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Introduction

“With engineering, I view this year’s failure as next year’s opportunity

to try it again. Failures are not something to be avoided.

You want to have them happen as quickly as you can so you can make

progress rapidly.”

Gordon Earle Moore,

Intel co-founder and author of Moore’s law.

Context

In 1965, Gordon Moore forecast that the number of transistors in an integrated

circuit would double every two years [1], which has since become widely known

as Moore’s Law. The continuous increase in transistor density has lead to huge

increases both in performance and in the number of functionalities per circuit.

In turn, this has boosted the development of mobile applications like laptops,

tablets and mobile phones. Besides calling and texting, current mobile phones

incorporate additional features like browsing, playing games, taking pictures,

etc... Moreover, a phone nowadays has the same processing performance than a

high-end desktop computer had ten years ago.

Due to physical limitations (weight and size), the battery capacity of such

devices cannot be expanded at the same rate as their performance. For instance,

the Samsung Galaxy S5 phone, launched in 2014, had a battery capacity of 2800

mAh. Three years later, the Samsung Galaxy S8 phone was launched with a

battery of 3000 mAh. This corresponds to an increase of only 7% in battery

capacity while the processing performance has increased about 300% [2]. More

than the performance, it is therefore the energy efficiency that must be improved,

also known as performance per watt. Otherwise, the battery would not be able

to afford such processing power.

Improvements on energy efficiency are mandatory not only for mobile appli-

cations. The concept of Internet of Things (IoT) has become popular in the last

years. It corresponds to devices that interoperate through network connectivity.

This leads to new application domains, for instance smart house, healthcare, de-

fense, industry automation and transport network, where the interconnection of

ix



INTRODUCTION

theses devices provide new services to the end-users. Intel has estimated that

2 billion devices were connected by 2006 while this number raised to 15 billions

by 2015. At that pace, they expect 200 billions connected objects by 2020 [3].

With such an escalation in the number of connected devices, it is no wonder that

their energy consumption has become a major issue. Indeed, a report issued in

2015 by the Semiconductor Industry Association (SIA) stated that the computer

devices will require more energy than the world can generate by 2040 [4].

Since both dynamic and leakage power depend on the Supply voltage (Vdd),

the main approach to reduce energy consumption so far consisted in scaling down

Vdd with transistor size. However, the reduced transistor dimensions has exacer-

bated the impact of variability on CMOS circuits. The sources of variability can

be either static (due to manufacturing imperfections - P variability) or dynamic

(due to Vdd and temperature fluctuations - VT variability). Therefore, deep

submicron technologies require the use of large voltage guard-bands to ensure a

”correct” operation of the circuit under these different sources of variability, the

objective being to have a functional circuit even in the presence of PVT variabil-

ity. This has lead to a slowdown of Vdd scaling in recent technology nodes, as

shown in Figure 1 [5].

Figure 1: Energy and Vdd scaling vs. technology node [5].

Considerable energy savings can be achieved by decreasing these safety mar-

gins. This is done through the use of an adaptive management scheme. Such

techniques use embedded sensors that track the fluctuation of the circuit tim-

ing induced by static and dynamic variations. Then, a variable voltage actuator

and/or clock frequency actuator (and possibly a body bias actuator) changes on

the fly the operating conditions of the circuit to reduce its energy consumption

while avoiding timing faults. Vdd is kept at its minimum functional value or,

respectively, the clock frequency is kept at its maximum value. The main limita-

tion of current adaptive techniques is that they do not distinguish the source of

x



MOTIVATIONS AND OBJECTIVE

the variation while they detect the variation of the circuit timing. In advanced

technology nodes, aging has become an important source of variability, in par-

ticular BTI and HCI effects. Unlike other dynamic variations, the aging-induced

shift of the circuit performance is permanent. It can thus lead the circuit to an

irreversible unreliable condition.

Aging might not be a real problem for customer electronics, because their life

span is smaller than 10 years and they usually do not operate at harsh environ-

ments. Nevertheless, it is a major issue for safety-critical real-time systems, such

as aerospace and automotive ones. These systems demand high performance with

very low failure rate. For example, avionics systems require over 25 years of oper-

ation with a maximum failure rate of 100 Failure in Time (FIT) [6], where 1 FIT

corresponds to 1 failure per billion hours. Moreover, they are used in extreme

conditions, where the temperature can range from -50◦C to 150◦C. The mission

profiles of such critical systems are highly diversified making it impossible to ac-

curately estimate the aging degradation during the design phase. The worst-case

scenario approach is thus taken into account to fulfill the performance and safety

requirements. However, this leads to an excessive energy consumption due to the

pessimistic voltage guard-bands.

Motivations and Objective

Aging of human beings is determined by the way we live, i.e. how healthy we eat,

how much sport we do, etc... This is also valid for an electronic circuit whose aging

does not depend only on its age. Two identical circuits with the same age do not

necessarily present the same aging degradation. The degradation depends on how

the circuit was used during its lifetime, i.e. the historic of its operating conditions,

namely, supply voltage, temperature and workload. This is why the estimation

of circuit aging is not simple. Moreover, the impact of aging on the circuit

performance is governed by the operating condition once the degradation of the

transistor characteristics causes a shift in the propagation delay that depends on

the PVT conditions. For instance, while a transistor degrades faster at a higher

supply voltage, an aged transistor has a higher relative influence on the circuit

performance when it operates at a lower supply voltage.

In the last years, many works have focused on modelling aging effects in

transistors, particularly BTI and HCI. Such works managed to provide accurate

models for the aging-induced shift of transistor characteristics, especially the

threshold voltage. These models are based on the physical mechanisms of aging

and they are validated on silicon data for several combinations of voltage and

temperature values. Such models can be integrated in electronic circuit simula-

tors, e.g. SPICE, which allows the assessment of the circuit degradation for any

operating condition. However, as stated above, the mission profile of a circuit is
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INTRODUCTION

barely known at the design phase. The use of existing aging models is thus not

enough for estimating the circuit degradation, whatever their accuracy is.

Having an on-line estimation of the circuit health would allow to calculate

on the fly the required safety guard-bands. Besides, it could be used by relia-

bility strategies to improve the circuit lifetime. However, an integrated circuit

nowadays is composed of millions or billions of transistors. Even a single crit-

ical path comprises more than a hundred transistors. Applying transistor-level

models to on-line estimate the circuit degradation is computationally impractical.

AS a consequence, simplified models must be adopted so that the computation

overhead is not larger than the benefits provided by its use.

The objective of this PhD thesis is to propose a methodology to abstract the

complexity of existing aging models. The idea is basically to generate circuit-level

aging models for synchronous digital circuits. Such models are simple equations

that provides the propagation delay of a critical path considering PVT variations

together wigh aging. The historical values of PVT are taken into account to

estimate the aging degradation. Instead of estimating the Vth shift for each

transistor, the proposed models estimate an overall parameter shift for the whole

path. Being architecture- and technology-independent, this methodology can be

applied to any digital circuit.

Contributions

The main contributions of this work are:

• Propose a methodology to generate a circuit-level aging model

from device-level models

A methodology is proposed to model the propagation delay of a critical path

from device-level models. The resulting model gives the critical path delay

based on the PVT conditions. The parameters of the model are obtained

through non-linear regression from data obtained with SPICE simulations.

From the propagation delay model, a second model for both BTI and HCI

effects is proposed. The model reflects the aging-induced propagation de-

lay shift for any PVT condition. In other words, it is integrated in the

delay model as a parameter shift. This latter model takes into account all

factors that influence the aging degradation, namely, supply voltage, tem-

perature, workload and circuit topology. Dynamic variations are also taken

into account to allow on-line estimation.

This contribution has been published in “Towards on-line estimation of

aging in digital circuits through circuit-level models”, IRPS’17 [7]. A patent

application, “Method and device for estimating circuit aging” [8], has also

been filed.
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CONTRIBUTIONS

• Develop an aging-aware solution to estimate voltage and temper-

ature variations

Many sensor solutions exist in the literature to track voltage and temper-

ature changes. However, none had directly addressed the impact of aging

effects on its operation so far, although some works assume that their ar-

chitecture is robust to aging. Moreover, an aging-aware VT sensor must

be adopted to allow the use of the proposed circuit-level models to on-line

estimate the circuit health.

Therefore, we first analyzes the impact of both BTI and HCI effects on

the voltage and temperature estimates provided by a small area digital

sensor. Then, we proposed a recalibration method that increases the sensor

robustness against aging effects.

This work has been presented in the publication “Evaluation and mitiga-

tion of aging effects on a digital on-chip voltage and temperature sensor”,

PATMOS’15 [9].

• Demonstrate the application of the proposed models in different

contexts

The circuit-level models proposed in this thesis can be used either on-line

to estimate the circuit health or off-line to simulate the operation of the

circuit under aging effects. We shortly discuss four possible on-line appli-

cations of the proposed models. The proposed applications consist in an

adaptive control, a dynamic Mean Time To Failure (MTTF) computation,

an estimation of the maximum operating conditions for a given MTTF and

a reliability measure for task mapping in multi-core circuits. Then, the

models are used in two off-line modelling contexts:

- the first one is a framework to simulate a multi-core circuit. This frame-

work allows the implementation of strategies of task mapping and DVFS.

Different strategies are implemented and evaluated here with respect to

aging, performance and energy consumption;

- the second is an adaptive system implemented as a Simulink model. This

circuit constantly changes its clock frequency based on embedded sensors

that are placed at the critical paths and warns the pre-occurrence of a timing

fault. From the simulations, a technique is proposed to estimate the aging-

induced performance shift of such systems by only tracking temperature

variations.

The latter contribution is presented in the publication “Tracking BTI and

HCI effects at circuit-level in adaptive systems.”, NEWCAS’16 [10].
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INTRODUCTION

Report Organization

Apart from this introduction, the report is composed of four chapters and a con-

clusion. Chapter 1 introduces the sources of variability in advanced CMOS nodes

and their impact on digital circuits. Firstly, it presents the process variations due

to manufacturing and atomistic limitations. These variations lead to different val-

ues of performance and power than those estimated at the design phase. Next, the

dynamic variations are addressed. Local variations of voltage and temperature

depend on the circuit operation and they have a strong impact on the switching

speed of the transistors. Finally, aging-induced variations are presented. Aging

has become a major issue in recent technology nodes, in particular BTI and HCI

effects. These phenomena cause parametric shifts in transistors which may result

in a faulty operation of the circuit. This chapter exposes then the importance

and need for correct modelling of variability as well as adaptive techniques.

Chapter 2 firstly explains how the variability is estimated during the design

phase of a circuit and why the traditional approach of safety guard-banding is not

anymore suitable. Then, it introduces the concept of adaptive circuit which is

basically a circuit that implements an adaptation strategy based on a monitoring

system. The adaptation strategy consists in changing the operating conditions

of the circuit to cope with variability. This adaptation can be done through

the supply voltage and/or the clock frequency. Next, this chapter highlights

some existing monitors to track variability. The presented solutions range from

timing fault detection to direct measure of the variation. It is shown that current

solutions are not able to provide an accurate information about the aging-induced

performance degradation. Finally, this chapter addresses the impact of aging on

the voltage and temperature estimation with a digital sensor. A recalibration

method is proposed to mitigate the aging effects on the voltage and temperature

estimates.

Chapter 3 presents the main contribution of this work. It consists in a method-

ology to construct circuit-level aging models from device-level models. Based on

SPICE simulations, a first model is generated for the propagation delay of a

critical path. The resulting model is an equation that depends on the Process-

Voltage-Temperature variability. Next, both BTI and HCI effects are modelled

as a shift in the parameters of the previous equation. The proposed model takes

into account all factors that impact aging, namely, circuit topology, supply volt-

age, temperature and workload. The proposed methodology is validated on two

different architectures implemented in 28nm FD-SOI technology.

Chapter 4 demonstrates the use of the proposed models in different contexts.

First, four on-line applications are shortly discussed. The applications range

from the integration in an adaptive system to a dynamic Mean Time to Failure

computation. Then, the models are used for a multi-core simulation framework.

This framework allows the evaluation of different task mapping strategies with
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respect to reliability, power and performance. In the end, the operation of a

complete AFS system is modelled in Simulink with the help of the proposed

models. As a result, a simplified method is developed to estimate the circuit

degradation by tracking both the clock frequency and the temperature variations

over time.

Finally, Chapter 5 summarizes the main contributions and proposes future

work directions.

xv





Chapter 1

Sources of variability in advanced

technology nodes

The continuous shrinking of transistor size leads to great advances in circuit per-

formance besides reducing energy consumption and transistor cost. However,

this aggressive scaling also makes the CMOS circuits more susceptible to vari-

ability. There exist 3 main sources of variability, namely, Process, Voltage and

Temperature (PVT) variations. Process variations are due to the mismatch of

the manufacturing process. Voltage variations are mostly due to the parasitic

impedance while temperature variations are caused by the power dissipated by

the circuit. PVT variations change the transistor switching speed and leakage

current. These variations may uniformly impact the whole circuit (i.e. global

variations) or impact each part of the circuit in a different way (i.e. local varia-

tions).

Furthermore, aging effects emerged as a new source of variability in recent

technology nodes. Both Bias Temperature Instability (BTI) and Hot Carrier In-

jection (HCI) effects degrade the circuit performance by increasing the transistor

threshold voltage over time. All this increase of variability is transforming the

circuit design in a probabilistic problem instead of a deterministic one. Large

safety guard-bands are thus necessary to guarantee a correct operation under the

worst-case conditions. In this chapter, we summarize the origin of each source of

variability and its impact on digital CMOS circuits.

This chapter is organized as follows. Section 1.1 describes the sources of pro-

cess variations at both global and local hierarchical level as well as their conse-

quences for digital circuits. Next, Section 1.2 and Section 1.3 present the dynamic

environmental variations, namely, supply voltage and temperature, respectively.

Finally, Section 1.4 talks about aging effects, in particular BTI and HCI.
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CHAPTER 1. SOURCES OF VARIABILITY IN ADVANCED TECHNOLOGY NODES

1.1 Process variations

Process-induced variations have always been a key concern in integrated circuit

design. Process variations imply in the mismatch of transistors characteristics

from nominal values. This leads to values of propagation delay and current

leakage different from those estimated during the design phase resulting in yield

loss. Historically, process variations were mainly due to manufacturing process

imperfections. But, as the transistor size approaches the atomic scale, variations

due to the intrinsic atomistic nature become more important.

Two types of process variability exist, namely systematic variations and ran-

dom variations. Systematic variations are deterministic and repeatable devia-

tions that depend on the spatial position of the transistor on the wafer and on

its surrounding layout. Systematic effects are mainly due to photolithography

limitations. Deep ultra-violet laser with 193nm wavelength is still the main light

source used in semiconductor lithography even though technology nodes as small

as 10nm are already in manufacturing. Variations due to sub-wavelength lithog-

raphy occur from the correlation between adjacent structures, such as lithography

proximity effects (LPE) and well proximity effects (WPE). Since these effects fol-

low a clear pattern and are layout-dependent, they can be modeled, predicted

and even corrected through resolution enhancement technologies (RETs) such as

optical proximity correction (OPC) and phase shift mask (PSM) [11].

On the other hand, random variations are a stochastic phenomenon without

clear patterns. Random variations are mainly due to atomistic limitations and

they have become the dominant source of process variation as the transistor

size scaled below 90nm. Some types of random variations are random dopant

fluctuation (RDF), line edge roughness (LER) and gate thickness fluctuation

(OTF) [12]. As it is not possible to predict these variations, they require a

different statistical treatment. Typically, random variations are characterized

and modeled as a Gaussian distribution. Circuits are then designed to reach

a given yield considering this probability function. Note that higher the yield

desired, higher the safety margins needed.

1.1.1 Global process variations

Besides systematic and random natures, process variations are also classified be-

tween global and local. Global variability corresponds to deviations of physical

parameters from nominal values with the same change for every transistor on

a die. These parameters include channel length (L), channel width (W), layer

thickness, resistivity, doping density and body effect [12]. As a consequence,

identically designed circuits may have different performances and power charac-

teristics. As shown in Figure 1.1 [13], the performance difference between dies

within a wafer can be up to 30% while the leakage current can vary up to a factor
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1.1. PROCESS VARIATIONS

Figure 1.1: Frequency and leakage current distribution between dies within a
wafer fabricated in 180nm CMOS technology[13].

of 20.

Global variations can be separated in lot-to-lot (L2L), wafer-to-wafer (W2W)

and die-to-die (D2D). A lot usually contains 25 wafers, while a wafer may contain

hundreds or thousands of dies depending on the die size. Global variability is

mostly systematic and, thus, spatially and temporally correlated. This means

that dies that are closer to each other in a wafer are more prone to have undergone

the same variability. The same is valid for lots manufactured over a short period

of time.

In order to take global variations into account during design, foundries per-

form device characterization through I-V measurements, providing designers with

models for best- and worst-case of transistor parameters in addition to nominal

values. Fast/fast (FF) and slow/slow (SS) corners correspond to the best and

worst values for PMOS and NMOS characteristics, respectively. They are rep-

resented by three standard deviations from the nominal values. The FS and SF

corners are called as ”skewed” corners. They are considered a concern for analog

circuits, but are of a minor importance in digital designs [14].

A circuit is usually designed taking into account the worst-case scenario, i.e.

with slow NMOS and slow PMOS transistors. However, this approach leads to a

considerable energy loss since either a lower clock frequency than the maximum

one or a higher supply voltage than the minimum one has to be used. Some

companies adopt speed-binning by testing and separating the fabricated chips

according to their maximum operating frequency. Yet, individually testing each

circuit after fabrication is time- and cost-consuming that it is rarely worth doing.

1.1.2 Local process variations

Local variability, also called within-die (WID) variability, makes identically sized

transistors placed in the same die have different electrical characteristics such as
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threshold voltage. Despite having a systematic part, local variations are domi-

nated by random components and are thus spatially uncorrelated [15]. Random

dopant fluctuation (RDF) is the main source of local variation and is caused by

the mismatch in the amount of dopants in the channel. Note that the number

of dopant atoms in the channel reduces as the technology scales down, as shown

in Figure 1.2 [16]. As a consequence, the reduced number of dopants consider-

ably increases the impact of RDF on the threshold voltage variation since each

mismatched atom has a larger importance.

Figure 1.2: The number of dopant atoms per transistor is reduced with technology
node [16].

Other sources of local random variations are line edge roughness (LER) [17]

and oxide thickness fluctuation (OTF) [18]. LER is the deviation of the gate

shape from an ideal smooth edge. It was not a concern in past technologies since

the transistor dimensions were much more larger than the roughness. However,

LER has not scaled down with technology becoming thus an important source

of variation in technology nodes below 40nm. OTF is induced by the atom-level

interface roughness between silicon and gate dielectric. Similarly to LER, it has

also become a major issue in recent technology nodes as the oxide thickness is

reduced to only a few silicon atomic layers.

Local random threshold voltage variation is usually modelled as a stochastic

process with a standard deviation σVth . σVth is reported to be inversely propor-

tional to the gate area, as follows [19]:

σVth ∝
1√
WL

(1.1)

where W and L are the width and the length of the transistor gate, respectively.

Figure 1.3 shows the σVth evolution with respect to technology node [20] for the

three main sources of local random variation. As the threshold voltage has an
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1.2. SUPPLY VOLTAGE VARIATIONS

important role on the switching speed of the transistors, an increase in σVth will

result in an increase in the path delay uncertainty.

The traditional approach to estimate local variations during circuit design is

to perform heavy Monte Carlo simulations including global variations as well.

This provides a statistical analysis of both circuit performance and yield under

all sources of process variation. But, as it can be seen through Figure 1.3 and

equation (1.1), it becomes harder to handle local variations as the transistor size

scales down. Increasing voltage guard bands are thus mandatory to reach an

acceptable yield which, in turn, leads to poor energy efficiency. This issue will

be better covered in the next chapter.

Figure 1.3: Local threshold voltage variation σVth induced by random dopant
fluctuation (RDF), line edge roughness (LER) and oxide thickness fluctuation
(OTF) versus technology node [20].

1.2 Supply voltage variations

In addition to static process variations, the circuit is also affected by dynamic

environmental variations, namely, supply voltage and temperature variations.

Supply voltage variations are mainly caused by voltage drop and current deriva-

tive di/dt noise [14]. Voltage drop, also called IR drop, occurs when the current

flows over the parasitic resistance of the power grid while di/dt noise is caused by

the parasitic inductance. As packaging and platform technologies do not progress

at the same rate than CMOS process, the circuit impedance does not scale as fast

as the supply voltage. This leads to an influence of voltage variations relatively

more important as the technology scales down [13].

The duration of a voltage fluctuation ranges from nanoseconds to microsec-

onds. As shown in Figure 1.4, voltage variations can be classified in 3 categories.
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Figure 1.4: Three different timing categories of voltage drop [21].

The first droop lasts only a few nanoseconds but it is usually the deepest voltage

drop. It is due to both the package inductance and the on-die capacitance and it

can lead to a timing fault if a critical path is activated during the drop. The sec-

ond droop depends on the package decoupling. It has a duration of some hundred

nanoseconds. Finally, the third droop persists for a few microseconds. However

it can be reduced through the use of bulk capacitors. After a voltage drop, the

supply voltage always return to its nominal value until a new drop occurs.

A voltage drop can lead to variations up to 10% of the nominal voltage. The

consequence of a voltage variation over the circuit delay depends on the supply

voltage itself, as shown in Figure 1.5 for a 5 mV voltage drop. Lower the supply

voltage, larger the delay variation. This comes from the fact that the transistor

switching time is determined by its drain current which, in turn, depends on the

Figure 1.5: Path delay variation in percentage to a 5 mV voltage drop depending
on the supply voltage.
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difference between the V and the threshold voltage Threshold voltage (Vth). In

[22], the authors demonstrated that the propagation delay of a logic gate, e.g. an

inverter, is proportional to the supply voltage as follows:

tswitch ∝
V

(V th− V )α
(1.2)

where α is a technology-dependent factor. As it can be seen, the importance of a

voltage variation ∆V increases as V gets close to Vth. Finally, voltage variations

are not uniform around the die, they are spatially correlated. A voltage drop

propagates through the power grid affecting each circuit logic block in a different

way depending on its spatial position [23]. Handling voltage variations in recent

technology nodes requires the use of local sensors or else large voltage guard-

bands.

1.3 Temperature variations

Figure 1.6: Temperature variation within a chip due to hot-spots [13].

Another source of dynamic variation in CMOS circuits is the temperature.

Besides fluctuations of the ambient temperature, a circuit is also susceptible to

local temperature variations induced by the power dissipated by its transistors.

Since an electronic circuit does not perform any chemical or mechanical work,

almost all the electrical energy consumed is transformed in thermal energy. The

temperature inside a circuit can vary more than 30◦C depending on the spatial

position, as shown in Figure 1.6. This internal variation is due to hotspots, i.e.,

regions of the circuit that have a high activity and, consequently, dissipate more

power. Temperature variations are slower than supply voltage ones since they

have time constants ranging from miliseconds to seconds [24].
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While an elevated temperature reduces the interconnect performance, the

effect of temperature variations on the propagation delay of logic gates depends

on the supply voltage. An increase in temperature will increase the transistor

switching speed at a low value of V while the inverse is observed at a high value

of V. This phenomenon is called the inverse temperature dependence (ITD). It is

due to the fact that a higher temperature will reduce two transistor parameters,

namely, threshold voltage and carrier mobility. Yet, these two parameters impact

the transistor switching speed in opposite ways. A reduced threshold voltage leads

to faster transitions while a smaller carrier mobility leads to slower transitions.

As can be seen in Figure 1.7, the path propagation delay increases with the

temperature for values of V above 0.95V while it decreases for values of V below

0.95V.

Figure 1.7: Demonstration of the inverse temperature dependence (ITD). A
higher temperature increases the path propagation delay for values of V higher
than 0.95V while the inverse is observed for V lower than 0.95V.

The circuit performance is not the only issue related to the temperature. By

reducing the threshold voltage, the increase in temperature also leads to more

leakage power dissipated by the transistors. Moreover, it has a direct influence on

the aging-induced circuit degradation as explained in the next section. Finally,

as the technology scales down, the transistor density in a circuit considerably

increases. This, in turn, causes the elevation of the power density and, therefore,

of the self-heating effect. Due to thermal design power constraints, parts of

the circuit must be thus powered-off, the so-called dark silicon. Recent studies

claimed that the amount of dark silicon may reach up to 80% of the circuit with

8nm CMOS technology [25].
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1.4 Aging effects

Actually, aging effects on CMOS transistors is not a totally new topic in micro-

electronics. Negative Bias Temperature Instability (NBTI) has been reported for

the first time in 1966 [26]. However, it was not until recently that aging has

become a real issue in CMOS circuits, when gate oxide thickness scaled to values

lower than 1.5nm [27, 28]. A smaller gate oxide thickness leads to a higher oxide

electric field which is the dominant factor in the main aging phenomena such as

NBTI, HCI and TDDB.

1.4.1 Negative/Positive Bias Temperature Instability (N/PBTI) and

Hot Carrier Injection (HCI)

Negative Bias Temperature Instability (NBTI) consists in the degradation of

PMOS transistors due to charges that get trapped inside the dielectric. These

charges alter the transistor parameters over time, particularly the threshold volt-

age (Vth). Vth is increased due to the trapped charges reducing the transistor

switching time. NBTI is claimed to be the most prominent aging phenomenon in

digital CMOS circuits [29]. Positive Bias Temperature Instability (PBTI) is the

equivalent degradation in NMOS transistors. However, PBTI effect is consider-

ably smaller than NBTI and it only became an important degradation mechanism

after the emergence of High-κ/Metal Gate (HKMG) transistors [30].

BTI degradation is reported to be composed of two mechanisms [31], namely,

a recoverable part and a permanent one. The recoverable degradation is due to

charge-trapping in preexisting traps inside the dielectric. The channel charges

get trapped in the dielectric when a voltage is applied on the gate and they are

released to the channel when the voltage is removed. The permanent degradation

is called interface state generation because it is caused by the break of Si-H bonds

located at the silicon-oxide interface. Both mechanisms have an exponential

dependence on the oxide electric field, determined by the supply voltage, and

on the temperature [31]. An increase in temperature reduces both capture and

release time of charges inside the oxide [32]. In other words, transistors get more

degraded at elevated temperatures, but they also recover faster after stress is

removed [33].

Hot Carrier Injection (HCI), also referred as Channel Hot Carrier (CHC)

or Hot Carrier Stress (HCS), is another aging mechanism of CMOS transistors

generated by charges that get trapped inside the dielectric. Likewise, its main

consequence is observed as the increase in the transistor threshold voltage. The

main difference is that HCI is originated from the horizontal electric field between

the source and the drain, i.e. when there is a drain current flowing in the channel.

HCI is caused by ”hot carriers” in the channel that gain enough kinetic energy

to enter the dielectric. HCI physics are equivalent to the permanent degradation
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of BTI (interface state generation) and it is thus not recoverable [34].

While BTI is impacted by the signal probability, i.e. the time the gate signal

spends at a logic value (0 for NBTI and 1 for PBTI), the HCI is impacted by the

signal activity, i.e. the average number of transitions. Generally, BTI is more

important than HCI in digital circuits because most of the time the signals are

in a static state instead of in a transition state [29]. HCI has also an exponential

dependence on the supply voltage [35]. However, HCI is not strongly impacted

by the temperature unlike BTI [36]. Actually, it even slightly increases at a lower

temperature. HCI is therefore as important as, or even more than, BTI at low

temperatures.

Besides having different origins, it is incorrect to treat BTI and HCI effects as

totally independent mechanisms. This is due to the fact that some defects at the

semiconductor-oxide interface are actually shared between both mechanisms. A

pessimistic estimation is thus obtained by separately modelling the contribution

of each effect and adding them together. However, recent works managed to

accurately model the interplay of both BTI and HCI effects [37, 34].

Another issue related to BTI is its induced variability. Transistors of equal

size and enduring the same stress do not necessarily produce the same Vth shift.

It is due to the amount of preexisting defects inside the dielectric which has

a random nature [38]. Past works have already demonstrated that time-zero

variability (process-induced) and time-dependent variability (BTI-induced) are

not correlated [39]. The local Vth variability therefore increases over time due to

BTI. On the other hand, it is reported that HCI has a stronger dependence on

time-zero parameters and, therefore, it does not induce more variability [40].

Moreover, the average number of preexisting defects inside the oxide decreases

as the technology scales down. This leads to an exponential growth of the time-

dependent variability in addition to the time-zero variability increase previously

discussed in Section 1.1.2. Figure 1.8 shows the simulated Vth shift for transis-

tors with dimensions equal to 280× 720nm2 and for transistors with 35× 90nm2

dimensions [41]. As it can be seen, the increase in variability caused by the re-

duced number of defects is impressive. Nevertheless, the BTI-induced variability

is an important issue for analog circuits and SRAM memories while for digital

circuits the mean degradation is more relevant [42].

1.4.2 Destructive aging effects

BTI and HCI are the most important aging effects, but they are not the only ones.

While they induce a gradual shift in the transistor parameters, the other effects

lead to destructive events which may result in a total failure of the circuit. Time-

Dependent Dielectric Breakdown (TDDB) is another phenomenon that occurs

inside the dielectric. TDDB is characterized by the creation of a conductive

path inside the dielectric caused by trapped charges. Like BTI, the charges are
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Figure 1.8: Simulated Vth shift due to BTI for transistors with (a) 800 defects
and (b) 12 defects. The reduced number of preexisting defects, which is related
to transitor size, leads to a considerable increase in local variability [41].

trapped inside the dielectric when a high electric field is applied on the dielectric.

This conductive path increases the leakage current and may turn the transistor

inoperative. Some soft breakdowns gradually increase the leakage current before

the occurrence of the hard breakdown, when a path is created through the gate

to substrate.

Electromigration (EM), Stress Migration (SM) and Thermal Cycling (TC)

are aging mechanisms that affect the interconnects. Electromigration is due to

the momentum transfer between conducting electrons and diffusing metal atoms

caused by the current that flows in the wires. EM provokes small voids in the

interconnects which may result in an open circuit.

Stress Migration is induced by mechanical stress and can also lead to an open

circuit in the interconnects.

Finally, Thermal Cycling is due to elevated temperature gradients. Permanent

damage accumulates during large variations of temperature and may eventually

lead to failures in the interconnects and packaging.

Models for all the aging effects listed here can be found in [43]. In this thesis

we focus only on BTI and HCI effects since we are interested in modeling the

circuit performance degradation. The other aging effects are thus not addressed

hereafter.

1.5 Conclusion

This chapter introduced all sources of variability in digital CMOS circuits, namely,

PVT variations and aging effects. Process variations are caused by manufactur-

ing and atomistic limitations. They can lead to permanent changes in the circuit

performance and leakage power from expected values. Voltage variations are

mainly due to the circuit impedance. They provoke very fast fluctuations of the
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circuit performance, in the order of nano- and microseconds. Local temperature

variations are induced by different activities and, as consequence, power dissi-

pation between the circuit blocks. Finally, aging effects, in particular BTI and

HCI, manifest through carriers that get trapped inside the dielectric. These aging

mechanisms cause gradual degradation of the transistor characteristics reducing

the circuit performance over time.

The continuous technology scaling is making hard to design resilient and

energy efficient circuits. Reduced transistor size increases both random process

variations and aging effects due to the atomistic nature. Each missing/extra

dopant or carrier has a greater relative importance as the number of atoms inside

a transistor is reduced. Besides, circuits are more susceptible to voltage variations

as the voltage scales down while the circuit impedance does not scale at the

same rate. Finally, increased transistor density leads to more power density and,

consequently, more temperature deviation within a circuit.

The use of safety guard-bands is not anymore suitable due to the considerable

waste of energy imposed by it. As shown in Figure 1.9, voltage margins necessary

to address the worst case scenario for every source of variability constitute an im-

portant part of the supply voltage. The following chapter discusses thus existing

solutions to handle variability in digital circuits. These solutions increases the

energy efficiency by reducing the safety guard-bands while avoiding timing faults.

Figure 1.9: Recent technology nodes require large voltage guard-bands to cope
with all sources of variability, namely, process, temperature, voltage and aging
variations.
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Chapter 2

Techniques for coping with

variability in digital circuits

In Chapter 1, we introduced the sources of variability and their impact on digital

circuits. In the present chapter, we first discuss the traditional approach adopted

by designers to handle variability. This approach basically consists in modelling

the variations and using simulator tools during the design phase to calculate the

timing margins needed to avoid timing faults. However, this approach has become

no longer suitable as the technology scaled down and the variability exacerbated

because it leads to large guard-bands that do not allow to use the circuit at the

best of its capabilities in terms of energy efficiency.

Adaptive techniques have emerged as an important research topic in the last

years to reduce the margins fixed by the circuit designers. These techniques

implement a strategy to on-line adapt the circuit against variations. The adap-

tation can be done through a variable supply voltage source or/and a variable

clock generator. Some examples are briefly discussed here. We also discuss the

adaptive body bias, a technique that has arisen with FD-SOI technologies. Next,

we present some sensors for on-line tracking the variability. This comprises mon-

itors for tracking the fluctuation of the critical path timing as well as for directly

measuring PVT and aging variations.

Lastly, this chapter analyzes the impact of aging effects on an environmental

variability monitor. The use of such monitor is essential in adaptive architectures

to track local variations of the supply voltage and the temperature. Still, it is

susceptible to aging as any other circuit element. Thus, it becomes less reliable

over time. Therefore, we propose a recalibration methodology to mitigate the

impact of BTI and HCI on the estimates provided by the monitor making it

robust against aging.
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CIRCUITS

2.1 Introduction

Even though asynchronous logic arises as a promising solution to reduce power

dissipation and increase robustness to variability [44], nearly all digital circuits are

still based on synchronous logic. A synchronous circuit is composed of memory

elements, mainly flip-flops, synchronized by a common clock signal. All flip-flops

in the circuit simultaneously update their outputs, based on their respective input

signals, on the rising edge of the clock (sometimes on the falling edge or even on

both edges).

Figure 2.1: Example of a setup time violation occurring in the second clock rising
edge. The input data ((D)) arrives at the flip-flop at the same time as the clock
rising edge resulting in a timing fault, i.e. the logic value stored in the flip-flop
((Q)) remains ’1’ instead of changing to ’0’.

One of the main concerns for digital circuit designers is thus to avoid setup

time violations, also called timing faults. A setup time violation occurs when a

data arrives at the flip-flop too close or after the clock rising edge. This makes

the flip-flop to store a possibly wrong value. Finally, a timing fault may lead

to an error in the circuit operation. This can be catastrophic in safety-critical

systems like automotive and aviation ones. Figure 2.1 shows an example of a

timing fault. The value latched by the flip-flop in the second clock rising edge is

not the correct one. The input data transitions too late, making a logical ’1’ to

be stored in place of a logical ’0’.

The data arrival time is determined by the propagation delay of the path that

diffuses it. The path propagation delay, in turn, depends on all sources of vari-

ability introduced in the previous chapter, namely, process, voltage, temperature

and aging. As stated in Session 1.2, the propagation delay is inversely linear

to the supply voltage V (for values of V sufficiently higher than the threshold

voltage Vth). Therefore, designers usually add voltage margins to V in order to

reduce the propagation delay and thus avoid timing faults despite the presence

of variations. As shown in Figure 2.2, either a higher voltage (V margin) or a

lower frequency (f margin) is adopted.
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Figure 2.2: Safety margins are used to handle PVT and aging variations. fMAX

is the nominal frequency for a given supply voltage, while f is the actual clock
frequency taking into account safety margins. These margins can be either a
lower frequency (f margin) or a higher voltage (V margin).

Nevertheless, the power dissipated by the circuit strongly depends on V . The

power is composed of two components, namely, dynamic and static. Dynamic

power is due to the charging and discharging of capacitances originated by the

change of state of the transistors. It represents then the power dissipated when

the circuit is active. The dynamic power Pdyn dominates the power consumption

in CMOS circuits and it is related to the supply voltage V as follows:

Pdyn ∝ αfV 2 (2.1)

where α is the activity factor, i.e. the percentage of transistors switching, and

f is the clock frequency. The static power, on the other hand, is due to the

leakage current. It represents the amount of power dissipated when the circuit

is in an idle state. Leakage currents depend on Vth and, consequently, on the

temperature T . Besides smaller than the dynamic power, the importance of static

power has considerably increased with technology scaling due to the reduced Vth.

The static power Pstat dependence on both V and T can be expressed as:

Pstat ∝ βV γeδT (2.2)

where β, γ and δ are technology- and circuit-dependent parameters. As can be

seen from equations (2.1) and (2.2), the use of excessive voltage guard-bands

leads to a significant energy loss. Designers must thus accurately estimate the

minimum voltage margin needed for a correct operation of the circuit in order to

obtain the most energy efficient circuit.
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CIRCUITS

A statistical characterization of the transistor parameters is performed by the

semiconductor foundries for each new technology node [45]. This characterization

generates device-level models that are used by Electronic Design Automation

(EDA) tools to assess the circuit timing characteristics. Besides the mean value,

the characterization also provides the standard deviation σ for each transistor

parameter. This allows the assessment of the circuit timing for many process

variations. For voltage and temperature variations, σ depends on the mission

profile, i.e. the circuit application. However, the number of possible corners can

reach up to 220 combinations making it impossible to assess the circuit timing for

each corner [46]. Therefore, the traditional approach consists in identifying the

circuit critical paths and in calculating their propagation delay for the worst-case

corner of PVT variations through Static Timing Analysis (STA) [47]. The best-

and worst-case values are usually defined as ±3σ from the mean value.

The main drawback of this approach is that it leads to an over-pessimistic

estimation of the circuit performance, the probability of worst-case scenario hap-

pening being very low. Actually, in some cases it is even zero due to the correla-

tion between process variations that makes not all conjunction of values feasible.

Furthermore, the worst-case process corner is not necessarily equivalent to the

worst-case performance corner [48]. Basically, there exist an interaction between

transistor parameters so that some specific combinations of values can lead to a

performance worse than the combination of worst-case values.

Another way to estimate the safety guard-bands is through Monte-Carlo anal-

ysis [49]. It consists in running hundreds or thousands of simulations with random

values for the transistor parameters extracted from their respective probabilistic

distribution. This is a ”brute force” method to statistically evaluate the propa-

gation delay of the critical paths. Its main shortcoming is the excessive compu-

tation time required to obtain a representative amount of simulation data. An

alternative to Monte-Carlo analysis is Statistical Static Timing Analysis (SSTA)

[50]. This approach is similar to STA but it uses probability distributions for the

timing of gates and interconnects instead of deterministic values.

To summarize, constant advances in the EDA industry have made the circuit

timing estimation a quite matured process. Nowadays, designers have several

means for accurately assessing the critical path propagation delay in the worst-

case scenario. Nevertheless, the aggressive scaling of the transistor dimensions

has exacerbated the impact of variability on digital CMOS circuits, as stated in

Chapter 1. Significant voltage margins lead to huge energy losses that cannot be

afforded, in particular for mobile applications with limited battery life.
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2.2 Adaptive architectures

Adaptive architectures have emerged in the last years to cope with local variabil-

ity in digital circuits without the need of large guard-bands. Adaptive circuits

implement a sense-and-react scheme usually based on Dynamic Voltage and Fre-

quency Scaling (DVFS). Basically, a DVFS system integrates two actuators,

namely, a variable voltage supplier and a variable clock generator. These actu-

ators dynamically change the circuit supply voltage V and the clock frequency

f depending on the required performances. This approach reduces the energy

consumption by lowering the power dissipation when there is no need for a high

performance. However, in a DVFS system, the V/f couples are predefined in

the design phase, with safety margins incorporated to avoid timing faults. The

Adaptive Voltage and Frequency Scaling (AVFS) technique consists in employ-

ing embedded sensors to track the variability in addition to the actuators used

for DVFS. By implementing a closed-loop control, V and/or f can be dynami-

cally changed to adapt against variability. Therefore, AVFS increases further the

energy efficiency of the circuit by reducing the safety guard-bands.

Figure 2.3: General architecture of an AVFS system.

A general architecture of an AVFS system is shown in Figure 2.3. The small

black squares inside the Core block correspond to the embedded monitors. They

provide information regarding the local variability for the Local adjustment block.

This latter is in charge of checking if the circuit is operating at a safe and energy

efficient point. It then notifies the Local control block of the need of changing the

operating conditions to either avoid timing faults or increase the energy efficiency.

Finally, the Local control manages both the voltage and the frequency actuators

based on this information and on the performance constraints provided by a

higher-level control. The objective is to always maintain the clock frequency f

as close as possible to the maximum functional frequency fMAX , as shown in

Figure 2.2.
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2.2.1 Adaptation strategies

In AVFS systems, the change of operating conditions can be done through two

variables, the clock frequency and the supply voltage. Generally, while one ac-

tuator is used for adaptation purpose, the other remains constant or is set so as

to satisfy the performance constraints, like in a DVFS system. A circuit that

adapts itself through the clock frequency is called AFS system. As shown in

Figure 2.4(a), the values of V are fixed according to the performance levels while

f is dynamically changed to deal with variability. Similarly, Adaptive Voltage

Scaling (AVS) is when the adaptation is done through the supply voltage, see

Figure 2.4(b).

(a) AFS principle, V values are prede-
fined while f is used for adaptation.

(b) AVS principle, f values are prede-
fined while V is used for adaptation.

Figure 2.4: AFS and AVS strategies with 3 performance levels.

Supply voltage actuator

The first works that focused on adaptive techniques for dealing with static and

dynamic variability date back to the 90s [51, 52, 53, 54, 55]. They are all based

on AVS which is usually preferred over AFS since the circuit performance is

not modified. In these works, the supply voltage V is dynamically changed to its

minimum functional value Vmin based on the information regarding the variability

provided by a monitoring system.

In general, a DC/DC buck converter is used as voltage actuator. Figure 2.5(a)

illustrates the standard architecture of a DC/DC buck converter. This circuit

converts a DC voltage V dd supplied by the main power supply to a lower DC

voltage V out. It is composed of a Pulse Width Modulator (PWM) block that

controls the PMOS and NMOS transistors based on an internal ramp. The PWM

block is governed by an internal control that generates a command depending on

the required voltage V ref and on the current output V out. Finally, an LC filter
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(a) Standard architecture of a DC/DC
buck converter.

(b) Principle of the Vdd-hopping.

Figure 2.5: Different types of voltage actuators.

reduces the output ripple. This kind of voltage actuator presents great stability

and robustness to variability due to its closed-loop control. However, its large

area, in particular due to the LC filter, limits its implementation in small circuits.

Furthermore, it presents a poor efficiency at low voltages, which is the case of

low-power circuits.

To overcome these limitations, recent works [56, 57, 58] adopted an adap-

tation strategy based on Vdd-hopping technique, also called voltage dithering.

Figure 2.5(b) depicts its principle. Vdd-hopping consists in switching the volt-

age between two or more predefined V dd levels to achieve an output voltage

Vout equals in mean value to Vref . This kind of actuator has a very small area

and a fast voltage transition time. However, unlike the DC/DC buck converter,

the Vdd-hopping technique has a discrete number of voltage levels. For this

reason, Vdd-hopping seems more suitable for changing the performance level

(Figure 2.4(a)) than for adapting against variations (Figure 2.4(b)).

Clock frequency actuator

In some cases, AFS may be a better choice than AVS since its implementation is

less complex, no impact on the power distribution system, and the time dynamics

of frequency actuators are considerably smaller, allowing a faster adaptation to

dynamic variations. In an AFS system, the clock frequency f is dynamically

controlled to stay always at its maximum functional value fMAX . This is done

through a variable clock generator, usually a Phase-Locked Loop (PLL) [59, 60,

61]. PLLs use a Voltage-controlled oscillator (VCO) to generate the oscillating

signal. A phase detector compares the output signal frequency with the reference

frequency while a filter ensures the actuator stability. Figure 2.6(a) [62] shows an

example of a all-digital PLL. This kind of actuator is robust to variability and

provides a low-jitter clock signal. However, it has a high area cost which impedes

its replication in a multi-core circuit to apply local AVFS in each core.

Another frequency actuator, known as Frequency-Locked Loop (FLL), has

thus been developed to overcome this limitation of PLLs. A FLL has a similar
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architecture than PLL, also generating a clock signal from a VCO. The difference

lies on the way they compare the output frequency with the reference one. In an

FLL, the comparison is done directly through the frequency instead the phase.

That is why its circuit is much more simpler, as shown in 2.6(b) [63]. The authors

in [63] claim that the area of the proposed FLL is 4 to 20 times smaller than a

classical PLL. Moreover, its response time is way faster, allowing a transition

of frequency level in a few clock cycles. In [58], a digital FLL is used to locally

generate a clock signal inside each core of a multi-core circuit with output fre-

quency ranging from 2.9 GHz down to 15 kHz. The area cost was not reported,

but the same FLL was adopted in another multi-core architecture [64] with an

area overhead of only 0.3% of each cluster.

(a) Example of digital PLL [62]. (b) Example of digital FLL [63].

Figure 2.6: Different types of frequency actuators.

Body bias voltage

Besides AVS and AFS, a new adaptation strategy has recently emerged, Adaptive

Body Bias (ABB). MOSFET transistors have a fourth terminal called body

which is generally connected to the source. However, it is possible to modulate

the transistor threshold voltage Vth by applying a source-to-body voltage, also

called Body bias voltage (Vbb). Vth is increased when a positive Vbb is applied,

known as reverse body-bias (RBB). This leads to a reduced leakage current with

a slower switching speed as side effect. Conversely, forward body bias (FBB),

i.e. applying a negative Vbb, reduces Vth and, as a consequence, leads to faster

transistors although with increased leakage current.

The use of ABB was first proposed in early 2000s [65, 66, 67]. Initially, it was

adopted to compensate die-to-die process-induced Vth variations. For instance,

[67] claimed to reduce the frequency variation σ/µ1 between dies from 4.1% to

0.69% by applying ABB. Better results were achieved by applying different values

of Vbb to each circuit block in order to tackle within-die variations. This approach

reduced further the frequency variation σ/µ to only 0.21%. The reported area

1Where σ is the standard deviation and µ is the average value.

20



2.3. MONITORING SYSTEMS

overhead due to the ABB generator and its control block is from 2% to 3% of the

total die area.

The development of Ultra-Thin Body and Box Fully-Depleted Silicon-On-

Insulator (UTBB FD-SOI) CMOS technologies in the last years has boosted the

benefits of ABB. UTBB FD-SOI enables the use of a wide range of body bias

voltage. Vbb can vary up to ±3.0V in UTBB FD-SOI technologies while in bulk-

based technologies it was limited to ±0.5V [68]. It is widely reported that FBB

increases both the performance and the energy efficiency of digital circuits in

UTBB FD-SOI, either at low or high values of Vdd [61, 69]. Many recent works

have thus focused on the choice of using dynamic Vdd or dynamic Vbb to find

the best performance/energy trade-off. Usually, the best choice is their joint use

since each strategy presents better results depending on the operating conditions

(clock frequency, temperature, circuit activity, ...) [70, 71].

With regard to reliability, [72] showed that FDSOI and bulk transistors have

similar sensitivities to both BTI and HCI effects. Later, [73] demonstrated the

benefits of using ABB over AVS in FDSOI technology. Firstly, transistors endure

more degradation when a higher Vdd is applied to compensate aging variations

instead of using FBB. Secondly, AVS also increases the power dissipation while

the power remains constant with ABB. Besides the benefits in energy and re-

liability, the implementation of ABB is also simpler. Unlike AVS, it does not

require substantial consideration of IR drop and it has a low static current since

its load is almost purely capacitive [74]. However, Vbb management is not yet a

fully mature technique as supply voltage and clock frequency management, this

is why AVS and AFS are more popular strategies.

2.3 Monitoring systems

The choice of adaptation strategy and actuators is important to optimize the

energy efficiency of the circuit. However, the monitoring system plays a critical

role because it is in charge of ensuring that the circuit is operating in a ”safe zone”,

i.e. without timing faults. Moreover, it must ensure that the clock frequency is

as close as possible to its maximum functional value. An inaccurate monitoring

system can thus result in either an unreliable or an energy inefficient circuit.

Likewise the adaptation strategy, the monitoring of the different roots of

variability in an AVFS system can be done in different ways. They can be split

in two major categories. The first one consists in timing fault detection and

fMAX tracking techniques. Sensors int this category focus on monitoring the

variation of the critical path slack time to detect either the pre-occurrence or the

occurrence of a timing a fault. Thus, they use a critical path replica or they are

placed on the critical paths. The other category is the direct measurement of the

variability. This category of monitors provides a numerical measurement of one
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of the source of variations, i.e. process, voltage, temperature or aging.

2.3.1 Timing fault detection and fMAX tracking

The first work to implement a fMAX tracking technique to reduce safety margins

was [51]. The authors implemented an AVS system using a PLL to track the

variability, as shown in Figure 2.7(a). The supply voltage is regulated until the

VCO frequency matches the clock frequency fin. This technique is based on the

fact that the circuit critical paths and the VCO ring-oscillator have the same

sensitivity to PVT variations. This assumption might be true for the technology

used in [51] (2µm), but this is no more valid for the current technologies.

The same concept of variability monitoring has been better developed in [55]

for a complete AVFS system. A DC/DC buck converter adjusts its output voltage

based on the frequency of a ring oscillator supplied by the DC/DC converter. This

ring-oscillator is also used as frequency actuator generating the clock frequency

for the CPU, as shown in Figure 2.7(b). Implemented in 0.6µm technology, the

authors claim that a energy reduction of 78% is achieved compared to a system

without AVFS. Still, circuits have different sensitivities to static and dynamic

variations depending on their topology. Each critical path has a specific topology

which is much more complex than the topology of a ring-oscillator. Moreover,

such monitor does not endure the same local variability than the logic circuit.

Therefore, it is not enough to determine the circuit performance fluctuation in

advanced technology nodes.

(a) PLL implemented in [51] to adapt
the supply voltage against variations.

(b) In [55], the ring-oscillator is used at
the same time to generate the clock fre-
quency and to monitor the variability.

Figure 2.7: Pioneer works that used a ring-oscillator to track fMAX [51, 55].
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Critical Path Replica

One of the first works to adopt the idea of using Critical Path Replica (CPR) for

variability tracking was [54]. Figure 2.8(a) illustrates the proposed AVS system,

with a DC/DC converter as voltage actuator and a variability monitor called

Speed Detector. The Speed Detector, shown in Figure 2.8(b), is composed of three

paths, each one placed between a pair of flip-flops synchronized by the circuit

clock frequency fext. The first path serves as reference by directly connecting

both flip-flops while the second one is a CPR. The last one is a CPR as well

but with additional buffers resulting in an increase of the delay of about 3% of

the CPR delay. The Output Data Comparator compares the output of the three

paths. When the output of the third path is equal to the reference one, a ”-1”

signal is generated and the supply voltage is reduced. When the output of the

second path is different from the reference one, a ”+1” signal is generated and

the supply voltage is increased. The supply voltage remains still only when the

reference output is equal to the second output but different from the third one.

This technique ensures that the clock period is larger than the critical path delay

but no more than 3%. Therefore, it avoids timing faults with a very small timing

margin.

(a) AVS system with a DC/DC con-
verter controlled by the output of a vari-
ability monitor based on CPR.

(b) Speed Detector architecture.

Figure 2.8: AVS system using Critical Path Replica CPR as fMAX tracking
technique [54].

Implemented in 0.4µm technology, the proposed technique improved the per-

formance per Watt by a factor of more than two compared to the previous design

[75]. This is achieved with a small area overhead of only 0.5% (without consider-

ing the external LC filter of the DC/DC converter). Nevertheless, this technique

is limited because it uses only one critical path to track variability. The critical

path in modern circuits is not unique and it depends on PVT and aging varia-

tions. Various paths must be replicated to obtain an ”acceptable” coverage of
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the impact of the variability on the circuit. However, it would imply large area

and power overheads.

Razor Flip-Flops

Even if it is a perfect replica of the critical path, a canary structure is not able to

detect local PVT variability. Furthermore, it may degrade at different rate from

the original logic circuit because it does not experience the same local variations.

In 2003, [76] conceived the Razor flip-flop, an innovative solution for pipelined

processors based on error detection and correction. The technique consisted in

adding a shadow latch at the input of the critical paths to detect late transitions,

i.e. input data arriving just after the clock rising edge. Later, [77] improved this

technique calling it RazorII, as shown in Figure 2.9. RazorII is connected between

the master and the slave latches of a flip-flop instead of at its input. Thus, it

does not impact the path timing as did the first version of the technique. A

programmable delay-chain DC generator produces a detection window after the

clock rising edge. A transition detector TDetector flags an error if a transition

occurs at the input within this time window. The incorrect data is then restored

in the next clock cycle, resulting in a pipeline stall. Besides timing faults, this

technique is also robust to radiation-induced faults known as Single Event Upsets

(SEU) [78].

Figure 2.9: Principle of the RazorII Flip-Flop [77]

Unlike CPR, the Razor flip-flop is able to detect local variations since it di-

rectly monitors the critical paths. Moreover, it can reach a large coverage with

less area overhead because it only inserts a few transistors more at the targeted

flip-flops instead of replicating the whole path. Note that several paths are mon-

itored at the same time by instrumenting a single flip-flop. In [77], the RazorII
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technique was validated on a 64-bit processor implemented in 0.13µm technology.

In total, 121 out of its 826 (15%) flip-flops were instrumented. The area overhead

is not given but the reported power overhead is only 3%. With error detection and

correction technique, the energy consumption can be further reduced by lowering

Vdd below the Point of First Failure (PoFF), i.e. when the critical path delay

becomes larger than the clock period. Actually, the minimum energy point is

reached when the energy overhead due to pipeline recovery becomes higher than

the energy reduction. On average, 33% energy savings is achieved compared to

the worst-case margin approach.

Different implementations of the Razor flip-flop approach have been adopted

in many recent works. For instance, [79] developed an architecturally independent

version of the technique called Bubble Razor. This version can be automatically

inserted into any design without needing detailed knowledge of its internal ar-

chitecture. The authors employed it in the ARM Cortex-M3 [80], a commercial

processor, implemented in 45nm CMOS technology. The adaptation can be done

either by increasing the clock frequency or reducing the supply voltage. Fig-

ure 2.10 shows both the performance and the energy gains for a chip fabricated

on the ”fast” corner of process variations. As can be seen, the Bubble Razor pro-

vides a performance increase of 112% or a energy reduction of 66% compared to

a design with safety margins. The authors also implemented a canary structure,

CPR, for comparison purpose. The performance and energy gains of the Razor

over a CPR are 56% and 42%, respectively.

Figure 2.10: Throughput increase and energy reduction achieved with Bubble
Razor [79] compared to a margined design and to a CPR approach (canary).

Slack Time Monitoring

Despite the considerable gains achieved with the Razor monitor, its complexity

is still a limitation. A large circuitry is needed to allow the pipeline recovery. For

example, the Bubble Razor implied an area overhead of 25% [79]. This explains
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the emergency of a similar but less complex technique. This technique, usually

called In-situ Slack Monitor (ISM), consists in timing fault prediction instead of

error detection and correction. The first work to propose such approach was [81].

Similarly to the Razor approach, it is based on shadow flip-flops. The input of the

shadow flip-flop is delayed through the insertion of buffers. Therefore, if a late

but still valid data transition occurs, it will be latched by the original flip-flop,

but not by the shadow one. The two outputs are compared and a warning flag is

raised to inform the adaptation system when a timing fault is about to happen.

Since the error is detected before it occurs, this technique does not need all the

recovery mechanisms required by Razor approaches.

(a) Top: Standard approach [81]. Mid-
dle: SlackProbe [82]. Bottom: New ap-
proach [83].

(b) Sensor proposed in [83] with two de-
tection windows (Flag1 and Flag2).

Figure 2.11: Different implementations of the In-situ Slack Monitor (ISM) [83].

In [82], the authors suggested the placement of the sensor at an intermediate

node of the path instead of at its end in order to increase the monitoring coverage,

a technique called SlackProbe. The drawback of this latter approach and the

original one is that they impact the path timing by inserting additional loads to

it. Moreover, they are not able to detect the local variability that may impact

the destination flip-flop. Therefore, [83] proposed a better solution consisting in

connecting the sensor between the master and the slave latches. Furthermore,

this sensor is composed of only a latch instead of a flip-flop (two latches), resulting

in less area overhead. Figure 2.11(a) shows the three implementations. Actually,

the sensor in [83] contains a second latch connected to the output of the first

one resulting in a second flag, as shown in Figure 2.11(b). Thus, the second flag

has a larger detection window than the first one (86 vs 51 under TT, 1V, 25◦C

conditions). Note that a larger timing window is important to ensure a better

pre-error detection at low voltages.
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(a) ISM Flag1 and Flag2 correspond to
[83], ISM to [81] and SlackProbe to [82].

(b) ISM robustness to aging (small in-
crease in failure rate).

Figure 2.12: Failure rate (parts per million) obtained through Monte-Carlo
simulations with local variations [83].

The authors in [83] compared the detection rate of the three solutions and

a CPR through Monte-Carlo simulations with local variations. A system with 1

million flip-flops where 10% of them are monitored was considered. The failure

rates obtained in parts per million are shown in Figure 2.12(a). The second flag of

the sensor in [83] resulted in the smallest failure rate, while the failure rate with

CPR is so high that it is hardly seem in the graph. Then, [83] validated the sensor

in an AVS system implemented in 28nm FD-SOI technology. 10% of the 869 flip-

flops were instrumented, resulting in an area and power overhead of 2.43% and

1.46%, respectively. The total power savings can reach up to 40% depending on

the temperature and the clock frequency. Finally, the sensor robustness against

aging variations was checked through Monte-Carlo simulations. Figure 2.12(b)

shows that, despite the failure rate at low voltages has increased due to aging, it

remains within acceptable range.

The main limitation of the in-situ slack monitor, as well as of the Bubble

approach, is that it requires the monitored paths being active to sense a variation.

For example, a voltage drop can lead to a faulty execution if it occurs right

when no monitored path is being excited. Moreover, this approach is based on a

detection window with a predefined size. The energy efficiency is sub-optimized

if a large window size is chosen, while a small window considerably increases the

probability of an undetected timing fault.

A different approach has been recently proposed in [84], called TiMing FaulT

(TMFLT) methodology. This technique also uses slack time monitoring, but

for calibration purpose instead of on-line monitoring. The calibration is done

by overclocking the circuit until functional failure. The objective is to estimate

the minimum operating voltage VMIN for each value of the clock frequency. It
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is done through a statistical procedure with the warning frequencies of the in-

situ monitors. Another sensor based on a delay line is then calibrated with the

estimated values for Vmin. This sensor is shown in Figure 2.13(a). The signature

SIG generated by the delay line is then used to on-line estimate how close the

supply voltage is to Vmin.

Implemented in a DSP in 28nm FD-SOI technology [61], the proposed ap-

proach estimates Vmin with an error within [-2.5%,+3.5%] at nominal clock fre-

quency (1.6GHz). The Vmin estimation error versus the clock frequency is shown

in Figure 2.13(b) for 21 different dies. The authors claim that the proposed tech-

nique reduced the DSP power consumption by 19% at the nominal frequency.

The main advantage of this approach is that it can detect the pre-occurrence of a

timing fault even when the monitored paths are not excited thanks to the delay

line based sensor.

(a) Delay line based sensor. (b) Vmin estimation error on 21 dies.

Figure 2.13: Vmin tracking technique based on a calibration phase and a sensor
composed of a delay line [84].

2.3.2 Process, voltage, temperature and aging monitors

The monitors introduced in the previous section can be used to detect the im-

pact of variability on the circuit critical paths. Process, voltage, temperature

and aging variations lead to fluctuations of the critical path timing. However,

these monitors are not able to determine what source of variation has originated

the timing fluctuation. A reduction of fMAX may, for example, come from a

simple temperature variation or be the consequence of aging degradation. In

this section, we present some existing sensors that provide a direct measurement

of the variation. This information is important for the local control to decide

which adaptation strategy is the most suitable adaptation strategy to mitigate

the variation.
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Process monitors

As stated in Section 1.1, several transistor parameters may change due to process

variations, e.g., threshold voltage, oxide thickness, gate length and width. The

deviation of these parameters from their nominal values affects the transistor

switching speed and leakage current. Many works have focused on developing

sensors to measure these variations after chip fabrication.

For instance, [85] uses temperature measurements to extract the process-

induced leakage variation between cores in a multi-core architecture. In [86], a

current starved inverter chain is used to characterize the global process corner, i.e.

slow, typical or fast. [87] proposes a technique to characterize process variations

based on a set of 10 ring-oscillators with different parameter sensitivities. By

solving a linear system with the oscillating frequencies and a predefined sensitivity

matrix, it is then possible to estimate the variation of the gate length and of both

PMOS and NMOS Vth. A similar sensor is presented in [88] but with reduced

area. The process corners of PMOS and NMOS transistors are estimated by using

only two ring-oscillators, one of them being more sensitive to variations in PMOS

while the other is more sensitive to variations in NMOS. Finally, [89] implements

an array-based sensor with 256 test units to characterize local variations of drain

current and Vth.

Voltage and temperature monitors

In general, the most efficient voltage and temperature monitors are analog cir-

cuits. For instance, the sensor presented in [90] estimates the temperature within

the chip with a standard deviation σ of ±0.05◦C over a wide operating range

from −55◦C up to 125◦C. [91] and [92] designed sensors to detect fast voltage

drops, while [93] proposed a monitor to measure supply voltage noise with a volt-

age and time resolution of 5mV and 0.4ns, respectively. The main drawback of

these monitors is that, as they are analog circuits, they need an Analog-to-Digital

Converter (ADC) to generate a digital output. As this implies a large silicon area

overhead, the replication of these sensors is very costly in terms of area. They

are thus not suitable for monitoring local variations.

Other works focused on designing digital monitors to reduce the required area.

For instance, [94] proposed a small temperature monitor based on delay lines

having a resolution of 0.16◦C and measurement errors within ±0.9◦C. However,

it has been fabricated in an old technology (0.35µm) which is less sensitive to

variability. Some works also proposed small area temperature monitors based on

a single ring-oscillator [95, 96, 97], but they all share the same shortcoming than

[94]. Moreover, [98] demonstrated the limitations of using this kind of sensors

to measure temperature in low-voltage circuits due to the increased sensitive to

voltage variations.
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The main difficulty in measuring the temperature from the oscillating fre-

quency of a ring-oscillator is that it also depends on other sources of variation, in

particular the voltage. One solution consists in using two or more ring-oscillators

to isolate the temperature and the voltage effects. [99] proposed a thermal sensor

composed of two differential ring-oscillators. In this way, the sensor is robust to

process and voltage variations. Similarly, [100] used a small sensor composed of

7 ring-oscillators to track dynamic variations. A data fusion technique is applied

on the oscillator frequencies to estimate both the voltage and the temperature.

Implemented in 32nm technology, it has a reduced area of 450µm2. It is capable

of providing voltage and temperature estimates with errors below 5mV and 7◦C,

respectively. A calibration method is executed after circuit fabrication to take

process variations into account.

Even tough the voltage and temperature monitor proposed in [100] is robust

to process variations, it is still vulnerable to aging variations. In other words,

it is not guaranteed that the sensor will continue work properly after some time

of use. [101] developed a similar sensor to estimate both the voltage and the

temperature. The authors claim that the architecture they adopted for the ring-

oscillators make their sensor robust against NBTI variations. However, it has

not been demonstrated through any aging experiment. Furthermore, the sensor

is still vulnerable to HCI.

Section 2.4 will address the issue of developing an aging-robust sensor for

dynamic variability.

Aging monitors

Aging monitors were widely proposed in the last years since aging has become a

major issue. Most of them focus on characterizing both N/PBTI and HCI effects.

They are based on a dedicated circuit composed of two identical ring-oscillators.

Their principle is to degrade one of the ring-oscillators while the other one is not

powered and, consequently, not stressed. It is then possible to measure the aging

degradation by measuring the beat frequency, i.e. the difference between the two

ring-oscillator frequencies.

For instance, [102] proposed a sensor for separately measuring the frequency

degradation due to BTI and HCI. It comprises two pairs of identical ring-

oscillators (ROSC), as shown in Figure 2.14. The first ROSC, called BTI ROSC,

is kept in a steady mode. This ROSC endures only BTI degradation, since HCI

occurs during the state change of transistors. Meanwhile, the second ROSC,

DRIVE ROSC, is always in oscillating mode thus being degraded by both BTI

and HCI effects. The frequency shift of the first ROSC gives the BTI degrada-

tion. By subtracting it from the frequency shift of the second ROSC, we then

have the HCI degradation. Note that this approach is valid only if both BTI and

HCI effects are supposed additive (linear effects).
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Figure 2.14: Ring-oscillator (ROSC) based sensor for separately measuring BTI
and HCI effects [102].

In [103], a very small NBTI monitor is proposed. It relies on a PMOS tran-

sistor that is used to starve the current supplied to a ring-oscillator. Since the

NBTI-induced Vth degradation reduces the transistor drain current, the ring-

oscillator frequency will shift with it. The authors claim that a Vth shift of 10%

leads to a 53% change in the oscillator frequency. The sensors are arranged in

an array forming a bank. The bank also includes a counter and three registers

which allow four quick measurements. Each bank contains 16 sensors and each

die has 6 banks, resulting in 96 NBTI sensors in total. Such array-based sensor

allows fast characterization of the statistical nature of NBTI. Manufactured in

130nm technology, the whole monitor has a small silicon area of 308µm2, 110

times smaller than previous similar work [104] in same technology.

Many other works also proposed ring-oscillator based aging sensors [105, 106,

107, 108, 109, 110, 111]. Besides having different architectures, they all consist in

measuring the frequency beat of two identical structures. The main drawback of

this kind of monitor is that it measures the degradation of a dedicated structure

instead of the logic circuit itself. The circuit topology has an important role on

the aging degradation. Thus, it is not possible to assume that the ring-oscillator

and the datapath experience the same degradation.

Some works [105, 108] aimed to tackle this limitation by using critical path

replicas as ring-oscillators. Nevertheless, the actual and the replica datapath can

endure different stresses due to local PVT variations. Furthermore, numerous

monitors would be needed to cover all the possible critical paths, leading to a

considerable area overhead. Lastly, but most importantly, both BTI and HCI

effects have a strong dependence on the workload which is difficult, or even im-

possibly, to reproduce on a canary structure. Figure 2.15 [112] illustrates the

limitation of using a CPR to measure the aging degradation. As can be seen,

the actual datapath (fMAX) presents a considerably wider spread of degradation

than the CPR. It is due to the workload dependence and the local variations.
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Figure 2.15: Distribution of the normalized degradation of the logic circuit (black
circles) and of the CPR (red squares) [112].

2.4 Aging mitigation of a VT monitor

Section 2.3.2 has presented some of the state-of-the-art sensors to directly track

voltage and temperature variations. Still, these sensors are affected by process

and aging variations as any other circuit element. Most of them do consider

the impact of manufacturing mismatches. They either design a process-tolerant

sensor or implement a process-aware calibration method that is conducted after

the circuit fabrication. However, aging effects are still a recent concern and

they are not addressed by these works. The only exception seems to be [101]

where the authors claim to adopt an NBTI-resilient architecture for their sensor.

Nevertheless, its resilience has not been demonstrated through any aging test or

simulation.

As stated in Section 1.4, the most important aging effects in CMOS circuits

are the BTI and the HCI [29]. Besides impacting the performance of the pro-

cessing elements, these mechanisms also affect the information provided by the

integrated sensors. For instance, [113] developed a low-cost small-size digital

probe made of 7 ring-oscillators (ROs). This so-called Multiprobe, together with

a data fusion technique [100], allows to estimate the V and T values within the

chip. Nevertheless, [100, 114] do not consider the influence of aging on the accu-

racy of the V and T estimates.

Therefore, in this section we firstly summarize the Multiprobe sensor and

its V T estimation method. Then, we analyze the efficiency of the Multiprobe

when its ROs are degraded by both BTI and HCI effects. Finally, we propose a

recalibration method to guarantee the sensor accuracy despite aging effects. The

results presented in this section have been published in [9].
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Figure 2.16: Multiprobe sensor for dynamic variability monitoring [114].

Table 2.1: Description of the 7 ROs composing the Multiprobe.

Name Delay cell Stages FnomRO

NCap 2 inverters loaded with capacitors made of
a NMOS transistor

6 1.53 GHz

PCap 2 inverters loaded with capacitors made of
a PMOS transistor

6 1.46 GHz

XOR 1 std cell XOR 8 1.75 GHz

Inverter 2 std cell inverters 13 1.49 GHz

Latch 1 std cell latch 5 1.72 GHz

LongWire 2 inverters linked together with long wires
using several metal layers and vias

13 1.69 GHz

LowTherm 2 inverters specially conceived to be more
sensible to the temperature

2 2.29 GHz

2.4.1 Multiprobe: an all-digital on-chip sensor to monitor VT varia-

tions

The Multiprobe is an all-digital sensor designed only with standard cells to ease

its integration in an MPSoC design. Seven ROs and a digital counter constitute

its main blocks, as can be seen in Figure 2.16. Neither costly analog blocks nor

Analog-to-Digital Converter (ADC) are thus needed. Each RO is composed of

several delay cells and a NAND standard cell. Table 2.1 gives detailed informa-

tion about each RO, where FnomRO is the respective oscillating frequency in 28nm

technology for the nominal condition (P, V, T ) = (TT, 1V, 20˚C).

The ROs were purposely designed with different delay cells so as to exhibit

distinct sensitivities to V T variations. The LowTherm RO is made of special

current starved inverters which enhance its temperature sensitivity. This feature
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makes the estimation of both the voltage and the temperature possible taking

also into account the oscillating frequency of other ROs. Figure 2.17(a) shows

the frequency surfaces of all the seven ROs on the {V, T} plan. The Mutiprobe

has a reduced silicon area of 450µm2 in 28nm technology. All ROs are therefore

supposed to experience the same PVT-variability (static and dynamic). Due to

its small-size, the Multiprobe can be duplicated within the chip, which is highly

suitable for fine-grain AVFS architectures.

The ROs are per se multi-sensitive sensors. As a consequence, an appropriate

data fusion technique must be used to estimate the V and T values the Multiprobe

is experiencing. For such, a database with all ROs’ frequencies for several {V, T}
conditions over the operating ranges is necessary. This database is constructed

through post-layout simulations and it is stored in an external memory. Since

process variations highly impact the ROs’ frequencies, a calibration method has

been proposed in [115]. The database is initially constructed considering the

Typical-Typical (TT) corner. The actual process corner of the Multiprobe is

characterized at the chip start-up. A correction ratio is then computed and

applied to all models in the database. The detailed description of this calibration

method is given in [115].

(a) Frequency surfaces of all 7 ROs. (b) {V, T} conditions where the frequen-
cies of all ROs are very close (< 10%).

Figure 2.17: Frequency surfaces of all 7 ROs. Note that there are some {V, T}
conditions where all ROs have very similar frequencies. In these conditions the
estimation method is less accurate.

34



2.4. AGING MITIGATION OF A VT MONITOR

Voltage and temperature estimation method

The frequencies of all ROs have to be firstly quantified in order to perform a V T

estimation. The measure is done through the integrated counter, one RO at a

time. Both V and T are then estimated from the seven oscillating frequencies

using a set of Kolmogorov-Smirnov (KS) goodness-of-fit tests [100] which are

non-parametric hypothesis tests. For two empirical samples of size n, the KS test

estimates if both samples come from the same distribution law. The estimation

method is depicted on Figure 2.18.

Figure 2.18: V T estimation method principle.

The CDF Builder block computes for each measurement vector ~F{V,T} a Cu-

mulative Distributive Function (CDF ). The CDF is computed from the sums of

all pairs of frequencies. This gives a richer representation of the sensor behavior

under the current {V, T} condition. A CDFm is computed from the Multiprobe

measurements ~F{V,T} and another CDFt is computed from the ~Ft stored in the

Models Database. As stated above, the database is constructed through post-

layout simulations from measurements ~F{Vi,Tj} corresponding to the condition

{Vi, Tj}. A calibration is later performed on the fabricated chip to take into ac-

count the process variation [115]. One KS test evaluates if the CDFm and the

CDFt are similar and thus correspond to the same {Vi, Tj} conditions. In the KS

Test block, the maximum gap between both Cumulative Distribution Functions

CDFm and CDFt is first computed:

Dt = sup
x
|CDFm(x)− CDFt(x)| (2.3)

Then, the probability pt (called p-Value) that CDFt and CDFm come from the

same distribution is given by:

pt(λ) = 2

+∞∑
k=1

(−1)k+1e−2k
2λ2 with λ =

√
n ·Dt (2.4)
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Lastly, the Estimation block computes the estimated V̂ and T̂ values. For each

KS test, the pt value is collected in ~P ∈ RM . Then, s CDFs that “best” match

CDFm (via the comparison of pt to a given threshold) are used in the Aggregation

block to compute {V̂ , T̂}, using {Vi, Tj} associated with the s CDFs. In the

present work, a weighted mean is used:

V̂ =

∑s
k=1(ptk · Vk)∑s

k=1 ptk
, T̂ =

∑s
k=1(ptk · Tk)∑s

k=1 ptk
(2.5)

The validation of the estimation method has been described in details in [100].

Its accuracy highly depends on the number of models stored in the database.

The same goes for the memory overhead, the complexity of the calibration phase

and the maximum estimation throughput. A deep analysis of the choice of the

database size is given in [100]. The estimation method can be implemented

in software, but it would be then impossible to monitor the dynamic variations

within an adequate interval. Therefore, a hardware accelerator with a complexity

equivalent to 9 kgates has been designed to execute the estimation method. The

accelerator can compute a new {V̂ , T̂} within 25µs at 600MHz for a database

containing 366 models [115].

Here, the V T estimation method is evaluated through Matlab. The model

database is constructed by ranging V from 0.7V to 1.3V with a step ∆V = 10mV

and T from 0˚C to 120˚C with a step ∆T = 10˚C. The final database contains

793 {V, T} models at total. A broader range of {V, T} conditions is considered to

validate the proposed V T estimation approach. For such, 3567 different {V, T}
points are tested. The same ranges are conserved, but with steps ∆V = 7mV and

∆T = 3˚C. The mean absolute estimation errors for V and T are respectively:

µ|εV | = 2.9mV, µ|εT | = 6.07˚C (2.6)

while the mean signed estimation errors are close to zero:

µεV = 0.18mV, µεT = −0.79˚C (2.7)

with standard deviations equal to:

σεV = 5.3mV, σεT = 9.29˚C (2.8)

2.4.2 Impact of BTI and HCI effects on measurements

The Multiprobe and its V T estimation method were already implemented and

validated on a prototype circuit in 32nm technology [58]. However, its reliability

has never been studied so far. As any other integrated circuit, it is vulnerable to

aging degradation. Since these variations lead to parametric shifts in the circuit,

the frequencies of all ROs are supposed to shift over time.

36



2.4. AGING MITIGATION OF A VT MONITOR

Therefore, to assess the reliability of the Multiprobe, SPICE simulations with

aging variations are conducted on the post-layout netlists of all ring oscillators im-

plemented in 28nm FD-SOI technology. The simulations are performed through

the Eldo User-Defined Reliability Model (UDRM) API [116]. This API computes

the stress experienced by each transistor during a transient simulation and then

runs a new simulation taking the degradation into account. A state-of-the-art

model coupling both BTI and HCI effects is adopted here [112, 34]. As stated in

Section 1.4.1, both effects increase the threshold voltage of the transistors, which

results in an increase in the gate delay and, consequently, a reduction of the ROs’

frequencies. More details about device-level aging simulation will be later given

in Section 3.3.2.

(a) Voltage dependence. (b) Temperature dependence.

(c) Activity dependence.

Figure 2.19: Aging dependence on (a) Voltage, (b) Temperature and (c) Activity
(toggle rate).

Three main factors determine the final degradation experienced by each RO,

namely, the supply voltage (V ), the temperature (T ) and the activity (A), the
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Figure 2.20: Frequency evolution of the seven ROs for 10 years of aging. Stress
conditions (V, T,A) = (1.2V, 100˚C, 10%).

last one being the percentage of time the RO is oscillating. Figure 2.19 shows

the resulting frequency degradation of all ROs after 10 years for different values

of V , T and A. The degradation has an exponential dependence on both the

supply voltage and the activity. Nonetheless, it is exponential dependent on the

temperature only for values above 80˚C. There is no temperature dependence

observed for lower temperatures. This is due to the fact that the predominant

source of degradation at high temperature is the BTI, which has an exponential

dependence on the temperature. Meanwhile, HCI becomes more dominant at low

temperature, thus canceling the temperature dependence.

The stress conditions adopted for voltage, temperature and activity are 1.2V ,

100˚C and 10%, respectively. The operating conditions will never be constant in

a real application as they evolve during the circuit lifetime. Nevertheless, these

values represent a worst case scenario. Figure 2.20 shows the aging behavior of

all ROs for up to 10 years of stress. The worst frequency degradation observed is

almost 2% for both NCap and PCap ROs. Note that their degradation reaches

more than half of it after only 1 year of stress. Indeed, due to its exponential

nature, the aging is much more important during the first months of the circuit

life. Moreover, the frequency shift is not the same for all {V, T} conditions. Since

the RO frequency is proportional to the difference between the supply voltage and

the threshold voltage, it is more sensitive to aging variations at lower values of

V . Figure 2.22(a) shows the relative frequency shift of the NCap RO over the

whole {V, T} plan. The resulting shift is 3 times more important when V is near

0.7V than when V is higher than 1V .

Table 2.2 shows the estimation errors obtained for a fresh Multiprobe as

well as for 3 aged conditions, namely, 1, 3 and 10 years of stress. The mean

absolute (signed) estimation errors for voltage and temperature are represented
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Table 2.2: Mean (absolute and signed) estimation errors and standard deviations
for different aging situations (V = 1.2V, T = 100˚C,A = 10%)

Fresh 1 year 3 years 10 years

µ|εV | 2.9mV 7.9mV 9.8mV 12.7mV

µ|εT | 6.07˚C 7.62˚C 8.37˚C 9.80˚C

µεV 0.18mV 7.2mV 9.3mV 12.3mV

µεT −0.79˚C −4.38˚C −5.60˚C −7.06˚C

σεV 5.3mV 5.7mV 5.5mV 5.8mV

σεT 9.29˚C 10.16˚C 12.02˚C 10.71˚C

by µ|εV | (µεV ) and µ|εT | (µεT ), while σεV and σεT stand for the associated standard

deviations. The error is calculated as the difference between the real value and the

estimated one. The increase in the mean error is thus explained by the frequency

degradation of all ROs. Since the frequencies are now lower than before, the

estimated voltage is also lower than the correct one. This offset can be noted

through the mean voltage estimation error. For a fresh sensor, it is equal to

0.18mV and it raises to 12.7mV after 10 years.

(a) V estimation error map for a fresh
Multiprobe.

(b) T estimation error map for a fresh
Multiprobe.

(c) V estimation error map for a stressed
Multiprobe.

(d) T estimation error map for a stressed
Multiprobe.

Figure 2.21: Maps of voltage and temperature absolute estimation errors on the
whole {V, T} plan. Above, for the simulation of a fresh Multiprobe. Below, for a
simulation considering 10 years of stress.
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Figures 2.21(a) and 2.21(b) show the distributions of the absolute errors on the

estimation of V and T, respectively, over the plane {V, T} for a fresh Multiprobe.

The errors are very small for most of the {V, T} conditions. However, they highly

increase in the diagonal of the cartography. Actually, all ROs have almost the

same oscillating frequency in this area because of their design properties. It is

therefore very hard to extract the V and T values from the measurements using

the KS test. Fig. 2.17(a) shows the frequency surfaces for the seven ROs of the

Multiprobe. Fig. 2.17(b) highlights the {V, T} conditions where all ROs have

nearly the same oscillating frequencies. Actually, the dark area corresponds to

the operating points {V, T} where the maximal absolute difference between two

frequencies is below 10%. Figures 2.21(c) and 2.21(d) illustrate the distribution

error for a Multiprobe after 10 years of aging. The larger errors are placed in the

same positions of the cartography, see Figures 2.21(a) and 2.21(b). However, the

errors in the rest of the plane become relevant too. This explains the increase of

the mean absolute estimation error observed in Table 2.2.

2.4.3 Aging-aware recalibration proposal

As shown in the previous section, aging variations on the Multiprobe lead to an

important deviation of the V T estimated values. After just one year of operation,

the voltage mean absolute error increased from 2.9mV to 7.9mV , more than

170%. Thus, if no aging-aware technique is applied in its design or execution, the

V T estimation becomes inaccurate after just a few months of circuit life.

Some models allow the prediction of the threshold voltage (Vth) shift due to

aging. However, the modelling of the aging variation is not an easy process since

the resulting degradation is strongly dependant on the stress conditions (V, T,A).

Even if it was possible to track on-line the operating conditions of the circuit,

a precise aging model would require a complex computation on a large dataset.

Each RO is composed of several logic gates which in turn are composed of many

transistors. The Vth shift of each transistor would have to be computed to reach

the final RO frequency degradation.

An advantage of the Multiprobe over similar sensors is that its V T estima-

tion method is based on a database. It can thus be reprogrammed when needed,

considering that its database is stored in a flash memory. Basically, the recalibra-

tion of the Multiprobe consists in reconfiguring its database to cope with aging

variations. The question is then how to recompute the database models.

The ideal case would be to measure again the seven ROs frequencies for all

the {V, T} conditions. The inconvenience is that it is not possible to change

both the temperature and the voltage with such required precision in a real-life

environment. Thus, a simplified method is to measure the degradation in a known

{V, T} condition and apply it to all models. Even though the aging variation is

not the same over the whole {V, T} plan (see Figure 2.22(a)), this method can
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(a) Relative degradation (%). (b) Absolute degradation (Hz).

Figure 2.22: Map of the frequency shift of the NCap RO after 10 years of stress,
with the lowest degradation values in blue and the highest ones in red.

decrease the offset between the oscillating frequencies of the aged ROs and those

stored in the database.

Two approaches can be applied to perform this correction. The first one

consists in applying a correction factor based in the relative degradation (i.e. in

percentage), as shown in Figure 2.22(a). This correction factor is obtained with:

rrel = F aged(V p,Tp)/F
fresh
(V p,Tp) (2.9)

where (V p, Tp) is a point whose both temperature and voltage are known, F fresh(V p,Tp)

is the frequency stored in the database for this point while F aged(V p,Tp) is the new

frequency measured. This correction factor is calculated for each one of the seven

ROs. Then it is applied to each (V i, T j) condition in the models database:

F ′(V i,T j) = F(V i,T j) ∗ rrel (2.10)

Another way of doing this recalibration is using the absolute amount of fre-

quency decrease as a correction factor (i.e. in Hertz). Figure 2.22(b) shows the

absolute degradation of the NCap RO after 10 years over the whole {V, T} plan.

The correction factor in this case is calculated as:

rabs = F aged(V p,Tp) − F
fresh
(V p,Tp) (2.11)

then, it is added to all models in the database:

F ′(V i,T j) = F(V i,T j) + rabs (2.12)

The second recalibration method is simpler than the first one because it re-

quires only addition and subtraction. Regarding their complexity, these algebraic

operations are considerably easier to be executed than multiplication and division.

Moreover, this method is also theoretically better since the difference between the
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Table 2.3: Comparison of estimation errors for different database recalibration
methods after 10 years of aging

No Ideal Absolute Relative
recalibration case correction correction

µ|εV | 12.7mV 3.1mV 3.3mV 4.7mV

µ|εT | 9.80˚C 6.80˚C 7.13˚C 7.43˚C

µεV 12.3mV −0.12mV −0.15mV −0.20mV

µεT −7.06˚C −0.45˚C −0.98˚C −0.25˚C

σεV 5.8mV 6.2mV 6.4mV 7.1mV

σεT 10.71˚C 11.21˚C 11.40˚C 11.85˚C

maximum and minimum values for the absolute degradation is smaller than for

the relative degradation.

We then analyzed the V T estimation errors after 10 years of aging, using

both calibration approaches. The (V p, Tp) point chosen is equal to (1V, 60˚C),

which is the center point of the {V, T} plan. Table 2.3 shows the mean estimation

errors and standard deviations obtained for both calibration methods. The first

column contains the results using the original database, without recalibration.

In the second column the results for the ideal case are provided, where all ROs

frequencies were remeasured for each one of the {V, T} conditions. The two last

columns stand for the recalibration using an absolute and a relative correction

factor, respectively. As expected, the absolute recalibration method provides

better results than the relative one. In fact, the errors obtained with the absolute

recalibration approach are almost equivalent to those obtained in the ideal case.

The slight increase in the standard deviation comes from the deformation of the

original database.

Table 2.4 summarizes the accuracy obtained in the form of mean estimation

error plus one standard deviation. As can be seen, the loss of accuracy of the

voltage and the temperature estimates after 10 years is only 14% and 25% with

the proposed recalibration approach against a loss of 229% and 91% without

recalibration. These results prove that the Multiprobe can be recalibrated against

aging by only measuring the frequency shift of the seven ROs at a single known

{V, T} condition, even though it is quite a simple method. Additionally, this

Table 2.4: Summary of the estimation error of the V T estimation method under
different aging situations.

|µεV |+ σεV |µεT |+ σεT
Fresh 5.5mV 9.29˚C

1 year 12.9mV (+132%) 14.54˚C (+56%)

10 years 18.1mV (+229%) 17.77˚C (+91%)

10y w/ recalibration 6.3mV (+14%) 11.66˚C (+25%)
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correction can be performed periodically, especially in the first months, when the

aging degradation is more important.

2.5 Conclusion

In this chapter, we have presented some of the numerous works done on adaptive

techniques. From adaptation strategies to monitoring systems, the literature has

a large range of solutions to on-line mitigate variability in digital circuits. How-

ever, the current adaptive techniques address mainly PVT variability, since aging

effects are a relatively new issue. Moreover, as stated in Section 1.4, aging degra-

dation strongly depends on the operating conditions. Thus, it is very difficult to

accurately estimate it during the design phase.

We have also shown that existing aging sensors are mostly off-datapath mon-

itoring techniques. They measure the degradation of a dedicated circuit, not the

real degradation endured by the critical parts of the circuit. Invasive solutions

such as slack time monitors, presented in Section 2.3.1, actually manage to detect

the aging-induced delay shift of the critical paths. Nevertheless, they cannot dis-

tinguish the source of variation that originates the delay shift, which may also be

due to voltage and temperature variations. Existing monitoring systems are not

able to provide a reliable information about the circuit health. Note that such

information is important, for example, to develop strategies aiming to increase

the circuit lifetime.

In Section 2.3.2, we gave some examples of voltage and temperature monitors.

For instance, [100] proposed a V T estimation method based on a small area sensor

composed of only 7 ring-oscillators. However, no previous work had addressed

the impact of aging on this kind of monitor so far. Therefore, in Section 2.4,

we first demonstrated the accuracy loss induced by BTI and HCI effects on the

V T estimation method of [100]. Then, we proposed an aging-aware recalibration

approach. The developed approach consists basically in measuring the frequency

shift (in Hertz) of each ring-oscillator in a known {V, T} condition. This shift

is then subtracted from all models in the database. For being a quite simplified

method, this correction can be done regularly during the circuit lifetime making

the sensor robust to aging variations.

In Chapter 3, we propose a new methodology to estimate at circuit-level

the circuit fMAX taking into account all sources of variation. The methodology

results in two simplified models, one for the critical path delay and another one for

the aging degradation. By feeding these models with voltage and temperature

measurements, it is possible to on-line estimate the performance shift due not

only to voltage and temperature variations, but also to aging. This can be done

using the digital sensor from [100] and the recalibration method proposed in this

chapter.
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Chapter 3

Performance estimation under

PVT and aging variations: a

circuit-level methodology

Chapter 2 gave an overview of existing solutions to cope with variability in dig-

ital circuits. The different reviewed solutions range from sensors/monitors to

adaptive strategies. These latter implement in-situ sensors that provide infor-

mation about the chip state. Then, a Sense & React scheme is implemented in

the circuit for dynamically adapting it against variations. However, the solutions

presented do not distinguish between the different sources of variability, their goal

being to adapt the circuit functioning point and reject variations that are seen

as disturbances. Note that unlike temperature and voltage, aging induces irre-

versible variations that may lead the circuit to a permanent non-functional state.

Moreover, the sensors are also prone to aging, leading to inaccurate information

regarding the real state (Voltage, Temperature, Aging) of the chip.

As shown in Section 2.3.2, aging monitors are currently mainly based on ring-

oscillators. However, they do not necessarily endure the same degradation as the

functional parts of the circuit because aging degradation strongly depends on

the circuit topology and on the workload which cannot be reproduced through a

ring-oscillator.

This chapter proposes a new methodology for creating simplified but nonethe-

less accurate circuit-level models from existing device-level models in order to

track aging in digital circuits. It consists of a model for the aging induced degra-

dation and of another model for the path propagation delay (named hereafter

Delay) encompassing the first one. Due to their low computational complex-

ity, both models can be fed at runtime by voltage and temperature monitors to
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provide the estimate of Delay as well as its shift due to aging effects (named

hereafter ∆Delay). This methodology takes into account all factors that impact

Delay and aging, namely, the supply voltage V , the temperature T , the fabrica-

tion process, the circuit topology and the workload. The body bias Vbb could as

well be taken into account without extra difficulty.

An advantage of the proposed methodology is that it is not invasive because

there is no need to embed additional circuitry in the functional parts of the circuit.

Moreover, instead of using canary structures such as ring oscillators, it provides

information specifically about the circuit critical paths. As this methodology

provides the resulting aging degradation for different operating conditions, it can

also be used for other purposes. For instance, it can be used to estimate in

advance the size of the safety margins necessary to ensure a safe operation of the

circuit at the end of its lifetime, for all possible conditions of use.

This chapter is organized as follows. The objective of the proposed method-

ology is given in Section 3.1, while Section 3.2 summarizes the main steps of the

proposed methodology. Sections 3.4 and 3.5 illustrate in details the application

of the methodology on a benchmark circuit implemented in 28nm FD-SOI tech-

nology. This latter is described in Section 3.3. Finally, Section 3.6 validates the

generated models through some use-cases and with another benchmark architec-

ture.

The research activities presented in this chapter have been published in [7].

A patent application [8] was also filled in.
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3.1 Objective

The objective of the proposed methodology is to abstract the complexity of ex-

isting aging models. So as to obtain low complexity circuit-level models that

can be used either off-line or at run time to estimate the circuit degradation un-

der different conditions of use (temperature, supply voltage, process, workload).

The aging effects addressed here are the non-destructive ones, namely, BTI and

HCI. Both phenomena change the transistors characteristics, in particular Vth,

resulting in a larger propagation delay in digital circuits. In the last years, con-

siderable efforts have been made to model BTI and HCI effects on transistors.

Through experimental data measured on silicon, the aging-induced Vth shift is

modelled with respect to variables such as the supply voltage, the temperature

and the power-on time. The developed models can be then integrated in SPICE

simulators that implement reliability functionalities, for instance Eldo, HSpice

and SPECTRE.

Our proposal consists thus in a methodology to create a model for the circuit

delay from existing device-level models as shown in Figure 3.1. The Delay is

defined as the time between the rising edge clock and the data arrival at the

input of the source flip-flop. The largest Delay in a circuit imposes its maximum

functional frequency fMAX . If a frequency higher than fMAX is adopted, a setup

time violation may occur leading to a faulty operation. The resulting Delay

model incorporates not only aging variations, but also the PVT ones. This is

particularly important for DVFS systems where the aging-induced fMAX shift

must be assessed for any V level.

Figure 3.1: Aging model complexity abstraction from device-level to circuit-level.
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3.2 Overview of the proposed methodology

The proposed methodology is illustrated in Figure 3.2. It is divided into two main

stages, namely, Delay Modelling and Aging Modelling. The first stage produces a

model to estimate the propagation delay of a circuit path under PVT variations.

The second one generates a model that includes aging variations in the Delay

model. Aging variations are represented as a shift in one of the parameters of

the Delay model. Both models are constructed from the propagation delays

simulated with SPICE. The following subsections detail both stages.

Figure 3.2: Two stages methodology proposed to obtain a circuit-level model of
the path propagation delay, taking aging variations into account.

3.2.1 First stage: Delay Modelling

Each step of the Delay Modelling stage in Figure 3.2 is summarized below:

1. The netlists of one or more critical paths are extracted from the circuit

design. Note that previous works address the selection of the aging-aware

representative paths [117, 118]. Thus, the choice of how many paths and

which ones must be selected is not addressed here.

2. The netlists are simulated within pre-defined V, T ranges using an electronic

circuit simulator, e.g. SPICE [119]. The choice of V, T ranges depends on
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the application specifications, while their respective steps ∆V,∆T depends

on the desired modelling accuracy. The more V, T conditions are simulated,

the more accurate the final models, but also the larger the simulation time.

At the end, n×m propagation delays are gathered, where n and m are the

number of V and T values, respectively.

3. The resulting propagation delays are fitted with a Delay formula that de-

pends on V and T . The choice of the Delay formula is the most impor-

tant step, since it will later be used for the Aging Modelling as well. The

propagation delay could be simply translated into a simple polynomial ex-

pression. However, using an equation without any physical meaning would

make the modelling of aging degradation much more intricate. Ideally, the

Delay model should depends on Vth, which is known to be the transis-

tor parameter shifted by BTI and HCI. The fitting process can be done

through regression analysis using a numerical computing environment, e.g.

MATLAB [120].

4. The previous steps are repeated for other process corners so that a set

of parameters for the Delay equation is computed for each (path, corner)

pair. The whole set of Delay model parameters are stored in a non-volatile

memory. Some parameters may be only technology-dependent. Thus, they

could be shared between all (path, corner) pairs. This would decrease the

complexity of modelling several paths as well as the size of the memory

used for model parameter storage.

3.2.2 Second stage: Aging Modelling

Each step of the Aging Modelling stage in Figure 3.2 is summarized below:

1. The critical path netlists are re-simulated with aging-induced variations.

Several power-on times (t) are considered, as done for V and T . The aging

physical models are either provided by the foundry or defined by the user.

Note that models for BTI and HCI can be included together or only one of

them can be considered. However, since an interplay exists between BTI

and HCI effects [121, 122, 34], it is advisable to consider both of them at

the same time. At the end of this step, n × m × p propagation delays

are generated, where n, m and p are the number of V , T and t values,

respectively.

2. Aging degradation leads to an increase of the propagation delay. Therefore,

there is at least one parameter of the Delay model that evolves with aging.

This parameter shift ∆p is evaluated by fitting the aged path delays with

the Delay model and comparing the resulting parameters with the fresh

ones. Vth being the transistor parameter most affected by aging [123], the
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model parameter related to Vth should drift in a significant way. At the

end of this step, a set of n ×m × p values of ∆p are found, one for each

(V, T, t) condition.

3. The n×m× p values of ∆p obtained are then fitted with an aging formula

that depends on V , T and t. This formula can be based on classical device-

level aging models (e.g. [123, 124, 35, 125, 126]), given that the dependences

at a higher level should not be so different. The fitting process is similar to

the one done in the Delay Modelling stage at step 3. The main difference

is that there are now four dimensions instead of three, namely, ∆p, V , T

and t.

4. Finally, for a given application, the impact of the workload on aging is

obtained using a cycle and bit accurate simulator tool, for instance Mentor

Graphics Questa tool [127]). This tool provides both the circuit signal

probabilities and the toggle rate for each circuit signal. The first one is

a mandatory factor for estimating BTI degradation while the second one

impacts mostly HCI. This procedure is repeated for as many workloads

as needed. A set of ∆p model parameters is obtained and stored for each

workload. As for the process variations in the Delay Modelling stage, some

parameters may be shared between several workloads. Thus decreasing the

procedure complexity and the size of the memory used to store the model

parameters.

3.3 Experimental set-up and SPICE reliability simulation

The capabilities of the proposed methodology are demonstrated in the rest of

this chapter through an application example.

3.3.1 Benchmark circuit

The circuit under study has been implemented in STM 28nm FD-SOI technol-

ogy. Here, a 32-bits Very Long Instruction Word (VLIW) DSP organized around

a Multiplier-Accumulator (MAC) [61] is considered. This circuit is dedicated

to Telecom applications. It is composed of a 10-stages pipeline, which allows

reaching more than 1.5 GHz at the nominal supply voltage of 0.9V. Its high-level

architecture is shown in Figure 3.3.

The SPICE netlists of its 300 most critical paths were extracted through

Static Timing Analysis (STA) using Cadence’s Encounter tool. One of them was

randomly chosen to exemplify the proposed methodology. The chosen path is

composed of 10 cells. It is depicted in Figure 3.4. The number after X stands for

the cell drive strength. The abbreviations that appear on Figure 3.4 correspond

to:
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Figure 3.3: Architecture of the 32 bits VLIW DSP [61] used to validate the
proposed methodology.

Figure 3.4: Composition of the critical path chosen here to demonstrate the
capabilities of the proposed methodology.

• DFPRQ: Positive edge triggered non-scan D flip-flop with active low asyn-

chronous reset;

• BF: Buffer;

• NOR2: 2 input NOR;

• AND3: 3 input AND;

• AOI22: Double 2 input AND into 2 input NOR;

• NAND3A: 3 input NAND with A input inverted;

• NAND4AB: 4 input NAND with A and B inputs inverted;

3.3.2 Device-level aging simulation

The Eldo User-Defined Reliability Model (UDRM) API was used to perform

SPICE simulations with aging variations [116]. This API computes the stress

experienced by each transistor during a transient simulation. Then, it runs a

new simulation taking into account the resulting degradation. The reliability

simulation flow is shown in Figure 3.5. During the first simulation, the circuit

signals are set in order to reproduce the signal probabilities corresponding to a

given workload. For the second simulation, they are set in order to make the signal
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propagate from the source flip-flop to the destination one. As a consequence, we

can assess the impact of aging on the propagation delay.

Figure 3.5: Diagram of the reliability simulation flow.

A state-of-the-art device-level model was adopted for both BTI and HCI ef-

fects [34]. This model takes into account an existing interplay between both

phenomena. Note that traditional approaches consist in quantifying the impact

of each mechanism separately. Then, the effects are considered additive. How-

ever, some defects created by both mechanisms in the gate oxide are actually the

same. It follows that the actual combined degradation is smaller than adding both

contributions independently. Figure 3.6 illustrates the pessimistic estimation per-

formed by traditional approaches. As can be seen, the degradation estimated by

the coupled model (N) is close to the measurements (◦) while the degradation

estimated by adding both effects (•) is clearly pessimistic. Finally, the model

adopted here also incorporates the BTI relaxation after stress.

Figure 3.6: Ring oscillator frequency shift curves obtained with traditional
BTI/HCI models (•, DiR Std Model) and with the coupled model (N, DiR Cou-
pled Model). Without the interplay between both phenomena, the models are
much more pessimistic than the real degradation (◦, Measurement) [34].
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3.4 Application of the first stage of the proposed method-

ology: Delay modelling

Modelling the propagation delay is quite straightforward. All it requires is some

SPICE simulations and data processing in a numerical computing environment.

This can be fully automated through scripts.

The challenging point is the definition of the Delay formula itself. Basically,

the propagation delay could be simply translated into a polynomial expression.

However, it would be practically impossible to have only one equation parame-

ter evolving with aging. It is more likely that all the equation parameters will

shift from their ”fresh” values, i.e. from their values when the circuit has not

experienced aging. Moreover, both BTI and HCI effects impact the transistor

threshold voltage Vth and carrier mobility. Thus, a Delay formula where both

attributes are expressly represented must be considered. This can be achieved

by relying on some theoretical assumptions.

3.4.1 Choice of the Delay model formula

In 1990, T. Sakurai and R. Newton first proposed a simplified alpha-power law

MOSFET model to estimate the propagation delay of an inverter [22, 128]. From

this alpha-power law model, the propagation delay for a cell is expressed as:

Delaycell ∝ Cout ∗
V

Id
(3.1)

where Cout is the output load capacitance, V is the supply voltage and Id is the

drain current. The delay of a path is then simply the sum of the delays of all its

cells. In this case, the supply voltage V is the same for all cells as well as the

drain current Id which is a technological parameter. Therefore:

Delay ∝
∑

Cout ∗
V

Id

∝ Ctot ∗
V

Id

(3.2)

where Ctot is the sum of all output load capacitances. As a consequence, the more

cells in a path, the larger its propagation delay. The drain current is expressed

as:

Id ∝ µ(T ) ∗ (V − Vth(T ))α (3.3)

where µ(T ) is the carrier mobility, Vth(T ) is the threshold voltage at temperature

T and α is a positive constant related to the carrier velocity saturation. Finally,

the propagation delay satisfies:

Delay(V, T ) ∝ Ctot ∗
V

µ(T ) ∗ (V − Vth(T ))α
(3.4)
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Both µ(T ) and Vth(T ) decrease with increasing temperature. However, they

impact the propagation delay in opposite ways, as shown in equation (3.4). This

explains the Inverted Temperature Dependence (ITD) phenomenon. At low sup-

ply voltages, the threshold voltage dominates the drain current, while at high

voltages it is determined by the carrier mobility. Therefore, the propagation de-

lay increases with temperature increase at low supply voltages while it decreases

at high supply voltages.

3.4.2 Estimation of the Delay model formula parameters for the path

under study

The path described in Section 3.3 is simulated over wide supply voltage and

temperature ranges to generate a propagation delay surface. The surface is con-

structed by ranging V from 0.8V to 1.4V with a voltage step ∆V=20mV and T

from 0◦C to 150◦C with step ∆T = 5◦C. A total of 961 points are simulated.

Figure 3.7 shows the propagation delay surface as a function of the supply voltage

V and the temperature T .

Figure 3.7: Propagation delay surface vs. supply voltage V and temperature T .

The delay surface is then separated in 31 iso-temperature Delay(V ) curves.

Using equation (3.4), each curve is then fitted to the following equation:

DelayT (V ) = pβ + pµ−1(T ) ∗ V

(V − pVth(T ))pα
(3.5)
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where pβ is a constant while pµ−1 , pVth and pα correspond to Ctot
µ(T ) , Vth(T ) and

α, respectively. The identification of the model parameters was performed with

MATLAB using a non-linear least squares method (nlinfit command). For each

value of T , a set of parameters is obtained.

Figure 3.8 shows the evolution of parameters pβ and pα estimated for each

temperature T . Both pβ and pα were supposed to be temperature independent.

From Figure 3.8, we can see that they can be considered constant (around 6.5 ∗
10−11 and 2.6, respectively) for T below 115◦C.

Figure 3.8: Evolution of parameters pβ (blue) and pα (green) over temperature
T .

Moreover, it must be noticed that they change together, which may mean

that they have opposite effects on equation (3.5). To validate this assumption,

the DelayT (V ) curves are fitted again with equation (3.5), but with constant

values for pβ and pα. Figure 3.9 shows the mean normalized residuals for different

combinations of values for different combinations of values for pβ and pα. The

presented residuals are calculated as follows:

Residuals = Mean
T

(Mean
V

(|D̂elayT (V )−DelayT (V )

DelayT (V )
|)) (3.6)

where DelayT (V ) is the path propagation delay obtained from SPICE simulation,

D̂elayT (V ) is the estimated value of delay in equation (3.5), Mean
V

is the mean

value for all values of V and Mean
T

is the mean for all iso-temperature curves.

As it can be seen from Figure 3.9, the previous assumption is true. An increase

of pβ is compensated by an increase of pα without increase of the residual. pβ and

pα are finally fixed to 6.46∗10−11 and 2.54, respectively. These values correspond

to the smallest residual. Figure 3.10 depicts the evolution of pµ−1 and pVth over

T after pβ and pα have been fixed.
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Figure 3.9: Normalized mean residuals (see equation(3.6)) obtained when fitting
equation (3.5) with different values of pβ and pα.

Figure 3.10: Evolution of parameters pµ−1 (blue) and pVth (green) vs. tempera-
ture T .

It can be seen that both pµ−1(T ) and pVth(T ) curves possess similar behaviors

but different slopes. They can be modelled as follows:

pµ−1(T ) = C1 + k1T
n1 , k1 > 0 (3.7)

pVth(T ) = C2 − k2Tn2 , k2 > 0 (3.8)

By updating the equation (3.5) with the equation (3.7) for pµ−1(T ) and the

equation (eq:p2) for pVth(T ), we finally have a complete formula for Delay(V, T ).
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The final formula has 8 parameters to be identified, as shown below:

Delay(V, T ) = pβ + (C1 + k1T
n1)

V

(V − (C2 − k2Tn2))pα
(3.9)

where V is the supply voltage in Volt and T is the temperature in Kelvin.

The whole delay surface depicted in Figure 3.7 is fitted to equation (3.9) using

MATLAB. Table 3.1 presents the parameters obtained and their respective 95%

confidence interval CI. As can be seen, the confidence interval for each parameter

is very small (¡1.3%) which means that the parameters are identified with a high

degree of confidence. Also, this means that the model is not overparameterized.

Indeed, when a model is over parameterized, IC is really large (¿10%) for some

of its parameters.

Moreover, the fit between the estimated delay Delay(V, T ) and the mea-

surements is really good, as can be seen in Figure 3.11 that shows the resid-

ual for each V, T point. The maximum residual found is 0.52% (0.68ps) at

(V, T ) = (1.4V, 150◦C) while the mean normalized error is 0.082%. The coef-

ficient of determination R2 is 0.99998. Note that R2 determines how close the

data are to the fitted regression surface. R2 equals to 1 indicates that the re-

gression surface perfectly fits the data. All these results validate the choice of

equation (3.9) as Delay model.

Figure 3.11: Map of normalized residual for the Delay model in equation (3.9)
versus temperature T and supply voltage V .

3.4.3 Analysis of the process variation on the delay estimation

The previous results have been obtained using typical-typical (TT) process cor-

ner during the simulations. This means that average values were adopted for the
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Table 3.1: Parameters identified for the Delay model (see equation (3.9)) and
their 95% confidence interval (CI).

Parameter
name

Parameter
value

Confidence
interval

pβ 6.76e-11 0.07%

C1 2.66e-11 0.24%

k1 4.18e-16 1.24%

n1 1.94 0.10%

C2 0.46 0.13%

k2 1.15e-4 1.24%

n2 1.30 0.14%

pα 2.68 0.03%

parameters of both NMOS and PMOS transistors. Besides typical (T) configu-

ration, it is possible to choose between slow (S) and fast (F) ones, that represent

the worst- and best-cases for global variations, respectively.

The delay surface depicted in Figure 3.7 is recomputed using SS and FF

corners in order to include process variations in our proposed methodology. The

new surfaces are used to estimate new sets of parameters for the Delay model

given in equation (3.9). These new parameters are given in Table 3.2. Note that

the confidence intervals are not reported because they are very small, as for the

TT case. As can be seen, each Delay model parameter change from a process

corner to another.

Table 3.2: Parameters of equation (3.9) for process corners SS, TT and FF,
respectively.

pβ C1 k1 n1 C2 k2 n2 pα
SS 6.96e-11 2.72e-11 6.60e-16 1.88 0.57 1.12e-4 1.30 2.60

TT 6.76e-11 2.66e-11 4.18e-16 1.94 0.46 1.15e-4 1.30 2.68

FF 6.88e-11 2.80e-11 7.98e-17 1.94 0.46 1.15e-4 1.30 2.68

However, a circuit after fabrication will not be exactly in one of these 3 process

corners. It will be somewhere between the worst- (SS ) and the typical-case (TT )

or between the typical- and the best-case (FF ). Therefore, a relationship between

the Delay model parameters and the process corner must be constructed so that

intermediary values can be found through interpolation. This is not possible with

the parameters presented in Table 3.2 since the process corner dependency of the

parameters is not straightforward. The reason may be that many parameters (in

fact 8) appear in the model leading to an intricate dependency.

Yet, a dependency can be established if a reduced set of parameters is used.

This can be accomplished by fixing the value of the other parameters for all

corners. We must then find the parameters that are process independent and that
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can be fixed at the mean value without loss of accuracy. For such, the relative

standard deviation (RSD) of each parameter between the 3 process corners has

been analyzed. RSD is simply the standard deviation divided by the mean. The

parameter with the smallest RSD is fixed at its mean value. This procedure

is repeated until the obtained residual get considerably higher than previous

residuals. Table3.3 gives the fitting results for each iteration of this procedure.

The mean normalized residual and the maximum one are reported.

Table 3.3: Results of each iteration of the procedure used to fix some of the
Delay parameters in equation (3.9) to a unique value for all process corners.
Reported mean (Avg R) and maximum residual (Max R) are the average values
for the 3 corners.

Iteration 1 2 3 4 5 6 7 8

Avg R (%) 0.10 0.10 0.10 0.10 0.11 0.12 0.13 1.38

Max R (%) 0.52 0.52 0.52 0.53 0.58 0.76 0.76 2.86

Coef fixed pβ C1 n2 k2 n1 k1 pα -

Value 6.9e-11 2.8e-11 1.34 9.4e-5 2 3.1e-16 2.73 -

RSD (%) 2.23 2.37 2.65 4.94 4.79 0.98 7.93 -

Until the 7th iteration the residuals remained small even after fixing 6 pa-

rameters for all corners. It was only when pα was fixed at the 8th iteration that

they significantly increased. Therefore, we can use the same parameter values

for the 3 corners except for C2 and pα. Figure 3.12 shows their values for each

corner. As can be seen, a linear evolution of C2 (resp. pα) versus the process

corner can be considered. C2 increases when the process corner becomes slower

as expected since it is related to the threshold voltage, see equation(3.8), which

is the transistor characteristic most affected by process variations. In turn, pα
decreases with a worse process corner resulting in a smaller drain current, see

equation (3.3), and consequently, in slower transistors. Finally, from Figure 3.12,

one can easily define the values of C2 and pα after circuit fabrication by using

a linear interpolation along with a process calibration approach, some examples

were previously given in Section 2.3.2.

3.5 Application of the second stage of the proposed method-

ology: Aging modelling

The Aging Modelling stage is quite similar to the Delay Modelling one, see Fig-

ure 3.2. It consists basically in SPICE simulations and data fitting after estab-

lishing the model. However, there is one additional step. As the propagation

delay increases with the power-on time, there is at least one parameter of the

Delay model that evolves with aging. We already know that both BTI and HCI

phenomena impact mostly the threshold voltage but also the carrier mobility.
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(a) C2

(b) pα

Figure 3.12: Delay model parameters C2 and pα in equation(3.9) for worst- (SS ),
typical- (TT ) and best-case (FF ) process corners.

Therefore, the first step of the Aging Modelling stage is to identify the parame-

ter(s) of the Delay model that shifts with aging.

3.5.1 Shift of Delay model parameter(s) due to aging

Another delay surface has been generated to determine the parameter(s) of the

Delay model that shifts with aging. This new surface has been created with

SPICE simulations taking into account aging variations, as previously described
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in Section 3.3.2. The conditions of stress adopted for this case were 1.2V, 125◦C

and 20 years. A first simulation was performed at 1.2V and 125◦C to produce the

stress stimuli which are used by the simulator to compute the resulting degrada-

tion of each transistor extrapolated to a power-on-time (t) of 20 years. A library

was generated containing all the parameters of the degraded transistors. This

library was then used to construct an aged delay surface, allowing the same pro-

cedure as for the ”fresh” condition, with V ranging from 0.8V to 1.4V with step

∆V = 20mV , and with T evolving from 0◦C to 150◦C with step ∆T = 5◦C.

The Delay model of equation (3.5) was identified with the new set of simu-

lated path delays to observe how the parameters shift. The parameters pβ and

pα were fixed to their fresh values (see Table 3.1) because we are interested in

the ones related to the carrier mobility and the threshold voltage. Figure 3.13

compares the fresh and aged values for both pµ−1(T ) and pVth(T ). As we can see,

there is a little decrease of the mobility (pµ−1 ∝ 1/µ) while a significant increase

of the threshold voltage is observed (pVth(T ) ∝ Vth). The proposed methodology

could be applied with two parameters that shift over time, but it would become

considerably more complex. First, an extra model would be needed for the second

parameter shift. Next, more than one simulated aged delay would be necessary

for each (V, T, t) condition to find both shifted parameters. Therefore, for simpli-

fication purposes, only the pVth shift is considered in the model. This parameter

shift will be called ∆pVth . Thus, the final Delay model including aging variations

is expressed as:

Delay(V, T, t) = pβ + pµ−1(T )
V

(V − (pVth(T ) + ∆pVth(V, T, t)))pα
(3.10)

where ∆pVth(V, T, t) represents both BTI and HCI effects coupled.

Figure 3.13: Original (blue) and aged (red) values of pµ−1(T ) (left) and pVth(T )
(right).

The next step consists in calculating the ∆pVth for various V, T and t con-

ditions in order to create a ∆pVth(V, T, t) model. Stress stimuli were generated
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for 31 × 31 × 30 different (V, T, t) conditions of use (28830 in total). Then,

they were used to simulate the aged path delays. The ranges adopted were

[0.8, 1.4]V , [0, 150]◦C and [0, 20] years. The ∆pVth for each (V, T, t) condition was

estimated using the MATLAB fzero command. This command computes ∆pVth
where fun(∆pVth) = 0. fun(∆pVth) is the difference between the simulated aged

delay and equation (3.10), as follows:

f(∆pVth) = |Delay(Vi, Ti, ti)SPICE −Delay(Vi, Ti,∆pVth)Model| (3.11)

Figure 3.14 shows three examples of ∆pVth(V, T, t). Actually ∆pVth(V, T, t)

being a 4-dimensions surface, one of the 3 variables is fixed to generate the 3-

dimensions surfaces. The blank spaces correspond to situations when the com-

puted value of ∆pVth was negative, i.e. the aged path delay smaller than the fresh

one. This situation appears because a SPICE transient simulation is indeed the

numerical resolution of an algebraic differential system of equations. As such, it

is not an exact procedure and it is therefore susceptible to some accuracy errors.

In total, 236 out of 28830 (V, T, t) conditions of use (0.82%) were ignored because

they resulted in a negative numerical value for ∆pVth .

3.5.2 Construction of the ∆pVth model formula

The next step in the Aging Modelling stage is to fit the ∆pVth(V, T, t) computed

values to a model. As in the Delay Modelling stage, the definition of the ∆pVth
model is the most important step in the Aging Modelling stage. It is even more

complex than the Delay model since it has an extra dimension, namely, the

power-on time.

As for the Delay, the ∆pVth model can be built through an empirical method

based on some theoretical assumptions. Existing BTI models from the literature

[123, 124, 35, 125, 126] are used as template for modelling the temperature,

voltage and time dependencies of ∆pVth . BTI models are preferred over HCI ones

because the aging degradation in digital circuits is mostly due to BTI [29, 129].

Nevertheless, as ∆pVth is the resulting degradation at circuit-level of both effects

coupled, the final model will be defined so that the best fitting results are attained,

i.e. the smallest residuals and the narrowest confidence intervals possible are

obtained.

The definition at first of the complete expression of the ∆pVth(V, T, t) model

is in practice very difficult. Instead, it is possible to evaluate the contribution of

each variable one at a time.

Temperature dependence of ∆pVth

Among them, the variable which dependency is widely accepted in the literature

is the temperature. It is often assumed that the BTI dependence on temperature
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(a) ∆pVth(V, T, t) with V = 1.4V (b) ∆pVth(V, T, t) with T = 150◦C

(c) ∆pVth(V, T, t) with t = 20 years

Figure 3.14: ∆pVth surfaces extracted from the aged path delays.

follows an Arrhenius law [123]:

∆pVth(T ) ∝ e−Ea/kT (3.12)

where Ea is the temperature activation energy in Joules, k is the Boltzmann’s

constant (8.617e5eV/K) and T is the temperature in Kelvins. To estimate the
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value of Ea, the ∆pVth data set has been cut in 31× 30∆pVth(T ) curves, one for

each (V, t) couple. A logarithmic function has then be applied to each curve.

Therefore, the fitting can be performed as follows:

log(∆pVth(T )) = A− Ea
kT

(3.13)

where A is a coefficient depending on V and t.

Figure 3.15 shows Ea obtained for each ∆pVth(T ) curve. We can see that Ea
stays around an average value of 0.0775 (Ea/k = 900) in most cases.

Figure 3.16 compares the evolution of ∆pVth over T for (V, t) = (1.4V, 20

years) obtained through simulation and built with equation (3.12). We can see

that the simulated data follows quite well the Arrhenius law.

Figure 3.15: Values of Ea found by fitting ∆pVth(T ) curves into equation (3.13).
The average value of Ea is 0.0775.

Supply voltage dependence of ∆pVth

The contribution of temperature being defined, it is now possible to determine the

supply voltage contribution through ∆pVth(V, T ) surfaces. The BTI dependence

on the supply voltage is usually expressed through an exponential function [125,

130, 124]:

∆pVth(V, T ) = A ∗ V γ ∗ e−900/T (3.14)
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Figure 3.16: ∆pVth(T ) for (V, t) = (1.4V, 20 years). Blue: Simulation. Red:
Model (Arrhenius law).

In other cases it is expressed through a power function (V γ) [31, 131]:

∆pVth(V, T ) = A ∗ eγV ∗ e−900/T (3.15)

The ∆pVth data set was cut in 30 (V, T ) surfaces, one for each value of t.

These surfaces were fitted using both equations (3.14) and (3.15), where A is

a coefficient depending on t. The average Root Mean Square Error (RMSE)

and the average 95% confidence intervals of the parameters are reported in 3.4.

Note that the RMSE is the square root of the variance of the residuals. It is an

absolute measure of fit (same unit)and a lower RMSE value indicates a ”better”

fit. In turn, the Confidence Intervals are used to assess the quality of the estimate

of the parameters. The narrower the confidence interval, the more precise the

estimate is. From Table 3.4, it is possible to see that both equations presented

quite similar fitting results. Therefore, no conclusion about the supply voltage

dependence of ∆pVth model could be drawn from these results. Both equations

3.14) and (3.15) are kept for the following analysis (power-on time).

Table 3.4: Average fitting results of the 30 ∆pVth(V, T ) surfaces using the equa-
tions (3.14) and (3.15).

Equation γ RMSE 95% Confidence Interval

Power (V γ) 4.95 5.14e-4 ±2.40%

Exponential (eγV ) 4.13 5.38e-4 ±2.32%
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Power-on time dependence of ∆pVth

Finally, the time-dependence was modelled after both temperature and voltage

contributions were analyzed. This was achieved by using the whole data set. For

the BTI time-dependence, two theories are usually accepted, namely, Reaction-

Diffusion [132], where it is expressed as a power function (tn), and Charge-

Trapping [133], where a logarithmic function is adopted instead (log(1 + nt)).

Both of them were inserted in the equations (3.14) and (3.15). Therefore, the

∆pVth data were then fitted to the 4 following models:

∆pVth(V, T, t) = C ∗ tn ∗ V γ ∗ e−900/T (3.16)

∆pVth(V, T, t) = C ∗ tn ∗ eγV ∗ e−900/T (3.17)

∆pVth(V, T, t) = C ∗ log(1 + nt) ∗ V γ ∗ e−900/T (3.18)

∆pVth(V, T, t) = C ∗ log(1 + nt) ∗ eγV ∗ e−900/T (3.19)

Table 3.5: Identification fitting results for ∆pVth data to the equations (3.16
- 3.19). RMSE is the Root Mean Square Error while Max R stands for the
maximum value of the residual.

Equation Eq. (3.16) Eq. (3.17) Eq. (3.18) Eq. (3.19)

RMSE 3.12e-4 3.47e-4 5.81e-4 5.90e-4

Max R 9.4e-3 8.0e-3 30.7e-3 29.6e-3

γ (95% CI) 4.88 (0.2%) 4.27 (0.2%) 4.05 (0.5%) 3.59 (0.4%)

C (95% CI) 2.5e-3 (0.5%) 3.4e-5 (1.0%) 2.0e-3 (0.6%) 5.6e-5 (2.1%)

n (95% CI) 0.16 (0.1%) 0.16 (0.2%) 0.23 (4.9%) 0.21 (4.9%)

Table 3.5 gives the fitting results for the 4 models. The RMSE, the maximum

residual and the 95% Confidence Interval CI of each parameter are also reported

besides the parameters themselves. By comparing the first two models with

the last two ones, we conclude that the ∆pVth data fits better to a tn time-

dependence. Nevertheless, the voltage contribution still remains hard to model

since the two proposed expressions conduct to similar results. The authors in [35]

modelled the contributions of both BTI and HCI effects on the frequency shift

of ring-oscillators through experimental data. Moreover, they extracted the time

component of both phenomena under different temperatures and stress voltages,

as shown in Figure 3.17. From these graphs it is possible to note that BTI and

HCI have completely different time dynamics. Moreover, while the temperature

do not alter the BTI/HCI time components, the supply voltage does.

Based on the findings in [35], we decided to evaluate a power law with two

time exponents for the time dependence. At first, we tested it with two constant

exponents:

∆pVth(V, T, t) = (C1 ∗ tn1 + C2 ∗ tn2) ∗ V γ ∗ e−900/T (3.20)
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(a) (b)

Figure 3.17: BTI and HCI contribution on induced frequency shift under different
(a) temperatures and (b) supply voltages [35].

∆pVth(V, T, t) = (C1 ∗ tn1 + C2 ∗ tn2) ∗ eγV ∗ e−900/T (3.21)

Then, we adopted time exponents with a logarithmic dependence on the supply

voltage:

∆pVth(V, T, t) = (C1 ∗ tn1+a1∗log(V ) + C2 ∗ tn2+a2∗log(V )) ∗ V γ ∗ e−900/T (3.22)

∆pVth(V, T, t) = (C1 ∗ tn1+a1∗log(V ) + C2 ∗ tn2+a2∗log(V )) ∗ eγV ∗ e−900/T (3.23)

Table 3.6 shows the RMSE, the maximum residual and the obtained pa-

rameters with their respective 95% Confidence Intervals CI for the parameter

identification performed for models in equations (3.20 - 3.23). Comparing the

results in the first two columns with the ones in Table 3.5 it is possible to see

that equations with 2 time exponents produced better fitting results. The RMSE

has been reduced by around 25% while the maximum residual became more than

40% smaller than before. The wider Confidence Intervals are acceptable since

there are more parameters in the equation.

The same conclusion stands when we analyze the fitting results for equations

with voltage-dependent time exponent in the last two columns. The RMSE has

been reduced by around 20% while the confidence intervals increase when com-

pared to the first two columns. Besides, there is a slight improvement when using

a power function (equations (3.20) and (3.22)) for the voltage dependence instead

of an exponential function (equations (3.21) and (3.23)).
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Table 3.6: Fitting results of ∆pVth using models with two time components. Con-
stant exponents were used in equations (3.20) and (3.21), while voltage-dependent
ones were adopted in equations (3.22) and (3.23).

Equation Eq. (3.20) Eq. (3.21) Eq. (3.22) Eq. (3.23)

RMSE 2.28e-4 2.67e-4 1.84e-4 2.08e-4

Max R 5.0e-3 4.7e-3 4.7e-3 9.3e-3

γ (95% CI) 5.05 (0.1%) 4.33 (0.1%) 3.93 (1.4%) 3.09 (1.2%)

C1 (95% CI) 3.4e-3 (0.7%) 4.5e-5 (1.0%) 4.5e-3 (1.4%) 2.3e-4 (4.8%)

C2 (95% CI) 3.5e-4 (6.2%) 3.5e-6 (7.8%) 4.0e-4 (4.9%) 1.1e-5 (3.7%)

n1 (95% CI) 0.07 (3.7%) 0.08 (3.4%) 0.05 (5.3%) 0.06 (0.8%)

n2 (95% CI) 0.25 (1.0%) 0.26 (1.2%) 0.24 (0.8%) 0.27 (5.3%)

a1 (95% CI) - - 0.08 (9.3%) 0.11 (5.3%)

a2 (95% CI) - - 0.06 (2.8%) 0.10 (1.5%)

Finally, we can conclude that equation (3.22) is the most accurate model

for ∆pVth . Basically, it gives the ”best” fitting results and it is in accordance

with traditional BTI/HCI models found in the literature. However, equation

(3.20) could be adopted to have a less complex model despite some accuracy loss.

There exist an interest of adopting the most accurate equation for the Delay

model in order to find the parameter shift due to aging. In contrast, for the

∆pVth model a better trade off between accuracy and complexity may be sought

instead. A less complex model can be a better choice in particular when an online

implementation of the models is envisaged.

3.5.3 Example of ∆pVth model parameters

The ∆pVth data is then fitted using following equation:

∆pVth(V, T, t) = (C1 ∗ tn1+a1∗log(V ) + C2 ∗ tn2+a2∗log(V )) ∗ V γ ∗ e−Ea/kT (3.24)

This model contains 8 parameters to be estimated from 28830 values for ∆pVth .

The ranges adopted for V , T and t are [0.8, 1.4]V , [0, 150]◦C and [0, 20] years,

respectively, with ∆V = 2mV , ∆T = 5◦C and 30 logarithmically distributed

values for t.

The identified parameters with their respective Confidence Intervals CI are

given in Table 3.7. The RMSE of fitting was 0.18mV while the maximum residual

was 4.8mV . Figure 3.18 shows the cumulative distribution function (CDF) of the

residuals. It is possible to see that almost 95% of the errors stayed within ±1mV .

Figure 3.19 compares three ∆pVth surfaces obtained through SPICE simula-

tions to the surfaces constructed with the proposed model. The small fitting

residuals together with the similarity between the surfaces validate the chosen

∆pVth model and the parameters that have been identified.
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Table 3.7: ∆pVth model parameters for equation (3.24).

γ (95% CI) 3.93 (1.4%)

Ea/k (95% CI) 914.5 (0.1%)

C1 (95% CI) 4.7e-3 (1.4%)

C2 (95% CI) 4.3e-4 (5.0%)

n1 (95% CI) 0.05 (5.5%)

n2 (95% CI) 0.24 (0.8%)

a1 (95% CI) 0.087 (8.7%)

a2 (95% CI) 0.060 (2.8%)

Figure 3.18: Cumulative distribution function of residuals after fitting ∆pVth .
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(a) ∆pVth(T, t) for V = 1.4V built with
simulation

(b) ∆pVth(T, t) for V = 1.4V built with
the proposed model

(c) ∆pVth(V, t) for T = 150◦C built with
simulation

(d) ∆pVth(V, t) for T = 150◦C built with
the proposed model

(e) ∆pVth(V, T ) for t = 20 years built
with simulation

(f) ∆pVth(V, T ) for t = 20 years built with
the proposed model

Figure 3.19: Comparison of ∆pVth surfaces generated through SPICE simulation
and the proposed model.
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3.5.4 Impact of workload on aging

The temperature and the supply voltage are not the only factors that influence

the aging degradation of a circuit. The workload is as relevant as them for the

final delay shift. By workload we mean the application running in the circuit

along with the input data that define the activity and the signal probabilities

of each net. For instance, a PMOS transistor whose gate voltage is almost all

the time at V will not get stressed. On the other hand, it will endure the worst

degradation possible if its gate is stuck at ground. In a circuit path, all cells are

connected through a main signal which is propagate from the output of the first

flip-flop to the input of the second flip-flop. Other signals are connected to the

cells with 2 or more inputs. In the path used as example here (10 cells long)

12 additional signals exist. All these signals are as important as the main one

for computing the aging-induced delay shift. An experiment has been performed

through SPICE simulations where the delay shift was measured for different signal

configurations. In each configuration, all the signal probabilities changed except

for the main one. Three situations were tested:

• Normal, where the secondary signals were set in order to propagate the

main one;

• Inverted, where the signals were inverted from their previous values;

• 50/50, where they were half the time at V and the other half at ground.

Table 3.8 shows the path delay shifts for both fall and rise transitions with a

stress condition of 1.2V and 125◦C extrapolated to 20 years. Different delay

shifts were observed depending on the signals configuration. Moreover, the aging

degradation followed distinct trends according to the signal edge.

Table 3.8: Delay shift due to different configurations for the secondary signals.
Stress conditions = (1.2V, 125◦C, 20 years).

Fresh Normal Inverted 50/50

Fall 150.58ps 155.29ps (3.13%) 154.22ps (2.42%) 153.80ps (2.14%)

Rise 140.17ps 145.33ps (3.68%) 144.46ps (3.06%) 145.28ps (3.65%)

It is impossible to include the workload as a variable in the ∆pVth model due to

its numerous possibilities of signal combinations. The solution therefore is to re-

estimate the ∆pVth model parameters for as many workloads as needed. A similar

procedure to the one done for process variations in the Delay model has therefore

to be applied. For each workload, the signal probabilities of each transistor is

obtained through cycle accurate RTL simulations. Then the netlist is simulated

with the corresponding signal probabilities, producing a new degradation. As for

process variations on the Delay model, some of the ∆pVth parameters may be
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shared between different workloads if their values does not significantly vary with

the workload.

Three sets of random signal probabilities were generated to simulate different

workloads. Simulations with aging variations were performed within V , T and t

ranges of [0.8, 1.4]V , [0, 150]◦C and [0, 20] years, respectively, with ∆V = 5mV ,

∆T = 15◦C and 10 logarithmically distributed values for t. In total, 1430 (V, T, t)

conditions of use were simulated (10 × 13 × 11). The 8 ∆pVth parameters in

equation (3.24) were obtained for each workload as shown in Table 3.9. As

expected, the value of each parameter changes from a workload to another.

Table 3.9: Sets of parameters in equation (3.24) computed for different signal
probabilities.

Workload A Workload B Workload C

γ 4.21 4.54 3.16

Ea/k 884.3 804.6 662.0

C1 4.7e-3 2.7e-3 2.3e-3

C2 4.1e-4 2.4e-4 3.1e-5

n1 0.040 0.068 0.054

n2 0.243 0.266 0.307

a1 0.109 0.050 0.088

a2 0.044 0.028 0.093

Figure 3.20 depicts the 3 curves of ∆pVth over time for a stress condition of

1.4V and 150◦C. As it can be seen, there is a considerable change in ∆pVth for

Workload A and Workload C, the first one being more than 2 times greater than

the second one. This shows the importance of taking the workload into account

for the aging estimation.

Finally, some of the parameters can be shared between all workloads if a

process similar to the one adopted in Section 3.4.3 for process variations on

the Delay model is applied. It reduces the memory required for storing the

parameters and eases the ∆pVth estimation since some parts of the equation do

not need to be recomputed between different workloads. The relative standard

deviation (RSD) of each parameter between the 3 sets is analyzed. The one with

the smallest RSD is then fixed at its mean value. This procedure is repeated

until the mean RMSE and the mean maximum residual considerably increase.

Table 3.10 reports the results for each iteration.

It is possible to see that until the sixth iteration there was almost no loss of

accuracy after fixing 5 parameters of equation (3.24). It was only when C2 was

fixed at iteration 7 that both the RMSE and the maximum residual finally became

significantly deteriorated. Therefore, in this example, 5 parameters (Ea/k, γ, C1,

n2 and a2) can be shared between all workloads while only 3 parameters (n1, a1
and C2) have specific values for each workload.
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Figure 3.20: ∆pVth evolution over time for 3 workloads (stress condition of 1.4V
and 150◦C). The ∆pVth obtained in simulation are represented by circles while
the lines correspond to the model with parameters shown in Table 3.9.

Table 3.10: Results of each iteration to find the ∆pVth parameters (see equation
(3.24)) that can be shared between all workloads. Reported RMSE and maximum
residual (Max R) are the average values.

Iteration 1 2 3 4 5 6 7

RMSE 4.63e-4 4.86e-4 4.87e-4 4.88e-4 4.91e-4 4.91e-4 5.58e-4

Max R 3.74e-3 3.78e-3 3.78e-3 3.77e-3 3.75e-3 3.74e-3 4.63e-3

Coef fixed Ea/k γ n2 C1 a2 C2 -

Value 815.6 4.0 0.267 3.5e-3 0.05 1.6e-4 -

RSD 14.4% 17.0% 14.9% 14.7% 17.6% 20.3% -

3.5.5 Correlation of aging with process variations

During the Delay modelling stage, a set of parameters for the Delay model was

obtained for each (path, process corner) couple. One may think that a different

set of parameters for the ∆pVth model should be computed for each process corner,

path and workload triplet. However, the non-correlation between process and

aging variations was already demonstrated in [39], as shown in Figure 3.21.

As no correlation is observed between process variation and aging, there is

no need to re-estimate the parameters of equation (3.24) for each process corner.

An aging simulation has been conducted with both TT and SS process corners

to confirm this assumption. The stress condition adopted was 1V , 125◦C and

20 years. Table 3.11 shows the threshold voltage shifts for the 5 most degraded
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Figure 3.21: Non-correlation between the initial drain current and the drain
current drift for more than 1 million devices in 28nm FD-SOI technology [39].

transistors in the circuit path. As can be seen, the process corner does not

significantly affect the degradation since the difference between the Vth shifts

was not larger than 0.05%.

Table 3.11: Threshold voltage shift of the most degraded transistors with typical-
typical (TT ) and slow-slow (SS) process corners. Stress conditions: 1V , 125◦C
and 20 years.

Transistor TT shift (mV) SS shift (mV) Difference

# 1 10.3881 10.3928 0.05%

# 2 10.388 10.3927 0.05%

# 3 10.3879 10.3926 0.05%

# 4 10.384 10.3857 0.02%

# 5 10.383 10.385 0.02%

3.5.6 Considerations regarding dynamic variations

The proposed ∆pVth model has been constructed over SPICE simulations with

aging variations using the Eldo UDRM API. As explained in Section 3.3, the API

computes the stress stimuli from a transient simulation and then extrapolates

the aging degradation for a given power-on time. It is assumed that the circuit

endures the same stress during all its lifetime, which is seldom true. Variations

of temperature and supply voltage happen constantly during a circuit lifetime,

specially when a DVFS strategy is implemented. Therefore, the proposed model

must consider these dynamic variations if it is to be used for an on-line estimation.

The first approach proposed to handle dynamic variations in the ∆pVth model

was to take the average degradation into account. In other words, estimate the
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∆pVth for all considered (V, T ) conditions and then compute the weighted average

considering the time spent in each condition. Note that SPICE simulators do not

allow simulations with variable temperature. However, it is possible to simulate

any configuration of supply voltage waveform. The validity of this approach

was then verified through a simple V transition. Simulations were conducted

with the V at a ”low” voltage value for half the time and at a ”high” value

for the other half. The resulting delay shift was then compared to the average

delay shift obtained from simulations with V at ”low” and ”high” values all the

time. Table 3.12 shows the relative delay shifts observed for two cases where the

temperature is 125◦C and the power-on time is 5 years. The delay shifts were

measured at 1V. As can be seen, the average degradation is considerably lower

than the one obtained with variable V . Moreover, larger the difference between

”low” and ”high” values of V , larger the error of using an average estimation.

Table 3.12: Delay shifts for two cases of voltage transition, from 0.9V to 1.1V and
from 0.8V to 1.2V. The delay shifts were measured at 1V assuming a temperature
of 125◦C and a power-on time of 5 years. The average of the delay shifts for both
low and high V is compared to the resulting shift from a variable V , i.e. a
simulation where the circuit spends half the time at low V value and the other
half at high V value.

Low V High V Average Variable V

0.9V 0.75% 1.1V 2.35% 1.55% 2.07%

0.8V 0.42% 1.2V 3.94% 2.18% 3.30%

From the previous results, we conclude that computing the average degrada-

tion is not a suitable approach for handling dynamic variations of supply volt-

age. To overcome this limitation, a similar method to the one in [124] has been

adopted, see Figure 3.22. At a voltage change from V1 to V2:

1. ∆pVth(V1, Tx, t1) is calculated, where t1 is the time spent at V1.

2. Then, the inverse model is applied to compute t+, the time spent at V2 to

obtain the same ∆pVth :

t+ = ∆p−1Vth ⇔ ∆pVth(V2, Tx, t
+) = ∆pVth(V1, Tx, t1) (3.25)

3. The final ∆pVth is then computed considering the time spent at V2 plus t+:

∆pVth = ∆pVth(V2, Tx, t2 + t+) (3.26)

We validated this approach for dynamic variations through SPICE simulations

with variable voltage. Firstly, we observed that the number of voltage transitions

do not change the final delay shift. In other words, the aging degradation is

independent of the number of voltage transitions. It depends only on the total
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Figure 3.22: Computation of ∆pVth computation for a voltage transition from V1
to V2.

time spent at each voltage level, i.e. the duty cycle. This is consistent with

previous works [123] that demonstrated the frequency-independence of BTI. Note

that for other aging phenomena such as thermal cycling and electromigration, the

rate of voltage or temperature changes is not negligible.

Moreover, the order of voltage levels, i.e. ”low” V then ”high” V or vice versa,

does not affect the computed degradation. In fact, the UDRM API extrapolates

the degradation of a transient simulation (in nanoseconds) for a given power-on

time (in years) taking into account only the percentage of time at each voltage,

not their order. In a real experiment, a smaller degradation would be observed

in the case where the low supply voltage is used last as a result of the BTI

recovery. The reliability models [34] adopted here do incorporate this recovery

feature during the time extrapolation therefore avoiding a pessimistic estimation.

However, the final degradation reported is the one at the highest voltage value

used in the simulation that corresponds to the worst situation. Various voltage

scaling situations were simulated with different voltage levels and duty cycles.

The path delay was measured at 1V and 120◦C after the stress stimuli were

applied. The ∆pVth was then obtained from the resulting aged delays through

equation (3.11). The tested scenarios are listed in Table 3.13 where D stands

for the duty cycle of the respective voltage level. Table 3.14 shows the ∆pVth
obtained in simulation and with the proposed approach.

1. (V1 = 0.8V,D1 = 50%), (V2 = 1.2V,D2 = 50%), t = 10 years and T =

120◦C;

2. (V1 = 1.0V,D1 = 50%), (V2 = 1.2V,D2 = 50%), t = 10 years and T =

120◦C;
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3. (V1 = 0.8V,D1 = 25%), (V2 = 1.2V,D2 = 75%), t = 10 years and T =

120◦C;

4. (V1 = 0.9V,D1 = 20%), (V2 = 1.1V,D2 = 50%), (V3 = 1.3V,D3 = 30%),

t = 20 years and T = 150◦C;

5. (V1 = 0.8V,D1 = 25%), (V2 = 1.0V,D2 = 25%), (V3 = 1.2V,D3 = 25%),

(V4 = 1.4V,D4 = 25%), t = 20 years and T = 25◦C;

Table 3.13: Scenarios of variable supply voltage simulated to validated the pro-
posed approach to handle dynamic variations. Dx is the duty cycle respective to
Vx.

Scenario 1 2 3 4 5

T 120◦C 120◦C 120◦C 150◦C 25◦C

t 10 years 10 years 10 years 20 years 20 years

V1 0.8V 1.0V 0.8V 0.9V 0.8V

D1 50% 50% 25% 20% 25%

V2 1.2V 1.2V 1.2V 1.1V 1.0V

D2 50% 50% 75% 50% 25%

V3 - - - 1.3V 1.2V

D3 - - - 30% 25%

V4 - - - - 1.4V

D4 - - - - 25%

Table 3.14: ∆pVth obtained in simulation and with the proposed approach for
the scenarios defined in Table 3.13.

Scenario ∆pVth Simulation ∆pVth Model Difference

1 13.7mV 14.0mV +2.19%

2 13.7mV 14.0mV +2.19%

3 15.6mV 15.2mV -2.56%

4 28.5mV 26.0mV -8.77%

5 16.6mV 15.8mV -4.82%

As can be seen, the difference between the simulated ∆pVth and the modelled

one is quite small: even tough an error of 8.77% (2.5mv) is observed in the 4th

scenario, it is not significant for the path delay estimation. When this ∆pVth is

integrated into the Delay model for a condition of (1V, 125◦C), the computed

delay is only 0.56% smaller than the simulated one. These results validate the

proposed approach for voltage variations.

Basically, the authors in [124] found that the final degradation experienced by

a circuit in a voltage scaling strategy only depends on the time spent at the highest

V . Figure 3.23 shows the delay degradation for three DVFS strategies with two

voltage levels. The only difference between the three strategies is the value of the
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Figure 3.23: Delay degradation curves for different voltage scaling strategies [124].
The time spent at each voltage level as well as the ”high” value of VDD is the
same for all strategies. The ”low” value of VDD changes from 0V to 60% and
80% of the ”high” value.

”low” V , which ranges from 0 volts to 60% and 80% of the ”high” value. The

final delay degradation when a ”high” voltage value is applied is identical for

the three cases. The same finding is observed for our proposed approach and for

SPICE simulations as can be seen in the Table 3.14 for scenarios 1 and 2. Both

scenarios produced the same ∆pVth even tough the ”low” voltage level is 0.8V

for the first one and 1.0V for the second one. Therefore, it is possible to assume

that the circuit is not getting stressed at all when it is at ”low” V .

Note that, as previously stated, it is not possible to run SPICE simulations

with variable temperature. Therefore, we are not able to validate the adopted

methodology for temperature variations as we did for voltage variations. We can

only assume that the approach adopted for voltage variations is also valid for

temperature variations, taking into account the work performed in [124].

3.6 Validation of the complete model

Once the aging model is constructed, i.e. ∆pVth model has been tuned, it has

to be incorporated into the Delay model to assess the degradation of the path

delay. With the shift of the parameter pVth , the final Delay model becomes:

Delay(V, T, t) = pβ + pµ−1(T )
V

(V − (pVth(T ) + ∆pVth(V̂ , T̂ , t)))pα
(3.27)
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Note that V̂ and T̂ in ∆pVth depend on the historical values of the supply voltage

V and the temperature T , respectively. V̂ and T̂ are equal to the values of V and

T used for the Delay computation when no dynamic variations are considered.

It means that V and T are assumed constant during all the power-on time t.

Figure 3.24 shows a delay shift surface where the same V and T are used

for both the ∆pVth and the Delay computations. A power-on time of 20 years

is adopted. The delay shift is measured as an increase (%) in the path delay

due to the ∆pVth for the respective (V, T ) condition. The degradation surfaces

obtained through SPICE simulations and with our proposed models are almost

identical. Furthermore, by comparing the path delays simulated in Section 3.5.2

for 28830 (V, T, t) conditions to the respective delays obtained through the Delay

model, a mean error of 0.15ps (0.09%) is observed. The maximum error observed

is 0.87ps (0.65%) at (V, T, t) = (1.4V, 150◦C, 65 days). The ∆pVth error at this

stress condition was 1.4mV (7.24%). Figure 3.25 gives the cumulative distribution

function (CDF) of the delay error. As can be seen, 95% of the errors stayed

between ±0.4ps.

(a) SPICE simulations (b) Proposed model

Figure 3.24: Path delay shift (aged/fresh ratio) where the same (V, T ) condition
is used to compute both the stress stimuli and the path delay. A power-on time
of 20 years is adopted. Left: Spice simulations. Right: Proposed models.

In Figure 3.26, another delay shift surface is generated by taking a constant

stress condition of 1.2V, 125◦C and 20 years for the computation of ∆pVth . Differ-

ently from Figure 3.24 where the worst degradation is observed at high voltages

due to a increased ∆pVth , in Figure 3.26 it is perceived at low voltages. This is

due to a increased sensitivity of the path delay to threshold voltage variations at

low voltages (Delay ∝ 1/(V −Vth)). The mean error observed was 0.3ps (0.15%)

while the maximum one was 2.2ps (0.68%) at (V, T ) = (0.8V, 0◦C).
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Figure 3.25: Cumulative distribution function of the difference between the sim-
ulated delay and the Delay model for 28830 (V, T, t) conditions of use. 95% of
the errors are between ±0.4ps.

(a) SPICE simulations (b) Proposed model

Figure 3.26: Delay shift due to aging (aged/fresh ratio) with a constant stress
stimuli obtained at a condition of (1.2V, 125◦C, 20 years). Left: Spice simulations.
Right: Proposed models.

3.6.1 Validation in another benchmark circuit

The proposed methodology has been applied to another benchmark circuit im-

plemented in 28nm FD-SOI technology. The methodology is not described in

details, as previously done. The objective here is to show that our methodology

is circuit independent and remains valid for different architectures. The circuit

adopted here consists in a 32-bit Reduced Instruction Set Computer (RISC) Har-
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vard architecture, in-order, mono-thread, 5-stage pipeline [134]. Its critical path is

composed of 37 cells with a propagation delay of 0.48ns at (V, T ) = (1.1V, 75◦C).

The ranges adopted for V , T and t are [0.8, 1.4]V , [0, 150]◦C and [0, 20] years,

respectively, with ∆V = 5mV , ∆T = 15◦C and 10 logarithmically distributed

values for t. 1430 (V, T, t) conditions of use were simulated in total. The Delay

parameters and their respective 95% Confidence Intervals are given in Table 3.15.

The fitting resulted in a mean error of 0.38ps (0.08%) and a maximum error of

1.17ps (0.27%).

Table 3.15: Delay model parameters (see equation (3.9)) and respective Confi-
dence Intervals CI for the RISC processor [134].

pβ (95% CI) 2.25e-10 (0.1%)

C1 (95% CI) 6.96e-11 (0.5%)

k1 (95% CI) 3.23e-16 (2.0%)

n1 (95% CI) 2.20 (0.1%)

C2 (95% CI) 0.41 (0.3%)

k2 (95% CI) 7.38e-5 (2.2%)

n2 (95% CI) 1.39 (0.2%)

pα (95% CI) 3.12 (0.1%)

Table 3.16 presents the ∆pVth parameters estimated. Note that the wider

95% Confidence Intervals are due to the reduced number of simulated conditions,

20 times smaller than for the DSP circuit. The maximum error was 2.7mV

at (V, T, t) = (1.35V, 0◦C, 20 years) while the RMSE was 0.26mV . Figure 3.27

shows the ∆pVth(t) curves for both case study architectures and a condition of

use of 1.4V and 120◦C. As can be seen, the proposed ∆pVth correctly models the

different aging rate depending on the circuit topology.

Table 3.16: ∆pVth model parameters (see equation (3.24)) and respective Confi-
dence Intervals CI for the RISC processor [134].

γ (95% CI) 4.39 (6.4%)

Ea/k (95% CI) 1129.5 (0.8%)

C1 (95% CI) 8.77e-3 (9.2%)

C2 (95% CI) 1.45e-4 (34.2%)

n1 (95% CI) 0.017 (188.4%)

n2 (95% CI) 0.216 (5.9%)

a1 (95% CI) 0.145 (40.0%)

a2 (95% CI) 0.033 (40.6%)
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Figure 3.27: ∆pVth evolution over time for both DSP [61] (blue) and RISC pro-
cessor [134] (red) obtained through simulations (dots) and the proposed model
(lines). The conditions of use are (1.4V , 120◦C).

3.7 Conclusion

This chapter proposes a new bottom-up approach for estimating the circuit degra-

dation due to BTI/HCI effects. Built on top of device-level models, it consists

in two stages, namely, Delay Modelling and Aging Modelling. The first stage

produces a model, called Delay, that models the propagation delay of a circuit

path depending on the supply voltage and the temperature. The second one

models the aging degradation as a parameter shift ∆p of the Delay model. The

proposed methodology takes into account all factors that impact global aging,

namely, circuit topology, workload, supply voltage and temperature variations.

The proposed methodology has been validated on a DSP circuit implemented

in 28nm FD-SOI technology [61]. SPICE simulations with aging variations were

performed with the Eldo UDRM API. A state-of-the-art model coupling both

BTI and HCI effects together and featuring BTI relaxation has been adopted

[34]. One of the circuit critical paths was simulated within a wide range of

supply voltage V and temperature T generating a delay surface. This surface

was then fitted to a Delay model that was created based on the Sakurai alpha

power-law [22]. Fitting results demonstrated the good agreement between the

proposed model and the simulated delays, with a mean normalized residual of

only 0.08%. Finally, process variations were taken into account in two parameters

of the Delay model (C2 and pα) that depend on the process corner.

During the second stage, an aged delay surface was generated and fitted to
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the Delay model. By comparing the new parameters with those obtained for the

”fresh” surface, a shift of the parameter pVth is observed, ∆pVth . The path was

then re-simulated within the same V and T ranges and with a power-on time t

up to 20 years. In total, 28830 (V, T, t) conditions were simulated and a different

∆pVth was obtained for each condition. The surfaces of ∆pVth exhibited a similar

shape than the aging models found in the literature. Therefore, a ∆pVth model

was constructed by testing different configurations of voltage-, temperature- and

time-dependence. Fitting the whole ∆pVth data set with the final model resulted

in an average residual of 0.28mV with a maximum residual of 4.8mV . Other

simplified versions of the ∆pVth model are possible but with some accuracy loss.

Finally, both BTI and HCI effects are strongly dependent on the circuit work-

load, i.e., the signal probabilities and activities. Therefore, new ∆pVth parameters

have to be computed for different sets of signal probabilities. As demonstrated

here, some of the parameters can be shared between all workloads to simplify the

model without accuracy loss.

Furthermore, the ∆pVth model is constructed from simulations where a con-

stant voltage V and a constant temperature T are assumed during all the cir-

cuit lifetime. An approach similar to the one proposed in [124] was adopted to

model dynamic variations. It consists in calculating an ”apparent spent time” t+

whenever a variation occurs. Some scenarios of voltage variation were simulated

showing good agreement with the ∆pVth obtained through this approach.

At the end, the ∆pVth model was integrated to the Delay model. The com-

plete model was validated for the 28830 (V, T, t) conditions previously simulated,

resulting in an average error of 0.15ps (0.09%) and a maximum error of 0.87ps.

The methodology was also validated on a second benchmark circuit, namely, a

RISC processor [134]. Many applications are possible for such an accurate model

for aging degradation at circuit-level. For instance, it can be used for building

a framework for simulating a system under aging variations as well for on-line

estimating the circuit maximum frequency. Some of the possible applications are

demonstrated in the following chapter.

The proposed methodology has been validated in 28nm FD-SOI technology,

nevertheless it is still valid for any technology. The steps described in this chapter

would remain the same if the methodology is used with another technology, only

the Delay and the ∆pVth model may change. We have demonstrated that both

Delay and ∆pVth models fit well for different circuits implemented in the same

technology. Therefore, the methodology can be fully automated through scripts

for any circuit once the models are built.
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Chapter 4

Integration of circuit-level models

in different application contexts

In the last years, many works focused on tackling the aging related issues in digital

circuits. Some of them [135, 136, 137] consist in predicting the circuit degrada-

tion during the design phase. However, BTI and HCI mechanisms depend on the

operating conditions, namely, supply voltage, temperature and workload. These

conditions are seldom known in the design phase which makes an accurately es-

timation almost impossible. Other solutions [138, 83, 139] implement slack time

sensors in the critical paths to detect the pre-occurrence of setup time violations.

Nevertheless, these violations may be produced by a voltage drop or a tempera-

ture change; they are not necessarily a consequence of aging. Some other works

[111, 140, 109] claim to on-line measuring the aging degradation through ring-

oscillator based sensors. Yet, these sensors do not endure the same stress as the

functional parts of the circuit and they may degrade in a different rate than the

circuit itself.

Therefore, in this chapter we propose the use of the models proposed in Chap-

ter 3 to on-line assess the circuit degradation. They can be used to constantly

estimate the change of the circuit maximum operating frequency due to aging

and to other dynamic variations. Thus, an adaptation strategy can be imple-

mented to alter the frequency or supply voltage in order to ensure a fault-free

operation of the circuit while increasing the energy efficiency. Besides, the models

can be applied to on-line estimate the remaining time until circuit failure, i.e. the

time when the aging-induced delay shift will exceed a pre-defined safety margin.

Moreover, they can be used to determine which are the maximum operating con-

ditions (temperature and supply voltage) at which a circuit can operate without

breaking down before a desired lifetime. Finally, the ∆pvth model can serve as
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a reliability parameter to compare identical circuits for instance the processing

cores in a multi-core system.

Current BTI and HCI models are mostly device-level models. They can be in-

tegrated in SPICE simulators to accurately estimate the aging-induced threshold

voltage of each transistor. However, they cannot be used to assess the degrada-

tion of a complex circuit, such as a multi-core one. In this chapter, we implement

the circuit-level models developed in Chapter 3 to analyze the degradation of a

multi-core system. Different task mapping strategies are tested and compared

with regard to performance, energy and reliability. The models are also used

to simulate the operation of an Adaptive Frequency Scaling (AFS) system. A

new method to estimate the degradation of AFS systems is also proposed and

evaluated.

This chapter is organized as follows. Firstly, Section 4.1 briefly discusses the

state-of-the-art on the abstraction of aging models. Then, different possible uses

of the proposed methodology to on-line estimate the circuit degradation are given

in Section 4.2. Section 4.3 describes a multi-core simulation framework where

both the Delay and the ∆pvth models are integrated to evaluate different task

mapping strategies with respect to performance, energy and reliability. Finally,

Section 4.4 shows the application of the proposed methodology to simulate a

complete AFS system and then it introduces a new technique to on-line assess

its aging degradation. The research activities presented in this last section have

been published in [10].
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4.1 Related works on circuit-level aging modelling

Previous works have already focused on abstracting the complexity of existing

device-level aging models, in particular NBTI ones. Some works managed to ab-

stract the complexity of aging models from device-level to gate-level. For instance,

[141] generated gate-level models for NBTI degradation while [142] modelled both

BTI and HCI effects at gate-level. Nevertheless, a critical path in complex circuits

may have 50 or more gates. Although such models simplify aging simulations,

they are still not suitable to be used for on-line estimation due to the required

computational complexity.

In [143], a modeling framework is proposed for timing variations in a RISC

processor. A second order polynomial is used to model the path delay depen-

dence on temperature. However, instead of integrating the supply voltage in their

model, the authors obtain a set of model parameters for each value of the supply

voltage. This allows the estimation of the temperature-induced fMAX shift for

different supply voltages, but not the estimation of the shift due to voltage vari-

ations. Moreover, the authors do not model the NTBI degradation in the path

delay. Finally, only the typical process corner is addressed.

In [144], the authors modelled the workload-dependence of NBTI. Their method-

ology consists in an off-line modelling stage and an on-line monitoring stage.

First, a method is proposed to select a small set of the most representative flip-

flops in a circuit with regard to aging. For each possible workload, the signal

probabilities (SPs) of the selected flip-flops are obtained through cycle accurate

RTL simulations. Then, the aging-induced delay shift of the critical path is es-

timated for each workload through BTI-aware timing analysis. An aging model

is then constructed correlating the SPs of the selected flip-flops to the resulting

delay increase. During run-time, the SPs of the selected flip-flops are monitored

through counters attached to them. From the obtained signal probabilities, the

aging-induced delay shift is then calculated using the aging model constructed

at design phase. However, this work only addresses the workload-dependence,

considering both the temperature and the supply voltage as constant.

A methodology very similar to the one we propose in the present work was

recently published in [145]. The methodology is also based on aging-aware sim-

ulation and data fitting with simulated path delays through MATLAB. Models

are generated for the NBTI-induced delay shift of critical paths. The resulting

models have an exponential dependence on power-on time. They are validated on

different architectures and workloads, where two sets of model parameters are ob-

tained for each architecture. The first set of parameters corresponds to the lower

fMAX bound and the second one to the higher fMAX bound. They are obtained

from the worst and best workloads with regard to aging degradation, respectively.

However, such models are built for a unique Process-Voltage-Temperature (PVT)

condition. Therefore, nor the voltage variations neither temperature variations
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are taken into account.

Therefore, and to the best of our knowledge, this PhD thesis is the first work

to take into account all sources of variation (PVT and aging effects) in behavioral

circuit-level models.

4.2 On-line estimation of circuit degradation

Current solutions to measure the degradation of a circuit are mainly based on

ring-oscillators [111, 140, 109]. These sensors are composed of two identical units.

One of the units is constantly stressed while the other one is kept off with power

gating. It is possible to assess how much the stressed unit was degraded by

comparing their oscillating frequencies. However, these canary structures do not

degrade at the same rate than the functional parts of the circuit. Firstly, because

they do not own the same topology as the circuit critical paths and, secondly,

aging highly depends on the stressing input patterns which are determined by the

application running in the circuit and the input data. These conditions cannot

be reproduced on ring oscillators.

In this section, we present four possible uses of the proposed methodology to

accurately estimate the degradation of a circuit during its operation. Dynamically

tracking the aging-induced delay shift allows the establishment of strategies to

increase the circuit reliability as well as its energy efficiency. The implementation

costs are not discussed here because different ways to compute both the Delay

and the ∆pVth models can be implemented. Note that their implementation will

be most likely done as an application software. However, it is possible to design

a dedicated hardware for it when the area and power overheads are compensated

by the gains offered by the proposed methodology.

4.2.1 Control loop for Adaptive Voltage and Frequency Scaling

As stated in Chapter 1, the circuits implemented in advanced CMOS nodes are

highly sensitive to variability. Large voltage margins must be then added to

ensure a reliable operation of the circuit as shown in Figure 4.1. Otherwise,

”sense & react” approaches can be implemented to increase the energy efficiency

by removing such margins. Those techniques rely upon embedded sensors that

are placed in the circuit critical paths and monitor the change in the slack time

[138, 83, 139].

However, the implementation of such sensors considerably increases the circuit

design complexity. The sensors alter the timing characteristics of the critical

paths resulting in additional timing optimization steps. Furthermore, this is a

reactive technique since the circuit adapts itself only after the delay shift occurs.

A proactive solution, which foresees the delay shift before it occurs, would be a

better choice for avoiding irreversible variations such as aging-induced ones.
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Figure 4.1: Large voltage margins are required due to the increased variability
in advanced technology nodes.

The methodology proposed in Chapter 3 can be adopted as an alternative

solution to the traditional slack time sensors. Instead of using invasive monitors,

the proposed methodology only requires supply voltage and temperature moni-

toring. Moreover, it allows to predict the effect of any kind of variation (supply

voltage, temperature, aging) on the circuit maximum operating frequency fMAX .

Figure 4.2 shows the diagram flow of the envisioned solution.

Figure 4.2: Closed-loop strategy (i.e. sense and react) to reduce energy con-
sumption by dynamically updating the circuit frequency, supply voltage or body
voltage based on the estimated Delay.

Its implementation consists in a closed-loop scheme where embedded monitors

periodically provide measures of the supply voltage and of the circuit tempera-

ture. The aging-induced parameter shift ∆pVth is estimated only when it seems

necessary. Note that circuit aging has a power dependence on time. Therefore

∆pVth must be estimated more often at the beginning of the circuit lifetime than

after some months of operation. The Delay may be periodically estimated or

whenever a significant change of the supply voltage or of the temperature is ob-

served. Finally, the circuit adapts itself based on the estimated Delay. This

depends on the adaptation strategy implemented in the circuit, for instance the

adaptation can be done through the clock frequency, the supply voltage or even

the body voltage.

We now illustrate the benefits of using an Adaptive Voltage Scaling (AVS)
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Figure 4.3: Comparison of the dynamic power dissipated with a safety margin
and with Adaptive Voltage Scaling (AVS). The red area corresponds to the total
energy reduced which is equivalent to 11.1% after 20 years.

strategy to mitigate aging variations. We estimate the dynamic power dissipated

by a circuit for two cases, namely when a supply voltage guard-band is used and

the when an AVS strategy is implemented instead. The model parameters com-

puted in Section 3.6.1 for a RISC processor [134] are adopted. At the beginning

of its lifetime, this RISC processor requires a supply voltage of 1.35V to operate

at a clock frequency of 2.5GHz for a temperature of 120◦C. However, the sup-

ply voltage necessary to ensure its correct operation at a worst case temperature

of 150◦C and for a power-on time of 20 years is equal to 1.48V . This 130mV

guard-band results in an increase of 25.8% of the dynamic power dissipated at

the beginning of circuit lifetime. Figure 4.3 shows the energy gain by using AVS

instead of a safety margin. The total energy consumed after 20 years is reduced

by 11.1%.

The computation of equation (3.10) is a complex operation. Such computa-

tion requires tens or hundreds of clock cycles if it is performed at software-level.

It could be computed quite faster if a dedicated hardware is designed for it. How-

ever, it would result in a considerable area and power overhead making it a bad

trade off. If the Delay cannot be updated in a few clock cycles, the circuit will

not be able to adapt against fast variations such as supply voltage variations. In

this case, the slack time sensors would be necessary to mitigate fast variations.

Nevertheless, another possible implementation of the proposed models in an

adaptive system is by using a Look-Up Table (LUT). The circuit fMAX (inverse

of Delay) is initially computed for a given condition of use (V, T ). A LUT is

then constructed with the resulting fMAX shifts for small variations of V and T .
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Figure 4.4 shows an example of LUT for (V, T ) = (0.8V, 100◦C) constructed with

the Delay model parameters computed for the RISC processor of Section 3.6.1.

The circuit can operate at a clock frequency of 1.160 GHz at the nominal condi-

tion. For instance, if a voltage drop of 4mV occurs, the clock frequency must be

then reduced by 11 MHz to avoid timing faults. The LUT is updated whenever a

significant change of ∆pVth is computed. In a DVFS system it is possible to have

one LUT for each voltage level. This solution allows a fast adaptation (few clock

cycles), in presence of small variations without the need of additional circuitry.

Figure 4.4: Example of LUT table for an AFS system constructed with the
models developed in Chapter 3. It contains the induced shift of fMAX for small
variations of the supply voltage and the temperature.

4.2.2 Dynamic Mean Time to Failure (MTTF) computation

Safety margins against aging variations have to be considered in a circuit when no

adaptation strategy is implemented. In other words, the clock frequency applied

to the circuit is lower than its fMAX to ensure that it can properly work even

after some years of operation. The Mean Time to Failure (MTTF) is measured

at the presilicon design phase as the expected time that the aging-induced delay

shift is going to exceed the safety margin DelayMargin for a given condition of use

(V, T ). However, the condition of use is seldom constant over the circuit lifetime.

The same stands for the workload which affects as well the circuit aging. The

MTTF therefore cannot be correctly estimated at the design phase.

The proposed methodology can be used to calculate the MTTF during the

circuit operation based on the actual conditions of use. Using the historical

average values of voltage, temperature and workload, one only needs to apply

the inverse function of ∆pVth to find MTTF. This procedure is quite similar to

the one adopted for dynamic variations in Section 3.5.6. Using the inverse of
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equation (3.10), one can find the value of ∆p′Vth corresponding to a given margin

DelayMargin for an average condition of use (V̂ , T̂ ):

∆p′Vth | Delay(V̂ , T̂ ,∆p′Vth) = DelayMargin +Delay(V̂ , T̂ , 0) (4.1)

The inverse of equation (3.24) is then applied to find the time necessary to

reach this ∆p′Vth :

tMTTF | ∆pVth(V̂ , T̂ , tMTTF ) = ∆p′Vth (4.2)

The tMTTF corresponds to the overall MTTF without taking into account

the time already spent tspent. If there was no significant change in the condition

of use during the circuit operation, the remaining lifetime tremain is then simply

given by:

tremain = tMTTF − tspent (4.3)

Otherwise, an equivalent spent time t+ must be calculated by applying again

the inverse of equation (3.24) but now on the current aging-induced parameter

shift ∆pVthcurrent:

t+ | ∆pVth(V̂ , T̂ , t+) = ∆pVthcurrent (4.4)

As a consequence:

tremain = tMTTF − t+ (4.5)

By dynamically estimating the MTTF, it is then possible to know how close

the circuit is to get in an unreliable state. When the aging-induced delay shift

becomes larger than the initial DelayMargin, either the circuit must be stopped

or error detection techniques must be implemented.

4.2.3 Maximum operating conditions

In some situations, it is essential to ensure that a circuit will last a certain time

before getting in an unreliable state. This is the case for avionics and space appli-

cations where the embedded systems must endure at least 20 years of operation

in a harsh environment [6]. As the aging rate highly depends on the conditions of

use (V, T ) and the workload, this constraint may not be always fulfilled. There-

fore, it is important to evaluate the worst conditions at which a circuit can run

while guaranteeing that the lifetime constraint will be respected.

The proposed models can be then used to calculate the maximum operating

conditions possible so that the aging-induced parameter shift will not exceed a

given safety margin ∆p′Vth before a given lifetime tend. Average values can be

92



4.2. ON-LINE ESTIMATION OF CIRCUIT DEGRADATION

adopted for the parameters in equation (3.24). Otherwise, the values correspond-

ing to the worst case workload can be used. The objective may be to find the

maximum temperature TM for a given supply voltage Vx:

TM | ∆pVth(Vx, TM , tend) = ∆p′Vth (4.6)

or to find the maximum supply voltage VM for a given temperature Tx:

VM | ∆pVth(VM , Tx, tend) = ∆p′Vth (4.7)

Moreover, it is possible to construct a pareto frontier for the maximum values

of V and T as shown in Figure 4.5. Note that the circuit temperature is dependent

on the power dissipated and, consequently, on the supply voltage. Therefore, an

increase in the supply voltage will inevitably raise the temperature.

Figure 4.5: Pareto frontier of maximum values for the supply voltage V and
the temperature T for reaching a given lifetime tend without the aging-induced
parameter shift exceeding a given safety margin ∆p′Vth .

Obviously, the conditions of use V and T are seldom constant. They evolve

during the whole circuit lifetime. So, the maximum operating conditions must

be dynamically updated considering the current ∆pVth . Finally, whenever V and

T are higher than the maximum allowed ones, an action has to be taken to lower

them and get the circuit back in the Safe Zone.

4.2.4 Simplified on-line estimations

The methodology proposed in Chapter 3 takes into account the effect of all sources

of variations on the circuit path delay. However, in some situations a simplified

implementation may be preferred. For example, consider a system where both
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the supply voltage V and the temperature T are supposed to be constant. In this

case, the Delay is (dynamically) only affected by aging variations. This means

that it can be directly inferred from ∆pVth and that there is no need to compute

equation (3.10). To ease the process, a LUT can be created in advance with

entries of the induced delay shift for different values of ∆pVth ([∆pVth → Delay]

or [∆pVth → fMAX ]).

Besides that, with V and T constant, the computation of ∆pVth is also simpli-

fied. Basically, it depends only on the power-on time and on the workload. If no

significant difference is observed between the impact of all possible workloads on

the resulting aging, it can even be directly determined from the power-on time.

Again, a table can be constructed with the ∆pVth values for some power-on times.

Finally, in a many-core circuit where tens or hundreds of twin processors are

integrated, the ∆pVth can be directly used to compare the degradation endured

by each core. Since all cores have the same critical paths, there is no need to

compute the aging-induced delay shift of each core. The idea is to use the measure

of ∆pVth in task mapping strategies that favor the less degraded cores over the

more degraded ones. As a consequence, all the cores will degrade at the same

rate and avoid that some of them will become slower than the others. This idea

is demonstrated with more details hereafter.

4.3 Aging-aware task mapping in multi-core context

Parallelism was the key element to continue increasing the processors performance

after the ”power wall” was hit due to significant heat dissipation. That raised

the development of multi-core processors in the last decade and of the so-called

many-core processors, with tens or hundreds of cores. Some examples of many-

core architectures are the Intel’s Xeon Phi series, with up to 72 cores, and the

Kalray’s MPPA2-256, composed of 288 cores. Considerable efforts have been done

to get the most from these architectures, specially on the improvement of task

mapping strategies. The objective of these strategies is to achieve load balancing

that gives the best trade-off between performance and energy consumption.

However, reliability has become a major issue in advanced technology nodes

with the emergence of new challenges in the use of multi-core processors. Besides

performance and energy, it is now essential to also take aging degradation into

account during task mapping. Otherwise, an unbalanced aging of the whole

processor may appear leading to a premature wear-out of some processing units.

Moreover, the increase in power density resulted in the emergence of dark silicon.

This latter corresponds to the part of a circuit that cannot be powered-on due

to thermal design power constraint. Recent researches claimed that the amount

of dark silicon may reach up to 80% of the circuit with 8nm CMOS technology

[25]. Thus, having a measurement of the aging degradation of each core would
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help keeping the fresher cores powered-on instead of the more aged ones in a dark

silicon context.

Previous works focused on solutions for task mapping in multi-core processors

targeting a better balance between performance, power and reliability. Most

of them are governed by thermal related mechanisms such as thermal cycling

[146]. These works basically focus on reducing the circuit temperature which is

considered to be linked to the circuit the reliability. Some other works focus on

BTI and HCI effects [147, 148], but they employ generic and not fully appropriate

models to assess the reliability of the circuit. In this subsection we propose a

multi-core simulation framework to assess the impact of different task mapping

strategies on the circuit reliability. The models developed in Chapter 3 allow

to accurately measure the degradation endured by each core for the different

strategies. The objective is to check if the strategy which results in the best

trade-off between performance and energy is also the one which leads to the

smaller circuit degradation.

4.3.1 Description of the multi-core simulation framework

The multi-core simulation framework is implemented in the Matlab environment.

It is basically composed of three elements, namely, Core, Task and Scheduler.

At the beginning of a simulation, n Cores are instantiated. A Scheduler then

dynamically allocates a list of Tasks between the instantiated Cores based on a

chosen task mapping strategy.

The objective for this multi-core simulation framework is to evaluate how the

proposed models could be used to compare different task mapping strategies with

respect to performance, energy and reliability. The performance is defined by the

ratio of Tasks completed before and after their respective deadline. The energy

accounts for the energy consumed by all Cores considering dynamic and static

powers. Finally, the reliability is measured by the value of ∆pVth for each Core.

A Task is defined by:

• the initial time tini, which is the time when the Task is created;

• the deadline tend, which corresponds to the time when the Task must be

completed;

• the load δ, estimated as the number of processing cycles required to com-

plete the Task ;

• the activity factor α, used to compute the dynamic power dissipated by the

Core during the Task execution;

• the parameters in the ∆pVth formula, used for estimating the aging degra-

dation endured by the processing Core.
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The minimum clock frequency fmin required to complete a Task before its

deadline is defined as follows:

fmin =
δ

(tend − tini)
(4.8)

which is valid only if the Task starts to run immediately, i.e. if there is a Core

available when the Task is created. Otherwise a higher clock frequency would be

necessary.

A Task can be executed by only one processing Core. It is not allowed to

assign its execution to more than one Core. Moreover, a Core cannot starts

another Task before finishing the one that is already in execution. Performance

overhead due to context switching is therefore not taken into account. A Core

can execute only one Task at a time, still it has its own waiting Tasks list. When

the current Task is finished, the Core instantly starts executing the first Task in

its waiting list, if it is not empty.

The Scheduler implements a task mapping strategy to assign each newly

created Task to a Core. If the chosen Core is already executing another Task,

the new one is put in its Task waiting list. Each Core has a field with the sum

of the loads δ of all Tasks assigned to it. This information may be used by the

Scheduler in its task mapping strategy. The other Cores data that the Scheduler

can access is their ∆pVth , which can be used by the mapping strategy to favor

the fresher Cores over the more degraded ones. The Scheduler is also in charge

of setting the clock frequency fclk of each Core. We suppose that 11 frequency

levels are available, from 1.5GHz to 2.5Ghz with a frequency step of 100MHz.

The concept of the many-core simulation framework is shown in Figure 4.6. It

depicts the data fields of both Tasks and Cores that are visible to the Scheduler.

We consider that an AVS strategy is implemented in each Core. In other

words, the supply voltage V applied is always the minimum necessary one to

assure a fault free operation. V is calculated as an inverse function of Delay (see

equation (3.9)) considering the clock frequency applied (Delay = 1/f). The RISC

processor [134] presented in Section 3.6 is used as the benchmark architecture

here. All Cores are instantiated with the parameters shown in Table 3.15. Process

variations were not included, which could be possible without extra difficulty. The

supply voltages necessary for a ”fresh” Core to run at 1.5GHz and 2.5GHz are

0.92V and 1.33V, respectively, for a temperature of 75◦C.

An ambient temperature is set for all Cores. Nevertheless, their junction tem-

peratures depend on their respective dynamic powers. The power dissipated by

the circuit path is obtained from SPICE simulations. Simulations were conducted

within a wide range of supply voltage and temperature generating a surface for

the dynamic and the static power. Both surfaces were then fitted to polynomial

equations through regression analysis. A quadratic equation is adopted for the
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Figure 4.6: The multi-core simulation framework with its 3 elements, namely
Tasks, Scheduler and Cores. The Scheduler has access to the displayed data
fields of both Tasks and Cores in order to perform the task mapping.

dynamic power since it depends mainly on the supply voltage:

Pdyn(V ) = C0 + C1V + C2V
2 (4.9)

For the static power, a polynomial equation with a degree of 4 for the supply

voltage and a degree of 3 for the temperature is used:

Pstat(V, T ) =C0 + C1V + C2T + C3V
2 + C4V T + C5T

2 + C6V
3 + C7V

2T+

C8V T
2 + C9T

3 + C10V
4 + C11V

3T + C12V
2T 2 + C13V T

3

(4.10)

As the objective is only to compare the task mapping strategies, a normalized

total power is used instead of an absolute one. The power is normalized to 1.1V,

75◦C, 2GHz and an activity factor of 0.35.

A script generates the list of Tasks based on some parameters, such as the

simulation end time and the number of Cores. The total number of Tasks depends

on a ”density” parameter. For a density equal to 1, the number of simultaneous

Tasks, in average, will be equivalent to the number of instantiated Cores. For a

density of 2, it will be twice as many Cores. Another parameter is the maximum

frequency fmin required to finish a Task on time. The load δ and the duration

(tend−tini) of each Task are randomly chosen but always respecting this maximum

fmin (see equation (4.8)). The total number of Tasks and their average duration

time are correlated and they depend on the simulation end time and on the

”density” parameter. They can be thus defined in two ways. The number of Tasks

can be directly chosen, so the average duration time of each Task is determined
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based on it. Inversely, the average duration time can be specified and then the

number of Tasks is determined from it.

Finally, either a random activity factor α is assigned to each Task or a con-

stant activity is defined for all of them. α is used to calculate the dynamic power

dissipated by the processing Core during the Task execution. The same goes for

the ∆pVth parameters. A single set of parameters can be used for all Tasks or

different sets are randomly allocated between the Tasks.

4.3.2 Task mapping strategies: Performance × Energy × Reliability

trade-off

The multi-core simulation framework described in the previous subsection is now

used to evaluate different task mapping strategies. A circuit with 8 Cores is

simulated. All Cores are assumed to be identical. The list of Tasks used as input

was generated using the following parameters:

• 20000 Tasks in total;

• Simulation end time equal to 10 years;

• Average Task duration time around 35 hours.

• The minimum and the maximum Task duration time are 1/4 and 7/4 of

the average one (around 9 and 61 hours), respectively;

• A ”density” parameter equal to 1;

• A maximum fmin of 2GHz, i.e. all Tasks are created requiring a clock

frequency up to 2GHz to be completed before deadline;

• A constant activity α equal to 0.2 for the dynamic power estimation;

• The set of ∆pVth parameters shown in Table 3.16 are adopted for all Tasks.

A simulation with this input list takes between 12 and 15 minutes to be com-

pleted on a quad-core Intel i5 processor operating at 3.20 GHz. The simulation

time depends on the Scheduler used. The different task mapping strategies tested

here are:

• Scheduler 0 distributes the Tasks in a cyclic way. It starts from Core 0

until Core 7, repeatedly. It implements DVFS by appling the minimum

clock frequency necessary to complete the new Task before its deadline.

The sum of all other Tasks’s load δ in the Core’s waiting list is also taken

into account in the computation of this minimum frequency;
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• Scheduler 1 chooses the ”less charged” core, i.e. the one with less remaining

cycles to be computed considering all Tasks in its waiting list. If there

is more than one core in this condition (normally when no task is being

executed), the one with smaller ∆pVth is chosen. It also implements DVFS

as Scheduler 0 ;

• Scheduler 2 is similar to Scheduler 1 but without DVFS. A constant clock

frequency of 2 GHz is adopted;

• Scheduler 3 is similar to Scheduler 1. However, when there are more than

3 Cores busy, it increases the clock frequency of all Cores that are running

at a low frequency. If there are 4 Cores busy, it assures that all of them

operate at 1.6GHz at least. This minimum frequency is gradually increased

up to 2GHz for when all the 8 Cores are busy.

• Scheduler 4 is similar to Scheduler 2 except that the maximum clock fre-

quency possible, i.e. 2.5 GHz, is applied to all cores;

The simulation results are given in Table 4.1 as the average values for all 8

Cores. The performance is measured as the number of delayed tasks. The energy

dissipated is calculated from a power normalized to 1.1V, 75◦C, 2 GHz and α

equal to 0.35. Finally, the estimated ∆pVth is used as the reliability measurement.

Note that a lower value represents a better result for the 3 indicators. The last

column gives then the inverse of the product of the 3 indicators which can be

used as an overall efficiency indicator for each Scheduler.

Table 4.1: Performance, energy and reliability measures for each Scheduler. Per-
formance is the amount of delayed tasks, energy is calculated from a normalized
power (w.r.t. 1.1V, 75◦C, 2 GHz and α equal to 0.35) and reliability is the es-
timated ∆pVth . The last column gives the inverse of their product as an overall
efficiency indicator.

Strategy DVFS Performance Energy ∆pVth [mV] 1/(P × E ×∆pVth)

Sched 0 Yes 233.12 86.80 15.86 3.12e-6

Sched 1 Yes 103.62 76.47 11.99 10.53e-6

Sched 2 No 196.87 93.69 8.10 6.69e-6

Sched 3 Yes 87.62 85.37 10.76 12.43e-6

Sched 4 No 75.12 160.34 24.26 3.42e-6

Remind that Scheduler 0 actually does not implement any task mapping

strategy, it only distributes the Tasks between the Cores in a cyclic way. On

the other hand, Scheduler 2 implements a task mapping strategy but it does not

apply DVFS. By comparing the results of both strategies, Scheduler 2 reduces the

number of delayed tasks by 16% and ∆pVth by 49% with a slight energy increase

equal to 8%. From these results, it can be seen that a correct load-balancing
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strategy leads to a considerable improvement in circuit reliability. Yet, better

figures are reached by applying DVFS together with a task mapping strategy, as

done by Scheduler 1. Despite a small ∆pVth increase, its overall efficiency is 57%

better compared to Scheduler 2 (last column in Table 4.1).

Scheduler 3 manages to produce even better results by only increasing the

clock frequency of the Cores operating at low frequencies when the circuit is get-

ting overloaded with Tasks. Besides reducing the amount of delayed tasks, this

strategy also reduces ∆pVth by minimizing the need of applying very high frequen-

cies and, consequently, very high voltages. Indeed, as discussed in Section 3.5.6,

the low value of voltage does not significantly impact the aging degradation, only

a high value of voltage and the time spent at it impact the core degradation.

The supply voltage should always be at its minimum necessary value in an ideal

scenario regarding reliability. This is why Scheduler 2 resulted in the lowest value

for ∆pVth besides using the medium value for the clock frequency.

Figure 4.7 gives a visual representation of the results presented in Table 4.1.

Each indicator has been inverted and then normalized to its respective highest

value. As it can be seen, Scheduler 4 is the best strategy possible with regard to

performance. On the other hand, it is the worst one with regard to reliability and

energy consumption. Finally, while Scheduler 3 is not the best in any aspect, it

is the one who gives the best trade-off between the three indicators.

Figure 4.7: Indicators of performance, energy and reliability inverted and nor-
malized to their respective highest values.
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4.4 Simulation of an AFS system under aging variations

In Section 2.2 we introduced the concept of adaptive architectures as a solution

for coping with variability in digital circuits. These circuits adapt themselves on

the fly to avoid timing faults while increasing the energy efficiency. For instance,

an Adaptive Frequency Scaling (AFS) system is composed of a variable frequency

generator and a closed-loop control to modify the clock frequency depending on

the outputs of some embedded monitors, for instance some slack time sensors

[138, 139, 83]. The sensors are inserted in the circuit critical paths. Then, they

raise a warning when the path delay is close to the clock period.

Yet, these monitors can only sense the variation in the path delay, they do

not detect the origin of the variation. A reduction of the circuit maximum op-

erating frequency (fMAX) might be due to a simple voltage drop or a change of

the temperature. Nevertheless, it might as well be the result of the circuit degra-

dation. In this subsection we propose a method to measure the aging-induced

performance shift of an AFS system by tracking both fMAX and the tempera-

ture evolution over time. This technique uses sensors present in any adaptive

architecture and it does not require additional structures.

In order to assess the feasibility of the proposed solution, we must simulate

an AFS architecture with its embedded sensors under aging variations. It is

not feasible through SPICE simulation due to the excessive computational time

required to simulate every critical path in various use conditions. Therefore, a

platform that features circuit-level aging models must be implemented. That

can be done using the methodology proposed in Chapter 3. The circuit critical

paths are modeled and the resulting models are then integrated in the simulation

platform. This allows the simulation of an adaptive system working under all

sources of variability, namely, process, voltage, temperature and aging.

4.4.1 Complete AFS system model in Simulink

The DSP architecture described in Section 3.3.1 was adopted as benchmark. 80 of

its critical paths were modeled. The generated models (Delay and ∆pVth for each

path) were then integrated in the MATLAB/Simulink environment representing

the in-situ delay monitors. A warning is raised whenever a modelled path delay is

equal to the clock period. Previous works demonstrated the correlation between

the circuit aging and the slack monitor aging [83]. In other words, the circuit

maximum operating frequency fMAX and the monitor warning frequency degrade

both at the same rate.

Note that the occurrence of warning flags highly depends on the circuit work-

load [149]. If a monitored path is not being stimulated, it will not raise a warning

even tough its propagation delay is close to or larger than the clock period. There

must be a signal transition at the path end so that the pre-occurrence of a tim-
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ing fault can be detected. Thus, we consider that a test subroutine is applied

stimulating all monitored paths.

We implemented an AFS closed-loop with a threshold of 7 warnings: the

clock frequency is increased when the number of warnings is less than 7 and it

is decreased when there is more than 7 warnings. Higher this threshold, more

energy efficient the circuit is. However, greater the risk of timing fault occurrence

too. A regulation step of 1 MHz was adopted for the frequency generator.

(a) Complete AFS Simulink model

(b) Circuit Simulink model

Figure 4.8: (a) Simulink model for the complete AFS system, including the
circuit itself and the AFS control. (b) Simulink model for the benchmark circuit,
with the Delay and ∆pVth models for 80 circuit paths.

Figure 4.8 shows the Simulink model developed to simulate an AFS system.

The first schema represents the complete AFS system while the the circuit block

(the one at the middle) is depicted in the second schema. Both ∆pVth and Delay

models are implemented inside the circuit block. Besides them, another block

models the temperature in function of the supply voltage, the temperature and

the activity. V and T measurements provided by a monitor are modelled as a

Gaussian noise added to the real values of V and T , respectively. The monitor
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flags are generated in the rightmost block by comparing the computed delays of

the 80 paths with the clock period.

In the present implementation, we covered only the case where V is constant.

We did not include voltage drops because their duration is usually in the order of

nano- or microseconds, at the most. Here, a simulation step time of 1 millisecond

has been adopted. The fMAX at the beginning of the circuit lifetime is supposed

equal to 3.1GHz for V = 1.2V and 1.6GHz for V = 0.8V , at T = 25˚C. The

Delay models can be observed through the occurrence of warnings. As it can

be seen in Figure 4.9 for V = 1.2V , the frequency at which a warning is raised

becomes lower for higher temperatures as well as for more degraded circuits.

Figure 4.9: Number of warnings generated by the modelled delay monitors for
V = 1.2V .

4.4.2 Aging degradation measurement for an AFS system

The proposed method for estimating aging is based on a conceptual AFS system

with in-situ delay monitors and local temperature sensors. It consists basically in

keeping record of both fMAX and temperature evolution over time. The objective

is to measure the shift of fMAX exclusively due to aging, regardless of any voltage

and temperature variations. In other words, it consists in extracting the fMAX(t)

relationship from the fMAX(V, T, t) one, where V , T and t are the supply voltage,

the temperature and the power-on time, respectively. Considering that we do

not vary V in the present implementation, there is no need to find a fMAX(V )

relationship. On the contrary, it is not possible to assume that each measure

campaign would be conducted at or near the same temperature T since one does

not have control over it. A fMAX(T ) relationship must then be constructed before

we can estimate fMAX(t).
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Figure 4.10: fMAX(T ) relationship for V = 1.2V (blue) and V = 0.8V (red),
normalized at fMAX(70˚C). The relationship is still linear but the slope sign
changes due to the inverse temperature dependency.

A series of Simulink simulations with variable temperature was conducted.

From the simulations, we found a linear fMAX(T ) relationship for a wide tem-

perature range, as shown in Figure 4.10 for both V = 1.2V and 0.8V . Even

though its slope changes with V due to the inverse temperature dependency, the

relationship is still linear. Therefore, fMAX(T ) can be constructed with only 2

parameters:

fMAX(T ) = a+ b ∗ T (4.11)

Using equation(4.11), it is possible to calculate the aging-induced fMAX shift

even when the measure campaigns are conducted at different temperatures. A

set of measures of both the frequency and the temperature is acquired each time

an estimation of the degradation is needed. The linear fMAX(T ) relationship is

then constructed by applying linear regression on the obtained measures. In the

end, the performance shift due to aging represented by fMAX(t) is obtained for

any temperature using the estimations from previous measure campaigns.

Larger the number of measures done during a test campaign, more accurate

the result. The average error of a fMAX(T ) relationship constructed with 200

measures is 0.4% while it is less than 0.01% with 1000 points. The same anal-

ysis stands for the temperature range. fMAX(T ) relationships constructed from

measures made within a limited range of 2˚C and 3˚C presents an average

residual of 1% and 0.1%, respectively. These small temperature ranges can be

easily achieved by just varying the circuit activity, for example. In the following

scenarios, we gathered 1000 measures within a temperature range of about 5˚C.

Each test campaign takes 1 second to be executed for a sample time of 1 ms.
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(a) V = 1.2V

(b) V = 0.8V

Figure 4.11: Results of test campaigns conducted at (a) V = 1.2V and (b)
V = 0.8V for 4 different stress times (1000 measures each). The dashed line is
the associated fMAX(T ). fMAX(40˚C) is reported for each stress time.
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Figure 4.11 exemplifies the proposed solution through two different test case

scenarios, the first one at V = 1.2V and the second one at V = 0.8V . Each

scenario reports the measures of 4 test campaigns performed at different times:

beginning of lifetime (blue), after 1 month (red), 6 months (green) and 2 years

(magenta). The dashed lines correspond to the associated fMAX(T ). The tests

were performed at different temperatures, from 30˚C to 50˚C. Even so, we can

estimate fMAX(t) at any temperature. For V = 1.2V , the aging-induced fMAX

shift is equal to -106 MHz (-3.47%) after 2 years at T = 40˚C. For V = 0.8V ,

it is -15 MHz (0.93%). As expected, the circuit gets more degraded at a higher

value of V . Note that, in the second scenario, fMAX measured at t =6 months is

actually higher than at t =1 month due to the temperature difference. It justifies

the need of constructing a fMAX(T ) relationship to find the aging-induced fMAX

shift.

Finally, the fMAX(t) relationship is gradually constructed during the circuit

lifetime as more test campaigns are being performed. Though only 4 campaigns

were performed in the examples presented here, in a real application they are

to be conducted more often. As both BTI and HCI effects have an exponen-

tial dependence on the power-on time, a power function can be adopted for the

fMAX(t) relationship:

fMAX(t) = a− b ∗ tn (4.12)

Coefficients a, b and n are computed by applying regression analysis on the data

obtained from the test campaigns. For instance, Figure 4.12 shows the fMAX(t)

relationships constructed considering the scenarios presented in Figure 4.11 for

both V = 1.2V and V = 0.8V considering T = 40◦C. The estimated coefficients

of equation (4.12) are given in Table 4.2 for both fMAX(t) relationships. Through

the constructed fMAX(t) relationship, it is then possible to predict fMAX for any

power-on time. In Figure 4.12, fMAX(t) has been predicted up to 5 years (60

months). Actually, the degradation rate will not necessarily remain constant since

the operating conditions may change, namely, the supply voltage, temperature

and workload. However, it provides an accurate estimate taking into account

past operating conditions.

Table 4.2: Coefficients of the fMAX(t) relationship (equation (4.12)) computed
for both scenarios presented in Figure 4.11. The resulting fMAX(t) curves are
shown in Figure 4.12.

V a b n

1.2V 3.05× 109 2.35× 105 0.34

0.8V 1.61× 109 1.62× 105 0.25
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Figure 4.12: fMAX(t) relationship constructed with the data given in Figure 4.11
for V = 1.2V (top) and V = 0.8V (bottom), considering T = 40◦C.

4.5 Conclusion

This chapter proposes and demonstrates some cases of application of the method-

ology presented in Chapter 3. First, the proposed models are used for on-line

estimating the circuit degradation. They can be used in an adaptive system to

track the maximum operating frequency. Since the computation of both models

require some processor cycles, LUTs can be constructed in advance for achieving

a fast response to variations. Otherwise, the circuit MTTF can be dynamically

estimated taking into account the actual conditions of operation. Likewise, the

maximum operating conditions can be also calculated on the fly to avoid a pre-

mature failure of the circuit. Lastly, the value of ∆pvth can serve as a reliability

parameter to compare identical cores in a multi-core circuit to know which are

the most degraded.

Besides of on-line estimating the circuit degradation, the proposed models can

be used to perform reliability simulation of complex systems. Existing device-

level aging models allow an accurate estimation of the aging-induced delay shift

of a path. However, the simulation of several paths under different operating

conditions (voltage, temperature, workload) is impossible due to the required

simulation time. Therefore, this chapter demonstrated two applications of the

proposed models for modelling a complex system.

The first application consisted in the implementation of a multi-core sim-

ulation framework in the MATLAB environment. This framework allows the

evaluation of different task mapping strategies with regard to performance, en-

ergy and reliability. Here, five different strategies were implemented and com-

pared. Through the simulation results, we could conclude that traditional DVFS

strategies can lead to an increased aging degradation in spite of increasing both
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performance and energy efficiency. As both BTI and HCI effects have an expo-

nential dependence on the supply voltage, the circuit will endure less degradation

if it operates at a medium voltage/frequency level than if it oscillates between low

and high levels. Finally, it is not possible to have the best value possible in any

of the indicators without worsening the other two. The best strategy is therefore

the one that manages to reach a good balance between the three aspects, namely,

performance, energy and reliability.

The second application was the modelling of a complete AFS system. Several

critical paths of a benchmark circuit were modelled and their respective models

were integrated in a Simulink model. Each model thus represented a path mon-

itored by a slack time sensor in a conceptual AFS system. Then, a technique

to estimate the circuit degradation of AFS systems for a given power-on time

t was proposed. This technique consisted basically in keeping record of both

fMAX and temperature T variations over time. By creating a linear fMAX(T )

relationship, it is then possible to calculate fMAX for any temperature. It allows

the estimation of the aging-induced performance shift even when the measures

are not performed at a constant temperature. Finally, a fMAX(t) relationship is

gradually constructed by fitting the obtained measures in a power function. The

circuit fMAX can then be predicted for any power-on time.
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Chapter 5

Conclusion and Perspectives

5.1 Synthesis

The continuous miniaturization of transistor dimensions allows the design of com-

pact circuits with even more processing capabilities and lower manufacturing

costs. This has led to an exponential growth of the number of computing sys-

tems, in particular mobile devices. The energy consumed by these circuits must

be minimized in order to extend their battery lifetime. Technology scaling has

also considerably increased the circuit sensitivity to variations. Traditionally, the

uncertainty in CMOS circuits is due to Process, Voltage and Temperature (PVT)

variations, but aging effects have also become an important source of variability

in recent technology nodes, particularly Bias Temperature Instability (BTI) and

Hot Carrier Injection (HCI) mechanisms. The design of digital circuits nowadays

requires the use of large voltage margins to ensure a functional circuit in the

presence of variations. These margins, in turn, produce significant energy losses

and underperformance.

Adaptive techniques have emerged in the last years to increase the energy

efficiency of digital circuits by reducing the size of the safety guard-bands. Such

techniques consist mainly in using in-situ sensors to monitor the dynamic vari-

ations of the maximum functional frequency fMAX . Numerous fMAX tracking

techniques were already proposed in the literature, ranging from critical path

replica to slack time monitors. However, all the existing solutions present the

same limitation: they are not able to determine the source of variation.

While temperature and voltage variations cause temporary fMAX shifts, ag-

ing degradation results in a permanent shift. Moreover, the use of dedicated

sensors to estimate aging has not yet proved to be enough to provide an accurate

information on the degradation of the logic circuit. Safety-critical systems, e.g.

automotive and aerospace, require circuits that are able to operate over 25 years

109



CHAPTER 5. CONCLUSION AND PERSPECTIVES

in harsh environments with a very low failure rate. Handling aging effects in such

systems poses then an important challenge.

Therefore, in this thesis we proposed a novel methodology to develop behav-

ioral circuit-level aging models for digital logic circuits. Two models are issued.

The first one, called Delay, estimates the critical path delay based on PVT vari-

ations. The second model, called ∆pVth , reflects the impact of both BTI and

HCI effects on the path delay. It is integrated into the Delay model as an aging-

induced parameter shift. Built from SPICE simulations, these models take in

account all factors that impact global aging, namely, circuit topology, voltage,

temperature and workload. Since the effects of dynamic variations are considered,

the models can be used for on-line estimation of the circuit performance. Finally,

the methodology is architecture- and technology-independent, which means that

it can be applied to any circuit while the obtained models depend on the circuit

and the technology. After both the Delay and the ∆pVth formula are constructed

for a given technology, the whole process (i.e. SPICE simulation and parameters

identification) can be automated through scripts. This methodology has been

described in Chapter 3.

An on-line estimation of the circuit maximum frequency fMAX using the pro-

posed models is only possible with sensors that provide reliable values of the

voltage and the temperature. The main weakness of existing voltage and tem-

perature monitors is that they are not robust to aging variations. Therefore, we

considered here a small digital sensor composed of 7 ring-oscillators proposed in

[100]. Its V T estimation method makes use of a database composed of the oscil-

lating frequencies of all ring-oscillators for each {V, T} condition. The frequencies

are estimated at design phase. A calibration method is then applied after the

circuit fabrication to update the database against process variations. However,

the ring-oscillators are also sensitive to aging variations.

Therefore, we first evaluated the impact of BTI and HCI effects on the V T

estimates. The aging effects result in a shift of the oscillating frequency of the

ring-oscillators. In turn, this shift results in an offset on the voltage and temper-

ature estimates. To counteract aging effects, we proposed a simple recalibration

method. This method consists basically in remeasuring the frequencies of all

ring-oscillators in a known {V, T} condition. The measured frequency shifts (in

Hertz) due to aging are then applied as a correction factor to all models in the

database. We demonstrated that, by using the proposed recalibration method,

the accuracy of the V T estimates for a 10 years old sensor (considering worst-case

aging conditions) is almost equivalent to the one obtained with a fresh sensor.

This contribution has been presented in Chapter 2.

Different scenarios of use have been considered for the proposed models. They

have been shortly discussed in Chapter 4. For instance, they can be used in

an adaptive control scheme to dynamically estimate fMAX . To speed-up the
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estimation process, a LUT can be previously constructed with the frequency shifts

for small variations of the voltage and the temperature. Moreover, the models

can be used to calculate online the circuit Mean Time to Failure (MTTF). The

MTTF is usually computed at the design phase considering expected operating

conditions (voltage, temperature and workload). Through the proposed models,

it is then possible to estimate the MTTF on the fly considering actual operating

conditions. Conversely, the maximum operating conditions for satisfying a given

MTTF can be also dynamically estimated taking into account the current aging

degradation. Finally, in a multi- or many-core context, the value of ∆pVth can be

adopted as an aging indicator for reliability-aware task mapping strategies. By

comparing the values of ∆pVth , such strategies can favor the fresher cores over

the more degraded ones when allocating the tasks.

In addition to on-line applications, the interest of the proposed models were

also demonstrated through two off-line simulation contexts. The first consisted

in a framework for simulating a multi-core circuit. This framework allows the

evaluation of task mapping and DVFS strategies with regard to performance,

energy and reliability. The performance is measured as the number of tasks com-

pleted before deadline, where the Delay model is used to estimate the required

supply voltage for a given clock frequency, or vice-versa. Besides integrating the

Delay model, ∆pVth is used as the reliability indicator. The energy is obtained

from both dynamic and static power dissipation. At the end, five different task

mapping and DVFS strategies were evaluated with the simulation framework.

We could conclude that there is not a unique strategy that gives the best results

in all the three parameters. The best strategy is the one that gives the most

balanced trade-off between performance, energy and reliability.

The models were also incorporated in an AFS system simulated under Simulink.

The Simulink model allows the simulation of AFS systems under different con-

ditions of use. The simulated circuit contains slack monitors that warn the pre-

occurrence of timing faults. The operation of these monitors is simulated through

the use of the Delay model with the ∆pVth one to reproduce aging effects. The

clock frequency of the circuit is increased or decreased based on the number of

warning flags. Then, we proposed a technique to estimate the aging degradation

of such systems. This technique consists in tracking the clock frequency and the

temperature variations. By creating a linear relationship, the impact of tem-

perature can be removed from the clock frequency fluctuation. An exponential

relationship is finally constructed for the aging degradation using measurements

of the clock frequency obtained over the circuit lifetime.
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5.2 Perspectives

The results obtained in this thesis have confirmed the feasibility of modelling BTI

and HCI effects at circuit-level from existing device-level models. As shown here,

such simple but accurate aging models may have different applications, from on-

line estimation of the circuit health to off-line evaluation of aging degradation of

complex systems with variable operating conditions. However, there is still room

for further improvements, as listed below.

Validation on silicon

The most important perspective is the validation of the proposed methodology

on a real platform. For such, a circuit featuring fMAX tracking sensors must be

adopted in order to validate the accuracy of the proposed models. This would

allow to compare the estimated propagation delay with the information provided

by the embedded sensors. In addition to the model accuracy, the implementation

costs in terms of computation, memory, area and power can be analyzed. Area

and power overheads are mainly due to the required voltage and temperature

sensors. Eventually, they may also be due to a co-processor designed to perform

the computation of the models outputs. The memory overhead is due to the

amount of memory space needed to store all the parameters for both the Delay

and the ∆pV th models. Finally, the computation overhead is defined by the

amount of time that the processor is used to perform the computation of the

models, if no dedicated hardware is used.

Near-threshold voltage modelling

Near-threshold voltage (NTV) design has emerged in the last years as a prominent

solution for low-power circuits [150]. However, as stated in Chapter 1, the circuit

is more sensitive to variations when operating close to the threshold voltage.

The proposed models were validated here with supply voltages only down to

0.8V, while the threshold voltage in 28nm FD-SOI technology is smaller than

0.4V (depending on the temperature and body bias voltage) [151]. The Sakurai’s

alpha power law model [22], adopted as root for the Delay model, might be not

valid for values of the supply voltage close to the threshold voltage. A validation

of the proposed methodology with lower values of the supply voltage is therefore

necessary if one wants to use it in NTV circuits.

Validation on different technologies

The proposed methodology has been validated on two different architectures,

namely, a DSP and a RISC processor. Both circuits present different timing

characteristics, the second one having critical paths about 3 times larger than the
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first one. However, both circuits were designed in 28nm FD-SOI technology. Our

methodology is assumed to be technology-independent, since CMOS circuits are

all similar despite the transistor size. For instance, Sakurai proposed the alpha-

power law model in 1990 [22] for the propagation delay of a CMOS inverter and

we have demonstrated that it is still valid for current technologies. Nevertheless,

the models might need to be redefined depending on the technology, but the

overall methodology (SPICE simulation and data fitting) remains valid. The

only limitation for applying our methodology to a different technology is that

device-level models for both BTI and HCI effects must have been previously

developed for the targeted technology.

Body bias voltage

In Section 2.2.1, we have highlighted the benefits in terms of energy efficiency

provided by the use of Body Bias Voltage (Vbb) in adaptive techniques, espe-

cially in FD-SOI technologies. However, we have not explicitly incorporated it

in the methodology proposed in this work. Despite the increased complexity, the

integration of Vbb is straightforward. It consists only in an additional variable

in both Delay and ∆pVth models.

Workload dependence

The workload-dependence of ∆pVth could be further improved. In a complex

processor it might be hard to know all the possible workloads during the design

phase. This would make it difficult to obtain a set of ∆pVth for every possible

workload. The best alternative seems to be the integration of the workload as a

fourth variable (in addition to V , T and t). This fourth variable could be defined

as the signal probability and/or activity of the source flip-flop of the modelled

critical path. Otherwise, the workload could be determined from the combination

of the signal probabilities of a set of representative flip-flops, as proposed in [144].

Random values of signal probabilities were adopted here to simulate different

workloads. However, recent experiments performed in [145], with real bench-

marks and input data, shown that the observed signal probabilities within the

critical paths did not significantly vary between the benchmarks. As a conse-

quence, the resulting NBTI-induced fMAX shifts were almost identical. This

means that NBTI is actually independent on the workload. As such assumption

goes against the numerous previous work on NBTI dependence on the workload,

e.g. [152, 136], it still requires further analysis before being adopted.
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Titre : Estimation de la performance des circuits numériques sous variations PVT et vieillissement

Résumé

La réduction des dimensions des transistors a augmenté la sensibilité des circuits numériques aux variations PVT et, plus

récemment, aux effets de vieillissement, notamment BTI et HCI. De larges marges de sécurité sont donc nécessaires pour

assurer un fonctionnement correct du circuit, ce qui entrâıne une perte d’énergie importante. Les solutions actuelles

pour améliorer l’efficacité énergétique sont principalement basées sur des solutions de type �Adaptive Voltage and

Frequency Scaling (AVFS)�. Cependant, ce type de solution ne peut anticiper les variations avant qu’elles ne se

produisent. Cette approche doit donc être amélioré pour traiter les problèmes de fiabilité liés au vieillissement. Cette

thèse propose une nouvelle méthodologie pour générer des modèles simplifiés pour estimer la fréquence maximale du

circuit fMAX . Un premier modèle est créé pour estimer le délai de propagation du (des) chemin(s) critique(s) en fonc-

tion des variations PVT. Les effets BTI et HCI sont ensuite modélisés via une modification des paramètres du premier

modèle. Construit à partir des modèles au niveau transistor, le modle de vieillissement obtenu prend en compte tous les

facteurs qui influent sur le vieillissement, à savoir, la topologie des circuits, l’application, la tension et la température.

La méthodologie proposée est validée sur deux architectures en technologie 28nm FD-SOI. Les modèles peuvent être

alimentés par des moniteurs de température et de tension, ce qui permet une évaluation précise de l’évolution de

fMAX . Toutefois, ces moniteurs sont sensibles au vieillissement. Aussi, une méthode de recalibrage pour compenser

les effets du vieillissement a été développée pour un moniteur numérique de température et de tension. Des exemples

d’applications en ligne sont donnés. Les modèles sont également utilisés pour simuler des circuits complexes sous des

variations de vieillissement, par exemple un circuit multi-cœur et un système AVFS. Cela permet d’évaluer différentes

stratégies concernant la performance, l’énergie et la fiabilité.

Mots-Clés: fiabilité des circuits numériques, vieillissement, BTI, HCI, PVT, variabilité, architectures adaptatives

Title: Digital circuit performance estimation under PVT and aging effects

Abstract

The continuous scaling of transistor dimensions has increased the sensitivity of digital circuits to PVT variations and,

more recently, to aging effects such as BTI and HCI. Large voltage guard bands, corresponding to worst-case operation,

are thus necessary and leads to a considerable energy loss. Current solutions to increase energy efficiency are mainly

based on Adaptive Voltage and Frequency Scaling (AVFS). However, as a reactive solution, it cannot anticipate the

variation before it occurs. It has, thus, to be improved for handling long-term reliability issues. This thesis proposes a

new methodology to generate simplified but nevertheless accurate models to estimate the circuit maximum operating

frequency fMAX . A first model is created for the modelling of the propagation delay of the critical path(s) as a function

of PVT variations. Both BTI/HCI effects are then modelled as a shift in the parameters of the first model. Built on the

top of device-level models, it takes into account all factors that impact global aging, namely, circuit topology, workload,

voltage and temperature variations. The proposed modelling approach is evaluated on two architectures implemented

in 28nm FD-SOI technology. The models can be fed by temperature and voltage monitors. This allows an accurate

assessment of the circuit fMAX evolution during its operation. However, these monitors are prone to aging. Therefore,

an aging-aware recalibration method has been developed for a particular V T monitor. Examples of on-line applications

are given. Finally, the models are used to simulate complex circuits under aging variations such a multi-core circuit and

an AVFS system. This allows the evaluation of different strategies regarding performance, energy and reliability.

Key-Words: digital circuit reliability, aging, BTI, HCI, PVT, variability, adaptive architectures
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