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Abstract

Cette these s’inscrit dans le cadre plus général de la simulation de particules colloidales qui joue un
role important dans la compréhension des écoulements diphasiques. Plus précisément, nous nous in-
téressons aux particules dans un écoulement turbulent et modélisons leur dynamique par un processus
stochastique lagrangien, leurs interactions comme des collisions parfaitement élastiques ot I’influence
de I’écoulement est modélisée par un terme de force sur la composante vitesse du systeme. En couplant
les particules deux par deux et considérant leurs position et vitesse relatives, la collision parfaitement
élastique devient une condition de réflexion spéculaire. Nous proposons un schéma de discrétisation
en temps pour le systtme Lagrangien résultant avec des conditions aux bords spéculaires et prouvons
que D’erreur faible diminue au plus linéairement dans le pas de discrétisation temporelle. La démonstra-
tion s’appuie sur des résultats de régularité de I'’EDP Feynman-Kac et requiert une certaine régularité
sur le terme de force. Nous expérimentons numériquement certaines conjectures, dont I’erreur faible
diminuant linéairement pour des termes de force qui ne respectent pas les conditions du théoréme. Nous
testons le taux de convergence de I’erreur faible pour I’extrapolation Richardson Romberg et le fait
qu’un algorithme Multilevel Monte Carlo demeure efficace. Enfin, nous nous intéressons aux approxi-
mations Lagrangiennes/Browniennes en considérant un systeéme Lagrangien ol la composante vitesse se
comporte comme un processus rapide. Nous contrdlons I’erreur faible entre la composante position du
modele Lagrangien et un processus de diffusion uniformément elliptique choisi de maniere appropriée.
Nous démontrons ensuite un contrdle similaire en introduisant une limite réfléchissante spéculaire sur le
systeéme Lagrangien et une réflexion appropriée sur la diffusion elliptique.

Mots clés— Systeme Lagrangien, réflexion spéculaire, erreur faible, approximation Smoluchowski-
Kramers

Abstract

This thesis broadly concerns colloidal particle simulation which plays an important role in understand-
ing two-phase flows. More specifically, we track the particles inside a turbulent flow and model their
dynamics as a stochastic process, their interactions as perfectly elastic collisions where the influence of
the flow is modelled by a drift on the velocity term. By coupling each particle and considering their
relative position and velocity, the perfectly elastic collision becomes a specular reflection condition.
We put forward a time discretisation scheme for the resulting Lagrange system with specular boundary
conditions and prove that the convergence rate of the weak error decreases at most linearly in the time
discretisation step. The evidence is based on regularity results of the Feynman-Kac PDE and requires
some regularity on the drift. We numerically experiment a series of conjectures, amongst which the
weak error linearly decreasing for drifts that do not comply with the theorem conditions. We test the
weak error convergence rate for a Richardson Romberg extrapolation and the effectiveness of the Multi-
level Monte Carlo algorithm. We finally deal with Lagrangian/Brownian approximations by considering
a Lagrangian system where the velocity component behaves as a fast process. We control the weak error
between the position of the Lagrangian system and an appropriately chosen uniformly elliptic diffusion
process and subsequently prove a similar control by introducing a specular reflecting boundary on the
Lagrangian and an appropriate reflection on the elliptic diffusion.

Keywords— Lagrangian system, specular reflection, weak error, Smoluchowski-Kramers approxi-
mation
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Introduction

Two-phase flows are flows of turbulent fluid which contain discrete elements: solid particles, droplets
or bubbles. The properties of these flows can vary significantly as a function of the size or density of
the elements and according to the different types of forces that influence their motion inside the flow.
We shall consider the case where the random molecular fluctuations inside the fluid are more important
than the gravitational and inertial effects. In order to achieve this condition the diameter of the discrete

element d, must be sufficiently small:
2.2
Pi¥s
d, ~ k‘B@
g (m%gQ d )

where pf, vy, Oy are the density, fluid kinematic viscosity and respectively temperature of the fluid,
pp the density of the element, kg Boltzmann’s constant and g the gravitational acceleration. Under
standard conditions for temperature and pressure (288.15 K and 1 atm), this implies that d, < 1um.
The diameter also needs to be sufficiently large, of at least several nanometres in order to avoid quantum
effects. Particles in this range, larger than a few hundred nanometres and smaller than a micrometre,
are called colloidal particles. We shall also assume that they are solid, which allows tracking by only
considering the center of gravity.

The modelling of two-phase flows with colloidal particles is important since it can describe the
dispersion of aerosols or pollutants in the atmosphere, the agglomeration of radioactive particles in the
steam turbines of nuclear reactors and many other situations. We shall specifically focus on colloidal
particle collisions. Several approaches have been developed to model such collisions, of which we
mention two complementary views:

e approaches based on the collision kernel modelling, defined formally as the collision rate divided
by the concentration of particles.

e approaches based on direct particle tracking simulations where the particle dynamics and inter-
actions are explicitly calculated. More details on these approaches can be found in [Henry et al.,
2014]

The first type of approach requires the knowledge of a collision kernel which is introduced in a
population balance equation that can give the evolution of the density of particles. This technique was
initiated in the seminal paper [von Smoluchowski, 1917] when the driving stochastic process is a Brow-
nian motion and particle collisions result in perfect agglomeration. The author presented an explicit
collision kernel and a coagulation equation (from which other population balance equation have been
derived). Several extensions are presented in [Friedlander, 1977] by introducing a drag force on the
particles. In [Meyer and Deglon, 2011] there is a review of many different kernel expressions that have
been proposed but only in the case of inertial particles.

However, it is not straightforward to generalise these expressions of collision kernels to more com-
plex situations such as partial absorption, reflection, interaction terms between the particles. One tech-
nique to obtain collision kernel models is through experimentation, but it can be difficult to extract the
data, especially when particles are very small. Also it can be quite a costly procedure.
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Another technique is based on the second approach mentioned earlier: particle tracking and numer-
ical simulation. In this thesis we shall consider and analyse models inspired by this latter approach, by
proposing a discretisation scheme for the particle dynamics and an efficient algorithm to simulate the
scheme.

As mentioned, for particle tracking simulation, one must select a model for the movement of the
particles and the type of interaction between them.

Dynamics of particles

There are two main classes of stochastic models for small (colloidal) particle dynamics.

Historically, the first stochastic model for particle motion was proposed by [Einstein, 1905]. In his
seminal article, a definition for the Brownian motion was introduced using arguments based on thermal
molecular fluctuations. In the same article, the Fokker-Planck equation is presented with a diffusion
coefficient derived from thermodynamic equilibrium considerations. Later in his Nobel recognised re-
search, J.B. Perrin calculated an empirical value for the diffusion coefficient which matched Einstein’s
analytical value thus establishing the atomic nature of matter.

The second class for a stochastic model of the motion was given by [Langevin, 1908] who assumed
colloidal particles followed a kinetic model with a drag component and a stochastic forcing on the
velocity. By applying Newton’s equation, we obtain an SDE and in the over-damped limit (as the drag
force goes to infinity), it is possible to show that the Langevin model converges to the Einstein one, thus
proving the consistency between the models.

From now on, we shall focus mainly on the class of kinetic, Langevin models. Thus the model we
consider is the case of Langevin particles in turbulent flow which we can express in a generic manner
as:

dl‘t = Ut dt
du; = Fluid Velocity Term dt —A\uy dt +B dW; 0.1)
N———

Drag Force

where B is a constant and (W} );>0 is a standard Brownian motion and A is a drag coefficient. In [Minier
and Peirano, 2001], we have a specific example of such a process in the case of low Reynolds number.
The Fluid Velocity Term is plugged in from external sources such as a Direct Numerical Simulation,
thus an important assumption we make is that the particles do not influence the fluid velocity.

Interaction between particles: perfectly elastic collision

After selecting a model for the dynamics, we now consider the interaction between particles. We
shall assume that the interactions happen when two particles come into contact (collision).

In the framework of such Langevin models, the analysis of the collision kernel is further devel-
oped by considering the case when collisions are followed by perfectly elastic reflections. This particle
tracking will later be used in more complicated situations, such as turbulent flows, where closed-form ex-
pressions for the collision kernel do not exist. The main difference between the Brownian and Langevin
models is that the set of crossings of a level by a Brownian particle is uncountable while for a Langevin
particle it is separated as seen in [McKean, 1962]. Thus in a Langevin situation it is much more obvious
to define a collision rate as the collisions can simply be counted.

In order to simplify our model, we shall consider the case of two particle collisions between colloids
of same dimensions and mass. Perfectly elastic reflections are defined as collisions where the linear
momentum and kinetic energy are conserved which, in our case of identical particles, involve reversing
the velocity component that is normal to the collision plane. This can be seen in the Figure 1 where
we present a collision that takes place at time ¢.. The normal to the collision plane component of the



velocity of particle pq, in red, is transferred to the incoming particle p2, during the collision, at ¢, and
vice-versa.

Before collision: time t.— At collision: time ¢,

Figure 1: Perfectly elastic reflection

Another simplification will be performed by taking the relative position and velocity between the
particles. This will eliminate the need to track both particles involved in a collision. Under such a
transformation, the perfectly elastic collision becomes a specular reflection condition for the relative
process. Specular reflection is just perfectly elastic reflection against a fixed wall. In Figure 2, we plot
the perfectly elastic collision between two mono-dimensional particles in the reference frame of particle
p1. The coloured arrows represent the velocities of the particles in a fixed reference where the reflection
would appear, while the dark arrows represent the relative position and velocity with respect to particle
p1. We can notice that after the reflection at time ¢., the value of the relative velocity is the opposite of
the relative velocity just before the collision at ¢.—.

D2
Tt A @ ’\u%g up2
T

N AU Ut pp
T
/ll;",)l Ty, — 2 Ty, 2 !
Dy Hey e
Uy e
~— ~— ~— ~—
At time ¢ Before collision: t.— At collision: t. At time T'

Figure 2: Perfectly elastic reflection between two particles and relative distance and velocity

In a one-dimensional setting, the generic process (0.1) is transformed as:
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0.2)

dl’t = Ut dt
duy = Fluid Velocity Term dt — Au; + B dW; + d(Jump Term)

where Jump Term includes the fact that at the moment of collision the relative velocity is reversed, thus
a time-discontinuous term is needed.

We can mention that in the case of reflections against a fixed wall, (x¢, us)i>0 represent the actual
position and velocity of the particle and not relative quantities.

Models that include a specular type condition have already been introduced in [Dreeben and Pope,
1997] which uses such a condition to impose a wall boundary condition on fluid particles in the loga-
rithmic layer. In [Minier and Pozorski, 1999], the authors also use a specular reflection condition in an
alternative approach, when looking for the PDF model equivalent of wall functions.

In order to simulate the collision kernel in more complex engineering situations, one needs first to
understand the simulation of two particle collisions which can be reduced to specular reflection. The the-
sis also considers that the particle dynamics are modelled by a Langevin process. It presents theoretical
and numerical results for the simulation of a proposed discretisation scheme. A general objective was
to propose a scheme that can be implemented for a large number of particles. Our suggested algorithm
of simulation can be used in such a context since the method of intersecting collision cylinders would
still apply (i.e. the motion of particles through space and time describes a cylinder, and if two cylinders
intersect, that means a collision took place).

1 Overview of the thesis

The thesis is structured in 3 chapters. In the first chapter, we analyse a simulation scheme for the
Langevin model with specular reflection that is similar to the one proposed in [Bernardin et al., 2010]
which used the stochastic Lagrangian approach for fluid particles. The error of the scheme is consid-
ered in a weak sense, meaning that only approximations of any statistic on the particles in position and
velocity, at fixed time, are taken into account. An order of convergence for the weak error under certain
hypotheses is presented. In the second chapter, we put forward a numerical validation of the proven the-
oretical results. Also numerical results from penalised schemes are presented for comparison purposes
with our proposed scheme. Finally, we recall that a free Langevin process will converge in a certain
sense to a Brownian process, so in the final chapter we shall present some non-asymptotic bounds on the
weak error between the Langevin process with specular reflection and the reflected Brownian process.

Structure and contents of the first chapter: The Symmetrised Scheme for the Stochastic La-
grangian Model with Specular Reflection

In the first chapter we introduce the discretisation scheme and offer a theoretical order of conver-
gence for the weak error. To do this, the classical method that involves the regularity of the solutions to
the Kolmogorov problem is used. Thus, in order to prove:

o first order regularity we used the connection between reflected Langevin model and non-confined
Langevin model with a modified drift to analyse the regularity of the flow. This required results
from [Bouleau and Hirsch, 1989]

e higher order regularity we have utilised energy inequalities obtained from the variational formu-
lation of the Kolmogorov problem.

In the Appendix to this chapter, a slight extension to results from [Bossy and Jabir, 2015] is made to
prove the well-posedness of the Feynman-Kac formula when adding a drift term.

10



Structure of the second chapter: Empirical Analysis Based on Numerical Experiments

The theoretical results proven in the first chapter are tested in a numerical simulation setting.

e Primary objective : test the theoretical rate for the weak error obtained in the previous chapter, on
a panel of test cases (1) explicit solution, (2) hypotheses satisfied for evaluation function and drift
(3) hypotheses not satisfied for the drift.

e Establish comparisons with other proposed schemes in the literature for the weak error
e As schemes are proposed for strong convergence, examine the strong convergence rate.

e Then we use the strong convergence rate to propose a multi-level MC procedure and combine this
to go back to the primary objective.

Structure of the third chapter: Non-asymptotic Approximations of the Langevin Equation by a
Diffusion in the case of particle collision

This chapter contains calculations on the error rate produced when approximating the stiff Langevin
(fast-slow) equation by a certain diffusion process with drift and diffusion coefficients that depend on
those of the Langevin.

e Calculations are shown in the case of a driftless system.
e The mild equation is utilised to obtain similar results in the case of a drift.

e Similar calculations are performed in the case of reflection models.

11
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Chapter 1

The Symmetrised Scheme for the
Stochastic Lagrangian Model with
Specular Reflection

1 Introduction

Many industrial production processes involve suspensions of colloidal particles in fluids so there is a
strong interest to better understand the underlying physics. Among the ways that can help to achieve
this goal, numerical experiments combining the simulation of the flow and the simulation of the particles
carried by the flow is a possible solution. Propositions of model-motion of colloidal particles are already
well-known, assuming that they can be modelled by small spheres and that the description of the model
motions of their gravity centres is a significant approximation when one want to asses some characteristic
behaviour through collision kernel modelling.

In this chapter, we propose and analyse the convergence of a time-discretisation scheme for the
motion of a particle when the instantaneous velocity of the particle is drifted by the known velocity of
the carrying flow, and when the motion is taking into account the collision event with a boundary wall.

More precisely, since we want to work in a context where we can specify the mathematical well-
posedness of the problem and regularity for the solutions of associated PDEs, some simplifications are
considered. We assume that the collision is perfectly elastic and that the particles follow a kinetic model,
by modeling the position and velocity of each particle. It is on the velocity that we introduce a drift term
to model the influence of the fluid on the particles. Furthermore, we will only consider a particle that
collides against a wall located at the boundary of the upper-half plane R~ x [0, +00). In this case the
confined linear Langevin process is written as:

t
Xt:X0+/ U, ds,
0

t
Ut:U()+/ b(XS,US)dS+UWt+Kt, (11)
0

K, = — Z 2 (Us- - np(Xs)) np(Xs) L x,comys

0<s<t

where (X;);>0 represents the position while (U)o represents the velocity, D = R4~! x (0, +00)
is the open set corresponding to the interior of the confining domain, np is the outward normal at the
boundary 9D of D (9D = R%! x {0}) and ¢ is a positive constant. Here the drift b models the drag
force implied by the known mean velocity of the flow carrying the particle. The term (K}):>( represents
the perfectly elastic collision with the hyperplane 0D.

13



Although simple -known as specular reflection against a fixed wall- this model contains enough
characteristics of the context stated in the first paragraph to be pertinent on a framework of numerical
analysis. In [Bossy and Jabir, 2011], Bossy and Jabir prove the existence of weak solution and pathwise
uniqueness when D = R x (0,400). In [Bossy and Jabir, 2015], the authors extend the well-
posedness result to smooth bounded domains D. In the case of hyperplane D = R%~! x (0, +00), the
construction proceeds as follows (see [Bossy and Jabir, 2011] for the details). If we consider a R%valued
bounded measurable drift b on D x R4, from the unique weak R24_yalued solution of

t
Y, =Xo+/ Vids,
0 (1.2)
Vi =Uy +/ B(n,%)ds—{—Wh Vite {O,T],
0

with b defined by
b: (y,v) € R x R s (b’, sign(y(d))b(d)> (W |y D)), (v, sign(y@D)v(@)) (1.3)

then
d ro, d d
(Y, 1)), (V7 sign (Y, VD) € 0, 7))

is the weak solution in P x R? to the SDE (1.1).

A short discussion on confined SDEs and associated results

There are different types of confined models that can be considered. In a deterministic setting, [Paoli and
Schatzman, 1993] present some results when ¢ = 0 in (1.1) while allowing for oblique reflections. The
authors show that the system admits a solution such that the position process is Lipschitz continuous in
time, and the velocity process is of bounded variation. This solution is obtained as a certain weak limit
in a Sobolev space of solutions to a penalized equation.

The most obvious stochastic model would be a diffusion that is reflected at the boundary, in the sense
of a solution to a Skorohod problem as in [Lions and Sznitman, 1984]. The reflection term K is then
given through a local time. In term of discretisation scheme, [Bossy et al., 2004], propose a symmetrized
scheme, and prove that the associated weak error has a rate of convergence of order one.

In [Costantini, 1991], the author presents a model with a particle that exhibits piecewise deterministic
movement. The velocity process changes randomly at exponential times to mimic the collision events.
The particles are confined in domain by specular reflections at the boundary. It is shown that such a
system is well defined and by increasing the change rate for the velocity, in the limit, one obtains an
oblique reflected diffusion.

We emphasize the fact that, when modelling the position of the particle by a reflected Brownian
process, the hitting times of the boundary form almost surely a set of times with no isolated points.
This means that it is impossible to count the number of collisions with the boundary. Those models are
not suitable in numerical approach when one might to determine a collision kernel with the help of the
effective collision rate. Such inconvenient disappears by considering models for the particle collisions
of Lagrangian type, where the position process is the integral of a diffusion. As shown in [McKean,
1962], situation of accumulation of collisions can be avoided for Lagrangian models in the case of a
upper half plane under the hypothesis that (X, Uy) # (0,0).

We also mention that the case of absorbing boundary have been studied in [Bertoin, 2007] and in
[Jacob, 2012], [Jacob, 2013] who prove the existence of a reflecting Langevin process with an absorbing
boundary.

Finally, in [Costantini, 1992] and in [Spiliopoulos, 2007], it have been shown that using a certain
type of scaling and limit in the drift and diffusion parameters in (1.1), it is possible to pass from a
Langevin model with specular reflection (1.1) to a reflected diffusion model for the position process.

14



Discretization scheme for the confined SDE (1.1)

Without any loss to the generality, we present a discretisation scheme in case of the dimension d = 1.
The scheme can be easily generalized to higher dimensions by combining the discretisation of the first
d — 1 components of the process (X, U;):>0, solution of (1.1), using standard discretisation scheme in
R?~1, and the confined scheme presented in this section for the dth component.

As previously mentioned, in [Bossy and Jabir, 2011] the authors construct a weak solution to the
equation (1.1) when the reflection border is a hyperplane. The position process of this weak solution
is written as the absolute value of an unconfined Langevin process. The following scheme borrows the
main ideas of this transformation by symmetry.

The confined process is discretised on an a regular mesh 0 = tg < t; < ... < t, = T of the interval
[0,T]. At = t;41 — t; is the time increment. We define the discretised process (X¢, Up)o<t<7 with an
iterative procedure. Knowing (Xy,, U, ) we construct (X, ,, Uy, ) as follows:

e Discretisation of the position process. ~ We denote by (Y;)o<;<7 the prediction step of a new
position. The approximation process (Xt)o<t<7 is simply obtained from (Y;) by taking the absolute
value of the prediction :

{ Y;fiﬂ = Xti + (tiy1 — ti)Uti

- - (1.4)
Xti+1 = ’Y;f

i+1"

A collision of the discretised particle with the wall boundary takes place during the time interval

. X ) . .
(tiytipa], ift; < t; — U—tz < t;+1. We introduce the sequence of times (6;,7 = 1,...,n) defined as
t;

t X, ift; <t X, <t
T AL
0; =< " Ui, ’ ‘ Ui, i (1.5)

ti, otherwise.
We call the (6;) the collision times (expect when ; = ¢;), and we observe that when 6; > t;,

Yo, = Xp, = 0.

e Discretisation of the velocity process.

if 0; € (t;,ti+1], a collision takes place during the interval:

forfi < i;< 0; o

U; = Uti + b(Xt” Uti)(t — ti> + O'(Wt — th)
at 0;, velocity reflection :

Up, = —Uy-

f0r79l- < éS ti—i—li -
U; = Ugi + b(Xgl., Ugi)(t — 92‘) + J(Wt — ng)

(1.6)

else, no collision :

forty <t <tiy1
Uy = Uti + b(Xti, Uti)(t — ti) + O'(Wt — Wtz)

When d > 1, the scheme writes exactly the same, except that one have to adapt the computation of the
collision time and the velocity reflection as

.
T T )
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and

(Us, - np) = =(Uy— - 111)).

Similar schemes to the one presented above have been applied for confined and McKean non linear
Lagrangian models involved in the modelling of turbulent atmospheric flow (see [Bernardin et al., 2010]
and [Bossy et al., 2016]). In particular, particles collisions with the boundary simulation domain are
used to impose Dirichlet boundary condition for the velocity. The scheme is also implemented in the
WindPos' software for wind simulation and wind farms based on fluid particle simulation.

In what follows, we prove the first rate of convergence result for the weak error produce by such
scheme.

1.1 Main result

Let us first introduce hereafter our hypotheses. From now on, we implicitly assume that o is strictly
positive. A first set of hypotheses (Hpungevin) 1 needed to insure the existence of a solution to the
system (1.1). A second set (Hppg) insures the existence and the regularity of a solution to the backward
Kolmogorov PDE associated to the SDE (1.1). A third set (Hweuk Error) 1S added to insure the weak
convergence rate of order one.

Hypotheses 1.1

(Hpangevin)-(1) The initial condition (X, Uy) is assumed to be distributed according to a given initial
law o having its support in D x R? and such that [ a4 (|2|* + |u|?) po(dz, du) < +o0.

(Hpangevin)-(11) The drift b: R x R — R? s uniformly bounded and Lipschitz-continuous with constant
16| ip-

(Hppg)-(i) The drift bis a C;’I(Rd X Rd; Rd) function, and the first derivatives V b and Vb are also
Lipschitz on R? x R%,

(Hppg)-(ii) When x € 0D, the d" coordinate of u — b(x,u) is an odd function in terms of the d™
coordinate of the variable u. The first (d—1) coordinates of b(x,u) (denoted V' (x,w)) are even functions
with respect to the same d" coordinate of the variable u. In particular, for any x = (z',0) € 9D and
u e RY

b(]], u) = (b/> b(d))((x/> O)a (ulv u(d))) = (b/7 _b(d))((xlv 0)7 (ulv _u(d)))>

where for any vector v € RY, v' denotes the d — 1 firsts components and v\ denotes the d™ one.

(HWeak Error)-(1) o admits a Lebesgue density function that is still denoted po in L (D x Rd) and there
exists £y > 0 such that
inf{z; (2, u) € Supp(uo)} B
inf{u; (x,u) € Supp(up) and u < 0}

£0-

Remark 1.2. The results presented below remain valid if we assume that the drift b is also time depen-
dent with b € C1((0,T); C;J(Rd x R4 R?)) and V b, Vb are Lipschitz.

Remark 1.3. The condition (Hppg)-(it) restricts strongly the set of drifts b for which we can claim a
first order convergence rate for the weak error. However a typical example of drift b, coming from the
application of colloidal particles carrying by a flow, respects this condition. A particle in a flow undergo
a drag force that is modeled in the velocity equation as

b(t,x,u) = —k(t,x)(u — V(t,x)),

Isee https://windpos.inria.fr
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where V(t, x) is the velocity of the fluid seen by the particle at position x and at the time t. In a laminar
or turbulent flow, a no-permeability condition at the wall is imposed, that implies that for all © € 0D,

(V(t,z) - np(x)) = 0.
In our case of hyperplane D, this means that for (z,u) € 0D x R, V@ (t,z) = 0 and
b D (z,u) = oD (z,u?) = —k(t, ) u(¥.
For such important example, for v € 0D, b(@) (z,-) is odd in uD and the V/ components do not depend
on u' and satisfy (Hppg)-(i1).

Remark 1.4. Later in the proofs, we will introduce again the transformed drift b used in (1.3) to con-
struct a solution to (1.1) and defined as

b: (y,v) €ER? x R (b’, sign(y(d))b(d)> (v, [yD)), (o', sign(y D)o D)).

where the function sign is defined in (1.12). Hypotheses (Hjangevin)-(it) and (Hppg)-(it) ensure the
continuity ofg. Indeed, for (y,v) € (R?\ D) x RY, by the hypothesis (Hppg)-(i), we have that b is
continuous at (y,v).

Let (y,v) € 0D X R? then by the evenness condition in (Hppg)-(it), we have that

V(y,v) =V((y,0),', = D) =V ((/,0), (v/,v'V)) = Yim b((y/', ), v) = ,llig%)g'((y’, h),v).

and

By, 0) = 8D ((y,0), (o/, D)) = b ((y/,0), (o, 0(D)) = im B (5, 1), v).

By (Hpangevin)-(11), bis also piecewise Lipschitz. Together with the continuity property, bis uniformly
Lipschitz with a Lipschitz constant ||b|| i, equal to 2||b||p.

Indeed, fori =1,...,d — 1,

= 1) (@' 12]), (', sign(@@)u ) = &) (W', Iy ), (7, sign(y@)o®))|

< Lgigniery@y=1) {[blip <ux —yll + llu—vll)}

 Lsigntetny@y——1y | )0 (1), (7 sign(y@)u@)) = )9 (0, (o, sign(y@)o®))|
gy @1y |00 (0, (0, sign(y@)o®) = ) (0, (', sign(@)u®)) |

+ Lsiga(ery @1y |00 (@, |21, (o sign(@@)ul®)) = ()¢ (0, (o', sign(aD)u))].

Using hypothesis (Hppg)-(i7), the third term above is bounded by |60 ||L1 Hu — . Moreover since
1tgign(a@y@)=—13 (|2l +[lyl)) <  we conclude that [ (z:, u) — B (y: )| < 209 [[Lip ([l —
y|| + ||lu — v||). Similarly, for the d—component, using several times that for any (a: Y, u,v),

]l{sign(x(d>y(d)):—1} (sign(y(d))b(d) (07 (v’,sign(y(d))v(d))) _ sign(x(d))b(d) (07 W, sign(ZE(d))U(d)))) =0,
we obtain with the same decomposition that as well that,
1D (@, u) = 8D (y, )| < 206D [lLip([lz = yl| + [[u = v])-

Remark 1.5. The condition (Hywear Error)-(1) on the support of g implies that the first collision time of
the scheme (1.4)-(1.6) is almost surely separated from t = 0. In the proposed scheme, the first possible
collision time before At is

Xo
——— >¢p > 0.
Uy — £0
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Rate of convergence result

We denote by Q7 the set (0,7) x D x R For any measurable function 1 defined on D x R?, we
consider the function F' : Q7 — R defined as

F(t,z,u) = Ep(X55", UR™™) (1.7)

where the process (X2™", US™") >y solves the SDE (1.1) that begins at time ¢ with values (z, u).
Our main result is the following

Theorem 1.6. Assume (Hpungevin), (Hppg) and (Hweak Eror) and fix T > 0. Then, for any test function
Y€ Ce ’1(2)7 R R), there exists a constant C 4.1 1,5, Such that we can prove a first order convergence
bound for the weak approximation error:

|Ey (X7, Ur) — E¢(X7,Ur)| < Cpoprpu, At (1.8)

where Cg g1, 1, depends only on the solution F' to the PDE (1.9) and their derivatives, on the drift b
and their derivatives, on the diffusion constant o, on the terminal time T and on the norm ||| L of
the initial density distribution of (Xo, Up).

A key argument in the proof of the theorem resides in the regularity we can show for the function F'.
We start, showing first in section 6 that when ¢ is in C.(D, R), F is a weak solution to the following
backward Kolmogorov PDE (see Proposition 6.4) with specular boundary condition:

2
OF + (u- Vo F) + (b(z,u) - Vo F) + %AUF =0, on Qr,

F(T,z,u) = (z,u), on D x RY, (1.9)

F(t,z,u) = F(t,z,u — 2(u - np(x))np(z)), on T7.

with Q7 defined at (1.10) and E; defined in (1.11). A priori L? bound for first order derivatives of F is
shown in Section 4. The proof of this result is based on the probabilistic expression of F'in (1.7). Section
5 is dedicated to higher order regularity result using L? energy inequality formulation. Furthermore, in
section 4 we show that the first derivatives are in L>(Q;).

Section 2 presents a schematic proof of the weak error rate in the case of a diffusion without any
boundaries. We also introduce some results needed for the proof of the main theorem. The proof of
Theorem 1.6 is given in section 3 and is based on regularity obtained on F'.

In order to simplify notations, the analysis for Section 3 is given assuming d = 1. In the other
sections, the dimension d is arbitrary, unless it is explicitly mentioned.

1.2 Notation

The space Cé’m (RYx R%; R?) is the set of continuous and bounded functions on R? x R¢, with continuous
and bounded derivatives with respect to the variables in R? x R?, up to the order I and m respectively.
The space Ci’m(Rd x R%; RY) has the same definition but for functions with compact supports.

The space C.(R) is the set of continuous functions on R? with compact supports, with continuous
and bounded derivatives up to the order /.

For all ¢ € (0, T], we introduce the time-phase space
Q; := (0,t) x D x RY, (1.10)

18



the outward normal to D noted by np and the boundary sets:
N = (0,t) x BT,

St = {(z,u) € 0D x R¥s.t. (u-np(x)) >0},
S = {(z,u) € D x R¥s.t. (u-np(z)) <0}, Y, =(0,t) x X7,
20 := {(z,u) € 9D x R¥s.t. (u-np(z)) =0}, ¥9 = (0,t) x X°,

and further X7 := X3 U UX, = (0,T) x 9D x R% Denoting by dogp the surface measure on 0D,

(1.11)

we introduce the product measure on Y7:
d)\ZT =dt® daap(l‘) ® du.

We introduce the Sobolev space
H(Q:) = L*((0,¢) x D; H'(R7))

equipped with the norm || ||3(q,) defined by

H¢H3{(Qt) = ”(bHQL?(Qt) + Hvu¢HQL2(Qt)'

We denote by H'(Q;), the dual space of H(Q:), and by ( , )H/(Q ),H(0,)» the inner product between

H'(Q) and H(Q).

We further introduce the space
L*(XF) = {v: ¥E - Rsit /i [(u - np ()| |9(t, 2, u)|* dAs, (t, @, u) < +o0},
b

T

equipped with the norm

kum(szc) = \//Ei |(u-np(x))| W(ta%u)’Qd)\ET(t,%U)-

The space L?(Xr) is defined, through the respective restriction on E% denoted ]Z¥ as

L*Er) ={y:Zr >R sty € L*(25)},

and equipped with the norm
‘WHL?(ZT): Hw‘z;uﬂ(z;)"'”w,z;HL2(2;)-

The following convention for the function sign: « € R — R is considered:

ian () —1, for z <0 (1.12)
sign(z) = .
8 1, for z >0

For multidimensional functions, we use the following definition of L? space:

L2(QriRY) = {v: Qr —+ R st /Q [9]2 < +oo),

T

where ||| is the Euclidean norm on R¢.

P(QrE) = {v: Qr > B st [ ol < oo}

T
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where |||| - is the Frobenius norm i.e. for any dxd matrix A, ||A|| = y/Tr(AAT) = \/Z?ZI Z?Zl laij|?.

i
ox 7

We denote by Jac,(v)) = < > the Jacobian matrix of ¢ : R? — R? w.rt 2 and
1<ij<d

5?2
Hess, () = L4 is the Hessian matrix w.r.t (z,u) of ¢ : R? x R? — R%.
’ amﬁu] 1<ij<d

For any functions G: Q7 — R, 71: R — R, yo: R¢ — R and Y3 R¢ — R, we define the joint
convolution G * (y179273) at any (¢, x,u) € Qr as :

G * (m7273)(t, T, u) = 0 G(,y,v)71(t — 7)v2(x — y)y3(u — v) drdydv .
T

In case of multi-dimensional functions, the convolution applies on each components.

We will denote by || f||Lip the Lipschitz constant of a function f from R? to R%, defined as the smaller
constant C' such that

1f(u) = f)]] < Cllu — o]
For a mapping R? x R? 5 (z,u) — f(z,u) € R?, we denote by || f [l coaLip, » Lipschitz constant of
f with respect to u, uniformly on z, defined as

[ flloos Lip, = sup [f(,)l[Lip-
zERY

2 Preliminaries

We present a schematic of the usual method to obtain the weak error convergence rate. Let’s consider a
process (Z;)o<¢<T, defined on R, that is simple and unconfined SDE:

dZt = b(Zt) dt +o th

where b is a sufficiently smooth bounded function. It is well known (see e.g [Friedman, 2012]) that, for
any ¢ in CZ(R), there exists a classical solution g € C; 2((0,T) x R) to the backward PDE:

0g dg o0%0% B
ot TP T a2
9(T,z) =(2) Vz€eR,

such that g(t, z) = Eyp(Z57), where (Zg’z, 0 > t) is the flow solution starting from the point Z|”* = 2.
We denote by £ the infinitesimal generator of the process (Z):>o defined for any h € C2 by:

oh % 0%h
Lh(z) = b(z)a(z) + 7@(2’)
We introduce a regular time grid 0 = ¢y < t; < ... < t, = T, and the corresponding times-freezing

function n: RT — R defined as n(t) = t; when ¢ € [t;,t;+1). We consider the continuous version
(Z1)1>0 of the Euler scheme applied to Z as:

t
Zy = 2y —|—/ b(Zn(s)) ds + o W;.
0
Now for any Z € R, we consider also £ the differential operator defined also on C? functions by:
. . Oh a2 9%h
LZh(z) = b(z)g(z) + ?@(z)
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The weak error produced by the Euler scheme for the test function 1 can be obtained by applying the
It6’s formula two successive times. From a first application, we get for a fixed z € R, since ¢(0, z) =
By (Z77),

E(Z7) - Bv(27) = E |g(T, Z37) - 9(0,2)|

T — 7 —
= E/ (Btg(t, Zt) + Ezn(t)g(t, Zt)) dt =
0

Since 0;g + Lg = 0, the previous equality becomes

T T
_ _ _ _ 9a _ _
Ey(Z97)~E(Z%7) = E / (%0 g(t, Z2) = Lg(t, Z2) ) dt = / 5, (. 20) (0(Zy() = 0(Z1)) dt
0 0
Now observing that for every time step ¢;, we have that £Zt g(ti, Zs,) = Lg(ti, Zt,), by applying the
It6’s formula once more on the interval [n(t),t), we get

Ey(Z37) — Byp(Z37) = E /0 ' dt / Zt) ds (ﬁznm <gg(s,25) (0(Z,y1)) —b(Z))))

+IE/ dt/ <§Sgg Z)(b(Zn(t))—b(Zs))>.

Since g has bounded derivatives, the stochastic integrals from the applications of the Itd’s formula are
martingales.

The At factor, for the weak error convergence, is then extracted from the inner integral, since for any
t €[0,T], [t—n(t)| < At. If bisin CZ(R) then there exists a constant K7 which depends on 7 such that
foralln = 0,1,2, |82g(t, 2)| < Kr|[t|[yys.¢. This can be proven directly from g(t, z) = Ei(Zy7).
Then, the previous equality can be bounded by

Ey(Zy") — By (Z77)| < CoappunorAt

where Cya, 98, - depends only on bounds for the derivatives of ¢ up to the order 3, derivatives of b
up to the order 2.

The proof of Theorem 1.6 is build on the same arguments, with certain particular differences that
need to be adapted suitably:

e In Section 5, we prove that the solution to the Kolmogorov PDE (1.9) has some regularity in the
L?(Qr) space (see Theorem 2.1), instead of in L>°(Q7) space as in the previous sketch. There-
fore the distribution of the initial values will be used to make appear L? norms in the previous
arguments.

e Also, since we are interested in a confined SDE and backward PDE with specular condition, we
will have to take into consideration boundary effects and adapt the form of the continuous version
of the time discretization scheme.

e In order to apply Ito’s formula as previously used, a time-continuous version of the schemes (1.4)
and (1.6) need to be introduced. For this we consider first the function n: R* +— R™ defined as
previously as

77(t) =t;, Vte [ti,tiJrl)-

Second, recalling the definition of the collision times in (1.5), we introduce v: R™ s R defined

as:
t; fort; <t <0
O IR S @2.1)
0, forf, <t< tit1.
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We recall that 6; is meant to signal if a collision is to take place on the interval [¢;, t;11). If there is
a collision on this interval, then v is t; before the collision and 6; after. If no collision takes place
then v is ¢;.

With the help of ¢ — n(t) and ¢ — v(t), we write the continuous version of the discrete process

as:
Y = Xy + (= n(1) Uy

t
X:X0+/Ussignz ds
t L Uns) (¥s) 22)

t
Ut =Uy+ / b(XV(S), Uy(s)) ds+oW; —2 Z Us_]l)_(szo'
0 0<s<t
2.1 The backward Kolmogorov PDE

We give some regularity results on the solution of the PDE (1.9).

Theorem 2.1. Assume (Hppg). When 1 belongs in C.(D xR, R), F defined in (1.7) belongs in H(Q7),
and is solution in the sense of distribution to the backward PDE:

2
O F + (u- Vo F)+ (b(z,u) - Vo, F) + %AUF =0, on Qr,
F(T,z,u) = ¥(z,u), on D x RY, (1.9 bis)
F(t,z,u) = F(t,z,u —2(u-np(x))np(z)), on 7.

When o € Co' (D x R%R), then F is in C([0,T]; L (D x R%);R%) N C([0,T] x D x RE:R) N
EQ(QT; RY). The derivatives V . I and ¥V, F exist and belong in C([0, T]; L>°(D x R%); R1)NC(]0, T x
D x RE:RY) N L2(Qr; RY). By continuity up to D, a trace on Y exists for those functions in
L2(Sr;RY).

Moreover Hess; ,(F), Hessy o (F) € L*(Qr; R%*).

The proof of Theorem 2.1 is divided in the three following sections:

e We prove that F' has derivatives w.r.t.  and u that can be extended up to the boundary ¥ and
have finite L?(X7) norm, we will make use of the probabilistic form of F in (1.7). In section 4,
we show the regularity of the flow of the free Lagrangian process (in the sens of Bouleau Hirsch)
and apply this result to prove the existence of the first order derivatives of F' (see Lemma 4.6).

e In section 5, we show the L? regularity of the Hessians of F using a variational approach on the
PDE (1.7) (see Corollary 5.5).

e In section 6, we extend some results of [Bossy and Jabir, 2015] on the semi group of the confined
Langevin process with a drift.

2.2 Begining of the proof of main Theorem 1.6

Let us start with the weak error term
EIb(X%(O’UO, UT{(O,UO) _ Ew(Xj{(o,Uo, U'Y)foﬂ())
for a given test function .
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From the definition of the function F'in (1.7), we have

E?ﬁ( Xo,Uo UXO,UO) Ew( XO,UO UX07UO) _ EF(O,X(), UO) _ ]EF(T, Xj)fo,Uo’ U?O,UO)

~1
- EZ (F(tia X,:)Z-(O’Uov (72(0’(]0) — Fti, X0, ﬁXo’UO))

tit1 tit1

= ]EZ <F(ti,X§O’UO, Ugo,Uo) _ F(ti XXO,UO UXO’UO)) ’

1
it 1+1 t1+1

Let us explain the last equality. The function F' is continuous with respect to its three variables (¢, z, u)
(see Lemma 4.5). So if ¢;4; is not a collision instant, then the scheme (X, U )o<:<7 is continuous as
time ¢;41, so the passage from the second to the third line in the previous equality is obvious. If at ¢;1

a collision takes place, then
XX07UO _ XXO,UO -0

tiv1 i+l

and
7Xo0,Uo _ _ 77X0,Uo
Uti+1 = Ut‘ ,

141
and since F’ satisfies the boundary specular condition, then we obtain once more the equality.
Now the collision times are introduced via the function ¢ — v/(¢) in (2.1) as follows:

Eq/)( X07U0 UX07U0) E¢( Xo,Uo UX07UO)

_ EZ ( t“ Xo,Uo UXO,UO) _ F( (t;—i-l) XXOLUO ,UXOLUO _))

v(tig)  v(tiiy)

X07U0 7X0,U0 . — Xo,Uo Xo,Uo
+EZ< z+1 (tl_+1) U 7) F( (tz—i-l) Xu(t;Ll)’U ))

v(tiiq) v(tig)

X,U 7 X0,U — Xo,U, Xo,Ui
+EZ< H—l OOUOO)_F(t,H_l’XOOUOO))‘

(tH—I) V(ti+1) +1 tiv1

From the definition (2.1), v(t;, ;) = t; if there is no collision inside the period (;,%;11), otherwise

v(t; 1) = 0; # ti. If no collision takes place, then by the continuity of " the first two sums of the r.h.s.
are zero. If a collision does take place, then by the specular condition on F', the second term of the r.h.s.
is zero. So the previous equality becomes:

By (X7, Uz ) = Bap (X0, U71%)

— = Xo,U Xo,U — Xo,Ui Xo,Ui
:EZ<F(@,X&° ° U5 0) = Fu(tiy), X000, 070 ))

V( i+1)’ V(t1+1)

(2.3)

X,U 7Xo0,U - Xo,U Xo,Ui
+EZ< l+1 olo 77 0,0)—F(t2+1,X 0,Uo Uto 0)>.

(t1+1) V(ti+1) tiv1 i+1

The first sum in the r.h.s can be seen as the contribution to the error of the discretized process before the
jump on the time-step [t;, t;11], while the second sum is the contribution to the error of the process after
the collision.

We continue the proof of the main theorem in Section 3, with the help of Theorem 2.1.

Before that, we end this section with the estimation of a bound for the L norm of the density of the
confined time discretized process. In [Bossy and Jabir, 2011], it is shown that the confined Lagrangian
process (1.1) admits an explicit density. Following the same arguments, we exhibit a transition density
for the discretized confined Brownian primitive (i.e. b = 0):

23



Lemma 2.2. Under (Hweak Error)-(2), the process solution to the system (2.2) with drift b = 0 has a
bounded density p°(t, ¢, ), bounded by 2||po|| oo (p xra)-

Proof. Starting from a given (x,u) in D x RY, the process (2.2) without drift can be written as:

t
Z: = x+/0 () Sign (Zn(s) + (5 = 11(5)) () s

Uy =u+ oW —2 E Tg-1z,—o
0<s<t

2.4)

where (W});>0 is a standard Brownian motion. Following the arguments in [Bossy and Jabir, 2011], we
introduce the continuous time-discretized free Langevin process with b = 0:

t
Zt:$+/ Vn(s)ds

0
W:U"—O‘Wt.

2.5)

The position process Z; can be rewritten as

Zt =z +ut+ UZWti/\t<ti+1 ANt —1; A t)
i>0
Since (W;):>0 is a Gaussian process, then (Zy, V;)i>0 is also a Gaussian process due to the fact that it
can be written as a linear combination of random variables sampled from a Gaussian process at different
instants. In particular, there is a Gaussian transition density for the time-discretized Langevin process

with no drift, denoted as p” (see Section 2 for the explicit expression for p~.)
Define S; = sign(Z;)+ to be the cadlag modification of the process (sign(Z;))o<¢<7 and set

(X7, Uf) = (124, SiVa). (2.6)

Then, by the It6’s formula, we get

Ut—u+/S dV+ZVAS—u+U/S AW+ > ViAS,.

0<s<t 0<s<t

Since ( fo S— dWy) = t, by Lévy’s representation theorem, the process (W = fo Sg- dWs,t > 0)is

a Brownian motion. Also, by continuity of the process (V;)o<i<7, for any t € [0,T], U = V,- S, =
V;S,-. Consider a time interval [t;, ;1] such that t; < 6; < t;;1, then if S, n(t) > 0 then 5’9— >0
implying that ASy, = -2 = —259 and if S, ;) < 0, then Sef < Oresulting in ASyp, =2 = —25’97.

These considerations give that ‘/QlASQl = —2U90_, and finally, we have that
0<s<t

Considering that (Z)o<¢<7 change it sign a finite number of time, it admits a regularity C ! by parts.
We obtain that

t
=\|Z| == +/0 sign(ZS)Vn(s) ds.

From (2.5), we notice that

Zy = Zypy + (6 = n(8)) Vo = sign(Zyw)) (12| + (= n(t)) sign(Z,w) Vo)) »
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since sign(ab) = sign(a) sign(b). So,

and

obtaining finally:
t
Xi=z+ /0 sign (X + (s = 1)Uy ) Uy s

0<s<t

This shows that (X§, Uf)o<i<r defined as (2.6) is equal in law to the solution of (2.4) (Zy, Uit )o<i<T-
This also implies that (| |)¢>0 is equal in distribution to (|u+W}|)>0. Furthermore, for any measurable
and bounded function h: RT x R — R:

Eh(ar, @) = E (h(Ze, V)lyz,50 ) + B (A(=Z0 V)l 7,01 ) -

as {Z; = 0} is negligible. The transition density of the discretized reflected process p¢: (R x (RT x
R)) x (RT x (RT x R) — R is then equal to

pc(oﬂ (L‘,U,t,f, C) = pL(O,LE‘,U,t, 57 C) +Z§L(0,.’L‘,’U,,t, _57 _C)

where p’ is the transition density of the time-discretized free process (2.5) computed in Lemma 2.1 of
the appendix section 2.

Now we consider the hypothesis (Hyweak Error)-(2), and pg the density of the initial random variable
(X0, Up). The density of (:Ef(O’UO, UfO’UO)OStST writes

Pe(t;€,Q) =/ P°(0; 2, u; t5 &, Q) po(x, u) dedu

RxRt

= / (" (0; 2, us 1€, Q) + P2 (0; 2, us 6 —€, —C)) po(x, u) dedu
RxR+t
= /Mw (p/v(o,zt,mm(t))(ﬁ = (z+tu), C = u) + PN, py o) (—E — (@ 4 tu), —C — U)> puo(, w) dadu,

where PN(0,5 ¢t denotes the centered Gaussian density with covariance Xi; a¢ ;) computed in
Lemma 2.1. Then

p°(t;€,Q)

< |M0||Loo(DxR)/

RxR

(p/\f(o,zt,mm(t))(ﬁ — (& 4 tu), ¢ = u) + DN(0,5, ar ) S~ (@ + tu)a—C—U)) dzdu

< 2{[poll Lo (pxR) -
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3 Weak error estimation

In this section we prove the main theorem 1.6. In order to simplify the presentation, we give the proof
for the dimension d = 1 and in order to better understand the various definitions for the errors that have
been introduced we refer to the diagram 2 in the Appendix section 1.

The contributions to the error (1.8) mainly come from the discretisation of the drift of the position
process and of the drift of the velocity process. Each of these components will be separated in the terms
before the collision with the reflecting boundary and after the collision. As seen in the sketched proof
in Section 3.1, the Itd’s formula is applied two times in the terms of the decomposition of the error
(2.3). Those terms involve the function F'in (1.7) which does not have apriori a sufficient regularity. To
overcome this difficulty, we first smooth the function F' for each variables (¢, z, u), with the mollifying

sequences (Blm P, gm)k,l,le-

Smooth approximation of F.  We construct (5%)r>1, (p1)i>1 and (g )m>1, some positive approxi-
mations to the identity such that:

T 1
Supp(8k) C <0, k) Supp(pi) C <—l,0> and  Supp(gm) = R. (3.1

For (B1)x>1, we consider the function ¢ — [(¢) defined on R by

ex (_1
=4 T\ T 1)

0 otherwise.

) fort € (0,7) , 3.2)

1
Then for k > 1, we set 81 (t) = C'kB(kt) where C’ is such that B(t)dt = ok With the choice
(0,77
for the support of /3 to be included in (0,7"), we have that any convolution on [0, T is zero at ¢t = 0. For

example consider the function h: [0, T] — R, then the function h: s — / Br(s — 7)h(T) dr is such
(0,71

that for any k£ > 1, iL(O) = 0. We can easily see this in the following graph where we consider T = 1,
k=10and h: s — T 1)(s)(2 — s).

2.0

~

L I I I I
-0.2 0.2 0.4 0.6 0.8 1.0 1.2

Figure 1.1: Convolution (in blue) on [0, 7] between s — h(s) = 1o 1](s)(2 — s) (in red) and mollifier

Br.

For (p;);>1, we consider the generating function x — p(x), defined on R by

1
p(z) = P <_37(_1 —z))

0 otherwise.

) forz € (-1,0), (3.3)
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1
Then for any [ > 1, p;(z) = Clp(lx) where C is such that/ p(x)de = —
R

ok
For the sequence (¢, )m>1, We choose to use the Gaussian kernel u — g(u) on R with
1 u?
u) = exp | —— (3.4)
g(u) 5 o ( 5 )

by taking g,,,(u) = mg(mu). We obtain the smooth function: ¥(¢, z,u) € Qr,

Fk,l,m(tv €, U) = F(Ta Y, v)ﬁk(t - T)pl(x - y)gm(u - U) deyd'l) (35)
Qr

We mention again that for the choice of the mollifying sequence (S )x>1 to have support on (O, %) , We

obtain that
V(z,u) e D xR, Fiim(0,z,u)=0.

We denote by L the infinitesimal generator for the process (X, Up)o<t<7:
o2 9
L = udy + b(z,u)0, + an.
As a corollary of Lemma 5.2 in Section 5, we have

Corollary 3.1. The smooth function Fy, ,, defined on Qr satisfies the following equality for any (t, z, u)
in the interior of Qr:

0
(8t + L) Fk’hm(t,x,u) = Rk,l,m[F](t,x,u). (3.6)
with
Ry mlF1(t z,u) = R, [F)(t,z,u) + REY, [FI(t, 2, u)
where

Rz?l,m[F] (t> x, U) = (axF * (uymplﬁk))(tv x, u) + b(ZL‘, u) : ((auF * (gmplﬁk))(t7 xz, u))
- ((b ’ 8UF) * (gmplﬂk))(tv €, u)

Rzmm[F](ta$vu) = /Bk(t)F(0> K ) * (gmpl)(x7u)'

Proof. We apply Lemma 5.2 by noticing that for any (t,z,u) € Qr, f(t,z,u) = F(T —t,z,u). We
have by the definition of f}, ; ., in (5.4) for any (7,y,v) € Q7 and since i (t) = Br(—t)

fk,l,m(T - 7Y, U) = 0 f(37 €T, u)gk(T - T S)pl(y - l’)gm(’U - U) dsdzdu

= | (T —t,2,0)B(t — T)pu(y — ) gm (v — u) dtdwdu 3.7)
Qr

= / E(t,2,u)Br(T — ) pi(y — 2)gm (v — u) dtdzdu = Fj g m(7,y,0),

T

where the change of variable s — T — t was performed and we obtain that 0 f (T — t,2,y) =
—0¢Fy1.m(t, z,y). Now we consider the rest term BT [f] of Lemma 5.2 and have

RS FUT = 7,y,0) = Be(T = 7) = T) fim(T, y,v)
= Bi(=7) Fim(0,,v) = Bi(7) Fym (0, 3, v)
= Ri} L [F](7,,v)
with Fj 1 (0,-,-) = F(0,-,) * (gmp1) (-, ).

From these equalities it is straightforward to conclude the result of the lemma. |
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Rzpl ., denotes mainly the spatial contribution to the regularization error. Since we choose 7 in

cl ’l(D x R;R), applying Theorem 2.1, we obtain that 9, F" and 0, F' are well defined and belong in
C([0,T]; L= (D x R); R) N C([0,T] x D x R;R). Later in Lemma 5.3 we prove that RZf)Lm converges
uniformly to 0 as k, [ and m go to infinity.

RETm is mostly a temporal contribution to the regularization error. We prove that fOT R}gnl“m [F]
converges uniformly toward F(0, -, ) as k, [ and m go to infinity.

Now we can go back to the error decomposition made in (2.3)

EIZJ(XXO’UO UX07U0) Fﬂﬁ( XO,Uo UXO’UO)

—EZ( (ts, X000, UF0Y0) — F(u(t,), X X000 g0t ))

I/(ti+1)’ V(ti+1)—

gXoUo 7XoU - xXolo XU

l’(t 1) tit1 i1

and introduce the smooth solution and pick & such that Supp(8;) C (0, At A gg) with gg defined in
(Hweak Error)-(1):

E?/)(XI)SVO’UO,UI{(O’UO) E@b( XO,UO UX07UO)

n—1
= EZ <Fk,z,m(ti,X§O’U0,Ut)fO’UO) Frpm(v(tiy), X0t ot _)>

‘ v(tig)  v(ti,)
1=0

+EZ (Fklm (tipn), X000 T2 ) — By (t, X200, UXO’UO)>

v(t; +1) v(tig) tiva tit1

n—1
+EY ((F—Fk,lm) (t:, X o0, 0¥ 00) ) IEZ ( (F — Fipm) (W(t5,), X X000 ,UXO’UO_)>

v(tig)  v(tiy)

1=0
n—1
_ — Xo,Up Xo,Uo Xo,Uo Xo,Uo
+E;<(F Frtm) ((ti0), X070 U0 ) EZ(F Fram) (b X200 02 )).

3.8)

3.1 On the error terms introduced by regularizing the solution

The regularisation in time and space components introduce some errors that we analyse. Special care
is taken for the time regularisation since it introduced a term R T.m that cannot be bounded uniformly
in k. We denote by Regy, ; ,,, the term:

n—1 n—1
Regy i m ‘ZEZ ((F— Fie1m) (tuXé(o’UO?Uti(O’UO ) E (F — Fiopm) (v(ti), X0 UXOF )
— ( +1) V(tz+1)

i=0 ;
n-1 n—1
E F — F; vt XXO:UO UXO:UO —E F_—F - XXO,UO UXQ,UO .
" §(< ) (A022) K0 03000 ) < B ((F o) (10, 20,050
(3.9)
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Assuming no collision takes place on the first discretisation interval

If no collision takes place on (¢, t1), we have that

n—1 n—1
Xo,Uo 77Xo,U - Xo,Uo 7Xo,U
Reng?m =E Z <(F — Fk,l,m) (tz, Xti 0 O, Uti 0 O)) - EZ ((F - Fk,l,Tn) ( (terl) Xl/((t];fy UV(;)+1O)—)>
i=1 i=1 ! !
— Xo,Uop X07U0 — Xo,Uo 77X0,U0
+EZ < F Fklm ( (tl—i_l) XV(ti_+1) z+1 > EZ ( F Fklm (t’H_l’Xz-‘rl Utz+1 )>
+ ]EF(Oa XO, UO)
(3.10)
Assuming a collision takes place on the first discretisation interval
If a collision takes place on (tg, 1), we have that
1 -1
En F F XXO,UO X07U0 En F F XX07U0 7Xo0,Uo0
Regklm - Z k:lm) (t’L? U Z k,lm ( ( z—l—l) V(t;l)’UV(t:Ll)_)
i=1 i=0 ‘ !
n—1
- Xo,U X U Xo,U Xo,U
FEY (8= Flam) (85), X502 05000 ) (F—Fk,l,mﬂ o X 00 0))
i—0 z+1 7,+1 i+1
+ EF(O, Xo, Uo)
3.11)
In both cases we denote
Regy ) m = eklm + EF(0, X0, Up) . (3.12)

For any i € {0,--- ,n — 1}, we denote the error obtained before a collision as:
enr (1) 1= E [ (Bt ti X200, 0;00) = Fign (0, X507, 000 g 000y B13)
and after the collision as

eAR(i) = |:<Fk,l,m(9i,X§fO’UO, Ué)i(o,Uo) o Fk,l,m( ;+17XXO’UO UXo,UO)) ]1{91-6(ti,t¢+1)}:| . (3.14)

z+1 t1+1

If no collision occurs on (¢;,t;+1) the error is denoted as
enor (1) = E {(Fk L (i, X7 0T U0V — By g (81 XX";UO Uf°£U0)> ]1{&”}] . (3.15)
+ i+

The €pRr, €ar, €Nor are the terms that we develop through an application of 1t6’s formula. On each
sub-intervals [¢;, 6;)), we introduce the partial differential operator

2
Lerh(t,z,u) = <[7ti8$h + b(Xt,, Ut, ) Ouh + (;Bguh> (t,z,u),
and on the interval [0;, t;11) we define:
Larh(t,z,u) = <—Uti8xh + b(XV(t), Uu( ))8 h+ (92 ) (t,z,u),
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if no collision occurs on (¢;,t;11), for any h € C112(Q;), we have the operator
_ _ _ 0'2 9
LnorP(t, z,u) == ( U, 0zh + b(Xy,, Us,)Ouh + ?Buuh (t,x,u),

where h € C112(Q;). The subscript BR signifies "before reflection", AR signifies "after reflection” and
NoR signifies "no reflection". The sign(Y;) dependency is in fact a constant term such that

1, Vte [ti,ai), 0; 7& ti, BR
sign(Y;) = —1, Vt€[0itiv1), 0; #t;, AR
1, Vte [ti,ti+1), #; =t;. NoR

or to be more explicit, sign(f@) equals 1 in Lgr and Lnor and —1 for Lag. It can be seen that the
differential operator Lgr and Lnor (before a collision or if no collision occurs) are similar, so the results
from one apply to the other if the time interval of application is adjusted accordingly.

By applying the It6 formula to the first two terms of (3.8), we obtain that:

Ew(Xj)*(O’UO UX(),U()) E¢( X07U0 UXO UO)
n—1

EZ<Fklm (£, X OE) = P ((t73,), X0 O30 >>

vit) v(t)”
=0
n—

1
— v Xo,U Xo,U — Xo,U Xo,U
+ ]E <Fk7l7m(y(ti+1)? XV(?;?) U (?+f)) Fk’ l m(terl? X +01 0 Ut 0 0)> + Regk’hm
0 k3 k2 Z

i— i+1
n—1
= Z (GBR( ) + GAR( ) + GNoR( )) + €Reg + EF(O Xo, Uo)
=0
n—1 r 0; B B
- E 1{9i€(ti,ti+l)}/ (O + EBR)Fk,l,m(SaXSXO’UO’ U;XO’UO)dS}
i=0 - ti
n-l r Lit1 _ _
- E ]l{eie(ti,ti+1)}/ (O + LaR) Fiopm (5, X000, UF000) ds}
i=0 - 0:
n—1 tiv1 B B R
-YE n{giti}/t (O +ENoR)Fkvl,m(s,Xfo’UO,USXO’UU)ds] + € im + EF(0, Xo, Up).
i=0 L i

(3.16)
The stochastic integrals terms are actually martingales since by Theorem 2.1, 9, F' € L*°(Qr). Since
F}; 1.m 1s a solution to the equation (3.6):
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Ew(Xj¥07U07 Uj)fo,Uo) Ew( X07U0 UXO UO)

n—1
= Z (eBr(7) + €ar(i) + enor (7)) + ek +EF(0, X0, Up)
=0

n—1
]1{9 E(tl,t,+1)}/ L EBR)Fklm(s XX(),UO UXo Uo)d
i=0
n—1
E1 L L) E XXolo Xoloy g
+ ) Elgpett i) AR) Fle 1,m (8, ) A.17)
=0 :

tit1
* ZEH{@ tz}/ (L — Lxor) (s, X200, UXo:V0) ds

n—1 t1+1
-D E / RN L [F)(s, X000 G X0 ) d
1=0 v
n—1 tit1
3B [R5, X0, D00 ds + BF (O, Xo,Uo) + 5,
=0 ti

Remark 3.2. By Theorem 2.1, F is in W(l’l)’Q(QT). A generalized Ito’s Lemma (see e.g. Theorem
1, page 122 of [Krylov, 1980]) with the extension for unbounded domains and hypo-elliptic diffusions,
should have been applied in this part of the proof, instead of regularising F'.

We now present a lemma that gives the convergence of the various terms that compose the error
obtained by regularization.

Lemma 3.3. We have that

(i)

Reg k,l,m—)oo
€k,lm > 0

+1

(ii) g’?ym[F](& XSXO»UO’ USXO’UU) ds — E'F(O7 Xo, UO) k,l,m—o00 0

t;

Proof. Convergence (i).

According to the Lemma 4.5, F' is continuous and bounded on Q7 and in fact we can extend naturally
F as a continuous, bounded function on [0,7] x R x R (for an example of such an extension on the
whole domain see the calculations (4.25) in Section 4 and take F'(¢,z,u) = f(T — t,x,u)).

We recall that if a collision occurs on the first interval (¢, ¢1), that we have that

n—1

G =EY <(F — Fpm) (i, X, 000 g7X0 oy ) EZ ( (F = Frpm) (U(ty,), XX0t0 grXoto _))

; v(tig)  v(tiq)
=1

n—1
+ EZ ((F o Fk7l7m) (V(t;_,'_l),XXO’_UO 5U5§$7U0) ) EZ < F Fklm) ( Z+1’XX07UO UfO:UO))
i =0

V(ti+1) i+1 i+1 i+1

(3.18)

and we apply Lemma 1.6, in the Appendix section 1, which states we have that F}, ; ,,, converges uni-
formly on any compact of (0, 7] x R x R. In our case, we consider the compact [eg A t1,T] x R x R.
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By condition (Hyweak Error)-(%) (see Remark 1.5), the first collision time (¢} ) is such that v(t; ) >
€0, therefore the random variables F, ; ,,,(;, )_( Xo,Uo (jt)f O’Uo) (this term considered only for i > 1),

Xo,Uo  77X0,U0 Xo,Uo 77Xo0,U0 Xo,Uo 77X0,U0
Fklm( (z-l—l) X (ti_+1)7UV(ti_+1) ) Fklm( (z—l—l) X vty )7U Vit ))andFk%l:m( H—I’XH_l Uz+1 )

converge almost surely to F(ti,XXO’UO UXO’UU),F( (ti1)s X)?”UO),Uﬁg’_UO)f),F( v(ti 1), X)iO’UO),U)EE’_UO))
+1 i+1 +1 i+1

and, respectively, F'(¢;, X Koo grXo, UO) Since F' is a bounded function, then el,: I.m &0€s 10 Zero as

i+1 t
'L+1 1+1
k,l,m go to infinity by the Dominated Convergence Theorem.

Similar arguments apply if there is no collision on the first interval (¢g, t1).
Convergence (ii).

Since k& has been chosen such that Supp(8;) C (0, At A €p), and since no collision occurs on (0, At A
€0) = (to,t1 A eo) (see Remark 1.5) then we have that

n—loetiy

Z Rklm[ J(s, XYoo g Xo:to) ds/ Rklm[ [(s, X Xoto g Xoo) ds

T
= / 6k(8)F(07 B ) * (plgm)(X§O7U07 173(0’[]0) ds
0

AtNeg
- /0 Bu(s)F(0, ) * (prgu) (Xo + sUp, Up) ds

By uniform convergence arguments of convolutions used in the previous section we have that F'(0, -, -) *
(p1gm)(Xo + sUp, Up) converges a.s. to F'(0, Xo + sUp, Up). We introduce the function g: [0,7] — R,
such that for any s € [0,7] g(s) = F(0, Xy + sUy, Up). By Lemma 4.5, we have that F' is continuous
on Q, therefore g is a continuous function on [0, 7.

For any € > 0, there exists 6 > 0 such that |g(0) — g(s)| < &, for any s € (0,0).

We recall that Supp(8y) € (0, £) so the previous equality becomes

AAtAeg T AAtAeo
/ Br(s)F (0, Xo + sUy, Up) ds — F (0, Xo, Up) = / Br(s)g(s)ds — g(0)
0 0

%/\AtAso
_ /0 Bi(s)(9(s) — 9(0)) ds

so for every k such that % A At N gg < 8, we obtain that
L AAtAeg
6/ Br(s)ds =¢.
0

Thus, Br(s)F (0, Xo + sUp, Up) ds converges almost surely towards F'(0, Xo, Up). As Fis a
bounded function therefore

T NAtAgg
[ et a0 as| <

L AAtAgo
Jo

AAtAeg Z AAtAeg
/0 Br(s)F(0, Xo + sUp, Up) ds| < ||F‘L°°(QT)/O Br(s)ds = || F'l| oo ()

then by the dominated convergence theorem, we obtain the desired result. |

In order to simplify the writing, we remove the references to the initial conditions and write simply
s Xo.Uo 7Xo.U
(Xt, Ut) as ( 0,0 U 0 O)
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Foralli € {0,...,n — 1}, according to the definition of Lgg, the term under the first summation in
the r.h.s of equality (3.17) is rewritten as:

0; B
E]l{eie(ti,t¢+1)} /t (L — L‘BR)Fk,l,m(& XS, US) dS

0;
=Elg. (4. 4. / Us — U, ()0 Frim(s, Xs, Ug) ds
et} | ( 1(5)) 0 Fs ) (3.19)

+E]l{01-€(ti,ti+1)}/t (b(Xs, Us) = b(Xy(s), Ups))) OuFrepm (s, Xs, Us) ds

= e (i) + €hr (i)

The third sum in the r.h.s. of equality (3.17) corresponds to the case without reflection, and it can be
developed similarly to

The term under the second summation in the r.h.s. of equality (3.17) is:

tit1 B
E]l{eiE(ti,tiJrl)}/ (L_EAR)Fk,l,m(SstaUs) ds

i+1 _
- E]l{e €(tistiv1) }/ (Us -0, n(s) Slgn( )0 B 1.m (8, Xs, Us)ds

i+1 _ _ _ —
+E]1{9i€(ti7ti+l)} /91 (b(XsaUs> — b(XI/(S)7UV(S)>) aqulm<3aX87 S) ds (3'20)

tit1 B B
:M{eiectiml)}/e_ (Us + Un(s)) 0 i (8, X, Us) ds

i+1 _ _ _ _ _
T ELf0,e(t,ti01)} /9 (b(Xs,Us) = b(Xo(s), Up(s))) OuFrpm (s, X, Us) ds

=t (i) + KR (0)-

We recall that for s € [0;,t;11), Us is the velocity after specular reflection, so there is a change of sign
at ;.

The error is then further decomposed with contribution from the discretization of the drift of the
position process (Xt)0<t<T and a contribution from the drift of the velocity process (Ut)0<t<T We
denote these errors before the reflection as e)B(R( /), egR( ) respectively, after the reflection e)A(R( /) and
eKR('). We finally denote e (i) and eNoR( i) the error obtained when no reflection occurs on the
interval. The superscript X denotes the error related to the approximation of the position of the particle
while the superscript U denotes the error due to the approximation of the velocity of the particle.

3.2 Contribution to the error ¢* of the discretized drift on the position process
Contribution to the error before the reflection

We begin by developing the error produced by the discretization of position process, before reflection:

(D) = Bl / —Ty0))) 9 Fiotom (5, X, U) ds
= E]]‘{Qie(ti,ti+1)} / (S - ti)b(Xti’Uti)aka:,l,m(Sva:Us) ds (321)
t;

0; _
+ UE]I{eie(ti,ti+1)} /t (WS — Wti)ﬁka,l,m(s, X, US) ds.
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We consider the inner integral

0; 3 3 _ 3

/ (O, — Oy(6))) 0 Fi (s, Ko, ) ds

t;
0; L _ 0; _

_ / (5 = t)D(Xtr, U)o Fiaom (s, X Us) ds + / (W, — W00 Fiiom (s, Xs U) ds.
ti t;

The second term of this equality is treated separately by conditioning w.r.t F;,. For any s > ¢;, the
increment W, — W, is independent to the o —algebra F;,, so by introducing the probability density
function of the standard Gaussian random variable denoted pr(o,1), we have:

0; _ 3
E [/ (Wy = Wi,)0a Frgm(s, Xs, Us) ds‘]-"ti]
t;
0; _ N _ N _
=E [/ (WS — Wti)akaJ’m(S,Xti + (3_ti)Uti7 Uti + b(Xt” Uti)(s_ti> + U(WS—Wti)) dS’Fti]
t;

0; B o o
— [ Vs [0, Figunls, Xu+ (500, U +6(Xe, Ui (510 05— i) ()
t; R
The integral can be transformed to obtain a derivative of the Gaussian density:

/ WO F 1 m (5, Xi, 4+ (s —t)Us,, Uy, + (X4, Up,) (s — ;) + 0/s — tiw)p/\/(oyl(w) dw
R

_ _ - d
- —/ OuFii1m (8, Xy, + (s = t)Uyp,, Uy, + 0(Xy,, Up, ) (s — t3) + 0v/s — tiw)%p/\/(071)(w) dw
R

PFuim, - o _
=ovs—1t /87;9’;’(3, X, +(s—t:)Up,, Uy, +b(Xy,, U, ) (s—t) + 0v/s—tiw)paro,1) (w) dw
R

The last equality is obtained from an integration by parts. By Lemma 4.6, we have that 0, F' is a bounded
function, thus 0, F}; ; ., is also bounded, and as pr(o,1)(w) — 0 as |w| — oo, the boundary terms from
the i.b.p. are 0.

We can rewrite:

0i - b PFoim, o -
E]I{Oie(ti,ti+1)} /t (Ws_Wti)arFk,l,m(sa X87 US) ds = J2E]1{9i6(ti,ti+1)} K (s_ti)Té:;(S?Xsa US) ds.

Finally, we obtain that:

0;
ez (1) = Elgg,e(t,t;11)} /tl (s —t;) <b(Xt“ Uti)aFak;,m (s, Xs,Us) + 0 W(S,Xs, Us)> ds.
(3.22)
The (s — t;) factor in the integral allows us to obtain the linear decrease of the error in At, so we express
all the other error terms in this form. Similar calculations give:

_ _ tit1 _ _ OF m _ _
6I)\I(OR(/L) = }E]]‘{letl} /; (8 - tZ) (b(Xtm UtL) 8]657 (57 X87 US) + 027”(8) X87 U8)> dS'

(3.23)
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Contribution to the error after the reflection

We analyze now the contribution to the error produced by the discretisation of the drift in the position
process, after reflection on any interval [0;,t;11], given by:

— i+1 _ _
GKR('L) = E]]'{eie(ti,ti+1)} /0 (US + Un(s))aka,l,m(Sa XS) US) dS
’Lz+1 _ _
- E]l{eiG(ti,tiH)} /9 [ - b(th" Uti)(ei - ti) - U(W9i - Wti)

+ b(Xgl., Ugi)(s — 91) + O'(WS — ng) 83;Fk757m(8, XS, Us) ds.
(3.24)

The terms that involve Brownian increments are analysed separately starting with the increment before
the jump, in the same way as the previous paragraph, in order to obtain a term of the type wp(o,1)(w):

tit1 o
E [/ o (We, — Wi,)0aFrm(s, Xs, Us) ds‘]—}l}
0;
tit1 L B
E [(ng W) / OaFo s (5, — (s — 0,)T,, Up, + b(0, Uy, ) (s — 0;) + o(Wy — We,)) ds‘]-"ti]
0;
tit1 _ _ 3
E |:(ng — th)/ E[aIFkJ’m(S,—(S — Gi)Uti, Ugi + b(O, ng.)(s—ei) + U(WS—ng)) ‘ fﬁi]ds‘}—ti] .
0;

In order to simplify notations, we introduce the function 7: R x RT x RT — R such that:
I(u,0;,s) = E[@kaJ,m(s, —(s = 0;)Us,,u+ b(0,u)(s — 0;) + o(Ws — Wa.)) | .7:91,].

The previous equality then becomes:

tit1 L
E |:/ U(Wei - Wti)asz,l,m(Sv Xs; Us) ds‘ftbi|
0;

)

— oE (Wg _Wt)/;“ I(=Th, — b(Xe, 00 ) (0 — t:) — 0(Wa, — W), 6:, s ds‘]:t]

2+1
) \/9 —t/ /wI — Ty, = b(Xiy, U3) (0 — t3) — o/ — taw, 03, 8)paroy (w dw‘]—}],

r tit1 B
=oE (ng - W) / 1(Uy,,0;,s)ds
0;

and just as before, we can perform an integration by parts with wparg,1)(w) = _pj\f(o 1 (w) to obtain
tit1 L
E [/ o (Wa, — Wi) 0 Fotm (5, Xs, Uy) ds‘}}i]
0;

141 _
=o’E []1{9 E(titiin)} / 2> 015 $)PAr(0,1) (W )dw]

where:

ol ob 0?Fi i m _
) i s — 0:) T4, u+ b(0,u)(s — 0;) + o(Ws — W) | T,

au(u,Hi,s):]E[<1+(s—0i)8u(0,u) DDy (s, —(
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so by combining the different results:

tit1 L
E {1{9i€(ti7ti+1)} /9 O'(ng - Wti)akaJ’m(S,XS, US) d8:|

bit b, - PF o
= —0'2E |:]]-{9¢€(ti,ti+1)}(0i —ti)/e <1+ (S—Gﬂ(O,Ug.)) (S,XS,US) ds| .

ou !

We now consider the case of the Brownian increment after the jump (W, — Wy, ), which is indepen-
dent from Fp,, so the calculations will be similar to those for eqg (4):

tit1 L
E [ / 0 (Ws — Wo) 0 Fiotom (s, X, Us) ds| Fo,
0;

tit1 _ —
_ a/ E[(Wy—Ws,)0u Fitom(5,—(5— 0T, Tp, + b(0, g, ) (s—0;) + o (Wa—Ws,)) | Fo,] ds
0;
VS — de

tit1 _ _ _
= O‘/ s/w@xFM’m(s,—(s—H%’)Uti,U9i+b(0,U9i)(s—9i)+a s—0;w)paro,1)(w)dw,
0; R

and after applying once more an i.b.p. (with null boundary terms since 0, F}, ., is bounded and as
|u| = 400, par(o,1)(w) — 0) we obtain:

tit1 o
E |:]]'{9i€(ti7ti+l)} /9 U(WS - Wai)aka,l,m(Sst, Us)d5:|

tit1 82F _ B
= 0°E |Lig.ce.r, / — )R (g X, U, ds|
g {eze(tutz+1)} 91- (S ) 8“8.%' (87 9 ) S

And by combining all these terms in (3.24), we obtain:

_ tit1 B _
efR(Z) = E]}'{Qie(ti,ti+1)} /6 (Un(s) + Us)aka,l,m(S7 XSa US) dS

b o O0Fhim, o -
= _E]I{Gie(ti,ti+1)}(9i - tl)/e b(Xti’ Uti)zj,(saXSa Us

) tit1 ob _
+ 0" Elg,e(t, t1,1)) (05 — ti) 5 1+ (s— 90%(0, Us,)

~
ISH
V2)

b o o OFpim , o 7
- E]l{ﬁ'ie(ti,ti+1)} /0 b(X9w U9¢)(3 - 61') — (S,X ,Us) ds

2 bt PFrim, - -
to E]l{9i€(ti,t¢+1)}/0 (S_Hi) - (SaXs,Us) ds.

(3.25)
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Bounding the errors X X of the position component

By using (Hpangevin)-(21), we bound in (3.22):

OFy1m
‘GBR( )| < ‘Eﬂ{e E(tistisn) }/ s =1 )b(Xt“Utz)T;C’( 5, Xs,Us) ds

(9 Fy _
20 _ .\ mbm
+’Eﬂ{eie(ti,ti+1)}/ti o°(s —t;) Sudn (s, X5,Us) ds

% (0Fim, < -
< At maX{HbHLOO(DXR) ’UQ}Eﬂ{eiE(ti,ti+1)}[ (‘a’x’(s’Xs’ Us)

OFim, <

+1 _
< AtmaX{HbHLoo DXR 2}E/ (‘ ax (87XS7 US)
i

O*F1m
oudx

By (3.23), eNoR( /) is bounded by the same term. And in (3.25), by (Hppg)-(1):

OFy.1m (s,
Cor

X,
i+1
a. E]l{e S t17t1+1 /
Ul Lo (DxR)

OFk1m
ox

i+1 _
652 (0)] < AIBl oo (i) EL g,6000000)) / U, ds

O?*Fi1m

X, Us
iy (s, Us)ds

+ Ato? (1 + At H

i+1 _
+ At ||b||L°°(D><R) Eﬂ{eie(ti7ti+1)} /0 (s, X5, Us)ds

O*Fyim
O0xou

i+1 _
+ AtazE]l{@iG(ti,ti+1)} /0 (S, X, Us>d8

L OFy, o i | 9%y o
< At <CbEL 87;‘” (57 Xs, S) ds + Atcaub,U,TE /tz TJ (57 X, Us)ds>
(3.27)
where C, is a constant that only depends on b and Cp, 5 7 depends only on 9,0, o, and T'.

Combining these results and summing from¢ = 0 to 7 = N — 1, we obtain:

N-1 ) )

> (I ()] + e ()] + lor ()]

=0 (3.28)

TVOFum
ox

O?Fi1m

(s, Xs U)ds—i—E/T
0

< At X Cyo,b,0,T (E/
0

3.3 Analysis of the contribution to the error of the discretized drift on the velocity pro-
cess

Error contribution before the reflection

We now consider the second term of (3.19), which represents the error introduced by the discretization
of the drift of the velocity before the jump. Since F}; ., is a smooth function, we apply Ito’s formula.
For the term corresponding to the contribution before the jump, we have:

k]

elr (i) = []l{e E(titirt) }/ b(Xs,Us) = b(Xy(s), Up(s))) OuFrm (s, Xs, Us)ds

0 _ _ _ _
=K {]1{0 E(ti,tit1)} / / a + £BR) ((b(Xqv Uq) - b(Xu(q)a Uz/(q))) aqu,l,m(qv Xqv Uq)) dq| .
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The local martingale that results from the application of Ito’s formula is actually a true martingale
by considering (Hppg)-(¢) which gives that the drift b and its derivatives are uniformly bounded and
Oul 1.m, 8gqu,l’m € L*(Qr), for fixed (k,I,m) € N3. By the definition for Fi1.m in (3.5) and the
fact that F' € L°°(Qr)we have that for any (¢, z,u) € Qp

102 Pt (.2, 0)| < 1Pl e /Q Br(t—7)p1(—y) |92, 9m (1 — v)| drdydo < m? | Fl gy -
T

Similarly, we show that 0, F}, ; ,, is also bounded for fixed (k,[,m) € N3.
We distribute the linear differential operator (recall that the drift b does not depend on time) in the
inner integral:

where we have used the fact that 0;0, F}, 1y, = —O0uLF}; 1 m + Ou Ry 1, on Q7 in the last equality. Since
LgRr 0 811, = 8u o EBR-;

we obtain that :

+o 8ub(Xq7 01]) o D) Fk,l,m(Qa Xqv Uq) dq
-’ ) (3.29)
ST/ = - _ o? 0 _ 0 _ -
+/t [(Un(q)aﬂc +0(Xo(g), Un(g))0u + 5 W) b(Xq,Uq)] a*Fklm(q,Xq»Uq)dq

Coming back to the definition of Lgr and L we have

Ou(Lok — L) Frpm(a, X0, Uy)
= Ou[— (U, — Ul,(q))ﬁ Froim(q, Xq,Uq) — AbgO Fklm( , Xq, Uy)]
= —0uFr1m(q, X, Uy) — 0ub( Xy, Ug)OuFr1.m(q, Xq, Uy)

- (Uq - Un(q))aquk,l,m(% X ) Abqauqu,l,m(qa Xm Uq)]
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We denote by Ab, = b(Xy, Uy) — b(X,(y), Uy (y) and the previous equality results in:

S a _ _
—/ti Abq%Fk,l,m(Qan’Uq)dq

s _ 62
+/ Abq (Un( U ) Orou Fk,l,m(Qme U )d
t;

s o 82 _
b [ (P00, T) — (A0)?) 5 Faonle, Xy, Uy da
ti u

ST/~ _ _ o - 0 -
+ / [(Un(q)az + (b(XV(q), Uy(q)) — Abq) Oy + 282> b(X U )] kayl,m(q, Xq, Uq) dq
t: U ou

—|—/ AbqauRk,l,m(qa X(bU(I)dq'
t;

(3.30)
Finally, an i.b.p. is applied on f:’ Isds, by noting that (6; — s)’ = —1 in order to remove the inner
integral:
g 0; o _
6BR(Z.) = _Eﬂ{eie(ti,ti+1)}/t ((97, - S)Abs%Fk,l,m(Sa Xs, Us)ds
lei _ _ H? _ -
+ E]l{eie(ti,tiﬂ)}/ (0 — s)Ab, (Un( ) U ) k,l,m( , X5, Us) ds
t: Oxou
91' 9 _ _ 82 _ _
+ E]l{eie(ti,ti+1)} /t' (G’L - 8) (U aub(XS7 U ) (Ab ) ) ou 2Fk l m(57 X87 US) ds
191- B B B o2 H? _
+ E]l{eie(ti,ti+1)} /t ((91 — 8) [(Un(s)ax + (b(X,/(S), sz(s)) — Abs) (‘3u + 2u2)b(X8’ s):|
X %Fk,l,m(sa XS) Us)ds
0; L
+ E]l{eie(ti,ti+1)} / (H’L - S)AbsauRk‘,l,m(S7 XS7 Us)ds'
t;
(3.31)

The term egoR(i) which corresponds to the error produced by the discretization of the drift of the
velocity process in the case where no collision occurs, takes the same form as the previous formula, only
requiring to replace 6; by t;41.
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Error contribution after the reflection

Similar computations to the previous paragraph are used to show that error introduced by the discretiza-
tion of the drift of the velocity after the collision is:

_ Lit1 o _
EKR(/I’) = 7E]l{9i€(ti,ti+1)} /9 (91 - S)AbS%Fk,Lm(S? X87 US)dS
tir1 ' o _ 2 _ _
+ E]I{Gie(ti,ti+1)} /91 (tl+1 - S)Abs (Slgn(}{s)U’r}(S) U ) 61’8qu l m( X Sy US) dS

tit1 9 L 9 82 _
+ E]l{Gie(ti,ti+1)}/ (ti+1 _S) (U aub(XSa Us) - (Abs) ) WFk,l,m(sa Xs» Us) ds

t1+1 _ _ 0'2 82 _ _
+E]l{9 ety tz+1)}/ (tit1—s5) [(Slgn( s) n(s)a +( ( u(s)s U, V(s )) Abs) Oy+— 5 8u2>b(X US)]

) o
X %Fk717m(8, Xs, Us)ds

tiv1 B
+Elgeqin /6 (ti1—5) AbyBu Rigom [F)(5, X, Us) ds.

(3.32)

We proceed to regroup the errors in the drift of the velocity before and after the collision by intro-
ducing the following function v*: Rt — R defined as:

tiy1 if6; =1;
vty =< 0, ifte[t;,6;) and 6; € (ti,tiy1) (3.33)
tiv1 ifte [Gi, ti—‘,—l) and 6; € (ti, ti—‘,—l)

and summing up (3.31) and (3.32) on all intervals fori = 0to N — 1:

N-1 ~ B B T o B B o
Z (egR(Z) + 6KR(Z.) + 6I(\JIOR(i)) = E/O (b(X87 US) - b(XV(s)u Uy(s))) 8uf(5’ X57 US) ds =
=0

T 9 _
:[E/O (V(s) — 5)Abs g Letm (8, Xs, Us)ds

+E

T B _ _ 82 _ _
R/ . B
+IE/O (v (s) — 5)Abs (sign(Ys) Uy — Us) Swdu i 1m (8, Xs, Us) ds
T B _ 82 B B
+IE/ ((s) — )( 280,b( X, U)—(AbS)Q) = Fhoim(s, Xy, Uy) ds
0 ou
/0

X aaqu,l,m(Sa Xs, US) ds

T
+E / (V(s) — 5)AbyDu R [F (s, Ko, Us) ds.
0
(3.34)

3.4 Bounds on the global error

To obtain the bounds on the error, we rely on theorem 2.1. In order to obtain L? norms, we integrate
w.r.t. to the distribution of the discretised process. A simple case where this distribution is explicit is the
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one without drift on the velocity component, so we apply Girsanov’s theorem to remove this drift. We
introduce a new probability measure Q defined using Girsanov’s theorem

dP r 17
—| =Zr=exp (/ (T, us) AW — / V2 (s, Us) ds> :
Fr 0 2 Jo

where (W?)o<t<7 is a Brownian motion under Q. Since b is bounded, this means that the martingale

(Zt)o<t<T admits moments of all orders

We recall that for any ¢ € [0,7],
(3.34), we have that:

) — t| < At and considering the first term of the equality

TR 0 S T 1o
E - AbsiF m 7X87 s d S E|—F) m
B [ 06— 90 B X 05| < G [ B[
And we have that

(87X87 _s)ds x At. (3.35)

0 _ 0
E 7F X37 S :]E728 7F m 7_87_3
‘8:{: k,l,m (37 U) Q O Kl (8 Ts, U )
(e P 3
< (EQZS)Z E@‘(%Fkl,m (s, Ts,Us) (3.36)
0
< C o 7F m
Hob s | g L2(DxR)

while for the second term of the equality (3.34) we have that

T o _ _ o B 82 B
‘E/O (W (s) — ) (b(Xs, Us) — (X, (5): Us))) (sign(Ye)Uyys) — Us)

axa Fk,l,m( X,Us)ds
T B B 32
<0 [ E (G| +100) | 5755 Fram

(s, Xs,Us)ds x At

(3.37)
where C}, depends only on the upper bound of the drift b. By choosing two positive numbers p, g such
1,1

that ¢ > 2 and 5t = 1, by Holder’s inequality:

- 92 o - ) o2 P :
E{Un(s)l ‘8 ou Fk’lm (SaX&US) < (E|Un(s)}q)q (E 9r0u Fklm (S7XS> s))
< =4d % 82 P - %
- (EQUW(S)ZU(S)) (EQZ drou Fk’lm (57X57U8)>

(3.38)

N

2—p
L 2\ 3p 52
2 B —
< (BomiyEaZi) (E@Zf ) (E@‘ Eiom

Oxdu
82

%Fk’,l,m(sfa )

2
(S,is,ﬂs)>

where C,, 4 5,7, depends on the 2g—moment of 9, the bound on b, the diffusion term o, final time 7'
p and g. We perform the same calculation for the second term of (3.37) and obtain that

T L _ _ ) o _ 82 o
‘E /0 (VR (s) — s) (0(Xs, Us) = b(X,(5), Un(s))) (sign(Ye)Upis) — Us) 57— S Fr1m(s, Xs, Us) ds

< CMO7b707T7P7q

L2(DxR)

2

32
< Cuo,b,o,T,p,q

Ooxou F

- <
8$8qu’l’m x At C

10,b,0,T,p,q
L2(Qr)

x At
L2(Qr)

(3.39)
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since Fj 1m is a convolution of F' where OzuF € L2(Qr) by Theorem 2.1.

Since Abs = b(Xs, Us) — b(X,(5); Uy(s)), is such that [Abs| < 2[b]| oo (pxgy SO the third term of
the inequality (3.34) is bounded by:

T 2
_ F; _
‘E / (VR(s) — s) (0—2(6%(X3,U5)—(Ab5)2>a bLm (s, X,,U,) ds
0 u

Ou?
T _10°F
k,l,m
< Cb,aub,mT/ E ’62
0 u

<

(s, Xs,Us) ds x At

Ch,0,b,0,7 depends only on the L> norm of b and 9,0 and on ¢. By Girsanov’s theorem:

1
aQF o 82F 1 82F 2 ?
E'asg’m (5, Xe, Us) = EqZr |~ 5™ | (5, %, 0s) < (EgZF) (E@‘az’zl’m (5,75, Us)

3 O*Feim | » :
< exp (4 [ T) ( /D ™| 66 0r 660 dedd

3 B 1 P2Fpym| 2
< exp <4 [ T) 15°Cs3 s M e ey ( /D e 569 d5d<>

=

3 1 0%Fy
< oxp [ S1Bl2 T) 120002 g 5
4 (OXR)\ Jpr

2
(5,€,€) dde> :

(3.40)

where g is the p.d.f. of the initial values so it follows (Hyweax £rror)-(7), meaning that pg € L (D x R).
Integrated on [0, T'], we get that:

/T . 82Fk;,m
0 ou

(s, Xs,Us) ds

T || 52
2116113 00 T i 0°Fy,
< i) 2l iy [ | ™o
L2(DxR
316012 00 T i O*Fy, 31612 oo T 1 O2F

S Te(Q” ”L (DxR) )||MO||EOO(DXR) ’6u2m' . S \/Te(zn HL (DxR) )HMOHEOO('DX]R) 8u2 2 )

L (QT) L (QT)
Concerning the third term of (3.34):

T 2
— = - - - - 0
‘E/ (VR(s) —5) |:<Sign(Y;)Un(S)am + b(XV(S), UV(S))OU + z&w) b(Xs, Us):|
0

%Fk,l,m(sﬁ X5, Us)ds
T _ OF1.m
< Ob,azb,(‘)ub,a,T/ E (1+[Uys)|) ‘ 8“
0 u

(s, Xs,Us) ds x At

OFy1m

< Clig,b,0:b,0ub,0,T,p,q B

8£
ou

X At = Clg b,0,b,0ub,0,T;p.g

x At

L2(Qr) L2(Qr)

(3.41)

where C\y 5,0,b,0,b,0,T,p,g depends on the 2¢—moment of 1o, the bound on b and its derivatives, on o,
final time 7, on p and q.

Regarding the last term of (3.34), we use the expression of the error written in Corollary 3.1:

T
‘E/ (I/R(S) — S)Abs(?uRkvhm[F](s,Xs,US) ds
0

T
< CbE/ ‘8uRk’l7m[F](S, 75, US)’ ds x At
0

(3.42)
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and

S _ _
u k?l7m[F](s7 X87 US)

(s, Xs,Us) ds —I—E/
0

((5a0F) * i)

T T
E OuRi1.m|F ,XS,US ds < E
/0 10uRio 1 (s, X, )] ds /
T 62
<& [ | (5o (agmnsn)

T
0

dS+E/ ‘8 Rklm[ ]( ,Xs,ﬁs)‘ ds
0

au“ ) ( aa P (g

( . > (gmpl)> ' (X,,U,)ds

(s, Xs, Us) ds

(S,XS,U)ds—i—E

0% F OF AF(0,-, )
< CuopoT|| 52— +Cluo b.0ub,0.T|| 5 +CloboT +Chopor||——" .
1o Oudzx 12(Qr) 1o ou 12(Qr) Ko 8 u? L2(Qr) 1o ou Lo (DxR)
(3.43)
Combining all these terms gives us that:
N-1 ) i
>~ (chr(i) + ke (i) + Kor () |
i=0
< Clob,0b,0ub,o,T X At
(|eF H ‘a2F ’ O°F HaF(o,.,-)
8.T L2(QT) 8U LQ(QT) auz LQ(DXR) 8ual’ LQ(QT) 8U LOO(DX]R)

(3.44)

By the same technique we can show that (3.28) is bounded by

=2

i~

(18R] + lexr ()] + efor (1)

T (10Fk1m - 0?Fy 1 m o
< Chpuborr <IE / (‘ L ‘(S,XS,US) |2k (s,XS,US)> d3> WAE (345
0
oF O*F
< Clup b,dub,o,T (‘ I + ‘ b ) x At.
L2(Qr) L2(Qr)
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Going back to equality (3.17) and putting together all the various results:

N-1
‘EdJ(X;lx’u, U;w,u) _ E@D(X;lm’u, U;mﬂ) _ Z (epr(7) + €ar(?) + enor (7)) + EF(0, X0, Up) + El]:;%m
=0
N-1
X /- 7. X /- 7 - X R
= | D7 (R + e () + AR () + Krl0) + Ao (0) + Kor (1)) + b
=0

T At
_E/O R, F(s, X, U,) ds + EF (0, Xo, Up) — /0 R [F)(s, X, Uy) ds

N—

Hy (eb () + K@) + ef;zR(z'))

=0

+

R
€klm

T
+ ‘E/ Rif)l,m[F](SaX&ﬁs) ds| +

0
<c 5], =
= ohobObin T Ou L2(Qr) Ox L2(Qr) Ou? L2(Qr)
’F F(0,-,-
+'a Ha (0,-.) At
Oudz |2 Ou 2 (xm
T o At o
+ (el,jj%m‘ + ‘E/ R LI (s, X, Us) ds| + ’EF(O,XO,UO) ~-E R LI (s, X, Us) ds| .
0 0

(3.46)

By Lemma 3.3 term

At
flzzi%m‘ - ‘EF(O,XO,UO) — E/O Ri% L [F(s, X5, Us) ds| goes to zero as

(k,l,m) go to infinity. By Lemma 5.3, the term Rzpl [ F'] converges uniformly towards 0 as (k,,m)

T
go to infinity, if [ = m, thus the term ’E / Rzpl [F](s, X5, Us) ds| also converges to 0.

We can therefore conclude that by taking [ = m and (k,l,m) — oo in the inequality (3.46) we
obtain that

‘El/](X%x’u, U%x,u) o Ew(X%QS,Uj U%I,’LL)

< At X Cob,0,b,0ub,10,T
<‘ OF
X

ou
This ends the proof of Theorem 1.6: the weak error of our scheme converges at least linearly in the time
discretization step At.

O*F

LQ(QT) 8u8x

2@ |19¢

L2(Qr) H Ou

L>°(DxR) )

(3.47)

L2(Qr) H O

4 Regularity of the flow of the free Langevin process

In this section we prove the regularity result up to the first order of the F' function stated in Theorem
2.1. The results are stated in Lemma 4.3 and Lemma 4.6.

They are based on the study of the regularity of the flow in sens of Bouleau and Hirsh, for the free
Lagrangian process first, for it confined version then.
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We consider the free Langevin process (Y3, V;) € R? x R¢ which verifies the equation:

t
Y}—x—i—/ Vit ds,
0

o ‘ 4.1)
Vi=u+ oW, +/ (Y. P, VEY) ds,
0
where (z,u) € D x R and b: R? x R? - R? defined as:
bla,w) = (8, sign(a)p?) (@, [¢ V), (', sign(@)u®)) (42)

We recall the following notation: for any = € R%, we write = (2, (%)) where 2/ are the first (d — 1)
coordinates of z and z(? the d component.

The result in [Bouleau and Hirsch, 1989] shows that the process (Y;"", V;"");>o admits a derivative
in the sense of distributions w.r.t. the initial conditions (x,u). This result allows us to state that the
gradients V,F" and V,, F in Theorem 2.1 are well defined . We reproduce their technique and arguments
in this section. It involves an augmentation of the probability space to include the initial conditions and a
modified SDE on the new probability space. The modified SDE respects a weaker uniqueness condition
which allows to perform some operations that are not allowed on the original SDE (4.1).

4.1 Derivability of the flow in the sens of Bouleau and Hirsch

We recall the notations and results of Bouleau and Hirsch in [Bouleau and Hirsch, 1989] for a general
process (X¢)o<¢<7 that is a solution of the stochastic differential equation:

t t
X g4 / b(XT)ds + / o (X7) dIV, @3)
0 0

where the functions b and o are Lipschitz with, at most, linear increase. Let Q = Co(Ry,RY), the
Wiener space of continuous functions w such that w(0) = 0 equipped with the metric of the uniform
convergence on compacts. F is the Borel o —algebra over €2 and PP is the Wiener measure on (2, 7). The
canonical process is defined as W;(w) = w(t) for all £ > 0. Then (2, F, (Ft)¢>0, P, W) is a Brownian
motion. The authors enlarge the probability space as Q = R? x Q and F the Borel o— algebra over
Q. Pis the product measure hdx ® [P where h is a probability density that has a second order moment.
The canonical process is therefore Wt(x w) = - Wi with natural filtration F; which is augmented by the
P— negligible sets of F. Then (Q F, (.Ft)t>0, P, Wt) is the canonical Brownian motion starting from 0.
Let ey, ..., e, be the canonical basis in R%. For every i in {1,. .., d}, the Dirichlet space D; is defined
as:

P =

~ u: Qe R, Ju: Q — R Borel measurable s.t. u = u, P — ae. and
V(z,w) € Q,t — Uz + te;,w) is locally absolutely continuous

SO ﬁl can be considered as a set of classes w.r.t. P—a.e. equality. If u is in 5, and w is associated with
it according to the above definition, then:

Viu(z,w) = lim u(x + te;,w) — u(ﬂs,w).

t—0 t
Let D be the Dirichlet space defined as:
~ ~ d ~ ~
D= {u e L*(P)() (ﬂ Di> V1 <i<d,Viuée LQ(}P’)}
i=1
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equipped with the norm:

d 3
ull 5 = (/5 u? dﬁ+2/ﬁ(viu)2dﬁ»> :
=1

0
We also consider the space D = {f € L?(hdx);V1 < j < da—f € L%(hdz)} equipped with its usual
Lj

norm. We introduce the process (X7 )Jo<t<7 defined on the space (Q, F, (ﬁt)tZ()a P, Wt) that solves the
stochastic differential equation:

Xr =+ / b(XT)ds + / o (XF) dW,. (4.4)
0 0

It can be shown that for every 0 <t < T, )?t = X7, P—almost surely.

Theorem 4.1 ([Bouleau and Hirsch, 1989]).
(i) For P—almost every w, forall0 < t < T, X;(w) € D* C (H}_(R%))4

(ii) There exists a (ft) —adapted G L4(R)—valued continuous process (My)o<i<T such that, for P—almost
every w,

vt < Tag (X (w)) = My(z,w) dz—ae.
x

0 . e .
where — denotes the derivative in the distribution sense.

ox

And also:

Lemma 4.2. (M;)o<i<7 is the R4 _yqlyes (ft)— adapted continuous solution of the linear sde:
Mi = e; + / b (XM ds + Z/ o3 (XYM TV
0 . 0
7j=1
forall1 <1 < d, where b, and ol are versions of the almost everywhere derivatives of b and o7.

4.2 Application to the free Langevin process

We apply theorem 4.1 and lemma 4.2 to the process (4.1), since the function bis Lipschitz with linear
growth and o is a constant. Then there exists (F;)—adapted processes, parametrised by (z,u) € R?xR?,
(MY (2, w)), (MY (,0)), (N (w,)), (NY (, u) such that

V.Y, = MtY(x,u)

V.V, = Mtv(a; u) @5)
vuY;f%u = ty(x’u) ‘
VUV?’u = tv(xvu)



where

(

t
MY (z,u) :Id+/ MY (z,u)ds
0

t - t -
MY (o) = [ BT Y (o ds + [ BTV MY (o) ds
0 0
. 4.6)
NY (x,u) :/ NY(x,u)ds
0
t

t/\-/ ~ ~
NY (x,u) :Id+/ be (Y3, VEIYNY (2, 1) ds+/ by (YU, VEYNY (2, 1) ds
0 0

where gx and Eu are versions of the almost everywhere derivatives in « and u of b. 1 is the identity in
dimension d. Since

bz, u) = ( sign(z D)) ((@/, [2D)), (o, sign(z@)u®))
we take b, (z, 1) = (Verb, 8, b) (, u) and by (2, u) = (Vib, 8, b)(z, u), where

Varb(z,u) = (Vb sign(z(®)V 5@ (( D)), (u ,sign(:c(d))u(d))>
0,00z 1) = (sign(at! >>ax<d>b 0,0b®) (( \:c ), (o sign(a@u®)
Vub(z,u) = (Vb sign(z @)V, b <( (v, sign(z (d))u(d)))

8u(d>g(z,u) = (sign(z (d ))8 Y4 ,8u(d b(d) ) (( | d)‘) (u/,sign(:p(d))u(d))> _

4.7)

\

Properties of the weak derivatives in a no-drift setting

Let (2", m;"")o<t<T be the process that solves the following SDE under a new probability measure

P,

t
=z 4 ¥ ds
t /0 ! 4.8)

nt = u+ oW,

where (Wt)ogth is a Brownian motion under the new probability. We also consider the following
processes defined by the equations:

t
M) (z,u) = Id—l—/ MY (z,u) ds
0

§ ¢ 5 t_ 3
WY (@) = [ BTN (wu)ds+ [ B Y (0, u) ds

0 0

¢

NY (z,u) :/ NY (z,u)ds

0

t~ . t -
NY (2,u) = I + / ba(Z2, T)NY () ds + / b (32 T NY (2, u) ds.
0 0

4.9)

We analyse the continuity at the boundary 9D of the solutions of (4.9) starting with the term Mtv.

Lemma 4.3. Forany (t,u) € [0,T] x R and p € [1,00), the processes MY (-,u), MY (-,u), N} (-, v)
and N} (-, u) are continuous up to the boundary 9D in norm LP.
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Proof. This result is proved using Gronwall’s lemma. The regularity of the derivatives gx and Zu is used.
The regularity of the density of the drift-less free Langevin model is used to smooth out the changes of
sign when the boundary is hit.

Let (t,z,u) € Qr and T € OD the projection of x on 9D. By the system (4.9):

t t
| M (2, u) = MY (2, )| = ‘/ ba( “““,ﬁ?)MsY(wm)dsﬂL/ by (", 8 ) MY (2, u) ds
0 0
t~

t~ — ~
= [ B Y @ ds - [ BRI (@0 ds
0 0

<

t . t B .
[ Bt o ds - [ BTN (5,0)ds
0 0

t . t_ .
| [ B Y oy ds = [ BTN () ds|
0 0

The first term in this sum corresponds to the first derivative in x while the second term of the sum
corresponds to the first derivative in u. By (Hppg)-(7) and Gronwall’s lemma it is easy to notice that
there exists a constant Cy_ 3 v,»,7 such that:

Supi(HMtY( NV(:U,U)H) < CVszub,T
(trxvu)eQT
SO:
t~ = ~
/ TOMY (z,u) ds—/ by (Z2Y, MY (%, 1) ds
0
< bx@;”“ ) (M) (,u) — M) (z,u)) ds
G b (37 Y
+ / (b (Z2"ny) — by (5?:“)%)) M, (z,u)ds
0
t
~ 3 v
= |0 Lo (DxRd,R24) s ((IJ‘,U) - Ms (.T,u)| ds
y b~ - 4.11)
+ Sup HMtY'(:L,’u)HLOO('DXRdRQd)/ bw(%?’/ll‘?ﬁg)_bx(z’?’u’ﬁg) dS
t€[0,T) ) 0
t s
b TV Vo=
< z Loo(Ddede)/o /0 ‘MG (xau) - Me (CU,U)‘ dfds

t ~ ~ —
+ sup [|MY (2, 0)]| e p e ey / (Vab(EE ) — Vb )| ds

te[0,7

Dy D(ZDH, T74) = Dy b(ETTY)

T

ds.

¢
—
+t:[%%] HMt (x7u)HL°°(D><Rd,R2'1)/O

The second term of this inequality represents the derivatives of the drift with respect to the first d — 1
coordinates while the third term corresponds to the derivative w.r.t the & coordinate. These two terms
are analyzed separately in the following paragraphs: The derivative on the first d-1 directions and The
derivative on the d”*direction.
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The derivative on the first d-1 directions

Going back to the choices for the derivatives of bin (4.7), we have that:

(4.12)
We recall that the derivative w.r.t. x of the drift b is Lipschitz continuous which we denote as Ly _p its

Lipschitz constant. Also the d—dimensional free Langevin process with no drift defined in (4.8) can be
considered as being d independent 1—dimensional free Langevin processes. This results in

NGO ><d>),(<ﬁy> sign (@) (7))

=V (G @) (@ sien (E)) @) )| ds
< Ly, (/ H d)’ (z0) (deer/ ‘775 Hs1gn( (zm) )—sign((gz‘“’“)(d))‘ds)
< o [ @ = @) @) ase [0 sen () - sign () 9) | as).

(4.13)
For the second integral of (4.12), we have by the boundedness of V b:

/ e (@) b ()| @]) (@) sien (22 ) G)))
= sign (")) vab® (G |G ) (G sien () ) @) ds

n
< IVabll oo (@ r24) / ‘&gn Z?“)(d)) — sign ((Ei’“)(d))‘ ds

/ )v /bd) (
- Vb () ,\(%f’“)(‘”
< Cous /Ot (1 n ‘<~g)( )D sign <(g§,u>(d)) — sign (( Z u) ds—i—va / ‘ ’Zvi

where Cy,p = max{Lv,s, || Vabl| oo (pxra r2d)}. Combining these two previous inequalities and using

the definition of the free Langevin model with no drift (4.8), we go back to inequality (4.12) to obtain
t

DY) = Varb(Z0, 7Y

ds
0

t 4.15)
< Cv,b </0 (1 + ’( )(d)D ‘sign <(E§’“)(d)> — sign ((Ef’“)(d)ﬂ ds+t|z — x\)
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where CV;Cb = 2maX{vab, ||V$b\|Loo(Dde;de)}-

The derivative on the d”direction

We develop the third term of the inequality (4.11) based on the same arguments used in the previous
section:

t

L b(ZS"TE) — Oy b(Z0,715) | ds

0
< /Ot ’sign ((Zf’“)(d)> Dt ((('vau)/v
— sign ((%f’")(d)> Dy’ (((Ef’u)/y
[ouob® (o @ @) (Y sisn (@) @9)@))
— 00 (((2”)/,

<Cv,p </Ot <1 + ‘(?)(d)’)

_|_

0

(4.16)
where Cv,, = 2max{Lv,b, | Vab|| poo(pxra;p2a)}- Finally, from inequality (4.11):

t_ 3 t ) 3
/ ba(Z5, MY (2, u) ds — / ba (G5, MY (7, ) ds
0 0
t
< Cy. (T/ |0 (2, u) — MY (2, )| d9+/ (1+] @ @])
0 0

sign ((Ez’“)(d)> — sign <(§f’“)(d)>‘ ds)

+ Cv, ot |z — 7|
(4.17)
where Oy, = 2max{Lv,b, | Vab|| oo (pxra;r2a)}-
Similar calculations show that the second term from (4.10) is bounded by:
0 MY (2, u) ds —/ by (Z2, MY (%, u) ds
< Vbl e s / 1Y (,u) — B (2,0)] ds + Cyoptle—7]  (18)

+ C’vub/o (1 + ‘ ny) d)D ‘81gn (( )(d)) — sign ((Zf’“)(d))‘ ds

where Cv,p = 2max{Lv,s, || Vub| Lo (pxra g24) }. Combining these inequalities gives for (4.10):

1Y (z,u) — MY (2,u)| < Ov,,v.07 (/t MY (2, u) — MY (Z,u)| ds + | — x‘>
0
+ OVt /Ot (1 + )( )(d)D ‘mgn <(~w “)(d)) — sign ((Ef’“)(d)>’ ds.

50

(4.19)



Taking the expectation under PP, ;, of the previous equation, we obtain for any p > 1:

t
E.., |0 (2,0) = M) (&, 0)]" < €2 gy (E /0 (817 (,0) = MY (2 w) | ds + | — &P

+E, ., /Ot (1 + ‘(’ﬁgﬂd)’)p sign ((Z;”’“)(d)) — sign ((Ej’“)(d)> ‘p ds) )
(4.20)

Gronwall’s lemma gives that:

B | MY (2,u) — MY (2,u)]" < Cv,5,v,5,1,pe 70 TubTr <\1’ — 7|

[ (0] i () s (2 ) )
4.21)

where Cv v, 1, depends on Vb, Vb, T and p. Recalling that components of the d dimensional
drift-less free Langevin model in (4.8) are independent:

Ezm (1 + ’(ﬁg)(d)bp ‘sign ((gg,u>(d)) — sign ((Ef,u)(d)> ’
< (B (15 )} ) (e i (209 i () ) )

1
N
<3z (1 + u D I ) ’

2Pp!
X <]Ez,n

1
S . s 3 5
< CuoTp <22pPz,n (u(d)s + O'/ We(d) do <0< 2@ 44 dg 4 a/ We(d) d9>>
0 0

1

3 2@ 4 syl \/§ U 2
< P — J—
< Cuo,Tp (erf (\/; 55 erf ENE

where C,, » 1, depends on u, o, T' and p, and erf is the error function.
Lebesgue dominated convergence theorem gives that bound in (4.21) converges to 0 as z goes to T.
This shows:

p

-

2p> I (422)

sign (x(d) +u@s+ 0/ Wéd) d9> —sign <u(d)3 + J/ We(d) d0>
0 0

E., |M) (v,u) — M) (z,u)|” — 0, as x—z € dD.
Foranyp > 1:
p

t
B [31Y (20 = N ()" = Eey | [ (1Y (o) = 02 () s
0

< P71 /Ot E., }Msv(x,u) - Msv(a’c,u)‘p ds
and using Lebesgue convergence theorem and the previous convergence result, as z — Z:
E., |M} (z,u) — M (z,4)[" = 0.
Similar computations allow to show that for z — Z:
E., |NY (z,u) — N} (z,u)|” =0
E., |NY (z,u) = NY (z,u)|" — 0.
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Remark 4.4. Following similar arguments as the ones presented in the proof of Lemma 4.3, we can
show that for any (t,z) € [0,T] x D and p € [1,00), the processes M} (x,-), M} (x,-), NY (z,-) and
NY (x,-) are continuous on RP in norm LP.

4.3 Application to the confined process

Girsanov transform

Consider the probability measure P, ,, defined by:

dPy .,
dPZﬂ? ]:T

T 5 1 (T
= Gr(x,u) = exp </ b(z2" ) dWs — 2/ b2(z§’“,nfj) ds) . (4.23)
0 0

Since b is bounded, then, for any (z,u) in D x R%, (G(z, u)¢)o<t<T is a martingale and we have that
P., ~ Pz .. By Girsanov’s theorem, then the process (zf " ni')o<t<T solves the equation (4.1) under
[P «. This also means that (4.9) under IP, ,, is equal in distribution to (4.6) under P, ,,.

By (Hppg)-(¢) and (Hppg)-(it), we have that the function bis Lipschitz. Since the drift is sufficiently
regular and o is a constant, by [Friedman, 2012], the stochastic flow process (z,u) — (Y;"", V,;"") is
well defined and we can consider the function f: DxR? — R defined as f(t, z,u) == E, ,(V;"", V")
where 1) is a continuous extension of the function 1 for negative values of z(d):

P (z,u) € R x RY — (2, |33(d)‘)’ (W, Sign(x(d))u(d))). 424)
According to [Bossy and Jabir, 2011], the process defined as (X, k) = ((Y/, \Y;(d) N, (V2 (Sign(Yi(d))_,_) y
V;(d))tZO is a weak solution of (1.1), so for any (, z,u) € [0,T] x D x R%:
Pt w) = Eau [0, V)] = Bl gyronsop@ (5, Vi) 4 Boul Ly cop (67, Vi)
= Ex,u[]l{y;d>z’“>o}¢(ytxvu’ Vo) + By ]l{Y(d)tz’uSO}/l/) ((Yt/x,u7 _Yt(d)l“,u)’ (v —Vt(d)x’uﬂ
=Ezu [Qp ((Yt/x,u’ |Yt(d)96,u|)7 (V;,x,u’ Sign(n(d)w’u)‘/}(d)x’uﬂ

= Eo [0, )] = B[ (X7, U7
(4.25)

We now state the lemma that contains a first part of the regularity results of Theorem 2.1:
Lemma 4.5. The function I defined in (1.7) belongs in C([0,T]; L>(D x R9); R?) N C([0,T] x D x
R% R).
Proof. By similar arguments to (4.25), we can show that for any (¢, z,u) € @, we have the equality

Eou[$(Yy ™", V™)) = B ul (X35, Up™")]

and they both equal F'(t, z,u) by definition (1.7). (Y™, V;7*") is the solution at time 7" of the SDE
(4.1) such that at time ¢, (Y;""", V;"") = (z,u). By the hypotheses (Hppg)-(i) and (Hppg)-(ii), we
have that the function b is Lipschitz (see Remark 1.4), therefore the flow (¢, 2,u) — (Y5, V™"
is almost surely continuous. The function 1 is continuous and bounded with support on D x R¢, then
1 is also continuous and bounded. Let (¢, z,u) € [0,T] x D x R then for (g, 2y, ur)ren such that
(th, Tx,up) — (t,2,u), when k — oo, we have that (V"R VISR 5 b (VEDY VEPY) as.

Since v is bounded, then by the Dominated Convergence Theorem, E [@(Yfﬁx’“uk, Ve “’“)} —
E [@(YT””“, V%’x’u)}, or written differently F'(ty, ug, xr) — F(t,x,u), when (t, vg, ur) — (¢, 2, u).
This implies that I is continuous at (¢, z,u) € [0,T] x D x R%.

|
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Lemma 4.6. The function F defined in (1.7) is such that V. F, YV, F € C ([0,T]; L>(D)) N C([0,T] x
D x RY N L2(Qr,RY) N L2(X, RY).

Proof. Since forany (t,x,u) € Qp, f(t,z,u) = By o [(X", UPM)], F(t, x,u) = Ep( X35, UR™")]
and the fact that the process (X, Up)o<i<7 is time- homogeneous (as the drift b is not time dependent),
then is clear that f(¢t,z,u) = F(T — t,z,u). Therefore if the regularity results from the statement of
the lemma are proven for f, they will also apply to F'. We work with the former in this proof.

Provided sufficient regularity on 1/, we have that:

Vaf(t,z,u) = Epy [V (VU VEYMY (2,u) + Vo (Y, VMY (2,u)]  ae.  (4.26)
and
Vuf(t,z,u) =Egy [V (V7 VEYNY (2,0) + Vb (5, VEONY (v,0)]  ae. (427)

By hypothesis (Hppg)-(i) and Gronwall’s lemma, there exists a constant Cy,p, v,.», 7 depending on Vb,
Vb and T such that

sup (HMtY(x,u)H + HMtV(x,u)H + HNtY(a:,u)H + HNtV(x,u)H) < OV,b, Vb T- (4.28)
(t,z,u)EQT

This result together with the boundedness of V4 and the bound (4.28) give that V. f, V. f € L>®(Q;, R?).

Continuity of the derivatives
Let (¢,z,u) € [0,T] x D x R% and Z the projection of 2 on 9D:

Ve f(tx,u) = Vi f (6,7, 0)| = [Bew [V (", V)M (2,u) + Vb (7, V) MY (2,0))
—Egu Vo (V7 VMY (3,0) + Vo (V7 VI MY (2, 0)] |
= |Ezm [Gt(a:,u) ( (" )Mt (x,u) + Vb (" ! )Mt (337“))]
E. [Ge(@,u) (Vb (2" nf ) MY (2, ) + Vb (2" ni ) MY (2, w) )|
< Eep |Grlo, u) Vot (7", m )M (2,0) = Go(@, ) Vard (27", i) My (3, )|
+Ee |G, w) Vit (2 i )M (2, w) — Go(, w) Vb (207" i) MY (2, 1) -
(4.29)

Considering the first term:

.y |Gi(w, u) Vo (2" nf) MY (2, 0) = Go(Z, u) Vo (27", i) M (2, u)
S Ez,n |Gt($7u) - Gt(ia u)‘ ‘vx@(zfuanz’fu)MtY( )|

+Ez77Gt j u ’MtY JI u ‘Vx¢(2f’uant) xw(zfuant ) H

+ EoyGo(@, ) [Vt ()| [ MY (2, 1) — MY (7, w)]
< HvxEHLOO(DXRd,Rd) (t xS;lEpQT |MtY(‘T’u)’> Ez,n |Gt(‘r7u) - Gt(ivu)’

1
2

[NIE

+< Sup ’Mty(%uN) (E.,Gi(z,u)?)

t,x,u€EQT

(B VB 1) = Vo))

1

(V| e sty (BrnGo(@s)?) (B [Vutb ()| [ MY () = AEY (2, )

1
2

Since the function b is Lipschitz by the hypotheses (Hppg)-(¢) and (Hppg)-(ii), (see Remark 1.4) and,
by their definitions in (4.8), for any (t,u) € [0,7] x RY, the function x + (2}, n}*) is continuous.
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Then a.s. the function = — Gy(z,u) for any u € R? is also continuous. For all z € D, E, ,G¢(x,u) =
E. ,G¢(Z,u) = 1, then the first term of the inequality goes to 0 as x — Z by Lebesgue Dominated
Convergence theorem. Similarly, the Lipschitz continuity of 835@ and the LP continuity of (zf ’u)OétST
in its initial condition implies that the second term converges to 0 as z — Z. Also lemma 4.3 shows that
the third term of the sum also goes to 0.

Similar arguments show that the second term of the bound in (4.29) goes to 0 as x — Z, thus
proving that V, f(¢,-,u) is continuous up to the border 9D. And by repeating the same arguments,
only replacing MY (-,u) and M} (-,u) with NY (-,u) and NY (-, u), we obtain also that V,, f(t, -, u) is
continuous up to the border 0D.

Through an analogous procedure that involves the continuity of G(x, ), the LP continuity as ex-
pressed in the Remark 4.4 and boundedness on Q7 shown in (4.28) of M) (z,-), MY (z,-), N} (z,-)
and N} (z,-), it can be shown that the functions V. f(¢,z,-) and V, f(t,x,-) are continuous for any
(t,x) € [0,T] x D and the same for V, f (-, ,u) and V,,f (-, x, u) for any (x,u) € D x R%

Existence of the L2 norms

Let (t,2,u) € Qy, then

[N
VI

Va2 )] < Crpr gy (BonGilr,w)?)* (B (105G 0] + 05 ni)])?)

1
< C’MY’MVe%THbHLOO(DX]Rd) <Ez,n (‘axi(ztx,u, ng)‘ + |8u@(zf,u’ 77?)‘)2> 2

where Cyy y7v = max{HMYHLOO(QT’R%) , }MVHLOO(QT’R%)}. Since ¥ € Co''(R? x RY), then we
also have that V, ¢ € Co'(R? x R?) and V¢ € Co' (R? x RY). So there exists two non-negative
function 81, B2: R? — R such that 81(z) = 1 for € Proj, (Supp(¢)) and O everywhere else, and
B2(u) = 1 for u € Proj, (Supp(¢)) and 0 everywhere else (where Proj, and Proj, are the projections

according to the first d and the last d dimensions of R%*?) and a constant

C= sup (|Vod(z,u)| + |[Vui(z,u)|)*
(z,u)EDXR?

such that

N

(Vo) + [Vubla,w)])” < Chi@)Balu) = Vuf (t,w)| < Cop g (B Br(25) Ba )

7
azallty .
where Cy; 1, = CCypy ypve? I ”L‘X’(DXRd), SO we can rewrite:

N

Vo f(t, 2, u)l < Cyyry (/de Bi(x +ut + z)Ba(u + n)p(t; 2,m) dzdn)
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the function p(¢; -, -) being the density of the random variable (a fot W, ds, aWt). Finally

IVafllZ2(sy za) =/ [(u-np(@)| [V f (t, 2, u)|* dt © dogp(z) © du

< 012\4Tb/ //R2d |u|B1(x + ut + 2) B2 (u + n)p(t; z,n) dzdndt @ dogp () @ du

< 012\4Tb/ dt/RQdﬁ(t;z,n)dzdn/Rd |u|B2(u 4+ n) du/aDﬁl(x+ut+z) dogp(z)
- T

< €2 1, NOD 1 Supp() / @ / dp(t;z,m dzan ([ (ol + )Batu-+ ) )

< C?

o Tb)\(aD N Supp(¥

s (525 ) 1(Co -+ nlA(Supp(D)
(4.30)

]Rd

where Cg, = [ga |u|B2(u) du is a constant and pf\i)(o 1, is the density of the centred d—dimensional

normal distribution that has for covariance matrix I; which admits moments of any order so the double
integral left in the final equality is finite. Similar computations show that || Ve || 12y, . is finite.

Now, we consider the norm:

IV 12ty = /D Vo f (b2, u) 2 didadu
><

< 012\/[ Tb/ B1(x + ut + 2)Ba(u + n)p(t; z,m) dzdndzdu
R2d

= CMTb/ (t5zan)d2d77/Rd52(U+TI)dU/Dﬁl(m—i-ut+z)d:1:

<C o (Supp(¥))”.

Corollary 6.3 gives the result that V. f € L?(D x R% R?). |

S Regularity of the Kolmogorov problem with specular boundary condi-
tions

The bounds of the weak error (3.46) obtained in section 3 also depend on the L?(Q7;R??) norms of
Hess, ., (F') and Hess,, ,(F') where F' is the solution in distribution of (1.9), or under a probabilistic
interpretation (1.7). This section focuses on this L? regularity of these second order derivatives, which
is the final result of Theorem (2.1). Instead of working on this function, we consider the following
f:Qr — R, f(t,z,u) = E (X", U;”") for any (t,z,u) € Qr. As mentioned in the previous
section, f(t,z,u) = F(T — t,z,u), so the L?(Qr,R??) regularity of the second order derivatives
proven for one function, apply to the other. Again, we consider the former which verifies the equation
(6.11).
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Remark 5.1. The solution f of (6.11) is in distribution, meaning that for any ¢ € Cp° (Q,) we have:

0_2
F(s,2,) <3s90 (4 Vap) = (V- (b)) + 2Au90> (s,2,u) ds da du
Qt

:/ [gp(s,m,u)f(s,a:,u)]zg dx du — /(u-np(as))'y(f)(s,:):,u)go(s,x,u) dAs, (s, x,u)
DxR4 %,
- /2+(U'n1>(ﬂf))7(f)(5,%u = 2(u - np(z))np(x))e(s, z,u) dAs, (s, z,u),

(5.1)
Let us further notice that the trace function (f) in L*(X7) is characterized by the Green formula
related to the transport operator 0y + (u - V) (we refer to Subsection 3.1 for more details).

We extend the mollifiers defined in the introduction of Section 3 for d > 2. Let (Ek) k>1 (Pn)n>1
and (g )m>1 be smooth sequences such that:

Supp(Br) <—Z 0) . Supp(pn) € Ba(0;RTY) x (—; 0> and  Supp(gm) = R
5.2)
where B, (a; Rd_l) is the R%~! open ball centered at € R%~! with radius r
The sequence (Ek) >1 is defined using the mollifying sequence (0 )x>1 from Section 3. For any
t € R, we state that Ek(t) = Br(—t). So Ek is reflection according to the abscissa of .
Recalling the notation x = (2, x(d)), for any 2 € R?, we consider the generating function:

1 1
exp| ———— Jexp [ = forz € B1(0;R*™1) x (=1,0) ,
PRPMNR p( 1—Hx’HQ> p( x<d><—1—x<d>>>> 1 ) x (=1.0)

0 otherwise,

1
then for any n > 1, p,(z) = Cn?p(nz) where C is such that/ p(x)dr = Yok
Rd
For the sequence (g, )m>1 We choose to use the Gaussian kernel:

grueR— L exp —M
(2m)? 2

by taking g, (u) = m®g(mu), with the property that

1
ugm(u) = =5 Vugm(u). (5.3)

We define the regularisation of f the solution in distribution of (6.11) as f y,.m: (7,y,v) € Q7 — Ras

Srnm(T,y,0) = 0 f(s2,0)By(7 = 5)pn(y — 2)gm (v — v) dsdadu. (5.4)

Also defined is fn,m., the regularisation of f only w.r.t. the spatial coordinates, defined for every
(87 Y, U) € QT as:

famls.0) = [ fs,2,0)p0(y ~ 2)gm(v — ) dadu. 55
DxR4
In the following Lemma, we obtain the equality verified by fy. , -
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Lemma 5.2. The function fs, ,, on the interior of Q satisfies the equality

2
g
- 8’7‘fk,n,m(7—7 Y, U) + (7) : vyfk,n,m)(77 Y, U) + (b(f% U) : vvflc,n,m)) (7-7 Y, ’U) + ?Avfk,n,m (T7 Y, 7))

= Rk,n,m[f] (7—7 Y, U)‘

(5.6)
with
Ry nm[fI(T,y,0) = RZ?n,m[f](T, y,v) + R lf1(7, 9, 0)
where
Rz?n,m[f] (7-7 Y, ’U) =[x (gk(vypn : (Ugm)))

+ /Q (b v) — b, ) - Vuf (5, 2,0)) BT — 8)pn(y — 2)gm (v — ) dsdadu
R f1(rys0) = Bolr — T) fum(Ts9,0)
5.7

Proof. To prove this Lemma, we consider a specific test function that is applied to the equation in
Remark 5.1 and which gives the desired result.

We consider a test function ¢ € Cg°(Q7). The function @p . m: (s, 2,u) € Q1 = Pppm(s,z,u) €
R defined as:

Brnm(s.2.0) = [ plr.. 00T = )puly ~ 2)gnlo — ) drdyd
T

is in C;°(Q7) and Py 1., vanished close to D since the support of p,,(y — -) is in D for any y € D. We

mention that the mollifying sequence (p;,),>1 has been chosen such that it removes the contribution of

the boundary Y7 in the equation (5.1). The Remark 5.1 applies for the test function @y, , (¢, , v) and

on the whole domain ()7 we obtain:

2

f(s,z,u) <85g5k7n,m — (- Va@rnm) — Vu - (0@, 0)Pknm) + U2Augbk,n7m> (s,z,u)dsdrdu
Qr

= / [@k,n,m(sw,u)f(s,:r,u)]jig dzdu.
DxRd =
(5.8)

By using Fubini’s theorem, we pass the mollifiers on the function f in order to obtain the equality for
function f, , .

We start by analysing every term of equation (5.8), one by one. The first term corresponds to the
derivative in time, and by noticing that 00, (7 — s) = —0, Sk (T — s):

f(s,2,1u)0sPk n.m(s, x,u) dsdrdu
Qr

/QT Fls,2,u)0s (/ o(7, 4, 0)Bi(T = 5)pu(y — ) gm (v — ) deydv) dsdzdu

T

/ F(s,2,u)p(7,y,0)05Br(T — 8)pn(y — @) gm (v — ) drdydv dsdwdu
QT XQT
== / F(s,2,u0) (1, Y, )07 Br (T — 8)pn(y — ) gm (v — w) drdydv dsdzdu
QT XQT
- / o(1,y,0)0r < F(s,2,0)Bi(T — 8)pn(y — 2)gim (v — ) dsdxdu) drdydv
T Qr
== / 80(7-7 Y, 'U)ank:,n,m(Ta Y, U) drdydv

T
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while the r.h.s term of equation (5.8) becomes:

/ [@k,n,m(su x,“)f(S,.%’,u)] zig dxdu
DxR4 =

= / Gknm(Tyz,w) f(T, z,u) drdu — / Pknm(0,2,u) f(0,2,u) dedu
DxRd DxRd

= / (1,9, 0)Bi(T — )/ f(T,x,u)pn(y — ) gm (v — u) dedudrdydv
Qr DxR4 5.9)
- / o(T,y,v )ﬂk( )/ FO0,z,u)pn(y — z)gm (v — u) dedudrdydv
Qr

DxR4

:/ (T y,v )Bk(T_ )fn,m(T7y’U)d7-dydv_/ (T Yy,v )Bk( )fn,m(oayav) deyd’U

T T

= / (T Yy, v )[ﬁk( S)fn,m(sgy,'l))] Zzg deydv

The term s = 0 is zero since the support of Bk is included just on [T, 0].

By Fubini’s theorem, the term corresponding to the drift in « in equation (5.8) can be rewritten as:

f(s,z,u)(u- VP nm(s, z,u))dsdedu
Qr

_ / Blr — )gm(v — u) dsdrdudv / F(s, 2, u)p(r,,0)(u - Vaply — ) dady
[0,T]2 xR DxD

(5.10)

and, for the sake of simplicity we develop just the inner integral. Since V, p(y — x) = —Vyp(y — ),
we have that

/ f(s,2,u)o(T,y,0)(u - Vapnly — x)) dedy = —/ f(s, 2, u)p(7,y,0)(uw - Vypu(y — x)) dedy
DxD DxD

=~ [ o wplr )0 Fypuly ) dody + [
DxD

DxD

= —/DSO(ﬂy,v) (U'Vy/pf(swm)pn(y—x) dw) dy+/pXD f(ssz,u)p(r,y,0)((v—u) - Vypn(y—2)) dedy
(5.11)

f(s,z,u)o(T,y,0) (0 = w) - Vypuly — x)) dedy

This means that we can rewrite the term (5.10) as:

f($7 €T, u)(u : vr@k,n,m(sa z, U)) dsdxdu = — / 90(7-1 Y, U) (’U : Vyfk,n,m) deydU
Qr Qr

+ / o(7,y,v) ( 0 f(s,z,u)((v—u) - Vypn(y — x))gk(T — 8)gm(v —u) dsdmdu) drdydv
(5.12)

For the term corresponding to the drift in u in equation (5.8), we can perform an i.b.p. because
f € H'(R?) in the variable u according to Lemma (4.6), we then add and subtract a term in b(y, v), and
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perform and integration by parts on one of these terms to obtain:

F(502,0) (T (0,0 (5,,0))) sl = [ Qpn(s,2,0) bl 0) - Vo f s, )
Qr

T

o F(s, 2, u)p(7,y, 0)Br(T = 8)pn(y — 2)(0(y, v) - Vugm(v — u)) dsdrdrdydudv

S R T L

(5.13)

As Vyugm(v —u) = —Vygm (v — u), we have, after several applications of Fubini’s theorem:

f(s,z,u)(Vy - (b(x, )P nm)) dsdxdu
Qr

—/ o(1,y,v) (b(y,v) - Vo frnm) dsdydv
Qr
- / o(1,y,v) (/ ((b(z,u) —b(y,v)) - Vuf(s,x,u)) Ek»(T —8)pn(y — x)gm (v — u) dsdmdu) drdydv

(5.14)
The diffusion term becomes

o2

2
— f(s,z,u) ANyPrnm (s, x,u) dsdedu = 7
2 Jor o

SO(T’ Y, U)Avfk,n,m(Tv Y, U) deydv (5.15)
Qr

The smoothed version f}, ,, ,, on Q7 of the weak solution f of (5.1) verifies for any ¢ € C}° (Qr):

- / (.5, 0)0s frmm (7 s 0) drdydv + / (1 9,0) (0~ Vy fronm) drdydo
T

T

2
+ / (7, 9,0) (b(y,v) - Vo frnm) dsdydv + %
T

o(T,y,0) Ny fonm (T, y, v) drdydv
a s=T
/ (7,4, 0) [Be(T = 8) fam(s,y,0)] ., drdydv
T

Qr

+ / o(1,y,v) < ; f(s,z,u)((v—u) - Vypn(y — 2))Br(T — 8)gm(v — u) dsda:du) drdydv

+ / 90(7—7 Y, U) </Q ((b(ya U) - b(1:7 u)) : Vuf(S, L, u)) gk(T - S)pn(y - x)gm(v - U) de:EdU) drdydv

(5.16)
where f, ,,, is defined in (5.5).

We have that Supp(3;) C [—T,0] so for any 7 € [0,T], Bx(t) = 0 and since fm,m is a smooth
function in the interior of ()7, we obtain that

2
- affk,n,m(7—> Y, U) + (U ’ vyfk,n,m)(Ta Y, U) + (b(y, U) : vak,n,m) (T, Y, U) + %Avfk,n,m(7_7 Y, U)
- Rk,n,m[f] (Ta Y, ’U).

(5.17)

|
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Lemma 5.3. Consider a function f such that f,~¥,f,V.f € C([0,T]; L=(D))NC([0,T] x D x R*) N
L*(Qr;RY) N L2(X1, RY) and define for any (1,y,v) € Qr

R Ly, v)

= £ (BuVopn (00)) + [ (blo0) = b(w ) - Tuf (5,,0)) Bl = $)puly = 2)gn (v — ) ddd

T

(5.18)

and N
R L F1(y,0) = Be(r = T) fam (T, y, ) (5.19)

By considering n ~ m at infinity, then:

i) |[RF T, Y,V H T

) k,n,m [f]( Y ) L~ (Qr) (k,n,m)—oco

o g H <c de RSP ) < Cosr uniforml

i) VyBR ml (75 y,0) L@ty — VY “ vHinml/] Q) = I oy
in (k, n, m)

iii) vyRif’mm[f](T,y,v)H

in (k,n,m)

< Cv,tpand HV’URSP [f]‘

k.n,m

< Cy, t,p uniforml
L>(Qr;R4) L*(QriR4) s uniformty

w) |f(T,y,v) —fOTRTm [f](T,y,v)dT’ —0

k.m,m (n,m)—o00

= k,n,m

Dy | VuRES 7))

uniformly in (k,1,m).

< Cand [} VR, 1)y, 0)]

L2(DXR;R4) L2(DxR;RY)

Proof.

For the proof of this Lemma we utilise several properties on the mollifiers (py,)n>1 and (gm)m>1
defined at the beginning of this section. We have that

1 1
/ 2] po() do = / ] po(a) do < / pul) dz =
R4 Supp(pn) n n

Supp(pn)

then

/ |Hessy »(pn) ()| dz = C’nd/ [Hess, »(p(nx))| dz

R4 R4

= annd/ |Hess »(p)(nx)| do = C’n2/ |Hessz »(p)(x)| de < C'Vgpan
R4 R4 ‘

where Cyz,,, depends on C' the integral of p and on the integral of the Hessian of p. Finally we have
that

1
[ el 9pa(o) do < St [ Vaptna) do < [ Vap(a)] do
Rd n Rd Rd
Similar properties are deduced for (g, )m>1-
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i) Convergence of the error.
We consider the first term of RZ?mm[ f] and the property (5.3):
75 (BT ypn - (00))) )| = g | £ (Be(Typn - (Vo)) (7.0,0)]
yPn m ' Yy m2 yPn vdm s Yy
1 ~
= W ’vvf * (5kvypngm)) (T,y,v)‘ (5.20)
n
S W ”vaHLOO(QT;]Rd) CVzpl

where Cy_,, depends only on the gradient of p;.
Since the function b is Lipschitz by hypothesis (Hpangevin)-(4) and Supp(p,) C B (0; R4 x

(=7:0)

(000 = b010) 9 10,0) Bl = 9~ )0 — ) dsdad

< Ly [Vaf(s, 2, u)ll poo (@pima) /Q (ly = all + lu = oll) (7 = 5)puly = 2)gm(v — u) dsdwdu

T

< L1950 gy [ 1= oll oy =)ot [ o= ull gt~ ) )

m

1 C
< L [Vuf (5,2, )l e @) (n i gl)
(5.21)

where Cy, depends only [, ||u|| g1(u) du. Therefore we have that:

Sp n 1 1
HRk,n,m[f] (7,9, v)HLm(QT) < OV, fbpion <m2 + n) (5.22)

ii) Bound on the derivative of the error in y.
We consider the first term:

90 (5 (- 00) 9] g = s [90 (4+ (Fut-9200)) )

Lo (Qr;RY) B Lo(QriRY)
1 ~ 0o d TL2
= — |[Vuf * (Bibess, (b)) (r.,0) | L¥(QriR?) < Cozy IVuf (5,20 | ity 3
(5.23)

where Cvg 1 depends only on the Hessian of p;.
The second term is bounded using similar arguments as before concerning the fact that b is with

bounded derivatives

Vo [ (000) = b)) af,,00) Bl = s)ouly — 2)gm(v — ) dsdad
T Lo(Qr;R?)

< Hvyb(y, v) - Vauf(s,z, u)gk(T — 8)pn(y — 2)gm (v — u) dsdzxdu
Lo (Qr;RY)

QT
i H | (00) b, 0) - P 5,,0) Bulr = 1 ¥ply ~ 2)gm(o — ) ddd
T L>®(Qr;RY)

n
S ||va||L°°(QT;Rd) (HvybHLw(DXRd;Rd) + vapl + Cgl%)
(5.24)
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Therefore we have that:

|08, 151700 Ot (15 2+ 25 5:25)

< -
Loo(QriRd) — m?

Through a similar procedure, taking the L?(Qr; er?)—norm instead of the L>°(Qr; R?)—norm on V,, f,
we obtain the desired result.

iii) Bound on the derivative of the error in v.

We consider the first term:
va (f ¥ (Bk(vypn . (’Ugm))>) (T’ Y U)HLOO(QT;]Rd)
n

< vaplcvvgl ||Vuf(87 x’u)HLO"(QT;Rd) E

- % vaf * (Ek(vypn : vam)) (T’y’v)HLw(QT;Rd)

(5.26)

where C'y, ,, depends only on the gradient of p; and Cy, 4, on the gradient of g;.
Following similar calculations in determining the previous bound for the derivative in y, we have
that

va/ ((b(y,v) = bz, 1)) - Vauf(s,2,1)) Br(T = 5)pn(y — 2)gm (v — u) dsdadu

(5.27)
m
< Vufllpoe(@rira) (”vUbHLOO(Dde;Rd) + Cpl,valg + CVM)
where C),, v, 4, depends on p; and on the derivative of g;. Thus we conclude that
n - m
|0 B A1y )| < Coipan (142 + ) (5.28)

Through a similar procedure, taking the L?(Q7; R%)—norm instead of the L°°(Q7; R%)—norm on V,, f,
we obtain the desired second bound result.

iv) Limit of the error. We have for any (7,y,v) € Qr:

T ~
= ’f(Ta ?/7 'l)) - / /8(7— - T)fn,m(T, y, U) deydU
0 0

= |f(T,y,’U) - fn,m(Tvyvv) deyd’U| —0

(n,m)—o00

'f<:rz v - [ "Iy dr

(5.29)

v) Bounds of the derivative of the error.

T T _
/0 HVURE%,m[fKT?y?U)HLz(DXR;Rd) = /O B(T - T) vafn,m(T, ) ')HLQ(DXR;Rd) S Hvﬂf(T7 ) ')HLQ(’DXR;Rd)
(5.30)

and similarly

T T _
LIVl .0 sy = [ BT = DIV My < IV oMo
(5.31)
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Lemma 5.4. Assume (Hppg). The weak solution f in L?((0, T) x D; H'(R?)) to equation (6.11) verifies
i) Hessyo(f) € L*(Qr; R*?),
ii) Hessyu(f) € L*(Qr; R??).

Proof. The proof for these results is based on the equality on fy ,, », from Lemma 5.2. By using an

energy equality approach, we obtain a uniform bound in (k,n, m) for Hess,  ( fi n,m) and we utilise a
result from Berzis to conclude.

i) Hessian in 2, u

Since fi n,m is a smooth function on ()7, we differentiate equality (5.17) with respect to coordinate y;
where y; is the i—th coordinate, to obtain:

- 87'8% fk,n,m(Ta Y, U) + (U : vyayifk,n,m)(Tv Y, U) + (8yib(y7 v) : vvfk,n,m)) (Ta Y, U)

2 (532)
+ (b(y, 'U) : vvayi fk,mm)) (7_7 Y, U) + ?Avayi fk,n,m (7_7 Y, U) = ayiRk,n,m[f](Ta Y, U)~

We now multiply this equality by Oy, fi n.» and integrate on ()7 thus obtaining:
- /; 8yi fk,n,m (7—7 Y, U)a'rayi fk,n,m (T7 Y, U) d’Tdyd’U + 4 ayi fk,n,m(Ta Y, 'l)) (’l) : vyayi fk,n,m) (T7 Y, ’U) deydU
T T
b [ Bufinm(7.0.0) O b5,0) - Fufian) (7. 0) drdyde
Qr
+ / ayi fk,n,m (7—7 Y, U) (b(y, U) : vvayi fk,n,m)) (7-7 Y, U) deydv
T
o2
4 [ Oufinm(r.0) % By (7. 0) drdyde
Qr

= / ayi fk,n,m (T’ Y, v)ayi Rk,n,m[f] (7—7 Y, 1)) deydU
T

(5.33)
We now consider each of term of the equation (5.33), starting with the time derivative term
1
/ Oyi frem,m (T, Y, 0)0r Oy, fio mm (T, Yy, v) drdydv = = Or (0, fk,n,m)2 (1,y,v) drdydv
Qr 2 Qr

1 1 (5.34)
= / (Oye frmm)? (T, y,v) drdydv — = / Oy frnm)” (0,y,v) drdydv.

2 /pxRrd 2 Jpxpd

The second term of equation (5.33) is such that

1
/ Ay: fryn,m (T, Y5 0) (0 - VyOy, frnm) (T, y, v)drdydv = 2/ (v-V, (% fk,n,m)z) (ro . 0)drdydo
) T
1
T2 /E (v D)) |10y: frnmll”

T

The third term is left as is while the forth term of (5.33) is modified as

/ 8%’ fkﬂhm (7_7 Y, U) (b(y7 U) ' Vvayi fk,n,m)) (7', Y, ’U) deydv
T
1 2 1 9
E 2/ (b(ya U) . VU (6y¢fk:,n,m) ) (T, Y, 'U)deydU = —5 / (vv . b) (ayifk’,n,m) (7_’ v, U)deydU

T T
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while for the Laplacian term in (5.33) we have that

/ ayi fk,n,m (7_7 Y, U)(VU ' Vﬂ)ayi fk,n,m (7-7 Y, U) deydU = - / ||Vvay1 fk,n,m H2 (Ta Y, U) deydU .
T

Qr

Finally, we rewrite (5.33) as

1 1
! / Oy fomm)? (T y,v) drdydo + - / Oy, frmm)? (0,5, v) drdydv
2 JpxRrd 2 JpxRrd
1
+ 9 /E (v nD(w)) Hayz fk,n,m”2 + /Q ayifk,n,m(Tv Y,v) (8yib(y7 v) - vvfk,n,m)) (7, y,v) drdydv
T T
1

o2
- 2/ (Vy-b) ||Vyfk,n,m||2 (7,9, v)drdydv — 2/ ||vv8y¢fk,n,mH2 (7,y,v) drdydv
T Qr

- / Dy, P (7, 0)0y: R LF] (7> 1, 0) drdydo
Qr
(5.35)

Summing this equation from ¢ = 1 to © = d and recalling that

d
ZZ avjaysznm = ||Hessy,vfk,n,m||2>

i=1 j=1
we obtain that:

1

1 1
= 5 IVufrnmliemxrame (T + 5 IVyfemmlliapumega 0) + 5 / (v - 1p@) [V frnml®
Xr

+/ ((vyfk,n,m<77ya ) Jacy(b)( )) v fknm)) (T,y,?)) deydU

1

2
2 g 2
-3/ (Vo D) [y finmll” (9 )y = - [Hessy ol funam) 12 gz

= /;2 (vyfk,n,m ' VyRk,n,m[f]) (7-7 Y, U) deydU .
T
(5.36)
which we reorganise as

o 2 1 2 1 2
7 HHeSSy,/U(fk7n7m)HL?(QT;RQLi) - _5 Hvyfk:nvaL%Dde;Rd) (T) + 5 Hvyfk,n,mHLQ(DX]Rd;Rd) (0)

=+ % / (U ) nD(;z)) ”Vyfk,n,m||2 + / ((vyfk,n,m(Taya ) Jacy(b)( )) \% fknm)) (T,y,’U) drdydv
Sr Qr

1
- = /Q (V- D) ||V3,,fk7nm||2 (1,9, v)drdydv — / (VySfenm - VyRenmlf]) (1,y,v) drdydv .
T

2 Qr
(5.37)
We have the following inequality:
2
g 2 1 2 1
o ||Hessy7v(fk,n,m)||L2(QT;]R2d) < 9 ||Vyfk,n,m||L2(D><Rd;Rd) (0) + 9 . (U np(x ) Hvyfk nm”
T
] (Ffinnlr,0) 3,000 - Vo)) (7:9.0) drdye
T

1

- 5 / (VU ' b) Hvyfk,n,mHz (Tv Y, U)deydU - / (vyfk,n,m : vyRk7n7m[f]) (Ta Y, U) deydU .
Qr Qr
(5.38)
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and we bound each of the terms in the r.h.s. of (5.38), uniformly in (k, [, m) using the regularity of the
function f obtained from Lemma 4.6

Hvyfk,n,muiz(pxugd;]gd) (0) < sup ||V In MHL2 (DxR4;Rd) (t) < sup Hvyf||L2 (DxR4;Rd) (t).
t€[0,T)] t€[0,7]

By (Hppk), the derivatives of the function b are bounded, then by Cauchy-Schwartz:

\ /Q (Vo Fromn (725, 9) - Ty (0) (1. 0)) - Vo)) (725, 0) drdydy

< HJaCy(b)”Loo(Dxﬂgd;R?d) Hvyfk,n,m)”Lz(QT;Rd) ||vvfk,n,m)HL2(QT;Rd)

< ”Jacy(b)||Loo(D><Rd;R2d) ||vnyL2(QT;]Rd) ”VUfHL?(QT;]Rd)

while

‘/ Hvyfkan (7,9, )deydv < HV bHLoo (DxR4;RA) ”vnyp (QriRY) -
T

‘We now consider Lemma 5.3 to control the errors as:

\ | StV Rananl1) (7 ,0) s
Qr

‘/ Vyfenm -V Rknm[f]> (7, y,v) drdydv| +

‘/ yfknm' Rknm[cﬂ) (T,y,v)deydv

VB, L]

< Il O TN 2 SRS P / 193RI 71 oo
< Ovs VSl ormrey + vafts[%pT] IV fll 2oy -
€0,

(5.39)

By combining these various bounds and going back to inequality (5.38) we obtain that

2
o 2 1 2
7 HHCSSy,U(fk:,n,m)HLQ(QT;RQd) < vaf,vvf,b,vyb + 5 Hvyfk,n,mHLQ(ET) (540)

where Cv, tv, v, does not depend on (k,n,m). By Lemma 4.6, we have that HVnyQLQ(ET) is

finite, therefore Hessy ,( fk.n.m) is bounded in L?(Q7; R24). Since Vy fiim and V, fr. 1, converge in
L2(Qr; RY), by [Brezis, 2010], we obtain that Hess, ,,(f) € L*(Qr; R??).

ii) Hessian in u, u
We now prove a similar result for the second derivative w.r.t. u. We apply the same calculations:
differentiate equality (5.17) with respect to coordinate v; where v; is the ¢—th coordinate, multiplying

by Oy, f,n,m and integrating over Q7, we obtain:

65



/Q Ovi fie.n,m (T, Y, ) 0r O, fie mm (T, Y, v) drdydv +/ Ovi fiemm (T, 4, 0) Oy, fie o (T, 4, v) drdydv
T
+ / avi fk,n,m (7—7 Y, /U)(/U : vyavi fk;,n7m)(7', Y, U) d’TdydU

T
+ / a”i fk,n,m (7_7 Y, U) (8U2b(y’ U) ’ vvfk,n,m)) (7', Y, ’U) deydv

T
"‘/ Ov; fenm (T, 4, 0) (b(y,v) - VO, frnm)) (T, y,v) drdydv

T

2

+ / 8v¢ fk,n,m (7‘, Y, 'U) %Avavi fk:,n,m (7’, Y, U) drdydv
T

== / aui fk,n,m(Ta Y, U)aviRk,n,m [.ﬂ (7—7 Y, U) deydv .
T

(5.41)
Now we sum for ¢ = 1 to ¢ = d and integrate by parts as in the previous section to obtain that
1 2 1 2
3 vafk,n,me(pde;Rd) (T) + B Hv’ufk,n,mHLQ('Dde;Rd) (0) + 0 (VySinm - Volknm) (T,y,0) drdydv
T
1
#5 L ) 9l 4 | (e (0,0) 3960 0)(0,0) - Do) (0,0
T T
1 2 0'2 2
-5 T(VU “0) Vo fenmll” (7,9, v)drdydv — 5 HHCSSUW(fk,n,m)HLQ(QT;RM)
= / (vvfk,n,m . vka,n,m[f]) (T7 Y, U) deydU .
T
(5.42)

By using the analogous arguments as previously, we obtain that Hess, ,,(f.n.m ) is bounded in L2(Qr; R??)
and since V,, fx . converges in L?(Q7; RY), we obtain by [Brezis, 2010], that Hess, ., (f) € L*(Qr; R??).
|

Corollary 5.5. Assume (Hppg). The weak solution F to equation (1.9) verifies that Hess,, ,,(F'), Hess,, ,(F') €
L*(Qr; R*).

Proof. By the previous lemma, we have that Hess, ,,(f), Hess, .. (f) € L?(Qr, R??). And since for any
(t,z,u) € Qr, f(t,x,u) = F(T —t,x,u), we have that:

T T
/ / [Hessgo(f)||3 (t, 2, u) dtdzdu = / / [Hessg o (F)||5 (T — t, x,u) dtdedu
0 JDxR4 0 DxR4

0
_/ /D y [Hess,.(F)[IF (s, 2, w) dsdedu = |[Hessy,u(F)|[72(g, poa) < +00
X

by performing the change of variable s = T — ¢. The same argument gives that Hess, ,(F) €
L2 (QT; R2d) .
|
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6 On the semigroup of the confined Langevin process

In this section we present several results that pertain to the existence and regularity of the weak solution
of the PDE (1.9). Without any loss of generality, we consider the time forward formulation of this PDE,
written is its variational formulation in (5.1). This section is an extract from [Bossy and Jabir, 2015] with
minor modifications to include a bounded Lipschitz drift b in the PDE problem (6.5). We first assume
that b is a smooth function and then we come back to our hypothesis (Hppg). The proofs are transferred
to the Appendix3.

We investigate some estimates related to the semigroup associated to the solution of the SDE (1.1);
namely, for a test function ¢ € C°(D x RY), for all (x,u) € (D x RHU(Z \ X°), we define

TY(t,z,u) == Ep [W( X", U™, (6.1)

where ((X;”",U"); t € [0,T1]) is the solution of (1.1) starting from (0, z, u) and ((X;""",U;™"); t €
[0,T7) is the solution of (1.1) starting from (s, x, u).
Pathwise uniqueness of the confined Langevin process implies that forall 0 < s <t < T,

TVt — s, 2,u) = Ep [p(X75, USM)], (6.2)

so that the estimates hereafter can be extended to the semigroup transitions of the process. We can see
that (T — s, 2,u) = F(s, z,u).
We consider also the semigroup related to the stopped process:

Fg(t €, ’LL) =Ep w(X;C/’\Z,’fu’ U$7uz’“> ) (6.3)

tATY
where {7,;""; n € N} is the sequence of hitting times defined as
T =inf{r,_1 <t <T; X, € 9D}, forn >1, 75=0,

and ng(t,x, u) = P(z,u).

When b is a smooth function, the estimates on {Ff; n > 1} and I'¥ rely on the following PDE
result, the proof of which is postponed in the next Subsection 3.1. Let ((z}"",u""); t € [0,T]) be the
free Langevin process that verifies

t
) =y +/ u?ds,
0 (6.4)

t~
ul’ =v+ / bz u?"?) ds + oWy,
0

where b is defined in 4.2).

Theorem 6.1. Assume (Hppg). Assume also that bis a Cy° (Rd X Rd; Rd) function. Given two functions
fo € L3(D x RY) N Cy(D x RY) and q € L*(XF) N Cy(SF), there exists a unique function f €
C2(Qr) NC((0,T] x (D x R\ 20)) N L2((0, T) x D; HY(R?)) which is a solution to
o2
Of(t,x,u) — (u-Vof(t,z,u)) — (b(z,u) - Vo f(t,z,u)) — ?Auf(t, xz,u) =0, forall (t,x,u) € Qr,
£(0,z,u) = fo(z,u), forall (z,u) € D xRY,

flt,z,u) =q(t,x,u), forall (t,z,u) € E;.
(6.5)
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In addition, for (x7",uy™; t € [0,T)]) solution to (6.4) starting from (z,u) € D x R¢att = 0 and
Y = inf{t > 0; z} 6 827} we have

F(t e u) =B [ fo(ef" uf ") gy < B“‘}] +Ep [q(t—ﬁ e ) s g uﬂ (6.6)
Furthermore, for all t € (0,T), f satisfies the inequality:

Hf( HL2 DxR4) + HfH + ‘72HvufHL2 (Q+) < CTa 101l 0o, ip (HfoHp DxR4) + HQHLz E* ) (6.7)

where CT 5. |1b)| o ., 18 a constant that only depends on T', o, and on the Lipschitz constant in u, uniform

The proof of this theorem is split in several lemmas and propositions in Appendix 3.1. In Lemma
3.1, we prove the LP regularity of the solution together with the energy inequality. It is based on the
Lions and Magenes’ existence theorem stated in 1.3 and on Carrillo’s trace existence and Green formula
in 1.4. For the inner regularity of the solution, Bouchut’s Theorem 1.5 is used to obtain fractional L”
regularity, while bootstrapping techniques are used to increase this regularity to obtain Sobolev estimates
to obtain embeddings into continuous spaces in proposition 3.2. Continuity up to the boundary ET is
proven using local barrier functions in proposition 3.4 while continuity up to the border %, is proven in
proposition 3.5 using the Feynman-Kac interpretation (6.6).

Considering the solution f in C([0,T]; L*(D x R%)) N H(Qr) of (3.1), given by Lemma 3.1, we
show its interior regularity and its continuity up to and along 7 \ Z%.

From Theorem 6.1, we deduce the following result for {I‘%, n>1}:

Corollary 6.2. Assume (Hppg). Assume also that b is a C;)’O(Rd x RY) function. Then, for all ¢ €
Ce(D x RY), set Fg’ = and for all n € N*, T is a function in C;’l’Q(QT) NC(Qr \ X% and satisfies
the PDE

2
OTY (t,x,u) — (u- Vo I¥(t,z,u)) — (b(z,u) - V TL(t, x,u)) — %Auff(ux,u) =0, forall (t,z,u) € Qr,
Y0, 2,u) = ¢¥(z,u), forall (x,u) € D x R,

LYt @, u) = Fg_l(t, z,u —2(u - np(x))np(x)), forall (t,z,u) € X7.

n

6.8)
In addition, the set {T'y,n > 1} belongs to L2((0,T) x D; H*(R?)) and satisfies the inequality
ITE O gy + oIV gy + 1T sy < Criottcs (191220t + 1T s s)
(6.9)

where CT 5 b L IS @ constant that only depends onT', b and o.

The proof of this corollary is based on the Theorem 6.1. The unique solution to equation (6.5) with
initial condition ¢ and boundary condition Fﬁ_l(t, z,u — 2(u - np(x))np(x)) when written under its
probabilistic interpretation (6.6) is actually equal to F% defined in (6.3).

Next, by showing the convergence of the Fﬁ to 'Y, we have

Corollary 6.3. Assume (Hppg). Assume also that b is a C;° (Rd X Rd) function. Forall{ € C.(D x Rd),
'Y is a function that belongs to L*((0,T) x D; H'(R?)) and satisfies the inequality:

Hrw(t)H%%DX]Rd) + UQHVquH%%Qt) < CT,a,Hblloo,u,,Hszﬁ(Dde)a Vie (0,T) (6.10)
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Vbl and o. Furthermore, T¥ (t)

where Cr g |p]| o Lp U8 @ positive constant that depends only on T,
is solution in the sense of distributions of

2
8tF¢ = (u- V1F¢) = (b(z,u) - VUF¢) B %Auf¢ =0, on Qr,
(0,2, u) = 1(z,u), on D x RY, 6.11)
Fw(t, xT,u) = F¢(t, z,u—2(u-np(z))np(z)), on E¥'

The proof of this corollary is given in the Appendix 3.3.

Finally, the following proposition allows to extend the energy estimate (6.10) to the case of drift b
satisfying only (Hppg).

Proposition 6.4. Assume only (Hppg). Then for all 1 € C.(DxR?), TV defined in (6.1) is a function that
belongs to L?((0,T) x D; H'(RY)) and satisfies the inequality (6.10). Furthermore, T'V(t) is solution
in the sense of distributions of Equation (6.11).

Proof. We construct the family {b,,, n € N} of smooth approximation of b by the following convolution
product: for any (x,u) in D x RY,

bula) = [ gulu—o)pa(o = bla. o)y

where the smoothing kernels g and p are as in (3.4) and (3.3), (eventually with the d—product~of each
kernels to expend the definition to the dimension d). We then define the symetrized extension b,, of b,
on R? x R? by

bn: (y,v) € RY x R s (b%,sign(y(d))bnd)) (W, [y D)), (', sign(y@)v (D)), (6.12)

and we consider the family of processes (X;*, U*,t € [0,T]) and (Y}, V;",t € [0,T1), solution for each
fixed n, to the SDEs (1.1) and (1.2), where we have replaced b and b respectively by b,, and bn.

It is classical to observe that b,, inherits from the Lipschitz property of b, with the same constant
[|b]|Lip, preserved by the smoothing convolution uniformly in 7. Reproducing the arguments in Remark
1.4, we can also deduce that b, is uniformly Lipschitz on R x R with constant 2(/b[|Lip, and that bn
converges to b uniformly on R% x R,

Then the family of processes (Y;*, V;*,t € [0, T]) belongs in L?(£2) uniformly in time with

sup sup E [[|V;"[* + [[V;**] < C(T, [Iblloc, 1bllLip),
nN t€[0,T]

E (Y} = Y2UPP] < C(T, [bllocs Ib]Lip) |t = s]-

From the relative compactness property, renaming again (Y;", V;", ¢ € [0,7T1]) a converging sub-sequence
with limit (Y;>°, V,*°, t € [0,T]), and from the convergence of b,, to b, we check that Y*° satisfies (1.2)

with drift b. By the uniqueness of the solution of (1.2) and also (1.1), we deduce that, for all ¢t € [0, T],

fn(t7 T,u) = Em,u[w(ytnu V;fn)] m Em,u[ (Y%v V;f)} = El,u[w(Xtv Ut)] = Fw(tv €, u)
for I'¥ defined in (6.1), since the discontinuity points of (x,u) + 1 (z,u) are P o (Y, V;) " -negligible.
Now by applying Corollary 6.3 to f, and taking the limit with n, we deduce immediately that
I'Y is solution to (6.11) in the distribution sense. In particular by Fatou Lemma, the (V, fn,n > 0)
are converging in L%(Qr), as n tends to infinity, defining V1 as its L?(Qr)-limit and the Energy
inequality (3.17) is preserved. Using the variational formulation of equation (6.11) in the Appendix 3.3,
we deduce that T is a H(Q7)-solution of (6.11) with trace functions 4 (I'¥) in L?(X%F). [ |
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7 Conclusions and perspectives

In this chapter, we have proposed a time discretisation scheme for the specularly reflected Langevin
process when the boundary is a hyperplane. We have proven that under the hypotheses (Hrangevin),
(Hppg) and (Hweak Error) that the weak error produced by this scheme converges to zero at a rate that is
at least linear in the time discretisation step.

To obtain the proof, we have used a result from [Bossy and Jabir, 2011] that extends the process on
the whole domain, provided that there is a change of drift on the velocity component. The new drift is
not even continuous in the most general cases, so we have worked in hypothesis (Hppg)-(i7) to consider
the cases where under the change, the drift remains continuous. It would be interesting to provide an
extension where condition (Hppg)-(i7) on the drift would no longer be needed. One possibility would be
to obtain more regularity results from the mild equation of the density of the reflected Langevin process
defined in [Bossy and Jabir, 2011], another is to obtain regularity results on the hitting times of the
position process. Similar results have been obtained in the case of stationary processes in [Geman and
Horowitz, 1973].

Another interesting possibility of extending the results is to consider boundaries that are not hyper-
planes, by utilising rectification of the boundary techniques such as in [Gilbarg and Trudinger, 2001].
Other results would be to obtain that the weak error actually decreases linearly in the time-step and more
importantly to obtain a Richardson-Romberg expansion of the error.

In the next chapter, we shall present some numerical experiments on the proposed discretisation
scheme.
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Figure 2: General Schematic of introduced definitions in the main Theorem 1.6
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Corollary 1.1 (Rana [Rana, 2005]). If ¢ € LP(R?) for p € [1, +00) then

lim / 6(= + ) — ¢(2)|Pdz = 0.

|6|—0+

Theorem 1.2 (Tartar [Tartar, 1978], Chapter 4). Let V be an open subset of R% and ) € L?*(V) such
that Vi) € L*(V). Then Vy()", Vy(¥)™ € L2(V) with 0y, (¥)" = 8y, Liy>0y and 8y, (1)~ =
— 0y V1 {y<o}-

Theorem 1.3 (Lions and Magenes [Lions and Magenes, 1972]). Let E be a Hilbert space with the inner
product (, ). Let F' C E equipped with the norm | | such that the canonical injection of F into E is
continuous. Assume that A : E x F — R is a bilinear application satisfying:

1. Y € F, the mapping A(.,v) : E — R is continuous.
2. Ais coercive on F that is there exists a constant ¢ > 0 such that A(1,v) > c||%, Vi € F.

Then for all linear application L : F — R, continuous on (F, | |F), there exists S € E such that
A(S,9) = L(t), V¢ € F.

Let 7 = 0, — uV; be the transport operator and consider the space:

YV(Qr) ={p e H(Qr); =T (¢) € H'(Qr)}.
Theorem 1.4 (Carrillo [Carrillo, 1998] ). For any T' > 0, we have that:
1. Let ¢ € Y(Qr). Then:

e o has atrace v (p) € L*(SF) on X7 and v~ (p) € L*(X7) on 3.
o Vt € [0,T], @ has a trace ©(t,-) such that the function t — ¢(t, -) belongs to L*(D x R%).

2. For any functions ¢, 1 belonging to Y (Qr), we have the following Green formula, for any t €
[0, T7]:

(T(0)s V) ) 1@y — (T (W), )2 (Qr) 1(Qr) :/D Rd@(T,:v,UW(T,%U) dzdu

_/ 80(0,%“)?1)(0"7‘) d:ndu—/ (u'nD)'V—F((P)(S’$au)’7+(¢)(87x7u) d)\E(saw7U)
DxRd =t

- /Z(u )Y (9) (s, 2, u)y™ (¥)(s, 2, u) dAs (s, x,u)
! (1.1)
where T* = —0¢ + u - V, the adjoint of T.

Theorem 1.5 (Bouchut [Bouchut, 2002]). Let h € L?(Rx R?xRY). Assume that ¢ € L?>(RxR%xR%),
such that V¢ € (L*(R x R? x R4, satisfies (in the sense of distributions)

0,2

— ?Augb —h, on R x R% x RY. (1.2)

3t¢> + (u : vzd))

Then there exists a positive constant C(d) depending on the dimension such that:

@) 0:¢ + (u- Vo) and Ay both belong to L*(R x R? x R?) with

0_2

Hat(b + (u ’ vxd))HLQ(RXRdXRd) + ?”AuéHLQ(RXRdXRd) < C(d)HhHLQ(RXRdXRd)J
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() D3¢ and |V, D> 4| belong to L*(R x R x RY) with

||VuDglg/3¢||2L2(Rdede) + ||D§/3¢”%2(Rx1gdx]gd) < C(d)Hh\|%2(Rdede)-
where for a € (0,1), DY is the fractional derivative w.r.t. x-variables, defined as the fractional Laplace
operator of order « defined as D& = (—/\,)*/2.

Lemma 1.6. Let T' > 0. Consider the mollifying sequence By, such that Supp(Sx) C (0, %) and assume
the function F': [0,T] — R is continuous on [0,T). Then the convolution F x (), converges uniformly
towards F on any compact of (0,T.

Proof. We extend the function F' continuously on R and we denote this continuation as F. By [Brezis,
2010], we have that F % B converges uniformly towards F.

Let K. be a compact of (0,7] such that the distance d(0,K.) > e. On K., F % (; converges
uniformly towards F. For large enough k > k., Supp(8x) N K. = 0, and by comparing the supports,
forany t € K., F * B,(t) = F % B(t) . Let k > k.:

sup |F % Bu(t) — F(t)] = sup |F = Bu(t) — F(£)] X2 0
te K, teK.

and we conclude. |

2 Complement to Lemma 2.2 about the density of the discretized free
Langevin process

Lemma 2.1. The transition density of the discretized version of the free Langevin process

t
thzz:+tu+a/ W) ds
0

2.1)
Vi =u+ oW,
is a Gaussian transition density
pL(07 x, u; t; §7 C) - pN(QEt,n(t),At)(é - ('CC + tu)? C - 'U,)
where ppr(o,r) denotes the centered Gaussian density with covariance I, and
5 _ ()t — n(t) — At) + n(t)(n(t)+Aé)(277(t)+At) tn(t) — ﬁ(t)(ﬁ(zt)JrAt)
tﬂ?(t):At - t’r](t) _ n(t)(ﬁ(zt)JrAt) t
is degenerate in its first coordinate when t < At.
Proof. We have that EZ; = 2 + tu and EV; = u. Also Var [Vt] = ¢t and
t LﬁJ_l
/0 Wn(s) ds = Z Wti (ti+1 — ti) + (t — n(t))Wn(t)
i=0
lagl-1
= (tLﬁJWtLﬁJ — toWo) — tit1 (VV,:Z.Jrl — Wti) + (t — T}(t))Wn(t)
i=0
lazl-1 lazl-1
= n®)Wya) — tit1 (Wtz‘+1 - Wtz‘) + (t =)Wy = tWya) — tit1 (WtiJrl - Wti) )
i=0 i=0
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and by computing the variance of the previous sum:

laz)—1

t
Var [/ Wn(s) dS] = Var th(t) - Z tz‘_;,_l (Wti+1 - th)
0 i=0
laz)—1 laz)—1
= t*Var [Wn(t)] + Var tit1 (VVtiJrl — Wti) — 2t Z t;+1Cov [Wn(t)a Wti+1 — Wti]
i=0 i=0
La)—1 Lazl—1
=)+ Y A2t Y tiAt
i=0 i=0
L)1 lagl-1
=n(t) + (A D (i+1)” —26(AL)° (i+1)
i=0 =0
Tl a1) (21 1 LrLE1+1
— t2’l’}(t) + (At)3 lAtJ (lAtJ +6) ( I-AtJ + _ 2t(At)2 LAtJ (LstJ + )
t)(n(t) + At)(2n(t) + At
(06— n) - Ay + OO TAICH +80)
Concerning the covariance:
t Lﬁj_l
Cov |:Wt,/0 Wn(s) d8:| = Cov Wtthn(t) — Z ti+1 (Wti+1 — Wti)
i=0
£ A () + A)
= () - Z; i At = ty(t) - TR ED,

Finally, we obtain that:

[Zw,u} oy ({m 4 tu] I [tn(t)(t —(t) — At) + n(t) (n(t)+At) (2n(t)+At) tn(t) — n(t)(n(g)JrAt)])
u ’ '

t
p tn(t) — MO0 ° ;

Let¢ > At and X ;1) o+ denotes the above covariance matrix. When ¢ # n(t), we consider the index
k € N* such that n(t) = kAt and € € (0, 1) such that ¢t = ¢ + kAt. It can be easily seen that:

1
det (St (0,a1) = 75 kAL (12¢® + 12(k — 1)Ate + 2(k — 1)(2k — 1)(At)%e + k(k — 1)(A)?) .

So it can be seen that det(X; ;,4) A¢) > 0. Then, for t = n(t) > At then:

4 _n(t)? 2 _ (Af)?
et(X¢n),at) = D (n(t)* — (At)?) > 0.
Then, for any ¢ > At, we have that the pdf of the r.v. (Z,", V,"") is:
T
B 1 11— (v +tu —(z+tu
P02, u;66,C) = XD <—2 F C(—u )] Ztn(e), At F C(—u )D -
2T det(ztvn(t)’At)

When ¢t < At, the position process is a degenerate random variable and the pdf becomes:
1 ( (€ - U)Q)
exp | — 5
o/ 2mt 204t

where ¢ is the Dirac delta distribution. |

PH (052, u; €, €) = 8(€ — (x + tu))
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3 Some complements to Section 6

For the sake of completeness, we present in this appendix the proofs of the section 6.

3.1 Proof of Theorem 6.1

We assume that the drift b is a C°(R? x R?) function.
We consider the inputs ( fo, ¢) and assume the following

(Hj, o): fo € L*(D x RY) N Cy(D x RY) and ¢ € L*(ZF) N Cy(X7).

As a preliminary for the proof of Theorem 6.1, let us recall a more classical existence result for
equation (6.5), issued from the application of Lions and Magenes Theorem 1.3.

Lemma 3.1. Assume (Hppg). Given two functions fo € L?(D x R%) and q € L*(S1), there exists
a unique function f in C([0,T]; L>(D x RY)) N H(Q7) admitting a trace v(f) € L*(Xr) along the
boundary Y1, satisfying equation (6.5) in the sense that

2
Ouf = (u- Vaf) = (ba,u) - Vuf) = 5 Luf =0, in H(Qr).

ft=0,z,u) = fo(z,u), on D x Rda
V() z,u) = q(t,z,u), on Sp.

3.1

In particular, for all t € (0,T),

1O 2oy + 2190 o + WDy < Crivunios (1ol 2oy + a2,
3.2)

where Cr||v,.b||-,0 IS @ positive constant depending on T', b and o.

Proof. Step 1: Construction of a solution in #(Q7)

Let \ be a real to be defined later on and the functions f: (t,z,u) € Q7 + exp(—At)f(t,z,u) and
q: (t,z,u) € E}r — exp(—At)q(t, z,u). Then (3.1) becomes:

2
OF = (u-Vaf) = (e, 0) - Vul) = T Auf + A =0, in H(Qr),
f(t=0,2,u) = fo(z,u), on D x R
Y(f)(t, z,u) = q(t,x,u), on E;.

3.3)

In order to apply Theorem (1.3), the space E is identified as H(Q1) considered with its norm. Also we

define the space F' = {¢ € C®°(Qp;R), s.t. » = 0on {T} x D x R% and on X7} together with its
norm:

W15 = 1Buan + 922z,
which shows that the canonical injection from F into H(Q7) is continuous.
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The variational form of (3.3) is written as: for ¢ € F,

o2

VAL + A Yf=0
2 Qr QT
2

Qr Qr Qr

— - fatl/} + .f(u ’ wa) - ¢(b(1’7 u) ’ vu.f) + % vuw : vu.f"’_ A 7/].]?
QT Qr Qr Qr Qr
[ e~ [ w@eof+ [ w005
St DxR4 DxR4

o)+ [ (wnolvg— [ (i [ w0 0h

/E; ¥ xRd

_/+‘(u-np)]1/}(j+/ ¥(0,-,-) fo
b DxRd

T

which allows to identify the bilinear form A: (¢, 1) € (H(Qr) X F) — A(p, 1) as:

2

Aoy == [ gows [ o) = [ o Tuows G [ VueTupr [ e

and the linear form L: ¢ € F' +— L(%):

2w = [ lwenolao+ [ fof0.- 0

T

So the shorthand version of the variational form of (3.3) is:

A(f,v) = L(¥). (3.4)

It is clear that the mapping A(+, 1) from H(Q7) into R is continuous for any ¢ in F'. Concerning the
coercivity, for any v in F':

2
Ay == [ wows [ vV [ 0w+ G [ v [ v

1 1 1 1
= _5 ||¢(T’ K ‘)H%?(Dde) + 5 ”1/)(0’ K ')H%Z(Dde) + 2/ u- Vx¢2 - 2/ b(x’ u) ’ vuwZ
Qr Qr

2
g 2 2
+ 5 IVatlizagr + AMYlL2@r)

1

1 1
= 5 1900 M rn + 5 | o)l + 5

2
g
5 | (T b ) + SV By + Mo

T

1 2 1 2 0-2 2
> S0y + (A 5V b<w,u>||Lm<QT>) llza@r) + 5 1Vutllia@ny
] 1 o2 1
> min <)\ - iHv“ b(@,u) || oo (0g) 50 2) ¥[%

1
By choosing A > §Hvu - b(z,u)| oo (@), A becomes a coercive application on F' x F' and, as such,

by Theorem (1.3), there exists f in H(Q;) such that for any v in F, the equation (3.4) is satisfied.
Multiplying this function by exp(At) gives the desired result.
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Step 2: Existence of the trace on X7 and proof of energy inequality

Consider now the transport operator 7 = 0; — u - V, and the spaces:

V(Qr) ={p e H(Qr); =T (¢) € H'(Qr)}

and
V(Qr) = {¢ € H(Qr); % has traces y(4F) on BE, y(vF) € LA(2F)}.
We shall show that f € Y(Qr). Let ¢ € C>°(Qr), then:

0.2
’ QTT(f)(p': ‘/T_(pbvuf_z QTAuf(p'

o LI /Q Vullel + ] /Q Vuf Vg
T T

< max {6l oy 1} 1 o) 1l -
This means that f € Y(Qr) , so by [Carrillo, 1998], f admits a trace on the border of the domain D and
f € V(Q4), and the Green formula (1.4) can be applied. Equation (3.1) can be rewritten as:
o2

and by multiplying with f and integrating over ()7, we obtain that:

2
(T Flrony mar) - /Q 6V~ /Q 18 =0

T

P oot~ [ g3

DxR4

= (T°() Dwar man * /

DxRd
— | (u-np)g® - /
/2+ by

T T

(w oy (17 - [

0.2
Vo) f -2 Auf =
QT(b Vuf)f 2/QTf f=0

Since 7* = —7T, we add the two previous equations to obtain that:

2 B 2 ‘ 2
/’DXRd f (T7 © U) dwdu /Dde fO /E; (U nD)q
- / (unphy () — / 20-Vuf)f —0® [ fAuf=0
ZT T Qr

As T is arbitrary, this also writes for any ¢t < T,

£ 22 oy + / Juenol (1)) + / (Va0 + 0 IVl 2200 )

t Qt

= Wolamsey + [ lu-nol (02

t

and

O ) A A /Q (Vu D)1 + [ foll 2oty + a2 sy

t

From this, one has the inequality:
¢
2 2 2 2
Hf(t)”H(Dde) < ”f0HL2(Dde) + H‘JHLz(g;r) +Vu - b‘LOO(Qt)/O ds ”f(S)HL2(D><]Rd)
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So by Grownall’s lemma:
1
Hf(t)H%?(DxR’i) < <||f0||%2(D><]Rd) + HquZ(Ej')> exXp (2 [V - bHLOO(Qt) 75)

1
and (| 172(qu) < ¢ (I1foll eonre + lall} 2 ) exp (2 IV bll e t)

which when plugged in the previous equality, allows to obtain (3.2) with

OV bllocie = L+ T Ve - bll oo o) €XP (Hv“ bl (or) T) '
The uniqueness of the solution is obtained from the energy inequality and linearity of the equation. W
Proposition 3.2 (Interior regularity). Under (Hy, 4), the unique solution f of (3.1) belongs to C LL2(Qr).

Proof. To prove this proposition, it is sufficient to show that, for all zy := (to,xo,ug) in Qr, there
exists > 0 such that f belongs to C1"12(B, (r)) where B.,(r) C Qr is the open ball centred at z
of radius 7. To this end, we use the Sobolev embeddings (see e.g. [Brezis, 2010], Corollary 9.15): for
m=|d/2] +2—|1—(d/2— |d/2])], we have?

W22((0,7)) € CH([0,T]),  W™*(Byy(r)) € CH(Buy(r)), W™ (Byy(r)) € C*(Buy(r))-

We thus first prove that for some r > 0,

197 fllzsyop + D, ID2f 2oy + Y. IDEfllap, o) <400, (3.5
neN;in|<m keEN;|k|<m+1

where D7} and D refer to the differential operators given by

DIf =0pap - 01 f, for n = (n1,ma,- -+ ,na) € N,
Dy f =010 - opaf, for k= (K1, k2, ,kq) € N%

w1 Yus
Since b is assumed to be a C;° (R4 x R?) function here, we can iterate the whole argument and prove
(3.5) for higher order of Sobolev derivatives to conclude that f belongs to C112(B,, ().

The proof of (3.5), is based on a bootstrap argument that uses the regularity results (in fractional
Sobolev spaces) obtained in Bouchut [Bouchut, 2002] for the solution to kinetic equation (see Theorem
1.5).

Step 1. Let us start with the regularity along the (z,w)-variables. We proceed by induction on a
truncated version of f.

For any 9 > 0 such that B,,(r9) € Qr, we denote by 3,, : Q1 — [0, 1], a C°(Qr)-cutoff function
such that

{ Bro = 1on B, (),
Bro, = 00n Qr \ By, (ro).

We further assume that there exists a constant C' depending on r( such that

Z ”atQDngﬁn)HLOO(QT) <C
neN;|n|<m+1; BeN;| 3| <m+-2

2For || the nearest integer lower than z € R™.
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Starting from f € L2((0,T) x D; H'(R?)) given in Lemma 3.1, the truncated function f,, := B, f
satisfies, in the sense of distributions,

2
atho - (U : vmf?“o) - %Aufro = Frof + (\Ijrg ' Vuf)v on QTa

f?“()’t:() = 07 on D x ]Rd7
Y (fry) =0, on T7,

with Ty := 948y — (- ViuBry) — % LAufrg and W,y := —02Vu B + (Brob). Extending fry, Ty, f and
(U, - V..f) on the whole space R x R? x R? by 0 outside B, (r), one has

2
8tfr0 - (U : v:vfm) - %Aufm = Gro> in (CSO(R X Rd X Rd))/ (36)

where gr, := Iy f+ (¥y, - Vi f ). Let us now recall Theorem 1.5 (and its proof) in [Bouchut, 2002]: for
a € (0,1), we further denote by DY the fractional derivative w.r.t. z-variables, defined as the fractional

Laplace operator of order o
DY = (=04)"2.

Since I'y, f and (¥, -V, f) are in L2(Rx R%x R%), Theorem 1.5-(b) implies that DZ'> f,., [Vu DY > f,. .
and A, fr, are in L*(R x R? x R?). As 8, = 1 on B, (2), this particularly ensures that

HDg/ngL?(BZO(%O)) = ||D§/3fro||L2(Bzo(%0)) <D fro |l p2mxmaxray < +00,

Hqualc/ngm(Bzo(%O)) = Hqui/Sfron(Bzo(%O)) < ”VuDalc/SfroHB(Rdede) < +o0.
By setting 71 := % and f,, := S, f, it follows that D3t € L2(RxRIxRY) (since’ | DY, H%Q(RXWXW) <
[ fri |22 (R xR xRA) HDQQ;/ 3 frill L2 (R xRaxRa)-) Furthermore, as we are dealing with L? norm, the fractional
Sobolev space H“, 0 < o < 1 and the fractional Laplacian operator D“ are connected and (see [Nezza
et al., 2012], Proposition 3.6), || f||zs = C||D*f|| 12 for C a dimensional constant. Moreover, as g, is
the product of C2° functions with f,; and V,, f,1, we can apply the Lemma 5.3 in [Nezza et al., 2012],
to get

1D 2 g0, | 12 (et ey = Cllgrllzss., my < CNflasi., @y + C IV lgss., @) < o0

Applying the differential operator D;/ % to (3.6), one can check that D;/ s fr, satisfies
2
o .
DY fr, = (w- VoD fy) = T 8uDY fy, = DYg,,, in (CRR xR RT).  (37)

From Theorem 1.5-(b) again, we obtain that |V, f,, | < C’|D326/3(D315/3fr1)] € L*(R x R? x R%), and
IVuDY?f,| € L3R x R? x RY). Therefore, |V, f| € L2(B.,(%)). Applying again D' to (3.7),
applying Theorem 1.5-(b) a third time, one can also deduce that |V, V,.f| is in L?(B., (53))-

We obtain the regularity w.r.t. u by applying the differential operator 9,,, to Eq. (3.6). Hence 0, fr,
satisfies

2
01Oy, fry — (U VO, fry) — %Au8Uifr1 = Ou;9ry + O, fry, in (CZ(R x R% x Rd)),a (3.8)

where
61%97‘1 = (auir"'l)f + F"’l 8uif + (\IIH ' vuamf) + (81% \Ijrl ’ VUf) .

3This can be shown by applying a Cauchy-Schwarz inequality in the alternative definition of the fractional derivative in L2
via Fourier transform, see e.g. [Nezza et al., 2012].
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Theorem 1.5-(a) ensures that || Ay frg || L2(mxraxray < +00. As fr, has a compact support, standard
arguments give that

Z Hagi,ujfTOH%Q(RXRdXRd) - HA“f"“OH%Q(Rdede) <t
1<i,j<d

and thus
Z ||612Li,u]'f“%2(320(r1)) = Z Hagi,ujfT‘OHLQ(BzO(rl)) < +o0.

1<ij<d 1<i,j<d

Now we set b = Oy, gr, +0z, fr, With HhHL2(R><Rd><Rd) < [Vugr, HL2(Rdede)+Hvxfm HLZ(Rdede) <
400, since

IVugr | L2@xraxrey < C (1128 (i) + I Val 2By (r)) + > ||55i,ujf\|%2(320(r1))) < +oo.
1<ig<d

Theorem 1.5-(a) ensures that |V, (A, fr,)| € L*(RxR?xR?) and hence that |A,V,, f| € L*(B.,(%4)).
We sum up the estimations we have obtained as

IVafllrap.gzg)) + 1VaVufllram, g + 180Vl s, (og) < oo (3.9)

We extend (3.9) to higher order differentials through the following induction argument: we have
proved that for N =1,

DIf, |NVuDf|, VDT f|, |VuD?f|are all in L?(B.,(Ry)), forall n € N%suchthatl < |n| < N,

with Ry = r0/23" and 5’ € N%is such that || = || — 1.
Starting from the induction assumption that | DI f|| z2(5., (rx)) + [ VuD2 fl| 22(8., (rx)) < +00, for
In] < N, we have that D g, satisfies

2
oD} fry ~ (u-VaDlfry) = 5 LuDlfry = Digry, in (CF(R xR x RY)'

Applying three times Theorem 1.5-(b), we deduce as before that |V, D: f| and |V,V, D3 f| are in
L*(Bz, (%))
Now, from the induction assumption ||V D f|| z2(5., (rx)) + [IVaDii fll12(8., (ry)) < +00, forn

and 7/, |n| < N, we have that Dy} fr,, satisfies

2
o
atDZfRN - (u : VIDZfRN) - ?AUDZJCRN = D'ZgRN + (DZ(U . vfoN) - (U : VCC-DZfRN)) )

in (C°(R x R? x R%))’. Since

IDR(u- Vafry) = (- VoDl fr )l < D IVaDY fllras., (ra)) < +00,
;| |=N—-1

applying Theorem 1.5-(a), we deduce as before that A, Dyl f € LQ(BzO(RTN)), which ensures that
IVuDLf| € L*(B.,(fX)). By applying Theorem 1.5-(b) three times, we obtain that |V, Dilf| €
L?(B,, (g—ff)) This ends the proof of the induction N + 1.

We iterate m times this induction and conclude that, for r := 2%

Z 1D f 2B, (r)) + Z 1D% fll L2(B., (r)) < +o00-

nENY|n|<m kENY |k <m+1
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Step 2. Finally, we estimate ||0? f|| L2(B.y(r))- Since Vg f and gry are in L?(Bzy(3%)), according to
2
Theorem 1.5-(a), we have

10 frg 2B (29)) < N0efrg + (w- Vafro)lirais, 29y + 10w Vaf)lrais, )

z0(2

70
< CHQ%HLQ(BZO(;—%)) + ﬁ\\vxf%”L2(Bzo(;%)) < +oo.
Moreover 0, ng satisfies (3.8) and amif% satisfies
2 2
o’ d d
6t8x,.fm - (u . anxifm) — —Au@,;ifgo = Ogz;9ro in (CSO(R xR xR ))/,
23 23 2 23 23
with |V, fro| |V fro| m“mjf g, 02, u fm and 92, ujf;% in L?(B.,(43)) for 1 < i,j < d. We easily
deduce that 0z, 9 g and Ou, g rg are also in L2(BZ0 (53)). From Theorem 1.5-(a) again it follows that
2 2

ro
100z, frg 125, (28)) = ClOwi92g |28 (29)) + 531 Ve frgll2(m. (29)):

3

||atau¢f;%||L2(BZO(;% ) < C||au¢g;%|’L2(Bz (1) T 3||V 3ulf o ll22(B., ( )
so that |8thng| and |8tVqug| are in L*(B,,(43)). Now we observe that Oy frq satisfies
2 2 2

2
O2frg — (u- Vi frg) — = Nudyfrg = Brgrg in (C°(R x RY x RY)Y,
23 23 2 23 23

with
To

3tgro —FroatfﬂL( - Vu0if) + (0T TO)f+ (3t -V f> € LQ(Bzo(ﬁ))'

23

2
It follows that 87 f € L?(B.,(5%)) since

70
"8§f%“L2(3Z0(2 < CHatQTO ||L2(BZ roy) + ?Hvﬂc(atf)HLQ(Bzo(;—g)) < +00.

3

This enables us to conclude on (3.5).

Lemma 3.3. Let f be given as in Lemma 3.1. Then for a.e. (t,x,u) € Qr,

inf  foA inf q(t,x,u) < f(t,z,u) < sup  foV sup q(t,x,u).
(z,u)€DXRY (tzu)eST—2G, (z,u)€EDxXRY (t,xuw)EST—XY

Proof. Let {nr}r>0 be a sequence of C*°-cutoff functions on R? such that, for all R > 0, Nr =
nr(u) € L' N L>®(R%) and there exists 0 < Cr < oo such that

IVunr(w)| + |Aunr(u)| < Crig(u), Yu € RY,

(for instance, take nr(u) = R%/(R? + |u|?)). Taking A, (t) = exp{xt} for x a real number that will be
chosen later and

M = sup fO \ sup Q(t,ﬂj‘,U),
(z,u)€DXRY (t,x,u)eET—E%

we get that
2
L(nre |(f = M)*[)

3.10
= [(f = M)* P LlnrAe) + nrAeL(|(f = M)**) = A (Vung - Va |(F = M)*[*). 10
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Let us point out that the function A, |(f — M)*|? is well defined a.e. on Q7 since, using Theorem 1.2,
one can check that A, |(f — M)T|? =2V, - ((f — M)TVu(f — M)) =2((f — M)*Au(f — M)) +
2|Vu(f — M) L¢s>ary- In particular

L(|(f — M)* %)

0.2
=2 (0 = M) =Vl = M) =0 (7 = 30) = G 27 = M) ) (f = M) = 02907 = D)

<0

)

Therefore, integrating (3.10) over ()7, we have

/ Ll |(f — MY*)

T

= / [(F = M)*[* Lnade) +nrAeL(|(F = M)[*) = 0®Ae (Vumz - Vu |(F = M)F[P) G11)

T

S/ ‘(f_M)+‘2L(77R>‘N)_02)\n (vunR'vu‘(f_M)Jr‘Q)

T
Observing that an integration by part on the second integral on the right-hand side of (3.11) gives

|16 =0 F L = oA (Tunm- 9 (7 = 300" )

T

- / (L(nrAe) + 0" MeLung) [(f = M)F[

T

Using an integration by part for the left-hand side of (3.11) and, since
(fo—M)*|=0onD xR% |(g—M)*|=0onxt.

we get

| 2ol =20 Py = [ (@) (1) - )

T DxR4

- / (- np(@)nrde | (1(F) — MY+ / (Va0 nrhe | (F — M)

Therefore

[ ;@ @ =P = [ (e () - a0

DxRY pol

= / (L(UR/\H) =+ UQ)‘ﬁAunR - (vu : b) UR)\E) ‘(f - M)+‘2

:/ <’€77R_vu77R'b+O;AunR_(vu'b)nR) )\n‘(f_M)JrF

0_2

< [ (5 Crl G )+ 19l e |7 =207

Since
w0 (D) = M) = [ (e np()mere () = 1) [ = 0
DxRY bl
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choosing £ < 0 such that

2
g
kit Cr(l+ -+ [[bllzee) + |V - bl 2 <0

implies that (f — M)* = 0 and that f < M a.e. on Q7. Replacing f — M by m — f, for

m = inf  foA inf q(t,z,u),
(z,u)eDXRE (t,z,u)eXr—X9%
and using similar arguments yields to f > m a.e. on Q7. |

Proposition 3.4 (Continuity up to $7). Assume (Hppg) and (Hy, o). Let f € C112(Qr)NC([0,T]; L*(Dx
R%)) N H(Q7) be the solution to (6.5) with inputs (fo, q). Then f is continuous up to $f.

Proof. To show the continuity up to the boundary ¥, we follow the classical method of local barrier

functions (see e.g. [Gilbarg and Trudinger, 2001]). Let (o, xo,up) € E; (ie. ty € (O,T),xéd) =

0,(u-np(x)) = —u(()d) > 0). Since ¢ is continuous in X7, we can assume that for any € > 0, there

exists a neighborhood O , . such that

q(to, mo,uo) — € < q(t,x,u) < q(to, xo,uo) + ¢, V(t,z,u) € Of 4y N E;.
In addition, since ug - np(zp) = —u(()d) > 0, by reducing Of ., ,,» We can assume that u - np(z) =
—u@ > 5 > 0forall (t,z,u) € 0%, zo.ue- Consequently, by setting o(7): = € R? s dist(z, 0D)

(which is simply o(z) = (%), and

0.2

L:=0—(u-Vy)— (b(z,u) V) — ?Au,

we observe that, for all (t,z,u) € Of . s

L(o)(t,z,u) = —(u-Vo(z)) =u-np(z) >n>0. (3.12)

Reducing again Of . .. We can assume that Of ., has the form (to—0c, to+0c) X By, (07) X By, (07)

(where By, (") [resp. By, (d")] is the ball centered in xq [resp. wug] of radius ¢’) for some positive
constants d,, 9. > 0 chosen such that 0 < ¢ty — . < tg + de < T and &, < 7.
We can construct a maximizing barrier function related to (to, zo, ug) € Z}“ with

we(z) = q(to, zo, up) + € + ke|z — x0|* + Keo(z), (3.13)

where the parameters K, k. > 0 are chosen large enough so that, for M the upper-bound of f on
004¢,20,uo N Q1 (Which is finite by Lemma 3.3), we have

Te(x) — MT > ke|o — xo|> — M > k(6))* — M >0,
and, by (3.12),

L(@e)(z) = —2kcu - (x — xo) — Keu - Vo(x) > —2ke|ul|x — zo| — Keu(d)

>
> —2kc(|ug| + ") + Ken > 0.
In the same way, we construct a minimizing barrier of the form
w(t,z,u) = q(to, 0, u0) — € — kel — wo|* — Keo(x). (3.14)
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with INQ, /’2:E > 0 chosen so that, for M the lower-bound of f on 0O 1,4, N @1, We have
w(z)— M, <0and L(w,)(z)<0.

Thus, w, and w, satisfy the properties

(a) Te(t, z,u) > q(t,z,u) > w(t,z,u) forall (t,z,u) € O zoue N (0,T) x ID x RY,
(b) L(@e) > 0> L(w,) forall (t,z,u) € O zouo N QT

(P)- (¢) We(t,z,u) > MT> f(t,x,u), and w,(t,z,u) < M~ < f(t,z,u), forall (t,z,u) € OO zou, N QT
(d) 6l_igl+ We(to, xo,up) = El_i}r(])rl+ w,(to, xo,up) = q(to, zo, uo)-

Now we shall prove that, for f the solution to (6.5), w, < f < We on Oy 24,4, N Q7. OWing to
the property (P)-(d), this allows to conclude that f(¢,z,u) tends to q(to, zo,uo) as (¢, z,u) tends to
(to, Zo, ’U,()), for all (to, xo, U(]) of E;.

For the local comparison between w, and f, we proceed as in the proof of Lemma 3.3 and we
consider the positive part (f — @)™ of f — w,. Let 3 be a real parameter that we will specify later.
Recalling from the proof of Lemma 3.3 that the function A, |(f — @.)"|? is well defined a.e. on Qr
with

Au|( - w€)+’2 = 2((f - EE)JFAu(f - ws)) +2 ’VU(JC - ws)|2 ﬂ{f>we}-

we shall observe that, on Oy, 50w, N Q,
L(exp {8t} |(f —w)t|*) = Bexp {8t} |(f — @) *|* + exp {BL(|(f — @) T|).

The property (P—)(b) ensures that

L((f @)t = 2(f @) T L(f~B) =0 [Vl f — @) Loz < 02 [Vul(f = @) Liyomy <O,
so that
{2

L(exp {8t} |(f =) *[*) < Bexp (Bt} |(f — @)

Integrating the two sides of the above inequality over Oy 4,4, N @1, We get

D)
/ L(exp {pt} ‘( — We) ‘ / Bexp {ft} } — We) | .
Oto,zo,uo mQT Oto,zo,uOmQT

wing to (P)—(a) and (P)—(c), (f —@e)* is zero on Of ., ., VX7 and 05, . ., NQ7. Anintegration
by parts of the left-hand side expression yields

/ Liexp {8t} |(f — ) ) (t,,)

f0.20,ug QT

:/ exp(Bt) |(f — B2 (t, 2, )V, - bz, w),
f0.20,ug QT

and

os/ (8= V- b, u)) exp {BL}|(f — wo) T2
Otg,20,u9NQT

Choosing 3 < 0 such that 8 + ||V, - bl| poo (pxrey < O ensures that, for a.e. (t,z,u) € Of 4 4 N Qs
f(t,z,u) <we(t,x,u). Similar arguments entail that w, < f. [ |
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Feynman-Kac representation and continuity up to and along ;..  We prove the Feynman-Kac
representation (6.6) by replicating the arguments of Friedman [Friedman, 2012, Chapter 5, Theorem
5.2]: for (y,v) € D x R? fixed, let ((z}",uf"); t € [0,T)) satisfy (6.4). Set 87" := inf{t >
0; d(z" 817) < ¢}. Since f is smooth in the interior of Q7 and satisfies (6.5), applying 1td’s formula

to f(t — S/\By s ug’:ﬁg,v), for s € [0, t], yields

f(tvyvv) = EP fO(‘TZtlwvui/,U)]l{t < Bg’v}:| +EP |:f( /8 ,Byv’ ﬁ};}v“)ﬂ{t > Bg’v} .

Since P-a.s., 87" tends to 8¥¥ = inf{t > 0; d(z}"",dD) = 0}, as § tends to 0, and thanks to Proposi-
tion 3.4, one obtains (6.6).

Proposition 3.5. Assume (Hy, o). Let f € CH12(Qr) NC(Qr U X3) be the solution to (6.5). Then f is
continuous along and up to Y.

Proof. According to (6.6) and since fq and ¢ are continuous, the continuity of f up to X7, will follow
from the continuity of (y,v) — (8%, 2}, u}""). P-almost surely, for all ¢ > 0, the flow (y,v)
(zf"",uf") is continuous on R? x R%. As (y, v) ¢ SPUST, we have BYY = 7YY = inf{t > 0; 2"’ ¢
D}. To prove that (y,v) — 7% is continuous up to X, we follow the general proof of the continuity
of exit time related to a flow of continuous processes given in Proposition 6.3 in Darling and Pardoux
[Darling and Pardoux, 1997]. First, replicating the argument of the authors, one can show that, for all
(Y Vm) € D x R? such that lim,, s oo (Ym, vm) = (y,v) € 7,

lim sup 7Ym:vm < 7%V,
m—+00

Next, it is sufficient to check that

7YY < liminf 7Ym™v™,
m——+00

By an [Bossy and Jabir, 2015] it is shown that for a.e. (y,v) € D x R? U X, the path ¢ = (2w
never hits X°UY ™, and, since P-a.s. (t,y,v) — (2}, ;'5“’) is continuous on [0, +00) x D X Rd, one
can check that

{(zgom udmtn )y m e Ny € B,

LAk . Si RIS . yv
and that (i, ;¢ Mmoo TYM vm?“hmmfm%ﬁo pomom) € ET. Since 79V = inf{t > 0; (¢}, u/") €
¥ 1}, we deduce that 7%% € [0, lim inf,, 4 oo TY™Vm]. -

3.2 Proof of Corollary 6.2

Proof. Forn > 1, let us assume that Fﬁfl € C(Qr\x°) with Fgfﬂzf € L*(X7). Then I‘ﬁfl(t, T, u—
T
2(u - np(z))np(z))|g+ is in L*(X7) since, by using the change of variables
T

urru=u—2(u-np(z))np(zx)

for fixed x € 9D, we have

2
[l mo @] (Fy w200 np(@)n()) dss (0,0
1 (3.15)
— [ 1w no@)] (T2 () dsy () = [ g < 4
T
From the strong Markov property of the solution of (1.1), we get that for all (z,u) € (D x R) U X+,
AT AT

B[ (X ), U)o o] = BT (=T X0 U L gy (3.16)
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Considering a sequence (2, um, m € N) in D x R converging to (x,u) € ¥F, and t > 0, we have,
for m large enough

(Tinm,um’Xfmyum’ Utmmyum’ {t < Tinm,um}) — (6$m7um’xfm7um’uf7n7um’ {t < B.Z‘mﬂhn})

(X-’Em,um Tm,Um ) _ (:L,xﬁhum A~Lm,Um, )
Tf'mxum ) Tf’maum - BrTm,um ) P BTmum )

Hence, from the continuity of (y,v) — (8%Y, 2", u"") proved with Proposition 3.5,

ml_i}I_IFloo(Tfm’um, XfA";%un’{fum , Uf/\"%uﬂum) = (0,z,u — 2(u - np(x))np(z)).

Since W is continuous and ¥ = 0 on ¥, the right-hand side of (3.16) is then continuous on (D x RY) U
¥, as well as

B[ (X e Ul tea) Lpoesn] = BO(X e, U o) Lipzusy].

tATy AT AT

Moreover, for (¢, z,u) € X7,

ot w,u) = lim {E[qb(XfA’:;f“ﬁum Upnemum ) Lgpamoam o]+ B0 (X amum Uy it ) 1 om um Zt}]}
= Fﬁ_l(t,m,u —2(u - np(x))np(x)).
Now Theorem 6.1 ensures that there exists a classical solution f;, to (6.5) for fo = ¢ and ¢(t, z,u) =
Fﬁ_l(t, z,u — 2(u-np(x))np(z)) on TF. According to (6.6), we have, for (¢, z,u) € Qr
fa(t,z,u) = Ep {w(xf’u,uf’u)]l{t < 6z,u}:|
+ Ep [rﬁ_l (t B, — 2(ul, - np(xggfu))np(x;ﬁu)) I 5z,uﬂ .

One can observe that
B " o] = SO 000 ] = 08 U8 < )
and that

Ep [szl (t — B ws wgi — 2(ugih, ‘np(xéﬁu))np(wéifu)) Ly > gz

_ P T TU z,u

= e [T = " XL UL oy

T,u T,u
= Ep [¢(Xt/\n“f’“’ Uin ’“)ﬂ{t > Tf“}} ’

x
Tn

where the second equality follows from the strong Markov property of (X", U;""). Therefore

fat,z,u) = Ep [?l)(X:./(:l:x,u, U;E/\:r‘fu)] =TY(t,z,u),

n

from which we deduce that T, € C;’LQ(QT) NC(Qr \ X%) N L2((0,T) x D; HY(RY)) is a solution to
(6.8) with szg € L*(X7). Moreover, according to (3.15), for all t € (0,7),

1T 72 ey + ITE 2 ) + /Q (V- bz, u)(T)? + o? [Vl 22, a7
t .

= ‘|1/}H%2(D><Rd) + ||QH§/2(E;L) = Hsz%Q(’DXRd) + HFZ—l‘@Q(Z;)'
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which implies
ITS (320 xgay + ITE 2y + 0 IVaT b 2y

< ||¢||?;2(9de) + ||F$—1”i2(gt—) + IVu bl L (xR / (T2

t
resulting in (6.9) by Gronwall’s lemma. For n = 1, setting fo = v and ¢ = 9|+ = 0 (since % has its
T

support in the interior of D x R?), one can check that Flf € C,}’LZ(QT) NC(Qr \ %) N L2((0,T) x
D; H'(R?)) satisfies (6.8) and (6.9). By induction, we end the proof. [ |

3.3 Proof of Corollary 6.3

Proof. We first observe that since ¥|5pypa = 0,

Ff(t,a:,u) =Ep w(Xx7u ust )} =Ep [w(th,u’ Uﬁu)]l{ﬁf'“zt}} ’

x,u T,u
tATR ) T AT,

Next, there exists a nonnegative function 3 € L*(R x R) such that 3(|z|,|u|) = 1 on the support of 3
and [¢| < CB(|zl, |ul), with C := sup(, ,)epxra |¥[(z, u). Then

LY (@, u) < CEp |BOX"| U7 N1z |-

As Ep[B(|U;”"])] is equal to the convolution product (G * 3)(|x], |u|), where G denotes the density of
the free Langevin process (6.4), we obtain

— C(G*B) |z, |u]) <TL(t,z,u) < C(G* B)(|z],|ul), on Qr. (3.18)

Owing to the continuity of I‘ﬁ, from the interior of Q7 to its boundary, (3.18) still holds true along E%.
It is show in Proposition 3.1 from [Bossy and Jabir, 2011] that for a.e. (z,u) € (D xRH)U(X \ XY),
P(zu)-a.8. T, grows to oo as n increases, so then

lim TY(t x,u) =Y (t,z,u), forae. (t,z,u) € Qr, Any-ae. (t,z,u) € Sr\ X% (3.19)

n——+0o

Indeed,
DU (@ w) = Tt 2,0)| = [Be [0(XP", UP") ey ]| < I0llP(ra® <)

In particular, (3.18) is also true for I'¥(¢). We conclude by the Lebesgue Dominated Convergence
Theorem that T'} () converges to I'*(¢) in L2(D x R%). And since 'Y is continuous on the compact
[0, 7] we have the convergence to I'Y in L?(Qr). The Lebesgue Dominated Convergence Theorem also
shows that:
| (Fue b @ = [ (V) (7
¢ Q1

Next we deduce that the norms involving Fﬁ in the left-hand side of (3.17) are finite for all ¢,
uniformly in n (as the right-hand side of (6.9) is bounded uniformly in n by the Maxwellian bound
(3.18) and v is of compact support). Therefore, the estimate (3.17) is also true for 'Y (see e. g. [Brezis,
2010]), and T converges to ' in L2((0,T) x D; H*(R?)) and the equality (3.17) becomes:

T O gy + [ (T b )R + IO By = [lapsy G20
t

and by Gronwall’s lemma, we obtain (6.10). |
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Chapter 2

Empirical Analysis Based on Numerical
Experiments

1 Introduction

A quick review of main existing theoretical convergence results

The time discretisation of diffusion processes introduces errors which depend on the type of scheme
considered, the regularity of the coefficients of the stochastic differential equation, the type of boundary
conditions, the type of error considered (e.g.: weak, strong) and other factors.

Let us consider a general d dimensional SDE:

dXt = b(t,Xt) dt"‘O’(t,Xt) th, XQ = X0

xg an LP random variable and a time discretisation on the uniform grid 0 =ty < t; < ... < tny_1 <
ty = T. If b and o verify that there exist # € (0, 1] and a constant Cj, , 7 such that for any z,y € R,
s,t € RT we have that:

b(t, 2) = b(s, )| + lo(t,2) = o (9, 0)]| < Coor (1t = sl + o~ y)

then:

sup } }th - th‘ < Kppor (1 + HXOHLP(Q)) <N>

ke{o,...,.N

LP(Q)

where (X)y,... ¢y is the Euler-Maruyama discretisation of (X;)o<¢<7. If o is a constant and 5 = 1,
T
then the above strong error is of order O (N) , result which is proven using a Milstein scheme which

coincides in this case with the Euler-Maruyama scheme as in [Pages, 2017].

In the case of the weak error, the bounds that are obtained depend also on the regularity of the test
function.

[Talay and Tubaro, 1989] showed that, if b and o are infinitely differentiable with bounded deriva-
tives and f is also an infinitely differentiable function having at most polynomial growth, then for every
positive integer R € N*:

R
> Ck _
Err = EF(XF) —EF(XPY) =Y +0 (N <R+1>> . asN o oo
k=1
where the real valued coefficients c; depend on f, T, b and o and again (X;,) k={0,..., N} is obtained

through the Euler-Maruyama scheme.
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If o is uniformly elliptic, then by [Bally and Talay, 1996], we have that the same expansion as previ-
ously presented applies for any f that is just measurable bounded. These results are obtained by utilising
the regularity of the semigroup associated with the SDE and Richardson-Romberg extrapolations.

If we introduce boundary conditions, then once more we can have different convergence rates.

[Gobet, 2000] analysed the case with absorbing boundary conditions. In the case of a domain with
C3 boundaries, C* SDE coefficients and uniformly elliptic diffusion coefficient, we have for every
bounded measurable test function f, vanishing at the boundary, that:

_ 1
N
E(f(Xr)1;(x)>7) —E (f(XT )L(XN)>T) =0 <\/N> ,
where 7 is the exit time of the domain.
If we impose further regularity on the coefficients and we consider the time continuous Euler scheme,

then above difference becomes of order O (N . These results utilise estimations of the transition den-

sity of the killed diffusion, as ones from [Ladyzhenskaia and Ural’ceva, 1968]. A further extension was
given by [Gobet and Menozzi, 2004] in the case of hypo-elliptic diffusions but with uniform ellipticity
at the absorbing boundary.

In the case of uniformly elliptic stochastic differential equations with reflecting boundary conditions,
we have the following generic equation:

¢ ¢
{xt = xo—i—/ b(:cs)ds—}—/ o(xs)dWs+ Ly,
0 0

where L represents the local time. [Lépingle, 1995] bounded the strong error of a continuous version of
the Euler-Maruyama scheme by the square-root of the time step by using the distribution of the drifted
Brownian and its maximum on each time step. [Bossy et al., 2004] introduced a scheme that also applies
for oblique reflections and has the weak error bounded linearly in the time step.

In a different setting, penalised schemes that converge towards reflected processes have been pro-
posed. The general principle is the process is allowed go over the boundaries of its domain, but each time
that happens, it incurs a penalisation that forces it to return to the original domain and in the limit the
penalisation becomes stronger. In the case of deterministic kinetic models, [Paoli and Schatzman, 1993]
proposed a penalised scheme solely on the velocity component and showed that it converges towards a
specularly reflected process when the penalisation goes to infinity. In a probabilistic setting, [Slominski,
2013] offered a different penalisation scheme, on the whole process and a strong convergence rate.

Returning to our case
We recall that we are considering the process (X¢, Up)o<i<r € D X R< defined as the solution of the
equation:

t
Xt:Xo—i—/ Us ds,
0
t
Ut:U0+/ b(XS,US)dS+UWt+Kt, (11)
0

Ky =— Z 2(Us- - np(Xs)) np(Xs) 1 x,com)

\ 0<s<t

where D := R9"! x (0, +00), and the drift b verifies the hypotheses (H) and and we also consider the
time discretisation presented in the previous chapter.

In this chapter we analyse from a numerical point of view, the theoretical convergence rate of the
weak error presented in Theorem 1.6 on a panel of test cases:

e where there exists an explicit solution
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e where the hypotheses for the test function and the drift are satisfied
e where the hypothesis on the drift (H) is not verified

We also consider several penalised schemes that exist in the literature. And to extend the results, a
numerical analysis of the Richardson-Romberg extrapolation is given for the test cases that are con-
sidered to see if an expansion of the weak error would be possible. In addition, the numerical strong
error convergence rates are estimated and used afterwards in the simulation of a multi-level Monte Carlo
procedure. The results of this multi level procedure are compared to the simple simulation of the sym-
metrised scheme.

2 Reflection: symmetrised scheme

Let0 <ty <t <...<ty,=T beauniform mesh of the interval [0, 7] and consider the discretisation
scheme of (1.1), already presented in (1.4)-(1.6), which will be called the symmetrised scheme:

Discretisation of X { }_/%i“ B )gt" * (i = 8)U, (2.1
Xtcprl = ‘}/ti+1|
( XC
if 360, =t; — U:C: € (ti;ti+1)1
fort; <t < 91
Uf =U¢ +b(X;, ULt —t;) + o(Wy = W)
reflection:
Discretisation of U UQCZ. =-U gi_ (2.2)

for9; <t < tiy1:
Uf = ng_ + b(Xgi, Ugi)(t —0;) +o(Wy — Wy,)
else :
fort; <t < tit1:
Uf =Uf +b(X;, UL )t —t;) + o(Wy — Wy,) .

We recall that a collision takes place during a time interval, if there exists 6; € (t;,¢;+1) such that
X¢ _ _
0; =t; — _il . According to this definition, then Yy, = Xgi = (. In the simulation procedure, we will
t;
just consider this scheme at the discretisation times (¢;);—qo,... »} and collision times (¢;);—o,... ,; Which
are JF;,—measurable. We mention once again that this scheme supposes that only one collision takes

place per time-step.

Weak Error

We recall that weak error is defined for any 7' > 0, as |[Ef (X, Ug) — Ef(X§, US)| where f is a
smooth enough function that verifies the specularity condition, the process (Xy, Uf)o<i<7 verifies the
SDE (1.1) and (X¢, Uf)o<i<7 is its time-dicretisation, with time step At. We denote Error[f](At) =
!]E f(X$,UL) —Ef(X5, U%)’ For anything but the most trivial cases, one cannot compute the two
expectations so Monte Carlo simulations are required in order to estimate this quantity. Instead, we
consider the following error Error[f](At), which we decompose as the bias and variance:
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Nwmc 2
Error[f](At)? = E (E F(XE,US) — NLC X U%’"))

=1 ) 2.3)

o 1 Nmc ~ -
— (Brror{f](A0)? + E (Ef(X%, Uf) ~ o D 1, U;’">> ,
n=1

where (X7", U™ )n=1,...Nyc are Nyc independent copies of (X§., U%.). The second term represents the
statistical error produced when replacing E f (X T U%) by its Monte Carlo estimator. This error needs to
be reduced sufficiently in order for the weak error to dominate and be observed in our experiments. One
final approximation is calculating

Nez Nymc 2
Tor 1 vCN,t FTCMN,T
Brror{f](At)* = (Ef(X%, Uf) = Joe 2:21 FXF™, O™ )) . (2.4)

)

=
2

[l

(e}

The independent copies (X7, Us"™" )pn=1,... . Ny i=1,..., N are obtained with a time discretisation
1T

value At and we plot At — Error[f](At).

2.1 Implementation

The simulation procedure (which is similar throughout this chapter) is the following:
Data:

T : Final time

e ny : number of different time-step sizes
e Njic: the number of MC estimator trajectories
e N=—: the number of error estimators

Err .
e f: test function

Result: List of Error[f](At) for At =T -2 % fori = {0,...,na¢}
for all independent trajectories needed i.e. Nyc ¥ Nﬁ do
e Simulate the finest Brownian trajectory with time-step 7" - 27 "4¢t:
(Wigs Wiy, Wy oo, Wiy, Wen_,, Wiy ) and store as list L'V
e Use the brownian increments in L' and formulas (2.1)-(2.2) to calculate
v, -2 At e, T-27 ™At
(X7 Ur );
o If a collision takes places at 6, €|ty, tx+1[, simulate Wy, through a Brownian bridge and
save in a list L?, needed for (2.2);
forj =nar—1;5>0;7=7—1do
e Take the Brownian trajectory with time-step T - 277 obtained by considering only the
27 —th terms in the list LY ;
e Iterate over this trajectory using formulas (2.1)-(2.2) to calculate (X%T'Q_J , UICJT'T]);
o If a collision takes place, a Brownian bridge is simulated using the starting and ending
values from L and LY, which is needed for (2.2);

end
end

e Calculate Error[f](At) for At =T -2 % fori = {0,...,na¢};
Algorithm 1: Simulation algorithm
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It can be seen that there is a loop on trajectories and afterwards a loop on the list of different time-
step sizes. This was done in order to simplify the parallelisation which was performed by splitting the
trajectories on each processor. The workload is fairly balanced between independent trajectories. If the
other obvious route had been taken, namely having the loop on the list of time-steps before the loop on
the trajectories then either (a) the parallelisation would be performed on the time-step loop meaning that
the workload would be unbalanced as one processor would need to simulate trajectories with one value
of At while another processor would get a different value of At thus having the one with the smallest
time-step needing to perform more computations or (b) the parallelisation would be performed on the
trajectory loop, which would increase the number of communications as the data would be aggregated
each time a new At is considered.

An added benefit for choosing this form of algorithm is that the trajectories for different time-step
sizes are correlated and therefore random number generator is not used very often but most importantly,
the Richardson-Romberg estimators are also correlated meaning that the variance does not increase as
seen in [Pages, 2017].

The reason for simulating from the finest to the coarsest discretised trajectory, instead of the other
way round, is because the collision times need to be computed for each trajectory. In a coarse to fine ap-
proach Brownian bridges need to be simulated, and these bridges would need to contain all the collision
times from all the coarser trajectories. In a fine to coarse approach, this is avoided as only the collision
times of the finest trajectory need to be stored.

2.2 Test cases description

For the test functions f: (z,u) € RTxR — 2?+u?andalso g: (z,u) € RT xR — exp (—(z — 0.5)* — u?).
Concerning the drift, we consider 3 different examples:

e Brownian case: b: (z,u) € Rt X R+ 0
1
e sincase: b: (z,u) € RT x R — —sin(27z) + 3 sin(27u)
e Ornstein-Uhlenbeck case: b: (z,u) € RT x R — —5(u +5)

In the case of no drift, due to the choice of f, it is possible to calculate Ef (X, US) = Ef (XIJ:, U%)

3
analytically. We have that E [(X7*)? + (U7")?] = T? + T%u? + 2Tuzw +u? + 22 + T.

Initial points x = 0.1,u = —1.1, x = 0.01,u = —0.011 and finally z = 0.001,% = —0.011.
The initial values for the velocity are chosen negative and much larger than the initial values of the
position in order to increase the probability that the process touches the specular boundary. The results
are considered for Nyc = 108 trajectories and Ng,; = 10 and for At = 212 . 270 are presented in
log-log plots.

2.3 Outputs
Brownian case for the velocity

In the first case, where the drift b = 0, we have the log-log plots in (2.1) and more precisely in ta-
ble 14.

How to read the plot graphs
We explain how to read the log-log plots that appear in this section and in the next. The same rules
apply to all the test cases.

On the x—axis we have At, which decreases from right to left and on the y—axis we have the
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values of the error. The dashed line that splits the plots from line to the upper right corner to the lower
left corner represents the identity function. Since both axes are logarithmic, this line is a visual test to
compare the slopes of other monomials.

The red dots and the light grey crosses represent the calculated error points while the error bars
represent the 95% confidence interval. To estimate an order of convergence, we only consider the red
points. We also print tables with the data that is plotted. The values in grey are exactly the values that
are excluded from the estimations.

The dark line represents a simple linear regression between the red points. We indicate its slope
in the legend.

The red dotted line connects the low bound of the confidence interval connected to the first data
point to the upper bound of the confidence interval of the last data point. This would represent crudely
a lower bound of the slope. Reciprocally, the green dotted line connects the upper bound of the
confidence interval of the first data point to the lower bound of the confidence interval of the last
point. This would represent an upper bound of the slope.

Having two estimates of the slope can help in different cases. If the size of confidence interval is
large compared to the error, then the position of the data point inside the confidence interval can have
a significant change on the slope. It is in such cases that a bound based on the confidence interval is
useful. A weighted linear regression might be useful, but it is more complicated when we have few data
points, as it is the case in our situation.

If the size of the confidence interval is small compared to the values of the data, then the linear
regression is sufficiently stable as the data points do not have too much uncertainty in their values.

It can be seen that for very small values of At the statistical error dominates so these points will
be eliminated in the estimation of the convergence rate (these are shown as the red cells in table 14 in
the Appendix). Another useful result is the variance and confidence interval for only one of the Ngy
estimators of E f ()_(T, C_fT) in (2.4). These results are presented in table 12 in the Appendix. These
confidence intervals present an approximate cut-off range of values useful when eliminating simulation

points from Error|-]. It can be noticed that the variances for the case xo = 0.1, ug = —1.1 are larger than
those of the other test cases, thus the statistical error is also larger and more points need to be eliminated
in the first case compared to the other two.

It can be seen that in all cases, this rate of convergence is close to the theoretical linear value pre-
sented in Theorem 1.6.
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=
10°
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(C) Trog = 0.001, Ug = —0.011,
Error[f] ~ At0-95

Figure 2.1: Error convergence estimates in the case of b = 0

In table 2.1, we give the upper and lower bounds obtained through our method. We also present
the result of the simple linear regression: the obtained slope and the p—value by testing the estimated
slope against the theoretical value of 1. This p—value is underestimated because it only considers the
errors between the linear estimation and the data points without considering that the data points are in a

confidence interval.

o = 0.1,UO =-1.1 g = 0.0l,uo = —0.11 o = 0.001,71,0 = —0.011

Upper Bound 1.43 1.34 1.06
Lower Bound 0.83 1.01 0.86
OLS slope Estimation 1.01 1.12 0.95
p—value 0.1104 0.0013 0.0165

Table 2.1: Result of convergence rate estimation b = 0

Finally, we estimate the random variable Zth 1 Xe=0 which gives the number of times the process
X hit the reflective boundary and K7, the discretised version of K7 defined in (1.1) which gives the
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value of the process U¢ when the reflective boundary is hit. These values are presented as functions of
the discretisation time-step At and are useful as measures of the supposition of only one collision per
time step. The results are presented in Figure 2.2 and the confidence intervals in table 13.

e—e x,=0.1u,=-11 e—e x,=0.001,u, =—0.011
e x, =001y, =—0.11

oo x,—0.1u—11 s x,=0.001,u; =—0.011

oo X, =0.01,u; =—0.11
——e

1.40) ; :

L35 ; i 2.0F :

x4 15
120 ._..__..__.——*/"//

Hits

1.00
107 10° 10° 107 10 107 10° 10"

At At

(a) Number of reflections (b) Value of K¢

Figure 2.2: Statistics in the case of b = 0 (At decreases right to left)

We can see that as the point (g, up) approaches the origin, the number of times a trajectory reflects
increases, while the velocity at which the reflected boundary is hit decreases. This is fairly straightfor-
ward, since if a particle hits the boundary with high velocity, then the reflected velocity will be reversed
but still maintain a high magnitude, meaning that the reflected particle goes quickly in the opposite di-
rection of the wall and the probability of it returning is decreased. Also, fairly quickly, the number of
reflections and K7 become constant, meaning that the supposition of one collision per time step is veri-
fied in this case because a decrease in time step does not modify the number of collisions. Another result
that stands out is the fact that K7 seems much less sensitive to the variation of At than the number of
hits, meaning that even if errors are committed while estimating the factor Zth T ge_os the weighted

sum Y-, o U ge_g is still valid,

Richardson-Romberg output

We denote by f(X (2% (A1) the estimator of E f (X5, US) so that (2.4) can be rewritten as:

N=—
Err

(Br(x5.U5) — (X0, 040))"

Errorlf] (At)? ==

i
2
o

1=
Then we can introduce the Richardson-Romberg estimator and the equivalent error:

N=—
Err

(=705, 05) — (2A(X02, G802 - fx@n, gan))*
2.5)

ErrorRR[f](At)? ==

=
2
o
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Figure 2.3: ErrorRR[f] in the case of b = 0 and zp = 0.01, up = —0.01

We noticed that for the Brownian and sin cases, the Richardson-Romberg estimator converges very
quickly for the set of time steps considered up to the present moment. For example, only the statistical
error can be seen in figure (2.3). Therefore, coarser time-steps are needed, so the time steps At =
{275,...,272} were considered. The results are presented in the log-log plots 2.4 and, more precisely,
in the table 2.2. For the estimation, we removed the parts of the curve that are flat (marked in red in table
2.2), which represent the statistical error and not the bias reduction.

107 107 107 107 10° 107 107 107 107 107 10° 10° 107 10° 107 107 10°

@ 20 = 01, up = —1.1,(b) 2o = 0.01, ug = —0.01, () 2o = 0.001, ug = —0.011,
ErrorRR ~ A¢2-06 ErrorRR ~ Atl73 ErrorRR ~ Al

Figure 2.4: Error convergence estimates in the case of b = 0

xo=0.1,up = —1.1 | @p = 0.01,ug = —0.11 | zo = 0.001,ug = —0.011

Upper Bound 2.35 1.99 2.07
Lower Bound 1.81 1.5 1.52
OLS slope Estimation 2.04 1.73 1.74
p—value 0.37 0.11 0.07

Table 2.2: Result of convergence rate ErrorRR|f] for b = 0

It can be seen that it is difficult in the case of the Richardson Romberg error since there are quite few
data points but the numerical estimate seems to be in the interval [1.5, 2].
sin function case

In this test case and in the following in subsubsection 2.3 it is not possible to calculate an analytic value
for the reference result Eh (XS, U%) with h any test function. Two options are considered in this case.
The first one is using a PDE approach.
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PDE approach

Assume 9 is a smooth enough test function and consider the function defined for any (¢, z,u) € Qr
as F(t,z,u) = Bp( X", ULP™) where (X{™", UP™™)o<i<7 is a solution to the equation (1.1). Then
F'is a weak solution to

2
OF + (u- Vo F) + (b(z,u) - Vo F) + %AUF =0, on Qr,

F(T,z,u) = ¢(z,u), on D x RY, (2.6)

F(t,z,u) = F(t,z,u — 2(u - np(z))np(x)), on 7.
Since the techniques that will be used to numerically solve the previous PDE involve spatial discreti-
sation and the domain D x R is infinite, we have imposed different boundary conditions in order to

obtain a bounded domain. Coming back to our case, we have that d = 1, so the domain of the PDE is
(0, 400) x R. We impose:

e periodic boundary conditions on the x coordinate at x,,.
e Dirichlet boundary conditions on the u coordinate at +up.
and we denote as €2 the domain that is obtained.
So, the PDE (2.6) is transformed into
2
OF + (- 0,F) + b, w)d,F + 70 F = 0, on (0,T) x (0,,) x (~up,up),

F(T,,u) = ¥(w,u), on (0,,) x (~up,up),
F(t,0,u) = F(t,0,—u), on (0,T) x (—up,up),
F(t,z,up) = F(t,z,—up) =0, on (0,T) x (0,z,),
F(t,0,u) = F(t,zp,u), on (0,T) x (—up,up),

Q2.7)

\

where F(t, z,u) = (X", ﬁ%x’“)]lTSTiuD where 74,,,, = inf {t >0 ‘ U = uD} and (X", U)o

solves the SDE
~ t ~
X; = [w+/ U, ds] mod
0

~ t ~ ~
Ut:u—i—/ b(X,, Us)ds + oW, — Y 2015 .
0

0<s<t

(2.8)

We consider that z;, = 1. Also, by [Gobet, 2000], it is known that in the case of killed diffusions,
for discretised schemes, the error converges as the square root of the time-step. Since this is below
the predicted convergence rate for our scheme that is linear, in order not to bias the results, up was
chosen sufficiently large such that very few simulated trajectories actually hit the absorption border. So
up = 10.

We consider the test function to be g: (z,u) € RT x R — exp (—(z — 0.5)® — u?) since numeri-
cally it is basically on a compact support in the u axis, while respecting needed periodic conditions:

e specular reflection at z = 0: g(0, —u) = ¢(0, u)
e particle moving on a torus so g(1,u) = ¢g(0, u), for u > 0.

Since our reference result is obtained through a numerical it contains discretisation errors that we
will try to crudely estimate.
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Output with PDE reference result

The numerical reference result was obtained by using the software FreeFem-++ [Hecht, 2012] involving
a finite element method. Due to the shape of the domain (very elongated in the u coordinate) and to the
fact that the terminal function g is very flat outside the central lobe, we have refined the area close to the
centre, the region [—1, 1]. We show in figure 2.5 the mesh and the numerical result obtained.

(b) Zoom on refinement

E
-5.994e-01

£0.44954
0.29969
0.14985

=-2.176e-09

(c) Zoom on interest region of the solution

Figure 2.5: On the numerical solution of the PDE (2.8)

The parameters of the discretisation are:
e refined centre rectangle size of 2 x 1 in the (u, z) coordinate: 1000 x 1000 discretisation points
e outer rectangles each of size 8 x 1 in the (u, x) coordinate: 40 x 80 discretisation points

e time discretisation : At = 10~

Since in b = sin and b: (u) — —5(u + 5) cases, we replace the analytic reference result in Error
by a PDE result, any error on this PDE result creates a bias in the estimation of the convergence rate.
There are very few results that involve a priori estimations concerning parabolic PDEs with specular
boundary conditions. One is in the case of Dirichlet equation in dimension d = 2 with solution u €
HE(Q) N H%(2) and uy, its approximation on a regular mesh with P! finite elements. Then there exists
a constant C' such that we have the bounds

lu = unll gom ) < CR*™ [lull g2 -
It has been shown in Theorem 1.6 that the solution of our PDE is indeed in H?2. If we consider
m = 1+ ¢ for any ¢ > 0 then by Morrey’s inequality, H'T¢(R?) c C%¢(R?), where C%* is the
e—Holder space. And since our domain £ is bounded, the e—Holder space is embedded in L>°(£2).

Therefore, the L error is bounded by Ch!~¢ ||u| 2, for any & > 0.
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Of course, besides Dirichlet boundary conditions, we also have specular boundary conditions and
the problem being considered is parabolic. For the implicit Euler scheme utilised here, the time discreti-
sation error is linear in At. We denote FhAt the numerical solution of the discretised version of the PDE
2.7 and for any £ > 0 there exists two constants C; and C5, such that for and any (z,u) € Q:

|F(0, ,u) — FAH0, 2, u)| < C1hY ™5 + CoAt.

Since At = 10~* and h ~ 1073, we cannot expect to obtain a better precision than 10~%, 1073
depending on the bounding constants.

And the results obtained are shown in the log-log plot 2.6 and presented fully in table 17. In table 16,
we present the results for one of the N estimators of Eg(X$,Uf). These values can be useful when
determining a cut-off value in order to eliminate data points where the statistical error dominates.

- . oo e e Error points Lower Bound ~ A¢"!!
® © Error points o Upper Bound ~ At“ _ —  Decrease ~ A" . Eliminated Error points
— Decrease ~ At™" Lower Bound ~ At 123
101 Upper Bound ~ At'*
10"
10?
10°
5
8. 3 =
5 0 § 102
5]
10*
10
10°
10° 10" 10° 10° 10" 10° 5 = 3 5 <
At 10 10 10 10 10
At
a)zg = 0.1, up = —1.1
(a) 7o ; Uo ; (b) 2o = 0.01, ug = —0.01,
0.95 —_—
Error[g] ~ At 1.23
9 Error[g] ~ At
® e Error points Lower Bound ~ A%
—  Decrease ~ At'%® Eliminated Error points
Upper Bound ~ A¢'?
107
102 b
8
£ 107
=
10*
10°
10° 10 10° 10 10"
At

© 20 = 0.001, up = —0.011,
Error[g] ~ At!08

Figure 2.6: Error convergence rates in the case of b = sin

Once again we can notice that the estimated slope, which estimates the decrease rate, is close to the
theoretical value of 1.
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20 =0.1,u9 = —1.1 | 29 = 0.01,ug = —0.11 | 29 = 0.001, ug = —0.011

Upper Bound 1.06 1.23 1.21
Lower Bound 0.87 1.11 0.99
OLS slope Estimation 0.95 1.15 1.08
p—value 1073 0.0045 6-10~*

Table 2.3: Result of convergence rate Error[g] for b = sin

Output with Monte-Carlo reference result

In the previous paragraph, we saw the results when the reference result is obtained from a PDE. In

this section we shall consider that the reference result is obtained from an independent Monte Carlo

simulation. This Monte Carlo result is calculated on 108 trajectories and the time step is the same as the

finest trajectory that has been calculated. We remove the results of the finest trajectory from our output.
We present the results obtained for these reference values in table 2.4.

Initial Condition ‘ Result ‘ Variance ‘ 1/2—Conf Int
z0=0.1,u0 = —-1.1 0.385 0.112 6.71-107°
x9 = 0.01,u9g = —0.11 | 0.597 | 0.083 5.76:10°
xo = 0.001,up = —0.011 | 0.599 | 0.082 5.73-107°

Table 2.4: Reference values obtained through MC

Because of the size of the confidence interval of the reference results (of order 10~%), we eliminate
all data points smaller than 10~%. In the plots 2.7, we present the results.

Upper Bound ~ At""* Upper Bound ~ At'#

points. Lower Bound ~ At'

Lower Bound ~ At""

s
10*

s s
10° 10° 10° 107 10" 10° 10 10° 107 10* 10° 10° 10° 10° 107 10?
At At At

)z = 0.1, ug = —1.1. (b)zo = 0.01, up = —0.01.  (c) mo = 0.001, ug = —0.011.

Figure 2.7: Error[g] in the case of b = sin MC reference result

And in table 2.5, we present the estimated values and bounds that were calculated. We can notice
that when utilising a finer Monte Carlo reference result, as opposed to a PDE reference result, we have
a certain bias to obtain a higher convergence order. But since we have a more precise error for the
reference, it is easier to determine a cut-off value.

Finally, we estimate the number of times the process hits the reflective border and the value of K.
The same conclusions as the Brownian case apply and it is noticeable that there are few differences
between the two test cases. The hypothesis of one collision per time step seems to be verified once
more.
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Table 2.5: Result of convergence rate Error[g] for b = sin - MC Reference

z0 =0.1,u0 = —1.1 | mp = 0.01,up = —0.11 | z = 0.001,uo = —0.011

Upper Bound 1.19 1.12 1.25
Lower Bound 1.07 1.06 1.11
OLS slope Estimation 1.11 1.09 1.16
p—value 0.014 0.12 0.016
o—e x,=0.1u,=-1.1 o—e x,=0.001,uy, =—0.011 s x,=0.1u,=-1.1 s—e x, =0.001,uy =—0.011
e x,=0.01,u) =—0.11 e x,=0.01uy=—0.11
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1.451 : 1 2.2f

1.401 20k

1.35}
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1.15¢ 12r

1.10F 1 1.0r o
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(a) Number of reflections (b) Value of K

Figure 2.8: Statistics in the case of b = sin

Richardson-Romberg extrapolation

In figure 2.9, we plot the results of the Richardon-Romberg convergence rate estimation. In the case
of 19 = 0.1,ug = —1.1, the decrease is of order At?25. In the other test cases, the majority of the points
lie in the interval [10~°, 10~°]. These values are of the order of the confidence intervals in table 18. The
reduction of the bias happens very quickly and the statistical error induces too much noise, thus making
it difficult to extract any information on the rate of convergence of the error.

ower 1232 i i ¢ \d 122 e
. :
o 107
10" ,
.
10% 2 3. i
5 10" &
" I

10707 3 3 T o 1075 g T g 3 T o 10705 T 3 3 T
10 10 10 10 10f 10 10 10 10 10 10 10f 10 10 10 10 10

@z = 0.1, ug = —1.1, )z = 0.01, ug = —0.01,  (¢) 7 = 0.001, up = —0.011,
ErrorRR[g] ~ At ErrorRR[g] ~ A1 ErrorRR[g] ~ At?:68

Figure 2.9: Richardson-Romberg error convergence estimation in the case of b = sin

104



z0 =0.1,u0 = —1.1 | mp = 0.01,up = —0.11 | z = 0.001,up = —0.011

Upper Bound 2.44 3.36 3.13
Lower Bound 2.32 221 2.4
OLS slope Estimation 2.25 2.21 2.68
p—value 0.022 0.21 0.14

Table 2.6: Result of convergence rate ErrorRR[g] for b = sin (values in red as they are not deemed
statistically significant)

Ornstein-Uhlenbeck case

We now consider the drift b: (x,u) — —5(u + 5). This does not respect the condition on the drift
in order to prove our theorem, but we can show some numerical results. As in the previous case, with
a sinusoidal drift term, we do not have an explicit analytic solution, so one must be calculated. We
consider a reference result obtained by a PDE approach and, afterwards, a Monte-Carlo reference result
will be analysed.

Output with PDE reference result

We shall consider the same SDE (2.8) and corresponding PDE at (2.7) with the appropriate change
in the drift b.

Due to the nature of the chosen Ornstein-Uhlenbeck drift component that presents a strong mean
reversion term, there is a strong transport term that makes the analysis more complicated.

For this PDE solver, we considered an implicit finite difference scheme with up-wind discretisation
on a uniform grid. Let Fap, 5, be the numerical solution obtained. Then, we have that there exists
three values C', C and Cj3 that depend on the regularity the exact solution of (2.7) such that for any
(x,u) € Q:

|F(O, xz, u) — FAt,hI,hu (0, xz, u)| < C1At + Cohy + Cghz ,

where At is the time discretisation, h, the x—axis and h,, the u—axis discretisation parameters.
The parameters of discretisation are:

e At =101
e h, =10"*
o h, =102

meaning that the discretisation error for an usual parabolic equation would be of order 10~4,
We plot the solution obtained by the PDE simulation:

Figure 2.10: PDE solution for the Ornstein-Uhlenbeck case
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We can notice that there is an impact of the stiffness of the drift compared to the sin case. A transport,
wave front pattern appears in the solution.

In the plots 2.11, we show the obtained results and in table 2.7 the estimated rates of convergence.
It can be seen that compared to the previous cases, the errors are much larger (at least one order of
magnitude). Because of this, the confidence intervals are no longer visible on the graph, even though
as seen in table 19, they are of the same order as previous examples. Also compared to the previous
solutions, there seems to be a larger dispersion of the points, making fitting to a line more complicated.
In the three test cases though presented though, our theorem that gives at least a decrease in At is

confirmed numerically.

e e Error points Upper Bound ~ A¢*%

® e Error points Upper Bound ~ At"%?
—  Decrease ~ A" Lower Bound ~ A"

6 2
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(@ xg = 0.1, up = —1.1, (b) zp = 0.01, up = —0.01,
Error[g] ~ At!-06 Error[g] ~ A¢193
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10 107 10° 107" 10°

At

© 2o = 0.001, up = —0.011,
Error[g] ~ At!-03

Figure 2.11: Weak error convergence estimations the case of Ornstein Uhlenbeck

In table 2.7, we present the p—value under the hypothesis H that the order of convergence is 1,
which are sufficiently large to not reject the original hypothesis.
Output with Monte Carlo reference result

In the graph 2.12 we present the results for the weak error calculation when the reference result
is taken from a Monte Carlo simulation presented in table 2.8. While the p—values from table 2.9
show that we cannot reject the hypothesis Hy that the convergence rate is linear, we can see that in this
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20 =0.1,u9 = —1.1 | 29 = 0.01,ug = —0.11 | 29 = 0.001, ug = —0.011

Upper Bound 1.02 0.94 0.93
Lower Bound 1.02 0.94 0.93
OLS slope Estimation 1.03 1.03 1.03
p—value 0.24 0.38 0.39

Table 2.7: Result of estimated convergence rate for Ornstein Uhlenbeck case

case, the Monte Carlo simulation underestimates the value of the convergence rate, which is an opposite
behaviour of the sin case, where the convergence rate was overestimated.
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Figure 2.12: Error[g| in the case of Ornstein-Uhlenbeck - MC reference result

Initial Condition ‘ Result ‘ Variance ‘ 1/2—Conf Int
xo=0.1,u9g = —1.1 0.672 | 0.0154 2.48-107°
xo = 0.01,up = —0.11 0.704 | 0.0088 1.87-10°
zo = 0.001,up = —0.011 | 0.707 | 0.0081 1.81-107°

Table 2.8: Reference values obtained through MC

o =0.1,u0 = —1.1 ‘ xo = 0.01,u9p = —0.11 | o = 0.001,up = —0.011

Upper Bound 0.95 0.91 0.9
Lower Bound 0.95 0.91 0.9
OLS slope Estimation 0.93 0.9 0.89
p—value 0.21 0.16 0.16

Table 2.9: Result of estimated convergence rate for Ornstein Uhlenbeck case - MC reference

Richardson-Romberg extrapolation

We can see that the Richardson Romberg error convergence rates are larger than 2, but the p—values
in table 2.10 are sufficiently large to not reject the testing hypothesis that the Richardson Romberg
convergence rate is statistically different from 2.

It is also possible that the graph points are artificially precise since the error obtained is smaller than
the error obtained by the normal weak error estimator.
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ErrorRR[g] ~ At2-56

ErrorRR [g] ~ At2:37

ErrorRR [g] ~ At2:36

Figure 2.13: Richardson-Romberg error convergence rates in the case of Ornstein Uhlenbeck

o = O.l,u(] =—-1.1

zo = 0.01,ug = —0.11

o = 0.001,U0 = —0.011

Upper Bound 2.68 2.45 2.42
Lower Bound 2.62 242 241
OLS slope Estimation 2.56 2.37 2.36
p—value 0.26 0.39 0.4

Table 2.10: Result of Romberg error convergence rate for Ornstein Uhlenbeck case

The plot of the number of hits per time step shows that with the selected range of time steps, we
underestimate the number of times the process hits the reflection border. Therefore many of the effects
seen in this test case, such as larger dispersion and value of errors, might be due to this underestimation.
The value of the velocity process at the collision instants seems to remain fairly flat, implying that while
the number of hits is underestimated, the weighted sum K7 over these collision times is estimated fairly

well.
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Figure 2.14: Statistics in the case of Ornstein Uhlenbeck
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24 Strong Error

We also compute the numerical strong error that the symmetrised scheme produces. There is currently
no estimate or actual proof that the proposed scheme converges in the strong sense but we consider that
it may offer some insights that can complement the numerical study of the weak error.

The strong error takes the form E [ {sup } }X{ff — Xy, || on the position and E [}U?f — Url] for
i={1,...,n

the velocity since it presents discontinuities, where (X', Uref)ogtST represent a strong solution of

the equation (1.1), which exists by [Bossy and Jabir, 2011] by proving weak existence and pathwise

uniqueness. Since it is not possible to exhibit such a function, we replace this process with a version of

our scheme calculated with a very fine time-step, denoted as (X™f, U™0)o<,<7. The trajectories of the

process which we compare to this reference solution, use the Brownian noise as the reference. We shall

Ns[r Nslr
_ _ 1 _ _
plot the curves At — g sup Xtr,ef’k - XtA,t’k‘ and At — — g (‘U{Fef’k - U?t’kD,
str 3 i={1,...,n} ! ! str 3

where ()_( rebk 7 ref’k)ogtggr are Ny, independent realisations of the reference discretised solution and
(XAtk T At’k>0§t§T are solutions obtained with the same Brownian noise and time-step At. We present
the results obtained for 3 initial values in the log-log plots 2.15 for the Brownian case, 2.16 for the sin
case and 2.17 for the Ornstein Uhlenbeck case. In the same plots, the 95% confidence intervals for these
Monte Carlo results are plotted, but they are not visible since they are 3 to 5 orders of magnitude smaller
than the simulated values, as seen in the tables 19 or 20.
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(e) X Error ~ At%2* for initial conditions (f) U Error ~ At%19 for initial conditions
xg = 0.001, ug = —0.011. zg = 0.001, ug = —0.011.

Figure 2.15: Strong Error for b = 0
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(e) X Error ~ At%?5 for initial conditions (f) U Error ~ At%23 for initial conditions
xg = 0.001, ug = —0.011. zg = 0.001, ug = —0.011.

Figure 2.16: Strong Error for b = sin
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(e) X Error ~ At%52 for initial conditions (f) U Error ~ At%?° for initial conditions
xg = 0.001, ug = —0.011. zg = 0.001, ug = —0.011.

Figure 2.17: Strong Error for Ornstein-Uhlenbeck case

Comments

We recall that in [Lépingle, 1995], in the case of a reflected diffusion, the strong error of the scheme

is of order —. Another important fact is that the initial condition is forgotten by the process once the
reflective boundary is reached. In the case of specular reflection, at least numerically, the convergence
error seems greatly reduced and we can notice also a dependence on the initial values, decreasing as the

initial points approach the origin.
Another aspect is that in the Brownian and sinus cases, the curve is quite straight with little deviation
between the values as seen in tables 23, 24, 25 and 26. In the case of Ornstein Uhlenbeck drift, we notice
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larger deviations from the least square line. This can be due to the fact that in the Ornstein Uhlenbeck
case, for the selected values of At, the hypothesis of one collision per time step is no longer respected.
What is less obvious is the convexity of these curves, which imply a overestimation of the strong rate.

And finally, the reduced strong rate convergence will also negatively impact the convergence of a
Multi-Level Monte Carlo algorithm.

3 Penalised Schemes

This section contains various tentative numerical experiments regarding penalised schemes that would
converge towards a specularly reflected Brownian process.

3.1 Penalisation on the velocity term

In the article [Paoli and Schatzman, 1993], the authors obtain the convergence of a penalised kinetic
equation towards a process that admits a specular. Their arguments require Lipschitz conditions on the
velocity term, which corresponds to the Brownian term in our case, so a direct extension of their result
is not possible. Nevertheless, we consider :

t
Xﬁ:XOJr/ U ds
Ot 1 t (31)
Uﬁ:UH/ b(Xg,Ug)derA/ (X))_ds + oW,
0 0

Due to the fact that the process present a very stiff term, the discretisation of the scheme involved a
Runge-Kutta scheme of order m taken from [Abdulle and Li, 2008]. Since we do not know what optimal
values of ) to select in order to minimise the error, we assume that we can write

A= (At)l—i-a

and simulate the scheme for « taken in a range of values. For the figures 2.18 and 2.19, we select o =
{-=0.5,—0.4, cdots, 1.4} while for figure 2.20 we have selected the range o = {—0.2,0,0.2,---1.2} .

a=0
= Q=05

== Projection of minimal error
//U 16

—  Decrease ~ A

—-1.80

-1.95

-2.10

-2.25

—2.40

10117

—-2.55

-2.70

Figure 2.18: Selecting ) for a strong error on X
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a=0
G =0.5

Projection of minimal error
Decrease ~ At*®

-0.75

-0.90

-1.05

-1.20

=135

-1.50

1011

-1.65

-1.80

Figure 2.19: Selecting \ for a strong error U

Concerning the weak error obtained for 1 million trajectories and test function f: (x,u) > z2 + u>
we obtain:

a=0
— i, =0.0

= = Projection of minimal error

— Decrease ~ A"

Figure 2.20: Selecting A for the weak error

The value of o that minimises this error seems to be o = 0, meaning that A ~ At. The decrease for
this selected value is At077.

What is noticeable between the weak error and the strong error, is that there are different values of
« that minimise the error. For the strong error, it is a = 0.5, for the weak error o ~ 0. If we were to
select o &~ 0.5 for the weak error, we obtain a decrease in AtY-28,
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3.2 Reflection: Slominski case

This scheme is based on an article by Slominski [Slominski, 2013] which applies a penalisation on the
whole process. In our case, we shall penalise the position to obtain:

t 1 t
X{\—X0+/ U3+>\/ (X)) _ds
0 0 3.2)
U} = Uy +/ b(X2,U)ds + oW,
0

In this case, the process (Uﬁ)te[oﬂ no longer represents the velocity of the process (U})te[o’T]. In
order to simplify calculations, we shall assume that the drift bis b: (x,u) — b(x), thus we can introduce

1
the process V; = U + X(Xg‘),. Then the process becomes:

t
X} =Xo+ / V2 ds
0 (3.3)

t
1
VA =U +/ b(XM) ds + oW, + X(Xﬁ),
0

A first scheme

X)\

tit1

_ _ 1/ _ _
Vi, = bDAL+ o (Wi = W) + 5 (X)) — (X0)-)

=X} + V) At
(3.4)

141

The results are:

Figure 2.21: Selecting ) for a strong error X

and
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Figure 2.22: Selecting \ for a strong U

It can be seen that the regions that minimise the error surface are also flat so it is difficult to select a
good enough .

Rewriting the process

Equation (3.3) can be rewritten as:

t
X} = Xo +/ VA
0 3.5)

t 1 t
‘/tA:UO—F/ b(X;\)dS‘i'UWt‘FX/ ]1X5>\<0V;\d8
0 0 B

Exponential Scheme

A first scheme that was analysed was a simple discretisation of the position X?H L= XQ + V;?At.
Concerning the velocity process, we use an exponential scheme on the velocity during the period the

process (X ’\)OStST is in the negative domain.

The results are:
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= = Projection of minimal error

— Decrease ~ At~

103

107

108

and

min
== Projection of minimal error

—  Decrease ~ At

Figure 2.24: Selecting \ for U

Again the results seem inconclusive. The error does not seem to decrease in At, which would not
correspond to a normal behaviour.

Retrograde Scheme

A different scheme for (3.5) would be to consider that we penalise the velocity with a value proportional
to the velocity needed to enter the negative domain:
), = X+ Vi
. ) At _ (3.6)
Vt = b(Xti)At + U(Wti+1 - Wtz‘) + T]l)_{tig()‘/ti—l

141

This gives that:
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Figure 2.25: Selecting \ for X

and

= a=0
— oy =0.0

== Projection of minimal error

—  Decrease ~ A(*!7

song

Figure 2.26: Selecting \ for U

We notice that the scheme has stability issues. Eliminating this instability point:
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= a=0

—_— ay, =0.0

= = Projection of minimal error
(017

Decrease ~ A

Figure 2.27: Selecting \ for U

The error is minimised for o ~ 0, so A ~ At. The decrease is of order At%!9 for the position and
A017.

And for the weak error:

= a=0

—_— =00

= = Projection of minimal error
—  Decrease ~ At**

Figure 2.28: Selecting A for the weak error

The values are A =~ At and the decrease is of order At%22.
This scheme seems to behave better compared to the others, but more work is needed to eliminate
the instabilities.

4 Multilevel Monte Carlo

In this section we apply the multilevel Monte Carlo method to the symmetrised scheme. The Multilevel
Monte Carlo (MLMC) and other similar variance reduction methods appeared independently in different
contexts. Heinrich [Heinrich, 1998] developed such a method to estimate integrals that depend on a
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parameter. Giles [Giles, 2008] extends a previous work by [Kebaier, 2005] to multiple levels. It is his
formalism that we present here.

4.1 Formalism

Let:

dX; = b(Xy) dt + o(Xy) dW; @.1)

with sufficiently regular coefficients b and 0. Suppose we wish to calculate IEX;}L) where the random
variable X7 is obtained through a discretisation of an SDE with time step h. The estimator for this

(hz

expectation is Y = where X (h,i )) .~ are IV independent copies of X (") We denote

||Mz

_ _ T
by P, := Xj(ﬂhl), for time step h; = o Then we can write the telescopic sum:

L
EP, =EPR + ZE [P — Pi_4]
=1

which we estimate using:
N,
o _ 1 56) _ pl)
vi=—Y @ —RJ
Nl — l -1

The multilevel Monte Carlo method involves selecting an optimal number of levels L and optimal num-
ber of simulations /V; for each level [ so as to reduce the complexity for a given level of the mean square

root error. In order to not increase the variance, for any given level [, Pl(l) — 151@1 is calculated using the

same Brownian path, with two different time steps h; and h;_;. We have then:

Theorem 4.1 (Theorem 3.1 in [Giles, 2008]). Let P denote a functional of the stochastic differential
equation (4.1) for a given Brownian path (Wy)¢>o an let ﬁl denote the corresponding time-step h; =
27T

If there exists independent estimators i;l based on Ny Monte Carlo samples, and positive constants

1
o> > B, c1, ¢, c3 such that:

1. |E[P —P]| < cihf
- E[P)],l1=0
2 Bl = E{é“—ﬁﬂyl>o
3. Var [}Afl} < CQNl_lhf
4. Cj, the computational complexity of 17[, is bounded by
() < 63Nlh;1

then there exists a positive constant c4 such that for any € < e~ there are values L and N, for which
the multilevel estimator



has a mean-square-error with bound
~ 2
MSE =E [(Y - E[P}) } <¢?
with a computation complexity C with bound

648_2,ﬁ >1
C < e (log5)2 ,0=1
cie 27 =A/e o< g < 1.

Cost Analysis

These numerical results are obtained through a standard Multi-level Monte Carlo procedure where
the only stopping criterion is when the simulation reaches a maximum number of levels set beforehand.
As such, convergence (actual error smaller than target error) is not guaranteed.

Table 2.11: MLMC results for zyg = 0.01,up = —0.11and b= 0

Target error | Actual error | Level | Variance Trajectories

0.005 0.00017
27° 3.32649 1958471
26 0.190013 349449
27 0.162727 227902
28 0.140153 148778
279 0.12585 99206
2-10 [ 0.100997 62001
2-11 1 0.0925873 41551
2-12 0.077357 26836

0.001 0.00374

5 3.31315 | 48805347

6 0.193624 8811241
=7 0.164322 5717492

8

9

0.141247 3729312
0.122799 2445868
—-10 1 0.103809 1574088
-1 0.0903111 1023944
121 0.0767211 670273

NININININDN NN
|

First, it can be seen that the convergence of the algorithm is not always obtained and a better stopping
criterion would need to be considered. Also the variance of the different levels does not decrease very
fast and as such the number of trajectories on each level also does not decrease very quickly. But since
the decrease of the variance is determined by the strong error convergence rate, and this rate is extremely
poor, as determined numerically in (2.15¢) and (2.15d).

On the other hand, in order to obtain an error of order 10~3, the classical method needed 10° trajec-
tories with At = 278 as seen in Figure 2.1b while the MLMC method needed at most 5 - 107 trajectories
but only for the coarsest level.

Another way to view the gain is to assume that the cost to simulate a trajectory with discretisation

At . . . . oy . .
step -5 is about twice the cost to simulate a trajectory with discretisation step At. We can then consider
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as a base unit, the cost to simulate one trajectory with discretisation step At = 272, which we denote as
Chase- S0 the cost to simulate 10? trajectories with time step 278 is

2—5
Cclassic = 109 X F X C'base =8 x 109 X Cbase

Concerning the Multi-level Monte Carlo, we simulate Ny base trajectories (i.e. with time step 27> and
for I > 0, N;_1 + N, trajectories of time step size 2-(45)  where N is the number of trajectories at
level [. This gives:

err=0.005 7
CMLMC ~ 2 X 10 X Cbase

and

err=0.001 8
Cvime =5 X 10% X Chage

so a gain of one to two orders of magnitude in terms of cost for the same target error.

Results

In the log-log plots 2.29 we present the errors between the various multilevel Monte Carlo results
and the analytic, in the Brownian case, and PDE reference results. On the ordinate we consider different
values for the target error. We do this for different drifts and different initial conditions. It can be seen
that these errors do not always decrease as the target error decreases. Also in the Ornstein-Unlenbeck
case, the errors seem to increase as the target error decreases, meaning that there is a bias issue.

We separate the analysis in two cases: one that contains the drift b = 0 and b = sin and the other
being the Ornstein-Uhlenbeck drift. For the first two types of drifts, the results are qualitatively similar,
while the Ornstein-Uhlenbeck case seems more problematic.
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Figure 2.29: Error of the MLMC algorithm

To further analyse, we plot the variance for different levels and different target errors in figures
2.30, 2.31 and 2.32. On the ordinate we have the level (the number of levels are capped at 9), on the
abscissae we have the variances while the different curves plotted are the different target errors. The
different subfigures are for different initial conditions. In the Appendix, the plots 33, 34 and 35 contain
the confidence interval for each level and

It can be seen that regardless of the chosen target error, the values of the variances remain more or
less the same. Also after an initial large decrease, the variances of the different levels seem to converge
to 0 at quite a slow pace. After 9 levels, the variance remains of order 1072, 1073, The decrease in
variance depends on the strong error convergence rate, and we know that for our scheme, the empiric
strong error convergence is very slow.

This also implies that the confidence intervals decrease much more slowly and in fact, they are of
the same order as the error plotted in 2.29. For example, consider the error for the Brownian in 2.29a
with initial conditions 29 = 0.01,ug = —0.11. At the beginning for target error 272, the error decreases
down to order 1073, Yet in figure 33c of the appendix, we can see that for each level for target error 25
(in yellow), the confidence interval is also of order 1073, and if we consider every level independent
from the others, we obtain a final confidence interval of size of order 10~2. Thus, the drop seen in the
error in figure 2.29 is not very informative since it is of the size of the confidence interval.

Concerning the Ornstein-Uhlenbeck case, it is difficult to extract any useful information. The results
are, qualitatively, very different from the two previous cases. The error seems to increase. The variances
plotted in figure 2.32 do not seem to decrease significantly and they also present a concave shape which
is in stark contradiction with the expected results. The bias of this scheme seems very significant.
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Figure 2.30: Variances b = 0

S Conclusion and perspectives

We have seen in our numerical cases that the weak error does seem to respect our theorem in the series
of test cases, more so, we obtain a linear decrease of the error even when the condition on the drift term
(HLangevin) 1s not respected. Also except some more extreme cases (Ornstein-Uhlenbeck process with
very stiff coefficients) the condition of one collision per time steps seems generally respected. Another
important fact is that it has seemed increasingly difficult to obtain a good estimation for the Richardson-
Romberg estimator.

Interesting extensions would be the implementation of a multi-dimensional algorithm and the inclu-
sion in the drift term of actual fluid flow calculations obtained from a DNS for example, which would
be more in line with the general goal of the thesis, the simulation of colloidal particles in turbulent flow.
Also a better understanding of the various penalisation schemes would be very useful.
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Figure 2.32: Variances Ornstein-Uhlenbeck case
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1 Various results regarding the weak error

11 =0

In table (12), we present the results for the estimator

1 € {17--';NErr}

1 N
Nuic 2on~1

f(X:cr’n’i, U;’n’i) for one value of

zo=0.1,ug = —1.1 zo = 0.01,ug = —0.11 zo = 0.001, ug = —0.011
At | Result \ Var \ 1/2—Conf Int | Result | Var | 1/2—Conf Int | Result ‘ Var ‘ 1/2—Conf Int
27121 3543 [ 13.79 | 7.43.107¢ 1355 | 333 | 3.65-107* 1334 [ 322 ] 3.59-10~*
2-11 1 3543 | 13.79 | 7.43-107% 1355 | 333 | 3.65-107* 1.333 | 322 | 3.59.1074
2-10 13543 [ 1378 | 7.43-107% 1355 | 332 | 3.65-107* 1.333 [ 322 3.59-10°¢
279 [ 3542 [ 1377 | 7421071 1354 | 332 | 3.6510°* 1.333 [ 322 ] 3.59-10°¢
2=% [ 3542 [ 1376 | 7.42-10717 1353 | 332 | 3.64107* 1.332 [ 321 ] 3.59-10~¢
27 | 3540 | 13.72 | 7.41-1071 1.351 | 3.31 3.64-10~% 1.330 [ 320 | 3.58-107*
26 | 3536 | 13.65| 7.39-10°4 1.347 | 328 | 3.62-107* 1.326 | 3.18 | 3.57-.107¢
2% | 3528 | 13.51 | 7.3510°1 1.340 | 3.24 | 3.60-10~* 1.318 | 3.14 | 3.55.107*

Table 12: Results for one estimator in the case b = 0
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o =0.1,u0 = —1.1 | zg=0.01,u9 = —0.11 | 29 = 0.001,uy = —0.011
At Hits Kr Hits ‘ Kr Hits Kr
27121 159.107° | 3.98:107° | 6.07-107° | 4.45-10°° | 7.63-10°° | 4.41.107°
2-11159.107° | 3.98:107° | 6.07-107° | 4.45-10~° | 7.63-10° | 4.41.10°
2101 1.59.107° | 3.98-107° | 6.07-107° | 4.45-10~° | 7.62-107° | 4.41-10°
279 | 1.58-107° | 3.98-10~° | 6.07-107° | 4.45.10°° | 7.61-10~° | 4.41-.10~°
28 | 1.58-107° | 3.98-10~° | 6.07-107° | 4.46-10°° | 7.59-10~° | 4.42.10~°
2=7 | 1.56-107° | 3.98-10~° | 6.07-107° | 4.46-10°° | 7.53-10~° | 4.42.10~°
26 | 1.54.107° | 3.98-10° | 6.06-107° | 4.48-10°° | 7.38-10~° | 4.44.10°°
2% | 1.48-107° | 3.98-107° | 6.03-107° | 4.51-10°° | 6.88-10°° | 4.47-10°°
Table 13: 1/2—Confidence Interval b = 0




zo = 0.1,ug = —1.1 2o = 0.01,up = —0.11 | zo = 0.001,up = —0.011
At Result ‘ 1/2—ConfInt | Result ‘ 1/2—ConfInt | Result ‘ 1/2—Conf Int
2-12 1 435.101 2.45.1071 1.40-10~* 8.38-10° 2.17-1074 8.92.107°
211 1 434.10°1 2741071 145-100% | 8.65-10°° | 3.10-10° 1 1.16-107%
2-101473.107%| 3.63-100% | 3.35.10°* 1.24-100% | 5.30-10°* 1.43-1074
279 | 883107%| 4.03.107* 8.06-10~% 1.21-100* | 9.90-.107% 1.37-10~4
278 11861073 | 4.00-107* 1.78-1073 1.26:107% 1.97-1073 1.33-1074
27 [ 383103 | 4.06-107* | 3.75-10°3 1.18-:10~* | 3.93.107° 1.31-10°4
26 17691073 | 4.04.100* | 7.61-10°3 142-107* | 7.77.1073 1.30-10~4
2% | 1541072 | 421107 1.53-10~2 1.16-10~4 1.55-1072 1.26-10~%

Table 14: Result of Error[f] in the case b = 0

o =0.1,u9g = —1.1 zo = 0.01,ug = —0.11 | 29 =0.001,u9 = —0.011
At Result ‘ 1/2—ConfInt | Result ‘ 1/2—ConfInt | Result ‘ 1/2—Conf Int
279 | 2.94.107% 1.58-10~* 1.53-107* | 6.89-10° 1451074 | 7.10-107°
2=41299.107* [ 9.56-10° | 3.26-10°* 1.24-107% | 3.61-10°¢ 1.26-10~%
23 [ 1.10-1073 | 2.58-107* 1.36-1073 1.43.1074 1.35-1073 1.63-10~%
2-2 5061073 | 222.107* | 5.13-10°3 1.27-100* | 5.24.10°3 1.79-10~%

Table 15: Result of linear estimation Romberg b = 0

zo=0.1,up = —1.1 zo = 0.01,up = —0.11 zo = 0.001, uy = —0.011
Result ‘ Var ‘ 1/2—Conf Int | Result ‘ Var ‘ 1/2—Conf Int | Result ‘ Var ‘ 1/2—Conf Int
2-121 0385 [ 0.112 | 6.71-10°° 0.597 | 0.083 | 5.76-107° 0.599 | 0.082 | 5.73-107°
2-11 10385 [0.112| 6.71-10°° 0.597 | 0.083 | 5.76-107° 0.599 | 0.082 | 5.73-107°
2-101 0385 [ 0.112 | 6.71-10°° 0.597 | 0.083 | 5.76-10~° 0.599 | 0.082 | 5.73-107°
29 | 0385 | 0.112 | 6.71-107° 0.597 | 0.083 | 5.76:107° 0.599 | 0.082 | 5.73-107°
2% | 0384 | 0.112 | 6.71-107° 0.597 | 0.083 | 5.76:107° 0.599 | 0.082 | 5.73-107°
27 1 0383 | 0112 | 6.71-107° 0.596 | 0.083 | 5.77-107° 0.599 | 0.082 | 5.74.107°
26 1 0381 | 0.113 | 6.71-10°° 0.595 | 0.084 | 5.79-107° 0.598 | 0.083 | 5.76.107°
2-° | 0377 | 0.113 | 6.71-10° 0.594 | 0.085 | 5.82:107° 0.596 | 0.084 | 5.79-107°

Table 16: Result of one estimator in the case b = sin
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o = O.l,u(] =—-1.1

zg = 0.01, ug = —0.11

Tro — 0.001, ug = —0.011

At Result \ 1/2—ConfInt | Result \ 1/2—ConfInt | Result \ 1/2—Conf Int
212 18.70.107° 3.63-107° 2.48-107° 1.48-10~° 3.05-107° 1.21-107°
2~ 11551074 3.5810°° 1.77-10~° 8.60-10° 3.43.107° 1.48-10~°
2-101293.107%| 3.36:10°° 5.60-10~° 1.58-107° 7.31-107° 2.27-107°
279 [ 5661074 | 3.32.107° 1.55-107% 1.44.107° 1.68-107% | 226-107°
278 [ 1.11-:1073 | 3.45-107° 3.60-107* | 2.12:107° 3.59-107* | 2.37-107°
2-7 [ 220103 | 3.5810° | 7.70-10~* 1.63-10°° | 7.39-107* | 2.20-10°°
276 1435103 | 3.33.107° 1.60-10—3 1.83-107° 1.50-1073 | 2.11-107°
27° | 8.52.107% | 2.40-10~° 3.22.107% | 2.05-107° 3.03-107% | 2.15-107°

Table 17: Result of error estimations b = sin

o = O.l,u(] =—-1.1

zg = 0.01, ug = —0.11

o = 0.001, Uy = —0.011

At Result \ 1/2—ConfInt | Result | 1/2—ConfInt | Result ‘ 1/2—Conf Int
2781 1.60-107% | 2.04-107° | 2.28-10° 1.88-107° | 5.26-10° 3.46-107°
2-71 1471073 | 2.79-10° | 7.65-107° | 8.42:10°° | 3.76-10°° 1.69-10—°
2-6 1320102 | 265107° [5.5510° | 53310° |925107°| 3.59-10°°
2% [ 2.23.1072 3.12-107° [ 4.20-1073 | 9.06-10~° 1.55-.1073 | 4.44.107°
Table 18: Result Romberg error estimation b = sin

o = O.I,U() =-1.1 o = 0.01,UO = —0.11 o = 0.001,UO = —0.011
At Result ‘ 1/2—ConfInt | Result ‘ 1/2—ConfInt | Result ‘ 1/2—Conf Int
21212821073 | 1.00-107° [398103 | 3.79.10°% |[4.11.10%] 6.02.10°
211 14831073 | 1.03.107° | 442103 | 6.7510°% [437.10%] 6.6510°6
271011951072 | 79510 |20510°2| 890-10°% | 2061072 1.09-107°
279 | 4681072 1.28-10° | 5.03-10~2 1.05-107® | 5.06-1072 1.09-107°
28 1941.1072 1.01-10° 1.02-10~* 1.46-10° 1.02-10~1 1.17-107°
27 | 1.67-1071 9.85-107° 1.81-10~* 1.68-107° 1.82-10~1 2.05-107°
26 12641071 1.98-10° | 2.83-10! 2.31-107° | 2.85-10°! 2.57-107°
2% [ 3951071 248.10~° | 3.78-10! 2.54.10~° | 3.77-10°! 2.03-107°

Table 19: Result of Error Estimation in the Ornstein Uhlenbeck case
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o =0.1,ug = —1.1 zo = 0.01, ug = —0.11 zo = 0.001, ug = —0.011
At | Result | Var | 1/2—ConfInt | Result | Var | 1/2—ConfInt | Result | Var | 1/2—Conf Int
2-121 0672 | 0015 | 2.4810°° 0.704 | 0.009 1.87-107° 0.707 | 0.008 1.81-107°
2~ [ 0664 | 0017 | 2.58-10~° 0.695 | 0.010 | 2.01-107° 0.698 | 0.009 1.95-10~°
2101 0.650 | 0.019 | 2.78-10~° 0.679 | 0.013 | 2.26-107° 0.682 | 0.012 | 2.20-107°
279 | 0.622 | 0.025 3.14-107° 0.649 | 0.018 | 2.70-10°° 0.652 | 0.018 | 2.65-107°
28 | 0.575 | 0.035 | 3.74-107° 0.598 | 0.029 | 3.41.107° 0.600 | 0.029 | 3.38.107°
27 | 0502 | 0.052 | 4.58.107° 0.518 | 0.048 | 4.38.107° 0.520 | 0.048 | 4.36-107°
26 1 0405 | 0.075 | 5.46-10~° 0416 | 0.072 | 5.38.107° 0418 | 0.072 | 5.37-107°
27° | 0274 | 0.086 | 5.88-10° 0.322 | 0.092 | 6.06-107° 0.326 | 0.091 6.04-107°

Table 20: Result of one estimator in the Ornstein-Uhlenbeck

o =0.1,ug = —1.1 zo = 0.01,ug = —0.11 | 29 =0.001,u9 = —0.011
At Result \ 1/2—ConfInt | Result ‘ 1/2—ConfInt | Result ‘ 1/2—Conf Int
27111164107 | 844.107°% |8.70-107° | 6.02:10°° | 1.7810° | 6.65-107°
2-10 1 147.1072 | 7.9510°° 1.61-102 8.90-107° 1.63-102 1.09-10—°
2 4.19-1072 1.28-107° | 4.59-102 1.05-:107° | 4.62.1072 1.09-10—°
2 8.92-1072 1.01-10° 9.74.10~2 1.46-107° 9.81-1072 1.17-107°
2 1.63-107 1 9.85-107° 1.77-10~ 1 1.68-10° 1.78-10~ 1 2.05-107°
2 2.59-1071 1.98-10° 2.79-10~ 1 2.31-107° 2.81-1071 2.57-107°
2 3.90-10~! 2.48.107° 3.73-107 1 2.54.107° 3.73-107 1 2.03-107°

Table 21: Result of error estimation in the Ornstein-Uhlenbeck case - MC reference

zo=0.1,u0 = —1.1 zo = 0.01,ug = —0.11 | z9 = 0.001,u9 = —0.011
At Result ‘ 1/2—ConfInt | Result ‘ 1/2—ConfInt | Result ‘ 1/2—Conf Int
2111 1.0510°2 1.81-107° 1.24.1072 8.90-10~° 1.26-102 1.41-107°
2710 1 986.10°3 1.86-10° 1.17-1072 1.63-10° 1.19-1072 1.64-107°
2 7.71-1073 1.63-107° 9251073 | 2.11-107° 9.37.1073 1.73-107°
2 5.37-107* | 3.21.107° 1.20-107% | 2.98-107° 1.27-107% | 2.12-107°
2 2.07-1072 2.59-107° 2.24.1072 2.76-107° 2.26-1072 3.71-107°
2 7.05-10~2 1.40-10~° | 7.92.1072 | 4.10-107° | 7981072 | 4.49-107°
2 1.33-10~ 1 3.52.107° 1.89-10~ 1 4.67-107° 1.93 5.99-107°

Table 22: Result of Romberg error estimation in the Ornstein-Uhlenbeck case
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o — 0.1,UQ =-1.1

2o = 0.01,ug = —0.11

zo = 0.001, ug = —0.011

At Result | 1/2—ConfInt | Result | 1/2—ConflInt | Result [ 1/2—ConfInt
21119981073 1.02-107% [ 296:1072 | 3.34.10°% | 437102 | 4.41.10°
2-10 | 1.55.102 1.34.107% | 3.77.10°2| 3.77.10°% | 527102 | 4.82.10°
279 | 223.107°2 1.72-107% | 468102 | 4.21.10% | 620102 | 5.19-10°
28 13161072 | 221107 [580-1072| 46910 |7.25102] 5.56-10°°
27 | 4431072 | 2.8710% [721-1072| 52810° |8.501072| 5.9810°°
2-6 1620102 | 3.77.107° |9.02.107%2 | 6.01-10°° 1.01-10~1 6.49-107°
2% | 8711072 | 5.00-10°° 1.14-10~1 6.99-10° 1.21-10~1 7.15-107°
Table 23: Result of strong error estimation b = 0 for X

zo=0.1,ugp = —1.1 zo = 0.01,up = —0.11 | 29 =0.001,u9 = —0.011
At Result ‘ 1/2—ConfInt | Result ‘ 1/2—ConfInt | Result ‘ 1/2—Conf Int
211 [ 1711072 | 434107 |6.83102| 1.04107° [933.1072| 123.107°
2-101249.1072 | 52810°°% | 8.30-10°2 1.15-107° 1.09-10~1 1.33.107°

3.43-1072 6.21-107°

9.90-10~2 1.26-10~°

1.25-10~1 1.41-10~°

4.65-102 7.22-10°6

1.18-10°1 1.37-10°°

1.42-10°1 1.50-10~°

6.27-102 8.36-10°6

1.40-101 1.48-10~°

1.62-10°1 1.58-10~°

8.42-10~2 9.67-10°

1.67-10°1 1.60-10~°

1.85-10°1 1.67-10°

1.13-10°1 1.12-107°

2.00-10~1 1.73-10~°

2.11-1071 1.77-107°

Table 24: Result of strong error estimation b =

0 for U

o = 0.1,’11,0 =—-1.1

zo = 0.01, ug = —0.11

o = 0.001, Uy = —0.011

At Result | 1/2—ConfInt | Result | 1/2—ConflInt | Result [ 1/2—ConfInt
2-11 [ 1.06-1072 1.02-10°° 2.30-102 2.68-10° 3.30-102 3.54-10°6
2-10 [ 1.64-1072 1.37-10°° 2.93-102 3.05-10°6 3.98-102 3.88-10°F

2.37-102 1.80-10~°

3.63-102 3.43-10°6

4.70-102 42010

3.36-102 2.37-10°6

451102 3.86-10F

5.52-102 453106

472102 3.14-10°6

5.63-10~2 43810

6.51-102 4.90-10°6

6.63-102 4.17-10°6

7.13-102 5.02:10

7.80-10~2 5.33.10

9.36-102 5.46-107°

9.18-102 5.77-10~°

9.54-102 5.83-10°°

Table 25: Result of strong error estimation b = sin for X
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zo = 0.1,ug = —1.1 zo = 0.01,ug = —0.11 | 29 =0.001,u9 = —0.011
At Result ‘ 1/2—Conf Int Result | 1/2—Conf Int Result ‘ 1/2—Conf Int
2= 12141072 5.37.10% | 6411072 1.11-107° | 8.71-1072 1.35-107°
2-1013711.1072 | 6.64-10°% | 7.93.10°2 1.25-107° 1.03-10 1 1.47-107°
279 [ 4301072 | 7971076 | 9.62.10°2 1.39-10° 1.20-10~1 1.59-10°
278 [ 5851072 | 9.48.10°° 1.16:101 1.54.10° 1.39-10~1 1.71-10°
27 | 7.95.10°2 1.13-107° 1.42:10°1 1.72:107° 1.62-107 1 1.85-10°
279 1.0810°" | 13510 [ 17510 '| 1.93.10° |191-107' | 2.01107°
27 | 1.49-1071 1.61-10° | 221-10°' | 2.17.10°® | 2.30-107' | 2.20107°
Table 26: Result of strong error estimation b = sin for U
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Chapter 3

Non-asymptotic Approximations of the
Langevin Equation by a Diffusion in the
case of particle collision

1 Introduction

The two previous chapters were focused on the analysis of discretisation schemes of Langevin models
with specular reflection boundary conditions. We shall consider a different aspect in this chapter that
was mentioned in the Introduction. It is known that there are several different convergence possibilities
when the diffusion coefficient or drift terms of the components in a kinetic model go to infinity or O.
Historically, the convergence of the Langevin model towards the Einstein Brownian model for particles
has been called the over-damped Langevin limit. Such a limit is taken when assuming the process is
ergodic, but in our case, due to the presence of turbulence, for example the process is not at equilibrium.
We shall consider the SDE

t
xt:xo—i—/ Ug dS
0

; ; (1.D
Uy :uo—ﬁ/ usds—i-ﬁ/ wu(xs) ds + foWy
0 0
and compare it, in an non-asymptotic manner, to the process
¢
{Yt :xo—i—/ w(Ys)ds + oWy (1.2)
0

There are several asymptotic results that exist. In [Pavliotis, 2014], the over-damped Langevin limit
towards the Einstein model of Brownian motion is presented. We consider the process:

t
Xf=X0+/ US ds
0 . (1.3)
U;‘:UO—/ VV(X§)ds—e—2/ USds + < oW,
0 0

where V is a potential. By considering the time-change ¢t — £~2¢ and scaling property of the Brownian
motion, then (X7 ):>o converges to the diffusion process (X¢):>0 such that X; = X — fg VV(Xs)ds+
aWt as € — 0. This is called an over-damped limit because in the equation (1.3), which is an application
of Newton’s equations, the term in €2 corresponds to a drag force and we take the limit in =1 — +o0.
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The case of the under-damped limit is more complicated but, in some cases there exists a diffusion
equation for the Hamiltonian.

Another type of convergence was presented in [Pardoux and Veretennikov, 2001]. Consider the
following SDE:

t t t
Xf:X0+/ F(Xa,Ug)dsH—l/ G(Xa,Ug)der/ H(X¢,U?)dBeS
0 0 0
. A (1.4)
Us :Ug+s_2/ b(Ug)ds+e—1/ o(US) dBE .
0 0

Provided that the process (U}!)¢>0 has an invariant measure and regularity on the coefficients, the process

(X5 )e>0 converges weakly towards a diffusion process. The proof uses corrections based on the solution
2

f of the Poisson equation (bvu + (;Au> f=—(Vyuh,G(z,u)), where h is a sufficiently smooth test
function.
Another type of asymptotics is the Smoluchowski-Kramers limit:

t
Xf:Xo—i—/ US ds
o . (1.5)
Uf:UO—i-El/ F(Xj)ds—al/ Utds+e oW,
0 0

and it is shown in [Nelson, 1967] or [Karatzas and Shreve, 1991], that for any 7" > 0

lim sup |[X;— X¢ =0 as.
e=04¢c0,7)

where (X;):>0 verifies

t
X, = X, +/ F(X,)ds + oW,
0

Finally, we mention the results in [Spiliopoulos, 2007], which show that the Langevin process with
specular boundary conditions converges in a certain sense, in a Smoluchowski-Kramers asymptotic, to
a Skorokhod reflected diffusion.

We recall that in this chapter we do not look directly at an asymptotics, but try to calculate the
error between (1.6) and the diffusion (1.7). Finally, we compare the same situation, except that we take
into account specular reflection on the position in the Langevin case and Skorokhod reflection on the
diffusion to which we compare the Langevin.

In order to prove these results, we work with the mild equation.

In the case of the Smoluchowski-Kramers asymptotics, in [Pavliotis, 2014], it is shown that the
strong error can be bounded in /. In [Hagan er al., 1989], the authors present an approximation of
the exit times from a bounded or unbounded domain of the position in the case of a damped-Langevin
asymptotics.

1.1 Model

We consider two processes (¢, ut)o<t<7 and (Y;)o<i<7 defined as

t
a:t:xo—i-/ Ug ds
0 (1.6)

¢ ¢
ut:uo—ﬁ/ usds—i-ﬁ/ pu(xs)ds + poWy
0 0
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and .
{Yt:xo—i-/ wu(Ys)ds + oWy. (L.7)
0

The solution to (1.6) is

t t
up = exp(—pt)ug + ,6’/0 exp(—p(t — s))u(zs) ds + ﬁa/o exp(—p(t — s)) dWy
and we have that:

B

We mention that from one line of calculation to another, the bounding terms might change value but the
notations will remain. Also in subscript, we write according to what parameters those bounding terms
depend. Also, for the sake of simplicity, we shall assume 5 > 1.

2= i+ = (uo — ug) + /0 (urs) — p(Ya)) ds (1.8)

1.2 Strong Error

p(r)] < Cpu( ), where C,, does not depend on 3. We
have that:
E | sup |us|| < wuo+ SE | sup / e P\ ()| dr| + oBE | sup / e P aw,
se[0,1] se[0,] Jo sefo,] 1o

We consider each term:

/ e P ()| dr < Cu/ e P (1 + |, |) drr
0 0

/ quT) dr
0

SC#(1+|xg|)(1e_ﬁs)1+Cu/ e—ﬂ<s—r>/ (. | drdr
0 0

S
<C, | ePt <1 + |zo| +
0

1
< Cu(1+|zo|) = + C"/ 1— e B6=) |y, | dr
B B Jo
1 C
< Cu(1+ |z —1—“/ uy| dr
p(l+lzol) g+ || |
meaning that:
B (s—r) 1 CM !
E e ()| dr| <O, (1+\x0])5 5 E|u,| dr
1 Cy [
<C,(1+ |x0|)g + ﬁu/o E s%p] uS]dT]
se|0,r
In [Blount and Bose, 2000], the following inequality is shown:
s BQQ
P | sup / e Bls=m) dWr‘ > q| < 4Bexp <4t) . (1.9)
s€[0,t] 4e
So, by integrating ¢ between 0 and +co, we obtain
s 27T€2t
E | sup / e P qw, || < . (1.10)
sef0.4 1o VB
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By combining these various results, we obtain that

t
E | sup \us\] <uo| +Cp(1+ \m0])+Cﬂ/ E | sup |us|dr| +V2roe® /5. (1.11)
s€[0,t] 0 s€[0,r]
So Gronwall’s inequality gives that for any 8 > 1
E [ sup |us‘ S C,u,,cr,t,zo,uo\/>7 (112)
s€[0,t]

where
Cliot,zou0 = 2¢2Cut max {\u0| + Cu(1 + |zo)), v27rae2t} .

We consider (1.8) and assuming g is Lipschitz, with Lipschitz constant L, uniformly in (:

1 t
| sup [, —¥il| < 58 | sup fuo | + [ Elu() - u(v2)] s
s€[0,1] B | sepo. 0
1 t
S CHHO-?tvavuOB\/B—’_ LM/ E "’BS - Y9| dS (1.13)
0

1
< Cpyo,t,30,u0 €XP (Lut) 5

VB

. .1
thus concluding that we have a control in — of the strong error.

VB

2 Weak error

For a function f and initial measure g that have suitable regularity properties, we try to obtain the
following inequality, for any ¢ > 0O:

|Euof($t) - E,u,of(Y;f” < Cg(ﬁ) )
where g: R™ — R such that g(3) — 0 as 3 — oo and C does not depend on 3.

Hypotheses 2.1
We consider the following set of hypotheses (Hweak Bound)-

(Hpackward) [+ R — R is derivable 6 times with bounded derivatives

(HEorwara)-(1) po: (z,u) € (R x R) — [0, 1] is a probability measure with density that we also denote
as o, such that dy 1o, Opp o € L' (R x R)NL>®(R X R), the integrals [, g (|u|+u?)po(dz, du)
and [ o ([u] + u?)|05 10| (z, w) dzdu are bounded and pio vanishes at infinity

(Hporwara)-(i1) p: R — R is bounded and 1/, i/ € L= (R).

The subsections Toy example: Constant drift case and General drift deal with processes that have for
domain the entire space while the section Application to reflection deals with reflected processes. The
bounds are proven using Taylor’s formula, so the main difficulties are to obtain suitable controls of the
various moments of the processes.

The subsection Toy example: Constant drift case is based on a backward interpretation, which re-
quires regularity on the test function f , while the subsection General drift utilises a mild equation on
the density of the processes, which requires regularity on the initial density ug. This is the reason for
presenting two sets of hypotheses (Hpackward) and (Hporward)-
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2.1 Toy example: Constant drift case

In order to better understand what arguments are needed for the general proof, we consider a toy example
where the drift y1: x — p is a constant, and j1g = 04, ,4,. Where ¢ is the Dirac delta distribution.

Lemma 2.2. Let f € CP(R), then for any t > 0 and (xo,up) € R x R, there exists a constant

Cu,ovf,---yf(‘”Jf(huo,t’ independent of (5, such that
B (e0) ~ BFOR)| < Cprg, s somor e
Proof. We apply Ito’s formula and by (1.8):
flxy) — f(Y) = | fllws)usds— | f(Ys)dYs—— | f'(Y.
[ [ oS [rove
:/of<y+ﬂ( )usds—/f dY—/f
We consider the first term under the integral, for any w € (2
1 1
P (Ve 5 o = ) ) = £ + (5 0 = wa(e)) ) £70(0)
1/1 2 ®
#3 (5 0 —w@)) Omw) 3)
3 41
+ % (; (uo — us(w))> /0 (1—6)2f@ <Y3(w) +0 <; (uo — us(w))>> do .
Going back to (2.2) and taking the expectation, we obtain that
Ef(z) — Ef (V) = [/ 7 (Y, ds] TE U (“0 - “) usf”m)ds]
1 ¢ Up — Ug 2 (3)
+§E /0 Us( 3 ) [ (Ys)ds
1 t 3 1 (24)
+5E / us (uog“) / (1-6)2f® <Y +0 <ﬁ (uous))> deds]

[ o] 5[ [ roa]

The local martingale term is actually a martingale by condition (Hg,ryard)-
For a smooth enough function g and p > 1, we have the formula (A.13) shown in the Appendix 3

/t (Y,)ul d 1—e P (o)t ' o PB(t=r),,p J(Y,)d K /t g (V) d
ubds = ————g(xo)uyg — — - "ul! r+— [ ulg(Y;)dr
I ps T8 B Jo 0
// B( Pg'(Y;) dW,d o [ pB(t="), P,/ ") d o [ uPg" (V) d
+o e PAl=) P 5 — / - "ubg P ul r) dr
2pp 2B Jo 7

t -1 2 t
—u/ e PP g (Y, )dT+M/ U%?‘lg(Yr)dT—i(p ) 6/ e P2 g(Y,) dr
0
_1 2ﬁ
/up2 dr—}—ﬁap//epﬁsrupl(Yr)dWrds

02/ e PPy 2=/ (Y,) dr + o / P~ (V) dr.
0 0
(2.5)

141



This formula is also valid for p = 1 by eliminating the terms that are multiplied by p — 1.

Lemma 2.3. For g € C?, we have the following controls:

Tt
(i) |E /Og(Ys)Ust < Clg,g.9" 0t

- .
(ii) |E /Og(Ys)ugds < CugoiB.

- ]
(i) |E /0 g(Ys)ulds|| < ChyyggroiB-
Proof.

(i). We take the expectation in formula (2.5), forp = 1

E[AZKEﬁ%d%==1_eﬂ%m¢wwr—uELA%mt”md@@dﬂ-+uE[Azwdﬂﬁdﬂ

g B s
o2 t o2 t t
——E / e B, g"(Y,) dr| + —E / urg" (V) dr| — uE / e B (v, dr
26 Lo 26 Lo 0
t t t
+ uE [/ 9(Yy) dr] —o’E [/ e B g (v, dr] + o’E [/ Jg ) dr] .
0 0 0
(2.6)
By using the control on the expectation of sup,<,. |us| in (1.12) and the fact that g € C?
po [ [ !
‘IE [/ E'B(tr)urg’(Yr)dr] <K HQIHLOO/ e*B(t*T)E\uA dr
B Lo p 0
Lo X @.7)
<Cyy / B dr < Oy
I Uy NG|
and similarly,
t 2 t
K / 1 4 —B(t—r " 1
E/ur Y}dr] <Chgi—: E[/eﬁ( )uT Y}dr} < Cuogroi——:; (2.8)
‘5 {0 7 B 128 Lo o) RN
o? ! I 1 ! —B(t—r) 1
ﬁ]E 0 Urg (Y;") dr|| < Op,,g”,a,tﬁ ) ,U'E 0 e g(Y;”) dr|| < Cu,g,tg ) (2.9)
t t
1
‘M]E [/ g9(Y,) dr] < Cugt; o’ {/ e_ﬁ(t_r)g'(Yr) dr} < C“’g/’g’tﬁ; (2.10)
0 0
and finally
t
o’E [ / J(Yy) dr] <Chgot- (2.11)
0
We can conclude that we can bound uniformly in 5:
t
’E |:/ g(Y;)US d3:| < Cp,g,g’,g”,o,t ) (2.12)
0

where C, 4 4/ 4 o+ does not depend on /3.
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(ii).  For a second control, we take the control on the second moment of (ut)¢>0 in (A.5) to obtain that

e[[ AL s

(iii).  We take the expectation in formula (2.5), for p = 3

t
<9l oo m) /0 E [uZ] ds < ClgoiB- (2.13)

/t adds = L e / 38030 (v dr + 2 [ B () dr
0 g\IXs s - 3B g 0 O 3/8 35 rg T
t 2 t
+a/ / —EuBg(Y,) AW, ds—/ wg" (Vo) dr+ o | ulg" (V) dr
0 Jo 65 Jo

t
—u/ e300 2g(y, )dr+u/ (v, )dr—UZB/ D g(Y) dr
—i—aQﬁ/uTg dr+3ﬁa// STl (Y,) dWids
_0_2/ e —36(t— ) 2 /( )dr+o’ / T,g(Y)d .
0 0
(2.14)

By using the various bounds on the first, second moment and absolute value of the third power of (u):>0
in (A.5) and (A.6) and the previous bounds of this lemma in (i) and (ii), we obtain the required bound.
This concludes the proof of the lemma.

|

Recalling the equality (2.4)

(2.15)

we analyse each of these terms separately by using the general formula (2.5) and the controls in Lemma 2.3.
We consider g = f’ and p = 1 in equation (2.5) to obtain

t _ Bt t
E [ /O £ (Ye)us ds] = 1; ' (zo)ug — %Eﬂ { /0 e Pl=r)y, f’/(n)dr]
K ! " o’ ' —B(t—r) 3) o t ()
+BE [/0 up f (Yr)dr} —%E [/0 e Py, f (Yr)dr} —BE [/ up f (Yr)dr}
t
—uE [ / e Bl=7) f’(Y)dr] + uE [ / ', drds]
0
t
2 —B(t—r) g1 2 1
JE[/Oe f(YT)dr}vLaE{/of(Yr)dr].
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The second term of the r.h.s. of the equation (2.15) is rewritten as

t t t
;E UO (ug —us)usf”(Ys)ds] - %E UO usf”(Y;)ds] - ;E UO ugf”(Ys)ds] (2.17)

and by taking g = f” and p = 2, we obtain from (2.5) that

E[/tf'muids]zl‘j;ﬁtf”m)uo Le| [ e ]
+L [/ W20 (»dr]—MEU 2802 (»dr}{;E[/otu%f“)(mdr]
LE [/ D, () |+ | /Oturf”(Yr)dT]—;ﬁE [ /0 D) ]

+—IE { / 0 dr] _o? [ / _2B(t_r)qu(3)(K)dr] +o%E [ /O tuwf(S)(YT)dr} .

(2.18)

By combining these terms and simplifying, we obtain that (2.15) can be rewritten as

_ Bt t t
Ef(z:) — Ef(Y;) = 1;f'(xo)u0 - %E [/0 e Py, 11(Y,) dr} + %E [/0 us f"(Yy) ds]

-ze| [ soma + Ze[ [ owa] - m] [0 pmyal

t t _ 2Bt
2 —B(t—r) g1 Uo " . l—e 1 2
oc’E {/0 e (Y dr] + 5 E [/ ur f(Yr) dr] T [ (xo)ug

+2ZQEU ST, )dr] QZ’ZEU u fO(Y)d ]*WE[/t ‘*“”u%f(“)(mdr}
s U 2O dr] + ZE[/O 2500y, (Y, d }—ZE[/OEJ%W]

2 t 2 t 2 t
7 —2B(t—r) £ o —28(t=r),, +(3) _ 7 ®3)
+ 2E[/Oe f(E)dr]+BE[/Oe ur f (Yr)dr] /BE[/O up f (Yr)dr]

/t ud + udug — 2ugu’ )f( )( S)ds]

]
J,

We set aside for the moment the last two terms of the r.h.s. that were obtained by the Taylor expansion
(2.3). For the rest of the terms in the r.h.s, it can be easily seen that, by applying the generic bounds
(2.12) and (2.13) from Lemma 2.3, with different values for the function g that will depend on the various

E

1y

553 (ud — Bugu? + 3udu? — uduy) /1(1 — )25 (Y +0 (ﬂ (up — u5)>) d@ds] .
0

(2.19)

C/'L7J7f7"'7f(6) ,Z0,%0,t

derivatives of f, they are bounded by , Where C O fon f ) 30 u0.¢ depends solely p,

o, the bounds of the test function and its first 6 derivatives, the initial values xy and ug and time ¢.
Turning towards the Taylor expansion terms, for the penultimate expectation we consider the bounds

1
of the Lemma 2.3, which allow us to obtain a bound in — provided f is 5 times differentiable with

bounded derivatives. Concerning the last term, we recall that the fourth derivative of f is bounded. By
applying the controls of order 1/2 in 3 for the absolute value, of order 1 for the second moment, of order
3/2 for the absolute value of the third power and of order 2 for the fourth moment of (u;):>0, all shown
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1
in Appendix A, we obtain again a bound in 3 for the last term of the expansion (2.19) and we conclude

on the lemma.
|

Thus we showed in a toy example, where the drift 1 is a constant, that we can control the weak error
in —, provided the test function has sufficient regularity. This result was proven using Taylor expansions,

so controlling the moments of the velocity component of the Langevin process, like in Lemma 2.3, is
essential. An important argument in obtaining the the linear decrease in 3 of the error, is that the even
moments, say 2k for any non-negative integer k, are controlled as 5* while the odd moments, say 2k +1,
are also controlled as 5*.

2.2 General drift

The same techniques used in the previous subsection Toy example: Constant drift case do not generalise
well in the case of a non-constant drift, so a technique based on the mild-equations verified by the
density of the processes is considered. Once more we utilise Taylor expansions so controlling the various
moments in the velocity component of the Langevin process, with the appropriate power of 3 is essential.

Mild Equation

We introduce the mild equations for the densities of the Langevin process (1.6) and the elliptic diffusion
(1.7).
Let (Z¢,ut)r>0 and (Y;):>0 be the solutions to the equations (1.6) and (1.7) in the case where
p = 0. We define Toy: Rt x R?2 x R? ~ R as the transition density of (%, Ui;)¢>0 meaning that
Tou(t;y,v;z,u) = Py, (T, 0) € (dz,du)) /dedu and Tg: RT x R x R — R as the transition
1

density of (ﬁ)tzo such that T'g(¢; y; ) = P exp (—ﬁ(m —y)?).

The semi—groups associated with the transition functions I'oy et I'g are denoted by (S¢);~0 and
respectively (S¢)¢>o, for any f € Cp(R x R) and g € Cy(R) where

Se(f)(y,v) =By [f(Ze,w)] = /RXR Cou(t;y,v;x,u) f(x,u) dedu

and

We also introduce the following functionals

S5 (1) () = /R Tou(tiy.via,u)p(dy o) (2.20)
and
S{(f)(z,u) = A Ravrou(t;y,v;x,u)f(y,w dydv . (2.21)

Similarly we denote by S* and S’ the equivalent functionals associated to the diffusion process (i}t)tzo.
We have that for all £ > 0 and f € C.(R x R), the function H; ; defined as

Hif: (s,y,v) € 0,t) x Rx R = S;—s(f)(y,v)
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is the classical solution of the PDE

520.2
aSHt,f + (Uay - /Bvav + 28111)) Ht,f =0 on [O,t) xR xR

lim Hy ¢(s,y,v) = f(y,v), onRxR.

st~

(2.22)

By Ito’s formula, we have
t 6202
Euo [He ¢ (t, 2, ur)] = Eug [He, £ (0, 0, uo)] —|—/ E,o [(88 + (usay — B0, + 28w>) thf(s,xs,us)] ds
0
¢
= [ B (0, 5,00 d
0

¢
- H, (0, z0,uo) po(do, dug) + ﬁ/ /2 p(y)0uHy ¢(s,y,v)p(s,y,v) dsdydv .
o Jr

RxR
(2.23)
The first term of the r.h.s. is rewritten using Fubini’s theorem, as
Hy 1(0, 0, uo) pro(dxo, dug) = St(f)(wo, uo) pro(dzo, dug)

= / POU(t; Lo, Ug; T, u)f(x,u) dwduMO(dx07 dU()) = / St*(:U’O)(xa u)f(x,u) dadu .
R4 R2

Let (p¢)r>0 be the time-marginal densities of a solution to the SDE (1.6). For the second term, we have
that

t t
5/0 /R2 p(y)OuHy f(s,y,v)p(s,y,v) dsdydv = 5/0 /}R2 w(y)p(s,y,v)0,Si—s(f)(y, v) dsdydv
:/t f(z,u) dsdde/ Buy)p(s,y,v)duLou(t; y, v; 2z, u) dydv

0 JR2 R2

t
- /0 [ @S] (Bps, () dsdadu.
(2.25)

According to PDE (2.22), we have that H; ¢(t,-,-) = f(-,-). Then the equation (2.23) becomes

t
flz,u)p(t, z,u) dedu = s Sy (po)(z,u) f(x,u) dedu + /0 » f(z,u)S;_, (Bp(s, -, )u()) dsdxdu .
(2.26)

RQ
Thus for any f € C.(R x R):

/RQ fla,u) (p(t,x,U) = 57 (no)(w,u) — /Ot Si—s (Bp(s, - )u()) ds) dedu=0.  (2.27)

We conclude that the time marginal of the process (¢, ut)r>0, that verifies the SDE (1.6) with initial
condition pg, verifies the mild equation:

plta,) = S o)) + [ Si-, ol )Bu() s (228)
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Remark 2.4. The time-marginal densities of a solution to the SDE (1.6) has bounded tails (with bounds
that depend on ) since for fixed initial conditions, the solution is a Gaussian process, and Lo vanishes
at infinity. In the Appendix, in Lemma 4.5, we show that p and O,p are bounded. These bounds are
useful when applying various integration by parts against functions that vanish at infinity.

By following a similar procedure we can conclude that the time marginal of the process (Y;):>0, that
verifies the SDE (1.7) with initial condition ,u%/ = fR o(+, dv), verifies

p(t,x) = S; (1) /S{S s, )u(+)) ds. (2.29)

Theorem 2.5. Assume (Hpgorywara) is verified and assume p and p are solutions to the mild equations
(2.28) and, respectively, (2.29). Then, for large enough 3, we have that

1
’ / p(t,x,u) du — p(t, ) < Cumu,o,tw . (2.30)
R L1(R) ﬁ
Proof. We obtain the term to be bounded in (2.30)
/p(t x,u)du —/ </ Tou(t;y, v; x,u) du) to(dy, dv)
RxR \JR 2.31)

+5/ /RXR </ FOU(t_S?yv“¥f»u)dU> p(s,y,0)u(y) dyduds .

We denote by M the marginal density of the position process

2
M(t;y,v;x) == (/R Tou(t;y, v;x,u) du) = \/%;m(t)exp <_2231$(t) (z —y — %(1 — eﬁt)> )
(2.32)
so:

1_6255 (x y— %(1 = e‘/ﬁ)) M(tyy,vix),

O M (t;y,v;x) = B2 (1
Tz

with £, defined in (A.4) as

2 o2 (- 21— e Bty L] g2
3.0 = 0* (1= 50— )4 - o).

Thus:

/pmu)du— (t,2) /s o) () du — S7 () ()

1 — e B(t
+ B/ /}R2 ﬁzxi — (w —y- B(l - e_ﬁ(t_s))> M(t = s;y,v;2)p(s,y,v)u(y) dydvds

- /0 [ (e — sy )pls (o) duds.
(2.33)
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We rewrite this equation as

/p(txu)du— (t, ) /S f10) (2, u) du— S} (po) ()
e —B(t—s) v
/ /R2 (1 ) <x—y—ﬁ(1 - eﬁ(”))> M(t—S;y,v;x)—ayFB(t—S;y;w)> p(s,y,v) dydvds

+ [ [ arat—suson) ([ oo do—pis.)) duds.

(2.34)

In order to obtain a bound as presented in (2.30), we utilise a Gronwall inequality on (2.34). On the
right-hand side, we have the sum of three differences. The first difference corresponds to the initial
terms of the mild equation. The second term represents the difference between the two different kernels

of the mild equation, and finally, the third term allows to perform Gronwall’s inequality. We analyse
each of these terms separately.

Bounding the initial terms

1

Denote by g(u; 0% x) = — XD (=522 (z — p)?) the Gaussian probability density with mean 1
o

and standard deviation o.

We consider the first difference in the r.h.s. of equation (2.34) which corresponds to the initial value

[ st de=5; 6@ = [ [ Touttpviz,upa(dy.dojdu— [ Tatigia) [ poldy. o)
RxR R

/]Rng <y+5 e P, 52, (1), )Mo(dy, dv) — /Rg(y,a%,x)/RMo(dy,dv)

/]R ( % e ), 52,(b), )Mo(dy,dv)—/Rg(y,JQt,w)/RMO(d%dv)

- /Rng <y+; (1—e P, g2t,x> pio(dy, dv) _/Rg(?/ﬂQt,x)/RMo(dy,dv)
+

% ), 22, (1), ) o (dy, dv)
E
5

@

- e_ﬁt)a UQta .ZE) MO(dy7 d’U) :
(2.35)

It is easy to see that »2,(t) < o?t, forany t > 0, 3 > 0.

Since the Gaussian densities are not degenerate, we have that g is a smooth function, so

1

<y+ ta-e ﬂt>,o2t,x> — gl *t) + 51— ) / Oy <y+9;<1—e—ﬁt>,a2t,x> a9
0

(2.36)
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then by taking the difference, integrating and taking the norm we have that

Vi Bty 2 B 2
‘/Mg(wﬁu c )7Ut7$)ﬂo(dyadv) [ otv.ot0) [ ptan.av)

1
< /R2 %(1 - e‘ﬁt)/o g (y - 9%(1 - e_ﬁt)ﬁzt,x) Ho(dy, dv)dd)
L1(R)
< 0,
o S B [0y poll 11 (g2

1
Y- ety ( [ s <y HO5(1- eﬁt>,a%,w) 4o(y,v) dy> dudo
(2.37)

where for the last inequality and integration by parts has been performed with boundary terms that
equal O since g(y, -, ) — 0 as |y| — +o0o0. We also have that

g <y + %(1 — eﬂt),zgx(t),x> =y <y + %(1 — eﬁt),azt,x>
 5aalt) — V) [0 (34 50 P 0V 0l (52el0) ~ VBN )

thus by the following property of Gaussian densities 0,9 = aai#g

‘ /RX]R (9 (y + %(1 - 6&),2?;9;@),37) ~g (y + %(1 - 6Bt),02t,x>> o (dy, dv)

< Emm(t> - U\/E

LY(R)

1

L1(RxR)

1 v
959 <y + B(l — e ) (oVE + 0((Sea(t) — U\/i)))Q,x) wo(dy, dv)df

/RX]R/ L'(RxR)
< e (t) — oVt / / {282 ( —(1 —eﬁt),ZQ,x>] po(dy, dv)df
RxR B Z=0VI+0((Zaa (t) —0 V1)) L1(RXR)
1
<[t —ovi] | [ [ |20 (v Ja- e 220) 0o (dy. dv)
RxR J0O B Z=0Vt+0((Saa(t)—oV/1)) L'(RXR)
(2.38)

The boundary terms obtained from the various i.b.p. are zero since g(y, -, -) and dyg(y, -, ) go to zero
as |y| — +oo.

Since =2 ,,(t) < o?t, for any t > 0,3 > 0, then we have that for any 6 € [0, 1], o/t + 0((S4z(t) —
ov/t)) < o/t thus

/RX]R (9 <y + %(1 - 6&),2336(75),9:) <y + 3(1 —e P, a%,x)) pio(dy, dv)

<0’\[

L1(RxR)

St —a\[‘/ 102,10 dy,dv|/d0/ <y+ (1—e ),(mftw((zm(t)—a\ft)))2,x>dw

ot —x2 (1)
< U\/i Ezaz(t) - O—\/Z‘ HainOHLl(RxR) < U\/%Exx( )—FO’\/» H [LIZ/MOHL1 (RxR)
2 —pBt 1 —2t
2(1— e ) = A(1— e 2)
<’ U\/Z; U\/iHaZgy'u’OHLl(RXR)
2 Hagy'uOHLl(]RxR)
_ B *

we can conclude that

[ St wdu-5{68)@) <
R L(®)

B (HUa?JIU/OHLl(RQ) + 2 H8§y,u‘0”L1(RXR)) . (239)
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Bounding time integral

We consider the middle term of (2.34)

/ /u@ ( tﬁ—(ts)S) (z U %(1 - e_ﬂ(t_S))> M(t = sy, v:2) = OTw(t = 55 x)) p(s.y,v) dydvds

= /0 /R ny) ((1 = PNy + (1= e )58 (0= 5),2) = gy 070 - s),x)> pls.y,v) dyduds

— /t /R () ((1 — e BN oy + %(1 — e P9 62t — 5), 1) — Dyg(y, o (t — Sm)) o(s,y, 0) dyduds
/ /RQ (1 — e P9 p(s,y,v) dydvds x

x (%g(y + B(l — e PUm)) 22 (t—s),2) — Oyg(y + %(1 — e AUy o2 (t — 8)@)) :

(2.40)

This term can therefore be written as the sum of two differences. The first difference is between two

Gaussian densities with different means but same variance and the second difference is between Gaus-
sian densities of different variances but same mean.

Difference between two ex-centred Gaussians in (2.40) Since the Gaussian density is a smooth
function we can apply Taylor’s formula up to order two, with integral remainder

3yg(y+6(1—6 D), 0 (= ), 2) = Dyg(y, o*(t — 5),2)

(1= e P Ndyg (y,0*(t — 5),2)

2 1
S(1— e / (1= )3y (y FO5L— e o2 sm) o
0

_|_

™| <

(2.41)
+

Q‘@

thus inserting this expansion into the first difference of the r.h.s. of equality (2.40) gives us

/Ot /RQ () ((1 _ e BE9)g g (y + %(1 e BU) o2 s)w) Py 02t7$)> o(s. . 0) dyduds
- _/Ot eb’(ts)/Ru(y)ay (y,02(t — s), ) (/R p(s,y,v)dv) dyds

t
v —B(t—s
+ /0 /R2 Eu(y)(l — e Bl ))28yyg (y,UQ(t — s),:c) p(s,y,v) dvdyds

t 2 1
+ / / %u(y)(l — e_B(t_S))3/ (1 —6)0yyyg (y + 9%(1 — e P9y o2 (1 — s),x) dfp(s,y,v)dydvds .
0 JR? 0
(2.42)

Once more, we break up this equality and analyse each of the three terms of the right-hand side sepa-
rately.
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First term of (2.42) We apply an integration by parts of the first terms and take the L'(R) norm to

obtain
t
‘/ eﬂ(ts)/g(y’ (t—s) (/ Oy ( p(s,y,v)) dv> dyds
0 R

s 10,1l o
= |M|L°°(R)/ et )Hayp(sa',')HLl(W) ds—l—%
’ (2.43)

LY(R)

t 0
—B(t— M| 1,00
< HMHLOO(R) Cuo,u,a,t/ e P ds + w
0 p
1
5 b}
where C); 1.0+ does not depend on 3. The boundary terms from the i.b.p. are zero since g(y,-,-) — 0

as |y| — oo and p is bounded in y for fixed 3 as in the Remark 2.4. We have applied the bound on the
norm of the partial derivative of the density obtained in Lemma 2.7.

S CMO?/‘Lvazt

Second Term of (2.42) We have that
t
v —B(t—s
’/0 /R? B,u(y)(l _ e R ))QByyg (y, 02(15 — s),a;) p(s,y,v) dvdyds

1 [t Bl—s
< il 5 /0 (1— e B2 /R 10,09 (4,02t — 5),)| /R op(s, y,v) do

and by taking the L' norm and considering the bound on the first moment in Lemma 2.7-(iii) and the
control of the resulting time integral in (A.23)

(2.44)
dyds

)1 —e ﬂ(t—s))2ayyg (v, o2(t — s), ) p(s,y,v) dvdyds

Pl —ePo)? In(3)
T2 ds < Cuo,u,o,tT :

RQ

<Buuum /0

LI(R) (2.45)
g

The bound C),, ,, 0.; is obtained from the Lemma 2.7 and the calculation in (A.23) and does not depend

on 3.

Third Term of (2.42) We take the L' (R)—norm

t 2 1
H / /R 2 %u(y)(l =P [ 0000 (540501 D)0t )] ot o) s

I3
1
S [0 000, (34050 - 0. 20— 51,0 ) 80, (o) dyods
R2/8 0 B Il
< / (1= P 090,02 = ), s | [ 2 0oty du@)|  ds
0 LY(R)
92 t
< 5 [P gt — ).y | [0 Bt o)l ds.
0 R L\(R)

(2.46)

The bounded tails of p and the fact that 0y, g(y, -,-) — 0 at infinity, gives that the boundaries terms of
the i.b.p. are zero.
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By the bounds on the second moment and derivative of the second moment in Lemma 2.8, we have
that:

t 2 1
H/ /R2 %M(y)(l - 6_5“_8))3/0 (1 —0)9yyyg (y + 9%(1 — e U=y o2 (t — S),w) dfp(s,y,v) dydvds

s In(B)
<Cuo,uyat6/ ﬁ) o2 d <CH07M,0t 3

Ll

(2.47)

The bound C 1,0t is obtained from the Lemma 2.8 and the calculation in (A.23).
This concludes that the difference between the two ex-centric Gaussians is controlled as:

Y (1 — e Bt=9)) g2(t — 5),x) — dyg(y, o> (t — s),:r)) p(-, -, ) dydvds

u() ((1 BN gy 1 Y

In(B)
a

R2 B LY(R)
S C/L,O',/J,O,t

(2.48)

Difference between two Gaussians with different variances in (2.40) Let G be the cumulative dis-
tribution function of the centred Gaussian distribution with unit variance such that:

C%G <$ ; M) = *a'uG (x _ M) = g(u702,$) .

‘We have the variance terms in (2.40):

/ [t - e s>>p<s,y7v>dydvds<ayg<y+ L= )52 (- ),
RQ

- —(1—eB0=3)) o2t —5), @
O9ly+ 50 ) 02(t — 5), >)

- /Ot /Rza — e P=Na, (u(y)p(s,y,v)) dydvds (%G (Em(:_s)> —0G <a :— s))
_ _/Ot /Rz(l — e PNy, (u(y)p(s, y,v) dydvds (G (Em(f_s)> ¢ <o‘ tz— s))

then by taking the L' —norm in x:

z:xfyf%(lfefﬁ(t*“*))

z:z—y—%(l—efﬁ(tfs))
(2.49)

RQ

t
1— B9y ) dydvds (G (Z) e (Z>>
RQ( ) vy (M(y)p( )) Yy E$x(t—8) o/i—s Z:xi,yi%(liefﬁ(tfs))

< [0 ) oy (ot Dl ey | (¢ (simy) ¢ (=) | e

0 R
(2.50)

e PN p(.-.) dyduds (8 g(0,22 (t—s),2) — (9yg(0,g2(t—s),z)>

z:m—y—%(l—e—ﬂ(t—s)) L1(R)

LY(R)

The various boundary terms obtained from the i.b.p. are null since the difference of Gaussian densities
and cdfs with different variances go to 0 as |y| — oo while p and 0, p are bounded as in the Remark 2.4.
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Let 01, 02 be two strictly positive reals, since the cdf of a non-degenerate Gaussian random variable
is a smooth function, we have that:

, 2.51)

1 P z
=l - ”1)/0 (01 +0(oz — o) P <_2<al +6(0s - m>>2> "

o) oo
X/]R /0 (1 +0( 22—01))2 P (_ (01+952—01))2) d@’ *
2

<lop— / / z d=df
72T (o1 +0( 02—01)) P 2(01 +6(02 —01))? ’
1 z ? z
< B _Z
lo2 01/ /01+0 (o2 —01) P ( 2 (2(01+9(02—01))> ) d<01+0(02_01)>d9
< |02—01/ /‘3/|9XP <—> dydf < — 102—01|

then:

J

(2.52)
We obtain that:
z z
/R G si=y) G lo=s)) | 4 <ol =5) = oV
2.53
o%(t —s) — %2 (t — s) < %(1 — e Pl — %(1 ) < 20 (239
o )
T Sp(t—s)tovt—s T t—s T BVt—s

Therefore, the L' —norm of the difference between the two Gaussian with different variances in
(2.40), is controlled by :

)(1—e" Blt— s))p(-, -, ) dydvds (8 g(0, Em(t —5),2) — ayg(O,JQ(t —s), z))

R2 z:x—y—%(l—e‘ﬁ(t_s>) I

1

“07/"70155 / \[ M Moﬂtﬁ
(2.54)

where the bound on the norm of the partial derivative of the density, C,, 0., is also obtained from
Lemma 2.7.

By this control and by the bound obtained in (2.48), we have that time integral term in the equation
(2.34) is controlled as:

g CNO,H,Cﬂt

e—ﬁ(t—s))@yM(t — s;y,v;x) — Oy (t — s5y; x)) p(s,y,v) dydvds

R LL(R)

In(s)

(2.55)
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Final steps

Considering the control on the initial term (2.39) and on the time integral term (2.55), we take the
L' —norm in the equation (2.34) to obtain:

/ p(t,x,u) du — p(t, )
R

In(5
n C;) o

1
. < 3 (HvayNOHLl(RZ) +20° H%y“OHLI(RZJ
(R) (2.56)
ds
L'(R)

/ p(S,y,'l)) dv — p($7y)
R

V2 ot
MHLOOO'\/TT/O\/E

so by Gronwall’s lemma:

/ p(t, z,u) du — p(t, x)
R

1 9 In(5) el o0 22
L(R) < <ﬂ (HU&ZJMOHU(RZ) +2 Hayy'“OHLl(m)) + Clupo,ot 5 e = oV,

2.57)
So for B > e, we obtain that:
~ In
|[otamau-pea)| < Cupni™) 2.58)
R L1(R) g
where:
c — (Ilvo 9162 c lull oo 22
140,14,0,t v yNOHLl(R2)+ | yyMOHL1(R2)+ 10,0t | € :
|

Corollary 2.6. Assume (Hpypara) and consider (xs,us)s>0 and (Ys)s>o solutions of SDE (1.6) and,
respectively, (1.7), with initial condition uy and u%/ = fR wo(+, dv). Then, for any t > there exists a
coefficient C,, ,, 5.+ that does not depend on 3 such that for any measurable and bounded function f,
we have that:

In(8
B (20) ~ B SO0 < Cpog 1511 2.59)
Proof. Lett > 0 and f a measurable bounded function. Then by Theorem 2.5:
000~ By 10| =| [ 560) ([ st au = pie.o)) a
R R

In(8) (2.60)

<l | [ pltszu)du=pt0)| < Coppnt Il

R L1(R)

|

2.3 Bounds for the first derivative

Lemma 2.7. Assume (Hpypywara) and consider p the solution to the mild equation (2.28). Then, for any
T > 0, we have that:

(i) sup ||5xp(75,957“)||L1(R2) < Cuo,poT
t€[0,T

(ii) Sup ”axxp(t, x’ u) ‘|L1(R2) S CMO7M7U7T
te[0,7)
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S C.“O:;u'70-7T
L1(R)

(iii) sup
t€[0,T]

/ up(t, z,u) du
R

where C\, ..o, does not depend on 3.

Proof. The proof for this lemma relies on differentiating the mild equation (2.28) and on performing
several integration by parts in order to obtain a form where Gronwall’s inequality can be applied.

(i) Norm of the first derivative
We differentiate the mild equation (2.28) w.r.t. z:

8zp(t,x,u) = 8xFOU(t;y7U;xvu):U’0(dy7 d?))
R 2.61)
+ ﬁ/ 2u0:Tou(t — 83y, v; 2, u)p(s, y,v)u(y) dydvds .
0 JRxR
Since 0, 'ou(t — s;y,v;z,u) = —0,l'ou(t — s;y,v; x, u) and by performing an integration by parts
(with null boundary terms as 'ou(+; ¥, -; -, -) — 0 at infinity and p has bounded tail):
Ozp(t, =, u) =/ Cou(t; y, v; @, u)0ypo(y, v) dydv
. E (2.62)
+ 5/ dLou(t — s;y,v;w,u)y (p(s, y,v)u(y)) dydvds,
0 JRxR
and taking the L' —norm in  we obtain that:
| [opttawtan| <[ artepousa) Opnto o] ayao
B L®) * r® (2.63)

t
+ 8 / / 18, (05,9, 0)u(y))| dyduds / 10, Cou(t — s: v )| dedu.
0 R2 R2

We have two terms in this equation. The first corresponds to the initial condition and the second to the
time integral. Fubini’s theorem allows to integrate the initial condition in z firstly and since the function
M is a probability density:

We recall that I'gy is the transition density of a solution to the SDE (1.6) in the no-drift, ; = 0, case.
Since the process is Gaussian, this transition density is completely determined by the mean vector and
the covariance matrix. These are presented in (A.5) and (A.4); There we introduce the functions:

M (t;y,v; x) |Oypo(y, v)| dydv

. = [[0yp0(y, )l 1 g2y - (2.64)

L' ()

o2
Suut t B?(l — e 2ht)

and p: (0, +00) — (0, +00) such that

0_2
P(t) ez () Suu(t) = 7(1 - e_ﬁt)Q .

‘We therefore have that:

v — e P uu — Be Pt xx
wlou(t;y,v;xz,u) = Toult; y, v; x, u) ((x —y— B(l ) (1 50 )—EPQ((?))Eii(t)ESSZ)E (t)>

Be Plsga(t) — (1 - 65t)p(t)2uu(t))
AL = p?(t)) S ()7, (1)

+ Tou(t; y, v; , u) ((u —ve Pt
(2.65)
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and integrating, we have that:

/]R 10.Tou(tsy, v, )| dedu < C(8,0,1), (2.66)
where:
1 }(1_6 B S (t) — Be™Pt ()Em(t)‘
O = T B = PO D50 o6
+ ‘Beiﬁtzmtc( ) - (1 —e€ Bt)p(t)zuu(t)‘ ]

V2r B(1 = p2()) e () Suu(t)

We can notice that the bound C(3, o, t) only depends on 3, o and t. Going back to (2.63) and developing
the derivatives, we have that:

ds

t
< [Byt0(y, 0)l| 1 gy + B /O C(B,o,t — ) y
Li(R

/ Dup(t,2,0)] du
R

‘/R 10y (p(s,y,v)u(y))| dv

L' (R)

ds.

t t
< 10yml s + 810l | C(Bovt=s)ds + Bl [ (Bt =) .

\ [ 10,065,300 do
(2.68)

By the Corollary 4.2, we have that there exists C, > 0 which depends on ¢ but not on 3, such that

1
t—s

6C(B,U,t - S) S CU
thus, for any 7" > t, the previous inequality becomes

ds

t
< ||8yM0(Z/7U)HL1(R2) +B/0 C(B,o,t— ) "
L1(R

/ Dup(t 2, 0)] du
R

/ 19y (0(s, 3, V) ()| do
R

L (R)

L |
< 10yl ey + 207 10yl V4 Il [ 2| [ 1000000 o

ds
L1(R)

ds
L1(R)

t
< 1yl gty + 2Co N0yl VT + il |

tiS yp(svyvv)’dv

(2.69)

and by applying Gronwall’s inequality as presented in the Remark 4.4 in the Appendix, we have for any
T>1

/ Dup(t, 2, 0)| du
R

2 (11yt01l 1 2 + 2o 10,1l oo VT ) exp (7 llall} e CT)
(2.70)

LY(R)

where C,, depends only on o. Taking the supremum on [0, 7'] proves the bound for (i).
(ii) Norm of the second derivative We differentiate the mild equation (2.28) w.r.t. £ two times:

8xwp(ta$7u) :/ 3x:cFOU(t;y7’U;%U)Mo(dy,dv)
. R @.71)

+5/ / 0u0r:Tou(t — 83y, v; 2, u)p(s, y,v)u(y) dydvds
RxR

156



Since Oz.I'ou(t — s;y,v; z,u) = OyyT'ou(t — s;y,v; 2, u) and by performing an integration by parts:

awxp(tax7u) = / FOU(t;yav;l'au)anyO(dya dU)
RxR

t (2.72)

8 [ [ aTou(t = sy w)dy, (pls.v.0)n(w) dydvds

0 JRxR
so again by taking the L' — norm in = we have that:
| [10centtaifaof <] [ M(tvi) oty do)
R L1(R) R? L1(R)
t

+B/ / |0yy1t(y)| p(s,y,v) dydvds/ |0wTou(t — s;y,v;z,u)| dedu

0 JR? R? (2.73)

t
+ 25/ /2 10y (p(s,y, v)u(y))] dydvds/2 10uTou(t — 83y, v; 2, u)| dedu
0 Jr .

¢
+ﬂ/ /2 |1(y)Oyyp(s,y,v)| dydvds/2 |0uTou(t — s;y,v;x,u)| dedu
0 JR R

By utilising the bounds previously obtained for the norm of the first derivative of the density and Gron-
wall’s inequality as in Remark 4.4, we can conclude that by taking the supremum on [0, 7'] we have:

sup
t€[0,T]

/ |0zap(t, z,u)| du < Cuopo,T (2.74)
R

L'(R)

uniformly in 3.
(iii) Norm of the first moment of the velocity We shall bound the first moment uniformly in 5:

/up(t,a:,u) du :/ </ ulou(t; v, v; x, u) du) to(dy, dv)
R RxR R

¢ (2.75)
+ 5/ / Dy </ ulou(t — 83y, v;7,u) dU> p(s,y,v)u(y) dydvds .
0 JRxR R

We can see that this is a mild equation with kernel fR ul'oy. As previously we have a component that
represents the initial condition and a time integral component which we shall bound but first which we
further explicit the kernel:

N _P(t)zuu(t)< Y —/%) <_1< Y —ﬁt>>
AUFOU(t7y,U7x,u)dU—mE%x(t) x—y 5(1 e ") | exp N x—y 5(1 e ")
+ ve_ﬁtM(t;y,v;:r) = p(t)Suu(t) Sz (1) Oy M (t; y, v; ) + ve_ﬁtM(t;y,v;:):)
(2.76)
1—e Pt

and by the definition of the marginal density M in (2.32), 9, M (t; y, v; z,u) = 5

Oy M (t;y, vy, u):

1—e Pt
Oy / UFOU(t; Yy, v5x, u) du = p(t)zuu(t)zxx(t)T
R

+ %(1 - e_ﬁt)e_ﬁtﬁyM(t; Y, 05x) .

Oyy M (t;y,v; ) + e P M (t;y, v; )

(2.77)
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For the term that contains the initial condition:

‘/ </ ul'ou(t; ¥, v; m, u) dU> po(dy, dv)
R2 R

< (1) S ()2 (1) H/Rz Oy M (t;y, v; z)po(dy, dv)

LY(R) L'(R)
+e Pt vM(t;y, v; x) po(dy, dv)
R? L'(R)
<o’ || [ Mty v;2)dyuo(dy, dv) +[ [ vM(ty,v;2)po(dy, dv)
R? L(R) R2 L1(R)
< o? ||ayN0||L1(R2) + HUM0||L1(R2) :
(2.78)
We now consider the time integral term from the r.h.s. of equation (2.75), which we write explicitly
using the expression for the kernel in (2.76):
6/ / (/ uloy(t — s;y,v;2,u) dU) p(s,y,v)u(y) dydvds
RxR
= / plt = )20t = )5t — 8)(1 — e A1) / Dy Mt — 53,3 0)p(s,y, v)uly) dydvds
RxR
# [ [ bre i)l vuty) dydds
RxR
+/ (1 — e PU=))e=Ali=s) Oy M (t — s;y,v; x)vp(s, y,v)u(y) dydvds .
0 RxR
(2.79)
The three terms of this equality are all analysed separately.
The first term of (2.79), is transformed by transferring the derivatives from the density M to the density
p and applying the estimates on the first and second derivative of the density, already proven before:
t
‘ / pt — 8)Suu(t — 8)Sau(t — s)(1 — e P172)) / Oyy M (t — s3y,v;2)p(s, y, v)u(y) dydvds
0 RxR L1(R)

< 02 (9l oo a2y + 2 101l oo a2y 1000 Es s ) gy + 1l ooy 19t sz ) -
(2.80)
Since for all s < t according to (A.4), p(t — 8)Suu(t — 8)See(t — s)(1 — e P=%)) < o2, and by the

bounds on the norm of the first derivative in (i) and the second derivative (ii), we have that this first term
is bounded uniformly in 3.

Second term of (2.79) is:
t
HB o) M(t — s;y,v;2)p(s, y, v)u(y) dydvds < HMHLoo(R)ﬁ/ e P79 ds < ] ooy
RxR L(R) 0
(2.81)
The third term of (2.79) is:
t
(1 — e P9y hli=s) M (t — s;y,v;z)vp(s,y,v)u(y) dydvds
RxR L1(R)
< \F - t<1 i T G ' [lontsgol ]| s e
>~ ( ) ECL‘I‘(t _ 5) R LI(R)

(I1—e" s e Bs
< ||/'LHL°° #0,M70f/ E—ds S ”/"L”LOO(R) CMQ,#,UCU :
.'l'fl'
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By the bound in (A.22), we have that this term is bounded uniformly in 5. We also used the control of
the first moment in absolute value from Lemma 2.8-(i). Thus the three terms of the equality (2.79) are
bounded uniformly in 3. Together with the similar result for the initial condition (2.78), we obtain that
forany 7" > 0

sup / up(t, z,u) du < Cluopo,T (2.83)
telo, 7] IR L1(R)
where the bounding term does not depend on /.
|

Lemma 2.8. Assume (Hpgonward) and consider p the solution to the mild equation (2.28), then we have
the following controls for any T' > 0:

(i) [up(t, z, u)l| 12y < Chouo VB
(”) H’LLQ,O(t,I',U)HLl(RQ) < CHO,#’Uﬁ

(iii) sup |[u*dup(t, @, u)| 1 g2y < Crouor-
t€[0,T

Proof.

(i) Norm of the velocity Since the integrated term is positive and by (A.4) ., (t) < o4/, we have

that:
/R‘/tht!p(m,u)du dw:/R/RU|p(t,:c,u)dudx:/R\u|/Rp(t,x,u)dq;du
:/RX]RM (/ FOU(t;'>U;iU,U)d$>/R,uo(dy,dfu)
+5// (/R‘u|/RFOU(t—S;‘,U;x,u)dxdu>/Rp(sjy’q))'u(y)dydvds
[ (oo () e ()
+ﬁ/ / P et (va;ﬁt : )> /RP(Sayav)M(y) dydvds

<oVB+ /R [olno(dyde) + e
X

Thus for C*) (p1g, 41, ) := 2max {0/ |0l po(dy, dv) + ||,U||L°°(R)}:
RxR

HUP(t,fL‘,U)HLl(R2) < Ca)(”O)Ma O-)\/B (285)
(ii) Norm of the second moment of the velocity
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Again since the integrated terms are positive:

/ /qu(tja:,u) du da:z//qu(t,x,u) dudxz/uQ/p(t,fLyu) dxdu
R |JR R JR R JR
—/ u? </ FOU(t;-,v;a:,u)da:>/,ug(da;,dv)
RxR R R
t
w5 [ [ou([ [ oot sivindedn) [ oot dududs
0o JR R R R (2.86)

— [ (Fa®+2) [ (g, av)
R R
t
+ [0t e [ [ opts,youty) dydods
0 R R

<o’f+ HUQ”OHLI(R) +o? 12l oo () CD (o, p,0)/B

So by taking C(")) = 2 max {02(1 |l oo @y O (05 11, ), HUQMOHLl(]W)}’ for 5 > 1

[w* ol 11 g2y < ¥ (110. 1 0)8- (2.87)

(iii) Second moment and derivative
We differentiate the mild equation (2.28) and by using 9,'ou(t; y, v; z,u) = —0yT'ou(t; y, v;z, u) we
perform an i.b.p to obtain:

axp(t’mvu) = / FOU(t;y,U;fEaU)ayﬂo(y’U) dyd’U
R (2.88)

t
8 / d,Tou(t — s, v, w)dy (p(s,y, v)u(y)) dyduds.
0 JRxR
For the initial term we bound and take the L' norm:

_ o? _
/4 w?Tou(t; y, v; &, w) Oy po(dy, dv)| dedu = /2 (Uze 26t 4 ?5(1 —e Bt)) |0y o (dy, dv)|
R R

< [[v"0ym0 12 g2y + 78 19yhol 1 gy -
(2.89)

Now we have:

v —e Pt wull) — et xT
Wwlou(t;y,v;z,u) = Loult; y, v; x, u) ((x —y— B(l ) (1 50 )—ZPZ((?))Eii(t)Efjg)z (t)>

Be Peua(t) — (1 €’Bt),0(t)2uu(t))
B = p?(t))Saa ()55, (1) '

+Tou(t; v, v; z,u) ((U — vt

(2.90)
We denote by , ;
(1= e sy (t) = BePp(t)Sae (1)
II(Ba g, t) = 6(1 . pQ(t))ng(t)Euu(t)
and by
III(B o t) — ﬁeiﬁtzzx(t) - (1 — eiﬁt)p(t)Zuu(w

AL = p? (1)) S (£)57,, (1)
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Thus, we have that:

/ u? |0, Tou(t;y, v; x,u)| dedu < |L(B, 0, t)|/ u*Tou(t;y,v;2,u) | —y — %(1 — e | dadu
R2 R2

+Tu(8,,8)] / u*Tou(t;y, vs,u) [u = ve ™| dudu
]R2

(2.91)

and we calculate each term of (2.91). We integrate firstly in u the first term:
/ w*Tou(t; y, vz, u) du
R

e—m(m—y—ﬁ(l—e_ﬂt))Q
_ p2e—20t2

z—y— (1= e Pt))pe Pt
\/ﬂzgw(t) T (t) + 2( Yy 3 (1 )) p(t)zxaz(t)zuu(t)

+ (1= (0?52, (1)52,(1) + P (52, (1) (2 —y — 5 (1 6’&))2> :

B
(2.92)
We multiply each of these terms by ‘x -y — %(1 — e‘ﬂt)’ and integrate in x to obtain:
—*(x—y—ﬂ(l—e*&)ﬁ
2%2_(t) B 2
/]R oy = g-e)s VTN Ve P2 (1) do = \[Tv?e?ﬁtzm(t).
T
(2.93)

The second term is O since we integrate an odd function, after performing a change of variable on z. The
third term gives:

R L (s

v
—y——(1—e " 1—p(t)*)s2,()=2,(t)d
| le=v-30-c N RO OR E MU
= (1 - p(t)2>2$$(t>zuu(t)
while the third term gives that:
3 e—%(m—y—%(l—e*“)ﬁ

()22, (t)d
V2ms3, (t) 7 F) de (2.95)

A
- 2\/zp2(t)zm(t)23u(t)

and we have that

x—y—%(l—e_'gt)

xfyfg(lfe_ﬁt)

/ uw’Tou(t; y, vz, u)
R2 B

dxdu = sz(t) (\/3126_2&& + (1 + (2\/2 - 1) p2(t)> Z?Lu(t))

(2.96)

< a(t) (Ve 4 252,0)) -
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For the second r.h.s. term of (2.91), we integrate in x to obtain the marginal of the density I'oy in u:

e—m(u—ve*m)2 3 e—m(u—ve’m)2
/ u? )u —pe Pt du < / 2 ’u — pe Pt du
R V27 () R V27 ()
—71 (u—ve=Ft)2
27 Sy (1)

We have that we can further bound (2.91):

/ u? |0,Dou(t;y, v; z, u)| dedu < |L(B,0,t)| Sua(t) <U2€_25t + 2Eiu(t)>
RZ

+ \/ZEuU(t) [ u(B,0,1)] (422u(t) + 27}2672&)

_ _ (2.98)
(1 — e P syu(t) — Be Pp(t)Sra () 2 28 2
< | (7 4 2h0)
_th:ct_l_ —ht t uut _
e st o
thus:
u? |0pp(t, x,u)| du . < HU28?J“0HL1(R2) +0*B 10ykll 11 (r2)
1 - ﬁ(t S uu t t TT t—
/ o Zp (Ef j) N s)zuz((t ?)Z e [ (07670 4 25%,6-9)) 10, (pu)| dsdyo
‘Be H )Spp(t—5) — (1 — e A=) p(t— $)Suu(t—5)| 9 —28(ts) 9
vz [ (= P2 (1=3)) 52 (= 5)uali=5) T 2t ) 19y pp)| dsdyde

< H’U2ayMOHL1(R2 + 026 ”ay,UJOHLl (R2)

> — ¢ M)y (t—s5) = Be P p(t —5) 50 (t—s5)|
+8"5/ ( (1—p)2m(t—s)2uu(t—s)

+\5€ ()50 (t—s) — (1 — e ) p(t—s) sy (t—s5)|
(1 = p?(t—5)) Sz (t—5)Suu(t—s)

— e~ B(t=s) s e (t=s) s g
+8/ <!(1 ) uu(t—3) — Be=PES) plt—s)5a0(t—s))|
0

) (1012l o ol ey + el o 10yl 1y ) s

(1= p*(t—5))Saa(t—5)Suu(t—5)
‘Be‘ﬂ(t_s)zm(t—s)—(1—e‘ﬁ(t_s))p(t—s)zuu(t—s)|
(1= p*(t—5)) S0z (t—5)Suu(t—5)

) <||é7y,u||Loo Hv2pHL1(R2)+||M||Loo ||U28yp”L1(R2)> ds.
(2.99)

By Corollary 4.2, we have that there exists C, > 0 such that

\ [ 0cptt..0]
E LU(R)

S H'l)28yNOHL1(R2) + 0-2ﬁ ”ayNOHLl(RQ)

+ 2C, v2e280=s) |0y (pp)| dsdydv + 4C, w(t—5) |0y (pp)| dsdydv .

(2.100)

t
= ke
0 t— s Jr2 0 t— s Jr2
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We consider firstly, for any 7" > ¢

t 1 9 t 1
- <2
/O N /R Suu(t—=5) [0y (pp)| dsdydv < ﬁ/o N /R (|dyp| + plByul) dsdydv
< 4BCuo ot 1l poo VE+ 4B 10y1l| oo VE < Crtg ot

where the bounds on the norm of the derivative of the density from Lemma 2.7 have been used. We also
consider

ol 2 -2 L |
2 dsdydv < | [ dsdyd
/0 m/IR?U e |0y (pp)| dsdydv < A RQU (|poyp| + ployu|) dsdydv

t
1
<Ml [ 18200l sy 45+ 1l VT3

where the control of the second moment (ii) to bound the second term was used. Thus

< HU28?JN’OHL1(R2) + 025 ”ayNOHLl(W) + C'uomeﬂ + Hay/iHLoo Cuovuyaﬁﬁ

/ W Dap(t, 2, )| du
R L'(R)

t
1
+2C; [ pll oo /0 N Hanyp(s, Y ')HLl(Rz) ds

(2.101)

So by Gronwall’s inequality, considering the bound of Corollary 4.2, we have that for any T" > 0:

sup |[u?0up|| 1 g2y < Cuouo B - (2.102)
t€[0,T)]

3 Application to reflection

The case of reflection involves extending either the process or the mild equation to the whole domain.
We introduce two sets of hypotheses that are useful for extending the drift to a differentiable odd or even
function on the whole domain.

3.1 Bounding the error for odd drifts

We denote by D = [0, +00). Let u: D +— R be a bounded drift, consider the function i: z € R
sign(x)p(|x|), and define the process (Y, Ut )¢>0 solution of:

t
U = o + / Vs ds
0 (3.1

t t —
fomuo—5 [ Tuds+ 5 [ ) ds + poily.
0 0

Hypotheses 3.1
We introduce the following set of hypotheses (Hgefiected 0dd):

(HRefiected 0dd)-(1) po: (z,u) € (D x R) + [0,1] is a probability measure with density that we also
denote as o, such that Oypig, Opopo € L' (D x R) N L>®(D x R), the integrals [ p(|u| +
u?) po(da, du) and [5 g (Ju] + u?)|0ppo| (2, w) dedu are bounded. We also assume that pg is
zero on a neighbourhood of x = 0 and vanishes as infinity.
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(HRefiected 0da)-(11)p: D — R is bounded, 11(0) = 0 and 1/, " € L*°((0, +00)).

We can extend, under the hypothesis (Hgefiecrea 0da)-(4), (1o on the whole domain R x R, by making
it equal to zero on D¢ x R (D¢ being the complement of D). We denote this extension also as po and it
is easy to see that it also verifies hypothesis (Hpyryard)-(2)-

Under (Hgefiected 0da)-(i1), we have that zi is such that the hypothesis (Hpypvara)-(7%) is verified for the

process (Y, Ut)1>0 so we can apply Corollary 2.6. If we introduce the process (th )t>0 such that

t —_—
Y;f=x0+/ a(YS)ds +oW;.
0

Let ug = / po(+,v) dv, then for any g measurable bounded function:
R

In(3)
5

We now assume that the position process is confined in the domain D and we have the following
SDE obtained from the equations (1.1) from Chapter 1

B09(@) — By 90| < Cuapguort 9] (32)

t
Ty :m0+/ ug ds,
0
t ¢ 3.3)
Up = Uy — B/ usds + B/ w(xs)ds + poW; — Z 2ug-T gy —oy -
0 0

0<s<t

By several results from [Bossy and Jabir, 2011], we have that the process defined as (X, );>0 =
(|ytl, sign(ye)ve)e>0 is the weak solution of (3.3).
We also consider the process (Y3):>0 defined as (Y;)i>0 = (\Y;f\)tzg. Then, by Tanaka’s formula:

¢ t t —
Y =z + / sign(Y/) dy/S + Lz/f =x0 + / sign(Y)a(Y)) ds + U/ sign(YY) dW, + Lff
0 0 0
t t .
:x0+/ u(!YJ\) ds—l—a/ sign(st)dWS—i—Lff
0 0

t ¢ -
:x0+/ w(Y?) ds+a/ sign(YSf)dWs—l—Lz/f
0 0
3.4

where (L} f)tzg is the local time of (}Qf )t>0 at 0 and we have that:

where (L} )i>0 is the local time of (Y;);>0 at 0. Since </ sign(Yy) dWs> = t, then by Lévy’s
0 t

t
representation theorem, we have that ( / sign(YSf ) dWS> is a Brownian motion. We can conclude
0 >0

that the process (Y;)i>0 = (|th|)t20 is a weak solution of the SDE:

t
1
Y, :xo—i-/ w(Ys)ds + oWy + isz
0 (3.5)

t
sz/o oy (Ys) dLy .

164



Let g be a measurable, bounded function, (x¢,u:):>0 a weak solution to the specularly reflected
SDE (3.3), (Y:)+>0 a weak solution to the confined diffusion (3.5), then by (3.2):

In()
5

Enod(@e) = By (V)| = [Buag () = B, 901 1)| < Cpoot 19l (3.6)

3.2 Bounding the error for even drifts

We now consider the mild equation verified by the density p of the process (x, ut)¢>0o solution of the
SDE (3.3), obtained in [Bossy and Jabir, 2011]. For any (¢, z,u) € (0,7] x D x R:

t
p(t, x,u) =/ 9e(t; y, v 2, u) po(y, v) dydv+f3/ / Duge(t — 3y, 052, u)u(y)p(s, y,v) dsdydv
DxR 0 JDxR
(3.7)

where for any (¢,y,v,7,u) € RT x (0,00) x R x D x R
9e(t;y,v;z,u) = Tou(t; y, viz,u) + Tou(t; y, v; —z, —u) .

Hypotheses 3.2
We consider the set of hypotheses (HRefiected Even):

(HRefiected Even)-(1) po: (z,u) € (D x R) + [0,1] is a probability measure with density that we also
denote as o, such that Oypig, Opopo € L' (D x R) N L>®(D x R), the integrals [ p(|u| +
u?) po(da, du) and [5 g (Ju] + u?)|0zp0| (2, w) dudu are bounded. We also assume that pg is

zero on a neighbourhood of x = 0 and vanishes at infinity. The integrals / sup |po(y,v)| dv and
R yeD

/ sup |Oypo(y, v)| dv are bounded.
R yeD

(HReflected Even)-(11) p1: D +— R is bounded, continuous, the right-hand side derivative //Jr (0) = 0 and
i € L((0,+50)).

Remark 3.3. We extend p in the negative domain as an even function, therefore (Hgefiected Even)-(11) is
needed to obtain a continuous differentiable function.

Lemma 3.4. Assume (Hgefiected Even) and let p be the solution of the mild equation (3.7). Then, for any
T>0:

(i) sup [|0zp(t, 2, 0)|| 1 pxry < Cuouor  and — sup [[0uup(t,z,u)|l 1 (pxry < Cuoypuo,T»
te[0,T) t€[0,T]

(ii) Sup / p(t7 07 u) du < CMO7M707T 4
t€[0,7] JR

(iii) sup / |02p(t,0,u)| du < Clg por-
tel0, 7] JR

Proof. The first item is proved by extending the solution of the reflected mild equation on the domain
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D¢ x R. For any (t,z,u) € (0,400) x D x R:

20(t, w,u) = 2 /

t
9e(t; y, v, u) po(y, v) dydv+2ﬁ/ / MGe(t — s5y,v; 2, u)u(y)p(s, y,v) dsdydv
DxR 0 JDxR

t
=/ 9ge(t;y, 032, u) o (Y, v) dydv+6/ / Ovge(t — s;y,vi @, u)u(y)p(s, y,v) dsdydv
DxR 0 JDxR
+/ ge(t; —z, —w; x, u) po(—2z, —w) dzdw
(—00,0]xR

t
+ ,3/ / Ovgc(t — 83—z, —w; x,u)u(—2)p(s, —z, —w) dsdzdw
0 J(—o00,0]xR
(3.8)

where on the last two lines the change of variable (y,v) — (—z, —w) was performed. It is easy to see
that for any (¢,y,v,z,u) € RT x R4,

ge(t;y, v, u) = ge(ts y, vy —x, —u) = ge(t; —y, —vsz,u) = ge(t; —y, —v; —, —u) .

We extend
_ po(z,u) forz >0
g (2, u) = 3.9)
po(—x,—u) forz <0
while
t,x,u) forx >0
B(t, 2, u) = plt,z,u) (3.10)
p(t,—x,—u) forxz <O0.
and

p(xz) forz >0

Ale) = {u(—x) forz <0 G-

thus equation (3.8) becomes:

t
2p(ta) = [ gty vsaio(y.o) dudo+ 5 [ [ dugelt = siy.vi (s, o) dsdyd.
(3.12)

We can also notice then that we can use similar arguments as in Lemma 4.5 to show that sup; ;. ,)e[0,7)xDxR p(t,x,u)
and Sup(; 5 u)e(0,7]xDxr [0zp(t, T, u)| are bounded (with bound that depends on 3). This is because
SUD(¢ 2 ) €[0,7] xDxR AL T5 ) = SUD(1 4 w)e[0,7)x Dxk AT, T, w) ad SUD (¢ )0, 1) xDxR [0 P, T, u)| =
SUD(¢,2,u)€[0,7]x DxR |Oxp(t, T, u)|, so the same procedure as Lemma 4.5 using Gronwall’s inequality

can be used. These bounds are useful when applying various integration by parts against functions that

vanish at infinity.

(i) Norm of the derivatives
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We prove that d,p(t, z,u) € LY(D x R).

200p(t,x,u) = /R2 Ouge(t; y, vi @, u)hg(y, v) dydv + /Ot /R2 0y 029c(t — sy, v; 2, u)i(y)p(s, y, v) dsdydv
= /IR? (0:Tou(t; v, v;x,u) + 0.Lou(t; y, v; —x, —u)) Ty (y, v) dydv

+8 /Ot o Oy (0:Tou(t — 83y, v;2,u) + 0:Tou(t — 83y, v; —x, —u)) i(y)p(s, y, v) dsdydv
= - /]R2 (Cou(tsy, v;z,u) — Loult; y, v; —x, —u)) Oyfig(y, v) dydv

t
- ﬁ/ Lo (Lou(t = s3y,v; 2, u) = Lou(t — 83y, v; —2, —u)) 9y (A(y)p(s,y,v)) dsdydv
0 JR
(3.13)

thus (HRefiected Even)» [t and 7ij are continuously differentiable:

2010up(t, )l oxry < 21070l L1 g2y

t
+ B/ / (/ |0 Lou(t — s;y,v;z,u)| + |0 Tou(t — sy, v; —x, —u)|> dxdu |0y (ip(s, y,v)| dsdydv .
0 JR2? R2
(3.14)

By the bound (2.66) and Corollary 4.2, we obtain that:

t
2 ”8xp(t) ) ‘)HLl(DXR) < 2 Hayﬁouu(ﬂp) + 4ﬂ/0 C(/Ba g, t— S) Hay (:U‘(y)p(‘s? "y '))HLl(’DxR)
(3.15)

t
_ 1
< 200,70l a2y +4Co | = 10, W5 D e
and by Gronwall’s inequality and Lemma 2.7, we obtain that

sup [|0xp(t, )|l L1 pur) < Cuoro,T
te[0,7

uniformly in .

For 3 fixed, we extend, by continuity, 9, p(t, x,u) up to the boundary x = 0. Since 9,p(t, z,u) =
O0zp(t, —x, —u), we have that 0,;p(t, z, u) is continuous on R x R.

So, by similar arguments to Lemma 2.7, since 9,7, € L>(R?), then O,,p(t, ,u) is bounded in
LY (D x R), uniformly in 3.

(ii) Norm of the trace of the density
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For any (¢, u) € (0,4+00) x R, we have that

/ (tOudu-/ /gcty,v()u)du,uo(y, v) dydv
DxR
+ﬂ/ / /gc — s3y,v;0,u) dup(y)p(s, y, v) dsdydv
DxR

=/ 2M (t;y,v;0)po(y, v) dydv+25/ / DM (t — s3y,v;0)u(y)p(s, y,v) dsdydv
DxR 0 JDxR

t
—/ 2M (t;y, v; 0)pro(y, v) dydv + 2/ (1- 6’3(”))/ Oy M (t — 53, v;0)u(y)p(s,y, v) dsdydv
DxR 0 DxR

t
— [ My v 0ty.o) dydo +20(0) [ (1= e ) [ Mt = 550,050)p(5,0,0) dco
DxR 0 R

t
—2 [=e ) [ M= 05000, (ol 5.0)) ddyds
0 DxR
(3.16)

where M the marginal density of the position defined in (2.32), obtained from the joint transitional
density I'ou. By (HRefiected Even), We have that:

[ 0010 <2 [ sup ity 0144/ (10 sy + Wil Wl ) [
t,0,u)du|l < su ,v)dv 4+ — oo (my T . ——ds
z” zyen m \NuHlnee ) T =) 1P mm® ) | s =)
2 [t1—ePl=s)
—i-\[/ </ s,0,v dv)ds
™ Jo E$z(t—8) RIO( )

By the bound (A.19) we have that for any T" > ¢:

2CVT
/R p(t.0,u) du| < 2 /R sup 1oy, >ozfu+\[r (1008l ey + 1l 1800l 1)

yeD

Cov2 [t 1
+ Nl ts(/ﬂ{p(s,(),v)dv)ds

and Gronwall’s Lemma as presented in the Remark 4.4, then we can bound uniformly in 3, for any
T>0

(3.17)

sup /p(t,O,u) du < Cpo o1 - (3.18)
te[0,7] /R

(iii) Norm of the trace of the derivative of the density
We go back to equation (3.13):

Qamp(t7 €T, u) = - /2 (FOU(ta y,vix, u) - FOU(t; Y, v; =, —U)) 8yﬁ0(y7 U) dydU
R
t
- ﬁ/ /2 9y (Tou(t — 83y, v;x,u) — Tou(t — 83y, v; —x, —u)) 9y (A(y)p(s, y,v)) dsdydv
0 R
=— /2 (Tou(t; y, vz, u) — Tou(t; v, v; —x, —u)) Oyfig(y, v) dydv
R

t
+/ (1- 6_5@_3))/ (Tou(t = s;y,v;@,u) — Tou(t — s;y,v; =, —u)) Oyy (1(y)p(s,y,v)) dsdydv
0 R2
(3.19)
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thus

B - B t 1— G_B(t_s)
2 [ 100(t.0.0)] du <2 [ sup10,7o(y.)| dv+2 sup 10, )0 ey [ gy -
=

s€[0,t] Sez(t — 5)
(3.20)
We can conclude by (A.19) that
sup / |0:p(t,0,u)| du < C o (3.21)
te[0,7] JR
uniformly in (3, for any 7' > 0.
|

Lemma 3.5. Assume (HRefiected Even) and consider p the solution to the mild equation (3.7), then we have
the following controls for any T' > t:

(l) Hup(tu €L, u)HLl(DXR) < CMOMU\/B and Hu2p(t7 x’u)HLl(DXR) < CMOyNaU/B’

(ii) sup Huzﬁmp(t,x,u)HLl(DxR) < CMOJMGTﬁ?
te[0,7)

S C}Lo,/.t,O',T *
LY(D)

(iii) sup
t€[0,T

/ up(t, z,u) du
R

Proof. (i) Norm of first and second moment

Since the integrated term is positive and by (A.4) 5., (t) < o/, we have that:

/‘/Mp(t,x,u)du dﬂz://]u|p(t,z,u)dud$:/u|/p(t,x,u)dxdu

DIJR D JR R D

—/ (/ |ulge(t; y, v; 2, u) drcdu) po(dy, dv) (3.22)
DxR DxR

t
+ /3/ / 8 (/ lulge(t — 53y, v; 7, u) dﬂde> p(s,y,v)u(y) dyduds .
0 JDxR DxR

By performing the change of variable (x,u) — (—z, —u) then

/ [ulge(t; y, v; 2, u) dwdu:/ lu| (Cou(t; y,v;z,u) + Tou(t; v, v; —z, —u)) dedu
DxR DxR

(3.23)
= / |u|Tou(t; v, v; z,u) dedu .
R2
So by similar calculations to those in Lemma 2.8
lup(t, 2,0l 1 (o) < Croo VB (3.24)
and also
HUQP(t’ x’u)HLl(DXR) < ChopoB - (3.25)

(ii) Second moment and derivative
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We recall that we have

28:5/0(t7 z, 'LL) = - /2 (FOU(tv Y, v, 'LL) - FOU(tu Y,v; =, _u)) 8yﬁ0(y7 U) dydv
R

t
- B/ L 0o (Pou(t = s;y, v, u) = Lou(t — sy, v; =z, —u)) 9y (i(y)p(s, y, v)) dsdydo
0 JR

(3.26)
thus, we have
2/ u? [0pp(t, x,u)| dedu < uz/ Tou(t; y,v;z,u) |0yfig(y, v)| dydvdzdu
DxR DxR  JR?
+ / 2 / Pou(t: y, vi —, —u) |, Fig(y, v)| dydvdadu
DxR  JR? (327)

t
5 [ [ [ 10uTou(t = siveus w10, (3)pts. )] dsdydudadu
0 JDxR R2

t
#8 [ [ [ ioTou(t — sy, )] 19, (0)p(s. 5. 0))| dsdydvdadu.
0 JDxR R2

Since the functions we are integrating are positive, the bound remains valid when extending the integrals
from x € D to z € R. For the second and fourth term of the r.h.s., we perform the change of variable
x +— —x and u — —u, thus obtaining

2 [ a2 gt dedu <2 [ Tou(t ;) 0ol )] dydedad
DxR R4
. (3.28)
+ 26/ / U'Q |6®FOU(t — S8y, VT, ’LL)| |8y (E(y)p(‘g) Y, ’U))| dsdydvdwdu
0 JR4

and we can notice that we can apply the same arguments as in the proof of Lemma 2.8-(iii) to obtain that
forany 7" > 0

sup Huzazp(t,x,u)HLl(DxR) < CNOW«?U:Tﬁ
te[0,7

since by the definition of g in (3.10), we have that [, p(t, 2, u) dedu = 2 [ p p(t, ©,u) dedu and
Jg2 10:0(t, z, )| dedu =2 [ g |0:p(t, z, )| dzdu.

(iii) Norm of the first moment
We calculate the bound

[ ot wdu= [ ( [ ety du) oy, dv)
R DxR R

t (3.29)
w0 [ [ o ([ e ssvvsedn) s, onts) dudvs
0 JDxR R
By previous calculations, we have that
/ uge(t; y, v; 2, u) du = p(t)Suu(t) e (1) 0y (M (t;y, v; 2) — M (t;y, v; —x))
R (3.30)

+ve P (M (t;y,v;2) — M(t;y,v; —))

and
1—e B
o, / gt 05, 0) s = (05 (1) () —
R

+e P (M(tyy,vix) — M(ty,v;—2)) + %(1 — e e P9, (M (t;y,v;2) — M(t;y,v; —2))
(3.31)

Oyy (M (t;y,v;2) — M(t;y,v; —x))

170



The terms that correspond to the second and third of this equality are treated similarly as in the proof of
Lemma 2.7. For the term that corresponds to the first one of this equality, we transfer on the density p,
the two partial derivatives in y through integration by parts. These i.b.p. produce boundary terms, which
are bounded in L!(D)—norm as following:

t
< 2u0) [t = )5t = 5)aalt — )1 — ) ( / ayM@—s;oyv;x)r) (5,0, ) duds
0 R R
t 1— G_B(t_s)

Spa(t — )

/0 /Rp(t—s)zuu(t—s)zm(t—s)(l—emts))ﬁy (M(t—s;0,v;2)—M(t—s;0,v; —x)) p(s,0,v)u(0)dvds

LY(D)

< 2’N(O)|020uo,u,a7t/ ds < 2|/~L(O)‘O’2Cuo,u,o,TCa,T
0

(3.32)
and
‘ /0/Rp(t—s)zuu(t—S)Em(t—s)(l—e_ﬂ(t_s)) (M(t—s;0,v;2)—M(t—s;0,v; —x)) Oy (p(s,0,v)1(0)) dvds

< 2022(0)] 118, (¢, 0, v)l| 1y < 20 (0)|Crapyur -

L'(D)

(3.33)

where we have used the bound (A.19), the fact that 1/, (0) = 0 and Lemma 3.4 to control the norms of
the trace of the density and its partial derivative. We can see that the boundary terms can be controlled
uniformly in 8. For all the other terms, we obtain similar bounds uniform in 5 by following the same
arguments as in Lemma (2.7).

[ |
The mild equation for the comparison process
Let (Y;f )t>0 defined as the solution of the SDE for z¢ > 0:
t
v = a0+ [ im0y as + 0w (3.34)
0
and define (Y3)¢>0 = (v, |)+>0. We have by Tanaka’s formula that
t t ;
Y: =z +/ w([YS)) ds + O’/ sign(Y) dw, + LY (3.35)
0 0

where (Lff )e>0 is the local time at zero of the process (th )t>0. We also introduce the process (th )t>0
which solves the SDE 3.34 for ;1 = 0 and similarly (Y;);>0 = (|Y;f |)t>0. The transition density of
(Ye)e>o is

~ + + + 1 (z —y)? (z +y)?
. W= Ty
g: (t,y,x) eRT x RT X R" o (exp< 5521 + exp 5521

or by using the function I'g defined in the previous section then g: (¢,y,z) — I'g(t;y; ) +Ts(t; y; —2).

We introduce the operator S;(f)(y) = ]Eyf(}z) = / g(t,y,x) f(x) dr and its adjoint
D

Sy (o) () = / g(t,y, x)po(y) dy. Consider the function Gy r: (s,y) € [0,t) x D — Si—s(f)(v),
D
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which is a solution to the PDE

2
0sGrp %a’”th =0, on[0,t)xD,
I _ '
Jm 8,Gep(s,y) =0, on[0,1) (3.36)

lim Gy f(s,y) = f(y), onD.
s—1

then we have that:

t t
By Gyt Y:) =E,» G (0, Y0) +Eug/0 095G, f(s,Ys) ds +EMOY/O 1(Ys)0y G p(s,Ys) ds
t t
. f
+E,y /0 sign(Y)0, Gy 4(s, Ya) AW, + B,y /0 0,G, 4 (s,Ya) dLY
0.2 t
+ ?]EM%/ /0 8nyt,f(8, Ys) ds

t
= EMY th(o, Yo) + EMY / ,u(Ys)ayGt’f(S, Ys) ds.
0 o Jo
(3.37)

We recall that L " is the local time of Y;f at 0, thus it only increases on the set {Y;f = 0} and it is

constant anywhere else. By the definition of the process (Y;):>0, we have that {Yf =0} ={Y¥; =0}
but by the boundary condition in the PDE (3.36), so 0,G ¢(s,Y,) = 0 on {Y; = 0}. This implies that
the integral w.r.t. the local time in (3.37) is zero.

Further developing (3.37) allows us to obtain the following mild equation for p: R™ x D — R™ the

density of the process (Y;);>0 with initial condition p} = / to(y, v) dv:
R

plt,2) = 5, () () + /0 /D 9,5t — 5., )uly)p(s,y) dyds. (3.38)

3.3 Bounding the difference

Lemma 3.6. Assume (HForward)y (HReﬂected Forward)'(iii) and (HReﬁected Forward)'(iv) are veriﬁed and as-
sume p and p are solutions to the mild equations (3.7) and, respectively, (3.38). Then, for large enough
B, we have that

In()

S CMO?M7U7t

(3.39)
LY(D) p

/ p(t, z,u) du — p(t, x)
R

Let us consider the difference between the solution of the mild equation that corresponds to the
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reflected Langevin process (3.7) and the solution of the mild equation for the comparison process (3.38)

/ p(t,z,u) du —p(t,z) = / 9e(tsy,v; 2, w)po(y, v) dydvdu — Sy () ) (x)
R DxR2?

t t
+ﬂ/ / Mge(t — s34, v; 2, u)u(y)p(s, y, v) dsdydvdU/ /Byﬁ(ts,y,x)u(y)p(s,y) dyds .
0 JDxR? 0o Jp
=/ Lou(t; y, viz, u)po(y,v) dydvdu—/ Ty (t;y; ) (y) dy
DxR2 D
+ / Lou(t; y,v; —z, —u)po(y, v) dydvdu — / Ta(t;y; —x)up (y) dy
DxR2 D
t t
—i—ﬂ// Wwlou(t — s;y,v;z,u)u(y)p(s, y,v) dsdydvdu—/ /8yFB(t—s;y;a:)u(y)p(s,y) dyds
0 JDxR? 0 JD

t t
+ 5/ / ILou(t — s;y,v; —x, —u)u(y)p(s, y,v) dsdydvdu — / / OyI's(t — s;y; —2)u(y)p(s, y) dyds .
0 JDxR2 0 JD
(3.40)

The first two terms correspond to the initial condition. Because for any v € R, (0, v) = 0, simplify-
ing any i.b.p., the same arguments presented in the section Bounding the initial terms for the proof of
Theorem 2.5 apply to obtain a similar control

1
S Cﬂo,u,a’,t

—. (3.41)
LI(D) 6

H [ ottty ) dydodu — 5 )0
DxR2

The section Bounding time integral of the proof of Theorem 2.5 contains the main arguments needed
to obtain the needed bounds for the last two differences in (3.40), some analysis needs to be carried out
for the boundary terms though, when performing integration by parts. We can notice that the two last
differences in (3.40) are very similar and the change of sign does not affect the arguments, therefore we
present the steps just for one of the terms.

Similar to formula (2.40) we have

t t
B/ / OLou(t — sy, v; 2, u)u(y)p(s, y, v) dsdydvdu —/ / Oy U's(t — s;y; 2)u(y)p(s,y) dyds
0 JDxR2 0o JD
t
= / / 1(y) ((1 — e P09y + = (1 — e P09) 02(t — ), 2) — Dygly, 0> (t — 5), w)) p(s,y,v) dydvds
0 JDxR B
t
[ = e, 0) dydvdsx
0 JDxR

x (8yg<y + %(1 — e PU) 52 (1 — s),2) — Dygly + %(1 — e P9y o2(1 — s>,x>) .
(3.42)

and, thus, we have once more the sum of two terms, one that corresponds to the difference between two
Gaussians with different means and the other that corresponds to the difference between two Gaussians
with different variances.

Difference between two ex-centred Gaussians in (3.42) By applying Taylor’s expansion with in-
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tegral remainder, we obtain that

/ /DXR (1_6—6@ Ndyg <y+ pl—e (t—s))70.2(t_5)’$> 9, (y,aQ(t—s),y:)> o(s..0) dyduds
= —/0 e - S)/Du(y)ay (y,02(t — s), ) (/Rp(s,y,v) dv) dyds

t
v —B(t—s
+/ /p RBu(y)O — e P20, (y,0%(t — 5),) p(s,y,v) dvdyds
X

1
/ / )(1 — e Bl=9))3 / (1 —0)0yyyg <y + 03(1 — e B9 52(t — 5),x> dfp(s,y,v)dydvds .
Dx B2 0 B
(3.43)

The first term of the r.h.s. of the equality (3.43) is transformed by an i.b.p. and taking the L' —norm to
obtain

/ —Bt- S>/ )dyg(y, o2 (t — s), ) (/Rp(s,y,v) dv> dyds .
< |p(0 |/ —Bt=s) </ g(0,0%(t — s), )dm) </ (s,O,v)dv) dyds
/0 e Pl= S)/Dg(y, (t—s), </a p(s,y,0)) dv> dyds .

t
—B(t—s — s 1
< WO s [ € 5410, (ol 0D s /O Y ds < iy

(3.44)
+\

where the bounds of Lemma 3.4 have been used.

For the second term of the r.h.s. of the equality (3.43), we use the same arguments as in Theorem
2.5 and the bounds in Lemma 3.5, to obtain that

)(1— e PE9)20,,9 (y, 0> (t — 5),2) p(s, y, v) dvdyds

DxR /8 LY(D) (3 45)
FL—e Py In(8) '
6 H:U’”LOO ,quUt/O Td < Cug,u,at B

Difference between two Gaussians with different variances in (3.42) To bound these terms, we use
them same techniques of extending the equation on the whole domain R x R as in the proof of Lemma
3.4. Since we have sufficient regularity on this extension, we apply the same techniques as in Theorem
2.5 to obtain the same bound.

From the last difference of the r.h.s. of (3.40), we obtain the counterpart of the variance terms in
(3.42), which we write below as:

/ [ n)@ = e Np(s,y.v) dydvds (8yg<y + Y= P 2 (¢ s), )
DXR B
o B(l T EEE)
/ / 2)(1 — e P p(s, —z, —w) dzdwds <8yg(z + _T;U(l —e B9 22 (t—s),—x)
00,0] X

il T B 24 &)
o +B<1 ), 02(t — ), >)

(3.46)
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by performing the change of variable (y,v) — (—z, —w). Since g(y, -, z) = g(—vy, -, —x), we sum the
obtained result (3.46) to the variance terms in (3.42) and utilise the extensions for p (3.10) and for u
(3.11) to obtain that:

[ =00 dyduds (B,g(0-+ 51— ¢ H0) 52,0 - 9,2)
DXR
~Dygly+ ﬁufe .ot~ 5).0))
/ / )1 — e P p(s,y, ) dzdwds(({)yg(y—F (1—ePU=9)) 22 (¢t — ), —2z)
DXR B

o9y + L - P 2 ), —m>)

8
t v

~ / / u(y)(l—e—ﬁ“—S))p(s,y,v>dydvds<ayg<y+<1—e—ﬂ<t—s>>,z§$<t—s>,x>
0 JRxR B

~ Oyl + 51— ), 0%t s>,a:>>
(3.47)

By the controls on the various moments of the density proven in Lemma 3.4, we can apply the same
techniques as in the Theorem 2.5 to obtain that:

%(1 — e P9) 22 (¢ — ), @)

e )p(s,y, v) dydvds <<9yg(y +

RxR
1 (3.48)
S Clu”uo,a',tﬁ :

L2(R)

_ Y1~ e B9 0204 — &)
v+ 50 )02t~ s), >)

Final steps

We can notice that we have obtained the same controls on the different components of the difference of
mild equations (3.40) as in Theorem 2.5, therefore we obtain the same bound and conclude the sketch
of the proof for Lemma 3.6.

4 Conclusion and perspectives

We have seen that under (Hyw.qx Bound), the weak error between the position process of a Langevin process
and a corresponding uniformly elliptic diffusion in the Smoluchowski-Kramers limit decreases at least

as Fi—s for any € > 0.

Similarly, we obtain the same bound on the error by introducing a specular reflection border for
the Langevin process and instantaneous reflection on the uniform elliptic diffusion, provided we respect
either condition (Hgefiected 0da) Or condition (Hgefiecred Even)-

The most obvious extension would be to obtain this result for any type of drift, but we recall that
the specular boundary condition is not linear. Another interesting result would be to obtain that a linear
decrease of the error and also a Richardson-Romberg extrapolation for the error, extend the results to
higher dimensions and different boundary domains.
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Appendix A

Simulation

1 Test case

We perform several numerical experiments in order to gauge if the theoretical bound on the weak error
between the position reflected Langevin process (1.6) and reflected Brownian with drift (1.7).

We discretise the reflected Langevin process using the scheme already presented in the previous
chapters. For the reflected Brownian with drift, we consider a symmetrised Euler scheme such as in
[Bossy et al., 2004] (we simulate the process at discretisation times (;);>0 using a regular Euler scheme,
and if the process escapes the domain (0, 400), it is reintroduced in the domain by a symmetrisation
around the origin). We denote by (i‘f At ﬂtﬁ ’At)tzo and (Y;*!);>0 the time-discretisation of these pro-
cesses.

For the test function, we consider f:  — 2. Concerning the drift function,  we consider the
functions:

e Case Odd: pi: v € RT >,
e CaseEven: u: x e Rt > 1,
e Case General: u: x € Rt — 1+ 2.

It can be see that the drift in Case General does not verify (Hgefiecred Even)-(11) OF (HRefiecred 0da)-(i1). We
set the discretisation time-step to At = 2711, T" = 1 and we plot the function

- 1 Nmc ) . s
ErmorSK(f: 6 | Z; (f(%’:ﬁr’“’ ) ))‘

_B.At,q At . . . . A *
where xéi " and Y, b are independent realisations of the random variables x? " and YTAt. For
our simulations we consider Nyic = 108.

Results

In the log-log plots A.1 we graph the results and also present an ordinary linear regression by using
the model In (ErrorSK[f]) ~ —a/In(8) + ¢, and the purpose is to estimate the value of . The thin
dashed blue line represents the identity function, presented as a benchmark for the slope of our results.
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(a) Case Odd, (b) Case Even,
ErrorSK[f] ~ 3799 ErrorSK[f] ~ 37098
10° A
/
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—  Decrease OLS ~ g%

102
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(c) Case General,
ErrorSK|[f] ~ 37994

Figure A.1: Error convergence estimates
In the next table, we present the estimates of the slopes and also the p—values for the test: null

hypothesis o = 1, alternative hypothesis: o < 1. In all cases we can see that our theoretical result of
error decrease rate bounded in 5~(1=9), for any e > 0, seems to be confirmed.

‘ Case Odd | Case Even | Case General

OLS Slope Estimation(in 1//3) 0.95 0.98 0.94
p-value 56-1073 1 9.2-1072 | 4.7-1073

Table A.1: Slope Estimates

We also present in table A.2 the variance and the confidence interval of our estimators. The first line
of the table represents the results for the estimator of f (YTM).

In the Odd and Even cases, the confidence interval is of order 1072, and since the finest difference
in the plots A.1a and A.1b are of order 1072, the statistical error of Monte-Carlo simulation is not very
important. In the General case, the confidence interval is also of order 103, while the finest result in
the plot A.lc is of order 10~!, so again the statistical error is not significant.

1.1 Switching between the models

In the previous section, we considered a fixed time discretisation step At and we varied 5. Now, we
consider a reversed situation where 3 is fixed and we vary At, in trying to determine if it is more efficient
to simulate one model or another for a given target error.
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Case Odd Case Even Case General
Result | Var | 1/2—Conf int | Result | Var | 1/2—Confint | Result | Var | 1/2—Conf int
3 Ref | 319 | 2039 | 9.03-10~* 267 | 739 | 5.44-107* 8.58 | 73.00 | 1.71-10°3
25 269 | 1447 | 7611071 2.51 | 6.61 5.14-10~% 7.09 | 50.83 1.43-1073
26 293 | 17.11 8.27-107% 258 | 699 5.29.10°% 7.78 | 60.63 1.56-1073
27 3.05 | 1863 | 8.6310°1 262 | 7.18 | 5.36-10°% 8.16 | 66.35 1.63-1073
28 3.12 | 19.53 8.84-10~4 265 | 729 | 5.40-10~* 8.37 | 69.60 1.67-107°
29 3.16 | 19.95 8.93-10~4 266 | 734 | 542-107* 8.47 | 71.24 1.69-10—°

Table A.2: Results Simuation

We plot two types of error

and

. 1 Nmc ) et s

ErrorB[f]: At — f ;1 (f(x?iAt iy f(YTAt’ ))'
1 Nmvc

ErrorL _B,Ati _B, AR G

ErrorL[f]: At — Moo ;1 (f(l‘g ) — f(xg: )>

where AtR®! is a small time step (smaller than the range considered for At). For this simulation, we take
Nme = 108, B = 28 and AtRef = 2711 We obtain the following log-log plot

102

Error
=
o

o

e—e Brownian
e—e |angevin

3T 3% 57 30 75 o

At

Figure A.2: Plot of ErrorB[f] and ErrorL]f]

1
We recall that we have takes 3 = 28 so we can notice that for At larger than approximately E’ that

it is more cost-effective to simulate f(Y!) than to simulate f (i“gim’i). Thus for very large 3, if it is
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too computationally prohibitive to take At < —, it is better to approximate statistics on the position of

the Langevin process by the appropriately chosen uniformly elliptic diffusion.

2 Exponential scheme derivation

We consider the process:

t
xt:$0+/ Ug ds
0

. (A.1)
Uy :uO—B/ usds + But + BoW;
0
where 4 is a constant. We can explicitly write the solution of this process as:
"o —pt 1 —pt : —B(t—s)
:ct:a:o—i—ﬁ(l—e )+ 1 t—B(l—e ) +U/(1—e ) dW
0 (A2)

t
up = uge Pt + p(l — e_ﬂt) + 50/ e Bt=9) qw, |
0

meaning that for any ¢ > 0 and (0, up) € R%:

]~ (

where X is the positive definite covariance matrix:

zo+ F(1 - e P+ p (t — %(1 - e‘ﬁt)>
upe Pt + p(1 — e=Ph)

,2) (A.3)

o, _ 204 _ sy, Lq_ o
[ (t-2a g ) 2 [t g
0 B2 o opt P() S22 () Suu(t Sl
(- 71— ) "
For p = 0, we have that
Uo (1 _ =Bt
[it]Nqu”ﬁ(me )],2>. (A.5)
t uge

3 Bounds on the various moments of the Ornstein-Uhlenbeck process
with constant drift

Let (ut)¢>0 verify equation (A.1) and p > 1, then:
p—1 1 p—2,2 2
dul = pul™" duy + ip(p — D)u} B0 dt

_ 1 _ _
= —Bpul dt + pBuul " dt + §p(p —1)8%6%ul " dt + Bopul ™t dW, .

We have that:
t 1 t
ul = ube PPt +p[3,u/ e PPyl ds + “p(p — 1)[3202/ e Py =2 s
0 2 0
t (A.1)
+ Bap/o e*pﬁ(t*‘s)uf’s’*l dWs.
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By taking the expectation, we obtain that:

t 1 t
Eu? = ube PPt + pBu / e PPU=IE [P~ ds + Zp(p — 1)5%0? / e PPU=9IE [P =2] ds. (A2)
0

0 2
For p = 1, we have that:
Euy = uge P + p(1 — e P)

while for p = 2:

t
Euf = u%e_%)t + 2B,u/ e~ 2B(t=s) (uoe_ﬁs +p(1— e_’Bs)> ds
0

t
+ﬁ202/ e 28(=9) gg
0

2
= u%efwt + 2uouefﬁt(1 — eiﬁt) + 21— e P2 4 ﬁ%(l — 6726t)
and we have the bound for the second moment:
Eui < C,p

while for the third moment:
t t
‘Eu?‘ < ude 30 4 3kCuB/ e 3P=9) gs BﬁQJZC’u/ e 300=5) gs < CuB.
0 0
Finally:

t t
Euf < uée"mt + 4Cu52/ e—4B(t=5) g5 1+ C’MGB%Z/ e 4B(t=5) g5 < Cuﬁz.
0 0

‘We can conclude that:
E|u}| < \/Eu?\/Euf < C.B/B.

Now, we consider a smooth enough function g, then:

2
o
d(g(Ye)uy) = uf dg(Yi) + g(Yy) duf + d(g(Y.),u)s = uig'(Y) dY; + EUfg”(Yt) dt
_ 1 _
— Bpg(Y)ul dt + pBuu? " g(Y;) dt + 5P — D)%% 29(Yy) dt
+ Bopul ™ g(Y2) dW; + Bopul g (Y2) dt .

And by a similar procedure as the Ornstein Uhlenbeck process, we obtain:

2
g
d(er* g (Yiyup) = ufe?y/ (¥i) dYs + ey (V;) dt

_ 1 _
+ pBueul " g(v;) dt + PP - 1)B%0%ePPtul 2 g(Vy) dt
+ BopePPul g (Vy) AW + Bo?pePPtul g/ (Vy) dt

obtaining that:
t 2 st
g(Youl = e PP g(ao)dy + / e P (v,) Y, + T / e P R (V) dr
0

0
(p—1)o?p

¢ ¢
+ pﬁ,u/ e PPUyP=1g(Y,) dr + P 5 / e PPy =2g(Y,) dr
0 0

t t
+ Bap/ e*pﬁ(t*’”)ufflg(ﬁ) AW, + Ba2p/ e*pﬁ(t*’”)uﬁ’*lg’(l@) dr.
0 0
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We can integrate to obtain:

t 1—e PPt
/ g(Ys )updS—iﬂ xou0+u//€pﬁsrup( ) drds

—i—a/ / e‘pﬁ(S_T)ufn’g’(Y})dWTds+2/ / e PPy g (Y,) drds
0 Jo 0 Jo

t s _ 1282 [t s
—I—pﬂ,u/ / e—pﬂ(s—r)ug—lg(y;) drds + W / / e‘pﬁ(s_r)u$_2g(Y}) drds
0 Jo 0 Jo

t s t s
+ Bap/ / e_pﬁ(s_r)uff_lg(ﬁn) dW,ds + 50'2]3/ / e_pﬁ(s_r)uf_lg'(Yr) drds
0o Jo 0o Jo

(A.12)
and an integration by parts results in:
t _ —ppt t
| atvauzas = 2= gaon - 2 / g e+ 2 [ty
0 pB
-l-a//epﬁs’"up "(Y,) dW,ds — /epﬂtrup "(Y, )dr+ﬁ upg”(Y})dr
2
—M/ e PAUT 21y, )dr—i—u/ ub~ 1g(Y})dr—(ﬁ/ PR P=2 (Y, dr
142
1 B/ dr—i—ﬁap//epﬁsrupl(}/})dwrds
—02/ e PPl (Y, dr + o / P~y (Y, dr .
0 0
(A.13)
4 Various useful calculations
We consider:
1 [(1— e ®)nuu(t) — B p(t)Sea(t)]
C(B,0,t) =
D = T PO ml) "
N |Be P! 2aa(t) = (1= e ™)p(t)Suu(?)]
V21 (1 = p?(1))Sew () Suu(t)
and have that:
1 (1= e PYsyu(t) + Be P p(t)San(t)) Soa(t)Suu(t)
C Y 7t S
o) S e S 02,0 — (00)%ea (D5 (1)) )

1 (Be™Pimpe(t) + (1 — e P p(t)Suu(t)) Seo(t)Suu(t)
V2m S22 (020 (1) — (p(8) 20 () Dun(t))?

It can be seen that all the terms have as denominator:

_l’_

0.4
o (D50 (8) = (P(8) e ()2 (1)) = -8 <t - ;(1 Py

;8(1 - emt)) (1- 672’&)

(A.3)
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where

h: 2 %(1 —e %) <z —2(1—e %)+ %(1 - e—22)> — <1 —eF — %(1 - e_2z)>2 (A.4)

which we rewrite as

;qz):(1—-5%)(%(1++f“)—(1——6_@)- (A-5)
We can notice that: 1 1
h(z) 2 51— ) (z-2) - ; (A0
and for z > 4 > h172:
h@)zi@—BX &7

From the definition of the different terms of the covariance matrix in (A.4), we have that

- 2
< 04);(96575(;)2““@) = iéBII.I(/Bt) (A.8)

where for any z > 0:

Iip: 2z h(lz)<1 —e )1 - e_2z)\/z —2(1—e?)+ %(1 —e72%)

SO

\/z —2(1—e %) +1(1—e2)

. 2z
II.l 2= (1 e ) %<1 T e_z) — (1 — G_Z) (Ag)
We also have
Be_ﬁtzm(t) (p(t) ez () Suu(t)) 1
e = —V/Bha(Bt) (A.10)
where for any z > 0, we have that
I'ZH1€Z¢%Jﬂ—eﬂ+lﬂ—ehHLw%f
12527 9 h(z) 2 '
thus \/
1 z—2(1—e?)+ 51— e %)
s —e “(l—e* . A.l1
12i 2 g (L= ) T T @10
The third term is
Be Pts2 () Suu(t) 1
N —V/BIua(51) (A.12)
where e .
. . e’” _ .z ~(1_ 2z =2z
ILii: z ) <z 2(1—e7%) + 2(1 e )> V1-—e2%, (A.13)
Finally, the fourth term is
(1 — eiﬁt)zuu(t) (p(t)zx:v(t)zuu(t)) _ l
pTNEn = —V/BIna(Bt) (A.14)
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where:
1 (1—e2)3

Inz: 2~ ——+———\/1—¢e722.
IL.2 o)

h(z)

Lemma 4.1. We have that there exists a constant C > 0 such that for any z > 0

(i) Iu(z) < &

(ii) Ta(2) < G

(iii) Tma(z) <

i

(iv) Tna(z) < 5.

D

Proof. Ttem (i) We have for z close to 0, that

43 T3
Iua(z) = \/\g - {ﬁ +0(Vz) (A.15)
so there is a constant ey,; > 0 such that for any z € (0,¢ey), we have that
44/3
I < =
11(2) < 7z

since Ir.1(z) — 4\/\/5 = _%\/g\/g+ o(+/z) and e is chosen such that on (0, £1.1) we have that %\/gﬁ >
o(V3).

Also, we notice that

2)=(1—e \/1_%(1_6_2)4‘%(1—@—22)
e ) %(1 +e?) — 1 (1—e"2)

z

There exists My > €11 > Osuchthatforany z > My, 1—e* < Z, meaning that —ﬁ
‘/E, thus

T3
vz oy L o VE V2 VZ
ER VA i B B

so for any z > Mt V 1, we have that

A1+ 1 6v/2
Ii(z) < 2 < \f-
7 v
On the compact interval [y, My V 1], the functions z — Iy1(z) and z +— —=

7 are continuous and
strictly positive, so by taking Cr1 = VM1V 1max g, 1, v1) (I11(z)) > 0 we have for any 2z €

(1—e7%) >

lery, My V 1]
1 1 Ia(2) 1 1
——1I11(z) < : < < — A.16
Cr1 =) VMg V1Imax,er ag,vi)(ua(2)) My V1~ vz (A.16)
thus c
11
I < —.
11(2) < Ve
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We conclude that for any z > 0:

43 Cut 6v2

NE, 1Z€(0751.1) + NG ]IZG[EI.LMIJV” + vz ]IZE(MI.1V1,+00)
43 Cr1 6v/2

\/g ]lze(O,—f—oo) + W]IZE(O,-‘FOO) + \/E ]le(O,-i-oo)
1

Tz

Item (ii) For any 2 > 0, we have that:

Lia(z) <
<

1.c(0,+00) (4\/§ +Cr + 6\@)

eF(l—e?)<l—e?*<l-e*

thus it is easy to see that:
1
ha(2) < Sha(2)

and we conclude using the previous result (i).
Item (iii) We introduce the function

o B o ey e >
JH'I'Z’_)\/ﬁh(z) (2 2(1—e )+2(1 e )> l1—e

and it can be easily seen that Iyp;(z) = e *Jpp1(2).
We have that for z close to 0
4
Vz

so there exists eq; > 0, such that for any z € (0,ey11)

Jua(z) = —Vz+o(\/2)

4
Ji(z) < —

as Jir1(z) — % = —v/z+o(y/z)and on (0,e111), /2 > o(y/2).

Rewriting Jyy 1 as:

1 T+e2z-2(1—e?)+1(1—e2)
V2V 1l—e? S(1+4e?)—(1—-e?)
1 [TreF1-2(1—e®)+ £ (1—e %)
V2Vl —e® tl+e?)—L(1-e2)

Jii(2)

Z—r+00

(A.17)

we notice that Jyp1(z) ———= /2, so there exists Myyy > eqq > 0 such that for any z > My,
Ji1(z) < 2. Also on the interval [eyy.1, Mr1], the function Jyp1(z) is continuous and strictly positive so
there exists Cyr,; > 0 such that for any z € [eq1, M1, Jiwi1(z) < Cri. We obtain, then that for any

z>0:

—2 —Z 4 4 —Z
Ina(z) =e *Jmi(z) <e <\/E + Ci1 + 2) < —+e*(Cm1 +2)
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Item (iv) We have for z close to 0, that

ﬁz—m@+d¢@

so by similar arguments to (i), we obtain a similar bound.
Taking the maximum over all the constants allows us to obtain the result presented in the Lemma.

Inz(z) =

|
Corollary 4.2. There exists a constant K > 0 such that fC(3,0,t) < W, here the function C' is
defined in (A.1).
Proof. By the inequality (A.2), we have that:
1
BC(B,0,t) < VB (T (Bt) + Ti2(Bt) + T (Bt) + Ina(Bt))
V2mo
and by the Lemma 4.1, we obtain that
4C 1 4 1
C(B,0,t) < < —.
peB,a,t) Voo \/B\/F 2o V't
|
4.1 Controls for different functions and integrals
We now consider the following function
1—e Pt 1
——— =/pB=K(pt
SO VB S K(Bt)
where K : (0,400) — R defined as
1 _ 7
K:z— ¢
\/z —2(1—e7?)+ =(1 —e2?)
For z close to 0, we have that
3 3
K= Y2 YE o3
SO
3
K(z) < £
Vz
for small enough z, as K (z) — % = —@ + 0(1/2).
1
There exists a large enough M such that for any z > M, we have that 2(1—e~ %)+ 3 (1—e=2%) < g

2 S .
therefore for z > M, we have that K (z) < 7 By using similar arguments to the ones presented in
z

the proof of the previous lemma, we have that there exists a constant C, such that for any z > 0,

C
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We therefore obtain that
1—e Pt

@) = ¢

VB

q-
IN
AlQ
Si-

SHE

Also we have the integral:

t (1 o e—Bs)e—ﬂs - 1 Bt .
/0 a(s) dSU\/B/o K(z)e *dz.

3 3
For (3 sufficiently large, 8 > 7 we have that / K (z)e * dz is bounded. Also:
0

Bt

—z

K(z)e ?dz < /ft \/ifQ dz = g(erf (W) —erf(1)) <

Thus the integral:

M

3

b1 — e Ps)eBs 1
/o S LV

where C, > 0 depends on .

1
We also have the following integral, decomposed for 3 > ?

t _ ,—Bs\2 Bt _ —2)\2 1 _—2z)\2 Bt
0 S 0 z 0 z 1 %
< C +n(Bt) < C; + In(B)

where C; = C' + In(t) = 0.273936.. + In(t).
We also present a version of Gronwall’s inequality.

(A.19)

(A.20)

(A21)

(A.22)

(A.23)

Theorem 4.3 ([Ye et al., 2007]). Suppose o > 0, a(t) is a nonnegative function locally integrable on
0 <t <T(someT < +o0)and g(t) is a nonnegative, nondecreasing continuous function defined on
0<t<T,qg(t) < M(constant), and suppose u(t) is nonnegative and locally integrable on 0 < t < T

with
u(t) < alt) + g(t)/o (t —5)* tu(s)ds

on this interval. Then

u(t) < al(t) + / A

t
0

i (9(;)(2(0[03))" (t - s)"ala(s)] ds, 0<t<T.
n=1

1
Remark 4.4. Assume that for any t > 0, g(t) = K, where K is a positive constant and o = 5 Then

we have that

00 n s nyn (1 "
Z (g(;)(];l(oéog)) (t o S)nafl _ Z KFF (2) (t _ 8)571

n=1 n=1 (%)

= tK 4w K™K (=8) 4 peenK2 (t-s) erf(K+/7(t — s))
-5

Furthermore, if the function a is constant, (for all t > 0, a(t) = a, then if

u(t)<a—|—/0tu(8)ds

t—s

then
u(t) < ae™K7 (1 + erf(Kth)) < 2qe™K*t
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Lemma 4.5. There exists Cg .07 > 0 that depends on 3, po, p, T' > 0, such that the solution p of
the mild equation (2.28) verifies

(i) Sup(t,x,u)E[O,T]XR2 p(t7 x’ u) S Cﬂ:u07“70»T ?

(ii) Sup(t,x,u)G[O,T]XRQ |axp(t, x? u)| S Cﬁ7“07u707T *

Proof. Item (i) We rewrite (2.28) as

p(tax’u) = / FOU(t;ya’U;xau)MU(:%v) dyd’U
fx (A.26)

t
+8 [ [ oLou(t = sy vizu)p(s,y. 0)uy) dyduds
0 JR
thus

p(tvxau) < sup MO/ FOU(t;yvv;xvu) dydU
(y,v)ER? RxR
(A.27)

t
+/3|,U||L°°(R)/O ( sup p(s,y,v)> /R2 0T ou(t — 85y, v;2,u)| dsdydv.

(y,v)€R?

The equation (2.65) gives the value of 9,T'oy(t — s;y, v; 2, u). It can also be seen that
/ 0T ou(t; y,v; 2, u)| dedu = / |0uTou(t;y, viz,u)| dydv < ”'C(B,0,1)  (A28)
R2 R2

where the bound C'(3, o, t) is defined in (2.67). By Corollary 4.2, we have that there exists X > 0 such

that 5C (B, 0,t) < % thus we have that for any ¢ € [0, T:

t e,B(t—s)
pltr) < swp ot K ey [ s plspo) ds
(y,v)ER2 L= ®) 0 \ (y,v)ER2 Vt—s (A29)

t

1

< sup o+ K |pfl oo ry eﬂT/ sup p(s,y,v) ds
(y,v)ER? 0\ (y,v)eR? t—s

by taking the supremum over (z,u) € R? and applying Gronwall’s inequality as in the Remark 4.4, we

have that for any ¢ € [0, T

swp pltru) <2 suppoesp (7K [} sy 1) (A30)
(z,u)€ER? (y,v)ER2

thus obtaining the required result since exp is an increasing function.
Item (ii) We differentiate (2.28) to obtain

Oup(t, x,u) = IxTou(t; y, vi @, upo(y, v) dydv
R (A.31)
+ ﬁ/ _9u0aTou(t — sy, v, u)p(s, y, v)uly) dydvds
0o Jr

It is straightforward to see that 0,I'ou(t — s;y,v;,u) = —0yI'ou(t — s;y,v; z,u) and we can apply

an integration by parts to obtain
Oup(t, v, u) =/ Lou(t;y, vs @, u)0ypo(y, v) dydv
R (A.32)

t
+B/ duTou(t — s, v: 2, w)d, (p(s,y,v)u(y)) dyduds .
0 R2
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The boundary terms of the integration by parts are null since 0,I'ou(t — s;y,v;x,u) and Toy(t —
s;y,v;x,u) go to 0 as |y| — oo, po vanishes at infinity while p is bounded in y as shown previously.
We can see that we obtain an equation that has a similar form to the mild equation verified by p, so we
can apply the same arguments as in (i) to obtain the desired result.

|
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