
HAL Id: tel-01772414
https://theses.hal.science/tel-01772414v1

Submitted on 20 Apr 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Méthodes statistiques pour la différenciation
génotypique des plantes à l’aide des modèles de

croissance
Gautier Viaud

To cite this version:
Gautier Viaud. Méthodes statistiques pour la différenciation génotypique des plantes à l’aide des
modèles de croissance. Mathématiques générales [math.GM]. Université Paris Saclay (COmUE), 2018.
Français. �NNT : 2018SACLC020�. �tel-01772414�

https://theses.hal.science/tel-01772414v1
https://hal.archives-ouvertes.fr

Th
ès

e
de

do
ct

or
at

NNT : 2018SACLC020

Méthodes statistiques pour la
différenciation génotypique des
plantes à l’aide des modèles de

croissance

Thèse de doctorat de l’Université Paris-Saclay
préparée à CentraleSupélec

École doctorale n°573- Interfaces
Spécialité de doctorat : Mathématiques appliquées

Thèse présentée et soutenue à Gif sur Yvette, le 22 janvier 2018, par

Gautier Viaud

Composition du jury :

Paul-Henry Cournède
MICS, CentraleSupélec, Université Paris-Saclay Directeur de thèse

Jean-Louis Foulley
IMAG, Université de Montpellier, CNRS Examinateur

Janine Illian
CREEM, University of Saint Andrews Rapporteuse

Estelle Kuhn
MaIAGE, INRA Examinatrice

Olivier Loudet
IJPB, INRA Examinateur

Frédéric Mortier
UR Forêts et Sociétés, CIRAD Rapporteur

Jean-Christophe Pesquet
CVN, CentraleSupélec, Université Paris-Saclay Président du jury

Thèse de doctorat de l’Université Paris-Saclay
préparée à CentraleSupélec

École doctorale n°573- Interfaces
Spécialité de doctorat : Mathématiques appliquées

Gautier Viaud

Méthodes statistiques pour la différenciation
génotypique des plantes à l’aide des modèles de

croissance

Thèse présentée et soutenue à Gif sur Yvette, le 22 janvier 2018

Composition du jury :

Paul-Henry Cournède
MICS, CentraleSupélec, Université Paris-Saclay Directeur de thèse

Jean-Louis Foulley
IMAG, Université de Montpellier, CNRS Examinateur

Janine Illian
CREEM, University of Saint Andrews Rapporteuse

Estelle Kuhn
MaIAGE, INRA Examinatrice

Olivier Loudet
IJPB, INRA Examinateur

Frédéric Mortier
UR Forêts et Sociétés, CIRAD Rapporteur

Jean-Christophe Pesquet
CVN, CentraleSupélec, Université Paris-Saclay Président du jury

Remerciements

Bien qu’il en soit de coutume, il me tient à cœur de remercier en premier lieu Paul-Henry Cournède, le

directeur de cette thèse mais aussi et avant tout la personne qui a bien voulu laisser leur chance aux errances

qui m’ont guidé jusqu’à son équipe de recherche. J’ignore s’il est encore nécessaire de souligner, après tant

de thèses encadrées avec brio, ses qualités de chercheur et de directeur de thèse. Au-delà du scientifique,

j’ai également découvert une personne éminemment cultivée et surprenante par de nombreux aspects. Pour

toutes ces raisons et bien d’autres, j’ai été sincèrement honoré de réaliser cette thèse sous sa direction.

Je suis également particulièrement reconnaissant envers les rapporteurs de ma thèse, Frédéric Mortier et Janine

Illian (dont l’irréprochable français m’a ôté tout scrupule de rédiger ces paragraphes dans ma langue natale),

pour leur relecture et leurs suggestions d’amélioration qui ont permis à ce document d’acquérir une dimen-

sion nouvelle, ainsi que les examinateurs Estelle Kuhn, Jean-Louis Foulley et Jean-Christophe Pesquet pour

leurs remarques pertinentes, les perspectives de continuation de ce travail qu’ils m’ont fournies, et certaines

conversations passionnées et passionnantes. Je n’oublie évidemment pas Olivier Loudet, dernier membre de

mon jury de thèse, à qui je tiens à exprimer en sus ma plus sincère gratitude pour le don désintéressé des

nombreuses données d’images sans lesquelles la cohérence globale de ce travail n’aurait tout simplement pas

été.

Comment aborder le délicat sujet du laboratoire MICS, dont je sais qu’aucun de mes efforts ne gratifiera à leur

juste valeur l’ensemble de ses membres ? Sylvie, qui fut pour moi l’âme du laboratoire, et au bureau de laquelle

commençait radieusement chacune de mes journées, que je me dois de remercier pour sa bonne humeur, son

sens de l’humour, des discussions beaucoup trop longues, sans oublier nos projets de vie : à bientôt pour le

bar à tapas, Sissi. Benoît, qui est probablement la personne de qui j’aurai le plus appris : pour tout ce qui

concerne de près ou de loin l’informatique, c’est une évidence, dans un nombre incalculable d’autres domaines

impossibles à lister de façon exhaustive, c’était plus inattendu. Merci donc avant tout pour les Bayolades,

cette hyperactivité transdisciplinaire et ces innombrables références de toutes sortes. Laurent, avec qui j’ai

pu partager en toute causticité mes problèmes liés à Julia et au mésocentre, des débats politiques cyniques

mais révélateurs, nos passions communes pour qui la sophrologie, qui l’éducation positive, qui l’écriture

inclusive. Ceux qui ont partagé mon bureau avec tant de patience : Pierre, pour sa considérable culture

cinématographique et musicale ainsi que mon initiation aux échecs, Jean-Christophe, pour ses indispensables

cours de mécanique ; avoir remporté haut la main le jeu de la boîte de balles de tennis restera probablement

l’un des plus grands accomplissements de ma thèse (l’histoire est-elle écrite par les vainqueurs ou ceux qui en

prennent la peine ?). D’autres encore, que leur existence laborantine ait inclus la mienne – sur le chemin du

million, Ludovic – ou inversement – dommage que les Vosges t’aient tant manqué, Julien. Que soient loués

également ceux qui ont été les principaux acteurs de l’époque insouciante et jubilatoire de ma première année

de thèse : Alexandre, Benjamin, Charlotte, Marion et Pierre-André. Désireux de garder ces remerciements

plus succincts que le reste de ce document, je remercie avec une concision qui ne leur fait certainement

pas honneur le reste des membres de l’équipe Biomathematics, les anciens (Robert et Yuting), les confirmées

(Sarah et Véronique), la relève (Antonin, Chloé, Mahmoud, Mathilde, Walid, Xiangtuo), les éloignés (Étienne

et Thomas) ainsi que certains autres du laboratoire (Adrien, Brice, Kevin, Marcus, Rémi) pour l’ensemble de

tous ces bons moments passés au cours de ces années.

Il m’est impossible de passer sous silence le rôle salvateur qu’ont exercé mes amis parisiens afin de me préserver

des affres de l’isolement social doctoral : merci donc à Anaïs et Édouard ainsi qu’à Clarisse, Eliott, Flore,

Jonathan, Kevin, Lucile et Marine pour ces années dont je garderai de merveilleux souvenirs. Moins présents,

essentiellement car plus éloignés, je n’en oublie pas pour autant mes amis d’enfance que je regrouperai ici

sous l’appellation des Caennais. Et parce que les remerciements ne devraient pas être l’apanage des lettrés,

mentionnons également Neva, Hubert, Bonzini, l’Octomore, les Cohiba, les rives du canal de l’Ourcq, la

terrasse du fort d’Issy ainsi que l’appartement de Plan Peisey.

J’aimerais conclure en remerciant très logiquement ma famille : mon frère, tout d’abord, pour ces souvenirs

mémorables que nous laisseront le Steaking et cette escapade éclair à l’Alpe d’Huez, et mes parents, enfin, sans

qui ce travail n’aurait probablement pas été possible, pour leur soutien, leur patience et leur compréhension

durant l’intégralité de cette thèse, et plus particulièrement la période de rédaction.

Encore une fois, à tous, merci.

G.

Résumé

L’un des principaux objectifs des modèles de croissance de plantes pour l’agriculture concerne la prédiction

de quantités d’intérêt telles que le rendement des cultures, mais ils peuvent également constituer des outils

essentiels pour l’évaluation de la variabilité génotypique au sein d’une population de plantes. Ce double

usage est mis en évidence tout au long de ce travail, dont les contributions peuvent être décomposées en cinq

parties.

Tout d’abord, le modèle Log-Normal Allocation and Senescence (LNAS) pour la betterave est rappelé et re-

formulé. C’est un modèle compartimental qui vise à décrire uniquement les principaux processus biologiques

pour le bilan de biomasse au cours de la croissance. Le modèle LNAS pour le blé, plante plus complexe, est

ensuite proposé comme une adaptation de ce modèle compartimental couplé à un modèle de sol. Enfin, une

adaptation de GreenLab, modèle à l’échelle de l’organe, est également conçu pour Arabidopsis thaliana.

Une nouvellle plate-forme de calcul pour la modélisation et l’inférence statistique (ADJUSTIN’) a été dévelop-

pée tout au long de cette thèse. Elle est fondée sur l’utilisation du récent langage Julia qui présente de nom-

breuses caractéristiques attrayantes : ses performances élevées ainsi qu’une parallélisation simple des différents

algorithmes ont permis de rendre ADJUSTIN’ particulièrement efficace, son expressivité permet une écriture

aisée des différents modèles et algorithmes et ses capacités de métaprogrammation en font un excellent outil

pour une gestion générique de ces modèles et algorithmes. ADJUSTIN’ permet donc la modélisation et la

simulation des modèles de croissance de plantes considérés ainsi que l’utilisation de techniques d’estimation

de pointe telles que, entre autres, les méthodes de Monte Carlo par chaînes de Markov (MCMC) ou les

méthodes de Monte Carlo séquentielles (SMC).

L’inférence statistique au sein des modèles de croissance de plantes étant de première importance pour des

applications concrètes telles que la prédiction de rendement, les méthodes d’estimation de paramètres et

d’états au sein de modèles à espaces d’états et dans un cadre bayésien furent tout d’abord étudiées, et plusieurs

cas d’étude pour les trois modèles de croissance de plantes considérés sont ensuite analysés pour le cas d’une

plante individuelle. Notamment, différents scénarios pour l’assimilation de données pour le blé, en présence

de données rares et hétérogènes, sont examinés afin de souligner la performance du filtre particulaire régularisé

et la robustesse de l’approche bayésienne. Une méthode MCMC particulaire est également utilisée pour le

modèle LNAS appliqué à la betterave pour une estimation précise des paramètres et états cachés et une

estimation subséquente des bruits de modélisation et d’observation.

La caractérisation de la variabilité au sein d’une population de plantes est envisagée à travers les distribu-

tions des paramètres de population au sein de modèles hiérarchiques bayésiens. Cette approche requiert

l’acquisition de nombreuses données pour chaque individu de la population. Un algorithme de segmentation-

suivi pour l’analyse d’images d’Arabidopsis thaliana, obtenues grâce au Phénoscope, une plate-forme de phéno-

typage à haut rendement de l’INRA Versailles, est proposé. Ces deux étapes de segmentation et suivi tirent

parti de caractéristiques spécifiques à cette espèce et il est démontré, avec l’exemple de quatre individus appar-

tenant à des génotypes différents, comment cette procédure globale permet d’obtenir des données nombreuses

et précises.

Finalement, l’intérêt de l’utilisation des modèles hiérarchiques bayésiens pour la mise en évidence de la vari-

abilité au sein d’une population de plantes est discutée. D’abord par l’étude de différents scénarios sur des

données simulées à partir du modèle GreenLab, et enfin en utilisant les données expérimentales obtenues

pour une population d’Arabidopsis thaliana comprenant 48 individus à partir de l’analyse d’images.

Contents

Remerciements

Résumé

Introduction 1

1 Mathematical framework 9

1.1 General state space models . 10

1.1.1 Main equations . 10

1.1.2 Hidden Markov models . 11

1.1.3 Structure of the observations . 12

1.1.4 Observation model . 14

1.1.5 Extensions . 14

1.2 Generic probability distributions . 15

1.2.1 Transition probability density function . 15

1.2.2 Observation probability density function . 17

1.3 Population models . 18

1.3.1 Motivation . 18

1.3.2 Hierarchical models . 20

1.3.3 State space models for populations . 21

1.3.4 Intraindividual variability . 21

1.3.5 Interindividual variability . 22

2 Plant growth models 25

2.1 History . 25

2.2 Log-Normal Allocation and Senescence for Beta vulgaris 28

2.3 Log-Normal Allocation and Senescence for wheat . 32

2.3.1 Soil model . 33

2.3.2 Plant model . 36

2.4 GreenLab for Arabidopsis thaliana . 40

3 Estimation of parameters and hidden states for a single individual 47

Contents

3.1 General principle . 47

3.1.1 Data for calibration . 48

3.1.2 Criteria . 49

3.2 Sensitivity analysis . 50

3.2.1 Sobol method . 50

3.2.2 Structural and correlative sensitivity analysis . 51

3.3 Frequentist vs. Bayesian estimation . 54

3.4 A frequentist method: generalized least squares . 56

3.5 Bayesian methods . 57

3.5.1 Markov chain Monte Carlo methods . 58

3.5.2 Sequential Monte Carlo methods . 65

3.5.3 Particle Markov chain Monte Carlo . 78

4 Estimation of parameters within population models 83

4.1 Frequentist approach . 84

4.2 Bayesian approach . 85

4.2.1 Full conditional distributions . 86

4.2.2 Choice of the prior distributions . 87

4.2.3 Non-linear models . 91

4.2.4 Metropolis–Hastings for sampling the individual parameters 93

4.2.5 Individual adaptive scheme . 94

5 Adopting Julia for statistical inference 97

5.1 Why Julia? . 99

5.2 Modelling and simulation . 100

5.2.1 Mathematical framework . 100

5.2.2 Model types . 101

5.2.3 Simulation core . 104

5.2.4 Flexible modelling . 106

5.3 Platform organization . 106

5.4 Operations on system observations . 109

5.5 Probability density functions . 110

5.5.1 Sampling . 110

5.5.2 Prior distribution . 111

5.5.3 Transition and observation distributions . 112

5.6 Algorithms . 112

5.6.1 Sobol method . 113

5.6.2 Adapted Metropolis within Gibbs . 114

5.6.3 Regularized particle filter . 115

5.6.4 Particle marginal Metropolis–Hastings . 119

Contents

5.6.5 Adaptive hybrid Metropolis–Hastings–Gibbs . 120

5.7 Discussion . 120

6 Estimation in state space models: application 123

6.1 Comparison of frequentist and Bayesian approaches for the GreenLab model 124

6.1.1 Sensitivity analysis . 124

6.1.2 Data simulation . 125

6.1.3 Parameter estimation . 127

6.2 RPF-based data assimilation for the LNAS wheat model 130

6.2.1 Sensitivity analysis . 131

6.2.2 Data simulation . 132

6.2.3 Uncertainty analysis and data assimilation . 133

6.2.4 Influence of the number of observations . 134

6.2.5 Influence of the observation noise . 135

6.2.6 Influence of the prior . 137

6.2.7 Influence of the number of estimated parameters 141

6.3 Parameter and state estimation using the PMMH sampler for the LNAS sugar beet model . 142

6.3.1 Sensitivity analysis . 142

6.3.2 Data simulation . 144

6.3.3 Comparison of filters within PMMH . 144

6.3.4 Estimation of process and observation noises . 148

7 Image analysis 153

7.1 Phenoscope . 154

7.2 Data analysis . 156

7.2.1 Analysis of angles . 157

7.2.2 Analysis of areas . 159

7.3 Segmentation . 160

7.4 Tracking . 163

7.5 Preliminary results on four individuals . 165

7.6 Results on a large data set . 168

7.7 Discussion . 171

8 Estimation within population models: application 175

8.1 Simulated data . 176

8.1.1 Simulation of synthetic data . 176

8.1.2 Initialization of the prior distributions . 177

8.1.3 Details of implementation . 181

8.1.4 First results . 182

8.1.5 Influence of the number of individuals . 183

Contents

8.1.6 Influence of the precision . 185

8.1.7 Influence of the prior . 188

8.1.8 Influence of the number of estimated parameters 190

8.2 Real data . 192

8.2.1 Estimation on 24 individuals . 192

8.2.2 Integration of other individuals . 196

Discussion and perspectives 201

Appendices 211

A Calculation of full conditional distributions 211

B LNAS model for sugar beet in ADJUSTIN’ 215

C UKF algorithm in ADJUSTIN’ 217

D Database and results directories 219

E Parallel computation of mean and covariance 221

F Exchange of particles between processes 223

Bibliography 225

Introduction

Context

T he challenge of predicting the phenotype of plants based on both their genotype and the envir-

onment they evolve in is a critical and topical issue in plant science. Such a prediction has its share of

difficulties because the plant’s phenotype can be deeply affected by small genome or environment variations

but also by the strong genotype by environment interactions that affect the plant’s phenotype. These effects

have long been known in the plant breeding community (see [Allard and Bradshaw, 1964], [Hill, 1975] or

[El-Soda et al., 2014] for a more recent review in the specific case of Arabidopsis thaliana).

In order to predict plant phenotypic performance, statistical models are usually built based on linear mixed-

effect models for integrative variables [Bustos-Korts et al., 2016]. Their strength is that they take advantage

of large repetitions of trials in very diverse environmental conditions since they necessitate only a restricted

amount of data, but they offer poor perspectives in terms of interpretation and extrapolation. On the con-

trary, since they rely on the mechanistic description of growth processes, plant growth models have opened

promising perspectives for the description and prediction of genotype by environment interactions.

Over the last decades, many plant growth models have been proposed in order to predict a plant’s phenotype

under a wide range of varying environments, by describing the main physical processes of the plant’s growth

[Martre et al., 2011], [Chapman, 2008]. Since the latter highly depend on the genotype and its interaction

with the environment [Kusano et al., 2007], [Kromdijk et al., 2014], calibration of such models is often spe-

cific to one genotype. This not only restricts the validity range of the model but prevents a proper assessment

of the variability of the model parameters across a population of plants. One of the issues of interest in this

thesis is how to highlight the variability of model parameters in a given population of plants. Hierarchical

models provide an interesting framework in order to answer such a question, allowing to decompose a plant’s

phenotype as the result of two levels, one taking into account the genotypic variability of the related model

parameters and the other being the actual model whose evolution is driven by these parameters.

Mathematically speaking, if we consider the system of interest as the plant in its environment (or a population

of plants, or a specific part of the plant for models at smaller scales) plant growth models could formally be

represented in the very generic following form:

y = f(θ, u) (1)

1

2 Introduction

where:

■ y represents all the phenotypic traits of interest, and is generally a real-valued function of space and

time. In most models at the whole plant scale, this function is generally discretized in both space

and time and y is a vector, for example representing the daily values of organ masses and dimensions

(see for example most functional structural plant models (FSPMs) and a recent review by [Vos et al.,

2009]);

■ f represents the functional equations (usually dynamical, see for example the description of plant

growth models as dynamic state space models and hidden Markov models in [Cournède et al., 2013]).

In literature, most mathematical formalisms can be found at this stage. Mostly, we find ordinary differ-

ential equations or finite difference equations in time, and we follow the evolution of a vector of state

variables related through nonlinear equations. These equations are often deterministic, but efforts have

been recently pursued to achieve a better statistical evaluation of the model with stochastic versions of

the dynamical system [Cournède et al., 2013]. A particularity for plant growth is that the evolution

of the structure usually necessitates to consider organogenesis submodels. When only the dynamics of

organ appearance is concerned, generative formal grammars of the L-Systems type are generally used,

see for example [Prusinkiewicz and Lindenmayer, 1990], [Kurth, 1994]. However, when the morpho-

genesis process is considered, partial differential equations or partial differential integro-differential

equations are used [Dupuy et al., 2008], [Beyer et al., 2014], [Beyer et al., 2015];

■ θ represents all the parameters of the model and can be considered to be a real-valued vector, θ ∈
Rp. Some of them are of biophysical relevance but some are only empirical parameters of descriptive

functions. As we will detail later, the estimation of these parameters is a key issue in plant growth

modelling;

■ u represents all the external variables for the system and mostly corresponds to environmental variables.

At the global scale, the main variables generally correspond to radiation, temperature, potential evapo-

transpiration, soil content in water and nutriments. The agricultural, horticultural and forestry practice

can also be represented in the environmental variables.

Models differ with respect to the phenomenon of interest and the studied species. However, some pretty

generic frames were introduced such as STICS [Brisson et al., 2003] for crop models or GreenLab [Yan et al.,

2004] for FSPMs.

For a given species and a given model, the parameters should ideally be able to characterize genotypes. As

stated by [Tardieu, 2003], the application associating its model parameter vector to each genotype should be

injective. In such an ideal situation, we could imagine very concrete applications: for instance, for a given

environment u, comparing the performances of two genotypes characterized by two different parameter sets

θ1 and θ2. Conversely, if the parameter set is stable for one genotype in a large range of environmental con-

ditions, we can optimize some traits of interest with respect to the environmental conditions – see examples

for maize [Qi et al., 2010], sunflower [Lecœur et al., 2011] or peach [Quilot-Turion et al., 2012] – leading

Introduction 3

to potential decision aid tools. One example would be the optimization of water supply under logistic and

availability constraints [Wu et al., 2012].

If the ecophysiological parameters characterize a given genotype, then we could also imagine to decompose

the genetic variation of model parameters into individual quantitative trait loci, or conversely to design a

predictive model determining this parameter set from the plant genetics, that is to say to write θ = h(g)

where g represents the individual plant genotype, either the genomic sequence or a representation of it with

quantitative trait loci markers – see for example [Reymond et al., 2003], [Quilot et al., 2005],[Hammer et al.,

2006], [Letort et al., 2008], [Xu et al., 2011], [Des Marais et al., 2016]. Several strategies are possible. The

most accessible one seems to use a quantitative genetics model to determine the parameter values through

combination matrices giving the relative influences of the allelic values and representing both the pleiotropy

and epistasis phenomena [Letort et al., 2008]. Other methods could involve approaching h with maching

learning techniques, a technique that is common in ”omics” science to determine other outputs of interest

from the genomic sequence and has recently been tested in plant growth modelling [Migault et al., 2017].

As described by [Yin and Struik, 2010] or [Baldazzi et al., 2016], the tendency is to complicate the mech-

anistic description of biophysical processes, by linking ecophysiology to ”omics” sciences as an attempt to

fully comprehend the regulatory networks from which plant robustness and plasticity is supposed to emerge

[Hirai et al., 2004] whilst the related robustness appears to be difficult to achieve at the cell or tissue level.

The modelling of plant growth and development lends itself to such an integrative approach. Several models

for various component systems of plants are constantly developed [Hodgman et al., 2009]. However, the

road is still long to achieve such an ambitious objective, resulting in a predictive model from the genes to

the whole plant phenotype in a large range of environmental conditions. The more complex the models, the

more troublesome their parameterization and the assessment of the estimate uncertainty [Ford and Kennedy,

2011], specifically due to costly experimentations and the large number of unknown parameters to consider.

Likewise, local environmental conditions (in terms of climatic and soil variables, as well as biotic stresses)

and initial conditions in specific fields are also very delicate to characterize. Consequently, the propagation

of uncertainties and errors, which are related to parameters and inputs of these dynamic models, may result

in poor prediction of the plant-environment interaction in real situations [Chen, 2014].

A good compromise between the mechanistic description of plant growth processes and the level of details

in the data necessary for their parameterization has recently emerged with a new paradigm for plant eco-

physiological modelling, namely functional-structural plant modelling [Vos et al., 2009]. It combines the

ecophysiology of plant growth to its architectural development. One of their fundamental properties is that

their parameterization does not rely on the same type of information as classical ecophysiological models:

architectural traits have the property to integrate the whole history of plant functioning, and a large inform-

ation (in the Fisher sense) on model parameters can be inferred from the observation of the architectural

traits. The key point that we aim at taking advantage of in this work is that architectural traits can potentially

be measured efficiently by automatic image analysis in high-throughput phenotyping platforms. These have

recently gained increasing interest, both in fields [Araus and Cairns, 2014] and laboratories [Tisné et al.,

2013], thanks to their capacity to automatically measure many morphological and physiological traits for a

4 Introduction

large number of plant genotypes in various environmental conditions. However, although these measure-

ments are potentially very detailed in time, they usually concern integrative traits (masses, total leaf area,

height, etc.) and are again classically analyzed with descriptive statistical (multifactorial) models (see for

example [Granier and Vile, 2014]).

The main objectives of this work will hence be to develop a statistical method to identify the interindividual

variability of a population of plants composed of several genotypes. We will do so by describing the function-

ing of the plants using mechanistic growth models. Throughout this thesis, whether it be for single individuals

or populations, the estimation of functional parameters or noise parameters, we will indeed adopt a Bayesian

approach which is believed to be the most appropriate to the study of the biological systems that are plants for

it not only allows to integrate prior biological knowledge into the estimation of parameters but also appears

to be best suited for handling scarce and heterogeneous data as is often the case in plant applications. In the

proposed model-based and Bayesian approach, the variability in question will be described by the posterior

distribution of the parameters of the plant growth models considered in a hierarchical framework. This is

in fact the first time that such a combination is considered in plant growth modelling: previous works in

the field have considered the use of Bayesian hierarchical models [Schneider et al., 2006] but with relatively

simple models describing the state variables of the plant, some others have considered using plant growth

models combined to hierarchical models to explain the variability of a population of plants [Baey, 2014] but

in a frequentist paradigm.

This ambitious final objective requires preliminary works in several matters. First, the design of plant growth

models in a rigorously defined mathematical framework allowing to take into account the diverse inputs for

biological systems, such as the environment, the initial state of the system and the process and observation

noises as well as the description of the evolution of this system through hidden states and observations. Such

models should be applicable to either a single plant or a population of such plants. Within this framework,

mechanistic plant growth models will be proposed for different species. Although the ultimate aim of this

work is the study of a population of plants, a first step in the apprehension of the dynamics and calibration

of these models involves a single individual, which also allows to tackle common practical issues arising

in agriculture and plant science. This requires the design and the practical and generic implementation of

state-of-the-art algorithms for parameter and state estimation. To fulfil the expectation of evidencing the

variability of a population of plants using Bayesian hierarchical models, one requires a data set comprising

many individuals with many observations per individual.

For this purpose, we will also propose a method adapted to high-throughput phenotyping platforms by

developing an algorithm of image analysis to segment plant individual leaves in order to compute their areas,

but also to individually track each leaf across the different images. We will apply our algorithm to numerous

time series of images of Arabidopsis thaliana individuals. This work will therefore lie at the intersection of

many disciplines including mathematical modelling, plant science, statistical inference, computer science

and image analysis.

Introduction 5

Outline

The applications considered in this thesis will therefore be decomposed into two parts, each of which will

address different issues. The first one will concern estimation techniques in the case of a single individual as an

illustration of the dynamics of the designed plant growth models and the main problems that need to be dealt

with in plant science and agriculture. This will constitute a first step fulfilling the necessity of understanding

what happens with a single individual, before the study of genotypic variability among a population of plants.

This second part will specifically focus on parameter estimation in Bayesian hierarchical models.

This thesis will hence be composed of eight different chapters. In Chapter 1, we will introduce the mathemat-

ical framework that will be used throughout this work. This comprises notably general state space models and

the formulation of their transition and observation distributions. When dealing with a population of indi-

viduals, hierarchical models constitute an especially suited framework, particularly in the context of Bayesian

estimation.

The three main plant growth models that are going to be considered throughout this work are presented in

Chapter 2. After a brief history of plant growth models that justifies the use of functional-structural mod-

els for genotypic differentiation, we introduce three different models for sugar beet, wheat and Arabidopsis

thaliana. The LNAS model for sugar beet first introduced in [Cournède et al., 2013] and [Chen, 2014] will

serve as an illustrative model comprising the two possible kinds of noise considered in this thesis (process and

observation noise) for the tasks of parameter and state estimation in the most general framework for plant

growth models. The LNAS model for wheat was designed in this thesis; it was inspired by the main prin-

ciples of the LNAS model for sugar beet for the modelling of the allocation and senescence processes and also

introduces an original water budget model. Last but not least, we present a new version of a GreenLab-based

model for Arabidopsis thaliana. It describes the plant at the scale of the organ in order to incorporate as much

information on the functioning of the whole plant growth as possible for a better differentiation between

individuals than if global variables, such as the total leaf area, were used. All these models are presented

within the mathematical framework of Chapter 1.

Chapters 3 and 4 deal with the estimation techniques used for the calibration of the models. Throughout this

work, we decided to adopt a Bayesian point of view. Chapter 3 focuses on the algorithms used for parameter

and state estimation for a single individual, with a variety of techniques ranging from Markov chain Monte

Carlo methods to sequential Monte Carlo methods and their combination. This review of state-of-the-art

estimation methods represents a preliminary step to the study of how inference (for parameters and states)

can be performed for plant growth models in the case of a single individual.

Chapter 4 introduces the convenient methods of Bayesian estimation for hierarchical models. Notably, em-

phasis is put upon the choice of the Bayesian perspective. A generic methodology adapted to dynamic state

space models based on Gibbs sampling is proposed. These methods will therefore be used for the estimation

of both individual and population parameters using experimental data sets for a population of Arabidopsis

thaliana individuals. The ultime motivation being to show how the different parameters of the GreenLab

model vary among this population.

6 Introduction

The application of these methods requires efficient computing tools: this motivated the design of a whole

new platform for statistical inference written using the Julia language that is both fast and easy to use. This

platform is described in detail in Chapter 5 together with how the estimation techniques fit in and perform.

It therefore allowed to consider practical applications of the theoretical issues presented so far.

In particular, the estimation techniques considered in the case of a single individual are applied in Chapter

6. We notably demonstrate and compare the use of different sequential Monte Carlo methods for the joint

estimation of parameters and states within a Markov chain Monte Carlo procedure. It is also the occasion to

present some of the concrete applications of interest in plant science. The first case study involves the Green-

Lab model for Arabidopsis thaliana which is used for a first model calibration and a comparison between a

frequentist approach (based on generalized least squares) and a Bayesian one (using a Markov chain Monte

Carlo method) for parameter estimation in terms of the estimates they provide and the related uncertainties.

The second case study deals with data assimilation, a common application in plant science and agriculture,

using the LNAS model for wheat, for which yield prediction are of primary importance. A sequential Monte

Carlo method, the regularized particle filter, is used for an on-the-fly estimation of the parameters and the

hidden states. It is notably shown that data assimilation using the regularized particle filter provides much

better predictions than a simple uncertainty analysis. Several scenarios are studied, notably how the number

of observations available, the measurement error, the prior distributions or the number of estimated paramet-

ers influence the quality of the predictions. Finally, the last case study relates to a precise joint estimation of

the hidden states for the LNAS model for sugar beet, comprising both process and observation noise, using a

particle Markov chain Monte Carlo method and how it paves the way for the estimation of the noise paramet-

ers. We notably study how the choice of the sequential Monte Carlo algorithm within the particle Markov

chain Monte Carlo method influences the quality of the estimates and how a trade-off with computing time

can be found.

The image analysis algorithm that is used to obtain experimental data from images of Arabidopsis thaliana

is then introduced in Chapter 7. The Phenoscope, a high-throughput phenotyping platform, allows us to

obtain large amounts of data that are necessary for parameter estimation in hierarchical models. Its ability

to automatically compute the projected area of the whole plant is rather limited to explain the whole history

of a plant’s functioning and accurately differentiate between individuals, which is why an image analysis

procedure had to be developed in order to obtain a finer segmentation of each plant at the scale of the leaf

during the entire plant growth. This two-step segmentation-tracking procedure takes advantage of a careful

analysis of data specific to Arabidopsis thaliana, showing very promising results.

Finally, the retrieval of sufficient data allows for the calibration of Bayesian hierarchical models in Chapter 8.

The estimation of the individual and population parameters is first studied in the case of simulated data to

investigate different issues concerning the convergence of our algorithm. Notably, we study how the number

of individuals in the population, the measurement error, the choice of the prior distributions or the number

of estimated parameters influence the estimation of the different population parameters. The case of real

data is then investigated. This last chapter therefore takes advantage of the different aspects of this work by

combining modelling, Bayesian estimation for hierarchical models, high performance computing and real

Introduction 7

data obtained thanks to image analysis in order to achieve the assessment of the intergenotypic variability in

a population of Arabidopsis thaliana of different genotypes.

Chapter 1

Mathematical framework

P lenty of real-world applications require the prediction of some quantities, which can be achieved

by first defining a system characterized by state variables and second designing a model using equations

that aim at representing the underlying physical processes. These equations usually involve defining many

parameters that specify these equations to the system under study, and a crucial point is therefore to have

good estimates of these parameters’ values. Real data, also referred to as experimental data, is thus utilized

and compared to the output of the designed model for parameter inference. A very common mathematical

framework for this task is that of general state space models (SSMs) [Doucet et al., 2001]. SSMs were

first introduced for finite state spaces in the 1960s, jointly with the development of the theory of Gaussian

linear models. Popularized by Kalman [1960] in his work on the so-called Kalman filter, SSMs can describe

either deterministic or stochastic dynamical systems. This mathematical framework, being very general, has

been used extensively in very diverse fields such as ecological population dynamics [Newman et al., 2009],

[Hosack et al., 2012], biochemistry [Golightly and Wilkinson, 2008], [Golightly and Wilkinson, 2011],

finance [Elliott and Hyndman, 2007], [Mamon and Elliott, 2014], neuroscience [Paninski et al., 2010],

[Chen and Brown, 2013] and plant science [Yan et al., 2004], [Cournède et al., 2013], just to name a few

recent examples.

This chapter is devoted to the introduction of the mathematical models that will be used in the rest of this

thesis. The mathematical framework of general SSMs is first described in Section 1.1, notably the main

system of equations characterizing them. The link with hidden Markov models, which is nothing more

than another formulation of the same model, is briefly discussed. Emphasis is put upon the structure of the

observations of a system because of its importance in the estimation procedure and its potentially scarce and

non-homogeneous nature. Then the choice of the observation models as well as possible extensions of models

are presented. A critical aspect of this mathematical framework is that of the definition and the calculation of

the transition and observations probability density functions, as these functions are involved in most of the

estimation algorithms of Chapter 3 and constitute one of the angular stones of the design of the computing

platform introduced in Chapter 5 – this point being notably discussed in detail in Section 5.5. Last but not

9

10 Chapter 1. Mathematical framework

least, Section 1.3 is dedicated to the introduction of hierarchical models that will further be used for the

analysis of the genotypic variability of a population of plants.

1.1 General state space models

Usually the term state space models refers to linear state space models, whereas the term general state space

models is used for their nonlinear equivalent. For convenience, general state space models will simply be

referred to as state space models in what follows. The state space of such models can be either discrete or

continuous. The SSMs considered througout this document will be continuous-valued and discrete in time.

If the equations modelling a system are continuous in time, they first need to be discretized for numerical

simulation.

1.1.1 Main equations

Starting from initial state variables (initial conditions) at time step n = 0, the system variables are updated

at each time step n ∈ J1, T K where T denotes the last time step of the simulation. For plant models, this

usually means that variables are updated daily, as is the case in the Log-Normal Allocation and Senescence

model for Beta vulgaris (Section 2.2) or wheat (Section 2.3), or hourly, for instance in the GreenLab model for

Arabidopsis thaliana (Section 2.4). At each time step n, a system of two equations summarizes the evolution

of the state variables and the observations of the system respectively. In their most general form, they read:{
xn+1 = fn(xn, un, θ, ηn),

yn = gn(xn, θ, ξn),
(1.1)

where the evolution of the system is considered between the initial timen = 0 and the final timen = T ∈ N⋆,

and where at time step n ∈ J0, T K:
■ xn ∈ Rdx represents the state variables of the model, x0 therefore denotes the inital state of the system.

Since these variables are a priori not accessible to measurement, they are also called hidden states;

■ yn ∈ Rdyn represents the observations on the system. It is worth noting here that the dimension of

the vector of observations depends on the time step n, this will be detailed in Section 1.1.3;

■ un ∈ Rdu represents the external variables influencing the system, for example control variables:

in plant science, these are typically environmental conditions in which the system evolves, such as

temperature, radiation, water resources or nutrients;

■ θ ∈ Rdθ represents the functional parameters, which intervene in the functional equations and can

either have a systemic meaning – they can originate from biology, for instance – or simply be para-

meters of empirical descriptive functions used because they constitute a convenient and sensible way

of modelling a physical process;

Chapter 1. Mathematical framework 11

■ ηn ∈ Rdη are process noises – or equivalently modelling noises – and are the values taken at each

time step by a random vector representing the stochastic factors that aim to account for either possible

model limitations or imperfections;

■ ξn ∈ Rdξ are observation noises: since the observed data is most of the time measured with some

uncertainty, observation noises are the values taken at each time step by the random vector defined so

as to reproduce this measurement error;

■ fn is the transition function, it drives the evolution of the state variables from one time step to another;

■ gn specifies how the system is observed and what the observations are in terms of the hidden states.

The fact that both the transition and observation functions are allowed to depend on the time index n is

referred to as non-homogeneous transitions. This is often the case in plant growth models since the plant has

different evolution stages (which mostly depends on the thermal time) where its behaviour can be drastically

different.

1.1.2 Hidden Markov models

In their stochastic formulation with random vectors defining the process and observation noises, SSMs are

equivalent to hidden Markov models (HMMs) [Rabiner, 1989] where xn represents the hidden states, yn
the observations and where:

x0 ∼ p(x0) is the initial distribution,

xn+1 ∼ p(xn+1|θ, xn) is the transition distribution,

yn ∼ p(yn|θ, xn) is the observation distribution.

(1.2)

The transition and observation distributions represented above by conditional probability density functions

can be rewritten using the process and observation noises as will be detailed in Section 1.2. It has to be noted

that each one of these distributions can be taken as a Dirac distribution. An important case is that of a model

without process noise, in which case Equation 5.2 reduces to:{
xn+1 = fn(xn, un, θ),

yn = gn(xn, θ, ξn).
(1.3)

In this case, the transition distribution is equivalent to a Dirac distribution so that p(xn+1|θ, xn)dxn+1 is re-

placed by δfn(xn,un,θ)(dxn+1) and for given parameters θ, initial state x0 and external variables (un)n∈J1,T K,
all state variables at all time steps (xn)n∈J1,T K are deterministically defined. A less common case would be that

of a model without observation noise, where p(yn|θ, xn)dyn would be replaced by δgn(xn,θ)(dyn), which

would be such that every measurement contains perfect information on the system. This scenario, however,

finds very few practical applications as most models deal with the measurement of continuous valued variables

and thus necessarily involves some uncertainty.

12 Chapter 1. Mathematical framework

1.1.3 Structure of the observations

At a given time step n, the observed variables can be of different nature: integers (the number of phytomers

of a plant), real numbers (the biomass of a leaf compartment), vectors (the areas of the different individual

leaves) or even matrices in some cases. Most of the time and for practical reasons in real world applications,

observations do not come up at every time step and the data available at a given time might not be the same

at another. Let us consider the example of a plant model for, say, sugar beet: the biomass of the leaves might

be available on days 10, 20 and 35 whereas the biomass of the roots might be available on days 12, 20, 33.

For an organ-scale plant model where observations on the different organs are obtained via image analysis, as

is the case of leaf areas, the latter might not be available on the same days because an algorithm deemed its

classification confidence to be insufficient. The size and content of the observations might therefore not be

the same through time, which poses no problem whatsoever as long as one knows what variables are observed

at what time. The merged experimental timeline, representing time steps at which any experimental data is

available, will be denoted by:

O = (tk)k∈J1:OK ∈ NO with 1 ≤ tk < tk+1 ≤ T for k ∈ J1, OK, (1.4)

where O ≥ 1 is the total number of experimental time steps. More formally, the observations at a given

time step n can be seen as a dictionary where keys would be the different observed variables through the

experiment and the values would be the actual observations of the corresponding variables. The operation

of converting a dictionary of observations into a vector and its inverse will be presented in more detail in

Section 5.4 when discussing the practical implementation of the storage of observations using the computing

platform. If ℓn denotes the total number of variables observed at time step n, vn = (vℓn)ℓ∈J1,ℓnK said variables

and yℓn denotes the observation relative to variable vℓn, then the vector of observations at time n can be defined

as the concatenation:

yn = (yℓn)ℓ∈J1,ℓnK ∈ Rdyn . (1.5)

Equivalently, all the observation vectors at each time in the experimental timeline can be concatenated and

the following notations are introduced:{
x1:T = (xn)n∈J1:T K,
y1→T = (ytk)k∈J1:OK. (1.6)

Some algorithms (least squares algorithms for example) require to deal with vector observations and it is

therefore important to be able to work with observations of such a nature. In fact, y1→T could also be seen

as a matrix of observations where each row would correspond to a time step and each column to a type of

observation, and elements of this matrix could be missing (since all variables are not observed at all times).

All the information about what variables are observed at what time is actually stored in the sequence of

observation functions (gn)n∈J1,T K. More details on how this is implemented in the computing platform can

be found in Sections 5.2.3 and 5.3 with examples. For now, one can assume that at each time step n, yn is

a vector of observations, that are not necessarily the same at different times, and that one knows what these

vector observations contain and how to exploit them.

Chapter 1. Mathematical framework 13

CONTROL

HIDDEN

OBSERVABLE

un−1 un

xn−1 xnfn−1 xn+1fn

yn−1

gn−1

yn

gn

yn+1

gn+1

Figure 1.1: Representation of a general state space model. Wavy curves in the hidden layer
(respectively observable layer) represent the randomness introduced by the process noise (re-
spectively observaton noise). The external (or control) variables un are known at every time
step, the hidden states xn are unknown in real experiments but are accessible when the cor-
responding model is simulated, and the observations yn are both known in real experiments

and can also be simulated provided that an observation model error has been defined.

Process and observation noises are of stochastic nature, and the underlying parameters constant throughout a

model simulation are typically the mean or standard deviation of the statistical distribution from which they

are sampled. We distinguish the random variables η and ξ, from their realizations at a given time ηn and ξn
such that:. {

η : Ωη → Rdη

ωη → ηn ≡ η(ωη)
(1.7)

and: {
ξ : Ωξ → Rdξ

ωξ → ξn ≡ ξ(ωξ)
(1.8)

where Ωη and Ωξ are appropriate sample spaces. A simulation of the model can therefore be summarized as:

y1→T =M(x0, u, θ, η, ξ). (1.9)

where the model M contains the information on the sequences of transition and observation functions

(fn)n∈J1,T K and (gn)n∈J1,T K. Sometimes, one might abbreviate the output of the model as y .
= y1→T .

It is worth noting that the use of such a stochastic formulation for plants is not very common and dates back

to less than 20 years [Makowski et al., 2004], [Chen and Cournède, 2012], [Trevezas and Cournède, 2013].

A graphical representation of a general SSM is shown on Figure 1.1.

14 Chapter 1. Mathematical framework

1.1.4 Observation model

Considering a plant model, the biomass produced by the whole plant on a given day is not directly measurable,

it is thus considered to be a hidden state, whereas the biomass of green leaves on the same day is a measurable

data, making it an observation. As previously said, a measure on a system is very often inexact, and this

is almost always the case when dealing with continuous-valued models. For instance, measuring biomass

can be done using either destructive or non-destructive methods: in the first case, biomass is removed from

the plant and weighed while the second case is based on digital image analysis. The cutting point, the

weighing process, or imperfections of algorithms are as many factors implying that some measurement error

is made. The true value of the biomass is therefore never exactly measured, and a distinction must be made

between the hidden state of the biomass, which remains unknown, and its corresponding observation. A

given measurable variable will frequently be defined both as a hidden state and as an observation. In the case

of a biomass denoted by q, this would translate into:

qn ∈ xn and q̃n ∈ yn. (1.10)

How these two values are related constitute a model for the measurement error. A standard approach is to

consider that, on average, the hidden state is measured with some white noise following a normal distribution.

If the noise is proportional to the value of the hidden state – for instance if the greater the biomass, the greater

the measurement error – one might want to consider a multiplicative noise:

q̃n = qn (1 + ξn), with ξn ∼ N
(
0, (σq)2

)
and σq > 0, (1.11)

so that:

q̃n ∼ N
(
qn, (σ

qqn)
2
)
, (1.12)

whereas if the noise does not depend on the value of the hidden state, one might want to consider an additive

noise:

q̃n = qn + ξn, with ξn ∼ N
(
0, (σq)2

)
and σq > 0, (1.13)

so that:

q̃n ∼ N
(
qn, (σ

q)2
)
. (1.14)

Obviously, there can be situations where measured values are always underestimated or overestimated, in

which case these two measurement error models might not be relevant anymore. In the rest of this thesis, the

values that will be measured will be either biomasses or leaf areas, and it is therefore assumed that multiplic-

ative normal noises are the most adapted to such situations. However, more observation models have been

considered as will be emphasized in Chapter 5 when discussing the computing platform.

1.1.5 Extensions

The popularity of such models has generated many extensions. A common one concerns k-th order Markov

process, where k > 1: in this case the hidden state xn+1 does not depend only on xn but on (xn−j+1)j∈J1,kK.

Chapter 1. Mathematical framework 15

This can happen in plant growth models – such as in the STICS model [Brisson et al., 1998] for instance

– even though from a mathematical point of view it is always possible to redefine the system state as x′n =

(xn−j+1)j∈J1,kK to define a standard SSM again.

In Markov-switching models (also called Markov jump systems), at time step n the observation yn depends

not only on the hidden state xn but also on the previous observation yn−1 (and possibly on even older obser-

vations) [Cappé et al., 2005]. The sequence of observations (yn)n∈J1,T K can therefore be seen, conditional

on the sequence of hidden states (xn)n∈J1,T K, as a non-homogeneous Markov chain. Although this kind of

model has a lot in common with standard HMMs, their statistical analysis is much more complicated be-

cause the observed sequence (yn)n∈J1,T K is not directly related to that of the unobservable one (xn)n∈J1,T K.
Although Markov-switching models are not considered within this thesis, two reasons behind their potential

uses must be mentioned. First, when measurements are performed on a plant or in a field, the observer might

be influenced by the previous obtained results: if the biomass of an organ is surprisingly much lower than that

of a previous time, one might be tempted to correct the current measurement upwards. Second, the image

analysis algorithm used to estimate the individual leaf areas (see Chapter 7) does so by taking into account the

whole history of a given leaf. For the image of a given day, the decision to classify a given segment (i.e. a set of

connected pixels that was considered to represent a leaf occurrence) – whose area contains some observation

noise intrinsic to the segmentation algorithm – as belonging to a particular leaf of the plant depends on the

whole history of the said leaf, hence on previous observations. Nevertheless, this effect is considered to be

of minimal importance in the present case: when it is uncertain whether a segment belongs to a leaf, it is

considered as not being observed. Classification-related errors (and time-induced) will therefore be minimal

in the pool of actually observed data collected.

1.2 Generic probability distributions

As will be detailed in Chapter 3, parameter and state estimation algorithms require the use of the transition

and observation probability density functions (pdfs). The algorithms should be designed so as to be easily

used with different models. It therefore requires the calculation of the transition pdf p(xn+1|θ, xn) and the

observation pdf p(yn|θ, xn). What is more, the pdf of all the observations conditional to the parameters

and the hidden states p(y1→T |θ, x1:T) can then easily be deduced from the observation pdf. For this aim,

a generic expression of the latter is derived and, as explained in Chapter 5, this will allow to automatically

compute their values provided that models are written using a predefined template.

1.2.1 Transition probability density function

In the models considered, it is always possible to arrange the state variables by their order of computation at

a given time step. The hidden state is therefore decomposed into (xjn)j∈J1,dxK where for all j ∈ J1, dx − 1K,
xjn is computed before xj+1

n . In particular, a variable xjn+1 can depend in practice on all variables computed

before, (xkn+1)k∈J1,j−1K – which have been expressed as functions of xn themselves – without breaking the

16 Chapter 1. Mathematical framework

dependence on only xn from a mathematical point of view. The transition pdf can therefore be expressed in

a hierarchical fashion:

p(xn+1|θ, xn) =
∏

j∈J1,dxK p(x
j
n+1|θ, xn, x

1:j−1
n+1). (1.15)

In the absence of process noise, the dynamics of the system is entirely deterministic, as a consequence

p(xjn+1|θ, xn, x
1:j−1
n+1)dxjn+1 = δ

mj
n+1(xn,x

1:j−1
n+1 ,θ)

(dxjn+1)wheremj
n+1(xn, x

1:j−1
n+1 , θ) prescribes howxjn+1

is computed within the model. In a model without process noise, the transition pdf therefore becomes such

that:

p(xn+1|θ, xn)dxn+1 =
∏

j∈J1,dxK δmj
n+1(xn,x

1:j−1
n+1 ,θ)

(
dxjn+1

)
. (1.16)

In particular, one can choose to introduce as many intermediary variables in the hidden state xn without

fundamentally changing the model formulation in terms of transition distribution. In view of this remark,

when some process noise is involved, the only non-Dirac terms in Equation 1.15 are those affected by

the process noise and the corresponding random vector can also be arranged by order of use in the model

ηn = (ηjn)j∈J1,dηK. For now, we assume that all the process noises of the model are unidimensional.

Let mη : J1, dηK → J1, dxK be an application such that mη(J1, dηK) represents the sets of indices of the

state variables on which are set the process noises, i.e. there exists some function ϕj such that:

x
mη(j)+1
n = ϕj(x

mη(j)
n , ηjn), for j ∈ J1, dηK. (1.17)

For a particular process noise of index j and in the case of an additive normal noise, this would translate into:

x
mη(j)+1
n = x

mη(j)
n + ηjn with ηjn ∼ N

(
0, (σj)2

)
. (1.18)

It is possible to express the transition pdf by choosing only the dη state variables on which are set the process

noises:

p(xn+1|θ, xn)dxn+1 =

dη∏
j=1

p
(
x
mη(j)+1
n+1 |θ, xmη(j)

n+1

)
dx

mη(j)+1
n+1 ×

∏
j /∈mη(J1,dηK) δmj

n+1(xn,x
1:j−1
n+1 ,θ)

(
dxjn+1

)
where we recall thatmj

n+1(xn, x
1:j−1
n+1 , θ) is the value computed for the state variable xjn+1 within the model

considered. In what follows, since the variables that are deterministic functions of the stochastic variables are

computed directly by closure relationships in the simulation program, the Dirac distributions take values 1,

hence will be omitted in the following. In particular, we can restrain ourselves to the noised variables and

replace the transition pdf by:

p(x
mη(j)+1
n+1 , . . . , x

mη(dη)+1
n+1 |θ, xn) = p(ηn|θ) =

dη∏
j=1

p(x
mη(j)+1
n+1 |θ, xmη(j)

n+1). (1.19)

For the sake of simplicity and with a slight abuse of notation, in what follows we will denote

p(xn+1|θ, xn) = p(x
mη(j)+1
n+1 , . . . , x

mη(dη)+1
n+1 |θ, xn), implicitly assuming Dirac distributions for the vari-

ables computed in a deterministic fashion by model closure. This formulation generalizes in fact very well

to multidimensional noises. The decomposition of the state variable xn = (xjn)j∈J1,d′xK can be performed

in such a way that xjn can be a multidimensional quantity such as a vector or a matrix and so that d′x ≤ dx.

Chapter 1. Mathematical framework 17

Similarly, ηn = (ηjn)j∈J1,d′ηK can contain multidimensional quantities. For instance, the random vector of

process noises in the Kalman filter [Kalman, 1960] is drawn from a multivariate normal distribution with

non-zero off-diagonal components (i.e. this cannot be simplified to the use of unidimensional process noises),

which for some j would translate into:

x
mη(j)+1
n = x

mη(j)
n + ηjn with ηjn ∼ N (0,Σ) (1.20)

and where Σ can potentially be a full matrix.

1.2.2 Observation probability density function

Equivalently, one can decompose the observation noises as ξn = (ξjn)j∈J1,d′ξK and define an application

mξ : J1, d′ξK → J1, d′xK such that mξ(J1, d′ξK) represents the set of indices of the state variables on which

are set the observation noises, i.e. there exists some function ψj such that:

yjn = ψj(x
mξ(j)
n , ξjn), for j ∈ J1, dξ′K. (1.21)

Again, for a particular observation noise of index j and in the case of a unidimensional multiplicative noise,

this would translate into:

yjn = x
mξ(j)
n (1 + ξjn) with ξnj ∼ N

(
0, (σj)2

)
. (1.22)

It can also happen that observations on the system require multidimensional noises. This is notably the case

in [Baey et al., 2016] where the biomasses of the different organs are observed with correlation, this would

mean that:

yjn = x
mξ(j)
n · (1 + ξjn) with ξnj ∼ N (0,Σ) . (1.23)

where it is understood that in the case of multidimensional noises, operations on vectors such as · or / are

performed element-wise, and with Σ having some of its off-diagonal components non-zero. The observation

pdf can be expressed in the same way as for the transition pdf:

p(yn|θ, xn) = p(ξn|θ) =
dξ′∏
j=1

p(yjn|x
mξ(j)
n) (1.24)

where the product runs on all indices j for which experimental data yjn is available and, again, possibly

contains multidimensional noises. The generic expression of the pdf of the observations conditional to the

parameters and the hidden states p(y1→T |θ, x1:T) naturally follows from that of the observation pdf since:

p(y1→T |θ, x1:T) =
O∏

k=1

p(ytk |θ, xtk) =
O∏

k=1

dξ′∏
j=1

p(yjtk |θ, x
mξ(j)
tk

). (1.25)

Equation 1.19 makes it possible to compute the transition pdf as long as are specified the nature of the

noises (are they additive or multiplicative, sampled from a normal, a log-normal or a uniform distribution?)

and lists of labels corresponding to the parameters necessary to compute the values of these pdfs. Likewise,

Equation 1.24 makes it possible to compute the observation pdf. The complete mechanism for the practical

computation of such values of the transition and observation pdfs are described in detail in Section 5.5.

18 Chapter 1. Mathematical framework

Examples of theoretical transition and observation pdfs are given in Chapter 2 in the case of two plant

growth models for Beta vulgaris and Arabidopsis thaliana.

1.3 Population models

In this section, we first describe the reasons behind the use of the population approach and emphasize its im-

portance in the context of genotypic variability. We then move on to introduce the two types of variability in

the context of plants and introduce hierarchical models, statistical models that are well-suited for dealing with

this dual variability for a population of plants, and finally show how the SSMs considered in Section 1.1 fit

in the mathematical description of population models before describing the complete two-stage hierarchical

models that will further be used for parameter inference in a population context.

1.3.1 Motivation

Most biological and physical phenomena observed within a set of different individuals exhibit variability:

they might manifest similar global behaviour and dynamics but with some variations. This is of practical use

in many fields such as biology, agronomy, econometrics, environmental and human sciences. For instance, in

pharmacometrics, one needs to develop models where different patients would react differently to the same

disease and the same drug. Lavielle [2014] gives the example of the effect of genetically modified corn on

the health of rats.

As far as plants are concerned, there exists a strong genetic variability even within individuals of the same

species, which notably allows for better resistance to diseases or bugs and provides stronger adapation to a wide

set of environmental conditions. Brouwer et al. [1993] showed that soil and crop growth micro-variability in

the semi-arid tropics of West Africa contributes to increased yield in case of droughts since parts of the field,

more resistant to water stress, could compensate for other parts performing poorly, meaning a satisfactory level

of assured production. The genetic variability of switchgrass was studied by Hopkins et al. [1995] in order to

develop improved populations, which highlighted the importance of genotype-environment interactions for

traits such as forage yield at heading, vegetative in vitro dry matter digestibility and heading date. For maize,

Maiti et al. [1996] showed that both genotypic variability and soil content were of highly significance for the

resistance to drought and salinity at the seedling stage. This study also allowed to speculate about the effect of

higher root growth under saline stress in some of the genotypes as a mechanism of resistance in maintaining

osmo-regulation. Isfan [1993] suggested that the index of physiological efficiency of absorbed nitrogen may

be used in order to identify the likely high yielding oat genotypes and those capable of exploiting nitrogen

input most efficiently.

All these examples indicate both the importance of such a genetic variability and the necessity to integrate it

within plant growth models. Similarly, in populations of plants in fields or forests, interindividual variability

can result from differences in the local environmental conditions of individual plants. The first plant growth

Chapter 1. Mathematical framework 19

models integrating this variability tried to simulate the growth of each individual with a competition index

between plants [Fournier and Andrieu, 1999], [Cournède et al., 2008].

Most of the time in plant applications, repeated measurements on different individuals of a population are

available, and a population approach is particularly suited to characterize and explain this kind of data. The

mathematical model used therefore needs to incorporate a growth model that depicts the dynamics of the

different state variables of the plant considered – biomasses mainly – and a statistical model that explains

the variations of this typical dynamics between the different individuals. There are in fact two sources of

variability to account for:

■ the intraindividual variability, which refers to how the state of a single individual might vary, because

of random processes and measurement errors. This kind of variability was introduced in Section 1.1

under the form of process and observation noises;

■ the interindividual variability, which arises because of differences between the genotypes or environ-

ments of different individuals. This corresponds to the variability of the different individuals’ curves

around a mean population curve.

0 25 50 75 100 125 150
Time (d)

0

500

1000

1500

2000

2500

3000

Bi
om

as
s (
g/
m

2)

Individual 1

0 25 50 75 100 125 150

Time (d)

0

500

1000

1500

2000

2500

3000

B
io
m
as
s
(g

/m
2)

Individual 2

0 25 50 75 100 125 150

Time (d)

0

500

1000

1500

2000

2500

3000

B
io
m
as
s
(g

/m
2)

Individual 3

0 25 50 75 100 125 150

Time (d)

0

500

1000

1500

2000

2500

3000

B
io
m
as
s
(g

/m
2)

Individual 4

Figure 1.2: Yield curves of four different individuals. The individual curves are displayed
with solid lines and the mean curve (similar for all graphs) is displayed with dotted line.

20 Chapter 1. Mathematical framework

1.3.2 Hierarchical models

Hierarchical models provide a very suitable way of modelling this dual variability. This type of statistical

models have long been used in pharmacokinetics, epidemiology or ecology, although their use in dynamic

plant growth models is rather recent [Baey et al., 2013]. Broadly speaking, they are statistical models of

parameters that vary at several levels. First introduced in the context of linear regression, multilevel models

then consisted in doing a regression in which the parameters were given a probability model, and this second-

level model had parameters of its own, called hyperparameters, and all these parameters were inferred from

the same data.

Many names can be found for such models: multilevel models may be the more common, nested data mod-

els, random effects models (mixed effects models when some parameters are random and some are fixed in

the population) are also widely used. The hierarchical term seemed the most appropriate to our case since a

hierarchy is clearly established between the different stages of plant growth modelling where individual para-

meters are first derived from a given probability distribution describing the population, and these individual

parameters then drive the growth of a given plant via a noisy nonlinear SSM.

The two most simple and direct methods of parameter estimation in a population are known as complete

pooling and no pooling [Davidian and Giltinan, 1993]:

■ in complete pooling, differences between individuals are ignored, all are treated equally and the data

coming from different individuals is used for the estimation of parameters supposed to represent all

individuals. Disregarding the diversity of the sources for the data represents a significant oversimplific-

ation, not only will it fail to provide accurate predictions but it also misses variations in the population,

which is the main objective of many studies;

■ in no-pooling, data coming from different sources are analyzed separately. This procedure ignores the

information related to the diversity of the individuals in the population and can lead to unsatisfactorily

variable inferences for the model parameters, in particular when little data is available. It must be noted,

though, that individual estimates can still be of use for the initialization of prior of hyperparameters

in a Bayesian estimation procedure as will be described in Section 8.1.2.

Hierarchical modelling manages to combine the information provided by different individuals and overcome

the limitations introduced by these two simplistic methods.

The first stage of the model corresponds to the intraindividual variability and aims to explain how an indi-

vidual evolves given a set of parameters supposed to represent it. The dynamics of each individual iwithin the

population is then described by the same parametric model with a different set of parameters θi. Generalized

linear models are often used for convenient and straightforward inference, however, the highly nonlinear

nature of plant growth models suggested to proceed otherwise, and this first stage will be represented by

the dynamics of general SSMs described in Section 1.1. The typical dynamics of an individual is thus well

described with a parametric model such as those presented in Chapter 2 and a mean population dynamics

y is assumed to be obtained with a set of parameters θ. The second stage of the model corresponds to the

Chapter 1. Mathematical framework 21

interindividual variability and depicts the common probability distribution of the different sets of parameters

that control the time dynamics of the individuals. The interindividual variability of the curves around the

typical population curve can therefore be explained by the parameter variability around the mean population

parameters as can be observed on Figure 1.2 for the yield curves of 4 different individuals. The parameters of

the model can be considered either fixed or random. The random parameters are assumed to follow a statist-

ical distribution parameterized by the typical population parameters and individual parameters are therefore

random variables following the same population distribution. In a Bayesian framework, a third stage is finally

added for the prior distribution of the population parameters.

1.3.3 State space models for populations

For the sake of consistency with literature, the mathematical notations used in the population approach will

slightly differ from the single individual case. A population is made up ofN different individuals indexed by

i ∈ J1, NK. If θi ∈ Rdθ denotes the set of parameters for individual i, the state space Equations 1.1 become

in their most general form: {
xi,n+1 = fn(xi,n, ui,n, θi, ηi,n),

yi,n = gn(xi,n, θi, ξi,n).
(1.26)

Hopefully, some simplifications can be made. In the population approach, the nature of variability is two-

fold and can be assumed, for the sake of simplicity, to encompass randomness arising from both process and

observation noises. The process noise ηn,i will therefore be ignored. As all applications of this thesis will be

done within controlled environments, the control variables ui,n will be the same for all individuals and can

be omitted. The transition part of Equation 1.26 can thus be simplified to:

xi,n+1 = fn(xi,n, θi) (1.27)

which allows, by induction, to rewrite more simply for all n:

xi,n+1 = hn(xi,0, θi), (1.28)

or in an even simpler form by incorporating the initial state into the hn function – or the parameter vector

if it is unknown:

xi,n+1 = hi,n(θi). (1.29)

1.3.4 Intraindividual variability

As previously mentioned, when dealing with population models in the rest of this thesis, it will always be

assumed that all observed variables follow a multiplicative normal observation model, which means that the

measurement error associated to a given state is proportional to the latter. Note however that this assumption

is made without loss of generality from a methodological point of view. For each individual, there are ni
measurements indexed by j ∈ J1, niK and yij therefore denotes the j-th measurement on individual i,

although index j does not designate time per se. The observations for the different individuals need not

22 Chapter 1. Mathematical framework

be at the same times. In the context of population models, the vector of all observations from n = 1 to

n = T for a given individual i is denoted by yi = (yij)j∈J1,niK ∈ Rni . Although the notations look similar,

there is usually little confusion possible between the observations yn at time n for a single individual and the

whole vector of observations yi from n = 1 to n = T for a given individual i. Given the complexity of the

observations in the case of the GreenLab model for Arabidopsis thaliana within a population approach, details

about the conversion between the observations at each time and the concatenated vector of all observations

for the whole simulation are provided in Section 2.4. Assuming that the hidden state corresponding to the

j-th observation of the i-th individual is simulated and denoted by hij(θi), then the observation model

considered implies that:

yij = hij(θi)× (1 + ξij) with ξij ∼ N (0, σ2). (1.30)

More elaborate observation models specifying heterogeneous observation-related variances, such as the one

proposed in [Duval et al., 2009] could also be considered. It is worth noting that the standard deviation

associated to the observation noise depends neither on the individual nor on the observations within a given

individual. With the standard notations of hierarchical models, this becomes:

yij ∼ N (hij(θi), σ
2hij(θi)

2) (1.31)

for i ∈ J1, NK and j ∈ J1, niK. Another way of rewriting this model with the vector of all observations of

the i-th individual yi reads:

yi =

yi1
...

yini

 =

hi1(θi) + ξi1hi1(θi)

...

hini(θi) + ξinihini(θi)

 ∼ N (hi(θi), τ
−1Ωi) (1.32)

where hi(θi) ∈ Rni is the vector of the hidden states corresponding to the experimental data for the i-th

individual (given by the model), and τ = σ−2 ∈ R⋆+ is called the precision. The reason for using the

precision instead of the standard deviation will become apparent when prior distributions for the estimation

of parameters in a Bayesian framework are discussed in Chapter 4. For the multiplicative observation model

considered, it is straightforward that Ωi reduces to:

Ωi = diag{hi(θi)2}. (1.33)

More complicated covariance matrices could be used in practice, but this is not relevant to the case considered

thereafter: each measurement is considered independant of the others, whence the diagonal matrix.

1.3.5 Interindividual variability

As the first stage of the model describes the intraindividual variability, the second stage of the model deals

with the interindividual variability and prescribes how the individual parameters θi are distributed within the

population. One of the simplest yet most sensible way to do so is to consider that the individual parameters

θi ∈ Rdθ follow a normal distribution:

θi ∼ N (η,Σ) (1.34)

Chapter 1. Mathematical framework 23

where dθ ∈ N⋆ is the number of parameters to be estimated within the model, η ∈ Rdθ is the population

mean vector and Σ ∈ Mdθ(R) the population covariance matrix. The two-stage hierarchical model thus

reads:

First stage: yi ∼ N (hi(θi), τ
−1Ωi),

Second stage: θi ∼ N (η,Σ).
(1.35)

Parameter inference therefore amounts to jointly estimate the individual and the population parameters

θ = {(θi)1:N , η,Σ, τ}. In a Bayesian approach, the population parameters will be given appropriate prior

distributions that will extend the model with another stage. As far as genotypic differentiation is concerned,

the main objective is to obtain reliable estimates of the population parameters so as to be able to describe

which possess a significant role within the population, notably through hypothesis tests about the nullity of

their respective variances. These issues will be discussed in Chapter 4.

Chapter 2

Plant growth models

T here has been a great deal of models proposed for plant growth since the 1970s, with various ob-

jectives such as yield forecast or a better understanding of biological processes underlying plant func-

tioning and with different modelling scales, both in space and time. This chapter starts off by providing brief

historical reminders on the birth of plant growth models in Section 2.1. After emphasizing their importance

in a global agricultural and environmental context, we focus on the mechanistic models for plant growth and

see how the structural and functional approaches first disjoint were reconciled within functional-structural

plant models (FSPMs). Section 2.2 is then devoted to the presentation of the compartmental LNAS model

for Beta vulgaris. Sections 2.3 and 2.4 are dedicated to two models that were specifically designed in the

context of this thesis: the first one is a model for wheat which is inspired from the LNAS model for sugar

beet, the second one is a new organ-scale model for Arabidopsis thaliana that will be used in the context of

population models for genotypic differentiation. The main biological processes considered in each of these

models are first described, their whole formulation in terms of the mathematical framework of general SSMs

introduced in Chapter 1 as well as first graphs of their simulations – obtained using the computing platform

presented in Chapter 5 – are then presented.

2.1 History

Plants contribute to many aspects of human society: they are not only sources of foods and beverages, oxygen

and energy, but they are also used for clothes, in construction and medicine and of course, for scientific

research, which makes them a field of study of primary importance. Over the past decades, the growing

concern on environmental protection also put the focus on agriculture because of its diverse impacts on the

environment and notably on climate change:

■ agriculture indeed contributes to climate change through the emissions of greenhouse gases and the

conversion of non agricultural land such as forests into agricultural land. It is estimated to contribute

up to 25% to global annual emissions [Blanco et al., 2014];

25

26 Chapter 2. Plant growth models

■ conversely, climate change affects agriculture as pest insects and plant diseases together with extreme

environmental conditions such as droughts tend to become much more frequent.

The effects of agriculture on the environment extend far beyond this and are also related to issues such as

water resources, chemical pollution or the preservation of biodiversity. It raises many practical questions, just

as in any other scientific field, but maybe even more since it deals with food production:

■ can we predict the yield of a particular species – such as wheat or sugar beet – in France for the next

year by taking into account the past climate and different future climate scenarios?

■ how can water supplies be optimized in terms of yield, financial cost and with water use constraints?

■ what variety of a given species is best adapted to particular environmental conditions (humidity, tem-

perature, soil content, etc.)?

■ how different genotypes, in interaction with their environment, can lead to drastically different phen-

otypes and results in the field?

All these questions are of primary importance for farmers and governments. To address them properly, math-

ematical models allowing the quantitative prediction of the evolution of a plant in given conditions must

be designed. Their simulations via a programming implementation should be easy and reflect as much as

possible the plant behaviour through time.

Two main approaches currently coexist for such problems. The first and oldest is to design mechanistic models

that take into account biological knowledge. Biological processes are modeled with equations and parameters,

and the global dynamics of the plant is inferred from all these processes. Such models can be considered at

various scales: some are designed at the cell level, some others at the field level. The other approach is much

more recent, purely data-based and has to do with machine learning. If enough data (biomasses, soil content,

temperature, etc.) can be collected from the field, adequate machine learning models (such as neural networks,

support vector machine, etc.) can be trained thanks to all these data and further be used for prediction in

new conditions. The drawback of such an approach is that it requires a lot of data rarely available nowadays

in the field of agriculture because of the complexity to obtain data on a regular basis, the different formats

used by different experimenters, etc. What is more, it does not allow to approximate complex biological

phenomena whose interactions could give rise to new dynamics in different conditions.

The first plant growth models date back to the 1970s, at the intersection between botanic, agronomy and

computer science [De Reffye et al., 2009]. The continual progress of computer science since then have al-

lowed for ongoing greater refinement and complexity. The first attempts to formally describe plant models

came from botanists Hallé and Oldeman who, in 1970, published An essay on the architecture and dynamics

of growth of tropical trees [Hallé and Oldeman, 1970] integrating the botanic qualitative knowledge of vegetal

architecture. From a botanic point of view, the architectural analysis of trees aimed at interpreting their

global structure and understanding the morphological mechanisms that gave birth to them. They proposed

a classification allowing to split all the species of trees into 23 categories with respect to the type of their

growth and ramification or their morphological differentiation. However, this first step towards a structural

Chapter 2. Plant growth models 27

classification of the plants did not allow for a refined systemic description of the plant architecture, which is

why Édelin [1977] and then Barthélémy et al. [1989] later defined the concept of architectural unit charac-

terizing the elementary architecture of trees of a same species. Alongside, progress in computer science in the

1980s, with even more powerful capabilities, allowed to generate increasingly complex arborescent structures

[Smith, 1984], [Prusinkiewicz et al., 1988], [Prusinkiewicz and Lindenmayer, 1990], [Françon, 1991]. At

this point, the use of L-systems, introduced by Lindenmayer [1968], and their stochastic extensions [Kurth,

1994] allowed for more elaborate growth rules; however most of these plant growth models arose from com-

puter science and lacked the inclusion of crucial biological knowledge. The AMAP (Atelier de Modélisation

de l’Architecture des Plantes) models [De Reffye et al., 1988], [De Reffye et al., 1991] tried to overcome

these limitations by setting a complete data analysis routine integrating the morphological and architectural

observation of the plant, measurements of the growing plants and the calculation of parameters related to

the functioning of meristems. Yet, despite a faithful representation of the plant’s architecture, they did not

allow to take into account interactions with its functioning.

Jointly to the development of these architectural models originating from botany, other process-based models

stemming from agronomy began to appear in the 1980s. These were more concerned with, for instance, the

estimation of the average biomass production per square meter in a field in given environmental conditions.

In this kind of models, the architecture of the plant does not matter and the latter is considered as a set of

compartments for the different organs: roots, stems, leaves, fruits. The radiation intercepted by the plant is

usually inferred from the Beer–Lambert law, from which the biomass produced can be deduced. Such models

were developed for several plants, among which maize [Jones et al., 1986]. Some of them are developed in a

generic manner so that they can be tuned for many species. This is the case of PILOTE [Mailhol et al., 1996]

and STICS [Brisson et al., 1998]. One of the main criticism addressed to these process-based models is that,

as previously mentioned, they do not include the architecture of the plant. Many authors advocated for its

integration in order to obtain increased performance because of the strong interactions existing between the

structure and the functioning of the plant [Le Roux et al., 2001], [Kurth, 1994].

The reconciliation of these two approaches happened at the end of the 1990s, when models combining the

structural approach of botany and the functioning approach of agronomy started to appear, the so-called

functional-structural plant growth models. This combination was done either by extending architectural

models by integrating the biological processes representative of the plant’s functioning, or by refining the

process-based models in order to take into account its architecture. The first approach for example saw the

evolution of the AMAP model towards the integration of functioning [De Reffye et al., 1997], [De Reffye

and Houllier, 1997] and further led to the design of the GreenLab model by De Reffye and Hu [2003]. The

second one gave rise to the creation of the LIGNUM model [Perttunen et al., 1996].

In this thesis, three models for Beta vulgaris (sugar beet), wheat and Arabidopsis thaliana will mostly be used.

The Log-Normal Allocation and Senescence (LNAS) model for sugar beet is a compartment model. This

means that it does not take into account the architecture of the plant and the values of the variables of

interest (biomasses mainly) will be given per square meter. A similar model was developed for wheat as it

was particularly suitable for practical applications, notably data assimilation. As far as Arabidopsis thaliana is

28 Chapter 2. Plant growth models

concerned, a model based on previous GreenLab models was developed for the purpose of this thesis. The

motivation behind these choices is simple: the LNAS model is a simple compartment model used extensively

in the Biomathematics team, it is simple in the sense that it does not involve too many parameters, allows

for quite an easy calibration and has been proved to provide accurate predictions in real case scenarios; the

GreenLab model for Arabidopsis thaliana was developed in order to take advantage of the data available

thanks to the images provided by the Phenoscope platform so as to build a model taking into consideration

the interactions between the plant’s architecture and functioning and in order to highlight the genotypic

differentation of Arabidopsis thaliana. These two models will therefore be presented using the formalism

introduced in Chapter 1.

2.2 Log-Normal Allocation and Senescence for Beta vulgaris

Beta vulgaris, most commonly known as sugar beet, is primarily cultivated for the production of sugar. It is

also used for the production of alcohol and ethano fuel. Some figures are provided to highlight the importance

of this plant. Wordlwide, 4.5 million hectares of land are devoted to the culture of sugar beets and 270 million

tons were produced in 2014. Since 1875, France has been the first producer of sugar beets with 370,000

hectares (2,1% of the country’s agricultural land) and 37.8 million tons produced in 2014, which accounts

for 14% of the world production.

Sugar beet is a biennial plant and consists of roots and a rosette of leaves. During the first year, it is in a

vegetative phase where the establishment and the main production of the plant happens: after germination

of the glomerules, the foliage grows, sugar is formed in the leaves and then stored in the roots. The roots can

then be harvested in autumn. The second year constitutes the reproductive phase: stems grow and the plant

draw sugar on its reserves in the roots to produce an inflorescence which yields, after flowering and wind

pollination, to the production of seeds. In practice, only the sugar contained in the roots is easily extractable,

and since sugar beets are cultivated mainly for their sugar content, they are usually not cultivated for more

than a year.

Figure 2.1: Sugar beets

Chapter 2. Plant growth models 29

The Log-Normal Allocation and Senescence (LNAS) model for sugar beet was first introduced by Cournède

et al. [2013] as a simplification of the GreenLab model [Lemaire et al., 2009]. The organs of the plant

are not considered individually but as a single compartment, whence its denomination of a compartmental

model. In the case of sugar beet for which it was first designed, only two compartments are considered: the

leaves and the roots. The idea of modelling the plant as a set of compartments is easily transposed to other

plants and this is what inspired the design of the LNAS model for wheat detailed in Section 2.3 where more

compartments are considered.

There is no distinction between petioles and limbs and leaf biomass is considered as a whole. On day n, the

biomass of the roots is denoted qrn and that of the foliage is qℓn = qgℓn + qsℓn , where qgℓn is the biomass of

green leaves and qsℓn is the biomass of senescent leaves. All biomasses are expressed in g · m−2. The model is

discretized according to a daily time step and the environmental variables of day n such as the temperature

tn (◦C) and the photosynthetically active radiation rn (MJ · m−2) are daily averages. To emphasize the

variables on which are set process noises, deterministic variables are denoted with a superscript det whereas

their stochastic equivalent are denoted with a superscript sto.

The growth of the plant is driven by thermal time τn, which represents the accumulated daily temperature

above a certain threshold called the base temperature – taken as tb = 0 ◦C in the case of sugar beet – since

germination, corresponding to day i = 1, of the plant such that:∫ n

0
max

(
0, t(s)− tb

)
ds ≈

n∑
i=1

max
(
0, ti − tb

)
= τn. (2.1)

The thermal time must be higher than a certain value τ init for the plant to reach the emergence stage: as

soon as τn > τ init, the plant starts to intercept light and as a consequence to produce biomass through

photosynthesis. The biomass produced on day n per unit surface area is denoted by qdet
n and is assumed to

follow a Beer–Lambert law [Marcelis et al., 1998]:

qdet
n = rn µ (1− exp(−k qgℓn /e)), (2.2)

whereµ (g · MJ−1) is the radiation use efficiency, k (dimensionless) is the Beer–Lambert extinction coefficient

and e (m2 · g−1) is the leaf mass per area and is defined as the ratio of dry mass to leaf area. Hence, qgℓn /e

represents the area of the foliage and 1 − exp(−k qgℓn /e) the fraction of radiation intercepted by the latter.

To account for some inaccuracies of the Beer–Lambert law and the difficulty of assessing the local plant

environment, the variable production of biomass is rendered stochastic by multiplying its deterministic value

by a multiplicative normal noise such that:

qsto
n = qdet

n (1 + ηqn), (2.3)

where ηqn ∼ N
(
0, (σq)2

)
. Although this kind of noise could theoretically lead to, for instance, negative

values for a produced biomass, this is of no practical concern for the cases of interest of this work. The

biomass produced on day n is distributed between the foliage and root system compartments according to

an empirical function γ whose deterministic value is given by:

γdet
n = γ0 + (γℓ − γ0) FlogN (µa,σa)(τn), (2.4)

30 Chapter 2. Plant growth models

where we recall that τn here is the thermal time of the plant since germination, γ0 ≥ 0 and γℓ ≤ 1 are

respectively the initial value and the limit of biomass allocated to the leaves when the thermal time goes to

infinity and FlogN (µa,σa) is the cumulative distribution function (cdf) of a log-normal law parameterized by

its median and its standard deviation:

FlogN (µ,σ)(τ)
.
=

1

2

(
1 + erf

[
log (τ/µ)
σ
√
2

])
1 (τ ≥ 0) . (2.5)

Such a parameterization with the median is more convenient and meaningful than with the mean: once

the thermal time has reached µa, the majority of the biomass is allocated to the root compartment. A

process noise for the allocation is introduced since this allocation strategy highly depends on environmental

conditions and is known to be rather plastic. Once again, a multiplicative normal noise is chosen and:

γsto
n = γdet

n (1 + ηγn), (2.6)

0 25 50 75 100 125 150
Time (d)

0

500

1000

1500

2000

2500

Th
er
m
al
 ti
m
e
(°
Cj
)

τ

0 25 50 75 100 125 150

Time (d)

0

10

20

30

40

50

60
B
io
m
as
s
(g

/m
2)

qdet

qsto

Figure 2.2: Left: example of thermal time dynamics for real data. Right: production of bio-
mass, the continuous line represents the deterministic values predicted by the Beer–Lambert

law, and the filled circles the corresponding noised values.

0 25 50 75 100 125 150

Time (d)

0.0

0.2

0.4

0.6

0.8

1.0
G
γdet

γsto

0 25 50 75 100 125 150

Time (d)

0

500

1000

1500

2000

2500

B
io
m
as
s
(g

/m
2)

qℓ

qg

̃qg
qℓ

̃qℓ

Figure 2.3: Left: allocation of the produced biomass to the different compartments; the
orange curve depicts the log-normal cdf FlogN (µa,σa) as a function of the thermal time, the
yellow line represents the deterministic value of the allocation variable γdet and the filled
circles its corresponding stochastic value γsto. Right: the different biomasses, the dark green
curve depicts the total leaf biomass, the light green line and filled circles represents the de-
terministic value and the corresponding observation for the green leaves’ biomass; the same

goes for the purple curve and circles for the biomass of roots.

Chapter 2. Plant growth models 31

with ηγn ∼ N
(
0, (σγ)2

)
. The biomass of the whole foliage increases every day: it receives the proportion

γsto
n ∈ [0, 1] of the biomass produced on day n:

qℓn = qℓn−1 + γsto
n qsto

n . (2.7)

The biomass of senescent leaves is calculated as a proportion ρs = FlogN (µs,σs)(τn − τ s) of the foliage

biomass,

qsℓn = ρsn q
ℓ
n, (2.8)

where FlogN (µs,σs) is again the cdf of a log-normal distribution parameterized by its median µs and its

standard deviation σs. This process begins with some delay, once the thermal time has reached a certain

threshold τ s. The biomass of green leaves is therefore:

qgℓn = qℓn − qsℓn = (1− ρsn) q
ℓ
n. (2.9)

Finally, the biomass of the roots is increased by what is not allocated to the foliage:

qrn = qrn−1 + (1− γsto
n) qsto

n . (2.10)

The standard formulation of the LNAS transition function is:

xn+1 =

qn+1

γn+1

qℓn+1

qgℓn+1

qrn+1

=

rn µ
(
1− exp(k qgℓn /e)

)
(1 + ηqn)(

γ0 + (γℓ − γ0) FlogN (µa,σa)(τn)
)
(1 + ηγn)

qℓn + γn+1 qn+1

(1− FlogN (µs,σs)(τn − τs))qℓn+1

qrn + (1− γn+1) qn+1

= fn(xn, un, θ, ηn). (2.11)

However, this formulation does not allow to explicitely compute the transition pdf p(xn+1|θ, xn) from the

values contained in the state xn, which will notably be detailed in Section 5.5. This is why it is reformulated

with the dual values for q and γ as:

xn+1 =

qdet
n+1

qsto
n+1

γdet
n+1

γsto
n+1

qℓn+1

qgℓn+1

qrn+1

=

rn µ
(
1− exp(k qgℓn /e)

)
qdet
n+1 (1 + ηqn)(

γ0 + (γℓ − γ0) FlogN (µa,σa)(τn)
)

γdet
n+1 (1 + ηγn)

qℓn + γn+1 qn+1

(1− FlogN (µs,σs)(τn − τs))qℓn

qrn + (1− γn+1) qn+1

= fn(xn, un, θ, ηn) (2.12)

where xn = (qdet
n , qsto

n , γ
det
n , γsto

n , qℓn, q
gℓ
n , qrn) represents the hidden state, un = (rn, τn) the external vari-

ables, θ = (µ, k, e, γ0, γℓ, µa, σa, τ s, µs, σs) the set of 10 parameters and ηn = (ηqn, η
γ
n) the process noises.

32 Chapter 2. Plant growth models

According to Section 1.19, the transition pdf can be written as:

p(xn+1|θ, xn) =
1

σqqdet
n+1

√
2π
e
−

(qsto
n+1−qdet

n+1)
2

2(σqqdet
n+1)

2 1

σγγdet
n+1

√
2π
e
−

(γsto
n+1−γdet

n+1)
2

2(σγγdet
n+1)

2
. (2.13)

It is assumed that the biomass of green leaves qgℓ and that of roots qr are observed with respective measure-

ment noises ξgℓ and ξr, that are multiplicative normal noises. The experimental data potentially available on

day n can therefore be written:

yn =

q̃gℓn
q̃rn

 =

qgℓn (1 + ξgℓn)

qrn (1 + ξrn)

 = gn(xn, θ, ξn) (2.14)

where ξ = (ξgℓ, ξr) represents the observation noises and, according to Equation 1.24 and when both

biomasses are available on day n, the observation pdf can be written as:

p(yn|θ, xn) =
1

σgℓqgℓn+1

√
2π
e
−

(q̃
gℓ
n+1−q

gℓ
n+1)

2

2(σgℓq
gℓ
n+1)

2 1

σrqrn+1

√
2π
e
−

(q̃rn+1−qrn+1)
2

2(σrqrn+1)
2
. (2.15)

Figures 2.2 and 2.3 display the dynamics of the main variables of this model.

2.3 Log-Normal Allocation and Senescence for wheat

Being a central component of the western alimentation and one of the two most consumed cereals worldwide,

the study of wheat is of special importance. There exist two main types of wheat: winter wheat, which is

sowed during autumn and characterizes the mediterranean and temperate regions, and spring wheat which is

sowed during spring and is mostly used in countries with harsher winters. The world production of all types

of wheat amounted to 729 million tons in 2014, that is to say 100 kilograms per capita, making it the 4th

most important crop in terms of volume behind sugar cane, corn and rice. France itself is the 5th producer

of wheat worldwide and devotes more than 5 million hectares to its culture for a production of nearly 40

million tons, highlighting the significance of its culture.

The LNAS model for sugar beet served as an inspiration for the design of a similar compartmental model for

wheat. The latter can be decomposed into two parts: a model for the soil and one for the plant itself. The

soil model will allow to compute potential water stress that could limit the daily production of biomass. It is

of notable value for modelling purposes since roots have truly a secret life: in an hectare of wheat, there may

be up to 300,000 kilometers of roots feeding the plant with water and nutrients. A highly developed root

system is the result of a well-structured soil and crucial in order to obtain high yields.

As in the LNAS model for sugar beet, all state variables will be considered per unit surface, even though the

underlying processes are described at the plant level.

Chapter 2. Plant growth models 33

2.3.1 Soil model

Water is an indispensable resource to plant growth and it is notably obtained thanks to the roots of the plant.

The importance of the soil model is motivated by the importance of variations in soil water content that can

potentially lead to stress and slow down plant growth. The soil is assumed to have total depth zsoil. Beyond

the latter, it is considered to be more stony, that water is not retained by the soil and that plant roots cannot

grow. In the practical cases to which this model is applied, it is tipycally of the order zsoil ≈ 150cm. The

evolution of the soil water content between days n and n+ 1 is given by the balance equation:

ρn+1 = ρn + wn − En − Tn − dn (2.16)

where ρn is the soil water content, wn is the daily input of water into the system – it comprises both pre-

cipitations and irrigation and is a measurable environmental variable – and En and Tn are the water lost

by evaporation from the soil and by transpiration from the plant respectively, finally dn represents a drain

function which accounts for the fact that the soil cannot withhold a quantity of water greater than its field

capacity ρmax. All the variables of this balance equation are expressed in mm. The expression of the soil water

content can be described as an integral over the whole soil depth:

ρn =

∫ zsoil

z=0
θn(z)dz, (2.17)

where θn(z) (mm · mm−1) is the soil humidity at depth z. The maximum soil humidity corresponding to

the field capacity is denoted θmax(z) and such that:

ρmax =

∫ zsoil

z=0
θmax(z)dz. (2.18)

Below some threshold called the wilting point ρmin, the plant is not able to extract water through the roots,

the corresponding soil humidity at depth z is denoted θmin(z) and identically:

ρmin =

∫ zsoil

z=0
θmin(z)dz. (2.19)

Figure 2.4: Field of wheat.

34 Chapter 2. Plant growth models

The normalized humidity can then be defined as:

hn(z) = max
(
0,

θn(z)− θmin(z)

θmax(z)− θmin(z)

)
∈ [0, 1]. (2.20)

The daily potential evaporation Epot
n and transpiration T pot

n can be calculated respectively as:

E
pot
n = κE en exp

(
−k qgℓn /e

)
(2.21)

and:

T
pot
n = κT en

(
1− exp

(
−k qgℓn /e

))
(2.22)

where en is the potential evapotranspiration that can be estimated using the Penman–Monteith formula

[Monteith, 1965] and is considered as an environmental variable, κE and κT are cultural coefficients specific

to the species and the soil type, k is the Beer–Lambert coefficient, e the leaf mass per area and qgℓn the biomass

of green leaves. Just as for the Beer–Lambert law for light interception, the transpiration process occuring

between the green foliage and the air is assumed to be proportional to 1 − e−k qgℓn /e. On the contrary, the

evaporation process occuring between the soil and the air is taken proportional to e−k qgℓn /e. The maximal

evaporation Emax and transpiration Tmax can be integrated over the soil depth as:

Emax =

∫ zsoil

0

min(θn(z), θmin(z)) +
max

(
0, θn(z)− θmin(z)

)
max

(
1, exp(− z

zsurf) + exp(− z
zrn
)
)
 exp

(
− z

zsurf

)
dz, (2.23)

and:

Tmax =

∫ zsoil

0
min

(
1,
hn(z)

hc

)
max

(
0, θn(z)− θmin(z)

)
max

(
1, exp(− z

zsurf) + exp(− z
zrn
)
) exp

(
− z

zrn

)
dz. (2.24)

The surface depth zsurf depends on the nature of the soil and is the characteristic length for evaporation. The

first term in the integrand min(θn(z), θmin(z)) ensures that for this particular term the evaporation is no

greater than the minimum soil water content at this depth. In the case where θn(z) > θmin(z), an additional

contribution is provided by the second term of the integrand.

As far as transpiration is concerned, the characteristic length is given by the depth of the roots zrn. The

dynamics of the root horizon is assumed to be proportional to the root biomass, though it cannot go farther

than the soil depth:

zrn = min(zsoil, λqrn) (2.25)

and the evolution of the roots’ biomass qrn is detailed in the plant model. An additional reduction factor

is considered: if the normalized humidity at depth z is below a certain threshold hc, then water extraction

becomes more difficult and transpiration is therefore reduced. To account for the fact that the sum of the

maximum evaporation and transpiration cannot exceed the water reserve in any scenario, a normalization by:

max
(
1, exp(− z

zsurf) + exp(− z

zrn
)

)
(2.26)

is introduced. In practice to update the soil variables, particularly those linked to the evapotranspiration

Chapter 2. Plant growth models 35

processes, one performs a discretization of the soil from z = 0 to z = zsoil innz layers of height δz = zsoil/nz .

Each layer i ∈ J1, nzK thus starts at depth zi = (i − 1)δz . All the values in layer i are denoted with a

superscript i. For the sake of simplicity, the functions giving the minimal and maximal soil water content

at depth z will be taken constant so that θmax(z) = θmax and θmin(z) = θmin, but it can easily be adapted

if layers of different natures and characteristics are observed in the soil. The maximum evaporation and

transpiration therefore become respectively:

Emax =

nz∑
i=1

min(θin, θ
min) +

max(0, θin − θmin)

max
(
1, exp

(
− zi

zsurf

)
+ exp

(
− zi

zrn

))
 exp

(
− zi

zsurf

)
δz, (2.27)

and:

Tmax =

nz∑
i=1

min
(
1,
hin
hc

)
max(0, θin − θmin)

max
(
1, exp

(
− zi

zsurf

)
+ exp

(
− zi

zrn

)) exp
(
− zi

zrn

)
δz. (2.28)

The drain value is calculated as:

dn = max(0, rn + wn − θmaxzsoil) (2.29)

and if it is positive, the soil is then completely flooded up until the field capacity in all layers:

θin = θmax and zwater = zsoil. (2.30)

Otherwise, the layers are filled up to the field capacity from top to bottom until there is no water left:

while wavail − δz(θ
max − θin) > 0, θni = θmax and wavail −= δz(θ

max − θin). (2.31)

At some layer of index j, there does not remain enough water to fill it up to the maximum humidity and it

is filled with the remaining water:

θjn +=
wavail

δz
. (2.32)

The actual evaporation and transpiration are given by:

En = min(Epot
n , Emax

n) (2.33)

and:

Tn = min(T pot
n , Tmax

n) (2.34)

and the maximal evaporation and transpiration in layer i are given by the terms in the sums of Equations

2.27 and 2.28 respectively. In a similar process as for the water input, the actual evaporationEn and transpir-

ation Tn are allocated to each layer from top to bottom, taking into account the maximum evaporation and

transpiration in each layer as defined above, until all the transpiration and evaporation have been allocated.

The evaporation and transpiration depths zE and zT are deduced from the last layer which is allocated a part

of the total evaporation and transpiration respectively.

The soil can further be decomposed into several horizon layers for which measurements of the soil parameters

θhmin and θhmax experimental data can be available, they are indexed by h ∈ J1, nhK where nh is the total

number of horizon layers (typically nh ∈ J3, 10K). Horizon layer h is comprised between z = zh and

36 Chapter 2. Plant growth models

z = zh+1, and in each of them the soil water content θhn can be calculated by averaging over the discretization

layers that it contains:

θhn =
δz

zh+1 − zh

∑
i|(i−1)δz∈[zh,zh+1[

θin. (2.35)

A crucial aspect of plant growth models is to consider the influence of stress on the functioning of the plant.

In the present case, three different stresses that potentially limit the production of biomass are considered.

The first one is a thermal stress, it is defined as:

stn = max
(
0,min

(
1,
tn − tb

to − tb

))
, (2.36)

where tb is the base temperature and to an optimal temperature. Essentially, when the daily temperature tn
is below the base temperature, stn = 0 and the plant will not grow anymore. On the contrary, when tn is

greater than the optimal temperature, stn = 1 and the plant functioning is not thermally limited. Between

these two values for the daily temperature, stn ∈]0, 1[partially limits the production of biomass as will be

detailed later. Another form of thermal stress occurs through a biological process called vernalization during

which plants are exposed to a prolonged cold. Only after vernalization can winter wheat grow and flower.

The related thermal time is accumulated as:

τ vern
n+1 = τ vern

n + max (0,min (1, 1− cvern|tn − tvern|)) (2.37)

where tvern is the optimal vernalizing temperature and cvern is a coefficient characteristic of the range of the

vernalizing temperatures. In essence, the closer to tvern the temperature, the quicker the vernalization-related

thermal time accumulates, and the corresponding stress index is defined as:

svern
n =

τ vern
n

τ vern,opt . (2.38)

The second kind of stress taken into account is of hydric nature: when the transpirable water reserve in the

soil falls below the daily requirement, it diminishes the production of biomass and induces the closure of the

plant’s stomata which increases the plant’s temperature. Hydric stress is defined by the stomatal stress index:

sτn =
τn

τ
pot
n

(2.39)

and it can also be considered, for instance, to favour root growth during the biomass allocation process

described in Equation 2.45.

2.3.2 Plant model

The plant is considered to be composed of several compartments: roots r, stem s, yellow stem ys, green

leaves gℓ, yellow leaves yℓ, and grain g. The total biomass of the plant on day n is denoted by qtot
n and the

biomasses of each compartment are denoted by qrn, qsn, qysn , qgℓn , qyℓn and qgn respectively. The time evolution

Chapter 2. Plant growth models 37

of the total biomass is described as:

qtot
n+1 = qtot

n + qpn − qℓn (2.40)

where qpn is the amount of biomass created via photosynthesis and qℓn is the amount of lost biomass as yellow

leaves fall from the plant. The biomass available for redistribution on day n is denoted by qn and comprises

the produced biomass qpn and the biomass remobilized from yellow leaves and the stem, q⟲n . The production

of biomass via photosynthesis qpn is described as usual by the Beer–Lambert law:

qpn = min
(
sτn, s

vern
n , stn

)
rn µ

(
1− exp

(
−k qgℓn /e

))
. (2.41)

What is new compared to the sugar beet production equation is that this production is affected by the thermal

and hydric stress defined in the soil model. The pool of biomass on day n available for redistribution is

therefore:

qn = qpn + qrn. (2.42)

On day n, qn is allocated to the roots, the stem, the green leaves and the grain with respective relative

quantities αr
n, αs

n, αgℓ
n , αg

n, where τn is the thermal time on day n. As a matter of fact, for all n > 0:

αr
n + αs

n + αgℓ
n + αg

n = 1. (2.43)

Motivated by the fact that the only change in the grain biomass is the allocation and considering experimental

data, αg was defined as a log-normal cdf of the thermal time with delay τ g:

αg
n = FlogN (µg ,σg)(τn − τ g) (2.44)

where we recall that the expression of the log-normal cdf FlogN (µ,σ) is given by Equation 2.5. The rest of

the available biomass is then allocated between all the other compartments as follows:

αs
n = (1− αg

n)sτn
asn

asn+agℓn +arn

αgℓ
n = (1− αg

n)sτn
agℓn

asn+agℓn +arn

αr
n = (1− αg

n)
(
1− sτn

asn+agℓn

asn+agℓn +arn

) (2.45)

so that the sum of all coefficients indeed equals 1 and the coefficients asn, agℓn and arn are allocation coefficients.

The water stress sτn is included so as to favour allocation of biomass towards roots when water resources

become limited. Biomass allocation to the stem in wheat only occurs after a given thermal time called

montaison, the allocation function to the stem can therefore be taken as a delayed log-normal:

asn = asFlogN (µs,σs)(τn − τ s), (2.46)

and the allocation functions for leaves and roots are chosen constant, agℓn = agℓ and arn = ar. The stem and

senescent leaves are assumed to remobilize a fraction of their biomasses on each day n, so that:

q⟲n = q⟲,yℓ
n + q⟲,s

n (2.47)

with q⟲,yℓ
n and q⟲,s

n the remobilized biomasses from yellow leaves and the stem respectively. The quantity

of remobilized biomass, say, for the yellow leaves is a fraction of the biomass of the yellow leaves, and this

38 Chapter 2. Plant growth models

fraction is again parameterized by the cdf of a log-normal distribution with a given delay:

q⟲,gℓ
n = βgℓn q

gℓ
n

.
= ηgℓFlogN (µ⟲,σ⟲)(τn − τ⟲)qgℓn . (2.48)

The same is assumed for the stem and:

q⟲,s
n = βsnq

s
n
.
= ηsFlogN (µ⟲,σ⟲)(τn − τ⟲)qsn. (2.49)

The parameters ηyℓ and ηs are introduced here because the same dynamics will be assumed for the senescence

process and, keeping in mind that the total number of model parameters should be kept relatively low, they

allow to avoid redefining new log-normal cdf entirely parameterized by new variables. The remobilization

and senescence processes therefore share the same parameterization with µ⟲, σ⟲ and τ⟲.

On each day n, part of the green leaves become senescent and turn into yellow ones. The corresponding

biomass is denoted by qgℓ→yℓ
n . All the same, some yellow leaves fall from the plant; this is described through

the loss of yellow leaves biomass qℓn
.
= qyℓ→fℓ

n . The same dynamics as for remobilization is assumed, and the

quantity of senescence biomass for green leaves and the stem is therefore:

qgℓ→yℓ
n = γgℓn q

gℓ
n

.
= (1− ηgℓ)FlogN (µ⟲,σ⟲)(τn − τ⟲)qgℓn , (2.50)

and:

qs→ys
n = γsnq

s
n
.
= (1− ηs)FlogN (µ⟲,σ⟲)(τn − τ⟲)qgℓn . (2.51)

Finally, in a similar manner, the biomass of yellow leaves that fall on day n is given by:

qyℓ→fℓ
n = γyℓn q

yℓ
n

.
= FlogN (µ↓,σ↓)(τn − τ↓)qyℓn . (2.52)

with this time different parameters for the log-normal cdf as this biological process happens later in the

growth cycle. When a sufficient thermal time τ init is reached on day ninit, the biomasses of the different

comparments are initiated using the biomass of the seed. The latter is exclusively distributed between the

roots and the green leaves using their respective allocation parameters:

qrninit =
ar

ar + agℓ
qseed and qgℓ

ninit =
agℓ

ar + agℓ
qseed, (2.53)

all other biomasses being set to zero. From then on, the time evolution of each compartment of the plant is

given by:

Remob. Alloc. Senesc.1 Senesc.2

qrn+1 = qrn + αr
nqn

qsn+1 = qsn − βsnq
s
n + αs

nqn − γsnq
s
n

qysn+1 = qysn + γsnq
s
n

qgℓn+1 = qgℓn − βgℓn q
gℓ
n + αgℓ

n qn − γgℓn q
gℓ
n

qyℓn+1 = qyℓn − qr,yℓn + γgℓn q
gℓ
n − γyℓn q

yℓ
n

qgn+1 = qgn + αg
nqn

(2.54)

and summing the four equations indeed yields Equation 2.40.

Chapter 2. Plant growth models 39

The general SSM transition equation for this model would be too cumbersome to write here. Let us mention

nevertheless that the environmental variables considered are un = (tn, rn, wn, en) and that there is a total

of 33 parameters, 10 for the soil model:

(θmin, θmax, κE , κT , hc, λ, zsoil, zsurf, ρinit, to) (2.55)

and 23 for the plant model:

(tb, µ, e, k, ar, as, agℓ, τ g, µg, σg, τ s, µs, σs, τ⟲, µ⟲, σ⟲, τ↓, µ↓, σ↓, ηs, ηgℓ, qseed, τ init). (2.56)

Of course, all these parameters need not be estimated from scratch and most of them can be set to sensible

values originating from either biological knowledge or the environment. It is also worth mentioning that

this model does not comprise process noise in its current formulation, although they could be added in the

allocation or production processes.

For wheat, experimental data often include biomasses of the different compartments qgℓn , qrn, qsn and qgn and

0 50 100 150 200 250

Time (d)

0

1

2

3

4

5

6

7
e
ε
τ
LAI

0 50 100 150 200 250

Time (d)

0

10

20

30

40

w
sτ

h0

zroot

Figure 2.5: Left: dynamics of the evaporation and transpiration processes, the evapotran-
spiration e (mm) is known at all times as an environmental variable, E and T (mm) are
the actual evaporation and transpiration; the leaf area index (dimensionless) is also provided
to witness the evolution of the plant’s growth. Right: water dynamics, the precipitations w
(mm) are given as an environmental variable, the water stress index sτn (dimensionless) has
been multiplied by 10 for clarity, h0 (cm · m−1) denotes the humidity in the first horizon
layer (between z = 0cm and z = 30cm) and the root horizon is also provided to follow

plant growth in the soil.

140 160 180 200 220 240 260 280

Time (d)

0.0

0.2

0.4

0.6

0.8

1.0
αg

αr

αs

αgl

βs

βgl

γs

γgl

γyl

140 160 180 200 220 240 260 280
Time (d)

0

200

400

600

800

1000

1200

Bi
om

as
s (

g/
m

2)

qr

qgl

qyl

qtl

̃qtl

qs

qys

qg

̃qg

Figure 2.6: Left: evolution of the different coefficients involved in the allocation, remobiliza-
tion and senescence process. Right: evolution of the different biomasses for all compartments.

Continuous lines correspond to hidden states while filled circles denote observations.

40 Chapter 2. Plant growth models

the water reserve rn. All these quantities are as usual assumed to be observed with some uncertainty and a

multiplicative normal noise is assumed for all of them:

yn =

q̃gℓn

q̃rn

q̃sn

q̃gn

r̃n

=

qgℓn (1 + ξgℓn)

qrn (1 + ξrn)

qsn (1 + ξsn)

qgn (1 + ξgn)

rn (1 + ξrn)

= gn(xn, θ, ξn). (2.57)

The dynamics of the soil and plant models are displayed on Figures 2.5 and 2.6 respectively.

2.4 GreenLab for Arabidopsis thaliana

Arabidopsis thaliana, most commonly known as thale cress, is a small annual flowering plant from the mustard

family (Brassicaceae) originating from Europe, Asia, and northwestern Africa. Its height can reach up to 25

cm. It posesses a single primary root growing vertically downwards, from which originate smaller lateral roots.

The leaves form a rosette at the base of the plant and a few leaves also grow on the flowering system. White

flowers grow on the stem and the fruits are siliquas containing approximately between 20 and 30 seeds. The

entire growth cycle of Arabidopsis thaliana is usually of 6 weeks.

From the beginning of the 20th century, Arabidopsis thaliana began to be used for research purposes. Several

factors make it particularly suitable for its use in research: its small size, its rapid lifecycle, its resistance and

its efficiency in self-pollination are major attractive features. It is now widely used for the study of plant

sciences, including genetics, evolution, population genetics, and plant development. It was the first genome

of a plant to be sequenced in 2000 because of its relatively small size: it comprises 157 million base pairs

distributed across 5 chromosomes.

More precisely, in the context of this work, our interest for this plant stems from the large amount of data

that the Phenoscope, a high-throughput phenotyping platform, can provide for this plant in particular. Time

series of images of Arabidopsis thaliana, typically over a period of 21 days, can be obtained for many different

individuals, and such experiments yield the data necessary for the application of hierarchical modelling to a

population of plants. More details will be given in Chapter 7 on the nature of the data obtained from the

Phenoscope for Arabidopsis thaliana.

The GreenLab model [Yan et al., 2004] is a typical functional-structural model in the sense that it com-

bines the description of plant architectural development and ecophysiological functioning. A version has

been developed for the full cycle of Arabidopsis thaliana growth in [Christophe et al., 2008]. Basically, a de-

velopmental submodel predicts organ appearances while source-sink dynamics is simultaneously described:

Chapter 2. Plant growth models 41

Figure 2.7: Arabidopsis thaliana.

biomass production is computed via radiation interception by leaf area and the produced biomass is alloc-

ated between all growing organs according to individual sink strengths. Individual leaf areas are then deduced

from leaf masses. In our study, only the rosette stage of Arabidopsis thaliana growth is considered, which par-

ticularly simplifies the organogenesis submodel and the number of competing sinks. Furthermore, at this

stage, the senescence process has not started yet.

As detailed in Section 7.2.1, leaves first appear in pairs (the 1st and 2nd leaves together, then the 3rd and

4th leaves) before the following ones start appearing rhythmically. It should be noted that, for the sake of

clarity, we have numbered leaves including the 2 cotyledons, so that the first true leaf is actually leaf 3 in

our numbering. The time span between the appearances of two successive leaves is called the phyllochron

[Wilhelm and McMaster, 1995]. It is mostly driven by thermal time, however, the GreenLab model for

Arabidopsis thalianawill only be used for experiments in controlled environment, and under constant thermal

conditions it amounts to considering the calendar time as the main driver of organogenesis. For a better

understanding of the source-sink dynamics in this first stage of study, we consider that the leaf appearance

times of the first 4 leaves are known, whereas those of the subsequent leaves are such that their difference is

always the phyllochron ϕ (h).

As usual, one considers that plant growth starts at germination. At this time, the biomass is supposed to be

that of the seed q0. To take into account the photoperiod and the differences in temperature between day

and night, the time step is taken to be the hour. The plant is assumed to grow only during the day, which

lasts typically ns = 8h in the experimental conditions of our study. Once growth has started, the biomass

produced at time step n is given by the usual Beer–Lambert law:

qn = rn µ s

1− exp

− k

s e

∑
v∈J1,νnK q

v
n

 (2.58)

where rn is the photosynthetically active radiation (MJ · cm−2), µ is the radiation use efficiency (g · MJ−1),

s is related to the projected area of the plant (cm2), k is the Beer–Lambert law coefficient of light extinction

(dimensionless), e is the leaf mass per area (g · cm−2), νn is the number of leaves of the plant at time step n

42 Chapter 2. Plant growth models

and qvn is the biomass of the v-th leaf (g).

The pool of produced biomass is then allocated to the different organs of the plant. In the present case,

that is to say the rosette stage, only the leaves are considered. It actually amounts to consider that a constant

proportion α of the biomass produced at time step n is allocated to the root system, with thus a real radiation

use efficiency µreal = µ/(1 − α). If this assumption is known to be oversimplifying on the whole growth

cycle of the plant, it remains reasonable during the rosette stage in the absence of water stress. The biomasses

allocated to the different leaves are proportional to their respective demands, or sink strengths, which are

functions of their expansion stage, i.e. the thermal time since appearance. In previous GreenLab models,

Beta distributions were used for the sink functions. This was not judged to be the best option here since

the expansion period of the leaves is not known and they did not yield optimal results. Instead, log-normal

distributions were used as they allow for a similar growth dynamics with an ever ongoing growth. As was

suggested by the analysis of the areas of the different leaves, two different functions were used for the first 4

(preformed) leaves on the one hand and the leaves with rank higher than 5 on the other, the demand of the

v-th leaf hence being:

dvn = ρ1
flogN (µ1,σ1)(τn − τv)

∥flogN (µ1,σ1)∥∞
(2.59)

if v ≤ 4 and:

dvn = ρ2
flogN (µ2,σ2)(τn − τv)

∥flogN (µ2,σ2)∥∞
(2.60)

if v > 4. Dividing by the uniform norms ensures a proper normalization to avoid variations of the functions

maximum with their parameters, though a coefficient ρ2 allows for a different intensity of the two different

kinds of leaves (ρ1 is actually always equal to 1 and defined only for the sake of notations). An index k(v)

indicates whether a leaf belongs to the first 4 leaves or not, i.e. k(v) = 1 + 1(v > 4). Here, flogN (µ,σ)

is the pdf of a log-normal distribution this time parameterized for convenience by its mean µ and standard

deviation σ:

flogN (µ,σ)(x) =
1

xσ
√
2π

exp
(
−(log(x)− µ)2

2σ2

)
, (2.61)

τn is the thermal time at time step n and τv is the accumulated thermal time of the v-th leaf since its

emergence (both in ◦C · h). (µ1, σ21) and (µ2, σ
2
2) are the parameters of the log-normal distributions for the

preformed leaves and those with rank higher than 5 respectively. The biomass allocated to a leaf is then the

relative demand of the available produced biomass:

δqvn =
dvn∑

w∈J1,νnK d
w
n

qn, (2.62)

which allows to update the cumulated biomass of each leaf:

qvn = qvn−1 + δqvn, (2.63)

and compute the related leaf areas:

avn = e−1qvn. (2.64)

Chapter 2. Plant growth models 43

The GreenLab transition equations can be summarized as:

xn+1 =

qn+1

(dvn+1)v∈J1,νnK
(δqvn+1)v∈J1,νnK
(qvn+1)v∈J1,νnK
(av

n+1)v∈J1,νnK

=

rn µ s
[
1− exp

(
− k

s e

∑
qvn

)]
(
ρk(v) flog N (µk(v),σk(v))

(τn − τv)∥flog N (µk(v),σk(v))
∥−1
∞

)
v∈J1,νnK(

dvn+1∑
dwn+1

qn+1

)
v∈J1,νnK

(qvn + δqvn+1)v∈J1,νnK(
e−1qvn+1

)
v∈J1,νnK

= fn(xn, un, θ)

where xn = (qn, (d
v
n)1:νn , (δq

v
n)1:νn , (q

v
n)1:νn , (a

v
n)1:νn) represents the hidden state, un = (rn, τn) the

external variables and θ = (ϕ, µ, s, e, k, µ1, σ1, µ2, σ2, ρ2, q0) the parameters. There is no process noise in

this model.

The GreenLab observation equations are:

yn =

ã1n

...

ãνnn

 =

a1n × (1 + ξ1,n)

...

aνnn × (1 + ξνn,n)

 = gn(xn, θ, ξn) (2.65)

where ξn ∼ N (0, σ2Iνn,νn) represents the observation noises. The observations associated to the whole

growth cycle of a plant is a sequence of vectors of leaf areas. Since the number of leaves is not the same at

each time, a step of post-processing is used to transform this set of observations into a matrix of size T ×νmax,

where νmax is the maximum number of leaves, i.e. the number of leaves at time step T . The values of leaf

areas that are related to:

■ either leaves not emerged yet (during the first time steps, no leaf area can be attributed to a leaf that

has not emerged yet),

■ or unobserved values (in particular, as will be detailed in Chapter 7, the first two leaves become quickly

recovered by other leaves and undetectable via analysis of zenithal images),

will be considered and marked as ◦. An example of experimental data for this model would look like:

y
.
= (ynv)n∈J1,T K,v∈J1,νmaxK =

0.030 0.035 ◦ . . . ◦
0.038 0.041 0.020 . . . ◦
· · · · · · · · · · · ·
◦ ◦ 0.512 . . . 0.853

 . (2.66)

Since the GreenLab model will be used in particular in the context of population models, some additional

notations are introduced. If yi denoted the observations related to an individual i, then the actual experi-

mental data for the k-th leaf of this individual is:

yi(k) = {x ∈ [ynk]n∈J1,T K | x ̸= ◦}, (2.67)

44 Chapter 2. Plant growth models

and the vectorized experimental data:

yi =
[
yi(1), yi(2), . . . , yi(νmax)

] .
= (yij)j∈J1,niK ∈ Rni (2.68)

where it is recalled that ni represents the total number of observations for the i-th individual thus corres-

ponding to observations at different times for each leaf. In the rest of this thesis, each leaf is identified by its

rank with a specific colour as specified in Table 2.1. The dynamics of the demands and areas for each leaf are

depicted on Figure 2.9 with this colour code. Only the evolution of the plant during the ns = 8h of the day

is represented, and the n-th day corresponds to the ns n-th hour on the graphs.

rank 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

colour

Table 2.1: Colours attributed to each leaf of a specific rank for easier identification.

0 25 50 75 100 125 150 175
Time (h)

0

500

1000

1500

2000

2500

3000

3500

4000

Th
er
m
al
 ti
m
e
(°
Cj
)

τ

0 25 50 75 100 125 150 175

Time (h)

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

B
io
m
as
s
(m
g/
cm

2)

q

Figure 2.8: Left: example of thermal time dynamics for constant temperature. Right: pro-
duction of biomass, no process noise is considered in this model for the production of bio-

mass, contrarily to the model for sugar beet.

0 25 50 75 100 125 150 175

Time (h)

0.0

0.2

0.4

0.6

0.8

1.0

D
em

an
d
(d
le
ss
)

0 25 50 75 100 125 150 175

Time (h)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ar
ea

 (c
m

2)

Figure 2.9: Left: demand curves dv (dimensionless) for the different leaves, they have all
been normalized with a maximum value of 1 for clarity so that the coefficients ρ1 and ρ2 do

not play any role on this graph. Right: leaf area av (cm2) for the different leaves.

Chapter 3

Estimation of parameters and hidden states

for a single individual

A ny model worthy of the name involves parameters that not only have a meaningful impact on

the model outputs but whose values can be not well known a priori. The question of evaluating the

most sensible values for parameters, and possible hidden states, within this model framework is therefore

essential. The improvements in computing power and efficiency over the last decades allowed to consider

the use and development of estimation methods for more and more complex models, notably those based on

Monte Carlo approximation.

In the rest of this chapter, emphasis is put upon the estimation of a single individual in the context of gen-

eral state space models (SSMs). The estimation problem in the context of populations will be presented in

Chapter 4. We begin by presenting the general principle behind parameter and state estimation, notably by

discussing the data used for model calibration in Section 3.1.1 and the criteria used in order to assess the

accuracy of estimation in Section 3.1.2. Knowing which parameters have the most influence on the model

outputs is crucial when the model comprises many parameters and is the concern of sensitivity analysis in-

troduced in Section 3.2, where the classical Sobol method is presented before another approach considering

the correlation between parameters. Once the most important parameters to estimate have been identified,

estimation per se can occur. The two main statistical paradigms that are the frequentist and Bayesian ap-

proaches are introduced and discussed. Some of the frequentist methods are discussed in Section 3.4, while

Bayesian methods, which constitute the major part of this work, are presented in Section 3.5.

3.1 General principle

Once a model has been designed to describe in the best possible way a system (in this case the growth of a

plant), it needs to be calibrated, i.e. the model parameters need to be given realistic values and this is done

using experimental data. Usually, only a subset θe ⊂ θ of the model parameters is estimated, but for the sake

47

48 Chapter 3. Estimation of parameters and hidden states for a single individual

of simplicity and as long as there is no ambiguity, both the set of all model parameters and that of estimated

parameters will be denoted θ.

System identification amounts to estimate the values of certain functional parameters θ jointly to the values

of the hidden states x1:T . Another subject of interest evoked at the end of this chapter is the estimation

of parameters related to the process and observation noises η and ξ, e.g. the standard deviations of normal

distributions from which noises are sampled at each time step. For now we focus on functional parameters.

There are two main types of such parameters:

■ some of them correspond to known physical or biological processes for which sensible values are already

known. This is the case of k the extinction coefficient in the Beer–Lambert law, or e the leaf mass per

area. Despite this prior knowledge on their values and becayse of calibration issues, it might still be

necessary to estimate these parameters;

■ some others are variables intervening in an a priori reasonable descriptive process parameterization.

This is the case of the parameters of the log-normal distributions that are used in the two plant models

considered here.

First and as mentioned earlier, some parameters can be considered known and fixed since they either are

involved in well described physical processes or have very little influence on the model outputs. Second, the

simultaneous estimation of all the remaining model parameters might be troublesome for several reasons:

estimation procedures rely on numerical algorithms that hardly converge when the dimension of the state

space to be explored is too important, a problem known as the curse of dimensionality. Identifiability prob-

lems may also arise which render the estimation of the parameters impossible but most importantly irrelevant

from a modelling point of view – a trivial example would be the estimation of the two parameters k and e

intervening as a ratio in Equation 2.58 for the produced biomass and as there is no experimental data to

discriminate between the influence of the two parameters. Increasing the number of model parameters can

have a significant effect on the mean square error; the latter can be decomposed into two terms of bias and

variance:

MSE
(
y(θ̂)

)
= E

(
(y(θ̂)− y(θ))2

)
= Bias2

(
y(θ̂)

)
+ V

(
y(θ̂)

)
(3.1)

whose expressions depend on the observation model used. Models with low bias are often more complex

and allow to represent the experimental data with more precision. However, they can also incorporate part

of the process or observation noises intrinsic to the data used for calibration, their predictions being thus less

precise despite an additional complexity. On the contrary, models with high bias are generally simpler but

can provide predictions that are more robust. This is the reason why we try to keep the number of estimated

parameters generally quite low.

3.1.1 Data for calibration

Classically, synthetic data are simulated using the model to calibrate from known values of parameters in

order to validate the method used, which can further be tested on real data. Simulating a model with a

Chapter 3. Estimation of parameters and hidden states for a single individual 49

known set of parameters allows to know the values of all the hidden states and all the observations at all time

steps. Some of the observations can then serve as experimental data to test different estimation procedures:

not all data (all types of observations, values at all time steps) need to be kept. Since in this case both the

real values of the parameters θ and those of the hidden states x1:T are known, their estimates can then be

easily compared to the true values. However, experimental data originating from a real life process cannot be

described exactly with a given model. This approximation is not taken into account when directly simulating

data from the model. Nonetheless it remains interesting to study how the different estimation algorithms

behave on this type of data in order to:

■ make sure that the algorithms are correctly implemented,

■ and study their performances and convergence properties.

The second type of data comes from real experiments and will be detailed later when used in the estimation

procedures. We can already mention that for sugar beet, experimental data sets were obtained from the

French Technical institute for sugar beet (ITB) in 2010: the biomasses of green leaves and that of roots are

given at 14 different days. For Arabidopsis thaliana, data is obtained thanks to a phenotyping platform, the

Phenoscope (Section 7.1), which outputs zenithal images of plants. Image analysis of these images is then

performed (Sections 7.3 and 7.4) so as to obtain the areas of the different leaves of a plant on different days,

thereby providing enough data for the organ-scale plant model that GreenLab is.

3.1.2 Criteria

Throughout this work, the accuracy of estimation will have to be assessed. In the case of simulated data, the

true values of both the parameters and the hidden states are known, which allows a direct comparison with

their estimates. In this scenario, we will consider the relative errors for a single parameter θi and a single

hidden state at time step n xin:

δθi =
|θtrue

i − θ̂i|
θtrue
i

and δxi
n
=

|xi,true
n − x̂in|
xi,true
n

. (3.2)

In the case of real data, this comparison is not possible anymore as there do not exist such true values. The

only available information are the observations on the system y = (yi)i∈J1,dyK, and in this case, if we denote

by x = (xi)i∈J1,dyK the corresponding hidden states either obtained via state estimation or with model

simulation using an estimate of the model parameters, the most standard criterion [Wallach, 2006] for the

evaluation of the predictive capabilities of a model and its estimates is the root mean square error of prediction

(RMSEP):

RMSEP =

 1

dy

dy∑
i=1

(yi − xi)
2

 1
2

. (3.3)

The RMSEP should be computed for observations of the same nature so that the errors are of the same order

of magnitude. The modelling efficiency (EF), also called the coefficient of determination, is also used as it is

50 Chapter 3. Estimation of parameters and hidden states for a single individual

a normalized indicator of the error and complements the information provided by the RMSEP:

EF = 1−
∑dy

i=1 (yi − xi)
2∑dy

i=1 (yi − ȳi)
2

(3.4)

where ȳi is the mean of the observations and again, the modelling efficiency should be computed for variables

of the same kind. It is comprised between −∞ and 1, and the closer it gets to 1, the better the fitting to the

data.

3.2 Sensitivity analysis

3.2.1 Sobol method

To overcome the difficulties inherent to a high number of parameters to be estimated, sensitivity analysis

is usually conducted. Its basic principle is to study how uncertainty in the model inputs influence the un-

certainty in the model outputs. In the present case, model inputs are the model parameters and the model

outputs are the hidden states corresponding to observed variables. Although no strict ranking can always

be established – since parameters do not affect in the same way all the different outputs – at different time

steps, the most influential parameters can still be selected most of the time. This allows to set all the others

– the least influential – to fixed reasonable values without having too much of an effect on the global model

behaviour. This procedure is called screening or factor fixing.

The general principles of sensitivity analysis [Saltelli et al., 2000], [Saltelli et al., 2004] are briefly recalled.

There exist two families of methods. Local methods study only the effect of the local variation of a given

factor around a nominal value with all the other factors being fixed. Global methods allow the simultaneous

variations of all factors according to prescribed probability distributions. Because of the nonlinearities and

the interactions between parameters that often exist in ecological models [Cariboni et al., 2007] and since,

as will be seen in Chapter 5, we dispose of important computing resources, Sobol method will be used.

Although this analysis could be conducted on the control variables u1:T or the initial state x0, here we

focus on sensitivity analysis on model functional parameters θ and the two former are fixed to known values.

Obviously, the output of a model are also influenced by the process and observation noises. To isolate the

influence of functional parameters on the model output only, all the standard deviations of the process and

observation noises are set to zero, which is equivalent as not taking any into account. In these conditions,

the dynamics of a model described in Equation 1.9 can be simplified as:

y1→T =M(θ) =M
(
(θi)i∈J1,dθK) . (3.5)

and in particular, the observation yℓn relative to variable vℓ at time stepn is simply a function of the parameters:

yℓn(θ) = yℓn
(
(θi)i∈J1,dθK) (3.6)

Chapter 3. Estimation of parameters and hidden states for a single individual 51

where (θi)i∈J1,dθK are called the input factors and are considered random variables. They are given probability

distributions which describe how these parameters are likely to vary within the state space. Sensitivity analysis

results will therefore differ depending on the distributions used to sample these parameters.

The Hoeffding functional decomposition [Hoeffding, 1948] allows to decompose a model output yℓn as:

yℓn
(
(θi)i∈J1,dθK) = f ℓn∅ +

∑
u∈S⋆

f ℓnu(θu) (3.7)

where S is the set of all subsets of J1, dθK and S⋆ = S\∅. In the case of independent input variables, this

representation is unique insofar as:

C
(
f ℓnu(θu), f

ℓ
nv(θv)

)
= 0 (3.8)

for u ̸= v. Taking the variance of Equation 3.7 yields:

V(yℓn) =
∑
u∈S⋆

Vu

(
f ℓnu(θu)

)
(3.9)

and dividing by the total variance yields:

1 =
∑
u∈S⋆

Vu

(
f ℓnu(θu)

)
V (y)

=
∑
u∈S⋆

Sℓ
nu (3.10)

where Sℓ
nu is the sensitivity index related to the multi-index u for variable vℓ at time n. For each u ∈

S, it is possible to define the total order sensitivity index T ℓ
nu =

∑
v,u⊂v S

ℓ
nv, summing all the different

contributions of θu in the output variance. For a single parameter θi with i ∈ J1, dθK, the first order

sensitivity index and the total order sensitivity index can therefore be written respectively as:
Sℓ
ni =

Vi

(
E−i

(
yℓn|θi

))
V (yℓn)

,

T ℓ
ni =

E−i

(
Vi

(
yℓn|θ−i

))
V (yℓn)

,

(3.11)

where i refers to taking into account only variable θi and −i all variables θj for j ̸= i. These expectations

and variances are computed using a Monte Carlo procedure [Saltelli et al., 1993]. The convergence of the

algorithm can be improved by using the permutation of certain values of parameters as suggested by Wu et al.

[2012] and described in Algorithm 1.

3.2.2 Structural and correlative sensitivity analysis

The assumption that the model parameters are independent is in fact rather strong and restricting, all the

more in complex systems, which is the case of most biological models, notably plant growth models: when

a model is used for different genotypes of a given plant, the dependence between parameters is significant

[Lecœur et al., 2011]. This is why it is important, particularly in the context of genotypic differentiation, to

understand the influence of correlations between model parameters.

Li et al. [2010] introduced a generalization of the Sobol indices known as the structural and correlative sens-

itivity analysis. It is based on another decomposition of a generalized hierarchical Hoeffding–Sobol (GHHS)

52 Chapter 3. Estimation of parameters and hidden states for a single individual

Algorithm 1 Sobol algorithm for sensitivity analysis
Sample the first two different sets of parameters according to their prior distributions:{

(θs,j)j∈J1,NK ∼ p(θ)

(θs
′,j)j∈J1,NK ∼ p(θ)

Sample the relative model observations via model simulation, i.e. for all j ∈ J1, NK:{
ys,j ∼ p(y|θs,j)
ys

′,j ∼ p(y|θs′,j)

Define the corresponding complementary sets of parameters as copies of the latter:{
(θc,j)j∈J1,NK = (θs,j)j∈J1,NK
(θc

′,j)j∈J1,NK = (θs
′,j)j∈J1,NK

For i ∈ J1, dθK
Switch parameters θi between (θc,j)j∈J1,NK and (θc

′,j)j∈J1,NK
Sample (yc,j)j∈J1,NK and (yc

′,j)j∈J1,NK via model simulation
For ℓ ∈ J1, dℓK

For k ∈ J1, OK
Compute Sℓ

tki
and T ℓ

tki

End
End

End

decomposition which was formally demonstrated by Chastaing et al. [2012]. Assuming that

y(θ) ∈ H = L2
R(Rd,B(Rp), Pθ) where Pθ denotes the probability measure of the parameters, we de-

note by Hu the subspace of H such that all its elements depend only on θu. We can recursively define the

subspace family (H0
u)u∈S such that H0

∅ is the space of constant functions and:

H0
u = {hu ∈ Hu|⟨hu, hv⟩ = 0, ∀v ⊂ u,∀hv ∈ H0

v}. (3.12)

The GHHS decomposition then reads:

V(y) =
∑
u∈S⋆

V (fu(θu)) +
∑
u∈S⋆

∑
v∈S⋆

u∩v ̸={u,v}

C(fu(θu), fv(θv)) (3.13)

with fu ∈ H0
u and where we have dropped the indices related to the time step n and the observed variable

ℓ for readability. In the case where the correlations between parameters are ignored, the second term in the

previous decomposition vanishes and it simplifies to Equation 3.7 of the Sobol case. One can define the

three indices of generalized sensitivity related to θu:

Su =
C (y, fu(θu))

V(y)
,

Ss
u =

V (fu(θu))

V(y)
,

Sc
u =

∑
v∈S⋆

u∩v≠{u,v}

C (fu(θu), fv(θv))

V(y)
,

(3.14)

Chapter 3. Estimation of parameters and hidden states for a single individual 53

which are called the total, structural and correlated contributions respectively and are such thatSu = Ss
u+S

c
u

and
∑

u Su = 1. As in the classical Sobol case, total indices can be defined as:

Tu =
∑
v|u⊂v

Sv,

T s
u =

∑
v|u⊂v

Ss
v ,

T c
u =

∑
v|u⊂v

Sc
v.

(3.15)

These indices do not share the same properties as those in the uncorrelated case since the indices Su are not

comprised between 0 and 1 anymore and only the structural contributions Ss
u are assured to be positive,

which renders their interpretation all the less so straightforward. As far as single parameters are concerned

(i.e. |u| = 1) Sainte-Marie et al. [2017] proposed to consider the 5 following cases:

■ Ti > T c
i > T s

i > 0: the uncertainty related to θi is significant and mostly due to its correlations with

other parameters;

■ Ti > T s
i > T c

i > 0: the uncertainty related to θi is mostly due to its direct influence and amplified

by correlations;

■ T s
i > Ti > 0 > T c

i : the uncertainty related to θi is significant but reduced by its dependence to other

parameters;

■ Ti = 0 and T s
i = −T c

i : the direct influence of θi is tempered by its dependence to other parameters;

■ T s
i > 0 > Ti > T c

i : the parameter θi is essentially reducing the contribution of other parameters but

does not have a significant direct effect on the total variance per se.

The practical computation of the functions fu in the GHHS decomposition is based on the hierarchically

orthogonal Gram–Schmidt (HOGS) algorithm which provides an approximation of each term of the decom-

position fu ∈ H0
u by projecting it on subspaces of finite dimension. It first starts by the approximation of

the subspacesH0
u for which |u| = 1 (corresponding to a single parameter) by considering p subspacesH0,L

u

of dimension L. A standard choice is that of the bases composed of polynomials whose degree is comprised

between 1 and L. The HOGS algorithm then proceeds to construct the approximation of the subspaces for

multi-indices of higher cardinality. We can limit the degree of interations considered to d. Then for u ∈ S

such that 2 ≤ |u| ≤ d, a functional basis (ϕul)l∈J1,LK|u| is defined as:

ϕul (θu) =

|u|∏
i=1

ϕui
li
(θui) +

∑
v∈S⋆

v⊂u

 ∑
k∈J1,LK|v| λ

v
klϕ

v
k(xv)

+ Cu
l (3.16)

where the λvkl and Cu
l are determined by solving the hierarchical orthogonality conditions defining H0

u:

⟨ϕul , 1⟩N = 0 and ⟨ϕul , ϕvk⟩N = 0, ∀v ⊂ u,∀k ∈ J1, LK|v| (3.17)

where ⟨·, ·⟩N denotes the empirical inner product. The HOGS algorithm therefore relies on 3 main paramet-

ers: the dimension L ∈ N∗ of the bases of order 1, the number of samplesN ∈ N∗ and the maximum degree

54 Chapter 3. Estimation of parameters and hidden states for a single individual

of interaction d. Let us highlight the fact that the construction of such a functional basis does not depend on

the studied model. Once this functional basis has been computed, each term in the GHHS decomposition

can be approximated by projection on this basis:

fu(θu) ≈ f̂u(θu) =
∑
l

βul ϕ
u
l (θu) (3.18)

where the βul must be estimated. This can be achieved with a standard least squares algorithm:

(βlu) = arg min ∥Y − ΦB∥2 + λJ(B) (3.19)

where Y = (yj)j∈J1,NK, Φ =
(
ϕul (θ

j
u)
)

and B = (βul), and where the second term λJ(B) accounts for a

possible penalization with λ > 0, J(B) = µ∥B∥1+(1−µ)∥B∥2 is characteristic of an elastic net procedure

with µ ∈ [0, 1] and whose well-known special cases are ridge regression (µ = 1) and lasso regression (µ = 0).

3.3 Frequentist vs. Bayesian estimation

The opposition between these two paradigms may be one of the most important within the community

of statistical inference. Although both are concerned with understanding statistical systems thanks to the

estimation of model parameters using experimental data, the interpretations that they attribute to the nature

of parameters are different.

The frequentist paradigm considers that the studied events exhibit a statistical stability and is based on the

frequency of occurrences, i.e. their repetitions. The model parameters are assumed to have, true fixed values,

and confidence intervals on the results of the estimation are usually provided.

The Bayesian formulation first appeared in the work of the Reverend Thomas Bayes An essay towards solving a

problem in the doctrine of chances in 1763. From the 19th century, this statistical paradigm fell into oblivion

and was resurrected during the second half of the 20th century by Alan Turing, Leonard Savage and Dennis

Lindley among others, even though up until the 1990s it was left out by the academic community. With

the appearance of more powerful computers, some of the Bayesian algorithms such as Markov chain Monte

Algorithm 2 Structural and correlative sensitivity analysis
Generate multi index list
Sample parameters according to their prior distributions (θs,j)j∈J1,NK ∼ p(θ)
Evaluate the HOFD bases
Sample the relative model observations via model simulation, i.e. for all j ∈ J1, NK, ys,j ∼ p(y|θs,j)
For ℓ ∈ J1, dℓK

For k = 1 : O
Compute the vector of all observations for the different samples for ℓ at time tk
Compute the related HOFD coefficients βlu using a least squares algorithm with adequate penaliza-
tion
Compute Ss

u, Sc
u, Su, T s

u , T c
u and Tu.

End
End

Chapter 3. Estimation of parameters and hidden states for a single individual 55

Carlo or sequential Monte Carlo methods could be used more easily, which led in return to an increase of

interest for the theoretical foundations of these methods.

In the Bayesian framework, the parameters do not have fixed values, instead they are considered to be random

variables that follow distributions. Probabilities are interpreted more as a degree of belief rather than as the

frequency of a phenomenon. Pre-estimation belief on the parameters distributions can be incorporated in a

prior distribution, which is then updated thanks to the observations on the system. In the limit of an infinite

number of observations, both approaches yield the same results.

Bayesian inference calculates the posterior probability of the parameters as a consequence of two factors, the

prior distribution on the parameters and the likelihood specific to the statistical model considered for the

observed data, using Bayes’ theorem:

p(θ|y1→T) =
p(y1→T |θ) p(θ)

p(y1→T)
=

p(y1→T |θ) p(θ)∫
θ p(y1→T |θ)p(θ)dθ

(3.20)

where p(θ) is the prior distribution and represent the original belief on the parameters before the experiment

and taking into account the observations y1→T , p(y1→T |θ) is the likelihood, and p(y1→T) is sometimes

coined the marginal likelihood or evidence and can be rewritten by integrating over the whole parameter

space. The posterior distribution p(θ|y1→T) thus describes the probability that the parameters take value θ

after observation of the data y1→T . The calculation of the evidence as an integral over the whole parameter

space is the main issue in assessing the posterior distribution since it would potentially requires complex

integrations over high dimension spaces.

The Bayesian approach seems more adapted to the case studies under consideration in the rest of this work

for several reasons:

■ first, it is more adapted to cases where there is a limited number of observations that are particularly

noisy, as is often the case in plant growth models;

■ integrating prior distributions on the parameters not only alleviates this problem and allows for the

incorporation of biological background information and more modelling freedom (see [Illian et al.,

2009] for instance); moreover, models of biological systems usually describe biophysical processes

for which parameters have a clear interpretation and prior knowledge can be used to derive prior

distributions;

■ in the context of population models, the Bayesian approach allows for simpler analytical formulation

in a Gibbs sampler (see Chapter 4);

■ for the sake of philosophy and consistency, we consider mainly one paradigm in this whole work, in

the cases of inference for both a single individual and a population.

56 Chapter 3. Estimation of parameters and hidden states for a single individual

3.4 A frequentist method: generalized least squares

In this section we briefly present the generalized least squares algorithm [Aitken, 1936]. It is very often

used for parameter estimation within a frequentist paradigm as it is easy to implement and rather fast. It

will notably be used for the comparison of frequentist and Bayesian estimation methods using the GreenLab

model for Arabidopsis thaliana. We denote by y ∈ Rdy the vector of all observations for a model and by

x(θ) ∈ Rdy the vector of all the corresponding hidden states arising from model simulation. For the sake

of simplicity, we assume for now that all the experimental data follow an additive normal observation model,

and a much simpler formulation of the model reads:

y = x(θ) + ξ (3.21)

where ξ ∼ N (0,Σ). The classical least squares estimator consists in minimizing the sum of all squared

differences between the data and the model output:

θLS = arg min
θ∈Θ

(y − x(θ))T (y − x(θ)) . (3.22)

Often, experimental data represents observed values with different orders of magnitude, and it becomes

desirable to weight the components of y accordingly. This can be achieved by introducing a weight matrix

W ∈ Mdy(R) such that:

θWLS = arg min
θ∈Θ

(y − x(θ))T W (y − x(θ)) . (3.23)

When the observation model is as in Equation 3.21, it is straightforward to show that the maximum like-

lihood estimator is equivalent to a weighted least squares estimator with weight matrix W = Σ−1, which

yields the generalized least squares estimator:

θGLS = arg min
θ∈Θ

(y − x(θ))T Σ−1 (y − x(θ)) . (3.24)

It is of primary importance to assess the uncertainty on this estimator. In the case of maximum likelihood

estimators, the asymptotical variance is given by the inverse of the Fisher information matrix:

I(θ) = (∂θ logx(θ))2. (3.25)

The variance on this estimator can be approximated in the case of the observation model 3.21 and considering

that the covariance matrix Σ does not depend on θ, this yields:

V
(
θGLS) = J(θGLS)T Σ−1 J(θGLS) (3.26)

where J(θGLS) = ∂θx|θGLS is the Jacobian matrix. Most of the time, Σ is not known and must be estimated.

A simple choice for the covariance matrix is that of heteroscedastic errors [Cournède et al., 2011], where all the

observations of the same variable are grouped together. Assuming that the variables observed are (vℓ)ℓ∈J1,dℓK,
then the vector of experimental data can be put under the form y = (yℓ)ℓ∈J1,dℓK where yℓ ∈ Rd

yℓ comprises

all observations of vℓ and the covariance matrix considered is:

Σ = blockdiagℓ∈J1,dℓK
{
σ2ℓ Idyℓ

}
(3.27)

Chapter 3. Estimation of parameters and hidden states for a single individual 57

where σ2ℓ is the empirical variance of variable vℓ. A 2-stage procedure was proposed by Taylor [1977] where

the parameters are first estimated using a generalized least squares algorithm, considering at each stage that

the variance is known, and then updated with the new estimated parameters. The initial variance of each

variable can be computed from the experimental data:

(
σ
(1)
ℓ

)2
= V

(
yℓ
)
,

Σ(1) = blockdiagℓ∈J1,dℓK
{(

σ
(1)
ℓ

)2
Id

yℓ

}
,

θ̂(1) = arg minθ∈Θ (y − x(θ))T
(
Σ(1)

)−1
(y − x(θ)) .

(3.28)

Once the first estimate θ̂(1) is obtained, the variance is updated as follows:

(
σ(2)

)2
= V

(
y − x(θ̂(1))

)
,

Σ(2) = diag
((
σ(2)

)2)
,

θ̂(2) = arg minθ∈Θ (y − x(θ))T
(
Σ(2)

)−1
(y − x(θ))

(3.29)

so as to obtain the final estimate θ̂(2). This procedure can be easily adapted in the multiplicative case and the

second stage now reads:
(σ(2))2 = V

(
y − x(θ̂(1))

x(θ̂(1))

)
,

Σ(2) = diag
(
(σ(2))2 x(θ̂(1))2

)
,

θ̂(2) = arg minθ∈Θ (y − x(θ))T
(
Σ(2)

)−1
(y − x(θ)) .

(3.30)

The GLS algorithm is the only frequentist method that is going to be used in this work. It is still worth

mentioning that, in the presence of process noise, one must resort to other methods such as the Expectation

Maximization (EM) algorithm [Dempster et al., 1977] since the maximum likelihood estimator (MLE) can-

not be derived explicitly in HMMs. The EM algorithm is briefly presented in Section 4.1 in the context

of population models. Such an approach in the case of plant growth models has notably been discussed in

[Trevezas and Cournède, 2013] and [Trevezas et al., 2014] but has not been considered in this work since, as

previously explained, we adopt a Bayesian perspective throughout the whole thesis: the frequentist GLS al-

gorithm will therefore be used only for the initialization of sensible parameter values within a global Bayesian

framework.

3.5 Bayesian methods

There are two main families of methods for Bayesian inference, Markov chain Monte Carlo (MCMC) meth-

ods and sequential Monte Carlo (SMC) methods – which include Kalman-based filters as well as particle

filters – whose purposes are slightly different: most of the time with MCMC methods, at each iteration, the

model is simulated from time zero to the final time of interest, and to each MCMC iteration corresponds

a potential candidate for the posterior distribution. With SMC methods, a set of many simulations are run

simultaneously from one time step where observations are available to another, and at each of these time

58 Chapter 3. Estimation of parameters and hidden states for a single individual

steps, parameters and hidden states are corrected according to the current observation. SMC methods are

therefore more suited for learning on the fly, i.e. for real applications where data come sequentially in time.

Such examples are numerous in radar tracking, signal processing, finance and of course agriculture. Examples

of past use and discussion of Bayesian methods for parameter and state estimation in plant science can be

found in [Chen, 2014] and [Malefaki et al., 2014] for instance.

Remark: In the remaining of this work, the following abuse of notation might occur: sampling a variable

z given y might be expressed as z ∼ p(z|y) and evaluating the value of the pdf of z given y might also

be expressed as p(z|y).

3.5.1 Markov chain Monte Carlo methods

Monte Carlo integration

Monte Carlo integration relies on the strong law of large numbers: let (zt)t∈J1,MK be M i.i.d. random

variables with law π and h ∈ L1(π), then:

1

M

M∑
t=1

h(zt)
M→∞−−−−→
a.s.

∫
h(z)dπ(z) = E (h(z)) . (3.31)

It therefore becomes possible to approximate this integral by sampling many independent realizations zt with

respect to the law π. The precision on the estimate can be chosen arbitrarily high by choosing a sufficiently

high number of samples. However, it may not be possible to sample directly from π. This is generally the

case of the posterior distribution when models are complex.

When it is not possible to sample directly from π, it is still generally possible to evaluate it. A Markov chain

can be generated so that its stationary distribution is precisely the target distribution from which one wants

to sample. In practice, it is necessary to define a burn-in period during which the chain explores the state

space. After a sufficiently long number of iterations, when the chain has reached its stationary distribution,

samples obtained from the Markov chain are identically distributed. However, they are not independent,

which prevents to use the strong law of large numbers. Nevertheless, under certain regularity conditions, a

similar result holds for Markov chains: a Markov chain (zt)t∈J1,MK with stationary distribution π is said

ergodic if it is aperiodic, irreducible and positive recurrent, and in this case Equation 3.31 still holds.

Markov chains

The introduction of MCMC algorithms dates back to the middle of the last century, with the Metropolis–

Hastings algorithm [Metropolis et al., 1953], [Hastings, 1970] and subsequently the Gibbs sampling al-

gorithm [Geman and Geman, 1984], [Gelfand and Smith, 1990]. These two base algorithms were regarded

as popular tools for the analysis of complex statistical models, by sampling values from an ergodic Markov

chain for the estimation of the posterior distribution of both parameters and hidden states. However, these

Chapter 3. Estimation of parameters and hidden states for a single individual 59

Algorithm 3 Metropolis–Hastings algorithm

Choose initial value z0

For t = 1 :M
Sample z⋆ ∼ q(·|zt)
Compute the acceptance probability:

α(zt, z⋆) = 1 ∧ π(z⋆)

π(zt)

q(zt|z⋆)
q(z⋆|zt)

Set zt+1 = z⋆ with probability α, set zt+1 = zt otherwise
End

methods were extremely costly from a numerical point of view, and one had to wait until the beginning of

the 1990s to witness a regain of interest for these methods with the increase in numerical power.

Metropolis–Hastings

Metropolis et al. [1953] introduced the first MCMC algorithm for the computation of integrals involving

Boltzmann distributions and this procedure was generalized almost twenty years later by Hastings [1970].

It allows to generate samples with respect to a probability distribution for which direct sampling is not

possible. This sequence can then be used either to approximate the target distribution or to compute an

integral involving the latter. At each iteration t, a candidate z⋆ is generated with respect to a proposal

distribution (also known as the instrumental distribution) q from which it is easy to sample from, e.g. a

normal distribution. This candidate is either accepted or rejected – in which case the chain stagnates at its

previous state – with an acceptance probability ensuring the convergence towards the target distribution. The

Metropolis–Hastings algorithm is described in Algorithm 3.

The acceptance probability can be interpreted as made of two terms: on the one hand, it is desired that the

algorithm head towards regions of high probability under the target distribution π and this is controlled

by the ratio π(z⋆)/π(zt), on the other hand the chain should not be stuck for too long in a region of

high probability under the proposal distribution q, this is controlled by the ratio q(zt|z⋆)/q(z⋆|zt). The

acceptance probability ensures that if a candidate is sampled from the target distribution, then this will also

be the case of the candidate sampled at the next iteration. This can easily be seen as the transition kernel for

the Markov chain is such that:

p(zt+1|zt) = α(zt, zt+1)q(zt+1|zt) + 1(zt+1 = zt)

(
1−

∫
q(z|zt)α(zt, z)dz

)
(3.32)

where the first term denotes acceptance of the candidate z = zt+1 and the second term rejectance of all other

candidates. By definition of the acceptance probability:

π(zt) q(zt+1|zt) α(zt, zt+1) = π(zt+1) q(zt|zt+1) α(zt+1, zt) (3.33)

which yields the detailed balance equation:

π(zt)p(zt+1|zt) = π(zt+1)p(zt|zt+1). (3.34)

60 Chapter 3. Estimation of parameters and hidden states for a single individual

After integration of the last equation with respect to zt:∫
π(zt)p(zt+1|zt)dzt = π(zt+1). (3.35)

The left-hand side represents the marginal distribution of zt+1 assuming that zt has distribution π, and this

marginal distribution is precisely equal to the target distribution π for zt+1. This means that whenever a

sample of the chain has distribution π, all the next candidates will also have distribution π. This simple

argument yet does not constitute a rigourous proof which can be found in [Roberts, 1996].

As already mentioned, the acceptance probability involves only the evaluation of the target distribution: there

is no need to directly sample from it nor is it necessary to compute the problematic normalizing constant∫
π(z)dz, which constitutes one of the main strengths of the MCMC algorithms.

Proposal distributions

The nature of the proposal distribution has not been discussed yet: in principle it can have any form, the only

requirement being that its support include the support of the target distribution, and the convergence towards

the target distribution remains assured. However some choices will obviously lead to faster convergence

towards the target distribution π because it drives the exploration of the state space [Robert and Casella,

1999].

Two main choices are classically considered: when the proposal distribution q does not depend on the current

position of the chain zt, the algorithm can be seen as an extension of accept-reject methods. In this particular

case, the acceptance probability reduces to:

α(zt, z⋆) = 1 ∧ π(z⋆)

π(zt)

q(zt)

q(z⋆)
(3.36)

Another popular choice for the proposal distribution is symmetric random walk. It depends only on the

difference between the candidate and the previous state and is symmetric:

q(z|z′) = q(z − z′) = q(z′ − z) (3.37)

in which case the acceptance probability can thus be simplified to:

α(zt, z⋆) = 1 ∧ π(z⋆)

π(zt)
. (3.38)

All the candidates that have a higher π value are then automatically accepted. One of the advantages of the

symmetric random walk is that the computation of the acceptance probability requires to evaluate the target

distribution only. Several choices for the random walk proposal distribution are possible though the most

common one is to use a multivariate normal distribution with zero mean and general covariance matrix, the

choice of which is of critical importance for the convergence of the chain. If it is too small, the difference

between the current state of the chain and a candidate will be very small, whence a slow exploration of the

state space. On the contrary, if it is too large, the candidates are often rejected and the chain stagnates too

often.

Chapter 3. Estimation of parameters and hidden states for a single individual 61

Adaptive schemes

Adaptive methods have been proposed in order to overcome this problem. The acceptance rate is defined as

the number of times a candidate has been accepted over the current iteration. It is a good criterion of how

well the chain performs at exploring the state space and is of course related to the covariance matrix of the

proposal distribution. When this ratio is too large, it most probably means that the chain moves too slowly

and does not explore the state space as much as necessary. Contrarily, when it is too low, it may indicate that

the chain moves too fast and possibly misses some regions of high probabilities for the target distribution.

To ensure a good exploration of the state space by the Markov chain, one might focus on the acceptance

rate that has to be neither too low nor too high. In the case of the random walk Metropolis–Hastings

algorithm when the proposal distribution is multivariate normal and when the dimension of the problem

goes to infinity, the optimal acceptance rate has been proved to be approximately 0.234 [Roberts and Sahu,

1997], [Roberts and Rosenthal, 2001], [Bédard, 2008]. Moreover, Gelman et al. [1996] have shown that this

optimal acceptance rate corresponds to an optimal covariance matrix equal to (2.382/d)Σπ where Σπ is the

covariance matrix of the target distribution. Several adaptive algorithms have been proposed to optimize the

choice of the covariance matrix in the proposal distribution at each iteration and consequently the acceptance

rate. Haario et al. [1998], Haario et al. [1999] estimated Σπ at the end of each iteration t by considering the

past realizations of the Markov chain: µt = 1
t

∑t
u=1 z

u,

Σt = 1
t

∑t
u=1(z

u − µt)(zu − µt)T .
(3.39)

This approach was further generalized by Andrieu and Thoms [2008] who proposed the integration of a

Robbins–Monro update scheme [Robbins and Monro, 1951] based on stochastic approximation. At each

iteration t+ 1, a new candidate is generated according to the distribution N (zt, λtΣt) where:
µt = µt−1 + γt(zt − µt−1)

Σt = Σt−1 + γt
[
(zt − µt)(zt − µt)T − Σt−1

]
λt = λt−1 exp

(
γt[α(zt−1, z⋆)− α⋆]

) (3.40)

with a sequence (γt) such that
∑∞

t=1 γ
t = ∞ and there exists ν > 0 such that

∑∞
t=1

(
γt
)1+ν

<∞, z⋆ is the

candidate sampled at iteration t, α(zt−1, z⋆) is the acceptance probability and α⋆ is the optimal acceptance

ratio, which we recall to be 0.234 in the multivariate case. It is obvious that when α(zt−1, z⋆) − α⋆ is

negative, the current acceptance rate is too low compared to the optimal one and that the variance – through

λt – needs to be decreased. Conversely, when α(zt−1, z⋆)−α⋆ is positive, the current acceptance rate is too

high and the variance of the random walk is decreased.

Although this adaptive procedure can be adopted in order to enhance the acceptance rate and the convergence

of the MCMC algorithms, it also has modified the nature of the chain, which is no longer Markovian as the

current state now depends on the whole history of the chain and not only the previous state. It has been

shown however that convergence is still ensured as long as the parameters of the adaptive schemes stay away

62 Chapter 3. Estimation of parameters and hidden states for a single individual

from poor values, see [Andrieu and Thoms, 2008] for more details.

Gibbs sampling

The Gibbs sampler was introduced by Geman and Geman [1984] and further developed by Gelfand and

Smith [1990]. Its main idea is to decompose the sampling of a multidimensional variable of interest z into

multiple ones of lower dimensionality. More precisely, if z = (z1, . . . , zp) is decomposed into p blocks of

variables (where each zi has dimension comprised between 1 and that of z) and has distribution π, and if it is

not possible to sample according to π but if it is easy to sample according to the full conditional distributions

π1, . . . , πp, i.e.:

zi|z−i ∼ πi(·|z−i), (3.41)

where z−i denotes all variables but zi, then the dimension of the problem can be reduced since it suffices to

sample p times according to distributions of lower dimensionalities. An important and common special case

is when all the blocks of z are unidimensional: one has thus to sample p times from univariate distributions.

At each iteration, only one component zi of z is therefore updated while all the others are held fixed. The

proposal distribution for the i-th component is simply its full conditional distribution:

q(z⋆i |zti , zt−i) = pi(z
⋆
i |zt−i). (3.42)

It can be proved [Robert and Casella, 1999] that the stationary distribution of the Markov chain thus gener-

ated is precisely the target distribution π. One immediate consequence of such a scheme is that all candidates

are actually accepted because:

α(zt, z⋆) = 1 ∧ π(z⋆)

π(zt)

q(zt|z⋆)
q(z⋆|zt)

= 1 ∧ π(z⋆)

π(zt)

πi(z
t
i |z⋆−i)

πi(z⋆i |zt−i)

= 1 ∧ π(z⋆)

π(zt)

πi(z
t
i |zt−i)

πi(z⋆i |z⋆−i)

= 1 ∧ π(z⋆)

πi(z⋆i |z⋆−i)
/

π(zt)

πi(zti |zt−i)

= 1 ∧
π(z⋆−i)

π(zt−i)

= 1

(3.43)

since only the i-th component is updated, whence z⋆−i = zt−i. In particular, this means that no criterion

based on acceptance rates can be used for the Gibbs sampler, contrarily to the Metropolis–Hastings algorithm.

One of the main advantages of this approach compared to the Metropolis–Hastings algorithm is that inform-

ation contained in the target distribution π – through the full conditional distributions – is directly used and

there is no need to rely on a proposal distribution arbitrarily chosen. Furthermore, it allows to decompose

problems of high dimensions into problems of lower dimensions.

Chapter 3. Estimation of parameters and hidden states for a single individual 63

Algorithm 4 Gibbs algorithm

Choose initial value z0

For t = 1 :M
For i = 1 : p

Sample z⋆i ∼ πi(·|zt−i)

Set zt+1 = (zt+1
1:i−1, z

⋆
i , z

t
i+1:p)

End
End

Adapted Metropolis within Gibbs

The estimation of model parameters is not the only concern in general state space models as some of the

hidden states x1:T might also be of interest. For plant growth models, one is often interested in knowing the

values of some biomasses or leaf areas, for instance. Even if the exact value θ of a perfect model were known

and because of the process and observation noises, different simulations of the model would lead to different

outputs. A joint estimation of parameters and hidden states is therefore required and the target distribution

is π(θ, x1:T |y1→T). A natural approach is to update the parameters conditionally to the current value of

the hidden states and reciprocally. However the efficiency of such a scheme is compromised as soon as there

exists a strong correlation between parameters and hidden states as shown by Liu et al. [1994] and Roberts

and Sahu [1997], which is most often the case in plant growth models.

To overcome this issue, Fearnhead [2011] proposed the joint update of the parameters and hidden states as

follows:

q(θ⋆, x⋆1:T |θt, xt1:T) = q(θ⋆|θt) q(x⋆1:T |θ⋆). (3.44)

This way, the changes in the parameters can easily be controlled via q(θ⋆|θt) and, what is more, the candidate

hidden states x⋆1:T will be consistent with the candidate parameters θ⋆ thanks to the proposal q(x⋆1:T |θ⋆). A

classical choice for the proposal distribution of the hidden states amounts to sampling from p(x⋆1:T |θ⋆) –

i.e. to perform a model simulation. An improvement would consist in taking into account observations to

optimize state space exploration and sample from π(x⋆1:T |θ⋆, y1→T) instead; this will be described in Section

3.5.3. The acceptance probability can therefore be computed as:

α
(
(θ⋆, x⋆1:T), (θ

t, xt1:T)
)

= 1 ∧
π(θ⋆, x⋆1:T |y1→T)

π(θt, xt1:T |y1→T)

q(θt, xt1:T |θ⋆, x⋆1:T)
q(θ⋆, x⋆1:T |θt, xt1:T)

= 1 ∧
p(θ⋆, x⋆1:T |y1→T)

p(θt, xt1:T |y1→T)

q(θt|θ⋆)
q(θ⋆|θt)

q(xt1:T |θt)
q(x⋆1:T |θ⋆)

= 1 ∧
p(y1→T |θ⋆, x⋆1:T) p(x⋆1:T |θ⋆) p(θ⋆)
p(y1→T |θt, xt1:T) p(xt1:T |θt) p(θt)

q(θt|θ⋆)
q(θ⋆|θt)

p(xt1:T |θt)
p(x⋆1:T |θ⋆)

= 1 ∧
p(y1→T |θ⋆, x⋆1:T)
p(y1→T |θt, xt1:T)

p(θ⋆)

p(θt)

q(θt|θ⋆)
q(θ⋆|θt)

(3.45)

64 Chapter 3. Estimation of parameters and hidden states for a single individual

which can further be simplified to:

α
(
(θ⋆, x⋆1:T), (θ

t, xt1:T)
)
= 1 ∧

p(y1→T |θ⋆, x⋆1:T)
p(y1→T |θt, xt1:T)

p(θ⋆)

p(θt)
(3.46)

if the proposal distribution for the parameters is symmetric, as is usually the case.

Beaumont [2003] proposed to generate multiple samples from p(x⋆1:T |θ⋆), which would amount to many

model simulations. When dealing with complex plant growth models, whose simulation can be time-consuming,

it is preferrable from a numerical point of view to generate only once the hidden states. It has also been shown

[Chen, 2014] that the estimation of the hidden states improved when the functional parameters had first con-

verged. The strategy is therefore to first estimate the posterior distribution of the functional parameters, from

which can be deduced the mean θ̂ and the covariance Σ̂θ. The hidden states x1:T are then estimated either

by setting the parameters value to the estimated mean θ̂ or by drawing samples from this distribution, or for

convenience from N (θ̂, Σ̂θ).

During the second step, at each MCMC iteration, the hidden states are estimated sequentially from n = 1

to n = T . The proposal distribution for the hidden states is taken to be the transition pdf of the model. The

acceptance probability for the hidden state xn is:

α(xtn, x
⋆
n) = 1 ∧

π(x⋆n|xt+1
1:n−1, x

t
n+1:T , θ̂, y1→T)

π(xtn|xt+1
1:n−1, x

t
n+1:T , θ̂, y1→T)

q(xtn|θ̂, xt+1
1:n−1, x

t
n+1:T)

q(x⋆n|θ̂, xt+1
1:n−1, x

t
n+1:T)

(3.47)

and based on both the Markov chain property and the choice for the proposal distribution can be simplified

to:

α(xtn, x
⋆
n) = 1 ∧

p(xtn+1|θ̂, x⋆n)
p(xtn+1|θ̂, xtn)

p(yn|θ̂, x⋆n)
p(yn|θ̂, xtn)

. (3.48)

As previously mentioned, the parameters set can be resampled as θ̃tn ∼ N (θ̂, Σ̂θ) instead of being kept fixed

at the mean value θ̂. In this case both the hidden states and the parameters are jointly accepted at each

iteration. The Adapted Metropolis-within-Gibbs algorithm is summarized in Algorithm 5.

Burn-in period and stopping criteria

During the first iterations of the Markov chain, the latter has not reached its stationary distribution, the first

samples generated therefore do not belong to the target distribution and must be discarded. The period during

which the Markov chain has not reached its stationary distribution is called the burn-in period. Determining

its length and from when to consider the samples of the Markov chain to represent the target distribution

is rather difficult because it depends not only on the prior distribution assigned to the estimated parameters

but also on the nature of the target distribution. In practice, the burn-in period is adjusted empirically and

the samples are kept when the Markov chain is believed to have reached its equilibrium.

A pragmatic and empirical way of assessing the convergence of the MCMC algorithm is to run multiple

chains independently with different initial values. It has the advantage to allow for a visual identification of

both the burn-in period and, if the chains converge to the same distribution, the ideal length of the chain.

Chapter 3. Estimation of parameters and hidden states for a single individual 65

The Gelman–Rubin criterion is also based on the comparison between different chains using the between-

chains and within-chains variances B and W . Gelman and Rubin [1992] has shown that under certain

stationary conditions an unbiased estimator of the marginal posterior variance is:

V =
M − 1

M
W +

K + 1

KM
B (3.49)

where we recall that M is the number of iterations of the chain. The potential scale reduction factor is

defined as the ratio between V and W , and if all the chains have converged it should be close to 1. Brooks

and Gelman [1998] corrected it to account for sampling variability as:

Rc =
d+ 3

d+ 1

V

W
(3.50)

where d is the estimated degrees of freedom for a Student-t approximation to the posterior inference based

upon the simulations and advised, that when R1/2
c < 1.2, convergence can be assumed.

In practice, for time-consuming applications, we would like to free ourselves from running multiple Markov

chains independently and focus on other criteria instead. The acceptance rate can be such a criterion of

whether the chain has converged or not: despite some optimal values being suggested in the literature, the

actual optimal acceptance rate depends on the shape of the posterior distribution and it is considered that a

value between 0.1 and 0.5 remains acceptable.

A standard stopping rule is based on the mean estimates: the last na overlapped batch means, where each

batch mean contains nb iterations and nc iterations are overlapped, are computed for each parameter and

denoted by θri for i ∈ J1, dK and r ∈ J1, naK. If the relative changes in the batch means are small enough,

i.e. such that:

max
i∈J1,dK

(
|θr+1

i − θri |
θri + δ1

)
< δ2 (3.51)

then the chain is assumed to have converged. Searle et al. [1992] suggested that δ = 1 · 10−03 and

δ2 = 5·10−04 and we followed the values suggested by Chen [2014]: na = 4, nb = 3, 000 and nc = 1, 000.

3.5.2 Sequential Monte Carlo methods

Sequential Monte Carlo (SMC) methods [Doucet et al., 2001] [Del Moral, 2004], also known as particle

filters in the context of dynamic systems, offer a good alternative to the MCMC methods for the estimation

of parameters and hidden states within a Bayesian framework in SSMs. All the more so as MCMC algorithms

are more influenced by ill-chosen prior distributions. There are also practical reasons behind the choice of

SMC methods for inference. In particular, many real world problems require online estimation as data arrive

sequentially in time.

A very general problem of interest in the context of HMMs is to estimate the posterior distribution of the

hidden states xn at time step n given a sequence of observations y1:m. Three cases can then be considered:

■ if n > m, it amounts to predict the values of the hidden states based on past observations, this is a

prediction problem;

66 Chapter 3. Estimation of parameters and hidden states for a single individual

Algorithm 5 Adapted Metropolis-within-Gibbs algorithm

Choose initial values for the parameters θ0 and the hidden states x01:T = h(x0, u, θ
0, η)

Initialize the adaptive schemes variables:

γ0 = 1/2

µ0 = θ0

Σ0 = Σθ0

λ0 = 2.382/nθ

.

For t = 0 :M1 − 1

Sample θ⋆ ∼ N (θt, λtΣt)

Sample x⋆1:T = h(x0, u, θ
⋆, η)

Compute the acceptance probability:

α
(
(θ⋆, x⋆1:T), (θ

t, xt1:T)
)
= 1 ∧

p(y1→T |θ⋆, x⋆1:T)
p(y1→T |θt, xt1:T)

p(θ⋆)

p(θt)

Set
(
θt+1, xt+1

1:T

)
= (θ⋆, x⋆1:T) with probability α

(
(θ⋆, x⋆1:T), (θ

t, xt1:T)
)

Update the adaptive scheme variables:

γt+1 = (t+ 1)−1

µt+1 = µt + γt+1(zt+1 − µt)

Σt+1 = Σt + γt+1
[
(zt+1 − µt+1)(zt+1 − µt+1)T − Σt

]
λt+1 = λt exp

(
γt+1[α

(
(θ⋆, x⋆1:T), (θ

t, xt1:T)
)
− α⋆]

)
With a burn-in period of B, compute the estimated mean and covariance for the parameters:

θ̂ = (M1 −B)−1
∑M1

t=B+1 θ
t

Σ̂ = (M1 −B − 1)−1
∑M1

t=B+1(θ
t − θ̂)T (θt − θ̂)

End

For t =M1 :M2 − 1

For n = 1 : T

Sample θ̃t+1
n ∼ N

(
θ̂, Σ̂θ

)
Sample x⋆n = fn(x

t+1
n−1, un, θ̃

t+1
n , ηn)

Compute the acceptance probability:

α(xtn, x
⋆
n) = 1 ∧

p(xtn+1|θ̃t+1
n , x⋆n)

p(xtn+1|θ̃
t+1
n , xtn)

p(yn|θ̃t+1
n , x⋆n)

p(yn|θ̃t+1
n , xtn)

Set xt+1
n = x⋆n with probability α(xtn, x⋆n)

End

End

Chapter 3. Estimation of parameters and hidden states for a single individual 67

■ if n < m, both past and future observations are used for the estimation of the state at time step n, this

is a smoothing problem;

■ if n = m, the observations right up to the current time are used for the estimation, this is a filtering

problem.

In the following, only the filtering problem is of concern. Its history dates back to the development of the

Kalman filter [Kalman, 1960] for state estimation in the case of linear systems with normal noises. When

dealing with complex non-linear systems, analytical expressions cannot be derived anymore. The first at-

tempts to use SMC methods for filtering in the context of non-linear models date back to Handschin and

Mayne [1969]. They led the foundations of such methods by using a sequential version of the importance

sampling technique, which amounted to generate samples according to a proposal distribution and then at-

tributing an importance weight to each of this sample. The weighted distribution therefore obtained was

supposed to approximate the target distribution. This procedure was sequential in the sense that there were

no need to regenerate the whole trajectory of the states whenever a new observation was available. Rather

the samples were forwarded sequentially in time. This method suffered from a major drawback that was later

identified by Gordon et al. [1993] known as the weight degeneracy problem. From then on and as the com-

puting capabilities began to increase sufficiently enough for satisfying numerical approximations in complex

non-linear models, other filters began to emerge as generalizations of the standard Kalman Filter such as the

extended Kalman filter (EKF) [Anderson and Moore, 1979], [Sorenson, 1985], the unscented Kalman filter

[Julier and Uhlmann, 1997] [Quach et al., 2007] or the ensemble Kalman filter [Evensen, 1994], [Evensen,

2009] were developed as well as other methods belonging to the family of particle filters such as the regu-

larized particle filter [LeGland et al., 1998] [Musso et al., 2001] or the convolution particle filter [Campillo

and Rossi, 2006].

In SMC methods, the set of parameters is not constant throughout time anymore, as it is updated when

observations are available. The value of the parameters at time step n will therefore be denoted θn. Since

both the parameters and the hidden states are estimated, an augmented state comprising the two is defined:

zn = (θn, xn). A filtering procedure comprises two main steps:

■ prediction, also known as time update, is concerned with the distribution of the hidden state xn+1 at

time step n+ 1 based on the former observations:

p(zn+1|y1:n) =
∫
p(zn+1|zn) p(zn|y1:n)dzn, (3.52)

■ correction, also known as measurement update, uses the new observation at time step n+1 to update

the distribution, this can be decomposed using Bayes rule as:

p(zn+1|y1:n+1) =
p(zn+1|y1:n) p(yn+1|zn+1)∫

p(zn+1|y1:n) p(yn+1|zn+1)dzn+1

. (3.53)

68 Chapter 3. Estimation of parameters and hidden states for a single individual

Kalman filter

The Kalman filter deals with the case of linear models, which means that both the transition and observation

functions are assumed to be linear, and the equations of the general state space model presented in Section

1.1 can be written in this case as: xn+1 = Fnxn +Bnun + ηn,

yn = Hnxn + ξn.
(3.54)

Both the process and observation noises are assumed to be drawn from centered multivariate normal distri-

butions: ηn ∼ N (0, Qn),

ξn ∼ N (0, Rn).
(3.55)

Several standard shorthand notations in the context of Kalman filters are introduced. At time step n condi-

tionally to observations up to time step j, the state estimate is denoted ẑn|j , the error for the state estimate is

z̃n|j = zn − ẑn|j , and the error covariance matrix for the state estimate is Σ̂z
n|j . Equivalent notations ŷn|j ,

ỹn|j and Σ̂y
n|j are introduced for the observations.

Let us recall that in practice experimental data is only available at certain time steps and the merged experi-

mental timeline is:

O = (tk)k∈J1:OK ∈ NO. (3.56)

The dual prediction-correction step thus happens between two experimental times tk and tk+1. By conven-

tion, t0 = 0. At these experimental times, the content of experimental data might not be the same and

the correction step at time step tk only involves the relevant hidden states corresponding to the available

observations through the observation function gtk .

The prediction therefore consists in determining the estimate at time step tk+1 given the observations up to

time step tk. This is done using the evolution equation, Equation 3.54, to obtain the predicted state estimate:

ẑtk+1|tk = E(ztk+1
|y1:tk), (3.57)

the predicted error covariance matrix:

Σ̂z
tk+1|tk = E(z̃tk+1

z̃Ttk+1
|y1:tk), (3.58)

the predicted observation:

ŷtk+1|tk = E(ytk+1
|y1:tk), (3.59)

and the associated covariance matrix:

Σ̂y
tk+1|tk = E(ỹtk+1

ỹTtk+1
|y1:tk). (3.60)

Chapter 3. Estimation of parameters and hidden states for a single individual 69

Last but not least, the correlation matrix between the errors related to the state and observations estimates:

Σ̂zy
tk+1|tk = E(z̃tk+1|tk ỹtk+1|tk |y

T
1:tk

). (3.61)

All these quantities can be easily calculated using Equation 3.54. Then comes the correction step where it is

made use of the last observation, as the updated state estimate is assumed to be a linear combination of the

predicted state estimate ẑtk+1|tk and the observation ytk+1
. The objective of the Kalman filter is to obtain an

estimate that:

■ is unbiased, i.e. such that E(z̃tk|tk) = 0,

■ minimizes the error covariance matrix of the state estimate Σ̂z
tk|tk .

Under such assumptions, it can be shown that the updated state estimate and its associated covariance matrix

are: ẑtk+1|tk+1
= ẑtk+1|tk +Ktk+1

(ytk+1
− ŷtk+1|tk)

Σ̂z
tk+1|tk+1

= Σ̂z
tk+1|tk −Ktk+1

Σ̂y
tk+1|tkK

T
tk+1

(3.62)

where Ktk+1
is the so-called Kalman gain:

Ktk+1
= Σ̂zy

tk+1|tk

(
Σ̂y
tk+1

)−1
. (3.63)

The Kalman filter was designed for linear systems, and this assumption made it unsuitable for filtering in

the case of non-linear systems. A basic and immediate extension is to linearize both the transition functions

fn and the observation functions gn. This approach led to the development of the linearized Kalman filter

(when a nominal trajectory is available) and the Extended Kalman filter. In the case of highly non-linear

systems, these filters can still provide very poor performance, mostly because the covariance is propagated

through linearization of the underlying non-linear system. In the following, two extensions of the Kalman

filters aiming to overcome this issue are presented.

Unscented Kalman filter

This filter, introduced by Julier and Uhlmann [1997], makes use of the unscented transform. The latter allows

to use a set of deterministically sampled points, the so-called sigma-points, that are propagated through the

non-linear state space equations before providing updated estimates for the mean and the covariance matrix.

This allows to use information of higher order that was discarded in linearized filters and usually provide

better estimates [Gustafsson and Hendeby, 2012].

The unscented transform was introduced by Uhlmann [1995] as a novel method for calculating the statistics

of a random variable that is modified via a non-linear transformation. If x denotes a d-dimensional random

variable following a normal ditribution N (µ,Σ), f is a non-linear Borel function and y = f(x), then the

mean and the covariance of y can be well approximated by a set of 2d+1 sigma-point si: these sigma-points

are propagated through the true non-linear function to obtain yi = f(si) and the mean and covariance of

70 Chapter 3. Estimation of parameters and hidden states for a single individual

Algorithm 6 Unscented Kalman filter

Choose initial values for the parameters and states z0 = (x0, θ0) and the associated covariance Σz
0

Set ẑ0|0 = z0 and Σ̂z
0|0 = Σz

0

For k ∈ J0, O − 1K
Define the augmented mean ẑatk|tk and covariance Σ̂a

tk|tk to account for the process noise η (whose

related covariance matrix is Jtk) as: ẑatk|tk = (ẑtk|tk , 0dη)

Σ̂a
tk|tk = blockdiag{Σ̂z

tk|tk , Jtk}

Define the 2d+1 sigma-points si, the mean weights wm
i and the covariance weight wc

i for the normal

distribution N (ẑatk|tk , Σ̂
a
tk|tk)

Propagate the sigma-points through the model to obtain the predicted states sitk+1|tk = ftk+1
(sitk|tk)

Compute the estimated mean for the predicted state and observation: ẑtk+1|tk =
∑2d

i=0w
m
i s

i
tk+1|tk

ŷtk+1|tk =
∑2d

i=0w
m
i gtk+1

(sitk+1|tk)

and the associated covariance matrices:
Σ̂z
tk+1|tk =

∑2d
i=0w

c
i (s

i
tk+1|tk − ẑtk+1|tk)(s

i
tk+1|tk − ẑtk+1|tk)

T

Σ̂y
tk+1|tk =

∑2d
i=0w

c
i (gtk+1

(sitk+1|tk)− ŷtk+1|tk)(gtk+1
(sitk+1|tk)− ŷtk+1|tk)

T

Σ̂zy
tk+1|tk =

∑2d
i=0w

c
i (s

i
tk+1|tk − ẑtk+1|tk)(gtk+1

(sitk+1|tk)− ŷtk+1|tk)
T

Compute the Kalman gain:

Ktk+1
= Σ̂zy

tk+1|tk

(
Σ̂y
tk+1|tk

)−1

Compute the updated estimate for the state and the covariance matrix using the Kalman formulas: ẑtk+1|tk+1
= ẑtk+1|tk +Ktk+1

(
ytk+1

− ŷtk+1|tk
)

Σ̂z
tk+1|tk+1

= Σ̂z
tk+1|tk −Ktk+1

Σ̂y
tk+1|tkK

T
tk+1

End

y are approximated using the yi and appropriate weights wm
i and wc

i for the mean and covariance respect-

ively. The sigma-points are defined as functions of the mean µ and the covariance matrix Σ to represent the

distribution of x:
s0 = µ

si = µ+
(√

(d+ λ)Σ
)
i

sd+i = µ−
(√

(d+ λ)Σ
)
i

(3.64)

where λ = α2(d+κ)−d is a scaling parameter, α is representative of the spread of the sigma points around

Chapter 3. Estimation of parameters and hidden states for a single individual 71

the mean µ; usual values are such that 10−4 ≤ α ≤ 1 and κ ∈ 0, 3− d, see [Julier and Uhlmann, 1997] for

more details,
(√

(d+ λ)Σ
)
i
is the i-th column of

√
(d+ λ)Σ, and the corresponding weights are given

by:
wm
0 = (d+ λ)−1 λ

wm
i = 2−1(d+ λ)−1

wm
d+i = 2−1(d+ λ)−1

(3.65)

for the mean and by:
wc
0 = (d+ λ)−1 λ+ (1− α2 + β)

wc
i = 2−1(d+ λ)−1

wc
d+i = 2−1(d+ λ)−1

(3.66)

for the covariance, which finally provides the estimate for the expectation of y:
E(y) = E (f(x)) ≈

∑2d
i=0w

m
i f(si),

C(y) = C (f(x)) ≈
∑2d

i=0w
m
i (f(si)− E(y)) (f(si)− E(y))T .

(3.67)

In linearized versions of the Kalman filter such as the EKF, the state distribution is approximated by a normal

distribution and then propagated through a first-order linearization of the model, leading to potentially large

errors in the posterior mean and covariance. In the UKF, the state distribution is again approximated by a

normal distribution but the carefully chosen sigma-points propagated through the true non-linear system

are able to capture the posterior mean and covariance up to the second order whatever the non-linearities

involved.

Ensemble Kalman filter

Another solution to the limitations of the linearized versions of the Kalman filter for non-linear systems is to

use a Monte Carlo based approach. The ensemble Kalman filter (EnKF) was introduced by Evensen [1994]

and, just as in the case of the UKF, it is based on an approximation of the state distribution by a Gaussian

distribution. However, contrary to the UKF that uses a fixed set of deterministically sampled points to

approximate the latter, the 2d+ 1 sigma-points, the EnKF uses a large number of samples randomly drawn

from the normal distribution, whence the name of this filter, as the population of samples constitutes an

ensemble of possible parameters and hidden states vectors. With the UKF, the accuracy of the estimates is

fixed as both the number of sigma-points and their values is fixed as well. With the EnKF, this accuracy

can be increased with the ensemble size. Of course, this also comes at the cost of a higher computing time.

Unlike in the UKF, the estimations are not weighted and samples are simply averaged.

72 Chapter 3. Estimation of parameters and hidden states for a single individual

Algorithm 7 Ensemble Kalman filter

Choose initial values for the parameters and states z0 = (x0, θ0) and the associated covariance Σz
0

Set ẑ0|0 = z0 and Σ̂z
0|0 = Σz

0

For i = 1 : N

Sample zi0 ∼ N (ẑ0|0, Σ̂
z
0|0)

End

For k ∈ J0, O − 1K
For i = 1 : N

Propagate the i-th sample through the model to obtain the predicted states zitk+1|tk = ftk+1
(zitk|tk)

End

Compute the estimated mean for the predicted state and observation: ẑtk+1|tk = N−1
∑N

i=1 z
i
tk+1|tk

ŷtk+1|tk = N−1
∑N

i=1 gtk+1
(zitk+1|tk)

and the associated covariance matrices:
Σ̂z
tk+1|tk = (N − 1)−1

∑N
i=1(z

i
tk+1|tk − ẑtk+1|tk)(z

i
tk+1|tk − ẑtk+1|tk)

T

Σ̂y
tk+1|tk = (N − 1)−1

∑N
i=1(gtk+1

(zitk+1|tk)− ŷtk+1|tk)(gtk+1
(zitk+1|tk)− ŷtk+1|tk)

T

Σ̂zy
tk+1|tk = (N − 1)−1

∑N
i=1(z

i
tk+1|tk − ẑtk+1|tk)(gtk+1

(zitk+1|tk)− ŷtk+1|tk)
T

Compute the Kalman gain:

Ktk+1
= Σ̂zy

tk+1|tk

(
Σ̂y
tk+1|tk

)−1

For i = 1 : N

Compute the updated state estimate for the i-th sample using Kalman formula:

ẑitk+1|tk+1
= ẑitk+1|tk +Ktk+1

(
ytk+1

− gtk+1
(zitk+1|tk)

)
End

Compute the updated estimate for the state and the covariance matrix:
ẑtk+1|tk+1

= N−1
∑N

i=1 ẑ
i
tk+1|tk+1

Σ̂z
tk+1|tk+1

= (N − 1)−1
∑N

i=1

(
zitk+1|tk+1

− ẑitk+1|tk+1

)(
zitk+1|tk+1

− ẑitk+1|tk+1

)T
End

Particle filters

The SMC methods presented so far are all extensions of the original Kalman approach developed in 1960. For

each of these methods, parameters and hidden states were propagated through the model allowing to compute

predicted values as well as covariance and correlation matrices, which served to update the estimates through

Chapter 3. Estimation of parameters and hidden states for a single individual 73

linear algebra formulas. The approach developed by particle filters is different: they aim at providing better

estimates using a population of particles where each is associated to a weight measuring its relevance with

respect to the experimental data. Here, a particle again designates a set of parameters and hidden states at a

given time.

Before describing the different particle filters, we first take a brief detour through importance sampling

[Robert and Casella, 1999]. If p is a probability distribution from which it is not possible to sample but

such that p(x) ∝ π(x) and π can easily be evaluated, and if xi ∼ q(x) are sampled from a proposal distri-

bution q whose support includes that of p, called the importance density, then a weighted approximation to

p is given by:

p(x) ≈
N∑
i=1

wiδ(x− xi) (3.68)

where the normalized weight of the i-th sample is given by:

wi ∝ π(xi)

q(xi)
. (3.69)

Importance sampling thus allows to evaluate integrals such as:

E (f(x)) =

∫
f(x)p(x)dx (3.70)

when it is not possible to easily sample from p. Instead, one samples from the importance density and rewrite

the last equation as:

E (f(x)) =

∫
f(x)

p(x)

q(x)
q(x)dx∫

p(x)

q(x)
q(x)dx

(3.71)

which can further be approximated as:

E (f(x)) ≈

1
N

∑N
i=1 f(x

i)
p(xi)

q(xi)

1
N

∑N
i=1

p(xi)

q(xi)

=

1
N

∑N
i=1 f(x

i)
π(xi)

q(xi)

1
N

∑N
i=1

π(xi)

q(xi)

. (3.72)

Defining the importance weight corresponding to the i-th sample:

wi =

π(xi)

q(xi)∑N
j=1

π(xj)

q(xj)

, (3.73)

Equation 3.72 yields the weighted formulation:

E (f(x)) ≈
N∑
i=1

wif(xi). (3.74)

Coming back to particle filters, the most standard one is known as sequential importance sampling (SIS) and

was first derived by Gordon et al. [1993]. It goes by other denominations such as, originally, survival of the

fittest.

74 Chapter 3. Estimation of parameters and hidden states for a single individual

The population of particles is comprised ofN samples, the i-th particle being zin = (θin, x
i
n) and its associated

weight wi
n. This provides a discrete weighted estimate of the posterior density at time step n:

p(zn|y1:n) ≈
N∑
i=1

wi
nδ(zn − zin). (3.75)

The weights wi
n are determined using importance sampling: at time step n, the importance weight for the

i-th particle is defined as:

wi
n ∝ p(zi1:n|y1:n)

q(zi1:n|y1:n)
(3.76)

where q is the importance density. How to choose q is of primary importance and will be detailed thereafter.

It can indeed be taken advantage of the Markov structure of the general state space framework considered

to define recursively the importance density and the corresponding weights at time step n. For this purpose,

the importance density q is decomposed using another importance density, called the importance transition

density and denoted by ρn(zn+1|zn). It allows to propagate the particle from time step n to n + 1. The

importance density can therefore be defined such that:

qn+1(z1:n+1|y1:n) = qn(z1:n|y1:n) ρn+1(zn+1|zn) = ρ0(z
0)

n∏
k=1

ρk+1(zk+1|zk). (3.77)

Furthermore, the properties of general SSMs for the transition and observation pdf together with Bayes’ rule

allows to formulate the following formula for Bayesian recursive estimation:

p(z1:n+1|y1:n+1) =
p (y1:n+1|z1:n+1) p (z1:n+1)

p (y1:n+1)

=
p (yn+1, y1:n|z1:n+1) p (z1:n+1)

p (yn+1, y1:n)

=
p (yn+1|y1:n, z1:n+1) p (y1:n|z1:n+1) p (z1:n+1)

p (yn+1|y1:n) p (y1:n)

=
p (yn+1|zn+1)

[
p (z1:n+1|y1:n) p (y1:n) p (z1:n+1)

−1
]
p (z1:n+1)

p (yn+1|y1:n) p (y1:n)

=
p (yn+1|zn+1) p (zn+1, z1:n|y1:n)

p (yn+1|y1:n)

=
p (yn+1|zn+1) p (zn+1|z1:n, y1:n) p (z1:n|y1:n)

p (yn+1|y1:n)

= p(z1:n|y1:n)
p(yn+1|zn+1) p(zn+1|zn)

p(yn+1|y1:n)
.

(3.78)

Hence, the expression of the weights can be simplified to:

wi
n+1 =

p(z1:n+1|y1:n+1)

qn+1(z1:n+1|y1:n+1)

=
p(z1:n|y1:n)

qn+1(z1:n|y1:n)
p(yn+1|zn+1) p(zn+1|zn)
p(yn+1|y1:n) ρn+1(zn+1|zn)

= wi
n

p(yn+1|zn+1) p(zn+1|zn)
p(yn+1|y1:n) ρn+1(zn+1|zn)

.

(3.79)

Chapter 3. Estimation of parameters and hidden states for a single individual 75

In the latter fraction, all elements can be easily calculated (the transition pdf and the observation pdf are

known from the model used, and ρn+1, the importance transition density, has been explicitely chosen) except

from the term p(y1:n+1|y1:n). However, since this term is the same for every particle, there is no need to

calculate it as the weights are further normalized as:

wi
n+1 =

w̃i
n+1

N∑
j=1

w̃j
n+1

(3.80)

where:

w̃i
n+1 = wi

n

p(zn+1|zn)
p(yn+1|y1:n) ρn+1(zn+1|zn)

. (3.81)

A well-known problem with the SIS algorithm is that of weight degeneracy [Doucet et al., 2001] first high-

lighted by Gordon et al. [1993]. For a sufficient number of observations, particle weights will differ by orders

of magnitude depending on the distance between the state of the particle and the observation since:

wi
n ∝

∏
k∈J1,OK|tk<n

p(ytk |x
i
tk
), (3.82)

and the variance of the weights will increase at every step. This suggests that a few particles (only one in

the extreme case) will carry the weight and all others will have importance weights close to zero. A simple

method to avoid this degeneracy is to resample particles from time to time with replacement probabilitieswi
n

for particle i. Several strategies have been designed for resampling: one is to resample particles at every time

step, another one is to resample only when some appropriate measure indicates to do so. One such indicator

is the effective sample size (ESS) [Kong et al., 1994], defined as:

neff =

(∑N
i=1w

i
n

)2
∑N

i=1 (w
i
n)

2
(3.83)

which simplifies to:

neff =
1∑N

i=1 (w
i
n)

2
(3.84)

with normalized weights. It is a measure of the effective number of particles; this is better seen with extreme

case scenarios: if all particles have the same weight 1/N they have the same importance and neff = N ,

whereas if only one particle has a non-zero weight 1, then neff = 1. Therefore, when the effective sample size

falls below a given threshold, one might decide to resample because the population is judged to be degenerate.

The resampling frequency has been discussed in [Kong et al., 1994], [Kitagawa, 1996] and more recently in

[Carmier et al., 2017].

The resampling procedure per se can be done in several ways. A comparison of the four main resampling

schemes (multinomial, residual, stratified and systematic) has been done by Douc and Cappe [2005]. It

is shown that in practical SMC applications, the different schemes provide comparable results, however,

systematic resampling is preferred because of its numerical efficiency and since it is based on a deterministic

algorithm.

76 Chapter 3. Estimation of parameters and hidden states for a single individual

Figure 3.1: Principle of resampling. Top: the filled circles represent the samples drawn
from the proposal distribution, their radii being proportional to the associated normalized
importance weights (the target distribution is plotted in solid line). Bottom: after resampling,
all points have the same importance weight, some of them being duplicated. Original image

from [Cappé et al., 2005].

Figure 3.2: Systematic sampling: the unit interval is divided into N intervals
((i−1)/N, i/N] and one sample is selected from each of them as U i = U + (i − 1)/N
where U ∼ U(0, 1/N) (only one random variable is therefore actually sampled). The U i’s
are represented with dashed lines. Indices are computed as Ii = Dinv(U i), where Dinv is
the inverse of the cumulative distribution function associated with the wi’s, i.e. Dinv(u) = i

for u ∈
(∑i−1

j=1 w
j ,
∑i

j=1 w
j
]

and the bounds of this interval are represented with dotted
lines. Original image from [Cappé et al., 2005].

Chapter 3. Estimation of parameters and hidden states for a single individual 77

The SIS algorithm combined to a resampling procedure constitutes the squential importance resampling (SIR)

algorithm, also known as the bootstrap filter. However, resampling from the discrete weighted estimate of

Equation 3.75 only duplicates particles and leads to the so-called sample impoverishment.

Regularized particle filter

To tackle this issue, LeGland et al. [1998] proposed to regularize the discrete weighted estimate by using a

Parzen–Rozenblatt kernel density estimator [Parzen, 1962]. The main idea is to smooth the discrete estimate

by replacing the Dirac measure with another that is able to interpolate between all particles. A kernel k is

an application that must be positive, bounded, symmetric, integrable and such that its integral on the whole

space must be 1. This ensures that the kernel density estimator is a pdf. If k is a kernel, it is worth noting

that: {
kh : Rd → R

x → 1
hdk(

x
h)

(3.85)

is also a kernel where h > 0 is a smoothing factor known as the bandwidth parameter. The regularized particle

filter (RPF) uses this idea of kernel smoothing to turn the discrete estimate 3.75 into an absolutely continuous

one. Details on the RPF can be found in [Musso and Oudjane, 1998], [Oudjane and Musso, 1999]. This

regularization takes place after the correction step of the filter and the nature of the kernels is usually either

Epanechnikov or Gaussian. The Epanechnikov kernel, which is nothing but a parabolic function, enjoys a

good reputation because it is the optimal kernel in terms of minimization of the asymptotic mean integrated

squared error [Epanechnikov, 1969], making it sometimes known as the optimal kernel. However, the gain

is rather small in practice [Wand and Jones, 1994] and owing to its very convenient mathematical properties,

its non-finite support, its more flexible variance and given how easy it is to sample from a normal distribution,

the kernels used in the following will all be Gaussian. The regularized estimator for the posterior pdf can

therefore be written as:

p̂(zn|y1:n) =
N∑
i=1

wi
nkhn

(
zn − zin

)
(3.86)

where: wi
n ∝ p(yn|zin)/

∑N
j=1 p(yn|z

j
n),

khn = fN (0,h2
n)
.

(3.87)

If p(yn|zn) is unknown, it can also be estimated using a kernel density approach [Chen, 2014]. This is the

main motivation behind the design of the convolution particle filter (CPF) [Rossi and Vila, 2006], [Campillo

and Rossi, 2006] which approximates:

p̂(zn+1|y1:n+1) =

∑N
i=1 khx

n+1
(zn+1 − zin+1|n)khy

n+1
(yn+1 − yin+1|n)∑N

i=1 khy
n+1

(yn+1 − yin+1|n)
(3.88)

with Parzen–Rozenblatt kernels k and bandwidths hxn and hyn for the particles and observations respectively.

Equation 3.86 is thus nothing but a mixture of normal distributions, and resampling from this estimate

78 Chapter 3. Estimation of parameters and hidden states for a single individual

amounts to a two-step procedure:

■ first the particles are resampled (when necessary in accordance with the effective sampling size) using

systematic resampling;

■ second, these particles are perturbated around the previous values and where the size of the perturbation

is controlled by the bandwidth hn, which reduces to sampling from a Gaussian kernel.

This procedure prevents the sample impoverishment problem since all particles generated in this manner are

unique. In practice, in order to avoid a computationally expensive copy of all the parameters and states for

the resampling, a list of indices (ji)i∈J1,NK can be computed so that if the list of particles before resampling

is (zi)i∈J1,NK, then (zj
i
)i∈J1,NK is such that particles are resampled with the adequate probability.

The choice of the bandwidth at every time step hn is rather important and has been discussed notably by

Musso et al. [2001]. They proposed an optimal bandwith parameter when the kernels are Gaussian so as to

minimize the mean integrated square error between the posterior distribution and the regularized weighted

empirical measure:

h2n = αh Σn =

(
4

N(d+ 2)

) 1
d+4

Σn. (3.89)

Since the true covariance matrix Σn is unknown, in practice it is replaced with an estimate Σ̂n based on the

weighted samples:
µ̂tk+1

=
∑N

i=1w
i
tk+1

zitk+1|tk ,

Σ̂tk+1
=

N

N − 1

N∑
i=1

wi
tk+1

(
ztk+1|tk − µ̂tk+1

)2
.

(3.90)

More recently, Carmier et al. [2017] suggested a different strategy for the choice of the bandwidth. Observing

that the RPF estimator exhibits a systematic deviation from the true posterior density increasing with the

number of observations, they proposed an adaptive procedure with a sequence αn = (n+ α−1
h)−1.

3.5.3 Particle Markov chain Monte Carlo

Estimation methods from the MCMC and SMC families have gained an increasing amount of attention

over the past two decades, in particular for the estimation of hidden states, and have been expecting to deal

with problems more complex and of higher dimensionality. The latter highlighted some of the limitations of

the MCMC and SMC methods, and this saw the birth of a new family of methods combining the previous

two, namely particle Markov chain Monte Carlo (PMCMC) methods that rely on their respective strengths

[Andrieu et al., 2010]. They aim at overcoming possible shortcomings of standard MCMC algorithms when

the proposal distributions to explore the state space are poorly chosen or if highly correlated variables are

updated independently. One of the key issues in MCMC methods is to manage to sample from a target

distribution, this is achieved in practice by sampling from a proposal distribution, which becomes all the

more crucial in the context of complex and high-dimensional models where such a choice might become

difficult: indeed, there is always a compromise to find between ease of implementation and integrating the

Chapter 3. Estimation of parameters and hidden states for a single individual 79

Algorithm 8 Regularized particle filter
For i = 1 : N

Initialize the i-th particle by sampling parameters and states from the prior distributions θi0 ∼ p(θ) and
xi0 ∼ p(x0) and setting its weight to wi = N−1

End
For k ∈ J0, O − 1K

For i = 1 : N
Propagate the i-th particle to estimate the predicted value zitk+1|tk ∼ p(ztk+1

|zitk|tk)
Sample the predicted observation yitk+1|tk ∼ p(ytk+1

|zitk+1|tk)

Compute the associated weight w̃i
tk+1

= wi
tk
p(ytk+1

|zitk+1|tk)

End
Normalize the weights:

wi
tk+1

=
w̃i
tk+1∑N

j=1 w̃
j
tk+1

Compute the effective sample size:

neff =
(∑N

i=1

(
wi
n

)2)−1

If neff < λN
Create the list of indices for the systematic resampling of particles with probability wi

n

Resample particles by replacing parameters and states according to the list of indices
Compute the updated estimate for the mean and covariance matrix: ẑtk+1|tk+1

= N−1
∑N

i=1 z
i
tk+1|tk+1

Σ̂z
tk+1|tk+1

= (N − 1)−1
∑N

i=1(z
i
tk+1|tk+1

− ẑtk+1|tk+1
)(zitk+1|tk+1

− ẑtk+1|tk+1
)T

For i = 1 : N
Regularize particles by adding a small perturbation according to:

zitk+1|tk+1
+= αhζ

i
n with ζin ∼ N (0, Σ̂z

tk+1|tk+1
)

Reset weight wi
tk+1

= 1/N
End

End
End

potentially complicated shape of the target distribution. PMCMC algorithms overcome these difficulties by

providing a general sampling method that requires no special design from the user. The depletion drawback

of the SMC methods, even though partially solved with the resampling and regularization steps, remains of

importance in particular because the samples obtained at early time steps will never be resampled. PMCMC

methods are not subject to depletion problems and do not necessitate that the SMC algorithms used inside

provide an accurate estimate of p(x1:T |y1→T) but simply a sample from an approximation of the latter.

The practice of using MCMC methods for updating blocks of states between available experimental data, as

in Algorithm 5, has its own limitations and it becomes difficult to sample from efficient proposal ditributions

as the observations become scarcer. A natural strategy to obtain such efficient proposal distributions is to use

80 Chapter 3. Estimation of parameters and hidden states for a single individual

an SMC method to sample from an approximation of p(x1:T |y1→T) at each iteration of an MCMC loop.

Assuming one is interested in sampling from p(θ, x1:T |y1→T). We recall that a standard approach to jointly

update θ and x1:T is the following decomposition:

q(θ⋆, x⋆1:T |θt, xt1:T) = q(θ⋆|θt) q(x⋆1:T |θ⋆). (3.91)

In the AMWG algorithm, we previously considered that sampling states directly from p(x1:T |θ, y1→T) was

not directly feasible, which is why we chose to sample from p(x1:T |θ) instead. Were it possible to sample

from the former distribution, the corresponding acceptance probability would be:

α =
p(θ⋆, x⋆1:T |y1→T)

p(θt, xt1:T |y1→T)

q(θt, xt1:T |θ⋆, x⋆)
q(θ⋆, x⋆1:T |θt, xt1:T)

=
p(θ⋆, x⋆1:T |y1→T)

p(θt, xt1:T |y1→T)

q(θt|θ⋆)
q(θ⋆|θt)

p(xt1:T |y1→T , θ
t)

p(x⋆1:T |y1→T , θ⋆)

=
p(x⋆1:T |y1→T , θ

⋆)

p(xt1:T |y1→T , θt)

p(θ⋆|y1→T)

p(θt|y1→T)

q(θt|θ⋆)
q(θ⋆|θt)

p(xt1:T |y1→T , θ
t)

p(x⋆1:T |y1→T , θ⋆)

=
p(θ⋆|y1→T)

p(θt|y1→T)

q(θt|θ⋆)
q(θ⋆|θt)

=
p(y1→T |θ⋆)
p(y1→T |θt)

p(θ⋆)

p(θt)

q(θt|θ⋆)
q(θt|θ⋆)

(3.92)

ultimately showing that such an MCMC scheme essentially targets the marginal density p(θ|y1→T) which

stems from its marginal Metropolis–Hastings (MMH) sampler, as already exploited in [Beaumont, 2003]

and [Andrieu and Roberts, 2009]. A reasonable approximation to obtaining samples from p(x1:T |θ, y1→T)

is to use an SMC algorithm within this MMH sampler, whence the appellation particle marginal Metropolis–

Hastings (PMMH) sampler. The adaptive scheme detailed in 3.40 is again used for efficient state space ex-

ploration and convergence and the proposal distribution for the parameters is again taken to be a multivariate

normal distribution with mean θt and covariance λtΣt. The whole algorithm is detailed in Algorithm 9.

What has not come under scrutiny yet is the choice of the SMC algorithm used at each MCMC iteration. It

must be sufficiently accurate to provide reliable samples from the target distribution p(x1:T |y1→T , θ), but

one must not forget that such an SMC procedure is run at every iteration of the Markov chain, and the overall

procedure can quickly become extremely expensive in terms of computing time and memory, in particular

when dealing with complicated models that take a lot of time to simulate. This question will be the subject

of a case study and will partly be answered in Chapter 6.

PMCMC algorithms continue to be of high interest in applications dealing with complex SSMs, large

amounts of data and when the posterior distributions is highly multimodal. Some extensions have recently

been proposed, such as interacting PMCMC algorithms [Rainforth et al., 2016], [Mingas et al., 2017] or

by introducing new latent variables [Fearnhead and Meligkotsidou, 2016] for enhanced mixing rates. Their

parallelization on CPU, GPU or field programmable gate arrays (FPGAs) is of primary importance given

their computing cost.

Chapter 3. Estimation of parameters and hidden states for a single individual 81

Algorithm 9 Particle marginal Metropolis–Hastings algorithm

Choose initial values for the parameters θ0

Run an SMC algorithm targeting p(x1:T |y1→T , θ
0) and sample x01:T ∼ p̂(x1:T |y1→T , θ

0)

Initialize the adaptive schemes variables:

γ0 = 1/2

µ0 = θ0

Σ0 = Σ0

λ0 = 2.382/nθ

.

For t = 0 :M − 1

Sample θ⋆ ∼ N (θt, λtΣt)

Run an SMC algorithm targeting p(x1:T |y1→T , θ
⋆) and sample x⋆1:T ∼ p̂(x1:T |y1→T , θ

⋆)

Compute the acceptance probability:

α = 1 ∧ p(y1→T |θ⋆)
p(y1→T |θt)

p(θ⋆)

p(θt)

q(θt|θ⋆)
q(θt|θ⋆)

Set
(
θt+1, xt+1

1:T

)
= (θ⋆, x⋆1:T) with probability α

Update the adaptive scheme variables:

γt+1 = (t+ 1)−1

µt+1 = µt + γt+1(zt+1 − µt)

Σt+1 = Σt + γt+1
[
(zt+1 − µt+1)(zt+1 − µt+1)′ − Σt

]
λt+1 = λt exp

(
γt+1[α

(
(θ⋆, x⋆1:T), (θ

t, xt1:T)
)
− α⋆]

)
With a burn-in period of B, compute the estimated mean and covariance for the parameters:

θ̂ = (M −B)−1
∑M

t=B+1 θ
t

Σ̂θ = (M −B − 1)−1
∑M

t=B+1(θ
t − θ̂)(θt − θ̂)T

and the hidden states:
x̂1:T = (M −B)−1

∑M
t=B+1 x

t
1:T

Σ̂x = (M −B − 1)−1
∑M

t=B+1(x
t
1:T − x̂1:T)(x

t
1:T − x̂1:T)

T

End

Chapter 4

Estimation of parameters within population

models

P arameter inference within a population context requires different methods of estimation taking

into account the intraindividual and interindividual variabilities of plants, as the estimation methods

presented in the previous chapter for a single individual will not be sufficient to explain them. Bayesian

hierarchical parameter estimation of non-linear models have gained some attention over the last decade and

this has been witnessed in the field of plants, among others, for different purposes.

Schneider et al. [2006] used them in the context of competition between different individuals in populations

of Arabidopsis thaliana to estimate functions called competition kernels which describe the dynamics of the

neighbouring effects, thereby highlighting their relevance for the analysis of complex spatially dependent

data. Bayesian hierarchical models appear particularly suitable for modelling spatial patterns of tree density

[Mortier et al., 2007] as they notably allow to decompose complex biological data as a series of simpler

conditional models, since it is a crucial issue in spatial modelling to take into account possible autocorrelation

between the different observations. Still in the context of georeferenced data sets, they have also been used

for the prediction of dependent non-Gaussian spatial fields [Chagneau et al., 2011]. Boone et al. [2008]

used a Bayesian hierarchical modelling regression model in order to locate the QTL mapping associated with

cotyledon opening in a population of Arabidopsis thaliana. Patrick et al. [2009] highlighted the utility of

such a framework on a model of photosynthesis to leaf gas exchange for which the photosynthetic parameters

were estimated. They were able to highlight the importance of the variations related to plants and species and

showed that such a variability should be accounted for when using this kind of model for either prediction

or inference. More recently, in the context of decentralized participatory plant breeding where different

farms perform a selection experiment on its own with different designs, Rivière et al. [2015] showed that a

Bayesian hierarchical modelling approach could lead to reliable mean comparisons between farms, which in

practice allows for the evaluation of a wide range of diversity in the population of farms. Although they used

a linear-bilinear model, Jarquin et al. [2016] took advantage of the Bayesian hierarchical framework for the

evaluation of genotypic performance in different environmental conditions and the interpretation of genotype

83

84 Chapter 4. Estimation of parameters within population models

by environment interaction for maize, which enabled them to use plant breeding data from different years

and thus highlight genotype by environment patterns. Finally, Wasson et al. [2017] utilized this approach on

field data for wheat genotypes to fit a soil model for the roots. They managed to obtain profile-specific traits

representative of a genotype which could be used to link phenotypic traits with specific genotypes and further

allow breeders to select the most appropriate root system for sustainable intensification and increased yields.

All these works show the growing interest for this kind of model for parameter inference in the context of

genotypic differentiation for plant growth models and the importance to study and understand them.

Some results originating from the frequentist point of view for population models and that were obtained

in particular in the context of plant growth models are presented in Section 4.1. We then move on to

introducing the Bayesian hierarchical model that will be used in this thesis from Section 4.2. In particular,

how in the Bayesian paradigm the full conditional distributions of population parameters can be calculated

as known statistical distributions by choosing appropriate prior distributions for these parameters (Sections

4.2.1 and 4.2.2). The case of linear models is considered before that of non-linear ones in Section 4.2.3

for which it is not possible to easily sample the individual parameters and alternative methods need to be

devised (Section 4.2.4). The full adaptive hybrid Metropolis–Hastings–Gibbs algorithm that will be used for

non-linear hierarchical models is finally presented in Section 4.2.5.

4.1 Frequentist approach

Many frequentist estimation methods for the estimation of mixed effect models have been proposed in the

literature since the beginning of the 1980s. Notably, this kind of approach has already been applied to plant

growth models, see [Baey, 2014] for instance. The first methods were based on the isolated estimation of

each individual parameter set θi [Davidian and Giltinan, 1993]. This can be done by applying (generalized)

least squares methods to each individual which translates in the population framework to:

θGLS
i = arg min

θi∈Θ
(yi − hi(θi))

T (τ−1Ωi)
−1 (yi − hi(θi)) . (4.1)

A standard approach to non-linear problems consists in linearizing the function hij for j ∈ J1, niK and apply

methods available in the linear case. Beal and Sheiner [1982] proposed to use a first-order Taylor develop-

ment allowing to express the conditional distribution p(yi|θi, τ) as a multivariate normal distribution with

mean and covariance matrix being linear functions of θi, and since the population distribution p(θi|η,Σ) is

also normal, the likelihood of the model become analytically tractable. However, this approximation proved

to yield unsatisfying and biased results [Vonesh, 1992], [Davidian and Giltinan, 2003]. An improvement

was suggested by Lindstrom and Bates [1990] where the Taylor development was performed around the

best unbiased linear predictor in the case of the linear model. Although this method brought better estim-

ates [Vonesh, 1992], it could still lead to mediocre results when the normal approximation hypothesis was

aberrant.

Chapter 4. Estimation of parameters within population models 85

In the face of the difficulties encountered with linear approximations, so-called exact methods were developed.

Their main advantage is that they rely on numerical approximations of exact expressions and not on analyt-

ical expressions of the model. This was the case of Gauss quadrature approximations of the likelihood or

importance sampling based methods [Pinheiro and Bates, 1995], even though these remained computation-

ally costly and time-consuming. The majority of modern frequentist estimation methods for population

models are now based on the Expectation–Maximization algorithm [Dempster et al., 1977], [Foulley, 2002].

It is particularly adapted to the subject of genotypic differentiation, as it has notably been used for the study

of variations of residual and genetic variances in animal breeding [Foulley and Quaas, 1995]. It is an iterative

algorithm aiming at maximizing the likelihood of a model with missing data, where the latter here represents

the individual parameters. Denoting the whole population parameters by Φ = (η,Σ, τ), each iteration is

divided into two main steps:

■ the first one deals with the calculation of the conditional expectation of the log-likelihood of the

complete data under the law of missing data given the observations at the current step:

Q(Φ,Φt) = E(log p(y, (θi)i∈J1,NK|Φ)|(yi)i∈J1,NK,Φt), (4.2)

■ the second one aims at maximizing this conditional expectation to update the value of the parameters

at iteration t+ 1:

Φt+1 = arg max
θ

Q(Φ,Φt). (4.3)

The EM algorithm notably ensures that the value of the log-likelihood is increased at each iteration. Since

the E step requires the calculation of a conditional expectation that is usually intractable, it must therefore

be approximated. This can be done via either an MCMC algorithm (MCEM) [McCulloch, 1994] or via a

stochastic approximation method (SAEM) [Delyon et al., 1999], [Kuhn and Lavielle, 2005] where samples

from previous EM iterations are reused with a weight depending on the distance between the iteration of

the reused sample and the current one. These two approaches were compared by Baey et al. [2013] who

found that they both yield satisfactory and comparable results, even though the SAEM algorithm was more

efficient from a computational point of view. The SAEM algorithm was notably used in the context of

restricted maximum likelihood method for the estimation of variance parameters in non-linear mixed effects

models [Meza et al., 2007].

4.2 Bayesian approach

It is interesting to note that, by introducing the prior in the Q function of the EM algorithm (i.e.

p(y, (θi)i∈J1,NK|Φ) is replaced by p(y, (θi)i∈J1,NK|Φ)p(Φ)), we straightforwardly get an algorithm to obtain

the maximum a posteriori estimate. However, this approach does not fully qualify as Bayesian since it does

not allow to derive the full posterior distribution.

86 Chapter 4. Estimation of parameters within population models

The first attempt to estimate parameters within the population framework and a Bayesian paradigm can

probably be traced back to Gelfand and Smith [1990]. The case of linear models was first addressed for two

main reasons: first such models were still en vogue in many scientific fields, and second as will be detailed later

it is possible to derive analytical expressions for the full conditional distributions of all the random variables

of interest, making the implementation of an MCMC algorithm straightforward.

In the Bayesian approach, a third stage is added to the hierarchical model where prior distributions are given

to the population parameters. The hierarchical model introduced in Chapter 1 now reads:

First stage: yi ∼ N (hi(θi), τ
−1Ωi)

Second stage: θi ∼ N (η,Σ)

η ∼ p(η)

Third stage: Σ ∼ p(Σ)

τ ∼ p(τ)

(4.4)

and adequate prior distributions for the population mean p(η), covariance p(Σ) and precision p(τ) remain

to be chosen. The objective is to estimate both the population parameters Φ = (η,Σ, τ) and the indi-

vidual parameters (θi)1:N . Within such models, the standard Bayesian estimation of the posterior density

for the population parameters p(Φ|y1:N) cannot be performed straightforwardly, precisely because of the

hierarchical formulation. Furthermore, using Bayes’ rule,

p(Φ|y1:N) =
p(y1:N |Φ) p(Φ)

p(y1:N)
(4.5)

and from Equation 4.4:

p(y1:N |Φ) =
N∏
i=1

p(yi|Φ) =
N∏
i=1

∫
θi

p(yi|θi) p(θi|η,Σ)dθi (4.6)

one is again confronted to the calculation of complex and intractable integrals. The Gibbs sampler introduced

in Section 3.5.1 overcome this difficulty and is particularly convenient in the context of hierarchical models:

indeed, their formulation allows for simple analytical expressions of most of the required full conditional

distributions from which to sample.

4.2.1 Full conditional distributions

The power and simplicity of the Gibbs sampler is first demonstrated on a hierarchical normal-linear model

introduced by Lindley and Smith [1972]. The output of the model is given as a linear function of the

parameters and conditionally independent homoscedastic errors are assumed. The first stage of the model

can therefore be written as:

yi ∼ N (Xiθi, τ
−1Ini) (4.7)

Chapter 4. Estimation of parameters within population models 87

where Xi ∈ Md(R) and where we recall that the problem dimension d here is that of the number of estim-

ated parameters dθ. With the objective to estimate the posterior density of all the parameters

p(θ1:N , η,Σ, τ |y1:N) via the Gibbs sampler, it is required to calculate all the full conditional distributions:

p(θi|θj ̸=i, η,Σ, τ, y1:N), for i ∈ J1, NK,
p(η|θ1:N ,Σ, τ, y1:N),

p(Σ|θ1:N , η, τ, y1:N),

p(τ |θ1:N , η,Σ, y1:N).

(4.8)

For the sake of simplicity, the full conditional distribution of random variable z conditional to all other

variables will be abbreviated as p(z| . . .). The joint distribution of the model is:

p(y1:N , θ1:N , η,Σ, τ) =

N∏
i=1

p(yi|Xiθi, τ
−1Ini)

N∏
i=1

p(θi|η,Σ) p(η) p(Σ) p(τ). (4.9)

To obtain the full conditional distribution of a given random variable z, it suffices to use Bayes’ formula

p(z| . . .) = p(. . .)−1p(z, . . .), and collecting all terms involving z in p(z, . . .) will therefore lead to the

desired distribution. This yields:

p(θi| . . .) ∝θi p(yi|Xiθi, τ
−1Ini) p(θi|η,Σ) = fN (yi, Xiθi, τ

−1Ini) fN (θi, η,Σ)

p(η| . . .) ∝η
∏N

i=1 p(θi|η,Σ) p(η) =
∏N

i=1 fN (θi, η,Σ) p(η)

p(Σ| . . .) ∝Σ
∏N

i=1 p(θi|η,Σ) p(Σ) =
∏N

i=1 fN (θi, η,Σ) p(Σ)

p(τ | . . .) ∝τ
∏N

i=1 p(yi|hi(θi), τ−1Ωi) p(τ) =
∏N

i=1 fN (yi, Xiθi, τ
−1Ini) p(τ)

(4.10)

and it can be shown that the full conditional distribution for the individual parameters can be put under the

form:
θi ∼ N (η⋆i ,Σ

⋆
i),

η⋆i =
(
τXT

i Xi +Σ−1
)−1 (

τXT
i yi +Σ−1η

)
,

Σ⋆
i =

(
τXT

i Xi +Σ−1
)−1

.

(4.11)

4.2.2 Choice of the prior distributions

So far, the choice of the prior distributions has not been discussed but Equation 4.10 makes it appear of

crucial importance to obtain an analytical expression of the full conditional distributions. Adequate choices

of the priors arise from the work of Raiffa and Schlaifer [1961] on what they coined conjugate priors. Going

back to Bayes’ theorem with random variables z and observations y:

p(z|y) = p(y|z) p(z)
p(y)

=
p(y|z) p(z)∫
p(y|z)p(z)dz

, (4.12)

it is clear that different choices of the prior distribution p(z) will lead to both different analytical expressions

for p(y|z) p(z) and more or less difficult integral p(y). In many situations and given the form of the

likelihood, which is typically given by the model considered, an adequate choice of the prior distribution

88 Chapter 4. Estimation of parameters within population models

p(z) will yield a posterior distribution p(z|y) that is in the same family of probability distribution as the

prior. This framework can be applied to the full conditional distributions of the population parameters. For

the mean η, the likelihood takes the form of a multivariate normal distribution with known covariance Σ;

in this case, the conjugate prior for η is also a multivariate normal distribution. For the covariance matrix Σ,

the likelihood is a multivariate normal distribution, but this time it is the mean η that is known instead of

the covariance; the conjugate prior for Σ is then an inverse Wishart distribution, or equivalently, the prior

for the inverse of the covariance matrix Σ−1 is a Wishart distribution. The use of Σ−1 will be preferred in

the following for easier and more conventional notations. Finally, as far as the precision τ is concerned, the

likelihood takes the form of a univariate normal distribution with known mean; the conjugate prior for τ is

therefore a Gamma distribution. This leads us to the final formulation of the hierarchical model:

First stage: yi ∼ N (hi(θi), τ
−1Ωi)

Second stage: θi ∼ N (η,Σ)

η ∼ N (λ,Λ)

Third stage: Σ−1 ∼ W(q,Ψ)

τ ∼ G(α, β)

(4.13)

where N , W and G denote the normal, Wishart and Gamma distributions respectively. Some precisions

shall be given on these prior distributions. The multivariate normal distribution is a well known probability

distribution, parameterized by its mean λ and its covariance matrix Λ. Its probability density function is

nothing but:

fN (x, λ,Λ) = |2πΛ|−
1
2 exp

(
−1

2
(x− λ)TΛ−1(x− λ)

)
. (4.14)

The Gamma distribution admits two main parameterizations, with shape and scale (k, θ) or shape and rate (or

inverse scale) (α, β) = (k, θ−1). The former seems slightly more standard in the statistics community (it is

notably used in the Julia package Distributions¹), although in the context of hierarchical models and Bayesian

update the latter is always preferrably used, probably because it yields a clearer update of the parameters. Its

probability density function reads:

fG(x, α, β) = xα−1βαΓ(α)−1 exp(−βx) (4.15)

and its mean and variance are given by:
E (X) =

α

β
,

V (X) =
α

β2
.

(4.16)

The Wishart distribution can finally be seen as a multivariate generalization of the Gamma distribution. It

arose from the study of the scatter matrix of normal variables [Wishart, 1928]. More precisely, if

Xi ∼ N (0,Ψ) where Ψ ∈ Md(R), let X = [X1, . . . , Xq] be the matrix made of all the samples Xi and

S = XTX be the scatter matrix, then S ∼ Wd(q,Ψ), where q is called the number of degrees of freedom.

¹https://github.com/JuliaStats/Distributions.jl

Chapter 4. Estimation of parameters within population models 89

Its probability density function is defined on S+
d (R) as:

fWd
(X, q,Ψ) = 2−

qd
2 |Ψ|−

q
2Γd

(q
2

)−1
|X|

q−d−1
2 e−

1
2
tr(Ψ−1X) (4.17)

and the mean and variance for each of its components are: E (Xij) = qΨij ,

V (Xij) = q(Ψ2
ij +ΨiiΨjj).

(4.18)

In the following, we often simplify Wd(q,Ψ) as W(q,Ψ). The inverse Wishart distribution is such that if

X ∼ W(q,Ψ), then X−1 ∼ IW(q,Ψ−1), so that for the population covariance Σ ∼ IW(q,Ψ−1).

The parameters of the prior distributions are called hyperparameters. In this particular case, these prior dis-

tributions therefore do not arise because they represent some prior knowledge on the population parameters;

rather, they are used for convenience and to obtain analytical expressions of the full conditional distribu-

tions for a straightforward sampling in a Gibbs framework. It is, however, possible and desirable to tune

the parameters of these distributions to integrate reasonable prior knowledge: the means and variances of

such distributions should be used to choose the parameters of these distributions that provide distributions

centered on the regions of interest as will be discussed in Chapter 8.

Some care must be taken for the choice of the Gamma and Wishart hyperparameters. The multiplicative

observation noise in plant growth models is expected to be such that the standard deviation is of the order

of σ = 0.1, which is equivalent to a precision of τ = 100. The hyperparameters of the Gamma distribution

can be expressed as functions of the mean m and standard deviation s, from Equation 4.15:
α =

m2

s2
,

β =
m

s2
.

(4.19)

On Figure 4.1, several Gamma distributions are plotted with mean 100 and different standard deviations.

Informative Gamma priors such as the one with s = 10 resemble normal distributions, but non-informative

Gamma priors such as the one with s = 200 does not look like a priori information one would like to

0 25 50 75 100 125 150 175 200

x

0.00

0.01

0.02

0.03

0.04

0.05

y

σ= 10
σ= 20
σ= 50
σ= 100
σ= 200

Figure 4.1: Probability density functions of several Gamma distributions with mean 100 and
different standard deviations ranging from s = 10 to s = 200.

90 Chapter 4. Estimation of parameters within population models

incorporate into the precision distribution.

Taking the example of a 2-dimensional Wishart distribution W(3,Ψ) without correlation in Ψ, it is shown

on Figure 4.2 how the individual components of the sampled matrices behave. Assuming a diagonal inverse

covariance matrix Σ−1 ∼ W(q,Ψ), the parameters of the Wishart distribution can be expressed in terms of

expected means (mi)1:p and standard deviations (si)1:p of the diagonal components of the inverse covariance

matrix:
q = 2

m2
i

s2i
,

Ψii =
s2i
2mi

.

(4.20)

Maybe unsurprisingly since the Gamma distribution is a particular case of a Wishart distribution, the same

conclusions apply: strongly non-informative priors with very high variances lead to undesirable pdf shapes.

The full conditional distributions of the population parameters can therefore be calculated (see Appendix A).

We find that for the population mean:
η ∼ N (·|λ⋆,Λ⋆),

λ⋆ = (NΣ−1 + Λ−1)−1(NΣ−1θ⋆ + Λ−1λ),

Λ⋆ = (NΣ−1 + Λ−1)−1,

(4.21)

for the population covariance matrix:
Σ−1 ∼ W(·|q⋆,Ψ⋆),

q⋆ = q +N,

Ψ⋆ = (Ψ−1 +
∑N

i=1(θi − η)(θi − η)T)−1,

(4.22)

and finally for the population precision:
τ ∼ G(·|α⋆, β⋆),

α⋆ = α+ ntot/2,

β⋆ = β + 1
2

∑N
i=1(yi − hi(θi))

TΩ−1
i (yi − hi(θi)).

(4.23)

Equation 4.11 and Equations (4.21)–(4.23) therefore provide all the necessary material for the implementa-

tion of a Gibbs sampler.

In order to robustify the model to outlier individuals, Wakefield et al. [1994] proposed to replace the popu-

lation normal assumption with a Student distribution. They also suggested that it be possible to replace the

first stage of the model with a Student law in order to better deal with data outliers. Such an extension with

fixed degrees of freedom for the Student’s distribution ν and covariance matrix ν/(ν − 2)Σ is straightfor-

ward since such a distribution can be expressed as a scale mixture of normals [Andrews and Mallows, 1974],

[Racine-Poon, 1992].

Chapter 4. Estimation of parameters within population models 91

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
m11

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

f(m
11
)

s= 0.10 m
s= 0.20 m
s= 0.50 m
s= 1.00 m
s= 1.40 m

−4 −3 −2 −1 0 1 2 3 4

m12

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

f(m
12
)

s= 0.10 m
s= 0.20 m
s= 0.50 m
s= 1.00 m
s= 1.40 m

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

m22

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

f(m
22
)

s= 0.10 m
s= 0.20 m
s= 0.50 m
s= 1.00 m
s= 1.40 m

Figure 4.2: Histograms corresponding to the pdfs of the first diagonal component m11,
the off-diagonal component m12 and the second diagonal component m22 obtained from

N = 100, 000 samples of the Wishart distribution W (3, diag(1, 10)).

4.2.3 Non-linear models

When dealing with non-linear hierarchical models, the full conditional distribution of the individual para-

meters cannot be analytically expressed anymore. Indeed, going back to the general formulation with multi-

plicative normal noise:

p(θi| . . .) ∝θi p(yi|hi(θi), τ−1diag{hi(θi)2}) p(θi|η,Σ)
= fN (yi, hi(θi), τ

−1diag{hi(θi)2}) fN (θi, η,Σ).
(4.24)

92 Chapter 4. Estimation of parameters within population models

Algorithm 10 Gibbs sampler for linear population models

Choose values for the hyperparameters (λ,Λ), (q,Ψ) and (α, β).
For t = 1 :M

For i = 1 : N
Update η⋆i and Σ⋆

i according to Equation 4.11
Sample individual parameters θti ∼ N (η⋆i ,Σ

⋆
i)

End
Update λ⋆ and Λ⋆ according to Equation 4.21
Sample population mean ηt ∼ N (λ⋆,Λ⋆)
Update q⋆ and Ψ⋆ according to Equation 4.22
Sample population covariance Σt ∼ W(q⋆,Ψ⋆)
Update α⋆ and β⋆ according to Equation 4.23
Sample population precision τ t ∼ G(α⋆, β⋆)

End

With complex models, such as the GreenLab plant growth model, finding the analytical expression of

p(θi| . . .) as a known distribution from which one could sample is not feasible. Several MCMC strategies

have therefore been designed to overcome this issue and sample the individual-specific parameters θi in the

case of non-linear models. Wakefield et al. [1994] sample single components of the θi vectors with the

method of extended ratio-of-uniforms [Wakefield et al., 1991]. This method not only involved too many

maximizations per random variable generation, but it was also showed [Bennett et al., 1996] that the con-

vergence can be improved if all the components of the parameters vector θi are updated simultaneously

instead of component-wise. In the case of a generalized linear model, Zeger and Karim [1991] tried rejec-

tion sampling from an approximate rejection envelope but their approach was deemed unreliable because of

the potential negative effects of a non-dominating envelope. Gilks et al. [1995] used a univariate adaptive

rejection sampling scheme in the context of non-linear hierarchical models, the rejection sampling method

originating from Ripley [1987]. For an additive observation model, the likelihood for individual i would

read:

ℓi(θi, τ) = p(yi|θi, τ) =
ni∏
j=1

(τ
2π

) 1
2 exp

(
−τ
2
(yij − hij(θi))

2
)

(4.25)

and the corresponding log-likelihood, ignoring the terms not depending on θi:

log ℓi(θi, τ) = −τ
2

ni∑
j=1

(yij − hij(θi))
2 . (4.26)

It is assumed that this function can be maximized when τ is fixed, the maximum likelihood estimate (MLE)

is therefore:

θ̂i = arg max log ℓi(θi, τ). (4.27)

Bennett et al. [1996] proposed that the rejection envelope for the sampling of the individual parameters be

p(θi|η,Σ), since:

p(θi| . . .) ∝ ℓi(θi, τ) p(θi|η,Σ) (4.28)

the rejection sampling scheme takes the form given by Algorithm 11.

Chapter 4. Estimation of parameters within population models 93

Algorithm 11 Accept-reject sampling scheme for individual parameters
while A == False

Sample θ⋆i ∼ N (θi|η,Σ)
Sample u ∼ U(0, 1)

If u ≤ ℓi(θi, τ)

ℓi(θ̂i, τ)
Set θti = θ⋆i and A = True

End
End while

The main advantage of this procedure is, as can be seen from Equation 4.26, that θ̂i does not depend on τ

and needs to be evaluated only once prior to the MCMC run. Generation of the individual samples from a

normal distribution is also straightforward: overall this method is simple and costless.

However, when adopting a multiplicative observation model, as was chosen for the application of population

models in this work, the likelihood becomes:

ℓi(θi, τ) = p(yi|θi, τ) =
ni∏
j=1

(
τ

2πhij(θi)2

) 1
2

exp

(
−τ
2

(
yij − hij(θi)

hij(θi)

)2
)

(4.29)

and the corresponding log-likelihood, again ignoring the terms not depending on θi, reads:

log ℓi(θi, τ) = −
ni∑
j=1

log (hij(θi))−
τ

2

ni∑
j=1

(
yij − hij(θi)

hij(θi)

)2

(4.30)

and the maximization of the log-likelihood becomes not only more complicated but now depends on τ ,

which prevents from performing it only once.

4.2.4 Metropolis–Hastings for sampling the individual parameters

Another family of MCMC methods for sampling the individual parameters involves using a Metropolis–

Hastings step. Hybrid MCMC algorithms where some parameters are updated from full conditional dis-

tributions by Gibbs sampling and some others with a Metropolis–Hastings step are discussed in [Tierney,

1994]. A natural choice is to use a random walk procedure with a multivariate normal proposal distribution

so that parameters are updated altogether. Some popular choices are mentioned in the following, a first one

being:

θ⋆i ∼ N (θti , c Iθ̂i) (4.31)

where c > 0 is a constant and Iθ̂i is the information matrix evaluated in the MLE estimate for individual i:

Iθ̂i = −
[
∂2 log ℓi(θi, τ)

∂θi∂θTi

]−1

θi=θ̂i

. (4.32)

However, this implies that the covariance matrix stays constant all along the MCMC algorithm. Other

possibilities include an indepedence sampler where this time the mean of the proposal distribution is fixed

94 Chapter 4. Estimation of parameters within population models

to the MLE estimate:

θ⋆i ∼ N

(
θ̂i,−c

[
∂2 log ℓi(θi, τ)

∂θi∂θTi

]−1

θi=θ̂i

)
(4.33)

or, by approximating the likelihood as ℓi(θi, τ) ≈ N (θ̂i, Iθ̂i) and sampling from the associated approximate

conditional distribution:

θ⋆i ∼ N (θ̂i − Iθ̂i(Iθ̂i +Σ)−1(θ̂i − η), (I−1

θ̂i
+Σ−1)−1). (4.34)

A comparison of the different strategies was made by Bennett et al. [1996]. The Metropolis–Hastings were

found to be much more computationally efficient than the rejection methods, with a single evaluation of

p(θi| . . .) per MCMC iteration compared to methods where sampling must be done until acceptance or

where maximizations are involved. The Metropolis–Hastings methods based on the proposal distributions

presented in Equations 4.33 and 4.34 were found to perform moderately well compared to that based on

Equation 4.32, although the latter suffered from drawbacks such as tuning the algorithm so as to find the

optimal value for the constant c.

4.2.5 Individual adaptive scheme

Because plant growth models are complex and as a lot of data per individual is involved in the application

of Chapter 8, a computationally efficient approach was chosen. To overcome the state space exploration

issues raised by Bennett et al. [1996], an adaptive scheme as presented in Section 3.5.1 was used to ensure

an automatic tuning of the covariance matrix in the proposal distribution, individual by individual. The

parameters of the adaptive scheme relative to individual i at iteration t will be denoted γti , µ
t
i, Σ

t
i and λti.

In particular, there should be no confusion between the individual covariance matrix for the Metropolis–

Hastings step of individual i, Σt
i, and the population covariance matrix Σt. The full conditional distribution

of the individual parameters provide the acceptance probability for the Metropolis–Hastings step:

α = 1 ∧ p(yi|θ⋆i , τ)
p(yi|θti , τ)

p(θ⋆i |η,Σ)
p(θti |η,Σ)

. (4.35)

Initial values for the individual parameters were found by running a GLS algorithm (see Section 3.4) for each

individual, therefore providing a reasonable first value for the MCMC chain instead of randomly sampling

from the population distributionN (η,Σ). The final algorithm used in the context of non-linear hierarchical

models for the GreenLab model is presented in Algorithm 12.

Chapter 4. Estimation of parameters within population models 95

Algorithm 12 Adaptive hybrid Metropolis–Hastings–Gibbs algorithm for non-linear hierarchical models
Choose values for the population mean hyperparameters λ, Λ

Sample η0 ∼ N (λ,Λ)

Choose values for the population covariance hyperparameters q, Ψ

Sample Σ−1, 0 ∼ W(q,Ψ)

Choose values for the population precision hyperparameters α, β

Sample τ0 ∼ G(α, β)
For i = 1 : N

Compute θ0i = θGLS
i

Initialize individual adaptive scheme parameters:

γ0i = 1/2

µ0i = θ0i

Σ0
i = Σ0

λ0i = 2.382/nθ

.

End

For t = 0 :M − 1

For i = 1 : N

Sample θ⋆ ∼ N (θti , λ
t
iΣ

t
i)

Compute hi(θ⋆i) via model simulation

Compute the acceptance probability:

αi = 1 ∧ p(yi|hi(θ⋆i , τ t)
p(yi|hi(θti , τ t)

p(θ⋆i |ηt,Σt)

p(θti |ηt,Σt)

Set θt+1
i = θ⋆i with probability αi, set θt+1

i = θti otherwise

Update parameters of the individual adaptive scheme:

γt+1
i = (t+ 1)−1

µt+1
i = µti + γt+1

i (θt+1
i − µti)

Σt+1
i = Σt

i + γt+1
i

[
(θt+1

i − µt+1
i)(θt+1

i − µt+1
i)T − Σt

i

]
λt+1
i = λti exp

(
γt+1
i [αi − α⋆]

)
.

End

Update λ⋆ and Λ⋆ according to Equation 4.21

Sample population mean ηt+1 ∼ N (λ⋆,Λ⋆)

Update q⋆ and Ψ⋆ according to Equation 4.22

Sample population inverse covariance Σ−1, t+1 ∼ W(q⋆,Ψ⋆)

Update α⋆ and β⋆ according to Equation 4.23

Sample population precision τ t+1 ∼ G(α⋆, β⋆)

End

Chapter 5

Adopting Julia for statistical inference

T he mathematical framework of general state-space models introduced in Chapter 1 is particu-

larly suited to the study of plant growth models. Incidentally, it was shown in Chapter 2 how two

main plant growth models for the study of Beta vulgaris and Arabidopsis thaliana could be formulated as such,

with each its peculiarities: the first one has process noise originating from environmental uncertainty, the

second one has vector observations and will be used within a population context. The calibration of these

models require specific algorithms, ranging from sensitivity analysis to estimation of parameters and possibly

hidden states. In both cases, the latter are envisioned within a Bayesian paradigm and are based on sequential

Monte Carlo or Markov chain Monte Carlo methods.

Therefore, many issues need to be resolved practically and to answer the statistical issues that we face, we

need to be able to:

■ efficiently simulate plant growth models formulated as complex state space models;

■ adopt a population approach so as to evidence the genotypic differentiation existing within a plant

population;

■ use complex sensitivity analysis and estimation methods in the case of both an individual and a popu-

lation approach;

■ do all the above mentioned tasks efficiently: since we are dealing with large amounts of data and that

the estimation algorithms often require either a large number of particles or iterations, the computing

time and the memory used quickly skyrocket, rendering such procedures unusable in practice.

Several libraries or software for statistical inference in such state space models have been proposed. Some of

the most renowned examples include Stan [Carpenter et al., 2017], Bugs [Lunn et al., 2000], [Lunn et al.,

2009], [Lunn et al., 2012], Jags [Plummer, 2003] and LibBi [Murray, 2015] just to name a few. However, all

these tools do not gather all the functionalities and requirements that are usually needed in the model design

process, in terms of both model implementation ease and statistical methods necessary for a proper analysis

and evaluation methodology referred to as good modelling practice in [Van Waveren et al., 1999].

97

98 Chapter 5. Adopting Julia for statistical inference

Previous works in order to achieve these targets already existed in the Biomathematics team. Two versions of a

C++ platform gathering the theoretical framework and a majority of the required estimation algorithms have

been developed under the name of PyGMAlion [Cournède et al., 2013], whose architecture was designed and

implemented by Bayol [2016]. The most recent version also integrates a domain specific language (DSL) in

order to ease model designing. Nevertheless, although these platforms have proved to be invaluable tools for

the design of models and their calibration, it was decided for this thesis to create a new platform based on the

Julia language. The main motivation behind such a choice arises from different factors. First, in the research

area and maybe particularly during a thesis, many adjustments need to be brought to the programs used in

order to fix bugs, explore new methods or tune parameters. Modifying code in C++ has proved to be more

complicated and especially much more time-consuming than in Julia. Several other convenient aspects of the

Julia language that will be presented afterwards, such as metaprogramming or code generation, not available

or much harder to obtain in C++ played a key role in this decision. As far as genericness is concerned, the

automatic computation of the transition and observation probability density functions, a crucial feature for

the different estimation procedures, was not doable. Last but not least, designing such a platform was not for

the sole purpose of this thesis. It was kept in mind that this could serve as a main tool for the whole research

team. Obviously and because of the simplicity, the conciseness and the efficiency of the Julia language, it is

much easier to dive into code written in Julia rather than C++.

Complex, nonlinear models with external variables, specific process and observation noises should also be easy

to design. The implementation of state of the art algorithms and their probable modifications in order to test

many different strategies for convergence or space exploration should be easy for any model. This motivated

the need for an automatic calculation of the transition and observation distribution of said models. Dealing

with high-dimensional problems and complex models, all computations should be very efficient. These

reasons led to the development of ADJUSTIN’, which stands for Adopting Julia for Statistical Inference.

The organization of the rest of this chapter is as follows: we will first explain the main reasons behind the

choice of the Julia language for a highly-efficient statistical computing platform. We then move on to specify

the mathematical and programming framework underlying models in ADJUSTIN’ and how it allows to

design models easily (Section 5.2), then see how both the organization and the syntax of the plaform lead to

straightforward simulations (Section 5.3). An interesting aspect of Julia, code generation, will be discussed for

the structures storing observations (Section 5.4). Its metaprogramming capabilities will then be highlighted

for the automatic computation of the transition and observation pdfs (Section 5.5). Some of the algorithms

introduced in Chapter 3 and 4 and developed in the platform, ranging from sensitivity analysis, Markov

chain Monte Carlo and sequential Monte Carlo methods, will be discussed in the context of the platform

(Section 5.6).

Chapter 5. Adopting Julia for statistical inference 99

5.1 Why Julia?

The choice of Julia¹ [Bezanson et al., 2012], [Bezanson et al., 2014] as the main language for the ADJUSTIN’

platform was motivated by several factors. As previously mentioned, being a research platform used by

academic researchers as well as engineers, it needs to be easy to use. Julia is a general purpose language, free,

open-source, platform independent and user-friendly in many respects. First, it has a very clean and concise

syntax as well as a high-expressiveness, allowing to design algorithms with many less characters than with other

languages such as C++ or even Python. In particular, it was not considered necessary to design a DSL for the

design of models as Julia is simple enough for the task (Section 5.2). It has a well-designed library for scientific

computing, the Distributions package² makes sampling from classical distributions straightforward, and it

also incorporates a lot of statistical routines in the standard library. It comes with a very handy read-eval-print

loop (REPL) for interactive use which, as for instance in Python, allows to test code rapidly. Furthermore,

Julia makes use of just-in-time (JIT) compilation, which means that there is no explicit need to compile a

project, which would be compulsory with highly efficient languages such as C or Fortran.

A very important aspect of Julia concerns its metaprogramming capabilities that are extensively used within

the ADJUSTIN’ platform for generic purposes: in particular, to make algorithms work regardless of the

model considered (Section 5.6), to compute probability density functions automatically (Section 5.5), to

design models whose structure can depend on certain hyperparameters (Section 5.2.4), or to automatically

generate operations on certain structures (Section 5.4). It displays a dynamic, nominative and parametric type

system and has excellent support for functional programming. It is also worth mentioning its tool supports,

including documentation, testing, and Atom, a good integrated development environment (IDE). High-

performance computing is an absolute necessity when dealing with computationnally expensive algorithms

for either sensitivity analysis or parameter and state estimation in complex statistical models with large state

spaces. Julia responds well to such needs: it is fast and efficient, its LLVM-based compiler allows Julia to

get performances close to those obtained with C: the computing times for 7 different popular algorithms

were tested³ for Julia and 11 other languages, highlighting that Julia performs significantly better than other

languages commonly used in the research community such as Python, R or Matlab. For this particular

benchmark, it is actually slightly slower than C and compares to Fortran. This trend was confirmed by the

implementation of an MCMC algorithm in plain C++, Julia and R [Viaud et al., 2015]. It is possible to

call a variety of languages, which makes it very practical in a variety of situations. Bash commands can be

executed within a Julia file, the PyCall package makes it possible to call Python functions, and the function

ccall allows to call C and Fortran code very easily. Lots of popular libraries from other languages have been

interfaced to be used in Julia, this is the case of Matplotlib (with the PyPlot package⁴), which allows excellent

data visualization, or MPI and CUDA for parallel computing. The MPI package⁵ notably made it possible to

parallelize several algorithms in the ADJUSTIN’ platform for high-performance computing as will be shown

¹https://julialang.org/
²https://github.com/JuliaStats/Distributions.jl
³http://julialang.org/benchmarks/
⁴https://github.com/JuliaPy/PyPlot.jl
⁵https://github.com/JuliaParallel/MPI.jl

100 Chapter 5. Adopting Julia for statistical inference

in Section 5.6 for the convolution particle filter. Last but not least, the Julia community, though rather small

in comparison with those of languages established for longer, is very active. For all these reasons, Julia seemed

to be the best compromise between numerical efficiency, design, genericness and ease of use.

5.2 Modelling and simulation

The ADJUSTIN’ platform adopts the mathematical framework presented in Chapter 1. The state variables

can be continuous but the models are discrete in time. Note however that continuous in time models,

such as ODEs or SDEs, can be cast into the framework by integration between the discrete time steps. In

the ADJUSTIN’ platform, models originating from ecology, epidemiology, biological regulatory networks,

finance, and plant science coexist. Throughout this article, some basic knowledge (most notably base types,

arrays, functions and syntax) of the Julia language is assumed. The official website of the language provides

a great deal of excellent resources for learning the basics of Julia⁶. We follow the Julia convention according

to which only types begin with an uppercase character and functions whose name ends with an exclamation

mark modifies at least one of their arguments. A Label can be seen as an AbstractString, and the suffix

List is added to type names to refer to arrays of said types, for instance:

LabelList ≡ Array{Label} ≡ Array{AbstractString}. (5.1)

For the sake of conciseness, programming arrays will often be denoted with square brackets []. Sometimes,

”...” is used in code environment to indicate voluntarily omitted code.

5.2.1 Mathematical framework

LetK =
(
∪k≥1Nk

)
∪
(
∪k≥1Rk

)
. From a computing point of view, an element ofK can be an Int, a Float64⁷,

an Array{Int} or an Array{Float64}. Arrays of integers or floats are useful in many models where, for

instance, the size of some vector-valued variable is not known in advance and evolves as the model simulation

advances. To account for this numerical flexibility, structures essentially are elements of Kn for a given n > 0,

even though they can also be regarded as elements of Rn′ with n′ ≥ n, in a more standard approach. For

instance, a structure containing two real variables and one 3-dimensional variable (a, b, (x, y, z)) can be seen

as either an element of K3 from a computing point of view or R5 from a mathematical point of view.

We recall the main system of equations summarizing the evolution of a state space model in the ADJUSTIN’

platform: xn+1 = fn(xn, un, θ, ηn),

yn = gn(xn, θ, ξn),
(5.2)

where here all the structures are considered to belong to Kd for some d, i.e.:

■ the hidden states xn ∈ Knx ,

⁶https://julialang.org/learning/
⁷The equivalent of a C++ double.

Chapter 5. Adopting Julia for statistical inference 101

Listing 1 Type Extern for the LNAS model.
type Extern

vec_t::Vector ## vector of temperatures for all days
vec_r::Vector ## vector of radiations for all days

end

Listing 2 Type Parameters for the LNAS model for sugar beet.

type Parameters
q_0::Float64 ## initial biomass
tau_init::Float64 ## initiation thermal time
mu::Float64 ## radiation use efficiency
k::Float64 ## Beer-Lambert coefficient
e::Float64 ## leaf mass per area
gamma_0::Float64 ## initial leaf allocation coefficient
gamma_l::Float64 ## final leaf allocation coefficient
mu_a::Float64 ## allocation median
sigma_a::Float64 ## allocation standard deviation
mu_s::Float64 ## senescence median
sigma_s::Float64 ## senescence standard deviation
tau_s::Float64 ## senescence thermal time delay

end

■ the observations yn ∈ Kny ,

■ the external variables un ∈ Knu ,

■ the functional parameters θ ∈ Knθ ,

■ the process noise ηn ∈ Knη ,

■ the observation noise ξn ∈ Knξ ,

■ the transition function fn,

■ the observation function gn.

The formalism of the whole modelling system of ADJUSTIN’ will be presented in the next sections. All

along the way, bits of code for the LNAS model (see Section 2.2) will serve as an illustration of the theoretical

programming concepts explained for easier understanding.

5.2.2 Model types

From a computing point of view, the state variables, the external variables and the parameters are stored in

Julia’s types. The definition of types State (to store an xn), Extern (to store all external variables throughout

the simulation [un]1:T ∈ KT) and Parameters (to store θ) hence constitute the basis of any model. It has to

be noted that external variables are stored for all times in the same type because the values are known for all

time steps in advance before the simulation begins, which is not the case of the state variables.

The process and observation noises are stored in different structures because of statistical needs for genericness.

A type ProcessNoise is defined, the fields of which are of type Noise. We will illustrate the principle

102 Chapter 5. Adopting Julia for statistical inference

Listing 3 Type State for the LNAS model for sugar beet.

type State
q_det::Float64 ## deterministic produced biomass
q_sto::Float64 ## stochastic produced biomass
gamma_det::Float64 ## deterministic leaf allocation coefficient
gamma_sto::Float64 ## stochastic leaf allocation coefficient
q_l::Float64 ## leaf biomass
q_gl::Float64 ## green leaf biomass
q_r::Float64 ## root biomass

end

underlying process noises with the LNAS model. We recall that, on day n, the production of biomass qdet
n is

given by an empirical Beer–Lambert law as in Equation 2.2:

qdet
n = rn µ

(
1− exp(k qgℓn /e)

)
. (5.3)

To account for the randomness inherent to this biological process, a stochastic value qsto
n is defined such that:

qsto
n = qdet

n (1 + ηqn), with ηqn ∼ N (0, (σq)2) (5.4)

where σq ∈ R⋆
+, the standard deviation, is the parameter characterizing this process noise. Obviously, this

has the apparent drawback of necessiting the storage of two variables at each time step for the seemingly

same quantity, qdet and qsto within the State. However, it allows to automatically compute the transition

distribution p(xn+1|θ, xn) as will be emphasized in Section 5.5.

A given Noise η⋆ is itself composed of 4 different fields and can be formally defined as η⋆ = (λdet, λsto, ℓd, θd)

where λdet is a LabelList about the deterministic (unnoised) variables in the State for this particular process

noise, λsto is the LabelList for the corresponding stochastic (noised) variables in the State, ℓd is a Label

specifying the kind of noise used (both the distribution d and the way it is applied) and θd the parameters of

d. When d is univariate, λdet and λsto contain only one element. The different possibilities for ℓd include so

far:

"additive-uniform",

"additive-normal",

"additive-lognormal",

"multiplicative-uniform",

"multiplicative-normal",

"multiplicative-lognormal".

(5.5)

Noises can be defined for both process and observation noises since, even though they do not play the same

role within the model, their programming structure is identical. The ProcessNoise of a model is therefore

defined as a list of Noises, η = [ηj]1:nη
, and the same goes for the ObservationNoise ξ = [ξj]1:nξ

.

Once the State, Extern, Parameters, ProcessNoise and ObservationNoise types have been defined, it

remains to write the transition and the observation functions fn and gn. In order to compartmentalize the

model as much as possible, several modules can be defined before the transition function. A module m has

Chapter 5. Adopting Julia for statistical inference 103

Listing 4 Types ProcessNoise and ObservationNoise for the LNAS model for sugar beet.

type ProcessNoise
q::Noise ## process noise for the production on q
gamma::Noise ## process noise for the allocation on gamma

end

type ObservationNoise
q_gl::Noise ## observation noise for green leaf biomass
q_r::Noise ## observation noise for root biomass

end

Listing 5 Module for the production of biomass in the LNAS model for sugar beet.

function production!(n, xn, u, p, xnplus1)
xnplus1.q_det = u.vec_r[n] * p.mu * (1 - exp(-p.k * xn.q_gl / p.e))

end

signature:

m(n, xn, un, θ, xn+1) → ∅ (5.6)

and it modifies fields of xn+1 without returning anything. This is made possible in Julia because xn+1 is a

mutable State type and Julia exhibits a pass-by-sharing behavior. In practice, modules can be used to isolate

equations of different natures. In the case of the LNAS model, we could define different modules for biomass

production and biomass allocation for instance.

The transition function can therefore be written using such modules (although not necessarily) and has sig-

nature:

f(n, xn, un, θ, η) → xn+1. (5.7)

It is worth noting that the full ProcessNoise structure is passed to this function and not only its realizations

as denoted in Equation 5.2. A new State is initialized within the transition function, and either modules

are called to modify its field values or explicit modifications occur. The only operation worth to be detailed

is that of the noised variables.

Considering the previous example with the produced biomass, there is no explicit update of the stochastic

value qsto. Rather, a function noise(xn, η⋆) is called for each Noise η⋆ and uses the information contained in

the latter to modify the values whose Labels are specified within λsto from those that are specified within λdet

in an appropriate way, determined by ℓd and θd. This function has to be called right after the deterministic

values relative to this Noise have been set within the transition function. Julia’s reflection makes it possible to

access and modify the value of a type, in this case within State. The different fields of a type, such as those

of the State, can be accessed using the getfield function, which requires the specification of a Symbol.

The function Symbol allows to convert an AbstractString into a Symbol, such that if x is an instance

of State, which has fields q_det and q_sto, the value of the former can be accessed with getfield(x,

Symbol("q_det")) and the value of the latter can be set with setfield!(x, Symbol("q_sto"), v) with

some value v. This approach allows to access and modify the deterministic and stochastic variables of the

104 Chapter 5. Adopting Julia for statistical inference

Listing 6 Transition function for the LNAS model for sugar beet.

function f(n, xn, u, p, mn)
xnplus1 = State(0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
thermal_time!(n, xn, u, p, xnplus1)
production!(n, xn, u, p, xnplus1)
noise!(xnplus1, mn.q)
allocation!(n, xn, u, p, xnplus1)
noise!(xnplus1, mn.gamma)
senescence!(n, xn, u, p, xnplus1)
update_total_leaf_biomass!(n, xn, u, p, xnplus1)
update_green_leaf_biomass!(n, xn, u, p, xnplus1)
update_root_biomass!(n, xn, u, p, xnplus1)
return xnplus1

end

State specified in λdet and λsto of a noise. The whole point of such an approach is multiple:

■ there is no need to hardcode the noising process or even the Symbols relative to the variables affected

by a Noise, the noising process is always the same for all models;

■ such LabelLists can be defined within external files different from those of the model or algorithms

assuming that all models follow the same syntax;

■ such a Noise structure will allow, as will be seen later, to automatically compute the transition and

observation pdfs, whatever the model or the process and observation noises.

5.2.3 Simulation core

An observation is the measurement of a given variable at a given time. For a given simulation, observations

are stored in a structure referred to as SystemObservation. It is composed of a LabelList containing the

name of all the variables observed. Two kinds of variables can actually be observed, i.e. registered within a

SystemObservation, during a numerical simulation:

■ the ones belonging to the State (hidden states in the HMM formalism);

■ those corresponding to actual experimental data (observations in the HMM formalism) and involving

observation noises.

Intuitively, one would expect that only observations would be stored inside a SystemObservation, but

storing the hidden states proves practical for analyzing the system or computing some pdfs for estimation

algorithms. A SystemObservation so can therefore be formalized as:

so =
(
λo,
[[
(tk, vk) ∈ N×K

]
1:no,i

]
1:no

)
. (5.8)

The Labels of all the observed variables are stored in the LabelList λo, which is of size no. To each observed

variable λjo corresponds a series of no,j observation tuples (t, v) where t is the time of the observation and v

the value taken by this variable. It is worth noting that, here again, v ∈ K and can therefore be an Int, a

Float64, an Array{Int} or an Array{Float64} depending on the nature of the observed variable, allowing

Chapter 5. Adopting Julia for statistical inference 105

for modelling freedom. The function to run a simulation of the model is:

simulate(f, g, x0, u, θ; η, ξ) → so . (5.9)

Here, the process and observation noises η and ξ are key-valued arguments, which means that they need not

necessarily be specified, in which case they take on a Void default value for the sake of user-friendliness: if a

model does not make use of either process noise or observation noise, one needs not worry about them. The

observation function g specifies what variables are observed and when. Its exact structure reads:

g = [(ℓj , τj , oj)]1:no (5.10)

where ℓj is the Label of the observed variable, τj = [tj,k]1:no,j
is the corresponding timeline (time steps at

which the variable is observed), and oj is an observer function whose signature is oj(x) → v ∈ K if the

observed variable is a hidden state or oj(x, ξ) → v ∈ K for real observations. The former returns nothing

but getfield(x, Symbol(l)), and it would be rather heavy to force the model-writer to define them all.

Considering the LNAS model, on day n, the hidden state biomass of leaves qℓn ∈ xn is computed and the

corresponding observed value is noised to reproduce the error relative to the measurement done by separating

plant organs and weighing biomass. We recall that the observation q̃ℓn corresponding to the hidden state qℓn
is given by:

q̃ℓn = qℓn (1 + ξℓn), with ξℓn ∼ N (0, (σℓ)2) (5.11)

where σℓ ∈ R⋆
+, the standard deviation, is the parameter characterizing this observation noise. The noising

process is almost the same as for process noises: a function noise(x, ξ) → v ∈ K handles the computation

of the observed value. This time, instead of modifying values inside State x, motivated by the fact that both

the deterministic and stochastic values for a process noise belong to the State, the observed value is simply

returned to be later stored in a SystemObservation. The observer function for an observation is therefore

nothing but oi(x, ξ) = noise(x, ξ). In both cases, defining the observer functions does not require more

information than that contained in the State x and the observation noises ξ, which is why at the end of the

model definition, a call to a macro @observation_function() handles the creation of all these functions

for further model simulation. This macro is defined in the main module with the following structure:

macro observation_function()
return esc(quote

...
end)

end

This apparently unnecessarily complicated formulation was driven by the organization of the whole platform.

For historical, practical and workflow reasons, the models are separated from the simulation core, encapsu-

lated in a module, in which @observation_function() is defined, the whole point being to prevent the

model-designer to write all the observer functions. However, @observation_function()makes use of types

not defined within the module, such as State. The advantage of macros is that they return a compiled ex-

pression which is not evaluated at runtime, making possible to refer to the type State although the latter is

106 Chapter 5. Adopting Julia for statistical inference

not defined yet, since models are loaded after the main module. Placing the code necessary for the generation

of the observer functions inside a quote ... end block ensures that the object returned by the macro is of

type Expr. Since, in Julia, identifiers produced by a macro are renamed to avoid clashes with other variable

names, the use of the esc() function is required.

The behavior of the simulate function is rather intuitive. From the observation function g, the max-

imum time and the LabelList of variables to be observed are deduced. The transition function is then

called for each time step t and for each (ℓ, τ, o) in g, the variable ℓ is observed if t is in τ . Depending

on the type of the observed variable, the signature of o can vary. Thanks to Julia’s introspection capabil-

ities, the signature of a function o can be easily determined. It has to be noted that the way of accessing

the latter depends on the version of Julia. Fortunately, version-based conditional statements are very easy

and it is straightforward to maintain the platform for different versions of Julia with statements such as:

if VERSION >= v"0.4.5"
sig = methods(o).defs.sig.parameters

elseif VERSION >= v"0.5.0"
sig = methods(o).mt.defs.sig.parameters

end

allowing to call the function with the correct arguments whatever the type of the observer function. All the

results are stored in a SystemObservation so.

The complete formulation of the LNAS model for sugar beet in ADJUSTIN’ can be found in Appendix B.

The type specification of the fields of the types State, Parameters, ProcessNoise and ObservationNoise,

indicated with the :: operator, are not compulsory so that a simpler syntax could be used by the model-

designer. Contrarily to other libraries or programs, no DSL was developed as the design of models was

judged to be simple enough with the combination of ADJUSTIN’s formalism and Julia’s concise syntax.

5.2.4 Flexible modelling

An interesting aspect of the Julia language is the flexibility it allows in terms of defining objects, using expres-

sions for example. For instance in [Sainte-Marie et al., 2017], it appeared necessary to define models whose

parameters represented coefficients of quadratic polynomials of several dimensions. For benchmarking pur-

poses, multiple polynomials had to be used. Luckily, such code generation is rather straightforward in Julia,

it suffices to create the AbstractString corresponding to the Parameters needed and then make it into

an expression, as exemplified by Listing 7. Such code generation requires less than 10 lines of concise code,

which would be much more difficult to achieve in most other languages, C++ in particular.

5.3 Platform organization

The model definition does not comprise any initialization of the types, and in particular does not contain

any information on the kinds of noises used inside ProcessNoise and ObservationNoise. The actual

Chapter 5. Adopting Julia for statistical inference 107

Listing 7 Generation of generic types Parameters.
function generate_parameters(d::Int)

s = "type Parameters\n"
for i = 1:d s *= "x" * string(i) * "::Float64\n" end
s *= "end\n"
s is now a String representing raw Julia code defining a type Parameters
eval(parse(s))
the String is first parsed which returns an Expr
this Expr is then evaluated, thus interpreting actual Julia code

end

here a type Parameters with 5 Float64 fields is created
generate_parameters(5)
and can then be instantiated
p = Parameters(1, 2, 3, 4, 5)

simulation of a model is illustrated in Listing 8. The module Adjustin containing the simulation core must

first be loaded with the using instruction. It provides all the functions necessary for the simulation without

the use of any potential Adjustin. namespace. A model can be loaded simply with its name because of the

file organization, detailed on Listing 9, where all the models are stored in a specific directory. This actually

“copy-paste”s the code defined in the model file, which implies that all the types and functions defined in

different model files must have the same name for further reusability: it would not make sense to load a

model where Parameters is called Parameter instead and try to instantiate a Parameters afterwards. The

whole platform therefore relies on a strict identification of objects by name.

The function create_observation_function allows the creation of g as long as it is provided an Array of

Tuple{Label,Timeline}, specifying at what times a variable is observed. If the two variables q_gl and q_r

are to be observed, for instance:

g = create_observation_function([("q_gl", [50,70,90]), ("q_r", [60,80,90])])

If several observed variables share a common Timeline, this can be used to shorten again the argument as:

g = create_observation_function([("q_gl,q_r", [50,70,90])])

So far only hidden states were observed, if one wants to register data for both the hidden state and the obser-

vation of the same variable, one could do so with:

g = create_observation_function([("q_gl,obs_q_gl", [50,70,90]), ("q_r,obs_q_r", [60,80,90])])

and the keyword all provides a very short way to register all the hidden variables in State by looping over

the elements of fieldnames(State):

g = create_observation_function([("all", 1:161)])

which is very practical for the automatic registration of heavy models, that is to say containing many states

as in the STICS [Brisson et al., 1998] or LNAS Wheat (Section 2.3) models, for further analysis. Loading

all the data necessary for a model simulation can easily be accomplished thanks to the function load_state,

load_extern, load_parameters, load_process_noise and load_observation_noise provided that their

108 Chapter 5. Adopting Julia for statistical inference

Listing 8 Example of a simulation for the LNAS model in ADJUSTIN’

calling the main module
using Adjustin

loading model, in particular this instantiates the transition function f
load_model("lnas")

defining the observation function
g = create_observation_function([("all",1:161), ("obs_q_gl,obs_q_r",20:20:161)])

loading files from the database required for the simulation
load_state("x0-bourgogne-2011")
load_extern("u-bourgogne-2011")
load_parameters("p-bourgogne-2011")
load_process_noise("pn-0.02")
load_observation_noise("on-O.1")

simulating
so = simulate(f, g, x0, c, p; pn = pn, on = on)

Listing 9 Main structure of the root of the platform

algorithms/
applications/
database/
models/
adjustin/
results/

argument corresponds to a file in the database of the platform. More details on the platform organization

are provided in Appendix D. For instance, a process noise is defined in the file "database/lnas/process-

noise/pn_0.02.jl" which contains:

pn_q = Noise(["q_det"], ["q_sto"], "multiplicative-normal", (0.0, 0.02))
pn_gamma = Noise(["gamma_det"], ["gamma_sto"], "multiplicative-normal", (0.0, 0.02))
pn = ProcessNoise(pn_q, pn_gamma)

Rewriting the same piece of code for every model would seem a bit redundant, the user is therefore provided

the opportunity to launch a simulation via command line using already-written applications, stored in the

equivalent directory at the root platform. Here the simulate application given as an example is rather simple

but this proves even more useful in the case of more complicated applications. The Julia package ArgParse⁸

allows to pass options to such programs. The simulation of Listing 8 could be done automatically with:

./simulate -m lnas -x x0-bourgogne-2011 -u u-bourgogne-2011 -p p-bourgogne-2011 \
--pn pn_0.02 --on on_0.1 -d sim-lnas-bourgogne-2011 \
-o '[("all", 1:161),("obs_q_gl,obs_q_r", 20:20:161)]'

where sim-lnas-bourgogne-2011 refers to the name of a directory in which all the results will be stored.

More details on this aspect can be found again in Appendix D.

⁸https://github.com/carlobaldassi/ArgParse.jl

Chapter 5. Adopting Julia for statistical inference 109

Listing 10 Macro generating operations for two ObservationTuples

macro operator_obs_obs(op)
opn, dopn = symbol("$op"), symbol(".$op")
return quote

function $(esc(opn))(obs1::ObservationTuple, obs2::ObservationTuple)
return (first(obs1), $(esc(dopn))(last(obs1), last(obs2)))

end
$(esc(dopn))(obs1::ObservationTuple, obs2::ObservationTuple) =
$(esc(opn))(obs1::ObservationTuple, obs2::ObservationTuple)

end
end

Listing 11 Macro generating operations for two SystemObservations

macro operator_so_so(op)
opn, dopn = symbol("$op"), symbol(".$op")
return quote

function $(esc(opn))(so1::SystemObservation, so2::SystemObservation)
so = SystemObservation(so1.oml)
for i = 1:length(so1.oml)

so.otll[i] = $(esc(dopn))(so1.otll[i], so2.otll[i])
end
return so

end
end

end

5.4 Operations on system observations

Results of a model simulation are stored in a SystemObservation. Many statistical applications require to

be able to make many different operations on such structures (such as computing the sum, the difference,

the quotient, the mean or the variance). The Julia language makes it possible to generate all these operations

with very concise code, using macros that will generate such functions for the different operations. First these

operations are defined on the ObservationTuples (t, v) ∈ N×K (see Listing 10), these operations can then

be reused to be defined on SystemObservations (see Listing 11).

Here the esc function ensures that the function created carries the exact same name as the operator, and is

not replaced with a name chosen by the macro-expander for name-collision avoidance. In the case of the +

operator, opn would denote the operator + and dopn the operator .+, which is an operator per se and cannot

be retrieved with only .$op, whence the conversion to an AbstractString then Symbol for these operators.

Once these macros have been defined, they can be used to generate any operation as:

opl = [+, -, *, /]
for op in opl

@eval @operator_obs_obs($op)
@eval @operator_so_so($op)

end

110 Chapter 5. Adopting Julia for statistical inference

where, since the macro expansion happens before the loop runs, at which time the op operator is not defined

yet, the @eval macro needs to be called with $op to prevent Julia from complaining about an unexistent op.

The different operators +, -, *, / are then passed to the macro and the functions:

+(obs1::ObservationTuple, obs2::ObservationTuple)
+(so1::SystemObservation, so2::SystemObservation)
...

are then automatically generated. It then becomes possible to perform operations such as:

so_1 = simulate(f, g, x0, u, p; mn = mn, on = on)
so_2 = simulate(f, g, x0, u, p; mn = mn, on = on)
so_sum = so_1 + so_2

This way of defining all these functions presents several advantages: not only does it avoid code duplication

thus reducing significantly the whole size of the code, it also makes it possible to adapt very easily the internal

structure of a SystemObservation. Being a research platform, ADJUSTIN’ is very likely to be regularly

modified, which is why the ability to change easily the internal structure of the main types is of primary

importance.

In the same manner, if so is a SystemObservation, it is possible to easily define among others sqrt(so),

so^2 which makes the computation of the mean and variance of a SystemObservationList straightforward.

Another approach to compute such mean and variance would be to first convert the SystemObservation-

List to a Matrix before computing its mean and covariance. However, the information on the variables

and times of observations would be lost. In general, working in ADJUSTIN’ proves much easier when using

SystemObservations.

5.5 Probability density functions

Statistical distributions play a crucial role in HMMs. As described in Chapter 3, in order to generate actual

values for parameters or hidden states, one needs to explicitely sample from standard distributions. Further-

more, for statistical inference within this type of models, actual values of some pdfs (namely for the prior,

transition and observation distributions) need to be calculated.

5.5.1 Sampling

The sampling procedure is described for parameters since it is exactly the same for states. The prior distri-

bution on a given group of parameters is contained in a SamplingRule s = (λ, d) where λ is a LabelList

specifying which parameters are sampled (to account for possible multivariate distributions) and d is the dis-

tribution to sample from. A SamplingRuleList [sj]1:nr
is a set of SamplingRule allowing to sample several

parameters following different distributions at once, and nr is the number of rules involved. The function

Chapter 5. Adopting Julia for statistical inference 111

sample(θ0, [sj]1:nr , N) → [θi]1:N allows to generate N Parameters from θ0 where the parameters specified

in each λj of the different SamplingRules sj have been replaced with their sampled values. This is easily

done as it suffices for i ∈ J1, NK to make a copy θi of θ0, sample a value or vector vij ∈ K according to the

distribution of each sampling rule sj , and to replace the corresponding value in θi with fill!(θi, vij , λj).

5.5.2 Prior distribution

The pdf related to the prior is:

p(θ) =

nr∏
j=1

p(θj) (5.12)

where each parameter to be estimated θj follows a distribution Dj . We recall that θj ∈ K, hence Dj can

be either univariate or multivariate. For the case of the LNAS model for sugar beet, if the two parameters

(µ, e) ⊂ θ were to be estimated, and assuming that their prior distributions are µ ∼ N (mµ, s
2
µ) and e ∼

U(ae, be), then the prior pdf becomes:

p(θ) = p(µ) p(e) =
1

sµ
√
2π

exp
(
− (µ−mµ)

2

2s2µ

)
1(e ∈ [ae, be])

be − ae
. (5.13)

It therefore becomes possible to compute the prior pdf as pdf(θ, [sj]1:nr) as the product of the different

pdf(θ, sj) where pdf(θ, sj) can be computed by evaluating, for a SamplingRule sj = (λj , dj) the pdf of the

distribution dj at the point in θj specified by the variable λj . In ADJUSTIN’, this would translate into:

load_model("lnas")
load_parameters("p-bourgogne-2011")

m_mu, s_mu = 3.7, 0.5
a_e, b_e = 0.6, 0.8
srl = [SamplingRule(["mu"], "normal", (m_mu, s_mu)),

SamplingRule(["e"], "uniform", (a_e, b_e))]

assuming that in p-bourgogne-2011, mu = 3.8 and e = 0.65
the following line returns as expected 3.9 = 0.78 * 5.0
pdf = prior_pdf(p, srl)

Possible choices for an automatic computation of the prior pdf currently include the following distributions:

"normal",

"uniform",

"poisson",

"multivariate-normal",

"gamma",

"inverse-gamma",

"wishart",

"inverse-wishart".

(5.14)

112 Chapter 5. Adopting Julia for statistical inference

5.5.3 Transition and observation distributions

We recall from Section 1.2 that the transition and observation pdfs can be written as:

p(xn+1|θ, xn) = p(ηn|θ) =
dη∏
j=1

p(x
mη(j)+1
n+1 |θ, xmη(j)

n+1) (5.15)

and:

p(yn|θ, xn) = p(ξn|θ) =
dξ∏
j=1

p(yjn|x
mξ(j)
n) (5.16)

respectively. Just as SamplingRules allow the computation of the prior pdf, the definition of ProcessNoise

and ObservationNoise jointly with Equations 5.15 and 5.16 permit the computation of the transition pdf as

transition_pdf(x, η) as the product of the different pdf(x, ηj), where pdf(x, ηj) exploits the information

contained in the Noise ηj . If a given Noise is given as:

η = (λdet, λsto, ℓd, θd)
.
= (ll_det, ll_sto, kind, vl) (5.17)

in programming notations, if kind is "multiplicative-normal" then the underlying distribution is uni-

variate and the deterministic and stochastic values are retrieved from the State x for the Noise n with:

x_det = getfield(x, Symbol(n.ll_det[1]))
x_sto = getfield(x, Symbol(n.ll_sto[1]))

and the associated value of the pdf is:

pdf = normal_pdf(x_sto, x_det * (1 + n.vl[1]), abs(x_det * n.vl[2]))

where normal_pdf(x, µ, σ) computes the pdf of the normal distribution with mean µ and standard deviation

σ at point x. All the same, if kind = "additive-uniform", the associated pdf is:

pdf = uniform_pdf(x_sto, x_det + n.vl[1], x_det + n.vl[2])

where uniform_pdf(x, α, β) computes the value of the pdf of the uniform distribution with lower bound

α and upper bound β at point x. Looping over the different Noises of a ProcessNoise therefore allows

to compute the whole transition pdf. The principle is almost the same for the observation pdf where

observation_pdf(so, x, ξ) is computed as the product of the different pdf(x, ξj). This formalism allows

to compute the pdfs of multivariate distributions as well, which is of interest for models where different

observations are thought to be correlated.

5.6 Algorithms

ADJUSTIN’ is not restricted to a particular field of study and aims at being a platform for a full statistical

analysis of general SSMs. It therefore includes routines for sensitivity analysis, parameter and state estimation

(both from frequentist and Bayesian points of view), model selection, data assimilation and hierarchical

Chapter 5. Adopting Julia for statistical inference 113

models, with the objective of performing all the usual steps of model design process as described for instance

in [Van Waveren et al., 1999].

The combination of Julia’s concise syntax and the genericness of the modelling paradigm adopted through-

out the platform makes the design of algorithms relatively easy. When designing models comprising a great

number of parameters, it is of primary importance to identify the most influential ones. Typically, a sensit-

ivity analysis method will be run in order to rank the different model parameters according to their impact

on the variance of the model output. Once the most important model parameters have been identified

using sensitivity analysis, they need to be estimated from experimental data. Such an estimation proced-

ure can be performed in either a frequentist or a Bayesian approach. Frequentist algorithms implemented

in ADJUSTIN’ include the least squares family, in particular GLS or algorithms such as the Expectation-

Maximization (EM) algorithm [Dempster et al., 1977]. Estimation techniques from a Bayesian perspective

is achieved with algorithms belonging to the MCMC and SMC families. The latter comprises several differ-

ent algorithms such as the UKF, the EnKF and the RPF. We will now describe how some of these algorithms

work inside the ADJUSTIN’ platform.

5.6.1 Sobol method

We recall from Section 3.2.1 that for a single parameter θj , the first order sensitivity index and the total order

sensitivity index on the value of variable ℓ at time step n are defined as:
Sℓ
nj =

Vj

(
E−j

(
yℓn|θj

))
V (yℓn)

,

T ℓ
nj =

E−j

(
Vj

(
yℓn|θ−j

))
V (yℓn)

,

(5.18)

where j refers to taking into account only variable θj and −j all variables θk for k ̸= j. These expectations

and variances are computed using a Monte Carlo procedure [Saltelli et al., 1993] and the convergence of the

algorithm can be improved by using the permutation of certain values of parameters [Wu et al., 2012]. Four

different sets of parameters and corresponding model outputs are considered, with respective identifiers s for

sampling, s′ for resampling, c for complementary sampling and c′ for complementary resampling. Four lists

of Parameters [θs,i]1:N , [θs′,i]1:N , [θc,i]1:N , [θc′,i]1:N are first sampled using [θi]1:N = sample(θ0, [sj]1:nr
, N)

where the SamplingRuleList [sj]1:nr
prescribes the sampling distribution on each parameter, and N is the

number of samples. Assuming that two Parameters p1 and p2 need to exchange a particular variable of

name label, this can be done by accessing once again the fields of the type with:

function switch!(p1::Parameters, p2::Parameters, label::Label)
s = Symbol(label)
v1 = getfield(p1, s)
v2 = getfield(p2, s)
setfield!(p1, s, v2)
setfield!(p2, s, v1)

end

114 Chapter 5. Adopting Julia for statistical inference

The corresponding model outputs are then generated with:

[yj]1:N = simulate(f, g, x0, u, [θj]1:N , η, ξ) (5.19)

for the four parameters lists. The output of a simulation being a SystemObservation, computing the sensit-

ivity index for a given observation requires the extraction of all its values. The value of the observation related

to the variable ℓ at time n can be retrieved using vs = to_vec([ys,i]1:N , ℓ, n), and similarly for the other

lists. These four Array{Float64}s can then be used to perform all vector operations needed to compute the

sensitivity indices.

The main steps of the Sobol algorithm therefore amount to parameter sampling following a set of prior rules,

model simulation with a given set of parameters, parameter switching and computation on arrays, which are

made very easy thanks to both Julia’s concise syntax and ADJUSTIN’s formalism. The generalized version

of the Sobol algorithm [Sainte-Marie et al., 2017] described in Section 3.2.2 has also been implemented in

ADJUSTIN’ and integrated very well in the modelling framework.

5.6.2 Adapted Metropolis within Gibbs

MCMC algorithms have attracted a lot of attention [Gilks, 2005] [Berg and Billoire, 2007] for the analysis

of complex statistical models in a Bayesian perspective since they allow for the evaluation of complex and

high-dimensional integrals, whence for the estimation of parameters and hidden states. Unsurprisingly, many

libraries are devoted to such algorithms.

In this section, we try to highlight how the ADJUSTIN’ platform allows for easy modelling of MCMC

algorithms by considering the special case of the Adapted Metropolis within Gibbs (AMWG) algorithm

detailed in Algorithm 5.

Each algorithm in ADJUSTIN’ owns a Configuration in which are stored all the variables specific to the

algorithm in question. For the AMWG algorithm, this includes SamplingRuleLists for the prior distribu-

tions of the parameters and hidden states, and the number of total iterations as well as the burn-in length for

the two MCMC chains generated. The intial value of the parameters are as usual sampled according to its

prior distribution prescribed in the initial SamplingRuleList [sj]1:nr
: θ0 = sample(θ, [sj]1:nr

). One of the

arguments passed to the function is a SystemObservation representing the experimental data y1→T used for

the estimation. A first step is to create the observation function for this specific set of observations, taking

into account which variables are observed at what times. This can be achieved using:

g = create_observation_function(get_simulation_observer_model_list(so_exp, on))

Thanks to the structure of the ObservationNoise on, we are able to determine which hidden states corres-

pond to the observations and therefore construct the observation function that will be used for the model

simulation inside the MCMC loop. The hidden states corresponding to θ0 can then be simulated using

x01:T = simulate(f, g, x0, u, θ0; η, ξ) where the ProcessNoise η and the ObservationNoise ξ have been

Chapter 5. Adopting Julia for statistical inference 115

provided to the algorithm. All the variables involved in the adaptive scheme are simply initialized with the val-

ues given in Algorithm 5. Inside an MCMC iteration, a candidate for the parameters is sampled according to

a multivariate random walk with SamplingRule(λθ, "mvnormal", (θt, λtΣt)) together with the sample func-

tion and the corresponding hidden states simulated from this candidate. We recall that the first acceptance

probability for the acceptance of a candidate θ⋆ is:

α
(
(θ⋆, x⋆1:T), (θ

t, xt1:T)
)
= 1 ∧ p(y1→T |θ⋆, x⋆1:T)

p(y1→T |θt, xt1:T)
p(θ⋆)

p(θt)
. (5.20)

At iteration t, only the numerator of this expression is computed as the denominator has already been at the

previous iteration. For numerical stability, the logarithm of this numerator is actually computed using:

log_likelihood_observation_pdf(so_sim, on, so_exp) + log_pdf(p, srl)

where so_sim and so_exp correspond to the SystemObservations from the model simulation and the

experimental data respectively and p to the candidate parameter. The first term represents the pdf of all

observations given the parameters and the associated hidden states p(y1→N |θ⋆, x⋆1:N) and the second term is

related to the prior distribution p(θ⋆). The exact value of the acceptance probability α can then be inferred

and the candidate accordingly accepted or rejected. The value of the chain is stored in a Matrix of size d×N .

Finally, the variables of the adaptive schemes are straightforwardly updated using Equation 3.40. At the end

of the MCMC loop, the mean and the covariance for the parameters can be easily computed from the results

matrix.

Once an estimate for the parameters have been computed, a similar procedure can be undertaken for the

second part of the algorithm. The acceptance probability now reads:

α(xtn, x
⋆
n) = 1 ∧

p(xtn+1|θ̃tn, x⋆n)
p(xtn+1|θ̃tn, xtn)

p(yn|θ̃tn, x⋆n)
p(yn|θ̃tn, xtn)

(5.21)

and it is computed with the transition and observation pdfs using the mechanism described in Section 5.5.

In practice, running an AMWG algorithm does not require much and is illustrated in Listing 12. Just as

each algorithm owns a Configuration type, each algorithm also owns a Result type to store all the results

specific to it. For AMWG, one can notably choose to save the estimates of the means and covariances for the

parameters and hidden states, the acceptance ratio for each iteration and the matrix of all results if necessary

for further analysis (this is not done automatically and this can be computationally expensive according

to circumstance). This saving procedure is entirely handled by the save function which saves in the right

format the different fields (whether they be Vectors, Parameters or SystemObservations) of the Result

of an algorithm in the results directory provided in argument.

5.6.3 Regularized particle filter

Another approach to parameter and state estimation is the use of filters. One of the simplest ones used in

ADJUSTIN’ is the UKF, whose code is given in Appendix C in order to illutrate the ease of implementation

of such algorithms in ADJUSTIN’. In the following, we will focus on the RPF described in Algorithm 8 and

116 Chapter 5. Adopting Julia for statistical inference

Listing 12 Example of an AMWG algorithm being run for the LNAS model in ADJUSTIN’

using Adjustin

creating a results directory
str_dir = create_results_directory()

loading data and algorithm configuration
load_model("lnas")
load_state("x0-bourgogne-2011")
load_extern("u-bourgogne-2011")
load_parameters("p-bourgogne-2011")
load_process_noise("pn-0.02")
load_observation_noise("on-O.1")
load_configuration("cfg-bourgogne-2011")

running algorithm
r = amwg(f, g, x0, u, p, so_exp, cfg; pn = pn, on = on, full_results = false)

saving all its results in the results directory
save(r, str_dir * "result.txt")

dive a bit into the details of its implementation, all the more so since it can be almost fully parallelized. The

MPI Julia package provides a convenient wrapper for the portable message passing system Message Passing

Interface (MPI) [Gabriel et al., 2004]. In MPI, the same program is launched on different processes and

these processes can communicate between each other to exchange information. The RPF is an algorithm

particularly suited for such a parallel implementation since, as will be detailed later, only a possible resampling

operation is not fully parallelized.

The RPF aims at jointly estimating parameters and hidden states of the model by propagating particles from

experimental time to experimental time. Again, the observed variables need not be the same at all times. Let

p ∈ J1, npK represent the index of a parallel process where np is the total number of processes. A variable

relative to a particular process p will be denoted with the superscript (p). Let N be the number of particles

(samples) and N (p) = N/np (assumed to be an integer) be the number of particles relative to a given process.

The initial population of particles is first sampled according to a prior distribution for both the parameters

and the states. This translates into:
[θi,(p)]1:N(p) = sample(θ0, [sj]1:nr

, N (p))

[xi,(p)]1:N(p) = sample(x0, [s′j]1:n′
r
, N (p))

(5.22)

where θ0 and x0 are initial parameters and state, [sj]1:nr
and [s′j]1:n′

r
are the SamplingRuleLists for the

estimated parameters and hidden states respectively, and the corresponding weights are initialized uniformly

as [wi,(p)]1:N(p) = [1/N]1:N(p) . Notice that all these lists contain N (p) elements so that the union of these

sets over the different processes contain N elements, and that the sum of all the weights over all processes is

1. These particles are then propagated through the model in order to predict the hidden states at the next

experimental time:

[yi,(p)]1:N(p) = next_prediction!(f, g, [xi,(p)]1:N(p) , u, [θi,(p)]1:N(p) , η, ξ, tk). (5.23)

Chapter 5. Adopting Julia for statistical inference 117

This function starts the simulation of the model from time step tk and stops as soon as it encounters an

experimental time stored in the observation function g, which has been constructed from the experimental

data, denoted yexp in this section. The transition function f and the observation function g are obviously the

same for all the simulations since they are part of the model considered. The external variables u are assumed

to be identical for the different simulations as well. Here, the parameters defining the process and observation

noises η and ξ are considered known. The list of parameters [θi,(p)]1:N(p) is constant throughout the model

simulation between tk and tk+1. Contrarily, the input list of states [xi,(p)]1:N(p) represent the values of the

States for the different particles at time tk, and next_prediction! modifies it so that at the end it contains

the States at time tk+1.

Each weight in [wi,(p)]1:N(p) is then multiplied with a new weight equal to p(yexp|θi,(p), xi,(p)). The function

allowing to compute the latter, compute_weight(ξ, y, yexp, tk+1), has the following behaviour: looping over

the different fields of the ObservationNoise ξ, if the observed variable yj relative to this Noise is observed

at time tk+1 in yexp, then the weight is multiplied by p(yexp,j
tk+1

|xmξ(j)
tk+1

), see Equation 5.16. The weights are

multiplied to keep track of the history of a particle until there is a resampling step, at which point all weights

are uniformly reset. In order to compute the effective sampling size, the weights need to be normalized. The

total sum of the weights must be computed, which amounts to computing the sum of the weights on each

process and compute the sum of these sums over the different processes with:

w_sum = MPI.Allreduce(sum(wl_p), MPI.SUM, MPI.COMM_WORLD)

where wl_p is the list of weights on process p. The Allreduce operation ensures that the sum of the local

sums is distributed among all processes. The local weights can then be divided by this value to ensure that∑np

p=1

∑
i∈rp

wi,(p) = 1, where rp = J1 + (p − 1) N (p), p N (p)K is the range of indices in the population

relative to process p. The weighted mean and weighted covariance are then computed in parallel, as detailed

in Appendix E.

Since the weights have been normalized, the effective sampling size [Liu and Chen, 1995] reduces to:

neff =

 np∑
p=1

∑
i∈rp

(
wi,(p)

)2−1

(5.24)

and can thus be obtained by computing the local sum of the weights squared and reducing once again over

all processes, it is nothing but:

n_eff = 1 / MPI.Allreduce(sum(wl_p .^ 2), MPI.SUM, MPI.COMM_WORLD)

If neff falls under a given threshold, say half the total number of particles, then resampling occurs. This

operation is not fully parallelized, but it has to be noted that it does not happen at every experimental time,

only at those when the effective sample size is too low. If it cannot be avoided, it can still be done in a way

that minimizes the transfer of information between the different processes; this is detailed in Appendix F.

The regularization step allows to convert the discrete approximation of the filtering density into an absolutely

continuous approximation by using kernels. Whenever resampling occurs, the particles are sampled from

118 Chapter 5. Adopting Julia for statistical inference

the smoothed distribution:

p(z|y0→T) =

np∑
p=1

∑
i∈rp

wi,(p)khn
(z − zi,(p)), (5.25)

where we recall that z = (θ, x) is the augmented state. For a Gaussian kernel, it amounts to perturbate the

different particles as: θi,(p)
xi,(p)

 +=

δθi,(p)
δxi,(p)

 where

δθi,(p)
δxi,(p)

 ∼ N (0,Σ). (5.26)

The matrix Σ is function of the covariance matrix of all the particles which had already been computed in

parallel before. The regularization step can therefore be performed on each process in a parallel manner.

The strong scalability of the implementation has been evaluated: a RPF algorithm is run on np processes,

where the total number of particles is kept constant, the number of particles per process being 106/np. Just

as in the MCMC case, simulated data was obtained, this time for t = 50:150, with µ = 3.6, γ0 = 0.75

and µa = 600; the priors given in the RPF configuration were µ ∼ N (4.32, 1.44), γ0 ∼ N (0.6, 0.3) and

µa ∼ N (550, 75). Results for the speed-up t1/tnp
are displayed on Figure 5.1, where tnp

denotes the walltime

for np processes. The continuous red line represents the ideal scalability for which the elapsed time decreases

linearly with the number of processes. For a number of processes smaller than 96, the speed-up is slightly

above the ideal scalability because of parallel overhead due to communications between processes (particularly

during the resampling step), whereas for 168 processes, the speed-up is below the ideal scalability. This local

behaviour could be partly explained by cache effects.

The second case aims at appraising the weak scalability of our implementation. Once again, a RPF algorithm

is run on np processes; this time the number of particles on each process is kept constant at 104. Results for

the normalized time tp/t1 are also displayed on Figure 5.1. The continuous red line indicates the ideal weak

scalability, where the walltime would remain constant. Two phases can be observed: when tests are executed

on a single node (np ∈ {1, 2, 4, 8, 12, 24}), the available memory bandwidth saturates as the number of

processes increases, which prevents an efficient scalability. When tests are carried out on multiple fully loaded

nodes (np ∈ {24, 48, 96, 168}), the walltime scales much better with the number of processes, although there

is an expected minor additional overhead due to communications between nodes, much less significant than

the one during the first phase.

These results show that the RPF algorithm has successfully been parallelized for concrete applications, where

a number of particles of 106 is sufficient for accurate parameter and state estimation within such state spaces.

Computing times were efficiently scaled with the number of cores and significantly reduced: for instance,

with a sequential time of t1 = 3h40m04s, we managed to achieve an actual computing time of t168 = 1m35s on

168 cores, which represents a crucial practical improvement for the everyday user. At times when computing

clusters are easily accessible, it is of primary importance to be able to take advantage of such resources in

an optimal manner, and this demonstrates that Julia is perfectly suited to efficient computing for concrete

applications using state of the art algorithms.

Chapter 5. Adopting Julia for statistical inference 119

0 25 50 75 100 125 150 175
Number of processes

0
20
40
60
80

100
120
140
160
180

Sp
ee

d-
up

0 25 50 75 100 125 150 175
Number of processes

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

No
rm

al
ize

d
CP

U
tim

e

Figure 5.1: Left: performance of the parallel implementation of the RPF, displaying the
speed-up t1/tnp

w.r.t. the number of processes (total number of particles across the different
processes fixed at 106). Right: normalized time tp/t1 necessary to perform the RPF when

each process has a constant number of particles, fixed at 104.

5.6.4 Particle marginal Metropolis–Hastings

As described in Section 3.5.1, MCMC and SMC algorithms can be combined to design PMCMC algorithms.

In particular, a particle marginal Metropolis–Hastings (PMMH) sampler has been implemented in

ADJUSTIN’: basically, it suffices to design a standard MCMC algorithm and to call a particle filter at each

iteration for state estimation. The design of the platform allows to easily switch between different filters by

prescribing which one to use in the configuration of the PMCMC algorithm: a filter such as the UKF would

be fast but with a few particles, whereas filters such as the EnKF or the RPF can use more particles, improving

the precision of the estimation but requiring higher computing times. This switching procedure can easily

be implemented as follows:

function filter_function(name)
if name == "ukf"

return ukf
elseif name == "enkf"

return enkf
elseif name == "rpf"

return rpf
else

error("Wrong name of filter.")
end

end

and inside the MCMC procedure, the estimates for the hidden states come straightforwardly as:

filter = filter_function(cfg.str_filter)
rf = filter(f, g, x0, u, p, so_exp, cfg.cfg_filter; mn = mn, on = on)

where the Configuration cfg of the PMMH algorithm contains both the name of the filter used (in

str_filter) and the own Configuration of this filter (in cfg_filter). The results returned by either

120 Chapter 5. Adopting Julia for statistical inference

of the filters are then stored in rf and can be further used for other operations.

5.6.5 Adaptive hybrid Metropolis–Hastings–Gibbs

Last but not least, the population approach has been integrated into the platform. We discuss it rather

briefly as most of the aspects of the adaptive hybrid Metropolis–Hastings–Gibbs (AHMHG) algorithm (see

Algorithm 12) have already been presented for the other algorithms. What remains worth mentioning is

that it is perfectly suited to a parallel implementation as the Metropolis–Hastings for each individual can be

performed independently. We assume that as many MPI processes as individuals can be used, which was the

case in practice for this thesis. This means that, on each process, one can sample the individual parameters

for a single individual, compute the corresponding hidden states and accordingly deduce the acceptance

probability for this candidate. After acceptation or rejection, the variables related to the adaptive schemes

of this individual can be updated. Once this has been performed for all individuals, it remains to sample

population parameters. The hyperparameter Λ⋆ used for sampling a new value of η requires the mean of the

individual parameters which can be computed from the different processes efficiently as already seen for the

RPF. Sampling new values for Σ and τ requires to compute at iteration t:
N∑
i=1

(θti − ηt)(θti − ηt)T

1

2

N∑
i=1

(yi − hi(θi))
TΩ−1

i (yi − hi(θi))

(5.27)

in order to update Ψ⋆ and β⋆ respectively, which can be easily done provided that the shape of the data be

carefully handled when vectorizing and devectorizing it as needed by the MPI.Allgather function. Once the

hyperparameters of the distributions of the population parameters have been updated, only one occurrence

of η, Σ and τ needs to be sampled on, say, the 1st process, and broadcast to all other processes so that the

same chains are generated from each individual’s point of view.

5.7 Discussion

A new platform for the statistical analysis of hidden Markov models was introduced. The importance of such

a tool is all the more important since HMMs have a tremendous number of applications. Far from being

redundant with other existing tools, ADJUSTIN’ makes use of both a precise mathematical formalism and

the recently developed Julia language.

A generic approach was designed to handle randomness within HMMs, notably concerning process and obser-

vation noises. It allows automatic computations of prior, transition and observation pdfs for the estimation of

parameters and hidden states. A wide variety of algorithms have thus been implemented in ADJUSTIN’ for

the analysis of HMMs. For each of them, easily customizable graphical outputs are automatically generated,

which eases the interpretation of results and thereby workflow.

Chapter 5. Adopting Julia for statistical inference 121

ADJUSTIN’ takes advantage of the conciseness and the practicality of the Julia language. Some elegant

aspects of the latter (versioning, code generation, scripting, etc.) were highlighted. Furthermore, its refined

syntax makes it suitable for model design, making the platform a unified Julia tool, with no need to rely on a

domain specific language. Being also very efficient (at once for sequential and parallel programs), Julia seems

particularly suited for applications in the academic research, though it does not get the attention it deserves

yet.

Some improvements are under consideration and development, such as optimal experimental design, see

[Rasch and Bücker, 2010] for an example within an interactive environment. To achieve even better per-

formance, it might be interesting to implement some algorithms in CUDA rather than MPI, using the

CUDArt⁹ package.

⁹https://github.com/JuliaGPU/CUDArt.jl

Chapter 6

Estimation in state space models:

application

T his chapter focuses on several case studies in the context of general state space models (SSMs) for a

single individual, the population approach being considered in Chapter 8. Three plant growth models

have been presented in Chapter 2 using the mathematical framework of general SSMs introduced in Chapter

1 and each of these models exhibit special features:

■ the GreenLab model for Arabidopsis thaliana, which is an organ-scale plant model, aims at describing

the evolution of the area of each leaf in order to take advantage of the whole history of plant growth

for genotypic differentiation. We will proceed to a first simple calibration of the model in order to

acquire a preliminary understanding of this model using two estimation methods, generalized least

squares and adapted Metropolis within Gibbs, which is the occasion to compare the estimates that the

two algorithms provide and assess the relevance of each method on simulated data;

■ the LNAS model for wheat, involving more functional parameters but no process noise, may be more

difficult to calibrate, particularly in concrete applications where data from wheat fields are particularly

scarce and heterogeneous. This is actually the first time that the LNAS model for wheat is used and

issues related to its calibration need to be studied carefully. In particular, this model is aimed at being

used for data assimilation in order to improve model predictions of variables of interest by taking

advantage of early data being available and where the parameters and hidden states are corrected at

each observation time;

■ the LNAS model for sugar beet, a compartmental model, involved a relatively few number of functional

parameters, but is designed with both process and observation noise, and this dual randomness may

hinder the estimation of parameters and hidden states. Particle Markov chain Monte Carlo algorithms

were designed to overcome this kind of difficulties and obtain an accurate estimation of hidden states.

Furthermore, the latter is an essential prerequisite to the estimation of process and observation noise.

123

124 Chapter 6. Estimation in state space models: application

The Bayesian estimation methods presented in Chapter 3 will hence allow to tackle issues specific to each of

them. These case studies were all performed using the ADJUSTIN’ computing platform (see Chapter 5). It

is hoped that its diversity, efficiency and ease of use will be highlighted through these different case studies.

6.1 Comparison of frequentist and Bayesian approaches for the GreenLab

model

The GreenLab model for Arabidopsis thaliana, which will further be used in the context of Bayesian hierarch-

ical modelling in Chapter 8, is investigated using two popular estimation methods: a frequentist approach,

the generalized least squares (GLS) algorithm, which represents one of the most standard frequentist ap-

proaches used for model calibration (see Section 3.4), and a Bayesian one, the adapted Metropolis within

Gibbs (AMWG) algorithm (see Section 3.5.1). If the former provides punctual estimates for the parameters

coupled with a variance covariance matrix for the errors, the latter provides a posterior distribution from

which a mean and a standard deviation can be inferred. In order to compare the results that these two ap-

proaches yield in the case of a single Arabidopsis thaliana individual, we generate realistic data from a known

set of parameters and estimate some of the most influential parameters, determined thanks to a sensitivity

analysis method.

6.1.1 Sensitivity analysis

We first start by using Sobol method, described in Section 3.2.1, in order to identify the most influential

parameters of the GreenLab model for Arabidopsis thaliana. The external variables were, as will be the case all

along this section, fixed to those used for the real experiments described in Chapter 7. We chose to consider

the global output of the total leaf area qtot
n =

∑
v∈J1,νnK qvn from time step t = 1 h (at the very beginning of

plant growth) up until t = 184 h which corresponds to the 23rd day on the phenotyping platform for the

plant (see Chapter 7) and every ten time steps inbetween.

Both the Beer–Lambert extinction coefficient k and the initial biomass of the seed q0 were considered known.

The remaining model parameters were sampled from uniform distributions:

ϕ ∼ U(9.000 · 10+00, 1.500 · 10+01),

µ ∼ U(2.362 · 10+00, 3.937 · 10+00),

s ∼ U(3.750 · 10+00, 6.250 · 10+00),

e ∼ U(1.271 · 10−03, 2.119 · 10−03),

µ1 ∼ U(3.306 · 10+00, 5.511 · 10+00),

σ1 ∼ U(3.445 · 10−01, 5.742 · 10−01),

µ2 ∼ U(4.013 · 10+00, 6.689 · 10+00),

σ2 ∼ U(2.994 · 10−01, 4.990 · 10−01),

ρ2 ∼ U(5.851 · 10−02, 9.752 · 10−02),

(6.1)

Chapter 6. Estimation in state space models: application 125

0 25 50 75 100 125 150 175
Time (h)

0.0

0.2

0.4

0.6

0.8

1.0

Observation qtot

ϕ
μ
s
μ
μ1
σ1
μ2
σ2
ρ

Figure 6.1: Sobol indices for all the model parameters when considering the total leaf area
qtot as output variable w.r.t. time.

and 10,000 samples were used to obtain the estimates of Sobol indices. The results are displayed on Figure

6.1.

The most influential parameter all along the growth of the plant is clearly e, the leaf mass per area. Although

the radiation use efficiency µ comes second at the very early stages of the simulation, it seems that the log-

normal mean for the leaves of the first kind µ1 is more influential overall. Finally, in the late stages of the

growth, the phyllochron ϕ and the log-normal mean µ2 start to have a minor influence (which is understand-

able for the latter as the leaves of the second kind had not emerged before). All the other parameters seem to

play a very minor role. The 5 most influential parameters by order of importance for the GreenLab model

are therefore retained to be (e, µ1, µ, µ2, ϕ).

However, the joint estimation of parameters e and µ is not doable in practice owing to the absence of exper-

imental data on mass. It remains, however, strictly equivalent to estimate one parameter or the other and

we will therefore keep µ fixed and estimate e. A shortcoming worth mentioning of this approach is that it

is thus hard to confer a biological value to these parameters. As far as the phyllochron ϕ is concerned, it is

seldom estimated in practice as it can be easily deduced from the days of appearance of the different leaves

by averaging the differences between two such events. These reasons led us to consider the joint estimation

of 5 parameters for the GreenLab model: θ = (e, µ1, σ1, µ2, σ2).

6.1.2 Data simulation

We chose to simulate data for a single individual using a set of parameters that has been calibrated using real

data. This offers the advantage to provide simulated data that is consistent with the kind of data with which

126 Chapter 6. Estimation in state space models: application

0 25 50 75 100 125 150 175

Time (h)

0.0

0.2

0.4

0.6

0.8

Ar
ea

 (c
m

2)

Figure 6.2: Data for leaf area simulated using a set of parameters previously calibrated on real
data. The area of each leaf is not observed at all times but in a realistic manner as suggested

by the results obtained via image analysis (see Chapter 7).

we are likely to be confronted in practice. The set of parameters in question was:

ϕtrue = 1.200·10+01,

µtrue = 3.150·10+00,

strue = 5.000·10+00,

etrue = 1.695·10−03,

ktrue = 7.000·10−01,

µtrue
1 = 4.408·10+00,

σtrue
1 = 4.593·10−01,

µtrue
2 = 5.351·10+00,

σtrue
2 = 3.992·10−01,

ρtrue
2 = 7.802·10−02,

qtrue
0 = 3.808·10−05.

(6.2)

Identically, the observation function was taken to be that of a real case scenario: the areas of the different

leaves are not observed at all time steps. We recall that the GreenLab model is simulated by considering

a photoperiod of 8h per day. In the practical cases described in Chapter 7, data is only observed once per

day from day 3, i.e. every 8 n, for n ∈ J3, 23K. We also chose a multiplicative normal observation noise

with standard deviation σ = 0.1. The simulated data can be observed on Figure 6.2. The areas of the first

two leaves are observed quite well during the first eight days and then vanish as these leaves become entirely

covered by younger ones. We denote by τv = (tv1, . . . , t
v
nv) the timeline for the v-th leaf, α̃v = (ãv1, . . . , ã

v
nv)

the corresponding observations on leaf area at these time steps. The concatenated experimental data vector

is denoted y, and the vector of the corresponding hidden states obtained via model simulation from a set of

parameters θ is denoted x(θ).

Chapter 6. Estimation in state space models: application 127

0 25 50 75 100 125 150 175
Time (h)

0.0

0.2

0.4

0.6

0.8

1.0
Le

af
 A
re
a
(c
m

2)

0 25 50 75 100 125 150 175

Time (h)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Le
af
 A
re
a
(c
m

2)

Figure 6.3: Left: hidden states (dashed lines) for the different leaf areas obtained with the ini-
tial value of the parameters’ set vs. simulated observations (filled circles). Right: hidden states
(dashed lines) for the different leaf areas obtained with the GLS estimates for the parameters

vs. simulated observations (filled circles).

6.1.3 Parameter estimation

These simulated data were first used in a GLS algorithm for the estimation of the five parameters retained

θ = (e, µ1, σ1, µ2, σ2). A standard Gauss–Newton algorithm was used for the minimization procedure with

a maximum of 1, 000 iterations. The initial values chosen for the different parameters were:

e = 1.5 etrue,

µ1 = 0.7 µtrue
1 ,

σ1 = 0.8 σtrue
1 ,

µ2 = 1.1 µtrue
2 ,

σ2 = 1.3 σtrue
2 ,

(6.3)

and the initial covariance matrix was taken to be heteroskedastic with a covariance relative to each leaf:

Σ(0) = blockdiagv∈J1,νmaxK{V (α̃v) Inv}. (6.4)

A first set of parameters θ̂(0) was obtained by minimizing the GLS criterion and the standard deviation of

the observation noise is deduced as:

σ̂ = V

[yi − x(θ̂(0))i

x(θ̂(0))i

]
i∈J1,dyK

 1
2

. (6.5)

A new covariance matrix was defined as follows:

ΣGLS = σ̂2diag
([
y2i
]
i∈J1,dyK

)
. (6.6)

and the final estimate for the parameters θ̂GLS was inferred from the minimization of the GLS criterion using

this new covariance matrix. In practice, the initial set of parameters chosen for an estimation routine is such

that it gives realistic growth curves. In this case, the initial set of parameters provided growth curves for the

different leaves very far from the actual data as can be seen from Figure 6.3, thereby highlighting the fact that

such initial parameters can be considered far enough from the true ones.

128 Chapter 6. Estimation in state space models: application

0 20000 40000 60000 80000 100000

Iteration

0.00167

0.00168

0.00169

0.00170

0.00171

0.00172

Le
af
 m

as
s
pe

r
ar
ea

0 20000 40000 60000 80000 100000

Iteration

4.34

4.36

4.38

4.40

4.42

4.44

4.46

1s
t k

in
d
m
ea

n

0 20000 40000 60000 80000 100000

Iteration

0.45

0.46

0.47

0.48

0.49

1s
t k

in
d
st
d

0 20000 40000 60000 80000 100000

Iteration

5.275

5.300

5.325

5.350

5.375

5.400

5.425

5.450

2n
d
ki
nd

 m
ea

n

0 20000 40000 60000 80000 100000

Iteration

0.38

0.39

0.40

0.41

0.42

0.43

2n
d
ki
nd

 s
td

Figure 6.4: Markov chains generated by the AMWG algorithm for the estimated parameters
θ = (e, µ1, σ1, µ2, σ2). The true values of the parameters are indicated by dashed blue lines

and the dashed black lines indicate the end of the burn-in period.

0.00168 0.00169 0.00170 0.00171

Leaf mass per area

0

20000

40000

60000

80000

Pr
ob

ab
ili
ty
 d
en

si
ty
 fu

nc
tio

n

4.36 4.38 4.40 4.42 4.44

1st kind mean

0

5

10

15

20

25

30

35

Pr
ob

ab
ili
ty
 d
en

si
ty
 fu

nc
tio

n

0.455 0.460 0.465 0.470 0.475 0.480 0.485

1st kind std

0

20

40

60

80

100

120
Pr

ob
ab

ili
ty
 d
en

si
ty
 fu

nc
tio

n

5.30 5.32 5.34 5.36 5.38 5.40 5.42

2nd kind mean

0

5

10

15

20

25

Pr
ob

ab
ili
ty
 d
en

si
ty
 fu

nc
tio

n

0.390 0.395 0.400 0.405 0.410 0.415 0.420

2nd kind std

0

20

40

60

80

100

Pr
ob

ab
ili
ty
 d
en

si
ty
 fu

nc
tio

n

Figure 6.5: Histograms of the posterior distributions generated by the AMWG algorithm
for the estimated parameters θ = (e, µ1, σ1, µ2, σ2) (burn-in period discarded).

For the AMWG algorithm, we chose normal prior distributions centered on the same values as the initial

values for the GLS algorithm and a standard deviation equal to two fifths of the mean. The total number

of MCMC iterations was M = 100, 000 and the burn-in period was of B = 20, 000 iterations. The Markov

chains for each individual parameter are displayed on Figure 6.4 and the corresponding histograms on Figure

6.5, for which the samples of the burn-in period were discarded. The means and standard deviations for all

parameters were then computed from these posterior distributions.

From Figure 6.4, it appears that the burn-in period could not have been lower than 20,000 iterations as

the chains had not converged to the stationary distributions before. Despite initial values sampled from the

prior distributions not very close to the truth, the chains still rapidly converge towards the true value of the

parameters. From Figure 6.5, the posterior distributions are almost all centered on the true values, except for

Chapter 6. Estimation in state space models: application 129

e µ1 σ1 µ2 σ2

θtrue 1.695 · 10−03 4.408 · 10+00 4.593 · 10−01 5.351 · 10+00 3.992 · 10−01

θ̂GLS 1.694 · 10−03 4.405 · 10+00 4.650 · 10−01 5.357 · 10+00 3.997 · 10−01

θ̂AMWG 1.692 · 10−03 4.402 · 10+00 4.680 · 10−01 5.359 · 10+00 4.035 · 10−01

δGLS 5.900 · 10−04 6.806 · 10−04 1.241 · 10−02 1.121 · 10−03 1.253 · 10−03

δAMWG 1.693 · 10−03 1.536 · 10−03 1.882 · 10−02 1.457 · 10−03 1.068 · 10−02

σ̂GLS 3.309 · 10−05 1.538 · 10−01 9.097 · 10−02 2.560 · 10−01 1.827 · 10−01

σ̂AMWG 4.363 · 10−06 1.215 · 10−02 3.985 · 10−03 1.470 · 10−02 4.145 · 10−03

σ̂GLS/θtrue 1.952 · 10−02 3.489 · 10−02 1.981 · 10−01 4.784 · 10−02 4.577 · 10−01

σ̂AMWG/θtrue 2.574 · 10−03 2.756 · 10−03 8.676 · 10−03 2.747 · 10−03 1.038 · 10−02

Table 6.1: Comparison of the results provided by the GLS and AMWG algorithms for the
estimation of 5 parameters of the GreenLab model for Arabidopsis thaliana.

that of σ1 which does not capture extremely well the true value.

The results of the two estimation algorithms are summarized in Tables 6.1 and 6.2. The true values used for

data simulation are denoted by θtrue. For GLS, θ̂GLS denotes the punctual estimate provided by the algorithm

and σ̂GLS the corresponding standard deviation (i.e. the square root of the diagonal components of the

covariance matrix, see Equation 3.26). For AMWG, even though the results for the parameters are posterior

distributions, we still denote by θ̂AMWG and σ̂AMWG their means and standard deviations respectively. Finally,

the relative error on the mean is δA = |θ̂A − θtrue|/|θtrue| with A ∈ {GLS,AMWG}.

The first thing to note is that both GLS and AMWG yield excellent estimates for the parameters. The

relative errors on each of the latter never exceeds 2 · 10−02. The GLS estimates are always better than those

provided by AMWG, sometimes by a very short margin, sometimes by a factor of 10. As far as the standard

deviations given by the two estimates are concerned, AMWG always gives lower values by at least a factor of

10, sometimes of around 40 (for σ2). In spite of better punctual estimates in the present case for GLS, the

associated uncertainty is much higher than in the case of AMWG. The different standard deviations are also

normalized in the last two lines of Table 6.1, which highlights that GLS provides particularly high variances

for the two parameters σ1 and σ2. These two parameters are also the ones that are associated with higher

variances for AMWG, though with a lesser effect than in the case of GLS.

We also computed the RMSEP and EF coefficients for each leaf in the case of the two algorithms. The results

are summarized in Table 6.2. The RMSEP coefficients obtained with GLS are lower for all leaves but the last

one. The modelling efficiency are also all very close to the optimal value 1, which emphasizes the excellent

fitting capabilities of both algorithms.

As a conclusion, we compared a frequentist and a Bayesian estimation method in the case of the GreenLab

model for Arabidopsis thaliana and it appears that if the punctual estimates yielded by the GLS are closer to the

true values for model parameters than the means of the posterior distributions obtained with AMWG, the

130 Chapter 6. Estimation in state space models: application

1 2 3 4 5 6 7 8

RMSEP GLS 2.108 · 10−08 5.924 · 10−08 7.978 · 10−05 1.009 · 10−04 7.044 · 10−05 4.546 · 10−05 2.021 · 10−05 4.469 · 10−06

AMWG 2.748 · 10−08 1.886 · 10−07 1.517 · 10−04 1.918 · 10−04 1.481 · 10−04 1.099 · 10−04 6.635 · 10−05 2.794 · 10−06

EF GLS 9.999 · 10−01 9.999 · 10−01 9.995 · 10−01 9.989 · 10−01 9.999 · 10−01 9.999 · 10−01 1.000 · 10+00 9.998 · 10−01

AMWG 9.999 · 10−01 9.998 · 10−01 9.990 · 10−01 9.979 · 10−01 9.999 · 10−01 9.999 · 10−01 9.999 · 10−01 9.999 · 10−01

Table 6.2: RMSEP and EF coefficients calculated separately for each leaf in the case of the
GLS and AMWG algorithm.

errors on the parameters provided by the variance covariance matrix are significantly higher than the standard

deviations of the posterior distributions.

6.2 RPF-based data assimilation for the LNAS wheat model

Data assimilation is one of the key applications in agriculture. Let us assume that a model has already been

calibrated using a given experimental data set in some specific conditions – this can include the year during

which plants were grown, the location of the field the genotype used. Such experimental data provided an

estimate of the model parameters. If another experimental data set is available for the same plant but in

slightly different conditions (different year, location or genotype), estimates of the model parameters might

not be optimal for the latter. Data assimilation therefore consists in using a few early observations in these

new conditions in order to enhance the parameter and state estimates and provide more accurate predictions

for state variables of interest, yield for instance [Launay and Guerif, 2005]. This is typically achieved by

using online filtering procedures (such as the UKF, EnKF or RPF algorithms introduced in Section 3.5.2).

The parameter estimates previously obtained in other conditions still remain relevant and are used as prior

information in these SMC methods. In this regard, the Bayesian approach appears rather convenient as it

allows to incorporate previously acquired knowledge. Indeed, since only a few observations are available in

such a scenario, it is crucial that the particles be given initial values that are not too far from the optimal

ones. In a first step, all the particles are first propagated and corrected according to the early observations. In

a second step when no observations on the system are available anymore, they are propagated through the

model to forecast the values of state variables of interest and the related uncertainty at future times.

The efficiency of data assimilation using a convolution particle filter for yield forecast has been described by

Chen and Cournède [2014] with the LNAS model for sugar beet and the STICS model for winter wheat. In

this section, we investigate the use of the RPF algorithm to the newly designed LNAS model for wheat for

data assimilation. This model is indeed aimed in the future at providing yield predictions in scenarios where

relatively few data is available. The main objective of this case study is to compare the model predictions with

and without assimilation of data available from the early stages of plant growth.

Since real data was not available yet for this investigation, we generated simulated data from the model. This

also conveniently allows us to compare the predictions of the model to the true hidden states. In practice,

and this is one of the main difficulties with applications to wheat, very few measurements are available. We

assumed that observations were available for 4 state variables that are:

Chapter 6. Estimation in state space models: application 131

100 125 150 175 200 225 250 275

Time (d)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Observation qgl

μ
e
k
μr

μgl

τs

τg

μg

μ↺

q0

τ0

θmin

θmax

to

100 125 150 175 200 225 250 275

Time (d)

0.0

0.1

0.2

0.3

0.4

Observation qs

μ
e
k
μr

μgl

τs

τg

μg

μ↺

q0

τ0

θmin

θmax

to

100 125 150 175 200 225 250 275
Time (d)

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Observation qg

μ
e
k
μr

μgl

τs

τg

μg

μ↺

q0

τ0

θmin

θma↺

to

100 125 150 175 200 225 250 275

Time (d)

0.0

0.2

0.4

0.6

0.8

1.0

Observation r
μ
e
k
μr

μgl

τs

τg

μg

μ↺

q0

τ0

θmin

θmax

to

Figure 6.6: Sobol indices for the state variables qgℓ, qs, qg , and r from n = 100 to n = 280.

■ the biomass of green leaves qgℓ,

■ the biomass of the stem qs,

■ the biomass of the grain qg,

■ the water reserve r.

6.2.1 Sensitivity analysis

As always for such estimation problems, a first step consists in performing a sensitivity analysis method to

select the most influential parameters and reduce the dimension of the problem. We chose to compute Sobol

indices for these 4 variables, as they are the ones used for model calibration. The results are illustrated on

Figure 6.6.

Only 14 parameters were displayed on the different figures, for both the sake of readability and as all others

play a role even less significant in the variances of these outputs. For the biomass of green leaves, the two

most influential parameters by far are τg and µ, though at the very end of the plant’s growth and as the

remobilization process starts, µ⟲ begins to play an even more significant role. Parameter µ remains the most

influential in the early stages of the growth for the biomass of the stem and again µ⟲ Sobol first order index

takes off as soon as the remobilization process occurs. As far as the biomass of the grain is concerned, the two

parameters of the related allocation distribution τg and µg clearly dominates the early stages while µ again

takes in an important part in the late stages. Finally, the water reserve variance is vastly ruled by θmax.

132 Chapter 6. Estimation in state space models: application

Because the experimental data in the case of data assimilation concerns early stages of the growth and since

there is hardly any water stress during the data assimilation period (so that the hydric reserve is close to

saturation), we decided to estimate the three most influential parameters over this period, and retained θ =

(µ, e, µg).

6.2.2 Data simulation

Experimental data was simulated from a set of parameters providing realistic data for biomasses. The graphs

for the different variables observed can be seen on Figure 6.7. We actually simulated 3 different data sets with

different observation noises: their standard deviation σ were respectively set for all the different variables to

0.1, 0.3 and 0.5. From day n = 0 to day n = 100, the biomasses of the different compartments remain very

low and we considered that:

■ the biomass of green leaves qgℓ and the water reserve r were available from n = 120,

■ the biomass of the grain qg and that of the stem qs were available from n = 180.

The final time for possible observations was set to n = 200, at which point prediction of the different state

variables of interest begins up until n = 280 (as we used real environmental data for the year 2012 during

which the crop cycle was of 280 days). The ideal case is to have at our disposal observations at every time

steps, which is almost never the case in practice as far as wheat is concerned. Still, it remains interesting to

see how data assimilation using the RPF can improve the predictions with a large number of observations.

It is assumed that the parameters have been previously estimated using another experimental data set, and

the values of the parameters (θtrue
i)i∈J1,dK used for the simulation of the new data set for data assimilation

were shifted by 5%. A standard deviation of 5% was also used. This means that the prior distributions for

0 50 100 150 200 250
Time (d)

0

200

400

600

800

1000
qgl

qs

qg

r
̃qgl

̃qs

̃qg

̃r

0 50 100 150 200 250
Time (d)

0

200

400

600

800

1000
qgl

qs

qg

r
̃qgl

̃qs

̃qg

̃r

0 50 100 150 200 250
Time (d)

0

200

400

600

800

1000
qgl

qs

qg

r
̃qgl

̃qs

̃qg

̃r

Figure 6.7: Three different data sets have been simulated from the same set of parameters
θtrue but with different observation noises: with σ = 0.1 (left), σ = 0.3 (center) and σ = 0.5
(right). Observations were generated for all times between n = 120 and n = 200, but the
experimental data sets actually used in the following will most of the time be filtered so that
observations only occur every ∆n ∈ {1, 10, 20} days. The dispersion of the observations
(filled circles) around the hidden state (dashed line) clearly increases with the observation

noise.

Chapter 6. Estimation in state space models: application 133

the RPF were taken as:
µ ∼ N

(
0.95 µtrue, (0.05µtrue)

2
)
,

e ∼ N
(
0.95 etrue, (0.05etrue)

2
)
,

µg ∼ N
(
0.95 µg,true, (0.05µg,true)

2
)
.

(6.7)

6.2.3 Uncertainty analysis and data assimilation

Uncertainty analysis (UA) is first performed to evaluate the predictions that would have been obtained

without data assimilation. N = 10, 000 particles are sampled from the prior distribution and propagated

through the model without taking into account any experimental data set. At each time, these particles

represent an ensemble of hidden states from which can be computed the mean and a 95% credible interval

obtained by calculating the corresponding quantiles in the population of hidden states. These results will

then be compared to those obtained with data assimilation.

Data assimilation (DA) using the RPF algorithm is then performed. Again,N = 10, 000 particles are sampled

from the prior distribution. They are then propagated through the model but this time are corrected whenever

an observation is available. Notice, as mentioned previously, that the observations need not be at the same

time for the different state variables which allows for more freedom in applications: this is the case here since

observations on the biomass of the grain and that of the stem arrive later than for the biomass of green leaves

or the water reserve. As in the case of uncertainty analysis, the particles provide at each time an estimate of

the mean and a 95% credible interval.

To assess the performance of the estimates, we will look at different values. For the parameters, we simply

calculate the relative error δθi between the parameters estimated with the RPF θ̂i compared to the true value

θtrue
i . This is also applied to the hidden states for which we compute similar values at the times of interest

for the different variables δq
gℓ

240, δ
qs

240 and δq
g

280. From Figure 6.7, we indeed decided to take an interest in the

values of the different biomasses at the peak of their growth curves, which are n = 240 for the stem and green

leaves and n = 280 for the grain. To also assess the dispersion of the population for the hidden state x at

time step n with respect to the corresponding true hidden state, we also calculate two values:
ρxn =

∣∣∣∣x95%
n − x̂n
x̂n

∣∣∣∣ ,
αx
n =

∣∣∣∣ xtrue
n − x̂n

x95%
n − x̂n

∣∣∣∣ , (6.8)

where xtrue
n is the true value of the hidden state, x̂n is its estimate by the RPF (the mean of the population

of particles), and x95%
n is the boundary of the 95% credible interval closer to the true value. The first one of

these criteria ρxn is an indicator of how spread the population of hidden states’ estimates is, and the second

one αx
n assesses the position of the true value with respect to the 95% credible interval: in particular, αx

n > 1

means that the true value is outside of the credible interval. Ideally, both ρxn and αx
n should be as low as

possible.

134 Chapter 6. Estimation in state space models: application

6.2.4 Influence of the number of observations

The first case that we consider is that of data generated using a low observation noise (with standard deviation

σ = 0.1). We used three experimental data sets: the first one comprising the observations at each time

between n = 120 and n = 200 for qgℓ and r and n = 180 and n = 200 for qg and qs, the second one with

observations every 10 days, and the last one with observations every 20 days. We denote by ∆n the difference

of time steps between two consecutive observations. The first scenario is of rather low interest in practice,

and even the second one seems extremely optimistic as data is more likely to be collected as in the case of

the last scenario. However, with the increasing availability of observations obtained from satellite images or

captors in fields, a better quality of data to be assimilated can be expected in a near future.

The results for the estimated parameters are displayed on Figure 6.8 for the three scenarios and the three

parameters. In every case, the final value is much closer to the truth than the initial one. In the case of∆n = 1,

the parameters rapidly converge towards the region of the true parameters and the noised observations then

makes it oscillate. For ∆n = 10 and ∆n = 20, the parameters still manage to converge towards a good

estimate of the true values despite very few observations. Results from Table 6.3 show that the relative errors

on the parameters with data assimilation have been decreased in all cases by at least one order of magnitude.

The graphs from Figure 6.9 provide a graphical representation of how well UA (in blue) and DA (in red)

respectively perform as far as biomass predictions are concerned. The first thing to note is that even though

the parameters were slightly modified (by only 5%), uncertainty analysis performs rather poorly and underes-

timates all biomasses significantly. When data assimilation with the RPF is used, predictions become much

better not only during the observation phase but also until the end of the growth. This was expected with

many observations as in the case of ∆n = 1, but it works surprisingly well even in the case of ∆n = 10 and

∆n = 20.

For ∆n = 1, the hidden state is very well estimated and the whole population of particles is near the true

value. This is best seen by looking at the values in Table 6.3: the relative errors δ for the states are never higher

than 2 · 10−02 and are less than between 10 to 30 – depending on the variable – compared to the case of UA.

The dispersion of the population is also much less than in the case of UA as can be seen from the values of

the coefficients ρ which are roughly 10 times less in the case of DA. Even though the populations are very

confined, the true hidden states are well captured inside the 95% credible interval as the coefficients α are

less than 1. In the cases of ∆n = 10 and ∆n = 20, the estimates are still very accurate as the coefficients δ are

never higher than 1.5 ·10−02. The populations are more dispersed – because of the fewer observations – than

in the case ∆n = 1 as the coefficients ρ can take on higher values (up to 1.2 · 10−01). Two of the coefficients

δ are lower than in the case of ∆n = 1 which, combined to more dispersed estimates, lead to very low α

coefficients.

Overall, hidden states estimates with data assimilation are excellent compared to those provided by uncer-

tainty analysis, even in the case of very few observations. This is extremely encouraging, in particular for

the last case as the LNAS model for wheat is likely to be used in the context of scarce data, where ∆n = 20

represents a reasonable frequency for the observations. This amounts to using only 14 observation data in

Chapter 6. Estimation in state space models: application 135

0 25 50 75 100 125 150 175 200
Time (days)

2.5

2.6

2.7

2.8

2.9

μ

0 25 50 75 100 125 150 175 200
Time (days)

2.5

2.6

2.7

2.8

2.9

μ

0 25 50 75 100 125 150 175 200
Time (days)

2.45

2.50

2.55

2.60

2.65

2.70

2.75

2.80

μ

0 25 50 75 100 125 150 175 200

Time (days)

0.032

0.033

0.034

0.035

0.036

0.037

0.038

e

0 25 50 75 100 125 150 175 200

Time (days)

0.032

0.033

0.034

0.035

0.036

0.037

0.038

e

0 25 50 75 100 125 150 175 200

Time (days)

0.033

0.034

0.035

0.036

0.037

e
0 25 50 75 100 125 150 175 200

Time (days)

560

580

600

620

640

660

680

μg

0 25 50 75 100 125 150 175 200

Time (days)

570

580

590

600

610

620

630

640

650

μg

0 25 50 75 100 125 150 175 200

Time (days)

580

590

600

610

620

630

640

650

μg

Figure 6.8: Evolution of the different estimated parameters as they are corrected when ob-
servations are available: with ∆n = 1 (left), ∆n = 10 (middle) and ∆n = 20 (right). If the
population of particles for parameter θi has meanm and standard deviation s, the red curve
represents m and the blue lines m± s. The true value used for data simulation is indicated

with a black dashed line. We recall that data assimilation starts on day 120.

order to calibrate the model and improving the predictions. As this is the case of highest interest to us, we

will consider that ∆n = 20 in the following.

6.2.5 Influence of the observation noise

In the previous experiments, the observation noise was rather low, such that its standard deviation was σ = 0.1.

In real applications, one might obtain data that is even more noisy, and the study of the influence of the

observation noise turns out to be crucial. In order to assess the performance of data assimilation with the

RPF in such scenarios, we considered three different cases where the standard deviation of the observation

noise takes values:
σ = 0.1,

σ = 0.3,

σ = 0.5.

(6.9)

The prior distributions and the number of particles remain the same as before and, as previously mentioned,

∆n = 20. The results are displayed on Figure 6.10. From these graphs, one could assume that for σ = 0.5 the

observations are still very close to the curve, but two things must be accounted for: first, when the values of

136 Chapter 6. Estimation in state space models: application

0 50 100 150 200 250

Time (d)

0

20

40

60

80

100

120

140

160

qg
ℓ

0 50 100 150 200 250

Time (d)

0

20

40

60

80

100

120

140

160

qg
ℓ

0 50 100 150 200 250

Time (d)

0

20

40

60

80

100

120

140

160

qg
ℓ

0 50 100 150 200 250

Time (d)

0

100

200

300

400

500

600

700

800

qs

0 50 100 150 200 250

Time (d)

0

200

400

600

800

qs

0 50 100 150 200 250

Time (d)

0

100

200

300

400

500

600

700

800

qs
0 50 100 150 200 250

Time (d)

0

200

400

600

800

1000

1200

qg

0 50 100 150 200 250

Time (d)

0

200

400

600

800

1000

1200

qg

0 50 100 150 200 250

Time (d)

0

200

400

600

800

1000

1200

qg

Figure 6.9: Predictions of the different biomasses in the case of uncertainty analysis (UA,
blue lines) and data assimilation (DA, red lines). The 95% CI boundaries are indicated with
dashed lines. The black lines correspond to the true hidden states and the observations used
for data assimilation are represented by filled circles. The three cases considered here are

∆n = 1 (left), ∆n = 10 (center) and ∆n = 20 (right).

∆n = 1 ∆n = 10 ∆n = 20

UA DA UA DA UA DA

δµ 5.000 · 10−02 3.202 · 10−02 5.000 · 10−02 4.222 · 10−03 5.000 · 10−02 7.823 · 10−03

δe 5.000 · 10−02 2.863 · 10−02 5.000 · 10−02 2.701 · 10−03 5.000 · 10−02 6.147 · 10−03

δµ
g

5.000 · 10−02 1.100 · 10−03 5.000 · 10−02 1.632 · 10−03 5.000 · 10−02 7.847 · 10−04

δq
gℓ

240 2.332 · 10−01 7.278 · 10−03 2.224 · 10−01 1.340 · 10−02 2.272 · 10−01 1.082 · 10−02

ρqgℓ

240 3.905 · 10−01 2.143 · 10−02 3.939 · 10−01 8.509 · 10−02 3.873 · 10−01 6.459 · 10−02

αqgℓ

240 7.479 · 10−01 3.372 · 10−01 6.958 · 10−01 1.427 · 10−01 8.245 · 10−01 1.481 · 10−01

δq
s

240 2.135 · 10−01 1.965 · 10−02 2.086 · 10−01 1.522 · 10−02 2.142 · 10−01 3.150 · 10−04

ρqs

240 3.782 · 10−01 3.090 · 10−02 3.697 · 10−01 1.167 · 10−01 3.697 · 10−01 7.958 · 10−02

αqs

240 8.464 · 10−01 6.238 · 10−01 7.492 · 10−01 1.063 · 10−01 8.644 · 10−01 4.571 · 10−03

δq
g

280 1.309 · 10−01 2.716 · 10−02 1.277 · 10−01 9.887 · 10−03 1.318 · 10−01 1.063 · 10−02

ρqg

280 3.206 · 10−01 3.088 · 10−02 3.345 · 10−01 1.216 · 10−01 3.323 · 10−01 7.680 · 10−02

αqg

280 5.864 · 10−01 8.563 · 10−01 5.379 · 10−01 7.090 · 10−02 6.312 · 10−01 2.035 · 10−01

Table 6.3: Results for the different relative errors and other coefficients calculated in order
to identify the quality of the estimates provided by uncertainty analysis (UA) and data assim-
ilation (DA) with different frequencies of observations ∆n = 1, ∆n = 10 and ∆n = 20.

Chapter 6. Estimation in state space models: application 137

the observations are small, the multiplicative error might still be important and second, what is not displayed

here is the observations for the water reserve that are particularly noisy.

The case with σ = 0.1 corresponds to one previously discussed and is there only for comparison. For σ = 0.3,

the relative errors on the parameters for DA are two times lower than the initial ones for µ and e, which

admittedly constitutes an improvement, although a subtle one. Only the relative error on µg is greatly

improved, by a factor of 20. This effect becomes even more pronounced when σ = 0.5, with a relative error

for µ higher than in the case of uncertainty analysis, and the one for e is slightly decreased. Once again,

the only parameters whose estimation is significantly improved is µg. Even though this is not illustrated

here, we can say that the improvements for this parameter occur with the last two sets of observations being

assimilated, highlighting a possible importance of the observations on the biomass of the grain qg.

As far as hidden states estimates are concerned, DA predictions are still acceptable as the true states remain

within the 95% credible interval for σ = 0.3 (by a narrow margin for qgℓ). This is best seen by the values

indicated in Table 6.4 where the α coefficients are less than 6 · 10−01 for qs and qg and 8 · 10−01 for qgℓ. The

dispersion of the particles in this case is still moderate, which is not the case anymore for σ = 0.5. Indeed,

the ρ coefficients are not higher than 2 · 10−02 which is rather low. The concentration of the particles is

also obvious from Figure 6.10. What likely happens is that since the observations are very noisy, the first

observation to strongly deviate from the hidden state curve will ensure that the weight is carried by very few

particles and the population of particles, even though perturbated for a better state space exploration, will

get stuck in a region of the state space that is not optimal. This, in turn, implies that the true hidden states is

not well captured by the 95% credible interval as demonstrated by the large values for the α coefficients (up

to more than 4 for qgℓ).

Despite these issues in the case of large observation errors, data assimilation provides good state estimates

and appears as an excellent and much more robust tool for model prediction than uncertainty analysis with,

it should be remembered, only 14 observations over the whole plant growth and with potentially very high

observation noise.

6.2.6 Influence of the prior

The prior distribution that is used in the RPF algorithm is also of interest. In the present case, it represents the

knowledge that we have acquired by calibrating the model in another situation. If the two situations in which

the plants grow highly differ, it might be possible that the optimal values of the parameters differ significantly

as well. To study this effect, we chose 3 different prior distributions θi ∼ N
((

1 + (−1)iϵ
)
θtrue
i , (ϵ θtrue

i)
2
)

with:
ϵ = 0.05,

ϵ = 0.10,

ϵ = 0.20,

(6.10)

where we recall that θtrue
i is the true parameter used for data simulation and that the prior used corresponds to

the posterior distribution obtained from the calibration from a previous experiment. The factor (−1)i ensures

138 Chapter 6. Estimation in state space models: application

0 50 100 150 200 250

Time (d)

0

20

40

60

80

100

120

140

160

qg
ℓ

0 50 100 150 200 250

Time (d)

0

25

50

75

100

125

150

175

qg
ℓ

0 50 100 150 200 250

Time (d)

0

25

50

75

100

125

150

175

200

qg
ℓ

0 50 100 150 200 250

Time (d)

0

100

200

300

400

500

600

700

800

qs

0 50 100 150 200 250

Time (d)

0

200

400

600

800

qs

0 50 100 150 200 250

Time (d)

0

100

200

300

400

500

600

700

800

qs
0 50 100 150 200 250

Time (d)

0

200

400

600

800

1000

1200

qg

0 50 100 150 200 250

Time (d)

0

200

400

600

800

1000

1200

qg

0 50 100 150 200 250

Time (d)

0

200

400

600

800

1000

1200

qg

Figure 6.10: Predictions of the different biomasses in the case of uncertainty analysis (UA,
blue lines) and data assimilation (DA, red lines). The 95% CI boundaries are indicated with
dashed lines. The black lines correspond to the true hidden states and the observations used
for data assimilation are represented by filled circles. The three cases considered here are

σ = 0.1 (left), σ = 0.3 (center) and σ = 0.5 (right).

σ = 0.1 σ = 0.3 σ = 0.5

UA DA UA DA UA DA

δµ 5.000 · 10−02 4.605 · 10−03 5.000 · 10−02 2.162 · 10−02 5.000 · 10−02 6.132 · 10−02

δe 5.000 · 10−02 8.105 · 10−04 5.000 · 10−02 2.769 · 10−02 5.000 · 10−02 4.034 · 10−02

δµ
g

5.000 · 10−02 1.109 · 10−03 5.000 · 10−02 2.183 · 10−03 5.000 · 10−02 3.437 · 10−03

δq
gℓ

240 2.322 · 10−01 2.177 · 10−03 2.136 · 10−01 7.472 · 10−02 2.253 · 10−01 3.080 · 10−02

ρqgℓ

240 3.855 · 10−01 7.649 · 10−02 3.756 · 10−01 8.829 · 10−02 3.647 · 10−01 2.210 · 10−02

αqgℓ

240 7.965 · 10−01 3.761 · 10−02 7.691 · 10−01 7.874 · 10−01 7.440 · 10−01 4.574 · 10+00

δq
s

240 2.146 · 10−01 2.307 · 10−03 2.058 · 10−01 6.258 · 10−02 2.083 · 10−01 3.045 · 10−02

ρqs

240 3.705 · 10−01 8.609 · 10−02 3.494 · 10−01 1.014 · 10−01 3.521 · 10−01 3.022 · 10−02

αqs

240 8.293 · 10−01 3.435 · 10−02 7.903 · 10−01 5.807 · 10−01 8.157 · 10−01 9.778 · 10−01

δq
g

279 1.362 · 10−01 6.623 · 10−03 1.217 · 10−01 4.925 · 10−02 1.255 · 10−01 6.382 · 10−02

ρqg

279 3.228 · 10−01 7.742 · 10−02 3.190 · 10−01 9.178 · 10−02 3.260 · 10−01 2.285 · 10−02

αqg

279 6.412 · 10−01 1.155 · 10−01 5.597 · 10−01 5.114 · 10−01 5.596 · 10−01 2.625 · 10+00

Table 6.4: Results for the different relative errors and other coefficients calculated in order
to identify the quality of the estimates provided by uncertainty analysis (UA) and data assim-
ilation (DA) with different standard deviations of observation noise σ = 0.1, σ = 0.3 and

σ = 0.5.

Chapter 6. Estimation in state space models: application 139

that parameters are neither all underestimated nor all overestimated. We then performed an RPF algorithm

on the scarce data, ∆n = 20, with an observation noise such that σ = 0.1. The results are displayed on Figure

6.11.

We witness that in all three cases, the mean estimates provided by the RPF perfectly align with the true hidden

states. The uncertainty analysis estimates remain reasonable with prior distributions close to the truth, their

quality quickly degrades with distancing prior distributions. Even with prior distributions rather close to the

truth, ϵ = 0.05, UA significantly underestimates the different biomasses. As ϵ further increases, this becomes

even more noticeable: in the case of ϵ = 0.10, the different biomasses estimated with UA are almost half of

their real values and when ϵ = 0.20 they are at least 4 times lower than the real values. The values of the

parameters estimated with the RPF are also much better at the final observation time as can be seen from

Table 6.5.

For ϵ = 0.05, despite the initial closeness of the parameters to the truth, the relative errors are divided by

8, 12 and 40 for the first, second and third parameters respectively. The relative errors on the different state

variables of interest are also significantly reduced, by a factor of 40 to 60 depending on the variables. The

coefficients α and ρ also both decreased, which indicates that the population of the DA estimates is not too

dispersed and that the true values lies at the centre of the credible interval, which can also be seen on Figure

6.11.

What is more of interest concerns the case with ϵ = 0.10 and ϵ = 0.20. Indeed, in spite of further prior

distributions, the hidden states’ estimates with data assimilation are still excellent, as evidenced by the δ

coefficients that are all less than 1.5 · 10−02 in the case of ϵ = 0.10 and 6 · 10−03 in the case of ϵ = 0.20, which

is much better than in the case of UA. It is worth noting that the DA estimates provided by the case ϵ = 0.20

are even better than those for the case of ϵ = 0.10. The dispersion of the estimates is also reasonable and the

true hidden states are always perfectly captured by the 95% credible interval. The worst case being for the

very early stages of qs: as prior distributions are chosen far from the true values, the population needs time

to adapt and correct the values of the particles accordingly.

The predictions with data assimilation and ill-chosen priors are excellent in all cases: strikingly, when ϵ = 0.20,

the 95% credible intervals of UA and DA do not even overlap, which sums up the strong gain in performance

for the predictions. To emphasize this point, the posterior distributions for the different state estimates qgℓ240,

qs240 and qg280 are displayed on Figure 6.12. This confirms what was previously mentioned: the UA posterior

distributions significantly underestimate the true values even with ϵ = 0.05 and become plainly wrong as ϵ

further increases. On the contrary, the DA posterior distributions are always centered on the true values, with

rather low variances. For ϵ = 0.20, the posterior distributions of UA and DA barely overlap. This illustrates

a strong robustness of the RPF to ill-chosen priors and highlights the strength of the approach considered

here to great changes, whether they be due to environment or genotype.

140 Chapter 6. Estimation in state space models: application

0 50 100 150 200 250

Time (d)

0

20

40

60

80

100

120

140

160

qg
ℓ

0 50 100 150 200 250

Time (d)

0

20

40

60

80

100

120

140

160

qg
ℓ

0 50 100 150 200 250

Time (d)

0

25

50

75

100

125

150

175

qg
ℓ

0 50 100 150 200 250

Time (d)

0

100

200

300

400

500

600

700

800

qs

0 50 100 150 200 250

Time (d)

0

200

400

600

800

qs

0 50 100 150 200 250

Time (d)

0

200

400

600

800

qs
0 50 100 150 200 250

Time (d)

0

200

400

600

800

1000

1200

qg

0 50 100 150 200 250

Time (d)

0

200

400

600

800

1000

1200

qg

0 50 100 150 200 250

Time (d)

0

200

400

600

800

1000

1200

1400

qg

Figure 6.11: Predictions of the different biomasses in the case of uncertainty analysis (UA,
blue lines) and data assimilation (DA, red lines). The 95% CI boundaries are indicated with
dashed lines. The black lines correspond to the true hidden states and the observations used
for data assimilation are represented by filled circles. The three cases considered here are

ϵ = 0.05 (left), ϵ = 0.10 (center) and ϵ = 0.20 (right).

ϵ = 0.05 ϵ = 0.10 ϵ = 0.20

UA DA UA DA UA DA

δµ 5.000 · 10−02 6.664 · 10−03 1.000 · 10−01 3.577 · 10−03 2.000 · 10−01 5.936 · 10−03

δe 5.000 · 10−02 4.243 · 10−03 1.000 · 10−01 2.444 · 10−03 2.000 · 10−01 1.217 · 10−03

δµ
g

5.000 · 10−02 1.154 · 10−03 1.000 · 10−01 8.309 · 10−04 2.000 · 10−01 1.196 · 10−03

δq
gℓ

240 2.307 · 10−01 6.167 · 10−03 4.719 · 10−01 1.490 · 10−02 8.409 · 10−01 5.680 · 10−03

ρqgℓ

240 3.795 · 10−01 8.518 · 10−02 7.625 · 10−01 7.288 · 10−02 8.681 · 10−01 1.069 · 10−01

αqgℓ

240 8.081 · 10−01 7.498 · 10−02 8.447 · 10−01 2.076 · 10−01 8.387 · 10−01 5.110 · 10−02

δq
s

240 2.134 · 10−01 3.238 · 10−03 4.535 · 10−01 8.567 · 10−03 8.704 · 10−01 1.411 · 10−03

ρqs

240 3.616 · 10−01 8.889 · 10−02 8.255 · 10−01 9.746 · 10−02 9.235 · 10−01 1.390 · 10−01

αqs

240 8.569 · 10−01 3.658 · 10−02 8.840 · 10−01 8.866 · 10−02 9.389 · 10−01 1.014 · 10−02

δq
g

279 1.304 · 10−01 2.999 · 10−03 3.312 · 10−01 6.598 · 10−03 7.886 · 10−01 1.374 · 10−03

ρqg

279 3.249 · 10−01 7.255 · 10−02 8.095 · 10−01 8.514 · 10−02 9.373 · 10−01 1.355 · 10−01

αqg

279 5.960 · 10−01 4.122 · 10−02 6.771 · 10−01 7.802 · 10−02 7.361 · 10−01 1.013 · 10−02

Table 6.5: Results for the different relative errors and other coefficients calculated in order
to identify the quality of the estimates provided by uncertainty analysis (UA) and data assim-

ilation (DA) with different prior distributions ϵ = 0.05, ϵ = 0.10 and ϵ = 0.20.

Chapter 6. Estimation in state space models: application 141

40 60 80 100 120 140 160 180

qgℓ

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0 50 100 150 200

qgℓ

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0 50 100 150 200 250 300

qgℓ

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

200 400 600 800

qs

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

0 200 400 600 800 1000

qs

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0 200 400 600 800 1000 1200 1400

qs

0.000

0.002

0.004

0.006

0.008

0.010

400 600 800 1000 1200 1400

qg

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0 250 500 750 1000 1250 1500

qg

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0 500 1000 1500 2000

qg

0.000

0.001

0.002

0.003

0.004

0.005

0.006

Figure 6.12: Prior (in blue, corresponding to UA’s predictions) and posterior (in red, corres-
ponding to DA’s predictions) distributions for the different variables of interest qgℓ240 (top),
qs240 (middle) and qg280 (bottom) for different prior distributions ϵ = 0.05 (left), ϵ = 0.10

(center) and ϵ = 0.20 (right). The black lines correspond to the true hidden states.

6.2.7 Influence of the number of estimated parameters

So far we have considered cases where relatively few parameters of the LNAS model were estimated. For real

applications, one might need to estimate more than 3 parameters, and the difficulty related to the estimation

problem with relatively few data becomes more challenging. To illustrate this aspect, we designed 3 cases

where the estimated parameters were:
θ = (µ, e, µg), i.e. d = 3,

θ = (µ, e, µg, µ⟲), i.e. d = 4,

θ = (µ, e, µg, µ⟲, τg), i.e. d = 5.

(6.11)

The results are displayed on Figure 6.13. As the number of estimated parameters increases, we notice that

the estimation of the hidden states during the data assimilation phase remains excellent, but degrades as time

passes and there is no observation availabe to correct the particles. For d = 4, until n = 230 the estimated

curves for qgℓ and qr follow perfectly those of the true hidden states, but slightly before the peak of the curve

the estimated curves drop too early, which is not the case for d = 3. However, the three parameters estimated

for d = 3 are even better etimated for d = 4 as can be seen from the values of the δ coefficients in Table

6.6. This means that the deviation from the true curves can only be attributed to the additional estimated

parameters µ⟲. This is all the more sensible that µ⟲ is heavily involved in the allocation of biomass during

142 Chapter 6. Estimation in state space models: application

the late stages of plant growth.

Still, the estimates for the state variables of interest remain rather good, with δ coefficients not exceeding

7 · 10−02 for d = 4 and 2 · 10−02 for d = 5. This divergence effect between the true curves and the estimated

ones is indeed less pronounced in the case of d = 5. Although this might seem counter-intuitive at first

glance, this is partly explained by a better estimation of µ⟲ in the case of d = 5 whose role during the last

growth stages is significant, as was suggested by Sobol analysis illustrated on Figure 6.6. We must finally

mention that the state estimates of qgℓ and qr would have probably been not as good if we had considered

later times (after n = 250).

The dispersion of the curves remains reasonable and manages to capture the true values inside the credible

interval, with values for the α coefficients below 5 · 10−01 for d = 4 and 6 · 10−01 for d = 5. All in all, data

assimilation keeps on improving the predictions for all state variables with an increasing number of estimated

parameters.

As a conclusion, the use of an efficient SMC method such as the regularized particle filter for the assimila-

tion of data available in the early stages of plant growth appears to be an essential tool for accurate model

predictions, which is crucial for agriculture applications. This has proved to work even in the case of scarce

data with at most 14 observations on all possible model variables. It improves model predictions even in the

case of highly noisy observations, and is very robust to prior distributions far from the optimal values for the

parameters, which will undeniably be useful for model calibration in different contexts.

6.3 Parameter and state estimation using the PMMH sampler for the LNAS

sugar beet model

The last case study we investigate is that of joint parameter and state estimation using the LNAS model for

sugar beet. As explained in Chapter 3, both MCMC and SMC methods have their limitations, in partic-

ular when the model contains process noise as is the case of the one considered here. In order to obtain

better estimates for the hidden states, and with the ultimate goal of estimating the parameters underlying

the distributions of the process and observation noises, we will focus our attention on the PMMH algorithm

introduced in Section 3.5.3.

6.3.1 Sensitivity analysis

We first start as usual by performing a sensitivity analysis routine in order to identify the most influential

model parameters, whose results can be seen on Figure 6.14. Sobol indices were computed for the biomass of

the green leaves qgℓ and the biomass of the roots qr. In the early stages of the growth, the allocation coefficient

γ0 is by far the most influential parameter as it controls how the biomass is divided between the different

compartments. The radiation use efficiency µ also plays a significant role throughout the whole growth as it

influences the biomass produced on each day. Finally the leaf mass per area e is also of importance. Other

Chapter 6. Estimation in state space models: application 143

0 50 100 150 200 250

Time (d)

0

20

40

60

80

100

120

140

160

qg
ℓ

0 50 100 150 200 250

Time (d)

0

20

40

60

80

100

120

140

160

qg
ℓ

0 50 100 150 200 250

Time (d)

0

20

40

60

80

100

120

140

160

qg
ℓ

0 50 100 150 200 250

Time (d)

0

100

200

300

400

500

600

700

800

qs

0 50 100 150 200 250

Time (d)

0

100

200

300

400

500

600

700

800

qs

0 50 100 150 200 250

Time (d)

0

100

200

300

400

500

600

700

800

qs

0 50 100 150 200 250

Time (d)

0

200

400

600

800

1000

1200

qg

0 50 100 150 200 250

Time (d)

0

200

400

600

800

1000

1200

qg

0 50 100 150 200 250

Time (d)

0

200

400

600

800

1000

1200

qg

Figure 6.13: Predictions of the different biomasses in the case of uncertainty analysis (UA,
blue lines) and data assimilation (DA, red lines). The 95% CI boundaries are indicated with
dashed lines. The black lines correspond to the true hidden states and the observations used
for data assimilation are represented by filled circles. The three cases considered here are

d = 3 (left), d = 4 (center) and d = 5 (right).

d = 3 d = 4 d = 5

UA DA UA DA UA DA

δµ 5.000 · 10−02 6.249 · 10−03 5.000 · 10−02 4.724 · 10−04 5.000 · 10−02 1.219 · 10−02

δe 5.000 · 10−02 1.421 · 10−02 5.000 · 10−02 8.293 · 10−03 5.000 · 10−02 2.233 · 10−02

δµ
g

5.000 · 10−02 1.973 · 10−03 5.000 · 10−02 1.368 · 10−03 5.000 · 10−02 3.468 · 10−02

δµ
⟲

◦ ◦ 5.000 · 10−02 4.857 · 10−02 5.000 · 10−02 3.376 · 10−02

δµ
τg

◦ ◦ ◦ ◦ 5.000 · 10−02 1.047 · 10−02

δq
gℓ

240 2.336 · 10−01 1.648 · 10−02 2.788 · 10−01 6.696 · 10−02 3.042 · 10−01 2.993 · 10−02

ρqgℓ

240 3.994 · 10−01 6.567 · 10−02 3.873 · 10−01 2.570 · 10−01 4.349 · 10−01 2.322 · 10−01

αqgℓ

240 8.814 · 10−01 2.211 · 10−01 9.726 · 10−01 5.074 · 10−01 1.022 · 10+00 5.880 · 10−01

δq
s

240 2.143 · 10−01 1.252 · 10−02 2.646 · 10−01 6.269 · 10−02 3.033 · 10−01 2.584 · 10−02

ρqs

240 3.833 · 10−01 8.322 · 10−02 3.646 · 10−01 2.538 · 10−01 4.337 · 10−01 2.198 · 10−01

αqs

240 9.037 · 10−01 1.765 · 10−01 1.017 · 10+00 4.377 · 10−01 1.057 · 10+00 5.480 · 10−01

δq
g

279 1.404 · 10−01 5.752 · 10−03 1.975 · 10−01 6.814 · 10−02 1.653 · 10−01 2.058 · 10−02

ρqg

279 3.278 · 10−01 8.244 · 10−02 3.166 · 10−01 2.060 · 10−01 3.636 · 10−01 1.673 · 10−01

αqg

279 6.412 · 10−01 9.899 · 10−02 8.027 · 10−01 4.101 · 10−01 6.603 · 10−01 1.825 · 10−01

Table 6.6: Results for the different relative errors and other coefficients calculated in order
to identify the quality of the estimates provided by uncertainty analysis (UA) and data assim-

ilation (DA) with different numbers of estimated parameters d = 3, d = 4 and d = 5.

144 Chapter 6. Estimation in state space models: application

influential parameters include γℓ and µa, although the former influences only the late growth stages and the

latter does not have such an impact on the biomass of the roots. We still chose to include µa over e since

experimental data often relates to the late growth stage and µa is less known from a biological perspective,

the set of estimated parameters therefore being θ = (µ, γ0, µa).

0 25 50 75 100 125 150

Time (d)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

D
ry
 G
re
en

 L
ea
f M

as
s
(g
/m

2)

μ
e
γ0

γl

μμ

σμ

μs

σs

0 25 50 75 100 125 150
Time (d)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Yi
el
d
(g
/m

2)

μ
e
γ0

γl

μμ

σμ

μs

σs

Figure 6.14: Sobol indices for the state variables qgℓ and qr from n = 1 to n = 160.

6.3.2 Data simulation

Real experimental data sets used in previous works [Chen, 2014], [Baey, 2014] consisted of 14 different

observations on the two variables qgℓ and qr. We made the decision to also simulate data for these two

variables on a similar number of days. Obviously, we could have used real data sets, but we would not have

been able to compare the results of the estimation for the hidden states to their true values. We simulated

data with the following parameters set:

µtrue = 3.746 · 10+00,

ktrue = 7.000 · 10−01,

etrue = 5.660 · 10+01,

γ0,true = 7.525 · 10−01,

γℓ,true = 1.035 · 10−01,

µa,true = 5.790 · 10+02,

σa,true = 9.500 · 10+02,

(6.12)

with a multiplicative normal observation noise having standard deviation σ = 0.1 and observed the values of

the biomass of green leaves q̃gℓ and that of the roots q̃r on 11 days:

O = {50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150}. (6.13)

6.3.3 Comparison of filters within PMMH

The aim of this case study is therefore to perform a joint estimation of the model parameters and hidden

states qgℓ and qr using the PMMH sampler, with different SMC algorithms. Indeed, at each iteration of the

Chapter 6. Estimation in state space models: application 145

PMMH, an SMC method must be used in order to accurately sample the hidden states. Different strategies

can be considered. Using a simple filter such as the UKF (where the number of particles is fixed) or the EnKF

with a low number of particles could provide decent samples, even though not optimal, with a rather low

computing time. Another one is to use more refined filters at each iteration, such as EnKF or, even better,

RPF algorithms with a high number of particles. It is awaited that they would provide better estimates as

they overcome some drawbacks of simpler filters such as narrow state space exploration or weight degeneracy.

A PMMH algorithm withM = 30, 000 iterations was run on this simulated data. Different SMC algorithms

were used: an unscented Kalman filter (UKF), two ensemble Kalman filters, one with 102 particles (EnKF-2)

and the other with 103 particles (EnKF-3), and finally two RPF filters, one with 102 particles (RPF-2) and

the other with 103 particles (RPF-3). The results were obtained by running 10 times the same application

with the following prior distributions originating from [Chen, 2014]:

µ = N
(
0.961 µtrue, (0.08 µtrue)

2
)
,

γ0 = N
(
0.997 γ0,true,

(
0.13 γ0,true

)2)
,

µa = N
(
1.036 µa,true, (0.09 µa,true)

2
)
.

(6.14)

UKF EnKF-2 EnKF-3 RPF-2 RPF-3

δµ 1.023 · 10−03 8.603 · 10−03 1.091 · 10−02 8.414 · 10−03 7.508 · 10−03

δγ
0

1.027 · 10−03 1.042 · 10−03 5.065 · 10−03 1.104 · 10−03 3.204 · 10−03

δµ
a

1.780 · 10−02 9.020 · 10−03 7.103 · 10−03 1.309 · 10−02 1.607 · 10−02

σµ/µtrue 1.383 · 10−02 1.295 · 10−02 1.489 · 10−02 1.340 · 10−02 1.212 · 10−02

σγ0

/γ0,true 1.969 · 10−02 1.789 · 10−02 2.254 · 10−02 1.829 · 10−02 1.612 · 10−02

σµa

/µa,true 2.867 · 10−02 2.447 · 10−02 2.676 · 10−02 2.318 · 10−02 1.971 · 10−02

Table 6.7: Relative errors on the parameters δθi and normalized standard deviations of the
estimates σθi/θtrue

i for the different SMC algorithms used within the PMMH sampler.

The relative errors on the estimated parameters as well as the related normalized standard deviations are

displayed in Table 6.7. It shows that UKF yields the best results for µ and γ0, but performs slightly worse

for µa. Indeed, even though the relative error on this parameter is ten times that on the first two, it seems

that, in the case of all SMC algortihms, the PMMH struggles a bit more to estimate the true values of µa

compared to µ and γ0. Rather surprisingly, EnKF-3 provides estimates not as good as EnKF-2 except for

µa. Equivalently, RPF-3 performs a bit better than RPF-2 on the first parameter. Increasing the number of

particles for a given filter does not seem to improve considerably the accuracy on the parameters’ estimates.

Still, the relative errors on the true values remain acceptable for all parameters and filters, but we note that

UKF’s performance is surprisingly good.

Concerning the standard deviations, they all are of the same orders of magnitude, comprised between

1.2 · 10−02 and 1.5 · 10−02 for µ, 1.6 · 10−02 and 2.3 · 10−02 for γ0, and 1.9 · 10−02 and 2.9 · 10−02 for

146 Chapter 6. Estimation in state space models: application

µa. The standard deviation related to µa is therefore almost the double of that for µ and overall, no filters

significantly outperformed the others.

UKF EnKF-2 EnKF-3 RPF-2 RPF-3

RMSEP q̂gℓ50:5:100 9.778 · 10+00 4.999 · 10+00 5.071 · 10+00 4.690 · 10+00 4.263 · 10+00

q̂r50:5:100 6.402 · 10+00 1.868 · 10+01 2.187 · 10+01 1.835 · 10+01 1.766 · 10+01

EF q̂gℓ50:5:100 9.965 · 10−01 9.992 · 10−01 9.992 · 10−01 9.993 · 10−01 9.994 · 10−01

q̂r50:5:100 9.999 · 10−01 9.993 · 10−01 9.991 · 10−01 9.994 · 10−01 9.994 · 10−01

Table 6.8: Root mean square error prediction and modelling efficiency on the two hid-
den states of interest qgℓ and qr for the different SMC algorithms used within the PMMH

sampler.

The choice of the SMC method might be felt more on the estimation of the hidden states. To assess the

accuracy of the latter, we computed the RMSEP and the modelling efficiency for qgℓ and qr separately for

each filter over the whole timeline. We must mention that here we compared estimated hidden states to true

hidden states, and not to noised observations. The results are detailed in Table 6.8. The dissociation of the

different variables appears particularly relevant in the case of this model. Indeed, UKF seems to perform

worse for the estimation of qgℓ than the other filters but much better as far as qr is concerned. For qgℓ, UKF

has an RMSEP twice higher than the other filters, whereas it has an RMSEP three times lower for qr. It is

also worth noting that the RPF algorithms perform better than their EnKF counterparts for both variables.

A closer look at the values of the modelling efficiency indicates that the EnKF and RPF algorithms perform

very well overall (EF > 0.999) and in an identical manner for the two variables. On the contrary, UKF has a

significantly better modelling efficiency for qr (EF > 0.9999) whereas that for qgℓ is the only one below the

threshold of 0.999.

Still the estimation of the hidden states remain excellent for all SMC algorithms and the PMMH lives up

to its reputation. This is better seen on Figures 6.15 and 6.16. On these two figures, the timeline of the

estimated states are shifted – differently for each filter – for the sake of readability (otherwise, all error bars

would overlap), which might be deceptive for the first figure that is mostly shown to see that the estimated

hidden states follow the dynamics of the growth curves very well. The relative performance of all filters is best

observed on Figure 6.16 where at each time, all values are divided by that of the true hidden state. The truth

is therefore represented by the horizontal line y = 1 and the shifting of timelines does not matter anymore.

First, it is worth noting that the hidden states are always underestimated, which might owe to the choice

of the prior distributions for the parameters. The difference between UKF and the other filters on the two

variables is particularly visible. Most importantly, the relative estimation of the hidden states becomes better

with time (and the number of observations). This is all the more relevant that, in practice, one is particularly

interested in the late values of the biomasses. The difference between the EnKF and RPF filters are negligible:

RPF-2 and in particular RPF-3 seem to provide slightly better estimates during the late growth stages, despite

further beginnings, which is in favour of the RPF.

Chapter 6. Estimation in state space models: application 147

40 60 80 100 120 140 160

Time (d)

0

100

200

300

400

500
qg

ℓ
true
 UKF
 EnKF-2
 EnKF-3
 RPF-2
 RPF-3

40 60 80 100 120 140 160

Time (d)

0

500

1000

1500

2000

qr

true
 UKF
 EnKF-2
 EnKF-3
 RPF-2
 RPF-3

Figure 6.15: Error bars for the estimated hidden states of the biomass of green leaves qgℓ
and roots qr for the different SMC algorithms used within the PMMH algorithm. The true
hidden states are represented by the black dashed line and, for better readability, the error

bars associated to each algorithm are shifted w.r.t. the x-axis.

40 60 80 100 120 140 160
Time (d)

0.90

0.92

0.94

0.96

0.98

1.00

1.02

qg
ℓ

 UKF
 EnKF-2
 EnKF-3
 RPF-2
 RPF-3

40 60 80 100 120 140 160

Time (d)

0.90

0.92

0.94

0.96

0.98

1.00

1.02

qr

 UKF
 EnKF-2
 EnKF-3
 RPF-2
 RPF-3

Figure 6.16: Error bars for the estimated hidden states of the normalized biomass of green
leaves qgℓ/qgℓ,true and roots qr/qr,true for the different SMC algorithms used within the
PMMH algorithm. The true hidden states are represented by the black dashed line and, for
better readability, the error bars associated to each algorithm are a bit shifted w.r.t. the x-axis.

UKF EnKF-2 EnKF-3 RPF-2 RPF-3

2.253 · 10+02 8.923 · 10+02 8.783 · 10+03 8.549 · 10+02 7.711 · 10+03

Table 6.9: Computing times (in seconds) necessary for running the different SMC al-
gorithms used within the PMMH sampler.

The PMMH algorithms with these different SMC algorithms were all run sequentially. The related comput-

ing times can be found in Table 6.9. The UKF, which was run with only 13 particles, took only 3min45s,

whereas filters EnKF-2 and RPF-2 took around 15min and 14min respectively, and EnKF-3 and RPF-3 took

around 2h25min and 2h08min respectively.

From all these results, it appears always preferrable to choose the RPF algorithm over its EnKF counterpart

when the two have an identical number of particles, as it provides better parameter and state estimates overall

and requires less computing time. As far as UKF is concerned, its strength lies in the very few number

of particles it uses; it still manages to obtain very good estimates for both the parameters and the hidden

states. It outclassed EnKF and RPF for two out of three parameters and one hidden state. Because of its low

computing time and the good estimates it provides, it represents an excellent choice for the joint estimation

of parameters and hidden states within a PMMH sampler. This echoes the recent results of Sherlock et al.

148 Chapter 6. Estimation in state space models: application

[2017] who investigated the performance of PMMH samplers and found that if the computational cost of

the algorithm is proportional to the number of particles N of the SMC algorithm, it is often better to set N

as low as possible.

Of course, all these filters could be parallelized (and, as a matter of fact, they have been in ADJUSTIN’ as

detailed notably in Section 5.6.3). The considerations of the different computing times therefore becomes

irrelevant as soon as we dispose of more than 103 processes where all methods should require an equivalent

computing time. In practice, this is rarely the case and even though UKF’s computing time cannot be

divided by more than a factor of 10, it will almost always remain the fastest. In conclusion, because of the

relatively high cost in terms of memory and computing time of the PMCMC algorithms, using a PMMH

sampler together with a UKF algorithm might appear as a very attractive strategy for the joint estimation of

parameters and hidden states.

6.3.4 Estimation of process and observation noises

This paves the way for an accurate estimation of the process and observation noises within plant growth

models as the joint estimation of the deterministic and stochastic values for a single state variable at different

time steps can be used for the determination of the parameters underlying the distribution of the process and

observation noises, such as standard deviations.

To investigate this issue, we first simulated data using the same values of parameters with observations for

the biomasses of green leaves and roots from day 50 to day 150, q̃gℓ50:150 and q̃r50:150. Since it is expected

that, in the real system under study, observation noises are of much higher intensity than process noises, the

standard deviation of the process noises (for biomass production and allocation, see Equation 2.12) was set

to σq = σγ = 0.02 and that of the observation noises (for the observation of the biomasses of green leaves

and roots, see Equation 2.14) to σgℓ = σr = 0.1.

For the estimation procedure of the process and observation noise parameters we adopt a Bayesian approach

where all parameters are given prior distributions. For the particular case under study, the full likelihood

ℓ
.
= ℓ(x1:T , y1→t|θ, σgℓ, σr, σq, σγ) reads:

ℓ ∝
O∏

k=1

(
2π(σgℓqqℓtk)

2
)−1/2

e
−
(q̃gℓtk

−q
gℓ
tk
)
2

2(σgℓq
gℓ
tk

)2
O∏

k=1

(
2π(σrqrtk)

2
)−1/2

e
−
(q̃rtk−qrtk

)
2

2(σrqrtk
)2

T∏
n=1

(
2π(σqqdet

n)2
)−1/2

e
− (qsto

n −qdet
n)

2

2(σqqdet
n)2

T∏
n=1

(
2π(σγγdet

n)2
)−1/2

e
− (γsto

n −γdet
n)

2

2(σγγdet
n)2

(6.15)

and the posterior distribution is therefore:

p(θ, σgℓ, σr, σq, σγ |x1:T , y1→T) ∝ ℓ(x1:T , y1→T |θ, σgℓ, σr, σq, σγ) p(θ, σgℓ, σr, σq, σγ)

∝ ℓ(x1:T , y1→T |θ, σgℓ, σr, σq, σγ) p(θ) p(σgℓ) p(σr) p(σq) p(σγ).

As emphasized in Chapter 4, if the prior distributions for the process and observation noise parameters

are appropriately chosen, the full conditional distributions of these parameters can be analytically derived.

In particular, if each variance related to the noises follows an inverse Gamma distribution, then their full

Chapter 6. Estimation in state space models: application 149

40 60 80 100 120 140 160

Time (d)

0

100

200

300

400

500

600

qg
ℓ

true
est
obs

40 60 80 100 120 140 160

Time (d)

0

500

1000

1500

2000

2500

3000

qg

true
est
obs

Figure 6.17: Estimation of the hidden states related to the observation noises qgℓ (left) and
qr (right): the true hidden states are displayed as a dashed red line and the corresponding
observations as filled red circles; the estimated hidden states are represented by the blue line.

conditional distributions will too. More precisely, taking the example of the observation noise related to the

biomass of green leaves, if (σgℓ)2 ∼ IG
(
αgℓ, βgℓ

)
, then:

p((σgℓ)2| . . .) ∝
O∏

k=1

(
2π(σgℓqqℓtk)

2
)−1/2

e
−
(q̃gℓtk

−q
gℓ
tk
)
2

2(σgℓq
gℓ
tk

)2 (βgℓ)α
gℓ

Γ(αgℓ)

(
(σgℓ)2

)−αgℓ−1
e
− βgℓ

(σgℓ)2

∝
(
(σgℓ)2

)−(αgℓ+O
2)−1 exp

[
−
(
βgℓ + 1

2

∑O
k=1

(q̃gℓtk
−qgℓtk

)
2

(qgℓtk
)2

)/
(σgℓ)2

] (6.16)

and (σgℓ)2 follows an inverse Gamma distribution with updated parameters:
αgℓ,⋆ = αgℓ +

O

2
,

βgℓ,⋆ = βgℓ +
1

2

O∑
k=1

(
q̃gℓtk − qgℓtk

)2
(qgℓtk)

2
.

(6.17)

Equivalent formulas can be derived for the other noise parameters. For the estimation procedure, we adopt

the following strategy summarized in Algorithm 13: we first run a PMMH in order to estimate the functional

parameters θ and the hidden states qgℓ50:150 and qr50:150. From the latter we can accurately deduce the values

of the standard deviation for the observation noises as:

(σgℓ)2 ∼ IG

αgℓ +
O

2
, βgℓ +

1

2

O∑
k=1

(
q̃gℓtk − qgℓtk

)2
(qgℓtk)

2

 ,

(σr)2 ∼ IG

(
αr +

O

2
, βr +

1

2

O∑
k=1

(
q̃rtk − qrtk

)2
(qrtk)

2

)
.

(6.18)

As previously suggested by our initial study, we used a PMMH sampler where at each iteration an unscented

Kalman filter is run and chose a total number of M = 30, 000 iterations. The expectations of the prior

distributions for the standard deviations of the process and observation noises are chosen higher than their

expected values for a better state space exploration: E(σq) = E(σγ) = 0.05 and E(σgℓ) = E(σr) = 0.2. The

results of the first estimation for the observed states qgℓ and qr is displayed on Figure 6.17. Their values are

very well estimated and this first PMMH algorithm allows a very precise estimation of the standard deviation

for the observation noises as we obtained σ̂gℓ = 0.1001 and σ̂r = 0.0942.

150 Chapter 6. Estimation in state space models: application

2.75 3.00 3.25 3.50 3.75 4.00 4.25 4.50
μ

0

2

4

6

8

10

12

0.6 0.7 0.8 0.9 1.0 1.1

γ0

0

2

4

6

8

10

12

450 500 550 600 650 700 750

μa

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

Figure 6.18: Comparison of the posterior distribution for the parameters µ (left), γ0 (center)
and µa (right) with underestimated process noise (σ = 0.01, red curve) and true process

noise (σ = 0.02, orange curve).

With adequate estimates for the functional parameters θ and the observation standard deviations σgℓ and

σr, these new quantities are used for a second PMMH algorithm aimed at refining the estimates on the

parameters, hidden states and process standard deviations σq and σa. We used the posterior distributions

for the functional parameters obtained with the first PMMH run as a prior distribution for the second one.

We adopted this two-step strategy as the estimation of the observation noise parameters is extremely accurate

and provide values close to the truth for a refined estimation, which is more efficient than updating all noise

parameters at once.

The values of the observation standard deviations were hence fixed to those found at the end of the first

PMMH algorithm, σgℓ = 0.1001 and σr = 0.0942. The estimated hidden states comprised those related to

observations qgℓ and qr and those related to the different process noises qdet, qsto and γdet, γsto. The process

variances were then inferred from the hidden states as:

(σq)2 ∼ IG

(
αq +

T

2
, βq +

1

2

T∑
n=1

(
qsto
n − qdet

n

)2
(qdet

n)2

)
,

(σγ)2 ∼ IG

(
αγ +

T

2
, βγ +

1

2

T∑
n=1

(
γsto
n − γdet

n

)2
(γdet

n)2

)
.

(6.19)

The expectations of the posterior distributions that we obtained were underestimated as σ̂q = 0.01236 and

σ̂γ = 0.01178, whereas the true values were σq = σγ = 0.02. One must remain careful, though, as these

estimates seem to depend on the prior distributions of the standard deviations related to process noise and

further investigation needs to be carried out. The difficulty to correctly estimate the standard deviations

related to process noise might also owe to the fact that the observation noise are of much higher intensity

than the process noise, whence identifiability problems for the process noise.

Still, our main objective in the presence of process noise remains an accurate estimation of the posterior

distributions of the parameters, and these are barely affected by ill-chosen values of the process noise. On

Figure 6.18, we compared the posterior distributions of the parameters obtained with either an underestim-

ated value for the process noise σq = σa = 0.01 or their true values σq = σa = 0.02. It appears that the two

posterior distributions resemble each other very closely and that highly overestimated standard deviations of

the process noise does not prevent an accurate estimation of the posterior distribution.

Chapter 6. Estimation in state space models: application 151

Algorithm 13 Joint Bayesian estimation of the functional parameters, hidden states and noise parameters

Choose prior distributions for the functional parameters p(θ) (as described before) and inverse Gamma

prior distributions for the noise variances:

(σgℓ)2 ∼ IG(αgℓ, βgℓ),

(σr)2 ∼ IG(αr, βr),

(σq)2 ∼ IG(αq, βq),

(σγ)2 ∼ IG(αγ , βγ)

Estimate functional parameters θ and hidden states x1:N given experimental data y1→T , observation noise

parameters (σgℓ, σg) and process noise parameters (σq, σγ) using a PMMH-UKF sampler.

Update observation noise parameters as:

(σgℓ)2 ∼ IG

αgℓ +
O

2
, βgℓ +

1

2

O∑
k=1

(
q̃gℓtk − qgℓtk

)2
(qgℓtk)

2

(σr)2 ∼ IG

(
αr +

O

2
, βr +

1

2

O∑
k=1

(
q̃rtk − qrtk

)2
(qrtk)

2

)
and deduce the values (σ̂gℓ, σ̂r) to be used for the second PMMH algorithm.

Estimate functional parameters θ and hidden states x1:N given experimental data y1→T , observation noise

parameters (σ̂gℓ, σ̂g) and process noise parameters (σq, σγ) using a PMMH-UKF sampler.

Update process noise parameters as:

(σq)2 ∼ IG

(
αq +

T

2
, βq +

1

2

T∑
n=1

(
qsto
n − qdet

n

)2
(qdet

n)2

)

(σγ)2 ∼ IG

(
αγ +

T

2
, βγ +

1

2

T∑
n=1

(
γsto
n − γdet

n

)2
(γdet

n)2

)

Chapter 7

Image analysis

T he previous chapter aimed at highlighting the various abilities of the ADJUSTIN’ platform as far

as parameter and state estimation of individuals are concerned through case studies for the different

plant growth models. The final objective of this thesis remains to evidence the genotypic variability existing

within a population of plants. Both a plant growth model for Arabidopsis thaliana (Chapter 2.4) within the

mathematical framework of population models (Chapter 1.3) as well as estimation procedures of parameters

of such models in a Bayesian hierarchical context (Chapter 4) have been introduced. We have laid all the

foundations necessary for the estimation of the parameters of the GreenLab model in a population of plants,

all that remains is a good data set. To obtain a significant population effect, one needs a large number of

different individuals and for each of these individuals, in order to make the most of the benefits from the

organ-scale model, one needs a sufficiently great amount of observations for several organs.

The obtention of such a data set has been made possible thanks to the Variation and Abiotic Stress Toler-

ance (VAST) laboratory of the French National Institute for Agricultural Research (INRA). Olivier Loudet¹

provided us with many time series of zenithal images of different Arabidopsis thaliana individuals obtained

thanks to an automated phenotypic platform called the Phenoscope [Tisné et al., 2013]. As described in

Chapter 2, a good compromise between mechanistic description of plant growth processes and the level of

details in the data necessary for their parameterization is that of functional-structural plant models [Vos et

al., 2009], which combines the ecophysiology of plant growth and its architectural development. One of

their fundamental properties is that their parameterization does not rely on the same type of information

as classical ecophysiological models: architectural traits have the property to integrate the whole history of

plant functioning, and a large information, in the Fisher sense, on model parameters can be inferred from the

observation of the architectural traits. The key point that we aim at taking advantage of is that architectural

traits can potentially be measured efficiently by automatic image analysis in high-throughput phenotyping

platforms such as the Phenoscope. These have recently gained increasing interest, both in fields [Araus and

Cairns, 2014] and laboratories [Tisné et al., 2013], thanks to their capacity to automatically measure many

¹http://www7.inra.fr/vast/

153

154 Chapter 7. Image analysis

morphological and physiological traits for a large number of plant genotypes in various environmental con-

ditions. However, although these measurements are potentially very detailed in time, they usually concern

integrative traits, such as masses, total leaf area or height, and are again classically analyzed with descript-

ive statistical (multifactorial) models [Granier and Vile, 2014]. More precisly, although the Phenoscope is

able to capture images of Arabidopsis thaliana and has a daily estimate of the projected leaf area (PLA) for

each individual, refined estimates for the area of every leaf in a given individual was required for an efficient

calibration.

The main objective of this chapter is therefore to provide an image analysis methodology allowing to dynamic-

ally monitor surface areas of every individual leaf in Arabidopsis thaliana phenotypes. The Phenoscope platform

that allowed to obtain the image series for many individuals from different genotypes is first described in Sec-

tion 7.1. The image analysis methodology was calibrated on 4 individuals of different genotypes as a first

step. This data is firstly analyzed in Section 7.2 as a preliminary step for the setting up of the image analysis

methodology, as several traits of the output images are of particular importance for tracking. The full meth-

odology for image analysis is then presented: it comprises two main steps, one concerns the segmentation

of all the images in the time series of a given individual (Section 7.3), the other is the tracking part recon-

structing the whole history of the different leaves for this individual (Section 7.4). The segmentation part has

already been studied [Scharr et al., 2016], and the method we developed was inspired by Apelt et al. [2015].

However, most studies only consider static images and are not interested in the dynamic monitoring of leaf

growth, which raises non-trivial problems in tracking. The results of the dynamic monitoring of individual

leaf surface areas are presented for the 4 individuals of different genotypes in Section 7.5. With a successful

calibration of the image analysis algorithm, the latter is applied in Section 7.6 to a new data set comprising

several tens of individuals so as to obtain data for an entire population of plants. These results and further

perspectives are discussed in Section 7.7.

7.1 Phenoscope

Images of Arabidopsis thaliana were acquired using the Phenoscope, an automated phenotyping platform,

whose full description can be found in [Tisné et al., 2013]. Two Phenoscope tables can actually be seen

side by side on Figure 7.1. It is made of an aluminum table on a steel structure and allows the simultaneous

growth of 735 plants in individual pots that are displaced along guiding rails across the table to ensure that all

plants are grown in the same environmental conditions on average. The Phenoscope comprises two stations:

a watering station where each pot, when placed over it, is weighed and watered according to instructions

with a specified nutrient solution, and an imaging station that captures zenithal images of the plant placed

under the digital camera. The Phenoscope is equipped with its own image processing scripts, Phenospeed,

that outputs images where the background and leaves from neighboring plants have been removed to keep

only the main rosette with red, green and blue colour components. These images have height m1 = 1232

pixels and widthm2 = 1624 pixels and 1cm2 is considered equal to 28,900 pixels. Phenospeed automatically

Chapter 7. Image analysis 155

Figure 7.1: Two independent Phenoscope automated phenotyping platforms placed back to
back in a 16 m2 growth room. [Image from [Tisné et al., 2013]]

computes the total projected rosette area (in cm2). It cannot, however, computes the individual leaf areas

necessary to exploit an organ-scale plant model.

The data set considered for assessing the performance of the image analysis procedure consists of a series

of T = 21 images for one plant of each of the 4 genotypes Burren (Bur), Columbia (Col), Shahdara (Sha)

and Tsushima (Tsu) denoted as the test individuals. The plants were all grown in the same environmental

conditions. The photoperiod was of 8h, with a radiation of 350µmol · m−2 · s−1. The temperature was set to

21°C during the day and 18◦C at night. The hygrometry was maintained constant at 65%RH. The series is

composed of images taken on consecutive days from the 9th day after sowing (the day when the plants are

installed on the robot) to the 29th day after sowing although, for the sake of clarity, the days of the image

series will be identified from 1 to 21 in the following. On day 1 (from installation on the robot), the plants

already have fully opened cotyledons (denoted as leaves 1 and 2). It should be noted that we have numbered

leaves including the 2 cotyledons, so that the first true leaf is actually leaf 3. The full time series of images

obtained for the Bur genotype is displayed on Figure 7.2 for the 21 days that lasted the experiment, and the

genotypic variability among the 4 genotypes is highlighted on Figure 7.3 easily seen on the images.

Figure 7.2: Images output by the Phenoscope software on 21 different days for the Bur
genotype. The images of the plant were obtained from the 1st day it was placed on the

Phenoscope table, which takes place 8 days after sowing.

156 Chapter 7. Image analysis

Figure 7.3: Comparison of the images obtained for the 4 different genotypes at 3 different
times: n = 1 (left), n = 11 (middle) and n = 21 (right). In each panel, the Bur genotype
is in the top left corner, the Col genotype in the top right corner, the Sha genotype in the
bottom left corner and the Tsu genotype in the bottom right corner. For each day the images

have been zoomed in equivalently between the genotypes.

7.2 Data analysis

To better understand the dynamics of the whole plant, a series of measurements was performed on each

image for the 4 test individuals. Images are considered as elements of Mm1m2(R). Each point P of an image

can be defined as an ordered pair P = (i, j) ∈ P , where P = J1,m1K × J1,m2K, representing its row and

column. On day n ∈ J1, T K, an image has a set of ωn visible leaves Ln = {ℓnu|u ∈ J1, ωnK}, where ℓnu ⊂ P is

referred to as a leaf segment (or segment for short) and is a connected subset of the image In ∈ Mm1m2
(R).

Over the whole timeline J1, T K, the plant has a set of N leaves L = {Lv|v ∈ J1, NK} indexed by their order

of appearance. A particular leaf of the plant is therefore identified by as many occurrences as images in the

series, Lv = {ℓnv|n ∈ J1, T K, ℓnv ∈ Ln ∪ ∅}. A leaf can indeed have the empty set as a segment on certain

days if its area is not available, because of overlappings for instance. The index u will therefore be reserved to

segments, whereas the index v will be reserved to leaves. The leaf of rank v is the v-th to appear. Throughout

this work, true segments, considered to be those manually extracted from the images, will be denoted ℓnu,

while the segments found by the algorithm will be denoted ℓ̃nu. The same distinction applies to leaves. The

problem can therefore be decomposed into two parts:

■ segmentation: on each day n ∈ J1, T K, segment the image so as to find as many leaf segments as

possible in L̃n;

■ tracking: for each leaf of rank v ∈ J1, NK, for each day n ∈ J1, T K, find if there is an element of L̃n

susceptible to belong to L̃v in order to reconstruct the whole history of the v-th leaf.

We will denote by C ∈ P the mass centre of the plant. The extremity of a segment ℓnu is defined as the

furthest point from the mass centre of the plant, i.e.:

Enu = arg max
P∈ℓnu

d(P,C) (7.1)

Chapter 7. Image analysis 157

where d is the Euclidean distance. This allows us to measure three variables for a given visible leaf segment

ℓnu. Let # –

CEnu be the vector joining the mass centre of the plant to the segment extremity, then we define

the maximum distance enu = ∥ # –

CEnu∥1 and the maximum angle dnu = (Oj,
–

CEnu) whereOj designates the

horizontal axis. There are several ways to measure the angle of a segment, other possibilities would include

to consider:

■ the angle defined by the point minimizing the distance to the plant mass centre;

■ the average angle of all points or the angle of the mass centre of the segment,

but these definitions are less stable and robust against overlappings. These two variables yield valuable in-

formation about the orientation and the distance of a given leaf throughout plant growth. A third variable

is obviously leaf area, which was manually extracted from the images, potentially reconstructing the shape of

the leaves partially hidden by others. It has to be noted that the insertion of the leaf was taken into account

when extracting areas. They were manually acquired on all the images using Photoshop CS5, the Ruler tool

for angles and distances, which allows easy measurements of distances and angles between two points as well

as tab-delimited file export for post-processing, and the Eraser and the Magic Wand to isolate a segment and

select all its pixels for the areas. The values obtained for the angles and leaf areas are displayed on Figure 7.4

and on Figure 7.5 respectively for each genotype.

We recall that each leaf is identified by its rank with a specific colour as specified in Table 7.1.

rank 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

colour

Table 7.1: Colours attributed to each leaf of a specific rank for easier identification.

7.2.1 Analysis of angles

As can be seen from Figure 7.4, the angle of a given leaf is not constant throughout the growth of the plant

and there are two main reasons for this:

■ there might be small displacements of the pot from day to day, both in translation and in rotation;

■ leaves can be displaced or pushed by some others due to development competition.

In most cases, it is easy for a human observer to extract from all the points the occurrences of a given leaf,

but sometimes it is very hard not to say impossible to choose between two points. For the Bur genotype,

it suffices to consider the trajectories of the 2nd and 6th leaves that create a fork on day 8, or the 10th leaf

whose trajectory overrides alternatively that of the 5th leaf and the 1st one. Similar scenarios can be found

for the other genotypes.

158 Chapter 7. Image analysis

Let dnv denote the angle of the v-th leaf on day n, d0v the angle of the v-th leaf on the first day it appeared

and dv the angle of the v-th leaf averaged over all the days it exists. On day 1 on the robot, only the first two

embryonic leaves (cotyledons) are visible. In fact, 4 leaves are already preformed in Arabidopsis thaliana but

they might not be all visible from the very beginning of the image series. The first two leaves grow in opposite

directions, i.e. d01 − d02 ≈ 180°. The 3rd and 4th leaves (the first true leaves) appear on the same day, more

precisely on day 2 for Sha, on day 3 for Bur and Col, and on day 4 for Tsu. Similarly to the first two leaves,

they grow in opposite directions such that d03 − d04 ≈ 180°. Furthermore, they grow in a direction very close

to the bissector of (d01, d02), i.e. for i ∈ {1, 2}, j ∈ {3, 4}, |d0i − d0j | > 40°, even though this might not be the

case at the end of the growth because of competition, so that for i ∈ {1, 2}, j ∈ {3, 4}, |di − dj | > 40° does

not necessarily hold as can be seen for the Bur, Col and Sha genotypes. By convention and to distinguish

-20 -10 0 10 20

-20

-10

0

10

20

-20 -10 0 10 20

-20

-10

0

10

20

-20 -10 0 10 20

-20

-10

0

10

20

-20 -10 0 10 20

-20

-10

0

10

20

Figure 7.4: Evolution of the angles of the different leaves for genotypes Bur (top left), Col
(top right), Sha (bottom left) and Tsu (bottom right). The angle α of the v-th leaf on
day n is displayed on the circle centered in (0, 0) and of radius n, i.e. have coordinates
(n cos(α), n sin(α)). Straight lines indicate the mean angles for each leaf throughout their

respective growth. Manually acquired data.

Chapter 7. Image analysis 159

between the 1st and 2nd leaves on the one hand and the 3rd and 4th leaves on the other hand, the 1st and

3rd leaves are defined to have the closest averaged angle to that of the 5th leaf, that is |d5 − d1| ≤ |d5 − d2|

and |d5 − d3| ≤ |d5 − d4|.

The leaves appearing after the 4th one are not preformed and phyllotaxy underlies the direction of their

growth. Phyllotaxy is a well-known phenomenon in Arabidopsis thaliana [Smith et al., 2006] which drives the

growth direction of a leaf based on the growth direction of the leaf previously emerged. More precisely,

|d0v+1 − d0v| ≈ dp, where dp = 137.5° is the golden angle. (7.2)

This phenomenon starts from v = 4 as it does not affect the preformed leaves and is either clockwise or

counter-clockwise for a given plant. However this orientation cannot be predicted with certainty as it varies

among plants: in this case study, it is counter-clockwise for the Bur individual and clockwise for the Col,

Sha and Tsu individuals used here. The means and standard deviations of the difference of angles between

two consecutive leaves from v = 4 are summarized in Table 7.2 for the 4 genotypes. This will be used in the

classification algorithm to predict the direction of the leaves.

genotype Bur Col Sha Tsu

mean 136.52 136.01 136.15 136.12

std 6.91 17.92 15.27 10.32

Table 7.2: Mean and standard deviation of the phyllotaxy angle (in °) for each genotype.

7.2.2 Analysis of areas

From the graphs of the areas on Figure 7.5, the growth behaviours of the different leaves appear to be similar

to those of the angles: the 1st and 2nd leaves have an identical evolution, growing from day 1 to day 10

approximately, then reaching a plateau. The growth is initially linear. Alike, the 3rd and 4th leaves exhibit an

identical behavior, appearing on the same day and with a growth curve resembling more a sigmoid than for

the first two leaves. By the end of the series, they start to reach a plateau as well. From the 5th leaf, the leaves

appear one by one, two leaves never having similar growth curves. The higher the rank of a leaf, the steeper

its initial growth so that the area of the v + 1-th leaf ends up (or would end up if the series were longer) to

exceed that of the v-th leaf.

Since there is only one image per day, the phyllochron (that is to say the time interval between the appearance

of two successive leaves) cannot be measured exactly, it is however obviously not the same across the different

genotypes as can be seen from the number of emerged leaves on day 21: 14 for Bur, 13 for Col, 11 for Sha

and 15 for Tsu. The phenotypic differences are well illustrated by, for instance, the area of the 7-th leaf which,

160 Chapter 7. Image analysis

0 5 10 15 20
Time (d)

0.0

0.2

0.4

0.6

0.8

1.0

1.2
Ar
ea

 (c
m

2)

0 5 10 15 20

Time (d)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Ar
ea

 (c
m

2)

0 5 10 15 20

Time (d)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Ar
ea

 (c
m

2)

0 5 10 15 20

Time (d)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Ar
ea

 (c
m

2)

Figure 7.5: Evolution of the areas of the different leaves (in cm2) with respect to time (in
days) for genotypes Bur (top left), Col (top right), Sha (bottom left) and Tsu (bottom right).

Manually acquired data.

on day 21, varies greatly among genotypes: 1.10cm2 for Bur, 0.76cm2 for Col, 0.92cm2 for Sha, 1.20cm2 for

Tsu.

7.3 Segmentation

The objective of this part is to search for all possible segments of leaves and their corresponding areas on each

image of the series. The segmentation problem has been approached in various ways, with recent contribu-

tions using ellipsoid leaf-shape models [Aksoy et al., 2015], Gaussian process shape models under a Bayesian

approach [Simek and Barnard, 2015] or machine learning [Pape and Klukas, 2015]. This segmentation is

achieved via a two-step algorithm for each day n:

■ during the first step a segmentation routine, based notably on a watershed transformation, is applied

and returns a first set of estimated segments L̃1
n = {ℓ̃1nu|u ∈ J1, ω̃nK},

■ during the second step, these estimates are refined by assessing the shape of the segments and comparing

them to the usual ellipsoid shapes of leaves to obtain the final set of estimated segments

L̃2
n = {ℓ̃2nu|u ∈ J1, ω̃nK}.

Chapter 7. Image analysis 161

The segmentation step can be rendered difficult because of several aspects: some leaves might recover some

others, making them difficult to detect, or can be bent, mainly because of their weights, thus not having the

usual shape of a leaf. The approach undertaken here was inspired from [Apelt et al., 2015]. The image to be

segmented on day n is denoted as In. First and foremost, the images are converted to grayscale via the usual

transformation:

Igray
n (i, j) = 0.2989× I red

n (i, j) + 0.5870× Igreen
n (i, j) + 0.1140× Iblue

n (i, j) (7.3)

where I red
n , Igreen

n and Iblue
n denote the red, green and blue channels of image In respectively. Some of the

images provided by the Phenoscope software still contained objects from the background, connected-segment

labeling was hence first used to discard such objects from I
gray
n not belonging to the plant, considered to be the

main connected subset. The mass centre of the plant is then computed, as it constitutes, once artifacts have

been removed, a very good approximation of the stem location from where the leaves grow. Its coordinates

(ic, jc) are given by:
ic = (σgray)

−1 ∑
i

∑
j i I

gray
n (i, j),

jc = (σgray)
−1 ∑

i

∑
j j I

gray
n (i, j),

(7.4)

where σgray =
∑

i

∑
j I

gray
n (i, j). We then move on to compute the radial profile that is used for the assessment

of the distance of each point in the image to the mass centre:

I rad
n (i, j) = (i− ic)

2 + (j − jc)
2. (7.5)

Then a Canny edge detection filter [Canny, 1986] is applied to help detect strongly overlapping leaves to

obtain ICanny
n . The Euclidean distance transform of the plant can then be computed, it is defined as:

IEDT
n (i, j) = min

(x,y) | ICanny
n (x,y)=0

(i− x)2 + (j − y)2 (7.6)

and its local maxima are determined, as they are the points the furthest from the background, and are therefore

likely to correspond to mass centres of leaves. The Euclidean distance transform and the radial profile are

combined to obtain an image corresponding to a topographic relief suitable for a watershed segmentation.

In essence the latter is a rather intuitive algorithm:

■ it is initialized as if one progressively filled the basins (local minima) of the relief with water,

■ when two basins meet, if their labels are identical, they are merged into one, otherwise a barrier is

drawn between them so as to separates different segments.

This last operation returns the first set of connected segments susceptible to be leaves L̃1
n = {ℓ̃1nu|u ∈ J1, ω̃nK}.

The image processing operations were all performed using Python 3.4.3, and the library scikit-image 0.12.3.

An example of all the transformations applied to a particular image is presented in Figure 7.6.

This first step of the segmentation returns a set of segments which is different from the true set of segments

found manually Ln = {ℓnu|u ∈ J1, ωnK}. The main difficulty of segmenting the leaves of a plant classically

owes to the fact that some leaves might partially overlap some others, hence leading to segments of the

resulting image to be (i) either only parts of a leaf (ii) or several distinct leaves merged. To assess if a segment

162 Chapter 7. Image analysis

ℓ̃nu can be considered a true leaf segment, we define the ratio:

inu =
A(H(B(ℓ̃nu)))

A(B(ℓ̃nu))
(7.7)

where:

■ B : L̃1
n → Mm1m2({0, 1}) transforms a segment into a binary image,

■ H : Mm1m2
({0, 1}) → Mm1m2

({0, 1}) denotes the convex hull operation,

■ A : Mm1m2({0, 1}) → R gives the area of a segment.

If this ratio is greater than a given threshold, the segment is considered to be a leaf, i.e.:

ℓ̃nu is a leaf segment if inu > i0. (7.8)

A value i0 = 0.9 was retained throughout this work. In practice, the result of the first segmentation step is

sometimes unable to discriminate between several leaves, grouping them into one single segment. To refine

the segmentation, we used the following approach: if ℓ̃nu is not a leaf segment, the local maxima Mnu of the

Euclidean distance transform of ℓ̃nu and the points achieving these maxima Inu are computed: Inu = {P ∈ ℓ̃nu| Eℓ̃nu
(P) is a local maximum of Eℓ̃nu

},

Mnu = {Eℓ̃nu
(P)| P ∈ Inu},

(7.9)

where Eℓ̃nu
= E(B(ℓ̃nu)) and E : Mm1m2({0, 1}) → Mm1m2(R) denotes the Euclidean distance transform

operation. We then define the greatest two maxima, likely to be mass centres of leaves: z1 = max{z ∈Mnu},

z2 = max{z ∈Mnu|z ̸= z1}
(7.10)

their corresponding coordinates P1 and P2, and two ellipses E1 and E2 with respective centres P1 and P2,

minor semi-axes a1 and a2 and major semi-axes b1 and b2, where: ak = ϕ minP∈(CEk) d(P,Ek),

bk = ϕ minP |(PEk)⊥(CEk) d(P,Ek),
(7.11)

where ϕ = 1.05 > 1 is defined so as to embrace the whole leaf segment. Two new segments are thus computed,

ℓ̃ ∩nu = ℓ̃nu ∩ E1 and ℓ̃ \nu = ℓ̃nu\ℓ̃ ∩nu and tested to be leaves again in a recursive manner. The results of this

refinement step for a given image are illustrated on Figure 7.8.

Figure 7.6: Series of some of the image transformation used during the first segmentation
step. (a) Original image. (b) Gray scale image. (c) Radial profile. (d) Canny edge filter. (e)
Euclidean distance transformation. (f) Local maxima of the EDT as starting basins of the

watershed segmentation. (g) Results of the watershed segmentation.

Chapter 7. Image analysis 163

Figure 7.7: The ellipse refinement of the second segmentation step: when a segment ℓ̃nu
(a) originating from the first segmentation step is judged not to be a true leaf (in this case
because two leaves are merged into the segment), it is decomposed into two new segments

ℓ̃ ∩nu (b) and ℓ̃ \nu (c).

Figure 7.8: Example of images output by the Phenoscope (a) and after the first (b) and
second (c) segmentation steps for the Col genotype on day 15.

7.4 Tracking

The segmentation step returns L̃ such that: L̃ = {L̃n|n ∈ J1, T K},
L̃n = {ℓ̃nu|u ∈ J1, ω̃nK}, (7.12)

and the true set of leaves L is such that: L = {Ln|n ∈ J1, T K},
Ln = {ℓnu|u ∈ J1, ωnK}, (7.13)

or equivalently: L = {Lv|v ∈ J1, NK},
Lv = {ℓnv|n ∈ J1, T K, ℓnv ∈ Ln ∪∅}.

(7.14)

The objective of the tracking step is to assign each segment ℓ̃nu found during the segmentation step to a leaf

of a given rank so that L̃ = {L̃v|v ∈ J1, NK} with L̃v = {ℓ̃nv|n ∈ J1, T K, ℓ̃nv ∈ L̃n∪∅} be as close as possible

to L. The data analysis helped us to better understand the growth dynamics of each leaf. The tracking of a

164 Chapter 7. Image analysis

given leaf is based on its direction, its maximum distance and its area. To find the first occurrence of a leaf,

only its direction and the day of possible first appearance are given. Let us recall that the first two leaves

(cotyledons) always appear on day 1. Once an occurrence of the leaf has been found, it is searched on the

following days according to this strategy: given a leaf of rank v whose k first segments have been tracked,

L̃v = {ℓ̃nv|n ∈ J1, kK}, the aim is to find the segment on day k + 1 the most probable to belong to the leaf

of rank v. For each leaf l̃k+1,u ∈ L̃k+1, a score skuv is computed as:

skuv = γd s
d
kuv + γe s

e
kuv + γa s

a
kuv (7.15)

where the superscripts d, e and a stand for direction, extremity and area respectively, (γd, γe, γa) ∈ (R+)3

allows to weigh the different scores and:
sdkuv = 2δd fU (dk+1,u, dkv − δd, dkv + δd)

sekuv = fN (ek+1,u, µ
e, (σe)2)/∥fN (·, µe, (σe)2)∥∞

sakuv = fN (ak+1,u, µ
a, (σa)2)/∥fN (·, µa, (σa)2)∥∞

(7.16)

where fU and fN are the pdfs of the uniform and normal distributions.

The d-score sdkuv favours the leaves that grow in the same direction of the last leaf segment l̃k,v, with a tolerance

of δd to account for pot rotations or competition of the growing leaves, as explained in Section 7.2.1. In

practice, δd = 30°. As can be seen from Figure 7.4, it does not seem useful to take into account the directions

of the leaves ℓ̃nu for n < k: the rotations being seemingly unpredictable, neither averaging nor interpolating

seem of any help, and the last value is the one carrying the most information.

Data analysis of the areas and the distances of the extremities from the mass centre showed that their dynamics

were sigmoid-like, which is why the means and standard deviations in the a-score and the e-score are obtained,

whenever possible, by fitting a sigmoid using the last 4 segments of the leaf. Since segments might not be

found on all images for a given leaf, the last 4 segments do not necessarily represent the last 4 days. More

precisely, let {nk+1−i|i ∈ J1, 4K} denote the days on which were registered the last 4 segments of the v-th leaf

and let s be such that:

sκ(x) = y1 +
y0

1 + exp(−k (x− x0))
, with κ = (k, x0, y0, y1). (7.17)

For the prediction of the expected extremity on day k + 1, we define: κ̂e = arg minκ

∑4
i=1 ∥sκ(nk+1−i)− enk+1−i,v∥22,

µe = sκ̂e(k + 1).
(7.18)

All the same, for the prediction of the expected area: κ̂a = arg minκ

∑4
i=1 ∥sκ(nk+1−i)− ank+1−i,v∥22,

µa = sκ̂a(k + 1).
(7.19)

The standard deviations use only the last available value, σe = ekv/2 and σa = 2 akv. When less than 4

occurrences are available, µe = 1.2 ekv and µa = 2 akv. Let û be the segment index with the greatest score,

û = arg maxu skuv and ŝ = skûv the corresponding score. The safety score s0 is defined as a minimum score

to achieve to be considered the next leaf segment: hence, if ŝ > s0, the candidate segment ℓ̃k+1,û achieving

Chapter 7. Image analysis 165

this best score is considered to be the segment of the leaf of rank v on day k + 1, and L̃v := L̃v ∪ ℓ̃nu. In

practice, typical values of the score weights and the safety score would be (γd, γe, γa) = (10, 1, 1) and s0 = 11,

thereby prioritizing the orientation of a leaf over its length and area.

In order to take advantage of the phyllotaxy, the preformed leaves are first classified, the 1st and 2nd leaves first,

in opposite directions, then the 3rd and 4th (the first 2 true leaves), in opposite directions and perpendicular

to the first two. Classifying the 5th leaf will then yield the directions of the next leaves, which are the hardest

to classify. The whole tracking strategy is summarized in Algorithm 14, where dp = 137.5° is the phyllotaxy

angle.

Algorithm 14 Classification strategy (leaves 1 and 2 are the cotyledons)
Track leaf 1 (randomly out of the two leaves found on day 1) for all days
Look for leaf 2 in direction d1 + 180° and track it
Look for leaf 3 in directions such that |d3 − d1| > 60° and |d3 − d2| > 60° and track it
Look for leaf 4 in direction d3 + 180° and track it
Track the 5th leaf to appear, whatever its growth direction
Shuffle leaves 1 and 2 so that leaf 1 is closest to leaf 5 (convention)
Shuffle leaves 3 and 4 so that leaf 3 is closest to leaf 5 (beginning of phyllotaxy)
For j ≥ 1

Look for leaf 5 + j in direction d5 + j sign(d5 − d4) dp and track it
End

7.5 Preliminary results on four individuals

The results for the first 8 leaves (including the 2 embryonic leaves) of the 4 test individuals are summarized on

Figure 7.9, where the true results obtained with manual segmentation of the images, displayed as a continuous

line, are compared to the results of the segmentation-tracking algorithm, displayed as filled circles. It has to

be noted that the manual extraction of the leaf areas partly took into account the petiole, which is why the

algorithmic results are on average slightly lower than the manual ones.

For the first two leaves (the cotyledons), no segments are found from day 15 – or even before sometimes –

as these leaves are rapidly completely hidden by younger leaves. On some days, no segments were found: for

instance, for the 6th leaf of the Bur genotype, the first segment is found on day 10 but from day 11 up to

day 13, no segment is found. Such a situation arises because of overlappings and:

■ either the segmentation step is unable to identify segments at all for this leaf on these days,

■ or segments are found but they do not achieve a sufficient score to be considered as belonging to this

leaf.

In the latter case, it is preferable to discard these segments so as not to introduce data that would be too

noisy. Another scenario for missing data occurs when the growth curve of a leaf displays an unusual shape

as is the case of the 4th leaf of the Col genotype, with a sharp increase after day 10. The predicted area

166 Chapter 7. Image analysis

0 5 10 15 20
Time (d)

0.000

0.025

0.050

0.075

0.100

0.125

0.150

Ar
ea

 (c
m

2)

0 5 10 15 20
Time (d)

0.000

0.025

0.050

0.075

0.100

0.125

0.150

Ar
ea

 (c
m

2)

0 5 10 15 20
Time (d)

0.000

0.025

0.050

0.075

0.100

0.125

0.150

Ar
ea

 (c
m

2)

0 5 10 15 20
Time (d)

0.000

0.025

0.050

0.075

0.100

0.125

0.150

Ar
ea

 (c
m

2)

0 5 10 15 20
Time (d)

0.000

0.025

0.050

0.075

0.100

0.125

0.150

Ar
ea

 (c
m

2)

0 5 10 15 20
Time (d)

0.000

0.025

0.050

0.075

0.100

0.125

0.150

Ar
ea

 (c
m

2)

0 5 10 15 20
Time (d)

0.000

0.025

0.050

0.075

0.100

0.125

0.150

Ar
ea

 (c
m

2)

0 5 10 15 20
Time (d)

0.000

0.025

0.050

0.075

0.100

0.125

0.150

Ar
ea

 (c
m

2)

0 5 10 15 20
Time (d)

0.0

0.1

0.2

0.3

0.4

0.5

Ar
ea

 (c
m

2)

0 5 10 15 20
Time (d)

0.0

0.1

0.2

0.3

0.4

0.5

Ar
ea

 (c
m

2)

0 5 10 15 20
Time (d)

0.0

0.1

0.2

0.3

0.4

0.5

Ar
ea

 (c
m

2)
0 5 10 15 20

Time (d)

0.0

0.1

0.2

0.3

0.4

0.5

Ar
ea

 (c
m

2)

0 5 10 15 20
Time (d)

0.0

0.1

0.2

0.3

0.4

0.5

Ar
ea

 (c
m

2)

0 5 10 15 20
Time (d)

0.0

0.1

0.2

0.3

0.4

0.5

Ar
ea

 (c
m

2)

0 5 10 15 20
Time (d)

0.0

0.1

0.2

0.3

0.4

0.5

Ar
ea

 (c
m

2)

0 5 10 15 20
Time (d)

0.0

0.1

0.2

0.3

0.4

0.5

Ar
ea

 (c
m

2)

0 5 10 15 20
Time (d)

0.0

0.2

0.4

0.6

0.8

1.0

Ar
ea

 (c
m

2)

0 5 10 15 20
Time (d)

0.0

0.2

0.4

0.6

0.8

1.0

Ar
ea

 (c
m

2)

0 5 10 15 20
Time (d)

0.0

0.2

0.4

0.6

0.8

1.0

Ar
ea

 (c
m

2)

0 5 10 15 20
Time (d)

0.0

0.2

0.4

0.6

0.8

1.0

Ar
ea

 (c
m

2)

0 5 10 15 20
Time (d)

0.0

0.2

0.4

0.6

0.8

1.0

Ar
ea

 (c
m

2)

0 5 10 15 20
Time (d)

0.0

0.2

0.4

0.6

0.8

1.0

Ar
ea

 (c
m

2)

0 5 10 15 20
Time (d)

0.0

0.2

0.4

0.6

0.8

1.0

Ar
ea

 (c
m

2)

0 5 10 15 20
Time (d)

0.0

0.2

0.4

0.6

0.8

1.0

Ar
ea

 (c
m

2)

0 5 10 15 20
Time (d)

0.00

0.25

0.50

0.75

1.00

1.25

Ar
ea

 (c
m

2)

0 5 10 15 20
Time (d)

0.00

0.25

0.50

0.75

1.00

1.25

Ar
ea

 (c
m

2)

0 5 10 15 20
Time (d)

0.00

0.25

0.50

0.75

1.00

1.25

Ar
ea

 (c
m

2)

0 5 10 15 20
Time (d)

0.00

0.25

0.50

0.75

1.00

1.25

Ar
ea

 (c
m

2)

0 5 10 15 20
Time (d)

0.00

0.25

0.50

0.75

1.00

1.25

Ar
ea

 (c
m

2)

0 5 10 15 20
Time (d)

0.00

0.25

0.50

0.75

1.00

1.25

Ar
ea

 (c
m

2)

0 5 10 15 20
Time (d)

0.00

0.25

0.50

0.75

1.00

1.25

Ar
ea

 (c
m

2)

0 5 10 15 20
Time (d)

0.00

0.25

0.50

0.75

1.00

1.25

Ar
ea

 (c
m

2)

Figure 7.9: Results obtained manually (continuous line) and via the segmentation-
classification approach (filled circles) for the first 8 leaves of the 4 genotypes (from left to

right: Bur, Col, Sha, Tsu).

Chapter 7. Image analysis 167

obtained by fitting a sigmoid using the last 4 segments of this leaf is therefore too low compared to that

of the segment yielding an insufficient overall score to be accepted. In any case, this does not, fortunately,

prevent the algorithm to find new segments on future days: starting from day 14 for the 6th leaf of the Bur

genotype, or from day 13 for the 4th leaf of the Col genotype, therefore highlighting the robustness of the

method towards missing data.

The evaluated leaf areas will be used to estimate the parameters of the GreenLab model presented in Section

2.4 by model inversion. For a given leaf, only conserving segments in which there is a very high level of

confidence might seem overly cautious. However, since the architecture is in itself representative of the whole

plant functioning, there is a lot of redundant information contained in leaf areas at close enough times. The

daily image acquisition of the Phenoscope is thus in excess with respect to the time scale of Arabidopsis thaliana

source-sink dynamics. Overall, all the accepted points have a very low error compared to the true values and

the amount of very precise data this method yields for a given plant (more than 60 values for each genotype)

will prove more than sufficient for an accurate parameter estimation of the model. To quantitatively assess

the performance of the algorithm, the modelling efficiency and the accuracy (see Section 3.1.2) are inspected.

Different such criteria were computed for completeness:

■ one per individual leaf to account for the fact that the mean leaf area can be of different orders of

magnitudes for different leaves,

■ one per genotype for the different leaves,

■ one per leaf for the different genotypes,

■ and a global one taking into account all the data available.

The results are displayed in Tables 7.3 and 7.4. All the modelling efficiencies are greater than 0.93 except

for the first two leaves of the Sha genotype, highlighting the overall excellent quality of the data extracted

from the Phenoscope images for the leaf areas. It has to be noted that the accuracy is most often below 1,

which means that the results are a bit underestimated on average. This is mostly due, as already mentioned,

to taking into account the insertion of the leaf when extracting areas manually.

1 2 3 4 5 6 7 8 all

Bur 0.9677 0.9617 0.9931 0.9951 0.9960 0.9379 0.9729 0.9801 0.9869
Col 0.9630 0.9455 0.9848 0.9942 0.9917 0.9873 0.9974 0.9941 0.9943
Sha 0.8231 0.7547 0.9830 0.9897 0.9979 0.9946 0.9986 0.9765 0.9955
Tsu 0.9588 0.9737 0.9944 0.9984 0.9992 0.9967 0.9958 0.9446 0.9874
all 0.9689 0.9430 0.9905 0.9955 0.9970 0.9857 0.9880 0.9683 0.9903

Table 7.3: Modelling efficiency for the different leaves and genotypes.

168 Chapter 7. Image analysis

1 2 3 4 5 6 7 8 all

Bur 0.9562 0.9524 0.9719 0.9668 1.0265 0.9852 0.8810 0.9832 0.9707
Col 0.9540 0.9329 0.9540 0.9374 1.0340 0.9629 0.9993 0.9838 0.9678
Sha 0.9249 0.8923 0.9679 0.9571 1.0149 0.9853 1.0000 1.0183 0.9685
Tsu 0.9551 0.9597 0.9554 0.9770 0.9846 0.9759 0.9988 0.9864 0.9712
all 0.9485 0.9318 0.9615 0.9598 1.0144 0.9759 0.9676 0.9919 0.9696

Table 7.4: Accuracy for the different leaves and genotypes.

Listing 13 PBS file for parallelization of the segmentation step

#!/bin/bash

#PBS -S /bin/bash
#PBS -l select=1:ncpus=24:mpiprocs=24
#PBS -l walltime=00:20:00
#PBS -J 1-21

module load anaconda3/4.3.1
time python segmentation.py 037 $PBS_ARRAY_INDEX

7.6 Results on a large data set

The results obtained in the previous section were very encouraging since they provided a lot of data for each

leaf of each individual as evidenced by Figure 7.9. The estimated results were very close to the true values

obtained manually, as can be seen from Tables 7.3 and 7.4 and our image analysis algorithm seems to work

for several different individuals all belonging to different genotypes, which is of primary importance to deal

with a larger population of plants. However, these results proved excellent for 4 individuals only, and there

is no a priori guarantee that it will consistently work for all other individuals. Some refinements could be

brought to the image analysis methodology as discussed in Section 7.7.

How will this algorithm behave with an entirely new data set for which there is no manually acquired data?

First and foremost, one can obviously decide from a numerical point of view if the algorithm has failed by

setting standard lower and upper bounds for the individual leaf area curves. With a very large amount of

data there is, however, no way of being certain whether the results obtained for all individuals are relevant.

We obtained once again thanks to Olivier Loudet of the VAST laboratory a new data set comprising time

series of 21 images for 64 individuals of Arabidopsis thaliana grown in the same experimental conditions as

those described in Section 7.1. The 64 individuals belong to the five genotypes Burren (Bur), Columbia

(Col), Cape Verde Islands (Cvi), Shahdara (Sha) and Tsushima (Tsu).

The image analysis algorithm has been implemented on the computer cluster of CentraleSupélec. Since the

segmentation step can be done independendly for all the T = 21 images of an individual, the algorithm has

been parallelized rather easily using PBS job arrays. A node with 24 processes was reserved and on each of the

21 first processes was launched the segmentation routine for a particular day of the image series, see Listing

13.

Chapter 7. Image analysis 169

Parallelization is particularly beneficial when dealing with this many data and it allowed to perform the entire

segmentation step in tseg = 30s instead of 9min35s sequentially. The tracking step, however, because of its

time-dependent nature, could not be parallelized, which is why the segmentation and the tracking algorithms

needed to be run independently. The results of the segmentation step for a given day is a list of segments

representing possible leaves. From a programming perspective, they are Python classes containing a lot of

information on each segment such as distances, angles, area, actual position of the pixels belonging to the

segments or values related to operations such as convex hull. In order to transmit this information to the

tracking algorithm, an easy solution, though costly in terms of memory usage, was to convert these Python

structures using the Python module pickle that allows to efficiently serialize such objects. The 21 sets of

segments of a time series are then saved as pickle objects at the end of the segmentation step, which could

amount to as much as 200MB of data. These objects are then loaded for the tracking step and immediately

deleted so as to preserve disk usage. The tracking step takes approximately tcla = 40s per individual, thereby

providing the approximate computing time required to process the entire data set of N = 64 individuals:

ttot = N × (tseg + tcla) ≈ 64× (30 + 40) = 4, 480s ≈ 75min (7.20)

which is very reasonable.

The results obtained for the 64 individuals were classified into 4 categories:

■ Category 1: the algorithm worked very well and all the data obtained for each leaf have reasonable and

sensible values, there is no need at all to discard data from the individuals of this category. It comprises

24 individuals;

■ Category 2: the algorithm worked well but there are a few (between 1 and 4) absurd observations

among all possible data obtained for the different leaves: for instance, the last data for the 6th and 7th

leaves might be too large because segments have been wrongly allocated to these leaves on a particular

day. These data could be filtered out but could also be kept without having much influence on the

whole estimation as they represent a small percentage of all the data for a given individual. This category

comprises 14 individuals;

■ Category 3: the algorithm worked well for the major part but some leaves (between 1 and 4) among

the 6th, 7th, 8th, 9th and 10th leaves are badly segmented and need to be removed entirely. This

category comprises 10 individuals;

■ Category 4: finally, there are individuals for which the algorithm simply failed, whether it be due to

several plants growing together, pot rotations or a misdetection of the first occurrence of the 5th leaf.

This category comprises 16 individuals.

We decided to focus first on the best individuals, belonging to category 1 and will reconsider individuals from

the second and third categories in Section 8.2. The results obtained for these 24 individuals are displayed on

Figure 7.10. Overall, the leaf area curves display reasonable dynamics: one can observe the standard behaviour

of the first 2 leaves rapidly plateauing somewhere between 0.1cm2 and 0.2cm2 around day 10. There is no

observation for these leaves afterwards since they are recovered by those of higher rank. As expected, the

170 Chapter 7. Image analysis

0 5 10 15 20
Time (d)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

Ar
ea

 (c
m

2)

0 5 10 15 20
Time (d)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

Ar
ea

 (c
m

2)

0 5 10 15 20
Time (d)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

Ar
ea

 (c
m

2)

0 5 10 15 20
Time (d)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

Ar
ea

 (c
m

2)

0 5 10 15 20
Time (d)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

Ar
ea

 (c
m

2)

0 5 10 15 20
Time (d)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

Ar
ea

 (c
m

2)

0 5 10 15 20
Time (d)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

Ar
ea

 (c
m

2)

0 5 10 15 20
Time (d)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

Ar
ea

 (c
m

2)

0 5 10 15 20
Time (d)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

Ar
ea

 (c
m

2)

0 5 10 15 20
Time (d)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

Ar
ea

 (c
m

2)

0 5 10 15 20
Time (d)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

Ar
ea

 (c
m

2)
0 5 10 15 20

Time (d)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

Ar
ea

 (c
m

2)

0 5 10 15 20
Time (d)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

Ar
ea

 (c
m

2)

0 5 10 15 20
Time (d)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

Ar
ea

 (c
m

2)

0 5 10 15 20
Time (d)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

Ar
ea

 (c
m

2)

0 5 10 15 20
Time (d)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

Ar
ea

 (c
m

2)

0 5 10 15 20
Time (d)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

Ar
ea

 (c
m

2)

0 5 10 15 20
Time (d)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

Ar
ea

 (c
m

2)

0 5 10 15 20
Time (d)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

Ar
ea

 (c
m

2)

0 5 10 15 20
Time (d)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

Ar
ea

 (c
m

2)

0 5 10 15 20
Time (d)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

Ar
ea

 (c
m

2)

0 5 10 15 20
Time (d)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

Ar
ea

 (c
m

2)

0 5 10 15 20
Time (d)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

Ar
ea

 (c
m

2)

0 5 10 15 20
Time (d)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

Ar
ea

 (c
m

2)

Figure 7.10: Graphs of the leaf area curves for 24 individuals of the data set of 64 individuals
on which was automatically applied the image analysis algorithm. No data was acquired

manually.

3rd and 4th leaves exhibit almost the same dynamics and their growth also starts to slow around day 15.

Leaves of higher ranks then start to appear periodically. For several individuals, the tracking of some leaves

ends early, probably because of the overcautious approach in discarding segments whose classification is not

entirely certain.

Chapter 7. Image analysis 171

7.7 Discussion

The Phenoscope, a high-throughput phenotyping platform, provided images of Arabidopsis thaliana for dif-

ferent genotypes grown in the same environmental conditions. The similarities and differences of some

variables on these images for the different genotypes, such as orientation, distance from the mass centre or

area of the different leaves, were highlighted. They helped build a two-step algorithm for leaf segmentation

and tracking, allowing to reconstruct the whole history of the different leaves. The comparison of the results

obtained for leaf area with the true results extracted from the images manually in the case of four plants be-

longing to different genotypes that exhibit diverse phenotypes showed that this procedure yields numerous

and very precise data. This image processing routine was further tested on many more image series that the

Phenoscope is able to provide [Tisné et al., 2013] for 5 genotypes with a dozen of individuals within each

genotype. Although the results obtained for these series cannot be compared to true values, which would

need countless hours of manual data extraction, the growth curves of most individuals seem very reasonable

and encouraging. Having obtained such data for the different leaves of the plant makes it possible to use

an organ-scale plant model such as the GreenLab model described in Section 2.4 to better understand the

dynamics of leaf growth regulation and disentangle the effects of leaf growth and leaf emission rates [Tisné

et al., 2010]. The experimental data obtained with the help of the segmentation-tracking algorithm can be

used for parameter inference, notably in the context of population models. These results are indeed ideal for

the use of the Bayesian hierarchical estimation procedures described in Chapter 4 and it is hoped that they

will allow statistical testing of genotypic differentiation within Arabidopsis thaliana [Reymond et al., 2003].

Some technical difficulties have not been addressed yet, mostly by lack of time. For instance, pots containing

plants might rotate throughout plant growth, changing the position of the mass centre and the direction of

the leaves. Most of the time, these rotations are small in amplitude and the tracking algorithm handles them

easily. However, in some cases, the pot might be rotated by 90° or even 180° because it has been displaced

by an experimenter. In such cases, the current tracking algorithm will not be able to reconstruct the whole

history of each leaf. We believe that such a difficulty can easily be overcome since, in this kind of scenarios,

the algorithm will lose track of all leaves on the day n ∈ J1, T K on which occurs this rotation. This can be

easily detected and the segments of day n can be computed without taking into account the leaf orientation

criterion. Hopefully, for several leaves, we will notice a change in their orientations between day n − 1 and

n, which will provide the pot rotation angle.

Another problem that we encountered arose from the experiment procedure: in order to maximize the prob-

ability of plants growing, two plants might be planted in the same pot, leading to beginning of image series

with two individuals on the image. The segmentation algorithm therefore fails to accurately compute the

mass centre of the only plant that remains after a few days, the other one being removed by experimenters.

Correctly interpreting the presence of two plants in the early stages of growth might not be this trivial, but

again it is hoped that a preliminary step of computing the differences of consecutive images in the series

might indicate when a plant is removed from the pot, say on day n, indicating that it must be ignored in the

previous images of the series. The mass centre of the plant of interest can be accurately calculated on day n

172 Chapter 7. Image analysis

and taken into account for the detection of leaves on this plant only for days before n.

Last but not least, one must mention the fact that the detection of the 5th leaf is a crucial step since it

determines the direction of the next leaves. For a few series, the algorithm failed to properly detect the first

occurrence of this 5th leaf and, although there were no false data retained because of the algorithm’s prudence,

a lot of leaf areas were missed. For these individuals, we input into the algorithm the day of first appearance

and the orientation of the 5th leaf, allowing to obtain many more data for the late-emerging leaves. This was

doable because it represented a small percentage of the image series, but it would be more convenient to not

rely on such a manual step. All in all, this issue might only make us miss data for a few individuals and does

not constitute a true pitfall to the overall image analysis procedure.

Another approach to obtain more data would be to not discard leaf areas that are regarded as exhuberant

because they imply a sudden change in the growth curve. Such unexpected changes in the growth curves can

happen in real data and one could try to incorporate these possible changes in the GreenLab model. This

problem was addressed by Donnet et al. [2010] who developed, in the context of repeated measurements

of a continuous growth process over time in a population of individuals, a method taking into account

unexpected changes in growth rates based on stochastic differential equations, the parameters of which being

then inferred using Bayesian mixed effects models.

Environmental conditions such as altitude, rainfall or soil nutrient content influence leaf size [McDonald

et al., 2003], [Scoffoni et al., 2011], but environmental influences, in particular light, can also influence leaf

shape [Tsukaya, 2005], even though the underlying mechanisms are not yet fully understood. Therefore, it is

all the more important to test whether more sophisticated shape models [Herdiyeni et al., 2015], [Pape and

Klukas, 2015] could replace our relatively simple ellipse-based one and help estimate leaf areas more precisely

or even increase the rate of leaf detection. Likewise, regarding leaf tracking, a promising approach would be

to develop an iterative method in which, after a first step based on our original approach, the parameterized

model thus obtained could be used instead of the sigmoid extrapolation to predict individual leaf areas at

the next time step. In our original approach, there were cases in which leaf segments were discarded in

the tracking step due to a low score resulting from a bad performance of the sigmoid growth function (for

example because there were not enough segments of the corresponding leaf in the previous steps). Therefore,

we expect that model-based predictions could significantly improve the number of detected segments for

each leaf.

As underlined above, we used a very cautious approach and discarded data for which we did not get a very

high level of confidence. Indeed, owing to the redundant information contained in the sequence of plant

architectural descriptions, already pointed out in [Godin et al., 1999], we expected that it would not impact

the quality of model identification. Our results seem to support this hypothesis. However, it would also be

interesting to study more carefully the impact of the safety score s0 on the rate of detection (both in terms of

true positive rate and false positive rate), but also on the quality of model estimation. There are two aspects

to this last question: how does the model estimation handle false data, and how does missing data impact the

uncertainty in parameter estimates. Obviously, every refinement of the method that could help reduce such

uncertainty will be profitable. Similarly, designing new data collection protocols for the Phenoscope that

Chapter 7. Image analysis 173

are adapted to the model identification objective could also be considered (for example by measuring plant

organ masses or using several individuals of the same genotype to take into account interindividual variability).

Optimal experimental design methodology could help us for this purpose [Pieruschka and Poorter, 2012],

[Craufurd et al., 2013].

Chapter 8

Estimation within population models:

application

T his chapter is devoted to the estimation of population parameters in the context of hierarchical

models. One of the main purposes of this thesis was to evidence the genotypic differentiation within

a population of plants. It was shown in Chapter 7 that the Phenoscope could provide an invaluable source

of images for Arabidopsis thaliana populations. Coupled with an adequate image analysis algorithm, we were

able to extract a great amount of organ-scale data for many individuals. Such a data set suits perfectly not

only the mathematical framework of population models introduced in Chapter 1 but also the use of the

Bayesian estimation algorithms developed in Chapter 4. We envision that the population approach and

the estimation of the population mean vector and covariance matrix will be able to highlight the genotypic

variability existing within a population of Arabidopsis thaliana used in the Phenoscope experiment. To this

end, we use the ADJUSTIN’ platform presented in Chapter 5 that was designed to tackle such estimation

problems. We also highlight how the very nature of the Gibbs sampling scheme allows to efficiently parallelize

algorithms and have efficient estimation procedures.

This application of the parameter estimation algorithms within population models on a real data set involves

a lot of complex steps. First, the GreenLab model should reproduce correctly the dynamics of the real

plant. It has been shown to be quite robust on individual estimations (see Section 6.1) even though some

improvements could be made as far as the dynamics of the 3rd and 4th leaves are concerned. Second, the

image analysis algorithm should obtain accurate estimates of leaf areas in many individuals and for many

different genotypes, which amounts to many different phenotypes as shown on Figure 7.10. Even though it

has been demonstrated in Section 7.5 that the preliminary results obtained on the 4 different individuals –

belonging to 4 different genotypes – were excellent, and that the leaf area curves obtained for the new series

of many individuals exhibit very promising shapes, there is no a priori guarantee that the results obtained

on the new data set are as accurate as those obtained on the preliminary data set manually processed. Third,

one must ensure that the parameter estimation algorithms are correctly implemented in the ADJUSTIN’

platform, for there are a lot of steps and parameters involved, and that they effectively converge despite the

175

176 Chapter 8. Estimation within population models: application

theoretical guarantees. For all these reasons, we will first investigate the case of synthetic data simulated

directly from the GreenLab model. This ensures that there is no uncertainty related to either the plant model

or the image analysis algorithm and that the Bayesian parameter estimation method effectively works.

8.1 Simulated data

Data were simulated using the GreenLab model presented in Section 2.4. The control variables were taken

to be the same as for the experimental conditions described in Section 7.1. The number of hours per day was

set to ns = 8h, and the daily temperature to tn = 21◦C. The photosynthetically active radiation was taken to

be rn = 2.52 10−5MJ · cm2 · h−1. Each leaf was attributed a specific time of appearance: the first two leaves

appeared at n = 1h, the third and fourth leaves appeared at n = 24h. The time of appearance for the fifth

leaf was set to n5 = 40h. After that, the 5 + i-th leaf, for i > 1, appears at time n5+i = n5 + i ϕ, where

ϕ = 12h is the phyllochron. We focus on the estimation of the parameters θ = (e, µ1, µ2), even though more

parameters will be estimated in Sections 8.1.8 and 8.2.

8.1.1 Simulation of synthetic data

The dimension of the estimation problem is therefore d = 3. All the other parameters were fixed at constant

values throughout both the simulation of data and the estimation procedure. These values were:

µ = 3.150 · 10+00,

s = 5.000 · 10+00,

k = 7.000 · 10−01,

σ1 = 4.593 · 10−01,

σ2 = 3.991 · 10−01,

ρ2 = 7.801 · 10−02,

q0 = 3.807 · 10−05.

(8.1)

The parameters varying in the population are given true values for their mean and covariance matrix. In the

present case:

ηtrue =

1.558 · 10−03

4.531 · 10+00

5.390 · 10+00

 (8.2)

and:

Σtrue =

6.069 · 10−09 0 0

0 5.131 · 10−02 0

0 0 7.263 · 10−02

 (8.3)

Chapter 8. Estimation within population models: application 177

and τ true = 100. The choice of the covariance matrix actually corresponds to Σtrue = diag{(ηtrue/20)2}

and that of the precision amounts to a multiplicative normal observation noise with standard deviation

σtrue = (τ true)
−1/2

= 0.1. Data were simulated for 24 individuals: this was done on a single process and then

broadcasted to all others, the underlying motivation being that all processes obviously need to have the same

experimental data for the different individuals. For the i-th individual, a set of true individual parameters

was first sampled from the true population distribution:

θtrue
i ∼ N (ηtrue,Σtrue) (8.4)

and then used for the simulation of true leaf areas (avi,n)1:νmax,1:ns:T (hidden states) and their corresponding

noised values (ãvi,n)1:νmax,1:ns:T (observations) where:

ãvi,n = avi,n (1 + ξv,n) with ξvi,n ∼ N
(
0, (τ true)

−1
)
. (8.5)

The areas of all leaves were observed on every day for 21 days which, taking into account that the phyllochron

ϕ is fixed and given the rate of appearance of each leaf, amounts to observing 16 leaves over the whole

growth and a number of observations of ni = 136 for each individual i, i.e. a total number of observations

of ntot =
∑N

i=1 ni = 3264. We denote by τvi =
(
tvi,1, . . . , t

v
i,nv

i

)
the timeline for the v-th leaf and by

α̃v
i =

(
ãvi,1, . . . , ã

v
i,nv

i

)
the corresponding observations on leaf area at these time steps. The vector of all

concatenated observations thus reads:

yi =
(
α̃1
i , . . . , α̃

νmax
i

)
∈ Rni with ni =

νmax∑
v=1

nvi . (8.6)

The calculations were performed on as many processes as individuals, i.e. on np = 24 processes. For repro-

ducibility issues, the seed of the random number generator was fixed so that the same data was generated all

the time. However, for the estimation part and as soon as the experimental data is loaded on the different

processes, the seed is reset to a random value on each process.

The flattened vector of experimental data for all individuals is denoted as Y = (y1, . . . , yN) ∈ Rntot . Examples

of simulated data is displayed on Figures 8.1 and 8.2. On Figure 8.1, the leaf areas for each of the first eight

leaves are displayed for the 24 individuals and on Figure 8.2 are displayed some examples of typical growth

curves for the first eight leaves of several individuals. Despite the rather low population covariance used, there

is still a high variability in the leaf areas. This is easily seen from Figure 8.2 when comparing, for instance,

the 6th and 8th individuals, the latter having maximum leaf areas twice as high as the former.

8.1.2 Initialization of the prior distributions

Defining the prior distributions of the population parameters is of crucial importance. A first step consists

in obtaining realistic values for the individual parameters θi. This can be done rather easily by performing

a GLS procedure on each individual i. These first sets of parameters can be used to compute reasonable

estimates of the population mean vector η and covariance matrix Σ. A first estimate of the individual set is

therefore independently computed as:

θ̂GLS
i = arg min

θ∈Θ

(Yi − hi(θi))
T
Σ−1

i (Yi − hi(θi)) , (8.7)

178 Chapter 8. Estimation within population models: application

0 25 50 75 100 125 150 175

Time (h)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Le
af
 A
re
a
(c
m

2)

0 25 50 75 100 125 150 175

Time (h)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Le
af
 A
re
a
(c
m

2)

0 25 50 75 100 125 150 175

Time (h)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Le
af
 A
re
a
(c
m

2)

0 25 50 75 100 125 150 175

Time (h)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Le
af
 A
re
a
(c
m

2)

0 25 50 75 100 125 150 175

Time (h)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Le
af
 A
re
a
(c
m

2)

0 25 50 75 100 125 150 175

Time (h)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Le
af
 A
re
a
(c
m

2)

0 25 50 75 100 125 150 175

Time (h)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Le
af
 A
re
a
(c
m

2)

0 25 50 75 100 125 150 175

Time (h)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Le
af
 A
re
a
(c
m

2)

Figure 8.1: Leaf area variability for the first eight leaves. Each dashed line represents the true
leaf area (hidden state) of a given individual and filled circles represent the corresponding

noised data (observations).

0 25 50 75 100 125 150 175

Time (h)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Le
af
 A
re
a
(c
m

2)

0 25 50 75 100 125 150 175

Time (h)

0.0

0.2

0.4

0.6

0.8

Le
af
 A
re
a
(c
m

2)

0 25 50 75 100 125 150 175

Time (h)

0.0

0.2

0.4

0.6

0.8

Le
af
 A
re
a
(c
m

2)

0 25 50 75 100 125 150 175

Time (h)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Le
af
 A
re
a
(c
m

2)

0 25 50 75 100 125 150 175

Time (h)

0.0

0.2

0.4

0.6

0.8

1.0

Le
af
 A
re
a
(c
m

2)

0 25 50 75 100 125 150 175

Time (h)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Le
af
 A
re
a
(c
m

2)

0 25 50 75 100 125 150 175

Time (h)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Le
af
 A
re
a
(c
m

2)

0 25 50 75 100 125 150 175

Time (h)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Le
af
 A
re
a
(c
m

2)

Figure 8.2: Leaf area for the first eight leaves for 8 different individuals. The hidden states
are represented by dashed lines and observations by filled circles.

e µ1 µ2

Ei(δi) 3.661 · 10−03 2.333 · 10−03 8.618 · 10−04

maxi(δi) 9.969 · 10−03 7.328 · 10−03 2.189 · 10−03

Table 8.1: Average and maximum value of the relative errors for all
individual parameters (θi)i∈J1,NK.

where Σi = blockdiagv∈J1,νmaxK{V (α̃v
i) Inv

i
} is the heteroskedastic matrix of the variances for each leaf, and a

Gauss–Newton optimization procedure with a maximum of 1,000 iterations was used. In practice, a couple

of tens iterations suffice to reach a local minimum. To assess their relevance, one can simulate the hidden

states from the GreenLab model using the GLS estimates h(θ̂GLS
i) and these results can further be compared

to the hidden states that would have been obtained without a GLS algorithm; such graphs are displayed on

Figure 8.3. Since the true values of the parameters are known, it is possible to compare θtrue
i to θ̂GLS

i . Relative

errors were calculated for each parameter and each individual. The mean and maximum values of (δei)i∈J1,NK,
(δµ1

i)i∈J1,NK and (δµ2

i)i∈J1,NK were calculated to illustrate the goodness of the GLS estimates.

Chapter 8. Estimation within population models: application 179

0 25 50 75 100 125 150 175
Time (h)

0.0

0.2

0.4

0.6

0.8

1.0
Le

af
 A
re
a
(c
m

2)

0 25 50 75 100 125 150 175

Time (h)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Le
af
 A
re
a
(c
m

2)

Figure 8.3: Example of GLS calibration for one particular individual. Hidden states (dashed
lines) obtained via model simulation with the initial set of parameters (left) and with the GLS

estimates (right) vs. observations (filled circles).

The individual parameters are therefore very precisely estimated. One must mention that this excellent es-

timation is partly helped by the fact that we considered simulated data and that the number of estimated

parameters remains low. It nonetheless motivates the choice of such a strategy in the case of real data. The

growth curves are then much better fitted after the GLS estimation than before as can be seen from Figure

8.3. This first crude step gives us a reasonable range of values that the parameters of GreenLab model for

Arabidopsis thaliana can take and helps us define sensible prior distributions: even though they indirectly integ-

rate observations, they remain slightly non-informative. Notably, the mean of the individual estimates can

be used for the population mean prior, and the covariance matrix of the multivariate normal distribution for

the population mean vector is chosen so that the standard deviations related to the different parameters are

a fifth of their mean, i.e.:

λ = θ̂GLS =
1

N

N∑
i=1

θ̂GLS
i and Λ = diag{(λ/5)2}. (8.8)

The covariance of the individual estimates can also be used for the initialization of the population inverse

covariance matrix Σ−1. We recall from Section 4.2.2 that the prior distribution for the population covariance

matrix is an inverse Wishart distribution, i.e. Σ ∼ IW(q,Ψ−1). Besides, the mean of the inverse Wishart

distribution implies that:

E (Σ) = (q − d− 1)−1 Ψ−1. (8.9)

We can therefore choose the hyperparameters q and Ψ as follows:

q = d+ 3 and Ψ =
(
2 (q − d− 1) C

(
θ̂GLS
i

))−1

. (8.10)

to obtain that E (Σ) = 2 C
(
θ̂GLS
i

)
. Such choices of q and Ψ ensures that the initial population covariance

matrices used in the Gibbs sampler will be, initially, larger than the covariance based on the individual

estimates.

Finally, the hyperparameters α and β for the population precision τ ∼ G(α, β) are chosen such that the

mean and standard deviation of the prior distribution are m = 9 τ true/10 and s = τ true/3 respectively. We

180 Chapter 8. Estimation within population models: application

0.0000 0.0005 0.0010 0.0015 0.0020 0.0025 0.0030

μ1

0

200

400

600

800

1000

1200

p(
μ 1

)

0 2 4 6 8

μ2

0.0

0.1

0.2

0.3

0.4

p(
μ 2

)

0 2 4 6 8 10

μ3

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

p(
μ 3

)

Figure 8.4: Prior distribution for the population mean vector components. The true values
are represented by black dashed lines.

0 1 2 3 4 5 6 7

Σ−111
1e8

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

p(
Σ−

1 11
)

1e−9

−200000 −100000 0 100000 200000

Σ−112

0.000000

0.000002

0.000004

0.000006

0.000008

0.000010

p(
Σ−

1 12
)

−75000−50000−25000 0 25000 50000 75000

Σ−113

0.000000

0.000002

0.000004

0.000006

0.000008

0.000010

0.000012

0.000014

p(
Σ−

1 13
)

−200000 −100000 0 100000 200000

Σ−121

0.000000

0.000002

0.000004

0.000006

0.000008

0.000010

p(
Σ−

1 21
)

0 25 50 75 100 125 150 175

Σ−122

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

p(
Σ−

1 22
)

−40 −20 0 20 40

Σ−123

0.000

0.005

0.010

0.015

0.020

0.025

0.030

p(
Σ−

1 23
)

−75000−50000−25000 0 25000 50000 75000

Σ−131

0.000000

0.000002

0.000004

0.000006

0.000008

0.000010

0.000012

0.000014

p(
Σ−

1 31
)

−40 −20 0 20 40

Σ−132

0.000

0.005

0.010

0.015

0.020

0.025

0.030

p(
Σ−

1 32
)

0 20 40 60 80 100

Σ−133

0.000

0.005

0.010

0.015

0.020

0.025

0.030

p(
Σ−

1 33
)

Figure 8.5: Prior distribution for the population inverse covariance matrix components. The
true values are represented by black dashed lines.

recall from Section 4.2.2 that the hyperparameters of the Gamma distribution α and β can be expressed as

functions of the mean and standard deviation m and s:
α =

m2

s2
,

β =
m

s2
,

(8.11)

which leads us in the present case to choosing the following values for the hyperparameters of the Gamma

distribution:

α =
(9 τ true/10)2

(τ true/3)2
= 7.29 and β =

9 τ true/10

(τ true/3)2
= 0.081. (8.12)

The first calibration step using a GLS procedure hence allows to initialize reasonable prior distributions, as

pictured on Figures 8.4 and 8.5. The mean of the prior distribution for η, λ, is already very close to the true

values. The modes of the prior distributions for Σ−1, are also near the true values, even though the diagonal

components Σ−1
22 and Σ−1

22 are slightly overestimated.

Chapter 8. Estimation within population models: application 181

8.1.3 Details of implementation

Initial values for the population parameters are then sampled from these prior distributions:

η0 ∼ N (λ,Λ),

Σ−1,0 ∼ W(q,Ψ),

τ0 ∼ G(α, β).

(8.13)

The Gibbs sampling scheme was performed forM = 100, 000 iterations, in the sense that at each iteration all

individual parameters (θi)i∈J1,NK and the population parameters η, Σ and τ are updated. A burn-in period of

B =M/5 = 20, 000 iterations was set, so that all samples up to iteration B are discarded from the posterior

distributions. For each individual, an adaptive scheme is initialized as described in Algorithm 12. At MCMC

iteration t+ 1, the individual parameters θi are the first to be updated for all i ∈ J1, NK. A new candidate is

sampled from the proposal distribution:

θ⋆i ∼ N (θti , λ
t
iΣ

t
i) (8.14)

and the corresponding hidden states for the leaf areas hi(θ⋆i) are simulated. We recall that λti and Σt
i are

defined by an adaptive scheme for each individual for an optimized state space exploration as described in

Section 4.2.5. The acceptance ratio α is then computed, the candidate accepted or rejected, and the adaptive

scheme updated. All these operations can be performed independently for each individual on a particular

process, making this step of the Gibbs sampler fully parallelized.

The mean and covariance of the individual parameters are then computed in parallel (see Appendix E). Then,

parameters λ⋆ and Λ⋆ are updated according to Equation 4.21 and a new population mean vector ηt+1 is

sampled. This operation is performed on a single process, and the updated ηt+1 is broadcasted on all other

processes, so that the population values of the chain are identical for all individuals. All the same, q⋆ and

Ψ⋆ are updated according to Equation 4.22. The update of q⋆ = q +N is straightforward (and can actually

happen once during the whole algorithm). As far as the update of Ψ⋆ is concerned, on each process we

computed the matrix:

Mp =
∑
i∈rp

(θt+1
i − ηt+1)(θt+1

i − ηt+1)T , (8.15)

where we recall that rp is the range of individuals belonging to process p. In the present case and since there

is only one individual per process, this reduces to:

Mp = (θt+1
p − ηt+1)(θt+1

p − ηt+1)T . (8.16)

These matrices are converted to vectors and all these vectors are broadcasted to a single process, which is now

able to reconstruct the whole matrix Ψ⋆. A new value of the inverse covariance matrix is then sampled on

this process and broadcasted to all others for consistency as previously mentioned. Finally, α⋆ = α+ntot/2 is

straightforwardly updated and a similar procedure as for Ψ⋆ is used for β⋆. It is worth noting that when the

number of observations is not the same in the experimental data yi and in the candidate hi(θt+1
i), the vector

that contains the most elements is deprived from the additional values corresponding to a higher number

182 Chapter 8. Estimation within population models: application

of leaves having emerged. This can happen, for instance, when the phyllochron ϕ is estimated and that the

number of leaves at the final time of the simulation is not the same. A new value for τ⋆ is then sampled, and

the observation noise relative to the model simulation is accordingly updated.

8.1.4 First results

The Markov chains generated for several individual parameters sets are displayed on Figure 8.6. Since the

data was simulated with the same model used for the individual GLS estimates, the latter were very close

to the true parameters, hence the N = 24 estimates provide excellent prior distributions for the population

mean vector and covariance matrix as already discussed. This logically initializes values for the Gibbs sampler

that are close to the truth as well and the Markov chains have already converged in the first few iterations.

The accuracy of the estimation will sometimes be assessed using three different values for variable z:

δz =
|ẑ − ztrue|
ztrue ,

ρz =
σ̂z

ztrue ,

αz =
|ẑ − ztrue|

σ̂z
,

(8.17)

where δz is the relative error, ρz the normalized estimated standard deviation, and αz = δz/ρz measures how

well the posterior distribution captures the true value.

e µ1 µ2

Ei (δ) 2.009 · 10−03 6.296 · 10−04 3.399 · 10−04

Ei (ρ) 9.676 · 10−04 4.478 · 10−04 2.874 · 10−04

Ei (α) 2.074 · 10+00 1.384 · 10+00 1.202 · 10+00

Table 8.2: Average of the coefficients δ, ρ and α over the different sets of individual para-
meters.

η1 η2 η3 Σ11 Σ22 Σ33 τ

δ 2.498 · 10−03 3.472 · 10−03 1.438 · 10−03 6.343 · 10−02 1.108 · 10−01 7.359 · 10−01 9.428 · 10−02

ρ 9.868 · 10−03 1.074 · 10−02 1.341 · 10−02 2.756 · 10−01 3.288 · 10−01 5.108 · 10−01 3.077 · 10−02

α 2.532 · 10−01 3.233 · 10−01 1.073 · 10−01 2.302 · 10−01 3.371 · 10−01 1.440 · 10+00 3.064 · 10+00

Table 8.3: Coefficients δ, ρ and α for the different components of the population mean
vector η, covariance matrix Σ and precision τ .

The results of Table 8.2 indicate that the individual parameters are very well estimated with an average of

relative errors of 2 · 10−03 at most. The average of the ρ coefficients does not exceed 10−03, which indicates

very concentrated Markov chains. Table 8.3 displays the results for the estimation of η, and here again the

Chapter 8. Estimation within population models: application 183

relative errors are very low, not exceeding 3 · 10−03. The standard deviations of the posterior distributions are

much higher than in the case of individuals, with ρ coefficients of the order of 10−02. Since the α coefficients

are rather low, with values under 4 ·10−01, the true values will be within the posterior distribution. Results for

the estimation of Σ are slightly less good, with higher relative errors on the mean estimates, up to 7.4 · 10−01

for Σ33, i.e. 74%, which is not satisfying. All these observations can also be noticed on Figure 8.7. Note that

the asymmetric shape of the Wishart distribution induces a difference between its mode and its mean.

In the following we will try to highlight the influence that some variables may have on the posterior distri-

butions of the population parameters, namely the number of individuals, the intensity of the observation

noise (i.e. the precision), the prior distributions, the number of estimated parameters and finally the correl-

ation between parameters. In each situation we consider different cases, the easiest one being represented

with the colour blue and the hardest one with red. The total number of MCMC iterations is always set to

M = 100, 000 and all the Markov chains are assumed to have converged unless stated otherwise. In particular,

this means that the results obtained cannot be improved with a greater M . Because of the onerousness of

running such algorithms, only 5 scenarios at most are considered for each variable.

8.1.5 Influence of the number of individuals

Owing to the very nature of population models, the first influence variable that comes to mind is the number

of individuals in the population. When only a few individuals are available, they might not represent the

population distribution very well. To investigate this effect, we took advantage of the fully parallelized version

of our algorithm as well as the capabilities of CentraleSupélec’s computing cluster to generate and estimate

populations of N individuals with N ∈ {12, 24, 48, 96, 192}. We were able to require as many processes

as individuals in the population, which means that the overall computing time was the same for all cases

(approximately 10 minutes), which represents a substantial time-saving trick: had the algorithm be written

sequentially, the total computing time for N = 192 would have been of 32 hours.

It is worth mentioning that this is the single case study where the populations will differ. In the following

sections, all the populations are composed of the exact same individuals, whether it be in terms of parameters

or observations. Here, the individuals generated for a particularN also belong to the population of individuals

generated for greater N ’s.

On Figure 8.9, we displayed the posterior distributions of all the components of the population mean vector

η1, η2 and η3 and on Figure 8.10 those of the diagonal components of the population covariance matrix

Σ11, Σ22 and Σ33. On each graph, the true value, say ztrue, is represented by a dashed black line and the

magenta lines represent the ±5% values, 0.95 ztrue and 1.05 ztrue. From Figure 8.9, the posterior distributions

for the population mean vector components exhibit a slight bias for lower values of N . As N increases, their

modes get closer to the true values, their variances decrease and the posterior distributions become more

centered and narrowed. Still, even with a few individuals in the population, the posterior distribution for all

components of η are mostly within the ±5% interval, thereby highlighting the accuracy of the estimates.

184 Chapter 8. Estimation within population models: application

0 20000 40000 60000 80000 100000

t

0.00146

0.00148

0.00150

0.00152

0.00154

0.00156

0.00158

0.00160

0.00162

e
0 20000 40000 60000 80000 100000

t

4.7

4.8

4.9

5.0

5.1

5.2

μ 1

0 20000 40000 60000 80000 100000

t

5.5

5.6

5.7

5.8

5.9

6.0

μ 2

0 20000 40000 60000 80000 100000

t

0.001450

0.001475

0.001500

0.001525

0.001550

0.001575

0.001600

0.001625

0.001650

μ 1

0 20000 40000 60000 80000 100000

t

4.3

4.4

4.5

4.6

4.7

μ 2

0 20000 40000 60000 80000 100000

t

5.0

5.1

5.2

5.3

5.4

5.5

5.6

5.7

μ 3

0 20000 40000 60000 80000 100000

t

0

1

2

3

4

5

Σ 1
1

1e−8

0 20000 40000 60000 80000 100000

t

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Σ 2
2

0 20000 40000 60000 80000 100000

t

0.00

0.05

0.10

0.15

0.20

Σ 3
3

Figure 8.6: Markov chains for one individual θ1 (top), the population mean η (middle) and
the population covariance matrix Σ (bottom) for the three parameters e (left), µ1 (center)

and µ2 (right).

1.475 1.500 1.525 1.550 1.575 1.600 1.625
θi, 1

×10−3

0

100000

200000

300000

400000

p(
θ i

,1
|Y

1:
N
)

4.7 4.8 4.9 5.0 5.1 5.2

θi, 2

0

50

100

150

200

250

300

p(
θ i

,2
|Y

1:
N
)

5.5 5.6 5.7 5.8 5.9 6.0

θi, 3

0

50

100

150

200

250

300

350

400
p(
θ i

,3
|Y

1:
N
)

1.4 1.5 1.6 1.7 1.8
μ1

×10−3

0

2500

5000

7500

10000

12500

15000

17500

20000

p(
μ 1
|Y

1:
N
)

4.2 4.4 4.6 4.8 5.0

μ2

0

2

4

6

8

10

p(
μ 2

|Y
1:

N
)

4.8 5.0 5.2 5.4 5.6 5.8 6.0

μ3

0

1

2

3

4

5

6

7

8

p(
μ 3

|Y
1:

N
)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Σ11

×10−8

0.0

0.5

1.0

1.5

2.0

2.5

3.0

p(
Σ 1

1|Y
1:

N
)

×108

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Σ22

×10−1

0.0

0.5

1.0

1.5

2.0

2.5

3.0

p(
Σ 2

2|Y
1:

N
)

×101

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Σ33

×10−1

0.0

0.2

0.4

0.6

0.8

1.0

1.2

p(
Σ 3

3|Y
1:

N
)

×101

Figure 8.7: Posterior distribution for one individual θ1 (top), the population mean η
(middle) and the population covariance matrix Σ (bottom) for the three parameters e (left),

µ1 (center) and µ2 (right).

0 20000 40000 60000 80000 100000

t

0

20

40

60

80

100

120

τ

85 90 95 100 105

τ

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

p(
τ|
Y 1

:N
)

Figure 8.8: Markov chain and posterior distribution for the population precision τ .

Chapter 8. Estimation within population models: application 185

As far as the covariance matrixΣ is concerned, the quality of the estimates for low values ofN is not as good as

for η. It is worth noting that Σ11 and Σ22 are most of the time underestimated whereas Σ33 is overestimated,

rather strongly for low values of N , although Σ22 and Σ33 are of the same order of magnitude. Increasing

the number of individuals in the population turns out to be particularly relevant for the covariance matrix:

the estimates for Σ11, Σ22 and Σ33 are greatly improved for N = 96 and N = 192, and the variance of the

posterior distribution is even lower forN = 192. The estimation results forN = 12 are clearly insufficient, in

particular for Σ22 and Σ33, but the results significantly improve with N = 24 already. Ideally though, having

populations with a large number of individuals (N ⪆ 100) would be reassuring for the estimation of Σ.

Last, but not least, the posterior distributions for the population precision τ are displayed on Figure 8.11.

Strikingly, all the posterior distributions have their modes around τ = 90 and they fail to correctly estimate

the true value of the precision. Increasing the number of individuals in the population has for only effect

to lower the variance of the posterior distribution around this value and there will always exist a bias for the

precision estimate whatever the value of N .

8.1.6 Influence of the precision

Seeing how the estimation of the precision might yield its share of difficulties, we focus in this section

on observation noises of different intensities for a number of individuals N = 24. Basically, we consider

standard deviations for the observation noise σ ∈ {0.1, 0.2, 0.3, 0.4, 0.5}, which corresponds to precisions

1.45 1.50 1.55 1.60 1.65
×10−3

0

1

2

3

4

5

6

7
×104

4.3 4.4 4.5 4.6 4.7 4.8
0.0

0.5

1.0

1.5

2.0

2.5

×101

5.1 5.2 5.3 5.4 5.5 5.6 5.7
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
×101

Figure 8.9: Posterior distributions of the components of η for different number of individuals
(N = 12 N = 24 N = 48 N = 96 N = 192).

0.4 0.6 0.8 1.0
×10−8

0

1

2

3

4

5

6

7
×108

0.2 0.4 0.6 0.8
×10−1

0.0

0.2

0.4

0.6

0.8

×102

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
×10−1

0

1

2

3

4

5
×101

Figure 8.10: Posterior distributions of the diagonal components of Σ for different number
of individuals (N = 12 N = 24 N = 48 N = 96 N = 192).

186 Chapter 8. Estimation within population models: application

0.80 0.85 0.90 0.95 1.00 1.05
×102

0.0

0.5

1.0

1.5

2.0

2.5

3.0

×10−1

Figure 8.11: Posterior distribution of the precision τ for different number of individuals
(N = 12 N = 24 N = 48 N = 96 N = 192).

τ = 100 τ = 25 τ = 11.11 τ = 6.25 τ = 4

δτ 9.428 · 10−02 3.624 · 10−01 5.041 · 10−01 4.810 · 10−01 4.044 · 10−01

ρτ 3.077 · 10−02 2.427 · 10−02 1.783 · 10−02 1.988 · 10−02 2.405 · 10−02

ατ 3.064 · 10+00 1.493 · 10+01 2.827 · 10+01 2.419 · 10+01 1.681 · 10+01

Table 8.4: Values of the coefficients δ, ρ and α for the different values of the precision.

τ = σ−2 ∈ {100.0, 25.0, 11.11, 6.25, 4.0}. This set of values most probably includes some that are unrealistic-

ally high but that remain of interest for the study of how well the algorithm performs in the presence of high

noise. For each value of τ , the population parameters η, Σ and all the individual parameters (θi)i∈J1,NK were

identical. In particular, for individual i, the hidden states for leaf area hi(θi) did not change w.r.t. the value

of τ used, and only the observations yi were different.

The posterior distributions for η can be seen on Figure 8.12 and those for Σ on Figure 8.13. For both η and

Σ, the estimation of the second and third parameters is barely affected by higher observation noises. Only the

first parameter, which corresponds to e, improves with increasing τ . As far as Σ11 is concerned, even though

the mode of the posterior distributions for τ = 25 and τ = 100 is not centered on the true value as is the case

for other values of τ , the estimates obtained by computing the mean from the posterior distributions have

lower relative errors (see Table 8.4) for τ = 25 and τ = 100 owing to the shape of the Wishart distribution.

Overall, the results obtained for η and Σ remain excellent: the relative errors for η2 and η3 are always lower

than 5 · 10−03 for all cases, and the relative error for η1 does not exceed 3 · 10−02 in the worst case scenario

(τ = 4). Σ11 and Σ22 are well estimated, with relative errors always less than 10−01 in all cases. As already

noticed, Σ33 is the only component of µ and Σ that is not well estimated, with relative errors δΣ33 ≈ 7 ·10−01.

The results for τ are displayed in Table 8.4. It is worth noting that all the chains for the precision had

converged and that the results could not have been improved with a higher number of iterations. Even in

the easiest case (i.e. τ = 100), the relative error on the precision is of almost 10%. This error degrades to 36%

for τ = 25 and to 50% for τ = 11.11. In fact, the precision τ is always underestimated which equates to the

standard deviation of the observation noise σ being always overestimated.

Chapter 8. Estimation within population models: application 187

We recall that if X follows a Gamma distribution G(α, β), then E (X) = α/β and V (X) = α/β2. Since the

update of the full conditional distribution of the precision τ is based on α⋆ = α + ntot/2 and

β⋆ = β + 1
2

∑N
i=1(yi − hi(θi))

TΩ−1
i (yi − hi(θi)), when the chains have converged the expectation of the

precision is thus governed by:

α+ ntot/2

β + 1
2

∑N
i=1(yi − hi(θi))TΩ

−1
i (yi − hi(θi))

(8.18)

and one might therefore be tempted to adapt the values of α and β so as to raise this ratio. Here, ntot/2 = 1632,

and the initial choices for the hyperparameters of the Gamma distribution were α = 7.29 and β = 0.081.

A straightforward analysis of the orders of magnitude of each term involved reveals that the denominator of

the ratio 8.18 is in the present case greatly dominated by S = 1/2
∑N

i=1(yi − hi(θi))
TΩ−1

i (yi − hi(θi)) and

decreasing the value of β will hence not change much, whereas increasing α seems more meaningful.

For τ = 100, we considered 5 different values for α, most of them were higher than the initial 7.29 in order

to heighten the ratio 8.18 and the last one was taken very low, i.e. α = 0.01. The motivation behind the last

scenario is to evidence the lower bound on the estimate of τ . We therefore considered the following cases:

α ∈ {0.01, 30, 100, 300, 1000}.

The results that were obtained for η and Σ were identical for all the choices of α, which means that their

estimation is robust to potentially ill-chosen priors for the precision. The posterior distributions of τ for the

different cases are displayed on Figure 8.14. First, we notice that even for α = 0.01 the results are close to

those obtained so far. For such low values of α, the standard deviation of the observation noise during the

1.45 1.50 1.55 1.60 1.65
×10−3

0.0

0.5

1.0

1.5

2.0

2.5

×104

4.3 4.4 4.5 4.6 4.7 4.8
0.0

0.2

0.4

0.6

0.8

×101

5.1 5.2 5.3 5.4 5.5 5.6 5.7
0

1

2

3

4

5

6

Figure 8.12: Posterior distributions of the individual components of η for different values
of the precision (τ = 4 τ = 6.25 τ = 11.11 τ = 25 τ = 100).

0.4 0.6 0.8 1.0 1.2
×10−8

0.0

0.5

1.0

1.5

2.0

2.5

3.0
×108

0.4 0.5 0.6 0.7 0.8 0.9
×10−1

0.0

0.5

1.0

1.5

2.0

2.5

3.0

×101

0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2
×10−1

0.0

0.2

0.4

0.6

0.8

1.0

1.2

×101

Figure 8.13: Posterior distributions of the diagonal components of Σ for different values of
the precision (τ = 4 τ = 6.25 τ = 11.11 τ = 25 τ = 100).

188 Chapter 8. Estimation within population models: application

first iterations of the MCMC chain will be very high, which affects notably the acceptance probability (see

Equation 4.35). In spite of these seemingly absurd values for the precision, the chain converges rather quickly

to more sensible values for τ , but also η and Σ.

0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5
×102

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

×10−1

Figure 8.14: Posterior distribution of the precision τ (τ true = 100) for different prior distri-
butions (α = 0.01 α = 30 α = 100 α = 200 α = 1000).

As α increases, the posterior distribution starts to shift towards the true value, which is encouraging. However,

there is a threshold beyond which the posterior of τ significantly overestimates the latter. This threshold can

be roughly estimated in our estimation with:

αopt ≈ τ true (β + S)− ntot/2 ≈ 200. (8.19)

In practice though, τ true is unknown, and S depends on the population mean η and the individual parameters

(θi)i∈J1,NK, so this rough estimate only serves as illustrative purposes and should not be taken as a recipe for

finding the optimal α. Still, the case α = 200 is the one that yields the best posterior distribution for τ as

illustrated on Figure 8.14. When α keeps on increasing, the posterior distribution is shifted even more to

higher values of τ .

In conclusion, if β is negligible with respect to S, the estimate for τ is lower bounded by that obtained when

α→ 0. This careful strategy leads to relative errors that increase with lower τ . The optimal value for α when

τ true is known can be roughly assessed.

8.1.7 Influence of the prior

As mentioned previously, in the case of simulated data the GLS estimates provide excellent prior distributions.

However, in the case of real data there are two additional sources of uncertainty since (i) the plant growth

model that we have designed can never absolutely accurately represent real data and (ii) the image analysis

algorithm introduces observation errors whose extent is hard to assess, whence less assurance that the prior

distributions be so precise in the case of real data. In order to study this effect, we initialized the individual

parameters and the population mean vector far from their true values. The convergence of the estimation

Chapter 8. Estimation within population models: application 189

method is likely to be impacted by the initial values of all the parameters’ sets. The prior distributions were

set as follows:

λi = θ̂GLS (1 + (−1)iϵ) (8.20)

and where ϵ ∈ {0.01, 0.05, 0.10, 0.15, 0.20}. The factor (−1)i ensures that not parameters are neither all

underestimated nor all overestimated.

For both η and Σ (see Figure 8.15 and 8.16) the results are very similar as long as ϵ < 0.15. For ϵ = 0.20,

the posterior distributions start to be biased despite the convergence of the chains, even though the estimates

remain decent. The estimation results for η and Σ therefore seem to be rather robust to moderately distant

priors, which probably results from the relatively large number of available observations. The results for τ

can be seen on Figure 8.17. The shape of the posterior distributions can be explained simply: this is one of

those rare cases in these applications for which the chains for τ have not converged. The convergence of the

chains for each case can be smoothed for better visualization by computing the mean value of the chain over

each batch of 1,000 iterations for instance. Such results are displayed on Figure 8.18. It is not clear from the

latter whether the chains will converge towards the same value that would have been obtained for ϵ = 0.

To shed light on this issue, we ran an algorithm for ϵ = 0.10 with a number of iterations ofM = 500,000, for

which the smoothed Markov chain for τ is shown on Figure 8.18. No definitive conclusion can be drawn

from this curve, but it would seem that the chain would eventually converge towards the same value obtained

for ϵ = 0. Anyway, in practice it becomes unpractical to run the algorithm for so many iterations. Instead, we

suggest that if the convergence of the Markov chain for τ is too slow, it is likely that the prior distributions

1.45 1.50 1.55 1.60 1.65
×10−3

0.0

0.5

1.0

1.5

2.0

2.5

×104

4.3 4.4 4.5 4.6 4.7 4.8
0.0

0.2

0.4

0.6

0.8

×101

5.1 5.2 5.3 5.4 5.5 5.6 5.7
0

1

2

3

4

5

6

Figure 8.15: Posterior distributions of the individual components of η for different priors
(ϵ = 0.01 ϵ = 0.05 ϵ = 0.10 ϵ = 0.15 ϵ = 0.20).

0.4 0.6 0.8 1.0 1.2
×10−8

0.0

0.5

1.0

1.5

2.0

2.5

3.0
×108

0.4 0.5 0.6 0.7 0.8 0.9 1.0
×10−1

0.0

0.5

1.0

1.5

2.0

2.5

3.0
×101

1.0 1.5 2.0 2.5
×10−1

0.0

0.2

0.4

0.6

0.8

1.0

1.2

×101

Figure 8.16: Posterior distributions of the diagonal components of Σ for different priors
(ϵ = 0.01 ϵ = 0.05 ϵ = 0.10 ϵ = 0.15 ϵ = 0.20).

190 Chapter 8. Estimation within population models: application

0.2 0.4 0.6 0.8 1.0
×102

0.0

0.2

0.4

0.6

0.8

1.0

×10−1

Figure 8.17: Posterior distribution of the precision τ for different priors
(ϵ = 0.01 ϵ = 0.05 ϵ = 0.10 ϵ = 0.15 ϵ = 0.20).

0 20000 40000 60000 80000 100000
0

20

40

60

80

0 100000 200000 300000 400000 500000
0

20

40

60

80

Figure 8.18: Left: smoothed Markov chains for the precision τ for different priors
(ϵ = 0.00 ϵ = 0.01 ϵ = 0.05 ϵ = 0.10 ϵ = 0.15 ϵ = 0.20). Right:

smoothed Markov chains for the precision τ with ϵ = 0.10 and M = 500, 000.

for the individual parameters or the population mean vector could be chosen differently for an improved

convergence.

8.1.8 Influence of the number of estimated parameters

The last case study that we consider is that of the number of estimated parameters d. So far, only three

parameters were estimated for convenience. For real case scenarios, more parameters need to be estimated in

order to fit the experimental data correctly as will be detailed in Section 8.2. The study of how the estimation

evolves with the dimension of the problem is therefore necessary, all the more so considering the additional

difficulty of state space exploration due to the curse of dimensionality.

For the reasons given in Section 6.1, we considered the additional estimation of the parameters σ1 and σ2.

The three different cases that were designed were therefore:
θ = (e, µ1, µ2) i.e. d = 3,

θ = (e, µ1, µ2, σ1) i.e. d = 4,

θ = (e, µ1, µ2, σ1, σ2) i.e. d = 5.

(8.21)

Chapter 8. Estimation within population models: application 191

1.45 1.50 1.55 1.60 1.65
×10−3

0.0

0.5

1.0

1.5

2.0

2.5

3.0
×104

4.3 4.4 4.5 4.6 4.7 4.8
0.0

0.2

0.4

0.6

0.8

×101

5.1 5.2 5.3 5.4 5.5 5.6 5.7
0

1

2

3

4

5

6

Figure 8.19: Posterior distributions of the individual components of η for different number
of estimated parameters (d = 3 d = 4 d = 5).

0.4 0.5 0.6 0.7 0.8 0.9 1.0
×10−8

0.0

0.5

1.0

1.5

2.0

2.5

3.0
×108

0.4 0.5 0.6 0.7 0.8 0.9 1.0
×10−1

0.0

0.5

1.0

1.5

2.0

2.5

3.0
×101

0.75 1.00 1.25 1.50 1.75 2.00 2.25
×10−1

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
×101

Figure 8.20: Posterior distributions of the diagonal components of Σ for different number
of estimated parameters (d = 3 d = 4 d = 5).

The results for η and Σ are displayed on Figure 8.19 and Figure 8.20. Increasing d does not seem to signific-

antly impact their estimation. Only the posterior distribution for Σ33 in the case of d = 5 is slightly worse

compared to the cases d ∈ {3, 4}.

Again, real differences appear in the estimation of the population precision. The Markov chains are shown

on Figure 8.21. The convergence of the chains slows down with increasing d’s. Since:

β⋆ = β +
1

2

N∑
i=1

(yi − hi(θi))
TΩ−1

i (yi − hi(θi)), (8.22)

as the number of estimated parameters increases, the dimension of the state space implies slower convergence

of the hi(θi) towards the observations. A summary of the estimates of the individual parameters for the

different cases is given in Table 8.5. Not only the mean relative errors on each individual parameters e, µ1

and µ2 indeed increases with d, but the addition of the other parameters σ1 and σ2, whose mean relative

errors are higher than for the first three estimated parameters, also contributes to a slower exploration of the

state space, and hence a slower convergence for τ .

Previously, for ill-chosen prior distributions, it was still possible to accelerate the convergence of the chains

by choosing more appropriate priors for the model parameters. There is no such obvious solution in the case

of increasing dimension of the problem, which might be more problematic.

192 Chapter 8. Estimation within population models: application

0.0 0.2 0.4 0.6 0.8 1.0
×105

0.0

0.2

0.4

0.6

0.8

1.0

×102

0.4 0.5 0.6 0.7 0.8 0.9 1.0
×102

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

×10−1

Figure 8.21: Posterior distribution (left) and Markov chains (right) of the precision τ for
different number of parameters (d = 3 d = 4 d = 5).

d = 3 d = 4 d = 5

Ei (δ
e) 2.009 · 10−03 3.060 · 10−03 5.970 · 10−03

Ei (δ
µ1) 6.296 · 10−04 2.579 · 10−03 5.328 · 10−03

Ei (δ
µ2) 3.399 · 10−04 4.407 · 10−04 6.841 · 10−03

Ei (δ
σ1) ◦ 1.144 · 10−02 1.649 · 10−02

Ei (δ
σ2) ◦ ◦ 1.755 · 10−02

Table 8.5: Average of the relative errors δ for all individual parameters (θi)i∈J1,NK.

8.2 Real data

8.2.1 Estimation on 24 individuals

Now that the estimation procedure has been detailed and shown to provide good estimates for both the

individual and population parameters on synthetic data, we are going to apply it to real ones. Several key

differences must be noted. Obviously, the true values for the parameters and the hidden states are not known

anymore. Additionally, the experimental data sets obtained should be noisier than the simulated data for

several reasons. First and foremost, the actual growth of Arabidopsis thaliana individuals does not follow exactly

the dynamics of the GreenLab model. Second, the image analysis algorithm designed in Chapter 7 is suffused

with additional noise that is hard to estimate: if the results in the case of the four individuals where manually

extracted data was available proved excellent, this does not suffice for a generalization of the observation noise

model, and as a matter of fact, our algorithm failed for some individuals out of the 64.

Chapter 8. Estimation within population models: application 193

We therefore expect the individual observations to be noisier than before. On top of that, the number of

observations will be less than previously. If we had considered that the areas of all leaves were observed at all

times, this is not the case anymore. When the total number of observations was ntot = 3264 earlier, it will

now only be ntot = 1975 for the same number of individuals N = 24, i.e. 1.65 times less. The data sets that

we used is the one described in Section 7.6.

We recall from Section 7.6 that the 64 individuals were divided into 4 categories as a result of the image

analysis procedure:

■ Category 1: the algorithm worked very well and all the data obtained for each leaf have reasonable and

sensible values, there is no need at all to discard data from the individuals of this category. It comprises

24 individuals;

■ Category 2: the algorithm worked well but there are a few (between 1 and 4) absurd observations

among all possible data obtained for the different leaves: for instance, the last data for the 6th and

7th leaves might be way too large because segments have been wrongly allocated to these leaves on a

particular day. These data could be filtered out but could also be kept without having much influence

on the whole estimation as they represent a small percentage of all the data for a given individual. This

category comprises 14 individuals;

■ Category 3: the algorithm worked well for the major part but some leaves (between 1 and 4) among

the 6th, 7th, 8th, 9th and 10th leaves are badly segmented and need to be removed entirely. This

category comprises 10 individuals;

■ Category 4: finally, there are individuals for which the algorithm simply failed, whether it be due to

several plants growing together, pot rotations or a misdetection of the first occurrence of the 5th leaf.

This category comprises 16 individuals.

Among the 64 individuals on which we run our image analysis algorithm, only those 24 individuals from

Category 1 were retained for a first estimation procedure. Indeed, we decided to adopt a cautious approach

where first calibrations would be based on the cleanest data possible.

We chose to estimate as many parameters as was possible, which would allow for more individual freedom

and to assess if some model parameters can be considered constant throughout the population based on the

posterior distribution of their population variables, notably that of the covariance matrix Σ. Because of the

technical difficulty inherent to the estimation of the phyllochron ϕ, which drives the appearance of the leaves,

we decided to assess its value individually by averaging the rate of appearance of the leaves for each individual.

The other parameters that were considered fixed were µ, s and k, the first two for identifiability reasons, and

the last one because it is considered constant and well known from biological knowledge. The estimated

parameters were therefore chosen to be:

θ = (e, µ1, σ1, µ2, σ2, ρ2, q
0). (8.23)

Despite the differences with the case of simulated data, the estimation strategy remains the same as before:

194 Chapter 8. Estimation within population models: application

■ we start by calibrating the individual parameters by running a GLS algorithm for each individual,

■ the prior distributions of the population mean and covariance matrix are initialized in the same way

by using these GLS estimates,

■ the core implementation of the algorithm respects the same principles as those described in Section

8.1.3.

It appeared that the Markov chains – in particular for the individual parameters and for the population mean

vector – had not converged for a total number of iterations ofM = 100, 000. We therefore ran the algorithm

for M = 500, 000 iterations, for which all the different chains had reached their stationary distribution. The

burn-in period was taken to be B = 250, 000 to ensure that all transitional values were discarded.

On Figure 8.22, we displayed for the 24 individuals the experimental data sets vs. the results of the GreenLab

model simulation using the estimated individual parameters. The individuals are ranked from top to bottom

and from left to right. The 10th individual therefore appears in the third row and second column. For all

the individuals, the leaf area curves are rather well estimated and the orders of magnitude for the different

individuals are well respected: when the 9th individual had leaf areas as high as 1.75 cm at the end of the

growth, the 11th individual struggled at 1.00 cm, and the growth curves simulated using the estimated

individual parameters follow this trend. This is true not only for the values that the growth curves reach,

but also for the rate of appearance of the different leaves: for instance, the 17th individual has its 15th leaf

emerged by the end of the simulation, whereas the 10th individual only has 12 leaves emerged.

The estimation of the individual parameters hence allows to reproduce the diversity of the growth dynamics

of the whole population. However, the dynamics of some leaves are not captured as well as for some others.

For the majority of the individuals, the simulated growth curves of the 3rd and 4th leaves plateau rather

rapidly, starting from around t = 125h, whereas the data obtained from image analysis suggest that even if

the growth of these leaves start to decrease around this time as well, they do not reach a limit for all that.

In order to figure out how the individual estimates perform for each leaf, we computed the different modelling

efficiencies summarized in Table 8.7. The modelling efficiencies for the first two leaves are surprisingly not

very good (they are actually the leaves for which it is worse): their average leaf areas being much smaller than

those of the other leaves, it was hardly discernible that their estimates were not very good from the graphs of

Figure 8.22. These mixed results indicate that the dynamics of the first stages of the model could be refined,

since the first two leaves are the less inclined to be affected with image analysis noise: they are indeed easily

segmented given the simple architecture of the plant on the first images. The modelling efficiencies of the 3rd

and 4th leaves are better than for the 1st and 2nd leaves but not optimal yet, with values around 0.73. This

was expected as said before, the main problem probably being the dynamic constraints imposed upon the

growth of these leaves by the GreenLab model via the demand functions. Optimizing the values of the model

parameters ruling the log-normal demand functions does not seem to be enough for a perfect adequation

with experimental data. The leaves of second rank (v > 4) exhibit modelling efficiencies much better than

their counterparts of first rank, with values always higher than 0.8 and two of them very close to 0.9. Overall,

these results remain encouraging as one might need to bring some improvements to the early stages of growth,

Chapter 8. Estimation within population models: application 195

0 25 50 75 100 125 150 175

Time (h)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Le
af
 A
re
a
(c
m

2)

0 25 50 75 100 125 150 175

Time (h)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Le
af
 A
re
a
(c
m

2)

0 25 50 75 100 125 150 175

Time (h)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Le
af
 A
re
a
(c
m

2)

0 25 50 75 100 125 150 175

Time (h)

0.0

0.2

0.4

0.6

0.8

1.0

Le
af
 A
re
a
(c
m

2)

0 25 50 75 100 125 150 175

Time (h)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Le
af
 A
re
a
(c
m

2)

0 25 50 75 100 125 150 175

Time (h)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Le
af
 A
re
a
(c
m

2)

0 25 50 75 100 125 150 175

Time (h)

0.0

0.2

0.4

0.6

0.8

1.0

Le
af
 A
re
a
(c
m

2)

0 25 50 75 100 125 150 175

Time (h)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Le
af
 A
re
a
(c
m

2)

0 25 50 75 100 125 150 175

Time (h)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Le
af
 A
re
a
(c
m

2)

0 25 50 75 100 125 150 175

Time (h)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Le
af
 A
re
a
(c
m

2)

0 25 50 75 100 125 150 175

Time (h)

0.0

0.2

0.4

0.6

0.8

1.0

Le
af
 A
re
a
(c
m

2)
0 25 50 75 100 125 150 175

Time (h)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Le
af
 A
re
a
(c
m

2)

0 25 50 75 100 125 150 175

Time (h)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Le
af
 A
re
a
(c
m

2)

0 25 50 75 100 125 150 175

Time (h)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Le
af
 A
re
a
(c
m

2)

0 25 50 75 100 125 150 175

Time (h)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Le
af
 A
re
a
(c
m

2)

0 25 50 75 100 125 150 175

Time (h)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Le
af
 A
re
a
(c
m

2)

0 25 50 75 100 125 150 175

Time (h)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Le
af
 A
re
a
(c
m

2)

0 25 50 75 100 125 150 175

Time (h)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Le
af
 A
re
a
(c
m

2)

0 25 50 75 100 125 150 175

Time (h)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Le
af
 A
re
a
(c
m

2)

0 25 50 75 100 125 150 175

Time (h)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75
Le

af
 A
re
a
(c
m

2)

0 25 50 75 100 125 150 175

Time (h)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Le
af
 A
re
a
(c
m

2)

0 25 50 75 100 125 150 175

Time (h)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Le
af
 A
re
a
(c
m

2)

0 25 50 75 100 125 150 175

Time (h)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Le
af
 A
re
a
(c
m

2)

0 25 50 75 100 125 150 175

Time (h)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Le
af
 A
re
a
(c
m

2)

Figure 8.22: Experimental data (filled circles) obtained via image analysis vs. results of the
predictions obtained by simulation of the model with the individual parameters θi inferred

from Bayesian hierarchical estimation.

notably to biomass initiation and the allocation of biomass to the leaves of first rank. In particular, other

demand functions could be proposed. We recall that the original Beta functions of the GreenLab model were

not used in this study since they necessitate a time scaling parameter that was not easily available here.

The posterior distributions for η and Σ are displayed in blue on Figure 8.24 and look very much alike:

the posterior distributions of the components of η corresponding to normal distributions and those for the

diagonal components of Σ to Wishart ones. The mean and standard deviation for each of these posterior

distributions were computed and are summarized in Table 8.6.

As far as the population precision is concerned, its chain rapidly converged to its stationary distribution.

196 Chapter 8. Estimation within population models: application

θ1 θ2 θ3 θ4 θ5 θ6 θ7

E(ηi) 1.672 · 10−03 4.262 · 10+00 4.127 · 10−01 5.464 · 10+00 4.336 · 10−01 2.389 · 10−02 7.392 · 10−05

σ(ηi) 1.608 · 10−05 2.102 · 10−02 9.355 · 10−03 3.968 · 10−02 1.665 · 10−02 2.703 · 10−03 2.503 · 10−06

E(Σii) 3.484 · 10−09 6.834 · 10−03 1.660 · 10−03 2.567 · 10−02 4.796 · 10−03 1.839 · 10−04 9.473 · 10−11

σ(Σii) 1.220 · 10−09 2.254 · 10−03 5.489 · 10−04 8.661 · 10−03 1.645 · 10−03 6.139 · 10−05 3.194 · 10−11

E(Σii)/E(ηi) 3.530 · 10−02 1.940 · 10−02 9.872 · 10−02 2.932 · 10−02 1.597 · 10−01 5.676 · 10−01 1.317 · 10−01

Table 8.6: Mean and standard deviation of the posterior distributions for each component
of the population mean vector η.

Leaf 1 Leaf 2 Leaf 3 Leaf 4 Leaf 5 Leaf 6 Leaf 7 Leaf 8

EF 2.487 · 10−01 3.722 · 10−01 7.304 · 10−01 7.349 · 10−01 8.941 · 10−01 8.331 · 10−01 8.929 · 10−01 8.273 · 10−01

Table 8.7: Modelling efficiency computed over the 24 individuals for each leaf.

This is encouraging in the sense that this case does not exhibit the problematic behaviours that were wit-

nessed in the case of ill-chosen prior distributions or with an increasing number of parameters. The estim-

ated precision was E(τ) = 5.378, which corresponds to an observation noise with standard deviation of

E(σ) = 1/
√
E(τ) = 0.431. If this value might seem high at first glance, one has to remember the two main

sources of uncertainty involved: first, the image analysis algorithm might have yielded data noisier than expec-

ted considering the preliminary results obtained on 4 individuals; second, the GreenLab model and notably

the allocation process, specifically for the leaves of first rank, could probably be refined to allow for a better

dynamics of the growth curves and a softer difference between the experimental data and the simulated states

obtained from the individual parameters.

8.2.2 Integration of other individuals

This first procedure provides estimates for the population parameters η, Σ and τ , which can further be used

as prior information for the estimation of a second batch of individuals. This second batch comprises the

individuals from Categories 2 and 3. These individuals indeed provide data that is either in reduced quantity

or of lesser quality.

There are several reasons for splitting the entire data set of 48 individuals (comprising the 24 individuals

from Category 1, the 14 individuals from Category 2 and the 10 individuals from Category 3) into two

distinct data sets for the estimation. First, considering the 48 individuals altogether would yield an estimate

for the population precision that is lower than for the 24 individuals, and that is most probably due to the

additional uncertainty introduced by the image analysis algorithm. Yet, estimating the precision using only

the best individuals available does not prevent to incorporate the data that those from Categories 2 and 3

yield by performing a new estimation by fixing the precision to its estimated value and by setting the prior

distributions of the population mean and covariance matrix to their posterior distributions obtained using

the individuals from Category 1.

Chapter 8. Estimation within population models: application 197

0 25 50 75 100 125 150 175

Time (h)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Le
af
 A
re
a
(c
m

2)

0 25 50 75 100 125 150 175

Time (h)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Le
af
 A
re
a
(c
m

2)

Figure 8.23: Example of model calibration for one particular individual of Category 3 ob-
tained via GLS (left) or after Bayesian hierarchical estimation (right). The GLS highly overfit

the data whereas the population approach provides a good compromise.

Furthermore, for individuals from Categories 2 and 3, the Markov chains for the individual parameters

are also initialized from the population distribution θi ∼ N (η(1),Σ(1)) where η(1) and Σ(1) are the mean

estimates of the posterior distributions obtained at the end of the first estimation procedure. For individuals

of Categories 2 and 3, we indeed noticed that the GLS estimates were likely to highly overfit the model because

of the data of lesser quality, whereas the population distribution would provide a reasonable compromise and

fit of the model. This effect is illustrated on Figure 8.23 for an individual of Category 3.

In a nutshell, this two-step procedure allows the integration of more individuals in the pool of data, as it has

the advantages of providing a more reasonable estimate for the population precision and more sensible initial

values for individuals where a GLS procedure could fail.

198 Chapter 8. Estimation within population models: application

1.64 1.66 1.68 1.70
×10−3

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

×104

0.2 0.4 0.6 0.8 1.0 1.2
×10−8

0

1

2

3

4

×108

4.20 4.22 4.24 4.26 4.28 4.30 4.32
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
×101

0.5 1.0 1.5 2.0 2.5 3.0 3.5
×10−1

0.0

0.5

1.0

1.5

2.0

×102

3.9 4.0 4.1 4.2 4.3 4.4
×10−1

0

1

2

3

4

5
×101

1 2 3 4 5
×10−2

0.0

0.2

0.4

0.6

0.8

×103

5.35 5.40 5.45 5.50 5.55
0.0

0.2

0.4

0.6

0.8

1.0

×101

0.5 1.0 1.5 2.0 2.5 3.0 3.5
0

1

2

3

4

5

6
×101

4.0 4.2 4.4 4.6 4.8
×10−1

0.0

0.5

1.0

1.5

2.0

2.5

×101

0.5 1.0 1.5 2.0 2.5 3.0 3.5
×10−1

0.0

0.5

1.0

1.5

2.0

2.5

3.0

×102

1.75 2.00 2.25 2.50 2.75 3.00
×10−2

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

×102

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
×10−3

0.0

0.2

0.4

0.6

0.8

×104

6.75 7.00 7.25 7.50 7.75 8.00
×10−5

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
×105

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
×10−10

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
×1010

Figure 8.24: Posterior distributions of the components of the population mean vector η
(left) and the diagonal components of the population covariance matrix Σ (right) after the
first estimation run using individuals from Category 1 (blue) and the second estimation run

with the integration of individuals from Categories 2 and 3 (red).

Discussion and perspectives

We endeavoured in this thesis to address different issues regarding the calibration of plant growth models in

several situations, notably both in the case of single individuals and for populations of plants. Some elements

of this work tried to shed some light on these questions but do not always constitute a definite answer, and

sometimes raise new questions in return. In this last chapter, we summarize the different contributions of

this work, which includes statistical analysis of plant growth models but also the necessary detours via topics

such as computer science and programming or image analysis in order to obtain either the tools or data for

our applications. We then move on to possible ways of improvements as well as topics that have not been

addressed in this work but that constitute natural extensions.

Contributions and results

Design of plant growth models

The formulation of plant growth models as general state space models is a necessary preliminary step for the

estimation of the parameters of these models. In particular, the presence of process and observation noises

required to carefully formulate the expressions of the transition and observation probability density functions,

which in turn allowed us to design generic algorithms for parameter and state inference. If the introduction

of additional quantities for the deterministic and stochastic variables representing the same value, affected by

either process or observation noise, might be considered redundant at first sight, it does not in fact complicate

the model very much, and allows a generic formulation for all the models under study as far as the transition

and observation probability density functions are concerned. The quantities in question can perfectly be

multidimensional so that it is possible to design complex noise models. Population models were designed

within the same framework where the dynamics of several individuals is driven by the same general state

space model with different values of parameters.

In this computational framework, we designed the plant growth models on which rely our application test

cases for three different species. The first one concerns sugar beet and had already been proposed by Cournède

et al. [2013]. We rewrote it in a slightly novel manner by introducing deterministic and stochastic values for

the produced biomass and the allocation coefficient that involve process noise and derived the corresponding

transition and observation probability density functions.

201

202 Discussion and perspectives

The principles of the LNAS model for sugar beet served as a basis for the design of an equivalent model for

wheat. Log-normal distributions were again used for the parameterization of the allocation and senescence

processes. The model is more complex than in the case of sugar beet, even though one would like to keep the

number of model parameters as low as possible for an easier identifiability, and this is due to two reasons:

■ first, it involves more compartments: when there are only two compartments in sugar beet, (roots,

green leaves, senescent leaves), there are five compartments in wheat (roots, green leaves, yellow leaves,

senescent leaves, stem and grain) because of its more complex structure. It therefore necessarily re-

quires more parameters to describe the biological processes of interaction between the different com-

partments;

■ second, the plant model is coupled to a soil model that is necessary for a proper modelling of the root

system and to take into account hydric stress. This also complexified the model and increased the

number of parameters significantly.

This model was designed with the final objective of predicting yield of wheat in different hydric conditions.

Finally, we also designed a new model for Arabidopsis thaliana. It was inspired by the GreenLab model approach

that models the plant at the scale of the organ. The leaves are therefore not considered as a single compartment

but the growth of each leaf is modelled individually and each organ has its own biomass demand function.

The latter were parameterized with log-normal functions again, as they proved particularly suitable in the

case of sugar beet and do not necessitate the tedious measurements of expansion durations as in the original

GreenLab model [Jullien et al., 2010]. The motivation behind this organ-scale model was to make use of data

potentially available for each leaf, thus summarizing information on the whole history of the functioning of

the plant for a better characterization than if only the total leaf area was considered.

Bayesian inference in general state space models

If the final objective of this work was to study the variability within a population of plants, the use of these

newly designed plant growth models was considered first in the case of a single individual. Adopting a

Bayesian perspective, we investigated different methods for parameter and state inference, which could be

separated in two main families, the Markov chain Monte Carlo (MCMC) and sequential Monte Carlo (SMC)

methods. Particle Markov chain Monte Carlo (PMCMC) algorithms, combining the advantages of the two,

were also considered for an accurate estimation of hidden states.

Motivated by the necessity to efficiently simulate potentially complex and heavy models as well as using

estimation methods, we designed an entire computing platform for statistical modelling and inference, AD-

JUSTIN’, written in Julia, which proves an excellent choice for the task because of its speed (competing with

statically compiled languages such as C++), syntax, expressiveness and metaprogramming capabilities. It is

based on the mathematical framework of general state space models, models are easy to design and require

very few lines of code as most operations are handled by the simulation core and because we took advantage

of Julia’s capabilities for code generation. One of the main advantages of having designed our own platform

Discussion and perspectives 203

lies in the possibility to explore diverse strategies for the different algorithms such as the resampling scheme

of filters or the adaptive schemes in MCMC algorithms. Most of the algorithms have been parallelized for

efficient applications. This platform aims to be a unifying tool for most of the applications of interest in

this work (and more globally in the Biomathematics team), which include model design, sensitivity analysis,

parameter and state estimation, uncertainty analysis and data assimilation. It has already been reused by

other members of the team (whether they be researchers or Ph.D. students) and should provide them with

the adequate modelling and computing framework needed for their work and become a durable research

tool.

ADJUSTIN’ being designed, we were able to explore some case studies for the different plant growth models

considered in this work. Notably, we examined the use of the regularized particle filters (RPFs) for data

assimilation using the newly design LNAS model for wheat. Since real data was not available yet, we worked

with simulated data. It was shown that data assimilation with the RPF works very well even in the case of

a few observations (which is probably going to be the case in practice). It also works rather well when the

observation noise is important (i.e. when the measurements on the plant are very noisy) or when the prior

distributions assigned to the model parameters are not well prescribed. In all cases, it represents a significant

improvement compared to straight prediction with uncertainty analysis.

Another case study concerned the estimation of hidden states in the LNAS model for sugar beet, which in-

volves both process and observation noises, where we compared the relevance of using different SMC meth-

ods within a particle marginal Metropolis–Hastings (PMMH) sampler for an accurate yet efficient inference.

Three filters, namely the unscented Kalman filter (UKF), two ensemble Kalman filters and two regularized

particle filters (with a different number of particles) were considered. Despite its relatively low number of

particles, UKF performed well (slightly better than the other filters on one of the estimated states, slightly

worse on some other). Its strength lies in the very low computing time and memory it requires (because of its

low number of particles), and it appears to be a promising strategy for the estimation of hidden states in com-

plex models that are time-consuming to simulate. When dealing with systems where the observation noise is

much more important than the process noise, the former can be accurately estimated, whereas estimation of

the process noise seems more problematic, mainly because it is drown in the higher values of the observation

noises. Still, this has little impact on the posterior distributions of the model parameters, which remains our

main concern.

Study of genotypic variability in a population of plants

The study of genotypic differentiation was considered through the use of Bayesian hierarchical models, where

a Gibbs sampler coupled to individual adaptive schemes was used for the estimation of both individual and

population parameters. Evidencing the variability within a population of plants required the acquisition of

data for many individual plants. This could be achieved thanks to the Phenoscope platform of INRA Versailles

[Tisné et al., 2013] which provided us with time series of zenithal images of Arabidopsis thaliana over 21 days

for many individuals. On 4 individuals, we manually extracted data for key variables from each leaf, namely

204 Discussion and perspectives

their orientation, distance from the mass centre of the plant and area. They allowed us to better understand

the growth dynamics of this species. We designed a two-step segmentation method in order to estimate the

areas of the different leaves on each day of the time series. The history of each leaf was reconstructed thanks

to a tracking step that took advantage of the specificities of Arabidopsis thaliana’s growth highlighted from

data analysis. The performance of the algorithm was illustrated on these 4 individuals for which manually

acquired data was available and it showed that our algorithm yielded numerous and very precise data. This

algorithm was then applied to 64 individuals, providing the data necessary for the application of the Gibbs

sampler designed for population models.

Bayesian hierarchical modelling was finally studied specifically in the case of the GreenLab model. Simulated

data was first used in order to apprehend the behaviour of the estimation procedure for populations of plants.

We studied how different variables of the context of the case study can influence the results of this estimation.

Notably, how the number of individuals in the population helps refining the posterior distributions on the

population parameters, the issues related to the bias for the estimation of the population precision and how

the parameters of its prior distribution can be tuned. Furthermore, we highlighted how the slow convergence

of the Markov chains for the precision is an indicator of ill-chosen prior distributions for the population mean

and how the problem dimension affects the speed of convergence of the chains.

These studies were of great value in order to correctly apprehend the estimation of real data. The latter,

obtained from image analysis, were used for the estimation of individual and population parameters within

a two-step Bayesian procedure. The 24 best individuals served during a first phase for the estimation of the

related individual parameters and the population parameters, and the inferred posterior distributions were

then used as prior information for the estimation of 24 other individuals for which data were of lesser quality.

Perspectives

The different applications considered in this work suggested that there is still room for improvement in several

respects.

Plant growth models

First, the GreenLab model for Arabidopsis thaliana could be refined for a better fit with experimental data.

Model calibration, whether it be in the context of single individuals using generalized least squares or using

Bayesian hierarchical models for a population of plants, highlighted the slight inadequacy between the res-

ulting model simulation and experimental data for the late dynamics of the third and fourth leaves. Their

growth curves reach limits too abruptly, which means that when the leaves of the second kind start to appear,

too much biomass is allocated to them. The solution to this problem is not straightforward though, as we

have already tried different functions to parameterize the demands of the different leaves, and the log-normal

distributions used in this thesis remain the best compromise.

Discussion and perspectives 205

Data assimilation using the RPF has proved to enhance significantly model predictions for the different

variables of interest. Nevertheless, its efficiency should be tested and confirmed on real data, for divergences

between the LNAS model and the actual dynamics of the real plant might render the task more complicated.

Ideally, one would need (at least) two real data sets: the first one would serve for an initial model calibration,

and the second one for data assimilation, where only the early measurements in the second data set are used

for data assimilation and the late ones for comparison with the corrected model predictions.

Computing platform

Some improvements can also be brought to the ADJUSTIN’ platform, mainly from a computing point of

view. Even though the efficience of the Julia language combined to an efficient parallelization of most of the

algorithms using the MPI standard has led to very low computing times, the latter could further be improved

if the algorithms were designed using graphics processing units (GPU). There are several Julia packages avail-

able¹ to do so and computations could be launched on the GPU nodes of CentraleSupélec’s computing cluster.

In particular, very recent developments have led to the delivery of the CUDAnative package², which allows

to write CUDA kernels directly in Julia in order to take advantage of its high-level language features with

high GPU performance which compares to the CUDA C implementation (a slight overhead still exist be-

cause of argument passing). The transposition of all our algorithms to a GPU implementation should benefit

from these aspects and not require the high development time that would be needed in C. One must remain

careful however, as this is a relatively new implementation that still might contain its share of unexpected

behaviours.

The development of very efficient GPU algorithms would be particularly interesting for cumbersome estim-

ation methods in the case of complex models that require a lot of time to simulate, as can be the case for

data assimilation using the LNAS model for wheat, or when applying PMCMC methods even to simple

models. This would be all the more relevant for the population framework as the number of individuals in

the population increases. If sufficient data becomes available in the future, ideally hundreds of individuals,

the overall computing time for estimation within the population might become unsustainably high. Further-

more, as is emphasized at the end of this section, the use of mixture models adds an additional complexity

which would further increase the computing time required for such applications. All these reasons call for

the consideration of GPU implementations in ADJUSTIN’.

Image analysis

As previously mentioned, some technical difficulties related to image analysis should be solved for better

automation of the method. This includes potentially large rotations of the pots and dealing with two plants

growing side by side during the first days. However, these issues concerned only a fraction of all the individuals

and remain anecdotal. The most crucial problem that needs to be addressed is that of the detection of the

¹https://github.com/JuliaGPU
²https://github.com/JuliaGPU/CUDAnative.jl

206 Discussion and perspectives

5th leaf: if this step fails, then chances are that data will only be available for the first four leaves. This

already represents an important source of information but we fail to take advantage of observations on the

system crucial for the estimation of model parameters intervening in the late growth stages, such as those

parameterizing the demand functions for the leaves of the second kind. A current solution to this issue is to

specify, for the problematic individuals, the day of emergence of the 5th leaf, and potentially its direction. We

would like to free ourselves from this semi-automatic procedure with the prospect of applying this algorithm

to possibly hundreds of individuals in a perfectly automatic way.

Bayesian hierarchical models for genotypic differentiation

In hierarchical population models, an interesting issue is to separate the fixed effects from the random effects

in the model, that is to say the parameters that can be considered constant in the population from those that

vary among individuals. The posterior distributions for the population parameters η and Σ constitute a first

assessment of whether some model parameters can be considered constant throughout the population. More

rigourous conclusions require the use of hypothesis testing. This issue has been recently tackled by Baey et al.

[2017] in a frequentist approach when parameters are estimated with maximum likelihood. It would be

interesting to see how to handle this issue in the Bayesian framework.

The choice of prior distributions for the population parameters also requires more insight. Notably, the

hyperparameters of the Wishart distribution for the inverse covariance matrix could be set differently; several

choices were discussed in [Bouriga and Féron, 2013]. Furthermore, a number of limitations related to the

prescription of inverse Wishart prior distributions have recently been illustrated (lack of flexibility for the

different matrix components’ uncertainty, dependency between the correlations and the variances) [Alvarez

et al., 2014] and some other approaches, such as a hierarchical Half-t prior or a separation strategy based on

the works of Barnard et al. [2000], should be investigated.

As far as MCMC methods are concerned, whether it be for the case of a single individual or a population, more

efficient approaches should be studied, notably the use of Metropolis adjusted Langevin algorithm (MALA)

[Roberts and Rosenthal, 1998] or Hamiltonian Monte Carlo (HMC) [Duane et al., 1987] [Betancourt,

2017] for optimized state space exploration. Such procedures become all the more interesting as the problem

dimension increases. First attempts to combine HMC with hierarchical models has been done in [Girolami

and Betancourt, 2015].

Towards mixture models

This work paves the way for the use of mixture models for genotypic differentiation in plant populations. The

need for the use of mixture models emerges rather naturally when one expects that homogeneous subgroups

or clusters are present in a population. They have become useful tools in many research areas such as genetic

and medical research [Lewin et al., 2007], [White et al., 2012], ecology [Joseph et al., 2009] or image analysis

[Layer et al., 2015] just to name a few examples.

Discussion and perspectives 207

So far, the individual parameters (θi)i∈J1,NK were assumed to be sampled from a normal distribution with

mean η and covariance matrix Σ. When studying a population of plants with different genotypes, this

assumption might be insufficient as the parameters related to different genotypes may belong to different

clusters. They are therefore better represented by a mixture of distributions θi ∼
∑K

k=1 wkDk where K is

the number of distributions considered and w = (wk)k∈J1,KK are the weights associated to each distribution

and such that
∑

k wk = 1. Usually, the distributions are chosen to be Gaussian with respective mean and

covariance ηk and Σk. The mathematical framework introduced in Chapter 4 can therefore be generalized as

follows:

First stage: yi ∼ N (hi(θi), τ
−1Ωi)

Second stage: θi ∼
∑K

k=1 wk N (ηk,Σk)

ηk ∼ N (λk,Λk)

Third stage:
Σ−1

k ∼ W(qk,Ψk)

τ ∼ G(α, β)

w ∼ D(γ)

(8.24)

where D designates the Dirichlet distribution, indexed by γ = (γk)k∈J1,KK, which is the conjugate prior for

the multinomial distribution. The analysis of this mixture model now involves the calculation of the posterior

distribution:

p(w1:K , η1:K ,Σ1:K , τ |y1:N). (8.25)

The introduction of latent variables z1:N indicating to which distributions a parameter belongs allows to

rewrite the problem in a more convenient form:
θi ∼ N (ηzi ,Σzi)

zi ∼ C(w)

w ∼ D(γ)

(8.26)

where C designates the categorical distribution. Just as described in Chapter 4, it is possible to calculate the

full conditional distributions of all these random variables but the individual parameters (θi)i∈J1,NK. The

full conditional distribution of each of the ηk, Σk, τ and w belongs to the same family of distribution as

their prior with updated hyperparameters whose expression can be found, for instance, in [Tatarinova and

Schumitzky, 2015] and a Gibbs sampler can again be used for parameter inference.

With a number of components K > 1, new issues emerge [Havre et al., 2015], such as assessing the optimal

number of components, label switching and trapping. It has been shown (see [Celeux et al., 2000] for

instance) that even though the Gibbs sampler is supposed to converge in theory, since the MCMC chain is

irreducible and should explore all the regions of the posterior distribution, this is seldom the case in practice as

it gets stuck in one of the K! modes and escaping from this mode might require a huge number of iterations.

This effect is even more pronounced when one of the components has very few observations [Gilks et al.,

1996] or when non-informative priors are used. Several methods have been designed to ensure proper mixing

208 Discussion and perspectives

in such multimodal situations such as parallel tempering [Earl and Deem, 2005].

Label switching arises because of the permutation invariance of the likelihood under relabelling of the mix-

ture components [Stephens, 2000]. This has the following important consequence: the marginal posterior

distributions of the parameters, weights and labels for the different components are identical, which can lead

to highly symmetric and multimodal posterior distributions. Paradoxically, label switching is necessary for

the convergence of the MCMC algorithm as it should ideally visit all theK! symmetric modes of the posterior

distribution. However, the standard Gibbs sampler may fail to visit all the modes, in particular when they

are well separated, and becomes trapped in one of them. Several solutions have been proposed to resolve this

problem, such as random permutations of the labels [Richardson and Green, 1997], [Frühwirth-Schnatter,

2006], minimizing a loss function [Nobile and Fearnside, 2007], [Grün and Leisch, 2009] or probabilistic

relabelling [Yao, 2012].

Finally, assessing the optimal number of components K is essential for mixture models [Marin et al., 2005].

It might be achieved based on the reductive stepwise method [Sahu and Cheng, 2003] where K is iteratively

reduced, by collapsing two of the K components at each iteration until data fitting is no longer satisfying,

which can be assessed using a weighted Kullback–Leibler distance between two iterations [Tatarinova and

Schumitzky, 2015], or Dirichlet process mixtures [Koutroumpas et al., 2016] that automatically select the

best number of components.

Final remarks

This thesis represents an original attempt to a full Bayesian approach to analyze the intergenotypic or interin-

dividual variability in populations of plants, which is achieved by using mechanistic models of plant growth.

We believe that the Bayesian approach is the most relevant to study biological systems for which experimental

knowledge is usually available and can be used to define adequate priors. Furthermore, the Bayesian approach

allows a strict representation of estimation uncertainty which can be later used to properly master risk in the

decision theory framework [Robert, 2007]. Finally, the potential applications of this research, which lies at

the crossroads of several disciplines, are of different kinds.

The first one still derives from our Bayesian perspective: having identified the population parameters, when

studying a new genotype (for example in breeding), the calibration process is simplified and the accuracy

increased by incorporating the knowledge previously acquired on the population distribution into the prior.

This fact was exemplified in our study when we used a two-step procedure by first using the best data to es-

timate the population distribution for 24 individuals and then use this distribution with 24 other individuals

for which data were of lesser quality.

The second application concerns genetic improvement: by comparing the variability of parameters in a pop-

ulation, we are able to select the parameters for which there is more potential for improvement. Likewise, the

knowledge of the full distributions also helps in the design of ideotypes by providing a better representation

of the space to explore.

Discussion and perspectives 209

Last but not least, mixture models could help identify several subfamilies. As a consequence, we may for

instance be able to improve phylogenetic knowledge so as to better understand the genetic mutations that have

occurred. An example of such an application would be to identify subfamilies of wild genotypes originating

from different habitats.

Appendix A

Calculation of full conditional distributions

The purpose of this appendix is to provide the details of the calculations leading to the formulas for the update

of the population parameters: the population mean vector η, the population inverse covariance matrix Σ−1

and the population precision τ . We recall that there areN individuals, ni observations for the i-th individual

and that the total number of observations is denoted as ntot and the dimension of the problem (i.e. the

number of estimated parameters) as d. The hierarchical model reads:

First stage: yi ∼ N (hi(θi), τ
−1Ωi)

Second stage: θi ∼ N (η,Σ)

η ∼ p(η)

Third stage: Σ−1 ∼ p(Σ−1)

τ ∼ p(τ)

(A.1)

and the associated joint distribution:

p(y1:N , θ1:N , η,Σ, τ) =

N∏
i=1

p(yi|hi(θi), τ−1Ωi)

N∏
i=1

p(θi|η,Σ) p(η) p(Σ) p(τ). (A.2)

To obtain the full conditional distribution of a given random variable z, it suffices to use Bayes’ formula:

p(z| . . .) = p(. . .)−1p(z, . . .). (A.3)

Collecting all terms involving z in p(z, . . .) will therefore lead to the desired distribution. Appropriate con-

jugate prior distributions must be chosen to retrieve analytical expressions of known distributions.

A.1 Population mean vector

The full conditional distribution of the population mean vector is:

p(η| . . .) ∝η

N∏
i=1

p(θi|η,Σ) p(η) =
N∏
i=1

fN (θi, η,Σ) p(η). (A.4)

211

212 Appendix A. Calculation of full conditional distributions

The appropriate conjugate prior for a multivariate normal distribution with known covariance is a normal

distribution denoted N (λ,Λ), i.e.:

p(η) = fN (λ,Λ)(η) = |2πΛ|− 1
2 exp

(
−1

2
(η − λ)TΛ−1(η − λ)

)
. (A.5)

Then:

p(η| . . .) ∝η

N∏
i=1

p(θi|η,Σ) p(η)

∝η exp

(
−1

2

N∑
i=1

(θi − η)TΣ−1(θi − η) +
1

2
(η − λ)TΛ−1(η − λ)

)

∝η exp

(
−1

2
ηT

(
Σ−1(

N∑
i=1

1) + Λ−1

)
η +

1

2
ηT

(
Σ−1(

N∑
i=1

θi) + Λ−1λ

)

+
1

2

(
Σ−1(

N∑
i=1

θi) + Λ−1λ

)T

η

(A.6)

and since
N∑
i=1

1 = N and defining θ⋆ = N−1

N∑
i=1

θi, Λ⋆ = (NΣ−1 + Λ−1)−1 and λ⋆ such that:

ηT

(
Σ−1(

N∑
i=1

θi) + Λ−1λ

)
= ηTΛ⋆ −1λ⋆ (A.7)

i.e. λ⋆ = Λ⋆(NΣ−1θ⋆ + Λ−1λ), then:

p(η| . . .) ∝η exp
(
−1

2
(η − λ⋆)TΛ⋆ −1(η − λ⋆)

)
(A.8)

which shows that:
η ∼ N (·|λ⋆,Λ⋆),

λ⋆ = (NΣ−1 + Λ−1)−1(NΣ−1θ⋆ + Λ−1λ),

Λ⋆ = (NΣ−1 + Λ−1)−1.

(A.9)

A.2 Population inverse covariance matrix

The full conditional distribution of the population inverse covariance matrix is:

p(Σ| . . .) ∝Σ

N∏
i=1

p(θi|η,Σ) p(Σ) =
N∏
i=1

fN (θi, η,Σ) p(Σ). (A.10)

The appropriate conjugate prior for a multivariate normal distribution with known mean is a Wishart distri-

bution denoted Wd(q,Ψ), i.e.:

p(Σ) = fWd(q,Ψ)(Σ) = 2−
qd
2 |Ψ|−

q
2Γd

(q
2

)−1

|Σ|
q−d−1

2 e−
1
2 tr(Ψ−1Σ). (A.11)

Appendix A. Calculation of full conditional distributions 213

Then:

p(Σ−1| . . .) ∝Σ−1

N∏
i=1

p(θi|η,Σ) p(Σ)

∝Σ−1 |Σ|−N/2 exp

(
−1

2

N∑
i=1

(θi − η)TΣ−1(θi − η)

)

2−
qd
2 |Ψ|−

q
2Γd

(q
2

)−1

|Σ−1|
q−d−1

2 exp
(
−1

2
tr(Ψ−1Σ−1)

)
.

(A.12)

We recall that for a vector x and a matrix M , xTMx = tr(xxTM), hence:

p(Σ−1| . . .) ∝Σ−1 |Σ|−N/2 exp

(
−1

2

N∑
i=1

tr
(
(θi − η)(θi − η)TΣ−1

))

|Σ−1|
q−d−1

2 exp
(
−1

2
tr(Ψ−1Σ−1)

)

∝Σ−1 |Σ−1|
q+N−d−1

2 exp

(
−1

2
tr

((
Ψ−1 +

N∑
i=1

(θi − η)(θi − η)T

)
Σ−1

)) (A.13)

so that:

Σ−1 ∼ W(·|q⋆,Ψ⋆),

q⋆ = q +N,

Ψ⋆ = (Ψ−1 +

N∑
i=1

(θi − η)(θi − η)T)−1.

(A.14)

A.3 Population precision

The full conditional distribution of the population precision is:

p(τ | . . .) ∝τ

N∏
i=1

p(yi|hi(θi), τ−1Ωi) p(τ) =

N∏
i=1

fN (yi, hi(θi), τ
−1Ωi) p(τ). (A.15)

The appropriate conjugate prior for a univariate normal distribution with known mean is a Gamma distribu-

tion denoted G(α, β), i.e.:

p(τ) = fG(α,β)(τ) = τα−1βαΓ(α)−1 exp(−βτ). (A.16)

Then:

p(τ | . . .) ∝τ

N∏
i=1

p(yi|hi(θi), τ−1Ωi) p(τ)

∝τ |τ−1Ωi|−N/2 exp

(
−1

2

N∑
i=1

(yi − hi(θi))
T τΩ−1

i (yi − hi(θi))

)
τα−1βαΓ(α)−1 exp (−βτ)

∝τ τα+
1
2

∑N
i=1 ni−1 exp

(
−

(
β +

1

2

N∑
i=1

(yi − hi(θi))
TΩ−1

i (yi − hi(θi))

)
τ

)

214 Appendix A. Calculation of full conditional distributions

which shows that:

τ ∼ G(·|α⋆, β⋆),

α⋆ = α+ ntot/2,

β⋆ = β +
1

2

N∑
i=1

(yi − hi(θi))
TΩ−1

i (yi − hi(θi)).

(A.17)

Appendix B

LNAS model for sugar beet in ADJUSTIN’

Listing 14 The LNAS model for sugar beet in ADJUSTIN’

type Extern
vec_t::Vector ## vector of temperatures for all days
vec_r::Vector ## vector of radiations for all days

end

type Parameters
q_0::Float64 ## initial biomass
tau_init::Float64 ## initiation thermal time
mu::Float64 ## radiation use efficiency
k::Float64 ## Beer-Lambert coefficient
e::Float64 ## leaf mass per area
gamma_0::Float64 ## initial leaf allocation coefficient
gamma_l::Float64 ## final leaf allocation coefficient
mu_a::Float64 ## allocation median
sigma_a::Float64 ## allocation standard deviation
mu_s::Float64 ## senescence median
sigma_s::Float64 ## senescence standard deviation
tau_s::Float64 ## senescence thermal time delay

end

type State
q_det::Float64 ## deterministic produced biomass
q_sto::Float64 ## stochastic produced biomass
gamma_det::Float64 ## deterministic leaf allocation coefficient
gamma_sto::Float64 ## stochastic leaf allocation coefficient
q_l::Float64 ## leaf biomass
q_gl::Float64 ## green leaf biomass
q_r::Float64 ## root biomass

end

215

216 Appendix B. LNAS model for sugar beet in ADJUSTIN’

type ProcessNoise
q::Noise ## process noise for the production on q
gamma::Noise ## process noise for the allocation on gamma

end

type ObservationNoise
q_gl::Noise ## observation noise for green leaf biomass
q_r::Noise ## observation noise for root biomass

end

function production!(n, xn, u, p, xnplus1)
xnplus1.q_det = u.vec_r[n] * p.mu * (1 - exp(-p.k * xn.q_gl / p.e))

end

here go the other modules

function f(n, xn, u, p, mn)
xnplus1 = State(0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
thermal_time!(n, xn, u, p, xnplus1)
production!(n, xn, u, p, xnplus1)
noise!(xnplus1, mn.q)
allocation!(n, xn, u, p, xnplus1)
noise!(xnplus1, mn.gamma)
senescence!(n, xn, u, p, xnplus1)
update_total_leaf_biomass!(n, xn, u, p, xnplus1)
update_green_leaf_biomass!(n, xn, u, p, xnplus1)
update_root_biomass!(n, xn, u, p, xnplus1)
return xnplus1

end

ofl = [obs_q_gl(x, on) = noise(x, on.q_gl),
obs_q_r(x, on) = noise(x, on.q_r)]

@observation_function()

Appendix C

UKF algorithm in ADJUSTIN’

Listing 15 The UKF algorithm in ADJUSTIN’

function ukf(f, g, x0, u, p, so_exp, cfg; mn = Void, on = Void)

ll_p = get_label_list(cfg.srl_p)
ll_x = get_label_list(cfg.srl_x)
ll_px = [ll_p; ll_x]

so_p_pr_mean = SystemObservation(ll_p; title = "parameters_prediction_mean")
so_p_pr_stdev = SystemObservation(ll_p; title = "parameters_prediction_stdev")
so_p_up_mean = SystemObservation(ll_p; title = "parameters_update_mean")
so_p_up_stdev = SystemObservation(ll_p; title = "parameters_update_stdev")
so_x_pr_mean = SystemObservation(ll_x; title = "states_prediction_mean")
so_x_pr_stdev = SystemObservation(ll_x; title = "states_prediction_stdev")
so_x_up_mean = SystemObservation(ll_x; title = "states_update_mean")
so_x_up_stdev = SystemObservation(ll_x; title = "states_update_stdev")

nbr_p = length(ll_p)
nbr_x = length(ll_x)
nbr_mn = length(fieldnames(mn))
nbr_px = nbr_p + nbr_x
nbr_pxmn = nbr_p + nbr_x + nbr_mn
nbr_particles = 2 * nbr_pxmn + 1

pl = sample(p, cfg.srl_p, nbr_particles)
xl = sample(x0, cfg.srl_x, nbr_particles)
mat_px = to_mat(pl, ll_p, xl, ll_x)
tml = get_merged_timeline(g)

for k = 1:length(tml)

ti, tf = k > 1 ? tml[k-1] : 0, tml[k]
vec_px_mean, mat_px_cov = mean_and_covariance(mat_px)
mat_p_cov = mat_px_cov[1:nbr_p,1:nbr_p]

217

218 Appendix C. UKF algorithm in ADJUSTIN’

vec_p_mean = vec_px_mean[1:nbr_p]
mat_x_cov = mat_px_cov[nbr_p+1:end,nbr_p+1:end]
vec_x_mean = vec_px_mean[nbr_p+1:end]

register!(so_p_pr_mean, ll_p, tf, vec_p_mean)
register!(so_p_pr_stdev, ll_p, tf, sqrt(diag(mat_p_cov)))
register!(so_x_pr_mean, ll_x, tf, vec_x_mean)
register!(so_x_pr_stdev, ll_x, tf, sqrt(diag(mat_x_cov)))

vec_sp_mean = vcat(vec_px_mean, zeros(nbr_mn))
mat_mn_cov = covariance(mn)
mat_sp_cov = cat([1,2], mat_px_cov, mat_mn_cov)
spl, wl_mean, wl_cov = sigma_points_and_weights(vec_sp_mean, mat_sp_cov)
fill_with_subset!(pl, xl, spl, ll_p, ll_x)
sol = next_prediction!(f, g, xl, u, pl, ti; mn = mn, on = on)
mat_px = to_mat(pl, ll_p, xl, ll_x)
mat_y = to_mat(sol)
vec_px_mean, mat_px_cov = weighted_mean_and_covariance(wl_mean, wl_cov, mat_px)
vec_y_mean, mat_y_cov = weighted_mean_and_covariance(wl_mean, wl_cov, mat_y)
mat_pxy_cor = weighted_correlation(wl_mean, wl_cov, mat_px, mat_y)
mat_gain = mat_pxy_cor * inv(mat_y_cov)
vec_y_exp = to_vec(so_exp, tf)
vec_px_mean += mat_gain * (vec_y_exp - vec_y_mean)
mat_px_cov -= mat_gain * mat_y_cov * mat_gain'
mat_p_cov = mat_px_cov[1:nbr_p,1:nbr_p]
vec_p_mean = vec_px_mean[1:nbr_p]
mat_x_cov = mat_px_cov[nbr_p+1:end,nbr_p+1:end]
vec_x_mean = vec_px_mean[nbr_p+1:end]

register!(so_p_up_mean, ll_p, tf, vec_p_mean)
register!(so_p_up_stdev, ll_p, tf, sqrt(diag(mat_p_cov)))
register!(so_x_up_mean, ll_x, tf, vec_x_mean)
register!(so_x_up_stdev, ll_x, tf, sqrt(diag(mat_x_cov)))

end

r = ResultUkf(so_p_pr_mean, so_p_up_mean, so_p_pr_stdev, so_p_up_stdev,
so_x_pr_mean, so_x_up_mean, so_x_pr_stdev, so_x_up_stdev)

end

Appendix D

Database and results directories

As discussed in Section 5.3, the model lnas is loaded inside the application with the load_model func-

tion. A similar procedure instantiates the State, Extern and Parameters (the latter jointly with Pro-

cessNoise and ObservationNoise) types using the respective flags -x, -c, -p. This requires that these

objects be defined inside files stored in the database/ directory, before being loaded with, for instance,

load_parameters("lnas", p0) where it is implied that the definition p = Parameters(...) is done

within the file database/parameters/p0.jl. The .jl extension is needed so that Julia automatically inter-

prets this file and its content. It has to be noted, once again, that the instance of the Parameters needs to

be called p and not something else for further reuse in the remaining of the application file. This could seem

to be a lot of over-organization: defining objects in separate files rather than directly in a script where they

are to be used for one run. It actually is much more convenient and saves a lot of time on the long run:
■ first, for models with a lot of variables, it is more convenient to separate the different type definitions

in different files;
■ second, this approach will not be used only for the simulation of the model, but for all other ap-

plications, ranging from sensitivity analysis to different parameter and state estimation procedures;

Potentially, a dozen of algorithms could be run for a given model, which is why it becomes interesting

to use predefined applications: therefore, once one has coded the model and defined the necessary and

appropriate states, external variables and parameters in the database, one can directly make simulations

of the model and run several algorithms using it without a single line of code;
■ third, for the study of subjects such as genotypic differentiation, the values of the parameters will differ

from one genotype to another. Since there can be tens or hundreds of different genotypes for a given

species, it makes sense to be able to (i) create the parameters files using a simple (Julia) script or (ii)

reuse these parameters files for different simulations and estimations;
■ fourth, each time that an application is run, its results are saved in the root directory results/ under

the name:

$year-$month-$day-$hour-$minute-$second-$optional-name/

(where optional-name is provided by the -d flag). The results of an application can be a single

SystemObservation for a simulation or a more complex one when estimation algorithms are run (a

219

220 Appendix D. Database and results directories

specific result type containing several SystemObservations for the mean and standard deviations of

the estimated parameters and states, for instance). Not only the results are saved, but the state, external

variables, parameters files used during the application are copied to the results directory. This ensures

that, for a given results directory, it is known exactly what program was run with what files. It is a

guarantee of reproducibility: even if the database files are modified, their versions used for a given run

are saved as they are, and an experiment can be run in the exact same conditions again.

Appendix E

Parallel computation of mean and

covariance

Let X = (xij) ∈ Md,N (R) be the matrix containing the values of parameters and states to be estimated for

the different particles, with j ∈ J1, dK and i ∈ J1, NK. In the MPI paradigm, this matrix is distributed among

the np different processes. The range of indices relative to the process p is r(p) = J1 + (p− 1)Np, p NpK. Let

m
(p)
j =

∑
i∈r(p) wix

i
j be the local mean of variable j for process p. The global mean for variable j can be

expressed as:

mj =

N∑
i=1

wixij =

np∑
p=1

∑
i∈r(p)

wixij =

np∑
p=1

mp
j . (E.1)

All the same, if

s =

N∑
i=1

(
wi
)2

=

np∑
p=1

 ∑
i∈r(p)

(
wi
)2 (E.2)

the global covariance between variables j and k can be expressed as:

cjk =
1

1− s

N∑
i=1

wi(xij −mj)(x
i
k −mk)

=
1

1− s

np∑
p=1

∑
i∈r(p)

wi(xij −m
(p)
j +m

(p)
j −mj)(x

i
k −m

(p)
k +m

(p)
k −mk)

=
1

1− s

np∑
p=1

(
α
(p)
jk + β

(p)
jk

)
(E.3)

with:
α
(p)
jk =

∑
i∈r(p)

wi(xij −m
(p)
j) (xik −m

(p)
k)

β
(p)
jk =

(∑
i∈r(p)

wi
)
(m

(p)
j −mj) (m

(p)
k −mk)

(E.4)

and where the computation of both α(p)
jk and β(p)

jk can be parallelized.

221

Appendix F

Exchange of particles between processes

First the different lists of weights are gathered across the different processes with:

wl = MPI.Allgather(wl_p, MPI.COMM_WORLD)

This is necessary to perform multinomial resampling for all the particles. A global list of indices [ιi]1:ns
is then

generated on all processes using residual or systematic resampling [Douc and Cappe, 2005]. The creation of

this list of indices is done in such a way that there will be no need to copy the list of Parameters or States

thereafter. Once this list has been computed, the particles need to actually be resampled. In a sequential

program, that would mean looping over the list of indices and do: θi = θι
i

xi = xι
i

for i ∈ J1, nsK.
However, there is no guarantee, for a given process p and i ∈ rp, that ιi ∈ rp. Potentially, each process can

require particles from each of the other np−1 processes. If an element of [ιi,(p)]
1:n

(p)
s

belongs to rq with q ̸= p,

then its value is added to a Dict{Int, Array{Int}} dpq. The keys of dpq are the indices of the particles that

need to be sent from q to p, and the value associated to a key represent the indices of [ιi,(p)]
1:n

(p)
s

at which

the key particle appears.

In practice, dpq seldom contains elements as two distant processes have few chances to exchange particles.

This approach allows to minimize the number of communications between processes. For all non-empty

dictionaries dpq, an MPI.Irecv! and an MPI.Isend requests are initiated and used to send from q to p the

adequate particles in Matrix form. As far as Parameters are concerned, only the values of the estimated

ones are required, but the whole State content needs to be sent: if only the values of the estimated hidden

states were sent, this could make lose the consistency of a State as some states computed from two different

Parameters would end up in the same State.

Once the particles have been exchanged between the different processes, the actual resampling operation can

be done: for each element of [ιi,(p)]
1:n

(p)
s

, either it belongs to rp and θi = θι
i

, xi = xι
i can be done directly, or

it belongs to rq with q ̸= p and has to be retrieved from the exchanged particles. At the end of the resampling

operation, the weights are reset uniformly.

223

Bibliography

Aitken, A. C. (1936). ‘On least squares and linear combination of observations’. In: Proceedings of the Royal

Society of Edinburgh 55, 42–48.

Aksoy, E. E., Abramov, A., Wörgötter, F., Scharr, H., Fischbach, A. and Dellen, B. (2015). ‘Modeling leaf

growth of rosette plants using infrared stereo image sequences’. In: Computers and Electronics in Agriculture

110, pp. 78–90.

Allard, R. W. and Bradshaw, A. D. (1964). ‘Implications of genotype-environmental interactions in applied

plant breeding’. In: Crop science 4.5, pp. 503–508.

Alvarez, I., Niemi, J. and Simpson, M. (2014). ‘Bayesian inference for a covariance matrix’. In:

Anderson, B. and Moore, J. (1979). Optimal filtering. Englewood Cliffs, USA: Prentice Hall.

Andrews, D. F. and Mallows, C. L. (1974). ‘Scale mixtures of normal distributions’. In: Journal of the Royal

Statistical Society. Series B (Statistical Methodology) 36.1, pp. 99–102.

Andrieu, C. and Roberts, G. O. (2009). ‘The pseudo-marginal approach for efficient Monte Carlo compu-

tations’. In: The Annals of Statistics 37.2, pp. 697–725.

Andrieu, C. and Thoms, J. (2008). ‘A tutorial on adaptive MCMC’. In: Statistics and Computing 18.4,

pp. 343–373.

Andrieu, C., Doucet, A. and Holenstein, R. (2010). ‘Particle Markov chain Monte Carlo methods’. In:

Journal of the Royal Statistical Society. Series B (Statistical Methodology 72.3, pp. 269–342.

Apelt, F., Breuer, D., Nikoloski, Z., Stitt, M. and Kragler, F. (2015). ‘Phytotyping4d: a light-field imaging

system for non-invasive and accurate monitoring of spatio-temporal plant growth’. In: The Plant Journal

82.4, pp. 693–706.

Araus, J. L. and Cairns, J. E. (2014). ‘Field high-throughput phenotyping: the new crop breeding frontier’.

In: Trends in Plant Science 19.1, pp. 52–61.

Baey, C., Cournède, P.-H. and Kuhn, E. (2017). ‘Likelihood ratio test for variance components in nonlinear

mixed effects models’. Submitted.

Baey, C. (2014). ‘Modélisation de la variabilité inter-individuelle dans les modèles de croissance de plantes

et sélection de modèles pour la prévision’. PhD thesis. École Centrale Paris.

Baey, C., Didier, A., Sébastien, L., Maupas, F. and Cournède, P.-H. (2013). ‘Modelling the interindividual

variability of organogenesis in sugar beet populations using a hierarchical segmented model’. In: Ecological

Modelling 263, pp. 56–63.

225

226 Bibliography

Baey, C., Trevezas, S. and Cournède, P.-H. (2016). ‘A non linear mixed effects model of plant growth and es-

timation via stochastic variants of the EM algorithm’. In:Communications in Statistics -Theory andMethods

45.6, pp. 1643–1669.

Baldazzi, V., Bertin, N., Génard, M., Gautier, H., Desnoues, E. and Quilot-Turion, B. (2016). ‘Challenges

in integrating genetic control in plant and crop models’. In: Crop Systems Biology. Springer, pp. 1–31.

Barnard, J., McCulloch, R. and Meng, X. (2000). ‘Modeling covariance matrices in terms of standard devi-

ations and correlations, with application to shrinkage’. In: Statistica Sinica 10.4, pp. 1281–1311.

Barthélémy, D., Edelin, C. and Hallé, F. (1989). ‘Architectural concepts for tropical trees’. In: Tropical forests.

Botanical dynamics, speciation and diversity. Ed. by Holm Nielsen, L., Nielsen, I. and Balslev, H. Academic

Press, pp. 89–100.

Bayol, B. (2016). ‘Système informatique d’aide à la modélisation mathématique basé sur un langage de pro-

grammation dédié pour les systèmes dynamiques discrets stochastiques. Application aux modèles de crois-

sance de plantes.’ PhD thesis. Paris Saclay.

Beal, S. L. and Sheiner, L. B. (1982). ‘Estimating population kinetics’. In: Critical reviews in biomedical

engineering 8, pp. 195–222.

Beaumont, M. A. (2003). ‘Estimation of population growth or decline in genetically monitored populations’.

In: Genetics 164.3, pp. 1139–1160.

Bennett, J. E., Racine-Poon, A. and Wakefield, J. C. (1996). ‘Markov chain Monte Carlo for nonlinear

hierarchical models’. In: Markov chain Monte Carlo in practice. Ed. by Gilks, W., Richardson, S. and

Spiegelhalter, D. London, UK: Chapman and Hall, pp. 339–357.

Berg, B. A. and Billoire, A. (2007). ‘Markov chain Monte Carlo simulations’. In: Wiley Encyclopedia of Com-

puter Science and Engineering. John Wiley and Sons, Inc.

Betancourt, M. (2017). A Conceptual Introduction to Hamiltonian Monte Carlo.

Beyer, R., Letort, V. and Cournède, P.-H. (2014). ‘Modeling tree crown dynamics with 3D partial differential

equations’. In: Frontiers in plant science 5, p. 329.

Beyer, R., Etard, O., Cournède, P.-H. and Laurent-Gengoux, P. (2015). ‘Modeling spatial competition for

light in plant populations with the porous medium equation’. In: Journal of Mathematical Biology 70.3,

pp. 533–547.

Bezanson, J., Karpinski, S., Shah, V. B. and Edelman, A. (2012). ‘Julia: a fast dynamic language for technical

computing’.

Bezanson, J., Edelman, A., Karpinski, S. and Shah, V. B. (2014). ‘Julia: a fresh approach to numerical com-

puting’.

Blanco, G., Gerlagh, R., Suh, S., Barrett, J. and De Coninck, H. C. (2014). ‘Drivers, trends and mitigation’.

In: Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth

Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press.

Boone, E. L., Simmons, S. J., Bao, H. and Stapleton, A. E. (2008). ‘Bayesian hierarchical regression models

for detecting QTLs in plant experiments’. In: Journal of Applied Statistics 35.7, pp. 799–808.

Bouriga, M. and Féron, O. (2013). ‘Estimation of covariance matrices based on hierarchical inverse-wishart

priors’. In: Journal of Statistical Planning and Inference 143.4, pp. 795 –808.

Bibliography 227

Brisson, N, Gary, C, Justes, E, Roche, R, Mary, B, Ripoche, D, Zimmer, D, Sierra, J, Bertuzzi, P, Burger, P,

Bussière, F, Cabidoche, Y., Cellier, P, Debaeke, P, Gaudillère, J., Hénault, C, Maraux, F, Seguin, B and

Sinoquet, H (2003). ‘An overview of the crop model STICS’. In: European Journal of Agronomy 18.3.

Modelling Cropping Systems: Science, Software and Applications, pp. 309 –332.

Brisson, N., Mary, B., Ripoche, D., Jeuffroy, M.-H., Ruget, F., Nicoullaud, B., Gate, P., Devienne-Barret,

F., Antonioletti, R., Durr, C., Richard, G., Beau, N., Tayot, X., Plenet, D., Cellier, P., Machet, J.-M.,

Meynard, J.-M. and Delécolle, R. (1998). ‘STICS: a generic model for the simulation of crops and their

water and nitrogen balances. I. Theory and parameterization applied to wheat and corn’. In: Agronomie

18.5–6, pp. 311–346.

Brooks, S. P. and Gelman, A. (1998). ‘General methods for monitoring convergence of iterative simulations’.

In: Journal of computational and graphical statistics 7.4, pp. 434–455.

Brouwer, J., Fussell, L. and Herrmann, L. (1993). ‘Soil and crop growth micro-variability in the West African

semi-arid tropics: a possible risk-reducing factor for subsistence farmers’. In: Agriculture, Ecosystems and

Environment 45.3, pp. 229–238.

Bustos-Korts, D., Malosetti, M., Chapman, S. and Van Eeuwijk, F. (2016). ‘Modelling of genotype by en-

vironment interaction and prediction of complex traits across multiple environments as a synthesis of

crop growth modelling, genetics and statistics’. In: Crop Systems Biology. Springer International Publish-

ing, pp. 55–82.

Bédard, M. (2008). ‘Optimal acceptance rates for Metropolis algorithms: moving beyond 0.234’. In: Stochastic

Processes and their Applications 118.12, pp. 2198 –2222.

Campillo, F. and Rossi, V. (2006). ‘Convolution particle filtering for parameter estimation in general state-

space models’. In: Proceedings of the 45th IEEE Conference on Decision and Control, pp. 2159–2164.

Canny, J. (1986). ‘A computational approach to edge detection’. In: IEEE Transactions on Pattern Analysis

and Machine Intelligence 8.6, pp. 679–698.

Cappé, O., Moulines, E. and Ryden, T. (2005). Inference in Hidden Markov Models. Springer Series in Stat-

istics. Springer–Verlag New York.

Cariboni, J., Gatelli, D., Liska, R. and Saltelli, A. (2007). ‘The role of sensitivity analysis in ecological mod-

elling’. In: Ecological Modelling 203, pp. 167–182.

Carmier, P., Kyrgyzov, O. and Cournède, P.-H. (2017). ‘A critical analysis of resampling strategies for the

regularized particle filter’. submitted.

Carpenter, B., Gelman, A., Hoffman, M., Lee, D., Goodrich, B., Betancourt, M., Brubaker, M., Guo, J., Li,

P. and Riddell, A. (2017). ‘Stan: a probabilistic programming language’. In: Journal of Statistical Software,

Articles 76.1, pp. 1–32.

Celeux, G., Hurn, M. and Robert, C. P. (2000). ‘Computational and inferential difficulties with mixture

posterior distributions’. In: Journal of the American Statistical Association 95.451, pp. 957–970.

Chagneau, P., Mortier, F., Picard, N. and Bacro, J.-N. (2011). ‘A hierarchical Bayesian model for spatial

prediction of multivariate non-gaussian random fields’. In: Biometrics 67.1, pp. 97–105.

Chapman, S. C. (2008). ‘Use of crop models to understand genotype by environment interactions for drought

in real-world and simulated plant breeding trials’. In: Euphytica 161.1, pp. 195–208.

228 Bibliography

Chastaing, G., Gamboa, F. and Prieur, C. (2012). ‘Generalized Hoeffding–Sobol decomposition for depend-

ent variables – application to sensitivity analysis’. In: Electronic Journal of Statistics 6, pp. 2420–2448.

Chen, Y. (2014). ‘Inférence bayésienne dans les modèles de croissance de plantes pour la prévision et la

caractérisation des incertitudes’. PhD thesis. École Centrale Paris.

Chen, Y. and Cournède, P.-H. (2012). ‘Assessment of parameter uncertainty in plant growth model identi-

fication’. In: 2012 IEEE 4th International Symposium on Plant Growth Modeling, Simulation, Visualization

and Applications, pp. 85–92.

Chen, Y. and Cournède, P.-H. (2014). ‘Data assimilation to reduce uncertainty of crop model prediction

with convolution particle filtering’. In: Ecological Modelling 290.Supplement C, pp. 165 –177.

Chen, Z. and Brown, E. N. (2013). ‘State-space models for the analysis of neural spike train and behavi-

oral data’. In: Encyclopedia of Computational Neuroscience. Ed. by Jaeger, D. and Jung, R. New York, NY:

Springer New York, pp. 1–4.

Christophe, A., Letort, V., Hummel, I., Cournède, P. H., De Reffye, P. and Lecœur, J. (2008). ‘A model-based

analysis of the dynamics of carbon balance at the whole-plant level in Arabidopsis thaliana’. In: Functional

Plant Biology 35.11, pp. 1147–1162.

Cournède, P.-H., Matthieu, A., Houllier, F., Barthélémy, D. and De Reffye, P. (2008). ‘Computing compet-

ition for light in the Greenlab model of plant growth: a contribution to the study of the effects of density

on resource acquisition and architectural development’. In: Annals of Botany 101.8, pp. 1207–1219.

Cournède, P.-H., Letort, V., Mathieu, A., Kang, M. Z., Lemaire, S., Trevezas, S., Houllier, F. and De Reffye,

P. (2011). ‘Some parameter estimation issues in functional-structural plant modelling’. In: Mathematical

Modelling of Natural Phenomena 6.2, pp. 133–159.

Cournède, P.-H., Chen, Y., Wu, Q., Baey, C. and Bayol, B. (2013). ‘Development and evaluation of plant

growth models: methodology and implementation in the PYGMALION platform’. In:Mathematical Mod-

elling of Natural Phenomena 8.4, pp. 112–130.

Craufurd, P. Q., Vadez, V., Jagadish, S. K., Prasad, P. V. and Zaman-Allah, M. (2013). ‘Crop science exper-

iments designed to inform crop modeling’. In: Agricultural and Forest Meteorology 170, pp. 8–18.

Davidian, M. and Giltinan, D. M. (1993). ‘Some simple methods for estimating intraindividual variability

in nonlinear mixed effects models’. In: Biometrics 49.1, pp. 59–73.

Davidian, M. and Giltinan, D. M. (2003). ‘Nonlinear models for repeated measurement data: an overview

and update’. In: Journal of Agricultural, Biological, and Environmental Statistics 8.4, p. 387.

De Reffye, P. and Houllier, F. (1997). ‘Modelling plant growth and architecture: some recent advances and

applications to agronomy and forestery’. In: Current Science 73, pp. 984–992.

De Reffye, P., Fourcaud, T., Blaise, F., Barthélémy, D. and Houllier, F. (1997). ‘A functional model of tree

growth and tree architecture’. In: Silva Fennica 31(3), pp. 297–311.

De Reffye, P., Elguero, E. and Costes, E. (1991). ‘Growth units construction in trees: a stochastic approach’.

In: Acta Biotheoretica 39.3, pp. 325–342.

Bibliography 229

De Reffye, P. and Hu, B. (2003). ‘Relevant qualitative and quantitative choices for building an efficient dy-

namic plant growth model: Greenlab case’. In: International Symposium on Plant Growth Modeling, Simula-

tion, Visualization and their Applications – PMA’03. Ed. by Hu, B. and Jaeger, M. Plant Growth Modeling

and Applications. Beijing, China: Springer and Tsinghua University Press, pp. 87–107.

De Reffye, P., Jaeger, M. and Cournède, P.-H. (2009). ‘Une histoire de la modélisation des plantes’. In:

Interstices.

De Reffye, P., Édelin, C., Françon, J., Jaeger, M. and Puech, C. (1988). ‘Plant models faithful to botan-

ical structure and development’. In: Proceedings of the 15th Annual Conference on Computer Graphics and

Interactive Techniques. SIGGRAPH ’88. New York, NY, USA: ACM, pp. 151–158.

Del Moral, P. (2004). Feynman–Kac Formulae: Genealogical and Interacting Particle Systems With Applications.

Springer-Verlag New York.

Delyon, B., Lavielle, M. and Moulines, E. (1999). ‘Convergence of a stochastic approximation version of the

EM algorithm’. In: The Annals of Statistics 27.1, pp. 94–128.

Dempster, A. P., Laird, N. M. and Rubin, D. B. (1977). ‘Maximum likelihood from incomplete data via the

EM algorithm’. In: Journal of the Royal Statistical Society. Series B (Statistical Methodology) 39.1, pp. 1–38.

Des Marais, D. L., Razzaque, S., Hernandez, K. M., Garvin, D. F. and Juenger, T. E. (2016). ‘Quantitative

trait loci associated with natural diversity in water-use efficiency and response to soil drying in brachypo-

dium distachyon’. In: Plant Science 251, pp. 2–11.

Donnet, S., Foulley, J.-L. and Samson, A. (2010). ‘Bayesian analysis of growth curves using mixed models

defined by stochastic differential equations’. In: Biometrics 66.3, pp. 733–741.

Douc, R. and Cappe, O. (2005). ‘Comparison of resampling schemes for particle filtering’. In: ISPA 2005.

Proceedings of the 4th International Symposium on Image and Signal Processing and Analysis, 2005. Pp. 64–

69.

Doucet, A., De Freitas, N. and Gordon, N. (2001). Sequential Monte Carlo methods in practice. New York:

Springer-Verlag New York.

Duane, S., Kennedy, A., Pendleton, B. J. and Roweth, D. (1987). ‘Hybrid Monte Carlo’. In: Physics Letters

B 195.2, pp. 216 –222.

Dupuy, L., Mackenzie, J., Rudge, T. and Haseloff, J. (2008). ‘A system for modelling cell–cell interactions

during plant morphogenesis’. In: Annals of Botany 101.8, pp. 1255–1265.

Duval, M., Robert-Granié, C. and Fouley, J.-L. (2009). ‘Estimation of heterogeneous variances in nonlinear

mixed models via the SAEM-MCMC algorithm with applications to growth curves in poultry’. In: Journal

de la Société Française de Statistique 150.2, pp. 65–83.

Earl, D. and Deem, M. (2005). ‘Parallel tempering: theory, applications, and new perspectives’. In: Physical

Chemistry Chemical Physics.

Édelin, C. (1977). ‘Image de l’architecture des conifères’. PhD thesis. Université de Montpellier.

El-Soda, M., Malosetti, M., Zwaan, B. J., Koornneef, M. and Aarts, M. G. (2014). ‘Genotype x environment

interaction QTL mapping in plants: lessons from Arabidopsis’. In: Trends in Plant Science 19.6, pp. 390–

398.

230 Bibliography

Elliott, R. J. and Hyndman, C. B. (2007). ‘Parameter estimation in commodity markets: a filtering approach’.

In: Journal of Economic Dynamics and Control 31.7, pp. 2350 –2373.

Epanechnikov, V. (1969). ‘Nonparametric estimation of a multidimensional probability density’. In: Teoriya

Veroyatnostei i ee Primeneniya 14.1, pp. 156–161.

Evensen, G. (2009). Data Assimilation: the Ensemble Kalman Filter. Springer-Verlag Berlin Heidelberg.

Evensen, G. (1994). ‘Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte

Carlo methods to forecast error statistics’. In: Journal of Geophysical Research: Oceans 99.C5, pp. 10143–

10162.

Fearnhead, P. (2011). ‘MCMC for state-space models’. In: Handbook of Markov chain Monte Carlo. Ed. by

Brooks, S. et al. London: Chapman and Hall, pp. 513–529.

Fearnhead, P. and Meligkotsidou, L. (2016). ‘Augmentation schemes for particle MCMC’. In: Statistics and

Computing 26.6, pp. 1293–1306.

Ford, E. D. and Kennedy, M. C. (2011). ‘Assessment of uncertainty in functional-structural plant models’.

In: Annals of Botany 108, pp. 1043–1053.

Foulley, J.-L. and Quaas, R. L. (1995). ‘Heterogeneous variances in Gaussian linear mixed models’. In: Ge-

netics Selection Evolution 27.3, p. 211.

Foulley, J.-L. (2002). ‘Algorithme EM : théorie et application au modèle mixte’. In: Journal de la société

française de statistique 143.3-4, pp. 57–109.

Fournier, C. and Andrieu, B. (1999). ‘ADEL-maize: an L-system based model for the integration of growth

processes from the organ to the canopy. Application to regulation of morphogenesis by light availability’.

In: Agronomie 19.3–4, pp. 313–327.

Françon, J. (1991). ‘Sur la modélisation informatique de l’architecture et du développement des végétaux’.

In: 2e Colloque international sur l’Arbre. Ed. by Édelin, C. Montpellier, France: Naturalia Monspeliensia,

pp. 231–247.

Frühwirth-Schnatter, S. (2006). Finite Mixture and Markov Switching Models. Springer Series in Statistics.

Springer-Verlag New York.

Gabriel, E., Fagg, G. E., Bosilca, G., Angskun, T., Dongarra, J. J., Squyres, J. M., Sahay, V., Kambadur, P.,

Barrett, B., Lumsdaine, A., Castain, R. H., Daniel, D. J., Graham, R. L. and Woodall, T. S. (2004). ‘Open

MPI: goals, concept, and design of a next generation MPI implementation’. In: Proceedings, 11th European

PVM/MPI Users’ Group Meeting. Budapest, Hungary, pp. 97–104.

Gelfand, A. E. and Smith, A. F. M. (1990). ‘Sampling-based approaches to calculating marginal densities’.

In: Journal of the American Statistical Association 85.410, pp. 398–409.

Gelman, A., Roberts, G. O. and Gilks, W. R. (1996). ‘Efficient Metropolis jumping rules’. In: Bayesian

statistics, 5 (Alicante, 1994). Oxford Science Publications. New York, USA: Oxford Univ. Press, pp. 599–

607.

Gelman, A. and Rubin, D. B. (1992). ‘Inference from iterative simulation using multiple sequences’. In:

Statistical Science 7.4, pp. 457–472.

Geman, S. and Geman, D. (1984). ‘Stochastic relaxation, Gibbs distributions, and the Bayesian restoration

of images’. In: IEEE Trans. Pattern Anal. Mach. Intell. 6.6, pp. 721–741.

Bibliography 231

Gilks, W. R. (2005). ‘Markov chain Monte Carlo’. In: Encyclopedia of Biostatistics. John Wiley and Sons, Ltd.

Gilks, W. R., Best, N. G. and Tan, K. K. C. (1995). ‘Adaptive rejection Metropolis sampling within Gibbs

sampling’. In: Journal of the Royal Statistical Society. Series C (Applied Statistics) 44.4, pp. 455–472.

Gilks, W. R., Richardson, S. and Spiegelhalter, D. J. (1996). Markov Chain Monte Carlo in Practice. London:

Chapman and Hall.

Girolami, M. and Betancourt, M. (2015). ‘Hamiltonian Monte Carlo for hierarchical models’. In: Current

Trends in Bayesian Methodology with Applications. Ed. by Upadhyay, S. K., Singh, U., Dey, D. K. and

Loganathan, A. New York: Chapman and Hall/CRC.

Godin, C., Costes, E. and Sinoquet, H. (1999). ‘A method for describing plant architecture which integrates

topology and geometry’. In: Annals of Botany 84.3, pp. 343–357.

Golightly, A. and Wilkinson, D. (2008). ‘Bayesian inference for nonlinear multivariate diffusion models

observed with error’. In: Computational Statistics and Data Analysis 52.3, pp. 1674 –1693.

Golightly, A. and Wilkinson, D. J. (2011). ‘Bayesian parameter inference for stochastic biochemical network

models using particle Markov chain Monte Carlo’. In: Interface Focus 1.6, pp. 807–820.

Gordon, N., Salmond, D. and Smith, A. (1993). ‘Novel approach to nonlinear/non-Gaussian Bayesian state

estimation’. In: IEEE Proceedings F (Radar and Signal Processing) 140 (2), pp. 107–113.

Granier, C. and Vile, D. (2014). ‘Phenotyping and beyond: modelling the relationships between traits’. In:

Current Opinion in Plant Biology 18, pp. 96–102.

Grün, B. and Leisch, F. (2009). ‘Dealing with label switching in mixture models under genuine multimod-

ality’. In: Journal of Multivariate Analysis 100.5, pp. 851 –861.

Gustafsson, F. and Hendeby, G. (2012). ‘Some relations between extended and unscented Kalman filters’. In:

IEEE Transactions on Signal Processing 60.2, pp. 545–555.

Haario, H., Saksman, E. and Tamminen, J. (1998). ‘An adaptive Metropolis algorithm’. In: Bernoulli 7,

pp. 223–242.

Haario, H., Saksman, E. and Tamminen, J. (1999). ‘Adaptive proposal distribution for random walk Metro-

polis algorithm’. In: Computational Statistics 14.3, pp. 375–395.

Hallé, F. and Oldeman, R. (1970). Essai sur l’architecture et la dynamique de croissance des arbres tropicaux.

Monographie de Botanique et de Biologie Végétale. Paris, France: Masson, p. 192.

Hammer, G., Cooper, M., Tardieu, F., Welch, S., Walsh, B., Van Eeuwijk, F., Chapman, S. and Podlich, D.

(2006). ‘Models for navigating biological complexity in breeding improved crop plants’. In: Trends in Plant

Science 11.12, pp. 587–593.

Handschin, J. E. and Mayne, D. Q. (1969). ‘Monte Carlo techniques to estimate the conditional expectation

in multi-stage non-linear filtering’. In: International Journal of Control 9.5, pp. 547–559.

Hastings, W. K. (1970). ‘Monte Carlo sampling methods using Markov chains and their applications’. In:

Biometrika 57.1, pp. 97–109.

Havre, Z. van, White, N., Rousseau, J. and Mengersen, K. (2015). ‘Overfitting Bayesian mixture models

with an unknown number of components’. In: PLoS ONE 10.7, pp. 1–27.

232 Bibliography

Herdiyeni, Y., Lubis, D. I. and Douady, S. (2015). ‘Leaf shape identification of medicinal leaves using cur-

vilinear shape descriptor’. In: 2015 7th International Conference of Soft Computing and Pattern Recognition

(SoCPaR), pp. 218–223.

Hill, J (1975). ‘Genotype-environment interaction – a challenge for plant breeding’. In: The Journal of Agri-

cultural Science 85.3, pp. 477–493.

Hirai, M. Y., Yano, M., Goodenowe, D. B., Kanaya, S., Kimura, T., Awazuhara, M., Arita, M., Fujiwara,

T. and Saito, K. (2004). ‘Integration of transcriptomics and metabolomics for understanding of global

responses to nutritional stresses in Arabidopsis thaliana’. In: Proceedings of the National Academy of Sciences

101.27, pp. 10205–10210.

Hodgman, C., French, A. and Westhead, D. (2009). Bioinformatics. Instant Notes. Taylor and Francis.

Hoeffding, W. (1948). ‘A class of statistics with asymptotically normal distribution’. In: The Annals of Math-

ematical Statistics 19.3, pp. 293–325.

Hopkins, A., Vogel, K., Moore, K., Johnson, K. and Carlson, I. (1995). ‘Genotype effects and genotype by

environment interactions for traits of elite switchgrass populations’. In: Crop Science 35.1, pp. 125–132.

Hosack, G. R., Peters, G. W. and Hayes, K. R. (2012). ‘Estimating density dependence and latent population

trajectories with unknown observation error’. In: Methods in Ecology and Evolution 3.6, pp. 1028–1038.

Illian, J. B., Møller, J. and Waagepetersen, R. P. (2009). ‘Hierarchical spatial point process analysis for a plant

community with high biodiversity’. In: Environmental and Ecological Statistics 16.3, pp. 389–405.

Isfan, D. (1993). ‘Genotypic variability for physiological efficiency index of nitrogen in oats’. In: Plant and

Soil 154.1, pp. 53–59.

Jarquin, D., Perez-Elizalde, S., Burgueño, J. and Crossa, J. (2016). ‘A hierarchical Bayesian estimation model

for multienvironment plant breeding trials in successive years’. In: Crop Science. Vol. 56, pp. 2260–2276.

Jones, C. A., Kiniry, J. R. and Dyke, P. T. (1986). CERES-Maize: a simulation model of maize growth and

development. Texas A&M University Press.

Joseph, L. N., Elkin, C., Martin, T. G. and Possingham, H. P. (2009). ‘Modeling abundance using n-mixture

models: the importance of considering ecological mechanisms’. In: Ecological Applications 19.3, pp. 631–

642.

Julier, S. and Uhlmann, J. (1997). ‘New extension of the Kalman filter to nonlinear systems’. In: SPIE Pro-

ceedings 3068, pp. 182–193.

Jullien, A., Mathieu, A., Allirand, J.-M., Pinet, A., De Reffye, P., Cournède, P.-H. and Ney, B. (2010). ‘Char-

acterization of the interactions between architecture and source–sink relationships in winter oilseed rape

(Brassica napus) using the GreenLab model’. In: Annals of botany 107.5, pp. 765–779.

Kalman, R. E. (1960). ‘A new approach to linear filtering and prediction problems’. In: Transactions of the

ASME – Journal of Basic Engineering 82.Series D, pp. 35–45.

Kitagawa, G. (1996). ‘Monte Carlo filter and smoother for non-Gaussian nonlinear state space models’. In:

Journal of Computational and Graphical Statistics 5.1, pp. 1–25.

Kong, A., Liu, J. S. and Wong, W. H. (1994). ‘Sequential imputations and Bayesian missing data problems’.

In: Journal of the American Statistical Association 89.425, pp. 278–288.

Bibliography 233

Koutroumpas, K., Ballarini, P., Votsi, I. and Cournède, P.-H. (2016). ‘Bayesian parameter estimation for the

Wnt pathway: an infinite mixture models approach’. In: Bioinformatics 32.17, pp. i781–i789.

Kromdijk, J., Bertin, N., Heuvelink, E., Molenaar, J., Visser, P. H. B. de, Marcelis, L. F. M. and Struik, P. C.

(2014). ‘Crop management impacts the efficiency of quantitative trait loci (QTL) detection and use: case

study of fruit load x QTL interactions’. In: Journal of Experimental Botany 65.1, pp. 11–22.

Kuhn, E. and Lavielle, M. (2005). ‘Maximum likelihood estimation in nonlinear mixed effects models’. In:

Computational Statistics and Data Analysis 49.4, pp. 1020 –1038.

Kurth, W. (1994). ‘Morphological models of plant growth: possibilities and ecological relevance’. In: Eco-

logical Modelling 75. State-of-the-Art in Ecological Modelling proceedings of ISEM’s 8th International

Conference, pp. 299 –308.

Kusano, M., Fukushima, A., Arita, M., Jonsson, P., Moritz, T., Kobayashi, M., Hayashi, N., Tohge, T. and

Saito, K. (2007). ‘Unbiased characterization of genotype-dependent metabolic regulations by metabolomic

approach in Arabidopsis thaliana’. In: BMC Systems Biology 1.1, p. 53.

Launay, M. and Guerif, M. (2005). ‘Assimilating remote sensing data into a crop model to improve predictive

performance for spatial applications’. In: Agriculture, Ecosystems & Environment 111.1, pp. 321 –339.

Lavielle, M. (2014). Mixed Effects Models for the Population Approach: Models, Tasks, Methods and Tools. Chap-

man and Hall/CRC.

Layer, T., Blaickner, M., Knausl, B., Georg, D., Neuwirth, J., Baum, R. P., Schuchardt, C., Wiessalla, S. and

Matz, G. (2015). ‘PET image segmentation using a Gaussian mixture model and Markov random fields’.

In: EJNMMI Physics 2.1, p. 9.

Le Roux, X., Lacointe, A., Escobar-Gutiérrez, A. and Le Dizès, S. (2001). ‘Carbon-based models of individual

tree growth: a critical appraisal’. In: Ann. For. Sci. 58.5, pp. 469–506.

Lecœur, J., Poiré-Lassus, R., Christophe, A., Pallas, B., Casadebaig, P., Debaeke, P., Vear, F. and Guilioni,

L. (2011). ‘Quantifying physiological determinants of genetic variation for yield potential in sunflower.

SUNFLO: a model-based analysis’. In: Functional Plant Biology 38.3, pp. 246–259.

LeGland, F., Musso, C. and Oudjane, N. (1998). ‘An analysis of regularized interacting particle methods for

nonlinear filtering’. In: Proceedings of the 3rd IEEE European Workshop on Computer-Intensive Methods in

Control and Signal Processing, pp. 167–174.

Lemaire, S., Maupas, F., Cournède, P.-H. and De Reffye, P. (2009). ‘A morphogenetic crop model for sugar-

beet (Beta vulgaris L.)’ In: Crop Modeling and Decision Support. Ed. by Cao, W., White, J. W. and Wang, E.

Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 116–129.

Letort, V., Mahe, P., Cournède, P. H., De Reffye, P. and Courtois, B. (2008). ‘Quantitative genetics and

functional-structural plant growth models: simulation of quantitative trait loci detection for model para-

meters and application to potential yield optimization’. In: Annals of Botany 101.8, pp. 1243–1254.

Lewin, A., Bochkina, N. and Richardson, S. (2007). ‘Fully Bayesian mixture model for differential gene

expression: simulations and model checks’. In: Statistical Applications in Genetics and Molecular Biology

6.1.

234 Bibliography

Li, G., Rabitz, H., Yelvington, P. E., Oluwole, O. O., Bacon, F., Kolb, C. E. and Schoendorf, J. (2010).

‘Global sensitivity analysis for systems with independent and/or correlated inputs’. In: The Journal of Phys-

ical Chemistry A 114.19, pp. 6022–6032.

Lindenmayer, A. (1968). ‘Mathematical models for cellular interactions in development I. Filaments with

one-sided inputs’. In: Journal of Theoretical Biology 18.3, pp. 280 –299.

Lindley, D. and Smith, A. (1972). ‘Bayes estimates for the linear model’. In: Journal of the Royal Statistical

Society. Series B (Statistical Methodology) 34.1, pp. 1–41.

Lindstrom, M. J. and Bates, D. M. (1990). ‘Nonlinear mixed effects models for repeated measures data’. In:

Biometrics 46.3, pp. 673–687.

Liu, J., Wong, W. and Kong, A. (1994). ‘Covariance structure and convergence rate of the Gibbs sampler

with applications to the comparisons of estimators and augmentation schemes’. In: Biometrika 81, pp. 27–

40.

Liu, J. S. and Chen, R. (1995). ‘Blind deconvolution via sequential imputations’. In: Journal of the American

Statistical Association 90.430, pp. 567–576.

Lunn, D., Jackson, C., Best, N., Thomas, A. and Spiegelhalter, D. (2012). The BUGS Book: A Practical

Introduction to Bayesian Analysis. CRC Press / Chapman and Hall.

Lunn, D., Spiegelhalter, D., Thomas, A. and Best, N. (2009). ‘The BUGS project: evolution, critique and

future directions’. In: Statistics in Medicine 28.25, pp. 3049–3067.

Lunn, D. J., Thomas, A., Best, N. and Spiegelhalter, D. (2000). ‘WinBUGS – a Bayesian modelling frame-

work: concepts, structure, and extensibility’. In: Statistics and Computing 10.4, pp. 325–337.

Mailhol, J., Revol, P. and Ruelle, P. (1996). ‘Pilote : un modèle opérationnel pour déceler l’apparition de

stress hydrique’. In: ICID 16th international congress on irrigation and drainage: workshop on crop-water-

environment models. Cairo, Egypt.

Maiti, R., Maiti, L. E., Maiti, S., Maiti, A. M., Maiti, M. and Maiti, H. (1996). ‘Genotypic variability in

maize cultivars (Zea mays L.) for resistance to drought and salinity at the seedling stage’. In: Journal of

Plant Physiology 148.6, pp. 741–744.

Makowski, D., Jeuffroy, M.-H. and Guérif, M. (2004). ‘Bayesian methods for updating crop model predic-

tions, applications for predicting biomass and grain protein content’. In: Bayesian Statistics and Quality

Modelling in the Agro-Food Production Chain. Ed. by al., V. B. et. Kluwer Academic Publishers, pp. 57–68.

Malefaki, S., Trevezas, S., Viaud, G. and Cournède, P.-H. (2014). ‘Bayesian estimation for the Greenlab

model adapted to the sugar beet plant’. In: Proceedings of the 27th Panhellenic Statistics Conference.

Mamon, R. S. and Elliott, R. J., eds. (2014). Hidden Markov Models in Finance: Further Developments and

Applications, Volume II. Vol. 209. International Series in Operations Research and Management Science.

Springer US.

Marcelis, L., Heuvelink, E. and Goudriaan, J. (1998). ‘Modelling of biomass production and yield of horti-

cultural crops: a review’. In: Scientia Horticulturae 74, pp. 83–111.

Marin, J.-M., Mengersen, K. and Robert, C. P. (2005). ‘Bayesian modelling and inference on mixtures of dis-

tributions’. In: BayesianThinking. Ed. by Dey, D. and Rao, C. Vol. 25. Handbook of Statistics Supplement

C. Elsevier, pp. 459 –507.

Bibliography 235

Martre, P., Bertin, N., Salon, C. and Génard, M. (2011). ‘Modelling the size and composition of fruit, grain

and seed by process-based simulation models’. In: New Phytologist 191.3, pp. 601–618.

McCulloch, C. E. (1994). ‘Maximum likelihood variance components estimation for binary data’. In: Journal

of the American Statistical Association 89.425, pp. 330–335.

McDonald, P. G., Fonseca, C. R., Overton, J. M. and Westoby, M. (2003). ‘Leaf-size divergence along rainfall

and soil-nutrient gradients: is the method of size reduction common among clades?’ In: Functional Ecology

17.1, pp. 50–57.

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H. and Teller, E. (1953). ‘Equation of state

calculations by fast computing machines’. In: The Journal of Chemical Physics 21.6, pp. 1087–1092.

Meza, C., Jaffrézic, F. and Foulley, J.-L. (2007). ‘REML estimation of variance parameters in nonlinear mixed

effects models using the SAEM algorithm’. In: Biometrical Journal 49.6, pp. 876–888.

Migault, V., Pallas, B. and Costes, E. (2017). ‘Combining genome-wide information with a functional struc-

tural plant model to simulate 1-year-old apple tree architecture’. In: Frontiers in plant science 7, p. 2065.

Mingas, G., Bottolo, L. and Bouganis, C.-S. (2017). ‘Particle MCMC algorithms and architectures for accel-

erating inference in state-space models’. In: International Journal of Approximate Reasoning 83.Supplement

C, pp. 413 –433.

Monteith, J. L. (1965). ‘Evaporation and environment’. In: Symposia of the Society for Experimental Biology.

Vol. 19, pp. 205–224.

Mortier, F., Flores, O. and Gourlet-Fleury, S. (2007). ‘Spatial Bayesian models of tree density with zero infla-

tion and autocorrelation’. In: Journal de la Société Française de Statistique et Revue de Statistique Appliquée

148.1, pp. 39–51.

Murray, L. (2015). ‘Bayesian state-space modelling on high-performance hardware using LibBi’. In: Journal

of Statistical Software 67.1, pp. 1–36.

Musso, C. and Oudjane, N. (1998). ‘Regularisation schemes for branching particle systems as a numerical

solving method of the nonlinear filtering problem’. In: Proceedings of the Irish Signals Systems Conference.

Dublin, Ireland.

Musso, C., Oudjane, N. and Le Gland, F. (2001). ‘Improving regularized particle filters’. In: Sequential Monte

Carlo methods in practice. Ed. by Doucet, A., De Freitas, N. and Gordon, N. Statistics for Engineering and

Information Science. Springer, pp. 247–271.

Newman, K. B., Fernández, C., Thomas, L. and Buckland, S. T. (2009). ‘Monte Carlo inference for state-

space models of wild animal populations’. In: Biometrics 65.2, pp. 572–583.

Nobile, A. and Fearnside, A. T. (2007). ‘Bayesian finite mixtures with an unknown number of components:

the allocation sampler’. In: Statistics and Computing 17.2, pp. 147–162.

Oudjane, N. and Musso, C (1999). ‘Multiple model particle filter’. In: 17ème Colloque sur le traitement du

signal et des images, pp. 681–683.

Paninski, L., Ahmadian, Y., Ferreira, D. G., Koyama, S., Rahnama Rad, K., Vidne, M., Vogelstein, J. and Wu,

W. (2010). ‘A new look at state-space models for neural data’. In: Journal of Computational Neuroscience

29.1, pp. 107–126.

236 Bibliography

Pape, J.-M. and Klukas, C. (2015). ‘Utilizing machine learning approaches to improve the prediction of leaf

counts and individual leaf segmentation of rosette plant images’. In: Proceedings of the Computer Vision

Problems in Plant Phenotyping (CVPPP). Ed. by Tsaftaris, S. A., Scharr, H. and Pridmore, T. BMVA Press,

pp. 3.1–3.12.

Parzen, E. (1962). ‘On estimation of a probability density function and mode’. In:TheAnnals of Mathematical

Statistics 33.3, pp. 1065–1076.

Patrick, L. D., Ogle, K. and Tissue, D. T. (2009). ‘A hierarchical Bayesian approach for estimation of pho-

tosynthetic parameters of C3 plants’. In: Plant, Cell and Environment 32.12, pp. 1695–1709.

Perttunen, J., Siev Änen, R., Nikinmaa, E., Salminen, H., Saarenmaa, H. and Väkevä, J. (1996). ‘LIGNUM:

a tree model based on simple structural units’. In: Annals of Botany 77.1, pp. 87–98.

Pieruschka, R. and Poorter, H. (2012). ‘Phenotyping plants: genes, phenes and machines’. In: Functional

Plant Biology 39.11, pp. 813–820.

Pinheiro, J. C. and Bates, D. M. (1995). ‘Approximations to the log-likelihood function in the nonlinear

mixed-effects model’. In: Journal of Computational and Graphical Statistics 4.1, pp. 12–35.

Plummer, M (2003). ‘JAGS: a program for analysis of Bayesian graphical models using Gibbs sampling’. In:

Proceedings of the 3rd international workshop on distributed statistical computing. Vol. 124. Vienna, p. 125.

Prusinkiewicz, P. and Lindenmayer, A. (1990). The algorithmic beauty of plants. New York, USA: Springer

Verlag.

Prusinkiewicz, P., Lindenmayer, A. and Hanan, J. (1988). ‘Development models of herbaceous plants for

computer imagery purposes’. In: SIGGRAPH Computer Graphics 22.4, pp. 141–150.

Qi, R., Ma, Y., Hu, B., De Reffye, P. and Cournède, P. H. (2010). ‘Optimization of source-sink dynamics

in plant growth for ideotype breeding: a case study on maize’. In: Computers and Electronics in Agriculture

71.1, pp. 96–105.

Quach, M., Brunel, N. and D’Alché-Buc, F. (2007). ‘Estimating parameters and hidden variables in non-

linear state-space models based on ODEs for biological networks inference’. In: Bioinformatics 23.23,

pp. 3209–3216.

Quilot, B., Kervella, J., Génard, M. and Lescourret, F. (2005). ‘Analysing the genetic control of peach fruit

quality through an ecophysiological model combined with a QTL approach’. In: Journal of Experimental

Botany 56.422, pp. 3083–3092.

Quilot-Turion, B., Ould-Sidi, M.-M., Kadrani, A., Hilgert, N., Génard, M. and Lescourret, F. (2012). ‘Op-

timization of parameters of the virtual fruit model to design peach genotype for sustainable production

systems’. In: European Journal of Agronomy 42, pp. 34–48.

Rabiner, L. R. (1989). ‘A tutorial on hidden Markov models and selected applications in speech recognition’.

In: Proceedings of the IEEE 77.2, pp. 257–286.

Racine-Poon, A. (1992). ‘Practical Markov chain Monte Carlo: comment’. In: Statistical Science 7.4, pp. 492–

493.

Raiffa, H. and Schlaifer, R. (1961). Applied Statistical DecisionTheory. Division of Research, Graduate School

of Business Administration, Harvard University.

Bibliography 237

Rainforth, T., Naesseth, C. A., Lindsten, F., Paige, B., Van De Meent, J.-W., Doucet, A. and Wood, F. (2016).

‘Interacting particle Markov chain Monte Carlo’. In: Proceedings of the 33rd International Conference on

International Conference on Machine Learning - Volume 48. ICML’16. New York, NY, USA, pp. 2616–

2625.

Rasch, A. and Bücker, H. M. (2010). ‘EFCOSS: an interactive environment facilitating optimal experimental

design’. In: ACM Transactions on Mathematical Software 37.2, 13:1–13:37.

Reymond, M., Muller, B., Leonardi, A., Charcosset, A. and Tardieu, F. (2003). ‘Combining quantitative trait

loci analysis and an ecophysiological model to analyze the genetic variability of the responses of maize leaf

growth to temperature and water deficit’. In: Plant Physiology 131.2, pp. 664–675.

Richardson, S. and Green, P. J. (1997). ‘On Bayesian analysis of mixtures with an unknown number of

components’. In: Journal of the Royal Statistical Society. Series B (Statistical Methodology) 59.4, pp. 731–

792.

Ripley, B. D. (1987). Stochastic Simulation. New York, USA: John Wiley and Sons, Inc.

Rivière, P., Dawson, J., Goldringer, I. and David, O. (2015). ‘Hierarchical Bayesian modeling for flexible

experiments in decentralized participatory plant breeding’. In: Crop Science. Vol. 55, p. 1053.

Robbins, H. and Monro, S. (1951). ‘A stochastic approximation method’. In: The Annals of Mathematical

Statistics 22.3, pp. 400–407.

Robert, C. (2007).The Bayesian choice. FromDecision-Theoretic Foundations to Computational Implementation.

Springer Texts in Statistics. Springer-Verlag New York.

Robert, C. and Casella, G. (1999).Monte Carlo statistical methods. Springer Texts in Statistics. Springer Verlag

New-York.

Roberts, C. (1996). ‘Markov chain concepts related to sampling algorithms’. In: Markov chain Monte Carlo

in practice, pp. 45–57.

Roberts, G. O. and Sahu, S. K. (1997). ‘Updating schemes, correlation structure, blocking and parameteriz-

ation for the Gibbs sampler’. In: Journal of the Royal Statistical Society. Series B (Statistical Methodology)

59.2, pp. 291–317.

Roberts, G. O. and Rosenthal, J. S. (1998). ‘Optimal scaling of discrete approximations to Langevin diffu-

sions’. In: Journal of the Royal Statistical Society: Series B (Statistical Methodology) 60.1, pp. 255–268.

Roberts, G. and Rosenthal, J. (2001). ‘Optimal scaling for various Metropolis–Hastings algorithms’. In:

Statistical Science 16.4, pp. 351–367.

Rossi, V. and Vila, J.-P. (2006). ‘Nonlinear filtering in discrete time: a particle convolution approach’. In:

Annales de l’Institut de Statistique de l’Université de Paris 50.3, pp. 71–102.

Sahu, S. K. and Cheng, R. C. H. (2003). ‘A fast distance-based approach for determining the number of

components in mixtures’. In: The Canadian Journal of Statistics / La Revue Canadienne de Statistique 31.1,

pp. 3–22.

Sainte-Marie, J., Viaud, G. and Cournède, P.-H. (2017). ‘Indices de Sobol généralisés aux variables dépend-

antes : tests de performance de l’algorithme HOGS couplé à plusieurs estimateurs paramétriques’. In:

Journal de la Société Française de Statistique 158.1.

238 Bibliography

Saltelli, A., Andres, T. H. and Homma, T. (1993). ‘Sensitivity analysis of model output. An investigation of

new techniques’. In: Computational Statistics and Data Analysis 15, pp. 211–238.

Saltelli, A., Chan, K. and Scott, E. M. (2000). Sensitivity Analysis. John Wiley and Sons, Ltd.

Saltelli, A., Tarantola, S., Campolongo, F. and Ratto, M. (2004). Sensitivity Analysis in Practice. John Wiley

and Sons, Ltd.

Scharr, H., Minervini, M., French, A. P., Klukas, C., Kramer, D. M., Liu, X., Luengo, I., Pape, J.-M., Polder,

G., Vukadinovic, D., Yin, X. and Tsaftaris, S. A. (2016). ‘Leaf segmentation in plant phenotyping: a

collation study’. In: Machine Vision and Applications 27.4, pp. 585–606.

Schneider, M. K., Law, R. and Illian, J. B. (2006). ‘Quantification of neighbourhood-dependent plant growth

by Bayesian hierarchical modelling’. In: Journal of Ecology 94.2, pp. 310–321.

Scoffoni, C., Rawls, M., McKown, A., Cochard, H. and Sack, L. (2011). ‘Decline of leaf hydraulic con-

ductance with dehydration: relationship to leaf size and venation architecture’. In: Plant Physiology 156,

pp. 832–843.

Searle, S. R., Casella, G. and McCulloch, C. E. (1992). Variance Components. John Wiley and Sons.

Sherlock, C., Thiery, A. H. and Lee, A. (2017). ‘Pseudo-marginal Metropolis–Hastings sampling using aver-

ages of unbiased estimators’. In: Biometrika 104.3, pp. 727–734.

Simek, K. and Barnard, K. (2015). ‘Gaussian process shape models for Bayesian segmentation of plant leaves’.

In: Proceedings of the Computer Vision Problems in Plant Phenotyping (CVPPP). Ed. by Tsaftaris, S. A., Scharr,

H. and Pridmore, T. BMVA Press, pp. 4.1–4.11.

Smith, A. R. (1984). ‘Plants, fractals, and formal languages’. In: SIGGRAPH on Computer Graphics 18.3,

pp. 1–10.

Smith, R. S., Guyomarc’h, S., Mandel, T., Reinhardt, D., Kuhlemeier, C. and Prusinkiewicz, P. (2006). ‘A

plausible model of phyllotaxis’. In: Proceedings of the National Academy of Sciences 103.5, pp. 1301–1306.

Sorenson, H. (1985). Kalman filtering: theory and application. Ed. by Sorenson, H. IEEE Press.

Stephens, M. (2000). ‘Dealing with label switching in mixture models’. In: Journal of the Royal Statistical

Society. Series B (Statistical Methodology) 62.4, pp. 795–809.

Tardieu, F. (2003). ‘Virtual plants: modelling as a tool for the genomics of tolerance to water deficit’. In:

Trends in Plant Science 8.1, pp. 9–14.

Tatarinova, T. and Schumitzky, A. (2015). Nonlinear Mixture Models. A Bayesian approach. London: Imperial

College Press.

Taylor, W. E. (1977). ‘Small sample properties of a class of two stage Aitken estimators’. In: Econometrica

45.2, pp. 497–508.

Tierney, L. (1994). ‘Markov chains for exploring posterior distributions’. In: The Annals of Statistics 22.4,

pp. 1701–1728.

Tisné, S., Serrand, Y., Bach, L., Gilbault, E., Ben Ameur, R., Balasse, H., Voisin, R., Bouchez, D., Durand-

Tardif, M., Guerche, P., Chareyron, G., Da Rugna, J., Camilleri, C. and Loudet, O. (2013). ‘Phenoscope:

an automated large-scale phenotyping platform offering high spatial homogeneity’. In: The Plant Journal

74.3, pp. 534–544.

Bibliography 239

Tisné, S., Schmalenbach, I., Reymond, M., Dauzat, M., Pervent, M., Vile, D. and Granier, C. (2010). ‘Keep

on growing under drought: genetic and developmental bases of the response of rosette area using a recom-

binant inbred line population’. In: Plant, Cell and Environment 33.11, pp. 1875–1887.

Trevezas, S., Malefaki, S. and Cournède, P.-H. (2014). ‘Parameter estimation via stochastic variants of the

ECM algorithm with applications to plant growth modeling’. In:Computational Statistics andData Analysis

78.Supplement C, pp. 82 –99.

Trevezas, S. and Cournède, P.-H. (2013). ‘A sequential Monte Carlo approach for MLE in a plant growth

model’. In: Journal of Agricultural, Biological, and Environmental Statistics 18.2, pp. 250–270.

Tsukaya, H. (2005). ‘Leaf shape: genetic controls and environmental factors’. In: The International Journal of

Developmental Biology 49, pp. 547–555.

Uhlmann, J. (1995). ‘Dynamic map building and localization for autonomous vehicles’. PhD thesis. Univer-

sity of Oxford.

Van Waveren, R., Groot, S., Scholten, H., Van Geer, F., Wosten, H., Koeze, R. and Noort, J. (1999). Good

Modelling Practice Handbook. Tech. rep. 99-05. STOWA, Utrecht, The Netherlands.

Viaud, G., Chen, Y., Bayol, B. and Cournède, P.-H. (2015). ‘A comparison of a generic MCMC-based

algorithm for Bayesian estimation in C++, R and Julia. Application to plant growth modeling’. In: Annual

Simulation Symposium. Alexandria, United States.

Vonesh, E. F. (1992). ‘Non-linear models for the analysis of longitudinal data’. In: Statistics in Medicine

11.14-15, pp. 1929–1954.

Vos, J, Evers, J. B., Buck-Sorlin, G., Andrieu, B., Chelle, M and De Visser, P. H. (2009). ‘Functional-

structural plant modelling: a new versatile tool in crop science’. In: Journal of Experimental Botany 61.8,

pp. 2101–2115.

Wakefield, J., Gelfand, A. and Smith, A. (1991). ‘Efficient generation of random variates via the ratio-of-

uniforms method’. In: Statistics and Computing 1.2, pp. 129–133.

Wakefield, J. C., Smith, A. F. M., Racine-Poon, A. and Gelfand, A. E. (1994). ‘Bayesian analysis of linear

and non-linear population models by using the Gibbs sampler’. In: Journal of the Royal Statistical Society.

Series C (Applied Statistics) 43.1, pp. 201–221.

Wallach, D. (2006). ‘Evaluating crop models’. In: Working with Dynamic Crop Models: Evaluation, Analysis,

Parameterization, and Applications. Elsevier, Amsterdam, pp. 11–54.

Wand, M. and Jones, M. (1994). Kernel smoothing. Monographs on Statistics and Applied Probability. Chap-

man and Hall/CRC.

Wasson, A. P., Chiu, G. S., Zwart, A. B. and Binns, T. R. (2017). ‘Differentiating wheat genotypes by Bayesian

hierarchical nonlinear mixed modeling of wheat root density’. In: Frontiers in Plant Science 8, p. 282.

White, N., Johnson, H., Silburn, P., Mellick, G., Dissanayaka, N. and Mengersen, K. (2012). ‘Probabil-

istic subgroup identification using Bayesian finite mixture modelling: a case study in Parkinson’s disease

phenotype identification.’ In: Statistical Methods in Medical Research 21 6, pp. 563–83.

Wilhelm, W. and McMaster, G. S. (1995). ‘Importance of the phyllochron in studying development and

growth in grasses’. In: Crop Science 35.1, pp. 1–3.

240 Bibliography

Wishart, J. (1928). ‘Sampling errors in the theory of two factors’. In: British Journal of Psychology. General

Section 19.2, pp. 180–187.

Wu, L., Le Dimet, F.-X., De Reffye, P., Hu, B. and Cournède, P.-H. (2012a). ‘An optimal control methodo-

logy for plant growth. Case study of a water supply problem of sunflower’. In: Mathematics and Computers

in Simulation 82, pp. 909–923.

Wu, Q.-L., Cournède, P.-H. and Mathieu, A. (2012b). ‘An efficient computational method for global sens-

itivity analysis and its application to tree growth modelling’. In: Reliability Engineering and System Safety

107, pp. 35–43.

Xu, L., Henke, M., Zhu, J., Kurth, W. and Buck-Sorlin, G. (2011). ‘A functional–structural model of rice

linking quantitative genetic information with morphological development and physiological processes’. In:

Annals of Botany 107.5, pp. 817–828.

Yan, H.-P., Kang, M. Z., De Reffye, P. and Dingkuhn, M. (2004). ‘A dynamic, architectural plant model

simulating resource-dependent growth’. In: Annals of Botany 93.5, pp. 591–602.

Yao, W. (2012). ‘Model based labeling for mixture models’. In: Statistics and Computing 22.2, pp. 337–347.

Yin, X. and Struik, P. C. (2010). ‘Modelling the crop: from system dynamics to systems biology’. In: Journal

of Experimental Botany 61.8, pp. 2171–2183.

Zeger, S. L. and Karim, M. R. (1991). ‘Generalized linear models with random effects; a Gibbs sampling

approach’. In: Journal of the American Statistical Association 86.413, pp. 79–86.

Bibliography 241

Titre : Méthodes statistiques pour la différenciation génotypique des plantes à l’aide des modèles de croissance

Mots-clés : modèles de croissance de plantes, inférence statistique, Julia, analyse d’images, différenciation génotypique,
modèles hiérarchiques bayésiens

Résumé : Les modèles de croissance de plantes peuvent être
utilisés afin de prédire des quantités d’intérêt ou évaluer la
variabilité génotypique au sein d’une population de plantes ;
ce double usage est mis en évidence au sein de ce travail.
Trois modèles de plantes sont ainsi considérés (LNAS pour
la betterave et le blé, GreenLab pour Arabidopsis thaliana)
au sein du cadre mathématique des modèles à espace d’états
généraux.
Une nouvelle plate-forme de calcul générique pour la
modélisation et l’inférence statistique (ADJUSTIN’) a été
développée en Julia, permettant la simulation des modèles
de croissance de plantes considérés ainsi que l’utilisation de
techniques d’estimation de pointe telles que les méthodes
de Monte Carlo par chaînes de Markov ou de Monte Carlo
séquentielles.
L’inférence statistique au sein des modèles de croissance
de plantes étant de première importance pour des appli-
cations concrètes telles que la prédiction de rendement, les
méthodes d’estimation de paramètres et d’états au sein de
modèles à espaces d’états et dans un cadre bayésien furent

tout d’abord étudiées, et plusieurs cas d’étude pour les
plantes considérées sont analysés pour le cas d’une plante
individuelle.
La caractérisation de la variabilité au sein d’une popula-
tion de plantes est envisagée à travers les distributions des
paramètres de population au sein de modèles hiérarchiques
bayésiens. Cette approche requérant l’acquisition de nom-
breuses données pour chaque individu, un algorithme de
segmentation-suivi pour l’analyse d’images d’Arabidopsis
thaliana, obtenues grâce au Phénoscope, une plate-forme
de phénotypage à haut rendement de l’INRA Versailles, est
proposé.
Finalement, l’intérêt de l’utilisation des modèles
hiérarchiques bayésiens pour la mise en évidence de la vari-
abilité au sein d’une population de plantes est discutée.
D’abord par l’étude de différents scénarios sur des données
simulées, et enfin en utilisant les données expérimentales
obtenues à partir de l’analyse d’images pour une population
d’Arabidopsis thaliana comprenant 48 individus.

Title: Statistical methods for the genotypic differentiation of plants using growth models

Keywords: plant growth models, statistical inference, Julia, image analysis, genotypic differentiation, Bayesian hierarchical
models

Abstract: Plant growth models can be used in order to pre-
dict quantities of interest or assess the genotypic variabil-
ity of a population of plants; this dual use is emphasized
throughout this work.
Three plant growth models are therefore considered (LNAS
for sugar beet and wheat, GreenLab for Arabidopsis thali-
ana) within the mathematical framework of general state
space models.
A new generic computing platform for modelling and stat-
istical inference (ADJUSTIN’) has been developed in Julia,
allowing to simulate the plant growth models considered as
well as the use of state-of-the-art estimation techniques such
as Markov chain Monte Carlo and sequential Monte Carlo
methods.
Statistical inference within plant growth models is of
primary importance for concrete applications such as yield
prediction, parameter and state estimation methods within
general state-space models in a Bayesian framework were

first studied and several case studies for the plants con-
sidered are then investigated in the case of an individual
plant.
The characterization of the variability of a population of
plants is envisioned through the distributions of parameters
using Bayesian hierarchical models. This approach requir-
ing the acquisition of numerous data for each individual,
a segmentation-tracking algorithm for the analysis of im-
ages of Arabidopsis thaliana, obtained thanks to the Phen-
oscope, a high-throughput phenotyping platform of INRA
Versailles, is proposed.
Finally, the interest of using Bayesian hierarchical models
to evidence the variability of a population of plants is dis-
cussed. First through the study of different scenarios on
simulated data, and then by using the experimental data ac-
quired via image analysis for the population of Arabidopsis
thaliana comprising 48 individuals.

Université Paris-Saclay
Espace Technologique / Immeuble Discovery
Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France

	Remerciements
	Résumé
	Introduction
	Mathematical framework
	Plant growth models
	Estimation of parameters and hidden states for a single individual
	Estimation of parameters within population models
	Adopting Julia for statistical inference
	Estimation in state space models: application
	Image analysis
	Estimation within population models: application
	Discussion and perspectives
	Appendices
	Calculation of full conditional distributions
	LNAS model for sugar beet in ADJUSTIN'
	UKF algorithm in ADJUSTIN'
	Database and results directories
	Parallel computation of mean and covariance
	Exchange of particles between processes
	Bibliography

