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Introduction

This thesis focuses on obtaining generalization bounds for random samples in reproducing
kernel Hilbert spaces. The approach consists in first obtaining non-asymptotic dimension-
free bounds in finite-dimensional spaces using some PAC-Bayesian inequalities and then in
generalizing the results to separable Hilbert spaces. We will investigate questions arising
in the field of unsupervised classification and more specifically spectral clustering. We will
also make some preliminary experiments on the possible relevance of some new spectral
clustering algorithms in image analysis.
The goal of image analysis is to recognize and classify patterns that may have been trans-
formed by some set of transformations, such as translations, rotations or scaling, and that
more generally are affected by the conditions in which the images have been taken. The
challenge is to find a representation in which those transformations of a same pattern are
grouped together. However this objective is difficult to achieve even in the case of transla-
tions, that represent the simplest kind of transformations. Indeed, translated copies of a
single pattern span a high dimensional vector space, so that it is hard to delineate clusters.
What we envision in this thesis is to use kernel methods to characterize clusters as a set
of directions in some potentially infinite-dimensional Hilbert space.
Kernel-based methods are a class of statistical learning methods used to detect general
types of relations between data. Detecting linear structures in the data has been the sub-
ject of much research in statistics and machine learning, and standard techniques, such
as linear support vector machines (SVMs) and principal component analysis (PCA [13]),
are efficient and well understood. However real-world data analysis problems often have a
non-linear structure. Kernel methods provide a workaround. Indeed, they provide a way
to deal with non-linear structures in the data with the efficiency of linear algorithms and
they have been successfully used for supervised learning (e.g. SVMs) and for unsupervised
learning (e.g. kernel-PCA [27]).
An early survey on support vector machines for pattern recognition can be found in Burges
[4]. For an introduction to support vector machines and kernel methods we refer to Cris-
tianini and Shawe-Taylor [9] and to Schölkopf and Smola [26]. For a survey on kernel
methods we refer to Hofmann, Schölkopf and Smola [12] and to Shawe-Taylor and Cris-
tianini [29].
The basic idea of kernel methods is that any type of data can be implicitly embedded, via
a (non-linear) function called a feature map, in a higher-dimensional space, the feature
space, in which traditional linear methods become efficient. In other words, they simplify
the geometry of the problem but increase the dimension of the space which may now be
extremely large (or even infinite).
Kernel-based methods consist of two parts: firstly, the embedding in the feature space is
computed and secondly, a learning algorithm is designed to detect the linear structure of
the embedded data. The interesting point is that the embedding can be done without ex-
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plicit knowledge of the feature map but by simply computing the inner products between
the images of the points in the feature space, using a kernel function. This approach is
called the kernel trick.
In these kernel-based methods an important role is played by kernel random matrices
which are matrices of the form k(Xi, Xj) where k is a positive semi-definite kernel and
X1, . . . , Xn is a random sample.
We will mainly investigate the statistical framework where X1, . . . , Xn is a sample of in-
dependent and identically distributed (i.i.d.) vectors drawn according to an unknown
probability distribution P. The goal is to estimate the integral operator

Lkf(x) =
∫
k(x, y)f(y) dP(y)

from the matrix k(Xi, Xj), under suitable assumptions.
This integral operator is related to the Gram operator defined in the feature space, that
is a generalization, to infinite dimension, of the Gram matrix. We now present the Gram
matrix in finite dimension, since most of the computations made in this thesis are done in
finite dimension first, and then generalized to infinite dimension. To be able to go from
finite dimension to infinite dimension, we will establish dimension free inequalities.
Let X ∈ Rd be a random (column) vector distributed according to P. The Gram matrix
G of X is the symmetric positive semi-definite d× d matrix

G = E
(
XX>

)
,

where E is the expectation with respect to P.
The study of the spectral properties of the Gram matrix is of interest in the case of a
non-centered criterion and it coincides, in the case of centered data (i.e. E[X] = 0), with
the study of the covariance matrix

Σ = E
[(
X − E(X)

)(
X − E(X)

)>]
.

The empirical Gram matrix is defined as

Ḡ = 1
n

n∑
i=1

XiX
>
i

and it is obtained by replacing the distribution P in the definition of G with the sample
distribution 1

n

∑n
i=1 δXi , also called the empirical measure.

It is known, by the law of large numbers, that the empirical Gram matrix converges to the
true one as the sample size grows to infinity. Instead of the asymptotic regime, we consider
a non-asymptotic approach, that provides, for any fixed sample size n, non asymptotic
deviation inequalities holding true with probability close to one.
Results on the estimation of the covariance and Gram matrices follow from random matrix
theory and the accuracy of the estimation is usually evaluated in terms of the operator
norm.
Many theoretical results have been proposed for the study of spectral properties of co-
variance matrices. Rudelson [25] uses the non-commutative Khintchine inequality to
obtain bounds on the sample covariance matrix of a bounded random vector. Some non-
asymptotic results are obtained in Vershynin [35] as a consequence of the analysis of
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random matrices with independent rows. More precisely he observes that the empirical
Gram matrix can be written as 1

nA
>A, where A is the matrix whose i-th row is the vector

Xi and hence, by construction, A is a matrix with independent rows. A different approach
is proposed by Tropp [34]. He observes that the empirical Gram matrix can be expressed
as a sum of independent random matrices and proves that the Bernstein inequality extends
to matrices, providing an exponential concentration inequality for the operator norm of a
sum of independent random matrices.

The empirical Gram matrix becomes less efficient when the data have a long tail dis-
tribution, to improve on this, we construct in chapter 1 a more robust estimator and
provide non-asymptotic dimension-free bounds of its estimation error. We then extend
these bounds to any separable Hilbert space, taking advantage of the fact that they are
independent of the dimension. In chapter 2 we use such an estimator to deduce some
dimension-independent results for the classical empirical estimator.

Bounds on the deviations of the empirical Gram operator from the true Gram operator
in separable Hilbert spaces can be found in Koltchinskii and Lounici [15] in the case of
Gaussian random vectors. Similarly to our results, these bounds are dimension-free and
they are characterized in terms of the operator norm of the Gram operator and of its trace
(more precisely in terms on the effective rank which is the ratio between the trace of the
Gram operator and its operator norm).

Many learning algorithms rely on the spectral properties of the covariance matrix, for
example principal component analysis (PCA).
Principal component analysis is a classical dimensionality reduction method that trans-
forms the original coordinates into a new reduced set of variables, called principal compo-
nents, that correspond to the directions where the variance is maximal. Since this set of
directions lies in the space generated by the eigenvectors associated with the largest eigen-
values of the covariance matrix of the sample, the dimensionality reduction is achieved by
projecting the dataset into the space spanned by these eigenvectors, that in the following
we call largest eigenvectors.

Asymptotic results regarding the PCA projectors are provided in Biau and Mas [2]. Re-
sults on PCA in Hilbert spaces can be found in Koltchinskii and Lounici [16], [17]. The
authors study the problem of estimating the spectral projectors of the covariance operator
by their empirical counterparts in the case of Gaussian centered random vectors, based
on the bounds obtained in [15], and in the setting where both the sample size n and the
trace of the covariance operator are large.
In [30], [31], Shawe-Taylor, Williams, Cristianini and Kandola present concentration
bounds for sums of eigenvalues of a kernel random matrix and use these results to pro-
vide a bound on the performance of (kernel-)PCA. These studies are continued in Zwald,
Bousquet and Blanchard [37]. The main idea of these works is to view the kernel ran-
dom matrix as the empirical version of an underlying integral operator. A first study on
the relationship between the spectral properties of a kernel matrix and the correspond-
ing integral operator is done in Koltchinski and Giné [14] for the case of a symmetric
square integrable kernel k. They prove that the ordered spectrum of the kernel matrix
Kij = 1

nk(Xi, Xj) converges to the ordered spectrum of the kernel integral operator Lk.
In [24], Rosasco, Belkin and De Vito study the connection between the spectral properties
of the empirical kernel matrix Kij and those of the corresponding integral operator Lk by
introducing two extension operators on the reproducing kernel Hilbert space defined by k,
that have the same spectrum (and related eigenfunctions) as K and Lk respectively. The
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introduction of these extension operators defined on the same Hilbert space overcomes the
difficulty of dealing with objects (K and Lk) operating in different spaces.

Several methods have been proposed in the literature in order to provide a more robust
version of PCA, e.g. [5], [21]. In [5], Candès, Li, Ma and Wright show that it is possible
to recover the principal components of a data matrix in the case where the observations
are contained in a low-dimensional space but arbitrarily corrupted by additive noise. An
alternative approach is suggested by Minsker in [21] where a robust estimator of the
covariance matrix, based on the geometric median, is used to provide non-asymptotic
dimension-independent results concerning PCA.

Chapter 3 of this thesis deals with PCA. More precisely, we study how the results presented
in the previous chapters lead to a robust PCA without assuming any geometric structure
on the data.

The problem of knowing spectral properties of kernel random matrices also arises in the
study of spectral clustering. In von Luxburg, Belkin and Bousquet [36] methods similar
to the ones described above are used to prove consistency of spectral clustering and to
show the superiority of normalized spectral clustering over unnormalized spectral clustering
from a statistical point of view [36].

Clustering is the task of grouping a set of objects into classes, called clusters, in such a
way that objects in the same group are more similar to each other than to those in other
groups. Spectral clustering techniques use the spectrum of some data-dependent matrices
to perform clustering. These matrices can be either the affinity (or similarity) matrix [10]
or the Laplacian matrix [11].
Given X1, . . . , Xn a set of points to cluster, the affinity matrix measures the similarity, in
terms of the distance, between each pair of points and a common definition is

Ai,j = exp
(
−‖Xi −Xj‖2

2σ2

)
(1)

where σ is a free scale parameter. The Laplacian matrix is obtained by rescaling the
affinity matrix by its row sums.

Many spectral clustering algorithms have been proposed, e.g. [32], [20], [22].
Shi and Malik [32] introduce the normalized cut criterion, in the context of image segmen-
tation, which consists in separating the dataset into two groups by thresholding the second
smallest eigenvector of the unnormalized Laplacian matrix D−A, where D is the diagonal
matrix whose i-th entry is Dii =

∑
j Aij . In order to partitioning the dataset into more

than two classes, the method has to be applied recursively. To obtain better performances,
Meila and Shi [20] propose to use the first c largest eigenvectors of the stochastic matrix
D−1A, that has the same eigenvectors as the normalized Laplacian matrix I −D−1A, to
compute a partition in c classes, where c is assumed to be known. A different algorithm
that uses the c largest eigenvectors of the Laplacian matrix D−1/2AD−1/2 simultaneously
is proposed by Ng, Jordan and Weiss [22]. It consists of two steps: first the dataset is
embedded in a space in which clusters are more evident and then clusters are separated
using a standard algorithm, e.g. the k-means algorithm. Also in this case the number of
clusters is assumed to be known in advance.
Among all the definitions of the Laplacian matrix, we choose

L = D−1/2AD−1/2
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and we view L as the empirical version of the integral operator with kernel

K̄(x, y) = K(x, y)
(
∫
K(x, z)dP(z))1/2 (

∫
K(y, z)dP(z))1/2 .

Remark that, in the case when the affinity matrix A has the form described in equation (1),
the kernel K is the Gaussian kernel

K(x, y) = exp
(
−‖x− y‖

2

2σ2

)
. (2)

Since connections between empirical operators and their continuous counterparts have
been studied in many works, e.g. [24], [36], the study of spectral clustering can start
from the study of the kernel K̄.
Our generalization bounds hold when spectral clustering is performed in the feature space
defined by a reproducing kernel, opening the possibility of a kernel spectral clustering
algorithm as described in chapter 4.

Before we give a short overview of the topics and results covered in this thesis, we explain
the meaning of PAC-Bayesian.
The PAC-Bayesian approach was first introduced by McAllester [19] and then formalized
in Seeger [28] and Catoni [6]. It provides deviation bounds (Probably Approximately
Correct bounds) for the generalization error, using Bayesian prior and posterior parameter
distributions. Those bounds are frequentist, they do not require any Bayesian hypotheses
on the unknown sample distribution. The role of prior and posterior parameter distri-
butions here is purely technical, they serve as tools to obtain inequalities holding true
uniformly with respect to the parameter, but are not involved in describing the statistical
assumptions made about the sample distribution.

Chapter 1 and Chapter 2: Estimation of the Gram matrix

In order to estimate the Gram matrix, we consider the related problem of estimating the
quadratic form

θ>Gθ = E[〈θ,X〉2], θ ∈ Rd,

that computes the energy in the direction θ. Remark that to recover G it is sufficient to
use the polarization identity

Gi,j = e>i Gej = 1
4
[
(ei + ej)>G(ei + ej)− (ei − ej)>G(ei − ej)

]
,

where {ei}di=1 is the canonical basis of Rd.
As shown in Catoni [7], if the distribution of 〈θ,X〉2 has a heavy tail for some values of
θ, the quality of the approximation provided by the classical empirical estimator can be
improved, using some M -estimator with a suitable influence function and a scale param-
eter depending on the sample size.
We present a robust estimator of the Gram matrix G and we provide non-asymptotic
dimension-free bounds on the approximation error using some PAC-Bayesian inequalities
related to Gaussian perturbations.
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To reduce the influence of the tail of the distribution of 〈θ,X〉2 we truncate the empir-
ical estimator via a continuous bounded function ψ (that is close to the identity in a
neighborhood of zero) and we center it by a parameter λ > 0 so that we get

rλ(θ) = 1
n

n∑
i=1

ψ
(
〈θ,Xi〉2 − λ

)
.

Let
α̂(θ) = sup{α ∈ R+ | rλ(αθ) ≤ 0}

and remark that if ψ is the identity, then the empirical estimator is equal to λ/α̂(θ)2.
Therefore it is natural to consider as an estimator of θ>Gθ a quantity related to λ/α̂(θ)2,
for a suitable value of λ.
We first estimate a confidence region for θ>Gθ. Starting from the empirical criterion
rλ we perturb the true parameter θ with a Gaussian perturbation centered in θ and
with covariance matrix β−1I, where β > 0 is a free parameter. The use of a PAC-
Bayesian inequality leads to upper and lower bounds for rλ that hold, with high probability,
uniformly in θ (i.e. for any θ ∈ Rd) and for any choice of β. Choosing the perturbation
that optimizes the result, we construct a uniform confidence interval for θ>Gθ that we
denote by

B−(θ) := sup
(λ,β)

Φ−
(

λ

α̂(θ)2

)
≤ θ>Gθ ≤ inf

(λ,β)
Φ−1

+

(
λ

α̂(θ)2

)
=: B+(θ), (3)

where Φ− and Φ−1
+ are non-decreasing functions depending on λ, β and on the kurtosis

κ = sup
θ∈Rd

E(〈θ,X〉2)>0

E
(
〈θ,X〉4

)
E
(
〈θ,X〉2

)2 .
We define as an estimator of G the minimal (in terms of the Frobenius norm) symmetric
matrix Q whose corresponding quadratic form belongs to the optimal confidence interval
(3) for any θ in a finite δ-net of Sd (the unit sphere of Rd). To be sure that Q is non-
negative, we consider as an estimator its positive part Q+.

The quadratic estimator θ>Q+θ is, by construction, more stable than the empirical esti-
mator θ>Ḡθ and it can be explicitly computed using a convex algorithm. In chapter 1
we provide a bound on the approximation error |θ>Gθ− θ>Q+θ| that holds, uniformly in
θ, under weak moment assumptions and that does not depend explicitly on the dimension
d of the ambient space. The result states that, with probability at least 1 − 2ε, for any
θ ∈ Sd,

|θ>Gθ − θ>Q+θ| ≤ 2 max{θ>Gθ, σ}µ
(
max{θ>Gθ, σ}

)
+ 7δ

√
Tr(G2) + σ

with σ > 0 a suitable small threshold and

µ(t) '

√√√√2.032(κ− 1)
n

(
0.73 Tr(G)

t
+ 4.35 + log(ε−1)

)
+

√
98.5κTr(G)

nt
(4)

where Tr(G) = E
(
‖X‖2

)
denotes the trace of the Gram matrix and n ≤ 1020 (this

bound on n is only used to replace log(log(n)) with a more informative and more striking
numerical constant). The threshold σ can be chosen going to zero as the sample size grows
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to infinity.
We observe that the quantity κ− 1 that appears in the first factor of µ corresponds to the
variance term, and more precisely to Var

(
〈θ,X〉2

)
/(θ>Gθ)2 (at least for the values of θ

where κ is reached).
Remark that if we use a known upper bound instead of the exact value of κ, the result
also holds for this upper bound. Remark also that κ ≤ 3 in the case when the distribution
P is Gaussian. The bound presented above does not depend explicitly on the dimension
d, that has been replaced by the entropy term Tr(G)/max{θ>Gθ, σ}.
As a consequence, since the bound is dimension-independent, it can be generalized to any
infinite-dimensional Hilbert space. More precisely, let H be a separable Hilbert space and
let P be an unknown probability distribution on H. In the infinite-dimensional setting,
the analogous to the Gram matrix is the Gram operator G : H → H defined by

Gθ =
∫
〈θ, v〉H v dP(v).

We consider an increasing sequence of finite-dimensional subspaces (Hk)k such that H =⋃
kHk and using a continuity argument we define an optimal confidence region for 〈Gθ, θ〉H

as in equation (3). Given X1, . . . , Xn ∈ H an i.i.d. sample drawn according to P, we
define

Vk = span{ΠkX1, . . . ,ΠkXn},

where Πk is the orthogonal projector on Hk, and we consider the operator

Q = Ĝk ◦ΠVk (5)

where ΠVk is the orthogonal projector on Vk and Ĝk is a linear operator on Vk such that
〈Ĝkθ, θ〉H belongs to the optimal confidence region for any θ in a finite δ-net of SH ∩ Vk.
Denoting by Q+ the positive part of Q, we bound the approximation error

|〈Gθ, θ〉H − 〈Q+θ, θ〉H|,

uniformly on the unit sphere of H, with the only additional assumption that the trace of
the Gram operator Tr(G) is finite.

At the end of chapter 1 we generalize these results to estimate the expectation of a sym-
metric random matrix and we consider the problem of estimating the covariance matrix
in the case where the expectation of X is unknown. We show that we do not need to esti-
mate E[X] but that we can divide instead the data points into groups of a given size q and
view the dataset as a sample of size n/q of q-tuples. We use the PAC-Bayesian approach
to construct a robust estimator of the covariance matrix and to provide non-asymptotic
dimension-free bounds on the approximation error. Finally we present an alternative (ro-
bust) estimator, related to the estimated matrix Q, which is easier to implement and we
provide some empirical results that show the stability of such an estimator with respect
to the empirical one.
In chapter 2 we investigate the problem of estimating the Gram matrix via the classical
empirical estimator and we provide non-asymptotic dimension-free bounds for the approx-
imation error |θ>Gθ − θ>Ḡθ| using as a tool the robust estimator introduced before.

The results presented above allow us to characterize the stability of principal component
analysis independently of the dimension d.
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Chapter 3: Principal Component Analysis

We recall that the study of PCA is linked with the study of the eigenvectors corresponding
to the largest eigenvalues of the covariance matrix (or of the Gram matrix). In the following
we consider the case of the Gram matrix.
Denoting by p1, . . . , pd an orthonormal basis of eigenvectors of G, we observe that the i-th
eigenvalue of the Gram matrix is λi = p>i Gpi (and the same holds for the robust estimator
Q+). Starting from this remark, we are able to prove that each eigenvalue in the ordered
spectrum of the Gram matrix is well approximated by the corresponding eigenvalue in the
ordered spectrum of Q+, under weak moment assumptions.
From now on we assume that the eigenvectors are ranked according to the decreasing
order of their eigenvalues, so that λ1 is the largest eigenvalue and p1 the corresponding
eigenvector. A method to determine the number of relevant components (which correspond
to the largest eigenvectors of G) is based on the difference in magnitude between successive
eigenvalues. Let us assume that a significant gap in the spectrum of the Gram matrix is
present at λr − λr+1.

Denoting by Πr (respectively Π̂r ) the orthogonal projector on the r largest eigenvectors
of G (respectively Q+), we provide a bound on the approximation error ‖Πr − Π̂r‖∞, in
terms of the operator norm, which only depends on the trace of the Gram matrix, on its
largest eigenvalue λ1 and on the inverse of the size of the eigengap, but does not depend on
the dimension d of the ambient space. In particular, the result relates the behavior of the
estimator Π̂r to the size of the spectral gap λr−λr+1 and a good quality of approximation
is determined by a large eigengap.
In order to avoid this kind of requirement, we propose to replace the projection on the
r largest eigenvectors of the Gram matrix by a smooth cut-off of its eigenvalues. More
precisely we aim at estimating f(G) by f(Q+), where f is a Lipschitz function which is
one on the largest eigenvalues and is zero on the smallest ones. In the case where there
exists a (sufficiently large) gap in the spectrum of the Gram matrix, the usual projection
on the first eigenvectors coincide with a cut-off with a Lipschitz constant exactly equal to
the inverse of the size of the eigengap.
The worst case reformulation of our bound on the approximation error in terms of the
operator norm depends, as before, on the trace of the Gram matrix and on its largest
eigenvalue λ1 and it replaces the size of the eigengap by the Lipschitz constant. The result
states that, with probability at least 1− 2ε, for any 1/L-Lipschitz function f ,

‖f(G)− f(Q+)‖∞ ≤ L−1
[
B(λ1) +

√
6B(λ1) Tr(G) + 4B(λ1)2

]
where

B(λ1) ' 4λ1


√√√√2.032(κ− 1)

n

(
0.73 Tr(G)

λ1
+ 4.35 + log(ε−1)

)
+
√

98.5κTr(G)
nλ1

 .
We also provide a similar bound in terms of the Frobenius norm by slightly changing the
definition of the estimator Q+.

Chapter 4: Spectral Clustering

In this last chapter we present a new algorithm for spectral clustering. The idea is to couple
spectral clustering with some preliminary change of representation in a reproducing kernel
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Hilbert space in order to bring down the representation of classes to a lower-dimensional
space.
In order to better explain our approach we briefly describe one of the most successful
spectral clustering algorithms [22]. Given a set of points to cluster and the number c
of classes, the algorithm introduced by Ng, Jordan, Weiss in [22] computes the c largest
eigenvectors of the Laplacian matrix L and put them in columns to form a new matrix X.
After renormalization, each row of X is treated as a vector of Rc and points are clustered
according to this new representation using classical methods as k-means.
Let P be an unknown probability distribution on a compact subset of some separable
Hilbert space (of possibly infinite dimension). Our approach relies on viewing the Lapla-
cian matrix as the empirical version of the integral operator with kernel

K̄(x, y) = K(x, y)
(
∫
K(x, z)dP(z))1/2 (

∫
K(y, z)dP(z))1/2

and on replacing the mere projection on the c largest eigenvectors of L (computed in
[22]) by a power of the kernel operator defined by K̄. This iteration, justified by the
analysis of spectral clustering in terms of Markov chains, performs a smooth truncation
of its eigenvalues that leads to a natural dimensionality reduction. Therefore it makes
it possible to propose an algorithm that automatically estimates the number of classes
(when it is not known in advance).
The algorithm can be described as a change of representation induced by a change of
kernel followed by a (greedy) classification. Let us now describe in more detail the change
of representation underlying our proposal for spectral clustering.
We use the Laplacian kernel K̄ to build the new kernel

K̄2m(x, y) =
∫
K̄(y, z1)K̄(z1, z2) . . . K̄(z2m−1, x) dP⊗(2m−1)(z1, . . . , z2m−1), m > 0.

Denoting by H the reproducing kernel Hilbert space defined by K̄ and by φ the corre-
sponding feature map, the kernel K̄2m defines a new reproducing kernel Hilbert space with
feature map Gm−1/2 ◦ φ, where G is the Gram operator on H, so that

K̄2m(x, y) =
〈
Gm−1/2φ(x),Gm−1/2φ(y)

〉
H
.

In order to stabilize the representation induced by K̄2m we project this feature map on
the unit sphere. This is equivalent to consider the normalized kernel

Km(x, y) = K̄2m(x, x)−1/2K̄2m(x, y)K̄2m(y, y)−1/2.

The change of kernel described above is ideal since it requires the knowledge of the law P.
In order to obtain a practical algorithm we construct, from a random sample of points in
H, an estimated version of this ideal change of representation and we prove the convergence
of this empirical algorithm by non-asymptotic bounds that are deduced from the bounds
obtained for Gram operators in Hilbert spaces.
We first introduce a robust estimator K̂ of K̄ that can be written as

K̂(x, y) = 〈φ̂(x), φ̂(y)〉H,

for a suitable (observable) feature map φ̂, and then we replace it in the definition of K̄2m
to obtain the new kernel

H̄2m(x, y) =
〈
Ĝ2m−1φ̂(x), φ̂(y)

〉
H
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where Ĝ is the Gram operator defined by

Ĝv =
∫
〈v, φ̂(z)〉H φ̂(z) dP(z), v ∈ H.

Remark that the Gram operator Ĝ is still not observable since it depends on P. According
to the results presented for the estimation of Gram operators in Hilbert spaces, we consider
as an estimator of Ĝ the operator Q̂ defined as the positive part of the operator introduced
in equation (5), so that we get the estimated kernel

Ĥ2m(x, y) =
〈
Q̂2m−1φ̂(x), φ̂(y)

〉
H
.

The accuracy of this estimation is given in terms of two suitable quantities δ1, δ2 > 0, that
are linked with the function µ defined in equation (4) and depend on the sample size n
as 1/

√
n. More precisely, with probability at least 1− 4ε, for any x, y ∈ supp(P),

|Ĥ2m(x, y)− K̄2m(x, y)| ≤ 2m (2δ1 + δ2)(1 + 2δ1 + δ2)2m−2

(1− δ1)4m
+

‖φ(x)‖H‖φ(y)‖H.

Coupling spectral clustering with a preliminary change of representation in a reproducing
kernel Hilbert space can be seen as the analogous for unsupervised learning of the support
vector machine (SVM) approach to supervised classification. Indeed, first, the kernel
trick increases the dimension of the representation to simplify its geometry and then,
spectral clustering decreases the size of the representation again. While SVMs compute a
separating hyperplane that can be seen as a classification rule bearing on a representation
of dimension one (the normal direction to the hyperplane), we show on some examples
that the new representation induced by the kernel Km sends clusters to the neighborhood
of an orthonormal set of c vectors (where c is the number of classes), that are therefore
the vertices of a (regular) simplex, making subsequent classification a trivial task.
We apply this strategy to image analysis and we suggest with a small example that it is
possible to learn transformation invariant representations from datasets that contain small
successive transformations of the same pattern.



Chapter 1

The Gram Matrix

Our first goal is to estimate the Gram matrix from an i.i.d. sample. Based on some PAC-
Bayesian inequalities we introduce a robust estimator leading to dimension free bounds
on the estimation error. In particular, the dimension of the ambient space is replaced by
an entropy term that depends on the trace of the Gram matrix.

1.1 Introduction
Let X ∈ Rd be a random vector distributed according to the unknown probability measure
P ∈M1

+(Rd). The Gram matrix of X

G = E
(
XX>

)
=
∫
x x>dP(x)

is a symmetric positive semi-definite d × d random matrix. The aim is to estimate the
Gram matrix from a given sample of n independent and identically distributed (i.i.d.)
vectors X1, . . . , Xn ∈ Rd drawn according to P. In relation to this problem, we consider
the quadratic form

N(θ) =
∫
〈θ, x〉2dP(x), θ ∈ Rd,

which computes the energy in the direction θ, where 〈θ, x〉 denotes the standard inner
product in Rd. It can be seen as the quadratic form associated with the Gram matrix G.
Indeed, according to the polarization identity

ξ>Gθ = 1
4 [N(ξ + θ)−N(ξ − θ)] ,

we can recover the Gram matrix from the quadratic form N using the formula

Gi,j = e>i Gej = 1
4 [N(ei + ej)−N(ei − ej)] ,

where {ei}di=1 is the canonical basis of Rd.

The classical empirical estimator

N̄(θ) = 1
n

n∑
i=1
〈θ,Xi〉2, θ ∈ Rd, (1.1)

is obtained by replacing, in the definition of N , the distribution P by the sample distri-
bution 1

n

∑n
i=1 δXi and it can be seen as the quadratic form associated with the empirical
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Gram matrix
Ḡ = 1

n

n∑
i=1

Xi X
>
i .

By the law of large numbers, the empirical Gram matrix converges to G almost surely as
n goes to infinity.
However, if 〈θ,X〉2 has a heavy tail distribution for at least some values of θ, the quality
of approximation provided by the empirical mean estimator can be improved [7].

Using a PAC-Bayesian approach we introduce in section 1.2 a new robust estimator of the
Gram matrix and we provide non-asymptotic dimension-free bounds on the approximation
error under weak moment assumptions. Since this result does not depend explicitly on
the dimension d of the ambient space, it can be generalized to any infinite-dimensional
Hilbert space, with the only assumption that the trace of the Gram matrix is finite, as
shown in section 1.3.
In section 1.4 we generalize the results to estimate the expectation of a symmetric random
matrix, while in section 1.5 we consider the problem of estimating the covariance matrix in
the case of unknown expectation. Finally in section 1.6 we propose some empirical results
that compare the performance of our robust estimator to that of the classical empirical
one.

1.2 Estimate of the Gram matrix

1.2.1 Preliminaries

Our goal is to estimate, for any θ ∈ Rd, the quadratic form

N(θ) =
∫
〈θ, x〉2dP(x)

from an i.i.d. sample X1, . . . , Xn ∈ Rd drawn according to the unknown probability
distribution P ∈M1

+(Rd).

In order to construct a robust estimator of N we consider a truncated version of the
empirical estimator N̄ . For any λ > 0 and for any fixed θ ∈ Rd, we define

rλ(θ) = 1
n

n∑
i=1

ψ
(
〈θ,Xi〉2 − λ

)
,

where λ is a centering parameter and where ψ : R→ R is defined as

ψ(t) =


log(2) if t ≥ 1
− log

(
1− t+ t2

2

)
if 0 ≤ t ≤ 1

−ψ(−t) if t ≤ 0.
(1.2)

The function ψ is symmetric non-decreasing and bounded, it satisfies

− log
(

1− t+ t2

2

)
≤ ψ(t) ≤ log

(
1 + t+ t2

2

)
, t ∈ R,

and its role is to reduce the influence of the tail of the distribution of 〈θ,X〉2. The
introduction of the function ψ is similar to the use of an influence function in robust
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statistics, although here we do not use ψ to modify the definition of the mean and we use
a scale parameter depending on the sample size. The scale parameter is somehow hidden
in our formulation, in fact its role is played by the norm ‖θ‖. We do not introduce an
explicit scale parameter because it would have been redundant with the ability to change
‖θ‖ and because we will obtain results holding uniformly for any θ ∈ Rd.

We consider the vector α̂(θ)θ, in the direction of θ, where the multiplicative factor α̂(θ) is
defined by

α̂(θ) = sup {α ∈ R+ | rλ(αθ) ≤ 0} . (1.3)
Since the function α 7→ rλ(αθ) is continuous, rλ(α̂(θ)θ) = 0 as soon as α̂(θ) < +∞.
Considering the fact that the influence function ψ is close to the identity in a neighborhood
of zero, we observe that

0 = rλ(α̂(θ)θ) = 1
n

n∑
i=1

ψ
(
α̂(θ)2〈θ,Xi〉2 − λ

)
' 1
n

n∑
i=1

α̂(θ)2〈θ,Xi〉2 − λ

= α̂(θ)2N̄(θ)− λ.

This suggests to consider as an estimator of the quadratic form N(θ) the quantity N̂(θ) =
λ/α̂(θ)2, for a suitable value λ > 0.
In section 1.2.2 we present a non-asymptotic dimension-free bound on the approximation
error that holds under weak moment assumptions ( Proposition 1.19). However, since this
estimator N̂ is (unfortunately) no more a quadratic form, in section 1.2.3 we construct a
quadratic estimator for N .

1.2.2 A PAC-Bayesian approach

We use a PAC-Bayesian approach based on Gaussian perturbations of the parameter θ to
first construct a confidence region for N(θ) that is uniform in θ and then to define and
study the robust estimator N̂ .
Starting from the empirical criterion rλ, for any θ ∈ Rd, we perturb the parameter θ with
the Gaussian perturbation πθ ∼ N (θ, β−1I) of mean θ and covariance matrix β−1I. The
parameter β > 0 is a free real parameter that can be seen as the inverse of the variance of
the perturbation in each direction and will be determined later. The introduction of the
perturbation πθ is a technical tool to analyze the average value of N in a neighborhood of
θ.

We first introduce some technical lemmas that are useful to derive an upper bound for the
empirical criterion rλ.
Lemma 1.1. We have ∫

〈θ′, x〉2 dπθ(θ′) = 〈θ, x〉2 + ‖x‖
2

β
.

Proof. Let W ∈ Rd be a random variable distributed according to πθ. Since W is a
Gaussian random variable with mean θ and covariance matrix β−1I, for any x ∈ Rd, the
random variable 〈W,x〉 is a one-dimensional Gaussian random variable with mean 〈θ, x〉
and variance x>(β−1I)x = ‖x‖2

β . Consequently, we have∫
〈θ′, x〉2 dπθ(θ′) = E

(
〈W,x〉2

)
= E

(
〈W,x〉

)2 + Var
(
〈W,x〉

)
= 〈θ, x〉2 + ‖x‖

2

β
,
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which concludes the proof.

As a consequence, we get

ψ
(
〈θ, x〉2 − λ

)
= ψ

[∫ (
〈θ′, x〉2 − ‖x‖

2

β
− λ

)
dπθ(θ′)

]
.

What we would like to do is to pull the expectation with respect to πθ out of the influence
function ψ, with a minimal loss of accuracy. To this purpose, we introduce the function

χ(z) =


ψ(z) z ≤ z1

ψ(z1) + p1(z − z1)− (z − z1)2/8 z1 ≤ z ≤ z1 + 4p1

ψ(z1) + 2p2
1 z ≥ z1 + 4p1

(1.4)

where z1 ∈ [0, 1] is such that ψ′′(z1) = −1/4 and p1 is defined by the condition p1 = ψ′(z1).
Using the explicit expression of the first and second derivative of ψ,

ψ′(z) = 1− z
1− z + z2/2 and ψ′′(z) = −z + z2/2

(1− z + z2/2)2 ,

we can compute z1 and p1. We find

z1 = 1−
√

4
√

2− 5,
ψ(z1) = − log

[
2(
√

2− 1)
]
,

which implies

p1 = ψ′(z1) =

√
4
√

2− 5
2(
√

2− 1)
,

and supχ = ψ(z1) + 2p2
1 = 1 + 2

√
2

2 − log
[
2(
√

2− 1)
]
.

Further we observe that, for any z ∈ R,

ψ(z) ≤ χ(z).

Indeed, the inequality is trivial for z ≤ z1, since χ(z) = ψ(z). For z ∈ [z1, z1 + 4p1],
performing a Taylor expansion at z1, we obtain that

ψ(z) = ψ(z1) + p1(z − z1)− 1
8(z − z1)2 +

∫ z

z1

ψ′′′(u)
2 (z − u)2 du

≤ ψ(z1) + p1(z − z1)− 1
8(z − z1)2 = χ(z),

since ψ′′′(u) ≤ 0 for u ∈ [0, 1[. Finally we observe that, for any z ≥ z1 + 4p1,

χ(z) = ψ(z1) + 2p2
1 > log(2) ≥ ψ(z).

On the other hand, for any z ∈ R,

χ(z) ≤ log
(
1 + z + z2/2

)
. (1.5)
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Indeed, for z ≤ z1, we have already seen that the inequality is satisfied since χ(z) = ψ(z).
Moreover we observe that the function

f(z) = log
(
1 + z + z2/2

)
is such that f(z1) ≥ χ(z1) and also f ′(z1) ≥ χ′(z1). Performing a Taylor expansion at z1,
we get

f(z) = f(z1) + f ′(z1)(z − z1) +
∫ z

z1
f ′′(u)(z − u)2du

≥ χ(z1) + χ′(z1)(z − z1) + inf f ′′ (z − z1)2

2 .

Since for any t ∈ [z1, z1 + 4p1],

inf f ′′ = f ′′(
√

3− 1) = −1/4 = χ′′(t),

we deduce that
f(z) ≥ χ(z1) + p1(z − z1)− 1

8(z − z1)2 = χ(z).

In particular, f(z1 +4p1) ≥ χ(z1 +4p1). Recalling that f is an increasing function while χ
is constant on the interval [z1 + 4p1,+∞[, we conclude that, for all z ∈ R, equation (1.5)
is satisfied.

We are now going to prove that the quantity ψ
(
〈θ, x〉2−λ

)
can be bounded by the expec-

tation of the function χ up to a loss term. Before, we introduce a lemma that allows us
to pull the expectation out of the function χ.

Lemma 1.2. Let Θ be a measurable space. For any ρ ∈M1
+(Θ) and any h ∈ L1

ρ(Θ),

χ

(∫
hdρ

)
≤
∫
χ(h) dρ+ 1

8 Var
(
hdρ

)
,

where by definition

Var
(
h dρ

)
=
∫ (

h(θ)−
∫
h dρ

)2
dρ(θ) ∈ R ∪ {+∞}.

Proof. Performing a Taylor expansion of the function χ at z =
∫
h dρ we see that

χ
[
h(θ)

]
= χ(z) +

(
h(θ)− z

)
χ′(z) +

∫ h(θ)

z

[
h(θ)− u

]
χ′′(u) du

≥ χ(z) +
(
h(θ)− z

)
χ′(z) + inf χ′′

(
h(θ)− z

)2
2 .

Remarking that inf χ′′ = −1/4 and integrating the inequality with respect to ρ we obtain∫
χ
[
h(θ)

]
dρ(θ) ≥ χ

(∫
hdρ

)
− 1

8

∫ (
h(θ)−

∫
h(θ)dρ

)2
dρ(θ)

= χ
(∫

hdρ
)
− 1

8 Var
(
hdρ

)
,

which concludes the proof.
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Lemma 1.3. Let Θ be a measurable space. For any ρ ∈M1
+(Θ) and any h ∈ L1

ρ(Θ),

ψ

(∫
h dρ

)
≤
∫
χ(h) dρ+ min

{
log(4), 1

8 Var
(
hdρ

)}
.

Proof. We observe that

ψ

(∫
hdρ

)
−
∫
χ(h) dρ ≤ supψ − inf χ ≤ log(4),

since supψ ≤ log(2) and inf χ ≥ inf ψ ≥ − log(2). Moreover, according to Lemma 1.2, we
get

ψ

(∫
h dρ

)
≤ χ

(∫
hdρ

)
≤
∫
χ(h) dρ+ 1

8 Var
(
h dρ

)
.

We conclude by taking the minimum of these two bounds.

If we apply Lemma 1.3 to our problem we obtain that

ψ
(
〈θ, x〉2 − λ

)
= ψ

[∫ (
〈θ′, x〉2 − ‖x‖

2

β
− λ

)
dπθ(θ′)

]
≤
∫
χ

(
〈θ′, x〉2 − ‖x‖

2

β
− λ

)
dπθ(θ′) + min

{
log(4), 1

8 Var
[
〈θ′, x〉2 dπθ(θ′)

]}
.

Defining m = 〈θ, x〉, σ = ‖x‖√
β
and W ∼ N (0, σ2) a centered Gaussian random variable, we

observe that the variance of the random variable (m+W )2 is equal to Var
[
〈θ′, x〉2 dπθ(θ′)

]
.

Hence

Var
[
〈θ′, x〉2 dπθ(θ′)

]
= Var

[
(m+W )2]

= Var
(
W 2 + 2mW

)
= E

[
(W 2 + 2mW )2]− E[W 2 + 2mW

]2
= E

(
W 4)+ 4m2σ2 − σ4 = 4m2σ2 + 2σ4

where in the last line we have used the fact that E
bigl(W 4) = 3σ4. We conclude that

Var
[
〈θ′, x〉2 dπθ(θ′)

]
= 4〈θ, x〉2‖x‖2

β
+ 2‖x‖4

β2 .

We have thus proved that

ψ
(
〈θ, x〉2 − λ

)
≤
∫
χ

(
〈θ′, x〉2 − ‖x‖

2

β
− λ

)
dπθ(θ′) + min

{
log(4), 〈θ, x〉

2‖x‖2

2β + ‖x‖
4

4β2

}
.

Lemma 1.4. For any positive real numbers a, b and c, and any Gaussian random variable
W ∼ N (0, σ2),

min
{
a, bm2 + c

}
≤ E

[
min

{
2a, 2b

(
m+W )2 + 2c

}]
.
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Proof. We first claim that for any positive real numbers a, b, c,

min
{
a, bm2 + c

}
≤ min

{
a, b(m+W )2 + c

}
+ min

{
a, b(m−W )2 + c

}
,

since bm2 + c ≤ max
{
b(m+W )2 + c, b(m−W )2 + c

}
.

Taking the expectation with respect to W of this inequality and remarking that W and
−W have the same probability distribution we conclude that

min
{
a, bm2 + c

}
≤ 2E

[
min

{
a, b(m+W )2 + c

}]
= E

[
min

{
2a, 2b(m+W )2 + 2c

}]
.

Applying this result to our problem with a = log(4), b = ‖x‖2/(2β), c = ‖x‖4/(4β2),
m = 〈θ, x〉, and m+W ∼ 〈θ′, x〉 when θ′ ∼ πθ, we get

ψ
(
〈θ, x〉2 − λ

)
≤
∫
χ

(
〈θ′, x〉2 − ‖x‖

2

β
− λ

)
dπθ(θ′)

+
∫

min
{

4 log(2), 〈θ
′, x〉2‖x‖2

β
+ ‖x‖

4

2β2

}
dπθ(θ′).

Lemma 1.5. For any positive constants b, y and any z ∈ R,

χ(z) + min{b, y} ≤ log
(

1 + z + z2

2 + y exp(supχ)exp(b)− 1
b

)
.

Proof. For any positive real constants a, b, y,

log(a) + min{b, y} = log
(
a exp

(
min{b, y}

))
≤ log

(
a+ amin{b, y}

(
exp(b)− 1

)
b

)
,

since the function x 7→ ex−1
x is non-decreasing for x ≥ 0. It follows that

log(a) + min{b, y} ≤ log
[
a+ ya

(
exp(b)− 1

)
/b
]
.

Applying this inequality to a = exp
[
χ(z)

]
and reminding that χ(z) ≤ log

(
1 + z + z2/2

)
,

we conclude the proof.

According to Lemma 1.5, choosing b = 4 log(2), z = 〈θ′, x〉2 − ‖x‖2/β − λ and y =
〈θ′, x〉2‖x‖2/β + ‖x‖4/2β2, we get

ψ
(
〈θ, x〉2 − λ

)
≤
∫

log
[
1 + 〈θ′x〉2 − ‖x‖

2

β
− λ+ 1

2

(
〈θ′, x〉2 − ‖x‖

2

β
− λ

)2

+ c‖x‖2

β

(
〈θ′, x〉2 + ‖x‖

2

2β

)]
dπθ(θ′),

where

c = 15
4 log(2) exp (supχ)

= 15
8 log(2)(

√
2− 1)

exp
(1 + 2

√
2

2

)
≤ 44.3. (1.6)

In terms of the empirical criterion rλ we have proved the following result.
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Proposition 1.6. With the above notation,

rλ(θ) ≤ 1
n

n∑
i=1

∫
log
[
1 + 〈θ′, Xi〉2 −

‖Xi‖2

β
− λ+ 1

2

(
〈θ′, Xi〉2 −

‖Xi‖2

β
− λ

)2

+ c‖Xi‖2

β

(
〈θ′, Xi〉2 + ‖Xi‖2

2β

)]
dπθ(θ′).

We are now ready to use the following general purpose PAC-Bayesian inequality.

Proposition 1.7. Let ν ∈ M1
+(Rd) be a prior probability distribution on Rd and let

f : Rd × Rd → [a,+∞] be a measurable function with a > −1. For any ε ∈ ]0, 1[, with
probability at least 1− ε, for any posterior distribution ρ ∈M1

+(Rd),

∫ 1
n

n∑
i=1

f(Xi, θ
′) dρ(θ′) ≤

∫
logE

[
exp

(
f(X, θ′)

)]
dρ(θ′) +

K(ρ, ν) + log
(
ε−1)

n
(1.7)

where

K(ρ, ν) =


∫

log
(dρ

dν

)
dρ if ρ� ν

+∞ otherwise

is the Kullback divergence of ρ with respect to ν. By convention, a non measurable event
is said to happen with probability at least 1 − ε when it includes a measurable event of
probability non-smaller than 1− ε.

Before proving the result we make some comments. Intuitively the above PAC-Bayesian
inequality replaces the empirical mean with the expectation with respect to P. Doing this
we loose in accuracy and this lost is evaluated by an entropy term which depends on the
Kullbach divergence and on the confidence level set by the parameter ε.
In the following we consider as prior distribution ν = π0 ∼ N (0, β−1I). Since the result
holds for any ρ ∈M1

+(Rd), if we consider as a family of posterior distributions the Gaus-
sian perturbations

{
πθ ∼ N (θ, β−1I) | θ ∈ Rd, β > 0

}
we get a bound that is uniform in

θ and we can choose β to optimize the bound.
To conclude we observe that with the above choice of prior and posteriors the Kullback
divergence is

K(πθ, π0) = β‖θ‖2

2 .

Proof. We divide the proof into two parts.

Step 1. We prove that given ν ∈ M1
+(Rd) a prior probability distribution and f : Rd ×

Rd → [a,+∞] a measurable function, there exists a measurable function F (X1, . . . , Xn)
such that

exp
(

sup
ρ∈M1

+(Rd)
K(ρ,ν)<+∞

{∫
n

(
1
n

n∑
i=1

f(Xi, θ
′)− logE

[
exp(f(X, θ′))

])
×

× 1
[
E
[
exp

(
f(X, θ′)

)]
< +∞

]
dρ(θ′)−K(ρ, ν)

})
≤ F (X1, . . . , Xn)
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and E
[
F (X1, . . . , Xn)

]
≤ 1.

To give a meaning to this statement, we define for any measurable function h : Rd → R

∫
h(θ′) dρ(θ′) =


−∞ when

∫
min{h, 0} dρ = −∞

+∞ when
∫

min{h, 0} dρ > −∞ and
∫

max{h, 0}dρ = +∞∫
h dρ when h ∈ L1

ρ(Rd).

We also introduce, for θ′ ∈ Rd,

M(θ′) = 1
n

n∑
i=1

f(Xi, θ
′) and B(θ′) = logE

[
exp(f(X, θ′))

]
.

For any ρ ∈M1
+(Rd) such that K(ρ, ν) < +∞, by definition of the Kullbach divergence,

exp
(∫

n
[
M(θ′)−B(θ′)

]
1
[
B(θ′) < +∞

]
dρ(θ′)−K(ρ, ν)

)
= exp

(∫ [
n
[
M(θ′)−B(θ′)

]
1
[
B(θ′) < +∞

]
− log

(dρ
dν (θ′)

)]
dρ(θ′)

)
.

We put
hρ = n(M −B)1[B < +∞]− log

(dρ
dν

)
.

In the case when hρ ∈ L1
ρ(Rd), by the Jensen inequality,

exp
(∫

n
[
M(θ′)−B(θ′)

]
1
[
B(θ′) < +∞

]
dρ(θ′)−K(ρ, ν)

)

≤
∫

exp
(
n
[
M(θ′)−B(θ′)

]
1
[
B(θ′) < +∞

]
− log

(dρ
dν (θ′)

))
dρ(θ′)

=
∫

exp
(
n
[
M(θ′)−B(θ′)

]
1
[
B(θ′) < +∞

]
− log

(dρ
dν (θ′)

))dρ
dν (θ′)1

[dρ
dν (θ′) > 0

]
dν(θ′)

=
∫

exp
(
n
[
M(θ′)−B(θ′)

]
1
[
B(θ′) < +∞

])
1

[dρ
dν (θ′) > 0

]
dν(θ′)

≤
∫

exp
(
n
[
M(θ′)−B(θ′)

]
1
[
B(θ′) < +∞

])
dν(θ′).

Else, when
∫

min{hρ, 0} dρ = −∞, then, with our conventions about ill-defined integrals,

exp
(∫

hρ dρ
)

= 0 ≤
∫

exp
(
n
[
M(θ′)−B(θ′)

]
1
[
B(θ′) < +∞

])
dν(θ′) ∈ [0,+∞].

Finally, when
∫

min{hρ, 0} dρ > −∞ and
∫

max{hρ, 0} dρ = +∞, from the Lebesgue
monotone convergence theorem and the Jensen inequality,

+∞ = exp
(∫

hρ dρ
)

= sup
k∈N

exp
(∫

min
{
hρ, k

}
dρ
)

≤ sup
k∈N

∫
exp

[
min{hρ, k

}]
dρ =

∫
exp

(
hρ
)

dρ.
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By using the definition of hρ we conclude that

+∞ = exp
(∫

hρ dρ
)

=
∫

exp
(
n
[
M(θ′)−B(θ′)

]
1
[
B(θ′) < +∞

])
1

[dρ
dν (θ′) > 0

]
dν(θ′)

≤
∫

exp
(
n
[
M(θ′)−B(θ′)

]
1
[
B(θ′) < +∞

])
dν(θ′).

We have then proved that

exp
(∫

hρ dρ
)
≤
∫

exp
(
n
[
M(θ′)−B(θ′)

]
1
[
B(θ′) < +∞

])
dν(θ′).

Hence, taking the supremum in ρ, we obtain that

exp
(

sup
ρ∈M1

+(Rd)
K(ρ,ν)<+∞

{∫
n
[
M(θ′)−B(θ′)

]
1
[
B(θ′) < +∞

]
dρ(θ′)−K(ρ, ν)

})

≤
∫

exp
(
n
[
M(θ′)−B(θ′)

]
1
[
B(θ′) < +∞

])
dν(θ′) def= F (X1, . . . , Xn).

The function F defined above is measurable with respect to (X1, . . . , Xn) and its expec-
tation satisfies, from the Fubini theorem for non-negative functions,

E
[
F (X1, . . . , Xn)

]
=
∫
E
[
exp

(
n
[
M(θ′)−B(θ′)

]
1
[
B(θ′) < +∞

])]
dν(θ′).

To conclude we need to prove that E
[
exp

(
n
[
M(θ′)−B(θ′)

]
1
[
B(θ′) < +∞

])]
= 1. When

B(θ′) = +∞, this is obvious. When B(θ′) < +∞, this means, by definition of B(θ′), that
E
[
exp

(
f(X, θ′)

)]
< +∞. In this case,

E
[
exp

[
nM(θ′)

]]
= E

[
exp

(
n∑
i=1

f(Xi, θ
′)
)]

=
n∏
i=1
E
[

exp
[
f(Xi, θ

′)
]]

= exp
[
nB(θ′)

]
,

since X1, . . . , Xn is an i.i.d. sample, so that

E
[
exp

(
n
[
M(θ′)−B(θ′)

]
1
[
B(θ′) < +∞

])]
= 1.

Step 2. By the Markov inequality, since E
[
F (X1, . . . , Xn)

]
≤ 1, we have

P
[
F (X1, . . . , Xn) ≥ ε−1] ≤ ε.

Hence, with probability at least 1− ε,

log
(
F (X1, . . . , Xn)

)
≤ log(ε−1).
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The event log
(
F (X1, . . . , Xn)

)
≤ log(ε−1) is a measurable event included in the, non

necessarily measurable, event

A =
{

sup
ρ∈M1

+(Rd),
K(ρ,ν)<+∞

[∫
n
[
M(θ′)−B(θ′)

]
1
[
B(θ′) < +∞

]
dρ(θ′)−K(ρ, ν)

]
≤ log(ε−1)

}
.

Let us consider the event studied in the proposition, defined as

B =
{
∀ ρ ∈M1

+(Rd) s.t. K(ρ, ν) < +∞,

∫
M(θ′) dρ(θ′) ≤

∫
B(θ′) dρ(θ′) + K(ρ, ν) + log(ε−1)

n

}
.

We observe that the inequality imposed on ρ in event B is trivially satisfied when∫
B(θ′) dρ(θ′) = +∞. Thus, we have to check the inequality only when∫
B(θ′) dρ(θ′) < +∞.

When A is satisfied, then for any ρ ∈ M1
+(Rd) such that K(ρ, ν) is finite,∫

B(θ′) dρ(θ′) < +∞ and
∫
1
[
B(θ′) =∞

]
dρ(θ′) = 0, we have∫

M(θ′) dρ(θ′) =
∫
M(θ′)1

[
B(θ′) < +∞

]
dρ(θ′)

≤
∫
B(θ′)1

[
B(θ′) < +∞

]
dρ(θ′) + K(ρ, ν) + log(ε−1)

n

=
∫
B(θ′) dρ(θ′) + K(ρ, ν) + log(ε−1)

n
,

proving that event B is also satisfied. In summary, we have proved that{
log

(
F (X1, . . . , Xn)

)
≤ log(ε−1)

}
⊂ A ⊂ B.

Moreover, since the event
{

log
(
F (X1, . . . , Xn)

)
≤ log(ε−1)

}
is measurable and is realized

with probability at least 1− ε, we conclude that, with probability at least 1− ε, the event
B is also realized, which proves the proposition.

We now come back to our problem and we apply the PAC-Bayesian inequality (1.7) to
Proposition 1.6 in order to obtain a uniform bound on the empirical criterion. As already
said, the prior is ν = π0 ∼ N (0, β−1I) and the family of posterior distributions is{

πθ ∼ N (θ, β−1I) | θ ∈ Rd, β > 0
}
.

In what follows, the parameter ε can take any value in the interval ]0, 1[.

Proposition 1.8. With probability at least 1− ε, for any θ ∈ Rd,

rλ(θ) ≤
∫
E

[
t(X, θ′) + 1

2 t(X, θ
′)2 + c‖X‖2

β

(
〈θ′, X〉2 + ‖X‖

2

2β

)]
dπθ(θ′)

+ β‖θ‖2

2n + log(ε−1)
n

,

where t(x, θ′) = 〈θ′, x〉2 − ‖x‖
2

β
− λ and c = 15

8 log(2)(
√

2−1) exp
(

1+2
√

2
2

)
.
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Proof. We apply the PAC-Bayesian inequality (1.7) to Proposition 1.6 with

f(Xi, θ
′) = log

[
1 + t(Xi, θ

′) + 1
2 t(Xi, θ

′)2 + c‖Xi‖2

β

(
〈θ′, Xi〉+ ‖Xi‖2

2β

)]
. (1.8)

We obtain that, with probability at least 1− ε, for any θ ∈ Rd,

rλ(θ) ≤ 1
n

n∑
i=1

∫
f(Xi, θ

′)dπθ(θ′)

≤
∫

logE
[
exp(f(X, θ′))

]
dπθ(θ′) + K(πθ, π0) + log(ε−1)

n
,

where K(πθ, π0) = β‖θ‖2
2 . Observing that

logE
[
exp

(
f(X, θ′)

)]
= log

[
1 + E

[
t(X, θ′) + 1

2 t(X, θ
′)2 + c ‖X‖2

β

(
〈θ′, X〉2 + ‖X‖

2

2β

)]]

≤ E
[
t(X, θ′) + 1

2 t(X, θ
′) + c‖X‖2

β

(
〈θ′, X〉2 + ‖X‖

2

2β

)]
,

since log(1 + t) ≤ t, we conclude the proof.

In the following we introduce a sequence of results that provide more explicit bounds on
the empirical criterion.
We first integrate explicitly with respect to the Gaussian distribution πθ.

Proposition 1.9. With probability at least 1− ε, for any θ ∈ Rd,

rλ(θ) ≤ E
[
〈θ,X〉2 − λ+ 1

2

((
〈θ,X〉2 − λ

)2
+ 4〈θ,X〉2‖X‖2

β
+ 2‖X‖4

β2

)

+ c‖X‖2

β

(
〈θ,X〉2 + 3‖X‖2

2β

)]
+ β‖θ‖2

2n + log(ε−1)
n

.

Proof. The proof is based on the identities∫
〈θ′, X〉2 dπθ(θ′) = 〈θ,X〉2 + ‖X‖

2

β
,

Var
[
〈θ′, X〉2 dπθ(θ′)

]
= 4〈θ,X〉2‖X‖2

β
+ 2‖X‖4

β
,

that we already proved before.

Let us introduce

s4 = E
(
‖X‖4

)1/4
, (1.9)

κ = sup
θ∈Rd

E(〈θ,X〉2)>0

E
(
〈θ,X〉4

)
E
(
〈θ,X〉2

)2 , (1.10)

assuming that these two quantities are finite. Using the Cauchy-Schwarz inequality we
rewrite the bound in Proposition 1.9 as follows.
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Proposition 1.10. With probability at least 1− ε, for any θ ∈ Rd,

rλ(θ) ≤ κ

2
[
N(θ)− λ

]2 +
[
1 + (κ− 1)λ+ (2 + c)κ1/2s2

4
β

][
N(θ)− λ

]
+ (κ− 1)λ2

2 + (2 + c)κ1/2s2
4λ

β
+ (2 + 3c)s4

4
2β2 + β‖θ‖2

2n + log(ε−1)
n

. (1.11)

Proof. The computation is based on the two inequalities

E
(
〈X, θ〉4

)
≤ κN(θ)2,

E
(
〈θ,X〉2‖X‖2

)
≤ κ1/2s2

4N(θ),

and some elementary grouping of factors.

We now consider a finite set Λ ⊂
(
R+ \{0}

)2 of possible values of the couple of parameters
(λ, β) that will be determined later. Let |Λ| denote the number of elements of Λ.

Proposition 1.11. For any choice of (λ, β) ∈ Λ, we put

ξ = κλ

2 ,

µ = λ(κ− 1) + (2 + c)κ1/2s2
4

β
,

γ = λ

2 (κ− 1) + (2 + c)κ1/2s2
4

β
+ (2 + 3c)s4

4
2β2λ

+ log(|Λ|/ε)
nλ

,

δ = β

2nλ,

(1.12)

where c = 15
8 log(2)(

√
2−1) exp

(
1+2
√

2
2

)
, s4 is defined by equation (1.9), and κ is defined by

equation (1.10).

With probability at least 1− ε, for any θ ∈ Rd, any (λ, β) ∈ Λ,

rλ(θ)
λ
≤ ξ

(
N(θ)
λ
− 1

)2
+ (1 + µ)

(
N(θ)
λ
− 1

)
+ γ + δ‖θ‖2. (1.13)

Moreover, with probability at least 1− ε, for any θ ∈ Rd, any (λ, β) ∈ Λ,

rλ(θ)
λ
≥ −ξ

(
N(θ)
λ
− 1

)2

+ (1− µ)
(
N(θ)
λ
− 1

)
− γ − δ‖θ‖2. (1.14)

Proof. The first inequality is just a matter of rewriting the previous proposition with
more compact notation and taking a union bound with respect to the allowed values of
(λ, β) ∈ Λ. To obtain the second inequality, we observe that

−rλ(θ) = 1
n

n∑
i=1

ψ
(
λ− 〈θ,Xi〉2

)
.
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Proceeding as previously done, with the necessary signs updates, we obtain that with
probability at least 1− ε, for any θ ∈ Rd, any (λ, β) ∈ Λ,

− rλ(θ) ≤
∫
E

[
−t(X, θ′) + 1

2 t(X, θ
′)2

+ c‖X‖2

β

(
〈θ′, X〉2 + ‖X‖

2

2β

)]
dπθ(θ′) + β‖θ‖2

2n + log(|Λ|/ε)
n

.

Explicitly integrating with the respect to the Gaussian distribution πθ and rewriting the
bound with compact notation, we conclude the proof.

From the above Proposition 1.11 we deduce a confidence interval for the quadratic form
N(θ) in terms of λ/α̂(θ)2, where α̂(θ) has been defined in equation (1.3) on page 17. More
precisely the following proposition holds.

Proposition 1.12. With probability at least 1− ε, for any θ ∈ Rd, any (λ, β) ∈ Λ,

N(θ) ≤ Φ−1
θ,+

(
λ

α̂(θ)2

)
, (1.15)

where Φθ,+ is the non-decreasing function defined as

Φθ,+(t) = t

(
1 + γ + δλ‖θ‖2/t

1− µ− γ − 2δλ‖θ‖2/t

)−1

1
[
ξ + µ+ γ + 2δλ‖θ‖2/t < 1

]
.

Moreover, with probability at least 1− ε, for any θ ∈ Rd, any (λ, β) ∈ Λ,

Φθ,−

(
λ

α̂(θ)2

)
≤ N(θ), (1.16)

where

Φθ,−(t) = t

(
1− γ + δλ‖θ‖2/t

1 + µ− γ − δλ‖θ‖2/t

)
+
1
[
ξ − µ+ γ + δλ‖θ‖2/t < 1

]

= t

(
1− γ + δλ‖θ‖2/t

1 + µ− γ − δλ‖θ‖2/t

)
1
[
ξ − µ+ 2γ + 2δλ‖θ‖2/t < 1

]
is an non-decreasing function.

Proof. We first observe that the polynomial

−ξ
(
N(θ)
λ
− 1

)2

+ (1− µ)
(
N(θ)
λ
− 1

)
− γ − δ‖θ‖2

can be written as

−ξ
(
N(θ)
λ
− 1

)2

+
(

1− µ− λδ‖θ‖2

N(θ)

)(
N(θ)
λ
− 1

)
− γ − λδ‖θ‖2

N(θ) .

In order to simplify notation, we introduce the functions τ(θ) = λδ‖θ‖2

N(θ) and

pθ(z) = −ξz2 +
[
1− µ− τ(θ)

]
z − γ − τ(θ), z ∈ R.
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We observe that τ(αθ) = τ(θ), and consequently pαθ(z) = pθ(z) for any α ∈ R+. We
consider the case when pθ(1) > 0, meaning that

ξ + µ+ γ + 2τ(θ) < 1. (1.17)

In this case, the second degree polynomial pθ has two distinct real roots, z−1 and z+1,
where

zσ =
1− µ− τ(θ) + σ

√[
1− µ− τ(θ)

]2 − 4ξ
[
γ + τ(θ)

]
2ξ , σ ∈ {1,−1}.

We claim that
z−1 <

γ + τ(θ)
1− µ− γ − 2τ(θ) < z+1,

which directly follows once we have shown that

pθ

(
γ + τ(θ)

1− µ− γ − 2τ(θ)

)
> 0. (1.18)

Observing that equation (1.17) can also be written as −ξ > −
[
1− µ− γ − 2τ(θ)

]
, we get

pθ

(
γ + τ(θ)

1− µ− γ − 2τ(θ)

)

= −ξ
(

γ + τ(θ)
1− µ− γ − 2τ(θ)

)2

+
[
1− µ− τ(θ)

]( γ + τ(θ)
1− µ− γ − 2τ(θ)

)
− γ − τ(θ)

>
−
[
γ + τ(θ)

]2
1− µ− γ − 2τ(θ) +

[
1− µ− τ(θ)

] γ + τ(θ)
1− µ− γ − 2τ(θ) − γ − τ(θ) = 0,

proving hence equation (1.18). We recall that by definition of α̂ given in equation (1.3)
on page 17, rλ(αθ) ≤ 0, for any α ≤ α̂(θ). Thus, according to equation (1.14), with
probability at least 1− ε, for any α ∈ [0, α̂(θ)],

pθ

(
α2N(θ)

λ
− 1

)
≤ rλ(αθ)

λ
≤ 0.

This means that [
−1, α̂(θ)2N(θ)

λ
− 1

]
∩
]
z−1, z+1

[
= ∅.

Since pθ(1) > 0 > pθ(0), then z−1 ≥ 0 > −1. It follows that α̂(θ)2N(θ)/λ− 1 ≤ z−1. This
proves that, with probability at least 1− ε, for any θ ∈ Rd satisfying equation (1.17),

N(θ) ≤ λ

α̂(θ)2
(
1 + z−1

)
≤ λ

α̂(θ)2

(
1 + γ + τ(θ)

1− µ− γ − 2τ(θ)

)
.

We observe that the last inequality

N(θ) ≤ λ

α̂(θ)2

(
1 + γ + τ(θ)

1− µ− γ − 2τ(θ)

)
can be written, when equation (1.17) is satisfied, as

Φθ,+
[
N(θ)

]
≤ λ

α̂(θ)2 .
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Moreover, this inequality is trivially true when condition (1.17) is not satisfied, because
its left-hand side is equal to zero and its right-hand side is non-negative. Thus, we have
proved that with probability at least 1− ε, for any θ ∈ Rd,

Φθ,+
[
N(θ)

]
≤ λ

α̂(θ)2 .

Proving the second part of the proposition requires a new argument and not a mere update
of signs in the proof of the first part. Although it may seen at first sight that we are just
aiming at a reverse inequality, the situation is more subtle than that.
Let us first remark that in the case when

ξ − µ+ γ + δα̂(θ)2‖θ‖2 < 1, (1.19)

is not satisfied, equation (1.16) is trivially satisfied because Φθ,−

(
λ

α̂(θ)2

)
= 0. Now, in

the case when equation (1.19) is true, α̂(θ) < +∞, so that rλ
[
α̂(θ)θ

]
= 0, and therefore,

according to equation (1.13), with probability at least 1− ε,

0 ≤ qα̂(θ)θ

(
α̂(θ)2N(θ)

λ
− 1

)
,

where
qθ(z) = ξz2 + (1 + µ)z + γ + δ‖θ‖2.

Since condition (1.19) can also be written as qα̂(θ)θ(−1) < 0, it implies that the second

order polynomial qα̂(θ)θ has two roots and that α̂(θ)2N(θ)
λ − 1 is on the right of its largest

root, which is larger than −1. On the other hand, we observe that, under condition (1.19),
putting τ̂(θ) = δα̂(θ)2‖θ‖2, we get

qα̂(θ)θ

(
− γ + τ̂(θ)

1 + µ− γ − τ̂(θ)

)
= ξ

(
γ + τ̂(θ)

1 + µ− γ − τ̂(θ)

)2

−(1+µ)
(

γ + τ̂(θ)
1 + µ− γ − τ̂(θ)

)
+γ+τ̂(θ)

<

(
γ + τ̂(θ)

)2
1 + µ− γ − τ̂(θ) −

(1 + µ)
[
γ + τ̂(θ)

]
1 + µ− γ + τ̂(θ) + γ + τ̂(θ) = 0.

Therefore, with probability at least 1− ε, if condition (1.19) is satisfied,

α̂(θ)2N(θ)
λ

− 1 ≥ − γ + τ̂(θ)
1 + µ− γ − τ̂(θ) ,

which rewrites as equation (1.16) under condition (1.19). Hence, we conclude that with
probability at least 1− ε, for any θ ∈ Rd, equation (1.16) holds.

To simplify notation, we omit the dependence on θ of the functions defined above, so that,
from now on, we write Φ− and Φ+ instead of Φθ,− and Φθ,+.

Now that we have an observable non-asymptotic confidence interval for N(θ), we are going
to define and study in the following an estimator for N(θ). Let Λ ⊂

(
R+ \{0}

)2 be a finite
set as before. We consider, for some energy level σ ∈ R+ to be chosen later, the set

Γ =
{

(λ, β, t) ∈ Λ×R+ | ξ + µ+ γ + 2 δλ

max{t, σ} < 1
}
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and the bound

Bλ,β(t) =


γ + λδ/max{t, σ}

1− µ− γ − 2λδ/max{t, σ} (λ, β, t) ∈ Γ

+∞ otherwise.
(1.20)

We consider the family of estimators

Ñλ(θ) = λ

α̂(θ)2 , θ ∈ Rd, (1.21)

and we observe that, since α̂ is homogeneous (of degree −1) in θ,

Ñλ (θ) = ‖θ‖2Ñλ (θ/‖θ‖) .

Before defining our estimator and presenting some uniform bounds on the estimation error,
we introduce a technical lemma.

Lemma 1.13. With probability at least 1− ε, for any θ ∈ Rd, any (λ, β) ∈ Λ,

max{N(θ), σ‖θ‖2}
[
1 +Bλ,β

(
‖θ‖−2N(θ)

)]−1
≤ max{Ñλ(θ), σ‖θ‖2}. (1.22)

With probability at least 1− ε, for any θ ∈ Rd, any (λ, β) ∈ Λ,

max{Ñλ(θ), σ‖θ‖2}
[
1−Bλ,β

(
‖θ‖−2Ñλ(θ)

)]
≤ max{N(θ), σ‖θ‖2}.

With probability at least 1− ε, for any θ ∈ Rd, any (λ, β) ∈ Λ,

max{N(θ), σ‖θ‖2} ≤ max{Ñλ(θ), σ‖θ‖2}
[
1 +Bλ,β

(
‖θ‖−2Ñλ(θ)

)]
.

Proof. We may assume, without loss of generality, that ‖θ‖ = 1. We observe that, for any
z, t, σ ∈ R+, if Φ+(z) ≤ t then

Φ+(z) ≤ max{t, σ}.

Moreover, since by definition of Φ+, we have Φ+(σ) ≤ σ, in particular

Φ+(σ) ≤ max{t, σ}.

We have then proved that, if Φ+(z) ≤ t, then

Φ+
(
max{z, σ}

)
≤ max{t, σ}.

The same reasoning applies to Φ− proving that, if Φ−(z) ≤ t, then

Φ−
(
max{z, σ}

)
≤ max{t, σ}.

We also observe that, by definition of Bλ,β, for any (λ, β) ∈ Λ,

Φ+
(
max{z, σ}

)
= max{z, σ}

(
1 +Bλ,β(z)

)−1
(1.23)

Φ−
(
max{z, σ}

)
≥ max{z, σ}

(
1−Bλ,β(z)

)
. (1.24)

Applying these results to Proposition 1.12 we obtain the first two inequalities.
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To obtain the third inequality, we recall that, by definition of inverse function,

Φ−1
+ (t) = sup{y | Φ+(y) ≤ t}.

Denoting ȳ = sup{y | Φ+(y) ≤ t}, we get

Φ−1
+
(
max{t, σ}

)
= max{ȳ, σ} ≤ max{t, σ}

(
1 +Bλ,β(t)

)
, (1.25)

since t ≤ ȳ and Bλ,β is a non-increasing function. To conclude, it is sufficient to apply
equation (1.25) to inequality

N(θ) ≤ Φ−1
+

(
λ

α̂(θ)2

)
.

Let us put
(λ̂, β̂) = arg min

(λ,β)∈Λ
Bλ,β

[
‖θ‖−2Ñλ(θ)

]
.

We define our robust estimator N̂ as

N̂(θ) = Ñ
λ̂
(θ) (1.26)

where Ñλ is defined in equation (1.21).

Next proposition provides a (uniform) bound on the approximation error.

Proposition 1.14. With probability at least 1− 2ε, for any θ ∈ Rd,∣∣∣∣∣ max
{
N(θ), σ‖θ‖2

}
max

{
N̂(θ), σ‖θ‖2

} − 1
∣∣∣∣∣ ≤ inf

(λ,β)∈Λ
Bλ,β

(
‖θ‖−2N(θ)

1 +Bλ,β
[
‖θ‖−2N(θ)

]).
Proof. We may assume that ‖θ‖ = 1 without loss of generality, from homogeneity consider-
ations. By Lemma 1.13 with the choice of parameters (λ̂, β̂), we get that with probability
at least 1− 2ε,

∣∣∣∣∣max{N(θ), σ}
max{N̂(θ), σ}

− 1
∣∣∣∣∣ ≤ Bλ̂,β̂ (N̂(θ)

)
.

Since, by definition, (λ̂, β̂) are the values which minimize Bλ,β
[
Ñλ(θ)

]
,

B
λ̂,β̂

(
N̂(θ)

)
= inf

(λ,β)∈Λ
Bλ,β

(
Ñλ(θ)

)
= inf

(λ,β)∈Λ
Bλ,β

(
max{Ñλ(θ), σ}

)
.

Equation (1.22) concludes the proof. Indeed,

inf
(λ,β)∈Λ

Bλ,β
(
max{Ñλ(θ), σ}

)
≤ inf

(λ,β)∈Λ
Bλ,β

(
max{N(θ), σ} (1 +Bλ,β (N(θ)))−1

)
≤ inf

(λ,β)∈Λ
Bλ,β

(
N(θ) (1 +Bλ,β (N(θ)))−1

)
.
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In the following we are going to present some simplified and more explicit bounds on the
approximation error.
We introduce the subset Γ′ of Γ defined as

Γ′ =
{

(λ, β, t) ∈ Λ×R+ | ξ + µ+ γ + 4δλ/max{t, σ} < 1,
µ+ γ + 2δλ/max{t, σ} ≤ 1/2,

and 2γ + δλ/max{t, σ} ≤ 1/2
}

and the function

B̃λ,β(t) =


γ + λδ/max{t, σ}

1− µ− 2γ − 4λδ/max{t, σ} (λ, β, t) ∈ Γ′

+∞ otherwise.

Lemma 1.15. For any (λ, β) ∈ Λ and any t ∈ R+,

Bλ,β

(
t

1 +Bλ,β(t)

)
≤ B̃λ,β(t),

Bλ,β(t)
1−Bλ,β(t) ≤ B̃λ,β(t).

Proof. We first observe that when (λ, β, t) 6∈ Γ′ then B̃λ,β(t) = +∞ and hence the two
inequalities are trivial. We now assume (λ, β, t) ∈ Γ′ and we put τ = λδ/max{t, σ}. We
prove the second inequality first. Since Γ′ ⊂ Γ, we have

Bλ,β(t)
1−Bλ,β(t) = γ + τ

1− µ− 2γ − 3τ ≤ B̃λ,β(t).

In order to prove the first inequality, we first check that
(
λ, β, t

1+Bλ,β(t)

)
∈ Γ. We first

observe that, since

max {t/[1 +Bλ,β(t)], σ} ≥ max{t, σ}/[1 +Bλ,β(t)],

then

ξ + µ+ γ + 2δλ/max
{

t

1 +Bλ,β(t) , σ
}
≤ ξ + µ+ γ + 2[1 +Bλ,β(t)] δλ

max{t, σ}
= ξ + µ+ γ + 2τ + 2τBλ,β(t).

Moreover, as (λ, β, t) ∈ Γ′, we get

Bλ,β(t) = γ + τ

1− µ− γ − 2τ ≤ 1,

so that
ξ + µ+ γ + 2δλ/max{t/[1 +Bλ,β(t)], σ} ≤ ξ + µ+ γ + 4τ < 1,

which proves that, indeed,
(
λ, β, t

1+Bλ,β(t)

)
∈ Γ. Therefore

Bλ,β

(
t

1 +Bλ,β(t)

)
≤ γ + τ (1 +Bλ,β(t))

1− µ− γ − 2τ [1 + τBλ,β(t)]

= (γ + τ) (1 + τ/(1− µ− γ − 2τ))
1− µ− γ − 2τ − 2τBλ,β(t) ,
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where in the last line we have used the definition of Bλ,β. Observing that

1− µ− γ − 2τ − 2τBλ,β(t) = (1− µ− γ − 2τ)2 − 2τ (γ + τ)
1− µ− γ − 2τ ,

we obtain

Bλ,β

(
t

1 +Bλ,β(t)

)
≤ (γ + τ) (1− µ− γ − τ)

(1− µ− γ − 2τ)2 − 2τ (γ + τ)

= (γ + τ) (1− µ− γ − τ)
(1− µ− γ − τ)2 + τ2 − 2τ(1− µ− γ − τ)− 2τ2 − 2γτ

= γ + τ

1− µ− γ − τ − 2τ − (τ2 + 2γτ) / (1− µ− γ − τ) .

Considering that (
τ2 + 2γτ

)
/ (1− µ− γ − τ) ≤ τ,

since when (λ, β, t) ∈ Γ′, it is true that 1−µ− γ− τ ≥ 1/2 and 2γ+ τ ≤ 1/2, we conclude
that

Bλ,β

(
t

1 +Bλ,β(t)

)
≤ γ + τ

1− µ− γ − 4τ = B̃λ,β(t).

Combining the above lemma with Proposition 1.14, we obtain the following result.

Proposition 1.16. With probability at least 1− 2ε, for any θ ∈ Rd,∣∣∣∣∣ max{N(θ), σ‖θ‖2}
max{N̂(θ), σ‖θ‖2}

− 1
∣∣∣∣∣ ≤ inf

(λ,β)∈Λ
B̃λ,β

[
‖θ‖−2N(θ)

]
.

We now compute an explicit upper bound for the right-hand side of the inequality pre-
sented in the above proposition.
We first observe that, for any θ ∈ Rd,

‖θ‖−2N(θ) = E
[
‖θ‖−2〈θ,X〉2

]
≤ E

[
‖X‖2

]
≤ E

[
‖X‖4

]1/2 = s2
4,

where s4 is defined in equation (1.9) on page 26. Let a > 0 and

K = 1 +
⌈
a−1 log

(
n

72(2 + c)κ1/2

)⌉
,

where we recall that c = 15
8 log(2)(

√
2−1) exp

(
1+2
√

2
2

)
and κ is defined in equation (1.10). The

choice of K will be justified by equation (1.29). We fix a geometric grid for ‖θ‖−2N(θ)/s2
4

of the form
exp (−ja) , 0 ≤ j < K,

and we define the finite set Λ of all possible values of the couple (λ, β) as

Λ =
{
(λj , βj) | 0 ≤ j < K

}
, (1.27)
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where

λj =

√√√√ 2
n(κ− 1)

(
(2 + 3c)

4(2 + c)κ1/2 exp(−ja)
+ log(K/ε)

)

βj =
√

2(2 + c)κ1/2s4
4n exp

[
−(j − 1/2)a

]
.

Proposition 1.17. Let σ > 0 be a threshold such that σ ≤ s2
4. We define the explicit

bound

ζ(t) =

√√√√2(κ− 1)
(

(2 + 3c)s2
4

4(2 + c)κ1/2t
+ log(K/ε)

)
cosh(a/4) +

√
2(2 + c)κ1/2s2

4
t

cosh(a/2)

and

B∗(t) =


n−1/2ζ(max{t, σ})

1− 4n−1/2ζ(max{t, σ})
[
6 + (κ− 1)−1]ζ(max{t, σ}) ≤

√
n

+∞ otherwise.
For any t ∈ R+,

inf
(λ,β)∈Λ

B̃λ,β(t) ≤ B∗
(
min{t, s2

4}
)
. (1.28)

As a consequence, with probability at least 1− 2ε, for any θ ∈ Rd,∣∣∣∣∣ max{N(θ), σ‖θ‖2}
max{N̂(θ), σ‖θ‖2}

− 1
∣∣∣∣∣ ≤ B∗[‖θ‖−2N(θ)

]
.

Before proving the result we recall explicitly some definitions previously introduced. We
have defined the set

Γ =
{

(λ, β, t) ∈ Λ×R+ |

(4κ− 3)λ
2 + 2(2 + c)κ1/2s2

4
β

+ (2 + 3c)s4
4

2β2λ
+ log(K/ε)

nλ
+ β

nmax{t, σ} < 1
}
,

and the bound

B̃λ,β(t) =

(κ− 1)λ
2 + (2 + c)κ1/2s2

4
β

+ (2 + 3c)s4
4

2β2λ
+ log(K/ε)

nλ
+ β

2nmax{t, σ}

1− 3(κ− 1)λ
2 − 2(2 + c)κ1/2s2

4
β

− (2 + 3c)s4
4

2β2λ
− log(K/ε)

nλ
− β

nmax{t, σ}

when (λ, β, t) ∈ Γ, and B̃λ,β(t) = +∞ otherwise. The definition of N̂ is given in equa-
tion (1.26).

We remark that the function ζ is non-increasing and observable, so that in the case when
the threshold σ is defined by the equation[

6 + (1− κ)−1]ζ(σ) =
√
n,

then the condition in the definition of B∗ is satisfied for all t ∈ R+. Moreover the function
B∗ : R+ → R+ is non-increasing and in this case

B∗(t) ≤ B∗(0) ≤ 1
2 , t ∈ R+.
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We also observe that it is not restrictive to assume σ ≤ s2
4, since we know that N(θ) ≤

s2
4‖θ‖2. Moreover, we will see later that if we choose the threshold σ such that

8ζ(σ) =
√
n,

then it decays to zero at speed 1/n as the sample size grows to infinity.

Proof. We recall that the function B̃λ,β is non-increasing so that B̃λ,β(t) ≤ B̃λ,β
(
min{t, s2

4}
)
.

Moreover, since
max

{
min{t, s2

4}, σ
}

= min
{
max{t, σ}, s2

4
}
,

it is sufficient to prove equation (1.28) for max{t, σ} ∈ [0, s2
4].

As equation (1.28) is trivial when B∗(t) = +∞, we may assume that B∗(t) < +∞, so that
6ζ(max{t, σ}) ≤

√
n. In particular, by considering only the second factor in the definition

of ζ, we obtain that√
2(2 + c)κ1/2s2

4
max{t, σ} ≤

√
2(2 + c)κ1/2s2

4
max{t, σ} cosh(a/2) ≤

√
n

6 ,

which implies
max{t, σ}

s2
4

≥ 72(2 + c)κ1/2

n
≥ exp (−a(K − 1)) .

Therefore we have
log

(max{t, σ}
s2

4

)
∈
[
−a(K − 1), 0

]
(1.29)

which justifies the definition of K. Because of equation (1.29), there exists ̂ ∈ {0, . . . ,K−
1}, for which ∣∣∣∣∣log

(max{t, σ}
s2

4

)
+ ̂a

∣∣∣∣∣ ≤ a/2.
Equivalently, it means that

exp
(
−
(
̂+ 1

2

)
a

)
≤ max{t, σ}

s2
4

≤ exp
(
−
(
̂− 1

2

)
a

)
. (1.30)

We now recall that by equation (1.12) on page 27

γ + δλ/max{t, σ} = λ

2 (κ− 1) + (2 + c)κ1/2s2
4

β
+ (2 + 3c)s4

4
2β2λ

+ log(K/ε)
nλ

+ β

2nmax{t, σ}

and we observe that (λ∗, β∗) defined as

λ∗ = λ∗(t) =

√√√√ 2
n(κ− 1)

(
(2 + 3c)s2

4
4(2 + c)κ1/2 max{t, σ}

+ log(K/ε)
)

(1.31)

β∗ =
√

2(2 + c)κ1/2s2
4 max{t, σ}n (1.32)

are the desired values that optimize γ + δλ/max{t, σ}. We also remark that, by equa-
tion (1.30),

β̂ exp(−a/2) ≤β∗ ≤ β̂ (1.33)
λ̂ exp(−a/4) ≤λ∗ ≤ λ̂ exp(a/4). (1.34)
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Thus, evaluating γ + δλ/max{t, σ} in (λ̂, β̂) ∈ Λ, we obtain that

γ̂ + δ̂λ̂/max{t, σ}

= λ∗(κ− 1)
2

λ̂
λ∗

+ (2 + c)κ1/2s2
4

β∗

β∗
β̂

+ (2 + 3c)s4
4

2β2
̂
λ∗

λ∗
λ̂

+ log(K/ε)
nλ∗

λ∗
λ̂

+ β∗
2nmax{t, σ}

β̂
β∗

≤ λ∗(κ− 1)
2

λ̂
λ∗

+ 1
nλ∗

[
(2 + 3c)s2

4
4(2 + c)κ1/2 max{t, σ}

+ log(K/ε)
]
λ∗
λ̂

+
√

(2 + c)κ1/2s2
4

2nmax{t, σ}

(
β∗
β̂

+
β̂
β∗

)

≤

√√√√2(κ− 1)
n

[
(2 + 3c)s2

4
4(2 + c)κ1/2 max{t, σ}

+ log(K/ε)
]

cosh log
(
λ̂
λ∗

)

+
√

2(2 + c)κ1/2s2
4

nmax{t, σ} cosh log
(
β̂
β∗

)
.

Using equation (1.33) and equation (1.34), we get

γ̂ + δ̂λ̂/max{t, σ}

≤

√√√√2(κ− 1)
n

[
(2 + 3c)s2

4
4(2 + c)κ1/2 max{t, σ}

+ log(K/ε)
]

cosh
(
a

4

)

+
√

2(2 + c)κ1/2s2
4

nmax{t, σ} cosh
(
a

2

)
.

We also observe that

µ̂ + γ̂ + 4δ̂λ̂/max{t, σ} ≤ 4
[
γ̂ + δ̂λ̂/max{t, σ}

]
≤ 4n−1/2ζ(t),

since by definition µ̂ ≤ 2γ̂. In the same way, observing that

ξ̂ =
κλ̂
2 ≤ γ̂

(
1 + 1

κ− 1

)
we obtain

ξ̂ + µ̂ + γ̂ + 4δ̂λ̂/max{t, σ} <
[
4 + (κ− 1)−1]γ̂ + 4δ̂λ̂/max{t, σ}

≤
[
6 + (κ− 1)−1]n−1/2ζ(max{t, σ})

and similarly,

2
[
µ̂ + γ̂ + 2δ̂λ̂/max{t, σ}

]
≤ 6n−1/2ζ(max{t, σ}),

2
[
2γ̂ + δ̂λ̂/max{t, σ}

]
≤ 4n−1/2ζ(max{t, σ}).

This implies that, whenever B∗(t) < +∞, then (λ̂, β̂, t) ∈ Γ′. We have then proved that

inf
(λ,β)∈Λ

B̃λ,β(t) ≤ B̃λ̂, β̂(t) ≤
n−1/2ζ(max{t, σ})

1− 4n−1/2ζ(max{t, σ})
= B∗(t).
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We now need to prove the last part of the proposition. We first apply equation (1.28) to
Proposition 1.16 and we obtain that, with probability at least 1− 2ε, for any θ ∈ Rd,∣∣∣∣∣ max{N(θ), σ‖θ‖2}

max{N̂(θ), σ‖θ‖2}
− 1

∣∣∣∣∣ ≤ B∗[min
{
‖θ‖−2N(θ), s2

4
}]
.

Since ‖θ‖−2N(θ) ≤ s2
4, we conclude the proof.

Before introducing some comments on the bound presented in Proposition 1.17 we make
more explicit its formulation by replacing the quantity s2

4 by the trace of the Gram matrix.

Lemma 1.18. We have
s2

4 ≤
√
κ Tr(G),

where Tr(G) =
∫
‖x‖2 dP(x) denotes the trace of G.

Proof. By definition

s4
4 =

∫
‖x‖4dP(x) =

∑
1≤j≤d
1≤k≤d

∫
x2
jx

2
kdP(x)

and by the Cauchy-Schwarz inequality we obtain

s4
4 ≤

∑
1≤j≤d
1≤k≤d

(∫
x4
jdP(x)

) 1
2
(∫

x4
kdP(x)

) 1
2
.

Recalling that, by definition, κ = sup
θ∈Rd

∫
〈θ, x〉4dP(x)

(
∫
〈θ, x〉2dP(x))2 , we get

s4
4 ≤ κ

∑
1≤j≤d
1≤k≤d

(∫
x2
jdP(x)

)(∫
x2
kdP(x)

)

= κ

∫ d∑
j=1

x2
jdP(x)

2

= κ

(∫
‖x‖2dP(x)

)2
,

which concludes the proof.

We now apply the above lemma to Proposition 1.17. We recall that, given a > 0,

K = 1 +
⌈
a−1 log

(
n

72(2 + c)κ1/2

)⌉

where κ is defined in equation (1.10) on page 26 and c = 15
8 log(2)(

√
2−1) exp

(
1+2
√

2
2

)
.

Proposition 1.19. Let us fix a threshold σ ∈ R+ such that σ ≤ s2
4. With probability at

least 1− 2ε, for any θ ∈ Rd,∣∣∣∣∣ max{N(θ), σ‖θ‖2}
max{N̂(θ), σ‖θ‖2}

− 1
∣∣∣∣∣ ≤ B∗[‖θ‖−2N(θ)

]
,
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where

B∗(t) =


n−1/2ζ(max{t, σ})

1− 4n−1/2ζ(max{t, σ})
[
6 + (κ− 1)−1]ζ(max{t, σ}) ≤

√
n

+∞ otherwise

and

ζ(t) =

√√√√2(κ− 1)
(

(2 + 3c) Tr(G)
4(2 + c)t + log(K/ε)

)
cosh(a/4)

+

√
2(2 + c)κ Tr(G)

t
cosh(a/2).

Let us provide some numerical evaluation of the constants. Let us choose a = 1/2. We can
bound the logarithmic factor log log(n) hidden in log(K) with a relatively small constant
assuming any reasonable upper bound for the number n of observations. For instance, if
we assume that n ≤ 1020, and use the fact that κ ≥ 1 we can bound K with the constant
77, so that log(K) ≤ 4.35. In this case, ζ is bounded by

ζ(t) ≤

√√√√2.032(κ− 1)
(

0.73 Tr(G)
t

+ 4.35 + log(ε−1)
)

+

√
98.5κTr(G)

t
, t ∈ R+.

We observe that the quantity κ − 1 corresponds to a variance factor, and more precisely
to Var[〈θ,X〉2] N(θ)−2.

In the special case when X is a Gaussian random vector we have κ = 3. Moreover, the
bound B∗ does not depend explicitly on the dimension d and in particular the dimension
is replaced by the entropy term Tr(G)/max

{
‖θ‖−2N(θ), σ

}
. The remarkable fact is that,

since the result is dimension-independent, it can be generalized to any infinite-dimensional
Hilbert space, with the only assumption that the trace of the Gram matrix Tr(G) is finite.
For further details we refer to section 1.3.
Let us also make clear that we do not need to know the exact values of κ and Tr(G) to
compute the estimator and evaluate the bound. We only need to know upper bounds for
these two quantities. If we use those upper bounds in the definition of the estimator, the
estimation error will hold true with κ and Tr(G) replaced with their upper bounds.

In order to have a meaningful (finite) bound we can choose for example the threshold σ
such that

8 ζ(σ) =
√
n,

so that B∗(t) < +∞ for any t ∈ R+, assuming that we work with κ ≥ 3/2. With this
choice the threshold decays to zero as the sample size grows to infinity. More precisely,
using the inequality (

√
a+
√
b)2 ≤ 2(a+ b), we get in this case that

σ ≤ 100κTr(G)
n/128− 4.35− log

(
ε−1) . (1.35)

1.2.3 A quadratic estimator of N

We have already said that our estimator N̂ defined in equation (1.26) is unfortunately
not a quadratic form. In this section we are going to deduce a quadratic estimator of the
quadratic form N.
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Let Λ ⊂
(
R+ \ {0}

)2 be the finite set defined by equation (1.27). Proposition 1.12 on
page 28 provides a confidence region for N(θ). Define

B+(θ) = min
(λ,β)∈Λ

Φ−1
θ,+

(
Ñλ(θ)

)
and B−(θ) = max

(λ,β)∈Λ
Φθ,−

(
Ñλ(θ)

)
(1.36)

where we recall that Ñλ(θ) = λ/α̂(θ)2 and α̂(θ) is defined in equation (1.3) on page 17.
According to Proposition 1.12 we get the following result.

Proposition 1.20. With probability at least 1− 2ε, for any θ ∈ Rd,

B−(θ) ≤ N(θ) ≤ B+(θ).

In the following we are going to study the properties of a symmetric matrix Q that satisfies
Tr(Q2) ≤ Tr(G2) and

B−(θ) ≤ θ>Qθ ≤ B+(θ), θ ∈ Θδ, (1.37)

where Θδ is a finite δ-net of the unit sphere Sd =
{
θ ∈ Rd, ‖θ‖ = 1

}
, meaning that

sup
θ∈Sd

min
ξ∈Θδ
‖θ − ξ‖ ≤ δ.

Such a quadratic form exists with probability at least 1−2ε according to Proposition 1.20
and it can be computed using a convex optimization algorithm described in section 1.2.4.
Since, for any θ ∈ Sd, there is ξ ∈ Θδ such that ‖θ − ξ‖ ≤ δ, we have

∣∣θ>Qθ − ξ>Qξ∣∣ =
(
θ + ξ

)>
Q
(
θ − ξ

)
≤ ‖θ + ξ‖‖Q‖∞‖θ − ξ‖ ≤ 2δ

√
Tr(Q2) ≤ 2δ

√
Tr(G2). (1.38)

Let us put η = 2δ
√

Tr(G2).

Lemma 1.21. With probability at least 1− 2ε, for any θ ∈ Sd and any (λ, β) ∈ Λ,

Φ− ◦ Φ+
(
θ>Qθ − η

)
≤ N(θ) + η,

Φ− ◦ Φ+
(
N(θ)− η

)
≤ θ>Qθ + η,

where Φ− and Φ+ are the values taken by Φθ,− and Φθ,+, when θ ∈ Sd.

We recall that the functions Φθ,− and Φθ,+ depend on θ through ‖θ‖ only.

Proof. According to Proposition 1.20, with probability at least 1− 2ε, for any (λ, β) ∈ Λ,

θ>Qθ ≤ Φ−1
+
(
Ñλ(ξ)

)
+ η ≤ Φ−1

+ ◦ Φ−1
−
(
N(ξ)

)
+ η.

Since equation (1.38) holds true also for N , we conclude that

θ>Qθ ≤ Φ−1
+ ◦ Φ−1

−
(
N(θ) + η

)
+ η.

In the same way

θ>Qθ ≥ Φ−
(
Ñλ(ξ)

)
− η ≥ Φ− ◦ Φ+

(
N(ξ)

)
− η ≥ Φ− ◦ Φ+

(
N(θ)− η

)
− η.
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We need some technical lemmas to take advantage of this result.

Lemma 1.22. Let us put

F (t) = max{t, σ}B∗(min{t, s2
4}),

where B∗ is defined in Proposition 1.17. In the case when

κ ≥ 3/2 and 8ζ(σ) ≤
√
n,

the function t 7→ F (t) is non-decreasing for any t ∈ R+.

Proof. If σ ≥ s2
4, then B∗(min{t, s2

4}) = B∗(σ), so that F (t) = max{t, σ}B∗(σ) is obviously
non-decreasing. Otherwise, σ ≤ s2

4, so that

ζ
(
max

{
min{t, s2

4}, σ
})

= ζ
(
min

{
max{t, σ}, s2

4

})
.

Therefore the function F is of the form

F (t) = c
ug(u)

(1− g(u)) ,

where u = max{t, σ},
g(u) =

√
a1/u+ a2 +

√
a3/u,

g(σ) ≤ 1/2, and the constants c, a1, a2, and a3 are positive. Let h(u) =
√
a1/u +

√
a3/u

and observe that

g′(u) = − 1
2u

(
a1/u(

a1/u+ a2
)1/2 +

√
a3/u

)
≥ − 1

2u
(√

a1/u+
√
a3/u

)
= h′(u)

and that g(u) ≥ h(u). Therefore h(u) ≤ g(u) ≤ 1/2, for any u ≥ σ, and

∂

∂u
log
(

ug(u)
1− g(u)

)
= 1
u

+ g′(u)
g(u)

(
1− g(u)

) ≥ 1
u

+ h′(u)
h(u)

(
1− h(u)

) = 1
u
− 1

2u
(
1− h(u)

) ≥ 0,

showing that F is non-decreasing.

In the following we always assume that κ ≥ 3/2.

Lemma 1.23. For any (a, b) ∈ R2 such that, for any (λ, β) ∈ Λ,

Φ− ◦ Φ+(a− η) ≤ b+ η, and Φ− ◦ Φ+(b− η) ≤ a+ η,

and any threshold σ ∈ R+ such that 8ζ(σ) ≤
√
n and σ ≤ s2

4, we have∣∣max{a, σ} −max{b, σ}
∣∣ ≤ 2 max{a+ η, σ}B∗

(
min{a+ η, s2

4}
)

+ 2η (1.39)
and

∣∣max{a, σ} −max{b, σ}
∣∣ ≤ 2 max{b+ η, σ}B∗

(
min{b+ η, s2

4}
)

+ 2η. (1.40)

Proof. By symmetry of a and b, equation (1.40) is a consequence of equation (1.39).
Step 1. We will prove that

max{b− η, σ} ≤ max{a+ η, σ}
(
1 + 2B̃λ,β(a+ η)

)
, (1.41)
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where B̃λ,β is defined as in Lemma 1.15 on page 33.
Case 1. Assume that

max
{
Φ+(b− η), σ

}
≤ max{a+ η, σ},

and remark that, since Φ+ is non-decreasing and Φ+(σ) ≤ σ,

max
{
Φ+(b− η), σ

}
≥ max

{
Φ+(b− η),Φ+(σ)

}
= Φ+

(
max{(b− η), σ}

)
= max{b− η, σ}

1 +Bλ,β(b− η) ,

according to equation (1.23) on page 31, whereBλ,β is defined in equation (1.20). Therefore
in this case,

max{b− η, σ} ≤ max{a+ η, σ}
(
1 +Bλ,β(b− η)

)
, (1.42)

but when max{b− η, σ} > max{a+ η, σ},

Bλ,β(b− η) ≤ Bλ,β(a+ η)

because Bλ,β(t) is a non-increasing function of max{t, σ}, thus equation (1.42) implies
that

max{b− η, σ} ≤ max{a+ η, σ}
(
1 +Bλ,β(a+ η)

)
.

Since Bλ,β ≤ B̃λ,β, equation (1.41) holds true.
Case 2. Assume now that we are not in Case 1, implying that

max{b− η, σ} ≥ max
{
Φ+(b− η), σ

}
> max{a+ η, σ}.

In this case

max{a+ η, σ} ≥ max
{
Φ− ◦ Φ+(b− η), σ

}
≥ max

{
Φ− ◦ Φ+(b− η),Φ−(σ)

}
≥ Φ−

(
max{Φ+(b− η), σ}

)
≥ max

{
Φ+(b− η), σ

}[
1−Bλ,β

(
max

{
Φ+(b− η), σ

})]
according to equation (1.24). Moreover, continuing the above chain of inequalities

max{a+ η, σ} ≥ max
{
Φ+(b− η),Φ+(σ)

}[
1−Bλ,β(max{a+ η, σ})

]
= Φ+

(
max{b− η, σ}

)[
1−Bλ,β(a+ η)

]
≥ max{b− η, σ} 1−Bλ,β(a+ η)

1 +Bλ,β(max{b− η, σ})

≥ max{b− η, σ}1−Bλ,β(a+ η)
1 +Bλ,β(a+ η) .

Therefore

max{b− η, σ} ≤ max{a+ η, σ}1 +Bλ,β(a+ η)
1−Bλ,β(a+ η)

= max{a+ η, σ}
(

1 + 2Bλ,β(a+ η)
1−Bλ,β(a+ η)

)
≤ max{a+ η, σ}

(
1 + 2B̃λ,β(a+ η)

)
according to Lemma 1.15. This concludes the proof of Step 1.
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Step 2 Taking the infimum in (λ, β) ∈ Λ in equation (1.41), according to equation (1.28),
we obtain that

max{b− η, σ} ≤ max{a+ η, σ}
(
1 + 2B∗

(
min{a+ η, s2

4})
)
.

We can then use the fact that t 7→ max{t, σ}B∗(min{t, s2
4}) is non-decreasing (proved in

Lemma 1.22) to deduce that

max{b− η, σ} ≤ max{a+ η, σ}+ 2 max{b+ η, σ}B∗(min{b+ σ, s2
4}),

since there is nothing to prove when already max{b + η, σ} ≤ max{a + η, σ}. Remark
that max{a + η, σ} ≤ max{a + η, σ + η} ≤ max{a, σ} + η and that in the same way
max{b− η, σ} ≥ max{b, σ} − η. This proves that

max{b, σ} −max{a, σ} ≤ 2 max{a+ η, σ}B∗
(
min{a+ η, s2

4}
)

+ 2η
and max{b, σ} −max{a, σ} ≤ 2 max{b+ η, σ}B∗

(
min{b+ η, s2

4}
)

+ 2η.

By symmetry, we can then exchange a and b to prove the same bounds for max{a, σ} −
max{b, σ}, and therefore also for the absolute value of this quantity, which ends the proof
of the lemma.

Lemma 1.24. For any (a, b) ∈ R2 such that, for any (λ, β) ∈ Λ,

Φ− ◦ Φ+(a− η) ≤ b+ η, and Φ− ◦ Φ+(b− η) ≤ a+ η,

and any threshold σ ∈ R+ such that 8ζ(σ) ≤
√
n and σ ≤ s2

4, we have∣∣max{a, σ} −max{b, σ}
∣∣ ≤ 2 max{a, σ}B∗

(
min{a, s2

4}
)

+ 5η/2∣∣max{a, σ} −max{b, σ}
∣∣ ≤ 2 max{b, σ}B∗

(
min{b, s2

4}
)

+ 5η/2.

Proof. This is a consequence of the previous lemma, of the fact that B∗(min{t, s2
4}) ≤ 1/4,

and of the fact that max{a+ η, σ} ≤ max{a, σ}+ η.

We deduce from Lemma 1.21 and Lemma 1.24 the analogous for the quadratic estimator
θ>Qθ of the dimension-free bound presented in Proposition 1.17 for N̂(θ).

Lemma 1.25. Let us assume that 8ζ(σ) ≤
√
n, σ ≤ s2

4 and that κ ≥ 3/2. With probability
at least 1− 2ε, for any θ ∈ Sd,∣∣∣max{θ>Qθ, σ} −max{N(θ), σ}

∣∣∣ ≤ 2 max
{
N(θ), σ

}
B∗
(
N(θ)

)
+ 5δ

√
Tr(G2),∣∣∣max{θ>Qθ, σ} −max{N(θ), σ}

∣∣∣ ≤ 2 max
{
θ>Qθ, σ

}
B∗
(
min{θ>Qθ, s2

4
})

+ 5δ
√

Tr(G2).

There is still some improvement to bring: at this stage we are not sure that Q is non-
negative. Nevertheless we know that, for any θ ∈ Sd, there is ξ ∈ Θδ such that ‖θ−ξ‖ ≤ δ,
so that

θ>Qθ ≥ ξ>Qξ − η ≥ B−(ξ)− η ≥ −η.
Decomposing Q into its positive and negative parts and writing Q = Q+−Q−, we deduce
that

‖Q−‖∞ = sup
θ∈Sd

θ>Q−θ = − inf
θ∈Sd

θ>Qθ ≤ η,

where we recall that η = 2δ
√

Tr(G2). Therefore, for any θ ∈ Sd,∣∣∣max{θ>Qθ, σ} −max{θ>Q+θ, σ}
∣∣∣ ≤ ∣∣∣θ>Qθ − θ>Q+θ

∣∣∣ = θ>Q−θ ≤ η.

We have proved the following result.
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Proposition 1.26. Let us assume that 8ζ(σ) ≤
√
n, σ ≤ s2

4 and that κ ≥ 3/2. With
probability at least 1− 2ε, for any θ ∈ Sd,∣∣∣max{θ>Q+θ, σ} −max{N(θ), σ}

∣∣∣ ≤ 2 max
{
N(θ), σ

}
B∗
(
N(θ)

)
+ 7δ

√
Tr(G2),∣∣∣max{θ>Q+θ, σ} −max{N(θ), σ}

∣∣∣ ≤ 2 max
{
θ>Q+θ, σ

}
B∗
(
min{θ>Q+θ, s

2
4
})

+ 7δ
√

Tr(G2),

where B∗ is defined in Proposition 1.17.

Let us recall that we can obtain a bound stated in terms of Tr(G), using the inequality
s2

4 ≤ κ1/2 Tr(G) (proved in Lemma 1.18) that implies

ζ(t) ≤

√√√√2(κ− 1)
(

(2 + 3c) Tr(G)
4(2 + c)t + log(K/ε)

)
cosh(a/4)+

√
2(2 + c)κ Tr(G)

t
cosh(a/2).

Remark that, for any a, b ∈ R+,

a− b ≤ max{a, σ} −max{b, σ}+ σ,

so that
|a− b| ≤

∣∣max{a, σ} −max{b, σ}
∣∣+ σ.

Corollary 1.27. Assume that 8ζ(σ) ≤
√
n, σ ≤ s2

4 and that κ ≥ 3/2. With probability at
least 1− 2ε, for any θ ∈ Sd,∣∣θ>Q+θ −N(θ)

∣∣ ≤ 2 max{N(θ), σ}B∗
(
N(θ)

)
+ 7δ

√
Tr(G2) + σ∣∣θ>Q+θ −N(θ)

∣∣ ≤ 2 max{θ>Q+θ, σ}B∗
(
min

{
θ>Q+θ, s

2
4
})

+ 7δ
√

Tr(G2) + σ.

We conclude the section by providing two more bounds on the approximation error |N(θ)−
θ>Q+θ| that depend on the largest eigenvalue of N and on the largest eigenvalue of Q+
respectively. Applying Lemma 1.22 to Corollary 1.27 we obtain the following result.

Corollary 1.28. Assume that 8ζ(σ) ≤
√
n, σ ≤ s2

4 and that κ ≥ 3/2. With probability at
least 1− 2ε, for any θ ∈ Sd,∣∣N(θ)− θ>Q+θ

∣∣ ≤ 2 max{‖G‖∞, σ}B∗(‖G‖∞) + 7δ‖G‖F + σ,∣∣N(θ)− θ>Q+θ
∣∣ ≤ 2 max{‖Q+‖∞, σ}B∗

(
min

{
‖Q+‖∞, s2

4
})

+ 7δ‖G‖F + σ,

where ‖G‖F =
√

Tr(G2) is the Frobenius norm of the Gram matrix.

1.2.4 How to compute Q

In this section we provide an explicit construction of the quadratic form Q defined in
equation (1.37) on page 40, inspired by [8]. Later, in section 1.6 we will present a
simplified construction that leads to an estimator which is not exactly the same as Q but
presents the same kind of behavior.
From a theoretical point of view, to obtain a quadratic estimator of N it is sufficient to
choose the quadratic form associated with any non-negative symmetric matrix Q satisfying

B−(θ) ≤ θ>Qθ ≤ B+(θ), θ ∈ Sd, (1.43)

and we know, by Proposition 1.20, that such a quadratic form exists with probability at
least 1− 2ε. From a practical point of view, we prefer to satisfy the constraints on a finite
set, as in equation (1.37).
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Lemma 1.29. With probability at least 1− 2ε, for any finite set Θ ⊂ Rd, the symmetric
matrix

Q =
∑
θ∈Θ

[
ξ̂+(θ)− ξ̂−(θ)

]
θθ>,

where(
ξ̂+, ξ̂−

)
= arg max

ξ+,ξ−∈(R2
+)Θ

{
− 1

2
∑

(θ,θ′)∈Θ2

[ξ+(θ)− ξ−(θ)]
[
ξ+(θ′)− ξ−(θ′)

]
〈θ, θ′〉2

+
∑
θ∈Θ

[ξ+(θ)B−(θ)− ξ−(θ)B+(θ)]
}
,

is such that

Q = arg min
{
‖H‖F | H> = H, B−(θ) ≤ θ>Hθ ≤ B+(θ), θ ∈ Θ

}
.

Moreover ‖Q‖F ≤ ‖G‖F ≤ Tr(G), and

|θ>2 Qθ2 − θ>1 Qθ1| ≤ ‖θ1 + θ2‖‖G‖F ‖θ1 − θ2‖, θ1, θ2 ∈ Rd. (1.44)

Proof. We define

Ĥ = arg min
{
‖H‖F | H> = H, B−(θ) ≤ θ>Hθ ≤ B+(θ), θ ∈ Θ

}
and we observe that it is the solution of the (minimax) optimization problem

V = inf
H>=H

sup
ξ+,ξ−

V (H, ξ+, ξ−),

where

V (H, ξ+, ξ−) = 1
2‖H‖

2
F +

∑
θ∈Θ

[
ξ+(θ)

(
B−(θ)− θ>Hθ

)
+ ξ−(θ)

(
θ>Hθ −B+(θ)

)]
.

On the event of probability 1− 2ε described in Proposition 1.20 where

B−(θ) ≤ θ>Gθ ≤ B+(θ),

the constraints are satisfied when H = G and therefore, since the constraints are linear,
by the Slater condition,

inf
H

sup
ξ+,ξ−

V (H, ξ+, ξ−) = sup
ξ+,ξ−

inf
H
V (H, ξ+, ξ−).

We can compute explicitly the solution of

inf
H
V (H, ξ+, ξ−)

and we obtain
inf
H
V (H, ξ+, ξ−) = V (Q, ξ+, ξ−).

It follows that Ĥ = Q, since supξ+,ξ− infH V (H, ξ+, ξ−) = V (Q, ξ̂+, ξ̂−).
Moreover, for any θ1, θ2 ∈ Rd, we have

|θ>2 Qθ2 − θ>1 Qθ1| ≤ (θ1 + θ2)>Q (θ2 − θ1) ≤ ‖θ1 + θ2‖‖Q‖∞‖θ2 − θ1‖.

We conclude observing that ‖Q‖∞ ≤ ‖Q‖F ≤ ‖G‖F . The inequality ‖G‖F ≤ Tr(G) is a
consequence of the fact that the eigenvalues of G are non-negative, so that

‖G‖2F = Tr(G2) ≤ Tr(G)2.
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1.3 Gram operators in Hilbert spaces
We have already underlined the fact that the results presented in the previous section do
not explicitly depend on the dimension d of the ambient space and that, for this reason,
they can be generalized to any separable Hilbert space. In this section we study how these
results extend to infinite-dimensional Hilbert spaces.

Let H be a separable Hilbert space and let P ∈ M1
+(H) be an unknown probability

distribution on H. We consider the Gram operator G : H → H defined by

Gθ =
∫
〈θ, v〉H v dP(v)

and we assume Tr(G) = E
(
‖X‖2H

)
< +∞, where X ∈ H denotes a random vector of law

P. In analogy to the previous section we denote by N the quadratic form associated with
G so that

N(θ) = 〈Gθ, θ〉H =
∫
〈θ, v〉2H dP(v), θ ∈ H.

We consider (Hk)k an increasing sequence of subspaces of H of finite dimension such
that ∪kHk = H and we endow each space Hk with the probability Pk which arises from
the disintegration of P. We denote by Nk the quadratic form in Hk associated with the
probability distribution Pk and we observe that, denoting by Πk the orthogonal projector
on Hk, for any θ ∈ H, we have

Nk (Πkθ) = N (Πkθ) .

In the following we consider i.i.d. samples of size n in H drawn according to P. According
to Proposition 1.12 on page 28, the event

Ak =
{
∀θ ∈ Hk, ∀(λ, β) ∈ Λ, Φθ,−

(
λ

α̂(θ)2

)
≤ N(θ) ≤ Φ−1

θ,+

(
λ

α̂(θ)2

)}
is such that P⊗n

(
Ak
)
≥ 1− 2ε. Since Ak+1 ⊂ Ak, by the continuity of measure,

P⊗n
( ⋂
k∈N
Ak
)
≥ 1− 2ε.

This means that with probability at least 1− 2ε, for any θ ∈
⋃
kHk and any (λ, β) ∈ Λ,

Φθ,−

(
λ

α̂(θ)2

)
≤ N(θ) ≤ Φ−1

θ,+

(
λ

α̂(θ)2

)
.

Consequently, since N(θ) = lim
k→+∞

N
(
Πk(θ)

)
, for any θ ∈ H, the following result holds.

Proposition 1.30. With probability at least 1− 2ε, for any θ ∈ H,

B−(θ) ≤ N(θ) ≤ B+(θ)

where

B−(θ) = lim sup
k→+∞

sup
(λ,β)∈Λ

ΦΠk(θ),−

(
λ

α̂(Πk(θ))2

)
,

B+(θ) = lim inf
k→+∞

inf
(λ,β)∈Λ

Φ−1
Πk(θ),+

(
λ

α̂(Πk(θ))2

)
.
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If we do not want to go to the limit, we can use the explicit bound∣∣N(θ)−N(Πk(θ))
∣∣ =

∣∣〈θ + Πk(θ),G
(
θ −Πk(θ)

)
〉H|

≤ 2‖θ‖H‖G‖∞‖θ −Πk(θ)‖H ≤ 2‖θ‖HTr(G)‖θ −Πk(θ)‖H
= 2‖θ‖HE

(
‖X‖2H

)
‖θ −Πk(θ)‖H.

This bound depends on ‖θ−Πkθ‖H. We will see in the following another bound that goes
uniformly to zero for any θ ∈ SH when k tends to infinity. In the same way, proceeding as
already done in section 1.2 we state the analogous of Proposition 1.17.

Proposition 1.31. Let

κ ≥ sup
θ∈H

E(〈θ,X〉2H)>0

E
(
〈θ,X〉4H

)
E
(
〈θ,X〉2H

)2 and s4 ≥ E
(
‖X‖4H

)1/4
be known constants. Let a > 0 and

K = 1 +
⌈
a−1 log

(
n

72(2 + c)κ1/2

)⌉

with c = 15
8 log(2)(

√
2−1) exp

(
1+2
√

2
2

)
. Define

ζ(t) =

√√√√2(κ− 1)
(

(2 + 3c)s2
4

4(2 + c)κ1/2t
+ log(K/ε)

)
cosh(a/4) +

√
2(2 + c)κ1/2s2

4
t

cosh(a/2)

and consider, according to equation (1.26) on page 32, the estimator

N̂(θ) = Ñ
λ̂
(θ), θ ∈

⋃
k

Hk.

For any θ ∈ H, define N̂(θ) by choosing any accumulation point of the sequence N̂
(
Πk(θ)

)
.

Define the bound

B∗(t) = n−1/2ζ(max{t, σ})
1− 4n−1/2ζ(max{t, σ})

,

where σ ∈]0, s2
4] is some energy level such that[

6 + (κ− 1)−1]ζ(max{t, σ}) ≤
√
n.

With probability at least 1− 2ε, for any θ ∈ H,∣∣∣∣∣ max{N(θ), σ‖θ‖2H}
max{N̂(θ), σ‖θ‖2H}

− 1
∣∣∣∣∣ ≤ B∗[‖θ‖−2

H N(θ)
]
.

Proof. This is a consequence of the fact that lim
k→+∞

N
(
Πk(θ)

)
= N(θ) and of the continuity

of B∗.

We recall that if we choose the threshold σ such that 8ζ(σ) =
√
n, then σ goes to zero as

the sample size grows to infinity as shown in equation (1.35) on page 39.
LetX1, . . . , Xn ∈ H be an i.i.d. sample drawn according to P.Define V = span

{
X1, . . . , Xn

}
and

Vk = span
{
ΠkX1, . . . ,ΠkXn

}
= Πk(V ).
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Let Θδ be a δ-net of SH ∩ Vk (where SH denotes the unit sphere in H). Remark that Θδ

is finite because dim(Vk) ≤ n < +∞. We can compute as in Lemma 1.29 on page 45 a
linear operator Ĝk : Vk → Vk such that Tr(Ĝ2

k) ≤ Tr(G2) and

Φ−
(
Ñλ(θ)

)
≤ 〈Ĝkθ, θ〉H ≤ Φ−1

+
(
Ñλ(θ)

)
, θ ∈ Θδ.

Consider the estimator of G defined as

Q = Ĝk ◦ΠVk , (1.45)

where ΠVk is the orthogonal projector on Vk. For any θ ∈ SH,

〈θ,Qθ〉H = 〈ΠVkθ,QΠVkθ〉H ≤ ‖ΠVkθ‖
2
H
(
〈ξ,Qξ〉H + η

)
,

where ξ ∈ Θδ is the closest point in Θδ to ‖ΠVkθ‖
−1
H ΠVkθ and where η = 2δ

√
Tr(G2).

Since ξ ∈ Hk, with probability at least 1− ε, for any (λ, β) ∈ Λ,

〈ξ,Qξ〉H ≤ Φ−1
+
(
Ñλ(ξ)

)
= Φ−1

+

[
Ñλ

(
ξ + ‖ΠVkθ‖

−1
H
(
Πk −ΠVk

)
θ
)]
.

Let us now remark that for any a ∈ [0, 1], we have Φ+(at) ≤ aΦ+(t), so that aΦ−1
+ (t) ≤

Φ−1
+ (at). Let us also remark that Ñλ(aθ) = a2Ñλ(θ). Therefore

〈θ,Qθ〉H ≤ ‖ΠVkθ‖
2
H Φ−1

+

{
Ñλ

[
‖ΠVkθ‖

−1
H

(
‖ΠVkθ‖Hξ +

(
Πk −ΠVk

)
θ
)]}

+ η

≤ ‖ΠVkθ‖
2
H Φ−1

+ ◦ Φ−1
−

{
N
[
‖ΠVkθ‖

−1
H

(
‖ΠVkθ‖Hξ +

(
Πk −ΠVk

)
θ
)]}

+ η

≤ Φ−1
+ ◦ Φ−1

−

{
N
[
‖ΠVkθ‖Hξ +

(
Πk −ΠVk

)
θ
)]}

+ η

≤ Φ−1
+ ◦ Φ−1

−

(
N
(
Πkθ

)
+ η

)
+ η.

Indeed, ∥∥∥(‖ΠVkθ‖Hξ +
(
Πk −ΠVk

)
θ
)
−Πkθ

∥∥∥ ≤ δ,
and this is a difference of two vectors belonging to the unit ball. In the same way

〈θ,Qθ〉H ≥ ‖ΠVkθ‖
2
H
(
〈ξ,Qξ〉H − η

)
≥ ‖ΠVkθ‖

2
H Φ−

{
Ñλ

[
‖ΠVkθ‖

−1
H

(
‖ΠVkθ‖Hξ +

(
Πk −ΠVk

)
θ
)]}
− η

≥ ‖ΠVkθ‖
2
H Φ− ◦ Φ+

{
N
[
‖Πkθ‖−1

H

(
‖ΠVkθ‖Hξ +

(
Πk −ΠVk

)
θ
)]}
− η

≥ Φ− ◦ Φ+
(
N
(
Πkθ

)
− η

)
− η.

Let us decompose Q in its positive and negative parts and write Q = Q+ − Q−. Using
Lemma 1.24, we deduce the analogous of Proposition 1.26.

Proposition 1.32. For any threshold σ ∈ R+ such that σ ≤ s2
4 and 8ζ(σ) ≤

√
n, in the

case when κ ≥ 3/2, with probability at least 1− 2ε, for any θ ∈ SH, for any k,∣∣max
{
〈θ,Q+θ〉H, σ

}
−max

{
〈Πkθ,GΠkθ〉H, σ

}∣∣ ≤ 2 max
{
〈Πkθ,GΠkθ〉H, σ

}
B∗
(
〈Πkθ,GΠkθ〉H

)
+ 7δ

√
Tr(G2)∣∣max

{
〈θ,Q+θ〉H, σ

}
−max

{
〈Πkθ,GΠkθ〉H, σ

}∣∣ ≤ 2 max
{
〈θ,Q+θ〉H, σ

}
B∗
(
min{〈θ,Q+θ〉H, s2

4}
)

+ 7δ
√

Tr(G2).
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Let us consider {pi}+∞i=1 an orthonormal basis of eigenvectors of G such that the corre-
sponding sequence of eigenvalues {λi, i = 1, . . . ,+∞} is non-increasing. For any θ ∈ SH,
we have

∣∣〈θ,Gθ〉H − 〈Πkθ,GΠkθ〉H
∣∣ =

∣∣∣+∞∑
i=1

(
〈Πkθ, pi〉2H − 〈θ, pi〉2H

)
λi
∣∣∣

=
∣∣∣+∞∑
i=1

(
〈θ,Πkpi〉2H − 〈θ, pi〉2H

)
λi
∣∣∣ =

∣∣∣+∞∑
i=1
〈θ,Πkpi + pi〉H〈θ, pi −Πkpi〉Hλi

∣∣∣
≤ inf

m=1,...,+∞

(
m−1∑
i=1

2λi‖pi −Πkpi‖H + λm

)
.

Indeed,
+∞∑
i=m
〈Πkθ, pi〉2H ≤ 1,

so that
+∞∑
i=m
〈Πkθ, pi〉2Hλi ≤ sup

i=m,...,+∞
λi = λm,

and in the same way
+∞∑
i=m
〈θ, pi〉2Hλi ≤ λm.

We deduce the following result.

Proposition 1.33. Consider some threshold σ ∈ R+ such that σ ≤ s2
4 and 8ζ(σ) ≤

√
n.

Assume that κ ≥ 3/2. With probability at least 1− 2ε, for any θ ∈ SH, for any k,∣∣max
{
〈θ,Q+θ〉H, σ

}
−max

{
〈θ,Gθ〉H, σ

}∣∣ ≤ 2 max
{
〈θ,Gθ〉H, σ

}
B∗
(
〈θ,Gθ〉H

)
+ 7δ

√
Tr(G2) + 3νk∣∣max

{
〈θ,Q+θ〉H, σ

}
−max

{
〈θ,Gθ〉H, σ

}∣∣ ≤ 2 max
{
〈θ,Q+θ〉H, σ

}
B∗
(
min{〈θ,Q+θ〉H, s2

4}
)

+ 7δ
√

Tr(G2) + 2νk,

where B∗ is defined in Proposition 1.31 and

νk = inf
m=1,...,+∞

(
m−1∑
i=1

λi‖pi −Πkpi‖H + λm/2
)

≤ inf
m=1,...,+∞

(
m−1∑
i=1

λi‖pi −Πkpi‖H + Tr(G)/(2m)
)
−→
k→+∞

0.

Remark that we can use this result to bound
∣∣〈θ, (G −Q+)θ〉H

∣∣, using the inequality∣∣〈θ, (G −Q+)θ〉H
∣∣ ≤ ∣∣max

{
〈θ,Q+θ〉H, σ

}
−max

{
〈θ,Gθ〉H, σ

}∣∣+ σ.

Let us mention to conclude this section another way to extend the results from finite
dimension to separable Hilbert spaces. This second method consists in defining directly a
Gaussian perturbation of the parameter in the Hilbert space. Indeed, taking a basis, we
can identify any separable Hilbert space H with the sequence space `2 ⊂ RN. We can take
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as our prior parameter distribution π0 the law on RN of a sequence of independent one-
dimensional Gaussian random variables with mean 0 and variance 1/β. For any θ ∈ `2,
we can then define the posterior πθ as

⊗
i∈NN (θi, 1/β) ∈M1

+(RN). One can prove that

K(πθ, π0) =
+∞∑
i=1
K
(
N (〈θi, β−1),N (0, β−1)

)
=

+∞∑
i=1

β

2 θ
2
i = β‖θ‖2H

2 .

Moreover, when θ′ ∼ πθ,

W (x) = lim
n→+∞

n∑
i=0

θ′ixi, x ∈ `2,

exists πθ-almost surely and is a Gaussian process indexed by `2 ' H, with mean

E
[
W (x)

]
= 〈θ, x〉H, x ∈ H,

and covariance

E
[
W (x)W (y)

]
− E

[
W (x)

]
E
[
W (y)

]
= 1
β
〈x, y〉H, x, y ∈ H.

Using these properties, we can directly generalize to `2 ' H the PAC-Bayesian bounds
stated in Rd in the previous section.
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1.4 Symmetric random matrices

1.4.1 Preliminaries

In this section we generalize the previous results to estimate the expectation of a sym-
metric random matrix. Indeed the Gram matrix can be viewed as the expectation of the
symmetric positive semi-definite random matrix XX>, where X ∈ Rd is a random vector.
Let A ∈ Md(R) be a symmetric random matrix of size d. As already observed for the
Gram matrix, the expectation of A can be recovered via the polarization identity from the
quadratic form

NA(θ) = E
(
θ>Aθ

)
, θ ∈ Rd,

where the expectation is taken with respect to the unknown probability distribution of A
on the space of symmetric matrices of size d. We decompose A = UDU> in its positive
and negative parts

A = A+ −A−,

where A+ and A− are symmetric positive semi-definite random matrices defined by

A+ = UD+U
> and A− = UD−U

>,

and D+ (respectively D−) is the diagonal matrix whose entries are the positive (re-
spectively negative) parts of those of D. According to the previous decomposition, the
quadratic form NA rewrites as

NA(θ) = E
(
θ>Aθ

)
= E

(
θ>A+θ

)
− E

(
θ>A−θ

)
= NA+(θ)−NA−(θ).

Thus in the following we will consider the case where A ∈Md(R) is a symmetric positive
semi-definite random matrix of size d.

1.4.2 Symmetric positive semi-definite random matrices

Let A ∈ Md(R) be a symmetric positive semi-definite random matrix of size d and let
P be the (unknown) probability distribution of A on the space of symmetric positive
semi-definite matrices of size d. Our goal is to estimate the quadratic form

N(θ) = E
(
θ>Aθ

)
, θ ∈ Rd,

where E is the expectation with respect to P, from an i.i.d. sample A1, . . . , An ∈ Md(R)
of symmetric positive semi-definite matrices drawn according to P.
Since A can be decomposed as

A = UDU> =
(
UD1/2U>

)2
,

where D ∈ Md(R) is the diagonal matrix of the eigenvalues of A and U ∈ Md(R) is the
orthogonal matrix of its eigenvectors, the quadratic form N rewrites as

N(θ) = E
(
‖A1/2θ‖2

)
where A1/2 = UD1/2U> is the square root of A.
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The construction of the robust estimator of the quadratic form N follows the one already
done in the case of the Gram matrix with the necessary adjustments.

For any λ > 0 and for any θ ∈ Rd, we define

rλ(θ) = 1
n

n∑
i=1

ψ
(
‖A1/2

i θ‖2 − λ
)
,

where the influence function ψ is defined as in equation (1.2) on page 16.
We use a PAC-Bayesian approach linked with Gaussian perturbations to define and study
a robust estimator of N .
We perturb θ with the Gaussian perturbation πθ ∼ N (θ, β−1I) of mean θ and covariance
matrix β−1I, where β > 0 is a free real parameter to be determined. The following result
holds.

Lemma 1.34. We have∫
‖A1/2θ′‖2 dπθ(θ′) = ‖A1/2θ‖2 + Tr(A)

β
.

Proof. Let W ∈ Rd be a Gaussian random variable with mean A1/2θ and covariance
matrix β−1A. We have

E
[
‖A1/2θ′‖2dπθ(θ′)

]
= E

(
‖W‖2

)
=

d∑
i=1
E
(
〈W, ei〉2

)
where {ei}di=1 is the canonical basis of Rd. Since 〈W, ei〉 is a one-dimensional Gaussian
random variable with mean 〈A1/2θ, ei〉 and variance β−1e>i Aei, we conclude that

E
[
‖A1/2θ′‖2dπθ(θ′)

]
=

d∑
i=1

[
Var

(
〈W, ei〉

)
+ E

(
〈W, ei〉

)2]
= 1
β

Tr(A) + ‖A1/2θ‖2.

According to Lemma 1.34 the empirical criterion rλ rewrites as

rλ(θ) = 1
n

n∑
i=1

ψ

[∫ (
‖A1/2

i θ′‖2 − Tr(Ai)
β

− λ
)
dπθ(θ′)

]
.

With the help of Lemma 1.3 on page 20, we pull the expectation outside the influence
function and we get

ψ
(
‖A1/2θ‖2 − λ

)
≤
∫
χ

(
‖A1/2θ′‖2 − Tr(A)

β
− λ

)
dπθ(θ′)

+ min
{

log(4), 1
8 Var

[
‖A1/2θ′‖2 dπθ(θ′)

]}
where the function χ is defined in equation (1.4) on page 18 and is such that

χ(z) ≤ log
(
1 + z + z2/2

)
, z ∈ R.

The following lemma provides a bound on the variance.
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Lemma 1.35. We have

Var
[
‖A1/2θ′‖2dπθ(θ′)

]
= 4
β
‖Aθ‖2 + 2

β2 Tr(A2).

Proof. Let us decompose A into A = UDU>, where UU> = I and D = diag(λ1, . . . , λd).
Remark that U>θ′ has the same distribution as U>θ+W , where W ∼ N (0, β−1I) so that

Var
[
‖A1/2θ′‖2dπθ(θ′)

]
= Var

( d∑
i=1

(
(U>θ)i +Wi

)2
λi

)

=
d∑
i=1

λ2
i Var

[(
(U>θ)i +Wi

)2] =
d∑
i=1

( 2
β2 + 4

β

(
U>θ

)2
i

)
λ2
i

= 2
β2 Tr(A2) + 4

β
‖Aθ‖2.

As a consequence, we obtain that

ψ
(
‖A1/2θ‖2 − λ

)
≤
∫
χ

(
‖A1/2θ′‖2 − Tr(A)

β
− λ

)
dπθ(θ′)

+ min
{

log(4), 1
2β ‖Aθ‖

2 + Tr(A2)
4β2

}
.

We now use Lemma 1.4 on page 20 with m = ‖Aθ‖, a = log(4), b = 1/(2β) and c =
Tr(A2)/(4β2) to obtain

ψ
(
‖A1/2θ‖2 − λ

)
≤
∫
χ

(
‖A1/2θ′‖2 − Tr(A)

β
− λ

)
dπθ(θ′)

+
∫

min
{

4 log(2), 1
β
‖Aθ′‖2 + Tr(A2)

2β2

}
dπθ(θ′)

and we conclude, by Lemma 1.5, that

ψ
(
‖A1/2θ‖2 − λ

)
≤
∫

log
[
1 + ‖A1/2θ′‖2 − Tr(A)

β
− λ+ 1

2

(
‖A1/2θ′‖2 − Tr(A)

β
− λ

)2

+ c

β

(
‖Aθ′‖2 + Tr(A2)

2β

)]
dπθ(θ′),

where c = 15
8 log(2)(

√
2−1) exp

(
1+2
√

2
2

)
.

In terms of the empirical criterion rλ we have proved that

rλ(θ) ≤ 1
n

n∑
i=1

∫
log
[
1 + ‖A1/2

i θ′‖2 − Tr(Ai)
β

− λ+ 1
2

(
‖A1/2

i θ′‖2 − Tr(Ai)
β

− λ
)2

+ c

β

(
‖Aiθ′‖2 + Tr(A2

i )
2β

)]
dπθ(θ′).
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We use the PAC-Bayesian inequality presented in Proposition 1.7 on page 22 where the
family of posterior distribution is{

πθ ∼ N (θ, β−1I) | θ ∈ Rd, β > 0
}

and the prior distribution is π0 ∼ N (0, β−1I), to provide an upper bound for rλ which is
uniform in θ.

Proposition 1.36. Define t(A, θ′) = ‖A1/2θ′‖2 − Tr(A)
β

− λ. With probability at least

1− ε, for any θ ∈ Rd,

rλ(θ) ≤
∫
E

[
t(A, θ′) + 1

2 t(A, θ
′)2 + c

β

(
‖Aθ′‖2 + Tr(A2)

2β

)]
dπθ(θ′)+ β‖θ‖2

2n + log(ε−1)
n

= E

[
‖A1/2θ‖2 − λ+ 1

2
(
‖A1/2θ‖2 − λ

)2
+ (c+ 2)‖Aθ‖2

β
+ (2 + 3c) Tr(A2)

2β2

]

+ β‖θ‖2

2n + log(ε−1)
n

.

Proof. The proof is essentially the same of the one of Proposition 1.8 on page 25.

In analogy to the definitions given in equation (1.10) on page 26, we introduce

κ = sup
θ∈Rd

E(‖A1/2θ‖2)>0

E
(
‖A1/2θ‖4

)
E
(
‖A1/2θ‖2

)2 .
Using the Cauchy-Schwarz inequality, remark that

E
(
‖Aθ‖2

)
≤ E

(
‖A‖∞‖A1/2θ‖2

)
≤ E

(
‖A‖2∞

)1/2
E
(
‖A1/2θ‖4

)1/2
≤ E

(
‖A‖2∞

)1/2
κ1/2E

(
‖A1/2θ‖2

)
.

that rewrites as
E
[
‖Aθ‖2

]
≤ E

[
‖A‖2∞

]1/2
κ1/2N(θ). (1.46)

We then deduce from Proposition 1.36 the following result.

Proposition 1.37. With probability at least 1− ε, for any θ ∈ Rd,

rλ(θ) ≤ κ

2
[
N(θ)− λ

]2 +
[
1 + (κ− 1)λ+

(2 + c)κ1/2E
(
‖A‖2∞

)1/2
β

][
N(θ)− λ

]
+ (κ− 1)λ2

2 +
(2 + c)κ1/2E

(
‖A‖2∞

)1/2
λ

β
+

(2 + 3c)E
[
Tr(A2)

]
2β2 + β‖θ‖2

2n + log(ε−1)
n

.

Remark that if we consider instead of equation (1.46) any upper bound of the form

E
(
‖Aθ‖2

)
≤ f

[
E(A)

]
N(θ),

Proposition 1.37 holds replacing E
(
‖A‖2∞

)1/2
κ1/2 with f

[
E(A)

]
. Similarly we can replace

E
[
Tr(A2)

]
with an upper bound.
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We also observe that Proposition 1.37 is the analogous in the case of a symmetric pos-
itive semi-definite random matrix of Proposition 1.10 on page 27. Hence according to
section 1.2.2 we define a robust estimator as follows.
Let Λ ⊂

(
R+ \ {0}

)2 be a finite set of possible values of the couple of parameters (λ, β).
We consider the family of estimators

Ñλ(θ) = λ

α̂(θ)2 , (λ, β) ∈ Λ,

where α̂(θ) = sup {α ∈ R+ | rλ(αθ) ≤ 0} and we define

(λ̂, β̂) = arg min
(λ,β)∈Λ

Bλ,β
[
‖θ‖−2Ñλ(θ)

]
,

where Bλ,β is defined in equation (1.20) on page 31. We consider as an estimator

N̂(θ) = Ñ
λ̂
(θ), θ ∈ Rd. (1.47)

We now directly state the analogous of Proposition 1.19 on page 38, choosing the grid

Λ =
{
(λj , βj) | 0 ≤ j < K

}
,

where a > 0 and

K = 1 +
⌈
a−1 log

(
n

72(2 + c)κ1/2

)⌉
,

λj =

√√√√ 2
(κ− 1)n

( (2 + 3c)E
(
Tr(A2)

)
4(2 + c)κ1/2E

(
‖A‖2∞

) exp(ja) + log
(
K/ε

)
,

βj =
√

2(2 + c)κ1/2E
(
‖A‖2∞

)
exp

[
−(j − 1/2))a

]
.

Proposition 1.38. Let σ ∈ R+ be some energy level such that σ ≤ E
(
‖A‖2∞

)1/2. With
probability at least 1− 2ε, for any θ ∈ Rd,∣∣∣∣∣ max{N(θ), σ‖θ‖2}

max{N̂(θ), σ‖θ‖2}
− 1

∣∣∣∣∣ ≤ B∗[‖θ‖−2N(θ)
]
,

where B∗ is defined as

B∗(t) =


n−1/2ζ(max{t, σ})

1− 4n−1/2ζ(max{t, σ})
[
6 + (κ− 1)−1]ζ(max{t, σ}) ≤

√
n

+∞ otherwise

and

ζ(t) =

√√√√2(κ− 1)
(

(2 + 3c)E[Tr(A2)]
4(2 + c)κ1/2E

(
‖A‖2∞

)1/2
t

+ log(K/ε)
)

cosh(a/4)

+

√
2(2 + c)κ1/2E

(
‖A‖2∞

)1/2
t

cosh(a/2).
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We conclude this section by making some comments on the above result.
As already observed in the case of the Gram matrix, the quantity κ− 1 corresponds to a
variance term, and more precisely to

Var
(
‖A1/2θ‖2

)
N(θ)−2.

Moreover the bound does not depend explicitly on the dimension d and in particular the
dimension is replaced by the entropy terms

E
(
Tr(A2)

)
κ1/2E

(
‖A‖2∞

)1/2 max {‖θ‖−2N(θ), σ}
and

E
(
‖A‖2∞

)1/2
κ1/2 max {‖θ‖−2N(θ), σ}

.

Let us remark that they satisfy

E
(
‖A‖2∞

)1/2
κ1/2 ≤

E
(
Tr(A2)

)
κ1/2E

(
‖A‖2∞

)1/2 ≤ E(Tr(A)
)
. (1.48)

Indeed, ‖A‖2∞ ≤ Tr(A2),

E
(
Tr(A2)

)
≤ E

(
‖A‖∞Tr(A)

)
≤ E

(
‖A‖2∞

)1/2
E
(
Tr(A)2)1/2,

and, denoting by {ei}di=1 an orthonormal basis of Rd,

E
(
Tr(A)2) =

∑
1≤i≤d,
1≤j≤d

E
(
‖A1/2ei‖2‖A1/2ej‖2

)

≤
∑

1≤i≤d,
1≤j≤d

E
(
‖A1/2ei‖4

)1/2
E
(
‖A1/2ej‖4

)1/2

≤ κ
∑

1≤i≤d,
1≤j≤d

E
(
‖A1/2ei‖2

)
E
(
‖A1/2ej‖2

)
= κE

(
Tr(A)

)2
.

As a consequence, ζ can be bounded as shown

ζ(t) ≤

√√√√2(κ− 1)
(

(2 + 3c)E[Tr(A)]
4(2 + c)t + log(K/ε)

)
cosh(a/4)

+

√
2(2 + c)κ E[Tr(A)]

t
cosh(a/2).

Let us remark also that in the case when rank(A) = 1 (as it is for the Gram matrix) then
‖A‖2∞ = Tr(A2), so that the two entropy terms are the same. As the entropy terms are
dominated by E

(
Tr(A)

)
, the result can be generalized to the case where A is a random

symmetric positive semi-definite operator in an infinite-dimensional Hilbert space with the
only additional assumption that E[Tr(A)] < +∞. For more detail we refer to section 1.3.
We also recall that if we choose the threshold σ such that 8ζ(σ) =

√
n, so that B∗(t) < +∞

for any t ∈ R+, then σ goes to zero as the sample size grows to infinity as shown in
equation (1.35).
We conclude by recalling that the estimator N̂ is not a quadratic form but that it is possible
to deduce a positive semi-definite quadratic estimator of N as explained in section 1.2.3
on page 39.
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1.5 Covariance matrix
Let X ∈ Rd be a random vector distributed according to the unknown probability measure
P ∈M1

+(Rd). The covariance matrix of X

Σ = E
[(
X − E(X)

)(
X − E(X)

)>]
is a symmetric positive semi-definite random matrix. Our goal is to estimate, uniformly
in θ, the quadratic form associated with Σ

N(θ) = E
(
〈θ,X − E(X)〉2

)
, θ ∈ Rd,

from an i.i.d. sample X1, . . . , Xn ∈ Rd drawn according to P.We cannot use the results we
have proved for the Gram matrix, since the quadratic form N depends on the unknown
quantity E(X). However we can find a workaround, using the results of the previous
section about random symmetric matrices. Indeed, the quadratic form N can be written
as

N(θ) = 1
2 E

(
〈θ,X −X ′〉2

)
where X ′ is an independent copy of X. More generally, given q ∈ N, we may consider q
independent copies X(1), . . . , X(q) of X and the random matrix

A = 1
q(q − 1)

∑
1≤j<k≤q

(
X(j) −X(k))(X(j) −X(k))>.

Remark that

N(θ) = 1
q(q − 1) E

( ∑
1≤j<k≤q

〈θ,X(j) −X(k)〉2
)

= E
(
θ>Aθ

)
.

Consider the sample A1, . . . , Abn/qc of independent copies of A defined as

Ai = 1
q(q − 1)

∑
(i−1)q<j<k≤iq

(Xj −Xk)(Xj −Xk)>.

We can use the results of the previous section to define a robust estimator of N(θ). We
will discuss later how to choose q.
Let us introduce

κ′ = sup
θ∈Rd,

E(‖A1/2θ‖2)>0

E
(
‖A1/2‖4

)
E
(
‖A1/2θ‖2

)2 ,
and κ = sup

θ∈Rd,
E(〈θ,X−E(x)〉2)>0

E
(
〈θ,X − E(X)〉4

)
E
(
〈θ,X − E(X)〉2

)2 .
Lemma 1.39. The two kurtosis coefficients introduced above are related by the relation

κ′ ≤ 1 + τq(κ)/q,

where τq(κ) = κ− 1 + 2
q − 1 .
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Proof. Replacing X with X − E(X) we may assume during the proof that E(X) = 0.
Recalling the definition of covariance, we have

E
(
‖A1/2θ‖4

)
= E

[( 1
q(q − 1)

∑
1≤j<k≤q

〈θ,X(j) −X(k)〉2
)2]

= 1
q2(q − 1)2

∑
1≤j<k≤q
1≤s<t≤q

E
(
〈θ,X(j) −X(k)〉2〈θ,X(s) −X(t)〉2

)

= 1
q2(q − 1)2

{ ∑
1≤j<k≤q
1≤s<t≤q

E
(
〈θ,X(j) −X(k)〉2

)
E
(
〈θ,X(s) −X(t)〉2

)

+
∑

1≤j<k≤q
E
(
〈θ,X(j) −X(k)〉4

)
− E

(
〈θ,X(j) −X(k)〉2

)2

+
∑

1≤j<k≤q
1≤s<t≤q

|{j,k}∩{s,t}|=1

[
E
(
〈θ,X(j) −X(k)〉2〈θ,X(s) −X(t)〉2

)

− E
(
〈θ,X(j) −X(k)〉2

)
E
(
〈θ,X(s) −X(t)〉2

)]}

= 1
4E
(
〈θ,X(2) −X(1)〉2

)2
+ 1

2q(q − 1)E
(
〈θ,X(2) −X(1)〉4

)
− E

(
〈θ,X(2) −X(1)〉2

)2

+ q − 2
q(q − 1)

[
E
(
〈θ,X(1) −X(2)〉2〈θ,X(1) −X(3)〉2

)
− E

(
〈θ,X(1) −X(2)〉2

)2]
Define Wj = 〈θ,X(j)〉.

E
(
(W1 −W2)2)2 = 4N(θ)2,

E
(
(W1 −W2)4) = E

(
W 4

1
)

+ 6E
(
W 2

1
)
E
(
W 2

2
)

+ E
(
W 4

2
)

= 2E
(
W 4

1
)

+ 6E
(
W 2

1
)2 ≤ (2κ+ 6)N(θ)2,

E
(
(W1 −W2)2(W1 −W3)2

)
= E

(
W 4

1
)

+ 3E
(
W 2

2 )2 ≤ (κ+ 3)N(θ)2.

Therefore

E
(
‖A1/2θ‖4

)
≤
(

1 + (q − 2)(κ− 1)
q(q − 1) + (κ+ 1)

q(q − 1)

)
N(θ)2 =

(
1 + τq(κ)

q

)
N(θ)2,

so that κ′ ≤ 1 + τq(κ)/q, since E
(
‖A1/2θ‖2

)
= N(θ).

Remark that
E
(
Tr(A)

)
= Tr

(
E(A)

)
= Tr(Σ) = E

(
‖X − E(X)‖2

)
Proposition 1.40. Let N̂(θ) be the estimator defined in Proposition 1.38, using the en-
tropy bound defined in terms of E

(
Tr(A)

)
= Tr

(
Σ
)
by equation (1.48) in the definition

of the grid of parameters Λ. For any energy level σ ∈ R+ such that σ ≤ Tr(Σ), with
probability at least 1− 2ε, for any θ ∈ Rd,∣∣∣∣∣max{N(θ), σ‖θ‖2}

max{N̂(θ), σ‖θ‖2}
− 1

∣∣∣∣∣ ≤ B∗(‖θ‖−2N(θ)
)
,
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where

B∗(t) =


(
qbn/qc

)1/2
ζ
(
max{t, σ})

1− 4
(
qbn/qc

)1/2
ζ(max{t, σ})

, if
(
6 + q/τq(κ)

)
ζ
(
max{t, σ}

)
≤
(
qbn/qc

)1/2
,

+∞, otherwise,

ζ(t) =
√

2τq(κ)
((2 + 3c) Tr(Σ)

4(2 + c)t + log
(
K/ε

))
cosh(a/4)

+

√
2(2 + c)

(
q + τq(κ)

)
Tr(Σ)

t
cosh(a/2),

K = 1 +
⌈
a−1 log

( bn/qc
72(2 + c)

(
1 + τq(κ)/q

)1/2
)⌉
,

τq(κ) = κ− 1 + 2
q − 1 and c = 15

8 log(2)(
√

2−1) exp
(

1+2
√

2
2

)
.

Proof. The proof follows from Proposition 1.38 replacing κ by κ′ and n by bn/qc. Indeed,
using equation (1.48), we get

ζ(t) ≤

√√√√2(κ′ − 1)
(

(2 + 3c)E[Tr(A)]
4(2 + c)t + log(K/ε)

)
cosh(a/4)

+

√
2(2 + c)κ′E[Tr(A)]

t
cosh(a/2).

Since by Lemma 1.39 we see that κ′ − 1 ≤ τq(κ)/q, we conclude the proof.

As stated at the beginning of this proposition, we have used here rather crude entropy
bounds. We can improve the constants by evaluating more carefully E

(
‖Aθ‖2

)
and

E
[
Tr(A2)

]
.

Lemma 1.41. We have

E
(
‖Aθ‖2

)
≤
(

1− q − 2
q(q − 1)

)
‖Σ‖∞N(θ) + 1

q

(
κ+ 1

q − 1

)
Tr(Σ)N(θ) (1.49)

E
[
Tr
(
A2)] ≤ (1− q − 2

q(q − 1)

)
Tr
(
Σ2)+ 1

q

(
κ+ 1

q − 1

)
Tr(Σ)2. (1.50)

Proof. Replacing X with X − E(X) we may assume that E(X) = 0. Recall that

E
(
‖X‖4

)
≤ κE

(
‖X‖2

)2 = κTr(Σ)2

and E
(
〈X(1), X(2)〉2

)
= Tr(Σ2). We observe that

E
(
‖Aθ‖2

)
= E

(
1

q2(q − 1)2

∑
1≤j<k≤q
1≤s<t≤q

〈θ,X(j)−X(k)〉〈X(j)−X(k), X(s)−X(t)〉〈X(s)−X(t), θ〉
)
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and

E
(
〈θ,X(1) −X(2)〉〈X(1) −X(2), X(3) −X(4)〉〈X(3) −X(4), θ〉

)
= 4E

(
〈θ,X(1)〉〈X(1), X(2)〉〈X(2), θ〉

)
= 4‖Σθ‖2 ≤ 4‖Σ‖∞N(θ),

E
(
〈θ,X(1) −X(2)〉〈X(1) −X(2), X(1) −X(3)〉〈X(1) −X(3), θ〉

)
= E

(
〈θ,X(1)〉2‖X(1)‖2

)
+ 3E

(
〈θ,X(1)〉〈X(1), X(2)〉〈X(2), θ〉

)
≤ κTr(Σ)N(θ) + 3‖Σ‖∞N(θ),

E
(
〈θ,X(1) −X(2)〉〈X(1) −X(2), X(1) −X(2)〉〈X(1) −X(2), θ〉

)
= 2E

(
〈θ,X(1)〉2‖X(1)‖2

)
+ 2E

(
〈θ,X(1)〉2

)
E
(
‖X(1)‖2

)
+ 4E

(
〈θ,X(1)〉〈X(1), X(2)〉〈X(2), θ〉

)
≤ 2(κ+ 1) Tr(Σ)N(θ) + 4‖Σ‖∞N(θ)

Therefore,

E
(
‖Aθ‖2

)
≤
(

1− q − 2
q(q − 1)

)
‖Σ‖∞N(θ) + 1

q

(
κ+ 1

q − 1

)
Tr(Σ)N(θ).

which proves the first inequality. In the same way,

E
(
Tr(A2)

)
= E

(
1

q2(q − 1)2

∑
1≤j<k≤q
1≤s<t≤q

〈X(j) −X(k), X(s) −X(t)〉2
)
,

and

E
(
〈X(1) −X(2), X(3) −X(4)〉2

)
= 4E

(
〈X(1), X(2)〉2

)
= 4 Tr

(
Σ2),

E
(
〈X(1) −X(2), X(1) −X(3)〉2

)
= E

(
‖X(1)‖4

)
+ 3E

(
〈X(1), X(2)〉2

)
≤ κTr(Σ)2 + 3 Tr

(
Σ2),

E
(
〈X(1) −X(2), X(1) −X(2)〉2

)
= 2E

(
‖X(1)‖4

)
+ 2E

(
‖X(1)‖2

)2
+ 4E

(
〈X(1), X(2)〉2

)

≤ 2(κ+ 1) Tr(Σ)2 + 4 Tr
(
Σ2),

which concludes the proof.

Using these tighter bounds, we can improve ζ to

ζ(t) =

√√√√√2τq(κ)
((2 + 3c)

[(
1− q−2

q(q−1)
)
Tr(Σ2) + 1

q

(
κ+ 1

q−1
)
Tr(Σ)2]

4(2 + c)
[(

1− q−2
q(q−1)

)
‖Σ‖∞ + 1

q

(
κ+ 1

q−1
)
Tr(Σ)

]
t

+ log
(
K/ε

))

× cosh(a/4)

+

√
2(2 + c)

[(
1− q−2

q(q−1)
)
q‖Σ‖∞ +

(
κ+ 1

q−1
)
Tr(Σ)

]
t

cosh(a/2).
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Therefore, in the case when,
q‖Σ‖∞ ≤ Tr(Σ),

we can take

ζ(t) =
√

2τq(κ)
((2 + 3c) Tr(Σ)

4(2 + c)t + log(K/ε)
)

cosh(a/4)

+

√
2(2 + c)

(
κ+ 1 + 2

q(q−1)
)
Tr(Σ)

t
cosh(a/2).

If we compare this results with the bound obtained in Proposition 1.19 on page 38 for the
Gram matrix estimator, we see that the first appearance of κ in the definition of ζ has
been replaced with

τq(κ) + 1 = κ+ 2
q − 1 ,

and that the second appearance of κ has been replaced with

κ+ 1 + 2
q(q − 1) .

Thus, when ‖Σ‖∞ ≤ Tr(Σ)/2, that is not a very strong hypothesis, we can take at least
q = 2, and obtain an improved bound for the estimation of Σ that is not much larger than
the bound for the estimation of the centered Gram matrix, that requires the knowledge of
E(X), since the difference between the two bounds is just a matter of replacing κ with κ+2.
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1.6 Empirical results

In this section we present some empirical results that show the performance of our robust
estimator Q.

We use in these experiments a simplified construction that does not lead exactly to the
estimator Q, for which we have proved theoretical results in the previous sections, but
should nonetheless exhibit the same kind of behaviour.

We use an iterative scheme based on the polarization formula to estimate the coefficients
of the Gram matrix in an orthonormal basis of eigenvectors and then update this basis
iteratively to a basis of eigenvectors of the current estimate.

Let X1, . . . , Xn ∈ Rd be a sample drawn according to the probability distribution P and
let λ > 0. Let p ∈ Rn and define S(p, λ) as the solution of

n∑
i=1

ψ
[
λ
(
S(p, λ)−1p2

i − 1
)]

= 0.

In practice we compute S(p, λ) using the Newton algorithm. We observe that, when
pi = 〈θ,Xi〉 and λ is suitably chosen, S(p, λ) is an approximation of the estimator N̂(θ)
of the quadratic form N(θ).
Define S(p) as the solution obtained when the parameter λ is set to

λ = m

√
1
v

[ 2
n

log(ε−1)
(

1− 2
n

log(ε−1)
)]

where m = 1
n

n∑
i=1

p2
i , v = 1

n− 1

n∑
i=1

(
p2
i −m

)2
and ε = 0.1.

According to [7], this value of the scale parameter λ should be close to optimal for the
estimation of a single expectation from an empirical sample distribution.

Let λ̄1 ≥ · · · ≥ λ̄d ≥ 0 be the eigenvalues of the empirical Gram matrix Ḡ, that will be our
starting point, and let u1, . . . , ud be a corresponding orthonormal basis of eigenvectors.
We decompose the empirical Gram matrix as

Ḡ = UDU>

where U is the orthogonal matrix whose columns are the eigenvectors of Ḡ and D is the
diagonal matrix D = diag(λ̄1, . . . , λ̄d). We observe that, by the polarization formula,

u>i Guj = 1
4 [N(ui + uj)−N(ui − uj)] , i, j = 1, . . . , d,

where N(ui + σuj), with σ ∈ {+1,−1}, is approximated by

S
(
〈ui + σuj , X`〉2 , 1 ≤ ` ≤ n

)
.

Taking notation, for any n× d matrix W , we define C(W ) as the d× d matrix of entries

C(W )i,j = 1
4

[
S
((
W`,i +W`,j

)2 | 1 ≤ ` ≤ n
)
− S

((
W`,i −W`,j

)2 | 1 ≤ ` ≤ n
)]
.
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Let Y be the matrix whose i-th row is the vector Xi, so that

(Y U)`,k = 〈uk, X`〉, 1 ≤ ` ≤ n, 1 ≤ k ≤ d.

We update the Gram matrix estimate to

Q0 = UC(Y U)U>.

Then we iterate the update scheme, decomposing Q0 as

Q0 = O0D0O
>
0 ,

where O0O
>
0 = O>0 O0 = I and D0 is a diagonal matrix and computing

Q1 = O0C(Y O0)O>0 .

The inductive update step is more generally the following. Assuming we have constructed
Qk, we decompose it as

Qk = OkDkO
>
k

where OkO>k = O>k Ok = I and Dk is a diagonal matrix and we define the new updated
estimator of G as

Qk+1 = OkC(Y Ok)O>k .

We stop this iterative estimation scheme when ‖Qk−Qk−1‖F falls under a given threshold.
In the following numerical experiment we more simply performed four updates. We take
as our robust estimator of G the last update Qk.

We now present an example of the performance of this estimator, for some i.i.d. sample
of size n = 100 in R10 drawn according to the Gaussian mixture distribution

P = (1− α)N (0,M1) + αN (0, 16 I),

where α = 0.05 and

M1 =


2 1 01 1

0
0.01

0. . .0
0.01

 .

The Gram matrix of P is equal to

G = (1− α)M1 + 16α I =


2, 7 0.95 00.95 1.75

0
0.8095

0. . .0
0.8095

 .

This example illustrates a favorable situation where the performance of the robust esti-
mator is particularly striking when compared to the empirical Gram matrix. As it can
be seen on the expression of the sample distribution as well as on the configuration plots
below, this is a situation of intermittent high variance : the sample is a mixture of a rare
high variance signal and a frequent low variance more structured signal.
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We tested the algorithm on 500 different samples drawn according to the Gaussian mixture
distribution defined above. Random sample configurations are presented in fig. 1.1.
Figure 1.2 shows that the robust estimator Q significantly improves the error in terms
of square of the Frobenius norm when compared to the empirical estimator Ḡ. The red
solid line represents the empirical quantile function of the errors of the robust estimator,
whereas the blue dotted line represents the quantiles of ‖Ḡ−G‖2F .
This quantile function is obtained by sorting the 500 empirical errors in increasing order.
The mean of the square distances ‖Q−G‖2F on 500 trials is 5.6± 0.4, where the indicated
mean estimator and confidence interval is the non-asymptotic confidence interval given by
Proposition 2.4 of [7] at confidence level 0.99. In the case of the empirical estimator, the
mean is 15.5± 2. The empirical standard deviations are respectively 2 and 10. So we see
that in this case the robust estimator reliably decreases the error by a factor larger than 2
and also produces errors with a much smaller standard deviation from sample to sample.
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Figure 1.1: Two data samples projected onto the two first coordinates (above) and the
second and third coordinates (below). Blue circles are drawn from the most frequent
distribution and red triangles from the less frequent one.
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Figure 1.2: The red solid line represents the distances ‖Q − G‖2F , the blue dotted line
represents the distances ‖Ḡ−G‖2F .





Chapter 2

The Empirical Gram Matrix

We consider the problem of estimating the Gram matrix via the usual empirical estima-
tor and we provide dimension-free bounds on the approximation error, using the robust
estimator introduced in chapter 1 as a tool.

2.1 Introduction

Let X ∈ Rd be a random vector distributed according to the unknown probability measure
P ∈M1

+(Rd). We consider the problem of estimating the Gram matrix

G = E
(
XX>

)
=
∫
xx>dP(x)

from an i.i.d. sample X1, . . . , Xn ∈ Rd distributed according to P, by using the usual
empirical estimator

Ḡ = 1
n

n∑
i=1

XiX
>
i .

It is known that, by the law of large numbers, the empirical Gram matrix Ḡ converges to
G as n goes to infinity.

Many results concerning the Gram matrix estimate, or more generally the covariance
matrix estimate, can be found in the literature, e.g. [34], [35], [25]. We briefly describe
the approach presented in [34] and [35].

In Vershynin [35] the problem of estimating the Gram matrix follows from the study of
spectral properties of random matrices with independent rows. The author observes that,
denoting by A the matrix whose i-th row is the vector Xi, the empirical Gram matrix can
be expressed as

Ḡ = 1
n
A>A

where A has, by construction, independent rows. We denote by ‖ · ‖∞ the operator norm.
The following result holds.

Proposition 2.1. (Corollary 5.52, [35]) Assume that the probability distribution P
is supported in some Euclidean ball of radius

√
m. Let δ ∈]0, 1[. With probability at least

1− ε, if
n ≥ Cmδ−2‖G‖−1

∞ log(d/ε),
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where C is an absolute constant, then

‖Ḡ−G‖∞ ≤ δ‖G‖∞.

Typically the result is used withm = O(d‖G‖∞), so that the conclusion of Proposition 2.1
holds with sample size

n ≥ Cδ−2d log(d/ε).

This means that we need to choose the sample size n = O(d log(d)) to approximate the
Gram matrix by the empirical Gram matrix.

A different approach is used in Tropp [34], where a bound on the operator norm of
the approximation error is deduced from the matrix Bernstein inequality. The author
observes that the empirical Gram matrix is an unbiased estimator of the Gram matrix,
i.e. E[Ḡ] = G, which can be expressed as a sum of independent random matrices. Thus,
a strategy to bound the approximation error is to look whether the random matrix Ḡ
deviates from its mean. It is known that in the case of a random variable Z expressed as
a sum of independent random variables the Bernstein inequality provides a bound on the
probability that Z takes values far from its mean. We recall the Bernstein inequality.

Proposition 2.2. (Bernstein inequality) Let S1, . . . , Sn ∈ R be independent random
variables such that, for any k = 1, . . . , n,∣∣Sk − E(Sk)

∣∣ ≤ R.
Let Z =

∑n
k=1 Sk and σ2 = E

[(
Z − E(Z)

)2]
. Then, for t ≥ 0,

P
(∣∣Z − E(Z)

∣∣ ≥ t) ≤ 2 exp
(
− t2/2
σ2 +Rt/3

)
.

What is proved in [34] is that the scalar Bernstein inequality extends directly to matrices,
that is, it is possible to obtain an exponential concentration inequality for the operator
norm of a sum of independent random matrices.

Proposition 2.3. (Matrix Bernstein inequality, [34]). Let S1, . . . , Sn ∈ Md1,d2(R)
be independent random matrices of size d1 × d2, such that, for any k = 1, . . . , n,∥∥Sk − E(Sk)

∥∥
∞ ≤ R.

Let Z =
∑n
k=1 Sk and

σ2 = max
{∥∥∥E [(Z − E(Z))(Z − E(Z))>

]∥∥∥
∞
,
∥∥∥E [(Z − E(Z))>(Z − E(Z))

]∥∥∥
∞

}
.

Then, for t ≥ 0,

P [‖Z − E(Z)‖∞ ≥ t] ≤ (d1 + d2) exp
(
− t2/2
σ2 +Rt/3

)
.

We now describe how to apply the matrix Bernstein inequality to study of the Gram
matrix.
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Let X ∈ Rd be a random vector such that ‖X‖2 ≤ B, and let X1, . . . , Xn ∈ Rd be an i.i.d.
sample drawn according to P. We write the approximation error as

Ḡ−G =
n∑
k=1

Sk

where Sk = 1
n

(
XkX

>
k −G

)
. We have E[Sk] = 0 and

‖Sk‖∞ ≤
1
n

(
‖Xk‖2 + E[‖X‖2]

)
≤ 2B

n
.

It remains to bound the variance σ2. We observe that

σ2 =
∥∥∥∥∥E
[( n∑

k=1
Sk

)2]∥∥∥∥∥
∞

=
∥∥∥∥∥

n∑
k=1

E
(
S2
k

)∥∥∥∥∥
∞

where the last identity depends on the fact that Sk are independent zero-mean matrices.
Since

E
(
S2
k

)
= 1
n2E

[(
XkX

>
k −G

)2
]

= 1
n2E

(
‖Xk‖2XkX

>
k −XkX

>
k G−GXkX

>
k +G2

)
= 1
n2

(
E
(
‖Xk‖2XkX

>
k

)
−G2

)
� 1
n2BG,

where H �M means that M −H is positive semi-definite, we conclude that

σ2 ≤ B

n
‖G‖∞.

Applying the matrix Bernstein inequality with d1 = d2 = d and R = 2B
n , we obtain, with

probability at least 1− 2ε,

‖Ḡ−G‖∞ ≤
1
3

2B
n

log(d/ε) +

√
4B2

n2 log(d/ε)2 + 18B‖G‖∞
n

log(d/ε)

 . (2.1)

We observe that the operator norm

‖Ḡ−G‖∞ = sup
θ∈Sd
|θ>Ḡθ − θ>Gθ|

rewrites, according to the notation of chapter 1, as

‖Ḡ−G‖∞ = sup
θ∈Sd
|N̄(θ)−N(θ)|,

where Sd denotes the unit sphere of Rd.

In this chapter we present, with the help of the robust estimator N̂ introduced in chap-
ter 1, a uniform bound on the approximation error |N(θ)− N̄(θ)| which does not depend
explicitly on the dimension d ( Proposition 2.7).
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2.2 Estimate of the Gram matrix via the empirical Gram
matrix

In this section we aim at estimating the quadratic form N(θ) = θ>Gθ by the empirical
estimator

N̄(θ) = 1
n

n∑
i=1
〈θ,Xi〉2, θ ∈ Rd,

from an i.i.d. sample X1, . . . , Xn ∈ Rd drawn according to P. We will use the robust
estimator constructed in chapter 1 to provide a uniform bound on the approximation
error. We briefly recall its definition.
For θ ∈ Rd and λ > 0, we consider the empirical criterion

rλ(θ) = 1
n

n∑
i=1

ψ
(
〈θ,Xi〉2 − λ

)
,

where the influence function ψ is introduced in equation (1.2) on page 16, and we define
α̂(θ) = sup {α ∈ R+ | rλ(αθ) ≤ 0} . We consider the family of estimators

Ñλ(θ) = λ

α̂(θ)2 , θ ∈ Rd.

Let Λ ⊂
(
R+ \ {0}

)2 be the finite set defined in equation (1.27) on page 34. We observe
that, according to the definition of α̂(θ), for any threshold σ ∈ R+,

1
n

n∑
i=1

ψ
[
λ
(
max{Ñλ(θ), σ}−1〈θ,Xi〉2 − 1

)]
≤ r

(
λ1/2Ñλ(θ)−1/2θ

)
= rλ

(
α̂(θ) θ

)
≤ 0,

where we have used the fact that the function ψ is non-decreasing. Moreover

rλ
(
α̂(θ) θ

)
= 0

as soon as α̂(θ) < +∞ and this holds true, according to Proposition 1.12 on page 28,
with probability at least 1− ε, for any θ ∈ Sd and any (λ, β) ∈ Λ such that Φ+

(
N(θ)

)
> 0.

Indeed, by Proposition 1.12, with probability at least 1−ε, for any θ ∈ Sd, any (λ, β) ∈ Λ,

Ñλ(θ) ≥ Φ+
(
N(θ)

)
.

Let us put
R = max

i=1,...,n
‖Xi‖ (2.2)

and
τλ(t) = λ2R4

3 max{t, σ}2 , t ∈ R+.

Proposition 2.4. Let σ ∈ R+ be some threshold. With probability at least 1− ε, for any
θ ∈ Sd, any (λ, β) ∈ Λ, such that Φ+

(
N(θ)

)
> 0,

N̄(θ)
max{Ñλ(θ), σ}

≤
[
1− τλ

(
Ñλ(θ)

)]−1

+
,

with the convention that 1
0 = +∞. Moreover, with probability at least 1− ε, for any θ ∈ Sd,

any (λ, β) ∈ Λ, such that Φ+
(
N(θ)

)
> 0,

N̄(θ)
Ñλ(θ)

≥ 1− λ2

3 .
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Proof. According to Proposition 1.12, with probability at least 1− ε, for any θ ∈ Sd, any
(λ, β) ∈ Λ, such that Φ+

(
N(θ)

)
> 0

1
n

n∑
i=1

ψ
[
λ
(
Ñλ(θ)−1〈θ,Xi〉2 − 1

)]
= rλ

(
α̂(θ) θ

)
= 0.

Defining g(z) = z − ψ(z), we get

N̄(θ)
max{Ñλ(θ), σ}

− 1 ≤ 1
nλ

n∑
i=1

g
[
λ
(
〈θ,Xi〉2 max{Ñλ(θ), σ}−1 − 1

)]
. (2.3)

In the same way, with probability at least 1− ε, for any θ ∈ Sd, any (λ, β) ∈ Λ such that
Φ+
(
N(θ)

)
> 0, we obtain

1− N̄(θ)
Ñλ(θ)

≤ 1
nλ

n∑
i=1

g
[
λ
(
1− 〈θ,Xi〉2Ñλ(θ)−1

)]
. (2.4)

We remark that the derivative of g is

g′(z) = 1− ψ′(z) =



1 if z /∈ [−1, 1]
z2

2
1 + z + z2

2
if z ∈ [−1, 0]

z2

2
1− z + z2

2
if z ∈ [0, 1],

showing that 0 ≤ g′(z) ≤ z2, and therefore that g is a non-decreasing function satisfying

g(z) ≤ 1
3z

3
+, (2.5)

where z+ = max{z, 0}. Indeed, it is sufficient to observe that g(z) ≤ 0 if z ≤ 0, while, for
z ≥ 0,

g(z) =
∫ z

0
g′(s)ds ≤

∫ z

0
s2ds = 1

3z
3.

Applying equation (2.5) to equation (2.3) we obtain

N̄(θ)
max{Ñλ(θ), σ}

− 1 ≤ λ2

3n

n∑
i=1

(
〈θ,Xi〉2 max{Ñλ(θ), σ}−1 − 1

)3

+

≤ λ2

3nmax{Ñλ(θ), σ}3
n∑
i=1
〈θ,Xi〉6,

where we have used the fact (z2 − 1)+ ≤ z2.

Since, by the Cauchy-Schwarz inequality, 〈θ,Xi〉2 ≤ ‖θ‖2R2, we get

N̄(θ)
max{Ñλ(θ), σ}

− 1 ≤ λ2

3nmax{Ñλ(θ), σ}3
‖θ‖4R4

n∑
i=1
〈θ,Xi〉2

= λ2

3 ×
‖θ‖4R4

max{Ñλ(θ), σ}2
× N̄(θ)

max{Ñλ(θ), σ}
.
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Similarly, since g in non-decreasing, we obtain that, with probability at least 1− ε, for any
θ ∈ Sd, any (λ, β) ∈ Λ such that Φ+

(
N(θ)

)
> 0,

1− N̄(θ)
Ñλ(θ)

≤ 1
nλ

n∑
i=1

g(λ) ≤ λ2

3 ,

where the last inequality follows from equation (2.5).

The above result relates the behavior of empirical estimator N̄ to that of Ñλ and the
accuracy of the approximation depends on R, defined in equation (2.2). At the end of
the section we mention some assumptions under which it is possible to give a non-random
bound on R.
Before stating the bound on the approximation error we introduce the following result.

Proposition 2.5. With probability at least 1 − 2ε, for any θ ∈ Sd, any (λ, β) ∈ Λ, any
σ > 0,

max{N̄(θ), σ} ≤ Φ−1
−

(
max{N(θ), σ}

)[
1− τλ

(
N(θ)

)]−1

+

max
{
N̄(θ), σ

}
≤ Φ−1

−

(
max{N(θ), σ}

)[
1− τλ

(
N̄(θ)

[
1− τλ(σ)

]
+

)]−1

+

N̄(θ) ≥
(

1− λ2

3

)
+

Φ+
(
N(θ)

)
where Φ+ and Φ− are defined in Proposition 1.12 on page 28.

Proof. We consider the threshold

σ′ = Φ−1
−
(
max{N(θ), σ}) ≥ max{N(θ), σ},

where we have used the fact that, by definition, Φ−(t)−1 ≥ t, for any t ∈ R+. We assume
that we are in the intersection of the two events of Proposition 1.12, which holds true with
probability at least 1− 2ε, so that

σ′ ≥ max{N(θ), σ, Ñλ(θ)}. (2.6)

By Proposition 2.4, choosing as threshold max{σ, σ′}, we get

N̄(θ)
max{Ñλ(θ), σ, σ′}

≤
[
1− τλ

(
max{Ñλ(θ), σ′})

]−1

+
,

(where τλ is still defined with respect to σ), so that, according to equation (2.6),

N̄(θ) ≤ σ′
[
1− τλ

(
σ′
)]−1

+ . (2.7)

As a consequence, recalling the definition of σ′, we have

N̄(θ) ≤ Φ−1
−

(
max{N(θ), σ}

)[
1− τλ

(
N(θ)

)]−1

+
.

Thus, observing that

σ ≤ Φ−1
− (σ) ≤ Φ−1

−

(
max{N(θ), σ}

)[
1− τλ

(
N(θ)

)]−1

+
,
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we obtain the first inequality of the proposition. To prove the second inequality, we use
equation (2.7) once to see that

σ′ ≥ N̄(θ)
[
1− τλ(σ′)

]
+ ≥ N̄(θ)

[
1− τλ(σ)

]
+,

and we use it again to get

N̄(θ) ≤ Φ−1
−
(
max{N(θ), σ}

)[
1− τλ(σ′)

]−1

+

≤ Φ−1
−
(
max{N(θ), σ}

)[
1− τλ

(
N̄(θ)[1− τλ(σ)]+

)]−1

+
.

To complete the proof of the second inequality, it is enough to remark that

σ ≤ Φ−1
− (σ) ≤ Φ−1

−

(
max{N(θ), σ}

)[
1− τλ

(
N̄(θ)

[
1− τλ(σ)

]
+

)]−1

+
.

To prove the last inequality, it is sufficient to remark that Ñλ(θ) ≥ Φ+
(
N(θ)

)
by Propo-

sition 1.12 and hence, when Φ+
(
N(θ)

)
> 0,

N̄(θ) ≥
(

1− λ2

3

)
+

Φ+
(
N(θ)

)
.

On the other hand, when Φ+
(
N(θ)

)
= 0, this inequality is also obviously satisfied.

According to the previous result we present a bound on the approximation error which
uses the notation introduced in chapter 1.

Corollary 2.6. With probability at least 1−2ε, for any θ ∈ Sd, any (λ, β) ∈ Λ, any σ > 0,

max{N̄(θ), σ}
max{N(θ), σ} − 1 ≤ B̃λ,β

(
N(θ)

)
+

τλ
(
N(θ)

)[
1− τλ

(
N(θ)

)]
+
[
1−Bλ,β

(
N(θ)

)]
+
,

1− max{N̄(θ), σ}
max{N(θ), σ} ≤ Bλ,β

(
N(θ)

)
+ λ2

3 ,

where Bλ,β is defined in equation (1.20) on page 31 and B̃λ,β on page 33. In particular∣∣∣∣ max{N̄(θ), σ}
max{N(θ), σ} − 1

∣∣∣∣ ≤ B̃λ,β(N(θ)
)

+
τλ
(
N(θ)

)[
1− τλ

(
N(θ)

)]
+
[
1−Bλ,β

(
N(θ)

)]
+
. (2.8)

Proof. We observe that, by Proposition 2.5,

max{N̄(θ), σ} ≤ Φ−1
−
(
max{N(θ), σ}

)[
1− τλ

(
N(θ)

)]−1
+

≤ max{N(θ), σ}[
1− τλ

(
N(θ)

)]
+
[
1−Bλ,β

(
N(θ)

)]
+
,

which implies

max{N̄(θ), σ}
max{N(θ), σ} − 1 ≤

Bλ,β
(
N(θ)

)[
1−Bλ,β

(
N(θ)

)]
+

+
τλ
(
N(θ)

)[
1− τλ

(
N(θ)

)]
+
[
1−Bλ,β

(
N(θ)

)]
+
.

Applying Lemma 1.15 on page 33 we obtain the first inequality.
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To prove the second inequality we observe that, by Proposition 2.5,

max{N̄(θ), σ} ≥
(

1− λ2

3

)
+

Φ+
(
max{N(θ), σ}

)
=
(

1− λ2

3

)
+

max{N(θ), σ}
[
1 +Bλ,β

(
N(θ)

)]−1
,

where we have used the fact that Φ+
(
max{z, σ}

)
= max{z, σ}

(
1 + Bλ,β(z)

)−1
as shown

in equation (1.23) on page 31. Thus we conclude that

1− max{N̄(θ), σ}
max{N(θ), σ} ≤

Bλ,β
(
N(θ)

)
+ λ2/3

1 +Bλ,β
(
N(θ)

) ≤ Bλ,β
(
N(θ)

)
+ λ2

3 .

We observe that the fact of introducing the robust estimator Ñλ in the computation of
the approximation error has led to provide bounds which do not depend explicitly on the
dimension d.
According to the results introduced in chapter 1 we conclude the section by presenting a
more explicit (dimension-free) bound on the approximation error.
We recall some notation. Let a > 0 and let

K = 1 +
⌈
a−1 log

(
n

72(2 + c)κ1/2

)⌉

where κ = sup θ∈Rd
E(〈θ,X〉2)>0

E
(
〈θ,X〉4

)
E
(
〈θ,X〉2

)2 and c = 15
8 log(2)(

√
2−1) exp

(
1+2
√

2
2

)
. We put

B∗(t) =


n−1/2ζ(max{t, σ})

1− 4n−1/2ζ(max{t, σ})
[
6 + (κ− 1)−1]ζ(max{t, σ}) ≤

√
n

+∞ otherwise

where

ζ(t) =

√√√√2(κ− 1)
(

(2 + 3c) E
(
‖X‖4

)1/2
4(2 + c)κ1/2t

+ log(K/ε)
)

cosh(a/4)

+

√
2(2 + c)κ1/2E

(
‖X‖4

)1/2
t

cosh(a/2).

The following proposition holds true.

Proposition 2.7. Consider any threshold σ ∈ R+ such that σ ≤ E
(
‖X‖4

)1/2. Define

τ∗(t) = λ∗(t)2 exp(a/2)R4

3 max{t, σ}2 , t ∈ R+,

where R is defined in equation (2.2) and λ∗ in equation (1.31) on page 36. With probability
at least 1− 2ε, for any θ ∈ Sd,∣∣∣∣ max{N̄(θ), σ}

max{N(θ), σ} − 1
∣∣∣∣ ≤ B∗(N(θ)

)
+

τ∗
(
N(θ)

)[
1− τ∗

(
N(θ)

)]
+
[
1−B∗

(
N(θ)

)]
+
.
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Proof. The proof follows directly by applying Corollary 2.6 to (λ̂, β̂) ∈ Λ defined in
equation (1.27) on page 34. Indeed, by Proposition 1.17 on page 35, for any t ∈ R+,

Bλ
̂
,β
̂
(t) ≤ B∗(t)

and, by equation (1.34) on page 36, we have λ̂ ≤ λ∗(θ) exp(a/4).

Notes: non-random bounds for R

We conclude this section by mentioning assumptions under which it is possible to give a
non-random bound for R, defined in equation (2.2).

Let us assume that, for some exponent p ≥ 1 and some positive constants α and η,

E

[
exp

(
α

2

( ‖X‖2/p
Tr(G)1/p − 1− η2/p

))]
≤ 1.

In this case, with probability at least 1− ε,

R ≤ Tr(G)1/2
(

1 + η2/p + 2α−1 log
(
n/ε

))p/2
, (2.9)

where we recall that Tr(G) = E
[
‖X‖2

]
.

To give a point of comparison, in the centered Gaussian case where X ∼ N (0, G) is a
Gaussian vector, we have, for any α ∈ [0, λ−1

1 Tr(G)[,

E

[
exp

[
α

2

(
‖X‖2

Tr(G) + 1
α

d∑
i=1

log
(

1− αλi
Tr(G)

))]]
= 1,

where λ1 ≥ · · · ≥ λd are the eigenvalues of G. Therefore, with probability at least 1− ε,

R ≤ Tr(G)1/2
(
− 1
α

d∑
i=1

log
(

1− αλi
Tr(G)

)
+ 2 log(n/ε)

α

)1/2

.

Moreover we observe that

lim
α→0+

− 1
α

d∑
i=1

log
(

1− αλi
Tr(G)

)
= 1.

In order to replace equation (2.9) with some polynomial assumptions we need to replace
R by

R̃ =
( 1
n

n∑
i=1
‖Xi‖6

)1/6
.

Indeed, by the Bienaymé Chebyshev inequality, we get that, with probability at least 1−ε,

R̃ ≤
(
E
[
‖X‖6

]
+
(
E
[
‖X‖12]
nε

)1/2)1/6

≤
(
1 + (nε)−1/2

)1/6
E
[
‖X‖12

]1/12
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and hence, with probability at least 1− n−1,

R̃ ≤ 21/6E
[
‖X‖12

]1/12
.

Also in the case where we consider this new quantity R̃ we obtain a bound of the form of
Proposition 2.7. Indeed we observe that another way to take advantage of equation (2.3)
is to write

N̄(θ)
max{Ñλ(θ), σ}

− 1 ≤ λ2‖θ‖6

3 max{Ñλ(θ), σ}3
1
n

n∑
i=1
‖Xi‖6.

Thus, putting

ζλ(t) = λ2R̃6

3 max{t, σ}3 , t ∈ R+,

we get that, for any θ ∈ Sd,

N̄(θ)
max{Ñλ(θ), σ}

≤ 1 + ζλ
(
Ñλ(θ)

)
.

The same reasoning used to prove Proposition 2.5 shows that, with probability at least
1− ε, for any θ ∈ Sd, any (λ, β) ∈ Λ, any σ > 0,

max{N̄(θ), σ} ≤ Φ−1
−
(
max{N(θ), σ}

)[
1 + ζλ

(
N(θ)

)]
.

As a consequence, with probability at least 1− 2ε, for any θ ∈ Sd, any (λ, β) ∈ Λ,∣∣∣∣max{N̄(θ), σ}
max{N(θ), σ} − 1

∣∣∣∣ ≤ B̃λ,β(N(θ)
)

+
ζλ
(
N(θ)

)[
1−Bλ,β

(
N(θ)

)]
+
.

We conclude by stating the analogous of Proposition 2.7.

Proposition 2.8. Let 0 < σ ≤ E
(
‖X‖4

)1/2 and let us put

ζ∗(t) = λ∗(t)2 exp(a/2) R̃6

3 max{t, σ}3 , t ∈ R+.

With probability at least 1− 2ε, for any θ ∈ Sd,∣∣∣∣ max{N̄(θ), σ}
max{N(θ), σ} − 1

∣∣∣∣ ≤ B∗(N(θ)
)

+
ζ∗
(
N(θ)

)[
1−B∗

(
N(θ)

)]
+
.



Chapter 3

Principal Component Analysis

We use the quadratic estimator introduced in chapter 1 to construct robust estimators of
the eigenvalues of the Gram matrix. Based on this result we propose a new approach that
qualifies the stability of principal component analysis independently of the dimension of
the ambient space.

3.1 Introduction

Principal Component Analysis (PCA) is a classical tool for dimensionality reduction. The
basic idea of PCA is to reduce the dimensionality of a dataset by projecting it into the space
spanned by the directions of maximal variance, that are called its principal components.
Since this set of directions lies in the space generated by the eigenvectors associated with
the largest eigenvalues of the covariance matrix of the sample, the dimensionality reduction
is achieved by projecting the dataset into the space spanned by these eigenvectors, which
in the following we call largest eigenvectors.

Given X ∈ Rd a random vector distributed according to the unknown probability dis-
tribution P ∈ M1

+(Rd), the goal is to estimate the eigenvalues and eigenvectors of the
covariance matrix of X

Σ = E
[(
X − E(X)

)(
X − E(X)

)>]
from an i.i.d. sample X1, . . . , Xn ∈ Rd drawn according to P. We have already observed
that in the case where the random vector X is centered the covariance matrix Σ is the
Gram matrix

G = E
(
XX>

)
.

In this chapter we will consider the case of the Gram matrix but similar results can be
deduced for the covariance matrix.
As in chapter 1 we introduce the quadratic form

N(θ) = θ>Gθ, θ ∈ Rd,

and we observe that, denoting by p1, . . . , pd an orthonormal basis of eigenvectors of G, the
i-th eigenvalue of the Gram matrix is λi = N(pi).
From now we denote by λ1 ≥ · · · ≥ λd the eigenvalues of G and we assume that the
eigenvectors p1, . . . , pd are ranked according to the decreasing order of their eigenvalues.
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Let Ĝ = Q+ denote the positive part of the symmetric matrix Q defined in equation (1.37)
on page 40. Let λ̂1 ≥ · · · ≥ λ̂d be its eigenvalues and q1, . . . , qd the corresponding orthonor-
mal basis of eigenvectors.

In this chapter we propose some robust versions of PCA. We first show in section 3.2 that
each eigenvalue λ̂i of Ĝ is a robust estimator of the corresponding eigenvalue of the Gram
matrix. As a consequence, the orthogonal projector on the largest eigenvectors of G can be
estimated by the projector on the largest eigenvectors of Ĝ. The behavior of this estimator
is related to the size of the gap in the spectrum of the Gram matrix and in order to have
a good approximation we need to have a large eigengap as shown in section 3.3. To avoid
the assumption of a large gap in the spectrum of G we propose in section 3.4 a robust
version of PCA which consists in performing a smooth cut-off of the spectrum of the Gram
matrix via a Lipschitz function. We provide bounds on the approximation error, in terms
of the operator norm ( Proposition 3.8) and of the Frobenius norm ( Proposition 3.9), that
replace the size of the eigengap by the inverse of the Lipschitz constant.

3.2 Estimate of the eigenvalues

In this section we prove that each eigenvalue of Ĝ is a robust estimator of the corresponding
eigenvalue of the Gram matrix.
We first recall some notation. Let a > 0 and let

K = 1 +
⌈
a−1 log

(
n

72(2 + c)κ1/2

)⌉

where c = 15
8 log(2)(

√
2−1) exp

(
1+2
√

2
2

)
and

κ = sup
θ∈Rd

E(〈θ,X〉2)>0

E
(
〈θ,X〉4

)
E
(
〈θ,X〉2

)2 .

Let s2
4 = E

(
‖X‖4

)1/2 and let σ ∈]0, s2
4] be a threshold. We put

B∗(t) =


n−1/2ζ(max{t, σ})

1− 4n−1/2ζ(max{t, σ})
[
6 + (κ− 1)−1]ζ(max{t, σ}) ≤

√
n

+∞ otherwise

where

ζ(t) =

√√√√2(κ− 1)
(

(2 + 3c) s2
4

4(2 + c)κ1/2t
+ log(K/ε)

)
cosh(a/4) +

√
2(2 + c)κ1/2 s2

4
t

cosh(a/2).

(3.1)
The following result holds.

Proposition 3.1. Let us assume that 8ζ(σ) ≤
√
n, σ ≤ s2

4 and that κ ≥ 3/2. With
probability at least 1− 2ε, for any i = 1, . . . , d, the two following inequalities hold together∣∣max{λi, σ} −max{λ̂i, σ}

∣∣ ≤ 2 max{λi, σ}B∗(λi) + 5δ‖G‖F ,∣∣max{λi, σ} −max{λ̂i, σ}
∣∣ ≤ 2 max{λ̂i, σ}B∗

(
min

{
λ̂i, s

2
4
})

+ 5δ‖G‖F .
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Proof. We observe that, for any i ∈ {1, . . . , d}, the vector space

span{q1, . . . , qi−1}⊥ ∩ span{p1, . . . , pi} ⊂ Rd

is of dimension at least 1, so that the set

Vi =
{
θ ∈ Sd | θ ∈ span{q1, . . . , qi−1}⊥ ∩ span{p1, . . . , pi}

}
⊂ Rd

is non-empty. Indeed, putting A = span{q1, . . . , qi−1}⊥ and B = span{p1, . . . , pi}, we see
that dim(A∩B) = dim(A) + dim(B)−dim(A+B) ≥ 1, since dim(A+B) ≤ dim(Rd) = d
and dim(A) + dim(B) = d + 1. Hence, there exists θi ∈ Vi and for such a θi, we have
N(θi) ≥ λi. It follows that

max{λi, σ} ≤ sup {max{N(θ), σ} | θ ∈ Vi}

≤ sup
{

max{N(θ), σ} | θ ∈ Sd, θ ∈ span{q1, . . . , qi−1}⊥
}
.

Therefore, according to Lemma 1.25 on page 43,

max{λi, σ}
(
1− 2B∗(λi)

)
≤ sup

{
max{θ>Qθ, σ} | θ ∈ Sd ∩ span{q1, . . . , qi−1}⊥

}
+ 5δ‖G‖F

≤ max{λ̂i, σ}+ 5δ‖G‖F .

In the same way,

max{λ̂i, σ} ≤ sup
{

max{N(θ), σ}
(
1 + 2B∗

(
N(θ)

)
| θ ∈ Sd ∪ span{p1, . . . , pi−1}⊥

}
+ 5δ‖G‖F

≤ max{λi, σ}
(
1 + 2B∗(λi)

)
+ 5δ‖G‖F ,

max{λ̂i, σ}
(
1− 2B∗

(
min{λ̂i, s2

4}
))
≤ sup

{
max{N(θ), σ} | θ ∈ Sd ∪ span{p1, . . . , pi−1}⊥

}
+ 5δ‖G‖F

≤ max{λi, σ}+ 5δ‖G‖F ,

max{λi, σ} ≤ sup
{

max{θ>Qθ, σ}
(
1 + 2B∗

(
min{θ>Qθ, s2

4}
))

| θ ∈ Sd ∪ span{q1, . . . , qi−1}⊥
}

+ 5δ‖G‖F ,

≤ max{λ̂i, σ}
(
1 + 2B∗

(
min{λ̂i, s2

4}
))

+ 5δ‖G‖F .

In all these inequalities we have used the fact that

t 7→ max{t, σ}
(
1− 2B∗(min{t, s2

4})
)

t 7→ max{t, σ}
(
1 + 2B∗(min{t, s2

4})
)

are non-decreasing (the latter according to Lemma 1.22 on page 41) and that λi ≤ s2
4.

This proves the proposition for the eigenvalues of Q, and therefore also for their positive
parts, that are the eigenvalues of Q+.

As a consequence, using the fact that

|λi − λ̂i| ≤
∣∣max{λi, σ} −max{λ̂i, σ}

∣∣+ σ,

we obtain the following result.
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Corollary 3.2. Under the same assumptions as in Proposition 3.1, with probability at
least 1− 2ε, for any i = 1, . . . , d,

|λi − λ̂i| ≤ 2 max{λi, σ}B∗
(
λi
)

+ 5δ‖G‖F + σ,

|λi − λ̂i| ≤ 2 max{λ̂i, σ}B∗
(
min

{
λ̂i, s

2
4
})

+ 5δ‖G‖F + σ.

We present two more bounds on the estimation error that depend on the largest eigenvalues
λ1 and λ̂1 respectively.

Corollary 3.3. Under the same assumptions as in Proposition 3.1, with probability at
least 1− 2ε, for any i = 1, . . . , d,

|λi − λ̂i| ≤ 2 max{λ1, σ}B∗
(
λ1
)

+ 5δ‖G‖F + σ,

|λi − λ̂i| ≤ 2 max{λ̂1, σ}B∗
(
min

{
λ̂1, s

2
4
})

+ 5δ‖G‖F + σ.

Proof. The proof follows from Lemma 1.22 on page 41.

In order to simplify notation, we define

B(t) = 2 max{t, σ}B∗
(
min{t, s2

4}
)

+ 7δ‖G‖F + σ. (3.2)

Remark that, since B∗ is non-increasing, t 7→ max{t, σ}B∗(min{t, s2
4}) is non-decreasing

by Lemma 1.22, and since B∗(t) ≤ 1/4, B(t+ a) ≤ B(t) + a/2, for any a ∈ R+.

3.3 Standard Principal Component Analysis
A method to determine the number of relevant components is based on the difference in
magnitude between successive eigenvalues. In this section we study the projection on the
r largest eigenvectors p1, . . . , pr of the Gram matrix, assuming that there is a gap in the
spectrum of the Gram matrix, meaning that for some positive constant δ,

λr − λr+1 ≥ δ. (3.3)

We denote by Πr the orthogonal projector on the r largest eigenvectors p1, . . . , pr of G
and similarly by Π̂r the orthogonal projector on the r largest eigenvectors q1, . . . , qr of its
estimate Ĝ.
Our goal is to provide a bound on the approximation ‖Πr − Π̂r‖∞ that does not depend
explicitly on the dimension d of the ambient space.

Since Πr and Π̂r have the same rank, we can write

‖Πr − Π̂r‖∞ = sup
θ∈Sd

θ∈Im(Π̂r)

‖Πrθ − Π̂rθ‖

as shown in Lemma B.5 in appendix B. Moreover, for any θ ∈ Im(Π̂r) ∩ Sd, we observe
that

‖Πrθ − Π̂rθ‖2 = ‖Πrθ − θ‖2

= ‖
r∑
i=1
〈θ, pi〉pi −

d∑
i=1
〈θ, pi〉pi‖2

=
d∑

i=r+1
〈θ, pi〉2.
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Since θ ∈ Im(Π̂r), it can be written as θ =
∑r
k=1〈θ, qk〉qk with

∑r
k=1〈θ, qk〉2 = 1, so that

‖Πrθ − Π̂rθ‖2 =
d∑

i=r+1

(
r∑

k=1
〈θ, qk〉〈qk, pi〉

)2

.

Hence, by the Cauchy-Schwarz inequality, we get

‖Πrθ − Π̂rθ‖2 ≤
d∑

i=r+1

(
r∑

k=1
〈θ, qk〉2

)(
r∑

k=1
〈qk, pi〉2

)
(3.4)

=
r∑

k=1

d∑
i=r+1

〈qk, pi〉2. (3.5)

Before stating the main result, we introduce a technical lemma.

Lemma 3.4. With probability at least 1− 2ε, for any k ∈ {1, . . . , d}, the two inequalities
hold together

d∑
i=1

(λi − λk)2 〈qk, pi〉2 ≤ 2B (λ1)2 (3.6)

d∑
i=1

(
λi − λ̂k

)2
〈qk, pi〉2 ≤ B (λ1)2 , (3.7)

where B is defined in equation (3.2).

Proof. We observe that,

‖G− Ĝ‖∞ = max
{

sup
θ∈Sd

θ>
(
G− Ĝ

)
θ, sup

θ∈Sd
θ>
(
Ĝ−G

)
θ
}

= sup
θ∈Sd

∣∣N(θ)− θ>Ĝθ
∣∣.

Thus, by Corollary 1.28 on page 44, with probability at least 1− 2ε,

sup
θ∈Sd
‖Gθ − Ĝθ‖ ≤ B (λ1) .

To prove equation (3.7) it is sufficient to observe that, since

‖Gθ − Ĝθ‖ = ‖
d∑

i,j=1
(λi − λ̂j)〈θ, qj〉〈pi, qj〉pi‖

choosing θ = qk, with k ∈ {1, . . . , d},

‖Gqk − Ĝqk‖2 =
d∑
i=1

(λi − λ̂k)2〈qk, pi〉2.

On the other hand, to prove equation (3.6), we observe that

‖Gθ − Ĝθ‖ = ‖
d∑
i=1

λi〈θ, pi〉pi −
d∑
i=1

λ̂i〈θ, qi〉qi‖

= ‖
d∑
i=1

λi (〈θ, pi〉pi − 〈θ, qi〉qi)−
d∑
i=1

(
λ̂i − λi

)
〈θ, qi〉qi‖

≥ ‖
d∑
i=1

λi (〈θ, pi〉pi − 〈θ, qi〉qi) ‖ − ‖
d∑
i=1

(
λ̂i − λi

)
〈θ, qi〉qi‖
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where, by Corollary 3.3,

‖
d∑
i=1

(
λ̂i − λi

)
〈θ, qi〉qi‖2 =

d∑
i=1

(
λ̂i − λi

)2
〈θ, qi〉2

≤ B (λ1)2 .

Choosing again θ = qk, for k ∈ {1, . . . , d}, we get

‖
d∑
i=1

λi (〈qk, pi〉pi − 〈qk, qi〉qi) ‖2 = ‖
d∑

i,j=1
(λi − λj) 〈qk, qj〉〈qj , pi〉pi‖2

= ‖
d∑
i=1

(λi − λk) 〈qk, pi〉pi‖2

=
d∑
i=1

(λi − λk)2 〈qk, pi〉2,

which concludes the proof.

We now apply Lemma 3.4 to our problem. The following proposition holds.

Proposition 3.5. With probability at least 1− 2ε,

‖Πr − Π̂r‖∞ ≤
√

2r
λr − λr+1

B (λ1)

where B is defined in equation (3.2) and λ1 is the largest eigenvalue of the Gram matrix.

Proof. We observe that, for any k ∈ {1, . . . , r},

d∑
i=r+1

(λk − λi)2 〈qk, pi〉2 ≥
d∑

i=r+1
(λr − λi)2 〈qk, pi〉2

≥ (λr − λr+1)2
d∑

i=r+1
〈qk, pi〉2.

Then, by Lemma 3.4, with probability at least 1− 2ε,

(λr − λr+1)2
d∑

i=r+1
〈qk, pi〉2 ≤ 2B (λ1)2 .

Applying the above inequality to equation (3.5) we conclude the proof.

We observe that the above proposition provides a bound on the approximation error
‖Πr − Π̂r‖∞ that does not depend on the dimension d of the ambient space, since B
is dimension-free. However the result relates the quality of the approximation of the
orthogonal projector Πr by the robust estimator Π̂r to the size of the spectral gap. In
particular the larger the eigengap, the better the approximation is.
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3.4 Robust Principal Component Analysis
In order to avoid the requirement of a large spectral gap, we replace the mere projection
on the largest eigenvectors of the Gram matrix by a smooth cut-off of the spectrum of G
via a Lipschitz function. In particular we consider a function which is one on the largest
eigenvalues and is zero on the smallest ones. In the case there is a (sufficiently large) gap in
the spectrum of G, the best Lipschitz constant is exactly the inverse size of the eigengap.
In such a way we replace, in some sense, the size of the eigengap with the inverse of the
Lipschitz constant.

Let f be a Lipschitz function with Lipschitz constant 1/L.We decompose the Gram matrix
as

G = UDU>

where D = diag(λ1, . . . , λd) ∈ Md(R) is the diagonal matrix whose entries are the eigen-
values of G and U ∈Md(R) is the orthogonal matrix of eigenvectors of G. We define f(G)
as

f(G) = Uf(D)U>

where, for any i, j ∈ {1, . . . , d},

|f(λi)− f(λj)| ≤
1
L
|λi − λj |.

We provide some results on the estimate of f(G), the image of the Gram matrix by the
smooth cut-off f , in terms of the operator norm ‖·‖∞ and of the Frobenius norm ‖·‖F .We
recall that, given M ∈Md(R) a symmetric matrix, the Frobenius norm of M is defined as

‖M‖2F = Tr(M>M)

and that ‖M‖∞ ≤ ‖M‖F .

Proposition 3.6. Let M, M ′ ∈ Md(R) be two symmetric matrices. We denote by
µ1, . . . , µd the eigenvalues of M related to the orthonormal basis of eigenvectors p1, . . . , pd
and by µ′1, . . . , µ′d the eigenvalues of M ′ related to the orthonormal basis of eigenvectors
q1, . . . , qd. We have

‖M −M ′‖2F =
d∑

i,k=1
(µi − µ′k)2〈pi, qk〉2.

Proof. Since {pi}di=1 is an orthonormal basis of eigenvectors of M and {µi}di=1 the corre-
sponding eigenvalues, we can write M as

M =
d∑
i=1

µipip
>
i .

Similarly,

M ′ =
d∑
i=1

µ′iqiq
>
i .

Our goal is to evaluate ‖M −M ′‖F where, by definition,

M −M ′ =
d∑
i=1

µipip
>
i −

d∑
k=1

µ′kqkq
>
k

=
d∑

i,k=1
(µi − µ′k)〈pi, qk〉qkp>i .
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We observe that M −M ′ is a symmetric matrix and its Frobenius norm is

‖M −M ′‖2F = Tr((M −M ′)>(M −M ′)),

where

(M −M ′)>(M −M ′) =
d∑

i,j,k=1
(µi − µ′k)(µi − µ′j)〈pi, qk〉〈pi, qj〉qkq>j .

Considering that Tr(qkq>j ) = δjk, we conclude that

‖M −M ′‖2F =
d∑

i,j,k=1
(µi − µ′k)(µi − µ′j)〈pi, qk〉〈pi, qj〉δjk

=
d∑

i,k=1
(µi − µ′k)2〈pi, qk〉2.

Corollary 3.7. Let f be a 1/L-Lipschitz function. We have

‖f(M)− f(M ′)‖F ≤
1
L
‖M −M ′‖F .

Proof. It is sufficient to observe that using twice Proposition 3.6 we obtain

‖f(M)− f(M ′)‖2F =
d∑

i,k=1
(f(µi)− f(µ′k))2〈pi, qk〉2

≤ 1
L2

d∑
i,k=1

(µi − µ′k)2〈pi, qk〉2 = 1
L2 ‖M −M

′‖2F .

We recall that we are more particularly interested in the Lipschitz function f that is one
on the largest eigenvalues and zero on the smallest ones.

Proposition 3.8. (Operator norm) With probability at least 1 − 2ε, for any 1/L-
Lipschitz function f ,

‖f(G)− f(Ĝ)‖∞ ≤ min
r∈{1,...,d}

L−1

B (λ1) +

√√√√4rB (λ1)2 + 2
d∑

i=r+1
λ2
i

 ,
where B is defined in equation (3.2) and λ1 ≥ · · · ≥ λd are the eigenvalues of G.

Proof. We observe that all the proof holds in the event of probability at least 1 − 2ε
described in Proposition 3.1. Let H ∈Md(R) be the matrix defined as

H =
d∑

k=1
λkqkq

>
k .

We observe that

‖f(G)− f(Ĝ)‖∞ ≤ ‖f(G)− f(H)‖∞ + ‖f(H)− f(Ĝ)‖∞
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and we look separately at the two terms. By definition of operator norm, we have

‖f(H)− f(Ĝ)‖2∞ = sup
θ∈Sd
‖f(H)θ − f(Ĝ)θ‖2

= sup
θ∈Sd
‖

d∑
k=1

(f(λk)− f(λ̂k))〈θ, qk〉qk‖2

= sup
θ∈Sd

d∑
k=1

(f(λk)− f(λ̂k))2〈θ, qk〉2.

Since the function f is 1/L-Lipschitz, we get

‖f(H)− f(Ĝ)‖2∞ ≤ L−2 sup
θ∈Sd

d∑
k=1

(λk − λ̂k)2〈θ, qk〉2

and then, applying Corollary 3.3, with probability at least 1− 2ε, we obtain

‖f(H)− f(Ĝ)‖2∞ ≤ L−2B (λ1)2 .

On the other hand, we have

‖f(G)− f(H)‖∞ ≤ ‖f(G)− f(H)‖F

≤ 1
L
‖G−H‖F ,

as shown in Corollary 3.7. Hence, according to Proposition 3.6, we get

‖f(G)− f(H)‖2∞ ≤
1
L2

d∑
i,k=1

(λi − λk)2〈pi, qk〉2

where

d∑
i,k=1

(λi − λk)2〈pi, qk〉2 ≤

 r∑
i=1

d∑
k=1

+
d∑
i=1

r∑
k=1

+
d∑

i,k=r+1

 (λi − λk)2〈pi, qk〉2.

Since λi ≥ 0, for any i ∈ {1, . . . , d}, we get

d∑
i,k=r+1

(λi − λk)2〈pi, qk〉2 ≤ 2
d∑

i=r+1
λ2
i .

Moreover, by Lemma 3.4, we have

r∑
k=1

d∑
i=1

(λi − λk)2〈pi, qk〉2 ≤ 2rB (λ1)2

and since the same bound also holds for

r∑
i=1

d∑
k=1

(λi − λk)2〈pi, qk〉2,

we conclude the proof.
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Slightly changing the definition of the estimator we present a bound for the approximation
error in terms of the Frobenius norm. Instead of considering Ĝ =

∑d
i=1 λ̂iqiq

>
i we consider

the matrix

G̃ =
d∑
i=1

λ̃iqiq
>
i

with eigenvectors q1, . . . , qd and eigenvalues

λ̃i =
[
λ̂i −B(λ̂i)

]
+

where we recall that B is defined in equation (3.2). We observe that, in the event of
probability at least 1− 2ε described in Corollary 3.3, for any i = 1, . . . , d,

λ̃i ≤ λi.

We first present a result on the approximation error ‖G− G̃‖F .

Proposition 3.9. (Frobenius norm) With probability at least 1− 2ε,

‖G− G̃‖F ≤ min
r∈{1...,d}

√√√√13rB(λ1)2 + 2
d∑

i=r+1
λ2
i ,

where B is defined in equation (3.2) and λ1 ≥ · · · ≥ λd are the eigenvalues of G.

Proof. During the whole proof, we will assume that the event of probability at least 1−2ε
described in Proposition 3.1 is realized. According to Proposition 3.6, we have

‖G− G̃‖2F =
d∑

i,k=1
(λi − λ̃k)2〈pi, qk〉2,

where
d∑

i,k=1
(λi − λ̃k)2〈pi, qk〉2 ≤

 r∑
i=1

d∑
k=1

+
r∑

k=1

d∑
i=1

+
d∑

i,k=r+1

 (λi − λ̃k)2〈pi, qk〉2.

Since, by definition, λ̃i ≤ λi, it follows that

d∑
i,k=r+1

(λi − λ̃k)2〈pi, qk〉2 ≤
d∑

i,k=r+1
(λ2
i + λ̃2

k)〈pi, qk〉2

≤ 2
d∑

i=r+1
λ2
i .

Furthermore, we observe that

r∑
k=1

d∑
i=1

(λi − λ̃k)2〈pi, qk〉2 ≤ 2
r∑

k=1

d∑
i=1

(λi − λ̂k)2〈pi, qk〉2 + 2
r∑

k=1

d∑
i=1

B(λ̂k)2〈pi, qk〉2,

where, by Lemma 3.4,

r∑
k=1

d∑
i=1

(λi − λ̂k)2〈pi, qk〉2 ≤ rB(λ1)2.
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and B(λ̂k) ≤ B(λ̂1). We have then proved that
r∑

k=1

d∑
i=1

(λi − λ̃k)2〈pi, qk〉2 ≤ 2rB(λ1)2 + 2rB(λ̂1)2.

Applying Corollary 3.3 and using the fact that B(t+ a) ≤ B(t) + a/2, as explained after
equation (3.2) on page 80, we deduce that

B(λ̂1) ≤ B
[
λ1 +B(λ1)

]
≤ 3B(λ1)/2.

This proves that
r∑

k=1

d∑
i=1

(λi − λ̃k)2〈pi, qk〉2 ≤ 2r
[
B(λ1)2 + 9B(λ1)2/4

]
= 13rB(λ1)2/2.

Considering that the same bound holds for
r∑
i=1

d∑
k=1

(λi − λ̃k)2〈pi, qk〉2,

we conclude the proof.

To obtain a bound on ‖f(G) − f(G̃)‖F it is sufficient to combine the above proposition
with Corollary 3.7.

Corollary 3.10. With the same notation as in Proposition 3.9, with probability at least
1− 2ε, for any 1/L-Lipschitz function f ,

‖f(G)− f(G̃)‖F ≤ min
r∈{1,...,d}

L−1

√√√√13 rB(λ1)2 + 2
d∑

i=r+1
λ2
i .

Notes: How to choose r in the previous bounds

In the previous bounds, the optimal choice of the dimension parameter r depends on the
distribution of the eigenvalues of the Gram matrix G. Nevertheless, it is possible to upper
bound what happens when this distribution of eigenvalues is the worst possible.
Observe that

d∑
i=r+1

λ2
i ≤ λr+1 Tr(G)

and also rλr+1 ≤ Tr(G), so that
d∑

i=r+1
λ2
i ≤ r−1 Tr(G)2.

Hence, if we consider for example the case where the approximation error is evaluated in
terms of the Frobenius norm, the worst case formulation of Corollary 3.10 is obtained
choosing

r =
⌈√

2/13 Tr(G)B(λ1)−1
⌉

and, in this case, it can be restate as follows.
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Corollary 3.11. With probability at least 1− 2ε,

‖f(G)− f(G̃)‖F ≤ L−1
√

11 Tr(G)B(λ1) + 13B(λ1)2.

This proposition shows that the worst case speed is not slower than n−1/4. We do not
know whether this rate is optimal in the worst case. We could in the same way obtain a
worst case corollary for Proposition 3.8.



Chapter 4

Spectral Clustering

Based on the results proved in chapter 1, we propose a new algorithm for spectral clus-
tering. This new algorithm can be viewed as a change of representation in a reproducing
kernel Hilbert space, followed by a (greedy) classification.

4.1 Introduction
Clustering is the task of grouping a set of objects into classes, called clusters, in such a
way that objects in the same group are more similar to each other than to those in other
groups. Spectral clustering algorithms use the spectrum of some data-dependent matrices
to perform clustering. These matrices can be either the affinity (or similarity) matrix [10]
or the Laplacian matrix [11].
Given X1, . . . , Xn, a set of points to cluster, the affinity matrix A ∈Mn(R) measures the
similarity, in terms of distance, between each pair of points and a common definition is

Ai,j = exp
(
−‖Xi −Xj‖2

2σ2

)
(4.1)

where σ is a free scale parameter. The Laplacian matrix is obtained by rescaling the
affinity matrix by its row sums. Among all the definitions of the Laplacian matrix, we
choose the normalized Laplacian matrix

L = I −D−1/2AD−1/2,

where D is the diagonal matrix whose i-th entry is Dii =
∑
j Aij . The Laplacian matrix L

is positive semi-definite, its smallest eigenvalue is zero and the corresponding eigenvector
is the constant vector 1 = (1, . . . , 1)>.

We observe that the Laplacian matrix has the same eigenvectors as D−1/2AD−1/2 (and
related eigenvalues) and in the following we consider for simplicity

L = D−1/2AD−1/2

and we refer to it as the Laplacian matrix.

Many spectral clustering algorithms have been proposed, e.g. [32], [20], [22]. We briefly
describe one of the most successful ones, introduced by Ng, Jordan and Weiss [22].
The goal is to cluster a set of points into c classes according to their similarity. Assuming
that the number c of clusters is known, the authors use simultaneously the c largest
eigenvectors of the Laplacian matrix to group the data points into classes. More precisely,
denoting by X1, . . . , Xn the dataset, the algorithm goes as follows
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1. Form the affinity matrix A with entries Ai,j = exp
(
−‖Xi −Xj‖2/2σ2) if i 6= j and

Ai,i = 0.

2. Construct the Laplacian matrix L.

3. Compute the c largest eigenvectors of L and form the n×c matrix X whose columns
are these largest eigenvectors.

4. Renormalize each row of X to have unit length and treat each row as a point in Rc.

5. Cluster points according to the new representation.

Spectral clustering can also be related to Markov chains as shown in [20] and in particular
the affinity matrix A can be converted into a transition probability matrix

R = D−1A.

The Laplacian matrix L = D1/2RD−1/2 has the same eigenvalues as R and related eigen-
vectors.

Our approach relies on viewing those matrices as empirical versions of underlying integral
operators.
Let X ⊂ Rd be a set endowed with the probability distribution P ∈ M1

+(X ) and let
L2

P be the space of square integrable functions on X with respect to P. The operator
related to the matrix L can be interpreted as the discrete version of the integral operator
LK : L2

P → L2
P defined by

LKf(x) =
∫
f(y) K(x, y)

(
∫
K(x, z)dP(z))

1
2 (
∫
K(y, z)dP(z))

1
2

dP(y), f ∈ L2
P,

where K ∈ L2
P × L2

P is a symmetric positive semi-definite kernel on X and in particular

K(x, y) = exp
(
−‖x− y‖

2

2σ2

)

in the case where the affinity matrix A has the form described in equation (4.1).
Connections between empirical operators and their continuous counterpart have been stud-
ied in many works, e.g. [24], [36].

Starting from the kernel

K̄(x, y) = K(x, y)
(
∫
K(x, z)dP(z))

1
2 (
∫
K(y, z)dP(z))

1
2

we introduce, in section 4.2, an ideal spectral clustering algorithm that would require
the exact knowledge of the law P. It consists in replacing the projection on the c largest
eigenvectors of L done in step 3 of the algorithm introduced in [22] by computing some
suitable power of the operator LK . Indeed, K̄ is related to a Markov chain, and iterating
K̄ (or rather the operator LK) performs some kind of soft truncation of its eigenvalues and
is related to the computation of the marginal distribution at time t of the Markov chain.
This leads to a natural dimensionality reduction and allows us to propose an algorithm
that automatically estimates the number c of clusters when it is not known in advance.
In order to obtain a practical algorithm, all we have to do is to compute some estimate
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of the operator LK , using the estimators and the generalization bounds introduced in the
previous chapters, as shown in section 4.3.
We conclude providing in section 4.4 some experiments in the setting of image analysis.
We will show that a very simple greedy classification algorithm can be used to perform
the final classification, once the change of representation has been operated.

For more details on reproducing kernel Hilbert spaces we refer to appendix C.

4.2 Description of an ideal algorithm
Let X be a compact subset of Rd, or more generally of some separable Hilbert space
of possibly infinite dimension, endowed with the (unknown) probability distribution P ∈
M1

+(X ) and let K̃ : X × X → R be a symmetric positive semi-definite kernel. We define

K(x, y) = K̃(x, y)2, x, y ∈ X ,

and we observe that K is itself a symmetric positive semi-definite kernel.

Our approach relies on interpreting clustering as a change of representation in a reproduc-
ing kernel Hilbert space, described by a change of kernel.
We start with an ideal version of this algorithm which uses the unknown distribution P.
For any x, y ∈ X ,

1. Form the kernel (compute the Laplace operator)

K̄(x, y) = K(x, y)
(
∫
K(x, z) dP(z))

1
2 (
∫
K(y, z) dP(z))

1
2

2. Construct the new kernel (iterate the Markov chain)

K̄m(x, y) =
∫
K̄(y, z1)K̄(z1, z2) . . . K̄(zm−1, x) dP⊗(m−1)(z1, . . . , zm−1),

where m > 0 is a free parameter

3. Make a last change of kernel (normalize the kernel, or equivalently project the rep-
resentation on the unit sphere)

Km(x, y) = K̄2m(x, y)
K̄2m(x, x)

1
2 K̄2m(y, y)

1
2

4. Cluster points according to the new representation defined by the kernel Km.

We will see that this new representation sends clusters to the neighborhood of an orthonor-
mal basis, and therefore to a neighborhood of the vertices of a simplex, making subsequent
classification an easy task.

4.2.1 Analysis of the algorithm

We first observe that the kernel K̄ is symmetric and positive semi-definite. According to
the Moore-Aronszajn theorem ( Proposition C.14), it defines a reproducing kernel Hilbert
space H and a feature map φ : X → H, such that

K̄(x, y) = 〈φ(y), φ(x)〉H. (4.2)
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We introduce the Gram operator G : H → H defined by

Gv =
∫
〈v, φ(z)〉H φ(z) dP(z) (4.3)

and we observe that the kernel K̄m can be written in terms of some power of G.

Proposition 4.1. We have

K̄m(x, y) = 〈G
m−1

2 φ(x),G
m−1

2 φ(y)〉H.

Proof. Since G is a positive operator, it is sufficient to prove, by induction, that

K̄m(x, y) = 〈Gm−1φ(x), φ(y)〉H. (4.4)

Case m = 1. We observe that by definition

K̄1(x, y) = K̄(x, y) = 〈φ(x), φ(y)〉H.

We now assume that equation (4.4) holds for any ` < m and we prove the identity for
K̄m. We observe that, by definition,

K̄m(x, y) =
∫
K̄(y, z1)

(∫
K̄(z1, z2) . . . K̄(x, zm−1) dP⊗(m−2)(z2, . . . , zm−1)

)
dP(z1)

=
∫
K̄(y, z1) K̄m−1(x, z1) dP(z1).

Applying the induction hypothesis we obtain that

K̄m(x, y) =
∫
〈φ(y), φ(z1)〉H〈Gm−2φ(x), φ(z1)〉H dP(z1)

= 〈Gm−2φ(x),
∫
〈φ(y), φ(z1)〉Hφ(z1) dP(z1)〉H

= 〈Gm−2φ(x),Gφ(y)〉H,

which concludes the proof, since G is self-adjoint.

As a consequence, the kernel Km rewrites as

Km(x, y) =
〈 Gm−1/2φ(x)
‖Gm−1/2φ(x)‖H

,
Gm−1/2φ(y)
‖Gm−1/2φ(y)‖H

〉
H
.

Accordingly, the representation of x ∈ X defined by the kernel Km is isometric to the
representation ‖R(x)‖−1

H R(x) ∈ H where

R(x) = Gm−1/2φ(x) ∈ Im(G) ⊂ H. (4.5)

In the sequel of this section we describe other isometric representations of x that can be
seen as different realizations of the kernel space defined by Km.

The representation of x in the kernel space defined byKm is isometric to the representation
‖R(x)‖−1R(x) ∈ L2

P, where R(x) ∈ L2
P is defined as

R(x)(y) = K̄m(x, y) = 〈Gm−1φ(x), φ(y)〉H. (4.6)
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This is a consequence of the fact that

〈R(x),R(z)〉L2
P

=
∫
K̄m(x, y)K̄m(y, z) dP(y) = K̄2m(x, z).

We now describe a third isometric representation, related to a Markov chain, that is helpful
to understand the clustering effect observed in favorable situations.

Let us assume that the support of P is made of several compact connected components
and let

K(x, y) = exp
(
−β‖x− y‖2

)
,

where β > 0 is large enough. The Markov chain related to the operator

M(f) : x 7→

∫
K(x, y)f(y) dP(y)∫
K(x, z) dP(z)

has a small probability to jump from one component to another one. Thus, for reasons that
we will not try to prove here, for suitable values of m, the measureMm

x : f 7→Mm(f)(x) is
close to be supported by the connected component which x belongs to and more precisely
it is close to the restriction of the invariant measure of the operator M restricted to this
component. As a result, the function x 7→ Mm(f)(x) is approximately constant on each
connected component.

More precisely, let us put
µ(x) =

∫
K(x, z) dP(z). (4.7)

Lemma 4.2. We have

Mm(f)(x) = µ(x)−1/2
∫
K̄m(x, y)µ(y)1/2f(y) dP(y).

Proof. We prove the result by induction.
Case m = 1. Recalling the definition of the kernel K̄ we get

Mf(x) =
∫
µ(x)−1/2K̄(x, y)µ(y)1/2f(y) dP(y)

=
∫
µ(x)−1/2K̄1(x, y)µ(y)1/2f(y) dP(y).

We now assume that the identity holds for any ` < m. It follows that

Mmf(x) = µ(x)−1
∫
K(x, z)µ(z)−1/2K̄m−1(z, y)µ(y)1/2f(y) dP(y)dP(z)

= µ(x)−1/2
∫
K̄(x, z)K̄m−1(z, y)µ(y)1/2f(y) dP(y)dP(z)

= µ(x)−1/2
∫
K̄m(x, y)µ(y)1/2f(y) dP(y)

which concludes the proof.

As a consequence, the probability measure Mm
x : f 7→Mm(f)(x) has density

dMm
x

dP (y) = µ(x)−1/2K̄m(x, y)µ(y)1/2.
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Moreover, if we denote byM(x, y) the kernel corresponding to the operatorM , we observe
that∫

µ(x)M(x, y)f(y) dP(x)dP(y) =
∫
K(x, y)f(y) dP(x)dP(y) =

∫
µ(y)f(y) dP(y).

This shows that the invariant measure Q of the operator M has a density with respect to
P equal to

dQ
dP = µ.

Lemma 4.3. We have〈dMm
x

dQ ,
dMm

z

dQ
〉
L2

Q

= µ(x)−1/2K̄2m(x, z)µ(z)−1/2.

Proof. The proof follows from the identity

dMm
x

dQ (y) = µ(x)−1/2K̄m(x, y)µ(y)−1/2.

Consider the representation of x ∈ X given by ‖R(x)‖−1R(x) ∈ L2
Q, where

R(x) = µ(x)1/2 dMm
x

dQ ∈ L2
Q.

Lemma 4.3 shows that the representation of x ∈ X in the kernel space defined by Km is
also isometric to R(x).

We conclude the section observing that

Km(x, z) = K̄2m(x, x)−1/2K̄2m(x, z)K̄2m(z, z)−1/2

is the cosine of the angle formed by the two vectors representing x and z. Moreover, as
explained above, when β and m are chosen in a suitable way, the supports of the probabil-
ity measures Mm

x and Mm
z are almost disjoint if x and z belong to two different clusters,

whereas Mm
x and Mm

z are almost the same when x and z belong to the same cluster.
Therefore, in this setting, the cosine Km is either close to 0 or close to 1.
This means that in the Hilbert space defined by the normalized kernel Km, the c clus-
ters are concentrated around c orthogonal unit vectors, forming the vertices of a regular
simplex. Equation (4.5) shows that this simplex is necessarily (in first approximation)
contained in the linear span of the c largest eigenvectors of the Gram operator.

4.2.2 Choice of the scale parameter

In the case when the influence kernel K is of the form

Kβ(x, y) = exp
(
−β‖x− y‖2

)
,

we propose to choose β as the solution of the equation

F (β) :=
∫
Kβ(x, y)2 dP(x)dP(y) = h,
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where h is a suitable parameter which measures the probability that two independent
points drawn according to the probability P are close to each other.
Introducing the Gram operator Gβ : L2

P → L2
P defined by Kβ such that

Gβ(f)(x) =
∫
Kβ(x, y)f(y) dP(y), x ∈ X ,

the parameter h is equal to the square of the Hilbert Schmidt norm of Gβ. As reminded
in appendix C ( Proposition C.2), Gβ has a discrete spectrum λ1 ≥ λ2 ≥ · · · . Since
Kβ(x, x) = 1, it satisfies

+∞∑
i=1

λi(β) =
∫
Kβ(x, x) dP(x) = 1,

+∞∑
i=1

λ2
i (β) = F (β) ≤ 1.

Therefore, F (β) governs the spread of the eigenvalues of Gβ. We observe that

lim
β→0

F (β) = 1

which implies that λ1(β) −→
β→0

1 whereas λi(β) −→
β→0

0 for i ≥ 2. On the other hand we have

lim
β→+∞

F (β) = 0,

so that when β grows, the eigenvalues are spread more and more widely. For these reasons,
the value of the parameter h = F (β) controls the effective dimension of the representation
of the distribution of points P in the reproducing kernel Hilbert space defined by Kβ.
Experiments show that we want this effective dimension to be pretty large, meaning that
we will impose a small value of the parameter h.

4.3 Estimation of the ideal algorithm by an empirical one

By empirical algorithm we mean an algorithm based on the empirical distribution

1
n

n∑
i=1

δXi ,

whereX1, . . . , Xn is an i.i.d. sample drawn from the probability measure P. The algorithm
described in section 4.2 is ideal since it depends on the unknown probability distribution P.
In this section we use the results obtained in the previous chapters to present an estimated
version of this ideal algorithm and to prove its convergence by non-asymptotic bounds.

Let X be a compact subset of a separable Hilbert space. In this section we consider the
Gaussian kernel

K(x, y) = exp
(
−β‖x− y‖2

)
, x, y ∈ X ,

where β > 0 is a free parameter. However the construction we are going to present holds
for any kernel K = K̃2 where K̃ is a symmetric positive semi-definite kernel, normalized
in such a way that K̃(x, x) = 1, for any x in the state space X .
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In this setting the kernel K̃ is defined by

K̃(x, y) = exp
(
−β2 ‖x− y‖

2
)
, x, y ∈ X .

To fix β we observe that, denoting by A the matrix of entries

Ai,j = exp
(
−β‖Xi −Xj‖2

)
, i, j = 1, . . . , n,

we have, with the notation of section 4.2.2,

F (β) = 1
n2 Tr(A2) = 1

n
+ f(β)

where f(β) = 1
n2
∑

i,j
i 6=j

exp
(
−2β‖Xi −Xj‖2

)
. We choose β as the solution of f(β) = 0.005.

Let H̃ be the reproducing kernel Hilbert space defined by K̃ and let φ̃ : X → H̃ be the
corresponding feature map, so that

K(x, z) = 〈φ̃(x), φ̃(z)〉2H̃.

Lemma 4.4. The density µ(x) of the invariant measure, defined in equation (4.7), can
be written as

µ(x) =
∫
〈φ̃(x), v〉2H̃ dP̃(v) =: NH̃(x), x ∈ X ,

where P̃ = P ◦ φ̃−1 ∈M1
+(H̃).

Proof. It is sufficient to observe that

µ(x) =
∫
K(x, z) dP(z)

=
∫
〈φ̃(x), φ̃(z)〉2H̃ dP(z)

=
∫
〈φ̃(x), v〉2H̃ dP̃(v) = NH̃(x).

Therefore, according to its definition on page 91, the kernel K̄ can be expressed as

K̄(x, y) = NH̃(x)−1/2K(x, y)NH̃(y)−1/2.

Rather than an estimate of K̄ itself, we provide an estimate of its thresholded approxima-
tion

K̄σ(x, y) = max{NH̃(x), σ}−1/2K(x, y) max{NH̃(y), σ}−1/2, σ > 0.

When the threshold σ is suitably small this approximation retains the clustering properties
of K̄. To support this claim, at least on a heuristic basis, we remark that K̄σ is related to
the sub-Markov operator

Mσ(f) : x 7→

∫
K(x, y)f(y) dP(y)

max
{∫

K(x, z) dP(z), σ
}
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and when σ is small, Mσ modifies M only in the regions where the density of P is the
smallest. The fact that Mσ kills the diffusion of M in regions of low probability density
may be expected to preserve an interesting clustering effect.
It should also be remarked that since x 7→ K(x, y) is continuous, also x 7→

∫
K(x, y) dP(z)

is continuous, by the Lebesgue dominated convergence theorem, and hence, as we assume
that X is compact,

σ∗ = inf
x∈supp(P)

∫
K(x, z) dP(z) > 0.

This means that Mσ(f) = M(f) in L2
P when 0 < σ ≤ σ∗. As a consequence the Markov

chains defined by the two operators (M and Mσ) have the same distribution for any
starting point in the support of P and have the same eigenvalues and eigenvectors (since L2

P
identifies functions that coincide on the support of P). In other words, K̄σ(x, y) = K̄(x, y)
for any x, y ∈ supp(P).

From now on we assume that 0 < σ ≤ σ∗.
As a consequence of Lemma 4.4 we can estimate µ(x) = NH̃(x) by the empirical estimator

µ̂(x) = N̄H̃(x) = 1
n

n∑
i=1

〈
φ̃(x), φ̃(Xi)

〉2 = 1
n

n∑
i=1

K(x,Xi). (4.8)

We introduce the estimated kernel

K̂(x, y) = max{N̄H̃(x), σ}−1/2K(x, y) max{N̄H̃(y), σ}−1/2

which provides an estimate of the thresholded kernel K̄σ. We remark that an explicit
change of feature maps allows us to identify the Hilbert space defined by the kernel K̄
(which we have denoted by H) and the one defined by K̂. Indeed, we have

K̂(x, y) = 〈φ̂(x), φ̂(y)〉H, x, y ∈ X ,

where the estimated feature map φ̂ is defined as

φ̂(x) = χ(x)φ(x), (4.9)

with χ(x) =
(

N
H̃

(x)
max

{
N
H̃

(x), σ
})1/2

. Further, when x ∈ supp(P) and σ ≤ σ∗, we have

χ(x) =
(

max{N
H̃

(x), σ}
max

{
N̄
H̃

(x), σ
})1/2

. (4.10)

Next proposition provides a bound on the accuracy of the estimation of K̄σ by K̂.
Let us first recall some notation. Let a > 0 and let

K = 1 +
⌈
a−1 log

(
n

72(2 + c)κ1/2

)⌉
where c = 15

8 log(2)(
√

2−1) exp
(

1+2
√

2
2

)
and

κ = sup
θ∈H̃

E[〈θ,φ̃(X)〉2
H̃

]>0

E
[
〈θ, φ̃(X)〉4

H̃

]
E
[
〈θ, φ̃(X)〉2

H̃

]2
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with X ∈ X a random vector of law P. We put

B∗(t) =


n−1/2ζ(max{t, σ})

1− 4n−1/2ζ(max{t, σ})
[
6 + (κ− 1)−1]ζ(max{t, σ}) ≤

√
n

+∞ otherwise
(4.11)

with

ζ(t) =

√√√√2(κ− 1)
(

(2 + 3c) Tr(G̃)
4(2 + c)t + log(K/ε)

)
cosh(a/4) +

√
2(2 + c)κ Tr(G̃)

t
cosh(a/2)

where G̃v =
∫
〈v, φ̃(z)〉H̃ φ̃(z) dP(z) is the Gram operator on H̃. According to Proposi-

tion 2.7 on page 74 we define

τ∗(t) = λ∗(t)2 exp(a/2)R4

3 max{t, σ}2 , t ∈ R+,

where λ∗ in equation (1.31) on page 36 and R = maxi=1,...,n ‖φ̃(Xi)‖H̃.

In this setting we take R = 1 since we are working with a normalized kernel K̃ which
sends the observations on the unit sphere of the corresponding Hilbert space H̃.

Proposition 4.5. Assume 0 < σ ≤ σ∗ and let

ξ(t) = B∗(t) + τ∗(t)[
1− τ∗(t)

]
+
[
1−B∗(t)

]
+
.

With probability at least 1− 2ε, for any x ∈ supp(P),

∣∣∣∣K̄σ(x, y)
K̂(x, y)

− 1
∣∣∣∣ ≤ ξ

(
µ(x)

)
+ ξ

(
µ(y)

)
2 +

ξ
(
µ(x)

)2 + ξ
(
µ(y)

)2
2

∣∣χ(x)− 1
∣∣ ≤ ξ

(
µ(x)

)
+ ξ

(
µ(x)

)2
2

[
1−

ξ
(
µ(x)

)
+ ξ

(
µ(x)

)2
2

]−1

+
.

Proof. By Proposition 2.7, with probability at least 1− 2ε, for any x ∈ X , we have

1−
ξ
(
µ(x)

)
+ ξ

(
µ(x)

)2
2 ≤

[
1− ξ

(
µ(x)

)]1/2 ≤ φ(x)
φ̂(x)

≤
[
1 + ξ

(
µ(x)

)]1/2 ≤ 1 + 1
2ξ
(
µ(x)

)
,

which proves the second inequality. To obtain the first bound we observe that, for any
x, y ∈ X ,

K̄σ(x, y)
K̂(x, y)

≤
[
1 + ξ

(
µ(x)

)]1/2[1 + ξ
(
µ(y)

)]1/2
≤
[
1 + 2−1ξ

(
µ(x)

)][
1 + 2−1ξ

(
µ(y)

)]
≤ 1 + 2−1[ξ(µ(x)

)
+ ξ

(
µ(x)

)]
+ 4−1ξ

(
µ(x)

)
ξ
(
µ(y)

)
≤ 1 + 2−1[ξ(µ(x)

)
+ ξ

(
µ(x)

)]
+ 8−1[ξ(µ(x)

)2 + ξ
(
µ(y)

)2]
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and moreover

K̄σ(x, y)
K̂(x, y)

≥
[
1− ξ

(
µ(x)

)]1/2[1− ξ(µ(y)
)]1/2

≥
(

1−
ξ
(
µ(x)

)
+ ξ

(
µ(x)

)2
2

)(
1−

ξ
(
µ(y)

)
+ ξ

(
µ(y)

)2
2

)

≥ 1−
ξ
(
µ(x)

)
+ ξ

(
µ(y)

)
2 −

ξ
(
µ(x)

)2 + ξ
(
µ(y)

)2
2 .

Replacing K̄ by the estimated kernel K̂ in the definition of K̄m on page 91, we obtain
the new kernel

H̄m(x, y) =
∫
K̂(y, z1)K̂(z1, z2) . . . K̂(x, zm−1) dP⊗(m−1)(z1, . . . , zm−1).

This new kernel is still not observable since it makes use again of the sample distribution
P. To make the mathematical discussion simpler, we study the estimation of H̄m from a
second i.i.d. sample Xn+1, . . . , X2n ∈ Rd drawn according to P and independent from the
first sample X1, . . . , Xn.
In this simplified split sample setting, K̂ can be treated as a non-random kernel since the
distribution of the second sample, conditioned on the value of the first sample, PXn+1:2n|X1:n ,
is the same product distribution P⊗n as the distribution of the second sample PXn+1:2n .
Similarly to Proposition 4.1, we observe that the kernel H̄m can be written as

H̄m(x, y) = 〈Ĝm−1φ̂(x), φ̂(y)〉H, (4.12)

where Ĝ : H → H is the Gram operator defined by

Ĝv =
∫
〈v, φ̂(z)〉H φ̂(z) dP(z). (4.13)

We remark that, since by definition χ(x) > 0,

ker(Ĝ) =
{
u ∈ H,

∫
〈u, φ̂(x)〉2 dP(x) = 0

}
=
{
u ∈ H,

∫
〈u, φ(x)〉2 dP(x) = 0

}
= ker(G).

Consequently, since Im(G) = ker(G)⊥, we get

span
(
φ
(
supp(P )

))
= ker(G)⊥ = Im(G) = Im(Ĝ) = span

(
φ̂
(
supp(P )

))
. (4.14)

To provide an estimator of the Gram operator Ĝ we use the construction done in sec-
tion 1.3. We consider a confidence region for 〈Ĝθ, θ〉H that we denote by

B−(θ) ≤ 〈Ĝ(θ), θ〉H ≤ B+(θ), θ ∈ H,

and we define the estimator Q of Ĝ as in equation (1.45) on page 48. Let Q̂ = Q+ be the
positive part of Q so that, according to Proposition 1.33 on page 49, with probability at
least 1− 2ε, for any θ ∈ SH (the unit sphere of H),∣∣max{〈θ, Q̂θ〉, σ} −max{〈θ, Ĝθ〉, σ}

∣∣ ≤ 2 max{〈θ, Ĝθ〉, σ}B∗
(
〈θ, Ĝθ〉

)
+ η, (4.15)
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for a small parameter η. Hence we get the estimated kernel

Ĥm(x, y) = 〈Q̂m−1φ̂(x), φ̂(y)〉H,

and we consider as an estimator of Km(x, y) = K̄2m(x, x)−1/2K̄2m(x, y)K̄2m(y, y)−1/2 the
kernel

Hm(x, y) = Ĥ2m(x, x)−1/2Ĥ2m(x, y)Ĥ2m(y, y)−1/2.

The accuracy of this estimation is proved in the following proposition. We introduce

Ek(x, y) =
∣∣Ĥ2m(x, y)− K̄2m(x, y)

∣∣, x, y ∈ supp(P),

and the non-normalized quadratic error on the non-normalized kernel produced by the
clustering algorithm

Ek(x) =
(∫
Ek(x, y)2 dP(y)

)1/2

, x ∈ supp(P).

We recall that
K̄2m(x, y) = 〈G2m−1φ(x), φ(y)〉H

where G is the Gram operator defined in equation (4.3).

Proposition 4.6. For any x, y ∈ supp(P),

Ek(x, y) ≤ max{1, ‖χ‖∞}2

µ(x)1/2µ(y)1/2

(
‖Q̂2m−1 − G2m−1‖∞ + 2‖χ− 1‖∞

)
Ek(x) ≤ max{1, ‖χ‖∞}2

µ(x)1/2

(
‖Q̂2m−1 − G2m−1‖∞ + 2‖χ− 1‖∞

)
,

where χ and µ are defined in equation (4.10) and in equation (4.7) respectively.

Proof. We observe that, by definition,

Ek(x, y) =
∣∣〈Q̂2m−1φ̂(x), φ̂(y)〉H − 〈G2m−1φ(x), φ(y)

〉
H
∣∣

≤
∣∣〈(Q̂2m−1 − G2m−1)φ̂(x), φ̂(y)〉H

∣∣+ ∣∣〈G2m−1(φ̂(x)− φ(x)
)
, φ̂(y)〉H

∣∣
+ 〈G2m−1φ(x),

(
φ̂(y)− φ(y)

)
〉H
∣∣.

Recalling the definition of φ̂ we get

Ek(x, y) ≤ ‖Q̂2m−1 − G2m−1‖∞‖χ‖2∞‖φ(x)‖H‖φ(y)‖H
+ ‖χ− 1‖∞

(
‖χ‖∞ + 1

)
‖φ(x)‖H‖φ(y)‖H.

Since, by definition, K(x, x) = 1, we obtain

‖φ(x)‖2H = K̄(x, x) = K(x, x)
µ(x)1/2µ(x)1/2 = 1

µ(x)
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which proves the first bound. We now consider Ek. We have

Ek(x) =
(∫ (

〈Q̂2m−1φ̂(x), φ̂(y)〉H − 〈G2m−1φ(x), φ(y)〉H
)2

dP(y)
)1/2

≤
(∫ 〈(

Q̂2m−1 − G2m−1)φ̂(x), φ̂(y)〉2H dP(y)
)1/2

+
(∫ 〈

G2m−1(φ̂(x)− φ(x)
)
, φ̂(y)

〉2
H dP(y)

)1/2

+
(∫ 〈

G2m−1φ(x), φ̂(y)− φ(y)
〉2
H dP(y)

)1/2

.

Recalling that

‖Ĝ1/2u‖2H = 〈Ĝu, u〉H =
∫
〈u, φ̂(y)〉2H dP(y) ≤ ‖χ‖2∞〈Gu, u〉, u ∈ H,

we conclude

Ek(x) ≤
∥∥Ĝ1/2(Q̂2m−1 − G2m−1)φ̂(x)

∥∥
H +

∥∥Ĝ1/2G2m−1(φ̂(x)− φ(x)
)
‖H

+ ‖χ− 1‖∞
∥∥G2m−1/2φ(x)

∥∥
H.

Before providing a bound on the quantities that appear at the right-hand side of the above
inequalities, we present another way to construct the estimator Hm that will lead to obtain
tighter bounds on the approximation error.
We recall that the kernel Km can be written as

Km(x, y) =
〈
‖R(x)‖−1R(x), ‖R(y)‖−1R(y)

〉
L2

P

,

where the representation R(x) is defined in equation (4.6), and we separately estimate
the representation ‖R(x)‖−1R(x) and the scalar product in L2

P.

Our estimated representation of x in L2
P is N̂(x)−1R̂(x), where

R̂(x)(y) =
〈
Q̂m−1φ̂(x), φ(y)

〉
H and N̂(x) = 〈Q̂2m−1φ̂(x), φ̂(x)〉1/2H .

This representation is not fully observable because of the presence of the ideal feature map
φ in the definition of R̂. Nevertheless, it can be used in practice since, as we will explain in
the following, it is possible to derive an observable estimate of the norm

∥∥R̂(x)−R(x)
∥∥
L2

P
.

More precisely we show that we can estimate the norm in Im (G) ⊂ L2
P, where G : L2

P →
L2

P is the Gram operator defined by the formula

G(f)(x) =
∫
K̄(x, y)f(y) dP(y)

and such that
‖G‖∞ = ‖G‖∞ = 1.
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A tool for representing functions in Im(G) is the operator S : H → L2
P defined by

S(u)(x) = 〈u, φ(x)〉H, x ∈ X .

We observe that with this notation

G = SS∗ and G = S∗S (4.16)

where we recall that H is the reproducing kernel Hilbert space defined by K̄ and ψ the
corresponding feature map.

Lemma 4.7. We have
Im(G) = S

(
Im(G)

)
= S

(
Im(Ĝ)

)
.

Proof. We observe that, since G is symmetric, Im(G) = Im(G2). By equation (4.16),
we deduce that G2 = SGS∗, showing that Im(G) = Im(G2) ⊂ S

(
Im(G)

)
. Moreover, as

SG = GS, we conclude that S
(
Im(G)

)
⊂ Im G.

Therefore any f ∈ Im(G) is of the form f = Su, with u ∈ Im(G), so that we can estimate

‖f‖2L2
P

= 〈Gu, u〉H

by 〈Q̂u, u〉H and the estimation error is bounded as described in the following lemma.

Lemma 4.8. For any u ∈ H, we have∣∣‖Su‖2L2
P
− 〈Q̂u, u〉H

∣∣ ≤ ‖G − Q̂‖∞‖u‖2H.
More generally, for any u, v ∈ H,∣∣〈Su,Sv〉L2

P
− 〈Q̂u, v〉H

∣∣ ≤ ‖G − Q̂‖∞‖u‖H‖v‖H.
Proof. It is sufficient to observe that

∣∣∣〈Su,Sv〉L2
P
− 〈Q̂u, v〉H

∣∣∣ =
∣∣∣∣∫ 〈u, φ(x)〉H〈φ(x), v〉H dP(x)− 〈Q̂u, v〉H

∣∣∣∣
=
∣∣∣〈Gu, v〉H − 〈Q̂u, v〉H∣∣∣

≤
∥∥(G − Q̂)u∥∥H‖v‖H

≤ ‖G − Q̂‖∞‖u‖H‖v‖H.

Let us now come back to R(x) and R̂(x).

Lemma 4.9. We have

R(x) = SGm−1φ(x) ∈ Im(G)
R̂(x) = SQ̂m−1φ̂(x) ∈ Im(G) almost surely.
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Proof. We observe that, by definition,

R̂(x) = SQ̂m−1φ̂(x) and R(x) = SGm−1φ(x).

Hence, since
Im(G) = S

(
Im(G)

)
= S

(
spanφ

(
supp(P)

))
,

we conclude that R(x) ∈ Im(G). Moreover, since

span
{
φ̂(Xn), . . . , φ̂(X2n)

}
= span

{
φ(Xn), . . . , φ(X2n)

}
⊂ span

(
φ
(
supp(P)

))
almost surely,

also R̂(x) ∈ Im(G).

As a consequence, combining the two previous results, the kernel

〈R̂(x), R̂(y)〉L2
P

= 〈SQ̂m−1φ̂(x),SQ̂m−1φ̂(y)〉L2
P

is estimated by
Ĥ2m(x, y) = 〈Q̂2m−1φ̂(x), φ̂(y)〉H

and therefore we obtain, as before, as an estimator of Km the kernel

Hm(x, y) = Ĥ2m(x, x)−1/2Ĥ2m(x, y)Ĥ2m(y, y)−1/2.

Let us mention that the representation R̂(x) ∈ L2
P is isometric to the fully observed

representation
R̂(x) = Q̂m−1φ̂(x), x ∈ X ,

in the Hilbert space
(
Im(G), ‖·‖G

)
=
(
Im(Ĝ), ‖·‖G

)
with the non-observed Hilbert norm

‖u‖G = 〈Gu, u〉1/2 (that could be estimated by 〈Q̂u, u〉1/2 according to Lemma 4.8).
However we do not consider the representation

Q̂m−1/2φ̂(x) ∈
(
H, ‖·‖H

)
because its study would require a bound for the operator norm ‖Q̂3/2 − Ĝ3/2‖∞ and the
one we obtained in previous chapters is less precise than what we got for ‖Q̂ − Ĝ‖∞ itself
(that is instead what we get choosing the representation R̂(x)).

In the following we provide non-asymptotic bounds showing that the estimated non-
normalized representation R̂ converges towards the ideal non-normalized representation
R, defined in equation (4.5), when the sample size goes to infinity.

More specifically we give non-asymptotic bounds for the non-normalized representation
error in L2

P norm

Er(x) =
∥∥R(x)− R̂(x)

∥∥
L2

P
, x ∈ supp(P),

and

Ec(f) =
(∫ 〈

R(x)− R̂(x), f
〉2

L2
P

dP(x)
)1/2

, f ∈ L2
P,

that qualifies the convergence of the coordinates of the representation. We introduce
these two errors because we will be able to produce a tighter bound for Ec. In favorable
situations the ideal representation R lives in a neighborhood of a low-dimensional space
so that the speed of convergence is well reflected by the speed of convergence along those
few dimensions.



104 Chapter 4. Spectral Clustering

Proposition 4.10. The two errors defined above are such that, for any x ∈ supp(P), any
f ∈ L2

P,

Er(x) ≤ µ(x)−1/2
(
‖χ‖∞‖Q̂m−1 − Gm−1‖∞ + ‖χ− 1‖∞

)
Ec(f) ≤ ‖f‖L2

P

(
‖χ‖∞‖Q̂m−1 − Gm−1‖∞+‖χ− 1‖∞

)
,

where χ and µ are defined in equation (4.10) and in equation (4.7) respectively.

Proof. In order to prove the first inequality, we observe that, by definition,

Er(x) =
∥∥SQ̂m−1φ̂(x)− SGm−1φ(x)

∥∥
L2

P

≤
∥∥S(Q̂m−1 − Gm−1)φ̂(x)

∥∥
L2

P
+
∥∥SGm−1(φ̂(x)− φ(x)

)∥∥
L2

P
.

Moreover, since ‖Su‖2
L2

P
= 〈S∗Su, u〉H = 〈Gu, u〉H, we get ‖S‖∞ = ‖G‖1/2∞ = 1. As a

consequence, recalling the definition of φ̂, we get

Er(x) ≤ ‖Q̂m−1 − Gm−1‖∞‖χ‖∞‖φ(x)‖H + ‖χ− 1‖∞‖φ(x)‖H.

We now prove the second bound. Let Φ : L2
P → L2

P be the orthogonal projector on Im(G).
Since, according to Lemma 4.9, almost surely, R̂(x) − R(x) ∈ Im(G), for any x ∈ X ,
then 〈

R̂(x)−R(x), f
〉
L2

P

=
〈
R̂(x)−R(x),Φ(f)

〉
L2

P

almost surely.

Moreover, since Im(G) = S
(
Im(G)

)
, there is u ∈ Im(G) such that Φ(f) = Su. We can

then write〈
R̂(x)−R(x), f

〉
L2

P

=
〈
R̂(x)−R(x),Su

〉
L2

P

=
〈
S
(
Q̂m−1φ̂(x)− Gm−1φ(x)

)
,Su

〉
L2

P

=
〈
Q̂m−1φ̂(x)− Gm−1φ(x),Gu

〉
H

=
〈(
Q̂m−1 − Gm−1)φ̂(x),Gu

〉
H +

〈
Gm−1(φ̂(x)− φ(x)

)
,Gu

〉
H.

Therefore, similarly as before, we get

Ec(f) ≤
∥∥Ĝ1/2(Q̂m−1 − Gm−1)Gu‖H + ‖χ− 1‖∞

(∫ 〈
Gm−1φ(x),Gu

〉2
H dP(x)

)1/2

=
∥∥Ĝ1/2(Q̂m−1 − Gm−1)Gu‖H + ‖χ− 1‖∞

∥∥Gm+1/2u
∥∥
H

≤ ‖χ‖∞‖Q̂m−1 − Gm−1‖∞‖G1/2u‖H + ‖χ− 1‖∞‖G1/2u‖H.

We conclude the proof observing that

‖G1/2u‖H = ‖Φ(f)‖L2
P
≤ ‖f‖L2

P
,

where we recall that G = S∗S and Φ(f) = Su.

In order to provide observable bounds for the four errors defined previously on page 100
and on page 104 we need to introduce some technical results.



4.3. Estimation of the ideal algorithm by an empirical one 105

Lemma 4.11. Let m > 0. We have

‖Q̂m − Gm‖∞ ≤
(
1 + ‖Q̂ − G‖∞

)m
− 1

≤ m‖Q̂ − G‖∞
(
1 + ‖Q̂ − G‖∞

)m−1
.

Proof. We recall that ‖G‖∞ = 1. Thus, since

Q̂m − Gm =
m−1∑
k=0
Q̂k(Q̂ − G)Gm−k−1,

we get

‖Q̂m − Gm‖∞ ≤ ‖Q̂ − G‖∞
m−1∑
k=0
‖Q̂‖k∞.

Hence, since ‖Q̂‖∞ ≤ 1 + ‖Q̂ − G‖∞, we have

‖Q̂m − Gm‖∞ ≤
(
1 + ‖Q̂ − G‖∞

)m
− 1

= ‖Q̂ − G‖∞
m−1∑
k=0

(
1 + ‖Q̂ − G‖∞

)k ≤ m‖Q̂ − G‖∞(1 + ‖Q̂ − G‖∞
)m−1

.

We introduce
δ1 = ξ

(
essinf

P
µ
)

+ ξ
(
essinf

P
µ
)2
,

where we recall that ξ is defined in Proposition 4.5 and µ(x) =
∫
K(x, z) dP(z). We also

put
δ2 = 2 max

{
‖Ĝ‖∞, σ

}
B∗
(
‖Ĝ‖∞

)
+ σ + η,

where B∗ is defined in equation (4.11), Ĝ is the Gram operator defined in equation (4.13)
and η > 0 is introduced in equation (4.15) on page 99.

Proposition 4.12. Assume 0 < σ ≤ σ∗. With probability at least 1 − 2ε, the following
inequalities hold together

‖χ− 1‖∞ ≤
δ1

(1− δ1)+
,

‖Ĝ − G‖∞ ≤
δ1(2− δ1)
(1− δ1)2

+
,

so that

‖χ‖∞ ≤
(
1− δ1

)−1
+ and ‖Ĝ‖∞ ≤

(
1− δ1

)−2
+

where χ is defined in equation (4.10). Moreover, with probability at least 1− 2ε,

‖Q̂ − Ĝ‖∞≤ δ2.
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Proof. According to Proposition 4.5, we have

‖χ− 1‖∞ ≤
δ1

(1− δ1)+
(4.17)

so that ‖χ‖∞ ≤
(
1− δ1

)−1
+ . Moreover, we observe that

∣∣〈(Ĝ − G)u, u〉H∣∣ =
∣∣∣∣∫ (〈u, φ̂(x)〉2 − 〈u, φ(x)〉2

)
dP(x)

∣∣∣∣
=
∣∣∣∣∫ (χ(x)2 − 1)〈u, φ(x)〉2 dP(x)

∣∣∣∣
≤ ‖χ2 − 1‖∞

∫
〈u, φ(x)〉2 dP(x) = ‖χ2 − 1‖∞〈Gu, u〉.

Therefore, since ‖G‖∞ = 1,

‖Ĝ − G‖∞ ≤ ‖χ2 − 1‖∞‖G‖∞ ≤ ‖1− χ‖∞
(
2 + ‖1− χ‖∞

)
.

The last inequality follows immediately from Proposition 1.33 on page 49.

Corollary 4.13. With probability at least 1− 4ε, in addition to the previous inequalities,

δ2 ≤ 2(1− δ1)−2
+ B∗

(
(1− δ1)−2

+

)
+ σ + η

and
‖Q̂ − G‖∞ ≤

δ1(2− δ1)
(1− δ1)2

+
+ δ2.

Therefore

Ek(x, y) ≤ µ(x)−1/2µ(y)−1/22m(2δ1 + δ2)
(
1 + 2δ1 + δ2

)2m−2

(1− δ1)4m
+

, x, y ∈ supp(P),

Ek(x) ≤ µ(x)−1/22m(2δ1 + δ2)
(
1 + 2δ1 + δ2

)2m−2

(1− δ1)4m
+

, x ∈ supp(P),

Er(x) ≤ µ(x)−1/2(m− 1/2
)(

2δ1 + δ2
)(1 + 2δ1 + δ2)m−2

(1− δ1)2m−1
+

, x ∈ supp(P),

Ec(f) ≤ ‖f‖L2
P

(
m− 1/2

)(
2δ1 + δ2

)(1 + 2δ1 + δ2)m−2

(1− δ1)2m−1
+

, f ∈ L2
P,

where the four errors above are defined on page 100 and on page 104.

Proof. The bound for δ2 is a consequence of Lemma 1.22 on page 41. The second bound
comes from the triangle inequality applied to the operator norm

‖Q̂ − G‖∞ ≤ ‖Q̂ − Ĝ‖∞ + ‖Ĝ − G‖∞.

Combining previous bounds, we get

Ek(x, y) ≤ µ(x)−1/2µ(y)−1/2(1− δ1)−2
[
(2m− 1)

( 2δ1
(1− δ1)2 + δ2

)

×
(

1 + 2δ1
(1− δ1)2 + δ2

)2m−2
+ 2δ1

1− δ1

]
,
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which is lower than the simplified bound stated in the corollary. A similar computation
holds for Ek(x), replacing µ(y)−1/2 by the constant one. Concerning Er(x) we get

Er(x) ≤ µ(x)−1/2
[

(m− 1)
(1− δ1)+

( 2δ1
(1− δ1)2

+
+ δ2

)

×
(

1 + 2δ1
(1− δ1)2

+
+ δ2

)m−2
+ δ1

(1− δ1)+

]
,

leading to the simplified bound presented in the corollary. The computation for Ec(f) is
the same replacing µ(x)−1/2 with ‖f‖L2

P
.

To conclude we observe that the last renormalization to obtain the kernel Hm can also be
seen as a projection on the sphere. Indeed the feature map of Hm can be taken to be the
projection on the sphere of the feature map of Ĥ2m.
From this kernel we derive the new classification by thresholding the distances between
the points. We have already said that taking a suitable power of the kernel K̄, which is
here approximated by K̂, will threshold to zero its smallest eigenvalues. This leads to a
natural dimensionality reduction which allows us to automatically estimate the number c
of classes. We produce a greedy classification algorithm which consists in taking an index
i ∈ {1, . . . , n} at random, constructing the corresponding class

Ci = {j | Hm(Xi, Xj) ≥ s},

where s is a fixed threshold, and then starting again with the remaining indices. In such
a way we construct a sequence of indices i1, . . . , ic, where the number c of classes is then
estimated automatically. The k-th class is hence defined by

Ck = Cik \
⋃
`<k

Ci` , k = 1, . . . , c.

In some configurations, this obviously yields an unstable classification, but in practice,
when the classes are clearly separated from each other, this simple scheme is successful.

4.3.1 Implementation of the algorithm

Here we describe a simplified algorithm freely inspired by the algorithms for which we
proved theoretical learning bounds in the previous sections.

First recall that we estimate µ(x) by µ̂(x) as described in equation (4.8) on page 97 to
form the estimated kernel

K̂(x, y) = max{µ̂(x), σ}−1/2K(x, y) max{µ̂(y), σ}−1/2

of K̄. Then we construct an estimator of the kernel

H̄m(x, y) =
∫
K̂(y, z1)K̂(z1, z2) . . . K̂(x, zm−1) dP⊗(m−1)(z1, . . . , zm−1),

based on a second independent sample Xn+1, . . . , X2n ∈ Rd drawn according to P.
According to equation (4.12), we have

H̄m(x, y) = 〈Ĝm−1φ̂(x), φ̂(y)〉H
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where H is the reproducing kernel Hilbert space defined by K̄, the Gram operator Ĝ is
defined in equation (4.13) and the feature map φ̂ in equation (4.9).
Instead of estimating Ĝ by Q̂ constructed as explained on page 99 (according to equa-
tion (1.45) on page 48) we use here a simpler iterative scheme to compute Q̂. More pre-
cisely, we use the polarization formula to estimate the coefficients of Q̂ in an orthonormal
basis of

span{φ̂(Xn+1), . . . , φ̂(X2n)}

and then update this basis by replacing it iteratively by a diagonalization basis of the
previous estimate.

We introduce the n× n matrix M defined as

Mi,j = K̂
(
Xn+i, Xn+j

)
, i, j = 1, . . . , n.

We denote by λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0 its eigenvalues and we decompose M as

M = UDU>

with UU> = U>U = I and D = diag(λ1, λ2, . . . , λn). Let r be the rank of M so that
λr > 0 and λr+1 = λr+2 = · · · = λn = 0. We define

Vi,j = λ
−1/2
i Uj,i, 1 ≤ i ≤ r, 1 ≤ j ≤ n.

Lemma 4.14. An orthonormal basis of span
{
φ̂(Xn+1), . . . , φ̂(X2n)

}
is given by

qi =
n∑
j=1

Vi,j φ̂(Xn+j), i = 1, . . . , r,

where the sum is performed in H. Moreover, we can reconstruct φ̂(Xn+i), for i = 1, . . . , n,
as

φ̂(Xn+i) =
r∑

k=1
Ui,kλ

1/2
k qk. (4.18)

Proof. To prove the first part of the lemma, it is sufficient to observe that the number of
vectors is r and that, for any i, j ∈ {1, . . . , r},

〈qi, qj〉H =
(
VMV >

)
i,j

= λ
−1/2
i

(
U>UDU>U

)
i,j
λ
−1/2
j = λ

−1/2
i Di,jλ

−1/2
j = Ii,j .

To prove equation (4.18), we observe that

φ̂(Xn+i) =
r∑

k=1

〈
φ̂(Xn+i), qk

〉
qk =

r∑
k=1

n∑
j=1

Mi,jUj,kλ
−1/2
k qk

=
r∑

k=1

(
UDU>U

)
i,k
λ
−1/2
k qk =

r∑
k=1

Ui,kλkλ
−1/2
k qk.

We start by estimating in the basis {qi}ri=1 the Gram matrix

Gi,j = 〈Ĝ(qi), qj〉H, i, j = 1, . . . , r.
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Introducing the Gram kernel

Hi,j =
〈
Ĝφ̂(Xn+i), φ̂(Xn+j)

〉
H, i, j = 1, . . . , n,

we see, from the definition of qi, that

G = V HV >. (4.19)

We then use the polarization formula to get

Gi,j = 1
4
[
〈Ĝ(qi + qj), qi + qj〉H − 〈Ĝ(qi − qj), qi − qj〉H

]
, i, j = 1, . . . , r.

Given a vector p = (p1, . . . , pn) of real values (that will be of the form 〈θ, φ̂(Xn+i)〉H) and
a scale parameter λ > 0 (that we choose uniform here for simplicity), we consider the
solution S(p, λ) of the equation

n∑
i=1

ψ
[
λ
(
S(p, λ)−1p2

i − 1
)]

= 0, (4.20)

where the function ψ is defined in equation (1.2) on page 16. In practice we use a few
iterations of the Newton algorithm to solve this equation. We estimate

〈Ĝ(qi + σqj), qi + σqj〉H =
∫ 〈

qi + σqj , φ̂(x)
〉2
H dP(x)

=
∫ ( n∑

k=1

(
Vi,k + σVj,k

)〈
φ̂(Xn+k), φ̂(x)

〉
H

)2
dP(x),

where σ ∈ {−1,+1}, by N̂(qi + σqj), which we approximate by

S

[(
n∑
k=1

(
Vi,k + σVj,k

)
Mk,`, 1 ≤ ` ≤ n

)
, λ

]
. (4.21)

We then remark that for any couple of indices (i, `), such that 1 ≤ i ≤ r and 1 ≤ ` ≤ n,

n∑
k=1

Vi,kMk,` =
(
D−1/2U>M

)
i`

=
(
D−1/2U>UDU>

)
i,`

=
(
D1/2U>

)
i,`
,

so that equation (4.21) becomes

S

[((
D1/2U>

)
i,`

+ σ
(
D1/2U>

)
j,`
, 1 ≤ ` ≤ n

)
, λ

]
.

Taking notations, for any r×n matrix W , we denote by C(W ) the r× r matrix of entries

C(W )i,j = 1
4

[
S

((
Wi,` +Wj,`, 1 ≤ ` ≤ n

)
, λ

)
− S

((
Wi,` −Wj,`, 1 ≤ ` ≤ n

)
, λ

)]
.

We define a first estimate Q0 of the r × r matrix G of entries Gi,j = 〈Ĝ(qi), qj〉 by

Q0 = C
(
Πr,nD

1/2U>
)
,



110 Chapter 4. Spectral Clustering

where Πr,n is the r×n matrix of the projection on the r first coordinates, that is (Πr,n)i,j =
δi,j , for 1 ≤ i ≤ r and 1 ≤ j ≤ n. We then start the iterative scheme. We decompose

Q0 = O0D0O
>
0 ,

where O0O
>
0 = O>0 O0 = I and D0 is a diagonal matrix, and we observe that D0 is an

estimator of
O>0 GO0 = O>0 V HV

>O0,

according to equation (4.19), which can be re-estimated by C
(
O>0 Πr,nD

1/2U>
)
, since, by

definition, V = Πr,nD
1/2U>. This yields a new estimator of G = O0O

>
0 GO0O

>
0 equal to

Q1 = O0C
(
O>0 Πr,nD

1/2U>
)
O>0 .

The inductive update step is more generally the following. We decompose

Qk = OkDkO
>
k ,

where OkO>k = O>k Ok = I and Dk is a diagonal matrix, and we define the new updated
estimator of G as

Qk+1 = Ok C
(
O>k Πr,nD

1/2U>
)
O>k .

We stop this iterative estimation scheme when ‖Qk−Qk−1‖F falls under a suitable thresh-
old and we take as our robust estimator of 〈Ĝm(qi), qj〉H the last update (Qmk )ij .
The choice of the number of iterations is done automatically. We denote by λ̂1 ≥ λ̂2 ≥
· · · ≥ λ̂r the eigenvalues of Qk. Let p be the maximum number of classes we consider.
As it can be seen in the simulations, the choice of p is robust, meaning that p can be
harmlessly overestimated. We choose the number m of iterations by solving(

λ̂p

λ̂1

)m
' ζ

where ζ > 0 is a given small parameter. The choice of ζ is also robust and 1/100 is a
reasonable value for it.

Once we have estimated 〈Ĝm(qi), qj〉H by (Qmk )i,j , the matrix

H̄2m(Xn+i, Xn+j) =
〈
Ĝ2m−1φ̂(Xn+i), φ̂(Xn+j)

〉
H, i, j = 1, . . . , n,

is approximated by

H̃ = UD1/2Π>r,nQ2m−1
k Πr,nD

1/2U>

= UD1/2Π>r,nOkD2m−1
k O>k Πr,nD

1/2U>,

according to equation (4.18).
As a last step we renormalize H̃ to form the new kernel

Ĉi,j =
(
H̃i,i

)−1/2
H̃i,j

(
H̃j,j

)−1/2
, i, j = 1, . . . , n. (4.22)

This renormalization can also be interpreted as the projection on the sphere of the em-
bedded sample, or equivalently the kernel Ĉ can be seen as the correlation matrix of the
embedded dataset.
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A further (optional) step is to center the representation by computing

C = Ĉ − n−11n,nĈ − n−1Ĉ1n,n + n−21n,nĈ1n,n

where 1n,n is the n×n matrix whose entries are all equal to one, and by normalizing once
again to form

C̃i,j =
(
Ci,i

)−1/2
Ci,j

(
Cj,j

)−1/2
, i, j = 1, . . . , n. (4.23)

From the kernel Ĉ (or as an alternative from C̃), we derive the new classification

Ĉi =
{
j | Ĉi,j ≥ s

}
,

where s is a threshold that we took equal to 0.1 in all our experiments.
This may not be symmetric or transitive, but this is not a problem in practice. We recall
that our (greedy) classification algorithm consists in taking an index i1 ∈ {1, . . . , n} at
random, form the corresponding class Ĉi1 and then start again with the remaining indices.
In such a way, denoting by c the number of classes, we construct a sequence of indices
i1, . . . , ic, and we define the k-th class as

C̃k = Ĉik \
⋃
`<k

Ĉi` .

It is worth underlying that in our method the number of clusters is estimated automati-
cally, while in the spectral clustering algorithms mentioned above, [32], [20], [22], it is
assumed to be known in advance.
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4.4 Empirical results
In this section we give some examples. We first show how the algorithm described in the
previous section groups the points to cluster at the vertices of a simplex, simplifying the
geometry of the classes. Then, we test the algorithm in the setting of image analysis.

4.4.1 A first example

We briefly describe the setting in which we test the algorithm introduced in the previous
section. We consider an i.i.d. set of n = 900 points to cluster, whose configuration is
shown in figure 4.1 and we fix the maximum number of classes p = 7.
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Figure 4.1: The data configuration.

In these experiments, we have not used a split sample scheme and we have recycled the
same sample twice to compute the normalized kernel as well as to estimate the Gram
operator. This means that in the implementation of the algorithm described in sec-
tion 4.3.1, we took Xn+i = Xi, for any i = 1, . . . , n. With the same notation, the matrix
Mij = K̂(Xn+i, Xn+j) is computed as

M = D−1/2AD−1/2 (4.24)

where A is the kernel matrix Ai,j = n−1 exp
(
−β‖Xi −Xj‖2

)
and D is the diagonal matrix

with entries
Di,i = max

{ 1
n

n∑
j=1

Ai,j , σ

}
,

with σ = 0.001.
Figure 4.2 shows that the new representation induced by the change of kernel described
in equation (4.23) groups the data points at the vertices of the simplex generated by
the largest eigenvectors of the matrix C̃. This simple configuration makes it possible
to compute the classification, including the number of clusters, using a straightforward
greedy algorithm.
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Figure 4.2: On the left the simplex generated by the eigenvectors of C̃, on the right
classification performed on C̃.

In figure 4.3 we plotted the first eigenvalues of M in black (joined by a solid line), the
eigenvalues of its iteration 〈Ĝ2m−1φ̂(Xn+i), φ̂(Xn+j)〉H estimated by H̃i,j in blue (joined
by a dashed line) and the eigenvalues of the covariance matrix of the final representation
(defined by C̃) in red (joined by a dash dotted line). We observe that the first eigenvalues
of M are close to one, while there is a remarkable gap between the eigenvalues of its
iteration. In particular the size of the gap is larger once we have renormalized using the
matrix C̃.
The number of iterations is automatically estimated and it is equal to 1441.
We obtain similar results by considering the matrix Ĉ instead of C̃.
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Figure 4.3: In black (solid line) the eigenvalues of M , in blue (dashed line) those of H̃ and
in red (dash-dot line) the eigenvalues of C̃.

We can also test the simpler clustering algorithm obtained by estimating the Gram opera-
tor by its empirical counterpart. More precisely, instead of computing the robust estimator
with the iterative scheme described in the previous section, we simply construct the matrix
M as in equation (4.24) and we raise it to the power m to obtain the new matrix

M̃i,j = (Mm)−1/2
i,i (Mm)i,j(Mm)−1/2

j,j .

We then apply the classification algorithm to the matrix M̃.

Figure 4.4 shows that in this special case the use of a robust estimator is not needed.
Indeed, in the representation defined by M̃ , the data points are also grouped at the
vertices of the simplex generated by the first eigenvectors of M̃ and the same classification
is computed.
The number of iterations is automatically estimated and it is equal to 2090.
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Figure 4.4: On the left the simplex generated by the eigenvectors of M̃ , on the right
classification performed on M̃ .

4.4.2 Some perspectives on invariant shape analysis

In this section we present a small example about image classification. The goal of image
analysis is to recognize and classify patterns. These patterns may have been transformed
by some set of transformations, such as translations, rotations or scaling and are more
generally affected by the conditions in which the images to be analysed have been taken.
The challenge is then to find a representation that is not hampered by the variations of
the same pattern from image to image. Making a representation invariant to a set of
transformations is a challenging task, even in the simpler case of translations. Indeed, it
is sufficient to observe that the set of functions obtained by translating a single pattern
in various directions typically spans a vector space of high dimension, meaning that the
shapes (here the functions) that we would like to put in the same category do not even
live in a common low-dimensional subspace.

A possible approach is to study representations that leave invariant some group of transfor-
mations. For instance, the Fourier transform has translation invariant properties, since its
modulus is translation invariant. However it is unstable to small deformations at high fre-
quencies. Wavelet transforms provide a workaround. Scattering representations proposed
by Mallat [18] compute translation invariant representations by cascading wavelet trans-
forms and modulus pooling operators. They bring improvements for audio classification
[1] and for image classification [3].

This kind of careful mathematical study has to be repeated for any kind of transformations
and in image analysis the pattern transformations we would like to take into account are
numerous and not easy to formalize, since they may come from changes in the perspective
or in illumination, from partial occlusions, from object deformations, etc.

Coupling spectral clustering with a change of representation in a reproducing kernel Hilbert
space may lead to a generic and rather radical alternative. Instead of deriving the repre-
sentation of a pattern from a mathematical study, the idea is to learn the representation
itself from examples of patterns that sample in a sufficiently dense way the orbits of the
set of transformations at stake.
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Developing a convincing toolbox for unsupervised invariant shape analysis is beyond the
scope of this study and it will be carried on elsewhere. Our purpose in this section is just
to hint that spectral clustering, coupled with some preliminary change of representation in
a reproducing kernel Hilbert space, can be a winning tool to bring down the representation
of classes to a low-dimensional space. We suggest with a small example how this approach
may lead to learn transformation invariant representations from datasets containing small
successive transformations of a same pattern.
We briefly describe this approach to get a hint of its potential. We consider two images
(figure 4.5) and we create our patterns by translating a subwindow of a given size in each
image repeatedly, using a translation vector smaller than the subwindow size. In such a
way we create a sample consisting of two classes of connected images, as shown in figure
4.6. This notion of translation cannot be grasped easily by a mathematical definition,
because we do not translate a function (here the image defined as a function sampled on a
rectangular grid of pixels), but a window of observation. Hence in this case the translation
depends on the image content and it may not be easy to model in any realistic situation.

We present on an example a successful scenario using first a change of representation in
a reproducing kernel Hilbert space to better separate the two classes, and then spectral
clustering to shrink each class to a tight blob. We show that the so called kernel trick,
introduced to better separate classes in the supervised learning framework addressed by
support vector machines (SVMs), also works in an unsupervised context. In this setting,
we do not separate classes using hyperplanes, since we do not know class labels which
would be necessary to run a SVM, but, instead, we use spectral clustering to finishing the
work.

Figure 4.5: The two original images.

· · · · · ·

· · · · · ·

Figure 4.6: Our sample consisting of two classes of connected images, the first sequence is
obtained with a horizontal translation, the second one with a diagonal translation.

Let X1, . . . , Xn be the sample of images shown in figure 4.6. Each photo is represented
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as a matrix whose entries are the gray values of the corresponding pixels. We apply twice
the change of representation described by the change of kernel. We first consider the
reproducing kernel Hilbert space H1 defined by

k1(x, y) = exp
(
−β1‖x− y‖2

)
and then the reproducing kernel Hilbert space H2 defined by

k2(x, y) = exp
(
−β2‖x− y‖2H1

)
= exp

(
−2β2

(
1− k1(x, y)

))
.

Recalling the definition of k1, the kernel k2 rewrites as

k2(x, y) = exp
[
−2β2

(
1− exp

(
−β1‖x− y‖2

))]
where β1, β2 > 0 are obtained as described in section 4.2.2, based on the trace estimation.
We define the new kernel

K(x, y) = exp
(
−β‖x− y‖2H2

)
,

where the parameter β > 0 is chosen again as in section 4.2.2, and we introduce

K̄(x, y) = K(x, y)
(
∫
K(x, z) dP(z))

1
2 (
∫
K(y, z) dP(z))

1
2
.

Proceeding as already done in the previous sections, we estimate K̄ with the kernel K̂ and
we apply the classification algorithm to K̂m. As in the framework of SVMs, we use the
kernel trick to embed the sample in a higher-dimensional space in which the geometry of
the classes is simpler. However, as already said, we do not use hyperplanes but spectral
clustering to separate the two classes.

In figure 4.7 we compare the representation of the images in the initial space and in the
space H2.

On the left we present the projection of the sample onto the space spanned by the first
two largest eigenvectors of the matrix of inner products between images 〈Xi, Xj〉. On the
right we plot the projection onto the space spanned by the two largest eigenvectors of the
matrix of inner products k2(Xi, Xj) in H2.
We observe that in the first representation the two classes intersect each other while in
the second one, after the change of representation, they are already separated.
To conclude, figure 4.8 shows the final representation. Here the data points are projected
onto the space spanned by the two largest eigenvectors of the matrix K̂(Xi, Xj)m.
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Figure 4.7: On the left the projection onto the space spanned by the two largest eigen-
vectors of 〈Xi, Xj〉, on the right the projection onto the space spanned by the two largest
eigenvectors of k2(Xi, Xj).
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Figure 4.8: The projection onto space spanned by the two largest eigenvectors of
K̂(Xi, Xj)m.



Appendix A

Density Estimation

In this appendix we consider the problem of estimating the density function of an unknown
probability distribution and we present an estimator, based on the results obtained in
chapter 1, that is more robust than the classical kernel density estimator.

A.1 Introduction

Let P ∈ M1
+(Rd) be an unknown probability measure and let us assume it has a density

with respect to the Lebesgue measure. The goal of density estimation is to construct an
estimator of the density function f from an i.i.d. sample X1, . . . , Xn ∈ Rd distributed
according to P. To achieve this aim, we need to introduce the concept of approximate
identities (also called approximations to the identity). Let ϕ be a function defined on Rd
and let ε > 0. We assume that ϕ is a non-negative measurable function such that∫

ϕ(x)dx = 1.

Let us denote by Lp(Rd) the space of p-integrable functions with respect to the Lebesgue
measure.

Proposition A.1. (Theorem 1.18. [33]) For any f ∈ Lp(Rd), p ∈ [1,+∞[, we have

lim
ε→0
‖f ∗ ϕε − f‖Lp(Rd) = 0,

where ϕε(x) = ε−dϕ(x/ε) are called approximate identities. Moreover, for any f ∈ Lp(Rd),
p ∈ [1,+∞],

lim
ε→0

f ∗ ϕε(x) = f(x) almost surely.

As a consequence, assuming f ∈ Lp(Rd), the convolution

f ∗ ϕε(x) =
∫
ϕε(z − x)f(z) dz

=
∫
ϕε(z − x) dP(z)

converges to f almost surely as ε goes to zero.

We now consider as approximate identities the family of Gaussian distributions πα ∼
N (0, α−1I) of means 0 and covariance matrix α−1I. By the properties of approximate
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identities, the convolution

f ∗ πα(x) =
(
α

2π

) d
2
∫

exp
(
−α2 ‖z − x‖

2
)

dP(z)

converges to f as α grows to infinity. However, since P is unknown, also f ∗πα is unknown.
A possible approach to estimate f ∗ πα is to replace the distribution P by the empirical
measure 1

n

∑n
i=1 δXi . This leads to the kernel density estimator

f̄α(x) = 1
n

(
α

2π

) d
2

n∑
i=1

exp
(
−α2 ‖Xi − x‖2

)
,

where 1/
√
α is usually called bandwidth. We discuss the use of more general kernels

in appendix A.3.

In the next section we construct, with the help of the results presented in chapter 1, a
robust estimator f̂α of the convolution f ∗ πα.

A.2 Estimate of the density function
In this section, our goal is construct a robust estimator of

f ∗ πα(x) =
(
α

2π

) d
2
∫

exp
(
−α2 ‖z − x‖

2
)

dP(z), x ∈ Rd,

from the i.i.d. sample X1, . . . , Xn ∈ Rd drawn according to P. We introduce the kernel

kα(x, x′) = exp
(
−α4 ‖x

′ − x‖2
)
, x, x′ ∈ Rd,

and, according to the Moore-Aronszajn theorem ( Proposition C.14), it defines a repro-
ducing kernel Hilbert space H and a feature map φα : Rd → H such that

kα(x, x′) = 〈φα(x′), φα(x)〉H.

It follows that the convolution rewrites as

f ∗ πα(x) =
(
α

2π

) d
2
∫
〈φα(z), φα(x)〉2H dP(z).

In analogy to the notation of chapter 1, we introduce

Nα
(
φα(x)

)
=
∫
〈φα(z), φα(x)〉2H dP(z),

so that

f ∗ πα(x) =
(
α

2π

) d
2
Nα
(
φα(x)

)
.

Let N̂α be the estimator of Nα introduced in section 1.3 on page 46. We define

f̂α(x) =
(
α

2π

) d
2
N̂α
(
φα(x)

)
.

Next proposition provides a uniform bound on the approximation error
∣∣∣f ∗ πα(x)− f̂α(x)

∣∣∣.
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Proposition A.2. Let X ∈ Rd be a random vector of law P. Let X be a subset of Rd.
Let a > 0 and let

K = 1 +
⌈
a−1 log

(
n

72(2 + c)κ1/2

)⌉
with c = 15

8 log(2)(
√

2−1) exp
(

1+2
√

2
2

)
and

κ = sup
x∈X

E
[
exp

(
−α‖x−X‖2

)]
E
[
exp

(
−α2 ‖x−X‖

2
)]2 .

Define

ζ(t) =

√√√√2(κ− 1)
(

(2 + 3c)
4(2 + c)κ1/2t

+ log(K/ε)
)

cosh(a/4) +

√
2(2 + c)κ1/2

t
cosh(a/2)

and the bound

B∗(t) =


n−1/2ζ(max{t, σ})

1− 4n−1/2ζ(max{t, σ})
[
6 + (κ− 1)−1]ζ(max{t, σ}) ≤

√
n

+∞ otherwise,

depending on the threshold σ. For any choice of σ ∈]0, 1], with probability at least 1− 2ε,
for any x ∈ X ,∣∣∣∣max{f ∗ πα(x), σ

(
α/(2π)

)d/2}
max{f̂α(x), σ

(
α/(2π)

)d/2} − 1
∣∣∣∣ ≤ B∗{E[exp

(
−α2 ‖x−X‖

2
)]}

, (A.1)

and consequently ∣∣∣f ∗ πα(x)− f̂α(x)
∣∣∣ ≤ B{E[exp

(
−α2 ‖x−X‖

2
)]}

,

where

B(t) =
(
α

2π

)d/2(
max{t, σ} B∗(t)

1−B∗(t)
+ σ

)
.

Proof. Remark that s2
4 = E

(
‖φα(X)‖4

)1/2 = 1, since ‖φα(x)‖H = 1, for any x ∈ Rd. To
prove the result, it is sufficient to bound, uniformly on x ∈ X , the quantity∣∣∣∣∣max{Nα

(
φα(x)

)
, σ}

max{N̂α
(
φα(x)

)
, σ}
− 1

∣∣∣∣∣ .
We can then remark that if in Proposition 1.17 on page 35 and consequently in Proposi-
tion 1.31 on page 47 we restrict the statement to any θ ∈ Θ, where Θ ⊂ Rd is some subset
of Rd, then, in the definition of κ (equation (1.10) on page 26), we can also restrict the
supremum to the same subset. Using this variant of Proposition 1.31 on page 47 where
we restrict to θ ∈ φα(X ), we obtain that with probability at least 1− 2ε, for any x ∈ X ,∣∣∣∣∣max{Nα

(
φα(x)

)
, σ}

max{N̂α
(
φα(x)

)
, σ}
− 1

∣∣∣∣∣ ≤ B∗[Nα
(
φα(x)

)]
,

which concludes the proof.
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Let us remark that we can see the influence of the dimension in this result by looking at
equivalents when α goes to +∞. In this case (under suitable regularity assumptions)

E
[
exp

(
−α2 ‖x−X‖

2
)]
∼
(2π
α

)d/2
f(x),

so that

κ ∼
(
α

4π

)d/2
sup
x∈X

f(x)−1.

A.3 Kernel density estimation
Kernel density estimation is a non-parametric method of estimating the probability density
function of a continuous random variable which consists in associating to each point of
a given dataset a kernel function centered on that point. The kernel density estimator
is defined as the sum of the centered kernel functions, scaled by a parameter h, called
bandwidth, to have unit area. To be more precise, given an i.i.d. sample X1, . . . , Xn ∈ Rd
and a kernel K such that K(x, y) = k(x− y), the kernel density estimator has the form

h−d

n

n∑
i=1

k
(
x−Xi

h

)
, x ∈ Rd.

In the previous section we have considered the case of a Gaussian kernel with bandwidth
1/
√
α. We now observe that, up to the scaling parameter, the kernel density estimator is

the empirical version of∫
K(x, z) dP(z) =

∫
k(x− z) dP(z), x ∈ Rd. (A.2)

In this section we provide a more robust estimator of the quantity in equation (A.2). Let
X be a subset of some separable Hilbert space endowed with the unknown probability
distribution P ∈M1

+(X ). We assume that the kernel K is such that

K(x, y) = K̃(x, y)2, x, y ∈ X ,

where K̃ is a symmetric positive semi-definite kernel on X . Our goal is to estimate∫
K(x, z) dP(z) =

∫
K̃(x, z)2 dP(z) (A.3)

from an i.i.d. sample X1, . . . , Xn ∈ X drawn according to P. By the Moore-Aronszajn
theorem ( Proposition C.14) K̃ defines a reproducing kernel Hilbert space H and a feature
map φ : X → H such that

K̃(x, z) = 〈φ(x), φ(z)〉H.

Thus, the quantity in equation (A.3) rewrites as∫
〈φ(x), φ(z)〉2H dP(z),

which we denote by N(φ(x)) in analogy to the notation used in chapter 1. We can see
that N is the quadratic form associated with the Gram operator G : H → H defined by

Gθ =
∫
〈θ, φ(z)〉H φ(z) dP(z).
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Let N̂(θ) be the estimator of the Gram operator defined in Proposition 1.31 on page 47,
with θ restricted to be in φ(X ). We can estimate

N(φ(x)) =
∫

K(x, z) dP(z)

by N̂
(
φ(x)

)
with the following bound on the estimation error.

Proposition A.3. With the above notation, let X ∈ X be a random vector of law P. We
define, for any t ∈ R+,

ζ(t) =

√√√√2(κ− 1)
(

(2 + 3c)E
(
K(X,X)2)1/2

4(2 + c)κ1/2t
+ log(K/ε)

)
cosh(a/4)

+

√
2(2 + c)κ1/2E

(
K(X,X)2)1/2
t

cosh(a/2)

where K and c are defined in Proposition A.2 and

κ = sup
x∈X ,

E
(

K(x,X)
)
>0

E
(
K(x,X)2)

E
(
K(x,X)

)2
Let σ ∈ R+ be such that 8ζ(σ) ≤

√
n and σ ≤ E

[
K(X,X)2]1/2. Consider the bound

B∗(t) = n−1/2ζ(max{t, σ})
1− 4n−1/2ζ(max{t, σ})

, t ∈ R+.

With probability at least 1− 2ε, for any x ∈ X ,∣∣∣∣∣max{E
(
K(x,X)

)
, σ}

max{N̂
(
φ(x)

)
, σ}

− 1
∣∣∣∣∣ ≤ B∗(E(K(x,X)

)
.





Appendix B

Orthogonal Projectors

In this appendix we introduce some results on orthogonal projectors.
Let P, Q : Rd → Rd be two orthogonal projectors. We denote by Sd the unit sphere of
Rd. By definition,

‖P −Q‖∞ = sup
x∈Sd
‖Px−Qx‖

where, without loss of generality, we can take the supremum over the normalized eigen-
vectors of P −Q.

A good way to describe the geometry of P −Q is to consider the eigenvectors of P +Q.

Lemma B.1. Let x ∈ Sd be an eigenvector of P +Q with eigenvalue λ.

1. In the case when λ = 0, then Px = Qx = 0, so that x ∈ ker(P ) ∩ ker(Q);

2. in the case when λ = 1, then PQx = QPx = 0, so that

x ∈ ker(P ) ∩ Im(Q)⊕ Im(P ) ∩ ker(Q);

3. in the case when λ = 2, then x = Px = Qx, so that x ∈ Im(P ) ∩ Im(Q);

4. otherwise λ ∈]0, 1[∪]1, 2[,

(P −Q)2x = (2− λ)λx 6= 0,

so that (P −Q)x 6= 0. Moreover

(P +Q)(P −Q)x = (2− λ)(P −Q)x,

so that (P −Q)x is an eigenvector of P +Q with eigenvalue 2− λ. Moreover

0 < ‖Px‖ = ‖Qx‖ < ‖x‖,

x− Px 6= 0, and
(
Px, x− Px

)
is an orthogonal basis of span

{
x, (P −Q)x

}
.

Proof. The operator P +Q is symmetric, positive semi-definite, and ‖P +Q‖ ≤ 2, so that
there is a basis of eigenvectors and all eigenvalues are in the intervall [0, 2].
In case 1, 0 = 〈Px+Qx, x〉 = ‖Px‖2 + ‖Qx‖2, so that Px = Qx = 0.
In case 2, PQx = P (x− Px) = 0 and similarly QPx = Q(x−Qx) = 0.
In case 3,

‖Px‖2 + ‖Qx‖2 = 〈(P +Q)x, x〉 = 2〈x, x〉 = ‖Px‖2 + ‖x− Px‖2 + ‖Qx‖2 + ‖x−Qx‖2,
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so that ‖x− Px‖ = ‖x−Qx‖ = 0.
In case 4, remark that

PQx = P (λx− Px) = (λ− 1)Px

and similarly QPx = Q(λx−Qx) = (λ− 1)Qx. Consequently

(P −Q)(P −Q)x = (P −QP − PQ+Q)x = (2− λ)(P +Q)x = (2− λ)λx 6= 0,

so that (P −Q)x 6= 0. Moreover

(P +Q)(P −Q)x = (P − PQ+QP −Q)x = (2− λ)(P −Q)x.

Therefore (P −Q)x is an eigenvector of P +Q with eigenvalue 2−λ 6= λ, so that 〈x, (P −
Q)x〉 = 0, since P +Q is symmetric. As 〈x, (P −Q)x〉 = ‖Px‖2−‖Qx‖2, this proves that
‖Px‖ = ‖Qx‖. Since (P + Q)x = λx 6= 0, necessarily ‖Px‖ = ‖Qx‖ > 0. Observe now
that

‖Px‖2 = 1
2
(
‖Px‖2 + ‖Qx‖2

)
= 1

2〈x, (P +Q)x〉 = λ

2 ‖x‖
2 < ‖x‖2.

Therefore ‖x − Px‖2 = ‖x‖2 − ‖Px‖2 > 0, proving that x − Px 6= 0. Similarly, since P
and Q play symmetric roles, ‖Qx‖ < ‖x‖ and x−Qx 6= 0.
As P is an orthogonal projector, (Px, x − Px) is an orthogonal pair of non-zero vectors.
Moreover

x = x− Px+ Px ∈ span{Px, x− Px}

and
(P −Q)x = 2Px− λx = (2− λ)Px− λ(x− Px) ∈ span{Px, x− Px}

therefore, (Px, x− Px) is an orthogonal basis of span{x, (P −Q)x}.

Lemma B.2. There is an orthonormal basis (xi)di=1 of eigenvectors of P +Q with corre-
sponding eigenvalues {λi, i = 1, . . . d} and indices 2m ≤ p ≤ q ≤ s, such that

1. λi ∈]1, 2[, if 1 ≤ i ≤ m,

2. λm+i = 2− λi, if 1 ≤ i ≤ m, and xm+i = ‖(P −Q)xi‖−1(P −Q)xi,

3. x2m+1, . . . , xp ∈
(
Im(P ) ∩ ker(Q)

)
, and λ2m+1 = · · · = λp = 1,

4. xp+1, . . . , xq ∈
(
Im(Q) ∩ ker(P )

)
, and λp+1 = · · · = λq = 1,

5. xq+1, . . . , xs ∈ Im(P ) ∩ Im(Q), and λq+1 = · · · = λs = 2,

6. xs+1, . . . , xd ∈ ker(P ) ∩ ker(Q), and λs+1 = · · · = λd = 0.

Proof. There exists a basis of eigenvectors of P +Q (as already explained at the beginning
of proof of Lemma B.1). From the previous lemma, we learn that all eigenvectors in the
kernel of P +Q are in ker(P )∩ker(Q), as on the other hand obviously ker(P )∩ker(Q) ⊂
ker(P +Q) we get that

ker(P +Q) = ker(P ) ∩ ker(Q).

In the same way the previous lemma proves that the eigenspace corresponding to the
eigenvalue 2 is equal to Im(P ) ∩ Im(Q). It also proves that the eigenspace correponding
to the eigenvalue 1 is included in and consequently is equal to

(
Im(P )∩ker(Q)

)
⊕
(
ker(P )∩

Im(Q)
)
, so that we can form an orthonormal basis of this eigenspace by taking the union
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of an orthonormal basis of Im(P )∩ker(Q) and an orthonormal basis of ker(P )∩ Im(Q).
Consider now an eigenspace corresponding to an eigenvalue λ ∈]0, 1[∪]1, 2[ and let x, y
be two orthonormal eigenvectors in this eigenspace. Remark that (still from the previous
lemma)

〈(P −Q)x, (P −Q)y〉 = 〈(P −Q)2x, y〉 = (2− λ)λ〈x, y〉 = 0.

Therefore, if x1, . . . , xk is an orthonormal basis of the eigenspace Vλ corresponding to the
eigenvalue λ, then (P − Q)x1, . . . , (P − Q)xk is an orthogonal system in V2−λ. If this
system was not spanning V2−λ, we could add to it an orthogonal unit vector yk+1 ∈ V2−λ
so that x1, . . . , xk, (P−Q)yk+1 would be an orthogonal set of non-zero vectors in Vλ, which
would contradict the fact that x1, . . . , xk was supposed to be an orthonormal basis of Vλ.
Therefore, (

‖(P −Q)xi‖−1(P −Q)xi, 1 ≤ i ≤ k
)

is an orthonormal basis of V2−λ. Doing this construction for all the eigenspaces Vλ such that
λ ∈]0, 1[ achieves the construction of the orthonormal basis described in the lemma.

Lemma B.3. Consider the orthonormal basis of the previous lemma. The set of vectors(
Px1, . . . , Pxm, x2m+1, . . . , xp, xq+1, . . . , xs

)
is an orthogonal basis of Im(P ). The set of vectors(

Qx1, . . . , Qxm, xp+1, . . . , xq, xq+1, . . . , xs
)

is an orthogonal basis of Im(Q).

Proof. According to Lemma B.1 on page 125, (Pxi, xi − Pxi) is an orthogonal basis of
span{xi, xm+i}, so that(

Px1, . . . , Pxm, x1 − Px1, . . . , xm − Pxm, x2m+1, . . . , xd
)

is another orthogonal basis of Rd. Each vector of this basis is either in Im(P ) or in ker(P )
and more precisely

Px1, . . . , Pxm, x2m+1, . . . , xp, xq+1, . . . , xs ∈ Im(P ),
x1 − Px1, . . . , xm − Pxm, xp+1, . . . , xq, xs+1, . . . , xd ∈ ker(P ).

This proves the claim of the lemma concerning P . Since P and Q play symmetric roles,
this proves also the claim concerning Q, mutatis mutandis.

Lemma B.4. The projectors P and Q have the same rank if and only if

p− 2m = q − p.

Lemma B.5. Assume that rank(P ) = rank(Q). Then

‖P −Q‖∞ = sup
θ∈Im(Q)∩Sd

‖(P −Q)θ‖.

Proof. As P −Q is a symmetric operator, we have

sup
θ∈Sd
‖(P −Q)θ‖2 = sup

{
〈(P −Q)2θ, θ〉 | θ ∈ Sd

}
= sup

{
〈(P −Q)2θ, θ〉 | θ ∈ Sd is an eigenvector of (P −Q)2

}
.
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Remark that the basis described in Lemma B.2 is also a basis of eigenvectors of (P −Q)2.
More precisely, according to Lemma B.1

(P −Q)2xi = λi(2− λi)xi, 1 ≤ i ≤ m,
(P −Q)2xm+i = λi(2− λi)xm+i, 1 ≤ i ≤ m,

(P −Q)2xi = xi, 2m < i ≤ q,
(P −Q)2xi = 0, q < i ≤ d.

If q − 2m > 0, then ‖P − Q‖∞ = 1, and q − p > 0, according to Lemma B.4, so that
‖(P −Q)xp+1‖ = 1, where xp+1 ∈ Im(Q). If q = 2m and m > 0, there is i ∈ {1, . . . ,m}
such that ‖P − Q‖2∞ = λi(2 − λi). Since xi and xm+i are two eigenvectors of (P − Q)2

corresponding to this eigenvalue, all the non-zero vectors in span{xi, xm+i} (including
Qxi) are also eigenvectors of the same eigenspace. Consequently (P − Q)2Qxi = λi(2 −
λi)Qxi, proving that ∥∥∥(P −Q) Qxi

‖Qxi‖

∥∥∥2
= λi(2− λi),

and therefore that supθ∈Sd‖(P − Q)θ‖ is reached on Im(Q). Finally, if q = 0, then
P − Q is the null operator, so that supθ∈Sd‖(P − Q)θ‖ is reached everywhere, including
on Im(Q) ∩ Sd.
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Reproducing Kernel Hilbert
Spaces

C.1 Operators on Hilbert spaces
For more details on the results presented in this section we refer to [23].

Let H be a Hilbert space. We denote by L(H) the space of bounded linear operators from
H to H.

Definition C.1. Let X and Y be two Banach spaces. An operator T ∈ L(X,Y ) is called
compact if for very bounded sequence {xn} ⊂ X, the sequence {Txn} has a subsequence
convergent in Y.

Proposition C.2. (Riesz-Schauder theorem, Theorem VI.15, [23]) Let T a com-
pact operator on H. The spectrum of T is a discrete set having no limit points except
perhaps zero. Moreover, any non-zero eigenvalue of T has finite multiplicity.

An operator T ∈ L(H) is called self-adjoint if T ∗ = T, where T ∗ ∈ L(H) is defined by

〈T ∗x, y〉H = 〈x, Ty〉H.

Proposition C.3. (Hilbert-Schmidt theorem, Theorem VI.16, [23]) Let T be a
self-adjoint compact operator on H. There exists an orthonormal basis {en}n of H such
that Ten = λnen and λn → 0 as n→ +∞.

The canonical form for compact operators is given by the following result.

Proposition C.4. (Theorem VI.17, [23]) Let T be a compact operator on H. There
exist orthonormal sets (not necessarily complete) {ψn}n, {φn}n and positive real number
{λn}n with λn → 0 such that

T =
∑
n

λn〈ψn, ·〉φn.

The sum may be finite or infinite and converges in norm. The numbers {λn}n are called
singular values of T and precisely they are the eigenvalues of |T | =

√
T ∗T . The orthonormal

set {ψn}n is such that
T ∗Tψn = λ2

nψn

and φn = Tψn/λn. Hence, if the operator T is self-adjoint, φn = ψn for any n.
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We are now going to introduce some criterium for determining when a given operator is
compact.

Let H be a separable Hilbert space and let {en}n be an orthonormal basis of H. For any
positive operator T ∈ L(H), we define the trace of T as

Tr(T ) =
∑
n

〈Ten, en〉H.

Definition C.5. An operator T ∈ L(H) is called trace class if

Tr |T | =
∑
n

〈(T ∗T )1/2en, en〉H < +∞.

Proposition C.6. (Theorem VI.21, [23]) Every trace class operator is compact. Vice
versa, a compact operator T is trace class if and only if

∑
n λn < +∞ where λn are the

singular values of T.

Definition C.7. An operator T ∈ L(H) is called Hilbert-Schmidt if

Tr(T ∗T ) < +∞.

Proposition C.8. (Theorem VI.22, [23]) Every Hilbert-Schmidt operator is compact.
Vice versa, a compact operator T is Hilbert-Schmidt if and only if

∑
n λ

2
n < +∞ where λn

are the singular values of T. Moreover,

‖T‖HS ≤ Tr |T |

where ‖T‖2HS = Tr(T ∗T ) is the Hilbert-Schmidt norm.

Proposition C.9. (Theorem VI.23, [23]) Let (X,µ) be a measure space and H =
L2(X,µ). An operator T ∈ L(H) is Hilbert-Schmidt if and only if there is a function
K ∈ L2(X ×X,µ⊗ µ) with

Tf(x) =
∫
K(x, z)f(z) dµ(z).

Combining Proposition C.4 and Proposition C.9 we obtain that the function K can be
written as

K(x, y) =
∑
n

λnψn(x)ψn(y)

where ψn are the eigenfunctions of T and the sum converges in L2(X ×X,µ⊗ µ).

C.2 Definitions and main properties

Definition C.10. Let X be a set. A (real) reproducing kernel Hilbert space on X is a
Hilbert space K such that

1. the element of K are functions defined on X;

2. (reproducing property) for all x ∈ X there exists Kx ∈ K such that

f(x) = 〈f,Kx〉K, f ∈ K. (C.1)
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The reproducing property is equivalent to requiring that, for any x ∈ X, there exists a
positive constant Cx such that

|f(x)| ≤ Cx‖f‖K, f ∈ K.

The reproducing kernel corresponding to K is the function K : X ×X → R defined by

K(x, x′) = 〈Kx′ ,Kx〉K.

The kernel K is of positive type, that is, it is symmetric and for any x1, . . . , xn ∈ X and
c1, . . . , cn ∈ R,

n∑
i,j=1

cicjK(xi, xj) ≥ 0.

We now present some example of reproducing kernels:

1) Linear kernels: K(x, x′) = x · x′

2) Gaussian kernels: K(x, x′) = e−‖x−x
′‖2/σ2

, σ > 0

3) Polynomial kernels: K(x, x′) = (x · x′ + 1)k, k ∈ N.

Next result provides a characterization of reproducing kernel Hilbert spaces.

Lemma C.11. Let K be a reproducing kernel Hilbert space. We have

K = span{Kx | x ∈ X}.

Another way to characterize reproducing kernel Hilbert spaces is via the so called feature
map.

Definition C.12. Let X be a set and H be a (real) Hilbert space, a feature map is a map
φ : X → H such that

if v ∈ H is such that 〈v, φ(x)〉H = 0 ∀x ∈ X, then v = 0. (C.2)

We observe that condition (C.2) is equivalent to

span{φ(x) | x ∈ X} = H.

We now show that there is a one to one correspondence between reproducing kernel Hilbert
spaces and feature maps. The first result shows that a feature map φ : X → H univocally
determines a reproducing kernel Hilbert space. We define the set

K = {fv | v ∈ H} (C.3)

where fv : X → R is defined by

fv(x) = 〈v, φ(x)〉H.

The proposition below shows that K endowed with the product

〈fv, fw〉K = 〈v, w〉H, (C.4)

is a reproducing kernel Hilbert space.
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Proposition C.13. Given φ : X → H a feature map, the set K defined in equation (C.3)
with the inner product (C.4) is a reproducing kernel Hilbert space with reproducing kernel

K(x, x′) = 〈φ(x′), φ(x)〉H.

Moreover, the map W : H → K defined by

Wv = fv

is a unitary operator and in particular Kx = fφ(x).

The space K is univocally determined by the kernel K, in the sense that, given φ′ : X → H′
another feature map such that

K(x, x′) = 〈φ′(x′), φ′(x)〉H,

then {fv′ | v′ ∈ H′} and K coincides as Hilbert spaces.

Vice versa, any reproducing kernel Hilbert space K defines a feature map φ : X → K
putting

φ(x) = Kx, x ∈ X,
whose feature operator is the identity, by the reproducing property.

We conclude the section stating the Moore-Aronszajn theorem.

Proposition C.14. (Moore-Aronszajn theorem) Let K : X ×X → R be a kernel of
positive type. There exists a unique reproducing kernel Hilbert space with K as reproducing
kernel.

We then conclude that a kernel K : X × X → R is of positive type if and only if there
exist a Hilbert space H and a function φ : X → H such that, for any x, x′ ∈ X,

K(x, x′) = 〈φ(x′), φ(x)〉H.

C.3 The Mercer theorem
In this section we introduce the Mercer theorem, which characterizes continuous kernels
on compact domains.

Let φ : X → H be a feature map and K the corresponding reproducing kernel Hilbert
space with reproducing kernel K. We are going to make the following assumptions:

1. X is a compact space which satisfies the second axiom of countability, i.e. its topol-
ogy has a countable basis;

2. the reproducing kernel K is continuous;

3. µ ∈M1
+(X) is a probability measure such that supp(µ) = X.

We consider the continuous operator S : K → L2(X,µ) defined by

Sf(x) = f(x) = 〈f,Kx〉K, x ∈ X,

and we denote by S∗ : L2(X,µ)→ K its adjoint. In order to state some properties of these
operators, we introduce the operator Kx ⊗Kx : K → K defined as

Kx ⊗Kxf = 〈f,Kx〉KKx.
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Proposition C.15. The following properties hold

1. S and S∗ are Hilbert-Schmidt operators.

2. S is injective

3. The operator SS∗ : L2(X,µ)→ L2(X,µ) is such that

SS∗f(x) =
∫
K(x, z)f(z) dµ(z)

and it is a positive trace class operator.

4. S∗S is the expectation with respect to µ of the operator Kx ⊗Kx, that is, it is such
that

〈S∗Sf, g〉K =
∫
〈f,Kx〉K〈g,Kx〉K dµ(x)

and it is a positive trace class operator.

In particular, since SS∗ is a self-adjoint positive trace class operator, it is compact. Hence,
by the Hilbert-Schmidt therorm ( Proposition C.3), there exists an orthonormal basis {ϕi}i
of L2(X,µ) consisting of eigenvectors of SS∗ with positive eigenvalues, that is

SS∗ϕi = σ2
i ϕi, σi ≥ 0.

By the Riesz-Schauder theorem ( Proposition C.2) every non-zero eigenvalue has finite
multiplicity and 0 is (eventually) the only limit point. We introduce I = {i | σi > 0} the
set of indices corresponding to the non-zero eigenvalues and for any i ∈ I, we define

fi = 1
σi
S∗ϕi.

Proposition C.16. (Mercer theorem) Let K be a continuous and of positive type kernel
and let K be a reproducing kernel Hilbert space with reproducing kernel K. There exists
a unique choice of the orthonormal basis {ϕi}i such that the eigenfunctions corresponding
to non-zero eigenvalues are continuous. With this choice,

fi(x) = σiϕi(x), i ∈ I,

and {fi}i∈I is an orthonormal basis of K. Moreover, the kernel K has the representation

K(x, x′) =
∑
i

σ2
i ϕi(x)ϕi(x′), x, x′ ∈ X,

where the convergence is absolute and uniform.
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