
HAL Id: tel-01773862
https://theses.hal.science/tel-01773862v1
Submitted on 23 Apr 2018 (v1), last revised 23 Apr 2018 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Cache memory aware priority assignment and scheduling
simulation of real-time embedded systems

Hai Nam Tran

To cite this version:
Hai Nam Tran. Cache memory aware priority assignment and scheduling simulation of real-time
embedded systems. Embedded Systems. Université de Bretagne occidentale - Brest, 2017. English.
�NNT : 2017BRES0011�. �tel-01773862v1�

https://theses.hal.science/tel-01773862v1
https://hal.archives-ouvertes.fr

–

THÈSE / UNIVERSITÉ DE BRETAGNE OCCIDENTALE
sous le sceau de l’Université Bretagne Loire

pour obtenir le titre de

DOCTEUR DE L’UNIVERSITÉ DE BRETAGNE OCCIDENTALE
Mention : Science et Technologie de l'Information et de la

Communication

École Doctorale Santé, Information, Communication,
Mathématique, Matière

présentée par

Hai Nam TRAN
Préparée à Laboratoire des Sciences et

Techniques de l’Information, de la
Communication et de la Connaissance

Cache Memory Aware
Priority Assignment and

Scheduling Simulation of
Real-Time

Embedded Systems

Thèse soutenue le 23 janvier 2017

devant le jury composé de :

Jalil BOUKHOBZA
Maître de Conférences, Université de Bretagne Occidentale /

examinateur (co-encadrant)

Giuseppe LIPARI
Professeur, Université de Lille / examinateur

Laurent PAUTET
Professeur, Télécom ParisTech / rapporteur

Pascal RICHARD
Professeur, Université de Poitiers / rapporteur

Stéphane RUBINI
Maître de Conférences, Université de Bretagne Occidentale /

examinateur (co-encadrant)

José RUFINO
Assistant Professor, University of Lisbon / examinateur

Frank SINGHOFF
Professeur, Université de Bretagne Occidentale / examinateur

(directeur de thèse)

Hai Nam TRAN: Cache memory aware priority assignment and scheduling simulation

of real-time embedded systems

Abstract

Real-time embedded systems (RTES) are

subject to timing constraints. In these systems,

the total correctness depends not only on the

logical correctness of the computation but also

on the time in which the result is produced

(Stankovic, 1988). The systems must be highly

predictable in the sense that the worst case

execution time of each task must be

determined. Then, scheduling analysis is

performed on the system to ensure that there are

enough resources to schedule all of the tasks.

Cache memory is a crucial hardware

component used to reduce the performance gap

between processor and main memory.

Integrating cache memory in a RTES generally

enhances the whole performance in term of

execution time, but unfortunately, it can lead to

an increase in preemption cost and execution

time variability. In systems with cache memory,

multiple tasks can share this hardware resource

which can lead to cache related preemption

delay (CRPD) being introduced. By definition,

CRPD is the delay added to the execution time

of the preempted task because it has to reload

cache blocks evicted by the preemption. It is

important to be able to account for CRPD when

performing schedulability analysis.

This thesis focuses on studying the effects of

CRPD on uniprocessor systems and employs

the understanding to extend classical

scheduling analysis methods. We propose

several priority assignment algorithms that take

into account CRPD while assigning priorities to

tasks. We investigate problems related to

scheduling simulation with CRPD and establish

two results that allows the use of scheduling

simulation as a verification method. The work

in this thesis is made available in Cheddar - an

open-source scheduling analyzer. Several

CRPD analysis features are also implemented

in Cheddar besides the work presented in this

thesis.

 Résumé

Les systèmes embarqués en temps réel (RTES)

sont soumis à des contraintes temporelles. Dans

ces systèmes, l'exactitude du résultat ne dépend

pas seulement de l'exactitude logique du calcul,

mais aussi de l'instant où ce résultat est produit

(Stankovic, 1988). Les systèmes doivent être

hautement prévisibles dans le sens où le temps

d'exécution pire-cas de chaque tâche doit être

déterminé. Une analyse d’ordonnancement est
effectuée sur le système pour s'assurer qu'il y a

suffisamment de ressources pour ordonnancer

toutes les tâches.

La mémoire cache est un composant matériel

utilisé pour réduire l'écart de performances

entre le processeur et la mémoire principale.

L'intégration de la mémoire cache dans un

RTES améliore généralement la performance

en terme de temps d'exécution, mais

malheureusement, elle peut entraîner une

augmentation du coût de préemption et de la

variabilité du temps d'exécution. Dans les

systèmes avec mémoire cache, plusieurs tâches

partagent cette ressource matérielle, ce qui

conduit à l'introduction d'un délai de

préemption lié au cache (CRPD). Par définition,

le CRPD est le délai ajouté au temps

d'exécution de la tâche préempté car il doit

recharger les blocs de cache évincés par la

préemption. Il est donc important de pouvoir

prendre en compte le CRPD lors de l'analyse

d’ordonnancement.

Cette thèse se concentre sur l'étude des effets du

CRPD dans les systèmes uni-processeurs, et

étend en conséquence des méthodes classiques

d'analyse d’ordonnancement. Nous proposons
plusieurs algorithmes d’affectation de priorités
qui tiennent compte du CRPD. De plus, nous

étudions les problèmes liés à la simulation

d'ordonnancement intégrant le CRPD et nous

établissons deux résultats théoriques qui

permettent son utilisation en tant que méthode

de vérification. Le travail de cette thèse a

permis l'extension de l'outil Cheddar - un

analyseur d'ordonnancement open-source.

Plusieurs méthodes d'analyse de CRPD ont été

également mises en œuvre dans Cheddar en

complément des travaux présentés dans cette

thèse.

A C K N O W L E D G M E N T

I would like to express my sincere gratitude to my thesis supervisors Frank

Singhoff, Stéphane Rubini and Jalil Boukhobza. Thank you very much for the

high quality and remarkable supervision during 3 years. Thank you for review-

ing my work and giving me valuable guidances and advices. I have learned a lot

from you not only about research and academic but also about attitude in life.

I present my thanks to Pascal Richard and Laurent Pautet for taking their time

to review my dissertation. I also thank Giuseppe Lipari and José Rufino for ac-

cepting to be examiners. It was an honor to have you as jury members. Your

attentions and comments really help me to improve the quality of the disserta-

tion.

My sincere thanks also goes to José Rufino and Ricardo Pinto, who provided

me an opportunity for a joint-project and gave access to the laboratory and re-

search facilities at the University of Lisbon.

I would like to present my thanks to all of my colleagues at Lab-STICC and

Université de Bretagne Occidentale. In particular, I would like to thank Chris-

tian F., Paola V. and Vincent G. for their generous help when I arrived in Brest.

Furthermore, I present my thank to people who I have an opportunity to work

with: Damien M., Hamza O., Issac A., Jean-Philippe B., Laurent L., Mourad D.,

Valérie-Anne N. and Rahma B.

I also want to send my thanks to Vietnamese friends in Brest: Duong, Hien,

Hoang, Khanh, Tien. Thank you very much for all the events, trips, parties and

memories that we have together. I really appreciate your help during the prepa-

ration of my defense.

Last but not least, I present my deepest gratitude to my family for supporting

and encouraging me since the beginning. I would like to thank my wife Le Thi

Thuy Dung for always staying by my side, for her love and caring over these

years.

v

P U B L I C AT I O N S

Journals

1. Hai Nam Tran, Frank Singhoff, Stéphane Rubini, and Jalil Boukhobza. "Cache-

Aware Real-Time Scheduling Simulator: Implementation and Return of Ex-

perience." ACM SIGBED Review 13, no. 1 (2016): 15-21. Special issue on

5th Embedded Operating Systems Workshop (EWiLi 2015) in conjunction

with ESWEEK 2015.

2. Stéphane Rubini, Christian Fotsing, Frank Singhoff, Hai Nam Tran, and

Pierre Dissaux. "Scheduling analysis from architectural models of embed-

ded multi-processor systems." ACM SIGBED Review 11, no. 1 (2014): 68-

73. Special issue on 3rd Embedded Operating Systems Workshop (EWiLi

2013).

International Conferences

3. Hai Nam Tran, Frank Singhoff, Stéphane Rubini, and Jalil Boukhobza. "Ad-

dressing cache related preemption delay in fixed priority assignment." 20th

IEEE Conference on Emerging Technologies & Factory Automation (ETFA),

Luxembourg, September 2015.

4. Hai Nam Tran, Frank Singhoff, Stéphane Rubini, and Jalil Boukhobza. "Inte-

gration of Cache Related Preemption Delay Analysis in Priority Assign-

ment Algorithm." 4th Embedded Operating Systems Workshop (EWiLi

2014), Lisbon, Portugal, November 2014. (Poster, two-page paper).

5. Hai Nam Tran, Frank Singhoff, Stéphane Rubini, and Jalil Boukhobza. "In-

struction cache in hard real- time systems: modeling and integration in

scheduling analysis tools with AADL." 12th IEEE International Confer-

ence on Embedded and Ubiquitous Computing (EUC), Milan, Italy, August

2014, pp 104-111.

6. Pierre Dissaux, Olivier Marc, Stéphane Rubini, Christian Fotsing, Vincent

Gaudel, Frank Singhoff, Alain Plantec, Vuong Nguyen-Hong, and Hai Nam

Tran. "The SMART project: Multi-agent scheduling simulation of real-time

architectures." 7th European Congress ERTSS Embedded Real Time Soft-

ware and System, Toulouse, France, February 2014.

vii

National Conferences

7. Hai Nam Tran, Frank Singhoff, Stéphane Rubini, and Jalil Boukhobza. "Adapt-

ing a Fixed Priority Assignment Algorithm to Real-time Embedded Sys-

tems with Cache Memory." Colloque National du GDR SoC-SiP, Nantes,

France, June 2016 (poster, two-page paper).

8. Frank Singhoff, Alain Plantec, Stéphane Rubini, Hai Nam Tran, Vincent

Gaudel, Jalil Boukhobza, Laurent Lemarchand et al. "Teaching Real-Time

Scheduling Analysis with Cheddar." 9ème édition de l’Ecole d’Eté Temps

Réel (ETR), Rennes, France, August 2015.

Communications

9. Hai Nam Tran, Frank Singhoff, Stéphane Rubini, and Jalil Boukhobza. "Ad-

dressing cache related preemption delay in fixed priority assignment." LABEX

OVSTR Group Meeting, Paris, France, October 2015. (presentation)

10. Hai Nam Tran, Frank Singhoff, Stéphane Rubini, and Jalil Boukhobza. "Cache

Modelling and Scheduling Analysis with AADL." AS-2C SAE AADL Com-

mittee, Toulouse, France, March 2014. (presentation)

11. Hai Nam Tran, Frank Singhoff and Stéphane Rubini. "Handling cache in

real-time scheduling simulator." SAPIENT Project meeting, Brest, France,

July 2013. (presentation)

viii

C O N T E N T S

Introduction 1

i background 7

1 real-time embedded system 9

1.1 Properties of Real-Time Embedded System 9

1.1.1 RTES Classification . 10

1.1.2 RTES Architecture . 11

1.2 Software . 12

1.2.1 Task - Unit of Execution . 12

1.2.2 Task Properties . 13

1.2.3 Task Dependencies . 15

1.2.4 Task Types . 16

1.2.5 Task Set Types . 16

1.3 Real-Time Operating Systems . 17

1.3.1 Scheduler . 18

1.3.2 Memory Allocation . 21

1.4 Hardware . 21

1.4.1 Processor . 21

1.4.2 Memory System . 22

1.4.3 Network . 23

1.5 Scheduling Analysis . 23

1.5.1 System Model . 23

1.5.2 Feasibility and Schedulability 24

1.5.3 Sustainability and Robustness 26

1.5.4 Fixed Priority Preemptive Scheduling 27

1.5.5 Dynamic Priority Preemptive Scheduling 30

1.6 Scheduling Simulation . 31

1.6.1 Feasibility Interval . 31

1.6.2 Scheduling simulator . 32

1.7 Conclusion . 33

2 cache memory and cache related preemption delay 35

2.1 The Need of Cache Memory and Memory Hierarchy 36

2.1.1 Memory Hierarchy . 36

2.2 Basics Concepts about Cache Memory 38

2.2.1 Cache classification . 38

ix

2.2.2 Cache organization . 39

2.2.3 Cache operations . 41

2.3 Cache problems in RTES . 42

2.4 CRPD Computation Approaches . 44

2.4.1 Evicting Cache Block . 45

2.4.2 Useful Cache Block . 45

2.5 CRPD Analysis for FPP Scheduling 47

2.5.1 CRPD analysis for WCRT . 47

2.5.2 Limiting CRPD . 50

2.5.3 CRPD analysis for scheduling simulation 53

2.6 Conclusion and Thesis Summary . 54

ii contribution 55

3 crpd-aware priority assignment 57

3.1 System model and assumptions . 58

3.2 Limitation of classical fixed priority assignment algorithms 58

3.2.1 Limitation of RM and DM . 59

3.2.2 Limitation of OPA . 61

3.3 Problem formulation and overview of the approach 62

3.3.1 Feasibility condition of OPA 62

3.3.2 Extending the feasibility condition with CRPD 65

3.4 CRPD interference computation solutions 68

3.4.1 CPA - ECB . 68

3.4.2 CPA-PT and CPA-PT Simplified 70

3.4.3 CPA -Tree . 74

3.5 Complexity of the algorithms . 76

3.5.1 CPA-ECB . 77

3.5.2 CPA-PT and CPA-PT-Simplified 77

3.5.3 CPA-Tree . 77

3.6 Evaluation . 78

3.6.1 Evaluating the impact of CRPD on the original OPA 78

3.6.2 Efficiency evaluation of CPA solutions 79

3.6.3 Evaluating the performance of the proposed feasibility test 82

3.6.4 Combined solution: CPA-Combined 84

3.7 Conclusions . 85

4 crpd-aware scheduling simulation 87

4.1 Definitions . 88

4.2 CRPD computation models . 89

4.2.1 Classical CRPD computation models 90

4.2.2 Problems with classical models 93

4.2.3 Fixed sets of UCBs and ECBs with constraint (FSC-CRPD) . 94

4.3 Sustainability analysis . 95

x

4.3.1 Definitions . 95

4.3.2 CRPD problem in sustainability analysis 97

4.3.3 Sustainability analysis of scheduling simulation with clas-

sical CRPD computation models 97

4.3.4 Sustainability analysis of FSC-CRPD 99

4.4 Feasibility interval analysis . 102

4.4.1 Stabilization Time . 103

4.4.2 Periodic Behavior . 103

4.5 Conclusions . 106

5 cache-aware scheduling analysis tool implementation 109

5.1 CRPD analysis implemented in Cheddar 111

5.2 Cheddar Framework . 111

5.2.1 Cheddar ADL model of RTES components 113

5.2.2 Analysis features in Cheddar scheduling analyzer 118

5.2.3 Use Process . 119

5.2.4 Development Process . 121

5.3 Cache access profile computation . 122

5.3.1 Extending Cheddar ADL . 123

5.3.2 Implement analysis features: cache access profile computa-

tion . 127

5.3.3 Implementation summary . 127

5.3.4 Experiments . 127

5.4 CRPD analysis for WCRT . 129

5.4.1 Extending Cheddar ADL . 129

5.4.2 Implementing analysis features: CRPD analysis for WCRT . 129

5.4.3 Implementation Summary 130

5.5 CRPD-aware priority assignment algorithm 130

5.5.1 Extending Cheddar ADL . 131

5.5.2 Implementing analysis feature: CRPD-aware priority as-

signment algorithm . 131

5.5.3 Implementation Summary 131

5.6 CRPD-aware scheduling simulation 131

5.6.1 Extending Cheddar ADL . 132

5.6.2 Implementing analysis feature: CRPD-aware scheduling sim-

ulation . 132

5.6.3 Implementation summary . 133

5.6.4 Experiments and evaluation 133

5.7 Implementation Issues . 137

5.8 Conclusions . 138

iii conclusion 139

6 conclusion 141

xi

6.1 Contribution Summary . 141

6.2 Future Work . 143

iv appendix 145

a algorithm and pseudo code 147

a.1 CPA-PT: CRPD potential preemption computation 147

a.2 CPA-Tree: Tree computation . 150

a.3 Event handlers for scheduling simulation with FS-CRPD 151

a.4 Event handlers for scheduling simulation with FSC-CRPD 152

b express schema 155

b.1 EXPRESS schema of cache memory 155

b.2 EXPRESS schema of CFG and cache access profile 156

c method signature 157

c.1 Procedure Compute_Cache_Access_Profile 157

c.2 Procedure Compute_Response_Time 157

c.3 Procedure CPA_CRPD . 158

bibliography 161

xii

L I S T O F F I G U R E S

Figure 1 The usefulness of results produced after deadline between

hard and soft real-time system. This figure is adapted

from [6] . 11

Figure 2 Task life cycle. Adapted from [53] 13

Figure 3 Feasible and schedulable task sets 25

Figure 4 Memory hierarchy. Adapted from [50] 37

Figure 5 Direct Preemption . 43

Figure 6 Nested Preemption . 44

Figure 7 τ2 does not experience the highest interference at the syn-

chronous release, . 54

Figure 8 Priority ordering by RM: Π1 = 3,Π2 = 2,Π3 = 1. Task τ3

missed its deadline at time t = 24. 59

Figure 9 Priority ordering 1: Π1 = 2,Π2 = 3,Π3 = 1. All tasks are

schedulable . 60

Figure 10 Priority ordering 2: Π1 = 3,Π2 = 1,Π3 = 2. All tasks are

schedulable . 60

Figure 11 Interference from higher priority tasks to τ2[8]. 64

Figure 12 Complete priority assignment of task τ1 and τ2 affects the

computation of I03. Π1 = 3,Π2 = 2,Π3 = 1 67

Figure 13 Complete priority assignment of task τ1 and τ2 affects the

computation of I03. Π1 = 2,Π2 = 3,Π3 = 1 67

Figure 14 Interference from higher priority tasks to τ3[0] regarding

CPA-ECB. 69

Figure 15 Interference from higher priority tasks to τ3[0] regarding

CPA-ECB. 70

Figure 16 Interference from higher priority tasks to τ3[0] regarding

CPA-PT. 73

Figure 17 Interference from higher priority tasks to τ2[8] regarding

CPA-PT. 74

Figure 18 CPA-Tree for τ3[0] . 76

Figure 19 Number of task sets assumed to be schedulable by OPA

and number of task sets actually schedulable when CRPD

is taken into account. 79

Figure 20 Number of task sets found schedulable by the priority

assignment algorithms, RF = 0.3 80

xiii

Figure 21 Number of task sets found schedulable by the priority

assignment algorithms, RF = 0.6 81

Figure 22 Comparison between CPA-Tree and combined approach

in terms of computation time 84

Figure 23 Example of direct preemption and nested preemption. We

have three tasks τ1, τ2, τ3 with Π1 > Π2 > Π3. 92

Figure 24 Over-estimation of CRPD 93

Figure 25 Scheduling simulation of task set in Table 9 in the first 24

units of time. All deadlines are met. There is no preemption. 98

Figure 26 Non-sustainable scheduling simulation regarding capac-

ity parameter with FS-CRPD computation model. The ca-

pacity of τ2 is reduced to 7 < C2 = 8. τ1 preempts τ3 at

time t = 12 . 98

Figure 27 Non-sustainable scheduling simulation regarding the pe-

riod parameter with FS-CRPD computation model. The

period of τ1 is increased to 13 > T1 = 12. τ1 preempts τ3

at time t = 13. τ3 missed its deadline at time t = 24. 99

Figure 28 Sustainable scheduling simulation regarding capacity pa-

rameter with FSC-CRPD computation model. The capac-

ity of τ2 is 7 < C2 = 8. τ1 preempts τ3 at time t = 12 . . . 101

Figure 29 Non-sustainable scheduling simulation regarding period

parameter with FSC-CRPD computation model. The pe-

riod of τ1 is increased to 13 > T1 = 12. τ1 preempts τ3 at

time t = 13. τ3 missed its deadline at time t = 24. 101

Figure 30 CRPD analysis subjects and parameters 110

Figure 31 Cheddar Framework . 112

Figure 32 Cheddar ADL model of hardware component 114

Figure 33 Cheddar ADL model of software component 115

Figure 34 CRPD analysis and parameters 116

Figure 35 Generating Ada class files from Cheddar ADL of proces-

sor component. 117

Figure 36 Cheddar scheduling analyzer use process 120

Figure 37 Extended Cheddar ADL model of hardware components . 124

Figure 38 Extended Cheddar ADL model of software components . 126

Figure 39 Varying PU, RF=0.3 . 134

Figure 40 Varying RF, PU=0.7 . 135

Figure 41 Total CRPD with and without memory layout optimization 136

Figure 42 Computation time of the simulator 137

xiv

L I S T O F TA B L E S

Table 1 Performance-cost of memory technologies. Adapted from

[50] . 37

Table 2 Synchronous task set with critical instant of task τ2 is not

at the synchronous release. 53

Table 3 Task set example . 59

Table 4 Weighted Schedulability Measure 82

Table 5 Space and time performances of the CPA-Tree 83

Table 6 Space and time performances of the CPA-PT 83

Table 7 Space and time performances of the CPA-PT-Simplified . . 83

Table 8 Task set example. 93

Table 9 Task set example . 98

Table 10 Summary of cache access profile computation 123

Table 11 Implementation of cache access profile computation in

Cheddar framework . 127

Table 12 Comparison of CRPD upperbound and WCET for tasks

in Malardalen benchmark suite 128

Table 13 Summary of CRPD analysis for WCRT 129

Table 14 Implementation of CRPD analysis for WCRT in Cheddar

framework . 130

Table 15 Summary of CRPD-aware priority assignment. 130

Table 16 Implementation of CRPD-aware priority assignment in

Cheddar framework . 131

Table 17 Specification of CRPD-aware scheduling simulation. 132

Table 18 Implementation of CRPD-aware scheduling simulation in

Cheddar framework . 133

xv

L I S T I N G S

Listing 1 Algorithm veryfing the schedulability of τi at a given pri-

ority level [7]. 63

Listing 2 EXPRESS schema of the processor component 117

Listing 3 Part of the generated code in processors.ads 118

Listing 4 Cheddar ADL model of a processor in XML format 120

Listing 5 Extended event handlers regarding FS-CRPD computa-

tion model . 151

Listing 7 EXPRESS schema of cache memory 155

Listing 8 EXPRESS schema of CFG and cache access profile 156

Listing 9 Procedure Compute_Cache_Access_Profile 157

Listing 10 Procedure Compute_Response_Time 157

A C R O N Y M S

ADL Architecture Description Language

BCET Best Case Execution Time

BCRT Best Case Response Time

BRT Block Reload Time

CAN Controlled Area Network

CFG Control Flow Graph

CPA CRPD-aware priority assignment

CRPD Cache Related Preemption Delay

CRMD Cache Related Migration Delay

CSH Context Switch Overhead

xvi

DM Deadline Monotonic

DMA Direct Memory Access

DPP Dynamic Priority Preemptive

DRAM Dynamic Random Access Memory

ECB Evicting Cache Block

EDF Earliest Deadline First

EPP Effective Preemption Point

FIFO First In, First Out

FPP Fixed Priority Preemptive

GUI Graphic User Interface

LLF Least Laxity First

LMB Live Memory Block

LoC Line of Code

LRU Least Recently Used

MDE Model Driven Engineering

MIT Minimum Interarrival time

OS Operating System

QoS Quality of Service

OPA Audsley’s Optimal Priority Assignment

PPP Potential Preemption Point

RF Reuse Factor

RM Rate Monotonic

RMB Reaching Memory Block

RTES Real-Time Embedded Systems

RTOS Real-Time Operating Systems

SA Simulated Annealing

SRAM Static Random Access Memory

xvii

UCB Useful Cache Block

WCET Worst Case Execution Time

WCRT Worst Case Response Time

xviii

I N T R O D U C T I O N

Embedded systems, which are contained within larger devices, are present in many

aspects of our daily life. Their usage ranges from general civilian devices, such

as cellphones, set-top boxes, car navigation to specific industrial systems, such

as factory robots, aircraft control and air traffic management. These systems are

designed for a specific function and use limited resources [46, 53]. Embedded sys-

tems are typically subject to meet timing constraints, for reasons such as safety

and usability. Thus, many of these embedded systems are also real-time systems.

Real-time systems are computing systems that must process information and

produce responses subject to timing constraints [53, 76, 74]. In these systems, the

usefulness of correct outputs and responses either degrades or becomes mean-

ingless if they are produced after a certain deadline. In many cases, missing a

deadline can lead to catastrophic system failure such as in a flight control sys-

tem. In this thesis, we investigate systems that are both embedded and real-time,

called real-time embedded system (RTES).

Nowadays, most RTES are multi-tasking systems made up of several units of

execution called tasks. Each task can have a computational requirement and one

or several timing constraints. For a given RTES, information about tasks and

available hardware resources are analyzed to ensure that all timing constraints

are met. This is achieved by performing scheduling analysis on a model of the

RTES.

Scheduling analysis [73] is a method used to verify that a given RTES will meet

its timing constraints. It includes the analysis of the scheduling policies along

with information about the tasks and available hardware resources to determine

whether a system is schedulable or not.

Interactions between tasks and shared resources can potentially make schedul-

ing analysis become complex. For instance, scheduling analysis must also take

into account access to any shared hardware resources such as cache memory that

can introduce additional delays in term of resource contention.

context

The context of this thesis is priority assignment and scheduling simulation of RTES

with cache memory.

1 of 168

introduction

Cache Memory and Cache Related Preemption Delay (CRPD)

Cache memory is a crucial hardware component used to reduce the performance

gap between processor and main memory. In the context of RTES, the populariza-

tion of processors with large size and multi-level cache motivates the proposition

of verification methods [52, 23, 2] to handle this hardware component.

Integrating cache memory in RTES generally improves the overall system per-

formance, but unfortunately it can lead to execution time variability due to the

variation of preemption cost [65]. When a task is preempted, memory blocks

belonging to the task could be removed from the cache. Once this task resumes,

previously removed memory blocks have to be reloaded. Thus, a new preemp-

tion cost named Cache Related Preemption Delay (CRPD) is introduced.

By definition, CRPD is the additional time to refill the cache with memory

blocks evicted by preemption [23]. In [65], Pellizzoni and Caccamo showed that

CRPD could represent up to 44% of the Worst Case Execution Time (WCET) of a

task. In [56], Li et al. showed that the preemption cost could raises from of 4.2µs

to 203.2µs when the data set size of programs increases. Thus, taking CRPD into

account is crucial when performing scheduling analysis of RTES.

One can consider using cache partitioning technique in which each task has its

own space of cache in order to reduce or completely eliminate the effect of CRPD.

By doing so, we increase the predictability of a system but decrease the perfor-

mance in terms of WCET of tasks due to smaller cache space. However, in [5],

Altmeyer et al. pointed out that the increased predictability does not compensate

for the performance decrease.

There are many research on different domains of scheduling analysis for RTES

with cache memory that are presented in Chapter 2. In this thesis, we cover the

two domains of scheduling analysis: priority assignment and scheduling simulation.

Priority Assignment

In most RTES, each task is assigned a priority level that indicates its order of

importance. How should priorities be assigned to tasks is one of the most impor-

tant question regarding the scheduling of a RTES. A poor priority assignment

can schedule tasks in an order that is far from optimal [34]. The existence of

CRPD raised a question about the applicability and optimality of classical prior-

ity assignment algorithms when CRPD is taken into account.

Scheduling Simulation

Scheduling simulation is a popular scheduling analysis method which provides

a mean to evaluate the schedulability and detect the unschedulability of a RTES.

2 of 168

introduction

It allows RTES designers to perform fast prototyping with a certain level of

accuracy. In order to perform scheduling simulation, first, one needs to provide

an abstract model of a RTES. Second, the scheduling of the system over a given

interval of time is computed and timing properties such as timing constraint

violations are evaluated [75]. Cache memory adds a new hardware component

that needs to be considered in the system model. In addition, CRPD needs to be

taken into account when computing the scheduling of the system.

problem statement

There are three problems that are addressed in this thesis.

1. The first problem is regarding the applicability and optimality of classical

priority assignments when CRPD is taken into account. One of the most

popular assumptions taken in previous literature is that the preemption

cost is equal to zero and completely negligible. Of course, this property is

not true in the case of RTES with cache memory. Classical priority assign-

ments are either not optimal or not applicable to RTES with cache memory

[83]. Indeed, a solution to take CRPD into account while assigning priori-

ties to task is needed.

2. The second problem is that scheduling simulation with regard to the ef-

fect of CRPD is still an open issue. There are two unanswered questions

concerning (1) a method of modeling and computing CRPD in schedul-

ing simulation and (2) a minimum interval of time needed to perform the

simulation that can guarantee the schedulability of a RTES.

3. The third problem is the lack of scheduling simulation facilities that sup-

port RTES with cache memory even though there are existing research

work in this domain [52, 23, 82, 58, 4, 67]. However, system models that are

used in existing scheduling simulation tools do not support evaluating the

effect of CRPD or are not compatible with existing research work.

solution overview

In this thesis, we study the methodology of CRPD analysis and propose an ap-

plication to scheduling analysis. Extensions and improvements are made to clas-

sical results in scheduling analysis of RTES in the subject of priority assignment

and scheduling simulation. In addition, a scheduling simulator is implemented

in order to provide a mean to perform experiments, analyze and observe the

effect of CRPD from the perspective of the simulator.

3 of 168

introduction

contribution summary

In this thesis, we study the effect of CRPD on uniprocessor systems in fixed pri-

ority preemptive scheduling context where task priorities are statically assigned

offline and higher priority tasks can preempt lower priority tasks. Furthermore,

we employ our understanding to address the three presented problems. The so-

lution proposed in this thesis is the result of work that leads to the following

contributions.

1. CRPD-aware priority assignment: To address problem 1, we propose an

approach to perform priority assignment and verify the schedulability of

RTES while taking into consideration CRPD. To achieve this, we extend

the feasibility test proposed by Audsley [7]. The approach consists in com-

puting the interference from computational requirements and CRPD when

assigning a priority level to a task and verifying this task’s schedulability.

There are five solutions proposed. According to the chosen solution, the

CRPD computation can be more or less pessimistic and the results in terms

of schedulable task sets can be higher or lower. The performance and ef-

ficiency of the proposed solutions are evaluated with randomly generated

task sets.

2. CRPD-aware scheduling simulation: To address problem 2, we propose a

CRPD computation model to be used in scheduling simulation. The model

is designed to be compliant with the existing work in [52, 23, 2, 58]. We

study two properties that make scheduling simulation with our model ap-

plicable namely sustainability analysis and feasibility interval.

3. Available tools: We address problem 3 by providing an implementation

of our contributions and several existing scheduling analysis methods for

RTES with cache memory in Cheddar - an Open-Source scheduling ana-

lyzer [75]. Cheddar is freely available to researchers and practitioners who

want to investigate scheduling analysis of RTES with cache memory. Im-

plementation, examples of use, performance and scalability analysis of our

work in Cheddar are provided.

thesis organization

This thesis is organized as follows. Chapter 1 covers key background knowl-

edge on RTES and scheduling analysis. Chapter 2 discusses about cache memory

and CRPD, reviews existing analysis techniques for computing an upper-bound

CRPD when performing schedulability analysis and techniques to limit CRPD.

The main contributions of this thesis are presented in Chapter 3, 4 and 5. Chap-

4 of 168

introduction

ter 3 introduces several priority assignment algorithms that take into account

CRPD. Chapter 4 details how scheduling simulation can be used as a verification

method for system model with CRPD. Chapter 5 presents the implementation

of several CRPD analysis methods in a scheduling analysis tool that allows bet-

ter study on the effect of CRPD on various scheduling parameters. Chapter 6

concludes the thesis and outlines future work.

5 of 168

Part I

B A C K G R O U N D

Chapter 1

R E A L - T I M E E M B E D D E D S Y S T E M

Contents

1.1 Properties of Real-Time Embedded System 9

1.2 Software . 12

1.3 Real-Time Operating Systems 17

1.4 Hardware . 21

1.5 Scheduling Analysis . 23

1.6 Scheduling Simulation . 31

1.7 Conclusion . 33

In this chapter, we discuss about real-time embedded system (RTES) and

knowledge that form the basis of the work presented in this thesis. Section 1.1

introduces basic concepts, general properties and classification of a RTES. The

most significant property of a RTES is that there exists timing constraints that

must be met in system life-cycle. Then, we proceed by introducing the organi-

zation of a system, system model and analysis methods that are applied to the

model in order to verify that all timing constraints are met. A RTES is divided

into three parts: software, real-time operating system and hardware. Each part

is discussed in the three sections 1.2, 1.3, 1.4, respectively. Section 1.5 presents

scheduling analysis methods that are used to verify whether timing constraints

are satisfied or not. We discuss in detail about scheduling simulation of RTES in

section 1.6. Finally, section 1.7 concludes the chapter.

1.1 properties of real-time embedded system

The most simple definition is that a RTES is both a real-time system and an

embedded system. First, we present the definition of a real-time system.

Definition 1 (Real-Time System [53, 76, 74]). A real-time system is a computing

system in which the total correctness of a program depends not only on the logical cor-

rectness of the computation but also on the time in which the result is produced.

9 of 168

properties of real-time embedded system

In the context of this thesis, the term real-time means the ability to receive and

process a request subject to one or several timing constraints of a computing

system [13]. A real-time system has timing constraints called deadlines. Timing

constraints are the most significant characteristic that classifies a system as a

real-time one. Programs in the system must produce results that are subjected

to one or several timing constraints. A result that is produced after a program’s

deadlines may be considered as bad as an incorrect one.

A real-time system often interact with the environment. As a result, it is also

described as a system that "controls an environment by receiving data, process-

ing them, and returning the results sufficiently quickly to affect the environment

at that time" [60].

Second, we now present the definition of an embedded system.

Definition 2 (Embedded System [46, 53]). An Embedded System is a microprocessor-

based system that is built to control a specific range of functions and not designed to be

programmed by the end-user. This kind of system is embedded into a larger device.

Embedded systems are designed to do specific tasks with limited resources

and processing power. The term embedded means that the system is not visible

to the end-user as it is part of a larger device.

1.1.1 RTES Classification

A RTES can be classified by its level of criticality. A level of criticality [76] is con-

sidered as the consequences that happen when a deadline or a timing constraint

is missed as well as the ability of a system to recover.

• Hard Real-Time System [6, 24, 57]: the violation of timing constraints is not

tolerable and leads to system failure that results in significant damage and

casualties. In hard real-time systems, the usefulness of a computational

result is zero after its deadline. In addition, interactions at a low level with

physical hardware are typically included in these systems. Hard real-time

systems are often built under pessimistic assumptions to handle the worst-

case scenarios [24]. Examples of hard real-time systems are flight control

systems, car engine control systems and medical systems such as heart

pacemakers.

• Soft Real-Time System [6, 24, 57]: the violation of timing constraints is

tolerable and does not cause system failure. However, they can lead to a

degradation in the Quality of Service (QoS) [63]. Soft real-time systems

can often tolerate a latency of few seconds. However, the usefulness of a

computational result degrades after its deadline. These systems are not

built under assumptions regarding the worst-case scenario but are built

10 of 168

properties of real-time embedded system

to reduce resource consumption and tolerate overhead [24]. Comparing to

hard real-time systems, soft real-time ones typically interact at a higher

level with physical hardware. Examples of soft real-time systems are video

conference and camera control systems.

Usefulness

Time
Deadline

Usefulness

Time
Deadline

Soft Real-TimeHard Real-Time

Figure 1: The usefulness of results produced after deadline between hard and soft real-

time system. This figure is adapted from [6]

.

• Mixed Critical Real-Time System [85]: a mixed critical real-time system has

two or more distinct criticality levels. Each task is assigned a criticality level

and the consequences of missing a deadline vary from task to task. Both

critical and non critical tasks share the same resources. Timing constraint

violation at high criticality level is not tolerable and might cause system

failure. Timing constraint violation at low criticality level is tolerable and

might cause inconvenient or suboptimal behavior. For example, in an air-

craft, we have a flight control system that coexists with a flight information

system. The flight control system cannot tolerate any violation of timing

constraint while it is possible for the flight information system.

1.1.2 RTES Architecture

RTES design is increasingly taking a processor-centric focus [8]. A system is

a combination of software running on embedded processor cores, supporting

hardware such as memories and processor buses with the help of a real-time

operating system. In order to perform analysis, we can separate a RTES into

three parts:

• Software

• Real-Time Operating System

• Hardware Platform

We discuss in detail about each part in Section 1.2, 1.3 and 1.4.

11 of 168

software

1.2 software

Let us consider the architectural decision that one has to take into account when

designing the software of RTES. As presented in the previous section, for a given

request, a system must produce a response within a specified time. In addition,

the system needs to respond to different requests. Timing demands of differ-

ent requests are different so a simple sequential loop is usually not adequate.

The system architecture must allow for fast switching between request handlers.

Thus, software in RTES are usually designed as cooperating tasks with a real-

time executive controlling them. This design approach is known as the multi-

tasking approach, which is the focus of this thesis. Multi-tasking approach has

entered the mainstream of embedded system design because of the increase in

processor speed and advanced operating systems. With multi-tasking, process-

ing resources can be allocated among several tasks. The definition of the term

multi-tasking is presented below.

Definition 3 (Multi-tasking [44]). Multi-tasking is the process of scheduling and

switching tasks, making use of the hardware capabilities or emulating concurrent pro-

cessing using the mechanism of task context switching.

The terms context switch is defined as follows:

Definition 4 (Context switch [44, 56]). Context switch refers to the switching of the

processor from one task to another.

Task is the key component in software design of RTES using multi-tasking

approach. In this section, we give the definition of a task, describe its life-cycle

and introduce its properties.

1.2.1 Task - Unit of Execution

Definition 5 (Task [6, 73]). A task, sometimes also called a process or a thread, is a

unit of execution in an application program.

A single executing program will typically consist of many tasks. Once released,

a task has a number of instructions to execute sequentially. A release of a task is

called a job. The life-cycle of a task consists of four states provided in Figure 2.

• Inactive: when a task is created, it is in the inactive state. The task does

not execute nor perform any computation. When a message or an event

of activation, which indicates the activation of the task, arrives, the task is

released and becomes ready.

• Ready: when a task is released and all shared resources are available except

the processor, the task is in the ready state. In this state, the task waits for

12 of 168

software

Ready

Inactive

Running Waiting
Release

Elected

Completed

Preempted
Blocked

Unblocked

Figure 2: Task life cycle. Adapted from [53]

being elected in order to be executed by the processor amongst other tasks

in the system. When a task is elected, it becomes running.

• Running: when a task is executed by the processor, it is in the running

state. In this state, all shared resources and the processor are available to

the task. If there is another task elected to be executed by the processor, the

current running task is suspended and it returns to the ready state. This is

a preemption. When a task completes its execution, it becomes inactive.

• Waiting: when a task is waiting for the availability of shared resources

except the processor, it is in the waiting state. When the shared resources

are available, the task becomes running.

1.2.2 Task Properties

A task has the following properties that helps determining its order of impor-

tance, computational requirement and timing constraints. These properties are

used in scheduling analysis, which is introduced later in this chapter, in order to

determine the ability of a task to meet its timing constraints.

Definition 6 (Priority [6, 73]). The priority of a task indicates its order of importance

for scheduling.

A task τi has a priority level Πi, which can be fixed or dynamically assigned.

The higher the value of Πi of a task, the higher this task’s priority level. Most of

the time, the highest priority task in the ready queue is elected to be executed

by the processor.

Definition 7 (Execution Time). The execution time of a task is the processor time spent

executing this task.

13 of 168

software

The execution time of a task is not always constant. For example, a task can

have different execution paths and different number of loop iterations each time

the task executes. The execution paths and the number of loop iterations vary

because of the changes of input data. The upper-bound and lower-bound of a

task’s execution time is defined as follows.

Definition 8 (Worst Case Execution Time (WCET) [89]). The WCET of a task is the

longest execution time of this task.

Definition 9 (Best Case Execution Time (BCET) [89]). The BCET of a task is the

shortest execution time of this task.

When designing a system following the multi-tasking approach, in addition

to execution time, one has to consider the response time of a task.

Definition 10 (Response Time [64]). The response time of a job of a task is the interval

from its release to its completion.

In a multi-task scheduling context, a task is not executed immediately when

it is released because the required shared resources or the processor may be

used by higher priority tasks and are not available. In addition, in a preemptive

scheduling context, a lower priority task can be suspended so that the processor

can execute a higher priority task which is ready. As a result, a task’s response

time could be larger than its execution time.

Response time analysis techniques, which are presented in Section 1.5, are

used in order to derive the worst case and best case response time of a task.

Definition 11 (Worst Case Response Time (WCRT) [64]). The WCRT of a task is

the longest response time of any of its jobs.

Definition 12 (Best Case Response Time (BCRT) [64]). The BCRT of a task is the

shortest response time of any of its jobs.

The WCRT and BCRT of a task are supposed to be smaller than its deadline.

Definition 13 (Deadline [6]). The deadline of a task is the maximal allowed response

time.

The deadlines that we are using in this thesis are relative deadlines. A relative

deadline is the relative to the release time of a job [21]. In contrary, an absolute

deadline is a specific point in time. For example, a job of task τi has a relative

deadline Di and is released at time t. It must be completed at time t+Di. In this

example, t+Di is the absolute deadline.

Definition 14 (Offset [7]). The offset of a task is the time of its initial release.

Offset attribute is used to model systems in which all tasks are not released

at the same point in time. With offsets, some tasks may have initial releases that

are later than the other tasks.

14 of 168

software

Definition 15 (Release jitter [81]). The release jitter of a task is the worst-case de-

lay between a task arriving (i.e. logically being able to run, yet not having detected as

runnable), and being released.

We would expect a task to start its execution at the time it is released and

elected to be run. In practice, this is delayed due to factors such as scheduler

overhead and variable interrupt response times. The actual start time of a task

is always deviated from its arrival and we can say that tasks suffer from release

jitter.

1.2.3 Task Dependencies

Tasks in a RTES may need to cooperate in order to complete a mission so there

could be dependencies between them. For example, they need to communicate

with each other or sharing a limited number of resources such as I/O devices.

Definition 16 (Dependent Task [73, 6]). A task whose progress is dependent upon the

progress of other tasks.

It is important to note that in this definition, the competition for processor time

between tasks is not accounted as a dependency. Dependent tasks can interact

in many ways including precedence dependency and shared resources [6].

Definition 17 (Precedence Dependency [31, 6]). A task τi has a precedence depen-

dency with task τj if either τi precedes τj or τj precedes τi.

τi precedes τj means the nth job of τj only be executed after the nth jobs of τi

is completed. An example of precedence dependency is two tasks that exchange

messages. The receiver task needs to wait for a message from the sender task.

Definition 18 (Shared Resource [6]). A shared resource is a resource accessed by

several tasks, in a mutual exclusive manner to enforce data consistency.

Examples of shared resources are data structures, variables, main memory

areas or I/O units. Access to shared resources are often protected by some prim-

itives. When a shared resource is accessed by a task, it becomes unavailable for

the others. Other tasks that request access to an unavailable shared resource are

blocked.

Tasks that do not have dependencies are called independent tasks.

Definition 19 (Independent Task [73, 6]). A task whose progress is not dependent

upon the progress of other tasks.

15 of 168

software

1.2.4 Task Types

A task can be classified as either periodic, sporadic or aperiodic, which are de-

fined as follows:

Definition 20 (Periodic Task [57]). A periodic task is released regularly in a fixed

interval.

For a periodic task, the interval between two releases is called the task’s period.

An example of periodic task is a program that read the information received

from a sensor every 1 second.

Definition 21 (Aperiodic Task [74]). An aperiodic task is not released regularly and

there is no minimum separation interval between two releases of this task.

There are aperiodic events that need to be handled during the life time of

a system. For example, emergency events, user interactions are non-periodic.

There is a need of aperiodic tasks to handle such events. However, aperiodic tasks

make formal verification of RTES much less useful because we cannot bound its

resource utilization. From the simple analysis point of view, no system with an

aperiodic task can be guaranteed to be feasible.

Definition 22 (Sporadic Task [74]). A sporadic task is a task which is released reg-

ularly but not in a fixed interval. However, there is a minimum separation interval

between two releases of this task.

Sporadic task model is introduced to address scheduling analysis when ape-

riodic events occur. The context is that we do not know exactly how often a

sporadic task will be released; however, there is a minimum interarrival time

(MIT) between two releases. This interval provides a safe upper-bound which is

used to determine resource utilization of a task. In practice, sporadic tasks are

used to handle aperiodic events such as emergency events or user interactions

For example, there is not a fixed period of how often a button is pushed by the

users in a system; however, there must be a limit because of the hardware’s use

capability or the speed of interaction.

1.2.5 Task Set Types

A set of tasks can be classified into either synchronous or asynchronous, which

are defined as follows:

Definition 23 (Synchronous Tasks [7]). Tasks are called synchronous if the first jobs

of all tasks are released at the same time.

16 of 168

real-time operating systems

As introduced earlier, a task τi has an offset Oi. For synchronous tasks, we

have Oi = Constant, 8τi. If we consider that a system starts when the first task

is released, for synchronous tasks, we have Oi = 0, 8τi.

The term synchronous system is used to mention systems that consist of syn-

chronous tasks.

Definition 24 (Synchronous Systems). Systems in which the first jobs of all tasks are

released at the same time.

In the case of synchronous task, all tasks are released and ready to execute

simultaneously at one point in time. This point in time is referred to as a critical

instant.

Definition 25 (Critical Instant [57]). A critical instant is a point in time at which all

tasks become ready to execute simultaneously.

Definition 26 (Asynchronous Tasks [7]). Tasks are called asynchronous if there is at

least one first job of a task that is not released at the same time as the first jobs of the

other tasks.

For asynchronous tasks, we have at least two task τi and τj that have different

offsets (Oi 6= Oj). We can also classify asynchronous tasks into two subtypes [7]

which are:

• Asynchronous tasks with a synchronous release: there exists an instant

where all tasks are released and ready to execute simultaneously. In other

words, there is a critical instant.

• Asynchronous tasks without a synchronous release: there does not exist an

instant where all tasks are released and ready to execute simultaneously.

In other words, there is not any critical instant.

The term asynchronous system is also used to refer to system that consists of

asynchronous tasks.

Definition 27 (Asynchronous Systems). Systems in which there is at least one first

job of a task that is not released at the same time as the first jobs of the other tasks.

In the sequel, we use the term general tasks to mention tasks that can be either

asynchronous or synchronous.

1.3 real-time operating systems

An operating system (OS) is a software that is responsible for managing the hard-

ware resources of a system and software applications running on this system. A

17 of 168

real-time operating systems

Real-Time Operating System (RTOS) is an OS designed to support the schedul-

ing of real-time tasks with a very precise timing and a high degree of reliability

and timing predictability.

A RTOS is different from a general purpose OS such as Microsoft Windows

or GNU Linux. A general purpose OS is designed to run many programs and

services at the same time and the goal is to maintain user responsiveness, enforce

fairness and limit the case of resource starvation. By contrast, a RTOS is designed

to run specific applications and the goal is to meet the requirement of timing

constraints and reliability.

A RTOS can be defined as an OS with the additional following properties [37]:

• Maximum response time of critical operations such as OS calls and inter-

rupt handling are known. A RTOS can guarantee that a program will run

with very consistent timing.

• Interrupt latency and thread switching latency are bounded. It allows fast

task preemption. The highest priority task is executed instantly by the pro-

cessor when it arrives.

• Real-time priority levels are supported. Programmer can assign a priority

level to a task. In addition, there are mechanisms to prevent priority inver-

sion.

• A RTOS supports timers and clocks with adequate resolution.

• Advanced algorithms or scheduling policies are provided in order to sched-

ule tasks on the processor. These are implemented as schedulers.

There are several RTOSes that are designed for RTES such as FreeRTOS [49] and

RTEMS [71].

This section focuses on two features of a RTOS: scheduler and memory alloca-

tion.

1.3.1 Scheduler

A scheduler is the part of the RTOS kernel. It decides which task should be

executed at a point in time. A formal definition of a scheduler is given by:

Definition 28 (Scheduler [6]). A scheduler provides an algorithm or a policy for order-

ing the execution of the tasks on the processor according to some pre-defined criteria.

A scheduler provides one or several scheduling policies that decide the schedul-

ing of tasks on the processor.

Definition 29 (Scheduling). Scheduling is a method by which tasks are given access to

resources, noticeably the processor. Scheduling is done according to a scheduling policy.

18 of 168

real-time operating systems

Definition 30 (Scheduling Policy). A scheduling policy (or scheduling algorithm) is

the algorithm which describes how tasks are given access to the processor and other shared

resources.

To sum up, tasks are scheduled on a processor by a scheduler following a given

scheduling policy. The scheduling policy elects task according to several criteria,

rules or algorithms. Those can be considered as characteristic of a scheduling

policy and can be used to classify different policies. We present the most general

characteristics below:

• Preemptive and non-preemptive

• Online and offline

• Fixed priority and dynamic priority

These characteristics are grouped in mutual exclusive pairs. For example, a

scheduling policy cannot be both preemptive and non-preemptive at the same

time.

a Preemptive and non-preemptive scheduling

Definition 31 (Non-preemptive scheduling [6]). A non-preemptive scheduler does

not suspend a task’s execution once this task is executed.

In non-preemptive scheduling, the RTOS never initiates a preemption. When

a task is executed, it occupies the processor until it is completed.

Definition 32 (Preemptive scheduling [6]). A preemptive scheduler can arbitrarily

suspend a task’s execution and restart it later without affecting the logical behavior of

that task.

Preemptive scheduling involves the use of an interrupt mechanism that sus-

pends the currently executing task, invokes a scheduler to determine which task

should execute next. Preemptive multitasking allows the system to more reliably

guarantee each task a regular "slice" of operating time. It also allows the system

to rapidly deal with important external events like incoming data, which might

require the immediate attention of one task.

b Online and offline scheduling

Definition 33 (Offline Scheduler [6]). A scheduler is offline if all scheduling decisions

are made prior to the running of the system.

Offline scheduling is usually carried out via a scheduling table that lists tasks

and their activation times. It means that all tasks are clearly defined before the

19 of 168

real-time operating systems

system is deployed and will be released at predefined points in time. An of-

fline algorithm takes complete information about the system activities, which

reflects the knowledge about anticipated environmental situations and require-

ments, and creates a single table, representing a feasible solution to the given

requirements [39].

The advantages of offline scheduling is that it is highly deterministic because

everything is known before runtime. Testing can show that every timing con-

straint is met. In addition, scheduling is done via table lookup so runtime over-

head is low. However, the limitations is that the cost of requirement analysis, sys-

tem design and testing is very high because everything must be known before

runtime. For instance, all information about environmental situations, systems

and task parameters and their arrival times must be known for the entire life-

time of the system. Furthermore, it is also difficult to handle aperiodic events

with offline scheduler.

Definition 34 (Online Scheduler [6]). A scheduler is online if all scheduling decisions

are made during the run-time of the system.

An online scheduler makes scheduling decisions during the run-time of the

system [6]. The decisions are based on a set of predefined rules or the current

state of the system. An offline schedulability test can be used to show that, if

a set of rules is applied to a given task set at runtime, all tasks will meet their

deadlines [39].

Online scheduling is used because of its flexibility. A new task can be easily

added in the system design. However, the limitation is that online scheduling

could introduce higher runtime overhead because the need of electing task and

handling shared resource at runtime. In addition, online scheduling is less pre-

dictable comparing to offline scheduling.

c Fixed priority and dynamic priority scheduling

Definition 35 (Fixed priority scheduling [6]). In fixed priority scheduling, task pri-

orities are fixed and assigned offline (before system starts).

Task priorities are assigned based on several properties such as relative dead-

line or period [6]. In classical priority assignment algorithm, tasks only have one

priority level. In [86], Wang and Saksena proposed preemption threshold which

is a dual-priority system. A task is assigned one nominal priority level and one

preemption threshold. Once a task is executed, its priority level raises to preemp-

tion threshold level. Thus, it cannot be preempted by higher priority tasks up to

a certain priority. We still classify the work in [86] as fixed priority scheduling

because task priorities and preemption threshold are fixed and assigned offline.

Definition 36 (Dynamic priority scheduling [6]). In dynamic priority scheduling,

task priorities can be updated during execution.

20 of 168

hardware

The advantage of dynamic priority scheduling over fixed priority one is that

it allows systems to be schedulable at a higher processor utilization. However,

because of the need to compute and update task priorities online, dynamic pri-

ority schedulers are more complex to implement in general and introduce more

scheduling overhead [25].

1.3.2 Memory Allocation

RTOS may support dynamic and static memory allocation.

Definition 37 (Static Memory Allocation [37]). Static memory allocation is the allo-

cation of memory at compile or design time. No memory allocation or deallocation actions

are performed during execution.

When using static memory allocation, sizes of the tasks must be known at com-

pile or design time. As a result, the disadvantages are that sizes of data structures

cannot be dynamically varied, and programs cannot be recursive. However, it is

also fast and eliminates the possibility of running out of memory [50].

Definition 38 (Dynamic Memory Allocation [37]). Dynamic memory allocation is

the allocation of memory at run-time.

Dynamic memory allocation is sometimes considered a poor design choice be-

cause spatial and temporal worst case for allocation and deallocation operations

were insufficiently bounded [61]. They lead to unpredictable timing behaviors,

which are a problem when designing a RTES. Fully static designs do not have

those limitations.

1.4 hardware

This section provides a brief summary about three hardware components of

a RTES: processor, memory system and network. Cache memory, which is the

focus of this thesis, is detailed in Chapter 2.

1.4.1 Processor

In RTES, processors are usually small and have low power consumption. In

essence, they are different from processors used in a workstation, laptop or desk-

top computer. They can be a general purpose processor or application specific

instruction-set processor.

We can classify a RTES based on the number of processors.

• Uniprocessor: RTES has only one processor.

21 of 168

hardware

• Multiprocessor: RTES has more than one processor. We can distinguish at

RTES three kinds of multiprocessor RTES from a theoretical point of view

[32].

– Identical parallel machines: all the processors are identical in the sense

that they have the same speed.

– Uniform parallel machines: each processor is characterized by its own

speed.

– Unrelated parallel machines: there is an execution rate associated with

each job-processor pair.

1.4.2 Memory System

On embedded systems, memory is often not expandable or very costly to expand.

When programming embedded systems, one needs to be aware of the memory

needed to complete a task.

A memory device can be classified based on several characteristics:

• Accessibility: random access, serial access or block access.

• Persistence of storage: volatile storage or non-volatile storage.

• Read/write speed.

• Size.

• Cost.

• Power consumption.

A memory system needs to meet the following requirements. First, processors

are built to expect a random-access memory. Second, this memory must be fast

compared to the speed of the processor. If memory speed is too slow compared

to processor speed, a high proportion of the execution time of a program is

waiting for data to arrive. It will be a significant waste of processing power and

energy. Third, this memory needs to be large. Nowadays, software are using

megabytes of code and expecting up to gigabytes of storage. Finally, from the

consumer point of view, this memory must also be cheap.

It is possible to provide all technical requirements in a single memory technol-

ogy; however, the cost will be very high [50]. Thus, in practice, people exploit

the locality of reference in order to create a memory hierarchy which is able to

answer all the requirements above. The idea is to have multiple levels of storage.

Each level is optimized for a specific requirement. This point will be discussed

in detail in Chapter 2.

22 of 168

scheduling analysis

1.4.3 Network

In a multiprocessor RTES, processors are connected by a network. Messages are

sent over the network and could be scheduled by a scheduling policy.

For example, in a Controller Area Network (CAN) bus, each message has a

fixed priority level. In addition, a message has several parameters and timing

constraints that are similar to a task [90]. We can consider that messages are

scheduled on the network while tasks are scheduled on the processors. Thus,

scheduling theory can sometimes be applied to the network.

1.5 scheduling analysis

Scheduling analysis provides a mean to assess the ability of a given RTES to

meet its timing constraints. In other words, all the tasks will meet their dead-

lines during the life-time of the system. It includes the analysis and testing the

feasibility and schedulability of several scheduling policies on a specific system model.

In this section, the system model used in this thesis is presented. Then, we

explain what is feasibility and schedulability in the context of RTES. We present

several scheduling policies and tests applied to them.

1.5.1 System Model

A system model is an abstraction of a system. A system can be described by

different models with different levels of abstraction. In this thesis, we assume

the following system model:

• A uniprocessor RTES

• There are n independent periodic tasks: τ1, τ2, ..., τi, ..., τn.

• A task is defined by a quintuple: (Ci, Ti, Di, Oi, Πi). The five elements are

respectively the capacity (or the worst case execution time), the period, the

deadline, the offset and the priority of the task τi. Task τi makes its initial

request after Oi units of time, and then releases periodically every Ti units

of time. Each release of a task is called a job. Each job requires Ci units

of computation time and must complete before Di units of time. A unique

priority level Πi is assigned to each task. The higher the priority value of a

task, the higher its priority level.

• The capacity of a task is smaller than its deadline: Ci 6 Di.

• The deadline of a task is smaller than or equal to its period: Di 6 Ti.

• There is no dependency and shared software resources between tasks.

23 of 168

scheduling analysis

• The task set can be either synchronous or asynchronous.

In addition, we introduce the following notations used to discuss about the

system model.

• Dmax is the largest relative deadline in the task set.

• Omax is the largest offset in the task set.

• A job of τi released at time t = Oi + k · Ti,k 2N is denoted as τi[t].

• hp(i) (respectively lp(i)) is the set of tasks with higher (respectively lower)

priority than task τi.

• hep(i) (respectively lep(i)) is the set of tasks with higher (respectively

lower) or equal priority to task τi.

The hyper-period of a task set is defined as follows:

Definition 39 (Hyper-period [55]). The hyper-period P is equals to the least common

multiplier of all the periods of the tasks. P = lcm(T1, T2, ..., Tn).

The level-i hyper-period of a task is defined as follows

Definition 40 (Level-i hyper-period [7]). The level-i hyper-period Pi of task τi is

equal to the least common multiplier of the periods of τi and its higher priority tasks

τj 2 hp(i). Pi = lcm(Ti, (Tj | 8τj, τj 2 hp(i))).

1.5.2 Feasibility and Schedulability

The ability to meet timing constraints of a task set is accessed by its feasibility

and schedulability. The two terms are defined as follows:

Definition 41 (Feasibility [6]). Feasibility is the assessment of the ability to satisfy all

timing constraints of a task set.

Definition 42 (Feasible [6]). A task set is feasible if there exists a scheduling policy

guaranteeing that all timing constraints are met.

During the life time of a system, a task set generates sequences of jobs. If all

sequences of jobs can be scheduled without any deadline misses, the task set is

feasible.

Definition 43 (Schedulability [6]). Schedulability is the assessment of the feasibility

of a task set under a given scheduling policy.

Definition 44 (Schedulable [6]). A task set is schedulable under a scheduling policy if

none of its tasks, during execution, will ever miss their deadlines.

24 of 168

scheduling analysis

Given a space of task sets, the set of schedulable task sets under a given

scheduling policy will be a subset of feasible task sets, as illustrated in Figure 3.

Schedulable

with policy A

Schedulable with

policy B

Feasible

Figure 3: Feasible and schedulable task sets

Algorithms used to verify a system feasibility and schedulability are called

feasibility test and schedulability tests.

Definition 45 (Feasibility Test [10]). A feasibility test assesses whether a task set is

feasible or not.

Definition 46 (Schedulability Test [10]). A schedulability test assesses whether a task

set is schedulable with a given scheduling policy or not.

Feasibility and schedulability tests use several conditions in order to assess

whether a task set is feasible/schedulable or not. We can have three types of

feasibility/schedulability condition.

• Sufficient: if these conditions are satisfied, a task set is guaranteed to be

feasible/schedulable. If these conditions are not satisfied, a task set can

still be feasible/schedulable.

• Necessary: if these conditions are satisfied, a task set is not guaranteed to

be feasible/schedulable. If these conditions are not satisfied, a task set is

not feasible/schedulable.

• Exact: sufficient and necessary conditions which guarantee that a task set

is feasible/schedulable.

We can compare two schedulability tests by the set of schedulable task set

found.

• If the set of schedulable task sets found by a test A is a subset of schedula-

ble task set found by a test B, we say that test B dominates test A .

• If the set of schedulable task sets found by test A is identical to test B, we

say that two tests are equal.

25 of 168

scheduling analysis

• In other cases, the two tests are incomparable.

Feasibility and schedulability tests use parameters that are specified in the sys-

tem design. However, a part of these parameters can never be estimated exactly

and there are always deviations in practice. Changes for better scenarios are cov-

ered by sustainability analysis and changes for worst scenario are covered by

robustness analysis. These are introduced in the next sections.

1.5.3 Sustainability and Robustness

Definition 47 (Sustainability [20]). A given scheduling policy and/or a schedulability

test is sustainable if any system that is schedulable under its worst-case specification

remains so when its behavior is better than worst-case. The term better means that the

parameters of one or more individual task(s) are changed in any, some, or all of the

following ways: .

1. Decreased capacities

2. Larger periods

3. Larger relative deadlines

4. Smaller release jitter

Modeling and scheduling analysis by WCET is reasonable only when the anal-

ysis is sustainable regarding execution time parameter. Decreased execution time

comes from the deviation in theoretical analysis and practical execution. A task

can execute shorter than its WCET. This change is not predictable. If scheduling

analysis with the WCETs of tasks is not sustainable regarding this change, we

need to perform scheduling analysis with all possible values which are smaller

than the WCETs of tasks, leading to an exponential complexity.

Sporadic task model is analyzable if the analysis is sustainable regarding pe-

riod or MIT parameter. If not, we can only analyze system model with periodic

tasks.

Definition 48 (Robustness [33]). The capability of a system to meet its timing con-

straints despite the occurrence of additional interference.

Robustness is a concept used in general system development. The term ad-

ditional interference consists of unpredictable internal or external perturbation

that can affect the system. Tasks in real-time system may experience various

additional interferences as listed in [33]:

• Effects of interrupts; interrupts occurring in bursts/ at ill-defined rates,

using more execution time than expected.

26 of 168

scheduling analysis

• Ill-defined RTOS overheads.

• Tasks exceeding their expected execution times.

• Processor cycle stealing by peripheral control units such as Direct Memory

Access (DMA) devices.

• Ill-defined critical sections where interrupts and hence task switches are

disabled, possibly due to the behavior of the RTOS.

• Errors occurring at an unpredictable rate, causing check-pointing mecha-

nisms to re-run part or all of a task

1.5.4 Fixed Priority Preemptive Scheduling

Under fixed priority preemptive (FPP) scheduling, each task is assigned a prior-

ity level. Task can preempt each other based on the statically assigned priorities.

In this section, first we introduce priority assignment algorithms. Second, we

present schedulability tests applied to FPP scheduling.

a Priority Assignment

One of the most known priority assignment algorithms are the Rate Monotonic

(RM) and Deadline Monotonic (DM).

RM assigns priority levels to periodic tasks based on their periods. The shorter

the period of a task, the higher its priority level. It was shown that for syn-

chronous periodic tasks with deadlines on requests (8τi : Ti = Di,Oi = 0), RM

is the optimal priority assignment algorithm.

DM assigns priority to tasks based on their relative deadlines. The shorter the

relative deadline of a task, the higher its priority level. Leung and Whitehead

[55] showed that for synchronous tasks with deadlines less than or equal to their

periods (8τi : Di 6 Ti,Oi = 0), (DM) is optimal.

Audsley [7] addressed asynchronous periodic tasks with arbitrary deadlines

(Ti and Di are not related). Audsley’s priority assignment algorithm is optimal

in the sense that for a given RTES model, it provides a feasible priority ordering

resulting in a schedulable RTES whenever such an ordering exists. For n tasks,

the algorithm performs at most n · (n+ 1)/2 schedulability tests and guarantees

to find a schedulable priority assignment if one exists.

Audsley’s algorithm starts by assigning the lowest priority level 1 to a given

task τi. Then, a feasibility test is used to verify whether τi is schedulable or not. If

τi is not schedulable at priority level n, the algorithm tries to assign the priority

level n to a different task. If τi is schedulable, the algorithm assigns priority level

1 to τi and then, moves to the next priority level. The algorithm continues until

all tasks are assigned a priority level. If there is not any schedulable task at a

27 of 168

scheduling analysis

given priority level, the RTES is not schedulable and the algorithm terminates.

The pseudo code of Audsley’s algorithm is given below.

1 for each unassigned priority level i, lowest first loop

2 for each unassigned task τ loop

3 if τ is schedulable is priority i then

4 assign τ to priority i

5 break (continue outer loop)

6 end if

7 end loop

8 return unschedulable

9 end loop

10 return schedulable

Davis and Burns [33] improved Audsley’s algorithm by introducing a robust

priority assignment algorithm. This work deals with the problem of robustness.

As defined earlier, a robust system retains schedulable even when it operates be-

yond the worst-case assumptions as permitted by the interpretation of its spec-

ification [20]. The problem is that tasks in RTES may be subject to additional

interferences of various types such as: interrupt handling, scheduling overhead

and tasks exceeding their WCET. The previous priority assignment algorithms

did not take into account this factor. The proposed algorithm in [33] assigns pri-

ority to a task, which is not only feasible but also can tolerate highest number

of additional interference. The pseudo code of this priority assignment is given

below. The additional tolerable interference is denoted as α.

1 for each priority level i, lowest first loop

2 for each unassigned task τ loop

3 binary search for the largest value of α

4 for which task τ is schedulable at priority level i.

5 end loop

6 if no task are schedulable

7 return unschedulable

8 else

9 assign the schedulable task that

10 tolerates the max α at priority level i to

11 priority level i

12 end loop

13 return schedulable

In [86], Wang and Saksena proposed preemption threshold which is a dual-

priority system. A task is assigned one nominal priority level and one preemp-

tion threshold. Once a task is executing, its priority level raises to preemption

threshold level. Thus, it cannot be preempted by higher priority tasks up to a

28 of 168

scheduling analysis

certain priority. The author have shown that the proposed preemption threshold

can improve schedulability and reduce preemption overhead.

b Feasibility and Schedulability Test

There are several feasibility/schedulability tests applied to FPP scheduling. In

this section, we address the three popular tests.

The first test is based on processor utilization factor. This test is sufficient but

not necessary. It can be applied to RM and DM in preemptive scheduling context.

The utilization of the processor by a task τi is computed as follows:

Ui =
Ci

Ti
(1)

The total processor utilization of a task set that consists of n tasks is computed

as follows:

U =

n
X

i=1

Ci

Ti
(2)

In [57], Liu and Layland have presented two results regarding the schedulability

analysis of synchronous independent periodic tasks:

Theorem 1 ([57]). In FPP scheduling context, a task set of n synchronous independent

periodic tasks with Di = Ti, executing on a uniprocessor, is schedulable by RM if:

U 6 n(21/n − 1) (3)

Theorem 2 ([57]). In FPP scheduling context, a task set of n synchronous independent

periodic tasks with Di 6 Ti executing on a uniprocessor, is schedulable by DM if:

n
X

i=1

Ci

Di
6 n(21/n − 1) (4)

The second test is based on verifying that all the deadlines over the feasibility

interval are met. We detail the definition and computation of feasibility interval

of general tasks in Section 1.6.1. This test is sufficient and necessary for general

tasks. It can be applied to any priority assignment algorithms in FPP scheduling

context.

The third test is based on the computation of task WCRT. This test is sufficient

and necessary for task set that consists of synchronous independent periodic

tasks. It can be applied to any priority assignment in FPP scheduling context.

For a given task set, the WCRT Ri of a task τi can be computed and compared

against the deadline using the following equation [51]:

Ri = Ci +
X

8j2hp(i)

&

Ri

Tj

'

·Cj (5)

The task set is schedulable if all tasks meet their deadlines (i.e. 8i : Ri 6 Di).

29 of 168

scheduling analysis

1.5.5 Dynamic Priority Preemptive Scheduling

Under dynamic priority preemptive (DPP) scheduling, a task is not assigned a

priority level. The scheduler decides which task has the highest priority level

during run time.

a Priority Assignment

• Earliest Deadline First [57]: Earliest Deadline First (EDF) assigns priority

levels to tasks based on their absolute deadline at a given instant during

execution. The nearer the absolute deadline of a job of a task, the higher its

priority level.

• Least Laxity First [35]: Least Laxity First (LLF) assigns priority levels to

tasks based on the laxity attributes. For a job of a task, its laxity is defined

as the difference between the task’s relative deadline and its remaining

execution time. The smaller the laxity value of a job of task, the higher its

priority level.

b Feasibility and Schedulability Test

There are several feasibility/schedulability tests applied to DPP scheduling. In

this section, we address the three popular tests that are applicable to EDF. The

first test is based on processor utilization factor:

Theorem 3 ([57]). A task set of n synchronous independent periodic tasks, executing

on a uniprocessor, and with Ti > Di, is schedulable by EDF scheduling if, and only if:

U =

n
X

i=1

Ci

Ti
6 1 (6)

The second test is based on on verifying that all the deadlines over the feasibility

interval are met. In [54], Leung and Merrill noted that a set of periodic tasks is

schedulable if and only if all absolute deadlines in the interval [0,Omax + 2H)

are met. This is an exact test. In [9], Baruah and Rosier extended this condition

for sporadic task systems. They showed that a task set is schedulable if and

only if 8t > 0, h(t) < t, where h(t) is the processor demand function which

calculates the maximum execution time requirement of all jobs which have both

their arrival times and their deadlines in a contiguous interval of length t, h(t)

is given by:

h(t) =

n
X

i=1

max

{

0, 1+

$

t−Di

Ti

%✏

Ci (7)

In addition, the value of t can be bound by an easily computed value. The feasi-

bility condition is given by:

30 of 168

scheduling simulation

Theorem 4 ([9]). A general task set is schedulable if and only if U 6 1 and 8t <

La,h(t) < t where La is defined as follows:

La = max

{

D1, ...,Dn, max
16i6n

{Ti −Di}
U

1−U

✏

(8)

The third test is based on worst-case response time computation. This is more

complex to compute than in the case of FPP scheduling. This thesis does not

focus on DPP scheduling so the presentation of these tests are not included.

1.6 scheduling simulation

Scheduling simulation is used to analyze the feasibility and schedulability of

RTES. It focuses on evaluating scheduling events and the ability to satisfy timing

constraints of a system.

The concept of simulation is well-known in computer sciences. It is the disci-

pline of (1) designing a system model of an actual or theoretical physical system,

(2) executing the model on a digital computer, and (3) analyzing the execution

output [68].

A system model is an abstraction of a system architecture. A system can be de-

scribed by different models with different levels of abstraction. The architecture

of a system can be described by an Architecture Description Language (ADL).

By definition, an ADL is a language that supports the modeling of high-level

structure of the system. An ADL does not focus on modeling the implementa-

tion details of the system. Examples of ADLs are AADL [38] and MARTE-UML

[16].

The system model is then executed by a scheduling simulator. The execution

of a model must follow a scheduling policy. In general, scheduling policies are

implemented in or handled by the simulator.

Execution output consists of information regarding system’s feasibility and

schedulability.

In the next sections, we discuss about the concept of feasibility interval and

related work on this subject. In addition, we also present existing scheduling

simulators.

1.6.1 Feasibility Interval

One of the most important question when performing scheduling simulation is

how long should we simulate a system. Ideally, we need to be able to capture

all the possible behaviors of our system model or at least the worst case in the

simulation interval. The minimum interval in which we should perform the sim-

ulation is known as feasibility interval.

31 of 168

scheduling simulation

Definition 49 (Feasibility Interval [43]). A feasibility interval IF is a finite interval

such that it is sure that no deadline will ever be missed if and only if, when we only keep

the requests made in this interval, all deadlines for them in this interval are met [43].

We present existing work on feasibility interval of RTES.

a Synchronous systems

In [57], Liu and Layland proved that for a synchronous system, if deadlines

of tasks are guaranteed for releases starting at a critical instant, they can be

guaranteed for the lifetime of the system. Later, in [43], Goossens and Devillers

deduced the feasibility interval which is [0,Dmax).

b Asynchronous systems

In [43], Goossens and Devillers proved that any feasible schedule of an asyn-

chronous system is finally periodic, i.e. periodic from some point.

One of the first results about feasibility interval of an asynchronous system is

presented in [55]. For an asynchronous system with a FPP scheduler, the feasibil-

ity interval is [Omax,Omax + 2 · P). This is not optimal since it does not reduce

to [0,Dmax) in the case of synchronous systems.

Later, the result is improved. For asynchronous systems, the concept of stabi-

lization time was introduced in [7] and [43]. In these systems, there could be an

interval of time, in which lower priority tasks are released and executed while

higher priority tasks are not released. In this interval, a system is considered to

be not stabilized. Stabilization time is defined as follows:

Definition 50 (Stabilization time [7, 43]). Stabilization time Si of a task τi is an

instant at a release time of τi when all tasks τj 2 hp(i) are released and stabilized.

The computation of Si is inductively defined by [43]:

S1 = O1,

Si = max(Oi,Oi + d
Si−1−Oi

Ti
e · Ti) (i = 2, 3, ...,n).

For a task τi, the feasibility interval is [0,Si + Pi). It gives the feasibility inter-

val of [0,Sn + P] for all the system in which Sn is the stabilization time of the

lowest priority task τn. Later, in [43], Goossens and Devillers pointed out that the

interference a task experiences before the stabilization time is less than or equal

to the one after. As a result, for each τi one only has to check the deadlines in

the interval [Si,Si + Pi).

1.6.2 Scheduling simulator

The general properties of a RTES scheduling simulator are given below.

32 of 168

conclusion

• Supporting an abstract model of a system. A model could include software

components or hardware components. Depending on the purpose of the

simulation, a simulator can support all system components or a part of

them.

• Supporting one or several scheduling policie(s).

• Supporting a simulation of tasks over a period of time.

There were many scheduling simulators developed. MAST [42] is a modeling

and analysis suite for real-time applications. The hardware component abstrac-

tion of MAST model is generic and it includes processing resources and shared

resources.

STORM [84], YARTISS [27] and RTSim 1 are scheduling simulation tools mainly

designed for evaluating and comparing scheduling algorithms for multiproces-

sor architectures. YARTISS also supports energy-aware scheduling simulation.

SymTA/S [47] and RealTime-at-Work 2 are model-based scheduling analysis

tools targeting automotive industry. The hardware components supported in

those tools are specific to their domains (ECU, CAN and AFDX Networks).

SimSo [28] is a scheduling simulation tool that supports cache sharing on

multi-processor systems. It takes into account impact of the caches through

statistical models and also the direct overheads such as context switches and

scheduling decisions. The memory behavior of a program is modeled based on

Stack Distance Profile - the distribution of the stack distances for all the memory

accesses of a task, where a stack distance is by definition the number of unique

cache lines accessed between two consecutive accesses to a same line [62].

1.7 conclusion

The main objective of this chapter was to provide a brief summary about subjects

that form the background of the thesis. An introduction about the properties

of a RTES and its main components including software, RTOS and hardware

are provided. We have presented the system model, the notation used in this

thesis and how scheduling analysis is done on a given system model in order

to verify that all timing constraints are met. To sum up, scheduling analysis

methods evaluate a system’s schedulability based on a model of its software and

hardware together with a scheduling policy provided by its RTOS.

The next chapter presents the problem that appears when cache memory is

included in the hardware of a RTES. Indeed, software and hardware models

must be updated in order to take into account this new hardware component

1 RTSim, http://rtsim.sssup.it/

2 RealTime-at-Work, http://www.realtimeatwork.com/

33 of 168

conclusion

and its effect on task execution. Furthermore, scheduling analysis methods are

also extended with regard to the effect created by this hardware component.

34 of 168

Chapter 2

C A C H E M E M O RY A N D C A C H E

R E L AT E D P R E E M P T I O N D E L AY

Contents

2.1 The Need of Cache Memory and Memory Hierarchy 36

2.2 Basics Concepts about Cache Memory 38

2.3 Cache problems in RTES . 42

2.4 CRPD Computation Approaches 44

2.5 CRPD Analysis for FPP Scheduling 47

2.6 Conclusion and Thesis Summary 54

This chapter provides a brief summary of the basic concepts about cache mem-

ory and the problems created by the presence of cache memory in RTES. Cache

memory is important because it provides data to a processor much faster than

main memory. It helps reducing the memory latency and thus decreasing system

response time. However, in RTES, because cache memory is shared between tasks

and memory accesses are not always predictable, it creates several problems

when applying scheduling analysis methods, which are based on pessimistic

but highly predictable assumptions, to verify system schedulability.

In section 2.1, we present the need of cache memory and memory hierarchy.

Basic concepts about cache memory are introduced in section 2.2. Section 2.3

details the problem of cache memory in RTES and introduces a new preemption

cost named Cache Related Preemption Delay (CRPD). The computation of CRPD

is presented in section 2.4. In section 2.5, we present how scheduling analysis

methods are extended to take into account CRPD. Finally, section 2.6 concludes

the chapter and presents the position of our work.

35 of 168

the need of cache memory and memory hierarchy

2.1 the need of cache memory and memory hier-

archy

In this section, we explain why a single level memory is not practical in modern

RTES and the need of cache memory and memory hierarchy.

Memory accesses are very common in programs. The time it takes to load the

data from memory to the processor is called the latency of the memory operation.

It is usually measured in processor clock cycles or ns.

Modern processors are fast in the sense that they can run normally at clock

speeds of several GHz and can execute more than one instruction per clock cycle.

For example, a 3 GHz processor capable of executing 3 instructions per cycle has

a peak execution speed of 9 instructions per ns. Thus, a memory must be fast

in order to match the processor’s speed. In addition, all microprocessors expect

a random access memory [50]. In other words, any particular datum is needed

at any given moment and there is no constraint about the placement order of

instruction or data in the memory.

Modern software application is written to expect hundred megabytes or giga-

bytes of storage for data. For example, a camera control system needs memory to

store the recorded images. Therefore, a memory must be large in order to match

the storage requirement. In addition, it must also support permanent storage.

All the requirements above can be achieved with a single memory technology

but the cost is tremendous and considered not practical. Beside the technical re-

quirements, a memory must be affordable by the consumers. This last requirement

is considered to be mutual exclusive with the others. Consequently, a solution

that consists of a single level memory is not practical and memory hierarchy is

introduced in order to address this problem.

2.1.1 Memory Hierarchy

One fundamental principle that found the interest of memory hierarchy and

cache memory is locality. There are two types of locality:

• Temporal locality [50]: If a program uses a memory block, this memory block

is likely to be used again. Temporal locality is also called locality in time.

• Spatial locality [50]: if a program uses a memory block, memory blocks that

are close to this memory are likely to be used. Spatial locality is also called

locality in space.

Based on temporal locality, memory blocks in higher level memory (e.g main

memory) should be loaded into the cache memory to take advantage of la-

tency. Based on spatial locality, memory blocks that are closer to an accessed

one should be prefetched into the cache too.

36 of 168

the need of cache memory and memory hierarchy

Processor

On-chip

Cache

(SRAM)

Off-chip

Cache

(SRAM)

Main Memory

(DRAM)

Secondary

Memory

(Hard Disk Drive)

Figure 4: Memory hierarchy. Adapted from [50]

Technology Access Latency Cost per Megabyte

On-chip Cache (SRAM) 100 of picoseconds $1-100

Off-chip Cache (SRAM) Nanoseconds $1-10

Main Memory (DRAM) 10-100 nanoseconds $0.1

Secondary Memory (Hard

Disk Drive)

Milliseconds $0.001

Table 1: Performance-cost of memory technologies. Adapted from [50]

Because of the locality principle, a fast, large and expensive single-level mem-

ory system is unnecessary. In a small interval of time, a program does not need

all of its data accessible immediately. Therefore, we can have a multi-level of

storage. The first level of storage, which is fast, small and expensive, provides

immediate access to a subset of the program’s data. The remainder of the data is

stored in higher levels of storage, which are slower but larger and cheaper than

the first level memory.

A memory hierarchy that consists of multiple levels of storage is implemented.

Each level of storage is optimized for a purpose. Figure 4 and Table 1 provide

an illustration of the modern memory hierarchy and information regarding the

cost and the performance of its main components.

• Disk: disk provides permanent storage at an ultra-low cost per bit [50].

• Main memory: main memory is usually made of DRAM (Dynamic Ran-

dom Access Memory). It provides a random-access storage that is relatively

large, relatively fast, and relatively cheap. The speed of main memory is

quite slow comparing to processor’s speed. As we can see in the Table 1, an

access to main memory takes between 10 and 100 ns. Then, the processor

may have to wait for the data to arrive. If a processor can execute 9 instruc-

tions per ns, it can execute more than 90 instructions in the time waiting

to perform a single data access on main memory or hard disk. Memory

37 of 168

basics concepts about cache memory

access latency on main memory is high comparing to an instruction execu-

tion time.

• Cache memory: cache memory is usually made of SRAM (Static Random

Access Memory). It is a small, but extremely fast memory, lies between the

processor and the main memory. Cache is introduced in order to reduce

the memory access latency. Frequently used data are automatically loaded

into the cache.

The capacity of cache memory is often limited and much smaller than main

memory because of the following reason: cost and chip size. It is considered

expensive to have a large cache memory. In addition, the first level cache

memory is typically embedded in the processor chip and the chip size is

limited.

2.2 basics concepts about cache memory

In this section, first, we present the classification of cache memory. Second, we

detail cache memory organization and explain how a memory block in main

memory is mapped into cache memory. In addition, we present the operations

related to this hardware component.

2.2.1 Cache classification

Cache memory is classified based on size, memory access latency and also the

closeness to the processor. Most of the time, there are three layers of cache on

modern processors.

• L1 cache: L1 cache is a extremely fast but relatively small cache memory.

The size of L1 cache is around 4-32 KiB. L1 cache is typically embedded in

the processor chip. It is very close to the processor and is accessed on every

memory access. As a result, from the architectural consideration, this cache

needs to have a lot of read/write ports and very high access bandwidth. It

is considered impossible or extremely costly to built a large L1 cache with

these properties.

• L2 cache: L2 cache is a bit slower but larger than L1 cache. The size of L2

cache is around 128-512 KiB. L2 cache may be embedded in the processor

chip or located on a separate chip with a high-speed alternative bus (sepa-

rated from main system bus) interconnecting the cache to the processor. L2

cache is only accessed when a miss on L1 cache occurs. Thus, it can have

a higher memory access latency, less ports and lower access bandwidth.

These properties allow us to make L2 cache bigger.

38 of 168

basics concepts about cache memory

• L3 cache: L3 cache is significantly slower and larger than L1 and L2 caches.

The size of L3 cache is around 4-8 MiB. L3 cache is only accessed when a

miss on L2 cache occurs.

Cache memory can also be classified by the data stored in the cache.

• Instruction cache: instruction cache only holds program instruction. Proces-

sor only reads from the instruction cache and performs no write operation.

• Data cache: data cache only holds program data. Processor reads from and

writes to the data cache.

• Unified cache: unified cache stores both program instructions and data.

An access to a memory block in the main memory can be classified as a cache

hit or cache miss, which are defined as follows:

Definition 51 (Cache hit). A cache hit is an access to a memory block that is in the

cache.

Definition 52 (Cache miss). A cache miss is an access to a memory block that is not

in the cache.

We proceed by presenting the three characteristics including cache architec-

ture, associativity and replacement protocol.

2.2.2 Cache organization

To understand the organization of cache memory, we present the definition of

the term cache line.

Definition 53 (Cache line [50]). Cache line is the smallest unit of data that a cache

can handle.

A cache is subdivided into cache lines. The size of a cache line is determined

by both the processor and the cache design. The physical location in the cache

memory where a line is stored is called a cache block. In fact, for the reason of

simplicity we consider that two terms are equivalent.

Now, we detail how a memory block in the main memory is mapped into

cache memory.The term memory-to-cache mapping scheme is defined as fol-

lows:

Definition 54 (Memory-to-cache mapping scheme). A memory-to-cache mapping

scheme is a set of rules that specify how a memory block in the main memory is mapped

into the cache memory.

39 of 168

basics concepts about cache memory

The hardware implementation of the cache memory can be seen as a hash

table [50]. The key column is then the address of a memory block in the main

memory. There are three types of memory-to-cache mapping scheme:

1. Direct mapped: a memory block in the main memory can only be mapped

to one distinct cache block in the cache. The mapping is usually computed

as follows:

(Block address) MOD (Number of blocks in cache)

Direct mapped is the most simple memory-to-cache mapping scheme. It

only requires us to compare the address of a memory block in the main

memory with the address of a cache block. The advantage of this memory-

to-cache mapping scheme is that it is simple and not expensive to imple-

ment. However, the disadvantage is that a direct mapped cache is not flex-

ible and often provides low performance due to high number of cache

misses.

2. Fully associative: a memory block in the main memory can be placed any-

where in the cache.

A fully associative memory-to-cache mapping scheme provides a better

performance. Because any memory block in the main memory can be

stored at any cache block, the number of cache miss is lower. The disad-

vantage of the memory-to-cache mapping scheme is its complexity. If we

want to determine a memory block in the main memory is in the cache or

not, we need to check all present memory blocks in the cache. In practice,

it requires a large number of comparators that increase the complexity and

cost of implementing large caches. Therefore, this type of cache is usually

only used for small caches, typically less than 4KiB

3. Set associative: a memory block in the main memory can be placed in a set

of cache blocks. The cache is called n-way set-associative cache. The cache is

organized in ways; the most common is 2, 4 and 8. In fact, we can consider

the direct mapped cache as a 1-way set associative cache.

A set associative cache is a combination of direct mapped cache and fully

associative cache. It has the middle levels of advantages and disadvantage

of the two memory-to-cache mapping schemes.

When the set for a block is full and a cache miss occurs, one of the blocks must

be chosen to be replaced. It should be the block that will not be used in the near

future. There are various algorithms for the replacement policy:

• Random: a block is randomly chosen.

• Least Recently Used - LRU: the least used block is replaced, the cache access

in this case is logged.

40 of 168

basics concepts about cache memory

• Other: FIFO, LFU, etc.

2.2.3 Cache operations

We present two operations regarding memory block in the cache memory: read-

ing and writing.

Reading

A block can be identified in the cache or not based on two information: a valid-

or invalid-flag and a tag for each block. When the computer system starts, the

cache memory is flushed and all blocks are marked as invalid. The flag becomes

valid when the data is written into the cache set. The data access to the cache is

done in the following order:

• The set field is used to find the set.

• All valid tag fields in the set are compared to the tag field of the address.

If the comparison is equal for one tag field, we get a hit. If it is not, we get

a miss and the correct block must be loaded from the lower level memory.

• The word field is used to find the position of the word in the block.

Cache misses can occur for three reasons [48]:

• Compulsory: the line is not in the cache since the associated blocks are

empty.

• Conflict: the line is not in the cache and all blocks associated to the set are

being used.

• Capacity: the cache memory is full.

Writing

There are two policies for writing on the hit and two policies for writing on the

miss. When a cache hit occurs, writing can be done in two different manners:

• Write-through: the writing on the cache is also made to the lower memory

level.

• Write-back: the writing is only done on the cache, writing on the lower

memory is done when the block is replaced.

There are also two strategies for writing on the miss in write-through policy:

• Write allocate: the block is written in the lower memory and then loaded

into the cache.

• No-write allocate: the block is only modified in the lower memory.

41 of 168

cache problems in rtes

2.3 cache problems in rtes

In this section, we detail the problems with cache memory that are related to

WCET and scheduling analysis of RTES in preemptive scheduling context. They

come from two behaviors defined as follows.

Definition 55 (Intrinsic (inter-task) cache behavior [72, 12]). Intrinsic behavior de-

pends on task internal design and execution path and is independent of the execution

environment.

Two functions or data areas in the task may compete for the same cache space

and increasing the cache size and/or associativity can reduce these effects.

The interference created by intrinsic behavior is named intrinsic interference. In-

trinsic interference is related to WCET computation in non-preemptive schedul-

ing context. Static analysis of program code can reliably predict the guaranteed

minimal hit count and maximal miss count in order to compute the WCET. Pre-

diction of single task execution time is subject for timing analysis. This thesis

focuses on the second behavior that creates problems related to scheduling anal-

ysis:

Definition 56 (Extrinsic (intra-task) cache behavior [72, 12]). Extrinsic cache be-

havior depends on the environment and the others task intrinsic cache behavior. In case

of preemption, the cache contents of a (preempted) task could be displaced by the new

running (preempting) task.

When a task is preempted, memory blocks belonging to this task could pos-

sibly be removed from the cache. Once this task resumes, previously removed

memory blocks have to be reloaded. Thus, a new preemption cost named Cache

Related Preemption Delay (CRPD) is introduced:

Definition 57 (Cache related preemption delay (CRPD) [12]). CRPD is the delay

added to the execution time of the preempted task because it has to reload cache blocks

evicted by the preemption.

To clearly present the problem of CRPD, we compare it with context switch

overhead (CSH). As we introduced in section 1.2, context switch makes multi-

tasking possible by allowing the processor to switch from one task to another.

However, it comes with an unavoidable overhead.

Definition 58 (Context switch overhead (CSH) [56]). Context switch overhead is

the cost of performing the following activities: (1) suspending a task, (2) storing the

progress of this task, (3) electing a new running task and later (4) restoring the state of

the preempted task.

Experiment result in [56] has shown that CSH is small comparing to task

WCET and fairly constant, ranging from 4.2 µs to 8.7 µs. Because of this reason,

42 of 168

cache problems in rtes

in classical scheduling analysis, CSH is usually upper-bounded and included in

task WCET.

There are two problems with CRPD:

• The first problem is that CRPD can be significantly larger than CSH. Result

of the same experiment in [56] has shown that the addition preemption

cost introduced by CRPD can be up to to 195 µs, which is 22 times larger

than CSH. Another experiment result in [11] has shown that CSH varies

between 5-10 µs while CRPD varies between 1-10000 µs depending on the

cache usage and system load. In addition, an analysis in [65] has shown

that CRPD can present up to 44% of task WCET.

• The second problem is that CRPD depends on the preempting task, the

preempted task and also the point of preemption. Thus, it is not a con-

stant and cannot be upper-bounded and included in task WCET without

introducing a heavy pessimistic assumption.

We provide several simple examples in order to clearly illustrate the effect of

CRPD and preemption.

A task τi experiences the effect of CRPD if there is an increase in the response

time of τi due to CRPD. The CRPD does not only come from higher priority

tasks preempting τi but it also comes from higher priority tasks preempting

each others.

A task may experience the effect of CRPD in two cases presented below. For

each case, a scheduling of a task set is given as an example.

Direct Preemption

A task could experience CRPD when it is directly preempted by a higher priority

task. As shown in Fig. 5, τ2 experiences 2 unit of time of CRPD when it is

preempted by τ1.

 CRPD Task Execution

τ1
τ2

Figure 5: Direct Preemption

In Figure 5, the CRPD is represented as a delay added to the remaining capac-

ity of task after the preemption. It is a simplified and pessimistic representation

of CRPD because in practice, not all memory blocks are required to be reloaded

into the cache at once. However, to the best of our knowledge, information about

which memory blocks are required at an execution point in time of a task is diffi-

cult to obtain. Thus, we must make this pessimistic assumption that the preemp-

43 of 168

crpd computation approaches

tion will result in CRPD added directly to the remaining capacity of task after

the preemption..

Nested Preemption

A task experiences the effect of CRPD when an intermediate higher priority task

is preempted. In Fig. 6, we have τ2 experiences 2 unit of CRPD when preempted

by τ1. Because τ2 preempted τ3 previously, an increase in the response time of

τ2 leads to an increase in the response time of τ3. We can say that τ3 indirectly

experiences the effect of CRPD when τ1 preempts τ2. In addition, the CRPD

experienced by τ3 must be computed by taking into account both τ1 and τ2.

 CRPD Task Execution

τ3

τ1
τ2

Figure 6: Nested Preemption

Methods of computing an upper-bound CRPD is detailed in the next section.

2.4 crpd computation approaches

In this section, we explain how preemption cost and CRPD are computed. As

presented in the previous section, the additional context switch overhead can

be upper-bounded by a constant and included in the WCET [4]. The additional

execution time due to preemption is mainly caused by cache eviction. Thus,

CRPD can be used to refer to the preemption cost. CRPD is bounded by:

γ = g ·BRT (9)

where g is an upper bound on the number of cache block reloads due to pre-

emption and BRT is an upper-bound on the time necessary to reload a memory

block in the cache (block reload time).

In [23, 52, 72], the authors presented five different approaches to compute g

after a preemption.

1. g is equal to the number of cache blocks. In this case, CRPD is equal to the

time to refill the entire cache.

2. g is equal to the number of cache blocks used by the preempting task.

3. g is equal to the number of cache blocks used by the preempted task.

44 of 168

crpd computation approaches

4. g is equal to the number of intersection cache blocks between the pre-

empted task and the preempting task.

5. g is equal to the number of cache blocks that are useful to the preempted

task, which are named useful cache blocks and introduced later in the

section.

All of the approaches above are based on the assumption that all or a set of cache

blocks that have been replaced by the preempting task has to be loaded when

the preempted task resumes execution.

2.4.1 Evicting Cache Block

The worst-case impact of a preempting task is given by the number of cache

blocks that the task may evict during its execution. Busquet et al.[23] introduce

the concept of evicting cache block (ECB):

Definition 59 (Evicting Cache Block). A memory block of the preempting task is

called an evicting cache block, if it is accessed during the execution of the preempting

task.

The notation ECBj is used to present the set of ECBs of a task τj. In this case,

the upper-bound CRPD can be computed by:

γ = BRT · |ECBj| (10)

This preemption cost presents the worst-case effect of task τj on any arbitrary

lower priority tasks, independent of such a task’s actual cache behavior.

2.4.2 Useful Cache Block

To analyze the effect of preemption on a preempted task, Lee et al. [52] intro-

duced the concept of useful memory block and useful cache block (UCB):

Definition 60 (Useful Memory Block [52]). A memory block m is called a useful

memory block at program point P, if m may be cached at P and m may be reused at

program point P 0 after P that may be reached from P without eviction of m on this path

when tasks execute non-preemptively.

Definition 61 (Useful Cache Block (UCB) [52]). A cache block c that holds a useful

memory block m is called useful cache block.

Let us take an example with a direct mapped cache with 4 cache blocks: 0,1,2,3.

At time t, the mapping is:

45 of 168

crpd computation approaches

The next memory access sequence is m4 -> m5 -> m6 -> m7. then, the cache

mapping is:

We can see that m5 and m6 are reused while they are still in the cache, as a result,

c1 and c2 are useful cache blocks.

For a given task, the number of UCBs at each execution point can be stati-

cally analyzed by applying a data flow analysis technique over the control flow

graph of this task (CFG). For each execution point, we use one array to store

the memory blocks that are reachable (reaching memory blocks – RMB) and an-

other stores live memory blocks (LMB). The amount of useful cache blocks at

each execution point can be determined with an iterative method. The number

of UCB at program point P gives an upper bound on the number of additional

reloads due to a preemption at P. The maximum possible preemption cost for a

task is determined by the program point with the highest number of UCBs. The

notation UCBi is used to present the set of UCBs of a task τi. The CRPD when a

task τi is preempted can be computed by:

γ = BRT · |UCBi| (11)

In [78], the authors exploits the fact that for the m-th preemption, only the m-th

highest number of UCBs has to be considered. However, as shown in [4] and [14],

a significant reduction typically only occurs at a high number of preemptions.

Thus, we only consider the program point with highest number of UCBs.

The work in [23] and [52] concerning UCB and ECB have established a simple

cache access profile computation method to be used in CRPD analysis. The term

cache access profile is defined as follows.

Definition 62 (Cache Access Profile). A cache access profile contains information that

gives details about the cache usage of a task.

We now established the computation of an exact CRPD based on the notion

of UCB and ECB. First, we consider the most simple case in which there is a

preemption between only two jobs of the higher priority task τj and the lower

piority task τi. Let γi,j denotes the CRPD between those tasks. Then, γi,j is

computed by:

γi,j = BRT · |UCBi \ ECBj| (12)

Second, we consider the case of a nested preemption in which τj preempts

several tasks. Let Θj denotes the set of tasks that are preempted by τj. Let γΘj,j

46 of 168

crpd analysis for fpp scheduling

denotes the CRPD when τj preempts lower priority tasks in Θj. Then, the CRPD

can be computed by:

γΘj,j = BRT ·

∣

∣

∣

∣

∣

✓

[

8τi2Θj

UCBi

◆

\ ECBj

∣

∣

∣

∣

∣

(13)

Furthermore, we can have an observation that previous preemption between

tasks in Θj can lead to UCB eviction before τj preempts. As a result, the set of

UCB in the cache of a task τi may be a subset of UCBi. Let UCB 0
i denotes the set

of UCBs in the cache of task τi 2 Θj. Then, a more precise computation of γΘj,j

can be given by:

γΘj,j = BRT ·

∣

∣

∣

∣

∣

✓

[

8τi2Θj

UCB’i

◆

\ ECBj

∣

∣

∣

∣

∣

(14)

2.5 crpd analysis for fpp scheduling

In this section, we present existing research which has been made to account for

CRPD in scheduling analysis. It is divided into three subjects:

• CRPD analysis for WCRT: extensions that have been made to the WCRT

computation equation proposed by Joseph and Pandya [51] to take into

account CRPD.

• Limiting CRPD: approaches that can be used to limit CRPD by either elimi-

nating CRPD, reducing CRPD of each preemption or lowering the number

of preemptions.

• CRPD analysis for scheduling simulation: approaches used in order to take

into account CRPD in scheduling simulation.

2.5.1 CRPD analysis for WCRT

This section presents the extensions that have been made in order to take into

account the effect of CRPD in WCRT computation for FPP scheduling.

In FPP scheduling context, the WCRT Ri of a task τi can be computed and

compared against the deadline using the following equation [51]:

Ri = Ci +
X

8j2hp(i)

&

Ri

Tj

'

·Cj (15)

To take into account the CRPD, the term γi,j was introduced by [23]. In this

case, γi,j refers to the total cost of preemption due to each job of higher priority

47 of 168

crpd analysis for fpp scheduling

task τj (τj 2 hp(i)) executing within the response time of task τi. Then, the worst

case response time of task τi can be computed by:

Ri = Ci +
X

8j2hp(i)

&

Ri

Tj

'

· (Cj + γi,j) (16)

The precise computation of γi,j depends on the approach used. Next, a summary

about γi,j computation approaches is provided. A list of approaches is given

below. The names of the first three approaches are not given by their authors but

are based on the use of UCB and ECB in γi,j computation. They are:

1. ECB-Only by Busquets et al. [23]

2. UCB-Only by Lee et al. [52]

3. UCB-Union by Tan and Mooney [79]

4. ECB-Union by Altmeyer et al. [4]

ECB-Only

This approach focuses on computing the worst-case effect of task τj preempting

task τi. Busquets et al. [23] presented ECB-Only approach which takes into ac-

count the effect from the preempting task τj. It assumes that all cache blocks

evicted by task τj will have to be reloaded without taking into account the UCBs

of the preempted task τi:

γecb
i,j = BRT · |ECBj| (17)

UCB-Only

Lee et al. [52] presented UCB-Only approach which takes into account the effect

from the preempting task τi It assumes that all cache blocks that are useful to τi

(UCBi) will have to be reloaded regardless of the preempting task τj ’s UCBs:

γucb
i,j = BRT · |UCBi| (18)

However, we have to consider the case of nested preemptions. The CRPD of τj

preempting an intermediate priority task τk could be larger than BRT · |UCBi|.

Nested preemptions are taken into account by computing the maximum set of

UCBs of any intermediate priority task that can be preempted by τj. γ
ucb
i,j is

computed by:

γucb
i,j = BRT · max

8k2aff(i,j)
{|UCBk|} (19)

Neither UCB-Only nor ECB-Only dominates each other. Theoretically, the set of

UCBs of the preempted task can be larger than the set of ECBs of the preempting

task and vice versa.

48 of 168

crpd analysis for fpp scheduling

The disadvantage of the ECB-Only and UCB-Only approaches is that they only

consider either the preempting tasks or the preempted tasks. However, simply

using the intersection between UCBi and ECBj is optimistic in case of nested

preemptions.

UCB-Union

Tan and Mooney [79] presented UCB-Union approach which takes into account

both the preempted task and the preempting task. It assumes that the UCBs of

intermediate priority tasks and UCBs of τi are evicted by the ECBs of τj. We

define the set aff(i, j) = hep(i) \ lp(j) that represents the set of intermediate

tasks that have lower priority than τj but higher priority than or equal to τi.

CRPD is then computed by:

γucb−u
i,j = BRT ·

∣

∣

∣

∣

∣

⇣

[

8k2aff(i,j)

UCBk

⌘

\ ECBj

∣

∣

∣

∣

∣

(20)

This approach complements ECB-Only approach. As shown in [4], it is clear

that UCB-Union dominates ECB-Only.

ECB-Union

Altmeyer et al. [3] presented ECB-Union approach which also takes into account

both the preempted task and the preempting task. It assumes that the preempt-

ing task τj can have itself preempted by all of the tasks with a higher priority.

A preemption by task τj may result in the eviction of
S

h2hp(j)[j

ECBh. The maxi-

mum number of evicted cache blocks is computed by the maximum set of UCBs

of any intermediate priority task that can be preempted by τj and the set above.

γecb−u
i,j = BRT · max

8k2aff(i,j)

{
∣

∣

∣

∣

∣

UCBk \ (
[

h2hp(j)[j

ECBh)

∣

∣

∣

∣

∣

✏

(21)

This approach complements UCB-Only approach. As shown in [4], it is clear that

the ECB-Union approach dominates the UCB-Only approach. The ECB-Union

and the UCB-Union approach are incomparable.

In the four approaches presented above, γi,j is the CRPD due to a single

preemption between the preempting task τj and the preempted task τi. This

method of computing γi,j has to take into account nested preemption by mak-

ing pessimistic assumptions. All approaches assumed that if τj preempts τi, it

also preempts each intermediate task τk 2 aff(i, j). Thus, the number of times

that τk 2 aff(i, j) is preempted by τj is equal to the number of times that τi

is preempted by τj. Theoretically, this can potentially be true if Tk = Ti and

Ok = Oi. In other cases, it is a pessimistic assumption.

49 of 168

crpd analysis for fpp scheduling

Staschulat [77] introduced a different computation method and concept of γi,j.

It does not refer to the cost of a single preemption, but instead to the total cost

of all preemptions due to jobs of task τj executing within the response time of

task τi.

Ri = Ci +
X

8j2hp(i)

 &

Ri

Tj

'

·Cj + γsta
i,j

!

(22)

There are four approaches based on this equation.

1. Multiset Approach by Staschulat et al. [77]

2. UCB-Union Multiset by Altmeyer et al. [4]

3. ECB-Union Multiset by Altmeyer et al. [4]

4. Combined Multiset by Altmeyer et al. [4]

The detailed CRPD computation of these approaches is not presented in this

thesis. In term of schedulability task set coverage, as shown in [4], we have the

following results:

• ECB-Union Multiset approach dominates the ECB-Union approach.

• UCB-Union Multiset approach dominates the UCB-Union approach.

• The ECB-Union Multiset and the UCB-Union Multiset approaches are in-

comparable.

• Combined Multiset approach dominates both ECB-Union and UCB-Union

approaches.

2.5.2 Limiting CRPD

There are certain techniques that can be used to limit CRPD by (1) eliminating

CRPD, (2) reducing CRPD of each preemption or (3) lowering the number of

preemptions. In term of eliminating CRPD, we have cache partitioning. In term

of reducing CRPD of preemption, we have effective preemption points and memory

layout optimization. In term of lowering the number of preemptions, we have

preemption threshold approach and deferred preemptions scheduling approach.

Cache Partitioning

In this approach, the cache is split into several partitions. Tasks are allocated into

partitions. Each task has its own cache space so that there is no cache extrinsic

interference between tasks. Cache partitioning can be achieved by hardware by

50 of 168

crpd analysis for fpp scheduling

using a cache that can be locked on a way-by-way basic or by software by using

a compiler with specific support.

The advantage of this approach is that it increases the predictability and elim-

inates CRPD. Classical scheduling analysis methods can be applied to systems

with cache as ones without cache. However, the disadvantage of this approach is

that the cache space per task is reduced. As a result, cache intrinsic interference

is increased and task’s WCET is increased. In [1], Altmeyer et al. have showed

that the decrease in CRPD and the increase predictability does not compensate

for the increase in WCET.

We note that the number of partitions can be smaller than the number of tasks

and more than two tasks can share one partition. In this case, CRPD is not totally

eliminated but the extrinsic cache interference between tasks are limited.

Memory Layout Optimization

Memory layout optimization is achieved by static code positioning technique.

This technique ensures that the program codes are laid in predefined locations.

Unlike cache partitioning, static code positioning does not reduce the cache

space per task.

In this thesis, we focus on memory layout optimization techniques that focus

on reducing cache extrinsic interference. In [41], Gebhard and Altmeyer exploit

the fact that different memory arrangements lead to different cache interferences.

First, the authors proposed a cost function that computes the number of cache

conflicts for a given task placement. The cost is proportional to the number of

memory blocks belonging to the preempted task that reside in the same location

in the cache memory as the memory blocks of the preempting task. It also takes

into account the lifespan of blocks due to the replacement policy. Second, they

proposed a method to adjust the starting position of tasks in a given task set such

that the cost is globally minimized with regard to a given cache configuration.

In [58], Lunniss et al. proposed an approach to reduce the impact of CRPD by

performing a memory layout optimization based on simulated annealing (SA).

This approach compliments the work in [41] by taking into account the location

of task UCBs. During each iteration of SA algorithm, changes are made to the

layout of tasks in memory, and then mapped to their cache layout for evaluation.

The authors have shown that a near optimal solution could be achieved with the

algorithm.

Deferred Preemptions Scheduling

In [19], Burns presented the deferred preemption model. In this model, each

job of task τi is modeled by a sequence of non-preemptive regions separated by

a fixed preemption point. It allows a task to run for a period of time without

being preempted up to a certain limit. An exact schedulability analysis for fixed

51 of 168

crpd analysis for fpp scheduling

priority scheduling with deferred preemptions has been presented by Bril et al.

[18].

Effective Preemption Points

In [14], Bertogna et al. extended the work in [22] and introduced the concept

of potential preemption point (PPP) and effective preemption point (EPP). Each

job of task τi is modeled by a sequence of Ni non-preemptive basic blocks. Pre-

emption is allowed only at basic block boundaries, so each task has Ni − 1 PPP.

Critical sections and conditional branches are assumed to be executed entirely

within a basic block.

An algorithm is designed to identify a subset of PPPs that minimizes the over-

all CRPD but still preserve the schedulability. The PPPs in the subset is then

referred to as EPPs. Then, other PPPs are disabled and preemption is allowed

only at the EPPs.

The advantage of this approach is that because tasks can only be preempted

at selected program points, we do not have to always consider the worst case.

In addition, preemption cost at these points can be precisely computed. The

limitation of this approach is that it can only be applied to programs which can

be modeled as a sequential flow of basic blocks. In practice, typical applications

are composed of many conditional branches and loops. It requires all loops and

branches to be contained within one basic block thus limiting the applicability

of the proposed approach.

In [66], Peng et al. have explored utilizing a combination of graph grammars

and dynamic programming to handle the EPP selection problem for control

flow graphs with conditional structures. The authors have showed that their

approach has pseudo polynomial-time complexity and also proposed a near-

optimal heuristic with lower complexity, memory requirement and computation

time.

Preemption Threshold

Wang and Saksena [86] proposed preemption threshold to improve the schedu-

lability and to reduce preemption overhead. This is a dual-priority system. A

task is assigned one nominal priority level and one preemption threshold. Once

a task is executed, its priority level raises to preemption threshold level. Thus, it

cannot be preempted by higher priority tasks up to a certain priority. An exact

schedulability analysis for FPP with preemption thresholds is also presented in

[86].

52 of 168

crpd analysis for fpp scheduling

Task Ci Ti Di Oi UCBi ECBi Πi

τ1 2 8 8 0 ; {1,2} 2

τ2 5 12 8 0 {1,2} {1,2} 1

Table 2: Synchronous task set with critical instant of task τ2 is not at the synchronous

release.

2.5.3 CRPD analysis for scheduling simulation

CRPD analysis for scheduling simulation is still an open subject of discussion

and the are several problems to be addressed. The first problem is what com-

putation model we should use that in order to take into account the effect of

CRPD. There are several design choices were made in order to study the effect

of CRPD. In [67], the authors consider a computation model with constant value

of CRPD for each task when it is preempted. In [4], the authors consider a model

in which CRPD is computed by the set of UCBs and ECBs of tasks. However, in

these works, scheduling simulation with CRPD was not the focus and were used

as an example to illustrate the effect of CRPD.

SimSo[28] is a scheduling simulation tool that supports cache sharing on multi-

processor systems. It takes into account the impact of caches through statistical

models and also the direct overheads such as context switches and scheduling

decisions. As stated in [30], SimSo used a fixed value for CRPD.

The second problem is regarding the feasibility interval when CRPD is taken

into account. As far as we know, there is no existing study that takes into account

this problem. Critical instant for a task is not identified when CRPD is taken into

account. Regarding synchronous tasks set, as far as we know, the classical critical

instant defined in [57] is not applicable when we consider the effect of CRPD. A

simple example is provided in Table 2.

The scheduling of the task set in Table 2 in the interval [0, 24) is provided in

Figure 7. In this example, τ2 does not experience the highest interference at the

synchronous release. The job of τ2 released at time 0, denoted τ2[0], can meet its

deadline but τ2[12] cannot.

Regarding asynchronous task set, in [7], Audsley stated that there is not any

critical instant.

Furthermore, comparing the CRPD obtained by scheduling simulation to the

real execution on a hardware platform, is also an open problem. There is a lack

of facility that supports observing and analyzing cache memory access on a

hardware platform. A potential solution to this problem is using a non-intrusive

hardware observer that supports run-time verification of RTES by monitoring

the bus such as the on presented in [69].

53 of 168

conclusion and thesis summary

 CRPD Task Execution

24

D1

D2

D1 D2 D1

12 14 16 18 20 220 2 4 6 8 10

τ1
τ2

Figure 7: τ2 does not experience the highest interference at the synchronous release,

2.6 conclusion and thesis summary

We have presented a summary about cache memory, the definition of CRPD and

the state of the art research in CRPD analysis for FPP scheduling. CRPD analysis

for WCRT based on the notion of UCBs and ECBs are well developed. Later tests

provide tighter bounds and results in finding more schedulable task sets. Several

techniques are proposed in order to limit CRPD by eliminating CRPD, reducing

CRPD of each preemption or lowering the number of preemptions.

In the existing work, the focus has been on verifying the system schedulability

after task priorities are assigned. However, because CRPD computation depends

on the preempting task and preempted tasks, priority ordering or priority assign-

ment highly affects the result of CRPD computation and system schedulability.

In Chapter 3, we present an approach to take into account CRPD when assigning

priorities to tasks.

Scheduling simulation based on the concept of UCBs and ECBs still remains

an open subject. Most of the simulation were done only at experimentation level.

We lack a concrete result about how scheduling simulation with CRPD should be

performed. In addition, the interval of time needed to perform the simulation of

RTES with cache memory is still an open question. These issues greatly limit the

use of scheduling simulation as a verification method. In Chapter 4, we propose

a formalization of scheduling simulation with CRPD, investigate the problem of

feasibility interval and evaluate the use of scheduling simulation as a verification

method for RTES with cache memory.

Even though there are existing researches in this domain, there is a lack of

scheduling simulation facilities that support RTES with cache memory. In Chap-

ter 5, we address this problem by providing an implementation of our work and

several CRPD analysis methods for FPP scheduling in Cheddar - an Open-Source

scheduling analyzer [75].

54 of 168

Part II

C O N T R I B U T I O N

Chapter 3

C R P D - AWA R E P R I O R I T Y

A S S I G N M E N T

Contents

3.1 System model and assumptions 58

3.2 Limitation of classical fixed priority assignment algorithms . . 58

3.3 Problem formulation and overview of the approach 62

3.4 CRPD interference computation solutions 68

3.5 Complexity of the algorithms 76

3.6 Evaluation . 78

3.7 Conclusions . 85

CRPD is created by higher priority tasks preempting lower priority tasks and

evicting their data in the cache. In FPP scheduling context, preemption is de-

cided by the priority ordering. Therefore, CRPD that affects the WCRT of a task

depends on the chosen priority assignment algorithm. However, as far as we

know, there is no priority assignment algorithm that takes into account CRPD in

the state of the art work. As a result, classical priority assignment algorithms are

either not optimal or not applicable to RTES with cache memory. These problems

are detailed in Section 3.2.

In this chapter, we present a CRPD-aware priority assignment (CPA) algorithm

that assigns priority and evaluates the schedulability of a task set. For such a

purpose, we propose five extensions to the original Audsley’s Optimal Priority

Assignment (OPA) algorithm [7] that have different degrees of pessimism, dif-

ferent complexities, and give different results in terms of schedulable task sets

coverage. Exhaustive experimentations are achieved to evaluate the proposed

approaches in terms of complexity and efficiency. The result shows that our ap-

proach provides a mean to guarantee the schedulability of the RTES while taking

into account CRPD. This approach also discovers priority orderings that make a

task set schedulable while it is not schedulable with classical priority assignment

algorithm when CRPD is taken into account.

57 of 168

system model and assumptions

The rest of the chapter is organized as follows. Section 3.1 presents system

model and assumptions taken for this work. Section 3.2 discusses about the lim-

itation of classical fixed priority assignment algorithms and details the problem

with OPA. Section 3.3 provides an overview of our approach. In Section 3.4,

detailed approach and algorithms are presented. Section 3.5 discusses the com-

plexity of the proposed solutions. In Section 3.6, an evaluation of our approach

in terms of efficiency and complexity is given. Section 3.7 concludes the chapter.

3.1 system model and assumptions

In this section, we present our system model and assumptions taken.

• We assume an uniprocessor system with one level of direct-mapped in-

struction cache that consists of n independent stricly periodic tasks (τ1, τ2, ..., τn)

scheduled by a FPP scheduler.

• A task is defined by a quintuple: (Ci, Ti, Di, Oi, Πi). The five elements

are respectively the capacity, the period, the deadline, the offset and the

priority of the task τi. The capacity of a task is smaller than its deadline

(Ci 6 Di) and the deadline of a task is smaller than or equal to its period

(Di 6 Ti).

• hp(i) (respectively lp(i)) is the set of tasks with higher (respectively lower)

priority than task τi.

• hep(i) (respectively lep(i)) is the set of tasks with higher (respectively

lower) or equal priority to task τi.

• Tasks can be either synchronous or asynchronous.

• UCBi and ECBi are respectively the set of UCBs and the set of ECBs of task

τi.

We use the term complete priority assignment to mention a system in which each

task is assigned a priority level.

3.2 limitation of classical fixed priority assign-

ment algorithms

In this section, we discuss about the limitation of classical priority assignments

including RM, DM and OPA.

58 of 168

limitation of classical fixed priority assignment algorithms

Task Ci Ti Di Oi UCBi ECBi Πi

τ1 3 12 12 0 ; {1,2} 3

τ2 8 24 24 8 {1,2} {1,2,3,4} 2

τ3 9 24 24 0 ; {3,4} 1

Table 3: Task set example

 CRPD Task Execution

D2

τ1
τ2
τ3

0 2 4 6 8 10 12 14 26 30 3224 28

D1 D3

D1

16 18 20 22

Figure 8: Priority ordering by RM: Π1 = 3,Π2 = 2,Π3 = 1. Task τ3 missed its deadline

at time t = 24.

3.2.1 Limitation of RM and DM

The limitation of RM and DM priority assignment algorithms is that they are

not optimal when CRPD is taken into account. The two priority assignment

algorithms take into account the period and the deadline parameter respectively.

These algorithms assign priorities to tasks in the sense that a task with a tighter

timing constraint is assigned a higher priority level. However, in RTES with cache

memory, a task that has a tight timing constraint but experiences potentially low

CRPD because of low cache usage could be easier to be schedulable at a low

priority level. By contrast, a task that has loose timing constraint but experience

potentially high CRPD could be more difficult to be schedulable at a low priority

level.

We give an example on how taking into account CRPD can change schedula-

bility conditions and improve the schedulability with a task set in Table 3. We

assume that BRT = 1 unit of time.

Let us analyze the example of RM where priorities are assigned according to

the periods of tasks. In case of equal periods between two tasks, the task with

lower index is assigned higher priority level. It results in a non-schedulable task

set. The scheduling is displayed in Figure 8. As we can see, task τ3 missed its

deadline at time t = 24.

59 of 168

limitation of classical fixed priority assignment algorithms

 CRPD Task Execution

32

D1

D3 D2

16 18 20 22 24 26 28 3010 12 14

τ3
0 2 4 6 8

D1

τ1
τ2

Figure 9: Priority ordering 1: Π1 = 2,Π2 = 3,Π3 = 1. All tasks are schedulable

 CRPD Task Execution

D2

D1

D1 D3

22 24

τ3
0 2 4 8 10 12 146 16 18 20

τ1
τ2

26 28 30 32

Figure 10: Priority ordering 2: Π1 = 3,Π2 = 1,Π3 = 2. All tasks are schedulable

In this example, contrary to a RM priority assignment, there are two priority

orderings that can make the task set schedulable. The first priority ordering

is Π1 = 2,Π2 = 3,Π3 = 1. The scheduling with this priority order is shown

in Figure 9. In this priority ordering, CRPD is eliminated because τ1 cannot

preempt τ2.

The second priority ordering is Π1 = 3,Π2 = 1,Π3 = 2. The scheduling with

this priority order is shown in Figure 10. In this priority ordering, the CRPD is

eliminated because τ2 does not start execute at time t = 8 and then it is not

preempted by τ1.

To conclude, one needs to take into account the CRPD early in the system

model in order to verify the feasibility of tasks and adapt the priority assignment

if it is necessary. Our observation is that the effect of CRPD cannot be evaluated

by taking into account task attributes such as period and deadline. It needs to be

evaluated based on relationship between tasks. As a result, priority assignment

algorithms, in which priority ordering is only based on task static attributes,

cannot be optimal with CRPD. In [67], the problem of finding the optimal priority

assignment with CRPD has been proved to be NP-Hard. In addition, the optimal

scheduling can only be achieved by offline scheduling [67].

60 of 168

limitation of classical fixed priority assignment algorithms

3.2.2 Limitation of OPA

The limitation of OPA is that the original priority assignment algorithm is not

applicable to RTES with cache memory. OPA assigns a priority level to a task and

verifies its schedulability at the same time by using a feasibility test; however, the

feasibility test used in the original algorithm cannot guarantee that a system is

schedulable when CRPD is taken into account. For example, we performed an

experiment in Section 3.6 to show that at a high processor utilization, there is a

significant gap between the number of task sets assumed to be schedulable by

OPA and the number of schedulable task sets when considering CRPD. Indeed,

without taking CRPD into account, OPA failed to identify a high number of

unschedulable task sets. For instance, OPA identified 600 schedulable task sets

while only 100 are schedulable for a 90% processor utilization.

In the original work of Audsley [7] presented in Section A, the algorithm

consist of four steps. At the start, all priority levels are not assigned:

• Step 1: The algorithm assigns the unassigned lowest priority level to an

unassigned priority task τi.

• Step 2: A feasibility test is used to verify if τi is schedulable at the priority

level or not.

• Step 3: If τi is not schedulable at the priority level, the algorithm chooses

a different task in the set of un assigned priority tasks and comes back to

Step 1.

• Step 4: If τi is schedulable at the priority level, τi is removed from the set of

unassigned priority tasks. The algorithm moves to the next higher priority

level and comes back to Step 1.

The feasibility test in Step 2 was designed with two assumptions. First, the

response time of a task is not affected by the priority ordering of higher priority

tasks. Second, preemption cost is assumed to be zero. The two properties are

not true when CRPD is taken into account. As a result, we need to design an

appropriate feasibility test. This test must be able to verify the feasibility of a

task under a given priority level while the complete priority assignment of higher

priority tasks is not achieved.

The problem lies in the fact that the CRPD, which affects a task’s WCRT, can

only be exactly computed when task priorities are completely assigned. It is not

possible to apply the WCRT analysis with CRPD presented in Section 2.5.1 to

OPA because of the computation of CRPD.

We remind that the computed upper-bound CRPD when a higher priority

task τj preempts a lower priority τi, denoted γi,j, consist of two parts. First, γi,j

includes the CRPD of τj evicting UCBs of τi. Second, γi,j includes the CRPD

61 of 168

problem formulation and overview of the approach

of τj evicting UCBs of intermediate tasks τk 2 aff(i, j) = hp(i) \ lp(j). In order

to compute aff(i, j) for each task τj, the priorities of tasks in the set hp(i) must

be completely assigned. This is the main challenge of applying OPA to a system

model with CRPD. The problem is that a complete priority assignment is not

achieved in the feasibility testing phase. In step 1 of OPA, a task τi is assumed

to have the lowest priority so the set hp(i) can be computed. Other tasks have

higher priorities than τi, however, specific priority assignments of those tasks

are not set. As a result, the set lp(j) cannot be computed.

3.3 problem formulation and overview of the ap-

proach

In this section, we present our approach and discuss the raised issues. We extend

the feasibility test in step 2 of OPA in order to take into account the CRPD. We

proceed by explaining the feasibility condition in [7] and how it is extended to

take into account CRPD. Then, we formulate the problem regarding the exten-

sion.

3.3.1 Feasibility condition of OPA

Regarding the feasibility condition in [7], a task is schedulable if all its jobs

released during the feasibility interval can meet their deadlines. Assume a job

τi[t], t = Oi + k · Ti,k 2 N , requires Ci units of computation time and must

complete before Di. τi[t] experiences interferences from higher priority tasks

during the interval [t, t+Di). These interferences are denoted as Iti and defined

as follows:

Definition 63 (Interference [7]). The interference that is suffered by τi[t] due to jobs

of higher priority tasks wishing to execute during the release of τi[t]is defined as Iti .

Then, τi[t] is feasible if and only if the following condition is satisfied [7]:

Ci + Iti 6 Di (23)

A task τi is schedulable at a given priority level if and only if all jobs of τi re-

leased in the feasibility interval can meet their deadlines. In other words, Equa-

tion 23 is satisfied for all jobs of τi released in the feasibility interval. Algorithm

verifying the schedulability of a task τi at a given priority level [7] is presented

in Listing 1.

In this chapter, we assume that the feasibility interval is known. During all

our experiments, we have observed a cyclic behavior of scheduling simulation

with CRPD after the feasibility interval proposed in [7, 43]. Feasibility interval is

discussed in Chapter 4.

62 of 168

problem formulation and overview of the approach

1 for each τi[t], t 2 feasiblity interval of τi

2 Iti = Rt
i + Kt

i.

3 if Ci + Iti > Di then

4 schedulable FALSE

5 end if

6 end loop

Listing 1: Algorithm veryfing the schedulability of τi at a given priority level [7].

In this algorithm, Iti is made up of two parts.

1. The first part is the interference from jobs of higher priority tasks that have

been released before t, did not complete at t and have deadlines after t. It

is called remaining interference [7] and denoted as Rt
i . A naive approach

to compute remaining interference is assessing jobs released in the interval

[0, t). In [7], the author provided a better approach by taking into account

jobs released in the period [t−Di, t) plus the outstanding computation of

the created interference [7] of the previous period [t− Ti, t− Ti +Di).

2. The second part is the interference from jobs of higher priority tasks re-

leased in [t, t+Di). This interference is called created interference [7] and

denoted as Kt
i .

The computation of Kt
i and Rt

i was defined in the work of Audsley [7]. First,

we explain the computation of Kt
i . Then, the computation of Rt

i is presented. In

addition, at the end of each sections, we detail in which step CRPD interference

is taken into account.

a Computation of Kt
i

The created interference Kt
i is due to jobs of higher priority tasks released in the

interval [t, t+Di) to τi[t]. To compute Kt
i , a set η is defined, with one element

(τj[tj]) representing a release of τj 2 hp(i) at time tj in the interval [t, t+Di) (In

other words, we have: tj 2 [t, t+Di)).

The set is ordered by the release time tj. Each element is used to step along the

interval [t, t+Di) to calculate the demand of higher priority tasks. The algorithm

that illustrates the approach is presented below:

1 CreatedInterference(η, Rt
i)

2 begin

3 next_free = Rt
i + t

4 Kt
i = 0

5 total_demand = Rt
i

6 for (τj[tj]) in α

63 of 168

problem formulation and overview of the approach

7 total_demand = total_demand + Cj

8 if (next_free < tj) then

9 next_free = tj

10 end if

11 Kt
i = Kt

i + min (t+Di - next_free, Cj)

12 next_free = min (t+Di, next_free + Cj)

13 end for

14 return Kt
i

15 end

In the algorithms, there are three variables that are computed:

• next_free: the time instant at which all jobs higher priority tasks released

before are completed and the processor is free (not occupied).

• total_demand: total execution demand of higher priority tasks released in

the interval [t, t+Di)

• Kt
i : total created interference of higher priority tasks released in the interval

[t, t+Di)

We use an example to illustrate the different between total_demand and Kt
i .

We consider the task set presented in Table 3. We consider the task τ2 at the

lowest priority level. Figure 11 illustrate the interference from higher priority

task to τ2[8]. We have α = {τ1[12], τ1[24], τ3[24]}.

The total execution demand can be computed simply by taking into account

the capacity of jobs in α. In this example total_demand = C1 + C1 + C3 =

4+ 4+ 9 = 17. However, we have K8
2 = 11 because we only keep the execution

demand that effects τ2[8].

τ2[8]

 CRPD Task Execution

30 3212 14 16 18 20 22 24 26 28

τ1
τ2
τ3

0 2 4 6 8 10

D2

�28 = 1�28 = �28 = 11
Figure 11: Interference from higher priority tasks to τ2[8].

The computation of the CRPD created by the job of τj, denoted γ, is added

between line 6 and line 7. Then, Cj in the algorithm is replaced by Cj + γ.

64 of 168

problem formulation and overview of the approach

b Computation of Rt
i

The remaining interference Rt
i to τi[t] is due to jobs of higher priority tasks that

have not completed their executions at t. The easiest method to compute Rt
i is to

construct and examine a schedule for the interval [0, t). As presented in [7], this

method is inefficient.

Another approach can be derived by nothing that when computing Kt
i , we

can also compute the outstanding execution demand of higher priority tasks

released in the interval [t, t+Di), denoted Lti . For the next release of τi at time

t+ Ti, we only need to take into account the set of higher priority tasks released

in [t+Di, t+ Ti), denoted β set, and Lti .

The algorithm that illustrates the approach is presented below:

1 RemainingInterference(β, Lti)

2 begin

3 time = t - Ti + Di

4 Rt
i = Lti

5 for (τj[tj]) in β

6 if(tj > time + Rt
i) then

7 Rt
i = 0

8 end if

9 time = tj

10 Rt
i = Rt

i +Cj

11 end for

12 Rt
i = Rt

i − (β 0Last.tj) --Release time of the last job in β

13 if(Rt
i < 0) then

14 Rt
i = 0

15 end if

16 return Rt
i

17 end

The computation of the CRPD created by the job of τj is added between line 9

and line 10. Then, Cj in the algorithm is replaced by Cj + γ.

To sum up, Iti is computed by taking into account the interference from jobs of

higher priority tasks. In many cases, Iti can be only made up of either remaining

interference, Rt
i , or created interference, Kt

i .

3.3.2 Extending the feasibility condition with CRPD

Now, we analyze the interference from one job of higher priority task that made

up either Rt
i or Kt

i . The interference from a job of higher priority task τj is made

up of its capacity Cj. In systems with cache, we have to take into account the

65 of 168

problem formulation and overview of the approach

CRPD created by this job. Then, the interference from a job of task τj now con-

sists of two parts:

• The first part is the capacity of task τj, denoted as computational interfer-

ence.

• The second part is the CRPD due to task τj preempting task lower priority

tasks including τi and intermediate priority tasks τk, τk 2 hp(i) \ lp(j),

denoted CRPD interference.

We analyze the interference created by the job of task τ1 and τ2 to the job of

task τ3, the scheduling is depicted in Figure 8. The first part the capacities of

task τ1 and τ2 in the interval [0, 24). The second part is the CRPD due to task τ1

preempting task τ2.

Iti is made up of computational requirement and CRPD interference from jobs

of higher priority tasks. In [7], the algorithm that accounts for the computational

requirement has been established. This algorithm evaluates each job individually.

For a job, its interference to τi[t] is computed by taking into account its release

time and capacity. In order to take into account CRPD, we need to extend this

algorithm to compute also the CRPD interference created by a job. We proceed

by explaining how CRPD interference is computed.

In order to compute CRPD interference, one needs to evaluate: (1) the number

of preemptions and (2) the CRPD for each preemption.

Number of Preemptions

In OPA, when verifying the feasibility of a task at a given priority level, we only

assumed other tasks have higher priority without a complete priority assignment.

As a result, the occurrence of a preemption between jobs of those tasks is not

identifiable. Thus, the exact computation of the number of preemptions in the

interval [t− Ti +Di, t+Di) poses a challenge and is an open issue.

In the task set example in Table 3, the priorities of task τ2 and τ3 affect the

computation I01. As we can see in Figure 12 and 13, there are two priority or-

derings that result in two different number of preemptions and CRPD. So, we

need to find a solution to compute the number of preemptions with the previous

constraint in mind.

CRPD

Assume that the sets of UCBs and ECBs of each task are preliminary computed,

the problem now is that we can only compute the CRPD if the preempting task

and preempted tasks are identified.

In the next section, we propose three different approaches to solve those two

problems regarding number of preemptions and preemption cost.

66 of 168

problem formulation and overview of the approach

 CRPD Task Execution

τ1
τ2
τ3

0 2 16 18 20 22

D1

4 6 8 10 12 14 24

D1 D3

�30 = 16�30 = 16
Figure 12: Complete priority assignment of task τ1 and τ2 affects the computation of I03.

Π1 = 3,Π2 = 2,Π3 = 1

 CRPD Task Execution

D3

τ1
τ2
τ3

0 6 16 18 20 22 242 4 8 10 12 14

D1

D1

�30 = 14�30 = 14
Figure 13: Complete priority assignment of task τ1 and τ2 affects the computation of I03.

Π1 = 2,Π2 = 3,Π3 = 1

67 of 168

crpd interference computation solutions

3.4 crpd interference computation solutions

In this section, we present four solutions to compute an upper-bound of CRPD

interference. Each solution proposes a way to compute the number of preemp-

tion and CRPD. For each solution, we present the general idea and provide an

example of interference computation in this section. The algorithms are provided

in Appendix A.

Assuming a job of task τi is released at time t, the CRPD interference of Iti is

now computed by evaluating the set of jobs composed of higher priority tasks

τj released in the interval [t− Ti +Di, t+Di). This set is called η, which is used

in any CRPD computation we proposed later. In this set, the jobs are ordered by

their release times. We use a set with ordered elements in order to be compliant

with the presentation of the work in [7]. The presentation of η is as follows:

η = {(τj[tj]) | τj 2 hp(i), tj 2 [t− Ti +Di, t+Di)}

We define the following notation, which are used later to present our compu-

tation on η only in this section.

• η[l]: the lth element of the set η.

• Cl: the capacity of η[l].

• tl: the release time of η[l].

• UCBl: the set of UCBs of η[l].

• ECBl: the set of ECBs of η[l].

Because jobs in η are ordered by their release time, we have 8η[l], tl < tl+1

3.4.1 CPA - ECB

The first solution consists in adding the worst-case effect of CRPD to the capacity

of all jobs in η. The CRPD analysis using only ECB method can be used for such

purpose.

In this solution, the worst-case effect of a preemption is added directly to the

capacity of jobs of higher priority tasks in η.

C 0
l = Cl + BRT · |ECBl|, 8η[l] 2 η (24)

In this solution, we take two pessimistic assumptions:

1. All activations of a task are considered to lead to preemptions, which re-

sults in CRPD. This answers the problem of number of preemption.

68 of 168

crpd interference computation solutions

2. The CRPD is computed by the number of ECBs of the preempting task,

which is an over-approximation as presented in Section 2.4. This answers

the problem of CRPD.

By construction the CRPD Interference and number of preemptions computed

by this solution is upper-bounded. The number of preemptions in practice is

always lower than the number of jobs.

Example

We give an example of computing the interference and testing the feasibility of

a task at a given priority level with the task set provided in Table 3.

Considering the job τ3[0] at the lowest priority level, we need to check for jobs

of higher priority tasks released in the interval [0, 24) We have:

1 η = {τ1[0], τ2[8], τ1[12]}

2 C 0
1 = C1 + BRT · |ECB1| = 3+ 1 · 2 = 5

3 C 0
2 = C2 + BRT · |ECB2| = 8+ 1 · 4 = 12

4 C 0
3 = C3 + BRT · |ECB3| = 3+ 1 · 2 = 5

Applying the interference computation algorithm in [7], we have I03 = 22. Given

the capacity of τ3 is 9 and the deadline of τ3 is 24, we have 9 + 22 > 24. We

conclude that τ3 is not schedulable at the lowest priority level.

The interference from higher priority tasks to τ3[0] regarding CPA-ECB so-

lution is depicted in Figure 14. In this figure, the execution of τ1 and τ2 are

separated to improve the readability. It does not imply the priority levels of τ1

and τ2.

 CRPD Task Execution

D3

τ1
τ2
τ3

0 2 4 6 8 10 12 14 16 18 20 22 24

τ3[0]

�30 = 22�30 = 22
Figure 14: Interference from higher priority tasks to τ3[0] regarding CPA-ECB.

Considering the job τ2[8] at the lowest priority level, we need to check for jobs

of higher priority tasks released in the interval [0, 32), we have:

1 η = {τ1[0], τ3[0], τ1[12], τ1[24], τ3[24]}

69 of 168

crpd interference computation solutions

2 C 0
1 = C1 + BRT · |ECB1| = 3+ 1 · 2 = 5

3 C 0
2 = C2 + BRT · |ECB2| = 9+ 1 · 2 = 11

4 C 0
3 = C3 + BRT · |ECB3| = 3+ 1 · 2 = 5

5 C 0
4 = C4 + BRT · |ECB4| = 3+ 1 · 2 = 5

6 C 0
5 = C5 + BRT · |ECB5| = 9+ 1 · 2 = 11

Applying the interference computation algorithm in [7], I82 is computed by:

• The remaining capacity of τ1[0] and τ3[0] at time 8, which is 8. We can see

that the total capacity of τ1[0] and τ3[0] is 16.

• Capacity and CRPD of τ1[12], τ1[24] and τ3[24] in the interval [8,32), which

is 13. We notice that I82 does not include the capacity of τ1[24] and τ3[24]

after time t = 32.

We have I82 = 21. Given the capacity of τ2 is 8 and D2 = 24, we have 8+ 21 > 24.

We conclude that τ2 is not schedulable at the lowest priority level.

The interference from higher priority tasks to τ2[8] regarding CPA-ECB so-

lution is depicted in Figure 15. In this figure, the execution of τ1 and τ3 are

separated to improve the readability. It does not imply the priority levels of τ1

and τ3.

τ2[8]

 CRPD Task Execution

16 18 20 22 24 26 28 30 32

τ3
0 2 4 6 8 10 12 14

D2

τ1
τ2

�28 =�28 = 8 �28 =
Figure 15: Interference from higher priority tasks to τ3[0] regarding CPA-ECB.

Considering the job τ1[0] at the lowest priority level. It is trivial to see that

τ1[0] is also not schedulable at the lowest priority level. Because there is no task

feasible at the lowest priority level, the task set is concluded to be not schedula-

ble.

From this example, we can see that CPA-ECB is pessimistic. The computed

interference is significantly higher than the actual interference.

3.4.2 CPA-PT and CPA-PT Simplified

The second solution consists in finding all potential preemptions and in comput-

ing the upper-bound CRPD for each potential preemption. This upper-bound

70 of 168

crpd interference computation solutions

CRPD is smaller than or equal to the number of ECB of the preempting task.

This solution is less pessimistic than previous one on both parameters: number

of preemptions and preemption cost.

When priority assignments of higher priority tasks are not set, there is no

information to decide if a task may be preempted by another task or not. We

describe this problem by using the defining potential preemption. We then assume

that, a preemption may occur if the conditions of a potential preemption holds.

Definition 64 (Potential preemption). A potential preemption amongst jobs of tasks

with no complete priority assignment is a preemption that may occur when a job is

released while other jobs did not complete their execution.

In order to compute the CRPD interference upper-bound, we take two assump-

tions:

1. All potential preemptions occur.

2. A potential preemption occurs with the maximum number of preempted

jobs and the maximum number of evicted UCBs.

Assume that a job η[l] can potentially preempt several jobs represented by a

set γΘl,l. The CRPD can be computed by:

γΘl,l = BRT ·

∣

∣

∣

∣

∣

✓

[

8η[k]2Θl

UCBk

◆

\ ECBl

∣

∣

∣

∣

∣

(25)

In this equation, Θl is the set of jobs, which are potential preempted by η[l].

The problem is to compute the set Θl. Following the second assumption, Θl is

constructed with two properties:

• The number of elements of the set, denoted |Θl|, is the maximum number

of incomplete jobs at the preemption point. The computation of |Θl| is

based on the following observations. Given a job η[l] released at tl, there

are l− 1 jobs released previously, which are η[1], ...,η[l− 1], because jobs

in η are ordered by their release times. We have l− 1 jobs executing in the

interval [t1, tl).

The problem statement can be presented as follows: given l − 1 jobs re-

leased in the [t1, tl), what is the maximum number of incomplete jobs at a

given time instant ?

We design an algorithm that evaluates l− 1 jobs. The algorithm starts from

job η[1] released at time t1. Without interference from other jobs, the time

instant t1 +C1 guarantees that η[1] is completed. Then, the following com-

putations are performed for the next job η[i], (i = 2, 3, ..., l− 1).

1. We compute the number of potential preempted jobs.

71 of 168

crpd interference computation solutions

2. We compute the CRPD.

3. We compute the time instants, which can guarantee that there are

1, 2, ..., (i− 1) jobs completed.

The detailed explanation and a simple example of this algorithm is pro-

vided in the Appendix A.

When |Θl| is computed, the next step is computing the CRPD by evaluating

|Θl| combinations of l−1 previously released jobs. We find the combination

resulting in the highest number of evicted UCBs by the preempting job.

This is a classical problem of generate all combinations of l− 1 elements,

taken |Θl| at a time.

• The elements of the set Θ[l] are jobs which produce the largest set of
✓

S

8η[k]2Θ[l]

UCBk

◆

\ECBl. For example, if η[l] can preempt m jobs out of p

(with m < p), the CRPD is computed by the combination of m jobs produc-

ing the largest set above. The computation requires a binomial coefficient

complexity of
(

p
p/2

)

or
(

p
(p/2)+1

)

.

Instead of Equation 25, a simplified computation could be used. In case of

nested preemption, the CRPD can be computed by:

γΘl,l = BRT ·
P

8η[k]2Θl

|UCBk \ ECBl| (26)

In this computation, we only need to compute the CRPD between η[l] and a

single job. This solution is simpler because if η[l] can preempt m jobs out of p, we

take m jobs that result in the highest CRPD instead of checking m combination

of p.

In this solution, if the sets of UCBs of tasks in Θl are mutually disjoint, Equa-

tion 26 gives the same result as Equation 25. If not, the CRPD computed by

Equation 26 is more pessimistic. The elements of the set Θl are computed by

evaluating |Θl| jobs with the highest number of evicted UCBs per job.

We name the two solutions, which are introduced in Equation 25 and Equation

26, CPA-PT and CPA-PT-Simplified. The CRPD Interference and number of pre-

emptions computed by these solutions are upper-bounded by potential preemp-

tion. The number of preemptions in practice is always lower than the number of

potential preemptions because of the problem of implicit priority as presented

in the next section. By construction, CPA-PT dominates CPA-PT-Simplified and

CPA-PT-Simplified dominates CPA-ECB.

Example

We provide an example of computing the interference and testing the feasibility

of a task at a given priority level with the task set provided in Table 3 regarding

CPA-PT solution.

72 of 168

crpd interference computation solutions

Considering the job τ3[0] at the lowest priority level, we need to check for jobs

of higher priority tasks released in the interval [0, 24), we have:

1 η = {τ1[0], τ2[8], τ1[12]}

2 η[1] : C1 = 3,Θ1 = ;,γΘ1,1 = 0

3 η[2] : C2 = 8,Θ2 = ;,γΘ2,2 = 0

4 η[3] : C3 = 3,Θ3 = {η[2]},γΘ3,3 = 2

Applying the interference computation algorithm in [7], we have I03 = 16. Given

the capacity of τ3 is 9 and the deadline of τ3 is 24, we have 9 + 16 > 24. We

conclude that τ3 is not schedulable at the lowest priority level.

The interference from higher priority tasks to τ3[0] regarding CPA-PT solution

is depicted in Figure 16. In this figure, the execution of τ1 and τ2 are separated

to improve the readability. It does not imply the priority levels of τ1 and τ2.

 CRPD Task Execution

τ3[0] D3

τ1
τ2
τ3

0 2 4 6 8 10 12 14 16 18 20 22 24�30 = 16�30 = 16
Figure 16: Interference from higher priority tasks to τ3[0] regarding CPA-PT.

Considering the job τ2[8] at the lowest priority level, we need to check for jobs

of higher priority tasks released in the interval [0, 32), we have:

1 η = {τ1[0], τ3[0], τ1[12], τ1[24], τ3[24]}

2 η[1] : C1 = 3,Θ1 = ;,γΘ1,1 = 0

3 η[2] : C2 = 9,Θ2 = {η[2]},γΘ2,2 = 0

4 η[3] : C3 = 3,Θ3 = ;,γΘ3,3 = 0

5 η[4] : C4 = 3,Θ4 = ;,γΘ4,4 = 0

6 η[5] : C5 = 9,Θ5 = {η[4]},γΘ5,5 = 0

Applying the interference computation algorithm in [7], I82 is computed by:

• The remaining capacity of τ1[0] and τ3[0] at time 8, denoted R8
2, which is 4.

We can see that the total capacity of τ1[0] and τ3[0] is 12.

• Capacity and CRPD of τ1[12], τ1[24] and τ3[24] in the interval [8,32), de-

noted K8
2, which is 11. We notice that I82 does not include the capacity of

τ1[24] and τ3[24] after time t = 32.

73 of 168

crpd interference computation solutions

τ2[8]

 CRPD Task Execution

30 3212 14 16 18 20 22 24 26 28

τ1
τ2
τ3

0 2 4 6 8 10

D2

�28 = 1�28 = �28 = 11
Figure 17: Interference from higher priority tasks to τ2[8] regarding CPA-PT.

The interference from higher priority tasks to τ2[8] regarding CPA-PT com-

putation is depicted in Figure 17. In this figure, the execution of τ1 and τ3

are separated to improve the readability. It does not imply the priorities of

τ1 and τ3.

We have I82 = 15. Given the capacity of τ2 is 8 and D2 = 24, we have 8+ 15 < 24.

We conclude that τ2 is schedulable at the lowest priority level.

From this example, we can see that CPA-PT is less pessimistic than CPA-ECB.

3.4.3 CPA -Tree

This solution consists in computing all possible preemption sequences of jobs

in η set. This solution is called CPA-Tree. It reduces the pessimism regarding

both the number of preemptions and the cost of preemptions. The number of

preemptions is reduced by considering implicit priorities between tasks to reduce

potential preemptions, while the cost of preemptions is lowered by identifying

the exact preempting and preempted tasks at a given preemption point. We take

into account the fact that relative priorities between two tasks could be implicitly

set at a potential preemption instant. If the scheduler makes the decision allow-

ing τj to preempt τk, it implicitly set the priority of τj higher than τk because

we are assuming FPP scheduling context.

Definition 65 (Implicit priority). An implicit priority is a priority assignment of tasks

undergoing a potential preemption.

This information is necessary to compute future events. For example, if the

scheduler makes the decision of allowing a job of τj to preempt a job of τk, τk

cannot preempt τj in the future.

To sum up, even if there is no complete priority assignment, priorities between

two tasks can be set implicitly at the instant of a potential preemption. As a result,

not all future potential preemptions will happen.

74 of 168

crpd interference computation solutions

In this solution, we compute a tree structure to evaluate all possible preemp-

tion sequences. The tree T = (N,E) is defined by N, the set of nodes and E, the

set of edges:

• Each node n is defined by a 4-uplets (a,b, c,d) where a is a time stamp, b

is the job executing at the instant a, c is the state of all jobs in the set at

instant a, and d is the existing implicit priorities. The task-level priorities

of jobs are set according to the scheduling decision.

• Each edge e from E models a scheduling decision. A scheduling decision

must not violate existing implicit priorities.

• Branching is needed when the scheduler needs to make a decision. So each

branch represents a set of scheduling decisions and preempting sequence.

Interference including computational requirement and CRPD of jobs in η

is computed for each branch. Concerning the preemption cost, CRPD is

computed accurately at each preemption point according to the preempt-

ing and preempted tasks. If there exists a branch for which the job of task

τi is not schedulable, then the task is not schedulable at this priority level.

A recursive algorithm is implemented to compute the tree. The algorithm as-

sesses the η set. It starts from the first job and ends at the last job in the set.

When the algorithm terminates, we can assess each branch in order to find if the

job of task τi meets its deadline. The detailed explanation and a simple example

of this algorithm is provided in the Appendix A.

Regarding the two problems in Section 3.3, in this solution, the number of pre-

emptions of a branch is limited by the set of implicit priorities of this branch. The

attribute d of each node provides information of implicit priorities. A schedul-

ing decision must follow the set of existing implicit priorities. Each branch of

the tree stores a set of consistent implicit priorities. CRPD is computed when a

preemption scheduling decision happens.

This solution is close by computing the scheduling sequence of jobs in η set

with all possible priority orderings. The actual complexity highly depends on

the number of potential preemptions or the number of scheduling decisions.

All possible preemption sequences are addressed in this solution. Hence, this

solution computes all possible total CRPD Interference and accounts for the

worst case. By construction, CPA-Tree dominates the other solutions.

Example

We provide an example to illustrate the computation of CPA-Tree. Considering

the job τ3[0] at the lowest priority level, we need to check for jobs of higher

priority tasks released in the interval [0, 24) We have:

1 η = {τ1[0], τ2[8], τ1[12]}

75 of 168

complexity of the algorithms

� = , �

� = 8, � � = , � , Π > Π

� = 8, � � = , � , Π < Π

Branch 1: � = 6
Branch 2: � = 4

� preempts � , CRPD =2

� does not preempt �

Scheduling of Branch 1

Scheduling of Branch 2

Figure 18: CPA-Tree for τ3[0]

The computation of the tree is depicted in Figure 18. We have two branches

corresponding to two cases. The first case is τ1 preempts τ2 at time t = 12.

The second case is τ1 does not preempt τ2 at time t = 12. The interference is

computed by taking into account the capacity of jobs and the CRPD in each

branch. In this example, τ3 is concluded to be not schedulable at the lowest

priority level because it is not schedulable in one branch.

3.5 complexity of the algorithms

In this section, we present the complexity of our solutions. Considering a task

τi, the complexity of each solutions lies in the computation of the interference

from jobs of higher priority tasks for each release of τi during its feasibility

interval. In [7], Audsley showed that the complexity of the original feasibility

test is bounded by the complexity of testing task τn, with n is the number of

tasks, at the lowest priority level. At this priority level, the level-i hyper-period

of τn, denoted Pn, is equal to the hyper-period. The complexity of the feasibility

test in [7] is given by:

O(X), with X =

Pn

Tn

n−1
X

j=1

⇣

&

Tn −Dn

Tj

'

+

&

Dn

Tj

'

⌘

!

(27)

76 of 168

complexity of the algorithms

As stated in [7], the complexity of the priority assignment algorithm is given

by n multiples with the feasibility test complexity. In the next section, we present

how this feasibility test complexity is changed due to our propositions. We assume

that cache access profiles of tasks are precomputed before assigning priorities

to task. Thus, we do not take into account the complexity of UCB and ECB

computation.

3.5.1 CPA-ECB

The complexity of the CPA-ECB is the same with the complexity in [7]. CPA-ECB

only modifies the capacity of each task. No additional computation is needed.

3.5.2 CPA-PT and CPA-PT-Simplified

The complexity added by this solution lies in the computation of k combinations

of m potential preempted jobs. The number of combination is bounded by the

binomial coefficient of n tasks. The complexity of CPA-PT solution is then given

by:

O

✓

n

n/2

◆

·X

!

(28)

The complexity of CPA-PT-Simplified solution lies in the ordering the number

of UCBs evicted by the preempting task of preempted tasks. It is bounded by

n log(n):

O(n log(n) ·X) (29)

3.5.3 CPA-Tree

The tree represents all possible preemptions of a set of jobs in the interval [t−

Ti+Di, t+Di). In the worst case, computing the tree has a complexity similar to

the complexity of computing the scheduling for all jobs with all possible priority

assignments.

Besides priority level n, there are (n− 1) higher priority levels. The complexity

is:

O((n− 1)! ·X) (30)

In conclusion, the less pessimistic the assumptions of the solution, the higher

the complexity. In the next section, we evaluate the efficiency and the scalability

of those solutions.

77 of 168

evaluation

3.6 evaluation

To evaluate the proposed approaches, experiments investigating their perfor-

mances and efficiency are made. The configuration of our experiments is based

on the existing work in [4]. Task sets are generated with the following configura-

tion:

• Task periods are uniformly generated from 5 ms to 500 ms, as found in

most automotive and aerospace hard real-time applications [4].

• Generated task sets are harmonic in order to have a low feasibility interval

and scheduling simulation period.

• Task deadlines are implicit, i.e. 8i : Di = Ti.

• Processor utilization values (PU) are generated using the UUniFast algo-

rithm [15].

• Task execution times are set based on the processor utilizations and the

generated periods: 8i : Ci = Ui · Ti, where Ui is the processor utilization

of task i.

• Task offsets are uniformly distributed from 1 to 30 ms.

The cache and cache utilization of tasks are generated with the following con-

figuration:

• The cache is direct mapped.

• The number of cache blocks is equal to 256.

• The block-reload time is 8 µs [4].

• The cache usage of each task is determined by the number of ECBs. They

are generated using UUniFast algorithm for a total cache utilization (CU)

of 5. UUniFast may produce values larger than 1 which means a task fills

the whole cache. ECBs of each tasks are consecutively arranged from a

cache block. For each task, the UCBs are generated according to a uniform

distribution ranging from 0 to the number of ECBs times a reuse factor

(RF). If set of ECBs generated exceeds the number of cache blocks, the set

of ECBs is limited to the number of cache blocks. For the generation of the

UCBs, the original set of ECBs is used.

3.6.1 Evaluating the impact of CRPD on the original OPA

The objective of this experiment is to evaluate the impact of CRPD to the original

OPA algorithm.

78 of 168

evaluation

0

200

400

600

800

1000

50 55 60 65 70 75 80 85 90 95

N
u

m
b
e
r

o
f

T
a
sk

s

Processor Utlization

chedulable (RF=0.3)Assumed to be schedulable

chedulable (RF=0.6)

Figure 19: Number of task sets assumed to be schedulable by OPA and number of task

sets actually schedulable when CRPD is taken into account.

In each experiment, the processor utilization, which does not include preemp-

tion cost, is varied from 0.50 to 0.90 with steps of 0.05. Experiments are per-

formed with two RFs of 0.3 and 0.6. Task set size is fixed at 5 tasks per set. For

each processor utilization value and reuse factor, 1000 task sets are generated.

Figure 19 shows the result of this experiment. For the chosen scenario, when

the processor utilization is varied from 70 to 95, there is a significantly differ-

ence between the number of task sets analyzed as schedulable by OPA and the

number of task sets which are actually schedulable. In addition, the number of

schedulable task set decreases remarkably when the reuse factor increases from

0.3 to 0.6. Without taking CRPD into account, the OPA priority assignment failed

to identify significant number of unschedulable task sets.

In conclusion, this experiment shows that without considering the effect of

CRPD, unschedulable task set can be identified as schedulable ones.

3.6.2 Efficiency evaluation of CPA solutions

The objective of this experiment is to evaluate the efficiency of the proposed pri-

ority assignment algorithms. Each algorithm is evaluated by two metrics. First,

we evaluate the number of task sets analyzed as being schedulable by our prior-

ity assignment algorithms. Second, we evaluate how close our algorithms are to

the exhaustive search approach in terms of schedulable task sets. The configura-

tion is the same with the previous experiment.

This experiment is composed of two steps. First, we perform priority assign-

ments with different approaches to the generated task sets. A task set is assumed

to be schedulable if the algorithm finishes assigning priorities to all tasks. Sec-

79 of 168

evaluation

0

200

400

600

800

1000

50 55 60 65 70 75 80 85 90 95

N
u

m
b

er
 o

f
S

ch
ed

u
la

b
le

 T
as

k
s

-PT-ECB

-PT-Simplified

Processor Utilization

-Tree

Optimal Solution

Figure 20: Number of task sets found schedulable by the priority assignment algorithms,

RF = 0.3

ond, we perform scheduling simulations with the assigned priorities tasks to

verify that the task set is practically schedulable or not while experimenting the

effect of CRPD. In addition, we also perform an exhaustive search by testing

all priority assignments for a task set and performing scheduling simulations to

compare with.

Fig. 20 and Fig. 21 display the result of this experiment. Regarding the first

metric, all task sets assumed to be schedulable by the proposed approaches are

by construction schedulable. Indeed, the objective of this work was first to elim-

inate tasks sets that were found to be schedulable with OPA but that are not. In

other words, our feasibility condition is only a sufficient condition. Of course,

when comparing to the optimal solution, we can see that our solutions are using

a sufficient but not necessary. However, the proposed priority assignment algo-

rithms succeeded in identifying a large number of schedulable task sets. More

importantly, depending on the chosen solution, one can get closer to the optimal

(exhaustive) solution.

Amongst the four approaches, CPA-Tree found the highest number of schedu-

lable task set.

The higher the processor utilization, the lower the percentage of schedulable

task sets found by our approach as compared to the exhaustive search. For in-

stance, at the processor utilization of 80% and RF=0.6, approximately 60% of the

schedulable task sets were found by CPA-Tree while comparing to 80 % found

by the optimal solution.

80 of 168

evaluation

0

200

400

600

800

1000

50 55 60 65 70 75 80 85 90 95

N
u

m
b

er
 o

f
S

ch
ed

u
la

b
le

 T
as

k
s

-PT-ECB

-PT-Simplified

Processor Utilization

-Tree

Optimal Solution

Figure 21: Number of task sets found schedulable by the priority assignment algorithms,

RF = 0.6

The result is compliant with the level of pessimism of each approach, as dis-

cussed in Section 3.4. In addition, the higher the complexity of the proposed

algorithms is, the closer our approach is to the optimal solution.

Our approaches do not only provide schedulable tasks taking into account

CRPD, but they also provide several task sets that were not found to be schedu-

lable with either OPA, RM or DM in our experiments. However, the number of

those additional task sets are only 0.7 to 1% of the generated task sets when

processor utilization is greater than 70%.

Furthermore, when RF increase, the gap between the optimal solution and

our proposed solutions also increase. At the processor utilization of 80% and

reuse factor of 0.3, the distance between the optimal solution and CPA-Tree is

roughly 50 schedulable tasks. At the reuse factor of 0.6, that distance is roughly

200 tasks. We can conclude that the pessimism of our algorithms increase when

RF increases.

We also use weighted schedulability [9] measure, which is shown in Table 4, in

order to compare our approaches. We use the weighted schedulability measure

Wy(p) for schedulability test y as a function of parameter p. For each value of p,

the measure combines data for all task sets τ generated for all the sets of equally

spaced utilization levels. Let Sy(τ,p) be the binary result (1 if schedulable, 0

otherwise) of schedulability test y for a task set τ and parameter value p then:

Wy(p) =
⇣

X

8τ

u(τ) · Sy(τ,p)
⌘.

X

8τ

u(τ)

81 of 168

evaluation

Approach
Weighted

Schedulability

RF=0.3 RF=0.6

CPA-ECB 0.42 0.41

CPA-PT-Simplified 0.65 0.50

CPA-PT 0.72 0.56

CPA-Tree 0.80 0.65

Optimal_Solution 0.87 0.74

Table 4: Weighted Schedulability Measure

The result in Table 4 shows the distance between our solutions and the optimal

solution for all generated task sets and processor utilizations. From the result of

weighted schedulability analysis, the different in terms of schedulability task set

coverage between CPA-Tree solution and the optimal solution is 8-9 %.

In conclusion, the feasibility conditions used in our feasibility tests are suffi-

cient but not necessary; but our priority assignment approaches succeeded in

identifying large schedulable task sets comparing to the optimal solution.

3.6.3 Evaluating the performance of the proposed feasibility test

The objective of this experiment is to evaluate the cost of computing the inter-

ference of a set of jobs in an interval. Algorithms of the approaches CPA-PT,

CPA-PT-Simplified and CPA-Tree are evaluated. The CPA-ECB approach is not

evaluated because it does not increase the complexity of the original solution [7]

as presented in Section 3.5.

We evaluate the computation time of performing one feasibility test for a re-

lease of a task. The number of tasks is varied from 4 to 100. PU is 80% and RF

is 0.3. For each number of tasks, 1000 task sets are generated. Then, the com-

putation of interference is performed. Experiments are performed on a PC with

Intel Core 2 Duo CPU E8400, having 4 GB of memory, running Ubuntu 12.04 32

bits version. Memory consumption measurement is achieved by using a script

provided at https://gist.github.com/netj/526585.

The results of the experiment are shown in Table 5, 6 and 7. The first obser-

vation is that computation time of CPA-Tree increases exponentially when the

number of tasks increases. It takes averagely 455 seconds and 3434253 KB of

memory for 9 tasks. This is compliant with the exponential complexity of the

feasibility test as shown in Equation 30.

CPA-PT solution has a better scalability. As an example, the computation of

interference of 30 tasks takes averagely 400 seconds. Memory consumption in-

82 of 168

evaluation

Tasks Memory Consumption(KB) Computation time (s)

4 89028 0.03278

5 94572 1.20466

6 170432 11.79959

7 394812 40.92083

8 1975860 222.95394

9 3434253 455.32684

Table 5: Space and time performances of the CPA-Tree

Tasks Memory Consumption(KB) Computation time (s)

5 12852 0.07290

10 18408 0.12694

15 86120 0.53614

20 153440 7.97529

25 655680 94.83195

30 3516704 399.27149

Table 6: Space and time performances of the CPA-PT

Tasks Memory Consumption(KB) Computation time (s)

5 12988 0.00008

10 13572 0.00019

20 13932 0.00036

30 14236 0.00053

40 14876 0.00062

50 15236 0.00096

60 15646 0.00118

70 16213 0.00218

80 16731 0.00328

90 17222 0.00398

100 17941 0.00518

Table 7: Space and time performances of the CPA-PT-Simplified

83 of 168

evaluation

0

0.2

0.4

0.6

0.8

1

1.2

1.4

50 55 60 65 70 75 80 85 90 95

C
o

m
p

u
ta

ti
o

n
 T

im
e

(s
)

Processor Utilization (%)

-Tree -Combined

Figure 22: Comparison between CPA-Tree and combined approach in terms of compu-

tation time

crease significantly when the number of task increases. This is compliant with

the binomial coefficient complexity of the feasibility test as shown in Equation

29. CPA-PT-Simplified has the best scalability. The computation time for 30 tasks

is less than 1 second. In addition, memory consumption is less than 20000 KB

(20 MB).

In conclusion, CPA-PT and CPA-Tree have the higher complexity and lower

scalability comparing to CPA-PT-Simplified. However, CPA-PT-Simplified is the

most pessimistic one. Again, the higher the complexity of the proposed algo-

rithms, the closer to the optimal solution is our approach.

3.6.4 Combined solution: CPA-Combined

We perform experiment to measure the solution of combining all the four solu-

tions in one priority assignment algorithm. The idea is to improve the perfor-

mance on task sets that have low PU.

We implement a priority assignment algorithm with three level of feasibility

tests. We start verifying the feasibility of a task set using the solution with the

lowest level of complexity but highest level of pessimism: CPA-ECB. If the task

set is not schedulable, a solution with higher level of complexity but lower level

of pessimism is used until the task set is found schedulable. We perform experi-

ment with task sets generated following the base configuration with task set size

of 5 tasks.

The results of the experiment are shown in Fig 22. The average computation

time of the combined solution are compared to the CPA-Tree solution. We can

84 of 168

conclusions

have the following observation. First, the computation time of the combined

solution is significantly lower than the CPA-Tree at low processor utilizations.

Second, there are two significant increases of computation time when PU raises

from 60% to 65% and from 75% to 80%. It can be explained as follows. They

are two points where the less complex approach is not efficient and we need to

use the more complex approach. The result gives an insight of which approach

is appropriate for a specific PU. Finally, there is an overhead when using the

combined solution for task sets at high PUs. When PU = 95, most of the task

sets are not schedulable. As a result, the combined solution has to choose CPA-

Tree most of the time. The overhead is due to the computation time of the less

complex solutions.

To sum up, the combined solution helps reduce the computation time of the

priority assignment on task sets that have PU < 90 %.

3.7 conclusions

In this chapter, we investigate the problems with classical priority assignment

algorithms and present an approach to perform priority assignment with CRPD

taken into account. Our approach is based on the OPA and the original feasibility

test proposed in [7]. We proposed and evaluated five solutions to extend the

feasibility test in [7] to take into account the CRPD. They are named CPA-ECB,

CPA-PT, CPA-PT-Simplified, CPA-Tree and CPA-Combined. Experiments have

shown that task sets identified to be schedulable by our solutions are actually

schedulable when performing scheduling simulation with CRPD. The different

in terms of schedulability task set coverage between our best solution and the

optimal solution is 8-9 %. In addition, there is a trade-off between the complexity

and the pessimism of the proposed solutions. CPA-Tree has a high complexity

but find more schedulable task sets than CPA-PT and CPA-PT-Simplified.

85 of 168

Chapter 4

C R P D - AWA R E S C H E D U L I N G

S I M U L AT I O N

Contents

4.1 Definitions . 88

4.2 CRPD computation models . 89

4.3 Sustainability analysis . 95

4.4 Feasibility interval analysis . 102

4.5 Conclusions . 106

Scheduling simulation is a popular analysis method which provides a mean

to evaluate the schedulability of RTES. It allows RTES designers to perform fast

prototyping with a certain level of accuracy. There are various research work in

this domain and several scheduling simulators [28, 75, 84, 47]. However, to the

best of our knowledge, in the context of RTES with cache memory, applicability

and validity of scheduling simulation are still open subjects.

One of the most important properties, which we need to identify before per-

forming scheduling simulation, is the simulation interval. In other words, the

question is how long we should run the simulation. Ideally, we need to be able

to capture all the possible behaviors of our system or at least the worst case in

the simulation interval. As introduced in section 1.5, the minimum interval of

time over which we should perform the simulation is known as the feasibility

interval [7, 43].

Established results and proofs about the feasibility interval did not take into

account cache memory and the effect of CRPD. This issue comes from an uncer-

tainty about the use of CRPD computation models in scheduling simulation and

theirs sustainability analysis.

This chapter deals with the problems concerning CRPD-aware scheduling sim-

ulation for RTES with cache memory. Detailed assumptions regarding system

model and cache accesses are provided in Section 4.2. This chapter addresses

the following topics.

87 of 168

definitions

• First, we investigate CRPD computation models used in scheduling simu-

lation. We present existing issues regarding the pessimism of these models.

Then, we discuss about the sustainability of scheduling simulation with

classical CRPD computation models. We explain the problem related to

CRPD in sustainability analysis and the reason why CRPD-aware schedul-

ing simulation is not sustainable in general cases.

• Second, we propose a new CRPD computation model named FSC-CRPD

to address the previous issues. In this model, based on an observation from

real system execution in [59], we take a new assumption that bounds the

CRPD by the executed capacity of a task. When this assumption holds,

scheduling simulation is less pessimistic and then becomes sustainable

with regard to the capacity parameter. The conclusion about the sustain-

ability of scheduling simulation with FSC-CRPD allows us to prove the

feasibility interval of our system model.

The established results show that for some RTES with cache memory, schedul-

ing simulation can be applied as a method to verify the feasibility and schedula-

bility.

The rest of this chapter is organized as follows. Section 4.1 presents the defi-

nition and the characteristics of CRPD-aware scheduling simulation. In section

4.2, we investigate classical CRPD computation models used in scheduling sim-

ulation, analyze existing issues and propose our solution. In section 4.3 and 4.4,

we present our analysis on sustainability of CRPD-aware scheduling simulation

and feasibility interval of the system model with FSC-CRPD computation model.

Finally, section 4.5 concludes the chapter.

4.1 definitions

In this section, we present a definition of CRPD-aware scheduling simulation

and its characteristics. The main objective of CRPD-aware scheduling simulation

is to analyze the effect of CRPD on the schedulability of a RTES. Cache intrinsic

behaviors [72, 12] are not taken into account and are assumed to be included in

the capacity (WCET) of a task.

Definition 66. A CRPD-aware scheduling simulation is a scheduling simulation that

takes into account the effect of CRPD in preemptive scheduling context.

We define one term that is important when discussing about CRPD-aware

scheduling simulation: execution time. When CRPD is taken into account, there

will be a difference between the capacity of a task and the execution time of a

job of this task. Without considering the effect of CRPD, the time a job of a task

is executed on the processor is equal to the task capacity. However, when CRPD

88 of 168

crpd computation models

is taken into account, this job may occupy the processor longer than the task

capacity because it has to spend time to reload memory blocks that are evicted

by the preemption.

Definition 67 (Execution time). The execution time of a job of task τi is the total time

during which this job occupies the processor.

We also define two scheduling events that need to be handled in CRPD-aware

scheduling simulation:

1. Preemption event

2. Task execution event

The two scheduling events can be raised in either preemptive offline schedul-

ing [6] or preemptive online scheduling [6] context. The definition of the two

scheduling events and our proposed event handlers in scheduling simulation

are as follows:

Definition 68 (Preemption event). A preemption event is raised when a task is pre-

empted by higher priority tasks.

Cache state or data in the cache of task is updated at the event of preemption.

Definition 69 (Task execution event). A task execution event is raised when a task is

executing on the processor for each simulation time unit.

CRPD is computed when a task resumes its execution. The CRPD added to the

remaining capacity of task τi when it resumes execution at time t is represented

by γt
i . 1

Besides classical scheduling parameters such as scheduler and task model,

CRPD-aware scheduling simulation requires the definition of a CRPD computa-

tion model.

Definition 70. A CRPD computation model consists of a specification of cache access

profiles of tasks, an algorithm to update cache state at preemption event and an algorithm

to compute CRPD at task execution event based on the cache access profiles.

In the next section, we present the classical CRPD computation models, point

out several issues and propose a solution.

4.2 crpd computation models

There are several assumptions that are made in order to study the effect of CRPD

in scheduling simulation considering the analysis based on UCBs and ECBs.

Each set of assumptions forms a specific CRPD computation model.

1 This notation is different from the notation of CRPD used in WCRT analysis (γi,j) that represents

the worst-case CRPD when τi is preempted by a higher priority task τj

89 of 168

crpd computation models

In this section, we discuss about classical CRPD computation models, analyze

the assumptions which are made in each model. Then, we propose a new CRPD

computation model that includes an assumption to bound the CRPD by the

executed capacity of a task. This assumption helps reducing the pessimism in

term of CRPD and improving the sustainability of scheduling simulation.

The following assumptions about the system model are applied to all CRPD

computation model.

• We assume a RTES with cache memory that consists of n independent

periodic tasks, τ1, ..., τn with constrained deadlines (Di 6 Ti), scheduled

by a FPP scheduler.

• The capacity (WCET) of a task is computed by assuming a non-preemptive

scheduling starting from an empty clean cache. In other words, cache in-

trinsic behaviors [72, 12] are included in the capacity of a task.

• Cache access profiles of tasks are defined and computed before simulation

time.

• When a task completes execution, its instructions in the cache are com-

pletely evicted. In other words, we do not take into account the problem of

persistence cache block [80].

We have not yet investigated the problem of CRPD-aware scheduling simulation

for tasks with arbitrary deadline. In this case, modeling cache accesses and eval-

uating the number of UCB loaded into the cache of a task could be complex

because there are multiple jobs are released and executed.

4.2.1 Classical CRPD computation models

We present two CRPD computation models that are used as a part of experiments

or examples regarding CRPD in [67, 29, 30, 4].

Constant CRPD for each task (CT-CRPD)

This CRPD computation model is described as follows:

• Cache access profile: cache access profile is taken into account by considering

the worst-case effect of a preemption to a task. A task τi experiences a

constant CRPD when it is preempted by a higher priority task τj.

As cache access profile is not specified, this model is pessimistic because

preempting tasks may not evict the data in the cache of the preempted task

τi. In other words, τi does not always have to reload its data in the cache.

In addition, the pessimism also depends on the method of computing the

90 of 168

crpd computation models

constant CRPD for τi. For example, we can assume that either all the data

in the cache of τi is evicted and needs to be reloaded or only the UCBs of

τi is evicted and need to be reloaded.

• Preemption event handler: preemption event handler is not specified.

• Task execution event handler: when a task τi resumes execution after be pre-

empted by a higher priority τj, a constant CRPD is added to the remaining

capacity of τi.

This model was used in [67] to analyze scheduling abnormalities which occur

when CRPD is taken into account. A fixed CRPD for each task is also used in

SimSo scheduling simulator [29, 30].

Fixed Sets of UCBs and ECBs (FS-CRPD)

This CRPD computation model is described as follows:

• Cache access profile: the cache access profile of a task is modeled by its sets

of UCBs and ECBs. It is assumed that any partial execution of a task needs

to load all of its UCBs into the cache. In addition, a task uses all of its ECBs.

This assumption is pessimistic considering the real execution of a task.

However, to relax this assumption, information about which memory blocks

are being used at a given instant must be provided. In other words, we need

a more detailed task model in which each unit of task capacity is linked to

one or several memory blocks or cache blocks. Only with this information,

CRPD can be computed based on which UCBs are being used at a given

instant. However, as far as we know, there is no timing analysis tool that

can provide such information. Relaxing this assumption requires a timing

analysis technique, which is beyond the scope of this thesis.

• Preemption event handler: when a preemption event is raised, we compute

which UCBs of the preempted task are evicted by the preempting task.

There are two types of preemption: direct preemption and nested preemp-

tion. As previously introduced, a direct preemption is a preemption be-

tween two tasks when the lower priority task is executing. As shown in

Fig. 23, the preemption between τ2 and τ3 is a direct preemption. An indi-

rect preemption is a preemption between two tasks when the lower priority

task was previously preempted by another task and is not executing. In Fig.

23, the preemption between τ1 and τ3 is a nested preemption.

91 of 168

crpd computation models

 CRPD Task Execution

τ3

τ1
τ2

Figure 23: Example of direct preemption and nested preemption. We have three tasks

τ1, τ2, τ3 with Π1 > Π2 > Π3.

In this example, the CRPD added to the remaining capacity of τ3 must be

computed based on the number of UCBs evicted by both τ1 and τ2.

• Task execution event handler: When the task execution event is raised, we

compute the CRPD and add it to the remaining capacity of the preempted

task.

The CRPD is computed as follows. We use the notation UCBt
i that denotes the

set of UCBs in the cache of τi at a time t. Assume a task τi is released at t1, we

have:

UCBt1
i = UCBi (31)

This assignment is done to take into account the assumption that cache intrinsic

interference is included in the capacity of a task. The capacity of a task already

includes the time to load memory blocks into the cache when it executes non-

preemptively.

For each time unit after t, if τi is not preempted by any higher priority task,

its UCBs are not evicted. As a result, the set is updated as follows:

UCBt
i = UCBt−1

i (32)

Whenever τi is preempted by a higher priority task τj at time t2, UCBt
i is up-

dated by taking into account the UCBs of τi evicted by the ECBs of τj. The set is

updated as follows:

UCBt2
i = UCBt2−1

i − ECBj (33)

Assume that task τi resumes execution at time t3, the CRPD added to the

capacity of τi is computed as follows:

γt3
i = |UCBi − UCBt3

i | · BRT (34)

Then, the computed preemption cost is added to the remaining capacity of the

task. In addition, the set of UCBs in the cache of a task is updated as follows:

UCBt3
i = UCBi (35)

92 of 168

crpd computation models

FS-CRPD computation model provides a more precise preemption cost by tak-

ing into account the effect of both the preempting task and the preempted task.

It was used in [4] to design a scheduling simulation experiment taking into ac-

count CRPD. Besides scheduling simulation, there are also several WCRT analy-

sis methods that are based on this CRPD computation model [82, 4].

4.2.2 Problems with classical models

Let discuss about following observations from the real execution of a system.

There must be a correlation between the executed capacity of a task and the

number of UCBs loaded into the cache. If a task is preempted shortly after it is

released and executed, it may not have yet loaded all of the UCBs and will not

experience the worst-case CRPD. This observation is not taken into account by

both CT-CRPD and FS-CRPD. It creates the two following problems:

• The first problem is that CT-CRPD and FS-CRPD lead to an over-estimation

of preemption cost. In some cases, the CRPD computed can be larger than

the executed capacity of a task before it is preempted.

For example, we assume a task set of two tasks given in Table 8. In this

example, we do not take into account the deadlines and periods of tasks.

Task Ci Ti Di Oi UCBi ECBi Πi

τ1 4 _ _ 2 ; {1,2,3} 2

τ2 7 _ _ 0 {1,2,3} {1,2,3,4} 1

Table 8: Task set example.

We assume that BRT = 1 unit of time. The scheduling of this task set over

14 units of time is provided in Figure 24.

13 149 10 11 12

τ1

7 8

τ2
0 1 2 3 4 5 6

Figure 24: Over-estimation of CRPD

At time t = 2, τ2 is preempted by τ1. With FS-CRPD, the computation

of CRPD added to the capacity of task τ2 in the scheduling is presented

below. In order to keep the presentation short and clear, we do not use the

notation UCBt
i that denotes the set of UCBs in the cache of τi at a time t.

It is replaced by the parameter UCB 0
i for each time instant.

93 of 168

crpd computation models

At time t = 0, τ2 is released. At time t = 2, τ2 is preempted by τ1. Then,

at time t = 6, τ2 resumes and the CRPD added to the capacity of τ2 is

computed as follows:

1 t = 1: UCB 0
2 = UCB2 = {1, 2, 3}

2 t = 2: UCB 0
2 = UCB 0

2 − ECB1 = {1, 2, 3}− {1, 2, 3} = ;

3 t = 6: γ6
2 = |UCB2 − UCB 0

2| · BRT = |{1, 2, 3}− ;| · 1 = 3

We see that there are 3 units of time of CRPD added to the remaining

capacity of τ2. In this case, with FS-CRPD, τ2 experiences CRPD from cache

blocks that may be not even loaded into the cache yet.

• The second problem is that scheduling simulation of this model is not sustain-

able with regard to capacity parameter. We discuss this problem in detail in

section 4.3. This problem is more critical because it greatly discourages the

use of scheduling simulation for RTES with cache. If we choose this model,

we also have to assume that the operating system always executes a task

up to its WCET: if the task completes before its WCET, it still holds the

processor until the WCET is reached. In addition, a similar problem will

raise with CRPD. As a result, whenever a task is preempted, the capacity

must be added as the computed CRPD.

4.2.3 Fixed sets of UCBs and ECBs with constraint (FSC-CRPD)

We propose an extension of FS-CRPD computation model in order to address

the two problems presented in the previous section. In our CRPD computation

model, the following assumption is taken:

The interval of time that a task spends to load memory blocks into cache

memory cannot be larger than the interval of time in which it is executed on the

processor. In other words, if a task τi executes non-preemptively in an interval of

time ∆, there cannot be more than b ∆
BRT c memory blocks loaded into the cache.

From this assumption, we deduce the following theorem:

Theorem 5. If task τi executed in an interval of time ∆ and loaded ρi UCBs into the

cache, we have ρi · BRT 6 ∆.

In our CRPD computation model, based on the assumption, we assume that

a task starts execution by loading its UCBs but there is a constraint about the

number of UCBs loaded

Preemption cost is computed as follows. When a task τi is preempted, the

number of loaded UCBs, denoted as ρi, is stored by the simulator. ρi is computed

as follows:

ρi = b
∆

BRT
c (36)

94 of 168

sustainability analysis

For the illustration of CRPD in the next examples, BRT = 1 units of time. The

CRPD added to the capacity of τi when it resumes at time t2 is now computed

as follows:

γt2
i = min(|UCBi − UCBt2

i |, ρi) · BRT (37)

This equation guarantees that the CRPD cannot be larger than the executed

capacity of task τi by taking into account ρi parameter. We apply FSC-CRPD

computation model to the example in Figure 24. At time t = 0, τ2 is released. At

time t = 2, τ2 is preempted by τ1. Because τ2 has executed only 2 units of time,

there is only 2 UCBs loaded into the cache. Then, at time t = 6, τ2 resumes and

the CRPD added to the capacity of τ2 is computed as follows:

1 t = 1: UCB 0
2 = UCB2 = {1, 2, 3}

2 t = 2: UCB 0
2 = UCB 0

2 − ECB1 = {1, 2, 3}− {1, 2, 3} = ;

3 t = 2: ρ2 = 2

4 t = 6: γ6
2 = min(|UCB2 − UCB 0

2|, ρ2) · BRT = 2

The preemption cost added is only 2 units of time, which is not larger than the

executed capacity of task τ2.

In the next section, we discuss about the sustainability analysis of CRPD com-

putation models.

4.3 sustainability analysis

In this section, we recall the definition of sustainability, discuss about sustainabil-

ity analysis of classical CRPD computation models and analyze sustainability of

scheduling simulation with FSC-CRPD computation model.

4.3.1 Definitions

The definition of sustainability was given in [20].

Definition 71. A given scheduling policy and/or a schedulability test is sustainable if

any system that is schedulable under its worst-case specification remains so when its

behavior is better than worst-case. The term better means that the parameters of one

or more individual task(s) are changed in any, some, or all of the following ways: (1)

decreased capacity, (2) larger periods and (3) larger relative deadlines.

We explain the reason why these changes are considered better behaviors. As-

sume a job of τi released at time t and has a deadline at t+Di. In preemptive

scheduling context, τi[t] experiences interferences [7] from higher priority tasks

in the interval [t, t+Di), denoted Iti . The definition of Iti and its meaning were

95 of 168

sustainability analysis

presented in Section 3.3.1. The job of τi is feasible if the following condition is

satisfied:

Ci + Iti 6 Di (38)

Decreased capacity decrease either Ci and could also decrease Iti as capacities of

higher priority tasks are decreased. Larger periods could decrease Iti by reducing

the number of higher priority tasks released in the interval [t, t +Di). Larger

relative deadlines could increase Di. All the changes should make the feasibility

condition becomes easier to be satisfied.

Furthermore, we can have the following analysis about the predictability of

these parameter changes:

• Decreased capacity comes from the deviation in theoretical analysis and

practical execution. A task can execute shorter than its computed capacity

(WCET). This change is not predictable. This is a practical problem that

scheduling simulation tools have to take into account. If scheduling sim-

ulation with the WCETs of tasks is not sustainable regarding this change,

we need to perform simulation with all possible values which are smaller

than the WCETs of tasks, leading to an exponential complexity.

• Regarding periodic tasks, a larger period is a predictable change because

the period can only be set by system designer. Regarding sporadic tasks,

the period of a task is only the minimum interarrival time (MIT). In systems

with sporadic tasks, we can consider that the change in period parameter

always happens. If we take into account sporadic tasks, sustainability anal-

ysis with regard to the period parameter is more critical than when we

only take into account periodic tasks.

• Larger relative deadline is a predictable change because the deadline is set

by system designers.

As presented in Section 1.5, we assumed that the periods and the relative dead-

lines of tasks are statically assigned by system designer and thus cannot be dy-

namically computed. The case of dynamically computed periods and deadlines

are beyond the scope of this thesis.

To sum up, a schedulability test, such as scheduling simulation or WCRT anal-

ysis, must be aware of unpredictable changes in task parameters even if these are

considered better behaviors. A schedulability test must be sustainable regarding

capacity parameter in order to be used to verify the schedulability of task sets

with only periodic tasks. It must be sustainable regarding both capacity and pe-

riod parameters in order to be used to verify the schedulability of task sets with

sporadic tasks.

96 of 168

sustainability analysis

4.3.2 CRPD problem in sustainability analysis

The problem related to CRPD in sustainability analysis in FPP scheduling con-

text can be defined as follows. As presented in the previous section, the two

parameter changes (1) decreased capacities and (2) larger periods and could de-

crease Iti by ∆. However, as shown by examples in the next sections, the two

changes can increase the number of preemptions. Thus, despite of the decrease

in execution requirement, there is an increase in CRPD by γ. If γ > ∆, parameter

changes, which are considered a better scenario, increase the interference and

could lead to unschedulable system.

In the next sections, we remind that with CT-CRPD and FS-CRPD, scheduling

simulation with CRPD is not sustainable with regard to capacity and period

parameters. However, we show that FSC-CRPD is sustainable with regard to

capacity parameter but not sustainable with regard to period parameter.

4.3.3 Sustainability analysis of scheduling simulation with classical CRPD

computation models

CT-CRPD

In [67], the authors have investigated the sustainability of scheduling simulation

with CT-CRPD computation model.

Theorem 6 ([67]). Scheduling simulation with CT-CRPD is not sustainable with regard

to the capacity parameter.

Theorem 7 ([67]). Scheduling simulation with CT-CRPD is not sustainable with regard

to the period parameter.

Several counter examples have been shown to prove that a schedulable task

set does not remain schedulable when a better change in capacity or period

parameter occurs.

FS-CRPD

We prove two theorems concerning the sustainability of scheduling simulation

with FS-CRPD computation model. The first theorem is related to the capacity

parameter.

Theorem 8. Scheduling simulation with FS-CRPD is not sustainable with regard to

the capacity parameter.

Proof. We prove this theorem by using a counter example. In this example, a task

set is schedulable with CRPD taken into account. When the capacity of a task is

decreased, this task set becomes not schedulable.

97 of 168

sustainability analysis

Task Ci Ti Di Oi Πi UCBi ECBi

τ1 4 12 12 0 3 ; {1,2}

τ2 8 24 24 0 2 {3} {3,4}

τ3 8 24 24 0 1 {1,2} {1,2}

Table 9: Task set example

τ3
2412 14 16 18 20 22

τ1
τ2

0 2 4 6 8 10

Figure 25: Scheduling simulation of task set in Table 9 in the first 24 units of time. All

deadlines are met. There is no preemption.

A task set is provided in Table 9. In Fig. 25, we have the scheduling simulation

of this task set in the first 24 units of time. All deadlines are met.

Regarding the job of task τ3 released at t = 0, it experiences the interference

from higher priority tasks τ1 and τ2. The feasibility condition is satisfied as we

have:

1 C3 = 8, I03 = 16

2 ! C3 + I03 = 8+ 16 6 24

τ1
τ2
τ3

0 2 4

D3

6 8 10 12 14 16 18 20 22 24

Figure 26: Non-sustainable scheduling simulation regarding capacity parameter with FS-

CRPD computation model. The capacity of τ2 is reduced to 7 < C2 = 8. τ1
preempts τ3 at time t = 12

In Fig. 26, we assume that the capacity of τ2 is reduced to 7 instead of C2 = 8.

Because of this change, the job of τ2 is completed at time t = 11. Then, τ3 can

start at time t = 11 and then be preempted by τ1 at time t = 12. Later, τ3 resumes

at time t = 16. Regarding FS-CRPD computation model, the CRPD added to the

capacity of τ3 at time t = 16 is computed as follows:

1 t = 11: UCB 0
3 = UCB3 = {1, 2}

2 t = 12: UCB 0
3 = UCB 0

3 − ECB1 = {1, 2}− {1, 2} = ;

3 t = 16: γ16
3 = |UCB3 − UCB 0

3| · BRT = |{1, 2}− ;| · 1 = 2

98 of 168

sustainability analysis

The CRPD computed is 2 units of time and τ3 missed its deadline.

Theorem 9. Scheduling simulation with FS-CRPD is not sustainable with regard to

the period parameter.

Proof. We prove this theorem by using a counter example. In this example, a task

set is schedulable with CRPD taken into account. When the period of a task is

larger, this task set is not schedulable.

We use the task set provided in Table 9. As shown in Fig. 25, this task set is

schedulable.

D3

τ1
τ2
τ3

0 2 4 6 8 10 12 14 16 18 20 22 24

Figure 27: Non-sustainable scheduling simulation regarding the period parameter with

FS-CRPD computation model. The period of τ1 is increased to 13 > T1 = 12.

τ1 preempts τ3 at time t = 13. τ3 missed its deadline at time t = 24.

In Fig. 27, we assume that the period of τ1 is increased to 13 instead of T1 = 12.

Because of this change, τ1 is not released at time t = 12. As a result, at time

t = 12, τ3 can execute. At time t = 13, τ1 is released and preempts τ3. Regarding

FS-CRPD computation model, we have:

1 t = 13: UCB 0
3 = UCB 0

3 − ECB1 = {1, 2}− {1, 2} = ;

2 t = 17: γ17
3 = |UCB3 − UCB 0

3| · BRT = |{1, 2}− ;| · 1 = 2

We can see that later, τ3 missed its deadline at time 24.

4.3.4 Sustainability analysis of FSC-CRPD

In this section, we prove the sustainability of scheduling simulation with FSC-

CRPD computation model regarding each task parameter change defined in Def-

inition 71, section 4.3.

a Decreased capacity

We prove that scheduling simulation with FSC-CRPD computation model is sus-

tainable regarding the capacity parameter.

Theorem 10. Assuming FSC-CRPD computation model, a decrease of ∆ in execution

time of higher priority tasks can only lead to a maximum increase of γ execution time of

the lower priority task where γ 6 ∆.

99 of 168

sustainability analysis

Proof. A decrease of ∆ in execution time of higher priority tasks could cause a

lower priority task τi executes ∆ sooner and be preempted. Thus, there is an

increase in the number of preemptions and the execution time of τi is increased

by γ.

Suppose that γ > ∆, this can only occur if:

min(|UCBi − UCB 0
i|, ρi) · BRT > ∆

It means that two conditions must be satisfied:
8

>

<

>

:

ρi · BRT > ∆

|UCBi − UCB 0
i| · BRT > ∆

The number of additional UCBs loaded into the cache thanks to a decrease of

∆ in execution time is ρi. The condition ρi ·BRT > ∆ above cannot hold following

Theorem 5.

We now prove that a decrease in execution time of higher priority task does not

create additional interference to lower priority task. The decrease in execution

time is always larger than or equal to the CRPD introduced by the possible

increase in the number of preemption.

Theorem 11. Scheduling simulation with FSC-CRPD computation model is sustainable

with regard to the capacity parameter.

Proof. Suppose that a system is deemed schedulable; i.e., for all jobs of all tasks,

the feasibility condition defined in Equation 38 is satisfied.

We evaluate a job of task τi following the feasibility condition. A decrease in

capacity of τi means that it has a new capacity C 0
i 6 Ci.

A decrease in capacity of higher priority task can introduce a new interference

denoted as I 0ti . We have I 0ti = Iti −∆+γ, where ∆ is the decrease in capacity and

γ is the CRPD introduced by the change. We have γ 6 ∆ according to Theorem

10. Thus, I 0ti 6 Iti . To conclude, we have the following equation.

C 0
i + I 0ti 6 Ci + Iti 6 Di (39)

We conclude that a job of task τi still feasible when experiencing a decrease in

execution time.

We apply FSC-CRPD computation model to the example presented in Figure

26 in which the capacity of τ2 is reduced to 7 < C2 = 8. τ1 preempts τ3 at time

t = 12. Regarding FSC-CRPD computation model, when taking into account ρ3

parameter, we have:

1 t = 12: UCB 0
3 = UCB 0

3 − ECB1 = {1, 2}− {1, 2} = ;

2 t = 12: ρ3 = 1

3 t = 16: γ16
3 = min(|UCB3 − UCB 0

3|, ρ3) · BRT = 1

100 of 168

sustainability analysis

2412 14 16 18 20 22

τ3
0 2 4 6 8 10

τ1
τ2

D3

Figure 28: Sustainable scheduling simulation regarding capacity parameter with FSC-

CRPD computation model. The capacity of τ2 is 7 < C2 = 8. τ1 preempts τ3

at time t = 12

The CRPD computed is 1 unit of time and τ3 can meet its deadline as illus-

trated in Figure 28.

From this example, FSC-CRPD computation model is not only less pessimistic,

but scheduling simulation of this model is also sustainable regarding execution

time parameter.

In conclusion, we have investigated and proved the sustainability of schedul-

ing simulation with FSC-CRPD computation model regarding the capacity pa-

rameter.

In the next section, we prove that scheduling simulation with FSC-CRPD com-

putation model is not sustainable regarding the period parameter.

b Larger Period

Theorem 12. Scheduling simulation with FSC-CRPD computation model is not sus-

tainable with regard to the period parameter.

Proof. We prove this theorem by using a counter example. Changing period of

tasks can lead to unschedulable task sets when CRPD is considered. This prob-

lem is illustrated in Figure 29.

D3

12 14 16 18 20 22 24

τ1
τ2
τ3

0 2 4 6 8 10

Figure 29: Non-sustainable scheduling simulation regarding period parameter with FSC-

CRPD computation model. The period of τ1 is increased to 13 > T1 = 12. τ1
preempts τ3 at time t = 13. τ3 missed its deadline at time t = 24.

In this figure, the period of task τ1 is changed to 13. As a result, at time t = 12,

τ3 can execute. At time t = 13, τ3 is preempted by τ1 and there is one unit of

preempted cost added to the capacity of τ3. Finally, τ3 missed the deadline at

time t = 24.

101 of 168

feasibility interval analysis

We can observe that the change in the period of τ1 does not decrease the

interference from higher priority tasks to the job of τ3 released at t = 0, even if

CRPD is not considered. Furthermore, it also creates one additional preemption.

c Larger Relative Deadline

In fixed priority preemptive scheduling, an increase in relative deadlines is sim-

ply a better timing constraint if we do not reassign task priorities. In this case,

larger deadlines neither decrease execution time of tasks nor create additional

preemptions.

Theorem 13. Scheduling simulation with FSC-CRPD computation model is sustainable

with regard to the deadline parameter.

It is important to mention that we do not investigate the case where task

priorities are reassigned according to new deadlines.

To sum up, in this section, we have investigated the sustainability analysis

of scheduling simulation with FSC-CRPD computation model regarding the

three task parameter changes: capacity, period and relative deadline. We have

proved that scheduling simulation with FSC-CRPD is sustainable regarding ca-

pacity and relative deadline parameter and is not sustainable regarding period

parameter. The result means that scheduling simulation with FSC-CRPD is an

improvement comparing to FS-CRPD and CT-CRPD. It can be used to verify

and guarantee the schedulability of periodic tasks where the changes in the pe-

riod parameter are predictable and sustainability regarding this parameter is not

an issue. However, it cannot be applied to task set with sporadic tasks.

In the next section, we discuss about the feasibility interval.

4.4 feasibility interval analysis

In this section, we present our analysis on the feasibility interval of the system

model presented in section 4.2 regarding FSC-CRPD computation model. We an-

alyze two properties that are used to establish the feasibility interval in previous

literature [7, 43]: stabilization time and periodicity. In FPP scheduling context, a

well established result on these properties regarding RTES without cache mem-

ory is that for a task τi, after an initial stabilization time Si, the execution of τi

is periodic in the interval Pi. Then, the feasibility interval of τi is [0,Si + Pi).

To determine the feasibility interval of our system model, we investigate the

stabilization time when CRPD is taken into account. Second, we prove the peri-

odic behavior and establish the feasibility interval.

102 of 168

feasibility interval analysis

4.4.1 Stabilization Time

For asynchronous systems, the concept of stabilization time was introduced in [7]

and [43]. In these systems, there could be an interval of time, in which lower pri-

ority tasks are released and executed while higher priority tasks are not released.

In this interval, a system is considered to be not stabilized. Stabilization time is

defined as follows:

Definition 72 (Stabilization time [7, 43]). Stabilization time Si of a task τi is an

instant at a release time of τi when all tasks τj 2 hp(i) are released and stabilized.

The computation of Si is inductively defined by [43]:

S1 = O1,

Si = max(Oi,Oi + d
Si−1−Oi

Ti
e · Ti) (i = 2, 3, ...,n).

The main idea of the initial stabilization time is for a job τi[t], 0 < t 6 Si,

not all higher priority tasks are released so the interference to τi[t] is lower than

τi[t+ k · Pi],k 2 N⇤. In other words, the execution of τi[t], 0 < t 6 Si could not

be repeated in the future.

The stabilization time proposed in [7, 43] can be applied to systems with cache

as the computation of stabilization time only needs to take into account the

offsets and the periods of tasks. CRPD is a factor which affects the execution of

tasks, not the release time of tasks and the stabilization time.

In [43], Goossens and Devillers has proved that for systems without cache, for

a task τi, the interference from higher priority tasks to τi[t], t 6 Si is less than

or equal to the interference from higher priority tasks to τi[t
0], t 0 2 [Si,Si + Pi).

We recall that Pi is level i hyper period of task τi, which is defined in Definition

40. It was concluded that the execution before Si is only needed to lead τi to its

periodic behavior after Si.

For synchronous systems, all tasks are released at the same time. It does not

exist an interval of time, in which lower priority tasks are released and executed

while higher priority tasks are not released. Thus, stabilization times of all tasks

are equal to 0.

4.4.2 Periodic Behavior

In this section, we analyze the periodic behavior of systems with cache after the

initial stabilization time. First, we revise the proof of periodic behavior of RTES

without cache in the previous literature.

Feasibility interval proof by Audsley [7]

In [7], Audsley proved that after the initial stabilization time Si, the execution of

a task τi at time t, denoted as E(τj, t) where t > Sj, implies the execution of τi

103 of 168

feasibility interval analysis

at time t+ k · Pi. In other words, if τi is executed on the processor at time t, it is

also executed on the processor at time t+ k · Pi.

Theorem 14 ([7]). For all task τi, the execution of τi at time t, denoted E(τi, t) where

t > Si, implies E(τi, t+ k · Pi).

Proof. Consider the highest priority task τ1, it executes for the first Ci units of

time in any interval [O1 + k · T1,O1 + k · T1 +D1),k 2N. Therefore, the behavior

of τ1 is static, in that for every time t1 that the task executes, it will also execute

at t1 + P1. Hence,

E(τ1, t1) =) E(τ1, t1 + k · P1),k 2N, t1 > S1

The behavior of τ2 can be expressed in a similar manner. After the initial

stabilization time, τ2 executes in the first C2 time units in the interval [O2 + k ·

T2,O2 + k · T2 +D2),k 2 N which will not be used by any higher priority task,

namely τ1. Therefore, since the times that τ1 executes are already determined,

and τ1 has been released, we can assert:

E(τ2, t2) =) E(τ2, t2 + k · P2),k 2N, t2 > S2

The argument can be combined until τi is reached. This task will reserve the

first Ci units of computation time that are not required by any higher priority

task. Thus,

E(τi, ti) =) E(τi, ti + k · Pi),k 2N, ti > Si

Therefore, we have built up the static requirements of all tasks, assuming all

higher priority tasks have been released after the initial stabilization time. This

assumption is indeed true and was also proved in [7].

This inductive proof of Theorem 14 cannot be applied straight forward to

systems with cache. We start with the cases of task τ1 and τ2. Because, τ1 is the

highest priority task and is not affected by CRPD, the following assertion still

holds:

E(τ1, t1) =) E(τ1, t1 + k · P1),k 2N, t1 > S1

In the next step regarding τ2, the following argument is not applicable: "After

the initial stabilization time, τ2 executes in the first C2 time units in the interval [O2 +

k · T2,O1 + k · T2 +D2),k 2 N which will not be used by any higher priority task,

namely τ1". The reason is that if τ2 is preempted by τ1, it will execute in C2 time

units plus the CRPD.

Feasibility interval proof for our system model with FSC-CRPD

We choose a different approach to prove the periodicity of task τi after the initial

stabilization time Si. We make an initial observation that the execution of an

individual task in a FPP scheduling context depends only upon its own proper-

ties and higher priority tasks [7]. Thus, we define two conditions that make the

execution of τi periodic:

104 of 168

feasibility interval analysis

• The first condition is that τi is released periodically in a fixed interval.

This condition is satisfied in our system model because we only take into

account periodic tasks.

• The second condition is that the interference from higher priority tasks to

τi is periodic in a fixed interval. We proceed by proving that the second

condition is also satisfied when CRPD is taken into account.

Based on the two conditions, if we can prove that the job τi[ti], ti = Oi +m ·

Ti,m 2 N|ti > Si and the job τi[ti + k · Pi],k 2 N experience identical interfer-

ences from higher priority task, we can conclude that τi is periodic in interval

Pi after the initial stabilization time Si. We establish the following theorem:

Theorem 15. For all task τi, the job τi[ti], ti = Oi +m · Ti,m 2 N|ti > Si and the

job τi[ti + k · Pi],k 2 N experience identical interferences from higher priority tasks

τ0, ..., τi−1.

Proof. This theorem is proved by induction.

Trivial case

Consider the highest priority task τ1, it always experiences 0 interference.

Thus, the schedule of τ1 is periodic from S1 with the period P1 = T1.

Consider the second highest priority task τ2, since the task is ordered by pri-

ority, the periodicity of τ1 cannot be changed by τ2. Because of the schedule of

task τ1 is periodic from S1 with the period P1 = T1, τ1 is also periodic from S2

(S2 > S1) with the period P2 = lcm{P1, T2}.

The interference created by the capacity of τ1 to the two jobs τ2[t2](t2 =

O2 +m · T2, t2 > S2) and τ2[t2 + k · P2] (k 2 N) is periodic and identical as

we assumed that task capacity is constant.

The two jobs τ2[t2] and τ2[t2 + k · P2] experience identical sequence of pre-

empting tasks. If τ2[t2] is firstly preempted by τ1 at time t2 + ∆, then τ2[t2 +

k · P2] will be firstly preempted by τ1 at time (t2 + k · P2) + ∆, 0 6 ∆ < D2.

Because the sets of UCBs and ECBs of τ1 and τ2 are fixed and both jobs of τ2

have executed ∆ units of time, the CRPD of two preemptions are identical. The

same argument can be applied to subsequent preemptions by τ1 to τ2[t2] and

τ2[t2 + k · P2] if they exist. We can conclude that the CRPD by τ1 that τ2[t2] and

τ2[t2 + k · P2] experience are identical.

From the two deductions, τ2[t2] and τ2[t2 + k · P2] experience identical inter-

ference.

Induction step

We assume that this theorem is true for τ1, ..., τi. The objective now is to prove

that it is also true for τi+1.

From the assumption, the schedule of the task subset {τ1, ..., τi} is periodic

from Si with the period of Pi. Since the task is ordered by priority, the periodicity

of the task subset cannot be changed by τi+1. Hence, we can deduce that the

105 of 168

conclusions

schedule of the task subset is also periodic from Si+1 (Si+1 > Si) with the

period Pi+1 = lcm{Pi, Ti+1} is identical. We can have the following deductions.

The interference created by the capacity of τ1, ..., τi to the two jobs τi+1[ti+1](ti+1 =

Oi+1 +m · Ti+1, ti+1 > Si+1) and τi+1[ti+1 + k · Pi+1] (k 2N) are identical.

The CRPD created by τ0, ..., τi preempting each other to the two jobs τi+1[ti+1]

and τi+1[ti+1 + k · Pi+1] are identical.

The two jobs τi+1[ti+1] and τi+1[ti+1+k ·Pi+1] experience identical sequence

of preempting tasks. Thus, the CRPD created by τ0, ...τi preempting τi+1[ti+1]

and τi+1[ti+1 + k · Pi+1] is identical.

From these deductions, we can conclude that τi+1[ti+1] and τi+1[ti+1 + k ·

Pi+1] experience identical interference.

As the theorem regarding periodic behavior is proved, we can now prove the

following theorem about the feasibility interval.

Theorem 16. A task τi is feasible if and only if the deadlines corresponding to the

releases of the task in [0,Si + Pi) are met.

Proof. From Theorem 15, we deduce that the execution of τ1, τ2, ..., τi in the in-

terval [Si,Si + Pi) and [Si + k · Pi,Si + (k+ 1) · Pi),k 2N
⇤ are identical. Thus, it

is sufficient to check if τi can meet its deadlines in only one interval of time plus

the interval [0,Si).

From Theorem 16, we can conclude that for a task set of n periodic tasks, the

feasibility interval is [0,Sn + Pn).

4.5 conclusions

In this chapter, we investigate the problems related to scheduling simulation of

RTES with cache memory by taking into account CRPD. Several assumptions are

taken regarding system model, task execution and cache access profile.

We investigate classical CRPD computation models used in scheduling sim-

ulation and present existing issues regarding the pessimism of these models.

Then, we discuss about the sustainability of scheduling simulation with classical

CRPD computation models. We explain the problem related to CRPD in sustain-

ability analysis and the reason why CRPD-aware scheduling simulation is not

sustainable in general cases.

We propose a new CRPD computation model named FSC-CRPD to address

the previous issues. In this model, based on an observation from real system exe-

cution presented in [59], we take a new assumption that bounds the CRPD by the

executed capacity of a task. When this assumption holds, scheduling simulation

106 of 168

conclusions

is less pessimistic and then becomes sustainable with regard to the capacity pa-

rameter. The conclusion about the sustainability of scheduling simulation with

FSC-CRPD allows us to prove the feasibility interval of our system model.

The established results allow the use of CRPD-aware scheduling simulation

as a verification method to evaluate the schedulability of periodic tasks. In addi-

tion, this work gives perspectives about in which cases CRPD-aware scheduling

simulation is sustainable and is not.

We have not yet investigated the problem of CRPD-aware scheduling simula-

tion for tasks with arbitrary deadline. In this case, modeling cache accesses and

evaluating the number of UCB loaded into the cache of a task could be complex

because there are multiple jobs of this task are released and executed.

107 of 168

Chapter 5

C A C H E - AWA R E S C H E D U L I N G

A N A LY S I S T O O L I M P L E M E N TAT I O N

Contents

5.1 CRPD analysis implemented in Cheddar 111

5.2 Cheddar Framework . 111

5.3 Cache access profile computation 122

5.4 CRPD analysis for WCRT . 129

5.5 CRPD-aware priority assignment algorithm 130

5.6 CRPD-aware scheduling simulation 131

5.7 Implementation Issues . 137

5.8 Conclusions . 138

In this thesis, we have presented the following CRPD analysis: cache access

profile computation [52, 23], CRPD analysis for WCRT [23, 52, 82, 4], CRPD-

aware scheduling simulation [29] and limiting CRPD [86, 14, 58]. The work in

this thesis has focused in CRPD-aware scheduling simulation and we proposed

a CRPD-aware priority assignment.

The result obtained by cache access profile computation is required to perform

the analysis of the other subjects. In addition, the analysis of each subject is done

based on one or several parameters of a given RTES system and there are param-

eters that are shared amongst these subjects. A parameter can be either a system

configuration or a scheduling parameter. There are seven parameters thats are

involved in CRPD analysis for RTES with cache memory: (1) cache configuration,

(2) memory layout, (3) task control flow graph, (4) capacity - WCET, (5) period,

(6) deadline and (7) scheduling policy. An example of a shared parameter is that

task period is used by both CRPD analysis for WCRT and CRPD-aware schedul-

ing simulation. In Figure 30, a big picture of CRPD analysis subjects, parameters

and their relationship is provided.

109 of 168

cache-aware scheduling analysis tool implementation

Cache access

profile

computation

(1) Cache

configuration

(2) Memory

layout

(3)Task control flow

graph

(7) Scheduling

Policy

CRPD analysis for

WCRT

CRPD-aware

scheduling

simulation

CRPD-aware

priority assignment

Limiting CRPD

(4) WCET

Cache access

profile

(5) Period

(6) Deadline

 Input Ouput

Parameter CRPD Analysis

Figure 30: CRPD analysis subjects and parameters

The relationship between CRPD analysis subjects and shared parameters moti-

vates the implementation of a scheduling analysis tool that take all of them into

account.

The problem statement of this chapter can be summarized as follows. CRPD

analysis for RTES with cache memory in FPP scheduling context consists in

several subjects that are related to each other. Despite of the relationship, the

proposed solution or analysis technique in each subject is evaluated individually.

Thus, dependencies amongst those subjects are not investigated. As far as we

know, there are no scheduling analysis tools that address the whole problem

that can be used to study the dependencies amongst the subjects in the state-of-

the-art work.

In this chapter, we present the implementation of several CRPD analysis meth-

ods for RTES with cache memory in a scheduling analysis tool. Implementation

is made in Cheddar [75], an open-source scheduling analyzer, which is freely

available to researchers and practitioners. Experiments are conducted in order

to illustrate applicability and performance of our implementation. Furthermore,

we discuss about implementation issues, problems raised and lessons learned

from those experiments.

The rest of the chapter is organized as follows. Section 5.1 provides an overview

of our approach and the implemented CRPD analysis methods. Those analysis

110 of 168

crpd analysis implemented in cheddar

methods are implemented in Cheddar - an open source real-time scheduling

analysis tool. Section 5.2 presents the Cheddar framework and the development

process of a new analysis feature in Cheddar scheduling analyzer. In section 5.3,

5.4, 5.5 and 5.6, we present in detail the implementation of each CRPD analysis

method following the presented development process. In section 5.7, we discuss

several implementation issues that we identified during the implementation of

CRPD analysis features in Cheddar. Finally, section 5.8 concludes the chapter.

5.1 crpd analysis implemented in cheddar

We implemented the following CRPD analysis methods in Cheddar scheduling

analyzer.

• Cache access profile computation based on the notion of UCB and ECB

which is presented in Section 2.4.

• CRPD analysis for WCRT that is presented in Section 2.5.1. We imple-

mented the following analysis methods: ECB-Only [23], UCB-Only [52],

UCB-Union [79], ECB-Union [4], UCB-Union Multiset [4], ECB-Union Mul-

tiset [4] and Combined Multiset [4].

• Our proposed CRPD-aware priority assignment algorithm presented in

Chapter 3.

• CRPD-aware scheduling simulation with our proposed CRPD computation

model presented in Chapter 4.

We continue by presenting the Cheddar framework and explaining how this

framework was extended.

5.2 cheddar framework

Cheddar framework consists of three parts, which are depicted in Figure 31: (1)

Cheddar architecture description language (ADL), (2) meta-workbench Platypus

and (3) Cheddar scheduling analyzer.

1. Cheddar ADL is a simple architecture description language devoted to real-

time scheduling theory. An ADL provides the abstraction of components,

connections and deployments. A component is an entity modeling a part of

the system. ADLs allow the specification of both hardware parts and soft-

ware parts of the system with dedicated kinds of components. Connections

usually model relationships between components and finally, deployments

specify how software components are deployed on hardware components,

111 of 168

cheddar framework

Kernel

Cheddar ADL

Model

Platypus

RTES Component Model

Cheddar scheduling analyer

Hardware

Analysis Feature

Schedulability

Test

Scheduling

Simulation

Design

Exploration

Scheduling

Policy

Graphical User

Interface

Software

Data Parser

XML Parser

AADL

Parser

 Input Generate

Figure 31: Cheddar Framework

i.e. how the resources of the system are shared. A Cheddar ADL meta-

model is specified with the general purpose modeling language EXPRESS

[88].

2. The meta-workbench Platypus [70] is used to implement the code genera-

tors. A part of Cheddar is automatically generated from its meta-models

through a model driven engineering (MDE) process.

3. Cheddar scheduling analyzer includes three parts: kernel, graphical user

interface (GUI) and data parsers.

• The kernel consists in RTES component models and analysis features.

RTES component models provide an abstraction of a system includ-

ing its hardware and software components. It includes Ada class files

that are automatically generated by the meta-workbench Platypus [70].

Several analysis features are implemented in the kernel. However, re-

garding the scope of this thesis, we only focus on schedulability test

and scheduling simulation analysis features.

Cheddar kernel can be called alone and embedded in a toolset. The

framework is embedded in specific tool sets such as AADLInspector

[36] and TASTE (ESA) (http://taste.tuxfamily.org). Cheddar was used

to automate the computation of task WCRT in an architecture model

refinement approach [17] implemented in RAMSES [26].

112 of 168

cheddar framework

• The GUI can be used by the users to design a system model, apply

analysis methods and receive results.

• The data parser supports importing and exporting a RTES architecture

model in Cheddar ADL or AADL.

In the next sections, detailed information about parts in Cheddar framework

is presented.

• Section 5.2.1 presents Cheddar ADL and the process of using the meta-

workbench Platypus to generate RTES component model in the kernel.

• Section 5.2.2 introduces two analysis features of Cheddar scheduling ana-

lyzer: schedulability test and scheduling simulation.

• Section 5.2.3 presents the use process. It introduces how to use the Ched-

dar GUI to design a system model and how to import/export a model in

Cheddar ADL.

• Section 5.2.4 shows the development process. It includes the process of

extending Cheddar ADL to model a new RTES components model, gener-

ating Ada class files and implementing new analysis features.

5.2.1 Cheddar ADL model of RTES components

In this section, first, we provide a summary of RTES components that are sup-

ported by Cheddar ADL. These components are separated into hardware and

software component. Second, we present the process of generating Ada class

files of RTES component models in the kernel from Cheddar ADL.

113 of 168

cheddar framework

Cheddar ADL model of hardware components

Figure 32: Cheddar ADL model of hardware component

Hardware components represent the resources provided by the environment.

Cheddar ADL provides limited capabilities to model hardware components. In-

deed, real-time scheduling theory usually assumes simple models of hardware.

As shown in Figure 32, hardware components can be of two kinds:

• Core components model entities that provide a resource to sequentially

run tasks. In Cheddar, scheduling parameters are attached to a core. An

example of scheduling parameter is the scheduling policy used to schedule

tasks on a core.

• Processor components are composed of sets of cores. A processor is either

multi-cores or mono-core.

Cheddar ADL model of software components

Software components can be deployed on either core or processor components.

Those deployments model two kinds of component connections that allow de-

signers to express either global scheduling or partitioned scheduling. The design

of the software part of a real-time system can be specified with five component

types. These component types are depicted by Figure 33:

1. Address space components model a group of resources that can be ac-

cessed. They may be associated to an address protection mechanism.

2. Task components model flows of control. They are statically connected to

address space components.

114 of 168

cheddar framework

Figure 33: Cheddar ADL model of software component

3. Resource components may model any data structure, shared by tasks or

not, synchronized or not. They may be accessed through classical prior-

ity inheritance protocols. They may model asynchronous communications

between tasks located in the same address space.

4. Buffer components model queued asynchronous data exchanges between

tasks located in the same address space.

5. Message components model queued asynchronous data exchanges between

tasks located in different address spaces. Buffer, resource and message com-

ponents specify types of connection between components, i.e types of de-

pendencies between tasks.

We have presented Cheddar ADL model of software and hardware compo-

nents. Regarding the implementation of CRPD analysis methods in Cheddar

framework, Figure 34 sums up the requirements.

The four parameters: WCET, period, deadline and scheduling policy are al-

ready supported by Cheddar ADL. WCET, period and deadline are supported by

the Periodic_Task model. Scheduling policy is supported by Scheduling_Parameters

and Scheduler_Type model.

The three parameters: cache configuration, memory layout and task control

flow graph are not supported. In addition, we also consider cache access profile

115 of 168

cheddar framework

as an input parameter to be modeled in Cheddar ADL. The motivation of this

decision is to facilitate the process of importing an existing cache access profile

and applying CRPD analysis methods.

Cache access

profile

computation

(1) Cache

configuration

(2) Memory

layout

(3)Task control flow

graph

(7) Scheduling

Policy

CRPD analysis for

WCRT

CRPD-aware

scheduling

simulation

CRPD-aware

priority assignment

Limiting CRPD

(4) WCET

Cache access

profile

(5) Period

(6) Deadline

Input Ouput

Parameter not modeled/supported by Cheddar ADL

Parameter modeled/supported by CheddarADL

Figure 34: CRPD analysis and parameters

Next, we present how to generate Ada class files from Cheddar ADL.

Generating Ada class files from Cheddar ADL model

From a Cheddar ADL schema of a RTES component, Ada class files can be

automatically generated by the meta-workbench Platypus [70] through a model-

driven engineering process.

We provide an example to illustrate the process of generating Ada class files

from a Cheddar ADL model of the processor component in Figure 35. From an

EXPRESS schema, two Ada class files are generated. The ".ads" file is specifica-

tion file and the ".adb" file is implementation file.

116 of 168

cheddar framework

Cheddar-ADL

Meta Model:

Processors

Platypus

Processors

Processors.adb

Processors.ads

 Input Generate

Figure 35: Generating Ada class files from Cheddar ADL of processor component.

In Listing 2, we provide an EXPRESS schema of the processor component. The

schema is 21 Lines of Code (LoC). It is then used to generate two Ada class files:

processors.ads (176 LoC) and processor.adb (429 LoC). These Ada class files in-

clude the specification of the entities and the functions and the procedures that

can be used to access the entities. A part of the generated code in processor.ads

file is provided in Listing 3.

1 SCHEMA Processors;

2 ENTITY Generic_Processor

3 SUBTYPE OF (Named_Object);

4 network_name : STRING;

5 processor_type : Processors_type;

6 migration_type : migrations_type;

7 DERIVE

8 SELF\Generic_Object.object_type : Objects_Type := Processor_

Object_Type;

9 END_ENTITY;

10

11 ENTITY Mono_Core_Processor

12 SUBTYPE OF (Generic_Processor);

13 core : core_unit;

14 END_ENTITY;

15

16 ENTITY Multi_Cores_Processor

17 SUBTYPE OF (Generic_Processor);

18 cores : Core_Units_Table;

19 l2_cache_system_name : STRING;

20 END_ENTITY;

117 of 168

cheddar framework

21 END_SCHEMA;

Listing 2: EXPRESS schema of the processor component

1 type Generic_Processor is new Named_Object with

2 record

3 network_name : Unbounded_String;

4 processor_type : Processors_type;

5 migration_type : migrations_type;

6 end record;

7

8 procedure Initialize(obj : in out Generic_Processor);

9 procedure Put(obj : in Generic_Processor);

10 procedure Put(obj : in Generic_Processor_Ptr);

11 procedure Put_Name(obj : in Generic_Processor_Ptr);

12 procedure Build_Attributes_XML_String(obj : in Generic_Processor;

result : in out Unbounded_String);

13 function XML_String(obj : in Generic_Processor) return Unbounded_

String;

14 ...

Listing 3: Part of the generated code in processors.ads

In addition, the data parser in Cheddar scheduling analyzer is updated follow-

ing the Cheddar ADL of processor component. Cheddar scheduling analyzer

supports importing and exporting a Cheddar ADL model written in XML or

AADL.

In the next section, we introduce the analysis features that are supported by

Cheddar scheduling analyzer.

5.2.2 Analysis features in Cheddar scheduling analyzer

From a Cheddar ADL model, Cheddar scheduling analyzer provides various

scheduling analysis features [40]. Scheduling analysis can be performed either

with feasibility tests or with scheduling simulations on the feasibility interval.

Cheddar scheduling analyzer implements classical methods of both verification

techniques. In this section, we first introduce schedulability tests implemented

into Cheddar scheduling analyzer and then, we present its scheduling simulation

features.

118 of 168

cheddar framework

Schedulability Test

Cheddar scheduling analyzer implements various feasibility tests. Processor uti-

lization feasibility tests can be applied on other scheduling policies. Furthermore,

WCRT can be computed on periodic tasks. Those WCRTs can integrate delays

related to shared resources (i.e. shared resource blocking time). Finally, few fea-

sibility tests for hierarchical architectures have also been implemented.

It is not possible to analyze all systems by feasibility tests, and some theo-

retical results are often known as being too pessimistic. That is why additional

techniques such as simulation are introduced.

Scheduling Simulation

Several classical scheduling algorithms are implemented in Cheddar scheduling

analyzer. Users may experiment classical schedulers such as RM, DM, EDF, LLF

or POSIX 1003 policies, both preemptive and non preemptive. Those algorithms

have been implemented in the context of uniprocessor scheduling and also in

the context of global multiprocessor scheduling

Scheduling simulations can be run for usual task models such as periodic,

aperiodic and sporadic. Tasks can be constrained by dependencies related to

shared resources, precedence or communication task relationships.

From an architecture model, various performance criteria can be extracted

from scheduling simulation: worst/best/average response time, probability dis-

tribution of response time, worst/best/average shared resource blocking time,

number of context switch or preemption, deadlock, priority inversion or specific

properties defined with a domain specific language.

Furthermore, specific schedulers or task models can also be specified with the

help of the Cheddar ADL. Those specific schedulers allow users to extend the

scheduling analysis capability without a deep understanding of Cheddar design

and implementation. This feature allows users to quickly adapt the scheduling

verification tool to their needs (i.e. implementing a scheduling method which

does not exist yet in Cheddar).

In the next section, we present the process of using an analysis feature in

Cheddar scheduling analyzer.

5.2.3 Use Process

The basic process of using Cheddar scheduling analyzer consists of three steps

illustrated in Figure 36.

119 of 168

cheddar framework

1. Design System

Model

2. Call Analysis

Features

3. Export

Data

A system model can

be represented in:

- Cheddar ADL: XML

- Cheddar ADL: AADL

or designed with:

- Ada

- Cheddar GUI

Analysis features can be

called by:

- Command-line interface.

- Cheddar GUI

Data can be exported in:

- Cheddar ADL: XML

- Cheddar ADL: AADL

Figure 36: Cheddar scheduling analyzer use process

Step 1: Design system model

A system model consists of the initialization and deployments of RTES compo-

nent models in Cheddar. As shown in Figure 36, Cheddar provides four methods

to design a system model.

• XML: Cheddar supports importing and also exporting a RTES architecture

model that is represented in XML.

• AADL : Cheddar supports importing and also exporting a RTES architec-

ture model that is represented in AADL [38].

• Ada: Users can manually create a system model by writing Ada class files.

However, the process could be tedious, error prone and not user-friendly.

• Cheddar GUI: Users can use the GUI to select, add, modify RTES compo-

nents to a system model. In addition, a system model can be saved by

exporting it in Cheddar ADL.

Step 2: Call analysis features

Analysis feature can be called by using a command line interface or Cheddar

GUI.

Step 3: Export Data

Cheddar supports exporting a system model and scheduling simulation result in

XML format. We provide an example of the exported system model that consists

of a processor and a core unit in Listing 4.

1 <?xml version="1.0" encoding="utf-8"?>

2 <cheddar>

120 of 168

cheddar framework

3 <core_units>

4 <core_unit id="id_66">

5 <object_type>CORE_OBJECT_TYPE</object_type>

6 ...

7 </core_unit>

8 </core_units>

9 <processors>

10 <mono_core_processor id="id_67">

11 <object_type>PROCESSOR_OBJECT_TYPE</object_type>

12 <name>CPU_01</name>

13 <processor_type>MONOCORE_TYPE</processor_type>

14 <migration_type>NO_MIGRATION_TYPE</migration_type>

15 <core ref="id_66">

16 </core>

17 </mono_core_processor>

18 </processors>

19 ...

20 </cheddar>

Listing 4: Cheddar ADL model of a processor in XML format

In the next section, we present the process of developing a new analysis feature

in Cheddar framework.

5.2.4 Development Process

The process of developing an analysis feature for a new system model in Ched-

dar framework consists of three steps.

Step 1: Extending Cheddar ADL

Cheddar ADL needs to be extended when there is new hardware or software

components that have to be taken into account during the analysis processes.

From the updated Cheddar ADL, the meta-workbench Platypus is used to gen-

erate Ada class files.

Step 2: Implementing analysis feature

An analysis feature such as a schedulability test, a optimization algorithm or a

priority assignment algorithm is added to Cheddar by programming Ada class

files. In addition, Cheddar provides support for user-defined scheduler in Ched-

dar ADL. User can define a specific scheduler in Cheddar ADL, which is simpler

121 of 168

cache access profile computation

and less error prone than manually implementing in Ada, and the corresponding

Ada code can be automatically produced and integrated in Cheddar.

Step 3: Updating Cheddar GUI and Data Parser

If a new analysis feature includes the use of a new RTES component model, the

GUI should be updated so that users can create this component.

Furthermore, a new RTES component model requires an update to the data

parser. Thanks to the model driven engineering process, functions and proce-

dures that read and export a component with its attributes are automatically

generated. However, the process of handling the data and attaching a compo-

nent to a system must be manually implemented.

In the next sections, we present the process of implementing CRPD analy-

sis features in Cheddar following the presented development process. For each

analysis feature, first, we provide a specification that describes the following

characteristics:

1. Purpose: the purpose of the analysis feature.

2. Input: the lists of input parameters required to perform the analysis.

3. Output: the result of the analysis.

4. Method: the theoretical method that the implementation of the analysis

feature is based on.

Second, we show how the RTES component models in Cheddar are extended.

Finally, we provide the implementation of the analysis feature in Ada. The fol-

lowing analysis features are implemented in Cheddar:

• Cache access profile computation.

• CRPD analysis for WCRT.

• CRPD-aware priority assignment algorithm

• CRPD-aware scheduling simulation.

5.3 cache access profile computation

In this section, we present the implementation of cache access profile computa-

tion in Cheddar framework. The specification of this analysis feature is described

as follows:

122 of 168

cache access profile computation

Purpose - Compute the cache access profile of a task. A cache access profiles

is represented by a set of UCBs and a set of ECBs.

Input - Cache configuration: cache size, line size and associativity.

- Memory layout: the position of the data and instruction of a task in

the main memory

- CFG of a task. In the CFG, the size and position in main memory

of each basic block and data used by each basic block are known

Output - Computed cache access profile. A cache access profile is repre-

sented by a set of UCBs and a set of ECBs

Method - The set of ECBs represents all the cache blocks used by a task [23].

This set is computed by taking into account the memory usage of

a task, memory layout, and cache memory configuration including

line size and associativity.

- The set of UCBs represents the cache blocks that are reused

by a program during its execution. This set is computed applying

the UCB computation algorithm presented in [52]. The algorithm

consists of two steps. First, it computes the cache blocks that are

used by each basic block in the CFG of a program. This step requires

information about the memory usage of each basic block and cache

memory configuration. Second, a data flow analysis technique is

applied in order to deduce the set of UCBs of each basic block.

Table 10: Summary of cache access profile computation

5.3.1 Extending Cheddar ADL

Implementation of cache access profile computation in Cheddar framework re-

quires extending the Cheddar ADL. As shown in Figure 34 and the specification

in Table 10, there are three input parameters required.

1. Cache configuration.

2. Memory layout.

3. Control flow graph.

Cache configuration is taken into account by extending Cheddar ADL model of

hardware components. Memory layout and control flow graph are taken into

account by extending Cheddar ADL model of software components. These ex-

tension are presented in two sections. For each section, we proceed by presenting

how the new RTES component models are linked to existing RTES component

123 of 168

cache access profile computation

models in Cheddar ADL. Then, the specifications of new RTES component mod-

els in Cheddar ADL and the generated Ada classes are provided.

Extending Cheddar ADL model of hardware components

Figure 37: Extended Cheddar ADL model of hardware components

The extended Cheddar ADL for hardware component model is illustrated in

Figure 37. Cache is linked to a core unit or a processor. A cache can belong to a

single core unit (L1 cache) or shared between core units (L2, L3 cache).

There are five entities added into the Cheddar ADL to support the modeling of

cache memory. The Cheddar ADL schema of these entities are given in Appendix

B - Listing 7.

The descriptions of added entities and their attributes are given below.

• Generic_Cache entity: a model of cache memory contains the following

attributes:

– cache_size: the size of a cache

– line_size: the size of a cache line.

– associativity: the associativity of a cache. If associativity is 1, the cache

is a direct-mapped cache. If associativity is higher than 1, the cache is

a set-associative cache.

124 of 168

cache access profile computation

– block_reload_time: the time it takes to load a memory block from main

memory to cache memory.

– replacement_policy: the replacement policy of cache lines. There are two

replacement policies: FIFO and LRU. Replacement policy is only ap-

plicable to set-associative cache.

– cache_category: a cache can be either data cache, instruction cache or

both.

– cache_blocks: a cache consists of a set of cache blocks.

• Cache_Block entity: a model of cache block.

– cache_block_number: a cache block number is used as the id of the cache

block.

• Instruction_Cache entity: a model of instruction cache.

• Data_Cache entity: a model of data cache.

– write_policy: a write policy describes the technique of updating the

data in the cache and in the main memory. The policies are presented

in Section 2.2.3.

• Data_Instruction_Cache entity: a model of cache memory that stores both

data and instruction of a program.

Extending Cheddar ADL model of software components

The extended Cheddar ADL model of software components is illustrated in Fig-

ure 38. Two new software components are linked to the existing task model in

Cheddar ADL: CFG and cache access profile.

There are five entities added into the Cheddar ADL to support modeling CFG

and cache access profile. The EXPRESS schema of these entities is given in Ap-

pendix B - Listing 8. The descriptions of added entities and their attributes are

given below.

• CFG entity: a control flow graph. A graph is modeled as a set of nodes and

directional edges.

– nodes: a set of CFG_node.

– edges: a set of CFG_edge.

• CFG_Node entity: a node of a control flow graph.

– graph_type: the type of the graph that a node belongs to. In Cheddar

framework, we support different graph types rather than just CFG;

however, this is not presented in this thesis.

– node_type: the type of a node that corresponds to its graph type.

125 of 168

cache access profile computation

Figure 38: Extended Cheddar ADL model of software components

• CFG_Edge entity: a directional edge of a control flow graph.

– node: head node.

– next_node: tail node.

• Basic_Block entity: an extended model of CFG_node that provides infor-

mation about the assembly instruction of a program. At the moment, our

analysis method takes into account direct mapped instruction cache be-

cause instruction cache access pattern is simpler to be computed/extracted

from the CFG of a program.

– instruction_offset: the position of the first assembly instruction of a ba-

sic block in the main memory.

– instruction_capacity: the size of the assembly instructions of a basic

block.

– loop_bound: the upperbound on the number of iterations of the loop

that a basic block belongs to.

• Cache_Access_Profile entity: a cache access profile is computed by apply-

ing data flow analysis technique in [52].

– UCBs: a set of cache_block that represents the UCBs of the cfg_node with

the highest number of UCBs.

– ECBs: a set of cache_block that represents the set of ECBs of a task.

126 of 168

cache access profile computation

5.3.2 Implement analysis features: cache access profile computation

Our tool analyzes and computes the set of UCBs and ECBs of a program. The

set of ECBs is computed by taking into account memory blocks accessed in the

execution of a program. In our models, position and size of assembly instructions

of each basic block are included. Knowing these data and associativity of the

cache, we can compute easily the set of ECBs.

The set of UCBs is computed applying the UCBs computation algorithm pre-

sented in [52]. The input of the algorithm is the CFG of a program. The set of

UCBs of each basic block is computed. The set of UCBs of the basic blocks with

highest number of UCBs is chosen to represent the set of UCBs of a program.

The signature of the procedure Compute_Cache_Access_Profile is given in Ap-

pendix C.

5.3.3 Implementation summary

A summary of the implementation of cache access profile computation in Ched-

dar framework is provided in Table 11.

Part Description Packages LoC

EXPRESS schema
Extended Cheddar ADL with new

RTES component models.
5 200

RTES component

model

Ada class files of RTES component

models generated by the

meta-workbench Platypus

10 2280

RTES component

handler

Handlers of new RTES component

models added in Cheddar

scheduling analyzer

14 3769

Analysis feature

implementation

- ECB computation algorithm

- UCB computation by data flow

analysis algorithm in [52]

2 1205

Table 11: Implementation of cache access profile computation in Cheddar framework

5.3.4 Experiments

We perform an experiment in order to demonstrate the use of the analysis feature.

In this experiment, first, we compute the cache access profiles of tasks. Second,

we compute the CRPD upperbound by the number of UCBs multiples with BRT.

This CRPD upperbound is then compared to the WCET of tasks. The programs

127 of 168

cache access profile computation

used in the experiment are taken from Malardalen benchmark suite [45]. They

are popular WCET benchmark programs, used to evaluate and compare different

types of WCET analysis tools and methods.

The analysis is performed for LEON V3 processor, clock speed 400 MHz, with

1 KB instruction cache and 16 bytes line size. BRT is 10 clock cycles. Data cache

is disabled. Each instruction of LEON processor is encoded on 32 bits.

Program WCET 1 w/o

cache (µs)

WCET 2 w/

cache (µs)

CRPD (µs) UCB

bs.c 6.1 4.5 0.35 14

fac.c 5.9 4.9 0.25 10

fdct.c 80.9 80.2 1.23 49

fibcall.c 8.1 4 0.18 7

insertsort.c 41.07 22.2 0.28 11

ns.c 545.3 273.3 0.50 20

prime.c 6.6 6.8 0.6 24

Table 12: Comparison of CRPD upperbound and WCET for tasks in Malardalen bench-

mark suite

The result of the analysis is shown in the Table 12. The first and second

columns are the WCETs of the programs without and with cache, respectively.

The data is obtained by using the WCET analysis feature of the aiT tool provided

by AbsInt (http://absint.com/ait). After the CFG is generated, we apply the

analysis method that computes the cache access profile of each program and

deduce the upper-bound CRPD by taking into account the program point with

the highest number of UCBs, which are displayed in the third and the fourth

column.

We notice that tasks bs.c and fibcall.c in the Table 12 have WCETs with a dif-

ference of 0.5 µs but the CRPD of bs.c is 0.35 µs compared to 0.18 µs of fibcall.c.

In some cases, it should be consider to reduce the overall response time of the

system.

From this result, first, we can see the substantial reduce in WCET of tasks

when the cache is enabled (except for prime.c). Second, we see that the impact of

CRPD on task WCET should not be excluded. We can see that the upper-bound

CRPD of one preemption varies from 1 % to 7 % of task WCET.

The computed cache access profile is used as an input parameters for the other

CRPD analysis methods implemented in Cheddar as shown in Figure 34. In the

next section, we present the implementation of CRPD analysis for WCRT.

128 of 168

http://absint.com/ait

crpd analysis for wcrt

5.4 crpd analysis for wcrt

In this section, we present the implementation of CRPD analysis for WCRT in

Cheddar framework. The specification of this analysis features is described as

follows:

Purpose - Compute the WCRT of each task in a task set while taking into

account the effect of CRPD in RTES with cache memory

Input - For each task in a task set, the following information is required:

• Capacity - WCET.

• Deadline

• Period

• Priority

• Cache access profile

Output - Computed WCRT of tasks

Method - The following CRPD analysis for WCRT methods, which are pre-

sented in Section 2.5.1, are implemented: ECB-Only [23]. , UCB-Only

[52]. , UCB-Union [79]. , ECB-Union [4]. , UCB-Union Multiset [4]. ,

ECB-Union Multiset [4]. , Combined Multiset [4].

Table 13: Summary of CRPD analysis for WCRT

5.4.1 Extending Cheddar ADL

CRPD analysis for WCRT methods presented in Section 2.5.1 are based on the no-

tions of UCB and ECB. In other words, they are compliant with the cache access

profile implemented in Cheddar framework. We do not need to extend Cheddar

ADL. The prerequisite of these techniques is that the cache access profile of all

task are computed.

5.4.2 Implementing analysis features: CRPD analysis for WCRT

CRPD analysis for WCRT techniques are based on extending Equation 5 that

computes the WCRT of a task in FPP scheduling context with CRPD computa-

tion.

Equation 5 was implemented in Cheddar as the procedure Compute_Response_Time.

The signature of this procedure is given in Appendix C.

129 of 168

crpd-aware priority assignment algorithm

5.4.3 Implementation Summary

A summary of the implementation of CRPD analysis for WCRT in Cheddar

framework is provided in Table 14.

Part Description Packages LoC

Analysis feature

implementation

- Implementation of CRPD

analysis methods for WCRT:

ECB-Only [23]. , UCB-Only [52] ,

UCB-Union Multiset [4] ,

ECB-Union Multiset [4] ,

Combined Multiset [4].

2 1060

Table 14: Implementation of CRPD analysis for WCRT in Cheddar framework

5.5 crpd-aware priority assignment algorithm

In this section, we present the implementation of CRPD-aware priority assign-

ment algorithm in Cheddar framework. The specification of this analysis feature

is described as follows:

Purpose - Assign priority to tasks of a task set and verify their feasibility

while taking into account the effect of CRPD

Input - For each task in a task set, the following information is required:

• Capacity - WCET

• Deadline

• Period

• Cache access profile

Output - Conclusion about the feasibility of tasks in the task set.

- If all tasks are feasible, each task is assigned a priority level.

Method - The implementation is based on our proposed CRPD-aware prior-

ity assignment algorithm presented in Chapter 3. The following algo-

rithms are implemented: CPA_ECB , CPA_PT , CPA_PT-Simplified ,

CPA_PT-Tree , CPA_PT-Combined

Table 15: Summary of CRPD-aware priority assignment.

130 of 168

crpd-aware scheduling simulation

5.5.1 Extending Cheddar ADL

The proposed CRPD-aware priority assignment algorithm uses the cache access

profiles that are compliant with the cache access profile implemented in Cheddar.

We do not need to extend Cheddar ADL.

5.5.2 Implementing analysis feature: CRPD-aware priority assignment algo-

rithm

We implemented our CRPD-aware priority assignment algorithm presented in

Chapter 3 in Cheddar. The CRPD-aware priority assignment algorithm is called

by using the procedure OPA_CRPD. The input of the procedure are a task set

and cache access profiles of tasks. A CRPD interference computation solution

can be chosen by setting the input variable "complexity". As presented in Section

3, there are five solutions with different levels of complexity and schedulable

task set coverage. The signature of the procedure CPA_CRPD in Appendix C

5.5.3 Implementation Summary

A summary of the implementation of CRPD-aware priority assignment in Ched-

dar framework is provided in Table 16.

Part Description Packages LoC

Analysis feature

implementation

Implementation of CRPD-aware

priority assignment algorithm:

CPA_ECB , CPA_PT ,

CPA_PT-Simplified , CPA_PT-Tree

, CPA_PT-Combined and OPA

8 2324

Table 16: Implementation of CRPD-aware priority assignment in Cheddar framework

5.6 crpd-aware scheduling simulation

In this section, we present the implementation of CRPD-aware scheduling sim-

ulation in Cheddar framework. The specification of this analysis feature is de-

scribed as follows:

131 of 168

crpd-aware scheduling simulation

Purpose - Scheduling simulation taking into account the effect of CRPD for

RTES with cache memory

Input - Scheduling policy

- For each task in a task set, the following information is required:

• Capacity - WCET

• Deadline

• Period

• Cache access profile

Output - Scheduling simulation event table. From this table, the following

information can be extracted.

• Number of deadline misses

• Number of preemptions

• Total preemption cost

• Per task preemption cost

• Cache state at each time unit

Method The implementation is based on our study on CRPD-aware schedul-

ing simulation presented in Chapter 4.

Table 17: Specification of CRPD-aware scheduling simulation.

5.6.1 Extending Cheddar ADL

The cache access profile used in our scheduling simulator is compliant with the

cache access profile implemented in Cheddar. We do not need to extend Cheddar

ADL components model.

5.6.2 Implementing analysis feature: CRPD-aware scheduling simulation

The scheduling simulator in Cheddar works as follows. First, a system archi-

tecture model, including hardware/software components, is loaded. Then, the

scheduling is computed by three successive steps: computing priority, inserting

ready task into queues and electing task [75]. The elected task will receive the

processor for the next unit of time.

The scheduling simulator records different events raised during the simula-

tion, such as task releases, task completions and shared resources lockings or

132 of 168

crpd-aware scheduling simulation

unlockings. The result of the scheduling analysis is the set of events produced at

simulation time.

The scheduling simulator of Cheddar is extended as follows. First, we ex-

tend the set of events Cheddar can produce. For example, an event PREEMP-

TION, which is raised when a preemption occurs, is added. Second, event RUN-

NING_TASK, which is raised when a task executes, is extended to take into

account the CRPD. CRPD can be computed by either FS-CRPD computation

model or FSC-CRPD computation model that are presented in Chapter 4.

5.6.3 Implementation summary

A summary of the implementation of CRPD-aware scheduling simulation in

Cheddar framework is provided in Table 18.

Part Description Packages LoC

Analysis feature

implementation

Extend the set of scheduler events

and events handler of Cheddar

scheduling analyzer

3 682

Table 18: Implementation of CRPD-aware scheduling simulation in Cheddar framework

5.6.4 Experiments and evaluation

In this section, we perform experiments to demonstrate that the implemented

scheduling simulator can handle parameters that are compliant with the exist-

ing work in [52], [23], [2]. In addition, we discuss about the dependency between

CRPD and scheduling parameters. Furthermore, we point out that our schedul-

ing simulator can run CRPD optimization techniques by taking an example of

memory layout optimization by simulated annealing following the work of [58].

We also provide performance and scalability tests of the scheduling simulator.

Experiments are performed with randomly generated task sets. The configu-

ration of our experiments is similar to the configuration presented in section 3.6,

which is based on the existing work in [4]. The CRPD computation model, which

is used for the experiments, is FS-CRPD.

Experiment 1: CRPD-aware scheduling simulation with priority assignment and proces-

sor utilization

In this experiment, we present CRPD-aware scheduling simulation with different

priority assignments, scheduling algorithms and processor utilization (PU). In

133 of 168

crpd-aware scheduling simulation

0

10

20

30

40

50

60

70

80

90

100

0

50

100

150

200

250

300

50 55 60 65 70 75 80 85 90 95

T
o

ta
l

C
R

P
D

 (
m

s)

N
u

m
b

er
 o

f
P

re
em

p
ti

o
n

Processor Utilization (%)

RM (#) EDF (#) PA*(#)

RM (CRPD) EDF (CRPD) PA*(CRPD)

Figure 39: Varying PU, RF=0.3

addition, we discuss about the impact of changing priority assignment/schedul-

ing algorithm and increasing PU to CRPD.

The configuration of this experiment is as follows. PU is varied from 50% to

95% in steps of 5%. RF is fixed at 0.3. For each value of PU, we perform schedul-

ing simulations with 100 task set and compute the average number of preemp-

tions and average total CRPD in a scheduling interval of 1000 ms. Experiments

are conducted with two priority assignment algorithms: Rate Monotonic (RM)

and another we called PA*, which assigns the highest priority level to the task

with the largest set of UCB. In addition, we take into account EDF scheduling

policy.

The result of this experiment is sketched in Fig. 39. As the graph illustrates,

the number of preemptions and the preemption cost increases steadily from the

processor utilization of 50% to 80%. After this point, there is a downward trend

in the preemption cost and in the number of preemptions of EDF while there is

an upward trend in those data for RM and PA*. Observed from the scheduler,

when PU is larger than 80%, many task sets are not schedulable.

In conclusion, first, when PU increases, the total number of preemption and

CRPD also increase. However, the change is not linear. Second, a priority assign-

ment algorithm with less number of preemptions tends to give lower total CRPD.

EDF and PA* generate less preemptions and CRPD than RM. In fact, to enforce

the fixed priority order, the number of preemptions that typically occurs with

RM is higher than that with EDF [25]. From this experiment, we see that CRPD

depends on the chosen priority assignment or scheduler.

In addition, this experiment shows that both scheduling analysis and CRPD

analysis should be performed jointly. PA*, a priority assignment taking CRPD

into account has a significant lower total CRPD. The decrease in total CRPD

of PA* with RM and EDF is roughly 30 ms on a scheduling interval of 1000

134 of 168

crpd-aware scheduling simulation

0

20

40

60

80

100

120

140

0

50

100

150

200

250

30 35 40 45 50 55 60 65 70

T
o

ta
l

C
R

P
D

 (
m

s)

N
u

m
b

er
 o

f
P

re
em

p
ti

o
n

Cache Reuse Factor (%)

RM (#) EDF(#) PA*(#)

RM (CRPD) EDF (CRPD) PA*(CRPD)

Figure 40: Varying RF, PU=0.7

ms. However, comparing to RM and EDF, feasibility constraints of tasks are not

respected with PA*, only total CRPD is reduced. In other words, the number of

tasks that missed deadline in PA* is higher than that of RM and EDF.

Experiment 2: CRPD-aware scheduling simulation with priority assignment and cache

reuse factor

In this experiment, we observe the change in the result of CRPD-aware schedul-

ing simulation when varying RF parameter instead of PU parameter. The con-

figuration of this experiment is similar to the first experiment, except that PU is

fixed at 0.7 and RF is varied from 0.3 to 0.7. For each value of RF, we perform

scheduling simulations with 100 task sets and compute the average number of

preemptions and average total CRPD in a scheduling interval of 1000 ms.

The result of this experiment is shown in Fig. 40. We get a similar observation

with the first experiment in terms of number of preemption and total CRPD

regarding those three priority assignment algorithms. However, when varying

RF, the change in number of preemption is less significant, with a maximum

difference of 50 preemptions; and the change in total CRPD is more significant,

with a maximum difference of 50 ms, than when varying PU (with maximum

difference of number of preemption and total CRPD are 150 preemptions and 35

ms, respectively).

To conclude, experiment 1 and 2 showed that our tool can perform scheduling

simulation of RTES with cache with various scheduling parameters and can be

used to study the dependencies amongst those parameters.

135 of 168

crpd-aware scheduling simulation

0

10

20

30

40

50

60

70

50 55 60 65 70 75 80 85 90 95

T
ot

al
 C

R
PD

 (
m

s)

Processor Utilization (%)

RM RM-SA

Figure 41: Total CRPD with and without memory layout optimization

Experiment 3: CRPD-aware scheduling simulation with memory layout optimization by

simulated annealing

The objective of this experiment is to show that users can perform CRPD opti-

mization approaches with our scheduling simulator. We apply memory layout

optimization by simulated annealing (SA) based on the work of [58] with our

generated task sets. In our experiment, the objective of SA is to lower the total

CRPD after a scheduling simulation over a scheduling interval of 1000 ms.

For each iteration of SA, we perform a swap in memory layout between two

random tasks. Changes are made to the layout of tasks in memory, and then

mapped to their cache layout for evaluation. The total CRPD is computed by

scheduling simulation. The optimum layout is the layout which has the lowest to-

tal CRPD. Initial temperature of SA is 1.0, and after every iteration, it is reduced

by multiplying it by a cooling rate of 0.5 until it reaches the target temperature

of 0.2. The number of iteration for each temperature is 10.

The result of this experiment is shown in Fig. 41. From the graph, we can

see the impact of memory layout optimization to total CRPD. We can reduce

roughly 30-50% of total CRPD. To sum up, this experiment shows that our tool

allows users to perform a specific optimization of CRPD for a given scheduling

algorithm.

Experiment 4: Performance/Scalability Analysis

The objective of this experiment is to evaluate the performance and the scalabil-

ity of the scheduling simulator when scheduling simulation interval increases.

In general, there are four factors affecting the performance of a scheduling sim-

136 of 168

implementation issues

0

2

4

6

8

10

12

14

16

10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

C
o

m
p

u
ta

ti
o

n
 T

im
e

(s
)

Simulation Interval (x10000)

Average Computation Time Max Computation Time

Figure 42: Computation time of the simulator

ulator: (1) the number of tasks, (2) the scheduling simulation interval, (3) the

cache size and (4) the number of events. The first three factors depend on the

chosen RTES model. The number of events depends on characteristics of the

RTES model; for example, a higher processor utilization means a higher number

of preemption events. In this experiment, we choose to test a RTES model of

10 tasks and 256 cache blocks. Processor utilization is set to 70 %. Scheduling

simulation is ranging from 100,000 to 1,000,000 units of time where 1 unit = 8µs.

Fig. 42 displays results of our experiment on a PC with Intel Core i5-3360

CPU, 4 GBs of memory, running Ubuntu 12.04. For each simulation interval,

100 task sets are generated. We perform scheduling simulation and compute the

maximum and average computation time.

As we can see, while maximum computation time increases slightly when

simulation interval increases, average computation time only fluctuates around

6 seconds. This shows that the tool is scalable when simulation interval is high.

5.7 implementation issues

Several issues were raised when implementing CRPD analysis features in Ched-

dar. Most of them are related to mixing timing specifications of different orders

of magnitude. Others are related to tools interoperability.

Mixing timing specifications of different orders of magnitude makes the com-

putation of the feasibility interval complex. Feasibility interval is required to

perform CRPD-aware scheduling simulation and CRPD-aware priority assign-

ment. In practice, cache block reload time is significantly smaller than period or

137 of 168

conclusions

capacity of a task. In Cheddar, we do not prescribe 1 unit of time is equivalent

to 1 ms or 1 µs, which are the granularity of task period and block reload time.

The scheduling simulation interval needed to verify the schedulability of a task

set could be significantly large if, for example, one µs is chosen as a time unit.

A solution in practice is to design systems with harmonic task sets in order to

minimize the feasibility interval; however, it is clearly not always possible. In

addition, instead of using 1 µs, we use the BRT as a base value for 1 unit of time

and round up the WCETs.

A large scheduling simulation interval also raises issues regarding perfor-

mance and scalability. Even with harmonic task sets, the tool must be able to

perform scheduling simulations in a large interval to overcome the difference

between cache block reload time and task period, which may be CPU and mem-

ory expensive. As Cheddar stores scheduling simulation results into XML files,

it can also be I/O intensive. To reduce memory and I/O overhead, we selected a

subset of events the simulator has to handle and store.

A second issue we were facing is about tool interoperability. The input data of

the CRPD analysis in our tool is designed to be compatible with data provided

by a WCET analysis tool. We also support data input in XML format, but, at the

moment, we do not enforce tool interoperability and we expect to investigate

WCET tools in order to overcome this issue.

5.8 conclusions

In this chapter, we presented the implementation of several CRPD analysis meth-

ods for RTES with cache in Cheddar framework and point out several implemen-

tation issues. Our implementation addressed CRPD analysis methods in the four

subjects:

• Cache access profile computation;

• CRPD analysis for WCRT;

• CRPD-aware scheduling simulation;

• CRPD-aware priority assignment.

Regarding analysis method of limiting CRPD, a complete implementation of an

analysis method is not supported in Cheddar framework. However, as shown in

Section 5.6.4, a memory layout optimization technique to limit CRPD was used

in tandem with our scheduling simulator.

Information about Cheddar and its analysis features can be found at: http:

//beru.univ-brest.fr/~singhoff/cheddar/. The source code of the presented

work is available under GNU GPL licence at http://beru.univ-brest.fr/svn/

CHEDDAR/branches/caches/src/.

138 of 168

http://beru.univ-brest.fr/~singhoff/cheddar/
http://beru.univ-brest.fr/~singhoff/cheddar/
http://beru.univ-brest.fr/svn/CHEDDAR/branches/caches/src/
http://beru.univ-brest.fr/svn/CHEDDAR/branches/caches/src/

Part III

C O N C L U S I O N

Chapter 6

C O N C L U S I O N

Contents

6.1 Contribution Summary . 141

6.2 Future Work . 143

The work presented in this thesis contributed to scheduling analysis of real-

time embedded systems RTES with cache memory. It was done with the idea that

the analysis of cache related preemption delays (CRPD) is essential for schedul-

ing of RTES. This is not a new idea, which has been proved by many existing

research work [23, 52, 82, 72, 4, 58, 67]. There are developed analysis methods for

fixed priority preemptive (FPP) scheduling and some basic analysis for dynamic

priority preemptive (DPP) scheduling. However, the focus has mainly been on

the computation of the worst-case response time WCRT and limiting CRPD. Fur-

thermore, up until now, it has not been possible to account for the effect of CRPD

when assigning priorities to tasks. In addition, there has not been only few work

to make use of scheduling simulation as a verification method for RTES with

cache memory.

6.1 contribution summary

The work in this thesis contributed in two domains of scheduling analysis of

RTES with cache memory by taking into account the effect of CRPD: priority as-

signment and scheduling simulation. In addition, we implemented several CRPD

analysis methods in a scheduling analysis tool which is available to the commu-

nity.

CRPD-aware priority assignment algorithm

Chapter 3 presented a CRPD-aware priority assignment algorithm based on Aud-

sley’s priority assignment [7] (OPA). The main advantage of our approach is that

141 of 168

contribution summary

it can detect early unschedulable task at a specific low priority level. This is es-

pecially useful when there are several tasks with similar periods but significant

different in cache utilization. With this approach, the schedulability of a task set

is verified in the process of assigning priorities to tasks. Schedulability verifica-

tion is provided by five solutions that are different in terms of complexity and

schedulable task set coverage.

There are several limitations of our approach that provide perspective for the

future works. The first limitation is that our proposed priority assignment algo-

rithm, which is based on OPA, is not optimal. OPA is known to be optimal if

several conditions are satisfied. However, the requirement cannot be met with

CRPD. At the moment, finding an optimal CRPD-aware priority assignment is

still an open issue. The second limitation of our approach is that the scalability

of the most efficient solution in terms of schedulable task set coverage is limited

by its complexity. To overcome this limitation, we need to increase the efficiency

of less complex solutions.

CRPD-aware scheduling simulation

Chapter 4 presented our study on CRPD-aware scheduling simulation. We inves-

tigate classical CRPD computation models used in scheduling simulation and

present existing issues regarding the pessimism of these models. Then, we dis-

cuss about the sustainability of scheduling simulation with classical CRPD com-

putation models. We explain the problem related to CRPD in sustainability anal-

ysis and the reason why CRPD-aware scheduling simulation is not sustainable

in general cases.

We propose a new CRPD computation model named FSC-CRPD to address

the previous issues. In this model, based on an observation from real system exe-

cution presented in [59], we take a new assumption that bounds the CRPD by the

executed capacity of a task. When this assumption holds, scheduling simulation

is less pessimistic and then becomes sustainable with regard to the capacity pa-

rameter. The conclusion about the sustainability of scheduling simulation with

FSC-CRPD allows us to prove the feasibility interval of our system model.

The established results allow the use of CRPD-aware scheduling simulation

as a verification method to evaluate the schedulability of periodic tasks. In addi-

tion, this work gives perspectives about in which cases CRPD-aware scheduling

simulation is sustainable and is not.

Available tool

The work in this thesis is made available in Cheddar - an open-source schedul-

ing analyzer. First, the architecture description language (ADL) of Cheddar is

142 of 168

future work

extended to allow the modeling of RTES with cache memory. Second, the follow-

ing CRPD analysis features are available in Cheddar:

• Cache access profile computation based on the notion of useful cache block

[52] (UCB) and evicting cache block (ECB) [23].

• CRPD analysis for WCRT approaches including ECB-Only [23], UCB-Only

[52], UCB-Union [79], ECB-Union [4], UCB-Union Multiset [4], ECB-Union

Multiset [4] and Combined Multiset [4].

• Our proposed CRPD-aware priority assignment algorithm

• CRPD-aware scheduling simulation with two CRPD computation models:

FS-CRPD and FSC-CRPD.

Cheddar is now a framework that allows modeling and scheduling analysis of

RTES with cache memory.

6.2 future work

The work presented in this thesis has addressed issues regarding priority assign-

ment and scheduling simulation of RTES with cache memory. Our plan is to

utilize the knowledge and experience learned to address the identified limita-

tions of our work in these two subjects.

Regarding the work presented in Chapter 3, our next objective is to employ

a CRPD optimization technique such as memory layout optimization [58] when

assigning priority to task. The idea is to integrate a CRPD optimization technique

in the CRPD-aware priority assignment algorithm to improve the percentage of

schedulability task set coverage.

In addition, in Chapter 4, we have not yet investigated the problem of CRPD-

aware scheduling simulation for tasks with arbitrary deadline. In this case, mod-

eling cache accesses and evaluating the number of UCB loaded into instruction

cache of a task could be complex because there are multiple jobs of this task are

released and executed. The general idea proposed in Chapter 5 was to compute

an upper-bound CRPD based on the previous scheduling at a given point in time.

This idea could be applied to study more complex system models and evaluate

other scheduling properties besides sustainability.

One the limitation of the work in Chapter 4 is the lack of actual comparison

between the proposed CRPD-aware scheduling simulation and real execution of

a practical system. Given a case study, we plan to perform scheduling simulation

and observe its execution on a hardware platform. However, designing facilities

that are needed to observe and analyze accesses to cache memory on a hardware

platform is a challenge.

143 of 168

future work

At the moment, the implementation of CRPD analysis methods in Cheddar

only supports simple cache architecture. An improvement to the tool would be

to take into account advanced cache architecture with multi-level of cache. Fur-

thermore, an improvement that could be made to the framework is to enforce

tool interoperability so that Cheddar ADL compatible control flow graph can be

generated by another timing analysis tool.

Finally, all the work in this thesis has focused on the effect of CRPD on a

single core processor. The next major improvement is to extend the proposed

approaches to multi-core processor. However, we have to take into account an

additional effect named cache related migration delay (CRMD), which occurs

when a task is migrated to a different processor thus its private cache is lose. In

this context, our approaches must be extended to take into account both CRPD

and CRMD.

144 of 168

Part IV

A P P E N D I X

Appendix A

A L G O R I T H M A N D P S E U D O C O D E

a.1 cpa-pt : crpd potential preemption computa-

tion

In this section, we present the algorithm that computes the number of potential

preempted task for each job in the set η. In chapter 3, the problem was presented

as follows: "given l− 1 jobs released in the [t1, tl), what is the maximum number of

incomplete jobs at a given time instant".

Example

First, we illustrate our solution with a simple example. We assume three jobs of

η[1], η[2], η[3] released at t1, t2, t3, t1 < t2 < t3. To facilitate the computation, for

job η[i], we construct an array Ai[]. The size of the array is an upper-bound on

the number of incomplete jobs. The elements of the array are time instants. At

time Ai[m], there is at least m jobs that are completed. Considering a job η[i+ 1]

released at time ti+1. By comparing ti+1 and Ai[m], we get the number of jobs

that are potentially preempted by η[i+ 1].

We consider η[1] released at time t1:

• At the beginning, the time t1 +C1 of τ1.

Array A1[] consists of 1 element.

1 A1[1] = t1 +C1

We consider η[2] released at time t2:

• If t2 > A1[1], η[2] potentially preempts 0 job.

• If t2 < A1[1], η[2] potentially preempts 1 job, which is τ1, with the preemp-

tion cost γθ2,2.

Assuming t2 < A1[1], array A2[] now consists of 2 elements.

147 of 168

cpa-pt : crpd potential preemption computation

1 A2[1] = max(t2 +C2,A1[1]).

2 A2[2] = A1[1] +C2 + γθ2,2

A2[1] is the time instant at which there is at least one job completed. If η[2]

is not the lowest priority job, then η[2] completes at time t2 +C2. If η[2] is

the lowest priority job, then η[1] completes at time A1[1] = t1 +C1.

A2[2] is the time instant at which two tasks are completed by assuming

that η[2] preempts η[1].

We consider η[3] released at time t3:

• If t3 > A2[2], η[2] potentially preempts 0 job.

• If A2[1] 6 t3 < A2[2], η[3] potentially preempts 1 job, with the preemption

cost γθ3,3.

• If t3 < A2[1], η[3] potentially preempts 2 job, with the preemption cost

γθ3,3.

The deduction process in this example can be generalized to a set of l− 1 jobs.

The algorithm for l− 1 is provided in the Appendix A.

Algorithm

We implement an iterative construction algorithm to solve the problem. This

algorithm starts from the first job of η set, η[1]. For each job after η[i], the algo-

rithm computes the number of potential preempted jobs, CRPD and the array

Ai[]. The number of potential preempted jobs of η[i] is computed by taking into

account the release time ti and the array Ai−1[]. Let ni−1 = Ai−1[].size denotes

the number of element of Ai−1[].

• If ti > Ai−1[ni−1], then all jobs released prior to η[i] have completed and

η[i] does not preempt any jobs.

• If Ai−1[ni−1 − 1] 6 tl < Ai−1[ni−1], then η[i] potentially preempts 1 job

out of ni−1 jobs.

• If Ai−1[ni−1 − 2] 6 tl < Ai−1[ni−1 − 1], then η[i] potentially preempts 2

jobs out of ni−1 jobs.

• if Ai−1[ni−1 −m] 6 tl < Ai−1[ni−1 − (m− 1)], then η[i] potentially pre-

empts m jobs of out ni−1 jobs.

The construction of array Ai[] is described as follows.

148 of 168

cpa-pt : crpd potential preemption computation

• Ai[1] is the time instant, which guarantees that there is at least 1 job com-

pleted by assuming that there is at least one job released and then executed

non-preemptively.

• Ai[ni] is the time instant, which guarantees that all jobs released before

η[i] are completed by assuming that all potential preemption occurs.

• Ai[k], 1 < k < ni is the time instant, which guarantees that there are k jobs

completed. There are two cases

– The job of η[i] is completed and k − 1 jobs released previously are

completed. It is given by the time to complete the remaining compu-

tational requirement of k− 1 jobs at time ti, the capacity of η[i] and

the potential CRPD created by η[i].

ti +max(0, ti −Ai−1[k− 1]) +Ci + γΘi,i

– The job of η[i] is not completed and k jobs released previously are

completed. This case is provided by Ai−1[k]

Ai[k] is computed as follows:

Ai[k] = max(ti +max(0, ti −Ai−1[k− 1]) +Ci + γΘi,i,Ai−1[k− 1])

1 CPA-PT(η)

2 begin

3 A1[1] = t1 +C1

4 for i in 2..η.size loop

5 n Ai−1.size

6 if ti > Ai−1[n] then

7 Ai[1] ti +Ci

8 γΘPT
i ,i 0

9 else if ti < Ai−1[m] then

10 |ΘPT
j | n−m

11 γΘPT
i ,i Get_CRPD(|ΘPT

j |)

12 Ai[1] max(ti +Ci,Ai−1[1])

13 for k in 2..n loop

14 Ai[k] max(

15 ti +max(0, ti −Ai−1[k− 1]) +Ci + γΘi,i,

16 Ai−1[k])

17 end loop

18 Ai[n+ 1] = Ai−1[n] +Ci + γΘPT
i ,i

19 end if

20 end

21 end

149 of 168

cpa-tree : tree computation

a.2 cpa-tree : tree computation

The algorithm of computing the tree composes of two parts. The first part han-

dles the decision of preemption at the release time of a job. The second part

handles the finding of the executing job at the release time of a job.

Compute Tree function

The first part takes into account the two decisions of the scheduler: allow pre-

emption and deny preemption. Assuming a job η[l], at tl the algorithm checks if

there is a job eta[k], tk 6 tl executing.

• If there is η[k], which is released, executing and not completed at tl, two

child nodes are added. This is the case of a potential preemption. One node

presents the case where the eta[l] preempted η[k] and one node presents

the case where η[l] does not preempt. Two decisions of the scheduler are

addressed: allow preemption and deny preempting.

• If there is a job η[k], which is released at the release time of η[l], i.e. two jobs

share a same release time, we add one sibling node..

• If there are no job executing, we add one child node to mark the release of

η[l].

Preemption cost is taken into account when the scheduler makes a decision

of allowing preemption. The set Θl is consists of all job η[k] previously released

and executed. This preemption cost is added to the remaining capacity of η[k].

Nested preemption is considered by updating the remaining capacity of every

preempted jobs.

The task-level priorities of jobs are set according to the decisions of the sched-

uler. Before making any decisions, the scheduler checks if there are any policies

violated. The algorithm finishes when all jobs are assessed. In the end, each end

node of a branch presents total interference caused by η in an interval. The in-

terference consists of the computational requirement of the jobs and preemption

cost corresponding to the decisions of the scheduler.

If the task-level priority of a job is not assigned, all possible decisions of the

scheduler are made. Then, the implicit priority corresponding to each decision

is stored in each branch. For example, in the branch where a job of τj preempted

a job of τk, Πj > Πk. In case there are several policies, transitivity is needed to be

taken into account. Considering this problem as find the existing path between

two nodes in a graph, transitive closure [87] is used to solve this issue.

The algorithm of computing the tree is as follows.

1 Compute_Tree(η, j)

2 begin

3 if exist η[k] executing then

150 of 168

event handlers for scheduling simulation with fs-crpd

4 if η[j] can preempt η[k] then

5 add child node η[j]

6 set Πj > Pik

7 Compute_Tree(η, j+1)

8 end if

9 if η[k] can continue execution then

10 add child node η[k]

11 set Πk > Πj

12 Compute_Tree(η, j+1)

13 end if

14 end if

15 if no job executing then

16 add child node η[j]

17 Compute_Tree(η, j+1)

18 end if

19 end

a.3 event handlers for scheduling simulation with

fs-crpd

The pseudo code of the event handler regarding FS-CRPD computation model is

written below. The notation τi.cUCB represents the set of UCBs of task τi in the

cache. It is computed from a system model at scheduling simulation time. The

function Remove() at line 8 is used to remove elements from a set.

1 event SCHED_START

2 for each task τi loop

3 τi.cUCB τi.UCB

4 end loop

5 event PREEMPTION

6 τj preempting_task

7 for each task τi preempted loop

8 τi.cUCB Remove(τi.cUCB, τj.ECB)

9 end loop

10 event RUNNING_TASK

11 τi executing_task

12 CRPD (τi.UCB - τi.cUCB) * Miss_Time

13 τi.cUCB τi.UCB

Listing 5: Extended event handlers regarding FS-CRPD computation model

151 of 168

event handlers for scheduling simulation with fsc-crpd

The event handler is described as follows. At the start of the scheduling simu-

lation, a SCHED_START event is raised. WCET of a task is assumed to include

the cache intrinsic interference when the task is executed non-preemptively. So,

on event SCHED_START, the set of UCBs of a task is assumed to be filled. In

other words, the set of UCBs of task τi in the cache is equal to its set of UCBs.

We can see that at line 3, τi.cUCB is set to be equal to τi.UCB.

When a preemption occurs, a PREEMPTION event is raised and the simulator

computes the evicted UCBs of preempted tasks by taking into account the ECBs

of the preempting task. The scheduler keeps track of the number of UCBs in

the cache of each task. We can see that at line 8, elements in the set τi.cUCB

is removed if they are also in the set τj.ECB. At this event, the CRPD is not

computed yet.

When a task executes, a RUNNING_TASK event is raised. The scheduler first

checks if all the UCBs of this task are loaded into the cache. If so, the task contin-

ues its execution. If not, the task reloads the evicted UCBs. The CRPD is added

to the remaining capacity of the task itself. In our implementation, CRPD is not

added to the capacity of preempted tasks at the preemption point but at the

instant, of which those tasks resume execution.

In FS-CRPD computation model, it is assumed that any partial execution of a

task uses all its UCBs and ECBs. As a result, the CRPD is computed by taking

into account the number of evicted UCBs multiplies with BRT, as we can see at

line 12.

a.4 event handlers for scheduling simulation with

fsc-crpd

The pseudo code of the event handler regarding FSC-CRPD computation model

is written below. It is an extension of the event handler for FS-CRPD computation

model. The parameter ρi, which represents the actual number of UCBs loaded

into the cache, is taken into account.

In the event SCHED_START, ρi is set to 0. In the event PREEMPTION, there is

no update made to ρi. In the event RUNNING_TASK, the CRPD is computed by

taking into account both the number of evicted UCBs and ρi. In addition, ρi is

increased by UN, that represent the number of UCBs loaded into the cache per

unit of execution.

14 event SCHED_START

15 for each task τi loop

16 τi.cUCB τi.UCB

17 ρi 0

18 event PREEMPTION

152 of 168

event handlers for scheduling simulation with fsc-crpd

19 τj preempting_task

20 for each task τi preempted loop

21 τi.cUCB Remove(τi.cUCB, τj.ECB)

22 event RUNNING_TASK

23 τi executing_task

24 CRPD min((τi.UCB - τi.cUCB),ρi) * BRT

25 ρi max((ρi - (τi.UCB - τi.cUCB)),0))

26 τi.cUCB τi.UCB

27 ρi ρi +UN

Listing 6: Extended event handlers regarding FSC-CRPD computation model

153 of 168

Appendix B

E X P R E S S S C H E M A

b.1 express schema of cache memory

1 SCHEMA Caches;

2 ENTITY Generic_Cache

3 SUBTYPE OF (Named_Object);

4 cache_size : Natural;

5 line_size : Natural;

6 associativity : Natural;

7 block_reload_time : Natural;

8 replacement_policy : Cache_Replacement_Policy_Type;

9 cache_category : Cache_Type;

10 cache_blocks : Cache_Blocks_Table;

11 END_ENTITY;

12

13 ENTITY Data_Cache

14 SUBTYPE OF (Generic_Cache);

15 write_policy : Write_Policy_Type;

16 END_ENTITY;

17

18 ENTITY Instruction_Cache

19 SUBTYPE OF (Generic_Cache);

20 END_ENTITY;

21

22 ENTITY Data_Instruction_Cache

23 SUBTYPE OF (Generic_Cache);

24 write_policy : Write_Policy_Type;

25 END_ENTITY;

26

27 ENTITY Cache_Block

28 SUBTYPE OF (Named_Object);

155 of 168

express schema of cfg and cache access profile

29 cache_block_number : Natural;

30 END_ENTITY;

31 END_SCHEMA;

Listing 7: EXPRESS schema of cache memory

b.2 express schema of cfg and cache access pro-

file

1 ENTITY CFG

2 nodes : CFG_Nodes_Table;

3 edges : CFG_Edges_Table;

4 END ENTITY;

5 ENTITY CFG_Node

6 graph_type : CFG_Graph_Type;

7 node_type : CFG_Node_Type;

8 END_ENTITY;

9

10 ENTITY CFG_Edge

11 node : STRING;

12 next_node : STRING;

13 END_ENTITY;

14

15 ENTITY Basic_Block

16 SUBTYPE OF (CFG_Node);

17 instruction_offset : INTEGER;

18 instruction_capacity : INTEGER;

19 data_offset : INTEGER;

20 data_capacity : INTEGER;

21 loop_bound : INTEGER;

22 DERIVE

23 SELF\CFG_Node.graph_type : CFG_Graph_Type := CFG_Basic_Block;

24 END_ENTITY;

25

26 ENTITY Cache_Access_Profile

27 UCBs : Cache_Blocks_Table;

28 ECBs : Cache_Blocks_Table;

29 END ENTITY;

Listing 8: EXPRESS schema of CFG and cache access profile

156 of 168

Appendix C

M E T H O D S I G N AT U R E

c.1 procedure compute_cache_access_profile

1 procedure Compute_Cache_Access_Profile

2 (Sys : in out System;

3 Task_Name : in Unbounded_String;

4 A_Cache_Access_Profile : out Cache_Access_Profile_Ptr);

Listing 9: Procedure Compute_Cache_Access_Profile

There are two input parameters:

• Sys: Sys is a container object that contains all created software and hard-

ware components. Cache configuration, memory layout, tasks and control

flow graphs are included.

• Task_Name: The name of the task that the cache access profile is computed.

In Cheddar, Task_Name is unique and acts as an identifier of a task.

The output parameter is the computed cache access profile.

c.2 procedure compute_response_time

This procedure is extended to take into account CRPD computation. The method

signature of the procedure Compute_Response_Time is given below:

1 procedure Compute_Response_Time

2 (My_Scheduler : in Fixed_Priority_Scheduler;

3 My_Tasks : in out Tasks_Set;

4 Processor_Name : in Unbounded_String;

5 Msg : in out Unbounded_String;

6 Response_Time : out Response_Time_Table;

7 With_CRPD : in Boolean := false;

157 of 168

procedure cpa_crpd

8 CRPD_Computation_Approach : in CRPD_Computation_Approach_Type;

9 Block_Reload_Time : in Natural := 0;

10 My_Cache_Access_Profiles : in Cache_Access_Profiles_Set);

Listing 10: Procedure Compute_Response_Time

This procedure computes the WCRT of all tasks in a given processor. There are

eights input parameters.

• My_Scheduler: The scheduler that is used to schedule tasks. It must be a

fixed priority scheduler.

• My_Tasks: The set of tasks that the WCRTs are computed.

• Processor_Name: The name of the processor that tasks are assigned to.

• With_CRPD: A boolean parameter indicates that the WCRT computation

takes into account CRPD or not.

• CRPD_Computation_Approach: A parameter indicate which CRPD analysis

for WCRT technique is used.

• Block_Reload_Time: The block reload time of the cache.

• My_Cache_Access_Profiles: The cache access profiles of tasks that the WCRT

are computed.

There are two output parameters:

• Msg: A message is returned to higher function call.

• Response_Time: A table contains the computed WCRTs of tasks.

c.3 procedure cpa_crpd

1 type CRPD_Inteference_Computation_Complexity is

2 (ECB_Only,

3 PT_Simplified,

4 PT_Binomial_Coefficient,

5 Tree,

6 Combined);

7

8 procedure CPA_CRPD

9 (my_tasks : in out Tasks_Set;

10 my_cache_access_profiles : in Cache_Access_Profiles_Set;

11 complexity : in CRPD_Inteference_Computation_

Complexity);

158 of 168

procedure cpa_crpd

There are three input parameters:

• my_tasks: a set of tasks with unassigned priorities.

• my_cache_access_profiles: cache access profiles of the tasks in the set.

• complexity: a parameter indicates which CRPD interference computation

approach is used. It is an enumeration types with five options.

There is one output parameter:

• my_tasks: a set of tasks with assigned priorities.

An exception NO_FEASIBLE_PRIORITY_ASSIGNMENT is raised if the algo-

rithm cannot find a priority ordering that makes the task set schedulable.

159 of 168

B I B L I O G R A P H Y

[1] S. Altmeyer, R. Douma, W. Lunniss, and R. I. Davis. Outstanding paper:

Evaluation of cache partitioning for hard real-time systems. In 2014 26th

Euromicro Conference on Real-Time Systems, pages 15–26, 2014.

[2] Sebastian Altmeyer and Claire Maiza Burguière. Cache-related preemption

delay via useful cache blocks: Survey and redefinition. Journal of Systems

Architecture, 57(7):707–719, 2011.

[3] Sebastian Altmeyer, Robert I. Davis, and Claire Maiza. Cache related pre-

emption delay aware response time analysis for fixed priority pre-emptive

systems. In Proceedings of the 2011 IEEE 32nd Real-Time Systems Symposium,

pages 261–271, 2011.

[4] Sebastian Altmeyer, Robert I Davis, and Claire Maiza. Improved cache re-

lated pre-emption delay aware response time analysis for fixed priority pre-

emptive systems. Real-Time Systems, 48(5):499–526, 2012.

[5] Sebastian Altmeyer, Roeland Douma, Will Lunniss, and Robert I Davis. On

the effectiveness of cache partitioning in hard real-time systems. Real-Time

Systems, pages 1–46, 2015.

[6] Neil Audsley, Alan Burns, Rob Davis, Ken Tindell, and Andy Wellings. Real-

time system scheduling. Springer Berlin Heidelberg, 1995.

[7] Neil C Audsley. Optimal priority assignment and feasibility of static priority

tasks with arbitrary start times. In Technical Report YCS 164, Dept. Computer

Science. University of York, UK, 1991.

[8] Brian Bailey and Grant Martin. Processor-Centric Design: Processors, Multi-

Processors, and Software, pages 225–272. Springer US, Boston, MA, 2010.

[9] Aloysius K. Mok Baruah, Sanjoy K. and Louis E. Rosier. Preemptively

scheduling hard-real-time sporadic tasks on one processor. In Proceedings

11th Real-Time Systems Symposium, pages 182–190, 1990.

[10] Sanjoy K Baruah. Dynamic and static priority scheduling of recurring real-

time tasks. Real-Time Systems, 24(1):93–128, 2003.

161 of 168

bibliography

[11] Andrea Bastoni, Bjorn B Brandenburg, and James H Anderson. Is semi-

partitioned scheduling practical? In 23rd Euromicro Conference on Real-Time

Systems, pages 125–135. IEEE, 2011.

[12] Swagato Basumallick and Kelvin Nilsen. Cache issues in real-time systems.

In ACM SIGPLAN Workshop on Language, Compiler, and Tool Support for Real-

Time Systems, volume 5, 1994.

[13] Mordechai Ben-Ari. Principles of concurrent and distributed programming. Pear-

son Education, 2006.

[14] Marko Bertogna, Orges Xhani, Mauro Marinoni, Francesco Esposito, and

Giorgio Buttazzo. Optimal selection of preemption points to minimize pre-

emption overhead. In 23rd Euromicro Conference on Real-Time Systems, pages

217–227. IEEE, 2011.

[15] Enrico Bini and Giorgio C Buttazzo. Measuring the performance of schedu-

lability tests. Real-Time Systems, 30(1-2):129–154, 2005.

[16] Grady Booch, James Rumbaugh, and Ivar Jacobson. The Unified Modeling

Language User Guide. Addison Wesley Longman Publishing Co., Inc., 1999.

[17] Etienne Borde, Smail Rahmoun, Fabien Cadoret, Laurent Pautet, Frank

Singhoff, and Pierre Dissaux. Architecture models refinement for fine grain

timing analysis of embedded systems. In 2014 25nd IEEE International Sym-

posium on Rapid System Prototyping, pages 44–50. IEEE, 2014.

[18] R. J. Bril, J. J. Lukkien, and W. F. J. Verhaegh. Worst-case response time analy-

sis of real-time tasks under fixed-priority scheduling with deferred preemp-

tion revisited. In 19th Euromicro Conference on Real-Time Systems (ECRTS’07),

pages 269–279, July 2007.

[19] Alan Burns. Preemptive priority-based scheduling: An appropriate engi-

neering approach. In Advances in Real-Time Systems, chapter 10, pages 225–

248. Prentice Hall, 1994.

[20] Alan Burns and Sanjoy Baruah. Sustainability in real-time scheduling. Jour-

nal of Computing Science and Engineering, 2(1):74–97, 2008.

[21] Alan Burns and Andy Wellings. Concurrent and Real-Time Programming in

Ada. Cambridge University Press, 2007.

[22] Alan Burns, Ken Tindell, and Andy Wellings. Effective analysis for engi-

neering real-time fixed priority schedulers. IEEE Transactions on Software

Engineering, 21(5):475–480, 1995.

162 of 168

bibliography

[23] José V Busquets-Mataix, Juan José Serrano, Rafael Ors, Pedro Gil, and Andy

Wellings. Adding instruction cache effect to schedulability analysis of pre-

emptive real-time systems. In Proceedings of the 2nd IEEE Real-Time Technol-

ogy and Applications Symposium (RTAS), pages 204–212, 1996.

[24] Giorgio Buttazzo, Giuseppe Lipari, Luca Abeni, and Marco Caccamo. Soft

Real-Time Systems: Predictability vs. Efficiency (Series in Computer Science).

Plenum Publishing Co., 2005.

[25] Giorgio C Buttazzo. Rate monotonic vs. edf: judgment day. Real-Time Sys-

tems, 29(1):5–26, 2005.

[26] Fabien Cadoret, Etienne Borde, Sebastien Gardoll, and Laurent Pautet. De-

sign patterns for rule based refinement of safety critical embedded systems

models, 2012.

[27] Younès Chandarli, Frédéric Fauberteau, Damien Masson, Serge Midonnet,

Manar Qamhieh, et al. Yartiss: A tool to visualize, test, compare and eval-

uate real-time scheduling algorithms. In Proceedings of the 3rd International

Workshop on Analysis Tools and Methodologies for Embedded and Real-time Sys-

tems, pages 21–26, 2012.

[28] Maxime Chéramy, Anne-Marie Déplanche, Pierre-Emmanuel Hladik, et al.

Simulation of real-time multiprocessor scheduling with overheads. In Inter-

national Conference on Simulation and Modeling Methodologies, Technologies and

Applications (SIMULTECH), 2013.

[29] Maxime Chéramy, Pierre-Emmanuel Hladik, and Anne-Marie Déplanche.

Simso: A simulation tool to evaluate real-time multiprocessor scheduling

algorithms. In 5th International Workshop on Analysis Tools and Methodologies

for Embedded and Real-time Systems (WATERS), 2014.

[30] Maxime Chéramy, Pierre-Emmanuel Hladik, Anne-Marie Déplanche, and

Silvano Dal Zilio. Simulation of real-time scheduling algorithms with cache

effects. In 6th International Workshop on Analysis Tools and Methodologies for

Embedded and Real-time Systems, 2015.

[31] Houssine Chetto, Maryline Silly, and T Bouchentouf. Dynamic scheduling

of real-time tasks under precedence constraints. Real-Time Systems, 2(3):181–

194, 1990.

[32] Liliana Cucu-Grosjean and Joël Goossens. Exact schedulability tests for real-

time scheduling of periodic tasks on unrelated multiprocessor platforms.

Journal of systems architecture, 57(5):561–569, 2011.

163 of 168

bibliography

[33] Robert I Davis and Alan Burns. Robust priority assignment for fixed priority

real-time systems. In Proceedings of the 28th IEEE International Real-Time

Systems Symposium (RTSS), pages 3–14, 2007.

[34] Robert I Davis, Liliana Cucu-Grosjean, Marko Bertogna, and Alan Burns.

A review of priority assignment in real-time systems. Journal of systems

architecture, 65:64–82, 2016.

[35] Michael L Dertouzos and Aloysius Ka-Lau Mok. Multiprocessor online

scheduling of hard-real-time tasks. IEEE Transactions on Software Engineering,

15(12):1497–1506, 1989.

[36] Pierre Dissaux, Olivier Marc, Stéphane Rubini, Christian Fotsing, Vincent

Gaudel, Frank Singhoff, Alain Plantec, Vuong Nguyen-Hong, and Hai Nam

Tran. The SMART project: Multi-agent scheduling simulation of real-time

architectures. Embedded Real Time Software and Systems, 2014.

[37] Dipti Diwase, Shraddha Shah, Tushar Diwase, and Priya Rathod. Survey

report on memory allocation strategies for real time operating system in

context with embedded devices. IJERA Internet Computing [Online], 2(3):

1151–1156, 2012.

[38] Peter H. Feiler, David P. Gluch, and John J. Hudak. The architecture analysis

& design language (AADL): an introduction. Technical report, Software

Engineering Institute, Pittsburgh, 2006.

[39] Gerhard Fohler. How different are offline and online scheduling? Real-Time

Scheduling Open Problems Seminar, 2011.

[40] Christian Fotsing, Frank Singhoff, Alain Plantec, Vincent Gaudel, Stéphane

Rubini, Shuai Li, Hai Nam Tran, Laurent Lemarchand, Pierre Dissaux, and

Jérôme Legrand. Cheddar architecture description language. Lab-STICC

technical report, 2014.

[41] Gernot Gebhard and Sebastian Altmeyer. Optimal task placement to im-

prove cache performance. In Proceedings of the 7th ACM & IEEE international

conference on Embedded software, pages 259–268. ACM, 2007.

[42] M González Harbour, JJ Gutiérrez García, JC Palencia Gutiérrez, and

JM Drake Moyano. Mast: Modeling and analysis suite for real time ap-

plications. In Real-Time Systems, 13th Euromicro Conference on, 2001., pages

125–134. IEEE, 2001.

[43] Joël Goossens and Raymond Devillers. The non-optimality of the mono-

tonic priority assignments for hard real-time offset free systems. Real-Time

Systems, 13(2):107–126, 1997.

164 of 168

bibliography

[44] Rick Grehan, Ingo Cyliax, and Robert Moote. Real-Time Programming: A

Guide to 32-Bit Embedded Development with Cdrom. Addison-Wesley Longman

Publishing Co., Inc., Boston, MA, USA, 1st edition, 1998. ISBN 0201485400.

[45] Jan Gustafsson, Adam Betts, Andreas Ermedahl, and Björn Lisper. The

mälardalen wcet benchmarks: Past, present and future. In WCET, pages

136–146, 2010.

[46] Steve Heath. Embedded systems design. Newnes, 2002.

[47] Rafik Henia, Arne Hamann, Marek Jersak, Razvan Racu, Kai Richter, and

Rolf Ernst. System level performance analysis the symta/s approach. IEEE

Proceedings-Computers and Digital Techniques, 152(2):148–166, 2005.

[48] John L Hennessy and David A Patterson. Computer architecture: a quantitative

approach. Elsevier, 2011.

[49] Rafia Inam, Jukka Mäki-Turja, Mikael Sjödin, Seyed MH Ashjaei, and Sara

Afshar. Support for hierarchical scheduling in freertos. In Emerging Tech-

nologies & Factory Automation (ETFA), 2011 IEEE 16th Conference on. IEEE,

2011.

[50] Bruce Jacob, Spencer Ng, and David Wang. Memory systems: cache, DRAM,

disk. Morgan Kaufmann, 2010.

[51] Mathai Joseph and Paritosh Pandya. Finding response times in a real-time

system. The Computer Journal, 29(5):390–395, 1986.

[52] Chang-Gun Lee, Hoosun Hahn, Yang-Min Seo, Sang Lyul Min, Rhan Ha,

Seongsoo Hong, Chang Yun Park, Minsuk Lee, and Chong Sang Kim. Anal-

ysis of cache-related preemption delay in fixed-priority preemptive schedul-

ing. IEEE Transactions on Computers, 47(6):700–713, 1998.

[53] Insup Lee, Joseph YT Leung, and Sang H Son. Handbook of real-time and

embedded systems. CRC Press, 2007.

[54] Joseph Y-T Leung and ML Merrill. A note on preemptive scheduling of

periodic, real-time tasks. Information processing letters, 11(3):115–118, 1980.

[55] Joseph Y-T Leung and Jennifer Whitehead. On the complexity of fixed-

priority scheduling of periodic, real-time tasks. Performance evaluation, 2(4):

237–250, 1982.

[56] Chuanpeng Li, Chen Ding, and Kai Shen. Quantifying the cost of context

switch. In Proceedings of the 2007 workshop on Experimental computer science.

ACM, 2007.

165 of 168

bibliography

[57] Chung Laung Liu and James W Layland. Scheduling algorithms for multi-

programming in a hard-real-time environment. Journal of the ACM (JACM),

20(1):46–61, 1973.

[58] Will Lunniss, Sebastian Altmeyer, and Robert I Davis. Optimising task lay-

out to increase schedulability via reduced cache related pre-emption delays.

In Proceedings of the 20th ACM International Conference on Real-Time and Net-

work Systems, pages 161–170, 2012.

[59] William Richard Elgon Lunniss. Cache Related Pre-emption Delays in Embedded

Real-Time Systems. PhD thesis, University of York, 2014.

[60] James Thomas Martin. Programming real-time computer systems. Englewood

Cliffs, N.J. : Prentice-Hall, 1965.

[61] Miguel Masmano, Ismael Ripoll, and Alfons Crespo. Dynamic storage allo-

cation for real-time embedded systems. Proc. of Real-Time System Simposium

WIP, 2003.

[62] Richard L. Mattson, Jan Gecsei, Donald R. Slutz, and Irving L. Traiger. Eval-

uation techniques for storage hierarchies. IBM Systems journal, 9(2):78–117,

1970.

[63] Andreas Menychtas, Dimosthenis Kyriazis, and Konstantinos Tserpes. Real-

time reconfiguration for guaranteeing qos provisioning levels in grid envi-

ronments. Future Generation Computer Systems, 25(7):779 – 784, 2009. ISSN

0167-739X.

[64] José Carlos Palencia and M González Harbour. Schedulability analysis for

tasks with static and dynamic offsets. In Real-Time Systems Symposium, 1998.

Proceedings., The 19th IEEE, pages 26–37. IEEE, 1998.

[65] Rodolfo Pellizzoni and Marco Caccamo. Toward the predictable integra-

tion of real-time cots based systems. In 28th International Real-Time Systems

Symposium (RTSS), pages 73–82. IEEE, 2007.

[66] Bo Peng, Nathan Fisher, and Marko Bertogna. Explicit preemption place-

ment for real-time conditional code. In Proceedings of the 2014 Agile Confer-

ence, AGILE ’14, pages 177–188, Washington, DC, USA, 2014. IEEE Com-

puter Society. ISBN 978-1-4799-5798-9.

[67] Guillaume Phavorin, Pascal Richard, Joël Goossens, Thomas Chapeaux, and

Claire Maiza. Scheduling with preemption delays: anomalies and issues.

In Proceedings of the 23rd International Conference on Real Time and Networks

Systems, pages 109–118. ACM, 2015.

[68] Michael Pidd. Computer simulation in management science. 1998.

166 of 168

bibliography

[69] Ricardo C Pinto and José Rufino. Towards non-invasive run-time verifica-

tion of real-time systems. In 26th Euromicro Conf. on Real-Time Systems-WIP

Session, pages 25–28, 2014.

[70] Alain Plantec and Frank Singhoff. Refactoring of an ada 95 library with a

meta case tool. In ACM SIGAda Ada Letters, volume 26, pages 61–70. ACM,

2006.

[71] José Rufino, Sergio Filipe, Manuel Coutinho, Sérgio Santos, and James

Windsor. Arinc 653 interface in rtems. In Proc. DASIA, 2007.

[72] Filip Sebek. Cache memories and real-time systems. MRTC Technincal Re-

port, 1:37, 2001.

[73] Lui Sha, Tarek Abdelzaher, Karl-Erik Arzen, Anton Cervin, Theodore Baker,

Alan Burns, Giorgio Buttazzo, Marco Caccamo, John Lehoczky, and Aloy-

sius K. Mok. Real time scheduling theory: A historical perspective. Real-

Time Systems, 28(2-3):101–155, Nov-Dec, 2004.

[74] Kang G Shin and Parameswaran Ramanathan. Real-time computing: A new

discipline of computer science and engineering. Proceedings of the IEEE, 82

(1):6–24, 1994.

[75] Frank Singhoff, Jérôme Legrand, Laurent Nana, and Lionel Marcé. Cheddar:

a flexible real time scheduling framework. In ACM SIGAda Ada Letters,

volume 24, pages 1–8, 2004.

[76] John A Stankovic. Misconceptions about real-time computing: A serious

problem for next-generation systems. Computer, (10):10–19, 1988.

[77] Jan Staschulat and Rolf Ernst. Scalable precision cache analysis for preemp-

tive scheduling. In ACM SIGPLAN Notices, volume 40, pages 157–165. ACM,

2005.

[78] Jan Staschulat, Simon Schliecker, and Rolf Ernst. Scheduling analysis of

real-time systems with precise modeling of cache related preemption delay.

In Proceedings of the 17th Euromicro Conference on Real-Time Systems (ECRTS),

pages 41–48, 2005.

[79] Yudong Tan and Vincent Mooney. Timing analysis for preemptive multitask-

ing real-time systems with caches. ACM Transactions on Embedded Computing

Systems (TECS), 6(1):7, 2007.

[80] Henrik Theiling, Christian Ferdinand, and Reinhard Wilhelm. Fast and

precise wcet prediction by separated cache and path analyses. Real-Time

Systems, 18(2-3):157–179, 2000.

167 of 168

bibliography

[81] Ken Tindell and John Clark. Holistic schedulability analysis for distributed

hard real-time systems. Microprocessing and microprogramming, 40(2-3):117–

134, 1994.

[82] Hiroyuki Tomiyama and Nikil D Dutt. Program path analysis to bound

cache-related preemption delay in preemptive real-time systems. In Proceed-

ings of the eighth international workshop on Hardware/software codesign, pages

67–71. ACM, 2000.

[83] Hai-Nam Tran, Frank Singhoff, Stéphane Rubini, and Jalil Boukhobza. Ad-

dressing cache related preemption delay in fixed priority assignment. In

IEEE 20th Conference on Emerging Technologies & Factory Automation (ETFA).

IEEE, 2015.

[84] Richard Urunuela, A Deplanche, and Yvon Trinquet. Storm, a simulation

tool for real-time multiprocessor scheduling evaluation. In Proceeding of the

15th Conference on Emerging Technologies and Factory Automation (ETFA). IEEE,

2010.

[85] Steve Vestal. Preemptive scheduling of multi-criticality systems with vary-

ing degrees of execution time assurance. In Real-Time Systems Symposium,

2007. RTSS 2007. 28th IEEE International, pages 239–243. IEEE, 2007.

[86] Yun Wang and Manas Saksena. Scheduling fixed-priority tasks with pre-

emption threshold. In Sixth IEEE International Conference on Real-Time Com-

puting Systems and Applications (RTCSA), pages 328–335, 1999.

[87] Stephen Warshall. A theorem on boolean matrices. Journal of the ACM

(JACM), 9(1):11–12, 1962.

[88] ISO TC184/SC4/WG11 N041 WD. EXPRESS Language Reference Manual,

1997.

[89] Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas Holsti,

Stephan Thesing, David Whalley, Guillem Bernat, Christian Ferdinand,

Reinhold Heckmann, Tulika Mitra, et al. The worst-case execution-time

problem—overview of methods and survey of tools. ACM Transactions on

Embedded Computing Systems (TECS), 7(3):36, 2008.

[90] Patrick Meumeu Yomsi, Dominique Bertrand, Nicolas Navet, and Robert I

Davis. Controller area network (can): Response time analysis with offsets. In

Factory Communication Systems (WFCS), 2012 9th IEEE International Workshop

on, pages 43–52. IEEE, 2012.

168 of 168

Affe tatio de p io it et si ulatio d’o do a e e t de syst es te ps el e a u s ave p ise
en compte de l'effet des mémoires cache.

Résumé : Les systèmes embarqués en temps réel (RTES) sont soumis à des contraintes temporelles. Dans ces

systèmes, l'exactitude du résultat ne dépend pas seulement de l'exactitude logique du calcul, mais aussi de l'instant

où ce résultat est produit (Stankovic, 1988). Les systèmes doivent être hautement prévisibles dans le sens où le

temps d'exécution pire- as de ha ue tâ he doit t e d te i . E suite, u e a alyse d’o do a e e t est
effectuée sur le système pour s'assurer qu'il y a suffisamment de ressources pour ordonnancer toutes les tâches.

La mémoire cache est un composant matériel utilisé pour réduire l'écart de performances entre le processeur et la

mémoire principale. L'intégration de la mémoire cache dans un RTES améliore généralement la performance en

terme de temps d'exécution, mais malheureusement, elle peut entraîner une augmentation du coût de préemption

et de la variabilité du temps d'exécution. Dans les systèmes avec mémoire cache, plusieurs tâches partagent cette

ressource matérielle, ce qui conduit à l'introduction d'un délai de préemption lié au cache (CRPD). Par définition, le

CRPD est le délai ajouté au temps d'exécution de la tâche préempté car il doit recharger les blocs de cache évincés

par la préemption. Il est do i po ta t de pouvoi p e d e e o pte le CRPD lo s de l'a alyse d’o do a e e t.
Cette thèse se concentre sur l'étude des effets du CRPD dans les systèmes uni-processeurs, et étend en

o s ue e des thodes lassi ues d'a alyse d’o do a e e t. Nous proposons plusieurs algorithmes

d’affe tatio de p io it s ui tie e t o pte du CRPD. De plus, ous tudio s les p o l es li s à la si ulatio
d'ordonnancement intégrant le CRPD et nous établissons deux résultats théoriques qui permettent son utilisation en

tant que méthode de vérification. Le travail de cette thèse a permis l'extension de l'outil Cheddar - un analyseur

d'ordonnancement open-source. Plusieurs méthodes d'analyse de CRPD ont été également mises en oeuvre dans

Cheddar en complément des travaux présentés dans cette thèse.

Mots-clés : M oi e a he, CRPD, affe tatio de p io it , si ulatio d’o do a e e t, syst es te ps el
embarqués.

Cache Memory Aware Priority Assignment and Scheduling Simulation of Real-Time Embedded Systems

Abstract : Real-time embedded systems are subject to timing constraints. In these systems, the total correctness

depends not only on the logical correctness of the computation but also on the time in which the result is produced

(Stankovic, 1988). The systems must be highly predictable in the sense that the worst case execution time of each

task must be determined. Then, scheduling analysis is performed on the system to ensure that there are enough

resources to schedule all of the tasks.

Cache memory is a crucial hardware component used to reduce the performance gap between processor and main

memory. Integrating cache memory in a RTES generally enhances the whole performance in term of execution time,

but unfortunately it can lead to an increase in preemption cost and execution time variability. In systems with cache

memory, multiple tasks can share this hardware resource which can lead to cache related preemption delay (CRPD)

being introduced. By definition, CRPD is the delay added to the execution time of the preempted task because it has

to reload cache blocks evicted by the preemption. It is important to be able to account for CRPD when performing

schedulability analysis.

This thesis focuses on studying the effects of CRPD on uniprocessor systems and employs the understanding to

extend classical scheduling analysis methods. We propose several priority assignment algorithms that take into

account CRPD while assigning priorities to tasks.We investigate problems related to scheduling simulation with

CRPD and establish two results that allows the use of scheduling simulation as a verification method. The work in

this thesis is made available in Cheddar - an open-source scheduling analyzer. Several CRPD analysis features are

also implemented in Cheddar besides the work presented in this thesis.

Keywords : Cache memory, priority assignment, scheduling simulation, CRPD, real-time embedded systems.

