
HAL Id: tel-01770256
https://theses.hal.science/tel-01770256v1
Submitted on 6 Dec 2017 (v1), last revised 18 Apr 2018 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Direct visual odometry and dense large-scale
environment mapping from panoramic RGB-D images

Renato Martins

To cite this version:
Renato Martins. Direct visual odometry and dense large-scale environment mapping from panoramic
RGB-D images . Robotics [cs.RO]. Université de recherche Paris Sciences et Lettres; Mines Paristech,
2017. English. �NNT : 2017PSLEM004�. �tel-01770256v1�

https://theses.hal.science/tel-01770256v1
https://hal.archives-ouvertes.fr
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Abstract

This thesis is in the context of self-localization and 3D mapping from RGB-D cameras

for mobile robots and autonomous systems. We present image alignment and mapping tech-

niques to perform the camera localization (tracking) notably for large camera motions or low

frame rate. Possible domains of application are virtual and augmented reality, localization of

autonomous vehicles or in 3D reconstruction of environments. We propose a consistent local-

ization and 3D dense mapping framework considering as input a sequence of RGB-D images

acquired from a mobile platform. The core of this framework explores and extends the domain

of applicability of direct/dense appearance-based image registration methods. With regard to

feature-based techniques, direct/dense image registration (or image alignment) techniques are

more accurate and allow us a more consistent dense representation of the scene. However, these

techniques have a smaller domain of convergence and rely on the assumption that the camera

motion is small.

In the first part of the thesis, we propose two formulations to relax this assumption. Firstly,

we describe a fast pose estimation strategy to compute a rough estimate of large motions, based

on the normal vectors of the scene surfaces and on the geometric properties between the RGB-

D images. This rough estimation can be used as initialization to direct registration methods

for refinement. Secondly, we propose a direct RGB-D camera tracking method that exploits

adaptively the photometric and geometric error properties to improve the convergence of the

image alignment.

In the second part of the thesis, we propose techniques of regularization and fusion to

create compact and accurate representations of large scale environments. The regularization is

performed from a segmentation of spherical frames in piecewise patches using simultaneously

the photometric and geometric information to improve the accuracy and the consistency of the

scene 3D reconstruction. This segmentation is also adapted to tackle the non-uniform resolution

of panoramic images. Finally, the regularized frames are combined to build a compact keyframe-

based map composed of spherical RGB-D panoramas optimally distributed in the environment.

These representations are helpful for autonomous navigation and guiding tasks as they allow

us an access in constant time with a limited storage which does not depend on the size of the

environment.

Keywords: RGB-D registration; mapping; visual odometry; visual SLAM; panoramic images
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Résumé

Cette thèse se situe dans le domaine de l’auto-localisation et de la cartographie 3D pour

des robots mobiles et des systèmes autonomes avec des caméras RGB-D. Nous présentons des

techniques d’alignement d’images et de cartographie pour effectuer la localisation d’une caméra

(suivi), notamment pour des caméras avec mouvements rapides ou avec faible cadence. Les do-

maines d’application possibles sont la réalité virtuelle et augmentée, la localisation de véhicules

autonomes ou la reconstruction 3D des environnements. Nous proposons un cadre consistant et

complet au problème de localisation et cartographie 3D à partir de séquences d’images RGB-

D acquises par une plateforme mobile. Ce travail explore et étend le domaine d’applicabilité

des approches de suivi direct dites “appearance-based”. Vis-à-vis des méthodes fondées sur

l’extraction de primitives, les approches directes permettent une représentation dense et plus

précise de la scène mais souffrent d’un domaine de convergence plus faible nécessitant une

hypothèse de petits déplacements entre images.

Dans la première partie de la thèse, deux contributions sont proposées pour augmenter ce

domaine de convergence. Tout d’abord une méthode d’estimation des grands déplacements est

développée s’appuyant sur les propriétés géométriques des cartes de profondeurs contenues dans

l’image RGB-D. Cette estimation grossière (rough estimation) peut être utilisée pour initialiser

la fonction de coût minimisée dans l’approche directe. Une seconde contribution porte sur

l’étude des domaines de convergence de la partie photométrique et de la partie géométrique de

cette fonction de coût. Il en résulte une nouvelle fonction de coût exploitant de manière adap-

tative l’erreur photométrique et géométrique en se fondant sur leurs propriétés de convergence

respectives.

Dans la deuxième partie de la thèse, nous proposons des techniques de régularisation et

de fusion pour créer des représentations précises et compactes de grands environnements. La

régularisation s’appuie sur une segmentation de l’image sphérique RGB-D en patchs utilisant

simultanément les informations géométriques et photométriques afin d’améliorer la précision

et la stabilité de la représentation 3D de la scène. Cette segmentation est également adaptée

pour la résolution non uniforme des images panoramiques. Enfin les images régularisées sont

fusionnées pour créer une représentation compacte de la scène, composée de panoramas RGB-

D sphériques distribués de façon optimale dans l’environnement. Ces représentations sont

particulièrement adaptées aux applications de mobilité, tâches de navigation autonome et de

guidage, car elles permettent un accès en temps constant avec une faible occupation de mémoire

qui ne dépendent pas de la taille de l’environnement.

Mots clés: Recalage d’images; cartographie; odométrie visuelle; localisation; SLAM visuel;

images panoramiques
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“Ce n’est pas une image juste, c’est juste une image”

Le Vent d’est (Jean-Luc Godard)
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1 Travaux Futurs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

Appendices 137

A Photometric and Geometric Jacobians 139



xiv CONTENTS

A.1 Photometric Error Jacobians . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

A.2 Geometric Error Jacobians . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

A.3 Normal Vector Error Jacobians . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

A.4 Robust M-Estimators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

B Error Propagation and Keyframe Fusion 145

B.1 Uncertainty Propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

Bibliography 147

Back Cover 159



List of Figures

Chapter 2

2.1 Examples of panoramic images and their respective acquisition systems. . . . . . 11

2.2 Adopted coordinate system and spherical image. . . . . . . . . . . . . . . . . . . 13

2.3 Indoor RGB-D rig and equirectangular, stereographic and cube projection images. 15

2.4 Outdoor stereo rig and equirectangular, stereographic and cube projection images. 16

2.5 Qualitative normal estimation of spherical frames. . . . . . . . . . . . . . . . . . 20

Chapter 3

3.1 Feature-based vs direct-based registration methods. . . . . . . . . . . . . . . . . 26

3.2 Feature-based registration examples in challenging conditions. . . . . . . . . . . 27

3.3 RGB-D registration and flow estimation examples. . . . . . . . . . . . . . . . . . 29

3.4 Schematic of projections and image representation. . . . . . . . . . . . . . . . . 31

3.5 Virtual image rendering example using the spherical warping at different view-

points. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.6 Image-based localization convergence envelops from the Teach and Reapeat paradigm

using landmarks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

General Introduction of Part II

3.7 Introduction of the initialization formulation presented in chapter 4. . . . . . . . 43

3.8 Introduction of the adaptive formulation presented in chapter 5. . . . . . . . . . 43

Chapter 4

4.1 Pose computation pipeline stages. . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.2 Schematic of two spherical frames S∗ and S observing a planar region. . . . . . 49

4.3 Normal vector estimation for different image resolutions. . . . . . . . . . . . . . 50

4.4 Convergence regions for the two cost functions using only points from overlapped

surfaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.5 Real indoor rough rotation estimation example. . . . . . . . . . . . . . . . . . . 56

4.6 Rotation estimation example using the mode distribution tracking. . . . . . . . . 56

xv



xvi LIST OF FIGURES

4.7 Real indoor convergence domain example. . . . . . . . . . . . . . . . . . . . . . 57

4.8 Real indoor rough rotation estimation example. . . . . . . . . . . . . . . . . . . 58

4.9 Rotation estimation example using the mode distribution tracking. . . . . . . . . 58

4.10 Convergence domain for the registration of two real indoor frames. . . . . . . . . 59

4.11 Resulting trajectories from the pose estimation using the overlapping and the

mode tracking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.12 Total running time for ICP point-to-plane and for the pose estimation from

normals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.13 Trajectories for simulated fisheye and spherical indoor sequences. . . . . . . . . 64

4.14 Pose estimation results for the simulated spherical sequence with a gap of 10

frames. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.15 Rotation estimation results for two different real sequences. . . . . . . . . . . . . 66

4.16 Rotation and translation errors of the RGB-D registration without and with the

initialization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.17 Trajectories of direct RGB-D registration without and with the initialization. . . 67

4.18 Rotation and translation errors of the RGB-D registration without and with the

initialization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.19 Trajectories of direct RGB-D registration without and with the initialization. . . 69

Chapter 5

5.1 Typical frames with large displacement motions and challenging conditions. . . . 73

5.2 Intensity cost function for the X-Z DOF and curve levels for two different M-

Estimators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.3 ICP cost function for the X-Z DOF and curve levels for two different M-Estimators. 76

5.4 Intensity RGB level curves and ICP ploint-to-plane for a typical corridor frame

at the Sponza Atrium model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.5 Pose error evolution example using classic and adaptive RGB-D. . . . . . . . . . 79

5.6 Activation adaptive function µ(x) while performing two registrations in the

KITTI outdoor dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.7 Activation adaptive function µ(x) while performing registration in the KITTI

outdoor dataset in two different areas (frames’ numbers 5 and 100) of sequence 00. 81

5.8 Intensity (eI) and geometric (eD) errors between spherical RGB-D frames with

large displacements for three distinct indoor and outdoor sequences. . . . . . . . 82

5.9 Rotation error, translation error and number of iterations for the simulated

testbed dataset with gap of 10 frames using a fixed image resolution. . . . . . . 83

5.10 Trajectory comparison for RGB-D and adaptive formulations using the indoor

spherical real sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.11 Inria sequence mapping using the classic RGB-D and adaptive formulations. . . 86



LIST OF FIGURES xvii

5.12 Trajectory comparison for the classic and adaptive formulations with and without

multiresolution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.13 Trajectory comparison for the RGB-D and adaptive formulations in the full

KITTI sequence 00, both combined with multi-resolution. . . . . . . . . . . . . . 88

General Introduction of Part III

5.14 Introduction and motivation of the regularization of chapter 6. . . . . . . . . . . 93

Chapter 6

6.1 Interpolation examples and regularization using total variation for a unidimen-

sional signal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.2 Lateral and top views of a point cloud using SGBM stereo. . . . . . . . . . . . . 99

6.3 Normal vectors of a planar region using ELAS stereo in the sphere and with

perspective projection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.4 Examples of regularization using geometric patches. . . . . . . . . . . . . . . . . 103

6.5 Euclidean and geodesic distances for pixels near the sphere poles. . . . . . . . . 103

6.6 SLIC and OmniSLIC superpixel segmentations of a fisheye image. . . . . . . . . 105

6.7 OmniSLIC superpixel segmentations of an RGB-D catadioptric image. . . . . . . 107

6.8 OmniSLIC RGB-D image segmentation example for an outdoor frame . . . . . . 109

6.9 Regularized depth using color and normal images. . . . . . . . . . . . . . . . . . 109

6.10 OmniSLIC RGB-D image segmentation example for an indoor frame. . . . . . . 110

6.11 Estimated trajectories for different direct tracking techniques with and without

regularization for an outdoor sequence. . . . . . . . . . . . . . . . . . . . . . . . 111

6.12 Rendered point cloud views before and after regularization. . . . . . . . . . . . . 113

Chapter 7

7.1 Keyframe topo-metric map scheme. . . . . . . . . . . . . . . . . . . . . . . . . . 117

7.2 Local free space extraction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

7.3 Voronoi diagram for shape and topological description. . . . . . . . . . . . . . . 121

7.4 Free space extraction in the real indoor sequence. . . . . . . . . . . . . . . . . . 124

7.5 Voronoi and optimal scene coverage in the real indoor sequence. . . . . . . . . . 125

7.6 Vertices pruning with the criteria of visibility and coverage. . . . . . . . . . . . . 126

7.7 Virtual keyframe fusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

7.8 Virtual keyframe examples with smaller coverage radius. . . . . . . . . . . . . . 127

Appendix A

A.1 Influence and robust functions of commonly used M-Estimators. . . . . . . . . . 143



xviii



List of Tables

3.1 Resumed characteristics of image registration categories. . . . . . . . . . . . . . 30

4.1 Rotation and translation estimation errors for all sequences – mean absolute

relative pose error (RPE), absolute standard deviation and absolute median error. 64

5.1 Parameters in the activation functions. . . . . . . . . . . . . . . . . . . . . . . . 83

5.2 Quantitative results using the simulated spherical indoor sequence in a fixed

resolution: average RRE[deg] /RTE[mm] /Iterations. . . . . . . . . . . . . . . 84

5.3 Quantitative metrics using the KITTI outdoor sequence in a fixed resolution:

average RRE[deg] /RTE[mm]/ iterations. . . . . . . . . . . . . . . . . . . . . . . 86

5.4 Quantitative results using the KITTI outdoor sequence with multi-resolution

(pyramid of four levels): average RRE[deg]/ RTE[mm]/ iterations. . . . . . . . . 89

7.1 Convergence and average registration errors using different keyframe models. . . 127

xix



xx



List of Acronyms

DOF Degrees of freedom

FOV Field of view

ICP Iterative closest point

MAD Median of absolute differences

NCC Normalized cross correlation

PDF Probability density function

ROF Rudin-Osher-Fatemi energy model

ROI Region of interest

SfM Structure from Motion

SLAM Simultaneous localization and mapping

SNR Signal-to-noise ratio

SSD Sum of squared differences

SVD Singular value decomposition

TSDF Truncated signed distance functions

TV Total variation

UAV Unmaned autonomous vehicle

VSLAM Visual simultaneous localization and mapping

xxi



xxii



Introduction Générale

1 Contexte et Motivation

La plupart des applications en robotique autonome nécessite de résoudre des problèmes

de perception difficiles. Dans le contexte des robots mobiles autonomes, les problèmes de per-

ception se décline en deux tâches principales : la localisation du robot et la cartographie de

l’environnement. Afin d’accomplir ces tâches, les systèmes robotiques peuvent exploiter une

grande variété de capteurs pour percevoir l’environnement et l’état du robot tels les capteurs

extéroceptifs (comme les caméras, LIDAR, sonars), proprioceptifs (comme les dispositifs de me-

sure inertielle, ou encodeurs) ou des capteurs absolus (par example le GPS). Les applications

potentielles couvrent de nombreux domaines : les véhicules intelligents et autonomes, l’agricul-

ture, la sécurité, la réalité augmentée, l’architecture et la surveillance des environnements. Au

cours des dernières décennies, les capteurs de vision ont été largement utilisés pour effectuer ces

tâches car ils présentent de nombreux avantages. Ce sont des capteurs compacts, relativement

peu coûteux qui peuvent fournir de nombreuses informations denses sur l’environnement telles

que la couleur, la texture et la structure de la scène 3D. Des résultats récents impressionnants

ont été obtenus, par exemple, dans les cas de l’exploration de Mars en utilisant deux caméras

pour l’odométrie visuelle ou de la navigation autonome des véhicules (sur Terre) à l’aide de

la base de données d’images Street View de Google. Plus récemment, l’apparition de caméras

RGB-D (fournissant des informations sur la couleur (RGB) et la profondeur (D)) ouvre de

nouvelles perspectives à ces applications. Malgré ces avancées, percevoir la structure de l’en-

vironnement et les mouvements des objets à partir des images, reste un domaine de recherche

actif, en partie parce que seule une observation échantillonnée 2D/2D + t de la scène est acces-

sible via le processus de formation de l’image. Dans le cas d’applications de robotique mobile,

cette information n’est pas suffisante et une estimation précise de la localisation de la caméra et

une reconstruction précise des modèles photométriques et géométriques de la scène, s’avèrent

nécessaires. Alors que la plupart des méthodes utilisées pour résoudre ces problèmes sont basées

sur la sélection et la mise en correspondance d’éléments caractéristiques de l’image (techniques

basées features), des méthodes plus récentes (appelées méthodes directes ou appearance-based)

utilisent tout le contenu de l’image sans effectuer explicitement l’extraction de caractéristiques

ou la correspondance. L’enregistrement direct et les méthodes de cartographie dense ont connu

xxiii



xxiv Introduction Générale

une utilisation croissante au cours des dernières années et se sont révélés plus précis par rapport

aux techniques basées sur les features. Ces méthodes, cependant, ont leurs limites, notamment

au niveau de leur faible domaine de convergence qui limite souvent leur application.

2 Objetifs

En considérant des environnements réels complexes, les tâches de cartographie et de suivi

des caméras doivent explicitement prendre en compte les grands mouvements de la caméra,

des scènes à grande échelle et la variabilité des conditions d’apparence dans un modèle pho-

tométrique et géométrique de l’environnement. Les objectifs de cette thèse sont donc centrés

autour de la conception de méthodes d’enregistrement direct efficaces et robustes associées à

des représentations cartographiques adaptées aux applications visées. Nous explorons le po-

tentiel de caméras avec un large champ de vision afin d’augmenter le bassin de convergence

et de construire des représentations denses et précises d’environnement à grande échelle. Nous

proposons de modéliser l’environnement en utilisant localement des images sphériques ego-

centrées, positionnées dans une structure topologique de graphe couvrant de façon optimale la

scène. Cette représentation possède des propriétés intéressantes vis à vis de nos applications.

Tout d’abord, l’apparence visuelle de la scène est invariante aux rotations dans le cas d’images

sphériques panoramiques. Deuxièmement, l’imagerie sphérique généralise d’autres images avec

large champ de vision telles que celles acquises par des caméras catadioptriques omnidirec-

tionnelles ou fisheye. Un autre champ d’investigation de cette thèse est d’étudier comment

représenter efficacement ce modèle, c’est à dire de façon compacte et précise. Ce sont des aspects

clés pour générer des modèles capables d’être utilisés plus tard dans la navigation autonome

du robot ou dans le rendu virtuel des scènes.

3 Contributions

Dans cette thèse, nous avons choisi de traiter un aspect particulier qui limite drastiquement

l’applicabilité des méthodes d’enregistrement direct d’images, à savoir la faiblesse du domaine

de convergence. L’élargissement de ce domaine présente un intérêt pratique non seulement pour

les capteurs RGB-D sphériques, mais aussi pour toutes les approches d’odométrie visuelle basées

sur l’enregistrement direct. Les contributions portent sur deux aspects :

— L’augmentation de la robustesse du suivi en cas des grands déplacements de

la caméra. Les algorithmes d’enregistrement direct couramment utilisés ont une conver-

gence locale et reposent sur l’hypothèse que le mouvement entre les images est petit ou

qu’il existe une bonne estimation initiale de la pose à partir d’un capteur externe (par

exemple, de l’odométrie des roues ou des dispositifs de mesure inertielle). Nous proposons

deux formulations pour assouplir cette hypothèse. Tout d’abord, nous avons développé
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une stratégie d’estimation de pose efficace pour calculer une estimation approximative

des mouvements importants entre les images de profondeur, qui peut être utilisé comme

initialisation pour les méthodes d’enregistrement direct. La rotation et la translation

sont calculées d’une manière séquentielle découplée. Deuxièmement, nous décrivons une

technique de suivi de caméra RGB-D qui exploite de manière adaptative les images pho-

tométriques et géométriques en fonction de leurs caractéristiques de convergence. Ces

contributions nous permettent d’effectuer le suivi d’une caméra soumise à de grandes

rotations et translations ainsi que des occlusions dans de vrais scénarios d’intérieur et

d’extérieur.

— Représentation cartographique dense adaptée à la localisation avec vision.

En ce qui concerne la cartographie, nous proposons une régularisation qui explore si-

multanément l’information photométrique et géométrique de la scène pour améliorer

la précision et l’apparence de la structure 3D des images. Ceci est particulièrement

important lors de l’utilisation des images de profondeur provenant de la stéréo. La

régularisation s’effectue à partir d’une segmentation des images en patchs planaires à

l’aide de la couleurs et des normales. Cette segmentation est basée sur une technique

superpixel SLIC et considère la résolution non uniforme des images panoramiques. La

dernière contribution est une technique de cartographie compacte basée sur des images

clés en utilisant un partitionnement de l’espace navigable de l’environnement. Les images

améliorées sont ensuite combinées pour créer une carte d’image-clés compacte, tout en

conservant des caractéristiques intéressantes pour la navigation et la localisation en uti-

lisant l’enregistrement direct. Concrètement, nous avons observé que ces techniques ont

ajouté plusieurs avantages pour le suivi des caméras et la compacité de la carte, en

augmentant sa précision et sa consistence.

3.1 Publications

Cette thèse a conduit à cinq publications internationales dans des conférences de robotique

et de traitement d’images :

— [Martins et al., 2017] R. Martins, E. Fernandez-Moral and P. Rives. “An efficient

rotation and translation decoupled initialization from large field of view depth

images”. IEEE International Conference on Intelligent Robots and Systems, IROS 2017.

— [Martins et al., 2016] R. Martins, E. Fernandez-Moral and P. Rives. “Adaptive direct

RGB-D registration and mapping for large motions”. Asian Conference on Com-

puter Vision, ACCV 2016.

— [Martins and Rives, 2016] R. Martins and P. Rives. “Increasing the convergence
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domain of RGB-D direct registration methods for vision-based localization

in large scale environments”. IEEE Intelligent Transportation Systems Conference

Workshop on Planning, Perception and Navigation for Intelligent Vehicles, ITSC PPNIV

2016.

— [Martins et al., 2015] R. Martins, E. Fernandez-Moral and P. Rives. “Dense accurate

urban mapping from spherical RGB-D images”. IEEE International Conference

on Intelligent Robots and Systems, IROS 2015.

— [Gokhool et al., 2015] T. Gokhool, R. Martins, P. Rives and N. Despre. “A compact

spherical RGBD keyframe-based representation”. IEEE International Conference

on Robotics and Automation, ICRA 2015.

J’ai également collaboré avec d’autres membres de l’équipe Lagadic Sophia Antipolis sur les

mesures d’évaluation pour la segmentation sémantique, ce qui a abouti à une publication non

incluse dans ce manuscrit :

— [Fernandez-Moral et al., 2017] E. Fernandez-Moral, R. Martins, D. Wolf and P. Rives.

“A new metric for evaluating semantic segmentation : leveraging global and

contour accuracy”. IEEE International Conference on Intelligent Robots and Systems

Workshop on Planning, Perception and Navigation for Intelligent Vehicles, IROS PPNIV

2017.

En terme de développements logiciels, une bibliothèque avec les implémentations Matlab et

C ++ des modules principaux 1 a été développée qui va être mise prochainement à disposition

de la communauté de robotique.

4 Structure de la thèse

Le manuscrit se compose de six chapitres répartis en trois parties. La première partie

présente les informations de base nécessaires à la compréhension de cette thèse, tels que les

concepts fondamentaux d’imagerie et les travaux connexes à la localisation visuelle et à la

cartographie. La deuxième partie présente des techniques pour augmenter la convergence des

méthodes d’enregistrement direct RGB-D. Dans la dernière partie, nous formulons le problème

de la construction d’une représentation ccompacte de la scène en utilisant les techniques d’en-

registrement d’image améliorées susmentionnées. Une brève description de ces chapitres est la

suivante :

1. Quelques exemples et modules sont accessibles sur https://github.com/omni-rgbd/

https://github.com/omni-rgbd/
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Partie I

Chapitre 2 : Vision Panoramique

Ce chapitre décrit les concepts fondamentaux d’imagerie utilisés le long de la thèse. Il

contient la représentation et les capteurs utilisées pour construire les images panoramiques.

Nous présentons également les caméras avec grand champ de vision et certaines de ses propriétés

dans des contextes de suivi, de localisation et de cartographie.

Chapitre 3 : Enregistrement d’Images et Travaux Associés

Dans ce chapitre, nous donnons un aperçu des travaux connexes sur l’enregistrement des

images et le contexte technique des méthodes directes. Les points forts et les limites de certaines

techniques pertinentes sont également discutés.

Partie II

Chapitre 4 : Initialisation Efficace de Pose à partir de Vecteurs Normaux

Ce chapitre décrit une technique d’enregistrement utilisant les vecteurs normaux des images

en profondeur. La technique est calculée de manière découplée séquentielle (rotation puis trans-

lation), non itérative et avec un large domaine de convergence et peut donc être utilisée comme

initialisation pour les méthodes directes d’enregistrement. Nous analysons les limites et l’effi-

cacité de cette formulation et montrons les résultats de l’enregistrement à l’aide de séquences

simulées et réelles acquises avec des caméras sphériques et fisheye.

Chapitre 5 : Enregistrement RGB-D Adaptif pour des Grands Déplacements

Ce chapitre propose une approche permettant d’accroitre le bassin de convergence des

méthodes directes d’enregistrement d’images. Nous proposons une approche d’enregistrement

adaptative en exploitant l’observation selon laquelle les termes d’erreur d’intensité et de pro-

fondeur affichent différentes propriétés de convergence pour des mouvements de petite et de

grande taille. L’amélioration du bassin de convergence est démontrée par des séquences si-

mulées et réelles, en utilisant des caméras sphériques et de perspective.

Partie III

Chapitre 6 : Régularisation d’Image en Patchs Planaires

Ce chapitre présente une approche de régularisation pour filtrer les images de profondeur,

en particulier celles provenant de la stéréo. Nous proposons une segmentation en superpixels en

utilisant à la fois la couleur et l’orientation de la surface pour contrôler la régularisation. Cette

segmentation considère la résolution non uniforme des images panoramiques.
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Chapitre 7 : Cartographie RGB-D Compacte pour une Visibilité Optimale de l’En-

vironnement

Le dernier chapitre, plus prospectif, décrit une stratégie de cartographie compacte dédiée à la

localisation de robots et à la navigation autonome. Ce cadre de cartographie compacte est basé

sur des images clés et explore les approches proposées d’enregistrement et de régularisation pour

améliorer les images clés et pour créer des représentations topologiques-métriques compactes

garantissant la visibilité et la couverture de la scène. Nous montrons et discutons quelques

résultats de cartographie préliminaires obtenus en environnement d’intérieur.

Chapitre 8 : Conclusions et Perspectives

Enfin, nous concluons le manuscrit avec un résumé et des perspectives.



Chapter 1

General Introduction

1.1 Context and Motivation

At the base of most applications in robotics lies a difficult perception problem. The core

perception problem for autonomous mobile robots comprises two characteristic tasks: robot

localization and environment mapping. In order to accomplish these tasks, robotic systems

can exploit a wide variety of sensors to perceive the environment and its own states such as

exteroceptive (e.g., cameras, LIDARs, Sonars), proprioceptive (e.g., inertial measurement de-

vices, encoders) or absolute sensors (e.g., GPS). In the last decades, vision has been extensively

used to perform these tasks, with applications in many areas including mobility, agriculture,

security, augmented reality, architecture and environment monitoring. Among the many rea-

sons for their wide usage, cameras are relatively low-cost sensors, compacts and can furnish

extensive dense information about the environment such as color, texture and the 3D scene

structure. Impressive recent milestones of such applications are the exploration of Mars us-

ing two cameras for visual odometry or the autonomous vehicle navigation (on Earth) using

Google’s Street View image database. Moreover, the appearing of RGB-D cameras (providing

color (RGB) and depth (D) information) open new perspectives to these applications. Still,

perceiving the environment structure and the objects’ motions from images remains an ac-

tive research domain, partially because only a sampled and 2D/2.5D projected observation is

gathered from the superposition of different spectral and spatial phenomena during image for-

mation. Conversely to humans, who cope with this by performing sensorial fusion, semantic

and contextual information, robotic systems often require an accurate estimate of the camera

location (called registration or tracking) and of the photometric and geometric scene models.

While most of the employed methods to track the camera and to build these models are based

on the selection and matching of distinctive characteristics/features (feature-based techniques),

direct (appearance-based) methods use all the image content without performing any explicit

feature extraction or matching. Direct registration and dense mapping methods have seen an

increasing usage in recent years and proved to be more accurate when compared to feature-

1
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based techniques. These methods, however, have a smaller basin of convergence which often

limits their application.

1.2 Objectives

As we consider complex real environments, the mapping and camera tracking tasks require

explicitly taking into account large camera motions, large-scale scenes and the variability of

viewing conditions within a photometric and geometric model of the environment. The objec-

tives of this thesis are then centered around the design of direct registration techniques and

mapping representations that are adapted to deal in such conditions. We explore the poten-

tial of wide field of view cameras to increase the basin of convergence and to build adapted

mapping strategies. We propose to model the environment using ego-centric spherical images,

which have nice properties for the camera tracking and mapping. Firstly, the visibility of the

scene is invariant to rotations in panoramic spherical images. Secondly, spherical imagery gen-

eralizes other wide field of view images such as the ones acquired by fisheye and omnidirectional

catadioptric cameras. An adjacent objective of this thesis is to investigate how to efficiently

represent this model. These are key aspects for generating accurate models to be used later on

in robot autonomous navigation or in scene rendering.

1.3 Contributions

In this thesis, we have chosen to focus on a peculiar aspect that drastically limits the

applicability of direct image registration methods, namely the weakness of the convergence

domain. Enlarging this domain is of practical interest not only for spherical RGB-D sensors

but, potentially, for all the visual odometry approaches based on direct registration. The

contributions can be synthesized in two fronts:

— Increasing the robustness to large motions. Commonly used direct registration

algorithms have local convergence and rely on the assumption that the motion between

the images is small or that there is a good initial estimation of the pose from an external

sensor (e.g., from wheel odometry or inertial measurement devices). We propose two for-

mulations to relax this assumption. First, we developed a fast pose estimation strategy

to compute a rough estimate of large motions between wide field of view depth images,

which can be used as initialization to direct registration methods. The rotation and

translation are computed in a decoupled sequential way. Second, we describe an RGB-D

camera tracking technique that exploits adaptively the photometric and geometric im-

ages based on their convergence characteristics. These contributions allow us to perform

the tracking of the camera subjected to large rotations and translations, occlusions and

moving objects in real indoor and outdoor scenarios.
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— Adapted dense mapping representation to vision-based localization. Concern-

ing the mapping, we propose a regularization that explores simultaneously the photomet-

ric and geometric information of the scene to improve the accuracy and the appearance

of the 3D structure of frames. This is particularly relevant when using the stereo depth

images. The regularization is performed from a segmentation of the frames in piecewise

patches using both color and normal images. This segmentation is based on a state-

of-the-art superpixel technique and considers the non-uniform resolution of panoramic

images. The last contribution is a compact keyframe-based mapping technique using a

partitioning of the free space of the environment. The improved frames are then com-

bined to build the sparse keyframe map, while maintaining interesting characteristics

for navigation and localization using direct registration. Concretely, we observed that

these techniques added several advantages for the camera tracking and the compactness

of the map, increasing its accuracy and consistency.

1.3.1 Publications

This thesis led to five international publications in robotics and computer vision conferences:

— [Martins et al., 2017] R. Martins, E. Fernandez-Moral and P. Rives. “An efficient

rotation and translation decoupled initialization from large field of view depth

images”. IEEE International Conference on Intelligent Robots and Systems, IROS

2017.

— [Martins et al., 2016] R. Martins, E. Fernandez-Moral and P. Rives. “Adaptive direct

RGB-D registration and mapping for large motions”. Asian Conference on

Computer Vision, ACCV 2016.

— [Martins and Rives, 2016] R. Martins and P. Rives. “Increasing the convergence

domain of RGB-D direct registration methods for vision-based localization

in large scale environments”. IEEE Intelligent Transportation Systems Conference

Workshop on Planning, Perception and Navigation for Intelligent Vehicles, ITSC PPNIV

2016.

— [Martins et al., 2015] R. Martins, E. Fernandez-Moral and P. Rives. “Dense accurate

urban mapping from spherical RGB-D images”. IEEE International Conference

on Intelligent Robots and Systems, IROS 2015.

— [Gokhool et al., 2015] T. Gokhool, R. Martins, P. Rives and N. Despre. “A compact

spherical RGBD keyframe-based representation”. IEEE International Confer-

ence on Robotics and Automation, ICRA 2015.
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I also collaborated with other research group members on evaluation metrics for semantic

segmentation, which resulted in one publication not included in this manuscript:

— [Fernandez-Moral et al., 2017] E. Fernandez-Moral, R. Martins, D. Wolf and P. Rives.

“A new metric for evaluating semantic segmentation: leveraging global and

contour accuracy”. IEEE International Conference on Intelligent Robots and Systems

Workshop on Planning, Perception and Navigation for Intelligent Vehicles, IROS PPNIV

2017.

Finally, we build a library with Matlab and C++ implementations of the main modules 1. We

plan to make the library and its components available to the robotics community.

1.4 Thesis Structure

The core of the manuscript is composed of six chapters which are distributed in three parts.

The first part introduces the necessary background information for the understanding of this

thesis, such as basic imaging concepts and related works to visual localization and mapping.

The second part presents techniques to increase the convergence of direct RGB-D registration

methods. In the last part, we formulate the problem of building a compact map model of the

scene using the aforementioned improved image registration techniques. A brief description of

these chapters is as follows:

Part I

Chapter 2: Panoramic Vision

This chapter describes the basic imaging concepts used along the thesis. It contains the

frame representation and the sensor acquisition rigs used to build the panoramic images. We

also introduce wide field of view cameras and some of its properties in 3D based tracking,

localization and mapping contexts.

Chapter 3: Image Registration and Overview of Related Works

In this chapter, we give an overview of related works on image registration and the technical

background of direct methods. The strengths and limitations of some relevant techniques are

also discussed.

1. Same examples and modules are accessible at https://github.com/omni-rgbd/.

https://github.com/omni-rgbd/
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Part II

Chapter 4: Efficient Pose Initialization from Normal Vectors

This chapter describes a registration technique using the normal vectors of depth images.

The technique is computed in a decoupled way (first rotation and then the translation), not

iterative and with a large convergence domain and therefore can be used with an initialization

framework to direct registration methods. We analyze the limitations and the observabilty of

this formulation and show registration results using simulated and real sequences acquired with

spherical and fisheye cameras.

Chapter 5: Adaptive Direct RGB-D Registration for Large Motions

This chapter continues in the line of increasing the basin of convergence of direct image

registration methods. We propose an adaptive registration approach exploring the observation

that the intensity and depth error terms display different convergence properties for small and

large motions. The improvement of the basin of convergence is demonstrated with simulated

and real sequences, using spherical and perspective benchmark sequences.

Part III

Chapter 6: Frame Regularization in Piecewise Planar Patches

This chapter presents a regularization approach to filter the depth images, in special the

ones using stereo matching. We propose a superpixel segmentation using both color and surface

orientation to drive the regularization of the frame in planar patches. This segmentation is

based on a state-of-the-art superpixel technique and considers the non-uniform resolution of

panoramic images.

Chapter 7: RGB-D Compact Mapping for Optimal Environment Visibility

The last chapter describes a compact mapping strategy dedicated for robot localization and

autonomous navigation. This compact mapping framework is based on keyframes and explores

the proposed registration and regularization approaches to improve the keyframes and to build

useful sparse topological-metric representations with increased visibility. We show and discuss

preliminary mapping results of an indoor environment.

Chapter 8: Conclusions and Perspectives

Finally, we conclude the manuscript with a summary and perspectives.

It is worth mentioning that at the beginning of each chapter in this thesis, we review related

works specific to the topics covered therein.



6



Part I

Background and Introduction to Direct

Image Registration





Chapter 2

Panoramic Vision

Contents
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Image Representation and Projections . . . . . . . . . . . . . . . . . 10

2.2.1 Perspective Images and Pinhole Camera Model . . . . . . . . . . . . 12

2.2.2 Spherical Panoramic Images . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.2.1 Equirectangular Spherical Projection . . . . . . . . . . . . 13

2.3 RGB-D Imagery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.1 Depth from Active Sensors . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.2 Depth Computation using Stereo . . . . . . . . . . . . . . . . . . . . 15

2.3.3 Spherical RGB-D Acquisition Systems . . . . . . . . . . . . . . . . . 16

2.4 Spherical Image Processing . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.5 Computation of Surface Normals . . . . . . . . . . . . . . . . . . . . . 17

2.5.1 Normal Estimation in the Sensor’s Domain . . . . . . . . . . . . . . . 18

2.5.1.1 Perspective Depth Image . . . . . . . . . . . . . . . . . . . 19

2.5.1.2 Spherical Depth Image . . . . . . . . . . . . . . . . . . . . 19

2.5.2 Normal Estimation Accuracy . . . . . . . . . . . . . . . . . . . . . . 20

2.6 Summary and Closing Remarks . . . . . . . . . . . . . . . . . . . . . . 21

9



10 Panoramic Vision Chap. 2

2.1 Introduction

Panoramic images are defined as those images whose field of view (FOV) comprises 360 ◦ in

the horizontal plane. The example of excellence of panoramic images is the spherical view. Such

images have some important advantages in computer vision, since problems as optical flow, ego-

motion estimation and place recognition are better conditioned. Furthermore, spherical vision

provides a decoupling between rotation and translation flows, which can be exploited for camera

tracking and scene reconstruction. These advantages have already been exploited during the

last decades in mobile robotics for scene modelling (e.g., [Micušık et al., 2003, Dayoub et al.,

2011]), visual odometry (e.g., [Scaramuzza and Siegwart, 2008, Zhang et al., 2016]), SLAM

(e.g., [Kim and Chung, 2003, Chapoulie et al., 2011]), place recognition (e.g., [Ulrich and

Nourbakhsh, 2000, Jogan and Leonardis, 2000]) or visual-based navigation (e.g., [Gaspar et al.,

2000, Meilland et al., 2015]).

Recently, a new market of action cameras and virtual reality has appeared with several fully

integrated devices capturing spherical panoramas in real time, such as the Nikon KeyMission

360, the Giroptic 360cam or the Ricoh Theta S, at a relatively low cost. Thanks to their

light weight, such devices could be embedded on mobile robots or serve for personal guidance

applications. However, most available spherical and panoramic images are still built by warping

images from catadioptric and fisheye cameras [Pérez-Yus et al., 2016]; or by mosaicing a set of

smaller FOV images from a rig of perspective cameras. A typical example is Google’s R7 camera

rig composed of fifteen perspective cameras [Anguelov et al., 2010], as shown in fig. 2.1. One

should note also that although spherical imagery offers advantages for ego-motion estimation,

it also comes with intrinsic difficulties such as shape distortions, non-uniform resolution and

because most of the available image processing tools are conceived to perspective images.

This chapter presents the basic panoramic imaging concepts used throughout the manuscript.

In an attempt of giving a concise and comprehensive exposition, we start by presenting cam-

era projection models in section 2.2. Section 2.3 describes acquisition strategies for producing

RGB-D spherical images and the solutions developed previously by our group. A review of

some elementary properties of spherical vision is given in section 2.4, followed by the normal

computation in section 2.5. Finally, we conclude the chapter with a brief discussion and closing

remarks in section 2.6.

2.2 Image Representation and Projections

An image frame S can be composed of an RGB image S = I ∈ [0 1]m×n×3 representing

the scene photometric model, a depth image S = D ∈ Rm×n encoding the scene geometry

or both photometric and depth images, i.e., S = {I,D} for RGB-D frames. The image

formation I and D, from the photometric and geometric models of the scene, depend on
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Figure 2.1 – First row: Point Grey Ladybug spherical camera and spherical panoramic image.
Images courtesy of [Torii et al., 2009]. Second row: Omnidirectional catadioptric camera (left)
and example of warped image in the sphere. Right images courtesy of [Liu et al., 2014]. Third
row: Google’s R7 camera rig with fifteen perspective cameras and Street View image from
Garbejaire in Sophia Antipolis. Left image courtesy of [Anguelov et al., 2010].

many superposed complex phenomena, ranging from the physical and spectral quantities to

the employed sensors. For instance, the color image I depends on the surface texture, the

illumination, the diffusion and the spectral reflections, the scene geometric model, the camera

projection model and its point-of-view. We start by describing the projection models used in

this thesis, other image formation topics are covered in more detail in computer vision books,

e.g., [Hartley and Zisserman, 2003, Faugeras et al., 2001].

In order to recover the motion from images, we assume global shutter and central cameras 1.

Under this assumption, we can model wide field of view (FOV) images similarly to classic

1. Central cameras obeys the single viewpoint property, i.e., all the projection rays to form the image are
constrained to meet at a single point.
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perspective images thanks to a unified projection model [Geyer and Daniilidis, 2001, Barreto,

2006]. These wide FOV images (also known as ominidirectional) can be acquired using wide

FOV sensors such as fisheye cameras, a combination of perspective cameras (e.g., [Anguelov

et al., 2010, Meilland et al., 2011, Fernandez-Moral et al., 2014]) or using catadioptric devices,

i.e., the acquisition sensor is composed of a mirror and a perspective/orthographic camera. All

these images can be represented in the unit sphere under the assumption of central cameras

through a calibration procedure. Several calibration techniques are available in the literature

to obtain the calibration parameters (see [Mei and Rives, 2007] and [Puig et al., 2012] for a

comparative study of different calibration algorithms). We present in fig. 2.1 some examples

of wide FOV images and their respective acquisition systems. Hence, due to their importance

to the following chapters, we recall the spherical and perspective projections.

2.2.1 Perspective Images and Pinhole Camera Model

Most commercial cameras can be described as pinhole cameras, which are modeled by a

perspective projection. Pinhole cameras obeys the assumption of central cameras because all

optical rays intersect in the camera optical center. Given a 3D point in the camera coordinate

system P ∈ R3 and using the perspective projection, the pixel coordinate in the image is given

by:

p = K‖P‖P and ‖P‖P :=
P

eT3 P
∈ P2, for eT3 P 6= 0, (2.1)

where ‖ ‖P : R3 → P2 is the perspective normalization operator while K is the camera intrinsic

parameters matrix such as:

K =

 ku 0 0

0 kv 0

0 0 1


 f fs cu

0 f cv

0 0 1

 (2.2)

with (ku, kv) the scaling of pixel axes, f the focal length, (cu, cv) the coordinates of the image

center in pixels and s is the parameter describing the skewness of the two image axes (in general

ku ≈ kv and s ≈ 0). K can be obtained using available camera calibration algorithms (e.g.,

[Zhang, 2000]). The perspective projection preserves straight lines and angles, i.e., straight

lines in the scene are mapped to straight lines in the image. However, it stretches objects for

FOV’s wider than 90 degrees and it is not even defined for FOV’s wider than 180 degrees –

therefore the need of, at least, two planes to represent a panorama.
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Figure 2.2 – Adopted coordinate system and spherical image. The first scheme shows the lateral
view of the sphere and the second scheme depicts the bottom view. The respective positive
spherical coordinates (ϕ, θ) for a given 3D point is depicted in each scheme.

2.2.2 Spherical Panoramic Images

Similarly to the perspective case, the pixel coordinates of the scene 3D point is obtained

from the spherical projection model ΠS in the unit sphere:

p = ΠS(‖P‖S), (2.3)

where the spherical normalization operator ‖ ‖S: R3
+ → S2 is defined as:

‖P‖S :=
P

‖P‖2

∈ S2, for ‖P‖2 6= 0. (2.4)

This normalization will be extensively used in other contexts as, for instance, with normal

vectors and rotations. The projection ΠS in (2.3) depends on the adopted spherical coordi-

nate system and the sphere sub-sampling. The following spherical coordinates are adopted to

parametrize the unit sphere:

S2 =

Π−1
S (p) :=

 sin(θ(p)) cos(ϕ(p))

sin(ϕ(p))

cos(θ(p)) cos(ϕ(p))

 , θ(p) ∈ [−π, π) and ϕ(p) ∈ [−π/2, π/2]

 (2.5)

where the zenith/elevation (ϕ) and azimuth/longitude (θ) are the spherical coordinates for each

pixel as shown in fig. 2.2.

2.2.2.1 Equirectangular Spherical Projection

The sphere is encoded in a 2D planar image using the equirectangular sub-sampling (as

known as geographic projection), i.e., considering a constant solid angle between neighbouring

pixels. Consequently, the relationship between the image pixel p ∈ P2 to spherical coordinates

g1 : p = (u, v, 1) → (θ, ϕ, 1) is a bijective linear function that can be encoded by a constant
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intrinsic matrix K ∈ R(3×3). Therefore the spherical projection can be seen as a conversion

from Cartesian ‖P‖TS = (x y z) to spherical coordinates (θ, ϕ, 1) followed by a scaling into pixel

coordinates pT = (u, v, 1):

p = ΠS(‖P‖S) = K

 arctan(x/z)

arcsin(y/
√
x2 + y2 + z2)√

x2 + y2 + z2

 (2.6)

Observe that the uniform solid angle sampling generates a non-uniformly sampled sphere in

the Euclidean 3D space, e.g., the regions near the poles are oversampled compared to regions

neighbouring the equator. This projection (2.6) is also non-injective since any Cartesian point

has infinitely many equivalent spherical coordinates (θ + 2πk1, ϕ + 2πk2, •) for all k1, k2 ∈ Z.

Furthermore, the projection cannot be established for the poles (•,±π/2, •) and the origin.

Other image representations can be used to represent wide FOV images besides the equirect-

angular and perspective, e.g., cubic, cylindrical, Mercator and stereographic. For instance, the

stereographic projection of the spherical images will be used throughout this manuscript for

visualization purposes. We show in figs. 2.3 and 2.4 typical examples of panoramic images.

The reader can see [Zelnik-Manor et al., 2005, Sacht et al., 2010] for more details about these

projections and their limitations/characteristics.

2.3 RGB-D Imagery

As introduced in section 2.1, RGB-D image frames encode both the photometry and 3D

geometry of the scene. Therefore, an RGB-D image allows to perform realistic virtual view

synthesis in a local domain around the point of view of the camera. This section discuss how

to obtain the depth image D related to each intensity image. We consider two solutions to

estimate the depth: i) using active sensors such as, for instance, LIDARs and infrared cameras

and; ii) stereo matching.

2.3.1 Depth from Active Sensors

In the case of using active sensors, only an extrinsic calibration between the camera and

the active sensor is required. This calibration can be divided in two main groups: overlapping

cameras (e.g., using [Zhang and Pless, 2004, Mei and Rives, 2006, Vasconcelos et al., 2012]) and

non-overlapping cameras (e.g., [Lébraly et al., 2010, Fernandez-Moral et al., 2014]). Therefore,

the central projection assumption and the pixel correspondence in the intensity and depth

images are closely related to the accuracy of the calibration.
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Figure 2.3 – Indoor RGB-D rig (upper left corner) and wide FOV image examples: the stere-
ographic (lower left), equirectangular (upper right) and cube projection of the equirectangular
spherical image (lower right). Note the distortions of straight lines and corners in the equirect-
angular image.

2.3.2 Depth Computation using Stereo

In the case of stereo cameras 2, two calibrated sensors are used and the computation can be

divided in two main phases: image rectification and disparity computation. The reader can see

[Hartley and Zisserman, 2003] (Chapters 8, 9 and 11) and [Faugeras et al., 2001] (Chapters 5

and 7) for more details and properties of two view geometry for perspective images. We remark

that the fundamental matrix, essential matrix and homography are projective properties and

therefore are valid to any single viewpoint (central) camera, as the considered perspective

and panoramic images. Then, the rectification phase of the spherical panoramas is similar to

perspective rectification. In this context, epipolar lines (from perspective imagery) correspond

to great circles 3 in spherical vision. Therefore, the alignment of the poles of the spheres

corresponds to the spherical rectification. This rectification can be done from the computation

of the rotation matrix between the cameras coordinate systems, as the procedure described in

[Gluckman et al., 1998] or in the appendix section of [Schönbein and Geiger, 2014].

From the rectified images, the disparity can be computed using dense stereo matching tech-

niques as, for instance, the formulations in [Hirschmuller, 2008, Geiger et al., 2010, Yamaguchi

et al., 2014]. This topic will be discussed in more detail in chapter 6.

2. Depth from stereo can be seen as a sub-problem of the dense visual SLAM, i.e., finding the structure given
the relative pose.

3. Great circles are curves defined as the intersection of the sphere and a plane passing at the center of the
sphere.
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Figure 2.4 – Outdoor stereo rig (upper left corner) and wide FOV image examples: the stere-
ographic (lower left), equirectangular (upper right) and cube projection of the equirectangular
spherical image (lower right). Notice the shape distortion of the vehicle and of straight lines
and corners in the equirectangular image.

2.3.3 Spherical RGB-D Acquisition Systems

For generating high resolution panoramic sequences with depth images, our research group

has designed two novel customized devices: a device constituted by a rig of eight Asus Xtion

Pro Live (Asus XPL) sensors for indoor scenes [Fernandez-Moral et al., 2014] and a stereo

device composed of six cameras for outdoor scenes [Meilland et al., 2015] (see figs. 2.3 and

2.4). These two devices are assembled and calibrated such as to ensure, as much as possible,

the central camera assumption. The intrinsic parameters K in (2.6) are therefore assumed to

be known. Most of the image sequences used in this thesis are recorded at a frame rate of

20Hz, where the six global shutter cameras of the stereo system are synchronized, producing

spherical images with a resolution of 1024x2048, which region-of-interest excluding the sphere

poles is 664x2048. This defines a vertical FOV of approximately 120 degrees for the stereo

rig. The resulting frames of the indoor rig have 960x1920 pixels, which region-of-interest of

320x1920 defines a vertical FOV of 60 degrees. We show in figs. 2.3 and 2.4 two frames for each

respective sensor and in fig. 2.5 a full RGB-D frame with its normals. As it can be noticed,

some non-modelled errors from the calibration and the stitching creates image discontinuities

between edges in the scene and regions of the images with different exposures. These rigs were

developed in the PhD theses of [Meilland, 2012, Fernandez-Moral, 2014] and were explored in

the theses of [Chapoulie, 2012, Gokhool, 2015, Drouilly, 2015] for place recognition, mapping

and semantic localization tasks.
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2.4 Spherical Image Processing

Most traditional image processing tools were developed to perspective images, i.e., assuming

flat images and with uniform spatial resolution. The spatial resolution of equirectangular

panoramic images is, however, non-uniform and increases gradually towards the sphere poles.

For instance, a rigorous interpolation in the sphere should consider the geodesic distance, as

in the Slerp interpolation. Therefore, typical image processing tools such as the gradient and

convolution related operators might be adapted to these images, as discussed in [Demonceaux

et al., 2011, Bulow, 2002, Hadj-Abdelkader et al., 2008]. The first point of attention is to use

the gradient in spherical coordinates. The gradient using the infinitesimal line length for the

spherical coordinate system in (2.5) is:

∇S(g) =
1

ρ cos(ϕ)

∂g

∂θ
θ̂ +

1

ρ

∂g

∂ϕ
ϕ̂+

∂g

∂ρ
ρ̂ (2.7)

which restricted to the unit sphere becomes ∇S(g) =
(
∂g
∂ϕ

1
cos(ϕ)

∂g
∂θ

)T
. As an illustration for

the outdoor images with a vertical FOV of 120 degrees, the gradient using a classic Sobel filter

needs to be scaled by a factor of two in the θ direction, for pixels in the periphery of the

region-of-interest.

The size of the neighbourhoods to compute the gradient and other image processing opera-

tors need also to be redefined, as discussed in [Demonceaux et al., 2011, Daniilidis et al., 2002].

In this context, spherical harmonics are widely used for interpolation of general functions in

the sphere [Bulow, 2002, Hadj-Abdelkader et al., 2008]. Unfortunately, spherical harmonics

requires expensive computations of integrals using Legendre polynomials. In this work, we will

consider the gradients in the sphere using eq. (2.7), but with a fixed neighbourhood size since

the region-of-interest of the spherical frames is not located near the poles. Otherwise, adapted

spatial filters should be preferred, as the ones presented in [Daniilidis et al., 2002, Bulow,

2002, Demonceaux et al., 2011].

2.5 Computation of Surface Normals

Due to their importance and vast application domain, normal/curvature estimation has

been extensively investigated from different perspectives (e.g., [Mitra and Nguyen, 2003, Badino

et al., 2011a, Jordan and Mordohai, 2014]). Good surveys about the choice of appropriate nor-

mal estimation techniques for ordered point clouds are presented in [Klasing et al., 2009, Badino

et al., 2011a]. These works review and compare normal computation implementations from the

perspective of efficiency and their robustness to increasing signal to noise ratio (SNR). It is

worth noting that normals are related to “local” geometric properties which imply considering
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suitable neighbourhoods. For instance, if the surface has sharp features then small neighbour-

hoods must be considered which increases noise influence. In fact, there is no simple trade-off

since being robust to noise (increasing the size of neighbourhood) inevitably leads to smoothing

(aliasing) scene details. [Hamann, 1993, Jordan and Mordohai, 2014] discussed the relationship

between the neighbourhood size to the robustness to noise when using least squares fitting. A

more complete analysis is done in [Mitra and Nguyen, 2003] by studying the effects of SNR,

curvature, and sampling density and proposes some directions on how to automatically select

the appropriate size of the neighbourhood for a better estimation using a plane fitting scheme.

But the number of tuning parameters and the theoretical probability assumptions in the depth

error make the applicability of their formulation limited. On the other hand, [Rusu et al.,

2007] proposes an heuristic radius stability concept which adaptively search the good window

neighbourhood size using k-means, i.e., no explicit error assumptions or error PDF estimation.

Nevertheless being simpler than [Mitra and Nguyen, 2003], the efficiency is penalized. This

algorithm is available in the PCL library.

In a first moment, we will privilege the efficiency and simplicity of the normal computation.

Without loss of generality, let’s assume a 3D surface s : R3 → R, s(P) = 0, passing through

P ∈ R3, smooth and with a normal existing everywhere. Local approximations of s are required

when the surface is defined by a set of discrete measurements as, for instance, discrete point

clouds or depth images. Parametric surface estimation algorithms perform regression to find

the unknown surface s(P) approximation, e.g., the coefficients of a plane [Hoppe et al., 1992] or

a non-linear equation such as a quadric or cubic [Jordan and Mordohai, 2014]. A normal vector

to this surface is represented as the orthonormal vector to the tangent plane Γ: nTP + d = 0

and d = −nTP0,∀P0 ∈ Γ. This concept of normal vector using a tangent planar patch leads

to the widely known total least squares (TLS) algorithm [Hoppe et al., 1992, Badino et al.,

2011a]. An even more efficient strategy than TLS is finite differences of three or more linearly

independent 3D points. For example, the normal vector considering a local (3 × 3) window

around the pixel p:

n(p) = n(u, v) = ‖(P(u+ 1, v)−P(u− 1, v))× (P(u, v + 1)−P(u, v − 1))‖S, (2.8)

which is very efficient but sensitive to noise. We remark that (2.8) has an equivalent expression

in the sensor coordinate system. This allows the computation of the normals directly from

depth images.

2.5.1 Normal Estimation in the Sensor’s Domain

Given a surface defined implicitly as s(x, y, z), the gradient is the direction of highest increase

and therefore orthogonal to the level curves s(x, y, z) = c. Then, for each (x, y, z), ∇s is the

normal to the surface s(x, y, z) = 0. For visualizing this, consider the 3D sphere in the origin
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and with arbitrary radius (r > 0): s(x, y, z) = x2 + y2 + z2 − r2. We know that the normal

to any point in the sphere is the viewing direction of the point, which is equal to the gradient

∇(s(x, y, z)) = (2x 2y 2z)T . Therefore, we just need to redefine the gradient from sensor

coordinates (u, v, k) to spatial coordinates (x, y, z):

∇(g(u, v, k)) =

(
∂g

∂u

∂u

∂x
+
∂g

∂v

∂v

∂x
+
∂g

∂k

∂k

∂x

)
x̂+

(
∂g

∂u

∂u

∂y
+
∂g

∂v

∂v

∂y
+
∂g

∂k

∂k

∂y

)
ŷ + (...)ẑ (2.9)

which depends on the sensor projection model. We develop this concept for the perspective

and spherical depth images.

2.5.1.1 Perspective Depth Image

In the perspective case, the gradient operator from image coordinates p = (u, v, k) to spatial

coordinates is:
u = fX/Z + cu

v = fY/Z + cv

k = Z − f
⇒ ∇nP (g) =

f

Z

∂g

∂u
x̂+

f

Z

∂g

∂v
ŷ +

(
(cu − u)

Z

∂g

∂u
+

(cv − v)

Z

∂g

∂v
+
∂g

∂k

)
ẑ

(2.10)

Therefore from the implicit surface representation s = Z−D(p) = 0 and exploring the previous

framework from section 2.5.1 and the spherical norm (2.4):

n(p) = ‖∇nP (s)‖S =

∥∥∥∥( −fD(p)
∂D(p)
∂u

−f
D(p)

∂D(p)
∂v

1− (cu−u)
D(p)

∂D(p)
∂u
− (cv−v)

D(p)
∂D(p)
∂v

)T∥∥∥∥
S

. (2.11)

2.5.1.2 Spherical Depth Image

Similarly to the perspective case, we need a gradient operator that maps spherical p =

(θ, ϕ, ρ) to scene Cartesian coordinates. This can be done using the previous analytic derivations

as in [Badino et al., 2011a] or using a geometric construction. We will flavor here the alternative

geometric formulation, since the geometric construction reduces the complexity and gives more

flexibility for adapting the computation for different spherical coordinate systems than the one

in eq. (2.5). Using the gradient in spherical coordinates (2.7), the normal nS of s = ρ−D(p) = 0

in the sensor coordinate system is:

nS(p) = ‖∇S(s)‖S =

∥∥∥∥∥
(

−1

D(p) cos(ϕ)

∂D(p)

∂θ

−1

D(p)

∂D(p)

∂ϕ
1

)T∥∥∥∥∥
S

(2.12)
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Figure 2.5 – RGB image (top), depth image (middle) and normal estimation (bottom) using a
frame from the RGB-D indoor rig. The colors in the depth encode the inverse distance, where
distant points from the camera have darker color. The colors in the normal image encode the
orientation of the surfaces of the scene. As it can be noticed, the calibration of the rigs creates
some discontinuities in the RGB and depth images. Furthermore, we can notice the depth
errors inside smooth surfaces, as depicted by the changing colors of the normals in the walls,
floor and ceiling.

The spatial coordinates are a rotated version of the spherical one and therefore:

n(p) = R(θe2)R(−ϕe1)nS(p) (2.13)

with the rotation matrices around e2 = ŷ and e1 = x̂ axes, being computed using eq. (4.3).

R(θe2)R(−ϕe1) can be computed only once and stored in a lookup table.

2.5.2 Normal Estimation Accuracy

The image gradients in (2.11) and (2.12) establish the level of detail and the sensitivity to

noise of the normal computation. It is worth recalling that there is no simple trade-off since

being robust to noise (increasing the size of neighbourhood) inevitably leads to smoothing

details (as known as aliasing). For efficiency, we can use a classic centred finite differences

kernel using a window of (3× 3). Considering this kernel, the expressions in (2.11) and (2.12)

are equivalent to eq. (2.8). Other standard gradient operators such as Sobel, Gaussian or

Prewitt are equally valid. A discussion about the validity of this assumption is done later in
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chapter 6. An example of the estimated normals is given in fig. 2.5 using the indoor sensor rig.

2.6 Summary and Closing Remarks

This chapter presented the basic tools and representation of perspective and spherical RGB-

D images used along the thesis. We introduced the image projections and the panoramic

spherical modelling. In the sequence, the RGB-D spherical indoor and outdoor rigs are pre-

sented, as well as the normal vector estimation. Finally, although working with spherical frames

offers advantages, e.g., the better conditioning of mapping and ego-motion estimation, it also

comes with intrinsic difficulties because most of the available optimization and image processing

frameworks are conceived and valid to Euclidean/perspective spaces. For instance, even basic

concepts such as spatial isotropic derivatives, neighbourhood and blurring are not trivial in the

sphere (e.g., [Daniilidis et al., 2002, Bulow, 2002, Hadj-Abdelkader et al., 2008, Demonceaux

et al., 2011]).
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3.1 Introduction

The capabilities of building a representation of the environment, as well as estimating its

relative position, are essential for robotic systems to interact and to evolve in the environment.

These tasks, when treated simultaneously from images, are denoted as visual simultaneous lo-

calization and mapping (VSLAM) (e.g., [Engel et al., 2015, Mur-Artal et al., 2015, Whelan

et al., 2015]) and structure from motion (SfM) (e.g., [Snavely et al., 2006, Wu, 2013]) problems

tackled by the robotics and computer vision communities. Due to the wide field of applications,

a vast (and rich) research literature exists around these topics. In this sense, the discussion in

this chapter will be mainly restricted to robotic applications, where real-time performance is ex-

pected. This computation effort requirement restricts the use of bundle adjustment tools which

are often applied in SfM 1. Therefore, we describe mainly “sequential” estimation techniques for

image registration and mapping. Good introductory texts (but not restricted to) are computer

vision textbooks [Hartley and Zisserman, 2003, Faugeras et al., 2001], [Scaramuzza and Fraun-

dorfer, 2011] about visual odometry and state-of-the-art registration algorithms, [Marchand

et al., 2016] with an overview of pose estimation/tracking in virtual reality applications and,

[Scharstein and Szeliski, 2002, Snavely et al., 2006] for mapping from images and the references

included therein.

An essential block of most VSLAM systems is camera tracking, i.e., determining the location

of the camera along the image sequence. Sequential vision-based registration methods track

pixels between subsequent image frames and are often denoted as visual odometry (VO) when

the tracking is also used to recover the camera motion over time. In short, most registration

methods can be grouped following two categories: monocular/stereo and feature/appearance-

based. In this chapter, we give further details about these categories. In the next sections, we

expand and relate these concepts of registration and mapping from images to robotic applica-

tions, i.e., taking also into account the computational effort involved in the proposed algorithms.

Moreover, we aim to position these algorithms (when appropriate) to the following challenging

conditions such as:

— Large motions. Wide baseline images are prone to occlusions and non modeled ap-

pearance changes. In particular, direct registration methods assume local linearized

approximations of the pixel appearance, which might be invalid in cases of large dis-

placements.

— Model complexity and storage capacity. The complexity and size of the considered

scene models can restrict the application of some algorithms to limited or relatively

small scales.

— Textureless regions. Images acquired from weak-textured scenes are prone to noise when

computing either the scene structure from stereo or the relative movement between the

1. A state of the art example is the tool chain of combining visualSfM and dense multiple view stereo (MVS)
[Wu, 2013].
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images using RGB registration.

The rest of this chapter is organized as follows. In section 3.2, we introduce image registra-

tion related works and perform a brief taxonomy of these methods in four different categories.

Section 3.3 describes the framework used for the estimation of motion with direct registration

techniques. In section 3.4, we discuss the convergence issues and some solutions proposed by

the robotics and computer vision communities. Finally, section 3.5 summarizes the chapter and

introduces the problems treated in the next two parts of the manuscript.

3.2 Image Registration

As described in section 3.1, the first registration category relates the number of cameras,

with known relative pose, used in the tracking: a single camera (or monocular, e.g., [Silveira,

2014, Heng and Choi, 2016, Zhang et al., 2016]) and two or more cameras (stereo, e.g., [Morency

and Darrell, 2002, Nistér et al., 2004, Comport et al., 2010, Tykkala et al., 2011, Engel et al.,

2015]). Considering the monocular case, if the camera parameters are known, i.e. calibrated,

the motion between the frames can be inferred up to a scale factor and then be sequentially

integrated to compose the camera trajectory 2. Stereo vision algorithms have the advantage,

among others, of solving this motion-structure scale ambiguity inherent to monocular vision.

The second category relates how the pixel correspondences between the images is done.

Feature-based methods can be decomposed, in general, as a sequential pipeline, starting by the

extraction and matching of a subset of distinctive pixels (features) between the frames. Con-

versely, direct 3 (appearance-based) methods do not perform feature extraction and matching

in a separate thread (see fig. 3.1) but minimizes an appearance error between the frames. In

the next subsections, we detail the feature/direct and stereo categories.

3.2.1 Feature-Based Image Alignment

Feature-based methods (e.g. [Davison and Murray, 2002, Nistér et al., 2004, Kitt et al.,

2010, Dryanovski et al., 2013]) rely on an intermediary extraction process based on thresholding

[Harris and Stephens, 1988, Lowe, 2004], before matching the features and recovering the camera

motion. The features at each frame can be extracted, for instance, using a classic difference of

Gaussian (DoG) filter, Harris corner detector [Harris and Stephens, 1988] or the more recent

FAST [Rosten et al., 2010]. Because of its high repeatability and low computational cost, FAST

is one of the most popular feature detectors for real-time applications. In the subsequent stage

of the pipeline, descriptors are computed for each detected feature (e.g., SIFT [Lowe, 2004],

2. Please refer to [Zhang, 1997, Malis and Vargas, 2007] about the extraction of the motion from essential
and homography matrices and [Strasdat et al., 2010] for details about how to ensure the consistency of the scale
factor during the trajectory estimation.

3. The term template-based is equally employed to refer to direct approaches.
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Figure 3.1 – Feature-based vs direct-based registration methods pipeline. The red arrows in
the top scheme are the intermediary feature extraction from the images (denoted as F∗ and F)
and their matching. Conversley, direct methods use the pixels intensities in order to register
the frames, without any feature extraction or matching. Image courtesy of [Comport et al.,
2010].

BRIEF [Calonder et al., 2010], ORB [Rublee et al., 2011, Mur-Artal et al., 2015] and then

matched using a metric such as the Euclidean or hamming distances.

After the extraction and matching of the features, the tracking is done using the 8-point

algorithm (monocular uncalibrated) [Hartley, 1997], 5-point algorithm (monocular calibrated)

[Nistér et al., 2004] or an SVD (stereo) [Horn and Schunck, 1981, Nistér et al., 2004] (please

refer to fig. 3.2 for some applications resulted from feature-based registration). The feature

extraction and matching process is often noisy and not robust to outliers, and therefore it

generally relies on higher level robust estimation techniques and on filtering to increase the

tracking accuracy (e.g., [Nistér et al., 2004] or [Buczko and Willert, 2016] combining RANSAC

with an adapted outlier rejection). An schematic of the stages of feature-based techniques can

be seen in fig. 3.1 upper image. Finally, it is worth noting that implementations in different

languages (Matlab, C++, Octave) of feature detectors, descriptors and trackers are available
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Figure 3.2 – Feature-based registration examples. The left figure depicts a stereo registration
computed by NASA’s exploration rover in Mars. The right plot shows feature correspondences
using the ORB-SLAM algorithm in challenging apperance and scale conditions. Images courtesy
of [Maimone et al., 2007] and [Mur-Artal et al., 2015] respectively.

in open source libraries such as, for instance, OpenCV tracking API or the VLFeat library

[Vedaldi and Fulkerson, 2008].

3.2.2 Direct Camera Tracking

Conversely to feature-based methods, direct (appearance-based) approaches do not perform

feature extraction and matching in a separate thread [Lucas and Kanade, 1981, Irani and

Anandan, 2000]. All the image content is used and the matching is implicitly encoded in

the minimization of an appearance error. The camera motion is estimated by minimizing a

nonlinear error between images via a parametric warping function. In this way, the matching

and the tracking are performed simultaneously at each step of the optimization (see fig. 3.1 lower

image scheme and the left images of fig. 3.3). Direct approaches are closely related to dense

optical/scene flow estimation problems. Briefly, optical flow is the apparent motion of pixels

between subsequent images induced by a motion in the Euclidean scene space, which is under-

constrained since the displacement of each pixel has two unknowns 4. To handle this problem,

the seminal work of Lucas-Kanade [Lucas and Kanade, 1981, Baker and Matthews, 2006]

assumed a similar flow in a neighbourhood of a subset of distinctive pixels. This simplification

reduces the number of unknowns to a sufficient number of linear equations to solve the problem,

although the approach is somewhat limited to the neighbourhood constancy assumption, i.e.,

a local method 5. This assumption is also implicitly considered in direct image registration

4. The general optical flow (tracking) problem can be stated as determining for each pixel p the displacements
(U(p),V(p)) ∈ R2 that makes the correspondence of pixels between two images.

5. Conversely to “local” flow formulations, “global” flow estimation techniques compute the flow using energy
costs considering all pixels, (e.g., [Horn and Schunck, 1981, Dosovitskiy et al., 2015, Jaimez et al., 2017]).
However, these energies use a first order Taylor expansion of the pixel intensity, i.e., are local in the sense of
the motion. The main drawback of “global” flow approaches is their computational cost, the best cases with a
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techniques.

Classically, direct approaches have focused on region-of-interest tracking whether they are

modeled by affine (e.g., [Hager and Belhumeur, 1998]), planar (e.g., [Lucas and Kanade,

1981, Baker and Matthews, 2001, Silveira, 2014]), multiple-plane tracking (e.g., [Mei et al.,

2006, Caron et al., 2011]) or trifocal/quadrifocal tensor and stereo (e.g., [Klose et al., 2013, Com-

port et al., 2010, Florez et al., 2012]). Again, the tracking is done from the minimization of a

dissimilarity metric such as, for instance, the sum of squared differences (SSD) (e.g., [Comport

et al., 2010]), normalized cross-correlation (NCC) (e.g., [Scandaroli et al., 2012]), the mutual

information (e.g., [Dame and Marchand, 2010]) or the structural similarity (SSIM) (e.g., [Singh

et al., 2017]). The choice of the appearance metric conditions the robustness to varying sit-

uations, such as, illumination changes [Scandaroli et al., 2012, Alismail et al., 2016, Singh

et al., 2017]. Once the warping function parameters are estimated, the motion can be inferred

from the decomposition of homography or essential matrices (e.g., using [Zhang, 1997, Malis

and Vargas, 2007]). In [Comport et al., 2007, Comport et al., 2010] direct approaches were

generalized to track the camera six DOF pose using stereo.

3.2.3 RGB-D Registration and Mapping

The recent advent of low-cost commodity RGB-D sensors, such as the Microsoft’s Kinect

or Asus’s Xtion Pro, has drastically boosted the development of stereo registration and map-

ping techniques (e.g., the RGB-D registration and VSLAM systems presented in [Henry et al.,

2014, Newcombe et al., 2011a, Kerl et al., 2013a, Meilland and Comport, 2013, Korn et al.,

2014, Dryanovski et al., 2013, Gutierrez-Gomez et al., 2016, Kerl et al., 2015]). These commer-

cial sensors are integrated with two infrared sensors to triangulate the objects distances, and

therefore avoiding the matching of pixels from two images 6. We will refer to stereo techniques

simply as RGB-D, although the process and noise affecting the depth from stereo and from

RGB-D devices have different characteristics.

[Dryanovski et al., 2013] presented a visual odometry and mapping algorithm relying on

sparse image features (feature-based). The registration is done with a point-to-point iterative

closest point (ICP) [Pomerleau et al., 2015] between the incoming RGB-D images and a global

feature map stored in a Kalman filter. However, the storage capacity and computational

burden restrict their algorithm to work in limited scene scales. One interesting aspect of their

formulation is the uncertainty modeling of the depth images that can detect possible “flying

pixels” [Wasenmüller and Stricker, 2016]. The depth uncertainty is modeled with a Gaussian

mixture process for capturing occlusions and problematic features, such as object edges (which

cannot be predicted using traditional uncertainty models such as, for instance, [Khoshelham

and Elberink, 2012, Wasenmüller and Stricker, 2016]). [Newcombe et al., 2011a] fused RGB-D

running time in the order of seconds for low resolution images [Dosovitskiy et al., 2015].
6. The infrared limits the use of these sensors to indoor scenes with moderate lighting conditions.
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Figure 3.3 – Direct RGB-D registration computation (left images) and scene flow example using
the TUM freiburg3 teddy sequence. The camera motion is computed using the difference of
pixel intensities in the direct RGB-D registration (left figure). The scene flow (center and right
figures) encodes the 3D displacement vectors of the points using a direct registration procedure.
Images courtesy of [Kerl et al., 2015] and [Quiroga et al., 2014] respectively.

frames in a voxel-based representation and perform the tracking between individual frames and

the fused/accumulated model using a direct method. Similarly to [Dryanovski et al., 2013],

this technique is restricted to relatively small scenes.

[Tykkala et al., 2011] was one of the pioneers to extend [Comport et al., 2010] to RGB-D

sensors. Their formulation minimized jointly the geometric and photometric errors in the reg-

istration using a constant scaling factor based on the median values between the depth and

intensity images. [Kerl et al., 2013a] proposed a keyframe-based RGB-D SLAM method where

the pose between the individual frames is recovered from a direct RGB-D registration similar

to [Tykkala et al., 2011]. The scaling in this case is iteratively computed to normalize the

distributions of the intensity and geometric errors. To overcome the storage issue, the authors

explore the notion of compact mapping by storing only representative frames (as known as

keyframes [Gokhool et al., 2015]) and therefore reducing the computational burden. [Quiroga

et al., 2014, Jaimez et al., 2017] present a framework to jointly estimate the camera motion

and the scene flow of rigid objects using RGB-D images (see fig. 3.3 for examples). The core

of both methods is the segmentation of the scene in local rigid clusters and performing spatial

and temporal predictions of the segmented objects between subsequent frames. Combining the

segmentation with spatial and temporal regularization allows a more accurate flow computa-

tion and a more accurate camera motion estimation. The flow computation in both [Quiroga

et al., 2014, Jaimez et al., 2017] is more efficient than other state-of-the-art energy techniques

(e.g., [Weinzaepfel et al., 2013]). However, these approaches depend on a large extend to a

correct segmentation of the scene and the tuning of the temporal prediction and regularization

parameters.

A simplified characterization of the described registration categories are depicted in Table

3.1, showing some characteristics of direct and feature-based camera tracking techniques for
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monocular and RGB-D settings.

3.3 Direct Image Registration Framework

In this thesis, we focus on recovering the relative pose using parametric direct methods,

i.e., using the pixel intensities of the images and without performing feature extraction and

matching 7. Consider a pair of image frames S and S∗ containing the respective intensity

and depth images. Our main goal is to estimate the relative position and orientation between

the frames, represented by the matrix T, that minimizes an appearance error metric f (the

dissimilarity) between the intensity and depth images:

e(p,T) = f(S(w(p,D(p),T)),S∗(p)) (3.1)

where w is a warping function relating corresponding pixel positions in the frames. The relative

pose T, with six degrees of freedom, is represented throughout the manuscript using the matrix

form in the special Euclidean group:

T =

(
R t

0(1×3) 1

)
∈ SE(3) (3.2)

where R ∈ SO(3) is the rotation matrix (encoding the orientation) and t ∈ R3 the translation

(encoding the position). For the optimization of the error (3.1), we will introduce in section

3.3.3.1 an intermediary representation using the instantaneous angular and linear velocities of

the camera. An RGB-D registration scheme is shown in fig. 3.4 for a perspective camera. We

present in the next sections the technical framework to find the pose minimizing the appearance

error between the images S and S∗.

7. Although there is no explicit matching as in feature-based registration, an implicit matching is done in
direct methods from the interpolation.

Table 3.1 – Resumed characteristics of image registration categories.

Mono Feature RGB-D Feature Mono Direct RGB-D Direct

Accuracy • • • • • • • •
Convergence domain • • • • • • • ••
Scale ambiguity Yes No Yes No
Photometric model NA NA Textured scenes General scenes
Geometric model NA NA Planar/simple scenes General scenes
Computational effort • • •• • • •
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Figure 3.4 – Schematic of projections and RGB-D image registration using two frames from the
TUM fr1/xyz RGB-D dataset.

3.3.1 Warping and Virtual Views

The first stage to solve the problem in eq. (3.1) is to consider the inverse situation, i.e.,

assuming the pose T known and to analyze how pixel correspondences is done. The point

correspondences between frames are modeled by the warping function w under co-visibility

conditions from different viewpoints. While a large number of warping functions can be pro-

posed, e.g., using linear, affine or homography (please refer to [Baker and Matthews, 2006] for

an overview of general warps), knowing an estimate of the scene structure allows us to use an

efficient 3D warping w : P2 × R+ × SE(3) → P2, employing directly the pose T between the
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viewpoints, as depicted in fig. 3.4. Denoting K the intrinsic camera matrix (2.2) and ΠS being

the spherical projection (2.6), the corresponding warping functions are given by:

• Perspective: w(p,D(p),T) = ‖D(p)KRK−1p + Kt‖P
• Spherical: w(p,D(p),T) = ΠS

(
‖D(p)RΠ−1

S (p) + t‖S
) (3.3)

For notation compactness we denote w(p,T) := w(p,D(p),T). It is worth noting that the

aforementioned 3D warping (3.3) considers the same camera model (spherical to spherical and

perspective to perspective). Of course, these expressions can be easily extended to any hybrid

warping, e.g., perspective to spherical, spherical to perspective and so forth.

3.3.1.1 Rendering Virtual Frames

The point correspondence in eq. (3.3) allows the rendering of virtual images in a local

domain of a frame S∗, encoding the photometric and geometric models of the scene. The

complexity of the scene models increases as we consider effects such as occlusions, lighting con-

ditions or viewpoint into account. However, we can simplify the image warping by considering

stationary models in a local domain. For the geometric model, we can assume static scenes

with minimal occlusions from the viewpoint related by the pose T:

• Perspective: D(w(p,T)) = e3
T (RK−1(p)D∗(p) + t)

• Spherical: D(w(p,T)) = ‖RΠ−1(p)D∗(p) + t‖2.
(3.4)

For the photometric model, considering the scene composed of Lambertian surfaces 8, constant

lighting conditions 9 and a continuous geometric model in this local domain, i.e., the sensors

sampling and surface occlusions can be neglected as in (3.4). Consequently, the intensity value

in the virtual image can be simplified to:

I(w(p,T)) = I∗(p). (3.5)

The warping function (3.3) in (3.4) and (3.5) often generates non-integer pixel positions in

the virtual image. Therefore, we must resort to image interpolation techniques for computing

the image values in (3.4) and (3.5) from D∗ and I∗. Classic interpolation techniques are the

nearest neighbour, bilinear, bicubic or cubic B-Spline. The bilinear interpolation is chosen for

8. Lambertian surfaces maintain their brightness appearance independent of the viewing direction.
9. This photometric model can be easily extended to consider more complex illumination models, e.g., an

affine illumination I(w(p,T)) = αI∗(p) + β, with (α, β) constants in a window around the pixel p.
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Figure 3.5 – Virtual image rendering example using the spherical warping at a different view-
point. The virtual view, shown in the second row, is rendered using the current frame (first
image) at the the position of the reference frame (third row).

having the best trade-off between precision and computational effort compared to aforemen-

tioned techniques [Han, 2013] and since the region-of-interest of the spherical images are not

near the poles. Finally, rendering the virtual image is equivalent to perform the warping and

interpolation for all the pixels. These virtual images will be used to compute the errors between

the reference and current frames to find their relative pose. An example of a “virtual frame” is

shown the second row of fig. 3.5, where the virtual image is build from the warp of the current

frame (first row) in the position of the reference frame (third row).

3.3.2 Recovering Motion From Images

As discussed in section 3.2.2, direct registration is closely related to dense optical flow

estimation, relying the temporal/spatial continuity of apparent motion of pixels between sub-

sequent images [Baker and Matthews, 2001]. We start by considering stationary photometric

and geometric models of the scene, i.e., the frames appearance is invariant in time ∂S(p)
∂t

= 0.

Under this assumption, the appearance change of the frame content can be approximated by a

truncated Taylor expansion in a spatial local neighborhood T = T̂T(x), such as:

S(w(p, T̂T(x))) = S(w(p, T̂)) +∇x(S(w(p, T̂T(x))))

∣∣∣∣
x=06×1

x +O(‖x‖2
2) (3.6)
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where T̂ is a pose guess and ∇x is the gradient of the frame to the parameter x. The relation

(3.6) defines the appearance of any virtual frame S(w(p, T̂T(x))) in a local neighborhood of

the pose T̂, ideally with Lambertian surfaces, constant lighting conditions, static scenes and

small motions. As discussed in section 3.3.1, the virtual frame S(w(p, T̂)) in eq. (3.6) can be

seen as a mapping of the position of the pixels (warping) of the reference frame S∗, i.e., using

the virtual intensity and depth images as shown in eqs. (3.4) and (3.5):

S(w(p, T̂)) = S∗(p). (3.7)

We can particularize the direct approaches from the type of images being used, in the following

four cases:

— Monocular or intensity only registration: S∗ = {I∗} and S = {I}. In this case only the

intensity images are considered (non-metric information) such as [Silveira, 2014, Heng

and Choi, 2016, Zhang et al., 2016]. These formulations suffers from the scene-motion

scale ambiguity, justifying the inclusion of either IMU, laser or a stereo pair to condition

the pose estimation.

— 3D – 3D registration: S∗ = {D∗} and S = {D}. The cost function is composed only of

depth information. The typical examples are direct ICP point-to-plane [Gelfand et al.,

2003] and generalized ICP formulations [Korn et al., 2014, Pomerleau et al., 2015].

— Augmented intensity registration: S∗ = {I∗,D∗} and S = {I}. In this case, the

depth is simply employed in the warping such as, for instance, the seminal work of

[Comport et al., 2010] and [Morency and Darrell, 2002, Tykkala et al., 2011, Kerl et al.,

2013a, Munoz and Comport, 2016a] with zero geometric scaling cost factor.

— RGB-D registration: S∗ = {I∗,D∗} and S = {I,D}. The cost function has both

photometric and geometric error terms such as, for instance, [Morency and Darrell,

2002, Tykkala et al., 2011, Kerl et al., 2013a, Munoz and Comport, 2016a].

In this thesis, we are interested in 3D general warpings, i.e., the last three cases. In special,

we will focus in the fourth case (RGB-D frames), since it retains the accuracy of intensity only

approaches and increases the flexibility of the later by relaxing the constraint of high textured

images, because the camera can still be tracked with a collection of textureless planes in RGB-D

images.

3.3.3 Appearance Cost Minimization

The remaining problem is to select a suitable cost of the appearance error in eq. (3.7) and

the minimization framework. Classical examples of appearance errors are the sum of squared

differences (SSD), normalized cross correlation or the mutual information. For simplicity, we

start by developing the third case (S∗ = {I∗,D∗} and S = {I}). The fourth case (S∗ =
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{I∗,D∗} and S = {I,D}) will be described in detail in chapter 5. Consider the following

robust cost:

C = min
x

∑
p

ρ(e(p,x)) (3.8)

where ρ is a M-estimator and

e(p,x) = f(S(w(p, T̂T(x))),S∗(p)) = I(w(p, T̂T(x)))− I∗(p) (3.9)

is the appearance intensity error related to the pixel p. This cost can be re-written in a

SSD form using an iterative weighted least-squares with diagonal weighting matrix W [Zhang,

1995]:

C(x) = e(x)TWe(x) (3.10)

where e(p,x) is a vector composed by the intensity errors for all pixels and

W = diag(w1, ..., wk) (3.11)

states the confidence of each measure using the M-estimator (e.g., Huber, Tukey, Cauchy).

Considering a robust objective function in the cost has the advantage of rejecting outliers

during the minimization.

3.3.3.1 Minimal Motion Parametrization

In order to perform the image alignment and recover the relative pose, we need to minimize

the appearance error in eq. (3.10). Although the pose in matrix form has the advantages

of being unique, not presenting singularities and with simple analytic properties, it is not a

minimal representation (sixteen elements, whose nine for the rotation). Hence, finding the

motion six DOF by minimizing a cost related to these sixteen elements does not guarantee that

the computed pose belongs to SE(3) 10. Therefore, the minimization is not done with the pose

in matrix form, but rather considering an intermediary motion parametrization in the manifold:

x = (υ,ω)T (3.12)

10. A possible strategy to overcome this issue is to perform a projection of the motion in SE(3). One such
way is doing a Frobenius normalization of the rotation matrix, as described in the appendix section of [Zhang,
2000].
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using the instantaneous linear (υ) and angular velocities (ω), during a time interval (t0, t0 +δt).

This parameter vector relates to the rigid transform T(x) through the exponential map 11:

exp : R6 → se(3)→ SE(3)

x 7→ A(x) 7→ T(x) = exp(A(x)δt)
(3.14)

where A can be written as a linear combination of the generators of the algebra se(3):

A(x) =

(
S(ω) υ

0(1×3) 0

)
(3.15)

which is the Lie algebra of SE(3) at the identity element and S(ω) is the skew R3×3 matrix of

the angular velocity ω. Selecting the duration of the time interval as δt = 1, the exponential

mapping in (3.14) can be computed efficiently using a closed form solution using the Rodrigues’

formula [Gallier and Xu, 2002, Gallier, 2000]:

T(x) = exp(A(x)) :

{
R = I(3×3) + sin(Θ)S(nΘ) + (1− cos(Θ))S(nΘ)2

t =
(
I(3×3) + (1−cos(Θ))

Θ
S(nΘ) + (Θ−sin(Θ))

Θ
S(nΘ)2

)
υ

(3.16)

with I the identity matrix, Θ = ‖ω‖2 and nΘ = ‖ω‖S for Θ 6= 0. If Θ = 0 the axis of

rotation is not determined and therefore can be chosen arbitrarily (e.g., nΘ = e1). Similarly,

the inverse mapping log : SE(3)→ se(3) can be directly obtained from (3.16), being valid in a

local neighborhood of the rotation (see [Gallier, 2000] chapter 14):

x = vex(log(T(x))) :

{
ω = ‖ vex

(
R−RT

)
‖SΘ

υ =
(
I(3×3) − S(ω) +

(
tan(Θ/2)−Θ/2

tan(Θ/2)

)
S(ω/Θ)2

)
t

(3.17)

for Θ = ‖ω‖2 < π and 2 cos(Θ) = tr(R)− 1. The operator vex is an overloaded operator such

that:

vex(S(ω)) = ω and vex(A(x)) = x.

When ‖ω‖2 = π, we need to find S(nΘ) satisfying I(3×3) + S(nΘ)2 = R. As S(nΘ) is a skew-

symmetric (3× 3) matrix, this amounts to solving a system with three unknowns.

11. The rigid transform T(x) encodes the pose evolution considering constant velocities during a time interval
δt. The position of a point P(t) ∈ R3 relative to a fixed reference world frame at instant t0 can be stated as the
kinematic model of linear and angular velocities:

dP(t)

dt
= υ + ω ×P(t) = υ + S(ω)P(t). (3.13)

Therefore, the pose T(x) in (3.2) (3.10) (3.14) is the solution of the linear ODE in (3.13), such as P(t0 + δt) =
RP(t0) + t.
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Finally, it is worth noting that any pose derivative related to each DOF, e.g. ∂T(x)
∂xi

= Ai, is

given simply by the generators of se(3):

A1 =

(
03×3 e1

01×3 0

)
, A2 =

(
03×3 e2

01×3 0

)
, A3 =

(
03×3 e3

01×3 0

)

A4 =

(
S(e1) 03×1

01×3 0

)
, A5 =

(
S(e2) 03×1

01×3 0

)
, and A6 =

(
S(e3) 03×1

01×3 0

)
, (3.18)

which greatly simplifies the minimization expressions (the Jacobians) in the motion computa-

tion, while simultaneously enforcing the pose in the special euclidean group.

3.3.3.2 Efficient Second Order Minimization

In general, the cost in eq. (3.10) is not globally convex, since the appearance error is

nonlinear. Hence, the estimation of the optimal solution depends on the appearance error

approximation and on the optimization method. Our goal is to find a minimum equal or

nearby the global minimum of the cost in (3.10). Unfortunately, global optimization techniques

are too computationally expensive to be used [Yang et al., 2016]. Therefore, gradient-based

optimization methods have been widely employed in the minimization, as these techniques

present a good trade off between region of convergence and computational cost.

Several gradient-based minimization algorithms are available, such as, the steepest descent,

Gauss-Newton, Levenberg-Marquardt, Powell’s “dogleg” or the Efficient Second Order Mini-

mization (ESM). Please refer to the appendix section of [Hartley and Zisserman, 2003] and to

[Benhimane and Malis, 2004, Baker and Matthews, 2006] for further details of these algorithms.

We further describe the ESM method since it generalizes the Gauss-Newton and the inverse

compositional formulations, while maintaining interesting convergence properties. The ESM

considers a second order approximation of the error:

e(x) = e(0) + J(0)x +
1

2
M(0,x)x +O(‖x‖3

2) (3.19)

where O(‖x‖3
2) are the terms with three or higher orders and,

J(0) = ∇x(e(x)) = ∇x(S(w(p, T̂T(x))))

∣∣∣∣
x=06×1

by using eq. (3.7). The matrix M using the Hessian can be written as:

M(0,x) = ∇x(J(x))

∣∣∣∣
x=06×1

x.
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Interestingly, the first order expansion of the Jacobian in the origin can be written as:

J(x) = J(0) + M(0,x) +O(‖x‖2
2). (3.20)

Using (3.19) and (3.20), we have:

e(x) ≈ e(0) +

(
J(0) + J(x)

2

)
x

where using J(x)x = J∗(0)x and from the first order optimal condition of (3.10), ∂C(x)
∂x

= 0, we

finally have:

Jesm =
J(0) + J∗(0)

2
. (3.21)

The photometric Jacobians J∗ and J (Nx6) are computed for the reference and current frames.

Due to the warping group properties, these can be decomposed for each pixel in:

J = ∇p(I(w(p, T̂)))JwJT and J∗ = ∇p(I∗(p))JwJT, (3.22)

with ∇p(I) (1x3) as the image gradient. Jw (3x12) is the Jacobian of the warping function

which depends on the sensor projection model (e.g., perspective or spherical). JT (12x6) is

the Jacobian of the pose related to the instantaneous angular and linear velocities (x). Each

row of this Jacobian corresponds to the flatten version of the generators Ai three first rows, as

described in section 3.3.3.1 and in the appendix A. In summary, the cost in (3.10) is minimized

iteratively through the update rule:

Iw(p) = I(w(p, T̂)) (3.23)

x = −(JTesmWJesm)−1WJTesm(Iw − I∗) (3.24)

T̂← T̂T(x). (3.25)

The optimization stop conditions are defined by the maximum number of iterations and by

a threshold of the increment in x. The description of the Jacobians, the choice of the robust

M-estimator and computation of the weights are described in detail in the appendix A.
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3.4 Convergence of Registration Methods

The usage of direct registration approaches is increasing in the last decade because of the

sub-pixel accuracy displayed in tracking applications 12 and because of the increase of available

computation resources. However, these methods are not capable of handling wide baselines

(displacements) between the frames. Among the strategies to increase the basin of convergence

and convergence rate of direct methods, multi-resolution is widely employed due to its easy

implementation and versatility (e.g., [Klose et al., 2013, Comport et al., 2010]). Multi-resolution

consists on creating successive down-sampled images, creating a pyramidal structure. The

optimization is done from the lowest resolution (top of the pyramid) to the highest image

resolution level. The convergence of direct techniques is widely improved by considering multi-

resolution schemes. In the same context, some state-of-the-art techniques, concerned with

tracking and optical flow estimation [Hadj-Abdelkader et al., 2008, Brox and Malik, 2011,

Muller et al., 2011, Braux-Zin et al., 2013] proposed a combination of feature and direct-based

approaches for a trade off between accuracy and basin of convergence.

Some effort was also done in estimating “confidence” envelops where convergence is likely

to happen, even though a general mathematical condition was not established for determining

the convergence domain. Recently, [Churchill et al., 2015, Dequaire et al., 2016] described a

framework for determining pose envelops for convergence of monocular feature-based registra-

tion (see fig. 3.6 for examples of convergence envelops in different scenes). The envelops encode

the probability of convergence of the registration for different initial conditions. A Gaussian

mixture process is used to estimate these envelops using the Teach and Repeat paradigm [Fur-

gale and Barfoot, 2010]. The number of correct matched features is taken as index for the

envelops inference. However, this space characterization needs an extensive exploration of the

scene, which is quite prohibitive in most contexts.

Consequently, a central objective of this thesis is to investigate possible techniques to in-

crease the basin of convergence and to propose adapted mapping techniques to efficiently rep-

resent the scene model, while maintaining nice convergence properties for direct techniques.

3.5 Summary and Closing Remarks

In this chapter, we presented an overview of sequential pose estimation methods from im-

ages. We introduced feature-based, direct (appearance-based) and the RGB-D image regis-

tration problems and presented some relevant solutions. Direct registration is performed by

generating virtual image views using a pre-computed structure of the scene. Although these

techniques are in general better conditioned and more accurate than feature-based approaches,

12. The sub-pixel accuracy in the image domain is not isometric to the motion accuracy of the camera in the
Euclidean domain. Observe that a large motion can induce a slight change in the pixels coordinates for points
far apart from the camera.
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Figure 3.6 – Convergence envelops for image based localization. The envelops are built via
the Teach and Reapeat paradigm using landmarks. Hotter colors indicate a high number of
landmarks’ matching than colder colors. As can be noticed, the convergence envelops vary
drastically over the trajectory. First two images courtesy from [Dequaire et al., 2016] and last
three images from [Churchill et al., 2015].

they display a reduced basin of convergence compared to feature-based techniques. Finally,

we discussed the limitations of current state-of-the-art algorithms and solutions to improve the

convergence of direct approaches. We recall that enlarging this domain is of practical interest

not only for RGB-D sensors but, potentially, for all the visual odometry approaches based on

direct registration.

In the subsequent chapters of this thesis, a particular attention is given to the topics of

increasing this basin of convergence/the convergence rate and on building appropriate mapping

representations. These are key aspects for generating valid scene models to be used later on in

robot autonomous navigation or in scene rendering.
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Introduction

As discussed in the introductory chapters, most parametric direct registration methods are

based on the linearization of a warping function and, thus, the convergence is local. In this

part, we describe two strategies to increase the basin of convergence of direct RGB-D tracking

techniques. The first strategy, described in chapter 4, is a pose computation using the normals

of the depth images with convenient properties. This pose computation is fast because of the

characteristics of the normals and because it can exploit low-resolution depth images. Under

certain configurations, the estimated motion converges in a single iteration to the solution of

an ICP point-to-plane. Therefore, it can be used in an initialization procedure, as shown in fig.

3.7.

prediction

initial

solution

cost

x

cost

x

x0

initial

solution

Figure 3.7 – Initialization formulation presented in chapter 4. The goal is to compute an
initialization to the nonlinear cost (blue dot at the right graphic), allowing direct methods to
work in the basin of convergence for pose refinement (the red shaded region).

The second strategy, described in chapter 5, is a formulation to update the weighting of the

RGB-D error function along the optimization. The formulation uses the following reasoning.

The intensity error has, in general, a very well defined minimum due to the alignment of

boundaries of the intensity images. This explains in part the sub-pixel tracking accuracy

displayed by direct methods. On the other hand, the geometric error is more flat in the

neighborhood of the minimum, but it has a faster convergence when the motion is large. We

describe an adaptive weighting technique based on these two observations, i.e., shaping the

original cost, as shown in fig. 3.8.

prediction

initial

solution

cost

x

prediction

initial

solution

cost

x

Figure 3.8 – The adaptive formulation presented in chapter 5. In this case, we want to shape
the original cost function during the minimization, by balancing appropriately the photometric
and geometric errors (blue curve at left).
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4.1 Introduction

The goal of registration techniques is to compute the motion, i.e., the relative pose from

images or point clouds. In special, mobile robots require efficient registration algorithms, which

are often iterative and assume a good pose initialization to converge. Pose initialization tech-

niques are widely used in registration tasks such as using features [Hadj-Abdelkader et al.,

2008] or by using external sensors such as inertial measurement systems [Kelly and Sukhatme,

2011] and wheel odometry [Maimone et al., 2007]. In this chapter, we present an efficient pose

estimation method from the normal surface vectors of two depth images. Surprisingly, except

in [Ma et al., 2016, Zhou et al., 2016a], the information gathered from normal vectors has

been exploited mainly for outlier rejection in point cloud registration algorithms as showed, for

instance, in the ICP survey in [Pomerleau et al., 2015] or in [Serafin and Grisetti, 2015]. Our

formulation uses low-resolution depth images and can be efficiently used in an initialization

scheme. The pose estimation is done in a decoupled way, i.e., first the rotation is extracted

from the normals and then the translation is gathered from the normals and depth. A simplified

scheme of the pose estimation pipeline is given in figs. 4.1 and 4.2. The only assumed hypoth-

esis, in the case of general scenes, is that the frames contain piece-wise planar regions with

co-visibility (overlapping). The term “overlapped” means a surface with co-visibility between

the two points of view. We will implicitly suppose that the geometry of the scene can be approx-

imated by piece-wise planar patches, since the surface pattern with minimal parametrization

are planes.

The remainder is organized as follows. First, we discuss some related works in section

4.1.1. A review of some elementary properties is given in section 4.1.3 followed by the nor-

mal computation in section 4.1.3.1. In the sequence, we introduce the rotation estimation in

section 4.2.1.2. The translation is subsequently described in section 4.2.2. The limitations

and observability conditions of the approach are discussed in sections 4.2.1.4, 4.2.2.1 and 4.3.

Experimental results are presented in section 4.4 for simulated and real indoor environments

Translation
Estimation (̂t)

Rotation
Estimation (R̂)

Normal
Computation (n)

n∗D∗ R̂

t̂

D

n

Figure 4.1 – Pose computation pipeline stages. The pose is computed in a decoupled way using
the distributions of the normals, which is very efficient and can be used inside an initialization
framework to direct methods.



4.1. Introduction 47

using fisheye and spherical images and we conclude the chapter in section 4.5.

4.1.1 Related Works

The pose estimation described in this chapter is closely related to the methods of [Stoyanov

et al., 2012, Ma et al., 2016] for point-cloud registration, [Fernandez-Moral et al., 2014] for

automatic LIDAR/RGB-D non-overlapping camera calibration and [Zhou et al., 2016a] for

rotation tracking in piece-wise planar environments. The approach in [Stoyanov et al., 2012]

explored the Three-Dimensional Normal-Distributions Transform (3D-NDT) to describe the

scene using distributions of geometric features (corners, planes, lines) for loop closure. [Ma

et al., 2016] proposed a decoupled rotation and translation estimation using the normals from

two point clouds. The rotation estimation tracks the peak of the normal distributions using

a decomposition similar to the one presented in this work. However, their rotation estimation

implicitly assumes a predominant rotation only in the Z axis. Furthermore, this technique is

only valid to small translations and it does not explore multi-resolution for efficiency. Similarly,

[Zhou et al., 2016a] estimate the rotation (no translation) from a set of dominant planes in the

scene. Their algorithm starts by extracting the principal orientations of the normals of the

environment and tracks the modes over time. The association, between the normals belonging

to the modes in the current and in the reference frames, is done by considering the closest

mode with a geodesic distance in the unit sphere. Once the association is performed, the

rotation estimation is based on the same formulation presented in [Fernandez-Moral et al.,

2014]. In [Fernandez-Moral et al., 2014], a rough guess of the relative rotation between the

current and reference frames is provided by the user for calibrating non-overlapping RGB-D

cameras. Once the association of co-planar regions is established, an elegant modified version

of Arun’s algorithm of ICP point-to-point [Arun et al., 1987] is derived to find the rotation in

a least square sense. Here instead, we proceed with a different strategy and formulation. First,

we do not insert a rough guess or assume infinitesimal/small changes in the rotation (remind

that a rough relative motion is what we seek). Besides that, conversely to [Ma et al., 2016, Zhou

et al., 2016a], we also derive a closed form for the translation and analyze the limitations and

what is the expected performance of the approach in a set of scene configurations. Some other

interesting works assume further hypothesis in the scene geometry, as the Manhattan World

assumption in [Zhou et al., 2016b] for depth registration using principal component analysis of

the normal vectors.

This work is also related to global registration techniques as [Li and Hartley, 2007, Yang

et al., 2016] for 3D registration or [Scaramuzza and Siegwart, 2008, Berenguer et al., 2015]

using appearance-based global descriptors. [Scaramuzza and Siegwart, 2008, Berenguer et al.,

2015] used the appearance of omnidirectional images as a visual compass. In [Berenguer et al.,

2015], a 2D rotation is estimated using a Fourier transform of the Radon descriptors for each

image. From the correlation of the two Fourier transforms, a 2D rotation is computed as
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the phase shift of the signals. Subsequently, the maximum correlation is used as an heuristic

metric to measure the translation of the camera. Similarly, [Scaramuzza and Siegwart, 2008]

performed a unidimensional correlation of an image template along the omnidirectional target

image. This rough rotation estimate is used as initialization of a direct image registration.

Conversely to these methods, our approach does not assume 2D motions for computing the

rough pose between the frames. In [Li and Hartley, 2007], a global optimization framework is

proposed for recovering the relative pose from 3D point clouds. The optimization is performed

using a Bound-and-Branch paradigm with an extensive search in SO(3) for the rotation using

an octree data structure. A Lipschitz mathematical formulation is then applied to reduce

the search space in the octree. The error for each candidate rotation is computed using an

ICP point-to-point where the 3D point correspondences are done by the Hungarian algorithm.

Besides its theoretical and elegant formulation, their algorithm was only able to handle 3D

points without any occlusions or outliers and with a running time that spans in the order

of minutes for a hundred of 3D points. This makes this algorithm unrealistic as a plausible

candidate for an initialization technique. An extension of their work was proposed in [Yang

et al., 2016] (Go-ICP), at this time for the full six DOF pose in SE(3) but with the same

computation drawback. In our work, a sampling of the rotation domain is also performed to

compute different initialization candidates, however, our approach is much more efficient by

using the normals to compute each pose candidate.

4.1.2 Contributions

The contribution of the chapter is an efficient decoupled rotation and translation estimation

from the normal vectors extracted from a range image. This formulation is an alternative way

of registering point clouds, which is very efficient and can be used in an initialization scheme

for direct RGB-D methods. The proposed rotation estimation is related to two recent works

of [Ma et al., 2016, Zhou et al., 2016a]. Conversely to these previous works, we do not assume

infinitesimal motions, neither a rotation order or the Manhattan-World scene hypothesis. Fur-

thermore, we also propose a closed form translation estimation and we analyze the observability

and limitations of the method.

4.1.3 Preliminaries

This subsection summarizes some useful properties that are extensively used during this

chapter. First, only the depth image is considered in the spherical frame, i.e., S refers to

a spherical depth image D ∈ Rm×n
+ . Again, the mapping between 3D Cartesian coordinates

P ∈ R3 and frame pixel coordinates p ∈ P2 is given by P(p) = D(p)Π−1
S (p), with the unit

vector Π−1
S (p) ∈ S2 being the viewing direction of the 3D point P (see fig. 4.2 for the geometry of

two 3D points viewed from the X sensor direction in different frames). If the motion between the
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Figure 4.2 – Bird’s-eye view schematic of two spherical frames S∗ and S observing a planar
region Γ. See the text in section 4.1.3 for notation details.

frames is known, the correspondence of image pixels between frames, under visibility conditions,

is given by the spherical warping function w : P2 × R+ × SE(3) 7→ P2 as:

w(p,T) = ΠS

(
‖RD(p)Π−1

S (p) + t‖S
)

(4.1)

where ΠS is the mapping from Cartesian to pixel coordinates as in eq. (2.6) and T(x) =

(R, t) ∈ SE(3) is the relative pose (rotation and translation) between the spherical frames. We

introduce now the two basic geometric concepts between a rotation and two given unit vectors

n1,n2 ∈ R3 that will be substantially used in the next sections. The angle Θ and orthogonal

axis nΘ (perpendicular to the plane formed by the two vectors) is given by:

Θ = arccos(nT
1 n2) and nΘ = ‖S(n1)n2‖S (4.2)

where S(n1) represents the skew-symmetric matrix of the vector n1, i.e. the cross product

n1 × n2 = S(n1)n2. The rotation R thereby establishing n1 = Rn2 is

R = exp(S(ΘnΘ)) (4.3)

which can be computed using the well known Rodrigues’ formula (3.16). For numerical stability

of (4.2), R is the identity matrix if ||Θ||1 < 0.001 degrees. The following useful matrix properties

will be also used along the chapter:

P1: n1 × n2 = S(n1)n2 = −S(n2)n1 = S(n2)Tn1

P2: d(R(x)n) = R(x)S(x)n = S(x)R(x)n

P3: S(n1)S(n2) = n1n2
T − n1

Tn2I(3×3).

(4.4)
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Figure 4.3 – Normal vector estimation of the raw depth in the highest resolution (middle) and
downsampled depth (bottom) of an indoor scene. The colors encode the normal orientation
of the surface. The improvement of the down-sampling is specially noticed by the more ho-
mogeneous colors inside planar regions. Nevertheless, the downsampling also induces border
artifacts at object edges.

By last, the superscript ∗ designates variables in the reference frame S∗.

4.1.3.1 Normal Surface Estimation

The normals are computed using the central gradient as discussed in section 2.5. This normal

computation is very efficient since we deal with ordered depth images. The pose estimation

also admits low resolution images. The advantages of using low resolution depth images are

twofold. First, it maintains the efficiency of the algorithm, since a reduced number of operations

are performed. Note that, multi-resolution images are usually computed for direct methods,

independently from the initialization. Second, the simple local derivative (the central gradient)

in planar surfaces is more robust to noise in the down-sampled depth. We employed a Gaussian

pyramid of four level, where each level reduces its input to a quarter of its resolution. The lowest

resolution depth images were used in the results section. An example of the resulting normals

in the highest and lowest resolutions are shown in fig. 4.3. This algorithm of normal vector

computation works well in our experiments, still other normal computation algorithms could

also be explored, as for instance, the ones presented in [Badino et al., 2011b, Klasing et al.,

2009].
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4.2 Decoupled Pose Estimation from Normals

Before introducing the initialization scheme to direct methods, we describe how to efficiently

estimate a rough approximation of the pose using the normal vectors of two depth images.

The pose estimation comprises two main sequential stages: one for the rotation and one for

the translation. The unique assumed hypothesis is that the scene contains co-visible planar

regions. This assumption is discussed in more detail in section 4.3. We start presenting two

possible techniques for the rotation estimation in the following sections.

4.2.1 Rotation Estimation

This section presents the framework and some discussion of the use of normal vectors for

the rotation estimation. The relationship of the rotation R(ω) and the angle between two

corresponding normals in the reference and current frames is:

n(w(p,R(ω)))TR(ω)n∗(p) = cos(Θ) = (tr(R(ω))− 1)/2. (4.5)

The following two plausible normal error metrics are considered:

eN1(p,ω) = n(w(p,R(ω)))−R(ω)n∗(p) (4.6)

eN2(p,ω) = n(w(p,R(ω)))×R(ω)n∗(p) (4.7)

A first natural question concerns the choice of the most appropriate error and their relationship

with the angle in eq. (4.5). The criteria of selection of the error can be based on the convergence

domain and the minimum distinguishability for each error. Let’s assume corresponding normals

of a single plane and then using property P1 and P3 from (4.4) and developing:

1

2
eTN1eN1 = 1− nTR(ω)n∗ = 1− cos(Θ)

eTN2eN2 = 1− n∗TR(ω)TnnTR(ω)n∗ = 1− cos(Θ)2 = (1 + cos(Θ))(1− cos(Θ))
(4.8)

that is

||eN2||22 =
(1 + cos(Θ))

2
||eN1||22. (4.9)

In other words, ||eN1||2 is an upper bound of ||eN2||2. An example of the convergence domain

for a real scene containing multiple planes is presented in fig. 4.4, where each row corresponds to

one cost function. These results clearly identify that the error terms (4.6) and (4.7) have similar

convergence domain. We shall observe some “flatness” in both considered costs. Although this
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Figure 4.4 – Convergence regions for the two cost functions using only pixels with overlapped
surfaces. Each row is the corresponding level curves of the costs (4.6) and (4.7) evaluated in
slices of SO(3). The computation of the level curves is within a window neighbourhood width
of 20 degrees around the solution.

“flatness” effect is not of big concern in ideal cases, it needs to be considered in the presence

of noise.

4.2.1.1 Case 1: Rotation from Gradient-Based Minimization

Similarly to the direct image registration framework described in chapter 3, the cost using

the normals can be seen as:

C = min
ω

∑
p

ρ(e(p,ω)) (4.10)

and errors of the normals presented in eqs. (4.6) and (4.7) can be modeled as:

eN1(p,ω) = n(w(p, R̂R(ω)))− R̂R(ω)n∗(p) (4.11)

eN2(p,ω) = n(w(p, R̂R(ω)))× R̂R(ω)n∗(p) (4.12)

where R̂ is a first rotation approximation. Each cost function, using eN1 and eN2, are mini-

mized with a Gauss-Newton formulation. Therefore, we need to compute the first order Taylor

expansion of the errors, i.e., the Jacobians as described in section A.3 of appendix A. In general,

a few iterations were needed to reach convergence (less than 10) as depicted in the registration



4.2. Decoupled Pose Estimation from Normals 53

example shown in fig. 4.4. The stability and convergence speed were similar for both normal

errors eN1 and eN2. This minimization, using direct registration, is however computationally

expensive since, for a number N of pixels, the Jacobians have 9N elements for both (4.6) and

(4.7). In the next sections of this chapter, a more efficient formulation is exploited for esti-

mating the rotation using the normals distributions, instead of using this iterative and local

linearized costs.

4.2.1.2 Case 2: Rotation Estimation from Distributions

In the previous section 4.2.1.1, we described how to compute the rotation from the normals

using an iterative gradient-based registration, similarly to the registration presented in chapter

3. In this section, we describe the rotation estimation from a more geometric point-of-view,

using the concept of distributions. We start describing the rotation estimation for general

scenes, i.e., without the assumption of dominant directions in the normals. In presence of planar

surface regions with co-visibility/overlapped (see fig. 4.2), the following holds: n(p) = Rn∗(p).

The hypothesis of overlapped planes is quite realistic since most scenes have planar surfaces

(the limitations of this hypothesis will be discussed later in section 4.3). Given the normals, the

product arccos(n∗(p)Tn(p)) is the rotation angle around the axis n∗(p)× n(p). Thus, a same

overlapped pixel have different possible rotations matrices, depending on the axis of rotation.

Furthermore, a vector is invariant to a rotation around a parallel axis. Hence, an intermediary

representation is used, for instance a decomposition, to find the overlapped regions.

Since any rotation can be decomposed as three instantaneous rotations around three orthog-

onal axes, from Euler’s rotation theorem, we will perform projections of all normals in three

subspaces to identify the planar overlapped regions, which are rotated by the same angle in

this intermediary representation. For simplicity, we select the coordinate system of the current

frame S to define the projection operator around each axis as:

projx(n) = ‖(0 ey ez)Tn‖S; projy(n) = ‖(ex 0 ez)Tn‖S; projz(n) = ‖(ex ey 0)Tn‖S (4.13)

with ex = (1 0 0)T , ey = (0 1 0)T , ez = (0 0 1)T and 0 = (0 0 0)T . The corresponding

instantaneous rotation angle of each projection ωx, ωy, ωz ∈ [0, π) is given by the scalar

products:

ωx(p) = arccos(projx(n
∗(p))Tprojx(n(p)))

ωy(p) = arccos(projy(n
∗(p))Tprojy(n(p))) (4.14)

ωz(p) = arccos(projz(n
∗(p))Tprojz(n(p)))
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In the same way, the sign of each rotated angle obeys the sign of the projections cross product:

si = sign(eTi proji(n
∗(p))× proji(n(p))) (4.15)

for i = {x, y, z} as for the angles in eq. (4.14). Assuming that the scene contains overlapping

planar regions, an estimation of the rotation can be obtained from the projection angles of all

pixels using (4.13), (4.14) and (4.15). These angles can be seen as three distributions and the

property we explore to extract the points with co-visibility is that overlapped planes of a same

surface are rotated by the same projected angles. For instance, this is performed by finding

the sub-set of pixels p+ belonging to the peaks of the three distributions simultaneously, i.e.,

the modes in the distributions in fig 4.5. With the sub-set of pixels p+ (inliers points), one can

find the median angle of each projection:

ω̂i = median(si(p
+)ωi(p

+)) (4.16)

with i = {x, y, z}. Then, the rotation in the axis/angle form is given by ω = (ω̂x ω̂y ω̂z)
T and

the equivalent rotation matrix is recovered by the exponential mapping R̂ = exp(S(ω)). This

algorithm is much more efficient and accurate than the gradient-based optimization described

in section 4.2.1.

Rotation from the Matching of Distributions

An interesting particular scenario is of scenes with normals in dominant directions, and

with predominantly rotations in one direction, as discussed in [Ma et al., 2016]. We introduce

and give further details of this algorithm because it establishes a different point-of-view of the

use of distributions to find corresponding pixels between the depth images. In this case, one

can try to match the surface regions, by computing six distributions of the normals at the

reference and current frames. Since there might not be overlapping between the surfaces, the

decomposition needs to be performed in a slightly different manner than in the case of general

scenes. The surfaces orientations are used as a compass, similar to 1D correlation on images,

where the three distributions for the current frame are:

ωx(p) = arccos(eTy projx(n(p))), sx = sign(eTxey × projx(n(p)))

ωy(p) = arccos(eTz projy(n(p))), sy = sign(eTy ez × projy(n(p))) (4.17)

ωz(p) = arccos(eTxprojz(n(p))), sz = sign(eTz ex × projz(n(p)))

The remaining three distributions in the reference frame are computed by just replacing n(p)

by n∗(p) in (4.17). Subsequently, we select the rotation axis with unimodal distribution and



4.2. Decoupled Pose Estimation from Normals 55

then compute the rotation angle:

ω̂i = median(siωi) and Ri = exp(S(eiω̂i) (4.18)

where i is the selected axis. After updating the reference normals n∗w = Rin
∗, the reference

distributions are recomputed using eq. (4.17). This process is repeated for the two remaining

axes. Assuming that the computation order is Y, Z and then X, leads to a rotation: R =

RxRzRy. Observe that this is similar to a 1D template-based convolution in intensity images

[Scaramuzza and Siegwart, 2008].

Under the presence of three distinct modes, panoramic images and small translations, this

case allows estimating any rotation, even for frames without surface overlapping.

4.2.1.3 Which Rotation Estimation Should Be Used?

A natural question is which rotation formulation should be preferred in terms of convergence

domain, efficiency and accuracy. As discussed in section 4.2.1.1 the gradient-based optimization

is not efficient and assumes small rotations to converge. We will introduce the advantages

and drawbacks between the overlapping and mode tracking described in section 4.2.1.2 with

two representative examples. The first example is composed of frames with a rotation ω =

(−16 26 − 4)T degrees, as shown in fig. 4.5. The first row depicts the reference spherical

frame and the second row the current frame. The corresponding normals are encoded by color

in the second column. We show the respective RGB images, in the first column, only for

visualization purposes since they are not used in the computation. The last row depicts the

distributions of each projected angle using the overlapped normals. This results in an estimated

rotation of around ω = (−17 24 − 2)T degrees. This example depicts a successful estimation

in the three axes. The six distributions for the mode tracking are depicted in fig. 4.6. The

rotation estimation using mode tracking, however, cannot select the corresponding mode in Y

and therefore it converges to ω = (39 − 42 36)T degrees. This is mainly due to the translation

between the frames, of t = (−1.6 0.1 0.3)T meters, which reshapes the modes.

To exemplify the convergence domain of the methods, we compute the rotation after “virtu-

ally rotating” the reference frame for different rotations Θ around the Y axis (−90 < Θ < 90).

We compute the error for each method as:

eR = arccos(tr(R̄TR(ω))− 1)/2) (4.19)

where R̄ is the real rotation between the frames. The angle errors of each method can be seen

in fig. 4.7, where the overlapping corresponds to the blue curve and the mode [Ma et al., 2016]

is in green. Due to the presence of multiple modes in Y, the mode tracking does not estimate

the real rotation for all angles. The domain of convergence around the Y for this scene using
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Figure 4.5 – Rotation estimation example for two real frames with rotation ω = (−16 26 −4)T

using the overlapping. The first row depicts the reference and the second row the current
frames. The corresponding normals are encoded by color in the second column. The last row
depicts the distributions for each projected angle using the overlapping of the normals. See the
text of section 4.2.1.3 for details.
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Figure 4.6 – Rotation estimation example using the mode distribution tracking. The first row
corresponds to the reference and the second row to the current frame distributions. See the
text of section 4.2.1.3 for details.
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Figure 4.7 – Convergence domain for the registration of the frames depicted in fig. 4.5. The
green curve shows the angle error of the 3D rotation using the mode tracking, which was not
capable of estimating rotation. The overlapping is depicted in blue and has a convergence
domain of around 90 degrees.

the angle overlapping is almost 90 degrees. Observe that the domain of convergence is not

symmetric in this scene, such domain depends on the particular pair of depth images being

registered.

The second example is composed of frames with a rotation ω = (0 −180 0)T , as shown in fig.

4.8. The first row depicts the reference and the second row the current frames. The third row

depicts the distributions of each projected angle using the overlapped normals. This results in an

estimated rotation of around ω = (−1 −1.5 1)T degrees, because the overlapping property is not

fulfilled for this initial configuration. The rotation estimation using mode tracking can select the

right modes and hence it converges to ω = (−0.5 −177 −0.5)T degrees. In the same way than

for the previous example, we display the convergence domain of the methods after “virtually

rotating” the reference frame of Θ around the Y axis (−180 < Θ < 180). The convergence

domain of each method can be seen in fig. 4.10. Conversely, to the previous example, the

rotation could be estimated for any angle using the mode tracking. The convergence domain

using the overlapping property was of around 100 degrees. Therefore, the mode tracking is well

suited with unimodal distributions and considering a small linear speed of the camera, because

the translation can modify the shape of the distributions. These conditions, however, cannot

be often verified in real scenes as shown in the trajectories of fig. 4.11 for the rotation using the

overlapping (in blue) and the mode tracking (in green). Observe that the overlapping is clearly

more accurate than the mode tracking, being capable of estimating correctly the rotation with

large translations and scenes with multimodal normals. Since we aim to keep the method

general, without assumptions in the motion or in the number of modes in the scene, we chose

the overlapping property for the rotation estimation in the following sections.
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Figure 4.8 – Second rotation estimation example for two real frames with rotation ω = (0 −
180 0)T . The first row depicts the reference and the second row the current frame. The
corresponding normals are encoded by color in the second column. The last row depicts the
distributions for each projected angle using the normals overlapping. See the text of section
4.3 for details.
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Figure 4.9 – Rotation estimation example using the mode distribution tracking. The first row
corresponds to the reference and the second row to the current frame distributions. Observe
that due to the geometry configuration of the scene, the distributions in Y have a well defined
mode, which corresponds to the same surfaces in both frames (the purple pixels). See the text
of section 4.3 for details.
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Figure 4.10 – Convergence domain for the registration of the frames depicted in fig. 4.8. The
green curve shows the angle error of the 3D rotation using the mode tracking. The overlapping
is depicted in blue and has a convergence domain of around 100 degrees, while the 2D mode
tracking converges for any rotation, due to the small translation between the frames and because
the frames have a well defined peak in the Y projections.
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Figure 4.11 – Resulting trajectories from the pose estimation using the overlapping and the
mode tracking. The ground truth trajectory is depicted in red, the green curve is using the
mode tracking and the blue curve is using the overlapping. The translation changed the shape
of the modes, not allowing the mode tracking to converge. The estimation using the overlapping
approach is much less affected and therefore have a more accurate estimate of the motion as
shown by the blue curve.

4.2.1.4 Rotation Observability

Let’s suppose firstly that overlapped regions are given, i.e., starting from a set of inlier pixels

p+. We want to find the rotation that minimizes the cost (for simplicity using the `2 norm):

min
ω

∑
p∈p+

1

2
||eN1(p,ω)||22 (4.20)

where eN1(p,ω) is the difference error between corresponding normal vectors (4.6) observed

from two distinct frames (as discussed in sections 4.2.1 and 4.2.1.2). Developing the cost (4.20)

as in [Fernandez-Moral et al., 2014, Zhou et al., 2016a], the rotation is observable if the scene

has, at least, three planes in linearly independent directions. This condition is often fulfilled

in indoor scenarios with walls, floor and ceiling not in the same direction. Therefore, the
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observability remains mainly on how to find corresponding pixels. The observability index

concerning the rotation will be then related to the number of “similar” modes in the projected

angle distributions.

4.2.2 Translation Initialization

We address the translation estimation in this section. After applying the rotation estimate

to the reference frame (also as known as “derotation” process [Corke and Mahony, 2009]),

the updated overlapped surfaces for the translation is done by checking the angle between the

normals. At this time, the set of overlapped pixels p+ are the pixels in both frames with similar

normals (n(p) ≈ n∗(p)), i.e.,

p ∈ p+ if || arccos(n∗T (p)n(p))||1 < ε1. (4.21)

where ε1 is the maximum allowed angle between the normals. Hence the pixels considered to

be overlapped follows the same plane equation Γ. The plane equation for the point in the pixel

p of the current image is given by

Γ : nT (p)P(p) + d = 0⇒ nT (p)
(
D(p)Π−1

S (p)
)

+ d = 0 (4.22)

with Π−1
S (p) the viewing direction (in the unit sphere). Denoting the residual rotation R(p)

for each pixel such as nT (p) = R(p)n∗T (p), the same plane viewed from the reference depth

image in the direction Π−1
S (p) (as depicted in fig. 4.2) is therefore:

Γ : nT (p)
(
R(p)D∗(p)Π−1

S (p) + t
)

+ d = 0 (4.23)

Subtracting the left side of eq. (4.22) and (4.23), the relationship between the normal vector,

depth, viewing direction and the translation (for a pixel p ∈ p+) is

nT (p)t = nT (p)
(
Π−1
S (p)D(p)−R(p)Π−1

S (p)D∗(p)
)
. (4.24)

Note that eq. (4.24) cannot be simplified since the scalar product nT t = nT (P−RP∗) has

t = P−RP∗ only when the translation is parallel to the normal of the plane Γ. For efficiency,

the residual rotation in (4.24) is calculated for each pixel p using an approximation of eq. (4.3):

R(p) = I(3×3) + Θ(p)S (nΘ(p)) (4.25)

where the angle is Θ(p) = arccos(n∗T(p)n(p)) and the axis nΘ(p) is the orthonormal vector to

n∗(p) and n(p) using eq. (4.2). In ideal conditions, i.e., depth and normals without noise and
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perfect rotation estimate in section 4.2.1.2, the residual per pixel rotation R(p) is the identity

matrix.

Some remarks can be drawn from equation (4.24): i) the system has a well defined solution

if and only if there is three planes with linearly independent normals; ii) points with normals

orthogonal to the motion do not contribute to the estimation (nT t = 0 independently of ||t||2)

and; iii) a point with view direction orthogonal to the normal is ill-conditioned, i.e., nTΠ−1
S ≈ 0

and consequently ||D −D∗||1 is unbounded. Thus, for avoiding outliers in the system (4.24)

these points, whose angle between the normal and view direction is almost orthogonal, should

not be considered (e.g., by only selecting points with arccos(nTΠ−1
S ) < 70 degrees). In the case

where the system (4.24) is well-conditioned, it is efficiently solved using a robust M-estimator

with, for instance, the Huber’s loss function [Zhang, 1995]. Finding a conditioned system of

equations is discussed in the next section.

4.2.2.1 Translation Observability and Conditioning

Let’s consider the system of equations using eq. (4.24) for all pixels belonging to the set p+.

This system have a unique solution if the matrix N for all pixels pn ∈ p+, N = [n(p1) n(p2) ... n(pn)]T

is of rank three, i.e., given at least three points from three different planes with linear indepen-

dent orientations. Of course when noise is present in the normals, N has almost surely rank

three, but then the solution of eq. (4.24) is merely an artifact produced by the noise.

Our goal is to reduce the conditioning of the matrix N (ratio of the maximum and minimum

eigenvalues). We will proceed, in a first moment, following the works of [Meilland et al.,

2015, Gelfand et al., 2003] to select the 50% salient measurements of N that best constraints

each DOF of the system. This is done by ordering the lines of N such that the conditioning of

the subset of equations is as close to one as possible. This conditioning also gives a measure

of the normals distribution in the sphere. We will use the measure of the conditioning of the

subset of salient lines Ns as an observability index. If the conditioning of cond(Ns
TNs) > e2,

the system in (4.24) is said to have a “ill-conditioned geometry” and we proceed to a dimension

reduction. A Gaussian-Jordan elimination with partial pivoting is then used to find the column

space of Ns and the translation estimation is done using the robust M-estimator for the two

remaining DOF that are well conditioned.

4.3 Overlapping Assumption and Initialization Scheme

In this section, we will discuss what are the conditions to obtain a good pose estimation and

the limits of our approach in the case of general scenes. It is natural that the observability of

the computation depends on the scene geometry, i.e., in the size of the planes, their symmetry

and their orientation. As stated in section 4.2.1.4, the rotation observability condition, that at

least three planes have linearly independent normal vectors, is generally fulfilled for most scenes.
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The observability then remains mainly in how to extract the overlapped regions, which depends

directly on the scene symmetry. The property we explore to extract the overlapped regions

(presented in section 4.2.1.2) is that planes with co-visibility are rotated by the same angle.

The angles are then represented as distributions and we select the peak (the mode) as being

the one corresponding to the right overlapped points. The distributions, however, can have

many modes in presence of geometry symmetry and the one corresponding to the real rotation

can be under-represented. Some classical examples are symmetric spaces, e.g., the sphere for

any rotation ||ω||2 > 0, the cylinder with ||ω||2 > 0 around the cylinder axis or the cube with

rotation modulo mod(||ω||2, π/2) = 0. Other examples are described in [Gelfand et al., 2003].

In fact, any rotation bigger than ||ω||2 > π/2 in the cube is not observable since the overlapping

assumption is not fulfilled. Let’s consider again the cubic scene example with the sensor in the

center of the cube. As stated previously, any rotation such as mod(||ω||2, π/2) = 0 cannot be

observable. However, the assertion that any rotation 0 < ||ω||2 < π/2 can be observed is false.

In fact, any rotation ||ω||2 bigger than π/4 in any direction cannot be estimated because the

peak of the distribution is at (||ω||2 − π/2)ω/||ω||2. In these cases the distribution becomes

bi-modal, where one of the modes corresponds to the real rotation. Hence this states that the

rotation is not observable, in general, by our method. For scenes with symmetry around a

defined axis, the maximum observable angle is half the period of the symmetry. Similarly, the

observability is limited by the FOV of the sensor.

4.3.1 Pose Initialization Scheme

Although the pose estimation from normal vectors is not observable in general, it has a large

convergence domain and is very efficient. This can be seen in the running time shown in fig.

4.12 compared to an ICP point-to-plane technique with the same low resolution depth images.

In general, our convergence domain is of at least 45 degrees in the Y direction, as discussed

in the examples of section 4.2.1.3. Due to the limited FOV in the vertical axis, the rotation

observability is limited to 30 degrees in the X and Z axes when using the indoor images. In

order to increase the basin of convergence, we can sample the space of rotations and compute

different initialization candidates. For the indoor images, this requires the computation of the

pose at nine different initialization candidates. From the nine candidate poses (T1,T2, ...,T9)

and their related virtual depth images:

(D∗(w(p,T1)), D∗(w(p,T2)), ... ,D∗(w(p,T9)))

we can select the one that minimizes the average error between the current and virtual depth

images. Due to the efficiency of the pose estimation using the normals, the computation of the

nine candidates is still more efficient than a simple computation using the ICP point-to plane.
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4.4 Results and Discussion

In this section, we evaluate the pose estimation in indoor simulated and real spherical

sequences with challenging conditions, i.e., in scenes with corridor-like environments, large

rotations and translations. We start presenting the parameters tuning used in all experiments

and then the accuracy and observability of the method in some simulated sequences. Finally,

we show direct registration experiments in indoor scenes with and without the initialization

scheme.

4.4.1 Implementation and Parameter Tuning

The maximum depth values in our frames was of 15 meters and the sampling of the pro-

jected angle distributions (resolution of the histograms) was of 5 degrees to define the over-

lapping points (inlier pixels). In the translation estimation phase, points are considered to be

overlapped if the angle between the normals (4.21) is of ε1 = 10 degrees by considering equally

the imprecision of the rotation estimation and of the normal vector computation. Finally, the

ratio of salient pixels in 4.2.2.1 was set to 50% and the maximum accepted conditioning of the

system without dimension reduction was heuristically set to ε2 = 10.

4.4.2 Pose Estimation Results

We follow to evaluate the rotation and translation for a variety of scenes (offices, halls,

corridors-like environments) using three different sequences of spherical images, to find how

robust the estimation is in presence of large translations/rotations and the effects of depth

noise and occlusions to the estimation. We start using fisheye depth images from the “room

sequence” of [Zhang et al., 2016], as shown in the left image of fig. 4.13. For checking the

performance of the estimation with large motions, we have sampled the sequences with different

gaps: 3, 5, 10, 15 and 20 frames – e.g. a gap of 20 frames corresponds to calculate the motion
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Figure 4.12 – Total running time for ICP point-to-plane (in red) and for the pose estimation from
normals (in blue). The rotation estimation is done in around 0.013 seconds. The translation
estimation (i.e. the conditioning and robust M-estimation with Huber) is done in 0.03 seconds.
The conditions used to stop the optimization in the ICP algorithm were: maximum number
of iterations of 50, norm of the rotation increment of 3 degrees and norm of the translation
increment of 5 centimetres.
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Figure 4.13 – Trajectory estimation for the simulated fisheye “room sequence” (left) and the
“Atrium” spherical sequence (right), both with a gap of 10 frames. The ground truth trajecto-
ries are depicted in red (dotted) and the estimation using the normals is in blue.

Table 4.1 – Rotation and translation estimation errors for all sequences – mean absolute relative
pose error (RPE), absolute standard deviation and absolute median error.

Rot RPE [deg] Trans RPE [m]

||ω|| std||ω|| med||ω|| ||t|| std||t|| med||t||
Atrium gap 5 0.25 0.39 0.06 0.11 0.18 0.04
Atrium gap 10 0.81 3.79 0.07 0.10 0.13 0.05
Atrium gap 15 3.02 12.58 0.09 0.32 0.61 0.12
Atrium gap 20 6.35 21.3 0.11 0.41 0.69 0.12
Inria1 gap 3 4.90 14.13 1.15 0.25 0.31 0.14
Inria2 gap 20 7.04 19.21 1.46 0.35 0.39 0.20

between the image pairs (1,21), (21,41), ..., (i, i + gap). The pose is well estimated using the

fisheye sequence for all the gaps. The experiment using a gap of 10 frames is shown in fig. 4.13.

Spherical Simulated Sequence

Subsequently, we experiment with spherical depth images of the Sponza Atrium model

(“Atrium” sequence), which is composed of corridors and open indoor areas. This sequence

has typical symmetries that avoid the estimation of the translation component along the Z

direction. The inter-frame motion in these images are of around 0.1 meters and rotation of up

to 15 degrees/frame. The frame skipping results in translations up to 2.1 meters and rotations

up to 70 degrees in this sequence. The relative pose errors (RPE) for these experiments are

shown in table 4.1 as: the mean absolute error, the absolute standard deviation and the median

absolute error. The rotation is fairly estimated in more than 99% of the cases with a gap of 10
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Figure 4.14 – Pose estimation results for the simulated spherical sequence with a gap of 10
frames. The ground truth poses are the curves in red and the estimation from the normals are
in blue. The graphics in the first column correspond to the rotation and the second column to
the translation. The first graphic at each column depicts the observability index. The rotation
index is one if the distribution is bi-modal. The translation observability index is set to one,
when the conditioning of the linear system for the translation is bigger than ε2 = 10. See the
text for details.

frames with a mean absolute error of 0.8 degrees. We show the results for the gap of 10 images

in fig 4.14 and in the right image of fig. 4.13, for both rotation and translation. The method

failed in 10% (6/59) of cases for the experiment with a gap of 20 frames. These cases happened

when the reference frame was almost completely occluded in the current frame (e.g., 90 degrees

corners) and because of the scene symmetry. These failure cases were expected to happen as

discussed in section 4.3 and were detected by the observability index, which is displayed in the

first plot of fig. 4.14.

The translation estimation is done after warping the reference depth image using the ro-

tation. As stated in section 4.2.2.1, the DOF for which the FIM is ill-conditioned cannot be

accurately estimated using this formulation, some examples are depicted in fig. 4.14, where

the tz component could not be estimated in the frames acquired in corridors-like scenes. These

cases were also predicted in section 4.2.2.1 and the translation index show the detected cases

in the first plot of the right column.

Spherical Indoor Real Sequences

We performed similar experiments using real spherical images. These real sequences were

acquired in the hall and offices of the Inria building using the indoor omnidirectional RGB-

D acquisition rig mounted on an holonomic mobile robot. The first real sequence (Inria1) is

composed of 430 spherical images with fast Y axis turns (up to 25 degrees between consecutive

frames) and with translations of around 0.15 meters. Conversely, the second real sequence
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Figure 4.15 – Rotation estimation results for two different real sequences. The ground truth
angles are the curves in red and the initialization curves are in blue. The graphics in the
first column correspond to the sequence Inria1 and the second column to the Inria2. The first
graphic at each column depicts the rotation observability index (which is one if the distribution
is bi or multi-modal). See the text for details.
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Figure 4.16 – Rotation and translation errors of the RGB-D registration without and with the
initialization, for the trajectories shown in fig. 4.17. The registration is greatly improved by the
initialization, as can be seen by the error curves with (in blue) and without the initialization.
The red bars indicate the frames without co-visibility when the robot crossed the doors between
the hall and offices.

(Inria2) is acquired with moderate rotations (up to 5 degrees) around the Y axis. To emulate

large displacements, we selected a gap of 3 and 20 frames respectively. The rotation estimation

was successful in 90% of cases having motions up to 70 degrees (see the left images of fig. 4.15

for Inria1) and up to 50 degrees in Inria2 (depicted in the right). These rotations can be seen

in the angle ωy in the left column of fig. 4.15 in the frame numbers 22 and 30. The translation

estimate is however three times more sensitive to the noise than in the simulated sequences.
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Figure 4.17 – Trajectories of direct RGB-D registration without (green) and with the initial-
ization (blue) for the Inria1 sequence. The start point of the trajectories is indicated by the
black box and the endpoint of each trajectory by the boxes with respective colors. The ground
truth trajectory is depicted in red. For visibility, the plotted trajectories exclude the frames of
door crossing. The pose estimation accuracy and the convergence were greatly improved when
using the initialization.

4.4.3 Initialization of Direct RGB-D Registration

Finally, we use the pose estimation from normals in an initialization scheme to direct RGB-

D registration, as described in section 4.3.1. The adaptive registration technique presented

in chapter 5 is selected to assert the influence of the initialization in the registration. The

maximum number of iterations is set to 20 per pyramid level. The initialization greatly im-

proved the convergence of the registration, as it can be observed in the trajectories displayed
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Figure 4.18 – Rotation and translation errors of the RGB-D registration without (in green)
and with the initialization (in blue), for the trajectories shown in fig. 4.19. The registration
is greatly improved by the initialization, as can be seen by comparing the errors and from the
resulting trajectories. The red bars indicate the frames without co-visibility, when the robot
crossed the doors between the hall and an office.

in figs. 4.16 and 4.17 from the real sequence Inria1. The registration without the initializa-

tion is depicted in green, with the initialization in blue and the approximative ground truth

in red. The start point of the trajectories is indicated by the black box and the endpoint

of each trajectory by the boxes with respective colors. The estimation failed only in frames

without/minimal co-visibility, which is expected to happen because both initialization and reg-

istration are appearance-based techniques. These cases are indicated by the red bars in fig.

4.16 and happened while the robot was passing through doors, where the reference and current

frames were located in opposite sides. Finally, the respective pose errors and trajectories using

the frames from the Inria2 sequence are shown in figs. 4.18 and 4.19 without and with the

initialization. As it can be noticed, the initialization greatly improved the convergence of the

direct method in both sequences.

4.5 Conclusions

We presented in this chapter a decoupled rotation and translation estimation technique

from large FOV depth images. First, a rotation rough estimation method is developed using

the overlapping property of normal vectors between two views. This is performed thanks to a

projector decomposition of the normal vectors in a general coordinate system. The technique

does not assume any data pre-processing or “manual” segmentation (e.g., rejecting discontinu-

ous depth regions). The translation is then directly derived from the rotation as a linear system

of equations. We present some techniques to improve the conditioning of this system and a

discussion about our assumptions and the limits of the method. This method does not assume

any motion prediction or feature extraction/matching.
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Figure 4.19 – Trajectories of direct RGB-D registration without (green) and with the initial-
ization (blue) for the Inria2 sequence. The start point of the trajectories is indicated by the
black box and the endpoint of each trajectory by the boxes with respective colors. The ground
truth trajectory is depicted in red. For visibility, the plotted trajectories exclude the frames
of door crossing. We shall remark the improvement in the accuracy of the pose computation
when using the initialization.
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Experiments are performed with simulated and real spherical sequences to the pose compu-

tation from normal vectors, showing an interesting compromise of accuracy and running time.

Due to its efficiency and domain of convergence, the pose computation is used within an ini-

tialization scheme of a direct RGB-D registration method, where the accuracy and convergence

of the registration was greatly improved. The initialization technique allowed the convergence

with rotations of 170 degrees and translations of two meters in the indoor sequences. The

pose estimation and registration only failed while registering frames without (or with min-

imal) co-visibility, which is expected to happen because both initialization and registration

are appearance-based techniques. By last, we enforce the efficiency of the pose and initializa-

tion computation. The pose estimation algorithm runs, in a Matlab non-optimized code, with

around 0.015 seconds for the rotation and 0.03 seconds for the translation (with Matlab 2012

in a laptop Intel Core i5-5300U CPU, 2.3 GHz and Ubuntu 14.04).

A natural extension of this technique is to explore other information sources to find the

overlapped regions, as intensity/color. This could discriminate similar modes in the distribu-

tions. Moreover, the color information could also be used in a unidimensional search to improve

the translation estimation in corridor-like environments. Another interesting research direction

would be to combine this pose estimation in the Branch and Bound algorithm presented in

[Yang et al., 2016]. From the presented results, we could expect to reduce the computational

cost by replacing the ICP method in their formulation. We leave these considerations as future

research.
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5.1 Introduction

This chapter proposes a strategy to increase the basin of convergence of appearance-based

(direct) RGB-D registration methods. The interest of direct methods is their accuracy. How-

ever, in general, direct image registration (e.g., [Comport et al., 2010, Tykkala et al., 2011, Kerl

et al., 2013b, Silveira, 2014]) techniques assume high frame rate (small camera motions). The

convergence of these methods depends on a number of parameters including: the noise in the

photometric and geometric images, the scene configuration (photometric and geometric sym-

metries), the scene stationarity (i.e., without illumination changes or moving objects) and, of

course, the camera motion.

In the past few years, the recent market of RGB-D commodity sensors opened new perspec-

tives in terms of efficiency and robustness to perform tracking and mapping tasks [Newcombe

et al., 2011a]. In this context, we are interested in exploring the complementary nature of the

intensity and geometric images given by these sensors, in order to increase the basin of conver-

gence and the convergence rate. In other words, to allow direct RGB-D approaches to consider

moderate to large displacements, while ensuring nice convergence properties and accuracy. This

is useful for a set of scenarios such as: high speed camera motions or low frame rate acqui-

sition 1. But also when performing model-based visual odometry in large-scale scenes, where

the stored model is sparse due to storage limitations. A practical example is of performing

real-time localization in a previous acquired sparse keyframe graph (e.g., as in [Meilland et al.,

2015, Gokhool et al., 2015, Maier et al., 2015]). In these cases, the registration techniques

have their performance challenged, being subjected to local minima or to small convergence

rate (for instance, fig. 5.1 display two examples of frames with such conditions). This chapter

addresses a contribution in this direction by leveraging information gathered from intensity im-

ages [Comport et al., 2010] and depth images (with ICP point-to-plane [Gelfand et al., 2003]),

not only for improving ranking conditioning as in [Tykkala et al., 2011] but also accounting the

properties of intensity and geometric cost terms.

The remainder is organized as follows: section 5.1.1 reviews recent related works. In sections

5.2 and 5.3, we introduce the basic classical method of RGB-D registration and our adaptive

approach. We present experimental results in section 5.4 for indoor (simulated and real) and

outdoor sequences from the KITTI VO/SLAM dataset [Geiger et al., 2012] considering both

perspective and spherical images. Finally, in section 5.5, we draw conclusions and highlight

possible future improvements.

1. The conditions of high speed and low frame rate are not technically equivalent because high speed creates
blurring and distortions in the images. With global shutter cameras and “moderate” motions, these effects can
be neglected and the image formation follows the central projection assumption. Otherwise adapted formulations
using rolling shutter camera models should be considered (e.g., [Meilland et al., 2013, Kerl et al., 2015, Saurer
et al., 2015]).



5.1. Introduction 73

5.1.1 Main Related Works

Large pixel displacement estimation is an active research area in the optical flow community

[Brox and Malik, 2011, Timofte and Gool, 2015, Muller et al., 2011, Braux-Zin et al., 2013].

These works compute the pixel displacements (a dense flow field) considering different con-

straints/regularizations inside a variational optimization framework [Chambolle, 2004]. [Brox

and Malik, 2011] proposed a modified energy cost for dense optical flow estimation combining

feature and appearance-based approaches for a trade-off between accuracy and convergence

domain. Their energy formulation combines appearance energy terms (color, gradient) with

feature matching terms (e.g., using SIFT, SURF, ORB descriptors). The method is embedded

in a multi-resolution scheme, where the weight of the feature’s terms are progressively reduced

while increasing the resolution. [Braux-Zin et al., 2013] extended this work, enabling a wider

class of features to be integrated in the cost, such as line segments. In the same context, the

work of [Muller et al., 2011] described a scene flow estimation method more robust to weakly

textured and fast moving image regions. The core of their algorithm is to perform an initial-

ization of the flow computed from co-visible and static pixels. Instead of using the disparity

values directly, the authors proposed to use the flow computed from static objects – using an

independent estimate of the depth from stereo SGBM [Hirschmuller, 2008] and from the mo-

tion. The authors called this approach of modified total variation (MTV) and combined this

strategy with the formulation of [Brox and Malik, 2011] for handling image regions with large

motions. In short, their formulation included stereo, feature matching constraints, spatial and

temporal predictions in the variational scheme. In order to increase the basin of convergence of

direct methods, the authors of [Hadj-Abdelkader et al., 2008] proposed to compute a pose ini-

tialization with a feature-based registration technique. The core of their method is an adapted

feature extraction that is less sensitive to image distortions induced by large FOV sensors (such

as catadioptric, spherical and fisheye sensors). In summary, the previous approaches are not

suitable in our context, because we aim to maintain the direct estimation concept, i.e., without

Figure 5.1 – Typical frames with large displacement motions and challenging conditions: occlu-
sions and dynamic objects in the indoor case (left and center-left figures) and varying lighting
conditions and poor geometric stereo estimation for an outdoor frame (center-right and right
figures).
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feature extraction and matching.

Naturally, this work is also closely related to direct RGB-D motion estimation techniques

(e.g., [Kerl et al., 2013b, Korn et al., 2014, Kerl et al., 2015, Munoz and Comport, 2016a]), in

particular to [Morency and Darrell, 2002, Tykkala et al., 2011, Munoz and Comport, 2016b].

An important issue raised in these works is the scaling of the geometric and photometric cost

terms for ensuring nice convergence properties, i.e., to weight the influence of the intensity and

geometric appearance-based errors. In [Morency and Darrell, 2002], the scaling factor follows

a sigmoid function considering the reprojection error of the depth images. Although sharing a

similar framework and initial conclusions, we propose two different scaling functions. The first

is assuming that the increments of pose are smaller when nearer the solution. The second is

based on the conditioning of the error terms, which is of easier tuning compared to the first one.

The second scaling is also capable of dealing with cross-peak optimization instabilities that can

appears while shaping the cost function. In [Tykkala et al., 2011], the scale factor transforms

the geometric error (in meters) to pixels using the ratio of the median values of I and D. This

metric ensures better ranking conditions (e.g., in cases of non-textured regions) with similar

convergence rate, but fails to handle basic cases of bimodal pixel/depth distributions and does

not consider the complementary properties of both intensity and depth images. Furthermore,

the intensity cost “dominates” the convergence properties using this scheme, as in our approach.

Similarly, [Korn et al., 2014] combines intensity and geometric terms using an heuristic constant

scaling factor. Recently, [Munoz and Comport, 2016a, Munoz and Comport, 2016b] proposed

an RGB-D registration using a point-to-plane error in higher dimensions that is invariant to

the scaling factor. Their formulation uses the notion of hyperplanes (planes in Rn, n > 3).

However, the computation of the normals in higher dimensions is computationally expensive,

in the order of seconds, even for low resolution images.

5.1.2 Contributions

The contribution of this chapter is an adaptive scaling of the intensity and depth costs that

improves the convergence of direct RGB-D registration. We show that the intensity and depth

cost terms display different convergence properties for small and large motions (for instance,

a typical example is given in figs. 5.2 and 5.3). Two possible scaling functions (activations)

are proposed to update the scaling: the pose evolution and the relative condition number. The

former is related to the scaling presented in [Morency and Darrell, 2002]. Both scalings have

faster registration convergence using simulated and real RGB-D sequences than [Tykkala et al.,

2011]. Extensive RGB-D registration experiments for different scenarios and sequences shows

a significant improvement of the basin of convergence and the convergence speed.

It is worth noting that this approach is valid for moderate/large motions, but still with

a basin of convergence smaller than feature-based methods (see section 3.2.1 of chapter 3 for

a short survey). In extreme cases, such as while performing loop closure, we are likely to
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converge to local minima and therefore other techniques might be used instead, e.g., feature-

based methods or global registration techniques.

5.2 Classic RGB-D Registration

In this chapter, a frame S = {I,D} is composed of a grayscale image I ∈ [0, 1]m×n of

the RGB and of the depth D ∈ Rm×n image. The sensor projection models of interest are the

perspective and the spherical, as described in chapter 2. In the later, the images are projected in

the unit sphere using the equirectangular projection as detailed in section 2.2. Notice that the

spherical representation can generalize other wide FOV sensors, obeying the central projection

assumption, from a calibration procedure [Puig et al., 2012].

The direct image registration consists on finding iteratively the pose T̂T(x) between a

reference S∗ and a target frame S from the images appearance, i.e., from the photometric and

geometric errors:

eI(p,x) = I(w(p, T̂T(x)))− I∗(p) (5.1)

eD(p,x)= λD(R̂R(x)n∗(p))T (P(w(p, T̂T(x)))− T̂T(x)P∗(p)). (5.2)

Where: T̂ is an initial pose guess; n∗ the normal surface vector calculated at the reference

frame; P is the 3D point using the depth image and the inverse camera projection model; and

λD is a tuning parameter for scaling the error terms. The eq. (5.1) can be seen as a classical

optical flow constraint equation (OFCE), within the hypothesis of Lambertian surfaces, and

(5.2) is equivalent to a flow point-to-plane ICP, both assuming predominant static scenes. To

ensure these assumptions, robust M-estimators (denoted as ρ) are applied for mitigating the

influence of outliers [Zhang, 1995], therefore, reducing the effects of occlusions, moving objects,

changes of illumination and interpolation errors during the estimation.

The classic RGB-D registration consists of minimizing jointly (5.1) and (5.2) in a convex

cost as:

C(x) = min
x

(∑
p

ρI(eI(p,x)) +
∑

p

ρD(eD(p,x))

)
. (5.3)

The image warping and the pose follows the same parametrization exposed in sections 3.3.1
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Figure 5.2 – Intensity cost function for the X-Z DOFs (top row) for different robust functions:
Euclidean norm (Raw), Huber M-estimator (Huber) and Tukey’s bisquare (Tukey). The bottom
row depicts the level curves of the respective costs of the top row. The attraction domain of
the costs are similar for both robust estimators. The intensity cost is more discriminant near
the solution than the ICP cost depicted in fig. 5.3.
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Figure 5.3 – ICP cost function for the X-Z DOFs (top row) for different robust functions:
Euclidean norm (Raw), Huber M-estimator (Huber) and Tukey’s bisquare (Tukey). The bottom
row depicts the level curves of the respective costs of the top row. The attraction domain of
the costs are similar for both robust estimators. The ICP point-to-plane cost is flatter near the
solution than the intensity error depicted in fig. 5.2.
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and 3.3.3.1:

• Perspective: w(p,T̂T(x)) = w(w(p,T(x)), T̂) = ‖D(p)KR̂RK−1p + K(R̂t + t̂)‖P
• Spherical: w(p,T̂T(x)) = w(w(p,T(x)), T̂) = ΠS

(
‖R̂RD(p)Π−1

S (p) + R̂t + t̂‖S
) (5.4)

Denoting: ΠS is the spherical equirectangular projection; K is the intrinsic pinhole camera

matrix; ‖ ‖P and ‖ ‖S are the perspective and spherical normalizations. It is worth noting that

selecting a large λD (λD >> 1) in (5.3) is, in the limit, equivalent to a direct point-to-plane ICP

method, while small λD (λD ≈ 0) corresponds, in the limit, to a classical direct intensity based

registration. To increase the basin of convergence, the minimization of the cost 5.3 is often

performed within a multi-resolution framework, e.g., performing smoothing with a Gaussian

kernel and sub-sampling operations such as in [Burt and Adelson, 1987] to build a Pyramid of

images with different resolutions. The optimization starts in the smallest resolution (pyramid

at level n) to the higher image resolution (level 1).

5.2.1 Convergence of Intensity and Geometric Registration

We observed in both simulated and real sequences that the intensity and geometric terms

have distinct convergence properties. Although the convexity analysis of the cost terms in (5.1)

and (5.2) cannot be established in general, the intensity RGB term has often slower convergence

than the ICP point-to-plane cost, but its locally more accurate (for instance, figs. 5.2 and 5.3

depict two typical examples). This agrees with the findings of [Morency and Darrell, 2002] in

face tracking tasks and with the convergence differences of position-based visual servoing and

image-based visual servoing [Chaumette and Hutchinson, 2006]. Of course, other factors such

as for instance, the choice of the robust estimator ρ and the approximation of the Hessian in

eq. (5.3) can model the shape of the costs and the trajectory undertaken by the optimized pose

parameter x during the minimization of C(x).

For illustration, we present typical shapes of the RGB and ICP cost terms for two DOF in

figs. 5.2 and 5.3 and for three DOF (two translations and one rotation) in fig. 5.4 using two

frames in the Sponza Atrium model dataset. As can be noticed in figs. 5.3 and 5.4, the ICP

point-to-plane is flatter than the RGB term for small interframe displacements, meaning that

ICP is less discriminant in the vicinity of the solution. Furthermore, due to the scene symmetry

along the Z axis (corridor-like environment), the convergence rate is likely to be slow following

this DOF with symmetry (see fig. 5.4 bottom right level plot and fig. 5.3). Conversely, the

geometric error component (second row in fig. 5.4) is more discriminant than the intensity cost

(first row) when farther from the solution, as shown by the slope of the geometric cost in fig.

5.3.

This effect is not depending to the choice of the robust M-Estimator, as described by the

experiment depicted in figs. 5.2 and 5.3 for the Euclidean, Huber or Tukey functions and of the
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Figure 5.4 – Intensity RGB level curves (first row) and ICP ploint-to-plane (second row) for a
typical corridor frame at the Sponza Atrium model. The costs are evaluated in the simplified
case of three DOF (one rotation and two translations) and the corresponding level curves are
from the surface intersection of C(x) with the secant planes: x = [x 0 z 0(1×3)]

T (left column),
x = [x 0 0 θ 0 0]T (middle) and x = [0 0 z θ 0 0]T (right column). The ICP point-to-plane cost
is flatter near the solution. Please see the text for details.

Hessian approximation (e.g., the gradient, Gauss-Newton or ESM). Interestingly, the intensity

cost “dominates” the convergence rate using the combination of the error terms such as in

[Tykkala et al., 2011]. An example of the registration improvement by taking into account the

costs properties is shown in fig. 5.5 using two frames of the KITTI VO/SLAM dataset.

5.3 Adaptive Formulation

As stated previously in section 5.2, a main concern with direct methods is about their

convergence, since only local properties are settled from eqs. (5.1), (5.2) and (5.3). We aim

to explore the complementary aspects described in section 5.2.1, in terms of convergence, by

using a modified cost function, where the geometric term prevails in the first iterations, while

the intensity data term dominates in the finer increments. Instead of setting a constant scaling,

our adaptive RGB-D registration approach is based on the classic RGB-D strategy combined

with an activation scaling µ(x):

C̃(x) = (1− µ(x))
∑

p

ρI(eI(p,x)) + µ(x)
∑

p

ρD(eD(p,x)) (5.5)
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Figure 5.5 – Pose error evolution while registering frames 000105 and 000108 of the sequence 00
from the KITTI dataset. The frames are shown in the top row. The pose error evolution for the
classic RGB-D with [Tykkala et al., 2011] is shown in the left column and the adaptive RGB-D
in the right column. The translation error for each DOF are depicted in second row (errors in
meters) and the rotation DOF errors are depicted in the third row figures (in degrees), where
the convergence in this case was successful using the adaptive formulation.

where the respective Jacobians are scaled versions of the Jacobians from the original formula-

tion in (5.3):

J̃ = [
√

(1− µ(x))JI
√
µ(x)JD]T . (5.6)

Based on the framework in (5.5) and on the convergence properties described in section

5.2.1, we are able to design the scaling parameter µ(x) as an activation function 2 for different

camera motions. In the following two subsections, we describe the design of two plausible

activation functions according to the expected photometric and geometric information gain.

5.3.1 Activation with Pose Evolution

Supposing regular cost functions with a quadratic shape, the derivatives (consequently the

pose increments) are bigger when farther from the optimal pose minimizing (5.3) and smaller

when near the optimal pose. A natural candidate activation function µ(x) in this context is

the smoothed step depending on the size of the pose increments x along the minimization of

2. We denote the scaling factor as activation function due to its algebraic properties in the cost (5.5), similarly
to the activation function connotation used in perceptrons of neural networks.
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Figure 5.6 – Activation adaptive function µ(x) (5.7) while performing registrations in the KITTI
outdoor dataset sequence 00. The tuning parameters are given in Table 5.1. Notice that the
norm of the pose increments are not monotonically decreasing (top graphs).

(5.5):

µ(x) = k1/ (1 + exp(−k2(‖x‖2 − k3))) (5.7)

with 0 < k1 < 1 and (k2, k3) > (0, 0). Please remark that selecting a high value to k2 and

small k3 is, in the limit, equivalent to perform a sequential independent ICP and intensity RGB

registration, i.e., in cascade but loosing the complimentary properties of both terms. Therefore,

this activation is particularly sensitive to the tuning parameters k2 and k3, which can induce

oscillations (as known as cross-peak instabilities) by transforming the original cost (5.3) in a

non-convex function. Two typical examples of this activation function along a registration in

the KITTI dataset are given in fig. 5.6.

5.3.2 Activation with Relative Conditioning

A second strategy is to design µ(x) from the costs relative behavior along the minimization.

It is worth noting the well defined minimum displayed by the intensity cost, as show in the

example described in fig. 5.3. The idea is that the relative variation of the costs (which is

encoded as the relative conditioning number) could “detect” when the optimization is in the

vicinity of the solution, i.e., when the ICP cost is less discriminant than intensity. Hence, a

plausible adaptive function candidate is:

µ(x) =

{
k1 + k2, if condx(CI(x))/condx(CD(x)) < k3

k1, otherwise.
(5.8)
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Figure 5.7 – Activation adaptive function µ(x) while performing registration in the KITTI out-
door dataset in two different areas (frames’ numbers 5 and 100) of sequence 00. The left column
corresponds to a scene where the convergence is slower (corridor/canyon-like environment) and
the right column is of frames affected predominantly by a rotation. The conditioning criteria
(5.8) is easily detectable for both cases.

where 0 < k1 ≤ k1 + k2 < 1, k3 is large (k3 >> 1) and cond is an approximation of the relative

condition number of the RGB (CI) and ICP (CD) cost functions such as:

condx(C(x)) =

∣∣∣∣C(x0 ⊕ x)− C(x0)

C(x0)

∣∣∣∣
1

/
‖x‖2

‖x0‖2

. (5.9)

The minimal pose parametrization in (5.9) is given by x0 = vex(log(T̂)) and ⊕ is a composition

operator such as x0 ⊕ x = vex(log(T̂T(x))) 3. We show in fig. 5.7 typical activation functions

using the KITTI VO/SLAM dataset [Geiger et al., 2012]. The parameters of each activation are

detailed in Table 5.1. Two activation examples are displayed in fig. 5.7, where this activation

criteria detects correctly the sensitivity of the costs, whilst being of simple tuning.

5.3.2.1 Robust Estimators

Finally, we adopted the Huber robust function for ρI , ρD for ensuring convexity properties

when farther from the solution [Zhang, 1995]. To avoid outliers influence, the robust function

is switched to Tukey’s bisquare when in the vicinity of the optimal motion (i.e., when the

conditioning in (5.8) is large). The respective Jacobians and details about the optimization are

given in the Appendix A.
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Classic RGB-D [Tykkala et al., 2011] Adaptive RGB-D
eI eD eI eD

Scene 1

Scene 2

Scene 3

Figure 5.8 – Intensity (eI) and geometric (eD) errors between spherical RGB-D frames with
large displacements for three distinct indoor and outdoor sequences. The colors encode the
error absolute value (hot colors indicate bigger errors than cold colors). The left column is
the classic RGB-D cost and the last column the adaptive one. Scene 1 corresponds to the
registration between the two left frames shown in fig. 5.1 from the sequence whose trajectory
is displayed in fig. 5.10. Scene 2 corresponds to a registration from the trajectory depicted in
fig. 5.11. Finally, Scene 3 is an outdoor sequence which frames are depicted at right of fig. 5.1.

5.4 Experiments and Results

In this section, we evaluate the adaptive registration in a set of sequences acquired in

indoor and outdoor scenes using perspective and spherical RGB-D sequences. We consider the

average of the rotation relative error (RRE), translation relative error (TRE) and number of

iterations for convergence as quantitative metrics. A qualitative analysis is also done using the

intensity and depth errors from the view related to the estimated pose. Unless specified, the

term “adaptive RGB-D” corresponds to the cost (5.5) using (5.8). Among the possible direct

methods for estimating the pose from RGB-D images (e.g., [Tykkala et al., 2011, Newcombe

et al., 2011a, Kerl et al., 2015]), we select the method of [Tykkala et al., 2011] for comparison.

The reason is twofold. First, it has similar structure and same computational complexity.

3. The expression x0 ⊕ x can be computed explicitly, without passing by SE(3) group, via the Baker-
Campbell-Hausdorff (BCH) formula [Li and Hartley, 2007, Quiroga et al., 2014].
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Table 5.1 – Parameters in the activation functions.

Parameters Typical Range

Meth. 1 [Tykkala et al., 2011] λD = med(I)/med(D) λD ∈ [5, 50]
Adapt. 1 (5.7) λD = 1, k1 = 1− 10−5, k2 = 100, k3 = 0.001 µ ∈ [0, k1]
Adapt. 2 (5.8) λD = 1, k1 = 10−5, k2 = 1− 10−2, k3 = 30 µ ∈ {k1, k1 + k2}

Second, it does not perform bundle adjustment or loop closure as in other state of art methods

such as [Newcombe et al., 2011a, Kerl et al., 2015].

5.4.1 Implementation Aspects

The registration is assumed to have converged, either to a global or to a local minimum,

when the norm of pose increments x are bellow a fixed threshold in successive iterations (10−5

for the rotation and 10−3 for translation). The selected values for the parameters λD and in the

activation functions (5.7) (5.8) are described in Table 5.1. These parameters are kept constant

during all the experiments.

We start in a fixed resolution for evidencing the differences between the classic RGB-D

and the adaptive formulation. Unless specified, the maximum number of iterations is 50. To

emulate different motion speeds, only a sub-set of the frames is picked up using a sub-sampling

of the sequences (gaps), e.g., a gap of 10 frames corresponds to compute the relative pose

between the frame pairs (1,11), (11,21), ..., (i, i+ gap).
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Figure 5.9 – Rotation error (degrees), translation error (millimetres) and number of iterations
using a fixed image resolution for the simulated testbed dataset with gap of 10 frames. The
results considering the classical RGB-D registration model is presented in blue, while the adap-
tive formulation using the conditioning is depicted in red. As it can be noticed, the accuracy
and convergence rate are substantially improved when exploiting the activation factor in the
cost.
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5.4.2 Spherical Simulated Sequence

At first, we evaluate the approach in controlled conditions using 500 RGB-D spherical

synthesized images from the Sponza Atrium model. The inter-frame distances are in average

of 0.15 meters and of 4 degrees in rotation. The registration was performed for sub-sampling

of 5, 10 and 15 frames and the results are synthesized in Table 5.2 and fig. 5.9 shows the pose

errors and the number of iterations for a gap of 10 spheres. The convergence was achieved even

in cases considering translations and rotations of around 2.5 meters and 60 degrees (a result

that was also observed and discussed in the initialization described in chapter 4). The adaptive

approach has a better performance in the accuracy and in the computation effort for all the

considered gaps, and failed to converge in less than 10% of trials considering a gap of 15 frames.

The convergence failed mostly when the reference scene was almost completely occluded in the

target frame (e.g., in corridor 90 degrees turns) and they were expected because the frames

have no co-visible information.

5.4.3 Spherical Indoor and Outdoor Real Sequences

The spherical real sequences were acquired using the two spherical RGB-D rigs [Fernandez-

Moral et al., 2014, Meilland et al., 2015] described in the introductory chapters. The indoor

images are from the hall and offices of the Inria building using the eight Asus sensor rig,

while the outdoor sequence was acquired in the Inria campus using the stereo spherical rig.

Unfortunately, we do not have ground truth of the poses in these sequences. Hence, a more

qualitative analysis is done to evaluate the performance of the methods. We depict three

registration experiments in fig. 5.8 for the indoor and outdoor sequences. The selected frames

contain large motions, occlusions and moving objects. The respective appearance error in the

intensity and depth images are shown after 20 iterations. These errors are considerably smaller

for both indoor and outdoor examples using the adaptive scaling.

Subsequently, we show some trajectories in figs. 5.10 and 5.11 after applying the registration

in the indoor sequences. The maximum number of iterations was set to 150 iterations for the

registration with fixed resolution, and of 20 iterations per pyramid level in the multi-resolution.

Using a sub-sampling of five frames, the method did not converge in only 9% of the trials as

shown in fig. 5.10 for a fixed resolution. We can observe that the adaptive formulation has a

Table 5.2 – Quantitative results using the simulated spherical indoor sequence in a fixed res-
olution: average RRE[deg]/RTE[mm]/iterations.

Gap = 5 Gap = 10 Gap = 15

Meth. 1 [Tykkala et al., 2011] 3.67/423/47.3 7.80/1104/48.4 11.7/1520/48
Adapt. 1 (5.7) 0.68/96.4/31.2 1.11/466/32.9 2.17/833/34.8
Adapt. 2 (5.8) 0.03/88.6/31 0.04/182/26.5 0.05/523/20.7
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Figure 5.10 – Trajectory comparison for classic RGB-D [Tykkala et al., 2011] and adaptive
formulations using the indoor spherical real sequence (left) and number of iterations (right).
The registration considering the classical RGB-D is presented in green, while the adaptive
formulation using the conditioning is in blue and the approximative ground truth trajectory
in red. The accuracy and convergence rate are substantially improved when exploiting the
activation scaling (in blue) for 87% of the frames.

better performance with a reduced number of iterations. Similar observations were obtained

from the trajectories produced with multi-resolution, as shown in fig. 5.11. Some drift is

present in both trajectories since we do not perform loop closure. However, by observing

some corresponding areas of the environment, the adaptive method produced a more consistent

trajectory.

5.4.4 KITTI Outdoor Perspective Sequence

We also provide results using a perspective stereo sequence from the KITTI Visual Odom-

etry/SLAM benchmark. The depth information was pre-computed by rectifying the stereo

perspective images and using ELAS [Geiger et al., 2010] for the disparity computation. It is a

challenging dataset because the scene is mainly semi-structured (roads in an urban area) and

with a travel speed of up to 60 km/h. Hence we selected smaller gaps of one, two and of three

frames. Observe that in the outdoor scenario the overlapping regions are much sparser because

only the road plane is the persistent overlapping surface. Furthermore, the perspective camera

model restricts co-visibility. The respective errors are displayed in Table 5.3 for a fixed resolu-

tion, showing that the adaptive formulation surpassed again the other registration techniques.

The first 200 meters of the KITTI sequence 00 with the higher resolution images are portrayed

in the left graphic of fig. 5.12.
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Figure 5.11 – Inria sequence mapping using the classic RGB-D (in green) and with the adaptive
registration technique (in blue), both using multi-resolution. The trajectories started in the
black box marker and ended in the respective colored boxes. A revisited place in the scene
is indicated by the blue and green arrows. Observe that the drift using our method is much
smaller.

5.4.4.1 Multi-resolution

Lastly, we combine the adaptive formulation with a multi-resolution Gaussian pyramid of

four levels (the higher the level, the smaller the image resolution is) to assets the efficiency

Table 5.3 – Quantitative metrics using the KITTI outdoor sequence in a fixed resolution:
average RRE[deg]/RTE[mm]/iterations.

Gap = 1 Gap = 2 Gap = 3

Meth. 1 [Tykkala et al., 2011] 0.51/219/45.6 1.83/1071/49 2.75/1846/50
Adapt. 1 (5.7) 0.27/120/36.5 1.12/557/45 2.34/1101/46.7
Adapt. 2 (5.8) 0.08/35.1/33.5 0.42/192/41.7 1.79/825/47
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Figure 5.12 – Trajectory comparison for the RGB-D and adaptive formulations in the first
200 meters of the KITTI sequence 00, without (first row) and with multi-resolution (second
row) with a gap of one frame. The registration considering the classical RGB-D is presented
in green, the adaptive using (5.7) in black, (5.8) in blue and the ground truth trajectory in
red. The adaptive registrations are notably more accurate in the fixed resolution. Notice the
improvement of all techniques by using the multi-resolution (second row trajectories), where
the discrepancy between the formulations is reduced. Although the accuracy of the methods
is similar in this section of the trajectory, the adaptive formulations are still more accurate, as
can be seen in the full trajectories shown in fig. 5.13 and on Table 5.4 for the gaps of 1, 2 or 3
frames.

of the approach in this context using the KITTI perspective sequence (see Table 5.4). The

maximum number of iterations was of 50 at each pyramid level. To account the different

computational cost of one iteration between the levels, we define the total number of iterations

as
∑4

i=1 li(2
4−i)2, with li the number of iterations at level i. We can draw some remarks from the

combination of the multi-resolution framework in the experiments. First, as expected, multi-

resolution improved all the techniques (for instance, please see the upper and lower trajectories

at fig. 5.12). Second, the discrepancy in the accuracy, observed between the methods in the

fixed resolution, is reduced with multi-resolution. Still, the adaptive formulation remains more
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Figure 5.13 – Trajectory comparison for the classic RGB-D and adaptive formulations in the full
KITTI sequence 00, both combined with multi-resolution with a gap of one frame. The upper
figure is the top-view of the trajectory and the lower image is a lateral view. The registration
considering the classical RGB-D is presented in green, the adaptive using (5.8) in blue and the
ground truth trajectory in red. The start point is indicated by the black box and the endpoints
of each trajectory by the boxes with respective colors. Both techniques present drift in the
positioning in this long sequence (which is expected because no bundle adjustment or loop
closure is performed), although the accumulated errors are smaller in the adaptive one.
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Table 5.4 – Quantitative results using the KITTI outdoor sequence with multi-resolution
(pyramid of four levels): average RRE[deg]/RTE[mm]/iterations.

Gap = 1 Gap = 2 Gap = 3

Meth. 1 [Tykkala et al., 2011] 0.08/23.1/447 0.78/268/980 3.68/1059/1872
Adapt. 1 (5.7) 0.06/16.5/704 0.19/81.4/856 0.83/251/1078
Adapt. 2 (5.8) 0.06/16.4/1102 0.37/47.5/1269 1.05/238/1473

efficient and accurate, as can be observed in Table 5.4 and in the full trajectory of the KITTI

sequence 00 shown in fig. 5.13.

5.5 Conclusions and Closing Remarks

This chapter proposed an RGB-D registration approach in the context of large inter-frame

motions. The technique exploits adaptively the photometric and geometric error terms based on

their convergence characteristics. Despite its simplicity, this technique was capable of dealing

with large motions, occlusions and moving objects in indoor and outdoor real sequences. The

proposed strategy improved the registration with simulated and real sequences, using both

perspective and spherical sensor models.

We remark that it would be pertinent to further analyze theoretical properties of the pho-

tometric and geometric costs. The design of the scaling strategies were supported mainly by

empirical observation and by the level curves shapes, but without any convergence proof. No-

tably, this line of research is correlated to the problem of defining the convergence domain of

the different cost functions, i.e., the definition of upper bounds of convergence for direct image

registration, in analogy to the “learned model” established in [Churchill et al., 2015, Dequaire

et al., 2016] for feature-based registration techniques. In this context, some future directions

include: i) the formal characterization of the convergence domain for different symmetries and

noise statistics for both intensity and geometry costs; ii) the design of the costs with additional

dense/semi-dense information such as planes, lines and image moments; and iii) combining

this formulation with automatic local bundle adjustment and loop closure (RGB-D SLAM) for

producing large-scale drift-free trajectories.
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RGB-D Compact Mapping for Direct

Image Registration





Introduction

In the following chapters, we will present strategies to reduce frame noise and to build

compact photometric and geometric models of the environment. The depth in the spherical

stereo frames is particularly noisy, often leading to local minima in RGB-D registration. This

is noticed specially in the translation estimation. Conversely to indoor frames, smoothing and

downsampling operations are not sufficient to reduce the noise in the outdoor frames. An illus-

trative example is given in fig. 5.14 with rendered views of the raw point cloud (left image) and

the smoothed and downsampled point cloud using a Gaussian pyramid of four levels (center

image). One can notice the large oscillations in the road and in the buildings facades. Unfortu-

nately, the smoothed point cloud still contains artifacts in these regions. In order to reduce this

noise, chapter 6 presents a segmentation based on superpixels using simultaneously the surface

appearance (color) and orientation, encoded by the surface normals. This segmentation aims

to drive the depth regularization in order to reduce the noise whilst maintaining semantically

meaningful surfaces. This regularization increases the accuracy and reduces the number of

iterations for convergence of the registration. We also note that each frame can be represented

by a reduced number of planar patches after regularization.

Once the frames are regularized and their relative position estimated, we can build a com-

pact photometric and geometric model describing the environment. Our compact mapping

framework is based on keyframes distributed in the scene forming a topological-metric repre-

sentation. This is specially relevant to reduce storage issues caused by redundant frames in

the model. Different strategies can be adopted to the positioning and selection of keyframes,

such as the photometric/geometric appearance changes or spatial distance between successive

frames. In chapter 7, we describe a framework using the free space of the environment in order

to build a compact keyframe-based map with good visibility and coverage properties.

Raw Frame Gaussian Blur and MR Our Regularization

Figure 5.14 – Rendered views of the raw point cloud (Raw Frame), smoothed and with mul-
tiresolution (Gaussian Blur and MR) and using the regularization proposed in chapter 6. Some
noisy and deformed regions are indicted by the arrows in the first image.
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6.1 Introduction

Despite being a classical problem of early vision and photogrammetry, estimating dense

and accurate depth information from images remains a challenging and active research area.

This is a difficult problem because of many factors including the occlusions between the views,

appearance changes, textureless regions, repetitive patterns, sensor noise and the discontinuities

of the objects boundaries in the scene. Furthermore, the depth estimation is also conditioned

to the movement of the camera. Having a good estimate of the depth of the scene affects

applications in diverse areas, such as architecture, archaeology, virtual and augmented reality

and in robotics as, for instance, in registration and mapping techniques. We remark that these

diverse applications have different requirements for the depth completeness and accuracy. For

instance, a depth image containing over-regularized objects boundaries or with missing depth

values can be acceptable for RGB-D registration or for compact mapping from planes (e.g.,

[Fernandez-Moral et al., 2013, Henry et al., 2014]). On the other hand, representing the details

of objects boundaries can be expected in realistic scene rendering. Therefore, the expected

accuracy and completeness of the depth are closely related to the specific user application.

In this chapter, we describe a framework to reduce the noise affecting the depth from stereo

in the RGB-D frames, for registration and compact mapping applications. We remark that

unlike the indoor RGB-D frames, smoothing and downsampling operations are not sufficient

to reduce the noise in the outdoor depth images. The main objective is to build more accurate

depth images by considering the scene composed of piecewise planar patches. This formulation

is based on region growing approaches and it is adapted to the non-uniform resolution of wide

FOV images. In summary, we exploit the complementarity of color and surface orientation to

reduce noise and the uncertainty. These operations increase the accuracy of the depth (e.g.,

by reducing the noise from wrong pixel block matching), reduce the scene complexity and

simultaneously enforces surface regularization in smooth regions. Furthermore, we extend the

original RGB-D frames with an additional layer of information which encodes the uncertainty

(a confidence layer C) of each pixel, i.e., the regularized frames have RGB-D-C layers ranking

the points uncertainty.

The reminder of this chapter is organized as follows. Section 6.2 presents some related

segmentation and regularization approaches. In section 6.3, we discuss the characteristics

related to depth from stereo using panoramic images. Section 6.4 describes the photo-geometric

surface segmentation and regularization. The creation of an uncertainty layer is discussed in

section 6.4.4. In section 6.5, we present the processing of simulated and real frames of outdoor

stereo sequences, showing that both accuracy of the depth and the appearance of the 3D scene

model can be greatly improved. Finally, we summarize the chapter in section 6.6.
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6.2 Related Works

For creating more accurate depth maps from multi-view frames, [Huhle et al., 2010, Zhang

et al., 2012, Vogel et al., 2013] proposed energy based regularization techniques exploring

complementary aspects such as surface smoothness and temporal prediction to explicitly reduce

the effects of surface discontinuities and occlusions. [Schönbein and Geiger, 2014] computed

the depth image from ominidirectional stereo images by complementing SGBM [Hirschmuller,

2008] with a regularization driven by the hypothesis of a Manhattan World with large dominant

planes. Their approach explored also the temporal constraints of subsequent stereo frames by

performing a fusion of the two closest neighboring frames for filling gaps at the reference

frame. Similarly, [Wang et al., 2016] proposed an incremental and enhanced scanline-based

segmentation method to augment 3D lidar point clouds into planar super-resolution patches.

The goal of their work is to reduce the rate of over and miss-segmentation induced by the

sparsity and non-uniformity of Velodyne point clouds. Both aspects are considered in our

regularization.

Edge-preserving filters combined with partial differential equations (PDE) are very popular

in the computer vision community, and they are used in many applications such as noise re-

duction, stereo matching, image deconvolution and image upsampling (e.g., [Perona and Malik,

1990, Chambolle, 2004, Chambolle and Pock, 2011, Newcombe et al., 2011b]). For instance,

[Perona and Malik, 1990] proposed the anisotropic diffusion filter to regularize images while

preserving region boundaries. Within a similar goal of preserving sharp boundaries, [Cham-

bolle, 2004, Chambolle and Pock, 2011] described a general total variation (TV) framework

and practical implementation algorithms to many image denoising applications. The main

drawback of these techniques is their large computational burden. For illustration, consider

the simple case of denoising a 1D signal of length 180, as shown in fig. 6.1. This signal is

corrupted with a Gaussian noise of mean zero and standard deviation of four. We consider the

Rudin-Osher-Fatemi (ROF) total variation model and the algorithm to optimize this energy is

described in section 6.2.1 of [Chambolle and Pock, 2011], resulting in a TV gradient kernel of

size 180× 180. The weighing factor for the data term was chosen as λ = 0.01 and the denoised

signal after 400 iterations is shown in the right plot. In general, for a 2D image of dimensions

m× n, the number of variables is N = mn and these kernels are N ×N , which is a relatively

large problem even for low resolution images used in chapters 4 and 5. The regularization

technique presented in this chapter is simpler, more efficient and reduces the noise of dominant

surfaces in the scene, but it is less accurate in object borders. However, the regularized depth

has enough accuracy for image registration and compact mapping applications. In order to

reduce the size and complexity of the optimization, recent methods explored a prior segmen-

tation or “simplification” 1 of surfaces and 3D point clouds (e.g., [Edelsbrunner, 2000, Shamir,

1. Surface simplification is the process of reducing the number of parameters used to describe a surface while
keeping the overall shape and boundaries preserved.
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Figure 6.1 – Interpolation of the depth and regularization of a unidimensional signal using
total variation. The top row depicts two upsampled point clouds of an outdoor frame with the
nearest neighbour (at left) and bilinear (at right). As can be noticed the interpolation method
can change considerably the consistency of the final signal. In the bottom row, a 1D signal
(at left) is corrupted with Gaussian noise of zero mean and standard deviation of four (center
figure in red). The denoised signal using total variation regularization with the ROF model
is displayed in the plot at right (in red). Notice the staircasing effect in the affine part of the
signal.

2008, Schönbein and Geiger, 2014, Duan and Lafarge, 2015, Wang et al., 2016]). One can gen-

erate sub-models partitioning the input domain into elementary cells, then reduce the number

of degrees of freedom and explore constraints of neighboring regions. In this context, super-

pixels based on region growing have been recently used for disparity computation [Vogel et al.,

2013, Yamaguchi et al., 2014, Schönbein and Geiger, 2014] and segmentation of RGB-D images

[Weikersdorfer et al., 2013]. Inspired by these works, the proposed regularization approach uses

an intermediary superpixel segmentation. We extend the Simple Linear Iterative Clustering

(SLIC) [Achanta et al., 2012] to RGB-D panoramic images.
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Figure 6.2 – Lateral and top views of a point cloud using SGBM stereo. The left image depicts
a region of interest of an equirectangular spherical frame, followed by the lateral and top views
of the reconstructed point cloud. We remark the oscillations present at planar surfaces such as
the floor and at the facade of the building.

6.2.1 Contributions

In this chapter, we propose an extension of the state-of-the-art SLIC superpixel algorithm to

segment RGB-D images including geometric information beyond color, such as the surface nor-

mals encoded as a color image. We also present an adapted version of SLIC to omnidirectional

images by using the geodesic in the sphere, instead of the Euclidean norm.

6.3 Background and Spherical Stereo

In this chapter, the frames are composed of color and depth images: S = {I,D}. The final

regularized frame has an additional uncertainty/confidence layer S = {I,D,C}. Finally, a

planar patch Γi is represented by the pair (ni, di), such as for any 3D point P ∈ Γi: nTi P+di = 0.

In the following sections, we introduce the segmentation and posterior regularization.

6.3.1 Characteristics of Depth from Spherical Stereo

The depth images of each frame can be acquired using active sensors (e.g., LIDAR, RGB-D

cameras) or from stereo, as introduced in section 2.3. Considering the stereo case, the depth

errors come mainly from three different sources: i) wrong pixel matching assignments, particu-

larly in low textured surfaces; ii) occlusions and pixels without co-visibility; and iii) violation

of the brightness constancy assumption coming from reflections, mirrors and translucent struc-

tures. Besides, the resulting depth image characteristics are closely related to the selected stereo

matching technique. For instance, SGBM [Hirschmuller, 2008] gives less smoothed depth im-

ages and with more missing depth values than ELAS [Geiger et al., 2010]. On the other hand,

ELAS computes more complete and smoothed disparity images which are, besides being as

accurate as SGBM, “pleasant” images. However, it also produces border blending artifacts,
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Figure 6.3 – Normal vectors of a planar region using ELAS stereo in the sphere (two first
columns) and using ELAS stereo with perspective projection (two last images). The oscillation
component induced by the regularization and the spherical spatial non-uniformity is clearly
depicted in the spherical image.

where posterior filtering might have marginal influence. Similar conclusions were observed in

[Wang et al., 2014].

Some additional difficulties arise when performing stereo of omnidirectional images. For

instance, most disparity computation methods are developed for perspective images, i.e., using

the Euclidean metric with convex energy minimization techniques that flavor piecewise linear

solutions (e.g., the TV ROF regularization as shown in fig. 6.1). This phenomenon is known

as staircasing effect of affine signals [Muller et al., 2011, Pinies et al., 2015] and it can be

noticed in the denoised signal of fig. 6.1. Furthermore, the current state-of-the-art disparity

algorithms (e.g., SGBM [Hirschmuller, 2008] and ELAS [Geiger et al., 2010]) assume priors

to assign disparity values to less informative image regions (see fig. 6.3). This constraint is

not drastic with perspective images because most surfaces can be modeled as locally planar in

the Euclidean domain. Furthermore, scenes in human-like environments can be often locally

approximated by planar patches, which remains a plane in perspective stereo. Unfortunately,

even this local assumption is not valid in the sphere because a plane has no finite polynomial

expansion, and the linear disparity solutions of these algorithms induce oscillations in the

sphere. The computation of disparity in the sphere, therefore, greatly suffers from this effect.

Possible strategies to reduce these shortcomings are to redefine the perspective image pro-

cessing and optimization tools in the manifold; or to unwarp the spherical image into a planar

perspective view (e.g., using two or more virtual perspective cameras, such as the cube projec-

tion using four perspective cameras, as shown in fig. 6.3). However, this strategy presents two

drawbacks. The first concerns its inefficiency, in terms of both computational cost and memory

usage. Secondly, the unwarping of the non-uniform resolution of the original image is not taken

into account and can generate artificial artifacts in the unwarped view. Another possibility is

to regularize the resulting depth image as discussed in the next sections.
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6.4 Frame Regularization in Piecewise Planar Patches

In this section, we describe region growing techniques to segment the depth image into

piecewise planar patches. The depth image is then represented as a set of planes of variable

size, where non-planar surfaces are approximated by a set of small planes. This assumption is

applicable for any environment: structured and non-structured as long as the planar approx-

imation error is smaller than the measurement error. This can be achieved by selecting the

suitable region growing parameters according to the sensor noise model, regardless the type

of scene. We present two region growing strategies. The first is a geometric region growing

segmentation in the Euclidean 3D space. Subsequently, we propose a region growing formula-

tion exploring both color and geometry in the sphere. This second formulation is an adapted

version of SLIC superpixels to ominidirectional RGB or RGB-D images (OmniSLIC).

6.4.1 Geometric Region Growing in Euclidean 3D Space

A first approach to segment the depth is to consider a purely geometric region growing algo-

rithm. The segmentation is then based on growing regions around “seeds” that are distributed

along the depth image, e.g., using k-means. The neighboring points to each seed are then

tested following two metrics and if these two criteria are fulfilled within suitable thresholds,

then the 3D point is included in the growing patch. We present in a first moment a purely

geometric region growing, with the following conditions. The conditions to insert a 3D point

at pixel p in a candidate patch are: (i) if the normal vectors of a pixel p and the planar patch

have similar direction; and (ii) if the orthogonal projection error is small, i.e., the 3D point

corresponding to the pixel p lies approximately on the patch. These patches grow until a stop

criteria, usually based on the limits of the neighborhood or the maximum number of points

allowed to avoid aliasing. Since the surface resolution decreases with the distance to the sensor,

an adaptive number of allowed points at each patch is employed to build isometric patches (in

the 3D space). This avoids undesirable effects as aliasing details of far objects and the over-

sampling of structures close to the sensor. The number of allowed points per patch depends on

the desired area A and the spatial density point’s distribution in the sphere of radius D(p):

µ(D(p)) = N/(4πD(p)2), with N being the total number of pixels in the depth image. Given

the number of points n1 = µ(D(p1))A at range D(p1), a same area patch at range D(p2) has

a number of points:

n2 = n1

(
D(p1)

D(p2)

)2

. (6.1)

Then, it is sufficient to consider an interval around the value of n2 as minimum and max points

in the region growing procedure, as presented in the algorithm 6.4.1.1. This scheme reduces
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scene complexity and simultaneously applies surface regularization to reduce the oscillations.

Furthermore, this isotropic segmentation avoids undesirable effects such as of aliasing details of

distant surfaces and the over-sampling of surfaces near to the camera. However, this algorithm

alone is often not capable of reducing the noise from the spherical stereo rig. An example of

such regularization is given in fig. 6.4 for two frames. In order to combine coherent neighboring

patches, we proposed in [Martins et al., 2015] to use also the color information from superpixels

to increase the size of the patches. The photometric superpixel then would limit the size

of the regularized patch. A more suitable policy would consist of using color information

simultaneously to geometric information to aggregate neighboring patches, as described in the

next section.

6.4.2 OmniSLIC: Omnidirectional SLIC Superpixel

In this section, we describe an adaption of the state-of-the-art SLIC superpixel segmentation

[Achanta et al., 2012] to panoramic RGB and RGB-D images. The reason for selecting SLIC is

threefold. First, SLIC has nice properties as strong adherence to boundaries and compactness.

Second, it is of easy tuning because the method has two parameters: the expected maximum

number of superpixels (k) and a parameter relating the compactness of the superpixel to border

adherence (m). Finally, it has a simple implementation similar to the region growing algorithm

described in the previous section 6.4.1, while being more efficient. We give in the following a

brief summary of the basic principles used in the segmentation as described in [Achanta et al.,

2012]. SLIC computes color and spatial distances of the pixels to a candidate cluster, whose

mean color and pixel position are (Is(p̄),p̄):

Υ(p) =

√
Υ2
c(p) +

(
Υs(p)

S

)2

m2 (6.2)

Algorithm 6.4.1.1 : Geometric segmentation in the Euclidean 3D space

1: Input 1: reference area and distance (ρ1 and A): n1 = µ(ρ1)A
2: Input 2: max errors εn and εd
3: Distribute seed planes in the pixel positions p̄1, p̄2, ..., p̄n

4: for all p̄: compute max and min points n2 = n1

(
ρ1

D(p̄)

)2

do

5: for all pixels p neighboring p̄ do
6: nmin = max(n2 − 5, 5) and nmax = n2

7: while size(Γ) < nmax & ‖nTn(p)‖1 < εn & ‖nTP(p) + d‖1 < εd do
8: Re-evaluate plane patch Γ including P(p)
9: end while

10: end for
11: end for
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Figure 6.4 – Examples of regularization using geometric patches. The upper row depicts the
normals with the original depth images. The lower row shows the correspondent images after
the regularization.

Euclidean Geodesic

ϕ ϕ

Θ Θ

Figure 6.5 – Euclidean and geodesic distances for pixels in the top right corner of a spheri-
cal image. Observe that the geodesic distance increases mainly in the ϕ direction, allowing
superpixels to have wider widths in the Θ direction, in this part of the sphere.

with the color images encoded in the CIELAB space. The color image is projected in this color

space because CIELAB color difference is more perceptually uniform than in other color spaces,
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such as RGB or HSV. The respective color and spatial distances are given by:

Υc(p) = ‖I(p)− Is(p̄)‖2 and Υs(p) = ‖p− p̄‖2. (6.3)

The tuning parameters of SLIC in (6.2) are S and m which act as normalization factors of the

color and spatial distances. The parameter m is given by the user (is the compactness factor)

and S depends on the expected number of superpixels and their shape, e.g., squared, hexagonal

or circular. For instance, S =
√
N/k for a square shape or S =

√
2N/
√

3k for a hexagonal

one.

6.4.2.1 Omnidirectional RGB-D SLIC

The modifications included in the original SLIC algorithm are twofold. First, we propose

to account the non-uniform resolution of omnidirectional images for the spatial distance term.

Second, the modified SLIC can consider simultaneously color, geometric constraints such as

depth and the normals for defining the superpixels. The tradeoff between the intensity and

geometric constraints are set by selecting one tuning parameter.

The first modification is to consider the spatial distance metric in e.q. (6.3) as the geodesic

in the unit sphere S2:

Υs(p) = arccos(Π−1
S (p̄)TΠ−1

S (p)). (6.4)

The shape of the superpixels in wide FOV images can be better conditioned using the spatial

distance in the sphere as shown in fig. 6.5. Observe that the spatial distance increases mainly

in the ϕ direction in the geodesic, allowing superpixels to have wider lengths in the Θ direction.

An example for comparison of the different superpixels using the Euclidean and the geodesic

is given in fig. 6.6 using a fisheye image from the dataset in [Zhang et al., 2016]. The input

parameters are k = 50 and m = 30 in both cases and the shape of some superpixels using the

geodesic are more coherent than using the Euclidean distance. Some examples are indicated by

green boxes in the original segmented fisheye image, as well as in the equirectangular warped

image.

RGB-D Superpixels

For segmenting RGB-D images, we can explore geometric constraints beyond colors such as

the normals. Interestingly, the normals can be represented as a color image (N ):

N (p) = n(p) (6.5)

which can be treated similarly to color RGB image after its encoding in the CIELAB color

space. The adapted distance using the distance in (6.2) for an RGB-D ominidirectional image
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Fisheye Image Equirectangular

SLIC

OmniSLIC

Figure 6.6 – SLIC and OmniSLIC superpixel segmentations of a fisheye image. The shape of
some superpixels using the geodesic are more coherent than using the Euclidean distance. Some
examples are indicated by green boxes in the original segmented fisheye image, as well as in
the equirectangular image.
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is then Υo =
√

(Υ|I)2 + (λΥ|N )2, that is:

Υo(p) =

√
Υ2
c(p) + (1 + λ2)

(
Υs(p)

S

)2

m2 + Υ2
n(p)λ2 (6.6)

where the RGB distance term Dc is as in (6.3), the distance from the image of normals is as:

Υn(p) = ‖N (p)−N (p̄)‖2 (6.7)

and Υs is using the distance in the sphere (6.4). The parameter λ makes the tradeoff between

the boundaries of the RGB and the normal image. Setting λ = 0 is equivalent to define the

superpixels only from color. A segmentation using both normals and color images is given in

fig. 6.7 for a catadioptric image from [Zhang et al., 2016]. Observe that adherence to the

boundaries of the superpixels takes into account the normal map (second row images) and the

color images. The values used in the segmentation are k = 50, m = 30 and the tradeoff between

the intensity and normal images is λ = 1. Finally, some examples using real spherical images

are given in figs. 6.8, 6.9 and 6.10 for outdoor and indoor spherical RGB-D frames with values

λ = {0, 1}.

6.4.3 Combining Adjacent Coherent Patches

A last stage is carried out to merge the neighboring superpixels that lie approximately in

the same 3D plane and that have similar color. This is used to extract a skinny representation

of the scene and to reduce the depth error in large planar regions: the ground floor, the facades

and main planes. We used a customized version of the density based clustering (DBSCAN)

segmentation algorithm [Ester et al., 1996] because it can exploit directly the output and the

adjacency matrices of the SLIC superpixels 2. The final segmentation is just the combination

of adjacent superpixels with plane and mean color (Γi,I i) that are bellow a threshold from the

computed mean patch superpixel (Γs,Is), i.e., for all neighboring superpixels i that:

‖I i − Is‖2 < ε1 and ‖ arccos(nTi ns)‖1 > ε2.

Finally, a mean patch Γs can be extracted from each segmented region by using a robust plane

fitting RANSAC algorithm [Hartley and Zisserman, 2003]. The set of pixels p, such as depth

D(p) belongs to the segmented patch Γs, are then fulfilled by employing the resulting final

2. The basic implementation of SLIC and DBSCAN algorithms are from http://www.peterkovesi.com/

matlabfns/index.html.

http://www.peterkovesi.com/matlabfns/index.html
http://www.peterkovesi.com/matlabfns/index.html
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Catadioptric Equirectangular

Figure 6.7 – OmniSLIC superpixel segmentations of an RGB-D catadioptric image. Observe
that adherence to the boundaries of the superpixels takes into account the normal map (second
row images) and the color images. The values used in the segmentation are k = 50, m = 30
and the tradeoff between the intensity and normal images is set to λ = 1.

patch parameters (ns, ds) as:

Ds(p) =

∥∥∥∥ ds

(nTs Π−1
S (p))

∥∥∥∥
1

. (6.8)

6.4.4 Uncertainty Characterization

The errors coming from stereo are commonly supposed to be from disparity computation,

which is related by the inverse of the depth in perspective stereo. Therefore, some works

perform the uncertainty modeling considering the inverse depth in VSLAM or RGB-D tracking

[Civera et al., 2008, Gutierrez-Gomez et al., 2016]. The inverse parametrization is interesting
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for points far from the camera, which have a more stable uncertainty representation and that

can constraint the rotation estimation. Due to the range displayed by the considered sensors

in this thesis, we will represent the uncertainty of the depth as in most works, by propagating

the disparity variance: σ2
D ∝ D4. The uncertainty characterization of the noise affecting depth

images acquired from active sensors (LIDAR and Kinect) has received a broad attention from

the robotics community [Khoshelham and Elberink, 2012, Dryanovski et al., 2013]. For instance,

the Kinect v1 noise model can be described by σ2
D = 2.05 × 10−6D4 for D ∈ [0, 5] meters. In

other words, the expected accuracy of this sensor is of up to 7cm for the maximum range with

95.4% confidence [Khoshelham and Elberink, 2012]. The assumption about the local planarity

of the scene also helps to characterize this uncertainty because additional information of the

patch neighborhood is provided. Thus, the uncertainty of the regularized depth measurement

belonging to the patch can be modeled as:

ΣD(p) =
D4
s(p)

‖nTs Π−1
S (p)‖1

(6.9)

encoding the distance and the visibility of the point after the regularization, the denominator

in (6.9) measures the point observability condition, i.e., the points in the patch, whose direction

of view are more orthogonal to the normals (nTs Π−1
S (p) ≈ 0), should have higher uncertainty.

6.5 Experiments

Common quantitative metrics to evaluate segmentation/regularization algorithms are to

compute the root-mean-square error (RMSE), peak signal-to-noise ratio (PSNR), border recall

or the Jaccard index in the borders of objects. Such metrics require a precise 3D ground

truth model of the scene and labelled class images of the different surfaces. Therefore, in

this section, we perform a more qualitative analysis of the improvement of the frames by the

segmentation/regularization.

In the experiments, we use low resolution images because the main goal is to produce depth

to be used in compact mapping and registration. In this context, we do not have the requirement

of maintaining sharp boundaries in the objects edges, but a more concise depth information

with semantically meaningful boundaries, i.e., a depth segmentation and regularization of walls,

facades, floor and other dominant surfaces. To produce higher resolution images, we perform

upsampling with bilinear interpolation. However, it is worth noting that the region growing

can be also applied directly in the highest image resolution to obtain less smooth frames for

scene rendering and virtual reality immersion.

The tradeoff between the color and normal images (the scaling λ) depends on how structured

is the scene and the level of noise affecting the normal images. For instance, if the scene contains

vegetation or very unstructured surfaces, small values of λ should be considered in order to
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Figure 6.8 – OmniSLIC RGB-D image segmentation example for an outdoor frame. The first
row depicts the RGB and normal images encoded by color. The second row is the resulting
segmentation using λ = 0 (second row) or λ = 1 (third row). The normals of the regularized
depth are shown in the bottom image.

Figure 6.9 – Regularized depth using color and normal images. The color and low resolution
normal images are show in the first row. The second row depicts the resulting regularization
considering λ = 0.1 (left) and λ = 1 (right).

avoid over-segmentation in these areas. Some rendered views of the final regularized point

clouds are given in figs. 6.8 and 6.9, for two outdoor frames with different levels of noise.
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Figure 6.10 – OmniSLIC RGB-D image segmentation example for an indoor frame using λ = 1.
The first row depicts the RGB and normal images. The second row depicts the resulting
segmentation applied to the RGB image (left image) and the normals of the regularized depth
(at right).

6.5.1 Outdoor Localization

In order to measure the effect of the regularization in the RGB-D registration, we performed

the pose computation using an RGB-D sequence acquired in Garbejaire, as shown in fig. 6.11.

The approximative real path of the camera is highlighted in blue and the starting-ending point

is indicated by the green box. The trajectory in green considered the method of [Tykkala

et al., 2011] with raw depth images. The same method but now considering regularized frames

is shown in red and the adaptive RGB-D registration with regularized frames is shown in

blue. All trajectories present drift in this long sequence, which is expected because no bundle

adjustment or loop closure is performed. However, the accumulated trajectory errors are con-

siderably smaller with the adaptive method and regularized frames, notably in the travelled

distance. The approximate lengths of the real trajectory of the vehicle, without and with the

regularization was respectively of 640, 302 and 583 meters. Besides the advantages of higher

accuracy and robustness, we remark that there is also an advantage on the computational cost

of the registration. Convergence is reached with a reduced number of iterations, and thus, the

time required to register a pair of frames is around 40 % shorter in average with respect to the

same optimization using the raw frames.

Finally, the improvement of the depth after the regularization is clearly apparent by visual

inspection of the reconstructed point clouds in the Garbejaire sequence. Some examples are

given in fig. 6.12. We can see on the left column the point cloud reconstructed from raw data

and the same frame after regularization in the right. Notice how the artifacts and the waves

on the floor are removed in the view after the proposed regularization. Inspection of the depth

images and the normal vector images also confirm this, where flat and/or smooth surfaces such

as the building façades or the road are more regular in the regularized images, whilst keeping

semantically meaningful boundaries of the surfaces. We note that the scene can be roughly

described with a small number of patches after the regularization. Although conceived for the

stereo frames, the same procedure can be also applied to the indoor frames.
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Figure 6.11 – Estimated trajectories for different direct tracking techniques using the Garbejaire
sequence: [Tykkala et al., 2011] without regularization (in green), with regularization (in red)
and the adaptive formulation of chapter 5 with regularization (in blue). The upper left figure
is the top-view of the approximate trajectory and the starting-ending point is indicated by the
green box. The remaining plots shows top and lateral views of the estimated trajectories. Note
that the translation drift using the regularized frames is reduced.

6.6 Conclusions and Summary

We described in this chapter a method for the regularization of depth images using spatial

and color constraints. This method is applied to our particular case of spherical vision, though

it can be generally applied to other contexts evolving RGB-D data (as shown in the experiments

section 6.5). We propose a modified version of the SLIC superpixel segmentation to wide FOV

images and that uses the complementarity of color and surface orientation for the segmentation.

This framework aims to correct the large errors induced by stereo matching specially in regu-

lar smooth surfaces while maintaining semantically meaningful boundaries. This formulation
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increases the accuracy of the depth (e.g., by reducing the noise from wrong pixel block match-

ing) and simultaneously enforces surface regularization. Furthermore, we extend the original

RGB-D frames with an additional layer of information which encodes the uncertainty of each

pixel. Subsequently, we applied this regularization framework to perform the localization of

the camera in an outdoor environment. The resulting trajectories using the regularization have

less drift, notably in the translation, indicating that the regularization improved the accuracy

of direct registration and its robustness to errors coming from stereo matching.

Future research directions include exploring complementary constraints such as the orthog-

onality of the main planes (as in Manhattan World scenes) or the use of lines in the regular-

ization. Another interesting point would be to explore the semantic information of the scene

in the regularization.
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Figure 6.12 – Rendered point cloud views of two outdoor frames before (second column) and
after the regularization (third column). The first column depicts the color image of the region
of interest displayed in the rendered views. The last two rows are from the frame regularized
displayed in fig. 6.9.
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7.1 Introduction

Producing compact map representations of large-scale scenes is relevant for a wide num-

ber of applications, from autonomous navigation (e.g., [Whelan et al., 2015, Meilland et al.,

2015]) to augmented reality and rendering (e.g., [Huhle et al., 2010, Anguelov et al., 2010]).

For instance, building compact scene representations that can be accessed in constant time,

regardless the environment size, is often a pre-requisite in mobile robotics applications such

as robot localization and autonomous navigation (e.g., [Dayoub et al., 2011, Chapoulie et al.,

2011, Meilland et al., 2015, Chiu et al., 2016]). In this context, RGB-D keyframe-based maps are

a standard solution to produce compact representations from a continuous sequence of images.

RGB-D keyframe-based techniques represent the world with a set of frames positioned in the

scene, without performing an explicit reconstruction of the environment in a single coordinate

system, as shown in fig. 7.1. This allows one to store a local photometric and geometric model

of the scene for high accuracy tasks, while maintaining a topological framework at large-scale

that is accurate enough to ensure the connectivity between the keyframes.

Ideally, the quality of a scene representation should be measured by the success of the

end application. For instance, a good map representation for direct RGB-D registration can

be unsuitable for monocular appearance-based tracking, feature-based methods or for image

rendering. Therefore, the expected characteristics of each map are closely related to the specific

user application. In this chapter, we describe a compact mapping scheme for localization and

navigation tasks using direct RGB-D registration. Our goal is to find a compromise between

the sparsity of the map while ensuring a good coverage of the environment for the registration

techniques presented earlier in chapters 4 and 5. Furthermore, we want to create a unique

map representation for different camera trajectories, which can be updated over time from the

availability of new data of different explorations, as in the context of life-long mapping.

The chapter is organized as follows. Section 7.2 presents some related compact mapping

approaches. Section 7.3 summarizes the stages for the keyframe selection. The camera tracking

and free space segmentation are described in section 7.3.1. In section 7.3.2, we present possible

strategies to select the locations of the keyframes to ensure a good coverage of the environment.

In section 7.4, we present some preliminary compact mapping results using an indoor RGB-D

sequence. Finally, we conclude the chapter in section 7.5.

7.2 Related Works

The robotics and computer vision communities have developed many techniques for 3D

mapping from images and point clouds. Classic examples are the VSLAM frameworks with

monocular cameras (e.g., [Silveira et al., 2008, Mur-Artal et al., 2015]), stereo cameras (e.g.,

[Anguelov et al., 2010, Whelan et al., 2015]), range/LIDAR and RGB-D cameras (e.g., [New-
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Figure 7.1 – Keyframe topo-metric map scheme: the nodes are RGB-D frames, which are linked
by the relative poses T ∈ SE(3). The poses Tij link keyframes S∗ (in red), while Tk relate near
frames (in black) to a particular keyframe. Only keyframes are kept in the final environment
model. Each keyframe is built by exploiting the redundancy of nearby frames to reduce its
noise and uncertainty.

combe et al., 2011a, Meilland and Comport, 2013, Dryanovski et al., 2013, Henry et al., 2014])

and even from unsorted collections of photos (e.g., [Snavely et al., 2006, Wu, 2013]). Most

mapping systems require the spatial alignment of consecutive data frames, the detection of

loop closures, and the pose refinement/fusion of individual frames. Recently, volumetric/voxel

representations combined with truncated signed distance functions (TSDF) [Newcombe et al.,

2011b, Newcombe et al., 2011a, Calakli and Taubin, 2011, Maier et al., 2015] have received

widespread attention due to their reconstruction quality for creating accurate maps from mul-

tiple frames. For instance, to obtain geometrically accurate 3D reconstructions, [Newcombe

et al., 2011a] fused RGB-D frames in a voxel-based representation and performed the tracking

between individual frames and the fused/accumulated model with a point-to-plane ICP. In this

chapter, however, we do not use this voxel-based representation since the storage capacity and

computational burden are higher than performing the fusion of the depth and intensity directly

on the RGB-D spherical keyframe.

Compact mapping deals with the problem of representing large-scale scenes with linear

complexity. Classic techniques rely on efficient geometric discretizations to represent the scene

without performing an explicit 3D reconstruction in a single global reference frame, as for
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instance with topo-metric maps of perspective and spherical keyframes (e.g., [Dayoub et al.,

2011, Chiu et al., 2016]) or segmenting the scene in piecewise planar patches (e.g., [Fernandez-

Moral et al., 2013, Fernandez-Moral et al., 2016, Wang et al., 2016]). Compact mapping

techniques are also pertinent to reduce the drift of visual odometry methods because performing

frame to frame tracking introduces more drift in the trajectory due to the accumulation of

optimization errors. Commonly used techniques to perform the keyframe selection are based

on the down-sampling of the camera trajectory, combined with similarity distances as the

median of absolute differences (MAD) of the intensity error (e.g., [Meilland et al., 2015]) or the

pose covariance [Kerl et al., 2013b, Gokhool et al., 2015, Das and Waslander, 2015]. Of course

other metrics can be considered to select these keyframes, such as, the number of iterations for

convergence of the registration or the travelled distance between two frames (e.g., [Bachrach

et al., 2012]). In this context, [Meilland et al., 2015] proposed a topo-metric representation

composed of a graph of geolocalized RGB-D spherical images mainly designed for localization

and autonomous navigation tasks. The RGB-D spherical frames are located in the scene using

the direct registration method presented in chapter 5 with λ = 0. In order to limit drift

inherent to visual odometry, only representative frames, along the trajectory, are kept in the

map, based on the MAD of the photometric error. However, the images that were not selected

as keyframes were dropped out and not exploited to improve the scene representation. This

leads to losing useful information which could be used to enhance the quality of the RGB-D

keyframes. In this chapter, we propose a framework which aims to integrate all the information

available in a small number of RGB-D keyframes as depicted in fig. 7.1. Subsequently, our

work presented in [Gokhool et al., 2015] proposed to filter the geometry of retained keyframes

using a probabilistic average of nearby frames. The criteria to select new keyframes in the

trajectory was based on the pose covariance to encode the entropy between two frames. This

fusion formulation reduced the number of keyframes to represent the environment and also

improved the quality of the map. However, the positioning of keyframes was closely related to

the trajectory done by the camera. For example, a repetitive camera exploration inside an office

would produce an unbounded number of keyframes using this strategy. Moreover, the fused

keyframes maintained the same resolution and region-of-interest of the raw frames. In this

chapter, we want to overpass these weaknesses by proposing a keyframe-based environment

representation less sensitive to the trajectory undertaken by the camera. This is done by

the introduction of a more elaborate keyframe positioning using the notions of visibility and

accessibility of the environment. Furthermore, we want to filter and complete the information

of the retained keyframes beyond the region-of-interest of the original frames.
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7.3 Compact Keyframe Positioning Strategy

The idea to retain keyframes based on a predefined criteria proves to be very useful to pro-

duce a compact representation of the environment [Dayoub et al., 2011, Gokhool et al., 2015].

Hence, our compact mapping framework is based on a classical keyframe mapping strategy.

The main goal is to build representative topo-metric models composed of a graph of geolocal-

ized RGB-D keyframes optimally distributed in the scene. In the contexts of localization and

autonomous navigation, the positioning of such keyframes can be done following two strategies.

The first is of selecting representative locations along the trajectory of the camera during the

exploration phase. In this case, the locations are chosen when a frame provide substantive new

information from the previous keyframe, e.g., using either the MAD, pose covariance, traveled

distance, number of iterations for convergence of the registration task, among others. The

second strategy, which is described in detail in the following sections, is to explore jointly the

appearance and topological information of the environment, such as visibility and accessibility.

We present a partitioning of the environment free space using a Voronoi diagram. In summary,

given an RGB-D sequence, the keyframe selection is decomposed in the following stages:

— The first stage is the computation of the relative pose between the frames following the

temporal order. The computation is done from the direct camera tracking described in

chapters 3 and 5.

— Subsequently, we perform the extraction of the local and accumulated free space. This

stage is presented in section 7.3.1.

— The last stage is the selection of the keyframe positions using the free space partitioning

(the vertices/bifurcation points of the Voronoi), which is described in section 7.3.2.

7.3.1 Free Space Extraction

Fortunately, a depth measurement provides more than just an observation on the surface

location in the image. It also gives information about the free space between the surface and

the camera. The “local free space” could be found as being the floor, which are the pixels

with predominantly normals with y direction in the ground plane. The “total free space” is

then the integration of the 3D points belonging to the “local free space” of the different frames.

Afterwards, we project the 3D points belonging to the floor in a 2D grid and extract a free space

probability distribution. The algorithm 7.3.1.1 describes in more detail the space extraction.

Some examples of the local free space extraction using the low resolution images are shown in

fig. 7.2.
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Figure 7.2 – Local free space extraction. Each column depicts the free space extraction of
different frames. The top and middle rows show the RGB and surface normals respectively.
The local free space is shown as the white pixels in the last row.

7.3.2 Space Partitioning and Optimal Coverage

Space partitioning/triangulation is a basic problem studied in computational geometry.

Classic partitioning techniques use tessellations such as the Voronoi diagram [Ogniewicz and

Ilg, 1992, Ogniewicz, 1994, Vázquez-Otero et al., 2015]. A good survey about describing shapes

by using Voronoi diagrams is given in chapters 1 and 6 of [Siddiqi and Pizer, 2008]. This section

Algorithm 7.3.1.1 : Free Space Extraction

1: Inputs local free space : max normal angle and distance to the ground level: εθ and εd.

2: Inputs total free space : resolution and number of observations: r and n.
3: Output : boolean accumulated free space grid: FG.
4: List of 3D points in the free space: LF = [ ].
5: for all frames Si do
6: Warp Si using its pose Ti and compute the surface normals: Swi

and n(p).
7: for all pixels p in Swi

do
8: Pixel not in the local free space: F(p) = 0
9: Compute the angles of the normals with respect to the Y direction: Θ =

arccos((0 1 0)Tn(p)).
10: Compute the 3D point elevation: d = (0 1 0)TDwi

(p)Π−1(p).
11: if ‖Θ‖1 < εθ & ‖d‖1 < εd then
12: LF = [LF Dwi

(p)Π−1(p)] – point is inserted in the local free space.
13: end if
14: end for
15: end for
16: Find the convex hull of the free space (xmin, xmax, zmin, zmax): xmin = min(LF(1, :)), xmax =

max(LF(1, :)), zmin = min(LF(3, :)) and zmax = max(LF(3, :))
17: Build 2D histogram edges: E = {(xmin : r : xmax), (zmin : r : zmax)}.
18: H = hist3(LF([1, 3], :),′Edges′, E).
19: for all free space grid cells i in H do
20: if (H(i) > n) then
21: FG(i) = 1.
22: end if
23: end for
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Figure 7.3 – CAD model of the ground floor of the Inria Kahn building and approximative free
space region depicted in white (left image). The resulting Voronoi diagram with seed points
(in red) are shown in the middle plot. The medial axes from the simplified Voronoi diagram
are shown in blue (right image).

describes briefly Voronoi diagrams, followed by the partitioning framework of the extracted free

space. One of the simplest application of Voronoi diagrams is the triangulation of a 2D space

given n points (called seeds or generators) into a set of convex cells, where each cell contains

exactly one generator point. This partitioning has an interesting property: for all points inside

a cell, the distance to its seed point is smaller than to any other point. The edges of the cells

are the equidistant straight lines (medial axis) between two seed points. The extremities of the

edges are the vertices of the Voronoi (bifurcation points), which can be at infinity. The Voronoi

can also be used to extract the topology of shapes, a process known as skeletonization [Siddiqi

and Pizer, 2008, Vázquez-Otero et al., 2015]. The skeletonization process starts with finding the

Voronoi from a discretization of shape contours (boundaries). This creates a complex diagram

that can be simplified by pruning the edges whose vertices are out of the shape or with a

threshold distance from the boundary. An example of this process in “simulation” using the

floor CAD plan of the Inria building is given in fig. 7.3. As can be noticed, the resulting graph

encapsulates the topology and accessibility of the different regions of the scene. Furthermore,

the bifurcation points in this map reflects crossings regions.

How can this process be transposed to the partitioning of a real environment? The contours

of the extracted free space, presented in the previous section, can be used to create this Voronoi

diagram. We remark that each vertex (bifurcation of the diagram) defines a visibility radius in

the scene, where the appearance model is “similar”. Therefore, a plausible strategy is to position

the keyframes in some of these vertices. Robots (and humans) often cross the environment in a

neighborhood of the medial axes that define the vertices points. This is specially true in roads

or corridors, where the trajectory of acquisition is often near the medial axis of the free space.

In order to obtain a sparse model of representative keyframes, we select the most representative

vertices of the diagram in terms of coverage and visibility. We start inserting a keyframe for

the vertex point with the highest coverage and to sort the remaining vertices by their radius
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of coverage. The subsequent vertices are then tested using an intersection operation. If their

position lies inside the coverage of an already included vertex, they are not considered in the

model, as presented in the algorithm 7.3.2.1.

7.3.3 Virtual Keyframe Rendering and Fusion

Once the locations of the keyframes are chosen, we can perform a fusion scheme such that

each keyframe integrates the information from other nearby frames to improve its accuracy

and completeness. This consists on warping the frames, the propagation of the uncertainty of

the pose and of the depth and the fusion of the warped frames into the keyframe pose. The

uncertainty propagation supposing Gaussian noise is described in the appendix B. Assuming

that a set of n frames share information, their fusion corresponds to find S that minimizes

Algorithm 7.3.2.1 : Space Partitioning and Optimal Coverage

1: Inputs : 2D free space grid and list of poses of the frames: FG and LP = {T1,T2, ...,Tm}.

2: Output : List of keyframe locations: T = {v1, v2, v3, ..., vn}.
3: Compute the edges of the free space: contours = edge(FG,′ sobel′).
4: Compute the Voronoi vertices: [v1, v2, v3, ..., vk] = voronoi(contours).
5: List of valid vertices: V = [ ].
6: for all vertices vk do
7: Simplify the diagram from the free space and using distance to the border points:
8: if vk in free space FG then
9: V = [V vk].

10: end if
11: end for
12: Find the radius of visibility of each vertex:
13: for all vertices vi in V do
14: radius(i) = min(‖contours− vk‖2).
15: Check if any frame was acquired inside this radius:
16: list of frames(i) = find(‖LP − vk‖2 <= radius(i)).
17: end for
18: List of keyframe positions: T = [ ].
19: Sort vertices by their radius of coverage: sort(V).
20: for all vertices vi in V do
21: if T is empty then
22: T = vi.
23: else if (‖vi − T‖ < radius & list of frames(i) > 0) then
24: T = [T vi].
25: end if
26: end for
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the weighted distance between the warped frames Swi
= {Iwi

,Dwi
,ΣDwi

}, S(p) =

argminS
∑n

i=1 Σ−1
Dwi

(p)(Swi
(p)−S(p))2, which can be stated sequentially as a weighted average

as follows:
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(7.1)

where, Σ−1
Dwi

is the confidence (the inverse of the uncertainty) resulting from the blending of

both pose and structure errors as described in section B.1; and WD
0 , being the uncertainty of

the initial keyframe model. In the presence of a large number of frames, one can consider a

more robust fusion to outliers and occlusions, such as the median [Merrell et al., 2007]:

{
I(p) = median(Iw1(p),Iw2(p), ...,Iwn(p))

D(p) = median(Dw1(p),Dw2(p), ...,Dwn(p)).
(7.2)

7.4 Experiments

In this section, we present preliminary results for the compact mapping of the indoor se-

quence Inria2, shown in chapter 5. We evaluate the mapping quality in terms of its compactness

(the number of retained keyframes) and of the accuracy of direct registration using the virtual

keyframes. The first stage of the mapping pipeline is the localization of the camera using the

images. The initialization and the adaptive registration techniques were used to perform this

localization. For further increasing the pose estimation accuracy and to reduce the drift in

the trajectory, we performed the optimization of the poses using a loop closure between the

first and last frames. The initialization technique was used to compute a rough pose between

these frames, which were subsequently refined by the direct method. The loop closure pose is

used as edge for the trajectory refinement with the GTSAM factor graphs optimization library

[Dellaert, 2012], which results in the optimized trajectory shown in fig. 7.4.

Once the trajectory is estimated, we extracted the local free space of each frame, as shown

in fig. 7.4. The accumulated free space is composed of the “local free space”, represented by

white pixels in the image. We subsample the points belonging to the floor using a 2D grid with

r = 0.1 meters of resolution. Occluded or non-visited areas are depicted in gray. The borders
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Figure 7.4 – Free space extraction in the real indoor sequence. The camera trajectory starts
in the green box and the endpoint is indicated by the red box. The points belonging to the
floor in each frame are used to extract the free space. Two examples of the regions of the free
space are shown with the RGB and normal images. The accumulated free space grid using the
computed trajectory are the regions in white, while the occupied or not explored regions are
shown in gray.

of the free space are used to build the Voronoi diagram using the algorithms 7.3.1.1 and 7.3.2.1,

as shown in fig. 7.5. The medial axes of the scene and its vertices using the diagram are shown

in the right plot.

This strategy allowed a convenient sparse representation of the environment as depicted

in fig. 7.6, where only 27 nodes are retained. Interestingly, the coverage of the free space is

of approximately 89% with these 27 vertices, which represents less than 1% of the number of

available frames (27/3250). For a comparison of keyframe sparsity, using the entropy and the

probabilistic fusion [Gokhool et al., 2015], the number of keyframes was 67 for the first pass

of the trajectory. We can clearly identify some regions in the scene with higher density of

keyframes as the areas where the geometric appearance of scene changes, such as in crossing

regions with partial occlusion. The sparsity of the keyframes is notably observed in the regions

of the scene with invariant viewing conditions (i.e., with a predominantly convex geometry)

and the distance of retained frames was of up to 3.1 meters, which is approximate three times

bigger than without this partitioning technique. We reinforce that the sparsity of the map

might be adapted to the capacities of the posterior registration algorithm to explore it. The
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Figure 7.5 – Voronoi and optimal scene coverage in the real indoor sequence. The raw Voronoi
diagram is shown in the left image, the resulting segmentation of the scene is obtained after
simplifying the diagram (blue lines in the middle plot). The simplified Voronoi edges and the
trajectory of the camera (in red) are shown superposed in the right image. In this indoor
sequence, the robot was driven near the principal medial axes of the scene.

keyframes are also more accurate and complete, as shown in fig. 7.7. Two examples of virtual

keyframes with a smaller visibility coverage can be seen in fig. 7.8.

7.4.1 Direct Registration Using Virtual Keyframes

We evaluate the coverage of the environment, the accuracy and completeness of the scene

model by performing registration experiments using some virtually rendered keyframes. In

this experiment, we registered a different sequence of images lying inside the coverage radius

of the keyframe. For a preliminary baseline comparison, we performed the keyframe selection

and rendering using the following strategies: i) using as keyframe the nearest raw depth image

to the vertex, as in [Meilland et al., 2015]; ii) using the presented formulation and placing

the keyframe in the vertex, combining nearby frames and increasing the region-of-interest of

the depth and intensity images. Table 7.1 shows the average errors obtained by the different

keyframe models using the initialization and adaptive registration techniques. A benefit of

the improved keyframes is the higher accuracy of direct registration as a consequence of the

higher accuracy of the virtual keyframe. The region of convergence also enlarges as can be

noticed in the convergence rate in the last column of Table 7.1. We assumed that the algorithm

converged in cases where the estimation error is smaller than 7 degrees in the rotation and of

10 centimeters in the translation.



126 RGB-D Compact Mapping for Optimal Environment Visibility Chap. 7

−6 −4 −2 0 2 4 6 8 10 12

−10

−5

0

5

X [m]

Z
 [
m

]

Figure 7.6 – Vertices pruning with the criteria of visibility and coverage. The environment can
be sparsely represented with frames in 27 positions (blue ∗). The radius of visibility coverage
for each vertex is indicated by the green circles.

Figure 7.7 – Virtual keyframe fusion example. The left image depicts the initial keyframe.
The resulting keyframe after fusion of the nearby frames is shown in the right. Observe that
the occlusions are handled using this representation and the final model is a more complete
keyframe with a bigger region of interest.
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Figure 7.8 – Virtual keyframe examples with smaller coverage radius. The first virtual keyframe
from the left depicts the office with few nearby frames included in the radius of visibility. The
second image is the resulting keyframe in a door crossing, which also has a small radius of
visibility.

Table 7.1 – Convergence and average registration errors using different keyframe models.

Av. Rot. Error (deg) Av. Trans. Error (mm) Convergence

Raw Frame 12 170 57%
Virtual Keyframe 2.2 30 92%

7.4.2 Discussion

Ideally, a compact map guaranteeing visibility would consist of full spherical frames po-

sitioned in all bifurcation points. This would ensure a coverage of the scene with maximal

visibility. The free space partitioning around the principal medial axes is a strategy to reduce

the number of virtual keyframes, while maintaining sufficient visibility conditions in the model.

For instance, in the map of the indoor sequence presented in section 7.4, only 27 frames were

kept resulting in a coverage of the environment of around 90%. A number of perspectives can

be drawn from these preliminary results. First, a unique and stable map representation can

be defined using the visibility constraints. This unique representation allows the update of the

keyframes in the map over time, as new information about the scene is acquired. The concepts

of long term and short term memories could be explored in this sense to update the photometric

and geometric model of the keyframes. Second, this representation maximizes the visibility of

retained keyframes in the scene. Notably, keyframes are located in crossing regions which are

critical for appearance-based registration techniques. However, some issues might appear while

rendering the keyframes in a distant viewpoint. Particularly, the level of detail of the rendered

RGB images is reduced due to the noise of depth, pose and the calibration errors in the image

stitching. To reduce this effect, super-resolution could be used to increase the sharpness of

the RGB images in the virtual keyframes. We also note that different metrics could be used

to extract the free space, to select the keyframe locations and the nearby frames. Notably, a

subsampling of the Voronoi edges, as the middle points between two vertices or the intersection

of the coverage circles with the medial axes. We leave these considerations as future research.
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7.5 Conclusions

This chapter presented a compact mapping technique based on keyframes. We discussed

the positioning of the keyframes in the scene from two points of view: down-sampling the

trajectory of acquisition and down-sampling the free space. Note that our objective is to

build sparse keyframe-based maps that will be used for posterior localization and navigation

tasks. Therefore, the environment model must take into account the capacities of the posterior

registration techniques, specially in terms of basin of convergence and visibility. One critical

aspect while using our initialization and adaptive direct methods is the visibility of the frames,

since registering frames with minimal visibility often leads to divergence of the registration. An

interesting idea for maintaining visibility in a sparse keyframe representation is the partitioning

of the free space to emphasize appearance and topological properties of the environment. Our

preliminary results suggest that a sparse keyframe map that has good visibility properties is,

in this sense, a convenient compact model. Furthermore, this model can be used with different

camera trajectories and be updated over time from the availability of new data, as in the

context of life-long mapping.



Chapter 8

Conclusions and Perspectives

This thesis addressed the problem of pose estimation and mapping from RGB-D images.

While most existing registration methods are based on the extraction and matching of charac-

teristics (feature-based), this thesis focused on parametric direct (appearance-based) techniques

to perform the camera tracking and to build a dense keyframe-based map model of the scene.

Direct methods are known for their subpixel accuracy and robustness to outliers in image align-

ment, but with the restriction of having small camera motions or high frame-rate. The main

contributions of this work are the strategies to relax this restriction of small motions between

RGB-D images. Notably, we present strategies that explored conveniently the photometric and

geometric information, while maintaining the accuracy of direct image registration. In this

context, we proposed a fast pose estimation technique to compute a rough estimate of large

motions between depth images, which is used with an initialization scheme to image regis-

tration. This pose estimation is divided in two decoupled stages, the rotation and then the

translation estimation, both based on the normal vectors orientation and on the depth. These

two stages are efficiently computed from distributions using low resolution depth images. The

limitations and observability of this pose computation have also been analyzed. Subsequently,

we proposed an adaptive registration approach to improve the basin of convergence by shaping

the cost function. This approach explored the observations that the intensity and depth error

terms display different convergence properties for small and large motions. Experiments using

spherical and perspective images indicate that these methods present substantial improvements

in the convergence of the camera tracking, enabling to efficiently align images rotated of 180

degrees and with translations up to three meters for the spherical images.

In the second part of the thesis, we have treated the problem of building a useful and

sparse representation of the scene. Producing this model is performed offline and therefore,

we can apply different prepossessing to the image frames. In this context, we presented a

regularization approach to filter the stereo depth images. Notably, we proposed an extension

of the state-of-the-art SLIC superpixel algorithm to segment the frames leveraging geometric

information such as surface orientation and color. We also proposed an adapted version of
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SLIC to omnidirectional images by using the geodesic in the sphere, instead of the Euclidean

norm. Finally, we described a compact mapping framework to create sparse topo-metric RGB-

D maps of the scene. The map is composed of keyframes optimally distributed along the

environment, using the notions of visibility and space coverage. The developed registration

and regularization approaches are exploited to build this sparse keyframe map model of the

environment. The locations of the keyframes use a convenient partitioning of the free space of

the scene. Our preliminary results suggest that this sparse keyframe map has good visibility

properties and therefore is a convenient compact model to be used with appearance-based

registration techniques. Notably, using this space partitioning, less than 1% of the frames have

a coverage of more than 90% of the environment. Furthermore, this map can be used with

different camera trajectories and be updated over time from the availability of new data, as in

the context of life-long mapping. We show the effectiveness of these approaches in localization

and mapping experiments of indoor and outdoor real scenes, where the compactness, accuracy

and consistency of the maps were greatly improved.

The techniques presented in this thesis allowed to handle larger separation between frames,

and thus, lower camera frame rates and/or higher camera speed can be attained. This has also

a direct impact on the hardware resources, reducing the computation and memory requirements

as less frames are processed for localization and mapping purposes.

8.1 Future Work

We have a diverse set of research directions to be further explored. One interesting line of

research is to design the hybrid RGB-D cost function for direct registration with theoretical

guarantees of convergence. The adaptive RGB-D registration presented in chapter 5 improved

the basin of convergence by adapting the photometric and geometric scale factor during the

optimization. However, the design of the scaling strategies were supported mainly by empirical

observation and by the shapes of level curves of the cost functions. It would be pertinent to

further analyze theoretical properties of these costs. Notably, this line of research is corre-

lated to the problem of defining the convergence domain of the different cost functions, i.e.,

the definition of upper bounds of convergence for direct image registration, in analogy to the

“learned model” established in [Churchill et al., 2015, Dequaire et al., 2016] for feature-based

registration techniques.

The good performance of the presented formulations was in part possible thanks to the

large FOV provided by the spherical images and its resulting properties. With small FOV

sensors and large motions, the frames might not have co-visibility and we cannot estimate the

pose. Still, some important properties of spherical images were not explicitly exploited for pose

estimation. For instance, the relation between a point and its antipodal in the sphere [Lim and

Barnes, 2008, Corke and Mahony, 2009] could be used in the adaptive formulation in chapter
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5. The pose estimation from normals in chapter 4 did not use motion properties in the sphere

to eventually select the right mode in the distribution, or even build the distribution in a more

convenient way. Another possibility to increase the robustness of this method would be using

simultaneously intensity and color information to find the overlapped regions.

In terms of the frame regularization presented in chapter 6, we have considered a simple

regularization technique which acts mainly as a low-pass filter, constrained by an intermediary

superpixel segmentation of geometric and photometric surface edges. However, other appear-

ance terms could be added in the regularization. Examples include constraints from prior

knowledge of the environment (e.g. from orthogonality, image lines, main directions) or using

higher level information such as the semantic segmentation of the different surfaces.

In the compact map front, different metrics could be used to extract the free space, to

select the keyframe locations and the nearby frames, described in chapter 7. For instance, an

additional subsampling of the Voronoi edges, as the middle points between two vertices or the

intersection of the coverage circles with the medial axes could increase the visibility conditions.

We also note that the concepts of long term and short term memories could be explored to

update the photometric and geometric model of the keyframes. Another interesting topic is of

using active perception while performing the acquisition of the sequence of RGB-D images. The

trajectory of the mobile platform used to acquire the RGB-D sequences did not consider the

observability conditions of the scene. For instance, the pose uncertainty of following a path with

highly textured surfaces is reduced when compared to following a path passing through a single

plane without texture with direct registration. In this context, online perception-aware path

planning (e.g., [Salaris et al., 2017, Costante et al., 2016]) adapted to image registration would

select the more appropriate path to reduce the trajectory uncertainty and therefore improving

the scene photometric and geometric models.

Finally, we remark the rapid development of formulations employing convolutional neural

networks (CNN) for scene segmentation, but also for motion estimation, tracking and mapping

with promising initial results. For instance, we note [Kendall et al., 2015] and [Weyand et al.,

2016] for localization from images, [Konda and Memisevic, 2015, Nicolai et al., 2016, Melekhov

et al., 2017] for relative pose estimation from depth/RGB-D images and [Dosovitskiy et al.,

2015, Guney and Geiger, 2016] for optical flow and disparity computation. These approaches

employ end-to-end CNNs for both pose and flow/depth estimation, i.e., the neural network

handles simultaneously the correspondence and the pose or flow computation. Exploring the

capabilities of deep learning techniques as a tool for identifying relevant information, computing

the camera motion and scene structure might be an interesting topic, specially in the context

of large camera motions treated in this thesis.
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Cette thèse a proposé de nouvelles contributions au problème de l’estimation de pose et de

cartographie à partir d’images RGB-D. Bien que la plupart des méthodes d’enregistrement exis-

tantes soient basées sur l’extraction et la mise en correspondance d’éléments caractéristiques

(features) de l’image, cette thèse s’est concentrée sur des techniques paramétriques directes

(basées sur l’apparence) pour estimer la pose de la caméra et pour construire une représentation

dense d’environnements à grande échelle. Les approches directes sont connues pour leur précision

sous-pixellique et leur robustesse aux outliers dans les méthodes d’alignement d’images, mais

sous la contrainte de petits déplacements de la caméra ou d’une fréquence d’acquisition d’image

élevée. Les principales contributions de ce travail sont les approches méthodologiques permet-

tant de relâcher cette restriction aux petits déplacements dans le cas d’images RGB-D. No-

tamment, nous présentons des méthodes permettant d’exploiter les différences de convergence

des erreurs photométrique et géométrique, tout en maintenant la précision de l’enregistrement

direct de l’image. Dans ce contexte, nous avons proposé une technique d’estimation de pose

rapide pour calculer une estimation approximative des mouvements importants entre les images

en profondeur, qui peut être utilisée comme initialisation des méthodes directes. Cette estima-

tion de pose s’appuie sur les propriétés d’invariance en rotation des images sphériques, pour

traiter de façon séquentielle l’estimation de la rotation puis de la translation en utilisant à la

fois l’orientation des vecteurs normaux aux plans de la scène et l’information de profondeur.

Ces deux étapes sont calculées efficacement à partir de distributions utilisant des images en

profondeur à basse résolution. Les limites de validité de la méthode d’estimation de pose ont

également été analysées notamment en terme d’observabilité. Par la suite, nous avons proposé

une approche d’enregistrement d’images permettant d’améliorer le bassin de convergence en

modifiant la fonction de coût de façon adaptative. Cette approche exploite les propriétés de

convergence différentes des termes d’erreur d’intensité et de profondeur en fonction de l’ampli-

tude des mouvements de la caméra. Les résultats expérimentaux utilisant des images sphériques

et perspectives confirment que ces méthodes apportent des améliorations substantielles dans

la convergence du suivi de la caméra en permettant d’aligner efficacement les images avec des

rotations de 180 degrés et des translations jusqu’à trois mètres dans le cas des images sphériques.

Dans la deuxième partie de la thèse, nous avons traité le problème de la construction d’une

représentation compacte et garantissant une bonne couverture de la scène. La construction de
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ce modèle étant effectuée hors ligne, différents pré-traitements sont appliqués aux images. Une

méthode de régularisation est proposée pour filtrer les images de profondeur issues du capteur

sphérique stéréo. Cette méthode repose sur une extension de l’algorithme de superpixel SLIC

pour segmenter les images RGB-D en exploitant les informations d’orientation de la surface et

de couleur. Nous avons également proposé une version adaptée de SLIC à des images panora-

miques en utilisant la géodésique dans la sphère, au lieu de la norme euclidienne. Enfin, nous

avons décrit un cadre de cartographie compact pour créer des cartes RGB-D topo-métriques

de la scène. La carte est composée d’images clés RGB-D réparties de façon optimale dans

l’environnement, en utilisant les notions de visibilité et de couverture spatiale. Les approches

développées d’enregistrement et de régularisation sont exploitées pour construire cette carte.

Le positionnement des images clés dans la scène est réalisé à partir du Voronöı calculé sur

l’espace libre. Nos résultats préliminaires montrent que cette carte topo-métrique possède de

bonnes propriétés de visibilité et de compacité et, de ce fait, est particulièrement bien adaptée

aux approches denses d’enregistrement basées sur l’apparence. Notamment, en utilisant cette

représentation, il est possible de couvrir 90% de l’environnement avec seulement 1% des images

images sphériques RGB-D construites à partir des données d’acquisition. En outre, cette carte

peut être mise à jour au fil du temps en intégrant de nouvelles données acquises avec différentes

trajectoires de caméras. Cette capacité présente un intérêt majeur dans le contexte de la carto-

graphie à long-terme et de la navigation autonome. L’intérêt de ces approches est montré par les

résultats d’expérimentation de localisation et de cartographie sur des scènes réelles d’intérieur

et d’extérieur, où la compacité, la précision et la cohérence des cartes ont été considérablement

améliorées.

Les méthodes développées dans cette thèse visent à étendre le champ d’application des

approches d’enregistrement basées apparence et à proposer des représentations compactes de

l’environnement bien adaptée aux problématiques de robotique mobile et de cartographie dense.

Ces méthodes permettent de gérer des séquences d’acquisition où les déplacements entre les

images sont importants comme , par exemple, dans le cas de séquences acquises par des caméras

embarquées sur des véhicules à forte dynamique (drones, voitures autonomes). Cela a également

un impact direct sur les ressources computationelles, notamment dans le cas d’applications

temps réel embarquées, en réduisant les besoins en calcul et en mémoire par le fait que moins

de trames sont traitées pour la localisation et la cartographie. Enfin, les méthodes proposées

amènent directement à des représentations efficaces de la scène adaptées à la cartographie

d’environnement à grande échelle et apte à intégrer de nouvelles données d’acquisition (Life

long learning).
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1 Travaux Futurs

Ces travaux de thèse ouvrent sur de nouvelles voies de recherche à approfondir. Parmi

celles-ci, il parait important de pouvoir établir une garantie théorique de convergence pour

les méthodes d’enregistrement direct utilisant des fonctions de coût hybride photométrique et

géométrique. L’enregistrement RGB-D adaptatif présenté dans le chapitre 5 a amélioré le bassin

de convergence en adaptant le facteur d’échelle photométrique et géométrique lors de l’optimi-

sation. Cependant, le développement de notre approche vient principalement de l’observation

empirique des courbes de niveau des fonctions de coût. Il serait pertinent d’analyser davantage

les propriétés théoriques de ces fonctions de coûts. Une piste de recherche serait d’étendre la

notion de “modèle appris” proposé dans [Churchill et al., 2015, Dequaire et al., 2016] pour

les techniques d’enregistrement basées sur les features, pour établir une définition des limites

supérieures de convergence dans le cas des approche basées apparence.

Les bonnes performances des méthodes présentées reposent en partie sur le large champ

de vue fourni par les images sphériques et les propriétés qui en résultent. Avec des capteurs

avec FOV réduits et de grands mouvements de la caméra, les images peuvent ne pas avoir une

co-visibilité et, dans ce cas, ne pas permettre d’estimer la pose. Pourtant, certaines propriétés

importantes des images sphériques n’ont pas été explicitement exploitées pour l’estimation de

pose. Par exemple, la relation entre un point et son antipodal dans la sphère [Lim and Barnes,

2008, Corke and Mahony, 2009] pourrait être utilisée dans la formulation adaptative présentée

dans le chapitre 5. L’estimation de la pose à partir des normales dans le chapitre 4 n’a pas

utilisé les la possibilité de détecter les objets dynamiques dans la sphère pour robustifier la

sélection du bon mode dans la distribution. Une autre possibilité d’augmenter la robustesse

de cette méthode serait d’utiliser simultanément l’intensité et les informations de couleur pour

trouver les régions superposées.

En ce qui concerne la régularisation des sphères RGB-D présentée dans le chapitre 6,

nous avons considéré une technique de régularisation simple qui agit principalement comme

un filtre passe-bas, contraint par une segmentation intermédiaire en superpixel des bords de

surface géométriques et photométriques. Cependant, d’autres termes d’apparence pourraient

être ajoutés dans la régularisation issus des contraintes liées à la connaissance préalable de l’en-

vironnement (par exemple, de l’orthogonalité, des lignes d’image, des directions principales)

ou de l’utilisation d’informations de haut niveau telles que la segmentation sémantique des

différentes surfaces.

Concernant la création de cartes 3D compactes décrite dans le chapitre 7, d’autres mesures

pourraient être utilisées pour extraire l’espace libre, pour sélectionner les emplacements des

images clés et les images proches. Rajouter des images clés à des endroits particuliers sur les

branches du Voronöı, comme les points du milieu entre deux noeuds ou l’intersection des cercles

de couverture avec les axes médians augmenterait les conditions de visibilité. Les concepts de
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mémoires à long terme et à court terme demandent également à être explorés pour mettre à

jour le modèle photométrique et géométrique des images clés. Dans nos approches, la trajectoire

de la plate-forme mobile utilisée pour acquérir les séquences RGB-D ne prend pas en compte

les conditions d’observation de la scène. En contrôlant le mouvement de la caméra par des

approches de perception active lors de l’acquisition de la séquence d’images RGB-D, il serait

possible d’améliorer les résultats. Par exemple, l’incertitude créée dans la pose en suivant un

chemin avec des surfaces fortement texturées est réduite par rapport à suivre un chemin passant

par un seul plan sans texture qui contraint peu les méthodes d’enregistrement direct. Dans ce

contexte, la planification de chemin en ligne (par exemple, [Salaris et al., 2017, Costante et al.,

2016]) permettrait de sélectionner la trajectoire la plus appropriée pour réduire l’incertitude de

pose et donc améliorer les modèles photométriques et géométriques de la scène.

Enfin, le développement rapide, et avec des résultats prometteurs, des formulations utili-

sant des réseaux des neurones convolutionnels (CNN) pour la segmentation des scènes, mais

aussi pour l’estimation du mouvement, le suivi et la cartographie, ouvre de nouvelles voies de

recherche. Par exemple, [Kendall et al., 2015] et [Weyand et al., 2016] pour la localisation à

partir d’images, [Konda and Memisevic, 2015, Nicolai et al., 2016, Melekhov et al., 2017] pour

une estimation de pose relative à partir d’images en profondeur/RGB-D et [Dosovitskiy et al.,

2015, Guney and Geiger, 2016] pour le flux optique et le calcul des disparités, apportent de nou-

velles formulations à ces problèmes. Le réseau neuronal gère simultanément la correspondance

et le calcul de pose ou de flux optique. L’exploration des capacités des techniques de “deep

learning” comme un outil pour identifier les informations pertinentes, le calcul du mouvement

de la caméra et de la structure des scènes sont des approches prometteuses, en particulier dans

le contexte des caméras soumises à de fort déplacements qui est au centre de ce travail de thèse.
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Appendix A

Photometric and Geometric Jacobians

A.1 Photometric Error Jacobians

We adopt the convention of the right side group multiplication for computing the Jacobians,

we refer to [Blanco, 2010] (sections 10.2 and 10.3) for the left side multiplication parametriza-

tion. The photometric error between the current and reference frames is:

eI(p,x) = I(w(p, T̂T(x)))− I∗(p). (A.1)

Due to due to group properties, the photometric Jacobian JI (1x6) can be decomposed as:

JI = ∇p(I(w(p, T̂)))JwJT, (A.2)

where∇p (1x3) is the image gradient with zero in the 3rd component. JT (12x6) is the Jacobian

of the rigid transformation T(x) relative to the instantaneous velocities x. Each Jacobian row

is composed of the flatten versions of 3 first rows of the generators Ai shown in (3.18) of section

3.3.3.1:

JT =

 flatten(A1)

...

flatten(A6)

 =

 0 0 0 1 0 0 0 0 0 0 0 0

...

0 −1 0 0 1 0 0 0 0 0 0 0

 . (A.3)

Afterwards, Jw (3x12) is the Jacobian of the warping function which depends on the sensor

projection model. Given the 3D point P(p) = (x y z)T and considering squared pixels, the

Jacobian for the perspective projection (2.1) is:

Jw =


fx
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 , (A.4)
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with f the focal length. This Jacobian for the spherical projection model using eq. (2.6) is:

Jw =
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(A.5)

where ρ =
√
x2 + y2 + z2.

A.2 Geometric Error Jacobians

The geometric error is the point-to-plane ICP error:

eD(p,x) = λD(R̂R(x)n∗(p))T

(
P(w(p, T̂T(x)))− T̂T(x)

(
P∗(p)

1

))
. (A.6)

For simplicity of notation to compute the Jacobian JD ∈ R1×6, we denote the 3D point error

ζ(x):

ζ(x) = −T̂T(x)

(
P∗(p)

1

)
+ P(w(p, T̂T(x)))

= −R̂R(x)P∗(p)− R̂t(x)− t̂ + P(w(p, T̂T(x))).

(A.7)

And therefore eq. (A.6) becomes:

eD(p,x) = λD(R̂R(x)n∗(p))T ζ(x). (A.8)

From eqs. (A.8), (A.7) and the product rule:

JD(0) = λDn∗T

(
∂(R(x)T R̂T ζ(z))

∂x

∣∣∣∣∣
z=x

+ R(x)T R̂T∇x(ζ(x))

)∣∣∣∣∣
x=0

. (A.9)

For clarity, the first term in eq. (A.9) is Jd1 and we decompose the second term in two

Jacobians Jd2 and Jd3, such as JD(0) = λn∗T (Jd1(0) + Jd2(0) + Jd3(0)). From ∂(R(x)ζ)
∂x

=
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∂(R(x)ζ)
∂R(x)

∂R(x)
∂x

, the first term is:

Jd1(0) =
(

03×3 S(R̂Tζ(0))
)
. (A.10)

The second term is decomposed in two Jacobians:

Jd2(0) =
(
−I3×3 S(P∗(p))

)
. (A.11)

And finally the last Jacobian is the one corresponding to ∇x(P(w(p, T̂T(x))). This Jacobian

can be seen as an extended version of the image photometric gradient JI, for each component

of P(w(p, T̂T(x)):

Jd3(0) =
(

JP

∣∣T
[P(pw)]1

JP

∣∣T
[P(pw)]2

JP

∣∣T
[P(pw)]3

)T
JwJT, (A.12)

where JP

∣∣
[P(pw)]i

is the image gradient (as in the photometric term) of an image produced with

the ith-coordinate of P(w(p, T̂T(0))). Note that this Jacobian is small for points belonging to

planar surfaces and have a high computation effort. Therefore, Jd3 is neglected since only a

fraction of the scene is on geometric discontinuities and since these points have higher sensitivity

to depth error estimates and self-occlusions.

A.3 Normal Vector Error Jacobians

Similarly to the direct image registration framework, the errors using the normals can be

modeled as:

eN1(p,ω) = n(w(p, R̂R(ω)))− R̂R(ω)n∗(p) (A.13)

eN2(p,ω) = n(w(p, R̂R(ω)))× R̂R(ω)n∗(p) (A.14)

where R̂ is a first rotation approximation. For the normal error metric (A.14), JN2 ∈ R3×3 is:

∇ω(eN2) = ∇ωn(w(p, R̂R(ω)))× R̂R(ω)n∗(p) + n(w(p, R̂R(ω)))× R̂∂(R(ω)n∗(p))
∂ω

(A.15)

JN2(0) = −S(R̂n∗(p))∇ω(n(w(p, R̂R(ω))))

∣∣∣∣∣
ω=0

+ S(n(w(p, R̂)))R̂∂(R(ω)n∗(p))
∂ω

∣∣∣∣∣
ω=0

.

(A.16)
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The first term of (A.15) is analogous to the Jacobian in eq. (A.12) and as so it is zero in all

points belonging to planar surfaces. We will neglect this term for computational reasons since

only a fraction of the scene is on geometric frontiers and these points have higher sensitivity to

depth error estimates and self-occlusions effects. Then eq. (A.16) yields to:

JN2(0) = −S(n(w(p, R̂)))R̂S(n∗(p)) ∈ R(3×3). (A.17)

Note that (A.17) depends on the normal vectors in the current and reference frames. By last,

the Jacobian of (A.13) is simply:

JN1(0) = −R̂S(n∗(p)) ∈ R(3×3) (A.18)

which does not depend of the warped current normal vectors. The simplification used in eqs.

(A.12) and (A.15) is also applied to this Jacobian.

A.4 Robust M-Estimators

Outliers are errors that cannot be explained by the model underlying the intensity and

geometric error distributions, such as in the presence of occlusions, moving objects, wrong

depth estimation or changes of illumination. These outliers can have a strong effect in the

minimization of the cost function. Robust M-Estimators are a class of estimation methods

that can handle outliers present in the sensor data, by replacing the Euclidean norm of the

residuals (which assumes an error with Gaussian/Normal distribution) by a less increasing or

even a bounded norm. We follow the treatment given in section 9.4 of [Zhang, 1995] for these

estimators. Instead of using the Euclidean norm, we want to minimize the cost:

C = min
x

∑
p

ρ(e(p,x)), (A.19)

where ρ is a symmetric positive distance chosen to be less increasing than the Euclidean norm.

This problem can be solved iteratively using a re-weighted least squares system:

C = min
x

∑
p

wi(ek−1(p,x))‖ek(p,x)‖2
2, (A.20)

where the weight wi(x) = Φ(x)/x and Φ(x) = d(ρ(x))/dx is called the influence function. Some

commonly used robust distances and the respective influence functions are shown in fig. A.1.

Before computing the weights, we centralize and re-scale the errors using the median and robust
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Figure A.1 – Influence and robust functions of commonly used M-Estimators: the Euclidean
norm, Huber, t-student and Tukey bi-square.

variance:

x(p) =
(e(p)−median(e))

σ̂
, (A.21)

where σ̂ is a robust estimate of the covariance using the MAD:

σ̂ =
1

Ψ−1(0.75)
median(‖δ(p)−median(δ))‖1). (A.22)

with δ(p) = e(p) − median(e) and Ψ is the cumulative normal distribution function, where

Ψ−1(0.75) = 1.48 represents one standard deviation of the normal distribution.
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Appendix B

Error Propagation and Keyframe

Fusion

In order to fuse the information of different RGB-D-C frames, captured from different

viewpoints, the frames and their uncertainty matrices need to be warped to the same reference

pose of the keyframe. Warping the augmented frame S generates a synthetic view of the scene

Sw = {Iw,Dw,ΣDw}, as it would appear from a new viewpoint. The intensity and depth

images in a viewpoint related by the pose T are:

Iw(w(p,T)) = I(p),

Dw(w(p,T)) = ‖RΠ−1(p)D(p) + t‖2,
(B.1)

assuming stationary photometric and geometric models, as described in section 3.3.1 of chapter

3 and with minimal occlusions between the different viewpoints.

B.1 Uncertainty Propagation

The confidence of the elements in Dw clearly depends on the combination of the pixel

position, the depth and the pose errors over a set of geometric and projective operations.

The propagation assumes the noise present in the images as Gaussian because they can be

represented by the two first moments and by the property that any linear combination of

Gaussian distributions is Gaussian. Herein we describe the propagation for the spherical sensor.

For notation compactness, we omit the pixel coordinates and we refer to the unit vector in the

direction of the pixel p as q = Π−1
S (p). We start by propagating the uncertainty of the

depth and pixel location to the Cartesian 3D point P(p). Considering the spherical projection

model, taking a first order approximation of P(p) = D(p)Π−1
S (p), the error covariance can be

decomposed as:

ΣP = σ2
DqqT + D2Σq (B.2)
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where σ2
D is the depth uncertainty from the regularization of chapter 6 and Σq is the pixel

coordinate confidence (in general Σq is small). The next step consists of combining an uncertain

rigid transform T with the uncertainty in P. Given the mean of the 6DOF ȳ = {tx, ty, tz, θ, ϕ, ψ}
in 3D+YPR form and its covariance Σy, then for Pw(p,T) = RP(p) + t we have:

ΣPw = JP(P, ȳ)ΣPJP(P, ȳ)T + JT(P, ȳ)ΣyJT(P, ȳ)T

= RΣPRT + MΣTMT
(B.3)

Where ΣP is as in (B.2) and M ≈
[

−y z 0
I(3×3) x 0 −z

0 −x y

]
for small rotations (see [Blanco, 2010] for the

general formula of M). The depth image warped in the pose T is as in eq. (B.1): Dw = ‖Pw‖2

and thus, the covariance represented in the reference pose coordinate system is:

σ2
Dw

= JS(Pw)ΣPwJS(Pw)T (B.4)

where JS is the Jacobian of the Euclidean norm: JS(z) = (zT/
√

zTz).
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Résumé

Cette thèse se situe dans le domaine de l’auto-localisation
et de la cartographie 3D pour des robots mobiles et
des systèmes autonomes avec des caméras RGB-D. Nous
présentons des techniques d’alignement d’images et de car-
tographie pour effectuer la localisation d’une caméra (suivi),
notamment pour des caméras avec mouvements rapides
ou avec faible cadence. Les domaines d’application possi-
bles sont la réalité virtuelle et augmentée, la localisation de
véhicules autonomes ou la reconstruction 3D des environ-
nements.
Nous proposons un cadre consistant et complet au problème
de localisation et cartographie 3D à partir de séquences
d’images RGB-D acquises par une plateforme mobile. Ce
travail explore et étend le domaine d’applicabilité des ap-
proches de suivi direct dites “appearance-based”. Vis-à-
vis des méthodes fondées sur l’extraction de primitives, les
approches directes permettent une représentation dense et
plus précise de la scène mais souffrent d’un domaine de
convergence plus faible nécessitant une hypothèse de petits
déplacements entre images.
Dans la première partie de la thèse, deux contributions
sont proposées pour augmenter ce domaine de conver-
gence. Tout d’abord une méthode d’estimation des grands
déplacements est développée s’appuyant sur les propriétés
géométriques des cartes de profondeurs contenues dans
l’image RGB-D. Cette estimation grossière (rough estimation)
peut être utilisée pour initialiser la fonction de coût minimisée
dans l’approche directe. Une seconde contribution porte
sur l’étude des domaines de convergence de la partie pho-
tométrique et de la partie géométrique de cette fonction de
coût. Il en résulte une nouvelle fonction de coût exploitant de
manière adaptative l’erreur photométrique et géométrique en
se fondant sur leurs propriétés de convergence respectives.
Dans la deuxième partie de la thèse, nous proposons des
techniques de régularisation et de fusion pour créer des
représentations précises et compactes de grands environ-
nements. La régularisation s’appuie sur une segmenta-
tion de l’image sphérique RGB-D en patchs utilisant simul-
tanément les informations géométriques et photométriques
afin d’améliorer la précision et la stabilité de la représentation
3D de la scène. Cette segmentation est également adaptée
pour la résolution non uniforme des images panoramiques.
Enfin les images régularisées sont fusionnées pour créer une
représentation compacte de la scène, composée de panora-
mas RGB-D sphériques distribués de façon optimale dans
l’environnement. Ces représentations sont particulièrement
adaptées aux applications de mobilité, tâches de navigation
autonome et de guidage, car elles permettent un accès en
temps constant avec une faible occupation de mémoire qui
ne dépendent pas de la taille de l’environnement.

Mots Clés

Recalage d’images; cartographie; odométrie visuelle; locali-
sation; SLAM visuel; images panoramiques

Abstract

This thesis is in the context of self-localization and 3D
mapping from RGB-D cameras for mobile robots and
autonomous systems. We present image alignment
and mapping techniques to perform the camera local-
ization (tracking) notably for large camera motions or
low frame rate. Possible domains of application are lo-
calization of autonomous vehicles, 3D reconstruction
of environments, security or in virtual and augmented
reality.
We propose a consistent localization and 3D dense
mapping framework considering as input a sequence
of RGB-D images acquired from a mobile platform.
The core of this framework explores and extends the
domain of applicability of direct/dense appearance-
based image registration methods. With regard to
feature-based techniques, direct/dense image regis-
tration (or image alignment) techniques are more accu-
rate and allow us a more consistent dense represen-
tation of the scene. However, these techniques have
a smaller domain of convergence and rely on the as-
sumption that the camera motion is small.
In the first part of the thesis, we propose two formula-
tions to relax this assumption. Firstly, we describe a
fast pose estimation strategy to compute a rough es-
timate of large motions, based on the normal vectors
of the scene surfaces and on the geometric proper-
ties between the RGB-D images. This rough estima-
tion can be used as initialization to direct registration
methods for refinement. Secondly, we propose a direct
RGB-D camera tracking method that exploits adap-
tively the photometric and geometric error properties
to improve the convergence of the image alignment.
In the second part of the thesis, we propose tech-
niques of regularization and fusion to create compact
and accurate representations of large scale environ-
ments. The regularization is performed from a seg-
mentation of spherical frames in piecewise patches
using simultaneously the photometric and geometric
information to improve the accuracy and the consis-
tency of the scene 3D reconstruction. This segmen-
tation is also adapted to tackle the non-uniform res-
olution of panoramic images. Finally, the regularized
frames are combined to build a compact keyframe-
based map composed of spherical RGB-D panoramas
optimally distributed in the environment. These repre-
sentations are helpful for autonomous navigation and
guiding tasks as they allow us an access in constant
time with a limited storage which does not depend on
the size of the environment.

Keywords

RGB-D registration; mapping; visual odometry; local-
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