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知之为知之， 不知为不知， 是知也。 “Ce qu’on sait, savoir qu’on le sait ; ce qu’on ne
sait pas, savoir qu’on ne le sait pas : c’est savoir véritablement.”

[Confucius].





Voici la preuve que les équations sont importantes en géologie : le mot latin calculus signifie
entre autres caillou / petite pierre.

La principale contribution de ma thèse

Théorème : Les périodes de l’ère Paléozöıque peuvent être déduites de l’équation
suivante:

∀k ∈ Z, cos (2kπ) = 1

Démonstration : La démonstration qui suit fonctionne bien en français. Elle repose
en partie sur des critères phonétiques.

• L’équation précédente est connue.

• 1⇒ IR: Paléozöıque.

• c os(2kπ): Cambrien.

• c o s(2kπ): Ordovicien.

• co s (2kπ): Silurien.

• cos( 2 kπ): Dévonien.

• cos(2 k π): Carbonifère.

• cos(2k π ): Permien.

Utilité : Se souvenir des périodes géologiques en prépa (inventé et testé en BCPST).

“In melios stad vertus. Non non c’est tout à fait correct : “la vertu est dans le juste milieu”.
En revanche ça n’a rien à voir avec la conversation.”

[Le roi Loth, Kaamelott, Livre V, tome 1].





Acknowledgements

For non-French people

First, I would like to thank the different members of my Ph.D. committee for having agreed
to evaluate my research works and for the quality of the discussion during the defense. I
would like to thank several people and organizations for their help during my thesis. I thank
the RING-GOCAD Consortium and its members for the funding of my Ph.D. I acknowledge
IFPEN, in particular Jean-Luc Rudkiewicz, and C&C Reservoirs, 2016, DAKSTM - Digital
Analogs Knowledge System for having provided me the CT data of the structural analog
sandbox model. I would like to thank Chevron, in particular Matt Laroche, Peter Lovely,
and Chris Guzofski, for the great opportunity to propose me two internships and to finance
my Ph.D. I acknowledge Justin Herbert, Donald Medwedeff, and Stanislas Jayr for the dis-
cussions and help during my Ph.D. I would like to thank Paradigm, in particular Emmanuel
Labrunye, for their help during my Ph.D., notably the porting of Gocad plugins, and for
having furnished the SKUA-GOCAD software and devkit. Thank you John Shaw for your
co-supervision during this thesis. It was a great experience to go twice to Harvard and work
with your team (I am looking forward to come back!). I thank Richard Groshong for his help
and discussions about the area-depth method that was very valuable for my Ph.D.

Thank you Peter L. for all your help during my Ph.D. and the two internships. It was
a real pleasure to work with you and I have made a lot of progress with you in structural
geology, mechanics, and restoration (and in English). You have always been very efficient,
good at explaining, and helpful. Thank you Joseph S. and Andreas P. for all the help you
provided to me, in particular in the interpretation and the building of the analog structural
model, for the discussions, and in reviewing my AAPG Bulletin paper. Thanks Jessica D.
and Yanpeng S. It was real nice to share your office at Harvard.

Pour les Français(es)
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Merci Guillaume C. (le grand big boss) de m’avoir pris en thèse et de m’avoir permis de
participer à ce merveilleux monde qu’est la recherche. Merci Arnaud B. pour ton aide pendant
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lors de la fin de ma thèse (rédaction, préparation de la soutenance). Un grand merci d’avoir
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vont me manquer. Jérémy, un autre fan de Kaamelott ! Et grand gamer. Il est malheureuse-

xiv



Acknowledgements
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sûr pour tout le travail que tu as fait. Fatima, la super secrétaire ! Toujours pas si vieille que
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Violette, Ahn, Cédric, Gaëlle, Zoya et plein d’autres de l’ENSG ! Amélie, Oriane, Katia, Céci-
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Résumé étendu

Introduction

La restauration structurale correspond à un ensemble de méthodes visant à retrouver
la configuration passée des structures géologiques. Dans cette thèse, nous nous concentrons
aux méthodes qui annulent l’action des failles et qui déplissent les couches géologiques. Les
méthodes traditionnelles sont géométriques et/ou cinématiques [e.g., Chamberlin, 1910, Dahl-
strom, 1969, Gratier, 1988, Rouby et al., 2000, Massot, 2002, Groshong, 2006, Fossen, 2016].
Elles simplifient les principes fondamentaux de la mécanique et imposent un style de déforma-
tion. La restauration géomécanique, en intégrant les lois de la mécanique des milieux continus
et le comportement élastique des roches, a pour objectif de s’affranchir des limites des ap-
proches classiques de restauration [e.g., Maerten et Maerten, 2001, Santi et al., 2003, Muron,
2005, Maerten et Maerten, 2006, Moretti et al., 2006, Guzofski et al., 2009, Durand-Riard,
2010, Maerten et Maerten, 2015, Al-Fahmi et al., 2016, Tang et al., 2016]. Néanmoins, plusieurs
études ont remis en question l’applicabilité des approches mécaniques pour obtenir un état
restauré cohérent et physique. Les conditions aux limites de la restauration géomécanique
sont notamment remises en cause [Durand-Riard, 2010, Lovely et al., 2012, Durand-Riard

et al., 2013b]. Par ailleurs, il existe plusieurs méthodes de restauration géomécanique. À ce
jour, il n’y a pas d’inventaire exhaustif des différentes approches qui établit les avantages et
inconvénients de chacune. Cela rend difficile le choix d’une méthode en particulier.

Cette thèse présente d’abord une synthèse bibliographique des différentes méthodes géo-
mécaniques de restauration. Puis, une étude des conditions aux limites est réalisée sur un
modèle analogique structural. La déformation au cours du temps de ce modèle analogique est
observée sur une coupe qui sert de référence pour les restaurations. Enfin, nous comparons
nos résultats de restauration sur le modèle analogique avec ceux obtenus par une méthode de
restauration géométrique basée sur le modèle Géo-Chronologique (GeoChron) [Mallet, 2014,
Medwedeff et al., 2016].

1 La restauration géomécanique : revue des différentes méthodes

La restauration géomécanique, comme chaque méthode de restauration structurale, an-
nule les déformations qu’ont subies les roches afin de retrouver leur état passé. Typiquement,
l’horizon supérieur est remis à plat, et le rejet défini par les deux traces de cet horizon avec
chaque faille est contraint à être nul. Les horizons sous-jacents suivent la déformation induite
par celle imposée par l’horizon supérieur. En cas de déformations entre deux phases de dé-
pôts sédimentaires, ou de déformations syn-sédimentaires, une restauration séquentielle est
effectuée. Après la remise à plat de l’horizon supérieur, la couche supérieure est ôtée et une
nouvelle restauration est faite sur l’horizon sous-jacent. Ce processus itératif se termine quand
il ne reste plus de couche géologique à restaurer. La revue proposée dans cette thèse traite du
déroulement d’une étape élémentaire de la restauration séquentielle.
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Résumé étendu

1.1 Définition de la restauration géomécanique : principes et équations fonda-
mentales

La restauration géomécanique correspond à une simulation basée sur la mécanique des
milieux continus, déformant un modèle géologique actuel afin de retrouver sa géométrie passée.
Deux lois fondamentales en mécanique définissent cette déformation : la conservation de la
masse et la conservation du moment linéaire. Ces deux lois ensembles constituent l’équation
classique du mouvement des solides en mécanique [e.g., Muron, 2005, Maerten et Maerten,
2006, Belytschko et al., 2013] :

∇ · σ + ρb = ρü, (1)

avec ∇· la divergence, σ le tenseur des contraintes de Cauchy, ρ la densité des roches, ü le
vecteur accélération et b les forces volumiques (gravité et potentiel amortissement). Pour des
raisons de simplicité et de réversibilité, le comportement mécanique des roches utilisé dans la
restauration géomécanique est élastique. Au sein du modèle géologique, différentes propriétés
élastiques sont définies généralement de manière isotrope (module de Young et coefficient de
Poisson ou équivalents). Pour prendre en compte les phénomènes de flexion-glissement (flexu-
ral slip), Durand-Riard [2010], Durand-Riard et al. [2013a] utilisent des propriétés élastiques
isotropes transverses. Une loi linéaire ou non-linéaire est utilisée pour définir le tenseur des
contraintes de Cauchy σ dans l’Équation (1). La loi linéaire correspond à la loi de Hooke
applicable uniquement en petites déformations. Pour les grandes déformations, les lois non-
linéaires issues de l’hyperélasticité sont utilisées. Muron [2005] utilise la loi Néo-Hookéenne
qui est l’extension de la loi de Hooke aux grandes déformations [Belytschko et al., 2013], et
Moretti et al. [2006] et Moretti et Titeux [2007] utilisent la loi de Simo-Miehe.

1.2 Les conditions aux limites

Toute simulation mécanique a besoin de conditions aux limites afin de solliciter et de faire
évoluer le domaine étudié jusqu’à atteindre un nouvel état d’équilibre (Équation (1)). En
restauration géomécanique, les conditions aux limites sont principalement des conditions en
déplacement (conditions de Dirichlet). Les conditions en force de type gravité ou en traction
(conditions de Neumann) ne semblent pas être utilisées en restauration même si elles sont
mentionnées par Maerten et Maerten [2006]. Les conditions aux limites en général permettent
de contraindre l’état restauré à partir de connaissances a priori des géométries passées. Typi-
quement, l’horizon supérieur est remis à plat et le jeu des failles est annulé pour cet horizon.
D’autres conditions peuvent être imposées pour orienter le déplacement le long d’une direc-
tion (e.g., murs fixes, raccourcissement, extension). Par ailleurs, la plupart des méthodes de
résolution numérique nécessitent de bloquer un nombre suffisant de degrés de liberté pour
assurer l’unicité de la solution.

1.3 Différentes méthodes de résolution d’un problème de restauration géoméca-
nique

Plusieurs méthodes numériques sont utilisées dans le cadre de la restauration géoméca-
nique. La plus utilisée est la méthode des éléments finis [e.g., Zienkiewicz et Taylor, 2000a,
Muron, 2005, Moretti et al., 2006, Maerten et Maerten, 2006, Tang et al., 2016] qui ré-

sout l’Équation (1) sur un maillage volumique (Section 1.4). Cette méthode a l’avantage de
prendre en compte les hétérogénéités mécaniques et les géométries complexes. En revanche
le coût calculatoire peut être important. Les contraintes de maillages sont aussi importantes
même si les approches implicites ou sans maillage tentent de les réduire [e.g., Frank et al.,
2007, Durand-Riard, 2010, Durand-Riard et al., 2010, Maerten, 2014, Zehner et al., 2015]. La
résolution par éléments frontières est intéressante du fait que le modèle géologique n’a pas
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besoin d’être maillé par des éléments volumiques (e.g., tétraèdres, hexaèdres). Ceci a pour
avantage de réduire les contraintes de maillages et le coût de calcul. En revanche les hétérogé-
néités mécaniques sont plus difficiles à prendre en compte. La dernière méthode est celle de la
masse-ressort qui peut reposer sur une représentation par frontières ou un maillage volumique
[e.g., Terzopoulos et al., 1987, Provot, 1995, Bourguignon et Cani, 2000, Macaulay et al.,

2015, Midland Valley, 2017a,b]. Au lieu de résoudre l’Équation (1) sur chaque élément, elle
définit un système de ressorts (par exemple correspondant aux segments des éléments) et la
résolution se fait sur cet ensemble d’éléments 1D au lieu d’une formulation 3D comme dans
la méthode des éléments finis. Cette formulation est beaucoup plus simple à mettre en place
mais est très sensible à la discrétisation du maillage qui définit l’orientation des ressorts.

1.4 Résolution de la restauration géomécanique par éléments finis

La méthode des éléments finis est une méthode numérique permettant de résoudre une
équation différentielle dans un domaine donné [e.g., Zienkiewicz et Taylor, 2000a,b, Hughes,
2012, Belytschko et al., 2013, Bathe, 2014]. Le domaine en question est discrétisé en une mul-
titude d’éléments définissant un maillage. L’équation différentielle est résolue sur chacun des
éléments. Puis la solution globale est obtenue en sommant la contribution de chaque élément.
Après application du principe des travaux virtuels et plusieurs opérations mathématiques sur
l’Équation (1), la méthode des éléments finis aboutit au système matriciel :

M · ü+C · u̇+ F int − F ext = 0, (2)

avec M la matrice de masse, C la matrice d’amortissement, ü le vecteur accélération, u̇
le vecteur vitesse, F int le vecteur des forces internes et F ext le vecteur des forces externes. Les
méthodes actuelles de restauration géomécanique ne prennent pas en compte le temps, seul
l’état stationnaire est important. Muron [2005], Maerten et Maerten [2006] et Moretti et al.

[2006] utilisent donc la forme statique de l’Équation (2) :

F int = F ext. (3)

Muron [2005] et Moretti et al. [2006] résolvent ce système d’équations de façon globale (tous
les éléments sont pris en compte dans ce système en même temps). Maerten et Maerten [2006]
le résolvent de façon locale en chaque nœud avec un processus itératif de type Gauss-Seidel
[Golub et Van Loan, 1996]. Muron [2005] utilise une autre méthode nommée la relaxation
dynamique [e.g., Papadrakakis, 1981, Underwood, 1983, Oakley et Knight, 1995a,b]. Cette

méthode garde les termes temporels de l’Équation (2) et les définit avec une intégration par
différences finies. Ceci permet d’aboutir à une relation de récurrence définissant le déplacement
un+1 au temps tn+1 en fonction uniquement des grandeurs aux temps précédents :

un+1 = un + ∆tu̇n+ 1
2 with u̇n+ 1

2 =
2− c∆t
2 + c∆t

u̇n−
1
2 +

2∆t

2 + c∆t
M−1 ·

(
F ext,n − F int,n

)
, (4)

avec c un coefficient d’amortissement, et ∆t le pas de temps entre les temps tn et tn+1.
Cette formulation ne nécessite pas de résolution matricielle comme l’approche statique qui est
coûteuse en mémoire. Cependant elle présente des problèmes de stabilité [Oakley et Knight,
1995a, Muron, 2005, Belytschko et al., 2013].

1.5 Gestions des failles dans les approches éléments finis

En restauration la définition de conditions aux limites adaptées aux failles est fondamen-
tale pour assurer une bonne cohérence géologique du modèle restauré. Ces conditions assurent
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qu’il n’y a ni espace ni pénétration entre deux blocs de failles. Elles permettent aussi de dé-
jouer l’action des failles et de remettre l’horizon supérieur dans son état topologique avant
déformation tectonique, i.e., continu. Dans la littérature, deux méthodes existent pour gérer
les contacts de failles. La première est purement géométrique et basée sur des conditions de
Dirichlet (déplacement) [Santi et al., 2003, Muron, 2005, Moretti et al., 2006]. La deuxième re-
pose sur la théorie des contacts mécaniques [Muron, 2005, Maerten et Maerten, 2006, Wriggers
et Laursen, 2006].

1.5.1 Approche géométrique des contacts de failles

Santi et al. [2003], Lepage et al. [2004], Muron [2005] et Moretti et al. [2006] utilisent une
approche mâıtre/esclave géométrique pour gérer les contacts de failles. Cette méthode consiste
en un ensemble de conditions de déplacement imposé sur les nœuds de la surface de faille du
bloc esclave pour le mettre en contact avec la surface de faille du bloc mâıtre. Dans cette
approche le mâıtre reste relativement fixe par rapport à l’esclave, i.e., la condition de contact
n’impacte pas le mâıtre et le mouvement de ce dernier est dicté par les autres conditions aux
limites et les lois mécaniques de conservation. Si on note As un nœud de la surface de faille
esclave à projeter, Am

i les nœuds de l’élément (e.g., pour un triangle, i ∈ J0; 2K) de la surface
de faille mâıtre contenant le projeté de As, et ai les coordonnées barycentriques du projeté
de As dans l’élément mâıtre, le vecteur déplacement P appliqué au nœud esclave As est :

P =

(
n∑
i

aiA
m
i

)
−As. (5)

Muron [2005] utilise cette approche géométrique dans le cadre de la restauration géomé-
canique résolue par la relaxation dynamique en se basant sur les travaux de Hallquist [1998].

À chaque pas de temps, il corrige les vitesses nodales pour prendre en compte les condi-
tions de contacts. Il définit un coefficient de partitionnenment cinématique pour partager le
déplacement entre le mâıtre et l’esclave, permettant ainsi un mouvement bilatéral.

1.5.2 Approche mécanique des contacts de failles

L’autre approche pour gérer les contacts de failles est basée sur la mécanique des contacts
[Wriggers et Laursen, 2006] et est utilisée par Muron [2005], Maerten et Maerten [2006] et Tang
et al. [2016]. Cette méthode repose sur la troisième loi de Newton et implique donc un équilibre
des contraintes de part et d’autre de la faille. En restauration, le glissement le long de la faille
se fait sans friction. Ce type de contact repose aussi sur une approche mâıtre/esclave, mais
contrairement à la méthode de contact géométrique, le bloc mâıtre n’est pas relativement
fixe. Le mouvement entre le mâıtre et l’esclave est partagé et est une conséquence de la
minimisation de l’énergie. La différence entre le mâıtre et l’esclave se fait sur la pénétrabilité.
Les nœuds du bloc esclave doivent être sur le mâıtre (ni espacement ni pénétration) mais le
contraire est possible. Pour éviter ce dernier problème, Maerten et Maerten [2006] alternent
le rôle mâıtre/esclave entre les blocs.

2 Validation de nouvelles conditions aux limites dans la restaura-
tion géomécanique 3D : application sur un modèle analogique
extensif

Les conditions aux limites, utilisées dans la restauration géomécanique, sont controversées
voire qualifiées de non-physiques [Durand-Riard, 2010, Lovely et al., 2012, Durand-Riard
et al., 2013b]. Nous avons restauré un modèle analogique dont les incertitudes structurales
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Section 2. Validation de nouvelles conditions aux limites dans la restauration géomécanique 3D :
application sur un modèle analogique extensif
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Figure 1 : Modèle structural du modèle analogique. Le modèle est composé de 8 horizons et 22
failles normales. Il y a deux grabens (à l’ouest et au centre) et un demi-graben (à l’est).

sont faibles et dont la paléo-géométrie est connue sur une coupe au cours de la déformation
du modèle analogique. Cette étude permet de considérer les conditions aux limites comme
responsables de la qualité de l’état restauré [Gratier et al., 1991, Schultz-Ela, 1992].

2.1 Modèle analogique structural

Le modèle analogique est un ensemble de matériaux (silicone, et grains de sable et de
pyrex) déformé en laboratoire [e.g., McClay, 1990]. L’expérience a été réalisée par l’IFPEN1

et C&C Reservoirs, 2016, DAKSTM - Digital Analogs Knowledge System2. Ce modèle est
composé initialement d’une couche de silicone à sa base et d’une couche de sable au dessus.
La déformation est gravitaire et extensive, induite par l’inclinaison du modèle analogique
structural de 1.5◦. Au cours de la déformation, des couches de sable et des couches de pyrex
sont alternativement déposées pour imiter des dépôts syn-sédimentaires. Cette expérience
permet de représenter des structures similaires à celles observées en domaines extensifs salifères
comme dans le Golfe du Mexique, en Angola et au Maroc [e.g., Weijermars et al., 1993, Moretti
et Callot, 2012]. Une tomographie 3D a permis d’obtenir une imagerie 3D des structures du
modèle analogique dans son état déformé [e.g., Colletta et al., 1991, Callot et al., 2012].

À l’aide du géomodeleur SKUA-GOCAD [Paradigm, 2015], nous avons construit un modèle
structural numérique représentant les structures observées dans la tomographie (Figure 1). Ce
modèle comporte 8 horizons et un réseau de failles complexe (22 failles normales dont 5 failles
coupées et déplacées par des failles plus récentes, aucune faille isolée et 27 branchements de
failles). Nous avons généré un maillage volumique composé de tétraèdres, à l’aide des outils
dévelopés par Lévy [2015], Pellerin et al. [2015], Si [2015a,b], Botella et al. [2016], Botella
[2016] et Pellerin et al. [2017], afin de pouvoir réaliser des restaurations.

2.2 Conditions aux limites classiques et non-classiques

Afin de mener à bien la restauration séquentielle, nous avons testé différentes conditions
aux limites. L’objectif est de définir les conditions aux limites permettant d’obtenir des paléo-
géométries proches de celles fournies par les images tomographiques.

2.2.1 Conditions aux limites classiques

Dans nos restaurations, nous avons défini les conditions aux limites suivantes. Première-
ment, l’horizon supérieur est remis à plat. Deuxièment, le mur ouest est fixe en X et Y (Fi-
gure 1). Troisièment, les murs nord et sud sont fixes en Y. Enfin, des conditions de contacts

1http://www.ifpenergiesnouvelles.fr
2http://www.ccreservoirs.com
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de faille annulent les rejets de l’horizon supérieur et empêchent les trous et les pénétrations
entre les blocs de failles [Muron, 2005, Wriggers et Laursen, 2006, Maerten et Maerten, 2006].

2.2.2 Conditions aux limites non-classiques

Nous avons testé une condition optionnelle de raccourcissement au niveau du mur est,
condition en déplacement similaire à celles proposées par Durand-Riard [2010], Lovely et al.
[2012] et Durand-Riard et al. [2013b]. Afin de pouvoir restaurer le réseau de failles complexe,
nous avons défini deux nouvelles conditions de contacts. La première connecte les bords in-
ternes des surfaces de failles. La deuxième connecte les composantes connexes d’une même
faille, coupée et déplacée par une faille plus récente. Avant d’appliquer cette condition aux
limites, nous restaurons sans cette condition et si la continuité de la faille coupée et dépla-
cée est apparente dans l’état restauré, nous refaisons une restauration avec cette condition.
Ces nouvelles conditions de contact reposent sur le même principe que celui utilisé pour les
conditions de contact classiques, à savoir la mécanique du contact [Muron, 2005, Maerten et
Maerten, 2006, Wriggers et Laursen, 2006].

2.3 Restauration du modèle analogique : une condition aux limites de raccour-
cissement nécessaire

Nous avons restauré séquentiellement le modèle analogique en utilisant la librairie RING-
Mecha3 [Chauvin et Mazuyer, 2016] qui est basée sur les travaux de Muron [2005] et Durand-
Riard [2010]. Comme le sable et le pyrex sont mécaniquement équivalents [Panien et al., 2006],
nous avons défini un matériau élastique homogène pour l’ensemble du modèle à restaurer, avec
un module de Young de 70 GPa et un coefficient de Poisson de 0.2 [Holtzman et al., 2009].
Pour vérifier la qualité de nos restaurations, nous avons des images tomographiques (au ni-
veau du mur nord) de l’évolution de la déformation du modèle analogique.

Nous avons restauré en appliquant pour chaque étape de la restauration séquentielle un
raccourcissement issu des images tomographiques. Nous montrons, grâce aux images tomogra-
phiques, que qualitativement et quantitativement les modèles restaurés sont géométriquement
acceptables. Nous avons aussi essayé de restaurer chaque étape sans imposer de raccourcisse-
ment. En revanche, nous utilisons comme modèle non restauré à chaque étape celui obtenu
lors de l’étape précédente avec le raccourcissement observé sur les images tomographiques afin
d’éviter de cumuler des erreurs au cours de la restauration séquentielle. Nous montrons que
sans cette condition aux limites de raccourcissement, la restauration géomécanique échoue
dans la capture de l’extension du modèle analogique structural.

2.4 Évaluation du raccourcissement

Nous avons montré qu’un raccourcissement est nécessaire pour restaurer proprement le
modèle analogique. Nous avons estimé le raccourcissement grâce aux images tomographiques.
Dans le cadre de la restauration de modèles géologiques, il est nécessaire d’utiliser des mé-
thodes pour estimer le raccourcissement à appliquer.

2.4.1 La méthode de la surface transférée (area-depth method)

Nous avons essayé différentes méthodes géométriques dont la méthode de la surface trans-
férée. Cette méthode s’applique en coupe et permet, en plus de tester la validité d’une in-
terprétation structurale, d’estimer l’extension ou le raccourcissement qu’a subi un domaine
géologique en fonction de l’aire qui a été déplacée le long d’un niveau de détachement et

3http://www.ring-team.org/software/ring-libraries/44-ringmecha
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la profondeur de ce niveau [e.g., Groshong, 1994, Groshong et al., 2003, Groshong, 2006].
Les estimations obtenues par cette méthode sont semblables à celles fournies par les images
tomographiques avec moins de 15% d’erreur.

2.4.2 Estimation du raccourcissement par une analyse de la dilatation

Comme le modèle analogique est extensif, dans le sens de la restauration le volume du
modèle devrait diminuer ou demeurer constant (il n’est pas attendu que le volume augmente).
Nous avons refait la restauration séquentielle en faisant varier pour chaque étape la valeur
de la condition aux limites de raccourcissement. L’objectif est de déterminer quelle valeur de
raccourcissement minimise le nombre de tétraèdres avec une dilatation positive (augmentation
du volume). Nous montrons sur le modèle analogique que plus le raccourcissement augmente,
plus le nombre de tétraèdres incohérents diminue. Par ailleurs, ce nombre atteint un plateau
lorsque l’on se rapproche du raccourcissement attendu.

3 Comparaison entre la restauration géomécanique et la restau-
ration basée GeoChron : application sur le modèle analogique
structural

La restauration géomécanique a montré dans plusieurs études ses avantages sur les mé-
thodes classiques de restauration [Maerten et Maerten, 2006, Plesch et al., 2007, Guzofski
et al., 2009]. Néanmoins, comparer deux méthodes de restauration n’est pas forcément évident
puisqu’en restauration, par définition, il n’y a pas de solution de référence. De plus, de nom-
breuses incertitudes, notamment structurales, peuvent biaiser l’analyse [e.g., Bond et al., 2007,
Bond, 2015, Cherpeau et Caumon, 2015]. Le même modèle analogique structural a été restauré
avec une approche géométrique fondée sur le calcul des coordonnées chronostratigraphiques
[Mallet, 2014, Medwedeff et al., 2016]. La géométrie du modèle analogique étant observable
sur une coupe au cours du temps, nous proposons une comparaison objective entre les deux
méthodes de restauration.

3.1 Restauration géométrique basée sur le modèle Géo-Chronologique

Le modèle analogique a été restauré en utilisant une méthode de restauration [Medwedeff
et al., 2016] basée sur le modèle Géo-Chronologique GeoChron [Mallet, 2014] qui établit une
bijection entre chaque point du sous-sol avec son équivalent dans l’espace de dépôt. Ainsi,
GeoChron correspond à la formulation mathématique de l’espace de Wheeler. Mallet [2014]
construit un champ orthogonal uvt qui correspond à l’espace chronostratigraphique [e.g.,
de Groot et al., 2006, Monsen et al., 2007, Wu et Hale, 2015, Labrunye et Carn, 2015, Karimi et
Fomel, 2015] avec u et v les deux coordonnées qui suivent la stratigraphie (plan horizontal dans
l’espace de Wheeler), et t la coordonnée perpendiculaire à la stratigraphie. Pour construire
ce champ, deux styles de déformation sont disponibles : la déformation par flexion-glissement
(flexural slip) ou la minimisation de la déformation [Mallet, 2014]. Medwedeff et al. [2016]
utilisent la minimisation de la déformation qui correspond le plus au style de déformation du
modèle analogique. Plusieurs contraintes peuvent être définies lors du calcul de l’espace uvt.
Medwedeff et al. [2016] n’utilisent que l’horizon à remettre à plat comme contrainte sur le
champ t, et ajoutent des contraintes pour assurer de bons contacts entre les blocs de failles.
Enfin, Medwedeff et al. [2016] convertissent la dimension temporelle t de l’espace de Wheeler
en une dimension métrique afin d’être cohérent avec un espace restauré. La conversion respecte
les épaisseurs verticales du modèle analogique.
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3.2 Comparaison géométrique entre la restauration géomécanique et la restau-
ration GeoChron

Nous avons comparé les trois premières étapes de la restauration séquentielle réalisées avec
la restauration géomécanique, basée sur les travaux de Muron [2005] et Chauvin et al. [2017],
avec la restauration faite avec la méthode géométrique proposée par Medwedeff et al. [2016].
Nous montrons que, pour chaque étape de restauration, les deux modèles restaurés sont géo-
métriquement très similaires, aussi bien qualitativement que quantitativement. Ainsi les deux
méthodes de restauration fournissent des résultats équivalents. Néanmoins, tout comme la
restauration géomécanique sans condition aux limites de raccourcissement (Section 2), la res-
tauration basée GeoChron seule n’est pas capable de capturer l’extension qu’a subi le modèle
analogique lors de sa déformation (le long de l’axe X). Afin de comparer la restauration géomé-
canique, avec des conditions de raccourcissements, avec la restauration basée GeoChron nous
avons multiplié la composante X de toutes les coordonnées du solide restauré par GeoChron
par un facteur afin de faire correspondre les murs ouest et est avec ceux du modèle restauré
issu de la restauration géomécanique.

3.3 Impact des paramètres mécaniques dans la restauration géomécanique : cas
homogène

Bien que les deux méthodes de restauration fournissent des modèles restaurés similaires
géométriquement, elles ne sont pas équivalentes notamment du fait que la méthode basée sur
le modèle Géo-Chronologique impose un style de déformation sans intégrer le comportement
mécanique des roches. Par ailleurs, il y a des incertitudes sur le choix des paramètres élastiques
dans la restauration géomécanique. C’est pourquoi nous avons réalisé plusieurs restaurations
géomécaniques en variant le module de Young et le coefficient de Poisson dans le modèle
analogique structural tout en restant dans un cas mécaniquement homogène.

3.3.1 Impact du module de Young

Afin d’étudier l’influence du module de Young nous avons testé six nouvelles restaurations
avec pour coefficient de Poisson 0.2 et pour module de Young respectivement (en Pascal Pa) :
106, 108, 2.5 × 1010, 4.5 × 1010, 1011 et 1012. Le champ de déplacement de ces restaurations
est presque identique à celui du modèle restauré dans la Section 2.3. Par ailleurs, le module
de Young n’a aucun impact sur le changement global et local de volume après restauration,
ce qui est logique au vu de la définition du module de Young.

3.3.2 Impact du coefficient de Poisson

Nous avons réalisé cinq restaurations en modifiant le coefficient de Poisson (le module de
Young est maintenu constant à 70 GPa). Les différents tests du coefficient de Poisson sont :
0.01, 0.1, 0.3, 0.4 et 0.45. Le coefficient de Poisson a un impact beaucoup plus significatif que
le module de Young sur le champ de déplacement, même si l’écart avec le modèle restauré de
référence reste de l’ordre de la limite des incertitudes structurales définie par [Chauvin et al.,
2017]. En revanche, le volume global du modèle change de manière significative en fonction
du choix du coefficient de Poisson. Ainsi, les coefficients de Poisson impliquant une dilatation
irréaliste, d’un point de vue mécanique et géologique, peuvent être rejetés.

3.4 Impact des paramètres mécaniques dans la restauration géomécanique : cas
hétérogène

La méthode de restauration basée sur GeoChron impose un style de déformation global à
tout le modèle sans prendre en compte les hétérogénéités mécaniques locales, contrairement
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aux approches géomécaniques. Nous avons restauré géomécaniquement le modèle analogique
en mettant des propriétés mécaniques hétérogènes. Les résultats obtenus montrent que le dé-
placement nodal diffère significativement même si l’écart n’est pas très grand. Par contre, le
changement de volume est important. Il semblerait que le module de Young ait peu d’impact
sur le modèle restauré, sûrement à cause des nombreuses conditions aux limites en dépla-
cement. En ce qui concerne le coefficient de Poisson, la dilatation est fortement influencée
localement et globalement par ce paramètre élastique.

Conclusions

Les différentes méthodes de restauration géomécanique sont toutes basées sur la conser-
vation de la masse et la conservation des moments linéaires. Elles utilisent des propriétés
élastiques pour prendre en compte la réaction des roches face à des contraintes. Les condi-
tions aux limites sont principalement en déplacement et constituent des hypothèses sur la
paléo-géométrie. La méthode numérique la plus utilisée est celle des éléments finis, elle-même
subdivisée en plusieurs méthodes : statique locale, statique globale et relaxation dynamique.
Ces trois méthodes sont très proches. La relaxation dynamique est moins coûteuse en mé-
moire et plus simple à implémenter, mais elle a des problèmes de stabilité numérique et
est très lente. Les deux autres méthodes sont plus stables et très proches numériquement.
L’approche masse-ressort simplifie les équations mais permet de résoudre plus rapidement un
problème de restauration. L’approche par éléments frontières a quant à elle pour principal
avantage de ne nécessiter qu’une représentation par frontière du modèle géologique et non
d’un maillage volumique. Ceci permet de limiter les contraintes de maillage, et de réduire le
coût calculatoire. En revanche les hétérogénéités sont moins bien prises en compte. Enfin, il
existe deux manières de gérer les contacts de failles : géométriquement ou mécaniquement.

La restauration d’un modèle analogique obtenu en laboratoire a permis de tester l’influence
des conditions aux limites. Nous avons montré qu’un déplacement latéral était nécessaire pour
capturer l’extension qu’avait subi le modèle analogique structural. La méthode de la surface
transférée a fourni de bonnes estimations des raccourcissements à prescrire au cours de la
restauration séquentielle. Nous avons également proposé une approche empirique basée sur la
dilatation pour estimer le raccourcissement. Enfin, le jeu de conditions aux limites proposé
en contexte extensif pourrait être utilisé dans d’autres contextes et devrait améliorer les res-
taurations des cas d’études géologiques.

Nous avons montré que la restauration géomécanique et celle basée sur GeoChron, appli-
quées sur le modèle analogique extensif, fournissent des champs de déplacement relativement
similaires. Toutefois, la méthode basée GeoChron nécessite une opération après restauration
pour prendre en compte la dilatation du modèle analogique structural lors de sa déformation,
ainsi que l’extension due aux failles non-représentées [e.g., Kautz et Sclater, 1988, Marrett
et Allmendinger, 1992, Baxter, 1998, Groshong et al., 2003]. Cette opération est similaire à
la condition de raccourcissement nécessaire dans la restauration géomécanique. Le module de
Young n’a pas d’impact sur la restauration dans le cas homogène. Le coefficient de Poisson a
davantage d’impact en fonction de l’amplitude de la déformation imposée par les conditions
aux limites. Ce paramètre mécanique est très important pour les changements de volumes et
la localisation de la déformation. Finalement les deux méthodes de restauration sont assez
équivalentes dans le cadre de la restauration du modèle analogique. Néanmoins, l’approche
basée GeoChron est plus simple à utiliser et très rapide. En revanche elle est peu flexible
contrairement à la restauration géomécanique qui permet de définir des conditions aux li-
mites personalisées et de jouer sur le comportement mécanique. Ces avantages de la méthode
mécanique permettent une meilleure analyse des domaines géologiques complexes.
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Introduction

Importance of structural restoration in geomodeling

Necessity of understanding the past

The Earth’s crust is in constant evolution. Understanding its changes through time is fun-
damental in several domains. In petroleum geosciences, the economical interest of a basin is
directly related to its history. Several steps are important for the formation of oil and gas.
First, organic matter and sediments must be deposited in enough quantity, and be trans-
formed in kerogen by bacteria under specific conditions [e.g., Hatcher et al., 1983, Derenne
et al., 1992, Gupta et al., 2007]. Second, these sediments have to be buried. According to
the burial depth and the subsequent temperature and pressure, the kerogen may produce oil
and/or gas [Suggate, 1998], generating a source rock. If the gas pressure is high enough,
hydrocarbons leave the source rock. For petroleum industry purposes, these fluids must be
concentrated and localized to form conventional reservoirs. The presence of a permeable
reservoir rock and of natural barriers (impermeable level, crystallized faults, etc.) is essential
for trapping. To produce these fluids, rock permeability is also an important factor, which
is function of the rock nature, its compaction and its deformation through time. All the
previous steps are tracked by petroleum geologists, but a major component is the timing and
the succession of these steps. If the sediments are not buried deep enough for enough time,
oil/gas windows are not reached [Landais et al., 1994]. A petroleum trap must be formed prior
to fluid expulsion. The knowledge of tectonic deformation through time provides valuable in-
sight on the stress within the geological domain and therefore on the potential fracturation
impacting the permeability of rocks [Macé, 2006, Maerten and Maerten, 2006, Mej́ıa-Herrera
et al., 2014, Stockmeyer et al., 2017]. In mining, the history of rock deformation, fracturing
and fluid circulation is also crucial to understand and locate crystallization areas which may
present economical minerals [e.g., Tripp and Vearncombe, 2004]. Finally, a pure academic
understanding of a geological domain is an important topic [e.g., Muñoz, 1992, Mouthereau
et al., 2001, Zhou et al., 2006]. Broadly speaking, restoration corresponds to an ensemble of
methods permitting to quantitatively assess the tectonic history of a geological domain.

A variety of restoration processes

Restoration in the large sense covers several complementary processes. The classical methods
of unfolding and unfaulting remove the action of tectonic forces. In addition, several tech-
niques can be performed such as the reconstruction of eroded units [e.g., Dimakis et al., 1998,
Moucha and Forte, 2011, Boukare et al., 2012, Godefroy et al., 2014], the isostasy compensa-
tion [e.g., Allen and Allen, 2013, Lovely et al., 2015], the thermal subsidence due to mantle
thermal effect [Royden and Keen, 1980, Allen and Allen, 2013], the rock decompaction due
to a change of load [e.g., Athy, 1930, Sclater and Christie, 1980, Durand-Riard et al., 2011,
Allen and Allen, 2013], and the reverse migration of channelized systems [Rongier et al., 2015,
Parquer et al., 2016]. Most of these restoration methods are valuable to assess the evolution of
structures and the consistency of a structural interpretation. They have implications in both
academic and industrial domains. This thesis focuses on the methods to unfold and unfault a
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geological model, in particular on the geomechanical approaches [e.g., Maerten and Maerten,
2001, Muron, 2005, Maerten and Maerten, 2006, Moretti et al., 2006, Guzofski et al., 2009,
Durand-Riard et al., 2013].

Structural restoration: definition and objectives

Structural restoration is the process which consists in unfaulting and unfolding a geological
model. It aims to recover the paleo-geometry of geological units through time [e.g., Cham-
berlin, 1910, Dahlstrom, 1969, Gratier, 1988, Rouby et al., 2002, Maerten and Maerten, 2006,
Moretti et al., 2006]. A myriad of methods exists, based on several assumptions such as the
deformation style and the partial knowledge a priori of the paleo-geometries. In addition
to recovering the history of a geological domain through time, structural restoration has ad-
ditional goals. A primary objective of structural restoration is the validation of structural
interpretations. Geological data are from outcrops, seismic recordings and exploration wells.
They are sparse, limited and uncertain. Moreover, the data analysis is equivocal due to the
subjectivity of the interpretation made by a geologist and to the current limit of the knowl-
edge in geosciences [e.g., Frodeman, 1995, Bond et al., 2007, Wellmann et al., 2010, Bond,
2015, Cherpeau and Caumon, 2015]. Restoration of a geological model permits to test the
structural interpretations. A restored model presenting inconsistencies discredits the initial
interpretation which needs to be reworked [e.g., Dahlstrom, 1969, Moretti and Larrère, 1989,
Groshong, 2006]. Another objective of structural restoration is to assess and understand
tectonic deformations, for instance to understand the folding process [Plesch et al., 2007, Gu-
zofski et al., 2009, Li et al., 2013], to detect uplift events as in the Annot reservoir analog by
Durand-Riard et al. [2011], to analyze faulted salt dome [Al-Fahmi et al., 2016], or to under-
stand the collision stages of the Taiwan orogen [Mouthereau et al., 2001]. Finally, assessing
the deformation, and consequently the stress, through time permits to localize fracture areas
which are prone to fluid circulation and mineral crystallization [e.g., Macé, 2006, Maerten and
Maerten, 2006, Mej́ıa-Herrera et al., 2014, Stockmeyer et al., 2017].

Geometric/kinematic restoration methods: definition and limits

Classical structural restoration methods are based on geometric and kinematic assumptions.
They have been applied from the beginning of the last century to nowadays [e.g., Chamberlin,
1910, Dahlstrom, 1969, Gratier, 1988, Moretti et al., 1990, Rouby et al., 2000, Groshong, 2006,
Medwedeff et al., 2016, Fossen, 2016]. A multitude of methods working on cross sections,
horizon surfaces and volumetric models exists.

Cross-section balancing

The restoration of cross sections, called balancing method, was the first ensemble of restoration
methods. The first balanced cross sections were on compressive contexts and based on geomet-
ric assumptions of area conservation and potentially conservation of bed lengths and/or bed
thicknesses [e.g., Chamberlin, 1910, Dennison and Woodward, 1963, Dahlstrom, 1969, Kiefer
and Dennison, 1972, Hossack, 1979, Mitra and Namson, 1989, Groshong, 2006]. Gibbs [1983]
extended the balancing of cross sections to extensive contexts, followed by several authors
[Davison, 1986, Rowan and Kligfield, 1989]. The major drawback of cross-section restoration
methods is that they assume that the deformation is within the plane of the cross section,
i.e., the out-of-plane deformation is considered as minimal. Typically, strike-slip deformation
cannot be handled by such methods.
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Map/multi-map restoration

Map restoration has been developed to study horizontal deformations [e.g., Cobbold and
Percevault, 1983, Gratier et al., 1991, Gratier and Guillier, 1993, Rouby, 1994, Samson, 1996,
Massot, 2002, Dunbar and Cook, 2003, Ramón et al., 2015]. A horizon is represented by a
folded and faulted surface. Map restoration aims to flatten this surface, based on geomet-
rical conservations, and to cancel the action of faults. The displacement provided by such
restoration permits to analyze the strain and the stress along the horizon surface. Multi-map
restoration has been developed to restore a stack of surface horizons [Samson, 1996, Léger
et al., 1997, Williams et al., 1997, Rouby et al., 2000, Griffiths et al., 2002]. From the restora-
tion of the uppermost horizon, the restored state of the underlying horizons is determined
with the help of a kinematic law such as flexural slip or simple shear. Although the horizon
surfaces (2D) are represented in a 3D space, such methods are qualified as 2.5D methods since
the restoration mechanism is not a real 3D deformation applied on the entire volume.

3D restoration methods

Several works extended the geometrical restoration in 3D [Massot, 2002, Muron, 2005, Med-
wedeff et al., 2016], accounting for internal deformation within geological units. All these
methods are based on the minimization of the deformation and on volume conservation. Mas-
sot [2002] restores the uppermost horizon and then interpolates the displacement field within
a regular grid which represents the geological volume. Such an interpolation is performed by
Discrete Smooth Interpolation DSI [Mallet, 1989, 1992, 1997]. Muron [2005] extends this ap-
proach in tetrahedral meshes to respect more complex topologies. Another volumetric method
is the one developed by Medwedeff et al. [2016]. This method relies on the Geo-Chronological
model, abbreviated GeoChron, which only permits two styles of defomation (minimal defor-
mation and flexural slip) [Moyen et al., 2004, Mallet, 2004, Moyen, 2005, Mallet, 2014].

The avenue of geomechanical restoration methods: definition and
limits

The necessity of geomechanical approaches

The previously described restoration processes simplify the real rock mechanics by an idealized
one. For example, kinematic rules such as simple shear or flexural slip are used. This imposes a
style of deformation whereas it is not perfectly known in nature. Thus, one of the drawbacks of
classical restoration methods is that internal rock deformation must be known by the geologist
and simplified. In addition, the fundamental principle of mass conservation is reduced to
surface or volume conservation whereas it is recognized that rock density may change due to
geological processes [Ramsay and Wood, 1973, Hossack, 1979] even if decompaction is applied
in particular to extensive contexts [e.g., Athy, 1930, Allen and Allen, 2013]. Moreover, these
restoration methods are largely used in two dimensions (cross-section and map/multi-map
restorations) although 3D methods are more and more developed [Massot, 2002, Muron, 2005,
Medwedeff et al., 2016]. Several authors highlighted the necessity of incorporating mechanics
into geological modeling [e.g., Fletcher and Pollard, 1999, Gjerde et al., 2002, Muron, 2005,
Maerten and Maerten, 2006, Guzofski et al., 2009, Al-Fahmi et al., 2016].

The mechanics-based restoration

Mechanics-based restoration corresponds to a boundary value geomechanical simulation. The
internal deformation is not known a priori . The resulting strain is a consequence of both
rock mechanical behaviors and applied boundary conditions. This approach has been being
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developed since the 2000’s [e.g., Maerten and Maerten, 2001, Santi et al., 2002, Muron, 2005,
Moretti et al., 2006, Maerten and Maerten, 2006, Plesch et al., 2007, Guzofski et al., 2009,
Durand-Riard et al., 2010, 2013, Tang et al., 2016]. It provides for instance valuable insight
on the deformation mechanisms, the paleo-geometry and the potential fracture areas [Macé,
2006, Maerten and Maerten, 2006, Mej́ıa-Herrera et al., 2014, Stockmeyer et al., 2017]. The
geological model is filled by elastic rock mechanical properties simulating the response of
rocks due to a mechanical constraint. The restoration displacement is not governed by any
geometric or kinematic rule, but by fundamental laws of motion: mass conservation and linear
momentum conservation. Boundary conditions, generally displacement conditions, are defined
to constrain the restored geometry from several assumptions. The common hypotheses are
(1) the uppermost horizon was flat and horizontal at its deposition time, and (2) it was not
faulted (continuous horizon). Other constraints can be defined to respect a specific geological
knowledge such as a direction of deformation.

Physical issues

Although mechanics-based restoration enabled several advances in structural geology, the
geomechanical restoration presents many issues. The boundary conditions, mostly set to
unfold and unfault a model, are often qualified as unphysical [Lovely et al., 2012]. Moreover
the choice of the boundary conditions is not unique and is at the discretion of the geologist.
This problem of boundary conditions is recurrent in geomechanical restoration and often
addressed [Durand-Riard, 2010, Lovely et al., 2012, Durand-Riard et al., 2013]. Durand-
Riard et al. [2013] suggest that classical boundary conditions may fail to properly restore
strike-slip and highly oblique-slip faults. They propose to add piercing points, i.e., known
fault slip, to improve restoration results. However, that assumes the knowledge of such fault
constraints (channel offsets for instance) which may not be always available. In addition,
such local constraints must be numerous enough and may provide unrealistic strain within
the neighborhood of the piercing points as pointed by Durand-Riard et al. [2013]. Durand-
Riard et al. [2013] also show that constraining restoration by a displacement condition on a
wall corresponding to the opposite forward displacement provides a more accurate recovery
of the expected strike-/oblique-slip for the entire structure. Similarly, Lovely et al. [2012]
found that applying a lateral displacement, which is equal in magnitude but of opposite sign
to the forward tectonic load, yields a strain field consistent with the forward strain patterns.
The classical boundary conditions do not permit such results. Moreover, the geomechanical
restoration only uses elasticity and neglects other mechanical behaviors such as plasticity or
visco-elasticity [Gerbault et al., 1998]. Due to the physical issues faced by the geomechanical
restoration methods, the question of their ability to properly recover the paleo-deformation
remains. Even if several studies show the benefits of mechanics over the geometric and
kinematic methods [Maerten and Maerten, 2006, Plesch et al., 2007, Guzofski et al., 2009],
there is no clear guidelines on the choice between these two restoration families.

Interactivity problem

Most of the mechanics-based restoration methods need a volumetric mesh of a structural
model, i.e., a boundary representation of the geological domain with horizon and fault surfaces
as boundaries [e.g., Muron, 2005]. The generation of such a model is complicated and is an
active research topic [Frank et al., 2007, Pellerin et al., 2014, Zehner et al., 2015, Anquez
et al., 2016, Botella, 2016]. Although Durand-Riard [2010] and Durand-Riard et al. [2010]
relax the meshing constraints by defining horizons by isovalues of a scalar field, the meshing
is still problematic for complex fault networks [Vidal-Royo et al., 2012, Pellerin et al., 2015].
This limits the applicability of the geomechanical restoration to be used as a validation tool
due to the time required to edit an initial interpretation and to remesh it.
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Diversity of restoration methods

There are several geomechanical restoration methods. All of them rely on fundamental equa-
tions of continuum mechanics and on elasticity. The divergences concern the numerical ap-
proach. The three main approaches are based on the boundary element method [Gjerde,
2002], on the mass-spring method [e.g., Terzopoulos et al., 1987, Provot, 1995, Gibson and
Mirtich, 1997, Bianchi et al., 2003, Shackleton et al., 2008, Midland Valley, 2017a,b], or on
the finite element method [e.g., Zienkiewicz and Taylor, 2000a,b, Muron, 2005, Maerten and
Maerten, 2006, Moretti et al., 2006, Belytschko et al., 2013, Tang et al., 2016]. Concerning the
finite element method, it is subdivided into several approaches: the dynamic relaxation [e.g.,
Underwood, 1983, Oakley and Knight, 1995, Muron, 2005], the global static approach [Muron,
2005, Moretti et al., 2006], and the local static approach [Maerten and Maerten, 2006]. All
the different approaches are described in Chapter 1. The choice of a specific numerical ap-
proach has numerous implications. It influences for instance: the type of mesh to represent a
geological model and the subsequent meshing constraints, the geomechanical simplifications,
the implementation ease, the computer memory requirement, and the computational time of a
restoration process. Concerning the fault contact boundary conditions, there are two primary
methods. One is purely geometric [Muron, 2005, Moretti et al., 2006], and the other relies
on the mechanical contact theory [Muron, 2005, Wriggers and Laursen, 2006, Maerten and
Maerten, 2006, Tang et al., 2016]. Considering the multiplicity of the geomechanical restora-
tion methods, it may be difficult for a geologist to choose the most appropriate method for a
specific case study [Moretti and Titeux, 2007].

Problematic, approach and contributions of this thesis

Problematic and manuscript organization

We show that the mechanics-based restoration has several limits. In this thesis, we provide a
variety of guidelines for the effective and robust use of geomechanical restoration. In particular
we focus on the following questions:

• What are the limits and the advantages of each geomechanical restoration method?

• Which boundary conditions provide a restored state that is physically and geologically
acceptable?

• What is the place of the geomechanical approaches in comparison to the traditional
geometrical approaches?

• What is the impact of elastic mechanical parameters on the restoration?

This manuscript is composed of three chapters. Chapter 1 is a review of the different
geomechanical methods to unfold and unfault a geological model. The main objectives are:
(1) to describe how these methods work and (2) to highlight the differences between them and
what they imply for a structural geologist. Chapter 2 deals with the restoration of a struc-
tural sandbox model analogous to supra-salt extensional structures. The aim of this study
is to define proper boundary conditions for the restoration of the analog model knowing its
paleo-geometries on a cross section. Chapter 3 is a comparison of two restoration methods:
mechanics-based and GeoChron-based. This comparison is performed on the structural sand-
box model. The knowledge of the paleo-geometries leads to an objective comparison between
both methods. These chapters aim to (1) ease the choice of a restoration method, and (2)
define proper boundary conditions in mechanics-based restoration.
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Contributions

The different contributions of this thesis are:

• A review on the different geomechanical restoration methods.

• The requirement of a lateral boundary condition (shortening) to properly restore an
extensional structural model.

• The estimation of the shortening boundary condition magnitude using the area-depth
method or the restoration dilatation.

• The definition of fault contact conditions to handle complex fault network (branching
faults, and faults cut and displaced by later faults).

• A new analysis of the impact of elastic parameters in the geomechanical restoration.

• A comparison of a 3D mechanics-based restoration method with a 3D geometrical
restoration method based on the Geo-Chronological model (GeoChron).

Publications associated to this thesis

B. Chauvin and G. Caumon. Review of mechanics-based restoration. In The Geology of Ge-
omechanics, The Geological Society of London, 2015a

B. Chauvin and G. Caumon. Building folded horizon surfaces from 3D points: a new method
based on geomechanical restoration. In Proceedings of IAMG 2015 Freiberg. The 17th Annual
Conference of the International Association for Mathematical Geosciences, p. 39–48, 2015b.
ISBN 978-3-00-050337-5

B. Chauvin, J. Stockmeyer, J. H. Shaw, A. Plesch, J. Herbert, P. J. Lovely, C. A. Guzofski,
and G. Caumon. Defining Proper Boundary Conditions in 3-D Structural Restoration: A
Case Study Restoring a 3-D Forward Model of Suprasalt Extensional Structures. In AAPG
Annual Convention and Exhibition, 2016

J. Pellerin, A. Botella, F. Bonneau, A. Mazuyer, B. Chauvin, B. Lévy, and G. Caumon.
RINGMesh: A programming library for developing mesh-based geomodeling applications.
Computers & Geosciences, 104: 93–100, 2017. doi: 10.1016/j.cageo.2017.03.005

B. P. Chauvin, P. J. Lovely, J. M. Stockmeyer, A. Plesch, G. Caumon, and J. H. Shaw. Vali-
dating novel boundary conditions for 3D mechanics-based restoration: an extensional sandbox
model example. AAPG bulletin, accepted, 2017. doi: 10.1306/0504171620817154

B. P. Chauvin, P. J. Lovely, S. N. Jayr, and G. Caumon. Comparison between mechanics-
based and GeoChron-based restorations. Application to a structural sandbox model. in prep

Context of the thesis

This thesis was performed in the RING team of the laboratory GeoRessources at the Uni-
versity of Lorraine, in Nancy (France). It was supervised by Professor Guillaume Caumon
at the University of Lorraine and Professor John H. Shaw at Harvard University. This thesis
was in collaboration with Chevron, in particular with Peter J. Lovely and Chris A. Guzofski.
Funding was provided by the RING-GOCAD Consortium and by Chevron.
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The presented work on the mechanics-based restoration is the continuity of the work of
Muron [2005] and Durand-Riard [2010]. The geomechanical tool used in the PhD has been de-
veloped in a C++ mechanical library, based on the finite element method, by Antoine Mazuyer
and Benjamin Chauvin. This external library called RINGMecha4 [Chauvin and Mazuyer,
2016] is the successor of RestorationLab5 which is a SKUA-GOCAD plugin [Paradigm, 2015].
A significant part of this thesis consisted in rewriting the code of RestorationLab into RING-
Mecha to:

• Update and clean the code after several years of development.

• Check all parts of the code and fix existing issues.

• Convert the code into a standalone program without graphical interface. In this way,
all the source code is controlled and easy to script.

• Adapt the code to current programming (e.g., parallel solvers and mesh libraries).

4http://www.ring-team.org/software/ring-libraries/44-ringmecha
5http://www.ring-team.org/software/skua-gocad-plugins/38-restorationlab
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Section 1.1. Mechanics-based restoration: toward a restoration process including rock mechanical
behavior

Introduction

Several methods have been developed for the mechanics-based restoration. The variants may
differ in the used numerical procedure, in the mesh type, and in the way to handle boundary
conditions. These differences may impact the restored state, geometrically or physically, and
computational time or computer memory requirements. The choice of a specific method is
not trivial. This chapter is a review of the different geomechanical restoration approaches
to unfold and unfault a geological structural model. This review is theoretical, i.e., there
is no comparison between two methods on a natural case study. We base this review on
the pusblished mechanics-based restoration methods and on the used mathematical found-
ing principles. We hope that this review will ease the understanding of the geomechanical
restoration in general and of the subsequent methods. For simplicity, we have placed most
mathematical details in Appendix 1.A.

1.1 Mechanics-based restoration: toward a restoration process in-
cluding rock mechanical behavior

Traditional restoration approaches are based on geometric and kinematic assumptions [e.g.,
Chamberlin, 1910, Dennison and Woodward, 1963, Dahlstrom, 1969, Kiefer and Dennison,
1972, Hossack, 1979, Cobbold and Percevault, 1983, Gratier, 1988, Rowan and Kligfield,
1989, Gratier et al., 1991, Rouby, 1994, Samson, 1996, Léger et al., 1997, Williams et al.,
1997, Rouby et al., 2000, Griffiths et al., 2002, Rouby et al., 2002, Massot, 2002, Muron, 2005,
Groshong, 2006, Mallet, 2014, Ramón et al., 2015, Medwedeff et al., 2016, Fossen, 2016]. Al-
though these methods have provided valuable insight on paleogeometries, and the subsequent
interpretations, on many field cases, several authors argue that mechanics must be taken into
account to properly handle geological processes, in particular in restoration [e.g., Fletcher and
Pollard, 1999, Maerten and Maerten, 2001, Gjerde, 2002, Gjerde et al., 2002, Muron, 2005,
Moretti et al., 2006, Maerten and Maerten, 2006, Guzofski et al., 2009]. This section presents
the physical and geometrical bases of such a mechanics-based restoration.

1.1.1 A restoration based on continuum mechanics

Instead of defining the motion by purely kinematic or geometric laws, as in classical restoration
methods, geomechanical restoration uses continuum mechanics and material constitutive laws
to evaluate structural deformation.

1.1.1.1 Equations of motion: mass and linear momentum conservations

In mechanics-based restoration, the geological domain is represented as a solid which is me-
chanically deformed backward to its paleo (restored) geometry. Two fundamental laws, which
stem from continuum mechanics, govern the motion. Let Ω and m respectively denote the
geological domain to restore and its mass. The commonly accepted assumption in restoration
and more globally in rock mechanics is that the domain keeps a constant mass through time.
Thus in continuum mechanics, and so in geomechanical restoration, the first law is the mass
conservation [e.g., Malvern, 1969, Marsden and Hughes, 1994, Wriggers and Laursen, 2006,
Belytschko et al., 2013]:

dm

dt
= 0, (1.1)

where dm
dt

denotes the derivative of the mass m by the time t. In continuum mechanics,
solid deformation and motion are characterized by the conservation of linear momentum,
which corresponds to Newton’s second law. The linear momentum p of a domain Ω is defined
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by its mass m multiplied by its velocity u̇. Let f denote the sum of the forces applied on the
domain. The conservation of linear momentum is described by:

dp

dt
= f . (1.2)

Both laws are combined into a single equation which forms the basis of all the geomechan-
ical restoration methods [Belytschko et al., 2013, p. 115-118]:

∇ · σ + ρb = ρü, (1.3)

with ∇· the mathematical divergence, σ the Cauchy stress tensor, and b the body forces.
The body forces concretely correspond to the gravity force in solid mechanics. In the dynamic
relaxation method, which is a numerical method to solve a restoration problem by Muron
[2005] (Section 1.3.2), a damping term is added to the body forces. Equation (1.3) defines
the mechanical equilibrium of the restored state.

1.1.1.2 A restoration based on elasticity assumption

Restoration aims to obtain a reasonable and consistent geometry of a geological model after
removal of tectonic deformations. By definition it is the reverse of a forward process. As
forward deformation is irreversible (plasticity) and the paleo-stresses is poorly known, it is
not possible to directly reverse time. Elasticity, which is reversible, is used in mechanics-based
restoration by simplicity and as a simple assumption [Muron, 2005, Maerten and Maerten,
2006, Moretti et al., 2006, Guzofski et al., 2009]. A justification is that elastic deformation
is a reasonable approximation for incremental deformations recorded in growth strata, and
restored sequentially. According to Maerten and Maerten [2006], even if rock reaction is not
completely elastic and that a part of the information is potentially lost, it can be compensated
by some mechanical assumptions. In addition, during a sequential restoration the stress is
not accumulated, i.e., the stress is reset to zero before each restoration step. This relaxation
of the stress avoids reaching high and unphysical strain [e.g., Maerten and Maerten, 2006,
Guzofski et al., 2009]. Indeed, in nature the stress decreases by plasticity, fracturing, and
ductile deformation. Thus the stress relaxation in restoration aims to mimic the nature stress
dissipation through time even if it cannot be perfectly equivalent.

To be able to solve Equation (1.3), the Cauchy stress σ must be defined, here by an elastic
law. Small deformation assumption is often used for simplicity. It simplifies the equations
by a linear relationship between the Cauchy stress σ and the linear Green-Lagrange strain ε
(which reduces the computational time). This relation is given by Hooke’s law [e.g., Ramsay
and Huber, 2000]:

σ = D : ε, (1.4)

withD the elastic fourth-order tensor and : the double dot product (Appendix 1.B.1). The
small deformation assumption is valid as long as the quadratic terms in the strain equation
are negligible. Salençon [2005] defines that the norm of the gradient of the displacement u,
here the restoration displacement, relatively to the unrestored configuration ∇0 must be far
lower than 1:

‖∇0u‖ � 1. (1.5)

Concretely, if we consider a 1D solid, the deformation must be far smaller than the size of
the original solid. In practice, 10% of deformation as a maximum should be considered. It is
important to note that the small deformation assumption can be used even if the displacement
is large. In that case, most of the displacement corresponds to a translation and/or rotation
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which has no effect on the strain, i.e., a solid under a pure rigid motion has a null strain
[Fossen, 2016, p. 24].

As tectonic deformations are not small in general, the small deformation assumption may
be invalid in the mechanics-based restoration [Moretti and Titeux, 2007]. Muron [2005],
Moretti et al. [2006] and Moretti and Titeux [2007] use hyperelastic laws to relate the stress to
the strain, which means that the work does not depend on the path of deformation [Belytschko
et al., 2013]. Such laws are not linear, making the solving of the restoration more complex and
more time consuming. Muron [2005] uses the Neo-Hookean law (Appendix 1.B.3) which is an
extension of Hooke’s law for large deformations [e.g., Belytschko et al., 2013, Zienkiewicz and
Taylor, 2000b, Muron, 2005]. Moretti and Titeux [2007] use the Simo-Miehe law [Lorentz,
2013].

Constitutive laws incorporate mechanical rock properties which are defined within the geo-
logical model to represent rock behavior. Mechanics-based restoration generally uses isotropic
elastic parameters which can be described with Young’s modulus E and Poisson’s ratio ν [e.g.,
Sokolnikoff, 1956, Gjerde, 2002, Muron, 2005, Moretti et al., 2006, Maerten and Maerten, 2006,
Gercek, 2007]. Other equivalent parameters can be used such as the first Lamé parameter
λ, the second Lamé parameter µ (also called shear modulus) or the bulk modulus K (Ap-
pendix 1.C). These parameters may vary within the domain and are isotropic (no direction
dependency). It is usual to define different elastic parameters per geological layer, to reflect
the nature of rocks. It is important to note that the change of volume from the unrestored
state to the restored state is controlled by Poisson’s ratio and the applied boundary condi-
tions. Indeed, the mass is conserved and the mechanical deformation is minimized but the
volume is not necessary maintained.

It is well-known that sedimentary layers may slide along bedding limits (flexural slip)
corresponding to thin weak beds in particular in compressive contexts [e.g., Donath and
Parker, 1964, Dubey and Cobbold, 1977, Tanner, 1989, Fossen, 2016]. To emulate this effect in
restoration, Durand-Riard [2010] and Durand-Riard et al. [2013a] upscale a stack of geological
layers, under flexural slip mode, into a single layer defined by a transverse isotropic material
[Backus, 1962, Salamon, 1968, Watkinson and Cobbold, 1981, Crea et al., 1981, Graham
and Houlsby, 1983, Chalon et al., 2004, Titeux, 2009, Proix, 2010]. This avoids the explicit
introduction of several sliding interfaces or the definition of multiple thin weak layers, which
would be a meshing constraint and imply irrealistic mesh refinement [Durand-Riard et al.,
2013a]. Consequently, this avoids a significant increase of the computer memory cost and of
the computational restoration cost. A transverse isotropic mechanical behavior is modeled
by five elastic parameters (Appendix 1.D.1). The upscaling proposed by Durand-Riard et al.
[2013a] for restoration purposes stems from the approach of Salamon [1968]. The five elastic
parameters derive from the elastic parameters of each layer in the stack under flexural slip
deformation, including the thin weak beds and their proportion (Appendix 1.D.2). A difficulty
of this approach is to evaluate the volumetric proportion of the weak beds relatively to the
entire stack. In addition, the use of pure transverse isotropy implies that the stratigraphy
is perfectly horizontal, i.e., a bias is introduced in the case of non-horizontal layers. Tilted
transverse isotropy enables to consider the stratigraphy normal, and not the depth axis, as
the anisotropy axis [Gornet, 2008, Danek et al., 2010, Kostecki, 2010, 2011].

1.1.2 Boundary conditions to ensure a geologically consistent restored state

The equation of motion (1.3) defines the evolution of the solid as a result of mechanical
constraints. These constraints are the boundary conditions of the geomechanical restoration.
They ensure that the restored state is geologically consistent with external knowledge, and
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Fixed node

Fixed surface

Nodes to tie

Horizon lines to tie

Fault mirrors to tie

Displacement or traction

Fixed surface target

Fixed line

Figure 1.1: Restoration traditional boundary conditions. Displacement and/or contact conditions
are set to unfold and/or unfault a geological model. Data courtesy of Total.

that the restored state is unique. The classical boundary conditions in restoration aim to
reverse the action of tectonic forces: unfolding and unfaulting (Figure 1.1). They are mainly
displacement (Dirichlet) conditions. Indeed, traction (Neumann) boundary conditions which
would enable to unfold and unfault are unknown and difficult to assess [Lepage et al., 2004,
Muron, 2005, Moretti et al., 2006]. A null Neumann boundary condition is defined on the
boundaries in which no Dirichlet or contact condition is defined (free boundaries).

1.1.2.1 Displacement boundary conditions: unfolding and numerical stability

Displacement boundary conditions are largely used in mechanics-based restoration. Their
main use is to flatten the uppermost horizon, i.e., the depth component of the top horizon is
imposed at a specific value. Another use of Dirichlet conditions is to restrict the motion along
a specific direction. For instance, in the case of evidence of a direction without significant
deformation, the geological model is imposed to not move along that direction. Durand-Riard
[2010] prevents two lateral walls from moving along the horizontal direction orthogonal to the
main horizontal direction of folding in a fault-bend fold model. Similarly, Chauvin et al.
[2017] apply such conditions on an extensional model. In some cases, a part of the model is
constrained to move with a specific displacement. Durand-Riard [2010], Durand-Riard et al.
[2013b] and Chauvin et al. [2017] apply a displacement condition on a wall respectively in a
compressive context, a strike-slip context and an extensional context. Finally, some numerical
methods need to have enough constraints to converge into a unique solution, by avoiding a
multitude of equivalent restoration solutions which would only differ by a global translation or
a global rotation [e.g., Lepage et al., 2004, Moretti et al., 2006, Durand-Riard et al., 2013a,b].

1.1.2.2 Unfaulting based on geometrical and/or physical boundary conditions

Fault contact boundary conditions are defined to remove the action of faults. There are three
main kinds of fault contacts (represented in Figure 1.1). The first one consists in avoiding
gap and overlap between the fault blocks. This condition ties the two mirrors of a fault.
The second condition ties both cutoff lines of a horizon. This condition is generally only
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applied on the uppermost horizon to handle synsedimentary deformation. Indeed, in the case
of growth stratigraphy, all the horizons did not undergo the same amount of slip. For the
horizons below the uppermost horizon, the cutoff line geometry in the restored state is a
consequence of the mechanical simulation. Note that in the case of pre-growth stratigraphy,
all the horizon cutoff lines for a same fault are a priori removed at the same time. Finally,
when two clear markers are visible on each side of a fault, for instance two markers of a same
channel path, a specific contact condition can be defined to tie both points. Durand-Riard
et al. [2013b] call such contact points piercing points. These points represent a meshing
constraint since two nodes must exist on these locations. Contact conditions are performed
by Dirichlet conditions [Muron, 2005, Moretti et al., 2006] or by contact mechanics [Muron,
2005, Maerten and Maerten, 2006, Wriggers and Laursen, 2006]. The latter is a mix between
Dirichlet and Neumann conditions.

1.1.3 Numerical representation of a geological model in restoration

Equation (1.3) has no analytical solution in the general case. Thus to solve it and get the
restoration displacement, it is necessary to use a numerical method. Several numerical meth-
ods have been used in restoration. They need a numerical representation of the geological
model. We develop here only the geological representation used in the published restoration
methods. There are two main representations of a geological model. The first one is the
boundary representation (Figure 1.3a) [Caumon et al., 2004, 2009]. It is a representation by
surfaces. Each surface represents a geological surface, generally a fault or a horizon. The
ensemble of these surfaces constitutes a sealed volume called a structural model. The sec-
ond representation is a 3D mesh composed by 3D volumetric elements (Figure 1.3b). In this
representation the volumetric elements are generally conformal to horizons and faults. The
volumetric elements are most often tetrahedra since these elements are able to fit complex
geometries [Muron, 2005, Zehner et al., 2015]. When the volumetric elements are not con-
formal to the horizons, the latter can be represented by isovalues of a scalar field within the
mesh [e.g., Frank et al., 2007, Durand-Riard, 2010, Durand-Riard et al., 2010]. Thus, the
volumetric elements are crossed by the horizons, leading to an approximation of the elastic
parameters along the horizons since these parameters are stored within each element (Fig-
ure 1.2). For a tetrahedron, Durand-Riard et al. [2010] define average elastic parameters by a
weighted mean. Let Er and νr denote Young’s modulus and Poisson’s ratio of the red layer in
Figure 1.2, and Eb and νb denote Young’s modulus and Poisson’s ratio of the blue layer. The
cut of a tetrahedron by the implicit horizon defines a volume Vr of the tetrahedron within
the red layer, and a volume Vb of the tetrahedron within the blue layer. Average Young’s
modulus Eav and Poisson’s ratio νav in the tetrahedron are [Durand-Riard et al., 2010]:

Eav =
Vr × Er + Vb × Eb

Vr + Vb
; νav =

Vr × νr + Vb × νb
Vr + Vb

. (1.6)

Finally, above the implicit uppermost horizon to restore, the mesh has no geological mean-
ing and is only present to store the scalar field which defines the stratigraphy. Durand-Riard
et al. [2010] define a rubber-like material to avoid a mechanical artifact of this part of the
mesh (E = 0.2 GPa and ν = 0.5).

The typical workflow (Figure 1.3) in geomechanical restoration which includes the geologi-
cal representation construction is: (1) the construction of a structural model (for instance from
seismic data) (Figure 1.3a), (2) the meshing of the structural model by volumetric elements
if necessary (Figure 1.3b), (3) the assignment of mechanical properties within the geological
model (Young modulus and Poisson’s ratio or equivalent, Figure 1.3c), (4) the definition of the
boundary conditions to unfold and unfault (Figure 1.3d), (5) the resolution of Equation (1.3)
by a numerical method (Figure 1.3e), i.e., the restoration displacement field is computed, (6)
the application of the restoration displacement field to get the restored model (Figure 1.3f),
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Implicit 
horizon

Average 
materials

Figure 1.2: Equivalent mechanical properties. Faulted model with an implicit horizon (black thick
line). This horizon is the boundary of two layers (red and blue). Average Young’s modulus and
Poisson’s ratio is defined for each tetrahedron crossed by the implicit horizon.

(7) the removal of the uppermost layer (Figure 1.3g). In the case of poly-stage deformations
or of growth strata, if it remains at least a geological layer, the workflow runs until no layer
remains from the step (4). This workflow may vary for certain restoration methods.

1.2 Numerical methods for solving a geomechanical problem

In this section we present the different numerical methods which are used in geomechanical
restorations to solve Equation (1.3). The main families of numerical methods are the boundary
element method [Beer and Poulsen, 1994, Gjerde, 2002, Maerten et al., 2006, Marshall et al.,
2008, Maerten et al., 2010], the mass-spring method [Terzopoulos et al., 1987, Provot, 1995,
Shukla and Jayakumar, 2011, Liu et al., 2013, Macaulay et al., 2015], and the finite element
method [e.g., Zienkiewicz and Taylor, 2000a,b, Maerten and Maerten, 2001, Santi et al., 2003,
Muron, 2005, Moretti et al., 2006, Maerten and Maerten, 2006, Hughes, 2012, Belytschko
et al., 2013, Bathe, 2014, Tang et al., 2016]. The latter is the most common method in
mechanics-based restorations and is itself subdivided into several methods.

1.2.1 Geomechanical restoration solved by the finite element method

In this section we describe the principle of the finite element method. Santi et al. [2003],
Muron [2005], Maerten and Maerten [2006], Moretti et al. [2006], Durand-Riard [2010], Tang
et al. [2016] and Chauvin et al. [2017] developed geomechanical restoration tools using this
numerical method.

1.2.1.1 Principle

The finite element method is a mathematical method to approximate the solution of differen-
tial equations. This numerical approach discretizes the studied medium into elements. A 3D
mesh composed by volumetric elements is constructed (Figure 1.3b). The differential equa-
tions are then solved on each element. The global solution is obtained by the concatenation
of all the elementary solutions.

The finite element method corresponds to a family of methods. The classical steps of the
finite element method are:

• The conversion of the strong form into a weak form: Equation (1.3) is transformed into
an equation which can be solved.

• The discretization of the weak form: the medium is split into elementary media.
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a) b) c)

e) f) g)

d)

E1, ν1

E2, ν2

Figure 1.3: Sequential restoration workflow. a) Boundary representation of a geological model
(structural model). b) 3D mesh, here filled by tetrahedra. c) Mechanical parameters (Young’s
modulus E and Poisson’s ratio ν) assigned in the mesh. These parameters may vary within the
volume. d) Definition of the restoration boundary conditions to unfault and unfold the model. e)
Computation of the restoration displacement field by a numerical method. f) Restored state. g)
Removal of the uppermost layer. The sequential restoration continues at step d). Data courtesy of
Total.

• The passage to reference elements: equations defined on the elementary media are trans-
formed to be defined into reference elements in which interpolation functions are well
known.

• The integrals in the equations are approximated by sums (Gauss quadrature).

• All the matrices, defined on each element, are concatenated into global matrices repre-
senting the entire geological domain. This step is called assembly.

• The resolution of the problem: the displacement is computed using the static method
(Section 1.3.1) or the dynamic relaxation method (Section 1.3.2).

1.2.1.2 Application of the finite element method to the mechanics-based restoration

Equation (1.3) is defined on the restored domain Ω. This space is not known since it is the
purpose of the restoration. In the following development, we choose to convert Equation (1.3)
into the unrestored space as done by Muron [2005] since such a space geometrically remains
the same through the restoration simulation. This formulation is called the total Langrangian
formulation [e.g., Muron, 2005, Belytschko et al., 2013, Bathe, 2014]. Other formulations,
which should provide the same solution, are possible (e.g., the updated Lagragian formulation)
but we just develop this one. The formulation of Equation (1.3) on the unrestored geometry
is (Appendix 1.E):

∇0 · P + ρ0b = ρ0ü, (1.7)

with P the nominal stress (Appendix 1.B.2), ρ0 the unrestored rock density, ∇0· the di-
vergence in the unrestored space, b the body forces, and ü the acceleration vector. Note that
this new equation is not the equilibrium of the unrestored state but the equilibrium of the
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a) b)

Figure 1.4: Mesh discretization. a) Theoretical shape of the medium Ω0. b) Approximation of the
shape of the medium Ω0. This new domain Ω̃0 depends on the mesh element choice Ω̃e

0. The equation
of motion is solved on each mesh element.

restored state expressed in the unrestored space.

Equation (1.7) is called the strong form. The first step of the finite element method con-
sists in transforming this strong form into a weak form which can be solved. This weak form
is mathematically and physically equivalent to the strong form. This transformation is per-
formed by the virtual work principle [e.g., Dym and Shames, 1973, Zienkiewicz and Taylor,
2000a,b, Muron, 2005, Wriggers and Laursen, 2006, Belytschko et al., 2013, Bathe, 2014]. The
virtual work principle introduces a virtual displacement δu which is applied on the solid at
equilibrium state. A light deformation of a solid enables to get its characteristics such as its
stress. This permits to get the real displacement from the unrestored state to the restored
state. In the case of elasticity in solid mechanics, the principle of virtual work implies the
principle of least action [Dym and Shames, 1973, p. 124-127]. Thus, it corresponds to a min-
imization of the deformation, from the unrestored state to the restored state. Equation (1.7)
is homogeneous to a force. A simple way to understand how to get the equivalent weak form
is to multiply Equation (1.7) by the virtual displacement (a work correspond to the product
between a force and a displacement) and then to integrate over the entire body. After some
basic mathematical developments the final shape of the weak form is (Appendix 1.F):

∫
Ω0

δu · ρ0ü dΩ0 +

∫
Ω0

(∇0 (δu))T : P dΩ0 =

∫
Γ0

δu · t0 dΓ0 +

∫
Ω0

δu · ρ0b dΩ0. (1.8)

At this stage, there is no approximation yet. The weak form needs to be discretized
because of three main reasons. Firstly, it is defined continuously on a domain Ω0. So to
get the solution at several locations a discrete domain must be considered. Secondly, the
integrations are on a domain whose geometry is arbitrary. A simplification of this geometry
Ω̃0 is needed to compute integrals in (1.8). Thirdly, the different mechanical parameters such
as the density, Young’s modulus and Poisson’s ratio, are not necessary constant in the whole
domain. Classically, these parameters are different for each geological layer and potentially
within them. Therefore the medium Ω0 is split into several media Ω̃e

0 such as (Figure 1.4):

Ω0 ≈ Ω̃0 =
ne⋃
e

Ω̃e
0 ; ∀ (i, j) ∈ J1;neK2/i 6= j | Ω̃e

0|e=i ∩ Ω̃e
0|e=j = ∅. (1.9)

Such a discretization is called a mesh. Here we can see that due to the dicretization, the
geological model boundaries (faults and horizons) are approximated and that the conformity
to the structure is dependent on the mesh size. Thus, the finite element method, by the
discretization, approximates the solution of a differential equation [e.g., Lo, 2002]. Moreover,
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the shape of the elements may have an important impact on the result. For a good quality,
equilaterality in solid mechanics is generally wished [e.g., Parthasarathy et al., 1994, Shewchuk,
2002, Munson, 2007]. The weak form is discretized using:∫

Ω0

(. . .) dΩ0 ≈
∫

Ω̃0

(. . .) dΩ̃0 =

∫
ne⋃
e

Ω̃e
0

(. . .) dΩ̃0 =
ne∑
e=1

∫
Ω̃e

0

(. . .) dΩ̃e
0. (1.10)

Similar relations for surface integrals may be established. Thus, instead of solving the
weak form on the whole domain, it is locally solved on each element. For each element a local
system of equations is defined, such a system is represented by elementary matrices. Several
finite element solvers assemble the matrices of all the elements into global matrices to get a
single system of equations to solve:

M · ü+C · u̇+ F int − F ext = 0, (1.11)

with M the mass matrix, F int the vector of the internal forces, F ext the vector of the
external forces, C the damping matrix, and u̇ the velocity. Note that the two latter terms
stem from the body forces b and are used in the dynamic relaxation method (Section 1.3.2).
Geomechanical restoration approaches relying on a finite element procedure solve the above
equation, in this form or another. As the number of methods is high, Section 1.3 is dedicated
for their description.

1.2.2 Geomechanical restoration solved by the boundary element method

The boundary element method has seldom been used to perform a geomechanical restoration
problem [Gjerde, 2002], even if this approach is very common in geomechanical applications
[e.g., Beer and Poulsen, 1994, Maerten et al., 2006, Marshall et al., 2008, Maerten et al., 2010].

This numerical method just requires a boundary representation, i.e., a mesh composed by
volumetric elements (e.g., tetrahedra) is not required. Thus, for geological applications, just
the structural model is needed (Figure 1.3a). Equation (1.3) is thus solved only on the surfaces
and then the solution can be computed within the volume on specific points. In the boundary
element method the surfaces are discretized, introducing a geometrical approximation. As in
the finite element method, the equation of motion is solved in each (surface) element. The
global solution is obtained by assembling all the local ones.

The use of just a boundary representation instead of a full volumetric mesh is a huge
advantage of the boundary element method over the finite element method. Indeed, it reduces
the meshing constraints. Moreover, the finite element method solves the equation of motion
everywhere (dependent of the mesh discretization) even in areas in which the solution is not
needed. Conversely, the solution within the volume is performed only on necessary points in
the boundary element method. Furthermore, as only the surfaces are discretized, there are
far less mesh nodes. Thus, the boundary element method requires less computer memory
and less computational time than the finite element methods. However, the resulting system
of equations implies matrices which are not sparse and not symmetrical [e.g., Gangming,
1989]. The fact that the matrices are not sparse is not really a problem, since the number
of degrees of freedom are farly reduced in comparison to the finite element method. Finally,
the boundary element method is more appropriate for linear problems with homogeneous
mechanical properties within a close volume. Mechanical heterogeneities and non-linearities
are more difficult to handle than in the finite element method. As a consequence, a volumetric
discretization by volumetric elements may be necessary.
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1.2.3 Geomechanical restoration solved by the mass-spring method

The mass-spring method [e.g., Terzopoulos et al., 1987] is used by Midland Valley [2017b] for
restoration purposes [Shackleton et al., 2008, 2011, Ghail, 2014, Macaulay et al., 2015, Verdon
et al., 2015]. There are few information on this method. In this section, we try to provide
the bases of this mass-spring approach from the literature. We hope that the general under-
standing of this numerical approach will ease the comprehension of the specific geomechanical
restoration tool of Midland Valley [2017b].

The mass-spring method solves Equation (1.3) using a set of mass points connected by
springs (Figure 1.5), in a boundary representation or in a volumetric model composed by
volumetric elements [Shackleton et al., 2008, Midland Valley, 2017a]. Thus this approach
approximates a physical 3D problem into an ensemble of 1D problems, making this approach
faster than the finite element method but less realistic [Gibson and Mirtich, 1997, Bourguignon
and Cani, 2000, Bianchi et al., 2003]. The boundary conditions initiate the deformation on
some points (Figure 1.5c), for instance to flatten the uppermost horizon or to remove fault
slip [Midland Valley, 2017a]. This generates forces on the springs sharing the impacted nodes.
The internal force F int

0 , contained in ∇ · σ in (1.3), acting on a node N0 corresponds to the
sum of the action of the n ∈ J1;nK springs connected to this node [e.g., Provot, 1995, Louchet
et al., 1995, Bianchi et al., 2003]:

F int
0 = −

n∑
i=1

k0i

(
N 0N i − ‖N 0

0N
0
i ‖
N 0N i

‖N 0N i‖

)
, (1.12)

with N i a node connected to N0 by a spring N 0N i (vector) of stiffness k0i, and ‖N 0
0N

0
i ‖

the natural length of the spring (when unloaded) N 0N i (Figure 1.6). These forces are prop-
agated through the mesh, spring by spring (Figure 1.5d). This propagation is controlled by
the motion equation and the stiffness of each spring. The resolution of Equation (1.3) is
pseudo-temporal, i.e., the deformation is propagated through time within the mesh and a
damping enables to reduce more and more the energy of the system until equilibrium. In
a way, this approach is similar to the dynamic relaxation which is a specific finite element
method (Section 1.3.2).

By approximating a 3D problem by a set of springs, the mass-spring method is very
sensitive to the choice of the spring system. The points and their masses must be appropriately
chosen. Points generally correspond to mesh nodes. The mass of a point can be determinated
with the volume of the Voronoi cell of the point in the Voronoi diagram [e.g., Aurenhammer,
1991] of the entire mesh [Bourguignon and Cani, 2000], using a user-defined density. For the
definition of the springs, a basic method is to choose the mesh element edges. For integrating
mechanical anisotropy, another choice of springs can be defined, leading to springs which do
not necessary correspond to mesh element edges [Bourguignon and Cani, 2000, Midland Valley,
2017a]. In all cases, the mechanical response of a mass-spring system is very sensitive to the
choice of the spring system, and so of the mesh, and of the spring stiffnesses [Bourguignon and
Cani, 2000, Bianchi et al., 2003, Midland Valley, 2017a]. This issue is for instance addressed
by Bourguignon and Cani [2000] and Bianchi et al. [2003], among other authors. Moreover,
the mass-spring method has issues to respect some rules such as the volume conservation
[Gibson and Mirtich, 1997, Bourguignon and Cani, 2000] which is a common rule in restoration
in general (even if the geomechanical restoration preserves mass and not volume). Several
authors developed approaches to limit the changes of volume after a mass-spring simulation
[Lee et al., 1995, Promayon et al., 1996, Bourguignon and Cani, 2000]. For the numerical
resolution, several methods exist such as the explicit Euler integration [Provot, 1995] and the
implicit integration [Baraff and Witkin, 1998, Liu et al., 2013].
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a) b)

c) d)

Figure 1.5: Mass-spring approach. a) Mesh of a 2D surface, composed by triangles. b) Example
of spring and mass point disposition. Here the mass points are on mesh nodes, and the springs
correspond to the mesh edges. c) Displacement of a node of the mesh (green node) due to boundary
conditions. The springs connected to this node (green springs) are in elongation. Blue nodes and
blue springs do not move yet. d) The elongation of the springs in c) generates forces, controlled by
the spring stiffnesses, acting on the nodes connected to them (green nodes). The motion of these
nodes implies a length change of the springs connected to them (green springs). Thus the motion
propagates, spring by spring, with a damping which progressively dissipates the energy, until the
system reaches an equilibrium.

Figure 1.6: Nodal internal forces in a mass-spring system. The internal forces of a node N0 corre-
spond to the sum of the action of each spring connected to this node. N i, with i ∈ J1;nK, is one of
the n nodes connected to the node N0 by a spring of stiffness k0i and of natural length ‖N0

0N
0
i ‖.
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Criteria
methods

Numerical

method
element
Finite

method
element

Boundary

method
Mass-spring

mechanics
Use continuum

Yes
set of springs

Simplified by a

Mesh
mesh

Volumetric
representation

Boundary

volumetric mesh
representation or

Boundary

constraints
Meshing

High Low
the mesh type
Depends on

time
Computational

High Low

Formulation 3D 2.5D Multiple 1D

integration
anisotropy

heterogeneity /
Mechanical

Easy Difficult

Memory cost High Low
the mesh type
Depends on

Authors

Tang et al.
Moretti et al.,

Maerten and Maerten,
Muron,

Gjerde Midland Valley

Table 1.1: Restoration numerical method comparison. The presented comparison is based on the
published methods used for geomechanical restoration purposes. More details on the finite element
method are in Section 1.3

1.2.4 Comparison between the different numerical methods

The different fundamental similarities and differences between the numerical methods used in
geomechanical restoration are summarized in Table 1.1.

1.3 Geomechanical restoration solved by different finite element
methods

Many restoration codes are based on a finite element method such as Dynel software devel-
oped by Schlumberger [Maerten and Maerten, 2006, Maerten, 2010, Vidal-Royo et al., 2012,
Maerten and Maerten, 2015, Schlumberger, 2017], Kine3D sofware which is a GOCAD-SKUA
plugin developed by IFPEN [Moretti et al., 2006, Moretti, 2008, Paradigm, 2015], and RING-
Mecha1 library developed by the RING team in the laboratory GeoRessources [Muron, 2005,
Durand-Riard, 2010, Chauvin and Mazuyer, 2016]. In this section we explain the different
methods used in the literature to solve Equation (1.11) for restoration purposes. As far as we
know, all the solvers described in the literature to solve a restoration problem do not consider
the time. Thus, the transient evolution from the unrestored to the restored states does not
matter, only the steady-state is important. There are two methods to get the steady-state
while neglecting the transient part. The first method is the static method. That simplifies
Equation (1.11) since the temporal terms disappear. The second method is the dynamic re-
laxation method. This technique keeps the temporal terms to transform Equation (1.11) into
a recurrence relation, reducing the computer memory requirements.

1the successor of RestorationLab
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1.3.1 Static finite element method

In the static form, mathematical terms in Equation (1.11) are not functions of time. Hence
u̇ and ü are null and Equation (1.11) becomes:

F int = F ext. (1.13)

1.3.1.1 Global approach

Muron [2005] and Moretti et al. [2006], Moretti and Titeux [2007] deal with Equation 1.13
in a global way, i.e., a unique system of equations for the whole mesh is solved. Thus, the
internal forces F int and the external forces F ext are computed for the entire domain. Their
definitions depend on the mechanical problem. Fault contact and large deformations are
sources of non-linearities. If there is no non-linearity, the internal forces F int are defined by
a linear relation according to the displacement (thanks to the Hooke’s law and the linear
Green-Lagrange strain, Appendix 1.B.1):

F int = K · u, (1.14)

with K the stiffness matrix representing the mechanical behavior of the entire model.
From Equation (1.13), the product between the stiffness matrix K and the displacement
vector u is equal to the external force vector F ext:

K · u = F ext. (1.15)

u can be assessed as it is the unique unknown. The intuitive way to do that is to invert
the stiffness matrix K: u = K−1 · F ext. In practice this method cannot be realized in a
reasonable time since the stiffness matrix can have a dimension greater than one million in
restoration applications. As the stiffness matrix K is sparse and symmetric, the system 1.15
can be efficiently solved by numerical methods such as the Cholesky decomposition or the
conjugate gradient [e.g., M.R and Stiefel, 1952, Davis and Duff, 1993, Demmel et al., 1995,
Golub and Van Loan, 1996, Schenk and Klaus, 2004, Muron, 2005, Gould et al., 2007, Dureis-
seix, 2008, Bathe, 2014].

In the case of non-linearities, i.e., if there are fault contacts or if the small deformation
assumption is not appropriate, the internal forces are not linear with the displacement u. Thus
it is not possible to solve directly Equation (1.13). A classical method to handle that in solid
mechanics, and used by Muron [2005], Moretti et al. [2006], and Moretti and Titeux [2007],
is to linearize Equation (1.13) [e.g., Zienkiewicz and Taylor, 2000b, Wriggers and Laursen,
2006, Belytschko et al., 2013, Bathe, 2014]. In the literature, the Newton-Raphson algorithm
is often used (Figure 1.7). Let f (u) denote the substraction between the internal and the
external forces:

f (u) = F int − F ext. (1.16)

The Newton-Raphson algorithm solves f (u) = 0 iteratively. At iteration k + 1, a Taylor
expansion of f is computed from the previous step k:

f (uk+1) ' f (uk) +
∂f (u)

∂u

∣∣∣∣
u=uk

· (uk+1 − uk) = 0. (1.17)

Then the new solution uk+1 is found. Then on this new solution a new Taylor expansion of
f is done and a new solution of u is determined and so on until the difference of the solutions
u from one step to another becomes negligible.
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0

Newton-Raphson: Find    such as

: function to solve such as
: displacement at step

Figure 1.7: Newton-Raphson algorithm principle. From an initial solution u0 the real solution is
progressively computed. Each step of the algorithm computes the tangent of the function f at the
abscissa ui (previous solution) to define a new approximation of f such as f (ui+1) = 0. The process
stops when ui+1 − ui is small enough.
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The derivative of (1.16) is:

A =
∂F int

∂u
− ∂F ext

∂u
= Kint −Kext. (1.18)

A is the Jacobian matrix2 [Belytschko et al., 2013, p. 341-343]. A is a function of
the derivatives according to the displacement u of the internal forces F int, called tangent
stiffness matrix Kint, and of the external forces F ext, called load stiffness matrix Kext. The
expression of these derivatives is obtained by linearization [Belytschko et al., 2013, Section
6.4]. The algorithm to solve non-linear system is in Algorithm 1. An initial solution u0 is
necessary to begin the Newton-Raphson procedure. To ensure the convergence, it is necessary
to define the initial solution as the best assumption of the final solution. Convergence will
depend on this initial solution. The linear solution ulinear = K−1 · F ext may be chosen
[Muron, 2005]. In addition, other iterative methods than Newton-Raphson may be used such
as the modified Newton-Raphson method or the quasi-Newton methods which use second
order Taylor expansions [Zienkiewicz and Taylor, 2000b].

Algorithm 1 Static non-linear algorithm. Global approach as developed by Muron [2005] and
Moretti et al. [2006]

Displacement u← ulinear ; Newton-Raphson step k ← 0
repeat
k ← k + 1
Compute r ← F int

k−1 − F ext
k−1

Compute A←Kint −Kext

Integrate Dirichlet boundary conditions into A
Solve A ·∆u = −r
u← u+ ∆u

until ‖∆u‖ < ε or k = maximum number of iterations
return u

1.3.1.2 Local approach

Maerten and Maerten [2006] solve Equation (1.13) locally instead of globally. They only use
the small deformation assumption so they also have to solve Equation (1.15). However, in-
stead of solving it for the entire system at once, they use a Gauss-Seidel algorithm which is
an iterative method [e.g., Golub and Van Loan, 1996, Dureisseix, 2008]. For each iteration all
the nodes are mechanically analyzed to determine their displacements. The order of analysis
is not important [Maerten and Maerten, 2006]. For a node, Equation (1.15) is locally built.
Only the surrounding elements of the current node are considered. The external forces applied
to the current node correspond to the deformation stress of the surrounding elements. The
stiffness matrix is defined on the current node and corresponds to the addition of surrounding
element stiffness matrices. The other nodes which belong to the surrounding elements are
defined as fixed [Maerten and Maerten, 2006]. Boundary conditions applied to the current
node, if any, are taken into account. Finally the displacement of the current node is computed
and the node is displaced. Then the algorithm considers another node and the same process
is repeated. As pointed by Maerten and Maerten [2006], an important fact is that the current
node uses the new position of the moved nodes at the current iteration and not just the nodal
positions at the previous iteration. The iterative solver ends when the nodal displacements
are negligible.

2also called effective tangent stiffness matrix [Belytschko et al., 2013] or effective matrix [Jacob and Ebecken, 1994]
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The method developed by Maerten and Maerten [2006] has several advantages. First,
the iterative process enables a better handling of the non-linear constraints such as fault
contacts. Second, the Gauss-Seidel algorithm provides an under-constrained system. Thus it
is not necessary to define a set of Dirichlet boundary conditions to guarantee the uniqueness of
the solution (pin nodes, lines or walls to avoid translation and rotation of the entire model).
Finally, as the algorithm is iterative and just a local stiffness matrix is built at each step,
the allocated memory is far smaller than the allocated memory of a global stiffness matrix
[Maerten and Maerten, 2006].

1.3.1.3 Application of boundary conditions: displacement, traction and body forces

Boundary conditions are defined to get a consistent restored model and to ensure a unique
solution of the differential equations. In restoration, there are two kinds of boundary condi-
tions. The Dirichlet conditions, also called essential boundary conditions, consist in imposing
the solution, i.e., a specific displacement, on some boundaries. The Neumann conditions,
also called natural boundary conditions, consist in setting a gradient of the displacement,
i.e., a positive or negative traction, on some boundaries. The boundary conditions used in
mechanics-based restoration are mainly the Dirichlet ones. Traction and gravity conditions
are seldom used even if proposed by several authors [Maerten and Maerten, 2006, Titeux and
Royer, 2006].

For a node, a Dirichlet condition fixes at least one component of the nodal displacement.
The three components are not necessary all fixed. If a node is not fixed on a specific com-
ponent, this node is free to move on this component, i.e., the motion on this component
is a result of the mechanical resolution. When a nodal component is fixed, the linear or
tangent stiffness matrix and the external forces are modified to take into account this Dirich-
let condition. Several methods exist such as the penalty method, the Lagrange multiplier
method, the augmented Lagrangian method and the perturbed Lagrangian method [e.g., Be-
lytschko et al., 2013]. Muron [2005] uses a penalty method. This technique permits to impose
a specific displacement by multiplying the corresponding elements in the matricial system
by a high value. Thus, the imposed displacement has an important weight in the system
resolution. This method is quite easy to implement but is very controversial. Indeed, the sys-
tem resolution is sensitive to the choice of the penalty factor [Nour-Omid and Wriggers, 1987].

In the case of the implicit restoration, in which the horizons are defined by isovalues of
a scalar field [e.g., Chilès et al., 2004, Cowan et al., 2004, Moyen et al., 2004, Frank et al.,
2007, Calcagno et al., 2008, Durand-Riard, 2010, Durand-Riard et al., 2010], two approaches
are possible. If the uppermost horizon is explicit, as the boundary conditions on horizons
(datuming) are generally applied only on that horizon, so explicit boundary conditions are
used as defined above. In that case, the scalar field defining the implicit horizons below
follows the deformation of the volumetric mesh. If the uppermost horizon is implicit, implicit
boundary conditions are used as proposed by Durand-Riard [2010] and Durand-Riard et al.
[2010]. Durand-Riard et al. [2010] gather the tetrahedral nodes which are the closest to the
implicit horizon. Then, on each of these nodes, a Dirichlet boundary condition disp is applied
to define the restored depth of the implicit horizon:

disp = Zr + d (n)− Zu (n) , (1.19)

with Zr the desired depth of the implicit horizon after restoration, d (n) the distance of
the node n to the implicit horizon, and Zu (n) the depth of the node n in the unrestored
state. An equivalent condition is used to define the position of points, lines and surfaces
along an axis. For more details about this algorithm, see Appendices 3-6 in Durand-Riard
et al. [2010]. Durand-Riard et al. [2010] show with an anticline model that implicit restoration
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provides a very similar restored model as explicit restoration. The use of implicit horizons is a
huge progress to reduce meshing constraints and enables the restoration of complex geological
models. However, a concern can be pointed out in the use of implicit boundary conditions
as defined by Durand-Riard et al. [2010]. Indeed, they define boundary conditions within a
volumetric mesh. However, by definition a boundary condition is set on the mesh boundary
and the classical finite element method does not consider implicit conditions. More studies and
mathematical evidence on this approach should be performed. The extended finite element
method, which mathematically defines implicit boundary conditions, may be considered [e.g.,
Moës et al., 1999, Moës and Belytschko, 2002, Siavelis et al., 2010, 2011, Siavelis, 2011, Siavelis
et al., 2013, Belytschko et al., 2013].

1.3.2 Dynamic relaxation method

1.3.2.1 Principle

The dynamic relaxation method [e.g., Day, 1965, Otter, 1965, Underwood, 1979, 1983], also
called pseudo-transient analysis, is another finite element method to solve Equation (1.11).
Santi et al. [2002] and Muron [2005] developed this method for geomechanical restoration
purposes. This method has been used in several studies by Plesch et al. [2007], Guzofski
et al. [2009], Durand-Riard [2010], Durand-Riard et al. [2013b] and Stockmeyer and Guzofski
[2014]. Contrary to the static methods, the dynamic relaxation keeps the temporal terms of
Equation (1.11). However, the time is still not taken into account. Temporal terms are kept
to transform Equation (1.11) into a recurrence relation. This avoids the matrix system of
equations present in the static method. A damping term reduces the transient part of a time
dependent simulation in order to quickly reach the static solution which is the objective [e.g.,
Shizhong, 1988, Muron, 2005]. Thus, the transient steps have no physical meaning and do
not matter.

Equation (1.11) is function of the time t. Time is by definition a continuous space. To get
a solution at a specific time, it is necessary to convert this continuous space into a discrete
space. Let {t0, t1, . . . , tn−1, tn, tn+1, . . . , t∞} with n ∈ N denote the time discretization. Let
ün, u̇n and un respectively denote the acceleration, the velocity and the displacement at time
tn. Equation (1.11) can be rewritten as:

M · ün +C · u̇n + F int,n − F ext,n = 0. (1.20)

Time integration is used to solve such a problem. Until the end of this chapter, we assume
a constant step between two consecutive times: ∆t = tn+1 − tn ∀n ∈ N. The dynamic
relaxation uses an explicit time integration. In the finite element method, explicit means that
the solution at the time tn only depends on the previous time steps and not on other values
of the time tn (implicit time integration). Here explicit/implicit has no link at all with the
structural modeling. The explicit time integration in question is the central difference method
[Belytschko et al., 2013] which belongs to the finite difference method. For a better precision,
half-time integration is used in central difference [e.g., Oakley and Knight, 1995a, Muron,
2005, Belytschko et al., 2013]:

u̇n+ 1
2 =

un+1 − un

∆t
; u̇n =

u̇n+ 1
2 + u̇n−

1
2

2
; ün =

u̇n+ 1
2 − u̇n−

1
2

∆t
. (1.21)

In the central difference scheme, it is common to use a diagonalized version of the mass
matrix and of the damping matrix. This process is called lumping [Oakley and Knight, 1995a,
Zienkiewicz and Taylor, 2000a, Belytschko et al., 2013]. Moreover the damping matrix is often
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assumed to be linearly proportional to the mass matrix [Muron, 2005, Oakley and Knight,
1995a]:

C = cM , (1.22)

with c a damping factor. Inserting (1.21) and (1.22) into (1.20) it follows [Oakley and
Knight, 1995a, Muron, 2005] (Appendix 1.G):

un+1 = un + ∆tu̇n+ 1
2 with u̇n+ 1

2 =
2− c∆t
2 + c∆t

u̇n−
1
2 +

2∆t

2 + c∆t
M−1 ·

(
F ext,n − F int,n

)
. (1.23)

This equation has the advantage of being simple to solve since step n+1 can be determined
by previous steps. Contrary to the static method (Section 1.3.1), no system of equations needs
to be solved [e.g., Muron, 2005]. As the resolution is node by node, no global assembly is
required, reducing the computer memory cost. In the linear case, Muron [2005] assembles
even so the stiffness matrix once and for all at the beginning of the restoration process to
limit the computational time, to the detriment of the computer memory. Furthermore, non-
linearities are easier to handle since no linearization is necessary. Equation (1.23) is always
linear even if there are non-linearities such as large deformations or contact conditions [Oakley
and Knight, 1995a]. Moreover, as the mass matrix M is often chosen lumped [e.g., Oakley
and Knight, 1995a, Zienkiewicz and Taylor, 2000a, Muron, 2005, Belytschko et al., 2013],
that is to say diagonalized, computing its inverse is straightforward (equal to the inverse
of the diagonal components). Dynamic relaxation, by the direct computation of the next
time step and the use of a one-dimensional table to store the data, is a straightforward and
parallelizable algorithm [Oakley and Knight, 1995a,b, Oakley et al., 1995, Topping and Khan,
1994]. Parameters are chosen to accelerate the resolution. For instance, as the mass matrix
M and the damping matrix C are not physical, they are defined to quickly reach the steady-
state [Oakley and Knight, 1995a]. The major drawback of the dynamic relaxation method
is that it lacks stability and it can be time-consuming due to the small time step required
to reach convergence [Oakley and Knight, 1995a, Muron, 2005, Belytschko et al., 2013]. To
select the parameters which will help to a better convergence, the reader can refer to Cassell
and Hobbs [1976], Papadrakakis [1981], Oakley and Knight [1995a], and Muron [2005].

Algorithm 2 Dynamic relaxation algorithm. Method developed by Muron [2005] for restoration
purposes.

u0 ← 0 ; u̇0 ← 0 ; u̇
1
2 ← ∆t

2 M
−1 · F ext,0 ; u1 ← ∆tu̇

1
2 ; n← 1

repeat
Compute external forces F ext,n

Compute internal forces F int,n

u̇n+ 1
2 ← 2−c∆t

2+c∆t u̇
n− 1

2 + 2∆t
2+c∆tM

−1 ·
(
F ext,n − F int,n

)
un+1 ← un + ∆tu̇n+ 1

2

n← n+ 1
until energy < tolerance

1.3.2.2 Definition of the Dirichlet boundary conditions

The definition of the displacement boundary condition consists in a correction of u̇n+ 1
2 in

Equation (1.23) [Muron, 2005]. As in the static approach, a displacement condition corre-
sponds to a vector V disp. As the dynamic relaxation is a pseudo-temporal process, this vector
is applied incrementally on the node [Belytschko et al., 2013, p. 337]. At the time tn, V disp

is recomputed in function of the current geometry and a very small fraction of this vector is
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Finite element approach
Static

relaxation
Dynamic

Local Global

Resolution type
equations (matrix)

System of
Recurrence relation

Temporal resolution No

integration
Non-linearity

Yes

for uniqueness
Necessity of fixed dofs

No Yes

Boundary condition Direct Incremental

Computational time High Very high

Memory requirements Low High Low

Solver stability High Low

Authors Maerten and Maerten
Muron

Moretti et al.,
Muron

Santi et al.,

Table 1.2: Comparison of the finite element methods used in geomechanical restoration. This com-
parison is based on the pusblished methods used for geomechanical restoration purposes: static
methods and the dynamic relaxation method.

applied. As the boundary conditions are applied by very small increments, the dynamic re-
laxation method is very slow [Belytschko et al., 2013, p. 337]. This portion of the projection

vector replaces u̇n+ 1
2 prior to the calculation of u̇n+1 (Equation (1.23)). To be homogeneous

to a velocity, V disp is divided by the time step ∆t. Thus the corrected u̇
n+ 1

2
corrected is:

u̇
n+ 1

2
corrected =

factor × V disp

∆t
, (1.24)

with factor ∈ J0; 1K the factor which defines the small increment of V disp.

1.3.3 Conclusions on the various finite element approaches

Table 1.2 provides a summary of the different finite element methods used in the mechanics-
based restoration. Concerning the choice between a static method and the dynamic relaxation,
the main difference between these two methods is on the numerical stability and the com-
putational time. Implicit methods, in the sense of numerical resolution and not structural
modeling, are more stable than explicit methods which can easily diverge. Indeed, explicit
methods are stable under specific conditions [Oakley and Knight, 1995a, Belytschko et al.,
2013]. The dynamic relaxation method is an explicit method and therefore has convergence
issues [e.g., Papadrakakis, 1981, Muron, 2005, Moretti and Titeux, 2007]. A small time step is
generally required to ensure convergence, but that increases the computational time [Oakley
and Knight, 1995a, Belytschko et al., 2013]. The main interest of such an unstable method
is that it significantly reduces the computer memory requirements [e.g., Oakley and Knight,
1995a]. Static methods which use a global system of equations for the entire mesh need much
computer memory and the matricial resolution may be heavy. However, nowadays, memory is
not a major problem in modern computers anymore. For a more detailed comparison between
the two methods, the reader can refer to Pica and Hinton [1981].
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1.4 Handling faults in geomechanical restoration solved by the fi-
nite element method

Handling faults in restoration is fundamental. Indeed, their geometry, their mechanical be-
havior and their evolution through time have a huge impact for instance on reservoir charac-
terization. As we have seen, mechanics-based restoration is based on continuum mechanics.
Dealing with faults is peculiar since by nature a fault represents a discontinuity in rock. Al-
though a fault corresponds to a volume in nature, it is generally represented by a surface
for simplicity in geomodeling [Fossen, 2016, p. 178]. In restauration, faults correspond to
surfaces. Another hypothesis is that fault contact is compliant: between two fault mirrors
neither holes nor gaps are wished. In the literature there are two main methods to deal with
fault contact. Moretti et al. [2006] and Muron [2005] develop fault contact boundary condi-
tions based only on geometrical assumptions, whereas Maerten and Maerten [2006], Muron
[2005] and Tang et al. [2016] use a method based on contact mechanics [Wriggers and Laursen,
2006]. All the fault contact methods use a master/slave approach. However, the definition of
master and slave may vary. All the contact methods aim to connect the nodes of the slave
fault onto the master fault. There are three kinds of contacts. The first one connects a slave
node onto a master node (node to node boundary condition). This contact removes a fault
dip slip. The second one connects the nodes of a slave line (continuous set of edges) onto a
master line (node to edge boundary condition). This condition is used to tie horizon cutoff
lines, generally of the uppermost horizon. The last contact is the connection of the nodes of
a slave surface onto a master surface (node to surface boundary condition). This condition is
used to avoid gap and penetration between fault mirrors.

1.4.1 Geometric fault contact methods

1.4.1.1 Principle

This fault contact method is based on a slave/master approach. The slave is constrained to
move relatively toward the master. The latter remains fixed relatively to the slave [Moretti
et al., 2006, Muron, 2005]. The master motion is not constrained by the slave but by other
potential boundary conditions and by the mechanical simulation. Thus the restored state is
strongly dependent on the choice of the slave and the master [Moretti et al., 2006]. As this
approach is purely geometric, there is no notion of frictionless gliding which is a mechanical
concept. However, in the case of absence of tangential constraint, such geometric contacts
may mimic a frictionless behavior.

1.4.1.2 Geometric fault contact in the static method

Lepage et al. [2004] and Moretti et al. [2006] use a purely geometric fault contact method
in a static finite element solver. Each node of the slave fault is projected onto the master
fault. The point on the master fault is not necessary a mesh node. Let As denote the slave
node to project. Let Am denote the master point which corresponds to the projection of As

on the master fault. Am is a point on a mesh edge or on a mesh facet. The mesh edge or
the mesh facet is defined by the nodes Am

i (Figures 1.8-1.9) with i ∈ J0;n − 1K, n being the
number of nodes in the mesh element (e.g., 2 for an edge, 3 for a triangle, 4 for a quadrangle).
The position of Am within the mesh element is defined by its barycentric coordinates ai [e.g.,
Meyer et al., 2002, Moretti et al., 2006] such as:

Am =
n∑
i

aiA
m
i . (1.25)
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Master block

Slave block

Horizon lip (slave)

Horizon lip (master)

Fault

Figure 1.8: Node to edge condition. As is a node on the slave fault cutoff line. It is projected onto
the master fault cutoff line. The image of As onto the master edge Am

0 A
m
1 is Am (defined by its

barycentric coordinates in the edge).

Master block

Slave block

Figure 1.9: Node to triangle condition. As is a node on the slave fault mirror. It is projected onto
the master fault mirror. The image of As onto the master triangle Am

0 A
m
1 A

m
2 is Am which is defined

by its barycentric coordinates. Data courtesy of Total.

The projection vector P applied on the node As is the vector linking As to Am. Using
the barycentric coordinate system it comes [Moretti et al., 2006]:

P =

(
n∑
i

aiA
m
i

)
−As. (1.26)

The way to project the slave nodes is a decision which may have important consequences
on the restored state [Moretti et al., 2006]. Moretti et al. [2006] advise to use the same
curvilinear abscissas on the uppermost horizon cutoff lines to tie the uppermost horizon parts.
At the year of their paper, there was no rule to ensure neither gap nor penetration along fault
mirrors. A projection, orthogonal to the master surface, may be used as a simple guess
[Muron, 2005]. Furthermore, as the master block moves independently of the slave block,
the contact process is non-linear (Figure 1.10). Indeed, contact conditions change according
to the relative position of the slave to the master through the mechanical processes until
convergence. Finally, Moretti et al. [2006] use geometric contact conditions to tie geological
layers along horizon interfaces. Indeed in their approach the mesh nodes are duplicated
along the horizons. Contrary to contact conditions for faults, they prevent any sliding along
horizons, i.e., horizons are “sticking interfaces”.

1.4.1.3 Geometric fault contact in the dynamic relaxation method

Santi et al. [2003] and Muron [2005] also use a geometric method for the fault contacts. As

for the Dirichlet boundary conditions, the method consists in a correction of u̇n+ 1
2 in (1.23)

to take into account the contact condition [Hallquist, 1998, Muron, 2005]. As in the static
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a) b)

c) d)

Figure 1.10: Non-linear geometrical contact. First step of an iterative contact process. The contact
is between the red line (slave) and the blue line (master). Red dots are the slave line nodes. a) Slave
and master lines to connect (as an unrestored state). b) Definition of the projection vector P for
each slave nodes (no specific rule). c) Fictitious step in which the nodes are moved to cancel the
projection vector gap without motion of the master. d) Master line moves due to the mechanical
parameters and the other boundary conditions. Slave nodes are still not on the master line. This
highlights that the contact process is not linear. From d) new projection vectors are defined and a
new mechanical simulation is performed until the slave nodes are on the master line. Step d) is as
an iteration in the Newton-Raphson loop.

approach, slave nodes are projected onto the master and the projection vector P is defined
in a same manner. As for the displacement boundary conditions, the projection vector is
not entirely applied on the slave node, but is done incrementally [Belytschko et al., 2013,
p. 337]. At the time step n, P is recomputed and a very small fraction of this vector is

applied. This portion of the projection vector is added to u̇n+ 1
2 prior to the calculation of

u̇n+1 (Equation (1.23)). P is divided by the time step ∆t to be homogeneous to a velocity.

Thus the corrected u̇
n+ 1

2
corrected is:

u̇
n+ 1

2
corrected = u̇n+ 1

2 +
factor × P

∆t
, (1.27)

with factor ∈ J0; 1K the factor which defines the small increment of P . This velocity
correction enables to project the slave onto the master. As said previously the fault contact
is unilateral, i.e., the master is not impacted by the fault contact condition. Muron [2005]
extended the velocity correction to the master to enable the sharing of the motion between
the master and the slave. He defines a kinematic partitioning factor β ∈ [0; 1], and the slave
node projection vector becomes βP instead of P . The master nodes, which in theory are
not constrained by the fault contact condition in the geometrical approach, are constrained
to move. For each node of the master fault surface, a projection vector is defined. This
projection vector is multiplied by 1− β. This approach of splitting the displacement between
the hanging wall and the footwall by a kinematic partitioning factor is similar to the approach
of Midland Valley [2017a] to handle fault contacts.

40



Section 1.4. Handling faults in geomechanical restoration solved by the finite element method

Figure 1.11: Stress vector decomposition. The stress vector of the master tm is decomposed into a
normal component tmn and a tangential component tmt . In frictionless contact, tmt is null. n̄m and
τ̄m are respectively the normal and the tangential vectors at the point x̄m on the master boundary.
n̄m is oriented toward the exterior of the master domain Ωm. These relations are the same for the
slave.

1.4.2 Geomechanical fault contact methods

1.4.2.1 Principle

The second approach of fault contact boundary condition is based on the theory of contact
mechanics [Zienkiewicz and Taylor, 2000b, Wriggers and Laursen, 2006, Belytschko et al.,
2013] and used in geomechanical restorations by Muron [2005], Maerten and Maerten [2006],
Guiton and Zammali [2007] and Tang et al. [2016]. In this formulation, the starting point is
the equilibrium of the stresses between both fault blocks, which corresponds to the Newton’s
third law. In other terms, the stress on a point of the master fault is equal to the opposite
stress on the same location on the slave fault [Wriggers and Laursen, 2006, p. 70]:

tm = −ts, (1.28)

with tm the stress on the point of the master fault, and ts the stress on the same point of the
slave fault. The stress on a surface can be decomposed into a normal stress tn and a tangential
stress tt (Figure 1.11). Tangential stresses correspond to the forces which restrain the motion
along the (fault) surface, i.e., they correspond to frictions. An important assumption in
mechanics-based restoration is that faults slide freely, i.e., there is no tangential stress. Under
this frictionless assumption, the tangential stresses are null [Wriggers and Laursen, 2006, p.
70]:

tst = tmt = 0. (1.29)

Furthermore, in contact mechanics, formulation of contacts is stated by the non-penetration
of bodies. Indeed, several bodies move due to physical processes, and contact conditions are
defined to avoid the penetration of a body into another. The gap between the slave and
the master g is composed by a normal gap gn oriented perpendicular to the master, and by
a tangential gap gt defined by two coordinates in the tangential plane of the master (Fig-
ure 1.12). As a penetration is not physical, the normal gap must be positive or null [Wriggers
and Laursen, 2006, p. 60]. In this formulation, the constraint of non-penetration is only
on the slave, i.e., the slave cannot penetrate the master. In restoration, to ensure geologi-
cal consistency between fault mirrors, a no gap condition is defined which has a formulation
equivalent to no-penetration. Thus, the goal of fault contact is to reach a null normal gap:

gn = 0. (1.30)
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Figure 1.12: Gap vector decomposition. The gap vector g is defined by the slave node xs and the
projection of this node on the master boundary x̄m. The gap vector is decomposed into a normal
component gn and a tangential component gt. In frictionless contact, gt is not explicitly defined.
For restoration purposes, gn must be (close to) null. n̄m and τ̄m are respectively the normal and
the tangential vectors at the point x̄m on the master boundary. n̄m is oriented toward the exterior
of the master domain Ωm. Ωs is the slave domain.

As the motion is frictionless, there is no constraint on the tangential gap gt. All the
previously defined considerations are integrated into the weak form of the motion equation
(1.8) (included in the surface stress term):

δW contact =

∫
Γcontact
0

−tnδgn dΓ0. (1.31)

1.4.2.2 Resolution

The goal of the fault contact is to reach a null normal gap (Equation (1.30)). Equation (1.31)
forces the contact between fault mirrors and such a constraint is function of the normal. As
the definition of the normal gap is function of the solid geometry, the contact conditions are
necessarily non-linear (Figure 1.13). Indeed, as the tangential gap is not imposed, and will be
a consequence of all the boundary conditions and the mechanical settings, after a linear step
of mechanical simulation, the “residual” normal gap may not be null (Figure 1.13d). Thus, as
for the geometrical contact approach, only an iterative process can step by step reduce the
absolute magnitude of the normal gap to reach a null value.

As the other terms of the weak form (1.8), Equation (1.31) is discretized by the finite
element method, which defines a contact force. The expression of this force depends on the
chosen numerical method. Muron [2005] uses the penalty method and Tang et al. [2016] the
augmented Lagrangian method. In the approach of Muron [2005], a Newton-Raphson proce-
dure transforms the non-linear equation of motion which includes the contact and potentially
large deformations. Thus, the derivative of the contact force by the displacement is needed.
This derivative is then added to the tangent stiffness matrix.

It is important to note that, contrary to the geometrical approach, both master and slave
move, i.e., the master is not relatively fixed and the slave does not move relatively to the
master. The displacement is bilateral and the magnitude of displacement for each side is
function of the strain minimization. The only difference between the master and the slave
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a)

c) d)

b)

Figure 1.13: Non-linear mechanical contact. First step of an iterative contact process. The contact
is between the red line (slave) and the blue line (master). Red dots are the slave line nodes. For
a better understanding, the master is fixed in the figure even if it is deformed and moved in real
mechanical contact processes. a) Slave and master lines to connect (as an unrestored state). b)
Definition of the normal gap gn for each slave nodes. c) Fictitious step in which the nodes are moved
to cancel the normal gap without tangential motion. d) Frictionless contact does not define the
tangential gap. Slave nodes tangentially move as a result of the mechanical simulation (consequence
of the chosen mechanics and the other boundary conditions). Slave nodes are still not on the master
line. This highlights that the contact process is not linear. From d) new normal gaps are defined
and a new mechanical simulation is performed until the slave nodes are on the master line. Step d)
is as an iteration in the Newton-Raphson loop.
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is that the slave can neither penetrate nor have a gap with the master but the contrary is
possible. To avoid the master penetration/gap into the slave, Maerten and Maerten [2006]
iteratively alternate the master and the slave definition. Thus, the slave (master) side at a
specific step of the non-linear resolution loop becomes the master (slave) side at the next step.
After convergence, there is no gap/penetration along the fault.

1.4.3 Some considerations on the fault contacts

1.4.3.1 Master/slave choice

The previous sections developed the two contact methods used in geomechanical restoration to
handle faults. Both methods are based on a master/slave approach which is different for both
methods. In the case of contact mechanics, the master/slave scheme refers to the penetrability
of the slave into the master. The slave cannot penetrate the master but the contrary is
possible. In the case of a slave mesh fine enough to fit the geometrical irregularities of the
master fault surface, the master should not penetrate too much the slave. In addition, even if
there is penetration, this one can be judged acceptable if it is small enough in comparison to
the size of the fault. Thus, the choice of the master and of the slave is less critical in contact
mechanics than in the geometrical contact approach in which the master/slave definition
relates to a relative displacement between fault blocks. Furthermore, other considerations
should be taken into account to properly choose the master and the slave. The slave surface
is preferentially the surface with a finer mesh, a lower stiffness, a smaller extension or a higher
curvature [De Soza, 2015].

1.4.3.2 Physical consistency of the fault contacts

The fault contact boundary conditions tie fault cutoff lines and avoid any gap/penetration
between fault blocks. They just ensure a geometrical consistency in the restored state. As no
real temporal method is currently used in mechanics-based restoration, it is not possible to say
that these contacts enable a sliding along the faults. In the dynamic relaxation method, the
contact conditions are incremental. As a result, the transient part of the resolution looks like a
sliding, even if by definition the transient part is not physical in this pseudo-temporal method.

In addition, the geometrical contact approach, by defining Dirichlet conditions on the three
space directions, constrains a lot the slave surface. This is in contradiction with the purpose
of the geomechanical restoration to have the fault slip as a result of a mechanical process.
Thus, the geomechanical contact method, by only constraining the motion along the master
normals, allows more freedom in the motion, although both slave and master are constrained.
An interesting approach for the geometrical method would be to constrain the motion along
a direction and leave free the two other directions.

Furthermore, the mechanical contact approach was initially developed to avoid solid pen-
etrations [Wriggers and Laursen, 2006]. In a mechanical simulation, solids move and deform
due to forces, and potentially enter in contact. Contact mechanics is used to physically repre-
sent this contact which is a consequence of the motion of the solids by mechanical constraints.
In restoration, the contacts are mechanical constraints and not a consequence of solid motion.
This point may be philosophical but it could be related to the unphysical boundary conditions
in the geomechanical restoration [Lovely et al., 2012].

Finally, contact mechanics assumes a stress equality on each side of a fault [Wriggers and
Laursen, 2006, p. 70]. An important question is the geological validity of this statement. In
the geometrical contact method, there is no rule which implies this stress equilibrium [Muron,
2005].
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1.4.4 Comparison between the different methods

We try to sum-up the similarities and the divergences of the different fault contact methods
in Table 1.3.
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Approach
Geometrical Mechanical

Criteria
FE type

Static Dynamic relaxation Static

Process type Non-linear

Mechanical bases No Yes

Frictionless No (not based on mechanical laws) Yes

Stress equilibrium No Yes

Slave motion Performs all the slip motion
Performs all or

Cannot penetrate the master
shares the slip motion

Master motion Relatively fixed
Relatively fixed or

Can penetrate the slave
shares the slip motion

Importance of the master/slave choice High Low

Boundary condition type Dirichlet Contact mechanics

Constrained directions x,y,z Master normals

“Real slip” No Yes but unphysical No

Authors Moretti et al. Santi et al., Muron
Muron, Maerten and Maerten,

Guiton and Zammali, Tang et al.

Table 1.3: Summary of the fault contact methods. This table only relates to the published methods of fault contact conditions in geomechanical
restorations based on a finite element (FE) solver. See the text for more details.
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Section 1.A. Notations

Conclusions

Since the beginning of the century, geomechanical restoration methods have been developed
to overcome issues of traditional restoration methods and to propose a real 3D mechanical
approximation of the past structures. Several geomechanical restoration approaches exist, all
based on mass and linear momentum conservations, and on elasticity. They use boundary
conditions to constrain the paleo-geometries (e.g., datuming, fault contacts) and to ensure
the uniqueness of the restored model after a numerical simulation. The divergences between
the different methods are on several aspects.

The mesh, i.e., the numerical representation to solve differential equations of mechanics,
may be a boundary representation (boundary element and mass-spring methods) or a vol-
umetric mesh composed by volumetric elements (finite element and mass-spring methods).
In the case of a volumetric mesh, the volumetric elements can be conformal to the horizons
(explicit modeling) or not (implicit modeling, horizons are defined by isovalues of a scalar
field). Three main numerical methods are used to solve a restoration problem. The boundary
element method has the advantage of lower meshing constraints but it has difficulty to handle
mechanical heterogeneities. The mass-spring method solves a 3D problem by a multitude
of 1D problems. Therefore this approach is fast but is not a real 3D resolution. The finite
element method is the most largely used and has the main advantage to handle complex ge-
ometry and complex mechanical heterogeneities.

The finite element method is declined into various approaches. All of them neglect the
temporal part of the motion equation and focus on the steady-state. The static approach
completely removes the temporal terms of the motion equation. The local method solves the
restoration problem at the node scale whereas the global method solves it globally in the en-
tire mesh. The static method is more stable and faster than the dynamic relaxation method
which keeps the temporal terms in order to avoid a matricial system of equations. The main
advantage of the dynamic relaxation is the reduction of the computer memory cost.

Concerning the boundary conditions, the main differences concern the fault contacts. Two
fault contact methods exist, each based on its own master/slave approach which defines an
asymmetrical constraint between the footwall and the hanging wall. The geometrical method
imposes that the slave moves toward the master which is relatively fixed. It is interesting to
point that some authors extended this method to share the displacement between the master
and the slave. The mechanical method is based on the stress equilibrium across the fault.
Moreover, there is no imposed relative displacement between the slave and the master. The
only constraint is that the slave cannot penetrate the master.

This review on mechanics-based restoration was performed to provide insight about all
the physical hypotheses and mathematical resolution methods. This is a mandatory step to
address the challenges of the geomechanical restoration approach in an effective way. The
general conclusions of this thesis (p. 139) detail these challenges.

Appendices

1.A Notations

The notations used in this paper are mainly inspired from those used by Belytschko et al.
[2013].
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Symbol Definition

σ Cauchy stress tensor/matrix

ε Linear Green-Lagrange strain tensor/matrix

P Nominal stress tensor/matrix

P T First Piola-Kirchhoff tensor/matrix

S Second Piola-Kirchhoff tensor/matrix

D 4th-order elasticity tensor

λ First Lamé parameter

µ Second Lamé parameter

E Young’s modulus

ν Poisson’s ratio

u Displacement vector

u̇ Velocity vector

ü Acceleration vector

t Time

∇ Gradient operator

∇· Divergence operator

M Mass matrix

K Stiffness matrix

C Damping matrix

F int Internal force vector

F ext External force vector

b Body forces

ρ Density

K Bulk modulus

Table 1.4: Mathematical symbols. This table lists and defines the mathematical symbols used in
this chapter. See text within Chapter 1 for more details.

1.A.1 Mathematical symbols

The mathematical symbols presented in this chapter are in Table 1.4.

1.A.2 Einstein notation

Einstein notation consists in implicitly represent a summation by two repeated indexes [Ein-
stein, 1916]:

aibi =
∑
i

aibi. (1.32)

1.A.3 Tensors

A tensor is a mathematical object defined by its order and its components. Scalars corresponds
to tensors of order 0, vectors to tensors of order 1 and matrices to tensors of order 2. Tensors
with an order strictly superior to 2 may be defined. Tensor order o corresponds to the
number of base vectors which define the tensor. Let ei denote a base vector with i ∈ J1; oK.
A vector v is defined by v = viei, a matrix by M = Mijei ⊗ ej, a three-order tensor by
C = Cijkei ⊗ ej ⊗ ek . . . with ⊗ the tensor product. In this paper, as in Belytschko et al.
[2013], scalar has no particular font and may be lowercase or uppercase, vectors are in bold
and lowercase, and matrices and higher order tensors are in bold and uppercase. There are
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Section 1.B. Elastic stress/strain laws

some exceptions which correspond to classical notations found in the literature such as σ for
the Cauchy stress tensor (order 2).

1.A.4 Transpose

B = AT with bij = aji. (1.33)

1.A.5 Matrix product

C = AB with Cij = AikBkj. (1.34)

AB 6= BA. (1.35)

1.A.6 Scalar product

The scalar product between two vectors a and b is generally noted as:

a · b = aibi. (1.36)

1.A.7 Product between a vector and a matrix

cT = aTB with ci = ajBji. (1.37)

1.A.8 Double dot product

A : B = AijBij. (1.38)

1.A.9 Gradient of a vector

F = ∇f with Fij =
∂fi
∂xj

. (1.39)

1.A.10 Gradient of a scalar

f = ∇f with fi =
∂f

∂xi
. (1.40)

1.A.11 Divergence of a matrix

a = ∇ ·A =


∂A11

∂x1
+ ∂A21

∂x2
+ ∂A31

∂x3
∂A12

∂x1
+ ∂A22

∂x2
+ ∂A32

∂x3
∂A13

∂x1
+ ∂A23

∂x2
+ ∂A33

∂x3

 =

a1

a2

a3

 with aj =
∂Aij
∂xi

. (1.41)

1.B Elastic stress/strain laws

1.B.1 Hooke’s law

Assuming small deformations, there is a linear relation between the Cauchy stress σ and the
linear Green-Lagrange strain ε. Let D denote the fourth order elasticity tensor. Hooke’s law
is defined by [e.g., Ramsay and Huber, 2000]:

σ = D : ε. (1.42)

(1.42) is generally written in the Voigt form by simplicity [e.g., Belytschko et al., 2013]:
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{σ} = [D] · {ε} (1.43)
σxx
σyy
σzz
σyz
σxz
σxy

 =


Cxxxx Cxxyy Cxxzz Cxxyz Cxxxz Cxxxy
Cyyxx Cyyyy Cyyzz Cyyyz Cyyxz Cyyxy
Czzxx Czzyy Czzzz Czzyz Czzxz Czzxy
Cyzxx Cyzyy Cyzzz Cyzyz Cyzxz Cyzxy
Cxzxx Cxzyy Cxzzz Cxzyz Cxzxz Cxzxy
Cxyxx Cxyyy Cxyzz Cxyyz Cxyxz Cxyxy

 ·

εxx
εyy
εzz
2εyz
2εxz
2εxy

 . (1.44)

The elasticity tensor in the general (anisotropic) case is function of 21 coefficients [Bower,
2010, p. 77]. Among these coefficients there are Young’s moduli Ei with i ∈ {x, y, z},
Poisson’s ratios νij and shear moduli µij with (i, j) ∈ {x, y, z}2 | i 6= j. Ei represents the
theoretical constraint along the axis i to reduce by two the size of the solid along this axis.
νij defines the strain along the axis j due to a strain along the axis i. In the general case
νij 6= νji. µij is defined by the division of the shear stress in the plane (i, j) by the strain in
this plane due to a force along the axis i. In the general case µij 6= µji.

1.B.2 Stress tensor conversion

In mechanics, several stress tensors exist such as the Cauchy stress tensor σ which is defined
on the deformed (restored) domain Ω [Belytschko et al., 2013, Section 3.4]. This stress tensor
is symmetric. The equivalent of the Cauchy stress in the initial (unrestored) domain Ω0 is the
nominal stress P . The nominal stress is not symmetric and its transpose is the first Piola-
Kirchhoff stress tensor P T . The second Piola-Kirchhoff stress tensor S is often used since it
is symmetric. The conversions between these stress tensors are [Belytschko et al., 2013, p.
106]:

P = JF−1 · σ (1.45)

S = P · F−T , (1.46)

with F the deformation gradient, J its determinant, F−1 its inverse, and F−T the inverse
of the transpose of F .

1.B.3 Neo-Hookean law

Neo-Hookean law is an extension of Hooke’s law for large deformations [e.g., Treloar, 1948,
Ogden, 1997, Muron, 2005, Belytschko et al., 2013]. It is a non-linear isotropic hyperelastic
law which means that the work does not depend on the path of deformation [Belytschko et al.,
2013]. The second Piola-Kirchhoff stress S of such a material is defined by a potential energy
ψ such as [Belytschko et al., 2013, p. 248]:

S = 2
∂ψ (C)

∂C
, (1.47)

with C the right Cauchy-Green tensor. According to Malvern [1969] and Belytschko et al.
[2013], the potential energy ψ can be expressed by the invariants ofC. Let I1, I2 and I3 denote
the three invariants of C. The expression of the invariants and their derivatives are [Carlson
and Hoger, 1986, Oakley and Knight, 1995a, Zienkiewicz and Taylor, 2000b, Belytschko et al.,
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2013]:

I1 (C) = trace (C) ; I2 (C) =
1

2

{
trace (C)2 − trace

(
C2
)}

; I3 (C) = det (C) (1.48)

∂I1

∂C
= I ;

∂I2

∂C
= I1I −CT ;

∂I3

∂C
= I3C

−T . (1.49)

In addition, C is symmetric, so:

CT =
(
F T · F

)T
= F T ·

(
F T
)T

= F T · F = C. (1.50)

Hence the expression of the second Piola-Kirchhoff stress S:

S = 2
∂ψ (C)

∂C

= 2
∂ψ (I1, I2, I3)

∂C

= 2

[
∂ψ

∂I1

∂I1

∂C
+
∂ψ

∂I2

∂I2

∂C
+
∂ψ

∂I3

∂I3

∂C

]
= 2

[
∂ψ

∂I1

I +
∂ψ

∂I2

(
I1I −CT

)
+
∂ψ

∂I3

I3C
−T
]

= 2

[
∂ψ

∂I1

I +
∂ψ

∂I2

(I1I −C) +
∂ψ

∂I3

I3C
−1

]
S = 2

(
∂ψ

∂I1

+ I1
∂ψ

∂I2

)
I − 2

∂ψ

∂I2

C + 2I3
∂ψ

∂I3

C−1. (1.51)

A Neo-Hookean material is defined for the potential energy [Belytschko et al., 2013, p.
252]:

ψ =
1

2
λ (ln J)2 − µ ln J +

1

2
µ (I1 − 3) , (1.52)

with ln the natural logarithm. In addition, J = det (F ) = det
(
F T
)

and the determinant
of the product of two matrices is equal to the product of the determinants. Thus:

I3 = det (C) = det
(
F T · F

)
= det

(
F T
)
× det (F ) = J2. (1.53)

By injecting this relation into (1.52) it comes:

ψ =
1

2
λ
(

ln
(√

I3

))2

− µ ln
(√

I3

)
+

1

2
µ (I1 − 3) . (1.54)

The derivative of ψ by the invariants of C are:

∂ψ

∂I1

=
µ

2
;
∂ψ

∂I2

= 0 ;
∂ψ

∂I3

=
λ ln J − µ

2J2
. (1.55)

Finally [Belytschko et al., 2013, p. 252]:

S = λ ln (J)C−1 + µ
(
I −C−1

)
. (1.56)

1.C Isotropic materials

1.C.1 Elastic parameter simplification in the isotropic case

In an isotropic material, the elastic behavior is the same whatever the direction, hence:

∀i ∈ {x, y, z} , Ei = E ; ∀ (i, j) ∈ {x, y, z}2 | i 6= j, νij = ν. (1.57)
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Isotropic plane

Anisotropic axis

Figure 1.14: Transverse isotropic axes. x and y axes define isotropic (stratigraphic) planes. z is the
axis of anisotropy (∼stratigraphy normal).

1.C.2 Conversion of the isotropic elastic parameters

The conversion from Young’s modulus E and Poisson’s ratio ν to Lamé’s parameters λ µ is
[Sokolnikoff, 1956, p. 68]:

λ =
Eν

(1 + ν) (1− 2ν)
; µ =

E

2 (1 + ν)
. (1.58)

The second Lamé parameter µ is the shear modulus. The conversion from Young’s modulus
E and Poisson’s ratio ν to bulk modulus K is [Sokolnikoff, 1956, p. 70]:

K =
E

3 (1− 2ν)
. (1.59)

1.C.3 Isotropic elasticity tensor

For a linear material, the Voigt definition of D is:

[D] =


2µ+ λ λ λ 0 0 0
λ 2µ+ λ λ 0 0 0
λ λ 2µ+ λ 0 0 0
0 0 0 µ 0 0
0 0 0 0 µ 0
0 0 0 0 0 µ

 . (1.60)

1.D Transverse isotropic materials used to reach flexural slip mode

1.D.1 Transverse isotropic materials

A transverse isotropic material has an isotropic elastic behavior along parallel planes and an
anisotropic elastic behavior along the orthogonal direction to these planes. We consider here
the the anisotropic axis is depth axis z, i.e., x and y define isotropic planes. (Figure 1.14).

x and y are completely equivalent, therefore [Bower, 2010, p. 84]:

Ex = Ey = Ep ; νxy = νyx = νp ; νxz = νyz = νpt ; νzx = νzy = νtp ; µxz = µyz = µt, (1.61)

with p and t which respectively mean plane and transverse. To be consistent with Bower’s
notation, we note Ez = Et, and µxy = µp. Ep is Young’s modulus within the isotropic plane.
Et is Young’s modulus along the anisotropic axis (orthogonal to the isotropic plane). νp is
Poisson’s ratio within the isotropic plane. νpt represents the strain along the anisotropic axis
due to a strain within isotropic planes. νtp represents the strain along isotropic planes due to
a strain along the anisotropic axis. µp is the shear modulus in the isotropic planes. µt is the
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shear modulus of the planes containing the anisotropic axis. νpt and νtp are not equal and are
related by:

νpt
Ep

=
νtp
Et
. (1.62)

A transverse isotropic material is defined by the five following elastic parameters: Ep, Et,
νp, νpt (or νtp using (1.62)), and µt (µp is deduced from Ep and νp). In the case of a transverse
isotropic behavior, the elastic tensor in the Voigt form is [Bower, 2010, p. 84]:

[D] =


d11 d12 d13 0 0 0
d12 d11 d13 0 0 0
d13 d13 d33 0 0 0
0 0 0 d44 0 0
0 0 0 0 d44 0

0 0 0 0 0 (d11−d12)
2

 , (1.63)

with:

d11 = Ep (1− νptνtp) Γ ; (1.64)

d12 = Ep (νp + νptνtp) Γ ; (1.65)

d33 = Et
(
1− ν2

p

)
Γ ; (1.66)

d13 = Ep (νtp + νpνtp) Γ ; (1.67)

Γ =
1

1− ν2
p − 2νptνtp − 2νpνptνtp

; (1.68)

d44 = µt ; (1.69)

(d11 − d12)

2
=

Ep
2 (1 + νp)

= µp. (1.70)

1.D.2 Material upscaling to reach flexural slip mode

Salamon [1968] proposes a method to upscale a stack of layers, defined by isotropic or tran-
verse isotropic elastic parameters, into a unique layer defined by transverse isotropic elastic
parameters (Appendix 1.D.1). The five elastic parameters (UP upperscript) of the layer
resulting of the upscaling are [Salamon, 1968, Crea et al., 1981]:

νUPp =

∑
i

f iνipE
i
p

1−(νip)
2∑

i

f iEi
p

1−(νip)
2

(1.71)

νUPpt =
(
1− νUPp

)∑
i

f iνipt
1− νip

(1.72)

EUP
p =

(
1−

(
νUPp

)2
)∑

i

f iEi
p

1−
(
νip
)2 (1.73)

EUP
t =

1∑
i

(
fi
Ei

p

(
Ei

p

Ei
t
− 2(νipt)

2

1−νip

))
+

2(νUP
pt )

2

(1−νUP
p )EUP

p

(1.74)

µUPt =
1∑
i
f i

µit

, (1.75)
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with i the ith layer of the stack to upscale, i ∈ J1; number of layersK. If all the layers are
defined by isotropic elastic parameters, each layer i is defined by a single Young’s modulus
Ei, a single Poisson’s ratio νi and a single shear modulus µi (derives from (1.58)). Thus,
the expressions of the five parameters of the upscaled unit are simplified [Chalon et al., 2004,
Titeux, 2009, Durand-Riard, 2010, Durand-Riard et al., 2013a]:

νUPp =

∑
i
f iνiEi

1−(νi)2∑
i

f iEi

1−(νi)2

(1.76)

νUPpt =
(
1− νUPp

)∑
i

f iνi

1− νi
(1.77)

EUP
p =

(
1−

(
νUPp

)2
)∑

i

f iEi

1− (νi)2 (1.78)

EUP
t =

1∑
i

(
fi
Ei

(
1− 2(νi)2

1−νi

))
+

2(νUP
pt )

2

(1−νUP
p )EUP

p

(1.79)

µUPt =
1∑
i
f i

µi

. (1.80)

1.E From current configuration to initial configuration

The following mathematical development is from Belytschko et al. [2013, p. 126].

1.E.1 Volumetric integral conversion

The conversion of the integral of f defined on the volume Ω to the integral defined on the
volume Ω0 is [Belytschko et al., 2013, p. 84]:∫

Ω

fdΩ =

∫
Ω0

f.J.dΩ0 with J = det (F ), (1.81)

with F the gradient of the displacement from Ω0 to Ω.

1.E.2 Mass conversion

Let ρ and m respectively denote the density and the mass of a volumetric domain Ω. These
physical quantities are related by:

m =

∫
Ω

ρ dΩ. (1.82)

The mass conservation means that the mass of a domain Ω remains constant during the
evolution of this domain. In other terms, the mass in the unrestored state is equal to the
mass in the restored state:

m =

∫
Ω

ρ dΩ =

∫
Ω0

ρ0 dΩ0 = m0. (1.83)

Equation (1.83) can be used to convert the density from the current state to the initial
state in total Lagrangian formulation. Using (1.81) it comes:∫

Ω0

ρ0 dΩ0 =

∫
Ω

ρ dΩ =

∫
Ω0

ρJ dΩ0. (1.84)
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Hence: ∫
Ω0

(ρJ − ρ0) dΩ0 = 0. (1.85)

This relation is valid for any not null domain, so [Belytschko et al., 2013, p. 51]:

ρJ = ρ0. (1.86)

1.E.3 Stress conversion

The divergence of the Cauchy stress tensor σ in the domain Ω can be written in the domain
Ω0 in function of the nominal stress tensor P [Belytschko et al., 2013, p 126]:

(∇ · σ)i =
∂σji
∂xj

=
∂ (J−1FjkPki)

∂xj
= J−1Fjk

∂Pki
∂xj

+
∂J−1Fjk
∂xj

Pki (1.87)

= J−1Fjk
∂Pki
∂xj

= J−1 ∂xj
∂Xk

∂Pki
∂xj

= J−1∂Pki
∂Xk

= J−1 (∇0 · P )i . (1.88)

Hence:
∇ · σ = J−1∇0 · P . (1.89)

1.E.4 Equation of motion in the initial space

∇ · σ + ρb = ρü+ ωρu̇

J−1∇0 · P + J−1ρ0b = J−1ρ0ü+ J−1ωρ0u̇

∇0 · P + ρ0b = ρ0ü+ ωρ0u̇. (1.90)

1.F Integration by parts and Gauss theorem

∫
Ω0

δu · ∇0 · P dΩ0 =

∫
Ω0

(δu)i (∇0 · P )i dΩ0 =

∫
Ω0

δui
∂Pji
∂Xj

dΩ0

=

∫
Ω0

∂ (δuiPji)

∂Xj

dΩ0 −
∫

Ω0

∂δui
∂Xj

Pji dΩ0

=

∫
Ω0

∂
(

(δu)i
(
P T
)
ij

)
∂Xj

dΩ0 −
∫

Ω0

∂δui
∂Xj

Pji dΩ0

=

∫
Ω0

∂
(
δu · P T

)
j

∂Xj

dΩ0 −
∫

Ω0

(∇0 (δu))Tji Pji dΩ0∫
Ω0

δu · ∇0 · P dΩ0 =

∫
Ω0

∇0 ·
(
δu · P T

)
dΩ0 −

∫
Ω0

(∇0 (δu))T : P dΩ0. (1.91)

∇0 · (δu · P ) corresponds to the divergence of a vector. The Gauss theorem relates the
integral on a volume of the divergence of a vector to the integral on the closed surface boundary
of the volume of this vector such as:∫

Ω0

∇0 ·
(
δu · P T

)
dΩ0 =

∫
Γ0

δu · P T dΓ0 =

∫
Γ0

δu · P T · n0 dΓ0, (1.92)
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with dΓ0 = n0 dΓ0, n0 being the surface outgoing normal. By definition, the stress vector
on a surface expressed in the initial configuration t0 is related to the nominal stress by:
t0 = P T · n0. Thus, the final expression of the integration by parts using Gauss theorem is:∫

Ω0

δu · ∇0 · P dΩ0 =

∫
Ω0

δu · t0 dΩ0 −
∫

Ω0

(∇0 (δu))T : P dΩ0. (1.93)

1.G Dynamic relaxation formula demonstration

By injecting the expressions of u̇n, ün and C (Equations (1.21) and (1.22)) in (1.20) it comes
[e.g., Oakley and Knight, 1995a, Muron, 2005, Belytschko et al., 2013]:

M · u̇
n+ 1

2 − u̇n−
1
2

∆t
+ cM · u̇

n+ 1
2 + u̇n−

1
2

2
+ F int,n = F ext,n

2 + c∆t

2∆t
M · u̇n+ 1

2 =
2− c∆t

2∆t
M · u̇n−

1
2 + F ext,n − F int,n

u̇n+ 1
2 =

2− c∆t
2 + c∆t

M−1 ·M · u̇n−
1
2 +

2∆t

2 + c∆t
M−1 ·

(
F ext,n − F int,n

)
u̇n+ 1

2 =
2− c∆t
2 + c∆t

u̇n−
1
2 +

2∆t

2 + c∆t
M−1 ·

(
F ext,n − F int,n

)
. (1.94)

By incoporating this result into the expression of u̇n+ 1
2 (Equation (1.21)) it comes Equa-

tion (1.23).
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Polytechnique, 2005.

63

http://www.pdgm.com/products/kine3d/
http://www.code-aster.org/doc/v10/fr/man_r/r4/r4.01.02.pdf
http://www.code-aster.org/doc/v10/fr/man_r/r4/r4.01.02.pdf


BIBLIOGRAPHY
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Abstract

Geomechanical restoration methods are dependent on boundary conditions to ensure geolog-
ical consistency of the restored model in terms of geometry and strain. Classical restoration
boundary conditions, such as flattening a datum horizon, may lead to inconsistent displace-
ment and strain fields.

We restore a laboratory structural sandbox model with known deformation history in or-
der to develop guidelines for definition of boundary conditions that produce improved results
from geomechanical restorations. The sandbox model has a basal silicone layer, includes syn-
kinematic deposition, and is characterized by structures analogous to those found in supra-salt
extensional environments. The deformed geometry is interpreted from 3D tomography imag-
ing, and a time-series of cross-section tomography images provides a benchmark to quantify
restoration error and inform boundary conditions.

We confirm that imposing a lateral displacement equal and opposite to far-field tectonic
shortening or extension provides a more accurate restoration. However, the amount of dis-
placement may not be known in real cases. We therefore test several established methods,
using only the unrestored geometries, to assess the amount of shortening that should be
used to guide geomechanical restorations. An accurate estimation is provided by the area-
depth method and potentially by a dilatation analysis. Additionally, novel fault compliance
boundary conditions produce improved results in the vicinity of crossing and branching faults.
Application of similar methods should produce improved restoration of natural geologic struc-
tures.

Introduction

Structural restoration is a valuable tool to investigate the geometries of geological struc-
tures through time, assess the validity of structural interpretations, and analyze strain fields
[e.g., Chamberlin, 1910, Dahlstrom, 1969, Gratier et al., 1991, Léger et al., 1997, Williams
et al., 1997, Rouby et al., 2002, Griffiths et al., 2002, Dunbar and Cook, 2003, Muron, 2005,
Groshong, 2006, Maerten and Maerten, 2006, Moretti, 2008, Durand-Riard et al., 2010, 2013b,
Maerten and Maerten, 2015, Vidal-Royo et al., 2015, Stockmeyer et al., 2017]. Over more
than fifteen years, geomechanical restoration approaches that approximate natural rock be-
havior have been developed to overcome several limitations of traditional geometrical restora-
tion methods [e.g., Fletcher and Pollard, 1999, Maerten and Maerten, 2001, Santi et al.,
2003, Muron, 2005, Moretti et al., 2006, Maerten and Maerten, 2006, Moretti, 2008, Guzofski
et al., 2009, Durand-Riard et al., 2010, Lovely et al., 2012, Vidal-Royo et al., 2012, Durand-
Riard et al., 2013b, Maerten and Maerten, 2015, Vidal-Royo et al., 2015, Tang et al., 2016].
Mechanics-based restoration follows the fundamental physical laws of continuum mechanics,
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i.e., mass and linear momentum conservations, and invokes a linear or non-linear elastic con-
stitutive relation to govern rock deformation. Boundary conditions are required to unfault
and unfold geological structures simultaneously in the simplest manner possible and to obtain
a unique solution. Three general types of boundary conditions have been shown to yield ge-
ologically reasonable results: (1) an imposed displacement to flatten the uppermost horizon,
(2) a set of contacts to ensure fault compliance (neither gap nor penetration between fault
blocks, and contact of the uppermost horizon fault cutoff lines), and (3) the definition of pin
walls, pin lines and pin nodes to fix degrees of freedom and guarantee that the solution is
unique [e.g., Plesch et al., 2007, Guzofski et al., 2009, Vidal-Royo et al., 2012, Durand-Riard
et al., 2013a,b, Stockmeyer et al., 2017].

Boundary conditions have an important impact on the restored geometry. While several
studies have shown that simple boundary conditions can yield viable restoration results [e.g.,
Maerten and Maerten, 2006, Guzofski et al., 2009], there are many pitfalls. For example,
Lovely et al. [2012] show a simple example in which classical boundary conditions applied to
a geomechanical restoration lead to unphysical strain fields and that a different set of bound-
ary conditions significantly changes the resultant strain field (see Figure 1 in Lovely et al.
[2012]). This uncertainty in appropriate boundary conditions is particularly problematic if
one intends to analyze the corresponding stress or strain for fracture analysis or other pur-
poses [Maerten and Maerten, 2006, Mej́ıa-Herrera et al., 2014, Stockmeyer et al., 2017]. The
problems illustrated by Lovely et al. [2012] are: (1) there may be instances when the classical
boundary conditions, as defined above, may be unphysical and (2) there is no specific guideline
to choose appropriate boundary conditions in restoration. Durand-Riard [2010], Lovely et al.
[2012] and Durand-Riard et al. [2013b] suggest that these classical boundary conditions may
be insufficient to restore geologically consistent and physical strain. They show on synthetic
models that a lateral displacement boundary condition along a boundary wall is necessary
to recover the expected strain in compressive, extensional, and strike-slip and oblique-slip
contexts. In addition, they show that the restoration displacement field is only consistent
with the forward displacement field when the amount of the displacement condition on a wall
is equal to the amount of forward displacement. These works highlight the need for addi-
tional constraints derived from geologic or tectonic insights for mechanics-based restoration.
The main challenge for defining these additional constraints is that they require knowledge
of the deformation history, which is rarely accessible and, ideally, should be an output of the
mechanics-based restoration. Moreover, these studies of boundary conditions were applied to
numerical or synthetic models, which are typically idealizations of natural geologic structures,
and present additional uncertainties and assumptions (structural interpretation, deformation
path, etc.).

Models from laboratories are often used to validate restoration methods [e.g., Schultz-
Ela, 1992, Yamada and McClay, 2003, Maerten and Maerten, 2006, Groshong et al., 2012,
Moretti and Callot, 2012]. As they are laboratory experiments, the forward boundary condi-
tions and the mechanical behaviors are known, and the kinematic evolution of structures may
be recorded. Moreover, the interpretation uncertainties of these deformed forward models
are generally small, such that the applied boundary conditions can be considered the pri-
mary source of uncertainty in restoration attempts. This is a significant benefit compared
to restoration attempts of natural structures, where restoration uncertainties result from the
interplay of boundary condition uncertainties and of structural interpretation uncertainties
[Gratier et al., 1991, Schultz-Ela, 1992].

In this study, we performed a sequential restoration on an analog model deformed in
laboratory. Computed tomography (CT) images capture the sequential development of this
analog model. These images constrain the forward deformation path of each structure, cap-

69



Chapter 2. Validating novel boundary conditions on a sandbox model

turing paleo-geometries through time on one edge of the analog model, and, thus, provide
a reasonable benchmark for restoration quality and boundary condition testing. In the fol-
lowing, we describe the structural sandbox model and our tests of boundary conditions with
the goal of restoring deformed geometries and related fault slip that are consistent with the
reference model paleo-geometries. New fault compliance boundary conditions are proposed
to handle the complex fault network identified on the CT images. In addition, we propose
methods to define lateral displacement boundary conditions without detailed knowledge of
the forward deformation path, improving the viability of the 3D geomechanical restoration
method for use with natural geologic structures.

2.1 Case study and its representativeness

2.1.1 Extensional sandbox model: supra-salt structures

Geologists typically have access only to the present-day state of deformed strata, often times
informed by sparse and uncertain data. Such data may be consistent with multiple inter-
pretations that may vary significantly [e.g., Frodeman, 1995, Bond et al., 2007, Wellmann
et al., 2010, Bond, 2015, Cherpeau and Caumon, 2015]. Thus, the analysis of rock deforma-
tion through time is made difficult by the lack of direct information on paleo-structures and
the limitations of the available data. To overcome some of these concerns, laboratory ana-
log models are widely used to model viable deformation styles and paths of natural geologic
structures [e.g., McClay, 1990]. They provide a way to follow the evolution of well-known
geometries under known physical mechanisms through time. X-ray tomography is a common,
non-destructive method to image the 3D structures of a deformed structural sandbox [e.g.,
Colletta et al., 1991, Callot et al., 2012]. X-ray tomography resolution on an analog model is
generally sufficient to study deformed structures with minimal geometric uncertainties. Dis-
tinct horizons and faults can be observed due to density contrasts in the model’s stratigraphy.
Thus, as pointed by Colletta et al. [1991], X-ray tomography is a valuable tool to analyze the
temporal evolution of laboratory models. Moreover, an analog model must be properly de-
fined to reproduce the behavior of geological structures. Scale, mechanical materials, physical
processes, and timing are examples of parameters to consider for the purpose of assessing the
degree to which analog models represent natural structures.

In this paper, we restore a laboratory model analogous to supra-salt extensional structures
observed in salt basins around the world, such as the Gulf of Mexico, Angola and Morocco.
It is well established that dry sand (no cohesion) is a viable material for modeling brittle and
ductile rock deformation in sedimentary systems [e.g., Panien et al., 2006, Victor and Moretti,
2006, Dooley et al., 2007, Callot et al., 2012, Moretti and Callot, 2012, Darnault et al., 2016].
Moreover, Weijermars et al. [1993], Victor and Moretti [2006] and Moretti and Callot [2012],
among others, have shown that an analog composed by a stack of sand above silicone can
produce structures representative of natural salt basins. Silicone has a very weak rheology
relative to sand. Thus, sand layers deform and may penetrate into the silicone. This effec-
tively reproduces the subsurface at the interface between a viscous salt layer and overlying
brittle rocks [Weijermars et al., 1993].

Our work is based on a deformed structural sandbox done in laboratory by IFPEN (http:
//www.ifpenergiesnouvelles.fr) and C&C Reservoirs, 2016, DAKSTM - Digital Analogs
Knowledge System (http://www.ccreservoirs.com) (Figure 2.1) to reproduce extensional
salt structures. The model box was initially composed of two horizontal layers composing
a pregrowth stratigraphy: one of silicone at the bottom with a thickness of 1.8 cm (0.71
in), and one of sand above with a thickness of 4 mm (0.2 in). The initial thickness (along Z
direction) of the pregrowth strata is 2.2 cm (0.87 in). Along the Y axis the structural sandbox
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behavior
Rheological

density
Relative

size (µm)
Grain

angle (◦)
friction
Internal

(µPa)
Cohesion

or cps)
(mPa.s

Viscosity

(HU)
density

Hounsfield

Sand Brittle 1.3-1.5
(0.004 in)

100
40

psi)
- 2× 10−10
1-2 (10−10

500

Pyrex Brittle 1.2
(0.004 in)

100
32-36

psi)
(5× 10−10

> 5
150

SGM36
Silicon

Ductile 0.97 5.107 95

Table 2.1: Mechanical characteristics of the materials used in the structural sandbox experiment.
The relative density (unitless) of a material corresponds to the density of this material divided by
the density of water. The Hounsfield density (in HU, no SI equivalence) is a measure of the X-ray
attenuation in a medium. Data from C&C Reservoirs, 2016, DAKSTM - Digital Analogs Knowledge
System and IFPEN documentation.

length is 10 cm (3.9 in), and 18 cm (7.1 in) along the X axis. The model box was inclined by
1.5◦ [Weijermars et al., 1993, Victor and Moretti, 2006]. Deformation was induced initially
by gravity sliding along this tilt (toward the eastern side on Figure 2.1). On the down-dip
end of the model there was no wall to restrain the motion of the materials. As the model
deformed, alternating layers of pyrex or sand were deposited (one layer every 16 min in mean),
further driving deformation by a combination of gravity spreading and gravity gliding [Victor
and Moretti, 2006]. This deposition of successive stratigraphic horizons during deformation
represents syn-tectonic strata (i.e., growth strata). As pyrex and sand strata are deposited
above the silicone, this experiment describes supra-salt structures. At each depositional time
step, the newly deposited sediments filled the available model space. In total, 12 layers were
deposited (Figure 2.1) over the course of the forward analog model. The total duration of
the experiment is 4h16min. The properties of the silicone, pyrex and sand are provided in
Table 2.1. The scaling from the analog model scale to real field scale is approximately 1 cm
(0.4 in) for 1 km (0.6 mi), consistently with similar analog models [Ellis and McClay, 1988,
Dooley et al., 2007, Wu et al., 2009, Hidayah, 2010, Darnault et al., 2016]. See Hubbert
[1937] and Ramberg [1981] for more details about the methods used to define this scaling. It
is possible to distinguish silicone, sand, pyrex and the fault offsets by tomographic imaging
due to their density contrasts. Indeed, faults are visible in the analog model due to sand
and pyrex dilatation (areas of lower density) [Colletta et al., 1991, Cobbold and Castro, 1999,
Le Guerroué and Cobbold, 2006, Groshong et al., 2012]. Moreover, sand and pyrex have a
sufficient Hounsfield density contrast (Table 2.1) to distinguish them in X-ray tomography
[Panien et al., 2006, Darnault et al., 2016], allowing the analysis of fault offset. In addition,
we assume that friction is negligible on the edges of the structural sandbox model [Souloumiac
et al., 2012].

2.1.2 Interpretation of the structural sandbox model

A 3D X-ray tomography volume of the final state of the deformed box was produced. The
volume is defined by an X-ray tomography section every 3 mm (0.1 in) along the Y axis, and
an X-ray tomography section every 0.6 mm (0.02 in) along the X and Z axes, producing a
tomography volume that can be interpreted with similar methods as a 3D seismic reflection
survey (Figure 2.2A). Unfortunately, we had access to only a part of the structural sandbox
volume. Indeed CT imaging only recorded through time a specific interval of the structural
sandbox. Beyond this interval, down-dip, the analog model continued to deform but was
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1.5

Gravity-driven
Silicone

Growth 
stratigraphy
(3.1 cm)

Pregrowth stratigraphy

Sand
Pyrex

2.2 cm

Sand

W E

18 cm

Z

Y X

Figure 2.1: Scheme of the analog model experiment. An initial pregrowth stratigraphy composed by
a layer of silicone and a layer of sand is deformed by gravity. The initial dimensions of the structural
sandbox are: 18 cm (7 in) along X axis, 10 cm (4 in) along Y axis, and 2.2 cm (0.9 in) along Z axis.
At each time step, a layer of sand or pyrex is deposed to generate syn-sedimentary deformations.
Twelve layers are deposed forming a growth stratigraphy (3.1 cm, 1.2 in). Figure created from C&C
Reservoirs, 2016, DAKSTM - Digital Analogs Knowledge System and IFPEN documentation.
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Pregrowth

Growth Pyrex
Sand

Silicone

H8
...
H4
H3
H2
H1

Slope

25.8 cm

W E

North edge

West edge

W E
N

S

25.8 cm

Sand and pyrex

Silicone
4.8 cm

2 grabens Half-graben
(B)

(A) 2 grabens Half-graben

Figure 2.2: Analog model interpretation and structural model. (A) Interpretation of the north CT
image at the final stage of the structural sandbox experiment. The uppermost layer is a layer of
sand, the others are composed by a layer of pyrex and a layer of sand. (B) Structural model of the
extensional analog model. It is formed by 8 horizons (white and gray surfaces) and 22 normal faults
(black surfaces). CT images of the northern and the western edges are displayed. CT data courtesy
of IFPEN and C&C Reservoirs, 2016, DAKSTM - Digital Analogs Knowledge System.

out of the scope of the CT imaging. Although we analyzed the majority of the volume, a
part on the eastern side could not be considered in our study. From our interpretation, we
built a 3D explicit numerical structural model (boundary representation, Figure 2.2B) using
SKUA-GOCAD [Paradigm, 2015], in which horizon and fault surfaces are conformal [Caumon
et al., 2004]. The geological model is composed of three primary structures: two grabens in
the western and central regions of the model, and a series of west-dipping half-grabens in
the eastern region of the model. The layer of silicone representing autochthonous salt is not
explicitly represented in our numerical model. Within the analog model, we identified 52
faults. As the purpose of the modeling is the restoration and the strain analysis, faults with
small offsets were ignored for simplicity (Figure 2.3B). Additionally, a few faults that define
narrow fault blocks were removed and the horizons were made continuous (Figure 2.3C).
As discussed by Vidal-Royo et al. [2012] and Pellerin et al. [2014], this eases the meshing
and avoids numerous small volumetric elements in the 3D mesh used in restoration, which
reduces the computational time of restorations. The final numerical model is composed of 8
horizons and 22 normal faults. The uppermost layer in the structural model corresponds to
the uppermost layer of sand in the experiment. Below, each layer in the model represents
a layer of pyrex and the underlying layer of sand. The six pyrex basal horizons were not
modeled for simplicity. Figure 2.2A presents the model stratigraphy on the north CT image.
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W E

26 cm

(B)

(C)

Uninterpreted High-order 
interpretation Simplified

(A)
(B) (C)

Figure 2.3: CT image interpretation and model simplifications. Two examples of interpretation and
simplification on the northern edge of the 3D tomography (interpreted as a seismic cube). (A) North
CT image at the final stage of the structural sandbox experiment. Each example is in black square.
(B)-(C) Interpretation examples composed from the left to the right by: the uninterpreted CT image
part, its high order interpretation, and its simplification. The simplified interpretation is the one
used for the restorations. Dashed lines are the interpreted elements not kept in the final model.
Continuous lines are the interpreted elements kept in the final model. Faults are in black. Horizons
are in white or gray. (B) Interpretation and simplifications on a part of the western graben. (C)
Several faults delimiting relatively small fault blocks were neglected to facilitate 3D mesh generation.
Horizons were made continuous, introducing local mismatches with the data. CT data courtesy of
IFPEN and C&C Reservoirs, 2016, DAKSTM - Digital Analogs Knowledge System.

74



Section 2.2. Restoration settings

W E

Silicone Silicone

Fault

0.06 cm

0.15 cm

0.06 cm

0.1 cm

Figure 2.4: Picking uncertainties. Four examples of the north CT image at the final stage of the
structural sandbox experiment are displayed with the approximated uncertainty areas (gray zones
between white and black layers). The picking imprecision is on average of 0.1 cm. CT data courtesy
of IFPEN and C&C Reservoirs, 2016, DAKSTM - Digital Analogs Knowledge System.

2.1.3 Structural uncertainties

Although the analog structures are well imaged, uncertainties in our structural interpreta-
tions exist. This is largely the result of approximating diffuse horizons and faults in the
analog model with discrete surfaces in our structural representation. Thus, quantifying our
interpretation precision is necessary in order to properly evaluate the quality of subsequent
restoration results. Figure 2.4 illustrates four examples of interpretation uncertainties of the
deformed analog model. Boundaries between white layers (sand) and black layers (pyrex or
silicone) are typically blurred gray (Figure 2.4). The thickness of these gray transition zones
provides an estimate of the uncertainty associated with an interpreted horizon between two
strata intervals. Although this thickness may vary laterally (Figure 2.4), we estimate an er-
ror of 0.1 cm (0.04 in) is a representative uncertainty for all of our interpretations. We will
be mindful of this precision as we analyze our restoration results. We also note that other
restoration uncertainties, such as finite element approximation or mechanical simplifications,
although present, are not considered in our uncertainty analysis.

2.2 Restoration settings

2.2.1 Physical volumetric model

We created a 3D mesh (Figure 2.5A) from the structural model (Figure 2.2B) using the
Geogram [Lévy, 2015], RINGMesh [Botella et al., 2016, Pellerin et al., 2017], VorteXLib
[Botella, 2016a,b] and TetGen [Si, 2015a,b] libraries. It is composed of 647,558 tetrahedra
and the average tetrahedron length is 0.25 cm (0.098 in). We made some efforts to reduce
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Figure 2.5: Restoration boundary conditions. (A) Volumetric model at the final stage of the struc-
tural sandbox experiment. The presented boundary conditions are applied on this model. Equivalent
conditions are assigned to restore the other horizons (sequential restoration). (B) Western wall: no
motion is allowed along X and Y directions. (C) Northern and southern walls: no motion is al-
lowed along Y direction. (D) Uppermost horizon: flattening. This condition explicitly constrains Z
component of mesh nodes. (E) Uppermost horizon parts are tied. It is a fault contact condition.
For each fault cutting the uppermost horizon, the footwall cutoff line and the hanging wall cutoff
line are tied together. This condition is applied on X and Y directions. Z component is ensured by
the flattening, see (D). (F) For each fault, fault mirrors are tied (neither gap nor penetration). (G)
Eastern wall: shortening along X direction. This condition is optional.

the number of tetrahedra, which impacts the restoration computational time, and to avoid
imprecision due to a coarse mesh. The VorteXLib library enabled us to develop a 3D mesh
maximizing the quality of the tetrahedra (equilaterality) to avoid numerical issues during
restorations [Parthasarathy et al., 1994, Shewchuk, 2002, Munson, 2007]. The silicone layer
was not represented in the model used for the restoration for two primary reasons. First, its
rheology is far weaker than the sand and the pyrex, and thus is not considered to contribute
any significant resistance. Second, the viscous behavior of the silicone interval cannot be
properly represented by the elastic constitutive law invoked in our restoration method. Thus,
we focused on restoration of the sand and pyrex layers that overlie the silicone, with the
base of the model being a free surface that represents the top of the silicone [Stockmeyer and
Guzofski, 2014]. As sand and pyrex are rheologically similar [Panien et al., 2006], we applied
homogeneous elastic properties for the entire model: Young’s modulus was set to 70 GPa (107

psi) and Poisson’s ratio to 0.2 [Holtzman et al., 2009].
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2.2.2 Classical boundary conditions

A video of one edge of the analog model was recorded by X-ray computed tomography, al-
lowing us to visualize the deformation and model geometries through time. The deformation
front was located on the eastern side of the model. In contrast, the western side was only
weakly deformed (Figure 2.2A). Thus, we fixed the western wall in the X and Y directions
during the restoration, allowing it to only move vertically (Figure 2.5B). As the experiment
is inside a box, no flow occurred in the north-south direction (Y axis) through the northern
and southern walls. Therefore, during the restoration, we fixed the northern and the southern
walls in Y (Figure 2.5C), as recommended by Durand-Riard [2010] and Durand-Riard et al.
[2013b] in other deformation contexts. At each restoration step, we set a datum boundary
condition for the uppermost stratigraphic surface because we know the original depositional
gradient (Figure 2.5D). As the model had a tilt of 1.5◦ toward east, we rotated the entire
model before each restoration. This allowed us to set our datuming boundary condition to a
constant Z value (Figure 2.5D). We rotated our restored models to their proper geometries
for proper comparisons between the numerical models and the CT images. The basal horizon,
which defines the interface between sand and silicone, i.e., H1, was defined as a free surface
[e.g., Stockmeyer and Guzofski, 2014].

We also defined fault contact conditions to tie the hanging wall and footwall cutoff lines
of the uppermost (flattened) horizon (Figure 2.5E) and to avoid any gap or penetration along
fault surfaces (Figure 2.5F). We ensured fault compliance by contact mechanics [Wriggers
and Laursen, 2006] which is a master-slave approach adapted to restoration purposes by
Muron [2005], and Maerten and Maerten [2006]. This method enables us to tie fault blocks
without any friction along fault planes [Muron, 2005, Maerten and Maerten, 2006, Wriggers
and Laursen, 2006]. The slave surface cannot penetrate nor have a gap with the master
surface but the contrary is possible when faults are curved, owing to limited mesh resolution.
No relative displacement constraint between the master and the slave is defined: motion is
bilateral and is a consequence of both energy minimization and the constraint for the two
sides of the fault to be in contact. In the case of the contact of the fault cutoff lines of the
restored (uppermost) horizon (Figure 2.5E), the throw is already defined by the datuming
condition applied on the Z-component of the uppermost horizon (Figure 2.5D). The heave is
defined by contact mechanics as explained above.

2.2.3 Non-classical boundary condition: imposed shortening condition

As extension clearly occurred during forward deformation, we test an optional lateral short-
ening condition applied to the down-dip model boundary during restoration. We consider this
boundary condition analogous to those suggested by Durand-Riard [2010], Lovely et al. [2012]
and Durand-Riard et al. [2013b]. This optional shortening condition is limited to motion along
the X axis (i.e., in the west-east direction) and is applied to the eastern wall (Figure 2.5G).
In this paper, when we refer to a “no shortening condition”, we refer to a restoration scenario
without this shortening condition set to the down-dip wall. In these scenarios, the eastern
wall is free to move along any direction and the resultant shortening is the output of the
restoration, ultimately controlled by the datum and fault slip conditions.

2.2.4 Non-classical boundary conditions: contacts between faults

The complexity of a model increases substantially with the numbers of faults due to the
increasing number of the interactions between them and with the horizons (i.e., cutoff rela-
tionships, [Pellerin et al., 2015]). The model that we restored presents numerous connections
between faults (Figures 2.2B and 2.5A): 22 faults including 5 faults cut and displaced by later
faults (offset faults), no isolated fault and 27 branch lines. Proper management of such a
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Figure 2.6: Fault definition in two sides. (A) Fault and horizon topology as in a boundary repre-
sentation of a geological model. Fault F (single surface) splits a horizon H in two parts. (B) Fault
and horizon topology as in a volumetric model to restore. Fault F corresponds to two surfaces, one
for the hanging wall (F-) and one for the footwall (F+). Arrows represent fault contact boundary
conditions used in restoration. These conditions tie both surfaces which compose F, allowing sliding
without friction.

complex fault network is a difficult task during structural modeling, but also during each step
of a sequential restoration. To accomplish this task, we present in this paper two additional
fault contact boundary conditions that we applied in our restorations. These conditions use
contact mechanics, as classical fault contact boundary conditions that we previously defined
[Wriggers and Laursen, 2006].

2.2.4.1 Handling branching faults

In our structural modeling procedure, a fault is represented by two surfaces, one for the
hanging wall and one for the footwall. This and the fault contact conditions enable the
sliding of the fault blocks along the faults (Figure 2.6). As a result, a branch line between two
faults is represented on the main fault by two surface internal borders (black dots in (B1) and
(C1) in Figure 2.7 with F1- the main fault). In the case of branching contacts between faults,
discontinuities may occur in the restored state if care is not taken (Figure 2.7B). Therefore,
we set contact conditions to tie the internal surface borders and thus avoid internal gaps or
overlaps in the restored state (Figure 2.7C).

2.2.4.2 Handling offset fault surfaces

There were several situations where a fault surface was offset by a different fault. To properly
characterize these faulted faults, we split each offset fault into two or more distinct fault
surfaces. For example, Figure 2.8 shows that fault F1 is cut and displaced by fault F2. In
this case, F1 was represented by two independent faults: F1-hw and F1-fw where the labels
-hw and -fw respectively refer to the hanging wall and footwall sides of F2. As a result, F1-
hw and F1-fw are able to move independently. However, as F1 was originally a single fault
surface, and since we know all of the faults are normal faults at all times during the forward
model, we know that the slip between F1-hw and F1-fw along F2 should decrease through
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Figure 2.7: Contact condition to connect fault internal borders. The subfigures have different views
as indicated by the axes. (A) Restored model (first step) with an eastern shortening of 1.44 cm.
The studied contact is between F1 and F2: F2 branches onto F1. (B) Contact between F1 and F2
after restoration when no contact condition (B1) is set to ensure a proper contact between these
faults: there is a hole between the connected components that compose F1 (B2 and B3). (C)
Contact between F1 and F2 after restoration when a contact condition (C1) is set to ensure a proper
contact between these faults (black arrows). Continuity (within the contact precision scale) exists
between the connected components that compose F1 (C2 and C3). In (B1) and (C1) gray arrows
represent classical fault contact conditions, and in (B2), (B3), (C2) and (C3) X-coordinate contours
are displayed on fault surfaces. + and - signs are an arbitrary convention to make the distinction
between fault sides (see Figure 2.6)
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Chapter 2. Validating novel boundary conditions on a sandbox model

the restoration until it becomes null. In other words, the distance between F1-hw and F1-fw
should decrease along F2 until they merge. Upon removing of all the fault offsets, F1-hw and
F1-fw should no longer behave independently, but form a single continuous fault surface. We
ensure this condition by a set of contact conditions that aims to tie the different connected
components of an offset fault (Figure 2.8). In our case, we were able to quickly determine
which restoration steps to apply this contact condition for a particular offset fault (presenting
apparent continuity) by investigating the CT images that recorded the forward deformation
process.

2.3 Results: restoration of the analog model

2.3.1 Sequential restoration

We performed a partial sequential restoration using RINGMecha [Chauvin and Mazuyer,
2016], a mechanics-based restoration library based on the work of Muron [2005] and Durand-
Riard [2010]. We used a time-independent finite element solver to perform the restoration
[e.g., Zienkiewicz and Taylor, 2000a,b, Belytschko et al., 2013] with a small deformation
assumption. After each restoration step, we removed the uppermost, restored layer before
performing the subsequent restoration step. Using the classical and newly defined boundary
conditions described above, we performed four steps of sequential restoration for our model
(Figures 2.9-2.12), yielding a restoration of more than half of the growth strata interval.
Restorations with a shortening boundary condition are in Figures 2.9E, 2.10E, 2.11E, and
2.12E. As we had the CT images of the paleo-states of the northern wall, we evaluated the
shortenings by following a marker on the eastern wall. The measured, incremental shortenings
for each restoration step are: 1.44 cm (0.567 in), 0.71 cm (0.28 in), 1.85 cm (0.728 in) and
1.85 cm (0.728 in). Qualitatively, the general consistency on the northern edge between the
restorations with prescribed shortening and the reference CT images is quite good, indicating
a robust and accurate restoration. Restorations without a shortening boundary condition
are shown in Figures 2.9F, 2.10F, 2.11F, and 2.12F. In these models, we only avoided the
shortening boundary condition for the last restoration step. For example, the result shown
in Figure 2.9F was not used as the starting model for the restoration in Figure 2.10F. The
starting model for Figure 2.10F was generated by removing the restored, uppermost layer from
the model shown in Figure 2.9E. In this way, we attempt to avoid propagating errors. For each
restoration step that does not include the shortening boundary condition (Figures 2.9F, 2.10F,
2.11F, and 2.12F), it is clear that there was not enough extension restored to be considered an
acceptable restoration result. In each case, the restored faults are too far down-dip relative to
the reference position obtained from the CT tomography video. In contrast, the restorations
that included the shortening boundary condition provide a better qualitative match between
the restored models and the reference CT images (Figures 2.9E, 2.10E, 2.11E, and 2.12E). For
our model with the prescribed material properties, the classical boundary conditions alone
are not sufficient to produce a reasonable restoration result.
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Figure 2.8: Contact condition to fit footwall and hanging wall fault surfaces. (A) Initial unrestored
model. This example focuses on a fault F1 cut into two parts by another fault: a hanging wall part
F1-hw and a footwall part F1-fw. The hanging wall and footwall definition of F1 is relative to the
fault that cuts F1: F2. In all the remaining subfigures, F2 is visible by its border, and X-coordinate
contours are displayed on F1 surface. (B) Initial unrestored shape of F1. It is composed of two
disconnected connected components. (C) Shape of F1 after the first restoration step. F1 is still into
two parts. (D) Shape of F1 after the second restoration step. Both connected components of F1 are
partially connected on the southern side. (E) Shape of F1 after the third restoration step. It seems
visually that F1 should be continuous. (F) Shape of F1 after the third restoration step as (E) with
additional contact constraints to ensure continuity between the hanging wall and the footwall.
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Figure 2.9: Restoration results of horizon H8. (A) Restored volumetric model obtained with a shortening of 1.44 cm. (B) Restored surface model
obtained with a shortening of 1.44 cm. (C) Uninterpreted CT image of the northern edge at H8 deposition time. (D) Interpreted CT image of the
northern edge at H8 deposition time (dashed curves). The interpretation represents the reference solution. (E) Same as (D) with the restoration
result with a shortening boundary condition of 1.44 cm (continuous curves). (F) Same as (D) with the restoration result without shortening boundary
condition (continuous curves). CT data courtesy of IFPEN and C&C Reservoirs, 2016, DAKSTM - Digital Analogs Knowledge System.
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Figure 2.10: Restoration results of horizon H7. (A) Restored volumetric model obtained with a shortening of 0.71 cm. (B) Restored surface model
obtained with a shortening of 0.71 cm. (C) Uninterpreted CT image of the northern edge at H7 deposition time. (D) Interpreted CT image of the
northern edge at H7 deposition time (dashed curves). The interpretation represents the reference solution. (E) Same as (D) with the restoration
result with a shortening boundary condition of 0.71 cm (continuous curves). (F) Same as (D) with the restoration result without shortening boundary
condition for this restoration step (continuous curves). The unrestored model is the restored model at the first restoration step with a shortening
boundary condition of 1.44 cm (Figure 2.9E). CT data courtesy of IFPEN and C&C Reservoirs, 2016, DAKSTM - Digital Analogs Knowledge System.

83



C
h
ap

ter
2.

V
alid

a
tin

g
n

ovel
b

ou
n

d
ary

con
d
ition

s
on

a
san

d
b

ox
m

o
d

el

W
E

N

S

21.8 cm

(A) (B)

(C) (D)

(F)(E)

WE

Silicone
Box bottom

No shorteningShortening: 1.85 cm

Z

Y
X

Figure 2.11: Restoration results of horizon H6. (A) Restored volumetric model obtained with a shortening of 1.85 cm. (B) Restored surface model
obtained with a shortening of 1.85 cm. (C) Uninterpreted CT image of the northern edge at H6 deposition time. (D) Interpreted CT image of the
northern edge at H6 deposition time (dashed curves). The interpretation represents the reference solution. (E) Same as (D) with the restoration
result with a shortening boundary condition of 1.85 cm (continuous curves). (F) Same as (D) with the restoration result without shortening boundary
condition for this restoration step (continuous curves). The unrestored model is the restored model at the second restoration step with a shortening
boundary condition of 0.71 cm (Figure 2.10E). CT data courtesy of IFPEN and C&C Reservoirs, 2016, DAKSTM - Digital Analogs Knowledge System.
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Figure 2.12: Restoration results of horizon H5. (A) Restored volumetric model obtained with a shortening of 1.85 cm. (B) Restored surface model
obtained with a shortening of 1.85 cm. (C) Uninterpreted CT image of the northern edge at H5 deposition time. (D) Interpreted CT image of the
northern edge at H5 deposition time (dashed curves). The interpretation represents the reference solution. (E) Same as (D) with the restoration
result with a shortening boundary condition of 1.85 cm (continuous curves). (F) Same as (D) with the restoration result without shortening boundary
condition for this restoration step (continuous curves). The unrestored model is the restored model at the third restoration step with a shortening
boundary condition of 1.85 cm (Figure 2.11E). CT data courtesy of IFPEN and C&C Reservoirs, 2016, DAKSTM - Digital Analogs Knowledge System.
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Figure 2.13: Dip slip delta distributions. Difference of dip slip measures between the restored model
and the reference for the first four restoration steps (with shortenings). For all the restoration steps
except the fourth one, the majority of the dip slip deltas is within the uncertainty range (-0.2 cm
and 0.2 cm).

2.3.2 Validation: quantitative comparison with a reference solution

The visual comparison of the restored models with the references provides valuable insight
on the quality of our restorations. However, quantitative analysis is necessary to rigorously
and objectively assess the restoration quality [Lingrey and Vidal-Royo, 2015, 2016] and un-
certainties. To quantify the difference between the restored models and the reference paleo-
geometries, we measured the magnitude of residual dip slip along faults after a restoration
step. Dip slip provides a quantitative measure of the recovered strain along each fault. For
each fault that crosses the northern edge, we measured the amount of offset for each horizon
on the CT pictures. In addition, we computed the dip slip values on each fault in the numeri-
cal models at the considered time steps. The difference of dip slip values between the restored
model and the reference, that we call delta, is calculated as

delta = DSres −DSref , (2.1)

with DSres and DSref respectively the dip slip in the restored state and the dip slip on the
reference CT image. The corresponding distributions for the first four restoration steps (with
shortening boundary conditions) are shown in Figure 2.13. To avoid bias in this analysis,
these distributions do not include the dip slip measures at the uppermost horizon, as these
dip slip values are defined by input boundary conditions (Figure 2.5E). Table 2.2 presents
the mean and median values for each dip slip delta distribution shown in Figure 2.13, as
well as the percentage of dip slip deltas within the picking uncertainty range estimated to be
between -0.2 cm (-0.08 in) and +0.2 cm (+0.08 in). This uncertainty value originates from the
picking uncertainty (0.1 cm) applied on the footwall and the hanging wall. It also considers
similar uncertainties in our interpretations of paleo-geometries and dip slip magnitudes on
the CT images. The distributions show maxima near zero delta. In addition, the majority of
the residual dip slip measurements are within the uncertainty range considered (Table 2.2).
Therefore, we suggest these restorations, which each included the applied shortening boundary
condition to the down-dip model wall, are valid. Nevertheless, some slip measurements from
restoration models differ significantly from the reference solution. These are clearly not a
common result, except in the fourth restoration step (white intervals in Figure 2.13, Table 2.2,
see discussions).
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Restoration step 1 2 3 4

and 0.2 cm (0.8 in)
between -0.2 cm (-0.8 in)

Dip slip deltas (%)
82 88 87 50

Mean in cm (in)
(-0.023)
-0.059

(-0.017)
-0.043

(-0.030)
-0.075

(-0.037)
-0.094

Median in cm (in)
(-0.011)
-0.027

(-0.015)
-0.038

(-0.028)
-0.07

(-0.0402)
-0.102

Table 2.2: Characteristics of the dip slip delta distributions. For each restoration step, the mean
and the median of the dip slip delta distribution (Figure 2.13) are indicated, in addition to the
percentage of dip slip deltas within the picking uncertainty range.

2.4 Estimation of shortening

As shown previously, the amount of extension that is restored without the applied bound-
ary condition to the down-dip model wall consistently underestimates the actual amount of
extension that occurred in the forward model. For natural structures, the total amount of
extension (or shortening) that occurred to yield the present-day geometry is generally un-
known. In these cases, an estimation of the amount of displacement can be attempted using
2D kinematic restoration approaches [e.g., Chamberlin, 1910, Dahlstrom, 1969] or 2D area-
depth analysis [Epard and Groshong, 1993, Groshong et al., 2003, Groshong, 2006, Groshong
et al., 2012]. Specific markers, such as channel offsets, can be used if present as proposed by
Durand-Riard et al. [2013b].

2.4.1 Methods based on rigid motion and bed length conservation

Table 2.3 presents the incremental shortening evaluated by different methods, in particular
fault heave and bed length conservation. The former corresponds to the required horizontal
displacement to tie the uppermost horizon parts as a pure rigid motion of the fault blocks.
The latter, in addition to joining the uppermost horizon parts, assumes that this horizon con-
serves its bed length and is restored to horizontal. In this case, the horizontal displacement
is equal to the horizontal extension of the analog model in the X direction (i.e., down-dip di-
rection) before restoration minus the sum of the lengths of the uppermost horizon parts. For
each of these two methods, we used the unrestored model (with applied shortening boundary
condition) geometry at each restoration step. Both methods provide displacement estimates
that are significantly less than the expected values (Table 2.3). In other words, rigid mo-
tion along faults is not an accurate measure of total tectonic displacement for our model
and bed lengths did not remain constant through deformation. This latter conclusion is a
known expectation for extensional structures [e.g., Xiao and Suppe, 1992]. There is internal
deformation accommodated by structures below image resolution or by deformation of a more
continuous nature.

2.4.2 Area-depth method

We applied the area-depth method [Epard and Groshong, 1993, Groshong et al., 2003, Groshong,
2006, Groshong et al., 2012] to estimate the total forward extension without the need of a
reference paleo-geometry. The area-depth method may be used to calculate the magnitude
of shortening or extension of a system above a basal detachment. A benefit of this method
is that it accounts for the displacement due to faults omitted from the interpretation or tec-
tonic strain that is below our imaging resolution, which has been found to accommodate up
to 60% of total extension within a given system [e.g., Kautz and Sclater, 1988, Marrett and
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(0.28, 100%)

0.71
(0.728, 100%)

1.85
(0.728, 100%)

1.85

Area-depth
(0.5717, 101%)

1.452
(0.317, 114%)

0.806
(0.7114, 98%)

1.807
(0.6354, 87%)

1.614

heave sum
Fault

(0.266, 47%)
0.676

(0.172, 61%)
0.436

(0.4157, 57%)
1.056

(0.237, 33%)
0.602

conservation
Bed length

(0.235, 41%)
0.597

(0.101, 36%)
0.257

(0.363, 50%)
0.922

(0.195, 27%)
0.495

condition
shortening

No imposed

(0.283, 50%)
0.718

(0.136, 49%)
0.345

(0.328, 45%)
0.834

(0.181, 25%)
0.459

Table 2.3: Incremental shortenings obtained by different methods. For each restoration step, several
geometric methods are used, in addition to the measure on CT images, to assess the shortening
magnitude (see text for details). Each percentage is relative to the corresponding reference shortening
measured on the CT image.

Allmendinger, 1992, Baxter, 1998, Groshong et al., 2003]. The area-depth method is inde-
pendent of the mechanical processes and is based on assumptions of area conservation and
plane-strain, given that a thin detachment level exists. The area-depth method defines for
each horizon a regional depth of detachment and a lost area inside the graben (below the
regional datum and above the horizon), as shown in Figure 2.14. This lost area is equal to
the product of the displacement that produced the graben and the depth to the detachment
level. It follows that the total extension is given by the lost area divided by the depth to
the detachment. We did not plot an area-depth graph of the entire growth sequence, which
would integrate each lost area and each distance from the regional to a reference level, since
by definition the layers did not undergo the same magnitude of extension [Groshong et al.,
2003]. Indeed, such a plot enables to evaluate the common displacement and the depth to
detachment only for pregrowth strata or for no-growth sequences of growth strata [Groshong,
2015]. Thus, we assume that the depth to the detachment is known. In our analog model, the
definition of the detachment level is not straightforward, as the silicone layer is thick and may
act as a distributed detachment zone. Assuming that no slip occurs along silicone boundaries
[Weijermars et al., 1993], we approximated the detachment level to be at the middle of the
silicone layer (Figure 2.14). The regional level of each horizon is defined by a straight line
dipping 1.5◦ (parallel to the detachment) and starting from the intersection between the hori-
zon and the most western fault (Figure 2.14). Our calculations only use the north CT image
of the analog final deformation stage. The estimates of the shortening magnitude increments
for the first four horizons using the area-depth method and the CT images are given in Ta-
ble 2.3. The amounts of displacement predicted by the area-depth method are within 15%
of the shortening magnitudes provided by the CT images. We consider this a valid estimate
given the structural uncertainties.

2.4.3 3D dilatation analysis

We propose a complementary approach to evaluate the model forward extension from calcu-
lations of dilatation, where

dilatation = 100× V r − V u

V u
, (2.2)

with V r and V u respectively the restored volume and the unrestored volume. As previ-
ously discussed, horizontal dilatation is expected during the experiment. Due to the small
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H8 regional

H3 regional
H8 lost area

H3 lost area

W E

25.8 cm
Detachment

H8 height 
H3 horizon

H8 horizon

H3 height 

Figure 2.14: Area-depth method principle. Area-depth method applied on the north CT image at
the final stage of the structural sandbox experiment. Examples of the calculus for two horizons: H8
and H3. For each horizon a lost area (white area with dashed border line) is computed. The lost
area for a horizon is the area above this horizon and below the regional level of this horizon. The
height to the detachment is computed for each horizon. Total shortening (from the beginning of the
deformation) undergone by a horizon is its lost area divided by its height to the detachment. CT
data courtesy of IFPEN and C&C Reservoirs, 2016, DAKSTM - Digital Analogs Knowledge System.

duration and the scale of the experiment, the strata used in our model are not expected to
undergo significant vertical compaction [Schultz-Ela, 1992]. Thus, we expect the volume to
increase during forward deformation experiment. A consequence is that the volume should
decrease during restoration, resulting in negative dilatation calculations from Equation (2.2).
We ran a large number of geomechanical restorations varying the magnitude of shortening
imposed as a boundary condition. Figure 2.15 represents the proportion of tetrahedra with
a positive dilatation from the unrestored state to the restored state according to magnitudes
of the imposed shortening conditions. In this way, we attempt to estimate the magnitude of
shortening required to minimize the number of tetrahedra with positive dilatation. Similarly,
Durand-Riard [2010], with a contractional model, used a lateral (elongation) displacement to
reduce the number of tetrahedra with a negative dilatation. The shortenings in Table 2.3
are displayed in the different graphs of Figure 2.15. As expected, the number of tetrahedra
with a positive dilatation decreases when the magnitude of the applied shortening increases.
However, in each scenario (Figure 2.15), a plateau of diminishing returns develops with addi-
tional applied shortening. The beginning of each plateau, as well as the area-depth estimates,
provides a much improved estimate of the shortening magnitude than the other methods
investigated above (Table 2.3). While this conclusion is still empirical, we suggest that dilata-
tion may be an effective tool to estimate the magnitude of the lateral displacement boundary
condition and to evaluate the validity of the restored state.

2.5 Discussions

2.5.1 Reasons for a shortening boundary condition

There are several potential explanations for the requirement of an imposed shortening bound-
ary condition. A first reason is the granular nature of the growth strata. According to
Groshong et al. [2003], Yamada and McClay [2003], Le Guerroué and Cobbold [2006], and
Moretti and Callot [2012], dilatation is likely to occur in structural sandbox models when
granular materials undergo shear. This effect enables faults to develop in unconsolidated ma-
terials [e.g., Colletta et al., 1991, Cobbold and Castro, 1999, Le Guerroué and Cobbold, 2006,
Groshong et al., 2012]. As deformation progresses, additional shear occurs and more voids
develop in the system [Groshong et al., 2003, Le Guerroué and Cobbold, 2006]. This disorder
is at the origin of an increase of the global volume, and thus must be countered by applied
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Figure 2.15: 3D dilatation analysis. Proportion of tetrahedra with a positive dilatation after each
restoration step (steps 1 to 4) according to different shortenings (in centimeters). Black dots are data
points (restoration simulations). For each restoration, the unrestored state is the restored state at the
previous restoration step with the imposed shortening from CT image (and without the uppermost
restored layer). Shortenings in Table 2.3 are displayed on each graph. Ref: shortening from the
CT image. AD: shortening from the area-depth method. HS: sum of the fault heaves of uppermost
horizon fault cutoff lines on the northern wall. BL: shortening from the bed length conservation
method. NIS: no imposed shortening on the northern wall (restoration without shortening condition).
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Restoration step 1 2 3 4

Forward dilatation of sand and pyrex strata (%) 3.38 0.73 3.07 3.64

Table 2.4: Incremental forward dilatation of the sand and pyrex strata measured on the CT images.
See Equation (2.3) and text for calculation details. The forward dilatation of sand and pyrex strata
for each restoration step is positive, testifying an increase of area forward in time.

shortening in the restoration. Table 2.4 provides the forward dilatation εv (volumetric strain)
of the sand and pyrex strata measured on the CT images for each restoration step using

εv = 100×
(
Adi − Aui

)
Aui

, (2.3)

with Aui and Adi respectively the area of the sand and pyrex strata on the CT image
at deposition time of the layer i and just before the deposition of the layer just above the
layer i. At each step, the forward dilatation is positive, which means the analog model area
on the northern edge increased through time. Nevertheless, we have just such an evidence
of dilatation on the northern edge thanks to the CT images; this dilatation may or may
not be compensated elsewhere within the volume. However, due to the style of deformation
of the sandbox model, it is very probable that the forward dilatation observed on the CT
images is representative of the entire volume. Rock dilatation may exist in real extensional
fields in which sediments contain fluids [e.g., Boerner and Sclater, 1992]. Another important
reason which explains the need for the shortening boundary condition is that a part of the
fault displacement may not be taken into account. Indeed, all the observed faults are not
represented, and there may be faults below tomography resolution. Even if their offsets are
small, accumulated fault heaves may represent significant forward extension. This is analogous
to nature with faults below seismic resolution, which are not imaged and, thus, unable to be
represented at the macro-scale [e.g., Groshong et al., 2003].

2.5.2 Residual amounts of fault dip slip values

Although the distributions in Figure 2.13 are encouraging, the number of inconsistent fault
dip slip deltas increases with each successive restoration step. A possible explanation for this
is that each residual dip slip on these faults is not corrected between restoration steps to fit
the dip slip observed on CT images, leading to the accumulation of errors. Another possible
explanation is that some faults are kept within the volumetric model whereas they were not
present in the analog model at the time corresponding to the restoration step. As faults
behave as sliding surfaces in our volumetric mesh, small artificial slip may be present on these
surfaces, leading to local inconsistent shear strain. We kept these faults to avoid rebuilding
a new structural model, which can be quite time-intensive for such complex fault networks
[Zehner et al., 2015]. Another observation of these distributions suggests that the restorations
seemed to have recovered too much dip slip (numerous negative deltas). Since the forward
deformation path involves friction on faults, this result may be due to the frictionless contacts
in our mechanics-based restoration method [Wriggers and Laursen, 2006].

2.5.3 Mismatches with the area-depth method

As mentioned previously, the area-depth method provides a reasonable estimate of the incre-
mental extension that occurred during the forward model (Table 2.3). However, the estimates
are not perfect, in particular for the restoration step 4 (Figures 2.12 and 2.15). Several fac-
tors may explain these errors. First, material dilatation observed on the CT images and
attested by several authors [Yamada and McClay, 2003, Le Guerroué and Cobbold, 2006] is
inconsistent with the area conservation hypothesis underlying the area-depth method. As the
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upper horizons have accumulated less dilatation than the bottom horizons, the constant area
hypothesis deteriorates with each successive restoration step. Second, the silicone layer could
migrate laterally and blend with the sand and pyrex, leading to area changes. In the analog
model, from the CT image of the restoration step 4 to the CT image representing the first
unrestored state (northern edge), we calculated a forward dilatation of the silicone to ∼6.8%.
Third, as a part of the analog model on the eastern side was not available for analysis in our
CT tomography images, we could not integrate this data in our area-depth computations.
Fourth, the definition of the detachment level, even based on several reasonable assumptions,
is uncertain. Fifth, as the units of sand and pyrex can penetrate into the silicone, the re-
sulting subsidence modifies the definition of the regional levels. This effect is equivalent to
the “floating regional” mentioned by Groshong [2015] for a buckle-style fold above a thick salt
unit.

2.5.4 Boundary conditions

This study suggests that for extensional systems, the combination of classical boundary con-
ditions and a new lateral displacement boundary condition along the dominant transport
direction (Figure 2.5) may yield consistent restored geometries. In this paper, we also pro-
pose the use of novel contact conditions to ensure consistent restoration of complex branching
and crossing fault geometries. These new constraints enable effective sequential restoration
of four steps of the analog model. Without them, only two steps could have been performed,
and quality of these restorations would have been reduced. We believe that the boundary
conditions presented in Figure 2.5 can be applied in compressive contexts with an elonga-
tion displacement condition instead of the shortening condition. Indeed, Durand-Riard [2010]
shows that an elongation condition is necessary to properly restore a fault-bend fold model.
An estimation of the elongation may be done using the area-depth method [Groshong et al.,
2012]. In case of strike-slip faults, displacement conditions parallel to the strike direction
should also be considered, as shown by Durand-Riard et al. [2013b].

In the literature and in this paper, all the boundary conditions correspond to displacement
conditions except for the mechanical contact conditions which are a mix between displacement
and traction conditions [Muron, 2005, Wriggers and Laursen, 2006, Maerten and Maerten,
2006]. Such displacement conditions may lead to unphysical strain fields [Lovely et al., 2012].
In reality, rock deformation is a consequence of force constraints. Maerten and Maerten [2006]
suggest the possibility of employing mechanical boundary conditions that incorporate the far
field stress as an additional boundary condition. The main difficulty of this technique would
be to know the intensity of the forces to apply [Muron, 2005]. A first start could be to use the
determined displacement condition for a model (e.g., Figure 2.15) and convert it to a force:
dilatation multiplied by Young’s modulus in linear elasticity. In addition, the overburden
force is not incorporated in our geomechanical restoration method. As our experiment was
gravity-driven, it would be interesting to add an overburden body force to the finite element
procedure to analyze its impact on the restored geometries.

Conclusions

The restoration of an analog model, in which the structural uncertainties are limited and paleo-
geometry is well known, enabled us to define effective boundary conditions that yield optimal
restored models using mechanics-based restoration. For extensional structures, a shortening
boundary condition was applied to obtain a good fit with reference paleo-geometries. Such
a condition may be estimated by the area-depth method. Our experiments suggest that an
analysis of the volumetric dilatation can complement the estimate of the shortening boundary
condition magnitude. Moreover, to handle complex fault networks, we propose the application
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of contact conditions on internal fault borders and between fault connected components. Ulti-
mately, the methods developed in this paper, in particular the lateral displacement boundary
condition, should lead to improved results if applied to geomechanical restorations of natural
structures.
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raphy analysis of sandbox models: Examples of thin-skinned thrust systems. Geology, 19
(11): 1063–1067, 1991. doi: 10.1130/0091-7613(1991)019<1063:CXRTAO>2.3.CO;2.

C. D. A. Dahlstrom. Balanced cross sections. Canadian Journal of Earth Sciences, 6(4):
743—-757, 1969. doi: 10.1139/e69-069.

94

http://www.ring-team.org/software/ring-libraries/45-vortexlib
http://www.ring-team.org/software/ring-libraries/45-vortexlib
http://www.ring-team.org/software/ringmesh
http://www.ring-team.org/software/ring-libraries/44-ringmecha
http://www.ring-team.org/software/ring-libraries/44-ringmecha


BIBLIOGRAPHY

R. Darnault, J.-P. Callot, J.-F. Ballard, G. Fraisse, J.-M. Mengus, and J.-C. Ringenbach.
Control of syntectonic erosion and sedimentation on kinematic evolution of a multidecolle-
ment fold and thrust zone: Analogue modeling of folding in the southern subandean of
Bolivia. Journal of Structural Geology, 89: 30–43, 2016. doi: 10.1016/j.jsg.2016.05.009.

T. P. Dooley, M. Jackson, and M. R. Hudec. Initiation and growth of salt-based thrust belts
on passive margins: results from physical models. Basin Research, 19(1): 165–177, 2007.
doi: 10.1111/j.1365-2117.2007.00317.x.

J. A. Dunbar and R. W. Cook. Palinspastic reconstruction of structure maps: an automated
finite element approach with heterogeneous strain. Journal of Structural Geology, 26:
1021–1036, 2003. doi: 10.1016/S0191-8141(02)00154-2.
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Abstract

This paper proposes a comparison between two 3D structural restoration methods. One of
the methods is a geometrical transformation and is based on the adaptation of the chronos-
tratigraphic coordinates. The other method is a geomechanical method based on continuum
mechanics and elasticity. We geometrically analyze the restoration results of both methods
applied to an extensional analog structural model. This analog model was produced in labora-
tory and has relatively small structural uncertainties. In addition, the evolution of the sandbox
paleo-geometries through time is available on a cross section. This provides a reference to
objectively compare both restoration methods. Finally, as mechanics-based restoration has
the flexibility on the definition of the rock elastic properties, we study the impact of Young’s
modulus and Poisson’s ratio on the restored state.

Our primary result is that both restoration techniques geometrically provide a similar
result. Indeed, the difference on the restoration displacement fields is mainly within the
structural uncertainties. We highlight some divergences on the management of a complex
fault network presenting crossing faults. We show that both restoration approaches can-
not fully recover the reference forward extension without a specific constraint: a shortening
boundary condition for the geomechanical method, and a scaling post-process for the geomet-
rical method. Concerning the influence of elastic parameters on the restored state, we show
that Young’s modulus has a low impact on the restored geometries because of the numerous
displacement boundary conditions. However, even if Poisson’s ratio does not have a major
impact on the displacement field, it highly impacts the changes of volume.

Introduction

Since the beginning of the last century, several restoration methods have been developed to
analyze the paleo-geometry of rock units through time [e.g., Chamberlin, 1910, Dahlstrom,
1969]. Classical restoration methods are geometric or kinematic, and mainly used on cross
sections or on surfaces representing the horizons [e.g., Gratier, 1988, Williams et al., 1997,
Rouby et al., 2002, Griffiths et al., 2002, Gjerde, 2002, Dunbar and Cook, 2003, Groshong,
2006]. More recently, such techniques have been extended to meshed volumes [Massot, 2002,
Muron, 2005, Medwedeff et al., 2016]. Recently, Medwedeff et al. [2016] propose a 3D geo-
metric restoration method based on the Geo-Chronological model [Mallet, 2004, Moyen et al.,
2004, Moyen, 2005, Mallet, 2014]. The Geo-Chronological (GeoChron) model is a 3D chronos-
tratigraphic theoretical framework [e.g., de Groot et al., 2006, Monsen et al., 2007, Wu and
Hale, 2015, Labrunye and Carn, 2015, Karimi and Fomel, 2015] which corresponds to the
mathematical formulation of the Wheeler space [Wheeler, 1958].

These restoration methods approach the mechanical behavior of rocks by geometrical ap-
proximations. For instance, the classical area or volume conservation is an approximation of
mass conservation. Several authors pointed out that real rock deformation cannot be assessed
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without geomechanical rules [Fletcher and Pollard, 1999, Gjerde et al., 2002] and that the
classical restoration methods need to incorporate real mechanics [Muron, 2005, Maerten and
Maerten, 2006, Guzofski et al., 2009]. 3D mechanics-based restoration methods have been
developed since the 2000’s to propose a restoration technique integrating rock mechanical
behavior [e.g., Maerten and Maerten, 2001, Santi et al., 2002, Muron, 2005, Moretti et al.,
2006, Maerten and Maerten, 2006, Plesch et al., 2007, Moretti, 2008, Guzofski et al., 2009,
Durand-Riard, 2010, Durand-Riard et al., 2010, 2011, 2013a,b, Chauvin et al., 2017]. However,
mechanics-based restoration presents several drawbacks. First, the mechanical rock behavior
relies on elasticity which is a limited representation of rock undergoing large deformation over
geologic time. The actual rock behaviors (e.g., plasticity or visco-elasticity) are not taken
into account [Durand-Riard et al., 2010, Lovely et al., 2012]. Thus, the real mechanics is
still simplified [Gerbault et al., 1998]. Second, it is not straightforward to choose the rock
mechanical properties, i.e., Young’s modulus and Poisson’s ratio (or equivalent), within a ge-
ological model due to the uncertainties. Third, the boundary conditions are controversial. In
mechanics-based restoration, the boundary conditions, such as unfolding and unfaulting, are
defined to ensure a consistent restored state. It is well established now that classical boundary
conditions are unphysical and may lead to an invalid strain field [Durand-Riard, 2010, Lovely
et al., 2012, Durand-Riard et al., 2013b, Chauvin et al., 2017]. Unphysical deformation and
so stress field is problematic to determine potential fracture areas [Macé, 2006, Maerten and
Maerten, 2006, Mej́ıa-Herrera et al., 2014, Stockmeyer et al., 2017].

It is difficult to objectively determine which restoration method is the most appropriate for
a specific case study. Both geometrical and geomechanical restorations have proven their ap-
plicability in different case studies. Moreover, in real geological cases, as the paleo-geometries
are unknown, assessing the validity of restoration can be difficult. The geologist can only
estimate the consistency of a restored model, which is a subjective choice depending on the
amount of available data and on their uncertainties. The preferred restoration method is the
one which produces the most “consistent” restored model. The consistency here means that
no available data invalidates the restored state. New external data can afterward question
the initial restoration.

On account of the difficulty to select a restoration method in particular, we propose a
comparison of two methods. The purpose of this paper is not to provide a complete comparison
between geometric/kinematic methods and geomechanical methods in general. We compare
the restoration results provided by a geomechanical approach [Chauvin et al., 2017] and a
GeoChron-based method [Medwedeff et al., 2016] on the same structural sandbox model. The
paleo-geometries of the sandbox are known through time on a cross section, defining a reference
solution for restoration purposes. In addition, as the sandbox deformation was performed in
laboratory, the structural uncertainties are relatively low. Thus, it is possible to objectively
determine which restoration method provides the restored model which is geometrically the
closest to the reference solution. After a theoretical description of both methods, we present
a geometrical comparison of the sandbox restored states. Finally we discuss about the impact
of mechanical properties in restoration and about the applicability of both methods.

3.1 Restoration methods

3.1.1 Mechanics-based restoration

Mechanics-based restoration corresponds to solution of a geomechanical boundary value prob-
lem. It relies on continuum mechanics. Both mass and linear momentum are conserved. Gen-
erally, these laws are used on a static (time-independent) form [e.g., Maerten and Maerten,
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2001, Muron, 2005, Moretti et al., 2006, Maerten and Maerten, 2006, Guzofski et al., 2009]:

∇ · σ + ρb = 0, (3.1)

with σ the Cauchy stress tensor, ∇· the divergence operator, ρ the rock density and b the
gravity. Elastic mechanical properties are defined within the geological model to mimic rock
behavior. A linear or non-linear law is used to relate the strain to the stress. Elasticity is
chosen for reversibility and simplicity reasons [Muron, 2005, Moretti et al., 2006, Maerten and
Maerten, 2006]. The simplest elastic rock materials are isotropic and defined by Young’s mod-
ulus and Poisson’s ratio or equivalent [e.g., Sokolnikoff, 1956, Gercek, 2007]. These isotropic
parameters can vary within the geological model. Boundary conditions, i.e., displacements
and tractions, are set to ensure the geometrical consistency of the restored state. They are
generally displacement conditions, typically to flatten and to remove the offsets of the up-
permost horizon. These boundary conditions and Equation (3.1) constitute the system of
equations corresponding to a mechanics-based restoration problem.

The typical elastic restoration workflow consists in six steps: (1) construction of a struc-
tural model (boundary representation), (2) construction of a volumetric mesh of the struc-
tural model, (3) definition of the mechanical properties inside the volume (constant or varying
Young’s modulus and Poisson’s ratio), (4) definition of the boundary conditions, (5) resolu-
tion by finite elements of the mechanical problem to get the 3D restoration displacement field,
(6) application of the computed displacement on the volume to get the restored state. The
previous steps aim to reverse the deformations undergone by the uppermost layer. In the case
of deformation events prior to the deposition of the uppermost layer, or in case of synsedi-
mentary deformation (growth strata), the paleo-geometries of underlying layers are obtained
by removing the uppermost restored layer and restarting restoration process from steps 4 to
6. This process is sequentially applied on all strata from top to bottom.

As the comparison in this paper is based on the restorations of Chauvin et al. [2017],
we focus on the specific geomechanical restoration method developed by Muron [2005] and
Chauvin et al. [2017]. It is based on a time-independent finite element solver [Zienkiewicz and
Taylor, 2000a,b, Belytschko et al., 2013]. The resolution consists in solving Equation (3.1) in
each elementary volume which composes the 3D mesh discretizing the geological model. The
resolution is global, i.e., the contribution of each tetrahedron is assembled into a system of
equations representing the entire model. Chauvin et al. [2017] chose the small deformation
assumption and use the linear elasticity relation known as Hooke’s law to relate stress and
strain [e.g., Ramsay and Huber, 2000]. The global system of equations is expressed by the
following matrix equation:

K · u = F ext, (3.2)

where K is the stiffness matrix representing the mechanical behavior of the entire model,
u corresponds to the restoration displacement field and F ext denotes the external forces ap-
plied on the model. In (3.2) only the displacement field u is unknown. This equation is solved
by numerical methods (here the conjugate gradient [e.g., M.R and Stiefel, 1952, Bathe, 2014]).

Sliding between fault blocks is allowed by splitting each fault into two surfaces corre-
sponding to the fault mirrors. To handle fault compliance and to remove the offsets of the
uppermost horizon throughout restoration, contact mechanics is used [Wriggers and Laursen,
2006]. The contact method is a master/slave approach which constrains the nodes of the
slave fault surface to be on the master fault surface [Muron, 2005, Wriggers and Laursen,
2006, Maerten and Maerten, 2006]. That prevents any penetration or gap of the slave into
the master, but the contrary is possible. This contact method is bilateral, i.e., the master
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and the slave move, and their relative motion depends on the global energy minimization (the
master is not fixed relatively to the slave).

3.1.2 GeoChron-based restoration

In this section, we present a recent restoration method developed by Medwedeff et al. [2016]
and based on the Geo-Chronological model [Mallet, 2004, Moyen et al., 2004, Moyen, 2005,
Mallet, 2014].

3.1.2.1 The GeoChron model

The Geo-Chronological model is a method to calculate the chronostratigraphic coordinates
of a geological model [Mallet, 2004, Moyen et al., 2004, Moyen, 2005, Mallet, 2014]. These
coordinates correspond to the 3D mathematical formulation of the Wheeler space. In this
space, the vertical axis corresponds to the time, and the horizontal plane defines the “paleo-
geographic coordinates” [Mallet, 2014, p. 10]. As the vertical axis is time, all the horizons
are horizontal in this space. Moreover, as Wheeler space is the deposition space, horizons are
undeformed and continuous, i.e., unfaulted.

The GeoChron model defines three chronostratigraphic coordinates, u, v, and t, defining
the uvt (deposition) space. u and v are the “paleo-geographic coordinates”, and t corresponds
to the time coordinate. The t field is first built from the horizons [Mallet, 2014, p. 54]. Indeed,
each horizon defines an iso-value constraining the interpolation of the t field. There are two
mathematical definitions to generate the u and v fields from the t field, each corresponding to
a tectonic style: minimal deformation and flexural slip [Mallet, 2014, p. 53-54 and chap. 2.3].
Minimal deformation style minimizes the strain in all directions and is mathematically defined
by [Mallet, 2014, p. 53, 71-72]:{

‖∇ u‖ ' 1 ; ‖∇ v‖ ' 1 ; ∇ u · ∇ v ' 0 ;

∇ t · ∇ u ' 0 ; ∇ t · ∇ v ' 0
, (3.3)

with ∇ the gradient operator. Flexural slip minimizes the strain along bedding interfaces
and is mathematically represented by [Mallet, 2014, p. 54, 72-74]:

‖∇Hu‖ ' 1 ; ‖∇Hv‖ ' 1 ; ∇Hu · ∇Hv ' 0, (3.4)

with ∇H the projection of the gradient ∇ orthogonally to the horizon H. These equations
are solved by Discrete Smooth Interpolation [Mallet, 1989, 1992, 1997, 2014]. For more details
about the uvt field generation, in particular on other potential constraints, see Mallet [2014,
chap. 1.9].

Several applications of the GeoChron model are proposed by Mallet [2014]. The primary
application is the generation of a structural model from sparse and uncertain data [Mal-
let, 2014, Section 1.10]. This technology is developed by Paradigm [2015] in the SKUA R©

structural modeling workflow. See Mallet [2014, Part 2] for other applications.

3.1.2.2 A restoration method based on the GeoChron model

The Wheeler space cannot be assimilated to a restored space for several reasons [Mallet,
2014, Medwedeff et al., 2016]. First, the temporal axis in the Wheeler space is intrinsically
not equivalent to a depth metric axis. Second, at deposition time of a geological layer, the
remaining layers are not necessary unfolded and unfaulted (e.g., growth structures). Finally,
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as every single chronostratigraphic horizon is horizontal in the Wheeler space, thickness vari-
ations along each layer are not preserved.

Medwedeff et al. [2016] develop a geometric restoration method which is based on the
GeoChron model, and avoids the limitations described previously for restoration purposes.
First, Medwedeff et al. [2016] build a structural model with the SKUA R© structural modeling
workflow. Thus, the input unrestored model of the GeoChron-based restoration method is
a meshed volume, here composed by tetrahedra, in which the horizons are represented by
isovalues of a scalar field [Frank et al., 2007], here the t field. This volume represents the
present-day structural model. Second, within this volume, a uvt field is generated with only
the horizon to restore as constraint for the t field. Thus, this new uvt field is different from the
one generated to build the complete unrestored stratigraphy. The other horizons are not used
to constrain the t field. Additional constraints can be defined on the uvt field to, for example,
integrate strike-slip constraints, or to enforce a specific kinematic behavior (e.g., flexural slip
or inclined shear). Third, the volume is transformed into the uvt space. To enable the sliding
along faults, nodes along fault surfaces are duplicated [Medwedeff et al., 2016]. The compliance
between fault blocks is ensured by additional constraints called veclinks [Ait Ettajer, 1995,
Moyen, 2004]. The key of the GeoChron-based restoration method is the use of only a single
horizon as constraint of the t field. Indeed, the subsequent t field gradient is almost constant
[Medwedeff et al., 2016]. Thus, the horizons, defined by isovalues in the unrestored volume,
define layers in the uvt space in which the thickness variations are preserved. That permits
to properly handle growth structures. The last step is a scaling of the time field to match
the Z field, by preserving volume or vertical thickness during restoration. Such constraints
approximate the minimization of the deformation during restoration [Medwedeff et al., 2016].
At the end, the deformed volume contains the restored geometry of the geological model at a
specific deposition time, from which restored faults and horizons may be extracted.

3.2 Restoration of a structural sandbox model

3.2.1 Analog model: a structural extensional sandbox model

The comparison of the two restoration methods is based on the restoration of a laboratory
sandbox model. The forward deformation of the sandbox was performed by IFPEN (http:
//www.ifpenergiesnouvelles.fr) and C&C Reservoirs, 2016, DAKSTM - Digital Analogs
Knowledge System (http://www.ccreservoirs.com). This sandbox was initially composed
by a basement of silicone (analogous to salt) and a layer of sand just above it (Figure 3.1).
Then the sandbox was deformed by gravity (box inclination of 1.5◦). During the deformation,
alternating layers of pyrex or sand were deposited to mimic growth structures. The initial
dimensions of the sandbox were 18 cm along the X axis, 10 cm along the Y axis and 2.2 cm
along the Z axis. There is a scaling from the sandbox scale to real geological cases: 1 cm is
equivalent to 1 km. This model is analogous to supra-salt structures which can be found in
real geological basins such as in Gulf of Mexico or offshore Angola. For more details about the
experiment and its applicability to real case studies, see Chauvin et al. [2017] and references
therein.

3.2.2 Geological model

At the end of the experiment, a 3D computed tomography (CT) volume of the structural
sandbox, equivalent to a seismic cube, is generated. From this volume, Chauvin et al. [2017]
built a structural model with SKUA-GOCAD software [Paradigm, 2015]. This structural
model (Figure 3.2) is the base model used for both restorations. However, each restoration
method (GeoChron-based and mechanics-based) calls for a specific input. Indeed, for the
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Figure 3.1: Scheme of the structural sandbox experiment. Based on the documentation furnished
by IFPEN and C&C Reservoirs, 2016, DAKSTM - Digital Analogs Knowledge System.
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Figure 3.2: Numerical structural model of the sandbox analog model. The model is composed by 2
grabens and a half-graben. In total, we modeled 8 horizons and 22 normal faults.

mechanics-based restoration method a 3D tetrahedral mesh conformal to both horizons and
faults is required. Chauvin et al. [2017] used the software VorteXLib [Botella, 2016a,b] which
depends on the libraries RINGMesh [Pellerin et al., 2015], Geogram [Lévy, 2015] and TetGen
[Si, 2015b,a]. VorteXLib software, before meshing the structural model with tetrahedra,
remeshes the structural model surfaces. Thus, the structural model used in the mechanics-
based restoration is slightly different from the one produced by SKUA-GOCAD. In addition,
Medwedeff et al. [2016] used a SKUA model [Paradigm, 2015], as input for the GeoChron-
based restoration, generated from the initial structural model. Thus, the geological surfaces
of the SKUA model (horizons and faults) may slightly vary from the initial structural model
and the remeshed model used in the geomechanical restoration. Moreover, as horizons in the
SKUA model are implicit (isovalues of a scalar field) and as the silicone is not represented in
the numerical model, the horizon H1 was slightly and locally changed around faults to truncate
them. This avoids faults terminating down-dip internal to the volume, and consequently fault
block connection at the bottom of the model which would prevent correct sliding during
restorations.

Figure 3.3 is a visual comparison between both input 3D models along three cross sections.
The two input models are very similar. Figure 3.4 quantifies the mismatch between both in-
put models and localizes the highest gaps. The principal dissimilarities are near the bottom
horizon since it was reworked as said previously. The top of the model has also high dissim-
ilarities. This is due to missing points on the top horizon, i.e., H8, to compute the distance
with the explicit model. This is a numerical artifact since the top horizon was extracted from
an isovalue which is numerically at the same location as the top of the mesh.
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Figure 3.3: Visual comparison of the unrestored state between the GeoChron-based input model
(dark blue) and the mechanics-based input model (orange). In each sub-figure both models are
displayed. a) Overlaid 3D models. The CT image and the two rectangles with black borders are
the cross sections presented in b), c) and d) respectively on the north, the center and the south of
the model. Both models are visually very similar along the model. CT data courtesy of IFPEN and
C&C Reservoirs, 2016, DAKSTM - Digital Analogs Knowledge System.
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Figure 3.4: Distribution of the distance between the two initial models of each restoration method.
This histogram includes the distance of each surface, horizons and faults, used in geomechanical
restorations to the equivalent surface used in GeoChron-based restorations. The distance is globally
low except in some areas.

3.2.3 Restoration settings

3.2.3.1 Mechanics-based restoration settings

The boundary conditions used in the mechanics-based restoration of the sandbox model are
in Chauvin et al. [2017] (see Figure 5 in Chauvin et al. [2017]). In short, the western wall
is fixed in X and Y, the north and the south walls are fixed in Y, the uppermost horizon is
flattened and there is an optional shortening along X on the eastern wall. Moreover, fault
contact boundary conditions are defined to ensure the consistency between fault blocks in the
restored state. In particular, Chauvin et al. [2017] used specific contact conditions to handle
branching faults and faults which are cut and displaced by later faults. Mechanically the
entire model is homogeneous and elastic with a Young’s modulus of 70 GPa and a Poisson’s
ratio of 0.2 [Holtzman et al., 2009].

3.2.3.2 GeoChron-based restoration settings

We restored the sandbox model with the GeoChron-based restoration method [Medwedeff
et al., 2016]. We chose the minimal deformation style. This tectonic style is more appropriate
than flexural slip in this case study since the forward deformation is extensional and the
analog model has no mechanical layering. For the time to depth scaling, we chose to preserve
vertical thicknesses.

3.3 Restoration comparison

In this section we geometrically compare the restored states provided by both restoration
methods. For simplicity, and to minimize the effect of error accumulation throughout restora-
tion, we only compare the restored states for the first three restoration steps.

3.3.1 Geometrical comparison

To be able to compare both restoration methods, we scaled the GeoChron-based restored
models to fit the W/E extension of the mechanics-based restored models. Concretely, we
multiplied the X-component of each vertex of the GeoChron solid by a factor. This factor is
equal to the extension of the geomechanical restored model, obtained with a proper shortening
boundary condition (CT images), divided by the extension of the GeoChron-based restored
model. Figures 3.5 - 3.6 - 3.7 respectively correspond to a visual comparison for each restora-
tion step between both restored models on three cross sections. Visually, after scaling of the
restored state, both restoration methods provide a very similar solution.
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Figure 3.5: Visual comparison of the restored state between the GeoChron-based restoration (dark
blue) and the mechanics-based restoration (orange) for the first restoration step. In each sub-figure
both models are displayed. a) Overlaid 3D restored models. The CT image and the two rectangles
with black borders are the cross sections presented in b), c) and d) respectively on the north, the
center and the south of the model. Both restored models are visually very similar along the model.
CT data courtesy of IFPEN and C&C Reservoirs, 2016, DAKSTM - Digital Analogs Knowledge
System.
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Figure 3.6: Visual comparison of the restored state between the GeoChron-based restoration (dark
blue) and the mechanics-based restoration (orange) for the second restoration step. In each sub-figure
both models are displayed. a) Overlaid 3D restored models. The CT image and the two rectangles
with black borders are cross sections presented in b), c) and d) respectively on the north, the center
and the south of the model. Both restored models are visually very similar along the model. CT
data courtesy of IFPEN and C&C Reservoirs, 2016, DAKSTM - Digital Analogs Knowledge System.
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Figure 3.7: Visual comparison of the restored state between the GeoChron-based restoration (dark
blue) and the mechanics-based restoration (orange) for the third restoration step. In each sub-figure
both models are displayed. a) Overlaid 3D restored models. The CT image and the two rectangles
with black borders are the cross sections presented in b), c) and d) respectively on the north, the
center and the south of the model. Both restored models are visually very similar along the model.
CT data courtesy of IFPEN and C&C Reservoirs, 2016, DAKSTM - Digital Analogs Knowledge
System.
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Figure 3.8: Volumetric mismatch between both restorations at restoration step 1. a) Distribution of
the norm of the difference of restoration displacement between the restored models obtained by the
mechanics-based restoration and the GeoChron restoration (step 1). b)-f) Location of the highest
distances within the unrestored model (near faults).

To quantify the mismatches between both solutions, we computed the restoration displace-
ment difference within the overall volume. Figures 3.8 - 3.9 - 3.10 respectively represent for
each restoration step the norm of the restoration displacement difference within the elastic
solid and its distribution. The majority of the norms is below 0.1 cm which is the picking un-
certainty distance evaluated by Chauvin et al. [2017]. The extremal norms, above 0.2 cm, are
mainly located around faults. Thus, both restoration methods provide very similar solutions
in the continuous parts of the geological model.

The main mismatches are located near the faults. That is explained by a problem of
transfer of the restoration vectors from the GeoChron solid to the geomechanical solid (in the
unrestored state). Indeed, some values are assigned to the wrong fault block as illustrated
in Figure 3.11. This effect is shown for a fault of the sandbox model in Figure 3.12b and
Figure 3.12d. To deal with that, for analyzing the restoration displacement mismatches on
faults, the transfer is performed using the fault surfaces with the information of the block
side. As said previously, a fault in a model to restore is decomposed into two surfaces, one for
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Figure 3.9: Volumetric mismatch between both restorations at restoration step 2. a) Distribution of
the norm of the difference of restoration displacement between the restored models obtained by the
mechanics-based restoration and the GeoChron restoration (step 2). b)-f) Location of the highest
distances within the unrestored model (near faults).
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Figure 3.10: Volumetric mismatch between both restorations at restoration step 3. a) Distribution of
the norm of the difference of restoration displacement between the restored models obtained by the
mechanics-based restoration and the GeoChron restoration (step 3). b)-f) Location of the highest
distances within the unrestored model (near faults).
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Figure 3.11: Scheme of bad property transfer between two unrestored models. a) and b) Two
similar models as the two numerical input models used in the geomechanical and the GeoChron-
based restorations. c) Superimposition of both models. Within the fault area, the block - (+) of the
model 1 is locally superimposed on the block + (-) of the model 2.

each fault block. Let + and - denote both blocks. Restoration vectors are transferred from
the fault surface on the GeoChron solid corresponding to the block + to the fault surface on
the geomechanical solid corresponding to the block + (same principle for the side -). Thus,
the previous issue of transfer disappears (Figure 3.12c and Figure 3.12e).

Figures 3.13 - 3.14 - 3.15 respectively represent for each restoration step the norm of the
restoration displacement difference on the faults and its distribution. These figures show that
even near the faults the restoration displacement vectors are very similar for both restoration
methods.

3.3.2 Fault compliance

Fault compliance is a validity criterion for a restored model. Both restoration methods define
constraints to ensure neither gap nor penetration between fault mirrors. Figure 3.16 quantifies
the fault compliance for each restoration step for both restoration methods. The histograms
on this figure correspond to the distributions of the distance between the two mirror surfaces
of a fault. Considering the limit of 0.1 cm defined by Chauvin et al. [2017], both restoration
methods provide an acceptable compliance for faults. It can be noted that the mechanics-
based restoration, with a fault contact method based on contact mechanics [Wriggers and
Laursen, 2006, Muron, 2005, Maerten and Maerten, 2006], provides a better fault compliance
than the GeoChron-based method. However, hard conclusions cannot be made since fault
compliance is in part dependent on the implementation choice. In addition, considering the
geological model scale, several distances may be equivalent. One millimeter and one meter
are mathematically very different, but both are negligible in comparison to a kilometer scale.
Thus, even if the fault compliance is not perfect, the compliance is still admitted below a
certain distance. Furthermore, fault compliance is impacted by the mesh size which is not
the same between both models.

There is an issue related to faults cut and displaced by later faults. The continuity between
fault parts is not ensured in the GeoChron-based restoration method, which provokes wrong
fault configurations. In Figure 3.17a the orange fault is initially normal. After restoration
(Figure 3.17c) it becomes reverse and it is not continuous. This is due to the sliding along the
blue fault (Figure 3.17b) which is completely independent of the orange fault. This issue is ob-
served during the restoration of the sandbox model by the GeoChron approach (Figure 3.18).
Chauvin et al. [2017] avoid this issue by applying line contact boundary conditions. Thus,
the mechanics-based restoration has the advantage to define custom boundary conditions to
handle complex fault network. Similar conditions could be implemented in the GeoChron
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Figure 3.12: Example of bad property transfers in the analog model. a) Analog model at the last
deformation stage. b) and d) Both sides, respectively F- and F+, of a fault F in the geomechanical
structural model. The displayed property is the Z component of the restoration displacement field
obtained with the GeoChron-based method. The transfer of the restoration displacement, from the
GeoChron volumetric mesh to the geomechanical volumetric mesh, failed: there is no continuity in
the restoration displacement field. Restoration vectors are in white. c) and e) Same fault with a
correct transfer: the restoration displacement field is continuous on each fault side.
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Figure 3.13: Norm of the difference between restoration displacements on faults (step 1). a) Dis-
tribution of the norm of the difference of restoration displacement between the restored faults (two
surfaces for each fault) obtained by the mechanics-based restoration and the GeoChron restoration
(step 1). b)-f) Location of the highest distances within the unrestored faults.

118

L .. · .. ··· 

... ······. ··· ·· · ·. --- ... 

,-.: 



Section 3.3. Restoration comparison

b)a)

Norm of the difference between both restoration 
displacement fields (log10 scale, in cm)

0.1 cm 0.555 cm

Norm of the difference between both restoration 
displacement fields (in cm)

Norm > 0.1 cm

c)

Norm > 0.2 cm

d)

Norm > 0.3 cm

e)

Norm > 0.4 cm

f)

Norm > 0.5 cm

W
E

N

S

25.8 cm

Z
Y
X

Step 2

P
ro

po
rti

on

10

0.15

0.05

0.2

0.1

110-110-210-3
0

0.25
0.3
0.35

10-410-510-6

0.4

Figure 3.14: Norm of the difference between restoration displacements on faults (step 2). a) Dis-
tribution of the norm of the difference of restoration displacement between the restored faults (two
surfaces for each fault) obtained by the mechanics-based restoration and the GeoChron restoration
(step 2). b)-f) Location of the highest distances within the unrestored faults.
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Figure 3.15: Norm of the difference between restoration displacements on faults (step 3). a) Dis-
tribution of the norm of the difference of restoration displacement between the restored faults (two
surfaces for each fault) obtained by the mechanics-based restoration and the GeoChron restoration
(step 3). b)-f) Location of the highest distances within the unrestored faults.
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Figure 3.16: Fault compliance distributions. Distance distributions between the two mirrors of all
the faults for each restoration step for both restoration methods. Fault compliance is good in both
methods.
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Figure 3.17: Crossing faults restoration issue. a) Unrestored state. The blue fault is cut and
displaced by the orange fault. b) Intermediate state to understand the final restored state c) in
which the green horizon is flattened. The blue fault is restored (null dip slip along the orange fault).
c) Restored state. The orange fault is cut and displaced by the blue fault with a reverse shape. This
is an inconsistent configuration due to the absence of relation between orange fault parts.

method in the future.

Some caution must be taken with contact conditions in general for both restoration meth-
ods. As they force the fault compliance, they may hide errors in the structural interpretations.
In the case of a forced fault compliance, fault geometry and the restored strain should be an-
alyzed to check for potential issues.

3.3.3 Extension recovery

In this section, we compare the restored models without integrating the knowledge of the sand-
box forward extension, i.e., no scaling for the GeoChron-based restorations and no shortening
boundary condition for the geomechanical restorations. We recomputed the geomechanical
restorations without any shortening condition, i.e., the unrestored state is from the previous
restoration step without any shortening boundary condition. There is no correction of the
unrestored models throughout the sequential restoration as done by Chauvin et al. [2017]
to a proper comparison with the GeoChron-based restoration method without any scaling.
Thanks to the CT images it is possible to know the amount of extension of the structural
sandbox model after restorations (along the X axis). For each restoration step, Table 3.1
displays the total forward extension of horizons H6, H7, and H8. This table presents the
measurements on CT images, i.e., the reference extensions. The differences of west/east ex-
tension between the restored states and the last stage of the analog model deformation for
both restoration methods are also indicated. It is clear that both restoration methods fail to
recover the expected extension of the analog model. The results are better in the GeoChron-
based method than in the geomechanical restoration. In the case of the mechanics-based
restoration, a shortening boundary condition is necessary, for each restoration step, to prop-
erly recover the forward extension of the analog model [Chauvin et al., 2017]. Concerning the
GeoChron-based restoration, the forward extension can be handled throughout restorations
by an appropriate scaling [Medwedeff et al., 2016](Section 3.3.1). Both restoration methods
need a specific shortening condition to be able to capture continuous deformation, extension
of missing faults, and potential dilatation within the analog model [Chauvin et al., 2017].
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Figure 3.18: Problem of no relation between fault parts (offset fault) in the sandbox model. a)
Analog model at the last deformation stage. b) Example of a fault cut and displaced by a later
fault in the unrestored state. c) and d) Restored state (step 3) after respectively a GeoChron-based
restoration or a geomechanical restoration. Gaps and penetrations are present in the GeoChron-
based restoration, and are absent in the geomechanical restoration. e) and f) are respectively the
same as c) and d), but F4− and the part of F3 located on the footwall side of F4 were removed to
ease the observation of the inconsistent reverse shape.
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Section 3.4. Impacts of the mechanical properties in the geomechanical restoration

extensions (cm) for horizon:
Total W/E forward analog model

H8 H7 H6

CT images 1.44 (100%) 2.15 (100%) 4 (100%)

GeoChron no W/E scaling 0.9 (63%) 1.715 (80%) 2.757 (69%)

Mechanics no imposed shortening 0.718 (50%) 1.168 (54%) 2.238 (56%)

Table 3.1: Total W/E forward analog model extensions for each restoration steps. Values from the
CT images are the reference extensions. For each extension in centimeter, the percentage is relative
to the corresponding reference extension. For the geomechanical restorations, for each restoration
step there is no imposed shortening, i.e., the unrestored model is the restored model at the previous
restoration step without shortening boundary condition.

3.4 Impacts of the mechanical properties in the geomechanical
restoration

One of the major conceptual differences between GeoChron-based restoration and geomechan-
ical restoration concerns how the deformation imposed on the restored horizon is propagated
within the layers. In this section, we propose a sensitivity analysis of the restoration re-
sults by varying the elastic material properties. More precisely, we recompute the first three
restoration steps with different sets of Young’s modulus and Poisson’s ratio, considered either
homogeneous or heterogeneous within the sandbox model. We apply the same boundary con-
ditions, including the shortening boundary condition evaluated from CT images. As the actual
sand and pyrex properties in the analog model are the same [Panien et al., 2006], these tests
are not expected to recover the reference solution. This can be interesting in real geological
cases where mechanical layering may exist and should affect the deformation patterns.

3.4.1 Impact of Young’s modulus

We geometrically compare different restored models with the reference restored model (Ref in
Table 3.2). Only Young’s modulus differs (models 1-6 in Table 3.2). Table 3.2 also presents
the total restoration dilatation after each restoration step. The dilatation is always based on
the initial unrestored volume (last deformation stage of the structural sandbox) using:

dilatation = 100× Vrestored − Vinitial
Vinitial

. (3.5)

In (3.5) Vinitial only considers the layers which are present at the restoration step, i.e.,
the removed layers are not included in the volume calculation to have a consistent dilatation.
Figure 3.19 presents two distance distributions between the reference restored model (the one
from Chauvin et al. [2017]) and each of the other restored models. One distance is the norm
of the difference of restoration displacements. The other distance is the volume dilatation
relative to the reference restored model:

relative dilatation = 100× V − Vref
Vref

. (3.6)

For each restoration test, the deviation to the reference is always significantly below the
picking uncertainty distance limit of 0.1 cm defined by Chauvin et al. [2017]. Therefore,
Young’s modulus has almost no influence on the restored geometry and on the global dilata-
tion. This is quite logical because Young’s modulus relates the strain to the stress and that
the strain is highly constrained by displacement boundary conditions. Thus in that case the
geometry is poorly affected by Young’s modulus, but the stress is.
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Models 1 2 3 4 Ref 5 6

E (GPa) 0.001 0.1 25 45 70 100 1000

ν 0.2

Total dilatation step 1 (%) -1.32 -1.32 -1.32 -1.32 -1.32 -1.32 -1.32

Total dilatation step 2 (%) -1.85 -1.86 -1.85 -1.85 -1.85 -1.85 -1.85

Total dilatation step 3 (%) -3.51 -3.51 -3.50 -3.47 -3.53 -3.50 -3.50

Table 3.2: Mechanical parameters of different geomechanical restorations. Only Young’s modulus
differs from the reference sequential restoration (E = 70 GPa, ν = 0.2) to test the influence of this
parameter. Poisson’s ratio is always equal to 0.2. The total restoration dilatation is displayed for
each restoration step. The dilatation is relative to the initial unrestored model (last deformation
stage of the structural sandbox). Young’s modulus has no impact on the dilatation.
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Figure 3.19: Impact of Young’s modulus on the restoration displacement field (geomechanical restoration). Each curve corresponds to a restoration
test with a different Young’s modulus. The norm of the difference of the restoration displacement for each restoration test with the reference model
(E = 70 GPa, ν = 0.2) are in the first row. The dilatation in percent for each restoration test relatively to the reference model (E = 70 GPa, ν =
0.2) are in the second row. Young’s modulus has almost no influence on the restoration displacement, and no influence on the change of volume after
restoration.
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Chapter 3. Comparison between mechanics-based and GeoChron-based restorations

Models 1 2 Ref 3 4 5

E (GPa) 70

ν 0.01 0.1 0.2 0.3 0.4 0.45

Total dilatation step 1 (%) -1.84 -1.62 -1.32 -0.95 -0.47 -0.15

Total dilatation step 2 (%) -2.55 -2.27 -1.85 -1.34 -0.67 -0.24

Total dilatation step 3 (%) -4.81 -4.26 -3.53 -2.56 -1.33 -0.54

Table 3.3: Mechanical parameters of different geomechanical restorations. Only Poisson’s ratio
differs from the reference sequential restoration (E = 70 GPa, ν = 0.2) to test the influence of this
parameter. Young’s modulus is always equal to 70 GPa. The total restoration dilatation is displayed
for each restoration step. The dilatation is relative to the initial unrestored model (last deformation
stage of the structural sandbox). Poisson’s ratio significantly impacts on the global dilatation.

3.4.2 Impact of Poisson’s ratio

We compare different restorations for which only Poisson’s ratio was varied (Table 3.3). Fig-
ure 3.20 presents the norm of the difference of restoration displacements of each restored model
with the reference restored models. The volume dilatation relative to the reference restored
models is also presented. For Poisson’s ratio, the deviations are more important and are
sometimes above the picking uncertainty limit. Poisson’s ratio has a more significant impact
on the displacement field than Young’s modulus, but differences are relatively small for each
node. However, the absolute dilatation (Table 3.3) decreases when Poisson’s ratio increases.
This is also logical since the lower Poisson’s ratio is, the more the global volume decreases (for
a non-null strain the volume does not change only if Poisson’s ratio is equal to 0.5). Thus,
although the impact of Poisson’s ratio is locally quite small here on the displacement field,
the consecutive change of the entire volume after restoration may be significant and must be
checked. If the boundary conditions are considered as valid, Poisson’s ratios which provide a
non-geologically realistic dilatation must not be chosen.
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Figure 3.20: Impact of Poisson’s ratio on the restoration displacement field (geomechanical restoration). Each curve corresponds to a restoration test
with a different Poisson’s ratio. The norm of the difference of the restoration displacement for each restoration test with the reference model (E =
70 GPa, ν = 0.2) are in the first row. The dilatation in percent for each restoration test relatively to the reference model (E = 70 GPa, ν = 0.2) are
in the second row. Poisson’s ratio has a low but significant impact on the restoration displacement, and is responsible on the change of volume after
restoration.
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Chapter 3. Comparison between mechanics-based and GeoChron-based restorations

Models Alternating layers Big layers

Layers
Mechanical parameters

E (GPa) ν E (GPa) ν

L7 10 0.2 70 0.4

L6 70 0.4 70 0.4

L5 10 0.2 70 0.4

L4 70 0.4 70 0.4

L3 10 0.2 10 0.2

L2 70 0.4 10 0.2

L1 10 0.2 10 0.2

Table 3.4: Elastic parameters for the study of the impact of heterogeneous mechanical properties in
restorations. Two rock configurations are used for the structural sandbox restorations.

3.4.3 Heterogeneous mechanical properties

We recomputed the first three restoration steps on the same structural sandbox but with
heterogeneous mechanical properties. We chose the elastic properties of a sandstone (E =
10 GPa, ν = 0.2) and a shale (E = 70 GPa, ν = 0.4) as reported by Fossen [2016, p. 104]. We
voluntarily chose extremal elastic behaviors to analyze the impact of a heterogeneous medium
on the restoration. We tested two models (Table 3.4). The first one is an alternation of
sandstone and shale layers. The second model has four upper layers of shale and three lower
layers of sandstone.

Figure 3.21 shows that for both tested models, after each restoration step, the majority of
norms are below the picking uncertainty limit. Step 3 of the model presenting thick layers is
an exception with a large spike above 0.1 cm. The mechanical heterogeneity here implies a
more significant difference with the reference homogeneous restored models.

3.4.4 Dilatation in the GeoChron-based restorations

Table 3.5 presents the total dilatation of the restored model after each restoration step of
the GeoChron method. If no scaling is performed to fit CT images, the volume does not
change after each restoration. Even if the conservation of volume is a common assumption
in structural restoration, the GeoChron-based method cannot alone recover rock dilatation.
However, the dilatation of the restored models can be handled with a proper scaling. The
scaling we used permited to have a visual fit with CT images, but the resulting dilatation is
very high. The dilatation values are above the ones provided by a geomechanical restoration
with a Poisson’s ratio of 0.01 (Table 3.3), which is logical since the scaling was only applied
along the X axis without any compensation in the other directions (as null Poisson’s ratio).
Obviously, this is unrealistic. In the general case, a proper scaling in all directions must be
performed to get a proper dilatation. We did not scale along the Z axis since the resulting
displacement to preserve volume is at the picking uncertainty limit defined by Chauvin et al.
[2017], and therefore this displacement would not change the geometric comparison between
both restoration methods.

3.5 Discussions

3.5.1 Two restoration methods: “equivalent” restored states

The fact that both mechanics-based and GeoChron-based restoration methods furnish an
“equivalent” restored state is reassuring. Neither of the methods is far from the reference

128



Section 3.5. Discussions

Norm of the difference between both restoration 
displacement fields (log10 scale, in cm)

Step 3
Step 2
Step 1

P
ro

po
rti

on

10

0.15

0.05

0.2

0.1

110-110-210-3
0

0.25
0.3
0.35

10-410-510-6

0.4
Alterning layers model Big layers model

P
ro

po
rti

on
10

0.15

0.05

0.2

0.1

110-110-210-3
0

0.25
0.3
0.35

10-410-510-6

0.4
Step 3
Step 2
Step 1

Figure 3.21: Impact of heterogeneous mechanical properties in the geomechanical restorations of
the structural sandbox. Two mechanical models are tested (Table 3.4). The results are for the first
three restoration steps. The distributions correspond to the norm of the difference of restoration
displacements with the reference restored models.

Step 1 Step 2 Step 3
Not scaled Scaled Not scaled Scaled Not scaled Scaled

Total dilatation (%) 0.00 -1.82 -0.00 -2.31 0.00 -5.30

Table 3.5: Total restoration dilatation for each restoration step of the GeoChron-based method.
“Not scaled” refers to the restored model obtained after a restoration with the GeoChron method
alone. “Scaled” refers to the restored model obtained after a restoration with the GeoChron method
followed by a scaling to fit the CT images.
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solution and both methods can be used. The similarity between both solutions may be simply
explained. First, both restoration methods rely on minimization of the deformation. Second,
the sandbox model is mechanically homogeneous, which makes the use of a global deformation
style appropriate. Moreover, as the used mechanics is elasticity and that all the boundary
conditions are imposed displacements, Young’s modulus does not have a significant effect on
the restored displacement. Only the stress is affected. If the boundary conditions were traction
conditions, Young’s modulus would have surely significantly affected the final geometry. These
considerations may explain the similarities between both restoration solutions of the structural
sandbox model. However, even if Young’s modulus does not seem to have an important
impact on the displacement field, for stress analysis purpose it still remains fundamental.
An incorrect Young’s modulus would lead to an inconsistent stress field which has a major
impact for instance on the prediction of fracture areas [Macé, 2006, Maerten and Maerten,
2006, Mej́ıa-Herrera et al., 2014, Stockmeyer et al., 2017]. Nevertheless, the ability of the
mechanics-based restoration to capture a physical stress field is controversial because of the
elastic nature of the used mechanics and of the unphysical boundary conditions [Lovely et al.,
2012]. Finally, as the strain mathematically only depends on the restoration displacement
field, even if this field is obtained by a geometrical approach, such as the GeoChron method,
it is possible to compute a consistent stress field if Young’s modulus is properly chosen [Mallet,
2014, chap. 8].

3.5.2 Impacts of the mechanical properties

In the studied sandbox model, the strain provided by a geomechanical restoration on a ho-
mogeneous case is poorly affected by Young’s modulus. Poisson’s ratio has more impact,
in particular on the volume dilatation. This is also a conclusion of Durand-Riard [2010].
In the case of knowledge about rock dilatation, the mechanics-based restoration enables to
control, thanks to the boundary conditions and Poisson’s ratio, the restored model volume,
whereas the GeoChron approach preserves the original volume (assumption generally chosen
in restoration), in the case of no postprocessing (here to horizontally scale the GeoChron
restored model with the geomechanical restored model). A dilatation analysis study must be
performed to assess consistent dilatation globally within a restored model and also locally.

Even in presence of mechanical heterogeneity, we did not get major changes in the restored
models. This may be due to the displacement boundary conditions, which are numerous and
highly constrain the strain. Moreover Poisson’s ratio impact is function of the strain. In the
case of more strain along the X axis, Poisson’s ratio would have a more significant impact. It
must be the case for the remaining restoration steps not performed in this study.

Some caution must be taken on these results since they are based on the restoration of an
extensional sandbox model. In actual cases, deformation and mechanics are far more complex.
Several authors show the advantages of geomechanical modeling over geometric/kinematic
methods in several contexts [e.g., Fletcher and Pollard, 1999, Maerten and Maerten, 2006,
Guzofski et al., 2009].

3.5.3 Flexibility versus practicality

The GeoChron-based restoration has the main advantage to be easy to use and geologically
accurate. In the current development made by Medwedeff et al. [2016] and Paradigm [2015],
the number of settings which must be defined by a geologist is small: choice between two
deformation styles, and choice between the preservation of the volume or the vertical thick-
ness in the scaling of the t field to depth. This is an advantage over the mechanics-based
restoration which needs a consistent set of boundary conditions (qualified by some authors
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as non-physical [Lovely et al., 2012]) and rock mechanical properties. However, this can be a
disadvantage in a complex area which needs more flexibility in the restoration settings. For
instance, the GeoChron-based restoration only proposes two extremes of deformation style
(flexural slip and minimal deformation). It would be necessary to use an intermediate be-
tween these two end-members to cover all possible deformation styles [Mallet, 2014, p. 74]. In
addition, in the GeoChron-based restoration the deformation style must be known whereas
the mechanics-based restoration aims to be a restoration method in which the deformation
style is a result of a mechanical simulation.

The GeoChron-based restoration also has the advantage to be fast on several aspects. First
it uses a SKUA model [Paradigm, 2015] of which the generation and edition have numerous
advantages over the traditional explicit methods in particular on the time of construction
and the sensitivity on the structural data [e.g., Frank et al., 2007, Caumon et al., 2013].
This is a gain of time over the mechanics-based restoration which is generally based on an
explicit structural model, with the exception of Durand-Riard et al. [2010]. Moreover, as the
mechanics-based restoration is a sequential restoration and is sensitive to the mesh quality,
a remeshing step may be necessary after a few sequential restoration steps [Chauvin et al.,
2017]. Rebuilding an explicit structural model and remeshing it may be a very time-consuming
task. The GeoChron-based restoration avoids this issue by restoring a horizon in a single step.
Nevertheless, in this geometric restoration, in the workflow defined by Medwedeff et al. [2016],
it is not real sequential restoration, but a“pseudo-sequential restoration”, as the restored state
is not used as unrestored state for a next restoration step. Mechanics-based restoration, in
its classical use, has the advantage to perform a real sequential restoration. Finally, the
GeoChron-based restoration, based on numerical optimization, was much faster in this case
study (several minutes to restore several horizons) than geomechanical restoration (a couple
of hours to restore each horizon). Even if software performance depends on many parameters
and on the implementation, the capability to quickly validate or invalidate a structural model
and go back to the initial interpretation is fundamental for testing multiple realizations and
handling the structural uncertainties.

Conclusions

The restoration of a structural sandbox model in which the structural uncertainties are low
and the paleo-geometries are known on a cross section enabled us to compare two restoration
methods (mechanics-based and GeoChron-based). In this case study, both restoration meth-
ods provide a very similar restored state in terms of geometry and displacement field. There
are several reasons for this similarity. First, although the sandbox model has complex struc-
tures, its deformation is quite simple. Second, both restoration methods are mainly based on
similar geometric considerations (e.g., datuming) and on the minimization of the deforma-
tion. Finally, the sandbox is mechanically homogeneous and the mechanical parameters have
a small impact on the displacement field. As there is neither pure traction boundary condition
nor body force condition, and as the strain is much constrained by imposed displacement and
fault contact conditions, Young’s modulus has a very small impact on the displacement field.
Poisson’s ratio has a larger (yet not very significant) impact, and affects the total dilatation.
The GeoChron-based method has significant advantages in terms of meshing ease, practicality
and computational time. Nevertheless, the current implementation of this method has almost
no flexibility, whereas custom boundary conditions can be set in the mechanics-based restora-
tion method. Finally, these restoration comparison conclusions cannot be simply transposed
on models presenting high mechanical contrasts and complex deformations, which can be the
case on real geological case studies.
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thesis, Institut National Polytechnique de Lorraine, 2010.

P. Durand-Riard, G. Caumon, and P. Muron. Balanced restoration of geological volumes
with relaxed meshing constraints. Computers & Geosciences, 36(4): 441–452, 2010. ISSN
00983004. doi: 10.1016/j.cageo.2009.07.007.

P. Durand-Riard, L. Salles, M. Ford, G. Caumon, and J. Pellerin. Understanding the evolution
of syn-depositional folds: Coupling decompaction and 3D sequential restoration. Marine
and Petroleum Geology, 28(8): 1530–1539, 2011. doi: 10.1016/j.marpetgeo.2011.04.001.

P. Durand-Riard, C. A. Guzofski, G. Caumon, and M.-O. Titeux. Handling natural complexity
in three-dimensional geomechanical restoration, with application to the recent evolution of
the outer fold and thrust belt, deep-water Niger Delta. AAPG bulletin, 97(1): 87–102,
2013a. doi: 10.1306/06121211136.

133

http://www.ring-team.org/software/ring-libraries/45-vortexlib
http://www.ring-team.org/software/ring-libraries/45-vortexlib


BIBLIOGRAPHY

P. Durand-Riard, J. H. Shaw, A. Plesch, and G. Lufadeju. Enabling 3D geomechanical
restoration of strike- and oblique-slip faults using geological constraints, with applications
to the deep-water Niger Delta. Journal of Structural Geology, 48: 33–44, 2013b. doi:
10.1016/j.jsg.2012.12.009.

R. C. Fletcher and D. D. Pollard. Can we understand structural and tectonic processes and
their products without appeal to a complete mechanics? Journal of Structural Geology, 21:
1071–1088, 1999. ISSN 01918141. doi: 10.1016/S0191-8141(99)00056-5.

H. Fossen. Structural geology. Cambridge University Press, 2016.

T. Frank, A. L. Tertois, and J. L. Mallet. 3D-reconstruction of complex geological interfaces
from irregularly distributed and noisy point data. Computers & Geosciences, 33(7): 932–
943, 2007. ISSN 00983004. doi: 10.1016/j.cageo.2006.11.014.

M. Gerbault, A. N. B. Poliakov, and M. Daignieres. Prediction of faulting from the theories
of elasticity and plasticity: what are the limits? Journal of Structural Geology, 20(2-3):
301–320, 1998. doi: 10.1016/S0191-8141(97)00089-8.

H. Gercek. Poisson’s ratio values for rocks. International Journal of Rock Mechanics and
Mining Sciences, 44(1): 1–13, 2007. ISSN 13651609. doi: 10.1016/j.ijrmms.2006.04.011.

K. Gjerde. 3 Dimensional Elastic Boundary Element Modeling of Geological Structures.
Stanford Rock Fracture Project, 13, 2002.

K. Gjerde, K. Langaas, and W. Fjeldskaar. Dynamic modelling of faulting with the distinct
element method, 2002.

J.-P. Gratier. L’équilibrage des coupes géologiques. Buts, méthodes et applications. Mémoires
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thesis, Institut National Polytechnique de Lorraine, 2005.

M. Panien, G. Schreurs, and A. Pfiffner. Mechanical behaviour of granular materials used
in analogue modelling: insights from grain characterisation, ring-shear tests and analogue
experiments. Journal of Structural Geology, 28(9): 1710–1724, 2006. doi: 10.1016/j.jsg.
2006.05.004.

Paradigm. SKUA-GOCAD, 2015. URL http://www.pdgm.com/products/skua-gocad/.

J. Pellerin, A. Botella, A. Mazuyer, B. Levy, and G. Caumon. RINGMesh: A programming
library for developing mesh based geomodeling applications. In Proceedings of IAMG 2015
Freiberg, 2015.

A. Plesch, J. H. Shaw, and D. Kronman. Mechanics of low-relief detachment folding in the
Bajiaochang field, Sichuan Basin, China. AAPG bulletin, 91(11): 1559–1575, 2007. doi:
10.1306/06200706072.

J. G. Ramsay and M. I. Huber. The Techniques of Modern Structural Geology - Volume 3:
Applications of continuum mechanics in structural geology. Academic Press, 2000.

D. Rouby, S. Raillard, F. Guillocheau, R. Bouroullec, and T. Nalpas. Kinematics of a growth
fault/raft system on the West African margin using 3-D restoration. Journal of Structural
Geology, 24: 783–796, 2002. doi: 10.1016/S0191-8141(01)00108-0.

M. R. Santi, J. L. E. Campos, and L. F. Martha. A finite element approach for geological
section reconstruction. In Proceedings of the 22th Gocad Meeting, Nancy, France, p. 1–13,
2002.

H. Si. TetGen, a Delaunay-based quality tetrahedral mesh generator. ACM Transactions on
Mathematical Software (TOMS), 41(2): 1–36, 2015a. doi: 10.1145/2629697.

H. Si. TetGen, 2015b. URL http://wias-berlin.de/software/tetgen/.

I. S. Sokolnikoff. Mathematical theory of elasticity. McGraw-Hill, New York, 1956.

J. M. Stockmeyer, J. H. Shaw, L. T. Billingsley, A. Plesch, M. Wales, L. C. Lavin, R. Knox,
and L. Finger. in press, Geomechanical restoration as a tool for fractured reservoir char-
acterization: application to the Permian Basin, West Texas. AAPG Bulletin, 2017. doi:
10.1306/03231716076.

H. E. Wheeler. Time-Stratigraphy. Bulletin of the American Association of Petroleum Geol-
ogists, 42(5): 1047–1063, 1958.

G. D. Williams, S. J. Kane, T. S. Buddin, and A. J. Richards. Restoration and bal-
ance of complex folded and faulted rock volumes: flexural flattening, jigsaw fitting
and decompaction in three dimensions. Tectonophysics, 273(3): 203–218, 1997. doi:
10.1016/S0040-1951(96)00282-X.

136

http://www.pdgm.com/products/skua-gocad/
http://wias-berlin.de/software/tetgen/


BIBLIOGRAPHY

P. Wriggers and T. A. Laursen. Computational contact mechanics. Springer, 2006. ISBN
9783540326083. doi: 10.1007/978-3-540-32609-0.

X. Wu and D. Hale. Horizon volumes with interpreted constraints. Geophysics, 80(2):
IM21—-IM33, 2015. doi: 10.1190/geo2014-0212.1.

O. C. Zienkiewicz and R. L. Taylor. The finite element method, volume 1, the basis.
Butterworth-Heinemann, Oxford, United Kingdom, 5th edition, 2000a.

O. C. Zienkiewicz and R. L. Taylor. The finite element method, volume 2, solid mechanics.
Butterworth-Heinemann, Oxford, United Kingdom, 5th edition, 2000b.

137





General conclusions

Contributions of this thesis

This thesis provided several keys to the current issues of the mechanics-based restoration. Our
main contributions are related to the choice of the boundary conditions and on the comparison
of restoration methods. We also provided insight on the choice of elastic parameters.

Definition of proper boundary conditions

We tested different sets of boundary conditions in the restoration of an extensional structural
sandbox model. Thanks to computed tomography (CT), the deformation path was known
on a cross section. We could objectively determine which boundary conditions geometrically
provided the best restored state in comparison to the CT images.

Lateral displacement boundary condition

We showed that a restoration with the classical boundary conditions, i.e., a datuming and
fault contact boundary conditions, did not permit to properly capture the forward extension of
the analog model. The use of a shortening boundary condition was essential to fit the restored
geometries with the CT images. The magnitude of this shortening condition corresponded to
the forward displacement observed on the CT images. These conclusions are consistent with
others studies made on synthetic models by Durand-Riard [2010], Lovely et al. [2012] and
Durand-Riard et al. [2013], respectively on a compressive, an extensive and a strike-/oblique-
slip contexts. In our case, the magnitude of the displacement condition to apply was deduced
from the CT images. In natural case studies, it is not straightforward to get such information.
We showed that the area-depth method [e.g., Epard and Groshong, 1993, Groshong et al.,
2003] provides a good estimate of the shortening magnitude. We also proposed a tetrahedral
dilatation analysis to assess this magnitude and to check the validity of the restored state
[Durand-Riard, 2010].

Contact conditions to handle complex fault networks

We defined two novel contact boundary conditions to handle the complex fault network present
in the structural analog model. The first condition connects fault surface internal borders to
handle faults that branch onto other faults. The second condition ensures the continuity of an
offset fault. These conditions use the same contact method to tie fault cutoff lines by contacts
mechanics [Muron, 2005, Maerten and Maerten, 2006, Wriggers and Laursen, 2006]. Thanks
to these conditions, several steps of the analog model sequential restoration were possible.

Impact of the elastic parameters

The mechanics-based restoration uses elastic parameters, i.e., Young’s modulus and Pois-
son’s ratio, to take into account rock mechanical behavior. We studied the impact of these
parameters on the restored state of the analog model.
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Impact of Young’s modulus

We showed that on a homogeneous case, Young’s modulus has a small impact on the dis-
placement field. We justify that by the fact that all the boundary conditions are displace-
ment conditions. As the strain is highly constrained by these conditions, Young’s modulus
only changes the stress in consequence. Althought the displacement field is not significantly
affected, the Young’s modulus still has an important impact on the stress field. An erroneous
stress may lead to erroneous interpretations such as a bad prediction of fracture areas [Macé,
2006, Maerten and Maerten, 2006, Mej́ıa-Herrera et al., 2014, Stockmeyer et al., 2017].

Impact of Poisson’s ratio

We showed on a homogeneous case that Poisson’s ratio has more significant impact on the
displacement field than Young’s modulus. Even if the nodal displacement does not seem to
be highly modified when Poisson’s ratio is changed, the subsequent change of volume, locally
and globally, is very important. A dilatation analysis must be performed to reject Poisson’s
ratios which provide an irrealistic dilatation.

Comparison of restoration methods

A multitude of restoration methods exists, defined by geometric, kinematic and/or geome-
chanical rules. The choice of a specific method of restoration is not always straightforward.
So we reviewed the existing geomechanical restoration methods and we did an experimental
comparison between our geomechanical method [Muron, 2005] and the geometrical approach
relying on the Geo-Chronological model [Mallet, 2014, Medwedeff et al., 2016].

Comparison between the geomechanical approaches

We theoretically compared the different geomechanical approaches. All these methods are
based on fundamental equations of continuum mechanics. We investigated the differences
on the numerical methods used to solve a restoration problem: the mass-spring method
[Terzopoulos et al., 1987, Macaulay et al., 2015], the boundary element method [Gjerde, 2002],
and the finite element method [e.g., Zienkiewicz and Taylor, 2000a,b, Belytschko et al., 2013,
Bathe, 2014]. For the latter method, several approaches exist, all neglecting the temporal part
of the resolution to focus on the steady-state: the static method solved locally [Maerten and
Maerten, 2006], the static method solved globally [Muron, 2005, Moretti et al., 2006], and the
dynamic relaxation method [Santi et al., 2003, Muron, 2005]. We also explained the different
approaches to handle fault contacts: by a geometrical method [Muron, 2005, Moretti et al.,
2006] or by a mechanical method [Muron, 2005, Maerten and Maerten, 2006, Wriggers and
Laursen, 2006, Tang et al., 2016]. All these approaches have the same purpose but each has
geometrical and physical implications on the restored state. The choice of a specific method
is dependent on the needs and constraints of the structural geologist and of the case study.

Comparison with a geometric method based on GeoChron

We geometrically compared the analog model restored states provided by a geomechanical
restoration approach [Muron, 2005, Chauvin et al., 2017] and the GeoChron-based restora-
tion [Mallet, 2014, Medwedeff et al., 2016]. We showed that both restoration methods provided
very similar paleo-geometries. We attribute this simulitude to the mechanical simplicity of
the structural sandbox model, i.e., no mechanical contrast and a deformation process simpler
than in nature, and to the deformation minimization in the GeoChron-based method. We
also showed that, as the geomechanical restoration, the GeoChron-based restoration does not
properly capture the forward extension of the analog model. Dilatation, and extension due to
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missing faults which are below the seismic data resolution, are not taken into account [Kautz
and Sclater, 1988, Marrett and Allmendinger, 1992, Baxter, 1998, Groshong et al., 2003].
A scaling post-process is needed on the GeoChron restored states, similarly to the shorten-
ing boundary condition in the mechanics-based restoration. The geomechanical restoration
approach has the main advantage to define custom boundary conditions and rock elastic be-
haviors. Conversely, the GeoChron-based approach has almost no flexibity and assumes the
knownledge of a tectonic style applied globally. However, this restoration method is very in-
teresting since it quickly provides the first order paleo-geometries and highly reduces several
issues met in the geomechanical approach such as the meshing constraints.

Publications associated to this thesis

B. Chauvin and G. Caumon. Review of mechanics-based restoration. In The Geology of Ge-
omechanics, The Geological Society of London, 2015a

B. Chauvin and G. Caumon. Building folded horizon surfaces from 3D points: a new method
based on geomechanical restoration. In Proceedings of IAMG 2015 Freiberg. The 17th Annual
Conference of the International Association for Mathematical Geosciences, p. 39–48, 2015b.
ISBN 978-3-00-050337-5

B. Chauvin, J. Stockmeyer, J. H. Shaw, A. Plesch, J. Herbert, P. J. Lovely, C. A. Guzofski,
and G. Caumon. Defining Proper Boundary Conditions in 3-D Structural Restoration: A
Case Study Restoring a 3-D Forward Model of Suprasalt Extensional Structures. In AAPG
Annual Convention and Exhibition, 2016

J. Pellerin, A. Botella, F. Bonneau, A. Mazuyer, B. Chauvin, B. Lévy, and G. Caumon.
RINGMesh: A programming library for developing mesh-based geomodeling applications.
Computers & Geosciences, 104: 93–100, 2017. doi: 10.1016/j.cageo.2017.03.005

B. P. Chauvin, P. J. Lovely, J. M. Stockmeyer, A. Plesch, G. Caumon, and J. H. Shaw. Vali-
dating novel boundary conditions for 3D mechanics-based restoration: an extensional sandbox
model example. AAPG bulletin, accepted, 2017. doi: 10.1306/0504171620817154

B. P. Chauvin, P. J. Lovely, S. N. Jayr, and G. Caumon. Comparison between mechanics-
based and GeoChron-based restorations. Application to a structural sandbox model. in prep

Other works made during this thesis

Supervised Master students

During this thesis, I supervised several Master students in different topics related to the
restoration in general. These projects were not directly related to this thesis. In total, we
supervised 9 projects:

• A new method to reconstruct eroded paleotopographies using mass balance principle,
Gabriel Godefroy (Master student, 2014).

• Geometrical errors after restoration, Claire Launoy (Master student, 2015).

• Integration of physical parameters into decompaction during the restoration, Simon Fuet
(Master student, 2015).
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• Geomechanical second order tensors field visualization through the segmentation and
animation of geological 3D models, Côme Lebreton (Master student, 2015).

• Integration of paleomagnetic data in 3D mechanics-based restoration, Anne Raingeard
(ENSG 2nd year student, 2015).

• Accounting for pore pressure during decompaction, Laure Pizzella (Master student,
2016).

• Implementation of RINGMecha Graphical User Interface, Anne Raingeard (ENSG 3rd

year student, 2016).

• Paleo-topography boundary condition in 3D mechanics-based restoration, Camille Philippe
(ENSG 2nd year student, 2016).

• Validation of a finite element program, Charles Vouaux (ENSG 2nd year student, 2016).

Developed software

During this thesis, we developed the following computer programs:

• Restorationlab: 3D mechanics-based restoration SKUA-GOCAD plugin1 [Muron, 2005,
Durand-Riard, 2010].

• RINGMecha: finite element library for mechanical simulations2. This work was in col-
laboration with Antoine Mazuyer.

• RINGMesh: open-source mesh structure library3. This work was in collaboration with
Jeanne Pellerin, Arnaud Botella, Antoine Mazuyer, François Bonneau, Pierre Anquez,
Margaux Raguenel and Gautier Laurent. See Pellerin et al. [2017] for more details.

These programs, and the related trainings, are available for the members of the RING-
Gocad consortium in http://www.ring-team.org/software. RINGMesh is available on the
RING team website or on bibucket: https://bitbucket.org/ring_team/ringmesh.

Perspectives of this thesis

In this thesis we tried to provide some answers to the current issues of the 3D mechanics-based
restoration. In this section, we propose several perspectives in mechanics-based restoration.
They are related to the meshing constraints, the choice of the boundary conditions and the
physical applicability of the restoration.

Meshing constraints

Problematic

Geomechanical restoration methods require a mesh of the geological model to restore. The
mesh is built prior the first step of restoration. It may be necessary to rebuild a mesh be-
tween two restoration steps of a sequential restoration to geometrically correct the restored
mesh or to improve the numerical quality of the deformed mesh elements [e.g., Parthasarathy
et al., 1994, Shewchuk, 2002, Botella, 2016]. However, building or rebuilding a mesh is not
straightforward. In the restorations presented in Chapter 2, we could not perform an entire

1http://www.ring-team.org/software/skua-gocad-plugins/38-restorationlab
2http://www.ring-team.org/software/ring-libraries/44-ringmecha
3http://www.ring-team.org/software/ringmesh
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sequential restoration because of the issues on the mesh element quality and of the difficulty
to rebuild a 3D numerical model. Moreover, meshing constraints may also force some simpli-
fications on the numerical model, which may have an impact on the geological consistency of
the numerical model [Vidal-Royo et al., 2012].

Constraints on the structural model

The different methods of geomechanical restoration need a 3D numerical structural model.
This model can be directly used for restoration purpose or as input to produce a 3D mesh.
There are several constraints on the construction of a valid geological boundary representa-
tion [Caumon et al., 2004, Zehner et al., 2015, Anquez et al., 2016]. Among them, two have
an important impact on the usability of the geomechanical restoration. The first constraint
is to ensure the conformity between the surfaces of the structural model. Two surfaces are
conformal if their intersection is a line which is present in both surface meshes [Caumon
et al., 2009]. The second constraint is that the boundary representation must be water-tight,
i.e., there is no communication between the interior of the numerical model and the exterior.
These constraints make the construction of a structural model a complicated task. In addi-
tion, for restoration purposes, along each fault surface the mesh is duplicated to enable the
sliding. Thus there are two surfaces for each fault and the conformity is lost after restoration
[Anquez et al., 2016]. Moreover, fault compliance, although good, cannot be numerically per-
fect. Therefore, the generation of a boundary representation from a restored fault network is
not trivial.

Constraints on the volumetric mesh

Concerning the volumetric mesh, its generation, respecting the topology of a structural model,
is the topic of several works in the literature (see Botella [2016] and references therein). A
difficult task is to respect all the geological interfaces, i.e., faults and horizons. Mesh algo-
rithms may fail to reproduce some geometrical configurations, such as low angles or very thin
layers. Geometrical/topological simplifications are often required before meshing, leading to
a simplification of the geological interpretation [Pellerin et al., 2014, Raguenel et al., 2016].
Smaller volumetric elements, such as tetrahedra, help to respect the structural model. But
such a method implies a high number of elements to honor thin features, which significantly
increases computer memory and computational time requirements. Another constraint, spe-
cific to the restoration, is the potential need of mesh nodes on particular locations to define
local boundary conditions such as the piercing points proposed by Durand-Riard et al. [2013].

Some ideas to address meshing issues

Several methods are used or could be used to avoid, or at least reduce, meshing constraints.
Implicit modeling may ease the generation of a structural model [e.g., Chilès et al., 2004,
Cowan et al., 2004, Frank et al., 2007, Calcagno et al., 2008, Paradigm, 2015]. In such
method, horizons are defined by isovalues of a scalar property [Frank et al., 2007]. However,
the conversion of an implicit model to an explicit model is not simple. This problem is more
related to structural geomodeling than to the restoration but it highlights the issues of current
restoration requirements. Implicit restoration reduces the constraints on the generation of a
structural model since the horizons are not represented by surfaces [Durand-Riard, 2010,
Durand-Riard et al., 2010]. However conformal fault surfaces are still needed. The use of
a fully implicit model, i.e., with implicit horizons and faults, as input for restoration may
solve the meshing issues. The extended finite element method (X-FEM) is an extension of
the finite element method to implicit models. Extended finite element method [e.g., Moës
et al., 1999, Moës and Belytschko, 2002, Belytschko et al., 2013] was used by Siavelis et al.
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[2010, 2011], Siavelis [2011], Annavarapu et al. [2013] and Siavelis et al. [2013] to model the
forward evolution of sedimentary basins and complex fault contacts with large fault sliding.
Even if Siavelis [2011] did not perform a mechanics-based restoration using X-FEM, the same
principle as forward simulation can be applied, easing mesh generation and contacts between
faults. A more advanced method to avoid meshing problems is the use of meshless methods
[Belytschko et al., 1996, Müller et al., 2004, Maerten, 2014, Renaudeau et al., 2016]. During
this thesis, we tried to develop implicit boundary conditions on points located anywhere within
a 3D mesh [Chauvin and Caumon, 2014, 2015b] by generalizing the work of Durand-Riard
[2010] and Durand-Riard et al. [2010]. These conditions are transferred to the surrounding
nodes using tetrahedral barycentric coordinates. This approach also aimed to bring flexibility
of the boundary condition definition, opening the path to study subsequent uncertainties
[Chauvin and Caumon, 2014]. We did not develop this work in this manuscript because
it did not succeed, surely because the definition of “boundary conditions” within a mesh is
not considered in the classical finite element method. In addition, our approach to flatten a
horizon applies boundary conditions on all the nodes of the tetrahedra containing the implicit
points, leading surely to an overconstrained system. An alternative method would consider
only the nearest nodes as done by Durand-Riard et al. [2010] to flatten a horizon. Finally,
external works on meshing enable now the use of multi-element mesh, such as hex-dominant
mesh [Botella et al., 2014b, 2015] and local adaptive mesh [Botella et al., 2014a]. Concerning
the contruction/reconstruction of a structural model, a thesis is currently trying to generate a
valid geological boundary representation from a set of non-conformal surfaces [Anquez et al.,
2016]. That reduces the difficulties on meshing, avoids some simplifications of geological
contacts and may harness the number of mesh elements.

Physical considerations

Choice of the boundary conditions

Several studies, including this thesis, expose the problem of defining consistent boundary
conditions [Durand-Riard, 2010, Lovely et al., 2012, Durand-Riard et al., 2013]. We pro-
posed a set of boundary conditions, validated on an extensional analog system with known
deformations. A future work would be to further test them in other deformation contexts
[Durand-Riard, 2010, Durand-Riard et al., 2013] and in natural case studies. In addition, in
our work we used the area-depth method to estimate the shortening boundary condition. We
compute the lost area divided by the depth to the detachment. Unfortunately, as the analog
model has a growth stratigraphy, we could not use an area-depth graph which uses the lost
area and the depth to detachment of several horizons, leading to more precise result [Groshong
et al., 2003]. The use of such a graph in case of pre-growth strata or in case of no-growth
intervals [Groshong, 2015], can be used to estimate the magnitude of the lateral displacement
boundary condition. Moreover, the area-depth method is perfectly adapted to compressive
contexts [Groshong and Epard, 1994, Groshong, 2006, Groshong et al., 2012, Groshong, 2015].
Concerning the novel fault contact conditions, we directly applied them on a complex fault
network. To properly evaluate their importance, tests on small synthetic models should be
performed. For instance, analyzing the geometrical evolution of two or three connected faults
could provide insight on the validity of these novel contact conditions.

Another work would be to define global fault contact condition. Currently, contact condi-
tions are set to tie the two mirrors of a fault [e.g., Muron, 2005]. Thus the contacts are defined
for each fault, and a fault mirror is constrained to stay on the other fault mirror, no sliding
is allowed over several faults. The fault network should be seen as a unique sliding surface
and not as an ensemble of discrete sliding surfaces. Such a global contact condition should
improve the contact between connected faults and handle zip junctions [Platt and Passchier,
2016, Passchier and Platt, 2016]. Numerically, instead of applying a fault contact fault by
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fault, it should be applied on all the faults at the same time considering all the faults as a
unique surface.

Uncertainties of the mechanical parameters

Several challenges on restoration come from the used physics. For instance, elastic models
are used whereas tectonic deformations are plastic. This assumption is from the need of re-
versibility of the method and for simplicity reasons [e.g., Muron, 2005, Moretti et al., 2006,
Maerten and Maerten, 2006, Guzofski et al., 2009]. Restoration could be coupled with forward
mechanical simulation integrating plasticity [Siavelis, 2011]. Indeed, from a restored model
using elasticity, a coherent forward simulation could be realized to validate the restored model.
However, such an approach would require several iterations before getting a forward model
matching with the present day geometry, which is time-consuming. Moreover, that implies a
good knowledge of the mechanisms which generated the deformations through time.

Concerning the elastic parameters, i.e., Young’s modulus and Poisson’s ratio, more sensi-
tivity studies should be performed to assess their importance on the restored geometries. For
instance, our tests on an extensional analog model could be extended to other deformation
contexts (compressive, strike-slip, etc.) and on models presenting high mechanical contrasts.
Moreover, new comparisons with the GeoChron-based restoration method could provide more
insight on the limits of both methods. Finally, the choice of the elastic parameters is impacted
by the rock uncertainties within a geological domain. Indeed, petrophysical data are only ob-
served along wells and outcrops. Uncertainties arise from the interpretation of these data
[e.g., Prasad et al., 2002, Chang et al., 2006, Ameen et al., 2009] and the petrophysical in-
terpolations/simulations within the entire geological domain [e.g., Bertoncello et al., 2008,
Lallier et al., 2009, Abdideh and Ghasemi, 2014, Bennis et al., 2014]. Finally, there are also
uncertainties due to a necessary upscaling/homogenization of the mechanical parameters in
order to reduce the number of volumetric mesh elements [e.g., Chalon et al., 2004, Bayuk
et al., 2008, Durand-Riard, 2010, Durand-Riard et al., 2010, Capdeville et al., 2015, Cupillard
and Botella, 2015].
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P. Muron. Méthodes numériques 3-D de restauration des structures géologiques faillées. PhD
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RINGMesh: A programming library for developing mesh-based geomodeling applications.
Computers & Geosciences, 104: 93–100, 2017. doi: 10.1016/j.cageo.2017.03.005.

165

http://www.pdgm.com/products/skua-gocad/
http://www.pdgm.com/products/kine3d/


BIBLIOGRAPHY

A. Pica and E. Hinton. Further developments in transient and pseudo-transient analysis
of Mindlin plates. International Journal for Numerical Methods in Engineering, 17(12):
1749–1761, 1981.

J. P. Platt and C. W. Passchier. Zipper junctions: A new approach to the intersections of
conjugate strike-slip faults. Geology, 44(10): 795–798, 2016. doi: 10.1130/G38058.1.

A. Plesch, J. H. Shaw, and D. Kronman. Mechanics of low-relief detachment folding in the
Bajiaochang field, Sichuan Basin, China. AAPG bulletin, 91(11): 1559–1575, 2007. doi:
10.1306/06200706072.

M. Prasad, M. Kopycinska, U. Rabe, and W. Arnold. Measurement of Young’s modulus of
clay minerals using atomic force acoustic microscopy. Geophysical Research Letters, 29(8),
2002. doi: 10.1029/2001GL014054.
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“Odi panem quid meliora. Ça veut rien dire, mais je trouve que ça boucle bien.”

[Le roi Loth, Kaamelott, Livre V, tome 1].







Applicabilité de la restauration géomécanique : conditions aux limites, réseau de
failles et comparaison avec une méthode géométrique

Résumé : La restauration structurale a pour objectifs de déterminer la géométrie passée des roches et de valider les
interprétations structurales. Les méthodes classiques sont basées sur des hypothèses géométriques et/ou cinématiques,
et imposent un style de déformation. Les méthodes géomécaniques, en intégrant le comportement élastique des
roches et les lois fondamentales de conservation mécanique, visent à résoudre les problèmes des méthodes classiques.
Toutefois, il y a des incertitudes sur le choix des paramètres élastiques, et les contraintes de maillage rendent difficile
l’utilisation de cette méthode comme un outil de validation des interprétations structurales. Le choix d’une méthode
de restauration en particulier est rendu difficile par le fait qu’il y ait plusieurs approches de restauration géomécanique,
en plus des nombreuses méthodes géométriques et cinématiques. Cette thèse présente en premier lieu une revue des
différentes méthodes géomécaniques 3D visant à déplisser et annuler l’action des failles dans un modèle géologique.
L’objectif de cette revue est de présenter les forces ainsi que les limites, théoriques et pratiques, de chaque méthode.
Dans un second temps, à travers la restauration d’un modèle analogique (sandbox ), nous présentons nos travaux
sur le choix de conditions aux limites appropriées pour obtenir un modèle restauré cohérent. Ce modèle structural
expérimental a été déformé en laboratoire et présente plusieurs analogies avec des structures extensives postérieures
à une base salifère. Grâce à l’observation de l’évolution temporelle de la géométrie du modèle analogique sur une
coupe, nous montrons qu’une condition aux limites correspondant à un raccourcissement latéral est nécessaire. Ce
raccourcissement peut être estimé par la méthode de la surface transférée. De plus, nous définissons de nouvelles
conditions aux limites de contacts de failles pour restaurer correctement le réseau de failles complexe du modèle
analogique. Ces nouvelles conditions lient les bords internes des surfaces de failles et connectent les composantes
connexes des failles coupées et déplacées par des failles plus récentes. Troisièmement, le test de différents paramètres
élastiques indique que le module de Young, défini homogène au sein d’un modèle géologique, n’a quasiment pas d’effet
sur le champ de déplacement. Toutefois, le coefficient de Poisson a un impact significatif sur la dilatation volumique.
Dans un dernier temps, nous comparons la restauration géomécanique avec une méthode géométrique qui repose sur un
modèle chronostratigraphique (GeoChron) qui fait une bijection de chaque point du sous-sol avec son équivalent dans
l’espace de dépôt (Wheeler). Nous montrons que les deux approches de restauration fournissent des modèles restaurés
du modèle analogique qui sont similaires géométriquement. La méthode géométrique a de nombreux avantages pour
obtenir rapidement et avec précision le modèle restauré, mais elle manque de flexibilité sur le choix des contraintes de
la déformation. La force de la méthode géomécanique est de pouvoir définir des conditions aux limites personnalisées
et des comportements mécaniques spécifiques pour gérer les contextes mécaniquement complexes.

Mots-clés : restauration géomécanique, conditions aux limites, modèle analogique, GeoChron, réseau de failles

Applicability of mechanics-based restoration: boundary conditions, fault network and
comparison with a geometrical method

Summary: Structural restoration aims to recover rock paleo-geometries and to validate structural interpretations.
The classical methods are based on geometric/kinematic assumptions and impose a style of deformation. Geomechan-
ical methods, by integrating rock elastic behavior and fundamental mechanical conservation laws, aim to solve issues
of classical methods. However several studies show that the geomechanical restoration lacks physical consistency in
particular because of the boundary conditions. There are uncertainties on the choice of the elastic properties, and the
meshing constraints limit this method to be used as a validation tool of structural interpretations. The choice of a
specific restoration method is difficult because there are many geomechanical restoration approaches, in addition to
the numerous geometric/kinematic methods. Firstly, this thesis presents a review of the various 3D geomechanical
methods to unfold and unfault a 3D geological model. The objective is to present their, theoretical and practical,
strengths and limits. Secondly, through the restoration of a structural sandbox model, we worked on the choice of
adequate boundary conditions to get a proper restored model. This structural sandbox model was deformed in labo-
ratory and presents several analogies with supra-salt extensional structures. Thanks to the observation of the analog
model geometry through time on a cross section, we show that a lateral shortening boundary condition is necessary.
We show that this shortening can be estimated by the area-depth method. Moreover we define new fault contact
conditions to handle complex fault networks. These novel conditions tie internal fault borders and join parts of offset
faults. Thirdly, the test of several elastic parameters shows that Young’s modulus, homogeneous within a geological
model, has almost no effect on the restoration displacement field. However, Poisson’s ratio has a significant impact on
the volume dilatation. Finally, we compare the mechanics-based restoration method with a geometric-based method
relying on a chronostratigraphic model (GeoChron) mapping any point of the subsurface to its image in depositional
(Wheeler) space. We show that both methods provide a geometrically similar restored state for the analog model. The
geometric method has numerous advantages to quickly and accurately get a restored model, but it lacks flexibility on
the choice of the deformation constraints. The geomechanical restoration method force is to define custom boundary
conditions and specific mechanical behaviors to handle complex contexts.

Keywords: mechanics-based restoration, boundary conditions, analog model, GeoChron, fault network
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