative intention in these classes, and for example, when the “inform” function 

is detected, a speech behavioral signal is set based on other properties like the “natural 

content”. 

We developed the parseIntention method in the UNITYVHBEHAVIORPLANNER to 

generate the BML script, which is compatible with the VHToolkit, according to the 

performative function that is specified in the communication action received. For 

instance, when the “INFORM” performative is detected, we use the speech behavior to 

inform the user with the natural content, and if the resource is also specified in the 

communication action, the animation for indicating this resource is selected. Here is the 

simple scenario that we implemented: 
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parseIntention (CommunicationAction action) { 

string rsrc 

if (action.resources.count > 0) rsrc = action.resources[0].name 

string msg 

msg = “<?xml version="1.0" encoding="UTF-8"?> 

    <act> 

      <participant id=”agent.name” role=”actor”/> 

  <bml>” 

                     if (action.performative == “INFORM”) { 

                        <speech id=”sp1" type="application/ssml+xml">  

                            action.naturalContent  

                        </speech>" 

                    } 

if (rsrc) { 

   msg += “<animation name=”IndicateResource” target="rsrc"/> 

} else if (action.performative == “NOT_UNDERSTOOD”) { 

   msg += “<animation name=”ShowNegative”/>” 

} else { 

   msg += “<animation name=”OfferWithBothHands”/> 

} 

message+="</bml></act>" 

List<string> bmlList 

bmlList.Add(msg) 

return bmlList 

} 
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We send these messages (bmlList) to the concrete classes 

(UNITYVHBEHAVIORREALIZER and UNITYMARCBEHAVIORREALIZER) using the 

addBehavior method of the BEHAVIORREALIZER class of MASCARET that we override in 

these classes. We developed these classes in order to transmit the relative multimodal 

behavioral signals to the “Behavior Realizer” of the corresponding ECA in the 

appropriate BML language. We communicate with the ECA of the Virtual Human 

Toolkit through the UNITYVHBEHAVIORREALIZER by sending ActiveMQ8  messages 

using the VH Messaging library9. Whereas, we built a UDP connection with MARC 

through the UNITYMARCBEHAVIORREALIZER to transmit the multimodal behavioral 

signals to the “Behavior Realizer” of MARC. The “Behavior Realizers” of these ECAs 

can generate the agent animation from the multimodal signals received in order to be 

realized. 

3.4.2.2 An ECA system that provides a Behavior Planner and a Behavior Realizer 

Other ECA platforms, like Greta, provide a “Behavior Planner” to plan for multimodal 

signals from the received communicative intentions, and a “Behavior Realizer” to 

generate the agent’s animations from these signals. 

Using our model, [97] connected Greta to an EMBODIEDAGENT in MASCARET. To do 

that, they developed the UNITYGRETABEHAVIORPLANNER concrete class that 

implements the abstract method (parseIntention) of the BEHAVIORPLANNER classes in 

MASCARET to transmit the communicative intentions to Greta. 

Moreover, Greta has its own world representation. In order for Greta to realize 

communication behaviors in the virtual environment, a link was created between the 

virtual environment and the environment in the Greta module [97]. For instance, when 

Greta has to show objects, we have to send the position of the agent and the positions of 

all the objects involved in the communication action. 

The communicative intention for Greta are planned in MASCARET through the 

COMMUNICATIONBEHAVIOR of agents. It has to be assigned to the EMBODIEDAGENT that 

is connected to Greta using the addCommunicativeIntention method. We developed the 

UNITYGRETABEHAVIORPLANNER concrete class in the 3D engine that inherits the 

                                                 

8 https://confluence.ict.usc.edu/display/VHTK/3rd+Party+Software (accessed November, 2017) 

9 https://confluence.ict.usc.edu/display/VHTK/VHMsg (accessed November, 2017) 

https://confluence.ict.usc.edu/display/VHTK/3rd+Party+Software
https://confluence.ict.usc.edu/display/VHTK/VHMsg
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BEHAVIORPLANNER. We override the parseIntention method to parse the received 

communication actions and to transmit them to Greta. 

When the UNITYGRETABEHAVIORPLANNER receives a communication action, it checks 

the properties of this action (performative, sender, receivers, natural content, resources, 

emotions…) to code the communicative intentions in FML-APML, and sends them to 

the “Behavior Planner” of Greta. For example, when the “INFORM” performative 

function is detected, the UNITYGRETABEHAVIORPLANNER can formulate the following 

message, which has to be sent to Greta in order to communicate with the user: 

<?xml version="1.0" encoding="ISO-8859-1" ?> 

<fml-apml> 

  <bml> 

    <speech id="s1" language="english" voice="openmary" type="SAPI4" 

     text=""><description level="1" type="gretabml"><reference> 

     tmp/from-fml-apml.pho</reference></description> 

      <tm id="tm1"/> 

 Natural Content 

      <tm id="tm2"/> 

    </speech> 

  </bml> 

  <fml> 

    <performative id="p2" type="inform" start="s1:tm1" end="s1:tm2" 

    importance="1.0"/> 

  </fml> 

</fml-apml> 

We established a link between the properties of the received communication action, 

which are set according to the FIPA-ACL messages received by the agents in 

MASCARET (as we mentioned earlier), and the elements of the FML-APML script that 

has to be generated in the UNITYGRETABEHAVIORPLANNER. Therefore, in the 
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UNITYGRETABEHAVIORPLANNER, we depend on the properties of the received 

communication actions (mainly the Performative) to code the communicative intentions 

and the natural text the agent of Greta has to utter. For example, the above FML-APML 

script could be formed when the agent in MASCARET receives the following FIPA-ACL 

message: 

(inform 

 :sender (agent-identifier :name Agent) 

 :receiver (set (agent-identifier :name UserAgent)) 

 :content ((= (iota ?description (slot ?description ?EntityName)) 

NaturalContent)) 

:language FIPA-SL 

) 

As seen in the example, we set the “inform” performative and the “speech” tag in the 

FML-APML script, according to the “performative” and the “naturalContent” properties 

of the communication action that are set in MASCARET based on the FIPA-ACL 

message received by the agent. 

We show in Table IV the performative functions of FIPA and FML that we linked to 

facilitate coding the communicative intentions of Greta. 

Table IV. Relating FIPA-performatives and FML-performatives 

FIPA-Performatives FML-Performatives 

Accept Proposal accept, approve 

Agree Agree 

Call for Proposal order, incite 

Confirm Confirm 

Disconfirm Disagree 

Inform Inform 

Propagate Announce 

Propose propose, suggest 
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Query Ref question, ask 

Refuse Refuse 

Reject Proposal Criticize 

Request Request 

In the next chapter (Chapter 4 Application), we show how we instantiate the generic 

architecture of our model (Figure 49) in order to implement a pedagogical situation in a 

VLE that involves tutor agents and the user. In our application, we consider the ECAs 

that are represented in the virtual environment as tutors that can assist the user to 

perform the domain procedure. The user interacts with the system to submit inquiries 

and requests. 

 

Figure 49. Instantiation of the global architecture by a user and an agent 

3.4.2.3 Natural language from user 

Throughout the execution of required procedure, the user aspire for guidance and 

assistance from the collaborative ECA. To forward requests and inquiries, the user can 

submit natural language text or simply speak to the ECA. They can also show facial 

expressions and perform gestures to interact with the ECA and perform actions. The 

agents should perceive the user and detect her/his multimodal signals and 

communicative acts. 

As we mentioned, agents can only communicate through an agent communication 

language (see section 3.3.2.1). Therefore, the user’s communicative acts have to be 

translated before being delivered to the agents. As explained in section 3.1, MASCARET 
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represents the user as an instance of the class AGENT (the user-agent) in order to 

communicate with the agents in the virtual environment.  

To transmit user’s inquiries to the agents in MASCARET, we used two modules to 

translate these inquiries from natural language into FIPA-ACL messages that the user-

agent can send to other agents in MASCARET. To transform the vocal messages of the 

user into natural language text, we integrated the Intel RealSense voice recognizer SDK 

[98]. We used the AIML (Artificial Intelligence Markup Language) chatbot [99] to 

translate the natural language text into FIPA-ACL messages.  

The AIML is an XML-compliant language that depends on generic rules that consist of 

tags, words, spaces and wildcards (“*” and “_”) to parse natural language text and 

generate relative messages (like FIPA-ACL messages). These rules have to be built 

upon the expected inquiries of the user. For example, when the user inquires about the 

description of an entity in the virtual environment using the question “What is 

EntityName?”, we have to create the following AIML generic pattern to generate the 

corresponding FIPA-ACL message: 

AIML: 

<category> 

 <pattern> What is *</pattern> 

 <template> 

      ((iota ?description (slot ?description ?<star index="1"/>))) 

 </template> 

</category> 

FIPA:  

((iota ?description (slot ?description ?EntityName))) 

In our model, we developed most of the generic patterns to translate the expected 

questions of the user (listed in section 3.3.4) into FIPA-ACL messages that can be sent 

to the agents communicating with the user. 

As seen above, the agents depend on the COMMUNICATIONBEHAVIOR to communicate 

with each other and exchange information. When the user-agent sends a FIPA-ACL 

message to other agents using its COMMUNICATIONBEHAVIOR, the agent that receives 
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this message parses it and checks its knowledge base in order to prepare for a response. 

Subsequently, this agent formulates the response with a new FIPA-ACL message and 

sends it to the user-agent using its COMMUNICATIONBEHAVIOR. This message is then 

transmitted to the user through the ECA. 

Here is a communication scenario that could take place in the virtual environment 

between the user and the agents: 

User’s question: 

What is EntityName? 

AIML pattern: 

<category> 

   <pattern>What is *</pattern> 

   <template> 

         ((iota ?description (slot ?description ?<star index="1"/>))) 

   </template> 

</category> 

The generated FIPA-ACL message that the user-agent sends to other agents in 

MASCARET: 

(query-ref 

 :sender (agent-identifier :name User-Agent) 

 :receiver (set (agent-identifier :name Agent)) 

 :content ((iota ?description (slot ?description ?EntityName))) 

 :language FIPA-SL 

) 

When the agent receives the FIPA-ACL message, it checks its knowledge base and the 

procedural scenario to obtain the requested information. Different responses can be 

generated: 

Case 1: The agent succeeds to obtain the description of the specified entity from its own 

knowledge base and transmits it to the user-agent. 
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Case 2: If the agent does not recognize the specified entity, it forwards a similar FIPA-

ACL message to other agents. If one of the agents succeeds to acquire the desired 

information, it sends a response to the main agent through a FIPA-ACL message. The 

main agent can then forwards the response to the user-agent: 

(inform 

 :sender (agent-identifier :name Agent) 

 :receiver (set (agent-identifier :name User-Agent)) 

 :content ((= (iota ?description (slot ?description ?EntityName)) 

descriptionValue)) 

:language FIPA-SL 

) 

Case 3: Neither the solicited agent nor the other contacted agents succeed to obtain the 

description of the specified entity. The solicited agent uses the “DISCONFIRM” 

performative function to send a FIPA-ACL message to the user-agent to indicate that 

the requested information cannot be obtained: 

(disconfirm 

 :sender (agent-identifier :name Agent) 

 :receiver (set (agent-identifier :name User-Agent)) 

 :content ((iota ?description (slot ?description ?EntityName))) 

 :language FIPA-SL 

) 

In addition to the verbal communicative acts, ECAs can perform non-verbal signals, 

such as pointing to an object and lips synchronization. After determining the 

communicative intentions, our SAIBA interface takes care of the virtual agent 

animation (as explained in section 0). 
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4 APPLICATION 

In the previous chapter, we presented the structure of our proposed model and the 

interactive capabilities that can be realized by the agents and the user. We focused on 

showing the knowledge components that can be gathered by the agents, the actions and 

behaviors they can apply, the activities which the user can perform, and the tools and 

frameworks that we integrated in order to provide natural interaction between the agents 

and the user. 

In this chapter we show how our model is used to develop VLEs to tutor the user 

applying procedures in a specific domain. More precisely, we show how we used our 

model to build a VLE on the biomedical domain for training on a blood analysis 

instrument. The aim of the developed application is to tutor the user on a pre-operative 

blood analysis procedure. The environment is a biomedical laboratory including 

necessary products [100]. 

4.1 Technical Architecture 

In this section, we present the technical architecture to apply our proposed model. We 

show how a real pedagogical scenario with tutoring objectives can be implemented 

using our model. The VLE is implemented using Unity3d engine. In the virtual 

environment, we added the virtual entities that have to be manipulated while applying 

the actions of the procedural scenario but also some elements for decorations. In 

addition, we integrated ECAs in order to interact with the user in a pedagogical 

objective (Figure 51). According to the pedagogical scenario, various roles can be 

assigned to these agents while tutoring the user (detailed in Section 2.1.3).  
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We first present the composition of the virtual environment (section 4.1.1) and then we 

present the domain model (section 4.1.3). 

4.1.1 The virtual environment 

The virtual environment of the blood analysis procedure is composed of several 

products and tools (tubes, scanner, basket, paillasse, buttons, rack...) that the user has to 

manipulate while executing the actions of the procedure. Among these entities, there are 

the automaton (Figure 50-a) and a set of chemical and blood tubes required to prepare 

the reagents (Figure 50-b). 

 

Figure 50. The automaton and products for reagents preparation 

4.1.2 Integrating the ECAs 

As we described in our model, we made it easy to integrate ECA platforms that are 

compliant with the SAIBA framework. Three well known ECA platforms have been 

integrated: Greta, Virtual Human Toolkit and MARC. One embodied agent of each 

platform can be seen in Figure 51. These embodied agents can represent the tutors in the 

virtual environment and they can communicate naturally with the user. 

We integrate these ECA platforms in our environment according to their particular 

specifications. For instance, as shown in Figure 51, the ECA of MARC is represented in 

a separate window with a similar environment. It could not be added into our 

environment since it requires defining its own environment using its own specific 3D 

engine. This is not very convenient, we then used only the two agents that can be 

integrated in the Unity3D: VHToolkit and Greta. 
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After implementing the concrete classes that are responsible for sending the 

communicative intentions and behaviors to these ECAs, we assign a particular tutoring 

role to each ECA (detailed in Section 4.1.2).  

Moreover, the user can address any of the embodied agents in the environment by 

saying the name of the intended agent while interacting with the system (explained in 

the implemented scenario in Section 4.3). 

 

Figure 51. The integration of various ECA platforms 

4.1.3 Building the domain model 

All the necessary properties (name, position…) and operations (Take(object), 

Press(object)…) of the entities that are set in the virtual environment are defined in the 

domain model. This domain model is defined in MASCARET through the UML classes 

and behavioral models (Figure 52) in order to be used by the ECA as a knowledge base 

to execute the pedagogical scenario. 

We used the Modelio10 UML modeler to build the appropriate class models, activity 

diagrams and state machines. 

                                                 

10 https://www.modelio.org/ (accessed November, 2017) 

https://www.modelio.org/


Generation of Communicative Intentions for Virtual Agents in an Intelligent Virtual Environment 

84 

 

Figure 52. Properties and operations of entities 

In this section, we take the example of the blood analysis procedure. This procedure is 

composed of a sequence of 38 actions, such as holding and opening tubes, using the 

automaton, and scanning mixed reagents (Appendix 3). 

 

Figure 53. Extract of blood analysis procedure 
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We defined this procedure in an activity diagram by setting the initial, the final and the 

domain action nodes. For each action, we had to set its name, call the appropriate 

operation and link it to one or more defined objects (Figure 53). The user should 

manipulate these objects in order to execute these actions. For example, to mix the two 

chemical products, “Neoplastine” and “Solvent”, the user has to find the tubes of 

“Neoplastine” and “Solvent” in the virtual environment and consecutively perform the 

“Take” and “Open” actions in order to prepare the reagents. 

The embodied agents in our system can inform the user about the actions she/he should 

perform and about the objects she/he should manipulate. We defined a pedagogical 

scenario with two tutoring roles, designated by the pedagogical expert. In this section, 

we take the example of a pedagogical scenario for a user who realises the procedure for 

the first time. In this case, one agent has to explain the goal of the global procedure (and 

its subparts) and the other has to give the instructions (what action to do) and to show 

the object to manipulate. This pedagogical scenario comes from our collaboration with 

colleagues in cognitive psychology. As shown in Figure 54, we added a set of 

pedagogical actions to the procedural scenario in the UML modeller (Modelio) and 

connected them to the actions from the domain procedure that the user has to perform. 

The pedagogical actions are distributed within the pedagogical scenario under the two 

roles of the tutor agents (Role 1-Formateur and Role 2-FR). 

 

Figure 54. Building a pedagogical scenario with necessary roles 

We defined a “Description” property for each domain action. This is done by the 

domain expert to generate the documentation but it is also used in our application by a 
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tutor agent to present the instructions explicitly to the user. This property can easily be 

updated by the instructor while developing the pedagogical scenario (Figure 55). 

 

Figure 55. Description property to explain domain actions 

To define the agent communicative actions, we added the following fundamental 

properties to every pedagogical action that refers to a communication with the learner 

(Figure 56):  

1- Performative: the performative function, 

2- Receivers: the receivers of the message, 

3- Natural: the natural language text to communicate with the user, 

4- FIPA: the FIPA-SL script of the communicative action, 

5- Resources: the virtual objects to be manipulated. 

For example, in the first pedagogical action in Figure 56, the agent has to inform the 

user about starting the procedure, we defined an agent communicative action by 

specifying the “user” as the Receivers, the “inform” as the Performative function and a 

natural text “We will start to prepare the reagents” in the Natural property to inform the 

user about starting the procedure (Figure 56). When we needed to communicate with a 

tutor agent to request an action (like informing the user about the description of a 

domain action), we had to set the Performative property and the FIPA-SL content 

“((action user (NEXT)))” in the FIPA property (Figure 57). 
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Figure 56. First pedagogical action with necessary properties 

 

Figure 57. Defining actions for the tutor agents in the pedagogical scenario 

4.1.4 Importing MASCARET and the defined models 

To integrate the MASCARET metamodel in the application in order to execute the domain 

and the pedagogical models, we imported MASCARET library using a DLL (Dynamic-

link Library) file (Mascaret.dll) into our application in the Unity3D engine. 

After building the class models and the behavioral models (domain model and 

pedagogical scenario) in Modelio, we exported them as an XMI (XML Metadata 

Interchange) file. To consider these models in our application, we imported this XMI 

file in the interface engine (in the StreamingAssets directory for Unity3D). We had to 

apply a similar process (exporting and importing the XMI file) whenever we modify 

any component in the class and behavioral models. 

Moreover, we had to represent the virtual environment to MASCARET in order to 

consider it and use its entities. Therefore, we built an XML (eXtensible Markup 

Language) file (environment.xml) to outline the structure of the environment by 

representing all the virtual entities in the environment, their properties (such as names, 
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positions, shapes…) and the affectation of ECA to roles. We put this XML file in the 

StreamingAssets of Unity3D and refer it in MASCARET. 

4.1.5 Communication methods for the user 

In addition to the specified peripherals for interacting with the system, the user can 

vocally communicate with the agents in the virtual environment. We used the Intel 

RealSense SDK to implement the voice recognition module in the Unity3D engine. It 

recognizes the natural language speech and converts it to simple text in order to submit 

the inquiries of the user to the tutor agents. The RealSense SDK depends on a library 

with dictionary words and phrases to recognize the contents of the vocal messages. 

However, the vocabulary words of the concerned domain can be added to this library 

using a text file. The user can also use the text field displayed in the interface of the 

application in order to communicate with the agents using text messages that can be 

submitted in this form (Figure 58). 

As we mentioned in Chapter 3, the agents in our model use FIPA-ACL messages to 

communicate with each other to share their knowledge bases and cooperate to execute 

actions. Therefore, we need to translate the text received from the user into FIPA-ACL 

messages in order to send the inquiries to the tutor agents. We defined the appropriate 

AIML generic patterns of questions that the user can ask. The agent representing the 

user in MASCARET sends these messages to the tutor agents. Parsing rules, which are set 

in the FipaSL.g4 module in MASCARET, are used to parse the FIPA-ACL messages of 

these agents. 

 

Figure 58. Simple text field to communicate with the agents 
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4.2 Tutor Behavior 
The PROCEDURALBEHAVIOR executes the pedagogical scenario to guide the user in 

performing the domain scenario. To ensure applying the domain actions of the scenario, 

the agents in the VLE should be able to monitor the activities of the user including the 

inquiries that could be submitted. Accordingly, we defined a TUTORBEHAVIOR (Figure 

59) that could be executed by the agents in MASCARET that play the role of the tutor. 

 

Figure 59. Adding the Tutor Behavior for the agents 

The tutor agent follows the pedagogical scenario through the UML activity diagram 

defined by the domain instructor. This agent executes the pedagogical actions which are 

connected to the actions of the domain procedure. For example, when a domain action 

requires applying a behavior on a certain object, we connect a pedagogical action to the 

domain action in order to explain its description to the learner and to indicate which 

object should be manipulated. The tutor agent executes the pedagogical actions by 

communicating with the learner using communication actions. 

 

Figure 60. Procedural scenario with pedagogical actions 
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As an example, Figure 60 shows a procedural scenario with domain actions that are 

preceded by pedagogical actions to clarify to the learner the required actions to perform 

and the objects to manipulate. However, the learner can interrupt the domain scenario at 

any time and asks for a precision or new information (Figure 61). When such event is 

recognized, the tutor agent has to work on replying to the inquiry. 

 

Figure 61. Interrupting the pedagogical scenario of a procedure 

In the following example, when the learner needs to ask the agent (named “Mike”) 

about the required action, the learner starts the question by specifying the name of the 

targeted agent (Mike). We defined the following generic AIML pattern to generate the 

FIPA-ACL message that is sent to the tutor-agent (Mike) in order to reply: 

Text:   

Mike what should I do now? 

AIML pattern: 

<category> 

 <pattern>* What should I do now</pattern> 

 <template> 

  <star/>;((action <get name="user"/> (NEXT))) 

 </template> 

</category> 
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Generated FIPA-ACL message:   

Mike;((action User-Agent (NEXT))) 

While executing the domain procedure, the tutor-agents monitor the communicative acts 

performed by the learner. The agent representing the learner uses its 

COMMUNICATIONBEHAVIOR to forward the FIPA-ACL message, which represent the 

inquiries of the learner, to the tutor-agent in order to reply. The tutor-agent checks its 

knowledge base, the procedural scenario and the previously exchanged messages with 

the agents in order to determine and provide the suitable reply. For instance, when the 

tutor-agent informs the learner about the goal of an action, the learner might repeatedly 

ask for the purpose of performing that action. Rather than just repeating the same post-

condition to the learner, the tutor-agent refers to the hierarchy of the procedure to 

provide the learner with a further knowledge about the required action, such as the goal 

of the activity. 

 

Figure 62. Post conditions of actions 

While executing the domain procedure, the tutor agent constantly checks its 

environment and the running procedure and executes the TUTORBEHAVIOR. It monitors 

the activities performed by the learner. When the learner performs an action, the tutor-

agent compares this action with the required action in the running domain procedure. 

The tutor-agent starts by checking if the learner manipulated the entity that is connected 

to the required domain action. If an incorrect entity is manipulated, the tutor-agent 

prepares a COMMUNICATIONACTION with the “INFORM” performative to inform the 

learner that a wrong entity is selected using this Natural-Content: "This is 

wrongObjectName and not correctObjectName”. 

The learner could manipulate the correct entity in the VE but performs a different action 

from the desired one in the domain procedure. In this case, the tutor-agent prepares a 
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COMMUNICATIONACTION to inform the user that this is the correct object but an 

incorrect action is selected using this Natural-Content: “This is correctObjectName, 

but you have to correctOperationDescription”. 

When the learner performs the correct action and manipulates the connected entity to 

the domain action, a “DONE” action message is sent to the tutor-agent in order to 

proceed to the next action planned in the domain procedure and it realizes the 

corresponding pedagogical action. Upon finishing the domain procedure, the tutor-agent 

informs the learner that the procedure is accomplished. 

4.3 Implemented Scenario 

We implemented the blood analysis procedure (Figure 53) using the different types of 

the defined behaviors of the agents. The scenario consists in tutoring the learner on the 

domain procedure using the corresponding pedagogical scenario (Figure 54). We 

assigned various tutoring roles to the instances of the three integrated ECA platforms 

(Virtual Human Toolkit-Mike, Greta-Obadiah and MARC-Simon) to show how 

different roles can be specified for the agents (Figure 63-1). Mike realizes the first 

pedagogical action to inform the learner about starting the procedure (Figure 63-2). We 

defined the communication action of this pedagogical action in the activity diagram of 

the scenario with the “inform” performative and the natural language text that Mike has 

to say to the learner through its verbal behaviors (Figure 56). Obadiah executes the 

second pedagogical action that requires informing the learner about the description of 

the first domain action (Figure 54, Figure 63-3). As we explained earlier, the FIPA 

property of the communication action in this pedagogical action indicates getting the 

description property, which is defined by the domain expert, from the domain action 

using the appropriate FIPA message (Figure 57). 

The learner can interrupt the scenario and ask questions to acquire for additional 

information. The learner might inquire about the goal of the requested action by asking 

“Why?” (Figure 63-4). When the learner does not specify the tutor agent that she/he 

intends to interact with, Obadiah who is the default agent processes the inquiry and 

replies to the learner with the post-condition of the requested domain action (Figure 63-

5). Moreover, the learner might intend to obtain additional information about the action 

she/he has to perform by consecutively asking “Why?” (Figure 63-6). The tutor agent 

refers to the hierarchy of the procedure to provide the learner with the activity goal as a 

further knowledge to that action (Figure 63-7). 
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The learner can communicate with a particular tutor agent by naming it when she/he 

formulates the question. For example, when the learner intends to ask Mike about the 

description of the object that she/he should manipulate, she/he has to start the question 

with “Mike” (Mike, why?). The learner can vocally communicate with the tutor agent 

using a microphone, or they can submit their questions using the text field that is 

displayed in the interface (Figure 63-8). Mike obtains the description of the object from 

its “Description” property and vocally transmits it to the learner (Figure 63-9). 

The location of the appropriate object might be unknown to the learner. She/he could try 

to use the wrong object to execute the action (Figure 63-10). Since the tutor agents are 

constantly monitoring the activities of the learner, they can discover that an incorrect 

object is selected and inform the learner with the committed error (Figure 63-11). The 

learner can then ask about the position of the object using the “Where is ObjectName” 

phrase and naming the object in the inquiry (Figure 63-12). After getting the orientation 

of this object from the environment, Obadiah (the default tutor agent) points with his 

hand to the object that also blinks with red color, and he vocally tells its place (Figure 

63-13). Furthermore, when the learner selects an inappropriate action on the right object 

(Figure 63-14), Obadiah informs the learner about the committed fault after checking 

the domain procedure (Figure 63-15). 

When the learner performs the requested action (Figure 63-16), the corresponding 

animation, like opening a tube, is realized in the virtual environment (Figure 63-17). 

The pedagogical scenario automatically proceeds to the following pedagogical action 

that consists in informing the learner about the next domain action she/he has to 

perform (Figure 63-18). When the learner performs all the domain actions, Obadiah 

announces the accomplishment of the procedural scenario with a thankful message 

(Figure 63-19). 

In Chapter 5, we evaluate our model by describing the experiment we conducted on an 

experiment on a group of participants using a demonstration of the developed 

application. We apply evaluation techniques and relative statistical tests on the obtained 

results of the experiment in order to validate the methodologies of our model. 
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Figure 63. The implemented scenario of the blood analysis procedure 
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5 EVALUATION 

Similar to previous evaluations [34], we want to validate the impact of our model on the 

natural interaction between a user and an ECA, more precisely in a VLE, having the 

possibility to exchange knowledge by communications using the model we proposed in 

Chapter 3. In order to do this, we choose the context of our application, which is a 

virtual environment to learn a procedure (Chapter 4).  

5.1 Experiment protocol 
In the experiment we settled, the learner has to follow the blood analysis procedure 

which implies the manipulation of virtual objects in the virtual environment. Initially, 

the learner has to retrieve the information about the procedural actions before executing 

them. She/he can also consult the instructions about the execution of an action. 

We use the same protocol as Hoareau et al [35] then, the experiment requires the learner 

to repeat the procedure for several trials. The learner could acquire the procedural 

knowledge to her/his memory. We make the hypothesis that upon repetition, the 

performance of learning will be better. In Hoareau, the performance is represented by 

the time of execution, the number of errors and the number of assistances. 

The hypothesis of our experiment is to assume that the presence of an Embodied 

Conversational Agent (ECA) in a Virtual Environment (VE) enhances the learning 

performance (or at least does not degrade it) in the context of a learning procedure. 

The procedure of this experiment is composed of 38 actions (see Appendix 3) that the 

learner should realize for several trials. 
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We define two different tutoring conditions (Condition 1: with ECA, Condition 2: 

without ECA).  

Forty participants with different ages and academic backgrounds from the academic 

institute, Arts, Sciences and Technology University in Lebanon (AUL), were involved 

in this study. Each participant played the role of the learner whose goal is to perform the 

procedure for seven trials. They were unaware of the procedure and how many rounds 

(trials) the experiment takes. We separated them in two groups of twenty participants 

with different experiment conditions (Group 1 – 20 participants - Condition 1, Group 2 - 

20 participants - Condition 2). 

5.1.1 Description of the experiment 

In this experiment, each learner has to execute the procedure in seven consecutive trials. 

Several measures are gathered in every trial in order to be studied and to observe the 

variations in the activities and the collected results. The consumed time to complete the 

procedure, the number of consultations of the instructions, and the number of 

committed errors, are the measures that we considered for the evaluation. Subsequently, 

a log file with these measures is generated after every trial of each participant. 

 

Figure 64. Interactive menu for selecting actions 

The scenario of the experiment is executed in a virtual environment that represents the 

blood analysis laboratory (Figure 65). The learner is requested to perform the procedure 

of the blood analysis tests on the automaton biological analysis machine. To perform 
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this procedure, the learner must follow up the given instructions in order to select 

suitable actions and manipulate the right objects. To manipulate an object and perform 

the required action, the learner has to press the left mouse button over an object, use the 

“up and down” keyboard arrow keys to select an action, and then to press the “Enter” 

button in order to confirm her/his selection (Figure 64). 

5.1.1.1 Experiment with HELP icon 

In the scenario of the experiment with the first condition (Condition 1), the instructions 

to perform the actions of the procedure are vocally given. The learner can press the 

question-mark icon ( ), which is displayed at the bottom right corner of the screen 

(Figure 65), in order for vocal instruction to be given or repeated. After pressing this 

icon, a synthetic voice provides the learner with the description of the next action to 

perform, and the object that should be manipulated blinks red until the learner presses 

on it and selects an action (Figure 65). The learner can repeatedly refer to these 

instructions as much as needed. 

 

Figure 65. Experiment with HELP icon 

5.1.1.2 Experiment with an ECA 

The scenario with the second condition (Condition 2) shows the integration of an ECA-

tutor in the virtual environment (Figure 66). The learner has to vocally communicate 

with the ECA-tutor to inquire about the next action by clearly saying “NEXT”. The 
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ECA responds and points to the object that should be manipulated while it is blinking in 

red (Figure 66). The learner can repeatedly refer to the instructions as much as needed. 

 

Figure 66. Experiment with an ECA 

5.1.2 Log files 

To automatically get the information on the evolution of the performance of learning of 

the user, we developed our system to generate a log file, after each trial of every 

participant in the experiment, to gather the following objective performance measures: 

- Total time of execution: the start and end date time of the trial 

- Number and date of requested assistance: the number and the date of 

consultations for instructions 

- Realized action info: realized date, action name, manipulated object, and the 

validity of the performed action (wrong or right) 

5.1.3 Questionnaire 

Upon finishing the seventh trial in the experimental session, each learner should apply 

the multi-dimensional subjective workload technique using the questionnaire of the 

NASA Task Load Index (TLX) [101] [102]. Figure 67 shows the rating sheet that 

includes several rating-scale dimensions (Mental Demand, Physical Demand, Temporal 

Demand, Performance, Effort and Frustration Level) which the learner has to scale. The 

NASA TLX questionnaire uses bipolar scales to rate these rating-scale dimensions 
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(Figure 67). The learner uses this questionnaire to evaluate the experiment they 

underwent. The second part of the TLX questionnaire asks the learner to weight the 

importance of these rating-scales by selecting the scales that could primarily affect their 

performance for executing the procedure. 

 

Figure 67. NASA TLX questionnaire rating scale 

5.2 Results 

To evaluate the experiment and validate the impact of the proposed facts in our model, 

we execute the formulas of several statistical tests on the collected performance 

measures in the log files. 

While studying these log files, we recognized that the three last trials correspond to the 

third phase of learning (the autonomous phase) [103]. In this phase, the learner is just 

trying to improve her/his performance and not getting new knowledge. Accordingly, we 

consider that we have just to compare the results of the two first phases (Cognitive 

phase and Associative phase) using the four first trials where our proposition can have 

an impact.  

The objective performance measures are represented in the statistical formulas as 

Dependent Variables (DV). We consider the funnel concept to organize the adopted 

performance measures (1- Execution time → 2- Consulting assistance → 3- Number of 

errors) (Figure 68). A funnel is used to represent the measures of the experiment, since a 

prospect descends into the next stage of the funnel when its interest increases. 
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Figure 68. The funnel design concept of the objective performance measures 

Besides, we study the Independent Variables (IV) which are the different conditions 

considered in the experiment. It might affect the objective performance measures. In our 

experiment, we have two IVs: 

1- Presence or absence of a virtual agent (ECA) 

2- Number of trials 

To prove or deny the proposed hypothesis (the presence of an ECA in a VE enhances 

learning performance or at least does not degrade it in the context of a learning 

procedure), we developed a script using the “R” 11  software (Copyright to The R 

Foundation for Statistical Computing) to execute reliable statistical tests to evaluate the 

results of the experiment.  

In the following sections, we present the effect of each DV (Execution time, Consulting 

assistance and Number of errors) on the performance of the learner among the applied 

tests. The results of these tests are determined by considering the probability values (p-

value), and the alpha significance level (x) that is frequently set to (0.05). 

5.2.1.1 Execution Time 

The condition of this application is to know if we do parametric or non-parametric 

statistical tests. In these two parametric tests, we have to get p > x in order to be 

significant: 

 

                                                 

11 https://www.r-project.org/ (accessed November, 2017) 

Execution time

Consulting assistance

Number of 
errors

https://www.r-project.org/
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DV: Time 

Shapiro-Wilk Normality Test 

Data Time (execution time) 

p.value 0.0142097 

Result p < x → Not significant, so we do not respect the normality 

F test of homogeneity of variances (F Fisher Test) 

Data Time by Condition 

p.value 0.02261723 

Result 
p < x → Not Significant, so we don’t respect the homogeneity of 
variances 

Since we do not have significant results in these two tests, we will do non-parametric 

statistical tests. We need to check for the effect of number of trials on Time (IV 

corresponds to the number of trials). Here, we have to get p < x in order to be 

significant: 

Friedman rank sum test (for all participants). We use this test when we have more than 

two trials. The data of each trial is listed in Table V (the mean and the standard 

deviation of the results of all participants in every trial), and graphically represented in 

Figure 69. 

 

DV: Time 

Friedman: Effect of Number of Trials / Time 

Data Responses 

p.value 2.2e-16 

Result p < x → Significant 
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Table V. Friedman: Effect of Number of Trials / Time in minutes 

Trial 1 2 3 4 

Mean 5.076766 4.429500 3.121051 2.835630 

Standard Deviation 1.897760 2.032023 1.863305 1.242661 

 

 

Figure 69. Friedman: Effect of Number of Trials / Time in minutes 

We can reason on the obtained results of Friedman’s test to say that the number of trials 

has an effect on the time needed to execute a trial. The time decreases significantly 

according to the executed trials. This is a classical result in the learning curve. It means 

that using our system, the learner is learning. 

We also need to check for the effect of the presence of the virtual agent on the time (IV 

corresponds to the presence or the absence of the virtual agent): 

1. Wilcoxon rank sum test with continuity correction (two independent groups). 

The data listed in Table VI (the mean and the standard deviation of the results of 

all participants in both conditions separately) and graphically represented in 

Figure 70 is used in this test: 
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DV: Time 

Wilcoxon: Effect of Condition / Time 

Data Time by Condition 

IV corresponds to the presence or absence of the virtual agent 

p.value 0.000166 

Result 

p < x → Significant, so the presence of the virtual agent has an effect 

on the time, and the time varies according to the presence or the 

absence of the virtual agent 

 

Table VI. Wilcoxon: Effect of Condition / Time in minutes 

Mean Standard Deviation 

Condition-ECA 4.548177 2.133259 

Condition-Icon 3.183296 1.579927 

 

 

Figure 70. Wilcoxon: Effect of Condition / Time in minutes 
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We can reason on the obtained results of Wilcoxon’s test to say that the presence of the 

virtual agent has an effect on the time. Interacting with a virtual agent is consuming 

more time than just clicking on an icon to enquire about the desired action. It means that 

using a virtual agent in our system need additional time from the learner. 

We will check now for the effect of the presence or the absence of the virtual agent at 

each trial on the time consumed to finish the procedure. The data listed in Table VII (the 

average time consumed in every trial by all participants in both conditions separately) 

and graphically represented in Figure 71 is used in these tests: 

 

DV: Time 

Trial 1: Wilcoxon: Effect of Condition / Time for Trial1 

Data Time by Condition 

p.value 0.04084 

Result p < x → Significant 

 

We notice that there is a time difference between the two conditions in the first trial, so 

we have to refer to the average table (Table VII) to check which condition took more 

time to finish the procedure. 

 

DV: Time 

Trial 2: Wilcoxon: Effect of Condition / Time for Trial2 

Data Time by Condition 

p.value 0. 001963 

Result p < x → Significant 

Trial 3: Wilcoxon: Effect of Condition / Time for Trial3 

Data Time by Condition 

p.value 0. 003155 

Result p < x → Significant 
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Trial 4: Wilcoxon: Effect of Condition / Time for Trial4 

Data Time by Condition 

p.value 0. 002702 

Result p < x → Significant 

 

Table VII. Wilcoxon: Effect of Condition / Time for each Trial 

Trials 1 2 3 4 

Condition-ECA 5.463996 5.340858 3.869896 3.517959 

Condition-Icon 4.689536 3.518142 2.372206 2.153302 

 

 

Figure 71. Wilcoxon: Effect of Condition / Time for each Trial 

We can reason on the obtained results of Wilcoxon’s test, by applying the trials of the 

experiment on the two conditions, to say that the number of trials has an effect on the 

time while applying the two conditions (Condition-ECA and Condition-Icon). The time 

decreases significantly according to the executed trials. This is a classical result in the 

learning curve. It means that using our system in any of the two conditions, the learner 

is learning. 

We can notice that the presence of the virtual agent has an effect on the time consumed 

by the participants (in Condition-ECA) during the performed trials of the experiment. 
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5.2.1.2 Consulting assistance (Help) 

The condition of this application is to know if we do parametric or non-parametric 

statistical tests. In these parametric tests, we have to get p > x in order to be significant: 

DV: number of times asking for help  

(number of times to consult instructions) 

Shapiro-Wilk Normality Test 

Data Help 

p.value 2.884966e-10 

Result p < x → Not significant, so we do not respect the normality 

F test of homogeneity of variances (F Fisher Test) 

Data Help by Condition 

p.value 0.4908131 

Result p > x → Significant, so we respect the homogeneity of variances 

Since not both tests are significant, we have to do non-parametric statistical tests. We 

have to check for the effect of number of trials on number of Help consultations (IV 

corresponds to the number of trials). Here, we have to get p < x in order to be 

significant. 

1. Friedman rank sum test. The data listed in Table VIII (the mean and the standard 

deviations of the results of all participants in every trial) and graphically 

represented in Figure 72 is used in this test: 

DV: Help 

Friedman: Effect of Number of Trials / Help 

Data Responses 

IV corresponds to the number of trials 

p.value 0.0003501 

Result p < x → Significant 
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Table VIII. Friedman: Effect of Number of Trials / Help 

Trial 1 2 3 4 

Mean 36.166667 18.6 6.833333 3.866667 

Standard Deviation 9.667162 11.254424 9.843897 7.532611 

 

 

Figure 72. Friedman: Effect of Number of Trials / Help 

We can reason on the obtained results of Friedman’s test to say that the number of trials 

has an effect on the help consultations. The number of times asking for help decreases 

significantly according to the executed trials. This means that using our system, the 

learner is learning. 

We present here the effect of the presence of the virtual agent on the number of Help 

consultations (IV corresponds to the presence or absence of the virtual agent).  

2. Wilcoxon rank sum test with continuity correction. The data listed in Table IX 

(the mean and the standard deviation of the results of all participants in both 

conditions separately) and graphically represented in Figure 73 is used in this 

test: 

DV: Help 

Wilcoxon: Effect of Condition / Help 

Data Help by Condition 

IV corresponds to the presence or absence of the virtual agent 
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p.value 0.2295 

Result p > x → Not Significant 

 

Table IX. Wilcoxon: Effect of Condition / Help 

Mean Standard Deviation 

Condition-ECA 18.26667 16.57123 

Condition-Icon 14.46667 15.14279 

 

 

Figure 73. Wilcoxon: Effect of Condition / Help 

We are going to check for the effect of the presence or the absence of the virtual agent 

at each trial on the number of help consultations. The data listed in Table X (the average 

of the number of help consultations in every trial by all participants in both conditions 

separately) and graphically represented in Figure 74 is used in these tests: 

DV: Help 

Trial 1: Wilcoxon: Effect of Condition / Help for Trial1 

Data Help 

p.value 0.2026 
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Result p > x → Not Significant 

Trial 2: Wilcoxon: Effect of Condition / Help for Trial2 

Data Help 

p.value 0.2897 

Result p > x → Not Significant 

Trial 3: Wilcoxon: Effect of Condition / Help for Trial3 

Data Help 

p.value 0.4012 

Result p > x → Not Significant 

Trial 4: Wilcoxon: Effect of Condition / Help for Trial4 

Data Help 

p.value 0.405 

Result p > x → Not Significant 

 

Table X. Wilcoxon: Effect of Condition / Help for each Trial 

Trials 1 2 3 4 

Condition-ECA 37 21.26667 9 5.8 

Condition-Icon 35.33333 15.93333 4.666667 1.933333 

 



Chapter 5: Evaluation 

     111 

 

 

Figure 74. Wilcoxon: Effect of Condition / Help for each Trial 

According to the above results, we can notice that we do not have a significant 

difference in the number of help consultations inquired by the participants in both 

conditions during the performed trials of the experiment. But according to the obtained 

results of Wilcoxon’s test, we can say that the number of trials has an effect on the 

number of help consultations in both conditions. The number of times asking for help 

decreases significantly according to the executed trials. It means that using our system, 

the learner is learning. 

5.2.1.3 Number of errors (Incorrect Actions) 

The condition of this application is to know if we do parametric or non-parametric 

statistical tests. In these two parametric tests, we have to get p > x in order to be 

significant: 

DV: Number of incorrect actions 

Shapiro-Wilk Normality Test 

Data Errors (number of errors in actions) 

p.value 3.015709e-15 

Result p < x → Not significant, so we do not respect the normality 

F test of homogeneity of variances (F Fisher Test) 

Data Errors by Condition 
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p.value 8.482104e-13 

Result 
p < x → Not Significant, so we do not respect the homogeneity of 

variances 

Since we don’t have significant results in these two tests, we will do non-parametric 

statistical tests. We have to check for the effect of number of trials on number of 

incorrect actions (IV corresponds to the number of trials). Here, we have to get p < x in 

order to be significant. 

1. Friedman rank sum test (for all participants). We use this test when we have 

more than two trials. The data listed in Table XI (the mean and the standard 

deviations of the results of all participants in every trial) and graphically 

represented in Figure 75 is used in this test: 

DV: Number of incorrect actions 

Friedman: Effect of Number of Trials / Incorrect Actions 

Data Responses 

IV corresponds to the number of trials 

p.value 1.125e-05 

Result p < x → Significant 

 

Table XI. Friedman: Effect of Number of Trials / Incorrect Actions 

Trial 1 2 3 4 

Mean 2.133333 8.933333 8.566667 5.766667 

Standard Deviation 2.270247 11.682387 8.071591 5.437313 
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Figure 75. Friedman: Effect of Number of Trials / Incorrect Actions 

We can reason on the obtained results of Friedman’s test to say that the number of trials 

has an effect on the number of incorrect actions. After executing the first trial to 

recognize the required actions, the number of times for making fault actions decreases 

significantly according to the executed trials. This means that using our system, the 

learner is learning. 

We have to acquire the effect of the presence of the virtual agent on the number of 

incorrect actions (IV corresponds to the presence or absence of the virtual agent).  

2. Wilcoxon rank sum test with continuity correction. The data listed in Table XII 

(the mean and the standard deviation of the results of all participants in both 

conditions separately) and graphically represented in Figure 76 is used in this 

test: 

 

DV: Number of incorrect actions 

Wilcoxon: Effect of Condition / Incorrect Actions 

Data Errors by Condition 

IV corresponds to the presence or absence of the virtual agent 

p.value 0.3053 

Result 
p > x → Not Significant, so the presence of the virtual agent has no 

effect on the number of errors 
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Table XII. Wilcoxon: Effect of Condition / Incorrect Actions 

Mean Standard Deviation 

Condition-ECA 7.933333 10.547498 

Condition-Icon 4.766667 3.863636 

 

 

Figure 76. Wilcoxon: Effect of Condition / Incorrect Actions 

We can reason on the obtained results of Wilcoxon test to say that applying the different 

conditions has no effect on the number of incorrect actions. The number of times for 

making fault actions decreases significantly according to the executed trials. This means 

that using our system, the learner is learning in both conditions. 

We will check now for the effect of the presence or the absence of the virtual agent at 

each trial on the number of incorrect actions. The data listed in Table XIII (the average 

of the number of incorrect actions in every trial by all participants in both conditions 

separately) and graphically represented in Figure 77 is used in these tests: 
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Trial 2: Wilcoxon: Effect of Condition / Incorrect Actions for Trial2 

Data Errors 

p.value 0.9336 

Result p > x → Not Significant 

Trial 3: Wilcoxon: Effect of Condition / Incorrect Actions for Trial3 

Data Errors 

p.value 0.1968 

Result p > x → Not Significant 

Trial 4: Wilcoxon: Effect of Condition / Incorrect Actions for Trial4 

Data Errors 

p.value 0.1748 

Result p > x → Not Significant 

Table XIII. Wilcoxon: Effect of Condition / Incorrect Actions for each Trial 

Trials 1 2 3 4 

Condition-ECA 2 10.933333 11.2 7.6 

Condition-Icon 2.266667 6.933333 5.933333 3.933333 

 

Figure 77. Wilcoxon: Effect of Condition / Incorrect Actions for each Trial 
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According to the above results, we can notice that we do not have a significant 

difference in the number of incorrect actions committed by the participants in the two 

conditions among all the trials of the experiment. But according to the obtained results 

of Wilcoxon’s test, we can say that the number of trials has an effect on decreasing the 

number of incorrect actions in both conditions. The number of incorrect actions 

decreases significantly according to the executed trials. It means that using our system, 

the learner is learning. 

Discussion 

As we previously declared, the purpose of evaluating the experiment is to find the effect 

of the existence of the Independent Variables (Presence or absence of a virtual agent, 

and Number of trials) on the Dependent Variables (Execution time, Consulting 

assistance, and Number of errors) based on the results of the statistical tests in order to 

be able to confirm or deny the proposed hypothesis (we assume that the presence of 

ECA in a VE enhances the learning performance in the context of a learning procedure). 

By referring to the statistical test results, we conclude that there is no significant effect 

for the presence or the absence of the ECA on the “Help” and “Incorrect Actions” DVs. 

We can also notice that it takes more time for participants to perform the procedure in 

each trial when they have to vocally communicate with the ECA rather than just 

pressing on the “?” icon. However, what might be important is the difference between 

the measures of trials and not their values. The difference between the measures of trials 

when having an ECA is greater than that when using the “?” ICON (Table V, Table VIII 

and Table XI). Accordingly, we can say that a better learning performance could be 

gained when an ECA is used. 

To confirm the obtained results, we conducted the same experiment on an expert of the 

procedural scenario of the blood analysis. The same results were attained. 

As a conclusion, we use these results to partially confirm the hypothesis of the applied 

experiment and assure that having an ECA in the virtual environment does not degrade 

the performance of the learner in the context of a learning procedure. More effects of 

IVs can probably be studied when executing an advanced procedure with a better 

pedagogical behavior and by including more aspects in studying the performance of the 

learner. 



Chapter 6: Conclusion & Perspectives 

     117 

 

6 CONCLUSION & 
PERSPECTIVES 

In this thesis, we proposed a novel model for conceiving and implementing VLE with 

intelligent virtual agents having a BDI-like based cognitive architecture and 

materialized through ECAs that ensure human-like and credible interactions with the 

user during the progress of the pedagogical scenarios. The proposed cognitive 

architecture represents both, the knowledge on the environment and the internal state of 

the agents and their evolution. It allows to plugin rich reasoning models to draw out 

sound decisions and intentions. 

Our model is implemented on top of MASCARET. This allows domain experts, with no 

or little technical background, to define their pedagogical scenarios using UML. They 

can also reuse artifacts from previous scenarios and easily extend existing ones. We 

extend MASCARET with bricks to implement our agents’ cognitive architecture, and we 

use SAIBA to map agents’ behaviors to concrete ECA interactions. 

Using our implemented model, we built a biomedical pedagogical scenario, in which 

virtual tutors guide laboratory workers to learn and apply a blood analysis procedure. 

The learner is advised to follow the default sequence of actions needed to successfully 

accomplish the procedure, and receives the right directions even when unintentional 

disruptions interrupts the normal sequel of the procedure. 

We used this tutoring system to apply an experimental scenario on several participants. 

We applied the experimental protocols defined by Hoareau et al. [35] to evaluate the 
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experiment and to validate the impact of our model based on objective performance 

measures. We used the results of this evaluation to partially confirm the hypothesis of 

the experiment and assure that having an ECA in the VLE does not degrade the 

performance of the learner in the context of a learning procedure. 

6.1 Perspectives 

We aim to implement our model on different scenarios in order to confirm the 

authenticity of our model. Nevertheless, we are going to indicate in this section the 

several perspectives that can extend our work to include additional functionalities for 

the VLE. 

6.1.1 Building an advanced Tutoring Behavior 

The agent in our model is able to answer to questions, but it can be interesting if this 

agent can ask questions to the learner while executing the domain procedure and after 

finishing it in order to make sure that the domain procedure is well tutored. This can be 

acquired by checking the learner’s knowledge. An examination pedagogical scenario 

can be defined and linked to the domain procedure. While executing the domain 

procedure, the tutor agent can perform pedagogical actions in this scenario to ask the 

learner about acquired information to make sure that she/he can succeed in continuing 

the procedure. 

Consequently, going further on interpretation of the natural language of the learner is a 

mandatory operation that has to be implemented in order to parse the answers of the 

learner. The generic AIML patterns, which are defined to interpret the learner’s 

dialogue, should be developed to understand the domain terms and the answers of the 

learner. 

The learner could not realize how to perform a certain action in the domain procedure. 

Therefore, the tutor agent should be able to execute all domain actions, and the learner 

can then request from a tutor agent to perform the difficult actions. Necessary 

performative functions and slots have to be used in the COMMUNICATIONACTIONs that 

are exchanged between the agents to implement the action-requests of the learner. 

To consider more human interaction behaviors in the VLE, the facial expressions of the 

learner could be detected in order to recognize her/his feedback after being informed 

about performing a domain action. For example, when the tutor agent asks the learner to 

manipulate an object in the environment, if the learner expresses a negative feedback, 
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the agent can provide additional information about that entity, like its role or any other 

property. 

In a similar way, facial expressions could be as well realized by the tutor agents to 

express natural feedback in the virtual environment. The tutor agent has to analyse all 

actions performed by the learner and realize necessary facial expressions. For example, 

when the learner performs for several times the same incorrect action, in addition for 

informing the learner with the correct notes, the tutor agent can realize a wondering 

facial expression to naturally react to the faulty performance of the learner. 

To implement these perspectives, further work on the ECA and on an Intelligent 

Tutoring System (ITS) in the domain application of the VLE have to be implemented. 

6.1.2 Intelligent Tutoring System 

The intelligent tutoring system (ITS) is a computer system that can be used to tutor the 

user on the knowledge of a certain domain through communication and interaction. The 

major common objective of all ITSs is to support the learning processes of handled 

scenarios by supplying it with appropriate tutoring services. 

The architecture of the ITS consists of four models (Domain model, Student model, 

Tutoring model and Interface model) [104] (Figure 78) which require studying and 

analyzing the knowledge patterns and the reasoning sources [105] in the VLE. This 

analysis can specify the behaviors of the agents to properly interact with the learner and 

the environment. 

 

Figure 78. The four-component architecture of an ITS 
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The domain knowledge provided by the domain experts is represented in the domain 

model (declarative knowledge), while the pedagogical knowledge is defined by the 

domain instructors to provide the reasoning facts to demonstrate the declarative 

knowledge [106]. 

While executing the learning scenario, the student model carries the knowledge about 

the achieved progress of the learner. When the learner interacts with the environment, 

this model tracks the activities, the cognitive states and the attained knowledge of the 

learner. These assets are considered as the reasoning aspects that are required to execute 

suitable actions. 

The interactions between the learner and the agents are well managed in the ITS. The 

ITS follows pedagogical strategies that are educationally well tested. The tutoring 

model considers the knowledge aspects of the domain and student models in order to 

select the pedagogical and tutoring activities that can assist the learner. This model is 

also responsible for replying to the inquiries of the user [104] [107]. 

The interface model permits the interaction and the exchange of information between 

the learner and the system. Different types of interface behaviors, such as text, visual or 

auditory fields, are adopted to translate the system information to the learner. Besides, 

several input sources and communication conventions, such as microphone, keyboard, 

mouse and joystick can be used by the learner to interact with the system [108]. 

Many ITS models, such as [109], [110], [111] and [112] are previously released and 

used. The ITS of [109] includes a web-based environment for teaching geometry proofs. 

While in [110], the ITS automatically categorizes the contents of the virtual 

environment, but can only provide a poor interaction techniques with the learner. 

Whereas, [111] defines a simulated framework that acts as an ITS and includes a 

scenario authoring tool for the medical domain. 



Chapter 7: Bibliography 

     121 

 

7 BIBLIOGRAPHY 

 

[1]  G. Desmeulles, S. Bonneaud, P. Redou, V. Rodin and J. Tisseau, “In virtuo 

Experiments Based on the Multi-Interaction System Framework: the RéISCOP 

Meta-Model,” Computer Modeling in Engineering and Sciences (CMES), vol. 

47(3), p. 299, 2009.  

[2]  G. A. Giraldi, R. Silva and J. C. Oliveira, “Introduction to virtual reality,” LNCC 

Research Report, vol. 6, 2003.  

[3]  T. Mazuryk and M. Gervautz, “Virtual reality-history, applications, technology 

and future,” in Institute of Computer Graphics, Vienna University of Technology, 

Austria, 1996.  

[4]  S. K. Ong and A. Y. C. Nee, “Virtual and augmented reality applications in 

manufacturing,” Springer Science & Business Media, 2013.  

[5]  E. Gobbetti and R. Scateni, “Virtual reality: Past, present, and future,” Virtual 

environments in clinical psychology and neuroscience: Methods and techniques 

in advanced patient-therapist interaction, 1998.  

[6]  H. Hsiu Mei and L. Shu Sheng, “Applying situated learning in a virtual reality 

system to enhance learning motivation,” International Journal of Information and 

Education Technology, vol. 1, p. 298, 2011.  

[7]  M. Sacco, G. Dal Maso, F. Milella, P. Pedrazzoli, D. Rovere and W. Terkaj, 



Generation of Communicative Intentions for Virtual Agents in an Intelligent Virtual Environment 

122 

“Virtual Factory Manager,” Virtual and Mixed Reality-Systems and Applications. 

Springer Berlin/Heidelberg, pp. 397-406, 2011.  

[8]  L. Beyer-Berjot, V. Palter, T. Grantcharov and R. Aggarwal, “Advanced training 

in laparoscopic abdominal surgery: a systematic review,” Surgery, vol. 156(3), 

pp. 676-688, 2014.  

[9]  A. G. Gallagher, N. E. Seymour, J. A. Jordan-Black, B. P. Bunting, K. McGlade 

and R. M. Satava, “Prospective, randomized assessment of transfer of training 

(ToT) and transfer effectiveness ratio (TER) of virtual reality simulation training 

for laparoscopic skill acquisition,” Annals of surgery, vol. 257(6), pp. 1025-1031, 

2013.  

[10]  L. Greunke and A. Sadagic, “Taking Immersive VR Leap in Training of Landing 

Signal Officers,” IEEE transactions on visualization and computer graphics, vol. 

22(4), pp. 1482-1491, 2016.  

[11]  H. C. Miles, S. R. Pop, S. J. Watt, G. P. Lawrence, N. W. John, V. Perrot, P. 

Mallet and D. R. Mestre, “Investigation of a virtual environment for rugby skills 

training,” In Cyberworlds (CW), 2013 International Conference. IEEE, pp. 56-63, 

2013, October.  

[12]  S. Gerbaud, N. Molle, F. Ganier, B. Arnaldi and J. Tisseau, “GVT: a platform to 

create virtual environments for procedural training,” Virtual Reality Conference, 

2008. VR'08. IEEE, pp. 225-232, 2008.  

[13]  P. Dillenbourg, D. Schneider and P. Synteta, “Virtual learning environments,” 3rd 

Hellenic Conference "Information & Communication Technologies in Education", 

pp. 3-18, 2002.  

[14]  T. Huber, M. Paschold, C. Hansen, T. Wunderling, H. Lang and W. Kneist, “New 

dimensions in surgical training: immersive virtual reality laparoscopic simulation 

exhilarates surgical staff,” Surgical Endoscopy, 1-6, 2017.  

[15]  V. N. Palter and T. P. Grantcharov, “Individualized deliberate practice on a virtual 

reality simulator improves technical performance of surgical novices in the 

operating room: a randomized controlled trial,” Annals of surgery, vol. 259(3), pp. 

443-448, 2014.  



Chapter 7: Bibliography 

     123 

 

[16]  R. Webster, “Declarative knowledge acquisition in immersive virtual learning 

environments,” Interactive Learning Environments, vol. 24(6), pp. 1319-1333, 

2016.  

[17]  L. Edward, D. Lourdeaux, J. P. A. Barthès, D. Lenne and J. M. Burkhardt, 

“Modelling autonomous virtual agent behaviours in a virtual environment for 

risk,” IJVR, vol. 7(3), pp. 13-22, 2008.  

[18]  B. Koper, R.O. and A. T, “Ims learning design information model,” IMS Global 

Learning Consortium, 2003.  

[19]  R. Querrec, C. Buche, F. Lecorre and F. Harrouet, “Agent metamodel for virtual 

reality applications,” Emerging Intelligent Technologies in Industry. Springer 

Berlin Heidelberg, pp. 81-90, 2011.  

[20]  R. Bouville, V. Gouranton, T. Boggini, F. Nouviale and B. Arnaldi, “#FIVE: 

High-Level Components for Developing Collaborative and Interactive Virtual 

Environments,” In Proceedings of Eighth Workshop on Software Engineering and 

Architectures for Realtime Interactive Systems (SEARIS 2015), conjunction with 

IEEE Virtual Reality (VR), 2015, March.  

[21]  C. Barot, D. Lourdeaux and D. Lenne, “Using planning to predict and influence 

autonomous agents behaviour in a virtual environment for training,” In Cognitive 

Informatics & Cognitive Computing (ICCI* CC), 12th IEEE International 

Conference, pp. 274-281, 2013, July.  

[22]  B. C. C. Souza, R. F. D. A. Bolzan, J. G. Martins and A. M. Rodriguez, 

“Cognitive strategies for virtual learning environments,” 2000.  

[23]  J. Rickel and W. L. Johnson, “Steve: An animated pedagogical agent for 

procedural training in virtual environments,” Intelligent virtual agents, 

Proceedings of Animated Interface Agents: Making Them Intelligent, pp. 71-76., 

1997.  

[24]  J. Klein, Y. Moon and R. W. Picard, “This computer responds to user frustration: 

Theory, design, and results,” Interacting with computers, vol. 14(2), pp. 119-140, 

2002.  

[25]  J. Cassell, Embodied conversational agents, MIT press, 2000.  



Generation of Communicative Intentions for Virtual Agents in an Intelligent Virtual Environment 

124 

[26]  J. C. Lester, S. A. Converse, S. E. Kahler, S. T. Barlow, B. A. Stone and R. S. 

Bhogal, “The persona effect: affective impact of animated pedagogical agents,” In 

Proceedings of the ACM SIGCHI Conference on Human factors in computing 

systems, ACM, pp. 359-366, 1997.  

[27]  B. Friedman, Human values and the design of computer technology, Cambridge 

University Press, 1997.  

[28]  A. Nijholt, “Humor and embodied conversational agents,” CTIT, 2003. 

[29]  H. C. Lane, M. J. Hays, M. G. Core and D. Auerbach, “Learning intercultural 

communication skills with virtual humans: Feedback and fidelity,” Journal of 

Educational Psychology 105.4, pp. 10-26, 2013.  

[30]  W. L. Johnson, J. W. Rickel and J. C. Lester, “Animated pedagogical agents: 

Face-to-face interaction in interactive learning environments,” International 

Journal of Artificial intelligence in education, vol. 11(1), pp. 47-78, 2000.  

[31]  J. C. Lester, J. L. Voerman, S. G. Towns and C. B. Callaway, “Deictic 

believability: Coordinated gesture, locomotion, and speech in lifelike pedagogical 

agents,” Applied Artificial Intelligence, Vols. 13(4-5), pp. 383-414, 1999.  

[32]  P. Doyle, “Believability through context using knowledge in the world to create 

intelligent characters,” In Proceedings of the first international joint conference 

on Autonomous agents and multiagent systems: part 1, ACM, pp. 342-349, 2002.  

[33]  P. Chevaillier, T. H. Trinh, M. Barange, P. De Loor, F. Devillers, J. Soler and R. 

Querrec, “Semantic modeling of virtual environments using Mascaret,” In 

Software Engineering and Architectures for Realtime Interactive Systems 

(SEARIS), 2012 5th Workshop. IEEE., pp. 1-8, 2012, March.  

[34]  R. Atkinson, “Optimizing learning from examples using animated pedagogical 

agents,” Journal of Educational Psychology, 2002.  

[35]  C. Hoareau, F. Ganier, R. Querrec, F. Corre and C. Buche, “Evolution of 

cognitive load when learning a procedure in a virtual environment for training,” 

6th International Cognitive Load Theory Conference (ICLTC'13), 2013.  

[36]  R. Aylett and M. Cavazza, “Intelligent Virtual Environments-A state-of-the-art 



Chapter 7: Bibliography 

     125 

 

report,” In Eurographics Conference, Manchester, UK., 2001, September.  

[37]  N. Gavish, T. G. Seco, S. Webel, J. Rodriguez, M. Peveri and U. Bockholt, 

“Transfer of skills evaluation for assembly and maintenance training,” In BIO 

Web of Conferences, vol. 1, p. 28, 2011.  

[38]  J. A. Stevens and J. P. Kincaid, “The relationship between presence and 

performance in virtual simulation training,” Open Journal of Modelling and 

Simulation, vol. 3(02), p. 41, 2015.  

[39]  C. Barot, D. Lourdeaux and D. Lenne, “Dynamic Scenario Adaptation Balancing 

Control, Coherence and Emergence,” ICAART, pp. 232-237, 2013, February.  

[40]  K. Carpentier, D. Lourdeaux and I. M. Thouvenin, “Dynamic Selection of 

Learning Situations in Virtual Environment,” ICAART, pp. 101-110, 2013, 

February.  

[41]  F. Le Corre, C. Fauvel, C. Hoareau, R. Querrec and C. Buche, “Chrysaor: an 

agent-based intelligent tutoring system in virtual environment,” International 

Conference on Virtual Learning, 2012.  

[42]  J. Saunier, M. Barange, B. Blandin and R. Querrec, “A methodology for the 

design of pedagogically adaptable learning environments,” International Journal 

of Virtual Reality 16, vol. 1, 2016.  

[43]  G. Rimassa, “Runtime support for distributed multi-agent systems,” Doctor 

degree thesis elaborated by Giovanni Rimassa at University Degli Studi de 

Parma, 2003.  

[44]  V. Guéraud, J. M. Adam, J. P. Pernin, G. Calvary and J. P. David, “L'exploitation 

d'Objets Pédagogiques Interactifs à distance: le projet FORMID,” Revue des 

Sciences et Technologies de l'Information et de la Communication pour 

l'Education et la Formation (STICEF), 2004.  

[45]  A. Newell, “Unified theories of cognition,” Harvard University Press, 1994.  

[46]  P. Langley and D. Choi, “A unified cognitive architecture for physical agents,” in 

In Proceedings of the National Conference on Artificial Intelligence (Vol. 21, No. 

2, p. 1469), Menlo Park, CA; Cambridge, MA; London; AAAI Press; MIT Press;, 

2006.  



Generation of Communicative Intentions for Virtual Agents in an Intelligent Virtual Environment 

126 

[47]  A. Newell, Unified theories of cognition, Cambridge, MA: Harvard University 

Press, 1990.  

[48]  J. R. Anderson, D. Bothell, M. D. Byrne, S. Douglass, C. Lebiere and Y. Qin, “An 

integrated theory of the mind,” Psychological review, vol. 111(4), no. 1036, 2004.  

[49]  J. Lefevre, “J. Lefevre. Processing instructional texts and examples,” Canadian 

journal of psychology, vol. 41(3), p. 351–364, 1987.  

[50]  P. Langley, J. E. Laird and S. Rogers, “Cognitive architectures: Research issues 

and challenges,” Cognitive Systems Research, pp. 141-160, 2009.  

[51]  M. E. Bratman, D. J. Israel and M. E. Pollack, “Plans and resource‐bounded 

practical reasoning,” Computational intelligence, vol. 4(3), pp. 349-355, 1988.  

[52]  A. S. Rao and M. P. Georgeff, “Modeling rational agents within a BDI-

architecture,” KR 91, pp. 473-484, 1991.  

[53]  A. Guerra-Hernández, A. E. Fallah-Seghrouchni and H. Soldano, “Learning in 

BDI multi-agent systems,” Computational logic in multi-agent systems. Springer 

Berlin Heidelberg, pp. 218-233, 2004.  

[54]  H.-Q. Chong, A.-H. Tan and G.-W. Ng, “Integrated cognitive architectures: a 

survey,” Artificial Intelligence Review 28.2, pp. 103-130, 2007.  

[55]  M. Courgeon and C. Clavel, “MARC: a framework that features emotion models 

for facial animation during human–computer interaction,” Journal on Multimodal 

User Interfaces 7.4, pp. 311-319, 2013.  

[56]  M. P. Georgeff and F. F. Ingrand, “Decision-making in an embedded reasoning 

system,” Australian Artificial Intelligence Institute, 1989, pp. 972-978. 

[57]  M. d'Inverno, M. Luck, M. Georgeff, D. Kinny and M. Wooldridge, “The 

dMARS architecture: A specification of the distributed multi-agent reasoning 

system,” Autonomous Agents and Multi-Agent Systems, vol. 9, pp. 5-53, 2004.  

[58]  M. Wooldridge, An introduction to multiagent systems, John Wiley & Sons, 

2009.  

[59]  E. Norling, “Folk psychology for human modelling: Extending the BDI 



Chapter 7: Bibliography 

     127 

 

paradigm,” In Proceedings of the Third International Joint Conference on 

Autonomous Agents and Multiagent Systems - IEEE Computer Society, vol. 1, pp. 

202-209, 2004.  

[60]  A. Pokahr, L. Braubach and W. Lamersdorf, “Jadex: A BDI reasoning engine,” 

Multi-agent programming. Springer US, pp. 149-174, 2005.  

[61]  J. E. Laird, A. Newell and P. S. Rosenbloom, “Soar: An architecture for general 

intelligence,” Artificial intelligence 33.1, pp. 1-64, 1987.  

[62]  J. F. Lehman, J. Laird and P. Rosenbloom, “A Gentle Introduction to SOAR, an 

Architecture for Human Cognition,” University of Michigan, 2006. 

[63]  A. M. Nuxoll and J. E. Laird, “Extending cognitive architecture with episodic 

memory,” Ann Arbor 1001, pp. 1560-1564, 2007.  

[64]  M. J. Wooldridge, “Reasoning about rational agents,” MIT press, 2000.  

[65]  J. R. Anderson and C. Lebiere, “The Newell test for a theory of cognition,” 

Behavioral and brain Sciences, vol. 26(05), pp. 587-601, 2003.  

[66]  J. R. A. L. Anderson and C. Lebiere, “The atomic components of thought,” 

Lawrence Erlbaum. Mathway, NJ., 1998.  

[67]  J. P. Borst and J. R. Anderson, “Using the ACT-R Cognitive Architecture in 

combination with fMRI data,” In An introduction to model-based cognitive 

neuroscience, Springer New York, pp. 339-352, 2015.  

[68]  M. E. Foster, “Enhancing human-computer interaction with embodied 

conversational agents,” Universal access in human-computer interaction. Ambient 

interaction. Springer Berlin Heidelberg, pp. 828-837, 2007.  

[69]  W. R. Swartout, J. Gratch, R. W. Hill Jr, E. M. Hovy, R. J. S. and D. Traum, 

“Toward virtual humans,” AI Magazine, vol. 27(2), no. 96, 2006.  

[70]  J. F. Morie, E. Chance, K. Haynes and D. Rajpurohit, “Embodied conversational 

agent avatars in virtual worlds: Making today’s immersive environments more 

responsive to participants,” Believable bots. Springer Berlin Heidelberg, pp. 99-

118, 2013.  

[71]  S. Kopp, L. Gesellensetter, N. C. Krämer and I. Wachsmuth, “A conversational 



Generation of Communicative Intentions for Virtual Agents in an Intelligent Virtual Environment 

128 

agent as museum guide–design and evaluation of a real-world application,” In 

Intelligent virtual agents, Springer Berlin Heidelberg, pp. 329-343, 2005.  

[72]  A. Hartholt, D. Traum, S. C. Marsella, A. Shapiro, G. Stratou, A. Leuski, L.-P. 

Morency and J. Gratch, “All together now. Introducing the Virtual Human 

Toolkit,” Springer Berlin Heidelberg, pp. 368-381, 2013.  

[73]  I. Poggi, C. Pelachaud, F. d. Rosis, V. Carofiglio and B. D. Carolis, “Greta. a 

believable embodied conversational agent,” Multimodal intelligent information 

presentation, Springer Netherlands, pp. 3-25, 2005.  

[74]  J. Rickel and W. L. Johnson, “Animated agents for procedural training in virtual 

reality: Perception, cognition, and motor control,” Applied artificial intelligence, 

Vols. 13(4-5), pp. 343-382, 1999.  

[75]  B. Hartmann, M. Mancini and C. Pelachaud, “Formational parameters and 

adaptive prototype instantiation for MPEG-4 compliant gesture synthesis,” In 

Computer Animation, 2002. IEEE, pp. 111-119, 2002.  

[76]  C. Pelachaud, “Greta: an interactive expressive embodied conversational agent,” 

In Proceedings of the 2015 International Conference on Autonomous Agents and 

Multiagent Systems, p. 5, 2015, May.  

[77]  M. Mancini, R. Niewiadomski, E. Bevacqua and C. Pelachaud, “Greta: a SAIBA 

compliant ECA system,” In Troisiéme Workshop sur les Agents Conversationnels 

Animés, 2008.  

[78]  K. R. Thórisson, T. List, C. Pennock and J. DiPirro, “Whiteboards: Scheduling 

blackboards for semantic routing of messages & streams,” In AAAI-05 Workshop 

on Modular Construction of Human-Like Intelligence, pp. 8-15, 2005.  

[79]  R. Niewiadomski, E. Bevacqua, M. Mancini and C. Pelachaud, “Greta: an 

interactive expressive ECA system,” In Proceedings of The 8th International 

Conference on Autonomous Agents and Multiagent Systems. International 

Foundation for Autonomous Agents and Multiagent Systems, vol. 2, pp. 1399-

1400, 2009.  

[80]  P. Kenny, A. Hartholt, J. Gratch, W. Swartout, D. Traum, S. Marsella and D. 

Piepol, “Building interactive virtual humans for training environments,” In 



Chapter 7: Bibliography 

     129 

 

Proceedings of i/itsec, vol. 174, 2007, November.  

[81]  G. Littlewort, J. Whitehill, T. Wu, I. Fasel, M. Frank, J. Movellan and M. Bartlett, 

“The computer expression recognition toolbox (CERT),” In Automatic Face & 

Gesture Recognition and Workshops (FG 2011), 2011 IEEE International 

Conference, pp. 298-305, 2011, March.  

[82]  T. Bickmore, D. Schulman and G. Shaw, “Dtask and Litebody: Open source, 

standards-based tools for building web-deployed embodied conversational 

agents,” In International Workshop on Intelligent Virtual Agents, Springer Berlin 

Heidelberg., pp. 425-431, 2009, September.  

[83]  M. Stone, “Knowledge representation for language engineering,” In A Handbook 

for Language Engineers, 2003.  

[84]  P. Taylor, A. W. Black and R. Caley, “The architecture of the Festival speech 

synthesis system,” 1998.  

[85]  A. Leuski and D. R. Traum, “NPCEditor: A Tool for Building Question-

Answering Characters,” In LREC, 2010, May.  

[86]  “VHToolkit - Confluence Institute for Creative Technologies,” 

Confluence.ict.usc.edu, [Online]. Available: 

https://confluence.ict.usc.edu/display/VHTK. 

[87]  M. Courgeon, J. C. Martin and C. Jacquemin, “Marc: a multimodal affective and 

reactive character,” In Proceedings of the 1st Workshop on AFFective Interaction 

in Natural Environments, p. 20, 2008.  

[88]  M. Courgeon, “MARC Toolkit,” 2015. [Online]. Available: http://www.marc-

toolkit.net/. 

[89]  A. Cafaro, H. H. Vilhjálmsson, T. Bickmore, D. Heylen and C. Pelachaud, 

“Representing communicative functions in saiba with a unified function markup 

language,” Intelligent Virtual Agents. Springer International Publishing, 2014.  

[90]  S. Kopp, B. Krenn, S. Marsella, A. N. Marshall, C. Pelachaud, H. Pirker, K. R. 

Thórisson and H. Vilhjálmsson, “Towards a common framework for multimodal 

generation: The behavior markup language,” In International Workshop on 

Intelligent Virtual Agents, Springer Berlin Heidelberg, pp. 205-217, 2006.  



Generation of Communicative Intentions for Virtual Agents in an Intelligent Virtual Environment 

130 

[91]  H. Vilhjálmsson, N. Cantelmo, J. Cassell, N. Chafai, M. Kipp, S. Kopp, M. 

Mancini, S. Marsella, A. Marshall, C. Pelachaud and Z. Ruttkay, “The behavior 

markup language: Recent developments and challenges,” Intelligent virtual 

agents. Springer Berlin Heidelberg, 2007.  

[92]  D. Heylen, S. Kopp, S. C. Marsella, C. Pelachaud and H. Vilhjálmsson, “The next 

step towards a function markup language,” Intelligent Virtual Agents. Springer 

Berlin Heidelberg, 2008.  

[93]  S. Kopp, B. Jung, N. Lessmann and I. Wachsmuth, “Max-a multimodal assistant 

in virtual reality construction,” KI, vol. 17(4), p. 11, 2003.  

[94]  M. Mancini and C. Pelachaud, “The fml-apml language,” In Proc. of the 

Workshop on FML at AAMAS, vol. 8, 2008, April.  

[95]  R. Niewiadomski, M. Obaid, E. Bevacqua, J. Looser, L. Q. Anh and C. 

Pelachaud, “Cross-media agent platform,” In Proceedings of the 16th 

international conference on 3D web technology, ACM, pp. 11-19, 2011, June.  

[96]  T. Salamon, “Design of agent-based models,” Eva & Tomas Bruckner Publishing, 

2011.  

[97]  J. Taoum, B. Nakhal, E. Bevacqua and R. Querrec, “A Design Proposition for 

Interactive Virtual Tutors in an Informed Environment,” 16th International 

Conference on Intelligent Virtual Agents (IVA 2016), vol. 10011, pp. 341-350, 

2016, September.  

[98]  Intel, “Intel® RealSense™ SDK,” Intel, [Online]. Available: 

https://software.intel.com/en-us/intel-realsense-sdk. 

[99]  M. d. G. B. Marietto, R. V. d. Aguiar, G. d. O. Barbosa, W. T. Botelho, E. 

Pimentel, R. d. S. França and V. L. d. Silva, “Artificial Intelligence Markup 

Language: A Brief Tutorial,” arXiv preprint arXiv:1307.3091, 2013.  

[100]  F. Le Corre, C. Hoareau, F. Ganier, C. Buche and R. Querrec, “A Pedagogical 

Scenario Language for Virtual Learning Environment based on UML Meta-

model”.  

[101]  S. Rubio, E. Díaz, J. Martín and J. M. Puente, “Evaluation of subjective mental 



Chapter 7: Bibliography 

     131 

 

workload: A comparison of SWAT, NASA‐TLX, and workload profile methods,” 

Applied Psychology, vol. 53(1), pp. 61-86, 2004.  

[102]  V. Gawron, Human Performance Measures Handbook, Erlbaum, Lawrence, 

Associates, Publishers, Mahwah, N.J., 2000.  

[103]  J. A. Taylor and R. B. Ivry, “The role of strategies in motor learning,” Annals of 

the New York Academy of Science, vol. 1251(1), pp. 1-12, 2012.  

[104]  E. Wenger, Artificial intelligence and tutoring systems: computational and 

cognitive approaches to the communication of knowledge, Morgan Kaufmann, 

1987.  

[105]  R. Nkambou, R. Mizoguchi and J. & Bourdeau, Advances in intelligent tutoring 

systems, Springer Science & Business Media., 2010.  

[106]  G. Nkambou, R. Gauthier and C. Frasson, “Un modèle de représentation des 

connaissances relatives au contenu dans un système tutoriel intelligent,” Sciences 

et Techniques Educatives, vol. 4, pp. 299-330, 1997.  

[107]  D. Lourdeaux, F. P. and B. J.-M., “An intelligent tutorial agent for training virtual 

environments,” in 5th world multiconference on Systemics, Cybernetics and 

Informatics, Orlando, USA, 2001.  

[108]  G. Vigano, S. Mottura, D. Calabi and M. Sacco, “The virtual reality design tool: 

Case studies and interfacing open topics,” In virtual concept, p. 364–371, 2003.  

[109]  S. Pesty and C. Webber, “The baghera multiagent learning environment,” An 

educational community of artificial and human agents, 2004.  

[110]  C. dos Santos and F. Osorio, “Integrating intelligent agents, user models, and 

automatic content categorization in a virtual environment,” ITS 2004, LNCS 3220, 

p. 128–139, 2004.  

[111]  B. Sorensen and S. Ramachandran, “Simulation-based automated intelligent 

tutoring,” Human Interface, Part II, HCII 2007, LNCS 4558, p. 466–474, 2007.  

[112]  C. Buche, C. Bossard, R. Querrec and P. Chevaillier, “PEGASE: A generic and 

adaptable intelligent system for virtual reality learning environments,” 

International Journal of Virtual Reality 9.2, pp. 73-85, 2010.  



Generation of Communicative Intentions for Virtual Agents in an Intelligent Virtual Environment 

132 

 



Chapter 8: Appendices 

     133 

 

8 APPENDICES 

APPENDIX 1. FIPA PERFORMATIVES AND THEIR MEANING ............................................. 134 

APPENDIX 2. PARSING RULES OF FIPA-SL IN ANTLR .................................................. 136 

APPENDIX 3. THE PROCEDURE OF BLOOD ANALYSIS TESTS ON AN AUTOMATON 

BIOLOGICAL ANALYSIS MACHINE ........................................................................... 140 

 



Generation of Communicative Intentions for Virtual Agents in an Intelligent Virtual Environment 

134 

APPENDIX 1. FIPA PERFORMATIVES AND THEIR MEANING 

Performative When used 

Accept Proposal 
The action of accepting a previously submitted proposal to 

perform an action. 

Agree 
The action of agreeing to perform some action, possibly in 

the future. 

Cancel 

The action of one agent informing another agent that the 

first agent no longer has the intention that the second agent 

perform some action. 

Call for Proposal The action of calling for proposals to perform a given action. 

Confirm 

The sender informs the receiver that a given proposition is 

true, where the receiver is known to be uncertain about the 

proposition. 

Disconfirm 

The sender informs the receiver that a given proposition is 

false, where the receiver is known to believe, or believe it 

likely that, the proposition is true. 

Failure 
The action of telling another agent that an action was 

attempted but the attempt failed. 

Inform 
The sender informs the receiver that a given proposition is 

true. 

Inform If 
A macro action for the agent of the action to inform the 

recipient whether or not a proposition is true. 

Inform Ref 
A macro action for sender to inform the receiver the object 

which corresponds to a descriptor, for example, a name. 

Not Understood 

The sender of the act (for example, i) informs the receiver 

(for example, j) that it perceived that j performed some 

action, but that i did not understand what j just did. A 

particular common case is that i tells j that i did not 

understand the message that j has just sent to i. 
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Propagate 

The sender intends that the receiver treat the embedded 

message as sent directly to the receiver, and wants the 

receiver to identify the agents denoted by the given 

descriptor and send the received propagate message to 

them. 

Propose 
The action of submitting a proposal to perform a certain 

action, given certain preconditions. 

Proxy 

The sender wants the receiver to select target agents 

denoted by a given description and to send an embedded 

message to them. 

Query If 
The action of asking another agent whether or not a given 

proposition is true. 

Query Ref 
The action of asking another agent for the object referred to 

by a referential expression. 

Refuse 
The action of refusing to perform a given action, and 

explaining the reason for the refusal. 

Reject Proposal 
The action of rejecting a proposal to perform some action 

during a negotiation. 

Request 

The sender requests the receiver to perform some action. 

One important class of uses of the request act is to request 

the receiver to perform another communicative act. 

Request When 
The sender wants the receiver to perform some action when 

some given proposition becomes true. 

Request Whenever 

The sender wants the receiver to perform some action as 

soon as some proposition becomes true and thereafter each 

time the proposition becomes true again. 

Subscribe 

The act of requesting a persistent intention to notify the 

sender of the value of a reference, and to notify again 

whenever the object identified by the reference changes. 
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APPENDIX 2. PARSING RULES OF FIPA-SL IN ANTLR 

grammar FipaSL; 

options { 

    language=CSharp2; 

} 

@header { 

   using System; 

   using System.Collections; 

   using System.Collections.Generic; 

} 

@members { 

    public bool isAction = false; 

    public bool isIota = false; 

    public bool isEqual = false; 

    public bool done = false; 

    public bool started = false; 

    public string value = ""; 

    public string performer = ""; 

    public string entityName = ""; 

    public string actionName = ""; 

    public string askedTerm = ""; 

    public string predicateSymbol = ""; 

    public List<string> paramValue = new List<string>(); 

    public List<string> paramName = new List<string>(); 

} 
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/*------------------------------------------------------------------ 

 * PARSER RULES 

 *------------------------------------------------------------------*/ 

 content : LPAREN contentexpression RPAREN ; 

 contentexpression : identifyingexpression 

   | actionexpression 

   | proposition ; 

 proposition : wff; 

 wff : LPAREN actionop actionexpression RPAREN 

  | atomicformula; 

 atomicformula : propositionsymbol 

 | LPAREN predicatesymbol {predicateSymbol = $predicatesymbol.text;} 

term+ RPAREN 

 | LPAREN binarytempop term term {value=$term.text;} RPAREN 

 | 'true' 

 | 'false'; 

 actionop : 'done' {done = true;} 

             | 'feasible' 

   | 'started' {started = true;}; 

 term : constant 

   | identifyingexpression 

   | variable; 

 binarytempop : '=' {isEqual = true;} 

   | '>' 

   | '>=' 
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   | '<' 

   | '<=' 

   | '!=' 

   | 'member' 

   | 'contains' 

   | 'result'; 

 identifyingexpression : LPAREN referentialoperator {isIota = true;} term 

{askedTerm = $term.text;} wff RPAREN; 

 referentialoperator : 'iota'; 

 actionexpression : LPAREN 'action'{isAction = true;} agent {performer = 

$agent.text;} functionalterm RPAREN; 

 functionalterm : LPAREN functionsymbol {actionName = 

$functionsymbol.text;} (parameter)* RPAREN; 

 parameter : parametername parametervalue ; 

 parametername : COLON ID  {paramName.Add($ID.text);}; 

 parametervalue : term  {paramValue.Add($term.text);}; 

 constant : numericalconstant 

                        | ID; 

 variable : variableidentifier; 

 variableidentifier : QUES ID {paramName.Add($ID.text);}; 

 numericalconstant : integer 

                        | float; 

 agent : ID; 

 predicatesymbol : ID; 

 propositionsymbol : ID; 

 functionsymbol : ID; 
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 integer : DIGIT+; 

 float : DIGIT+'.'DIGIT+; 

 DIGIT  : [0-9] ; 

 ID : [a-zA-Z_]([a-zA-Z_-]|[0-9])*; 

 WS : [ \t\r\n]+ -> skip; 

 LPAREN : '(' ; 

 RPAREN : ')' ; 

 COLON  : ':' ; 

 QUES : '?' ; 
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APPENDIX 3. THE PROCEDURE OF BLOOD ANALYSIS TESTS 
ON AN AUTOMATON BIOLOGICAL ANALYSIS MACHINE 

 Action to realize Object to manipulate 

1 Open Neoplastine Tube Neoplastine  

2 Open Solvant Tube Solvant  

3 Take Neoplastine Tube Neoplastine  

4 Take Solvant Tube Solvant  

5  Pour Solvant Neoplastine Tube Solvant Tube Neoplastine 

6 Put Solvant Tube Solvant  

7 Screw Neoplastine Tube Neoplastine  

8 Shake Neoplastine Tube Neoplastine  

9 Poser Neoplastine Tube Neoplastine  

10 Open Neoplastine Tube Neoplastine  

11 Open DesorbU Tube DesorbU  

12 Take Maxi Reducer Maxi Reducer  

13 Insert Maxi Reducer in DesorbU Maxi Reducer Tube DesorbU 

14 Press Drawer Button (open) Drawer Button  

15 Take Neoplastine Tube Neoplastine  

16 Scanner Neoplastine Tube Neoplastine Scanner 

17 Put Neoplastine in Drawer Tube Neoplastine Product Drawer 

18 Take DesorbU Tube DesorbU  

19 Scan DesorbU Tube DesorbU Scanner 

20 Put DesorbU in Drawer Tube DesorbU Product Drawer 

21 Press Drawer Button (close) Drawer Button  

22 Take Tube Tube  
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23 Put Tube in Rack Tube Rack 

24 Take Rack Rack  

25 Put Rack in Basket Rack Basket 

26 Take Basket Basket  

27 Put Basket on STAR Basket STAR 

28 Press Start Button Start Button  

29 Take Basket Basket  

30 Put Basket on Paillasse Basket Paillasse 

31 Take Rack Rack  

32 Put Rack on Paillasse Rack Paillasse 

33 Press Drawer Button (open) Drawer Button  

34 Take Neoplastine Tube Neoplastine  

35 Put Neoplastine on Paillasse Tube Neoplastine Paillasse 

36 Take DesorbU Tube DesorbU  

37 Put DesorbU on Paillasse Tube DesorbU Paillasse 

38 Press Drawer Button (close) Drawer Button  

 



Génération des Intentions Communicatives pour Agents Virtuels dans un Environnement Virtuel Intelligent : 
Application aux Environnements d’Apprentissage Virtuels 

 

Résumé 

La réalité virtuelle joue un rôle majeur dans le développement de nouvelles technologies de l’éducation, et permet de 
développer des environnements virtuels pour l’apprentissage, dans lesquels, des agents virtuels intelligents jouent le rôle de 

tuteur. Ces agents sont censés aider les utilisateurs humains à apprendre et appliquer des procédures ayant des objectifs 

d’apprentissage prédéfini dans différents domaines. Nous travaillons sur la construction d’un système temps-réel capable 

d’entamer une interaction naturelle avec un utilisateur dans un Environnement d’Apprentissage Virtuel (EAV). Afin 
d’implémenter ce modèle, nous proposons d’utiliser MASCARET (Multi-Agent System for Collaborative, Adaptive & 

Realistic Environments for Training) comme modèle d’Environnement Virtuel Intelligent (EVI) afin de représenter la base 

de connaissances des agents, et de modéliser la sémantique de l’environnement virtuel et des activités des utilisateurs. Afin 

de formaliser l’intention des agents, nous implémentons un module cognitif dans MASCARET inspiré par l’architecture BDI 

(Belief-Desire-Intention) qui nous permet de générer des intentions de haut-niveau pour les agents. Dans notre modèle, ces 

agents sont représentés par des Agents Conversationnels Animés (ACA), qui sont basés sur la plateforme SAIBA (Situation, 

Agent, Intention, Behavior, Animation). Les agents conversationnels de l’environnement ont des intentions communicatives 
qui sont transmises à l’utilisateur via des canaux de communication naturels, notamment les actes communicatifs et les 
comportements verbaux et non-verbaux. Afin d’évaluer notre modèle, nous l’implémentons dans un scénarios pédagogique 
concret pour l’apprentissage des procédures d’analyse de sang dans un laboratoire biomédical. Nous utilisons cette 
application afin de réaliser une expérimentation et une étude pour valider les propositions de notre modèle. L’hypothèse de 
notre étude est de supposer que la présence d’un ACA dans un Environnement Virtuel (EV) améliore la performance du 
processus d’apprentissage (ou qu’au moins, ça ne le dégrade pas) dans le contexte de l’apprentissage d’une procédure 
spécifique. La performance de l’utilisateur est représentée par le temps requis pour l’exécution de la procédure, le nombre 
d’erreurs commises et le nombre de demande d’assistance. Nous analysons les résultats de cette évaluation, ce qui confirme 

partiellement l’hypothèse de l’expérience et affirme que la présence de l’ACA dans l’EV ne dégrade pas la performance de 
l’apprenant dans le contexte de l’apprentissage d’une procédure. 

Mots clés : Environnement d’Apprentissage Virtuel, d’Environnement Virtuel Intelligent, MASCARET, Agents 

Conversationnels Animés, SAIBA, BDI, Intentions Communicatives. 
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Abstract 

Virtual Reality plays a major role in developing new educational methodologies, and allows to develop virtual 

environments for learning where intelligent virtual agents play the role of tutors. These agents are expected to help human 

users to learn and apply domain-specific procedures with predefined learning outcomes. We work on building a real-time 

system able to sustain natural interaction with the user in a Virtual Learning Environment (VLE). To implement this model, 

we propose to use the Multi-Agent System for Collaborative, Adaptive & Realistic Environments for Training 

(MASCARET) as an Intelligent Virtual Environment (IVE) model that provides the knowledge base to the agents and 

model the semantic of the virtual environment and user’s activities. To formalize the intention of the agents, we implement 

a cognitive module within MASCARET inspired by BDI (Belief-Desire-Intention) architecture that permits us to generate 

high-level intentions for the agents. Furthermore, we integrate Embodied Conversational Agents (ECA), which are based on 

the SAIBA (Situation, Agent, Intention, Behavior, Animation) framework. The embodied agents of the environment have 

communicative intentions that are transmitted to the user through natural communication channels, namely the verbal and 

non-verbal communicative acts and behaviors of the ECAs. To evaluate our model, we implement it in a concrete 

pedagogical scenario for learning blood analysis procedures in a biomedical laboratory. We use this application to settle an 

experiment to validate the propositions of our model. The hypothesis of this experiment is to assume that the presence of an 

ECA in a Virtual Environment (VE) enhances the learning performance (or at least does not degrade it) in the context of a 

learning procedure. The performance is represented by the time of execution, the number of committed errors and the 

number of requests for assistance. We analyze the results of this evaluation, which partially confirms the hypothesis of the 

experiment and assure that having an ECA in the VLE does not degrade the performance of the learner in the context of a 

learning procedure. 

Keywords : Virtual Learning Environment, Intelligent Virtual Environment, MASCARET, Embodied Conversational 

Agents, SAIBA, BDI, Communicative Intention. 


