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l’Université Claude Bernard Lyon 1
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Introduction

Materials based on carbon (carbonaceous materials) have the capability to form different bond-

ings schemes, thus a wide families of allotropes are possible. This is the case of fullerenes (0D),

carbon nanotubes (1D), graphene (2D) or diamond (3D), among many others. Each one of

these carbon forms need specific synthesis conditions (thermodynamics) in which pressure and

temperature are key parameters. Due to the peculiar bond ”flexibility” feature of the carbon

atom, in the last decades the scientific community has payed great attention to investigate the

elaboration of novel carbon materials, leading to new discoveries as well as new technologies.

Between, the more investigated materials are fullerenes,carbon nanotubes or graphene.

Fullerenes were discovered in 1985 by Kroto, Heath, O’Brien, Curl and Smalley [1] (Kroto,

Curl and Smalley were laureated with the Chemistry Nobel prize in 1996). Shortly thereafter in

1991, Iijima in a pioneer work (even if other observations of carbon nanotubes took place earlier)

suggested a new carbon structure, in which graphite sheets should be enrolled up in cylindrical

fashion (helical microtubes), better known now as multi wall carbon nanotubes (MWCNTs) [2].

Two years after the MWCNTs model was introduced independently by Iijima et al. [3] et al. and

Bethune et al. [4] who reported the first experimental evidence of single wall carbon nanotubes

(SWCNTs). Soon after the first production in scale enough for handling, carbon nanotubes

became of great interest for the scientific community, in particular due to the possibility for many

different applications. In fact, carbon nanotube showed a number of exceptional and promising

properties, as for instance, high mechanical stability (high Young’s modulus values ranging

from GPa to TPa, for radial and axial directions, respectively), unique optical and electronic

characteristics, high chemical stability or efficient thermal conductivity [5, 6, 7]. Graphene

isolation was obtained only in 2004 by Novoselov and Geim via the mechanical exfoliation method

[8]. Nowadays a lot of progress has been done in the understanding of graphene properties which

is particularly relevant both from a fundamental and applied point of view to understand the

proprieties of many other carbonaceous systems.

Fullerenes, nanotubes or graphene are nano-systems or nanoscale materials. The properties of

matter at the nanoscale can strongly differ from those of bulk bringing new insights in the mate-

rial science for applications. From a fundamental point of view to understand how the physical

properties of the nanosystem depended on its size or its geometry is one of the most challenging

questions. This is in particular true in the case for carbon or BN nanotubes in which - due to

their 1D nature - their nanometer scale size is characterized by a single number: their diameter.

The low dimensionality, sp2 hybridization associated to the tubular geometry of carbon nan-

otubes give them the capability to investigate confined molecular systems. This is a particularly

exciting subject with a potential for a major control in terms of nanostructuration engineer-

ing (nanofluidic applications [9] for instance). Insertion of water or fullerenes has revealed the

potential for different geometrical configurations, as well as change their initial properties [10].

At the same time in high pressure experiments there is the potential of the inner invasion of

the pressure transmitting medium which will strongly modify the pressure response. In any
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case, applying pressure means bringing atoms or molecules closer to the studied object and a

possible enhancement of chemical or mechanical interactions associated to the proximity of this

environment with the surface of a bulk material. Some studies have presented such effects as

important and others as not having much effect on the measured properties. Clearly this needs

clarification.

There have been deployed very important efforts to understand the mechanical response of

carbon nanotubes under uniaxial stress. Also some research groups in the world have been

working to understand the response of carbon nanotubes to radial deformation including due to

effect of high pressure application. In that way, the radial mechanical stability at high pressure

of carbon nanotubes has been investigated through theoretical means as well as experimental

methods which include optical spectroscopies (absorption, photoluminescence), X-ray or neutron

diffraction and particularly Raman spectroscopy. In fact, the studies in literature using this com-

bination have demonstrated that the environment and filling have influence on the mechanical

response of nanotubes under pressure.

Today, the scientific community agrees on the existence of a radial instability of carbon nanotubes

which has been well characterized in single wall carbon nanotubes. This so called collapse process

takes place at a pressure which is in general inversely dependent on the nanotube diameter, d with

most works pointing ot a d−3 dependence for tubes having a diameter of d > 1nm. Nevertheless

we do not have a complete view on the collapse of lower diameter tubes, the dependence of the

collapse process with the number of walls or how the atomic nature of the tubes. This PhD thesis

is placed in that context and tries to provide new elements to clarify how the mechanical stability

of nanotubes under cold compression can depend on geometrical parameter as its size, but also

to the number of walls of the tube or even its atomic nature (carbon versus BN nanotubes).

The interplay between nanometer-scale physical effects and environment effects in high pressure

experiments is probably at the origin of many of the contradictions, confusions and difficulties

of interpretation. We will try to take this into account in all the different parts of this thesis

work.

The PhD manuscript is organized in 5 chapters followed by general conclusions. The first two

chapters are devoted to contextualize the study, while the next 3 chapters concentrate on the

experimental results obtained in the study of the three systems of the thesis: chirality enriched

SWCNTs, triple-wall carbon nanotubes (TWCNTs) and boron nitride multi-wall nanotubes

(BNMWTs).

Chapter 1 is an introduction to the structure and physical properties of carbon nanotubes. In

this chapter is first introduced the geometrical description of carbon nanoutubes in direct and

reciprocal space, their electronic structure and their dynamics (phonos). In a second part of the

chapter a bibliographic survey on the high pressure properties of carbon nanotubes is introduced.

Finally the chapter concludes, without entering into much detail, with a short introduction to

the specific aspects of BN nanotubes

In Chapter 2 the experimental aspects of the synthesis of carbon nanotubes and the experimen-

tal methodology used in the thesis are presented. Even if this thesis work does not include any

nanotube synthesis aspect, they are so important to define the tubes characteristics, radial dis-

tribution or presence of impurities, that we have made a short presentation of the main methods

of carbon nanotubes elaboration. We then present the different experimental methods which

have been used in the thesis work: high pressure techniques, transmission electron microscopy

12
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(TEM) and Raman spectroscopy. Finally, the experimental details of TEM and Raman at high

pressure used in the three systems (SWCNTs, TWCNTs and BNMWNTs).

Chapters 3 to 5 constitute the core of results of the thesis in which is explored the effect on

the radial stability with pressure or the integrity of nanotubes considering the size or chirality

(Chapter 3), number of walls (Chapter 4) or nature of the tubes (Chapter 5). In all cases the

combination of in situ Raman spectroscopy at high pressure and ex situ characterization of

samples after pressure cycles up to pressures in some cases of 80 GPa has been essential to drive

our main conclusions. In all these 3 Chapters we have included a specific section to precise the

elaboration method of the samples, the analysis and results from the radial breathing modes

(RBMs), the analysis and results form the tangencial modes (TMs) and the irreversibly aspects

in which the TEM analysis has played an important role. Only for the case of the BNMWNTs

the RBM section is absent as such signal is not detected in BNMWNTs. All these Chapters

include an Introduction and a Conclusion sections trying to summarize the main conclusions.

The General conclusion tries to summarize the main findings of this thesis work confronting the

results of the different chapters to try to derive some general ideas. Finally, some annex and

a bibliography complete the work. Overall, we have tried to modestly contribute to a better

understanding of the mechanical stability and the pressure response of nanotubes, a rich family

of fascinating nano-objects.
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Chapter 1. Basic concepts of carbon nanotubes and boron nitrite nanotubes

1.1 Carbon nanotubes

1.1.1 General aspects

The carbon nanotube structure can be described as an one-atom-thick sheet of carbon arranged

in a hexagonal lattice (graphene layer), which is rolled up into a hollow cylindrical shape (Fig.

1.1). This arrangement gives a high length-to-diameter ratio (> 103) for the carbon nanotubes

(CNTs), which in turn form an interesting system class for the study of low-dimensional physics,

at the theoretical or experimental levels. The following subsections will address basic concepts

of carbon nanotubes, as for instance geometrical and electronic structures, which are important

to describe its fundamental properties.

Figure 1.1 – Wrap-

ping of graphene layer

to generate CNNT [11].

1.1.2 Geomectric structure

Carbon nanotubes are usually classified according to the cylindrical layers (walls) number that

constitute them. Thus, the tubes can be single-, double-, triple- and multiwall carbon nanotubes

(SWCNTs, DWCNTs, TWCNTs, and MWCNTs, respectively). In particular, DWCNTs and

TWCNTs are special cases of the MWCNTs class.

There are an infinity of possible ways to roll up the graphene layer (bi-dimensional [2D] hexagonal

lattice or honeycomb structure), but these seemingly immense rolling up fashions, when studied

under a symmetry standpoint show two helical forms, known as achiral (symmorphic) or chiral

(non-symmorphic) geometries. The chirality concept is introduced to describe the reflection

symmetry between an object and its mirror image, thus an object is chiral when itself cannot

be superimposed on its mirror image and achiral if the object is superimposable. Furthermore,

the nanotubes achiral geometry can be grouped in two types, armchair or zigzag, according to

their cross-sections. Comprehension of the chirality notion is an essential key to categorize the

physical and electronic properties of CNNTs.

The 2D hexagonal lattice is generated (parametrized) by two primitive vectors, �a1 and �a2,

which uniquely define the nanotube structure by chiral vector �Ch (Fig. 1.2), this vector spans

the circumference of the cylinder when the graphene sheet is rolled up into a tube. The chiral

vector is written as:

�Ch = n�a1 +m�a2, (1.1)

where n and m are integers, related by the inequality 0 ≤ m ≤ n. The indexes n and m

provide the simplified notation to �Ch ≡ (n,m). This notation is extensively used to categorize

16



1.1 Carbon nanotubes

Figure 1.2 – The scheme of

an unrolled nanotube unit cell

projected on graphene sheet.

The figure show the chiral an-

gle θ together with vectors chi-

ral �Ch, translational �T and the

primitive vectors �a1 and �a2 of

graphene layer. The crystal-

lographically equivalent points

(OwithA) and (B withB
′
), that

overlapping form the nanotube.

Adapted from [12].

the nanotube geometry. The other way to characterize the nanotube geometry is by giving its

diameter dt and its chiral angle θ, where both parameters are related to the chiral indexes n

and m. Assuming the lattice constant a =
√
3aC−C = |�a1| = |�a2| for graphene layer and that

aC−C = 1.42Å carbon bonding length, it can be deduced dt in function of the circumference

length | �Ch|, as follows:

dt ≡ | �Ch|
π

=

√
�Ch · �Ch

π
=

√
(n�a1 +m�a2) · (n�a1 +m�a2)

π

=

√
n2�a1 · �a1 + 2nm�a1 · �a2 +m2�a2 · �a2

π
,

where the scalar product �a1 · �a2 = |�a1||�a2| cos 60◦ = a2

2 ,

then

dt =
a

π

√
n2 + nm+m2 ; | �Ch| = a

√
n2 + nm+m2 (1.2)

The chiral angle θ defines the �Ch orientation in relation to the primitive vector �a1 Fig. 1.2, then

considering eqs. 1.1, 1.2 and the inner product �Ch · �a1, follows that
�Ch · �a1 = | �Ch||�a1| cos θ

(n�a1 +m�a2) · �a1 = a
√
n2 + nm+m2a cos θ

(2n+m)
a2

2
= a2

√
n2 + nm+m2 cos θ

⇓

cos θ =
2n+m

2
√
n2 + nm+m2

⇐⇒ θ = arccos

(
2n+m

2
√
n2 + nm+m2

)
(1.3)

Due to the sixfold rotational symmetry of the graphene, all CNNTs can be constructed with

chiral angles θ ≤ 60◦ and furthermore, for each tube with 0◦ ≤ θ ≤ 30◦ an equivalent tube
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Chapter 1. Basic concepts of carbon nanotubes and boron nitrite nanotubes

30◦ ≤ θ ≤ 60◦, but because of the reflection symmetry (chirality) the tube changes from right-

handed to left-handed. Therefore, we can restrict our considerations to the case 0◦ ≤ θ ≤ 30◦,
corresponding to 0 ≤ m ≤ n. And as already aforementioned, the tubes can be classified in 3

groups, based on their chiral angles (see Figure 1.3):

• armchair nanotube (achiral), where θ = 30◦ or n = m ,

• zig-zag nanotube (achiral), where θ = 0◦ or m = 0 ,

• chiral nanotube, 0◦ < θ < 30◦ or n �= m .

Figure 1.3 – Schematic model for three different groups of single-walled carbon nanotubes. The

blue line is a guide to the eyes. a) Armchair. b) Zigzag. c) Chiral [13].

The nanotube unit cell unrolled on honeycomb lattice forms a rectangular area bounded by

vector �Ch and translational symmetry vector �T (Fig. 1.2). The vector �T is collinear to the tube

axis and perpendicular to �Ch. Besides it links the nearest two equivalent atoms in this direction.

We can express �T in function of vectors �a1 and �a2, as

�T = t1�a1 + t2�a2 ≡ (t1, t2) (1.4)

In order to express t1 and t2 based on indexes (n,m), it should be noted that due to definition

�Ch ⊥ �T , the inner product �Ch · �T = 0 and that also leads to the fact that the greatest common

divisor (gdc) of the integers (t1, t2) is equal to one, that is gdc(t1, t2) = 1. Otherwise, if t1 and

t2 were multiple with each other, the perpendicularity property would be unsatisfied. Then, by
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1.1 Carbon nanotubes

eqs. 1.1, 1.4 and with 0 ≤ m ≤ n, we have

�Ch · �T = 0

nt1a
2 + nt2

a2

2
+mt1

a2

2
+mt2a

2 = 0

t1(2n+m) + t2(2m+ n) = 0 =⇒ t1 = −t2 (2m+ n)

(2n+m)
or t2 = −t1 (2n+m)

(2m+ n)
, (1.5)

tanking in account that ∀a, b integers gdc(−a, b) = gdc(a,−b) = gdc(−a,−b) = gdc(a, b), follows

gdc(t1, t2) = gdc

(
−t2 (2m+ n)

(2n+m)
, t2

)
= gdc

⎛
⎜⎜⎝−t2 (2m+ n)

(2n+m)
,−t2

1︷ ︸︸ ︷
(2n+m)

(2n+m)

⎞
⎟⎟⎠

= − t2
2n+m

=dR︷ ︸︸ ︷
gdc(2m+ n, 2n+m) = 1 =⇒ t2 = −2n+m

dR
(1.6)

by substituting eq.1.6 in eq.1.5,

t1 = −t2 (2m+ n)

(2n+m)
=⇒ t1 =

2m+ n

dR
(1.7)

The calculation of the number of hexagons contained in unit cell can be obtained by unit cell

area divided by graphene unit cell:

N =

∣∣∣�Ch × �T
∣∣∣

|�a1 × �a2| =
2(n2 +mn+m2)

dR
, (1.8)

with N corresponding to the hexagons number inside of the nanotube unit cell projected on

graphene. Knowing that each graphene unit cell contains two equivalent carbon atoms, we can

deduce that in this nanotube unit cell there will be 2N carbon atoms.

1.1.2.1 Nanotube reciprocal lattice

The reciprocal lattice of graphene can be constructed by the orthogonal relation,

�ai ·�bj = 2πδij . (1.9)

Writing the primitive vectors �a1 and �a2 of the hexagonal lattice in Cartesian coordinates, we

have

�a1 = a cos 30◦î+ a sin 30◦ĵ = a

√
3

2
î+

a

2
ĵ

�a2 = a cos 30◦î− a sin 30◦ĵ = a

√
3

2
î− a

2
ĵ ,

then using the previous expressions together with eq. 1.9, the reciprocal lattice of graphene is

given by,

�b1 =
2π

a
√
3
k̂x +

2π

a
k̂y

�b2 =
2π

a
√
3
k̂x − 2π

a
k̂y , (1.10)
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Chapter 1. Basic concepts of carbon nanotubes and boron nitrite nanotubes

where �b1 and �b2 are the reciprocal primitive vectors, k̂x and k̂y reciprocal space unit vectors

(dual basis of the k-space or dual space).

The nanotube unit cell projected on the graphene layer is defined by vectors �Ch and �T (Fig.

1.2), and the analogous representation for the nanotube on reciprocal lattice of graphene is given

by vectors �K1 and �K2 (corresponding to �Ch and �T , respectively) and constructed by relations,

�Ch · �K1 = �T · �K2 = 2π (normalization)

�Ch · �K2 = �T · �K1 = 0 (orthogonality). (1.11)

From the eqs. 1.6, 1.7, 1.8, and 1.11, the vectors �K1 and �K2 are expressed by:

�K1 =
−(t2 �b1 − t1 �b2)

N
, �K2 =

(m�b1 − n�b2)

N
. (1.12)

The modules of the two vectors from eq. 1.12 are given by,∣∣∣ �K1

∣∣∣ = 2

dt
,
∣∣∣ �K2

∣∣∣ = 2π∣∣∣�T ∣∣∣ . (1.13)

It should be noted that the wave vector �K2 is collinear with the translational vector �T , and

that the collinearity property is also verified between the wave vector �K1 and the chiral vector

�Ch(nanoscale size in this direction), it follows for this correspondence that the nanotube unrolled

reciprocal lattice is quantized along the �K1 direction and is continuous in �K2 direction.

Then, the vectors μ �K1 (with μ = 0, . . . , N - 1; ∀ N even) form the set of N wave vectors quantized

in direction �K1 of the nanotube unfolded reciprocal lattice. Each one of these N quantized states

correspond to a line segment of length K2 = 2π

|�T | in the direction k
�K2

| �K2| (with − π
T < k < π

T ),

this length corresponds to the 1D first Brillouin zone. Thus, these N line segments constructed

from wave vectors �K1 and �K2, define parallel equidistant lines (cutting lines) in the unrolled

reciprocal lattice of the nanotube. The separation between two neighbor cutting lines is given

by the vector �K1, while the length and orientation of each of these cutting lines is given by

∣∣∣ �K2

∣∣∣
and �K2, respectively. It is interesting to note that the vector �K2 is a reciprocal lattice vector,

while μ �K1 is not.

1.1.3 Electronic structure

Graphene as well as carbon nanotubes possess sp2-hybridized electrons (mixing of valence elec-

tronic states or atomic orbitals). The carbon atom has two electrons in 1s orbitals (strongly

bound to the core) and four valence electrons, occupying the orbitals: 2s, 2px, 2py, 2pz, with the

z-axis perpendicular to the carbon hexagonal network. The sp2 hybridization, the 2s and 2p or-

bitals mix form three in-plane covalent bonds σ and σ∗ (anti-bonding state), which characterize

the binding energy in graphene plane. The out-of-plane orbitals pz create the delocalized bonds

π and π∗ (anti-bonding state) which are relevant for the transport properties.

The understanding of the electronic and optical properties of the carbon nanotubes is obtained

by knowing the electronic band structure. In order to achieve this aim, firstly is introduced

the tight-binding (TB) approximation for graphene followed by the zone-folding method of nan-

otubes.
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1.1 Carbon nanotubes

1.1.3.1 Tight-binding model and zone-folding method

The tight-binding model is an approach to the calculation of the electronic band structure in

a periodically-repeating environment (crystalline lattice), using for this purpose a set of Bloch

functions, that is by writing a linear combination of lattice atoms wavefunctions, differing on a

phase as below,

Φi(�k, �r) =
1√
N

∑
�Rm

ei
�k· �Rmϕi(�r − �Rm), (i = 1, · · · , n) (1.14)

where ϕi denotes the i-th atomic orbital (state or energy level) and �Rm is the atomic site position

in unit cell, moreover for a given �k there are n Bloch functions.

The eigenfunctions or Bloch wavefunctions in the atomic network can be expressed by a linear

combination of Bloch functions as follows,

Ψi(�k, �r) =
n∑

i
′
=1

Cii
′ (�k)Φi

′ (�k, �r), (1.15)

where Cii
′ are coefficient to be determined.

The unit cell of graphene is formed by two distinct carbon atoms A and B (or sublattices), which

Bloch orbitals are given by

ΦA(�k, �r) =
1√
N

∑
�RA

ei
�k· �RAϕz(�r − �RA), (1.16)

ΦB(�k, �r) =
1√
N

∑
�RB

ei
�k· �RBϕz(�r − �RB), (1.17)

with the wavefunctions ϕz(�r − �RA) and ϕz(�r − �RB) describing the pz electrons. In this way,

the electronic structure of the graphene π-bands can derived from the Schrödinger equation

by substituting the eigenfunctions Ψ(�k, �r) (which are written as a linear combination of Bloch

functions of each sublattice eqs. 1.16, 1.17):

Ψ(�k, �r) =
∑

j=A,B

CjΦj((�k, �r)

HΨ(�k, �r) = Eg(�k, �r)Ψ(�k, �r), (1.18)

⇓

H
[ =|Φ〉 (Dirac’s notation)︷ ︸︸ ︷
CA|ΦA(�k, �r)〉+ CB|ΦB(�k, �r)〉

]
= Eg(�k, �r)

[
CA|ΦA(�k, �r)〉+ CB|ΦB(�k, �r)〉

]
, (1.19)

and through the multiplication by one of the eigenstates 〈ΦA| or 〈ΦB| on left side of the eq.

1.19, it follows∥∥∥∥∥HAA(�k)− Eg(�k)SAA(�k) HAB(�k)− Eg(�k)SAB(�k)

HBA(�k)− Eg(�k)SBA(�k) HBB(�k)− Eg(�k)SBB(�k)

∥∥∥∥∥
∥∥∥∥∥CA(�k, �r)

CB(�k, �r)

∥∥∥∥∥ = 0, (1.20)

with the matrix elements given by Hij(�k) = 〈Φi|H|Φj〉 and Sij(�k) = 〈Φi|Φj〉.
By considering only nearest-neighbor interactions, we have that the carbon atom A(B) interacts

with itself and also with the three carbon atoms B(A) in sublattices, thus yielding the Hamilton

forms and the overlap matrix elements HAA = H�
BB, HAB = H�

BA, SAA = SBB and SAB = S�
BA
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Chapter 1. Basic concepts of carbon nanotubes and boron nitrite nanotubes

1. Using the matrices H and S and solving the characteristic equation 1.20, the eigenvalues

E(�k) are given as a function ω(�k), kx and ky:

Eg(�k) =
ε2pz ± γω(�k)

1± sω(�k)
(1.21)

where the + (-) signs in the numerator and denominator provide the bonding π energy band

(anti-bonding π∗ band), while the function ω(�k) is given by

ω(�k) =

√
1 + 4 cos

√
3kxa

2
cos

kya

2
+ 4 cos2

kya

2
(1.22)

and with ε2pz , γ and s written as

ε2pz = 〈ϕA(�r − �RA)|H|ϕA(�r − �RA)〉
γ = 〈ϕA(�r − �RA)|H|ϕB(�r − �RB)〉
s = 〈ϕA(�r − �RA)|ϕB(�r − �RB)〉. (1.23)

It is worth mentioning that, the valence and conduction bands go through the K- and K
′
-points

have the Fermi level (EF ) equal to zero. Thus, the expansion of the cosines around these high

symmetry points in eq. 1.21 gives

E±
g (
�k +K) = E±

g (
�k +K

′
) = ±

√
3γ0a

2

√
k2x + k2y, (1.24)

which leads to a quasi-linear dispersion of the graphene electronic structure, known as Dirac

cones. At the K and K
′
valleys the electrons behave like mass-less particles or Dirac fermions.

The band structure of graphene by nearest-neighbor tight-binding approach is shown in Fig.(1.4).

After building the energy dispersion relations for graphene, the electronic structure of SWCNTs

can be obtained from the ones of graphene. As shown in Subsect. 1.1.2.1, by the periodic bound-

ary conditions
(
Φ(�r + �Ch) = Φ(�r) ⇐⇒ exp(i�k · �Ch) = 1

)
in the direction of the chiral vector �Ch

(along the circumference), the wave vector �K1 becomes quantized, while along the nanotube axis

the wave vector �K2 associated to the translational �T remains continuous for the case of tubes

with infinite length. Thus in the dual space (reciprocal space of graphene), the wave vectors pair

( �K1, �K2) defines cutting lines one-dimensional that when crossing the graphene conduction and

valence bands create the 1D energy subbands of nanotubes and this approximation is so-called

of zone-folding or confinement. Finally, the 1D energy dispersion relations are expressed as

Eμ(k) = Eg

(
μ �K1 +

k �K2

| �K2

|
)
, (μ = 0, · · · , N − 1) and k ∈ ]− π/‖�T‖, π/‖�T‖] (1.25)

Near to the K-point or close to the Fermi level, the energy dispersion behaves linearly in first

approach, yielding the energy dispersion of subband μ given as

E±
μ (k) ≈ ±

√
3γ0a

2
|�kμ − �kF |, (1.26)

with �kF being the Fermi wave vector.

1The calculations development and deeper discussions can be seen in Ref. [5, 6]).
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1.1 Carbon nanotubes

The cutting lines behavior close to the Dirac point are essential for nanotubes properties. In

other words, the electronic nature of the nanotubes depend on the position of the cutting lines

in relation to the K (K
′
) point. So, when one of these lines crosses the graphene Dirac point,

the tube is considered metallic. Otherwise, if no line touches the K-point, the tube exhibits a

separation between the valence and the conduction bands (energy gap) and it is semiconducting.

In addition, carbon nanotubes can be classified according to the rule ν ≡ n−m(mod3)2, setting

thus nanotube families

1. ν = 0 , metallic (M);

2. ν = +1 , semiconducting (SC) of family type I;

3. ν = −1 , semiconducting (SC) of family type II.

The armchair nanotubes are always metallic, whereas zig-zag and chiral nanotubes can be semi-

conducting or metallic. Moreover, the energy dispersion graphs for the SC and M tubes can be

calculated from (1.26), showing that the subband indices (μ = 0, ±1,±2,. . .) of metallic tubes

are identical at the Fermi levels from the Dirac points (K and K
′
valleys). On the other hand,

in semiconducting CNTs, the subband quantum numbers closest to EF are opposite at K and

K
′
valleys.

Figure 1.4 – The

electronic energy dis-

persion of graphene

(adapted from Ref.

[14]).

1.1.3.2 Density of states

An important property related to the energy bands of CNNTs is density of states (DOS), which

informs about the density of mobile electrons or holes present in the system. Each of the cutting

lines (except for the one that touches the Dirac point) give rise to a local maximum at the

valence band (or minimum at the conducting band) in the DOS diagram, known as a 1D van

2In particular, the electronic states are restricted to the wave vectors that fulfill the condition �k · �Ch = 2πq (q

integer) and since the K-point is at 1
3
(�b1 −�b2), a nanotube is metallic if �K · �Ch = 2πq = 1

3
(�b1 −�b2)(n�a1 +m�a2) =

2π
3
(n−m) or 3q = n−m ⇒ n ≡ m(mod 3) Ref. [5].
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Chapter 1. Basic concepts of carbon nanotubes and boron nitrite nanotubes

Hove singularity (VHS). The contribution for energy band with index μ in the density of states

is mathematically express as

ρ(E) =
2

N

N∑
μ=1

ˆ [
∂Eμ(k)

∂k

]−1

δ [Eμ(k)− E] dk, (1.27)

where the factor 2 in the numerator is included due to the spin degeneracy, and N represents

the number of pairs of energy dispersion curves.

Figure 1.5 – The

energy-momentum

contours for valence

abd conducting bands

for graphene (double

cone). The cutting

lines of these contours

denote the dispersion

relation of nanotube,

given rise to different

energy sub-bands in

the DOS plot (left

panel). Adapted from

[13].

Close to the K-point the DOS can be expressed in an analytic form using the eq. 1.26. Thus,

for a given subband μ, the extreme values of the conduction and valence bands (minimum and

maximum, respectively) are written

E±
μ = ± aγ0√

3d
|3μ− n−m| = ±E0|3μ− n−m|, (1.28)

where the Fermi energy is set to zero. Then, the density of states becomes

ρ(E) =
4a

π2dγ0

∑
μ

g(E,Eμ), g(E,Eμ) =

{
|E|/

√
E2 − E2

μ, if |E| > |Eμ|
0, if |E| < |Eμ|

. (1.29)

The function g(E,Eμ) diverges at the band-edges of the valence and conduction subbands (E =

Eμ). Thus 1D nanotube DOS has a sharp threshold and a decaying tail.

In the case of metallic nanotubes, the desity of states at the Fermi level presents no bandgap

(available electronic states), however the van Hove singularities are observed from E/E0 =

±3,±6, . . ., thus a pseudo bandgap is defined for the metallic CNNTs between the first singu-

larities conduction and valence energy bands, i.e.

M11 = 6E0 =
6aγ0√
3d
. (1.30)

For semiconducting nanotubes, the DOS at the region around the Fermi energy presents a

bandgap where no states are available, showing also van Hove singularities at positions E/E0 =

±1,±2,±4,±5, . . .. The region without available states is expressed by

S11 = 2E0 =
2aγ0√
3d
. (1.31)
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1.1 Carbon nanotubes

1.1.3.3 Kataura plot

The first experimental observation of the density of electronic states in SWCNTs was accom-

plished via scanning tunneling spectroscopy, however other techniques based on optical spec-

troscopy, have also been able to measure the DOS. More precisely, the optical techniques (like

Raman scattering) do not directly measure the electronic density of states, because some selec-

tion rules are imposed on the electronic transitions in the band structures. A plot that depends

on density of valence-conduction states fulfilling these selection rules, which are available for

optical transitions as a function of the excitation photon energy is known as joint density of

states (JDOS) graph and written as,

ρ(E) =

√
3a2

2π2d

∑
μ

ˆ
dK2δ(K2 − kμ)

∥∥∥∥∂(E− − E+)

∂K2

∥∥∥∥ . (1.32)

By considering the energy transitions Eii (where the i correspond to the valence and conduction

bands at the same cutting line or symmetry) from the van Hove singularities in JDOS plot, it

is possible to build a graph that relates the nanotube diameters and their bandgap energies, so-

called Kataura plot. In other words, the symmetric transitions between VHS of each nanotube

of a given chirality (n,m) shape a vertical set of points on Kataura’s plot at the tube diameter.

These transitions are excited in the nanotube using parallel light polarization to the tube axis.

The nanotubes transition energies can be displayed in branches with 2n+m constant providing

for each Eii a herringbone arrangement Figure 1.6 a).

In practice, since the Kataura graph provides the relation between Eii vs. dt, then a prediction

about which nanotubes sort (chiralities) will be excited in a sample for a specific laser energy

can be performed, see Figure 1.6 b) (it shows a semiconducting (6,5)-tube in resonance with the

excitation energy of 2.16 eV - yellow line). In this sense, the Kataura plot becomes an important

tool for the study of CNNTs by Raman spectroscopy, as well as by photoluminescence. Still

by the Figure 1.6 b), we can also observe the empirical fitting model reasonably mimics the

experimental findings, however some models, e.g. tight-binding, can underestimate the transition

energies, so some adjustments are required to improve the empirical fitting functions, as in the

formula below

Eii(p, dt) = a
p

dt

[
1 + b log

c

p/dt

]
+ βp cos 3θ/d

2
t , (1.33)

with a = 1.049 eV nm, b = 0.456 and c = 0.812 nm−1. This functional form carries both the

linear dependence of Eii on p/dt, expected from the quantum confinement of the 2D electronic

structure of graphene, and the many-body logarithmic corrections [15, 16] (they are important

for the study of CNTs in different environments).

Not less important, it should be noted that the transition energies Kataura plot needs to be

corrected by the excitonic nature of the optical transition energies, which is supported by theo-

ries and experiments [19, 20]. The theoretical predictions previous (using tight-binding model,

ab initio calculations) usually take in account only the electron-phonon coupling strength which

are based on the free-particle picture, so not including the excitonic effects [21, 22]. In this way,

Jiang et al. [23] within the framework of the tight-binding model calculated the Raman inten-

sities (signal) by inclusion of excitonic states, showing that the exciton–photon matrix element
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Chapter 1. Basic concepts of carbon nanotubes and boron nitrite nanotubes

Figure 1.6 – a) Kataura plot from experimental data points (filled circles) and third neighbor tight-

binding calculations (open circles) with the gray and black indicating semiconducting (ES
22 and ES

33

optical transitions) and metallic tubes, respectively. The gray dashed lines correspond to the tubes

from the same branch 2n + m = const. (adapted from [17]). b) Optical transitions energies vs

tube diameter for semiconducting SWCNTs. The black dots are experimental data, while the open

symbols are predictions of E11 (circles) and E22 (squares) from the empirical fitting functions. The

yellow line marks the excitation energy of 2.18 eV for which the semiconducting (6,5)-SWCNT (black

arrow) is in resonance (adapted from [18]).

Mex−op depends upon tube diameter 1/d2t but without the tube type or chiral angle dependence.

Whereas the exciton–phonon matrix elements Mex−ph hardly displayed any deviation from re-

sults based on the free-particle picture (descibres the tube type and chiral anlgle dependences,

but underestimates the diameter dependence, especially for small diameter SWNTs).

1.2 Phonons modes of carbon nanotubes

The phonon dispersion curves of the graphene layer can be calculated via the force constant

model. Since there are two non-equivalent carbon atoms (A and B) in the graphene until cell,

we need considering 6 degrees of freedom, so the secular equation to be solved is a 6×6 dynamical

matrix D. Through some calculations and under certain constrains 3, it is remarkable that the

inclusion of the fourth-neighbor interactions is sufficient to reproduce the phonon relations of

graphene. In this context, there are six phonon dispersion curves (branches), which originate

from the Γ-point in the Brillouin zone. Three from these six phonon branches correspond to

acoustic modes

• an out-of-plane transverse mode (oTA),

• an in-plane tangential mode (iTA),

• an in-plane longitudinal mode (iLA).

3For more details see Ref. [5].
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1.2 Phonons modes of carbon nanotubes

The remaining three branches match to optical modes

• one out-of-plane transverse mode (oTO),

• two in-plane modes (iTO-tangential and iLO-longitidinal).

In a similar way, to the zone-folding procedure used in the treating of eletronic structure of

carbon nanotubes, it can be also employed to obtain the phonon dispersion curves of CNNTs

from the graphene ones. The first approximation arises by superimposing of the N cutting

lines (constructed by wave vectors �K1, �K2) on the six phonon surfaces in the reciprocal space

of the graphene sheet. Thereby, the one-dimensional phonon energy dispersion relation for the

nanotubes is given as,

ωmμ
1D (q) = ωm

g

(
μ �K1 + q

�K2

| �K2|

)
,

(
m = 1, . . . , 6

μ = 0, . . . , N − 1,
and− π

T
< q ≤ π

T

)
, (1.34)

where ωm
g is the 2D phonon frequency relations in the graphene for the m branch, q is 1D wave

vector, T is modulus of the translational vector �T , and μ is the cutting line index (N is given by

formula 1.8). This procedure yields 6N phonon modes for each carbon nanotube. In addition,

the 6(N/2 − 1) pairs of phonon modes related with cutting lines of indices μ and −μ (where

μ = 1, . . . , (N/2 − 1)) are expected to be doubly degenerated, while the phonon modes arising

from the cutting lines for the μ = 0 and μ = N/2 are non-degenerate, and therefore, resulting

in a total number of (3N + 2) distinct phonon branches.

Even though these is a huge number of phonon frequencies in carbon nanotubes, experimentally

just few modes are Raman- or infrared-active and this feature appears due to symmetry selection

rules. The selection rules governing the aforementioned processes are usually obtained via group

theory. But, at the same time, these rules are closely related to the cutting lines concept, and

thus they can be also derived from the zone-folding scheme.

According to the group analysis [24], the Raman and infrared optical modes in CNNTs are

represented by

DRaman
zigzag = 2A1g + 3E1g + 3E2g ⇒ 8 modes;

D infrared
zigzag = A2u + 2E1u ⇒ 3 modes;

DRaman
armchair = 2A1g + 2E1g + 4E2g ⇒ 8 modes;

D infrared
armchair = 3E1u ⇒ 3 modes;

DRaman
chiral = 3A1 + 5A1 + 6E2 ⇒ 14 modes;

D infrared
chiral = A2 + 5E1 ⇒ 6 modes. (1.35)

1.2.1 Raman spectroscopy of carbon nanotubes

Carbon nanotubes when probed through of the resonant Raman spectroscopy (RRS) show fur-

ther enhanced spectral intensities and this is due to the huge density of states available for the

optical transitions, which in turn are characterized by the Eii excitonic transitions present in

VHs (associated with the quantum confinement of electronic states in the chiral vector direction).

This characteristic makes of the RRS a tool of choice to access many properties and physical

phenomena in this 1D carbon allotrope. In the following, we address the well-established studies
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Chapter 1. Basic concepts of carbon nanotubes and boron nitrite nanotubes

from the literature about electronic and phonon structures of carbon nanotubes via resonant

Raman spectroscopy.

1.2.2 Radial breathing mode (RBM)

The radial breathing mode (RBM) Raman feature corresponds to the totally symmetric vibra-

tions of the C atoms in the radial direction, as if the tube was breathing. Usually, this mode

appears between 100 cm−1 < ωRBM < 500 cm−1, being very useful for characterizing nanotube

diameters through the expression

ωRBM = A/dt +B (1.36)

where A and B are parameters determined experimentally and are dependent on the environment

surrounding the nanotubes. For SWCNTs (within diameter range 1-2 nm) in bundles, A = 234

cm−1 and B = 10 cm−1 and for isolated, A = 248 cm−1 and B = 0. Nevertheless, for large

diameter tubes, dt > 2 nm, the RBM peak intensities are weak and are difficult to measures.

For dt < 1 nm the expression 1.36 does not hold the same form due to high-curvature effects

that distort the nanotube lattice leading to a chirality dependence of ωRBM.

As fastly pointed out in the Subsec.1.1.3.3, the Kataura plot is useful to the RRS study of

CNNTs, once that this plot displays Eii versus dt, being directly related to the RBM modes via

relation 1.36 (given Eii vs. ωRBM or 1/dt).

1.2.3 Tangential modes–G band

The Raman tangential modes in graphene are observed at around 1582 cm−1 (similar by to the

graphite), and are referred as G band. The G band is associated with the doubly degenerated

in-plane phonons modes (iTO and iLO), which involve a first-order Raman scattering process

(Figure here). Unlike graphene, the tangential G band in SWNTs gives rise to a complex spectral

characteristics (multi-peaks). However, due to the confinement scheme of the phonons vector

wave in the chiral direction as well as to the symmetry breaking effects linked with the nanotube

curvature, the Raman spectra usually show two strong G peaks that are labeled G+ (ωG+ high

frequency originates from atomic vibrations along the tube axis) and G− (ωG− low frequency

originates from atomic displacement along the circumferential direction).

The G− lineshape of metallic SWCNTs is broadened in comparison with the Lorentzian shape

of semiconducting tubes, and this broadening is explained by the coupling of a discrete phonon

with the electronic continuum spectrum, and is fitted using the asymmetric Breit-Wigner-Fano

(BWF) line shape. Moreover, the G−(G+) vibrational directions in metallic tubes are reversed

in relation to that of semiconducting.

An experimental study over isolated SWCNTs has shown that the G-band allows estimating the

nanotube diameters. More precisely the frequency ωG− as a function of dt is expressed as

ωG− = ωG+ − C

d2t
(1.37)

where ωG+ = 1591 cm−1, C = 47.7 cm−1 nm−2 for semiconducting tubes and C = 79.5 cm−1

nm−2 for metallic tubes.

The results about G-band mentioned above offer a characterization proposal for nanotubes,

where the line shape of G− peak indicates electronic feature (metallic or semiconducting) and
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1.3 Carbon nanotubes under high pressure

the frequency difference of G+ and G− provides an alternative approach for the tube diameter

determination.

In addition, other Raman active modes are also observed in carbon nanotubes. Structural defects

in the nanotube lead to a band at around 1350 cm−1 known as D-band, which is originated from

a double resonant Raman scattering process involving one-phonon and one elastic scattering.

The “overtone” mode related to the D-band is named the G
′
band (previously this mode has

been called D∗ or 2D band [25, 26]), this mode being originated from a double-resonant Raman

process where a two-phonon scattering takes place independently of structural defects [13].

1.3 Carbon nanotubes under high pressure

Carbon nanotubes can have their mechanical and electronic properties tuned by external physical

parameters, as temperature, pressure, electric field and others. Thus, the ability to tune the

nanotubes properties represents an enormous potential for the development of novel technologies.

However, a deeper understanding of how the external parameters modify these properties and

their control is still required. In this context, the high pressure (as external force) has shown to

be an important tool for straintonics investigations.

Many experimental and theoretical studies about high-pressure structural investigations on car-

bon nanotubes are seeking to understand the behavior of this material at extreme conditions.

Theoretical studies based on molecular dynamics, tight-binding methods or density functional

theory (DFT) + tight-binding models have shown that SWCNTs bundles undergo a radial cross-

section modification towards a collapsed conformation under high pressure. These geometrical

changes depends on the nanotube diameter.

Modelizations show that in low pressures regime, tubes with large diameters tend to assume

a polygonal shape, while smaller diameter tubes can to assume a ovalized cross-section [27].

Moreover, when the SWCNTs bundles are submitted to high pressures conditions their cross-

sections can evolve to peanut or dog-bone like shapes (large diameters) and to racetrack or

elliptical shapes (samll diameters) [28].

The pressure threshold for the collapse has been suggested to depend inversely to the nanotube

diameter, with a d−3
t dependence Lévy-Carrier law [29]. This corresponds to the other forms of

collapse dependence as d−1
t have been proposed [27].

In a very recent study, it has been proposed a modified version of Lévy-Carrier law Pcd
3
t = α(1−

β2/d2t ) combining experiments and models. This modeling reveals a deviation from continuum

mechanics in relation to that of Pc ∝ d−3
t for the smallest tubes below ∼ 1 nm in diameter [30].

Experimentally the collapse of SWCNTs has been widely investigated by resonant Raman spec-

troscopy and other techniques. It has been proposed that tubes with diameter dt ≥ 4.16 nm

tend to the auto-collapse at ambient conditions [27] and this theoretical predictions corroborate

with the experimental result of high resolution transmission electron microscope image Fig.1.7

for diameters ranging from 4.6 nm to 6.2 nm [31].

Some high-pressure Raman spectroscopy studies on SWCNTs (1.33-1.46 nm diameter range)

reported the disappearance or total loss of RBM signal and in the pressure ranges from 1.5 to

2.6 GPa and associated this loss with a structural change [32, 33]. In other studies, the RBM

signal loss at low pressures was also followed by a significant decreasing of the G-band intensity
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Figure 1.7 – a)

The collapse pressure

following the d−1
t

law. b) Auto-collapse

of (50,50) SWCNT

bundles at ambient

conditions (adapted

from [27]). c) HRTEM

image shows the

collapsed tubes [31].

or an abrupt change of the G-band pressure derivatives (αG) [34, 35]. Supported by theoretical

calculations, these effects were interpreted as a signature of the cross-section transformation

from circular to ovalized. An investigation using X-ray and Raman spectroscopy has reported

the disappearance of a diffraction peak together with a change of the G-band pressure derivative.

Theses events were again assigned as a structural modification of the radial cross-section at 2

GPa for SWCNT of mean diameter 1.49 nm [36].

Other evidences of collapse have been found for tube diameters ranging between 0.6 – 1.6 nm,

with or without pressure transmitting medium (PTM) [37, 38]. Yao et al. [37] observed a G-band

plateau process (∂ω/∂P = 0), showing also changes on the RBMs full width at half maximum

(FWHM). An intensity decreasing of RBM modes close to the plateau. Above the plateau region

the RBM and G-band profiles presented a strong decrease of intensities, however in the plateau

the intensities did not have an appreciable change. In addition, theoretical simulations suggested

that before the onset of the G-band plateau, the cross-section of the nanotubes changes from

circular shape to an elliptical (which was observed from the FWHM changes in the RBMs near

to the plateau onset) and then to flattened oval shape till the end plateau.

Experiments of high pressures on single-walled carbon nanotubes (1.35 ± 0.1 nm average tubes)

in bundles filled with C70 fullerenes were perfomed by Raman spectroscopy and compared with

the behavior of nonfilled SWCNTs [39]. In this work, the authors detected two successive transi-

tions. The first transition was characterized by the change in the RBM broadening, occurring in

the 2–2.5 GPa range (Figure 1.8(b)) independently of the choice of the PTM and of the filling or

not of the tubes. This transition is explained by the change of the nanotube cross-section from

circular profile to elliptical or polygonized. The second transition took place in the range of 10

– 30 GPa with high dependence on the PTM choice and was pointed out by G-band frequency

downshift (∂ωG/∂P < 0). The behavior of the second transition was assigned as a cross-section

transformation from ovalized or polygonized to a racetrack shape or peanut-like (Figure 1.8(c)).

A work related to the collapse of empty and filled SWCNTs was published by Torres-Dias et.

al. [41]. The mechanical stability of individualized empty (closed, pristine) and water-filled

(opened) SWCNTs with different chiralities at high pressure was studied by high-resolution res-
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1.3 Carbon nanotubes under high pressure

Figure 1.8 – a) The RBM and G+ frequencies evolution as a function of pressure. The plateau onset

marks the structural transformation from circular shape to racetrack [40]. b) Pressure variation of

the RBM linewidth of the C70 peapods and empty nanotubes in different means. c) The G band

evolution of filled SWCNTs with C70 peapods (full symbols) and empty SWCNTs (hollow symbols).

The vertical dashed lines mark the pressures values in which the G band slope decreases [39].

onant Raman and fluorescence-excitation spectroscopy. For empty SWCNTs (average diameter

of 1.32 nm) an abrupt collapse took place at 3.8 GPa, being identified by the RBMs disappear-

ance as shown Fig. 1.9(a). The collapse onset for empty tubes was identified by a plateau of

the G-band frequency and an inflection in the G-band evolution as a function of pressure for

water-filled tubes. The collapse end of empty SWCNTs was associated to the RBMs frequency

disappearance, which happened simultaneously with the plateau end of the G-band. Moreover,

the results displayed that the filling presence in same-diameter tubes (1.32 nm) provides a higher

mechanical stability, delaying the collapse final pressure from 4 GPa to high values (in the range

of 14 – 17GPa) (Fig. 1.9(b)). In turn, these results have elucidated the permanent contradic-

tions between experiments and theory on the interpretation of the collapse values ascribed in

the literature for PTMs differences as due to the tube filling.

In a very recent study, Torres-Dias et al. [30] have identified through of experimental and the-

oretical aspects a deviation in the Lévy-Carrier law for nanotubes of small diameters. In this

work, the deviation from continuum mechanics was ascribed to a modified Lévy-Carrier law

Pcd
3
t = α(1− β2/d2t ) (where β is associated to discretization of the elastic compliance and α is

the bending stiffness of graphene) and compared with the experimental RBMs data from Ref.

[41]. The result analysis determined that the onset and completion of the RBMs quenching are

in excellent agreement to the onset (Pc) and end (at ∼ 1.5 Pc) collapse predicted by models, see

Fig. 1.9(c - d).

Beyond the aforementioned geometrical transformations in SWCNTs, the pressure effects can
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Figure 1.9 – a) The RBM spectra at three different pressures, where at 3.85 GPa the signal is

quenched. b) Comparison of the G-band evolutions of the empty (hollow circles) and filled (full

circles) SWCNTs. The black arrow indicates a plateau for empty tubes [41]. c) The normalised

Raman peak area of nine chiralities plotted as a function of pressure. d) Comparison between the

experimental collapse pressures and theoretical simulations in the from PCd
3 plotted against d [30].

also change their optical properties (electronic structure). By means of theoretical and ex-

perimental studies, it has been demonstrated that under pressure carbon nanotubes undergo

resonance change (optical transitions), which are related to the gap tunability. Lammert et al.

[42] have showed through tight-binding calculations that (n,n) armchair tubes (metallic) when

collapsed become semiconductors and (3n,0) zig-zag tubes can be metallized. Capaz et al. [43]

have investigated electronic properties of (n,0) semiconducting SWCNTs under compression us-

ing a combination of theoretical techniques and revealed that the signal pressure coefficients of

the band gap (dEg/dP) of these SWCNTs can be negative or positive, when the division n/3

produces remainders equals to 2 or 1, respectively. Other feature found was that the magnitude

of dEg/dP seems to increase with diameter. Experimental evidence of resonance changes were

reported by Ghandour et al. [44]. They have performed high-pressure resonant Raman exper-

iments on bundled SWCNTs using two different laser energies and observed that at 3.5 GPa

the intensity G-band profile at 1.96 eV (composed by metallic and semiconducting SWCNTs at

ambient conditions when excited with this energy) was similar to the intensity profile of that one

excited with 2.41 eV (only semiconducting SWCNTs have been observed when probed for this

laser energy at ambient conditions). This behavior was associated to a redshift in the transition

energies of metallic tubes (E11) induced by pressure. Shan et al. and Wu et. al. [45, 46] studied,
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1.3 Carbon nanotubes under high pressure

the pressure effects on the optical transitions in individualized semiconducting single wall carbon

nanotubes of different diameters and chiralities by means of optical absorption and photolumi-

nescence spectroscopy. Their results showed that the pressure coefficients of band-gap energies

are negative (E11 and E22) and dependent on the chirality, being less sensitive fo the second van

Hove transitions. For the case of larger diameter tubes the sensitivity is more pronounced.

Figure 1.10 – a) G-band spectra at high pressure excited by two different laser lines (1.96 eV in

black and 2.41 eV in gray). The point marked “X” shows the resonance change. b) Kataura plots

at ambient conditions (upper panel) and at 3.5 GPa (lower panel) close to the excitation energies

of 1.96 eV and 2.41 eV. The black triangles represent the metallic tubes whereas the opnen circles

are semiconducting SWCNTs. The resonance windows are also limited by dashed lines [44]. c)

Absorption spectra at high pressures taken at two different energy ranges (first from 0.9 - 1.3 eV;

second from 1.2 - 2.8 eV). d) Measured linear pressure coefficients as function of peak energy observed

from the absorption spectra for transition energies E11 and E22. The dashed lines connect families

with equal n-m values [46].
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Structural changes also have been investigated in DWCNTs. Through molecular dynamics it

was observed that isolated DWCNTs undergo a pressure induced phase transition, with the tube

cross-section changed from circular to elliptical shape simultaneously for outer and inner tubes,

evolving to peanut. The critical transition pressure was observed to depend strongly of the inner

tube diameter, following the same inverse cubic law (d3inner) for SWCNTs [47]. On the other

hand, the mechanical stability in DWCNTs bundles has been studied using different theoretical

techniques and the results show that the phase transition depends on symmetry and diameter

of DWCNTs bundles, having the collapse pressure governed by inverse cubic law. However in

that work the diameter dependence of the collapse pressure is proposed to be dependent on the

average of the inner and outer tube diameters [48].

The pressure effect on electronic bands and structural stability of DWCNTs bundles was inves-

tigated by combining a tight-binding model, a classic force field and first-principle calculations

[49]. The results pointed out that the outer tube acts as a protective shield for the inner

tube, which increases the mechanical stability of the outer tube (the resistance to the external

pressure). Furthermore, it has been observed that the structural phase transition induces a

pseudogap along the ΓX–line in the electronic band structure of armchairs tubes (metallic) and

the DWCNTs bundles optical properties display a strong anisotropy in the collapse. After the

collapse these properties changed considerably.

Another experimental study on the response to pressure application of double-wall nanotubes by

means of Raman spectroscopy also showed the outer tubes effect [50]. The pressure screening

in DWCNTs bundles based on radial breathing modes behavior was studied by Arvaniditis et

al. [51, 52]. They proposed that the normalized pressure coefficient vs initial RBM frequencies

(Γi = (1/ωi)(∂ωi/∂P )) is attenuated due to shielding effect provided by outer tubes to the inner,

which leads the normalized pressure coefficient values of inner tubes to be closer of those for

individual tubes with the same diameter. The pressure response of inner tubes was attributed

to the intratube coupling and their tube spacing dependence, indicating thus the existence of

specific inner-outer tube combinations.

The cold compression effect on DWCNTs optical properties using absorption/transmission spec-

troscopy has been reported in two works by Anis et al. [53, 54]. These works investigated the

evolution of the pressure-induced absoprtion bands comparing the redshifts of empty SWCNTs

and DWCNTs. The smaller redshift of the absorption bands in DWCNTs indicated that the

outer tubes are stabilized by the inner tubes, moreover, an anomaly in the pressure-induced shifts

took place at 12 GPa pointing out the structural deformation onset of the tubular cross-sections.

The experimental collapse in DWCNTs was also investigted by high-pressure resonance Raman

technique in two different PTM (paraffin oil and NaCl) in the work of Aguiar et. al [55]. They

observed the collapse onset by a inflection in the slope of the G+ pressure coefficient. The

collapse process was seen as a two steps mechanism: (i) the outer tube is destabilized at a

higher pressure than SWCNTs with same diameter (evidence of mechanical support), followed

(ii) by the inner tube destabilization as response to the outer tube deformation at a lower

pressure collapse than for the corresponding SWCNT. Calculations in that same work indicated

that the collapse pressure appears to follow inverse cubic law 1/d−3
tav (dtav the average diameter

from the inner and outer tubes). They also observed experimentally that the collapse process is

independent of the PTM nature (chemical screening).

In very recent study, Alencar et .al [56] studied collapse of few-wall (2 and 3) carbon nanotubes.

34



1.4 Specific aspects of BN nanotubes

They performed high pressure resonant Raman experiments in DWCNTs of inner and outer

diameters larger than 1 nm (more precisely, inner and outer diameters averaging 1.5 nm and 2.0

nm, respectively) and observed experimentally the onset and end of the radial collapse process

between 2 GPa and 5 GPa, through of the G-band slope modification together with quenching

of the RBMs. These experimental results were found to be in good agreement with the modified

Lévy-Carrier formula Pcd
3
t = α(1− β2/d2t ).

In brief, despite of many efforts to understand the collapse process, it shows still quite complex

scenarios without a consensus in the literature, mainly for the case of few-wall nanotubes. The

difficulties can have different origins, among them, the samples synthesis method providing huge

diameter distributions, chiralities, the tubes bundling as well as the number of defects, beyond

the external and inherent parameters control that disturb the mechanical stability and also

changed the electronic properties. Motivated for these limiting factors, we accomplished high

pressure experiments in different carbon nanotubes systems, which will be discussed along this

work.

1.4 Specific aspects of BN nanotubes

Boron Nitride Nanotubes (BNNTs) can be seen as hexagonal boron nitride (h-BN) sheets that

have been concentrically rolled into cylinders Figure 1.11 a). This corresponds to the geomet-

rical analogy used for graphene wrapping to form carbon nanotubes (CNTs). BNNTs were

initially predicted by computational simulation in 1994 [57, 58] and synthesized by arc-discharge

method in 1995 [59]. Compared to CNTs, which can be metallic or semiconducting depending

on chirality, BNNTs have a large band gap beyond 5 eV [60] (insulating nature) with weak de-

pendence on chirality. They also exhibit enhanced thermal stability, high thermal conductivity

and significant yield strength [61]. These properties are sometimes complementary to those of

CNTs and make BNNTs promising candidates for advanced material technologies, such as in the

development of photoluminescence or optoelectronic devices or piezoelectric materials [61, 62]

Figure 1.11 b). However, their development and production for practical applications still de-

pend of trustworthy synthesis methods, analytical characterizations, together with an improved

knowledge of the structure-property relationships.

A variety of methods, such as laser ablation [65], chemical vapor deposition (CVD) [66], ball-

milling [67], substitution reaction [68] were invented and adopted to synthesize BNNTs. These

synthesis methods provided BNNTs with different purity, diameters and structures in order to

meet the requirements for detailed physical property investigations. Nevertheless, the absence of

an effective method for the large-scale synthesis of BNNTs with high purity and small diameters

is still a prime obstacle in a route toward further understanding BNNT characters and their real

practical prospects. In order to overcome these hindrances, we present in Chapter 5 a synthesis

route developed for the our BNNTs study, know as Boron Oxide Chemical Vapor Deposition

(BOCVD) following a catalytic “Vapor-Liquid-Solid (VLS) Growth Mechanism”.

The BNNTs, as an inheritor of h-BN sheet, show the same advantageous properties of this 2D

material (summarized in Fig. 1.11 b)). Thus, when we are exploring the BNNTs physical prop-

erties (as electronic and phonon structures, mechanical aspects, Raman modes) under certain

restrictions we are also exploring the h-BN layer physical properties. The BN allotropes will be
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Figure 1.11 – a) The representation of a hexagonal boron nitride sheet generating a BNNT (red

arrow - adapted from [63]). b) BNNTs vs CNTs properties comparison (adapted from [64]).

invoke insofar as be interesting to compare their properties with the BNNTs.

A theoretical work by generalized tight-binding molecular dynamics reveals that unlike CNTs,

BNNTs possess a wave-like or “rippled” surface in which B atoms rotate inward to an approxi-

mately planar configuration, whereas the N atoms move outward into a corresponding pyramidal

configuration. More interestingly, it was found that a zig-zag BNNT may favor a flat end, while

in an arm-chair tube the conical tube closure is more energetically favored and a “chiral” tube

may have the amorphous end. This discovery made it possible to find out the chirality of BNNTs

by simply checking TEM images of the BNNTs’ ends. However, the exact relationship between

chirality and tip morphology has not been verified yet because of very few relevant experimental

works [69].

1.4.1 Electronic structure of BN nanotubes

In spite of structure similarity, BNNTs possess totally different electronic structures with CNTs.

With a constant wide band gap at 5.0–6.0 eV, unmodified BNNTs can be considered as insu-

lating materials. A dielectric constant of 5.90 was predicted by theoretical calculations which is

universal for all BNNTs, regardless of their radius and chirality. High-resolution transmission

electron microscopy (HRTEM), electron energy loss spectroscopy (EELS) [70], transport exper-

iments [71], measurements of the optical properties by means of absorption [72], and low-loss

EELS [73] were performed on these tubes. These measurements confirmed the predicted large

band gap.

To illustrate the band gap properties of h-BN and BNNTs, we introduce the Figure 1.12 a)

which displays the band gap structure of hexagonal boron nitride, whereas the Figure 1.12 b)

shows the electronic structures for isolated (left panel) and bundled (right panel) (8,8)-BNNT.

According the tight-binding method calculations for the BNNTs’ electronic strcuture [57], it

was found that the semiconducting has direct or indirect band gaps. Theoretically, the band

gap may become rather small (∼2 eV) in very tiny tubes with a diameter >1 nm, however,
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Figure 1.12 – a) Electronic structure of hexagonal boron nitride (adapted from [74]). b) Electronic

band structures of isolated (8,8) BNNT (left panel) and (8,8) BNNT bundle along several high-

symmetry directions in the hexagonal Brillouin zone (adapted from [75]).

such narrow BN tubes have never been experimentally reported. In the studies based on local

density functional (LDA) calculations proved that it is energetically more favorable to fold a

hexagonal BN sheet into a BNNT than to create a CNT from a graphite sheet [76] and the gaps

are stable at ∼4 eV according to LDA. In another calculation using density functional theory

(DFT), the bands of BNNTs were found to be saturated at 5.03 eV for all tubes with realistic

diameters [77]. However, other works point out that the flattening deformation (for instance,

pressure application [78, 79]) may cause a band gap decrease.

In fact, various methods were attempted to tune the electronic structure of BNNTs, such as

applying an electrical field [80], strain [75], doping [81, 82], introducing defects [83], or modifying

the tube surface [84]. Thus, BNNT band gap could be directly reduced by a field or a strain or

modified by introducing localized energy levels inside the gap under chemical treatments. For

instance, the BNNT band gap change was investigated by applying an 0.2 V/Å electric field and
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the band gap of an arm-chair (10,0) BNNT was reduced from 4.0 to ∼0.5 eV 1.13 a). Under

compression the higher diameter tubes, such as (12,0) BNNTs bundles had its band gap energies

decreased from 4.0 to 2.75 eV 1.13 b).

Figure 1.13 – a) The band gaps of (6,0), (10,0) and (18,0) BNNTs are plotted as a function of

field strength (adapted from [80]). b) Band gap evolution as a function of pressure for zigzag (12,0)

(adapted from [78]).

Some studies on photoluminescence and cathodoluminescence showed that BNNTs are an effec-

tive violet and ultra-violet light emission material [85]. The strong luminescence is attributed to

excitonic effects, more precisely to excitons bound to the structural defects: dislocations, facets,

which are observed along the walls. Structural defects have already been identified in h-BN to

be responsible for the D-band emission between 5.4 and 5.65 eV and for its spatial localization.

In that case, D-band luminescence was found to be mainly due to the recombination of trapped

excitons at defects such as grain boundaries. This is in contrast with the case of the MWBN-

NTs, where the junction lines between the facets, which are grain boundaries analogues, are not

the dominant sites for recombination [86]. In fact, such excitonic effects were found to be more

important in BNNTs compared to CNTs.

1.4.2 Phonon structure of BN nanotubes

According to the group-theoretical analysis, the number of active modes is found by determin-

ing how often each irreducible representation appears in the (reducible) representation of the

symmetry group (C2nv, C2nh, or CN , respectively) which is given by the 12n vibrational degrees

of freedom of the unit cell. For zigzag tubes this leads to 14 Raman-active modes (3 with A1

symmetry, 5 with E1 symmetry, and 6 with E2 symmetry, where the E1 and the A1 modes with

vanishing frequency have already been subtracted). Out of these modes, 8 modes (3A1 and 5E1)

are also IR active. In the case of chiral tubes, there are 15 Raman active modes (4A, 5E1, and

6E2) out of which 9 modes (4A and 5E1) are also IR active. The small difference in the number

of active modes between zigzag and chiral tubes stems from the fact that the additional vertical

reflection symmetry of the zigzag tube causes a distinction between Raman+IR active A1 modes

and nonactive A2 modes. The sets of Raman- and IR-active modes for BN armchair tubes are
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disjoint: 9 modes are Raman active (3 with Ag symmetry, 2 with E1g symmetry, and 4 with E2g

symmetry) and 4 modes are IR active (1 with Au symmetry and 3 with E1u symmetry) [87, 88].

Series of calculations of phonon in BNNT’s have been performed using tight-binding model,

density-functional theory, and valence shell model (these calculations of phonons have also been

performed for graphite and carbon nanotubes). In particular, a force constants model in which

the interatomic force constants up to the fourth-nearest-neighbor interaction was fitted to ex-

perimental data for phonons in boron nitride nanotubes [89]. This approach is very fast and, in

combination with the zone-folding method (i.e., the construction of phonons in the tube from the

phonons of a sheet which is rolled up to form the tube), allows a good intuitive understanding

of phonons in nanotubes.

The Figure 1.14 a) shows the phonon spectrum of 2D h-BN (right graphic - where also the

experimental points are included by the open circles) in comparison with the phonon dispersion

of a (10,10) BNNT, obtained through the valence shell model. Fig. 1.14 b) offers a sight of the

radial buckling (R), longitudinal (L), tangential (T) vibrational modes for a zigzag BNNT.

Figure 1.14 – a) Phonon dispersion relation for 2D h-BN (left graphic) in comparison with (10,10)

BNNT (adapted from [89]). b) Sketch of radial buckling (R), longitudinal (L) and tangential (T)

modes in a BN zigzag tube (adapted from [88]).

1.4.3 Raman spectroscopy of BN nanotubes

The infrared and Raman active modes of individual single BNNTs have been predicted by

different theoretical approaches as above-mentioned: zone-folding [90] combined with bond po-

larizability parameters of carbon [76, 59, 91], tight binding approach [92], and ab initio calcula-

tions [88, 93], see Figure 1.15.

Interestingly from these theoretical studies, it was confirmed that the radial breathing mode

(RBM) in boron nitride nanotubes (as well as in carbon nanotubes) is inversely proportional

to the tube diameter. However, Ghavanloo et al. [94] presented an analytical formulation for

predicting the radial breathing mode (RBM) frequency of boron nitride nanotubes (BNNTs)

with arbitrary chirality. The main results pointed out that i) the frequency of the RBM is
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Figure 1.15 – a) Frequencies of Raman- and IR-active modes in BN nanotubes as a function of

tube diameter: comparison of ab initio values (symbols) with zone-folding method (lines). Black

and white filling mark modes which are Raman and IR actives, respectively. Whereas, the gray

filling stands for modes which are both Raman and IR active. The shape of the symbols denotes the

symmetry of the modes, see legend (adapted from [88]). b) Raman spectrum for different BN tubes:

Comparison of ab-initio calculations (positive axis) with the bond polarization model (inverted axis).

Symmetry assignment follows [87] (adapted from [93]). In the both graphics, the letters R,T,L denote

the character of the corresponding phonon oscillation: radial, transverse, or longitudinal.

not inversely proportional to the diameter of the BNNTs as predicted by the previous studies

aforementioned and ii) the BNNT with a smaller chiral angle has a lower RBM frequency when

considering the tubes with the same diameter.

Despite of the wide number of informations about the RBMs frequencies of BNNT given by cal-
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culations, no clear experimental evidence of these modes has been reported. Due to this latter

large electronic band gap of the BNNTs, the Raman scattering of light is expected to be nonres-

onant in contrast to carbon nanotube in which the process is resonant. A experimental study of

Raman spectroscopyof SW-BNNTs (unpurified BNNTs prepared by laser vaporization process)

have been carried out using visible and UV excitation energies [95]. This work showed that in the

visible range, the effect of contaminants is important, since it can hide the spectroscopic response

of BNNTs. In the UV range, Raman scattering at 229 nm excitation wavelength provided pre-

resonant conditions and allowed to identify the tangential modes at high-frequency (1370 cm−1).

In contrast to SWCNTs, no dependence on the excitation wavelength was observed confirming

the insulating character of BNNTs. Other Raman experiments were performed on double-walled

and multiwalled boron nitride nanotubes samples [96, 97] and yielded contradictory results in

relation to that one previously mentioned.

The essential test on the performance of Raman spectroscopy for the characterization of BN

nanotubes is the comparison of the spectra of nanotube samples with the spectra of crystalline

h-BN. At low-frequency the radial buckling mode has its intensity decreased with increasing

diameter, making it difficult to characterize. At high frequency, bulk h-BN displays a single

Raman line due to the E2g LO/TO mode. It was also observed that the E2g mode in multiwalled

tubes displays a similar upshift as the isolated sheet, this feature was explained considering the

increased interlayer distance and the noncommensurate stacking in multiwall tubes, where both

effects reduce the interlayer interaction [98].

In short, despite of many studies about the BNNTs physical properties, still some optical and

mechanical features stay not totally clear, as for example, the diameter dependence of the RBM

frequencies of the tubes as well as a more accurate assignment of RBM frequencies (among

others) by means of experiments from well-synthesized samples. Thus, in order to understand

these limiting factors, we have carried out a study of BNNTs at high pressures, which is shown

and also compared with previous works in Chapter 5 of this manuscript.
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2.1 Introduction

2.1 Introduction

In this chapter, we first describe the more common synthesis methods of carbon nanotubes found

in the literature, to provide with a brief overview on the most important aspects of this key aspect

which determine the main characteristic of samples used in experiments. Besides this, for each

one of the samples studied in this thesis, their synthesis or purification processes are detailed

including more specific aspects in the their respective Chapters from 3 to 5. In the following

sections of this Chapter are presented basic concepts about the high pressure techniques using

the operational principle of the diamond anvil cell (DAC), transmission electron microscopy

technique and Raman spectroscopy. They are the main techniques used to study the materials

throughout this thesis. The experimental set up descriptions are given in last part of this

Chapter.

2.2 Synthesis methods

In this section we make a brief review on the most important methods used for the synthesis of

CNTs. All these methods have as common aspects three ingredients, 1) the carbon precursor; 2)

the catalysts nanoparticles, which depending on mixture can favor a good yield; 3) the presence

of an energy source that will sublimate or decompose a carbon precursor. It is worthy to mention

that during the synthesis process many residual materials can be produced, as fullerenes, carbon

nanocages or carbon amorphous among others.

2.2.1 Electric arc-discharge

In 1997 C. Journet et al. developed this method Ref.[99]. In this method, two graphite rods

(anode which also contains a metallic catalyst and chatode) are placed in a reactor surrounded

with a inert gas as helium or argon (Figure 2.1). The anode is moved towards the cathode

creating an electric which is generated by a potential difference. The anode is continuously

translated to keep a constant distance (gap of 1-2mm) from the cathode. In the arc is created a

plasma of very high temperature ∼ 4000-6000 K (electrical breakdown of a gas), which sublimes

the anode. The plasma is constituted of a mixture of carbon vapor, the rare gas and the vapors

of catalysts. From the deposits of the plasma, some zones rich in carbon nanotubes are obtained.
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Figure 2.1 – Scheme of an arc discharge setup, adapted [100].

The nature of CNTs depends on the anode composition (graphite purity or doping by metallic

nanoparticles). If SWCNTs are preferable, then the anode has to be doped with metal catalyst,

such as Fe, Ni, Co. Usually, the carbon nanotubes are set up in bundles and the synthesis

production yield can reach 80% [99, 100].

2.2.2 Laser ablation

In 1995 Guo et al.[101] developed by the first time the high quality CNTs growth by laser

ablation. In this technique, intense laser pulses (for instance, Nd:YAG laser) ablate a carbon

target which is placed in an oven heated to 1200 °C. During the process an inert gas flows by the

chamber (quartz tube) to carry the grown nanotubes until a cooled collector (Figure 2.2). As

the temperatures involved in this method is very high (4000 °C), a certain percentage of carbon

target is evaporated. The carbon nanotubes are formed in bundles and the diameters range is

narrow.

Figure 2.2 – Scheme of the laser ablation method setup [102].
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2.2.3 Chemical vapour deposition-CVD

The catalytic techniques (or chemical vapour deposition) present some advantages over the arc

and laser methods aforementioned. The catalysis is more amenable to scale-up the processes to

produce SWCNTs and MWCNTs in large scale. Moreover this method offers greater control

upon the growth process since it uses mild conditions (moderate temperature in relation to arc

and laser methods). For these reasons the CVD is commonly employed for industrial purposes.

In the CVD method a substrate covered with metallic catalysts nanoparticles (Ni, Co, Fe or

their mixture) is heated typically between temperatures of 600-1200 °C. The catalysts are the

responsible for the nucleation growth of the tubes (Fig. 2.3(b)). The growing takes place when

two gases flow through the tube furnace, a carrier gas like nitrogen or hydrogen and the other

of organometallic type (hydrocarbons, as acetylene (C2H2) or methane (CH4)) (Figure 2.3(a)).

The synthesis production yield can reach 90%. By the control of catalysts nanoparticles size it

is possible to obtain variable diameter distribution, even for SWCNTs.

Figure 2.3 – a) Schematic of CVD system setup utilized in CNTs growth [12]. b) Illustration of tip

(upper diagram) and base (lower diagram) growth mechanisms of CNTs growing [102].
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2.3 Experimental methods

2.3.1 High pressure technique

Since the pioneering work of the American physicist P. W. Bridgman, during the early part of

the 20th century, until the late 1960s, massive hydraulically driven Bridgman-anvil and piston-

cylinder apparatus ruled high-pressure science. From the advent of the diamond anvil cell

(DAC), in mid 1960s, many non-specialized laboratories became able to develop high pressure

experiments [103]. Diamond is the hardest known bulk material. Besides it possess high incom-

pressibility and transparency, being ideal to be employed as a high-pressure device.

The DAC works like a pressure chamber constituted by flat parallel faces (culets) of two opposed

diamond anvils. Between them is fitted a holed metallic foil (gasket), creating a cavity (Figure

2.4(a)). The operational principle of the DAC consists on pressing the sample by means of some

external force transmitted until the diamond culets (Figure 2.4(a)). The culet diameters can

range from 200 μm or even less to 1000 μm. The smaller the culet, the higher the pressures

which can be reached.

Figure 2.4 – a) Scheme of the DAC operational principle. The external forces drive one diamond

against the other, which in turn compress the specimen (blue circle) and the pressure gauge (red

dot). The black arrows help to identify better the DAC diagram. b) Optical image of loading of a

specimen (Pyrocarbon) and ruby chip inside of steel gasket, having as PTM the salt NaCl. The hole

diameter is about 116 μm.

The gasket placed between the diamonds has a thickness of the order of 200 μm in our experi-

ments and can be typically made in rhenium, tungsten, steel, cooper or Cu-Be. The aim of the

gasket is to protect the diamonds against fractures occasioned by direct contact of the culets,

beyond of to limit and confine the sample volume in the cavity. The gasket is pre-indented by

the anvils (this indentation is made to avoid major plastic deformation during the compression)

and after a hole is pierced at its center by the electrode of an electrical discharge machining or

using a micro-driller (Figure 2.4(b)). Usually, the optimized hole diameter value corresponds

to 30% from that one of the culet, hence the electrode diameter is selected according to this

value. The sample can be placed together with ruby chips (Al2O3:Cr
3+) that work as gauges

to determine the pressure in the chamber through of the fluorescence emission of the R1 line.

To provide hydrostatic conditions a pressure transmitting medium (PTM) is required in order
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to fill the volume created by the hole. The PTMs with higher hydrostatic levels are helium and

neon that even at pressures around 50 GPa remain with pressure gradients less than 0.5 GPa

(less than 1%) [104]. However, liquids PTMs as 4:1 methanol-ethanol mixture which remaining

hydrostatic until 10.5 GPa can be used due to its easy handling. In the case of solid PTMs,

those introducing shear forces and high compressibility are more used, as NaCl, KCl, KBr (soft

solids) [105, 103].

The diamond anvil cells can have different designs depending on the force-generating mecha-

nisms. The simplest devices are those controlled manually, as lever-arm or of force generation

through bolts. However to attain a specific pressure value, the control is not very accurate. In

addition the DAC must be removed from the probing position to be tightened when pressure is

increased. By contrast to this, a pneumatic mechanism allows to change the pressure smoothly

and remotely by tuning the gas pressure of a ring-like membrane that acts on the diamond

support (piston) [103]. The Figure 2.5 shows the DACs having force generation via screws (a)

and pneumatic together with the gas supplier (b).

Figure 2.5 – a) DAC controlled by tighten screws/bolts mechanism (the number 1 and 2 in blue

indicate the entrance for bolts (adapted from [106]). b) The left image shows the gas supply system

for the DAC (right image) controlled by pneumatic mechanism, besides the components of gas supply

+ DAC system (blue cross) are also shown.

The commonly method used to measure the pressure values inside the DAC is the calibration

from ruby fluorescence emission R1. The ruby R1 fluorescent line undergoes a blueshift (higher

energies) upon pressure application. Equation 2.1, which is valid until 80 GPa with a incertitude

of about 5% gives the calibration law [107].

P (GPa) =
1904

7.665

{[
1 +

(
Δλ

λ0

)]7.665
− 1

}
, (2.1)

in this equation the pressure is obtained in GPa, the values 1904 and 7.665 are the calibration
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parameters, λ0 = 694.2 nm is the R1 wavelength at ambient pressure and Δλ is the shift of R1

due to pressure.

In Raman spectroscopy is more common to use the wavenumber ν̄ (cm−1) instead of wavelength

λ(nm). In order to express eq. 2.1 in terms of excitation wavelength (λlaser) and ν̄, we need

rewrite this equation as

P (GPa) =
1904

7.665

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎡
⎢⎢⎢⎣1 +

(
Δλ

λ0

)
︸ ︷︷ ︸

=γ

⎤
⎥⎥⎥⎦
7.665

− 1

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

=
1904

7.665

{(
λf
λ0

)7.665

− 1

}
, (2.2)

where λ0 and λf are respectively the initial and final wavelengths of the R1 emission band. A

pratical writting of the above expression, when using a Raman spectrometer is:

P (GPa) =
1904

7.665

⎧⎨
⎩
[

107

λlaser
−Δν̄0

107

λlaser
−Δν̄f

]7.665
− 1

⎫⎬
⎭ , (2.3)

with Δν̄i, Δν̄f the ambient pressure and measured wavenumber at pressure P respectively and

λlaser, the excitation wavelength given in inverse centimeters (cm−1) and nanometers (nm),

respectively.

An example of ruby fluorescence spectra measured in a Raman spectrometer is shown in Fig.2.6.
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R1
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Figure 2.6 – Shift of ruby fluorescences lines R1 with pressure measured in a Raman spectrometer

when at using a laser excitation of 568.2 nm (2.18 eV).

2.3.2 Transmission electron microscope

Historically transmission electron microscopy (TEM) was developed to overcome the image

resolution limitation of optical microscopes, which is imposed by the wavelength of visible light
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and whose magnification is about 1000 times. Electron microscopes can reach magnifications

of the order of 106. The first manufactured TEM was developed by Max Knoll and Ernst

Ruska (1932). They manufactured the first TEM with resolution greater than light in 1933 and

the commercial TEMs were first produced only 4 years after. The Metropolitan-Vickers EM1

was the first of such instrument and was produced in the UK in 1936, however it didn’t work

properly and the regular production of TEMs for sale was really initiated by Siemens and Halske

in Germany in 1939. After the end of World War II several others companies as Hitachi, JEOL,

Philips and RCA started their productions [108].

The TEM basic operational principle is based on transmission of electron beams through a

specimen to form an image. A TEM equipment is shown in Figure 2.7(a). A TEM is composed of

several components, which include an electron emission source (electron gun) that is connected to

a high voltage source (∼ 100 – 300 keV), a vaccum system (airlock) that permits the beam travel

through the instrument undisturbed (increasing the mean free path) and keeps the specimen

clean, a specimen stage to insert the sample holder (arm + TEM grid), a series of electrostatic

plates and electromagnet lenses that guide the electron beams and a viewing screen (fluorescent)

as well as CCD camera. All these components are assembled along of a column Figure 2.7(b).

Figure 2.7 – a) TEM JEOL JEM-2100F from the Centre Technologique des Microstrcutures (CTμ)

of Lyon1. b) Layout of components in a basic TEM.

The sample preparation in TEM can be a challenge, as specimens should be less than 100

nm thick, thus making sample size the major limitation for TEM characterizations. Thereby,

some preparation protocols can be useful depending of the specimen kind (solids or liquids),

bulk sample, thin films, fibers or powders. A short scheme about sample preparation is shown

in Fig 2.8. For biological samples a cutting technique from material sections in thin slices

(microtome) is usually used.

In particular, the specimens in powders or in buckypaper shape (nanotubes) with about few

microns1 were prepared following a simple procedure:

1obtained in this thesis after a pressure cycle in a diamond anvil cell.
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1. the specimen directly recovered from the DAC gasket or from the diamond culet is placed

in a microtube (eppendorf) or small glass bottle and if possible visualized under optical

microscope to confirm its presence and position;

2. by means of a micropipette (maximum volume 2μL) some liquid drops (preferably ethanol

absolute anhydrous) are spilled dispersing a little the sample in the container;

3. the set is stirred in an ultra-sonication bath of low power for about 20 min, in order to

homogenize and improve the sample dispersion;

4. lastly the liquid + specimen pieces are pumped with a micropipette and dropped on the

TEM grid, and waiting a time for the liquid evaporation.

TEM imaging is usually obtained via two different methods: a) through the electron diffraction

pattern, which is formed in the focal point of the objective and collected on a sensitive screen

after that the electrons beam to cross the sample or b) by a charge-couple device, which uses the

Fourier transform of the electron diffraction (magnetic lenses works in the beam convergence)

to form a plane sample image. Thus, all times the crystallographic information as well as the

analytical can be related to the image of the sample. It is important noting that TEM images

interpretation requires certain attention as it presents us 2D images of 3D specimens. In other

words, a single TEM image does not provide depth sensitivity.

However, to overcome this limitation some TEM apparatus provide specialized holder designs

with the capability to move the specimen in high angles, called tilt sample holders. The combi-

nation of a sequence of images taken at different tilts and improved by reconstruction software

can create a 3D image of the sample, this technique is known as electron tomography.

Figure 2.8 – Flow chart of sample preparation for solid phase TEM investigations, adapted from

[108].
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2.4 Experimental setup for Raman spectroscopy and TEM

2.4.1 Theoretical Basis of Raman Scattering

When the electromagnetic radiation (ER) interacts with matter, this radiation may be absorbed

or scattered, or may not interacts with the material and simply pass through it. Thus, to study

different kinds of radiation (ER) on the matter, there are several spectroscopies techniques

dedicated to each electromagnetic frequency region and of which the Raman spectroscopy is

part. We show in Table 2.1 some technical aspects of these techniques

Table 2.1 – Spectral regions and their origins.

Spectroscopy technique Radiation range (ν̄,cm−1) Origin

Gamma ray 1010 – 108 Rearrangement of elementary particles

inside of nuclei

X-rays (EDX, XPS) 108 – 106 Transitions between the energy levels of

inner electrons of atoms and molecules

UV-visible 106 – 104 Transitions between energy levels of

valence electrons of atoms and molecules

Raman and Infrared 104 – 102 Transitions between vibrational levels

(change of configuration)

Microwaves 102 – 1 Transition between rotational levels

(change of orientation)

Electron spin 1 – 10−2 Transition between the spin levels in

resonance (ESR) magnetic field

Nuclear magnetic 10−2 – 10−4 Transition between nuclear spin levels in

resonance (NMR) magnetic fields

The Raman spectroscopy, basically, it is a phenomenon of scattering of a incident monochromatic

light on some material medium, the light arising from this scattering is polychromatic. Much of

the scattered light is not modified, having the same feature from that incident monochromatic,

and the name of this process is elastic scattering or Rayleigh. A small quantity of the light

undergoes the inelastic scattering or Raman (1 in every 106 – 108 photons2).

Historically, the Raman scattering has been described in terms of both classical and quantum

theories. The classical is based on wave theory of light (classic electromagnetism) is incomplete,

in the sense that it does not take into account the quantum nature of the molecular vibrations.

In addition to not being able to explain in more details the relation between molecular properties

and the Raman spectra nature as quantum theory.

From now on, we introduce the two theoretical aspects (classical and quantum) of the spec-

troscopy Raman. Starting by the wave theory treatment and following to the quantum approach,

which considers the light as a particle – photon – with discrete energy.

The classical description of Raman scattering is illustrated in Fig., it shows a induced polarization

in a molecule through the oscillating electric field of a monochromatic light. This field induces

2explained later in text
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a dipole, which in turn radiates the scattered light, with ou without energy exchange with the

molecule vibrations. The induced polarization force (induced dipole momentum), P, is given by

the polarizability, α, and an external electric field, E:

�P =
↔
α �E. (2.4)

In the matrix form the equation 2.4 becomes,⎧⎪⎨
⎪⎩
Px

Py

Pz

⎫⎪⎬
⎪⎭ =

⎧⎪⎨
⎪⎩
αxx αxy αxz

αyx αyy αyz

αzx αzy αzz

⎫⎪⎬
⎪⎭
⎧⎪⎨
⎪⎩
Ex

Ey

Ez

⎫⎪⎬
⎪⎭ . (2.5)

In both classical and quantum treatments of the Raman scattering the equation 2.4 is used. The

classical treatment follows the effects of molecular vibrations due to polarizability α. So, we

start by considering a incident electric field in the form:

E = E0 cos 2πν0t, (2.6)

where ν0 is the source light frequency (laser). The molecular vibrations, usually are composed

of normal modes Qk, of which 3N-6 (or 3N-5 for a linear molecule) can be found in a molecule

with N atoms and these modes are given as

Qk = Q0
k cos 2πνkt, (2.7)

where νj is the harmonic frequency of mode normal j-th. The polarizability of electrons in the

molecule will be modulated by molecular vibration, thus it can be expended in Taylor series as

a function of normal coordinates (Qj) around the equilibrium point, that is

αij = (αij)0 +
∑
k

(
∂αij

∂Qk

)
Qk +

1

2!

∑
k,k′

(
∂2αij

∂Qk∂Qk′

)
QkQk′

+
1

3!

∑
k,k′ ,r

(
∂3α

∂Qk∂Qk′∂Qr

)
QkQk′Qr . . . . (2.8)

Beginning from the equation 2.4, the induced dipole is the product between the eqs.2.6, 2.8. For

small variations of Qk, taking into account the trigonometric relation cos a cos b = [cos(a+ b) + cos(a− b)] /2

and that the high order terms can be left aside in 2.8, we can write

P = (αij)0E0 cos 2πν0t+ E0Q
0
k

(
∂αij

∂Qk

)(
cos 2π(ν0 + νk)t+ cos 2π(ν0 − νk)t

2

)
(2.9)

After we have assumed (classically) that the polarized electrons will radiate light in the oscillation

frequencies, the equation 2.9 demonstrates that the light will be scattered in three frequencies.

The first term corresponds to Rayleigh scattering, which is in the same laser frequency and has

magnitude proportional to (αij)0, inherent polarizability of the molecule. The second term is

the anti-Stokes Raman scattering, that happens at ν0 + νk, and the third term is the Stokes

scattering at ν0 − νk. The transitions associated with the Rayleigh and Raman scatterings

make part of quantum nature of the vibrations, however we will extract some informations from

classical construction.
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In order to have contributions from second term of eq. 2.9, it is necessary that
∂αij

∂Qk
�= 0, in other

words, only the vibrations that change the polarizability contribute to the Raman scattering.

This statement is the base for the first selection rule of Raman activity. Another fact that

arises is
∂αij

∂Qk
changes significantly for different molecules and vibrational modes, taking to huge

variations in the Raman scattering intensity.

The Raman intensity observed is proportional to the scattering cross section, σk, with measure

unit of area (cm2) per molecule. The magnitude of σk is related to
∂αij

∂Qk
and a direct consequence

is the variation of intensity Raman, IR (frequency dependent), be given by

IR = μ(ν0 ± νk)
4α2

ijQ
2
k, (2.10)

where μ is a constant. By equation 2.10, we can realize that the Raman intensity change with the

fourth power of the observed frequency for a normal Raman scattering, which in turn depends

of laser frequency. The fourth power factor arises from the classic scattering treatment of a

oscillating induced dipole, where the intensity has unit of watts (W). Thus, we could advance

on this reasoning line and get more insights about Raman scattering from the point of view of

classical theory. Meanwhile, as aforementioned, there are some limitations when dealing with

the vibrational nature in this line, one of them that can not explained classically, is the intensity

difference between the Stokes and anti-Stokes scatterings observed experimentally.

Now, we begin to deal with quantum approach. According to the quantum mechanics, when a

molecule interacts with incident photon, a energy transfer happens from the photon to molecule,

written in form

ΔE = hν = h
c

ν
= hcν̄. (2.11)

The equation 2.11 shows the energy difference between two quantized states, comparing the

energies orders express in terms of wavenumber (common in spectroscopy) ν̄ (cm−1), λ (cm)

and ν (Hz). By this equation, we can understand better as happen the Rayleigh and Raman

scattering mechanisms.

The Raman lines intensity is given by changes in molecular polarizability during the vibrational

transitions. The element of polarizability tensor αij for a transitions of initial vibronic state m

to final vibronic state n is written by quantum mechanics as,

(αij)nm = |ψm〉αij〈ψn| =
ˆ ∞

−∞
ψ∗
nαijψmdτ, (2.12)

where ψm,n are vibronic wavefunctions from initial and final states. This indicate that the

Raman scattering involves a two-photon process and it will be clear when show a general form

of the molecular polarizability.

In case of small molecular vibrations, we use again the expansion in Taylor series for the polar-

izability in the normal coordinates for derivatives taken in a equilibrium geometry of molecule.

So, combining the eqs. 2.8 and 2.12 and neglecting high order terms, it follows

(αij)mn = (αij)0

ˆ ∞

−∞
ψ∗
nψmdτ +

(
∂αij

∂Qk

)
0

ˆ ∞

−∞
ψ∗
nQkψmdτ, (2.13)

The first term in eq.2.13 correspond to the Rayleigh scattering, and the second term provides

the Raman scattering, if two conditions are satisfied (without resonant conditions):
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1. the polarizability derivative
(
∂αij

∂Qk

)
�= 0, i.e, the molecular polarizability must change

during a particular vibrational transition;

2. the integral
´∞
−∞ ψ∗

nQkψmdτ �= 0. This condition requires that the vibrational quantum

number of transition differs by 1 for Stokes scattering and -1 for theanti-Stokes.

The scattered intensity in a Raman experiment is proportional to the overall power emitted by

the induced dipole moment, hence the p-th Stokes line is given by

Ip = I0Nωi

=σp︷ ︸︸ ︷
27π5

32c4
�

ωi
(ω0 − ωi)

4 1

e−�ωi/kT − 1

∑
i,j

|(αij)p|2, (2.14)

where I0 and ω0 are the intensity and frequency of incident photon (laser), respectively. The

σp is the Raman cross-section, |(αij)p|2 is modulus squared of the probability amplitude, Nωi

is the molecules number in the vibrational state i with frequency ωi, c is the light speed, and

� = h/2π is the Planck constant. The term 1
e−�ωi/kT−1

is the vibrational partition function for

photons (the photons are bosonic particles, which in turn are ruled by a distribution function

(Bose-Einstein) provided in the statistical mechanics).

Based on quantum mechanics and in particular perturbation theory, Kramer and Heisenberg

(1925) and Dirac (1927) derived a quantum description (KHD expression) of molecular polariz-

ability tensor (here the (i,j) and (m,n) indexes pair are substituted by (p,q) and (f,i),

respectively):

(αpq)fi =
∑
r

{〈ψf |μp|ψr〉〈ψr|μq|ψi〉
�ωri − �ω0 − iΓr

+
〈ψf |μq|ψr〉〈ψr|μp|ψi〉
�ωrf − �ω0 − iΓr

}
, (2.15)

where p and q are the incident and scattered polarization directions, while ψi, ψr and ψf refer

to the initial, intermediate, and final states of the Raman scattering process. ω0 is the laser fre-

quency, ωri and ωrf quantify the energy differences between the respective states. The damping

constant Γr is introduced phenomenologically in order to mimic the line widths of band profile.

In particular, the resonant Raman scattering occurs for the excitation wavelength chosen to be

resonant with a molecular electronic transition, which approaches the denominator of the first

term of the eq. 2.15 to a small value and this term dominantly contributes to the molecular

polarizability tensor and then to the Raman scattering.

For case of the Stokes Raman scattering process, a molecule in its ground state is excited

by a photon with energy hν0 and is promoted to a virtual state, which is not necessarily a

true quantum state (as a electronic state), but may be considered a distortion very quick from

electronic cloud. At followed the molecule passes to nth excited vibronic state hνn and a photon

is scattered in the process, having lower energy than that incident photon hν0 − hνn. For the

anti-Stokes Raman scattering, the molecule is in a excited vibronic state and by interacting with

a incident photon of energy hν0, it is promoted to the ground state with a scattered photon of

energy hν0 + hνn to the process end. It is important to underline that the processes described

here (Stokes and anti-Stokes) are non-resonant, thus a priori the electronic energy levels of

molecule are not excited.

In the Rayleigh scattering, the molecule in its ground state is excited by a incident photon

(hν0) and undergoes a transition to virtual state. At followed the molecule returns to the its
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ground state and a photon is re-radiated with same energy of that incident (hν0). The Figure

2.9 illustrates the Rayleigh, Stokes and anti-Stokes scattering mechanisms.

Figure 2.9 – Schematic diagram of elastic (Rayleigh) and inelastic (Stokes and anti-Stokes) scat-

tering processes.

2.4.2 Raman at high pressure

Thanks the wide transparency in the electromagnetic spectrum and hardness, the diamond

anvils allow the illumination of sample by different photon energies, among them the visible

light (laser), which is widely used in most conventional micro-Raman spectrometers for Raman

high pressure experiments. Below, we show these devices used to study the samples in this thesis

(in all experiments the beam laser was focused with 50x magnification objective lens), Table 2.2.

The laser power at source was tuned by means of optical filters according to the necessity of each

experiment and sample. It is worthy to mention that the mirrors from our different setups also

causes a loss of throughput, however not as important as the filters. The Figure 2.10 provides

a sketch of a common Raman spectrometer used to carry out experiments at high pressures.

Table 2.2 – Micro-Raman spectrometers used in this thesis. More experimental details in Annex

A.1.

Sample Raman spectral laser type and power

spectrometer resolution (cm−1)

SWCNTs Acton 2500i 1 514 nm argon-ion 15 mW

LabRAM HR800 0.6 568.2 nm krypton-argon 2.10, 3.3

and 8 mW

LabRAM HR Evolution 0.5 532 nm state solid � 15 mW

TWCNTS Acton 2500i 1 514 nm argon-ion 15.4 mW

LabRAM HR Evolution 0.5 532 nm state solid � 15 mW

BNMWTs Acton 2500i 1 514 nm argon-ion 20 mW

LabRAM HR Evolution 0.5 532 nm state solid < 20 mW

The Figure 2.11 displays the heating tests on samples used in our studies (see Table 2.2). For

this purpose, the spectra were collected by Acton 2500i Raman spectrometer with 514 nm laser
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Chapter 2. Synthesis methods of carbon nanotubes and experimental methodology

Figure 2.10 – Diagram of a typical Raman spectrometer for high pressure experiments in backscat-

tering geometry (adapted from internet).

energy. The labels ascribed in the figures by 1st and 2nd filters mean the obstruction levels for

the laser in our filter wheel from our Raman set-up (there are 3 levels). Thus, 1st filter blocks

more the laser power, whereas the 2nd filter lets pass a little bit more of power.

In fact, before and after each experimental characterization we have optimized the laser power

on samples in order to avoid the heating effects in our spectral signals.

56



2.4 Experimental setup for Raman spectroscopy and TEM

Figure 2.11 – a) Comparison between the G-band spectra of SWCNTs collected with the laser

power of 15 mW, taken in different filters. b) Comparison between the G-band spectra of TWCNTs

collected with the laser power of 15.4 mW, taken in 1st and 2nd filters from our set-up. c) Tangential

modes comparison of BNMWNTs using the intermediate filter and no filter.
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2.5 Transmission electron microscopes

All samples characterized in this work were transfered by means of procedure described in the

subsection 2.3.2: a dispersion in ethanol, followed by ultrasonication of low power and dropping

on the TEM grid (see Figure 2.12 a)). The TEM tomography was used to investigate the

recovered samples of BNMWNTs and a sketch is displayed in Figure 2.12 b).

The table 2.3 summarizes the transmission electron microscopes that we have used,

Table 2.3 – TEM equipments. For more details see Annex A.2.

Sample TEM model acceleration (kV) exposure time (s) emission source

SWCNTs JEOL 2100 80 and 200 2.0 and 1.0 LaB6

TWCNTS JEOL 2100 120 1.0 LaB6

BNMWTs JEOL JEM-2100F 200 0.5 and 1.0 FEG
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2.5 Transmission electron microscopes

Figure 2.12 – a) Schematic diagram about the transfer method of samples for ex situ TEM character-

ization. b) Illustration of the TEM tomography characterization for recovered samples of BNMWNTs

(adapted from [109]).
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Chapter 3. (6,5)-Enriched single walled carbon nanotubes at high pressure

3.1 Introduction

In this first chapter we will explore the high pressure response of low diameter SWCNT in

different environments. The study will include both individualized and bundled tubes and

different pressure transmitting media. For this we concentrate on the high pressure behavior of

(6,5) chirality-enriched SWCNTs. Both water filled and empty tubes were probed. Chirality

selection is obtained by means of aqueous two-phase (ATP) method and the high pressure

behavior is investigated by resonant Raman spectroscopy. The collapse pressure domain was

studied and further compression allowed us to reach the irreversible structural transformations

of the tubes. TEM images from the recovered samples provided additional information on the

structural evolution for this low-diameter single-wall carbon nanotubes.

This chapter is organized in two main sections. In the first one (3.2) we detail the methods

and protocols to produce the (6,5) enriched samples. This was the subject of the thesis of

Aude Stolz in our team [110]. We thought that it was important to make a description of

the chirality selection method in order to understand the detail characteristics of the different

samples studied in this thesis. The high pressure study on these samples is then presented in

the following section (3.3) including in situ Raman and ex situ TEM characterizations. We

will first consider the information from RBM, then for tangencial modes and finally discuss the

irreversible transformation including the valuable contribution of TEM images.

3.2 Sample preparation. Aqueous Two-Phase (ATP) separation

method

As discussed in Chapter 2, the different synthesis methods of SWCNTs do not allow to provide

samples exhibiting a single chirality. The ATP method has been used to separate single-wall

CoMoCAT carbon nanotubes selecting particular chiralities. ATP is based on the spontaneous

redistribuition of the carbon nanotubes into two aqueous solutions with relatively different

hydrophobicity. The two phases are formed by mixing two water-soluble polymers, such as

polyethylene glycol (PEG) and dextran. In the demixed liquid, the bottom phase, rich in dex-

tran, is more hydrophilic than the top phase, which is mainly constituted of PEG [111, 112].

The two-phase aqueous procedure for enrichment of (6,5) single-walled carbon nanotubes used

in this theses has followed basically the protocol established by Subbaiyan et al. [111, 113], how-

ever with subtle adaptations on the initial samples rate and pre-dispersion conditions Ref.[110].

The precursor nanotubes (which we will refer as Stock in the following) marketed by Sigma-

Aldrich Co. LLC., under the specification SWeNT SG65i, contain mostly (6,5) single wall carbon

nanotubes (≥ 40% of (6,5) tubes with 93% of the semiconducting nanotubes present in total

weight). The Stock sample is presented as a dried powder. The tubes themselves are prepared

by Catalytic Chemical Vapor Deposition method (CoMoCAT CVD) which uses the cobalt and

molybdenum chemical elements as catalysts. These bundled nanotubes have different chiralities

providing diameters in the 0.7-0.9 nm range. In Figure 3.1(a) is shown the photoluminescence

characterization of our Stock sample in which five different chiralities were detected: (6,4), (6,5),

(7,3), (7,5) and (8,3). These chiralities are in good agreement with previous studies following

the same protocol [114, 111]. The Raman spectroscopy characterization of the samples is in
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3.2 Sample preparation. Aqueous Two-Phase (ATP) separation method

good agreement with photoluminiscence and will be further discussed at the end of this section.

Various TEM images of the Stock sample are also shown in Figure 3.1(b-d). Despite the high

percentage in SWCNTs, some residual material as catalysts particles or others carbon forms

(amorphous or nanocages) may be found in the samples ( Figure 3.1.c). The precise determi-

nation of the chirality distribution given by the TEM setup is complicated in particular due to

the lack of resolution and also due to the creation of defects by knock-on effect.

Figure 3.1 – a) Photoluminescence characterization of Stock sample. b) TEM image shows the

dispersion of bundled SWCNTs of the Stock suspended on carbon films of the TEM grid. c) TEM

image of a nanocages or nano-onions present in the Stock specimen. d) Bundle of few SWCNTs of

Stock wrapped by a residual material left during the synthesis process.

3.2.1 (6,5) SWCNTs enrichment

Starting from the above described Stock sample, the first step of the chirality enrichment process

is to individualize the nanotubes from the bundles by using a surfactant solution. Starting from

the (6,5) SWCNTs Stock sample, a pre-dispersion of the sample was done in an aqueous solution

of sodium deoxycholate (DOC) in 1% mass by volume (m/v), achieving a final concentration at

nanotubes of 1mg/mL. This mixture was placed in an ice bath and submitted to the ultrasound

treatment with the use of an ultrasonic tip during 1h for homogenization. Ultrasonication makes

possible at the same time that already at this step some nanotubes are broken, becoming then

opened-end tips, which in turn favors the tubes filling by water. The next step is the aqueous two-

phase (ATP) separation process itself, in which two immiscible polymers - polyethylene glycol

63
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(PEG) and dextran - both soluble in water, were prepared together with different concentrations

of the SC, SDS, DOC surfactants and salt (NaCl-sodium chloride). For this purpose, two

solutions Stock-1 and Stock-2 were created under the following conditions, described below (see

Table 3.1).

Table 3.1 – The concentration of the Stock-1 and Stock-2 solutions.

Reagents Stock-1 Stock-2

PEG-MW 6.000 56.4 g 29.0 g

dextran-MW 64.000-76.000 19.6 g 4.66 g

SC 1.96 g —

SDS 4.46 g 3.60 g

DOC — 0.095 g

NaCl 0.56 g —

distilled water 400 mL 200 mL

After one overnight of dissolution, the ATP separation was iniciated by adding 8 mL of the

SWCNTs pre-dispersion, 16 mL distilled water and 153 mL of Stock1. Along the process, the

initial solution - SWCNTs-DOC dispersion + water + Stock1 - was centrifuged, in order to

speed up the separation in two phases which we name Bottom 1 and Top 1 (see Fig.3.2). The

product named Bottom 1 was then added to Stock 2 to be centrifuged, thus obtaining a highly

(6,5) chirality-enriched phase of individualized tubes, called Top 2. The scheme below shows

the process steps,

Figure 3.2 – The sequential steps of our ATP process.

The confirmation of the almost single (6,5) chirality in Top 2 solution was obtained through dif-

ferent characterization techniques, as photoluminescence (PL) and UV-visible absorption spec-

troscopy (UV-vis). The obtained results are provided in Fig. 3.3.

The addition of inorganic salt (NaCl or MgCl2) to the individualized (6,5) enriched SWCNTs

in Top 2 solution allowed the rebundeling of the nanotubes. Basically, the higher electric per-

meability of the salty solution screens the electrostatic repulsion between anionic surfactants

wrapping the SWCNTs and then favoring bundling.

After the formation of chirality enriched nanotubes bundles, the solution follows a filtration

process, in which the SWCNTs bundles are filtered by a membrane (pore size 0.1 microns-PTFE-
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3.2 Sample preparation. Aqueous Two-Phase (ATP) separation method

Figure 3.3 – a) The graph shows the UV-visible spectra of each solution along of ATP process

(labeled colorful lines in the graph caption) with the chiralities proportions at each phase. b) The

red circle shows the high ratio of (6,5) chirality SWCNTs in Top 2 solution when probed by photo-

luminescence technique. Other chiralities as (7,3), (8,3), (6,4) and (7,5) can be found at low ratios.

Adapted from [110].

Merck Millipore). Throughout the filtration process successive and repeated washing with water,

ethanol and acetone was performed, in order to try to remove as much as possible polymers,

surfactants and salt. At then end, a thin film of bundled carbon nanotubes (buckypaper) was

formed on the membrane filter and the (6,5) bundled SWCNTs dried bucky sample was isolated

with a spatula that scraped off the thin film from the membrane. The final samples obtained

from this method (later referred as Set 1 and Set 2 for different purifications protocols) consist

on buckypaper scraps.

A number of characterizations were done in order to verify the efficiency of polymer and sur-

factant removal after the filtration process in order to select the best samples. Thermogravi-

metric analysis (TGA), infrared spectroscopy (IR) as well as transmission electron microscopy

(TEM) techniques were used showing always the presence of bundles and of some residual sur-

factant/polymer around the bundles (for more details see [110]).

Based on the aforementioned purification post-treatment process, we have chosen two different

protocols, including thermal treatments, to improve the buckypaper quality:

• Set 1 : Heating during 2h at 600 ◦C (ramp up rate 10◦C/min) in argon (Ar) atmosphere.

Providing on average a (6,5) chirality-enriched open- and closed-ends nanotubes ratio of

about 50% – 50%. The single wall nanotubes are obtained in bundles.

• Set 2 : In order to further reduce the polymers (as well as others residual materials), the

Set 1 buckypaper scraps were submitted to a sonication process in water by 1h followed

by filtration. This process was repeated 3 times. The final product after 3 filtrations

was heated during 6h at 800 ◦C in an argon atmosphere. Also in this case the tubes are

bundled.

Details of the characterization of these samples are provided in Ref. [110]). In both Set 1 and

Set 2 the complete elimination of polymer residues was not possible.

A comparison between Raman spectra of the Stock and of the Set 1 samples at ambient conditions

excited with a 568 nm laser is shown in Fig.3.4. The RBM and G-band regions of both samples
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provide information on the contribution of each chirality, which are labeled in the spectra.

The chirilaties present in the Stock RBMs agree with those found in the photoluminescence

experiment (Fig.3.1(a)). The enrichment of (6,5)-SWCNTs of Set 1 can be clearly observed.

Figure 3.4 – Comparison of spectra measured at ambient and resonant conditions for Stock (empty

tubes) and Set 1 (empty and water-filled (6,5) tubes) specimens. The left panel shows the RBM

region with the chiralities conveniently labeled and the same is done for G band region (right panel).

The peaks are fitted by the blue Lorentzian lines, while the data and the global fitting correspond

to black and red lines, respectively.

In our work proposal of (6,5)-enriched SWCNTs, the Stock, Top 2 solution, Set 1 and Set 2

samples were used for Raman high pressure studies. The high pressure studies are addressed in

next section.

We summarize in Table 3.2, some of the characteristics of the studied the samples in our exper-

iments

The Stock sample is made of closed-ended (then empty) tubes, while for all other samples, both

empty and filled tubes are found as it will be discussed in the study of the Raman RBM signal

in the next section.

3.3 High pressure study. Results and discussion

We investigate the high pressure evolution and the mechanical stability of the four above men-

tioned enriched-(6,5) single wall carbon nanotubes. The samples were studied by in situ Res-

onant Raman spectroscopy (RRS). Resonant conditions for the (6,5) tubes are best obtained

using the 2.18 eV energy (568 nm), which is absorbed by the symmetric (6,5) E22 transition

energy (see Fig.1.6 b)) and consequently improving the RBMs and G-band profiles. Nevertheless

in experiments done with different excitation energies (2.41 eV or 2.33 eV), we are still able to

detect the (6,5) RBM peaks (both for filled and empty tubes) in the purified samples. In an
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Table 3.2 – Summary of the different (6,5) chirality-enriched SWCNT samples studied in our work.

Note that Top 2 is made of individualized CNT and all others are bundled tubes.

Samples (n,m) dt θch(
◦)

(nm)

Top 2 (6,4) 0.68 23.4

(6,5) 0.75 27

Set 1 (6,4) 0.68 23.4

and (6,5) 0.75 27

Set 2 (8,3) 0.77 15.3

Stock (6,4) 0.68 23.4

(6,5) 0.75 27

(8,3) 0.77 15.3

(7,5) 0.82 24.5

attempt explain this we can provide the following arguments:

1. The (6,5) tubes have a phonon sideband in their optical absorption spectrum, which should

be a combination of the transition energies (symmetric Eii or asymmetric Eij bands) [115];

2. The purification process increases the (6,5) species percentage, which in turn increases the

local field induced by the applied field (excitation energy), thus making these transitions

more easy to be observed.

Nevertheless, we do not have a robust explanation for the observation of the Raman signal out

of conventional resonance conditions [116]. In table 3.3 are given the parameters used in the

different experiments.

Table 3.3 – Summary of the different high pressure Raman spectroscopy experiments on (6,5) chi-

rality enriched SWCNT done in our work. Are given for each experiments the excitation wavelength,

the maximum pressure attained and the used pressure transmitting medium

Initial excitation laser Max. pressure PTM

sample nm GPa

Top 2 568 (2.18 eV) 26 polymer + surfactant + water

Set 1 568 (2.18 eV) 26 4:1 – M:E

514 (2.41 eV) 40

Set 2 514 (2.41 eV) 50 4:1 – M:E

532 (2.33 eV) 50

Stock 514 (2.41 eV) 80 4:1 – M:E

More details on the experimental set-up used can be found in section 2 and in the annexes.

The two first experiments in Top 2 and Set 1 samples had as main goal the observation and

characterization of the (6,5) tubes pressure collapse. We then used the 568 nm laser excitation

to match the resonance conditions to obtain the best signal. We used diamond anvils allowing
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to reach easily 30 GPa of maximum pressure. A first analysis of these data (Top 2 and Set 1)

was already presented in the PhD thesis of Aude Stolz [110]. Here we will comment again these

data for which in particular the data fitting of the Set 1 sample was redone again to verify a

certain number of points. Experiments on Set 1, Set 2 and Stock samples were on their side

designed to explore the maximum pressure stability of the tubular structure. Not having an easy

access to the 568 nm laser excitation, we used other wavelengths and coupled the in situ Raman

observation with the ex situ characterizations after the pressure cycle. 4:1 methanol:ethanol was

always used as pressure transmitting medium except for the Top 2 experiment for which the

own solution of the nanotubes was used.

Before discussing the different details of the experiments in the following subsections, we would

like to present here some characteristic spectra evolution with pressure as well as the fitting

method.

The Figure 3.5(a) shows the Raman spectra stacking of RBM (left panel) and G band (right

panel) regions for the Set 1 specimen for different pressure values. As was shown in Fig. 3.4,

the dominant contributions in these samples are coming from (6,5) tubes but also include some

presence of (6,4) and a marginal detection of (8,3) tubes. In both panels spectra were normalized

in order that their intensities are between 0 and 1 after background substraction. In general,

both RBM and G modes become broader with pressure and their intensities decrease. For the

RBM spectra, the green and blue curves represent the Lorentzian fits of water-filled and empty

(6,5) SWCNTs, respectively[41]. The gray Lorentzian curves are used for the (6,4) and (8,3)

RBM modes, as well as for the non-identified peak at around 420 cm−1. The G band spectra

were also fitted by Lorentzian functions. The black line is the fitting to the SWCNTs G+ peak

(with a dominant contribution from (6,5) tubes), while blue lines are fitted to the G− peaks of

(6,4) and (6,5) nanotubes at low and high frequencies, respectively.
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Figure 3.5 – a) Peak fittings of RBM (left panel) and G-band (right panel) spectra of the Set 1

(bundles of water-filled and empty (6,5) SWCNTs) sample taken with laser energy of 568 nm. b) The

G-band spectral peak fittings of Stock (bundles of empty (6,5) SWCNTs) sample at laser excitation

of 514 nm.
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Figure 3.5(b) shows G-band Raman spectra (normalized from 0 to 1) for the Stock specimen

in six different values of pressure (with the maximum at ∼ 80 GPa) taken with a laser energy

of 2.41 eV. This was the experiment done to the highest pressure. The red (G−) and black

(G+) curves correspond to the Lorentzian fittings, while the purple (arising from diamond anvil

peak) and blue (for the background) curves are Voigt profiles. Similar spectral fittings were

done for the others high pressure experiments. In fact, we have only displayed two different data

treatments in order to give a qualitative aspect of the spectral fittings. Spectra evolution in the

other experiments is included in the annexes.

In the next subsections, we prefer presenting the obtained results separately for the RBM and

G band evolutions as a function of pressure. Their analysis will be used to discuss the collapse

pressure and the nanotube geometry stability. Finally we will devote a specific subsection to the

irreversibly process. All results will be confronted with know works present in the literature.

3.3.1 Radial breathing modes - RBM

Individualized SWCNTs and Collapse – We start our discussion with the individualized tubes

(Top 2). We have completed the analysis started in th PhD thesis of Aude Stolz in our group[110].

Figure 3.6(a) presents the evolution of the frequency of the RBM peaks in the Top 2 solution

. We could linearly fit the evolution of the 3 RBM peaks up to their maximum pressure of

detection. We will discuss later in this section the fitting parameters. We have also represented

in Fig. 3.6(a) as discontinuous lines the obtained fit for the same (6,4) and empty + water-

filled (6,5) tubes in the work of Torres-Dias et al. [41]. In that work their data needed the use

of a quadratic fit, which clearly does not corresponds to the evolution observed in our Top 2

sample. The main difference between our Top 2 sample and the one in the work of Ref. [41]

is the tube environment which in our case contains polymers which interact with the carbon

nanotubes in addition to the DOC surfactant. We may then suggest that the differences in the

ambient pressure wavenumber of the RBM modes as well as the type of linear evolution (linear

or quadratic) strongly depends on the nature of the environment shell wrapping the nanotube.

We will further discuss this aspects for the bundled tubes.

Figure 3.6(b) shows the evolution of the normalised RBM peak area as a function of pressure

for the Top 2 solution ((6,5)-individualized SWCNTs). This graph shows a strong drop of the

normalized peak area value between 0 and 1 GPa, a plateau region and a second drop in the

∼ 16 GPa. The normalization of the RBM peak area of filled/empty tubes was accomplished

through the spectrum of the neon lamp for different pressure values, i.e., for each value of achieved

pressure, the RBMs (filled and empty), ruby shift (pressure measurement) and neon lamp spectra

were collected. At followed, the RBM integrated intensity for one specific pressure value was

divided by the neon lamp integrated intensity at the same pressure (the neon calibrator is a good

reference, because it keeps the same peak position under pressure and its peak area changes very

little), thus allowing to plot the evolution of normalized RBM peak area as a function of pressure.

This general evolution of the RBM peak area with pressure in individualized tubes is in perfect

agreement with the observations in Ref.[30] (empty tubes). The second drop of the peak area

was seen to correspond to the collapse pressure. The data were fitted as in Ref.[30] by means

of least-squares method given by function 1/2(I0exp(−bP) + a)(erf(ω/P0(P− P0))), where the

Gauss error function (erf) provides an approach that describes the plateau and collapse regions.
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However, the normalized peak area plot in our sample takes in account both water-filled and

empty tubes, while that in Ref.[30] the signal is ascribed to empty tubes. From our data, the

collapse pressure onset for the Top 2 individualized (6,5) tubes is of ∼ 16 GPa. We can compare

this value with the predictions of the collapse pressure as function of the tube diameter given by

Ref. [29] and Ref. [30] which are respectively of 16.3 GPa and 10.2 GPa. Filled tubes can show

a collapse pressure up to 3 times larger than empty tubes [41]. In addition it has been observed

that for the Top 2 solution, the G-band frequency deviates from linearity also at ∼ 16 GPa[110]

and this result will be revisited together with the G-band analysis of other specimens (Stock,

Set 1, Set 2) in the section Tangential modes - G bands. We may then assign the observed

attenuation of the RBM (6,5) peak area at 16 GPa to the collapse of the empty tubes.

Figure 3.6 – Top 2 high pressure experiment. a) The left panel shows the RBM frequencies evolution

of (6,4) and water-filled and empty (6,5) tubes together with their respective linear fits (blue dashed

line - filled; black dashed line - empty). The corresponding quadratic evolution from Ref.[41] are also

shown b) The normalised RBM peak area) evolution of our empty + water-filled (6,5)-individualized

SWCNTs, calculated according to Ref.[30]. The pressure transmitting medium corresponds to the

solution of surfactants, polymers and water.

Bundled SWCNTs – The (6,5)-enriched bundled samples in our study are Set 1, Set 2 and Stock

(bundles in 4:1 M-E PTM). We start discussing the results of the Set1 sample which spectra

evolution with pressure was shown in Fig 3.5.a. The result of the fit of the RBM signal is shown

in Figure 3.7(a). In this figure is shown the compared evolution of RBMs and their FWHMs as

a function of pressure for the tubes (6,4) (yellow pentagons), (8,3) (blue pentagons) and (6,5)

water-filled (wine dots) and empty (green circle) for Set 1 sample. The gray dashed vertical line

marks the pressure point where the methanol:ethanol PTM is solidified (about 10 GPa). We do

not observe any clear modification in the spectra evolution associated to the PTM solidification.

The frequency of the (8,3) tube RBM increases steadily up to 7 GPa as well as does its FWHM.

Probably the fitting error bars for (8,3) tubes in Figure 3.7(a) are underestimated (background
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substraction effect on a weak peak). The (8,3) tubes can not be observed beyond 7 GPa,

probably due to the attenuation of they already very weak intensity. For the (6,4) tubes, the

RBM evolution also has a monotonic increasing up to ∼ 17 GPa, however the FWHM evolution

experiences a jump close to 12 GPa (above from the PTM solidification point). The empty (6,5)

tubes display a similar RBM evolution than the (8,3) tubes but we can initially fit both the

contributions of empty(E) and filled(F) tubes. Nevertheless, the E/F signal cannot be fitted

separately for the (6,5) tubes from about 7 GPa. We have then only fitted one peak - associated

to the filled (6,5) tubes from that pressure. This explains the observed accident in the (6,5)

filled tube FWHM and wavelength at this pressure. Filled (6,5) tubes evolve steadily - apart of

the above mentioned accident at 7 GPa - up to 17 GPa.

Figure 3.7 – a) RBM Raman shift as a function of pressure for (6,4) (yellow), (6,5) (green and

wine for empty and water-filled tubes, respectively) and (8,3) (blue) chiralities of the Set 1 sample.

The data linear fittings (following their respective colors) are provided at each pressure range and

compared with the quadratic from of Ref.[41], where the grey circles data points represent the

signal coalescence of (6,5) tubes. The attached lower panel shows the FWHM pressure evolution

for these chiralities with same encoding. The gray dashed line marks the pressure point of PTM

solidification. b) Difference of RBM positions of water-filled (6,5) SWCNTs with respect to empty

ones, ΔRBM = ωfilled−ωempty, compared with the quadratic fits (Fig.3.6a) and data points from Ref.

[41].

Following the work of Ref. [41] we fitted using linear or quadratic polynomials the frequency

evolution of the different peaks for the Top 2 and Set 1 experiments as well as for the Stock
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sample. Results are shown in Table 3.4 and compared with the work of Torres-Dias et al.[41].

In this table we see that we have been able to measure the signal of the RBM peaks of the (6,5)

and (6,4) peaks to much higher pressures than for Ref. [41]. Moreover, the difference in the

wavenumber between filled/empty tubes (with same chirality, as displayed in Table 3.4) could

be attributed to different orientations of water molecules in the filled tubes, which provides

large shifts of the electronic transitions [117]. However, in a general way Cambré et al. [117]

observed that the shifts of the RBM frequency upon water filling showed a complex nonmonotonic

dependence on the diameter and chirality and considering water filling of tubes well in the

diameter range where only a single file of water molecules fits inside the tube. Nevertheless,

the slope of the filled/empty tubes aforementioned present very close values, this behavior may

be ascribed by the increasing of the dielectric constant of the environment originated from the

compression of polymers and surfactant layers wrapping the SWCNTs, which in turn changes

the electronic resonances [41] having an effect on the RBM modes evolution with pressure. We

can actually realize that the ambient pressure wavenumber of the different (n,m) peaks can

significantly vary upon determined experimental conditions.

This is much better seen in Table 3.5 where we have grouped the obtained results by tube

chirality and in which the results of Ref. [41] have also been included. The incertitudes of

ω0 are estimated to ±1 cm−1. We can see that differences in the ω0 values depending on the

environment can be as large as 4-5 wavenumbers. We see also that the two Set 2 experiments are

consistent within error bars. The results from Set 1, Set 2 and Stock, all for bundled tubes differ

both in ω0 values and pressure slopes for the (6,5) tubes. This the high sensitivity of the RBM

tubes to the tube environment as it has already been reported in literature [118]. Finally we

may also note that for the same experiment (environment) there is no difference for the pressure

slopes of the (6,5), (8,3) and (7,5) tubes. The weaker (6,4) seems on its side have a lower slope.

The comparison of our values for the α parameter and the ones of Ref. [41] are not really

significant as in that work a quadratic term was also needed. This is better seen in Fig 3.5.a.

We have also compared the evolution of the F/E RBM position with pressure in Fig 3.5.b where

the difference between the two signals is plotted. We see that at ambient pressure the difference

of signal in our experiments (Top 2 and Set 1) is of about 3 cm−1, i.e., the double than in

Ref. [41]. This differences increases with pressure at a similar rate than for Ref. [41], except for

the very last point measured in the Top 2 sample and an anomalous point at 7 GPa.

Finally for the Set 1 sample, we note in Fig 3.5.a a change of slope in the (6,5) RBM evolution at

18±2 GPa associated with a high increase of the associated FWHM which could be associated

with the collapse of the empty tubes. In fact, the collapse of the empty (6,5) tubes or others of

similar diameter, will probably lead to the development of a large local non-hydrostatic strain

field affecting then the filled tubes FWHM. This hypothetical assertion would need further

support.

We would like now compare in more detail the RBM evolution for the 3 experiments done for

the “Set” samples (one for Set 1 and two for Set 2). This is done in Figure 3.8.a which provides

the observed evolution for the (6,5) water-filled tubes (RBM and its FWHM ). The (6,5) RBM

wavenumber evolution coincides for the 3 experiments up to ∼ 7-8 GPa. The trend in the

FWHM is more scattered up to 4 GPa. From that pressure the FWHM is similar for the 3
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Table 3.4 – RBM pressure derivatives of different SWCNTs nanotube chiralities of the studied

samples in our work compared with the results obtained from Ref. [41]. Values for empty (E) and

water-filled (F) tubes are given when available. The peaks positions evolution were fitted according

their trends (linear or quadratic) in each pressure range. ω0 are the RBM frequencies at ambient

conditions. α and β are the linear and quadratic coefficients of the pressure fit. The pressure domain

in which the fit was done is indicated.

Initial (n,m) dt P range E/F ω0 α β

sample nm (GPa) (cm−1) (cm−1GPa−1) (cm−1GPa−2)

(6,4) 0.68 0 - 6 — 341 4.1 ± 0.3 —

Top 2 (6,5) 0.75 0 - 17.3 E 313.4 4.0 ± 0.1 —

F 316.8 4.3 ± 0.1 —

(8,3) 0.77 — — 294.3 — —

(6,4) 0.68 0 - 17 — 337.9 3.8 ± 0.1 —

0 - 7 E 310.1 4.6 ± 0.1 —

Set 1 (6,5) 0.75 F 313.3 4.9 ± 0.1 —

7 - 17 E and/or F 3.5 ± 0.1 —

17 - 22.7 E and/or F 5.5 ± 1.1 —

(8,3) 0.77 0 - 7 — 293.5 4.9 ± 0.2 —

Set 2 (6,5) 0.75 0 - 7.22 E 313.1 6.3 ± 0.1 -0.3 ± 0.1

(prepared for 0 - 12.7 F 317.3 5.9 ± 0.3 -0.2 ± 0.1

cylce of 40 GPa) (8,3) 0.77 — — 295.2 — —

Set 2 (6,5) 0.75 0 - 6.8 E 314.2 6.6 ± 0.1 -0.4 ± 0.1

(prepared for 0 - 13.6 F 318.2 5.3 ± 0.4 -0.2 ± 0.1

cycle of 50 GPa) (8,3) 0.77 — — 296.2 — —

(6,4) 0.68 — E 338.5 — —

Stock (6,5) 0.75 — E 311.2 — —

(8,3) 0.77 — E 291.8 — —

(7,5) 0.82 — E 278.8 — —

Reference [41] (6,4) 0.68 0 - 3.64 GPa E 335.5 5.6 ± 0.1 -0.4 ± 0.1

DOC-D2O F 337.4 5.8 ± 0.1 -0.4 ± 0.1

solution (6,5) 0.75 0 - 3.64 E 308.6 6.3 ± 0.1 -0.4 ± 0.1

F 310.0 6.6 ± 0.1 -0.4 ± 0.1

(8,3) 0.77 0 - 11 E 297.1 6.0 ± 0.3 -0.2 ± 0.1

0 - 13 F 298.9 6.5 ± 0.1 -0.3 ± 0.1

(7,5) 0.82 0 - 11 E 282.6 6.2 ± 0.2 -0.2 ± 0.1

0 - 13 F 284.4 6.2 ± 0.2 -0.2 ± 0.1
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Table 3.5 – RBM frequencies at ambient conditions (ω◦) and pressure slopes α comparison between

our specimens and Ref.[41].

Sample (6,4) (6,5)

ω0 (cm−1) α (cm−1GPa−1) ω0 (cm−1) α (cm−1GPa−1)

Stock 338.5 – 311.2 –

Top 2 341 4.1 ± 0.3 E 313.4 4.0 ± 0.2

– – F 316.8 4.2 ± 0.10

Reference [41] E 335.5 5.7 ± 0.2 E 308.6 6.3 ± 0.2

F 337.4 5.7 ± 0.2 F 310.0 6.5 ± 0.2

Set 1 337.9 3.8 ± 0.1 E 310.1 4.6 ± 0.2

– – F 313.3 4.9 ± 0.2

Set 2 (40 GPa) – – E 313.1 6.3 ± 0.2

– – F 317.3 5.9 ± 0.4

Set 2 (50 GPa) – – E 314.2 6.5 ± 0.2

– – F 318.2 5.3 ± 0.4

(8,3) (7,5)

ω0 (cm−1) α (cm−1GPa−1) ω0 (cm−1) α (cm−1GPa−1)

Stock 291.8 – 278.8 –

Top 2 294.3 – – –

– – – –

Reference [41] E 297.1 6.0 ± 0.3 E 282.6 6.2 ± 0.2

F 298.9 6.5 ± 0.1 F 284.4 6.2 ± 0.2

Set 1 293.5 4.9 ± 0.2 – –

– – – –

Set 2 (40 GPa) 295.2 – – –

– – –

Set 2 (50 GPa) 296.2 – – –

samples. We should underline that in Figure 3.8.a the grey symbols correspond to the change to

a single peak-fitting and may be attributed most probably to filled tubes too, but which could

be affected by the presence of a weak empty tube component in the fit. Again, differences in the

pressure behavior of all these bundled (6,5) tubes may be due to the environment differences.

In Figure 3.8.b is shown the (6,5) F/E evolution for the Set 2 experiments (RBM and FWHM).

Again, with our present knowledge it is difficult to assign the particularities of the evolution

with respect to Set 1 to other reasons that the environment effects.
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Figure 3.8 – a) Comparison of RBM pressure evolutions of water-filled (6,5) tubes of Set 1 and Set

2 samples at each pressure cycle. The quadratic fittings are provided by blue (Set 2-40 GPa) and

red (Set 2-50 GPa) dashed curves. The gray circles is the continuation of data points for the Set 1.

Pressure evolution of line width is shown in the same colors. b) RBM shift as a function of pressure

of empty (purple hollow dots) and water-filled (blue solid dots) (6,5) tubes from Set 2 (cycled up

to 40 GPa) sample. These data are compared with Set 1 empty and with the second order degree

polynomial curves of empty (black line) and water-filled (red line) from [41].
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3.3.2 Tangential modes - G bands

Before to start the discussion on our own data, it is important to mention the common method-

ology found in the literature to make the G band analysis. At lower pressure values, the G−

and G+ profiles are well distinguishable, making easy the peaks fit. At high pressures, the G−

loses its intensity together with the line width broadening and the G+ increases its frequency.

Different fitting strategies can be adopted. In our study, we have fitted the G− contribution with

a Lorentzian function without locking its parameters. In other words, when we fit the G+ and

G− peaks (ωG+ and ωG− , respectively) and no divergence appears, we consider the contribution

of the G− as relevant.

In a general way, the G band spectral adjustments were performed by background subtraction

with a linear function usually close to horizontal. The spectra were then fitted after normalization

(this same procedure was use in the RBM fittings).

We have used two FWHM values for the G-band: one considering a zero normalization on one left

side of the G+ band and the other taking a background subtraction in which the right side (high

frequency region) of the G+ band is fitted properly by a Lorentzian function. The final value was

the average between these two, giving
(〈FWHM〉 = [FWHM1 + FWHM2

]
/2
)
. While, their

error bars were provided by 2 methods of error propagation, σ〈FWHM〉 =
√
σ2HWHM1

+ σ2HWHM2

(HWHM — half-width at half-maximum) and σ〈FWHM〉 =
|FWHM1−FWHM2|

2 , where the higher

value between these two methods has been chosen. The G bands (G+ and G−) frequencies of

Set 1, Set 2 and Stock samples did not show significant variations when estimated in this same

way.

We still underline that the G+ band signals of Set 1, Set 2, Stock and Top 2 samples may have

their origin mainly coming from water-filled and empty (6,5)-tubes (high relative intensity in

RBMs spectra) when compared with the other chiralities (low ratio in RBMs spectra) and this

is due to the fact that the tubes (in particular for Set 1, Set 2 and Top 2 samples) enrichment

process (chirality sorting) allows us to analyze unambiguously the G-band in macroscopic sam-

pling, as well investigated in references [119, 120]. However, we need to keep in mind that these

modes are less weakened by rehybridization (induced by symmetry-breaking of circular cross-

section) and thus yielding a much smaller softening of the phonon, which in turn becomes the

chirality distinguishable in the sample a hard task. Unlikely to the G+ band, the G− band has

its frequency associated with a more pronounced phonon softening (rehybridization increasing)

and this makes the G− band chirality dependent [121, 120], as for instance displayed in Fig. 3.4

about the G-band (lower spectrum from left panel).

The Figure 3.9 shows the G− peaks evolution of the Set 1, Set 2 and Stock samples cycled

at different pressures. We have assigned the observed peaks to the chiralities (6,4), (6,5) and

(8,3) up to 7 GPa, based on resonant Raman studies on the diameter, chiral angle, and family

dependence of the high-energy modes, G− and G+, in small-diameter semiconducting SWCNTs

suspended in solution [120]. After this pressure, all modes are overlapped, making the chiralities

identification not more unambiguous.

Table 3.6 summarizes the main features from Fig. 3.9, the experimental data points were linearly

fitted until pressure below of ∼7 GPa. The parameters obtained from our G-band pressure

data were compared with previous works about the DWCNTs G-band pressure response in the

77



Chapter 3. (6,5)-Enriched single walled carbon nanotubes at high pressure

Figure 3.9 – G− peaks as function of pressure for bundled tubes Set 1 (empty + water-filled (6,5)

SWCNTs), Set 2 (empty + water-filled (6,5) SWCNTs), Stock (empty tubes). Dashed purple line

marks the pressure value from which the chiralities can not be more distinguished. The colorful

labels provide the sample names with pressure cycles values and also the excitation energies.

presence of different pressure transmitting media (see Table 3.6) and they display similar pressure

coefficients values in relation to the outer tubes (nearly the same shift, this could correspond

to a pure mechanical effect with strain minimization). In contrast, the pressure coefficients of

inner tubes DWCNTs refs.[51, 122, 55] are consistently much lower than the outer tubes as well

as to the our experimental findings. This fact also indicates the screening effect on inner tubes

provided by outer tubes. In addition, we will observe in the part about G+ peaks pressure

evolutions that its pressure slopes have a common linear coefficient and that this value is in

good agreement with the G−-peaks shown here.

Figure 3.10(a) shows the comparison of the pressure evolution of the G+ band and line width

evolutions for the Set 1, Set 2 and Stock samples. All the samples follow a common linear behav-

ior up to 10 GPa with a pressure common slope of 6.36 cm−1GPa−1, thus, we can estimate that

our G-mode pressure coefficient ranges 5-7.6 cm−1GPa−1 in good agreement with the displayed

values for tubes wrapped by environments (surfactant, PTM) and/or bundled/individualized

from literature.
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Table 3.6 – The SWCNTs G− peaks at ambient conditions (ωi) and its pressure derivatives α, as

well as the intercept of each mode when extrapolated to the pressure of 0 GPa.

linear fitting

G−- peak Sample ωi Intercept α Pressure range

(n,m) (cm−1) (cm−1) (cm−1/GPa) (GPa)

Set 1 (26 GPa) 1543.60 1543.38 5.72 ± 0.07 0 - 7

G−-peak (8,3) Set 2 (40 GPa) 1539.50 1541.50 5.28 ± 0.17 0 - 7.22

4M:1E Set 2 (50 GPa) 1540.26 1541.04 4.95 ± 0.28 0 - 6.8

Stock (80 GPa) – 1537.64 5.46 0 - 5.2

G−- peak Set 1 (26 GPa) 1523.36 1523.45 6.93 ± 0.08 0 - 7

(6,4) and/or (6,5) Set 2 (40 GPa) 1520.06 1521.21 7.58 ± 0.34 0 - 6.1

4M:1E Set 2 (50 GPa) 1521.13 1521.96 7.26 ± 0.15 0 - 3.42

G+
inner DWCNTs – – 5.1 ± 0.2 0 - 10

G+
outer [55] – – 8.3 ± 0.2 0 - 10

G+
5 (inner) DWCNTs [50] – – 3.3 0 - 10

G+
6 (outer) 4M:1E – – 6.1 0 - 10

G+
inner DWCNTs [122] – – 3.3 - 5.1 –

G+
outer 4M:1E, Ar, O2 – – 5.8 - 8.6 –

Around 10 GPa pressure the FWHM of the G+ peak start to broaden progressively up to ap-

proximately 20 GPa. After this pressure, broadening continues steadily but at a lower rate. In

all this samples the PTM is 4:1 methanol:ethanol which solidifies at 10 GPa. We may then

hypothesize that the G-band frequency evolution spread of values after the PTM solidification

may be due to differences in the inhomogeneous stress field generated by the PTM. We may

nevertheless note that only the G band evolution of Stock (empty tubes only) presents a more

pronounced deviation which starts being evident at around 15 GPa and progressively approach-

ing the graphite pressure evolution of the G-band. We can then - following previous works in

our group - assign this deviation at around 15 GPa to the collapse pressure of the empty tubes

of the Stock specimen in which empty (6,5) tubes are majority. This interpretation matches

then the one we did when analyzing the RBM contributions.

As discussed, above the collapse region, the ωG+ of the Stock sample (empty tubes) as function

of pressure evolves gradually until reaching a graphite-like behavior close to 60 GPa, while the

Set 2 samples (empty and water-filled tubes) continue raising up until their respective maximum

pressures (40 GPa and 50 GPa). This graphite-like trend in the Stock sample from ∼ 60 GPa and

up to the maximum pressure of 80 GPa is associated to a much prominent FWHM increase, which

suggests important structural changes. As we will discuss in the next section such evolution is

coherent with a total loss of the nanotubes mechanical stability or “unzipping” taking place

from 60 GPa. This value may be considered as the threshold for the transformation between

the tubular geometry (whatever its radial cross-section) and a graphite-like structure. The gray

vertical rectangle marks the region of the proposed irreversible transformation.
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Figure 3.10 – a) G+ band as function of pressure for bundled tubes Set 1 (empty + water-filled

(6,5) SWCNTs), Set 2 (empty + water-filled (6,5) SWCNTs), Stock (empty tubes). Purple curve

shows the graphite G-band evolution and the green vertical line is the PTM solidification pressure

point. The large gray line represents the all data linear fittings up to solidification point (the linear

equation is also provided). Line width evolution with the pressure is equally shown (lower panel). The

gray rectangular area indicates the pressure range where the Stock and graphite G-band evolutions

match. b) The G-band (dots) and FWHMG (circles) evolutions with the pressure of the Top 2

solution (empty + water-filled (6,5) SWCNTs). The black color represents the loading pressure,

while the blue the unloading. A linear fitting is displayed by gray dashed line as well as its equation.

3.3.3 Reversibility limits of (6,5) SWCNTs

In order to obtain a better insight on the permanent pressure-induced changes in the tube

structure we will examine the Raman signal after pressure cycle as well as TEM images. The

irreversible changes have been already suggested by the G-band evolution in the Stock experi-

ment. The RBM and G band spectra of Set 1, Set 2 and Stock samples measured before (BPL)

and after (APL) the pressure loading are compared in Figure 3.11. The labels indicate the max-

imum pressure attained for each cycle. In Fig.3.11(a), the RBMs for the spectrum 26 GPa Set

1 shows that the (8,3) tubes, water-filled- and empty-(6,5) and (6,4) tubes are recovered after

pressure cycle up to 26 GPa, however the RBM peak area of filled-(6,5) increased, which means

that the ratio of filled tubes increased during the pressure experiment.
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Figure 3.11 – The Set 1 and Set 2 samples contain empty + water-filled (6,5) SWCNTs, while the

Stock has only empty tubes. a) RBM spectra comparisons of Set 1, Set 2 and Stock samples before

(BPL) and after (APL) pressure loadings. In each panel, the labels indicate until which pressure

the samples were cycled and for which laser energies the specimens have been characterized, as well

as their chiralities. The blue hash symbol (#) indicates the RBM position of (8,3) tubes. b) G-

band spectra comparisons of Set 1, Set 2 and Stock samples before (BPL) and after (APL) pressure

loadings. In each panel, the labels indicate until which pressure the samples were cycled and at

which laser energies the specimens are excited.

For the 40 GPa Set 2 RBM spectrum, the (8,3) and water-filled- and empty-(6,5) tubes have

their profiles substantially modified after the pressure cycle. We note also that the tube signal is

much weaker (lower S/N ratio). The ratio of empty/filled-(6,5) tubes is roughly unchanged with

respect to the experiment up to 26 GPa. The most significant change is that the (8,3) RBM

peak area has now become comparable to the (6,5) one (E or F). The progressive prominence of

the (8,3) peak with increasing maximum pressure is confirmed in the 50 GPa Set 2 experiment

taken with a 532 nm eV laser : the (8,3) signal becomes more intense than the (6,5) one. It

is important to note that the characterizations at ambient conditions for Set 1 and Set 2 (see

Figs.3.4, 3.11) do not offer a enough resolution to distinguish the filling effect in the (8,3) and

(6,4) tubes. Surprisingly, the (6,5) signal of the 50 GPa Set 2 shows similar frequencies to the

(6,5)-empty tubes. We note that no RBM signal is observed for the 50 GPa Set 2 sample APL

when excited with the 514 nm laser wavelength. Nevertheless, in the corresponding G-band

spectra Figure 3.11(b)(third panel from left to right), the G− peak in the APL still is resolved,
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therefore demonstrating a reminiscent tubular feature. Consequently, the RBM signal losses

with the 514 nm excitation can be attributed to resonance conditions. Finally the Stock sample

cycled up to 80 GPa did not show any sign of RBM and its G-band did not show any sign of

G− peak. This seems to indicate the unzipping or destruction of all tubular structures.

We may look to the G-band spectral of Fig. 3.11(b) with more detail. They reveal that with

increasing the maximum pressure, the D band (structural defects) intensities increase. The

evolution of the proportion of defects can be described quantitatively by the evolution of ID/IG

which are given in Table 3.7. The ID/IG maximum ratio of 0.98 found for Stock is usually

ascribed in some works from literature [123, 124], as a indicative of structural transformations.

This information becomes evident when we connect the ID/IG values evolution and the G− bands

(tubular aspect) profiles of other recovered materials, since that these peaks can be resolved up

to 50 GPa but not for 80 GPa. It is also interesting to mention that the G− peaks are assigned

as contributions of (6,4) (low frequency) and (6,5) (high frequency) tubes, by comparing with

the G-band spectra at ambient conditions Figure 3.4.

Overall our analysis of the cycled Raman spectra shows that the small diameter tubes (empty

or filled) can support pressures up to 50 GPa with the presence of structural damages (the low

peak intensity and the background signal-to-noise increasing). At pressures of 80 GPa all tubes

have been irreversibly transformed. Interestingly there are clear differences on the tube pressure

stability between tubes having different chiralities and similar diameters. This is the case of the

(8,3) tubes which showed to better survey to pressures cycles up to 40 GPa and 50 GPa.

Table 3.7 – Comparison between our studied samples after each maximum pressure loading. The

collapse pressure for each sample is addressed together with the reversibility aspect. The defects

density is provided by ratio ID/IG (6th column). The percentage of filling measured with the same

energy excitation for the samples before and after pressure cycles is given by ratio IAPL/IBPL (7th

column).

Initial laser λ Pmax Collapse Pressure Reversibility ID/IG IAPL/ IBPL

sample (nm) E F

Top 2 568.2 26 GPa 17 GPa (onset) reversible – – –

Set 1 568.2 26 GPa 17 GPa (onset) reversible 0.20 1.00 1.55

Set 2 514 40 GPa 17 GPa (onset) - 30 GPa (end) reversible 0.41 0.76 1.25

Set 2 514 50 GPa 17 GPa (onset) - 30 GPa (end) reversible 0.6 – –

Set 2 532 50 GPa single acquisition (APL) reversible 0.5 – –

Stock 514 80 GPa ∼ 15 GPa irreversible 0.98 – –

To further explore the structural irreversibility undergone by nanotubes of Stock cycled to 80

GPa, a set of TEM images were collect from the recovered material Figure 3.12. The Fig-

ure 3.12(a) shows an open field image of a piece from Stock sample recovered after loading of 80

GPa. In Fig. 3.12(b) is shown a region of the sample exhibiting a turbostratic carbon structure

(upper left image). The electron diffraction (SAED) pattern of this material was taken and

the distance between two brighter curves (red numbers labeled by 1 and 2) confirms that the

interlayer distance is graphite-like with about 0.337 nm (D = 1/
(
L
2

)
, where L = 5.922 nm−1 in

reciprocal space). The weak secondary rings are also visible in the SAED, being associated with
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Figure 3.12 – TEM images of Stock (empty tubes) sample after pressure cycle of 80 GPa. a) Zoom

out of a piece from the Stock recovered specimen after 80 GPa. b) TEM image of a region of the

turbostratic carbon (right side). The SAED pattern shows two brighter opposite curves close to the

beam center (numbered by 1 and 2 in red color) and the plan distance is given in the lower left graph,

secondary rings also are shown by electron diffraction pattern. The right image corresponds to the

zoom in from right one and the yellow line marks the plan distance provided in the lower right graph.

c) Non-graphitic carbon planes. d) Nanocages present after 80 GPa. e) Overlapped non-graphitic

carbon planes. f) Amorphous carbon region. The scales bar are provided in each image.
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the sample polycrystallinity. A zoom from the previous image (upper right image) allowing to

display a better view of the layers stacking and texture. The yellow line on that zoom image

allowed to measure the distance between planes providing a distance around 0.360 nm (associ-

ated with the turbostratic carbon structure [125]). Other nanosctructures are also formed (see

Figure 3.12), as non-graphitic carbon planes c), overlapped non-graphitic carbon planes e) and

amorphous carbon f), all providing strong evidence of the nanotube irreversible transformation.

Nano-onions or nanocages with inter-plane distances close to graphitic planes (Fig.3.12(d), dis-

tance ∼ 0.344 nm) are also observed; however these structures are also present in the Stock

pristine sample Fig. 3.1(c). Some works in the literature report that the nanocages can support

pressures higher than nanotubes [126, 127].
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3.3.4 Conclusions

We have performed a resonant and non-resonant Raman study at high pressures of chirality-

enriched (6,5) single walled nanotubes in bundles and individualized tubes. We observed that the

RBM frequencies as well as their pressure dependence are strongly dependent of the surrounding

environment of the tubes. The collapse pressure of empty (6,5) was estimated at around 16 GPa,

while for the water filled (6,5) tubes no feature indicating a possible collapse appeared up to 50

GPa. For pressure cycles up to 50 GPa, empty and filled tubes survive, but nevertheless a large

proportion of damaged tubes can be evidenced both by defects density (ID/IG) as well as by

the RBM Raman peak areas of filled and empty tubes before and after pressure loadings (IAPL/

IBPL).

The instability (unzipping) of empty (6,5) (and other chiralities) is full at 80 GPa with the

creation of others nanostructures, as turbostratic graphite planes and amorphous carbon. In

addition, the mechanical stability response of nanotubes seems to depend of chirality. In fact we

have observed a higher structural instability for empty + water-filled (6,5) tubes in comparison

to the empty (8,3) tubes after recovering the samples from pressure cycles at different maximum

pressures.

This first study in this PhD thesis on low diameter (0.75 nm) nanotubes point out to three

important results: a)there is no significant PTM effect on the collapse pressure, but nevertheless

an important effect on the RBM signal evolution, b) it appears to be an important chiral effect

on the tube stability and c) nanotube stability for these low diameter tubes is found between 50

and 80 GPa.
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Chapter 4. Triple walled carbon nanotubes at high pressure

4.1 Introduction

After having explored the effect of the pressure transmitting medium, diameter and even chirality

in the mechanical stability of SWCNTs, we will now turn to the effect of the number of walls.

For this we will consider in this chapter triple-wall carbon nanotubes (TWCNTs). There have

been a number of works on the high pressure response of DWCNTs but the study on the pressure

response of TWCNTs is newer and counts only with a single experimental study[128] limited to a

maximum pressure of 6 GPa. That study, makes part of an ongoing collaboration of several years

between our ILM group of the University of Lyon and the Physics Department of the Federal

University of Ceara (Fortaleza, Brazil) and the present chapter is a continuation of that work

to explore at higher pressures the stability of TWCNTs. In this chapter we first describe the

elaboration and main properties of the TWCNTs specimen used together with works previously

reported in literature about this sample. Subsequently, we introduce our results obtained by

high pressure resonant Raman experiments and electron microscopy characterization, discussing

them throughout the text. As in the previous chapter we will first consider the RBM signal,

then the G band contribution before considering at last the irreversible transformation of the

sample. We finished the chapter by summarizing the main conclusions of this chapter.

4.2 Triple walled carbon nanotubes

4.2.1 TWCNTs synthesis

Highly crystalline and uniform TWCNTs were synthesized by Muramatsu et al. [129]. To obtain

this sample, a high-temperature thermal treatment of catalytically grown high-purity DWCNTs

was performed at 2400 ◦C by means of a graphite furnace in argon atmosphere to enlarge

the diameter of the tubes via the coalescence mechanism. The thermally annealed DWCNTs

presented inner diameters optimized to encapsulate C60 ranging from 1.0 - 1.8 nm. The cap

structure of the DWCNTs was removed by an air-oxidation treatment carried out in air. This

was followed by the encapsulation of the fullerenes in DWCNTs. For this C60 and nanotubes

were sealed into a glass tube under vacuum, and the mixture was annealed at 600 °C for 5 h.

DWCNTs encapsulating fullerenes (peapods) were washed by toluene to remove the residual

fullerenes in adhesion on tubes surfaces. In order to transform C60@DWCNTs into TWCNTs

(to coalesce the fullerenes and form the inner tubes of TWCNTs), a thermal treatment was

carried out at temperatures of 1500 - 2400 ◦C (the optimal temperature for transformation was

of 2000 ◦C) using a graphite furnace in argon for 30 min. The number of TWCNTs with regard

to SWCNTs and DWCNTs was estimated to be ca. 45% (considering the filling ratio as well as

the conversion rate of peapods).

The TWCNTs characterization was performed using TEM, Raman spectroscopy, photolumi-

nescence (PL) and optical absorption spectroscopy. For more details about the synthesis and

characterizations see [129].

It is important to emphasize that the basic geometrical features (diameters evaluation, the

possible chiralities) of the TWCNTs were studies by Raman spectroscopy, whereas the TEM +

PL studies were carried out more for the diameter distribution as well as the formation ratio

of TWCNTs at high temperature. However, none of these studies associated with the diameter
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distribution provide a quantitative approach about the inter-layer (wall to wall) distance, but we

think that by the average values shown in the Figure 4.1(c) (similarly in Figure 2 and Table S2

of the Supporting Information from [129]) the inter-layers distance seems to follow the nominal

van der Waals value (∼ 0.34 nm). A way to access the information concerning to the wall-to-wall

distance could be the use of X-Ray diffraction, where e.g., the (002) peak position displays the

wall to wall distance, as shown in the work about the DWCNTs systems [130].

4.2.2 General aspects and previous works

TWCNTs1 offer an ideal structure to study and understand in what way the environment can

influence the general properties of both SWCNTs and DWCNTs, as well as other hybrid sys-

tems and their reciprocal relation, in this sense a well-established knowledge on mechanical and

electronic properties is required.

The first detailed study using RRS for characterization of bundled and individual TWCNTs was

carried out by Hirschmann et al. [131]. In this work was demonstrated that inner nanotubes are

chirality-dependent isolated (i.e. partially) by outer nanotube. Once it has been observed that

the innermost semiconducting tubes are more sensitive than metallic nanotubes, being effect by

the surroundings and high-curvature intertube. In another study (extension of the previous one),

Hirschmann et al. [132] have pointed out that metallic inner tubes show broadened resonant

peaks profiles when compared with those narrow peaks of the semiconducting tubes in a RBM

spectrum region. By means of comparison the Raman results for bundled as well as individual

fullerene-peapod derived double wall carbon nanotubes and TWCNTs, it was possible discuss

a correlation between wall-to-wall distances and the frequency upshifts of RBMs. These results

provided more informations about fundamental properties of DWCNTs and TWCNTs, as the

intertube interactions depending on diameter-, chirality-, high-curvature-dependent. This has

then, showed the role of intratube interactions in TWCNTs electronic structure.

In other characterization work about the G
′
band (also known as 2D band - double resonant

Raman scattering process independent of structural defects) of individual TWCNTs taken at

different laser wavelengths, Hirschmann et al. [133] has shown that each concentric nanotubes

contributes independently to the G
′
band from one another. In fact the G

′
band shows a

clear triple-peak structure, thus indicating a weak coupling of the system. In bundles the G
′

band frequency and intensity revealed an important dependence on the nanotube chirality and

diameter of inner tubes.

Through the pressure application on bundled TWCNTs, Alencar et al. [128] demonstrated that

the host (intermediate) tubes experience electronic screening and mechanical support effects

at the same time, making then TWCNTs distinguishable from DWCNTs in the mixture. In

addition, the radial breathing modes (RBMs) of the innermost tubes of TWCNTs under different

resonance and pressure conditions showed similarities, which evidenced the pressure-induced

band-gap tunability.

Albeit these works provide some fundamental insights to a better understanding of mechanical

and electronic properties in TWCNTs, the collapse picture of TWCNTs and the tube stability

are not known.

In next sections, we will address these problems using in situ resonant Raman spectroscopy at

1Always corresponding to the synthesized sample by Muramatsu et al. [129]
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high pressure and post-modern TEM study.

4.2.3 Results and discussion

The experimental details of the TWCNTs experiments are reported in the Annex. We will focus

here on the results obtained from our experiments together with the existing literature.

Figure 4.1 shows the high resolution transmission electron microscopy (HTREM) of DWCNTs

and TWCNTs as prepared in Ref. [129]. Our samples are the same ones. We can notice by Figs.

4.1(a)-(b) that the specimen does not contain an homogeneous distribution of walls number (the

TWCNTs rate is 45% with regard to that of DWCNTs). Therefore, we may observe that the

resonant Raman spectra collected from this sample contains contributions of both DWCNTs and

TWCNTs. We should note that it has been proposed that the frequency of the RBM modes in

DWCNTs can be modified by the coupling of the tubes [134] and in this context we should then

speak about BLMs (Breathing-Like Modes). Nevertheless, the often found incommensurability

between the two adjacent layers in DWCNTs has been proposed as a limitation for such coupling

[135, 136] which may exist for some particular DWCNTs. Our samples being powders we assume

that not coupling is dominant.

To estimate the inner, intermediate and external diameter of TWCNTs, we used the zero-order

approximation ωRBM = 218.3/dt + 15.9 cm−1 as suggested by Muramatsu et .al [129], where

ωRBM is the radial breathing mode and dt is the tube diameter. The intermediate and outer

tube diameters of TWCNTs are similar to those of DWCNTs. The diameter distributions of

TWCNTs are shown in Fig. 4.1(c) (the average diameter of innermost, intermediate and outer

tube from TWCNT are 0.83 nm, 1.45 nm and 2.23 nm). The loading configuration of sample

before the pressure cycling is shown in Fig.4.1(d), the white arrows designate the ruby chip,

pieces of sample and NaCl PTM (used to avoid filling of the tubes).
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4.2 Triple walled carbon nanotubes

Figure 4.1 – (a) HRTEM image of a TWCNT on DWCNTs at ambient conditions (scale bar in

image). (b) circular cross-sections of pristine samples (scale provided in image).(c) the colorful

histogram displays the diameters distribution of inner (blue), intermediate (red) and outer (black)

tubes from our specimen.(d) optical image from DAC gasket volume filled by NaCl PTM, a ruby

chip and sample pieces at few microns size before the pressure cycle.

4.2.3.1 Radial breathing modes analysis

Figure 4.2(a) shows the RBM like Raman spectra at different pressure values (from ambient

conditions up to 18.7 GPa) of TWCNTs taken with an excitation energy of 2.41 eV. All spectra

were background subtracted with a linear function and normalized (0 to 1).

Our measurements which containing some visible RBM signal extend up to 15 GPa, whereas

the previous study of the TWCNTs RBM evolution was limited to 10.4 GPa (Ref. [128]). In

general, with the increase of pressure all RBM modes broaden and their intensities present a

global attenuation, in agreement with previous studies [55, 56, 128]. However, for the RBMs

frequencies above of 360 cm−1, the relative intensities change with the pressure increase, being

observable up to 14.6 GPa. As suggested in Ref. [128], this result can be attributed to changes

in the electronic transition energies from inner tubes (discussed along the text).

Due to the non-homogeneity of the sample (DWCNTS and TWCNTs) and the diameters distri-

bution to be narrow, it is difficult to distinguish directly the origin of the peaks contribution in

the Raman spectra. In other words, we do not know if theses peaks belong to the inner tubes

of DWCNTs or to the intermediate tubes of TWCNTs, when measured at ambient conditions.

Thus, for a deeper analysis of the RBM spectra, each peak was fitted with one Lorentzian

component, resulting in twelve peaks, which are shown in Table 4.1. The peak marked with

hash symbol is a spurious signal, since both frequency and intensity (relative to the noise) do

not change with pressure. The other two peaks labeled with stars are laser plasma line (see
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Fig.4.2(a)).

The RBMs frequencies follow a linear behavior with the pressure, having the experimental data

fitted with ω(P ) = ω0 + αP (where ω0 and α correspond to the extrapolated frequency at 0

GPa and the pressure coefficient, respectively). These RBM peaks as a function of pressure are

shown in Figure 4.2(b). The R1 and R3 peaks, disappear at the two first pressure points, and

consequently, do not provide enough experimental points to carry out a reliable fitting. All other

RBM modes evolve linearly with pressure, but with different rates.

Figure 4.2 – (a) RBM Raman spectra stacked at different pressures values. The green and light

gray colors designate the spectral data and fitting, respectively. The another colors emphasize the

RBM features until their disappearance. The symbols labelled by stars and hash represent spurious

signals, whose origin is discussed throughout the text. (b) RBM frequencies of all twelve observable

peaks from spectrum (a) as a function of pressure.

By normalizing the pressure coefficient for each frequency value ω0 is possible plot a graph of

normalized pressure coefficient vs initial frequencies. By means of this plotting, a previous high

pressure resonant Raman study on fullerene-peapod-derived TWCNTs (the same specimen used

in our work) using different three excitation energies showed that the presence of the innermost

tube of the TWCNT provides a structural support for the intermediate tube, an result associated

to a smaller normalized pressure coefficient [(1/ω0)(∂ω/∂P )] when compared with the inner tube

of DWCNTs with similar diameter [128]. This behavior is related to structural support. In fact,

the radial stability against pressure of carbon nanotubes is strongly dependent on the tube

diameter and on the number of walls [56, 30].

Thus, by comparing the (1/ω0)(∂ω/∂P ) from our data Figure 4.2(b) with those of Ref. [128] in

Figure 4.3, it can be observed that only the R2 peak comes from the DWCNTs (inner DWCNTs).

Furthermore, the innermost tubes of the TWCNTs have a similar behavior to those of the inner

rings model of DWCNTs (clear yellow square) from the reference [137], whose the values of

the normalized pressure slopes are smaller than those for single rings with the same diameters,
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Table 4.1 – RBM frequencies at ambient conditions (ω◦) and pressure derivatives ∂ω/∂P , as well

as the intercept of each mode when extrapolated to the pressure of 0 GPa.

linear fitting using NaCl as PTM

Mode ω◦ (ambient pressure) Intercept ∂ω/∂P d∗t (n,m) wall type

(cm−1) (cm−1) (cm−1/GPa) (nm)

R1 161.8 – – 1.49 – intermediate

R2 182.4 182 2.3 ± 0.2 1.31 – intermediate

R3 188.9 – – 1.26 – intermediate

R4 204.3 203.7 1.1 ± 0.2 1.15 – intermediate

R5 228.6 229 -0.2 ± 0.2 1.02 – intermediate

R6 247.3 247.1 0.7 ± 0.2 0.94 – innermost

R7 259.7 259.6 0.7 ± 0.4 0.89 – innermost

R8 270.3 270.7 0.6 ± 0.4 0.85 – innermost

R9 320.6 320.5 0.4 ± 0.3 0.71 – innermost

R10 354.7 354.1 -0.1 ± 0.2 0.64 – innermost

R11 381.1 380 0.7 ± 0.1 0.59 (5,4) innermost

R12 387.5 387 0.5 ± 0.1 0.58 (7,1) innermost

∗Diameters calculated by relationship suggested in Ref. [129], see text.

reflecting the pressure screening effect of the outer tube, and the decrease of the interlayers

distance (ranging of 0.34 to 0.38 nm, see Fig.4.3) causes the RBMs frequencies upshift (the

increase of the layers interaction) with a more efficient pressure transmission to the innermost

tube (larger (1/ω0)(∂ω/∂P )). It is important to mention that although the model coupled

anharmonic oscillators for DWCNTs of Christofilos et al. [137] provides constant curves (dashed

yellow lines) of intratube spacing (0.34-0.38 nm (blue) Fig.4.3) for various some of inner rings

diameters (0.6-1.0 nm (yellow) Fig.4.3), we are not be able to use it in order to estimate the

wall-to-wall distance of our TWCNTs innermost (black triangles Fig.4.3), since the error bars

size are large. Summarizing, for the excitation energy of 2.41 eV, the largest contribution for

the RBM Raman spectra is originated from the TWCNTs. The R5 and R10 peaks present a

small negative ∂ω/∂P . A similar result has been found for DWCNTs, although not explained

[55]. Additional information would be need to clarify such singular behavior.

The RBMs contributions of the TWCNTs innermost tubes are kept above 8 GPa, evidencing

the screening effect against pressure [138, 139, 122]. These tubes were assigned as having (5,4)

and (7,1) chiralities, the explanation arises from the following arguments:

1. According to the characterization work of TWCNTs bundles at ambient conditions [131],

the low diameter tubes excited at 2.41 eV localized in the Kataura plot of individual

DWCNTs of similar diameters correlated with a experimental 2D map of intensities, are

tubes of chirality (5,4) and (7,1). Besides, the authors affirm that the smaller tubes found in

this specimen are (5,4)2. The RBM frequency displayed in this work has a good agreement

with that of the Table 4.1, taking in account that interactions between tubes lead to blue

2This statement is given by the RBM and G− peaks values. In addition, the G− assignment at 1511.5 cm−1

of this study is coherent with that one of our study - see in the next section, the G−
1 position at 0 GPa.
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Figure 4.3 – Normalized pressure coefficients (α/ω0 = 1/ω0∂ω/∂P ) as a function of RBM fre-

quencies obtained from the Raman spectra acquired with the excitation energy of 2.41 eV from our

experimental data (highlighted horizontal black triangles) compared with those from Ref. [128].

The dashed yellow curves correspond to the coupled oscillators model of DWCNTs from [137] with

the layers distance ranging from 0.34 to 0.38 nm (blue numbers) for different inner tube diameters

(yellow numbers).

shift of modes. Besides, the (5,4) resonance condition is very intense at 2.41 eV, while for

(7,1) tube this condition is more close to 2.33 eV.

2. The next argument arises from the first work already referred about TWCNTs under high

pressure excited by different laser energies [128], where innermost tubes probed by laser

2.41 eV at ambient conditions showed profiles and peaks positions similar to those at a

pressure of 5 GPa, but excited with an energy of 2.33 eV. In other hands, the tubes probed

with these two energies were the same, but resonance conditions were tuned with pressure.

3. Combining the above assumptions 1 and 2, we can suggest that in our experiment of high

pressures the innermost tubes (5,4) have the their resonance conditions less affected than

(7,1) tubes until at least 14.6 GPa, because these tubes already are at strong resonance

and loss slowly this resonance, in opposition to (7,1). This similar result was observed in

Ref.[128], where the (5,4) and (7,1) enter in resonance only with the pressure increase.

A priori until the value of 8 GPa, no structural transformations is expected, taking in account

that the collapse in SWCNTs and DWCNTs (with similar diameter) has been observed only

above 10 GPa [55, 39, 140, 141]. At the same time, if we consider the collapse pressure relying on

d−3 (equivalent to modified Lévy-Carrier law in the larger tubes regime) and that the TWCNTs

outer tubes are > 1.5 nm, we could point out surely that inner tubes provide the structural

support, which in turn delays the collapse pressure of the all system [47, 43, 55, 128, 56].

On the other hand, our previously discussed RBM data and results do not offer a clear indication

about the collapse of TWCNTs As reported in Ref.[128] and briefly quoted in the text, the
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compression in smaller diameter tubes lead to deep changes in their transition energies (Eii).

This results explain the modifications seen in the RBMs profiles of our experiments (Figure

4.2(a)).

4.2.3.2 Tangential modes - G band analysis

Figure 4.4(a) shows the G-band Raman spectra at different pressure values for excitation energy

of 2.41 eV. As in case of the RBM spectra, the G-band were also normalized so that their

intensities are between 0 and 1. Commonly, the G-band broadens and its intensity decreases

as pressure increases, in agreement with previous studies in DWCNTs and TWCNTs [128, 55,

56]. For a detailed analysis of the G-band, we fitted the G-band profile with six Lorentzian

components (black lines in 4.4(a)), following a similar procedure as in Ref [128]. Due to the

fact that our sample contains a mixture of DWCNTs and TWCNTs, we have nominated the

three highest frequency components as G+
1 , G

+
2 and G+

3 modes Figure 4.4(b). Since, we could

expect the G+
2 and G+

3 contributions being originated from intermediate and outer tubes of

DWCNTs and TWCNTs, whereas the G+
1 component could be only attributed to innermost

tubes of TWCNTs. A similar proposition would be used to assign the three lowest peaks G−
1 ,

G−
2 and G−

3 . Here the numeral labels refer to the tube position, with 1 being the innermost tube

[55, 128]. Moreover, we also used a Voigt component (blue lines in Figure 4.4(a)) for a lower

energy component to improve the fitting. This broad band has been assigned in other works to

the D-band [142].

In addition, a recent study [143] considering the mechanical coupling between the layers of indi-

vidual suspended DWCNTs (unambiguously index-identified) at ambient conditions has shown

the G-mode frequencies dependence on the distance between the inner and outer layers and this

is well understood through the effect of an effective pressure felt between these two layers. It

was stated that when the intertube distance is larger than 0.34 nm (the nominal van der Waals

value), larger is the downshift (upshift) of the longitudinal (LO) and transverse (TO) G-modes

of inner-layer (outer-layer) with respect to the corresponding modes in equivalent SWCNTs. By

contrast, our work deals with bundled TWCNTs (containing in a certain rate DWCNTs and

SWCNTs) whose configuration leads to the overlapping of all modes, thus making the investi-

gation on the TWCNTs innermost tube more complex and limiting in this particular case the

of this approach.

The pressure-dependence of the six G-band modes from Figure 4.4(a) is shown in Figure 4.4(b).

Because of the fast attenuation of the G− peaks and the increase of the D-band intensity (blue

lines in Figure 4.4(a)), we concentrate our analysis on the G+ components. These components

blue shift steadily with then a positive - but different from each other - pressure coefficient

(∂ωG+/∂P ) up to 21.7 GPa (blue arrow in Figure 4.4(b)). At this pressure value, both G+
2 and

G+
3 components present an inflection point evolving towards a negative ∂ωG+/∂P up to 27.5

GPa. After this pressure they follow a behavior close to graphite (dashed red line in Figure

4.4(b)). Differently, the G+
1 component exhibits a plateau between 24.8-36.8 GPa. After that,

it also evolves with a similar ∂ωG/∂P to graphite. Beyond 60 GPa (one pressure point) we used

only one Lorentzian component to fit the G-band. The reason to follow such procedure will be

discussed later.

The Table 4.2 shows the pressure response of the TWCNTs G-band frequencies for the inner,
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intermediate and outer tubes compared also with DWCNTs from literature [50, 55]. The slope

of G+
inner-peak has a smaller value than G+

intermediate,outer-peaks, reflecting again the larger de-

formation of the outer tubes and the pressure shielding effect for inner tubes (as already pointed

out in the RBMs case). When the TWCNTs G+
inner-peak is compared with that one of com-

pressed DWCNTs at sodium chloride (NaCl), as well as in methanol:ethanol mixture, its slope is

close to than of DWCNTs inner tubes. However, the slope of the external (outer) tubes probed

in different pressure transmitting media considerably change, suggesting the environment effect

on the outer tube and the chemical screening to inner tube (in agreement with [55]).

In Figure 4.5 is also included for comparison the pressure-dependence of the G+ components

(blue squares) from DWCNTs [55]. The DWCNTs studied in Ref. [55] are the same used as

precursor (catalytically grown high-purity DWCNTs) in the synthesis of our TWCNTs (by means

of diameter-enlarged DWCNTs encapsulating fullerenes) used in this thesis.

Figure 4.4 – (a) G-band Raman spectra collected at different pressures values. The green and light

gray indicate the spectral data and fitting, respectively. Black and red Lorentzian curves represent

the three components of the G+ and G− peaks, respectively. Blue Voigtian profile at low frequency

region is commonly assigned as the D-band. (b) Raman frequencies of the G+ and G− components

labelled as 1, 2 and 3 for the inner, intermediate and outer tubes, respectively, as a function of

pressure. The red dashed line indicates the graphite evolution. The blue and red arrows indicate

the onset at ∼ 22 GPa and end of collapse ∼ 37 GPa, respectively. The colorful rectangular vertical

area displays the collapse region. The wine symbol at 71.9 GPa marks the value where the TWCNTs

have lost the tubular feature.

The Raman signature of the radial collapse for SWCNTs as well as the value of the collapse

pressure depends significantly of the tube filling [41, 144, 56]. For empty SWCNTs, the beginning

and the end of a plateau on the G-band pressure derivative (∂ωG/∂P ∼ 0) are associated to

the onset and the end of the radial collapse, respectively. On the other hand, for water-filled

SWCNTs the onset of the radial collapse is related to change on sign of the pressure derivative
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4.2 Triple walled carbon nanotubes

Table 4.2 – The TWCNTs G-band frequencies at ambient conditions (ωi) and its pressure derivatives

∂ω/∂P , as well as the intercept of each mode when extrapolated to the pressure of 0 GPa.

linear fitting from 0-10 GPa

G-band ref ωi Intercept ∂ωi/∂P Normalized

(cm−1) (cm−1) (cm−1/GPa) slope (GPa−1)

G+
outer 1591.9 1593.4 7.84 ± 0.28 0.005

G+
intermediate this work 1580.58 1581.8 4.41 ± 0.19 0.003

G+
inner 1573.5 1571.6 2.68 ± 0.26 0.002

G+
o (1.56±0.54nm) DWCNTs [55] – 1596.0 8.0 ± 0.1 0.005

G+
i (0.86±0.25nm) NaCl – 1579.2 4.6 ± 0.1 0.003

G+
o DWCNTs [50]a 1592a/1594b – 6.1a/5.8b 0.004a/0.004b

G+
i [122]b 4M:1E 1579a/1582b – 3.3a/3.3b 0.002a/0.002b

G−
outer 1551.0 1550.7 1.82 ± 0.46 0.001

G−
intermediate this work 1520.6 1521.6 2.47 ± 0.14 0.002

G−
inner 1496.3 1496.4 1.59 ± 0.08 0.001

[50]a: doutert =1.38±0.05 nm, dinnert =0.69±0.08 nm; [122]b: DWCNTs with diameter ranging

from 0.6-3.0 nm.

Figure 4.5 – The blue squares represent the G+ components from DWCNTs Ref.[55] evolving as

a function of pressure in comparison with the data of the present work. The collapse region is

represented by colourful vertical rectangular with the onset at 21.7 GPa and the end at 36.8 GPa.

The red dashed curve belongs to graphite evolution and the sole wine point marks the irreversible

transformation explained in the main text.

whereas the full collapse is associated with the pressure at which the G-band frequency evolves

with a graphite-like behavior [39, 37, 41]. For DWCNTs, as in water-filled SWCNTs, the onset
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Chapter 4. Triple walled carbon nanotubes at high pressure

of radial collapse is also attributed to a inversion of ∂ωG/∂P [55], being completed when the

G-band frequencies achieve a behavior similar to the one of graphite [56]. The disappearance of

the RBM modes can also be an indicative of the radial collapse, specially in individualized tubes

[30]. However change of resonance conditions and drastic variations on the tube cross section,

as previously mentioned can also lead to loss of RBM modes [41, 56, 128, 44, 34, 35, 145, 142].

Theoretically the collapse process of DWCNTs and TWCNTs is predicted to follow a cascade

effect, with a pronounced volume reduction before the full collapse [144, 56]. Firstly the outer

tube deforms, being supported by the inner tube (intermediate and inner tube in TWCNTs),

which in turn, is screened by the outer one. On the other hand, the outer tube cross-section

polygonization induces a radial strain on the inner tube and, consequently, the full collapse.

Differently, SWCNTs present a more abrupt transition to collapsed form which nevertheless

spans in a pressure domain in hydrostatic conditions from Pc to 1.5Pc [146, 30], much less

pronounced than found in DWCNTs, Pc to 2.5Pc [56].

In this sense, the pressure behavior of the G+ components from Figure 4.4 is interpreted as

follows. The outer and intermediate tubes collapse onset takes place at ∼ 22 GPa, i. e., 3 GPa

higher than the one found for the DWCNTs collapse onset (blue squares in Figure 4.5), even if we

take into account the diameters distribution difference between the precursor DWCNTs [55] and

enlarged DWCNTs by annealing studied here. Thereby, such difference might be related to the

further structural support provided by the innermost tubes in the TWCNTs system and more

clearly, the components G−
1 , G

−
2 and G−

3 evolution may be attributed to inner, intermediate and

outer walls of TWCNTs, respectively. The inner tube from TWCNTs seems to begin the collapse

only at ∼ 25 GPa, which suggests a cascade effect, however the position differences have close

incertitudes making the accuracy difficult. A similar effect is also observed in DWCNTs (Figure

4.5 blue squares), in which the inner tube also starts to collapse only 4 GPa after the outer

one. The graphite-like behavior of both G+
2 and G+

3 components after 29 GPa is interpreted

into two regimes. In the 29-37 GPa the pressure-evolution of both G+ components indicate that

the inter-wall separation of these two tubes has reached that of graphite at the same pressure,

although they are not completely collapsed, since the inner tube is still in collapse process. After

37 GPa, the end of the plateau, the inner tube also assume a graphite-like behavior (red arrow).

This pressure is assigned as being the full radial collapse of the TWCNTs, where all shells evolve

similar to the graphite with pressure, i.e., all tubes shells achieved a peanut-shape cross-sections

[56] (or racetrack for the innermost tubes). A scheme about collapse picture is proposed in

Figure 4.6.
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4.2 Triple walled carbon nanotubes

Figure 4.6 – Collapse scheme for TWCNTs, where the green, red and blue circles correspond to

the outer, intermediate and inner tubes, respectively. The collapse onset happens ∼22 GPa, showing

two possible shapes for the cross-sections of outer and intermediate tubes (polygonized or ovalized).

The same aspect is shown at ∼29 GPa with a pronounced ovalization of the inner tube cross-section.

At ∼37 GPa the collapse end takes place and all tube walls enter in a graphite-like regime.

4.2.3.3 Pressure-induced nanotubes irreversibility and unzipping

In order to investigate possible transformations in the TWCNTs after pressure loading up to

72 GPa, we have recovered the specimen and characterize it by TEM. Figure 4.7 shows a long

and compacted bunch of filaments (Figure 4.7(a)), which are characterized by films disclosed

of any tubular geometry profile, Figures (4.7(b)-(d)). Such findings suggest that for pressure

far away from the collapse, the collapsed peanut-shape cross-section of the tube transforms

into nanoribbons-like graphitic structures Figure 4.7(c). The pressure-induced nanoribbons are

stacked in few layers. Some previous studies have shown that the carbon nanotubes can be

transformed into graphene nanoribbons (GNRs) via unzipping by chemical and sonochemical

treatment [147, 148, 149, 150, 151, 152]. Besides, studies of hypervelocity impact of nanotubes

against a solid target reported the obtaining nanoribbons by the longitudinal unzipping of the

nanotubes, as well as nanodiamonds and covalently interconnected nanostructures [124, 153].

However, such nanotubes unzipping by static compression (extreme pressure conditions) has not

yet been reported in literature (including those experiments on single- and multi-walled carbon

nanotubes at extreme pressures [154, 155, 156]).

We have carried out other three high pressure experiment cycles aiming better confine the

about the threshold pressure for TWCNTs irreversible transformation. Figure 4.8 shows the

comparative RBM, D- and G-band Raman spectra after decompression of different pressure

cycles with the pristine one. After 36 GPa a slight intensity decrease of the RBM modes and

a low value of ID/IG = 0.1 show that still exists a high percentage of remaining TWCNTs

and DWCNTs. For the decompression after 52 GPa, the presence of RBM modes at the region

from 240 to 390 cm−1, which belongs to the TWCNTs, according to Figure 4.3, indicates that

TWCNTs can still hold that pressure value, although considered increasing of ID/IG ratio and a

decreasing of the signal-to-noise intensity radio indicate induced structural damages on the tube.
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Chapter 4. Triple walled carbon nanotubes at high pressure

Figure 4.7 – (a)TEM image of the recovered sample after 71.9 GPa pressure loading on carbon

grid. This image displays clearly grouping of well-distributed long filaments. (b) The zoom in shows

a better definition of the filament structures, which are constituted by stacking of few layers. (c) The

blue straight line on TEM image reproduces the graphite-like structure with graphitic plane distance

of 0.334 nm between, showing the TWCNT transformation into nanoribbons-like structures. (d) The

image emphasizes of absence of any tubular feature, thus addressing a irreversible transformation of

the TWCNTs. The scale bars are provided in each image.
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4.2 Triple walled carbon nanotubes

Figure 4.8 – Raman spectra collected before and after several pressure cycles: 34.6 GPa, 51.9, 59.4

and 71.9 GPa acquired with two 2.33 eV and 2.41 eV excitation energies. The star and hash symbols

represent spurious signals, whose origin is discussed throughout the text. The ID/IG ratio for all

cycles are also displayed. (BPL: before pressure loading; APL: after pressure loading)

The spectra after pressure loading of 60 GPa were excited by two different laser wavelengths.

For the 2.41 eV excitation energy, the RBM region displays no clear presence of modes, only

the aforementioned spurious signals (hash and star marks), indicating a deeper level of defect

on the nanotube structure, which in turn, may induce changes on the resonance conditions [41].

However, the G-band presents an asymmetric profile (in its low frequency region), which denotes

a G− component similar to the others spectra at low pressures. Since this feature comes from

the nanotube curvature aspect[157, 158, 159, 160, 161], it suggests a residual tubular structure

after 60 GPa. Based on this hypothesis, we recorded another spectra with 2.33 eV excitation

energy of the recovered sample in the same spectral window for 2.41 eV ones. The residual

circular tube cross-section is confirmed by the presence of the RBM signature in the low energy

region of the spectrum, validating our previous assumption.

We find the irreversible transformations threshold of TWCNTs between 60 and 72 GPa. The

carbon nanotubes transformation into nanoribbons is well supported by the TEM images, as

already shown at the beginning of this section. The 72 GPa APL (after pressure cycle) Raman

spectrum corroborates the ribbon-like transformation, as it does present any appreciable RBM

modes and shows a symmetric G-band profile, as well as an ID/IG ratio higher than unity, which

are features of nanoribbons [162, 124, 153, 151].

The already done analysis on the structural transformations of the TWCNTs from RBM, -D and

G-bands Raman provides a coherent qualitative scenario of the structural changes. The G
′
band,

which is originated from a double resonant Raman scattering process involving a two-phonon

scattering and showing a well-developed triple-peak structure in the TWCNTs (individual and
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bundles) system [133], provides an additional tool to study these transformations. This triple-

peak structure reveals that each concentric nanotubes contributes separately from one another.

The Raman G
′
-band of the recovered samples shows a 3 components profile up to 60 GPa

whereas the 72 GPa APL shows a single component as shown in Fig.4.9. Besides, the G
′
-band

spectrum measured after pressure loading of 71.9 GPa is compared with the spectra of single-

(SLG) and bi-layer graphene (BLG) from reference [163] (grown by chemical vapor deposition -

CVD graphene), showing a slight difference between the peak position of the SLG and 72 GPa

APL spectra. Nevertheless, the G
′
-band profile of 72 GPa APL is broader than that one of

SLG spectrum (also to BLG), this broadening could be originated by means of residual strain,

disordered stacking distribution of the nanoribbons-like structures after 72 GPa (as supported

by TEM images). Details of Raman spectra data analysis, as also the comparison of individual

TWCNT components and peaks distances from Ref.[133] with our Raman spectra of the G
′

bands are provided in the Figure 4.9 and Table 4.3. The evolution of the G
′
band is coherent

with the proposed scenario of irreversible transformation of TWCNTs. In addition the evolution

of the relative intensities of the components of the G
′
-band is also coherent with the presence

of some irreversible effects (defect creation?) appearing first in the other tubes (attenuation of

their signal).

Table 4.3 – Differences between the G
′
frequencies of inner and host tubes (Δih) and host and outer

tubes (Δho). Sample (GNRs) provides the peak position for the single component. All results are

obtained of the spectra from Figure 4.9.

Sample (TWCNTs) excitation source (eV) Δih(cm
−1) Δho(cm

−1)

individual TWCNT (Ref) 2.41 25.50 36

BPL Pristine 2.41 27.32 28.76

APL 51.9 GPa 2.41 28.52 27.41

APL 59.4 GPa 2.41 27.81 29.07

APL 54.9 GPa 2.33 27.83 31.11

Sample (GNRs) excitation source G
′
-band

APL 71.9 GPa 2.41 eV 2682.8 cm−1

4.2.4 Conclusions

We performed a resonant Raman study at high pressures on highly-quality TWCNTs bundles.

We also studied ex situ by transmitting electron microscopy the recovered samples after a max-

imum loading of 72 GPa. The RBM frequencies broaden with pressure and their signal showed

a quenching between 14.6 – 18.7 GPa. Moreover it was evidenced that major contribution in

RBMs is originated from the TWCNTs. This was supported by the normalized pressure co-

efficients plot of Figure 4.3. The G-band spectra analysis revealed that the G− peaks do not

provide a clear way to describe G-band evolution with pressure, and this might be associated to

the strong intra- and inter-tube interactions enhanced by the tube curvature (which weakens the

carbon bonds by orbitals rehybridization). This mode is then quite sensitive to the application

of pressure. The three TWCNTs G+ components evolved monotonically with pressure until
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Figure 4.9 – G
′
band Raman spectra of pristine and recovered samples after pressure treatments

(51.9, 59.4 and 71.9 GPa) measured at 2.33 eV and 2.41 eV excitation energies. The three triangles

(red, green and blue) indicate the triple-peak structure of individual TWCNT from Ref. [133] and

the three arrows are guides for the eyes for comparison with the triple-components to spectra until

59.4 GPa. After pressure loading of 71.9 GPa a single component was used for the G
′
-band spectral

fitting and its spectrum is compared with the spectra of single- (SLG-green) and bi-layer graphene

(BLG-purple) taken at 2.41eV laser energy from Ref. [163]. The two star symbols represent two

auxiliary components used to improve the fitting. For all spectra after pressure cycles a new band

above of 2900 cm−1 appears.
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reaching the collapse region, with the onset at 21.7 GPa and the end at 36.8 GPa. The collapse

process could be interpreted as a sequential process progressing from the outer tube to the inner

one. From 29 GPa the two outer tubes reach the graphitic-like behavior while the inner tube

continues its collapse up to the plateau end at 37 GPa. After 37 GPa the inner tube enter

also a graphite-like regime. This complex picture of collapse process could be ascribed to an

inhomogeneous compression of inner tubes by outer, as well as the non-hydrostaticity of pressure

transmitting medium, however in our experiments we have avoided the unintentional filling of

the tubes. Experimentally we have determined a threshold value for which pressure-induced

structural transformations of TWCNTs are irreversible, being shown for the located well above

the collapse region, between 60 GPa and 72 GPa. In addition, we have shown by first time via

electron microscopy a direct transformation of fell-wall tubes into a nanoribbon-like structure.

On the other hand, we expect that theoretical predictions assist to discriminate better this global

scenario of structural transformations.
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Chapter 5. Boron nitride multiwalled nanotubes under high pressures

5.1 Introduction

In the previous chapters we have been examining the effect of size, number of walls and even

chirality in the pressure stability of carbon nanotubes. In this chapter we will become interested

on the way the nature itself of the atoms of the tube can affect the pressure stability. We will

consider one of the closest variant of carbon nanotubes which are Boron Nitride nanotubes.

They were briefly presented in Chapter 1. In particular, this chapter is devoted to the high

pressure response of well-characterized BN multiwall nanotubes (BNMWNTs). We may be

confronted to the effects of some particularities of the BN tubes which are to be related with

the iono-covalent character of their bond. In fact, this imposes an important constraint in

MWNTs which are in general considered as having equal or close chiralities for the concentric

tubes. We will here again combine Raman spectroscopy and TEM imaging to try to obtain the

clearest view on the structural evolution of BNMWNTs under high pressure. We will see that

changes with pressure appear to be very rich and that TEM (including HRTEM tomography)

on cycled samples reveals as a extremely powerful tool. The chapter organization includes two

first sections to introduce the synthesis used to produce our specimens and the general aspects

(theoretical and experimental) of BNMWNTs behavior at high pressure found in literature. The

third section is dedicated to our experimental results of BN-tubes under high pressure and their

TEM characterizations. The discussion about our findings is developed throughout the text. In

the last part, we summarize the more findings of our study.

5.2 Boron nitride multiwalled nanotubes

5.2.1 Synthesis

Boron nitride nanotubes (BNNTs) have been synthesized via Boron Oxide Chemical Vapor

Deposition (BOCVD) following a catalytic“Vapor-Liquid-Solid (VLS) Growth Mechanism” [164,

165, 166]. A mixture of powder precursors (boron B) and catalysts (magnesium oxide MgO and

iron boride FeB) in a molar ratio of 1: 2: 1 respectively, was used as a starting material. This

mixture was placed in an alumina combustion boat and introduced in a horizontal induction

tube furnace closed at both ends (Figure 5.1(a)). The tube furnace was first evacuated and then

heated up to 1500 °C. As a result, B2O2 vapors and liquid or partially-melted nanosize catalyst

particles were formed. NH3 gas was then introduced into the tube furnace at a rate of 150 sccm

for one hour at a pressure of 1000 mbar. At this temperature NH3 decomposed into N2 and

H2. The oxygen of the as-formed B2O2 vapors reacted with H2 to form water vapor while the

boron reacted with N2 to form BN-species. These species were then diffused into the condensed

catalysts and aggregated with the passage of time until it supersaturated and precipitated into

the form of BNNTs.

BNNTs thus obtained were multiwall nanotubes (MWNTs) in pure form, with an average outer

diameter of approximately 50 nm, a length greater than 10 mm and almost no impurity was

present in the final product. The nanotubes were straight with concentric tubular structure

containing no defects and were uniformly dispersed (Figure 5.1(b)-(c)).
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Figure 5.1 – a) Schematic representation of the experimental set-up used for the synthesis of BNNTs

by BOCVD. b) BNMWNT with black contrast pattern induced by incident electron beam on the

different faceted tube orientations, which is typical in BNNTs (refs.[167, 168]). c) HRTEM image

showing the inner tube surrounded by approximately 40 concentric tubes.

5.2.2 General aspects and previous work

The characterization of mechanical properties of nanotubes constitutes a particularly important

subject in view of applications [169]. In particular, the effective radial elastic modulus of SW-

BNNT is smaller than for SWCNTs [170], but - as in CNTs - it increases rapidly with the number

of walls [171]. In carbon nanotubes, the radial cross-section under high pressure evolves through

different geometries depending on radius and number of walls. This has been extensively studied

both theoretically[27, 172, 29] and experimentally[39, 37, 55, 128, 30].In particular as it was

discussed in Chapter 1, theoretical and Raman experimental works agree that collapse pressure,

Pc, of single-wall CNTS follows a modified Lévy-Carrier law Pcd
3 = α

(
1− β2/d2

)
law (d tube

diameter or the internal diameter in few-wall tubes and α and β parameters) [29, 41, 30].

Some works have explored theoretically the high pressure evolution of BNNTs. For single-

walled BNNTs (SWBNNTs) bundles, density-functional theory (DFT) simulations showed that

the collapse pressure, Pc, decreases when the tube diameter increases[78]. DFT calculations in a

(10,0)@(17,0) double-walled BNNTs (DWBNNT) bundle [79] revealed basically two regimes of

structural transformation with a change to an elliptical cross-section first(∼ 1 GPa) followed by a

first-order flattening transition at (∼ 10 GPa). The deformation of the outer tube is transmitted

to the inner one similarly to the cascade transition type observed in DWCNT [55]. Similarly to

SWBNNTs bundles, the energy gap reduces sharply at the transition region. However, other cal-

culations [173] show that the electronic structure of individualized BNNTs with various number

of walls can present very different regimes upon radial deformation.

Raman spectroscopy is a powerful characterization tool widely used for the experimental inves-
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tigation of the electronic and mechanical properties of CNTs under extreme conditions. This

technique enables following in situ nanotube structural transformations [174, 37, 128]. For

BNNTs and the four BN polytypes [h-BN (graphite-like), rhombohedral (r-BN), cubic (c-BN;

diamond-like) and wurtzite (w-BN)], infrared (IR) spectroscopy is an intersting technique thanks

to its sensitivity to polar/ionic bondings. IR Spectroscopy can then provide details about the

nature of the different BN-vibrations [175, 176, 97, 177]. UV Raman measurements can also

be used to evaluate the volume fraction between h-BN and c-BN in thin BN films [74]. High

pressure Raman spectroscopy in BNNTs suffers from limitations associated with sample purity,

fluorescent BNNTs background and the closeness of the main Raman tangential mode (E2g)

of BNNTs to the prominent diamond Raman mode (1332 cm−1 [178]) arising from the use of

diamond anvil cell pressure apparatus. Nevertheless it remains a practical technique to explore

the high pressure properties on BNNTs in particular thanks to the parallel which can be done

with the high pressure study of CNTs.

Many works have reported high- pressure and/or temperature transformations in bulk h-BN,

as well as in another BN allotropes. It has been shown that h-BN can be converted into more

closely packed w-BN or c-BN structures [179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189]

and c-BN ↔ r-BN [190], depending to the P-T parameters. There are on the other side very

few high-pressure experimental studies of BNNTs reported in literature [191, 192, 193, 194].

Saha et al. [191, 192] explored the high pressure behavior of Multiwalled-BNNTs (MWBNNTs)

by Raman spectroscopy up to 12 GPa where they lost irreversibly the Raman signal. The results

were interpreted as an amorphization of the structure. In a subsequent high pressure synchrotron

X-ray diffraction study of MWBNNTs up to 19.1 GPa [193], it was shown that MWBNNTs

remained crystalline up to the maximum pressure. In that work it was observed the irreversible

appearance of new diffraction peaks from 3.2 GPa which were assigned to the w-BN phase. On

the other side, Dong et al. [194] carried out in situ IR measurements at high pressure also in

MWBNNTs up to 35 GPa. Comparing MWBNNTs with bulk h-BN it was observed that both

samples undergo at ∼ 11 GPa a transformation towards the formation of sp3 bonding, associated

with the w-BN metastable phase [195]. At ∼ 23 GPa the transition is almost complete for bulk

h-BN, whereas for MWBNNTs even at ∼ 35 GPa the transformation is far from complete. A

two-step transformation mechanism for sp3 bonding formation in MWBNNTs was proposed:

first intertubular connections in bundles are formed (around 11 GPa) and secondly above 20

GPa where intratubular connections were supposed to become significant. Under decompression

only the intratubular connexions remain.

To summarize, whereas theoretical works in BNNTs focus in the observation of pressure induced

radial collapse transitions similarly to the known scheme in CNTs, none of the experiments

performed up to now allow to evidence such transitions. All high pressure experiments on

BNNTs concern MWBNNTs. In CNTs it not easy to provide experimental evidence on the

radial collapse high pressure transformation of MWCNT, but it has been nevertheless recently

provided in composite systems [196]. Experiments provide evidence of an structural evolution

of MWBNNTs which includes the formation either of sp3 bonding or even the transformation

towards w-BN without a consensus on the pressure at which the transformation takes place.

There is then a clear need for further experimental studies to clarify the high pressure structural

evolution of BNMWNTs and try to establish if the parallel with the high pressure evolution

in CNTs can be maintained or not. Our work combining in situ Raman spectroscopy and
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high-resolution TEM on recovered samples, provides a new insight in all these questions. We

underline also that we have used for the first time according to our records TEM tomography

to study high pressure nanomaterials from high pressures studies.

5.2.3 Results and discussion

We show in Fig.5.2 the Raman spectra of the tangential mode (TM) for the compression experi-

ment from ambient pressure (outside of the pressure device) up to 36 GPa. This peak blue-shifts

gradually up to ∼ 23 GPa, where it becomes very weak and cannot be further detected. The

highest pressure spectrum at ∼ 36 GPa shows just the presence of a broad background signal.

The TM signal was fitted using a Voigt profile including a background signal due to fluorescence

(dashed lines). The intensity jump at the low energy side of the spectra is due to the diamond

Raman peak contribution from the cell anvils. We may note that differences in intensity between

the spectra are not significant due to the lack of a normalization signal.
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Figure 5.2 – Raman spectra of MWBNNTs during a compression run up to 36 GPa (black dots).

Continuous lines (in red) supperposed to dots represent are the fitted function obtainned by consid-

ering Voigt curves fitting the BNMWNTs tangential mode (blue continuous line) and the background

and diamond anvil contributions (green dashed lines).

In Fig.5.3(a), we have plotted the evolution of E2g mode energy for the three different pressure

runs with maximum pressures up to 7 GPa, 15 GPa and 36 GPa respectively. Each run corre-

sponds to a different loading of the pressure cell with a fresh specimen. The evolution of the TM

energy is linear in the full pressure range up to 24 GPa (maximum pressure in which we could

detect it). The linear fitting on all grouped points in the graph provides a slope ∂ωE2g/∂P = 4.02
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cm−1/ GPa and ambient pressure intercept frequency at 1368± 1 cm−1 in good agreement with

the TM frequency of 1365 ± 2 cm−1 measured outside of the cell. The obtained pressure slope

for the E2g is in good agreement with the values obtained in a previous work [191, 192]. Nev-

ertheless we note that in the work of Saha et al[191] deviations from linearity were observed

from 10 GPa and the TM signal was lost at 12 GPa, i.e., half pressure with respect to our

measurements. In Fig.5.3 (b) is shown the corresponding pressure evolution of the Full Width

at Half Maximum (FWHM) of the E2g mode. The E2g first enlarges rapidly up to around 8 GPa

from where an abrupt decrease is observed. This dip in the evolution is followed by a plateau

region for pressures beyond 12 GPa. The ambient pressure value of the FWHM in our sample

(13 cm−1) is significantly higher than in the case of Ref. [191] (∼ 9 cm−1). This is also the

case for the pressure evolution which in the case of Ref. [191] it evolves linearly up to 10 GPa

with a maximum value of ∼ 14 cm−1 which is about half of our values for the same pressures.

Differences in the sample’s crystallinity and in the hydrostaticity of the used PTM can be at

the origin of such observations. We should come later on this aspects after the study of the

recovered samples.

Figure 5.3 – High pressure evolution of the the E2g tangencial mode in BN nanotubes. (a) frequency

of the peak for 3 different experiments up to 7, 15 and 36 GPa. The dashed line corresponds to the

linear fit of all the data. (b) corresponding FWHM evolution.

Raman spectra could be recorded for the recovered samples after pressure cycles up to 7.1, 15.6,

41.1 and 48.6 GPa. Their respective Raman spectra collected at ambient conditions outside the

DAC are compared with the pristine sample in Fig.5.4(a). Within error bars there is no change

in the E2g position of the TM mode after all pressure cycles. Nevertheless some modifications

can be noticed comparing the different spectra. The spectra from the pressure cycle up to 41.1
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GPa and 48.6 GPa show the presence of a new broad band at ∼ 1280 cm1. The same peak but

much weaker can be already observed for the sample having been cycled up to 15 GPa but it is

absent for the lower pressure points. In Fig.5.4(b) it is shown the E2g FWHM for the recovered

BNMWNTs and pristine sample TM peak. It is observed that the two first spectra (ambient

and 7 GPa of cycling pressure) have a FWHM ∼ 16 cm−1 while after cycling at higher pressure

the E2g broadens significantly concomitantly to the appearance of the new above referred peak.

Figures 5.4(a and b) indicate then a change of regime taking place at 11 ± 4 GPa. Nevertheless,

we have to admit that the FWHM evolution provides weak support to this transition, as a close

to linear evolution could be also considered.

Figure 5.4 – Comparison of the Raman spectra of the BNNTs TM signal at ambient pressure

and the corresponding signal after a pressure cycle with maximum pressure of 7.1, 15.6, 41.1 and

48.6 GPa. Spectra are vertically shifted for clarity. The excitation wavelength is indicated between

brackets.

In order to obtain a better insight on the pressure evolution of BNMWNTs we have studied by

TEM the pristine and the recovered samples. The most significant images are shown in Fig.

5.5 showing important changes in the tube morphology. At ambient conditions the BNMWNTs

showed dark (or bright) spots along the tube axis which are well evident in panel a.1, b.1 and c.1

of the Figure. This apparently regular pattern has been associated to a double-helix hexagonal

structure [197]. However, in contrast to this structural model, Golberg et al. [167] showed that

the dark spots did not alternate periodically on opposite tube sides with a regular pitch. Images

from the samples recovered after 7 GPa of pressure preserved the tube geometry as can be seen

in Fig. 5.5 a.2. We nevertheless observed the presence of tubes presenting bamboo-like structure

which we never observed in pristine samples (Fig. 5.5 a.2). In addition, in certain regions the
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tubes showed a periodic deformation along the tube (Fig. 5.5 b.2) which can be interpreted

associated to a radial cross section modulation. Furthermore a local densification on the tube

walls was also observed in some tubes as can be seen in Fig. 5.5 c.2. All changes observed

in the 7 GPa sample become more pronounced for the tubes recovered after 15 GPa (Fig. 5.5

a-c.3). The sample recovered from a pressure cycle up to 36 GPa showed much more significant

transformations (Fig. 5.5 a-d.4). In fact most tubes were extremely damaged as can be seen in

Fig. 5.5 a-b.4. Nevertheless it was possible to observe some bamboo-like tubes (Fig. 5.5 c.4)

and some zones presenting high densification as shown in Fig. 5.5 d.4.

Figure 5.5 – HRTEM images of the pristine BNNTs sample and after pressure cycles up to 7, 15

and 36 GPa. Scales are provided in each image.

3D TEM tomography images were obtained for a MWBNNT at ambient pressure and for another

tube recovered after a pressure cycle up to 36 GPa. The obtained views along the tube axis and

cross-sections at different positions are shown in Fig. 5.6. We can observe that in both cases the

internal cross-section morphologies evolve along the tube. The pristine tube showed the presence

of encapsulated catalyst particles and multiple faceted rhombus polygonal internal cross-section

with a modulated size. Polygonal cross-sections for all or part of MWBNNTs has been reported

in a number works [197, 167, 168, 86, 198]. We should nevertheless note that these polygonal

cross-section are hexagonal differing from our case in which they appear to be rhombic(as also

observed in the Supporting Information of [198]). Rhombus cross-sections were also observed

in the tube recovered from 36 GPa in which other morphologies (ovalized or highly deformed)

were also present. We could also notice some highly disordered closed or bridged parts in the

internal cross-section of the high pressure cycled tube.
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In Figure 5.7 are shown different TEM views at various scales of a novel tube morphology

produced after a pressure cycle up to 36 GPa. This very unique structure showed a new type of

extremely interesting morphology. First we note that the tube presents a kind of irregular inner

alveolar structure which reminds the recovered tube in Fig. 5.6 after pressure cycle or the one in

Fig. 5.5.a.4 . Most interestingly we note that the tube wall is now divided in two regions. The

external region (region A) is a multi-walled tubular structure made of about 40-50 tubes with an

external diameter of about 110-120 nm and a thickness of about 15 nm. The intertube distance is

of 0.35 nm. The internal region (region B) can be described as a domino stacking of one-closed-

edge boron-nitride nanoribbons. The closed lobes have different hierarchical structures as can be

appreciated in Fig. 5.7.d and Fig. 5.7.e. The lobe terminations are observed both in the internal

and in the external sides and can be seen as multi-folded boron-nitride nanoribbons. In Fig.

5.7.d can be appreciated that there are some connection points between region A and region B,

whereas in Fig. 5.7.e the two regions are well dissociated. The nano-ribbons form an angle of ∼
15 ◦ with respect to the tube axis running all along the tube without interruption. This inclined

structuration can be related to the spiral-type structure of polygonized BNNTs [197, 135].

Figure 5.6 – HRTEM Tomography images of a pristine BNMWNT (left) and another tube after

a pressure cycle of 36 GPa (right). The arrows show perpendicular cross sections along the tube

labeled a to d for the pristine tube and a to f for the pressure cycled tube. The internal “diameter”

of the tube in the non-closed regions evolves typically from 15 to 20 nm for the pristine tube (in the

region between a and d) and between 36 and 40 nm (in the region between c and d) for the cycled

tube. The average value of the external tube diameter is 52 and 66 nm for the pristine and the cycled

tube respectively.
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Figure 5.7 – HRTEM images of a particular pressure modified BNMWNT after a pressure cycle up

to 36 GPa. a) Image of the several microns length tube showing several internal alveoli of irregular

size and spacing. b) to e) detail of the structure at different scales.
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These structures can be related to two-closed-edged Graphene Nanoribbons from Large-Diameter

Collapsed Nanotubes [199].

Our TEM study on recovered samples after a pressure cycle show that boron nitride multi-wall

nanotubes can survive pressure cycles up to pressures as high as at least 48.6 GPa (Figure 5.8(c)).

Such high pressure conditions lead to different morphological changes in the tubes including the

formation of alveolar structures with regular bamboo-like morphologies or with irregular alveoli,

tube folding or highly damaged tubes including the formation of folded nano-ribbon dominoes

internal structures. Some of those changes start to be observed for tubes cycled up to pressures

of 7 GPa (Figure 5.8(a)-(b)).

Figure 5.8 – a) and b) TEM images of BNNTs morphologies after pressure cycle of 7 GPa. The

alveolar structures are also formed at low pressure. c) TEM image shows a BNNT after decompression

of 49 GPa. The bar scales are provided in the images.

The high pressure Raman study shows strong modifications in the response of the E2g h-BN

phonon which start to take place from about 8 GPa. Those changes involve a change of regime

in the FWHM evolution and the appearance of a new Raman mode at about 1280 cm−1. This

new mode, which is much weak, is visible in the spectra of samples cycled from 15.6 GPa and

above (Fig. 5.3, double black dashed arrow).

As it was discussed in the introduction, various experimental works indicate the possible evo-

lution of MWBNNTs towards sp3 forms including w-BN [193, 194] and more clearly at h-BN

bulk [195], in this sense we could relate the possible rehybridization (sp2/sp3) at MWBNNTs

under cold compression to the w-BN phase by means of information provided in Fig.5.4. In

addition, we may then interrogate ourselves about the possibility that the new Raman peak at

1280 cm−1 could be related with such type of transformation.

There are many theoretical calculations on the active Raman modes of the w-BN structure [200,

185, 177] which do not allow to discriminate the symmetry of a 1280 cm−1 mode in a w-BN

structure. In fact, depending on calculations, w-BN A1(TO) or E1(LO) modes could be assigned

to that observed Raman peak. However, for the evaluation more careful of this and other active

modes, we need remind that in the Raman spectroscopy (as well as infrared) usually the vibration

modes (phonons) close to the Γ point of the 1D Brillouin zone can be excited (due to stringent

optical selection rules linked with the symmetry operations) and for systems with translational

symmetry, e.g. quasi-one-dimensional systems as nanotubes (in particular for boron nitride

nanotubes[88]), the “point group in the space group” determines through the selection rules
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which modes are active and which are not. In order to explain the Raman modes of the h-BN

or w-BN structures, we need introduce the phonon dispersion via its phonon density of states.

For this purpose, we invoke some works from literature.

Reich et al.[74] measured first- and second-order Raman scattering in cubic BN and h-BN at

room temperature, of this study the experimentally observed frequencies were compared with

their theoretical counterparts (calculated phonon modes). The results point out that for the

critical points in the h-BN Brillouin zone, the frequency more similar to that of 1280 cm−1

should be by the experiment 1270 cm−1 (theory - 1290 cm−1) coming of the transverse optical

branch at M and K (TO(M-K) with M+
2 , M

−
3 , K1 and K2 symmetry), which could be activated

by cold compression. For cubic BN the experimental frequency observed is 1305 cm−1 (theory -

1285 cm−1) assigned to LO(Γ) phonon branch, demonstrating at least a different experimental

value from our. Nevertheless, we have bear in mind that our MWBNNTs (rolled up h-BN sheet)

showed this new mode after the cold compression treatment and according to studies about the

phase transformation in boron nitride the direct transformation between h-BN and c-BN is far

less favorable than to w-BN [188, 186, 189] and additionally a study on the pressure dependence

at high temperature of the transverse optical phonon (TO) (along with longitudinal optical

phonon (LO)) of cubic boron nitride revealed a downshift for these modes at high pressure and

temperature [201]. Therefore constraining the formation likelihood of this phase in our cycled

samples.

Still on this subject, we could ascribe the new band at 1280 cm−1 as TO(M-K) mode activation of

the pressure-induced h-BN, but when we assume the MWCNTs (as for h-BN bulk) experimental

studies above-mentioned [195, 194, 193], they strongly point out a phase transformation from

h-BN to w-BN under high pressure. Therefore, despite of the difficult to assign which phonon

mode in the w-BN structure the new band belongs, it is reasonable attributed it to the w-BN

metastable phase.

It is also important to note that the E2g BNNT mode is preserved in our Raman experiments

during compression up to 24 GPa. This observation seems to be consistent with the high

resilience of the tube structure [202, 203]. Nevertheless, Figs. 5.4 clearly shows that non-

reversible changes take place on the BNNT structure from pressures above ∼ 8 GPa. Our TEM

images show structural modifications of the tubes, but no clear evidence of formation of w-BN.

We have observed a number of structural evolutions on MWBNNTs under high pressure which

include: i)the formation of bamboo-like structures (Fig. 5.5 b.2, b.3 and d.4), ii) the formation

of alveolar structures (Fig. 5.5 a.4) iii)the formation of hybrid tubular/folded-nanoribbon (Fig.

5.7) which also presents an alveolar structure.

Our TEM tomography study (Fig 5.6) allows to see that the alveoli correspond to the presence of

badly-organized matter inside the tubes. We propose that this could correspond to the breaking

of the internal tubes leading to a non-folded h-BN ribbon structures. In that way, when the

innermost tubes break, self-folding can lead to the particular structure of Fig. 5.7 or to alveolar

structures when no self-folding takes place. The presence of alveoli in Fig. 5.7 would indicate

that some tube-walls did not self-fold on breaking.

We can now discuss the reason leading to the pressure induced break of internal tubes and not

to external. This can be considered as a consequence of the radial deformation of MWBNNTs

under high pressure. In fact, such radial deformation, theoretically predicted for SWBNNTs

imply a higher stress for the internal tubes. Why internal tube breaking mechanisms has been
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never observed in CNTs? Most probably this can be assigned to the additional stress term due

to the BNNTs cross-section faceting. This faceting in BNNTs has found to be related to the

interlayer lattice registry patterning, which arises from the interlayer electrostatic interactions of

BN partly ionic bindings (polar nature), that favor the chiral angle correlations between layers

[135].

We can then try to understand the different high pressure MWBNNT observed morphologies as

related to the different possible schemes of the internal tubes polygonization. Fig.5.9 summarizes

the proposed scheme of pressure transformation. For low polygonal order a symmetric breaking

of the internal tubes may lead to the organized folding of the h-BN nanoribbons producing the

bamboo-like structures. This would correspond to the case of an even polygon. In in the case

of an n-polygon with n odd, pressure induced ovalization will not lead to a symmetric stress

distribution in the internal tube. A less organized folding of the h-BN nanoribbons would lead to

the alveolar structure. The case of the organized stacking of folded h-BN nanoribbons (c) could

be related to the multiple fracture of high n-order polygon. In any case the observed structure

clearly evidences the existence of a spiral ordering for the internal polygonized tubes [197, 135].

Figure 5.9 – Scheme illustrating the main morphologies for BNNTs after pressure cylce found in

this work. On right side from up to down, we have respectively, the alveolar, bamboo-like and falling

domino structures.

5.2.4 Conclusions

We have carried out a combined TEM and Raman high pressure study of multiwall boron nitride

nanotubes. Irreversible changes in the morphology of the nanotubes take place from ∼7 GPa

associated to an enlargement of the E2g Raman peak profile (Fig. 5.3(b)). The presence of a new

Raman non-assigned mode at 1280 cm−1, after pressure cycles up to 41 and 49 GPa, indicates

that some structural transformation takes place. Moreover after a pressure cycle up to 49 GPa it

can still noted the contribution of the tangential mode with a broaden line width. This suggests

that the BNMWNTs are partially reversible. Characterizations via TEM from the recovered

samples not only are in agreement with Raman spectra results(Fig.5.8) but also allowed to

provide a more completed picture letting us to identify three different morphologies. These
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morphological changes correspond to the formation of bamboo-like tubes or the transformation

towards two different types of hybrid structures associated to the breaking of the internal tubes.

These structures lead then to the formation of h-BN nanoribbons (Fig.5.9). The so formed

internal h-BN nanoribbons could be found either in a non-organized arrangement leading to the

observation of internal alveoli or in an organized stacking of folded h-BN nanoribbons. We can

also underline the interest of the use of HRTEM tomography study on the recovered samples

allowing to obtain a clear image about morphologically modified BN tubes by pressure.
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We have investigated in this thesis, the effect of high pressure on the physical properties of

few walls carbon nanotubes (single wall and triple wall) and also in multi wall boron nitride

nanotubes. As a major objective we wanted to understand how the geometrical parameters such

as size, number of walls or the atomic nature of the tube affect the radial stability of the tube

and the tube stability itself. We have used Raman spectroscopy at resonant and non-resonant

conditions as high pressure in situ as tool of investigation and we have frequently characterized

the recovered materials after pressure via transmission electron microscopy in a deep level.

For the single walled carbon nanotubes (SWCNTs), we have studied chirality enriched samples

letting us to focus on tubes centered on the 0.75 nm diameter. Our findings reveal that the

collapse onset for the (6,5)-empty tubes takes place at ∼ 15 GPa. We were not able to identify

a sign of collapse pressure for the (6,5)-filled tubes up to the maximum pressure of 50 GPa.

Concerning the tube stability, chirality-enriched (6,5) filled tubes in bundles or individualized

can endure pressure cycles higher than 50 GPa, but a considerable proportion begin damaged

when inspected after this pressure cycle. We also show that the RBM frequencies at ambient

conditions are strongly dependent on environmental interactions, for example, the PTM type

or the residual molecules surrounding them. The RBM signal evolution of empty or filled (6,5)

at high pressure is also affected by the tubes arrangement, i.e., if it is in bundles (signal distin-

guishable up to 7 GPa) or individualized (signal distinguishable above 15 GPa). In addition,

the tubes tend to approach a graphite-like Raman evolution behavior beyond 50 GPa, reaching

a complete irreversible instability at ∼ 80 GPa. In fact TEM images show that the nanotubes

undergo irreversible transformations (unzipping), yielding quite disordered structures, such as

turbostratic carbon and amorphous carbon. Finally, the tube mechanical instability seems to

depend of the chirality with empty or filled (6,5) more unstable than (8,3) tubes.

In the study of triple walled carbon nanotubes (TWCNTs), we observed that the innermost

tubes profiles loss the resonance with the pressure increase between 14.6 and 18.7 GPa. The

innermost tubes contribute dominantly to the RBM spectra, thus making possible to discriminate

the contribution of TWCNTs from its mixture with DWCNTs. Our measurements confirm that

the normalized pressure derivatives of RBMs show a screening effect provided by the outer tubes

to the innnermost ones.

The innermost tube diameter of TWCNTs spans from 0.58 to 0.94 nm, giving then a distribution

having a central value of 0.76 nm, close to the diameter of the SWCNTs we have studied. Then

we can use this study to see the effect of the number of walls on the pressure stability of CNTs.

The three G+ components evolution of TWCNTs as a function of pressure displayed a collapse

onset at 21.7 GPa with an end at 36.8 GPa. The collapse process was interpreted as a sequential

transformation following 3 steps, in which the two outer tubes reach a graphitic-like behavior

at around 29 GPa, while the inner tube proceeds collapsing up to ∼ 37 GPa. Above 37 GPa

all tubes follow the graphite-like regime. Far from the collapse region, between 60 GPa and 72

GPa, TWCNTs suffer an irreversible structural transformation. TEM images show the presence



General conclusion

of nanoribbon-like structures originated from these transformations.

If we summarize the main results on the mechanical stability of SWCNTs and TWCNTs having

similar inner diameters of ∼ 0.75 nm, we observe that for SWCNTs a collapse pressure onset at

∼ 15 GPa which seems to be complete at 30 GPa. For TWCNTs we observe a more complex

collapse starting at ∼ 22 GPa and completed at 37 GPa. It is then clear that the number of walls

have an effect on the tube radial stability which cannot solely be described by a Lévy-Carrier or

modifed Lévy-Carrier law with the internal diameter as variable as it has been recently proposed

[56]. Concerning the tube irreversible transformation, they are observed between 50 and 80 GPa

for SWCNTs and between 60 and 72 GPa for TWCNTs. Then, within the precision of our

experiments, the tube irreversible transformation could take place in a similar pressure domain

comprised between ∼ 60 and 70 GPa for tubes of ∼ 0.75 nm, independently of the number of

walls. We may hypothesize that this assertion remains valid for higher number of walls as soon

as the complete collapse pressure has already been attained, but this needs to be confirmed.

The influence of the tube diameter on collapse pressure and tube irreversible transformations

needs also to be clarified. Nevertheless, from the study of Alencar et al.[56], we may expect that

the effect of the number of walls on the collapse pressure is reduced with increasing internal

diameter.

In the last part of this thesis we have tried to get some insight on the effect of the tube atomic

nature on its pressure stability. Boron nitride nanotubes were chosen for that study letting to

introduce the effect of an iono-covalent bond. In boron nitride multiwalled nanotubes (BN-

MWNTs), structural modifications were observed to take place from around 7 GPa. This result

was associated with E2g tangential mode and confirmed by TEM characterizations after pressure

loading. The BN tubes studied here had in average 14 nm internal diameter and about 40 walls

per tube. The Lévy-Carrier law (or its modified version discussed in previous chapters) would

give a collapse pressure of only 50 bar for an equivalent SWCNTs of 14 nm internal diameter.

We have nevertheless seen that the collapse pressure is strongly modified by the number of tube

walls. We will need a study on a comparable MWCNT or to obtain a quantitative description of

the evolution of the collapse pressure with the number of walls in carbon nanotubes in order to

establish the effect of the atomic nature of the tube on pressure stability. For the BNMWNTs,

after high pressure cycles up to 41 and 49 GPa the Raman spectra showed the new non-assigned

vibrational modes, indicating some irreversible changes. The TEM characterizations of the

recovered samples provided a major clarification concerning these structural transformations,

showing by the first time new BNMWNTs morphologies h-BN complex nanoribbon structures

or alveolar formations for the innermost tubes walls. We have also attempted by a simple

scheme to address in a rational way these new morphologies. However, we expect that other

experimental and theoretical studies can shed more light on these complex transformations.

Our studies allowed us also to verify the existence of some experimental difficulties, as the

need of high-quality samples, the control of the environment, as well as the need of a precise

characterization of samples after pressure loading including HRTEM. The study of individual

and suspended nanotubes is probably one of the most promising approaches to circumvent a

number of these problems.

It is worth here to mention that our understanding and control of these pressure-induced struc-

tural transformations of CNTs are also interesting in cutting-edge technologies as aerospace

technologies (spacecraft, satellites), damping and armor projects. In case of the nanoribbons
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graphitic structures the potential applications are large, as in transparent conductive electrodes,

energy storage, light-emitting diodes and field-effect transistors [149, 153]. In fact the pressure

domain needed to modify the geometry and physical properties of nanotubes or to produce new

nanoribbon structure can be compatible with industrially scalable processes in the case of use

of large tube diameters which can make part of novel composite materials[196].
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A.1 Experiments of Raman spectroscopy

A.1.1 SWCNTs

A series of in situ Raman experiments were performed in two (6,5)-SWCNTs sorts (precursor and

chirality-enriched) at ambient conditions and high pressures, and being excited for three different

laser energies. The Raman spectra were acquired using an Acton 2500i spectrometer with

excitation source of 2.41 eV (argon-ion laser 514 nm), a LabRAM HR Evolution spectrometer

with excitation energy of 2.33 eV (state solid laser 532 nm) and a LabRAM HR800 spectrometer

with excitation energy of 2.18 eV (krypton-argon laser 568.2 nm). All laser beams were focused

by a microscope objective lens 50x and the signals were dispersed by a 1800 groves/mm grating,

providing spectral resolutions of 1 cm−1 (Acton 2500i), 0.6 cm−1 (LabRAM HR800) and 0.5

cm−1 (LabRAM HR Evolution). The laser power have been controlled in each experiment in

order to avoid sample heating effects.

High pressures were achieved by means of pneumatic DACs, having culet sizes of 200 μm and

350 μm. The (6,5) SWCNTs were loaded in a steel gaskets with pierced hole in its center

and sealed between the diamond anvils. However, the 4:1 ethanol:methanol mixture was used

as pressure transmitting medium, only for experiments of the precursor CoMoCAT (SG65i,

marketed by Sigma-Aldrich, diameter range: 0.7–0.9 nm, (6,5) percentage ≥ 40%) and chirality-

enriched (6,5) nanotubes in buckypaper shape or bundles. In the particular case of the Top 2

solution (see more details in Chapter 3), which is constituted of water, polymers, surfactants

and individualized (6,5) single wall carbon nanotubes, the own mixture worked as PTM. Small

ruby chips were used to measure the pressure in the sample chamber via the ruby fluorescence

line R1 [107]. With these configurations, the Raman experiments at high pressures were run up

to 26 GPa, 40 GPa, 50 GPa and 80 GPa, besides further characterizations were accomplished

after pressure loadings.

A.1.2 TWCNTs

Raman experiments were performed using a home-made optical system based on an Acton 2500i

spectrometer with excitation energy of 2.41 eV (514.5 nm wavelength Argon laser). The laser

power is controlled to get the best signal-to-noise ratio and to avoid temperature effects on the
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sample. The laser beam was focused by a 50x objective lens and the signal was dispersed by a

grating of 1800 grooves/mm, resulting in a spectral resolution of ±1 cm−1. The Raman spectra

of the recovered sample after pressure loading of 59.4 GPa were excited with the energy source

of 2.33 eV (532nm wavelength state solid laser) and acquired by a LabRAM HR Evolution

spectrometer, with a spectral resolution of about 0.5 cm−1. The beam was focused onto the

sample using a long work distance 50x Mitutoyo magnification objective lens.

High pressures were achieved by using a membrane diamond-anvil cell, having culet size of 200

μm and another of 350 μm for the experiment up to 34.6 GPa . The TWCNTs were loaded in a

cylindrical pressure chamber, drilled in a pre-indented stainless steel gasket and placed between

the two diamond anvils. NaCl powder was used as pressure transmitting medium (PTM) to

avoid any accidental filling of the tubes [41]. The pressures into the chamber were calibrate by

the standard ruby luminescence R1 line [107] of the small ruby chip place together with the

sample and PTM.

A.1.3 Boron nitride multiwalled nanotubes

The BN-nanotubes were studied at high-pressure using in situ Raman spectroscopy with a

membrane diamond-anvil cell (DAC) having diamond culets of 350 μm. Samples were inserted

in a 120 μm hole drilled in a pre-idented stainless steel gasket (thickness after identation = 30

μm). A small ruby chip placed in the sample chamber was used as the in situ pressure gauge

with the use of the ruby fluorescence method [107]. NaCl was used as pressure-transmitting

medium (PTM). Raman spectra were collected in backscattering geometry with a home-built

optical system and an Acton SpectraPro 2500i spectrometer with an spectral resolution of ∼2

cm−1. The excitation energy was 2.41 eV (514.5 nm) provided by an air-cooled argon-ion laser,

having a source power limited to 20 mW to avoid heating sample effects. A Mitutoyo 50x

objective lens allowed to focus the laser beam to a spot size of 2 μm at the sample. Three in

situ Raman experiments were performed up to maximum pressures of 7.1, 15.6, 36 GPa. The

Raman spectra of the experiments up to pressures of 41.1 GPa and 48.6 GPa were measured

only after the pressure cycles (out of the DAC), for this was used a LabRAM HR Evolution

spectrometer (with a spectral resolution of ∼ 0.5 cm−1 and provided of a confocal system) and

excited with a laser energy of 2.33 eV (532nm wavelength state solid laser). The laser beam was

focused onto the samples using a long work distance 50x Mitutoyo magnification objective lens.

In after all experiments the samples were gently recovered for further characterizations.

A.2 Experiments of transmission electron microscopy

All samples characterized in this section were transfered by means of procedure described in the

subsection 2.3.2: a dispersion in ethanol, followed by ultrasonication of low power and dropping

on the TEM grid.

A.2.1 SWCNTs

The TEM characterizations were performed on a pristine sample from the stock and other

recovered after pressure cycle up to 80 GPa by means of a TEM JEOL 2100 (LaB6 single crystal
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filament). The pristine sample was probed with an acceleration voltage of 80kV, while 200kV

was used for the recovered one.

A.2.2 TWCNTs

Transmission electron microscopy studies were carried out in recovered samples after decompres-

sion of 72 GPa by a JEOL 2100 (LaB6 single crystal filament) microscope operating at 120kV,

in order to get the better resolution and same time to avoid as much possible the knock-on

processes.

A.2.3 BNMWNTs

TEM observations of the as produced BNNTs as well as the pressure cycled samples were

performed on a 200 keV field-emission high-resolution transmission electron microscope (TEM)

JEOL JEM-2100F (Fig.2.7(a)). From the TEM images the inner diameter of the synthesized

MWBNNTs ranges from 15 to 20 nm and the outer tube diameter from 40 to 80 nm. Some

larger tubes can be also observed exceptionally.

TEM tomography series of tilted images were also taken for the pristine BN-nanotubes sample

and for the cycled sample up to 36 GPa. For this, the JEOL JEM-2100F TEM was equipped with

a Gatan Ultrascan 1000 CCD camera, using a magnification of 40000 for the pristine samples

and of 80000 for the 36 GPa cycled sample. The specimens were rotated from −60◦ to 66◦

in case of the pristine BN-nanotube and from −60◦ to 63◦ for the recovered BN-nanotube. A

Saxton tilt increment scheme (variable angular step allowing to improve 3D reconstruction with

a reduced number of images in order to preserve the beam sensitive structure of the sample)

was used. For the acquisitions control and 3D reconstructions, a JEOL TEMography software

package was used. 3D visualization of the reconstructed structures were performed with ImageJ

software [204].
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Carbon nanotubes and boron nitride nanotubes under high pressure

Abstract: This thesis work focuses on the structural stability of well-characterized carbon and boron

nitride nanotubes under very high pressures both including their in situ study as well as after the pressure

cycle. We try to provide in this way a first approach to determine the role of parameters as composition

(C or BN), number of walls or diameter on the limit stability of nanotube structures.

In the two first chapters, we provide a basic description of the theoretical aspects related to carbon

nanotubes, we address their main synthesis methods as well as the experimental techniques used in this

thesis to study these systems. In the three following chapters, we describe the structural evolution of three

systems i) low diameter (6,5) chirality enriched single wall nanotubes ii) triple-wall carbon nanotubes and

iii) multiwall boron nitride nanotubes. The maximum pressure attained in these studies were of 80, 72

and 50 GPa respectively.

Both the radial collapse of the structure and the mechanical stability of the tubular structure under very

high pressure are addressed in the study. In particular, after their collapse, the low-diameter (6,5) single

walled carbon nanotubes can be preserved up to 50 GPa and above this value the tubes undergo an irre-

versible structural transformation. On its side, the triple wall systems could be detected up to ∼ 60 GPa

but their transformed irreversibly at 72 GPa. Finally boron nitride tubes have a low mechanical stability

when compared with their carbon counterparts. Under high pressures they present transformations at

different pressures to a variety of structural morphologies, some of them having been detected for the

first time in this work.

Keywords: Carbon nanotubes, Boron nitride nanotubes, Raman spectroscopy, Transmission electron mi-

croscopy, High pressures, 1D systems, phase transitions

Nanotubes de carbone et de nitrure de bore sous haute pression

Résumé : Dans ce travail de thèse nous avons étudié la stabilité structurale à très haute pression de

nanotubes de carbone et de nitrure de bore à la fois in situ et après cycle de pression. Nous essayons de

cette manière une première approche pour déterminer le rôle de paramètres comme la composition (C or

BN), nombre de parois ou diamètre dans la limite de stabilité de la structure des nanotubes.

Les deux premiers chapitres de la thèse nous permettent de faire une introduction aux aspects fonda-

mentaux relatifs aux propriétés des nanotubes de carbone, suivie d’une présentation des méthodes de

synthèse ainsi que des techniques expérimentales utilisées dans cette thèse. Les trois chapitres suivants

permettent de présenter l’évolution structurale des trois systèmes étudiés: a) Des nanotubes de carbone

monoparois de faible diamètre enrichis en chiralité (6,5), b) nanotubes de carbone triple-parois, et c) des

nanotubes de nitrure de bore à parois multiple. Les pressions maximales de ces études ont été de 80, 72

et 50 GPa respectivement.

Le collapse radial de la structure et la stabilité tubulaire des nano-objets ont été au centre de nos

recherches. En particulier, les nanotubes de carbone à simple parois de chiralité (6,5) peuvent être

préservés jusqu’à 50 GPa, pression à la quelle a lieu une transformation irréversible. De leur côté, les

nanotubes à 3 parois ont pu être détectés jusqu’à environ 60 GPa, présentant en suite une transforma-

tion irréversible à 72 GPa. Enfin, les nanotubes de nitrure de bore ont montré une plus faible stabilité

mécanique face à leurs analogues carbonés. De plus ils présentent une évolution vers toute une variété

de morphologies, parmi lesquelles certaines ont été observées pour la première fois dans ce travail de thèse.

Mots clefs : Nanotubes de carbone, nanotubes de nitrure de bore, spectroscopie Raman, Micrcosopie

Électronique à Transmission, Hautes Pressions, Systèmes 1D, transitions de phase
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